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Resumen extendido

El crecimiento masivo de la automatización de procesos de negocio, ası́ como la creciente
adopción de las tecnologı́as de la información en su gestión, está produciendo una gran canti-
dad de datos de ejecución de procesos que se almacenan en forma de registros de eventos en
los sistemas de información de las organizaciones. Aplicando técnicas de minerı́a de procesos,
es posible descubrir procesos reales ocultos, se pueden monitorizar los procesos existentes y
también pueden mejorarse mediante el análisis de los registros de eventos.

Existen tres tipos principales de técnicas de minerı́a de procesos: descubrimiento de pro-
cesos (process discovery), verificación de conformidad (conformance checking) y mejora de
procesos (enhancement). Las técnicas de descubrimiento de procesos pueden abstraer un
modelo de proceso sin utilizar ninguna otra información a priori, aparte de las trazas que
componen los registros de eventos. Las técnicas de verificación de conformidad permiten
comparar un modelo de proceso diseñado o definido previamente con el proceso real descu-
bierto a partir de los registros de eventos, para mostrar dónde se desvı́a el proceso real del
diseñado. La mejora del proceso tiene como objetivo ampliar o refinar un proceso existente,
utilizando información relacionada con dicho proceso, que generalmente se extrae de los reg-
istros de eventos grabados.

En la mejora del proceso, se suele usar información temporal para medir los tiempos de
espera entre las actividades del proceso, para verificar el comportamiento temporal durante
la reproducción de trazas, para proporcionar información sobre problemas relevantes en el
proceso (por ejemplo, cuellos de botella, tiempos de procesado, frecuencias) o para predecir
el tiempo restante para la finalización de la ejecución de una instancia de un proceso. En este
sentido, la predicción del tiempo restante de instancias de un proceso (casos en ejecución) ha
sido referida en la literatura como uno de los desafı́os actuales más importantes en la minerı́a
de procesos. El tiempo restante de una instancia de proceso es el tiempo requerido para que



dicha instancia finalice, desde su estado de ejecución actual. Predecir con precisión el tiempo
restante es un tema clave para todos los actores que participan en la gestión de procesos de ne-
gocio. Para las organizaciones, tener predicciones de tiempo precisas les permite administrar
adecuadamente los recursos, evaluar la calidad de los servicios que brindan o tomar decisiones
administrativas apropiadas por adelantado. Para los usuarios finales, también es fundamental
saber cuándo terminarán los procesos en los que están involucrados. Algunos ejemplos de
esto último son los clientes bancarios que solicitan un préstamo, que pueden necesitar saber
de antemano cuánto tiempo llevará revisar, verificar, evaluar y aceptar o rechazar su solicitud
de préstamo, o los procesos de tratamiento médico, donde es crucial saber el tiempo restante
de cada tratamiento para gestionar eficazmente los próximos tratamientos (por ejemplo, para
preparar de antemano todos los recursos necesarios) o los siguientes pacientes.

El problema de predecir el tiempo restante es parte de un problema más general conocido
como monitorización predictiva. En los últimos años, se han presentado varias propuestas
centradas en monitorización predictiva y, más especı́ficamente, en la predicción del tiempo
restante. Inicialmente, estas propuestas se han centrado en la representación de las ejecu-
ciones o trazas del proceso bajo la hipótesis de que las trazas con diferentes caracterı́sticas
tienen diferentes tiempos restantes. Varios de estos enfoques se basan en sistemas de tran-
sición anotados (ATS), donde cada traza en el registro de eventos está asociada a un estado
que tiene una determinada representación. Otros enfoques utilizan una representación parcial
basada en trazas o en ı́ndices. Más recientemente, se han propuesto enfoques para aplicar
métodos de aprendizaje automático para la predicción del tiempo restante. En todos estos
enfoques, sus respectivas codificaciones (es decir, las representaciones de trazas) incluyen in-
formación sobre el contexto del estado de ejecución del proceso, tal como la duración de las
actividades o las variables de dominio, pero generalmente no incluyen información estructural
relacionada con la ejecución de trazas que influye en la estimación del tiempo restante. Sin
esta información sobre las caracterı́sticas estructurales de las trazas, es difı́cil hacer predic-
ciones precisas sobre el tiempo restante en casos complejos.

En esta tesis doctoral presentamos un nuevo enfoque basado en un ATS extendido con
vectores que contienen caracterı́sticas estructurales o atributos relacionados con la ejecución
del proceso. En nuestro enfoque, cada estado del ATS está anotado con vectores que con-
tienen información estructural sobre las trazas, como, por ejemplo, frecuencia de actividades,
bucles de tamaño n, distancia de actividades y otros. Con base en estos vectores y los tiempos
restantes de las trazas relacionadas con ellos, construimos un predictor basado en regresión
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lineal para cada estado, logrando ası́ que la predicción tenga en cuenta la información estruc-
tural de las trazas. Hemos comparado los resultados de nuestro modelo con otras aproxima-
ciones, utilizando diez conjuntos de datos de la vida real, y hemos obtenido predicciones más
precisas que todas las propuestas del estado del arte.

Antecedentes

Recientemente, el enorme crecimiento de la automatización de procesos de negocio produce
una enorme cantidad de datos relativos a la ejecución de dichos procesos. A partir de es-
tos datos, las organizaciones pueden extraer y analizar información valiosa para descubrir,
mejorar o cambiar sus procesos de negocio. Los sistemas de información que gestionan pro-
cesos extensos y cambiantes, almacenan toda la información relacionada con casos actuales
y anteriores en forma de registros de eventos. Los registros de eventos no solo se usan para
almacenar todos los datos generados por los procesos, sino que también se pueden usar más
adelante para hacer que estos procesos sean visibles. Aplicando técnicas de minerı́a de pro-
cesos, se pueden descubrir procesos ocultos ya que, según [83], el propósito de la minerı́a
de procesos es descubrir, monitorizar y mejorar los procesos reales mediante la extracción
de información de registros de eventos fácilmente disponibles en los sistemas de información
actuales.

En la bibliografı́a se han descrito diferentes tipos de modelos para predecir el tiempo
restante de un proceso de negocio. Algunos de ellos usan representaciones basadas en esta-
dos donde las trazas del proceso (ejecuciones o instancias reales) se representan como una
secuencia de estados y un conjunto de transiciones entre ellos: los estados modelan una se-
cuencia de actividades de la traza, y las transiciones representan la ejecución de la siguiente
actividad en la traza. Estas representaciones basadas en estados se denominan Sistemas de
transición (TS). Cada estado de un TS se anota con información temporal sobre la ejecución
del proceso, generando ası́ un Sistema de transición anotado (ATS). La información contenida
en la anotación se utiliza para predecir el tiempo restante mediante el uso de varias técnicas de
estimación. En general, los resultados de predicción en estos modelos son modestos, princi-
palmente debido a que se utiliza un número reducido de atributos utilizados para construir los
modelos de estimación, pero también debido a las técnicas de estimación utilizadas. En gen-
eral, estos modelos de estimación no incluyen información suficiente, dando lugar, en general,
a una baja precisión en las predicciones incluso en casos no muy complejos.
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Existen también otros enfoques en la bibliografı́a, que no siguen el modelo basado en ATS,
y se basan en técnicas, como agrupamiento, redes neuronales y otros enfoques de aprendizaje
automático [3]. Aunque estos modelos han mejorado los resultados de los modelos previos
que siguen el modelo basado en ATS, tampoco los modelos enfoques no ATS no son capaces
de lograr una alta precisión en las estimaciones [3].

Hipótesis

La hipótesis principal de esta Tesis es la siguiente:

• Las diferentes aproximaciones y modelos de la bibliografı́a de estimación de tiempo
restante en procesos de negocio utilizan codificaciones de trazas que no representan
explı́citamente las complejas relaciones entre trazas; en particular, elementos estruc-
turales como repeticiones de una misma actividad o de varias actividades, la co-ocurrencia
de dos actividades cualquiera o la distancia entre dos actividades. Nuestra hipótesis de
trabajo es que considerando la información estructural de las trazas, las estimaciones
de tiempo restantes serán más precisas.

• Los modelos basados en Aprendizaje Automático han demostrado su validez para varias
tareas relevantes en la predicción del tiempo restante, pero ningún enfoque ha consid-
erado la información estructural sobre los rastros como discutimos en el punto anterior.
Nuestra hipótesis a este respecto es que considerar la información estructural de las
trazas en nuestro modelo superará a otros descritos en la bibliografı́a, incluidos los
modelos de aprendizaje automático.

Objetivos

El propósito general de esta investigación es definir un nuevo modelo de ATS extendido
basado en vectores que incluyan caracterı́sticas estructurales relacionadas con la ejecución
del proceso. En nuestro modelo, los estados del ATS se anotan con vectores que contienen
información relacionada, por ejemplo, con la frecuencia de las actividades, repeticiones o bu-
cles de actividades, distancia entre las mismas y otros. Nuestro modelo tiene como objetivo
obtener estimaciones de tiempo restante para las trazas en los registros de eventos de procesos
de negocio durante el tiempo de ejecución, a través de los siguientes pasos:
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• Extracción y evaluación de diversas caracterı́sticas en los registros de eventos, que pro-
porcionen una caracterización estructural de sus trazas.

• Extensión del conocido modelo Sistema de Transiciones Anotadas (ATS) para incluir
en él estas caracterı́sticas.

• Aplicación de técnicas de regresión lineal para la predicción del tiempo restante de las
trazas, para cada estado y combinación de caracterı́sticas.

Metodologı́a

La metodologı́a que hemos seguido en esta tesis se basa en el método cientı́fico:

• Formulación de hipótesis iniciales, que en nuestro caso se realizó tras haber analizado
los modelos existentes de predicción del tiempo restante en procesos de negocio y su
precisión.

• Revisión del estado del arte, donde estudiamos el tipo de técnicas utilizadas para abor-
dar los diversos objetivos, analizamos sus fortalezas y debilidades, y evaluamos otras
técnicas diferentes que son útiles para abordar nuestros objetivos.

• La recopilación de observaciones en el alcance de esta tesis requirió la disponibilidad
de datos para validar los algoritmos desarrollados.

• Diseño e implementación de los algoritmos que resuelven los objetivos abordados.

• Validación de nuestras propuestas en casos prácticos de uso de la vida real. Cuando
la calidad de los resultados no es lo suficientemente buena, se lleva a cabo un proceso
iterativo de modificación del algoritmo diseñado y su validación hasta que los resultados
sean satisfactorios.

Contribución

Las principales contribuciones de esta Tesis se describen en los siguientes tres capı́tulos:
En el capı́tulo 4, describimos nuestra primera propuesta de un modelo que incluye infor-

mación estructural de las trazas para predecir los tiempos restantes en un proceso de negocio
(nuestro modelo básico inicial). Nuestro enfoque es una extensión del modelo ATS que de-
nominamos EATS y consiste en:
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• Definir ocho caracterı́sticas relativas a los registros de procesos de negocio, que cap-
turan información estructural de sus trazas.

• Ampliar el bien conocido modelo de sistema de transiciones anotadas (ATS) para anotar
sus estados con los valores de las caracterı́sticas anteriores para cada traza (atributos).

• Aplicar regresión lineal para predecir el tiempo restante del proceso para cada estado
utilizando los valores de los atributos.

Las ocho caracterı́sticas o atributos estructurales relacionadas con la ejecución del proceso
de negocio están relacionadas con frecuencias, repeticiones, ciclos, etc. Cada uno de los esta-
dos en nuestro modelo se anota con una lista de vectores cuyos componentes son los valores
de estos atributos para cada traza representada por dicho estado. Basándonos en estas listas y
en los tiempos restantes de las trazas relacionadas con cada vector en la lista, construimos un
predictor basado en regresión lineal para cada estado que considera la información estructural
de las trazas.

Dado que nuestro modelo [2, 3] es una extensión del modelo base descrito en [88], nos
centramos principalmente en el trabajo de comparación con dicho trabajo de referencia, que
también es la base de muchos otros modelos descritos en la bibliografı́a. En los correspondi-
entes capı́tulos de validación experimental, realizamos la evaluación empı́rica con diez con-
juntos de datos conocidos de la vida real, mostrando que nuestro enfoque supera el modelo de
referencia en las tres métricas consideradas (error absoluto medio, precisión y raı́z del error
cuadrático medio). Pero también hemos realizado experimentos para comparar este enfoque
con otros modelos no ATS, entre ellos modelos basados en aprendizaje profundo. Los resul-
tados muestran que nuestro modelo también supera a estos otros modelos. Sin embargo, en
esta última comparativa, la desviación obtenida resulta alta, en general, lo que apunta a una
dispersión de los resultados del modelo. Por lo tanto, estos primeros resultados de validación
apuntan a que la inclusión de la información estructural produce mejores estimaciones del
tiempo restante, pero que puede ser mejorada. Ello nos ha dado la base para continuar nuestra
investigación tratando de refinar el modelo y ası́ mejorar estos resultados iniciales obtenidos
con el modelo básico.

En el capı́tulo 5, mejoramos nuestro modelo anterior al incluir una técnica de parti-
cionamiento en la lista de atributos asociada a cada estado del ATS, con el objetivo de obtener
estimaciones de tiempo restante más precisas. En general, en el dominio de minerı́a de proce-
sos, los rastros en los registros de eventos de problemas reales suelen tener una gran variabil-
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idad en términos de tamaño, número de actividades y tiempos de ejecución. Esta limitación
es el escenario habitual para datos de procesos de negocio reales, como procedimientos o
aplicaciones administrativas, gestión de incidentes industriales o procesos en un hospital u
otras grandes organizaciones/instituciones. En muchos casos, el rango de valores de tiempo
restante es muy amplio (y puede ir, por ejemplo, desde unos pocos segundos hasta varias
horas) y esto incluso para trazas que son muy similares o incluso idénticas. Este es el caso
también en los diez conjuntos de datos reales que hemos utilizado para la validación de nue-
stro modelo básico. Por lo tanto, las trazas en las listas pueden ser muy diversas y por tanto, en
algunos casos reales, la precisión obtenida podrı́a ser inferior a la necesaria. Adicionalmente,
aunque esto ocurre tan solo en un número muy reducido de casos, el modelo básico podrı́a ser
superado por otros modelos en la bibliografı́a.

Para abordar este problema, en el capı́tulo 5, mejoramos el modelo básico descrito en el
capı́tulo 4, añadiendo una técnica de partición de la lista de atributos asociada a cada estado del
EATS. En primer lugar, motivamos este problema al presentar un ejemplo experimental simple
que muestra cómo el modelo básico puede obtener valores bajos de precisión en algunos
casos. Dicho ejemplo es un conjunto de datos de la vida real de una institución financiera
relativo al proceso de solicitud para un préstamo personal. Los valores de precisión para
este caso varı́an de 0,23 a 0,53, que son valores de precisión aceptables en el caso de la
comparación con el trabajo de referencia, pero no lo suficientemente buenos para ámbitos de
aplicación más exigentes.

En segundo lugar, definimos el mecanismo de partición y formalizamso cómo se calcula
el tiempo restante en el nuevo modelo para cualquier nueva traza. Finalmente, validamos ex-
perimentalmente el nuevo modelo con partición, mostrando que realiza mejores estimaciones
de tiempo restante comparado con los otros modelos en el estado del arte (no solo los mode-
los basados en ATS). La mejora de los resultados de estimación es un aspecto crucial, como
hemos apuntado ya, porque a través de ella las organizaciones puedan realizar una gestión
óptima de los recursos y también para mejorar la calidad de los servicios que brindan las
organizaciones.

El enfoque que desarrollamos en el capı́tulo 5 consiste en:

• extraer y evaluar nuevamente las ocho caracterı́sticas en los registros de procesos de
negocios, que proporcionan una caracterización estructural de los rastros

• extender el conocido modelo de sistema de transición anotado (ATS) para incluir estas
caracterı́sticas, dando lugar al nuevo modelo EATS
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• aplicar una técnica de partición de las listas asociadas a cada estado del EATS, para
agrupar las trazas con caracterı́sticas similares

• aplicar una técnica de regresión lineal a los atributos descritos en cada una de las parti-
ciones, para mejorar la predicción del tiempo restante de las nuevas trazas

Nuestro método de partición tiene como objetivo dividir la lista de vectores asociada a
cada estado del ATS en varias particiones, cada una de las cuales contiene todas las trazas
parciales que tienen tiempos restantes similares. La similaridad en este aspecto se define
mediante un valor de umbral de la siguiente manera: una vez ordenada la lista por tiempos
restantes, se considera que dos trazas consecutivas pertenecen a la misma partición si el co-
ciente de sus tiempos restantes está por encima de un umbral predefinido (es decir, sus tiempos
restantes se consideran similares) De lo contrario, si el cociente está por debajo del umbral, se
agruparán en diferentes particiones, puesto que sus tiempos restantes se consideran diferentes.
Una cuestión importante en este nuevo modelo mejorado de partición es la selección del um-
bral, ya que define tanto el número como el contenido (nivel de similaridad entre las trazas)
de las particiones en las listas. Las particiones se asocian a intervalos de tiempo restante que
pueden ser o bien intervalos muy cercanos o muy amplios en función del umbral escogido.
Esto debe tenerse en cuenta para definir un número de particiones equilibrado, para que no sea
muy bajo, ya que los valores de rango para el tiempo de estimación serán altos y, en principio,
la precisión menor, pero tampoco muy alto, ya que los rangos serán menores, la precisión
mayor (con riesgo de sobreajuste) y un mayor coste computacional del proceso. A este re-
specto, describimos en la tesis un método para calcular un valor de compromiso para el um-
bral, que no depende de un caso particular. Para este cálculo, utilizamos el conocido método
”regla de un error estándar” para la selección de modelos [38], que muestra empı́ricamente
que este compromiso puede lograrse, dando lugar a buenas estimaciones de tiempo restante
que superan el rendimiento todos los otros modelos descritos en la bibliografı́a.

Después de dividir las listas, aplicamos regresión lineal para cada partición para ası́ obtener
un modelo de predicción. Para predecir el tiempo restante de una nueva traza, buscamos la
partición a la que pertenece esta nueva traza y luego le aplicamos la expresión de regresión
lineal correspondiente. Con respecto al resultado, la validación realizada con diez conjutos de
datos reales, mostró que el modelo con particionamiento mejoró la precisión no solo en com-
paración con el trabajo de referencia [88], algo ya logrado con el modelo básico, sino también
con todos los restantes trabajos descritos en la bibliografı́a [97], para todas las métricas con-
sideradas. Adicionalmente, la desviación estándar de los resultados, se mejora muy consider-
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ablemente frente al modelo básico.

En el capı́tulo 6, presentamos una mejora en el mejorado el modelo con particionamiento,
para abordar su escalabilidad, mediante la agregación de una etapa de selección de atributos
previa a la aplicación de la regresión.

La cuestión de la escalabilidad surge del hecho de que, aunque los resultados del modelo
anterior mejoran los del resto del estado del arte, el número total de atributos a considerar
puede llegar a ser elevado en aquellos procesos de negocio cuya cantidad de eventos sea muy
alta. Ello puede derivar en problemas de coste computacional del modelo en dichos casos.
Los motivos para abordar esta cuestión son principalmente dos: en primer lugar, el número de
particiones creadas en cada estado, que aumenta en gran medida a medida que aumentan el
número de actividades y se pudieran considerar valores umbral muy altos. En segundo lugar,
la cantidad de atributos, que en algunos casos es lineal y en otro cuadrático con el número de
eventos de la traza.

Por lo tanto, para resolver los problemas mencionados anteriormente, en el capı́tulo 6
hemos introducido dos métodos clásicos para realizar la selección de atributos: i) Forward

Best-First, que sigue una estrategia voraz hill-climing de incremento del número de atributos
(partiendo de cero), combinado con una estrategia vuelta atrás y ii) Forward Greedy Step-

wise, que realiza una búsqueda voraz (hacia adelante o hacia atrás) utilizando el espacio de
subconjuntos de atributos.

El objetivo es disminuir el número de atributos (y, por lo tanto, reducir el número de
operaciones y el costo computacional del método) manteniendo la precisión de predicción del
método dentro de lı́mites aceptables. Tal y como se muestra en la experimentación realizada,
sobre los mismos diez conjuntos de datos reales, nuestro modelo proporciona un modelo
equilibrado que produce un tiempo de predicción restante aceptable y un menor consumo de
tiempo. Ası́, nuevamente en todos los casos este modelo mejora los resultados del modelo
base descrito en [88].
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CHAPTER 1

INTRODUCTION

In recent decades, there has been great interest in introducing and developing new techniques,
models and systems to automate the processes of organisations and enterprises. This has
caused the data and information registered by the information systems in organisations to
increase considerably, which has led to organisations and enterprises paying further attention
to these data and considering the best techniques for extracting the relevant information.

