
UNIVERSIDAD DE CANTABRIA
PROGRAMA DE DOCTORADO EN CIENCIA Y TECNOLOGÍA

!

Clasificación de 4-simplices vacíos
y otros politopos reticulares

Classification of empty 4-simplices
and other lattice polytopes

Óscar Iglesias Valiño
Director y tutor de tesis: Francisco Santos Leal

Santander, 2020





Acknowledgement/Agradecimientos

This thesis has been developed under the following scholarships and project grants:
MTM2014-54207-P, MTM2017-83750-P and BES-2015-073128 of the Spanish Min-
istry of Economy and Competitiveness

I would like to thank Benjamin Nill for hosting me at Otto-von-Guericke Univer-
sität Magdeburg where I spent 3 months of my life learning about lattice polytopes,
meeting nice people and enjoying the German culture.

I would like to thank Takayuki Hibi and Akiyoshi Tsuckiya for inviting me to
the Summer Workshop on Lattice Polytopes in Osaka where they hosted me for 3
amazing weeks of work with colleagues.

Me gustaría dar las gracias a mi familia y amigos, quienes me han apoyado du-
rante estos años y han sufrido (o disfrutado) de mis largas ausencias o estancias en
el extranjero. Desde luego es seguro que sin el apoyo y educación que me pudieron
brindar mis padres no podría haber llegado a estar en esta situación a día de hoy y
ellos son parte responsable de que esta tesis exista. En cuanto a mis amigos, han sido
un refresco que siempre que he vuelto a casa me han acogido y apoyado, de manera
que este largo camino a podido llegar a buen puerto. Gracias Leti, Darío, Dani, Ana,
Tania, Xabi, Jose, María, Mariña, Pedro, Anyhela, Alberto.

To the different people I met in conferences, seminars, workshops and travels
around the globe, I want to say thanks for letting me see the world from your point
of view.

In particular, I want to acknowledge Jorge, Giulia, Gabrielle, J. P, Chris, Lorenzo,
Jan, Paco Criado, Bernardo, that among other people made my day better during all
the travels and time dedicated to math.

Also C. Haase, G. Ziegler that gave me the opportunity to enjoy the Villa from
time to time and G. Averkov for some interesting discussions.

No podría dejar de recordar a los buenos compañeros que he tenido en la Facultad
de Ciencias en Santander. Tanto mis compañeros doctorandos, Paula, Ujué, Mónica,
Juan, Nacho, Javi, Diego, Maitane; como el resto de profesorado o personal, Rafa,
Javi, Carlos, Pardo, Lalo, Dani, Nuria, Miguel, etc. En especial, me gustaría men-
cionar a Tomás Recio, con el que he compartido docencia y, a pesar de estar cerca de

iii



su jubilación, y siempre con una sonrisa, ha hecho que fuera todo un placer impartir
una asignatura como es Álgebra Lineal junto a él, te toca disfrutar el descanso que te
mereces.

Finalmente, me gustaría agradecer enormemente a mi director de tesis Paco San-
tos, no solo por darme la oportunidad de formar parte del mundo de la matemática
discreta durante estos últimos 5 años pudiendo viajar a los congresos y conociendo
gente excepcional, sino por haber tenido excesiva paciencia y compromiso con el
desarrollo de esta tesis doctoral.

iv



Contents

1 Introduction 3
1.1 Main definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Main results and organization of the thesis . . . . . . . . . . . . . . 10

1.3.1 Organization of the thesis . . . . . . . . . . . . . . . . . . 11
1.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 The classification of empty 4-simplices 13
2.1 Classifying hollow polytopes . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 The case of cyclic simplices . . . . . . . . . . . . . . . . . 16
2.2 The complete clasification . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Proof of the main theorem, cases k = 1, 2 . . . . . . . . . . . . . . 22
2.4 Proof of the main theorem, case k = 3 . . . . . . . . . . . . . . . . 25
2.5 Case k=4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Bounds for the volume 37
3.1 Successive minima and Covering minima . . . . . . . . . . . . . . 37
3.2 Upper bound for hollow 3-bodies . . . . . . . . . . . . . . . . . . . 38
3.3 Maximum volume of wide hollow 4-simplices . . . . . . . . . . . . 44
3.4 Upper bound for the volume of hollow 4-simplices of width 2 . . . . 51

4 Enumeration of empty 4-simplices 57
4.1 Strategy of the enumeration/quintuples . . . . . . . . . . . . . . . . 57
4.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Computation time . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Differences with Mori et al. results . . . . . . . . . . . . . . . . . . 64

v



CONTENTS

5 Facets of empty 4-simplices 67
5.1 Unimodular facets of empty simplices . . . . . . . . . . . . . . . . 67
5.2 h*-vector of empty 4-simplices . . . . . . . . . . . . . . . . . . . . 68

6 Open questions and ongoing work 73
6.1 Classification of hollow n-polytopes . . . . . . . . . . . . . . . . . 73
6.2 Threshold width and flatness constant . . . . . . . . . . . . . . . . 76

6.2.1 Random empty simplices . . . . . . . . . . . . . . . . . . . 76

Appendices 87
.1 Number of empty 4-simplices for particular families: . . . . . . . . 87
.2 Example of classification for some values of V ? . . . . . . . . . . . 88
.3 Algorithm for generating random polytopes and estimating maxi-

mum width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

vi



Resumen de la tesis doctoral

Un d-politopo es la envolvente convexa de un conjunto finito de puntos en Rd. En
particular, si un d-politopo está generado por exactamente d + 1 puntos se dice que
es un símplice o un d-símplice. Además si tomamos los puntos con coordenadas
enteras, es decir, un politopo P = conv(p1, · · · , pn) con pn ∈ Zd se dice que el
politopo es reticular.

A lo largo de esta tesis doctoral se estudian los politopos reticulares y, más conc-
retamente, se estudian dos tipos de estos que son los politopos reticulares vacíos
(cuyos únicos puntos reticulares son los vértices) y los politopos reticulares huecos,
politopos reticulares que no poseen puntos reticulares en su interior relativo, es decir,
todos sus puntos reticulares se encuentran en la frontera.

Los politopos huecos, también vacíos, aparecen como el ejemplo más sencillo
de politopos reticulares al no tener puntos enteros en el interior de su envolvente
convexa.

El principal resultado de la tesis doctoral es la clasificación de símplices vacíos
en dimensión 4. Mientras los casos en dimensión 1 y 2 son triviales y el caso de
dimensión 3 estaba concluido desde 1964 con el trabajo de White [Whi64], con este
trabajo se completa esta clasificación en dimensión 4.

Artículos como el de Mori, Morrison y Morrison [MMM88] en 1988 consiguen
describir algunas familias de 4-símplices vacíos de volumen primo en términos de
quíntuplas. Otros trabajos como el de Haase y Ziegler [HZ00] en el 2000, obtienen
resultados parciales de esta clasificación. En particular, en ese trabajo se conjeturó
una lista completa de 4-símplices vacíos con anchura mayor que dos, la cual se prueba
completa en esta tesis.

Empleando técnicas de geometría convexa, geometría de números y resultados
previos sobre la relación entre la anchura de un politopo y su volumen, somos ca-
paces de establecer unas cotas superiores para los 4-símplices vacíos que deseamos
clasificar. Con estas cotas para el volumen de los símplices y una gran cantidad de
computación de estos politopos reticulares en dimensión 4 somos capaces de comple-
tar la clasificación, explicando el método general utilizado para describir las familias
de símplices vacíos que aparecen en la clasificación.
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CONTENTS

Una vez clasificados los símplices vacíos en dimensión 4, y empleando los re-
sultados de las computaciones que han sido realizadas, se determinan todos los h∗-
vectores para estos politopos reticulares y se demuestra que todo 4-símplice vacío
posee al menos 2 facetas unimodulares, un resultado que había sido anunciado como
cierto, pero del cual no se disponía una prueba completa.

Para finalizar la tesis doctoral se establecen una serie de generalizaciones de los
resultados empleados para lograr la clasificación de los 4-símplices vacíos que dan
lugar a un procedimiento de clasificación para otros tipos de politopos reticulares,
como son los 5-símplices vacíos o los d-símplices huecos, con d ≥ 4, aunque más
computaciones y cálculos serían necesarios para completar dichas clasificaciones.
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Chapter 1

Introduction

In this introductory chapter we define the main concepts that will appear throughout
this work and we give some motivation to the study of empty and hollow polytopes,
in particular, simplices.

Most of the content of this thesis appears in the following research papers: [IVS19,
IVS19*] written by the author and Francisco Santos, his Phd. advisor. In the same
manner, the main results coming from this thesis have been presented in several span-
ish and international conferences, either as a talk or a poster; this fact has resulted in
some online contributions in proceedings for the following conferences:

• The abstract of my talk, Classification of empty lattice 4-simplices of width
larger than 2, at European Conference on Combinatorics, Graph Theory and
Applications (EUROCOMB, Wien 2017) has been published in the special is-
sue of Electronics Notes in Discrete Mathematics with the same name of the
conference [IVS17].

• The abstract of my talk, The complete classification of empty 4-simplices, at
Discrete Mathematics Days 2018 hold in Sevilla has been published in the
special issue of Electronics Notes in Discrete Mathematics with the same name
of the conference. [IVS18]

• A survey on width and volume bounds of hollow polytopes has been published
as a chapter of the book: Algebraic and Geometric Combinatorics on Lattice
Polytopes [IV19]. This book has been published as result of the proceedings
of the Summer Workshop on Lattice Polytopes (Osaka 2018).

This introductory chapter has a first section 1.1 where we introduce the reader
to the basic and main concepts that will be needed to understand the content of this
work, mainly the definitions that are related to the concept of lattice polytope and
convex body and their main properties and basic characteristics and ways to measure
them.

In the second section 1.2, we give a motivation for the study of lattice polytopes,
and more particularly, the classification of hollow polytopes.
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Introduction

In this introduction we remark which are the main results obtained throughout
this research. These conclusions are summarized in Chapter 1.3. We also describe
there the organization of the results within this work.

At the end of that Chapter we also describe the content of the appendix where we
include some data, experimental results and information that are part of this thesis
but would interrupt the flow of the text, if put in the main body.

1.1 Main definitions

A polytope P ∈ Rn is the convex hull of a finite set of points, i. e., it is the
smallest convex set that contains a certain finite set of points p1, · · · , ps. When we
refer to the convex hull of a set of points we will denote it as conv(p1, · · · , pn). The
dimension of a polytope is the dimension of its affine span. A polytope of dimension
d is usually called a d-polytope.

We also need to consider a lattice L; with this word, we mean a discrete subgroup
of Rn. Unless stated otherwise our lattice will be Zn. There is no loss of generality
as the problems we look at are invariant under affine transformations.

Once we have introduced a lattice, if a finite set of points lies in Zn, then we say
that its convex hull is a lattice polytope, i.e., P = conv(p1, . . . , pn) with {p1, . . . , pn}
⊂ Zn.

Classification will always be meant modulo unimodular equivalence: two lattice
d-polytopes P1, P2 ⊂ Rd are said unimodularly equivalent if there is an affine integer
isomorphism between them; that is, a map f : Rd → Rd with integer coefficients and
determinant 1 such that P2 = f(P1)

A face of a polytope P is the intersection of P with a hyperplane H that does not
cut the relative interior of P . We call vertices the 0-dimensional faces of P , edges
the 1-dimensional faces of P and facets the (d− 1)-dimensional faces of P .

Throughout the whole text it is convenient to measure the polytopes we classify.
Two measures that are invariant under unimodular equivalence and we use to deter-
mine polytopes are their volume and their width.

We define the normalized volume, Vol(P ) := d! vol(P ) for any P ⊂ Rd, where
vol denotes the Euclidean volume and Vol the normalized one. This definition makes
all lattice polytopes to have integer volume, and the standard simplex, ∆d =
conv(0, e1, · · · , ed) has volume 1, as the volume of a simplex it is equal to its deter-
minant:

Vol(P ) = det

(
v0 . . . vd
1 . . . 1

)
.
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1.2 Motivation

where P is a d-simplex with d+ 1 vertices v0, . . . , vd.
We say that K ∈ Rn is a convex body if it is a convex compact set.
The width of a convex body K ∈ Rd with respect to an affine functional f :

Rd → Rd is defined as

wf (K) := max
x,y∈K

|(f(x)− f(y)|.

The (lattice) width of a lattice polytope P is the minimum value of the widths
among all non-constant (integer) functionals and we will denote it as w(P ). Lattice
width can also be seen as the minimum lattice distance of two parallel hyperplanes
that can enclose the given lattice polytope.

We will say that p is a lattice point of P if p ∈ P ∩ Zn. If p ∈ int(P ), then p is
called an interior point of P . In most of this work we will focus in lattice polytopes
without interior points; these are called hollow polytopes.

If the only lattice points of a lattice polytope P are its vertices, then we say that
P is empty, or more frequently, P is an empty d-polytope.

1.2 Motivation

Lattice polytopes appear in different areas of research in which their study and
properties can lead to find new interesting results. Our knowledge of lattice polytopes
helps to translate questions made in other mathematical fields to discrete geometry
in which these problems sometimes can be more approachable. Some of these fields
in which several questions can be written in their lattice polytope interpretation are
discrete optimization, geometry of numbers, toric geometry, etc.

Lately, lattice polytopes, and particularly, properties of hollow-empty polytopes
have been a field of research by itself [Tre08, NZ11, AW12, AWW11].

When looking at lattice polytopes, the simplest example that can be found is a
simplex (simplices have the lowest number of vertices possible) and, in particular,
empty simplices (their only lattice points are their vertices). Even more, every poly-
tope can be decomposed into several empty simplices, i.e., they work as building
blocks for lattice polytopes in the same way as triangulations work in the theory of
subdivisions [KS03, Knu73, SR, HS, SZ13].

In this manner, it is interesting to know how to construct empty simplices as, if
their classification is understood, it will be easier to understand how to build lattice
polytopes as the union of empty simplices. Even more, some nice properties that
occur for empty simplices can be translatable to general lattice polytopes, so having
a complete classification of empty simplices may give simpler proofs for some prop-
erties for the full class of lattice polytopes or, even more, bring ideas of some facts
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Introduction

Figure 1.1: Reeve’s tetrahedron with volume V = 3.

happening in more general lattice polytopes that we do not know yet. This is not the
only factor that make empty-hollow polytopes particular. In 1983, Hensley [Hen83]
realised that having interior lattice points makes a difference when referring to the
volume of lattice polytopes:

Theorem (Hensley [Hen83]). For fixed d and k > 0, there is an upper bound on the
volume of lattice d-polytopes with k interior lattice points.

This theorem ensures that every lattice polytope with interior lattice points (i.e.,
non-hollow) has an upper bound for its volume depending on the number of interior
lattice points. Some examples for this upper bound can be found in [LZ91,Pik01]. In
contrast, if we take a look at what happens in the case of hollow polytopes, there is no
such bound. One example to verify this are Reeve tetrahedra, the following family
of lattice tetrahedra:

P := conv (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, V ),

here V is the volume of P . V can be any positive integer number and P is empty (so,
hollow).

Although the volume is not bounded for hollow polytopes there are measures that
can capture some type of size of hollow polytopes. One interesting example is what
happens with the width. It has been known for a long time that the width of a hollow
polytope is bounded in terms of its dimension:

Theorem (Flatness theorem). There exists a function f : N → R such that for any
hollow convex body K ∈ Rd and with respect to the lattice Zd, w(K) ≤ f(d).

Some progress has been done in last years trying to obtain better upper bounds
for the width of hollow polytopes depending on the dimension. Some of the best
improvements were made by Khintchine [Khi48], Kannan and Lovász [KL88] and
lately Banazczyk et al. and an improvement by Rudelson got that the flatness constant
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1.2 Motivation

is of the order O(d
4
3 (1 + log d)) [BLPS99,Rud00], even though there is still room to

get a better upper bound and fully understand this flatness of hollow bodies.
It is also noticeable, that the concept of width is also an important part of the

known classifications of hollow polytopes in lower dimensions:

Theorem (Folklore). A hollow polygon (2-polytope) is either of width one, or equiv-
alent to 2∆2, the second dilation of the standard unimodular simplex.

Theorem (Treutlin [Tre08], Theorem 1.3). Every hollow 3-polytope is in one of the
following cases:

• It has width 1

• It has width 2 and projects to the polygon 2∆2.

• It has width≥ 2, and does not admit a projection to 2∆2. There are only finitely
many of these and they are contained in hollow-maximal 3-polytopes.

With hollow-maximal, we refer to hollow polytopes that are not properly con-
tained in another hollow d-polytope.

These classification results in lower dimension, were generalized by Nill and
Ziegler:

Theorem (Nill and Ziegler [NZ11]). For all fixed d, all hollow d-polytopes project
to a hollow polytope of dimension less than d except for finitely many cases.

This theorem ensures the finiteness of hollow polytopes that do not project to
lower dimensional hollow polytopes. Even more, these polytopes are always con-
tained in a hollow-maximal d-polytope.

Knowing these classification results, in [HZ00], Haase and Ziegler in 2000 tried
to evaluate the width for the particular case of empty 4-simplices as it is the next
natural step where this bound in the volume was not known at that time. In the case
of dimension 3, White had found a way of completely characterizing all empty 3-
simplices, i.e. empty tetrahedra:

Theorem (White [Whi64]). Every empty tetrahedron of volume q is unimodularly
equivalent to

T (p, q) := conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (p, q, 1)},

for some p ∈ Z with gcd(p, q) = 1. Moreover, T (p, q) is Z-equivalent to T (p′, q) if
and only if p′ = ±p±1 (mod q).
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It is easy to realise that this classification has a follow-up implication for the
width of all these simplices. Taking a look at T (p, q), we can check that with respect
to the functional f(x, y, z) = z, all empty tetrahedra have width one.

Haase and Ziegler found an infinite family of empty simplices of width 2 in di-
mension 4, showing that in dimension 4 the same phenomenon is not happening.
They try to find the maximum width that empty 4-simplices can attain by enumerat-
ing them up to volume 1000. The results of the enumeration are summarized in the
following theorem:

Theorem (Haase and Ziegler [HZ00]). Among empty 4-simplices with volume bounded
by 1000 there are the following cases:

• There are no empty simplices with width greater than four.

• There is a list of 178 empty 4-simplices of width three with volume between 41
and 179.

• There is a unique example of an empty 4-simplex with width 4 and volume 101.

As the list of simplices of width greater than two that they found has maximum
volume 179, they conjecture that their list is finite and contains only those simplices.
Even more, Perriello in his Masters Thesis [Per08] starts a new enumeration that goes
up to volume 1600, in which he finds no other empty 4-simplex of width greater than
two that was not in Haase and Ziegler list.

The assumption of the finiteness of this list of empty 4-simplices makes natural
the following definition that appears in [BHHS]:

We define finiteness threshold width to be the minimum width w∞(d, n) ∈ N,
such that there exist only finitely many lattice d-polytopes with n lattice points of
width > w∞(d, n) modulo unimodular equivalence.

Once this concept is introduced, we can rephrase the Haase Ziegler conjecture as
saying that w∞(4) = 2 and that there is no other simplex of width greater than two
that is not in their list.

In fact, this attempt to a classification of empty 4-simplices from Haase and
Ziegler was not the first work on this topic. In 1988, Mori, Morrison and Morri-
son [MMM88] made some advances in this classification attacking the problem from
the concept of terminal quotient singularities , that comes from the point of view of
algebraic and toric geometry [MMM88, MS84].

In their work, the authors suggest that a terminal quotient singularity is attached
to a quintuple that can be of one of the following three different types.

• 1 quintuple depending on 3 parameters

8



1.2 Motivation

• 1 quintuple that depends on 2 parameters

• 29 particular cases.

They conjecture that this list is complete and all terminal quotient singularities
are associated to one of these quintuples if the value of a number p, associated to
that quintuple, is prime (In terms of lattice polytopes the value p is the volume of the
empty simplex related to this singularity). This claim was proved to be true with the
computations of Sankaran [San90] and Bober [Bob09].

