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Abstract

This thesis studies the stability of one-dimensional discrete-time dynamical systems,
which can exhibit very complicated dynamics. In the case of ecological systems, which
are the focus of the research conducted, this is in line with the well known fact that for
biological populations fluctuations in size are ubiquitous. Amajor concern in manage-
ment programs is how to control these fluctuations when they have undesired effects.
Ecological systems have the added difficulty that it is not possible to alter the dynam-
ics by modifying the system parameters in real time. As a consequence, many of the
techniques for chaos control developed in the last three decades are not suitable for the
control of biological populations.

In this thesis, we present twonew control strategies that instead ofmodifying the sys-
tem parameters directly affect the state variable. We provide analytical results showing
that these techniques reduce the oscillations in the population size, and thus their appli-
cation improves the stability of themanaged populations. Nevertheless, the complexity
of nature complicates the analysis. Biological populations can exhibit counter-intuitive
behaviors, e.g., increased population size when harvested or higher risk of extinction
when restocked. In view of this complexity, we investigate the performance of the two
techniques introduced in this thesis in different scenarios including biological realities,
e.g., noise, lattice effect or Allee effect.

The analysis of these control strategies leads us to a problem about piecewise smooth
dynamical systems. We study a degenerate bifurcation structure of a family of piecewise
linear maps and introduce a new type of bifurcation for these maps. We provide theo-
retical results that constitute a complete description of both the bifurcation structure
and the dynamics of the system at the bifurcation points. In particular, these results al-
low us to complete the solution of a recent problem proposed in the field of economics.
This is a clear illustration that discrete dynamical systems play an important role in a
wide range of fields, and that the results presented in this thesis have potential interest
in fields different from population dynamics, e.g., in engineering.

Another focus of this thesis is on the global stability of one-dimensional discrete-
time systems. This stability property is themost desirable one, since it allows to predict
the long-rung behavior of the systemwith independence of the initial condition. How-
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ever, proving that a system possesses this property is in general a difficult task. In the
case of exploited populations, several aspects may affect their global stability. It is well
known that harvesting can stabilize populations that have auniquepositive equilibrium
by converting this equilibrium into a global attractor. Yet, as aforementioned, ecologi-
cal systems are tremendously complex. In the last years, great controversy has emerged
about the effect of harvest timing on the populations stability. In this thesis, we investi-
gate the combined effect of harvesting effort and harvest timing on the global stability.
We prove that for general overcompensatory models the moment of intervention has
no effect on the global stability of the positive equilibrium when the harvesting effort
is high enough. We also show that harvest timing can be both stabilizing and destabiliz-
ing by itself. With the latter, we disprove a conjecture recently appeared in the literature.
In the case of theRickermodel, which is one of themost relevantmodels in population
dynamics, we prove that delaying harvesting has no effect on the global stability of the
system for any harvesting effort. We also introduce an innovative method that provides
similar results for a broad family of compensatory models common in population dy-
namics, e.g., the Bellows, theMaynard-Smith-Slatkin or the Hassell model. This study
allows us to obtain new global stability results for some of thesemodels even in absence
of control.

The last problem addressed in this thesis is about the global stability of generic one-
dimensional discrete systems. We introduce a new method for the study of the global
stability, which complements and extends existing results in the literature in several di-
rections. Finally, we provide several examples showing the applicability of this method.
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Resumen

Esta tesis estudia la estabilidad de sistemas dinámicos unidimensionales discretos, los
cuales pueden presentar dinámicas muy complejas. En el caso de los sistemas ecológi-
cos, los cuales son el focode la investigación llevada a cabo, esto está en línea con el hecho
bien conocido de que las fluctuaciones en el tamaño de las poblaciones biológicas son
ubicuas. Cómo reducir estas fluctuaciones cuando su efecto es no deseado es una de las
mayores preocupaciones en programas de gestión de poblaciones. Los sistemas ecológi-
cos tienen la dificultad añadida de que no es posible alterar su dinámica modificando
directamente los parámetros del sistema en tiempo real. Como consecuencia, muchas
de las técnicas para el control del caos desarrolladas en las últimas tres décadas no son
aplicables en el control de poblaciones biológicas.

En esta tesis presentamos dos nuevas estrategias de control que en lugar de modi-
ficar los parámetros del sistema afectan directamente a la variable de estado. Propor-
cionamos resultados analíticos quemuestran que estas técnicas reducen las oscilaciones
en el tamaño de las poblaciones y, por tanto, su aplicación mejora la estabilidad de las
poblaciones controladas. Sin embargo, la complejidad de la naturaleza complica el análi-
sis. Las poblaciones biológicas pueden mostrar comportamientos aparentemente ilógi-
cos, como puede ser un mayor tamaño de población cuando se eliminan individuos o
unmayor riesgo de extinción cuando éstos son repuestos. En vista de esta complejidad,
investigamos el desempeño de las dos técnicas introducidas en esta tesis en diferentes
escenarios que incluyen realidades biológicas como ruido, efecto retícula o efecto Allee.

El análisis de estas dos estrategias de control nos lleva a un problema sobre sistemas
dinámicos diferenciables a trozos. Estudiamos una estructura de bifurcación degener-
ada de una familia de funciones lineales a trozos e introducimos un nuevo tipo de bi-
furcación para estas funciones. Proporcionamos resultados teóricos que brindan una
completa descripción tanto de la estructura de bifurcación como de la dinámica del
sistema en los puntos de bifurcación. En particular, estos resultados nos permiten com-
pletar la solución de un problema aparecido recientemente en el campo de la economía.
Esto constituye una muestra clara de que los sistemas dinámicos discretos juegan un
papel importante en gran variedad de áreas, y de que los resultados presentados en esta
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tesis son de potencial interés en campos distintos a la dinámica de poblaciones, e.g., en
ingeniería.

Otro foco de esta tesis se halla en la estabilidad global de sistemas unidimensionales
discretos. Esta propiedad de estabilidad es la más deseable, dado que permite predecir
el comportamiento a largo plazo del sistema con independencia de la condición inicial.
Sin embargo, probar que un sistema posee esta propiedad es en general una tarea difícil.
En el caso de la gestión de poblaciones, varios aspectos pueden afectar a la estabilidad
global de las poblaciones controladas. Es bien conocido que la reducción de población
puede estabilizar poblaciones que posean un único equilibrio positivo convirtiendo a
este equilibrio en un atractor global. Sin embargo, como ya se ha mencionado, los sis-
temas ecológicos son tremendamente complejos. En los últimos años se ha generado
gran controversia sobre el efecto del momento de captura de individuos en la estabili-
dad de las poblaciones explotadas. En esta tesis investigamos el efecto combinado de la
intensidad de captura y del momento en que ésta se realiza sobre la estabilidad global.
Probamos que para modelos sobrecompensatorios generales el momento de interven-
ción no tiene efecto sobre la estabilidad global del equilibrio positivo cuando la intensi-
dad de captura es suficientemente alta. También probamos que elmomento de captura
puede ser tanto estabilizante como desestabilizante por él mismo. Esto último nos per-
mite probar la falsedad de una conjetura recientemente aparecida en la literatura. En
el caso del modelo de Ricker, el cual es uno de los modelos más relevantes en dinámica
de poblaciones, probamos que retardar la captura no tiene efecto alguno sobre la esta-
bilidad global del sistema para ninguna intensidad de captura. Introducimos asimismo
un novedoso método que proporciona resultados similares para una amplia familia de
modelos compensatorios usuales en dinámica de poblaciones, e.g., los modelos de Bel-
lows, deMaynard-Smith-Slatkin o deHassell. Este estudio nos permite obtener nuevos
resultados de estabilidad global para algunos de estos modelos incluso en ausencia de
control.

El último problema considerado en esta tesis trata de la estabilidad global de sistemas
unidimensionales discretos genéricos. Proponemosunnuevométodopara el estudiode
la estabilidad global, el cual complementa y extiende resultados existentes en la literatura
en varias direcciones. Finalmente, proporcionamos varios ejemplos que muestran la
aplicabilidad de este método.
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Introduction

Motivation

One of the most powerful tools to model natural phenomena are dynamical systems.
Since the pioneering work of Poincaré in the late nineteenth century [171], the study
of these systems has emerged as a rich discipline from both theoretical and practical
points of view. From physics up to economics, dynamical systems transversely appear
in almost all branches of science and engineering.

The focus of this thesis is on nonlinear one-dimensional discrete-time dynamical
systems and, in particular, on their applications to population dynamics. In spite of
their apparent simplicity and contrary to the continuous-time case, these systems can
present an incredibly complex behavior [154], and their understanding is far from com-
plete. Given one of these systems, the main concern is about the long-run behavior of
its solutions.

Chaotic dynamics corresponds to the worse case scenario. Even though the evolu-
tion of chaotic deterministic systems is fully determined by the initial condition, small
uncertainties are amplified enormously fast. In this case, long-term predictions become
impossible. In practice, this unpredictability can also be extended tomany systemswith
periodic dynamics [207]. After the seminal work of Ott et al. [164], numerous control
methods have been proposed aimed at avoiding this unpredictability by guaranteeing
that the systembehaves as desired [7]. Most of these techniques are based on themodifi-
cation of the systemparameters in real time. Unfortunately, this is not possible formost
ecological systems, which are characterized by intrinsic uncertainty and inaccessibility
of parameters such as life-history traits. One of the goals of this thesis is to propose new
techniques that allow to control biological populations exhibiting erratic fluctuations.
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Global stability is the best case scenario for discrete one-dimensional dynamical sys-
tems. It occurs when the systemhas a unique positive equilibrium and all nonzero solu-
tions are attracted towards it. In this case, the dynamics are stable under perturbations
of the state variable and it is possible to predict the fate of the system with indepen-
dence of the initial condition. However, proving the global stability of a system is in
general a hard task. Another goal of this thesis is to provide sufficient conditions for
this property.

Research lines and contributions

The contributions of this thesis follow two different research lines. With the first of
them, two new techniques for the control of biological populations are proposed and
analyzed. Given thatmodifying parameters in real time is unfeasible formost ecological
systems, these techniques directly modify the state variable.

The analytical results that are obtained constitute a complete theoretical basis for
these two strategies. Moreover, both theoretical results and numerical simulations are
provided showing how these strategies might help to improve certain aspects of the
managed populations, e.g., by reducing the risk of extinction in the case of endangered
species or by reducing the risk of population outbreaks in the case of pest species.

The theoretical analysis performed for one of these techniques leads us to define a
type of bifurcation of piecewise smooth dynamical systems which, to the best of our
knowledge, has not been previously reported. Besides, this analysis allows us to com-
plete the solution of a problempreviously appeared in the field of economics and to pro-
vide a complete description of a bifurcation structure for a family of piecesiwe-smooth
dynamical systems.

The second research line of this thesis is aimed at studying the global stability of cer-
tain dynamical systems in the field of population dynamics and to provide sufficient
conditions for this property in a general framework. In particular, the combined effect
of harvesting intensity and harvesting time on the stability of discrete populations is
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studied. For general overcompensatory population models, we prove that the system
is globally stable if the harvesting intensity is high enough. To the best of our knowl-
edge, this is the first global stability result involving harvesting timing and harvesting
effort valid for a general family of models. For the Ricker model [176], which is one
of the most relevant models in discrete-time population dynamics, the global stabil-
ity of the system is proved for all possible harvesting times. By means of an innova-
tive method, such a result is also obtained for a broad family of compensatory models
common in population dynamics. Prominent among them are the Bellows, Maynard-
Smith-Slatkin and Thieme models. For some of them, new results for the global stabil-
ity in absence of harvesting are also provided.

Finally, a newmethod to study the stability of general one-dimensional discrete-time
models is proposed. This method complements and extends some existing conditions
for the global stability. In particular, we provide a global stability condition improving
the condition of negative Schwarzian derivative.

We want to highlight that discrete dynamical systems play an important role in a
wide range of fields, particularly in engineering. Therefore, the results presented in this
thesis have potential interest in fields different from population dynamics.

Structure of this thesis and related papers

This thesis is organized into two parts, which correspond to the aforementioned two
research lines. Chapters of these parts correspond to research papers as follows:

Research line I: Control of fluctuations through adaptive limiters

Chapter 1. A new method for the control of biological populations is in-
troduced and analyzed. This is an adaptive limiter strategy that consists
in removing individuals when in a given generation the population grows
disproportionately with respect to the previous generation.
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J. Segura, F. M. Hilker and D. Franco. Adaptive threshold har-
vesting and the suppression of transients. Journal of Theoretical
Biology, 395:103–114, 2016.

Chapter 2. The effect of adaptive limiter control methods is studied in
presence of biologicalmechanisms causing extinctions and pest outbreaks.

J. Segura, F.M.Hilker andD. Franco. Population control meth-
ods in stochastic extinction and outbreak scenarios. PloS One,
12(2):e0170837, 2017.

Chapter 3. A new adaptive limiter strategy that combines harvesting and
restocking is introduced and studied. The focus is on the advantages that
the combination of harvesting and restocking may have over only harvest-
ing or only restocking.

J. Segura, F. M. Hilker and D. Franco. Enhancing population
stability with combined adaptive limiter control and finding the
optimal harvesting-restocking balance. Theoretical Population
Biology, 130:1–12, 2019.

Chapter 4. A bifurcation structure for a family of piecewise smoothmaps
is studied and a new type of degenerate bifurcations for these maps is pre-
sented and analyzed.

J. Segura, F.M.Hilker andD. Franco. Degenerate period adding
bifurcation structure of 1D bimodal piecewise linear maps. Un-
der review in SIAM Journal on AppliedMathematics.
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Research line II: Harvest timing and global stability of one-dimensional dis-
crete dynamical systems

Chapter 5. The combined effect of harvesting intensity and harvesting
time on the global stability of discrete-time populations is studied.

D. Franco, H. Logemann, J. Perán and J. Segura. Dynamics of
the discrete Seno population model: Combined effects of har-
vest timing and intensity on population stability. AppliedMath-
ematicalModelling, 48:885–898, 2017.

Chapter 6. The global stability of populations governed by the Ricker
model and harvested at any time during the reproductive season is studied.

D. Franco, J. Perán and J. Segura. Effect of harvest timing on the
dynamics of the Ricker–Seno model. Mathematical Biosciences,
306:180–185, 2018.

Chapter 7. A newmethod to study the local and global stability of popu-
lations subject to delayed harvesting is proposed.

D. Franco, J. Perán and J. Segura. Global stability of discrete dy-
namical systems via exponent analysis: applications toharvesting
population models. Electronic Journal of Qualitative Theory of
Differential Equations, 101:1–22, 2018.

Chapter 8. A new method to study the global stability of general one-
dimensional discrete-time models is proposed.

D. Franco, J. Perán and J. Segura. Stability for one-dimensional
discrete dynamical systems revisited. Discrete and Continuous
Dynamical Systems–B, 25(2):635-650, 2020.
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1
Adaptive threshold harvesting and the

suppression of transients

1.1 Introduction

In the last decades, the concern about the consequences of population oscillations for
ecosystems has grown [15]. These fluctuations are ubiquitous [72, 150, 172] and have
multiple causes [15, 116, 180, 215]. Although they may have positive effects, e.g., in-
creased biodiversity [9, 110] or enhanced persistence in metapopulations because of
desynchronization [2], their consequences can also be negative, e.g., more variable yield
of exploited populations [219], the occurrence of pest outbreaks [70], increased extinc-
tion risk [178] or the loss of genetic variability and increased inbreeding [4, 24].

Potential management strategies to deal with population fluctuations have recently
come into focus [15]. They can be aimed at maintaining oscillations because of their
positive effects but at avoiding some undesirable aspects [109], or at inducing certain
responses at targeted points in time [107]. Many management strategies, however, are
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concerned with reducing fluctuations to avoid some of their negative consequences.
Here, we propose and analyze one of these strategies. It is a harvesting control method
that takes effect only if the population size has grown by at least a certain factor in com-
parison to the previous census. This conditional strategy differs from textbook strate-
gies like constant-effort and constant-yield harvesting, as it responds only to population
increases sufficiently large. We shall refer to this strategy as adaptive threshold harvest-
ing (ATH) and the harvesting version of adaptive limiter control (h-ALC), because it is
closely related to threshold harvesting, also known as limiter control (LC), on the one
hand and to adaptive limiter control (ALC) on the other hand.

Threshold harvesting removes individuals from a population whenever the popula-
tion size exceeds a fixed threshold value [83, 132]. This harvest control rule is equiva-
lent to limiter control, which is a method originating from physics [48, 195, 217] and
has been applied to problems as diverse as computer architecture design [65], cardiac
rhythms [88], commodity markets [101], and population dynamics [105, 106]. Lim-
iter control methods have the advantage that no detailed information of the system is
required, which iswhy they are easy and fast to implement. Similarly to someother pop-
ulation control methods, e.g., [59, 81, 141, 157, 168, 197, 212], they directly affect the
state variables, i.e., the population size, by restocking (adding) or harvesting (removing)
individuals. This approach seems particularly apt for ecological systems that are char-
acterized by intrinsic uncertainty and ‘inaccessibility’ of parameters such as life-history
traits.

Adaptive limiter control was proposed by Sah et al. [184]. The idea of ALC is to
add individuals to the population whenever the population size falls below a certain
fraction of its value in the previous generation. The term ‘adaptive’ follows form the
fact that the threshold value of the population size triggering control is a fraction of
the previous population size, and as such variable over time. The efficacy of ALC to
stabilize biological populations has been shown in laboratory experiments on popula-
tions and metapopulations of the fruit flyDrosophila melanogaster [184] as well as by
analytical results [77] and numerical simulations [77, 183, 184, 212].
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However, from the application point of view, ALC has a major caveat. As a restock-
ing strategy, it requires the availability of a versatile source of individuals which can be
used to augment the population if needed. Such a pool of individuals may be difficult
or even impossible to create or to maintain in practice. For instance, some organisms
cannot be kept in captivity or do not reproduce in such conditions. Moreover, there
may be issues of translocation and releasing individuals. Maintaining and managing
a stock may be costly, labor-intensive, logistically challenging, and time-consuming.
These drawbacks are due to the restocking component and thus intrinsically linked
with ALC.

By contrast, removing individuals as an interventionmethod canoffer various advan-
tages. It may be easier or cheaper than restocking or simply possible when augmenting
a population is out of the question. In practice, one could draw upon experience from
a wide range of established harvesting, hunting, exploitation, and culling methods. Re-
moval methods may be difficult to implement as well and may raise ethical concerns
about killing animals. Yet, it is easy to imagine that reducing population size seems, in
many circumstances, more obvious than augmenting population size.

Being based on harvesting rather than restocking, the harvest control rule presented
in this chapter is the harvesting version of adaptive limiter control. That is, whenever
the population size exceeds a certain proportion of its value in the preceding genera-
tion, harvesting takes place and reduces the population size to the preceding value. In
contrast to threshold harvesting, the critical population size above which interventions
take place is not fixed, but is adaptive in response to the previous population size.

While replacing restocking by harvesting appears straightforward and sensible from
a biological and practical point of view, there is no reason to believe that the dynamical
behavior induced by ALC on the one hand and by its harvesting version ATH on the
other hand is similar. This becomes clearwhen considering other control strategies that
have harvesting and restocking variants. For instance, proportional feedback control
[92] is able to stabilize a population towards a positive equilibrium when a constant
proportion of the population is harvested [141], but the restocking variant adding a
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constant proportion of the population fails to stabilize the equilibrium [38]. Constant
feedback control provides another dramatic example. While both adding or removing a
constantnumberof individuals each generation can stabilize chaotic dynamics [93, 157,
200], the latter form of intervention can drive the population extinct at small removal
rates, even when the population is able to persist for higher removal rates [189, 196].
These examples arise in the simplest case of single-species models given by unimodal
maps that we also consider here.

In thenext section,we introduce themathematicalmodel describing adaptive thresh-
old harvesting. We then analyze in Section 1.3 its effect on the constancy stability in
terms of two different measures, namely the fluctuation range and the fluctuation in-
dex. Since ATH is a harvesting strategy and the individuals removed may be actually
of economic interest (e.g., in fisheries), Section 1.4 considers the mean yield per gener-
ation, both in the long-run and the short-run. Section 1.5 focuses on the short-term
dynamics generated by the interventions. Transients are often ignored in theoretical
studies of ecological systems, which is why we discuss in some detail how to deal with
them. In particular, we propose adjusted versions of both ATH and ALC that reduce
the length of transients and thus accelerate the approach to the long-term dynamics.
Finally, Section 1.6 summarizes the results obtained and draws conclusions.

1.2 Adaptive threshold harvesting

1.2.1 Population growth model

The effect of a control method on a biological population depends on the underlying
population dynamics, so we start by describing the model of the uncontrolled system.
We assume that the population dynamics are described by a first-order one-dimensional
difference equation

xt+1 = f (xt), x0 ∈ [0,+∞), t ∈ N, (1.1)
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where xt denotes the population size at time step t. The population productionmap f
is assumed to satisfy the following conditions:

(A1) f : [0, b] → [0, b] (b = +∞ is allowed) is continuously differentiable and such
that f (0) = 0, f (x) > 0 for all x ∈ (0, b) and f ′(0+), f ′(b−) ∈ R.

(A2) f has two non-negative fixed points x = 0 and x = K > 0, with f (x) > x for
0 < x < K and f (x) < x for x > K.

(A3) f has a unique critical point d ∈ (0, K) in such away that f (d) ≤ b, f ′(x) > 0
for all x ∈ (0, d) and f ′(x) < 0 for all x ∈ (d, b).

(A4) f is concave downward on [0, d].

These conditions describe a unimodal population production function peaking at
x = d and are standard assumptions in the study of discrete-time population dynam-
ics, e.g., [38, 54, 77, 154, 189, 194]. Biologically speaking, the population has two
fixed points (namely, the extinction state x = 0 and a positive equilibrium x = K),
and the dynamics are overcompensatory with no demographic Allee effect. Examples
include the frequently considered population dynamics models in their overcompen-
satory regimes, e.g., theRicker [176],Hassell [98], and generalized Beverton–Holt [19]
maps.

1.2.2 Modeling adaptive threshold harvesting

Adaptive threshold harvesting exerts control on a population when the population
size xt at time step t exceeds a certain proportion of its value in the preceding genera-
tion. The control then restates the population size back to that threshold by harvesting
the surplus individuals. Thus, ATH takes action if the population has grown beyond
a certain proportion within a time step, which is why ATH can be seen as aiming to
prevent population booms.

As ALC, this new limiter method is ‘adaptive’ because the magnitude of the inter-
vention is nonconstant and depends on the system state at the previous time step. Fig-
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Figure 1.1: Stabilizing effect of ATH.During the first 20 generations, the population is un-
controlled and follows Eq. (1.1) for theRickermap f (x) = x exp(r(1− x/K))with growth
parameter r = 3 and carrying capacity K = 60. In the next 20 generations, the population is
controlled by adaptive threshold harvesting with intensity h = 2/3.

ure 1.1 shows how ATH modifies the dynamics of the population and, in particular,
how the fluctuation range of the population size is reduced.

When applying ATH, there are two different population sizes at time step t, namely
bt, the population size before ATH intervention and at, the population size after inter-
vention. In particular, bt ≥ at because ATH never adds individuals to the population.
With these notations, the dynamics ofATHare determined by the following equations:

bt+1 = f (at) and at+1 =

bt+1, bt+1 ≤ at/h,

at/h, bt+1 > at/h,
(1.2)

where h ∈ (0, 1) is a control parameter. Notice that we have denoted the proportion
of at that determines when individuals are removed by at/h, with 0 < h < 1, instead
of h · at, with h > 1. This allows us to interpret h as a harvesting intensity, since higher
values of h correspond to lower values of 1/h, and thus to higher removal efforts.
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Substituting the value for bt+1 from the first equation of (1.2) into the second one,
we obtain that the population dynamics are determined by the first-order difference
equation

at+1 =

 f (at), f (at) ≤ at/h,

at/h, f (at) > at/h,
(1.3)

which is piecewise smooth and can be written in one line by using the minimum func-
tion,

at+1 = min{ f (at), at/h}.

According to conditions (A1)–(A4), ATH never takes place if h ≤ 1/ f ′(0+),
so in the remainder of this chapter we will always assume values of the intervention
intensity greater than that.

Similarly, the dynamics of populations managed by ALC are given by the first-order
difference equation

at+1 = max{ f (at), c · at}, (1.4)

where c ∈ (0, 1) is a control parameter measuring the ALC intensity [77].

1.2.3 Activation threshold

As previously stated, ATH only takes effect when the population size exceeds a propor-
tion of its magnitude in the preceding generation. However, it is not necessary for the
controller to wait until measuring the population size in generation t to decide about
theneed for intervention. Fortunately, the analysis of (1.3) reveals the existence of a ‘hid-
den’ threshold level AH such that the intervention is triggered in generation t only if the
population size in the preceding generation is below this value. In analogy toALC, this
threshold is called the activation threshold [77]. Geometrically, the activation thresh-
old corresponds to the first component of the intersection point of the graph of f and
the straight line y = x/h (see Figure 1.2). Proposition 1.1 shows the existence of AH ,
for control intensities h > 1/ f ′(0+). For intensities h ≤ 1/ f ′(0+) the control is
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never triggered and, according to conditions (A1)–(A4), the activation threshold AH

does not exist because the straight line y = x/h only intersects y = f (x) at x = 0.
Obviously, the knowledge of AH can be useful in practical situations because it allows
the controller to know early onwhen an intervention is necessary in the next generation.

Proposition 1.1. Assume that (A1)–(A4) hold. Then, for any h ∈ (1/ f ′(0+), 1) there
exists a unique point AH > 0 such that f (AH) = AH/h.

Proof. We must prove that the function h(x) = f (x) − x/h has a unique zero in
(0, b]. As d < K and f is strictly decreasing for x > d, we have that f (d) > f (K) =
K > d, and therefore f (d)/d > 1. According to this, we consider two cases depend-
ing on the value of the control intensity h. For h ∈ (d/ f (d), 1) we have

h(d) = f (d)− d/h > 0,

h(K) = f (K)− K/h = K − K/h = (1 − 1/h) · K < 0,

and hence, according to Bolzano’s Theorem, there exists a point AH ∈ (d, K) such
that f (AH) = AH/h. Let us now prove the uniqueness of AH . Since f is strictly
decreasing on (d, b), and the straight line y = x/h is strictly increasing, they intersect
only once (at the point AH , which existence has been proved). We must prove that
there is no intersection outside the aforementioned interval. First, the hypograph of
f is convex on [0, d] because f is concave downward on that interval, and thereby the
curve f (x) is above the straight line y = ( f (d)/d) · x (they intersect at the endpoints
of this interval). Given that h > d/ f (d), we have that x/h < ( f (d)/d) · x for all
x ∈ (0, d], and thus the only intersection between f (x) and the straight line y = x/h
on [0, d] is x = 0. This concludes the uniqueness of AH in this case.

Second, for h ∈ [1/ f ′(0+), d/ f (d)] we have that h(d) = f (d) − d/h ≤ 0.
Moreover, given that

1/h < f ′(0+) = lim
x→0+

f (x)
x

,
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there exists ϵ > 0 such that f (x) > x/h (i.e., h(x) > 0) for all x ∈ (0, ϵ). Accord-
ing to Bolzano’s Theorem, there exists AH ∈ (0, d] such that f (AH) = AH/h. With
regard to the uniqueness, due to the concavity of f on [0, d], there are only two intersec-
tionpoints between f and the straight line y = x/h on this interval, namely x = 0 and
x = AH . Furthermore, these two curves do not intersect on (d, b) because f is strictly
decreasing on that interval; y = x/h is strictly increasing; and f (d) < d/h.

Corollary 1.2. Assume that (A1)–(A4) hold and h ∈ (0, 1) is such that the activation
threshold AH exists. Then, themap describing the dynamics of at for the controlled system
under ATH with intensity h,

H(x) = min{ f (x), x/h},

can be rewritten as

H(x) =

x/h, x ≤ AH,

f (x), x > AH.

Corollary 1.3. Assume that (A1)–(A4) hold and h ∈ (0, 1) is such that the activation
threshold AH exists. Then, ATH acts in generation t if and only if at−1 < AH .

1.3 Stabilization of fluctuations

Here we describe how adaptive threshold harvesting affects constancy stability, i.e., the
propensity of the population size to stay essentially unchanged [90]. We start by show-
ing that ATH is not able to stabilize oscillations towards an equilibrium point. This is
a property that ATH shares with ALC [77].

Proposition 1.4. Assume that (A1)–(A3) hold and that the fixed pointK is unstable for
the uncontrolled system (1.1). Then, independently of themagnitude ofATH, h ∈ (0, 1),
the controlled system has no asymptotically stable equilibria.
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Figure 1.2: ATH map. Adaptive threshold harvesting only takes place when the straight line
y = x/h is under the graph of the population production map f . The activation threshold
AH is defined by their intersection. The bold red curve represents the ATHmap (1.3).

Proof. ATH corresponds to the dynamical system given bybt+1 = f (at),

at+1 = min{ f (at), at/h},
(1.5)

for which a point (x, y) is a fixed point if and only ify = f (x),

x = min{ f (x), x/h}.

For h ≤ 1/ f ′(0+), the control by ATH is never triggered, and the dynamics of the
uncontrolled and controlled systems are the same. By condition (A2), this system has
only two fixed points x = 0 and x = K. Since f (x) > x for 0 < x < K, x = 0 is an
unstable equilibrium. Under the assumption that K is also unstable, we conclude that
the controlled system has no asymptotically stable equilibria.
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For control intensities larger than 1/ f ′(0+), the dynamics of the system controlled
by ATH are different from the ones for the uncontrolled system and are given by (1.5).
Looking at these equations, it becomes clear that (x, y) = (0, 0) is a fixed point. Since
h < 1, we have that fixed points with x > 0 must verify x = y = f (x), and thus
(x, y) = (K, K). Hence, the system controlled byATHwith intensity h > 1/ f ′(0+)
has only two fixed points, namely (0, 0) and (K, K).

We are going to prove that none of them is asymptotically stable. According to
Proposition 1.1, the activation threshold AH exists. Moreover, the neighborhoodU =

(0, AH)× (0, AH) of (0, 0) is well-defined. We are going to prove that all orbits start-
ing inUwill eventually leaveU. Assume (at, bt) ∈ U for all t ≥ 0. Since f (x) > x/h
for x ∈ (0, AH), according to the second equation of (1.5), it is at+1 = at/h for all
t ≥ 0, and thus at = (1/h)t · a0. This leads to at → +∞, which contradicts our
hypothesis and proves that (0, 0) is an unstable fixed point.

Let us now prove that (K, K) is also unstable. As f is continuous and f (K) =

K < K/h, there exists a neighborhood V of K such that f (x) < x/h for all x ∈ V.
Assume (at, bt) ∈ V ×V for all t ≥ 0. According to the second equation of (1.5), it is
at+1 = f (at) for all t ≥ 0, and thus at = f t(a0). SinceK is anunstable fixedpoint for
the uncontrolled system, this last equality contradicts our hypothesis and allows us to
conclude that (K, K) is an unstable fixed point for the system controlled by ATH.

In the remainder of this section, we consider two different measures of constancy
stability, namely the fluctuation range and the fluctuation index.

1.3.1 Fluctuation range

The fluctuation range gives the upper and lower bounds of the population size, in be-
tween which the oscillations take place. It has been employed in [77] to study stability
properties of ALC. The smaller the fluctuation range, the more stable the population
dynamics from the constancy point of view.
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Figure 1.3: Bifurcation diagrams for ATH and ALC. (a) Bifurcation diagram for ATH.Red
dots represent population sizes for the system (1.3) controlled by ATH. The bold black curves
mark the limits of the intervals given by Eq. (1.6). (b) Bifurcation diagram for ALC. Blue
dots represent population sizes for the system (1.4) controlled by ALC. In both panels, the
horizontal dashed lines mark the limits of the fluctuation range for the uncontrolled system.
The diagrams are based on the Ricker map f (x) = x exp(r(1 − x/K)) with r = 3 and
K = 60, after removing transients. The initial population size is chosen as a pseudorandom
number in (0, f (d)].
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The ATH method can reduce the fluctuation range compared to the uncontrolled
system. We illustrate this in Figure 1.3a, where the fluctuation range decreases as the
control intensity is increased. The figure suggests that ATH confines the population
size within a region around the positive but unstable equilibrium K. The following
theorem states that such a ‘trapping region’ indeed exists and is completely determined
by the map f and the control parameter h.

Theorem 1.5. Assume that (A1)–(A4) hold and h ∈ (0, 1) is such that the activation
threshold AH exists. Then, applying ATH with intensity h confines the population sizes
at for any a0 ∈ (0, b] within an interval Ia = [l(h), u(h)] around the positive equilib-
rium K, with endpoints given by the expressions

l(h) =

 f (AH/h), d ≤ AH,

f ( f (d)), d > AH,
and u(h) =

AH/h, d ≤ AH,

f (d), d > AH.
(1.6)

Proof. In order to cover all possible expressions for Ia, we must consider two cases.

We start considering the case d ≤ AH , for which Ia = [ f (AH/h), AH/h]. We
have that d ≤ AH < AH/h, and thus f (d) ≥ f (AH) > f (AH/h) because h < 1
and f is strictly decreasing in (d, b). From this, we conclude that the interval Ia has a
nonempty interior because f (AH) = AH/h and therefore AH/h > f (AH/h). To
prove that orbits enter Ia after a transient, we consider exhaustive and disjoint subcases
depending on the initial population size a0 ∈ (0, b].

1. First, we assume that a0 ∈ [AH, AH/h]. In this subcase,

d ≤ AH ≤ a0 ≤ AH/h,

and thanks to the strict decrease of f on (d, b) we conclude that

f (d) ≥ f (AH) ≥ f (a0) ≥ f (AH/h).
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Moreover, according to Corollary 1.2, it is a1 = H(a0) = f (a0). With this,
given that f (AH) = AH/h, we have that AH/h ≥ a1 ≥ f (AH/h) and thus
a1 ∈ Ia.

2. Next, we assume a0 ∈ (0, AH). We are going to show that there exists t0 ∈ N

such that at0 ∈ [AH, AH/h]. Assume at 6∈ [AH, AH/h] for all t. Let us
prove by induction on t that at ∈ (0, AH) for all t. For t = 0 this condition
is straightforward from the hypothesis of the subcase. Suppose at ∈ (0, AH)
for certain t ≥ 1. Since at < AH , we have that at+1 = H(at) = at/h by
Corollary 1.2, and therefore

at+1 = at/h < AH/h.

As at+1 6∈ [AH, AH/h] by hypothesis, we conclude that at+1 ∈ (0, AH). In
conclusion, at ∈ (0, AH) for all t and thus at = Ht(a0) = (1/h)t · a0 by
Corollary 1.2. This leads to at → +∞ because h < 1, which is impossible
because at < AH < K. In summary, we conclude that there exists t0 ∈ N

such that at0 ∈ [AH, AH/h] and thus at0+1 ∈ Ia by the first subcase.

3. Finally, we assume a0 ∈ (AH/h, b]. We have that a0 > AH/h > AH ≥ d
and, according toCorollary 1.2, a1 = H(a0) = f (a0). From the strict decrease
of f on (d, b) we have that

a1 = f (a0) < f (AH/h) < f (AH) = AH/h,

which leads to one of the previous subcases and proves that orbits eventually
enter Ia.

So far, we have proved that orbits enter the trapping region after a finite number of
generations. To prove that they never leave it, we must establish that at+1 ∈ Ia for
at ∈ Ia. Assume at ∈ Ia for certain t. If f (AH/h) ≥ AH we have that AH ≤
f (AH/h) ≤ at ≤ AH/h, and therefore at+1 ∈ Ia by the previous subcase 1. For
f (AH/h) < AH we consider two cases. If at < AH , it is at+1 = H(at) = at/h
(Corollary 1.2) and thus AH/h > at/h = at+1 > at ≥ f (AH/h), which implies
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at+1 ∈ Ia. If at ≥ AH ; at ∈ [AH, AH/h]; and therefore at+1 ∈ Ia by the previous
subcase 1.

Next,we consider the cased > AH , forwhich Ia = [ f ( f (d)), f (d)]. If f ( f (d)) =
f (d) then f (d) > K is a fixed point for f , in contradiction with condition (A2).
Hence, Ia has a nonempty interior, and we can proceed to prove that orbits enter this
interval after a finite number of generations. To do this, wemust distinguish some sub-
cases as before.

1. First, we assume that a0 ∈ [d, f (d)]. As a0 ≥ d > AH , it is a1 = H(a0) =
f (a0) by Corollary 1.2. Given that f is strictly decreasing on (d, b), from the
inequality d ≤ a0 ≤ f (d) we deduce that f ( f (d))(d) ≤ f (a0) = a1 ≤
f (d), which implies a1 ∈ Ia.

2. Next, we assume a0 ∈ (0, d). We are going to see that there exists t0 ∈ N such
that at0 ∈ [d, f (d)]. Suppose at 6∈ [d, f (d)] for all t. Given that f reaches
its absolute maximum at x = d, for all x ∈ [0, b] we have that H(x) =
min{ f (x), x/h} ≤ f (x) ≤ f (d). Hence, at = H(at−1) ≤ f (d) for
all t, which together with at 6∈ [d, f (d)] leads to conclude that at ∈ (0, d)
for all t. The hypograph of f on (0, d) is convex because f is concave down-
ward on this interval, and therefore the curve f (x) is above the straight line
y = ( f (d)/d) · x (they intersect at the endpoints of this interval). On the
other hand, h < d/ f (d) when d > AH . This allows us to conclude that
H(x) = min{ f (x), x/h} > ( f (d)/d) · x for all x ∈ (0, d). With this,
given that at ∈ (0, d) for all t, we have that at = H(at−1) > ( f (d)/d) · at−1
for all t ≥ 1 and thus

at = Ht(a0) > ( f (d)/d)t · a0.

Given that f (d) > d we have that at → +∞, which is impossible since at < d
for all t. We conclude that there exists t0 ∈ N such that at0 ∈ [d, f (d)] and,
with this, at0+1 ∈ Ia by the previous subcase.

3. Finally, we assume a0 ∈ ( f (d), b]. In this subcase, we have that a1 = H(a0) ≤
f (d) because H(x) ≤ f (d) for all x ∈ (0, b]. This brings us back to one of the
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previous subcases and allows us to assert that orbits eventually enter the trapping
region.

Now we proceed to prove the invariance of the trapping region under ATH. To do
this, we assume at ∈ Ia for a certain t and prove at+1 ∈ Ia. We have seen that at+1 =

H(at) ≤ f (d) for all t, so it suffices to prove that at+1 ≥ f ( f (d))(d). For at ≥ d
this condition is straightforward from the previous subcase 1. If at < d, we have that
f (at) > at by condition (A2), and then

at+1 = H(at) = min{ f (at), at/h} ≥ min{at, at/h} = at ≥ f ( f (d)).

If a specific goal is to be achieved, such as suppressing the population size below an
upper limit; beyond a lower limit; or within two limits, the control intensity to achieve
these goals can be determined with Theorem 1.5. This is possible because the trapping
region is completely determined by the map f and the control parameter.

The trapping region given in Theorem 1.5 is global, that is, the reduction of the fluc-
tuation range does not depend on the initial condition. Figure 1.3a shows a bifurcation
diagram for ATH together with the limits of the intervals defining the trapping region
given by Eq. (1.6). These intervals are sharp over a wide range of control parameters,
which means that they cannot be improved for those parameter values.

ATH and ALC reduce the fluctuation range in different ways. On the one hand,
ALC asymptotically provides, for almost all control intensities, a lower limit for the
population size that is clearly higher than the one observed for the uncontrolled system.
The upper limit, however, is significantly reduced formedium and high intensities only
(see Figure 1.3b). On the other hand, ATH asymptotically induces, for a wide range of
control intensities, an upper limit for the population size that is clearly smaller than the
one observed for the uncontrolled population. However, the lower limit is significantly
increased for medium and high intensities only.
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Figure 1.3a also shows the case when the control intensity h is greater than unity.
This corresponds to harvesting a population that has decreased below rather than in-
creased above a fraction of its previous size. Such a choice of control leads to extinc-
tion. The reason is that the harvesting always forces the population size to a fraction
1/h < 1; as a consequence, there is no positive fixed point. Choosing a control inten-
sity c > 1 for ALC leads the population to blow up (Figure 1.3b). This is because the
control forces the number of individuals to increase in each generation to at least the
proportion c > 1 of its previous value.

1.3.2 Fluctuation index

In Figure 1.3, we have seen that constancy stabilitymeasured in terms of the fluctuation
range is always enhanced when ATH (or ALC) is applied to the Ricker model consid-
ered here. Looking at another measure of constancy stability, namely the fluctuation
index (FI), we will show that ATH does not always have a stabilizing effect.

The fluctuation index is a dimensionless measure of the average one-step variation
of the population size scaled by the average population size in a certain period. It was
introduced in [63], and employed in [184] and [77] to study stability properties ofALC.
Mathematically, the FI is given by

FI =
1

T a

T−1

∑
t=0

|at+1 − at| , (1.7)

where a is the mean population size over a period of T time steps.

Figure 1.4 shows that for small values of the control parameter, the FI of the system
controlled by ATH can be greater than the FI of the uncontrolled system. The same
holds true for ALC. For small values of the control intensity, the FI behaves quite errat-
ically for both ATH and ALC, with pronounced peaks as well as sporadic drops below
the baseline level set by the uncontrolled system. This sudden changes are due to attrac-
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Figure 1.4: Fluctuation indices (FIs) for ATH and ALC. Red squares correspond to the
FI for the system controlled by ATH and blue dots for the system controlled by ALC. The
horizontal linemarks theFI for theuncontrolledpopulation. Thedynamics of theuncontrolled
population are described by the Ricker map f (x) = x exp(r(1 − x/K)) with r = 3 and
K = 60. The initial population size is chosen as a pseudorandom number in (0, f (d)], and
the FI is obtained over 1000 generations after removing transients.

tor transitions, e.g. from chaos to periodic oscillations or between cycles of different
periods (cf. Figure 1.3).

For medium and high control intensities both ATH and ALC reduce the FI com-
pared to the uncontrolled system. With a fixed value of the control intensity in this
range, the effects of ATH and ALC on the FI are not only qualitatively but also quan-
titatively similar.