In this regard, the massive growth of business processes automation, as well as more
technology adoption in business process management, is producing a vast amount of process
execution data that can be stored in the form of event logs [71, 95]. By applying process
mining techniques, hidden processes can be discovered [63, 66], since ’Process mining aims
to discover, monitor and improve real processes by extracting knowledge from event logs
readily available in today’s information systems’ [88]. There are three main types of process
mining techniques [82]: process discovery, conformance checking, and process enhancement.
A discovery technique takes an event log and produces a model without using any a priori in-
formation. Conformance makes a comparison between an existing process model and the
process obtained from the event log, aiming to show where the real process deviates from the
modelled one [84]. Finally, in process enhancement, temporal information is used in differ-
ent ways, such as to measure the wait times among process activities, to check the temporal
behaviour during traces replay, to provide information about bottlenecks, through times, fre-
quencies, etc. or to predict the remaining times for running process instances [84].

This thesis is framed around the latter concept, since here we are proposing a new model
for obtaining more precise time estimations of business processes. Therefore, our work be-
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longs to the area of Business Process Enhancement within Business Process Mining tech-
niques.

1.1 Motivation

Predicting the remaining time for process instances is highlighted as one of the most important
challenges in process mining [82]. The remaining time of a process instance is the required
time for a process instance to be finished from a particular execution state of this instance.
Predicting this time is a key point for organisation, since it allows them to move from one
state to another taking into account optimal management of the resources [8]. It is not only
crucial for the quality of service of organisations, but also for the end-user to be comfortable
with how long it will take to finish [63]. In addition, from the customers’ point of view, the
completion time of processes is critical [71]. For example, bank customers applying for a
loan need to know how long it will take for their loan application to be reviewed, checked,
assessed and accepted or declined. In other fields, such as healthcare processes, it is crucial to
know the remaining time of each treatment in order to effectively manage the next treatment
and prepare all the necessary resources (e.g. special equipment, ICU, operating room, etc.).

1.2 Hypothesis

After studying state-of-the-art methods in the prediction of process remaining time, our hy-
pothesis is that the structural information in the traces of a business process provides
relevant information for achieving accurate remaining time predictions and that there
are no models in the literature which consider structural information in their estima-
tions. We have built on our work as we believe that this valuable information extracted from
the events log will enhance the prediction of the remaining time of a process.

1.3 Objectives

The desired goals of this dissertation involves what we hypothesised at the beginning of this
research, which encourages us to exploit business processes and process mining to define a
model-based methodology for Remaining Time Prediction in Business Processes using ma-
chine learning techniques in terms of:

2
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1. The feasibility of using process mining techniques to extract valuable information from
the tasks of the process. Process enhancement aims to extend or improve an existing
process, using information related to the process recorded in some event logs. By ex-
tracting timestamps from the event log and extending it in the process model, it is possi-
ble, for instance, to measure the wait times between process activities. Timestamps can
also be used to check the temporal behaviour during replay. Time differences between
related activities can be used to add predictable wait times to the model. In our work,
using timestamps in the event log can enhance the model with the complete time for
each activity.

2. The feasibility of using machine learning techniques to predict the remaining time for
each activity in a process.

1.4 Contribution

The objective of this thesis is to define a new process mining enhancement model which will
extract different attributes from the process logs that include the structural information of
such processes. Our approach adds to the well-known baseline Annotated Transition Model
[88], endowing it with a new remaining time estimation model which significantly improves
the already state-of-the-art methods by taking into account the structural information of the
traces.

1.5 Thesis Outline

In Chapter 2, we introduce the background of the thesis and some fundamental concepts
such as Business Process Management or Process Mining, among others. In Chapter 3, we
review the Related Literature in this field and present the most relevant theory related to
remaining time prediction in business processes. In Chapter 4, we define and validate our
remaining-time estimation base model which adds to the ATS-based model described in [88].
In Chapter 5, we add a partitioning technique to the base model which allows us to improve the
estimations, outperforming all the models in the literature. In Chapter 6, we present, discuss
and analyse several approaches to address the scalability of our model. Finally, in Chapter
7, we summarise the thesis, present the most relevant conclusions and state an overview of

3
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unresolved issues, namely the limitations that constitute the next research steps and future
work.

4



CHAPTER 2

BACKGROUND

In this chapter, we are going to introduce the basic topics and concepts needed for explaining
our model. We aim to explain some terms about Business Process Management in Section
2.1; Process Mining in Section 2.2, and Transition Systems, in Section 2.3. We will provide
an overview of different process modelling techniques, but we will describe the Transition
System in detail as this is the process modelling technique that we have worked on and used
in our work.

2.1 Business Process Management

The business process management concept understands every product or service in an organ-
isation as the result of a sequence of activities. Business processes are the main tool used for
organising these activities and achieving a better understanding of the relationships between
them [100]. Information Systems and, in general, Information Technology, have an important
role in business process management, since information systems drive the number of activities
generated in any organisation. Business process activities can be accomplished by employees
manually or through the support of information systems. Conversely, some business process
activities can be done automatically by systems or services, without any human intervention
[99].

Any company can effectively achieve its business objectives by having employees and
information systems resources cooperate in a compatible way [36]. Therefore, the role of
business processes is important to facilitate effective cooperation whilst trying to avoid incon-
sistencies among the organisational aspects of business and information technology [102].
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Figure 2.1: Simple ordering process of re-seller (adapted from [100]).

Working towards bridging the gap between management and technology is extremely im-
portant because current markets are very dynamic, meaning that these companies must remain
competitive when offering their products and services to satisfy customers. Narrowing the gap
between regulation and technology is essential because these dynamic markets are forcing
companies to consistently provide better and more specific products to their customers [45].
For instance, successful and bestseller products today will not be the same tomorrow. If other
competitors offer the same product at a cheaper rate, with a high-quality design, or one that is
more comfortable to use, the first product will probably see a decrease in sales compared to
the second product on the market.

The methods and technologies of various scopes of business administration and computer
science have affected business process management. Considering the early start and its three
decades of business organisation and management, the role of process orientation has risen
and with it a new way of organising and managing companies was proposed [86, 24].

Based on the different descriptions of business processes, we will adopt the following
definitions:
Definition 1 (Business Process) [100]: A business process consists of a set of activities that
are performed collectively in an organisational and technical environment. These activities
work together to achieve a business goal. A single organisation enacts each business process,
but it may also interact with business processes belonging to other organisations.

Once we understand and define the business processes, their components and their inter-
relations, the scope is then expanded to include the concept of Business Process Management,
which represents not only business processes but also additional activities.
Definition 2 (Business Process Management, BPM) [100]: This notion includes concepts,
methods and techniques to support the design, administration, configuration, enactment, and
analysis of business processes.

6
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In Figure 2.1 we illustrate a simple example of the ordering process of a re-seller com-
pany. Activities in the process are represented by nodes and their flow by arrows. The pro-
cess includes sequential activities (‘send invoice’, ‘receive payment’), but also parallels (‘ship
products’ alongside ‘send invoice’ and ‘receive payment’). In this ordering process, first, an
order is received, then an invoice is sent, and afterwards the payment is received; in parallel
to this, the ordered products will be shipped. Finally, the order is archived. Notations are used
to express the organisation of activities of a business process.

Most companies and organisations try to become more efficient and effective in the context
of worldwide competition [74, 10]. In order to achieve this, some tools and mechanisms have
been created to aid in the management of business processes. Business Process Management
can be characterised through the business process lifecycle [54].

2.1.1 Business Process Lifecycle

The business process lifecycle [89] provides a high-level view of business processes, in addi-
tion to producing a description of the phases of a business process. The lifecycle has several
phases: (1) Evaluation, (2) Design and Analysis, (3) Configuration and (4) Enactment of
business processes [100], as shown in Figure 2.2.

In the first step, the process evaluation phase, the business processes that take place within
a company are assessed. To achieve this, some tools and approaches can be applied, for
example process mining [41], to understand how the company’s processes are running. In the
next step, the design and analysis phase, the processes are recognised. In addition, specialists
recognise these processes in the form of business process models. After these models are
created, they can be edited and redesigned [52]. These redesigned models are then assessed
for accuracy, using tools that simulate these models to test if the modifications introduced are
genuinely improving the processes [15].

In the configuration phase, as soon as the business process model is chosen for adoption,
the next step is to implement the process in the process environment. This will depend on
where and how this phase takes place. For example, employees may be told to follow the
new specifications or to modify the workflow engine [86] in order to automatically control
the business process execution as planned, although this only happens if the type of business
is allowed to be automated. Some industries, such as health care, face a big challenge when
trying to implement this [86].

7
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Figure 2.2: Business process lifecycle. (Adapted from [100]).

Certain cases, where these processes can be understood in a good way and show little
variance and a high number of occurrences, would be best suited for automation by work-
flow engines. Nevertheless, for some process enactment environments, we consider using
workflow engines to be pointless. This infeasibility can be explained by the huge demand
for flexibility or complicated or unusual cases. The Enactment phase, which is the last step,
includes the real run-time of the business processes, which are stimulated to accomplish the
organisation’s objectives. Process initiation usually happens depending on the initiating event,
such as receiving a query sent by a client.

2.1.2 Execution and Monitoring

The process enactment phase is where the organisation or enterprise achieves their daily busi-
ness. In this step, everyday aspects of running a company are taken into account. Clients buy
goods or services from a business, who will be in charge of delivering that product by working
through the business processes. The business process management system efficiently controls
the execution of business process cases, in the same way as declared in their model. The
system also ensures the same performance of the process activities within the same execution
boundary in the process model. To do so, process enactment needs to have the correct process
composition.

The most important part of the execution of business processes, from the management
point of view, is whether the processes are carried out efficiently, i.e. carried out over a
short period and with fewer economic resources, and whether its execution fits the created
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model. Some techniques can be provided by business process analytic [105], which help with
operational tasks, for example, the detection of bottlenecks.

The monitoring component is used by the business process management system to visu-
alise the status of business process instances. Process monitoring uses a crucial mechanism
to provide precise and reliable information about the status of business process instances.
The provided information can be used, for instance, to improve the processes or to convey
an answer to a client inquiry. To conduct business process analytic, we need to be able to
measure the performance of a business process. This task is called process monitoring. Its
objective is to allow for informed decisions during the enactment phase as mentioned in [15].
High-quality performance of the process can only be achieved if we can provide information
about how the process ran. As a result, it is necessary to measure the process. The monitoring
phase allows us to react appropriately to modifications that might occur during the process,
such as an increase in the demand of a product. This means that, if we see that many cases
have arrived, but not many of them are completed, then we can understand that the number
of cases is growing. To deal with this situation, business managers might, for instance, put
resources into use (hiring new specialists) to solve the problem with increasing demand and
so that clients do not have to wait for a long time for their product or service to arrive [86].

2.1.3 Business Process Models

Business process models are the central hub for implementing different business processes.
These are the most important ones in companies and enterprises that capture their business
and then generate products or services to their customers [100]. Creating business processes
models is crucial for managers in business process management because these models allow
us to collect the essential components of a business process before describing the relationships
between them and the order of execution for each part.

According to Indulska et al. [42], there are five crucial advantages of business process
modelling: 1) process improvement, 2) understanding, 3) communication, 4) model-driven
process execution and 5) process performance measurement. It is clear that every company
will try to get to these advantages, and of course, these models should be designed to achieve
excellent quality [55] and produced by specialists who know how to do it using appropriate
modelling language.

There are indeed some tools for modelling, which focus on capturing business processes
[47]. For instance, flowcharts have been used to model algorithms since the beginning of the
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computing era, together with other tools like UML activity diagrams [62], event-driven pro-
cess chains or Business Process Modelling Language and Notation (BPMN) [61], Petri Nets
(PN) or Transition System (TS) [80]. There are many other process models, all of which are
useful when organising business process models, but in this thesis, we will use the transition
system (TS) as our base process model. More details about the TS and our contribution based
on it will be described in Section 2.3 .

2.2 Process Mining

Process Mining is a popular research topic in the interaction between machine learning and
data mining, on the one hand, and process modelling and analysis on the other[82]. The
purpose of process mining is to discover, monitor and improve real processes by extracting
data and information from real-life event logs that exist in daily systems [80, 82, 67].

It is well-known that information systems play a major role in the corporation’s and en-
terprise’s business. As a result, millions of events are collected every day by information
systems. However, corporations and enterprises have challenges and sometimes face a prob-
lem when extracting data from these events. Process mining appears to have overcome these
problems, its goal being to extract business processes from the event data, for instance, by
discovering the process model of any event log recorded by corporations and enterprises. The
importance of process mining increases with the growth of the event log and the need to
translate the event data into process models [88].

In this project, we will assume that business process models can be easily found, and we
also have an accurate representation of how a business process works. If these models are
non-existent, this should not be considered to be a limitation, since process mining techniques
do exist and can be applied to uncover business process models from past events as described
in these works [63, 66, 69].

2.2.1 Process Mining Categories

The process mining manifesto [82] considers that process mining is centred around four com-
ponents: the real world, process models, software systems and event logs, as described in
Figure 2.3, The existence of the event log allows for the derivation of the process model, and
the conformance technique regularly checks the reality of the model and ensures the compli-
ance of both model and log. The enhancement technique aims to change/extend the existing

10
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Figure 2.3: Process mining overview. The three major aspects of process mining are 1) discovery,
2) conformance, and 3) enhancement. (Adapted from [86]).

model by enriching it with information from its log. Process mining techniques are classified
into three categories:

1. Discovery, in which a model can be derived from event logs that provide information
about traces of processes and how they are executed.

2. Conformance, in which a process model is compared to the actually executed event logs.

3. Enhancement, in which a process model is improved and enriched with extracted data
from the event logs.

We will briefly describe these aspects before describing them in more detail, as Enhance-
ment is the core method we used in our method.

11
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Discovery of Process Models

Problematising the issue of discovery (in other words, recognising the minimum process mod-
elling which provides insight into how elements are related and seen by the event logs) has
a direct relationship with the issue of discovering how minimum finite-state automatons are
somewhat compatible with the information, as described in [34]. In fact, this is a computa-
tional challenge; apparently, this issue has motivated general interest in research and devel-
opment fields because it promises to easily automate the task of manually extracting process
models.

Agrawal et al. were the first to explore and research the process mining field [5], They
described how to automatically extract models from events that were stored in an event log.
Since then, mining algorithms appeared, such as Algorithmic approaches, for instance, the
alpha algorithm [91], the one that discovers ‘Petri nets’, or the related work by Herbst and
Karagiannis [39]. A model was built by the latter which reflects all traces as a Markov chain
and simplifies the model by iterative combining phases to make the design simpler. More-
over, to solve this problem, some techniques using heuristic approaches, for instance, genetic
algorithms, were used [21].

Conformance Checking

To make sure that a business process achieves the best quality possible, it is not enough to
only specify how the processes should be executed. It is also crucial to evaluate whether the
given models show the same behaviour of the sequencing process and are carried out as was
registered.

When talking about conformance checking, we refer to the field within process mining,
which checks if the actual execution of a business process, as recorded in the event log, con-
forms to the model and vice versa. It assists in recognising the parts designed in the process
model that need to be enhanced, or in which workers would have to modify their work, in
order to fit the model. Rozinat and van der Aalst [72, 73] were the first to apply a way of
replaying an event log in a model and calculating the number of further inserted and removed
tokens that are required to replay a trace in a Petri-net model.

In their work, they found that the traces in an event log are excessively replayed in a model,
therefore there is no guarantee of discovering the optimum route through the model. Also, in
another subsequent work, the notion of cost-based alignment was introduced by Adriansyah
et al. [4]. In subsequent projects they work to find global optimal alignment [4], which takes
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into consideration the properties’ structure of the model. Therefore, it defines the costs to
additional steps in either model or trace that cannot be mimicked by the other.

Fitness measurements are used to evaluate the conformance measurement [72]. As a re-
sult, the fitness value can tell us about how many degrees the observed cases in the event log
keep track of the behaviour specified by the model, taking into account that the fitness value
calculated by fitness measure ranges between 0 and 1.

Enhancement of Process Models

The third category of process mining is concerned with the problems that arise when we have
a combination of any process model and an event log as input. At this stage, the mission
is to enrich these models using the information that exists in the event logs. Enhancement
techniques provide us with the ability to make these challenges (bottlenecks, service levels,
throughput times and frequencies) visible [82, 83].

In some cases, some process models do not fit the event logs completely, which could
happen due to extraordinary cases which are not contained while generating the model, but
were executed and recorded in reality. Therefore, this stage can provide users with the ability
to adjust business process models automatically in the best way to reflect the better-observed
event logs [9, 26].

It is also possible to extend or improve an existing process model using the event log.
A non-fitting process model can be modified and corrected using the available diagnostics
provided by the alignment of the model and event log. It is feasible to enrich an already
designed process model using an event log. In that way, if there is a non-fitting process
model, then at this stage these non-fitting models can be corrected by the diagnostics of the
alignment technique.

In Figure 2.4, the three types of process mining defined in terms of input and output,
namely discovery (a), conformance checking (b) and enhancement (c), are shown. According
to Figure 2.4, discovery techniques take an event log as input and produce an output model.
In general, the discovered model is a process model, such as a Petri net, a BPMN, an Event-
driven Process Chain (EPC) or a UML activity diagram. Nevertheless, this discovered model
may also take into account some other perspectives, such as, for instance, a social network.
Conformance-checking techniques take not only an event log but also a model as input, while
their output consists of a diagnostic report about the similarities and differences between
the log and the model. Finally, techniques for model enhancement, either by repairing or
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Figure 2.4: The three basic types of process mining explained in terms of input and output: (a)
discovery, (b) conformance checking, and (c) enhancement. (Adapted from [82]).

extending it, also take an event log and a model as input, their output being a new improved
and extended model respectively [23, 82].

In addition, process mining should cover different perspectives, namely control-flow, or-
ganisational, case and time perspectives. The control-flow perspective is focused on estab-
lishing the order of the activities, in the sense of finding a good characterisation of all possible
paths. The result of mining this perspective is typically expressed in terms of a Petri net or
some other process notation, such as EPCs, BPMN, or UML activity diagrams. The organisa-
tional perspective is focused on analysing information regarding the resources hidden in the
log, studying which actors (people, systems, roles or departments) are involved and how they
are related [82].

In this way, this mining perspective claims either to structure the organisation by classify-
ing people in terms of their roles and organisational units or to show the social network. The
case perspective is focused on the characteristics of the cases. In general, the main character-
istics of the cases are their path in the process and the actors working on them. Nevertheless,
cases can also be characterised by the values of the corresponding data elements. For instance,
for a replenishment order case, it may be interesting to know the supplier or the number of
ordered products. Finally, the time perspective is focused on the analysis of the timing and
frequency of the events, making it possible, whenever events bear timestamps, to discover
bottlenecks, measure service levels, monitor resources usage and predict the remaining pro-
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cessing time of running cases [23].

Finally, it is worth mentioning that there have long been some misconceptions regarding
process mining. For instance, it is the typical case that some vendors, analysts and researchers
limit its scope to a special data mining technique for process discovery that can only be per-
formed offline. Fortunately, this is not true, and it is important to highlight the following three
characteristics of process mining:

• Process mining is not limited to control-flow discovery. Although both practition-
ers and academics usually consider control-flow discovery as the most exciting part of
process mining, process mining is far from being limited to this. On the one hand, as
can be seen from Figure 2.4, discovery is just one of the three basic forms of process
mining, together with conformance and enhancement. On the other hand, the scope of
process mining is not limited to the control-flow perspective, it being also important to
consider the organisational, case and time perspectives [82].

• Process mining is not just a specific type of data mining. On the contrary, it can
rather be considered as the appropriate link between data mining and traditional model-
driven Business Process Management (BPM) [80]. In fact, since most of the available
data mining techniques are not process-centric, process models, which tend to exhibit
concurrency, are not comparable to simple data mining structures such as decision trees
and association rules. In this context, it is necessary to resort to entirely new types of
representations and algorithms to achieve that aim.

• Process mining is not limited to offline analysis. although process mining techniques
are based on the extraction of knowledge from historical event data [69]. Even when
using ‘post-mortem’ data, the obtained results can be applied to running cases. For
instance, the completion time of a partially handled customer order can be predicted by
resorting to a discovered process model [82].

2.2.2 Events and Event Logs

Events and event logs are an important concept in the core part of process mining. Event logs
are the main part of process mining because they include the target information as raw data.
Events can be generating by different sources, like information systems or enterprise resource
planning systems.
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Even though the term event is not exactly clear as in can be used to various situations with
a different significance, that is, in logistics, an event means something very important that
requires for a modification in a plan [33]. Luckham defines an event as something that has
significance and influences a specified system [48].