In Chapter 2, we can see how this information about the terminal quotient sin-
gularities and the quintuples correspond to empty simplices. Although, Barile et
al. claimed that the result of Sankaran and Bober can be extended to all empty 4-
simplices, we prove that this is not the case, since if the volume of the simplex is a
non-prime number there exist other families of empty 4-simplices that can appear.
Examples of these empty simplices are showed in Chapter 2.

There are some other facts regarding the width that raise interesting questions
about empty 4-simplices. It is also a peculiar fact that dimension 4 is a limit case for
empty simplex regarding the volume of their facets. In [Wes89], Wessels writes in
his Masters thesis the following theorem:

Theorem. Every empty 4-simplex has at least two unimodular facets

This may not be an impressive fact, but looking at what happens when dimension
d > 4, Haase and Ziegler and Barile et al. give nice examples of empty 5-simplices
in which all facets are non-unimodular.

As it seems, the dimension of the polytopes has a crucial part in the possible
volume of the facets, and so we decide to compute the volume facet vector for every
family of empty 4-simplices and the sporadic cases because we cannot verify the
proof of Wessels.

Even more, classifying empty 4-simplices is another way to approach one prob-
lem of interest for lattice polytopes. For this special case, knowing the volume vector
of the facets and the volume of the polytope it is equivalent to knowing the complete
Ehrhart polynomial and h∗-vector.

The Ehrhart polynomial is a function that measures how many lattice points the
dilations of a lattice polytope P have. The Ehrhart polynomial of a lattice d-polytope
P is a degree d-polynomial E(P, t) = Ett

d + · · ·+E0 ∈ Q[t] with the property that

E(P, t) = |tP ∩ Λ|, ∀t ∈ N.

The h∗-vector (or δ-vector) of P , a vector h∗(P ) = (h∗0, . . . , h
∗
d) ∈ Nd+1 with

the property that
∞∑
n=0

E(P, n)xn =
h∗dx

d + · · ·+ h∗0
(1 + x)d+1

.
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That is, the h∗-vector gives (the vector of coefficients of the numerator of the rational
function of) the generating function of the sequence (E(P, n))n∈N.

In recent years, the interest in knowing more facts about the Ehrhart polynomial
of a lattice polytope, the meaning of its coefficients and their values for several kinds
of polytopes has been raising [BJMc19,Sco76,Sta09,HKN18,BH18,LS19,HNO18,
BdLPS05]. The binomial h∗-polynomials are fully characterised by Batyrev and Hof-
scheier [BH13], in particular empty 3-simplices are part of that classification [BH10].
The specific case of h∗-vectors of the form (1, 0, h∗2, h

∗
3, 0) is the next step.

1.3 Main results and organization of the thesis

The main result of this thesis is the complete classification of empty 4-simplices.
Chapter 4 contains the proof of the following theorem that states the different cases
that appear for an empty 4-simplex:

Theorem (Classification of empty 4-simplices, Theorem 2.2.1). Let P be an empty
4-simplex and let k ∈ {1, 2, 3, 4} be the minimum dimension of a hollow polytope
that P projects to. Then P is as follows, depending on k:

k = 1: P lies in the three-parameter family parametrized by the volume V of P and
another two integer parameters α, β with gcd(α, β, V ) = 1; the 5-tuple of P
is (α+ β,−α,−β,−1, 1).

k = 2: P lies in one of the following two two-parameter families parametrized by the
volume V of P and another integer parameter α with gcd(α, V ) = 1:

(1,−2, α,−2α, 1 + α) with odd V , and
V

2
(0, 1, 0, 1, 0) + (−1,−1, α,−α, 2) with V ∈ 4Z.

We call the first family primitive and the second nonprimitive.

k = 3: Except for finitely many simplices, P belongs to one of the 29 primitive + 17
nonprimitive families with quintuples shown in Tables 2.1 and 2.2 with some
conditions for the volume expressed in Chapter 2

k = 4: There are finitely many possibilities for P , by Theorem 2.1.1. Their volumes
are bounded by 419. See more details in Theorem 2.2.5.

While trying to finish this classification during last years we have encountered
several difficulties. Solving the problems found in the way to the complete classifi-
cation has evolved in obtaining other partial results that form part of this work, and
so, they are present in this thesis:
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1.3 Main results and organization of the thesis

• In Chapter 3 we explain the techniques we use to obtain upper bounds for the
volume of hollow polytopes in particular cases. One of these upper bounds
can be generalized to general convex bodies with width greater than a fixed
constant. In this sense, we obtain a better bound that the previous known:

Theorem (Theorem 3.2.1). Let K be a hollow convex 3-body of lattice width
w, with w > 1 + 2/

√
3 = 2.155 and let µ = w−1. Then,

vol(K) ≤ 8w3

(w − 1)3
, if w ≥ 2√

3
(
√

5− 1) + 1 = 2.427, and

vol(K) ≤ 3w3

4(w − (1 + 2/
√

3))
, if w ≤ 2.427.

• For the case k = 4, the sporadic simplices, we needed an upper bound for
the volume of hollow simplices that do not project to hollow 3-polytopes. We
prove this bound in Chapter 3.4 by doing a case by case proof.

• In chapter 5 we complete the study of the facet volume vector of empty 4-
simplices for all the cases in the main theorem 2.2.1. Via obtaining these facet
volume vectors, we get the following two results:

1. We determine every possible h∗-vector of the form:

h∗ = (h∗0, h
∗
1, h
∗
2, h
∗
3, h
∗
4) =

(
1, 0,

V + S

2
− 3,

V − S
2

+ 2, 0

)
.

2. We verify the statement of Wessels [Wes89] that says that every empty
4-simplex has at least 2 unimodular facets and give an explicit list of the
cases in which the simplex has only 2 unimodular facets.

1.3.1 Organization of the thesis

The proof of the main theorem is developed in chapter 2. There, we introduce the
different families that appear in the classification and give explicit description of the
simplices by referring to their hollow lattice projections. Most of the results that we
use through this section apply also for hollow 4-simplices.

In Chapter 3 we calculate the upper bounds for the volume of hollow simplices
in dimension 3 and 4. These upper bounds are needed for the classification of empty
4-simplices as there exist some sporadic simplices that do not belong to any family
and we need to make sure that we get all of them in the enumeration process.

11



Introduction

In Chapter 4 we give details of how the computations were made and list the main
algorithms used during the exhaustive enumeration. We also compare the computa-
tion time between algorithms.

In Chapter 5 we verify the fact that every empty 4-simplex has 2 unimodular
facets and explain how the enumeration of sporadic empty 4-simplices determines
the h∗-vectors of the form (1, 0, h∗2, h

∗
3, 0)

Finally, Chapter 6 mentions some research lines related with the classification of
empty simplices and we state some open questions that remain unsolved. In particu-
lar:

• We mention in which direction the classification of empty 5-simplices could be
approached, even though we enumerate some of the problems that will appear
trying to complete the task.

• We can generalize some of the methods used for the classification of empty
simplices if the polytopes are not empty but, more generally, hollow. We start
this work by giving a brief idea of how the classification of hollow 4-simplices
would look like, but we do not forget about the problems that arise when trying
to classify hollow polytopes instead of empty ones.

• While the finiteness threshold width in the case of empty 4-simplices was de-
termined with previous results [BHHS, IVS19], the value when d > 4 is un-
known. We propose a method via generating random simplices that could give
some intuition in order to determine this values.

1.4 Appendix

After the bibliography some appendices appear that include useful information which
added to the main sections, helps the reader understand the thesis and explain some
technical details that complete the full content of the thesis.

The appendix includes:

• Some data obtained when enumerated empty 4-simplices.

• An algorithm for creating random simplices of the type σ(v), see more in sec-
tion 6.2.1.

• Example of files with all empty 4-simplices for a given volume V separated in
the different cases of Theorem 1.3.

12



Chapter 2

The classification of empty
4-simplices

In this Chapter we show the proof of the classification of empty 4-simplices.
We determine the quintuples that are associated to an empty 4-simplex in terms of
their fine family and coarse family of points that they project to, according to the
definitions in the next section.

In order to finish this proof we also need the volume bounds and computations
described in Chapters 3 and 4.

2.1 Classifying hollow polytopes

If there is a lattice projection π : Rn → Rk sending a polytope P to a polytope Q
and Q is hollow with respect to the projected lattice π(Λ), then P is automatically
hollow; (the same is not true for empty). In this situation we say that π, or Q, is
a hollow projection of P , and that P is a lift of Q. The starting point to a general
classification of hollow lattice polytopes is the following result of Nill and Ziegler:

Theorem 2.1.1 (Nill-Ziegler [NZ11, Thm. 1.2]). For each dimension d there is only
a finite number of hollow d-polytopes that do not project onto a hollow (d − 1)-
polytope.

To rephrase this statement we introduce the following definition:

Definition 2.1.2. Let d ∈ N be fixed and let Q be a k-dimensional lattice hollow
polytope that does not project to any (k − 1)-hollow polytope, with k ≤ d. We call
coarse family of Q the collection of all hollow d-polytopes that have Q as a hollow
projection.

Corollary 2.1.3. The hollow d-polytopes of any fixed dimension d belong to a finite
number of coarse families.

Proof. There is one family for each of the finitely many polytopes of Theorem 2.1.1,
for each k = 1, . . . , d.

13



The classification of empty 4-simplices

Example 2.1.4. A lattice polytope P projects to a hollow 1-polytope if and only if
P has width one. That is, if P is contained between two consecutive parallel lattice
hyperplanes. It is easy to check that the only hollow 2-polytope without that property
is the second dilation 2∆2 of a unimodular triangle. Thus, the coarse classification
of hollow lattice 2-polytopes is as follows:

• The dilated unimodular triangle 2∆2 is a coarse family with a single element.

• The lattice polygons of width one form a second family. Each of them is iso-
morphic to a trapezoid {0}× [0, a]∪{1}× [0, b] with a, b ∈ Z≥0 and a+b > 0.
(The trapezoid degenerates to a triangle if a or b equal zero).

Figure 2.1: The second dilation of a unimodular triangle ∆2, which is the only hollow
2-polytope not projecting to a unit segment.

Example 2.1.5. The coarse classification of hollow 3-polytopes is:

• The coarse family of width one; each of which can be expressed as a pair of
lattice polygons.

• The coarse family projecting to 2∆2. As before, these can be written as the
convex hull of six hollow lattice segments {pi}×[ai, bi] where pi, i = 1, . . . , 6,
are the six lattice points in 2∆2 and [ai, bi] is an integer interval.

• Each of the finitely many (by Theorem 2.1.1) hollow 3-polytopes that do not
project to dimension two is a coarse family in itself. These were enumerated
by Averkov et al. [AWW11, AKW17], who showed that there are 12 maximal
ones. See Theorem 2.4.1.

14



2.1 Classifying hollow polytopes

Observe that the families just defined may not be disjoint. For example, the
Cartesian product of 2∆2 with a unit segment belongs to the first two families of
Example 2.1.5, since it projects both to 2∆2 and to a unit segment.

We are interested in a finer classification, which takes into account the number
of lattice points. A hollow configuration is a finite set S of lattice points such that
conv(S) is a hollow polytope.

Definition 2.1.6. Let d ∈ N be fixed and let S be a configuration of n lattice points
(perhaps with repetition) in Rk, with n > d ≥ k. Assume that conv(S) is hollow
but it does not project to a hollow (k − 1)-polytope. We call fine family of S the
collection of all hollow d-polytopes with n vertices that admit a lattice projection
sending vert(P ) to S.

Corollary 2.1.7. All hollow d-simplices belong to a finite number of fine families.
More generally, for each fixed n, all hollow d-polytopes with n vertices belong to a
finite number of fine families.

Proof. There is one for each multisubset of size n of the lattice points in each of the
finitely many polytopes of Theorem 2.1.1, for k = 1, . . . , d.

Example 2.1.8. There are three fine families of hollow lattice 2-polytopes:

• The dilated unimodular triangle 2∆2 is still a fine family with a single element.
The corresponding S has size three (the three vertices of 2∆2).

• The lattice polygons of width one fall into two fine families, one projecting to
the set S1 = {0, 1, 1} (n = 3, k = 1) and one projecting to the set {0, 0, 1, 1}
(n = 4, k = 1). Members of the first family are isomorphic to a triangle
{(0, 0)} ∪ ({1} × [0, b]), with b ∈ Z≥1. Members of the second family are
trapezoids ({0} × [0, a]) ∪ ({1} × [0, b]) with a, b ∈ Z≥1.

Example 2.1.9. There are infinitely many fine families of hollow 3-polytopes of
width one, since they can have arbitrarily many vertices and all polytopes in the same
fine family have the same number of vertices, by definition.

One key difference between coarse and fine families is that in the latter we fix
the number n of vertices. In particular, if we take n = d + 1 we are looking at
hollow simplices. Observe that in Example 2.1.8 each fine family is parametrized by
n−k− 1 parameters. In the next section we analyze this phenomenon in more detail
in the case of interest to us.

Let us finish this section by pointing out that these finiteness results are very
similar in spirit to Theorem 2.1 in [Bor99]), which Borisov derives from the following
more general statement of Lawrence [Law91]: for any open subset U of the torus
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The classification of empty 4-simplices

Td := Rd/Zd the family of subgroups of Td not intersecting U has finitely many
maximal elements. The relation is as follows: let U be the interior of the standard
simplex in Td. Then, discrete subgroups G ∈ Td not meeting U correspond to
hollow d-simplices P ⊂ Rd via the correspondence P ↔ GP := Λ/ΛP . If G is not
discrete (e.g., G corresponds to positive dimensional linear subspace V ≤ Rd) then
the discrete subgroups of G form a fine family of hollow simplices, in the sense of
Definition 2.1.6.

2.1.1 The case of cyclic simplices

In this section we relate the (d+1)-tuple of a cyclic simplex P to a hollow projection.
Let us fix the following notation:

Let P = conv(v0, . . . , vd) ⊂ Rd be a cyclic lattice d-simplex of volume V ,
and let ΛP be the affine lattice generated by its vertices (we assume without loss
of generality that 0 ∈ ΛP ). By definition of cyclic simplex, the quotient group
G(P ) := Λ/ΛP is cyclic of order V . Let π : Rd → Rk be a linear projection
and denote

S := π(vert(P )) = {π(v0), . . . , π(vd)}.

Observe that both vert(P ) and S are considered as ordered sets, and their ordering
corresponds to the order of coordinates in a (d+ 1)-tuple representing P .

Let ΛS be the affine lattice generated by S, which is a sublattice of π(Λ). Then
π(Λ)/ΛS is a cyclic group too, since π induces a surjective homomorphism

π̃ : Λ/ΛP � π(Λ)/ΛS .

Let I be the index of ΛS in π(Λ) which, by the above remark, divides V . We say that
S, and the fine family defined by it, are primitive if I = 1; that is, if ΛS = π(Λ).

We need the following elementary fact about cyclic groups:

Lemma 2.1.10. Let π : ZV → ZI be a surjective homomorphism between the cyclic
groups of orders V and I . Then, for every generator q of ZI threre is a generator p
of ZV with π(p) = q.

Proof. Take as p any prime not dividing V from the arithmetic progression {q +
nI : n ∈ Z}. Such a prime exists since, by Dirichlet’s prime number theorem, the
arithmetic progression contains infinitely many primes.

Proposition 2.1.11. With the above notation, let q ∈ π(Λ) be a generator of the
quotient group π(Λ)/ΛS . Then:

16



2.1 Classifying hollow polytopes

1. There is a vector a ∈ 1
IZ

d+1 such that

q =
d∑
i=0

aiπ(vi), and 1 =
d∑
i=0

ai.

2. There is a generator p ∈ Λ of the quotient group Λ/ΛP such that the barycen-
tric coordinates of p with respect to {v0, . . . , vd} have the form

a+
1

V
b,

with b ∈ Zd+1 the coefficient vector of an integer affine dependence on S.

Proof. For part (1), observe that since ΛS has index I in π(Λ), we have π(Λ) ≤
1
IΛS . In particular, the point q ∈ π(Λ) can be written as an affine combination, with
coefficients in 1

IZ, of the points in S. The vector a is the vector of coefficients in this
dependence.

For part (2), let p ∈ Λ be a generator of Λ/ΛP with π(p) = q, which exists by
Lemma 2.1.10. Let c = (c0, . . . , cd) ∈ 1

V Z
d+1 be the barycentric coordinates of p

with respect to {v0, . . . , vd}. That is,
∑
ci = 1 and

∑
civi = p. By construction,

c−a ∈ 1
V Z

d+1. The only thing that remains to be shown is that b := V (c−a) ∈ Zd+1

is the coefficient vector of an affine dependence among the π(vi)s. This is easy:

d∑
i=0

(c− a)i π(vi) = π

(
d∑
i=0

civi

)
−

d∑
i=0

aiπ(vi) = π(p)− q = 0.

and
d∑
i=0

(c− a)i =
d∑
i=0

ci −
d∑
i=0

ai = 1− 1 = 0.

The above statement implicitly gives a parametrization of the fine family of cyclic
simplices projecting to S. Let us make it more explicit.

Corollary 2.1.12. Let Λ0 be a lattice in Rk and let S be a multiset of d + 1 lattice
points affinely spanning Rk. Assume that Λ/ΛS is cyclic, of index I , and let a be
as in part (1) of Proposition 2.1.11. Then, the cyclic d-simplices of a given volume
V ∈ I · N and projecting to S are parametrized as having (d+ 1)-tuples

V a+ b,

where b ∈ Zd+1 runs over all the integer affine dependences of S. Moreover, b is only
important modulo V , and satisfies gcd(V, b0, . . . , bd) = 1.
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The classification of empty 4-simplices

The proof of Theorem 2.2.1 is by applying Corollary 2.1.12 to the case of cyclic
empty 4-simplices. That is, by looking at hollow configurations of five points in Rk,
k < 4. Observe that for primitive families (that is, for I = 1), the only generator q of
Λ/ΛS is the zero class, represented (for example) by the first element of S. This gives
us a = (1, 0, . . . , 0) but, since we are interested in the tuples modulo the integers,
we can as well take a = 0. This is our convention in all the primitive families of
Theorem 2.2.1.

Observe that if conv(S) is hollow then all the cyclic simplices of Corollary 2.1.12
are automatically hollow, but not necessarily empty. Let us now address the issue of
the restrictions needed for them to be empty. They are related to the volumes of
facets, and the following observation.

Lemma 2.1.13. LetP be a cyclic d-simplex of volume V with (d+1)-tuple (b0, . . . , bd).
Then, the volume of the ith facet of P (i = 0, . . . , d) equals

Vi := gcd(V, bi).

Proposition 2.1.14. Let P be a cyclic d-simplex of volume V with tuple (b0, . . . , bd).
A necessary condition for P to be empty is that no d − 2 of the bis (equivalently, no
d− 2 of the facet volumes Vi) have a factor in common with V .

Proof. Recall that the V tuples jb, j = 0, . . . , V − 1, represent the V classes of
lattice points in Λ/ΛP . If d− 2 of the bis have a factor in common with V then there
is a j 6= 0 such that jb has three (or less) nonzero entries. That implies one of the
non-zero classes in Λ/ΛP to have representatives in a 2-plane spanned by a 2-face of
P , which implies P has a 2-face that is not unimodular, hence not empty. That is a
contradiction since every face of an empty simplex is empty.

Proposition 2.1.15. Let P be a cyclic hollow 4-simplex of volume V with quintuple
(b0, . . . , b4) and, as above, let Vi := gcd(V, bi) (the volume of the i-facet of P ). The
following are equivalent:

1. P is empty.

2. For each i, if Vi 6= 1 then the multiset {b0, . . . , b4} coincides, modulo Vi, with
the multiset {0, α,−α, β,−β} for some α and β coprime with Vi.

