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UNIVERSIDAD DE DEUSTO

ENHANCEMENT OF ENSEMBLE DATA

MINING TECHNIQUES VIA SOFT

COMPUTING

by

Amgad Monir Mohamed Elsayed

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy, within the PhD Program in Engineering for the Information

Society and Sustainable Development

Supervised by Prof. Enrique Onieva Caracuel and Prof. Michał Woźniak
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Abstract

Machine learning (ML) is the area of study that gives computers the
ability to learn without being explicitly programmed. Sometimes this
will reveal unsuspected correlations and lead to a deeper understanding
of the problem. The magic is to learn from data, as we are surrounded
by data everywhere (user logs, financial data, production data, medical
records, etc.). Machine learning is great for complex problems for
which there is no good solution at all. Furthermore, ML is suitable
for fluctuating environments as it can adapt to new data. While data
mining is a related field that aims to discover patterns that were not
immediately apparent. There are two important factors that drive this
area: usage of effective models that capture the complex data, and
design of scalable learning systems that learn from massive datasets.

While it has been extensively reported in the literature that pooling to-
gether learning models is a desirable strategy to construct robust data
mining systems. This is recognized as ensemble data mining. En-
semble systems for pattern classification have been expanded in the
literature under the name of multiple classifier system (MCS). In clas-
sification tasks, various challenges are encountered, e.g., in terms of
the data size, the number of classes, the dimensionality of the feature
space, the overlap between instances, the balance between class cate-
gories, and the nonlinear complexity of the true unknown hypotheses.
Those challenges cause the perfect solutions to be difficult to obtain.
A promising solution is to train a set of diverse and accurate base clas-
sifiers and to combine them.

A primary drawback of classifiers ensemble, despite its remarkable
performance, is that it is necessary to combine a large number of clas-
sifiers to ensure that the error converges to its asymptotic value. This



brings on high computational requirements, including the cost of train-

ing, large space of memory, and large time for prediction. In addition,

when classifiers are spread over a network, high communication costs

are needed. To alleviate these drawbacks, various strategies will be

proposed in this thesis. In particular, how soft computing techniques

can be incorporated in MCS.

Soft computing methods are pioneer computing paradigms that paral-

lel the extraordinary ability of the human mind to reason and learn.

Soft computing methods, computational intelligence, use approximate

calculations to provide imprecise but usable solutions to unsolvable

or just too time-consuming problems. From the literature in MCS, at

most, soft computing methods were proposed either to optimize the

classifiers’ combination function or to select a subset of classifiers in-

stead of aggregating all. However, the efficiency and efficacy of MCS

can be still improved through our contributions in this thesis.

The efficiency of MCS concerns; fast training, lower storage require-

ments, higher classification speed, lower communication cost between

distributed models. Two directions were followed to achieve that. First,

for data level, we apply instance selection (IS) methods as a prepro-

cessing mechanism to decrease the training data-size. This could fast

the training of MCS, and the accuracy of models could be increased

through focusing on informative samples. Related to this part, we eval-

uate the interconnection between IS and MCS. Second, for the ensem-

ble level, ensemble pruning is a strategy by which a subset of classifiers

can be selected while maintaining, even improving, the performance

of the original ensemble. For that, we propose a guided search prun-

ing method to combine multiple pruning metrics while retaining their

performance. In addition, the simultaneous effect of downsizing the

number of samples and downsizing the number of classifiers is ana-

lyzed. Furthermore, we analyze recent reordering-based MCS pruning

metrics that are recognized as accurate and fast strategies to identify a

subset of classifiers.



The efficacy of MCS concerns the predictive performance, to go be-
yond what can be achieved from the state-of-art ensemble algorithms.
Related to this part, we apply swarm intelligence (SI) algorithms, soft
computing techniques, to integrate multiple classifier decisions. In
connection with that, a framework was proposed to combine three
computational intelligence paradigms IS, MCS, and SI algorithms. The
objective is to build a more diverse and highly accurate MCS, only
from a reduced portion of the available data.

In summary, this research introduces novel and improved strategies to
increase the efficiency and the efficacy of MCS. Soft computing is ap-
plied to optimize the integration of classifiers and to identify the best
classifier subsets. The results obtained throughout the thesis can boost
the efficiency of ensemble systems by applying IS methods as a kind
of data preprocessing technique. The application of SI algorithms or
hybrid versions can be more promising to effectively integrate indi-
viduals’ decisions. Furthermore, small-size ensembles with training
on fewer samples could significantly outperform large-size ensembles
that use whole training data. Finally, an analysis of recent heuristic
metrics to prune bagging ensembles has been conducted.
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Success is the sum of small efforts,
repeated day-in and day-out.

Robert Collier

CHAPTER

1
Introduction

Machine learning (ML) allows developing effective data-driven solutions that
allow making smart decisions. The rapid growth of data volumes and sources has
increased the efficiency of data-based solutions, making this area more and more
important. A closely related field to ML is data mining (DM), ¨to do with the dis-

covery of useful, valid, unexpected, and understandable knowledge from data¨ [1].
However, with the plethora of statistical learning methods, the explored pattern is
usually different and hence, the final decision could be affected [2]. A promising
data-driven solution has been recognized via combining or weighting several data
analytical methods [3–5]. This is accepted and promoted by computational intelli-
gence community with the name of ensemble systems [6–12]. Specific ensemble
systems for classification tasks are known as Multiple Classifier Systems (MCSs)
[13–16], with the concept of designing, implementing, and validating many classi-
fiers to cope with uncertainty, ambiguity, and complex problems. Classifier ensem-
bles reside at the intersection of engineering, computing, and mathematics [15].

MCS is the methodology where many classifiers are generated and their deci-
sions are combined to get more accurate and stable decisions. Regarding that, MCS
should be designed efficiently in all of their stages, from data preprocessing to mul-
tioutput decision fusion. Many variants exist either to generate or to combine the
group of classifiers, while the majority of the articles and the designed algorithms
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1. INTRODUCTION

consider the whole dataset to train each individual. This slows the classification

system by adding more computations to train several classifiers from complete data.

In addition, ambiguity and uncertainty will be increased. Furthermore, the test time

will be more consumed by the individual classifiers to get the final decision.

Therefore, this thesis aims to propose the development of MCS, to design more

efficient and effective classifier ensembles, via incorporating the following strate-

gies:

• Intelligent data sampling via applying instance selection (IS) techniques.

• Building a group of heterogeneous classifiers to increase the diversity inside

the decision space.

• Applying swarm intelligence (SI) as a soft computing technique to combine

the classifier’s outputs properly.

• Analysis of popular and recent ensemble pruning metrics to get thinner/small-

size ensembles, with the significant impact to increase the efficiency and the

predictive performance.

In this chapter, the motivation for this research along with the research ques-

tions that naturally arise are discussed in Section 1.1. After this, the objectives and

contributions are presented in Sections 1.2 and 1.3, respectively. Next, the research

methodology is summarised in Section 1.4. Finally, the research context and the

outline of this thesis are presented in Sections 1.5 and 1.6, respectively.

1.1 Motivation and Scope
MCS performs well since classifiers differ in terms of their inductive biases [17].

With the classical approach of focusing on a highly optimized classifier, various

challenges are encountered, e.g., in terms of the data size, the number of classes,

the dimensionality of the feature space, the overlap between instances, the balance

between class categories, and the nonlinear complexity of the true unknown hy-

potheses [18]. A promising alternative is to use a group of classifiers. The true

unknown hypothesis can be approximated by searching in various regions. This is

one of the main supports of the working mechanisms of MCS, as each classifier ex-

ploits the search space differently by using different feature subsets, data samples,

or learning mechanisms. The general structure of MCS is depicted in Figure 1.1
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following the classical pattern recognition structure. The set of features describing

the objects are input to the classifier ensemble, formed by a set of diverse classifiers

[16]. Then, an appropriate combination rule fuses the individual classifier outputs

to provide the system decision.

Combination
      rule

Figure 1.1: The canonical topology of MCS, Taken from [16].

A vital phase in building a group of classifiers is to use a suitable fusion strategy

to aggregate response decisions [15, 18]. Regarding that, the general accuracy of

the ensemble model could be improved by properly tuning the decision weights of

individual classifiers. However, the following challenges are encountered in the ap-

plication of a weight-based combination rule: (1) If the amount of data increases or

the number of classifiers becomes large, the search space becomes more complex

to determine the proper weight. (2) The search space may be flat or multimodal,

namely, there are multiple solutions (weights) that all provide approximately the

same accuracy. (3) The assignment of a general weight for each classifier in con-

sideration of its overall accuracy is not efficient for decision fusion because each

classifier has different performance capabilities for predicting per-class instances.

Answering to that, swarm intelligence (SI) can be used to identify a pattern or even

to tune the weight parameters for multiclassifier decision fusion. In addition, SI

handles the multimodal problem by stochastically applying exploration to avoid

stagnation at local solutions.

In addition, reducing the training data leads to reducing the in-between clas-

sifiers conflict, with the aim to decrease the uncertainty and ambiguity in MCS.

However, reducing the training data could affect the learning negatively. Scientific
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researchers have focused on the selection of the most relevant instances via data

preprocessing [19] to feed the classification model. Regarding that, instance se-

lection (IS) techniques could be applied in advance before training MCS. Hence,

the training and the testing times will be further reduced. The combination method

should exploit the strengths of individual classifiers’ over each class (class-specific

weights). For that, SI algorithms can be used to tune the weights of each classifier

based on its accuracy to predict a specified class. Furthermore, SI algorithms could

compensate the loss in the accuracy of the applied IS techniques.

A Current subject of interest in MCS is to downsize the ensemble. Downsizing

the ensemble (ensemble pruning, ensemble selection, and ensemble forming) is a

strategic process by which a subset of ensemble members can be selected while

maintaining, even improving, the performance of the original ensemble [20]. En-

semble selection can be embedded in the combination method, as in weighted vot-

ing where classifiers with lower weights or less than a predefined threshold can be

removed [21, 22]. The ensemble size has an important inconvenience according to

the following: Memory requirements to store the parameters of all the base learning

models, classification speed which deteriorates with large ensemble sizes, and the

predictive performance metric that can be improved by merging a subset of models

instead of depending on the whole ensemble members [23–25]. A possible solu-

tion to alleviate those shortcomings can be broadly divided into the following five

solutions [26, 27]:

• Exhaustive search.

• Optimization-based search.

• Sequential search (greedy methods).

• Clustering-based pruning.

• Ranking-based pruning (ordering-based pruning).

Regarding that, a promising MCS could be designed to:

• Benefit from the downsized data and the downsized classifiers simultane-

ously.

• Form ensemble models quickly, especially when training complex and a large

number of individual classifiers.

• Improve the size and overall accuracy of the ensemble systems.
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• Get out more accuracy from the reduced data in comparison with state-of-art

ensembles which are trained from non reduced data.

Multiple classifier systems are composed of three stages: (A) Forming, (B) Se-

lection, and (C) Aggregation [28]. The selection process is optional as it is not

embedded in many ensemble systems. However, it has been proved that the gener-

alization performance of a subensemble reports superior results over the traditional

combination approaches, such as majority voting of the whole ensemble [23, 29].

In addition, pruning down the redundant models reduces the memory burden [30].

Furthermore, ensemble selection (ES) is a proven mechanism to enhance the effi-

ciency and elevate the efficacy of classification ensemble systems [23, 24, 31, 32].

However, it is not trivial to find the optimal subset of classifiers from a large ensem-

ble as the complexity grows exponentially with the size of the pool. Researchers

agreed in common that ES is a combinatorial search problem with 2T−1 nonempty

subsets to be evaluated from pool size, T , to find the best subset [33, 34].

Greedy algorithms and heuristic metrics have been proved to be convenient

techniques that return near-optimal subsets in fast time. Virtually, an ordered list

from the generated classifier pool is formed according to an evaluation function,

followed by the selection of models according to this fixed order [31]. Those tech-

niques comprise dissimilar heuristic measures such as: ensemble diversity [32],

ensemble margin [24, 35], margin hybrid diversity [36], discriminating classifiers

[31], ensemble error [37], complementary of misclassification [35], and relative ac-

curacy with minimum redundancy [31]. In [38], since no widely accepted definition

to measure the ensemble diversity exists, five pairwise diversity measures are com-

bined to obtain an efficient pruned ensembles. In the literature, those techniques

are popular and recognized under the name of ordering-based ensemble pruning

with the following merits:

• The ordering strategies return subsets that are close to the optimal solution

(Efficacy) [23].

• The time complexity of those strategies is low, in comparison with exhaustive

or optimization-based search methods (Efficiency) [23].

• Pruning strategies based on base classifier reordering can be easily adjusted

to adapt to any given storage and computational restrictions [31, 36].
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Till now and related to our best knowledge, no recent article has considered the

analysis of all those promising metrics together. This research covers that gap by

comparing all those new techniques with the best performing techniques found in

[23], and against other popular baseline metrics.

Summarising, the following research questions are stated based on the above

motivations:

• Q1Q1Q1. What is the impact of reduced and consistent data on the performance of ensem-

ble learning?

• Q2Q2Q2. Is it possible with the search capability of swarm intelligence to enhance the

combination of classifiers?

• Q3Q3Q3. What is the effect of combining multiple pruning metrics together?

• Q4Q4Q4. What is the effect of downsizing data and downsizing the number of classifiers

simultaneously?

• Q5Q5Q5. How the initial classifier pool size and the required subensemble size affect on

the performance of heuristic pruning metrics?

• Q6Q6Q6. How the heuristic pruning metrics are affected by the individual classifier type?

• Q7Q7Q7. How the efficacy of the pruning metrics could be affected by binary and multi-

class tasks?

• Q8Q8Q8. How the pruning metrics are effective to reduce the performance variance?

• Q9Q9Q9. How the efficiency of the heuristic pruning metrics differs in terms of time and

space complexities?

1.2 Objectives
As it has been aforementioned, the contribution of this thesis is related to the design

of MCS. To make an intersection between IS, MCS, and SI, with the aim to increase

the efficiency and the efficacy of classifier ensemble systems. Furthermore, to an-

alyze the popular and the recent classifier ensemble pruning metrics. Based on the

formulated research questions, the following objectives should be achieved.

• Objective 1. To build more diverse and highly accurate MCS, only from a

reduced portion of the available data. This objective corresponds to research

questions Q1 and Q2.
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• Objective 2. Increasing the efficiency of MCS and going beyond what can

be achieved from ensemble pruning methods. This objective corresponds to

research questions Q3 and Q4.

• Objective 3. Grouping and analyzing fast and accurate heuristic metrics for

MCS pruning. This objective corresponds to research questions Q5 to Q9

1.3 Contributions
The research carried out during this thesis aims to contribute to the scientific com-

munity by designing heuristic and optimization-based ensembles. Consequently,

small-size and effective ensembles could be designed. Below, the main contribu-

tions of this thesis are briefly discussed:

• Training set selection and swarm intelligence: To alleviate the computa-

tion complexity associated with training large-size ensembles. In this pro-

posal, we prove the possibility of building MCS from a reduced portion of

training data. While to reduce the randomness of data sampling, intelligent

data sampling in the form of instance selection is used. Regarding that, the

ensemble members could focus deeply on the most informative data samples

during the train. Furthermore, the combination function could be optimized

via the search capabilities of SI algorithms. In this case, a class-specific

weight is assigned to each classifier based on its accuracy to predict different

samples from each class.

• A guided search for ensemble pruning: The small-size ensembles have

benefits; save the testing time, reduce memory burden, reduce the commu-

nication costs of distributed models, and improve the prediction accuracy.

While it is not easy to prune from overproduced ensembles. In this proposal,

we discuss efficient and critical heuristic metrics for ensemble pruning. In

addition, a guided search is presented for handling the conflicting of those

metrics to enhance the general accuracy of subset integration. The pruning

process starts after the individual’s accuracy and the ensemble diversity are
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captured in a preliminary search set. In connection with our first contribu-

tion, the efficiency of ensemble systems can be further improved during the

learning phase, by fast learning from reduced samples, and during the test-

ing phase, by reducing the ensemble size via guided search. For that, our

contribution is to downsize the training data and to downsize the classifiers

simultaneously without affecting the performance of MCS.

• An analysis of heuristic metrics for classifier ensemble pruning: MCSs

are superior to any random single classifier. However, three main defects are

reported for those systems; (1) A large pool of classifiers should be built, (2)

A sufficient memory space should be available to store those models, and (3)

A large classification time will be consumed for combining multi-decisions.

To alleviate these drawbacks, we discuss the concept and the benefits of thin-

ning/pruning ensemble of classifiers. An effective, fast, and implementable

heuristic metrics are analyzed to reorder the classifier’s position in the gen-

erated random bagging. The investigated metrics are based on modifying

the order of the classifiers in the bagging algorithm with the selection of

the first set in the queue. Some of these criteria include general accuracy,

complementary decisions, ensemble diversity, the margin of samples, mini-

mum redundancy, discriminant classifiers, and margin hybrid diversity. The

efficacy of those metrics is affected by the original ensemble size, the re-

quired subensemble size, the kind of individual classifiers, and the number

of classes. While the efficiency is measured in terms of the computational

cost and the memory space requirements. The separate performance of those

metrics is assessed over binary and multiclass benchmark classification tasks,

respectively. In addition, the behavior of those metrics against randomness

is measured in terms of the distribution of their accuracy around the median.

Publications: During the research activities of this thesis, several international

peer-reviewed journal and conference articles were published to disseminate the

obtained results. The publications can be found in Table 1.1.
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Table 1.1: Publications in journals and conferences conducted during this thesis.

Title: Vertical and Horizontal Data Partitioning for Classifier Ensemble Learning.

Authors: AM Mohammed, E. Onieva, M. Woźniak.

Congress: The 11th International Conference on Computer Recognition Systems,

2019, Poland.

Title: Training set selection and swarm intelligence for enhanced integration in

multiple classifier systems.

Authors: AM Mohammed, E. Onieva, M. Woźniak.

Journal: Applied Soft Computing (Impact Factor = 5.472→ Q1).

Status: Published.

Title: Selective Ensemble of Classifiers Trained on Selective Samples.

Authors: AM Mohammed, E. Onieva, M. Woźniak.

Journal: Neurocomputing (Impact Factor = 4.438→ Q1).

Status: Under review.

Title: An Analysis of Heuristic Metrics For Classifier Ensemble Pruning Based on

Ordered Aggregation.

Authors: AM Mohammed, E. Onieva, M. Woźniak, G Martı́nez-Muñoz.

Journal: Pattern Recognition (Impact Factor = 7.196→ Q1).

Status: Under review.

1.4 Research Methodology
The research field of this thesis is moving fast due to technological advances and

the continuous generation of new contributions in ML. Consequently, an iterative

research methodology was followed. The main idea of this cyclical process is

that the knowledge acquired in its initial phase helps to design an increasingly

promising technique, either in terms of accurate results, or in terms of concept,
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offering originality and remarkable contributions. Figure 1.1 shows the different

phases of this research methodology. These phases are briefly described below:

1

Review of the current
state of the art

Review

2

Design and
development

Review

3

Experimentations and
evaluation

Review

4

Results analysis
and comparisons

Review

Proposal Knowledge

update

Validation

Scientific

dissemination

Figure 1.2: The research methodology of the thesis.

1. Review of the current state-of-the-art: The main objective of this phase is

to investigate the state of the art related to the field under consideration to

identify problems and/or challenges. To achieve this, the related bibliogra-

phy is used, reviewing publications from the scientific community published

in journals, and proceedings of international congresses. The knowledge ac-

quired in this phase should lead to a proposal to address the identified chal-

lenges.

2. Design and development: In this phase, a novel proposal to solve the iden-

tified challenges is designed and developed. To this end, previously acquired

or updated knowledge is used to ensure that the solution is always up-to-date

with the current state of the art.

3. Experimentation and evaluation: The goal of this phase is to test the pro-

posals resulting from the previous step to a process of experimentation. To
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carry out this procedure, it is crucial to provide some criteria and evaluation

methods with which the results will be compared in the subsequent phase.

All these criteria and methods must be built using the knowledge acquired in

the first stage of the methodology.

4. Results analysis and comparison: After carrying out experimentation, re-

sults must be analyzed and compared with those obtained in the state-of-the-

art. At this point, it is needed to check if the results obtained are enough to

address the challenges identified in the first phase. In such a case, another

methodological cycle begins to approach the following challenge identified

or to keep working with the challenge under consideration if it was not still

solved. In this stage, conclusions must be drawn from analyses of results, and

knowledge obtained must be materialized in scientific dissemination, either

through journals, or conferences.

1.5 Research Context
This research has received funding from the European Union’s Horizon 2020 re-

search and innovation program under the Marie Skłodowska-Curie grant agreement

Nº 665959. This research has also been funded and supported by Deusto Smart Mo-

bility Research Group, DeustoTech-Fundaci´on Deusto, the Faculty of Engineering

at the University of Deusto, (Spain). In addition, the Department of Systems and

Computer Networks, Faculty of Electronics, Wrocław University of Science and

Technology, (Poland).

During the second year of the Ph.D., an international research stay was made

as part of the research activities. The research stay was carried out at Wrocław

University of Science and Technology (WUST) within the Department of Systems

and Computer Networks. The stay lasted three months, from April to July 2019,

under the supervision of Dr. Michal Woźniak. He is a supervisor of this research

and a full professor at Faculty of Electronics. The objective of the research stay

was to collaborate with international experts in the field of ensemble learning to

share knowledge and get feedback from them. Therefore, it was possible to add
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more to the experiment design through several suggestions that later end with the

dissemination of a scientific journal article.

In addition, participating in the 11th International Conference on Computer

Recognition Systems (CORES), 2019, Poland, with a presentation of some results.

Besides, participating in the 7th international student workshop, June 2019, Ladek

Zdroj, Poland.

1.6 Structure of the Dissertation
The structure of the remainder of this thesis dissertation is outlined below.

Chapter 2 reviews background and related work about ML, supervised data min-

ing, and ensemble data mining. In addition, we present a taxonomy of MCS.

Furthermore, we discuss the importance of diversity and how to measure it.

Finally, closing the chapter with the importance of soft computing.

Chapter 3 reviews state-of-the-art ensemble algorithms. This includes bagging-

like, boosting, and gradient boosting ensembles. The revision includes dif-

ferent mechanisms to promote diversity in each algorithm. Following that,

we group all the ensemble methods in a comparison table to show their prop-

erties. Finally, we spotlight on the role of metaheuristic algorithms (MA) to

enhance the performance of MCS.

Chapter 4 presents our first proposal to build an effective MCS from a reduced

portion of the training data, and how to combine multi-decisions via SI algo-

rithms. This chapter is therefore aligned with specific objective 1.

Chapter 5 provides our second proposal to prune MCS via guided search. We

discuss how to merge ordering-based pruning metrics to gain what cannot be

reached from any of them. The work presented in this chapter is therefore

directly related to specific objective 2.

Chapter 6 presents an analysis of fast and accurate heuristic metrics for MCS

pruning. The analysis shows how the performance of ensemble pruning met-

rics could be affected by the original ensemble size, the required subensem-
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ble size, the kind of individuals, and the number of classes. The work is
directly related to specific objective 3.

Chapter 7 revisits the main goal and specific objectives posted earlier. In this
chapter, we summarise the main contributions of this thesis and outline pos-
sible future research.
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The good thing about science is that
it’s true whether or not you believe
in it.

Neil deGrasse Tyson

CHAPTER

2
Background

This chapter is intended to introduce the basics of machine learning, data min-
ing, classifier ensemble learning, and soft computing. First, machine learning is
defined, why it is important, how the machines extract the pattern, and research
ethics when dealing with automated algorithms. Then, the importance of data pre-
processing is highlighted to prepare and reduce the training data. While, the next
section is dedicated to differentiate between data mining and machine learning, and
to introduce supervised learning algorithms. Ensemble data mining, the benefits of
ensemble learning, the taxonomy of MCS, and diversity measuring metrics will be
presented next. Finally, the importance of soft computing, and how soft computing
techniques can be incorporated in ensemble learning is to be presented in the last
part of this chapter.

2.1 Machine Learning
The invention of artificial intelligence (AI) enabled machines to outperform hu-
mans in specific scenarios. The main goal is not to create an artificial brain, but to
assist us to understand the world’s massive data [39]. Today we are surrounded by
a vast amount of data that is intractable for a human to understand [19]. The rev-
olution in the information field, due to powerful storage and communication, and
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the invention of electronic sensors increased the volume of recorded data. Our lives
are recorded in databases; (e.g. weather conditions, traffic status, human behavior,
bank transactions, medical diagnosis, network communications, and more). With
this data, it became necessary to find a systematic way to get potential and impor-
tant actions. This was the start of Machine Learning, as it is defined in [39] as ”The

development of computer algorithms to transform data into intelligent action”. Fig-
ure 2.1, shows the three main components that form the cycle of advancement in
this field. The growth of data pushed the development of computing and storage
power, which in turn spurred the development of statistical and computing algo-
rithms. In the literature, there is an agreement that even with the capabilities of
computers to find patterns in large databases, their power is limited to the novelty
and the motivation of the analysis which is directed by humans [39–41].

Available

Data

Statistical

Methods
Computing

Power

Figure 2.1: The development cycle of Machine Learning.

ML is more successful when it can be used to assist rather than replacing hu-
man experts; e.g. assist programmers to identify spam messages, assist engineers
to optimize energy usage in homes, assist politicians to predict election outcomes,
assist doctors to eradicate cancer, assist biologists to discover genetic sequences
linked to the disease, assist policymakers to reduce the fraudulent credit card trans-
actions, assist engineers to design self-driving cars, and more. Contrary and as part
of their limits, computers are less flexible to extrapolate beyond the strict criteria
learned. In addition, the ML algorithm is only as good as the data it learns from. If
the input data does not contain an implicit context, the behavior of computers will
be like humans; best guess.

The main purpose is to benefit from the computer experience to solve similar
experiences in the future. Figure 2.2 shows the four interconnected parts of any
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learning process to answer the following questions: how the experience can be

formed?, how learning can be transferred and understood by computers?

Inferences

Data Storage Abstraction Generalization Evaluation

Data

Figure 2.2: The four components of how to learn.

1. Data Storage: The main place to store data for the purpose of short-and

long-term recall. Those data are represented as ones and zeros, with no mean-

ing, on disks or random access memory (RAM). Memorizing the data can not

be sufficient for the learning process, but it can be useful for reasoning; based

on similar stored cases.

2. Abstraction: This phase is known as the knowledge representation or model

training to assign meaning to stored data. The explicit description of the pat-

terns within the data can be represented by different forms; e.g.(mathematical

equations, interconnected diagrams like trees and graphs, logical IF-THEN

rules, data clusters). For that, the original information can be summarized in

a simple form with a discovery of unseen relations among data. No new data

will be generated, only the original information can be seen from different

perspectives of the representation form.

3. Generalization: The process of using the abstracted model for future actions

on tasks which are similar to what has been seen before. Many discovered

patterns can be noticed during the training phase, the most relevant pattern

among data will be promoted as the most useful inference. For that, the

model bias, which is the wrong in the prediction, usually will exist; as hu-

mans who are biased to take decisions based on past learned information.

The uncorrelated bias (error) is a big benefit in ensemble learning, as we will

discuss later.
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4. Evaluation: Each model has its own bias which is inherited form the learned

pattern. According to that, each model has its strengths and weaknesses. The

final phase in learning, is to measure the model success in terms of bias to

check if further training is needed. The evaluation is done to judge on the

generalization capability for new, unseen, dataset. Finally, a model with a

good performance during training, but with a poor evaluation, is said to be

overfitted model.

It is worth mentioning the ethics of machine learning and artificial intelligence.

An automated algorithm working on emotionless devices can cause unintended

consequences [39]. The inference of those tools could be biased to racial, ethnic,

and religious information in the dataset [39]. For that and according to the applica-

tion, that information should be blinded in data before training. It is important to

have a clear understanding of; what we are doing?, why it is necessary to do it in

an automatic way?, and how the implemented algorithm works?. In addition, some

tools could help; like ”FairML” [42] to know which algorithmic inputs could cause

harm or bias. Finally, the user privacy and the behavior which is recorded through

the web cookies should be respected. The availability of data does not give us the

right to analyze it.

In addition, the prediction result of an AI system could be explained in terms of

the input data. The model-agnostic, post-hoc explainable technique, can be applied

to any ML model regardless of its internal representation or process. Basically

relies on the following sorted techniques according to their popularity:

• Explanation by simplification: A new simplified model can be generated,

keeping the similar performance score, while reducing the complexity. Pop-

ular techniques are local interpretable model-agnostic explanations (LIME

[43]), generic rule extraction methods (G-REX [44]).

• Feature relevance explanation: The opaque model can be explained by mea-

suring the influence of each internal feature on the predicted output. Prof-

itable contributions include: Shapley additive explanations (SHAP [45]) as

a coherent method for describing the performance of any type of machine

learning. As well, sensitivity analysis [46] to quantify the importance of the
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input variable based on partial derivative, but maybe sub-optimal for explain-
ing AI and with several drawbacks [47].

• Visual explanation: Portfolio of visualization techniques to explain the opaque
model can be founded here [48]. Furthermore, the use of individual condi-
tional expectation plots (ICE [49]) for visualizing the estimated model by
any supervised learning algorithm.

2.2 Data Preprocessing
Data preprocessing [19] includes data preparation; (e.g., integration, cleaning, nor-
malization, transformation) and data reduction; (e.g., instance selection, feature
selection, discretization). The desired result is to get a cleaned, relevant, man-
ageable, and meaningful dataset ready for analysis. Usually, there is a trade-off
between time-complexity and accuracy to get the prepared data, which keeps the
research ongoing for this area.

Data Preparation: Refers to a set of techniques to prepare data as an input for a
certain DM algorithm. Usually, it is ignored by inexperienced practitioners, which
may cause the model runtime crash. Even if the algorithm works, the expected
results will not be optimistic. A set of preliminary steps can be followed before
model training as described in [19]:

- Data Cleaning: The process of detecting and correcting (or removing) in-
accurate records from data. Other tasks could be to detect irrelevant data
fragments that do not make sense. The result will be a consistent, accurate,
meaningful dataset [50].

- Data Transformation and Data Integration: Data transformation is the
process to convert and consolidate the data to another format to improve
model efficiency. This process is composed of sub-tasks; feature construc-
tion, feature aggregation, normalization, and more. While data integration
is recommended for merging data that come from multiple data sources.
The aim is to detect conflicts and to remove redundant and inconsistent data
[51, 52].
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- Data Normalization: This process is dedicated to unify the measurement

unit to all the attributes. Under this schema, all the attributes are equally

weighted. Statistically, to align the entire probability distribution of the ad-

justed values, to reduce the effects of certain gross influences [53, 54].

- Missing Data Imputation and Noise Identification: Training a model with

a dataset that has many missing values can have a dramatic effect on the

quality of the machine learning model. The imputation strategies can be

(Mean/Median values, most frequent value, k-nearest neighbors, using deep

learning, multivariate imputation by Chained Equation) [55]. Noise iden-

tification is known as smoothing, to detect variances or random errors in a

measured variable [56].

Data Reduction: Not like data preparation, data reduction is an optional step. It

provides a set of methods for obtaining a reduced version of the original data. It

is the process of downsizing the data while maintaining the integrity of the com-

plete dataset. However, it could be a crucial step as data preparation, to enable

the DM algorithm when the data size exceeds. Following are some representative

approaches:

- Feature Selection: Data reduction can be accomplished by removing irrel-

evant or redundant attributes. The aim is to use the least number of features

while keeping the output of the classification as similar as possible as if we

were using the full feature set. Regarding that, the training speed can be

boosted and the model performance can be elevated [57, 58].

- Feature Extraction: Lessening the amount of resources required for the rep-

resentation of a large array of data. Analysis with a wide range of variables

usually involves a large amount of memory and computational resources. In

addition, the classification algorithm could generalize to new samples badly.

Feature extraction is a set of techniques that create combinations of variables

to fix these issues, but also reflecting the data with sufficient precision. Many

machine learning specialists believe that the properly configured extraction

of features is the key to a successful model building [59].
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- Instance Selection: The process of reducing or eliminating samples intelli-

gently without affecting the DM application. This process can be guided by

heuristic rules to select horizontal subsets of data [60, 61]. In addition, the

process can be applied to adapt with a particular DM algorithm; like ”selec-

tion of support vectors for support vector machine algorithm” [62].

- Discretization: The mechanism by which quantitative data is converted into

qualitative data; via converting numerical variables into discrete or nominal

variables. For that, a huge spectrum of numeric values can be compacted or

reduced into a subset of discrete values [63].

Finally, the benefits of data preprocessing can be among the following; (1)

Adaptation to a particular machine learning algorithm. (2) Increasing predictive

accuracy. (3) Enabling: data mining algorithms are negatively affected by the data

size, and data reduction provides a solution for data choking. (4) Cleaning noisy,

missing, and redundant data to improve data quality. (5) Focusing: to focus on

relevant data instead of all available information.

2.3 Data Mining
A closely related field to machine learning is Data Mining, which is defined in

[39] as, ”the generation of novel insights from large databases”. While in [19];

data mining is defined as, ”solving problems by analyzing data present in real

databases”. While others [40, 41, 64, 65] view DM as, ”the main steps of knowl-

edge discovery in databases”. The main distinction between ML and DM is that;

ML is dedicated to teach computers how to use data to solve problems, while DM

is dedicated to teach computers how to identify patterns like a human to solve prob-

lems. It is interesting to mention that every DM involves the use of ML, but not all

ML involves DM. Next, a brief description of data mining categories is presented:

- Unsupervised Learning: Those techniques deal with an unlabeled dataset,

with a minimum of human intervention [66]. Data with no pre-existing la-

bels at our disposal and the purpose is to find associations, relationships,
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regularities, and similarities in the data. Cluster analysis is among the com-
mon models used in unsupervised learning. Cluster analysis is the process to
segment/group datasets with shared attributes [67]. Unlabeled examples are
given an implied cluster label from the relationships within the data entirely.
Sometimes, the clustering task is referred to as ”unsupervised classification”,
because it classifies unlabeled examples.

- Supervised Learning: Supervised learning is popular in the field of DM,
commonly knows as prediction methods. In supervised learning, a relation-
ship is to be learned between input space and target space. Based on the pre-
dicted target type, there are two common tasks; regression and classification.
In regression, the numerical output to be predicted falls in a certain interval.
Contrary to classification, the domain of the target is finite and categorical.

Next, all the subsequent sections will be dedicated to the classification task
in matching with the core of this thesis. In the classification problem, the input
attributes (features) and the target attribute (class) are transparent. The aim is to
learn a function that maps inputs to outputs. The learned function is called a model,
and it is inferred from labeled training data. Let,

x =
[
x(1), ..., x(d)

]T
, and x ∈ X = X(1) × ...× X(d) (2.1)

where X denotes feature space and x is the sample, i.e., x is the so-called feature
vector which informs about attribute values. We will assume that we have d at-
tributes at our disposal. The supervised classification model will assign a given
object described by its features, x, into one of the predefined categories, also called
labels. Let M = {1, ...,M} stands for the set of class labels (decision regions).
The classification algorithm (discrimination algorithm) is any learned function Ψ

with domain X and codomain M as clarified in Equation (2.2). Where the target
values in codomain are finite and categorical.