Definition 3 (Event) [88]: An event, e, is described by a unique identifier and is characterised
by its properties, such as its identifier, timestamp and the activity which is executed in the
timestamp.

In this chapter, we will understand an ‘event’ to be a positive landmark concerning busi-
ness processes, in particular, events that show that the process to which it is related has
achieved its goal and changed its state, for instance, from ‘start’ to ‘complete’. We will not
delve into the specific terminology of how events are sourced. As a result, we will only take
into account event logs that provide important information about the business process, as can
be found in process mining [41].
Definition 4 (Trace, Event Log) [88]: A trace, T , is a sequence of ordered events {e1,e2, . . . ,eM}.
An event log is a set of traces.

Considering that event logs do not just relate to the components in the definition we have
provided above, many information systems still keep track of events’ characteristics such as
data, costs and resources. Nevertheless, in this thesis we will consider the time aspect be-
tween the process instances. In a real setting, we consider the direct relationship (correlation)
between the mentioned events and cases to be important. We are not going to explain how
problems with correlation are dealt with. If readers would like to know more about the topic,
they can refer to Agrawal et al. in [18]. Motahari-Nezad et al. [59] also introduce a new
perspective, as they provide correlation conditions that control how events will correlate with
activities and offer the discovery capability of these conditions from an event log. On the other
hand, Musaraj et al. [60] provide a methodology that identifies the correlation on a message
level based on the timestamps value.

Our assumption is that the environment is the factor responsible for events and the factor
that also generates the timestamps (i.e. each event with its own timestamp) and domains are
the factors that set the particular timestamps. However, in some cases, timestamps can also
create the event (e.g. at a specific time, event ‘X’ should start). In other cases, timestamps
could even be extracted from the event sources.
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2.2.3 Analysing an Example Log

After providing an overview of process mining and positioning it in the broader BPM dis-
cipline, we will use the event log shown in Table 2.1 to clarify some foundational concepts.
The table shows just a fragment of a possible log corresponding to the handling of requests for
compensation. Each line presents one event. Note that events are already grouped per case.
Case 1 has five associated events. The first event of Case 1 is the execution of the activity reg-
ister request by Pete on 30 December 2010. Table 2.1 also shows the unique ID for this event:
35654423. This is merely used for the identification of the event, for example, to distinguish
it from event 35654483 that also corresponds to the execution of the activity register request
(which is the first event of the second case). Table 2.1 shows a date and a timestamp for each
event. In some event logs, this information is more general and only a date or partial ordering
of events is given.

Table 2.1: A sample of event log

Case id Event id Properties

Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010:11.02 Register request Pete 50 . . .
35654424 31-12-2010:10.06 Examine thoroughly Sue 400 . . .
35654425 05-01-2011:15.12 Check ticket Mike 100 . . .
35654426 06-01-2011:11.18 Decide Sara 200 . . .
35654427 07-01-2011:14.24 Reject request Pete 200 . . .

2 35654483 30-12-2010:11.32 Register request Mike 50 . . .
35654485 30-12-2010:12.12 Check ticket Mike 100 . . .
35654487 30-12-2010:14.16 Examine casually Pete 400 . . .
35654488 05-01-2011:11.22 Decide Sara 200 . . .
35654489 08-01-2011:12.05 Pay compensation Ellen 200 . . .

3 35654521 30-12-2010:14.32 Register request Pete 50 . . .
35654522 30-12-2010:15.06 Examine casually Mike 400 . . .
35654524 30-12-2010:16.34 Check ticket Ellen 100 . . .
35654525 06-01-2011:09.18 Decide Sara 200 . . .
35654526 06-01-2011:12.18 Reinitiate request Sara 200 . . .
35654527 06-01-2011:13.06 Examine thoroughly Sean 400 . . .
35654527 06-01-2011:11.43 Check ticket Pete 100 . . .
35654527 06-01-2011:09.55 Decide Sara 200 . . .
35654527 06-01-2011:10.45 Pay compensation Ellen 200 . . .
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In other logs, there may be more elaborate timing information, including when the activity
was started, when it was completed, and sometimes even when it was offered to the resource.
The times shown in Table 2.1 should be interpreted as completion times. In this particular
event log, activities are considered to be atomic and the table does not reveal the duration
of activities. In the table, each event is associated with a resource. In some event logs, this
information will be missing.

In addition, in other logs, more detailed information about resources may be stored, for
example, the role that a resource has or elaborated authorisation data. The table also shows the
costs associated with the events. This is an example of a data attribute. There may be many
other data attributes. For instance, in this particular example, it would be interesting to record
the outcome of the different types of examinations and checks. Another data element that
could be useful for analysis is the amount of compensation requested. This could be treated
as an attribute of the whole case or stored as an attribute of the register request event.

Table 2.1 illustrates the typical information present in an event log. Depending on the
process mining technique used and the questions at hand, only part of this information will
be used. The minimal requirements for process mining are that any event can be related to
both a case and an activity and that events within a case are ordered. Hence, the ‘case id’ and
‘activity’ columns in Table 2.1 represent the bare minimum for process mining. By projecting
the information in these two columns, we obtain the more compact representation shown in
Table 2.2. In this table, each case is represented by a sequence of activities also referred to as
a trace. For clarity, the activity names have been transformed into single-letter labels, i.e. a
designated activity register request.

Table 2.2: Process model usual representation, where the activities above described in Table 2.1
are labelled as follows: a = register request, b = examine thoroughly, c = examine
casually, d = check ticket, e = decide, f = reinitiate request, g = pay compensation,
and h = reject request

Case id Trace

1 <a, b, d, e,h>
2 <a, d, c, e, g>
3 <a, c, d, e, f, b, d, e, g>

Process mining algorithms for process discovery are the main tool used for converting
information like the one shown in Table 2.2 into process models. For example, the basic α-
algorithm [91] represents the discovered model with a Petri net. Figure 2.5 shows an example
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Figure 2.5: The process model discovered by the α-algorithm [91] based on the set of traces
shown in Table 2.2. (Adapted from [80]).

of the model obtained for the data in Table 2.2. We can see that all the three traces in Table 2.1
exist in the process model. The trace of the first case, <a, b, d, e, h>, is used as an example
to show that the trace ‘fits’ or in other words ‘conforms to’ that model.

In Figure 2.5, the initial marking ‘a’ is indeed enabled, because of the token in ‘start’.
After firing ‘a’, places ‘c1’ and ‘c2’ are marked, i.e., both places contain a token. ‘b’ is
enabled at this marking and its execution results in the marking with tokens in ‘c2’ and ‘c3’.
Now we have executed <a, b>, and the sequence <d, e, h>, remains. The next event ‘d’ is
indeed enabled and its execution results in the marking enabling ‘e’ (tokens in places ‘c3’ and
‘c4’). Firing ‘e’ results in the marking with one token in ‘c5’. This marking enables the final
event ‘h’ in the trace. After executing ‘h’, the case ends in the desired final marking with just
a token in place end. In a similar way, the other two traces in Table 2.2 (<a, d, c, e, g>, <a,
c, d, e, f, b, d, e, g>) can be identified.

2.2.4 Play-in, Play-out, and Replay

One of the most important aims of process mining is to accurately establish the relationship
between a process model and the reality reflected by the event logs. According to the ter-
minology first introduced by David Harel in the context of Live Sequence Charts [37], this
relationship can be described in terms of Play-in, Play-out and Replay. These three concepts,
shown in Figure 2.6, are described below.
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Play-out is generally associated with the classic application of process models, in the
sense that behaviour is generated based on an input model. For instance, within the context
of Play-out, the traces shown in Table 2.2 can be obtained by using the Petri net depicted
in Figure 2.5 for repeatedly playing the token game. In particular, Play-out is focused not
only on the analysis but also on the enactment of business processes. In fact, a ‘Play-out en-
gine’ can work as a workflow engine capable of controlling cases by letting them only make
the movements that are allowed by the model, enacting, in this way, the operational process
based on the executable model. In addition, Play-out engines can also be used to carry out
experiments within the context of several simulation tools, allowing them to collect valuable
statistical information, such as confidence intervals, by running the model repeatedly. Here,
it is important to note that the feasibility of this Play-out application relies on the fact that, al-
though simulation engines interact with modelled environments while workflow ones interact
with the real actors, such as workers and customers, both engines are quite similar. Finally,
the Play-out approach can also be associated with the so-called model checking approach,
which is a traditional verification method based on exhaustive state-space analysis [17].

Play-in, often referred to as inference, is the opposite of Play-out, in the sense that a model
is built based on a given behaviour. In this case, contrary to the Play-out case, the Petri net
depicted in Figure 2.5 can be automatically inferred from a given event log, for instance, the
event log in Table 2.2. Different Play-in techniques, such as the α-algorithm and other process
discovery approaches, have been proposed in the process model field. In addition, the Play-
in approach is widely used in the field of data mining since techniques within this field also
build models based on available samples. Nevertheless, since data mining has not been long
concerned with process models, most of the traditionally used data mining techniques are
not suitable for Play-in process models. Fortunately, in order to fill this gap, in recent years
researchers have developed some process mining techniques capable of discovering process
models based on event logs.

Replay, for its part, takes both an event log as well as a process model as input. The replay
approach is then based on ‘replaying’ the event log on top of the process model. For instance,
in the Petri net depicted in Figure 2.5, the trace <a, b, d, e, h> can be replayed by ‘playing
the token game’, i.e. by setting the transitions to fire in the indicated order. There are different
reasons for replaying an event log:

• Conformance checking: Replaying the log can help to highlight, detect and quantify
the existing conflicts between the log and the model. For instance, if the trace <a, b, e,

20



Chapter 2. Background

Figure 2.6: Three ways of relating event logs (or other sources of information containing example
behaviour) and process models: Play-in, Play-out, and Replay. (Adapted from [80]).

h>, is replayed on the Petri net depicted in Figure 2.5, it will appear that d should have
happened, although it did not.

• Extending the model with frequencies and temporal information: Replaying the log
can help to point out which parts of the model are most frequently visited. In addition,
the replay can also help to detect bottlenecks. Let us consider, for instance, the trace
<a8,b9,d20,e21,h21>, where the timestamps are denoted by superscripts. If this trace
is replayed on top of Figure 2.5, we can see that e has been enabled at time 20 and has
occurred at time 21. In this example, although d had already been enabled at time 8, it
only occurred at time 20, and the time it took to complete it delayed the enabling of e.
That is because the firing of e depends on the time that d complete first (in addition to
b, which also finished before time 20).
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• Constructing predictive models: Replaying event logs can help to construct predictive
models by providing particular predictions for the different states of the model. For
instance, if a predictive model is learned by replaying many cases on the Petri net
depicted in Figure 2.5, it would show that the expected completion time after enabling
e is eight hours.

• Operational support: Not only historic event data but also partial traces of running
cases can be replayed, making replaying useful for detecting anomalies at run-time.
For instance, the partial trace <a8,e11>, corresponding to a case that is still running
and will never fit into Figure 2.5, in this case, will not allow it, and will generate an
alert before the case completes.

2.3 Transition Systems

The most basic technique of process modelling is a transition system [80], which is one of
the computation study concepts and consists of states and transitions. The transition happens
between states; each one could be labelled with labels which are not unique and could appear
on more than one transition. Transition systems differ from ’finite-state automata’ in several
ways, such as: i) it is necessary for the set of states to be finite or countable; ii) it is necessary
for the set of transitions to be finite or countable, and iii) The state has no ‘start’ state or ‘final’
states.

Figure 2.7 represents the managing of a request for compensation at a business airline
company. The seven states are represented as black circles, the single initial state being la-
belled ‘s1’ and the final state labelled ‘s7’. There is a unique label for each state; each label is
unique to identify the state. Transitions are represented as arcs, which establish a connection
between two phases and are each labelled with the name of an activity. Multiple arcs can have
the same label name. For instance, ‘examine casually’ appears twice in the transition system
[88].

The transition system shown in Figure 2.7, can be formalised as follows: States (S) =
s1, s2, s3, s4, s5, s6, s7, initial state = s1, final state = s7, Activities (A) = register request,
examine thoroughly, examine casually, check ticket, decide, reinitiate request, reject request,
pay compensation, and transitions (T) = (s1, register request, s2), (s2, examine casually, s3),
(s2, examine thoroughly, s3), (s2, check ticket, s4), (s3, check ticket, s5), (s4, examine ca-

22



Chapter 2. Background

sually, s5), (s4, examine thoroughly, s5), (s5, decide, s6), (s6, reinitiate request, s2), (s6, pay
compensation, s7), (s6, reject request, s7).

Figure 2.7: A transition system having one initial state and one final state. (Adapted from [80]).

The behaviour of a transition system can be explained as follows. The initial states deter-
mine the starting point for all of the possible transitions, in the sense that any path in the graph
starting from such states corresponds to a possible execution sequence. In general, there are
infinite possible execution sequences. In particular, a path is successful if starting from an
initial state and one of the available final states is reached. On the other hand, a path deadlock
occurs if a non-final state is reached without having any possible transition to be further per-
formed. In addition, it is important to note that, in order for a path to be successfully ended,
it is not enough to simply avoid deadlocks, but it is also necessary to avoid live-locks, where
although further transitions are enabled, the final states cannot be reached [81, 80].

Due to the fact that any process model based on executable semantics can be mapped
onto a transition system, many of the concepts developed within the field of such systems can
be extended and translated into higher-level languages, such as Petri nets, Business Process
Model and Notation (BPMN) and Unified Modelling Language (UML) activity diagrams. Let
us address, for instance, the issue of determining whether two processes are the same from
a behavioural point of view. In order to answer such a seemingly simple question, different
equivalence notions defined for transition systems can be used, as suggested in [96]. In this
line, the equivalence between both processes can be defined, on the one hand, based on the
trace equivalence principle, which considers that two transition systems are equivalent if their
execution sequences are the same. On the other hand, more refined equivalence notions, such
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Figure 2.8: Transition System with (a) Sequence Representation, (b) Set Representation, and (b)
Multi-set Representation of traces <ABBC>.

as the branching bi-similarity notion which suggests that the moment of choice should also
be taken into account, can also be used. In this way, provided that the process models are
expressed in a language with executable semantics, the equivalence notions initially defined
for transition systems can be applied to any pair of models [80].

2.4 Preliminaries

This section describes the elements required for building our prediction model, which consists
of two parts: firstly, to build an extended annotated transition system that includes a number
of attributes that comprise relevant structural information about the traces; secondly, to apply
regression techniques for predicting the remaining time of the process execution at each time.

Definition 6 (Partial trace, State) [88]: A partial trace PT is any part of a trace T that contains
one or more events in sequence. For each (partial) trace, three state representations are defined
[88]: Set, Multi-Set and Sequence. In this thesis, we focus on the Set representation as the
basis for our model. In Set representation, each partial trace, PT , has associated a state,
(PT ), which is labelled through the activities in PT and where no repetition of activities is
considered (no matter its order of execution).

Definition 7 (Transition System) [88]: A transition system (T S) is a triplet (S, PT , T R), where
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S is the state space, PT is a set of partial traces, and T R is a transition relation which describes
how the system moves from one state to another. The T S model has different forms depending
on the state representation on which it is based.

In Figure 2.8 we show the differences between Sequence representation, Set representa-
tion and Multi-set representation in a TS, using a simple example of a process involving only
three events with its corresponding activities (A, B, C). Here we consider the representation
of trace <ACBC>involving the three activities A, B and C. In Figure 2.8a), we show the
Set representation, where the final state is {ABC}, since Set representation does not consider
the order of the activities within the trace. For example, other traces involving the same ac-
tivities, like <CCBA>, or <BABC> will all have the same representation: state {ABC}.
In Figure 2.8b, the final state of the traces simply is the sequence of the activities, which is
(state {ACBC}). In Figure 2.8c), we show the Multi-Set representation, where the final state
is {ABC} (as in the Set representation) where it does not consider the order of the activities
within the trace, but it does consider the number of times each activity was executed.

Definition 8 (Annotated Transition System) [88]: An Annotated Transition System (AT S) is
a two-fold system (T S,MF), where T S is a transition system based on the Set representation
and MF is a measurement function MF(S) that annotates each state S in the AT S. For instance,
in [88], authors define MF as the time remaining since the occurrence of the last activity of
each partial trace in the T S until that trace is completed.

Table 2.3: An example log, showing seven traces, each of them represented as a sequence of
activities A, B, C, D, E, occurring in different orders. Superscript numbers indicate
time-stamps at which each activity is completed.

# Traces

1 <A00B06C12D18>
2 <A10C14B26D36>
3 <A12E22D56>
4 <A15B19C22D28>
5 <A18B22C26D32>
6 <A19E28D59>
7 <A20C25B36D44>

In Figure 2.9, we show an example of the ATS model defined in [88], built from the traces
described in Table 2.3. Let us consider state {AB} and the partial traces it represents as the
following:
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Figure 2.9: ATS-based on the log shown in Table 2.3

• <A00B06> (from Trace 1).

• <A15B19> (from Trace 4).

• <A18B22> (from Trace 5).

The annotation of state {AB} ([12, 9, 10]) is related to the times elapsed from the timestamp
of the last activity in each partial trace (6, 19, and 22 respectively) until the end of the corre-
sponding trace (18, 28, and 32, respectively). Therefore, the respective differences between
these values (12=18-6, 9=28-19, 10=32-22) form the annotation attached to the state {AB}
[12, 9, 10].

2.5 Estimating of Remaining Time of Business Process

Let us recall again, there are three main types of process mining techniques [83]: process
discovery, conformance checking, and process enhancement. Process discovery takes an event
log and produces a model without using any a priori information [83, 80]. Conformance
checking makes a comparison between a designed process model and the process discovered
from the event log to show where the real process deviates from the designed one [83]. Process
enhancement aims to extend or improve an existing process, using information related to the
process which is usually extracted from the recorded event logs [79].

In process enhancement, temporal information is usually used to measure the wait times
between process activities, to check the temporal behaviour during traces replay, to provide
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information about relevant issues in the process (e.g. bottlenecks, throughout times, frequen-
cies) or to predict the remaining times from running process instances [83]. In this sense,
predicting the remaining time of process instances (running cases) has been highlighted in
the literature as one of the most important current challenges in process mining [82]. The
remaining time of a process instance is the required time for it to be finished from a particular
execution state. Accurately predicting remaining time is a key issue for all actors involved in
business processes management. For organisations, having accurate time predictions allows
them to optimally manage their resources [8], assess the quality of the services they provide
as well as take appropriate managerial decisions in advance. For end users, it is also critical to
be aware of when the processes they are involved in will finish [63, 71]. Some examples of the
latter are bank customers applying for a loan, who need to know in advance how long it will
take for their loan application to be reviewed, checked, assessed and accepted or declined, or
in healthcare processes, where it is crucial to know the remaining time of each treatment in
order to effectively manage the next treatments (and to prepare all the necessary resources in
advance) or the next patients.

The problem with predicting the remaining time is part of a more general problem known
as predictive monitoring. In recent years, several proposals focusing on predictive monitoring
and, more specifically, on the prediction of remaining time have been presented [32, 53, 97].
Initially, these proposals have focused on the representation of the process executions or traces
under the hypothesis that traces with different characteristics have different remaining times.
Several of these approaches are based on Annotated Transition Systems (ATS), where each
(partial) trace is associated with a state having a different representation [88, 85, 66, 63, 12].
Other approaches use a partial trace-based or index-based representation [8, 71, 98]. More re-
cently, approaches have been proposed for applying machine learning methods used to predict
the remaining time [95, 31, 78, 13, 76].

In Chapter 3, we will discuss in detail these related works, and we will also summarise
their limitations with regard to time prediction accuracy.
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CHAPTER 3

LITERATURE REVIEW

3.1 Theory Relevant to Remaining Time Prediction Using ATS

Within the revolution of predicting the remaining time of business processes, a number of
proposals have been addressed. The models described in [88, 85, 66, 63, 12] are state-based
representations known as Annotated Transition Systems (ATS). In this section, we are going
to describe them in detail, since the model we will propose in this Thesis belongs to this
category.

Before going into depth in the literature review, it is relevant to recall here that these
models are centred around the Annotated Transition system concept (defined in Section 2.4).
In Transition Systems, the process traces (real executions or instances) are represented as a
sequence of states and a set of transitions between them: a state models a sequence of activities
of the trace and a transition represents the execution of the next activity in that trace. Each
state of a transition system is annotated with temporal information about the execution of the
process, thus generating an Annotated Transition System (ATS).