Proof. Once we know that P is hollow, it will be empty if and only if its facets are
empty tetrahedra. The (classes of) lattice points in Λ/ΛP lying in the hyperplane
of the i-th facet are those that have a zero in the i-th position of their barycentric
coordinates; these, as multiples of the generator (b0, . . . , b4) for the quotient group,
are precisely the multiples of 1

Vi
(b0, . . . , b4). The necessary and sufficient condition

for the facet to be empty is, by Example 2.1.16, that the four non-zero entries in

18



2.2 The complete clasification

1
Vi

(b0, . . . , b4) come in two pairs of opposite entries modulo Vi, and that the entries
are prime with Vi.

Example 2.1.16 (Empty 3-simplices). The 3-simplex of Theorem 1.2,
T (p, q) = conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (p, q, 1)}, has the associated 4-tuple
(p,−p,−1, 1), since (0, 1, 0) is a generator for GP ∼= Zq and

(0, 1, 0) =

(
1 +

p

q

)
(0, 0, 0)− p

q
(1, 0, 0)− 1

q
(0, 0, 1) +

1

q
(p, q, 1).

2.2 The complete clasification

Theorem 2.2.1 (Classification of empty 4-simplices). Let P be an empty 4-simplex
and let k ∈ {1, 2, 3, 4} be the minimum dimension of a hollow polytope that P
projects to. Then P is as follows, depending on k:

k = 1: P lies in the three-parameter family parametrized by the volume V of P and
another two integer parameters α, β with gcd(α, β, V ) = 1; the 5-tuple of P
is (α+ β,−α,−β,−1, 1).

k = 2: P lies in one of the following two two-parameter families parametrized by the
volume V of P and another integer parameter α with gcd(α, V ) = 1:

(1,−2, α,−2α, 1 + α) with odd V , and
V

2
(0, 1, 0, 1, 0) + (−1,−1, α,−α, 2) with V ∈ 4Z.

We call the first family primitive and the second nonprimitive.

k = 3: Except for finitely many simplices (of volumes bounded by 72, see Prop. 2.4.3)
P belongs to one of the 29 primitive + 17 nonprimitive families with quintuples
shown in Tables 2.1 and 2.2, parametrized by volume alone (plus a choice of
sign in some of the nonprimitive families).

The volume needs to satisfy the modular conditions states in the caption of
Table 2.1 and in Table 2.3 (from Section 2.4), respectively.

k = 4: There are finitely many possibilities for P , by Theorem 2.1.1. Their volumes
are bounded by 419. See more details in Theorem 2.2.5, below.

Remark 2.2.2 (From a quintuple to coordinates). For the convenience of the reader,
here comes an explicit recipe to translate a volume V and a tuple b = (b0, . . . , bd) ∈
ZV d+1 to actual coordinates for a cyclic d-simplex P that they represent. Suppose
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The classification of empty 4-simplices

one of the entries in b, say the first one b0, is a unit modulo V ; this property is
equivalent to the corresponding facet of P being unimodular (see Lemma 2.1.13)
and it is a fact that all empty 4-simplices have at least two such unimodular facets
(Corollary 5.1.1). Then, since we can multiply b by a unit modulo V there is no loss
of generality in assuming b0 = −1. Also, since the entries of b are important only
modulo V and add up to zero, without loss of generality we assume that

∑d
i=0 bi =

V . In these conditions, the simplex P can be taken to be

conv(e1, . . . , ed, v),

where v = (b1, . . . , bd). Indeed, this simplex is clearly of volume V (the last vertex
lies at lattice distance

∑d
i=1 bi − 1 = V from the facet spanned by the standard

basis, which is unimodular) and it is represented by our tuple since the origin has
barycentric coordinates 1

V b for it:

(0, 0, 0, 0) =
b1
V
e1 + · · ·+ bd

V
ed −

1

V
v.

Example 2.2.3. For a concrete example, consider the first quintuple (9, 1,−2,−3,−5)
of Table 2.1 and let V = 100. We first modify b to have sum of entries equal to V
and one entry−1 (we do this with the first entry, but it could be done with the second
or fourth):

11 · (9, 1,−2,−3,−5) = (−1, 11,−22,−33,−55)

= (−1, 11,−22, 67, 45) (mod 100).

Then, the simplex P can be taken to be

conv(e1, e2, e3, e4, (11,−22, 67, 45)).

As another example, the simplex of quintuple (α+β,−α,−β,−1, 1) and volume
V (case k = 1 of Theorem 2.2.1) is isomorphic to

conv{e1, e2, e3, e4, (V − α− β, α, β, 1)} ∼= conv{0, e2, e3, e4, (V, α, β, 1)}.

Some comments about the statement of Theorem 2.2.1:

• The classification is not irredundant. The same empty simplex may belong to
several families, since it may project to different lower dimensional configura-
tions.

• The parameters α and β are only important modulo V ; also, multiplying a
5-tuple by a unit modulo V does not change the simplex.
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1
V (9, 1,−2,−3,−5)

1
V (9, 2,−1,−4,−6)

1
V (12, 3,−4,−5,−6)

1
V (12, 2,−3,−4,−7)

1
V (9, 4,−2,−3,−8)

1
V (12, 1,−2,−3,−8)

1
V (12, 3,−1,−6,−8)

1
V (15, 4,−5,−6,−8)

1
V (12, 2,−1,−4,−9)

1
V (10, 6,−2,−5,−9)

1
V (15, 1,−2,−5,−9)

1
V (12, 5,−3,−4,−10)

1
V (15, 2,−3,−4,−10)

1
V (6, 4, 3,−1,−12)

1
V (7, 5, 3,−1,−14)

1
V (9, 7, 1,−3,−14)

1
V (15, 7,−3,−5,−14)

1
V (8, 5, 3,−1,−15)

1
V (10, 6, 1,−2,−15)

1
V (12, 5, 2,−4,−15)

1
V (9, 6, 4,−1,−18)

1
V (9, 6, 5,−2,−18)

1
V (12, 9, 1,−4,−18)

1
V (10, 7, 4,−1,−20)

1
V (10, 8, 3,−1,−20)

1
V (10, 9, 4,−3,−20)

1
V (12, 10, 1,−3,−20)

1
V (12, 8, 5,−1,−24)

1
V (15, 10, 6,−1,−30)

Table 2.1: The 29 stable quintuples of Mori-Morrison-Morrison.

In all the families we have stated some restrictions on the volume V ∈ N or the
parameters α, β ∈ ZV (e.g. the condition gcd(V, α, β) = 1 when k = 1). Without
these restrictions the 5-tuples represent hollow cyclic 4-simplices. That these restric-
tions are necessary for emptyness is part of Theorem 2.2.1, and their sufficiency is
shown in propositions 2.3.2, 2.4.6 and 2.4.7. That is, we have the following converse
of Theorem 2.2.1:

Theorem 2.2.4. All the cyclic 4-simplices described in Theorem 2.2.1 are empty.

Proof. The proof of cases k = 1, · · · , 4 of the theorem is explained in sections 2.3,2.4
and 2.5.

In order to have a complete classification we need to enumerate the finitely many
exceptions of the cases k = 3, 4. For this, in Section 2.5 we first prove an upper
bound for their volume (Theorem 3.4.1) and then enumerate all empty simplices up
to that volume. This yields:

Theorem 2.2.5. Apart of the 1 + 2 + 29 + 17 infinite families described in Theo-
rem 2.2.1, there are exactly 2461 sporadic empty 4-simplices. Their volumes range
from 24 to 419 and the number of them for each volume is as listed in Table 2.6.
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Index 2:
1
2(0, 0, 1, 1, 0) + 1

V (3,−1,−6, 2, 2)

1
2(1, 0, 0, 0, 1) + 1

V (4,−3, 1,−4, 2)

1
2(1, 0, 0, 0, 1) + 1

V (2, 3,−1,−8, 4)

1
2(0, 1, 1, 0, 0) + 1

V (1,−6, 2, 6,−3)

1
2(1, 0, 1, 0, 0) + 1

V (6,−8, 4,−3, 1)

1
2(1, 0, 0, 0, 1) + 1

V (4, 3,−1,−12, 6)

Index 4:
1
4(2, 1, 1, 0, 0) ± 1

V (3,−3, 1,−2, 1)

1
4(0, 1, 1, 0, 2) ± 1

V (1, 3,−1,−6, 3)

Index 3:
1
3(0, 0, 2, 1, 0) ± 1

V (−3, 2, 1, 1,−1)

1
3(1, 0, 2, 0, 0) ± 1

V (3,−3, 1,−2, 1)

1
3(0, 0, 1, 2, 0) ± 1

V (−3, 1, 2, 2,−2)

1
3(0, 0, 1, 2, 0) ± 1

V (4,−2,−4, 1, 1)

1
3(1, 0, 2, 0, 0) ± 1

V (3,−6, 2, 2,−1)

1
3(1, 0, 2, 0, 0) ± 1

V (4,−6, 1, 2,−1)

1
3(1, 0, 2, 0, 0) ± 1

V (4,−3, 1,−4, 2)

1
3(0, 0, 1, 1, 1) ± 1

V (1,−6, 2, 6,−3)

Index 6:
1
6(1, 0, 0, 4, 1) ± 1

V (1,−3, 1, 2,−1)

Table 2.2: The 23 non-primitive quintuples.

2.3 Proof of the main theorem, cases k = 1, 2

Proof of Theorem 2.2.1, case k = 1. There are two possibilities for a hollow con-
figuration S of five points in dimension one. Either S = {0, 0, 0, 1, 1} or S =
{0, 0, 0, 0, 1}. We first show that every cyclic simplex projecting to the latter projects
also to the former. Indeed, let P = conv(v0, . . . , v4) be a cyclic simplex and
π : R4 → R a lattice projection sending v0, . . . , v3 to 0 and v4 to 1. Since the
facet F = conv(v0, . . . , v3) is an empty tetrahedron, by Theorem 1.2 there is a lat-
tice functional f : R4 → R sending two of its vertices (say v0 and v1) to 0 and the
other two to 1. Let c = f(v4) ∈ Z. Then the functional f − c · π sends v0, v1 and v4
to 0 and v2, v3 to 1.

That is to say; we have a single fine family, projecting to S = {0, 0, 0, 1, 1}. It
is a primitive configuration and the linear space of affine dependences among its five
points equals

{(α+ β,−α,−β,−γ, γ) : α, β, γ ∈ R}.

Thus, by Corollary 2.1.12, every cyclic simplex of volume V projecting to S has a
5-tuple of the form

(α+ β,−α,−β,−γ, γ),
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2.3 Proof of the main theorem, cases k = 1, 2

4 35

2

1
1

5

2

4
3

Figure 2.2: There are six possibilities for a size 5 subconfiguration of 2∆2 containing
the three vertices. Only the first two arise as the projection of empty 4-simplices with
k = 2.

with α, β, γ ∈ Z. Fix such a quintuple. By Proposition 2.1.14, for the simplex to be
empty we need gcd(γ, V ) = gcd(α, β, V ) = 1. Multiplying the (d+ 1)-tuple by the
inverse of γ modulo V , there is no loss of generality in taking γ = 1.

Proof of Theorem 2.2.1, case k = 2. Our set S consists now of five of the six lattice
points in 2∆2, perhaps with repetition. In order for S not to project to dimension
1, we need to use the three vertices of ∆, which leaves six possibilities for the two
additional elements of S, modulo affine symmetry. But we claim that:

Claim: no four of the five elements of S can be on the same edge of 2∆2: Suppose
that π : P → 2∆ projects an empty 4-simplex P to 2∆, with four of the vertices
going to the same edge of 2∆. Let f : R2 → R be the lattice functional taking the
value 0 on that edge and the value 2 at the opposite vertex. Let f̃ := f ◦π : R4 → R.
Since the facet of P where f̃ vanishes is an empty tetrahedron, by Theorem 1.2 there
is a lattice functional g : R4 → R sending two of its vertices to 0 and the other two to
1. Let c be the value of g at the fifth vertex of P . Then g−b c2cf̃ takes values 0 or 1 at
all vertices of P , contradicting the fact that P does not project to a hollow segment.

The claim implies that S is, modulo symmetries of 2∆2, one of the two point
configurations in Figure 2.3. Their respective spaces of linear dependences are as
follows, where coordinates are labeled as shown in the figure.

{(β,−2β, α,−2α, α+ β) : α, β ∈ R2} and {(−β,−β, α,−α, 2β) : α, β ∈ R2};

the integer dependences are the same, with α, β ∈ Z. The first configuration is prim-
itive (I = 1), but in the second one we have I = 2 and we can choose as barycentric
coordinates for the unique generator of the quotient group the vector

(
0, 12 , 0,

1
2 , 0
)
.

Thus, by Corollary 2.1.12, the cyclic simplices of volume V projecting to these con-
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The classification of empty 4-simplices

figurations are parametrized by

(β,−2β, α,−2α, α+ β) and
V

2
(0, 1, 0, 1, 0) + (−β,−β, α,−α, 2β),

respectively. In the first case V must be odd, by Proposition 2.1.14. In the second
case V must be even, since V is a multiple of the index I = 2. Proposition 2.1.14
also implies that gcd(α, V ) = gcd(β, V ) = 1 for empty simplices. This allows
us to multiply the quintuple by the inverse of β modulo V , producing quintuples in
the form of Theorem 2.2.1. (In the second one, observe that both β and its inverse
are odd, so that multiplying by β−1 leaves the part

(
0, 12 , 0,

1
2 , 0
)

intact). Finally, in
the second quintuple V must be a multiple of four since for V = 2 (mod 4) the
quintuple(

0,
V

2
, 0,

V

2
, 0

)
+ (−1,−1, α,−α, 2) =

(
−1,

V

2
− 1, α,

V

2
− α, 2

)
has two even bis, contradicting Proposition 2.1.14 (observe that α is odd, since
gcd(α, V ) = 1 and V is even).

Let us finally check that the conditions stated in Theorem 2.2.1 for α, β and V
are not only necessary but also sufficient for the corresponding simplices to be empty.
To show this via Proposition 2.1.15 we need to look at the facets of volumes in each
case:

Lemma 2.3.1. Let P be an empty simplex as in Theorem 2.2.1 with k ∈ {1, 2}. Then,
the volumes (V0, V1, . . . , V4) of its facets are:

1. If k = 1, we have V0 = gcd(V, α + β), V1 = gcd(V, α), V2 = gcd(V, β) and
V3 = V4 = 1. In particular, there can be up to three nonunimodular facets.

2. If k = 2 then V0 = V1 = V2 = V3 = 1. In the primitive case V4 = gcd(V, α+
1) and in the nonprimitive case V4 = 2. In particular, there is at most one
nonunimodular facet.

Proof. This follows directly from Lemma 2.1.13 and the expression of the quintu-
ples, taking into account that if k = 2 and P is primitive then V is required to be
odd, while if k = 2 and P is nonprimitive then V is required to be a multiple of
four.

Proposition 2.3.2. All the cyclic simplices in the conditions stated in parts k = 1
and k = 2 of Theorem 2.2.1 are empty.
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2.4 Proof of the main theorem, case k = 3

Proof. By Corollary 2.1.12, all integer values of V , α and β produce hollow sim-
plices, since they produce simplices projecting to hollow configurations in dimen-
sions 1 and 2. Hence, we can apply Proposition 2.1.15, taking into account the facet
volumes computed in Proposition 2.3.1:

• For the quintuple (α+ β,−α,−β,−1, 1) we have:

(α+ β,−α,−β,−1, 1) = (0,−α, α,−1, 1) (mod gcd(V, α+ β)),

(α+ β,−α,−β,−1, 1) = (β, 0,−β,−1, 1) (mod gcd(V, α)),

(α+ β,−α,−β,−1, 1) = (α,−α, 0,−1, 1) (mod gcd(V, β)),

as required.

• For the case k = 2, primitive, (quintuple (1,−2, α,−2α, 1 + α)):

(1,−2, α,−2α, 1 + α) = (1,−2,−1, 2, 0) (mod gcd(V, α+ 1)).

• For the case k = 2, nonprimitive, with quintuple(
0,
V

2
, 0,

V

2
, 0

)
+ (−1,−1, α,−α, 2) =

(
−1,

V

2
− 1, α,

V

2
− α, 2

)
we have (

−1,
V

2
− 1, α,

V

2
− α, 2

)
= (−1, 1,−1, 1, 0) (mod 2).

2.4 Proof of the main theorem, case k = 3

We now look at the case k = 3. That is, let P = conv(v0, . . . , v4) be a hollow cyclic
4-simplex (later we will add the constraint that P is empty) and π : R4 → R3 be
a projection map sending the vertices of P to a hollow 3-dimensional configuration
S = {s0, . . . , s4} with the property that S does not project to dimension two. There
are finitely many possibilities for S, by Theorem 2.1.1. Their exhaustive computation
was done in [AKW17] and can be summarized as follows:

Theorem 2.4.1 (Averkov et al. [AWW11, AKW17]). There are twelve maximal 3-
dimensional hollow polytopes that do not project to dimension two. Their volumes
are bounded by 36 (attained by the tetrahedron conv(0, 6e1, 3e2, 2e3)).

Observe that conv(S) is a 3-polytope with four or five vertices, for which there
are combinatorially three cases: it is either a tetrahedron, a pyramid over a quadri-
lateral, or a triangular bipyramid (a convex union of two tetrahedra with a common
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The classification of empty 4-simplices

facet). Our proof mixes a (computationally straightforward) enumeration of the sub-
configurations of the twelve maximal 3-polytopes from Theorem 2.4.1 with some
theoretical observations. What we need from the enumeration is summarized in the
following statement. The computations giving it were done by Mónica Blanco:

Lemma 2.4.2. The twelve polytopes of Theorem 2.4.1 contain exactly the following
subconfigurations of size five and which do not project to dimension two, according
to the combinatorics of their convex hull:

1. A certain number of tetrahedra (with an additional boundary point).

2. 24 quadrilateral pyramids, all of them containing some lattice point in the
interior of the quadrilateral facet.

3. 29 primitive bipyramids, whose affine dependences are generated by the quin-
tuples in Table 2.1.

4. 23 nonprimitive bipyramids, whose data are specified in Table 2.3.

The following statement shows that we do not need to care much about tetrahedra
and quadrilateral pyramids:

Proposition 2.4.3. Let S be a hollow configuration of five points in R3 such that
conv(S) is one of the tetrahedra or quadrilateral pyramids of Lemma 2.4.2. Then,
any empty 4-simplex projecting to S has volume bounded by 72.

Remark 2.4.4. The existence of a global bound in Proposition 2.4.3 follows from re-
sults in [BHHS]. For tetrahedra this is Corollary 4.2 in that paper, and for pyramids
over non-hollow polytopes it is the combination of Corollary 4.4 and Lemma 4.1. We
include a proof of Proposition 2.4.3 in order to give the explicit bound of 72.

Proof. Let P = conv(v0, . . . , v4) be empty and projecting to S = {s0, . . . , s4) and
let π : R4 → R3 be the projection map. (We assume π(vi) = si).

