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Abstract

The Z2s-additive codes are subgroups of Zn2s , and can be seen as a gener-

alization of linear codes over Z2 and Z4. A Z2s-linear Hadamard code is a

binary Hadamard code which is the Gray map image of a Z2s-additive code.

It is known that either the rank or the dimension of the kernel can be used

to give a complete classi�cation for the Z4-linear Hadamard codes.

The aim of this thesis is to classify the family of Z2s-linear Hadamard

codes obtained from the Carlet's generalized Gray map through the rank

and dimension of the kernel. First, we give a recursive construction of the

generator matrices of the corresponding Z2s-additive Hadamard codes. By

using this construction, we present a new proof to show that the generated

codes are indeed Hadamard. The kernel of these Z2s-linear Hadamard codes

of length 2t and its dimension are established for any s > 2, and it allows

to give a partial classi�cation of such codes. Moreover, we prove that this

invariant provides a complete classi�cation for some values of t and s. Later,

the rank of these codes is computed for s = 3, and it is proved that this

invariant, along with the dimension of the kernel, provides a complete clas-

si�cation for Z8-linear Hadamard codes, once t ≥ 3 is �xed. In this case, the

number of nonequivalent such codes is also established. Finally, we prove

that some families of Z2s-linear Hadamard codes of length 2t are equivalent,

once t is �xed. This allows us to improve the previous results on the partial

classi�cation of these codes. An upper and a lower bound are given for the

amount of nonequivalent Z2s-linear Hadamard codes of length 2t. Moreover,

after some computations, the exact amount of nonequivalent such codes of

length 2t up to t = 11 is found.
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Resum

Els codis Z2s-additius són subgrups de l'anell Zn2s i poden considerar-se com

una generalització dels codis lineals sobre Z2 i Z4. Es diu codi Hadamard

Z2s-lineal a un codi binari Hadamard que és la imatge, via l'aplicació de Gray,

d'un Z2s-additiu. Està demostrat que per donar una classi�cació completa

dels codis Hadamard Z4-lineals es pot usar el rang o la dimensió del nucli.

L'objectiu d'aquesta tesi és classi�car la família dels codis Hadamard Z2s-

lineals obtinguda a través de l'aplicació de Gray generalitzada de�nida per

Carlet, usant el rang i la dimensió del nucli. Primer, donem una construc-

ció recursiva de les matrius generadores dels codis Hadamard Z2s-additius

corresponents. Gràcies a aquesta construcció, donem una demostració nova

de que les imatges, via l'aplicació de Gray generalitzada, dels codis generats

són Hadamard. Construïm el nucli dels codis Hadamard Z2s-lineals de lon-

gitud 2t per a s > 2 , obtenim la seva dimensió i la usem per obtenir una

classi�cació parcial d'aquests codis. A continuació, donem el rang d'aquests

codis per a s = 3 i demostrem que, juntament amb la dimensió del nucli,

podem obtenir una classi�cació completa dels codis Hadamard Z8-lineals,

�xant t ≥ 3. També, per a s = 3, establim la quantitat exacta de codis no

equivalents d'aquest tipus. Finalment, provem que algunes famílies de codis

Hadamard Z2s-lineals de longitud 2t són equivalents �xant t ≥ 3. Això ens

permet millorar els resultats anteriors relacionats amb la classi�cació parcial.

També donem cotes superiors i inferiors per a la quantitat de codis Hadamard

Z2s-lineals no equivalents de longitud 2t. Més encara, calculem la quantitat

exacta de codis no equivalents �ns a t = 11.
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Resumen

Los códigos Z2s-aditivos son subgrupos del anillo Zn2s y pueden considerarse

como una generalización de los códigos lineales sobre Z2 y Z4. Se llama

código Hadamard Z2s-lineal a un código binario Hadamard que es la imagen,

vía la aplicación de Gray, de uno Z2s-aditivo. Está demostrado que para dar

una clasi�cación completa de los códigos Hadamard Z4-lineales se puede usar

el rango o la dimensión del núcleo.

El objetivo de esta tesis es clasi�car la familia de los códigos Hadamard

Z2s-lineales obtenida a través de la aplicación de Gray generalizada de�nida

por Carlet, usando el rango y la dimensión del núcleo. Primero, damos una

construcción recursiva de las matrices generadoras de los códigos Hadamard

aditivos sobre Z2s correspondientes. Gracias a esta construcción, damos una

demostración nueva de que las imagenes, vía la aplicación de Gray general-

izada, de los códigos generados son Hadamard. Construimos el núcleo de los

códigos Hadamard Z2s-lineales de longitud 2t para s > 2 , obtenemos su di-

mensión y la usamos para obtener una clasi�cación parcial de estos códigos.

A continuación, damos el rango de estos códigos para s = 3 y demostramos

que, junto con la dimensión del núcleo, podemos obtener una clasi�cación

completa de los códigos Hadamard Z8-lineales, �jando t ≥ 3. También, para

s = 3, establecemos la cantidad exacta de códigos no equivalentes de este

tipo. Por último, probamos que algnas familias de códigos Hadamard Z2s-

lineales de longitud 2t son equivalentes �jando t ≥ 3. Esto nos permite mejo-

rar los resultados anteriores relacionados con la clasi�cación parcial. También

damos cotas superiores e inferiores para la cantidad de códigos Hadamard

Z2s-lineales no equivalentes de longitud 2t. Más aún, calculamos la cantidad

exacta de códigos no equivalentes hasta t = 11.
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Chapter 1

Introduction

�Education never ends, Watson. It is a series of

lessons, with the greatest for the last."

�Sir Arthur Conan Doyle, The last bow

Initially, coding theory appeared as a solution to an engineering problem

related with the transmission of information without errors from a source to

a receiver. The medium, through which the message is sent from the source

to the receiver, is called channel. The general scheme of a communication is

the following:

Source Channel Receiver

Figure 1.1: Scheme of communication

In general, the channel we use for communications may produce errors in

our messages. When the channel produces errors, it is called noisy channel

and it is for those channels for which coding theory makes sense. Since

we need to solve the problems derived from the use of noisy channels, we

introduce error-correcting codes and a process to encode and decode in the

communication scheme as it is shown in Figure 1.2.

In a noisy channel, if we want to correct the errors, the process of com-

munication is as follows. The source generates a message m, which we need

1



2 Chapter 1. Introduction

Source Encoder Channel Decoder Receiver

Figure 1.2: Scheme of accurately communication incorporating error-
correcting codes

to encode by using error-correcting codes that add some redundancy. Once

m is encoded, we obtain a codeword c, which will be sent through the noisy

channel where errors may happen. These errors change the sent codeword

producing a received vector r. Now, to decode, we need to detect and correct

the errors obtaining an estimation c̃ from r that hopefully will coincide with

the original codeword c. Since there is a one-to-one correspondence between

codewords and messages, we therefore obtain an estimation m̃ of the original

message m from c̃.

Despite coding theory was an engineering problem, this theory has been

developed by using mathematical techniques such as linear algebra, theory

of groups and discrete mathematics. Thus, nowadays, coding theory has

become an active part of mathematical research.

Coding theory has its origins in lately 1940's in [Sha48] and [Ham50] by

Shannon and Hamming, respectively. Speci�cally, the theory was developed

so that electronic information could be transmitted and stored without errors.

In general, the information is represented as series of zeros and ones, since

the electronic information is represented by using these symbols. Therefore,

the binary �eld, F2, was rapidly selected as the alphabet for coding theory,

and the codes over this alphabet are called binary codes.

Later, the results were generalized for �elds with q elements, Fq, and
all the research related to coding theory was developed over �nite �elds.

In the early 1970's, in [Bla72] and [Bla75], Blake initiates the incursion of

rings into coding theory. However, it was with the paper [HKC+94] that the

study of codes over rings starts to increase. The interest in these codes is

due to the discovery that certain nonlinear binary codes, which have twice

as many codewords as the best known comparable linear code, were the

images of linear codes over Z4 under a nonlinear map called Gray map. Some
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of these codes, and the ones studied in later works, belong to well-known

families of codes such as extended Hamming, Hadamard, QRM, ZRM and

Reed-Muller codes, which have been studied and classi�ed [Kro01, BPR03,

PRV06, BFP05, BFP08, PPV11, PRS09]. The study of codes over Z4 quickly

encouraged the study of codes over the rings Zk or commutative rings of order

4, and their binary images under Gray maps [AS14, AS13, Car91, BGL05,

Kro07, DF11, TV03]. Further information on codes over commutative rings

can be found in [Dou17].

In this dissertation, we concentrate our e�orts in the study of binary non-

linear Hadamard codes with associated structures over Z2s . The initial point

of this work was the paper [Kro01], which studies the Z4-linear Hadamard

codes. There are many possible generalizations of Z4-linear Hadamard codes.

One of them gives rise to the so-called Z2Z4-linear Hadamard codes studied

in [PRV06, KV15]. Giving one more step in this direction, in [MR15] the

Hadamard Z2Z4Q8-codes were introduced. Finally, another possible gener-

alization of Z4-linear Hadamard codes are the Z2s-linear Hadamard codes

[Car91, Kro07], which are the main studied codes in the present thesis. The

overview of the dissertation is the following:

• Chapter 2 provides an introduction to coding theory so that this dis-

sertation is as self contained as possible. Firstly, we review basic de�ni-

tions and results about binary codes emphasizing the concepts related

to two invariants for binary codes, the rank and dimension of the kernel.

We also give de�nitions related to the well-known family of Hadamard

codes which, in general, are nonlinear. Secondly, we give a brief survey

about Z4-additive, Z4-linear and Z4-linear Hadamard codes. Later, we

present the generalized Gray map that will be used in this dissertation.

Finally, we review basic de�nitions and properties of Z2s-additive and

Z2s-linear codes, which are the main topic of this thesis.

• Chapter 3 provides a recursive construction of the Z2s-additive Hada-

mard codes whose images under the generalized Gray map give the

Z2s-linear Hadamard codes. By making a study of this Gray map, we

provide ourselves with tools, �rst, to show that, in fact, the images of
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the constructed codes are Hadamard codes and, secondly, to see for

which types of these codes the obtained binary codes are linear.

• In Chapter 4, we generalize the computation of the kernel and its di-

mension for Z2s-linear Hadamard codes with s > 2 and give a partial

classi�cation of these codes by using this invariant. As in the previous

chapter, the study of some properties of the generalized Gray map,

allows us to provide ourselves with tools to achieve a construction of

the kernel for Z2s-linear Hadamard codes. Once we have the kernel, we

also obtain its dimension and we use it to give a partial classi�cation

for these codes. Finally, we also give some bounds on the amount of

nonequivalent such codes when t is �xed.

• Chapter 5 presents a full classi�cation of the Z2s-linear Hadamard codes

for s ∈ {2, 3}. In this chapter, �rst, we provide a construction of the

span of the codes with s = 3, since for s = 2 is already done. Then, we

obtain the rank of the codes for s = 3 and a complete classi�cation for

them by using both invariants, the rank and dimension of the kernel.

Finally, we give the full classi�cation for all these codes with s ∈ {2, 3}
and the amount of nonequivalent codes that there exists for a given

length 2t.

• In Chapter 6, we improve the partial classi�cation presented in Chapter

4. First, we establish some equivalent relations among the Z2s-linear

Hadamard codes with 2 ≤ s ≤ t + 1. Finally, by using these rela-

tions, we also enhance the previous partial classi�cation and re�ne the

bounds, given in Chapter 4, on the amount of nonequivalent codes

when t is �xed.

• Chapter 7 presents our conclusions and proposes future research lines

on this topic.

Finally, we must mention that part of the research included in this disser-

tation was presented at several conferences and published in their proceedings

[FVV16, FVV17, FVV18a]:
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[FVV16] C. Fernández-Córdoba, C. Vela, and M. Villanueva, �Construc-

tion and classi�cation of the Z2s-linear Hadamard codes,� in Proc.

of the Discrete Mathematics Days, JMDA16. Electronic Notes in

Discrete Mathematics, 54, pp. 247�252 (2016).

[FVV17] C. Fernández-Córdoba, C. Vela, and M. Villanueva, �On the ker-

nel of Z2s-linear Hadamard codes,� in Proc. of the 5th Interna-

tional Castle Meeting on Coding Theory and Applications, ICM-

CTA 2017. Lecture Notes in Computer Science, 10495, pp. 107�

117 (2017).

[FVV18a] C. Fernández-Córdoba, C. Vela, and M. Villanueva, �On the rank

of Z8-linear Hadamard codes,� in Proc. of the 2nd IMA Con-

ference on Theoretical and Computational Discrete Mathematics.

Electronic Notes in Discrete Mathematics, to be published (2018).

The results showed in Chapter 6 have been presented in Sixteenth

International Workshop on Algebraic and Combinatorial Coding

Theory (ACCT), held in Svetlogorsk (Kaliningrad region), Rus-

sia. The given talk was entitled �On some equivalent Z2s-linear

Hadamard codes�.

Moreover, the results presented in Chapters 3 and 4 have already been pub-

lished in a journal [FVV18b], whereas those of Chapter 5 have been submitted

[FVV18c]:

[FVV18b] C. Fernández-Córdoba, C. Vela, and M. Villanueva, �On Z2s-

linear Hadamard codes: kernel and partial classi�cation,� to ap-

pear in Designs, Codes and Cryptography (2018).

[FVV18c] C. Fernández-Córdoba, C. Vela, and M. Villanueva, �On Z8-linear

Hadamard codes: rank and classi�cation,� submitted to IEEE

Transactions on Information Theory (2018).

This work has been partially supported by the Spanish MINECO under

Grants TIN2013-40524-P, TIN2016-77918-P (AEI/FEDER, UE) and also
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MTM2015-69138-REDT, and by the Catalan AGAUR under Grant 2014SGR-

691.

Finally, I visited Prof. Dr. Joachim Rosenthal at the Department of

Mathematics at University of Zurich, in Zurich, Switzerland, from 17 Jan-

uary to 19 April 2018 with the objective of getting in touch with the dif-

ferent research lines about codes that there are in this department. My

research during this visit was focused on networking codes. More speci�cally,

on equidistant codes, orbit codes, equidistant subspace codes and rank met-

ric codes. For more information about these codes, the reader is referred to

[TMB+11, GR16, Gab85, ER14, Lam13].



Chapter 2

State of art

�The mind is not a vessel to be �lled, but a �re

to be kindled."

�Plutarch

The aim of this chapter is to introduce previous concepts which are nec-

essary to understand the main results of this dissertation. First, in Section

2.1, we describe the main concepts about linear and nonlinear binary codes.

Secondly, in Section 2.2, we introduce two invariants for the binary codes,

the rank and the dimension of the kernel. Since the Hadamard codes are the

main family of codes that we study, Section 2.3 is dedicated to them. Later,

in Sections 2.4 and 2.5, as a motivation for the thesis, we see the de�nition

and some properties of the Z4-linear codes and Z4-linear Hadamard codes,

since these codes have been deeply studied. As a necessary step, in Section

2.6, we study some generalizations of the Gray map and see in more detail

the one we use in this dissertation to map linear codes over Z2s to (possibly

nonlinear) binary codes. Finally, in Section 2.7, we see the de�nition and

some basic properties of Z2s-linear codes.

2.1 Basic concepts of binary codes

Let Z2 be the ring of integers modulo 2 and let Zn2 denote the set of all binary

vectors of length n. Any nonempty subset C of Zn2 is a binary code of length

7



8 Chapter 2. State of art

n, and a subgroup of Zn2 is called a binary linear code of length n. From now

on, the elements of a code will be called codewords. A binary linear code

of length n can also be seen as a linear subspace of Zn2 . In this case, the

dimension k of the code is de�ned as the dimension of the linear subspace

over Z2.

The Hamming weight of a binary vector u ∈ Zn2 , denoted by wtH(u), is

the number of nonzero coordinates of u. The minimum Hamming weight of a

binary code C, denoted by wtH(C), is the minimum value of wtH(u) with u ∈
C and u 6= 0, where 0 is the all-zero vector. The Hamming distance of two

binary vectors u,v ∈ Zn2 , denoted by dH(u,v), is the number of coordinates in

which they di�er. Note that dH(u,v) = wtH(v−u). Theminimum Hamming

distance of a binary code C is d(C) = min{dH(u,v) : u,v ∈ C,u 6= v}. It is
well known that if C is a binary linear code, d(C) = wtH(C). The minimum

Hamming distance of a binary code will be denoted by d only if the code we

are referring to is clear from the context.

The minimum Hamming distance d of a binary code C determines the

number of errors that the code can correct. Let y be a received vector (as in

Figure 1.2). If the amount of errors that occur in the corresponding message

m is less than or equal to b(d− 1)/2c, then there is only one codeword c ∈ C
such that d(c, y) ≤ b(d− 1)/2c. The parameter

t = b(d− 1)/2c

is called the error-correcting capability of the code, which is said to be a

t-error-correcting code. Another parameter also related to the minimum

distance of a binary code is the detection capability, that is the amount of

errors that a code is able to detect, and it is given by the expression (d− 1).

The most common ways to describe a linear code are with either, a gen-

erator or a parity check matrix. A generator matrix for a linear code C of

length n and dimension k is a k× n matrix G whose rows form a basis of C.

In general, there are di�erent generator matrices for a linear code. A parity

check matrix H for a linear code C is a (n − k) × n matrix of dimension

n− k whose null space is the code C, i.e., uHT = 0 for all u ∈ C, where HT
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denotes the transpose matrix of H. A generator matrix G and a parity check

matrix H for the linear code C satisfy GHT = 0. A generator matrix G is

said to be in standard form if its �rst k columns form the identity matrix of

size k, denoted by Idk. If G = (Idk |A) is a generator matrix for the linear

code C in standard form, then

H = (−AT | Idn−k) (2.1)

is a parity check matrix for C. A parity check matrix H as in (2.1) is said

to be in standard form.

The inner product of two vectors u,v ∈ Zn2 is de�ned as

〈u,v〉 =
n∑
i=1

uivi ∈ Z2.

If 〈u,v〉 = 0, then u and v are called orthogonal. Denote the set of vectors

which are orthogonal to all codewords of a binary code C by C⊥, that is,

C⊥ = {x ∈ Zn2 : 〈x,u〉 = 0, for all u ∈ C}.

Note that C⊥ is always a linear code. When C is linear, then C⊥ is called

the dual of the code C, otherwise C⊥ is called the orthogonal code. If G and

H are a generator and a parity check matrix, respectively, for C, then H and

G are a generator and a parity check matrix, respectively, for C⊥.

Let Sn be the symmetric group of permutations on the set {1, . . . , n}.
Two binary codes, C1 and C2, are said to be permutation equivalent if there

exists a permutation of coordinates π ∈ Sn such that C2 = {π(c) : c ∈ C1}.
They are equivalent if there exists a vector a ∈ Zn2 and a permutation of

coordinates π ∈ Sn such that C2 = {a + π(c) : c ∈ C1}.
We take as an example, one of the very �rst binary codes being de�ned,

the Hamming code [Ham50]. For t ≥ 2, the t×(2t−1) matrix whose columns

are the binary expansion of the numbers 1, 2, . . . , 2t − 1 is the parity check

matrix of a binary linear code of length 2t − 1, dimension 2t − 1 − t and

minimum Hamming distance 3. Any rearrangement of the columns of this
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matrix gives an equivalent code, and any one of these equivalent codes will

be called binary Hamming code of length 2t − 1. A binary simplex code of

length 2t− 1, denoted by St, is the dual of a binary Hamming code of length

2t − 1.

Example 1. For t = 4, the matrix

H =


1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1


has as columns all the 24−1 = 15 nonzero vectors in Z4

2. Then, H is a parity

check matrix for a binary Hamming code of length 15. The matrix H is also

a generator matrix in standard form for a binary simplex code S4.

For more information about linear and nonlinear codes, the reader is

referred to [HP03, MS77] and [Zen14], respectively.

2.2 Invariants for binary codes

Two structural properties of binary codes are the rank and the dimension of

the kernel. The rank of a binary code C is simply the dimension of the linear

span, 〈C〉, of C. The kernel of a binary code C, denoted by K(C), is de�ned

as the set of all codewords that leaves the code invariant by translation

[BGH83],

K(C) = {x ∈ Zn2 : x + C = C}.

If the all-zero vector belongs to C, then K(C) is a linear subcode of C. Note

also that if C is linear, then K(C) = C = 〈C〉. Otherwise, if C is nonlinear,

then K(C)  C  〈C〉 as shown in Figure 2.1. Therefore, we can take them

as a measure of the nonlinearity of the code.

We denote the rank of a binary code C as rank(C) and the dimen-

sion of the kernel as ker(C). These parameters can be used to distin-

guish between nonequivalent binary codes, since equivalent ones have the
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same rank and dimension of the kernel. Note that if two codes have dif-

ferent rank or dimension of the kernel, then they are nonequivalent. In

[BPR03, Kro01, PRV06, PPV11], the authors compute the rank and the di-

mension of the kernel of di�erent families of binary codes. In these cases,

these invariants are used to give a classi�cation and determine nonequivalent

codes.

Figure 2.1: Scheme of a nonlinear code C, its kernel and its span

Example 2. Let C be the binary code that contains the following codewords:

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1),

(0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1),

(0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0),

(0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1),

(0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0),

(0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0),

(0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1),

(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1),

(0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0),

(0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0),

(0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1),

(0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0),

(0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1),

(0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1),

(0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0),
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and their complements. It is easy to check that the span of C is a binary

linear code generated by

1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1

0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1


.

It is also possible to compute the kernel of C, which is the linear code K(C)

generated by 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

 .

Therefore, we have that rank(C) = 6 and ker(C) = 3, and we know that C

is a binary nonlinear code.