Ψ : X→M. (2.2)

There is a large number of models with different inferring strategies to discover
the hidden patterns from data. Next, I provide a short review of popular classifica-
tion algorithms according to the division in Figure 2.3, inspired by [19].
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Figure 2.3: Supervised classification algorithms.

• Regression Models: Logistic Regression (LR) is a statistical model, that re-

turns a probability for each class level. The cutoff value is embedded to

separate the upper and the lower probabilities to work as a binary classifier

(binomial LR). While multinomial LR deals with more than two classes. In

order to be enabled, the missing values should be handled. In addition, the

high correlation among the predictors (variables) should be minimized. LR

has been praised for its robustness and simplicity [68].

• Artificial Neural Networks (ANNs): The excessive and growing formula-

tions of ANNs from the theoretical and algorithmic depth [69], made them

more influence on the field of pattern recognition. ANNs handle large and

complex tasks due to their nested non-linear structure. While non-explanation

is one of the pitfalls of those black-box models. The computations of those

models are based on the definition of neurons. ANNs are unstable and more

sensitive to small changes in training data. Similar to LR, they require no

missing values.

• Bayesian Learning: Based on the probability theory to get rational decisions

[70]. The Naı̈ve Bayes is the most popular algorithm in this category. The

posterior probability for each class label is calculated, then the decision is

promoted upon the maximum probability returned. Those methods only

work with categorical attributes, cannot work with missing values, and are
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very sensitive to redundancy. The ”Naı̈vety” comes from the assumption of
the conditional independence between features. It can be viewed as an ex-
plainable model to give reasoning about the decisions.

• Instance-based Learning: The prediction of a new unknown sample is based
on a distance function with the past stored samples. Also called memoriza-
tion techniques and lazy learners [71]. The performance of those methods
is affected by the used distance function, neighborhood size, and decision
aggregation mechanism. K-Nearest Neighbor (KNN) is the most popular
method in this category. Pitfalls of those methods can be mentioned as: high
memory space for storage, delayed prediction response, sensitivity to noise.

• Support Vector Machines (SVM): Learning algorithms which are based on
maximizing gab separation (margin) between different class samples to get
correct decisions. They are suitable to work as linear and non-linear data
separation. Only the class borders (support vectors) are important to optimize
the margin where internal points can be removed to improve the efficiency
[72]. They require no missing values and are commonly robust against noise.

• Rule Learning: Called divide-conquer algorithms [73]. The data parts are
divided based on one rule, then recursively conquer the divided parts. Those
models are transparent or explainable to nonexperts in the form of logical
structures. Available features are analyzed to find homogeneous groups, then
an additional rule is built to drill down more. Small changes in the training
data results in decision change. Rule learning techniques are affected by
missing values, noisy samples, and outliers.

• Decision Trees (DT): This is a kind of indirect rule learning. Uses struc-
ture branching decisions to model the relationships among the features and
the predicted class value. They are widely used and can model any type of
data. The human-readable model is appropriate in applications where legal
reasoning is required. Those models are vulnerable to overfitting, and the
internal parameters should be tuned [59]. Unstable like ANNs and sensitive
to change in the training data. Usually, they are biased towards the splits on
features.
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For unseen pattern x, a class membership values are calculated as in Equation

(2.3), then the labeling choice will be connected to the highest score.

Ψ(x) = Max{g1(x), g2(x), . . . , gM(x)} (2.3)

The decision region R1 for the 1st class, is the set of points for which g1(x) has

the highest score [15]. While the classification boundaries contain data points for

which the membership values tie. If the decision region R1 contains data points

from the 2nd class, then we have overlapped classes. From Figure 2.4. (c) and as

shown in [74], the regions are nonoverlapping as the model learns all the details

about the data. This case is known as overfitting, and the model will not perform

properly to predict unseen samples. While Figure 2.4. (a) shows the optimal class

separation boundary that guarantees minimum possible error with the future sam-

ples. Finally, Figure 2.4. (b) shows the the underfitting case when the model fails

to capture relationships between a dataset’s features and a target variable during

training.

(c)(b)(a)

Figure 2.4: Trade-off between overlapping and overfitting, taken from [74].

Each model has an accompanied error, we need to understand the different

sources that cause this error. Equation (2.4) represents the compound generaliza-

tion error EG of a classifier Ψ that is trained on dataset D.

EG(Ψ, D) = EA(D) + EM + EB (2.4)

where EA(D) is the ”approximation error” represents the variance due to using

different training data, or non-deterministic training algorithm. Clarified as, the
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hyper-parameters of the model that affect its performance. The second term EM is
the ”model error” which represents the bias due to selecting a model in preference
of another. The last term EB is the ”irreducible error” coming from the insufficient
representation of the data. This is commonly known as Bias/Variance Tradeoff
[15, 59]. Increasing a model’s complexity will typically increase its variance and
reduce its bias. Conversely, reducing a model’s complexity increases its bias and
reduces its variance. This is why it is called a tradeoff.

2.4 Ensemble Data Mining
Ensemble learning is the strategy of using multiple learning algorithms in order to
obtain greater predictive precision than all of the constituent learning algorithms
alone [6–14]. In addition, Wozniak. et al. defined ensemble models as hybrid
intelligent systems [16] with the potentiality to cope with ambiguity, uncertainty,
and complex problems. Thanks to their capabilities, ensembles received great at-
tention in the applications related to data mining. For unsupervised learning, clus-
tering performance could be significantly improved by ensemble methods [75–77].
Furthermore, ensembles are employed for unsupervised anomaly detection [78].
While, for supervised learning, those systems are widely popular for regression
tasks [27, 79] and for classification tasks [9, 16].

Ensemble systems for pattern classification have been expanded in the litera-
ture under creative names as: consensus aggregation [80], stacked generalization
[81], committees of neural networks [82], mixture of experts [83, 84], classifier en-
sembles [85, 86], classifier selection [28, 87], multiple classifier systems [16, 88],
classifier fusion [89] and more. Theoretical and empirical studies prove that en-
semble systems are more accurate than any random classifier [13, 88, 90, 91]. The
final decision is the accumulative decisions of all the classifier set. Let Π denotes a
pool of T base classifiers Π = {Ψ1,Ψ2,Ψk...,ΨT} to be grouped by a combination
function. The ensemble output Ψ̂ is determined on the basis of the outputs of the
base classifiers, i.e.,

Ψ̂(x) = F (Ψ1(x),Ψ2(x), ...,ΨT (x)) (2.5)

Intuitively, any classifier ensemble is in fact a classifier (L. Kuncheva [15]).
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Each learning algorithm, Section 2.3, has a limit to discovering the hidden pat-

tern. According to Wolpert’s no free lunch theorem [92], there is no best classifier

suitable for all problems, but each model has its own area of competence giving the

design assumptions. For that, a set of learning models solving the same problem

can be consolidated to generate a better composite global model [93]. L. Kuncheva

[15] stated ”the improvement of the ensemble over the single best classifier or even

on the average of individual classifier accuracies is not guaranteed”. From our

perspective, the proper design of ensemble is conditioned by outperformance over

the best individual classifier in the group.

2.4.1 Are we pursuing complexity?

Why we accept complex systems instead of depending on a single classification

algorithm?. The answer to this question is highlighted in the following points.

- Ensemble models are the solution to deal with uncertainty. A solution from

a single classifier can be boosted and trusted by aggregating a group of pre-

dictors (wisdom of crowds [14]).

- There is no guide to design universal approximators, perfect model, i.e. it is

difficult to set up ANNs or reaching their optimistic parameters.

- Ensemble selection or pruning is an interesting research topic that aims to

reduce ensemble complexity without deterioration in the performance.

In addition, a promising solution via ensemble learning can be achieved for the

following scenarios:

• Imperfect Learning: Non-deterministic classifier can be considered as a local

optimizer in terms of the training error, a safer option is to group several

models that cover the solution space properly.

• Too much data: We are surrounded by too much data. In this case, data is

split into chunks where similar or different learning algorithms can be trained

on each part independently. Ensemble learning support parallelization and

distributed computing for handling this scenario efficiently.

• Small-size data: In data shortage, stratified sampling with replacement can

be applied, where several data replications will be obtained to train individual

classifiers inside the ensemble.
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• Data fusion: The data pattern can be identified differently based on the data

source. The availability of sensors strengthens decision making by analyzing

different features. Instead of fusing all features and building a single classi-

fier, it could be better to build a single classifier for each feature space and

combine their decisions.

• Complex hypothesis: Complex classification boundary can be approximated

by combining several base classifiers.

2.4.2 A Taxonomy of Classifier Ensemble Methods

A comprehensive review of the classifier ensemble methods, thorough discussion,

and the development of further knowledge in this area was the core of many arti-

cles [13, 28, 94–97], with a proposed taxonomy by L. Rokach [98] who indicated

the five dimensions to design this kind of powerful models. Figure 2.5 shows our

perspective for the Multiple Classifier System (MCS) taxonomy as it has been pro-

posed by L. Kuncheva [15], R. Cruz et al. [28], and L. Rokach [98]. The two main

phases in classifier ensembles are; Generation and Integration, while the selection

is an intermediate/optional phase.

2.4.2.1 Generation

The goal in this phase is to generate a pool of classifiers that are both diverse and

accurate. This phase discusses strategies to handle data horizontally/vertically. In

addition, what classifier type to accommodate, how to build the classifiers: depen-

dent/independent manner, and how many classifiers to train (ensemble pool size).

1) Diversity: Diversity is one of the main reasons for the effectiveness of en-

semble methods [18, 94]. Diversified classifiers cause uncorrelated errors, which

lead to improved classification accuracy [99]. In general, this can be achieved

through the following six wide subcategories to promote diversity during the gen-

eration phase.

- Different Parameters/Initialization: Algorithm-level diversity; via differ-

ent parameters, the base classifiers can be generated by modifying the hyper-

parameters of the learning algorithm; for example, controlling the number of
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Figure 2.5: The Taxonomy of Multiple Classifier System (MCS).
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k neighbors, distance function in KNN model, and controlling the confidence

level parameter in the decision tree. While, via different initialization and if

the training process is initialization dependent, the model will be sensitive. In

neural networks, different initial configurations of weights result in different

decisions [100].

- Different Architectures: Algorithm-level diversity; this strategy is more

suitable to multi-layer perceptron neural networks, where the number of hid-

den layers, the number of neurons, and the network topology affect the clas-

sifier domain space. For example; in the Addemup algorithm [101], the ge-

netic algorithm is used to choose the required network topology to compose

the ensemble according to a measure of diversity.

- Different Classifier types: Algorithm-level diversity; each classifier model

build its inference with a capability to discover a hidden pattern differently.

Each model, Section 2.3, contains explicit or implicit bias that leads to a

better generalization accuracy through combination. In addition, as in [102],

the divide and conquer mechanism is best implemented by calculating the

local accuracy in the feature space to choose between four different classifier

types.

- Data Partitioning: Data-level diversity; Partitioning means the division into

smaller disjoint components of the initial training. A different classifier will

be trained on each part to gain different and accurate decision [103]. This

mechanism enables data mining algorithms to handle massive datasets by

managing memory size and computational resources perfectly. The data

can be partitioned horizontally or vertically. In horizontal partitioning, sev-

eral parts will be formed; each part will contain sub-samples while sharing

the complete feature set. Sub-samples can reflect the entire dataset by se-

lecting the instances from all the formed clusters of the dataset; known as

cluster-based concurrent decomposition (CBCD) [104]. The mixture of ex-

perts (ME) [105] splits the input space into several subspaces and assign an

expert, classifier, to each subspace. In [106] a decision tree framework is

employed to divide the input space into mutual exclusive partitions, then a
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new unseen pattern will be classified by a dedicated classifier that is learned
from the space to which the instance belongs. In vertical partitioning, The
feature space is partitioned into several subsets keeping the same number of
samples, then each classifier can be trained on a different projection. This
mechanism is more suitable for a high-dimensional dataset without affec-
tion by the feature selection drawbacks [107], and the accuracy could be
improved by the less correlation among classifiers. This division results in
a high-speed classification algorithm [108], and solves the problem of class
under-representation that exist with instance-based sampling.

- Resampling: Data-level diversity; the diversity could be promoted by ma-
nipulating the training set. Each base model is trained over a different sample
from the training. Bagging [3, 109] and Boosting [5, 110] are the popular
strategies in that paradigm. Bagging ensembles achieve a reasonable diver-
sity level by creating different bootstrap samples to train each base model
independently, then the final decision is adopted by a simple majority voting-
based aggregation. Moreover, the non-sensitivity of bagging and robustness
under diverse noise conditions makes it more attractive [111]. Contrary to
sequential ensembles, Boosting, the individual members are generated in the
sequential schema by the learning algorithm [5]. The sequential mechanism
of boosting encourages the complementariness between ensemble members,
by focusing on previously misclassified samples. However, the performance
in boosting is more sensitive to noisy samples [111, 112] and sometimes
overfitting can be observed for large pool size [113].

- Differnet label targets: Data-level diversity; manipulating the target at-
tribute is very interesting mechanism to promote diversity. Instead of build-
ing complex classifier, several classifiers with usually simpler representa-
tions, about the target attribute, will be trained. For instance, to handle the
multi-class dataset, the original target attribute can be replaced by a simpler
and smaller target domain. Among those strategies, One versus all (OVA)
[114] which divides the M -class classification problem into M two-class
classification tasks. While one versus one (OVO) [115] divides the M -class
classification problem into M(M − 1)/2 two-class classification tasks, so
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the complex decision boundary can be simplified. Minimal classification

method (MCM) [116] converts the M -class classification task to the mini-

mal binary classification tasks. MCM requires log2(M) classification tasks

in the form of a separation between groups of multiple classes. Furthermore,

the error-correcting output coding (ECOC) algorithm, uses a code matrix to

decompose the multiclass problem into multiple binary problems [117]. In

addition, label switching algorithms [118, 119] change the labels of samples

picked randomly.

2) Building: This part discusses the building schema to generate a pool of

classifiers, whether to be dependent or independent. In the dependent framework

(sequential/incremental), the performance of a classifier affects the creation of the

next classifier in the chain. Instead, in the independent framework (simultaneous),

the classifiers are generated independently.

- Simultaneous: The independent methods to generate a set of classifiers

mainly depends on forming different training samples from the original train-

ing set. The training samples could be mutually exclusive (disjointed) or

overlapping. The reason behind preferring this schema is to improve the pre-

dictive accuracy or to speed up the generation step as this schema supports

parallel implementation. Bagging (Bootstrap AGGregatING) [3] is the popu-

lar method in this category, with a replacement from the original training set,

each classifier is trained on data samples. The sample size will be equivalent

to the original training size; randomly some samples will be duplicated and

some samples will be ignored.

- Incremental: Sometimes called dependent, there is a kind of interconnection

during the learning process. The model generation depends on the accuracy

of the previous model/committee. The training process is done in iterative

form, where the learning process will be directed to focus on the previously

misclassified samples. Boosting [120] (also known as arcing- Adaptive Re-

sampling and Combining) is the popular method in this category. The train-

ing process mainly depends on assigning weights to all the training samples.

In the beginning, all the samples will be equally weighted (having the same
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importance), but throughout the iterations, the weights of correctly classified
samples are lowered while the weights of misclassified samples are raised.
As a consequence, the base model is directed to focus on the hard samples in
the training set.

3) Universality: This part discusses the universality of the ensemble model.
Some ensembles techniques could be designed to work for any classifier, while
other ensembles have been designed to work with specific classifiers. In other
meaning, the relation between the ensemble technique and the used classifier type.

- Specific Inducer: Known as inducer-dependent ensembles, where the ef-
fectiveness of the ensemble could be degraded if applied for other classifier
types. For example, [100, 115] those ensembles are explicitly designed for
neural networks. Additional schemas [121] are perfectly suited for SVM.

- Any Inducer: Known as inducer-independent ensembles, Those implemen-
tations can be extended to a wide variety of classifier types without affecting
the generalization accuracy.

4) Ensemble Size: This part discusses the aspect of pool size. How many
classifiers should be trained?. The main four factors that concern the ensemble
size as determined by L. Rokach [98] are; (A) Sufficient Accuracy; the appropriate
accuracy of the ensemble could be reached by aggregating 10 models [100], while
other empirical studies show that this level of accuracy is correlated with large-size
ensembles containing 25 models [8]. (B) Computational Cost; the more classifiers
are generated the more computational resources are consumed. As a consequence,
the user may predetermine the pool size to match the computational cost limits.
(C) Nature of Task; the ensemble size could be problem-dependent, as we stated
before with the ensemble size of OVO and OVA strategies for handling multi-class
classification tasks. (D) Number of processor cores; for independent ensembles, the
number of internal cores can be the upper bound to control how many classifiers
can be trained in parallel mode.

- Fixed in Advance: This is the simple form to predetermine how many iter-
ations should be considered. Most Bagging and Boosting software packages
give the flexibility to control the number of iterations.
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- Determined during Training: The best ensemble size can be determined

during train time. The contribution of a new classifier to the ensemble per-

formance is to be checked if it is significant or not. To estimate the unbiased

error of the test sample, Random Forests uses the out-of-bag (OOB) proce-

dure. The OOB error estimation is used in [122] to determine the sufficient

number of classifiers. As the maximum accuracy no longer increases, the

training procedure stops.

2.4.2.2 Selection

There is no value from combining similar classifiers’ decisions. The effectiveness

of the ensemble is conditioned by the diversity and the correctness of the base

classifiers. Ensemble Selection is one of the strategies that can be used to handle

this challenge. Ensemble Selection has been known in the literature as ensemble

pruning [32, 123, 124], ensemble thinning [125] and ensemble reduction [30, 126].

ES can be considered as an intermediate process between building the ensemble

and aggregating the decisions. Specifically, ES is the strategy of optimizing and

selecting the number and the type of individual classifiers in-advance. Collecting

the decisions from a reduced number of models speeds up the classification sys-

tems and relieves memory storage. In the literature, the selection process can be

performed offline, static selection [34], or online, dynamic selection [28].

- Static Ensemble Selection: Known in the literature review as ensemble

pruning. This process is done during the training and before the real test. A

subset of classifiers that optimize a predefined function/metric are selected,

and the estimation of that metric is done over a pruning set. The most com-

mon metrics/selection criteria are; diversity [127, 128], classification accu-

racy [87, 129], instance margin [24, 130, 131]. However, it is not trivial to

find the optimal subset of classifiers from a large ensemble as the complexity

increases exponentially with the pool size. Researchers agreed in common

that ES is a combinatorial search problem with 2T − 1 nonempty subsets to

be evaluated from pool size, T , to find the best subset [33, 34]. To handle this

complexity, several attempts ranging from optimized search [30, 132, 133],

clustering techniques [26, 134], and greedy algorithms [23, 31, 37, 135, 136]
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have been applied over decades. More details about ordering-based pruning

will be discussed in Section 5.2.

- Dynamic Ensemble Selection: This process is done during the test time.

A single classifier or subset of classifiers are selected based on the unseen

sample. In addition, dynamic weights are assigned according to the competi-

tion among individual classifiers over the local region of an unknown sample

x. As a consequence, the selected subset is changeable for each test pattern

[137]. This process consists of three steps; (1) Definition of the local region

surrounding the query sample x, (2) Determination of the selection criteria

to estimate the competence level of the classifiers, and (3) Determination of

the selection mechanism, whether to select a single classifier or ensemble

of classifiers. Without debate, dynamic selection techniques can outperform

the static selection methods as experimentally been proved in [28] since the

selection is optimized for each test sample independently. The rationale in

dynamic selection is that each classifier is an expert in a different local region

within the feature space. However, in the dynamic selection, there is a com-

putational overhead for selecting subensemble for each test sample. Besides,

those techniques flood the memory space as all individual classifiers have to

be retained in memory. Additionally, the dynamic selection is affected by the

outlier instances around the query sample in the feature space [138].

Cluster and pick [139] is a poor variant of dynamic selection. Initially, the

input space is split into disjoint regions via clustering the training samples. The

best classifier is then defined and chosen for each cluster. Cluster and select is

in-between static and dynamic strategies; the classifiers are selected dynamically

depending on which region the input sample belongs to, but the regions are static,

determined in advance during the training [87].

2.4.2.3 Integration

Also known as the combiner function. The combiner balances the deviation be-

tween the diversity and the bias, also alleviates the errors that certain models have

made [140]. This process concerns the methodology by which the outputs of the
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base classifiers will be aggregated. A vital phase in building a group of classifiers

is the use of a suitable fusion strategy to aggregate response decisions [15, 18].

The responses of individual classifiers restrict the fusion method and enhance or

degrade the composite prediction. Those responses may be on the abstract level

[141], where each classifier specifies a class name as a decision. Additionally, the

responses may be ranked levels [142], where each classifier outputs a ranked sub-

set of class labels, or even measurement values [143, 144], where each classifier

specifies a posterior probability.

- Non-trainable: The combination function does not require any training from

the classifiers’ decision space. Many combination rules have been proposed;

for measurement values (Sum, Product, Maximum, Minimum, Median, and

Decision Templates [145]), for abstract level (Majority voting [146], Behav-

ior Knowledge Space [147], and Naive Bayes [141]), and for ranked levels

(Borda count [148]). The majority voting, Equation(2.6), will be effective

if the base classifiers are independent. While, the weighted sum rule, Equa-

tion(2.7), produces good results if the classifiers perform the same task and

have comparable success or when we would like to avoid over-fitting or long

training time [98]. The weights, wk, are calculated to be proportional to the

individuals’ performance over a validation dataset. In addition, weighted

voting is preferred for highly imbalanced datasets [143, 149].

Ψ̂(x) = arg max
c∈M

T∑
k=1

[Ψk(x) = c] (2.6)

Ψ̂(x) = arg max
c∈M

T∑
k=1

[Ψk(x) = c]wk (2.7)

- Trainable: The combination function is to be configured specifically to the

classification task. The aggregation function will be trained over a validation

dataset from the domain, base classifiers outputs, and co-domain, real at-

tribute output. For example; the classifiers’ fusion weights can be optimized

by evolutionary algorithms (EA). In [149], the authors tuned the weights
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for the selection and fusion of multiple cost-sensitive decision trees to han-

dle imbalanced data using the evolutionary genetic algorithm (GA) [150].

Each chromosome from the genetic population simulates a weighted ensem-

ble as [w1, w2, . . . , wk, . . . wT ]T , ∀wk ∈ [0, 1]. The ensemble performance is

estimated for each chromosome, and genetic operators evolve the next gen-

erations. In addition, GA has been applied in [151] to tune the weights of

heterogeneous classifiers in consideration of the above chromosome encod-

ing. While, a bird-flock based optimization algorithm has been applied in

[152, 153] to enhance the fusion process.

- Meta-classifier: Meta-learner is another important fusion mechanism. It is

a trainable method, where the aggregation function is to be learned based

on the base classifiers outputs. Stacking [154] is the most popular meta-

learning method, where the predictions from the base classifiers become

meta-features/inputs to a new classifier. The original target attribute from the

training set remains as it is. Stacking is generally used to combine hetero-

geneous models, the term refers to stacking layers of classifiers. In stacking,

the correctness of the base classifiers will be learned indirectly through the

meat-learner. In Grading [155], the predictions of base classifiers are trans-

formed into true or false. After that, one meta-classifier will be trained on

the transformed decisions of one base model to learn when it errors. There-

fore, grading can be seen as a generalization of cross-validation selection, by

using only those classifiers that correctly predict specific instances.

- Dynamic weighting: Similar to dynamic ensemble selection. The classi-

fiers’ fusion weights are determined dynamically based on the local compe-

tence of the classifier in the region where the unknown x is located. A higher

weight value is assigned to the most competent classifier [28]. For example,

dynamic integration of classifiers in [156]. In addition, the dynamic ensem-

ble selection and the dynamic ensemble weighting can be hybrid as in [137].

Finally, Figure 2.6 shows the questions that should be answered during the four

levels of constructing MCS [15].
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MCS

Combiner Level

Classifier Level

Features Level

Data Level

How to combine outputs?

How many classifiers are needed?

Do we use simultaneous or incremental training?

Do we use same or different classifiers?

What is the best classifier to use?

Do we overproduce and select?

Shall we use all the features or subset?

How to select/extract those subsets?

How to manipulate data to ensure diversity and accuracy?

Figure 2.6: Four level questions while building MCS.

2.4.3 Diversity and Uncorrelated Errors

Indeed the two basic facets of enhancing the efficacy of the committee are often

referred to as decision optimization and coverage optimization [157]. Decision op-

timization refers to methods for choosing and optimizing the combination method.

Coverage optimization refers to the techniques used to construct a diverse classi-

fier set, assuming a fixed combiner. In Section 2.4.2.1, the prospective methods to

generate diverse base models were reviewed. If a classifier makes errors on some

objects, then it is better to complement it with another classifier that compensates

that error. The ensemble performance is restricted by a compromise between an

individual’s accuracy and group diversity. Confirmed as, neither the individual’s

accuracy [158] nor the diversity [159] on their own provide reliable ensemble to

outperform the best individual classifier. Here, we agree with L. Kuncheva [15],

”good estimate can be obtained from arbitrarily inaccurate estimators as long as

their deviations cancel one another”. However, it is so difficult to engineer this

ensemble design.

There is no benefit from combining redundant classifiers, and the system will be

more complex. A large number of classifiers increase the ambiguity, risk, and add
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more complexity to the selection procedure which could lead to weak generaliza-

tion [87]. While for critical systems the useful evidence is so important and should

not be wasted. Regarding that, more attempts have been made to select classifiers

based on diversity measures. In [160], the authors used a double fault measure

to cluster classifier outputs, then they picked a single classifier from each cluster.

While in [161] a similarity measure is used to pick a classifier from a pool of five

classifiers. Many diversity measures have been presented [159, 162] with the con-

clusion that diversity guided search could be invaluable. In addition, the diversity

has been intensively used with the combiner performance [87, 128, 163] to improve

the efficiency. The system design does not end with the selection process, as the

selected classifiers should be next combined. For that, there should be a correlation

between diversity measure value and committee performance. Diversity initiatives

that represent at least some clear association trends, with generalization, have the

potential to become appropriate criteria for selection. Diversity measurement is not

a trivial task in ensemble methods.

Matti et.al [164] stated that diversity can be measured from two perspectives,

Figure 2.7, based on the population. (a) The data-based approach: we haveN pop-

ulations with T objects. The ensemble diversity of the T classifiers is calculated for

each sample xi, then the overall average is considered over N samples. Here the

diversity of all member classifiers is evaluated simultaneously (Non-Pairwise mea-

surement). (b) The classifier-based approach: in this case we have T populations

each contain N objects. The diversity is to be calculated based on the classifiers’

outputs for all input data. Each pair of classifiers are considered for measuring the

diversity, then the overall diversity is computed by averaging over the number of

pairs (Pairwise measurement).

Next, a set of popular measures are presented based on the correct/incorrect

outputs. First, the output of Ψk can be represented as N-dimensional binary vector

yk = [y1k, y2k, . . . , yNk]
T , such that yik=1, if Ψk recognizes xi correctly, and 0

otherwise, k = 1, 2, . . . , T . Moreover, the relationship between a pair of classifiers

( Ψj , Ψk ) can be represented as in Table 2.1.

39



2. BACKGROUND

T

T

i=1

i=1

k=

k=

Figure 2.7: Diversity measure approaches for MCS: (a) data-based, and (b) classifier-
based, taken from [164].

Table 2.1: 2 × 2 table of the relationship between a pair of classifiers.

Ψk correct (1) Ψk wrong (0) .
Ψj correct (1) N11 N10

Ψj wrong (0) N01 N00

Total, N = N00 +N01 +N10 +N11

2.4.3.1 Pairwise diversity measures

1. The Q statistics : Is a various statistic measure to measure the similarity of
two classifier outputs. The Q statistics for two classifiers, Ψj and Ψk is:
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Qj,k =
N11N00 −N01N10

N11N00 +N01N10
(2.8)

Symbols are explained in Table 2.1. Q varies between -1 and 1. Classifiers

that agree on the same objects will have positive Q values, and those that

make mistakes on different objects will have negative Q values. The averaged

statics over all pairs of classifiers is:

Qavg =
2

T (T − 1)

T−1∑
j=1

T∑
k=j+1

Qj,k (2.9)

2. The correlation coefficient ρ : The correlation between two binary classifier

outputs can be calculated as:

ρj,k =
N11N00 −N01N10√

(N11 +N10)(N01 +N00)(N11 +N01)(N10 +N00)
(2.10)

For any two classifiers, Q and ρ have the same sign, and it can be proved that

|ρ| ≤ |Q|.

3. The disagreement measure : This measure has been used by HO [165] to

measure the diversity in decision forests. It is the ratio between the number

of samples on which one classifier disagree with another, to the total number

of samples.

Disj,k =
N01 +N10

N11 +N10 +N01 +N00
(2.11)

4. The double-fault measure : It is defined as the proportion of samples on

which both classifiers makes error, i.e.,

DFj,k =
N00

N11 +N10 +N01 +N00
(2.12)

For all pairwise measures, the averaged values are calculated similarly to

Equation (2.9).
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2.4.3.2 Non-Pairwise diversity measures

1. The entropy measure E : The highest diversity among classifiers for a par-

ticular xi ∈ X is proved by bT/2c of the votes for xi with the same value

(0 or 1) and the other T − bT/2c with the alternative value. If all decisions

are 0’s or all are 1’s, then there is no diverse. Denote by t(xi) the number of

classifiers that correctly classify xi, i.e, t(xi)=
∑T

k=1 Ψik. On the basis of this

concept, the diversity can be measured as:

E =
1

N

N∑
i=1

1

(T − dT/2e)
min{t(xi), T − t(xi)} (2.13)

E ranges between 0 and 1, where 0 implies no difference, whereas high

diversity is measured by 1.

2. Kohavi-Wolpert variance : It measures the average variance between the bi-

nomial distributions of the outputs of each classifier. This measure can be

simply calculated by :

KW =
1

NT 2

N∑
i=1

t(xi)(T − t(xi)) (2.14)

3. Measurement of interrater agreement κ : It is used to measure the level of

agreement while correcting the chance. let’s denote p̄ as the average individ-

ual classification accuracy, i.e.,

p̄ =
1

NT

N∑
i=1

T∑
k=1

Ψik (2.15)

then, the interrater agreement could be formulated as:

κ = 1−
∑N

i=1 t(xi)(T − t(xi))
NT (T − 1)p̄(1− p̄)

(2.16)
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2.4.3.3 Uncorrelated Errors

Standard diversity measures do not take into account that for classification pur-

poses, identical correct decisions are preferred over identical erroneous decisions.

It may be useful to analyze, in particular, the errors made by committee members.

In this case, we will focus on the error types and whether this error occurs or not

by the base models. If two classifiers incorrectly classify a sample into two sepa-

rate categories, then this case is known as uncorrelated errors/diversity of errors,

as the predicted class is not the same despite the fact that both make mistake. The

most difficult samples are the cases where all classifiers agree to the same incorrect

class. Diversity measures that capture the type of error are initiatives and powerful

as they can solve the following challenges:

- There are a few correct recognition results in most recognition tasks, while

it is hard for the combination function to predict the correct output from this

whole set of incorrect predictions. This can be solved by knowing the class

of error.

- Classifiers that agree on the correct outcome should be credited rather than

eliminated when selecting classifiers, however, this is conflicting with the

principle of diversity maximization.

Naturally, It is best if all classifiers make a correct prediction and it is better if we

have fewer classifiers make a mistake. Even, for those mistakes, it is exceedingly

helpful if the errors are different as often as possible, i.e. maximum diverse errors.

Hence, the oracle-level (binary) classifier outputs should be interconnected with

the predicted class category to identify the diversity of errors.

As stated in the introduction of this part, the difference in the mistakes made

by the member classifiers really affects the performance. Given the following nota-

tions; N00
same indicates the number of samples when both classifiers are inaccurate

and suggest the same decision. N00
diff stands for the number of samples when both

classifiers are incorrect, but suggest different decisions. Next, let’s present metrics

[164] that could be used to measure the diversity of errors:

1. Same-fault measure : In an extension of the Double-Fault measure, the si-

multaneous fault could be restricted to measure when both classifiers are
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inaccurate and suggest the same output. This can be measured for two clas-
sifiers Ψj and Ψk as:

SFj,k =
N00
same

N11 +N10 +N01 +N00
(2.17)

Then the averaged pairwise measures could be calculated similarly to Equa-
tion (2.9). The optimal classifier set is picked based on the minimum mea-
sure.

2. Weighted count of errors and correct results: It is designed to consider infor-
mation about correct prediction. The number of samples that match specific
cases can be weighted; based on classifier outputs, ”both correct” is favor-
able and classifiers of this type are highly selected via increasing the weights.
While ”both incorrect and same” are highly penalized by assigning high neg-
ative weight, this can be defined for two classifiers Ψj and Ψk as:

WCECj,k = N11 +
1

2
(N10 +N01)−N00

diff − 5N00
same (2.18)

Moreover, based on the combiner’s performance over the training set, the
weights above could be optimized. The averaged pairwise measures are cal-
culated similarly to Equation (2.9), and the optimal classifier set is picked
based on the maximum measure.

3. Exponential error count : As more errors are encountered the classifier ca-
pability will be hindered. Here, this concept is emphasized by counting the
number of errors and assigning a weight in an exponential fashion. Assume
Ψk×0
same denote the number of errors made by k classifiers to the same class,

then the measure can be defined as:

EEC(Ψ1,...,ΨT ) =

∑T
k=1(Ψk×0

same)
k

NT×1 + 1
(2.19)

This measure considers all classifiers set. In addition, the correct classifica-
tion is considered by scaling the exponential sum with NT×1 (the number of
samples for which every member classifier was correct). The optimal classi-
fier set is picked based on the minimum measure.
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2.5 Soft Computing
Soft computing is one of the pioneer computing paradigms which resembles the hu-

man mind’s remarkable capacity to think, understand, and solve difficult real-life

problems [166, 167]. Soft computing exploits the tolerance for imprecision, partial

truth, and uncertainty to achieve robustness, tractability, low solution cost, and very

high-performance [168]. Modern machinery is more complex to be controlled and

stabilized. The reasons for this difficulty is the lack of numerical models that de-

scribe exactly how they work, and the existence of many nonlinear and time-variant

plants. Soft computing methods support intelligent control, nonlinear program-

ming, optimization, and decision making support. Among those methods; fuzzy

logic, genetic algorithms, artificial neural network. Soft computing has become

popular with their wide applications to many research fields as speech recognition,

communication, pattern recognition, signal processing, automatic control engineer-

ing. In their connectivity with the area of MCS, we present several soft computing

methods that have been used to improve efficiency:

Fuzzy Logic: In domains and environments that are realistic, incomplete ev-

idence inevitably emerges. During experiments, noise corruption or instrument

errors may give rise to data when a certain value is measured, leading to incom-

plete data. In other scenarios, collecting the correct information can be excessively

costly or unviable. In addition, using extra information from an expert, which is

usually given by fuzzy logic and fuzzy sets, can be useful. Typically, data has a

certain degree of vagueness. If the imprecision is significant, then the imprecise

values must be handled in all the phases of learning and classification. To address

the uncertainty of decision trees with minor disruptions, fuzzy sets and their un-

derlying approximate reasoning capacities have been paired with decision trees in

[169, 170]. The resulting trees exhibit increased tolerance to noise, and extend

applicability to ambiguous or unclear circumstances. In [171], a fuzzy random for-

est was suggested to increase the diversity of the trees through randomness, with

the versatility of handling incomplete data. The numeric attributes are discretized

through a fuzzy partition, so each internal node in the fuzzy decision tree constructs

a child node for each fuzzy set of the partition. Then the membership degree of the

examples to different fuzzy sets is determined to optimize the node-split attribute.
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In addition, a fuzzy combination method for one-class classifiers has been proposed

in [172].