1.4 Yield

Control strategies usually come at a price. Previous papers measure this cost in terms
of the ‘effort’, i.e., the number of individuals added to or removed from a population
[59, 77, 105, 184, 212]. Here, we take a slightly different viewpoint and interpret the
number of individuals removed as the yield. This seems to suggest itself since ATH is

26



0.20.0 0.4 0.6 0.8 1.0
0

20

40

60

80

M
e

a
n

yi
e

ld
p

e
r

g
e

n
e

ra
ti
o

n

0

20

40

60

80

Harvesting intentisy, h

Figure 1.5: Mean yield per generation obtained by ATH. The dashed curve represents the
asymptotic yield after discarding transients, and the solid curve represents the short-term yield
including transients. Both yield values are averaged over50 generations andover1000 replicates
with different initial conditions. The dynamics of the uncontrolled population are described
by the Ricker map f (x) = x exp(r(1 − x/K)) with r = 3 and K = 60. The initial popu-
lation size is chosen as a pseudorandom number in (0, f (d)] for the transient yield, and in the
trapping region Ia for the asymptotic yield.

a harvesting method, provided that the managed population is of some value. If the
population is a pest, however, the term effort may be more fitting. In any case, we will
consider two different ways of calculating the yield; one is based on the long-term dy-
namics and ignores transient effects (asymptotic yield), while the other is based on the
short-term dynamics only and thus takes into account transients (transient yield). The
reason for considering twomeasures of the yield is the following. For ALC, on the one
hand, the asymptotic effort has been shown to decrease to zero if the control intensity
approaches its maximum value [184]. On the other hand, including transients can rad-
ically alter this observation and make the effort increase drastically [77].

Figure 1.5 shows themean asymptotic yield per generation as a function of theATH
intensity. The curve has a hump-shaped form, reaching a maximum at some interme-
diate value of the control intensity. For too small control intensities, the yield is zero
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but then increases with h until the maximum is reached. For large control intensities
beyond the maximum, the yield declines to zero as h → 1.

Figure 1.5 also shows the mean transient yield per generation, which is similar to
the asymptotic yield for small and intermediate control intensities and reaches a local
maximum, which is the same as for the asymptotic yield (Figure 1.5). For large control
intensities (h > 0.85), however, the transient yield increases steeply, blowing up as
h → 1.

The reason for this sharp increase in the yield are prolonged transients of the popula-
tion dynamics if the control intensity is large. This has the effect that the population is
repeatedly harvested—and, as amatter of fact, to a large degree. This not only increases
the yield, but also extends the time it takes the system to reach the trapping region. The
following section considers this in more detail.

1.5 Short-term behavior

In the previous section, we have seen that, in the short term, the mean yield per genera-
tion can differ greatly from the one in the long term. In certain circumstances, there is
a long transient period before the population reaches its asymptotic behavior. During
this transient, the short-term dynamics can be markedly different from the long-term
dynamics with the desired properties (e.g., the mean yield or population size). Here,
we show that ATH induces prolonged transient periods for rather large values of the
control parameter. In the second part of this section, we propose an adjustment to the
control rules that suppress prolonged transients and accelerate the controlled popula-
tion to reach its long-term dynamics.

1.5.1 Transients in the controlled system

In order to quantify transients, we consider a value tmax that represents the maximum
number of generations needed for the population size to enter the trapping region,mea-
sured over all possible integer initial conditions in the interval (0, f (d)]. By taking the
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Figure 1.6: Transients in systems controlled by ATH and ALC (a) Maximum transients
for ATH in solid red curve and for ALC in dashed blue curve. (b) Maximum transients for
the adjusted version of ATH given by Eq. (1.8) in solid red curve and for the adjusted version of
ALCgiven byEq. (1.9) in dashed blue curve. The value tmax represents themaximum transient
among all orbits with integer initial population size in the interval (0, f (d)]. The dynamics of
the uncontrolled population are described by the Ricker map f (x) = x exp(r(1 − x/K))
with K = 60 and r = 3.

maximum, we take into account that transients depend on the initial condition, and
we consider the ‘worst case’, i.e., the longest time it takes to reach the trapping region.

Figure 1.6a shows that the maximum transient increases with the control intensity
for both ATH and ALC. This increase is such that the maximum transients blow up
near the maximum value of the control intensity. For medium and high control inten-
sities ATH exhibits a longer maximum transient than ALC.

Example 1.6. For the Ricker map f (x) = x exp(r(1 − x/K)) with K = 60 and
r = 3 themaximum transient tmax for ALCwith intensity c = 0.97 is 31 generations,
whereas the corresponding value for ATH with intensity h = 0.97 rises up to 134
generations.

Analyzing the causes of this behavior can help us to devise techniques for the cancel-
lation of transients induced by ATH. Numerical simulations show that the maximum
transients for ATH correspond to the largest values of the initial population size, a0.
The reason is that, due to the overcompensation in the population dynamics, the value

29



a1 = f (a0) is very small for large values of a0 (see Figure 1.2); the population sizemust
then increase until entering the trapping region. However, the control slows down the
population growth. In fact, for a sufficiently large value of a0, we have a1 < AH . That
is, harvesting control will be triggered in the next and successive generations during
this transient period. In summary, the prolonged transients are due to repeated high-
intensity harvesting of small population sizes. Since small population sizes can have a
large production, the repeated high-intensity harvesting is also the reason why the tran-
sient yield increases sharply for large control intensities (cf. Figure 1.5).

1.5.2 How to reduce transients

As the transient dynamics may last for a long time, an important question from the
practical point of view is whether the system can bemanipulated to reach its long-term
behavior faster. One of the simplest solutions is probably to apply a perturbation such
that the population size directly enters the trapping region. However, depending on
the current population size, this requires that both restocking and culling can be im-
plemented promptly and to a possibly large extent. Here we consider the situation that
restocking is impossible (or very costly), so that, corresponding to ATH, culling is the
only possibility. We will propose an adjusted ATHmethod that cancels the prolonged
transients without changing the asymptotic dynamics.

In the first part of this section, we have seen that the long transients are caused by re-
peated harvesting at small population sizes. The higher the control intensity, the more
the population growth is slowed down and the longer it takes the population size to
reach the trapping region. This effect can be avoided by the following two considera-
tions.

1. We could stop harvesting small populations, say when the population size is be-
low the trapping region. The lower limit of the trapping region is l(h), but since
the activation threshold AH is always inside the trapping region, it would be
actually sufficient to stop harvesting when the population size is smaller than
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h · l(h) < l(h). For any at > h · l(h), the population size in the next genera-
tion is at+1 = at/h > l(h).

2. However, a complete cessation of the harvestingmight cause the population size
to ‘jump’ from one side of the trapping region to the other without entering it.
Therefore, instead of completely canceling the harvesting of the small popula-
tion sizes identified, we allow control but only to such a degree that the popula-
tion size is not reduced below the trapping region.

All this leads to an adjusted ATH strategy with restricted harvesting at small popu-
lation sizes, described by the following equation:

at+1 =

{
min{ f (at), at/h}, at > h · l(h), (original ATH of large enough popns)

min{ f (at), l(h)}, at ≤ h · l(h). (restricted harvesting of small popns)
(1.8)

This adjustment does not alter the asymptotic behavior of the controlled population
because harvesting is only restricted when the population size is below the trapping
region. Once it enters this region, the control follows the original ATH. We illustrate
the improvement due to the adjustment (1.8) in Figure 1.6b, which shows a significant
reduction in maximum transients.

Example 1.7. The maximum transient in the system from Example 1.6 controlled by
ATH with intensity h = 0.97 lasts for 134 generations. With the adjustment given
by (1.8), this transient decreases to only 4 generations.

The same kind of adjustment can be used to cancel prolonged transients generated
by ALC. In that case, the restocking action of the control lengthens transients when
the population size is above the trapping region. For at > u(c), where u(c) denotes
the upper limit of this region, the transient lasts until the population size decreases and
enters the trapping region. Since the activation threshold is always inside the trapping
region, restocking takes place in every generation of this stage, thus slowing down the
decrease of the population size. The higher the control intensity, the more the popula-
tion is restocked and the longer it takes for the population to decrease to the trapping
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region. As before, if the restocking control for population sizes above the trapping re-
gion were completely stopped, the population size could jump from one side of the
trapping region to the other without entering it. The proper adjustment is therefore
to restrict restocking to the upper limit u(c). This leads to an adjusted version of ALC
with restricted restocking at large population sizes described by the system

at+1 =

{
max{ f (at), c · at}, at < c · u(c), (original ALC of small enough popns)

u(c), at ≥ c · u(c). (restricted restocking of large popns)
(1.9)

As for ATH, this adjustment does not alter the asymptotic behavior of the controlled
population because the restocking is only reduced when the population size is above
the trapping region. Once the system is in the trapping region, the control follows the
original ALC scheme.

Example 1.8. Weconsider the sameuncontrolledpopulation as inExamples 1.6 and1.7.
ApplyingALCwith restocking intensity c = 0.97 and for initial conditions a0 that are
integer values in (0, f (d)], the maximum transient lasts 31 generations. With the ad-
justment given by (1.9), the maximum transient decreases to only 4 generations.

1.6 Discussion and conclusions

The original version of adaptive limiter control (ALC) as proposed by [184] is based on
restocking the population as control intervention. We have shown that adaptive thresh-
old harvesting (ATH), i.e., the harvesting version of adaptive limiter control (h-ALC),
can also stabilize fluctuating populations. This extends the applicability of adaptive
limiters to situations when culling is the only possible form of intervention. Moreover,
adaptive limiters may also be used as a harvesting strategy, thus widening the approach
of threshold harvesting.
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Commonalities between ATH and ALC

ATHandALChave the following properties in common. We begin by considering sta-
bilization aspects. First, the fluctuations are confined in a trapping region, forwhichwe
provide analytical expressions for the lower and upper bounds. This trapping region
can be proven to reduce with increased control intensity. Hence, constancy stability
tends to improve. Second, the fluctuation index also becomes smaller with increased
control intensity, provided the control is at least of intermediate strength. Hence, con-
stancy stability improves. However, for smaller control intensities bothATHandALC
may increase the fluctuation index compared to the uncontrolled population. Third,
thefixedpoint itself does not become stabilized. It is only the fluctuation that reduces in
magnitude or amplitude. Yet, for the Ricker model themean population size is, asymp-
totically, remarkably constant at the level of the carrying capacity (which corresponds
to the unstable fixed point), for all values of the control parameter.

Hence, the stabilization properties of ATH are analogous to the ones of ALC, pre-
viously investigated in [77, 184]. This is not a straight-forward result; as pointed out
in the introduction to this chapter, there are other control strategies which can greatly
differ in the behavior they trigger, depending on whether interventions either add or
remove individuals.

Moreover, the length of transients and the yield (or effort, respectively) behave simi-
larly as a function of the control intensity for ATH and ALC. For the latter, again, this
has been previously investigated in [77, 184].

Differences between ATH and ALC

While both ATH and ALC reduce the fluctuation range, they affect the lower and up-
per bounds of the trapping region in different ways. For lower and intermediate con-
trol intensities, ATH tends to reduce the upper bound, whereas ALC tends to increase
the lower bound (see Figure 1.3). Hence, ATH appears more effective in avoiding out-
breaks and ALC in preventing extinctions. For large control intensities, however, both
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control methods seem equally effective in assuring minimum and maximum popula-
tion sizes.

There are other differences between ATH and ALC. They occur when the control
intensities exceed values of unity. Note that this parameter range has not been consid-
ered before for ALC. Basically, control intensity larger than unitymeans restocking the
population to levels larger than before a crash (ALC) and harvesting the population to
a level smaller than before the increase in population size (ATH). As such, these are
neither unrealistic parameter regimes nor insensible strategies. However, we find that
these high control intensities drive the population extinct (ATH) or lead to unbounded
population growth (ALC).Neither of which seems a desirable goal for the strategy con-
sidered.

Comparisonwith threshold harvesting

In contrast to adaptive limiters, threshold harvesting can actually stabilize the popu-
lation dynamics to a stable equilibrium for sufficiently large control values [88, 195].
However, this comes at the cost of applying the intervention in every generation. Adap-
tive threshold harvesting, by contrast, comes with an intervention frequency of about
40% in the simulations corresponding to the Ricker map example used in this chapter
(not shown here for the sake of brevity).

In control parameter regimes, where population fluctuations are reduced, but re-
main chaotic, the intervention frequency of threshold harvesting is lower than the one
for ATH. This makes sense, as a population tends to peak less often beyond a high
threshold value than a possibly rather small size in the previous generation. However,
the yield that can be obtained from threshold harvesting in this regime [105] is lower
than the one obtained from ATH.

Yields and transients

While the primary goal of ATH is the stabilization of the fluctuations, it may also be
applied as a harvesting strategy when the aim is to gain economic benefit from the ex-
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ploited population. ATH may therefore represent an alternative to other harvesting
strategies such as constant-effort, constant-yield, or threshold harvesting.

It turns out thatwe have to distinguish two situations, namely the long-term (asymp-
totic) and the short-term (transient) yield. Interestingly, the short-term yield gained
by ATH rises sharply for values of high control intensities. That is, the yield becomes
largest just before the population goes extinct for h > 1. The transition from a sus-
tained population (with improved constancy stability and large yield) to extinction hap-
pens abruptly. In contrast to overexploitation with constant-effort harvesting, the col-
lapse of the population does not take place gradually.

Trying to maximize the short-term gain is therefore risky in terms of sustainability.
This bears some analogy to the observation that focusingon short-termgains can lead to
dramatic consequences. One of the most prominent examples is probably the collapse
of the cod stocks off of Newfoundland. Harvesting theory has therefore developed
strategies for a sustainable catch, which can be considered as one of the cornerstones of
mathematical bioeconomics [45]. In fisheries, particular attention is paid to the maxi-
mum sustainable yield (MSY). Even though there aremany concerns regarding the con-
cept ofMSY [e.g., 133, 149], it remains a ‘key paradigm in fisheries management’ [152,
p. 2295].

As a consequence, the harvesting literature has focused almost exclusively on long-
term behavior and asymptotic yields. This is in contrast to the realization that har-
vesting represents additional perturbations to the population, and that the population
rarely reaches its equilibrium state [76]. While transient dynamics are well-known to
be important [99], there is little work that aims to optimize harvest taking into account
transient regimes [100, 111, 120, 121]. In stochastic population models, where pop-
ulation extinction is inevitable in the long run, Lande et al. [131, p. 122] addressed
this by considering the ‘expected cumulative yield over all time before eventual extinc-
tion of the population or reduction to a specific size’. However, the time to stochastic
population extinction may be quite long.
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We have shown that the yield can be markedly different, depending on whether we
consider a short or long time scale. The dramatic increase in the short-term yield for
large control intensities can be readily explained by the time it takes the population to
reach the trapping region. During this time, the population is always harvested; the
intervention frequency approaches 1 (not shown). That is, during this time the popu-
lation effectively follows at+1 = at/h with h close to one, which corresponds to geo-
metric growth with a rather slow per capita production. Hence, due to the high yield
from harvesting the population growth is significantly reduced and almost stopped.

Here, we have calculated the transient yield over a time horizon of 50 generations.
This is arbitrary and could be varied.

Dealingwith transients

The long transients that occur for high control intensities may appear quite desirable
on the one hand because they increment the transient yield and simultaneously reduce
the asymptotic fluctuation range. On the other hand, however, the prolonged tran-
sient period keeps the population size at low levels and prevents it from reaching the
trapping region. Inmany practical situations, e.g., when it comes to supporting endan-
gered species, it is imperative to reduce the transients.

A major drawback of adaptive limiters is that they trigger control actions whenever
the population size exceeds (or falls below) a proportion of its magnitude in the pre-
ceding generation—regardless of whether this magnitude is close to zero (or on a high
level, respectively). This can happenwhen the control intensity in bothATHandALC
is large. Yet, it does not seem to make sense to harvest a population that has increased
in size when this size is still small and far below the trapping region. Similarly, for ALC,
it seems unreasonable to restock a population that has declined but is still above the
trapping region.

Based on this observation, we propose adjustments to bothATHandALC that sup-
press prolonged transients, while retaining the asymptotic behavior. These adjustments
concern only population sizes outside the trapping region and are such that the popula-
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tion size in the next generationdoes not ‘overshoot’ or ‘undershoot’ the trapping region.
This is achieved by restricting the harvesting or restocking intervention for ATH and
ALC, respectively. If the population size is within the trapping region, there is no need
to alter the original control schemes because the population does not leave the trapping
region. The adjustments work well (Figure 1.6a, Examples 1.7 and 1.8) and are there-
fore effective in speeding up the transition from a transient period to the asymptotic
regime.

As mentioned previously, transients are rarely taken into account or studied [but
see 39, 71, 77, 82, 128], even though they are ubiquitous in nature and may be actu-
ally more important than long-term dynamics [e.g., 99]. The problem of directing an
unstable or perturbed population in an efficient way to a desired state, such as the equi-
librium, bears some analogy to the idea of targeting in chaos control [107, 122]. In
the ecological literature, we could not find many studies that investigate how to deal
with transients. Harley and Manson [97] suggested an ‘intermediate harvesting pol-
icy’ for the transient period that accelerated the transition to the equilibrium state of a
structured population. Another, yet completely different approach is based on utiliz-
ing available time series; learning from ‘trajectories from the past’ one could steer the
system to a desired state efficiently [107, 109].

This time-series-based approach has the advantage of not requiring any knowledge
of the underlying laws of dynamics. As pointed out by Sah et al. [184] for ALC, one of
the main advantages of adaptive limiters over other strategies for controlling biological
populations is that they can be implemented evenwhen a good estimation of the popu-
lation production map f for the uncontrolled system is not available. In this situation,
the lack of knowledge about the system behavior makes it very difficult to reduce the
length of transients. The adjusted methods presented here do require information on
the upper or lower bounds of the trapping region.
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2
Population control methods in stochastic

extinction and outbreak scenarios

2.1 Introduction

In the previous chapter, we have seen that ALC and ATH are two control strategies
that aim to reduce oscillations in population size. Both methods have similar stabiliz-
ing properties, yet they can be expected to be implemented in different biological con-
texts. As a restocking strategy, ALC is likely to be applied in biological conservation,
species re-introduction programs and the release of biocontrol agents, while ATH as a
harvesting strategy is expected to be implemented in pest containment programs or in
themanagement of specieswith commercial value (e.g., fisheries). However, on the one
handharvesting strategies can have the counter-intuitive effect of increasing population
size, see the review [1]. On the other hand, adding individuals could promote extinc-
tion. For example, such an intervention can shift a bistable system to another attractor
with larger extinction risk, see e.g., [177], which may be especially the case when the al-
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ternative attractor oscillates and the trough values come close to an extinction threshold
[108, 190, 216]. It is therefore not straightforward to assume that harvesting reduces
outbreaks risk nor that restocking reduces extinction risk.

Moreover, all of the models of ALC and ATH have made use of unimodal produc-
tion curves such as the Ricker map. In reality, control is likely to be necessary when
populations are subject to biological mechanisms that put them at risk or promote re-
current population outbreaks. These situations are characterized by bistability such
that the population can jump stochastically between two attractors, one of which is
less desirable than the other from a control point of view (for nuisance species we want
to avoid the high-density attractor and for endangered species we want to avoid the
small-density attractor or extinction state). Biological mechanisms inducing bistability
have been largely ignored, however, with the exception of ALC models setting small
populations to zero with a fixed probability [183, 184].

In this chapter, we study ALC and ATH systematically in two different population
contexts. In the first one, populations are vulnerable to extinction due to a strongAllee
effect. The Allee effect is a positive density dependence at low population sizes that
occurs when the individual fitness increases with the number of individuals [198]. If
the Allee effect is strong, there is bistability and small populations go extinct due to a
lack of conspecifics (which may be caused by difficulties in finding mates or in cooper-
ation, for instance). We will consider three different extinction scenarios. In the first
one, populations monotonically decline before going extinct. In the second one, pop-
ulations grow to a large population size and then collapse due to overcompensation. In
the third one, a strong Allee effect interacts with population cycles and causes essential
extinction [108, 190, 216]. This happenswhen the fluctuating population drops below
the minimum viable population size set by the Allee effect. The transition to essential
extinction occurs through a boundary collision, and thus environmental changes may
cause abrupt population collapses. As ALC and ATH reduce the fluctuation range,
their stabilizing properties are particularly interesting in this extinction scenario.
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Allee effects have been empirically found in many species including mammals and
birds [51], plants [91], insects [127] andmarine invertebrates [201], and their relevance
is particularly recognized in conservation biology [49, 50, 60, 198]. However, Allee
effects have also been detected in a large number of invasive species like the gypsy moth
Lymantria dispar [112, 139], the zebramusselDreissena polymorpha [136] or the pine
sawyerMonochamus alternatus [221]. Thus, Allee effects are relevant not only for the
survival of endangered populations but also in the prevention of outbreaks.

Outbreaks are the second population context considered in this chapter. Here, we
study two different outbreak scenarios. The first one is based on a strong Allee effect
model, with extinction being the non-outbreak state. In the second scenario the non-
outbreak state is positive. It is based on a gypsy moth outbreak model that combines
density-dependent regulation by predation with host–pathogen dynamics [70]. This
causes multistability between a high-density and a low-density attractor, the latter of
which may be more complex and even chaotic. With stochastic perturbations ubiq-
uitous in nature, the model population jumps rather unpredictably between different
states. Again, as ALC and ATH tend to reduce fluctuation ranges, they might abate
transitions to outbreak states. The importance of stochasticity is also well recognized
in biological invasions [68, 139] and for endangered species [3, 49, 61, 179].

In the next section, we introduce the mathematical models that describe the under-
lying population dynamics in the absence of any control. Section 2.3 analyzes the effect
of the control methods on deterministic and stochastic populations in three different
extinction scenarios. We then turn our attention to the two outbreak scenarios in Sec-
tions 2.4 and 2.5. Section 2.6 draws conclusion on the applicability of ALC and ATH
in the biological contexts considered.
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2.2 Deterministicandstochasticpopulationmodels

We assume that the population dynamics are described by a first-order difference equa-
tion of the form

xt+1 = f (xt), x0 ∈ [0,+∞), t ∈ N,

where xt denotes the population size at generation t and f : [0,+∞) → [0,+∞) is
the population production function or the stock–recruitment curve. We assume that
the population has a strongAllee effect and that there are three fixed points, namely the
extinction state x = 0, the Allee threshold L > 0 and an equilibrium K > 0 corre-
sponding to the carrying capacity. Moreover, the population dynamics are assumed to
be overcompensatory such that the stock–recruitment curve is unimodal with a long
tail, peaking at x = d.

These biological assumptions can be expressedmathematically in the following con-
ditions on the map f :

(B1) f is continuously differentiable and such that f (0) = 0, f ′(0+) > 0 and
f (x) > 0 for all x ∈ (0,+∞).

(B2) f has three non-negative fixed points x = 0, x = L > 0 and x = K > L, with
f (x) > x for x ∈ (L, K) and f (x) < x for x ∈ (0, L) ∪ (K,+∞).

(B3) f has a unique critical point d ∈ (0, K) such that f ′(x) > 0 for all x ∈ (0, d)
and f ′(x) < 0 for all x ∈ (d,+∞).

For numerical simulations, we will consider a population map satisfying (B1)–(B3)
that was studied in [190] as a model of mate limitation [60, 158, 188]. On the basis
of the Ricker model, a strong Allee effect is induced by the introduction of density
dependence in the form

f (x) = x · exp(r(1 − x/K̃)) · I(x), (2.1)
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where I(x) = sx/(1 + sx) is the probability of finding a mate, s > 0 measures an
individual’s searching efficiency and r, K̃ > 0 represent the growth parameter and the
carrying capacity for the Ricker model in the absence of mate limitation, respectively.
Thismodel and its dynamics are described inmore detail in [179, 190]. For given values
of r and K̃, condition (B2) is satisfied only for values of s above a certain threshold,
below which the population goes asymptotically extinct for all initial conditions.

Deterministic populationmodels like (2.1) ignore, in some sense, the unpredictabil-
ity of nature. In order to take into account the effect of random events on the popu-
lation dynamics, we will introduce stochasticity in the underlying model. Since Allee
effects are expected to operate on small populations, we focus our attention on demo-
graphic stochasticity. One way to include this is

xt+1 = f (xt) · exp

(√
σ2

f (xt)
· εt −

σ2

2 f (xt)

)
, (2.2)

whichwas proposed in [35]. Here, f denotes the production function of the determin-
istic model, εt is a normally distributed variable with expectation 0 and variance 1, and
parameter σ measures the intensity of noise.

2.3 Preventing extinction

We will study three different extinction scenarios related to the Allee effect. In the first
one, populations become too small, and in the second one populations become too
large (as they collapse below theAllee threshold due to overcompensation). In the third
scenario, populations become too cyclic (in the sense that a boundary collision causes
essential extinction).

The first two scenarios are related to bistable dynamics induced by the strong Allee
effect. The existence of bistability in a deterministic population means that there is a
minimum viable number of individuals L (the Allee threshold) belowwhich the popu-
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lation goes extinct and abovewhich it persists for a set of initial conditionswith positive
Lebesgue measure.

2.3.1 Small population extinction

Small deterministic populations with a size below L eventually go extinct. This is the
reasonwhypopulationswith a strongAllee effect are considered particularly vulnerable
to extinction. This vulnerability can be expressed in terms of different statistics, such as
the extinction probability, the first passage probability or the mean time to extinction
[49]. We will use the first of these measures to study the effect of ALC and ATH on
population persistence.

Before doing so, we consider uncontrolled populations. In the deterministic case,
the probability of extinction as a function of the initial population size has the shape
of a staircase near the Allee threshold L: it equals 1 on the left-hand side of L and 0 on
the right-hand side of L (Figure 2.1). When stochasticity is taken into account, popu-
lations of a small size can be ‘saved’ from impending extinction by random events that
occasionally increase the number of individuals above L. Conversely, populations that
would persist in a deterministic world can fall below L due to the effect of noise and
eventually go extinct [49]. As a result, stochasticity reduces the abruptness of the de-
terministic Allee threshold [49, 60, 61], and the extinction probability for stochastic
systems has a sigmoid decreasing shape, as shown in Figure 2.1. This has an important
consequence. The concept of an Allee threshold, which for deterministic systems cor-
responds to the smallest positive fixed point, must be redefined in the case of stochastic
populations. This will be done next.

Stochastic Allee threshold

There are two approaches to define the Allee threshold in stochastic models, which we
will refer to as stochastic Allee threshold. The first one defines the Allee threshold as
the population size corresponding to the inflection point of the sigmoidally decreas-
ing population extinction probability [60, 61]. The second approach defines the Allee
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Figure 2.1: Probability of extinction of small stochastic populations. Probability of extinc-
tion in termsof the initial population size around L for deterministic (σ = 0) anddemographic
stochastic (σ = 1) uncontrolled populations and populations controlled with different inten-
sities by ALC (a) and ATH (b). Calculations are based onmodel (2.2) for f given in (2.1), with
r = 4.5, K̃ = 400 and s = 0.002 (L ≈ 6.015). For a given initial population size, the proba-
bility of extinction has been obtained for the first 100 generations and over 1000 replicates.

45



threshold as the population size for which the probability of extinction and the proba-
bility of persistence are equal [49, 209]. This is also the definition we will use here, as it
is practically easier to calculate.

It should benoted though that the two approaches yield different values for theAllee
threshold, which can also be seen in Figure 2.1. Nevertheless, when we know there is
always a strong Allee effect present, both approaches result in the same trends as the
corresponding values are positively correlated. However, if there is weak or no demo-
graphic Allee effect, there is obviously no Allee threshold in the deterministic model
and using the second approach could be misleading.

Before investigating the impact of control on the stochastic Allee thresholds, we con-
sider the uncontrolled case. The example in Figure 2.1 shows that the stochastic Allee
threshold (blue curve) is larger than the deterministic Allee threshold L. This matches
the general consensus that noise renders populations with strong Allee effect more vul-
nerable to extinction [49, 50, 61, 179, 198].

Controlling small deterministic populations

Let us now analyze the effect of ALC and ATH on small deterministic populations.
There are two questions that immediately come to mind. Firstly, can control be bene-
ficial in the sense of saving populations that are doomed to extinction? Secondly, can
control be counterproductive in the sense of inducing essential extinction of those pop-
ulations that might survive otherwise? Here, we prove that neither of these situations
ever happen.

Let us denote by

R(x) = max{ f (x), x · c} and H(x) = min{ f (x), x/h}

the production function for populations controlled by ALC and ATH, respectively,
and by AR ∈ (K,+∞) and AH ∈ (0, K) the largest positive solutions of the equa-
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tions f (x) = x · c for ALC and f (x) = x/h for ATH, respectively. These values
correspond to the activation thresholds for ALC [77] and ATH (Section 1.2).

For x ∈ (0, L) the relative position of the two curves involved in R(x) may vary
with the control intensity, whereas for the other x-values R(x) is completely defined
in terms of AR. For x ∈ [L, AR] the curve y = f (x) is above y = x · c and thus
R(x) = f (x), whereas for x ∈ (AR,+∞) the relative position of these curves is
reversed and then R(x) = x · c.

In the case of ATH, the straight line y = x/h is above y = f (x) for x ∈ (0, L]
and therefore H(x) = x/h. For x ∈ [L, AH) the relative position of these curves
depends on the control intensity, whereas for [AH,+∞) the curve y = f (x) is above
y = x/h and then H(x) = f (x).

Graphically, R has a bimodal shape with a local maximum at d and a local minimum
at AR. H is unimodal with a maximum at max{d, AH} (cf. Figure 1.2).

The next result characterizes the dynamics of the controlled populations in case that
f ( f (d)) > L. This condition is sufficient for bistability under the assumptions (B1)–
(B3). It is also necessary in case of a negative Schwarzian derivative, which is true for
many populationmodels like the generalized Beverton–Holt, Hassel, quadratic or vari-
ants of Ricker [189, 190]. In particular, it is true for the mate-finding Allee effect
model considered here for numerical simulations. Recall that for a given map f , the
Schwarzian derivative is defined by

(S f )(x) =
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

. (2.3)

Proposition 2.1. Assume that (B1)–(B3) hold and f ( f (d)) > L.

1. If lim
x→+∞

f (x) ≥ L, uncontrolled populations and populations controlled by ATH
and ALC go extinct for x0 ∈ (0, L), and persist for x0 ∈ [L,+∞).

2. If lim
x→+∞

f (x) < L, there exists a unique U > K such that f (U) = L. Un-
controlled populations and populations controlled by ATH persist for x0 ∈ [L, U]
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and go extinct for x0 ∈ (0, L) ∪ (U,+∞). Populations controlled by ALC with
c ∈ [L/U, 1) persist for x0 ∈ [L,+∞) and go extinct for x0 ∈ (0, L), while

for c ∈ (0, L/U) those initiated with x0 ∈
+∞⋃
k=0

[L/ck, U/ck] persist and those

with x0 ∈ (0, L) ∪
+∞⋃
k=0

(U/ck, L/ck+1) go extinct.

Proof. We start by proving that small populations starting with x0 ∈ (0, L) go fi-
nally extinct in all cases and for all systems. This is obvious for uncontrolled popula-
tions, since f (x) < x for all x ∈ (0, L) and thus orbits correspond to strictly de-
creasing positive sequences. The limit of these sequences is a fixed point of the system,
so must correspond to the extinction state. The same conclusion can be obtained for
populations controlled by both ATH and ALC. For x ∈ (0, L), we have H(x) =

min{ f (x), x/h} = f (x) < x since f (x) < x < x/h. On the other hand,
x · c < x and f (x) < x for x ∈ (0, L), so R(x) = max{ f (x), x · c} < x.

Assume now that lim
x→+∞

f (x) ≥ L. Then, by (B1)–(B3), f (x) ≥ L for all x ∈
[L,+∞). Consequently, uncontrolled populations that start in [L,+∞) persist. This
is also true for populations controlled by ALC or ATH. In the case of ALC, the con-
clusion follows from R(x) = max{ f (x), x · c} ≥ f (x) ≥ L for all x ∈ [L,+∞).
For ATH we must distinguish two cases. For x ∈ [L, AH ], we have f (x) ≥ L and
x/h ≥ L/h > L, which yields R(x) = min{ f (x), x/h} ≥ L. On the other hand,
R(x) = f (x) ≥ L for x ∈ (AH,+∞).

Next, assume that lim
x→+∞

f (x) < L. The existence of point U follows by applying

Bolzano’s Theorem to h(x) = f (x) − L in (K,+∞), and its uniqueness follows
by (B3). Moreover, we note that f ( f (d)) > L = f (U) yields f (d) < U. We
show f ([L, U]) ⊂ [L, U] by considering three different cases. Assume initially x ∈
[L, d]. Then, L = f (L) ≤ f (x) ≤ f (d) < U because f is strictly increasing in
(0, d). For x ∈ (d, f (d)] we have L < f ( f (d)) ≤ f (x) < f (d) < U, since f is
strictly decreasing in (d,+∞). The same argument leads to L = f (U) ≤ f (x) <
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f ( f (d)) < U for x ∈ ( f (d), U] given that f ( f (d)) < f (d) < U. This completes
all cases and allows us to conclude that uncontrolled populations initiated in [L, U]

persist.
The same conclusion is true for populations controlled by ALC or ATH. For ALC,

we have R(x) = max{ f (x), x · c} ≥ f (x) > L for all x ∈ [L, U]. On the other
hand, f (x) ≤ U and x · c ≤ U · c < U, yielding R(x) = max{ f (x), x · c} ≤ U.
For ATH, H(x) = min{ f (x), x/h} ≤ f (x) ≤ U for all x ∈ [L, U], and for these
values f (x) ≥ L and x/h ≥ L/h > L, so H(x) = min{ f (x), x/h} ≥ L.

Populations starting with x0 ∈ (U,+∞) go eventually extinct in the uncontrolled
case because x1 = f (x0) < f (U) = L. Given that AH < K < U, ATH does
not alter the production function in the interval (U,+∞), and therefore the same
conclusion is valid for populations controlled by this method.

Assume now c ∈ [L/U, 1) for ALC. Given that f (U) = L ≤ U · c, we have
AR ≤ U. For x ∈ (U,+∞)we have R(x) = max{ f (x), x · c} = x · c > U · c ≥
L. Since we have already shown that R([L, U]) ⊆ [L, U], we obtain R([L,+∞)) ⊆
[L,+∞), and hence controlled populations starting in [L,+∞) persist.

Finally, consider c ∈ (0, L/U). Since (L/c) · c = L = f (U) > U · c and f is
strictly decreasing in (d,+∞) ⊃ (U,+∞), we have U < AR < L/c. Controlled
populations initiated with x0 ∈ (U, L/c] go extinct because f (x0) < f (U) = L
and x0 · c < (L/c) · c < L, which yields x1 = max{ f (x0), x0 · c} < L. Consider
now k ≥ 1 and x0 ∈ (U/ck, L/ck+1) ⊂ (AR,+∞). Then, xk = x0 · ck ∈
(U, L/c) and thus xk+1 < L. This proves that all controlled populations initiated in
+∞⋃
k=0

(U/ck, L/ck+1) go extinct. Assume now x0 ∈ [L/ck, U/ck] ⊂ (AR,+∞) for

k ≥ 1. Then, xk = x0 · ck ∈ [L, U] and hence controlled populations starting in
+∞⋃
k=0

[L/ck, U/ck] persist.

Notice that neither ALC nor ATH change the extinction probability of determinis-
tic populations around L. Yet, there are slight differences between the effect of the two
control methods in such populations. On the one hand, ATH is completely ineffec-
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Figure 2.2: ALC can slow down the convergence to extinction of small deterministic
populations. The black curve corresponds to the production function (2.1) with r = 4.5,
K̃ = 400 and s = 0.002, and the red curve to the population controlled by ALC with inten-
sity c = 0.5.

tive for small populations because it does not alter the production function around L.
On the other hand, ALC does change the dynamics around the extinction state from
xt+1 = f (xt) to xt+1 = xt · c > f (xt) for intensities c > f ′(0+). Thus, ALC is
able to slow down the extinction process, see Figure 2.2.

Controlling small stochastic populations

When stochasticity is taken into account, important differences between the effect of
ALC and ATH on small populations emerge. ALC with high intensities promotes
population persistence by reducing both the probability of extinction and the stochas-
tic Allee threshold (Figure 2.1a). Basically, there are two reasons for this effect. Firstly,
restocking due to ALC can partially mitigate population declines that are caused by
noise and that could spur extinction. Secondly, ALC prolongs for c > f ′(0+) the
transients to the extinction state of deterministic populations that start or drop below
L (cf. Figure 2.2). These longer transients increase the chance of stochastic populations
to be positively affected by noise and thus be saved for some time.
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Under ATH, both the probability of extinction and the stochastic Allee threshold
increase with higher harvesting intensities (Figure 2.1b). Therefore, unlike ALC, ATH
seems to be counterproductive to protecting small populations. Again, two reasons
help to explain this effect. Firstly, ATH is not able to slow down fortuitous declines
in the size of populations that start or drop below the Allee threshold. Secondly, the
harvesting ofATHtends to reduce any randomgrowth that couldmove the population
away from the extinction state.

Impact of stochasticity and Allee effects

We now investigate how the effect of control on population persistence depends on the
level of noise, σ, and the strength of the Allee effect, s. To this end, we seek to rep-
resent the relationship between extinction probability and initial population size in a
single quantity. Figure 2.1 suggests that, for given values of s and σ, the stochastic Allee
threshold is positively correlated to the probability of extinction in terms of the control
intensity: those control intensities with a higher extinction probability have a larger
stochastic Allee threshold. Hence, we will capture the effect of the control methods on
the extinction probability by analyzing the stochastic Allee threshold.

Figure 2.3a shows how the stochastic Allee threshold varies with different levels of
noise in the rangeofbistable dynamics. When the level of noise is low, control exertedby
ALC or ATH does not alter the extinction probability and, in this respect, controlled
populations behave as the uncontrolled ones. For medium and high levels of noise,
differences between controlled and uncontrolled populations arise: on the one hand,
for small control intensities, neither ALC nor ATH alter the extinction probability;
on the other hand, for medium and large control intensities, extinction probability is
reduced by ALC and increased by ATH. This disparity between control methods (i)
becomes more pronounced and (ii) starts to arise at smaller control intensities as the
noise level increases. These observations corroborate and extend the results in Figure
2.1.
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Different strengths of the Allee effect influence, of course, the quantitative level of
the stochastic Allee threshold (Figure 2.3c). However, they affect neither the magni-
tude of disparity betweenALCandATHnor theminimumcontrol intensity forwhich
disparity between ALC and ATH appears.

Summary

In deterministic systems, neither ALC nor ATH are effective in changing the vulnera-
bility of small populations to extinction associated to a strong Allee effect. The same
holds true in stochastic systemswith low levels of noise. If the population is sufficiently
noisy, the control effect depends on the control intensity. For small control intensi-
ties, ALC and ATH are still ineffective. For medium and large control intensities, how-
ever, there is a clear difference between the control methods. While ALC decreases the
stochastic Allee threshold and thus promotes population persistence, ATH decreases
the stochastic Allee threshold and thus increases the risk of extinction.

2.3.2 Large population extinction

When a population is subject to a strong Allee effect, conservation concerns usually
seem to focus on small populations. However, in the presence of overcompensation,
also large populations can be vulnerable to extinction. Under assumptions (B1)–(B3),
this happens when the limit of f for x → +∞ is below L (this is the case for the mate-
finding Allee effect model (2.1) considered here, for which that limit is 0). Under these
conditions, there exists a collapse thresholdU > K such that deterministic uncontrolled
populations with a number of individuals above it go eventually extinct (see Figure
2.4a). By contrast, if the limit of f for x → +∞ is greater than L, all populations
starting in (L,+∞) persist (see Figure 2.4b).

52



S
to

ch
a
s
ti
c 

A
lle

e
 t

h
re

s
h
o

ld

Control intensity (h for ATH and c for ALC)

Control intensity (h for ATH and c for ALC) Control intensity (h for ATH and c for ALC)

Control intensity (h for ATH and c for ALC) Control intensity (h for ATH and c for ALC)

Control intensity (h for ATH and c for ALC) Control intensity (h for ATH and c for ALC)

Control intensity (h for ATH and c for ALC)

S
to

ch
a

s
tic

 A
lle

e
 t

h
re

sh
o

ld
S

to
c
h

a
st

ic
 A

lle
e

 t
h

re
sh

o
ld

S
to

ch
a

st
ic

 A
lle

e
 t

h
re

s
h

o
ld

S
to

ch
a

s
tic

 c
o

lla
p

se
 t
h

re
sh

o
ld

S
to

c
h

a
s
tic

 c
o

lla
p

s
e

 t
h

re
s
h

o
ld

S
to

ch
a

st
ic

 c
o
lla

p
se

 t
h

re
sh

o
ld

S
to

ch
a
s
ti
c 

co
lla

p
se

 t
h

re
sh

o
ld

a b

c

e

g h

f

d

Figure 2.3: Stochastic Allee and collapse thresholds. StochasticAllee and collapse thresholds
as functions of control intensity for different levels of noise and for different strengths of the
Allee effect in the range of bistable dynamics (a to d) and in the range of essential extinction (e to
h). Calculations are based on model (2.2) for the production function (2.1), with r = 4.5 and
K̃ = 400. For a given initial population size, the probability of extinction has been obtained for
the first 100 generations and over 5000 replicates. The right-hand side panels show stochastic
collapse threshold only forATHsince they exist underALConly for extremely small intensities.
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Figure 2.4: Large population extinction. Large populations can be driven to extinction if
there is a collapse threshold U and population size exceeds that threshold. (a) The collapse
threshold exists if limx→+∞ f (x) < L. Then there is a U such that f (x) > L for all
x ∈ (L, U) and f (x) < L for all x ∈ (U,+∞). (b) There is no collapse threshold if
limx→+∞ f (x) ≥ L, because then f (x) > L for all x > L.

Controlling large deterministic populations

Assuming that a collapse threshold U exists, we now analyze how the control methods
affect the extinction risk of large deterministic populations. We start by noting that
ATH does not alter the production function around U. Hence, this method has no
effect on the vulnerability of large deterministic populations.

By contrast, ALC can suppress that vulnerability. Proposition 2.1 shows that this
happens only partially for control intensities c < L/U, since populations with sizes in

[L/c, U/c] ∪ [L/c2, U/c2] ∪ [L/c3, U/c3] ∪ · · ·

persist, while populations with sizes in

(U, L/c) ∪ (U/c, L/c2) ∪ (U/c2, L/c3) ∪ · · ·

asymptotically go extinct (cf. Figure 2.5). For intensities c > L/U, ALC excludes
extinction of large populations as all populations with sizes in [L,+∞) persist.

Regarding the critical control intensity L/U, it is remarkable that its value is less
than 0.15 for themate-finding Allee effect model considered here (for all values of s for
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Figure 2.5: Persistence and extinction depend on the initial population size for ALC.De-
terministic population sizes over the first 100 generations as a function of the initial value for
ALC. Parameter values K = 400, r = 4.5, s = 0.002, σ = 0 (deterministic), and c = 0.007
(the value of L/U is 0.007614).

which the system exhibits bistable dynamics and for all values of r in the interval (1, 6)).
In view of this and if the restocking intensity is greater than this value in practical imple-
mentations, one may assume that ALC totally cancels the effect of overcompensation
on population persistence for the deterministic model.