2.3 Binary Hadamard codes

A Hadamard matrix H of order n is a n × n matrix of +1′s and −1′s such

that HHT = n Idn. It is well known that if a Hadamard matrix H or order

n exists, then n is 1, 2 or a multiple of 4 [MS77, Ch.2 �3] [AK92]. Two

Hadamard matrices are equivalent if one matrix can be obtained from the

other by permuting rows and (or) columns and multiplying rows and (or)

columns by −1. We can change the �rst row and column of H into +1′s and

we obtain an equivalent Hadamard matrix H ′, which is called normalized.

If +1′s are replaced by 0′s and −1′s by 1′s, H ′ is changed into a binary

Hadamard matrix c(H ′). The binary code consisting of the rows of c(H ′)

and their complements is called a binary Hadamard code [MS77, Ch.13 �3].

A binary Hadamard code of length n is a binary code with 2n codewords

and minimum distance n/2. In a binary Hadamard code, all codewords,
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except the all-one and all-zero codewords, have Hamming weight n/2. In

general, binary Hadamard codes are nonlinear. In fact, it is well known that

there is a unique binary linear Hadamard code Ht of length n = 2t, for any

t ≥ 2, which is the dual of the extended Hamming code of length 2t [MS77,

Ch.2]. A generator matrix G for Ht can be constructed as follows:

G =

(
1 1

0 G′

)
, (2.2)

where G′ is a matrix having as columns the 2t − 1 nonzero vectors from Zt2.
Note that G′ can be seen as a generator matrix of the binary simplex code

St of length 2t − 1, as noticed in Section 2.1.

Example 3. Let H4 be the binary linear Hadamard code of length 16 with

generator matrix

G =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

 , (2.3)

constructed as in (2.2), where G′ is the generator matrix for the binary sim-

plex code S4 of length 15 given in Example 1.

It is also well known that if H is a Hadamard matrix of order n, then(
H H

H −H

)
(2.4)

is a Hadamard matrix of order 2n [Syl1867]. Starting from the Hadamard

matrix S0 = (1) of order 1 and applying (2.4), we can recursively de�ne

matrices St, called Sylvester matrices, of order 2t for t ≥ 1. The binary

Hadamard code corresponding to St is the binary linear Hadamard code and

is also known as the �rst order Reed-Muller code of length 2t [MS77, Ch.13

�3].
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Example 4. By starting with S0 = (1) and applying (2.4), we obtain the

following matrices:

S1 =

(
1 1

1 −1

)
, S2 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 ,

S3 =



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1


,

S4 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1

1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1



.
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The corresponding binary Hadamard matrix of S4 is

c(S4) =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0

0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1

0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0



.

Note that the binary code consisting of the rows of this last matrix c(S4) and

their complements is linear. Moreover, it is permutation equivalent to the

code H4 given in Example 3.

Example 5. Let H be the following (normalized) Hadamard matrix(
S3 S3

ρ(S3) −ρ(S3)

)
,

where S3 is the matrix given in Example 4, and ρ = (2, 3) ∈ S16. The

corresponding binary Hadamard code coincides with the one given in Example

2, so it is a nonlinear binary Hadamard code.

The rank and the dimension of the kernel of binary Hadamard codes have

been deeply studied in [Kro01, PRV05, PRV06, RR13, MR15, KV15, DRV15,

RS17]. In some of these papers, the authors consider binary Hadamard
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codes having linear structures over di�erent rings. Also in some of them,

bounds for these invariants are given. In this dissertation, we study the

binary Hadamard codes which have associated a linear structure over Z2s

with s ≥ 2.

Thanks to the great correction capability of Hadamard codes, these have

been used in real word applications. They were used in early satellite trans-

missions, for example, in the 70's Mariner and Voyager missions to the planets

of the solar system [Hor07]. Modern CDMA cellphones use Hadamard ma-

trices to modulate transmission on the uplink and minimise interference with

other transmissions to the base station [LT94]. The Walsh-Hadamard Trans-

form [Wal23] is in common use as a fast discrete transform for the transmis-

sion of information in image compression and image encoding [Jai89]. New

applications for these codes are pattern recognition [KB73], neuroscience

[Her12] and optical communication [HS79], among others. In addition, they

are also used in cryptography and steganography [Hor07].

Hadamard matrices of order n = 2t, t ≥ 0, were constructed for the �rst

time by Sylvester [Syl1867]. Later, in [Had1893], Hadamard proved that

Hadamard matrices could exist for other orders. In fact, he proved that such

matrices could exist only if n is 1, 2 or a multiple of 4. This observation is the

basis of the Hadamard's conjecture, which states that a Hadamard matrix of

order 4k exists for every positive integer k. Currently, the smallest order for

which no Hadamard matrix is known is 668 [KT05].

In order to attack the Hadamard's conjecture, in [Ito94, Fla97, LFH00,

RS14], the Hadamard matrices are related with di�erent concepts as cocyclic

Hadamard matrices [Fla97], Hadamard groups [Ito94], di�erent sets [LFH00]

and Hadamard full propelinear codes [RS14]. These concepts have been stud-

ied in the last years in, for example, [Ito96, Cat12, RS17, AAF+09].

2.4 Z4-linear codes

The study of codes over rings has its initial point in [Bla72] and [Bla75].

However, it became more signi�cant with the paper [HKC+94], where the
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codes were de�ned over the ring of integers modulo 4, Z4. For more infor-

mation about codes over Z4 see [Wan97], and codes over rings in general see

[Dou17].

Let Zn4 be the set of all n-tuples over the ring Z4. Henceforth, the elements

of Zn4 will also be called vectors despite of the fact that Zn4 is not a vector

space. Any nonempty subset C of Zn4 is a quaternary code of length n and a

subgroup of Zn4 is called a quaternary linear code of length n.

The Lee weight of an element i ∈ Z4 is wtL(i) = min{i, 4− i} and the Lee

weight of a vector u = (u1, u2, . . . , un) ∈ Zn4 is wtL(u) =
∑n

j=1 wtL(uj) ∈ Z4.

The minimum Lee weight of a code, C, over Z4 denoted as wtL(C) is the

minimum value of wtL(u) with u ∈ C and u 6= 0. The Lee distance of two

vectors u,v ∈ Zn4 is dL(u,v) = wtL(v− u). The minimum Lee distance of a

quaternary linear code C is dL(C) = min{dL(u,v) : u,v ∈ C,u 6= v}.

The usual Gray map, denoted by φ, maps Z4 to Z2
2 as follows:

φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1), φ(3) = (1, 0). (2.5)

We can de�ne the Gray map Φ as a coordinate-wise extension of the usual

Gray map, that maps Zn4 into Z2n
2 , that is,

Φ((y1, . . . , yn)) = (φ(y1), . . . , φ(yn)). (2.6)

Quaternary codes can be viewed as binary codes under the Gray map Φ.

The Gray map is an isometry which transforms Lee distances over Zn4 into

Hamming distances over Z2n
2 . Therefore, the minimum Lee distance of a

quaternary code C coincides with the minimum Hamming distance of C =

Φ(C), that is, dL(C) = d(Φ(C)).

Two quaternary codes, C1 and C2, of length n are said to be permutation

equivalent if they di�er only by a permutation of coordinates, that is, if there

is a permutation of coordinates π ∈ Sn such that C2 = {π(c) : c ∈ C1}.

Let C be a quaternary linear code of length n. The image, under the

Gray map, of C is a binary code C = Φ(C) of length 2n, which is called Z4-

linear code. Since C is a subgroup of Zn4 , it is isomorphic to an abelian group
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Zγ2 ×Zδ4 and we say that C (or equivalently, the corresponding Z4-linear code

C = Φ(C)) is of type 2γ4δ as a group. The code C of type 2γ4δ has |C| = 2γ+2δ

codewords, where 2γ+δ of them have order two.

A quaternary linear code C of length n and type 2γ4δ can also be seen as

a Z4-submodule of Zn4 . As a Z4-module, C may or may not be free. Recall

that a Z4-module M is free if there exists a subset E ⊆ M such that every

element in M is uniquely expressible as a linear combination over Z4 of the

elements in E [HP03]. Then, the quaternary linear code C is free if γ = 0.

Although C is not a free module in general, there exist {ui}γi=1 and {vj}δj=1

such that every codeword is uniquely expressible in the form

γ∑
i=1

λiui +
δ∑
j=1

µjvj,

where λi ∈ {0, 1} ⊂ Z2 for all 1 ≤ i ≤ γ, µj ∈ Z4 for all 1 ≤ j ≤ δ and

ui,vj are codewords of C of order two and four, respectively. The matrix G
that has as rows the codewords {ui}γi=1 and {vj}δj=1 is a generator matrix for

C. As for linear codes, there is a standard form for the generator matrix of

C. In [HKC+94], it was shown that any quaternary linear code of type 2γ4δ

is permutation equivalent to a quaternary linear code CS with a generator

matrix of the following form

GS =

(
2T 2 Idγ 0

S R Idδ

)
, (2.7)

where R, T are matrices over Z4 with entries in {0, 1} ⊆ Z4 of size δ× γ and

γ× (β−γ− δ), respectively; and S is a matrix over Z4 of size δ× (β−γ− δ).
In general, a Z4-linear code is not necessarily linear. The following lemmas

are useful when dealing with the linearity of Z4-linear codes. Let u∗v denote

the component-wise product of two vectors u,v ∈ Zn4 .

Lemma 6 ([HKC+94, Wan97]). For all u,v ∈ Zn4 , we have

Φ(u + v) = Φ(u) + Φ(v) + Φ(2u ∗ v).
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Lemma 7 ([HKC+94, Wan97]). Let C be a quaternary linear code. The Z4-

linear code C = Φ(C) is a binary linear code if and only if 2u ∗ v ∈ C for all

u,v ∈ C.

One can strengthen Lemma 7 via the generators of order four of the

quaternary linear code. Speci�cally, if G is a generator matrix of a quaternary

linear code C of type 2γ4δ and {ui}γi=1 and {vj}δj=1 are the rows of order two

and order four in G, respectively, then the Z4-linear code C = Φ(C) is a

binary linear code if and only if 2vi ∗vj ∈ C, for all 1 ≤ i < j ≤ δ. It is clear

that 2ui ∗ v = 0 ∈ C for all 1 ≤ i ≤ γ and v ∈ C; and 2vj ∗ vj = 2vj ∈ C for

all 1 ≤ j ≤ δ.

Example 8. Let C be the quaternary linear code of length 16 with generator

matrix

G =

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

. (2.8)

Denote the ith row of matrix (2.8) by vi. It is straightforward to check that

2v2 ∗ v3 = (0000020200000202) /∈ C.

Thus, by Lemma 7, the Z4-linear code C = Φ(C) is a binary nonlinear code.

The quaternary linear code C is permutation equivalent, by using the per-

mutation (1, 14, 11, 8, 5, 16, 13, 10, 7, 4, 2, 15, 12, 9, 6, 3) ∈ S16, to a quaternary

linear code CS with generator matrix GS in standard form (2.7), where

GS =

 3 2 3 2 1 3 2 1 0 2 1 0 3 1 0 0

2 3 1 2 3 0 1 2 3 0 1 2 3 0 1 0

0 0 1 1 1 2 2 2 2 3 3 3 3 0 0 1

. (2.9)

The code C is of type 2043, so it has 43 = 64 codewords.

Example 9. Let C be the quaternary linear code of length 16 with generator
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matrix

G =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2

0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

 =


v1

v2

u1

u2

 (2.10)

It is easy to see that 2v1 ∗ v2 = 2v2 ∈ C, so C = Φ(C) is a binary linear

code by Lemma 7. The code C is permutation equivalent via the permuta-

tion (1, 15, 11, 7, 4, 2, 16, 12, 8, 5, 13, 9, 14, 10, 6, 3) ∈ S16 to a quaternary linear

code CS with generator matrix GS in standard form (2.7), where

GS =


0 0 2 2 2 0 0 0 2 2 2 2 2 0 0 0

0 0 0 0 0 2 2 2 2 2 2 2 0 2 0 0

3 2 0 3 2 0 3 2 1 0 3 2 1 1 1 0

2 3 1 2 3 1 2 3 0 1 2 3 0 0 0 1

 . (2.11)

The code C is of type 2242, so it has 2242 = 64 codewords.

The inner product of two vectors u,v ∈ Zn4 is de�ned as

〈u,v〉 =
n∑
i=1

uivi ∈ Z4.

Given a quaternary linear code C of length n and type 2γ4δ, the quaternary

dual code of C, denoted by C⊥, is de�ned as

C⊥ = {x ∈ Zn4 : 〈x,u〉 = 0, for all u ∈ C}.

The code C⊥ is a quaternary linear code of length n and type 2γ4n−γ−δ

[HKC+94]. The weight enumerator polynomial of C⊥ is related to the weight

enumerator polynomial of C by the MacWilliams identity [MS77, Ch. 5]. The

corresponding binary code Φ(C⊥) is denoted by C⊥ and called the Z4-dual
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code of C. We have the following scheme:

C C

C⊥ C⊥

Φ

⊥

Φ

(2.12)

The codes C and C⊥ are not necessarily linear, so they are not dual in the bi-

nary linear sense. However, the weight enumerator of C⊥ is the MacWilliams

transform of the weight enumerator of C and they are called formally dual.

Since 1994, quaternary linear codes became signi�cant because, in some

cases, after applying the Gray map, we obtain binary nonlinear codes bet-

ter than any known binary linear code with the same parameters: length,

number of codewords and minimum distance. This is the case, for example,

of Kerdock and Preparata codes. This discovery is due to the in�uential

paper [HKC+94] where, among other things, it is shown that the Kerdock

codes and some Preparata-like codes are Z4-linear codes and, moreover, the

Z4-dual code of the Kerdock code is a Preparata-like code. Later, other Z4-

linear codes with the same parameters as some well known families of binary

linear codes (for example, extended Hamming, Hadamard, QRM, ZRM and

Reed-Muller codes) have been studied and classi�ed [BPR03, Kro01, PRV06,

PRS09, PPV11, AA09, BV16a, BPRZ03, FPV08, Wan97].

After [HKC+94], a lot of research has been done on quaternary linear

codes and linear codes over more general �nite rings. Nevertheless, the ex-

amples of better-than-linear codes found since then are comparatively sparse.

In [KZ13], the extended dualized Kerdock codes K̂∗k+1 (k ≥ 3 odd), which are

quaternary linear codes with high minimum Lee distance, are constructed.

In [KWZ16], it is shown that the codes K̂∗4 and K̂∗6 satisfy that the minimum

Hamming distance of their Gray map images is higher than the minimum

Hamming distance of any comparable binary linear code. A table with the

current better-than-linear codes can be found in [KWZ16]. For moderate

lengths, in order to determine whether a nonlinear code is better-than-linear

or not, the online tables [Gra09, BCFS16] containing the best known linear

codes can be used. Tables with the best known Z4-linear codes and binary
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nonlinear codes are also available at [AA09] and [LRS99], respectively.

There are many possible generalization of Z4-linear codes. One of them

give rise to the so-called Z2Z4-linear codes. A code C is said to be Z2Z4-

additive if the set of coordinates can be partitioned into two subsets X and

Y such that the punctured code of C by deleting the coordinates outside X

(respectively, Y ) is a binary linear code (respectively, a quaternary linear

code). Their corresponding binary images, via the generalized Gray map

Φ : Zα2 × Z
β
4 → Zn2 , where n = α + 2β, de�ned as

Φ(x,y) = (x, φ(y1), . . . , φ(yβ)), (2.13)

for any x ∈ Zα2 , y ∈ Z
β
4 , are called Z2Z4-linear codes. The fundamental

parameters as well as the standard forms for generator and parity check

matrices and the duality concepts for these codes are studied in [BFP+10,

BFP+14]. Other possible generalizations of Z4-linear codes are Z2s-linear

codes, which are de�ned as the binary image of linear codes over Z2s by

generalized Gray maps in [Car91, Kro07, BFR01, BFR09]. Finally, it is also

worth mentioning that in [AS13, AS14] Z2Z2s-additive and ZprZps-additive
codes are introduced, generalizing naturally both Z2Z4-additive codes and

linear codes over Z2s , respectively.

2.5 Z4-linear Hadamard codes

As we said in the previous Section 2.3, binary Hadamard codes are nonlinear,

in general. In this case, it is desirable to have a subjacent algebraic structure,

like a group or a ring. From the coding theory perspective, it is also desired

that the algebraic structure preserves the Hamming distance. This is the

case of Z4-linear codes. The quaternary linear codes that, under the Gray

map Φ, give a binary Hadamard code are called quaternary linear Hadamard

codes, and the corresponding Z4-linear codes are called Z4-linear Hadamard

codes.

The Z4-linear Hadamard codes are completely classi�ed [Kro01, PRV06].

Speci�cally, for any t ≥ 3 and each δ ∈ {1, . . . ,
⌊
t+1

2

⌋
}, there is a unique
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(up to equivalence) Z4-linear Hadamard code of length 2t which is the Gray

map image of a quaternary linear code Hδ,γ of length β = 2t−1 and type

2γ4δ, where t = γ + 2δ − 1. Moreover, for a �xed t, all these codes are

pairwise nonequivalent, except for δ = 1 and δ = 2, which are equivalent

to the binary linear Hadamard code Ht of length 2t [Kro01]. Therefore, the

number of nonequivalent Z4-linear Hadamard codes of length 2t is
⌊
t−1

2

⌋
for

all t ≥ 3. Note that when δ ≥ 3, the corresponding Z4-linear Hadamard

codes are nonlinear.

Let Hδ,γ be the quaternary linear Hadamard code of length β = 2t−1 and

type 2γ4δ, where t = γ+ 2δ−1, and let Hδ,γ = Φ(Hδ,γ) be the corresponding

Z4-linear code of length 2β = 2t. A generator matrix Gδ,γ for Hδ,γ can be

constructed by using the following recursive constructions:

Gδ,γ+1 =

(
Gδ,γ Gδ,γ
0 2

)
, (2.14)

Gδ+1,γ =

(
Gδ,γ Gδ,γ Gδ,γ Gδ,γ
0 1 2 3

)
, (2.15)

starting with G1,0 = (1). First, the matrix Gδ,0 is obtained from G1,0 by using

recursively δ− 1 times (2.15), and then Gδ,γ is constructed from Gδ,0 by using

γ times (2.14). Note that the rows of order four remain in the upper part of

Gδ,γ while those of order two stay in the lower part.

Example 10. The code C introduced in Example 8 is the quaternary linear

Hadamard code H3,0 of length β = 16 and type 2043. The Z4-linear Hadamard

code H3,0 = Φ(H3,0) is a binary Hadamard code of length 32 with 64 code-

words and minimum Hamming distance 16. The code H3,0 is the smallest

Z4-linear Hadamard code which is nonlinear. The corresponding generator

matrix G3,0 is constructed, starting with G1,0 = (1) and carrying on as follows:

G2,0 =

(
1 1 1 1

0 1 2 3

)
and
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G3,0 =

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

 .

As another example, the code C introduced in Example 9 is the quaternary

linear Hadamard code H2,2 of length β = 16 and type 2242. The Z4-linear

Hadamard code H2,2 = Φ(H2,2) is the binary linear Hadamard code of length

32 with 64 codewords and minimum Hamming distance 16. The binary linear

Hadamard code of this length can also be obtained as the Gray map image

of H1,4. Therefore, both codes H2,2 and H1,4 are equivalent to the code H4

given in Example 3. Finally, see that there are exactly⌊
t− 1

2

⌋
=

⌊
5− 1

2

⌋
= 2

nonequivalent Z4-linear Hadamard codes of length 25 = 32, which are either

the codes H3,0 and H2,2, or the codes H3,0 and H1,4.

The Z4-linear Hadamard codes have been studied and classi�ed in [Kro01,

PRV06] by using the invariants presented in Section 2.2. On one hand, in

[Kro01], the author gives a complete classi�cation of these codes by using

the cardinal of the kernel.

Proposition 11 ([Kro01]). Let Hδ,γ be a quaternary linear Hadamard code

with δ > 2 and Hδ,γ = Φ(Hδ,γ) the corresponding Z4-linear Hadamard code.

Then |K(Hδ,γ)| = 2δ+γ+1 and the code Hδ,γ is nonlinear.

On the other hand, in [PRV06], the classi�cation is given by using the

rank of the codes.

Proposition 12 ([PRV06]). Let Hδ,γ be a quaternary linear Hadamard code

of length 2t−1 and type 2γ4δ, where t = 2δ+ γ − 1, and let Hδ,γ = Φ(Hδ,γ) be

the corresponding Z4-linear code of length 2t. Then, for δ ∈ {3, . . . , bt+ 1

2
c},

we have that rank(Hδ,γ) = t+ 1 +
(
δ−1

2

)
.

Hadamard matrices with di�erent subjacent algebraic structures have

been extensively studied, as well as the links with other topics in alge-

braic combinatorics [Hor07]. This is the case, for example, of Z2Z4-linear
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Hadamard codes and Hadamard Z2Z4Q8-codes. The Z2Z4-additive codes

such that, under the generalized Gray map Φ de�ned in (2.13), give a binary

Hadamard code are called Z2Z4-additive Hadamard codes and the corre-

sponding Z2Z4-linear codes are called Z2Z4-linear Hadamard codes. These

codes have been studied in [PRV06, RSV09, KV15] and represent a general-

ization of the Z4-linear Hadamard codes presented in this section. Another

case are the Hadamard Z2Z4Q8-codes, which are binary Hadamard codes af-

ter a suitable Gray map from a subgroup of direct products of Z2, Z4, and Q8

(where Q8 is the quaternionic group of order eight); and have been studied

in [RR13, MR15]. Finally, in a very intuitive way, the Z2s-linear Hadamard

codes are introduce in [Kro07]. They are binary Hadamard codes that are

the image, under a suitable generalization of the Gray map, of codes over

the ring Z2s for s ≥ 2. This generalization of the Gray map is discussed in

the following Section 2.6.