Evolutionary Algorithms: Evolutionary algorithms uses mechanisms inspired

by biological evolution, such as reproduction, mutation, recombination, and selec-

tion to solve complex problems. For example, genetic algorithm (GA) [173] emu-

lates the natural and human evolution, where common genes from parents can be

transferred to their children. GA evolves an initial population of chromosomes;

each chromosome represents one solution in the search space. The algorithm de-

pends on applying crossover and mutation operators to explore and exploit different

regions from the search space, which probably contains promising solutions. The

process continues for a specific number of generations or till reaching threshold

error or if the algorithm is trapped in a local minimum without the ability to find

more accurate solutions. Ensemble systems are very complex architectures that

need to be optimized. GA has been applied in [87] to control the ensemble size

(classifier subset selection) via optimizing several criterias. While in [151] GA has

been considered as a trainable combiner to tune the classifiers’ weights for the fu-

sion process. Furthermore, Kuncheva et al. [174] applied two versions of GA for

selecting feature subsets to be used by base models. While tsymbal et al. [175]

applied GA to optimize the diversity of the best-collected feature subsets.

Artificial Neural Networks: Neural networks were proved to be universal ap-

proximators with unlimited flexibility. In any number of dimensions, they could

approximate any classification boundary. However, this capability comes at a price.

There is a need to train large systems with a huge number of parameters. Then, an

acceptable architecture with the tuned parameters will be trusted for all future clas-

sifications. In the face of several local minima, all global optimization methods

yield ”optimal” parameters (w) that differ significantly from one run of the algo-

rithm to the next. This reveals a great deal of randomness arising from various

initial weights (w0) and various sequencing of training examples. This random-

ness appears to distinguish between network errors. The final weights correspond

to various ways of identifying the training pattern. Hence, the collective decision

created by several ANNs may, therefore, be much less fallible than any network.

In [176], the ANNs in the form of base classifiers were generated to form bagging

and boosting ensembles to predict the bankruptcy. While in [177] a convolutional

46



2.5 Soft Computing

neural network is linked to a shallow neural network to classify arrhythmia in a
Holter ECG signal.

Swarm Intelligence: SI algorithms are defined as ”nature-inspired algorithms

that concern the collective, emerging behavior of multiple, interacting agents that

follow some simple rules” [178]. These algorithms mimic the social behavior of
swarms/groups of creatures in nature. In [179], the authors discussed the benefits
of SI over evolutionary algorithms. Most SI methods consider exploration and ex-
ploitation in their working mechanisms [180]. The popularity of those algorithms
returns to; the simplicity of inspiration, flexibility, derivative-free mechanism, and
local optimum avoidance [179]. Firefly algorithm has been applied in [181] to
combine the ensemble pruning with a weighted classifier fusion module. In addi-
tion, the Ant colony algorithm has been incorporated to optimize the decision forest
[182] to provide self-adaptability with the classification task. Recent SI algorithms
will be discussed in Sections 4.3.5, 4.3.6, and 4.3.7.
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Nothing in life is to be feared, it is
only to be understood. Now is the
time to understand more, so that we
may fear less.

Marie Curie CHAPTER

3
State-of-the-art

The number of ensemble-based proposals has risen gradually. However, there
is no single ensemble technique that could solve all problems, as each problem has
its own characteristics [94]. Ensemble-based proposals are among the state-of-art
techniques for the plurality of supervised learning tasks [18, 91]. As it was stated
in Section 2.4.2, most ensemble algorithms differ in terms of combination function,
kind of individual classifier, learning schema, and diversity promotion methodol-
ogy. However, bagging [3] and boosting [110] ensembles are the most popular
techniques with great attention from the machine learning researchers. The con-
cept of ensemble-based learning has been published in many reviews and studies
[14, 94, 183, 184]. In this chapter, popular, recent, effective ensemble-based classi-
fier learning algorithms are reviewed. In Section 3.1, renowned bagging ensemble
methods are revised. Next, a review of boosting ensembles is to be presented in
Section 3.2. While the gradient boosting ensembles with their characteristics are
presented in Section 3.3. The revision of those methods includes innovation, de-
tailed description, and diversity promotion methodology. Following that, a sum-
mary of those algorithms in the form of a comparison table, and the available en-
semble tools and software packages are shown in Section 3.4. Furthermore, the
importance of metaheuristics for improving the efficiency and efficacy of MCS
will be discussed in Section 3.5. Finally, Section 3.6 closes this chapter with the
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identified remarks and gaps, upon which the research path of the next chapters was
followed.

let’s assume T to represent the ensemble size, k denote the current iteration.
Therefore, Ψk means the estimator/classifier trained in iteration k, εk denotes the
error made by the estimator during the iteration k. While wi stands for the weight
assigned to the training sample xi by boosting methods.

3.1 Bagging-Like Ensembles
Firstly, let’s focus on the original bagging algorithm and the bagging-like tech-
niques, which train their base learners independently. Ensembles in this category
use data transformations to promote diversity. The main purpose is to explain the
algorithmic details, limitations, and improvements.

3.1.1 Bagging
Bagging [3] is one of the earliest techniques for creating an ensemble of classifiers.
The pseudocode of bagging is shown in Algorithm 1. In bagging each classifier
Ψk is to be trained independently. A bootstrap dataset Dk is derived from the
initial training data via resampling with replacement. Approximately 1/3 of the
samples are excluded from the training of each classifier. These samples are called
¨out-of-bag¨ (OOB); each classifier has a different set of OOB. The OOB samples
comprise the independent test set for evaluating each Ψk. The final decision is
made according to the majority voting if the outputs are labels, or by averaging if
the outputs are measurement values. Bagging is particularly appealing when we
have limited-size training data. Unstable base learners are preferred with bagging,
as they are sensitive to diversity from the small perturbations in different training
sets.

3.1.2 Forest-Like Ensembles
This section makes a review of the most used ensembles based on trees. Decision
forest [183] seeks to enhance the predictivity of a single decision tree via training
and integrating multiple trees. This part discusses how the decision forest can be
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Algorithm 1: The pseudocode of Bagging.
Input : D = {xi, yi}Ni=1 - training set, T - pool size, B - percent of

bootstrap, Train Classifier() - method of classifier training.
Output: (Ψ1, . . . ,ΨT ) /* Ensemble of classifiers */

begin
Train: for k ← 1 to T do

Dk =Perform bootstrap replica by drawing B percent of D;
Ψk = Train Classifier (Dk);
Add the classifier Ψk to the ensemble pool;

Test: Evaluate all the classifiers {Ψ1, . . . ,ΨT} for the unknown sample x;
Select the final class via the majority vote rule as:

Ψ̂(x) = arg max
c∈M

T∑
k=1

[Ψk(x) = c] (3.1)

created. An analysis of 121 datasets, 179 classification algorithms originating from

17 learning families, concluded that decision forests appear to outperform other

learning approaches [91].

3.1.2.1 Random Forest

Random Forest (RF) [4], due to its simplicity and performance, is one of the most

common ensembles. It is a variant of the bagging algorithm, with similar base

classifiers of decision tree type. Each tree has certain training parameters that vary

randomly. Such parameters can be the bootstrap replicas, as in bagging. In ad-

dition, those parameters could contain the maximum number of features f to be

considered by each tree node for splitting. The size of f is a significant design

parameter, it is recommended to be the square root of the number of attributes. As

a result, certain attributes (including the best) might not be used for each split, but

an attribute omitted from one split may be used for other splits in the same tree.

The trees are grown without pruning to the maximum depth. The pseudocode of

RF is shown in Algorithm 2.
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Algorithm 2: The pseudocode of Random Forest.
Input : D = {xi, yi}Ni=1 - training set, T - pool size, B - percent of

bootstrap, f - maximum sub-features for splitting, Fit tree() -
method of classifier training.

Output: (Ψ1, . . . ,ΨT ) /* Ensemble of classifiers */

begin
Train: for k ← 1 to T do

Dk =Perform bootstrap replica by drawing B percent of D;
Ψk = Fit tree(Dk, f);
function Fit tree(Dk, f ){

for !Stop Split() do
a1, . . . , am = Pick Random Attributes(f);
for aj in a1, . . . , am do

sj = Pick Best Split(Dk, aj);

a, s = arg maxj Score(Dk, aj, sj);
Split Tree (Dk, a, s);

Add the classifier Ψk to the ensemble pool;

Test: Evaluate all the classifiers {Ψ1, . . . ,ΨT} for the unknown sample x;
Choose the class via the majority vote rule, as in Eq. (3.1);

3.1.2.2 Extra-Trees

Extra-Trees (ET) [185] is a tree-based randomized ensemble. The splitting for each

tree is randomly selected to promote the diversity. Similar to RF, at each node only

a random subset of the features f is considered for splitting. However, in contrast

to RF, random thresholds for each feature are used rather than searching for the best

possible thresholds. Then in terms of impurity calculation, the best cut is chosen

from those randomly selected [94]. This random splitting is the only cause of

diversity promotion, but it is adequate to reduce the model’s variance. The second

difference from RF, is that ET uses the original and the complete dataset to train

each individual decision tree. Trees are extended to the fullest degree possible, and

the final decision is given by the majority voting of base individuals. Extra-trees
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are much faster to train than regular Random Forest. In addition, ET could employ

bootstrapping for training. The pseudocode of ET is shown in Algorithm 3.

Algorithm 3: The pseudocode of Extra-Trees.
Input : D = {xi, yi}Ni=1 - training set, T - pool size, f - maximum

sub-features for splitting, Fit Extra tree() - method of classifier
training.

Output: (Ψ1, . . . ,ΨT ) /* Ensemble of classifiers */

begin
Train: for k ← 1 to T do

Ψk = Fit Extra tree (D̂, f, pruning = False);
function Fit Extra tree(D̂, f ){

for !Stop Split() do
a1, . . . , am = Pick Random Attributes(f);
for aj in a1, . . . , am do

sj = Pick Random Split(D̂, aj);

a, s = arg maxj Score(D̂, aj, sj);
Split Tree (D̂, a, s);

Add the classifier Ψk to the ensemble pool;

Test: Evaluate all the classifiers {Ψ1, . . . ,ΨT} for the unknown sample x;
Choose the class via the majority vote rule, as in Eq. (3.1);

3.1.2.3 Random Patches

Random Patches (RP) [186] are known as Random Subspace generalization. By

training the base models with different data patches, diversity can be promoted. A

random patch is captured from the training data in terms of samples (ps ∗ N ) and

features (pf ∗ d) to train each base model independently. Where ps and pf are the

percentages of samples and features, respectively. The pseudocode of RP is shown

in Algorithm 4. For the base learner, RP is not inherently limited to the decision

tree, even though decision trees or extra-trees are preferred. Without replacement,

53



3. STATE-OF-THE-ART

the samples of each training subset are selected. Finally, in contrast to RF, the

subset of features is chosen globally in advance before the training of each model.

Algorithm 4: The pseudocode of Random Patches.
Input : D = {xi, yi}Ni=1 - training set, T - pool size, ps - percentage of

considered samples, pf - percentage of considered features,
Fit Estimator() - method of classifier training.

Output: (Ψ1, . . . ,ΨT ) /* Ensemble of classifiers */

begin
Train: for k ← 1 to T do

Dk = Sampler (D, ps ∗N, pf ∗ d);
Ψk = Fit Estimator (Dk);
Add the classifier Ψk to the ensemble pool;

Test: Evaluate all the classifiers {Ψ1, . . . ,ΨT} for the unknown sample x;
Choose the class via the majority vote rule, as in Eq. (3.1);

3.1.3 Rotation Feature Space Ensembles

This section reviews the ensembles based on feature space rotations. The concept

of the rotation strategy is to promote individual precision and diversity within the

ensemble simultaneously. A new extracted feature set is generated to train the

base models. The decision tree is generally used as a base classifier because it is

sensitive to the features that have been rotated.

3.1.3.1 Rotation Forest

Rotation Forest (RotF) [86] is a bagging-like ensemble that trains independent base

classifiers. The variability of the ensemble comes from; data sampling, and feature

extraction techniques. The pseudocode of RotF is shown in Algorithm 5. To force

more variance, the feature space X is split into Fmax disjoint parts. For each feature

subset Fj , select a nonempty subset of classes randomly and then draw bootstrap

samples with 75% of the data count, to form Dk,j dataset as summarized in Algo-

rithm 5. Then, the feature extraction is applied to each data part, Dk,j , individually
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via principal component analysis (PCA) [187]. When all the coefficients of the
PCA are returned, they are rearranged in a rotation matrix Ra

k, to be compatible
with the original features [86]. Due to its sensitivity to feature rotation, a decision
tree is used as a base classifier. Finally, the class with the highest probability will
be the final ensemble decision.

Algorithm 5: The pseudocode of Rotation Forest.
Input : D = {xi, yi}Ni=1 - training set, T - pool size, B - percent of

bootstrap, Fmax - number of disjoint feature subsets, Fit Tree() -
method of classifier training.

Output: (Ψ1, . . . ,ΨT ) /* Ensemble of classifiers */

begin
Train: for k ← 1 to T do

F1, . . . , Fmax = Split Features (X, Fmax);
for j in [1,max] do

Dk,j = Filter Features(D,Fj);
Dk,j = Randomly Select Classes(Dk,j);
Dk,j = Bootstrap Sampler(Dk,j, B = 75%);

a
(1)
k,j, a

(2)
k,j, . . . , a

(X(d))
k,j = PCA(Dk,j);

Ra
k = Construct Rotation Matrix();

Ψk = Fit Tree (DRa
k);

Add the classifier Ψk to the ensemble pool;

Test: Evaluate all the classifiers {Ψ1, . . . ,ΨT} for the unknown sample x;
Choose the class that receives the highest probability via Eq. (3.2);

Ψ̂(x) = arg max
c∈M

T∑
k=1

[
Ψk,c(xRa

k)

T

]
(3.2)

3.1.3.2 Random Rotation Ensembles

Random Rotation (RR) [188] ensembles are designed to provide well-known en-
sembles with more diversity without limiting the precision of the individual classi-
fier. Usually, a decision tree is used as a base classifier. The pseudocode of RR is
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shown in Algorithm 6. The methodology depends on constructing rotation matri-

ces R that should be an orthogonal square matrix with d × d real values, given d

to be the original number of features we have. Matrix A is to be drawn randomly

to contain d2 independent values. Then, the matrix A is factorized by Householder

QR decomposition, with the restriction to make the unit determinant (|R| = 1).

Once we obtain R, it is multiplied by the original dataset to get a rotated dataset

where the decision tree could be trained. The diversity is promoted by the random

rotations of the features with their implication to improve the individual’s accuracy.

Algorithm 6: The pseudocode of Random Rotation Ensembles.
Input : D = {xi, yi}Ni=1 - training set, T - pool size, Fit Tree() - method

of classifier training.
Output: (Ψ1, . . . ,ΨT ) /* Ensemble of classifiers */

begin
Train: for k ← 1 to T do

D = Variable Scaling (D);
A = Random Matrix(d× d);
Q,R = Householder Decomposition(A);
Rk = Q * Diag(Sign(Diag(R)));
if |Rk| < 0 then

Rk[, 0] = −Rk[, 0];
Ψk = Fit Tree (DRk);
Add the classifier Ψk to the ensemble pool;

Test: Evaluate all the classifiers {Ψ1, . . . ,ΨT} for the unknown sample x;
Choose the class via the majority vote rule as in Eq. (3.1);

3.2 Boosting Ensembles
In this part, we describe ensemble techniques that generate a dependent/iterative

pool of classifiers. The training of each classifier in the chain is controlled by

the ability of the previous item(s) to classify samples. They are called ”boost-

ing” because Schapire [189] proved that the performance of a weak learner can be
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boosted to be a strong one. Those techniques received more development, with a

widespread in the area of machine learning.

3.2.1 AdaBoost

AdaBoost [5] is an algorithm that is rarely matched in computational intelligence.

The ensemble is formed by adding one classifier at a time. The classifier that joins

the ensemble at step k is trained on a dataset selectively sampled from the origi-

nal dataset. In the beginning, all the samples are equally weighted meaning that

all of them are important. By increasing the value of k, the likelihood of mis-

classified samples is increased, so that they can be correctly classified in the next

iteration(s). Hence, the most informative training data is provided for each con-

secutive learning model. The AdaBoost variants are determined based on how the

weights wi are calculated for each xi. The final decision for unknown sample x is

determined by a weighted majority voting. In Algorithm 7, a multi-class variant

called AdaBoost.M1 is introduced. From the algorithm, the classifier’s prediction

is weighted by αk determined from its precision. In addition, the weights of the

correctly classified samples are lowered and this reduction is always measured in

reference to the classifier’s error. The algorithm assumes the error of each clas-

sifier to be less than 0.5 (εk < 0.5 ), otherwise the correctly classified samples

will receive a higher weight than the misclassified ones. The upper limitation of

εk to 0.5 is possible, however in this case the instance weight keeps unchanged.

AdaBoost.M2 [5] is an extension to adjust the weights by considering the probabil-

ities provided by the base classifiers for all classes. Stagewise Additive Modeling

(SAMME) [190] is another AdaBoost extension, with the aim to elevate the restric-

tion εk < 0.5 by summing the term log (M − 1) to the calculation of αk, where M

is the number of classes. In this case, the performance of each classifier needs to

be > 1/M instead of > 1/2.

3.2.2 LogitBoost

LogitBoost (LB) [191] uses boosting schema to fit an additive logistic regression.

This methodology can be seen as a greedy tool for improving the generalization of
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Algorithm 7: The pseudocode of AdaBoost.M1.
Input : D = {xi, yi}Ni=1 - training set, T - pool size, Fit Estimator() -

method of classifier training.
Output: (Ψ1, . . . ,ΨT ) /* Ensemble of classifiers */

begin
Initialize instance weight (wi = 1/N );
Train: for k ← 1 to T do

Ψk = Fit Estimator (D,w);
εk =

∑
xi∈D|Ψk(xi)6=yi wi/

∑
xi wi;

αk = log (1−εk
εk

);

for xi in D do
if Ψk(xi) = yi then

wi = wi.
εk

1−εk
;

Normalize (w);
Add the classifier Ψk to the ensemble pool;

Test: Evaluate all the classifiers {Ψ1, . . . ,ΨT} for the unknown sample x;
Choose the class via the weighted majority vote rule, as in Eq. (3.3);

Ψ̂(x) = arg max
c∈M

T∑
k=1

[Ψk(x) = c]αk (3.3)

logistic regression. The class probability Pc(xi) can be calculated as in Equation

(3.4), where Ψ̂c(xi) is the aggregated regression function of class c.

Pc(xi) =
eΨ̂c(xi)∑M
c=1 e

Ψ̂c(xi)
(3.4)

The pseudocode of LB is shown in Algorithm 8. Initially, all the class probabil-

ities of the training samples are equal to (1/M). WhereM is the number of classes.

For each iteration k, and for each class, a regression model Ψk,c is independently

trained. The weight wi,c and the response zi,c of each sample xi are updated in

relation to the probabilities Pc(xi) for each class c. Only the values zi,c are com-

puted based on both: the yi and the probability of the class Pc. Then, a weighted
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Algorithm 8: The pseudocode of LogitBoost.
Input : D = {xi, yi}Ni=1 - training set, Fit Weighted Regression() -

method of classifier training, T - pool size.
Output: {Ψ̂1(x), Ψ̂c(x) . . . , Ψ̂M(x)} /* Aggregated regression

functions of classes */

begin
Initialize instance weight (wi = 1/N );
Initialize class probabilities Pc(xi) = 1/M ;
Train: for k ← 1 to T do

for c← 1 to M do
for xi in D do

wi,c = Pc(xi)(1− Pc(xi));
if yi = c then

zi,c = 1/Pc(xi);
else

zi,c = −1/(1− Pc(xi))

Ψk,c(x) = Fit Weighted Regression (D, zc, wc);

Ψk,c(x) = M−1
M

(Ψk,c(x)− 1
M

∑M
j=1 Ψj,c(x));

Ψ̂c(x) = Ψ̂k−1,c(x) + Ψk,c(x);
Update probability Pc(xi) via Eq. (3.4);

Test:
For the unknown x, get all class probabilities {Ψ̂1(x), Ψ̂c(x) . . . , Ψ̂M(x)};

Return the class with the highest score as in Eq. (3.5);

Ψ̂(x) = arg max
c∈M

Ψ̂c(x) (3.5)

regression tree Ψk,c is fitted with the training samples (xi, zi,c) and their weights

wi,c. Once all the models Ψk,c have been trained, they are included in the additive

model Ψ̂c of their corresponding class c. Unlike AdaBoost, for the full ensemble

assembled so far and not only with the last trained model, the class probabilities

are estimated to update the weights.
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3.3 Gradient Boosting Ensembles
This part discusses the powerful machine learning techniques that have received

great interest from researchers recently. Those techniques proved their efficiency

with complex datasets. Their power comes from the iterative generation and the

combination of base models via a greedy procedure. The gradient descent in the

function space optimizes the appended classifier with the aim to minimize the given

loss function.

3.3.1 Gradient Boosting Machine

Gradient Boosting Machine (GBM) [192] is one of the most renowned algorithms

that has inspired the design of several gradient boosting-based ensembles. GBM is

a stagewise strategy by which the newly added model is optimized to minimize the

given loss function. Via the gradient descent minimization, the parameters ak of a

regression tree are tuned; splitting variables, split locations, and the terminal node.

Then, the resultant decision tree is added to the pool with an optimized weight of

αk. This weight measures the contribution of the new tree, allowing the algorithm

to increase its precision steadily and gradually. The general additive model could

be viewed as in Equation (3.6). Where Ψ(x; ak) is the weak learner that gives the

best steepest-descent step direction, −gk = {−gk(xi)}N1 in the N-dimensional data

space at Ψ̂k−1(x). From Equation (3.7) this is calculated to minimize some speci-

fied loss function L(Yi, F (xi)). Then the best parameters of a regression tree ak can

be estimated to be most highly correlated with −gk over the data distribution, as in

Equation (3.8). After tuning the parameters of the tree, a line search is performed

via Equation (3.9) to seek the best weight for the added model. The pseudocode

of GBM is shown in Algorithm 9. GBM is adaptable to any regression or classifi-

cation problem described with a derivable loss function. GBM estimates negative

binomial log-likelihood loss criteria for binary tasks and multinomial loss criteria

for multiclass tasks.

Ψ̂k(x) = Ψ̂k−1(x) + αkΨ(x; ak) (3.6)
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− gk(xi) = −

[
∂L(Yi, F (xi))

∂F (xi)

]
F (x)=Ψ̂k−1(x)

(3.7)

ak = arg min
a,α

N∑
i=1

[
− gk(xi)− αΨ(xi; a)

]2

(3.8)

αααk = arg min
α

N∑
i=1

L(Yi, Ψ̂k−1(xi) + αΨ(xi; ak)) (3.9)

Algorithm 9: The pseudocode of Gradient Boosting Machine.
Input : D = {xi, yi}Ni=1 - training set, T - pool size, L(Y, F (x)) - loss

function, α - weight/learning rate.
Output: {Ψ̂T} /* Additive ensemble */

begin
Initialize: F0(x) = arg min

ρ

∑N
i=1 L(Yi, ρ);

for k ← 1 to T do
Calculate the steepest-descent gk for the past Ψ̂k−1 via Eq. (3.7);
Tune parameters ak by least squares minimization via Eq. (3.8);
Perform line search for αααk via Eq. (3.9);
Add the classifier Ψk to the ensemble pool;

Test: Evaluate all the classifiers {Ψ1, . . . ,ΨT} for the unknown sample x;
The final decision is the aggregation via Eq. (3.6);

3.3.2 XGBoost: eXtreme Gradient Boosting
XGBoost [193] is one of the most popular gradient boosting-based ensembles. In
a variety of machine learning competitions, it has been commonly accepted with
a scoring mark at the top. The algorithmic design considers the computing and
memory capacities; to obtain a scalable, high speed, and accurate tree boosting
system. XGBoost extends its use to all real-world problems due to its capability
to prevent over-fitting. To handle over-fitting, two additional techniques are used;
the first technique is shrinkage [194], to reduce the effect of each tree and to leave
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space for future trees to improve the model. The second technique is to use the

traditional row and/or column sub-sampling(s). The following features have been

incorporated to improve the traditional GBM [192]:

- Regularized Learning Objective: The difference between the estimation Ŷi

and the target Yi is determined by a differentiable convex loss function. In

addition, a regularized term Ω is added to penalize the complexity of the

model, and to smooth the final learned weights, Equation (3.10).

L =
∑
i=1

L(Yi, Ŷi) +
∑
k

Ω(Ψk),where Ω(Ψk) = γL+
1

2
λ

L∑
j

w2
j (3.10)

Where Ψk is the additive regression tree to be learned with number of leaves

L, regularization parameter λ to reduce the sensitivity to training data, and

the parameter γ which works as a threshold of the score function improve-

ment. Each tree has a different structure that maps an instance to the corre-

sponding leaf index j. With the inclusion of a new tree, XGBoost is greedily

trained via minimizing the objective function, Equation (3.11).

Objk =
∑
i=1

L
(
Yi, Ψ̂k−1(xi) + Ψk(xi)

)
+ Ω(Ψk) (3.11)

The authors derived the formulation of the optimal score weight w∗j of the

leaf j for specific tree structure as in Equation (3.12).

w∗j = −
∑

i∈Ij gi∑
i∈Ij hi + λ

(3.12)

Where gi = ∂Ψ̂k−1(xi)L(Y, Ψ̂k−1(xi)) and hi = ∂2
Ψ̂k−1(xi)

L(Y, Ψ̂k−1(xi)) are

the first and the second order gradient values on the loss function. Further-

more, Ij reflects the samples allocated to the j leaf.

- Approximate split finding, parallel tree learning, and out-of-core computa-

tion are among other features that enhance the efficiency of XGBoost [193].
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3.3.3 LightGBM: Light Gradient Boosting Machine
LightGBM [195] is a gradient boosting decision tree ensemble, aimed at speeding

up the learning process via adapting mechanisms for data reduction. The classi-

cal GBM becomes inefficient when the feature dimension is high and the data size

is big. A major reason is that for each feature and all possible splitting points,

the information gain is to be estimated for all the data instances. Therefore, the

computational complexity will be proportional to both; the number of features and

the number of instances. Two new techniques were proposed to resolve this is-

sue: Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling

(EFB).

GOSS is a method of under-sampling driven by the training set’s gradients.

There is a minimum training error in the samples correlated with small gradients,

and they are already well-trained. Therefore, those samples with small gradients

can be discarded without affecting the accuracy. GOSS preserves a% of samples

with the largest gradients, then samples b% from the remainder of the results ran-

domly. After that, GOSS amplifies the sampled data with a small gradient by a

constant 1−a
b

when calculating the information gain. Doing that, the algorithm fo-

cuses more to train large gradient-samples while compensating for the influence of

data distribution. In addition, the sampling strategy could improve the diversity of

the decision tree, which could boost overall precision.

EFB is a strategy for handling high-dimensional feature spaces. The features

are quite sparse, many features are exclusive, i.e., never take nonzero values simul-

taneously. Therefore, the most exclusive features are bundled while reducing the

inside bundle conflict. Regarding that, the unnecessary computation for zero fea-

ture value can be avoided to improve efficiency. However, the problem of grouping

features into the smallest number of exclusive bundles is NP-hard. The authors

accommodated the graph coloring problem to match that challenge.

3.3.4 CatBoost: Gradient Boosting with Categorical features
CatBoost [196, 197] is the most recent GBM-based ensemble. CatBoost has the

capability to support categorical features and to avoid prediction shift. Instead of

handling the categorical features in a preprocessing stage, they are manipulated
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during the tree splitting. For low-cardinality categorical features, CatBoost applies

one-hot encoding. Categorical features are transformed into numerical in relation

to the number of appearances of the categories.

CatBoost implements an effective approach that eliminates overfitting and en-

courages the whole dataset to be used. For that, a random permutation is performed

for the dataset, then the average label value for each sample is computed based on

the sample with the same category value placed before the given one. The trans-

formation of features may contribute to the loss of knowledge in the interactions

between categorical features. Therefore, CatBoost considers greedy combinations

of features in the current state of the tree with the rest of the categorical features.

Classical boosting algorithms suffer from prediction shift and overfitting since

gradients are estimated over the same samples used to build the model. CatBoost

considers the unbiased estimation of the gradient to alleviate that challenge. The

trick is to train a number of models equivalent to the number of samples. For each

sample xi, the model Ψi is to be trained without considering the gradient estimate

for this instance. Therefore, the residual of the ith sample is measured using Ψi−i,

which does not have that sample in its training. Moreover, the missing values are

managed by CatBoost, they are treated as an individual category.

3.4 Comparison of Different Ensembles
This part is inspired by the great work that introduced in [94], for presenting the

available ensemble packages. However, we will focus only on the R language and

its support for the aforementioned ensemble algorithms. The reason for that, all the

experiments and the results in this thesis are tested under the framework of R, the

reader can refer to [94] for more details about other programming languages. Table

3.1 presents this revision for the bagging-like, boosting, and gradient boosting-

based ensembles in R language.

The second part summarizes the main features of the aforementioned ensembles.

The comparison between the 12 ensembles will be based on diversity promotion

methodology in each algorithm, and the used base model type. The main properties

of each algorithm are presented in Table 3.2.
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Table 3.1: Ensemble software packages for Bagging-like, Boosting, and Gradient
Boosting ensembles (in R language); SC: Sequential CPU computing, PCC: Parallel
CPU computing, GP: GPU computing, and DC: Distributed computing.

Ensemble Method SC PCC GC DC

Bagging [3]
ipred a, 2019 3 7 7 7

adabag 2, 2018 3 3 7 7

RF [4]
randomForest 3, 2018 3 3 7 7

XGBoost Library 4, 2019 7 7 3 7

Apache Spark MLlib 5, 2019 7 7 7 3

ET [185]
extraTrees 6, 2016 3 3 7 7

RP [186] Not supported in R

RotF [86]
rotationForest 7, 2017 3 7 7 7

Rweka Rotation Forest 8, 2019 3 3 7 7

RR [188] Not supported in R

Ensemble Method SC PCC GC DC

AdaBoost [5]
fastAdaboost 9, 2016 3 7 7 7

adabag 2, 2018 3 7 7 7

LB [191]
caTools 10, 2019 3 7 7 7

Rweka LogitBoost, 8, 2019 3 3 7 7

GBM [192]
gbm 11, 2019 3 7 7 7

gbm3 12, 2017 3 3 7 7

Apache Spark MLlib 5, 2019 7 7 7 3

H2O3 13, 2019 7 7 7 3

XGBoost [193]
XGBoost library 4, 2019 3 3 3 7

H2O4GPU 14, 2019 7 7 3 7

H2O3 13, 2019 7 7 7 3

sparkxgb 15, 2019 7 7 7 3

LightGBM [195]
LightGBM library 16, 2019 3 3 3 7

CatBoost [196]
CatBoost library, 17, 2019 3 3 3 7

1ipred: https://cran.r-project.org/web/packages/ipred
2adabag:https://cran.r-project.org/web/packages/adabag
3randomForest: https://cran.r-project.org/web/packages/randomForest
4XGBoost:https://xgboost.readthedocs.io
5Apache Spark: https://spark.apache. org/docs/2.1.0/mllib-ensembles.html
6extraTrees: https://cran.r-project.org/web/packages/extraTrees
7rotationForest: https://cran.r-project.org/web/packages/rotationForest
8Rweka: https://cran.r-project.org/web/packages/RWeka
9fastAdaboost: https://cran.r-project.org/web/packages/fastAdaboost

10caTools: https://cran.r-project.org/web/packages/caTools
11gbm: https://cran.r-project.org/web/packages/gbm
12gbm3:https://github.com/gbm-developers/gbm3
13H2O3:http://docs.h2o.ai/h2o/latest-stable/h2o-docs/welcome.html
14H2O4GPU:https://github.com/h2oai/h2o4gpu
15sparkxgb:https://cran.r-project.org/web/packages/sparkxgb/
16LightGBM:https://lightgbm. readthedocs.io/en/latest/index.html
17CatBoost:https://catboost.ai/docs/
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Table 3.2: Comparison of state-of-the-art ensemble techniques.

Ensemble Method Year Diversity Promotion Type of base model

Bagging [3] 1996 Bootstrap sampling Any classifier

RF [4] 2001
(1) Bootstrap sampling

DT
(2) Random selection of f feature subsets

ET [185] 2006 Random selection of the splitting cut-point DT

RP [186] 2012 Vertical and horizontal data patches Any classifier

RotF [86] 2006
(1) Resampling

DT
(2) Feature extraction of disjoint feature subsets

RR [188] 2016 Random rotation of feature space DT

AdaBoost [5] 1997 Selective sampling via weighting Any classifier

LB [191] 2000 Training a weighted regression estimator Logistic regression (LR)

GBM [192] 2001 Gradient search to minimize the loss function Regression tree

XGBoost [193] 2016
1) Regularized term in the objective function

Regression tree
2) Shrinkage and sub-sampling

LightGBM [195] 2017 Sampling from small gradient-instances DT

CatBoost [196] 2018 Unbiased estimation of the gradient step Oblivious trees

3.5 Metaheuristic Algorithms For MCS
This part discusses the importance of metaheuristic algorithms to design an ef-

fective classifier ensemble. Most of the work was directed either to optimize the

classifiers combination function [151, 198–201] or to find subset of classifiers from

a large pool of members [29, 202, 203]. In addition, the inclusion of MA in some

proposals to handle the multiclass classification tasks [204]. In those proposals,

the optimization-based ensembles can predict better than the classical ensemble

approach: Bagging, AdaBoost, Random subspaces, and majority voting.

Metaheuristic weighted voting scheme: Since there could be different per-

formances for each classifier on the given dataset, the classifiers to be combined

are considered with distinct weights. In this respect, by weighted voting schemes,

the robustness and precision of the classifier ensemble can be increased. The as-

signing of appropriate weight values to classifiers can be modeled as an optimiza-

tion problem whose optimal solutions can be offered by the well-established MA

algorithms. In [200], based on the reliability of classification predictions, the au-

thors applied genetic algorithms to utilize variant weights of classifiers for specific

output classes. A multiobjective optimized weighted voting scheme has been ap-

plied in [205] for diagnosing heart disease. An optimized-based weighted voting
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schema has been applied in [206] to create an effective remote sensing ensemble

model. While differential evolution has been applied to optimize the weighted vot-

ing schema in ensemble learning [207].

In [151], the authors used GA as a meta-learner to learn a weight distribution

vector [w1, w2, . . . , wk, . . . wT ]. The proposed method is a modified stacking that

assigns a weight wk for each classifier Ψk. Each classifier provides a class distribu-

tion vector that represents a particular instance’s probability of belonging to each

class. The final decision will be the highest score from multiplying the class dis-

tribution matrix by the weight distribution vector. Figure 3.1 shows the proposed

topology from [151].