Controlling large stochastic populations

Similarly to the stochasticAllee threshold, we need to extend the concept of the collapse
threshold to systems that include noise. To this end, we note that, in deterministic un-
controlled systems, the extinction probability for large population sizes around U is
switch-like: it equals 0 on the left-hand side of U and 1 on the right-hand side (not
shown here for the sake of brevity). Noise can shift the number of individuals from
one side of U to the other, thus conferring a sigmoid shape to the extinction probabil-
ity around that point (not shown here). This allows us to define the stochastic collapse
threshold as the population size for which the extinction probability equals the persis-
tence probability.

Let us first consider the effect of ALC. Populations controlled by this method have
a zero extinction probability around U (not shown here). Consequently, there is no
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stochastic collapse threshold for these populations. This is consistent with the fact that
ALCwith large enough intensity diminishes extinction risk in the deterministic model.

By contrast, populations controlled by ATH have an extinction probability of sig-
moid shape aroundU. Thus, we can study the effect of ATH by analyzing the stochas-
tic collapse threshold (Figures 2.3b and 2.3d). For low levels of noise, increasing ATH
intensity does not change the stochastic collapse threshold. Formedium and high levels
of noise, we observe the following: (i) The stochastic collapse threshold and thus popu-
lation persistence become smaller with higher noise levels. (ii) There is a critical control
intensity, beyond which increasing ATH intensity drastically deteriorates population
persistence. (iii) This critical control intensity becomes smaller, the higher the level of
noise.

Figure 2.3d shows that the stochastic collapse threshold decreases with the strength
of the Allee effect. This makes sense as a collapse is more likely the stronger is the Allee
effect. For low control intensities, ATH does not change the stochastic collapse thresh-
old. For medium and high control intensities, ATH promotes population collapses.
The stronger the Allee effect, the sooner the onset of the deteriorating effect of ATH.

Summary

Regarding the collapse of large populations, there is a clear difference between the con-
trol methods. ALC with high enough a restocking intensity ensures the survival of de-
terministic populations with a large number of individuals that would be doomed to
extinction in the absence of control. In stochastic systems, ALC completely prevents
collapses of large populations considered here. By contrast, ATH is either ineffective
(in deterministic systems and for small control intensities in stochastic systems) or coun-
terproductive (for medium and high control intensities in stochastic systems).

2.3.3 Essential extinction

In the previous two extinction scenarios, the deterministic uncontrolled population
dynamics are bistable, i.e., the fate of the population depends on the initial condition.
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Nowwe consider the scenario of essential extinction, where the only attractor is the ex-
tinction state. This means that populations go extinct with probability 1 for randomly
chosen initial conditions.

Deterministic population dynamics

It is in the scenario of essential extinction that we find the main advantage of ALC and
ATH: both methods can induce bistability and thus facilitate population persistence
if the control intensity is greater than a critical threshold. With the following result we
prove that the critical thresholds for the control intensities are c0 = L/U for ALC and
h0 = d/ f (d) for ATH. Once the critical control intensity has been exceeded and the
controlled system exhibits bistability, populations behave as described in the previous
two scenarios.

Proposition 2.2. Assume that (B1)–(B3) hold and the dynamics shows essential extinc-
tion. Then, there exist c0, h0 ∈ (0, 1) such that the system controlled by ALC with any
intensity c > c0 and the system controlled by ATH with any intensity h > h0 exhibit
bistable dynamics.

Proof. According to Proposition 2.1, it must be f ( f (d)) ≤ L (otherwise, the dynam-
ics would show bistability). Since f (K) = K > d > L and f (d) > d, Bolzano’s
theorem and the strict decrease of f in (d,+∞) yield the existence of a uniqueU > K
verifying f (U) = L. On the other hand, f (x) ≥ L for all x ∈ [L, U] because f is
strictly increasing in (L, d), strictly decreasing in (d, U) and f (L) = f (U) = L.

Consider the restocking intensity c0 = L/U < 1. For c > c0 we can use the same
reasoning as in Proposition 2.1 to show that orbits starting in [L,+∞) remain in this
interval and the corresponding populations persist.

Let us now study the case of ATH. Consider the harvesting intensity h = d/ f (d),
for which AH = d. The peak of the stock–recruitment curve for the controlled system
is f (AH) = AH/h = f (d) > d and its image is f ( f (AH)) = f (AH/h) =

f ( f (d)) ≤ L. As h increases, the straight line y = x/h tends to y = x and AH
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strictly grows and approaches K for h → 1. Then, given that f is strictly decreasing in
(d,+∞), the term f (AH) = AH/h strictly decreases and tends to f (K) = K. With
the same argument, f (AH/h) strictly increases and tends toK > L . Hence, according
to Bolzano’s theorem, there must exist h0 ≥ d/ f (d) such that f (AH/h0) = L.
Moreover, given the strict increase of f (AH/h), we have f (AH/h) > L for h > h0.
By arguments already used here, we obtain H(L, U) ⊂ [L, U], and we conclude that
the system controlled by ATH shows bistability for h > h0.

Stochastic population dynamics

While noise in bistable systems can be occasionally beneficial to populations by perturb-
ing their size above the extinction threshold, this can never happen in the scenario of
essential extinction, see alsoCorollary 4.3 in [179]. Deterministic populations showing
essential extinctiononly persist for a small number of initial conditions, in particular for
those that coincide with the positive fixed points. Yet, when noise is taken into account,
stochastic uncontrolled populations go extinct for all possible initial sizes, including the
positive fixed points, as random events perturb the population size from equilibrium.
Hence, noise is in this respect counterproductive.

Let us now study the effect of ALC and ATH on stochastic systems for which the
deterministic dynamics exhibits essential extinction. As in the previous two extinction
scenarios, we will analyze the stochastic Allee thresholds and the stochastic collapse
thresholds (Figures 2.3e to 2.3h).

As in the deterministic setting, both ALC and ATH are able to save stochastic pop-
ulations that would be doomed to essential extinction in the absence of control. This
can be seen in Figures 2.3e to 2.3h by the existence of a stochastic Allee or collapse
threshold. The control-mediated survival occurs if the control intensity exceeds a crit-
ical value; in the case of ALC, the critical control intensity is close to (but not exactly)
zero; i.e., without control there would be essential extinction. Once the control inten-
sity of ALC or ATH exceeds the corresponding critical value, the population becomes
bistable and the effect of the control methods on stochastic populations is analogous
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to the case of bistable dynamics. The only remarkable difference is that the disparity
between populations controlled by ALC on the one hand and ATHon the other hand
arises for somewhat lower control intensities than in the bistable scenarios (cf. Figures
2.3a and 2.3c with Figures 2.3e and 2.3g).

2.4 Preventing population outbreaks

The previous section was concerned with population extinction. Now we shift atten-
tion from vulnerable species to pests, and the aim is to contain their population size
in order to avoid outbreaks. We will study bistable populations only, because under
essential extinction there appears to be less need for controlling outbreaks.

2.4.1 Outbreaks and probability of outbreaks

First, we need to specify what exactly we mean by outbreaks. In the literature, there
are different definitions of outbreaks, many of which concern a specific situation or
population model, e.g., [22, 69, 70]. In our case, if K is stable, the concept of an out-
break does not make sense because all orbits are monotonically attracted towards this
point or towards the extinction state. There are no sustained oscillations in population
size, which could be controlled by ALC or ATH.Hence, we restrict our attention to K
being unstable, such that all populations not attracted towards the extinction state os-
cillate in size around K. In this situation, an obvious definition of outbreaks is related
to the amplitude of these oscillations. Hence, we will consider as outbreak any popula-
tion size exceeding themidpoint between the unstable fixed pointK and themaximum
population size f (d).

For uncontrolled and deterministic populations, Figure 2.6 shows that the proba-
bility of outbreaks switches at the Allee threshold L: for initial population sizes below
(above) L the outbreak probability is zero (one). When stochasticity is included, we
observe an effect reverse to that for the extinction probability: noise can cause booms
in stochastic uncontrolled populations that start or drop below L, while populations
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starting above L can remain below the outbreak threshold thanks to random declines
caused by noise. This confers a sigmoid shape to the outbreak probability (but mir-
rored horizontally in comparison to the extinction probability). The stochastic out-
break threshold, i.e., the population size at which the probability of an outbreak equals
the probability of no outbreak, increases in comparison to the deterministic outbreak
threshold in Figure 2.6. Hence, stochasticity seems to render populations with a strong
Allee effect more prone to outbreaks.

2.4.2 Effect of ATH

Figure 2.6b shows that ATH tends to reduce the probability of outbreaks. This hap-
pens for sufficiently large control intensities (h & 0.55) and can be easily explained by
the harvesting action of ATH that can mitigate any fortuitous population growth due
to noise. For control intensities that are too small, there is no difference in the outbreak
probability between controlled and uncontrolled populations.

Moreover, Figure 2.6b shows that, for high harvesting intensities (h & 0.7), ATH
completely prevents population booms. This may be explained as follows. For suffi-
ciently high harvesting intensities, ATH establishes in a deterministic system bistability
between zero and a trapping region around K (see Proposition 2.2). As a consequence,
the trapping region imposes anupper boundon the population size. This upper bound
decreases with control intensity and tends to K when h → 1. Consequently, for high
enough harvesting intensities the number of individuals is asymptotically bounded by
a value that is below the outbreak threshold. Hence, population booms are unlikely to
happen. They can only occur if the effect of noise moves the population size above the
trapping region for the deterministic system in such a way that the outbreak threshold
is exceeded.

2.4.3 Effect of ALC

Comparing Figure 2.6a with Figure 2.6b reveals that ALChas different impacts on out-
break probabilities than ATH has. First we note that for small and medium restocking
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Figure 2.6: Probability of outbreak in terms of the initial population size. The population
is controlled by (a) ALC and (b) ATH. Population dynamics are deterministic (σ = 0) orwith
demographic stochasticity (σ = 1). Calculations are based on model (2.2) for the production
function (2.1), with r = 4.5, K̃ = 400 and s = 0.002 (L ≈ 6.015). Population outbreaks
are considered to occur when the number of individuals exceeds (K + f (d))/2. For a given
initial population size, the outbreak probability has been obtained for the first 100 generations
and over 1000 replicates.
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intensities (c . 0.6), ALC seems to change outbreak probabilities only marginally.
This behavior may be explained by two opposing effects of ALC.On the one hand, the
restocking of ALCmitigates any random population decline, which tends to promote
the risk of outbreaks. On theother hand, alsoALCestablishes a trapping region around
K for large enough control intensities (Proposition 2.2). Then there is an asymptotic
upper bound on population size, and this bound decreases with restocking intensity.
For small and medium restocking intensities, the upper bound is large and potentially
greater than the outbreak threshold, while the capability of ALC to restock population
declines is weak.

For high control intensities, ALC has a very different effect than ATH. We have to
distinguish between small and large initial population size. For initial population sizes
above L, ALC significantly reduces the outbreak probability. This is probably due to
the asymptotic upper bound. However, ALC cannot completely prevent outbreaks (cf.
the magenta curve for c = 0.95) as ATH can, which is probably due to the restocking.
For initial population sizes below L, ALC can have a counterproductive effect, as ALC
increases extinction probability in comparison to the uncontrolled population. This
happens approximately for c ≥ 0.6 (cf. green and red curves with the uncontrolled
curve in Figure 2.6a). For very large control intensities, ALC increases extinction risk
of population sizes below L drastically (e.g., for c = 0.95 in Figure 2.6a). This may be
caused by the capability ofALC to offset population declines, which becomes so strong
for high control intensities such that populations are almost fully shielded against ran-
dom declines. However, they benefit from all possible random growths, which inflates
outbreak risk.

2.4.4 Summary

ATHreveals itself as especially suitable for the control of nuisance species as it reduces or
completely prevents stochastic outbreaks of small populations. By contrast, ALC tends
to be ineffective for low andmediumrestocking intensities and is counterproductive for
high restocking intensities.
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2.5 Controllingoutbreaksofforest-defoliating in-
sects

In the previous section we have considered outbreaks in a bistable population with a
strong Allee effect. In this particular setting, one of the two attractors is the extinc-
tion state. That is, if the population has gone extinct, there cannot be any outbreak
in the following generation unless there is immigration, invasion or some form of ex-
ternal perturbation. However, in bistable situations where both attractors are positive,
the population can ‘rest’ in a low-density state until an outbreak is triggered by some
mechanism and the population bursts to a higher-density attractor.

Such a situation often occurs in models of forest-defoliating insects. Here, we con-
sider amodel byDwyer et al. [70] that incorporates the effect of a generalist predator to
a classical host–pathogen system. The non-dimensionalized stochastic version of this
model reads

1 − I(xt, zt) =

(
1 +

1
k
(xt I(xt, zt) + zt)

)−k

,

xt+1 = λxt(1 − I(xt, zt))

(
1 − 2ABxt

B2 + x2
t

)
εt, (2.4)

zt+1 = ϕxt I(xt, zt),

where the two variables xt and zt represent the host and pathogen densities in gener-
ation t, respectively. Given these densities, I(xt, zt) is the fraction of infected hosts.
The term εt is a log-normal random variable with median 1 and standard deviation σ.
Regarding the parameters in this model, λ represents the net defoliator fecundity, ϕ

is the between-season impact of the pathogen, A is the maximum fraction of defolia-
tors killed by the predator, B is the ratio of the density at maximum predation to the
epidemic threshold and k is the inverse squared coefficient of variation of the transmis-
sion rates, which follows a gamma distribution. Parameter values have been estimated
for populations of the gypsy moth Lymantria dispar as the host (defoliator) and a bac-
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ulovirus as the pathogen, yielding λ = 74.6, ϕ = 20, A = 0.967, B = 0.14, and
k = 1.06 [70]. For these values, the deterministic model has three equilibria with high,
intermediate and low defoliator densities. At the high-density equilibrium the defo-
liator is controlled by the pathogen while the predator is relatively unimportant. This
equilibrium is unstable and induces an oscillatory attractor. The low-density equilib-
rium is stable and the control over the defoliator is exerted by the predator, with the
influence of the pathogen being fairly irrelevant. Finally, the intermediate-density equi-
librium is unstable. The inclusion of stochasticity makes the defoliator density move
unpredictably among attractors and induces high variability in the time between insect
outbreaks.

Since our goal is to diminish outbreaks of the defoliator population, we consider
control actions on the state variable xt only. Then, a model including ALC can be
described by modifying the second equation of (2.4) to

xt+1 = max
{

λxt(1 − I(xt, zt))

(
1 − 2ABxt

B2 + x2
t

)
, c · xt

}
εt.

Similarly, for ATHwe obtain

xt+1 = min
{

λxt(1 − I(xt, zt))

(
1 − 2ABxt

B2 + x2
t

)
, xt/h

}
εt.

Figure 2.7a shows time series of three stochastic defoliator populationswith the same
initial conditions corresponding to the uncontrolled system and systems controlled by
ALC andATHwith intensities c = h = 0.9. ATHkeeps the defoliator densities close
to zero for the entire time period considered. By contrast, under the control of ALC,
the defoliator reaches densities much higher than in the absence of control.

In order to analyze if this is always the case, Figure 2.7b compares themaximumdefo-
liator densities for the uncontrolled and controlled populations with different control
intensities and different initial conditions for both pathogen and host. We have chosen
maximum densities as they are the quantity of interest in outbreak situations. ATH
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Figure 2.7: Numerical simulations for the gypsy moth model. (a) Comparison of model
time series for populations of the defoliator gypsy moth. The black curve corresponds to the
uncontrolled system, the blue one to the system controlled by ALC with c = 0.9 and the red
one to ATHwith h = 0.9. (b) Box plots of themaximumpopulation density of defoliators for
the uncontrolled system and systems controlled by ATH and ALC with different intensities.
Calculations are based on model (2.4) with λ = 74.6, ϕ = 20, A = 0.967, B = 0.14,
k = 1.06 and σ = 0.5. Initial densities in (a) are x0 = 10 for the defoliator and z0 = 7
for the pathogen. Values in (b) have been obtained from 100 time series with initial population
densities uniformly distributed in [0.01, 100] and a time horizon of 50 generations.
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clearly reduces the maximum defoliator density for the range of control intensities con-
sidered. By comparison, maximum population sizes are both higher and more variable
when controlled by ALC and ATH. In particular, while ATH performs better in re-
ducing population maxima when increasing control intensities to the values shown in
Figure 2.7b, ALC loses some of its effectiveness for the control intensity of c = 0.95.
This can also be seen in Figure 2.7a, where the maximum density of populations con-
trolled by ALC is much larger than when the number of insects is not controlled.

2.6 Discussion and conclusions

Wehave compared the impact of ALC andATHon extinction and outbreak probabili-
ties. In order to capture stochastic effects, we have used the concept of stochastic Allee
thresholds, stochastic collapse thresholds and stochastic outbreak thresholds. Both con-
trol methods have in common that they become effective (in the sense of changing
stochastic extinction or outbreak thresholds) only for sufficiently large control inten-
sities. If their interventions do show an effect, there is a clear disparity between the two
methods in each of the biological situations considered.

Regarding the control of outbreaks, we have studied how the control methods af-
fect the outbreak probabilities. ATH proves beneficial in terms of reducing or even
completely eliminating outbreak probability. It can also significantly curtail the mag-
nitude of population booms (measured bymaximumdefoliator population sizes in the
gypsy moth model). By contrast, ALC is either ineffective or even counterproductive.
This holds for both the Allee effect and the gypsy moth model. As ATH removes in-
dividuals from and ALC adds individuals to a population, these results seem plausible
because the goal is to get rid of rather than to augment pest species.

Since population fluctuations can be particularly important in driving population
booms, we have defined outbreaks as the population size exceeding a value well above
the carrying capacity, which can only be achieved in deterministic systems if the popula-
tion cycles. Therefore, our definition of outbreak probability is not simply the inverse
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of extinction probability, and it differs from related measures such as establishment,
invasion or persistence probability, see, e.g., [68, 139, 179].

Regarding vulnerable species, our results are similar but reversed. Again, the con-
trol intensities of both ALC and ATH need to be high enough to change extinction
risk. Once there is an effect, ALC proves beneficial for population persistence and is
even able to completely eliminate the collapse risk (large population extinction). By con-
trast, ATH is either ineffective or counterproductive in preventing outbreaks. These re-
sults seem plausible as well because augmenting vulnerable populations appears more
suitable than reducing them.

Interestingly, for deterministic population dynamics, we prove that neither ALC
nor ATH have any effect on the extinction probabilities of small populations (Propo-
sition 2.1.1). This makes sense in the case of ATH because it harvests relatively large
populations and therefore does not change the production curve at small population
sizes. In the case of ALC, its inefficacy may appear surprising at first sight. However,
while ALC does restock small populations, it does not do so to large enough a level to
exceed the Allee threshold (cf. Figure 2.2). Hence, the restocking tends to slow down
the extinction process, but it cannot prevent extinction in the first place. This could
only be achieved by restocking intensities c > 1; however, they will cause a population
blow-up if implemented also at larger population sizes (Section 1.3).

In the scenario of large population extinctions, ATHhas no effect on the determinis-
tic collapse threshold, whereas ALC is either ineffective as well or can reduce extinction
risk depending on the initial condition and the control intensity (Proposition 2.1.2).
This is a surprising result because augmenting the population in this situation is a bet-
ter option than harvesting it, even though extinction is caused by exceeding a collapse
threshold. This can be explained as follows. ATH is ineffective because harvesting
takes place only at population sizes below the collapse threshold. ALC can be effective
because it restocks populations after they have collapsed. Hence, the restocking inter-
vention ‘counter-compensates’ for the overcompensatorypopulationdynamics causing
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the collapse of large populations. If the order of events or census timing were changed,
the quantitative results could be different [12, 27, 104].

While the two control methods have no effect in the deterministic small and large
population extinction scenarios (or, in the case of ALC, only conditionally), ALC and
ATH can become effective (or counterproductive) in the presence of stochasticity. In
that sense, stochasticity can be a foe or a friend to management programs.

The scenario of large population extinction is particularly interesting for another
reason. While conservation biology and mathematical modeling has been mostly con-
cerned with small populations [3, 49, 60, 61, 129, 130, 179], we have shown that also
large populations can be at risk of extinction, even if they have population sizes well
above the Allee threshold and close to the carrying capacity. At such large population
sizes, one might be tempted to expect that Allee effect could be ignored. However, in
concert with overcompensatory population dynamics, the population is not safe even
at those high levels.

So far, the interplay between Allee effects and overcompensation has been mostly
studied in the context of essential extinction [179, 190]. However, as highlighted be-
fore, the Allee effect has been largely ignored in control methods aimed at stabilizing
populations, but see [38, 44, 53]. By contrast, the fisheries literature seems to have
paid more attention to the role of Allee effects in managed populations and pointed
out that Allee effects curtail yield and stock levels at low population abundance, e.g.,
[60, 148, 218].

Allee effects have also been found to play a role in biological invasions [203] and
in pest outbreaks (e.g., for the gypsy moth see [112, 208]) . In this chapter, we have
studied outbreaks in two different types of models. In the model with a strong Allee
effect (Section 2.4), the low-density attractor corresponds to extinction, whereas in the
gypsy moth model by Dwyer et al. [70] the low-density attractor is positive (Section
2.5). In the latter case, noise promotes even more population variability as it can cause
recurrent jumps between attractors.

68



3
Enhancing population stability with

combined adaptive limiter control and
finding the right harvesting-restocking

balance

3.1 Introduction

The combination of harvesting and restocking has proved useful for the management
of many populations, e.g., aqua-cultured fish [17, 18, 147], game species of birds and
mammals [40], sea urchins [52] or prawns [204]. Moreover, control strategies that
combine the removal and restocking of individuals of a population have been shown
in mathematical models to be generally very effective, e.g., both limiter control (BLC)
[212, 213, 214] or target-oriented control (TOC) [29, 59, 79, 213]. These strategies
expand the range of choices for the control and allow the users to achieve management
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goals thatwouldnot bepossible by either only restockingor only culling thepopulation
[213].

When combined, restocking and harvesting can play a central role in population
management. For instance, in the case of coastal fisheries [17], when the goal is to re-
stock depleted populations, the release of juveniles should be combined with large re-
ductions in culling. By contrast, when the goal is to overcome recruitment limitation,
releases may be combined with relatively high culling efforts.

In this chapter, we propose a newmanagement strategy that allows for both restock-
ing and harvesting by combining ALC and ATH. If the population size grows beyond
a certain proportion, ATH is applied to cull part of the increase, whereas if the pop-
ulation size declines below another proportion, ALC is applied to restock part of the
diminished population. We will refer to this strategy as combined adaptive limiter con-
trol (CALC).

CALC avoids the state variable to become too low or too high. This is somewhat
analogous to certain biological processes at the level of organism homeostasis. One ex-
ample is the integral rein control [186], inwhich glucagon inputs prevent blood glucose
from becoming too low and insulin inputs prevent blood glucose from becoming too
high.

How to combine harvesting and restockingwill depend onbiological, economic and
social factors [146, 147, 204]. In particular, the economic side seems to often play a cen-
tral role. For instance, in the case of aqua-cultured fishes, the cost of hatchery fish can
determine the optimal management. At a high cost, no increase in the total yield and
stock abundance is expected [146]. An example of this is the management of Alaskan
pink salmon, which has proved uneconomic under current conditions [26, 103]. By
contrast, high efforts of both fishing and restocking can be optimal when the cost is
low [146], this being the case for Japanese chum salmon [10, 161]. Another example
of the relevance of the economic aspect is the release of hatchery-reared sea urchins in
wild populations. In that case, restocking can recover local productivity [114, 115], but
the high cost of hatchery sea urchins canmake themanagement uneconomic [52, 134].
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Here, in addition to studying the stabilizing effect that can be attained by the combina-
tion of restocking and harvesting under CALC, we analyze the trade-off between this
stabilizing effect and the cost of the management interventions.

Our main goal is to show in which cases CALC may be advantageous over ALC
and ATH. Optimal management strategies are commonly determined by optimizing
a single objective function, e.g., the maximum sustainable yield [42, 45, 187, 199] or
the maximum economic yield [6, 64, 94, 119, 174]. In our case, such an approach
would provide specific values for harvesting and restocking efforts at the optimum but
no information for other values. Contrary to this, our aim is to provide a more holistic
viewby studying thebehavior of themanagedpopulations for all possible combinations
of harvesting and restocking and for different stability criteria. We are convinced that
adopting such a perspective enriches the analysis. In this sense, the reader is cautioned
to not expect absolute conclusions about which is the ‘best’ strategy.

In the next section, we describe CALC in mathematical terms and study its stabiliz-
ing properties. In Section 3.3, we introduce CALC as a management strategy in dif-
ferent population models. Section 3.4 studies the effect of CALC on the constancy
stability of a stochastic population with overcompensation. Section 3.5 analyzes the
capability of CALC to prevent outbreaks of forest-defoliating insects in a stochastic
three-species model. We also consider the economic benefit that would be obtained by
reducing outbreaks depending on both the restocking and harvesting costs. Section 3.6
extends the discussion of our results and draws conclusions.

3.2 Combined adaptive limiter control

3.2.1 Modeling combined adaptive limiter control

CALC aims at reducing the fluctuations in population size by avoiding crashes and
outbreaks. Let xt be the population size at time step t. If xt drops below a certain
proportion of its value in the previous generation (which we denote by c · xt−1, with
c ∈ (0, 1)), individuals are restocked to that proportion. We will refer to c as the
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Figure 3.1: Stabilizing effect of CALC. During the first 40 generations the population is
uncontrolled and its dynamics are described by the Ricker map f (x) = x exp(r(1 − x/K))
with r = 2.7 and K = 30. In the next 60 generations, the population is managed by CALC
with intensities c = 0.5 and h = 0.6. Black circles (red squares) correspond to the population
size before (after) the control intervention. The horizontal red lines represent the limits of the
interval that traps the size of populations managed according to CALC with the given control
intensities (see equations (3.4) and (3.5)).

restocking intensity, sincehigher values of c correspond tohigher restocking efforts. If xt

exceeds another proportionof xt−1 (whichwedenote by xt−1/h, with h ∈ (0, 1)), the
population is harvested to that proportion. We can interpret h as a harvesting intensity,
since higher values of h correspond to lower values of 1/h, and thus to higher removal
efforts.

The control strategy described above can be seen as the combination of ALC and
ATH, both of which are able to reduce the fluctuations in the population size [Chap-
ters 1 and2, 77, 78, 183, 184, 212]. Figure 3.1 illustrates thatCALCshares this property
with them. CALC differs from other strategies for which the magnitude of the inter-
vention is also nonconstant, like proportional feedback, for which a fixed proportion
of the population is harvested or restocked every generation [92]. In the case of CALC,
no action is taken if the proportion between population sizes in two consecutive gener-
ations is within the stipulated limits c and 1/h.
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To further understand the effect of CALC and its relation with ALC/ATH, assume
that the underlying population dynamics, i.e., in the absence of CALC, are given by

xt+1 = f (xt), x0 ∈ [0,+∞), t ∈ N,

where f : [0, b] → [0, b] (b = +∞ is allowed) is a continuously differentiable
hump-shaped production function satisfying conditions (A1)–(A3) (see Section 1.2).
Assume that bt denotes the population size at time step t before the control interven-
tion and at the population size after intervention. Thedynamics of populations subject
to CALC are given by the equations

bt+1 = f (at),

at+1 =


c · at, bt+1 < c · at,

bt+1, c · at ≤ bt+1 ≤ at/h,

at/h, bt+1 > at/h,

(3.1)

where c, h ∈ (0, 1) are the restocking and harvesting intensities, respectively. Substi-
tuting the value of bt+1 into the second equation of (3.1), the dynamics of populations
subject to CALC are described by the piecewise one-dimensional difference equation

at+1 =


c · at, f (at) < c · at,

f (at), c · at ≤ f (at) ≤ at/h,

at/h, f (at) > at/h,

which can be rewritten in a single line as

at+1 = max{min{ f (at), at/h}, c · at}. (3.2)

We can seeCALC as a general framework for adaptive limiters, including bothALC
and ATH as particular cases if we allow the control parameters to be null. Given that
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Figure 3.2: CALC map. The red solid line represents the CALC function (3.2) for a given
map f in dashed line describing the underlying dynamics. The red area corresponds to the
cases in which the population is harvested, and the blue to those in which it is restocked. For
the meaning of the variables see the main text.

c and h respectively represent the restocking and harvesting intensities, c = 0 corre-
sponds to only harvesting (ATH) and h = 0 to only restocking (ALC). However, the
latter is not well defined in equation (3.2). To overcome this, we redefine the equation
describing CALCwith h = 0 to at+1 = max{ f (at), c · at}.

Figure 3.2 shows function (3.2) with c, h ∈ (0, 1) for a certain map f describing
the underlying dynamics (which is compatible, for instance, with theRickermap). The
population is harvested when the population size x is such that the graph of f is strictly
above the straight line y = x/h. Similarly, the population is restocked when the graph
of f is strictly below y = c · x (cf. Figure 3.2). Therefore, in case the population is
controlled, the type of intervention (harvesting or restocking) depends on the popula-
tion size in the previous generation, the control intensities c and h, and the production
function f . It is important to highlight that restocking andharvesting cannot take place
simultaneously at a given time since c < 1/h. Yet, for certain combinations of control
intensities, the population can be restocked at some time steps and harvested at other
time steps. For the sake of simplicity, we will refer to this case as the combination of
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restocking and harvesting. Similarly, for certain values of the control intensities inter-
ventions can consist of harvesting only or restocking only.

3.2.2 CALC for different production functions

Given a production function f , we can determine forwhich control intensities the pop-
ulation will remain uncontrolled and for which control intensities the interventions
used in CALCwill consist of only harvesting, only restocking or a combination of har-
vesting and restocking. Next, we study the type of intervention (restocking, harvesting
or their combination) that corresponds toCALCdepending on the control parameters
for different production functions of the uncontrolled population. We consider four
cases.

First, we consider unimodalmaps (i.e., satisfying conditions (A1)–(A3)) like the one
represented in the first columnof Figure 3.3a. If d denotes the abscissa of themaximum
production, after the first generation the population size is always below f (d). Thus,
for low enough values of c (namely, c ≤ f 2(d)/ f (d), where f 2 = f ◦ f ) and after
the first generation, all possible interventions consist of harvesting only. Similarly, for
low enough values of h (namely, h ≤ 1/ f ′(0+)), the graph of f is below the straight
line y = x/h for all values of x. Thus, in that case all possible interventions consist
of restocking only. For c > f 2(d)/ f (d) and h > 1/ f ′(0+) the population can be
either harvested or restocked depending on its size. Finally, for c ≤ f 2(d)/ f (d) and
h ≤ 1/ f ′(0+), the population remains uncontrolled. The distribution of the type of
intervention (uncontrolled, restocking only, harvesting only or a mixture of harvesting
and restocking) is represented in the second column of Figure 3.3a.

Second, we consider maps like the one represented in Figure 3.3b, which is compat-
ible with the Beverton-Holt model with constant immigration. In this case, CALC
leads to restocking for any c > 0 and to harvesting for any h > 0. Consequently,
restocking and harvesting are combined for (c, h) ∈ (0, 1)× (0, 1), only restocking
is implemented for (c, h) ∈ (0, 1)× {0}, only harvesting for (c, h) ∈ {0} × (0, 1),
and the population remains uncontrolled for (c, h) = (0, 0).
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Figure 3.3: Type of intervention for CALC on different production functions. For each
row, the first column shows a production function and the second column the corresponding
distribution of the type of intervention (restocking, harvesting or their combination) in terms
of the control intensities. In (d), the first generation was omitted in the only harvesting area.

76



Third, for the production function shown in Figure 3.3c, which is compatible with
the Beverton-Holt model, there is a threshold for harvesting given by h0 = 1/ f ′(0+),
while there is no threshold for restocking. Therefore, CALC leads to a combination of
restocking and harvesting for (c, h) ∈ (0, 1)× (h0, 1), only restocking for (c, h) ∈
(0, 1) × [0, h0), only harvesting for (c, h) ∈ {0} × (h0, 1), and the population re-
mains uncontrolled for (c, h) ∈ {0} × [0, h0].

Finally, for the map shown in Figure 3.3d, which is compatible with the Ricker
model (or any other unimodal map) with constant immigration, there is a restocking
threshold c0 = f 2(d)/ f (d) and no harvesting threshold. In this case, restocking can
act in the first generation for any restocking intensity, but the population is never sup-
plemented in subsequent generations if c < c0. Consequently, after the first gener-
ation harvesting and restocking are combined for (c, h) ∈ (c0, 1) × (0, 1), only re-
stocking for (c, h) ∈ (c0, 1)× {0}, only harvesting for (c, h) ∈ [0, c0]× (0, 1), and
the population remains uncontrolled for (c, h) ∈ [0, c0]× {0}.

In the following subsections we prove results that also exist in similar form for ALC
[77] and ATH (see Chapter 1), so we show that they translate to the two-parametric
strategy of CALC.

3.2.3 Activation thresholds

As a method that combines ALC and ATH, depending on the shape of the map that
describes the underlying dynamics theCALCcontrolmay induce activation thresholds
in the controlled population that allow one to predict the need of intervention in the
following generation. This is the case for maps satisfying conditions (A1)–(A3). For
these maps, the activation threshold of harvesting (which we denote by AH) exists for
h > infx∈(0,b) x/ f (x) and corresponds to the abscissa of the leftmost nonzero inter-
section of the curve y = f (x) and y = x/h. No harvesting will be necessary in gener-
ation t if the population size in the preceding generation is above AH (cf. Section 1.2).
Moreover, if f is concave downward in (0, d) (which is true for many unimodal maps,
e.g., Ricker) the population is culled in generation t if its size in the previous generation
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Figure 3.4: Bifurcation diagram for CALC with c = 0.6c = 0.6c = 0.6 and varying hhh. The underlying
population dynamics are given by the Ricker map f (x) = x exp(r(1 − x/K)) with r =
2.7 and K = 30. Initial population sizes were obtained as pseudo-random real numbers in
the interval (0, f (d)]. For each initial condition, black dots represent 30 generations of the
population subject to CALC after a transient of 10, 000 time steps. Red crosses correspond to
the limits of the trapping region given by equations (3.4) and (3.5).

was below AH (cf. Figure 3.2). Similarly, the activation threshold for restocking (which
we denote by AR) exists for c > f (b)/b and corresponds to the abscissa of the unique
nonzero intersection of the curve y = f (x) and y = c · x. Restocking only takes
place if AR was exceeded in the preceding generation [77]. Given that c < 1 < 1/h,
when both AH and AR exist they are always different and satisfy AH < K < AR (cf.
Figure 3.2).

3.2.4 Stabilizing properties of CALC

The following results summarize the stabilizing properties of CALC.We start by prov-
ing that the effect of the control does not stabilize any equilibrium point.

Proposition 3.1. Assume that (A1)–(A3) hold and that the carrying capacity K is an
unstable equilibrium of the uncontrolled system. Then, independent of the magnitude
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of CALC, (c, h) ∈ [0, 1) × [0, 1), the controlled system has no asymptotically stable
equilibria.

Proof. Denote h0 = infx∈(0,b) x/ f (x). For (c, h) ∈ [0, f (b)/b]× (h0, 1), restock-
ing is never activated and the control corresponds toATH,which has no asymptotically
stable equilibria (Proposition1.4). The same is true for (c, h) ∈ ( f (b)/b, 1)× [0, h0],
in which case harvesting is never activated and the control corresponds to ALC [77,
Proposition 2]. For the remaining control intensities, (c, h) ∈ ( f (b)/b, 1)× (h0, 1),
CALC combines both restocking and harvesting. Clearly, (x, y) ∈ [0, b]× [0, b] is
an equilibrium of the controlled system (3.1) if and only ifx = f (y),

y = max{min{x, y/h}, c · y}.
(3.3)

Since c, h < 1, the second equation of (3.3) yields y = x, and thus y = f (y).
Therefore, the controlled system (3.1) only has (0, 0) and (K, K) as equilibriumpoints.
According to Proposition 1.1, for h > h0 the activation threshold AH exists. Con-
sider the neighborhood of (0, 0) given by U = (0, AH)× (0, AH) and assume that
(at, bt) ∈ U for all t ≥ 0. Given that f (x) > x/h for x ∈ (0, AH), at+1 =

max{at/h, c · at} = at/h for all t ≥ 0, and thus at = (1/h)t · x0. Consequently,
at → +∞, which contradicts the hypothesis and proves that (0, 0) is unstable.

Let us now prove that (K, K) is also unstable. Since f is continuous and c · K <

K = f (K) < K/h, there exists a neighborhood V of K such that c · x < f (x) <

x/h for all x ∈ V. Assume that (at, bt) ∈ V × V for all t ≥ 0. Then, at+1 =

f (at) for all t ≥ 0, and thus at = f t(x0). Since K is an unstable equilibrium for
the uncontrolled system, this last equality contradicts the hypothesis and proves that
(K, K) is unstable.

The following result shows that the stabilizing effect of CALC is attained by asymp-
totically trapping the population size within an interval around the carrying capacity.
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Moreover, it provides analytical expressions in terms of the control parameters for the
endpoints of this interval, which are shown in Figure 3.4 together with a bifurcation
diagram.

Remark 3.2. Conditions (A1)-(A3) are standard in the literature to describe unimodal
maps andwere also used in the study of the stabilizing properties ofALC [77]. Wewant
to stress that imposing differentiability facilitates the description of these maps, but it
is not a necessary condition in most of the results about ALC, ATH or in those that
follow for CALCwhenever the unimodal character of the map is not altered.

Proposition 3.3. Assume that (A1)–(A3) hold and (c, h) ∈ (0, 1)× (0, 1) are such
that the activation thresholds AR and AH exist. Then, applying CALC with intensities
(c, h) asymptotically confines the population sizes at for any a0 ∈ (0, b) within an inter-
val Ia = [l(c, h), u(c, h)] around the positive equilibrium K, with endpoints given by
the expressions

l(c, h) =

max{c · AR, f (AH/h)}, d ≤ AH,

max{ f 2(d), c · AR}, d > AH,
(3.4)

u(c, h) =



min{ f (c · AR), AH/h}, d ≤ c · AR, d ≤ AH,

AH/h, d > c · AR, d ≤ AH,

f (c · AR), d ≤ c · AR, d > AH,

f (d), d > c · AR, d > AH.

(3.5)

Proof. Equation (3.2) can be expressed as at+1 = max{FH(at), c · at}, where the
map FH : [0, b] → [0, b] is given by FH(x) = max{ f (x), x/h}. Thus, (3.2) can be
considered as a system describing the dynamics of a population with production func-
tion FH that is controlled by only restocking (ALC). One can check that FH satisfies
conditions (A1)–(A3) except for the existence of a point where this map is not differ-
entiable. This does not affect our conclusion since the existence of such a point does
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not alter the unimodal character of the map. Moreover, one can check that there exists
T0 > 0 such that F2

H(dH) ≤ at ≤ FH(dH) for all t ≥ T0, where dH denotes the
abscissa of the maximum of FH . This, together with [77, Theorem 1], leads to con-
clude that there exists T ≥ T0 such that for t ≥ T the population size at for any
a0 ∈ (0, b) is asymptotically trapped within an interval Ia = [l(c, h), u(c, h)] with
endpoints given by the expressions

l(c, h) = max{F2
H(dH), c · AR}, (3.6)

u(c, h) =

FH(c · AR), dH ≤ c · AR,

FH(dH), dH > c · AR.
(3.7)

Assume that d > AH . Then, dH = d and FH(dH) = f (d). Since f (d) >

d > AH , it follows that F2
H(dH) = FH( f (d)) = f 2(d). On the other hand, if

AH < d = dH ≤ c · AR then FH(c·AR) = f (c·AR). With this, all the results given
in the statement for d > AH follow.

Suppose now d ≤ AH . Then, dH = AH and FH(dH) = AH/h. Since AH/h >

AH , we conclude F2
H(dH) = FH(AH/h) = f (AH/h). This completes all the cases

for l(c, h). To derive the expression for u(c, h), we consider two cases. If d > c · AR,
then AH > c · AR and u(c, h) = FH(AH) = AH/h. If d ≤ c · AR, then
f is strictly decreasing in the interval defined by c · AR and AH , being min{ f (c ·
AR), f (AH) = AH/h} = f (max{c · AR, AH}). For AH > c · AR, we have
u(c, h) = FH(AH) = f (AH) = min{ f (c · AR), AH}, and for AH ≤ c · AR it
follows that u(c, h) = FH(c · AR) = f (c · AR) = min{ f (c · AR), AH}. This
completes the proof.

The analysis of the expressions for the endpoints of the trapping interval given in
Proposition 3.3 reveals that harvesting does not affect the fluctuation range of the pop-
ulation when d ≥ AH . The reason for this is that in such a case the stock-recruitment
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curves of both controlled and uncontrolled populations have a common maximum
f (d). Consequently, if wewant harvesting to reduce the fluctuation rangewith respect
to the uncontrolled population, the harvesting intensity must be higher than d/ f (d).

3.3 Simulations

To study the pros and cons of CALC versus ALC and ATH, we perform several nu-
merical experiments with two different population models.

3.3.1 CALC of a stochastic overcompensatory population

The first model is based on the Ricker map and includes environmental and demo-
graphic stochasticity aswell as a lattice effect. The latter corresponds to thephenomenon
whereby the dynamics of the discrete-state system can be quite different from its conti-
nuous-state version [102]. We use the negative-binomial-environmental (NBe) model
introduced in [159]. Thismodel reads xt+1 ∼ NegBinom( f (xt), α), whereNegBinom
denotes the negative-binomial distribution, f is the deterministic production function
of the population and α is a parameter driving the shape of the distribution. Specifi-
cally, we consider for numerical simulations the equation

xt+1 =

max{min{zt, xt/h}, c · xt}, h > 0,

max{zt, c · xt}, h = 0,
(3.8)

with zt ∼ NegBinom(xt exp(2.7(1 − xt/30))), 100) and (c, h) ∈ [0, 1)× [0, 1).
This describes the dynamics of a population subject to both demographic and environ-
mental stochasticity that is managed by CALCwith restocking intensity c and harvest-
ing intensity h, and for which the uncontrolled deterministic dynamics are described
by the Ricker model with growth parameter r = 2.7 and carrying capacity K = 30.
Moreover, the discrete character of the statistical distribution that is considered implies
the integerization of population size.
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With this equation, we study the effect of CALC on the constancy stability of man-
aged populations. We have seen in Section 1.3 that the effect of management strategies
can sometimes be stabilizing or destabilizing depending on which constancy measure
is used. In this sense, it is important to rely not just on one measure, because this could
give results that do not hold for other measures. In view of this, we consider three dif-
ferentmeasures of the constancy stability, namely the fluctuation index (FI), the fluctu-
ation range (FR) and the coefficient of variation (CV). The FR and FI were introduced
in Section 1.3. The CV is a standardized measure of the dispersion in the population
size obtained as the ratio of the standard deviation to the mean of the population size
over a period of T time steps. Constancy stability of a population is inversely related
to the magnitude of fluctuation in size it shows across time. Thus, decreases in any of
these three measures are associated with enhancements in the constancy stability.