Suppose first that conv(S) is a tetrahedon, with vertices s1, s2, s3, s4. Let s0 be
the fifth element of S (which may or may not coincide with one of the vertices).
Since P is not empty, π−1(s0) ∩ P is a segment having v0 as one end-point and of
length at most one. It is easy to show (see [IVS19, Lemma 3.1]; in our case s0 is the
“Radon point of S”) that

Vol(P ) = Vol(conv(S))× length(π−1(s0) ∩ P ) ≤ Vol(conv(S)). (2.1)

For the tetrahedra of Lemma 2.4.2 this gives us a bound of 36, via Theorem 2.4.1.
Suppose now that conv(S) is a pyramid over a quadrilateral Q, with apex at

s0. Let ` be the lattice distance between the plane spanned by Q and s0, and let
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2.4 Proof of the main theorem, case k = 3

a ∈ 1
IZ

5 b ∈ Z5

restrictions for no
two entries of V a±b
to have a common
divisor with I

1
2(0, 0, 1, 1, 0) (3,−1,−6, 2, 2) V = 2 (mod 4)

1
2(1, 0, 0, 0, 1) (4,−3, 1,−4, 2) V = 2 (mod 4)

1
2(0, 0, 1, 0, 1) (4,−2,−6, 3, 1) V ∈ ∅
1
2(1, 0, 0, 0, 1) (2, 3,−1,−8, 4) V = 2 (mod 4)

1
2(0, 1, 1, 0, 0) (1,−6, 2, 6,−3) V = 2 (mod 4)

1
2(1, 0, 1, 0, 0) (6,−8, 4,−3, 1) V = 2 (mod 4)

1
2(0, 1, 0, 0, 1) (1, 6,−4,−6, 3) V ∈ ∅
1
2(1, 0, 0, 0, 1) (4, 3,−1,−12, 6) V = 2 (mod 4)

1
2(0, 1, 0, 0, 1) (3,−1, 4,−12, 6) V ∈ ∅
1
4(2, 1, 1, 0, 0) (3,−3, 1,−2, 1) V = 0 (mod 8)

1
4(0, 1, 1, 0, 2) (1, 2,−1,−4, 2) V ∈ ∅
1
4(0, 0, 1, 2, 1) (1,−4, 1, 4,−2) V ∈ ∅
1
4(0, 1, 1, 0, 2) (1, 3,−1,−6, 3) V = 0 (mod 8)

1
3(0, 0, 2, 1, 0) (−3, 2, 1, 1,−1) V = 0 (mod 9)

1
3(1, 0, 2, 0, 0) (3,−3, 1,−2, 1) V = ±6 (mod 9)

1
3(0, 0, 1, 2, 0) (−3, 1, 2, 2,−2) V = 0 (mod 9)

1
3(0, 0, 1, 2, 0) (4,−2,−4, 1, 1) V ∈ {0,±6} (mod 9)

1
3(1, 0, 2, 0, 0) (3,−6, 2, 2,−1) V = ±3 (mod 9)

1
3(1, 0, 2, 0, 0) (4,−6, 1, 2,−1) V = 0 (mod 9)

1
3(1, 0, 2, 0, 0) (4,−3, 1,−4, 2) V = 0 (mod 9)

1
3(1, 0, 2, 0, 0) (2,−1, 2,−6, 3) V ∈ ∅
1
3(0, 0, 1, 1, 1) (1,−6, 2, 6,−3) V = ±6 (mod 9)

1
6(1, 0, 0, 4, 1) (1,−3, 1, 2,−1) V = 0 (mod 36)

Table 2.3: The 23 non-primitive hollow triangular bipyramids of Lemma 2.4.2. In
each of them we give a generator a ∈ 1

IZ
5 for the quotient group Z3/ΛS ∼= ZI

(written in barycentric coordinates with respect to the vertex set S of the bipyramid)
and the primitive affine dependence b ∈ Z5 among S.
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The classification of empty 4-simplices

F = conv(v1, v2, v3, v4) be the facet of P that projects to Q. Observe that the lattice
distance between the hyperplane spanned by F and v0 divides `. In particular,

Vol(conv(S)) = `×Vol(Q), and Vol(P ) ≤ `×Vol(F ).

Let x be the intersection of the two diagonals of Q, which is in this case the
Radon point of S as used in [IVS19, Lemma 3.1]. As before, that lemma says

Vol(F ) = Vol(Q)× length(π−1(x) ∩ F ),

so that
Vol(P ) ≤ Vol(conv(S))× length(π−1(x) ∩ F ).

It is no longer true that length(π−1(x) ∩ F ) ≤ 1, but we can bound this length
as follows. Let y be an interior lattice point in Q and let z be the last point in Q
along the ray from x through y (if x = y, let z be an arbitrary boundary point of
Q). Then, it follows from the proof of [IVS19, Lemma 3.1] (see also the related
result [IVS19, Lemma 3.5]) that

length(π−1(x) ∩ F ) =
|xz|
|yz| length(π−1(y) ∩ P ) ≤ |xz||yz| .

This gives us the desired upper bound on the volume of P :

Vol(P ) ≤ Vol(conv(S))× |xz||yz| . (2.2)

For the 24 pyramids of Lemma 2.4.2 this formula (taking the best possibility for the
interior point y whenever there is a choice) gives the claimed bound of 72.

With this we can now prove the case k = 3 in our main theorem:

Proof of Theorem 2.2.1, case k = 3. LetP = conv(v0, . . . , v4) be an empty 4-simplex
projecting to a hollow configuration S = {s0, . . . , s4} ⊂ R3 that does not project to
dimension two. By Proposition 2.4.3, if conv(S) is not a triangular bipyramid then
Vol(P ) ≤ 72. For each of the 29 primitive plus 23 nonprimitive triangular bipyra-
mids of Lemma 2.4.2, Corollary 2.1.12 tells us how to parametrize the (d+ 1)-tuples
of empty simplices projecting to them. More precisely:

• When the bipyramid is primitive, the quintuple is an integer affine dependence
b among S. A priori there are different possibilities for b, since the affine
dependence of S is only unique modulo multiplication by a scalar. But by
Proposition 2.1.14 we can assume b to not have a common divisor with V .
This implies that b equals, modulo V , the primitive affine dependence times
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2.4 Proof of the main theorem, case k = 3

a factor coprime with V . Since multiplying a quintuple by a unit modulo V
does not change the cyclic simplex it represents, there is no loss of generality
in taking b to be the primitive dependence as we do in Table 2.1.

• When the bipyramid is not primitive, the quintuple is of the form V a+b where
a are the barycentric coordinates of a generator of Z3/ΛS and b is an integer
affine dependence among S. Observe that Corollary 2.1.12 allows us to choose
our preferred a (even if Z3/ΛS may have several generators) but it does not,
a priori, allow us to choose b. But, as before, every two valid choices of b are
related via a unit modulo V . That is, every empty simplex of volume V for one
of these bipyramids can be represented as a quintuple of the form

V a+ rb,

where a and b are the choices in Table 2.3, and r ∈ Z is coprime with V .
Multiplying such a quintuple by r−1 (mod V ) we find that the same simplex
is represented by

V r−1a+ b.

Now, since I divides V , r is also a unit modulo I , which implies that r−1a is
also a generator of Z3/ΛS . In all our cases I = {1, 2, 3, 6}, so Z3/ΛS ∼= ZI
has only two generators,±a. Thus, our simplex is represented by the quintuple
±V a+ b.

This finishes the proof, except for the fact that in Table 2.3 we have 23 non-
primitive quintuples while in Theorem 2.2.1 (Table 2.2) only seventeen appear, and
except for the restrictions on V displayed in tables 2.1 and 2.3. These restriction
are proved in Propositions 2.4.6 and 2.4.7 below and imply, in particular, that the
six nonprimitive quintuples that have “V ∈ ∅” as a restriction in Table 2.3 do not
produce any empty 4-simplex.

To show that the restrictions on V shown in tables 2.1 and 2.3 are necessary
and sufficient for the quintuple to produce an empty 4-simplex, we use Proposi-
tions 2.1.14 and 2.1.15, as we did in the previous section.

Lemma 2.4.5. For the empty simplices of the case “k = 3, primitive”, all facets
are unimodular except for the 12 quintuples of Table 2.4, which can have up to three
nonunimodular facets, as indicated.

Proof. By Lemma 2.1.13, the volume of the ith facet of the primitive cyclic simplex
of volume V with quintuple b equals gcd(V, bi). On the other hand, by Proposi-
tion 2.1.14, no two facets can have volumes with a common factor. Thus, the vector
of facet volumes divides (coordinate-wise) the vector obtained from b by removing
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The classification of empty 4-simplices

quintuple condition on max. volumes of facets
V for emptynes

(15, 1,−2,−5,−9) V 6∈ 3Z (1, 1, 2, 1, 1)
(9, 7, 1,−3,−14) V 6∈ 3Z ∪ 7Z (1, 1, 1, 1, 2)

(15, 7,−3,−5,−14) V 6∈ 3Z ∪ 5Z ∪ 7Z (1, 1, 1, 1, 2)
(10, 8, 3,−1,−20) V 6∈ 2Z ∪ 5Z (1, 1, 3, 1, 1)
(12, 3,−4,−5,−6) (1, 1, 1, 5, 1)
(9, 6, 5,−2,−18) V 6∈ 2Z ∪ 3Z (1, 1, 5, 1, 1)
(12, 8, 5,−1,−24) (1, 1, 5, 1, 1)
(12, 2,−3,−4,−7) V 6∈ 3Z (1, 1, 1, 1, 7)
(10, 7, 4,−1,−20) V 6∈ 3Z ∪ 7Z (1, 7, 1, 1, 1)
(8, 5, 3,−1,−15) V 6∈ 3Z ∪ 5Z (8, 1, 1, 1, 1)

(9, 1,−2,−3,−5) V 6∈ 3Z (1, 1, 2, 1, 5)

(7, 5, 3,−1,−14) V 6∈ 7Z (1, 5, 3, 1, 2)

Table 2.4: Possible nonunimodular facets in the case “k = 3, primitive”. The facet
volumes depend on the actual V . More precisely, an entry (v0, v1, v2, v3, v4) in the
last column means that the volume of the ith facet equals gcd(V, vi).

the prime factors that divide two or more entries of b. These vectors are precisely
what we show in the last column in Table 2.4.

Proposition 2.4.6. The conditions on V stated in Table 2.1 are necessary and suffi-
cient for the quintuples to represent empty simplices.

Proof. Necessity follows from Proposition 2.1.14, since in all cases the restriction
can be restated as “V has no factor in common with two of the entries in B”. Suf-
ficiency follows from Proposition 2.1.15 and the description of facet volumes in Ta-
ble 2.4. Let us look at the first case in detail and leave the rest to the interested reader.
Our quintuple is (9, 1,−2,−3,−5), and the worst values for the (V0, V1, V2, V3, V4)
of Proposition 2.1.15 are (1, 1, 2, 1, 5), as expressed in Table 2.4. We say “worst”
because V2 is only 2 if V is even and V4 is only 5 if V ∈ 5Z, but if this is not the case
then the corresponding Vi equals 1 and the condition in part (2) of Proposition 2.1.15
is void. So, assuming the worst case, what we need to check is that

(9, 1,−2,−3,−5) = (−1, 1,−2, 2, 0) (mod 5)

and
(9, 1,−2,−3,−5) = (−1, 1, 0,−1, 1) (mod 2)
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2.4 Proof of the main theorem, case k = 3

have their non-zero entries forming two pairs of opposite residues modulo the respec-
tive Vi ∈ {5, 2}, which is indeed the case.

Proposition 2.4.7. Let a and b be one of the 23 possibilities in Table 2.3. Let I ∈
{2, 3, 4, 6} be its index. Let k ∈ N and V = kI . The following are equivalent:

1. k satisfies the restrictions modulo 2 and 3 stated in Table 2.5.

2. No factor of V divides two entries of ±V a+ b.

3. The simplex of volume V represented by the quintuple ±V a+ b is empty.

Proof. In the first column of Table 2.5 we have written the vector ±V a+ b, in terms
of k. Observe that we have ±V a + b = ±ka′ + b, where a′ := Ia is the integer
vector from the first column of Table 2.3. From this, the reader can easily check
the implication (2)⇔(1); if k does not satisfy one of the restrictions, then 2 or 3
is a common factor of V = kI and at least two entries of ±a + V

b . For the reverse
implication, first observe that if a prime p divides kI and some entry of±V a+b then
p ∈ {2, 3}; indeed, if p divides I ∈ {2, 3, 4, 6} then this is obvious and if p divides k
then for it to divide an entry of±V a+b = ±ka′+b it must divide the corresponding
entry of b, and these have only 2 and 3 as prime factors. Once this is established, it is
clear that the conditions for part (2) can all be expressed as restrictions on k modulo
2 and 3, and direct inspection shows that they are the ones stated in the table. Let us
show this in a couple of cases and leave the rest to the reader:

• For the forth quintuple of index 3, a = 1
3(0, 0, 1, 2, 0), b = (4,−2,−4, 1, 1),

we have that the quintuple is

±V a+ b = (4,−2,±k − 4,±2k + 1, 1).

Since the first two entries are even V , hence k, must be odd. Modulo three, the
third and forth entries of V a + b are multiples of three if k = 1 (mod 3) and
the same holds for −V a + b if k = −1 (mod 3). In the table we abbreviate
this as ±k 6= 1 (mod 3) meaning that the plus sign is taken for V a + b and
the minus sign for −V a+ b.

The interpretation of this is that for k = 0 (mod 3) (that is, V = 0 (mod 9))
this case produces two empty simplices, with quintuples V a+ b and −V a+ b,
while for k 6= 0 (mod 3) it produces only one of the two.

• Consider now the second quintuple of index four, with a = 1
4(0, 1, 1, 0, 2) and

b = (1, 2,−1,−4, 2). We have that

±V a+ b = (1, k + 2, k − 1,−4, 2k + 2).
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I
±V a+ b,written in conditions on ±k max. vol.
terms of k := V/I mod 2 mod 3 of facets

2

(3,−1,±k − 6,±k + 2, 2) = 1 6= 0 (1, 1, 1, 1,2)
(±k + 4,−3, 1,−4,±k + 2) = 1 (1, 3, 1,2, 1)
(4,−2,±k − 6, 3,±k + 1) ∈ ∅

(±k + 2, 3,−1,−8,±k + 4) = 1 (1, 3, 1,2, 1)
(1,±k − 6,±k + 2, 6,−3) = 1 6= 0 (1, 1, 1,2, 1)

(±k + 6,−8,±k + 4,−3, 1) = 1 6= 0 (1,2, 1, 1, 1)
(1,±k + 6,−4,−6,±k + 3) ∈ ∅
(±k + 4, 3,−1,−12,±k + 6) = 1 6= 0 (1, 1, 1,2, 1)
(3,±k − 1, 4,−12,±k + 6) ∈ ∅

4

(±2k + 3,±k − 3,±k + 1,−2, 1) = 0 6= 0 (1, 1, 1,2, 1)
(1,±k + 2,±k − 1,−4,±2k + 2) ∈ ∅
(1,−4,±k + 1,±2k + 4,±k − 2) ∈ ∅
(1,±k + 3,±k − 1,−6,±2k + 3) = 0 6= 0 (1, 1, 1,2, 1)

3

(−3, 2,±2k + 1,±k + 1,−1) = 0 (3, 2, 1, 1, 1)
(±k + 3,−3,±2k + 1,−2, 1) = 2 (1,3, 1, 2, 1)
(−3, 1,±k + 2,±2k + 2,−2) = 1 = 0 (3, 1, 1, 1, 1)
(4,−2,±k − 4,±2k + 1, 1) = 1 6= 1 (1, 1, 1, 1, 1)

(±k + 3,−6,±2k + 2, 2,−1) = 1 = 1 (1,3, 1, 1, 1)
(±k + 4,−6,±2k + 1, 2,−1) = 1 = 0 (1,3, 1, 1, 1)
(±k + 4,−3,±2k + 1,−4, 2) = 1 = 0 (1,3, 1, 1, 1)
(±k + 2,−1,±2k + 2,−6, 3) ∈ ∅

(1,−6,±k + 2,±k + 6,±k − 3) = 1 = 2 (1,3, 1, 1, 1)

6 (±k + 1,−3, 1,±4k + 2,±k − 1) = 0 = 0 (1,3, 1,2, 1)

Table 2.5: The first column shows the 23 possibilities for the quintuple ±V a + b
for cyclic simplices in the case “k = 3, nonprimitive” (compare with Table 2.3).
The second and third columns the restrictions on k := V/I that make the simplex
empty. The last column shows the possible facet volumes. As in Table 2.4, an entry
(v0, v1, v2, v3, v4) in the last column means that the volume of the ith facet equals
gcd(V, vi). When vi divides the index I one automatically has gcd(V, vi) = vi. In
this case the corresponding entry vi is marked in boldface.
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2.5 Case k=4

It turns out that no matter what the value of k is, this quintuple contains two
even entries (the 4th one is always even, the 3rd and 5th are even when k is
respectively odd and even). Thus, condition (2) is never satisfied. In the table
we mark this by putting ±k ∈ ∅ as the restriction modulo 2.

This implies, by Proposition 2.1.14, these simplices not to be empty, no matter
what the value of V is). The same happens for the other five quintuples that
contain the restriction ±k ∈ ∅.

The implication (3)⇒(2) is Proposition 2.1.14, so we only need to show (2)⇒(3).
Part (2) implies that for each nonunimodular facet, of volume Vi, the vector±V a+ b
has a single zero entry, modulo Vi. The condition in part (2) of Proposition 2.1.15 is
then automatic: modulo Vi ∈ {2, 3}, every four non-zero integers adding up to zero
form two opposite pairs.

Corollary 2.4.8. The facet volumes of the nonprimitie empty 4-simplices with k = 3
are as indicated in Table 2.5.

2.5 Case k=4

We call empty 4-simplices the simplices that do not projecto to hollow 3-polytopes
sporadic. In the next Chapter (see Theorem 3.3.6) we show that their volume is
bounded by 5184. Hence, in order to complete the list of sporadic empty 4-simplices
we need to enumerate all empty 4-simplices up to that volume.

In Chapter 4 we describe how we implemented an exhaustive enumeration of
empty 4-simplices up to volume 7600 1. The result of that enumeration gives us
the total number of sporadic empty 4-simplices that belong to the case k = 4 of
Theorem 2.2.1. Here we summarize the result of these computations:

Theorem 2.5.1. List of sporadic empty 4-simplices:

• There is no empty 4-simplex of width greater than 4.

• There is only one empty 4-simplex of width 4, it has volume 101 and corre-
sponds to the following quintuple σ().

• Every empty 4-simplex of width 3 has volume between 41 and 179, and there
are exactly q cases that do not belong to any family.

1The fact of enumerating up to volume 7600 comes from early stages of the project where this
number was the best upper bound known for empty 4-simplices with width greater than two [IVS19].
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The classification of empty 4-simplices

V #

24 1
27 1
29 3
30 2
31 2
32 3
33 4
34 5
35 3
37 6
38 8
39 9
40 1
41 14
42 5
43 20
44 8
45 6
46 7
47 30
48 5
49 17
50 8
51 16
52 6
53 38
54 11
55 20
56 3
57 16
58 13
59 51
60 4
61 38
62 26
63 17
64 9

V #

65 27
66 3
67 41
68 13
69 26
70 4
71 50
72 3
73 44
74 18
75 22
76 14
77 19
78 3
79 55
80 7
81 18
82 13
83 60
84 7
85 27
86 11
87 24
88 5
89 55
90 6
91 18
92 9
93 17
94 12
95 35
96 3
97 46
98 9
99 13

100 8
101 41

V #

102 3
103 51
104 8
105 7
106 8
107 54
108 5
109 44
110 5
111 13
112 2
113 40
114 4
115 21
116 11
117 10
118 9
119 22
120 3
121 18
122 9
123 17
124 8
125 25
127 24
128 9
129 17
130 2
131 29
132 5
133 14
134 8
135 6
136 6
137 28
138 2
139 37

V #

140 5
141 6
142 9
143 13
144 1
145 14
146 5
147 10
148 7
149 26
150 2
151 19
152 6
153 9
154 3
155 12
156 2
157 11
158 10
159 9
160 3
161 13
163 17
164 6
165 1
166 7
167 18
168 3
169 13
170 2
171 6
172 3
173 15
174 3
175 8
176 4
177 5

V #

178 2
179 21
180 1
181 13
182 5
183 5
184 5
185 7
186 2
187 7
188 5
189 2
190 2
191 8
192 1
193 12
194 3
196 4
197 13
199 11
200 4
201 3
202 2
203 7
204 1
205 4
206 4
207 2
208 1
209 10
211 4
212 2
213 3
214 2
215 5
216 1
218 5

V #

219 4
220 1
221 3
222 1
223 7
225 2
226 4
227 9
229 6
230 3
232 1
233 9
234 1
235 3
237 1
238 2
239 3
241 6
244 2
245 3
247 3
248 3
249 2
250 1
251 5
254 1
256 2
257 3
259 2
261 1
263 7
265 1
267 1
268 1
269 2
271 4
272 1

V #

274 1
275 1
278 2
283 2
287 1
289 4
290 1
291 1
292 1
293 5
299 2
304 1
308 1
310 1
311 1
313 1
314 1
317 1
319 2
321 1
323 1
331 1
332 1
334 2
335 1
347 1
349 2
353 1
355 1
356 1
376 1
377 2
397 1
398 1
419 1

Table 2.6: Number of sporadic empty 4-simplices for each normalized volume V
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2.5 Case k=4

• There are exactly 2281 sporadic empty 4-simplices of width 2. Their volumes
are between 24 and 419.