2.6 Generalized Gray map

In this section, we recall the de�nition of the Gray map and introduce dif-

ferent generalizations for it. One of the most useful properties of the usual

Gray map is that it is an isometry which transforms Lee distances over Zn4
into Hamming distances over Z2n

2 .

In [HKC+94], the usual Gray map φ is de�ne as follows:

In communication systems employing quadrature phaseshift keying

(QPSK), the preferred assignment of two information bits to the four pos-

sible phases is
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in which adjacent phases di�er by only one binary digit. This mapping is

called Gray encoding and has the advantage that, when a quaternary code-

word is transmitted across an additive white Gaussian noise channel, the

errors most likely to occur are those causing a single erroneously decoded

information bit.

(Hammons et al., 1994)

In order to generalize the results about quaternary linear codes, �rst, we

see that there exist many generalizations of the usual Gray map φ that take

Z2s into Z2s−1

2 or Z2s

2 , where Z2s is the ring of integers modulo 2s with s > 1.

In [BFR01] and [BFR09], the authors de�ne a generalization φ̄ that respects,

as the original one, that adjacent phases, i.e., the images of consecutive ele-

ments in Z2s , di�er just in one bit,

φ̄(i) =

{
02k−i1i, 0 ≤ i ≤ 2k−1;

12k−1 + φ̄(i− 2k−1), i > 2k−1.
(2.16)

This generalization is also studied in [DF11].

Other two generalizations given in [Kro07] are

ϕ : Zn2m → Znm2

(x1, . . . , xn) 7→ (ax1 , . . . , axn),
(2.17)

where A = {a0, . . . , a2m−1} is a Hadamard code of length m with a0 = 0 and

ai + ai+m = 1, and

ϕ̄ : Zn2m → 2Z
nm
2

(x1, . . . , xn) 7→ Hx1 × · · · ×Hxn ,
(2.18)

where {H0, . . . , H2m−1} is a partition of Zm2 into extended 1-perfect codes of

length m.

In this section, and also in the rest of the dissertation, we focus on the

Carlet's generalization given in [Car98] and also studied in [TV03]. This
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generalization is the map φ : Z2s → Z2s−1

2 de�ned as follows:

φ(u) = (us−1, . . . , us−1) + (u0, . . . , us−2)Y, (2.19)

where u ∈ Z2s , [u0, u1, . . . , us−1]2 is the binary expansion of u, that is u =∑s−1
i=0 2iui (ui ∈ {0, 1}), and Y is a matrix of size (s−1)×2s−1 which columns

are the elements of Zs−1
2 . Note that (us−1, . . . , us−1) and (u0, . . . , us−2)Y are

binary vectors of length 2s−1. We assume that the columns of Y are the

binary expansion of the elements of Z2s−1 in increasing order, since they are

all the elements of Zs−1
2 . The matrix Y is the parity check matrix of a binary

Hamming code or the generator matrix of a simplex code after removing the

all-zero column. The rows of Y are also a basis for the �rst order Reed-Muller

code after adding the all-one row.

By de�nition, the Carlet's generalization holds that the Hamming weight

of the image of any element u ∈ Z2s is half of the lenght, i.e., wtH(φ(u)) =

2s−2, except the images of 2s−1 and 0 that are wtH(φ(2s−1)) = 2s−1 and

wtH(φ(0)) = 0, respectively. This property is also held by the usual Gray

map de�ned in [HKC+94].

The Carlet's Gray map φ is a particular case of the map ϕ presented

in [Kro07], which satis�es that
∑
λiφ(2i) = φ(

∑
λi2

i) as it was shown in

[FVV18b] and will be recalled later. In fact, in [Kro07], the author mentions

that the generalization given in [Car98] can be seen as a particular case of ϕ

when A is the binary linear Hadamard code.

Example 13. Let s = 3 and φ̄, φ, ϕ and ϕ̄ be the generalized Gray maps de-

�ned in [BFR01, BFR09], [Car98], [Kro07] and [Kro07], respectively. Let

A = {0000, 0101, 0011, 0110, 1111, 1010, 1100, 1001}, which is the only

Hadamard code of length 22 and is linear. Let H0 = {0000, 1111}, H1 =

{0011, 1100},. . . , H7 = {0001, 1110}. Then, we have that the corresponding
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images for each generalized Gray map are

Z8 φ̄ φ ϕ ϕ̄

0 7−→ 0000 0000 0000 H0

1 7−→ 0001 0101 0101 H1

2 7−→ 0011 0011 0011 H2

3 7−→ 0111 0110 0110 H3

4 7−→ 1111 1111 1111 H4

5 7−→ 1110 1010 1010 H5

6 7−→ 1100 1100 1100 H6

7 7−→ 1000 1001 1001 H7.

Note that the images of φ and ϕ are the same, since there is no more

Hadamard codes of length 4 except the linear one.

Let Φ : Zn2s → Zn2s−1

2 be the component-wise Gray map of φ de�ned as

Φ((y1, . . . , yn)) = (φ(y1), . . . , φ(yn)),

where (y1, . . . , yn) ∈ Zn2s . In the rest of the paper, if we need to specify

that the domain is Z2s and Zn2s , then we will denote the maps by φs and

Φs instead of φ and Φ, respectively. Moreover, the matrix corresponding to

the de�nition of φs will be also denoted as Ys−1 since its columns are the

binary expansion of the elements of Z2s−1 . We may consider, without loss of

generality, that the elements of Z2s−1 are in increasing order. Note that the

matrices Ys can be de�ned recursively, where Y1 = (0 1) and

Ys =

(
Ys−1 Ys−1

0 1

)
. (2.20)

Recall that Hs is the binary linear Hadamard code corresponding to the

Sylvester matrix Ss (2.4), that is, the �rst order Reed-Muller code of length

2s. Note also that any element u ∈ Z2s can be written uniquely as u = α(u)+

2s−2β(u) + 2s−1γ(u), where α(u) ∈ {0, . . . , 2s−2 − 1}, β(u), γ(u) ∈ {0, 1}.
Since the Sylvester matrix Ss is constructed recursively by using (2.4), the
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Gray map φ for Z2s can also be de�ned recursively by using the Gray map

for Z2s−1 as we see through the following lemmas:

Lemma 14. Let u ∈ Z2s. Then, we have that

φs(u) = Φs−1((α(u) + 2s−2γ(u), α(u) + 2s−2β(u) + 2s−2γ(u))).

Proof. Let u ∈ Z2s , which can be written as u = α(u) + 2s−2β(u) + 2s−1γ(u).

Let [u0, . . . , us−2, us−1]2 be the binary expansion of u. We have that α(u) =∑s−3
i=0 2iui, β(u) = us−2 and γ(u) = us−1, so we know that

Φs−1((α(u) + 2s−2γ(u), α(u) + 2s−2β(u) + 2s−2γ(u)))

= (φs−1(α(u) + 2s−2γ(u)), φs−1(α(u) + 2s−2(β(u) + γ(u))).
(2.21)

Note that [u0, . . . , us−3, us−1]2 and [u0, . . . , us−3, us−2 + us−1]2 are the binary

expansion of α(u)+2s−2γ(u) and α(u)+2s−2(β(u)+γ(u)), respectively. Then,

we have that (2.21) is equal to

(
(us−1, . . . , us−1) + (u0, . . . , us−3)Ys−2,

(us−1, . . . , us−1) + (us−2, . . . , us−2) + (u0, . . . , us−3)Ys−2

)
,

which can be written as

(
us−1, . . . , us−1

)
+

+
[
(u0, . . . , us−3, us−2)

(
Ys−2

0

)
, (u0, . . . , us−3, us−2)

(
Ys−2

1

)]
. (2.22)

Finally, we achieve that (2.22) is the same as

(
us−1, . . . , us−1

)
+ (u0, . . . , us−3, us−2)

(
Ys−2 Ys−2

0 1

)
=(

us−1, . . . , us−1

)
+ (u0, . . . , us−3, us−2)Ys−1

by 2.20, and it is = φs(u) by 2.19. QED
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Lemma 15. Let Hs−2 = {c0, . . . , c2s−1−1} be the binary linear Hadamard

code of length 2s−2 and u ∈ Z2s. Then, we have that

φs(u) =


(cα(u), cα(u)) if u ∈ {0, . . . , 2s−2 − 1}
(cα(u), cα(u)) if u ∈ {2s−2, . . . , 2s−1 − 1}
(cα(u), cα(u)) if u ∈ {2s−1, . . . , 3 · 2s−2 − 1}
(cα(u), cα(u)) if u ∈ {3 · 2s−2, . . . , 2s − 1},

(2.23)

where c denote the complement of the binary vector c.

Proof. Straightforward from the results in [Kro07]. QED

Example 16. The Gray map φ3 : Z8 −→ Z4
2 can be de�ned by using the

Gray map φ2 : Z4 −→ Z2
2 in the following way:

φ3(0) = Φ2((0, 0)) = (φ2(0), φ2(0)) = (0, 0, 0, 0),

φ3(1) = Φ2((1, 1)) = (φ2(1), φ2(1)) = (0, 1, 0, 1),

φ3(2) = Φ2((0, 2)) = (φ2(0), φ2(2)) = (0, 0, 1, 1),

φ3(3) = Φ2((1, 3)) = (φ2(1), φ2(3)) = (0, 1, 1, 0),

φ3(4) = Φ2((2, 2)) = (φ2(2), φ2(2)) = (1, 1, 1, 1),

φ3(5) = Φ2((3, 3)) = (φ2(3), φ2(3)) = (1, 0, 1, 0),

φ3(6) = Φ2((2, 0)) = (φ2(2), φ2(0)) = (1, 1, 0, 0),

φ3(7) = Φ2((3, 1)) = (φ2(3), φ2(1)) = (1, 0, 0, 1).

Let H1 = {c0, c1, c2, c3}, where ci = φ2(i), i ∈ Z4; that is, H1 = {(0, 0), (0, 1),

(1, 1), (1, 0)}. Then, φ3 : Z8 −→ Z2
2 can also be de�ned as follows:

φ3(0) = (c0, c0) = (0, 0, 0, 0)

φ3(1) = (c1, c1) = (0, 1, 0, 1)

φ3(2) = (c0, c0) = (0, 0, 1, 1)

φ3(3) = (c1, c1) = (0, 1, 1, 0)

φ3(4) = (c0, c0) = (1, 1, 1, 1)

φ3(5) = (c1, c1) = (1, 0, 1, 0)

φ3(6) = (c0, c0) = (1, 1, 0, 0)

φ3(7) = (c1, c1) = (1, 0, 0, 1).
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2.7 Z2s-linear codes

In this section, we introduce the concept of Z2s-linear codes and give a brief

description of them. We generalize concepts related to Z4-linear codes. Let

Z2s be the ring of integers modulo 2s with s ≥ 1. The set of n-tuples over

Z2s is denoted by Zn2s . Henceforth, the elements of Zn2s will also be called

vectors over Z2s of length n. A nonempty subset, C, of Zn2s is a code over Z2s

of length n. If C is a subgroup of Zn2s , then it is a linear code over Z2s and

is called a Z2s-additive code. Note that, when s = 1, a Z2s-additive code is a

binary linear code and, when s = 2, it is a quaternary linear code or a linear

code over Z4.

The Lee weight of an element i ∈ Z2s is wtL(i) = min{i, 2s − i} and the

Lee weight of a vector u = (u1, u2, . . . , un) ∈ Zn2s is wtL(u) =
∑n

j=1 wtL(uj) ∈
Z2s . The minimum Lee weight of a code, C, over Z2s denoted as wtL(C) is

the minimum value of wtL(u) with u ∈ C and u 6= 0. The Lee distance of

two vectors u,v ∈ Zn2s is dL(u,v) = wtL(v − u). The minimum distance of

a code C, over Z2s is dL(C) = min{dL(u,v) : u,v ∈ C,u 6= v}.

Two Z2s-additive codes, C1 and C2, of length n are said to be permutation

equivalent if they di�er only by a permutation of coordinates, that is, if there

is a permutation of coordinates π ∈ Sn such that C2 = {π(c) : c ∈ C1}.

Let C be a Z2s-additive code of length n. We say that its binary image

over the generalized Gray map, that is C = Φ(C), is a Z2s-linear code of

length 2s−1n. Since C is a subgroup of Zn2s , it is isomorphic to an abelian

structure Zt12s × Zt22s−1 × · · · × Zts−1

4 × Zts2 , and we say that C, or equivalently
C = Φ(C), is of type (n; t1, . . . , ts). Note that |C| = 2st12(s−1)t2 · · · 2ts .

A Z2s-additive code C of type (n; t1, . . . , ts) can also be seen as a Z2s-

submodule of Zn2s . As a Z2s-module, C may or may not be free. A Z2s-module

M is free if there exists a subset E ⊆ M such that every element in M is

uniquely expressible as a linear combination over Z2s of the elements in E.

Then, the Z2s-additive code C is free if ti = 0 for all i ∈ {2, . . . , s}. Although
C is not a free module in general, every codeword is uniquely expressible in
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the form
s∑
j=1

tj∑
i=1

λ
(j)
i u

(j)
i ,

where λ(j)
i ∈ Z2s+1−j for all 1 ≤ j ≤ s and u

(j)
i are codewords of C of order

2s+1−j for all 1 ≤ j ≤ s. The matrix G that has as rows the codewords u(j)
i

is a generator matrix for C. As for linear codes, there is a standard form for

the generator matrix of C. In [BDH+99], it was shown that any Z2s-additive

code of type (n; t1, . . . , ts) is permutation equivalent to a Z2s-additive code

CS with a generator matrix of the following form:

GS =



Idt1 A0,1 A0,2 A0,3 · · · · · · A0,k

0 2 Idt2 2A1,2 2A1,3 · · · · · · 2A1,k

0 0 4 Idt3 4A2,3 · · · · · · 4A2,k

...
... 0

. . . . . .
...

...
...

...
. . . . . . . . .

...

0 0 0 · · · 0 2s−1 Idts 2s−1Ak−1,k


, (2.24)

where Ai,j are matrices over Z2s . Unlike linear codes over �nite �elds, linear

codes over a ring do not have a basis, but there exists a generator matrix with

minimum number of rows. If C is a Z2s-additive code of type (n; t1, . . . , ts),

then a generator matrix of C with minimum number of rows has exactly

t1 + · · ·+ ts rows. Note that the matrix G with rows {u(j)
i }i,j and the matrix

GS have exactly t1 + · · ·+ ts rows.

Example 17. Let C be the Z8-additive code of length 16 with generator matrix

G =

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4

 .

The code C is permutation equivalent by subtracting the second row to the

�rst one and via the permutation (3, 9) ∈ S16 to a Z8-additive code CS with
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generator matrix GS in standard form (2.24), where

GS =

 1 0 1 6 5 4 3 2 7 0 7 6 5 4 3 2

0 1 0 3 4 5 6 7 2 1 2 3 4 5 6 7

0 0 4 0 0 0 0 0 0 4 4 4 4 4 4 4

 .

The code C is of type (16; 2, 0, 1), so it has 8221 = 128 codewords.

In [Car91] the author says that the Carlet's generalized Gray map is not

an isometry, i.e., there exist u, v ∈ Z2s with s > 2 such that dL(u, v) 6=
dH(φ(u), φ(v)). Otherwise it is showed that it is translation-invariant dis-

tance, that means that the Hamming weigh of the di�erence of the Gray

image of two elements is the same of the Gray image of the di�erence:

Proposition 18 ([Car98]). Let u and v be two elements of Z2s. The Ham-

ming distance between φ(u) and φ(v) is equal to the Hamming weight of

φ(u− v).

In general, Z2s-linear codes are not necessarily linear. For these codes,

there exist results, such as Lemma 7 for the Z4-linear codes, which help

us to deal with the problem of linearity. In [TV03] the operation ��� is

introduced. Let u, v ∈ Z2s and [u0, u1, . . . , us−1]2, [v0, v1, . . . , vs−1]2 be the

binary expansions of u and v, respectively. The operation ��� on Z2s is

de�ned as u � v =
∑s−1

i=0 2iuivi. Note that the binary expansion of u � v is

[u0v0, u1v1, . . . , us−1vs−1]2. Moreover, note that if s = 2, 2(u� v) = 2(u ∗ v).

We denote in the same way ���, the component-wise operation.

Proposition 19 ([TV03]). Let u, v ∈ Z2s. Then,

φ(u) + φ(v) = φ(u+ v − 2(u� v)).

Theorem 20 ([TV03]). Let C be a linear code over Z2s. Then, for s > 2,

the following statements are equivalent:

(i) Φ(C) is linear.

(ii) 2(u� v) ∈ C for all u,v ∈ C.
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Example 21. Let C be the Z8-additive code of length 16 as in Example 17.

Let vi be the ith row of G. In this case, we can use Theorem 20 to see that

the corresponding Z8-linear code C = Φ(C) is nonlinear. We have that 2(v1�
v2) = (0202020202020202). It is easy to see that (0202020202020202) 6∈ C,
therefore C is nonlinear.

Note that, these two last results are a sort of generalization of Lemmas

6 and 7, since as we said above, when s = 2 the operation ��� coincides

with the operation �*� after multiplying by two. The result given by Lemma

7 is true just considering u,v ∈ C being generators of order four, as it is

mentioned after this lemma. However, for s > 2, we cannot strengthen last

theorem considering just the generators of the code.

Now, we see how to de�ne the orthogonal code, C⊥, of a Z2s-additive

code C. The images under the generalized Gray map of these codes, C and

C⊥, are not always orthogonal, but we will see under which conditions these

codes are formally dual, i.e., their weight enumerators hold the MacWilliams

identity .

The inner product of two vectors u,v ∈ Zn2s is de�ned as

〈u,v〉 =
n∑
i=1

uivi ∈ Z2s .

Given a Z2s-additive code C of type (n; t1, . . . , ts), the dual code of C, denoted
by C⊥, is de�ned as

C⊥ = {x ∈ Zn2s : 〈x,u〉 = 0, for all u ∈ C}.

The dual code C⊥ is also a Z2s-additive code. Let C⊥ = Φ(C⊥). Then, we

have an scheme as in (2.12).

In [Car98], the author shows that the weight enumerator of C and C⊥ are

not in general related by the MacWilliams identity itself, contrarily to the

case of Z4-linear codes. This means that these codes, in general, are neither

dual nor formally dual. In [Kro07], the author shows that the codes C and

C⊥ are formally dual, by using two di�erent generalized Gray maps, Φ (2.18)
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and ϕ (2.17), and following a very similar scheme to (2.12)

C C

C⊥ C⊥

Φ

⊥

ϕ

, (2.25)

where ϕ(C⊥) = C⊥. Finally, in [DF11], the self dual Z2s-linear codes are

studied by using the generalized Gray map de�ned in (2.16). The authors

determine when the Gray image of a code over Z2s generates a linear self-dual

code and give families of codes whose image generate binary self-dual codes.

Finally, the Z2s-additive codes that, under the Gray map, give a binary

Hadamard code are called Z2s-additive Hadamard codes and the correspond-

ing Z2s-linear codes are called Z2s-linear Hadamard codes. These codes are

the main object of study of this dissertation and we discuss about them all

along the rest of the chapters.

Recall that in [Car98], the Gray map is de�ned as a map from Z2s onto

the Reed-Muller code of order 1, RM(1, k − 1). The �rst order Reed-Muller

codes RM(1, k − 1) are in fact binary linear Hadamard codes. They could

be considered as the �rst Z2s-linear Hadamard codes in history. Later, in

[Kro07], the Z2s-linear Hadamard codes were introduced for the �rst time

for s > 2. In [Kro07], the author proves the existence of these codes and,

furthermore, shows the nonexistence of other Z2s-linear Hadamard codes. In

this thesis, the family of Z2s-linear Hadamard codes by using the Carlet's

Gray map is constructed recursively. The kernel of these codes is studied

and also the rank for s = 3. Our main goal is to achieve a full classi�cation

by using these invariants.
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Construction and linearity of

Z2s-linear Hadamard codes

�Mathematical!"

�Finn, Adventure Time

The Z2s-linear Hadamard codes obtained from the Carlet's Gray map

were introduced in [Kro07]. The aim of this chapter is to give a recursive con-

struction of such codes and study their linearity. Speci�cally, in Section 3.1,

we give a recursive construction of the generator matrices with minimum

number of rows of these codes over Z2s . We also show that, in fact, the

Gray map image of the constructed Z2s-additive codes are binary Hadamard

codes. Finally, in Section 3.2, we establish for which types, (n; t1, . . . , ts), the

Z2s-linear Hadamard codes are linear or not.

3.1 Recursive construction

The description of a generator matrix having minimum number of rows for

a Z4-additive Hadamard code, as long as recursive constructions of these

matrices, are given in [Kro01]. In [Kro07], the Z2s-additive Hadamard codes

with s > 2 are introduced and generator matrices with minimum number of

rows are given for these codes.

37
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In this section, we present a recursive construction of these generator

matrices. By using this construction, we establish that the Carlet's Gray

map image of the constructed codes are binary Hadamard codes. This result,

which corresponds to Theorem 32, was previously proved in [Kro07] by using

a di�erent approach.

Let Ti = {j · 2i−1 : j ∈ {0, 1, . . . , 2s−i+1 − 1}} for all i ∈ {1, . . . , s}.
Note that T1 = {0, . . . , 2s− 1}. Let t1, t2,. . . ,ts be nonnegative integers with
t1 ≥ 1. Consider the matrix At1,...,ts whose columns are exactly all the vectors

of the form zT , z ∈ {1} × T t1−1
1 × T t22 × · · · × T tss .

Example 22. For s = 3, for example, we have the following matrices:

A1,0,1 =

(
1 1

0 4

)
, A1,1,0 =

(
1 1 1 1

0 2 4 6

)
, A2,0,0 =

(
1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7

)
,

A1,1,1 =

1 1 1 1 1 1 1 1

0 2 4 6 0 2 4 6

0 0 0 0 4 4 4 4

 , A2,0,1 =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4

 ,

A2,1,0 =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6

 .