Stratified Sampling 
without Replacement

Predicted Outcome

Stratified Sampling 
with Replacement

Training
Subset

Sample  1

Learner  1

Sample             2 Sample n

Learner  2 Learner n

Classifier 1 Classifier 2 Classifier n

Genetic Algorithm

Test
Data

Training
Data

Holdout
Subset

Meta- Classifier

Figure 3.1: The stacking ensemble learning using GA, taken from [151].
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In [198], Several weighted voting schemes via soft computing were tested, in-
cluding those based on multi-objective differential evolution, multi-objective parti-
cle swarm, GA, and multi-objective simulated annealing. The novelty of their work
was to apply a multi-objective differential evolution in ensemble classification for
sentiment analysis. Specific weight is dedicated to each classifier based on the pre-
cision and recall values for each output class, as in Figure 3.2. From that figure, for
the first output class, Classifier 3 has the maximum weighted voting power while
for the second output class, Classifier 2 has the greatest weight.

Figure 3.2: Weight vector for a problem with five classifiers and two classes, taken
from [198].

Metaheuristic for MCS pruning: There is an extra intermediate step con-
cerned with reducing the size of the ensemble before combining. [28, 34]. This
phase is recognized as ensemble selection, ensemble pruning, ensemble thinning.
By pruning down low-performance models, the effective ensemble can be acquired
while retaining a high diversity among the remaining participants. Ensemble prun-
ing can be formulated as an optimization problem to find a subset that optimizes a
measure indicative. For that, metaheuristics are promising approaches to solve that
challenge, with their capability to explore the search space. GASEN [29], uses a
genetic algorithm to perform a stochastic search in the space of models. The en-
semble is described as a string of bits, a specific model will be included or excluded
based on its corresponding bit value [34]. The fitness function is the accuracy of the
subensemble on a separate validation set. In [123], the authors formulated the en-
semble pruning as a quadratic integer programming that searches for the minimum
misclassification and maximum divergence of a fixed-size subset of k classifiers.
The authors used a semi-definite programming technique to solve the problem in
polynomial time.
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Direct hill-climbing explores the space of models through greedy search. Based

on the current subensemble, the algorithm visits the neighborhood. The neighbor-

hoods consist of those subsets that can be constructed by adding (removing) one

classifier to (from) the current state. A directed hill-climbing that traverses the

search space is represented as in Figure 3.3.

,,,,,,

,,,,,,

, ,,

,,

Figure 3.3: Ensemble pruning method of four models via directed hill climbing, taken
from [34].

Depending on the direction of the search, we have forward selection [35, 208]

and backward elimination [209, 210]. In both cases, T (T+1)
2

subsets had to be eval-

uated, leading to a time complexity of O(T 2 ·g(T,N)). The term g(T,N) concerns

the complexity of the evaluation measure. In general, the main component for en-

semble pruning is the evaluation measure upon which the subensemble could be

identified. Evaluation measures can be divided into two major categories: per-

formance based and diversity based. In addition, the idea of feature selection has

been extended to the domain of ensemble reduction by transforming classifier pre-

dictions into artificial features to be reduced and selected by the harmony search

algorithm [30]. Recently, the firefly algorithm has been modified to adapt to the
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area of ensemble selection by focusing on discriminant base classifiers [126]. Fur-
thermore, Onan et al. [26] proposed a hybrid ensemble pruning scheme based on
clustering and multiobjective evolutionary algorithms. While heuristic metrics for
MCS pruning will be discussed in Section 6.2.

3.6 Remarks
By comparing the literature on ensemble learning for classification tasks, the pro-
posals in this thesis differ from other studies in several ways:

- As observable from our literature review on ensemble learning, most works
have focused on using the available amount of data for training the base mod-
els [143, 151, 185, 188, 191, 192, 198, 204]. Regarding that, an additive
computational complexity will be required to generate a large pool of classi-
fiers, especially if we are dealing with complex models. To partly solve this

challenge, intelligent data sampling in the form of IS techniques can be used
to downsize the training data with their significant impact to generate MCS
quickly.

- The performance of ensemble systems is restricted with generating accurate
and diverse base models [12, 15, 16, 28, 98]. To match this observation,
IS techniques could be applied to refine the accuracy of base models via
focusing on pure and consistent data [211, 212]. While, the diversity could
be achieved via using different base models [151, 213, 214] and via using
a novel weight-based combination schema to weigh specific-class outputs
[198, 200].

- SI algorithms [178] as a branch of MA proved their superiority over evo-
lutionary algorithms. From our revision, there are recent SI proposals [179,
215, 216] with their unstudied effect for MCS. To partly close that gap, it was
interesting to evaluate the performance of those SI algorithms for adjusting
class-specific weights, to optimize model integration.

- The efficiency and efficacy of MCS had been proved theoretically and empir-
ically via ensemble pruning [23, 217]. Again, the presented work for MCS
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pruning [23, 24, 31, 32, 35–37] uses the whole data to train individual mod-
els. Furthermore, from [36], the accuracy of ensemble pruning is better op-
timized when it relies on both metrics of the classifier’s accuracy and the
ensemble diversity. However, each metric should be weighted differently
(trade-off) to cope properly with the classification task at hand. To fill that

gap, a guided search-based ensemble pruning will be proposed to solve the
parameter tuning challenges. In addition, we downsize the data via IS and
downsize multiple classifiers simultaneously without any negative effect on
the general accuracy of MCS. To prove our hypothesis, the analysis of the
results should be extended to include ensembles that are trained from nonre-
duced data.

- Related to our best knowledge, the presented work in this thesis is the first
to combine between three intelligent computational paradigms: IS, MCS,
and SI/ensemble pruning. From the perspective of MCS, the generation of
the models and the predictive performance can be accelerated and improved,
respectively. From perspective of IS, the limited accuracy of IS techniques
can be significantly enhanced via MCS.

- Reordering-based MCS pruning metrics [35, 217, 218] are recognized as ac-
curate and fast strategies to identify subset of classifiers properly. Since the
analysis by Martı́nez-Muñoz et al. [23] in 2009, recent and efficient metrics
have been proposed. Related to our best knowledge, the literature review is
missing a deep analysis to compare all those superior metrics together. In

this thesis, we fill that gap via complementing and extending the previous
study which was conducted in [23].
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You cannot teach a man anything;
you can only help him discover it in
himself.

Galileo

CHAPTER

4
Training Set Selection and

Swarm Intelligence for MCS

In data mining, a set of steps should be executed sequentially prior to the con-
struction of any predictive model [19]. First, end-user requirements should be ex-
amined. Second, data preprocessing or data cleaning (removing inconsistent data,
data transformation, selection of features, or selection of samples) should be ap-
plied. Finally, a suitable prediction model that considers feature characteristics
should be utilized to maximize pattern extraction. Regarding that, a data reduction
schema could be applied to select representative samples and to alleviate the com-
putational complexity of training MCS. A data reduction algorithm that focuses
on the selection of a subset of examples according to rules or heuristics is known
with the name of IS [19]. The reduced data should maintain the integrity of the
original data set; thus, the accuracy can be the same or even higher. There are two
main types of IS from the literature: Prototype selection aims at identifying a re-
duced training set with higher classification accuracy for use by nearest neighbor
classifiers (memory-based learning) [212]. Training set selection applies the same
concept to obtain a subset as a training source for any data mining algorithm [219].

The taxonomy [212] categorizes most IS methods according to both the selec-
tion type and the search direction. Mainly by discussing the selection type:
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- Condensation: Those kinds of techniques give high priority to retain decision

boundary points with significant reduction capabilities gained from removing

vast amounts of internal points, but the generalization accuracy over the test

set can be negatively affected. Besides, the returned subset will be too small

to train an effective ensemble.

- Edition: Those kinds of techniques seek to remove noisy border points, leav-

ing a smoother decision boundary. The reduction capability of those tech-

niques is acceptable with a nice improvement of generalization accuracy and

we think that the returned subset will be valuable to train ensemble models

with increased diversity, and increased predictive accuracy.

- Hybrid: Those kinds of techniques are hybrid between the above two se-

lection strategies. They seek to find the smallest subset of examples, which

maintain or increase the generalization accuracy. Again, the proposed en-

semble cannot benefit from the too-small returned subset.

Under the above three categories, the IS techniques can be further grouped in

sub-categories (search direction), which influence the time complexity and accu-

racy. Logically and related to brainstorm analysis, the methods which belong to

the Edition category are preferred to return the free noise subset for training com-

petitive ensembles.

Data reduction techniques are evaluated according to four criteria: consumed

selection time, noise tolerance, reduction rate, and accuracy. The design of a high-

speed IS algorithm with higher reduction capacity and with higher accuracy re-

mains an open challenge. The selection time and the reduction capability are IS-

dependent, while the accuracy from the reduced set can be elevated using MCS.

From the perspective of data reduction, the loss in accuracy can be compensated

by building MCS. In addition, it will be interesting to study how ensemble models

could improve the learning from reduced data.

In the literature [143, 151, 185, 188, 191, 192, 198, 204], the MCS prediction

model is often trained from the whole training data. Thus, an expected compu-

tational complexity will rise exponentially from both; the increasing number of

training samples, and the number of individual classifiers. Other attempts to re-

duce the training data were inspired by random sampling, which could degrade

base model accuracy. From the perspective of MCS, it will be great to reduce their
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training complexity via learning from most representative samples. For that, intel-

ligent data sampling, IS, could have a positive effect to generate promising MCS.

Finally, SI algorithms can be embedded to enhance the decision fusion of MCS.

Recently, a set of new SI algorithms have been proposed: the moth-flame optimiza-

tion algorithm (MFO) [215], the grey wolf optimizer (GWO) [179] and the whale

optimization algorithm (WOA) [216]. For that, the recent SI algorithms can be

applied to tune the weights of each classifier based on its accuracy to predict class

samples. One of the objectives of this article is to highlight on the importance of

training set selection and SI for enhancing the performance of MCS.

The remainder of this chapter is organized as follows: In Section 4.1, we present

the motivations and the contributions. Section 4.2 discusses a class-weight com-

bination function. The proposed framework and combination via SI algorithms

are discussed in detail in Section 4.3. The experimental results and the discussion

are presented in Sections 4.4 and 4.5, respectively. Finally, the conclusions of this

study and future research are discussed in Section 4.6.

4.1 Motivations and Contributions
The major contribution of this proposal is a focus on the construction of a compet-

itive ensemble learning from a reduced training set using the search capability of

SI. The motivations and contributions that were considered while conducting this

research are as follows:

1. The data quality is crucial in the learning paradigm of any classification al-

gorithm. In this study, we use a general data reduction algorithm, namely,

AllKNN [220] to train MCS without a loss of precision and with increased

efficiency.

2. Since the accuracy of the reduced data is a property of the instance selection

algorithm, we fill this gap by building MCS.

3. The proposed ensemble is heterogeneous as it conducts two additional steps

to increase the diversity of the classifier set: bagging [3] and distance-based

feature selection.

4. SI algorithms are included in the framework for the optimization of class-

specific weights to enhance the integration process.
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5. The evaluation metric, fitness function, of any meta-heuristic has a critical
impact on the identification of a reliable solution. Here, we use the Mathews
correlation coefficient (MCC) [221, 222] to evaluate the ensemble for each
search agent.

4.2 Class-specific weight
Combination rules are used to obtain the final decision from combined classifiers;
therefore, it is crucial to select them correctly. We will focus on weighted voting,
which is based on the classifier combination rules of crisp labels. The discrimi-
nating power of MCS to categorize different class samples could be maximized by
assigning a class-specific weight, as each classifier has different performance capa-
bilities for the prediction of per class instances. The final decision is based on the
weighted sum of several decisions, as in Equation (4.1).

Ψ̂(x) = arg max
i∈M

T∑
k=1

[Ψk(x) = i]wik (4.1)

where wik is a weight that is assigned to the kth classifier and the ith class. The
weight settings play a pivotal role in controlling the accuracy of MCS [223].

The Belief value [141] acts as posterior probability, weights for each class,
to measure the classification results from the confusion matrix of each classifier.
Assume the confusion matrix of classifier k is as expressed in Equation (4.2). The
rows correspond to the original samples per class, while the columns correspond
to the predicted class samples. Element sij corresponds to the number of samples
of class i that are predicted as class j, and sii denotes the number of samples from
class i that are correctly classified.

PTk =


s11 s12 . . . s1M

s21 s22 . . . s2M
...

... . . . ...
sM1 sM2 . . . sMM

 (4.2)

The posterior probability of classifier k for unknown pattern x can be calculated
via Eq. (4.3). In this chapter, this method will be referred to as belief and will be
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used to form M × T dimensional matrix with M classes and T classifiers. The

kth column in this matrix will be calculated from the diagonal elements of the kth

confusion matrix using Equation (4.3).

P (x ∈ i
∣∣∣Ψk(x) = j(k)) = s

(k)
ij

/ M∑
i=1

s
(k)
ij (4.3)

4.3 Proposed Framework
The proposed framework is graphically presented in Figure 4.1. The training fold

is reduced via AllKNN [220], which is an instance selection method, for the selec-

tion of representative samples. AllKNN virtually divides the training data into two

parts: the selected instances and the neglected instances. After that, using strati-

fied sampling with 65% from the selected instances and 35% from the neglected

instances, a validation dataset is formed. Under laboratory experimentation, we

tested various configurations of the above percentages, and the proposed percent-

ages realized reasonable accuracy over a large proportion of the tested datasets.

This validation data will be used to tune class-specific weights via SI algorithms

in consideration of the MCC metric (Section 4.3.4). After optimizing the weights

using SI algorithms, the ensemble is evaluated over the extracted unseen test set.

Two models will be trained for comparison: RFSM, which denotes random

forest that is trained with AllKNN-selected data, and RFCOM, which denotes ran-

dom forest that is trained on the original training data. The objective is to analyze

the performance of the proposed MCS against those of RFSM, RFCOM, and the

following combination methods of the built classifiers:

- Maj: Majority voting of the built classifiers.

- Belief: As discussed in Section 4.2.

- CW-NN: A neural network will be used to optimize class-specific weights.

- Stacking: A neural network will be used as a meta-classifier to tune the clas-

sifiers’ weights.
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Figure 4.1: The proposed framework for building MCS from reduced training set.

4.3.1 Training Set Selection

AllKNN [220] removes noisy border points to produce a smoother decision bound-

ary. The reduction capacity of this algorithm is not high, but acceptable prediction

accuracy is realized over the test data. For i = 1 to K neighbors, flag as incorrect

any instance that is not classified correctly by its i nearest neighbors. After com-

pleting the loop, all instances that have been flagged as bad are removed [224]. This

method performs well if the classes are represented sufficiently well. Otherwise,

the total disappearance of minor classes can be induced. This method depends

on K neighbors and the distance function. The default setup of K = 3 with the

Euclidean distance has been used.
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AllKNN is selected as the instance selection method because it reasonably bal-

ances the reduction rate, the accuracy of the resulting model, and the execution

time; as demonstrated in [212].

4.3.2 Proposed MCS

MCS will be built from the selected data with the following characteristics:

• Samples diversity: Bagging is used to obtain various training samples for

each individual classifier.

• Feature space diversity: Sixty percent of the features are selected randomly

for each classifier. This procedure is repeated 20 times before selecting the

most diversified set with the highest Hamming distance over the selected

sub-features.

• Learning model diversity: Five types of classification models, namely, DT1,

NB2, JRip3, Multinom4 and KNN5 are used with a proportional representation

of 20% by each model from the whole pool size. Those models are described

in Section 2.3.

4.3.3 Proposed Candidate Solution

The power of SI relies upon stochastic operators [178, 225], information sharing,

and the preservation of search space information throughout the iterations [216]. SI

algorithms will be used to improve the fusion of MCS by optimizing the decision

weight of each classifier based on its class prediction. Each candidate solution (X)

from the population of search agents simulates the same representation schema, as

expressed in Equation (4.4). Thus, each solution represents practical weights to

be used for multiple-decision fusion. All weights wik are restricted to be in [0,1]

1Package C50 :https://cran.r-project.org/web/packages/C50/index.html
2Package e1071:https://cran.r-project.org/web/packages/e1071/index.html
3Package RWeka:https://cran.r-project.org/web/packages/RWeka/index.html
4Package nnet:http://cran.r-project.org/web/packages/nnet/index.html
5Package caret:https://cran.r-project.org/web/packages/caret/index.html
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∀i ∈ {1, 2, . . . ,M}, ∀k ∈ {1, 2, . . . , T}

Ψ1 . . . Ψk . . . ΨT

1 w11 w1k w1T

2 w21 w2k w2T
...

...
...

...
i wi1 wik wiT
...

...
...

...
M wM1 wMk wMT

(4.4)

4.3.4 Proposed Objective Function
The accuracy of the proposed MCS is optimized according to the MCC metric
[221]. MCC is a correlation coefficient between the target and the prediction.
It is always in the interval [-1,1], where +1 corresponds to a completely correct
prediction. MCC realizes a good satisfactory compromise among discrimination
capability, consistency, and coherent behavior in binary and multiclass problems
[222]. Each candidate solution (X) from the social flock represents a potential set
of weight coefficients that should be tuned to maximize MCC(pred(X), target);
Equation (4.5). Where, pred(X) is the ensemble prediction over the validation set
using fusion weights of X , and is calculated via Equation (4.6). While target is
the real class column from the validation set.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4.5)

pred(X) = Ψ̂(x) = arg max
i∈M

T∑
k=1

[Ψk(x) = i]wik (4.6)

4.3.5 Moth-Flame Optimization Algorithm
The MFO algorithm, which was proposed in [215], was inspired by the navigation
method of moths during the night. Moths use transverse orientation for naviga-
tion according to the moonlight, but their movement is affected by artificial human
lights, which cause deadly spiral paths. This algorithm mimics the death behavior
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of moths that is caused by following artificial lights. Consider a feasible search
space S = {X1, X2, ...., XN} that contains a set of positions for N moths. Each
moth position (Xi) represents the potential fusion weights for aggregating a set of
classifiers. The promising areas that are identified during the search process are
flagged or pinned as lights (flames); therefore, other moths can follow those lights
to search for food. Hence, the initial fusion weights will be tuned by searching
around promising weights iteratively.

Due to the intelligent mimic, it is possible to discover the global and local
regions in the search space by simulating the spiral path of a moth around a flame
via Equation (4.7). The new position of the moth will be on a hyper ellipse around
the flame with a random number t̂ ∈ [r, 1], where r is linearly decreased from -1
to -2 throughout the iterations. While Di is the distance between the moth (Xi)
and the flame (Fj), which is calculated via Equation (4.8) and b is a constant for
defining the shape of the logarithmic spiral, it takes +1 in the open-source code.

S(Xi, Fj) = Di · ebt̂ · cos
(

2π · t̂
)

+ Fj (4.7)

Di = |Fj −Xi| (4.8)

The flame matrix collects the best fusion weights for each moth during the
search process. Consequently, it is useful for retaining the previous best solu-
tions, and it will specify the lights where other moths can fly around to find more
promising weights. The flame matrix is updated by considering both the current
population and the past population of moths, which are denoted as Pt and Pt−1,
respectively. The best weights from the past and the current iterations are sorted in
descending order to serve as the source for updating the current moth positions in
the next iteration via Equation (4.7). To reduce the stochastic process in the final
iterations, a focus on the exploitation milestone is realized by reducing the number
of flames throughout the iterations via Equation (4.9).

N flames = round

(
N − t ∗ N − 1

tmax

)
(4.9)

where N, t, and tmax represent the maximum flame size, the current iteration num-
ber, and the maximum number of iterations, respectively. Via this methodology,
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only the best flame, which corresponds to the best-obtained fusion weight, will re-
main at the final iteration to guide all other moths. The pseudocode of MFO is
presented in Algorithm 10.

Algorithm 10: The pseudocode of MFO algorithm.
Input : Population P = {X1, X2, ...., XN}, Parameters (r, t̂, N flames),

decisions of classifiers over validation set, real class column from
validation (target).

Output: X∗ /* Optimized set of weight coefficients
begin

Calculate Fitness: Mcc(pred(Xi),target), i ∈
{1, 2, 3, ..., N} via Eq. (4.5);

for t← 1 to (tmax − 1) do
Update number of flames via Eq. (4.9);
if iteration == 1 then

Flames= sort(P);
else if iteration > 1 then

Flames=sort(Pt−1, Pt);
Update r and t̂;
Calculate D via Eq. (4.8) for each Moth;
Update Moth position via Eq. (4.7);
Calculate fitness for each updated Moth;

Return X∗;

4.3.6 Grey Wolf Optimizer
GWO, which was proposed in [179], is inspired by the hierarchal leadership and
hunting mechanism of grey wolves against prey. Grey wolves follow a strictly
dominant social hierarchy. The most powerful wolf is α which is responsible for
making decisions about hunting, sleeping place, and migration. The β wolves are
members in the second level that obey the alpha’s decisions and give commands
to the δ wolves. The δ wolves include scouts, sentinels, elders, hunters, and care-
takers. The ω wolves are the lowest-ranking wolves in the group and play the role
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of scapegoat when there is no food. Let S ⊂ Rn be the feasible search space,

where S = {X1, X2, ...., XN} contains the set of positions for N grey wolves.

Each solution (Xi) represents possible fusion weights for the aggregation of a set

of classifiers. The best grey wolves (α, β, δ) provide suitable estimates of the loca-

tion of the prey (suitable fusion weights) and guide the other ω wolves in tracking

and chasing the prey. Before attacking, the ω wolves encircle and harass the prey

until it stops moving according to Eq. (4.10).

X1 = Xα(t)− A1 ·Dα Dα = |C1 ·Xα −X(t)|

X2 = Xβ(t)− A2 ·Dβ Dβ = |C2 ·Xβ −X(t)|

X3 = Xδ(t)− A3 ·Dδ Dδ = |C3 ·Xδ −X(t)|

(4.10)

where X(t) is the fusion weights to be enhanced by each ω wolf. The controlling

vectors A and C balance exploration and exploitation via Equation (4.11) with r1

and r2 as random vectors ∈ [0,1]. C returns a random value in the interval [0, 2].

The effect of gravity on the prey is increased when C > 1. The value of A is

defined by the parameter a, which is linearly decreased from 2 to 0 throughout the

iterations. The range ofA is always in the interval [−2, 2]. Exploration is promoted

in the first half of the iterations when A > 1 or A < −1, whereas exploitation is

forced in the second half of the iterations when −1 < A < 1.

C = 2 · r2

A = 2a · r1 − a

a = 2− t( 2

tmax
)

(4.11)

Unsuitable fusion weights, ω wolves, will be tuned by chasing and searching

around the proper fusion weights that are estimated by α, β, and δ wolves using

Equation (4.12).

X(t+ 1) =
X1 +X2 +X3

3
(4.12)

Where X1, X2, and X3 are calculated as in Equation (4.10). According to the

discussion above, GWO depends on very few parameters (a,A, and C) that are

updated prior to position updating. The pseudocode of GWO is presented in Algo-

rithm 11.
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Algorithm 11: The pseudocode of GWO algorithm.
Input : Population P = {X1, X2, ...., XN}, Parameters (a,A,C),

decisions of classifiers over validation set, real class column from
validation (target).

Output: Xα /* Optimized set of weight coefficients
begin

Calculate Fitness: Mcc(pred(Xi),target), i ∈
{1, 2, 3, ..., N} via Eq. (4.5);
Xα ← The best search agent;
Xβ ← The second best search agent;
Xδ ← The third best search agent;
for t← 1 to (tmax − 1) do

Update position ∀ω via Eq. (4.10, 4.12);
Update a, A, and C via Eq. (4.11);
Calculate fitness for each updated wolf;
Update Xα, Xβ, Xδ;

Return Xα;

4.3.7 Whale Optimization Algorithm

This algorithm was originally developed in [216] for mimicking the hunting be-

haviors of humpback whales. These whales are intelligent creatures that can sense

and learn. The mathematical model simulates the feeding of humpback whales on

krill and small fish herds by creating a bubble in a spiral shape around them. The

optimization algorithm is similar to the GWO for encircling the prey, as described

in Section 4.3.6. The power of this algorithm is derived from its focus on fewer

stochastic operators and its balancing between exploration and exploitation. Sup-

pose S = {X1, X2, ...., XN} is the feasible search space with a set of positions for

N whales. Each whale (Xi) represents a prospective fusion weights for the aggre-

gation of a set of classifiers. During the first half of the iterations, each whale Xi is

forced to discover search regions by selecting a whale randomly and moving away

from its location according to Equation (4.13).
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Xi(t+ 1) = Xrand − A ·D

D = |C ·Xrand −Xi(t)|
(4.13)

where A and C are coefficient vectors having the same effect and values as calcu-

lated by Equation (4.11). Exploration is promoted in the first half of the iterations

when A > 1 or A < −1, whereas exploitation is forced in the second half of the

iterations when −1 < A < 1.

During the second half of the iterations, the other whalesXi adapt their location

by encircling X∗ (suitable fusion weights) via Equation (4.14) or by updating their

spiral positions via Equation (4.15), based on a random parameter p.

Xi(t+ 1) = X∗(t)− A ·D

D = |C ·X∗(t)−Xi(t)|
(4.14)

Xi(t+ 1) = D′ · eb` · cos(2π`) +X∗(t)

D′ = |X∗(t)−Xi(t)|
(4.15)

As a result, the local search and the exploitation process can be enhanced. D′

represents the distance between two whales, b is a constant for defining the shape

of the logarithmic spiral and ` is a random number in [-1,1]. The pseudocode of

WOA is presented in Algorithm 12. The implementations of the SI algorithms that

have been used in this chapter are from R package: metaheuristicOpt. 1

4.4 Experimental Results
The experiments are dedicated to achieving objective 1, to build more diverse and

highly accurate MCS only from a reduced portion of the available data. The two

main questions to be answered are:

• Q1Q1Q1: What is the impact of reduced and consistent data on the performance of ensem-

ble learning?

• Q2Q2Q2: Is it possible with the search capability of swarm intelligence to enhance the

combination of classifiers?
1SI:https://cran.r-project.org/web/packages/metaheuristicOpt/index.html
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Algorithm 12: The pseudocode of WOA algorithm.
Input : Population P = {X1, X2, ...., XN}, Parameters (a,A,C, `, p),

decisions of classifiers over validation set, real class column from
validation (target).

Output: X∗ /* Potential set of weight coefficients
begin

Initialize a,A,C, `, p ;
Calculate Fitness: Mcc(pred(Xi),target), i ∈
{1, 2, 3, ..., N} via Eq. (4.5);
X∗ = The best search agent;
for t← 1 to (tmax − 1) do

if | A |> 1 then
Select random search agent Xrand;
Update position of Xi via Eq. (4.13);

else if | A |< 1 then
if p < 0.5 then

Update position of Xi via Eq. (4.14);
else if p > 0.5 then

Update position of Xi via Eq. (4.15);

Calculate the fitness of each search agent;
Update X∗ if there is better solution;
Update Parameters (a,A,C, `, p);

Return X∗;

4.4.1 Setup of Experiments

During setup and validation, all the datasets are preprocessed by unifying the scales

of the features via normalization. For each dataset, 10 repetitions with a 5-fold

cross-validation procedure are considered. Therefore, a total of 50 runs are con-

ducted per dataset. The accuracy metric is used to evaluate the proposed strategy.

The parameters of SI (without tuning) are as follows: Population Size= 100, Itera-

tions = 80 and for the genetic algorithm, Pm = 0.1 and Pc = 0.8.
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A total of 25 datasets that were obtained from OpenML1 and KEEL 2 are used

in this study for experimentation. The characteristics of the data are presented in

Table 4.1, where #S, #F, #C, and R represent the number of samples, the number of

features, the number of classes, and the ratio between the smallest and the largest

class for each dataset respectively. The number of classes varies from 2 to 15, while

the maximum number of features is 180, and the ratio of minor class to the major

ranges from 0.019 to 1.0.

Table 4.1: The characteristics of the selected datasets, sorted by samples and classes.

DataSet #S #F #C R DataSet #S #F #C R
Sonar 208 60 2 0.874 Newthyroid 215 5 3 0.2
Heart-statlog 270 13 2 0.8 Balance 625 4 3 0.170
Ionosphere 351 33 2 0.56 Dna 3 186 180 3 0.463
Saheart 462 9 2 0.529 Waveform 4 999 21 3 0.972
Wdbc 569 30 2 0.594 Vehicle 846 18 4 0.913
Wisconsin 683 9 2 0.538 Heart-long-beach 200 13 5 0.196
Australian 690 14 2 0.802 Thyroid-dis 2 800 26 5 0.019
German 1 000 20 2 0.429 Dermatology 358 34 6 0.18
Biodegradation 1 055 41 2 0.509 Mfeat-zernike 2 000 47 10 1.0
Diabetic 1 151 19 2 0.884 Mfeat-karh 2 000 64 10 1.0
Ringnorm 7 400 20 2 0.981 Mfeat-fourier 2 000 76 10 1.0
Twonorm 7 400 20 2 0.998 Movement-libras 360 90 15 1.0
Tae 151 5 3 0.942

4.4.2 Experiment 1

The pool size T is crucial, and this size should be analyzed carefully to avoid model

duplication and degradation of the overall performance. The proposed ensemble

was tested with 8 sizes ∈ {5, 10, 15, 20, 25, 30, 40, 50} over 25 datasets with

50 runs per dataset (10 replicas · 5 folds) to obtain 10,000 record (8·25·50) of

results. Each row from Table 4.2 corresponds to the average accuracy of 1250

records, which is used to identify a suitable ensemble size for the presentation of

the final results. From Table 4.2, the highest average accuracy is obtained with

T = 50. GA is competitive with MFO over various ensemble sizes. The poorest

values from the proposed SI algorithms are presented in italics and correspond

1Machine Learning Repository: https://www.openml.org
2KEEL Repository: http://www.keel.es/
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Table 4.2: Ensemble size analysis for higher prediction accuracy over all 25 datasets.
The best two values are shown in bold.

Random Forest Individual Models Cobmination Methods Combination by GA and SI
T RFCOM RFSM DT NB Mlnom KNN JRip Maj Belief CW-NN Stacking GA GWO MFO WOA
5 78.26 77.41 72.10 70.87 74.95 72.82 71.07 78.01 78.43 77.73 77.51 78.99 78.96 78.97 78.89·

10 80.44 78.77 74.09 73.02 76.78 74.88 73.06 78.56 79.40 78.71 77.33 80.30 80.13 80.23 80.03·
15 81.32 79.39 75.18 74.29 77.70 75.77 73.83 79.48 79.88 78.99 77.15 80.91 80.72 80.88 80.53·
20 81.58 79.63 75.76 74.77 78.28 76.32 74.79 79.49 80.16 78.95 76.66 81.07 80.93 80.96 80.63·
25 82.05 79.79 76.19 75.16 78.67 76.74 75.14 79.86 80.32 78.94 76.28 81.16 81.15 81.17 80.77·
30 82.16 79.86 76.42 75.41 78.92 77.14 75.48 79.66 80.25 78.69 75.84 81.15 81.23 81.27 80.74·
40 82.51 79.98 76.86 76.00 79.17 77.47 75.98 79.83 80.34 78.56 75.40 81.22 81.18 81.21 80.79·
50 82.42 80.12 77.40 76.51 79.67 77.86 76.47 80.07 80.58 78.23 74.91 81.30 81.38 81.49 81.07·

to WOA; however, they are better than those of other individual classifiers and

combination methods. DT represents the average accuracy of the best individual

of type DT. The same holds for all best individuals of types NB, Mlnom, KNN,

and JRip. Figure 4.2 presents the superior performance of both (GA, MFO) over

various combination methods. The most interesting result in this graph is that the

proposed fusion method at a smaller ensemble size with T = 15 (dotted horizontal

line) outperforms other combination methods for large ensemble sizes.
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Figure 4.2: Correlation between ensemble size and prediction accuracy that is aver-
aged over all the datasets.

4.4.3 Experiment 2

To present the final results, we selected an ensemble size of T = 50. Hence, we

have 10 models for each classifier type ∈ {DT, NB, Mlnom, KNN, JRip}. Table 4.3
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presents the average accuracy on each dataset that is realized by RFCOM, RFSM,

the best individual type, and various combination methods (Maj, Belief, CW-NN,

Stacking). The results will be analyzed in terms of the research questions.

To answer Q1Q1Q1, we analyze the effect of data reduction. For that, the effect of

AllKNN [220] is analyzed via comparing the results that were obtained by both

RFCOM and RFSM, in the presence of a realized reduction rate that results in fast

ensemble learning. From Table 4.3, RFSM realized only 4 improvements over RF-

COM according to (D2, D4, D9, D17). The highest improvement in accuracy over

RFCOM reaches 3.47% for D17. For D8, the reduction capacity (Red-Rate) is the

highest, where the reduced training subset reaches 18.75% on the complete training

set without a large deviation in precision from the RFSM side. Furthermore, for

D5, RFCOM outperforms RFSM with 1.85%, but it uses the complete training set,

while RFSM uses only 45% as a training subset. Finally, the training set selection

time (Tss-TM) is problem-dependent and differs according to the number of sam-

ples and the number of features. The slowest time is 220.59 seconds for D21, while

the fastest selection time is 2.4 seconds for D8.

To answer Q2Q2Q2, we analyze the effect of SI. The prediction accuracy of the

proposed ensemble is compared with those of individual classifiers, various com-

bination methods, and RFSM. The comparison includes the last 14 columns from

Table 4.3 since all use only the reduced data. The best prediction accuracy for each

dataset is highlighted in bold, while the value in italics represents the best from the

proposed combination. The results demonstrate the performance of Mlnom as an

individual classifier and Belief as a combination method. The average accuracy for

each base classifier is based on the selection of the best classifier from the corre-

sponding type; however, the degradation in the performance of those individuals

is too large compared to the performances of the proposed strategies. For exam-

ple, the accuracy of Mlnom reaches 71.17% according to D16, while the proposed

fusion realizes 97.23%. For D2, Mlnom classifies 73.6% correctly, while 86.5%

is the highest prediction accuracy that is realized by SI. The highest prediction by

Mlnom compared with SI has been recorded as 6.7% for D8. Thus, the deviation

in the prediction accuracy level is highly significant. For the combination methods,

the Belief function realizes 91.7% accuracy for D16, while the highest prediction

accuracy is 97.2% by SI. At least one SI algorithm outperforms RFSM for all 25
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Table 4.3: Average accuracy for T = 50. The best two values are in bold, while the best from GA and SI is in italic.