Given a combination of control intensities (c, h), we evaluate the above three mea-
sures for equation (3.8) averaged over series of T = 30 time steps and over 500 repli-
cates with random initial conditions in (0, f (d)]. To study the statistical significance
of the differences in the considered measures, we conduct t-tests for the comparison of
their means for different combinations of control intensities. We focus on the differ-
ences between the cases in which the populations are managed by harvesting only (c =
0) or restocking only (h = 0) and the cases inwhich they aremanaged by a certain com-
bination of harvesting and restocking (c, h 6= 0). We denote by pm((c1, h1), (c2, h2))

the p-value of the t-test for the comparison of means of the constancy measure m ∈
{FR, FI,CV} between the case in which the population is managed with control in-
tensities (c1, h1) and the case in which it is managed with control intensities (c2, h2).
The significance level is set at 0.05 and all statistical analyses are performed with IBM®

SPSS Statistics 23 for Windows®.

3.3.2 CALC of a host–pathogen–predator model

The secondmodel is given by Eqs. (2.4), whichwe have used in Section 2.5 to study the
effectiveness of ALC and ATH in the prevention of population outbreaks. Here, we
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consider management actions of the state variable xt only. Then, the model including
CALC with control intensities (c, h) ∈ [0, 1)× [0, 1) is obtained by modifying the
second equation of (2.4) to

xt+1=


max

{
min

{
λxt(1 − I(xt, zt))

(
1 − 2ABxt

B2+x2
t

)
, xt/h

}
, c · xt

}
εt, h > 0,

max
{

λxt(1 − I(xt, zt))
(

1 − 2ABxt
B2+x2

t

)
, c · xt

}
εt, h = 0.

With this equation, we calculate the probability of defoliator outbreaks as follows.
We assume that the system is in the basin of attraction of the low-density attractor of
(2.4), namely x0 = 0.2516 and z0 = 11.6420. The maximum defoliator density
for the deterministic attractors of (2.4) is approximately 44, and we will assume that
an outbreak happens in generation t when the defoliator density xt exceeds 35. The
probability of these events is calculated for time series of length 50 and averaged over
5, 000 replicates.

3.4 Constancy stability

In this section, we study if the combination of restocking and harvesting can bring any
benefit in terms of the constancy stability of populationsmanaged byCALCcompared
to the cases of harvesting only and restocking only. We consider stochastic overcompen-
satory populations that are modeled by (3.8) in two different scenarios.

3.4.1 Scenario 1: adding restocking to harvesting

In this subsection, we study if the addition of restocking to harvesting reduces the FI,
FR or CV of the managed populations. Let us start by studying the FR. As can be
observed in Figure 3.5a, for h . 0.45 the FR decreases as the restocking intensity in-
creases, while for higher values of h such a reduction is not observed for low restocking
intensities (c = 0.1). This suggests that for a given harvesting intensity the addition
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of restocking entails a significant reduction in the FR only if the restocking intensity
is above a certain threshold. We will see that the same is true for both the FI and the
CV. In view of this and for easy reference, we denote by cm(h) the restocking intensity
threshold that must be exceeded for a given harvesting intensity h to obtain a signifi-
cant reduction in the constancy measure m ∈ {FR, FI,CV} with respect to the case
of only harvesting (c = 0). The term ‘significant’ is used here following statistical cri-
teria (for more details, see Section 3.2). Table 3.1 shows the statistical analysis of the
aforementioned differences in the constancy measures and lists the values of cm(h) for
different harvesting intensities within the ranges considered throughout this study (for
other values in these ranges similar results were obtained, but they are not shown here).
Table 3.1 confirms that for h . 0.45 andwith respect to the case of only harvesting the
reduction in the FR obtained with the inclusion of restocking is statistically significant
even if the restocking intensity is very low, so that in this case cFR(h) ≤ 0.1. For higher
values of h, reductions in the FR are only significant for higher restocking intensities
since in this case cFR(h) ∈ (0.1, 0.4].

Let us now consider the FI. Figure 3.5b shows that for harvesting of low intensity
h . 0.15 the addition of restocking of low intensity (c = 0.1) increases the FI. For
harvesting intensities 0.15 . h . 0.3, the inclusion of restocking significantly reduces
the FI even for very low restocking intensities (cFI(h) ≤ 0.1; see Figure 3.5b and Table
3.1). For 0.3 . h . 0.9, significant reductions in the FI are only reached at higher
restocking intensities (cFI(h) ∈ (0.1, 0.4]; see Figure 3.5b and Table 3.1). For very
high harvesting intensities h & 0.9, significant reductions in the FI are again observed
from very low restocking intensities onward (cFI(h) ≤ 0.1; see Figure 3.5b and Table
3.1).

Finally, let us study the CV. For h . 0.85, the behavior of this measure is similar to
the one observed for the FR (see Figure 3.5c and Table 3.1). Above this range, increas-
ing the harvesting intensity increases the CV for populations managed by only harvest-
ing. Interestingly, the inclusion of restocking nullifies this effect from low restocking
intensities onward.
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Figure 3.5: Constancy stability measures for CALC in terms of the control intensities.
All values were obtained for time series of length 30 for equation (3.8) and averaged over 500
replicates (a-f) or 200 replicates (g-i) for which the population persisted. The initial population
sizes were chosen as pseudo-random real numbers in (0, f (d)].

86



Scenario 1: adding restocking to harvesting
h p-values Restocking intensity threshold

h = 0.21

pFR((0, 0.21), (0.1, 0.21)) ≈ 0∗ cFR(0.21) ≤ 0.1

pFI((0, 0.21), (0.1, 0.21)) ≈ 0∗ cFI(0.21) ≤ 0.1

pCV((0, 0.21), (0.1, 0.21)) ≈ 0∗ cCV(0.21) ≤ 0.1

h = 0.51

pFR((0, 0.51), (0.1, 0.51)) = 0.572, pFR((0, 0.51), (0.4, 0.51)) ≈ 0∗ cFR(0.51) ∈ (0.1, 0.4]

pFI((0, 0.51), (0.1, 0.51)) = 0.881, pFI((0, 0.51), (0.4, 0.51)) ≈ 0∗ cFI(0.51) ∈ (0.1, 0.4]

pCV((0, 0.51), (0.1, 0.51)) = 0.018∗ cCV(0.51) ≤ 0.1

h = 0.75

pFR((0, 0.75), (0.1, 0.75)) = 0.676, pFR((0, 0.75), (0.4, 0.75)) ≈ 0∗ cFR(0.75) ∈ (0.1, 0.4]

pFI((0, 0.75), (0.1, 0.75)) = 0.426, pFI((0, 0.75), (0.4, 0.75)) ≈ 0∗ cFI(0.75) ∈ (0.1, 0.4]

pCV((0, 0.75), (0.1, 0.75)) = 0.143, pCV((0, 0.75), (0.4, 0.75)) ≈ 0∗ cCV(0.75) ∈ (0.1, 0.4]

h = 0.84

pFR((0, 0.84), (0.1, 0.84)) = 0.668, pFR((0, 0.84), (0.4, 0.84)) ≈ 0∗ cFR(0.84) ∈ (0.1, 0.4]

pFI((0, 0.84), (0.1, 0.84)) = 0.939, pFI((0, 0.84), (0.4, 0.84)) ≈ 0∗ cFI(0.84) ∈ (0.1, 0.4]

pCV((0, 0.84), (0.1, 0.84)) = 0.215, pCV((0, 0.84), (0.4, 0.84)) ≈ 0∗ cCV(0.84) ∈ (0.1, 0.4]

h = 0.93

pFR((0, 0.93), (0.1, 0.93)) = 0.201, pFR((0, 0.93), (0.4, 0.93)) ≈ 0∗ cFR(0.93) ∈ (0.1, 0.4]

pFI((0, 0.93), (0.1, 0.93)) = 0.024∗ cFI(0.93) ≤ 0.1

pCV((0, 0.93), (0.1, 0.93)) = 0.014∗ cCV(0.93) ≤ 0.1

Scenario 2: adding harvesting to restocking
c p-values Harvesting intensity threshold

c = 0.21

pFR((0.21, 0), (0.21, 0.1)) = 0.550, pFR((0.21, 0), (0.21, 0.25)) ≈ 0∗ hFR(0.21) ∈ (0.1, 0.25]

pFI((0.21, 0), (0.21, 0.1)) = 0.787, pFI((0.21, 0), (0.21, 0.25)) ≈ 0∗ hFI(0.21) ∈ (0.1, 0.25]

pCV((0.21, 0), (0.21, 0.1)) = 0.543, pCV((0.21, 0), (0.21, 0.25)) ≈ 0∗ hCV(0.21) ∈ (0.1, 0.25]

c = 0.51

pFR((0.51, 0), (0.51, 0.1)) = 0.839, pFR((0.51, 0), (0.51, 0.25)) = 0.005∗ hFR(0.51) ∈ (0.1, 0.25]

pFI((0.51, 0), (0.51, 0.25)) = 0.497, pFI((0.51, 0), (0.51, 0.4)) ≈ 0∗ hFI(0.51) ∈ (0.25, 0.4]

pCV((0.51, 0), (0.51, 0.25)) = 0.403, pCV((0.51, 0), (0.51, 0.4)) ≈ 0∗ hCV(0.51) ∈ (0.25, 0.4]

c = 0.75

pFR((0.75, 0), (0.75, 0.25)) = 0.550, pFR((0.75, 0), (0.75, 0.4)) ≈ 0∗ hFR(0.75) ∈ (0.25, 0.4]

pFI((0.75, 0), (0.75, 0.25)) = 0.195, pFI((0.75, 0), (0.75, 0.4)) =≈ 0∗ hFI(0.75) ∈ (0.25, 0.4]

pCV((0.75, 0), (0.75, 0.25)) = 0.972, pCV((0.75, 0), (0.75, 0.4)) ≈ 0∗ hCV(0.75) ∈ (0.25, 0.4]

c = 0.84

pFR((0.84, 0), (0.84, 0.25)) = 0.874, pFR((0.84, 0), (0.84, 0.4)) ≈ 0∗ hFR(0.84) ∈ (0.25, 0.4]

pFI((0.84, 0), (0.84, 0.4)) = 0.092, pFI((0.84, 0), (0.84, 0.7)) ≈ 0∗ hFI(0.84) ∈ (0.4, 0.7]

pCV((0.84, 0), (0.84, 0.25)) = 0.306, pCV((0.84, 0), (0.84, 0.4)) = 0.032∗ hCV(0.84) ∈ (0.25, 0.4]

c = 0.93

pFR((0.93, 0), (0.93, 0.4)) = 0.145, pFR((0.93, 0), (0.93, 0.7)) ≈ 0∗ hFR(0.93) ∈ (0.4, 0.7]

pFI((0.93, 0), (0.93, 0.4)) = 0.681, pFI((0.93, 0), (0.93, 0.7)) ≈ 0∗ hFI(0.93) ∈ (0.4, 0.7]

pCV((0.93, 0), (0.93, 0.4)) = 0.729, pCV((0.93, 0), (0.93, 0.7)) = 0.019∗ hCV(0.93) ∈ (0.4, 0.7]

Table 3.1: Statistical analysis of the differences in the constancy stability measures for
CALC.T -tests and intensity thresholds for the differences in the fluctuation index (FI), fluctu-
ation range (FR) and coefficient of variation (CV) of (3.8) in the two different scenarios and for
various combinations of control intensities. Values marked with ∗ are statistically significant at
level 0.05. See Section 3.2 for more details.
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3.4.2 Scenario 2: adding harvesting to restocking

Nowwe study the samemeasures of constancy stability in the case in which harvesting
is added to restocking. As in the previous scenario, significant reductions in the FR,
FI or CV are reached only when the harvesting intensity is above a certain threshold
hm(c), which depends on the constancy measure m ∈ {FR, FI,CV} and the restock-
ing intensity c (see Figure 3.5d-f andTable 3.1). Yet, the behavior of the three constancy
measures is in this case similar—cutbacks in any of themdue to the inclusion of harvest-
ing require higher harvesting intensities for higher restocking intensities.

In summary, the combination of harvesting and restocking enhances the constancy
stability of the managed populations in comparison to the cases of restocking only or
harvesting only whenever the control intensities are high enough. This is further sup-
ported by the two-parameter diagrams in Figure 3.5g-i, where we vary both restocking
and harvesting intensities. Here we can observe that if c (respectively h) is large enough,
all three constancy stability measures are enhanced in comparison to the absence of re-
stocking (respectively harvesting) for all h (respectively c).

3.5 Population outbreaks

In this sectionwe study the capability ofCALC to prevent outbreaks in the population
size. Moreover, we analyze the trade-offbetween the reduction in the risk of population
outbreaks and the cost of the intervention. We consider the host-pathogen-predator
model (2.4).

3.5.1 Outbreak risk

Population outbreaks are inherent to forest-defoliating insects, for which the popula-
tion size may rest in a low-density state for several generations until some perturbation
makes it burst to a higher-density attractor. Usually, management strategies aimed at
avoiding pest outbreaks are based on only harvesting the population. In this section, we
study if in the case of CALC the combination of such strategies with restocking may
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enhance the capability of the control to contain the population size. Specifically, we
study the effect of CALC on the probability of outbreak for model (2.4). The results
are shown in Figure 3.6. For low harvesting intensities (h . 0.3) restocking defolia-
tors reduces the probability of outbreaks whenever the restocking intensity is not too
high (c . 0.8). Therefore, in that case harvesting and restocking defoliators is more
effective for the prevention of outbreaks than the strategy based only on their removal.
Yet, this is not always the case. For medium and high harvesting intensities (h & 0.3),
restocking defoliators is never beneficial for the prevention of outbreaks in their popula-
tion density. Interestingly, which is also somehow counter-intuitive, for high removal
intensities restocking even a small proportion of the density of defoliators in the pre-
vious generation promotes outbreaks in their population. A potential explanation for
this behavior lies in the fact that new uninfected defoliators would be added and a large
number of infected defoliators would be removed from the defoliator population at
high harvesting intensities, which could be highly destabilizing.

In summary, if we can manage the defoliator with only a low harvesting intensity,
then it is beneficial to combine harvesting with restocking. On the contrary, if we are
able to implement harvesting with a high intensity, then it seems better to not restock
the defoliator.

3.5.2 Intervention cost

The previous analysis does not take into account that interventions always have a cost.
In this sense, from a management perspective, the control strategies that are the most
effective at reaching a specific goal may not be the best option if they come at a higher
cost. Thus, a trade-off between the goals that are reached and the cost of the interven-
tion must be considered. Here, we study the benefit that is obtained with CALC in
terms of the reduction of the risk of outbreaks. Undoubtedly, this is an extremely am-
biguous concept that requires themonetization of both the goal that is reached and the
cost of the intervention, which could be done in many different ways. We consider a
proxy in which the cost is measured in terms of the restocking and harvesting frequen-
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Figure 3.6: Probability of outbreak for CALC.Outbreaks for equation (2.4) are assumed to
occur when the defoliator density exceeds 35, and their probability is calculated by estimating
the frequency of their occurrence in time series of length 50 over 5000 replicates. The initial
conditions for defoliator and pathogen are x0 = 0.2516 and z0 = 11.6420, respectively.
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cies. In the following analysis we consider thatmanagement has a fixed ‘budget’ for con-
trol interventions, which can be partitioned into harvesting and restocking. The sum
of harvesting and restocking intensities is thus constant—here we assume c + h = 1.
With c = λ and h = 1 − λ, where λ ∈ [0, 1], we see that λ = 0 means only harvest-
ing, λ = 1 only restocking and intermediate values some combination. We therefore
refer to λ as the harvesting-restocking balance. Note that due to this assumption we
have reduced the number of free control parameters from two to one, which simplifies
the analysis.

Under the above assumption, we consider the function

B(λ, v1, v2, v3) = v1((Pu − Pc(λ))︸ ︷︷ ︸
revenue

− (v2 · FR(λ) + v3 · FH(λ))︸ ︷︷ ︸
cost

, (3.9)

where B is the benefit function and Pu, Pc(λ), FR(λ) and FH(λ) respectively repre-
sent the probability of outbreak for the uncontrolled and controlled populations and
the restocking and harvesting intervention frequencies of CALC for control intensities
c = λ and h = 1 − λ, with λ ∈ [0, 1]. Parameter v1 represents the unitary revenue
that corresponds to the monetization of the reduction in the probability of outbreak,
while v2 and v3 represent the unitary cost of harvesting and restocking interventions,
respectively.

We rescale (3.9) by setting v1 = 1. Our goal is to study which combination of
parameters yields the maximum benefit, which naturally depends on which type of in-
tervention (restocking or harvesting) ismore costly. In this sense, we can set v2 at a fixed
value (for instance, v2 = 1) and study the benefit for v3 > 1 (harvesting more costly
than restocking), v3 = 1 (harvesting and restocking equally costly) and v3 < 1 (re-
stocking more costly than harvesting). For these values, Figure 3.7 shows the graphical
representation of (3.9) in terms of v3. When harvesting is less costly than restocking
(v3 = 1/4), the maximum benefit is reached when the harvesting intensity is higher
than the restocking intensity (λ < 0.5). As the cost of harvesting increases, the peak of
the benefit curve moves to the right, which means increasing the restocking intensity
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and decreasing the harvesting intensity. When restocking and harvesting are equally
costly (v3 = 1), the maximum benefit is reached when the two control intensities
are approximately equal, i.e., λ ≈ 0.5. Finally, when harvesting is more costly than
restocking the maximum benefit is reached for a restocking intensity higher than the
harvesting intensity (v3 = 4). The same behavior is observed when v2 is set at other
values different from 1 (not shown here).

As already mentioned, similar analyses could be performed by considering different
criteria for the definition of the benefit of the intervention. A similar analysis could
also be performed for model (3.8) by considering the trade-off between the reduction
in either the FI, FR or CV and the intervention costs. The example considered here
does not pretend to be representative of all of them, but shows that choosing the values
of the control intensities depends on the formulation of the cost function, and in the
cases considered here the intervention costs play a role.

3.6 Discussion and conclusions

We have introduced CALC as a strategy for the management of biological populations
that combines restocking and harvesting according to two already known techniques,
namely ALC and ATH. This new strategy has not been previously considered in the
literature and constitutes a general framework for adaptive limiters, since it includes
the methods ALC and ATH as particular cases.

Our main goal has been to study the advantages that combining restocking and har-
vesting may have over restocking only and harvesting only. To that end, we have con-
sidered two different population models. The first is a stochastic overcompensatory
model, for which we have analyzed the constancy stability of the managed populations
by considering three different measures of this property, namely the fluctuation index,
the fluctuation range and the coefficient of variation. In our case, all these measures
showed the same trend: the constancy stability of themanagedpopulations is improved
when harvesting and restocking are combined, provided the harvesting and restocking
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intensities are high enough. More specifically, complementing restocking (respectively
harvesting)with harvesting (respectively restocking) enhances the constancy stability of
the managed populations if the harvesting (respectively restocking) intensity is above
a certain critical value, which depends on the constancy measure and the restocking
(respectively harvesting) intensity that are considered. Below this critical value, the im-
pact of combining restocking and harvesting on the constancy stability is in most cases
negligible and in rare cases negative. The latter is the case of the FI, whose value can
be increased by the combination of harvesting and restocking when the intensities of
each are low. Such a behavior in the FI for low intensities was previously reported for
both ALC [77] and ATH (Section 1.3). Interestingly, contrary to other methods that
combine harvesting and restocking like BLC or TOC [213], the improvement in the
constancy stability obtained by that combination is in the case of CALC observed for
relatively low control intensities. This case is especially interesting because achieving
high control intensities may be unfeasible due to the cost of the intervention, to logisti-
cal issues or to the unavailability of a high number of individuals to be restocked.

When the goal is to prevent outbreaks in the population size, we have shown that
combining harvesting with restocking under CALC can also be beneficial. Yet, again,
this depends on the control intensities. If outbreaks are to be controlled by harvesting
of low intensity (h . 0.3), combining this strategy with restocking of not very high
intensity (c . 0.8) helps to contain the population size. On the contrary, if outbreaks
are to be controlled by harvesting of intermediate or high intensity (h & 0.3), restock-
ing individuals with any intensity is either ineffective or counterproductive. Special
care must be taken in the case of harvesting of high intensity (h & 0.8), for which the
combination with restocking, even of very low intensity, clearly promotes population
outbreaks. Wewish to stress thatwe are not aware of an examplewhere pest species have
been actually restocked in the field and thatwewould expect resistance to this approach
in real applications. We only know of the laboratory experiments in [213].

As a method that combines ATH and ALC, the stabilizing properties of CALC
could be expected to be similar to those already observed separately for ATH andALC.
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In fact, we have extended the stability results forATHandALC toCALC (Section 3.2).
We have shown that for unimodal maps the stabilizing effect of CALC is attained by
asymptotically trapping the population size in an interval around the carrying capacity
of the population. We have provided analytical expressions for the endpoints of this
interval in terms of the harvesting and restocking intensities. Moreover, we have shown
that when CALC combines restocking and harvesting with high enough intensities
there exist activation thresholds that inform us in advance of the need of intervention
in the following time step.

Several papers put forward the idea that the advantage of combining restocking and
harvesting depends on multiple factors, especially on the economic side [17, 18, 146,
147]. With a particular example, we have studied the trade-off between the stabilizing
goals that are reached with the application of CALC and the cost of the intervention.
This allows us to conclude that the decision about appropriate control intensities for
CALC cannot be exclusively based on stability criteria. In this sense, we draw attention
to the fact that we should not only focus on theoretical or numerical results predicting
a certain stabilizing effect, but on the benefit that is expected to be obtained with the
intervention. While allowing us to conclude that the decision about the ‘best’ com-
bination of control intensities is not trivial, our approach is simplistic. For instance,
in coastal fisheries, there is great controversy about the appropriateness of combining
fishing and restocking. It is known that few restocking or stock enhancement programs
have succeeded becausemany other aspects different from stability issues have not been
taken into account, as can be the necessity of the intervention or the integration of tech-
nology with the participation and understanding of the stakeholders by means of an
appropriate management scheme [17].
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4
Degenerate period adding bifurcation
structure of one-dimensional bimodal

piecewise linear maps

4.1 Introduction

Management in many areas involves making decisions. Decision making in turn is of-
ten based on thresholds. For instance, when pests or nuisance species are too abun-
dant, start culling them. If endangered species or game species become too rare, start
restocking them. If environmental pollution becomes too severe, take actions against
it. If a pharmaceutical concentration is too high or low, then start a regimen working
against it. These threshold-based management actions lead to dynamical systems that
usually are nonsmooth at the thresholds, as we have seen in previous chapters; see also
[21, 105, 125, 184, 212, 214].
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When parameters of a smooth system are varied in a certain direction in the param-
eter space, transitions between regular dynamics and chaos generally occur through a
route to chaos, which consists of a certain sequence of bifurcations (for a review of these
mechanisms see, for instance, [8]). However, in the case of nonsmooth systems these
transitionsmay occur through a single bifurcation [20]. In this chapter, we restrict our-
selves to the case of one-dimensional piecewise smooth (PWS) maps. These maps are
characterized by the fact that the state space consists of several partitions separated by
points at which the map is not differentiable, to which we will refer as break points or
kink points. As parameters are varied, abrupt changes in the dynamics of PWS maps
may occur when an invariant set collides with one of the break points (e.g., the transi-
tion from an attracting fixed point to a chaotic attractor). These changes are known
as border collision bifurcations (BCB), a term originally introduced byNusse and Yorke
[163]. This type of bifurcation can give rise to many structures that are completely dif-
ferent from scenarios occurring in smooth systems [13]. Several papers have studied
these structures for certain families of maps (see, for instance, [86]).

CALC ismodeled bymapswith two break points that split the state space into three
partitions and make the maps bimodal (cf. Figure 3.2). The outermost branches of
these maps are determined by the adaptive limiters (and hence by the control parame-
ters) and are linear. In the central partition of the state space, the limiters play no role
and the maps are given by the production function of the population, which may have
any functional form. In view of this, we focus on bimodal PWS maps with the outer-
most branches linear and study the bifurcation structure associated with the collision
between the kink points and invariant sets lying in the outermost partitions of the state
space.

We show that the bifurcations observed for these maps correspond to a rather de-
generate case of a bifurcation structure associatedwith one-dimensional bimodal piece-
wise linear (PWL) maps (i.e., PWS with affine branches) with two break points. The
degeneracy of this case is twofold. First, the bifurcations that are observed constitute
a degenerate case of BCBs that, to our knowledge, has not been studied yet. Second,
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the bifurcation structure (i.e., the number and location of the bifurcation points in the
parameter space) also constitutes a degenerate case of the bifurcation structure of the
general family of bimodal PWL maps. This degeneracy in the bifurcation structure
(but not in the type of bifurcation) was previously reported by Foroni et al. in [74] for
a similar dynamical system, whose study was motivated by an economic model. Foroni
et al. succeeded in providing a partial result for the determination of bifurcation points.
That is, only a necessary but not sufficient condition for the occurrence of bifurcations
was reported. This leaves the problem undetermined, since with just the condition pro-
vided in [74] the number of combinations of parameters for which a bifurcation could
potentially occur is extremely high. In the ecological framework considered in this the-
sis, this indeterminacy would imply serious difficulties for the application of CALC to
the control of real populations. In this sense, it is of practical interest to exactly deter-
mine which combinations of parameter values correspond to bifurcation points and
which ones do not.

Of course, this requires to find a necessary and sufficient condition for the occur-
rence of the considered bifurcations. We provide and prove such a condition not only
for CALC and for the problem considered in [74], but for a broader family of maps
that covers all the cases in which the degenerate bifurcations under study take place.
By using that condition, we fully determine the bifurcation structure of CALC and
complete the analytical description of the bifurcation structure of the family of maps
considered in [74]. Regarding the degenerate bifurcations studied here, we provide a
complete theoretical description. We prove that a continuum of cycles lying on the
outermost partitions of the state space emerge at the bifurcation points, while in the
non-degenerate case a unique cycle satisfying that condition exists. We also show that
no cycles of this kind exist at either side of the bifurcation points.

As an application of the above results, we provide numerical simulations of popu-
lations managed by CALC for some relevant models in discrete-time population dy-
namics, namely the Ricker and Hassell model. These simulations show that at the bi-
furcation points the continuum of cycles appear to attract all possible orbits except
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those corresponding to fixed points. This has important implications from the prac-
tical point of view. In case that managers are interested in keeping populations away
from bifurcation points but this is not possible, the results provided here allow them
to know in advance which dynamical behavior can be expected for the managed pop-
ulations. Additionally, these examples show that the bifurcation structure for CALC
strongly depends on the underlying dynamics and ranges from very simple to very in-
tricate.

4.2 Transitions induced by the combination of har-
vesting and restocking

The analysis of the stabilizing properties of CALC carried out in the previous chapter
brought to light special dynamical features of populationsmanagedby this strategy that
are the focus of this chapter. As shown in Figure 4.1, which reproduces Figure 3.4 with
more detail, for certain combinations of the control parameters (e.g., c = h = 0.6)
sudden jumps between different attractors are observed. This suggests that around the
critical points in the parameter space for which these phenomena occur, slight varia-
tions in the control intensities may have dramatic consequences in the managed popu-
lations. Interestingly, such a behavior is inherent to the combination of restocking and
harvesting, since it is observed neither for ATH nor for ALC.

From the ecological point of view, the population size undergoes a sharp change.
As Figure 4.1 shows, the attractors on different sides of the critical points may corre-
spond to significantly different population sizes. This is also reflected in the average
population size (cf. Figure 4.2). Such a transition can seriously affect the stability and
persistence of the managed populations in certain situations. This would be the case,
for instance, of populations at risk of extinction. In such a case, a sudden shift from an
attractor to another corresponding to lower population sizes could threaten the popu-
lation persistence.
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Figure 4.1: Bifurcation diagram for CALC with c = 0.6c = 0.6c = 0.6 and varying hhh. The underlying
population dynamics are given by the Ricker map f (x) = x exp(r(1 − x/K)) with r = 3
and K = 60. For each value of h, black dots represent 30 iterates of the state variable after a
transient of 10, 000 iterates with initial conditions obtained as pseudo-random real numbers in
the interval (0, f (d)]. For h = 0.6 and h =

√
0.6, iterates were obtained for 1, 000 different

initial conditions, which are respectively represented by orange and green dots.
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There are several implications that these abrupt changes in the dynamics may have
from a management point of view. As can be observed in Figure 4.2, the transition
between different attractors entails a sharp change in the number of individuals that
are restocked/harvested. On one side of the critical point in the parameter space the
intervention is essentially based on restocking and few individuals are harvested. By
contrast, on the other side, only few individuals are restocked and harvesting prevails.
Logically, such a transition may have severe consequences on the cost and yield of the
intervention. For instance, in the case of exploited populations, shifting from mostly
harvesting to mostly restocking drastically reduces the yield and increases the cost of
the exploitation. Of course, this would also imply serious problems with respect to the
organization, planning and preparation of the intervention, since it would have to be
completely overhauled in a short period of time, provided that the necessary resources
were available.
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Figure 4.2: Effect of sharp transitions in the dynamics of CALC on the average popu-
lation size and the intervention magnitude. For CALC with a fixed restocking intensity
c = 0.6 and varying the harvesting intensity, the black dots represent the asymptotic aver-
age population size during 100 generations, the red dots represent the asymptotic number of
restocked individuals and the blue dots the asymptotic number of harvested individuals. All
values are averaged over 50 replicates. The underlying population dynamics are given by the
Ricker map f (x) = x exp(r(1 − x/K)) with r = 3 and K = 60.
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4.3 Bifurcation structure

In this section we study the bifurcation structure associated with the abrupt changes
in the dynamics of populations managed by CALC that were observed in the previous
section. We provide necessary and sufficient conditions for the occurrence of these bi-
furcations in terms of the control intensities. Moreover, we study the dynamics of the
managed populations at the bifurcation points.

4.3.1 Border collision bifurcations and period adding struc-
ture of 1D continuous bimodal piecewise linear maps

The dynamics of populations satisfying (A1)–(A4) (see Section 1.2) with unbounded
size (i.e., b = +∞) subject to CALC are described by the difference equation xt+1 =

F(xt), where F : [0,+∞) → [0,+∞) is the piecewise function given by

F(x) =


x/h, 0 ≤ x ≤ AH,

f (x), AH < x < AR,

cx, x > AR.

(4.1)

Function F is bimodal since it increases until max{d, AH}, then decreases until
AR and increases again on the rest of the domain. Moreover, the functional form of
the two outermost branches of F (the first ranging from 0 to AH and the last from AR

to +∞) are independent of the underlying population production function and are
determined by the control intensities. Yet, themap f defines the length of each of these
branches.

Given the linearity of the outermost branches of (4.1), we focus on piecewise linear
(PWL) maps, which are characterized by all their branches being affine. They play a
distinctive role among PWS maps and naturally appear in applied problems of a wide
range of fields, e.g., circuit theory [75, 124, 222], economics [14, 85, 211] or cellular
neural networks [41, 113, 138]. Reducing the problem to this type of maps simplifies
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the analysis and allows to obtain complete analytical results. More specifically, we con-
sider continuous bimodal PWLmaps written in the form

F(x) =


FL(x) = aLx + µL, 0 ≤ x ≤ dL,

FM(x) = aMx + µM, dL < x < dR,

FR(x) = aRx + µR, x ≥ dR,

(4.2)

with aM, µL, µM, µR ∈ R and dL, dR, aL, aR ∈ (0,+∞). In what follows, we
will denote the outermost partitions of the domain of F by IL = [0, dL] and IR =

[dR,+∞).
Notice that (4.2) depends on eight parameters, but two of them can always be ob-

tained from the others by imposing continuity. Since the commonality betweenCALC
and (4.2) is in the outermost branches, wewill assume that aM andµM are determined
in terms of aL, aR, µL, µR, dL and dR. In what follows, we will denote by F the re-
sulting six-parametric family of maps. Considering only the outermost partitions of
the state space, the CALC map (4.1) in terms of the control intensities c and h can be
considered as a biparametric subfamily F1 ⊂ F under certain parameter restrictions.
First, the linearity of the outermost branches of (4.1) implies µL = 0 and µR = 0.
Second, the two kink points dL = AH and dR = AR of (4.1) are uniquely deter-
mined in terms of c and h by the equalities f (dL) = aLdL and f (dR) = aRdR,
where aL = 1/h and aR = c.

As parameters are varied, periodic orbits of (4.2) can collide with either dL or dR.
This gives rise to three different bifurcation structures depending on which partitions
of the state space contain points of these cycles [167]:

• Skew tent map structure (STMS): the points of the cycles are located on two ad-
jacent partitions of the state space.

• Period adding structure (PAS): the points of the cycles are located on the outer-
most partitions of the state space.
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• Fin structure (FS): the points of the cycles are located on all three partitions of
the state space.

As mentioned above, for the general case of CALC we must restrict our study to
border collisions caused by invariant sets lying in the outermost partitions of the state
space, and thus we focus on BCBs associated with the PAS. The elements of this struc-
ture are called periodicity regions (also known asArnold tongues ormode-locking tongues)
and are regions in the parameter space for which there exist cycles with all their points
lying in IL ∪ IR. Two periodicity regions differ in the number of points of their cycles
in IL and IR.

The PAS forF can be determined in terms of the rotation numbers of the associated
cycles [167]. If a cycle lying in IL ∪ IR hasm points in IL and n points in IR, we define
its rotation number as the rational number ρ = m/(n+m), (i.e., the number of points in
the leftmost partitionof the state space dividedby the periodof the cycle). Two rotation
numbers ρ1 = m1/p1 and ρ2 = m2/p2 are Farey neighbors when |m1 p2 − m2 p1| = 1,
and their Farey sum is defined as ρ1 ⊕ ρ2 = (m1+m2)/(p1+p2). Using these definitions,
the order and existence of the periodicity regions of F are completely determined by
the following rule: if two periodicity regions are associatedwith cycleswith Farey neigh-
bor rotation numbers ρ1 and ρ2, then in the parameter space between them there exists
another periodicity region related to cycles with rotation number ρ1 ⊕ ρ2. Based on
this principle, the PAS of F was iteratively determined in [167] by using Leonov’s ap-
proach [86, 135]. Given a rotation number, the corresponding periodicity region is a
portion of the six-dimensional parameter space bounded by two different manifolds,
which are derived by imposing the collision of each of the kink points of (4.2) with
cycles of that rotation number.

4.3.2 Determining border collision bifurcation points under
certain homogeneity conditions

Since F1 ⊂ F , it would be logical to think that one could obtain a complete descrip-
tion of the PAS of F1 by substituting the parameter restrictions defining this subfam-
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ily into the already known expressions for the periodicity regions ofF . Unfortunately,
we will see that this is not the case. This idea was used in [74] for another biparametric
subfamily of maps F2 ⊂ F given by the parameter restrictions µL = 0, µR = 0,
aL + aR = 2 and 2dLdR − dL − dR = 0. Notice that two of these restrictions,
µL = 0 and µR = 0, are commonwithF1. If we consider only these two restrictions,
we obtain a four-parametric subfamilyF0 ⊂ F that includes bothF1 andF2 as strict
subfamilies. Consider a rotation number m/(n+m). It could be expected that when the
two restrictions for F0 were substituted into the equations of the two manifolds ξL

and ξR bounding the corresponding periodicity region ofF (which, recall, lie in a six-
dimensional space), they would lead to another twomanifolds in the four-dimensional
parameter space ofF0. In that case, the periodicity region ofF0 for the given rotation
number would be the parameter space between these two manifolds. However, when
µL = 0 and µR = 0 are substituted into the equations of ξL and ξR not only µL

and µR vanish, but also dL and dR drop from the equations. As a consequence, when
restricted, ξL and ξR yield a uniquemanifold in the four-dimensional parameter space
of F0, which is given by am

Lan
R = 1 for the considered rotation number. This means

that the PAS ofF0 is rather degenerate with respect to the one ofF , since all periodic-
ity regions of F0 have null Lebesgue measure in its parameter space. In particular, all
points in a periodicity region of F0 are bifurcation points, i.e., for all of them at least
one of the kink points is in a cycle with all its points in the outermost partitions of the
state space.

The main inconvenience of the fact that dL and dR drop from the equations of ξL

and ξR when the restriction µL = µR = 0 is imposed is that the condition that is
obtained after substitution, am

Lan
R = 1, is necessary but not sufficient for the occur-

rence of BCBs of the PAS of F0. Indeed, dL and dR actually play a central role in
the problem. Assume that the four parameters defining F0 are set at values satisfying
dL < min{aRdR, dR/aL}, aL > 1, 0 < aR < 1 and am

Lan
R = 1 for certain

n, m ∈ N. According to the last equality, we could expect that a BCB of the PAS of
F0 occurred for these values, i.e., that either dL or dR were in a cycle with all its points

106



in IL ∪ IR. However, this is not possible since dL < FL(dL) = aLdL < dR and
dL < FR(dR) = aRdR < dR.

If the PAS of F0 cannot be completely determined by direct substitution of its pa-
rameter restrictions into the PAS ofF , neither can be the PAS of any subfamily ofF0

like theF1 considered here or theF2 considered in [74]. This was implicitly observed
for F2 in [74] when it was shown that in some specific cases no BCB can occur even
if the condition am

Lan
R = 1 is met. Yet, no complete description of the PAS of F2 in

terms of the parameters was obtained. With the following result, which yields a nec-
essary and sufficient condition for the occurrence of BCBs of the PAS of F0, we will
complete this description and fully determine the PAS of CALC.

Proposition 4.1. A BCB of the PAS of (4.2) with µL = µR = 0 occurs if and only
if there exist λ ∈ (0, 1) and m, n ∈ N with gcd(m, n) = 1 such that aL = λ−n,
aR = λm and λdR ≤ dL. Moreover, the two kink points dL and dR are (m + n)-
periodic and their orbits have m points in IL and n points in IR.

Proof. Assume that a BCB of the PAS of (4.2) with µL = µR = 0 occurs. Then, ei-
ther dL or dRmust be in a cycleOwith all its points in IL ∪ IR. Assume that this cycle
has m points in IL and n points in IR. Since FL(x) = aLx and FR(x) = aRx com-
mute under composition, if dL ∈ O then am

Lan
RdL = dL. Similarly, dR ∈ O leads

to am
Lan

RdR = dR. Given that 0 < dL < dR, the terms dL and dR can be canceled
from these equalities, after which both of them lead to the same condition am

Lan
R = 1.

In case that aL < 1, all orbits starting in IL would stay in IL and monotonically con-
verge to 0, which contradicts the occurrence of a BCB. Therefore, it must be aL > 1
and 0 < aR < 1. Then, if we set λ = a1/m

R ∈ (0, 1) it follows that aL = λ−n and
aR = λm. On the other hand, if gcd(m, n) = d > 1 then m/d ∈ N, n/d ∈ N

and a−m/d
L an/d

R = 1, and thus m + n is not the prime period ofO. Consequently, we
can assume gcd(m, n) = 1.

Suppose that dR ∈ O. SinceO ⊂ (IL ∪ IR), any point ofO can be obtained by
starting at dR and successively applying FR(x) = λmx a certain number p of times
and FL(x) = λ−nx another certain number q of times in a specific order, with p ∈
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{0, . . . , n − 1} and q ∈ {0, . . . , m − 1}. Given that FR and FL commute under
composition, all the points ofO can be expressed in the form λpm−qndR for certain p
and q in the aforementioned ranges. Since m and n are coprime, using Bezout’s lemma
we can find p and q such that pm − qn = 1. Thus, λdR ∈ O. On the other hand,
given that λdR < dR and O ⊂ (IL ∪ IR), it follows that λdR ∈ IL, and thus
λdR ≤ dL. The same condition is derived when repeating these arguments for the
case dL ∈ O.

Assume now that there exist λ ∈ (0, 1) and m, n ∈ N with gcd(m, n) = 1
such that aL = λ−n, aR = λm and λdR ≤ dL. We will prove that the set U ={

λidR
}m

i=1−n is a (m+ n)-cycle that hasm points in IL and n points in IR. Consider

UL =
{

λidR
}m

i=1 and UR =
{

λidR
}0

i=1−n. With these notations, U = UL ∪ UR,
UL ⊂ IL and UR ⊂ IR. Given that λ < 1, F(x) = FL(x) = λ−nx > x for
x ∈ UL and F(x) = FR(x) = λmx < x for x ∈ UR. Besides, F(maxUL) =

F(λdR) = λ1−ndR = maxU and F(minUR) = F(dR) = λmdR = minU .
This proves that U is an invariant set for F.

Supposenowthat Fq(x) = x for certain x ∈ U and q ∈ N. SinceU is F−invariant,
it follows that {x, F(x), . . . , Fq−1(x)} ⊂ (IL ∪ IR). Assume that m̃ of these points
lie in IL and ñ in IR. Then, by the commutativity between FL and FR, it follows that
Fq(x) = λmñ−nm̃x = x, which implies mñ = nm̃. Since m and n are coprime, this
equality is only possible if m̃ is a multiple of m and ñ is a multiple of n. Assume that
m̃ = km for a certain k ∈ N. Then, ñ = kn and q = m̃+ ñ = k(m+ n) ≥ m+ n.
This implies that them+npoints of the setV = {dR, F(dR), . . . , Fm+n−1(dR)} ⊆
U are all different, and thus V = U . Since m points of U lie in IL and n lie in
IR, again by the commutativity between FL and FR, it follows that Fm+n(dR) =

(λ−n)m(λm)ndR = dR. This proves that dR is in a (m + n)−cycle that has m
points in IL and n points in IR and thus, in particular, a BCB of the PAS of (4.2) oc-
curs for the considered parameter values. The same conclusion can be drawn for the
kink point dL by applying the same arguments to the set Ũ =

{
λidL

}m−1
i=−n.
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Interestingly, for the family F border collision bifurcations can occur for any posi-
tive values of aL and aR [166]. However, Proposition 4.1 shows that for the subfamily
F0 they can only take place for aL > 1 and 0 < aR < 1. On the other hand, Propo-
sition 4.1 resolves the degeneracy in the PAS ofF that emerges when the homogeneity
of the outermost branches of the maps is imposed. In particular, this result determines
the PAS of any subfamily of F for which the same homogeneity conditions must be
satisfied, as can beF1 corresponding to CALC orF2 considered in [74].