Let 0,1,2, . . . ,2s − 1 be the vectors having the elements 0, 1, 2, . . . , 2s−1

from Z2s repeated in each coordinate, respectively. The order of a vector u

over Z2s , denoted by ord(u), is the smallest positive integer m such that

mu = 0.

Any matrix At1,...,ts can be obtained by applying the following recursive

construction. We start with A1,0,...,0 = (1). Then, if we have a matrix

A = At1,...,ts , for any i ∈ {1, . . . , s}, we may construct the matrix

Ai =

(
A A · · · A

0 · 2i−1 1 · 2i−1 · · · (2s−i+1 − 1) · 2i−1

)
. (3.1)

Finally, permuting the rows of Ai, we obtain a matrix At
′
1,...,t

′
s , where t′j = tj
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for j 6= i and t′i = ti + 1. Note that any permutation of columns of Ai gives

also a matrix At
′
1,...,t

′
s .

Example 23. From the matrix A1,0,0 = (1), we obtain the matrix A2,0,0; and

from A2,0,0 we can construct A2,0,1, where A2,0,0 and A2,0,1 are the matrices

given in Example 22. Note that we can also generate another matrix A2,0,1 as

follows: from A1,0,0 = (1) we obtain the matrix A1,0,1 given in Example 22,

and from A1,0,1 we can construct the matrix

A1 =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

 .

Then, after permuting the rows of A1, we have the matrix

A2,0,1 =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4

 ,

which is di�erent to the matrix A2,0,1 of Example 22. These two matrices

A2,0,1 generate permutation equivalent codes.

Along this dissertation, we consider that the matrices At1,t2,...,ts are con-

structed recursively starting from A1,0,...,0 = (1) in the following way. First,

we add t1 − 1 rows of order 2s, up to obtain At1,0,...,0; then t2 rows of order

2s−1 up to generate At1,t2,0,...,0; and so on, until we add ts rows of order 2 to

achieve At1,t2,...,ts . Note that, this order in the recursive construction of the

generator matrices At1,...,ts implies that the columns are also exactly all the

elements of {1}×T t1−1
1 ×T t22 ×· · ·×T tss . Moreover, it determines completely

the matrices At1,...,ts from the values of t1, . . . , ts. If we change this order, we

obtain the same matrix, up to a permutation of rows and columns as it is

shown in Example 23.

Let Ht1,...,ts be the Z2s-additive code generated by the matrix At1,...,ts ,
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where t1, . . . , ts ≥ 0, with t1 ≥ 1. Let n = 2t−s+1, where

t =

(
s∑
i=1

(s− i+ 1) · ti

)
− 1.

It is easy to see that Ht1,...,ts is of length n and has |Ht1,...,ts| = 2sn = 2t+1

codewords. Moreover, it is easy to see that wtL(C) = dL(C) = n. Note that

this code is of type (n; t1, t2, . . . , ts). We denote as H t1,...,ts = Φ(Ht1,...,ts) the

corresponding Z2s-linear code.

Example 24. The code H1,0,...,0 is generated by A1,0,...,0 = (1), so H1,0,...,0 =

Z2s. This code has length n = 1, cardinality 2s and minimum distance 1.

Thus, H1,0,...,0 = Φ(H1,0,...,0) has length N = 2s−1, cardinality 2N = 2s and

minimum (Hamming) distance N/2 = 2s−2, so it is a binary Hadamard code.

Recall that, H1,0,...,0 = Φ(Z2s) is the binary linear Hadamard code of length

2s−1 [Car98], or equivalently, the �rst order Reed-Muller code of length 2s−1,

denoted by RM(1, s− 1) [MS77, Ch.13 �3].

In Example 24, we can see that the Gray map image of the smallest Z2s-

additive code H1,0,...,0 is, in fact, a binary Hadamard code. Now, we prove

that the Gray map image of any Z2s-additive code generated by a matrix

At1,...,ts is a binary Hadamard code. With this purpose, �rst, we recall some

results and prove new ones related to the Gray map that we are considering.

The following Lemma 25 can be seen as a corollary of Proposition 19.

Lemma 25. Let u ∈ Z2s and 0 ≤ p ≤ s− 1. Then,

φ(u) + φ(2p) = φ(u+ 2p − 2p+1up),

where [u0, u1 . . . , us−1]2 is the binary expansion of u.

Proof. By Proposition 19, we have that φ(u) +φ(2p) = φ(u+ 2p−2(u�2p)).

The binary expansion of u�2p is [0, . . . , 0, up, 0, . . . , 0]2, that is also the binary

expansion of up2p. Then, 2(u� 2p) = 2p+1up and the result holds. QED
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Corollary 26. Let u ∈ Z2s. Then,

φ(u) + φ(2s−1) = φ(u+ 2s−1).

Proof. Straightforward from Lemma 25. QED

Lemma 27. Let u ∈ {2s−2, . . . , 2s−1−1}∪{3 ·2s−2, . . . , 2s−1} ⊂ Z2s. Then,

φ(u) + φ(2s−2) = φ(u+ 2s−2 + 2s−1).

Proof. By Proposition 19, we have that φ(u) + φ(2s−2) = φ(u+ 2s−2− 2(u�
2s−2)). The binary expansion of 2s−2 is [0, . . . , 0, 1, 0]2 and, if u ∈ {2s−2, . . . ,

2s−1−1}∪{3 ·2s−2, . . . , 2s−1}, the binary expansion of u is [u0, u1, . . . , us−3,

1, us−1]2. Then, −2(u� 2s−2) = 2s−1 and the statement follows. QED

Corollary 28. Let v ∈ {2s−2, 3 · 2s−2} and U = {2s−2, . . . , 2s−1 − 1} ∪ {3 ·
2s−2, . . . , 2s − 1} ⊂ Z2s. Then,

φ(u) + φ(v) =

{
φ(u+ v + 2s−1) if u ∈ U
φ(u+ v) if u ∈ Z2s \ U.

Proof. Straightforward from Lemmas 25 and 27. QED

Proposition 29 ([Car98]). Let u, v ∈ Z2s. Then,

dH(φ(u), φ(v)) = wtH(φ(u− v)).

Lemma 30. Let u ∈ Z2s. Then,

dH(φ(u), φ(2s−1)) + dH(φ(u), φ(0)) = 2s−1.

Proof. By the properties of the distance, we have that dH(φ(u), φ(2s−1)) +

dH(φ(u), φ(0)) = wtH(φ(2s−1)−φ(u))+wtH(φ(u)). Then, since φ(2s−1) = 1,

wtH(φ(2s−1)− φ(u)) = 2s−1 − wtH(φ(u)), and the result follows. QED

Corollary 31. Let u, v ∈ Z2s. Then,

dH(φ(u), φ(v + 2s−1)) + dH(φ(u), φ(v)) = 2s−1.
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Proof. Straightforward from Lemmas 25 and 30. QED

The result given by Theorem 32 is already proved in [Kro07]. In that

paper, it is shown that each Z2s-linear Hadamard code is equivalent toH t1,...,ts

for some t1, . . . , ts ≥ 0 with t1 ≥ 1, considering a generalized Gray map that

includes the one given by Carlet. We present a new proof of this theorem, in

the case that Carlet's Gray map is considered. This new proof does not use

neither the dual of the Z2s-additive codes nor another generalization of the

Gray map for these dual codes, unlike the proof given in [Kro07].

Let G be a generator matrix of a Z2s-additive code C of length n. Then,

(G · · · G) is a generator matrix of the r-fold replication code of C, (C, . . . , C) =

{(c, . . . , c) : c ∈ C}, of length r · n.

Theorem 32 ([Kro07]). Let t1, . . . , ts be nonnegative integers with t1 ≥ 1.

The Z2s-linear code H t1,...,ts of type (n; t1, t2, . . . , ts) is a binary Hadamard

code of length 2t, with t = (
∑s

i=1(s− i+ 1) · ti)− 1 and n = 2t−s+1.

Proof. We prove this theorem by induction on the integers ti, i ∈ {1, . . . , s}.
First, by Example 24, the code H1,0,...,0 is a Hadamard code.

Let H = Ht1,...,ts be the Z2s-additive code of length n generated by the

matrix A = At1,...,ts . We assume that H = Φ(H) is a Hadamard code of

length N = 2s−1n. Let i ∈ {1, . . . , s}. De�ne Ai as in (3.1) and let Hi

be the Z2s-additive code generated by the matrix Ai. We have that Hi is

permutation equivalent to Ht′1,...,t
′
s , where t′j = tj for j 6= i and t′i = ti + 1.

Now, we shall prove that Hi = Φ(Hi) is a Hadamard code.

Note that Hi can be seen as the union of 2s−i+1 cosets of the 2s−i+1-fold

replication code of H, (H, . . . ,H), which are

(H, . . . ,H) + r ·wi, (3.2)

for r ∈ {0, . . . 2s−i+1−1}, wherewi = (0, 2i−1, 2·2i−1, . . . , (2s−i+1−1)·2i−1).

The code H of length n has cardinality 2sn. It is easy to see that Hi

has length ni = 2s−i+1n and cardinality 22s−i+1n. Therefore, the length of

Hi = Φ(Hi) is Ni = 2s−1ni and the cardinality 2Ni. Now, we just have to

prove that the minimum distance of Hi is Ni/2.
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By Proposition 29, the minimum distance of Hi is equal to the minimum

weight of Hi. Thus, we just have to check that the minimum weight of

any coset (3.2) is Ni/2. When r = 0, we have that wtH(Φ((u, . . . ,u))) =

2s−i+1wtH(Φ(u)) = 2s−i+1N/2 = Ni/2. Otherwise, when r 6= 0, we consider

wtH(Φ((u, . . . ,u) + r ·wi)) = dH(Φ((u, . . . ,u)),Φ(r ·wi)). (3.3)

Note that, by construction, the coordinates of any nonnegative multiple of wi

can be partitioned into two multisets V and V ′ such that |V | = |V ′| = 2s−i

and there is a bijection from V to V ′ mapping any element v ∈ V into an

element v′ ∈ V ′ such that v′ − v = 2s−1. Therefore, (3.3) can be written as∑
v∈V

dH(Φ(u),Φ(v)) +
∑
v′∈V ′

dH(Φ(u),Φ(v′)) =

∑
v∈V

dH(Φ(u),Φ(v)) + dH(Φ(u),Φ(v + 2s−1)) =

|V | · 2s−1n = 2s−i2s−1n = Ni/2, (3.4)

where (3.4) holds by Corollary 31. QED

Example 33. Let H2,0,0 be the Z8-additive code generated by A2,0,0 given in

Example 22. The Z8-linear code H
2,0,0 = Φ(H2,0,0) has length N = 32, 2N =

64 codewords and minimum (Hamming) distance N/2 = 16. Therefore, it is

a binary Hadamard code.

Example 34. Let H2,0,0,1 be the Z16-additive code generated by the matrix

A2,0,0,1, that is1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

 .

It is easy to see that the Z16-linear code H2,0,0,1 = Φ(H2,0,0,1) has length

N = 256 and 2N = 512 codewords. Not as easy to see but equally true is that
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its minimum (Hamming) distance is N/2 = 128. Therefore, it is a binary

Hadamard code.

3.2 Linearity

In this section, we establish for which types, (n; t1, . . . , ts), the Z2s-linear

Hadamard codes are binary linear codes, i.e., for which types the code is

permutation equivalent to the binary linear Hadamard code, Ht, of length

n = 2t. In [Kro01, PRV06], the linearity of these codes for s = 2 is proved.

Theorem 35 ([Kro01, PRV06]). LetHt1,t2 be the quaternary linear Hadamard

code of length 2t−1 and type 2t24t1, where t = t2 + 2t1 − 1, and let H t1,t2 =

Φ(Ht1,t2) be the corresponding Z4-linear code of length 2t. Then, only for

t1 ∈ {1, 2}, we have that H t1,t2 is permutation equivalent to the binary linear

Hadamard code Ht of length 2t.

Lemma 36. Let λi ∈ Z2, i ∈ {0, . . . , s− 2}. Then,

s−2∑
i=0

λiφ(2i) = φ(
s−2∑
i=0

λi2
i),

where 2i ∈ Z2s.

Proof. Let yi be the ith row of Y , where Y is a matrix of size (s− 1)× 2s−1

which columns are the elements of Zs−1
2 . Let ei be the vector that has 1 in

the ith position and 0 otherwise. By the de�nition of φ given by (2.19), we

know that
∑s−2

i=0 λiφ(2i) =
∑s−2

i=0 λiei+1Y =
∑s−2

i=0 λiyi+1 = λY , where λ =

(λ0, . . . , λs−2). Since [λ0, . . . , λs−2, 0]2 is the binary expansion of
∑s−2

i=0 λi2
i,

then we have that λY = φ(
∑s−2

i=0 λi2
i). QED

Proposition 37. The Z2s-linear Hadamard codes H1,0,...,0 and H1,0,...,0,1,0,

with s > 2, are linear.

Proof. By Example 24, we know that H1,0...,0 is linear.
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Now, we consider H = H1,0,...,0,1,0 and H = Φ(H). Recall that the code

H is generated by

A1,0,...,0,1,0 =

(
1 1 1 1

0 2s−2 2s−1 3 · 2s−2

)
.

Let βββi = (2i, 2i, 2i, 2i) for 0 ≤ i ≤ s − 1, βββs = (0, 2s−1, 0, 2s−1) and βββs+1 =

(0, 2s−2, 2s−1, 3 · 2s−2). Let C be the linear code generated by B = {Φ(βββi) :

0 ≤ i ≤ s + 1}. Now, we prove that C ⊆ H. Let c =
∑s+1

i=0 λiΦ(βββi) ∈ C,
where λi ∈ Z2. By Corollary 26, we only have to see that

c′ = λs+1Φ(βββs+1) +
s−2∑
i=0

λiΦ(βββi) ∈ H.

On the one hand, if λs+1 = 0, then we have that c′ ∈ H, since
∑s−2

i=0 λiΦ(βββi) =

Φ(
∑s−2

i=0 λiβββi) by Lemma 36. On the other hand, if λs+1 = 1, then we have

that c′ = Φ((0, 2s−2, 2s−1, 3 ·2s−2))+Φ((u, u, u, u)), where u =
∑s−2

i=0 λi2
i. Let

U = {2s−2, . . . , 2s−1 − 1} ∪ {3 · 2s−2, . . . , 2s − 1} ⊂ Z2s . Then, by Corollary

28, c′ = Φ((0, 2s−2, 2s−1, 3 · 2s−2) + (u, u, u, u) + (0, 2s−1, 0, 2s−1)) if u ∈ U ,

and c′ = Φ((0, 2s−2, 2s−1, 3 · 2s−2) + (u, u, u, u)) if u ∈ Z2s \U . In both cases,

c′ ∈ H.

Since |C| = |H| = 2s+2, then C = H, and thus H is linear. QED

Let u = (u1, . . . , un) ∈ Zn2s and [ui,0, ui,1, . . . , ui,s−1]2 be the binary expan-

sion of ui, i ∈ {1, . . . , n}. Let p be an integer such that p ∈ {0, . . . , s − 1}.
Then, we denote by u(p) the binary vector having in the ith coordinate the

pth element of the binary expansion of ui, that is, u(p) = (u1,p, . . . , un,p).

Lemma 38. If v = 2b(0, 1, . . . , 2a − 1) ∈ Zn2s, with n = 2a, a ≥ 1 and

a+ b ≤ s, then wtH(v(p)) = 2a−1 for all p ∈ {b, . . . , a+ b− 1}.

Proof. The 2a coordinates of v contain exactly the 2a elements of Z2s which

have a binary expansion of the form [0, . . . , 0, vb, vb+1, . . . , va+b−1, 0, . . . , 0]2

with vp ∈ {0, 1}, for all p ∈ {b, . . . , a+ b− 1}. Note that we have 2a di�erent

elements of Z2s , represented by exactly a binary coordinates. Hence, half



46 Chapter 3. Construction and linearity of Z2s-linear Hadamard codes

of the coordinates of v satisfy that vp = 1 and the other half that vp = 0.

Therefore, wtH(v(p)) = 2a/2 = 2a−1 for all p ∈ {b, . . . , a+ b− 1}. QED

As it is shown in [Kro01], the codes H1,t2 and H2,t2 , t2 ≥ 0, are the only

Z4-linear Hadamard codes which are linear. In [BGL05], it is proved that

the codes H1,0,...,0,ts , ts ≥ 0, are linear. The next result shows that, for s > 2

and ts ≥ 0, the codes H1,0,...,0,1,ts and H1,0,...,0,ts are linear, and they are the

only Z2s-linear Hadamard codes which are linear.

Theorem 39. The codes H1,0,...,0,1,ts and H1,0,...,0,ts, with s > 2 and ts ≥ 0,

are the only Z2s-linear Hadamard codes which are linear.

Proof. First, we show that these codes are linear by induction on ts. By

Proposition 37, the codes H1,0,...,0 and H1,0,...,0,1,0 are linear. We assume that

H = Φ(H), where H = H1,0,...,0,ts−1,ts , ts−1 ∈ {0, 1} and ts ≥ 0, is linear.

Now, we prove that Hs = H1,0,...,0,ts−1,ts+1 is linear. Since H is a linear

Hadamard code of length 2ts+2ts−1−1, it is the Reed-Muller code RM(1, ts +

2ts−1 − 1) [MS77, Ch.13 �3]. By the iterative construction (3.1), we have

that Hs = {Φ((h,h) + (0,v)) : h ∈ H,v ∈ {0,2s−1}}. By Corollary 26,

Hs = {(Φ(h),Φ(h) + Φ(v)) : h ∈ H,v ∈ {0,2s−1}} = {(h′,h′ + v′) :

h′ ∈ H,v′ ∈ {0,1}}, which corresponds to the Reed-Muller code RM(1, ts +

2ts−1). Therefore, Hs is linear.

Now, we prove the nonlinearity of H = Φ(H), where H = H1,0,...,0,2,0. Let

r = (0, 2s−2, 2s−1, 3 · 2s−2). Recall that H has length 16 and is generated by

A1,0,...,0,2,0 =

 1 1 1 1

r r r r

0 2s−2 2s−1 3 · 2s−2

 .

By Corollaries 26 and 28, we have Φ((r, r, r, r))+Φ((0,2s−2,2s−1, 3 · 2s−2)) =

Φ(z), where z = (r, r, r, r) + (0,2s−2,2s−1,3 · 2s−2) + (0,u,0,u) and u =

(0, 2s−1, 0, 2s−1). Since H is linear over Z2s , z ∈ H if and only if (0,u,0,u) ∈
H. Since wtH(Φ((0,u,0,u))) = 4 · 2s−1 = N/4, where N is the length of H,

Φ((0,u,0,u)) 6∈ H, so Φ(z) 6∈ H. Therefore, H = H1,0,...,0,2,0 is nonlinear.
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Let H = Φ(H), where H = Ht1,...,ts . For any i ∈ {1, . . . , s}, we de�ne

Hi = Φ(Hi), where Hi = Ht′1,...,t
′
s , t′i = ti + 1 and t′j = tj for j 6= i.

Next, we considerH = Φ(H), whereH = H1,0,...,0, and we prove thatHi is

nonlinear for any i ∈ {1, . . . , s−2}. Note that the generator matrix of Hi has

two rows: w1 = 1 and w2 = 2i−1(0, 1, . . . , 2s+1−i − 1). By Corollary 25, we

know that Φ(w2)+Φ(2i−1) = Φ(w2+2i−1−2iw
(i−1)
2 ). Therefore, we just need

to show that 2iw
(i−1)
2 6∈ Hi. We have that wtH(w

(i−1)
2 ) = 2s−i by Lemma

38. Since 2i 6∈ {0, 2s−1}, wtH(φ(2i)) = 2s−2. Then, wtH(Φ(2iw
(i−1)
2 )) =

2s−i · 2s−2 = 22s−2−i. Recall that the length of H is N = 2t, where t =

2s − i. Therefore, we have that wtH(Φ(2iw
(i−1)
2 )) = 2t−2 = N/4, and then

Φ(2iw
(i−1)
2 ) 6∈ Hi.

Finally, in general, for H = Φ(H), where H = Ht1,...,ts , we prove that if H

is nonlinear, then Hi is nonlinear for any i ∈ {1, . . . , s}. Assume that Hi is

linear. Then, by the iterative construction (3.1), for any u,v ∈ H, we have
that (u, . . . ,u), (v, . . . ,v) ∈ Hi. Moreover, since Hi is linear, Φ((u, . . . ,u))+

Φ((v, . . . ,v)) = Φ((a, . . . , a)+λ·2i−1(0, 1, . . . , 2s−i+1−1)) ∈ Hi, where a ∈ H
and λ ∈ Z2s . Therefore, Φ(u) + Φ(v) = Φ(a) ∈ H, and we have that H is

linear and the result follows. QED

Table 3.1 shows the types for all Z2s-linear Hadamard codes of length 2t,

with 4 ≤ t ≤ 6 and 2 ≤ s ≤ 7. Moreover, the values for which the codes are

linear are shown in bold type. The pairs (r, k), where r is the rank and k the

dimension of the kernel, are also given in this table. Note that the values of

the rank and dimension of the kernel are the same in these cases.
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t = 4 t = 5 t = 6
(t1, . . . , ts) (r, k) (t1, . . . , ts) (r, k) (t1, . . . , ts) (r, k)

Z4

(1,3) (5,5) (1,4) (6,6) (1,5) (7,7)
(2,1) (5,5) (2,2) (6,6) (2,3) (7,7)

(3, 0) (7,4) (3, 1) (8,5)

Z8

(1,0,2) (5,5) (1,0,3) (6,6) (1,0,4) (7,7)
(1,1,0) (5,5) (1,1,1) (6,6) (1,1,2) (7,7)

(2, 0, 0) (8,3) (1, 2, 0) (8,5)
(2, 0, 1) (9,4)

Z16

(1,0,0,1) (5,5) (1,0,0,2) (6,6) (1,0,0,3) (7,7)
(1,0,1,0) (6,6) (1,0,1,1) (7,7)

(1, 1, 0, 0) (9,4)

Z32
(1,0,0,0,0) (5,5) (1,0,0,0,1) (6,6) (1,0,0,0,2) (7,7)

(1,0,0,1,0) (7,7)

Z64 (1,0,0,0,0,0) (6,6) (1,0,0,0,0,1) (7,7)

Z128 (1,0,0,0,0,0,0) (7,7)

Table 3.1: Types for all Z2s-linear Hadamard codes of length 2t.