In [85], a general framework for operational decision support based on the idea that pro-
cess mining is not only limited to the past but can also be used for the present and the future
has been proposed. In particular, a new set of time-based operational support approaches
implemented through the process mining tool ProM has been introduced [90]. The proposed
time-based operational support approaches are based on an Annotated Transition System that
contains time information extracted from event logs. The ATS can be used to check (time)
conformance with the time where cases are being executed [88], predict the remaining time of
processes of incomplete cases and recommend convenient activities for the end users working
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Figure 3.1: The three major aspects of process mining are 1) Discovery, 2) Conformance, and 3)
Enhancement. (Adapted from [85])

on these cases, before annotating each state with the average remaining time to complete, with
each trace execution represented by this state. The average time is provided as the remaining
time prediction.

In this way, the particular focus can be made on the active use of process mining involving
partial traces corresponding to cases that have not been completed yet. Within the context of
such running cases, three types of actions can be identified: check, predict and recommend.
These actions, shown in Figure 3.1, are referred to as operational support, since they are aimed
at influencing the process while it is running. In this way, the proposed time-based operational
support approaches can be used to check the time conformance of running cases, predict the
completion time of the cases and recommend appropriate activities to end users working on
such cases towards minimising their overall flow time. The advantage of this work, in addition
to the time prediction, is that it also uses two operational support techniques, which influence
the processes during the running time. It focuses on the partial traces, and while the case is
still running, checks the last task. For instance, this approach will check if this task fits the
model or not, and use the recommend technique by recommending the next task based on the
last task.

A weak point of [85] is that, in this work, authors only present results of predicted re-
maining time calculation but do not provide any comparison nor any error measurements.
The paper describes a framework for operational support using process mining and presents
how it can be used for predicting the remaining processing time, but lacks real validation.

In [63] a prediction model is proposed for forecasting the completion time of running
cases (i.e. cases that are not yet completed), usually known as ‘Time to completion’, in the
case of business processes. Within the context of the proposed approach, a service-oriented
architecture providing a testbed for carrying out predictions on business processes is used.
Several prediction techniques, such as descriptive statistics, regression and hidden Markov
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Models (HMMs), are used in this work so that the predictions can be made based on event
logs. In this model, the authors use the ATS introduced by Aalst et al. [88] for forecasting
time to complete for business processes. The ATS is capable of abstracting event logs from
past executions. In this work, the ATS approach is used together with sequence abstractions
to predict the time to completion of business processes. Finally, a practical implementation
of the system is proposed by simulating the execution of a real business process, and the
obtained prediction results using the proposed prediction model are compared to the ones
obtained using other state-of-the-art prediction models.

Systems based on path mining and ATS strongly depend on the existence (and availability)
of historical event logs, since they assume that all the paths and patterns that are likely to
appear during the execution of the process are contained in such logs. Nevertheless, this is not
strictly true for business processes, where the paths and events are not equally likely, being
process patterns, and therefore their occurrence likelihood is affected by several factors, such
as resource availability and its characteristics. In such a dynamic process, where process
patterns change over time, the steadiness assumption is not a suitable one. In this work, a
prediction model, fitted by historical data, capable of being updated based on the systems time
and content requirements, is proposed in order to handle the dynamics of the business process.
In particular, to learn the workflows patterns available in historical event logs, a HMM is used.
In this model, the authors built an architectural framework allowing the simulation of business
processes and prediction techniques. They also proposed a HMM-based prediction model for
predicting the time to completion of business processes. Finally, they built a prototype test-
bed that implements (via simulation) the proposed architecture.

The most important limitation of this approach is that the validation results they present
only consider a single synthetic dataset with 14 tasks. They do not provide error results, but
a simple qualitative comparison between the predicted remaining time values given by each
technique and the baseline work [88], showing that the similarity of slope values for ATS and
one of their techniques validate the implementation of the simulation system.

In [88], a configurable set of abstractions providing a fair balance between over and under-
fitting is used to obtain reliable time predictions. In addition, the proposed approach is prac-
tically implemented in ProM. The prediction approach proposed in this work is an improved
version of the prediction service presented in [95]. Including a completely new approach for
time prediction in order to overcome the limitations encountered in the one proposed in [95].
In particular, unlike other existing approaches in the literature, where the problem is reduced
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to a ‘simple heuristic’ process, such as using a regression model and estimating half of the av-
erage time or the average time minus the already elapsed time, an ATS capable of representing
an abstraction of the process with time annotations was used in this work.

In [95], an information system based on recording any event that takes place, such as,
for instance, the commencement of an activity and the building of the process model based
on the recorded information, is proposed to support operational processes. In this work, a
transition system is developed using a set of different abstractions, as proposed in [87]. In
particular, the transition system is annotated with information about elapsed, sojourn and
remaining times, accounting for the average time to reach a particular state, the average time
spent in the state and the average time to reach the end of this state respectively. Based on this
annotated information, the transition system is able to predict the remaining time of all (or
some) of the running cases, namely of the process instances. In particular, within the context
of this approach, the process instances strongly depend on the transition system generation
as well as its corresponding abstractions presented in [87]. In this way, the transition system
would be able to keep the balance between over- and under-fitting with respect to the log, thus
providing better predictions. The advantage of this work is that it provides a base framework
for the ATS-based model, where subsequent works rely on their base model.

The limitation of this work is that the results showed low accuracy in the prediction of
the remaining time. Whereas in the results of the first event log case (the WMO process of
a municipality), the remaining time prediction is about 64 days (MAE), the results of the
second case study (the WOZ process of a municipality) is 17 days (MAE). This occurs, as
we explained before, due to the low number of information annotated in the ATS model, this
model only annotating temporal information and taking the prediction of the remaining time
as an average for all of the historical remaining times. Moreover, the approach assumes that
the processes are in a steady state. In many cases, this is not realistic since the model may
change over time. In addition, information related to the context of a case is also important
when predicting flow times. Examples of this information are: the other cases it is competing
with may place the next cases in a queue, the availability of resources and some external
factors influencing the process such as the weather, the time of the day, traffic conditions, etc.

Ceci et. al. [12] proposed a new approach for dealing with operational support in pro-
cess mining, focusing especially on the prediction of the next activity as well as the time to
complete. In particular, the proposed approach intends to address some of the most common
issues within the context of the operational support, such as incompleteness, robustness to
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noise and over-fitting. Along this line, the proposed approach is aimed at identifying partial
process models to train both types of predictive models, in other words, the model for pre-
dicting the next activity and the model for estimating the time to complete. In order to do so,
a two-step approach based on data mining techniques, as suggested in [11], where a hybrid
data mining approach is used to deal with the associative classification task, is carried out. In
the first step, descriptive data mining, specifically a tailored sequential pattern mining algo-
rithm, is used for partial model mining. In this way, prediction models that are robust against
incompleteness and that are not over-fitted can be obtained. In the second step, predictive
data mining is used to mine nested classification/regression models. Here, it is important to
highlight that the use of nested models is selected in particular since it allows the application
of any traditional classification or regression technique.

As discussed above, the proposed approach is aimed at identifying frequent partial pro-
cesses. In order to do so, an efficient frequent pattern mining algorithm is used to extract
frequent activity sequences that are then represented as sequence trees. Then, each node of
the resulting tree is associated with a particular prediction model, taking into account not only
traditional attributes, such as the performer of each activity, but also additional attributes, such
as the cost associated with the event or the location where the event is taking place. This kind
of prediction model is called a nested model. The described implementation of the proposed
approach allows for handling incompleteness, robustness to noise and over-fitting by remov-
ing unusual behaviours through the sequence mining algorithm. In addition, the proposed
nested models allow certain flexibility, in the sense of allowing the plugging-in of any classi-
fication/regression learning algorithm, as well as enabling different representations of the data
(one for each node of the tree).

To sum up, the authors propose here a prediction model for business processes based
on: (i) a partial process model’s discovery through sequential pattern mining techniques, as
well as; (ii) the inclusion of additional useful information regarding activities associated with
particular partial process models in order to train nested prediction models on event logs.
Specifically, the prediction models are focused on predicting the next activity and the time to
completion of a new (running) process instance.

A weak point of this work is that there is low accuracy in the prediction of the remaining
time due to the limit of the attributes in the model used, as they only consider the sequence of
events. Regarding the result provided, the prediction accuracy is improved by approximately
30% with ProM Data and 11% with THINK3 Data. The authors also validate their work using
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the non-noisy dataset, which in general will produce better results than if they had used noisy
datasets, typically with even lower accuracy.

According to Polato et al. [66], in order to successfully deal with processes under service-
level agreement constraints, it is crucial to be able to accurately predict the time to completion
of the business process instances. Nevertheless, there are several factors that can impact the
process instance tendency, making it hard to achieve the required accuracy by simply resorting
to the time statistics of historical cases. In order to improve the prediction accuracy, a new
approach combining the control and the data flow perspectives is proposed in this work. Along
this line, the process model is enriched by adding the relevant time and data information with
a view to predicting the time to complete. In particular, the time to complete the prediction
of a running case is computed, resorting to: (a) the likelihood of all the following activities,
given the already-collected data, and (b) the remaining time estimation based on a regression
model built on the data.

This work proposes a new technique that can be used in operational settings for predicting
the time to complete a business process. In particular, the proposed approach is based on
multiple perspectives, in the sense that both the flow of the activities of the running case, as
well as the data that the current process instance is generating, are considered for performing
the prediction. In particular, from the former perspective, i.e. in terms of the control-flow, the
information is encoded by a transition system, while from the latter perspective, all of the data
recorded by each activity is collected and used to refine the prediction.

In general, approaches that are already available in the literature use the transition system
to store information associated with a specific trace. In this work, the transition system is
annotated with three additional entities. The first accounts for the average time spent on every
state. The second consists of a Naı̈ve Bayes classifier, associated with every state, capable
of determining, given the set of data attributes, the probability distribution over the set of
reachable states from the current one. The third is a Support Vector Regressor (SVR) that,
given the set of data attributes, can predict the time to complete for each transition. Figure 3.2
shows a typical application scenario of the proposed approach. According to the process of a
bank application process, depicted in Figure 3.2 the proposed approach flows in the following
way: given a partial trace containing the log of various already-executed activities, all of
the data attributes observed until that moment can be collected. In particular, after activities
A, B and C have been executed, data attributes like the Amount of $1,000, the Customer
category of gold and Payments required of 10, are available. Then, based on the available

34



Chapter 3. Literature Review

information in terms of the history of the trace and the set of data attributes, the time to
complete the running instance can be predicted through the transition system annotated with
the three additional entities previously described, namely the entity accounting for the average
time spent at each state, the entity based on the Naı̈ve Bayes classifier and the entity based on
the Support Vector Regression.

Figure 3.2: A representation of an application scenario. (Adapted from [66])

The weak point of this work is that it has low accuracy in the prediction of the remaining
time due to the limit of the attributes in the model used. Only two attributes (Sojourn time and
Remaining time) are annotated, which do not provide enough information to let the model
learn in the best way. Regarding the result provided, the authors evaluate the model with a log
with 1,500 traces, and the improvement in MAPE with the base-model [82] is about 15.5%,
whilst for a log with 5,000 traces, it is 4.75%. The improvement decreases as the number of
traces increases.

3.2 Theory Relevant to Remaining time prediction using non-ATS
model

In this section, we will describe other related works that do not follow the ATS-based ap-
proach, and which are machine learning methods to predict the remaining time. Nowadays,
the capability of predicting a process outcome in order to be able to make a priori recommen-
dations regarding which is the best way to move forward from a certain point in the process
has become a crucial task. In particular, a priori recommendations can be supported by dif-
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ferent kinds of predictions, such as regarding the process’ remaining time or regarding the
process cost.

In [8], a novel prediction approach for the process’ remaining time based on query cata-
logues is proposed. Query catalogues are groups of partial trace tails from all of the traces
available in a log. A partial trace tail is annotated with the number of its occurrences and
the sum of its remaining times. Then, the prediction of the remaining time to completion for
each partial trace is the average time in the catalogue where the trace is. Query catalogues
incorporate useful elements from annotated transitions systems [88], so that a collection of
annotated partial trace tails can be built with these elements. In this work, the information
of process events is stored in the form of partial trace tails by the query catalogues in order
to use them to estimate the remaining time of new executions of the process. In addition,
query catalogues are created considering all of the possible combinations of events for all
the traces of an event log. In this way, although more memory is used to compute the pro-
cess’ remaining time, the needed processing capacity to do so is reduced. Three different new
methods for calculating the remaining time for partial traces based on query catalogues are
proposed in this work. These approaches not only allow for improving the estimation based
on the new information being collected compared to the baseline work of [88], but also make
the prediction system more flexible and dynamic, For instance, the obsolescence of certain
partial trace tails or the integration of new ones could be determined by simply deleting the
obsolete information or adding the new one to the catalogues respectively. In such cases, the
proposed approach avoids the need for reprocessing all of the previous data, thus reducing the
computational cost.

The weak point of this work is the modest accuracy value of the predicted remaining
time for partial traces. Three different new methods are used for calculating the remaining
time for partial traces, but all of them are based on calculating the average of the historical
records. Regarding the result provided, using a real event log of Chilean telecommunications
compared with the baseline work of [88], the best method (Average catalog) improved about
1.5 hours in MAE, and one hour in RMSE, and about 50% in MAPE as shown in Table 3.1.

Rogge-Solti et al. [71] mention that in order to meet specific deadlines or service-level
agreements, companies usually need to speed up the execution of their processes. In general,
this is done either by raising alerts or by using additional resources. In such a context, it be-
comes crucial to accurately predict the remaining time of a case as well as the risk of missing
a deadline. In order to do so, a particular kind of stochastic Petri Nets, which can identify ar-
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Table 3.1: Comparison results of different methods described in [8] applied to a real event log.

Method MAE (days) MAPE (%) RMSE (days)

Simple heuristic (SH) 19.04 104.56%* 20.19

Annotated transition system 17.09 195.52% 19.06

Default horizon and catalog (DRT) 15.76 148.24% 18.02

Average catalog (RT) 15.57 146.83% 18.02

Best horizon and catalog (RRT) 15.83 154.05% 18.43

bitrary duration distributions, can be used. In this work, the temporal performance of business
processes is studied. In particular, expressive probabilistic models which allow the possibility
of including information extracted from event data [70] are used. In this way, by including the
information of the elapsed time since the last event, the accuracy in the prediction of the re-
maining duration [88, 27, 70] as well as the risks of missing temporal deadlines or guarantees
[19, 64] can be increased. In addition, reasonable wait time guarantees, such as a wait time
that is met in 99% of cases, can also be computed. Finally, the prediction approach proposed
in this work can be used within the context of resource management, where the scheduling
success strongly depends on the accurate prediction of the remaining time of the activities
[22].

To sum up, a new approach for predicting the remaining time as well as for estimating
the chance of missing a given deadline within the context of business processes is proposed
in this work. However, the implementation of the proposed prediction approach depends on
some assumptions. In particular, due to the fact that the information of the elapsed time since
the last event is included in the prediction model, the effects of time are more significant in the
presence of long time spans between observable events in the business process. The limitation
of this work is that it depends on the elapsed time only and that the prediction accuracy when
the duration times are short is lower than with long durations. Based on the result provided
from the comparison with the baseline work [88] in two real-life event logs, the result of the
Business Process Intelligence Challenge 2012 log improved the RMSE average by about 2.5
days, and the result of the shipment import process improved the RMSE average by about 2
days. This model provided very low improvement regarding the baseline work [88].

In [98], a white-box flow analysis approach is proposed to predict quantitative perfor-
mance indicators of running process instances, especially focusing on predicting the remain-
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ing cycle time of such instances. The main idea of this work is to use flow analysis techniques
to include the performance indicator predicted at the activity level into the process instance
level. In general, researchers in the field resort to black-box approaches, either based on
stochastic or regression models, to predict the remaining execution time of a process instance.
In such cases, the prediction result is expressed as a single scalar value, and no explanation
is given in terms of elementary components. On the other hand, quantitative performance in-
dicators, such as cost and time, are aggregations of the corresponding performance indicators
of the process activities.

In particular, the cycle time of a process instance consists of the sum of the cycle time of
the activities performed in such a process instance. Although there exist different techniques
in the literature that can predict the aggregate value of a performance indicator for a running
process instance, to the best of the author’s knowledge, none are able to explain to what ex-
tent each activity contributes to the aggregate prediction. In order to address such an issue,
a white-box approach to predict quantitative performance indicators of running process in-
stances based on the well-known flow analysis for quantitative process analysis is proposed in
this work. Flow analysis techniques take into account the control-flow relations between the
process activities to estimate quantitative performance indicators at the level of the process by
aggregating their estimated values at the level of the activities. Similarly, in order to predict
the remaining cycle time of a process instance, the cycle time of each activity that might po-
tentially be executed within this process instance is first estimated to be then aggregated using
flow analysis.

The limitation of this work appears when the model facing the cycle calling for the same
event or another event, which is multiple occurrences of the same fragment of activities in a
row, leads to the limitation of flow analysis-based approaches. Regarding the result, the eval-
uation has been done depending on the different Prefix1 length, where the logical comparison
should have also all prefixes.

In [95], the prediction of the remaining execution time based on event logs is addressed. In
particular, special attention is paid to explain what the remaining execution time of a specific
partial case is, i.e., accurately answering the customer’s request regarding the time needed to
handle their claim. Unlike many other previous prediction methods proposed in the litera-
ture which used parametric regression techniques, non-parametric regression techniques are

1Prefix log is a custom log that includes n number of activities in each trace of the original log. If n = 20, then
the length of each trace in the prefix log is 20 or less if the trace length is lower. [97]
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used in this work since they have been shown to be better suited for dealing with unspeci-
fied business processes [65]. In these cases, little or no precedents are available, making it
impossible to assume any specific distribution for the execution time. It is then necessary to
resort to non-parametric regression approaches which, contrary to parametric approaches, do
not need to know the form of the relationship between the predictor variables and the target
variables, it being enough to assume that there is some (although unknown) kind of relation-
ship between them. In particular, the so-called smoothing or ‘local averaging’ non-parametric
regression is used to make estimations based only on the observed data, without the need for
a parameterised model.

Several methods for estimating the remaining execution time are introduced in this work.
On the one hand, a naı̈ve approach based on the average execution time over a log is pro-
posed. On the other hand, regression techniques based on kernel functions, based on the ones
introduced in [68], capable of performing non-parametric regression with both continuous
and un-ordered categorical variables, are also proposed. In particular, three different types of
regression models, based on the occurrences of activities, the duration of activities, and the
case data, which corresponds to ordered ordinal, continuous and un-ordered ordinal variables
respectively, are presented. The three proposed prediction models have the same structure,
consisting of a set of measurements, a kernel function and a predictor. In order to actually
implement them, it is necessary to perform regression on a combination of different variable
types, namely the variables based on the occurrences of activities, those based on the duration
of activities and those based on the case data. Each of these variable types is represented by
measurement and target variables.

In particular, the same target variable is defined for all the measured variables. In addition,
all the measurement sets are the same size, in the sense that one measurement is taken per non-
empty prefix of a case in the log. In this way, all measurements can be easily combined into a
single vector containing the variables based on activity occurrences, activity duration and the
case data for each prefix.

The weak point of this work is that validation consists of comparing the four different
proposed methods with the ‘average estimator’ (a naı̈ve approach using only the average cycle
time over a log). A single real dataset is used (‘bezwaar WOZ’, from a Dutch municipality)
here. Results show that three of the approaches outperform the naı̈ve approach. The reported
Mean Square Error for the best method is 1,532.85.

In [31], a novel framework for predictive monitoring business processes towards estimat-
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ing the actual probability of fulfilling a given predicate upon its completion within a running
case is proposed. In order to do so, the authors of this work propose to consider the sequence
of events observed in the current trace as well as the data attributes associated with such
events. The proposed prediction approach is carried out as follows: on the one hand, control-
flow information is used to cluster the traces of the previous, already completed, cases with-
out considering the event payloads (data attributes). Then, a classifier, based on event data
attributes, is built for each of the previously defined clusters in order to identify the cases in
which the predicate being currently considered is likely to be fulfilled and separate them from
the ones leading to a violation within the cluster. Finally, at run-time, the prediction of a par-
ticular running case is performed by assigning it to a cluster and applying the corresponding
classifier. In order to practically implement the proposed prediction approach, three methods
should be selected, namely one for encoding traces in the event log as feature vectors, one
for clustering and one for classifying. The widely used ProM process mining tool [90] has
been used to perform the experiments, placing special emphasis on applications of Opera-
tional Support (OS) [85, 101, 49]. Within the OS environment, a stream of events, such as the
ones produced by an enterprise system, are considered to be inputs, while a set of predictions
for each new incoming event are used as updates.