AllKNN Random Forest Individual Models Combination Methods Combination by GA and SI

# Data Red Rate Tss TM RFCOM RFSM DT NB Mlnom KNN JRip Maj Belief CW-NN Stacking GA GWO MFO WOA

D1 Australian 0.26 9.13 86.97 86.13 87.29 86.01 87.22 86.67 86.45 85.97 86.16 83.48 83.58 86.23 86.04 86.33· 86.13

D2 Balance 0.28 6.45 84.18 85.73 71.76 73.62 73.60 72.21 72.13 82.06 82.29 83.76 86.21 86.31 86.23 86.50· 86.10

D3 Biodegradation 0.25 21.99 86.25 85.26 84.67 73.18 86.81 84.61 84.07 85.64 86.16 83.86 83.24 85.93 86.08· 86.00 85.89

D4 Dermatology 0.07 8.21 97.07 97.13 95.95 94.45 95.81 95.90 90.42 97.46 97.52 92.96 87.35 97.46 97.46 97.49· 97.13

D5 Diabetic 0.55 13.42 67.10 65.88 66.78 63.66 73.12 65.65 67.48 66.25 67.28 67.55 67.74 68.08 68.88 68.53 68.93·

D6 Dna 0.36 199.93 94.80 93.50 88.86 82.17 87.74 73.55 87.47 94.10 94.84 92.96 93.94 95.04 95.06 95.13· 94.78

D7 German 0.44 14.71 76.31 72.18 73.67 74.38 75.10 72.52 73.31 71.50 71.26 70.03 70.06 73.17 73.50· 73.47 72.68

D8 Hert-Beach 0.81 2.43 33.26 31.49 38.36 36.76 38.40 37.64 37.35 31.51 31.49 28.85 29.83 31.66· 31.14 31.62 30.58

D9 Heart-Statlog 0.34 6.53 81.33 81.37 83.04 84.11 85.00 83.00 83.15 82.96 83.04 77.15 79.07 82.85· 82.41 82.48 81.37

D10 Ionosphere 0.18 12.18 93.28 91.31 90.83 91.60 88.55 86.33 91.26 89.21 89.55 91.20 91.97 90.72 90.43 91.14 91.60·

D11 Mf-fourier 0.28 71.93 82.71 80.02 72.27 75.76 71.47 77.36 68.57 79.94 80.19 69.86 54.46 80.57 80.96· 80.86 80.14

D12 Mf-karh 0.07 62.94 95.46 94.86 78.49 91.61 89.37 93.01 76.44 96.01 96.07 89.04 65.35 96.00· 95.87 95.88 95.44

D13 Mf-zernike 0.26 51.83 77.08 75.60 67.32 73.42 78.77 80.02 64.82 80.62 80.26 76.62 57.38 80.83 81.02· 80.75 80.30

D14 Mov-Libras 0.32 13.19 81.14 64.23 57.25 57.32 67.68 63.89 45.39 66.21 69.08 59.42 29.56 67.74 68.87· 68.66 67.21

D15 Newthyroid 0.07 3.75 95.81 93.86 95.49 98.05 97.30 95.86 95.02 95.12 95.40 93.44 95.44 95.67 95.44 95.91· 94.98

D16 Ringnorm 0.32 125.09 94.81 93.03 85.81 93.61 71.17 68.19 87.06 86.01 91.73 96.86 96.66 97.06 97.23· 97.18 96.93

D17 Sa-Heart 0.49 5.19 67.97 70.32 73.20 73.40 74.57 72.81 74.18 71.10 71.36 66.49 66.97 71.02 71.13 71.62· 71.02

D18 Sonar 0.22 6.43 81.98 78.36 78.90 74.72 79.67 83.13 79.52 78.18 78.62 75.82 77.92 78.09 78.58 78.72 78.76·

D19 Tae 0.70 2.81 62.96 49.61 54.89 55.05 54.03 54.13 53.81 48.08 47.96 51.32 50.38 49.94 49.29 50.34· 49.72

D20 Thyroid-dis 0.48 48.04 70.79 69.84 68.32 35.40 69.96 67.60 68.18 69.58 69.35 65.46 63.93 69.95· 69.53 69.53 69.63

D21 Twonorm 0.08 220.59 96.78 96.66 84.91 94.75 94.61 91.41 88.58 97.49 97.51 96.50 96.59 97.38· 97.31 97.32 97.35

D22 Vehicle 0.41 12.78 74.89 70.47 68.18 55.82 72.31 67.19 66.18 68.77 69.03 69.22 69.34 71.40 73.16· 72.64 71.31

D23 Waveform 0.32 78.21 84.76 84.46 76.99 81.68 84.02 79.14 78.23 84.40 84.86 82.69 83.12 85.78· 85.39 85.66 85.38

D24 Wdbc 0.07 11.70 95.71 95.08 95.80 95.36 98.07 97.37 95.94 96.19 96.19 95.68 96.66 96.40 96.29 96.38 96.50·

D25 Wisconsin 0.06 9.49 97.09 96.59 95.93 96.97 97.51 97.22 96.85 97.33 97.32 95.43 96.03 97.25· 97.12 97.20 96.93

AR-Friedman 5.44 9.5 9.42 9.66 5.92 8.92 10.04 8.48 6.94 11.64 10.86 5.4 5.94 4.84 7
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datasets, and the highest percentages of improvement are 7.23% and 4.5% over
RFSM for D14 and D16, respectively.

It is interesting to connect this part with the previous section to prove how the
proposed fusion mechanisms outperform learning from nonreduced data in terms
of prediction accuracy. Comparing with RFCOM, the proposed fusion mechanism
using meta-heuristics outperforms RFCOM on 14 datasets {D2, D4, D5, D6, D9,
D12, D13, D15, D16, D17, D21, D23, D24, D25 } with maximum improvement per-
centages of 5.38% and 5.11% on D17 and D13, respectively. Figure 4.3 presents
the ordered histograms of all combination methods (left to right) for comparisons
against RFCOM.
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Figure 4.3: Comparing SI combination strategies against RFCOM ( ) and RFSM
( ). Dark gray columns denote combination methods, while light gray columns
denote SI strategies.

4.4.4 Statistical Analysis of the Results
To compare the results, the null hypothesis of no improvement over the standard
algorithms will be analyzed. Two nonparametric statistical tests, namely, the Fried-
man test [226] for multiple comparisons and the Wilcoxon signed ranks test [227]
for pairwise comparisons, will be conducted. The average rank of the Friedman test
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(AR-Friedman) is presented in the last row of Table 4.3, with the best ranks scored

sequentially as MFO, GA, RFCOM, Mlnom, and GWO. The Friedman statistic that

was distributed according to the chi-square distribution with 14 degrees of freedom

is 84.603, and the computed p-value is smaller than 0.01%.

Next, the Wilcoxon test [227] aims at detecting significant differences between

the two sample means. From Table 4.4, none of the standard combination meth-

ods (Maj, Belief, Stacking, and CW-NN) outperforms RFSM, while our proposed

combination methods (GA, GWO, MFO, and WOA) all significantly outperform

RFSM by 95%. Moreover, the proposed fusion methods are at the same level of

competence as RFCOM. Further, Mlnom cannot outperform RFSM, Maj, or Belief

which extends the superior performance of our proposed methods.

Table 4.4: Summary of the Wilcoxon test. 3= the method in the row improves the
method of the column. ◦= the method in the column improves the method of the row.
Upper diagonal of level significance α = 0.9, lower diagonal level of significance
α = 0.95

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
RFCOM (1) - 3 3 3 3 3 3 3 3 3

RFSM (2) ◦ - 3 3 3 3 3 ◦ ◦ ◦ ◦
DT (3) ◦ - ◦ ◦ ◦ ◦ ◦ ◦
NB (4) ◦ - ◦ ◦ ◦ ◦ ◦ ◦ ◦
Mlnom (5) 3 3 - 3 3 3 3

KNN (6) ◦ ◦ - ◦ ◦ ◦ ◦ ◦ ◦
JRip (7) ◦ ◦ ◦ - ◦ ◦ ◦ ◦ ◦ ◦
Maj (8) ◦ 3 - ◦ 3 3 ◦ ◦ ◦ ◦
Belief (9) 3 3 3 3 - 3 3 ◦ ◦ ◦
CW-NN (10) ◦ ◦ ◦ ◦ ◦ - ◦ ◦ ◦ ◦
Stacking (11) ◦ ◦ ◦ ◦ ◦ - ◦ ◦ ◦ ◦
GA (12) 3 3 3 3 3 3 3 3 3 - ◦ 3

GWO (13) 3 3 3 3 3 3 3 3 - 3

MFO (14) 3 3 3 3 3 3 3 3 3 3 - 3

WOA (15) 3 3 3 3 3 3 3 ◦ ◦ ◦ -

After statistical analysis and according to the average rank of the Friedman test,

we selected {MFO, GA, GWO, Mlnom, Belief, RFSM, RFCOM} and analyzed

the distribution of their prediction accuracy levels. Figure 4.4 presents the range of

the prediction accuracy around the median and how the proposed fusion strategies

realize robust and stable prediction for {D2, D4, D6, D13, D16, D23}.
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Figure 4.4: Distribution of the prediction accuracy.

4.4.5 Exploration of the Research Questions

In this part, we determine whether the research questions of the first objective are

answered or not.

(Q1Q1Q1) The impact of reduced and consistent data on the performance of the en-

semble learning can be identified, but it depends mainly on the building schema of

the ensemble.

– Random forest: RFSM outperformed RFCOM on only 4 datasets, as pre-

sented in the first part of Section 4.4.3.

– Proposed MCS in Section 4.3.2: The simple majority voting (Maj) of the

proposed MCS outperformed RFCOM on 8 datasets (D4, D9, D12, D13, D17,

D21, D24, and D25), while the class degree (Belief) outperformed RFCOM on

11 datasets (D4, D5, D6, D9, D12, D13, D17, D21, D23, D24, and D25).

– The conclusion, IS proved its effectiveness to reduce the training data-size of
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17 datasets by more than 25%. AllKNN, as IS technique, did not prove its

capability to capture the integrity from the whole data. The proposed MCS

could compensate the error of IS method.

(Q2Q2Q2) The search capability of swarm intelligence to enhance the combination

of classifiers has been evaluated and discussed in the last part of Section 4.4.3 with

SI outperforming RFCOM on 14 datasets. The conclusion that SI algorithms are

so effective to optimize the classifiers’ combination function.

4.5 Discussion
The diversity of the proposed MCS is maximized via three steps (bagging, Ham-

ming distance-based feature selection, and heterogeneous classifiers). Sixty percent

of the features are selected randomly for each classifier according to the maximum

Hamming distance over the ensemble. This percentage can be changed or tuned,

or intelligent feature selection can be considered for the construction of the MCS.

The effect of scaling up the data to be handled by this framework has not been

studied in this article. However, this is possible via the application of the stratifi-

cation mechanism [212], via which a huge train can be stratified into several parts

while preserving the class distribution in each part. Then, the reduced data will be

formed by combining the outputs of the application of IS to each part individually.

The proposed method can be successfully used in predictive system learning,

especially if the problem is characterized by high dimensionality due to both the

number of attributes and the number of records.

The time complexity of the proposed framework can be divided into two parts:

The first part is the overhead time complexity, which is proportional to the prop-

erties of the IS method. For that, AllKNN has been selected due to its reasonable

selection time. The second part is the ensemble time complexity, where the MCS

training time will be reduced due to the size of the selected data. In addition, the

weight tuning time for the aggregation of classifier decisions by SI can be con-

trolled by tuning the algorithmic parameters; the population size, and the number

of iterations.

However, similar to popular approaches that are based on deep learning (DL),

the proposed approach is characterized by a relatively high computational com-
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plexity. Therefore, it is not suitable for online learning, e.g., in the case of non-

stationary data classification streams, namely, when the concept drift phenomenon

can occur. Instead, it can be a suitable alternative if the training time is not a critical

parameter from the application perspective.

Nevertheless, the proposed framework can outperform DL methods according

to the following: MCS has less tendency to overfit, especially in this proposed

framework, because heterogeneous classifiers are trained from bootstrapped sam-

ples over various sub-features. DL is based on a complex model that fits a dataset

well. Additionally, MCS can be more easily deployed in production systems than

DL. Moreover, DL requires a large amount of data for success and its training is

complicated as no precise method is available for obtaining the best set of hyper-

parameters [228].

4.6 Conclusions
In this chapter, the application of SI and GA as complementary methods for en-

hancing information fusion in MCS was demonstrated. Calibration weights for

combining multiple decisions have been optimized by considering the decision

(class) of each expert (classifier) from previous results (validation set). Experi-

mentation on the presented fusion framework has been conducted over 25 datasets.

In searching for suitable weights, SI outperformed Stacking, Neural Network, and

Belief. Moreover, fusion by SI outperformed simple majority voting and performed

competitively with Random Forest. The proposed framework consists of two main

connected paradigms: first, the use of instance selection methods for data clean-

ing, followed by the construction of heterogeneous multiple classifiers; second,

the application of an improved weighted fusion of classifiers’ predictions over the

validation set using meta-heuristics.

It is recommended to conduct data reduction (instance selection and feature

selection) prior to the construction of ensemble methods. Hence, the computational

complexities of individual classifiers can be reduced. The reduced amounts of

data can degrade the performance of the classification algorithms. Therefore, this

chapter presents two strategies for increasing the prediction accuracy: First, on the

data level, intelligent sample selection is used to reduce the number of data samples
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and to select relevant data. Second, on the algorithm level, multi classifiers are
designed and their decisions are fused by the search capabilities of meta-heuristic
algorithms. To better evaluate the performances of the new fusion strategies, the
statistically significant differences are calculated via rank-based transformations,
and the superior performance of the moth-flame optimization algorithm (MFO)
is demonstrated. After training on reduced data, SI outperforms Random Forest,
which is trained on nonreduced data, in 14 out of 25 datasets. The distribution
of accuracy levels has been analyzed to evaluate the consistency, robustness, and
stability of the prediction.

In future research, the framework can be enhanced by applying promising re-
duction methods. Furthermore, static and dynamic classifier selection approaches
can be applied to merge a subset of the classifiers instead of all classifiers. Finally,
the hybrid swarm intelligence algorithms and multi-objective optimization will be
used to enhance decision making.
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It is strange that only extraordinary
men make the discoveries, which
later appear so easy and simple.

Georg C. Lichtenberg

CHAPTER

5
A Guided Search for MCS

pruning

In chapter 4, two intelligent paradigms have been discussed to enhance the
performance of MCS. First, on data level via applying IS techniques to learn from
representative samples. Second, on the fusion level via applying SI algorithms to
combine a set of classifiers. However, the complexity of the investigated MCS is
proportional to both the number of classes and the number of individual models.
For example, to solve a 10-class problem using 200 classifiers, each candidate from
the population of SI will be composed of 2000 elements (matrix of 10× 200). This
chapter discusses the alternative procedure to tackle this challenge. First, to keep
on applying the IS techniques in the first part. Second. to perform a guided search
for pruning the generated MCS.

Building ensemble models, in general, requires an answer to the following
questions [141] (1) How many classifiers should we use? (2) What type of clas-
sifiers should be chosen? (3) Which feature subset should be presented to each
classifier? (4) Which combination rules to be used?. To answer the above ques-
tions, the authors in [111, 162] argued that ensemble members should have both
high accuracy and high diversity to gain more. Hence, manipulation of algorithms
[229] and manipulation of the features [86] are answers to 2nd and 3rd questions,
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to obtain different model structures that are trained from diverse feature spaces.

Regarding the combination methods; many strategies, which vary between trained

[229, 230] or untrained [15, 21], have been applied and also been analyzed in [143].

In this chapter, we concentrate on answering the 1st question via overproducing

many learning models followed by ensemble pruning. The general objective is to

improve the overall accuracy, speed up the classification process, and to save the

computational and storage resources.

Despite the remarkable performance of the ensemble methods, a large-size en-

semble can be considered as a drawback. In [37] and related to the investigated

classification tasks, it has been noticed that the ensemble size can be reduced up to

60-80% without significant deterioration to its performance. Therefore, it is prac-

tically useless to keep all the ensemble members for the prediction process. In

addition, when the models are distributed over a network, the reduction of models

leads to the reduction of communication costs [34]. A possible solution to down-

size/prune MCS can be broadly divided into the following five solutions [26, 27]:

• Exhaustive search: Requires an evaluation to all the possible 2T−1 nonempty

subsets of classifiers. However, this is an NP-combinatorial search problem

as the complexity grows exponentially with the ensemble size. Exhaustive

search methods are only applicable when the number of classifiers is small

[231], while they are unfeasible for typical large-size ensembles [23].

• Optimization-based search: Meta-heuristic search methods are the alter-

native to offer huge computational savings. All the search methods in this

category optimize an evaluation metric. The metric can be diversity [232] in

an attempt not to select similar classifiers and to obtain complementary sub-

sets. Another popular metric is to reduce the ensemble error of a particular

combination rule. Genetic Algorithms have been shown to find near-optimal

solutions [132]. Other evolutionary-based search methods showed compara-

ble performance with faster convergence rate such as: Tabu search [233] and

population-based incremental learning [133]. In general, the computational

costs of these techniques are still rather large.

• Sequential search: The following strategies can be applied to find the pre-

ferred ensemble subset;
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- Forward Search: Starts with an empty set followed by sequential ad-

dition, one classifier at a time, and conditioned by enhancing specific

metrics; otherwise, the search stops. There is no guarantee to find the

optimal subensemble.

- Backward Search: The algorithm starts with the whole ensemble size,

and one classifier is removed iteratively without affecting the evaluation

metric. The complexity of this algorithm is the same as in forward

search.

• Clustering-based pruning: Clustering techniques, non-supervised meth-

ods, are used to group similar classifiers together. The formed clusters are

separately pruned to select a high diversity classifiers’ subset. This method-

ology could suffer from cluster instability as mentioned in [234], whereas

an alternative solution is in using hybrid clustering techniques, consensus

clustering, to aggregate different clustering results [26, 235].

• Ranking-based pruning (Ordering-based pruning): Firstly, the classifiers

are ranked based on an evaluation criteria, then the top set in the list is se-

lected. The computational costs of these methods are less in comparison with

the aforementioned solutions. In addition, these methods are more efficient

to work with parallel ensembles where individual classifiers can be built in-

dependently.

In this chapter, a guided search-based pruning method is proposed to consider

both the individual’s accuracy and the ensemble diversity to improve the overall

accuracy, in the light of reduced data in advance. The remainder of this chapter

is organized as follows: In Section 5.1, the motivations and the contributions are

presented. While in Section 5.2, the concept of ensemble pruning via reordering

the classifiers is explained. The proposed framework is to be presented in detail

in Section 5.3. The experimental results are presented in Sections 5.4. Finally,

Section 5.5 will be dedicated for the conclusions and future work.

5.1 Motivations and Contributions
The main contributions of this chapter can be highlighted in the following points:
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1. Forming small-size ensembles with less complex individual models.

2. Proposing a guided search-based ensemble pruning method.

3. Analyzing how the proposed method can be an alternative to large-size en-

sembles.

4. Getting out more accuracy from the reduced data and comparing it with state-

of-art ensembles (Random Forest [4], SAMME [190], and XGBoost [193])

that are trained from nonreduced data.

5.2 Ordering-based Pruning
As mentioned before, those strategies are more promising to select an efficient

subensemble in less computational time. In bagging, the base classifiers are gen-

erated independently based on different bootstrap samples from the training data.

The prediction accuracy of the ensemble is positively correlated with the number

of aggregated models. Notwithstanding, the accuracy of the ensemble levels off

after some point. After this point the inclusion of further models becomes useless.

As shown in [23, 35], the general accuracy (error) can be maximized (minimized)

by changing the order in which the classifiers are aggregated. The authors proved

that the first 20% from the modified ordered bagging ensemble was sufficient to

speed up the classification decision, to save memory storage, and to get an im-

proved composite prediction. The core component in the ordering strategies is the

heuristic metric used to give the ordering process. That metric exploits the ag-

gregation relationship between the classifiers based on maximizing (minimizing)

specific measure as in greedy search [31, 35, 37] or rank the significance of each

base classifier in one batch as in [24, 32, 36]. These ordering metrics require a se-

lection or pruning set composed of labeled samples, Dpr, to validate and guide the

ordering process. For that, the pruning set can be an independent part, not used for

training, or can be sampled from the original training. After that, the predictions of

the selected classifiers are aggregated by unweighted voting as:

Ψ̂(xi) = arg max
yi∈M

T̂∑
k=1

[Ψk(xi) = yi] (5.1)
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where [ ] denotes Iverson’s bracket and T̂ represents the subensemble size. As a

promising strategies, we concentrate on common ordering-based pruning methods

from the literature review with the discovered challenges.

5.2.1 Diversity Contribution of Individuals

Ensemble Pruning via Individual Contributions (EPIC) is introduced in [32]. The

appropriate handling of the trade-off between diversity and the accuracy of the

ensemble members is the key to gain efficient ensemble models [123, 162, 236].

Increasing the accuracy of individual models leads to producing similar classifiers,

in their decisions, with less integration in-between [32] due to lack of diversity.

Two research assumptions have been mentioned in [32] with deep analysis of the

first one: (1) When two ensembles have individual models with the same accuracy,

the more diverse ensemble should perform better. (2) When two ensembles are

similarly diverse, the one which has more accurate individuals should perform bet-

ter. These two assumptions represent the balance between ensemble diversity and

the individual’s accuracy, respectively. The classifier’s rank shouldn’t be assigned

based on its accuracy alone, but further on how it is more diverse with the majority

voting of the ensemble (different from peer members).

During the simple majority voting over a specific sample xi, the classifier’s

prediction can be categorized into one of four cases (a) Correct Prediction, but

ensemble prediction is incorrect (b) Correct Prediction and ensemble prediction is

also correct (c) Incorrect Prediction, but ensemble prediction is correct (d) Incorrect

Prediction and ensemble prediction is incorrect. The classifiers belong to case (a)

are more critical to change the ensemble decision by giving them higher priority

to be selected, hence reducing the effect of negative voting. While classifiers in

the category (c) receive a lower rank, even their presence in the ensemble is less

harmful.

EPIC [32] measures the diversity contribution of each individual via Equation

(5.2), where ν(i)
max, ν

(i)
sec are the number of votes for the top two classes over sample

xi respectively. While ν(i)
Ψk(xi) denotes the number of classifiers that agree with the

prediction Ψk(xi) (including itself), and ν
(i)
correct denotes number of votes of the

correct prediction over sample xi.
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ICk =
N∑
i=1

(
αki (2ν(i)

max − ν
(i)
Ψk(xi)) + βki ν

(i)
sec + θki (ν

(i)
correct − ν

(i)
Ψk(xi) − ν

(i)
max)

)
(5.2)

Where:

αki =

{
1 if Ψk(xi) = yi ∧Ψk(xi) is in the minority voting;
0 otherwise.

βki =

{
1 if Ψk(xi) = yi ∧Ψk(xi) is in the majority voting;
0 otherwise.

θki =

{
1 if Ψk(xi) 6= yi;

0 otherwise.

In [32], the authors concluded that classifiers that have more votes in the mi-

nority groups bring more diversity contributions to the ensemble and contain more

useful knowledge for constructing subensembles. Those classifiers are assigned a

higher positive degree of contribution for their correct prediction and less negative

degree of contribution for their incorrect prediction.

5.2.2 Unsupervised Ensemble Margin

Unsupervised Margin based Ensemble Pruning (UMEP) has been proposed in [24]

with the focus on classifier properties to classify the hard patterns correctly. The

innovation of this metric is based on measuring the margin of xi. The larger the

margin of xi the more certain its classification is. As in boosting [5], the idea of

this method is to focus on low margin instances. The absolute margin of xi can be

measured from ensemble decisions as:

Margin(xi) = (νmax − νsec)
/ M∑

i=1

(νci) (5.3)

This measure considers only the difference between the votes of the top two

classes (νmax, νsec) over the sample xi. For that, it is an unsupervised measure that

does not require the true class label. Here the margin takes a value in the interval
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[0, 1]. The set of samples, xi ∈ Dpr, that are classified correctly by each classifier

will be considered for calculating it’s margin-based information quantity as:

Ψk(Dpr) =
−1

N

N∑
i=1

log (Margin(xi))
∣∣∣Ψk(xi) = yi (5.4)

Then, the classifiers are ranked based on descending the measured values from

Equation (5.4). The more hard samples which are predicted correctly by the clas-

sifier, the more rank it receives to be included in the subensemble.

5.2.3 Margin & Diversity

Margin and Diversity-based Ensemble Pruning (MDEP) [36] considers two aspects

to better reorder the set of classifiers: (1) focusing on examples with small ab-

solute margin and (2) focusing on classifiers with large diversity contribution to

the ensemble. The MDEP measures the rank of each classifier via Equation (5.5)

∀xi ∈ Dpr

∣∣Ψk(xi) = yi.

MDEP(Ψk) =
∑

xi∈Dpr

[
αfm(xi) + (1− α)fd(Ψk, xi)

]
(5.5)

Where α ∈ [0, 1] represents the balance of importance between the margin of

examples and the ensemble diversity. fm(xi) and fd(Ψk, xi) are the log functions

of xi’s margin and Ψk’s diversity contribution on xi, are calculated via Equation

(5.6) and Equation (5.7), respectively. Where ȳi 6= yi is the class that receives

the maximum number of votes on xi. The challenge of the MDEP metric is the

dependence on the predefined value of α that controls the trade-off between focus-

ing on classifiers that correctly predict hard samples or focusing on classifiers that

increase ensemble’s diversity.

fm(xi) = log

(∣∣∣∣∣ν
(i)
yi − ν

(i)
ȳi

M

∣∣∣∣∣
)

(5.6)

fd(Ψk, xi) = log

(
ν

(i)
yi

M

)
(5.7)
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Determining the value of α is not a trivial task and should be analyzed for each

dataset separately. It can be tuned by searching for the best value in the range

[0,1] through the cross-validation process, which is a time-consuming procedure.

Increasing the value of α directs the search process to select a subensemble that

better classifies low margin samples. While reducing the value of α enforces the

search process to select a subensemble with high diversity. We praise with the

effect of α that has been discussed in [36], in an attempt to capture this conflict, but

restricted with parameter tuning.

Our contribution related to this part is to propose a guided search pruning

method that handles the bias in the subensemble search strategy. We prove how

our proposed method is stable with different datasets without assuming any param-

eters in advance. Furthermore, this chapter discusses the importance of the instance

selection method to form simpler ensembles. Moreover, in the literature review; the

performance of the pruned ensemble often compared with the unpruned one. Here

we extend this level of comparisons to include several baseline and efficient ensem-

ble models as: Random Forest [4], SAMME [190], and XGBoost [193]. The next

section discusses the proposed method to introduce a dual reduction to the formed

ensemble.

5.3 Proposed Framework
The proposed framework is graphically presented in Figure 5.1. The training fold is

reduced by AllKNN [220] as an instance selection method to select representative

samples. The selected data by AllKNN will be the source to build a group of

heterogeneous classifiers. A pruning set is formed using stratified sampling with

70% from the train. The pruning set will be the source to rank the individual

classifiers during ensemble selection. Using this methodology, the following state-

of-art ensembles will be trained for comparison purposes:

- RFSM: Random Forest [4] is learned from the selected data.

- UNP: The proposed heterogeneous classifiers, Section (4.3.2), without prun-

ing learned from the selected data.

- RFCOM: Random Forest is learned from the whole training data.
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- SAMME: (Stagewise Additive Modeling using a Multi-class Exponential

loss function [190]), which is trained from whole training data and extends

the AdaBoost algorithm to the multiclass case.

- XGBoost: eXtreme Gradient Boosting decision tree [193] which is trained

from the whole training data.
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Figure 5.1: The proposed ensemble selection in the presence of selected samples.

The two phases for cleaning noisy border samples, Section 4.3.1, and build-

ing heterogeneous MCS, Section 4.3.2, will not be changed. While we propose

a guided search to prune the proposed ensemble. Therefore, we benefit from IS

techniques and ensemble selection, rather than training large-size ensembles from

large-size training data.

The Proposed Guided Search for Ensemble Pruning: Having a large-size

ensemble will limit the search capability of the well-known pruning metrics. As

each pruning metric puts pressure to select a subset of classifiers with a specific
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property. For example, EPIC [32] concentrates on the classifier’s diversity with

the peer members. While UMEP [24] focuses more to select classifiers that be-

have well with low-margin samples. Regarding that, and with the large pool size of

classifiers, the performance of the current pruning methods could vanish. Experi-

mentally, Fig. 5.2 shows the generalized accuracy of the identified subensemble via

different pruning methods, UMEP and EPIC, from different ensemble sizes. From

Fig. 5.2, we confirm that each metric is more important to a particular dataset. We

conclude that paying no attention to other heuristic information affects the search

process badly, and returns a subensemble with a limited accuracy.
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Figure 5.2: The conflict between both EPIC and UMEP, to be handled in this chapter.

Inspired by the above analysis, we can narrow the original search space by di-

recting the search to promising areas. This is what EPIC and UMEP return, each

metric recommends a subspace according to their heuristic measures. Preferring

one metric over the other will blinds a subspace that could contain crucial informa-

tion. The two ordering-based pruning techniques, EPIC [32] and UMEP [24], will

be applied to determine the promising subspaces in advance. After that, the search

process can be started. The details are as follows:

• Each metric will rank the set of classifiers differently, but at least there will

be common classifiers in-between.

• After ranking, a predetermined percentage, P , will be used to select a subset
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of classifiers.

• A narrow space carrying the properties of both metrics will be formed via

merging their output subsets, as in Fig. 5.1.

• The new subspace will be searched via Forward Search (FS) 1, Backward

Search (BS)1, Hill Climbing (HC) [237], Simulated Annealing (SA) [237],

Binary Grey Wolf Optimizer (BGWO) [238], and Binary Genetic Algorithm

(GA)2.

Via guided search, we try to alleviate the randomness of the search process that

could increase with large-size ensembles. To the best of our knowledge, this work

is the first to handle the conflict between EPIC and UMEP. Moreover, it can be cat-

egorized as ensembling the pruning metrics themselves to get better performance

than each of them.

5.4 Experimental Results
The experiments are dedicated to achieving objective 2, to increase the efficiency

of MCS, and to go beyond what can be achieved from ensemble pruning methods.

The two main questions to be answered are:

• Q3Q3Q3. What is the effect of combining multiple pruning metrics together?

• Q4Q4Q4. What is the effect of downsizing data and downsizing the number of classifiers

simultaneously?

5.4.1 Setup of Experiments

During setup and validation, all datasets are preprocessed by unifying the scale of

the features via normalization. For each dataset, 20 repetitions with 5 fold cross-

validation procedure are considered. Thus, a total of 100 runs per dataset. The

accuracy metric is calculated by the majority voting of all ensemble members. In

addition, MDEP depends on an internal parameter α; three values for MDEP with

different α ∈ {0.1, 0.5, 0.9} are considered, and the best-optimized alpha according

to the in train-validation is used to report the test for each dataset separately.

1Package Fselector:https://cran.r-project.org/web/packages/FSelector
2Package genalg:https://cran.r-project.org/web/packages/genalg
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A total number of 25 datasets captured from OpenML1 and KEEL 2 are used in

this work in order to provide experimentation. The characteristics of data can be

found in Table 5.1, where #S, #F, #C, and R represent the number of samples, the

number of features, the number of classes, and the ratio between the smallest and

the largest class for each dataset respectively.

Table 5.1: Characteristics of the selected datasets for experimentation, sorted by sam-
ples and classes.

DataSet #S #F #C R DataSet #S #F #C R
Heart-statlog 270 13 2 0.8 Waveform 4 999 21 3 0.972
Heart-c 303 13 2 0.836 Cleveland 297 13 5 0.081
Ionosphere 351 33 2 0.56 Dermatology 358 34 6 0.18
Sa-heart 462 9 2 0.529 Satimage 6 435 36 6 0.408
Wdbc 569 30 2 0.594 Segment 2 310 18 7 1.0
Breast-w 699 9 2 0.526 Mfeat-fourier 2 000 76 10 1.0
Australian 690 14 2 0.802 Mfeat-karh 2 000 64 10 1.0
Blood-transfusion 748 4 2 0.312 Mfeat-zernike 2 000 47 10 1.0
Mammographic 830 5 2 0.944 Led24 3 200 24 10 0.878
Diabetic Retinopathy 1 151 19 2 0.884 Optdigits 5 620 62 10 0.969
Abalone 4 177 8 2 0.464 Penbased 10 992 16 10 0.922
Ringnorm 7 400 20 2 0.981 Texture 5 500 40 11 1.0
Twonorm 7 400 20 2 0.998

5.4.2 Analysis of Guided Search

In this section, we concentrate on the performance of the proposed ensemble selec-

tion strategy. Table 5.2 shows the accuracy of subensemble related to percentage

P from the ensemble size T . Each row in Table 5.2 represents the average of

5,000 records of experiments (dataset=25 · runs=100 · P=2). From this table, the

highest accuracy can be obtained by XGBoost, and BS which merges EPIC and

UMEP subspaces to exploit efficient classifiers. Moreover, the general accuracy is

elevated as more classifiers are selected (P=20%). It is interesting to observe that

for T = 200, SAMME, RFCOM, RFSM, and UNP realize an accuracy lower than

85.99% that is reported by BS when it uses 12 classifiers. Regarding that, the pro-

posed guided search from a low-size ensemble, T = 50, cancels the necessity to

1Machine Learning Repository: https://www.openml.org
2KEEL Repository: http://www.keel.es/
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initialize large-size ensembles. This could save huge training costs without losing

the accuracy.

The average subensemble size related to the predetermined P value is shown in

Table 5.3. Where FS guarantees to return a small-size subensemble, but unfortu-

nately not accurate as shown in Table 5.2. Furthermore, we can notice the perfor-

mance of HC, SA, and BGWO according to both the accuracy and the subensemble

size. The statistical analysis of the proposed pruning strategies shows that BS sig-

nificantly outperforms the other five search methods (FS, HC, SA, BGWO, and

GA) to identify a high accurate subensemble. Therefore, it is interesting to com-

pare BS with EPIC, UMEP, and MDEP.

Table 5.2: The average accuracy of subensemble related to selection percentage (P )
of EPIC and UMEP, results over all datasets.

T XGBoost SAMME RFCOM RFSM UNP EPIC UMEP MDEP FS BS HC SA BGWO GA P

50 86.60 84.46 85.67 85.10 85.00
84.41 85.32 84.49 84.17 85.55 85.34 85.29 85.40 83.38 10%
85.34 85.78 85.34 84.30 85.99 85.74 85.72 85.78 84.88 20%

100 86.60 84.88 85.86 85.23 85.15
85.14 85.75 85.40 84.50 86.11 85.85 85.87 85.85 85.17 10%
85.94 86.12 85.97 84.61 86.33 86.14 86.14 86.15 85.65 20%

150 86.53 84.99 85.95 85.28 85.23
85.46 86.13 85.81 84.72 86.28 86.11 86.12 86.09 85.47 10%
86.06 86.34 86.16 84.76 86.47 86.33 86.31 86.31 85.83 20%

200 86.57 85.06 85.96 85.27 85.26
85.57 86.29 85.93 84.68 86.41 86.28 86.24 86.18 85.71 10%
86.18 86.46 86.30 84.75 86.56 86.46 86.42 86.33 85.95 20%

Table 5.3: The average size of subensemble related to selection percentage (P ) of
EPIC and UMEP, results over all datasets.