Chapter 4

Kernel of Z2s-linear Hadamard

codes

�Sometimes science is a lot more art, than

science. A lot of people don't get that."

� Rick Sánchez, Rick and Morty

The computation of the kernel (and also of the rank) and its dimension

for Z4-linear Hadamard codes is given in [Kro01, PRV06]. In these papers,

a complete classi�cation of these codes, up to permutation equivalence, just

by using the dimension of the kernel (or the rank) is given. As a �rst step in

the generalization of the results for Z4-linear Hadamard codes, in [FPV10,

KV15, MR15], the dimension of the kernel for Z2Z4-linear Hadamard codes

and Hadamard Z2Z4Q8-codes is computed.

The aim of this chapter is to generalize the computation of the kernel and

its dimension for Z2s-linear Hadamard codes with s > 2, in order to give a

partial classi�cation of these codes by using this invariant. In Section 4.1, we

describe the kernel and compute its dimension whenever they are nonlinear.

In Section 4.2, through several examples, we show that, unlike for s = 2,

the dimension of the kernel is not enough to classify completely Z2s-linear

Hadamard codes for some values of t and s. Moreover, we give the exact

amount of nonequivalent such codes up to t = 11 for any s ≥ 2, by using

also the rank.

49
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4.1 Computation of the kernel

In this section, we study the kernel and its dimension of the Z2s-linear

Hadamard codes with s > 2. Speci�cally, we give a basis of the kernel

for the codes which are nonlinear, and we stablish its dimension.

Let Ht1,...,ts be a Z2s-additive Hadamard code and H t1,...,ts its correspond-

ing Z2s-linear code. Let At1,...,ts be the generator matrix of Ht1,...,ts , consid-

ered along this dissertation, and let wi be the ith row vector of At1,...,ts . By

construction, w1 = 1 and ord(wi) ≤ ord(wj) if i > j.

In Section 3.2, we determine which Z2s-linear Hadamard codes H t1,...,ts

of length 2t are linear. For all these cases which are linear, we have that

ker(H t1,...,ts) = rank(H t1,...,ts) = t + 1, since |H t1,...,ts | = 2t+1. Moreover, in

this case, the set {Φ(2piwi) : 1 ≤ i ≤ t1 + · · · + ts, 0 ≤ pi ≤ σi} where

ord(wi) = 2σi , is a basis of K(H t1,...,ts) and 〈H t1,...,ts〉.

Example 40. Considering all nonnegative integer solutions with t1 ≥ 1 of

the equation 5 = 3t1 +2t2 +t3−1, we have that the Z8-linear Hadamard codes

of length 2t = 32 are the following: H1,0,3, H1,1,1 and H2,0,0. By Theorem 39,

we have that H1,0,3 and H1,1,1 are linear, so ker(H1,0,3) = ker(H1,1,1) = 6. By

the same theorem, we also have that H2,0,0 is nonlinear, so ker(H2,0,0) < 6.

We de�ne σ ∈ {1, . . . , s} as the integer such that

ord(w2) = 2s+1−σ. (4.1)

Note that σ = 1 if t1 > 1, and σ = min{i : ti > 0, i ∈ {2, . . . , s}} if t1 = 1.

In the case σ = s, the code is H1,0,...,0,ts , which is linear. In what follows, we

will see that this parameter, σ, is a sort of measure of nonlinearity, like the

rank and dimension of the kernel.

Example 41. Considering all nonnegative integer solutions with t1 ≥ 1 of

the equation 7 = 4t1 +3t2 +2t3 +t4−1, we have that the Z16-linear Hadamard

codes of length 2t = 128 are the following: H1,0,0,4, H1,0,1,2, H1,0,2,0, H1,1,0,1

and H2,0,0,0. The corresponding value of σ for each code is 4, 3, 3, 2 and 1,

respectively.
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Proposition 42. Let H = Ht1,...,ts be the Z2s-additive Hadamard code of

type (n; t1, . . . , ts) such that Φ(H) is nonlinear. Let Hb be the subcode of H
which contains all the codewords of order two. Let P = {2p}σ−2

p=0 if σ ≥ 2,

and P = ∅ if σ = 1. Then,〈
Φ(Hb),Φ(P ),Φ(

s−2∑
i=0

2i)

〉
⊆ K(Φ(H))

and ker(Φ(H)) ≥ σ +
∑s

i=1 ti.

Proof. Let H = Φ(H) and τ =
∑s

i=1 ti. Let Q = {(ord(wq)/2)wq}τq=0. Since

Hb contains all the elements of H of order two, we have that the set Φ(Q)

is a basis for the binary linear subcode Hb = Φ(Hb) of H. By Corollary 26,

for all b ∈ Hb and u ∈ H, we have that Φ(b) + Φ(u) = Φ(b + u) ∈ H and,

therefore, Hb ⊆ K(H).

Assume σ ≥ 2. Now, we prove that Φ(2p) ∈ K(H) for all p ∈ {0, . . . , σ−
2}. Equivalently, we show that Φ(2p) + Φ(u) ∈ H for all u ∈ H. If u ∈ H,
then u = λ ·1+u′, where λ ∈ Z2s and ord(u′) ≤ ord(w2) = 2s+1−σ. Let u =

(u1, . . . , un) ∈ Zn2s and [ui,0, ui,1, . . . , ui,s−1]2 be the binary expansion of ui,

i ∈ {1, . . . , n}. Let [λ0, λ1, . . . , λs−1]2 be the binary expansion of λ ∈ Z2s . By

Corollary 25, we have that Φ(2p)+Φ(u) = Φ(2p+u−2p+1u(p)), where u(p) =

(u1,p, . . . , un,p). Note that if v ∈ Z2s is of order 2j, then its binary expansion

is of the form [0, . . . , 0, 1, vs−j+1, . . . , vs−1]2. Since p ∈ {0, . . . , σ − 2} and

ord(u′) ≤ 2s+1−σ, we have that u(p) = (λp, . . . , λp). Therefore, 2p+1u(p) =

λp2
p+1 ∈ H and Φ(2p) + Φ(u) = Φ(2p + u− λp2p+1) ∈ H.

Next, we show that Φ(
∑s−2

i=0 2
i) ∈ K(H). Let u = (u1, . . . , un) ∈ H and

v = (v1, . . . , vn) =
∑s−2

i=0 2
i. First, we prove that φ(vi) + φ(ui) = φ(vi +

ui − 2ui) for all i ∈ {1, . . . , n}. Note that the binary expansion of vi and ui
are [1, . . . , 1, 0]2 and [ui,0, ui,1, . . . , ui,s−1]2, respectively. Then, it is easy to

check that 2(vi � ui) = 2ui. Therefore, by Proposition 19, φ(vi) + φ(ui) =

φ(vi + ui − 2ui). Hence, Φ(v) + Φ(u) = Φ(v + u− 2u) ∈ H for all u ∈ H.
Finally, we have to see that the elements belonging to the set {Φ(Q),Φ(P ),

Φ(
∑s−2

i=0 2
i)} are linearly independent. By construction, the generator matrix
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At1,...,ts is a block upper triangular matrix, so it is easy to see that the code-

words in Φ(Q) are linearly independent of the ones in {Φ(P ),Φ(
∑s−2

i=0 2
i)}.

Note that σ < s since H is nonlinear. Thus, by Lemma 36, it is easy to see

that the codewords in {Φ(P ),Φ(
∑s−2

i=0 2
i)} are linearly independent. There-

fore, we have that the dimension of the linear span of this set is σ + τ , so

ker(H) ≥ σ + τ . QED

Lemma 43. Let v ∈ Z2s and λi ∈ Z2, i ∈ {0, . . . , s− 1}. Then,

v �
s−1∑
i=0

λi2
i =

s−1∑
i=0

v � λi2i.

Proof. Let v ∈ Z2s and [v0, v1, . . . , vs−1]2 its binary expansion. By de�nition,

we have that v �
∑s−1

i=0 λi2
i =

∑s−1
i=0 viλi2

i. Note that viλi2i = v � λi2i, so
v �

∑s−1
i=0 λi2

i =
∑s−1

i=0 v � λi2i. QED

Lemma 44. Let H = Ht1,...,ts be the Z2s-additive Hadamard code of type

(n; t1, . . . , ts). Let N = {
∑s−2

i=σ−1 λi2
i : λi ∈ Z2} \ {

∑s−2
i=σ−1 2

i} if σ ≤ s− 1.

Then, Φ(N ) ∩K(Φ(H)) = {0}.

Proof. Let H = Φ(H). Let u =
∑s−2

i=σ−1 λi2
i ∈ N such that Φ(u) ∈ K(H).

We want to prove that u = 0.

By construction, the second row w2 of At1,...,ts is a 2t−2s+σ-fold replication

of v = 2σ−1(0, 1, . . . , 2s+1−σ − 1), and ord(w2) = 2s+1−σ. By Proposition 19,

we have that Φ(w2) + Φ(u) = Φ(w2 + u− 2(w2 � u)). Since Φ(u) ∈ K(H),

2(w2 � u) ∈ H. Note that, by Lemma 43, we have that 2(w2 � u) =

2
∑s−2

i=σ−1 w2 � λi2i = 2
∑s−2

i=σ−1 λiw
(i)
2 2i ∈ H.

Let τ =
∑s

i=1 ti. If τ = 2, then H has length 2s+1−σ and the only

rows in At1,...,ts are 1 and w2 = v. If τ ≥ 3, for i ∈ {3, . . . , τ}, the ith
row wi of At1,...,ts contains zeros in the �rst 2s+1−σ coordinates by con-

struction. Since σ ≤ s − 1, τ ≥ 2, and hence any element of H re-

stricted to the �rst 2s+1−σ coordinates is of the form µ11 + µ2v for some

µ1, µ2 ∈ Z2s . We have that 2
∑s−2

i=σ−1 λiw
(i)
2 2i restricted to the �rst 2s+1−σ

coordinates is 2
∑s−2

i=σ−1 λiv
(i)2i, so we have to �nd µ1, µ2 ∈ Z2s such that

2
∑s−2

i=σ−1 λiv
(i)2i = µ11 + µ2v.
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Since the �rst coordinate of v is 0, the �rst coordinate of v(i) is 0 for all

i. Then, we have that µ1 = 0, so 2
∑s−2

i=σ−1 λiv
(i)2i = µ2v. Note that v =∑s−1

i=0 v
(i)2i =

∑s−1
i=σ−1 v

(i)2i. Therefore, 2
∑s−2

i=σ−1 λiv
(i)2i = µ2

∑s−1
i=σ−1 v

(i)2i.

Since u ∈ N , there exists j ∈ {σ − 1, . . . , s − 2} such that λj = 0. Then,

regrouping the terms, we obtain that

s−2∑
i=σ−1
i 6=j

(µ2 − 2λi)v
(i)2i + µ2v

(j)2j + µ2v
(s−1)2s−1 = 0.

Note that {v(i)}s−1
i=σ−1 is a subset of a basis of the RM(1, t). Then, we have

that (µ2 − 2λi)2
i = 0, for i ∈ {σ − 1, · · · , s − 2} \ {j}, µ22j = 0 and

µ22s−1 = 0. As a result, µ2 = 0 and λi = 0 for all i ∈ {σ − 1, · · · , s − 2}.
Hence, u =

∑s−2
i=σ−1 λi2

i = 0, and the result holds. QED

Lemma 45. Let H = Ht1,...,ts be the Z2s-additive Hadamard code of type

(n; t1, . . . , ts). Let wi be the ith row of At1,...,ts and τ =
∑s

i=1 ti. Let M =

{v =
∑τ−ts

i=2 λiwi : λi ∈ Z2s , ord(v) > 2}, N = {
∑s−2

i=σ−1 λi2
i : λi ∈ Z2} \

{
∑s−2

i=σ−1 2
i} if σ ≤ s−1 andM+N = {vM+vN : vM ∈M∪{0},vN ∈ N}.

Then, Φ(M+N ) ∩K(Φ(H)) = {0}.

Proof. Let H = Φ(H), which has length N = 2t = n ·2s−1. By Lemma 44, we

already know that Φ(N )∩K(H) = {0}. Now, we prove that Φ(M)∩K(H) =

∅.
Let v =

∑τ−ts
i=2 λiwi ∈ M. Since ord(v) > 2 and ord(wi) ≤ 2s+1−σ,

ord(v) = 2p for some 2 ≤ p ≤ s + 1− σ. By the iterative construction (3.1)

of At1,...,ts , we know that all the elements of Z2s of order equal to or less than

2p appear as a coordinate of v. Moreover, exactly half of the coordinates of

v are of order 2p. We consider two cases depending on the value of p.

First, we consider that 2 < p ≤ s+1−σ. We have that Φ(v)+Φ(2s−p) =

Φ(v+2s−p−2s−p+1v(s−p)) by Corollary 25. As before, it is enough to see that

2s−p+1v(s−p) 6∈ H to prove that Φ(v) 6∈ K(H). Since half of the coordinates

of v are of order 2p and the other half are of order less than 2p, we have

that half of the coordinates of 2s−p+1v(s−p) are equal to 2s−p+1 and the rest

of coordinates are zero. Note that 2s−p+1 6∈ {0, 2s−1} since p > 2. Therefore,
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since wtH(φ(2s−p+1)) = 2s−2, we have that wtH(Φ(2s−p+1v(s−p))) = n/2 ·
2s−2 = 2t−2 = N/4 and hence Φ(v) 6∈ K(H).

Next, we consider that p = 2, that is, ord(v) = 4. Then, ord(λiwi) = 4 or

λi = 0 for all i ∈ {2, . . . , τ − ts}. By Proposition 19, Φ(v) + Φ(2s−σ−1w2) =

Φ(v + 2s−σ−1w2 − 2(v � 2s−σ−1w2)). Again, it is enough to see that 2(v �
2s−σ−1w2) 6∈ H to show that Φ(v) 6∈ K(H). Note that 2s−σ−1w2 is a 2t−s−1-

fold replication of b1 = (0, 2s−2, 2s−1, 3 · 2s−2). Now, we consider the coordi-

nates divided into groups of 4 consecutive coordinates, which will be referred

to as blocks. Note that every block of λiwi contains the same value in its 4

coordinates, for all i ∈ {3, . . . , τ − ts}.
If λ2 = 0, then every block of v also contains the same value in its 4

coordinates. Thus, every block in 2(v � 2s−σ−1w2) is of the form 2(k � b1)

for some k ∈ {0, 2s−2, 2s−1, 3 · 2s−2}. We have that

2(k� b1) =

{
(0, 0, 0, 0) if k ∈ {0, 2s−1}

(0, 2s−1, 0, 2s−1) if k ∈ {2s−2, 3 · 2s−2}.

By construction, note that v contains the same number of blocks k for

each k ∈ {0, 2s−2, 2s−1, 3 · 2s−2}. Then, it is easy to see that wtH(Φ(2(v �
2s−σ−1w2))) = wtH(φ(2s−1)) · 4 · n/16 = 2s−1 · n/4 = 2t−2 = N/4, so

Φ(v) 6∈ K(H) in this case.

Otherwise, if λ2 6= 0, then every block of v is of the form bi +k, for some

i ∈ {1, 2} and k ∈ {0, 2s−2, 2s−1, 3 · 2s−2}, where b1 = (0, 2s−2, 2s−1, 3 · 2s−2)

and b2 = (0, 3 · 2s−2, 2s−1, 2s−2). Then, we have that

2((bi + k)� b1) =

{
(0, 0, 0, 0) if k ∈ {2s−2, 3 · 2s−2}

(0, 2s−1, 0, 2s−1) if k ∈ {0, 2s−1},

for i ∈ {1, 2}. Again, by construction, v contains the same number of blocks

bi+k for each k ∈ {0, 2s−2, 2s−1, 3 ·2s−2}. Therefore, as before, wtH(Φ(2(v�
2s−σ−1w2))) = N/4, and Φ(v) 6∈ K(H). We have just shown that Φ(M) ∩
K(H) = ∅.

Now, we prove that Φ(M+N ) ∩ K(H) = {0}. Let v = vM + vN ∈
M+N\{0}, where vM ∈ M and vN ∈ N . We just proved that Φ(v) 6∈
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K(H) if vM = 0 or vN = 0. Therefore, we can assume that vM 6= 0 and

vN 6= 0.

We know that vN = (v, . . . , v). Let [v0, v1, . . . , vs−1]2 be the binary ex-

pansion of v. Let vN1 and vN2 be the elements of Z2s having binary ex-

pansion [0, . . . , 0, vs−p, . . . , vs−1]2 and [v0, . . . , vs−p−1, 0, . . . , 0]2, respectively.

Then, vN = vN1 + vN2 , where vNi = (vNi , . . . , vNi) for i ∈ {1, 2}. Since

ord(vM) = 2p with 2 ≤ p ≤ s + 1 − σ, the binary expansion of each one of

its coordinates is of the form [0, . . . , 0, (vM)s−p, . . . , (vM)s−1]2. Note that we

also have that ord(vN1) ≤ ord(vM) by construction.

On the one hand, we consider 2 < p ≤ s + 1 − σ. It is easy to see

that 2(vN2 � 2s−p) = 0. Therefore, wtH(Φ(2(v� 2s−p))) = wtH(Φ(2((vM +

vN1) � 2s−p))). Since ord(vN1) ≤ ord(vM), it is easy to see that there

exists a permutation of coordinates π such that π(vM + vN1) = vM. Thus,

wtH(Φ(2((vM+vN1)�2s−p))) = wtH(Φ(2(vM�2s−p))) and the result holds

by using the same arguments as above.

On the other hand, we consider that p = 2. Note that ord(vM) = 4, and

then ord(vN1) = 4. It is easy to see that 2(vN2 � 2s−σ−1w2) = 0, hence we

have that wtH(Φ(2(v � 2s−σ−1w2))) = wtH(Φ(2((vM + vN1)� 2s−σ−1w2))).

Recall that 2s−σ−1w2 is the 2t−s−1-fold replication of b1. Taking into account

that vM =
∑τ−ts

i=2 λiwi, note that the blocks of vM + vN1 are of the form

k for some k ∈ {0, 2s−2, 2s−1, 3 · 2s−2} if λ2 = 0; or bi + k for some k ∈
{0, 2s−2, 2s−1, 3 · 2s−2} and i ∈ {1, 2} if λ2 6= 0. Therefore, the proof is

analogous to the above one to show that Φ(v) 6∈ K(H) with v ∈ M. Then,

the result holds. QED

Theorem 46. Let H = Ht1,...,ts be the Z2s-additive Hadamard code of type

(n; t1, . . . , ts) such that Φ(H) is nonlinear. Let Hb be the subcode of H which

contains all the codewords of order two. Let P = {2p}σ−2
p=0 if σ ≥ 2, and

P = ∅ if σ = 1. Then,〈
Φ(Hb),Φ(P ),Φ(

s−2∑
i=0

2i)

〉
= K(Φ(H))

and ker(Φ(H)) = σ +
∑s

i=1 ti.
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Proof. The result follows by Proposition 42, Lemma 44 and Lemma 45.

QED

Corollary 47. Let H = Ht1,...,ts be the Z2s-additive Hadamard code of type

(n; t1, . . . , ts) such that Φ(H) is nonlinear. Let wi be the ith row of At1,...,ts

and τ =
∑s

i=1 ti. Let Q = {(ord(wq)/2)wq}τq=0 and P = {2p}σ−2
p=0 if σ ≥ 2,

and P = ∅ if σ = 1. Then, {Φ(Q),Φ(P ),Φ(
∑s−2

i=0 2
i)} is a basis of K(Φ(H)).

Proof. Straightforward from Proposition 42 and Theorem 46. QED

Example 48. Let H2,0,0 be the Z8-linear Hadamard code considered in Ex-

ample 33. By Theorem 46, we have that ker(H2,0,0) = 3. Moreover, we

can construct K(H2,0,0) from a basis, by Corollary 47. First, we have that

Q = {4, (0, 4, 0, 4, 0, 4, 0, 4)}. Since σ = 1, in this case, we have that P = ∅.
Thus,

K(H2,0,0) = 〈Φ(4),Φ((0, 4, 0, 4, 0, 4, 0, 4)),Φ(3)〉.

4.2 Partial classi�cation of Z2s-linear Hadamard

codes

The classi�cation of the Z4-linear Hadamard codes of length 2t, for any t ≥ 3,

using the rank or the dimension of the kernel is shown in [Kro01, PRV06].

In this section, we show that the dimension of the kernel can not be used to

establish a complete classi�cation of the Z2s-linear Hadamard codes of length

2t, in general, for any t ≥ 3 and s > 2. However, we see that this invariant

allows us to show some partial results on the classi�cation of these codes,

through some examples and give bounds in the amount of nonequivalent

Z2s-linear Hadamard codes with the same length 2t.