Finally, the predictive monitoring approach based on historical control flow data as well as
data attributes proposed in this work has the advantage of significantly reducing the run-time
overhead while maintaining competitive accuracy. The key aspect of reducing the run-time
consists of the fact that the above-mentioned classifiers are built offline. In this way, the
online phase, i.e., the run-time step, simply consists of matching an uncompleted trace of the
running case to a cluster so that the corresponding classifier can be applied and the probability
of fulfilment of the monitored predicate can be estimated.

The weak point of this work is that it does not provide any error measure metric. Al-
though in the results section the authors provide the temporal information they predicted, this
information does not allow us to figure out the prediction accuracy of the proposed model.

Niek et al. [78] mention that most of the available methods in the field of business pro-
cess monitoring are tailor-made for specific prediction tasks and are not easily generalisable.
Moreover, even their accuracy is strongly dependent on the data set being used as well as on
the point in time at which the prediction is made. For instance, a particular technique may
outperform another one for a given log and prediction point, but under-perform for another
log at the same prediction point or for the same log at an earlier prediction point [31, 56]. In
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such a context, researchers are usually compelled to combine multiple tuning techniques [56],
resort to trial-and-error or to apply considerable tuning, such as hyper-parameter optimisation
[30], in order to achieve the required consistency in the obtained accuracy.

There have also been recent prediction models which use Deep Learning Neural ap-
proaches, such as Recurrent Neural Networks (RNN), with LSTM architectures [40] aiming
to provide accurate predictions in this field, in the same way as they have done in other fields
such as, for example, computer vision, natural language processing [57] or speech recogni-
tion [35]. Namely, in Evermann et al. [25], LSTMs are used within the context of predictive
process monitoring, in particular, to predict the next activity in a case.

The following research questions intend to be answered: (i) what is the actual possibility
of using LSTMs in a wide range of predictive process monitoring applications?; (ii) how
can they be implemented in such contexts? and; (iii) can LSTMs achieve high accuracy
across different prediction tasks, event logs and prediction points? In order to address these
questions, in this work, the LSTM models are used to predict: (1) the next activity in a running
case and its timestamp, (2) the continuation of a case up to completion and (3) the remaining
cycle time. Experiments comparing the accuracy of the proposed LSTM-based prediction
model with other state-of-the-art, tailor-made methods at different prediction points, using
three real-life event logs, have been carried out.

The limitation of this work is that it performs worse than the baselines [88] when the trace
includes a lot of event cycles, as shown in Figure 3.3 for b) Business Processing Intelligence
2012 dataset - work item (BPIC12w) log. However, in c) BPIC12w log with no repeated
event, the result was more enhanced than the one with no repeated event. The result clarifies
that LSTM model cannot deal with such a log as BPIC12w and for other BPIC real-life logs
where they have the processes with many repetitions [3].

Cesario et al. [13], proposes a framework for evaluating and predicting the performances
of business processes, based on historical data. The proposed approach is intended to predict
the run-time of different performance measures, such as the remaining processing time/steps
for uncompleted process instances, using inductive-learning techniques to build a modular
representation of the process and modelling the most relevant process variants (in terms of
performance) by different regression models in order to discriminate them based on context
variables. The proposed prediction technique combines different data mining methods, such
as non-parametric regression methods, probabilistic trace clustering schemes, and a novel
tailor-made data transformation mechanism, towards achieving a suitable level of abstraction
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Figure 3.3: MAE values using prefixes of different lengths for helpdesk (a), BPIC12 W (b), BPIC12 W
(no duplicates) (c) and environmental permit (d) datasets.

for the logs. In addition, to bridge the gap in the literature regarding scalability issues and to
be able to actually handle large logs, the proposed approach implements the computation of
the trace clusters as well as their predictors in a parallel and distributed manner on top of a
cloud-based service-oriented infrastructure.

The main contribution of this work is the combination of performance prediction and
clustering techniques [28, 6]. In this way, the proposed approach intends to provide solutions
for the main issues in the field. On the one hand, a quick log sketch is performed towards
clustering the log traces by picking up a fixed number of performance values at predefined
positions within the traces that, although rougher than the one introduced in [28, 6], still
allows the user to recognise groups of traces with similar performances over the time, as the
obtained experimental results demonstrate.

In order to increase the accuracy of the obtained cluster predictors, usually degraded by
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the underlying approximated representation of the logs and the use of greedy clustering algo-
rithms, the traditional prediction clustering approach based on logic presented in [7] and used
in [28, 6] is replaced with a probabilistic clustering scheme. Finally, as already mentioned, the
scalability limitations encountered in [28, 6] are addressed by making the proposed approach
suitable for large logs by computing probability-aware trace clusters as well as predictor clus-
ters in a parallel and distributed manner based on the grid services approaches introduced in
[14] for Distributed Data Mining (DDM) tasks.

In particular, the grid services have been developed according to the Web Services Re-
source Framework (WSRF) specifications of the WS-Core (Globus Toolkit 4 (GT4) [29]) and
have been deployed onto a private cloud-computing platform. Here, it is important to high-
light that resorting to a cloud infrastructure [44] to automatically deploy virtual machines
hosting a GT4 container is highly recommended in the literature (see, for instance, [58, 75])
since it provides the authors with a flexible and customised environment for transparently and
efficiently running their prediction approaches.

The limitation of this work is that it used two abstraction modes (multi-set and set) to
summarise any trace in the log into a vector, which represents the behaviour of the trace
by the occurrence of events only. Therefore, this information leads to low accuracy when
predicting the remaining time, and more attributes are needed to enrich the model. The result
provided shows that this model improved the time prediction by about 0.015 days in the MAE
and 0.008% in MAPE.

After reviewing all of the models in the literature, the prediction of the remaining time of
all models mentioned in this chapter has shown a few improvements compared to the baseline,
some of them showing a comparison with other models and others providing only their own
results. Niek et al. [78] present a model with good results compared to the baseline, not in the
early stage of the running case, but later with more time consumed.

3.3 Conclusions

In addition to the above, in all of the previous revolutionary approaches, the main problem is
that the encoding includes information about the context of the process execution state, such
as the duration of the activities or about domain variables. The main problem with all these
approaches is that their trace representation (or encoding) does not include all the relevant in-
formation related to the traces’ execution, such as n-size loops between activities, the distance
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between activities or co-occurrences. Without this information about the structural features
of the traces, it is difficult to make accurate predictions about the remaining time. Therefore,
the need for accurate remaining time prediction models has become necessary.

In the next Chapter 4, we introduce a new remaining time prediction model, an extended
ATS-based approach that considers structural features or attributes related to process exe-
cution. In our approach, each ATS state is annotated with vectors that contain information
related to trace structures.
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CHAPTER 4

A NOVEL TIME PREDICTION MODEL BASED

ON STRUCTURAL INFORMATION FROM THE

TRACES

4.1 Introduction

After revising the most relevant remaining time prediction models in the literature. In this
chapter, we describe our proposal of a model that considers structural information of the
traces to predict the remaining times in a business process.

Our approach consists of: i) defining a number of attributes on the business logs that cap-
ture structural information from the traces, ii) extending the well-known annotated transition
system model to annotate its states with the values of the attributes and iii) applying linear
regression for predicting the remaining time of the process for each state using the attributes
values.

Information systems managing massive and variant business processes usually store all
the transaction data into the form of event logs [95]. In business process management, the
use of event logs is not limited to storing the data generated by the business processes. This
historical information can be used to build predictive models that can be used to let running
process instances learn from the previous records. By extracting the timestamp from the event
log and extending it in the process model, it is possible, for instance, to measure the wait times
between the process’ activities. These can be used to let running process instances learn from



4.2. A new prediction model for remaining time estimation

the historical records.

One of the most imperative difficulties is predicting the remaining processing time of
running cases [8, 20, 82, 66], defined as the required time for a process to be complete. Its
accurate estimation during a process run-time is an issue that has been raised recently as one
of the challenges in business processes enhancement [82].

In this chapter, we present a new vector-based and ATS-based approach that considers
structural features or attributes related to the process execution such as frequencies, repetitions
and cycles. Each ATS state is characterised by a set of vectors whose components are the
values of these attributes for each partial trace that fits this state. Based on these vectors and
on the remaining times of the traces related to them, a linear regression-based predictor has
been built for each state.

In this thesis, we used the ATS-based model as the base of our work, therefore, in this
chapter, we focus mainly on the comparison with Van der Aalst approach in [88], as it is the
base work of other approaches in the literature. In addition, our ATS-based model will provide
the necessary model for conducting the experimental segment.

4.2 A new prediction model for remaining time estimation

In this section, firstly, we will present the most relevant elements of an ATS [88], since our
model proposes an extension of ATS. These elements were defined in the preliminaries in
Section 2.4. Using these definitions (Event, Trace, Event Log, Partial Trace, State, Transition
System and ATS), we will propose what follows an extension of the ATS model that includes a
set of new structural features which are extracted from traces and capture relevant information
about the traces which have an impact on the remaining time estimations.

In Figure 4.1, we show how an ATS is built, using the two traces shown in Table 4.1:

Table 4.1: Two examples of traces. The superscript in each activity indicates its timestamp
(ending time).

Trace no. Trace Activities involved
1 <A3A18B24A30> A, B
2 <A7B10B15C22C31> A, B, C

Figure 4.1 shows how the ATS model was built from the sample log that includes two
traces in Table 4.1, where it shows each state and the partial traces related to it.
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Figure 4.1: ATS model of the two traces shown in Table 4.1

For each state we have one or more partial traces as the following:

• State {A}:

– T1: has two partial traces <A>, and <AA>

– T2: has one partial trace <A>

• State {AB}:

– T1: has two partial traces <AAB>, and <AABA>

– T2: has two partial traces <AB>, and <ABB>

• State {ABC}:

– T2: has two partial traces <AABC>, and <AABCC>

4.3 Trace Features

We extend the ATS model by considering a number of features (or attributes) extracted from
the analysis of the event log traces. Each of these features is related to a measurement with
which the ATS model will be extended, that is, each state of the ATS model will be annotated
with both a set of attributes and the remaining time. A key difference between our approach
and others in the literature is that the attributes we consider provide specific structural infor-
mation about traces, such as the occurrence of the activities, its elapsed time or the existence
of loops, among others. This structural information will act as predictor variables that will be
taken into account by a regression model, aiming to improve the accuracy in the calculation
of the remaining time prediction in a running process [2]. To consider the trace feature, We
will define the following eight attributes:

Definition 6 (Occurrence, Occ): Let PT be a partial trace. We define Occ(Ai,PT ) as the num-
ber of times activity Ai occurs in PT . For example, for partial trace PT =<CCABBCAA>,
we have Occ(A,PT )=3, Occ(B,PT )=2, and Occ(C,PT )=3.
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Definition 7 (Cycle, Cyc): Let PT be a partial trace, and LargSeq(Ai) the largest sequence of
activity Ai in PT . We define Cyc(Ai,PT ):= (length(LargSeq(Ai))-1) as the number of times the
activity Ai is repeated in sequence in PT . For example, for partial trace PT =<CCCABCCAA>,
we have Cyc(A,PT )=1, Cyc(B,PT )=0, and Cyc(C,PT )=2.

Definition 8 (Position, Pos): Let PT be a partial trace PT , and Pos(Ai) the index set of activity
Ai in that partial trace PT . We define Pos(Ai,PT ):= maximum(Pos(Ai)) as the last happening
of Ai in PT . It represents the last index of an activity happened in the partial trace. For
example, for the partial trace PT = <CCCABCCAA>, we have Pos(A,PT )=9, Pos(B,PT )=5,
and Pos(C,PT )=7.

Definition 9 (Distance, Dis): Let Ai be an activity at index i in a partial trace PT . Dis(Ai,PT )
is the distance between the last occurrence of Ai and the previous one (backwards) in PT .
Dis(Ai,PT )=0 in case Ai is a single activity in PT . For example, for the partial trace PT =<CCC
ABCCA>, we have Dis(A)=3, Dis(B)=0, and Dis(C)=0.

Definition 10 (Duple, Dup): Let PT be a partial trace and state S the state associated to PT .
For all the pairs of activities Ai and A j in S, we define Dup(Ai,A j,PT ) as the number of times
that the sequence AiA j happens in PT . For example, for the partial trace PT =<CACACCAB>,
we have Dup(A,A,PT )=0, Dup(A,B,PT )=1, Dup(A,C,PT )=2, Dup(B,A,PT )=0, Dup(B,B,PT )
=0, Dup(B,C,PT )=0, Dup(C,A,PT )=3, Dup(C,B,PT )=0 and Dup(C,C,PT )=1.

Definition 11 (Change): Let PT be a partial trace and LA its last activity. Change(PT ),
defined as the number of times the activities move from one activity to another from the
beginning of PT until LA. For example, for the partial trace PT =<CCCABCCA>, we have
Change(PT )=4, since it represents the move from activity C to A (first change), then the move
from A to B (second change), then the move from B to C (third change), and finally the move
from C to A (fourth change).

Definition 12 (Single): Let PT be a partial trace. We define Single(PT ) as the number of sin-
gle activities that have no more than one occurrence from the beginning of PT . For example,
for a partial trace PT =<CCCABCCA>, we have Single(PT )=1, this partial trace has only
one single activity (B).

Definition 13 (Elapsed Time, Elt): Let LA be the last activity in a partial trace PT . We define
Elt(PT ) as the time passed since the beginning of PT until LA. For example, taking the PT

of the second trace in Table 2.3, <A10C14B26D36>, we have Elt(PT )=36.

All the attributes we consider are related to structural features that are of interest for char-

48



Chapter 4. A novel time prediction model based on structural information from the traces

acterising traces and/or partial traces. For instance, the occurrence of activity is related to
the repetitions in traces; cycle and duple are related to the existence of loops in traces; whilst
changes of events and their position are related to variety in traces.

Table 4.2: Value of the attributes for the partial trace PT , where superscripts of the activities
indicate their timestamps. PT =<A2B7B13B22A30A37B50B54A60B62>

Attribute Description Representation Attribute
Value

Occ(A,PT ) How many times A occurs. ABBBAABBAB 4
Occ(B,PT ) How many times B occurs. ABBBAABBAB 6
Cyc(A,PT ) The maximum continuous repeat of A ABBBAABBAB 1
Cyc(B,PT ) The maximum continuous repeat of B ABBBAABBAB 2
Pos(A,PT ) The position of last occurrence of A ABBBAABBAB 9
Pos(B,PT ) The position of last occurrence of B ABBBAABBAB 10
Dis(A,PT ) The distance between the last occurrence of A

and the previous one
ABBBAABBAB 2

Dis(B,PT ) The distance between the last occurrence of B
and the previous one

ABBBAABBAB 1

Dup(A,A,PT ) Duple of AA ABBBAABBAB 1
Dup(A,B,PT ) Duple of AB ABBBAABBAB 3
Dup(B,A,PT ) Duple of BA ABBBAABBAB 2
Dup(B,B,PT ) Duple of BB ABBBAABBAB 3
Change(PT ) Change of activities ABBBAABBAB 5
Single(PT ) Number of single activities ABBBAABBAB 0
Elt(PT ) Timestamp of the last activity, as annotated in the

caption
ABBBAABBAB 62

In Table 4.2, we present an illustrative example of the calculation of the previously defined
attributes for the example trace <ABBBAABBAB>. We can see in this example that some
of these attributes (e.g., Change, Single, Elt) produce a single value from each trace. Other
attributes (Occ, Cyc, Pos, Dis) produce a number of different values which is in linear order
with the number of events, N, in the trace. Therefore, In the example, N=2, we have two
values for each of the attributes, so eight in total. Finally, the last attribute (Duple) produces
N2 values (four in the example, for all of the combination pairs of the activities in the trace, A

and B).
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4.3.1 Extended Annotated Transition System

Previously, we introduced the definition of the ATS model, as well as the definitions of the
attributes we consider to be extracted from each trace in order to build our model. In this sec-
tion, we will integrate these attributes into an Extended Annotated Transition System (EATS),
and again we will define the List element in order to clarify more details about how we build
the model.
Definition 14 (List): Let S be a state of an annotated transition system AT S associated with
a given set of Partial Trace PTj, j = 1, ...,P (P being the total number of Partial Traces asso-
ciated with S). Let {Atti, i = 1,2, ...,N} be the attributes defined in Section 4.3, and element
E j=[valueO f Att1, ...,valueO f AttM,RTj], j = 1, ...,P a vector made up of the attribute values
for each PTj, being M the total number of attribute values and RTj the remaining time for PTj

(time until trace completion, as defined in Section 4.3). We define List(S) := {E1,E2, ...,EP}
as the set of elements that annotate the state S. Note that each state has an associated list
which includes P elements (Pbeing, as stated before, the number of partial traces represented
by state, S). On the contrary, in [88] the authors only annotate each state with a single attribute.

Considering definitions 6-13, we understand that the element, E j, associated with a given
partial trace, PTj, is made up of the following components:

• Occurrence: Occ(Ai,PTj),∀ activities Ai in PTj

• Cycle: Cyc(Ai,PTj),∀ activities Ai in PTj

• Position: Pos(Ai,PTj),∀ activities Ai in PTj

• Distance: Dis(Ai,PTj),∀ activities Ai in PTj

• Duple: Dup(Ai,Ak,PTj),∀ activities Ai,Ak in PTj

• Change(PTj)

• Single(PTj)

• Elapsed time: Elt(PTj)

• Remaining time: RT (PTj)

As an example, let us consider the following partial trace PT =<A00B06>, which is ex-
tracted from the first trace in Table 2.3. Subsequently, we understand that the element, E,
associated with PT is made up of:
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• Occurrence: Occ(A,PT ) = 1, Occ(B,PT ) = 1

• Cycle: Cyc(A,PT ) = 0, Cyc(B,PT ) = 0

• Position: Pos(A,PT ) = 1, Pos(B,PT ) = 2

• Distance: Dis(A,PT ) = 0, Dis(B) = 0

• Duple: Dup(A,A) = 0, Dup(A,B) = 1, Dup(B,A) = 0, Dup(B,B) = 0

• Change=1

• Single=2

• Elapsed time: Elt = 6

• Remaining time: RT (PT ) = 12

Therefore, element E will be the following vector:

[1,1,0,0,1,2,0,0,0,1,0,0,1,2,6,12]

Algorithm 1 Construction of an Extended Annotated Transition System (EATS)
Input: TS = (S, PT, TR): Transition System (Def. 7);
Output EAT S: Extended Annotated Transition System

1: for each s ∈ S do
2: List(s) = ∅ . Initialise Lists of Elements
3: end for
4: for each pt ∈ PT do . For each partial trace
5: CS← S(pt) . State associated to pt (Def. 3)
6: E =∅ . Initialise Element
7: for i=1,...,M do . Def. 14, M # attr. values of pt
8: E← E ∪ valueO f Atti(pt) . Add i− th attribute value
9: end for

10: E← E ∪RTpt . Add remaining time of pt
11: List(CS)← List(CS)∪E
12: end for
13: List←{List(s),∀s ∈ S}
14: EAT S← (T S,List)
15: return EAT S
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In Algorithm 1, we describe the procedure for formally building our Extended Annotated
Transition System. Lines 1 to 3 initialise the Lists of Elements that are associated with each
state of the EATS. The loop in (line 4) reiterates all partial traces, whilst in line 5 we obtain
the state associated with each partial trace. Then, we store the attribute values in the element
(lines 7-19) according to Def. 14. The element is completed by adding the remaining time of
the partial trace (line 10) and stored in the list associated with the current state (line 11). The
procedure is repeated throughout all the partial traces in the EATS and, finally, the Extended
Annotated Transition System is returned.

Table 4.3: List of Partial Traces belongs to traces shown in Table 4.1, where T1 is <A3A18B24A30>,
and T2 is <A7B10B15C22C31>.

T1 T2

Partial
Trace

PT11: <A3>
PT12: <A3A18>
PT13: <A3A18B24>
PT14 (T1): <A3A18B24A30>

PT21: <A7>
PT22: <A7B10>
PT23: <A7B10B15>
PT24: <A7B10B15C22>
PT25 (T2): <A7B10B15C22C31>

In Figure 4.2, we show an example of building and annotating the EATS which corre-
sponds to two sample traces shown in Table 4.3. For instance, state S = [A] is the state associ-
ated with the following three partial traces: PT11:=<A3>, and PT12:= <A3A18>, (from T 1),
and PT21:= <A7>, (from T 2) as listed in Table 4.3. Therefore, we have an associated list of
three elements made up of the corresponding eight attribute values defined in Section 4.3 and
the corresponding remaining time for each partial trace (respectively 27, 12, 24).