XGBoost SAMME RFCOM RFSM UNP EPIC UMEP MDEP FS BS HC SA BGWO GA P

50
5 1.83 6.62 5.06 5.03 5.22 2.74 10%

10 2.06 12.37 8.00 7.89 7.89 4.77 20%

100
10 2.13 13.69 8.55 8.48 8.41 5.03 10%
20 2.31 25.90 14.30 14.42 13.19 6.74 20%

150
15 2.32 20.99 12.01 12.06 11.35 6.13 10%
30 2.50 39.69 20.94 20.84 18.54 7.95 20%

200
20 2.41 28.54 15.56 15.59 12.49 6.86 10%
40 2.55 53.55 27.54 27.65 19.37 8.98 20%

To answerQ3Q3Q3, Table 5.4 illustrates the average accuracy and standard deviation

via BS, EPIC, UMEP, and MDEP for 100 runs per dataset. As shown, BS obtains

the best average rankings by Friedman Test [239], AR-Friedman, to select an effec-

tive subensemble. EPIC-10%, UMEP-10%, and MDEP-10% return a subensemble

with 20 classifiers, while BS-10 returns a large-size subensemble, as demonstrated
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Table 5.4: Classification accuracy of BS, EPIC, UMEP, and MDEP for selecting subensemble from T = 200 model, the best value
is in bold.

# Dataset BS-10 EPIC-10% UMEP-10% MDEP-10% BS-20 EPIC-20% UMEP-20% MDEP-20%

D1 Abalone 69.88 ± 1.21 66.73 ± 2.39 69.83 ± 1.04 69.78 ± 1.12 70.04 ± 1.14 68.11 ± 1.80 69.85 ± 1.00 69.96 ± 1.12

D2 Australian 86.58 ± 2.47 84.60 ± 3.17 86.59 ± 2.65 86.37 ± 2.76 86.50 ± 2.60 85.47 ± 2.62 86.43 ± 2.65 86.25 ± 2.80

D3 Blood-transfusion 77.19 ± 2.30 73.88 ± 4.73 77.00 ± 2.40 76.51 ± 2.61 77.64 ± 2.22 76.22 ± 3.65 77.17 ± 2.08 77.22 ± 2.08

D4 breast-w 96.99 ± 1.20 96.63 ± 1.39 96.99 ± 1.28 97.00 ± 1.40 97.12 ± 1.23 96.87 ± 1.30 97.13 ± 1.25 97.13 ± 1.31

D5 Cleveland 57.25 ± 4.27 54.98 ± 5.84 57.52 ± 3.41 57.06 ± 3.43 57.96 ± 3.66 57.41 ± 4.27 57.84 ± 3.12 57.56 ± 3.10

D6 Dermatology 97.63 ± 1.69 97.40 ± 1.79 97.50 ± 1.80 97.49 ± 1.74 97.53 ± 1.72 97.32 ± 1.89 97.56 ± 1.62 97.63 ± 1.65

D7 Diabetic 70.77 ± 2.99 69.71 ± 2.59 70.89 ± 3.28 70.71 ± 2.96 69.81 ± 3.10 69.63 ± 2.75 70.26 ± 3.20 70.49 ± 3.00

D8 Heart-c 82.83 ± 4.55 82.75 ± 4.38 82.25 ± 4.76 82.06 ± 4.68 83.61 ± 4.26 83.53 ± 4.25 82.72 ± 4.58 83.12 ± 4.33

D9 Heart-statlog 83.02 ± 4.29 81.13 ± 4.14 82.94 ± 4.21 83.24 ± 4.29 83.46 ± 4.27 82.57 ± 4.45 83.11 ± 4.07 83.70 ± 4.26

D10 Ionosphere 92.54 ± 2.85 92.07 ± 2.83 91.67 ± 3.09 92.14 ± 2.59 92.34 ± 2.75 92.41 ± 2.61 91.93 ± 2.89 92.49 ± 2.74

D11 Led24 71.62 ± 1.54 71.16 ± 1.74 71.58 ± 1.51 65.89 ± 4.76 71.89 ± 1.45 71.75 ± 1.46 71.78 ± 1.45 68.66 ± 3.79

D12 Mammographic 83.76 ± 2.51 83.05 ± 2.55 83.72 ± 2.54 83.56 ± 2.47 83.89 ± 2.36 83.37 ± 2.64 84.00 ± 2.32 84.05 ± 2.27

D13 Mfeat-fourier 81.41 ± 1.55 80.34 ± 1.76 80.97 ± 1.62 80.41 ± 1.67 81.41 ± 1.62 80.89 ± 1.65 81.34 ± 1.56 81.12 ± 1.63

D14 Mfeat-karh 96.08 ± 0.88 95.67 ± 0.99 96.05 ± 0.86 95.99 ± 1.13 96.31 ± 0.89 96.19 ± 0.86 96.27 ± 0.85 96.28 ± 0.96

D15 Mfeat-zernike 82.05 ± 1.47 81.94 ± 1.58 82.08 ± 1.49 81.49 ± 1.58 82.38 ± 1.39 82.19 ± 1.52 82.48 ± 1.44 82.20 ± 1.41

D16 Optdigits 98.53 ± 0.32 98.50 ± 0.34 98.54 ± 0.34 98.53 ± 0.34 98.61 ± 0.32 98.61 ± 0.31 98.60 ± 0.31 98.59 ± 0.30

D17 Penbased 99.15 ± 0.19 99.15 ± 0.18 99.10 ± 0.19 99.03 ± 0.71 99.20 ± 0.16 99.21 ± 0.16 99.19 ± 0.17 99.10 ± 0.69

D18 Ringnorm 96.36 ± 0.54 95.94 ± 0.55 95.92 ± 0.56 96.00 ± 0.51 96.50 ± 0.48 96.33 ± 0.51 96.33 ± 0.51 96.37 ± 0.49

D19 Sa-heart 70.49 ± 4.17 69.44 ± 4.33 70.64 ± 3.90 70.47 ± 3.53 70.98 ± 4.06 70.50 ± 4.30 70.98 ± 3.86 71.25 ± 3.65

D20 Satimage 90.12 ± 0.78 90.04 ± 0.80 90.00 ± 0.81 89.70 ± 1.46 90.16 ± 0.72 90.17 ± 0.75 90.05 ± 0.77 89.81 ± 1.39

D21 Segment 96.56 ± 0.74 96.34 ± 0.74 96.41 ± 0.69 96.20 ± 1.02 96.61 ± 0.77 96.61 ± 0.77 96.54 ± 0.74 96.51 ± 0.87

D22 Texture 99.62 ± 0.20 99.61 ± 0.20 99.60 ± 0.19 99.62 ± 0.18 99.63 ± 0.18 99.63 ± 0.19 99.63 ± 0.19 99.63 ± 0.16

D23 Twonorm 97.31 ± 0.40 97.04 ± 0.42 97.14 ± 0.41 97.09 ± 0.45 97.55 ± 0.35 97.38 ± 0.39 97.46 ± 0.38 97.47 ± 0.42

D24 Waveform 85.04 ± 0.94 83.82 ± 0.98 84.95 ± 1.0 84.82 ± 1.13 85.42 ± 0.93 84.59 ± 1.00 85.41 ± 0.95 85.34 ± 1.07

D25 Wdbc 97.42 ± 1.66 97.34 ± 1.68 97.35 ± 1.68 97.16 ± 1.58 97.49 ± 1.56 97.52 ± 1.46 97.48 ± 1.63 97.34 ± 1.58

AR-Friedman 3.92 7.16 5.32 6.36 2.06 4.56 3.32 3.3
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in Table. 5.3. While the size and the accuracy of the subensemble are important,

Table 5.5 shows the pairwise statistical analysis [227] for calibration between them.

From Table 5.5, BS-10 is comparable with EPIC-20%, UMEP-20%, and MDEP-

20% in terms of accuracy, however, it significantly outperforms them regarding the

subensemble size. Furthermore, the obtained subensemble’s accuracy by BS-20

significantly outperforms all the pruning methods, this is marked by (N). The user

has more flexibility to prefer a high accurate subensemble (N), the lower part of the

table, or to prefer a small-size subensemble (•) as in the upper part.

Table 5.5: Summary of the Wilcoxon test. Shape denotes the measure used, accu-
racy (N 4) and size (•◦). The filled shape (N •) represents if the method in the row
outperforms the one in the column or vice versa for (4 ◦). Upper diagonal of level
significance α = 0.9, lower diagonal level of significance α = 0.95.

(1) (2) (3) (4) (5) (6) (7) (8)

BS-10 (1) - - N ◦ N ◦ N ◦ 4 • • • •

EPIC-10% (2) 4 • - - 4 4 4 • 4 • 4 • 4 •

UMEP-10% (3) 4 • N - - N 4 • • 4 • 4 •

MDEP-10% (4) 4 • 4 - - 4 • • 4 • 4 •

BS-20 (5) N ◦ N ◦ N ◦ N ◦ - - N ◦ N ◦ N ◦

EPIC-20% (6) ◦ N ◦ ◦ ◦ 4 • - - 4 4

UMEP-20% (7) ◦ N ◦ N ◦ N ◦ 4 • N - -

MDEP-20% (8) ◦ N ◦ N ◦ N◦ • N - -

5.4.3 Classification Performance of the Proposed Method

To answerQ4Q4Q4, we focus on the effectiveness of the proposed method to learn from

representative samples and to reduce the bias of the pruning method via integrating

both EPIC and UMEP. Both T , P will be 200 and 20% respectively to realize

higher accuracy as demonstrated in Table 5.2. The results are shown in Table 5.6

to report the performance of fourteen ensemble/subensemble models:

- RFCOM, SAMME, and XGBoost, large-size ensembles which are trained

from non-reduced datasets. They are called Non-Reduced Data Non-Selected

Ensembles (NRD-NSE).

- RFSM and UNP, large-size ensembles which are trained from reduced datasets.

They are called Reduced Data Non-Selected Ensembles (RD-NSE).
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Table 5.6: Average accuracy and standard deviation of NRD-NSE, RD-NSE, and RD-SE from ensemble size T = 200. The best
value is in bold, while the second best is underlined.

AllKNN NRD-NSE RD-NSE RD-SE

# Dataset Red Rate XGBoost SAMME RFCOM RFSM UNP EPIC UMEP MDEP FS BS HC SA BGWO GA

D1 Abalone 0.47 69.05± 1.29 69.67 ± 1.21 69.11 ± 1.27 69.99 ± 1.07 69.52 ± 0.64 68.11 ± 1.80 69.85 ± 1.00 69.96 ± 1.12 68.60 ± 1.46 70.04 ± 1.14 69.90 ± 1.12 70.00 ± 1.19 69.81 ± 1.10 69.58 ± 1.12

D2 Australian 0.26 87.22 ± 2.60 86.50 ± 2.36 87.12 ± 2.56 86.33 ± 2.58 86.05 ± 2.46 85.47 ± 2.62 86.43 ± 2.65 86.25 ± 2.80 86.17 ± 2.53 86.50 ± 2.60 86.64 ± 2.42 86.60 ± 2.45 86.44 ± 2.51 86.10 ± 2.68

D3 Blood-transfusion 0.49 77.55 ± 2.25 74.50 ± 2.60 75.51 ± 2.43 77.22 ± 2.60 76.90 ± 1.45 76.22 ± 3.65 77.17 ± 2.08 77.22 ± 2.08 77.23 ± 2.35 77.64 ± 2.22 77.79 ± 2.16 77.75 ± 2.19 77.51 ± 1.97 77.31 ± 2.36

D4 Breast-w 0.06 96.55 ± 1.38 96.88 ± 1.19 97.09 ± 1.22 96.61 ± 1.39 97.42 ± 1.17 96.87 ± 1.30 97.13 ± 1.25 97.13 ± 1.31 96.11 ± 1.55 97.12 ± 1.23 97.07 ± 1.28 97.09 ± 1.24 97.02 ± 1.17 96.78 ± 1.35

D5 Cleveland 0.55 56.15 ± 4.30 53.02 ± 5.11 57.14 ± 3.75 56.49 ± 2.79 56.50 ± 2.88 57.41 ± 4.27 57.84 ± 3.12 57.56 ± 3.10 56.39 ± 3.82 57.96 ± 3.66 57.74 ± 3.60 57.51 ± 3.72 57.86 ± 3.30 57.20 ± 3.85

D6 Dermatology 0.07 97.96 ± 1.57 96.69 ± 1.77 97.45 ± 1.55 97.44 ± 1.46 97.46 ± 1.65 97.32 ± 1.89 97.56 ± 1.62 97.63 ± 1.65 96.00 ± 2.22 97.53 ± 1.72 97.53 ± 1.61 97.61 ± 1.76 97.26 ± 1.80 96.64 ± 1.95

D7 Diabetic 0.55 68.99 ± 2.55 69.14 ± 2.76 67.86 ± 2.82 65.83 ± 2.82 66.38 ± 2.94 69.63 ± 2.75 70.26 ± 3.20 70.49 ± 3.00 70.90 ± 3.15 69.81 ± 3.10 69.97 ± 3.13 69.80 ± 3.02 70.08 ± 3.07 70.19 ± 3.34

D8 Heart-c 0.32 83.85 ± 4.96 79.88 ± 4.75 83.00 ± 4.60 82.18 ± 4.35 83.22 ± 4.49 83.53 ± 4.25 82.72 ± 4.58 83.12 ± 4.33 79.91 ± 4.99 83.61 ± 4.26 83.59 ± 4.37 83.22 ± 4.64 83.39 ± 4.24 82.21 ± 4.62

D9 Heart-statlog 0.34 83.93 ± 4.40 79.28 ± 5.02 82.78 ± 4.34 81.30 ± 4.99 83.07 ± 4.71 82.57 ± 4.45 83.11 ± 4.07 83.70 ± 4.26 80.35 ± 5.14 83.46 ± 4.27 83.31 ± 4.32 83.33 ± 4.24 82.78 ± 4.42 82.67 ± 3.92

D10 Ionosphere 0.19 92.95 ± 3.02 93.70 ± 2.26 93.26 ± 2.53 91.08 ± 2.75 89.67 ± 2.98 92.41 ± 2.61 91.93 ± 2.89 92.49 ± 2.74 90.69 ± 3.53 92.34 ± 2.75 92.44 ± 2.94 92.25 ± 2.75 92.34 ± 2.88 92.21 ± 2.86

D11 Led24 0.68 72.56 ± 1.43 66.40 ± 1.41 72.21 ± 1.40 71.55 ± 1.63 70.02 ± 1.76 71.75 ± 1.46 71.78 ± 1.45 68.66 ± 3.79 70.38 ± 2.23 71.89 ± 1.45 71.75 ± 1.58 71.73 ± 1.51 71.72 ± 1.55 71.29 ± 1.58

D12 Mammographic 0.35 82.56 ± 2.66 79.81 ± 2.36 81.76 ± 2.49 82.20 ± 2.43 82.06 ± 2.51 83.37 ± 2.64 84.00 ± 2.32 84.05 ± 2.27 82.96 ± 2.77 83.89 ± 2.36 83.67 ± 2.45 83.73 ± 2.44 83.57 ± 2.45 83.39 ± 2.39

D13 Mfeat-fourier 0.28 83.47 ± 1.86 82.33 ± 1.64 83.07 ± 1.53 80.45 ± 1.52 80.14 ± 1.50 80.89 ± 1.65 81.34 ± 1.56 81.12 ± 1.63 76.67 ± 2.46 81.41 ± 1.62 80.91 ± 1.63 80.96 ± 1.77 80.68 ± 1.57 79.89 ± 1.88

D14 Mfeat-karh 0.07 95.28 ± 0.99 96.09 ± 0.95 96.25 ± 0.87 95.46 ± 0.94 96.13 ± 0.88 96.19 ± 0.86 96.27 ± 0.85 96.28 ± 0.96 92.14 ± 2.14 96.31 ± 0.89 96.06 ± 0.87 96.06 ± 0.86 95.77 ± 1.00 95.23 ± 0.98

D15 Mfeat-zernike 0.26 81.73 ± 1.52 80.12 ± 1.65 77.87 ± 1.49 76.20 ± 1.45 80.72 ± 1.24 82.19 ± 1.52 82.48 ± 1.44 82.20 ± 1.41 78.22 ± 2.28 82.38 ± 1.39 82.20 ± 1.37 82.14 ± 1.35 81.92 ± 1.40 81.58 ± 1.57

D16 Optdigits 0.02 98.13 ± 0.39 98.14 ± 0.36 98.32 ± 0.35 98.00 ± 0.38 98.09 ± 0.38 98.61 ± 0.31 98.60 ± 0.31 98.59 ± 0.30 97.14 ± 0.66 98.61 ± 0.32 98.51 ± 0.34 98.51 ± 0.34 98.42 ± 0.41 98.10 ± 0.49

D17 Penbased 0.01 99.13 ± 0.20 98.73 ± 0.26 99.16 ± 0.19 99.01 ± 0.20 98.22 ± 0.27 99.21 ± 0.16 99.19 ± 0.17 99.10 ± 0.69 97.57 ± 0.62 99.20 ± 0.16 99.14 ± 0.18 99.15 ± 0.16 99.12 ± 0.19 98.93 ± 0.25

D18 Ringnorm 0.32 96.67 ± 0.41 97.24 ± 0.36 95.04 ± 0.56 93.09 ± 0.78 86.69 ± 1.15 96.33 ± 0.51 96.33 ± 0.51 96.37 ± 0.49 92.89 ± 0.63 96.50 ± 0.48 96.43 ± 0.48 96.32 ± 0.49 96.43 ± 0.49 95.89 ± 0.80

D19 Sa-heart 0.49 72.82 ± 3.75 64.57 ± 4.28 68.83 ± 4.14 70.57 ± 4.03 71.41 ± 3.77 70.50 ± 4.30 70.98 ± 3.86 71.25 ± 3.65 69.29 ± 4.29 70.98 ± 4.06 70.67 ± 3.91 70.72 ± 4.05 70.38 ± 4.13 70.07 ± 4.24

D20 Satimage 0.14 92.08 ± 0.67 88.72 ± 0.78 91.71 ± 0.71 89.84 ± 0.71 88.70 ± 0.78 90.17 ± 0.75 90.05 ± 0.77 89.81 ± 1.39 89.76 ± 0.80 90.16 ± 0.72 90.10 ± 0.74 90.12 ± 0.74 89.96 ± 0.77 89.67 ± 0.72

D21 Segment 0.06 98.08 ± 0.67 98.43 ± 0.60 97.89 ± 0.69 96.53 ± 0.83 95.94 ± 0.90 96.61 ± 0.77 96.54 ± 0.74 96.51 ± 0.87 94.92 ± 1.38 96.61 ± 0.77 96.57 ± 0.80 96.59 ± 0.84 96.69 ± 0.87 96.44 ± 0.90

D22 Texture 0.02 98.37 ± 0.38 98.56 ± 0.40 97.77 ± 0.47 97.14 ± 0.50 98.40 ± 0.35 99.63 ± 0.19 99.63 ± 0.19 99.63 ± 0.16 99.27 ± 0.39 99.63 ± 0.18 99.59 ± 0.21 99.60 ± 0.21 99.60 ± 0.21 99.52 ± 0.25

D23 Twonorm 0.08 97.29 ± 0.38 97.31 ± 0.38 97.23 ± 0.41 97.12 ± 0.39 97.69 ± 0.37 97.38 ± 0.39 97.46 ± 0.38 97.47 ± 0.42 94.85 ± 1.41 97.55 ± 0.35 97.38 ± 0.40 97.35 ± 0.41 97.25 ± 0.43 96.86 ± 0.48

D24 Waveform 0.32 85.24 ± 1.05 83.43 ± 1.05 85.39 ± 0.99 84.78 ± 1.06 84.87 ± 1.16 84.59 ± 1.00 85.41 ± 0.95 85.34 ± 1.07 83.80 ± 1.12 85.42 ± 0.93 85.16 ± 0.89 85.10 ± 1.04 84.90 ± 1.03 84.22 ± 1.19

D25 Wdbc 0.07 96.74 ± 1.66 97.29 ± 1.60 96.23 ± 1.52 95.28 ± 1.75 96.17 ± 1.85 97.52 ± 1.46 97.48 ± 1.63 97.34 ± 1.58 96.46 ± 2.00 97.49 ± 1.56 97.35 ± 1.51 97.34 ± 1.49 97.48 ± 1.49 96.80 ± 1.72

AR-Friedman 6.04 9.62 7.76 10.82 9.86 7.08 4.98 5.3 11.84 3.22 5.42 5.84 7.02 10.2
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- EPIC, UMEP, MDEP, FS, BS, HC, SA, BGWO, and GA, small-size ensem-

bles which are trained from reduced datasets. They are called Reduced Data

Selected Ensembles (RD-SE).

The percentage of instances removed from the training set is represented by the

reduction rate, Red Rate, of AllKNN [220]. The reduction rate shows the possi-

bility of forming simpler ensembles. Especially here, where the instance selection

method is applied once, regardless of how many classifiers could be generated. The

reduction reaches around 35% for {D8, D9, D12, D24}. While it reaches around

50% for {D1,D3,D5,D7,D19}. BS outperforms both RFCOM and SAMME in 18

datasets. The marked performance of BS is realized while depending on 54 classi-

fiers, on average, instead of 200 classifiers by RFCOM and SAMME. Furthermore,

BS is comparable with XGBoost where BS wins in 14 out of 25 datasets.

The average rankings of Friedman Test [239], AR-Friedman, are presented in

the last row of Table 5.6. The best ranks are scored sequentially by BS, UMEP,

MDEP, and HC respectively. Those ranks prove the superiority of RD-SE to iden-

tify a high accurate subensemble. The results of the 25 datasets in Table 5.6 are

illustrated in Fig. 5.3. Notably, there are more points under the diagonal, further-

more, the distance of these points from the diagonal is larger. Moreover, the figure

shows a limited accuracy when we only couple the instance selection method with

the unpruned proposed ensemble (UNP). Ensemble pruning via guided search, BS,

proves its superiority over UNP in 22 out of 25 datasets.

It is interesting to analyze the performance of ensemble pruning via guided

search for different ensemble sizes. This is important to check if its performance

is consistent and not obtained due to randomness. Random Forest which is trained

from whole training data, RFCOM, will be the baseline to compare against. Fig-

ure 5.4 shows the average accuracy of the pruned ensemble by (BS, UMEP, EPIC)

and the unpruned one by RFCOM. Each point, in the figure, represents an average

of 100 runs, and a percentage of P = 20% is determined in advance to control

the subensemble size. From Fig. 5.4, the behavior of BS dominates RFCOM ac-

cording to both the accuracy and the ensemble size. Furthermore, the performance

of BS over RFCOM can be reached, even, by pruning a low-size ensemble, the

vertical dashed-line, regardless of what the size of RFCOM is. This shows how

the proposed method can be an alternative to large-size ensembles, and a lot of
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Figure 5.3: The performance of the proposed method against the defined ensembles
NRD-NSE and RD-NSE.
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Figure 5.4: The performance of ensemble pruning via guided search, a comparison
with RFCOM, EPIC, and UMEP.
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computational resources could be saved by not overproducing models. However,

this property could be different based on the classification task. We observe from

Fig. 5.4, when EPIC and UMEP are ensembled together, via guided search, the

subensemble realized a higher accuracy that was unreachable before. The statis-

tical analysis will be discussed in Section 5.4.4 to determine whether there is a

significant improvement or not.

5.4.4 Statistical Analysis

To show if there is a significant improvement or not, Wilcoxon Signed Ranks Test

[227] for pairwise comparison has been used. Table 5.7 shows Wilcoxon Test [227]

for the averages of the subensemble accuracy and subensemble size. The analysis

from this table is as follows:

- From the upper two parts (NRD-NSE, RD-NSE) which is a matrix 5 × 5:

RFCOM significantly outperforms SAMME and RFSM by 90% and 95%,

respectively. In addition, XGBoost is the best ensemble to learn from com-

plete training data.

- The proposed ensemble without pruning, UNP, is competitive with SAMME

and RFCOM.

- All RD-SE are significantly better than UNP in terms of accuracy and en-

semble size, except FS and GA are only significantly better in terms of size.

This proves the limitation of the proposed ensemble without pruning.

- HC and SA are comparable with UMEP, MDEP, and RFCOM in terms of

accuracy, while HC and SA are significantly better in terms of subensemble

size.

- MDEP is comparable with RFCOM and UMEP in terms of accuracy. While

it is better than RFCOM in terms of the ensemble size.

- All RD-SE except FS and GA are comparable with XGBoost in terms of

accuracy, while all RD-SE significantly outperform XGBoost in terms of

ensemble size.

- BS is the only selection strategy under the proposed method that scores many

(N). While it significantly outperforms the recent MDEP by 90%.
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- In general, the lower part of Table 5.7, RD-SE, includes subensembles with

many (N) and many (•) where we have more flexibility to choose, according

to the rigor of prediction and the computational resources.

Table 5.7: Summary of the Wilcoxon test. Shape denotes the measure used, accu-
racy (N 4) and size (•◦). The filled shape (N •) represents if the method in the row
outperforms the one in the column or vice versa for (4 ◦). Upper diagonal of level
significance α = 0.9, lower diagonal level of significance α = 0.95.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

NRD-NSE
XGBoost(1) - - N N N N ◦ ◦ ◦ N ◦ ◦ ◦ ◦ ◦ N ◦
SAMME(2) 4 - - 4 4 ◦ 4 ◦ 4 ◦ ◦ 4 ◦ 4 ◦ 4 ◦ 4 ◦ ◦
RFCOM (3) 4 - - N ◦ 4 ◦ ◦ N ◦ 4◦ ◦ ◦ ◦ ◦

RD-NSE
RFSM (4) 4 4 - - 4 ◦ 4 ◦ 4 ◦ N ◦ 4 ◦ 4 ◦ 4 ◦ 4 ◦ ◦
UNP (5) 4 - - 4 ◦ 4 ◦ 4 ◦ ◦ 4 ◦ 4 ◦ 4 ◦ 4 ◦ ◦

RD-SE

EPIC (6) • N• • N • N • - - 4 4 N ◦ 4 • 4 ◦ ◦ ◦ N ◦
UMEP (7) • N • • N • N • N - - N ◦ 4 • ◦ ◦ N ◦ N ◦
MDEP(8) • N• • N • N • N - - N ◦ 4 • ◦ ◦ ◦ N ◦
FS (9) 4 • • 4 • 4 • • 4 • 4 • 4 • - - 4 • 4 • 4 • 4 • 4 •
BS (10) • N • N • N • N • N ◦ N ◦ ◦ N ◦ - - N ◦ N ◦ N ◦ N ◦
HC (11) • N • • N • N • N • • • N ◦ 4 • - - N ◦ N ◦
SA (12) • N • • N • N • • • • N ◦ 4 • - - N ◦ N ◦
BGWO (13) • N • • N • N • • 4 • • N ◦ 4 • 4 • • - - N ◦
GA (14) 4 • • • • • 4 • 4 • 4 • N◦ 4 • 4 • 4 • 4 • - -

5.4.5 Validation of the Methodology

We have shown the superiority of the proposed ensemble in the previous sections.

However, it is necessary to validate its components (instance selection, proposed

ensemble, and guided search-based pruning). Thus, we performed additional ex-

periments to validate our method.

The effect of instance selection to the constructed ensemble, we compared the

obtained results without instance selection (wIS) and with instance selection (pro-

posed). Table 5.8 shows the complete results of the 25 datasets. The worst average

rank via Friedman Test [239] is scored by UNP. Hence, coupling instance selection

with the unpruned proposed ensemble has a limited accuracy in comparison with

wIS-UNP. This means that IS contributed to form simpler, less space complexity,

ensembles rather than more accurate ensembles. Table 5.9 shows the Wilcoxon

Test [227] for the results from Table 5.8. The results confirm that the proposed

ensemble without pruning, UNP, is not effective. However, it is comparable with

ensembles that are trained from whole training data, RFCOM and SAMME.
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Table 5.8: Average accuracy and standard deviation of the proposed method with and without instance selection, ensemble size
T = 200, P=20%. The best value is in bold, while the second best is underlined.

Without Instance Selection Instance Selection (Proposed)

# Dataset wIS-UNP wIS-EPIC wIS-UMEP wIS-MDEP wIS-BS UNP EPIC UMEP MDEP BS

D1 Abalone 70.41±1.02 69.31 ± 1.00 69.56 ± 1.14 69.48 ± 1.08 69.47 ± 1.08 69.52 ± 0.64 68.11 ± 1.80 69.85 ± 1.00 69.96 ± 1.12 70.04 ± 1.14

D2 Australian 87.00± 3.10 87.18 ± 2.92 86.89 ± 2.93 87.13 ± 2.91 87.14 ± 2.88 86.05 ± 2.46 85.47 ± 2.62 86.43 ± 2.65 86.25 ± 2.80 86.50 ± 2.60

D3 Blood-transfusion 77.24± 1.38 77.20 ± 2.16 76.92 ± 2.14 77.19 ± 2.09 77.03 ± 2.10 76.90 ± 1.45 76.22 ± 3.65 77.17 ± 2.08 77.22 ± 2.08 77.64 ± 2.22

D4 Breast-w 97.25± 1.43 96.96 ± 1.56 97.17 ± 1.41 97.19 ± 1.48 97.20 ± 1.47 97.42 ± 1.17 96.87 ± 1.30 97.13 ± 1.25 97.13 ± 1.31 97.12 ± 1.23

D5 Cleveland 57.47± 3.04 57.58 ± 3.46 57.43 ± 3.08 57.60 ± 3.02 57.40 ± 3.57 56.50 ± 2.88 57.41 ± 4.27 57.84 ± 3.12 57.56 ± 3.10 57.96 ± 3.66

D6 Dermatology 97.75± 1.45 97.86 ± 1.58 97.93 ± 1.47 97.93 ± 1.49 97.92 ± 1.47 97.46 ± 1.65 97.32 ± 1.89 97.56 ± 1.62 97.63 ± 1.65 97.53 ± 1.72

D7 Diabetic 71.08± 2.79 68.64 ± 2.46 68.68 ± 2.52 68.71 ± 2.33 68.59 ± 2.44 66.38 ± 2.94 69.63 ± 2.75 70.26 ± 3.20 70.49 ± 3.00 69.81 ± 3.10

D8 Heart-c 84.02 ± 4.38 82.65 ± 4.28 82.64 ± 4.19 82.60 ± 4.17 82.97 ± 4.05 83.22 ± 4.49 83.53 ± 4.25 82.72 ± 4.58 83.12 ± 4.33 83.61 ± 4.26

D9 Heart-statlog 83.98± 4.09 82.69 ± 4.13 82.50 ± 4.45 82.83 ± 4.28 82.72 ± 4.26 83.07 ± 4.71 82.57 ± 4.45 83.11 ± 4.07 83.70 ± 4.26 83.46 ± 4.27

D10 Ionosphere 93.32± 2.98 93.85 ± 2.77 93.96 ± 2.67 93.93 ± 2.79 93.93 ± 2.76 89.67 ± 2.98 92.41 ± 2.61 91.93 ± 2.89 92.49 ± 2.74 92.34 ± 2.75

D11 Led24 71.99 ± 1.61 70.37 ± 1.78 72.04 ± 1.47 69.84 ± 2.67 67.84 ± 2.82 70.02 ± 1.76 71.75 ± 1.46 71.78 ± 1.45 68.66 ± 3.79 71.89 ± 1.45

D12 Mammographic 82.85 ± 2.67 83.32 ± 2.63 83.57 ± 2.13 83.66 ± 2.21 83.84 ± 2.34 82.06 ± 2.51 83.37 ± 2.64 84.00 ± 2.32 84.05 ± 2.27 83.89 ± 2.36

D13 Mfeat-fourier 82.81 ± 1.44 83.24 ± 1.32 83.32 ± 1.40 83.48 ± 1.42 83.38 ± 1.48 80.14 ± 1.50 80.89 ± 1.65 81.34 ± 1.56 81.12 ± 1.63 81.41 ± 1.62

D14 Mfeat-karh 96.80± 0.86 95.82 ± 0.83 95.84 ± 0.86 95.98 ± 0.89 95.96 ± 0.86 96.13 ± 0.88 96.19 ± 0.86 96.27 ± 0.85 96.28 ± 0.96 96.31 ± 0.89

D15 Mfeat-zernike 80.06± 1.22 78.15 ± 1.48 78.83 ± 1.35 79.37 ± 1.39 78.89 ± 1.37 80.72 ± 1.24 82.19 ± 1.52 82.48 ± 1.44 82.20 ± 1.41 82.38 ± 1.39

D16 Optdigits 98.29± 0.35 98.79 ± 0.33 98.80 ± 0.32 98.80 ± 0.32 98.81 ± 0.32 98.09 ± 0.38 98.61 ± 0.31 98.60 ± 0.31 98.59 ± 0.30 98.61 ± 0.32

D17 Penbased 98.31± 0.27 99.32 ± 0.16 99.30 ± 0.17 99.29 ± 0.17 99.31 ± 0.16 98.22 ± 0.27 99.21 ± 0.16 99.19 ± 0.17 99.10 ± 0.69 99.20 ± 0.16

D18 Ringnorm 96.66± 0.46 96.62 ± 0.47 96.64 ± 0.49 96.64 ± 0.49 96.65 ± 0.47 86.69 ± 1.15 96.33 ± 0.51 96.33 ± 0.51 96.37 ± 0.49 96.50 ± 0.48

D19 Sa-heart 71.23± 3.38 69.06 ± 3.56 69.13 ± 3.56 69.44 ± 3.39 69.35 ± 3.19 71.41 ± 3.77 70.50 ± 4.30 70.98 ± 3.86 71.25 ± 3.65 70.98 ± 4.06

D20 Satimage 89.45± 0.74 91.33 ± 0.73 91.33 ± 0.73 91.34 ± 0.72 91.39 ± 0.75 88.70 ± 0.78 90.17 ± 0.75 90.05 ± 0.77 89.81 ± 1.39 90.16 ± 0.72

D21 Segment 96.87± 0.89 98.05 ± 0.68 98.00 ± 0.68 98.01 ± 0.69 98.03 ± 0.65 95.94 ± 0.90 96.61 ± 0.77 96.54 ± 0.74 96.51 ± 0.87 96.61 ± 0.77

D22 Texture 98.80± 0.33 99.71 ± 0.17 99.71 ± 0.17 99.71 ± 0.17 99.71 ± 0.17 98.40 ± 0.35 99.63 ± 0.19 99.63 ± 0.19 99.63 ± 0.16 99.63 ± 0.18

D23 Twonorm 97.69± 0.36 96.61 ± 0.45 96.62 ± 0.44 96.62 ± 0.44 96.68 ± 0.41 97.69 ± 0.37 97.38 ± 0.39 97.46 ± 0.38 97.47 ± 0.42 97.55 ± 0.35

D24 Waveform 85.66 ± 1.04 84.42 ± 1.11 84.39 ± 1.15 84.40 ± 1.17 84.46 ± 1.11 84.87 ± 1.16 84.59 ± 1.00 85.41 ± 0.95 85.34 ± 1.07 85.42 ± 0.93

D25 Wdbc 96.81± 1.44 97.57 ± 1.21 97.46 ± 1.29 97.56 ± 1.22 97.66 ± 1.16 96.17 ± 1.85 97.52 ± 1.46 97.48 ± 1.63 97.34 ± 1.58 97.49 ± 1.56

AR-Friedman 4.3 5.76 5.6 4.84 4.88 7.54 6.84 5.44 5.4 4.4
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5.4 Experimental Results

The validation of the proposed ensemble, we show how the proposed ensemble,

Section 4.3.2, is effective. Table 5.9 confirms that wIS-UNP which uses the same

amount of training data is significantly better than SAMME and RFCOM at a 95%

confidence level. Furthermore, there is no ensemble, among the thirteen models,

that is significantly higher than wIS-UNP.