First of all, recall that, for any t ≥ 3, only the Z4-linear Hadamard codes

H1,t2 and H2,t2 of length 2t are linear [Kro01], so these are equivalent to the

Reed-Muller code RM(1, t). By Theorem 39, for any t ≥ 3 and s > 2, there

are also at most two Z2s-linear Hadamard codes of length 2t, H1,0,...,0,1,ts and

H1,0,...,0,ts , that are linear. Moreover, the following result implies that we can

focus on t ≥ 5 and 2 ≤ s ≤ t− 2 to try to classify the nonlinear ones.
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Theorem 49. Let At,s be the number of nonequivalent Z2s-linear Hadamard

codes of length 2t. Then,

At,s =


0 if t ≥ 3 and s ≥ t+ 2

1 if t ≥ 3 and s ∈ {t− 1, t, t+ 1}
1 if t = 4 and s = 2,

and the Z2s-linear Hadamard code is linear when At,s = 1. Moreover, if t ≥ 5

and 2 ≤ s ≤ t − 2, then At,s ≥ 2, and there is one code which is linear and

at least one code which is nonlinear.

Proof. First, if t ≥ 3 and s ≥ t+ 2, then the equation

t =
( s∑
i=1

(s− i+ 1) · ti
)
− 1, (4.2)

with t1 ≥ 1, does not have any nonnegative integer solution, so At,s = 0. If

t ≥ 3 and s = t+1, then (4.2) has only one solution (t1, . . . , ts) = (1, 0, . . . , 0).

If t ≥ 3 and s = t, (4.2) has only the solution (1, 0, . . . , 0, 1). If t ≥ 4 and

s = t − 1, (4.2) has exactly two solutions (1, 0, . . . , 0, 2) and (1,0,. . . ,0,1,0).

By Theorem 39, for all the above solutions, we obtain a linear code H t1,...,ts .

Note that, when t = 3 and s = 2, the solutions are (1, 2) and (2, 0); and

when t = 4 and s = 2, they are (1, 3) and (2, 1), which also give linear codes

H t1,t2 , by Theorem 35.

Finally, if t ≥ 5 and 2 ≤ s ≤ t − 2, (4.2) always has the solutions

(1, 0, . . . , 0, t− s + 1) and (1, 0, . . . , 0, 1, t− s− 1), which give a linear code.

However, for these cases, there is at least another solution. On one hand, if

s = 2, At,s = b(t − 1)/2c ≥ 2 since t ≥ 5 [Kro01]. On the other hand, if

s = 3, (2, 0, · · · , 0, t− 2s+ 1) is a solution since t ≥ 2s− 1 when t ≥ 5; and

if s ≥ 4, (1, 0, · · · , 0, 1, 0, t− s− 2) is a solution. Therefore, for all the cases,

At,s ≥ 2 by Theorem 39. QED

The following example shows that the dimension of the kernel can not

be used, in general, to classify completely all nonlinear Z2s-linear Hadamard

codes of length 2t, once t ≥ 5 and 2 < s ≤ t− 2 are �xed.
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Example 50. The Z8-linear Hadamard codes of length 2t = 256 (t = 8)

are the following: H1,0,6, H1,1,4, H1,2,2, H1,3,0, H2,0,3, H2,1,1 and H3,0,0. The

�rst two are equivalent as they are linear by Theorem 39. The remaining

ones have kernels of dimension 7, 6, 6, 5 and 4, respectively, by Theorem 46.

Therefore, by using this invariant, we can say that all of them are nonequiva-

lent, with the exception of H1,3,0 and H2,0,3 which have the same dimension of

the kernel. For these two codes, by using the computer algebra system Magma

[BCFS16], we have computed that rank(H1,3,0) = 12 and rank(H2,0,3) = 11,

so they are also nonequivalent. Actually, all these nonlinear codes have ranks

10, 12, 11, 13 and 17, respectively, so we can use the rank instead of the di-

mension of the kernel to classify completely the Z8-linear Hadamard codes of

length 256.

As shown in the next example, for some values of t ≥ 5 and 2 < s ≤ t−2,

it is indeed possible to establish a complete classi�cation by using just the

dimension of the kernel, like it happens for any t ≥ 5 and s = 2 [Kro01].

Example 51. By Theorem 46, it is possible to check that for any 5 ≤ t ≤ 7

and 2 ≤ s ≤ t− 2, all nonlinear Z2s-linear Hadamard codes of length 2t have

a di�erent dimension of the kernel, so this invariant allows us to classify

them. For t = 8, t = 9, t = 10 and t = 11, it also works, except when

s ∈ {3}, s ∈ {3, 4}, s ∈ {3, 4, 5} and s ∈ {3, 4, 5, 6}, respectively. For these

given values of t and s, we can just obtain a partial classi�cation by using

the kernel.

By using Magma [BCFS16], we have also computed the rank of the non-

linear Z2s-linear Hadamard codes of length 2t, for any 5 ≤ t ≤ 11 and

2 ≤ s ≤ t − 2. Tables 4.1, 4.4 and 4.5 show the values of (t1, . . . , ts) and

the pair (r, k), where r is the rank and k the dimension of the kernel, for all

nonlinear Z2s-linear Hadamard codes of length 2t, for 5 ≤ t ≤ 11. Note that

the results given in Examples 50 and 51 can also be checked by looking at

these tables. These tables also show that all nonlinear Z2s-linear Hadamard

codes of length 2t have di�erent values of the rank, once 5 ≤ t ≤ 11 and

2 ≤ s ≤ t − 2 are �xed. Therefore, for these cases, as in Example 50,
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t = 5 t = 6 t = 7 t = 8
(t1, . . . , ts) (r, k) (t1, . . . , ts) (r, k) (t1, . . . , ts) (r, k) (t1, . . . , ts) (r, k)

Z4
(3, 0) (7,4) (3, 1) (8,5) (3, 2) (9,6) (3, 3) (10,7)

(4, 0) (11,5) (4, 1) (12,6)

Z8

(2, 0, 0) (8,3) (1, 2, 0) (8,5) (1, 2, 1) (9,6) (1, 2, 2) (10,7)
(2, 0, 1) (9,4) (2, 0, 2) (10,5) (1, 3, 0) (12,6)

(2, 1, 0) (12,4) (2, 0, 3) (11,6)
(2, 1, 1) (13,5)
(3, 0, 0) (17,4)

Z16

(1, 1, 0, 0) (9,4) (1, 0, 2, 0) (9,6) (1, 0, 2, 1) (10,7)
(1, 1, 0, 1) (10,5) (1, 1, 0, 2) (11,6)
(2, 0, 0, 0) (14,3) (1, 1, 1, 0) (13,5)

(2, 0, 0, 1) (15,4)

Z32

(1, 0, 1, 0, 0) (10,5) (1, 0, 0, 2, 0) (10,7)
(1, 0, 1, 0, 1) (11,6)
(1, 1, 0, 0, 0) (15,4)

Z64 (1, 0, 0, 1, 0, 0) (11,6)

Table 4.1: Rank and kernel for all nonlinear Z2s-linear Hadamard codes of
length 2t.

we have that the codes are pairwise nonequivalent, so we have a complete

classi�cation by using the rank and we can establish the following result.

Let Xt,s be the number of nonnegative integer solutions of the equation

t = (
∑s

i=1(s− i+ 1) · ti)− 1 with t1 ≥ 1, that is,

Xt,s = |{(t1, . . . , ts) ∈ Ns : t =

(
s∑
i=1

(s− i+ 1) · ti

)
− 1, t1 ≥ 1}|. (4.3)

Theorem 52. Let At,s be the number of nonequivalent Z2s-linear Hadamard

codes of length 2t. Then, for any t ≥ 3 and 2 ≤ s ≤ t− 1,

At,s ≤ Xt,s − 1.

Moreover, for any 3 ≤ t ≤ 11 and 2 ≤ s ≤ t− 1, this bound is tight.

Proof. Straightforward from Theorem 39, the proof of Theorem 49, and Ta-

bles 4.1, 4.4 and 4.5. QED

By Theorems 49 and 52 (or Tables 4.1, 4.4 and 4.5), we can obtain exactly

the number of nonequivalent Z2s-linear Hadamard codes of length 2t, for
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some values of t and s. Table 4.2 shows these numbers, for 3 ≤ t ≤ 11 and

2 ≤ s ≤ 9. The cases where the dimension of the kernel is not enough to

classify these codes are shown in bold type. However, in all these cases, the

rank can be used to obtain the classi�cation.

t 3 4 5 6 7 8 9 10 11
Z4 1 1 2 2 3 3 4 4 5
Z8 1 1 2 3 4 6 7 9 11

Z16 1 1 1 2 4 5 8 10 14

Z32 0 1 1 1 2 4 6 9 12

Z64 0 0 1 1 1 2 4 6 10

Z128 0 0 0 1 1 1 2 4 6
Z256 0 0 0 0 1 1 1 2 4
Z512 0 0 0 0 0 1 1 1 2

Table 4.2: NumberAt,s of nonequivalent Z2s-linear Hadamard codes of length
2t.

The values of At,2 given in Table 4.2 where already proved in [Kro01].

Speci�cally, in that paper, it is shown that there are b t−1
2
c nonequivalent

Z4-linear Hadamard codes of length 2t for all t ≥ 3. Next, we focus on estab-

lishing some relationships between the already known Z2s-linear Hadamard

codes with s = 2 and the ones with s > 2, once only the length 2t is �xed.

First, Example 53 shows that there are Z2s-linear Hadamard codes, with

s > 2, which are not equivalent to any Z4-linear Hadamard code. Then,

Example 54 also shows that there are Z4-linear Hadamard codes which are

not equivalent to any Z2s-linear Hadamard codes with s > 2.

Example 53. Let H2,0,0 be the Z8-linear Hadamard code of length 32 con-

sidered in Examples 33 and 48. Recall that ker(H2,0,0) = 3 by Theorem 46,

and hence H2,0,0 is nonlinear. It is known that there are three Z4-linear

Hadamard codes of length 32, H1,4, H2,2 and H3,0. The �rst two are linear,

and the last one has ker(H3,0) = 4 by Theorem 46 or [Kro01]. Hence, there

is no Z4-linear Hadamard code equivalent to the Z8-linear Hadamard code

H2,0,0.

Example 54. By Table 4.1, for t = 5, there are only two nonlinear Z2s-

linear Hadamard codes, H3,0 and H2,0,0. In Example 53, we have seen that
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they are not equivalent, since they have di�erent dimension of the kernel.

Other examples like this one can be found when t is odd. For example, by

Tables 4.1, 4.4 and 4.5, for t = 7, t = 9 and t = 11, there are Z4-linear

Hadamard codes, H4,0, H5,0 and H6,0, respectively, which are not equivalent

to any Z2s-linear Hadamard codes with s > 2 of the same length, by using

both invariants, the rank and the dimension of the kernel.

The classi�cation of Z2Z4-linear Hadamard codes of length 2t with α 6= 0

is given in [PRV06], where it is shown that there are b t
2
c nonequivalent of such

codes, for all t ≥ 3; and either the rank or the dimension of the kernel can be

used to classify them, like for Z4-linear Hadamard codes. Recall that there

are b t−1
2
c nonequivalent Z4-linear Hadamard codes of length 2t for all t ≥ 3

[Kro01]. However, in [KV15], it is shown that each Z2Z4-linear Hadamard

code with α = 0, that is, each Z4-linear Hadamard code, is equivalent to a

Z2Z4-linear Hadamard code with α 6= 0, so there are only b t
2
c nonequivalent

Z2Z4-linear Hadamard codes of length 2t.

The following example shows that there are Z2Z4-linear Hadamard codes

(with α 6= 0) which are not equivalent to any Z2s-linear Hadamard codes

with s ≥ 2.

Example 55. For t = 4, there is a Z2Z4-linear Hadamard code (with α 6= 0)

which is not equivalent to any Z4-linear Hadamard code [KV15]. This code

has parameters (r, k) = (6, 3) [PRV06], so it is not equivalent to any Z2s-

linear Hadamard code with s ≥ 2, since all of them are linear by Theorem

49. Other examples like this one can be found when t is even. For example,

for t = 6, t = 8 and t = 10, there is also a Z2Z4-linear Hadamard code (with

α 6= 0) which is not equivalent to any Z4-linear Hadamard code [KV15].

They have parameters (10, 4), (15, 5) and (21, 6) [PRV06], respectively, so

again they are not equivalent to any Z2s-linear Hadamard code with s ≥ 2 of

length 26, 28 and 210, respectively, by Tables 4.1, 4.4 and 4.5.

Finally, we focus on establishing how many nonequivalent Z2s-linear Hada-

mard codes of length 2t there are, once only the length 2t is �xed for some

values of t. First, we give some lower and upper bounds. From Tables 4.1,
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4.4 and 4.5, we can determine a lower bound (K) taking into account just

the dimension of the kernel. This lower bound can be improved (RK) if we

consider both invariants, the rank and the dimension of the kernel. Note

that there are codes having the same dimension of the kernel with di�erent

ranks (for t = 7, 8, 9, 10, 11), and codes having the same rank with di�erent

dimensions of the kernel (for t = 9, 10, 11). These results are summarized in

Table 4.3, where we give these bounds for all 3 ≤ t ≤ 11.

t 3 4 5 6 7 8 9 10 11
lower bound K 1 1 3 3 5 5 7 7 9
lower bound RK 1 1 3 3 6 7 11 13 20
upper bound 1 1 3 5 10 16 26 38 57

Table 4.3: Bounds for the number At of nonequivalent Z2s-linear Hadamard
codes of length 2t.

An upper bound can be given easily by considering all nonequivalent Z2s-

linear Hadamard codes of length 2t, once t and s are �xed, as it is shown in

the next theorem. These values for all 3 ≤ t ≤ 11 are also shown in Table

4.3.

Theorem 56. Let At,s be the number of nonequivalent Z2s-linear Hadamard

codes of length 2t. Let At be the number of nonequivalent Z2s-linear Hadamard

codes of length 2t, for any s ≥ 2. Then,

At ≤
t−2∑
s=2

(Xt,s − 2) + 1 (4.4)

and

At ≤
t−2∑
s=2

(At,s − 1) + 1. (4.5)

Theorem 57. There are exactly 1, 1, 3, 3 and 6 nonequivalent Z2s-linear

Hadamard codes of length 2t for t equal to 3, 4, 5, 6 and 7, respectively.

Proof. For t equal to 3, 4 and 5, the result is true, since the lower and upper

bounds given in Table 4.3 coincides. By using Magma [BCFS16], it is possible

to check that, for t = 6, both Z2s-linear Hadamard codes having the same



4.2. Partial classi�cation of Z2s-linear Hadamard codes 63

parameters (r, k) = (8, 5) are equivalent; and the ones having (r, k) = (9, 4)

are also equivalent. Therefore, in this case, the upper bound goes from 5 to

3, and then coincides with the lower bound given in Table 4.3. Similarly, or

t = 7, it is also possible to check that the codes having the same parameters

(r, k) are all equivalent, so the upper bound became equal to the lower bound

6, and the result also holds. QED
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t = 9 t = 10 t = 11
(t1, . . . , ts) (r, k) (t1, . . . , ts) (r, k) (t1, . . . , ts) (r, k)

Z4

(3, 4) (11,8) (3, 5) (12,9) (3, 6) (13,10)
(4, 2) (13,7) (4, 3) (14,8) (4, 4) (15,9)
(5, 0) (16,6) (5, 1) (17,7) (5, 2) (18,8)

(6, 0) (22,7)

Z8

(1, 2, 3) (11,8) (1, 2, 4) (12,9) (1, 2, 5) (13,10)
(1, 3, 1) (13,7) (1, 3, 2) (14,8) (1, 3, 3) (15,9)
(2, 0, 4) (12,7) (1, 4, 0) (17,7) (1, 4, 1) (18,8)
(2, 1, 2) (14,6) (2, 0, 5) (13,8) (2, 0, 6) (14,9)
(2, 2, 0) (17,5) (2, 1, 3) (15,7) (2, 1, 4) (16,8)
(3, 0, 1) (18,5) (2, 2, 1) (18,6) (2, 2, 2) (19,7)

(3, 0, 2) (19,6) (2, 3, 0) (23,6)
(3, 1, 0) (24,5) (3, 0, 3) (20,7)

(3, 1, 1) (25,6)
(4, 0, 0) (32,5)

Z16

(1, 0, 2, 2) (11,8) (1, 0, 2, 3) (12,9) (1, 0, 2, 4) (13,10)
(1, 0, 3, 0) (13,7) (1, 0, 3, 1) (14,8) (1, 0, 3, 2) (15,9)
(1, 2, 0, 0) (18,5) (1, 1, 0, 4) (13,8) (1, 0, 4, 0) (18,8)
(1, 1, 0, 3) (12,7) (1, 1, 1, 2) (15,7) (1, 1, 0, 5) (14,9)
(1, 1, 1, 1) (14,6) (1, 1, 2, 0) (18,6) (1, 1, 1, 3) (16,8)
(2, 0, 0, 2) (16,5) (1, 2, 0, 1) (19,6) (1, 1, 2, 1) (19,7)
(2, 0, 1, 0) (20,4) (2, 0, 0, 3) (17,6) (1, 2, 0, 2) (20,7)

(2, 0, 1, 1) (21,5) (1, 2, 1, 0) (25,6)
(2, 1, 0, 0) (28,4) (2, 0, 0, 4) (18,7)

(2, 0, 1, 2) (22,6)
(2, 0, 2, 0) (27,5)
(2, 1, 0, 1) (29,5)
(3, 0, 0, 0) (44,4)

Table 4.4: Rank and dimension of the kernel for all nonlinear Z2s-linear
Hadamard codes of length 2t.
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t = 9 t = 10 t = 11
(t1, . . . , ts) (r, k) (t1, . . . , ts) (r, k) (t1, . . . , ts) (r, k)

Z32

(1, 0, 0, 2, 1) (11,8) (1, 0, 0, 2, 2) (12,9) (1, 0, 0, 2, 3) (13,10)
(1, 0, 1, 0, 2) (12,7) (1, 0, 0, 3, 0) (14,8) (1, 0, 0, 3, 1) (15,9)
(1, 0, 1, 1, 0) (14,6) (1, 0, 1, 0, 3) (13,8) (1, 0, 1, 0, 4) (14,9)
(1, 1, 0, 0, 1) (16,5) (1, 0, 1, 1, 1) (15,7) (1, 0, 1, 1, 2) (16,8)
(2, 0, 0, 0, 0) (26,3) (1, 0, 2, 0, 0) (19,6) (1, 0, 1, 2, 0) (19,7)

(1, 1, 0, 0, 2) (17,6) (1, 0, 2, 0, 1) (20,7)
(1, 1, 0, 1, 0) (21,5) (1, 1, 0, 0, 3) (18,7)
(2, 0, 0, 0, 1) (27,4) (1, 1, 0, 1, 1) (22,6)

(1, 1, 1, 0, 0) (29,5)
(2, 0, 0, 0, 2) (28,5)
(2, 0, 0, 1, 0) (36,4)

Z64

(1, 0, 0, 0, 2, 0) (11,8) (1, 0, 0, 0, 2, 1) (12,9) (1, 0, 0, 0, 2, 2) (13,10)
(1, 0, 0, 1, 0, 1) (12,7) (1, 0, 0, 1, 0, 2) (13,8) (1, 0, 0, 0, 3, 0) (15,9)
(1, 0, 1, 0, 0, 0) (16,5) (1, 0, 0, 1, 1, 0) (15,7) (1, 0, 0, 1, 0, 3) (14,9)

(1, 0, 1, 0, 0, 1) (17,6) (1, 0, 0, 1, 1, 1) (16,8)
(1, 1, 0, 0, 0, 0) (27,4) (1, 0, 0, 2, 0, 0) (20,7)

(1, 0, 1, 0, 0, 2) (18,7)
(1, 0, 1, 0, 1, 0) (22,6)
(1, 1, 0, 0, 0, 1) (28,5)
(2, 0, 0, 0, 0, 0) (48,3)

Z128

(1, 0, 0, 0, 1, 0, 0) (12,7) (1, 0, 0, 0, 0, 2, 0) (12,9) (1, 0, 0, 0, 0, 2, 1) (13,10)
(1, 0, 0, 0, 1, 0, 1) (13,8) (1, 0, 0, 0, 1, 0, 2) (14,9)
(1, 0, 0, 1, 0, 0, 0) (17,6) (1, 0, 0, 0, 1, 1, 0) (16,8)

(1, 0, 0, 1, 0, 0, 1) (18,7)
(1, 0, 1, 0, 0, 0, 0) (28,5)

Z256

(1, 0, 0, 0, 0, 1, 0, 0) (13,8) (1, 0, 0, 0, 0, 0, 2, 0) (13,10)
(1, 0, 0, 0, 0, 1, 0, 1) (14,9)
(1, 0, 0, 0, 1, 0, 0, 0) (18,7)

Z512 (1, 0, 0, 0, 0, 0, 1, 0, 0) (14,9)

Table 4.5: Rank and dimension of the kernel for all nonlinear Z2s-linear
Hadamard codes of length 2t.





Chapter 5

Rank of Z8-linear Hadamard

codes

�All that is gold does not glitter, not all those

who wander are lost."

� J. R. R. Tolkien, The Lord of the Rings, The

Fellowship of the Ring

The classi�cation of the Z4-linear Hadamard codes by using the rank and

the dimension of the kernel is given in [Kro01, PRV06]. In fact, it is shown

that it is possible to classify these codes just by using one of these invariants.

In the previous chapter, in order to classify the Z2s-linear Hadamard codes,

we compute the kernel and its dimension for these codes and show that it is

not enough to obtain a complete classi�cation by using only this invariant.