In Table 2.6, the number of sporadic empty 4-simplices for each volume from
24 to 419 is shown. This list agrees with Conjecture 1.4 in [MMM88] in terms
of terminal quotient singularities. This conjecture states that there are no empty 4-
simplices with prime volume bigger than 419. This conjecture for prime volumes
was first proved by Sankaran [San90]. Bober [Bob09] gave a simplified proof.
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Chapter 3

Upper bounds for the volume of
hollow polytopes of dimensions 3

and 4

In this Chapter we obtain upper bounds for the volume of hollow polytopes. First,
we introduce some concepts of convex geometry related with the measures of a con-
vex body, such as successive minima, covering minima and rational diameter.

After defining the geometric tools that we are going to use, we focus in obtaining
an upper bound for the volume of hollow 4-simplices, in particular, empty simplices
of width greater than two. This result allows us to verify the conjecture proposed by
Haase and Ziegler with their enumeration of empty 4-simplices up to volume 1000.

As a tool for this upper bound we also obtain an upper bound for the volume
of hollow convex bodies in dimension 3 of width greater than 2.155, improving the
bounds that were known before.

In the second part of the Chapter we focus in getting an upper bound for the
volume of empty 4-simplices of width two. Within this proof, we have to deal with
case by case analysis in order to obtain the desired bound.

The objective of obtaining all these volume upper boundes is knowing up to
which volume we have to enumerate all sporadic empty 4-simplices(those that do
not belong to any infinite family, case k = 4 of Theorem 2.2.1) to guarantee that
there will not exist other particular examples from that volume on.

3.1 Successive minima and Covering minima

In order to state the upper bound and prove it, we need to introduce the concepts of
successive minima and covering minima of convex bodies with respect to a lattice
L. Remember that:

1. For a centrally symmetric convex body C ⊂ Rd, the i-th successive minimum
(i ∈ {1, . . . , d}) of C with respect to L is:

λi(C) := inf{λ > 0 : dim(λC ∩ L) ≥ i}.
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Bounds for the volume

That is to say, λi is the minimum dilation factor such that λC contains i linearly
independent lattice vectors. Clearly λ1 ≤ · · · ≤ λd.

2. For a (not necessarily symmetric) convex body K ⊂ Rd, the i-th covering
minimum (i ∈ {1, . . . , d}) of K with respect to L is defined as

µi(K) := inf{µ > 0 : µK+L intersects every affine subspace of dimension d−i}.

Clearly µ1 ≤ · · · ≤ µd.

For example, µ1(K) is nothing but the reciprocal of the lattice width of K, while
µd(K) equals the covering radius of K (the minimum dilation factor µ such that
µK + L covers Rd). Similarly, λ1(C) equals twice the packing radius of C (the
maximum dilation such that λC does not overlap any lattice translation of it).

Minkowski’s Second Theorem [Gru93] relates successive minima and volume of
a centrally symmetric convex body as follows:

λ1(C)λ2(C) · · ·λd(C) vol(C) ≤ 2d. (3.1)

Successive minima are not usually defined for a non-centrally symmetric body
K (but see [HHH16]), but in this case the successive minima of the difference body
K − K := {x − y : x, y ∈ K} have a natural geometric meaning. For example,
λ1(K −K)−1 equals the maximum (lattice) length of a rational segment contained
in K. We call this the rational diameter of K. Observe that this is not the same as
the “lattice diameter" used in [AKN15], defined as the maximum length of a lattice
segment contained in K.

3.2 Upper bound for hollow 3-bodies

Once we have introduced the concepts of successive minima, covering minima and
rational diameter of a convex body K we use well-known relations between these
concepts and the volume of K, so we can obtain low upper bounds for empty sim-
plices.

The volume of the difference body K − K is bounded from below and from
above by the Brunn-Minkowski and the Rogers-Shephard inequalities [Gru93], re-
spectively:

2d vol(K) ≤ vol(K −K) ≤
(

2d

d

)
vol(K). (3.2)

The lower bound (resp., the upper bound) is an equality if and only if K is centrally
symmetric (resp., a simplex).
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3.2 Upper bound for hollow 3-bodies

From this we can derive the following inequality relating the volume of K and
the first successive minimum of its difference body:

vol(K) ≤ vol(K −K)

2d
≤ 1∏d

i=1 λi(K −K)
≤ 1

λ1(K −K)d
. (3.3)

Less is known about the covering radii, but the following inequalities relating
covering minima ofK and successive minimum ofK−K are known ( [KL88,Hur90]
or see, e.g., [AKW17, Section 4]):

µi+1(K)− µi(K) ≤ λd−i(K −K), ∀i ∈ {1, . . . , d− 1}, (3.4)

µ2(K) ≤
(

1 +
2√
3

)
µ1(K). (3.5)

Once we have introduced the main tools that we will use in measuring convex
bodies, we can now prove the main result in this section. Both our statement and
proof are based on [AKW17, Proposition 11], which is the case w = 3. The theorem
can also be considered the three-dimensional version of [AW12, Thm. 4.1], which
gives bounds for the volume of a convex 2-body of width larger than 1.

Theorem 3.2.1. Let K be a hollow convex 3-body of lattice width w, with w >
1 + 2/

√
3 = 2.155 and let µ = w−1 be its first covering minimum. Then, vol(K) is

bounded above by:

8

(1− µ)3
=

8w3

(w − 1)3
, if w ≥ 2√

3
(
√

5− 1) + 1 = 2.427, and

3

4µ2(1− µ(1 + 2/
√

3))
=

3w3

4(w − (1 + 2/
√

3))
, if w ≤ 2.427.

Figure 3.1 plots the upper bound of Theorem 3.2.1 in the interval w ∈ [2.4, 5]
that will be of interest for us.

Proof. Throughout the proof we denote µi = µi(K) and λi = λi(K −K).
We use the following slightly modified version of Equation (3.3):

vol(K) ≤ 1

2d
vol(K −K) ≤ (λ1λ2λ3)

−1 ≤ max{λ13, λ1λ22}−1.

Our goal is to lower bound max{λ13, λ1λ22}. For this we combine equations (3.4)
as follows:

λ2 ≥ µ2 − µ1 ≥ µ3 − µ1 − λ1 ≥ 1− µ1 − λ1,
where µ3 ≥ 1 since K is hollow.
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2.5 3 3.5 4 4.5 5

20
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35

40

Figure 3.1: The upper bound of Theorem 3.2.1 for the Euclidean volume of a hollow
3-body (Y axis) in terms of its width (X axis).

That is:

λ1λ2λ3 ≥ max{λ31, λ1λ22} ≥ max{λ31, λ1(1− µ1 − λ1)2}.

There are the following possibilities for the maximum on the right:

• If λ1 ≥ (1− µ1)/2 then either 1− λ1 − µ1 is negative (and then smaller than
λ1 in absolute value, since 1 − µ1 is positive) or positive but smaller than λ1.
In both cases the maximum is λ31, which in turn is at least (1− µ1)3/8.

• If λ1 ≤ (1 − µ1)/2 then 1 − λ1 − µ1 is positive and bigger than λ1, so the
maximum is λ1(1− λ1 − µ1)2. Now, by equations 3.4 and 3.5 we have

λ1 ≥ µ3 − µ2 ≥ 1− (1 + 2/
√

3)µ1,

we take as lower bound for λ1(1−λ1−µ1)2 the absolute minimum of f(λ) :=
λ(1− λ− µ1)2 in the interval

1− (1 + 2/
√

3)µ1 ≤ λ ≤ (1− µ1)/2.

Since the only local minimum of f is in λ = 1 − µ1, which is outside the
interval, the minimum is achieved at one of the extremes. That is,

f(λ) ≥ min

{(
1− (1 + 2/

√
3)µ1

) 4µ1
2

3
, (1− µ1)3/8

}
.

Now there are two things to take into account:
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3.2 Upper bound for hollow 3-bodies

– For the interval to be non-empty we need

1− µ1(1 + 2/
√

3) ≤ (1− µ1)/2,

which is equivalent to

µ1
−1 ≤ 1 + 4/

√
3 = 3.31.

– Whenever µ1−1 is between 2√
3
(
√

5−1)+1 = 2.427 and 1+4/
√

3 = 3.31

we have

min

{(
1− µ1(1 + 2/

√
3)
) 4µ1

2

3
, (1− µ1)3/8

}
= (1− µ1)3/8,

while for µ1−1 ≤ 2√
3
(
√

5− 1) + 1 = 2.427 the minimum is (1−µ1(1 +

2/
√

3))4µ1
2

3 .

The upper bound in this theorem is certainly not tight, but the threshold w >
1+2/

√
3 = 2.155 is. Since there is a hollow (non-lattice) triangle of width 1+2/

√
3

(see [Hur90, Figure 2]), taking prisms over it we can construct hollow 3-polytopes
of arbitrarily large volume. In fact, inequality (3.5) is equivalent to the statement “no
hollow polygon can have lattice width larger than 1 + 2/

√
3”. Hurkens was able to

realise this fact before in [Hur90, Figure 2] and he showed that this is tight.

Remark 3.2.2. Theorem 3.2.1 may be a step towards computing the exact value of
the flatness constant in dimension three. By [AKW17] no hollow 3-polytope has
width larger than three, but hollow polytopes with vertices not in the lattice can have
larger width. Recently, Codenotti and Santos have constructed a hollow (non-lattice)
tetrahedron of width 2 +

√
3 = 3.414, and conjectured that this attains the flatness

constant in dimension 3 [CS19].

In the particular case that concerns us, projections of empty 4-simplices, we can
use that our polytopes have at most 5 vertices, and so, get better upper bounds.

The case of 5 points

Observe that in the proof of Theorem 3.2.1 what we bound is actually vol(K −K),
and then use te Brunn-Minkowski inequality vol(K) ≤ vol(K − K)/8 to transfer
the bound to vol(K). This means that with additional information on K a sharper
bound can be obtained. For example, if K is a tetrahedron then we know vol(K) =
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Bounds for the volume

vol(K −K)/20, which means that the bounds in the statement can all be multiplied
by a factor of 8/20 = 0.4. The case of interest to us in Section 3.3 is the somewhat
similar case whereQ is a 3-dimensional polytope expressed as the convex hull of five
points (that is, either a tetrahedron, a square pyramid, or a triangular bipyramid). We
now analyze this case in detail.

Most of what we want to say about this case is valid in arbitrary dimension, so let
A = {a1, . . . , ad+2} ⊂ Rd be d+ 2 points affinely spanning Rd. In particular, there
is a unique (modulo a scalar factor) vector λ = (λ1, . . . , λd+2) such that

d+2∑
i=1

λiai = 0.

This naturally partitions A into three subsets (of which only A0 can be empty):

A+ := {ai : λi > 0}, A0 := {ai : λi = 0}, A− := {ai : λi < 0}.
Of course, A+ and A− are interchanged when multiplying λ by a negative constant,
but A0 and the partition of A \ A0 into two parts are independent of the choice of λ.
In fact:

1. ai ∈ A0 if, and only if, A \ {ai} is affinely dependent (equivalently, A is a
pyramid over A \ {ai}).

2. (A+, A−) is the only partition of A \ A0 into two parts such that conv(A+)∩
conv(A−) 6= ∅.

3. In fact, conv(A+) conv(A−) is a single point. It is the unique point of Rd that
can be expressed as a convex combination of each of two disjoint subsets of A.
We call this point the Radon point of A, since its existence and the partition of
A into three parts is basically Radon’s theorem [Zie95].

Observe that both conv(A−) and conv(A0 ∪ A+) are simplices, by property (1)
above, and that their affine spans are complementary: their dimensions add up to d
and they intersect only in the Radon point. By an affine change of coordinates, we can
make the Radon point to be the origin, and the affine subspace containing conv(A−)
and conv(A0 ∪ A+) be complementary coordinate subspaces. In these conditions,
conv(A) is the direct sum of conv(A−) and conv(A0 ∪ A+), where the direct sum
of polytopes P ⊂ Rp and Q ⊂ Rq both containing the origin is defined as

P ⊕Q := conv(P × {0} ∪ {0} ×Q) ⊂ Rp+q.

Since the volume of a direct sum has the following simple formula

vol(P ⊕Q) =
vol(P ) vol(Q)(

p+q
p

) ,
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3.2 Upper bound for hollow 3-bodies

we have the following result:

Lemma 3.2.3. Let A ⊂ Rd be a set of d + 2 points affinely spanning Rd, and let
p = |A−| − 1 and q = |A0 ∪A+| − 1, so that p+ q = d. Let K = conv(A). Then:

vol(K −K) ≥
(

2p

p

)(
2q

q

)
vol(K).

Proof. By an affine transformation, let A− ⊂ Rp × {0} and A0 ∪ A+ ⊂ {0} × Rq,
and let P ⊂ Rp and Q ⊂ Rq be the corresponding convex hulls, which are simplices
of dimensions p and q respectively. By the Rogers-Shephard inequality:

vol(P − P ) =

(
2p

p

)
vol(P ), vol(Q−Q) =

(
2q

q

)
vol(Q).

Now, K = P ⊕Q implies

K −K = (P ⊕Q)− (P ⊕Q) ⊇ (P − P )⊕ (Q−Q).

In particular, vol(K −K) is at least

vol((P − P )⊕ (Q−Q)) =
vol(P − P ) vol(Q−Q)(

p+q
p

) =

(
2p
p

)(
2q
q

)(
p+q
p

) vol(P ) vol(Q).

,

vol(K) = vol(P ⊕Q) =
vol(P ) vol(Q)(

p+q
p

) .

Corollary 3.2.4. Let K be the convex hull of five points affinely spanning R3. Then

vol(K −K) ≥ 12 vol(K).

Proof. Since the p and q in Lemma 3.2.3 are non-negative and add up to three, there
are only two possibilities: (p, q) ∈ {(0, 3), (3, 0)} or (p, q) ∈ {(1, 2), (2, 1)}. The
lemma gives vol(K −K) ≥ 20 vol(K) and vol(K −K) ≥ 12 vol(K) respectively.

We do not expect the factor 12 in the statement of Corollary 3.2.4 to be sharp,
but it is not far from sharp; if K is a pyramid with square base then vol(K −K) =
14 vol(K)
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Bounds for the volume

Corollary 3.2.5. Let K be the convex hull of five points affinely spanning R3, and
assume it to be hollow. Let w > 1 + 2/

√
3 = 2.155 be the width of K and let

µ = w−1 be its first covering minimum. Then, vol(K) is bounded above by:

16

3(1− µ)3
=

16w3

3(w − 1)3
, if w ≥ 2√

3
(
√

5− 1) + 1 = 2.427, and

1

2µ2(1− µ(1 + 2/
√

3))
=

w3

2(w − (1 + 2/
√

3))
, if w ≤ 2.427.

Proof. With the same notation as in the proof of Theorem 3.2.1, thanks to Lemma 3.2.3
we have

vol(K) ≤ 1

12
vol(K −K) ≤ 2

3
(λ1λ2λ3)

−1 ≤ 2

3
max{λ13, λ1λ22}−1.

In order to lower bound max{λ13, λ1λ22} follow word by word the proof of Theo-
rem 3.2.1.

3.3 Maximum volume of wide hollow 4-simplices

Here we give an upper bound on the determinant (equivalently, the volume) of any
hollow 4-simplex of width at least three. Our main idea is to consider an integer
projection π : P → Q ⊂ R3 and transfer to P the bound for the volume of Q that we
have in Corollary 3.2.5. Observe thatQ is the convex hull of 5 points and it has width
at least three (because any affine integer functional on Q can be lifted to P , with the
same width) but it will not necessarily be hollow. Thus, some extra work is needed.
A road map to the proof is as follows:

• If a projection π exists for which Q is hollow, then Q is a hollow polytope
of width at least three. Such polytopes have been classified in [AKW17,
AWW11]: there are only five, with maximum volume 27. It is easy to prove
(looking at the five possibilities) an upper bound of 27 for the determinant of
the simplex P . See details in Proposition 3.3.2.

• If such a π does not exist, then we show that that λ1−1(P − P ) ≤ 42 (see part
(1) of Theorem 3.3.6, based on Corollary 3.3.4). We then have a dichotomy:

– If Q is “close to hollow” (that is, if it contains a hollow polytope of about
the same width) then we can still use Corollary 3.2.5 to get a good bound
on its volume, hence on the volume of P .
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3.3 Maximum volume of wide hollow 4-simplices

– If Q is “far from hollow” (that is, if it has interior lattice points far from
the boundary) then it is easy to get much better bounds on λ1−1(P −P ),
which by Minkowski’s Theorem directly give us a bound on the volume
of P .

P has a hollow projection Q

We start with a general result about projections of a simplex to codimension one.
Observe that if P ⊂ Rd is a (perhaps not-lattice) d-simplex and π : P → Q ⊂ Rd−1
is a projection of it then Q = π(P ) =⊂ Rd−1 can be written as the convex hull
of d + 1 points, the images under π of the vertices of P . In this situation we call
Radon point of Q the Radon point of π(vert(P )), introduced in Section 3.2.

Lemma 3.3.1. Let π : P → Q ⊂ Rd−1 be an integer projection of a d-simplex P .
Let x ∈ Q be the Radon point of Q and let s = π−1(x) ⊂ P be the fiber of x in P (a
segment). Then:

1. Vol(P ) = Vol(Q)× length(s), where length(s) is the lattice length of s.

2. s maximizes the lattice length among all segments in P in the projection direc-
tion.

Proof. Observe that every facet F of Q not containing x is a simplex (because its
vertices are affinely independent), and that π is a bijection from π−1(F ) to F . Let us
consider Q triangulated by coning x to each of those facets. Let S = conv(F ∪{x})
be one of the maximal simplices in this triangulation. Then, π−1(S) is also a simplex,
with one vertex projecting to each vertex of F and the segment s projecting to x.
This implies part (2) of the statement, and also the following analogue of part (1) for
Euclidean (as opposed to normalized) volumes:

vol(P ) = vol(Q)× length(s)/d.

From this, Vol(P ) = d! vol(P ) and Vol(Q) = (d− 1)! vol(Q) gives part (1).

Proposition 3.3.2. If an empty 4-simplex P of width at least three can be projected
to a hollow lattice 3-polytope Q, then the normalized volume of P is at most 27.

Proof. Q is one of the five hollow lattice 3-polytopes of width at least three, classified
in [AKW17].

Their normalized volumes are 27, 25, 27, 27, and 27, respectively. Q5 cannot be
the projection of P , since it has six vertices. For the other four, we claim that the
Radon point x of π(vert(P )) is always a lattice point:
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M4,6 M4,4 M4,2

M ′
4,4 M5,4 M5,2 M6,2

Figure 1: The Z3-maximal integral lattice-free polytopes with lattice width two. For
further reference, the polytopes are labeled by a pair of indices (i, j), where i is the
number of facets and j the lattice diameter (defined at the end of the introduction).

Figure 2: The Z3-maximal integral lattice-free polytopes with lattice width three.

Proof strategy

In the proof of Theorem 1, we use a classification of all Z2-maximal polytopes in P(1
2Zd).

This is provided in Section 2. Every such polytope is contained in an R2-maximal lattice-
free convex set L in the plane and its vertices then have to be contained in L ∩ 1

2Z2. We
give a slightly extended version of the well-known classification of R2-maximal lattice-free
convex sets L which allows us to enumerate all Z2-maximal lattice-free 1

2Z2-polyhedra.
We then turn to integral Z3-maximal lattice-free polyhedra in dimension three. We

4

Q1 Q2 Q3 Q4 Q5

Figure 3.2: The five hollow 3-polytopes of width three. Figure taken from [AKW17]

• In the three tetrahedra Q1, Q2 and Q3 this is automatic: four vertices of P
project to the four vertices of the tetrahedron Q and the fifth vertex projects to
a lattice point in Q which necessarily equals the Radon point.