Corollary 4.2. Assume that (A1)–(A4) hold. A BCB of the PAS of CALC occurs if and
only if there exist λ ∈ (0, 1) and m, n ∈ N with gcd(m, n) = 1 such that h = λn,
c = λm and λAR ≤ AH . Moreover, both AH and AR are (m + n)-periodic and their
orbits have m points in (0, AH ] and n points in [AR,+∞).

In Section 4.4 wewill use Corollary 4.2 to determine the PAS ofCALC for different
population growth models describing the underlying dynamics. On the remainder of
this subsection, we use Proposition 4.1 to complete the study of the PAS ofF2 started
in [74]. Following the notation in that paper, after imposing the parameter restrictions
defining F2, we write the parameters of (4.2) in terms of r ∈ (0, 1) and ϵ > r in the
form aL = 1 + r, aR = 1 − r, dL = ϵ/(ϵ+r) and dR = ϵ/(ϵ−r).

Corollary 4.3. Consider (4.2) for aL = 1 + r, aR = 1 − r, dL = ϵ/(ϵ+r) and
dR = ϵ/(ϵ−r), with r ∈ (0, 1) and ϵ > r. Then, a BCB of the PAS occurs if and only if
there exist m, n ∈ N with gcd(m, n) = 1 such that(1 + r)m(1 − r)n = 1,

ϵ ≥ r
(

n√1+r+1
n√1+r−1

)
.

(4.3)

Moreover, both dL and dR are (m + n)-periodic and their orbits have m points in the
interval (0, ϵ/(ϵ+r)] and n points in [ϵ/(ϵ−r),+∞).

ThePAS in the r− ϵ plane that can be derived fromCorollary 4.3 is shown in Figure
4.3, which reproduces Figure 5a in [74] with two important differences. First, the peri-
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odicity region of rotation number 1/2 that appears in [74] is not represented in Figure
4.3. The reason is that this region actually does not exist, since it corresponds to r = 0
and for that value the graph of the map reduces to the straight line y = x. Second, in
[74] the endpoints of the periodicity regions were only determined for Leonov’s first
complexity level (blue lines in Figure 4.3), which in this case correspond to n = 1.
Specifically, in [74] it was proved by using the skew tent map as normal form that
the endpoints of the periodicity regions for the first complexity level are on the line
ϵ = r + 2. The same conclusion can be directly drawn by substituting n = 1 in the
second condition of Corollary 4.3. For the remaining periodicity regions (i.e., n ≥ 2),
no expressions for the endpoints were provided in [74] and it was only stated that all
of them are above the line ϵ = r + 2. The second condition in Corollary 4.3 provides
the exact values of the endpoints for all complexity levels and completes the analytical
determination of the PAS of the family of maps considered in [74]. The curves con-
taining these endpoints are represented by dashed lines in Figure 4.3 and the analytical
expression of each of them is indicated.

4.3.3 Degenerate border collision bifurcations

Apart from determining the PAS ofF0 (and, in particular, of CALC), Proposition 4.1
reveals another relevant fact: when a BCB of the PAS occurs, the two kink points of the
map collide at the same time with cycles in the outermost partitions of the state space
andwith the same rotation number. This suggests that the BCBs for the family ofmaps
F0 are different from the ones that have beenpreviously observed forF \F0 [165, 166,
167] and constitute a rather degenerate case. For any fixed parameter point inside one
of the periodicity regions of the PAS of F \ F0 there exists a unique cycle associated
with it, which can be attracting or not [165]. In particular, at a BCB point the unique
cycle that exists may contain either dL or dR. In the case of F0, by Proposition 4.1
we know that at any bifurcation point there exist, at least, two different cycles with the
same rotation number when the parameters satisfy λdR < dL, one containing dL and
another containing dR. Apart from giving us a glimpse of the degeneracy of the case,
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Figure 4.3: Periodic adding structure of maps inF2F2F2. PAS of (4.2) for aL = 1 + r, aR =
1− r, dL = ϵ/(ϵ+r) and dR = ϵ/(ϵ−r), with r ∈ (0, 1) and ϵ > r. This figure is analogous to
Figure 5a in [74], except that the periodicity region of rotation number 1/2 has been omitted
and the endpoints of the different regions are analytically determined by Corollary 4.3. The
curves containing these points are represented by dashed lines and the expression of each of
them is indicated.

this difference leads to the question about the exact number of cycles with the same
rotation number that may exist at a bifurcation point ofF0.

Beyond the theoretical interest of this question, it is also relevant from a practical
point of view in the case of CALC.Managers could be particularly interested in avoid-
ing control intensities corresponding to BCB points in light of the problems that small
variations of the parameters around these points may cause. However, in case that we
were faced with one of these bifurcations, it would be of practical interest to know in
advance how the managed populations would behave.

To illustrate the dynamical behavior at BCB points of maps ofF0 and compare that
behavior to what is known forF \ F0, we consider the maps f1 ∈ F \ F0 and f2 ∈
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F0 given by

f1(x) =


2x + 2, x ≤ 1,

(2α − 4.5)x + 8.5 − 2α, 1 < x < 2,

αx − 0.5, x ≥ 2,

f2(x) =


3x, x ≤ 1,

(2α − 3)x + 6 − 2α, 1 < x < 2,

αx, x ≥ 2,

(4.4)

with α ∈ (0, 1). It is routine to check that a BCB of the PAS of f1 occurs for α = 3/8.
For this value, the graph of f1 together with its second iterate f 2

1 = f1 ◦ f1 is shown
in Figure 4.4a. In this case, the BCB occurs by the collision of dL = 1 with a cycle
of rotation number 1/2, while the other kink point of the map, dR = 2, is not 2-
periodic. In fact, dR collides with a cycle of the same rotation number for a lower value
of α, namely α = 1/4. The parameter interval between these two bifurcation points,
(1/4, 3/8), corresponds to the periodicity region of rotation number 1/2. For all pa-
rameter values inside that interval a unique 2-cycle exists, which lies in IL ∪ IR and in
this case is globally attracting as Figure 4.4b shows. The most important aspect, how-
ever, is that no abrupt change in the magnitude of the state variable occurs when α is
varied through the bifurcation point. The situation is completely different for f2. For
this map, a BCB of the PAS associated with cycles of rotation number 1/2 occurs for
α = 1/3. As shown in Figure 4.4c and in line with Proposition 4.1, for that parameter
value the two kink points of themap collide simultaneously with cycles of that rotation
number. Yet, not only the two break points of the map become periodic at the bifur-
cation point, but a continuum of cycles with all their points lying in IL ∪ IR and with
the same rotation number 1/2 exist. Two important facts about these cycles can be
observed in Figure 4.4d. First, these infinitely many 2-cycles do not exist for values of
parameter α on either side of the bifurcation point. Second, when α is varied through
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the bifurcation point the magnitude of the state variable undergoes a sudden jump be-
tween two different attractors, which are connected by the continuumof 2-cycles. This
is the same behavior that was observed for CALC in Section 4.2.

This example illustrates the differences between the BCBs for maps inF0 and those
inF \ F0. In the following result we prove that this is always the case.

Proposition 4.4. Consider (4.2) forµL = µR = 0. Assume that there existλ ∈ (0, 1)
and m, n ∈ N with gcd(m, n) = 1 such that aL = λ−n, aR = λm and λdR ≤ dL.
Then, the following holds:

(i) If λdR < dL, all points in

B =
m−1⋃
i=−n

[λi+1dR, λidL]

are (m + n)-periodic and their orbits have m points in IL and n points in IR.

(ii) If λdR = dL, dL and dR belong to the same periodic orbit of period m + n with
m points in IL and n points in IR.

Proof. Assume λdR < dL. Under this condition, B is a well-defined disjoint union
of non-empty intervals. For i ∈ {−n, . . . , m − 1}, denote Ji = [λi+1dR, λidL] and
consider BL =

⋃m−1
i=0 Ji and BR =

⋃−1
i=−n Ji. With this notation, B = BL ∪ BR,

BL ∩ BR = ∅, BL ⊂ IL and BR ⊂ IR. Given that λ < 1, F(x) = FL(x) =

λ−nx > x for x ∈ BL and F(x) = FR(x) = λmx < x for x ∈ BR. Be-
sides, F(maxBL) = F(dL) = λ−ndL = maxB and F(minBR) = F(dR) =

λmdR = minB. With these conditions, F(B) ⊂ [minB, maxB]. On the other
hand, F is a bijection between Ji and Ji−n for i ∈ {0, . . . , m − 1} and between Ji and
Ji+m for i ∈ {−n, . . . ,−1}. This proves that B is an invariant set for F and that the
application of F to any point in B leads to another point in a different component of
B.
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Figure 4.4: Differences in the PAS of maps inF0F0F0 andF \ F0F \ F0F \ F0. (a) Graphical representation
of f1 in (4.4) and its second iterate f 2

1 = f1 ◦ f1 for α = 3/8. (b) Bifurcation diagram of f1 in
(4.4) for varyingα. (c)Graphical representationof f2 in (4.4) and its second iterate f 2

2 = f2 ◦ f2
for α = 1/3. (d) Bifurcation diagram of f2 in (4.4) for varying α. In all panels, the orange dots
correspond to 2-cycles associatedwith BCBs of the PAS, the red area corresponds to the interval
IL and the blue area to IR.
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Suppose now that Fq(Ji) = Ji for certain i ∈ {−n, . . . , m− 1} and q ∈ N. Since
B is F−invariant and bijects components of B into different components of B, the q
intervals Ji, F(Ji), . . . , Fq−1(Ji) correspond to components of B. Assume that m̃ of
these intervals lie in BL and ñ in BR. Then, by the commutativity between FL and
FR it follows that Fq(Ji) = λmñ−nm̃ Ji = Ji, which implies mñ = nm̃. Under the
coprimality condition for m and n, this equality is only possible if m̃ is a multiple of m
and ñ is amultiple of n. Assume that m̃ = km for a certain k ∈ N. Then, ñ = kn and
q = m̃ + ñ = k(m + n) ≥ m + n. This means that for any i ∈ {−n, . . . , m − 1}
the m + n intervals Ji, F(Ji), . . . , Fm+n−1(Ji) are different, and thus they correspond
to each of the components ofB. SinceB has m components in BL and n components
in BR, again by the commutativity of FL and FR we obtain Fm+n(Ji) = λmn−nm Ji =

Ji. This proves that all the points ofB are (m+ n)−periodic and that their orbits have
m points in IL and n points in IR.

Assume now that λdR = dR. According to Proposition 4.1, a BCB occurs for the
control intensities given in Proposition 4.4 and both break points dL and dR are (m +

n)−periodic. Moreover, in the proof of Proposition 4.1 it was shown that under the
conditions inProposition4.4 thepointλdR is in the same cycle asdR, which completes
the proof.

Proposition 4.4 allows to obtain a full picture of the degenerate BCBs considered
here. Since the periodicity regions ofF0 have zero Lebesgue measure in the parameter
space and coincide with the bifurcation manifolds, no cycles lying in the outermost
partitions of the state space exist for parameter values outside these manifolds. Hence,
when parameters are varied across a bifurcation manifold ofF0, a continuum of cycles
lying in the outermost partitions of the state space emerges at the bifurcation point
and disappears afterwards. This is what was observed for the map f2 in the previous
example (cf. Figure 4.4d).

Remark 4.5. Notice that the result provided in Proposition 4.4 is independent of the
expression of the map between the two kink points. Thus, in particular, it is valid for
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CALCwith anyuncontrolledpopulation satisfying (A1)-(A4). In that case, parameters
m and n in Proposition 4.4 have a specific meaning. They represent, respectively, the
number of harvesting and restocking episodes that are necessary to complete one of the
cycles associated with BCBs of CALC if we consider a point of the cycle as the initial
condition. This result may be helpful to predict the population behavior in case of
facing such a bifurcation. On the other hand, according to Corollary 4.2, when a BCB
of CALC occurs the equality cn = hm holds. For c > h we have cn = hm > hn, and
thus m < n. Therefore, when at a BCB point the restocking intensity is higher than
the harvesting intensity, the number of restocking episodes associated with the cycles
of that BCB is larger than the number of harvesting episodes. By the same argument, it
can be seen that the opposite occurs for c < h.

4.4 Examples

In this section we use the theoretical results provided in the previous section to deter-
mine the PAS of CALC for two well known production maps. These examples show
that this structure may range from very simple to very intricate depending on the map
that is considered.

4.4.1 Ricker model

We start by considering the Ricker map f (x) = x exp(r(1 − x/K)) with r = 3
and K = 60. Using Corollary 4.2, only two BCBs can occur for this map, namely for
c = h & 0.076 and c1/2 = h & 0.117. These two bifurcations can be observed in the
bifurcation diagram of Figure 4.1, where c is set at 0.6 and h is varied. For c = h =

0.6, the inequality cAR < AH holds and an infinite number of 2-cycles are predicted
by Proposition 4.4. These cycles have one point in IL and another point in IR, and
completely fill B = [cAR, AH ] ∪ [AR, AH/c] u [42.13, 49.78] ∪ [70.22, 82.97].
They correspond to the orange dots in Fig. 4.1. The dynamics of these cycles is based on
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alternating episodes of restocking and harvesting as the number of individuals switches
between the two components of B.

Similarly, for c = h2 = 0.6 the inequality
√

cAR < AH holds and a contin-
uum of 3-cycles is predicted by Proposition 4.4. These cycles have two points in IL and
one point in IR, and fill B = [cAR,

√
cAH ] ∪ [

√
cAR, AH ] ∪ [AR, AH/

√
c] u

[42.13, 42.52] ∪ [54.39, 54.89] ∪ [70.22, 70.86]. They correspond to the green dots
in Fig. 4.1. The dynamics of these cycles is based on a succession of three control
episodes, which consist of two consecutive episodes of harvesting followed by one epi-
sode of restocking.

At the twoBCBpoints the continuumof cycles seem to attract all orbits except those
corresponding to fixed points. Thus, the managed populations asymptotically behave
as has been described for these cycles.

From the practical point of view, if only two BCBs occur, as in this example, it may
be possible to implement the control in such a way that sharp changes in the dynamics
be avoided (and thus, the problems associated with them). However, the number of
BCBs that can occur for a given production function for the uncontrolled population
can be very large, as we illustrate in the following subsection. In such a case, avoiding
the negative effects of BCBs can be particularly difficult.

4.4.2 Hassell model

According to Corollary 4.2, the occurrence of BCBs associated with the PAS of CALC
depends on the condition λAR ≤ AH , which in turn depends on how steep is the
production functionof the uncontrolled population around the carrying capacity. The
steeper the production function, the closer are AR and AH for a fixed λ (recall that
f (AH) = λ−n AH and f (AR) = λm AR), and consequently there are more chances
for the existence of values of λ satisfying λAR ≤ AH . Thus, more combinations of
control intensities can correspond to bifurcation points. In view of this, we consider
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the Hassell map [98]

xt+1 =
λxt

(1 + axt)b

with λ = 1000, a = 0.05 and b = 50. For these parameter values, the modulus of
the derivative of the production function around the carrying capacity is large, namely
approximately 8.20. Using Corollary 4.2, the PAS of CALC for this production func-
tion was determined and is shown in Figure 4.5. Up to period 10, a total of 29 BCBs
can occur for different values of the parameters. This demonstrates that the number
of BCBs associated with the PAS of CALC can be very high, as well as the period of
the corresponding cycles. This may have severe consequences on the applicability of
CALC, as shown in Figure 4.6, where the bifurcation diagram of CALC for this last
example with c = 0.6 and varying h is represented. As can be observed, the distance
between harvesting intensities of consecutive BCB points is short.

This last example demonstrates the practical relevance of Proposition 4.1. Without
it, if only the necessary condition for the occurrence of BCBs obtained in [74]was used,
the difficulties in the application of CALCwould be even greater than in this last exam-
ple for all population maps, included the Ricker model considered in the first example.
The reason for this is that managers would not know which combinations of control
intensities satisfying cmhn = 1 for coprime m, n ∈ N actually are bifurcation points
and which ones are not. In that case, up to period 10, when fixing one of the control
intensities a total of 31 potential bifurcation points would be obtained for the other
control intensity in a unit interval. This would make it difficult to find a combination
of control intensities with guarantees of placing the population away from any bifurca-
tion point.

4.5 Discussion and conclusions

In the analysis of CALC, sudden transitions in the dynamics of the managed popula-
tions are observed, which do not occur when only restocking or only harvesting are
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h = 0.6, iterates were obtained for 1, 000 different initial conditions, which are represented by
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implemented. We have provided numerical simulations showing potential risks and
opportunities associated with these abrupt changes in the dynamics. On the one hand,
the number of individuals undergoes sudden jumps between different attractors that
may seriously affect the stability and persistence of the population. On the other hand,
these transitions are coupled with sharp changes in the type of control prevailing in the
intervention (restocking or harvesting), which can seriously affect the yield and cost of
exploitation as well as cause acute logistic problems.

The theoretical analysis of these phenomena leads to a mathematical problem con-
cerning nonsmooth discrete dynamical systems. When the underlying dynamics are
described by unimodal maps, we have shown that the production function of CALC
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is piecewise continuouswith two angular points that divide the state space into three in-
tervals. This function is linear on the extreme partitions of its domain and is completely
determined over themby the control intensities. The abrupt changes in the population
dynamics are caused by the collision of periodic orbits lying in the outermost partitions
of the state space with the break points of the CALC map. When only the external
branches of this map are considered, it can be seen in terms of the control intensities
as a biparametric family of bimodal PWL maps. We have shown that this family can
be derived via certain parameter restrictions from a more generic six-parametric family
of PWLmaps, for which different bifurcation structures have been described in the lit-
erature [165, 166, 167]. Among these structures, the focus is on the so called period
adding structure, since it corresponds to bifurcations involving events that occur only
in the outermost partitions of the state space.

Similar considerations were previously done in [74] for another biparametric fam-
ily of PWL maps. This family has in common with CALC that the maps are purely
linear on the extreme partitions of their domain. An insightful description of the bi-
furcation structure of this family of maps was obtained in [74] by direct substitution
of the parameter restrictions in the already known bifurcation structure for the generic
six-parametric family of PWL maps. However, only partial results were obtained. We
have shown that the impositionof the conditions for the homogeneity of the outermost
branches of the map induces a degeneracy in the PAS that makes it impossible to relate
the different structures via direct substitution of the parameter restrictions. We have
proved that the inclusion of an additional condition involving the break points of the
map resolves the indeterminacy in the PAS caused by this degeneracy. This allows to
fully determine the PAS of any family of maps with the extreme branches purely linear,
e.g., CALC or the family of maps considered in [74].

Examples of the application of these theoretical results to the determination and de-
scription of the PAS of CALC for some models common in population dynamics are
provided. These examples show that the number of BCBs strongly depends on the pro-
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duction function of the uncontrolled population, and thus the range of possibilities is
wide.

We have also studied the degenerate BCBs that occur when homogeneity is imposed
for the outermost branches of themap. Wehaveproved thatwhenparameters are varied
through one of the bifurcation points, a continuum of cycles lying in the external par-
titions of the state space emerge and disappear afterwards. Moreover, we have obtained
analytical results for the endpoints of the intervals filled by these cycles. These results
are independent of the functional expression of the map in the middle partition of the
domain, and thus are applicable to CALC with any unimodal growth model for the
uncontrolled population. Numerical simulations reveal that the state variable abruptly
shifts between different attractors that are connected by the continuum of cycles that
exist at the bifurcation points.
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A thing is right when it tends to preserve the integrity, stability and beauty of the
biotic community. It is wrong when it tends otherwise.
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5
Dynamics of the discrete Seno population
model: Combined effects of harvest timing

and intensity on population stability

5.1 Introduction

The success of wildlife population management strongly depends on understanding
the impact of harvest regulations on the capability of populations to renew themselves.
The response of biological populations to the removal of individuals depends onmany
different aspects, such as the intensity of the control, i.e., the proportion of the popu-
lation that is removed, the sex and age of the individuals that are taken, or the time of
intervention. Since the population persistence can be completely conditioned by the
harvest time, this factor plays a key role in the management and exploitation of bio-
logical populations and natural resources, especially for seasonally reproducing species
[25, 117, 173, 185].
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Many examples can illustrate the relevance of themoment of intervention in harvest
programmes. In the case of large herbivores, populations are often managed during
specified hunting seasons. More specifically, advancing the harvest of some migrating
ungulate species has been proposed as a way to reduce the damage that they inflict on
farmland and forest [144]. Another example is the management of greater sage-grouse
(Centrocercus urophasianus) populations in North America. A major concern about
the conservation of this species emerged years ago, and a certain controversy was cre-
ated regarding the most appropriate moment for harvesting. Some recommendations
advocated for reducing harvest of adult females and juveniles, and thus proposed de-
laying the harvest season in the year. Yet, recent studies have shown that this could be
clearly counterproductive [25].

In light of the above, harvest timing is currently receiving an increasing attention.
However, the existing literature has mostly focused on the population size [67, 84, 87,
117, 118, 191, 192, 202, 220] and few studies have analyzed the effects on the popula-
tion stability. This motivated Cid et al. [44] to use a model proposed by Seno [191] to
study the effect of harvest timing on both the size and stability of populations. Seno’s
model is given by a single one-dimensional difference equation based on constant ef-
fort harvesting (also known as proportional feedback) that allows for the consideration
of any moment during the reproductive season for the intervention. When harvesting
occurs at the beginning or at the end of the reproductive period, two topologically con-
jugated systems are obtained. For these systems, removing individuals can create an
asymptotically stable positive equilibriumwhich acts as a global attractor under certain
conditions [38, 43]. On the contrary, if the harvesting intensity is too high, populations
startingwith any initial size go eventually extinct [141]. Interestingly, when individuals
are removed at an intermediate moment during the reproductive season, the stability
properties of Seno’s model are not so well understood.

Cid et al. [44] proved that for any intervention time the systemhas a unique positive
equilibrium if the intervention effort is below a certain threshold. Moreover, the ori-
gin acts as a global attractor when that threshold is reached or exceeded. Regarding the
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asymptotic stability of the positive fixedpoint, they obtained sharp global results for the
quadratic map and a sufficient local condition for the Ricker map. This last condition
states that the positive equilibrium of the Ricker-Seno model is asymptotically stable
for any harvest time if harvesting at the beginning of the reproductive season guaran-
tees stability. These results, together with numerical simulations, led Cid et al. [44] to
conjecture that the sufficient condition proved for the Ricker-Seno model is true for
any other population model described by a unimodal map.

In this chapter, we show that themoment of the intervention does not affect the sta-
bility of controlled populations when the harvesting effort is high. Moreover, we prove
that for high removal intensities—below the threshold above which all populations go
eventually extinct—the positive equilibrium acts as a global attractor. This result is
valid for a wide family of population models described by unimodal maps and, in par-
ticular, it implies that the aforementioned conjecture in [44] is true for high harvesting
intensities.

We use the Ricker-Seno model to prove that timing can be stabilizing by itself. In
other words, we show that in some cases choosing an appropriate moment for remov-
ing individuals can induce an asymptotically stable positive fixed point in populations
for which the same equilibrium would be unstable in case of triggering the interven-
tion at the beginning or at the end on the reproductive season. Interestingly, timing
can be destabilizing for certain maps satisfying the general conditions assumed on pop-
ulation production maps in [44]. We obtain specific mathematical counterexamples
proving that the Conjecture 3.5 in [44] is false. Nevertheless, the implications of this
destabilizing effect of timing should be considered carefully because most of the popu-
lationmaps considered in the ecological literature satisfy extra conditions, which could
prevent this destabilizing effect to occur.

This chapter is organized as follows. In Section 5.2we describe Seno’smodel and col-
lect the conditions assumed on the population models. Section 5.3 shows that timing
does not affect stability for high harvesting efforts. In Section 5.4 we show that timing
can have both a stabilizing and a destabilizing effect. Section 5.5 includes biological re-
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alities to check the robustness of our results. Finally, Section 5.6 summarizes the results
obtained and discusses their implications and limitations.

5.2 Harvesting model with timing

Consider the discrete-time single-species population model

xt+1 = g(xt)xt, (5.1)

where xt ∈ [0,+∞) is the population size at the beginning of the reproductive season
t and g : [0,+∞) → R is the per-capita production function. It is well established
that harvesting a constant fraction γ ∈ (0, 1) of the population at the end of every
reproductive season corresponds tomultiplication of the right hand side of (5.1) by the
survival fraction (1 − γ),

xt+1 = (1 − γ)g(xt)xt. (5.2)

On the other hand, harvesting the same fraction at the beginning of the season leads to

xt+1 = g((1 − γ)xt)(1 − γ)xt, (5.3)

that is, multiplies the population size xt by the survival fraction (1 − γ). As usual in
the literature, we refer to parameter γ as harvesting effort or harvesting intensity. Note
that harvesting at the beginning of the season corresponds to an application of the pro-
portional feedback chaos control method proposed in [92] to (5.1).

In [191], Seno puts forward the following harvestingmodel, which encompasses the
limit situations (5.2) and (5.3) by allowing the population to be harvested at any fixed
point in time within the season. It reads

xt+1 = [θg(xt) + (1 − θ)g((1 − γ)xt)](1 − γ)xt, (5.4)
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where θ ∈ [0, 1] corresponds to the fixed harvesting moment. Model (5.4) assumes
that the reproductive success at the end of the season depends on the amount of energy
accumulated during it. Since the per-capita production depends on xt before θ and on
(1− γ)xt afterwards, it is natural to assume that the population production is propor-
tional to the time period before/after harvesting to arrive at (5.4). See [191, 192] for a
more detailed explanation and a graphical scheme of the population dynamics of this
model.

Following the notation of [44], we rewrite the right-hand side of (5.4) as

θF1(xt) + (1 − θ)F0(xt) := Fθ(xt),

where F1(x) := (1 − γ)g(x)x and F0(x) := g((1 − γ)x)(1 − γ)x. For every
particular choice of θ ∈ [0, 1] the map Fθ(x) is the convex combination of the maps
defining (5.2) and (5.3). Consequently, model (5.4) includes models (5.2) and (5.3) as
special cases. Taking θ = 1 corresponds to harvestingwhen the season ends, and θ = 0
when it begins.

In this chapter, we are interested in populations satisfying the following conditions
on g:

(i) g′(x) < 0 for all x > 0;

(ii) g(0) > 1;

(iii) lim
x→+∞

g(x) = δ < 1;

(iii)’ there exists some d > 0 such that xg(x) is strictly increasing on (0, d) and
strictly decreasing on (d,+∞).

Biologically speaking, condition (i) states that the dynamics are compensatory, i.e.,
any increase in the population size in a generation is followed by an increase inmortality
in the next generation. Condition (ii) is equivalent to d

dx (xg(x))(0) > 1, which
implies that xg(x) is above y = x around x = 0. Therefore, the population grows for
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small population sizes. Condition (iii)’ means in particular that xg(x) is a unimodal
map, and implies (iii) with δ = 0—here (iii) is introduced just for easy reference to [44].
With these conditions, the system has two fixed points x = 0 and x = K > 0, and
the asymptotic dynamics are overcompensatory [46]: for x large, any increase in the
population size is exceeded in magnitude by the corresponding increase in mortality in
the following generation, and thus the population function xg(x) decreases.

Overcompensatory models can exhibit positive unstable equilibria, which leads to
fluctuating dynamics [154]. Since we are interested in the combined effect of harvest-
ing timing and harvesting effort on the stability properties of the positive equilibrium,
we recall a sufficient and necessary condition for the existence of such an equilibrium
regardless of the intervention moment θ.

Proposition 5.1 (from Proposition 3.1 in [44]). Assume that conditions (i)-(iii) hold.
System (5.4) has a unique positive equilibrium (denoted by Kγ(θ)) if and only if

γ < γ∗ := 1 − 1
g(0)

.

5.3 Timingdoesnotaffectstabilityforhighharvest-
ing efforts

In this section, we show that the asymptotic stability of Kγ(0) implies the asymptotic
stability of Kγ(θ) for θ ∈ [0, 1] if γ is chosen close enough to γ∗ and g satisfies condi-
tions (i)-(iii)’. Moreover, we obtain that Kγ(θ) is globally asymptotically stable, i.e., it
attracts all solutions of (5.4) starting with a positive initial condition.

Theorem 5.2. Assume that conditions (i)-(iii)’ hold. Then, there exists γ0 < γ∗ such
that for γ ∈ [γ0, γ∗) the fixed point Kγ(θ) of (5.4) is asymptotically stable for all
θ ∈ [0, 1] and all positive solutions of (5.4) converge to Kγ(θ).

Proof. Our aim is to prove that the fixedpointKγ(θ) of Fθ attracts all positive solutions
of (5.4), provided that γ is sufficiently close to γ∗. We do this by showing that x <
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Fθ(x) < Kγ(θ) for all x ∈ (0, Kγ(θ))) and Fθ(x) < x for all x > Kγ(θ); see [31,
Lemma 1].

A simple calculation yields that dFθ
dx (0) = F′

θ(0) = (1− γ)g(0) and so, by Propo-
sition 5.1 and condition (ii), F′

θ(0) > 1 for every θ ∈ [0, 1] and every γ ∈ [0, γ∗).
Together with the uniqueness of the positive fixed point (see Proposition 5.1) it now
follows that

Fθ(x) > x, x ∈ (0, Kγ(θ)),

for every θ ∈ [0, 1] and every γ ∈ [0, γ∗).

Next, the inequality x > Fθ(x) for all x > Kγ(θ) follows from the uniqueness of
the positive fixed point and the fact that, by condition (iii)’, xg(x) < x for x > K.
It is then immediate that F0(x) = (1 − γ)(xg(x)) < (1 − γ)x < x for x > K.
For x large enough, (1 − γ)x > K, and thus F1(x) = ((1 − γ)x)g((1 − γ)x) <
(1 − γ)x < x. This yields Fθ(x) < x for large x.

To finish the proof, we will show that there exists γ0 < γ∗ such that Fθ is strictly
increasing on the interval [0, Kγ(θ)) for γ ∈ [γ0, γ∗). This combined with Kγ(θ)

being a fixed point of Fθ implies, for every θ ∈ [0, 1] and γ ∈ [γ0, γ∗), that Fθ(x) <
Kγ(θ) for x ∈ (0, Kγ(θ)).

Since F′
0(x) = F′

1((1 − γ)x), the graph of F′
0 is the graph of F′

1 horizontally
stretched by a factor 1 − γ; see Figure 5.1. For γ < γ∗, both graphs are above the
horizontal axis near x = 0. Therefore, F′

1(x) < F′
0(x) around x = 0. On the other

hand, F′
θ(x) = θF′

1(x)+ (1− θ)F′
0(x), implying that0 < F′

1(x) ≤ F′
θ(x) ≤ F′

0(x)
around x = 0.

Let Cγ(θ) denote the first zero of F′
θ . Note that this zero exists because F1 and F0

inherit the unimodal character of xg(x) assumed in condition (iii)’. Indeed, for F′
0 and

F′
1 this zero is unique and corresponds to Cγ(1) = d and Cγ(0) = d

1−γ , respectively.

From the above discussion, we have that

Cγ(1) ≤ Cγ(θ) ≤ Cγ(0). (5.5)
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Figure 5.1: Derivatives of F1F1F1, F0F0F0 and FθFθFθ . For g(x) = e2.7(1−x), γ = 0.4 and θ = 0.3, the
blue curve corresponds to F′

1, the red curve to F′
0 and the black curve to F′

θ .

Wewant tofind conditions on theparameters guaranteeing that Fθ is increasinguntil
Kγ(θ), i.e., F′

θ(x) > 0 for all x < Kγ(θ). This is equivalent to impose Kγ(θ) ≤
Cγ(θ), and a sufficient condition for this isKγ(0) ≤ Cγ(1). This is true because (5.5)
andProposition 3.2 in [44] yieldKγ(θ) ≤ Kγ(0) ≤ Cγ(1) ≤ Cγ(θ). Since xg(x) is
increasing on (0, d), it follows that the map j : [max{0, 1 − 1

g(d)}, γ∗) → [0, g(d)]
given by j(γ) = Kγ(0) is strictly decreasing and satisfies limγ→γ∗ j(γ) = 0. Hence,
there exists a unique γ0 ∈ [max{0, 1 − 1

g(d)}, γ∗) such that Kγ(0) ≤ Cγ(1) for all
γ ≥ γ0.

Finally, by construction we have that γ0 = 0 or Kγ0(0) = Cγ0(1) = d. Since
Kγ0(0) is the unique fixed point of F0, then γ0 is the unique solution of

g((1 − γ0)d) =
1

1 − γ0
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in the interval [max{0, 1 − 1
g(d)}, γ∗).

It is well known that harvesting can induce stability for the positive equilibrium of
systems satisfying conditions (i)-(iii)’, see e.g. [141]. Theorem 5.2 provides a thresh-
old γ0 in the removal intensity above which the positive equilibrium becomes a global
attractor. The previous proof shows how to calculate γ0, and we will illustrate this
for two well known population models, namely the Hassell and the Ricker models.
The per-capita production function of the former is g(x) = λ(1 + a x)−b, where
λ, a, b > 0. This model satisfies conditions (i)-(iii)’ for λ > 1 and b > 1. In the
absence of harvesting, the positive equilibriumK = (λ

1
b − 1)/a is unstable for b > 2

and λ > (b/(b − 2))b. In this model, d = 1/(a(b − 1)) and γ0 is either null or the
unique solution of

λ =
1

1 − γ

(
b − γ

b − 1

)b

. (5.6)

For fixed b, the function k(γ) given by the right-hand side of (5.6) is strictly increasing
and satisfies k → (b/(b − 1))b for γ → 0 and k → +∞ for γ → 1. Hence, for
λ > (b/(b − 1))b the value γ0 > 0 is implicitly given by k(γ0) = λ, and γ0 = 0
otherwise. For λ = 7.7 and b = 50, we obtain γ0 ≈ 0.848 and γ∗ ≈ 0.870. Thus,
for any γ ∈ [0.848, 0.870) the positive equilibrium Kγ(θ) is stabilized by the effect
of harvesting and acts as a global attractor for all θ ∈ [0, 1]. This can be appreciated in
Figure 5.2.

In the case of the Ricker model, the per-capita production function is g(x) =

er(1−x), with r > 0. Conditions (i)-(iii)’ are met for all r > 0. Proposition 3.4 in [44]
guarantees for this model that the positive equilibrium Kγ(θ) of (5.4) with θ ∈ [0, 1]
is asymptotically stable if 1 − e2−r < γ < 1 − e−r. The curves defined by these in-
equalities delimit a region in the (r, γ)-parameter space shown in Figure 5.3. Theorem
5.2 provides a subregion for which the positive equilibrium is indeed a global attractor.
In this case, d = 1

r and γ0 is either zero or the unique solution of

r = 1 − ln(1 − γ)− γ. (5.7)
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Figure 5.2: Bifurcation diagram for the Hassell-Seno model in terms of the harvest time.
The underlying population dynamics is given by the Hassell map g(x) = 7.7(1 + 10−3 ·
x)−50, and the harvesting effort is γ = 0.86.

The function h(γ) = 1 − ln(1 − γ)− γ is strictly increasing and verifies h → 1 for
γ → 0 and h → +∞ for γ → 1. Hence, for r > 1 the value γ0 > 0 is implicitly
given by h(γ0) = r, and for r ∈ (0, 1], γ0 = 0. The blue region in Figure 5.3
corresponds to the subregion in the (r, γ)-parameter space defined by this curve.

5.4 Stability depending on timing

5.4.1 Timing can be stabilizing

In this subsection, se study under which conditions timinig can be stabilizing by itself.
The Ricker model has been shown to be a good descriptor of the dynamics of many
populations (including bacteria, fungi, ciliates, crustaceans, fruit flies, and fishes [183]),
which makes the study of the stability properties of the Ricker-Seno model appealing.
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Figure 5.3: Global stability of the Ricker-Seno model for high harvesting efforts. Param-
eters inside the region between the black curves guarantee that Kγ(θ) is asymptotically stable
for all θ ∈ [0, 1] for (5.4) in the Ricker case. The blue area specifies the region in the (r, γ)-
parameter space for which Theorem 5.2 guarantees the global attraction of the positive equilib-
rium.

For this model, we prove that it is possible to find θ ∈ (0, 1) such that Kγ(θ) for (5.4)
is stable when Kγ(0) is unstable.

Proposition 5.3. Assume g(x) = er(1−x) and r > 0. Then, there exists γc < γ∗ :=
1 − e2−r such that for any γ ∈ (γc, γ∗) it is possible to find a timing interval (θ0, θ1)

with the property that for each θ ∈ (θ0, θ1) the fixed pointKγ(θ) is asymptotically stable
for (5.4).

Proof. Differentiating, we obtain F′′
1 (x) = (1 − γ)r(2 − rx)er(1−x), and thus F′

1 is
strictly decreasing to the left of 2/r and strictly increasing to the right. On the other
hand, it is easy to check that for γ = γ∗ the fixed point of F1 coincides with the above
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inflection point (i.e., Kγ∗(1) = 2/r), and F′
1(Kγ∗(1)) = −1. In that case, F′

1(x) ≥
−1 for all x.

The equalities
F0(x) = F1((1 − γ)x)/(1 − γ),
F′

0(x) = F′
1((1 − γ)x),

F′′
0 (x) = (1 − γ)F′′

1 ((1 − γ)x),

yield similar conclusions regarding F0: the unique inflection point (equal to 2/(r(1−
γ))) coincides with the fixed point Kγ∗(0), and moreover F′

0(Kγ∗(0)) = −1.
For γ < γ∗, the fixed points Kγ(0) and Kγ(1) are unstable (see Proposition 3.3

in [44]) and the sets (F′
0)

−1(−1) and (F′
1)

−1(−1) contain two points (in addition
to the mentioned monotonicity properties for F′

1, note that F′
1(0

+) = (1 − γ)er

and F′
1(x) → 0 as x → +∞). Let denote a = max {(F′

1)
−1(−1)} and b =

min {(F′
0)

−1(−1)}. It is immediate that a > Kγ(1) and b < Kγ(0) because
F′

0(Kγ(0)) and F′
1(Kγ(1)) are less than−1. By continuity, for γ ↑ γ∗ we have

max
{

Kγ(1),
2
r

}
< a < b < min

{
Kγ(0),

2
r(1 − γ)

}
. (5.8)

The inflection point of F1 does not depend on γ, whereas the one of F0 decreases as γ

increases. For γ → 0 both points coincide and hence, by continuity, there must exist
some γ < γ∗ for which a = b. Let γc be the maximal value of γ satisfying this last
condition. It is immediate that (5.8) is met for all γ ∈ (γc, γ∗). Since F′

1 is strictly
increasing to the right of 2/r and F′

0 is strictly decreasing to the left of 2/(r(1 − γ)),
we conclude that F′

1(x) > −1 and F′
0(x) > −1 for all x ∈ (a, b). This leads to

F′
θ(x) > −1 because F′

θ is a convex combination of F′
0 and F′

1.
ThefixedpointKγ(θ) strictly decreases and continuously covers [Kγ(1), Kγ(0)] ⊃

(a, b) for varying θ. Hence, there must exist θ0, θ1 ∈ (0, 1) such that Kγ(θ0) =

b and Kγ(θ1) = a. In particular, Kγ(θ) ∈ (a, b) for all θ ∈ (θ0, θ1), and thus
F′

θ(Kγ(θ)) > −1.
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Figure 5.4: Stabilizing harvest times for the Ricker-Senomodel. (a) Stability of the positive
equilibriumof (5.4) in terms of the harvesting time θ ∈ [0, 1] for different values of the removal
intensity γ. The positive equilibrium Kγ(θ) is stable if−1 < F′

θ(Kγ(θ)) < 1. The gray area
corresponds to the actual range of stabilizing harvest times for γ = 0.7, and the red area to the
range [θ0, θ1] derived from Proposition 5.3. (b) The gray region shows numerical results for
the combinations of γ and θ for which Kγ(0) is unstable and Kγ(θ) is asymptotically stable.
The red region corresponds to values guaranteed to be stabilizing (by Proposition 5.3). In both
panels, the underlying population dynamics are given by the Ricker map g(x) = e3.5(1−x).
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Figure 5.5: Stabilization of the Ricker-Seno model via delayed harvesting. The red region
corresponds to harvesting intensities γ that are destabilizing for a given growth parameter r
when individuals are removed at the beginning or at the end of the reproductive season and for
which there exists a stabilizing harvesting time θ according to Proposition 5.3.

For fixed values of the growth parameter r, the proof of Proposition 5.3 yields a
method for determining a range of removal intensities γ for which there exist harvest
moments θ that stabilize the positive equilibrium Kγ(θ). Moreover, for a fixed γ it
also provides a method for determining a range of stabilizing times θ0 ≤ θ ≤ θ1. We
illustrate this for the growth parameter r = 3.5, for which the limit of population
persistence is γ∗ = 1 − e−3.5 ≈ 0.9698. Numerical simulations reveal that γc ≈
0.6214, and thus Proposition 5.3 guarantees the existence of stabilizing harvest times
for all γ ∈ [0.6214, 0.9698). Figure 5.4a shows that this range is quite accurate: there
are no stabilizing times for harvesting efforts slightly below γc. Consider the control
intensity γ = 0.7 ∈ [γc, γ∗). It can be numerically found that θ0 ≈ 0.6086 and
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θ1 ≈ 0.8611. The red area in Figure 5.4a corresponds to this range, and the gray area
represents the actual range of times that stabilize Kγ(θ). Compared to the range of
harvesting efforts, the range of stabilizing intervention moments given by Proposition
5.3 seems to be more conservative. However, this range is wide enough to allow for the
determination of stabilizing harvest times with reasonable certainty. Figure 5.4b shows
the actual range of these times and the range defined by Proposition 5.3 in terms of the
removal intensity γ.

Finally, we emphasize that Proposition 5.3 implies that harvest timing can be very
useful from a practical point of view since it can be used to significantly enlarge the
range of harvesting efforts that are able to stabilize the population for a fixed r (see Fig-
ure 5.5).

5.4.2 Timing can be destabilizing

In the previous subsection, we have seen that timing can be stabilizing by itself. In view
of this, it is logical to ask the opposite question: can timing be destabilizing? Based on
both numerical simulations and analytical results, Cid et al. conjectured in [44] that
harvesting times θ in the interior of [0, 1] cannot be destabilizing if conditions (i)-(iii)’
are satisfied.