Once the EATS is built and annotated with attributes values, linear regression is ready to
be applied for each list of states in the EATS model, as we will discuss in the next section.

4.3.2 Obtaining the Linear Regression Model for the Estimations

Once the EATS is built and annotated, linear regression is applied to the list of each state,
taking the values of the attributes as independent variables and the remaining time as the
dependent variable. In this way, we obtain an expression for each state that will allow us to
estimate the remaining time for any new trace represented by the same state. We will take
note that each state, S, in the EATS is annotated with a list of elements (vectors) List(S),
which includes the values of the attributes for all the partial traces represented by S. Each of
these lists contains all the data (predictors or independent variables) needed for performing
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Figure 4.2: Extended Annotated Transition System with lists of elements (attributes values)
integrated. The traces considered here are the ones indicated in Table 4.1

the remaining time estimation. Therefore, we have a single dataset associated with each
state. As the dataset is established, we are now in the position to describe our remaining
time estimation model. Fundamentally, it is made up of linear regression functions that are
obtained for each dataset (List). The independent variables of the regression functions are the
values of attributes (elements) in the List, the remaining time being the dependent variable.

The method for obtaining the EATS and these linear regression functions that predict the
remaining time for any new partial trace is described in Algorithm 2. The first step is to
create the list of attributes with which each state of the transition system is annotated (lines
4-12): each partial trace, pt, is assigned to a transition system state, where all the attributes,
valueO f Atti(pt), are extracted from the structural analysis of pt, thus obtaining a vector of
attributes E. Once all the partial traces associated with state, s, are processed, a list of vectors
List(s) is obtained. List(s) is the input to the linear regression technique that is applied to
each state (lines 14-17). Finally, the set of linear regression functions are returned.
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Algorithm 2 Obtaining the Linear regression functions in the EATS
Input: T S = (S, PT , T R): Transition System, where S is the set of states, PT is the set of

partial traces, and T R is the transition relation
Output LRT S: Linear Regression Functions for T S

1: for each s ∈ S do
2: List(s) = ∅ . Initialise Lists of Elements
3: end for
4: for each pt ∈ PT do . For each partial trace
5: CS← S(pt) . State associated to pt
6: E =∅ . Initialise Element
7: for i=1,...,M do . M is # attr. values of pt
8: E← E ∪ valueO f Atti(pt)
9: end for

10: E← E ∪RTpt . Add remaining time of pt
11: List(CS)← List(CS)∪E
12: end for
13: List←{List(s),∀s ∈ S}
14: for each s ∈ S do
15: List(s)← removeOutliers(List(s)) . Outliers removed from each list
16: LRT S← LRs(List(s)) . Regression model obtained for each list
17: end for
18: return LRT S

4.4 Experimental validation

We have validated our model using ten real-life event logs of BPI Challenges 2012w, 2013,
2015 and 2017, and Hospital Bill and Traffic Fine [1]. Logs in these datasets come from very
different fields of applications, such as administrative and financial processes, the billing of
medical services and road traffic fines management, which are considered a de-facto bench-
mark used for Research Challenges in the business process management area. Table 4.4 de-
scribes these event logs in more details.

4.4.1 Comparison with the baseline work

We compared our approach to the baseline ATS model described in [88]. To evaluate the
results of our prediction model, we use the following usual three metrics to measure the error
between the real remaining time and the predicted remaining time using our method:
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Table 4.4: Description of the 10 real-life event logs used for validation.

Event logs Description # Cases # Events

BPIC12w [92]
Application process for a personal loan or
overdraft within a Dutch Financial Institute 8,723 60,780

BPIC13 [77]
Handling Incidents Process from Volvo IT
of Belgium. 7,554 57,742

BPIC15 [93]
(5 logs)

All building permit applications over four
years provided by three Dutch municipalities.

1,199
832

1,409
1,053
1,156

52,217
44,354
59,681
47,293
59,083

BPIC17 [94]
Application process for a personal loan or
overdraft within a Dutch Financial Institute 31,509 41,862

Hospital Billing [50]
Billing financial data from the ERP system
of a Dutch hospital. 100,000 451,359

Traffic Fine [51]
Data from an information system managing
road traffic fines. 150,370 561,470

• Accuracy of the prediction quality by calculating the difference between the real re-
maining time (RT) and the predicted remaining time (PT).

Accuracy = (1− (|RT −PT |/RT ))∗100% (4.1)

• Mean Absolute Error

MAE = 1/n
n

∑
i=1
|bi−b| (4.2)

• Mean Absolute Percentage Error

MAPE = 1/n
n

∑
i=1

(|bi−b|)/bi (4.3)

In Table 4.5, we can see that on average our model performs better in all ten real-life event
logs for all of the three metrics considered. In more detail, we can see that in 28 out of the
30 cases (93.3%) our model performs better, only being outperformed by [88] in two of the
MAPE results. The average difference in MAE is 35.36 days, with values ranging from 4.17
to 116.58 days, in all cases favourable to our method. Therefore, our approach produces better
results than [88] in a consistent way for a variety of application areas.

55



4.4. Experimental validation

Table 4.5: Accuracy, MAE (in days), and MAPE results of the approach compiled in [88]
compared to our approach.

BPIC
12

BPIC
13

BPIC
15 1

BPIC
15 2

BPIC
15 3

BPIC
15 4

BPIC
15 5

BPIC
17

Hosp-
ital

Traf-
fic

Accur. our app. 0.65 0.78 0.90 0.91 0.92 0.93 0.94 0.51 0.66 0.75
[88] 0.39 0.41 0.44 0.48 0.47 0.55 0.56 0.17 0.35 0.50

MAE our app. 1.52 1.73 3.58 8.69 1.19 3.87 4.66 8.75 19.01 31.78
[88] 5.69 6.45 42.94 89.68 19.76 20.06 46.83 6.28 52.33 148.36

MAPE our app. 0.01 2.85 1.54 2.47 0.22 2.34 0.43 0.25 7.59 0.00
[88] 0.24 2.79 5.66 9.91 2.67 2.91 6.25 0.40 7.00 0.01

4.4.2 Comparison of MAE metric using Earliness

Once we have shown that our approach improves the results in [88], we extend our experimen-
tation very significantly by comparing our model to another sixteen state-of-the-art models
described in [97], which includes non-ATS, ATS and Deep Learning models. We will use the
same experimental setup and conditions described in [97] to obtain comparable results. Such
conditions are: (i) no dataset pre-processing was made, (ii) traces are sorted depending on the
start time, (iii) the prefix1 length of the traces was 20 activities. (i.e., the first 20 activities
were considered for the remaining time estimation), and (iv) outlier detection is applied to the
training set.

The experimental results are described in Table 4.6, where we can see that our approach
performs better in eight out of ten event logs. But we should consider that the MAE metric
reported in [97] is a specific average MAE, where longer (less frequent) prefixes get lower
weights (since not all the traces necessarily reach that length) and shorter prefixes (more fre-
quent) get higher weights. Therefore, this weighting scheme is favourable for shorter prefixes
which, in principle, produces a bias for these cases that benefits the results of, for instance,
machine-learning approaches. For evaluating our model, we include all the prefixes and pro-
vide the MAE, not an average MAE. This means we are considering all traces and do not in-
troduce a bias towards the shorter traces. In spite of these conditions, which are unfavourable
to our method, we see that we outperform the results reported in [97] in 80% of the event logs
considered.

Another key point to highlight about the results in Table 4.6 is that, although our method

1Prefix log is a custom log that includes n number of activities in each trace of the original log. If n = 20, then
the length of each trace in the prefix log is 20 or less if the trace length is lower. [97]
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performed better on average, the standard deviation is very high in general, and therefore the
dispersion of data is also high, as well as the range of errors. Therefore, this suggests that
improvements in the model should be made in order to reduce the high-standard deviation
values. This is accomplished in Chapter 5.

We conclude that the EATS approach makes sense since it improves the ATS baseline very
much. Therefore, this provides an empirically tested initial base for our model. Nevertheless,
one of the limitations (or threats to validity) of our model is that the partial traces in the list
can be very diverse, and in some real cases accuracy could be very low. This could happen in
complex datasets where the values of the attributes may be very similar (or even identical) for
some partial traces, but the corresponding remaining times could be (very) different among
themselves. This situation is likely to occur to some extent in the realm of Business Process
Management. For some real applications, it may be also the case that the accuracy/error we
have achieved (although much better than [88]) could not be good enough and may need to be
improved in order to be used in real practice. Furthermore, results are also better than those
reported by all the models described in [97], although the high range of standard deviation of
our prediction that appears in Table 4.6 should be taken into consideration in order to produce
a new improved model. Because of this, although the results obtained with our basic model
are promising, in the next chapter we will explore an enhanced version following the idea
of partitioning the list of partial traces associated with each state, with the aim to calculate
a regression expression for each partition. In this way, for each of the states in the EATS,
we will have more than one regression expression which is likely to better adapt to complex
datasets and further improve the promising accuracy results we have presented in this chapter.
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Table 4.6: MAE results (in days) of the 16 approaches compiled in [97] compared to our
approach based on the conditions of [97], in the first row). Symbol ’-’ in some cells
means this value is not provided by the authors.

Technique BPIC2012w BPIC2013 BPIC2015 1 BPIC2015 2 BPIC2015 3

Earliness 4.650 ± 4.260 4.150 ± 3.100 22.330 ± 46.330 40.530 ± 75.160 16.910 ± 40.550

TS 7.505 ± 1.036 - 56.498 ± 8.341 118.293 ± 16.819 26.412 ± 8.082
LSTM 6.344 ± 0.994 - 39.457 ± 5.708 61.620 ± 2.061 19.682 ± 2.646
SPN 8.538 ± 0.772 - 66.509 ± 17.131 81.114 ± 8.033 26.757 ± 10.378
FA 6.946 ± 1.057 - - - -
cluster agg 7.180 ± 0.953 - 40.705 ± 1.824 68.185 ± 2.649 23.087 ± 3.226
cluster index 7.074 ± 1.254 - 38.092 ± 2.988 66.957 ± 3.436 24.497 ± 1.887
cluster last 7.061 ± 1.019 - 38.388 ± 3.478 62.781 ± 2.347 22.544 ± 1.656
prefix agg 7.260 ± 0.935 - 46.765 ± 23.581 71.210 ± 8.893 24.152 ± 2.785
prefix index 7.155 ± 0.942 - 37.525 ± 2.746 66.883 ± 3.756 21.861 ± 3.292
prefix last 7.139 ± 0.851 - 37.975 ± 5.903 64.708 ± 5.749 23.574 ± 3.778
noBucket agg 7.082 ± 1.020 - 35.962 ± 3.744 67.914 ± 2.467 24.453 ± 3.577
noBucket index 6.982 ± 1.340 - 35.451 ± 2.499 65.505 ± 3.442 23.025 ± 1.587
noBucket last 7.021 ± 1.099 - 37.442 ± 3.607 64.110 ± 2.332 25.150 ± 1.271
state agg 7.465 ± 0.622 - 42.949 ± 2.725 68.768 ± 4.094 28.427 ± 9.844
state index 7.510 ± 0.585 - - - -
state last 7.539 ± 0.554 - 42.946 ± 2.691 68.296 ± 3.762 27.826 ± 8.280

Technique BPIC2015 4 BPIC2015 5 BPIC2017 Hospital Bill Traffic Fine

Earliness 22.030 ± 37.470 18.960 ± 39.570 4.720 ± 6.900 42.210 ± 37.150 196.660 ± 175.560

TS 61.630 ± 5.413 67.699 ± 7.531 8.278 ± 2.468 46.491 ± 21.344 190.949 ± 15.447
LSTM 48.902 ± 1.527 52.405 ± 3.819 7.150 ± 2.635 36.258 ± 23.870 178.738 ± 89.019
SPN - 51.202 ± 5.889 10.731 ± 0.370 71.377 ± 29.082 193.807 ± 96.796
FA - - - 51.689 ± 14.945 223.808 ± 14.859
cluster agg 51.555 ± 2.363 45.825 ± 3.028 7.479 ± 2.282 42.934 ± 26.136 210.322 ± 98.516
cluster index 56.113 ± 6.411 44.587 ± 4.378 - - 209.139 ± 98.417
cluster last 51.451 ± 4.189 46.433 ± 4.085 7.457 ± 2.359 48.589 ± 26.708 208.599 ± 99.549
prefix agg 53.568 ± 6.413 46.396 ± 2.466 7.525 ± 2.306 43.060 ± 25.884 201.614 ± 99.484
prefix index 50.452 ± 4.605 44.290 ± 3.669 7.421 ± 2.360 41.698 ± 25.944 209.085 ± 99.708
prefix last 53.053 ± 5.665 46.639 ± 3.718 7.482 ± 2.325 48.528 ± 26.714 209.304 ± 102.027
noBucket agg 54.890 ± 1.894 49.203 ± 1.833 7.437 ± 2.381 43.483 ± 25.000 211.017 ± 93.198
noBucket index 52.282 ± 1.182 50.153 ± 1.097 - - 208.879 ± 92.250
noBucket last 56.818 ± 1.729 49.027 ± 1.954 7.525 ± 2.244 50.496 ± 23.961 204.758 ± 93.399
state agg 49.318 ± 2.699 49.873 ± 2.658 - 43.835 ± 25.984 211.439 ± 98.351
state index - - - 41.095 ± 26.499 210.408 ± 99.276
state last 49.038 ± 2.498 49.556 ± 2.575 7.521 ± 2.341 48.902 ± 27.001 209.206 ± 100.632
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CHAPTER 5

AN ENHANCED MODEL INCLUDING LISTS

PARTITIONING

5.1 Introduction

In Chapter 4, we presented our ATS-based model, and the result we have in Section 4.4 show
that our model outperforms the Van der Aalst baseline [88]. Nevertheless, as described in
Chapter 3, there are other models in the literature which do not follow the ATS-based model
as described in [8, 71, 98, 95, 78, 13, 31] and in fact obtain more accurate results than this
baseline.

In the literature, we found that some non-ATS models outperform the baseline work [88],
for instance the LTSM [78], SPN [71] and FA [98] models, as well as the model used in [97].
On the other hand, we found that the LTSM model [78] outperforms our work specifically in
BPIC 17. Therefore, we enhanced our work by applying the partitioning technique, not only
to perform better in BPIC 17 but also in any other real-life logs.

As discussed in the final remarks of Chapter 4, the main reason that the remaining time
estimation models produce estimations which could be considered to be not very good in
some realms of application is that the (partial) traces in the ten real log datasets we have
considered vary greatly in terms of size, number of activities and execution times. This is
usually the general scenario for real business process data, such as administrative procedures
or applications, industrial incidents management or processes in a hospital or other big or-
ganisations/institutions [92, 94]. In many cases, the remaining time values range is vast (e.g.
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from a few seconds to a hundred thousand seconds) even for traces that are very similar or
even identical.

In order to face this problem, in this chapter, we will enhance the basic model presented in
Chapter 4 by introducing a data partitioning technique of the partial traces list associated with
each state in the EATS. Firstly, we will further prompt this issue through a simple experimental
example. Secondly, we will define the partitioning procedure and how the remaining time is
calculated in the enhanced model for a new trace. Finally, we will experimentally validate the
enhanced model, showing how it performs better than the other state-of-the-art models (not
only the ATS-based models).

5.2 Estimation of the Remaining Time: Dataset partitioning

Before describing the details of the regression model we use for estimating the remaining
time, we should take into account the following considerations. Let us recall, firstly, that
according to the EATS model, each state, S, in the EATS is annotated with a list of elements
(vectors) List(S) which include the values of the attributes for all the partial traces represented
by S. Each of these lists contains all the data (predictors or independent variables) needed for
performing the remaining time estimation. Therefore, we have a single dataset associated
with each state.

Applying the linear regression technique to each of these datasets as described in Chapter
4 (basic model) is likely to produce poor estimations. Furthermore, as previously discussed,
the basic model may not be sufficient for exceeding the results of the other state-of-the-art
models. In order to better explain this, we will present in the following section a simple
example that illustrates this limitation in our basic model.

Our simple illustrative example uses the real case described in the BPIC12w dataset,
which contains logs taken from a Dutch Financial Institute [92]. The process of this real-
life event log is an application process for a personal loan. We used only the process related
to the work item belonging to the application.

In Table 5.1, we show the accuracy results after applying a linear regression method to
the whole dataset associated with each state. We can see that the accuracy values range from
0.23 to 0.53, which are acceptable accuracy values when compared to the accuracy of the
baseline work [88], but perhaps not good enough for certain application fields. Since huge
variability is a usual feature in real cases, we have endowed our estimation method with
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Table 5.1: Accuracy values for the set of partial traces associated with some states taken from a
real business process described in [92] using our basic model described in the previous
chapter.

Accuracy

States Non-partitioned
{A} 0.53
{AB} 0.50
{ABC} 0.23
{E} 0.37
{AE} 0.39
{ABCF} 0.34

a dataset partitioning stage, which is described below. In Section 5.3, we will revisit this
illustrative example to assess the impact of the partitioning stage on the accuracy results.

Our partitioning method consists of building partitions that contain partial traces with
similar remaining times. The similarity is expressed here in terms of a threshold value in
the following way: Let us assume we have two partial traces, PT1 and PT2, with their cor-
responding remaining times, RT1, and RT2. Without losing generality, let us consider that
RT1 ≤ RT2. We will consider that PT1 and PT2 belong to the same partition if RT1/RT2 > th,
where th∈ [0,1] is a predefined threshold. This condition states that both partial traces belong
to the same partitions if the remaining time of the PT1 is above a given percentage (th) of the
PT2. On the contrary, if RT1/RT2 ≤ th, PT1 and PT2 will belong to different partitions, since in
this case their quotient is below the predefined threshold. For example, for two partial traces
PT1 and PT2 and a threshold value 0.40, this means that if the remaining time of PT1 is above
40% of PT2 they will be grouped in the same partition (their remaining times are considered
similar). Otherwise (if below or equal 40%), they will be grouped in different partitions (their
remaining times are considered different).

In Algorithm 3 we present a detailed description of our Threshold-Based Partitioning
(TBP) procedure for a given state, s, and a threshold, th. In the first place (line 1) the List as-
sociated with s is ordered accordingly to the remaining time of all the partial traces associated
with s. Partition building is described in the for loop (lines 4-10). In line 6, this condition is
formalised as previously indicated. When it holds, a new partition is started (lines 7-8). When
it does not, the for loop in line 4 continues to reiterate throughout all the partial traces and
groups them in the same partition (line 5). Finally, the last partial trace is assigned (line 11)
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Algorithm 3 Threshold-based partitioning (TBP) of the Partial Traces (List) associated with
a state, s, in the EATS

Input: s, a state of the EATS (Def. 14); th ∈ [0,1] a partition threshold
Output PL = {P1, ..,Pn}: Partitions List

1: SortedList(s) ← List(s) sorted in ascending order by the Remaining Time RTp of its
elements Ep, p = 1, ...,P (Def. 14)

2: n = 1 . Partition 1
3: Pn =∅ . Initialise Partition 1
4: for p = 1, ...,P−1 do . P: List size
5: Pn← Pn∪Ep

6: if RTp/RTp+1 ≤ th then . Abrupt change: new partition
7: n← n+1 . New partition
8: Pn =∅ . Initialise the new partition
9: end if

10: end for
11: Pn← Pn∪Ep . Last Element in the List
12: return PL : {P1, ...,Pn}

to its corresponding partition: a new partition in case the threshold condition was met and the
last partition in case it did not.

One key issue here is the number of intervals (or threshold points) to be defined (i.e. if we
want to create very close intervals or wide intervals). It is important to define the number of
segments in a balanced way, for example not to define it as very low, since the range values for
the estimation time will be high and the accuracy will be lower, but also not to define it as very
high, since this will increase the computational cost and cause over-fitting. In Chapter 6, we
will discuss this issue again from a quantitative pragmatical point of view, in order to provide
a range of threshold values with a right balance between low accuracy and over-fitting.

In Figure 5.1, we show an example of applying the Threshold-based Partitioning Proce-
dure (Algorithm 3 for a threshold value th = 0.4.) We highlight the quotient values that fulfil
the threshold condition (Algorithm 3, line 6) and therefore define the limits of each partition.
All of these quotients are less than the 0.4 threshold, respectively:

• 790/4,105=0.19

• 9024/44,358=0.20

• 90,615/232,486=0.39
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Figure 5.1: An example of a dataset sample showing Partitions and Threshold points.