The aim of this chapter is to classify the Z2s-linear Hadamard codes for

s ∈ {2, 3}. First, in Section 5.1, we compute the rank of the Z8-linear

Hadamard codes by giving a basis that generates their span when the codes

are nonlinear. Later, in Section 5.2, we show through an example that the

rank by itself is not enough to classify these codes. Nevertheless, we give a

complete classi�cation of the codes by using both invariants, the rank and

the dimension of the kernel. Finally, in Section 5.3, we �nd equivalences

among the Z4-linear and Z8-linear Hadamard codes and achieve the goal of

this chapter.
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5.1 Computation of the rank

The rank of a Z4-linear Hadamard code of type (2t−1; t1, t2), where t + 1 =

2t1 + t2, is 2t1 + t2 +
(
t1−1

2

)
if t1 > 2, and 2t1 + t2 if t1 = 1 or 2 by Proposition

12. In this section, we establish the rank of the Z8-linear Hadamard codes of

type (2t−2; t1, t2, t3), where t+ 1 = 3t1 + 2t2 + t3, in terms of the parameters

t1, t2 and t3 by �nding a set of linear independent vectors that generate the

span of these codes.

All results that we show on the Carlet's generalized Gray map are only

proved for s = 3, that is, for Z8-linear Hadamard codes. In this case, the

generalized Gray map φ : Z8 → Z4
2 is de�ned as follows:

φ(0) = (0, 0, 0, 0) φ(4) = (1, 1, 1, 1)

φ(1) = (0, 1, 0, 1) φ(5) = (1, 0, 1, 0)

φ(2) = (0, 0, 1, 1) φ(6) = (1, 1, 0, 0)

φ(3) = (0, 1, 1, 0) φ(7) = (1, 0, 0, 1).

The construction of the generator matrices of the Z2s-additive Hadamard

codes, given in Chapter 3, allows us to present the following remark in order

to make easier the comprehension of the proofs of the succeeding sections:

Remark 58. LetHt1,0,...,0 be a Z2s-additive Hadamard code of type (n; t1, 0, . . . ,

0). Let wi be the ith row of At1,0,...,0 with 1 ≤ i ≤ t1. Let

W =


wi1
...

wiq

 ,

where 2 ≤ i1 < · · · < iq ≤ t1. By construction, we have that each one of

the 2sq elements of Zq2s appears 2s(t1−1)

2sq
= 2s(t1−q−1) times as a column of W .

Therefore, there exists a permutation of coordinates ρ ∈ Sn such that

ρ(W ) =


w2

...

wq+1

 .
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Note also that wi is the 2s(t1−q−1)-fold replication of wq+1
i for all 2 ≤ i ≤ q+1.

Example 59. Let H4,0 be the Z4-linear Hadamard code of type (64; 4, 0)

generated by A4,0. Let

W =

(
w2

w4

)
=

(
u u u u u u u u u u u u u u u u

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

)
,

where u = 0123. Then, applying the permutation ρ = (5, 17)(6, 18)(7, 19)(8,

20)(9, 33)(10, 34)(11, 35)(12, 36)(13, 49)(14, 50)(15, 51)(16, 52)(25, 37)(26, 38)

(27, 39)(28, 40)(29, 53)(30, 54)(31, 55)(32, 56)(45, 57)(46, 58)(47, 59)(48, 60) ∈
S64, we have that

ρ(W ) =

(
w2

w3

)
=

(
u u u u u u u u u u u u u u u u

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

)
.

Proposition 60. Let t1, t2, . . . , ts be nonnegative integers with t1 ≥ 1. Then,

rank(Φ(Ht1,...,ts)) = ts + rank(Φ(Ht1,...,ts−1,0)).

Proof. We prove this result by induction on the integer ts ≥ 0. First, for

ts = 0, the result holds trivially.

Let H′ = Ht1,...,ts and H = Ht1,...,ts−1,ts−1. Let ts ≥ 1 and suppose that

the result is true for ts − 1. By the recursive construction (3.1), H′ can be

seen as the union of two cosets, that is, H′ = C0 ∪ C1, where C0 = (H,H)

and C1 = (H,H) + (0,2s−1). By Corollary 26, we have that Φ((H,H) +

(0,2s−1)) = Φ((H,H))+Φ((0,2s−1)), so rank(Φ(H′)) = 1+ rank(Φ(H)). By

the induction hypothesis, rank(Φ(H′)) = 1 + ts − 1 + rank(Φ(Ht1,...,ts−1,0)) =

ts + rank(Φ(Ht1,...,ts−1,0)). QED

Lemma 61. Let w, v ∈ Z2s such that ord(v) = 2i with i < s. Then, 2i−1((w+

v)� 2s−i) = 2i−1(w � 2s−i) + 2i−1(v � 2s−i).

Proof. The binary expansion of v and w+ v are [0, . . . , 0, 1, vs−i+1, . . . , vs−1]2

and [w0, . . . , ws−i + 1, (w + v)s−i+1, . . . , (w + v)s−1]2, respectively. Then, we

have that the binary expansion of w � 2s−i, v � 2s−i and (w + v) � 2s−i are

[0, . . . , ws−i, 0, . . . , 0]2, [0, . . . , 0, 1, 0, . . . , 0]2 and [0, . . . , 0, ws−i + 1, 0, . . . , 0]2,
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respectively. Note that, multiplying by 2i−1, the binary expansions are

[0, . . . , 0, ws−i]2, [0, . . . , 0, 1]2 and [0, . . . , 0, ws−i + 1]2, respectively. There-

fore, 2i−1(w � 2s−i) + 2i−1(v � 2s−i) = 2i−1((w + v)� 2s−i). QED

In order to simplify the notation in the following results, we de�ne µ(w) =

−2(w � 2) for any w ∈ Zn8 . Note that ord(µ(w)) = 2 if w 6= 0.

Lemma 62. Let w,v ∈ Zn8 such that ord(v) < 8. Then, µ(w + v) =

µ(w) + µ(v).

Proof. We may assume that v 6= 0. If ord(v) = 4, then 2((w + v) � 2) =

2(w�2)+2(v�2) by Lemma 61, so the result follows. Finally, if ord(v) = 2,

then the result also holds since v � 2 = 0 and (w + v)� 2 = w � 2. QED

Lemma 63. Let Ht1,0,0 be a Z8-additive Hadamard code of type (n; t1, 0, 0).

Let wi be the ith row of At1,0,0 with 1 ≤ i ≤ t1. Then,

µ(wi + wj + wk) =

µ(wi + wj) + µ(wi + wk) + µ(wj + wk) + µ(wi) + µ(wj) + µ(wk) (5.1)

for all 1 ≤ i < j < k ≤ t1. Furthermore, for all 2 ≤ i < j ≤ t1 and k ∈ Z8,

µ(k + wi + wj) =

µ(k + wi) + µ(k + wj) + µ(wi + wj) + µ(k) + µ(wi) + µ(wj).

Proof. First, consider the Z8-additive Hadamard code H4,0,0. In this case, it

is easy to check that µ(w4
i +w4

j +w4
k) = µ(w4

i +w4
j ) +µ(w4

i +w4
k) +µ(w4

j +

w4
k) + µ(w4

i ) + µ(w4
j ) + µ(w4

k) for all 1 ≤ i < j < k ≤ 4. Then, the result

follows by Remark 58 and the fact that w1, . . . ,w4 ∈ Ht1,0,0 are an 8t1−4-fold

replication of w4
1, . . . ,w

4
4 ∈ H4,0,0, respectively. By using the same argument,

the second equation also holds. QED

Let π8 ∈ Sn be the following permutation of coordinates:

π8 =
8t1−2−1∏
i=0

(8i+ 1, 8i+ 2, 8i+ 3, 8i+ 4, 8i+ 5, 8i+ 6, 8i+ 7, 8i+ 8), (5.2)



5.1. Computation of the rank 71

where n = 23t1−s. Let πk8 be the composition of π8, k times, i.e., πk8 = π8◦
(k)· · ·

◦π8. Note that πk8(w2) = w2 + k and πk8(wi) = wi for all i ∈ {3, . . . , q}.
Moreover, note that

πk8 ◦ µ = µ ◦ πk8 . (5.3)

Example 64. Let H2,0,0 be the Z8-linear Hadamard code of type (8; 2, 0, 0)

generated by A2,0,0. Let w2 = (0 1 2 3 4 5 6 7) be the second row of A2,0,0. Then,

we have that w2 + 1 = (0 1 2 3 4 5 6 7) + (1 1 1 1 1 1 1 1) = (1 2 3 4 5 6 7 0) =

π8(w2). By induction, we also have that πk8(w2) = πk−1
8 (w2+1) = πk−1

8 (w2)+

1 = w2 + k− 1 + 1 = w2 + k for any k ∈ Z8.

Lemma 65. Let Ht1,0,0 be a Z8-additive Hadamard code of type (n; t1, 0, 0).

Let wi be the ith row of At1,0,0 with 1 ≤ i ≤ t1. Let E ⊆ {1, . . . , t1}. Then,

µ(
∑
i∈E

wi) =
∑
i,j∈E
i<j

µ(wi + wj) + (|E| mod 2)
∑
i∈E

µ(wi).

Proof. Assume E ⊆ {2, . . . , t1}, and let q = |E|. By Remark 58, without

loss of generality, we can assume that E = {2, . . . , q + 1}. Now, we prove

this lemma by induction on the integer q ≥ 1.

For q = 1 the result holds. Assume q ≥ 2 and suppose that it is true for

q−1. Consider
∑q+1

i=2 wi =
∑q

i=2 wi+wq+1. Let y =
∑q

i=2 w
q
i . We have that∑q

i=2 wi = (y, . . . ,y) is the 8t1−q-fold replication of y. Then,
∑q+1

i=2 wi is the

8t1−q−1-fold replication of (y + 0,y + 1, . . . ,y + 7). The result holds if

µ(

q∑
i=2

wi + wq+1) =
∑

2≤i<j≤q+1

µ(wi + wj) + (q mod 2)

q+1∑
i=2

µ(wi). (5.4)

That is, for all k ∈ {0, . . . , 7}, we have to prove that

µ(y + k) = µ(

q∑
i=2

wq
i + k) =

∑
2≤i<j≤q

µ(wq
i + wq

j)+

+

q∑
i=2

µ(wq
i + k) + (q mod 2)(µ(k) +

q∑
i=2

µ(wq
i )). (5.5)
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Note that, by the induction hypothesis, the statement holds for
∑q

i=2 wi =

(y, . . . ,y) and hence,

µ(y) =
∑

2≤i<j≤q

µ(wq
i + wq

j) + ((q − 1) mod 2)

q∑
i=2

µ(wq
i ). (5.6)

Let π8 ∈ Sn be the permutation of coordinates de�ned in (5.2). We

have that µ(y + k) = µ(πk8(y)) = πk8(µ(y)) by the properties of πk8 and

(5.3). By applying (5.6), µ(y + k) =
∑

2≤i<j≤q π
k
8(µ(wq

i + wq
j)) + ((q −

1) mod 2)
∑q

i=2 π
k
8(µ(wq

i )). By using the properties of πk8 , we have that

µ(y + k) =
∑

3≤i<j≤q

µ(wq
i + wq

j)+

+

q∑
i=3

µ(wq
i + wq

2 + k) + ((q − 1) mod 2)(

q∑
i=3

µ(wq
i ) + µ(wq

2 + k)).

By Lemma 63, we have that µ(wq
i + wq

2 + k) = µ(wq
2 + k) + µ(wq

i + k) +

µ(wq
2 +wq

i ) +µ(wq
2) +µ(wq

i ) +µ(k). Therefore, µ(y+k) =
∑

2≤i<j≤q µ(wq
i +

wq
j) +

∑q
i=2 µ(wq

i + k) + (q mod 2)(µ(k) +
∑q

i=2 µ(wq
i )) and (5.5) holds.

Now, assume 1 ∈ E, and let q = |E|. By Remark 58, without loss of

generality, we can assume that E = {1, . . . , q}. In this case, when q = 1 the

result holds trivially since µ(w1) = 0. Assume q ≥ 2 and suppose that it is

true for q − 1. Consider
∑q

i=2 wi =
∑q−1

i=2 wi + wq. Let y =
∑q−1

i=2 w
q−1
i . We

have that
∑q−1

i=2 wi = (y, . . . ,y) is the 8t1−q+1-fold replication of y. Then,∑q
i=2 wi is the 8t1−q-fold replication of (y + 0,y + 1, . . . ,y + 7). Therefore,

w1 +
∑q

i=2 wi is the 8t1−q-fold replication of (y + 1,y + 2, . . . ,y + 7,y + 0).

Again, the result holds since (5.4) holds, that is, for all k ∈ {0, . . . , 7}, we
have that (5.5) holds. QED

Corollary 66. LetHt1,t2,t3 be a Z8-additive Hadamard code of type (n; t1, t2, t3).

Let wi be the ith row of At1,t2,t3, 1 ≤ i ≤ t1. Let E ⊆ {1, . . . , t1}. Then,

µ(
∑
i∈E

wi) =
∑
i,j∈E
i<j

µ(wi + wj) + (|E| mod 2)
∑
i∈E

µ(wi).
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Proof. Note that Ht1,t2,t3 contains the 22t2+t3-fold replication code of Ht1,0,0.

Therefore, the result follows from Lemma 65. QED

Proposition 67. Let t1 and t2 be nonnegative integers with t1 ≥ 1. Then,

rank(Φ(Ht1,t2+1,0)) = rank(Φ(Ht1,t2,0)) + 2t1 + t2 +
(
t1−1

2

)
.

Proof. By (3.1), the generator matrix of H′ = Ht1,t2+1,0 is

At1,t2+1,0 =

(
A A A A

0 2 4 6

)
,

whereA = At1,t2,0 is the generator matrix ofH = Ht1,t2,0. Let r = rank(Φ(H)).

Note that H′ can be seen as the union of four cosets of the 4-fold replication

code of H, (H,H,H,H), which are

C0 : (H, H, H, H)

C1 : (H, H, H, H) + (0, 2, 4, 6)

C2 : (H, H, H, H) + (0, 4, 0, 4)

C3 : (H, H, H, H) + (0, 6, 4, 2).

We have that rank(Φ(C0)) = rank(Φ(H)) = r. Let {Φ(g1), . . . ,Φ(gr)} be

a basis of 〈H〉. Then, a basis of 〈Φ(C0)〉 is {Φ(g′1), . . . ,Φ(g′r)}, where g′i =

(gi,gi,gi,gi) for all i ∈ {1, . . . , r}. By Corollary 26, we have that 〈Φ(C0 ∪
C2)〉 = 〈Φ(g′1), . . . , Φ(g′r),Φ((0,4,0,4))〉. Note that, if u′ ∈ C3, then u′ =

(u,u+6,u+4,u+2) = (u,u+2,u+4,u+6)+(0,4,0,4) with u ∈ H. Thus,
it is easy to see that 〈Φ(H′)〉 = 〈Φ(C0 ∪C1 ∪C2 ∪C3)〉 = 〈Φ(C0 ∪C1 ∪C2)〉,
again by Corollary 26.

Let u′ = (u,u,u,u) ∈ C0, u ∈ H, and v′ = (0,2,4,6). By Proposition

19, we know that Φ(u′)+Φ(v′) = Φ(u′+v′−2(u′�v′)). Since −2(u′�v′) is a
vector of order 2, we have that Φ(u′+v′) = Φ(u′)+Φ(v′)+Φ(−2(u′�v′)) by
Corollary 26. Let M ′ = {−2(u′ � v′) : u′ ∈ C0} = {(0, µ(u), 0, µ(u)) : u ∈
H}. Then, 〈Φ(H′)〉 = 〈Φ(g′1), . . . ,Φ(g′r),Φ((0,4,0,4)),Φ(v′),Φ(M ′)〉. Note
that, if u = 2 ∈ H, then u′ = 2 ∈ C0 and −2(u′ � v′) = (0,4,0,4) ∈ M ′.

Thus, 〈Φ(H′)〉 = 〈Φ(g′1), . . . ,Φ(g′r),Φ(v′),Φ(M ′)〉. It is easy to see that
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Φ(v′) and the elements of {Φ(g′1), . . . ,Φ(g′r)} and Φ(M ′) are linearly in-

dependent, because of the form of every g′i, i ∈ {1, . . . , r}, and the el-

ements of M ′. Therefore, rank(Φ(H′)) = r + 1 + dim(〈Φ(M ′)〉). Since

M ′ = {(0, µ(u),0, µ(u)) : u ∈ H}, dim(〈Φ(M ′)〉) = dim(〈Φ(M)〉), where
M = {µ(u) : u ∈ H}.

Let wi be the ith row of At1,t2,0, i ∈ {1, . . . , t1}, and vj the (t1 + j)th row,

j ∈ {1, . . . , t2}. Note that ord(wi) = 8 and ord(vj) = 4 for all i ∈ {1, . . . , t1}
and j ∈ {1, . . . , t2}. Then, B2 = {w1, . . . ,wt1 ,v1, . . . ,vt2 , 2w1, . . . , 2wt1 ,

2v1, . . . , 2vt2 , 4w1, . . . , 4wt1} is a 2-base of H. Let u ∈ H. We know that

u =
∑3t1+2t2

i=1 λibi, where bi ∈ B2 is the ith element of B2 and λi ∈ {0, 1}. By
Lemma 62 and the fact that µ(2vj) = µ(4wi) = 0 for all i ∈ {1, . . . , t1} and
j ∈ {1, . . . , t2}, we have that µ(u) = µ(

∑t1
i=1 λibi) +

∑2t1+t2
i=t1+1 µ(λibi). Let

E = {1 ≤ i ≤ t1 : λi 6= 0}. Since bi = wi for all i ∈ {1, . . . , t1}, by Corollary

66,

µ(

t1∑
i=1

λibi) =
∑
i,j∈E
i<j

µ(wi + wj) + (|E| mod 2)
∑
i∈E

µ(wi).

Moreover, since w1 = 1, we have that µ(w1) = 0 and it is easy to check that

µ(w1 + wi) = µ(wi) + µ(2wi) = µ(bi) + µ(bt1+t2+i) for all i ∈ {2, . . . , t1}.
Therefore,

µ(u) =
∑

i,j∈E\{1}
i<j

µ(bi + bj) +

2t1+t2∑
i=2

µ(λ′ibi)

for some λ′i ∈ {0, 1}. Let M1 = {µ(bi + bj) : 2 ≤ i < j ≤ t1} and M2 =

{µ(bi) : 2 ≤ i ≤ 2t1 + t2}. Recall that ord(µ(w)) = 2 for all w 6= 0. Then,

by Corollary 26, dim(〈Φ(M)〉) = dim(〈Φ(M1),Φ(M2)〉). Since the elements

in Φ(M1) ∪ Φ(M2) are linearly independent, we have that rank(Φ(H′)) =

r + 1 + 2t1 + t2 − 1 +
(
t1−1

2

)
= r + 2t1 + t2 +

(
t1−1

2

)
. QED

Lemma 68. Let q be a positive integer and [q0, q1, q2, . . .]2 its binary expan-

sion. Then,
(
q−1

3

)
+ q0

(
q−1

2

)
+ (q0 + q1)(q − 1) + q0(q0 + q1) ≡ 1 mod 2.

Proof. If q ≡ 0 mod 4, then q0 = q1 = 0 and
(
q−1

3

)
≡ 1 mod 2 since (q− 2)/2,

q−1 and q−3 are odd numbers. Similarly, if q ≡ 1 mod 4, then q0 = 1, q1 = 0
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and
(
q−1

3

)
+
(
q−1

2

)
+(q−1)+1 ≡ 0+0+0+1 ≡ 1 mod 2. If q ≡ 2 mod 4, then

q0 = 0, q1 = 1 and
(
q−1

3

)
+ (q−1) ≡ 0 + 1 ≡ 1 mod 2. Finally, if q ≡ 3 mod 4,

then q1 = 1, q1 = 1 and
(
q−1

3

)
+
(
q−1

2

)
≡ 0 + 1 ≡ 1 mod 2. QED

Lemma 69. Let q be a positive integer and [q0, q1, q2, . . .]2 its binary expan-

sion. Then,

(i) q − 4 ≡ q0 mod 2,

(ii)
(
q−4

2

)
≡ q1 mod 2,

(iii)
(
q−3

2

)
≡ q0 + q1 mod 2,

(iv)
(
q−2

3

)
≡ q0(q0 + q1) mod 2.

Proof. These congruences can be proved easily considering the di�erent val-

ues of q modulo 4, as in the proof of Lemma 68. QED

Lemma 70. Let Ht1,0,0 be a Z8-additive Hadamard code of type (n; t1, 0, 0).

Let E ⊆ {1, . . . , t1}, q = |E| and [q0, q1, q2, . . .]2 the binary expansion of q.

Let wi be the ith row of At1,0,0, i ∈ E. Then,

Φ(
∑
i∈E

wi) =
∑

i,j,k,p∈E
i<j<k<p

Φ(wi + wj + wk + wp) + q0(
∑
i,j,k∈E
i<j<k

Φ(wi + wj + wk))+

+ (q0 + q1)(
∑
i,j∈E
i<j

Φ(wi + wj)) + q0(q0 + q1)(
∑
i∈E

Φ(wi)).

Proof. First, assume E ⊆ {2, . . . , t1}, and let q = |E|. By Remark 58,

without loss of generality, we can assume that E = {2, . . . , q + 1}. Now, we
prove this lemma by induction on the integer q ≥ 1.