Conjecture 5.4 (Conjecture 3.5, [44]). Assume that conditions (i)-(iii)’ hold. If the
positive equilibrium Kγ(0) of (5.4) with θ = 0 is asymptotically stable, then the fixed
point Kγ(θ) is asymptotically stable for (5.4) for all θ ∈ [0, 1].

Suppose that Kγ(0) is asymptotically stable. If Conjecture 5.4 was true, then we
could delay the time of intervention θ ∈ [0, 1] without affecting the stability of the
positive equilibrium Kγ(θ). This freedom to choose the time of intervention is clearly
desirable from a management point of view. However, the conjecture is false. We pro-
vide a counterexample. To build it, we use the map h : [0, 1] → [0, 1] defined by

h(x) = x
(

786
100

− 2331
100

x +
2875
100

x2 − 133
10

x3
)

.
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Figure 5.6: Harvest timing can destabilize the positive equilibrium. (a) The blue curve
corresponds to the graph of g(x), which was vertically compressed by a factor 1/8 to improve
the representation; the black curve corresponds to the graph of xg(x), showing that this map
satisfies (iii)’ and has an unstable positive fixed point. (b) The blue, red and black curves corre-
spond to the graphs of F1(x), F0(x) and F0.7(x), respectively. The harvesting effort is fixed to
γ = 0.55. Observe that K0.5(0) is asymptotically stable whereas K0.5(0.7) is unstable.

Thismapwas introduced in [194] as an exampleofunimodalmapwithnegative Schwar-
zian derivative having two attractors. Now, we define g : [0,+∞) → [0,+∞) by

g(x) =

{
2 h(x)

x , x ∈ [0, 9
10 ),

591
625 e−

57397
7500 (x− 9

10 ), x ∈ ( 9
10 ,+∞).

(5.9)

We note that at the break point 9/10 the function g is differentiable.

It is not hard to see that themap g satisfies conditions (i)-(iii)’, see Figure 5.6a. More-
over, system (5.1) has an unstable positive equilibrium, see Figure 5.6a.

Next, we fix γ = 0.55. Figure 5.6b shows that this harvesting effort applied at the
beginning or at the end of the reproductive season stabilizes a fixed point. Thus, the
positive equilibrium Kγ(0) is asymptotically stable for θ = 0. However, for θ = 0.7
the convex combination of F1 and F0 crosses the diagonal with slope greater than 1 in
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absolute value (see Figure 5.6b). Thus, the positive equilibrium is unstable for F0.7. The
explanation for this effect is as follows. For this map, the intensity of the overcompen-
sation abruptly increases for certain interval of population sizes. This makes the graph
of xg(x) to have a steep negative slope in that interval and such a slope is inherited by
the graph of F1, although attenuated by a (1 − γ) factor. Since F′

θ is the convex com-
bination of F′

1 and F′
0, when the positive equilibrium Kγ(θ) is in the interval where

F′
1 � −1 we can have that F′

θ < −1.

Actually, a bifurcation diagram taking θ as the bifurcation parameter shows that
delaying the harvesting time θ leads to the emergence of bubbles (see [143, Definition
3]). This is illustrated in Figure 5.7. We point out that bubbles for (5.4) were studied
in [44], but with a different approach. There it was numerically shown for the Clark-
Ricker bimodal map that bubbles related to a variation in the harvesting effort for θ =

0 disappear when harvesting occurs at an intermediate moment of the season, thereby
demonstrating that intermediate harvesting times can have a stabilizing effect. Here,
however, the bubble is related to a variation in the harvesting time θ for a unimodal
map and implies that intermediate harvesting times can have a destabilizing effect.

The counterexample of Conjecture 5.4 given by (5.9) corresponds to a piecewise
function obtained by extending the function 2h(x)

x to [0,+∞). We highlight that this
fact has no influence on the result: the tail of the per-capita production function does
not affect the stability of the positive equilibrium. On the other hand, the counterex-
ample to Conjecture 5.4 is by non means unique. Indeed, for the analytic function

g(x) = e6−15x+15x2− 11
2 x3

, (5.10)

we have that dF0.6
dx (K0.5(0.6)) = F′

0.6(K0.5(0.6)) ≈ −1.27786 while F′
0(K0.5(0)) =

F′
1(K0.5(1)) ≈ −0.206984, and so this function provides another counterexample to

Conjecture 5.4.
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Figure 5.7: Delayed harvest can induce the emergence of bubbles. Bifurcation diagram of
the population model (5.4) for varying harvesting time θ ∈ [0, 1]. The harvest effort is fixed to
0.55, and the underlying population dynamics are described by (5.9). The positive equilibrium
is asymptotically stable for θ = 0 and θ = 1, but for an interval of values of θ ∈ (0, 1) this
positive equilibrium is unstable because of the presence of a bubble.

5.5 Introducing biological realities

So far, we have analyzed how changing harvest times can affect the stability of popu-
lations described by theoretical deterministic equations. In this section, we check the
robustness of our results on more realistic models. To this end, we consider the pa-
rameter estimates obtained in [63] on the basis of time series data for laboratory pop-
ulations of the fruit flyDrosophila melanogaster. The per-capita production function
is g(x) = er(1−x/K), which corresponds to the non-scaled Ricker model with carry-
ing capacity K and growth parameter r. For the different populations, the estimated
growth parameter ranged from 2.7 to 3.0 (see [63], Supplementary material). We fix r
in the midpoint of this range, i.e., r = 2.85, and the carrying capacity at K = 60.

We extend the abovemodel by introducing two biological realities. The first of them
is lattice effect. Individuals always come and are harvested in whole numbers and, as
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previously said, the dynamics of a discrete-state system can be quite different from its
continuous-state version [102]. Consequently, we integerize population sizes to make
the model more realistic. The second extension to be considered is stochasticity. This
is clearly more problematic, since stabilizing an equilibrium under the effect of noise
is not possible unless the magnitude of the noise tends to zero as time grows. We fol-
low the work of Braverman et al. [32] to generalize the notion of global stability to
stochastic systems: equilibria of stochastic difference equations (blurred equilibrium)
are points for which all trajectories eventually enter some interval around them. Since
stochasticity is inmany cases involved in the control, wepropose a integerized stochastic
version of (5.4) based on introducing noise in the removal intensity in the form

xt+1 = int([θg(xt) + (1 − θ)g((1 − γ + σνt+1)xt)](1 − γ + σνt+1)xt),
(5.11)

where σ is a parameter measuring the level of noise and (νt)t∈N is a sequence of inde-
pendent random variables uniformly distributed in [−1, 1], whereas function int(x)
gives the integer closest to x (if x + 0.5 ∈ N, then int(x) gives the even integer closest
to x).

Figure 5.8a shows that the positive equilibrium of (5.4) for any intervention time θ

is a global attractor for γ = 0.6, and that the same point is a blurred equilibrium of
(5.11). We conclude therefore that the stabilization of populations induced by harvest-
ing at intermediate moments during the reproductive season is robust under the effect
of both noise and lattice effect. Interestingly, we observe that timing helps to damp
the destabilizing effect of noise: the range of fluctuation of the population size can be
significantly reduced if the intervention is conveniently delayed.

We can go further and analyze how timing can be helpful to stabilize the population
size in the presence of noise around a specific value, for instance x∗ = 60. Theorem
3.5 in [32] guarantees that if harvesting is implemented at the beginning of the repro-
ductive season (θ = 0) with an intensity γ(x∗) ≈ 0.9292, the size of the population
governed by the non-integerized version of (5.11) is stabilized around x∗ = 60 with
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a fluctuation range that depends on the level of noise. Numerical simulations reveal
that for γ = 0.6 and θ = 0.6688 the point x∗ = 60 is a global attractor of the
deterministic system (5.4). Figure 5.8b shows that the population governed by the in-
tegerized stochastic equation (5.11) is also stabilized around this point. This confirms
again that the stabilizing properties of timing are not affected by neither stochasticity
nor lattice effect. Moreover, we observe that stabilizing the population with delayed in-
tervention has several advantages. Firstly, the proportion of individuals to be removed
in each generation is significantly lower. This is expected to allow for the stabilization of
populations that would be impossible to control due to practical limitations in case of
being harvested at the beginning of the reproductive period. Secondly, the intensity of
the intervention places the population far from the extinction risk associated with har-
vesting efforts above the persistence limit γ∗ ≈ 0.9421. Finally, when individuals are
removed at an intermediatemoment during the reproductive season, the fluctuation in
the population size is lower than if they were harvested at the beginning of this period.
This last fact can be evaluated in terms of the fluctuation index (see Section 1.2). We
have averaged the FI over 500 time series of length 1000 with initial conditions chosen
as pseudo-random numbers in (0, dg(d)], ignoring the first 100 steps. If individuals
are harvested with an intensity γ = 0.9292 at the beginning of the season, the FI is
0.111. If the intervention takes place at a time θ = 0.6688 during the season with an
intensityγ = 0.6, the FI decreases to 0.050. This is consistent withwhat was observed
in Figure 5.8a: a delay in the intervention can reduce the fluctuations in size around the
equilibrium.

5.6 Discussion and conclusions

In this chapter, we have studied the combined effect of harvesting intensity and har-
vesting time on the stability of a discrete population model proposed by Seno [191].
Despite the fact that this model is one of the simplest models to account for variable
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Figure 5.8: The stabilizing effect of harvest timing is robust under both stochasticity and
lattice effect. (a) Bifurcation diagram of (5.4) (red dots) and (5.11) (black dots) with γ = 0.6
and σ = 0.015 for varying harvesting time θ ∈ [0, 1]. The underlying population dynamics is
given by theRickermap g(x) = e2.85(1−x/60). (b) The red curve gives the size of a population
governed by (5.11) with γ = 0.9292 and θ = 0, and the blue curve for γ = 0.6 and θ =
0.6688. In both cases, the initial population size is x0 = 30 and the level of noise is σ = 0.015.
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harvest timings, it is suitable to gain some basic understanding of how the timing of
interventions affects the stability of controlled populations.

Under general conditions, we have shown in Theorem 5.2 that timing has no nega-
tive effect on the stability of the positive equilibrium if the harvesting intensity is close
enough to γ∗ (see Figure 5.3). Moreover, we have shown that the latter stability is
global. To the best of our knowledge, this is the first global stability result for (5.4)
valid for general overcompensatory population models, since global stability results in
[44] only cover undercompensatory models (such as the Beverton-Holt model [23])
and the quadratic model.

We have rigorously shown for the Ricker-Seno model that timing can be stabilizing,
that is, a harvesting intensity applied at an appropriate time of the season can asymp-
totically stabilize the positive equilibrium even when it cannot be stabilized at the be-
ginning or the end of the reproductive season with the same harvesting intensity. We
have also shown that timing can be destabilizing under natural conditions assumed on
population productionmaps. This provides counterexamples for a conjecture recently
published in [44]. However, these counterexamples are the result of mathematical con-
structions. Most of the populations maps considered in the ecological literature satisfy
additional conditions, as for example to have negative Schwarzianderivative, whichmay
prevent any destabilizing effects of timing.

Due to its simplicity, Seno’s model has some important limitations that must be
taken into account. First, a constant duration of the period in which individuals accu-
mulate energy for reproduction is implicitly assumed. This may be unrealistic in prac-
tical applications since it is well established that environmental conditions affect the
length of the reproductive season of some species of birds andmammals [96, 160, 205].
Second, the model fixes for all generations a harvesting moment θ during the season
that can be arbitrarily chosen. Due to practical limitations, this freedom of choice may
be impossible in certain situations. Third, the model is deterministic and assumes a
continuum of system states. Numerical simulations indicate that timing enhances the
stabilizing properties of harvesting in the presence of both noise and lattice effect.
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6
Effect of harvest timing on the dynamics of

the Ricker–Seno model

6.1 Introduction

The disproof of Conjecture 5.4 provided in the previous chapter illustrates the diffi-
culty of finding stability results for Seno’s model valid for all maps in a given family.
To the best of our knowledge, Theorem 5.2 is the only result of this type that has been
obtained so far. The relevance of this result is indisputable at a theoretical level, since
it is not tied to a specific form of density dependence and is valid for one of the most
important families of models in discrete-time population dynamics. However, from
a practical point of view, this result has some drawbacks that call into question its ap-
plicability to real populations. On the one hand, reaching the high harvesting efforts
that are referred may be impossible or too expensive in many cases. On the other hand,
these high removal intensities can put the population into risk of extinction, since they
are close to a certain collapse threshold. Nevertheless, the result provides interesting in-
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formation from a practical point of view: the global character of the stability exhibited
by the system. As previously said, global stability is always a desirable property since it
allows one to predict the fate of the population independently of its initial size.

In view of all these considerations, it is of the utmost interest to obtain global stabil-
ity results for the most relevant models in population dynamics under delayed harvest.
Focusing on models with overcompensatory density dependence, the Ricker model is
probably the most important among them. Many different reasons can be argued to
support this claim. Here, we just highlight the work of Brännström and Sumpter [34]
according to which time series fit the Ricker model when individuals experience scram-
ble competition and are randomly uniformly distributed over space. These two condi-
tions are true for a vast majority of the biodiversity found on this planet. As has already
been mentioned, Cid et al. proved in [44] that local stability for the Ricker map is not
altered by the effect of harvest time. Knowing whether the local stability is global for
all possible combinations of the population parameters is an interesting open problem.
In this chapter, we provide a complete answer to this question.

The stability of a population in ecology is a broad concept which encompasses sev-
eral definitions addressing various biological aspects. Knowing the effect of a certain
intervention on the stability of an equilibrium point, even if this stability is global, pro-
vides a partial view of the actual impact of that intervention on the population dynam-
ics. Interestingly, we will see that although global stability is not affected by the time of
intervention, the constancy stability does strongly depend on the moment of interven-
tion.

In the next section, we show the limitations of the existing stability results for the
Ricker-Seno model. In Section 6.3, we provide the main result of this chapter. Sec-
tion 6.4 studies the effect of the moment of intervention on the constancy stability of
the controlled populations. Section 6.5 introduces biological extensions to check the
robustness of our results. Finally, Section 6.6 extends the discussion of our results and
draws conclusions.
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6.2 Existing results and limitations

If we focus on populations governed by the Ricker model, the per capita production
function is given by g(x) = er(1−x), where r > 0 is a growth parameter. In this case,
it was proved in [44, Proposition 3.3] that equation (5.3) has an asymptotically stable
positive equilibrium if and only if

1 − e2−r ≤ γ < 1 − e−r. (6.1)

Moreover, this positive equilibrium is globally asymptotically stable (G.A.S.), i.e., it at-
tracts all positive orbits [141, Theorem 1]. Given that systems (5.2) and (5.3) are topo-
logically conjugated, the positive equilibriumof (5.2) isG.A.S. aswell. From apractical
point of view, this implies that for these two limit cases we can predict the long-run be-
havior of the population independently of its initial size. In view of this, it is natural
to study to what extent the same is true if individuals are removed at any intermediate
time during the reproductive season. In [44, Proposition 3.4] it was proved that when
condition (6.1) holds, equation (5.4) has a unique positive equilibrium Kγ(θ), which
is locally asymptotically stable (L.A.S.). Our goal is to determine whether this equilib-
rium inherits for intermediate intervention moments the global stability character of
the limit cases (5.2) and (5.3).

We note that providing a rigorous proof of global stability is in general a difficult
task. Nevertheless, for some population models involving the Ricker map there are
analytic results showing that local stability implies global stability; e.g., [30, 169, 182].
Theorem 5.2 provides a condition that guarantees the global stability of the positive
equilibrium for general production functions with overcompensatory density depen-
dence. We have seen that for the Ricker-Seno model this condition is

r ≤ 1 − ln(1 − γ)− γ, (6.2)

which gives a partial answer to the open problem about global stability cited above.
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To illustrate the limitations of this condition, let us consider a population governed
by the Ricker model with a growth parameter r = 3.3. According to (6.1), if individ-
uals are harvested at the beginning or at the end of the reproductive season, the system
is globally stable if and only if the harvest effort is between 1 − e2−r ≈ 0.7275 and
1− e−r ≈ 0.9631. Outside this range, the positive equilibrium is unstable. Moreover,
for higher control intensities populations will go eventually extinct. Assuming that γ

ranges in this interval, little can be said about the global stability for intermediate inter-
vention times with condition (6.2): the positive equilibrium of (5.4) is globally stable
for all harvest times if γ ∈ [0.9617, 0.9631). From a practical point of view, knowing
this is completely useless. Apart from the short length of this interval, surpassing the
threshold intensity 0.9631 implies the collapse of the population. In view of this, it is
natural to ask what can be said about the global stability of (5.4) for control intensities
meeting (6.1) and uncovered by (6.2), i.e., those ranging from 0.7275 to 0.9617. The
result provided in the following section gives the answer to this question.

6.3 Global stability

In this section we prove that delaying the removal of individuals for populations gov-
erned by the Ricker model never affects the global stability of the system. To that end,
as in the previous chapter, we rewrite the right-hand side of (5.4) as

(1 − θ)F0(xt) + θF1(xt) := Fθ(xt),

where F0(x) := g((1 − γ)x)(1 − γ)x and F1(x) := (1 − γ)g(x)x. With these
notations, the multiplier of equation (5.4) is given by

λ =
dFθ

dx
(Kγ(θ)). (6.3)

We start by proving some auxiliary results.
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Lemma6.1. Assume g(x) = er(1−x), r > 0, and condition (6.1)holds. Then, F′
0(x) ≥

−1, F′
1(x) ≥ −1, and F′

θ(x) > −1 for all x ∈ (0,+∞) and θ ∈ (0, 1).

Proof. It is straightforward to see that F′
0 attains its global minimum at x = 2

(1−γ)r
and F′

1 attains the same global minimum at x = 2
r . Since F′

0(
2

(1−γ)r ) = F′
1(

2
r ) =

−(1−γ)er−2, it follows from the first inequality of condition (6.1) that F′
0(x) ≥ −1,

and F′
1(x) ≥ −1 for all x ∈ (0,+∞).

On the other hand, F′
θ(x) = (1 − θ)F′

0(x) + θF′
1(x), so using that F′

0 and F′
1

attain the same global minimum greater than or equal to −1 at different points, one
gets F′

θ(x) > −1 for x ∈ (0,+∞) and θ ∈ (0, 1).

The next result is a particular case of Proposition 3.1 in [44].

Lemma 6.2. Assume g(x) = er(1−x) and r > 0. System (5.4) has a unique positive
equilibrium (denoted by Kγ(θ)) if and only if

γ < 1 − e−r.

Proof. The positive equilibria of equation (5.4) are the positive solutions of

G(x)(1 − γ) = 1, (6.4)

with G(x) = θer(1−x) + (1 − θ)er(1−(1−γ)x). Since G is decreasing and G(+∞) =

0, equation (6.4) has a unique solution if and only if G(0)(1 − γ) > 1.

The next result is a consequence of [57, Theorem 3]. We provide a short proof for
the sake of completeness.

Lemma 6.3. Assume f : [0,+∞) → [0,+∞) is continuous, f (0) = 0, and f (x) >
0 for x > 0. In addition, assume that there exists K > 0 such that

| f (x)− K| < |x − K| for x > 0, x 6= K. (6.5)

151



Then, K is a G.A.S. fixed point for the difference equation xt+1 = f (xt), t ∈ N.

Proof. The limit points of the bounded sequence xt < |x0 − K|+ K belong to U =

{K + α, K − α}, where α ≥ 0 is the limit of the decreasing sequence at = |xt − K|.
By substituting x = K ± α in (6.5) and taking into account that f (U) ⊂ U, we see
that α = 0.

With these auxiliary results, we are ready to prove the main result in this chapter.

Theorem 6.4. Assume g(x) = er(1−x), r > 0, and γ ∈ (0, 1) such that condition
(6.1) holds. Then, for any θ ∈ [0, 1] the positive equilibrium of equation (5.4) is G.A.S.

Proof. For θ ∈ {0, 1}, the result has been already proved in [141, Theorem 1]. Con-
sider θ ∈ (0, 1). We will prove (6.5) for f = Fθ and K = Kγ(θ). Let us start by
proving

2Kγ(θ)− x < Fθ(x) < x (6.6)

for all x > Kγ(θ). Suppose Fθ(z) ≥ z for some z > Kγ(θ) and consider the function
h(x) = Fθ(x)− x, for which h(z) ≥ 0. Since Fθ(x) → 0 for x → +∞, there must
exist x ≥ z such that h(x) < 0. Therefore, h has a root in the interval [z,+∞) 3
Kγ(θ), which corresponds to a positive fixed point of Fθ different from Kγ(θ). This
leads to a contradiction according to Lemma 6.2. Suppose now Fθ(z) ≤ 2Kγ(θ)− z
for some z > Kγ(θ). Then, Fθ(z)− Kγ(θ) ≤ −(z − Kγ(θ)), and thus

Fθ(z)− Kγ(θ)

z − Kγ(θ)
≤ −1. (6.7)

By the mean value theorem, there must exist u ∈ (Kγ(θ), z) such that F′
θ(u) equals

the left-hand side of (6.7). This is again impossible according to Lemma 6.1. With this,
we have proved (6.6) for all x > Kγ(θ). This yields (6.5) for all x > Kγ(θ).

A similar argument shows that (6.5) holds for x < Kγ(θ), and the final conclusion
follows from Lemma 6.3.
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Figure 6.1: Global stability of the Ricker-Seno model for all harvest times. The blue area
is the region in the (r, γ)-parameter space for which changing timing does not affect the global
attraction of the positive equilibrium of model (5.4) in the Ricker case. In the red area, varying
the moment of intervention does not affect the global attraction of the trivial equilibrium. For
parameters in the white area, the positive equilibrium of (5.2) and (5.3) is unstable.

Remark 6.5. Condition (6.5) implies that f is enveloped by themap ϕ(x) = 2K − x.
Enveloping has been used to study the global stability of several populationmodels (see,
e.g., [56, 57]), and it is known to be a sufficient condition for the existence of a global
Lyapunov function [181].

Figure 6.1 shows the area in the (r, γ)-parameter space for which Theorem 6.4 en-
sures that changing the harvest time does not affect the global stability of the positive
equilibrium. For the example considered at the end of the previous section (r = 3.3), if
the positive equilibrium is globally stable for θ = 0 (i.e., γ ∈ [0.7275, 0.9631)), then
there is also global stability for any other intervention moment. As said, for control ef-
forts above 0.9631, the population is led to extinction, and for values below 0.7275we
only know that the positive equilibrium for the limit cases θ = 0 and θ = 1 is unsta-
ble. We have seen in the previous chapter that in the latter case for certain intervention
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times θ the positive equilibrium of (5.4) can be locally stable (cf. Proposition 5.3), but
knowing whether this stability is or is not global is an open problem.

Let us analyze the practical implications of Theorem 6.4. If we choose harvesting
efforts satisfying (6.1), we can then postpone the intervention to any moment during
the reproductive season that the populationwill be attracted to thepositive equilibrium
of the system for any initial population size. Of course, this has important implications
for the management of populations. Moreover, we have seen in the previous chapter
that the global stabilization of populations induced by harvesting at any intermediate
moment during the reproductive season is robust not only under stochasticity but also
under lattice effect.

6.4 Effect on constancy stability

In the previous section, we have seen that for the Ricker-Seno model delaying harvest
does not affect the global stability of the positive equilibrium. However, knowing that
all populations will be attracted towards the same point may not be enough in most
practical situations. In this sense, there are relevant questions about the effect of timing
on the population dynamics that remain unanswered. Probably, the most important is
the effect that delayed harvest may have on the constancy stability of controlled popula-
tions. When the system shows global stability, the asymptotic constancy is guaranteed
by the fact that all populations are attracted towards the positive equilibrium regard-
less of the initial population size. However, transients to the asymptotic dynamics are
known to play a central role in the management of biological species. Two factors de-
termine the constancy of populations during this transitional period. One is the type
of convergence (monotonic or oscillatory) and the magnitude of fluctuations in the
population size. Another factor is the length of the transient, which depends on the
convergence speed to the positive attractor. Interestingly, this convergence speed can
also be related to the concept of engineering resilience, understood as the time taken for
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a system to return to its pre-disturbed stable state [170, 210], which has been frequently
used in ecology (see, e.g., [11]).

Toaddress the abovequestions,we start by studying themultiplier (6.3) in theRicker
case for different values of the harvest effort and the moment of intervention. For
λ > 0 the convergence to the positive attractor ismonotonic and forλ < 0 oscillatory.
Moreover, the magnitude of |λ| determines the speed of convergence of populations
to the equilibrium: for lower values of |λ| the convergence is quicker. The very best
situation occurs when λ = 0, in which case the equilibrium point is called superstable.
Figure 6.2(a) shows the multiplier (6.3) in terms of the control intensity γ and the har-
vest time θ for a growth parameter r = 3.3 (the values of γ represented are only those
for which Theorem 6.4 ensures the global stability of the system). As can be observed,
the moment of intervention has an impact on both the type and the speed of conver-
gence. If we set the value of the removal effort, for example, at γ = 0.85, there are
two harvest times for which the system exhibits superstability, namely θ0 ≈ 0.3399
and θ1 ≈ 0.7851. For θ ∈ [0, θ0) ∪ (θ1, 1], the convergence is oscillatory, and for
θ ∈ (θ0, θ1)monotonic. In any case, as θ approaches either θ0 or θ1 the convergence
becomes faster. This can be observed in Figure 6.2(b). Notice that superstability can-
not be attained by changing the moment of intervention for some harvesting efforts.
Yet, even in those cases, the speed of convergence depends on the harvest time.

6.5 Introducing biological realities

All the results of the previous sections refer to deterministic systems with continuous-
state variables. Now, we introduce some biological mechanisms to better study the
effect that harvest timing may have on the constancy stability of real populations. To
study the impact of lattice effect on the dynamics, we follow the work of [102] and
consider the underlying dynamics to be described by the model

xt+1 = bxt exp
(
− c

V
xt

)
,
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Figure 6.2: Effect of harvest timing on the constancy stability of the Ricker-Seno model.
(a)Multiplier (6.3) for r = 3.3 in termsof the removal intensity,γ, and the timeof intervention,
θ. Parameter γ ranges in the interval [0.7275, 0.9631), for which (5.4) exhibits global stability
according to Theorem 6.4. Values θ0 and θ1 in the horizontal axis represent the harvest times
for which the positive equilibrium of (5.4) is superstable. for γ = 0.85. (b) The red curves
represent time series of (5.4) for r = 3.3 and γ = 0.85 with initial condition x0 = 6 and
different harvest times. The horizontal black lines represent the positive equilibrium K0.85(θ)
of (5.4) for each intervention moment θ.

where xt is the number of individuals in generation t in a habitat of size V, b > 0 is
the per capita birth rate and exp(−cxt/V) (with c > 0) is the fraction of offspring
expected to survive one unit of time at population density xt/V. The per capita pro-
duction function for this model is therefore g(x) = b exp

(
− c

V x
)
. For numerical

simulations, we will consider b = 17, c = 1 and V = 20. Given that the impact of
the lattice effect on the dynamics depends on the presence of noise in the system [102],
we consider the discrete-state stochastic equation 5.11. To measure the constancy sta-
bility of populations governed by this equation, we consider the fluctuation index (see
Section 1.2). The magnitude of the FI somehow measures the width of the blurred
equilibria described in Section 5.5.
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Figure 6.3: Fluctuation index for theRicker-Senomodel in terms of the harvest time. The
value represented for a given θ is the average of theFI forEq. 5.11withγ = 0.85 andσ = 0.015
over 5000 time series of 100 generations with initial population sizes chosen as pseudorandom
numbers in the interval (0, dg(d)], where d is the abscissa of themaximumpopulation produc-
tion. The underlying population dynamics are given by g(x) = b exp

(
− c

V x
)
with b = 17,

c = 1, andV = 20. The vertical lines correspond to the interventionmoments θ0 ≈ 0.22258
and θ1 ≈ 0.78301 for which the positive equilibrium of equation (5.4) is superstable.

Figure 6.3 shows the FI for (5.11) with γ = 0.85 and σ = 0.015. As can be ob-
served, the curve describing the FI for the stochastic discrete-state system is U-shaped.
Globally, the FI attains lower values for harvest times corresponding tomonotonic con-
vergence in the deterministic continuous-state system (between the values θ0 and θ1 for
which the positive equilibrium of (5.4) is superstable), and higher values when the con-
vergence is oscillatory. This correspondence between the stochastic integerized and the
deterministic non-integerized systems leads us to conclude that the results obtained in
this chapter are robust under both lattice effect and noise, and reinforces the idea that
choosing an appropriate moment for the intervention helps to improve the constancy
stability of the controlled populations.
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6.6 Discussion and conclusions

We have studied the effect of harvest timing on the global stability of populations gov-
erned by the Ricker-Seno model. We have proved that timing cannot have a destabiliz-
ing effect (neither local nor global) on the population dynamics. This extends recent
results in the literature about local and global stability for the Ricker-Seno model (see
[44] and Chapter 5 of this thesis), and completely characterizes the global stability of
this model when the positive equilibrium of the limit case (5.3) –which corresponds to
harvesting at the beginning of the reproductive season– is G.A.S. This result, together
with the robustness of the global stability under both noise and lattice effect (see Sec-
tion 5.5), allows to predict in practical situations the fate of populations harvested at
any moment with independence of the initial number of individuals.

We have also shown that the constancy stability of controlled populations strongly
depends on themoment of intervention. In the deterministic case, we have shown that
harvest timing determines both the speed and the type of convergence to the positive
equilibrium. This is expected to have important consequences from the practical point
of view. It is known that biological populations that monotonically approach a deter-
ministically stable equilibrium will tend to return towards it faster than populations
for which the convergence is oscillatory, and for the same amount of noise will have
a lower variance in the population density [155]. Moreover, in the case of oscillatory
convergence, the population dynamics may seem to be persistently cyclic because the
population size is easily prevented from reaching the equilibrium. This behavior has
been observed in several experimental systems and is known as quasicyclicity [162]. In
view of this, the impact of the moment of intervention in the population dynamics
of real populations is expected to be even stronger than what has been observed for
deterministic systems. We have checked this by studying the fluctuation index (FI) in
presence of noise for discrete-state systems. Our analysis leads to conclude that the time
of intervention plays a key role in the constancy stability of the managed populations.
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On the other hand, the results in this chapter may not cover all possible cases in
which the Ricker-Seno model is globally stable. Proposition 5.3 states that there exists
a range of harvesting efforts γ under the threshold γ∗ = 1 − e2−r for which the pos-
itive equilibrium of the limit cases (5.2) and (5.3) is unstable but it is possible to find
intervention times θ ∈ (0, 1) such that equation (5.4) is L.A.S. Determining whether
or not this stabilization is global remains as an open problem.
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7
Global stability of discrete dynamical systems

via exponent analysis: applications to
harvesting population models

7.1 Introduction

In Chapter 5, we proved that Conjecture 5.4 is false for general compensatory popu-
lation maps. Yet, in Chapter 6 we proved that harvest time does not affect the global
stability in the Ricker case. Cid et al. also obtained in [44] sharp global stability results
for the quadratic map [153] and the Beverton-Holt model [23]. Little is known about
the effect of the moment of intervention on the stability of populations governed by
equations different from the Ricker model, the Beverton-Holt model or the quadratic
map (apart fromTheorem 5.2, where we proved that themoment of intervention does
not affect the stability when the harvesting effort is high enough). To reduce this gap,
we introduce an innovative approach that is especially useful to prove the global stabil-
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ity of a broad family of population models, namely those encompassed in the so called
generalized α-Ricker model [151]. Among others, the Bellows, the Maynard-Smith-
Slatkin and the discretized version of the Richards models are covered by our analysis
[19, 156, 175]. Interestingly, these three models can be seen, respectively, as generaliza-
tions of the already studied Ricker, Beverton-Holt and quadratic maps where the term
related to the density dependence includes a new exponent parameter α. This expo-
nent is the focus of the proposed new method: under certain conditions, we provide
sharp results of both local and global stability of the positive equilibrium of the system
depending on the value of α. In particular, these results can be considered as the proof
for a wide range of population models of Conjecture 5.4.

The proposed newmethod can be appliedwhenever the per capita production func-
tion g has a strictly negative derivative. The domain (0, ρ) of g can be bounded or
unbounded. All bounded cases can be easily reduced to the case ρ = 1. The range
(g(ρ), g(0)) can also be bounded or unbounded, provided that 0 ≤ g(ρ) < 1 <

g(0) ≤ +∞.
The applications that we present focus on the cases g(0) < +∞ and g(ρ) = 0. In

particular, our examples deal with the following models:

• The Bellows model, which includes the Ricker model as a particular case (Sub-
section 7.4.1).

• The discretization of the Richards model, which includes the quadratic model
as a particular case (Subsection 7.4.2).

• TheMaynard Smith-Slatkinmodel, which includes the Beverton-Holt model as
a particular case (Subsection 7.4.3).

• The Thieme model, which includes the Hassell model as a particular case (Sub-
section 7.4.4).

This chapter is organized as follows. Section 7.2 lists the families of per capita pro-
duction functions for which we will show that Conjecture 5.4 is true. In Section 7.3,
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we state and prove the main results of the chapter. Section 7.4 is divided in several sub-
sections, each of them consisting in an example of the applicability of the main results.
In addition, and with the aim of showing the validity of Conjecture 5.4 for a broad
family of maps, Section 7.4 provides new—or shorter proofs of some already known—
global stability results. Finally, Section 7.5 summarizes the results obtained and draws
conclusions.

7.2 Per capita production functions

First-order difference equations are commonly used to describe the population dynam-
ics of species reproducing in a short period of the year. Usually, these equations take
the general form

xt+1 = xt g(xt), x0 ∈ [0,+∞), t ∈ N, (7.1)

where xt corresponds to the population size at generation t andmap g to the per capita
production function, which naturally has to be assumed as non-negative. In addition,
g is frequently assumed to be strictly decreasing, because of the negative effect of the
intraspecific competition in the population size, and when that condition holds the
population is said compensatory [33, 123]. Theoretical ecologists have developed several
concrete families of per capita production functions. These families depend on one or
several parameters, which are essential to fit the functions to the experimental data.

Our results in this chapter cover some of themost relevant families of compensatory
population maps, which, as it was pointed out in [151], can be described in a unified
way by using the map

g : {x ∈ (0,+∞) : 1 + pxα > 0} → (0,+∞)

defined by
g(x) = lim

q↓p

κ

(1 + qxα)1/q , (7.2)
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where α, κ ∈ (0,+∞) and p ∈ R \ {−∞}, with R := [−∞,+∞] denoting the
extended real line.

The following models are obtained for different values of the parameters:

[M1] For p = 1 and α = 1, the Beverton-Holt model [23], in which g(x) =
κ

1 + x
.

[M2] For p = −1 and α = 1, the quadraticmodel [153], inwhich g(x) = κ(1− x)
and where κ < 4 for the difference equation (7.1) to be well-defined.

[M3] For p = 0 and α = 1, theRicker model [176], in which g(x) = κe−x.

Models [M1-M3] are compensatory. Nevertheless, [M2-M3] are always overcom-
pensatory [33, 45] (the map xg(x) is unimodal) and can have very rich and complicate
dynamics, whereas [M1] is never overcompensatory (themap xg(x) is increasing) and
has pretty simple dynamics: all nontrivial solutions monotonically tend to the same
equilibrium which, consequently, is G.A.S.

Map (7.2) also includes models that are overcompensatory or not depending on the
values of the parameters:

[M4] For p = 1, theMaynard-Smith-Slatkinmodel [156], inwhich g(x) =
κ

1 + xα
.

[M5] For α = 1 and p > 0, theHassellmodel [98], in which g(x) =
κ

(1 + px)1/p .

[M6] For p > 0, the Thiememodel [206], in which g(x) =
κ

(1 + pxα)1/p .

Obviously, [M4-M6] include [M1] as a special case. Similarly, the last two models
that we will mention can be considered as generalizations of [M2] and [M3], respec-
tively:

[M7] For p = −1, the discretization of the Richardsmodel [175], in which g(x) =
κ(1 − xα). Since xg(x) reaches its maximum value at x = (1/(1 + α))1/α,
the inequality ακ < (1 + α)

1+α
α must be satisfied for the difference equation

(7.1) to be well-defined.
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[M8] For p = 0, the Bellowsmodel [19], in which g(x) = κe−xα .

Models [M7-M8] generalize [M2-M3] by including a new exponent parameter α,
which determines the severity of the density dependence and makes the models more
flexible to describe datasets [19]. This is the announced exponent parameter playing a
central role in our study.

At this point, it is convenient tomake some remarks. First, we point out that the do-
main of g is bounded for models [M2] and [M7], whereas it is unbounded for the rest
of models. When the domain of g is bounded, there is a restriction in the parameters
involved in the map for which the difference equation (7.1) is well-defined. Second,
a suitable rescaling allows to obtain other frequently used expressions of these eight
models depending on an extra parameter, e.g., g(x) = κ(1 − mx) for the quadratic
model or g(x) = κe−mx for the Ricker model. This extra parameter is irrelevant for
the dynamics of (7.1).

Substituting map (7.2) into Seno’s equation (5.4), we obtain an intricate model de-
pending on up to five parameters for which establishing general local or global stability
results is a tricky task. For that purpose, we develop a general method in the following
section.

7.3 Exponent analysis method

Consider the difference equation

xt+1 = xtgs (xt) ,

with
gs(x) = c h(xα) + (b − c) h(sxα),

where b, s, α ∈ (0,+∞) and c ∈ [0,+∞) are such that c < b, s ≤ 1, and
h : (0, ρ) → (ν, µ) ⊂ (0,+∞) is a decreasingdiffeomorphismwithρ, µ ∈ {1,+∞}
and νb < 1 < µb.
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Notice that the domain of h can be the open bounded interval (0, 1) or the open
unbounded interval (0,+∞), covering all themodels described in the previous section.
In addition, the image of h can be bounded or unbounded, although the applications
presented in this paper are restricted to the bounded case.

For ρ = 1, it is not obvious that the difference equation xt+1 = xtgs (xt) is well-
defined, i.e., xgs (x) ∈ (0, ρ) for x ∈ (0, ρ). Next, we study when the difference
equation xt+1 = xtgs (xt) is well-defined and has a unique positive equilibrium. We
establish some notation first. Being the function

x 7→ gs

(
x1/α

)
= c h(x) + (b − c) h(sx),

a diffeomorphism from (0, ρ) to (νsb, µb), where

νs := lim
x→ρ

gs

(
x1/α

)
/b, (7.3)

we denote by js its inverse diffeomorphism, i.e., the function js : (νsb, µb) → (0, ρ)

satisfying
c h(js(z)) + (b − c) h(sjs(z)) = z, (7.4)

for all z ∈ (νsb, µb). Obviously, if ρ = +∞, then νs = ν for s ∈ (0, 1].

Lemma 7.1. Assume b, s, α ∈ (0,+∞) and c ∈ [0,+∞) are such that c < b, s ≤ 1,
and h : (0, ρ) → (ν, µ) ⊂ (0,+∞) is a decreasing diffeomorphism with ρ, µ ∈
{1,+∞} and νb < 1 < µb. In addition, let

s∗ := inf{s ∈ (0, 1] : νs < 1/b}, (7.5)

where νs is given by (7.3). Then, the map xgs (x) has a unique fixed point in (0, ρ) if
and only if s > s∗. Moreover, this fixed point is (js(1))

1/α.

Proof. Clearly, x ∈ (0, ρ) is a fixed point of xgs (x) if and only if gs (x) = 1, and in
such case, x = (js(1))

1/α.
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Next, notice that ν0 := cν+(b−c)µ
b ≥ νŝ ≥ νs ≥ ν1 = ν, for 0 < ŝ < s < 1, and

that νs depends continuously on s. Since g maps (0, ρ) onto (νsb, µb) and νb < 1 <

µb holds, the equation gs (x) = 1 for x ∈ (0, ρ) has solution if and only if s > s∗.
We have already stressed that νs = ν for ρ = +∞. Hence, s∗ = 0 for ρ = +∞.

In the conditions of Lemma 7.1, for each s ∈ (0, 1] we define the function

τs :
(

1
µb , 1

νsb

)
→ R by τs(z) :=

ln
(

js
( 1

z

))
ln z

.

Now, we study under which conditions the difference equation xt+1 = xtgs (xt)

is well-defined.

Lemma 7.2. Assume that the conditions of Lemma 7.1 hold with s ∈ (s∗, 1]. Then,
zgs (z) ∈ (0, ρ) for all z ∈ (0, ρ) if and only if α < αs, with

αs =

+∞, ρ = +∞,

minz∈(1/µb,1) τs(z), ρ = 1.
(7.6)

Moreover, if the equation xt+1 = xtgs (xt) is well-defined for s = 1, then it is also
well-defined for s ∈ (s∗, 1].

Proof. We consider separately the cases ρ = +∞ and ρ = 1. The case ρ = +∞ is
trivial. For ρ = 1, we have

z gs (z) ∈ (0, 1) for z ∈ (0, 1) ⇐⇒ gs (z) <
1
z
for z ∈ (0, 1).
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The latter inequality always holds if z ≤ 1
µb because gs ((0, 1)) = (νsb, µb). Hence,

gs (z) <
1
z
for z ∈ (0, 1) ⇐⇒ gs (z) <

1
z
for z ∈

(
1

µb , 1
)

⇐⇒ zα > js
( 1

z

)
for z ∈

(
1

µb , 1
)

⇐⇒ α <
ln
(

js
( 1

z

))
ln z

= τs(z) for z ∈
(

1
µb , 1

)
.

Since ρ = 1, we have that τs(z) > 0 for z ∈
(

1
µb , 1

)
and

lim
z→1/µb

τs(z) = +∞ and lim
z→1

τs(z) = +∞,

which finishes the proof of the first assertion. For the second one, notice that αs de-
creases as s increases, since js decreases with s. Therefore, α < α1 guarantees α < αs

for s ∈ (s∗, 1].

Now, in the conditions of Lemma 7.1, for each s ∈ (s∗, 1], we write

bs := min{µb,
1

νsb
}

and define the continuous function σs :
(

1
bs

, bs

)
⊂
(

1
µb , 1

νsb

)
→ R by

σs(z) :=


τs(z) + τs(

1
z ), z 6= 1,

−2j′s(1)
js(1)

, z = 1.
(7.7)

Lemma 7.3. The function σs given in (7.7) is continuous and positive. Moreover, when
ρ = 1, it satisfies σs(z) < τs(z) for z ∈

(
1
bs

, 1
)
.
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Proof. A direct application of l’Hôpital rule shows that σs is a continuous function:

lim
z→1

σs(z) = lim
z→1

ln (js (1/z))− ln (js(z))
ln z

= lim
u→0

ln(js(e−u))− ln(js(eu))

u

=
−2j′s(1)

js(1)
= σs(1).