Thus indicating that the corresponding remaining times are not similar and therefore will be
grouped in different partitions. These partitions are the four indicated in Figure 5.1, labelled
Partition1, ..., Partition 4. After partitioning, this dataset splits into four partitions and, there-
fore, it is ready for the linear regression model to be applied to each partition, as described
in the following section. As pointed out before, four regression expressions will be obtained,
one for each partition.
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5.3 Linear Regression Model

Now that the need for partitioning the dataset has been established and our partitioning strat-
egy has been described, we are in a position to describe our remaining time estimation model.
It is fundamentally made up of linear regression functions that are obtained for each of the
partitions of the previously described dataset. The independent variables of the regression
functions are the values of attributes (elements) in each partition, the dependent variable be-
ing the remaining time.

A simple illustrative example showing the impact of this partitioning stage in the remaining-
time estimation is shown in Table 5.1 (which was introduced in the previous section). Now, in
the ‘Partitioned’ column, we present the accuracy results after applying the linear regression
method to each of these partitions. When comparing these results with the ones in the ‘Non-
partitioned’ column, we can see an important improvement in the accuracy results, which now
range from 0.67 to 0.78. On the basis of this example, we present in the next section a detailed
validation of our method.

The details of the remaining time estimation for any new trace, PT NEW, are described
in Algorithm 4. Once the state associated with PTNEW is obtained (line 1), its partition list
PL = {P1, ...,Pn} is returned by Algorithm 3 (line 2). Also, the associated vector of attributes
of the new trace is obtained (as indicated in Def. 14) and stored in the corresponding Element.
The algorithm basically searches for the Partial Traces in PL, which are the closest ones to
PTNEW in terms of the Manhattan distance of the values of their attributes, as indicated in Def.
14. Searching for these Partial Traces and obtaining their associated partitions is done in lines
5-15. Once the Partitions are obtained, their indexes are stored in partitionIndex and their
corresponding linear regression functions {RLk,k ∈ partitionIndex} are applied to the values
of their attributes of PTNEW . The average of these results is returned as the estimation of the
remaining time of our model.

After we constructed the Threshold-based partitioning (TBP), we applied it initially on the
BPIC12w event log, the same one that we used in Table 5.1, and showed how the partition-
ing technique enhances the prediction accuracy in Table 5.2, where the average of accuracy
for non-partitioned is 0.39, and for the partitioned is 0.72. The results show the difference
between each state, which is clearly improved by the Threshold-based partitioning (TBP)
technique.
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Algorithm 4 Time Prediction Model (TPM) of a new trace
Input: PTNEW : new Partial Trace
Output PRT : Predicted Remaining Time for PTNEW .

1: S← S(PTNEW ) . State which represents PTNEW
2: PL = {P1, ...,Pn}:= Partitions List associated with S, as returned by Algorithm 3
3: RL = {R1, ...,Rn}:= List of Linear Regression functions associated with PL, as indicated

in Section 5.2
4: ENEW := Element associated with PTNEW . (Def. 14)
5: distanceMin←+∞

6: for k = 1, ...,n do . For all partitions in PL
7: for each PT ∈ Pk do
8:

dist =
M

∑
m=1
|valueO f Attm(PT )−

valueO f Attm(PTNEW )|
9: if dist < distanceMin then . New min

10: partitionIndex = {k};
11: distanceMin← dist
12: else if dist == distanceMin then
13: partitionIndex = partitionIndex∪{k};
14: end if
15: end for
16: end for
17: PRT ← Average of the estimations obtained with the regression models {RLk,k ∈

partitionIndex} applied to ENEW
18: return PRT

5.4 Experimental validation

In this chapter, now that we have justified and defined the partitioning technique, we will show
our extensive experimental results in three different ways: i) Results considering different
threshold values, ii) Threshold choice, and iii) Comparison to other approaches.

5.4.1 Results considering different threshold values

In this section, we present the validation results of our approach for different threshold values
of the partitioning strategy (TBP) described in Section 5.2. Our method is compared to the
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Table 5.2: Accuracy values for the set of partial traces associated with some states taken from a
real business process described in [92] following two strategies: Non-partitioned (the
basic model described in the previous chapter) and Partitioned (the enhanced
model described in this chapter).

Accuracy

States Non-partitioned Partitioned
{A} 0.53 0.78
{AB} 0.50 0.77
{ABC} 0.23 0.67
{E} 0.37 0.70
{AE} 0.39 0.73
{ABCF} 0.34 0.69

ATS baseline approach described in [88] for the ten datasets in Table 4.4. This validation aims
to provide a general overview of the dependence of our remaining time estimation results on
the TBP threshold values. We used two metrics to compare our results to [88]: the Mean Ab-
solute Error (MAE) to measure the error between real remaining and the predicted remaining
time and the Accuracy to assess the regression quality in objective terms. According to [97],
using RMSE as a metric should be avoided in this context, since it is very sensitive to outliers.
For this analysis of the threshold dependence, datasets were pre-processed for removing those
values that are more/less than twice the standard deviation from the average.

Table 5.3: Comparison between our approach and [88], using the ten event logs described in
Table 4.4. Here we show the MAE measurement values at each threshold point.

Mean Absolute Error (MAE)
Logs BPIC12w BPIC13 BPIC15 1 BPIC15 2 BPIC15 3 BPIC15 4 BPIC15 5 BPIC17 Hospital Bill Traffic Fine
Aalst et al.[88] 5.690 6.450 42.940 89.680 19.760 20.060 46.830 6.280 52.330 148.360
Threshold
0 1.398 1.587 3.850 8.738 6.509 4.558 5.956 5.012 13.194 22.465
0.25 1.486 1.629 3.290 9.248 5.540 4.667 5.502 3.370 12.847 20.958
0.5 1.313 1.497 3.070 8.715 6.148 4.228 5.956 3.661 11.806 20.574
0.7 1.695 1.611 3.560 8.495 5.520 4.194 5.787 3.600 14.931 22.911
0.75 1.256 1.520 3.320 9.676 6.121 4.258 5.394 3.879 13.194 19.335
0.9 1.189 1.442 3.000 8.044 5.910 4.166 5.208 4.687 13.310 24.290
0.925 1.146 1.381 3.150 7.234 4.954 3.492 4.745 5.671 13.194 20.958
0.95 1.154 1.134 3.080 7.778 4.281 3.314 4.271 5.557 11.227 23.842
0.975 1.256 1.846 2.070 6.296 4.471 3.263 3.623 2.863 12.153 18.326

Average
±

STDEV

1.322
±

0.18

1.516
±

0.20

3.154
±

0.49

8.247
±

1.04

5.495
±

0.78

4.016
±

0.53

5.160
±

0.80

4.255
±

1.01

12.873
±

1.07

21.518
±

2.01

In Table 5.3, we show the results of the comparison between our approach with attributes
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selection and the baseline approach [88] in terms of the ten considered real-life event logs
and the Mean Absolute Error (MAE) metric. We provide the results of our approach for
a number of thresholds in order to assess the general quality of the results as well as the
dependency of specific thresholds values. In order to have a general view of the method, we
also provide (Table 5.3, bottom row), for each dataset, the average results of our method for all
the thresholds considered. According to this, the average value (even including the standard
deviation) of our method outperforms [88] in all ten datasets.

Looking at all the thresholds values, we can see that in all of the 90 cases considered, our
approach outperforms [88]. The average MAE of our method is 6.76 days, the average MAE
of [88] being 43.84 days. The differences in MAE between our approach and [88] range
from 2.02 days (in BPIC17) to 126.84 days (in Traffic Fine), 37.08 days being the average
difference, all cases being favourable to our method.

Table 5.4: Comparison between our approach and [88], using the ten event logs described in
Table 4.4. We show the accuracy measurement values at each threshold point.

Accuracy
Logs BPIC12w BPIC13 BPIC15 1 BPIC15 2 BPIC15 3 BPIC15 4 BPIC15 5 BPIC17 Hospital Bill. Traffic Fine
Aalst et al.[88] 0.390 0.410 0.440 0.480 0.470 0.550 0.560 0.170 0.350 0.500
Threshold
0 0.690 0.785 0.894 0.898 0.893 0.921 0.925 0.563 0.649 0.782
0.25 0.641 0.774 0.896 0.899 0.906 0.921 0.928 0.535 0.682 0.785
0.5 0.690 0.770 0.905 0.897 0.900 0.918 0.925 0.558 0.700 0.797
0.7 0.705 0.790 0.898 0.904 0.899 0.918 0.930 0.549 0.693 0.775
0.75 0.718 0.771 0.899 0.899 0.901 0.924 0.935 0.562 0.710 0.753
0.9 0.691 0.800 0.908 0.902 0.908 0.927 0.936 0.546 0.730 0.784
0.925 0.756 0.791 0.912 0.912 0.907 0.933 0.938 0.491 0.705 0.785
0.95 0.738 0.835 0.909 0.915 0.916 0.936 0.941 0.526 0.723 0.772
0.975 0.694 0.843 0.920 0.929 0.923 0.940 0.950 0.533 0.720 0.806

Average
±

STDEV

0.703
±

0.03

0.795
±

0.03

0.905
±

0.01

0.906
±

0.01

0.906
±

0.01

0.927
±

0.01

0.934
±

0.01

0.540
±

0.02

0.701
±

0.03

0.782
±

0.02

In Table 5.4, we show the same comparison for accuracy. Again, the average value (also
considering the standard deviation) of our method outperforms [88] in all ten datasets and
in all of the 90 cases considered. For the datasets considered, the average accuracy of our
method ranges between [0.54, 0.93], whilst [88] ranges between [0.17, 0.56]. The average
accuracy of our method is 0.81, the average accuracy of [88] being 0.43.
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5.4.2 Threshold choice

In this section, we discuss how to choose an appropriate threshold value which could be used,
in general, for any new dataset. We will support the discussion with the experimental analysis
and the results that we will later describe. In an initial analysis, it seems straightforward
that the best threshold choice should be the most precise one, i.e., the one that produces the
highest accuracy or lowest MAE. In order to experimentally determine which is, in general,
the most precise threshold, we need to consider the results in Tables 5.3 and 5.4, rank them,
and calculate the average rank through all the datasets and thresholds, for both MAE and
Accuracy. These results are summarised in Table 5.5. According to this, the most precise
threshold (MPT) is the one with the lowest ranks, which is 0.975 for both Accuracy and
MAE.

In a second analysis, from looking at the results in Tables 5.3 and 5.4 we can observe that,
in general, high threshold values produce better results (i.e. lower MAE and higher accuracy).
This means that the granularity of the partitioning intervals is higher, and consequently, the
number of operations involved also increases.

Table 5.5: The average rank and the standard deviation throughout all of the real event logs

Accuracy MAE
Threshold Avg rank STDEV Avg rank STDEV
0 6.9 2.4 7.1 1.4
0.25 6.5 1.7 6.0 2.3
0.5 6.3 2.4 5.0 2.1
0.7 5.9 1.5 6.3 2.1
0.75 5.4 2.1 5.6 2.0
0.9 4.0 1.4 4.9 2.0
0.925 3.7 2.2 3.7 2.3
0.95 3.3 2.5 3.1 2.5
0.975 2.2 2.1 2.4 2.5

Taking this consideration into account, it also becomes evident that, generally, choosing
the most appropriate threshold is not necessarily only a matter of choosing the most precise
one, but the one with a good balance between precision in the results (generally associated
with high thresholds) and the number of operations involved (generally associated with low
thresholds). In order to determine a threshold value with a good compromise between these
two opposite constraints, we will apply the One-Standard-Error Rule [43], which is a well-
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known model selection technique, commonly used in cross-validation, in which we choose
the strictest model whose error is no more than one standard error above the error of the best
model [38]. This technique can be described as follows: in case of different error measure-
ments, we calculate the rank for each measurement, then we give the lowest error a low rank.
After that, we calculate the average of the rank. Now for the lowest average rank, we add one
standard deviation, therefore, we will have a new point (lowest avg. rank plus one standard
deviation). We will then have a new line from the new point towards the average rank axis; if
there any intersection with the other axis, then this will be the best value of that axis.

By applying this rule, we will provide experimental support for selecting a threshold value
with a balanced compromise between precision and the number of operations involved and
that can, therefore, be labelled also as an appropriate choice for any new dataset.

The One-Standard-Error Rule is applied to the ranking described in Table 5.5 and looks
for the lowest threshold value whose average error is no more than one standard deviation
above the error of the best model. The threshold value obtained following this procedure
(BCT, Best Compromise Threshold) will exhibit a good compromise between precision and
the number of operations involved.

Figure 5.2: Model selection using the one-standard-error rule method [43] for the accuracy
results in Table 5.5. The selected model corresponds to a 0.86 threshold.
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Figure 5.3: Model selection using the one-standard-error rule method [43] for the MAE results in
Table 5.5. The selected model corresponds to a 0.90 threshold.

Figures 5.2 and 5.3 show the application of the One-Standard-Error Rule for both the
accuracy and MAE results in Table 5.5. For both figures, the blue line indicates the aver-
age ranking values for each threshold considered. The red line indicates the rank value that
corresponds to the best model in terms of average rank plus one standard deviation. The in-
tersection of both lines indicates the Best Compromise Thresholds, 0.86 for Accuracy (Figure
5.2) and 0.90 for MAE (Figure 5.3) respectively, which are the recommended thresholds in
terms of precision and the number of operations involved.

5.4.3 Comparison to other approaches using BCT and MPT

In this section we will provide two different experiments, i) the comparison of MAE metric
between the two methods of threshold choice in Section 5.4.2 and 16 other state-of-the-art
methods described in [97], and ii) the comparison of MAE metric between our method and 16
other state-of-the-art methods described in [97]. In this comparison, we will follow the same
experiment setup.
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Table 5.6: MAE results (in days) of the 16 approaches compiled in [97] compared to our
approach in two different scenarios (BCT and MPT, in the first two rows). Symbol ‘-’ in
some cells means that this value is not provided by the authors.

Technique BPIC2012w BPIC2013 BPIC2015 1 BPIC2015 2 BPIC2015 3

BCT 2.390±2.810 7.140±6.920 4.000±18.990 6.670±23.470 1.280±7.390
MPT 1.900±2.390 7.280+7.780 3.740±13.130 6.020±26.270 1.270±8.530

TS 7.505 ± 1.036 - 56.498 ± 8.341 118.293 ± 16.819 26.412 ± 8.082
LSTM 6.344 ± 0.994 - 39.457 ± 5.708 61.620 ± 2.061 19.682 ± 2.646
SPN 8.538 ± 0.772 - 66.509 ± 17.131 81.114 ± 8.033 26.757 ± 10.378
FA 6.946 ± 1.057 - - - -
cluster agg 7.180 ± 0.953 - 40.705 ± 1.824 68.185 ± 2.649 23.087 ± 3.226
cluster index 7.074 ± 1.254 - 38.092 ± 2.988 66.957 ± 3.436 24.497 ± 1.887
cluster last 7.061 ± 1.019 - 38.388 ± 3.478 62.781 ± 2.347 22.544 ± 1.656
prefix agg 7.260 ± 0.935 - 46.765 ± 23.581 71.210 ± 8.893 24.152 ± 2.785
prefix index 7.155 ± 0.942 - 37.525 ± 2.746 66.883 ± 3.756 21.861 ± 3.292
prefix last 7.139 ± 0.851 - 37.975 ± 5.903 64.708 ± 5.749 23.574 ± 3.778
noBucket agg 7.082 ± 1.020 - 35.962 ± 3.744 67.914 ± 2.467 24.453 ± 3.577
noBucket index 6.982 ± 1.340 - 35.451 ± 2.499 65.505 ± 3.442 23.025 ± 1.587
noBucket last 7.021 ± 1.099 - 37.442 ± 3.607 64.110 ± 2.332 25.150 ± 1.271
state agg 7.465 ± 0.622 - 42.949 ± 2.725 68.768 ± 4.094 28.427 ± 9.844
state index 7.510 ± 0.585 - - - -
state last 7.539 ± 0.554 - 42.946 ± 2.691 68.296 ± 3.762 27.826 ± 8.280

Technique BPIC2015 4 BPIC2015 5 BPIC2017 Hospital Bill Traffic Fine

BCT 4.370±21.160 2.870±15.100 3.420±3.070 13.670±21.820 43.990±62.410
MPT 2.790±14.370 2.230±12.640 3.270±2.840 12.850±20.690 33.310±58.350

TS 61.630 ± 5.413 67.699 ± 7.531 8.278 ± 2.468 46.491 ± 21.344 190.949 ± 15.447
LSTM 48.902 ± 1.527 52.405 ± 3.819 7.150 ± 2.635 36.258 ± 23.870 178.738 ± 89.019
SPN - 51.202 ± 5.889 10.731 ± 0.370 71.377 ± 29.082 193.807 ± 96.796
FA - - - 51.689 ± 14.945 223.808 ± 14.859
cluster agg 51.555 ± 2.363 45.825 ± 3.028 7.479 ± 2.282 42.934 ± 26.136 210.322 ± 98.516
cluster index 56.113 ± 6.411 44.587 ± 4.378 - - 209.139 ± 98.417
cluster last 51.451 ± 4.189 46.433 ± 4.085 7.457 ± 2.359 48.589 ± 26.708 208.599 ± 99.549
prefix agg 53.568 ± 6.413 46.396 ± 2.466 7.525 ± 2.306 43.060 ± 25.884 201.614 ± 99.484
prefix index 50.452 ± 4.605 44.290 ± 3.669 7.421 ± 2.360 41.698 ± 25.944 209.085 ± 99.708
prefix last 53.053 ± 5.665 46.639 ± 3.718 7.482 ± 2.325 48.528 ± 26.714 209.304 ± 102.027
noBucket agg 54.890 ± 1.894 49.203 ± 1.833 7.437 ± 2.381 43.483 ± 25.000 211.017 ± 93.198
noBucket index 52.282 ± 1.182 50.153 ± 1.097 - - 208.879 ± 92.250
noBucket last 56.818 ± 1.729 49.027 ± 1.954 7.525 ± 2.244 50.496 ± 23.961 204.758 ± 93.399
state agg 49.318 ± 2.699 49.873 ± 2.658 - 43.835 ± 25.984 211.439 ± 98.351
state index - - - 41.095 ± 26.499 210.408 ± 99.276
state last 49.038 ± 2.498 49.556 ± 2.575 7.521 ± 2.341 48.902 ± 27.001 209.206 ± 100.632
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In Table 5.6, we show the comparison results for the MAE metric between our proposal
and 16 other state-of-the-art methods described in a very recent survey [97], for the same ten
datasets reported in the previous sections.

For a fair and more detailed comparison, we will provide the results of our method in two
scenarios for the threshold selection: MPT provides the results obtained for the Most Precise
Threshold (0.975) and BCT for the MAE Best Compromise Threshold (0.90) as defined in
Section 5.4.2. It can be seen that our approach, even in the worst cases, produces the lowest
error in all of the datasets. Compared with the best model reported in [97] (LSTM [78]),
which is a deep learning-based approach, the average MAE of our MPT method is 7.49 days,
the average MAE of LSTM being 50.02 days. Differences in MAE between our approach and
the LSTM range from 3.88 days (BPIC2017) to 145.07 days (Traffic Fine), 38.28 days being
the average difference that is favourable to our method.

We have also considered the impact of standard deviation, which is higher in our method
than the others for most of the datasets considered. Comparing the worst case (MAE +
STDEV), the average of our method is 35.59 days, the LSTM average being 58.25 days. Dif-
ferences between our approach and the LSTM range within this metric from 3.05 days (BPIC
2012w) to 175.74 days (Traffic Fine), 35.59 days being the average difference, in all cases
that are favourable to our method. According to these results, our method still outperforms
LSTM when considering variance.

Apart from these experimental results, interpret-ability is also a key advantage of our
method when compared to Deep Learning approaches, which are usually labelled as black-
box approaches. Since our EATS approach is based on linear regression on attribute values
that are related to the structure and contents of the trace, users can interpret and understand the
variables’ meaning and their relative importance (coefficients in the regression expressions). It
should be taken into account that the interpret-ability of systems is an increasing demand in the
context of Fairness, Accountability, Transparency and Ethics (FATE) in Artificial Intelligence
and systems and applications in general.

From the previous experiments, we can see how our partitioning technique improves our
result, not only performing in the baseline work [88] and other methods in the literature as we
showed in Table 5.6, but also in terms of the results we have from our first model in Chapter
4.