• In Q4, a pyramid over a quadrilateral, the Radon point is the intersection of the
two diagonals of the quadrilateral, which happens to be a lattice point.

Now, by Lemma 3.3.1, Vol(P ) = Vol(Q) × length(s), where length(s) is the
lattice length of the fiber of the Radon point. Since the Radon point is a lattice point
and since P is hollow, the length of this fiber is at most 1. On the other hand, Vol(Q)
is at most 27.

P has no hollow projection

Our first tool is Corollary 3.3.4 which guarantees that for every non-hollow lattice
simplex T and facet F of T there is a lattice point in the interior of T not too close to
F . The lower bound obtained is expressed in terms of the Sylvester sequence (si)i∈N.
In particular, for dimension 4 our bound is 1/(s4 − 1) = 1/42.

Lemma 3.3.3. Let T be a simplex and let S ⊂ T be a finite set of points including
the vertices of T and at least one point in the interior of T .

Then, for each vertex a of T there is a subsimplex T ′ ⊂ T with exactly one point
of S in its interior and with a ∈ vert(T ′) ⊂ S.

Here T and T ′ are not assumed to be full-dimensional, or to have the same di-
mension. In particular, by “interior” we mean the relative interior. They are also not
assumed to be lattice simplices unless S is a set of lattice points (which is the case of
interest to us).
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3.3 Maximum volume of wide hollow 4-simplices

Proof. If T has a unique point of S in its interior then there is nothing to prove,
simply take T ′ = T for every a. If T has more than one such point we argue by
induction on the number of them.

Let y ∈ int(T ) ∩ S be an interior point minimizing the barycentric coordinate
with respect to a and let T be the stellar triangulation of T from y. (The maximal
simplices in T are conv(F ∪ {y}) for the facets F of T ). Let y′ ∈ S be another
interior point in T and let T ′ be the minimal simplex in T containing y′. Then:

• By minimality of T ′, y′ is in the interior of T ′. In particular, T ′ is not hollow.

• T ′ uses a as a vertex, since T ′ contains the interior point y and all simplices of
T that do not contain a are contained in the boundary of T .

• By construction, int(T ′) ⊂ int(T ) (remark: T ′ may be not full-dimensional;
by int(T ′) we mean the relative interior). Since y is an interior point in T but
not in T ′, T ′ has less interior points than T and we can apply the induction
hypothesis to it.

y

a

�
cb

Figure 3.3: Illustration of Lema 3.3.3. Once the point y is chosen, the other six
points of S (in the figure, a lattice point set) in the interior of T are valid choices for
y′. Depending of the choice of y′ we get a different T ′: T ′ = {a, b, y} if y′ is one of
(−1, 3), (0, 3) or (0, 2); T ′ = {a, y} if y′ is one of (1, 1) or (1, 2); and T ′ = {a, c, y}
if y′ is (2, 3). Choice of y guarantees that no interior point of S lies in {y, b, c}.

Corollary 3.3.4. Let T be a non-hollow lattice d-simplex and let a be a vertex of it.
Then, there is an interior lattice point in T whose barycentric coordinate with respect
to a is at least 1/(sd+1 − 1).

Proof. Let S = T ∩ Zd and let T ′ be as in Lemma 3.3.3. Observe that dim(T ′) ≤
dim(T ) so that sd′+1 ≤ sd+1. Since T ′ has a unique interior lattice point, the state-
ment is the case i = d+ 1 of [AKN15, Theorem 2.1].
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Bounds for the volume

Our next result makes precise what we mean by “far from hollow” in the descrip-
tion at the beginning of this section, and how to use that property to upper bound the
rational diameter of P (and hence its volume, via Lemma 3.3.1 and Corollary 3.2.5).

Lemma 3.3.5. Let P ⊂ Rd be a hollow convex body. Consider an integer projection
π : P → Q ⊂ Rd−1 of P . Let x ∈ Q be an arbitrary point and let sx = π−1(x) ⊂ P
be its fiber.

Then, length(sx)−1 ≥ 1− r, where length(s) is the lattice length of s.

Proof. Observe there if Q is hollow then r ≥ 1, so the statement is trivial. Thus,
without loss of generality we assume Q is not hollow. Also, if x is a lattice point in
the interior of Q then r = 0 and the fact that P is hollow implies length(sx) ≥ 1, so
the statement holds. Thus, we assume that Q has at least an interior lattice point that
is not x.

Let y ∈ Q \ {x} be an interior lattice point of Q closest to x with respect to the
seminorm induced by Q with center at x. That is, for each interior lattice point p in
Q call ||p||Q,x the smallest dilation factor rp such that p ∈ x + rp(Q− x), and let y
be a lattice point minimizing that quantity. Observe that r = ||y||Q,x. (Remark: we
do not assume x to be in the interior of Q. If Q lies in the boundary the seminorm
||p||Q,x may be infinite for points outside Q, but it is always finite and smaller than
one for points in the interior).

Let sy = π−1(y) ⊂ P be the fiber of y. The length of sy must be at most 1,
because P is hollow. Consider the ray from x through y and let z be the point where
it hits the boundary of Q. We have:

length(sx) ≤ length(sx)

length(sy)
≤ |xz||yz| ,

where the second inequality follows from convexity of P . Then:

length(sx)−1 ≥ |yz||xz| =
|xz| − |xy|
|xz| = 1− |xy||xz| = 1− ||y||Q,x = 1− r.

With this we can prove the main result in this section. In it, we consider the
projection π : P → Q along the direction where λ1(P − P ) is achieved. Equiva-
lently, this is the direction of the longest (with respect to the lattice) rational segment
contained in P . (Recall that this length is called the rational diameter of P , and it
equals λ1(P − P )−1). In particular, if we let the point x of Lemma 3.3.5 be the
point whose fiber achieves the rational diameter, we have λ1(P − P ) ≥ 1 − r.
Moreover, Lemma 3.3.1 tells us that x is the Radon point of Q and that Vol(P ) =
Vol(Q)/λ1(P − P ).
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3.3 Maximum volume of wide hollow 4-simplices

Theorem 3.3.6. Let P be a hollow 4-simplex of width at least three and that does
not project to a hollow 3-polytope. Then:

1. λ1(P − P ) ≥ 1/42.

2. Vol(P ) ≤ 5058.

Proof. LetQ be the projection of P along the direction where λ1(P −P ) is attained.
We know Q is not hollow, and has width at least three. For the rest of the proof we
denote λ := λ1(P − P ).

Suppose first that λ ≥ 0.19, in which case part (1) obviously holds. For part (2)
we can simply bound the volume of P in the manner of Equation (3.3), except that
for a d-simplex P we can use the Rogers-Shephard equality, see Eq. (3.2):

vol(P − P ) =

(
2d

d

)
vol(P ).

Thus:

Vol(P ) = 24 vol(P ) =
24

70
vol(P − P ) ≤ 24 · 16

70λ4
≤ 24 · 16

70 · 0.194
≤ 4209.38.

So, for the rest of the proof we assume λ < 0.19.
Let x be the Radon point of Q, that is, the image of the segment where λ is

achieved. Let r be as in Lemma 3.3.5, so that r ≥ 1 − λ ≥ 0.81 and Qr :=
x+ r(Q− x) is hollow. Together with Lemma 3.3.1 this gives:

Vol(Q) =
Vol(Qr)

r3
≤ 6 vol(Qr)

(1− λ)3
. (3.6)

Observe that the width ofQr is r times the width ofQ and, in particular,w(Qr) ≥
3 · 0.81 = 2.43. Since Qr is the convex hull of five points (the projection of the five
vertices of P ), Corollary 3.2.5 gives

vol(Qr) ≤
16

3(1− µ1(Qr))3
≤ 16

3
(

1− 1
3(1−λ)

)3 =
2432(1− λ)3

(2− 3λ)3
, (3.7)

where the inequality in the middle follows from µ1(Q) ≤ 1/3 (Q has width at least
three) and µ1(Qr) = µ1(Q)/r ≤ µ1(Q)/(1− λ).

Consider Q triangulated centrally from the Radon point x. That is, for each facet
F ofQ not containing xwe consider the tetrahedron conv(F∪{x}). (Observe that all
facets ofQ not containing x are triangles, since the only affine dependence among the
vertices of Q is precisely the one that gives the Radon point). We call such tetrahedra
the Radon tetrahedra in Q.
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Bounds for the volume

Let v1, . . . , v5 be the five vertices ofQ. (Remark: ifQ has only four vertices then
the Radon point is the projection of the fifth vertex of P . But the Radon point being
integer implies λ ≥ 1). For each i ∈ {1, . . . , 5} denote Qi := conv({v1, . . . , v5} \
{vi}) the lattice tetrahedron contained in Q and not using vertex vi.

There are two possibilities:

• Suppose first that one of the Qi’s has the following property: only one of the
Radon tetrahedra contained in that Qi contains interior lattice points of Q. Let
T := conv(F ∪ {x}) be that Radon tetrahedron. Let T ′ := conv(F ′ ∪ {x})
be a minimal face of T that contains some interior lattice point y of Q. Then:
Minimality of F ′ implies that y is in the interior of T ′, by minimality.

Let vj 6∈ T be the vertex of Qi not in F and let Q′i = conv(F ′ ∪ {vj}).
Observe that conv(F ′ ∪ {x}) ⊂ conv(F ′ ∪ {vj}) (because the Radon point of
Q is contained in every simplex spanned by vertices of Q and intersecting the
interior of Q).

By Corollary 3.3.4 the non-hollow lattice simplex conv(F ′∪{vj}) contains an
interior point z whose barycentric coordinate with respect to the facet F ′ is at
least 1/42. This is the same as the barycentric coordinate of z in T with respect
to the facet F . Now, by uniqueness of conv(F∪{x}) as a Radon tetrahedron in
T , y is also contained in conv(F ∪{x}). Moreover, the barycentric coordinate
of y in conv(F ∪ {x}), which is a lower bound for λ by the same arguments
as in Lemma 3.3.5, is greater than in conv(F ∪ {a}). Thus, λ ≥ 1/42.

• Suppose now that everyQi contains either zero or at least two Radon tetrahedra
with interior lattice points of Q. An easy case study shows that then at least
four Radon tetrahedra contain interior lattice points ofQ. (The cases are thatQ
is a triangular bipyramid with six Radon tetrahedra or a quadrangular pyramid
with four Radon tetrahedra). Let conv(Fi∪{x}) be such Radon tetrahedra, and
let yi ∈ conv(Fi ∪ {x}) be an interior lattice point of Q, for i ∈ {1, 2, 3, 4}.
(Some of the yi’s may coincide, since we do not assume them to be interior in
conv(Fi ∪ {x}), only in Q). Then, 1/λ is smaller than Vol(conv(Fi∪{x}))

Vol(conv(Fi∪{yi})) , for
each i, and this is smaller than Vol(conv(Fi ∪ {x})) since conv(Fi ∪ {yi}) is
a lattice tetrahedron. That is:

Vol(Q) ≥
4∑
i=1

Vol(conv(Fi ∪ {x})) ≥
4

λ
.

This together with equations (3.6) and (3.7) gives

4

λ
≤ Vol(Q) ≤ 2533

(2− 3λ)3
,
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3.4 Upper bound for the volume of hollow 4-simplices of width 2

which implies (23 − λ)3 ≤ 8λ or, equivalently, λ ≥ 0.03196 > 1/42.

So, in both cases we have λ ≥ 1/42, which finishes the proof of part (1).
For part (2), Equations (3.6) and (3.7) give

Vol(P ) =
Vol(Q)

λ
≤ 2533

(2− 3λ)3λ
. (3.8)
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Figure 3.4: Plot of the upper bound in Eq. (3.8) for λ ∈ [0.02, 0.20].

Figure 3.4 plots this function in the relevant range λ ∈ [1/42, 0.19]. Although
the function is slightly increasing after its local minimum at λ = 1/6, its maximum
in the interval is clearly at λ = 1/42, where it takes the value

Vol(P ) ≤ 25 33 42

(2− 1/14)3
=

143 25 33 42

273
=

29 74

35
= 5058.897.

We can round this down to 5058 since Vol(P ) ∈ Z.

3.4 Upper bound for the volume of hollow 4-simplices of
width 2

Theorem 3.4.1. Let P be a hollow 4-simplex which does not project to a hollow
3-polytope. Then, Vol(P ) ≤ 5184.
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Bounds for the volume

For simplices of width at least three this statement was stated in Theorem 3.3.6.
Since the width of P cannot be one (for that would imply P to project to a hollow 1-
polytope) in the rest of the section we assume that P is an empty 4-simplex of width
two. Thus, without loss of generality, we take P ⊂ R3 × [−1, 1].

LetQ := P ∩{x4 = 0} be the middle 3-dimensional slice with respect to the last
coordinate. If we get a good bound for the volume of Q then we can transfer it to P
via the following lemma:

Lemma 3.4.2. Let K ⊂ Rd be a convex body with supporting hyperplanes Rd−1 ×
{−a} and Rd−1 × {b}, with 0 < a ≤ b. Let K0 := P ∩ {xd = 0}. Then,

Vol(K) ≤ a
(
a+ b

a

)d
Vol(K0).

A more general version of Lemma 3.4.2 has been published in [G20].

Proof. The proof is based on applying Schwarz symmetrization (see, e.g., [Gru93,
Sect. 9.3]) to our convex body K.

For each t ∈ [−a, b] letKt := K∩{xd = t}, and letBt ⊂ Rd−1 be the Euclidean
ball centered at the origin O ∈ Rd−1 and with the same volume as Kt. The Schwarz
symmetrization of K is defined to be

KS := ∪t∈[−a,b]Bt × {t}.

Then, KS ⊂ Rd × [−a, b] is a convex body (as proved by Schwarz), it has the same
volume as K, and it is symmetric around the line {O} × R. In particular, KS is
contained in a truncated cone C of the form

C = conv(C−a × {−a} ∪ Cb × {b}),
where C−a and Cb are two Euclidean balls with the property that the slice at t = 0
of C coincides with that of KS . (To prove this, consider a supporting hyperplane of
KS at a boundary point with t = 0 and rotate it around the line O × R).

Let r be the radius of K0, and let r + λt be the radius of C ∩ {xd = t}. Then,

Vol(K) ≤ Vol(C) = d

∫ b

−a
κd−1(r+λt)d−1dt =

1

λ

[
(r + λb)d − (r − λa)d

]
κd−1,

where κd−1 denotes the normalized volume of the (d− 1)-dimensional unit ball.
The slope λ must lie between −r/b and r/a (the values for which the truncated

cone is actually a cone). Within this range the maximum of the right-hand-side is
achieved for λ = r/a, where we have

Vol(K) =
a

r
(r + rb/a)dκd−1 = ard−1κd−1

(
a+ b

a

)d
= aVol(K0)

(
a+ b

a

)d
.
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3.4 Upper bound for the volume of hollow 4-simplices of width 2

Corollary 3.4.3.
Vol(P ) ≤ 16 Vol(Q).

To bound the volume of Q we now observe that Q is a hollow 3-polytope with
half-integer vertices; in particular, its width is half-integer. We also know that Q
does not project to a hollow 2-polytope (otherwise P would project to a hollow 3-
polytope). We distinguish three cases:

(I) width(Q) ≥ 5/2, then by Theorem 3.3.6 we have the following bound.

Vol(Q) ≤ 3! · 8 · w3

(w − 1)3
≤ 6 · 8 · (5/2)3

(3/2)3
=

2000

9
= 222.22.

(Remark: in fact the bound could be multiplied by 2/3 using Corollary 3.2.5,
since Q has at most five vertices). Via Lemma 3.4.2 we get that

Vol(P ) ≤ 16 Vol(Q) ≤ 16000

9
= 3555.55.

(II) If width(Q) ≤ 3/2, or width(Q) = 2 with respect to a functional whose
minimum and maximum are integer, then we assume without loss of generality
that Q ⊂ R2 × [−1, 1] × {0}. In this case we can apply to the slice R :=
Q ∩ {x3 = 0} the same ideas that we applied to P ∩ {x4 = 0}, since R is
hollow and does not project to a hollow segment.

(III) If Q has width two, but with respect only to functionals whose minimum and
maximum are half-integer, then we can assume Q ⊂ R2 × [−1/2, 3/2]× {0}.
There are two integer slices R := Q∩{x3 = 0} and R′ := Q∩{x3 = 1}. We
have two subcases:

(III.a) If one of R or R′ (say R) does not project to a hollow segment, we do the
same as in case (II). See details below, in particular Corollary 3.4.7.

(III.b) If both R and R′ project to hollow segments, then they are contained in
respective lattice bands of width one. These lattice bands have to be of
different direction, since otherwise the projection of Q along that direc-
tion is hollow.

In what follows we give details on Cases (II) and (III), obtaining bounds of 324
and 192 for the volume of Q (see Corollary 3.4.7. and Lemma 3.4.4). This finishes
the proof of Theroem 3.3.6, via Corollary 3.4.3. In all cases we will resort to 3- or
2-dimensional cases of Lemma 3.4.2.

The easiest case is Case (III.b):
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Bounds for the volume

Lemma 3.4.4. If Q is in case (III.b) then Vol(Q) ≤ 192, hence Vol(P ) ≤ 3072.

Proof. Let us recall our hypotheses: Q ⊂ R3 is a 3-dimensional hollow polytope
with supporting hyperplanes {x3 = −1/2} and {x3 = 3/2}, and the slices R :=
Q ∩ {x3 = 0} and R′ = Q ∩ {x3 = 1} both have width one and project to hollow
segments, but with respect to different projection directions.

Applying Lemma 3.4.2 to R ⊂ Q with a = 1/2 and b = 3/2 we get that

Vol(Q) ≤ 1

2

(
2

1/2

)3

Vol(R) = 32 Vol(R).

Now, R has width one with respect to a certain direction, and width at most three
with respect to a second one. (For the latter, observe that R is contained in a band of
width three along the direction of the band of width one containing R′). This implies
Vol(R) ≤ 6, from which we deduce Vol(Q) ≤ 192 and Vol(P ) ≤ 192 · 16 =
3072.

For cases (II) and (III.a) we need to use that the coordinates of vertices of Q are
rational with small denominators:

Lemma 3.4.5. In the conditions of cases (II) or (III), all vertices of R and R′ have
coordinates in 1

6Z
2 ∪ 1

8Z
2.

Proof. In case (III) the situations in R and R′ are symmetric to one another, so for
the rest of the proof we only look at R = Q ∩ {x3 = 0}. Since Q is the middle
slice of a lattice polytope P of width two, Q is a half-integer 3-polytope. That is,
the vertices of Q have integer or half-integer coordinates. Let now p be a vertex of
R. Either p is also a vertex of Q (in which case it has half-integer coordinates) or p
is the intersection of an edge uv of Q with the plane x3 = 0. Let λ ∈ (0, 1) be the
coefficient such that

p = λu+ (1− λ)v.

Assume without loss of generality that u is in {x3 < 0} and v in {x3 > 0}. In
case (II) we have that u has its third coordinate in {−1,−1

2} and v in {12 , 1}. This
implies that λ ∈ {13 , 12 , 23}. In case (III) we have that u has its third coordinate equal
to−1

2 and v in {12 , 1, 32}, which implies λ ∈ {12 , 23 , 34}. Since u, v ∈ 1
2Z

2, in all cases
we get p ∈ 1

6Z
2 ∪ 1

8Z
2.

Lemma 3.4.6. Let R be a hollow polygon with vertices in
⋃
i≤k

1
iZ

2 for an integer
k ≥ 1 and such that R does not project to a hollow segment. Then,

Vol(R) ≤ (k + 1)2

k
.
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3.4 Upper bound for the volume of hollow 4-simplices of width 2

Proof. Averkow and Wagner [AW12, Theorem 2.2] have given upper bounds for the
maximum area of a hollow polygon in terms of its width w, depending on whether
w lies in [0, 1], [1, 2] or [2, 1 + 2/

√
3]. (That 1 + 2/

√
3 ∼ 2.15 is the maximum

possible width was previously shown by Hurkens [Hur90]). We prove the statement
separately in the three cases:

• Ifw ∈ (0, 1] thenR is contained in a strip of width one, sayR ⊂ R×[α−1, α],
with α ∈ (0, 1) (α cannot be an integer, becauseR does not project to a hollow
segment). We can assume without loss of generality that α ≤ 1/2 and then,
since R ∩ {x2 = 0} has length at most 1, Lemma 3.4.2 implies

Vol(R) ≤ α
(

1

α

)2

=
1

α
≤ k,

where the last inequality comes from the fact that α ∈ ⋃i≤k
1
iZ

2.