On the other hand, to see that σs takes values on (0,+∞) note that z 7→ ln(js(z))
is a decreasing function and we are assuming that js is a diffeomorphism, so j′s(1) < 0.

Finally, for ρ = 1,

τs(z) =
ln(js(1/z))

ln z
> 0 and τs(1/z) =

ln(js(z))
− ln z

< 0,

for z ∈
(

1
bs

, 1
)
. Thus, σs(z) < τs(z) for z ∈

(
1
bs

, 1
)
.

The function σs, given in (7.7), is related to the fixed points of the map fs ◦ fs, with
fs(x) = xgs(x), as we will see next. Assuming α < αs, for the map fs ◦ fs to be
well-defined, and rearranging for α in the fixed points equation, we have (see Lemma
7.1)

gs(x)gs(xgs(x)) = 1 ⇐⇒ j−1
s (y) j−1

s

(
y
(

j−1
s (y)

)α)
= 1 ; y = xα (7.8)

⇐⇒ zj−1
s (js(z)zα) = 1 ; z = j−1

s (xα) (7.9)

⇐⇒ js(z)zα = js (1/z) ; z = j−1
s (xα) (7.10)

⇐⇒ α = σs(z) with z = j−1
s (xα) , or z = 1.

(7.11)

In other words, the difference equation xt+1 = xtgs(xt) has a nontrivial period-2
orbit if and only if there exists z ∈ (1/bs, bs) \ {1} and α < αs such that σs(z) = α.
Consequently, considering σs for the study of the global stability of the positive equi-
librium of xt+1 = xtgs(xt) becomes natural since, by the main theorem in [47], the
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absence of nontrivial period-2 orbits of xt+1 = xtgs(xt) is equivalent to the global
asymptotic stability of this positive equilibrium. More specifically, we will use the fol-
lowing result:

Lemma 7.4. Let −∞ ≤ a1 < a2 ≤ +∞, I = (a1, a2), f : I → I a continuous
function and x f ◦ f ∈ I such that ( f ◦ f )(x) 6= x for all x ∈ I \ {x f ◦ f }. Then, x f ◦ f

is a stable equilibrium for the map f ◦ f if and only if x f ◦ f is a G.A.S. equilibrium for
the map f .

Proof. Define f (1) := f , f (n) := f ◦ f (n−1) and apply the Sharkovsky Forcing The-
orem [193] to see that f (n)(x) 6= x for all x ∈ I \ {x f ◦ f }, n ≤ 1. If the continu-
ous function f (n)(x) − x was negative in (a1, x f ◦ f ), then x f ◦ f would not be stable
for the map f (2) since xj = f (2nj)(x0) would be a decreasing sequence for all x0 ∈
(a1, x f ◦ f ). Applying the same argument to the interval (x f ◦ f , a2), we conclude that
( f (n)(x)− x)(x − x f ◦ f ) < 0 for all n ≥ 1, x ∈ I \ {x f ◦ f }. In particular, replacing
x by f (m)(x), it follows that

(
f (n+m)(x)− f (m)(x)

) (
f (m)(x)− x f ◦ f

)
< 0 for all

n, m ≥ 1, x ∈ I \ {x f ◦ f }. Therefore, the subsequence
(

f (n)(x)
)

n
formed by the

terms smaller (respectively, greater) than x f ◦ f is increasing (respectively, decreasing).
Then, limn→+∞ f (n)(x) = x f ◦ f for all x ∈ I. The converse is obvious.

Remark 7.5. We are considering per capita production functions from (0, ρ) onto
(νsb, µb) ⊂ (νb, µb), given by

gs(x) = ch(xα) + (b − c)h(sxα),

where s and α run, respectively, through (s∗, 1] and (0, αs), these being the largest
intervals within which the equation xt+1 = xtgx(xt) is well-defined and has an equi-
librium (see (7.3), (7.5) and (7.6)).

Probably, the most relevant applications arise for the case in which the domain is
unbounded (i.e., ρ = +∞). In such a particular case, s∗ = 0, νs = ν and αs = +∞

170



for all s ∈ [0, 1]. Therefore, when ρ = +∞ the equation xt+a = xtgx(xt) is well-
defined and has an equilibrium for all s ∈ [0, 1] and α > 0.

Moreover, we point out that the following theorem (which is the main result of this
chapter) can be applied under very general conditions. In particular, it holds when the
per capita production function has an unbounded range.

In what follows, ρ, µ, ν, b and c will be considered as constants, while s and α will
mostly be seen as parameters.

Theorem 7.6. Let µ, ρ ∈ {1,+∞}, 0 < c < b, 0 ≤ νb < 1 < µb and
h : (0, ρ) → (ν, µ) be a decreasing diffeomorphism. Let s∗ := inf{s ∈ (0, 1] :
νs < 1/b}, αs given in (7.6), and consider the families of functions {js}s∗<s≤1 and
{σs}s∗<s≤1 definedby (7.4)and (7.7), respectively. For each s ∈ (s∗, 1]andα ∈ (0, αs)

also consider the discrete equation:

xt+1 = xt (c h (xα
t ) + (b − c)h (sxα

t )) . (7.12)

(A) Then, the equation (7.12) is well-defined, it has a unique positive equilibriumand:

(i) The equilibrium of (7.12) is locally asymptotically stable (L.A.S.) when α <
σs(1) and it is unstable for α > σs(1).

(ii) The equilibrium of (7.12) is globally asymptotically stable (G.A.S.) if and
only if α < σs(z) for all z ∈ (1, bs).

(B) Additionally, assume that the function h satisfies the following condition

(H1) The function x 7→ h′(x)/h′(sx) is nonincreasing for each s ∈ (s∗, 1].

If (7.12) is well-definedand its equilibrium isG.A.S. for s = 1, then (7.12) is well-
defined and its equilibrium is G.A.S., for the same parameters, but s ∈ (s∗, 1].

(C) Finally, assume that the function h satisfies the following condition

(H2) The function x 7→ h′(x)/h′(sx) is decreasing for each s ∈ (s∗, 1].
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If (7.12) is well-defined and its equilibrium is L.A.S. for s = 1, then (7.12) is well-
defined and its equilibrium is L.A.S., for the same parameters, but s ∈ (s∗, 1].

Proof. (A). Consider the map

fs(x) = x (c h(xα) + (b − c) h(sxα)) = xj−1
s (xα) .

By Lemmas 7.1 and 7.2, equation (7.12) is well-defined and has a unique equilibrium
x fs = (js(1))

1/α. To prove (i), we compute the derivative at the equilibrium,

f ′s(x) = j−1
s (xα) + x

(
j−1
s

)′
(xα) αxα−1.

The evaluation of this expression at x fs = (js(1))
1/α yields

f ′s
(
(js(1))

1/α
)
= 1 + αjs(1)

(
j−1
s

)′
(js(1)) = 1 + α

js(1)
j′s (1)

= 1 − 2α

σs(1)
,

and then, since σs(1) > 0 holds by Lemma 7.3,

−1 < f ′s
(
(js(1))

1/α
)
< 1 ⇐⇒ α < σs(1).

Similarly, if 0 < σs(1) < α then f ′s(x fs) < −1, so (7.12) is unstable.
By the symmetry of σs and applying an analogous argument as the one presented in

(7.8)–(7.11), it follows that

σs(z) ≷ α ∀z ∈ (1, bs) ⇐⇒ (( fs ◦ fs)(x)− x)(x − x fs) ≷ 0 ∀x ∈ (0, ρ) \ {x fs}.
(7.13)

To prove (ii), in view of (i) above, (7.8)–(7.11) and Lemma 7.4, just consider the fol-
lowing four scenarios:

• If α < σs(z) for all z ∈ [1, bs), then, by (7.13), ( fs ◦ fs)(x) 6= x for all
x ∈ (0, ρ) \ {x fs} and x fs is L.A.S. Then, x fs is G.A.S.
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• If α = σs(1) < σs(z) for all z ∈ (1, bs), then, by (7.13), (( fs ◦ fs)(x) −
x)(x − x fs) < 0 for all x ∈ (0, ρ) \ {x fs} and ( fs ◦ fs)′(x fs) = 1. The
equilibrium x fs is L.A.S. for fs ◦ fs. Then, x fs is G.A.S. for fs.

• If α > σs(z) for all z ∈ (1, bs), then, by (7.13), ( fs ◦ fs)(x) < x for all
x ∈ (0, x fs). Therefore, the equilibrium x fs is unstable.

• In any other case, the equation xt+1 = fs(xt) has nonconstant periodic solu-
tions. Hence, the equilibrium x fs is not G.A.S.

(B).We start by verifying that the function s 7→ σs(z) is nonincreasing for each z ∈
(1/bs, bs). Recall that νs is nonincreasing in s (see (7.3)), so (1/bŝ, bŝ) ⊂ (1/bs, bs)

for any 0 < ŝ < s < 1. Hence, σs(z) is well-defined if σŝ(z) is. By differentiating
with respect to s in

z = c h(js(z)) + (b − c) h(sjs(z)),

we obtain

0 = c h′ (js(z))
∂js(z)

∂s
+ (b − c) h′ (sjs(z))

(
js(z) + s

∂js(z)
∂s

)
,

which implies

∂ ln (js(z))
∂s

=
∂js(z)

∂s
js(z)

=
(c − b) h′ (sjs(z))

c h′ (js(z)) + (b − c) s h′ (sjs(z))

=
(c − b)

c
h′ (js(z))
h′ (sjs(z))

+ (b − c)s
.

Since condition (H1) holds and js is a decreasing diffeomorphism, we have that the
function z 7→ ∂(ln js(1/z))/∂s is nondecreasing in (1/bs, bs) for each s ∈ (s∗, 1].
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Thus,

∂

∂s
σs (z) =

∂

∂s

(
τs(z) + τs(1/z)

ln z

)
=

∂
∂s ln js(1/z)− ∂

∂s ln js(z)
ln z

≤ 0,

for all z ∈ (1/bs, bs) \ {1}. Therefore, the function s 7→ σs(z) is nonincreasing for
each z ∈ (1/bs, bs).

Now, if (7.12) is well-defined for s = 1, by Lemma 7.2, we know that (7.12) is well-
defined for s ∈ (s∗, 1), and, if its equilibrium is G.A.S. for s = 1, (A)-(ii) and the fact
that σs(1/z) = σs(z) yield

α ≤ σ1(1) < σ1(z) ≤ σs(z) for all z ∈ (1/bs, bs) \ {1} and s ∈ (s∗, 1].

Therefore, equation (7.12) is well-defined and its equilibrium is G.A.S. for all s ∈
(s∗, 1].

(C). Following the same reasoning as in the previous case but using (H2) instead of
(H1), it is easy to see that the function s 7→ σs(z) is decreasing for each z ∈ (1/bs, bs).
As a consequence, if the equilibrium of (7.12) is L.A.S. for s = 1, the application of
(A)-(i) yields

α ≤ σ1(1) < σs(1), for all s ∈ (s∗, 1],

and (7.12) is well-defined and its equilibrium is L.A.S. for all s ∈ (s∗, 1].

Remark 7.7. Notice that σs ◦ exp is an even function, which makes it more suitable
for graphical representations than σs itself.

Theorem 7.6 reduces the study of the local or global stability to the study of the
relative position of the graph of σs with respect to α. Figure 7.1 illustrates this. For
a fixed s, the relative position of minz∈(1,bs) σs(z), σs(1) and α determines the local
and global stability of the equilibrium of (7.12). Suppose that the graph of σs corre-
sponds to the black curve Figure 7.1a. From (i) and (ii) in Theorem 7.6, we obtain
that the equilibrium of (7.12) is unstable for α > σs(1), L.A.S. but not G.A.S. for
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minz∈(1,bs) σs(z) < α < σs(1), and G.A.S. for α < minz∈(1,bs) σs(z). Figure
7.1b illustrates the special case when the function σs reaches a strict global minimum
at z = 1. In such a situation, the range of values of α for which the equilibrium is
L.A.S., thanks to (i) in Theorem 7.6, is contained in the range of values of α for which
it is G.A.S., thanks to (ii) in Theorem 7.6. Hence, in this case, Theorem 7.6 completely
characterizes the stability of the equilibrium of (7.12): it is G.A.S. for α ≤ σs(1) and
unstable for α > σs(1).
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Figure 7.1: In all panels, the black curve represents the graph of σ1 ◦ exp. A: For α > σs(1)
the equilibrium of (7.12) is unstable, for minz∈(1,bs) σs(z) < α < σs(1) it is L.A.S. but not
G.A.S., and for α < minz∈(1,bs) σs(z) it is G.A.S. B: Since σs reaches at z = 1 a strict global
minimum, the equilibrium of (7.12) is G.A.S. for α ≤ σs(1). C: The assumption that σ1
reaches a strict global minimum at z = 1 and condition (H1) are sufficient to guarantee that
the graphs of the family of functions {σs}0<s≤1 are above the graph of σ1 and, consequently,
the equilibrium of (7.12) is G.A.S. for each s ∈ (0, 1] and α ≤ σ1(1).

Figure 7.1c deals with the last part of Theorem 7.6. Assume that σ1(1) is a global
minimum of σ1(z) and that condition (H1) holds. Then, all the graphs of the family
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of functions {σs}0<s≤1 are above the graph of σ1(z) and, therefore, the equilibrium
of equation (7.12) is G.A.S. for each α ≤ σ1(1) and 0 < s ≤ 1.

Apart from condition (H1), Theorem 7.6-(B) assumes that (7.12) is well-defined
and that its equilibrium is G.A.S. for s = 1. But we have already mentioned that
guaranteeing the G.A.S. character of an equilibrium is a difficult task. Nevertheless,
when the logarithmically scaled diffeomorphism ϕs(u) := ln (js (eu)) is C3, we can
derive a sufficient condition for σs(1) to be the strict global minimum of σs(z).

Corollary 7.8. If ϕs(u) := ln (js (eu)) is three times continuously differentiable with
ϕ′′′

s (u) < 0 for all u ∈ (− ln bs, ln bs), then σs(z) reaches at z = 1 its strict global
minimum value.

Proof. It is routine to check that[
dj (σs (eu) u − σs (1) u)

duj

]
u=0

=

[
dj (ϕs(−u)− ϕs(u)− σs (1) u)

duj

]
u=0

= 0,

for j = 0, 1, 2, and that

d3 (σs (eu) u − σs (1) u)
du3 =

d3 (ϕs(−u)− ϕs(u)− σs (1) u)
du3

= −ϕ′′′
s (−u)− ϕ′′′

s (u) > 0,

for u ∈ (− ln bs, ln bs). Therefore, σs (eu) u − σs(1)u > 0 for u ∈ (0, ln bs), i.e.,
σs(z) > σs(1) for all z ∈

(
1
bs

, bs

)
\ {1}.

7.4 Application to some population models

The next result characterizes the elements of the family of per capita production func-
tions (7.2) for which condition (H1) in Theorem 7.6 holds.
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Lemma 7.9. For any p ∈ R, the function h : {x ∈ [0,+∞) : 1 + px > 0} →
(0, 1) defined by h(x) = lim

q↓p

1

(1 + qx)1/q is a decreasing diffeomorphism. Moreover,

h satisfies (H1) for each s ∈ (0, 1) if and only if p ≥ −1.

Proof. Assume p 6= 0. Differentiating, we obtain that

h′(x) = − (1 + px)−(p+1)/p < 0

for any x ∈ [0,+∞) such that 1 + px > 0 and, consequently, the first statement is
true.

Moreover,

h′(x)
h′(sx)

=
− (1 + px)−(p+1)/p

− (1 + psx)−(p+1)/p =

(
1 + psx
1 + px

)(p+1)/p

=

(
s +

1 − s
1 + px

)(p+1)/p

and
d

dx

(
h′(x)
h′(sx)

)
= −(p + 1)

(
s +

1 − s
1 + px

)1/p (1 − s)
(1 + px)2 ,

which is non-positive for each s ∈ (0, 1) if and only if p ∈ [−1,+∞) \ {0}.
Finally, the result is straightforward for p = 0 sinceh(x) = e−x and h′(x)/h′(sx) =

e−(1−s)x.

The following subsections deal with the study of the harvesting model (5.4) for the
per capita production functions in Section 7.2. We use a similar procedure based in five
steps.

1. First, we rewrite the difference equation that we want to study, which will de-
pend on certain original parameters, as (7.12) with parameters b, c, s, α, ν, µ and
ρ.

2. We check that h satisfies condition (H1), thanks to Lemma 7.9.
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3. If necessary, we check that (7.12) is well-defined for s = 1. Next, we invoke
Corollary 7.8 to guarantee that the rewritten difference equationwith s = 1 has
an equilibrium, which is G.A.S.

4. Then,weuse statement (B) inTheorem7.6 to conclude the global stability result
for s ∈ (s∗, 1].

5. Finally, we interpret the result in terms of the original parameters.

7.4.1 Bellows model

The per capita production function of the Bellows model is given by g(x) = κe−xα ,
with κ, α > 0. The Seno model (5.4) is in this case

xt+1 = κθ(1 − γ)xte−xα
t + κ(1 − θ)(1 − γ)xte−(1−γ)αxα

t , x0 > 0, (7.14)

where θ ∈ [0, 1] and γ ∈ [0, 1).
In order to apply the results in Section 7.3, we set b = κ(1 − γ) > 1, c = κ(1 −

γ)θ, s = (1 − γ)α, ρ = +∞, ν = 0, µ = 1, and h(x) = e−x, which is a decreasing
diffeomorphism from (0,+∞) to (0, 1) satisfying condition (H1) thanks to Lemma
7.9. Notice that (7.12)with s = 1 is equivalent to (7.14)with θ = 1. In this case, bs =

b for each s ∈ (0, 1] and j1(z) = ln(b/z) for z ∈ (0, b),σ1(1) = 2/ln b. Moreover,
ϕ1(u) = ln (ln (be−u)) and ϕ′′′

1 (u) = − 2
(ln(be−u))3 < 0 for u ∈ (− ln b, ln b).

Therefore, a direct application of Theorem 7.6, taking into account that s∗ = 0,
νs = ν and αs = +∞, for all s ∈ [0, 1] when ρ = +∞ (see Remark 7.5), yields the
following result:

Proposition 7.10. If κ(1 − γ) > 1, then (7.14) has a unique positive equilibrium.
If, in addition, θ = 1, then the equilibrium of (7.14) at x = (ln(κ(1 − γ)))1/α is
unstable for α > 2/ ln(κ(1− γ) andG.A.S. for α ≤ 2/ ln(κ(1− γ)). Furthermore,
for θ < 1 and α ≤ 2/ ln(κ(1 − γ)), the equilibrium is also G.A.S.
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Proposition 7.10 characterizes the global stability of the positive equilibrium for the
Bellows model without harvesting. Such a result is new, as far as we know, and is inter-
esting in itself. Moreover, Proposition 7.10 confirms that, for the Bellows model, the
harvesting effort necessary for stabilization is less for θ ∈ (0, 1) than for θ = 0 and
θ = 1. Since the Bellows model has the Ricker model as a particular case, Proposition
7.10 generalizes [44, Proposition 3.3] and gives an alternative proof of the main result
in the previous chapter of this thesis.

7.4.2 Discretization of the Richards model

The per capita production function of the discretization of theRichardsmodel is given
by g(x) = κ(1 − xα), with κ, α > 0. Hence, Seno’s model (5.4) reads

xt+1 = κθ(1 − γ)xt(1 − xα
t ) + κ(1 − θ)(1 − γ)xt(1 − (1 − γ)αxα

t ), (7.15)

with x0 ∈ (0, 1), and where θ ∈ [0, 1] and γ ∈ [0, 1).
In this case, it is natural to assume that (7.15) is well-defined for γ = 0, i.e., that the

population model without harvesting makes sense. As mentioned when we presented
this per capita production function in Subsection 7.2, equation (7.15) is well-defined
for γ = 0 if and only if ακ < (1 + α)

1+α
α .

As in the previous case, we set b = κ(1 − γ) > 1, c = κ(1 − γ)θ, s = (1 −
γ)α, ρ = 1, ν = 0, µ = 1, and h(x) = 1 − x. Clearly, h(x) is a decreasing
diffeomorphism from (0, 1) to (0, 1) and, by Lemma 7.9, satisfies condition (H1).

We aim to obtain a global stability result for (7.12) with s = 1, which is equivalent
to (7.15) with θ = 1. Note that (7.12) is well-defined for s = 1 because αb ≤ ακ <

(1+ α)
1+α

α . Wehave also j1(z) = 1− z
b for z ∈ (0, b), beingσ1(1) = 2

b−1 ,ϕ1(u) =

ln
(

1 − eu

b

)
, and ϕ′′′

1 (u) = − beu(b+eu)

(b−eu)3 < 0. Then, σ1(z) > 2b
b−1 for z > 1 and the

equilibrium of (7.12) is G.A.S. for s = 1 if α ≤ 2b
b−1 , i.e., if b(α − 2) ≤ α.

In order to use Theorem 7.6, we need to impose s > s∗ = max{0, 1 − 1
b−c}, or

what is the same, νsb = (b− c)(1− s) < 1. For the selected values of the parameters,
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this is always true because

(b− c)(1− s) = (1− θ)κ(1−γ)(1− (1−γ)α) ≤ κ(1−γ)(1− (1−γ)α) < 1,

where we have used that xt+1 = κxt(1 − xα
t ), x0 ∈ (0, 1) is well-defined.

Proposition 7.11. If κ(1− γ) > 1 and ακ < (1+ α)
1+α

α , then (7.15) is well-defined
and has a unique positive equilibrium. If, in addition, θ = 1, then the equilibrium of
(7.15) is unstable for κ(1 − γ)(α − 2) > α and G.A.S. for κ(1 − γ)(α − 2) ≤ α.
Furthermore, for θ < 1 and κ(1 − γ)(α − 2) ≤ α, the equilibrium of (7.15) is also
G.A.S.

To the best of our knowledge, Proposition 7.11 gives the first global stability result
for the discretization of theRichardsmodel even in the casewithout harvesting. Notice
that the results in [140] cannot be used in this case since ρ 6= +∞. In the harvesting
framework, Proposition 7.11 includes [44, Proposition 3.6] as a particular result, where
the quadratic model was considered.

7.4.3 Maynard-Smith-Slatkin model

If we focus on populations governed by the Maynard-Smith-Slatkin model, the per
capita production function is given by g(x) =

κ

1 + xα
, where κ > 0 and α > 0.

In that case, model (5.4) is

xt+1 = κθ(1 − γ)
xt

1 + xα
t
+ κ(1 − θ)(1 − γ)

xt

1 + (1 − γ)αxα
t

, (7.16)

where θ ∈ [0, 1] and γ ∈ [0, 1).
In [44], following [1, Appendix S1] and [141, Theorem 1], it was stated that the

equilibrium of (7.16) for θ = 0 is G.A.S. if 1 < κ(1 − γ) ≤ α
α−2 . No result is

known about global convergence for the production function (7.16), in the general
case. However, this model can be easily handled by using Theorem 7.6 and Lemma
7.9.
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Consider (7.12) with b = κ(1 − γ) > 1, c = κ(1 − γ)θ, s = (1 − γ)α, ρ =

+∞, ν = 0, µ = 1 and h(x) = 1/(1 + x), which satisfies condition (H1) by
Lemma 7.9. Then, j1(x) = b

x − 1, σ1(1) = 2b
b−1 , ϕ1(u) = ln (be−u − 1), and

ϕ′′′
1 (u) = − beu(b+eu)

(b−eu)3 < 0.
Now, observe again that (7.12) with s = 1 corresponds to (7.16) with θ = 1, and

apply Theorem 7.6 taking into account that s∗ = 0, νs = ν and αs = +∞ for all
s ∈ [0, 1] when ρ = +∞ (see Remark 7.5).

Proposition 7.12. If κ(1 − γ) > 1, then (7.16) has a unique positive equilibrium. If,
in addition, θ = 1, then the equilibrium of (7.16) is unstable for κ(1− γ)(α− 2) > α

and G.A.S. for κ(1 − γ)(α − 2) ≤ α. Furthermore, for θ < 1 and κ(1 − γ)(α −
2) ≤ α, the equilibrium is also G.A.S.

It is interesting to note that considering the exponent parameter α in the quadratic
model, i.e., studying the discretization of the Richardsmodel, unveils the complete par-
allelism between the Maynard-Smith-Slatkin model and the quadratic model with re-
spect to stability results.

7.4.4 Hassell and Thieme models

As alreadymentioned, topologically conjugatedproduction functions give rise to equiv-
alent dynamical behaviors. However, when a convex combination of the type of (5.4)
is applied to two topologically conjugated production functions, the transformed sys-
tems could exhibit different dynamical behaviors.

When applying Theorem 7.6, while working in the case s = 1, we can replace our
production function by a topologically conjugated one, for which calculations are sim-
pler. This replacement is no longer valid when checking condition (H1).

In this subsection, we put into practice this approach to study the two models still
left: Thieme’s and Hassell’s models. Since Thieme’s model has Hassell’s model as a
particular case, we only consider the former. Besides, without loss of generality, we
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assume the per capita production function of the the Thieme model to be given by

g(x) =
κ

(1 + xα)β
, κ, α, β > 0.

Now, the change of variables yt = x1/β
t shows that the dynamics of the difference

equation
xt+1 =

κxt

(1 + xα
t )

β
(7.17)

are identical of those of the equation

yt+1 =
κ1/βyt

1 + yαβ
t

,

whose per capita production function, g(x) =
κ1/β

1 + xαβ
, belongs to the Maynard-

Smith-Slatkin family of maps. This provides a straightforward way to characterize the
global stability of the Thieme model.

Proposition 7.13. If κ > 1, then (7.17) has a unique equilibrium. In addition, the
equilibrium of (7.17) is unstable for κ1/β(αβ − 2) > αβ and G.A.S. for κ1/β(αβ −
2) ≤ αβ.

The previous result improves the global stability condition presented in [206] with
a simpler proof than the one used in [140], which relies on calculating the sign of a
certain Schwarzian derivative.

The Seno model (5.4) for the Thieme production function is

xt+1 =
κθ(1 − γ)xt

(1 + xα
t )

β
+

κ(1 − θ)(1 − γ)xt

(1 + (1 − γ)αxα
t )

β
. (7.18)

Again, in order to apply the results in Section 7.3, we set b = κ(1 − γ) > 1, c =

κ(1−γ)θ and h(x) =
1

(1 + x)β
, which is a decreasingdiffeomorphismfrom (0,+∞)
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to (0, 1) satisfying condition (H1) thanks to Lemma 7.9. We obtain the following new
result about the Thieme model under harvesting.

Proposition 7.14. If κ(1 − γ) > 1, then (7.18) has a unique positive equilibrium. If,
in addition, θ = 1, then the equilibrium of (7.18) is unstable for [κ(1 − γ)]1/β(αβ −
2) > αβ and G.A.S. for [κ(1 − γ)]1/β(αβ − 2) ≤ αβ. Furthermore, for θ < 1 and
[κ(1 − γ)]1/β(αβ − 2) ≤ αβ, the equilibrium is also G.A.S.

Altogether, we have shown that Conjecture 5.4 holds when restricted to the per
capita production functions [M1-M8]. Indeed, we have shown that a stronger result
holds since we are able to guarantee that the equilibrium is G.A.S. for θ ∈ (0, 1). Fur-
thermore, using part C of Theorem 7.6 we obtain the following general local stability
result in the spirit of Conjecture 5.4.

Corollary 7.15. Assume that g : (0,+∞) → (0,+∞) satisfies (H2), g′(x) < 0 for
all x > 0, g(0+) > 1, and there exists some d > 0 such that xg(x) is strictly increasing
on (0, d) and strictly decreasing on (d,+∞). Then, if the equilibrium of (5.4) with
θ = 0 is L.A.S., then the equilibrium of (5.4) is L.A.S. for all θ ∈ [0, 1].

7.5 Discussion and conclusions

This chapter completes and concludes the study conducted in this thesis about the ef-
fect of harvesting time on the stability of managed populations. This study revolves
around Conjecture 5.4, in which Cid et al. stated that for compensatory models the
moment of intervention has no effect on the local stability [44]. Cid et al. showed in
[44] that this conjecture is true, even for global stability, in the case of the quadraticmap
and the Beverton-Holt model. Although in Chapter 5 we disproved the conjecture for
general compensatory models, we expected it to be true for many models common in
population dynamics, which in most cases are known to satisfy additional conditions,
e.g., negative Schwarzian derivative. This led us to prove in Chapter 6 that harvest tim-
ing does not affect the global stability in the Ricker case. Apart from Theorem 5.2,
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where we proved that the moment of intervention does not affect the stability when
the harvesting effort is high enough, little was known about the effect of the harvest
time on the stability of models different from the quadratic map or the Beverton-Holt
and Ricker models.

The results presented in this chapter help to fill this gap. We have introduced an
innovative approach called exponent analysis, which reduces the study of the local or
global stability of populations subject to delayedharvesting to the analysis of the relative
position of the graph of a certain function with respect to an exponent parameter. The
application of this method allowed us to obtain new local and global stability results
for many common compensatory population models, which are encompassed under
the so called generalized α-Rickermodel [151]. In other cases, shorter proofs of already
known results were obtained.

In particular, the application of the exponent analysis to the Bellows model allowed
us to characterize its global stability, even in the case without harvesting. To the best
of our knowledge, this is a new result. The study of this case illustrates the power of
the method introduced in this chapter, since the main result in Chapter 6 is directly
derived, given that the Ricker model is a particular case of the Bellowsmodel. Similarly,
the application of the exponent analysis to the discretization of the Richards model
allowed us to conclude a global stability result for this model even in the absence of
harvesting. This is, as far as we know, the first global stability result for this model.
Sharp global stability results were also obtained by the application of themethod to the
Maynard-Smith-Slatkin and the Thieme models under delayed harvesting (also for the
Hassell model as a particular case of the latter). In particular, for the Thieme model
without harvesting, the global stability condition provided in [206] was improved and
a simpler proof than the one used in [140] was provided.

Finally, the study conducted in this chapter allowed us to determine additional con-
ditions for compensatory models that yield a local stability result in the spirit of Con-
jecture 5.4.
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8
Stability for one-dimensional discrete

dynamical systems revisited

8.1 Introduction

One-dimensional discrete-time dynamical systems are used to describe a large num-
ber of processes in a wide range of fields, e.g., the population growth of species with
nonoverlapping generations [206]. Usually, these processes are modeled by consider-
ing an appropriate family of maps depending on meaningful parameters and fitting
them to sample data. For most of these models, parameter restrictions ensuring the
existence and uniqueness of an equilibrium can be easily determined. The next step
towards determining the dynamics of the model consists in studying the stability of
the equilibrium. In general, conditions asserting the local stability are also easy to find.
Yet, the most desirable stability property is the global stability, since it allows to know
the fate of all solutions with independence of the initial condition. Unfortunately, as
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already pointed out and contrary to the local stability, proving the global stability is in
most cases a hard task.

The statement ‘L.A.S. implies G.A.S.’ meaning that the local asymptotic stability
of the equilibrium implies its global asymptotic stability is common in the literature.
This statement appeared for the first time in [137, 154], and has been backed up by
several papers corroborating it for the most typical models in discrete-time population
dynamics [16, 57, 73, 80, 89, 95, 126, 140, 142, 169]. Nevertheless, the property is not
true in general; see for example [55, 145].

The above considerations highlight the relevance of finding sufficient conditions en-
suring the global stability of the equilibrium. On paper, such conditions can be easily
found. For instance, a well-known necessary and sufficient condition for the global sta-
bility is the absence of period two orbits. However, this condition is hard to test. It is in
this sense that several papers have focused on finding sufficient conditions easier to test
and, in some cases, providing methods to test them. Prominent among these are the re-
sults for S-maps (unimodal maps with negative Schwarzian derivative) independently
obtained by Allwright [5] and Singer [194], or the enveloping method introduced by
Cull and Chaffee [58].

The aim of this chapter is to provide a newmethod for studying the local and global
stability of one-dimensional discrete-time models. These models are frequently of the
form

xn+1 = xng(xn), x0 ∈ dom g, (8.1)

with g belonging to a certain family of positivemapswithdom g ⊂ (0,+∞). Instead
of directly considering suchmodels, the proposedmethod considers topologically con-
jugated models of the form

∆yn = h(yn), y0 ∈ dom h, (8.2)
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where ∆yn := yn+1 − yn and h = ln ◦g ◦ exp. Notice that the change of variables
yn = ln(xn) transforms (8.1) into (8.2).

The study of the stability of model (8.2) is reduced to the study of the graph of a
certain family of functions in a similar way to the exponent analysis introduced in the
previous chapter. Themethod introduced here allows to complement and extend some
existing conditions for the global stability. In particular, it allows us to give a sufficient
condition for the global stability of (8.2), namely,

3(h′′)2 > h′h′′′,

which, obviously, is strictly weaker than 3(h′′)2 > 2h′h′′′, i.e., than h having negative
Schwarzian derivative.

The rest of this chapter is organized as follows. Section 8.2 contains some prelim-
inary results and definitions. The method for the analysis of the global stability is in-
troduced in Section 8.3. In Section 8.4 we illustrate the applicability of the method.
Section 8.5 studies the relationship of this method with the enveloping technique. Fi-
nally, Section 8.6 discusses the implications and limitations of our results.

8.2 Definitions and preliminary results

This section collects some preliminary results and definitions. Although all of them
could be considered as standard results and concepts, they are included here for the
sake of completeness and to fix notation. We use these preliminaries in the proofs of
the main results presented in the next section.

Throughout this section I ⊂ R is an interval (bounded or unbounded), f is a con-
tinuous map from I to itself and x f ∈ I is a fixed point of f , i.e., f (x f ) = x f . As
usual, we denote

f (0) := id, f (n+1) = f ◦ f (n), n ≥ 1, n ∈ N, (8.3)
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with id denoting the identity map; i.e., id(x) = x for all x ∈ I.

Remark 8.1. In what follows, the domains of the identity and constant functions are
assumed to be the largest sets for which the corresponding expressions make sense.

Definition 8.2. We say that x f is:

– Stable if for each neighborhood V of x f in I there exists a neighborhood U of
x f in I such that f (n)(x) ∈ V for all x ∈ U, n ≥ 1, i.e., if the family of maps
{ f (n)}n≥1 is equicontinuous at x f .

– Unstable if there exits a sequence xn → x f such that

lim sup
n

∣∣∣ f (n)(xn)− x f

∣∣∣ > 0,

i.e., if x f is not stable.

– A local repeller if there exists a sequence xm → x f such that

inf
m

lim inf
n

| f (n)(xm)− x f | > 0.

– A global repeller if the sequence ( f (n)(x))n has no accumulation points in I for
any x ∈ I \ x f .

– A local attractor if there exists a neighborhood V ⊂ I of x f such that

lim
n→+∞

f (n)(x) = x f

for all x ∈ V.

– A global attractor if
lim

n→+∞
f (n)(x) = x f

for all x ∈ I.
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Proposition 8.3. The following statements are equivalent:

a) x f is a global attractor.

b) ( f (n)(x)− x)(x f − x) > 0 for all x ∈ I \ {x f }, n ≥ 1.

c) ( f (n+m)(x)− f (m)(x))(x f − f (m)(x)) > 0 for all x ∈ I such that f (m)(x) 6=
x f , n, m ≥ 1.

d) f (2)(x) 6= x and

[
inf
n≥1

f (n)(x), sup
n≥1

f (n)(x)

]
⊂ I for all x ∈ I \ {x f }.

e) f (2)(x) 6= x for all x ∈ I \ {x f } and there exists n ≥ 1 such that x f is stable
for f (n).

f) ( f (2)(x)− x)(x f − x) > 0 for all x ∈ I \ {x f }.

Moreover, if x f is a global attractor, then it is stable and f (n) → x f uniformly on
compact subsets of I.

Proof. First, we show that a) =⇒ b) =⇒ c) =⇒ a).
a) =⇒ b). Since x f is a global attractor, there are no periodic points other

than x f . Then, for each n ≥ 1, the difference f (n)(x) − x has constant sign for all
x ∈ I, x < x f . If this sign were negative for certain n0 ≥ 1, then we would have
f (n0)(x) < x and the sequence ( f (jn0)(x))j would be strictly decreasing. But this is
impossible because we are assuming that x f is a global attractor. A similar argument
works for x > x f . Thus, ( f (n)(x)− x)(x − x f ) < 0 for all x ∈ I \ {x f }, n ≥ 1.

b) =⇒ c). Just apply b), changing x by f (m)(x).
c) =⇒ a). Let x ∈ I with f (m)(x) 6= x f , m ≥ 1 and consider the sequence

( f (n)(x))n. By c), the subsequence of ( f (n)(x))n formed by the terms smaller than
x f is strictly increasing, whereas the subsequence formed by the terms greater than x f

is strictly decreasing. Besides, x f is the only candidate to accumulation point of the
sequence. Thus, lim

n→+∞
f (n)(x) = x f for all x ∈ I.
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Second, we show that a) =⇒ d) =⇒ b), so that a) ⇐⇒ b) ⇐⇒ c) ⇐⇒
d).

a) =⇒ d). Trivial.
d) =⇒ b). Invoking Sharkovskii’s Theorem [193], we know that f (n)(x) 6=

x for all x ∈ I \ {x f }. Assume that there exists n0 ≥ 1 such that ( f (n0)(x) −
x)(x f − x) < 0 for all x, say, to the right of x f . Then, the sequence ( f (jn0)(x))j

converges (because it is bounded and increasing) towards a point c > x f in I. But this
is impossible, since by continuity c must satisfy c = f (n0)(c).

Third, we prove that x f is stable whenever it is G.A.S. Assume x f to be G.A.S. For
each x ∈ I, the subsequence of ( f (n)(x))n formed by the terms smaller than x f is
increasing, whereas the subsequence formed by the terms greater than x f is decreasing.
Then, the functions hn(x) = supm≥n f (m)(x) and jn(x) = infm≥n f (m)(x) are
continuous for alln ≥ 1. Clearly, hn ≥ f (n) ≥ jn and hn, jn both converge uniformly
on compact sets to x f as they are monotone sequences (Dini’s Theorem). Therefore,
f (n) itself converges uniformly on compact sets to x f . A convergent sequence of func-
tions defined on a compact metric space is equicontinuous if and only if it converges
uniformly (a consequence of the Theorem of Arzelà-Ascoli). Therefore, { f (n)}n is
equicontinuous at x f , i.e., x f is stable.

Now, it is obvious that a) =⇒ e). Let us prove that e) =⇒ d) (keep in mind
that it has already been proved that a) ⇐⇒ b) ⇐⇒ c) ⇐⇒ d)).

Assume f (2)(x) 6= x for all x ∈ I \ {x f } to hold and suppose that neither b) nor
d) ismet. Then, there existsn0 ≥ 1 such that f (n0)(x) < x, for all x ∈ I ∩ (−∞, x f ),
or f (n0)(x) > x, for all x ∈ I ∩ (x f ,+∞). Consider an arbitrary n ≥ 1. Then, the
sequence

(
f (jnn0)(x)

)
j
has no convergent subsequences in I. Consequently, x f is

unstable for f (n), which contradicts e).
Since it is obvious that b) =⇒ f ), to finish the proof it suffices to show that

f ) =⇒ e).
Let U be any interval containing x f and consider V = U ∪ f (U). Statement f )

implies that ( f (x)− x)(x f − x) > 0 and ( f (2)(x)− f (x))( f (x)− x f ) > 0 for
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any x ∈ I \ {x f }. Using these inequalities, we have f (V) ⊂ V. Therefore, x f is
stable for f .

Proposition 8.4. The following statements are equivalent:

a) x f is a local attractor.

b) x f belongs to the interior of a closed interval J ⊂ I such that f (J) ⊂ J and x f is
a global attractor for the restriction f|J .

In particular, if x f is a local attractor, then it is stable and f (n) → x f uniformly on
a compact interval of x f .

Proof. a) =⇒ b). Since f is continuous and x f is a local attractor, f (n)(x)− x < 0
for x ∈ V ∩ (−∞, x f ) or f (n)(x)− x > 0 for x ∈ V ∩ (−∞, x f ). Assume there
is n0 ≥ 1 such that f (n0)(x)− x < 0 for x ∈ V ∩ (−∞, x f ). The set C = {x ∈
I ∩ (−∞, x f ) : f (n0)(x) = x} cannot be empty, because otherwise the sequence
given by xj = f (jn0)(x), x ∈ I ∩ (−∞, x f ), would be strictly decreasing. But that
is impossible because

(
f (n)(x)

)
n
converges to x f provided that x ∈ V ∩ (−∞, x f ).

Define x0 := sup C ∩ (−∞, x f ). We consider two cases. On the one hand, let us
suppose that f (n0)((x0, xj)) ⊂ (x0, xj). Then, the sequence given by xj = f (jn0)(x),
x ∈ I ∩ (x0, x f ), would be strictly decreasing—what we know is impossible. On the
other hand, let us suppose that [x0, xj) ⊂ f (n0)((x0, xj)). Then, we can construct a
sequence xm → x f in (x0, x f ) such xm−1 = f (n0)(xm) < xm, for all m > 0. Thus,
for all n > m, we have

f (nn0)(xm) = f (nn0−n0)(xm−1) = · · · = f (nn0−mn0+n0)(x1) = f (nn0−mn0) (x0) = x0.

But this is impossible because the sequence
(

f (nn0)(xm)
)

n
must converge to x f if

xm ∈ V. Therefore,wehave shown that f (n)(x)− x > 0 for x ∈ V ∩ (−∞, x f ), n ≥
1. And a similar argument leads to

( f (n)(x)− x)(x f − x) > 0, for all x ∈ V \ {x f }, n ≥ 1. (8.4)
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Now, choose an interval [a, b] such that x f ∈ [a, b] ⊂ V and f ([a, b]) ⊂ V.
Using (8.4), J := [a, b] ∪ f ([a, b]) satisfies f (J) ⊂ J. Finally, (8.4) implies that b) in
Proposition 8.3 holds for f|J , therefore x f is a global attractor for f|J .

b) =⇒ a). Trivial.

We recall that x f is G.A.S. if it is a stable global attractor. Similarly, x f is L.A.S. if
it is a stable local attractor. Propositions 8.3 and 8.4 show the known fact that, in the
one-dimensional case, x f is G.A.S. (L.A.S.) if and only if it is a global attractor (local
attractor). As usual in the literature, in what follows we will call x f G.A.S. (L.A.S.)
instead of global attractor (local attractor).

The following two results give sufficient conditions to classify x f .

Proposition 8.5. a) If ( f (2)(x)− x)(x f − x) < 0 for all x ∈ I \ {x f }, then
x f is a global repeller.

b) If ( f (2)(x)− x)(x f − x) < 0 for all x ∈ U \ {x f }, where U is neighborhood
of x f in I, then x f is a local repeller.