However, the results that we have shown prove that our model performs other work, but
the work that has been carried out in this chapter assumes that the number of events is always
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low. On the other hand, if the number of events is high, then a high number of attributes will
be produced. In order to cope with this scalability problem, in Chapter 6 we will describe
the use of an attribute selection method, which reduces the number of attributes by keeping
in the model only the attributes that have a real impact on the remaining time estimation and
removing the less relevant ones.
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CHAPTER 6

ADDRESSING SCALABILITY OF THE MODEL

In the previous chapters, we have performed two types of experiments with the following
aims:

• In Chapter 4, we compared our method with the baseline ATS-based proposal [88] in
order to validate it in terms of accuracy and mean absolute error;

• In Chapter 5, we introduced the partitioning technique to enhance the results we have in
the basic model in Chapter 4, proving how the prediction accuracy was improving for
different threshold values and also obtaining experimental evidence about the influence
of the threshold values in the results.

We also consider here the key issue that was previously highlighted in Section 4.3: that in
general, a business process could involve a high number of activities, which would also mean
that the number of attributes could also be high. Consequently, the number of operations
related to the partitioning stage would also increase. Therefore, in order to keep our approach
general, it is advisable to include an attribute selection method that reduces the number of
attributes instances that were initially considered. Through our dealings with business process
logs, we could have a process with a high number of activities and a huge number of attributes
as we mentioned in Section 4.3.1.

The key issue we have faced in the model with the partition technique method is that where
the many numbers of events increased, the number of attributes also increased. Regarding
the nature of the real-life event logs, the traces in these event logs vary greatly in terms of
size, number of activities and execution times. This is generally the usual scenario for real



business process data, such as administrative procedures or applications, industrial incidents
management or processes in a hospital or other big organisations/institutions [92, 94]. In
many cases, the range of remaining time values is vast (e.g. from a few seconds to a hundred
thousand seconds), even for traces that are very similar or even identical.

In addition to the huge number of attributes in the model, we also have another issue
related to the huge number of partitions produced, especially for the high threshold value: if
we have a high number of events and threshold values, then the model takes a long time to
calculate the regression expression for each partition.

To explain more about the huge attributes number, let us recall the scenario from when the
list was built.

Table 6.1: Sample log with three traces

Trace 1 <A3B10B22C40A45>

Trace 2 <A2A16C19B24B50>

Trace 3 <A7C11C15C24B60>

For example, in Table 6.1 for state {AB}, we have two partial traces: PT12, <AB>, and
PT13, <ABB>. Each vector in the list includes the corresponding 15 attributes values (plus
the value to be predicted, i.e. the remaining time). With regard to the number of attributes, it is
worth remembering that the number differs between the states, since it depends on how many
activities engage in that state, as we have explained before. For instance, in this example, the
partial traces associated with one event (State {A}) have eight attribute values, one for each
of the definitions of Section 4.3. The partial traces associated with states {AB} and {AC}
(two events each) have 15 attribute values each, since the existence of two activities doubles
the number of Occurrence, Cycle, Position and Distance (one for each activity, 8 in total) and
increases to 22 = 4 the number of Duple values, plus other 3 attributes (Change, Single and
Elapsed Time).

Assuming we have an event log with more activities as described in Table 6.2, it is clear
that as the number of activities increases, the number of attributes also increases just as much
and, in the case of a large number of events, the increase can be dramatic.

In order to keep our approach general and avoid scalability issues, in this chapter we will
discuss the application of attribute selection methods which reduce the number of attributes
considered in the model, thus only keeping the relevant ones. In this way, the number of
operations involved and the computational cost of the model are reduced.
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Chapter 6. Addressing scalability of the model

Table 6.2: Number of activities

# Activity # Attributes
1 8
2 15
10 143
50 2703
100 10403

6.1 Scalability and the Attribute Selection Methods

Through our dealings with business process logs, we may come across a process with a high
number of activities, with a huge number of attributes as we mentioned in Section 4.3.1.

The attribute selection problem is described as: given a set of candidate attributes, select a
subset that performs the best under a certain classification system. This procedure can reduce
not only the calculation time by reducing the number of attributes that the model needed, but
in some cases it can also provide better classification accuracy due to finite sample size effects
[104]. The term ‘attribute selection’ is taken to refer to algorithms that output a subset of the
input attribute set. More general methods that create new attributes based on transformations
or combinations of the original attribute set are termed attribute extraction algorithms.

Datasets with hundreds and thousands of attributes may cause a ‘dimensionality prob-
lem’. Moreover, some of the traditional classification and clustering algorithms cannot work
correctly. One of the most practical techniques to cope with this problem is attribute reduction.
Attribute reduction refers to the research of methods that have reduced dimensions present in
the original data [46]. From a general point of view, there are two categories of attribute re-
duction, namely attribute selection (or variable selection) and attribute extraction (or attribute
transform).

In this thesis, to cope with the dimensionality problem appearing in the previous model
and to keep our approach general and avoid scalability issues, we recommend applying at-
tribute selection methods to reduce the number of attributes and keep the relevant attributes.
To achieve this, we will use several attribute selection methods

In some computational manner, certain attribute selection methods, for instance the best
subset selection method, is not the preferred method to be applied if the data has a vast number
of predictors. Such an attribute selection method could suffer from statistical complications
in the case of a large number of predictors. If the search space is getting larger, then there will
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Figure 6.1: Forward Greedy-Stepwise [16].

be a higher chance of getting models that are good with the training part. Even they aren’t,
they could still have a kind of predictive power on future data. Hence, a huge search space
can lead to over-fitting and a high variance of the coefficient estimates [103].

For the previous two reasons, stepwise methods, which search a greatly more limited set
of models, are more attractive choices to best achieve subset selection and other selection
methods.

6.1.1 Forward Greedy-Stepwise

The first method we will use is Forward Greedy-Stepwise [103], which performs a greedy
forward or backward search using the space of attribute subsets. It could start with an attribute
or without attributes or from an arbitrary point in space. It stops when the addition or deletion
of any remaining attributes results affects the decrease in evaluation. Figure 6.1 explains how
it works.
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Figure 6.2: Backward Greedy-Stepwise [16].

6.1.2 Backward Greedy-Stepwise

Along the same lines as the forward stepwise selection, the backward stepwise selection pro-
vides an efficient alternative to best achieve subset selection. Nevertheless, unlike the forward
stepwise selection, it begins with the least full squares model containing all the predictors, and
then iteratively removes the least useful predictors, one at a time [103]. Figure 6.2 explains
how it works.

6.1.3 Forward Best-First

The second method is Forward Best-First [103], which searches the scope of attribute sets
by greedily hill-climbing, expanded with a backtracking tactic. Best-First may begin with the
empty set of attributes and search forward, start with the full set of attributes and search back-
ward, or start at a random point and search in both directions, which considers all conceivable
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single attribute additions and deletions at a given point.
In the next section, we will demonstrate the result of our experiment. In experiments, we

will use two attribute selection methods: i) Forward Greedy-Stepwise and ii) Forward Best-
First. The reasons we exclude the Backward Greedy-Stepwise and use the Forward one refers
to:

• The Forward Greedy-Stepwise starts with one attribute and is less costly in terms of
computational load.

• We have done the experiments with the backward approach and found no differences in
terms of the attributes selected.

6.2 Experimental validation

We have validated our model using eight real-life event logs of BPI Challenges 2012w, 2013,
2015, 2017, 2018, 2019, Hospital Bill, Traffic Fine and Credit Requirement [1]. Logs in
these datasets come from very different fields of applications, such as administrative and
financial processes, the billing of medical services and road traffic fines management, which
are considered a de-facto benchmark used for Research Challenges in the field of business
process management.

6.2.1 Experimental Setup

Each list of vectors that annotate each state is randomly divided into two parts: 80% for train-
ing and 20% for testing. We have considered all of the kinds of traces, independent of their
size or structural features, removing from the analysis the lists which include a single vector.
Furthermore, three measures have been used to compare the eight real-life logs. Accuracy,
which calculates the difference between the real remaining time and the predicted one; Mean

Absolute Error (MAE), defined as the arithmetic means of the prediction errors, and; Mean

Percentage Error (MAPE), which measures error as the average of the unsigned percentage
error.

6.2.2 Comparison with the baseline ATS model

We compared our approach with the baseline ATS model described in [88] to evaluate and
discover if our model performs better in the two attribute selection methods. For reference, we
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also include the results with no attribute selection methods, which allows all of the attributes
to be included in the linear regression.

In Table 6.4, we can see that, on average, our model performs better in all eight real-life
event logs for all of the three metrics considered. In more detail, we can see that in 153 out
of the 156 cases (98%) our model performs better, being outperformed by [88] only in three
of the MAPE results. In MAE, with the values ranging from 3.21, low difference, to a high
difference of 116.55 days, all cases are favourable to our method.

For the particular case of BPI15 event logs, we observe that using attribute selection tech-
niques provides better accuracy than using the model without attribute selection. This dataset
includes traces containing information on the building permit applications as well as objection
procedures in various stages in five Dutch municipalities. This result suggests that some of
the eight attributes may add some confusion to the regression model and that it is preferable
that they are dropped. Therefore, the application of our model, in general, should consist of
performing the attribute selection stage, not only for scalability and computational cost rea-
sons, but also to aim to obtain better precision through discarding some attributes that may
not be appropriate for a particular problem and, therefore, keeping only the most relevant and
pertinent attributes.

6.2.3 Attribute Selection Methods

In this section, we provide a comparison between the attribute selection methods with the
baseline ATS model. In Table 6.4, we show the results the eight real-life logs, including
three error metrics with the two attribute selection methods we have explained in Section 6.1.
Regarding accuracy, we can see that in general, we have the best accuracy values in the case
of the Forward Greedy-Stepwise, and in the case of Forward Best-First we have the lowest
Accuracy. The lowest MAE and MAPE values we are getting when no attribute selection is
applied and increased when we apply the Forward Greedy-Stepwise and decreased when we
applied the Forward Best-First. It is normal to have the same behaviour for all error metrics,
which is expected as the higher number of attributes, the better the result. We have shown
the difference in the attributes number for each method in Table 6.3, and we have shown the
number of attributes that are included in the Linear regression.

In Table 6.5, it clearly appears that without any attribute selection methods, the result of
the accuracy and MAE perform better, and with regard to MAPE, it almost equals the best
results of the Forward Greedy-Stepwise method.
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Table 6.3: Number of attributes for the different selection methods

Event log: BPIC12w BPIC13 BPIC15 1 BPIC15 2 BPIC15 3 BPIC15 4 BPIC15 5
# Activities: 6 3 26 26 26 26 26

Attribute Selection Method

# Attributes
None 527 93 461712 360868 1797584 903866 911422
Forward Greedy-Stepwise 92 29 8227 6252 22527 12446 12373
Forward Best-First 55 13 6107 5040 19145 10375 10021

Event log: BPIC17 Hospital Bill Traffic Fine Credit Requirement BPIC18 BPIC19
# Activities: 6 10 8 7 32 31

Attribute Selection Method

# Attributes
None 839 19605 907 193 489085 124278
Forward Greedy-Stepwise 133 1431 98 11 20747 8945
Forward Best-First 95 775 62 10 11791 6118

From the previous analysis of Table 6.4 and 6.5, we can conclude that with more rep-
resentation of related information attributes, we always have a better result than using the
attribute selection methods, where these two methods decrease the number of attributes, and
thus provide less information about each partial trace. Therefore, our experiments prove our
hypotheses that collecting as much related useful information about the process as possible
will improve the quality of the prediction of a running time of a business process.

On the other hand, we should consider the calculation time of the estimation. We show
this in Table 6.5, where we include the time consumed for the attribute selection, the time
for obtaining the regression expressions and for calculating the estimation time. The low-
est calculation time on average is the Forward Best-First method. From the balanced point
of view, Forward Best-First provides the lowest calculation time of the remaining time es-
timation, which is better than the Forward Greedy-Stepwise, and with no attribute selection
method. And on the other hand, it provides an acceptable prediction time accuracy compared
with the baseline approach of [88]. Forward Best-First method not only provides the fastest
method to calculate the remaining time estimation but also less usage of the resources during
the estimation process.
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Table 6.4: Comparison between our approach and the model in [88] using different selection
methods

Event log: BPIC12w BPIC13 BPIC15 1 BPIC15 2 BPIC15 3 BPIC15 4 BPIC15 5
Attribute Selection Method

Accuracy

None 0.68 0.65 0.76 0.81 0.77 0.86 0.87
Forward Greedy-Stepwise 0.66 0.64 0.80 0.84 0.80 0.88 0.89
Forward Best-First 0.62 0.64 0.84 0.86 0.83 0.90 0.91
[88] 0.39 0.41 0.68 0.68 0.74 0.71 0.72

MAE

None 1.42 3.00 5.13 11.33 2.69 8.35 7.54
Forward Greedy-Stepwise 1.69 3.20 3.69 10.75 2.57 6.58 5.91
Forward Best-First 1.76 3.24 2.33 7.58 1.87 4.11 3.78
[88] 5.69 6.45 42.94 89.68 19.76 20.06 46.83

MAPE

None 0.03 2.91 1.50 5.24 0.96 3.11 1.77
Forward Greedy-Stepwise 0.03 3.14 0.80 2.16 1.05 2.77 1.49
Forward Best-First 0.04 3.22 0.41 0.85 0.51 2.30 0.90
[88] 0.24 2.79 5.66 9.91 2.67 2.91 6.25

Event log: BPIC17 Hospital Bill Traffic Fine Credit Requirement BPIC18 BPIC19
Attribute Selection Method

Accuracy

None 0.46 0.58 0.75 0.69 0.92 0.84
Forward Greedy-Stepwise 0.44 0.57 0.75 0.68 0.90 0.82
Forward Best-First 0.44 0.52 0.73 0.69 0.88 0.80
[88] 0.17 0.35 0.50 0.44 0.64 0.57

MAE

None 3.08 21.30 24.69 0.21 4.92 6.60
Forward Greedy-Stepwise 3.11 21.50 27.99 0.22 10.87 9.07
Forward Best-First 4.64 26.19 31.81 0.22 15.36 10.72
[88] 6.28 52.33 148.36 0.36 46.38 22.66

MAPE

None 4.26 3.41 0.01 0.00 4.08 0.07
Forward Greedy-Stepwise 4.55 3.68 0.01 0.00 2.23 0.05
Forward Best-First 4.94 9.90 0.03 0.00 5.65 0.18
[88] 0.40 7.00 0.01 227.12 318.41 239.15

Table 6.5: Time consumed for the different selection methods - time in the format of hh:mm:ss

Event log: BPIC12w BPIC13 BPIC15 1 BPIC15 2 BPIC15 3 BPIC15 4 BPIC15 5
Attribute Selection Method

Time Consumed
None 0:00:53 0:01:32 7:25:13 6:13:23 13:00:44 5:50:27 6:17:30
Forward Greedy-Stepwise 0:01:00 0:01:35 5:41:47 3:58:08 6:02:28 4:34:55 5:21:56
Forward Best-First 0:01:04 0:01:40 4:11:09 3:12:43 5:20:18 4:26:23 5:10:14

Event log: BPIC17 Hospital Bill Traffic Fine Credit Requirement BPIC18 BPIC19
Attribute Selection Method

Time Consumed
None 0:00:20 1:53:16 4:15:07 0:03:19 11:11:34 2:07:02
Forward Greedy-Stepwise 00.00.39 2:02:06 4:15:58 0:03:28 10:43:09 3:39:21
Forward Best-First 00.00.16 1:51:22 4:17:04 0:03:50 5:49:47 3:39:08
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this Ph.D. dissertation, we have addressed one of the current challenges in process mining
enhancement: the prediction of remaining times in business processes. Accurate predictions
of the remaining time, defined as the required time for an instance process to finish, are critical
in many systems for organisations to be able to establish a priori requirements for the optimal
management of resources or for improving the quality of the services that they provide. This
Ph.D. dissertation has justified what we hypothesised at the beginning of this study from two
different perspectives.

• The structural information in the traces of a Business Process provides relevant
information for achieving accurate remaining time predictions. The features we
collected from the event log provide our work with a more accurate result than other
works in the literature. The structural information in the traces we collected helped
us in this work not only by achieving accurate remaining time predictions, but by also
letting us apply our model to any event log regardless of its case attributes such as ID,
Resources, etc.

• There are no models in the literature which consider the structural information
in their estimations. We build our work as we believe that this valuable information
extracted from the event logs will enhance the prediction of the remaining time of a
process.



7.1. Conclusions

The main conclusions can be summarised as the following:

First, in Chapter 4 we proposed ‘A Novel Time Prediction Model Based on Structural
Information From the Traces’. Our approach consists of two perspectives: firstly, we define
a number of attributes that are evaluated from the process traces and capture quantitative and
structural information about them. Secondly, a linear regression model is used for remaining
time prediction using these attributes. The attributes are added to the well-known annotated
transition system (ATS, [88]), thus producing a new Extended ATS which takes into account
structural information of the traces. We have validated our model using ten real-life event
logs of BPI Challenges 2012w, 2013, 2015, 2017 and Hospital Bill, and Traffic Fine [1]. We
compared our approach to the baseline ATS model described in [88] only because this was
our first model, and in the first instance we wanted to confirm that our model achieves our
hypothesis. Results concluded that our model on average enhances accuracy by about 50%,
and 35 days in MAE, and 2% in MAPE.

Second, in Chapter 5 ’An Enhanced Model Including Lists Partitioning’ was proposed, in
which we developed the model we presented in Chapter 4 to improve the results so that we
can compare it with other models in the literature (a non ATS-based model). As described in
Chapter 4, each of the lists related to the state contains all the data (predictors or independent
variables) needed for performing the remaining time estimation. Therefore, we have a single
dataset associated with each state. Then, when applying a linear regression technique to each
of these datasets, poor estimations are produced since, usually, traces in the dataset have great
variability in terms of size, number of activities and execution times. This is the usual general
scenario for real business process data, such as administrative procedures or applications, in-
dustrial incidents management or processes in a hospital or other big organisations/institutions
[92, 94]. In many cases, the remaining time values range is vast (e.g. from a few seconds to a
hundred thousand seconds) even for traces that are very similar or even identical.

In this model, our partitioning method consists of building partitions that contain par-
tial traces with similar remaining times. This model allows for a number of partitions to be
produced, hence, applying the linear regression to these partitions will produce a regression
expression for each partition. Therefore, the estimation of the remaining time will be more
accurate for the new partial trace that is related to the corresponded partition.

We have validated our model using ten real-life event logs of BPI Challenges 2012w,
2013, 2015, 2017, Hospital Bill and Traffic Fine [1]. The results concluded in two different
comparison are as follows:
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• We compared our approach to the baseline ATS model described in [88] using differ-
ent thresholds. Results conclude that our model in the accuracy average is about 0.81
against 0.40 for the baseline [88]. In MAE, our model has an average of 6.71 days
against 39.1 days.

• We compared our approach to different models in the literature, our model performing
with all other models as described in Table 5.6.

Third, in Chapter 6 An ”Addressing Scalability of the Model” was proposed. After we in-
troduced the partitioning technique to enhance the results we have in the basic model in Chap-
ter 4, we proved how the prediction accuracy becomes more accurate for different threshold
values. However, our model involves a high number of activities, which would also mean that
the number of attributes could also be high. Consequently, the number of operations related
to the partitioning stage would also increase. Therefore, in order to keep our approach gen-
eral, we introduced attribute selection methods that reduce the number of attributes instances
initially considered.

Two attribute selection methods were introduced. The first method is Forward Greedy

Stepwise [103], which performs a greedy forward or backward search using the space of
attribute subsets. The second method is Forward Best-First [103], which searches the scope
of attribute sets by greedy hill-climbing expanded with a backtracking tactic.

We have validated our model using ten real-life event logs of BPI Challenges 2012w,
2013, 2015, 2017, 2018, 2019, Hospital Bill, and Traffic Fine [1]. Comparison results for the
Accuracy, MAE and MAPE are the following:

• In the accuracy comparison, Forward Greedy Stepwise and Forward Best-First has an
improvement of 24%.

• In the MAE comparison, Forward Greedy Stepwise and Forward Best-First has an im-
provement of 26 days.

• In the MAPE comparison, Forward Greedy Stepwise and Forward Best-First has an
improvement of 97%.

In this model, we not only improved the result compared to the baseline [88], but also solved
the problem with the scalability of the model.
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7.2 Future Work

Here we present a list of various future research directions that can be pursued in order to
continue the work started in this thesis, comprising:

• The partitioning method could be improved to adapt better to other more complex pro-
cesses. Therefore, other partitioning methods could be proposed and compared with the
current model, which could further enhance the good remaining time estimation results
we have obtained with the current proposal.

• The proposed attributes may not be able to capture all the structural richness in some
scenarios. In this regard, new attributes definitions could be considered.

• The use of regression techniques other than linear regression could be considered.
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