• If w ∈ (1, 2] then the bound from [AW12, Theorem 2.2] is

Vol(R) ≤ w2

w − 1
. (3.9)

(Observe we have multiplied the formula in [AW12] by two, since our volume
is normalized to the unimodular triangle and theirs is not). Since w > 1 must
be in

⋃
i≤k

1
iZ

2, we have w ≥ (k+1)/k. Since the function w2

w−1 is decreasing
for w ≤ 2, we get

Vol(R) ≤ w2

w − 1
≤ (k + 1)2/k2

1/k
=

(k + 1)2

k
.

• If w ∈ [2, 1 + 2/
√

3] then the bound in [AW12] implies Vol(R) ≤ 4. On the
other hand k ≥ 2 (no hollow lattice polygon has width larger than two), so
indeed

Vol(R) ≤ 4 ≤ (k + 1)2

k
.

We can now address cases (II) and (III.a) together:

Corollary 3.4.7. If Q is in one of cases (II) or (III.a) then Vol(Q) ≤ 324, hence
Vol(P ) ≤ 5184.
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Bounds for the volume

Proof. By Lemma 3.4.6 we have Vol(R) ≤ 81/8. Moreover, we can apply Lemma 3.4.2
to Q and its slice R, with (a, b) ∈ {(1/2, 1/2), (1/2, 1), (1/2, 3/2), (1, 1)}. These
four cases give, respectively,

a

(
a+ b

a

)3

∈
{

4,
27

2
, 32, 8

}
.

Hence,

Vol(Q) ≤ 32
81

8
= 324, Vol(P ) ≤ 16 Vol(Q) ≤ 5184.
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Chapter 4

Enumeration of empty 4-simplices

In this section we describe the algorithmic methods used for the exhaustive enumer-
ation of all empty 4-simplices up to volume 7600. Although eventually we got upper
bounds of V = 5500, the computations were done up to volume 7600 as our previous
bounds were close to that number.

Having all empty 4-simplices up to that volume bound allows us to finish the
classification of the sporadic simplices (case k = 4) thanks to Theorem 3.4.1.

A pseudo-code of the main algorithms that enumerate the simplices and verify
if they are empty is described in this section. We also shown how we obtain empty
simplices of a non-prime volume V = ab by using 2 empty simplices of volume a
and b. This method increase the speed of the computations (in most of the cases) by
using the simplices calculated before with lower volumes. The speed of this second
algorithm depends heavily on the prime factorization for the volume V (Figure 4.1).

4.1 Strategy of the enumeration/quintuples

Let’s remember that in section 2.1.1, in particular, in propositions 2.1.11 and 2.2.2 we
define what is a quintuple for an empty 4-simplex and how to obtain the coordinates
of our polytopes vertices from the quintuple. The algorithms stated in this section
express the simplices in terms of their quintuples.

4.2 Algorithms

Let P be a lattice simplex P ∈ Rd, and let Λ(P ) be the lattice generated by vertices
of P . We assume with no loss of generality that the origin is a vertex of P , so that
Λ(P ) is a linear lattice and G(P ) := Zd/Λ(P ) is a finite group of order equal to the
determinant of P . One way to store P is via generators of G(P ) as a subgroup of
Rd/Λ(P ), with barycentric coordinates used in Rd. Let us be more precise:

• The barycentric coordinates of a point x ∈ Rd with respect to the simplex P
are the vector (x0, . . . , xd) of coefficients of the unique expression of x as an
affine combination of the vertices of P (the vertices of P are assumed given in
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Enumeration of empty 4-simplices

a particular order). They add up to one; conversely, any (d + 1)-vector with
real coefficients and sum of coordinates equal to one represents a unique point
in Rd in barycentric coordinates. If x is a lattice point and P a lattice simplex
of determinant D, then all the xi’s lie in 1

DZ.

• Looking at x in the quotient Rd/Λ(P ) is equivalent to looking at the xi’s mod-
ulo Z; that is, looking only at the fractional part of them. In particular, every
lattice point u ∈ Zd, considered as an element of the quotient Zd/Λ ⊂ Rd/Λ,
can be represented as a vector (u0, . . . , ud) ∈ (ZD)d+1 with sum of coeffi-
cients equal to 0 modulo D.

• In this manner, to every lattice simplex P of determinant D we associate a
subgroup G(P ) of order D of the group

TdD := {(u0, . . . , ud) ∈ Zd+1
D :

∑
ui = 0 (mod D)}.

We call TdD the discrete d-torus of order D, since it is isomorphic to (Z/DZ)d.
In this setting we have:

Lemma 4.2.1. Let G1 and G2 be two subgroups of order D of TdD. Then, G1 and
G2 represent equivalent simplices of determinant D if, and only if, they are the same
subgroup modulo permutation of coordinates.

Proof. The “if” part is obvious. For the “only if” observe that a unimodular equiva-
lence f : P1 → P2 between two lattice simplices preserves barycentric coordinates,
modulo the permutation of vertices induced by f . That is, if (x0, . . . , xd) are the
barycentric coordinates of a point x with respect to P1, then the barycentric coor-
dinates of f(x) with respect to P2 are a permutation of them: the i-th barycentric
coordinate of f(x) with respect to P2 equals xj , where j and i are such that the f
maps the j-th vertex of P1 to the i-th vertex of P2.

This formalism is specially useful if P is a cyclic simplex, that is, if G(P ) is a
cyclic group. In this case we represent G(P ) by giving a generator of it, as we did
with quintuples in chapter 2.Observe that this includes all empty 4-simplices, since
they are all cyclic (Theorem 1 in Barile et al. [BBBK11]). Hence, we introduce the
following definition:

Definition 4.2.2. Let P be a cyclic lattice 4-simplex of determinant D and let u ∈
T4
D. We say that the quintuple u generates P if the barycentric coordinates of every

element in Z4/Λ(P ) with respect to P are multiples of u (modulo D). That is, if
the point of R4/Λ(P ) with barycentric coordinates 1

Du is a generator for the cyclic
group Z4/Λ(P ).
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Observe the the entries of 1
Du may not add up to 1, but they add up to an integer.

This is what they need to satisfy in order to represent a point of R4/Λ(P ), since the
quotient by Λ(P ) makes barycentric coordinates be defined only modulo the integers.

Summing up: every primitive element u ∈ T4
D is the quintuple of a cyclic lattice

simplex of determinant D. Moreover:

• Two quintuples u, v ∈ T4
D generate equivalent simplices if, and only if, one is

obtained from the other one by permutation of entries and/or multiplication by
a scalar coprime with D.

• The width of P equals the minimum k ∈ N such that there are λ0, . . . λ4 ∈
{0, 1, . . . , k} (not all zero) with

∑
i λiui = 0 (mod D).

• The element ku of TD represents a lattice point in P if, and only if, when writ-
ing it with all entries in {0, . . . , D − 1} the sum of entries equals D. (Indeed,
this means that the lattice point of Rd whose barycentric coordinates are 1

Dku
is a convex combination of the vertices of P . In order to check whether P is
empty one can check that this does not happen for any k = 1, 2, . . . , D − 1.

Remark 4.2.3. As a remark we would like to remember the result by Sebö [Seb99]
that says: It is NP-complete to decide whether the width of conv(e1, . . . , en, v) is at
most 1.

4.2.1 Algorithm 1

This algorithm enumerates all empty 4-simplices of given volume V . In order to
obtain all empty 4-simplices in this way, V must not have more than 5 different prime
factors. This condition guarantees that our simplices have at least one unimodular
facet, since two different facets must have coprime volumes. We are going to fix that
unimodular facet to be the one generated by {v1, v2, v3, v4}.

Observe that, a posteriori, the classification we obtain tell us that all empty 4-
simplices have this unimodular facet but we did not know this fact a priori.

The first part is starting a loop that create all 4-tuples (v0, v1, v2, v3) with 2 ≤
v0 ≤ v1 ≤ v2 ≤ v3 < D and satisfying the equation Vol(σ(v)) = V , which can be
restated as v0 + v1 + v2 + v3 (mod V ) ≡ 1.

In the second part of Algorithm 1, we check emptiness for each quintuple, calcu-
late the width and compute the orbits of this simplex.
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Algorithm 1: Enumeration of the 4-tuples (v0, v1, v2, v3) with first pruning.
for v0 in [i for i in range(2,D) if (inverses[i])%D>=i]:
u0=inverses[v0]
g0=gcd(D,v0) # Compute upper limits for v1 and v2 for given v0.
v1max=int((2*D+1-v0)/3); v2max=D-v0
for v1 in range(v0,v1max+1):
g1=gcd(D,v1) u1=inverses[v1]
mymin1=min((u1)%D,(-u1*v0)%D,(-v1*u0)%D)
if mymin1 < v0:
continue
for v2 in [i for i in range(v1,v2max+1) if (1-v0-v1-i)%D>=i]:
v3=(1-v0-v1-v2)%D # Fixing (v0+v1+v2+v3)%D=1
u2=inverses[v2] u3=inverses[v3]
flag=0
if v3 < v2:
flag=1 # The simplex is not the smallest representative in its class.
continue

Check that the closest point to each facet are not in the simplex
closest_inner_points=[D-1,u2,u1,u0]
if flag==0:
for i in closest_inner_points:
if (v0*i)%D +(v1*i)%D +(v2*i)%D +(v3*i)%D <D:
flag=2 # The simplex is not empty break

Do a partial check that the representative is lexicographically smallest.
if flag==0:
mymin2=min((u2)%D, (u3)%D, (-u2*v0)%D, (-v2*u0)%D, (-u2*v1)%D,
(-v2*u1)%D, (-u3*v0)%D, (-v3*u0)%D, (-u3*v1)%D, (-v3*u1)%D, (-
u3*v2)%D, (-u2*v3)%D) if mymin2 < v0:
flag=1 # The simplex is not the smallest representative in its class
continue

Discarding non-reduced simplices
if flag==0:
if mymin1==v0 or mymin2==v0:
for j in closest_inner_points:
repr=sorted([(-v0*j)%D,(-v1*j)%D,(-v2*j)%D,(-v3*j)%D,j%D])
orbit=sorted([[v0,v1,v2,v3,D-1],repr])
if orbit[0]!=[v0,v1,v2,v3,D-1]:
flag=1 The simplex is not the smallest possible in its class
break
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Algorithm 1: Once the enumeration is done, check of emptiness and calculate
width for the list of 4-simplices.
Checking emptiness [Sca85, HZ00]
if flag==0:
# Traditional method
# Taking i’s in reverse order (minus signs in next line) seems to be more
efficient
for i in range(3,D):
if (-v0*i)%D +(-v1*i)%D +(-v2*i)%D +(-v3*i)%D +(-v4*i)%D<D:
flag=2 # the simplex is not empty
break

Width check
producto=[]
flag=1
for i in range(0,len(L4)-1):
c=[a*b for a,b in zip(L4[i],[v0,v1,v2,v3,v4,D-1])]
c=sum(c)
producto.append(c%D)
resultado=[ai<anchura+1 for ai in producto]
if sum(resultado)==0:
flag=0

Computing orbits
if flag==0:
orbit=[[v0,v1,v2,v3,v4,D-1]]
sorted_orbit=[[v0,v1,v2,v3,v4,D-1]]
uu=D-1
for u in [u4,u3,u2,u1,u0]:
if gcd(u,D)==1 and u!=uu:
repr=[(-v0*u)%D,(-v1*u)%D,(-v2*u)%D,(-v3*u)%D,(-v4*u)%D,%D]
uu=u
if sorted(repr) in sorted_orbit:
continue
orbit.append(repr)
sorted_orbit.append(sorted(repr))
if flag==0:
empty.append(orbit)
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4.2.2 Algorithm 2

This algorithm enumerates all empty 4-simplices of a volume V that is not a
prime number, by factoring it as V = ab of it and performing a method after loading
all empty 4-simplices of volume the factors, a and b.

"Glueing" the empty simplices of volumes a and b together

Previous to apply Algorithm 2, we get a "nice" factorization of V with the subroutine
that is explained below:

Obtaining the factors p and q of V for Algorithm 2

The idea of this subroutine is obtaining 2 factors p and q of the non-prime volume
of a simplex V = pq. As it is shown in Figure 4.1, the lower is |p − q|, the faster
the algorithm 2 runs, so ideally we would like to get the factorization V = pq, with
p ∼ q.

Algorithm:
Fix a initial p = 1 :
for i in sorted(divisors(V)):
if i in primefactors(V):
d=1
while id in divisors(V):
d=d+1
if id−1 > p :
p = id−1

q = V
p

Once we have the factorization and we have the both list of empty 4-simplices of
volume a and b we can continue with the algorithm 2:

Algorithm 2: Algorithm obtaining empty simplices in volume V from
the complete list of empty simplices of prime volumes a and b, with
V = ab

• Read quintuples of empty 4-simplices of volume a

• Read quintuples of empty 4-simplices of volume b

• p∆a + q∆b( mod V ).

• Check if the new simplex is empty.
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4.3 Computation time

Once this simplices are created we need to check the emptiness and width as in
Algorithm 1.

4.3 Computation time

We have implemented the above algorithms in python and run them in the Al-
tamira Supercomputer at the Institute of Physics of Cantabria (IFCA-CSIC) for every
D ∈ {1, 2, . . . , 7600}.

3500 4000 4500 5000

2e4

4e4

6e4

8e4

1e5

1.2e5

1.4e5 Algorithm 2 (a,b>12)
Algorithm 1
Algorithm 2 (a=2)

Figure 4.1: Computation times (seconds) for the enumeration of empty 4-simplices
of a given determinant D between 3000 and 5000

For many values of V (those with two, three, or four prime factors) both algo-
rithms work and we have chosen one of them. Also, for Algorithm 2 there is often
several choices of how to split V as a product of two coprime numbers a and b. Ex-
perimentally we have found that Algorithm 2 runs much faster if a and b are chosen
of about the same size, and in this case it outperforms Algorithm 1. This is seen in
Figure 4.1 where some computation times are plotted for the two algorithms. Blue
points in the figure show the time taken for Algorithm 2 to compute all empty 4-
simplices for a given determinant of the form V = 2b with b a prime number. Purple
points correspond to the same computation for V = ab with both a and b primes
bigger than 12. Green points are prime determinants, where Algorithm 1 needs to be
used for the enumeration. In Algorithm 2 the time to precompute empty simplices of
determinants a and b is not taken into account, since we obviously had that already
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17 0
19 0
23 0
29 15
31 10
37 30
41 66
43 100
47 150
53 190
59 255
61 186
67 205
71 250
73 220
79 275
83 300
89 275
97 230

101 201
103 255

107 270
109 220
113 200
127 120
131 145
137 140
139 185
149 130
151 95
157 55
163 85
167 90
173 75
179 105
181 65
191 40
193 60
197 65
199 55
211 20
223 35

227 45
229 30
233 45
239 15
241 30
251 25
257 15
263 35
269 10
271 20
283 10
293 25
311 5
313 5
317 5
331 5
347 5
349 10
353 5
397 5
419 5

Figure 4.2: Comparative in the numbers of empty 4-simplices obtained by Mori,
Morrison and Morrison and our calculations

stored from the previous values of V . As seen in the figure, about 100 000 seconds
(that is, about 1 day) computing time was needed in some cases with V ∼ 5000. The
total computation time for the whole set of values of V was about 10 000 hours (∼1
year).

4.4 Differences with Mori et al. results

We have compared our computation of sporadic examples with the one by Mori et
al., who listed the number of empty 4-simplices that they obtain for each prime vol-
ume up to 419 in their computations; see the left part of Figure 4.4, which is Table
1.14 in [MMM88]. The right part of the same table is our count of them. This is not
exactly the same count as in Table 2.6 since we are here counting terminal quotient
singularities rather than simplices; that is, each simplex is counted as many times as
orbits of vertices are there in its affine-unimodular symmetry group. As seen in the
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4.4 Differences with Mori et al. results

table, there are some discrepancies between our results and those from [MMM88].
We approached the authors of [MMM88] about this issue and I. Morrison (personal
communication) told us that they no longer have their full output, so it is not possible
to verify their numbers, or to look at what particular simplices produce the discrep-
ancies. Observe that, when there is a discrepancy, the value in [MMM88] is higher
than ours (with a single exception for V = 47 that might be a typographic error).

Our guess is that their mistake was not in the enumeration part but in the search
for redundancies, where quintuples defining isomorphic simplices may look different,
specially when V is not big with respect to the other entries in the quintuple. This
guess is consistent with the facts that all discrepancies have V < 60 and discrepancies
are bigger for smaller values of V . Most entries, and most discrepancies between the
two tables, are multiples of five since most simplices have no symmetries.
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Chapter 5

Facets of empty 4-simplices

In this section, we describe all the possible combinations of volume for the facets
of empty simplices that happen in the sporadic simplices and the different families de-
scribed in chapter 2. Knowing all these possible combinations allow us to prove that
all empty 4-simplices have at least 2 unimodular facets. This result was announced
in [Wes89] but we could not verify the proof as that Master’s Thesis is written in
German and it seems that has not been verified.

In the particular case of empty 4-simplices, knowing the volume and the volume
of its facets is equivalent to having the Ehrhart polynomial of the simplex, so we
include some results and figures representing how the h∗-vector looks like for the
different families.

As a result of the complete enumeration of the facets volume vector, we get all
the possible h∗-vectors of the form (1, 0, h∗2, h

∗
3, 0).

5.1 Unimodular facets of empty simplices

Through chapter 2 we have verified the vector of facet volumes for the empty
4-simplices that project to hollow 3-polytopes.

From the output of the computations described in Chapter 5 we can also compute
the facet-volume vector of all sporadic 4-simplices. The number of non-unimodular
facets for that cases are given in Table 5.1.

With the content of this table and the results of Chapter 3 we can finally verify
the following theorem announced by Wessels [Wes89].

Corollary 5.1.1. Every empty 4-simplex has at least two unimodular facets. The
ones that have only two unimodular facets are:

• The simplices with k = 1 (equivalently, of width 1) when their 5-tuple (α +
β,−α,−β,−1, 1) has the property that V has prime factors in common with
the three of α, β and α + β (such factors are automatically distinct, since
gcd(α, β, V ) = 1).
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• The simplices with k = 3 (hence, of width two) in the primitive family with
quintuple (7, 5, 3,−1,−14), whenever V is a multiple of 30.

• The following 3 sporadic empty 4-simplices of width two:

5-tuple volume facet volumes h∗-vector
(4, 7, 15, 17, 41) 42 (2, 7, 3, 1, 1) (1, 0, 25, 16, 0)

(2, 13, 21, 25, 59) 60 (2, 1, 3, 5, 1) (1, 0, 33, 26, 0)

(2, 13, 25, 81, 119) 120 (2, 1, 5, 3, 1) (1, 0, 63, 56, 0)

In higher dimension it is no longer true that all empty simplices have some uni-
modular facet: there is an empty 5-simplex of volume 54 whose facet volumes are
(6, 6, 9, 54, 54, 54) [Wes89, p. 21]; see also [BBBK11, Remark 1] for a 3-parameter
infinite family of noncyclic empty 5-simplices projecting to 2∆2 and with all facets
of the same, arbitrarily large, volume.