Proof. a) For each x ∈ I \ {x f }, the sequences
(

f (2n)(x)
)

n
and

(
f (2n+1)(x)

)
n
=(

f (2n)( f (x))
)

n
aremonotone andmove away from x f . If any of these sequences had

a convergent subsequence, the limit of the subsequence would be a fixed point of f (2).
But that is impossible by our assumption. Therefore, the sequence

(
f (n)(x)

)
n
has

not accumulation points in I.
b) If C = {x ∈ I \ {x f } : f (2)(x) = x} is the empty set, we can use a). In other

case, define x0 := inf C ∩ (x f ,+∞) and y0 := sup C ∩ (−∞, x f ). On the one
hand, let us suppose that

x0 = sup
x f <x<x0

f (2)(x) and y0 = inf
x f <x<y0

f (2)(x).
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We can select a sequence (xm)m in (x f , x0) such that f (xm) ∈ (y0, x0) for all m.
Thus, the sequences

(
f (2n)(xm)

)
n
,
(

f (2n+1)(xm)
)

n
in (y0, x0) are monotone and

move away from x f , so they do not have a subsequence converging to any point of
(y0, x0). Consequently,

inf
m

lim inf
n

| f (n)(xm)− x f | ≥ min{|x0 − x f |, |y0 − x f |} > 0. (8.5)

On the other hand, let us suppose that

x0 < sup
x f <x<x0

f (2)(x) or y0 > inf
x f <x<y0

f (2)(x).

We assume that the first inequality holds, since in the other case the reasoning is similar.
In such a case, we can define a sequence xm → x f in (x f , x0) such that xm−1 =

f (2)(xm) > xm, for all m > 0. Thus, for all n > m,

f (2n)(xm) = f (2n−2)(xm−1) = · · · = f (2n−2m+2)(x1) = f (2n−2m) (x0) = x0

and
f (2n+1)(xm) = f

(
f (2n)(xm)

)
= f (x0).

Again, the sequences
(

f (2n)(xm)
)

n
and

(
f (2n+1)(xm)

)
n
in (y0, x0) do not have any

convergent subsequence with limit in (y0, x0), and (8.5) holds.

Proposition 8.6. If f : I → I is continuously differentiable, then:

a) | f ′(x)| < 1 for all x ∈ I implies that x f is G.A.S.

b) | f ′(x f )| < 1 implies that x f is L.A.S.

c) | f ′(x f )| > 1 implies that x f is unstable (local repeller).

d) ( f (2)(x)− x)(x f − x) ≥ 0 for all x in a neighborhood of x f implies that x f is
stable.
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Proof. a) We have ( f (2)(x) − x)′ < 0 for all x ∈ I, and f (2)(x f ) − x f = 0. In-
tegrating we obtain that ( f (2)(x) − x)(x f − x) > 0 for all x ∈ I \ {x f }, and it
suffices to use Proposition 8.3.f) to finish the proof of this part.

b) It is a direct consequence of Proposition 8.4.b).
c)We omit the proof since it follows the reasoning in part a), but using Proposition

8.5.
d) Assume, without loss of generality, that | f ′(x f )| ≥ 1. Then, ( f (2))′(x f ) ≥ 1

and

( f (2)(x)− x f )(x f − x) ≤ 0, ( f (2)(x)− x)(x f − x) ≥ 0 (8.6)

for all x in a neighborhood of x f . Finally, (8.6) implies f (2n)((x f − ε, x f + ε)) ⊂
(x f − ε, x f + ε), for all n ≥ 1 and ε > 0 small enough.

8.3 Stability analysis

In this section we introduce our method for the stability analysis, which is based on
models of the form

∆yn = h(yn), h ∈ G∗, y0 ∈ dom h, (8.7)

where
G∗ :=

⋃
−∞≤α<β≤+∞

G∗(α, β) (8.8)

and

G∗(α, β) := {h ∈ C1(α, β) : α < id+h < β, h′ < 0, h(β) < 0 < h(α)}.
(8.9)

After analyzing these models, we will see that topological conjugacy allows us to
translate all the stability results obtained for themtopositivemodels in the formof (8.1).
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8.3.1 Stability of single maps

We start our study by defining which stability properties can be associated with (8.7)
for a given h ∈ G∗. It is clear that for each h ∈ G∗ there exists a unique yh ∈ dom h
such that h(yh) = 0. We say that h ∈ G∗ is G.A.S. (respectively, L.A.S. or unstable)
when yh is G.A.S. (respectively, L.A.S. or unstable) for themap id+h. To facilitate the
study of these properties, we define a function fromG∗ to C =

⋃
−∞≤α<β≤+∞

C(α, β)

as follows.

Definition 8.7. We denote by σ the function σ : G∗ → C defined by h → σ(h) :=
σh, with

σh : (−bh, bh) → (0,+∞), σh(u) =

{
h−1(−u)−h−1(u)

u if u 6= 0,
−2

h′(yh)
if u = 0,

(8.10)
where bh := min{− inf h, sup h}.

The expression of σh in (8.10) is intricate but can be calculated explicitly for certain
maps. For instance, σ− id = 2. If the domain of the minus identity function in the
previous equality is (α, β), with α < 0 < β, then the domain of the constant function
σ− id is (−b, b), where b = min{−α, β}.

Some basic properties of σ are listed in the following result. In particular, it informs
us that σh is invariant under translations of the equilibrium point for h and how it
behaves under changes of scale.

Proposition 8.8. Let h ∈ G∗. The following statements hold:

a) σh is continuous, even and positive.

b) If (id+h)(2)(y) = y, then h(y) ∈ dom σh.

c) If a, b, c ∈ R are such that bh ◦ (a id+c) ∈ G∗, then σbh◦(a id+c) =
1
ab σh ◦( 1

b id
)
.
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d) If h ∈ G∗ ∩ C3(dom h), then

σ′
h(0) = 0

σ′′
h (0) = −2

3
(h−1)′′′(0) = −6(h′′(yh))

2 − 2h′(yh)h′′′(yh)

3(h′(yh))5 .

Proof. a). It is straightforward that σh is an even and continuous function for u 6= 0.
Moreover, by using L’Hôpital’s rule we obtain

lim
u→0

h−1(−u)− h−1(u)
u

= −2
(

h−1
)′

(0) =
−2

h′ (h−1(0))
=

−2
h′ (yh)

.

Hence, σh is continuous. Finally, the positivity of σh follows from the fact that h′ < 0
as h ∈ G∗.

b). Assume that y ∈ dom h satisfies (id+h)(2)(y) = y. This means that h(y +

h(y)) + h(y) = 0, which implies inf h < −h(y) < sup h. Therefore,

max{inf h,− sup h} < h(y) < min{− inf h, sup h},

or what is the same, h(y) ∈ (−bh, bh) = dom σh.
c). Operating,

σbh(u) =
(bh)−1 (−u)− (bh)−1 (u)

u
=

1
b

h−1(− 1
b u)− h−1( 1

b u)
1
b u

= 1
b σh

(
1
b u
)

.

σh◦a id(u) =
(h ◦ a id)−1 (−u)− (h ◦ a id)−1 (u)

u
=

1
a h−1(−u)− 1

a h−1(u)
u

= 1
a σh(u).

σh◦(id+c)(u) =
(h ◦ (id+c))−1 (−u)− (h ◦ (id+c))−1 (u)

u

=

(
h−1(−u)− c

)
−
(
h−1(u)− c

)
u

= σh(u).
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d). By using L’Hôpital’s rule,

σ′
h(0) = lim

u→0

h−1(−u)−h−1(u)
u − σh(0)

u
= lim

u→0

h−1(−u)− h−1(u)− uσh(0)
u2

=

(
h−1)′′ (0)− (h−1)′′ (0)

2
= 0,

and

σ′′
h (0) = lim

u→0

(
h−1(−u)−h−1(u)

u

)′
u

= lim
u→0

(
h−1(−u)− h−1(u)

)′ u −
(
h−1(−u)− h−1(u)

)
u3

=
3
(
−
(
h−1)′′′ (0)− (h−1)′′′ (0))− (− (h−1)′′′ (0)− (h−1)′′′ (0))

6

= −2
3

(
h−1

)′′′
(0) = −6(h′′(yh))

2 − 2h′(yh)h′′′(yh)

3(h′(yh))5 .

We disclose the relation between the stability of h and the map σh in the following
result.

Theorem 8.9. Let h ∈ G∗. The following statements hold:

a) h is L.A.S. if σh(0) > 1, and it is unstable (local repeller) if σh(0) < 1.

b) h is G.A.S. if and only if 1 < σh(u) for all u ∈ (−bh, bh) \ {0}.

c) If σh(u) ≥ 1 for all u in a neighborhood of u = 0, then h is stable.

d) If σh(u) < 1 for all u in a punctured neighborhood of u = 0, then h is unstable
(local repeller).
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Proof. a). It follows from Proposition 8.6.b) and 8.6.c) after noting that

σh(0) > 1 ⇐⇒ −2
h′(yh)

> 1 ⇐⇒ −2 < h′(yh) < 0 ⇐⇒

−1 < 1 + h′(yh) < 1 ⇐⇒ −1 < (id+h)′(yh) < 1 ⇐⇒
∣∣(id+h)′(yh)

∣∣ < 1

and

σh(0) < 1 ⇐⇒ −2
h′(yh)

< 1 ⇐⇒ −2 > h′(yh) ⇐⇒

−1 > 1 + h′(yh) ⇐⇒ −1 > (id+h)′(yh) ⇐⇒
∣∣(id+h)′(yh)

∣∣ > 1.

b). Let us assume that 1 < σh(u), ∀u ∈ (−bh, bh) \ {0}. On the one hand, if
u ∈ (0, bh),

1 < σh(u), ∀u ∈ (0, bh) ⇐⇒ u < h−1(−u)− h−1(u), ∀u ∈ (0, bh)

⇐⇒ h(y) < h−1(−h(y))− y, ∀y ∈
(

h−1(bh), h−1(0)
)

⇐⇒ h (h(y) + y) + h(y) + y > y, ∀y ∈
(

h−1(bh), yh

)
⇐⇒ (id+h)(2)(y)− y > 0, ∀y ∈

(
h−1(bh), yh

)
,

where we have written u = h(y).

On the other hand, an analogous reasoning can be used if u ∈ (−bh, 0) to obtain

1 < σh(u), ∀u ∈ (−bh, 0) ⇐⇒ (id+h)(2)(y)− y < 0, ∀y ∈
(

yh, h−1(−bh)
)

.

Therefore,

1 < σh(u), ∀u ∈ (−bh, bh) \ {0}

⇐⇒ ((id+h)(2)(y)− y)(y − yh) > 0, ∀y ∈
(

h−1(bh), h−1(−bh)
)
\ {yh}.

(8.11)

198



Next, by Proposition 8.8.b), the right-hand side of (8.11) is equivalent to

((id+h)(2)(y)− y)(y − yh) > 0, ∀y ∈ dom h \ {yh}.

Finally, invoking Proposition 8.3 (statements a) and f)), we reach the equivalence

1 < σh(u), ∀u ∈ (−bh, bh) \ {0} ⇐⇒ h is G.A.S.

c). If u ∈ U ∩ (0,+∞),

σh(u) ≤ 1, ∀u ∈ U ∩ (0,+∞) ⇐⇒ u + h
(

u + h−1(u)
)
≤ 0, ∀u ∈ U ∩ (0,+∞)

⇐⇒ y + h(y) + h (h(y) + y)− y ≤ 0, ∀y ∈ h−1 (U ∩ (0,+∞))

⇐⇒ (id+h)(2)(y)− y ≤ 0, ∀y ∈ h−1 (U) ∩ (−∞, yh) ,

where, as before, we have written u = h(y).
Analogously, if u ∈ U ∩ (−∞, 0),

σh(u) ≤ 1, ∀u ∈ U ∩ (−∞, 0) ⇐⇒ (id+h)(2)(y)− y ≥ 0, ∀y ∈ h−1 (U) ∩ (yh,+∞) .

Thus, we obtain the equivalence

σh(u) ≤ 1, ∀u ∈ U ⇐⇒
(
(id+h)(2)(y)− y

)
(yh − y) ≥ 0, ∀y ∈ h−1 (U) ,

which together with Proposition 8.6.d) proves the result.
d). We omit the proof of d) since it is similar to the previous one, but using Proposi-

tion 8.5.b) instead of Proposition 8.6.d).

8.3.2 Stability of families of maps

In the previous subsection, we have focused on stability results valid for a specific map
h ∈ G∗ (we recall that the definition ofG∗ appears in (8.8)). Here, we are interested
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in stability results valid for a familyG ⊂ G∗, and thus we consider

∆yn = h(yn), h ∈ G, y0 ∈ dom h, whereG ⊂ G∗. (8.12)

In particular, we are interested in studying in which cases the local stability of maps
inG implies their global stability. This leads us to define the following property.

Definition 8.10. We say that a family G ⊂ G∗ satisfies the property stable implies
G.A.S. (with relation to model (8.12)) ifG ⊂ {h ∈ G∗ : h is G.A.S. or h is unstable}.

The following result provides some general families ofmaps, in termsof the function
σ defined in the previous subsection, for which the stable implies G.A.S. property holds.

Proposition 8.11. Let

R := {h ∈ G∗ : σ−1
h (inf σh) = {0}},

P := {h ∈ G∗ ∩ C3(dom h) : (h−1)′′′ < 0}, (8.13)

and

Q := {h ∈ G∗ ∩ C5(dom h) : (h−1)(v > 0; σh(0)≤σh(bh)}. (8.14)

ThenP ⊂ R,Q ⊂ R,R satisfies the property stable implies G.A.S., and

{h ∈ R : |(id+h)′(yh)| ≤ 1} = {h ∈ R : h is G.A.S.}. (8.15)

Proof. Wenote that h ∈ Rmeans thatσh attains a strict globalminimumat 0. Assume
h ∈ P and consider the function Ψ(u) := u(σh(u)− σh(0)). Obviously, Ψ(0) =
0. By differentiating and substituting at u = 0,

Ψj)(0) =
[

dj((h−1)(−u)− (h−1)(u)− σh(0)u)
duj

]
u=0

= 0
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for j = 1, 2. Moreover,

Ψ′′′(u) = −(h−1)′′′(−u)− (h−1)′′′(u) > 0.

Therefore Ψ(u) > 0 for u > 0, and Proposition 8.8.a) implies that σh attains a
strict global minimum at 0. Thus,P ⊂ R.

Assume now h ∈ Q and consider again the function Ψ. We know that

Ψ(0) = Ψ′(0) = Ψ′′(0) = 0.

Moreover,
Ψ(iv(0) = (h−1)(iv(0)− (h−1)(iv(0) = 0.

and
Ψ(v(0) = −(h−1)(v(−u)− (h−1)(v(u) < 0.

If Ψ′′′(0) ≤ 0 then

Ψ(bh) =
∫ bh

0
Ψ′(u)du < 0,

which is impossible since σh(bh) ≥ σh(0). Therefore, Ψ′ is convex at u = 0. Besides,
Ψ′′(0) = 0 and Ψ′′′ is strictly decreasing in the interval (0, bh). Hence, Ψ has at most
one inflection point in (0, bh). This, together with Ψ(bh) ≥ 0 and Proposition 8.8.a),
implies that σh attains a strict global minimum at 0, and thusQ ⊂ R.

Now, assume h ∈ R. We consider two cases. First, if inf σh < 1, then σh(0) < 1,
because h ∈ R. AndTheorem 8.9.a) implies h is unstable. Second, if 1 ≤ inf σh, then
1 < σh(u) for all u ∈ (−bh, bh) \ {0}, again because h ∈ R. And Theorem 8.9.b)
guarantees that h is G.A.S.
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In particular, we have just shown {h ∈ R : σh(0) ≥ 1} = {h ∈ R : h is G.A.S.},
which finishes the proof after noting that for h ∈ G∗ the following holds

σh(0) ≥ 1 ⇐⇒ −2
h′(yh)

≥ 1 ⇐⇒ −2 ≤ h′(yh) ≤ 0 ⇐⇒

−1 ≤ 1 + h′(yh) ≤ 1 ⇐⇒ −1 ≤ (id+h)′(yh) ≤ 1 ⇐⇒
∣∣(id+h)′(yh)

∣∣ ≤ 1.

The setP in (8.13) satisfies

P = {h ∈ G∗ ∩ C3(dom h) : 3(h′′)2 > h′h′′′},

since (h−1)′′′(u) =
3(h′′(y))2 − h′(y)h′′′(y)

(h′(y))5 , with u = h(y) and h′ < 0. There-

fore, we have the following result.

Corollary 8.12. If h ∈ G∗ ∩ C3(dom h) satisfies

3(h′′)2 > h′h′′′, (8.16)

then h is G.A.S. whenever it is stable.

Remark 8.13. With regard to (8.14), given that Ψ(v > 0, functions Ψ and Ψ′ are
eventually monotone near bh. Therefore, σh(bh) is well defined if we take

σh(bh) = lim
u→bh

σh(u) ∈ [0,+∞].

Also note that condition |(id+h)′(yh)| ≤ 1 in (8.15) is equivalent to h′(yh) ≥ −2.
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8.3.3 Stability of positive models

As pointed out at the beginning of this section, our results can be translated via topo-
logical conjugacy to positive models of the form (8.1). Let us denote

C =
⋃

−∞≤α<β≤+∞

C(α, β)

and
C+ =

⋃
0≤α<β≤+∞

C+(α, β),

with C+(J) = {g ∈ C(J) : g > 0}, and define T : C+ → C by

T(g) = ln ◦g ◦ exp . (8.17)

Clearly, T is bijective, with T−1 : C → C+ given by T−1(h) = exp ◦h ◦ ln. Fur-
thermore, (T(g))−1 = T(g−1), whenever g ∈ C+ and g is injective. Similarly,
(T−1(h))−1 = T−1(h−1), whenever h ∈ C and h is injective.

The operatorT transformsmodel (8.1) intomodel (8.2). The results formodel (8.2)
are valid for subsets G of G∗. Therefore, those results are valid for model (8.1) for
subsets F = T−1(G) of

F∗ = T−1(G∗) =
⋃

0≤α<β≤+∞

F∗(α, β) (8.18)

with

F∗(α, β) = {g ∈ C1(α, β) : α < id g < β, g′ < 0, g(β) < 1 < g(α)},

or, what is the same,

F∗(α, β) = T−1(G∗(ln α, ln β)).
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8.4 Applications

We illustrate in this section how the above results allow one to obtain sharp global sta-
bility results for some several relevant models in discrete-time population dynamics.

Example 8.14. The Pennycuik model [37], xn+1 =
κxn

1 + pexn
, corresponds to the

family

F =

{
g(x) =

κ

1 + pex : κ > 1 + p > 1
}

⊂ F∗(0,+∞) ⊂ F∗.

Then,

G := T(F) =
{

h(y) = ln κ − ln
(

1 + pe(e
y)
)

: κ > 1 + p > 1
}
⊂ G∗(−∞,+∞) ⊂ G∗,

3
(
h′′(y)

)2 − h′′′(y)h′(y) =
p2e2y+2ey(

3ey+2e2y+2p2e2ey
+4peey

+pe2y+ey
+3pey+ey

+2
)

(peey
+1)

4 > 0.

Thus,G ⊂ P ⊂ R, and thenG satisfies the property stable implies G.A.S. and {h ∈
G : |(id+h)′(yh)| ≤ 1} = {h ∈ G : h is G.A.S.}. Consequently, the equilibrium
xg of the Pennycuik model is G.A.S. if and only if κ−1

κ ln
(

κ−1
p

)
≤ 1.

Next, we consider generalizations of other relevant models in population dynamics
that were studied in [55, 57, 58] via the enveloping method. Some of these models are
defined for all positive values of the state variable and others have bounded domains.
In [140], sharp global stability results were obtained for generalizations of models in
[55, 57, 58]withunboundeddomains, including thePennycuikmodel above. Here, we
apply our method to obtain similar results for generalizations of models in [55, 58, 57]
with bounded domains.

Example 8.15. Consider the model xn+1 = xn(1 + α(1 − xn))κ , with α, κ > 0.
Thismodel generalizesmodel II in [55, 57, 58],which corresponds toκ = 1. Moreover,
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it corresponds to the family

F =

{
f (x) = (1 + α(1 − x))κ :

(1 + α)κκκ

(κ + 1)κ+1 < 1
}

⊂ F∗(0, (α + 1)/α) ⊂ F∗.

Then,

G := T(F) =

{
h(y) = κ ln(1 + α(1 − ey)) :

(1 + α)κκκ

(κ + 1)κ+1 < 1
}

⊂

⊂ G∗(−∞, ln(α + 1)− ln(α)) ⊂ G∗,

and

3
(
h′′(y)

)2 − h′′′(y)h′(y) =
κ2α2(α + 1)e2y((2 − ey)α + 2)

(1 + α − αey)4 > 0.

Thus, G ⊂ P ⊂ R, and then G satisfies the property stable implies G.A.S. Further-
more, {h ∈ G : |(id+h)′(yh)| ≤ 1} = {h ∈ G : h is G.A.S.}.

It is straightforward to see that the equilibrium xg ofmodel xn+1 = xn(1+ α(1−
xn))κ , with α, κ > 0, is G.A.S. if and only if ακ ≤ 2, which was previously reported
for the particular case κ = 1 in [55, 57, 58] (see model II there) as an application of the
enveloping method.

Example 8.16. Our next example is the model xn+1 = xn(1 − α ln(xn))κ with
κ, α > 0. This model generalizes model III in [55, 57, 58], which corresponds to
κ = 1. Moreover, it corresponds to the family

F = {g(x) = (1 − α ln(xn))
κ : κα < e} ⊂ F∗(0, e1/α) ⊂ F∗.

Then,

G := T(F) = {h(y) = κ ln(1 − αy) : κα < e} ⊂ G∗(−∞, 1/α) ⊂ G∗,
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and

3
(
h′′(y)

)2 − h′′′(y)h′(y) =
κ2α4

(1 − αy)4 > 0.

Thus, G ⊂ P ⊂ R, and then G satisfies the property stable implies G.A.S. Further-
more, {h ∈ G : |(id+h)′(yh)| ≤ 1} = {h ∈ G : h is G.A.S.}.

As in the previous example, this implies that the equilibrium xg of model xn+1 =

xn(1 − α ln(xn))κ , with κ, α > 0, is G.A.S. if and only if ακ ≤ 2. In particular, this
generalizes the result reported in [55, 57, 58] for model III via the enveloping method.

The above examples show that our results are applicable to models for which the
results in [140] are not applicable due to the boundedness of their domains. We end
this section by showing that the method presented here is applicable, even in the case
of unbounded domains, to models for which the results in [140] are inconclusive.

Example 8.17. Consider xn+1 = xn
1+ln(xn+e−1)

, which corresponds to the positive
map g(x) = 1

1+ln(x+e−1)
∈ F∗(0,+∞) ⊂ F∗. We have that T(g)(y) = h(y) =

− ln(1+ ln(ey + e−1)) ∈ G∗(−∞,+∞) ⊂ G∗. Ifwe considerh(y) = 3 (h′′(y))2 −
h′′′(y)h′(y) then

h(y) =
e2y+2

(
e2y+2 +

(
ey+1 + 2

)
ln2 (ey+1 + 1

)
− 3ey+1 ln

(
ey+1 + 1

))
(ey+1 + 1)4 ln4 (ey+1 + 1)

.

For z = ey+1 > 0,

h(y) = h(ln(z)− 1) =
z2
(

z2 + (z + 2) ln2(z + 1)− 3z ln(z + 1)
)

(z + 1)4 ln4(z + 1)
.

Consider the functionu(z) = z2 +(z+ 2) ln2(z+ 1)− 3z ln(z+ 1), forwhich
u(0) = 0 and u′(0) = 0. Since u′′(z) = z(2z+2 ln(z+1)+3)

α2(z+1)2 > 0 for all z > 0, we
conclude u′(z) > 0 for all z > 0. And using the same argument, u(z) > 0 for all
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z > 0. This means that h(y) > 0 for all y ∈ (−∞,+∞). Thus, h ∈ P ⊂ R, and
then h is G.A.S. if and only if |(id+h)′(yg)| ≤ 1.

We show now that Corollary 2.7 in [140] is not applicable in this case. The positive
equilibrium is xg = 1− e−1 and theSchwarzianderivative of j(y) = − ln(g(xge−y))

is the same as for h. Therefore, proving that the Schwarzian derivative of j is negative
everywhere is equivalent to prove that 3 (h′′(y))2 − 2h′′′(y)h′(y) is positive every-
where. However, this expression evaluated at y = 0 is positive (approximately 0.0482)
while evaluated at y = 3 is negative (approximately−0.0014).

It can be argued that Corollary 2.7 in [140] refers only to per capita production
functions that are bounded at the origin, while that of our example is not. However, it
would suffice to replace the constant e−1 above with a larger one, close enough to e−1

so that all the reasoning would remain valid.

8.5 Pre-order and enveloping

In the previous section,wehave seen that themethodpresented in this chapter allows to
obtain sharp global stability results for generalized versions of models previously stud-
ied via the enveloping technique (see [58]). In this section, we relate ourmethod to this
technique. To that end, we introduce a pre-order inG∗ by

g � ĝ ⇐⇒ bĝ ≤ bg and σg ≤ σĝ. (8.19)

Proposition 8.18. Let α, β ∈ [−∞,+∞], with α < β and g, ĝ ∈ G∗(α, β). Then,
the following statements hold:

a) If (id−yĝ) g ≤ (id−yĝ) ĝ, then g � ĝ.

b) If g � ĝ and g is G.A.S., then ĝ is G.A.S.

c) If (id−yĝ) g < (id−yĝ) ĝ in (α, β) \ {yĝ} and σg ≥ 1, then ĝ is G.A.S.
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Proof. a). Since g, ĝ ∈ G∗(α, β), the inequality

(id−yĝ) g ≤ (id−yĝ) ĝ (8.20)

implies yg = yĝ. Moreover, from (8.20), we have − inf ĝ ≤ − inf g and sup ĝ ≤
sup g. Hence, bĝ ≤ bg.

On the other hand, (8.20) implies ĝ(y) ≤ g(y) for y ∈ (ĝ−1(bĝ), yĝ). So u ≤
g(ĝ−1(u)) for u ∈ (0, bĝ). And it follows that

g−1(u) ≥ ĝ−1(u) for u ∈ (0, bĝ). (8.21)

Analogously, we obtain that (8.20) guarantees

g−1(u) ≤ ĝ−1(u) for u ∈ (−bĝ, 0). (8.22)

Using (8.21) and (8.22), we conclude that

σg(u) =
g−1(−u)− g−1(u)

u
≤ ĝ−1(−u)− ĝ−1(u)

u
= σĝ(u) for u ∈ (0, bĝ),

which together with Proposition 8.8.a) and bĝ ≤ bh shows that g � ĝ.
b). Since g � ĝ, bĝ ≤ bg and σg ≤ σĝ. Besides, since g is G.A.S., applying

Theorem 8.9.b) we know that 1 < σg(u), for all u ∈ (−bg, bg) \ {0}. Thus, 1 <

σĝ(u), for all u ∈ (−bĝ, bĝ) \ {0}. And, using again Theorem 8.9.b), ĝ is G.A.S.
c). Following theproof ofpart a), bĝ ≤ bg andσg(u) < σĝ(u) foru ∈ (−bĝ, bĝ) \

{yĝ}. Furthermore, since 1 ≤ σg, we arrive at 1 = σg(u) < σĝ(u) for u ∈
(−bĝ, bĝ) \ {yĝ}, and by Theorem 8.9.b), ĝ is G.A.S.

Proposition 8.19. Let β, β̂ ∈ (−∞,+∞] such that β ≤ β̂, g ∈ G∗(−∞, β) and
ĝ ∈ G∗(−∞, β̂). Assume yĝ < β and g(β) = −∞, then the following statements
hold:

a) If (id−yĝ) g ≤ (id−yĝ) ĝ in (−∞, β), then g � ĝ.
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b) If (id−yĝ) g < (id−yĝ) ĝ in (−∞, β) \ {yĝ} and σg ≥ 1, then ĝ is G.A.S.

c) If (id−yĝ) g < (id−yĝ) ĝ in (−∞, β) \ {yĝ} and (id+g)(2) = id, then
ĝ is G.A.S.

Proof. a). Theconditionyĝ < β togetherwith (id−yĝ) g ≤ (id−yĝ) ĝ in (−∞, β)

guarantees that yĝ = yg. By hypothesis,− inf g = +∞, so− inf ĝ ≤ − inf g. The
rest of the proof is identical to that of Proposition 8.18.a)

b). Using the proofs of the previous statement and Proposition 8.18.b), g � ĝwith
σg(u) < σĝ(u) for u ∈ (−bĝ, bĝ) \ {yĝ}. Furthermore, since 1 ≤ σg, it follows
that 1 = σg(u) < σĝ(u) for u ∈ (−bĝ, bĝ) \ {yĝ}, and by Theorem 8.9.b), ĝ is
G.A.S.

c). It is a consequence of the previous statement after noting that (id+g)(2) = id
implies σg = 1. Indeed,

(id+g)(2) = id =⇒ (id+g)(2)(y) = y, ∀y ∈
(

g−1(bg), g−1(−bg)
)

⇐⇒ g (g(y) + y) + g(y) + y = y, ∀y ∈
(

g−1(bg), g−1(−bg)
)

⇐⇒ g(y) = g−1(−g(y))− y, ∀y ∈
(

g−1(bg), g−1(−bg)
)

⇐⇒ u = g−1(−u)− g−1(u), ∀u ∈ (−bg, bg)

⇐⇒ 1 = σg(u), ∀u ∈ (−bg, bg).

Using the operator T defined in (8.17), we can see that the relation between the
method presented here and the enveloping technique is as follows. Theorem 3 in [57]
corresponds to Proposition 8.19.c), andCorollary 4 in [57] corresponds to Proposition
8.19.b).

Example 8.20. Our last example shows how the pre-order defined in (8.19) can be ap-
plied to study a perturbedmodel. Let P, Q ∈ F∗(0,+∞) and suppose the asymptotic
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behavior of equation

xn+1 = xnP(xn) (8.23)

to be known. Consider the perturbed model

xn+1 = xnP(xn)(Q(xn))
α, (8.24)

with α ≥ 0, and denote p := T(P), q := T(Q) and g := p + αq. Assume also that
yp = yq.

Clearly, g � p, and we conclude that (8.23) to be G.A.S. is a necessary condition
for (8.24) to be G.A.S.

8.6 Discussion and conclusions

We have introduced a new method for the study of the global stability of one-dimen-
sional discrete dynamical systems. Although the focus of this technique is on generic
positive maps, it is based on the graphical analysis of a certain family of functions ob-
tained for a transformed version of these maps.

The main result provided here allows one to carry out stability analysis for single
maps. Moreover, we have shown that this result can be extended and applied to some
general families of maps. The results obtained complement and extend some existing
conditions in the literature for the global stability. In particular, Corollary 8.16 pro-
vides a strictly weaker condition than the classical condition of negative Schwarzian
derivative. We have also shown how all these results can be translated to the case of
generic positive maps via topological conjugacy.

We have provided examples showing the applications of our method. These exam-
ples show that the results provided here extend Corollary 2.7 in [140] in several direc-
tions, since they are applicable in certain cases in which the domain is bounded or far
from the origin, the per capita production function is not bounded at the origin, or the
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Schwarzian derivative is not negative. In particular, we have obtained sharp global sta-
bility results for generalizations of some relevant models in population dynamics with
bounded domains studied in [55, 57, 58] via the enveloping method, which comple-
ments the work done in [140] for models with unbounded domains. We have also
demonstrated with a specific example that, even in the case of models with unbounded
domain, the method presented here is applicable to cases in which the results provided
in [140] are inconclusive. Yet, we want to highlight that the results in [140] were re-
cently useful to study the global stability of delay differential equations modeling eco-
nomic growth [36]. Checking if the results presented here would be useful in that
framework is an interesting problem.

We have related our method to the enveloping technique by introducing a certain
pre-order in a generic family of maps. Using this pre-order, we have shown how our
results are related to the main results in [58] via topological conjugacy. Finally, we have
applied these results to study the global stability of a perturbed model.
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Conclusions and future prospects

Conclusions

In this thesis, we have addressed two different problems concerning the stability of one-
dimensional discrete dynamical systems. These systemsplay an important role in awide
range of fields, and therefore our results have potential interest in fields different from
population dynamics, e.g., in engineering.

On the one hand, we have proposed new control methods aimed at reducing erratic
fluctuations. These techniques are particularly suitable for the control of biological
populations since they directly modify the state variable of the system. The analysis
of these techniques led us to investigate bifurcation structures of piecewise smooth sys-
tems. On the other hand, we have studied the global stability of systems in two different
situations. First, we have investigated the effect of the interplay of harvesting intensity
and harvesting timing on the global stability of dynamical systems modeling biological
populations. Second, we have proposed a new method to study the global stability of
generic one-dimensional discrete dynamical systems.

Adaptive threshold harvesting (ATH) is the first control technique proposed in this
thesis. It is a harvesting control method closely related to the existing techniques adap-
tive limiter control (ALC) and threshold harvesting (also known as limiter control).
The scope of these two techniques is widened with ATH, since it extends the applica-
bility of adaptive limiters to situations in which harvesting is the only possible form of
intervention. We have proved that the stabilizing effect of ATH is attained by trapping
the population size within an interval around the positive equilibrium, whose length
decreases with the harvesting intensity. Analytical expressions for the endpoints of this
interval were obtained, which allow one to determine the harvesting intensity necessary
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to reach any stabilization goal. For populations starting outside the trapping region,
reaching it takes a certain time, which is excessively long for high harvesting intensities.
We have proposed modified versions of both ATH and ALC to reduce the length of
these transients without altering the asymptotic dynamics of themanaged populations.
We have also studied the applicability of ATH as a harvesting strategy when the aim is
to gain economic benefit from the exploited populations. To that end, we have inves-
tigated both the short and long term yield. In particular, we have shown that trying to
maximize the short-term yield is risky in terms of sustainability.

We have studied the performance of both ATH andALC on populations subject to
biologicalmechanisms that put them at risk of extinction or promote recurrent popula-
tion outbreaks. To that end, we have compared the impact of the two control methods
on extinction and outbreak probabilities in different scenarios. We have shown that
the beneficial effect of the two strategies is only observed for sufficiently large control
intensities. Yet, the two methods show a clear disparity in each of the biological situa-
tions considered. With regard to the control of outbreaks, we have shown that ATH
reduces the probability of their occurrence while ALC is either ineffective or counter-
productive. When the goal is to prevent population extinctions, the situation is just
the opposite. Contrary to what is common in conservation biology and mathemati-
cal modeling, we have investigated the risk of extinction of large populations. We have
shown that these populations are not necessarily safe by their large size and that Allee
effects can not be ignored if the dynamics are overcompensatory.

Combined adaptive limiter control (CALC) is the second control strategy proposed
in this thesis. This is a control method that combines restocking and harvesting accord-
ing to ALC and ATH, and constitutes a general framework for adaptive limiters since
it includes ALC and ATH as particular cases. We have proved CALC to have stabi-
lizing properties similar to the ones of ALC and ATH, and we have investigated the
advantages of the combination of restocking and harvesting under CALC over only re-
stocking (ALC) and only harvesting (ATH). To that end, we have studied the effect of
the control interventions on the constancy stability and the outbreak risk of different
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populationmodels. We have shown that the combination of restocking and harvesting
improves the constancy stability of the managed populations over only restocking or
only harvesting when the control intensities are high enough. When the goal is to pre-
vent population booms, we have shown that combining harvesting with restocking is
only beneficial when the harvesting intensity is low. Since interventions always have a
cost, we have studied the trade-off between the stabilizing goals that are attained with
CALCand the cost of the interventions. Wehave demonstrated that the decision about
which are the ‘best’ intensities for harvesting and restocking can not be only based on
stability criteria.

The study of the stabilizing properties of CALC naturally leads to a problem about
piecewise smooth dynamical systems. When the underlying dynamics are described by
unimodal maps, the production function of CALC is piecewise continuous with two
break points. If only the outermost branches of this function are considered, it can be
seen in terms of the control intensities as a biparametric family of bimodal piecewise lin-
earmaps (PWL).We have studied the bifurcation structure obtained from the collision
of the breakpoints of these maps with cycles contained in the outermost partitions of
the domain. We have shown that this structure is a rather degenerate case of an already
studied bifurcation structure of a six-parametric family of PWLmaps, which includes
themaps obtained fromCALCas a strict subfamily. Our results allowus to completely
describe the bifurcation structure of CALC and to complete the solution of a similar
problem previously stated in the field of economics [74]. With regard to the type of
bifurcation, we have proved that when parameters are varied through one of the bifur-
cation points a continuum of cycles lying in the external partitions of the state space
emerge and disappear afterwards. This constitutes a case of degenerate border collision
bifurcation that, as far as we know, has not been reported before. We have also demon-
strated the applicability of our results to the determination of the bifurcation structure
of CALC for some relevant models in population dynamics. We have shown that the
bifurcation structure may range from very simple to very intricate.
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Another problem addressed in this thesis is about the combined effect of harvest-
ing intensity and harvesting time on the stability of discrete population models in the
framework proposed byHiromi Seno [191]. We have proved that for general overcom-
pensatory models delaying the moment of intervention does not affect the global sta-
bility of the positive equilibrium if the harvesting intensity is high enough. To the best
of our knowledge, this is the first global stability result for a general family of maps in
Seno’s framework. Moreover, we have demonstrated that the global stability that is at-
tained with delayed harvesting is robust under both noise and lattice effect. We have
also shown that timing can be stabilizing or destabilizing by itself, the latter disprov-
ing a recent conjecture published in [44]. Special attention has been paid to Ricker’s
model, which is one of the most relevant models in population dynamics. We have
proved that harvest timing has no effect on the global stability of the positive equilib-
rium for any harvesting intensity. Moreover, we have studied the effect of the moment
of intervention on the constancy stability of the harvested populations. In particular,
we have shown that harvest time determines the speed and type of convergence to the
positive equilibrium.

The method exponent analysis proposed in this thesis reduces the study of the local
and global stability of populations subject to delayed harvesting to the analysis of the
relative position of the graph of a certain function with respect to an exponent param-
eter. One of the important contributions of this thesis comes from the application of
thismethod to a broad family of compensatory populationmodels common in popula-
tion dynamics. Moreover, for the Bellowsmodel and the discretization of the Richards
model, we have provided global stability results even in the absence of harvesting. So
far we know, these results are new.

The last contribution of this thesis is a new method for the study of the global sta-
bility of one-dimensional discrete dynamical systems. This method complements and
extends some existing conditions for the global stability, e.g., the classical condition of
negative Schwarzianderivative. Wehave shown the applicability of themethodwith sev-
eral examples showing that it is applicable in cases in which the domain is unbounded,
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bounded or far from the origin, the per capita production function is not bounded at
the origin, or the Schwarzian derivative is not negative. We have compared and related
our method to other techniques previously proposed. In particular, we have shown
that our results yield sharp global stability conditions for maps with unbounded do-
mains for which the results in [140] are inconclusive. We have also related the method
proposed here to the enveloping technique proposed in [58] by considering a pre-order
in a certain family of maps. The applicability of these results was shown by studying
the global stability of a perturbed model.

Future prospects

A number of desirable extensions to the present work have been mentioned at various
places in this thesis. Next, we discus these and some further ideas for future work sepa-
rately for each of the research lines of this thesis.

Research line I

1. ATH and CALC on structured populations. All the analysis performed in
this thesis for adaptive limiters has been carried out for populations without
structure, neither spatial nor temporal. An interesting problem to be addressed
is about the performance of ATH and CALC on metapopulations and popu-
lations with age structure. The case of metapopulations has been previously
studied for other control techniques, e.g., proportional feedback [66] or ALC
[183, 184]. And a similar situation occurs for populations with age structure,
e.g., the in-box [62] or TOC [28] methods.

2. Comparison of ATH and CALC with other control strategies. Like many
other strategies, the two control methods presented in this thesis are aimed at re-
ducing fluctuations in the population size. A key question in populations man-
agement is which strategy is the most appropriate to attain each of the long list
of possible stabilizing goals. In this thesis, we have compared ALC, ATH and
CALC. Previously, this question was addressed for both one-parameter [e.g.,
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212, 214] and two-parameter [e.g., 213] control strategies. A future research
direction is to compare ATH with other one-parameter strategies like propor-
tional feedback or threshold harvesting, and CALC with other two-parameter
strategies like target oriented control or both limiter control.

3. Effect of the order of events in ATH and ALC.Contrary to continuous-time
systems, the order of events completely determines the dynamics of discrete-time
systems. The dynamics of ALC, ATH and CALC has been investigated in this
thesis assuming that the population is harvested after being censused. Yet, we
can define alternative control strategies by reversing the order of harvest and cen-
sus. This was done in [78] for ALC. It was observed that the control method
assuming census after harvest increases the population fluctuations or exhibits
bistability for wide ranges of control intensities. Studying whether the same is
true for ATH and CALC is a problem for future research.

4. Application of ATH and CALC to laboratory or real populations. ALC is
one of the few control strategies that has been studied not only theoretically and
numerically but also empirically on laboratory populations [183, 184]. In this
thesis, we have obtained a complete description of the stabilizing properties of
ATH and CALC via both theoretical and numerical results. Checking if these
properties are observed in real populations is an interesting problem to be ad-
dressed.

5. Application of ATH and CALC to other areas of knowledge. Adaptive lim-
iters have been already applied to areas different from population dynamics, e.g.,
computer architecture [65], medicine [88] or economics [101]. We can expect
that the controlmethods presented in this thesis could aswell be applied to other
areas. Moreover, an interesting question is whether their adaptive character can
bring any advantage with respect to other control techniques in the different
fields of possible application.

Research line II

6. Character of the stabilization attained with harvest timing. We have seen
that in some cases harvest timing can be stabilizing by itself. It is an interesting
open question to determine conditions allowing to predict the local or global
character of the stability attained by delaying harvesting.
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7. Applicability of the method for the global stability analysis to other prob-
lems. In the last chapter of this thesis we have introduced a newmethod aimed at
studying the global stability of one-dimensional discrete systems. In particular,
we have shown that this method extends and complements the results in [140].
These results have been useful to study the global stability of delay-differential
equations [36]. Checking if the method presented here is useful in that case and
whether it can improve in any direction the results obtained in [36] is an inter-
esting open question to be addressed in future research.

8. Study of the effect of harvest timing on structured populations. Seno’s
model allows to consider any harvestingmoment during the reproductive season
for populations without structure, neither temporal nor spatial. An appealing
problem to be addressed is to obtain a model for structured populations similar
to Seno’s model and then study its qualitative properties.
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