The validation of guided search-based pruning, we prove how guided search

is more effective whether an instance selection is applied or not. From Table 5.9,

when instance selection is performed, BS shows a significant difference at a 95%

confidence level better than EPIC and UMEP. In addition, MDEP is significantly

worse than BS at a 90% confidence level. Moreover, BS is able to compensate for

the error of UNP, confirmed by the significant difference between BS and RFCOM.

Without applying instance selection, wIS-BS is still outperforming wIS-EPIC and

wIS-UMEP at a 95% confidence level. This shows the limited performance of the

existing pruning methods in comparison with the proposed guided search-based

pruning.

As a summary, with the experiments of this section. We have separately vali-

dated the different parts of our method, showing their usefulness. We proved that

simpler and better ensembles could be properly designed when all the parts are

used together.

Table 5.9: Summary of the Wilcoxon test. N = the method in the row improves the
method of the column. 4 = the method in the column improves the method of the row.
Upper diagonal of level significance α = 0.9, Lower diagonal level of significance
α = 0.95

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
XGBoost (1) - N N N

SAMME (2) 4 - 4 4 4 4 4 4 4 4 4 4
RFCOM (3) 4 - 4 4 4 4 4 4 4
wIS-UNP (4) N N - N N

wIS-EPIC (5) N - 4 4 N

wIS-UMEP (6) N N - 4 4 N

wIS-MDEP (7) N N N N - N

wIS-BS (8) N N N N - N

UNP (9) 4 4 4 4 4 - 4 4 4 4
EPIC (10) N N - 4 4 4
UMEP (11) N N N - 4
MDEP (12) N N N - 4
BS (13) N N N N N -

119



5. A GUIDED SEARCH FOR MCS PRUNING

5.4.6 Advantages of the proposed method

Among the advantages of the proposed method are: (1) The instance selection

method is applied only once from the whole training data. (2) The individual mod-

els are independent, and the generation step could be accelerated by a parallel im-

plementation. (3) The reduced data helps to generate less complex models with

a fast prediction time. (4) The guided search preserves promising search areas to

identify a subensemble properly. (5) The proposed methodology proved its capa-

bility to maximize learning from the reduced data. Regarding that, it can be used

to improve the precision of IS method. (6) The ease of implementation with wide

flexibility to apply different IS methods and different classifier types.

5.4.7 Time Complexity

The classification speed as determined in [23] mainly depends on (1) the ensemble

size and (2) the complexity of individual classifiers. While Table 5.10 summarize

the time complexity of the applied ensemble pruning methods. For GA & BGWO,

(P̂ ) represents population size, and (E) represents the number of epochs. While T̂

denotes the size of the preselected classifiers, New subset in Fig. 5.1, that is formed

by both EPIC & UMEP.

Table 5.10: Time complexity of ensemble selection

Ensemble selection Time complexity
MDEP O(T · log T )

UMEP O(T ·N)→ 1
EPIC O(T · log T )→ 2
FS & BS 1 + 2 + O(T̂ 3)

HC - SA 1 + 2 + O(T̂ ·N ·M)

GA - BGWO 1 + 2 + O(E · P̂ · T̂ ·N ·M)

5.4.8 Exploration of the Research Questions

In this part, we determine whether the research questions of the second objective

are answered or not.
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5.5 Conclusions

(Q3Q3Q3) The effect of combining multiple pruning metrics is so promising to go

beyond, in terms of accuracy, what can be achieved from each metric alone. This

has been confirmed by the outperformance of BS over both EPIC and UMEP in

many datasets. In addition, the proposed method significantly outperforms MDEP

by 90% without any dependence on assuming parameters in advance. Furthermore,

new promising solutions can be reached in terms of both subensemble size and

subensemble accuracy, i.e. (HC, SA, and BGWO).

(Q4Q4Q4) The effect of downsizing data and downsizing the number of classifiers

simultaneously has been confirmed experimentally and statistically. The RD-NSE

represented by RFSM and UNP have a limited accuracy while depending on the

whole ensemble members. In contrast, RD-SE represented by the lower part of Ta-

ble 5.7 has many (N) and many (•) where we have more flexibility to choose among

them, according to the rigor of prediction and the ensemble size. Furthermore, the

best investigated RD-SE represented by BS proved its significant superiority over

state-of-art ensembles that are trained from non reduced data.

5.5 Conclusions
In this chapter, we have proposed a new method to alleviate the drawbacks while

building and pruning an ensemble of classifiers. The objective was to generate less

complex and small-size ensembles. Thus, a dual reduction on the data level and

ensemble level has been considered. An instance selection method is applied to

downsize the training set. After that, a bagging-like ensemble is proposed to train

a set of classifiers from the reduced data. The advantage of this step is to form

ensemble models quickly, especially when we generate a large number of models.

In addition, the complexity of ensemble members will be reduced.

The ensemble accuracy and the ensemble size are so important and both of

them can be improved through ensemble selection strategies. However, the prun-

ing method could be biased by the selection criteria. Therefore, we have proposed a

guided search that captures the properties of ensemble diversity and the individual’s

accuracy simultaneously. The proposed pruning strategy is capable to compen-

sate for the limited accuracy of the unpruned ensemble. Furthermore, we showed,
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5. A GUIDED SEARCH FOR MCS PRUNING

graphically, how the proposed method could be an alternative to large-size ensem-
bles. The statistically significant difference is conducted by rank-based transfor-
mations to show the superiority of the proposed methodology. The second set of
experiments were conducted to validate the connected components. Notably, the
superiority of the system was endowed via guided search. Moreover, the proposed
method was able to maximize the learning from the reduced data.

Regarding future research, the framework can be enhanced by applying differ-
ent training set selection methods. In addition, multi-objective optimization will be
applied to capture the conflict between the ordering-based ensemble pruning meth-
ods that have been discussed. Furthermore, a weighted sum voting will be applied
to fuse the pruned classifiers.
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As long as I have a want, I have
a reason for living. Satisfaction is
death.

George Bernard Shaw

CHAPTER

6
An Analysis of Heuristic

Metrics for MCS Pruning

Including more classifiers in the classification task may provide more discrim-
inating power with an equal or weighted contribution of each classifier to the final
decision [31]. However, the increasing size of the ensemble hardly copes with the
increasing demand to speed up the decision and to save computational resources.
In bagging [3], an independent set of classifiers are generated in random order, then
the final decision is adopted by a simple majority voting-based aggregation. While,
it has been demonstrated that reordering the generated pool and selecting the first
subset of classifiers impacts the ensemble size and the composite accuracy posi-
tively [23, 24, 31, 32, 35, 36]. The first subset of classifiers from the ordered list is
expected to perform better than aggregating the whole list.

It has been proved that the generalization performance of a subensemble reports
superior results over the traditional combination approaches, such as majority vot-
ing of the whole ensemble [23, 29]. Moreover, pruning down the redundant models
reduces the memory burden [30]. Regarding that, MCS pruning is a proven mech-
anism to enhance the efficiency and elevate the efficacy of classification ensemble
systems [23, 24, 31, 32]. From the review of the different pruning strategies in
chapter 5, ordered-based pruning is a fast strategy with proven accuracy. Those
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strategies have the following merits: (1) return subsets that are close to optimal so-

lution (Efficacy) [23]. (2) easy adaptation to any given storage and computational

restrictions [31, 36]. (3) the time complexity of those strategies is low, in compari-

son with exhaustive or optimization-based search methods (Efficiency) [23].

The classifiers can be reordered via a greedy search, where the set of classifiers

that are expected to perform better are aggregated first. Sequentially a new subset

Su is constructed from Su−1 by incorporating a single classifier from Lu−1; Su =

Su−1∪Ψk

∣∣∣Ψk ∈ Lu−1, where T = Su∪Lu and u = {1, 2, 3, . . . , T}. Such that the

single classifier selection from Lu−1 is guided upon a heuristic metric to optimize

the augmented ensemble Su. The number of iterations or subensemble size, T̂ , can

be controlled in advance to meet the computational restrictions. Furthermore, some

metrics were proposed to rank all the classifiers in one batch without the sequential

search. While, the property of the base classifier, an individual’s accuracy, is not

effective to determine this rank [35]. The generated ensemble needs to consider

the hybrid between an individual’s performance and an individual contribution to

the ensemble diversity [32, 36]. Where it has been confirmed that the weakness

of individuals can be compensated by the consensus of correct peers over different

samples.

Since the practical analysis of the power of greedy search methods in [23],

many research efforts have been directed to propose new heuristic measures to

guide the selection of subensemble [24, 31, 32, 36]. Till now and related to our

best knowledge, no work has considered the analysis of all those promising metrics

together. This chapter fills that gap by comparing all these new techniques with

the best performing techniques found in [23], and against other popular baseline

metrics [35, 37].

In this chapter, we shed light on the importance of ordering-based ensemble

pruning metrics. Reviewing and analyzing popular and recent metrics that work for

bagging-based ensembles. We present a sophisticated analysis of how the pruning

metrics can be affected by; the initial ensemble size (T ), the required subensemble

size (T̂ ), the individual classifier type, and the binary or multiclass classification

task. In addition, this study can be considered as a secure methodology to elevate

the performance of bagging-like ensembles. This analysis is promising due to the
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6.1 Motivations and Contributions

precision, prediction consistency, time-complexity, and space complexity of the

investigated metrics to meet different computational restrictions.

Finally, this chapter is organized as follows: In Section 6.1, we present the

main motivations to conduct this research and our contributions. The heuristic

metrics in detail are to be introduced in Section 6.2. The experimental results and

the statistical analysis are presented in Section 6.3. Finally, the conclusions are

presented in Section 6.4.

6.1 Motivations and Contributions
The contribution of this proposal can be highlighted in the following points:

1. Focusing on static ensemble selection as an active research topic in multiple

classifier systems.

2. Analyzing the effectiveness of different heuristic metrics to reorder the ran-

domly bagging ensembles.

3. Separate analysis of those metrics over binary and multiclass classification

tasks.

4. As far as we know, we are the first to group recent and efficient heuristic met-

rics for reordering bagging ensembles since they were analyzed by Martı́nez-

Muñoz et al. [23] in 2009.

6.2 Heuristic Metrics
The investigated metrics are based on modifying the order of the classifiers in the

bagging algorithm with the selection of the first set in the queue. Those techniques

comprise dissimilar heuristic measures as: ensemble diversity [32], ensemble mar-

gin [24, 35], margin hybrid diversity [36], discriminating classifiers [31], ensemble

error [37], Complementariness of misclassification [35], and relative accuracy with

minimum redundancy [31]. Table 6.1 shows the heuristic metrics to be analyzed

in this chapter over 30 datasets, divided into two parts as 15 binary datasets and 15

multiclass datasets.

125



6. AN ANALYSIS OF HEURISTIC METRICS FOR MCS PRUNING

Table 6.1: Heuristic metrics to guide the ordered bagging ensembles.

Name Section Heuristic Measure Year Ref.
RE 6.2.1 Reduced Ensemble Error 1997 [37]
CC 6.2.2 Complementary of Misclassification 2004 [35]
MDSQ 6.2.3 Supervised Ensemble Margin 2009 [23]
EPIC 5.2.1 Diversity Contribution of Individuals 2010 [32]
UMEP 5.2.2 Unsupervised Ensemble Margin 2013 [24]
MDEP 5.2.3 Margin & Diversity 2018 [36]
MRMR 6.2.4 Max. Relevance & Min. Redundancy 2018 [31]
DISC 6.2.5 Discriminant Classifiers 2018 [31]

6.2.1 Reduce-Error Pruning
Reduce error pruning (RE) was firstly proposed in [37]. The classifier with the
highest (lowest) accuracy (error), as estimated on the pruning set Dpr, is stored in
S1 as the initial subset to be extended. The sequential addition of more classifiers,
one at a time, is performed to get as much (less) accuracy (error) as possible. This
heuristic incorporates into the subensemble the classifier su as:

su = arg max
k

∑
(xi,yi)∈Dpr

[
Ψ̂Su−1∪Ψk

(xi) = yi

]
(6.1)

where the index k ∈ Lu−1 and Su = Su−1 ∪ {su}. That metric has been applied
in many articles as a baseline for the comparison purpose [24, 31] with superior
performance over the unpruned ensemble [23].

6.2.2 Complementariness measure
Complementariness measure (CC) was proposed in [35] and it considers the com-
plementariness between the incorporated models. The first subset, S1, is initialized
by selecting the classifier with the highest accuracy on Dpr. Then, the classifier
to be nominated is the one with the highest prediction accuracy over the set of
instances that are misclassified by Su−1:

su = arg max
k

∑
(xi,yi)∈Dpr

[
Ψ̂Su−1(xi) 6= yi ∧Ψk(xi) = yi

]
(6.2)

where k ∈ Lu−1 and Su = Su−1 ∪ {su}. With this heuristic, the ensemble decision
is expected to be shifted towards the correct classification. However, this metric
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concentrates only on the misclassified samples with no restriction to preserve the
previous correct decisions.

6.2.3 Supervised Ensemble Margin
Margin distance minimization (MDSQ) is introduced in [23, 35], where the deci-
sion space of the individual members over the selection set,Dpr, is transformed into
signature vectors. The signature vector of Ψk, r(k), is defined by an N-dimensional
vector whose ith component is calculated as:

r
(k)
i = 2 [Ψk(xi) = yi]− 1 (xi, yi) ∈ Dpr (6.3)

The quantity r(k)
i will be 1, if the kth classifier correctly classifies the ith exam-

ple in Dpr, otherwise it will be -1. The ensemble signature vector, 〈R〉, is defined
as the average sum of all r(k) as:

〈R〉 = T−1

T∑
k=1

r(k) (6.4)

The subensemble whose average signature vector 〈R〉 is in the first quadrant,
that is all the components are positive, correctly classifies all the examples in Dpr.
The objective is to select a subensemble whose 〈R〉 is as close as possible to a
reference vector, O, placed somewhere in the first quadrant. Hence, the reference
vector is mathematically represented as:

Oi = q , i = {1, 2, . . . , N} and 0 < q < 1 (6.5)

The promoted classifiers are the ones with the minimum distance between their
〈R〉 and O and can be selected sequentially by minimizing:

su = arg min
k

d

(
O, T−1

(
r(k) +

u−1∑
t=1

r(t)

))
(6.6)

where k ∈ Lu−1 and d(O,〈R〉) is the usual Euclidean distance. The constant q
should be sufficiently small, 0.075, to progressively focus on hard samples to be
classified. Therefore, a subensemble with a large number of small positive values
in 〈R〉 is preferred. By contrast, if the value of q is close to 1 the effectiveness of the
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method will be diminished as the selection will be guided upon the easy samples. In

this chapter, the modified version of this metric is applied with a moving reference

point q(u) = 2
√

2u
/
T as it was discussed in [23].

6.2.4 Maximum Relevance & Minimum Redundancy

Maximum Relevance & Minimum Redundancy pruning (MRMR) was recently

proposed in [31]. It is inspired by the popular algorithm mRMR [240, 241] for

reducing redundancy in feature selection problem. The metric involves two rela-

tionships; one is between the candidate class and the component class, and the other

is between the candidate class and the target class. The candidate class represents

the class label output of the kth classifier to be included, while the component class

represents the class label output of the composite ensemble. The classifier with the

highest accuracy, estimated on the pruning set Dpr, is stored in S1 as the initial

subset to be extended. The next kth classifier to be incorporated, su, is selected

according to:

su = arg max
k

I(Ψk;Y )− 1

u− 1

∑
Ψi∈Su−1

I(Ψk; Ψi)

 (6.7)

where I(m,n) is the mutual information of variable m and n; Y is the target class;

k ∈ Lu−1 and Su = Su−1 ∪ {su}. The classifier to be selected is the one with

the maximum relevance with the target class, I(Ψk;Y ), and simultaneously with

minimum redundancy with Su−1, 1
u−1

∑
Ψi∈Su−1

I(Ψk; Ψi).

6.2.5 Discriminant Classifiers

Discriminant classifiers pruning (DISC) has also been proposed in [31]. The good

classifier to be incorporated is the one to compensate the current subensemble,

Su−1, taking into account the following two assumptions.

- Assumption (1): Regarding the samples correctly classified by Su−1, a good

candidate is expected to do the same decisions on as many of such samples

as possible.

128



6.3 Experimental Results

- Assumption (2): In relation to the samples misclassified by Su−1, a good can-

didate is expected to classify correctly as many of those instances as possible.

The first assumption relates to the candidate classifier and the composite ensemble,

while the second assumption represents how the candidate classifier relates to the

target. This metric concentrates on finding the most discriminant classifier, which

is relative to both Su−1 and Y . The instances are divided into two parts; {mis}
represents the misclassified set by Su−1, while {cor} represents the set which is

correctly classified by Su−1. The incorporated classifier is selected as:

su = arg max
k

I(Ψk
mis;Y mis) +

1

u− 1

∑
Ψi∈Su−1

I(Ψk
cor; Ψcor

i )

 (6.8)

where k ∈ Lu−1 and Su = Su−1∪{su}. The first term I(Ψk
mis;Y mis) is the mutual

information that Ψk can gain from the true labels Y according to the mislabeled

instances by Su−1. Whereas the second term 1
u−1

∑
Ψi∈Su−1

I(Ψk
cor; Ψcor

i ) is the

average mutual information that Ψk can gain from all Ψi members of Su−1 related

to the correct classified samples.

6.3 Experimental Results
The experiments are dedicated to achieve objective 3, to group and analyze fast

and accurate heuristic metrics for MCS pruning. The five main questions to be

answered are:

• Q5Q5Q5. How the initial classifier pool size and the required subensemble size affect the

performance of heuristic pruning metrics?

• Q6Q6Q6. How the heuristic pruning metrics are affected by the individual classifier type?

• Q7Q7Q7. How the efficacy of the pruning metrics could be affected by binary and multi-

class datasets?

• Q8Q8Q8. How the pruning metrics are effective to reduce the performance variance?

• Q9Q9Q9. How the efficiency of the heuristic pruning metrics differs, in terms of time and

space complexities?
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6.3.1 Set Up

The design of experiments has considered the recommendations from [23] accord-

ing to the following two issues: (A) The influence of training conditions (B) The

influence of the initial pool size. For training conditions; the whole training data

has been used, for both, to train the bagged ensemble and to prune it. For the

initial pool size; the initial pool should contain a sufficient number of classifiers.

However, the gained accuracy is not worthing the added complexity resulting from

expanding the pool. In this chapter, two ensemble systems have been constructed

as a part of the analysis.

1. Heterogeneous (Different Classifier types-DC)

- Samples: Bootstrap samples, with replacement, are generated from the

training data.

- Features: Sixty percent of features are selected randomly for each clas-

sifier.

- Classifiers: Five different classifier models, with their default setup pa-

rameters, have been used ( DT1, NB2, JRip3, Multinom4 and KNN5) with

20% as a proportional representation by each model from the whole

pool size.

2. Homogeneous (Similar Classifiers-SC)

- Similar to the previous, while the difference is that all individual mem-

bers are of type DT1.

Finally, all the datasets are preprocessed by unifying the scales of the features

via normalization. For each dataset, 10 repetitions of 10 fold cross-validation pro-

cedure have been tested to get 100 runs per dataset. In addition, MDEP depends on

an internal parameter α; three values for MDEP with different α ∈ {0.1, 0.5, 0.9}
are considered, and the best-optimized alpha according to the in train-validation is

used to report the test for each dataset separately. The results for Random Forest

(RF) [4], Adaboost (AdaB) [5], and the single best model (SBM) from the pool,

1Package C50 :https://cran.r-project.org/web/packages/C50
2Package e1071:https://cran.r-project.org/web/packages/e1071
3Package RWeka:https://cran.r-project.org/web/packages/RWeka
4Package nnet:http://cran.r-project.org/web/packages/nnet
5Package caret:https://cran.r-project.org/web/packages/caret
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according to the measured accuracy of the models on the pruning set, are included

as references in the comparison.

The default set-up for the individual classifiers types, RF, and AdaB are as fol-

lows: DT uses C5.0 decision trees of Quinlan [242] in its pruned version. NB

uses Naı̈ve Bayes with Laplace smoothing to solve the problem of zero probability.

KNN applies k-nearest neighbor classification with k = 3 as the number of neigh-

bors. RF1 implements Breiman’s random forest algorithm with ntrees=T , number

of variables that are randomly sampled at each split=sqrt(ncol(x)). AdaB2 fits the

AdaBoost.M1 using classification trees as base classifiers with iterations=T .

A total of 30 datasets that were obtained from OpenML3 and KEEL 4 are used

in this study for experimentation. The characteristics of the data are presented in

Table 6.2, where #S, #F, #C, and R represent the number of samples, the number of

features, the number of classes, and the ratio between the smallest, and the largest

class for each dataset respectively. The number of classes varies from 2 to 10, while

the maximum number of features is 100.

Table 6.2: Characteristics of the selected datasets for experimentation, sorted by sam-
ples and classes.

DataSet #S #F #C R DataSet #S #F #C R
Breast-cancer 286 9 2 0.42 Wine 178 13 3 0.676
SPECTF 349 44 2 0.37 Newthyroid 215 5 3 0.2
Ionosphere 351 33 2 0.56 Cmc 1 473 9 3 0.529
Wdbc 569 30 2 0.594 Lymphography 148 18 4 0.025
Indian Liver Patient (ILP) 583 10 2 0.401 Vehicle 846 18 4 0.913
Australian 690 14 2 0.802 Wall-Following-Robot (WFR) 5 456 24 4 0.149
Wisconsin 699 9 2 0.526 Cleveland 297 13 5 0.081
Blood-transfusion 748 4 2 0.312 Dermatology 358 34 6 0.18
Mammographic 830 5 2 0.944 Flare 1 066 11 6 0.13
Tic-tac-toe 958 9 2 0.530 Wine quality-red 1 599 11 6 0.015
German 1 000 20 2 0.429 Satimage 6 435 36 6 0.408
Hill-valley 1 212 100 2 1.0 Segment 2 310 18 7 1
Kr-vs-kp 3 196 36 2 0.915 Led7digit 500 7 10 0.649
spambase 4 601 57 2 0.650 Mfeat-Karh 2 000 64 10 1
Ringnorm 7 400 20 2 0.981 Mfeat-Fourier 2 000 76 10 1

1randomForest:https://cran.r-project.org/web/packages/randomForest
2Adaboost:https://cran.r-project.org/web/packages/adabag
3Machine Learning Repository: https://www.openml.org
4KEEL Repository: http://www.keel.es
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6.3.2 Influence of Pool Size and Selection Size

To answer Q5Q5Q5, we analyze how ordered aggregation is affected by both the initial

pool size (T ) and the selection percentage (P ) simultaneously. A heterogeneous

ensemble, see Section 6.3.1, composed of 201 models is built. The classifiers will

be ordered considering only the first 25, 51, 75, 101, 151, and 201 models from

ensemble size. This means that the classifiers are nested such that all classifiers

in an initial pool are also included in larger pools. The average accuracy over 100

runs is computed for each ensemble size T .

Table 6.3 shows the analysis of 1200 records (T = 6 × runs=100 × P = 2)

for the SPECTF dataset. The last two columns represent the size of the ordered

subensemble according to an initial pool of T . For each T and P , the best value

is highlighted in bold. The prediction accuracy of the bagging increases monoton-

ically as a function of the initial pool size, while this saturation level sometimes

decreases according to the classification task. All the investigated metrics prove

their superiority over bagging, regarding SPECTF dataset. The poor results re-

ported for BSM, confirm that ensemble outperforms all single models from which

it is composed. Regarding the selection percentage of P = 30%, the accuracy of

DISC, EPIC, and UMEP keep on increasing as more classifiers are included in the

initial pool. In general, the accuracy of the ordered classifiers with a percentage of

30% is better than 20%. In addition, the poorest accuracy by any ordering metric

is better than the highest accuracy of bagging. The highest accuracy of 91.49 is

reported by DISC using a subensemble composed of 61 classifiers, T̂ , instead of

the 201 classifiers used by bagging.

Figure 6.1 shows the complementary perspective about the results. The com-

parison of DISC-30% with DISC-20% and the comparison of UMEP-30% with

UMEP-20% confirm that the ordered subset with a larger number of classifiers re-

turns higher accuracy. Furthermore, the lowest accuracy by UMEP-20%, horizontal-

dashed line, with only 5 classifiers outperforms the accuracy of bagging for any

size. The prediction accuracy of DISC-30% and UMEP-30% keeps on increasing

even after bagging has stabilized. In addition, the figure shows that BSM is the

worst ensemble selection strategy. We confirm that the main objective of heuris-

tic metrics is to return a subensemble with a reduced number of classifiers while
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Table 6.3: The average accuracy of the subensemble related to a selection percentage
(P ) from an inital pool size (T ); SPECTF dataset.

T Bagging BSM RE CC MDSQ MRMR DISC EPIC UMEP MDEP P T̂

25 84.73 81.87
86.73 86.21 87.23 86.43 88.43 86.49 86.65 86.77 20% 5
87.66 87.11 88.18 87.19 88.69 87.77 87.74 87.71 30% 7

51 85.27 82.96
89.22 88.41 89.91 88.35 90.41 89.65 89.54 89.72 20% 11
88.97 88.54 89.82 88.62 90.49 89.65 89.76 89.80 30% 15

75 85.48 82.92
88.89 88.80 90.24 88.12 91.10 90.28 90.83 90.66 20% 15
88.80 88.94 89.69 88.20 90.89 90.38 90.32 90.21 30% 23

101 85.85 83.09
89.08 89.06 89.90 87.77 91.21 90.56 90.22 90.44 20% 21
88.93 88.80 88.83 88.14 91.01 90.84 90.41 90.78 30% 31

151 85.82 82.78
89.18 88.89 89.29 88.54 91.09 90.58 90.59 90.44 20% 31
88.82 88.97 88.03 88.91 91.24 90.64 90.78 90.70 30% 45

201 85.84 83.68
89.12 89.19 88.48 88.82 91.07 91.07 91.15 91.10 20% 41
89.22 88.88 87.36 88.70 91.49 91.00 91.04 91.09 30% 61
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Figure 6.1: Influence of pool size and selection size on the general accuracy; SPECTF
dataset.

keeping the accuracy unaffected. Going beyond the accuracy of the bagging is con-
ditioned by the effectiveness to reorder the ensemble as we will discuss in Sections
6.3.4 and 6.3.5.

6.3.3 Influence of Heterogeneous Classifiers
To answer Q6Q6Q6, we analyze how the general accuracy and the performance of the
metrics are affected by the type of combined individual models. For that, the initial
pool size is fixed with T = 101 as a balance between accuracy and ensemble’s
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6. AN ANALYSIS OF HEURISTIC METRICS FOR MCS PRUNING

complexity. Then the two types of ensembles, homogeneous and heterogeneous,

described in Section 6.3.1, are constructed for comparison purposes. Table 6.4

presents the average accuracy and the standard deviation for the ensembles using

different and similar individual classifiers over six representative datasets.

Table 6.4: Average accuracy and standard deviation for Different Classifiers (DC) and
Similar Classifiers (SC); T= 101 and P=30%.

DC SC

Dataset Bagging RE DISC UMEP Bagging RE DISC UMEP
Ensemble size T = 101 T̂ = 31 T = 101 T̂ = 31

Australian 86.70 ± 3.39 86.97 ± 3.52 86.97 ± 3.48 87.36 ± 3.35 86.85 ± 3.43 86.66 ± 3.85 86.34 ± 3.81 86.95 ± 3.67
Blood 77.37 ± 1.77 77.35 ± 2.68 77.53 ± 2.74 77.03 ± 2.73 76.27 ± 0.73 77.53 ± 2.77 77.92 ± 2.47 77.14 ± 2.80
Breast-cancer 73.41 ± 5.73 73.94 ± 6.84 73.45 ± 6.03 72.97 ± 6.90 73.48 ± 5.08 73.02 ± 5.63 73.10 ± 5.58 71.41 ± 6.39
Cmc 53.30 ± 3.74 53.29 ± 3.83 53.80 ± 3.72 53.82 ± 3.69 53.33 ± 3.84 53.38 ± 3.41 53.57 ± 3.58 53.65 ± 3.61
Mammographic 83.04 ± 4.02 82.72 ± 4.00 82.59 ± 4.35 83.87 ± 4.02 83.70 ± 3.41 82.99 ± 3.62 83.19 ± 3.56 83.64 ± 3.53
Wdbc 96.63 ± 2.42 97.10 ± 2.32 97.44 ± 2.03 97.54 ± 1.95 96.58 ± 2.23 96.48 ± 2.40 96.76 ± 2.32 96.67 ± 2.27
AR-Friedman 5.33 4.42 3.33 3 5 5.75 4.33 4.83

The results prove that the general accuracy of bagging can be outperformed in

both cases by using pruned ensemble, highlighted bold values in each part. To

differentiate among the methods, the average rank of Friedman test [226] (AR-

Friedman) is calculated and is shown in the last row of Table 6.4. The diversity

in decision space, which is achieved by different classifiers, guarantees effective

performance for the ordering methods. The best ranks, upon the selected datasets,

are reported for DC-UMEP, DC-DISC, and DC-RE in comparison with their ver-

sions under similar classifiers. We conclude that similar classifiers produce similar

decisions approximately, and the ability to differentiate among them by ordering

metrics decreases. For the rest of our experiments, an ensemble using different

classifier types with fixed pool size, T = 101, will be formed for the evaluation

purpose.

6.3.4 Analysis Over Binary Datasets

To answer first part ofQ7Q7Q7, for solving binary datasets. Table 6.5 shows the aver-

age accuracy and standard deviation for the different datasets. Adaboost achieves

the highest accuracy in six datasets {D6, D7, D8, D10, D11, D13} while it uses

101 classifiers. RE and MDEP both of them achieve the highest accuracy for {D3}
and {D1, D9, D14} respectively using 31 classifiers. The highest improvement per-

centage of 14.52% has been recorded by AdaB in comparison with MDEP for D13.
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Table 6.5: Average accuracy and standard deviation over binary datasets for ensemble size T = 101 and P=30%. The values that
outperform bagging are highlighted in bold.

T = 101 T̂ = 1 T̂ = 31 T = 101

# file Bagging BSM RE CC MDSQ MRMR DISC EPIC UMEP MDEP AdaB RF

D1 Australian 86.70 ± 3.39 84.03 ± 4.13 86.97 ± 3.52 86.87 ± 3.39 86.47 ± 3.78 86.75 ± 3.44 86.97 ± 3.48 87.29 ± 3.38 87.36 ± 3.35 87.38 ± 3.32 86.94 ± 3.70 86.97 ± 3.57

D2 Blood-transfusion 77.37 ± 1.77 73.69 ± 4.33 77.35 ± 2.68 77.70 ± 2.85 77.65 ± 2.79 77.70 ± 2.80 77.53 ± 2.74 77.34 ± 2.96 77.03 ± 2.73 77.36 ± 2.95 76.09 ± 3.85 75.31 ± 4.10

D3 Breast-cancer 73.41 ± 5.73 68.64 ± 8.16 73.94 ± 6.84 73.45 ± 5.98 73.03 ± 4.99 73.77 ± 6.10 73.45 ± 6.03 73.28 ± 6.63 72.97 ± 6.90 73.32 ± 6.56 68.75 ± 7.62 71.50 ± 8.06

D4 German 74.98 ± 2.90 69.26 ± 4.43 75.65 ± 3.24 75.48 ± 3.10 74.67 ± 2.87 75.19 ± 3.22 75.77 ± 3.06 75.52 ± 3.24 75.77 ± 3.19 75.77 ± 3.22 75.39 ± 3.56 76.09 ± 3.30

D5 Hill-valley 67.81 ± 5.09 86.00 ± 4.66 82.80 ± 6.54 80.10 ± 7.26 78.47 ± 5.23 80.04 ± 7.29 79.23 ± 5.32 74.82 ± 9.06 81.71 ± 4.12 81.79 ± 4.17 59.06 ± 3.78 57.58 ± 3.74

D6 ILP 70.33 ± 5.55 67.22 ± 5.13 69.99 ± 5.20 68.96 ± 5.75 70.28 ± 5.10 68.84 ± 5.76 70.30 ± 5.13 71.44 ± 4.36 71.29 ± 5.03 71.43 ± 4.59 71.59 ± 5.06 70.52 ± 5.30

D7 Ionosphere 93.37 ± 3.71 89.25 ± 5.54 93.48 ± 3.81 93.54 ± 3.79 93.90 ± 3.11 93.60 ± 3.89 93.80 ± 3.75 93.60 ± 3.90 93.80 ± 3.89 93.85 ± 3.88 94.08 ± 3.30 93.25 ± 4.05

D8 Kr-vs-kp 96.25 ± 1.20 96.46 ± 1.46 98.42 ± 0.83 98.25 ± 0.76 97.92 ± 0.88 98.20 ± 0.77 98.37 ± 0.68 96.76 ± 1.23 96.73 ± 1.23 96.76 ± 1.22 99.62 ± 0.33 98.67 ± 0.68

D9 Mammographic 83.04 ± 4.02 82.46 ± 4.27 82.72 ± 4.00 82.21 ± 4.36 82.35 ± 3.90 82.37 ± 4.38 82.59 ± 4.35 83.94 ± 3.77 83.87 ± 4.02 84.00 ± 3.97 80.73 ± 4.18 81.78 ± 4.09

D10 Ringnorm 96.66 ± 0.60 93.72 ± 2.11 96.77 ± 0.64 96.77 ± 0.59 95.07 ± 0.69 96.79 ± 0.60 96.85 ± 0.61 96.80 ± 0.66 96.79 ± 0.68 96.79 ± 0.68 97.33 ± 0.55 94.98 ± 0.80

D11 Spambase 94.98 ± 1.07 91.52 ± 1.44 95.04 ± 1.00 94.75 ± 1.04 94.72 ± 1.04 94.76 ± 1.01 94.99 ± 1.15 94.93 ± 1.06 94.85 ± 1.11 94.91 ± 1.08 95.72 ± 0.87 95.31 ± 0.98

D12 SPECTF 85.96 ± 5.32 82.18 ± 5.98 89.17 ± 4.78 89.20 ± 4.85 88.48 ± 5.50 88.64 ± 4.85 91.35 ± 4.71 90.66 ± 4.75 90.84 ± 4.74 90.92 ± 4.69 91.24 ± 3.96 92.39 ± 4.30

D13 Tic-tac-toe 76.57 ± 2.85 77.49 ± 4.41 86.10 ± 3.14 86.18 ± 3.24 86.65 ± 3.24 86.23 ± 3.17 86.53 ± 3.18 87.08 ± 2.98 85.66 ± 3.22 87.06 ± 3.34 99.47 ± 0.85 98.72 ± 1.18

D14 Wdbc 96.63 ± 2.42 95.71 ± 2.55 97.10 ± 2.32 97.10 ± 2.24 96.89 ± 2.10 97.17 ± 2.31 97.44 ± 2.03 97.42 ± 2.03 97.54 ± 1.95 97.54 ± 1.94 96.82 ± 2.13 96.14 ± 2.37

D15 Wisconsin 97.31 ± 2.01 95.20 ± 2.33 97.22 ± 1.95 97.22 ± 2.11 97.21 ± 2.15 97.19 ± 2.18 97.18 ± 2.15 97.27 ± 2.04 97.12 ± 1.95 97.22 ± 2.14 96.83 ± 2.13 97.12 ± 1.84

AR-Friedman 8 10.8 5.6 6.73 7.8 6.73 4.6 5.07 5.83 4 5.87 6.97

135



6. AN ANALYSIS OF HEURISTIC METRICS FOR MCS PRUNING

While MDEP recorded the highest improvement over AdaB forD5 by 38.49%. For

almost all the datasets, the reordering metrics guarantee higher accuracy and go be-

yond what can be achieved by bagging. MDSQ is the only metric with a tendency

to form the worst subensemble related to the investigated tasks. For the Hill-valley

dataset, the poor performance of bagging is caused by the uneven response of in-

dividual members. The performance analysis of RE to select a subensemble over

the 100 executions, depends on grouping specific individual types. Where DT,

Multinom, NB, JRip, and KNN are represented in-order according to the following

percentages 33.97%, 28.97%, 20.48%, 10.45%, 6.13% respectively.