Dimension of
the projection Empty 4-simplices h∗2 − h∗3 # of non

unimodular facets
d′ = 2 Projecting to hollow Unbounded 0 or 1

2-triangle à la Mori
Projecting to hollow 2- triangle 1 1

d′ = 3 Bipyramid of index 2 1 or 3 1 or 2
Bipyramid of index 3 0, 2 or 3 0, 1 or 2
Bipyramid of index 4 1 1
Bipyramid of index 6 3 2
Primitive bipyramids [0,. . . ,7] 0, 1, 2 or 3

d′ = 4 Sporadic empty 4-simplices [0,. . . ,12] 0, 1, 2 or 3
except 10

Table 5.1: Table with different numbers of non-unimodular facets depending on the
classification of Theorem 2.2.1

Tabla asi?. Oscar

5.2 h*-vector of empty 4-simplices

As a tool to study the restrictions on the parameters α, β and V in Theorem 2.2.1, in
Sections 2.3 and 2.4 we have studied the possible facet volumes of empty 4-simplices
in the infinite families. We here complete that information including a summary of
the data for sporadic families, and relate it to h∗-vectors and Ehrhart polynomials.
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Recall that the Ehrhart polynomial of a lattice d-polytopeP is a degree d-polynomial
E(P, t) = Ett

d + · · ·+ E0 ∈ Q[t] with the property that

E(P, t) = |tP ∩ Λ|, ∀t ∈ N.

Some well-known facts about it are that Ed = Vol(P )/d!, Ed−1 = Surf(P )/2(d −
1)!, where Vol and Surf denote the normalized volume and surface area (the sum of
normalized volumes of facets). Also, Ehrhart reciprocity states that

E(P,−t) = |interior(tP ) ∩ Λ|, ∀t ∈ N.

An alternative way of giving the same information is via the h∗-vector (or δ-vector)
of P , a vector h∗(P ) = (h∗0, . . . , h

∗
d) ∈ Nd+1 with the property that

∞∑
n=0

E(P, n)xn =
h∗dx

d + · · ·+ h∗0
(1 + x)d+1

.

That is, the h∗-vector gives (the vector of coefficients of the numerator of the ratio-
nal function of) the generating function of the sequence (E(P, n))n∈N. See [BR07,
Ehr62,Sta80] for more information on Ehrhart polynomials and h∗-vectors, and [Sco76,
Sta09, HKN18, BH18, LS19, HNO18] for results on their classification.

For empty 4-simplices, the h∗-vector admits the following simple expression in
terms of volume and surface area:

Proposition 5.2.1. Let P be an empty 4-simplex of volume V and facet volumes
(V0, V1, V2, V3, V4). Let S = V0 + · · · + V4 be the surface area of P . Then, the
h∗-vector of P is

h∗0 = 1, h∗1 = 0, h∗2 =
V + S

2
− 3, h∗3 =

V − S
2

+ 2, h∗4 = 0.

Proof. From the two coefficients E4 = V/24 and E3 = S/12 and the three val-
ues E(P,−1) = 0, E(P, 0) = 1, E(P, 1) = 5 we can recover the whole Ehrhart
polynomial, which turns out to be

EP (n) =
V

24
n4 +

S

12
n3 +

(
3

2
− V

24

)
n2 +

(
5

2
− S

12

)
n+ 1.

From this, routine computations give the h∗-vector.

Remark 5.2.2. The values h∗0 = 1, h∗1 = 0, and h∗d = 0 hold for empty simplices
in arbitrary dimensions, by the following general formulas for arbitrary lattice poly-
topes [BR07, Section 3.4]:

h∗0 = 1, h∗1 = |P ∩ Zd| − (d+ 1), h∗d = |interior(P ) ∩ Zd|.

69



Facets of empty 4-simplices

Figure 5.1: "Diference of volume in the facets" for sporadic empty 4-simplices in
terms of h∗3 (x axis) and h∗2 (y axis).

Another general formula is
∑d

i=0 h
∗
i = Vol(P ) [BR07, Cor. 3.21], which in the case

of empty simplices directly gives

h∗2 + · · ·+ h∗d−1 = V − 1.

Observe also that Proposition 5.2.1 agrees with the Hibi inequality h∗2 ≥ h∗3 [Hib90].

Proposition 5.2.1 implies that the Ehrhart polynomial and h∗-vector of an empty
4-simplex is determined by h∗2 and h∗3 or, equivalently, by

h∗2 + h∗3 = V − 1 and h∗2 − h∗3 = S − 5. (5.1)

These two parameters quantities are nonnegative and measure how far is P from
being unimodular or from having unimodular facets. We call them the volume excess
and the surface area excess of P .

In Figure 5.2 we show the statistics of volume and surface area excess for the
2461 sporadic simplices. The reason to express some of the simplices in colour
red and the others in colour blue is that the ones in blue are the ones that appear
in [IVS19] classified as having width 3 and the ones in red are the rest of the sporadic
empty 4-simplices.

As seen in the figure, the maximum value of the latter is 12. It is achieved
exactly twice, for the simplices of volumes 39 and 65 defined by the quintuples
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5.2 h*-vector of empty 4-simplices

Figure 5.2: Possible values of V −1 = h∗2+h∗3 (horizontal axis) and S−5 = h∗2−h∗3
(vertical axis) for the 2461 sporadic empty 4-simplices

(5, 8, 13, 14, 38) and (3, 14, 23, 26, 64) respectively. They both have width two and a
single nonunimodular facet, of volume 13 in both. 1

These enumerations allow us to give a complete characterization of the h∗-vectors
of the form (1, 0, h∗2, h

∗
3, 0).

1Here we mention width of the different examples since this was a crucial invariant for the the bound
in Section 2.5 and in [HZ00,IVS19]. Observe that k = 1 is equivalent to width one, k ∈ {2, 3} implies
width two, and the sporadic simplices can have width between two and four
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Chapter 6

Open questions and ongoing work

In this last section we would like to have some words about research topics related
or derived from our work and which are some of the missing points and problems that
make these questions interesting and challenging.

Once empty 4-simplices are completely classified, it is natural to think about
classifying more general polytopes or simplices in higher dimensions. Even more,
one can ask new questions that may allow us to understand better properties of these
polytopes and convex bodies.

6.1 Classification of hollow n-polytopes

Through this section, we discuss how to approach classification of empty 5-simplices,
the limitations and the disadvantages that have the methods described in sections
above for dimension 4 if we apply them to dimension 5.

On one hand, we would like to mention that as explained in section 4.3, the
approach used to enumerate empty 4-simplices is computationally expensive. For
example, exhaustively enumerating all empty 4-simplices of volume 5000 with Al-
gorithm 1 takes more than 50 hours.

Using the same approach in order to enumerate empty simplices in dimension 5
seems that would require an amount of time that make this task useless.

Even more, there exist additional problems to face when trying to describe empty
5-simplices:

• The quotient group of Zd by the sublattice generated by the vertices of an
empty d-simplex is cyclic when d ≤ 4 (Theorem 1, [BBBK11]), but this is not
true in higher dimension.

• Every empty 4-simplex has an unimodular facet. In dimension 5, there are ex-
amples of empty simplices without unimodular facets. The simplex generated
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by the vertex columns of the following matrix:


0 1 0 0 1 2
0 1 1 0 1 3
0 1 0 1 1 4
0 1 0 0 6 0
0 1 0 0 0 9



is empty without any unimodular facet [HZ00], as expressed in section 5.1.

These two facts have been used in the classification work to speed up the compu-
tations in Chapter 4 and make the enumeration easier. The impossibility to do them
in dimension 5 makes things even more difficult.

On the positive side, some of the ingredients in the proof of our classification
work not only for empty 4-simplices, but for all hollow ones. Putting those things
together we have the following not-so-explicit classification of hollow 4-simplices.

Theorem 6.1.1 (Classification of hollow 4-simplices). Let P be a hollow 4-simplex
of volume V ∈ N and let k ∈ {1, 2, 3, 4} be the minimum dimension of a hollow
polytope that P projects to. Then P belongs to one of the following fine families:

k = 1: Two fine families projecting to the multisets {0, 0, 0, 0, 1} and {0, 0, 0, 1, 1}.
The cyclic members of these families are parametrized by 5-tuples of the form
(α+ β + γ,−α,−β,−γ, 0) and (α+ β,−α,−β,−γ, γ), respectively, where
α, β, γ ∈ ZV are arbitrary.

k = 2: Six fine families projecting to the two multisubsets of 2∆2 ∩ Z2 displayed in
Figure 2.3 or to the following four additional ones:

5

2

4
3

1

5

3
2

4

1

5

2
1

3

4321
4

5

Cyclic members of the families can be parametrized, respectively, by the fol-
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lowing 5-tuples, where α, β ∈ ZV are arbitrary:

(β,−2β, α,−2α, β + α),

V

2
(0, 1, 0, 1, 0) + (β, β, α,−α,−2β),

V

2
(0, 0, 0, 1, 1) + (α+ β,−α,−β, 0, 0),

V

2
(0, 0, 0, 1, 1) + (α,−α, β,−β, 0),

V

2
(0, 0, 0, 1, 1) + (α+ β,−α,−2β, β, 0),

V

2
(0, 0, 0, 1, 1) + (β, α− 2β,−α, β, 0).

k = 3: P belongs to a finite set of fine families, one corresponding to each of the
tetrahedra, square pyramids, or triangular bipyramids of Lemma 2.4.2.

k = 4: There are finitely many possibilities for P , by Theorem 2.1.1. Their volumes
are bounded by 5184.

Proof. In all the cases k = 1, 2 it is easy to show that the claimed cases exhaust
all possibilities for S. Let us see this for k = 2. Once we know that three of the
elements of S are the vertices of 2∆2 the six possibilities come from the fact that
the other two can either be also vertices (either the same or two different ones), they
can both be midpoints of edges (either the same or two different ones), or they can
be a vertex and a midpoint (either opposite or consecutive). The expression for the
5-tuples follows from Proposition 2.1.11 and the easy computation of the spaces of
affine dependences of the 2 + 6 cases of S. (In all nonprimitive cases the index is
two, so there is no choice for the generator q of π(Λ)/ΛS). For k = 3 our statement
follows from Lemma 2.4.2 and the definition of fine family.

For k = 4 just observe that Theorem 3.3.6 applies to all hollow 4-simplices, not
necessarily empty or cyclic ones.

The two missing ingredients to turn Theorem 6.1.1 into a more explicit descrip-
tion are:

• An analysis of what finite non-cyclic groups can arise as GP = Λ/ΛP . Since
they are (isomorphic to) quotients of Z4, they can be written as Zn1 ⊕ Zn2 ⊕
Zn3 ⊕ Zn4 with ni dividing ni+1, i = 1, 2, 3. This implies each simplex to be
representable by (at most) four 5-tuples like the ones used in the cyclic case,
but we would expect a simpler description to be possible.
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• An enumeration of all hollow 4-simplices of volume up to 5184, pruning those
that belong to the infinite families with k ≤ 3.

6.2 Threshold width and flatness constant

As mentioned in the introduction, when having a hollow polytope, with a width larger
than a threshold given, there exists an upper bound for the volume of it.

It would be quite interesting to define the exact value for the threshold width, as
defined in Chapter 1.1, for every dimension d for a convex body or, even, answering
this question for polytopes.

Some small dimension values of the finiteness threshold width are known,w∞(3) =
1, w∞(4) = 2 and we do not know the exact value for any dimension greater than 5,
even though it is known that it is bounded from below w∞(5) ≥ 4. This fact is true
because of the existence of an empty 4-simplex of width 4 [BHHS].

One possible question before attaining the exact value of w∞(d) in every di-
mension d would be knowing things about the asymptotic behavior of the width. In
this direction Codenotti and Santos [CS19] show that the maximum lattice widths
grow with d. In particular, they show constructions of hollow lattice polytopes and
simplices that have arbitrarily large dimension d with width ' 1.14d, respectively
' 1.01d for simplices.

The question 1.12 in [BHHS] is an interesting one. Blanco et al. ask if the
finiteness threshold width of an arbitrary dimension with d > 4 is always a value that
does not depend on the number of lattice points of a polytope.

w∞(d) = w∞(d, d+ 1) for all d > 4

This would imply that it is just sufficient to find the value of the threshold width for
lattice simplices.

In order to have some intuition about these problems, we propose an alternative
method for estimating the values of w∞(d) for d > 4 via generating random empty
simplices:

6.2.1 Random empty simplices

As said before, classifying lattice polytopes in dimension bigger than 3 is a diffi-
cult task. One of the main problems is finding good upper bounds for the volume of
these lattice polytopes in order to enumerate them.

In this thesis, upper bounds for hollow and empty 4-simplices are obtained with
new techniques. The upper bounds obtained in chapter 3 are not tight and the exhaus-
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6.2 Threshold width and flatness constant

tive enumeration of the empty simplices that is necessary to complete the classifica-
tion of empty 4-simplices requires more than 10000 hours of computation time.

In order to get new classifications of polytopes with more lattice points or in
bigger dimensions, the method for obtaining good upper bounds should be improved
since the enumeration part of the classification grows quite fast and the amount of
computation time needed for giving an exhaustive answer to these problems would
be non feasible.

We propose a method to generate random lattice simplices with a Poisson dis-
tribution and measuring statistics of them in order to gain computationally speed
estimating the upper bounds needed1.

The reasoning for selection the Poisson distribution is the existence of some re-
sults for random polytopes generated by using this distribution. Some central limit
theorems have been obtained for the volume, number of i-dimensional faces, f -
vector, etc [BR10, Rei05].

In the method we construct simplices of the form σ(v) := conv{e1, e2, e3, e4, v},
where v ∈ R4 is obtained by generating every vi component of v as a random integer
number following the Poisson distribution, that allow us to get a random σ(v). Once
we obtain the σ(v) simplices we calculate how many of them are empty and their
width. The algorithm that we use to obtain these simplices is shown at Appendix .3.

With these results we hope to deduce an approximated range for the volume of
polytopes being empty and having a bounded width. We compare this range with the
theoretical bounds for this class of lattice polytopes and the actual range that contains
them in order to check if the method constructed gives a valid evidence to give good
upper bounds.

If we take as example empty 4-simplices of width greater than 2, the complete
list has lattice volume between 41 and 179, where most of this type of empty sim-
plices are in the interval [41, 127] with 6 sporadic examples with volumes from 127
to 179 [IVS19]. Trying to construct a range for the volume of these simplices, we
have constructed 10000 4-simplices of type σ(v) for different parameters that give
polytopes with different volumes and enumerate all of them that had width greater
than two.

As a result, we can see, in Figure 6.2.1, that we can recover most part of the range
where the empty 4-simplices of width greater than 2, but 5 cases with volume bigger
than 127 are not detected.

We think that using these approach we can gain some interesting information and
intuitions about the problem such as the following:

1This approach is based in discussions with C.Borger, J-M. Brunink, A. Grosdos and some other
colleagues during the Graduate Student Meeting on Applied Algebra and Combinatorics at Max-Panck-
Institut Leipzig in 2019.
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Open questions and ongoing work

Figure 6.1: Empty 4-simplices of width greater than two detected .

1. Try to answer some open questions and conjectures obtaining concrete exam-
ples (it is easier to get examples of large widths or large volume that do not
arise from the geometrical intuition).

2. It could help to give conjectural classifications of hollow d-polytopes. Maybe
this could lead to some polytopes that give better bounds for the maximum
width of hollow d-polyltopes or convex bodies (In terms of the flatness theo-
rem).

3. By random search it is possible to find some data which allow us to realize
some properties that follow the simplices obtain with a certain property or find
some families of polytopes that we could not figure out by ourselves.

4. We obtain this information much faster than going through the exhaustive enu-
meration.

Even though this method can be useful, it would be needed to check the per-
formance of this algorithm when d increases. If the frequency of simplices that are
hollow (equiv. empty) goes down quickly with the dimension some adaptations might
be needed.
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.1 Number of empty 4-simplices for particular families:

.1 Number of empty 4-simplices for particular families:

From volume V ≥ 59 onwards, the 29 families of empty simplices belonging to the
empty 4-simplices that project to a primitive bipyramid appear for every volume V .
The condition is (No prime that divides more than one entry in the quintuple can
divide V ).

Volume Empty simplices projecting Volume Empty simplices projecting
to primitive bipyramids to primitive bipyramids

≥ 59: 29 53 28

47 28 43 25

41 26 37 23

31 18 29 16

23 12 19 8

17 6 13 2

11 1 < 11 0

Table 1: Empty 4-simplices that project to the 29 primitive bipyramids described by
Mori et al. appearing in low prime volumes

Figure 2: h∗3 (x axis) and h∗2 (y axis) for simplices that project to the hollow 2-
simplex (Primitive case).
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Volume Empty simplices Volume Empty simplices
k = 2 (Primitive case) k = 2 (Primitive case)

29 9 23 4

19 1 17 0

13 2 11 1

Table 2: Number of empty 4-simplices when k = 2, primitive case, for volume < 30

.2 Example of classification for some values of V ?

Here we show how the files look like for a certain value of V . As mention be-
fore some example files are available at https://personales.unican.es/
iglesiasvo/.

Empty simplices of width two:
Determinant =56
Projecting to triangle as (2,-1,D/2-1,a,D/2-a), (k = 2): 5
[[2, 3, 25, 27, 55]]
[[2, 5, 23, 27, 55]]
[[2, 9, 19, 27, 55]]
[[2, 11, 17, 27, 55]]
[[2, 13, 15, 27, 55]]
Projecting to triangle as (1,−2, α,−2α, 1 + α), (k = 2): 0
Projecting to bipyramids of index 2 (k = 3): 0
Projecting to bipyramids of index 3, (k = 3): 0
Projecting to bipyramids of index 4, (k = 3): 3
[[2, 9, 13, 33, 55]]
[[2, 13, 17, 25, 55]]
[[2, 25, 41, 45, 55]]
Projecting to bipyramids of index 6 (k = 3): 0
Projecting to primitive bipyramids (k = 3): 3
[[2, 3, 5, 47, 55]]
[[2, 5, 9, 41, 55]]
[[3, 5, 8, 41, 55]]
Sporadic, (k = 4): 3
[[2, 3, 19, 33, 55]]
[[[2, 5, 19, 31, 55]]
[[[3, 5, 17, 32, 55]]

With this example we can see that we order the values v0, v1, v2, v3 and write
v4 = D−1 in order to eliminate unimodular equivalent simplices when enumerating
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.3 Algorithm for generating random polytopes and estimating maximum width

them.

.3 Algorithm for generating random polytopes and estimat-
ing maximum width

Creating a sigma-polytope
def sigma_polytope(d,n,l):
points=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
points.append(r.rpois(d,l)._sage_())
return Polyhedron(points)

As stated in Section 6.2.1 we generate simplices of the form σ(v). We have
implemented a code to generate the sigma polytopes with the software CoCalc. In
order to get the random point of σ(v) we use the command rpois(d,l)._sage_() that
generates a list of d random values following a Poisson distribution with average
of the values l. By giving different values to l we can get simplices with different
volumes as the volumes varies with the value of l.

Counting the number of empty d-simplices from the total of random
d-simplices randomly generated
numero=10000
d=5
anchura=4
for l in range(v_min,v_max):
full_d = 0
spanning = 0
vol = 0
primos=0
emp=0
empty=0
while full_d < numero:
P = sigma_polytope(d,d+1,l)
pointlist = P.integral_points()
volumen = factorial(d)*P.volume()

During the algorithm we use the following methods from CoCalc:
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• P.polytope(points)

• P.integral_points()

• Polyhedron(points)

• P.vertices_list()

We discard the configurations of points that do not form a d-dimensional
simplex.

if dim(P)==d:
full_d += 1
vol = volumen+vol
if len(pointlist)==d+1:
emp +=1
if is_prime(int(volumen))==1:
primos+=1
producto=[]
vector=P.vertices_list()[d]
for i in range(0,len(L3)-1):
c=[a*b for a,b in zip(L3[i],vector)]
c=sum(c)
producto.append(c%volumen)
resultado=[ai < anchura for ai in producto]
if sum(resultado)==0:
print pointlist
empty +=1

print "For dimension " + str(d) + " and lambda " + str(l) + ":"
print "volume " + str(vol/numero)
print "Emptiness ", str(emp) + " / " + str(full_d)
print "Prime volume empty", str(primos)
print "Empty width greater than three", str(empty) + " / " + str(full_d)
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