The average rank of Friedman test [226], AR-Friedman, is presented in the last

row of Table 6.5 with the best ranks being (in order) MDEP, DISC, EPIC, RE,

UMEP, AdaB, CC, and MRMR. Next, the Wilcoxon test [243, 244] for pairwise

comparison has been performed to detect significant differences between the two

sample means. From Table 6.6, BSM is the worst ensemble selection strategy.

All heuristic metrics, except MDSQ, significantly outperform bagging by 95% or

90%. Furthermore, we notice that MDSQ, AdaB, and RF are at the same level of

accuracy as bagging. While the heterogeneous classifiers selected by RE and CC

significantly outperform bagging. Finally, MDEP is the only metric that signifi-

cantly outperforms both EPIC and UMEP by 95% and is the best metric regarding

the investigated tasks.
Table 6.6: Summary of the Wilcoxon test (for binary datasets). •= the method in the
row improves the method of the column. ◦= the method in the column improves the
method of the row. Upper diagonal of level significance α = 0.9, lower diagonal level
of significance α = 0.95.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Bagging (1) - • ◦ ◦ ◦ ◦ ◦ ◦ ◦

BSM (2) ◦ - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
RE (3) • • - • • •
CC (4) • - ◦ ◦

MDSQ (5) • ◦ - ◦ ◦ ◦
MRMR (6) • ◦ - ◦ ◦

DISC (7) • • • • -
EPIC (8) • • - ◦

UMEP (9) • • - ◦
MDEP (10) • • • • • • • -
AdaB (11) • -

RF (12) • -
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6.3.5 Analysis Over Multiclass Datasets

To answer second part of Q7Q7Q7, to analyze the stability of the different pruning

methods in multiclass classification tasks. Table 6.7 shows the average accuracy

and the standard deviation over multi-class datasets. Adaboost and RF achieve

the highest accuracy in datasets {D17, D26, D27, D28} and {D16, D25, D29, D30},
respectively using the complete set of 101 classifiers. The highest improvement

percentage of Adaboost over DISC has been recorded by 3.94% for D27. While

DISC recorded the highest improvement over Adaboost by 12.77% for D30.

For datasets with a large number of samples and classes like {D22, D23}, as

expected, we notice that DISC, MDEP are the best. Our explanation, for complex

decision spaces, it will be preferred to select classifiers that are more discriminant

or that can classify difficult samples. For that, DISC is more promising to acquire

complementary information inside the subensemble by reducing the internal con-

flict. While MDEP is preferred to balance between the individual’s accuracy and

ensemble diversity. In addition, DISC is the best for D25 as the largest size multi-

class dataset.

For datasets with a small number of classes and a small number of instances

like {D16, D21, D24}, the decision space becomes easier as low conflict will ex-

ist. For that, except MDSQ for D16, RE proved its superiority to select effective

subensemble based on its general accuracy to outperform margin-based metrics

{MDSQ, UMEP, MDEP}. For datasets with a small number of classes and a larger

number of instances like {D17, D28}; DISC, EPIC, and UMEP outperform RE.

For the statistical ranking, AR-Friedman is presented in the last row of Table 6.7

with the best ranks scored sequentially by DISC, EPIC, RF, UMEP, CC, MRMR

& MDEP, and RE. While Table 6.8 shows the pairwise comparison between the

3 unpruned ensembles and the 9 pruned ones. Table 6.8 confirms that BSM is

the worst selection/pruning strategy. All the investigated metrics, except MRMR,

significantly outperform bagging by 95% according to both the accuracy and the

ensemble size. Adaboost and RF are at the same level of accuracy with all pruning

metrics, however, their performance is achieved using T=101 classifiers. MDEP

waived his rank in favor of DISC and EPIC. While DISC is the best metric for

selecting subensemble according to the investigated datasets. It has been confirmed
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Table 6.7: Average accuracy and standard deviation over multiclass datasets for ensemble size T = 101 and P=30%. The values
that outperform bagging are highlighted in bold.

T = 101 T̂ = 1 T̂ = 31 T = 101

# file Bagging BSM RE CC MDSQ MRMR DISC EPIC UMEP MDEP AdaB RF

D16 Cleveland 57.07 ± 4.41 51.40 ± 7.76 57.30 ± 5.32 57.02 ± 4.75 57.35 ± 4.91 57.11 ± 4.66 57.38 ± 4.86 57.43 ± 5.08 56.89 ± 4.81 57.21 ± 5.05 57.52 ± 5.43 57.72 ± 5.29

D17 Cmc 53.30 ± 3.74 49.58 ± 3.81 53.29 ± 3.83 53.20 ± 3.66 53.36 ± 3.81 53.49 ± 3.97 53.80 ± 3.72 53.43 ± 3.69 53.82 ± 3.69 53.14 ± 4.27 56.30 ± 3.44 53.98 ± 3.42

D18 Dermatology 97.66 ± 2.57 93.75 ± 4.85 97.49 ± 2.62 97.52 ± 2.63 97.59 ± 2.44 97.57 ± 2.62 97.88 ± 2.18 97.99 ± 2.14 97.96 ± 2.24 97.99 ± 2.14 96.48 ± 2.64 97.65 ± 2.28

D19 Flare 73.23 ± 3.41 73.59 ± 3.27 74.65 ± 2.77 75.22 ± 3.03 75.31 ± 2.72 69.89 ± 4.29 75.60 ± 2.81 75.65 ± 2.82 75.57 ± 2.77 74.78 ± 3.63 75.26 ± 2.99 75.14 ± 2.45

D20 Led7digit 69.51 ± 5.28 60.31 ± 5.72 72.12 ± 5.34 70.89 ± 5.69 73.17 ± 5.77 69.65 ± 6.07 71.39 ± 6.11 72.11 ± 5.88 71.22 ± 5.69 70.42 ± 6.52 72.66 ± 5.94 71.86 ± 5.64

D21 Lymphography 85.45 ± 8.78 77.45 ± 10.29 86.34 ± 8.17 86.42 ± 8.75 86.23 ± 9.58 86.57 ± 9.17 85.35 ± 9.39 84.94 ± 9.27 84.32 ± 9.59 85.30 ± 9.72 85.11 ± 9.01 84.55 ± 9.51

D22 Mfeat-Fourier 83.10 ± 2.20 71.81 ± 2.96 83.36 ± 2.51 83.38 ± 2.34 83.19 ± 2.43 83.58 ± 2.27 83.56 ± 2.46 83.20 ± 2.44 83.38 ± 2.40 83.58 ± 2.36 81.86 ± 2.56 83.10 ± 2.17

D23 Mfeat-karh 96.87 ± 1.08 90.75 ± 3.61 96.83 ± 1.13 96.78 ± 1.16 96.50 ± 1.41 96.75 ± 1.23 97.13 ± 1.09 96.74 ± 1.18 96.86 ± 1.17 97.01 ± 1.11 95.40 ± 1.47 96.04 ± 1.23

D24 Newthyroid 96.55 ± 3.68 95.43 ± 4.73 96.88 ± 3.51 96.84 ± 3.50 96.32 ± 4.11 96.65 ± 3.45 96.60 ± 3.69 96.69 ± 3.78 95.91 ± 3.98 96.46 ± 3.92 95.24 ± 4.07 96.08 ± 4.04

D25 Satimage 89.66 ± 1.14 85.09 ± 1.39 91.48 ± 1.02 91.63 ± 1.05 91.09 ± 1.04 91.61 ± 1.02 91.67 ± 1.04 91.52 ± 1.02 91.54 ± 0.98 91.50 ± 0.98 88.25 ± 1.24 91.82 ± 0.95

D26 Segment 97.05 ± 1.07 95.88 ± 1.58 97.94 ± 0.95 98.01 ± 0.90 97.49 ± 1.06 97.97 ± 0.90 98.09 ± 0.98 98.13 ± 0.95 98.12 ± 0.91 98.13 ± 0.92 98.55 ± 0.83 97.93 ± 1.01

D27 Vehicle 74.99 ± 4.07 69.23 ± 4.85 75.56 ± 4.11 75.42 ± 3.92 75.14 ± 3.90 75.48 ± 4.10 75.32 ± 3.92 75.13 ± 4.03 75.14 ± 3.80 75.13 ± 3.86 78.29 ± 4.10 75.13 ± 4.29

D28 WFR 96.62 ± 0.85 99.03 ± 0.53 99.04 ± 0.41 99.06 ± 0.38 98.95 ± 0.44 99.04 ± 0.43 99.40 ± 0.32 99.40 ± 0.32 99.40 ± 0.31 99.38 ± 0.38 99.88 ± 0.14 99.43 ± 0.32

D29 Wine 98.11 ± 3.07 94.45 ± 5.44 97.94 ± 3.41 97.94 ± 3.41 97.81 ± 3.33 97.77 ± 3.53 98.16 ± 3.17 98.16 ± 3.07 98.16 ± 3.07 98.16 ± 3.07 96.20 ± 4.54 98.22 ± 3.24

D30 Winequality-red 63.40 ± 2.97 56.71 ± 4.30 68.38 ± 2.99 68.57 ± 3.01 68.30 ± 3.31 68.76 ± 3.08 68.55 ± 3.08 68.44 ± 2.92 68.06 ± 2.98 67.72 ± 3.13 60.79 ± 3.30 70.53 ± 3.44

AR-Friedman 8.5 11.67 6.13 5.87 7.03 6.07 3.9 4.83 5.83 6.07 6.6 5.5
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that ordered bagging based on complementary decisions works well for multiclass

datasets, confirmed by CC performance. Next, it is interesting to combine all the

binary and multiclass datasets to analyze ordering based pruning metrics in general.

Table 6.8: Summary of the Wilcoxon test (for Multiclass datasets). •= the method in
the row improves the method of the column. ◦= the method in the column improves
the method of the row. Upper diagonal of level significance α = 0.9, lower diagonal
level of significance α = 0.95.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Bagging (1) - • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

BSM (2) ◦ - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
RE (3) • • -
CC (4) • • - ◦

MDSQ (5) • • - ◦
MRMR (6) • - ◦

DISC (7) • • - • •
EPIC (8) • • -

UMEP (9) • • ◦ -
MDEP (10) • • ◦ -
AdaB (11) • -

RF (12) • • -

6.3.6 General Analysis Over All Datasets

A nonparametric statistical test is conducted over the thirty datasets, D1 to D30, to

check if there is a significant difference between the performance of the ordered

bagging methods or not. Using the methodology proposed by Demšar [245], Fig-

ure 6.2 shows the Nemenyi post hoc test for α = 0.05. Methods that are connected

are not significantly different based on the absolute difference in the average rank-

ings. The Critical Difference is shown (CD=3.06 for 12 methods, 30 datasets,

α = 0.05). The analysis shows that DISC, EPIC, and MDEP significantly out-

perform bagging by 95%. While, the inferior performance is recorded by BSM,

Bagging, and MDSQ.

6.3.7 Prediction Consistency

To answer Q8Q8Q8, after statistical analysis and according to the Nemenyi test, we se-

lected {DISC, EPIC, MDEP, UMEP, AdaB, RF, Bagging, BSM}, and analyzed
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Figure 6.2: Comparison of the different metrics over the 30 datasets using the Ne-
menyi test. Methods not significantly different (α=0.05) are connected together.

the distribution of their prediction accuracy over the 100 executions. Figure 6.3

presents the range of the prediction accuracy around the median and how the heuris-

tic metrics realize robust and stable predictions, with less number of internal clas-

sifiers, for a set of representative datasets {D1, D3, D4, D6, D9, D19, D25, D28}.
The conclusion is that the ordering metrics are more effective to select a promising

subensemble and their behavior reduces the performance variance.

6.3.8 Efficiency Analysis

As demonstrated in [23], the efficiency of reordering metrics can be evaluated ac-

cording to the following three aspects: the computational cost to extract the pruned

subensemble, the required memory space to store the pruned ensembles, and the

classification speed. While, some steps can be performed in parallel: the genera-

tion of the initial pool of classifiers, and the retrieving of classification decisions

from the selected classifiers.

To answer Q9Q9Q9, space and time complexities of the different heuristic metrics

are summarized in Table 6.9 in terms of T , N , M . The memory requirements are

estimated assuming that the decisions of the classifiers are stored in a matrix of

size N × T . For large datasets, it might be difficult to store this matrix in memory.

In such a case, the whole matrix can be stored to a secondary memory device like

the hard disk [23]. This would reduce the memory requirements to O(N), but the

required disk access will slow down the classification process.
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Figure 6.3: Distribution of the prediction accuracy.

To empirically investigate how the heuristic measures depend on T , a series of

experiments over the SPECTF dataset are performed. Table 6.10 presents the ex-

ecution time of several heterogeneous classifiers with initial bagging of 25, 51,

75, 101, 151, and 201. The values of the remaining parameters are M = 2,

Ntrain = 314, Dpr = Ntrain, P = 20%. The times are averaged over 100 exe-

cutions in Intel(R) Core(TM) i5-7200 CPU @ 2.50GHZ with 8 GB of RAM.

The results show that UMEP is the fastest method because the rank is calcu-

lated based on the classifier’s correct classified samples from the pruning set Dpr.

141



6. AN ANALYSIS OF HEURISTIC METRICS FOR MCS PRUNING

Table 6.9: Space and time complexities of different metrics.

Metric Space complexity Time complexity

RE O(N · T +M) O(T 2 ·N ·M)

CC O(N · T +M) O(T 2 ·N)

MDSQ O(N · T ) O(T 2 ·N)

MRMR O(N · T +M2) O(T 2 ·N ·M)

DISC O(N · T +M2) O(T 2 ·N ·M)

EPIC O(N · T +M) O(T ·N + T · log (T ))

UMEP O(N · T ) O(T ·N + T · log (T ))

MDEP O(N · T +M) O(T ·N + T · log (T ))

Table 6.10: Average execution time in seconds for the SPECTF dataset.

Metric T 25 51 75 101 151 201

RE 0.09 0.26 0.78 1.48 3.95 5.91

CC 0.06 0.26 0.68 1.20 2.85 4.87

MDSQ 0.05 0.19 0.32 0.48 1.13 2.96

MRMR 0.10 0.91 1.10 2.83 4.09 7.66

DISC 0.10 0.58 1.43 2.17 3.64 7.01

EPIC 0.01 0.03 0.04 0.05 0.09 0.11

UMEP 0.01 0.02 0.03 0.04 0.07 0.10

MDEP 0.02 0.04 0.05 0.07 0.12 0.15

Additionally, the computation time of EPIC and MDEP is also rather fast with an

increasing complexity approximately log-linear with respect to T . While, the exe-

cution time of RE, CC, MDSQ, MRMR, and DISC is quadratic in T . Both MRMR

and DISC are much slower, as the selection of one more classifier is conditioned

by more internal calculations.

Besides the efficacy of the ensemble pruning metrics, other main benefits con-

cern the efficiency as; storage requirements and the classification speed. The

booked memory space for complete bagging will be released to store the pruned

subensemble. While the classification speed depends on both (1) the size of the

pruned ensemble and (2) the complexity of the base classifiers.
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6.3.9 Exploration of the Research Questions

In this part, we determine whether the research questions of the third objective are

answered or not.

(Q5Q5Q5) The initial classifier pool size and the required subensemble size affect the

performance of the pruning metrics. In general, as the pool size T increases the

possibility of finding better subensembles will increase. However, this adds more

computational complexity to the pruning process. In addition, it is so difficult to

identify a fixed subensemble size P for each pool size T , upon which a higher

predictive performance can be guaranteed.

(Q6Q6Q6) The pruning metrics can be affected by the individual classifier type.

Different classifier types produce different decisions and affect the majority vot-

ing from the pool. Experimentally, the predictive performance of the identified

subensemble, via the pruning metrics, is not static and can be affected based on

what we use as similar or different classifier types.

(Q7Q7Q7) The efficacy of the pruning metrics could be affected by binary and mul-

ticlass datasets. Experimentally, the rank of the pruning metrics differs upon the

classification task. For the investigated binary datasets, the best ranks were scored

by MDEP, DISC, EPIC, RE, and UMEP. In contrast, for the investigated multiclass

datasets, the best ranks were scored by DISC, EPIC, UMEP, CC, and MRMR. Our

explanation for that, the complexity of an individual’s decision will increase with

the number of classes, and different decisions will be encountered. Regarding that,

the capability of each pruning metric could be different.

(Q8Q8Q8) The pruning metrics are effective to reduce the performance variance. Ex-

perimentally, the pruning metrics are capable of selecting non-random subensem-

bles. This was confirmed via the distribution of the predictive accuracy of the

pruned ensembles around the median value, to be better than original ensembles.

(Q9Q9Q9) The efficiency of the pruning metrics differs in terms of time and space

complexities. For space complexity, MDSQ and UMEP require less memory space

to operate. For time complexity, three metrics have the lowest computational cost

which is linear with T (UMEP, EPIC, and MDEP). In contrast, the other five metrics

(RE, CC, MDSQ, MRMR, DISC) perform at a larger computational cost which is

quadratic in T .
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6.4 Conclusions
Multiple classifier systems are superior to any random single classifier. However,

three main defects are reported for those systems; (1) A large pool of classifiers

should be built, (2) A Large memory space should be available to store those

models, and (3) A large classification time will be consumed to combine multi-

decisions. To alleviate these drawbacks, this chapter discussed the concept and

the benefits of thinning, pruning, selecting a subset of classifiers. Effective, fast,

and implementable heuristic metrics are analyzed to reorder the classifier’s posi-

tion in the generated random bagging. The main conclusions from this study are

highlighted as follows:

• The accuracy from ordering metrics is affected by both, the original number

of classifiers and the required percentage for the selected subensemble.

• The heuristic metrics with small size bagged ensembles can easily outper-

form the large size ensembles.

• The performance of heuristic methods can keep on improving regardless of

the degradation in the performance of the bagged ensembles.

• The inclusion of different classifiers is more promising to create diversity and

complementary in the subensemble than similar classifiers.

• For binary datasets, most of the investigated metrics are significantly outper-

forming bagging by 95%, while MDEP is the best among of them.

• The best selected single model from a group of classifiers is the worst strategy

for selecting subensemble.

• For multiclass datasets, most of the investigated metrics are significantly out-

performing bagging by 95%, while DISC and EPIC are the best.

• For the analysis over the 30 datasets, the three metrics DISC, EPIC, and

MDEP are still significantly outperforming bagging by 95%.

• The behavior of heuristic metrics against randomness has been analyzed by

displaying the prediction accuracies of subensembles around the median.

• Regarding efficiency, UMEP is the fastest heuristic metric to select promis-

ing subensemble. While MRMR and DISC are too much slower than other

investigated methods due to their internal calculations.
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• The general analysis over the 30 datasets proves that ordering metrics are
comparable with Random Forest and Adaboost according to accuracy, but
they are better regarding the ensemble size.

In summary, ordering based pruning metrics are more effective and efficient
to outperform bagging ensembles. The subensemble that minimizes/maximizes a
predefined generalization performance criterion is located easily. Analysis of re-
moving the similarity, as in MRMR, makes the usual aggregation of majority voting
no longer favorable since the majority has now been significantly reduced. Among
the heuristic metrics, UMEP, EPIC, and MDEP have the lowest computational cost
which is linear with the size of the initial pool of classifiers. The other investigated
metrics are good, but with larger computational cost (quadratic in T ).

Regarding future research, the concept of uncorrelated error is so important to
alleviate the consolidated error. Regarding that, the subensemble could be boosted
if the pruning metrics incorporate the uncorrelated error
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Everything is theoretically impossi-
ble, until it is done.

Robert A. Heinlein

CHAPTER

7
Conclusions and Future

Work

In this chapter, we summarize the main contributions, limitations, and future
lines of research resulted from this thesis. First, a consolidated view of results and
contributions is presented in Section 7.1. Afterward, the limitations of this work
are identified in Section 7.2. Finally, the future research lines from this thesis are
exposed in Section 7.3.

7.1 Summary of Contributions
Machine learning is an artificial intelligence technology that gives systems the abil-
ity to learn and develop from experience automatically without being programmed
specifically. The primary aim is to help computers learn automatically without hu-
man intervention or assistance. This field still receiving great interest due to the
growth of data, computing power, and statistical algorithms. While data mining
is a closely related topic, aims to discover useful, valid, understandable, and un-
expected patterns from data. However, each learning algorithm discovers the pat-
tern from a different perspective. Regarding that, ensemble data mining has been
proved as an optimal strategy to aggregate and combine several learning algorithms
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together. For the classification task, the aggregated models are well-known with the

name of multiple classifier systems (MCS). The main objective of the thesis is to

enhance the generation and the integration of MCS via soft computing techniques.

In the context discussed above, MCS are hybrid intelligent systems with the

potentiality to cope with ambiguity, uncertainty, and complex problems. While

soft computing methods support intelligent control, nonlinear programming, op-

timization, and decision making. Soft computing methods exploit the tolerance

for imprecision, partial truth, and uncertainty to achieve tractability, robustness,

low cost solution. With the human mind as a role model, soft computing enables

solutions for problems that may be either unsolvable or just too time-consuming.

This could be particularly helpful to optimize the design and the integration of the

complex MCS.

The research developed in this dissertation has contributed to the enhancement

of MCS. The experiments have been conducted on popular benchmark datasets.

In chapter 2, we presented a nice taxonomy for MCS. Afterward, we have dis-

cussed the importance of diversity and how we can measure it through pairwise

and non-pairwise metrics. Furthermore, the concept of error diversity is presented

to alleviate the consolidated error. Finally, the importance of soft computing is

highlighted within the area of MCS. In chapter 3, we have reviewed the state-of-

the-art classifier ensembles, this included; bagging-like ensembles, boosting, and

gradient boosting ensembles. The presented algorithms were compared together

in terms of how to promote diversity, and the type of the base model. Afterward,

due to the complexity of MCS, metaheuristic algorithms (MA) were specifically

applied to better integrate or prune the classifiers set. Finally, from the conducted

revision, we identified the gaps and the research questions that we answered in this

thesis. Among the chief contributions of this thesis:

Chapter 4, is dedicated to the first objective: ”To build more diverse and highly

accurate MCS, only from a reduced portion of the available data”. The complex-

ity of the classifiers ensemble increases positively with the size of training data.

To reduce this complexity, IS techniques could be used as a preliminary step to

reduce the training data-size. First, the border noisy samples are removed via intel-

ligent data sampling. Hence, pure, reduced, and informative data samples can be

obtained to train individual classifiers quickly and correctly. Second, the proposed
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MCS, Section 4.3.2, considers two strategies to promote diversity; data manipula-

tion and algorithm manipulation techniques. For data manipulation, the bagging

and the random feature selection are applied to the reduced dataset from phase

one. While, for algorithmic manipulation, the diversity is promoted via generat-

ing heterogeneous classifiers. Finally, SI algorithms were incorporated to enhance

MCS predictivity. Where, a weighted voting schema is optimized via MFO, GWO,

and WOA algorithms to enhance the fusion of multiple decisions. The novelty

of this contribution is the intersection between three computational intelligence

paradigms: instance selection, ensemble learning, and swarm intelligence. The ef-

fect of IS and SI on the generalization performance of MCS has been analyzed and

discussed in detail in Sections 4.4.3, and 4.4.5, respectively. With the conclusion,

IS proved its effectiveness to reduce the training data-size of 17 datasets by more

than 25%. AllKNN, as IS technique, did not prove its capability to capture the in-

tegrity from the whole data, where RFSM outperform RFCOM in only 4 out of 25

datasets. The mistake of IS to capture informative samples has been compensated

via our proposal. The proposed MCS with a simple combination function, majority

voting, outperforms RFCOM in 8 out of 25 datasets. While, a great improvement

has been achieved via SI, weighted voting strategy, to outperform RFCOM in 14

out of 25 datasets. Concluding, the predetermined first objective is partly achieved

due to the limited performance of the IS method.

Chapter 5, is dedicated to the second objective: ”Increasing the efficiency of

MCS and going beyond what can be achieved from ensemble pruning methods”. A

framework has been proposed to benefit from the power of instance selection and

ensemble selection simultaneously. In relation to that, IS methods can be applied as

a kind of data preprocessing to clean and eliminate inconsistent data. While ensem-

ble pruning is the strategy by which a small-size ensemble can be selected without

affecting the general performance of the original ensemble. Hence, the computa-

tional resources can be saved, and the testing time can be accelerated by depending

on some classifiers instead of all. Ensemble pruning is the second component,

that was integrated into the framework, Section 5.3, to elevate its performance. A

guided search-based MCS pruning has been proposed to consider both the classi-

fier’s accuracy and ensemble diversity. First, two ordering-based pruning metrics

have been applied, where each of them returns a set of classifiers. The suggested
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classifier set from each metric is merged together to form a new subensemble to be

further searched via metaheuristic methods. The proposal successfully solved the

parameter tuning challenges, the alpha parameter in Equation 5.5, which is part of a

novel and recent pruning metric, MDEP [36]. The limited accuracy of MCS prun-

ing metrics has been maximized via the proposed guided search-based pruning.

This has been proved and clarified as in Figure 5.4, and according to the statis-

tical analysis, Section 5.4.4. In this work, small-size ensembles with training on

fewer samples could outperform significantly the large-size ensembles which use

the whole available training data. Concluding, the predetermined second objective

is totally achieved.

Chapter 6, is dedicated to the third objective: ”Grouping and analyzing fast

and accurate heuristic metrics for MCS pruning”. Ensemble pruning strategies

are one of the hot topics to gain efficient and effective ensembles. The efficiency

could be reached via forming small-size ensembles with their impact; to consume

short memory space, reduce the communication cost of the distributed models,

and to accelerate the prediction time. While the efficacy could be achieved via

building trustable models with a high level of prediction accuracy. We applied

a fast and accurate strategy to work with bagging ensembles via ranking the en-

semble members. This pruning strategy is known as “ordering-based pruning” to

identify the best subset of classifiers for early aggregation. The identification of

this subset is mainly controlled through a heuristic measurement to optimize the

augmented subensemble. In this chapter, greedy search methods and group-based

ranking have been considered to reorder the pool of classifiers. Since the great

analysis by Martı́nez-Muñoz et al. [23] in 2009, several heuristic metrics belong-

ing to this category were proposed [24, 31, 32, 36] with no existence comparison

between them. Regarding that, our proposal was conducted to solve that gap. The

conclusions from this analysis proved that the efficacy of those metrics is affected

by the original ensemble size, the required subensemble size, the kind of individual

classifiers, and the number of classes. Furthermore, the investigated metrics realize

robust and stable predictions, this is analyzed via the range of their prediction ac-

curacy around the median as shown in Figure 6.3. Finally, the computational cost

of some metrics is linear with the initial pool size T , while other metrics have a
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larger computational cost, which is quadratic in T . Concluding, the predetermined
third objective is totally achieved.

7.2 Limitations
In relation to the contributions summarised above, this thesis also presents limita-
tions that need to be mentioned. In this section, we highlight some aspects that are
a barrier to better improvement.

• In Chapter 4, the proposed MCS uses reduced data for training. However,
we cannot guarantee whether or not the reduced data via IS could keep the
integrity from the original data. In some cases, the reduced data miss in-
formative samples which leads to bad training. This has been analyzed and
clarified via the performance on D14, D19 from Table 4.3.

• In Chapter 4, the proposed approach is characterized by a relatively high
computational complexity. Therefore, it is not suitable for online learning,
e.g., in the case of nonstationary data classification streams, namely, when
the concept drift phenomenon can occur. Instead, it can be a suitable al-
ternative if the training time is not a critical parameter from the application
perspective.

• In Chapter 5, the guided search-based pruning identifies a subensemble with
higher predictive performance, but the other pruning metrics (EPIC, UMEP,
MDEP) identify a thinner/small-size subensemble. This is clarified by the
statistical analysis in Table 5.7.

• The presented work in this thesis has not been scaled up to prove its suit-
ability for big datasets. In addition, the investigated work did not consider
problems with certain properties, like imbalanced class labels.

7.3 Future works
As the limitations of our study indicate, there are numerous ways to beneficially
extend this line of research in the future. They range from improving the training
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phase of MCS to pruning and combining MCS efficiently.

1. The proposed MCS is heterogeneous, containing different models, with the

aim to promote diversity. While the identification of classifiers to be included

in classifier ensembles remains a key issue for predictive performance. In

[198], the classifiers types to be consolidated are selected manually via the

majority voting error and forward search. Experimentally, the set of classi-

fiers solving a task could not be effective for another task [92]. The inclusion

of weak classifiers could degrade the general performance unless if they cre-

ate complement decisions for particular samples, this is too complex and

need to be further discovered and analyzed via tailored metrics to determine

the individual classifier type.

2. In Chapters 4 and 5, AllKNN [220], as a training set selection, has been

applied due to its reasonable selection time, reduction rate, and limited-

accuracy over test [212]. An interesting research line would be to evalu-

ate the performance of other training set selection algorithms. Particularly,

how each reduction method could add to the performance of MCS. In addi-

tion, the concept of instance selection had been widely used with the support

vector machine classifier [62, 246] to alleviate its computational difficulties

when dealing with huge amounts of data. In connection with that, a Pareto-

based SVM ensemble has been proposed in [247] to optimize the size of the

training set and the classification performance attained by the selection of

the instances. Thus, the consideration of those modeling approaches could

potentially lead to new promising versions for both homogeneous and het-

erogeneous MCS.

3. In Chapter 5, We have identified that both the classifier’s accuracy and the

ensemble diversity are crucial for MCS pruning. Our proposed schema is

so simple and innovative. The computational cost of our solution is light,

due to the usage of ordering metrics, in comparison to evolutionary algo-

rithms. While multi-objective optimization could be further applied to tune

the calibration between the subensemble size and the subensemble accuracy.

Examples of recent works in this area [248].
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4. The concept of uncorrelated error, Section 2.4.3.3, is so important to alleviate
the consolidated error. Regarding that, the weights of Equation (2.18) can be
optimized by evolutionary algorithms. Furthermore, the subensemble could
be better located if the concept of uncorrelated error can be incorporated in
the investigated metrics of Chapter 6.

5. In Chapter 4, the SI-based weighted voting schema considers the abstract
predictions from the individual classifiers. In contrast, the class probability
distribution carries information that should not be ignored [151]. For ex-
ample, if we take the votes according to the class labels, then the incorrect
outputs of the mistaken members will be amplified into wrong votes. A fu-
ture research line could be interesting to apply SI for the class probability
distribution. Furthermore, transforming the outputs of ensemble members
into class labels before considering their soft votes, leads to destroying the
real distribution and losing useful information [249]. Besides, the usage of
soft voting could be more efficient for ensemble pruning via decreasing the
probability that a tie occurs, i.e in majority voting.

6. In [22], the authors recommended using the classification confidence and the
weights of the base classifiers to define the ensemble margin. They used a
homogeneous ensemble of SVM, and the classification confidence for each
classifier is calculated in terms of the distance between sample xi and the
hyperplane. However, it is not clear how to measure the classification con-
fidence for different classifier types, an interesting research line could be to
extend their proposal to adapt to a heterogeneous ensemble. In addition, in
the same article, the weighted voting of the pruned ensemble proved superior
results, in terms of accuracy, over the majority voting of the pruned ensem-
ble. Regarding that, the investigated metrics of Chapters 5 and 6 could be
further enhanced.

By taking these issues into account, the predictive performance of MCS scheme
could be further enhanced.
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[224] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. Garcı́a, L. Sánchez,

and F. Herrera, “Keel data-mining software tool: data set repository, in-

tegration of algorithms and experimental analysis framework.” Journal of

Multiple-Valued Logic & Soft Computing, vol. 17, 2011.

[225] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr, “A survey on

metaheuristics for stochastic combinatorial optimization,” Natural Comput-

ing, vol. 8, no. 2, pp. 239–287, 2009.

[226] M. Friedman, “The use of ranks to avoid the assumption of normality im-

plicit in the analysis of variance,” Journal of the american statistical associ-

ation, vol. 32, no. 200, pp. 675–701, 1937.

[227] F. Wilcoxon, “Individual comparisons of grouped data by ranking methods,”

Journal of economic entomology, vol. 39, no. 2, pp. 269–270, 1946.

[228] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoo-

rian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on

deep learning in medical image analysis,” Medical image analysis, vol. 42,

pp. 60–88, 2017.

[229] M. P. Sesmero, A. I. Ledezma, and A. Sanchis, “Generating ensembles

of heterogeneous classifiers using stacked generalization,” Wiley Interdis-

ciplinary Reviews: Data Mining and Knowledge Discovery, vol. 5, no. 1,

pp. 21–34, 2015.

177



BIBLIOGRAPHY

[230] M. Wozniak and M. Zmyslony, “Combining classifiers using trained

fuser—analytical and experimental results,” Neural Network World, vol. 20,

no. 7, p. 925, 2010.

[231] A. J. Sharkey, N. E. Sharkey, U. Gerecke, and G. O. Chandroth, “The “test

and select” approach to ensemble combination,” in International Workshop

on Multiple Classifier Systems. Springer, 2000, pp. 30–44.

[232] C. A. Shipp and L. I. Kuncheva, “Relationships between combination meth-

ods and measures of diversity in combining classifiers,” Information fusion,

vol. 3, no. 2, pp. 135–148, 2002.

[233] F. Roli and G. Giacinto, “Design of multiple classifier systems,” in Hybrid

methods in pattern recognition. World Scientific, 2002, pp. 199–226.

[234] C. Lin, W. Chen, C. Qiu, Y. Wu, S. Krishnan, and Q. Zou, “Libd3c: ensem-

ble classifiers with a clustering and dynamic selection strategy,” Neurocom-

puting, vol. 123, pp. 424–435, 2014.

[235] J. Ghosh and A. Acharya, “Cluster ensembles,” Wiley Interdisciplinary Re-

views: Data Mining and Knowledge Discovery, vol. 1, no. 4, pp. 305–315,

2011.

[236] S. Barak, A. Arjmand, and S. Ortobelli, “Fusion of multiple diverse predic-

tors in stock market,” Information Fusion, vol. 36, pp. 90–102, 2017.

[237] P. Cortez, Modern optimization with R. Springer, 2014.

[238] E. Emary, H. M. Zawbaa, and A. E. Hassanien, “Binary grey wolf opti-

mization approaches for feature selection,” Neurocomputing, vol. 172, pp.

371–381, 2016.
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