For q ≤ 5, it is easy to check that the result holds. Note that, for

q = 5, it is enough to check the result for w6
2, . . . ,w

6
6. Assume q ≥ 6 and

suppose that the statement is true for |E| = q − 1. Consider
∑q+1

i=2 wi =∑q
i=2 wi + wq+1. Let y =

∑q
i=2 w

q
i . We have that

∑q
i=2 wi = (y, . . . ,y) is

the 8t1−q−2-fold replication of y. Then,
∑q+1

i=2 wi is the 8t1−q−1-fold replication
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of (y + 0,y + 1, . . . ,y + 7). The result holds if

Φ(

q∑
i=2

wq
i + k) =

∑
2≤i<j<k<p≤q

Φ(wq
i + wq

j + wq
k + wq

p)+∑
2≤i<j<k≤q

Φ(wq
i + wq

j + wq
k + k)+

q0

( ∑
2≤i<j<k≤q

Φ(wq
i + wq

j + wq
k) +

∑
2≤i<j≤q

Φ(wq
i + wq

j + k)
)
+

(q0 + q1)
( ∑

2≤i<j≤q

Φ(wq
i + wq

j) +

q∑
i=2

Φ(wq
i + k)

)
+

q0(q0 + q1)
( q∑
i=2

Φ(wq
i ) + Φ(k)

)
(5.7)

for all k ∈ {0, . . . , 7}.

Let π8 ∈ Sn be the permutation of coordinates de�ned in (5.2). Let

π̃k8 ∈ S4n be a permutation such that Φ ◦ πk8 = π̃k8 ◦ Φ. We have that

Φ(
∑q

i=2 w
q
i + k) = Φ(πk8(

∑q
i=2 w

q
i )) = π̃k8(Φ(

∑q
i=2 w

q
i )) by the properties of

πk8 . By induction, taking into account that (q − 1)0 ≡ q0 + 1 mod 2 and

(q − 1)1 ≡ q0 + q1 + 1 mod 2, and using again the properties of πk8 and the

fact that Φ ◦ πk8 = π̃k8 ◦ Φ, we have that

Φ(

q∑
i=2

wi + k) =
∑

3≤i<j<r<p≤q

Φ(wq
i + wq

j + wq
r + wq

p)+∑
3≤i<j<r≤q

Φ(wq
2 + wq

i + wq
j + wq

r + k) + (q0 + 1)
∑

3≤i<j<r≤q

Φ(wq
i + wq

j + wq
r)+

(q0 + 1)
∑

3≤i<j≤q

Φ(wq
2 + wq

i + wq
j + k) + q1

∑
3≤i<j≤q

Φ(wq
i + wq

j)+

q1

q∑
i=3

Φ(wq
2 + wq

i + k) + q1(q0 + 1)

q∑
i=3

Φ(wq
i ) + q1(q0 + 1)Φ(w2 + k). (5.8)

By applying again the induction hypothesis to Φ(wq
2 +wq

i +wq
j +wq

r+k), and

noting that for any z ∈ Zn8 we have
∑

3≤i<j<r≤q
∑

x,y∈{i,j,r}, x<y Φ(z + wq
x +

wq
y) = (q−4)

∑
3≤i<j≤q Φ(z+wq

i +wq
j) and

∑
3≤i<j<r≤q

∑
x∈{i,j,r}Φ(z+wq

x) =
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(
q−3

2

)∑q
i=3 Φ(z + wq

i ), we obtain that

∑
3≤i<j<r≤q

Φ(wq
2 + wq

i + wq
j + wq

r + k) =
∑

3≤i<j<r≤q

Φ(wq
2 + wq

i + wq
j + wq

r)+

(q − 4)
∑

3≤i<j≤q

Φ(wq
2 + wq

i + wq
j + k) +

∑
3≤i<j<r≤q

Φ(wq
i + wq

j + wq
r + k)+∑

3≤i<j<r≤q

Φ(wq
i + wq

j + wq
r) + (q − 4)

∑
3≤i<j≤q

Φ(wq
2 + wq

i + wq
j)+(

q − 3

2

) q∑
i=3

Φ(wq
2 + wq

i + k) + (q − 4)
∑

3≤i<j≤q

Φ(wq
i + wq

j + k)+

(q−4)
∑

3≤i<j≤q

Φ(wq
i + wq

j)+

(
q − 3

2

) q∑
i=3

Φ(wq
2 + wq

i )+

(
q − 3

2

) q∑
i=3

Φ(wq
i + k)+

(
q − 2

3

)
Φ(w2 +k) +

(
q − 3

2

) q∑
i=3

Φ(wq
i ) +

(
q − 2

3

)
Φ(w2) +

(
q − 2

3

)
Φ(k).

(5.9)

By replacing (5.9) into expression (5.8), and using items (i), (iii) and (iv) of

Lemma 69, we have that (5.7) holds.

Finally, consider 1 ∈ E. By Remark 58, we can assume that E =

{1, . . . , q}. Then, Φ(
∑

i∈E wi) = Φ(
∑q

i=2 wi + 1), and we can apply the

same arguments as above. QED

The previous lemma also works when repeated elements appear in the

sum, as shown in the next result.

Lemma 71. Let Ht1,0,0 be a Z8-additive Hadamard code of type (n; t1, 0, 0).

Let q ∈ Z and [q0, q1, q2, . . .]2 its binary expansion. Let wi be the ith row of

At1,0,0. Then,

Φ(

q∑
i=1

si) =
∑

1≤i<j<k<p≤q

Φ(si + sj + sk + sp) + q0(
∑

1≤i<j<k≤q

Φ(si + sj + sk))+

+ (q0 + q1)(
∑

1≤i<j≤q

Φ(si + sj)) + q0(q0 + q1)(

q∑
i=1

Φ(si)),
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where si ∈ {w1,w2, . . . ,wt1} for all i ∈ {1, 2, . . . , q}.

Proof. We prove this lemma by induction on the integer q ≥ 1. It is easy

to check by computer that for q ≤ 5 the result holds. Assume q ≥ 6 and

suppose that the statement is true for all positive integers until q − 1.

Let ri be the multiplicity of wi, i ∈ {1, . . . , t1}, that is, the number

of elements wi that appear in the multiset S = {s1, . . . , sq}. If there is

an element wi with multiplicity ri ≥ 4, then we may consider that sq =

sq−1 = sq−2 = sq−3 = wi. Note that the right-hand side of the equation of

the statement can be easily rewritten by replacing q by q − 4 and adding

Φ(4wj). Moreover, by Corollary 26, the left-hand side of the equation is

Φ(
∑q−4

i=1 si) + Φ(4wj). Therefore, we may assume that ri ≤ 3 for all i ∈
{1, . . . , t1}.

LetW be the set containing the elements of S without repetition. On the

one hand, ifw1 6∈ S, taking into account the multiplicity of each element inW

and Remark 58, we may assume thatW = {w2, . . . ,wd}, where r2 ≤ · · · ≤ rd

and s1 = · · · = sr2 = w2, . . . , sq−rd+1 = · · · = sq = wd. On the other hand,

if w1 ∈ S, we assume that q > r1 + r2. Otherwise, if q = r1 + r2, since

q ≥ 6 and r1, r2 ≤ 3, then we have to show that the statement is true for

Φ(w2+w2+w2+w1+w1+w1), which can be checked easily. Since q > r1+r2,

we can order all elements s1, . . . , sq as above, placing the r1 vectors w1 just

before the rd vectors wd.

Consider
∑q

i=1 si =
∑q−(r1+rd)

i=1 si+
∑r1

i=1 w1+
∑rd

i=1 wd. Let y =
∑q−(r1+rd)

i=1

sd−1
i . We have that

∑q−(r1+rd)
i=1 si = (y, . . . ,y) is a fold replication of y. Then,∑q

i=1 si is a fold replication of

(y + r1w
d−1
1 + 0,y + r1w

d−1
1 + 1+

(rd)· · · +1, . . . ,y + r1w
d−1
1 + 7+

(rd)· · · +7) =

(y + r11,y + (r1 + rd)1, . . . ,y + (r1 + 7rd)1).

The result holds if the statement is true for Φ(
∑q−(r1+rd)

i=1 sd−1
i +(r1 +k ·rd)1)

for all k ∈ {0, . . . , 7}. Moreover, as before, we may assume that r1+k ·rd < 4,

so we have to check that the statement is true for Φ(
∑q−(r1+rd)

i=1 sd−1
i + r̄wd−1

1 ),

where r̄ = (r1 + k · rd) mod 4, or equivalently for Φ(
∑q−(r1+rd)+r̄

i=1 sd−1
i ), where
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si = w1 for all i ∈ {q − (r1 + rd) + 1, . . . , q − (r1 + rd) + r̄} if r̄ ≥ 1.

If r1 + rd − r̄ > 0, we can apply the induction hypothesis to obtain

the result. Otherwise, let π8 =
∏8t1−2−1

i=0 (8i + 1, 8i + 2, 8i + 3, 8i + 4, 8i +

5, 8i + 6, 8i + 7, 8i + 8) ∈ Sn be a permutation of coordinates. Note that

π8(w2) = w2 + 1 and π8(wj) = wj for all j ∈ {3, . . . , d}. Let π̃8 ∈ S4n be a

permutation such that Φ◦π8 = π̃8◦Φ. Therefore, we have that Φ(
∑r2

i=1 w
d−1
2 +∑q−(r1+rd)

i=r2+1 sd−1
i + (r̄ − r2)1 + r21) = Φ(π8(

∑r2
i=1 w

d−1
2 +

∑q−(r1+rd)
i=r2+1 sd−1

i +

(r̄ − r2)1)) = π̃8(Φ(
∑r2

i=1 w
d−1
2 +

∑q−(r1+rd)
i=r2+1 sd−1

i + (r̄ − r2)1)). Note that

r̄ ≥ r1 + rd ≥ rd ≥ r2. Then, considering sd−1
i = w1 for all i ∈ {q − (r1 +

rd) + 1, . . . , q − (r1 + rd) + (r̄ − r2)} if r̄ − r2 ≥ 1, it is enough to show the

statement for π̃8(Φ(
∑r2

i=1 w
d−1
2 +

∑q−(r1+rd−r̄+r2)
i=r2+1 sd−1

i )) = π̃8(Φ(
∑q−r∗

i=1 sd−1
i )),

where r∗ = r1 + r2 + rd − r̄.

Now, in order to be able to apply the hypothesis induction to Φ(
∑q−r∗

i=1 sd−1
i ),

we have to verify that r∗ > 0. First, note that if ri ∈ {0, 1} for all

i ∈ {1, . . . , t1}, then the statement is true by Lemma 70. Therefore, we can

assume that for some i ∈ {1, . . . , t1}, ri ≥ 2, so at least one of r1 or rd must

be greater than 1. We also have that r2, rd ∈ {1, 2, 3} and r1 ∈ {0, 1, 2, 3}.
On the one hand, if r1 = 0, we have that rd ∈ {2, 3}. Then, if r̄ < 3, clearly

r∗ > 0; and if r̄ = 3, k · rd = 3 mod 4 which implies that rd = 3 and r∗ > 0.

On the other hand, if r1 > 0, rd ∈ {1, 2, 3} and r1 + r2 + rd > 3 which also

gives that r∗ > 0.

With the aim of verifying the statement, we consider π̃8(Φ(
∑q−r∗

i=1 sd−1
i ))

under di�erent cases depending on the value of r2 ∈ {1, 2, 3}. First, consider
that r2 = 1, i.e., s1 = w2 and si 6= w2 for all i ∈ {2, 3, . . . , q}. Then, by

using the same arguments as in the proof of Lemma 70, we have that the

result holds. Next, consider that r2 = 2. By induction hypothesis, taking

into account that (q− 2)0 ≡ q0 mod 2 and (q− 2)1 ≡ q1 + 1 mod 2, and using
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again the properties of π8 and the fact that Φ ◦ π8 = π̃8 ◦ Φ, we have that

Φ(wd
2 + wd

2 +

q−2∑
i=3

sqi + 1 + 1) =∑
3≤i<j<k<p≤q−2

Φ(sdi + sdj + sdk + sdp) +
∑

3≤i<j≤q−2

Φ(wd
2 +wd

2 + sdi + sdj + 1+ 1)+

q0

[ ∑
3≤i<j<k≤q−2

Φ(sdi + sdj + sdk) +
∑

3≤i≤q−2

Φ(wd
2 + wd

2 + sdi + 1 + 1)
]
+

(q0 + q1 + 1)
[ ∑

3≤i<j≤q−2

Φ(sdi + sdj ) + Φ(wd
2 + wd

2 + 1 + 1)
]
+

q0(q0 + q1 + 1)
∑

3≤i≤q−2

Φ(sdi ). (5.10)

By applying again the induction hypothesis to the terms of (5.10) having

more than four addends, that is, Φ(wd
2 +wd

2 + sdi + 1+ 1) and Φ(wd
2 +wd

2 +

sdi + sdj + 1 + 1), we obtain that

∑
3≤i≤q−2

Φ(wd
2 + wd

2 + sdi + 1 + 1) =
∑

3≤i≤q−2

Φ(sdi )+∑
3≤i≤q−2

Φ(wd
2 + wd

2 + sdi ) +
∑

3≤i≤q−2

Φ(sdi + 1 + 1)+

(q − 4)
[
Φ(wd

2 + wd
2 + 1 + 1) + Φ(wd

2 + wd
2) + Φ(1 + 1)

]
(5.11)

and

∑
3≤i<j≤q−2

Φ(wd
2 + wd

2 + sdi + sdj + 1 + 1) =
∑

3≤i<j≤q−2

Φ(sdi + sdj )+∑
3≤i<j≤q−2

Φ(wd
2 + wd

2 + sdi + sdj ) +
∑

3≤i<j≤q−2

Φ(sdi + sdj + 1 + 1)+(
q − 4

2

)[
Φ(wd

2 + wd
2 + 1 + 1) + Φ(wd

2 + wd
2) + Φ(1 + 1)

]
. (5.12)

By replacing (5.11) and (5.12) into expression (5.10), and using items (i) and
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(ii) of Lemma 69, we have that (5.10) is equal to

∑
3≤i<j<k<p≤q−2

Φ(sdi + sdj + sdk + sdp) +
∑

3≤i<j≤q−2

Φ(wd
2 + wd

2 + sdi + sdj )+∑
3≤i<j≤q−2

Φ(sdi + sdj + 1 + 1) + Φ(wd
2 + wd

2 + 1 + 1)+

q0

[ ∑
3≤i<j≤q−2

Φ(sdi + sdj )
∑

3≤i≤q−2

Φ(wd
2 + wd

2 + sdi )
∑

3≤i≤q−2

Φ(sdi + 1 + 1)
]
+

(q0 + q1)
[ ∑

3≤i<j≤q−2

Φ(sdi + sdj ) + Φ(wd
2 + wd

2) + Φ(1 + 1)
]
+

q0(q0 + q1)
∑

3≤i≤q−2

Φ(sdi ).

Note that all the terms that are missing in order to obtain the result appear

repeated in pairs, so they sum zero. Finally, the case with r2 = 3 can also

be proved by using similar arguments. Therefore, the result holds. QED

Lemma 72. Let Ht1,0,0 be a Z8-additive Hadamard code of type (n; t1, 0, 0).

Let wi be the ith row of At1,0,0, 1 ≤ i ≤ t1. Then, given i, j, k ∈ {1, . . . , t1},

Φ(2wi + wj + wk) + Φ(wi + 2wj + wk) =

Φ(wi) + Φ(wj) + Φ(2wi) + Φ(2wj) + Φ(wi + wk) + Φ(wj + wk)+

+ Φ(2wi + wk) + Φ(2wj + wk) + Φ(2wj + wi) + Φ(2wi + wj). (5.13)

Proof. Suppose that 2 ≤ i < j < k. By Remark 58, it is enough to see that

(5.13) holds for w2,w3,w4. In fact, it is enough to show that it is true for

w3
2,w

3
3,k for all k ∈ {0, 1, . . . , 7}. Let A be the right-hand side of (5.13).

On the one hand, if wk = k, we need to show that

Φ(2w3
2 + w3

3 + k) + Φ(w3
2 + 2w3

3 + k) =

Φ(w3
2) + Φ(w3

3) + Φ(2w3
2) + Φ(2w3

3) + Φ(w3
2 + k) + Φ(w3

3 + k)+

+ Φ(2w3
2 + k) + Φ(2w3

3 + k) + Φ(2w3
3 + w3

2) + Φ(2w3
2 + w3

3) (5.14)

for all k ∈ {0, 1, . . . , 7}. Let A1 be the right-hand side of (5.14). First,
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for k = 0, it is easy to see that (5.14) holds. Note that, by Proposition

19, Φ(2wi + 1) = Φ(2wi) + Φ(1) for all 1 ≤ i ≤ t1. Then, for k = 1,

A1 = Φ(w3
2)+Φ(w3

3)+Φ(w3
2 +1)+Φ(w3

3 +1)+Φ(2w3
3 +w3

2)+Φ(2w3
2 +w3

3).

By the same proposition, we also have that Φ(wi)+Φ(wi+2wj) = Φ(2wj)+

Φ(−2(wi � 2wj)) for all i, j ∈ {2, 3}. Thus,

A1 = Φ(2w3
2) + Φ(2w3

3) + Φ(w3
2 + 1) + Φ(w3

3 + 1)+

+ Φ(−2(2w3
3 �w3

2)) + Φ(−2(2w3
2 �w3

3)).

Again, by Proposition 19, Φ(2wi)+Φ(wj+1) = Φ(2wi+wj+1)+Φ(−2(2wi�
(wj + 1))) for all i, j ∈ {2, 3}, so

A1 = Φ(2w3
2+w3

3+1)+Φ(w3
2+2w3

3+1)+Φ(−2(2w3
3�w3

2))+Φ(−2(2w3
2�w3

3))+

+ Φ(−2(2w3
3 � (w3

2 + 1))) + Φ(−2(2w3
2 � (w3

3 + 1))).

Let x = (0, 0, 4, 4, 0, 0, 4, 4), y = (0, 4, 4, 0, 0, 4, 4, 0), and z = (0, 4, 0, 4, 0, 4, 0, 4).

It is easy to check that

−2(2w3
3 �w3

2) = (0,x,0,x,0,x,0,x)

−2(2w3
3 � (w3

2 + 1)) = (0,y,0,y,0,y,0,y)

−2(2w3
2 �w3

3) = (0,0, z, z,0,0, z, z)

−2(2w3
2 � (w3

3 + 1)) = (0, z, z,0,0, z, z,0).

(5.15)

The sum of the four vectors in (5.15) is zero, since x + y + z = 0, so A1 =

Φ(2w3
2+w3

3+1)+Φ(w3
2+2w3

3+1) and (5.14) holds. For k = 2, it is easy to see

that the result holds by Lemma 71. For k = 3, it follows also from Lemma 71,

the previous result for k = 1, and the fact that Φ(2wi+1) = Φ(2wi)+Φ(1) for

all 1 ≤ i ≤ t1. Finally, for the rest of the cases, if wk = k+4, k ∈ {0, 1, 2, 3},
then Φ(2w2 + w3 + k + 4) + Φ(w2 + 2w3 + k + 4) = Φ(2w2 + w3 + k) +

Φ(w2 + 2w3 + k) and the result holds since wk appears 4 times in A.
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On the other hand, if wi = k (or wj = k), we need to show that

Φ(2k + w3
2 + w3

3) + Φ(k + 2w3
2 + w3

3) =

Φ(k) + Φ(w3
2) + Φ(2k) + Φ(2w3

2) + Φ(k + w3
3) + Φ(w3

2 + w3
3)+

+ Φ(2k + w3
3) + Φ(2w3

2 + w3
3) + Φ(2w3

2 + k) + Φ(2k + w3
2) (5.16)

for all k ∈ {0, 1, . . . , 7}. Let A2 be the right-hand side of (5.16). First, for

k = 0, it is easy to see that (5.16) holds. For k = 1, by applying Proposition

19 to Φ(w3
2 + w3

3) + Φ(2) and Φ(w3
3 + 1) + Φ(2w3

2), we have that

A2 = Φ(2 + w3
2 + w3

3) + Φ(1 + 2w3
2 + w3

3)

+ Φ(−2((w3
2 + w3

3)� 2)) + Φ(−2((w3
3 + 1)� 2w3

2)) + Φ(1) + Φ(w3
2)

+ Φ(2 + w3
3) + Φ(2w3

2 + w3
3) + Φ(2w3

2 + 1) + Φ(2 + w3
2).

Again, applying Proposition 19 to the terms Φ(2+w3
3), Φ(2w3

2+w3
3), Φ(2w3

2+

1) and Φ(2 + w3
2) of A2, we obtain that

A2 = Φ(2 + w3
2 + w3

3) + Φ(1 + 2w3
2 + w3

3)

+ Φ(−2((w3
2 + w3

3)� 2)) + Φ(−2((w3
3 + 1)� 2w3

2))

+ Φ(−2(2�w3
3)) + Φ(−2(2w3

2 �w3
3)) + Φ(−2(2�w3

2)).

It is easy to check that

Φ(−2((w3
2 + w3

3)� 2)) = (x,y,x + 4,y + 4,x,y,x + 4,y + 4)

Φ(−2((w3
3 + 1)� 2w3

2)) = (0, z, z,0,0, z, z,0)

Φ(−2(2w3
2 �w3

3)) = (0,0, z, z,0,0, z, z)

Φ(−2(2�w3
3)) = (0,0,4,4,0,0,4,4)

Φ(−2(2�w3
2)) = (x,x,x,x,x,x,x,x).

(5.17)

The sum of the �ve vectors in (5.17) is zero, since x + y + z = 0, so A2 =

Φ(2 + w3
2 + w3

3) + Φ(1 + 2w3
2 + w3

3) and (5.16) holds. For k ∈ {2, 3}, it
is easy to see that the result holds by Lemma 71. Finally, if wi = k + 4,
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k ∈ {0, 1, 2, 3}, then Φ(2k + 8 + w2 + w3) + Φ(k + 4 + 2w2 + w3) = Φ(4) +

Φ(2k+w2 +w3) + Φ(k+ 2w2 +w3) and the result follows since wi appears

3 times in A.

Now, suppose that some of the elements i, j, k are equal. If i = j = k or

i = j, then (5.13) holds trivially. If i = k (or j = k), then it is enough to

show that

Φ(3k + w2
2) + Φ(2k + 2w2

2) =

Φ(k) + Φ(w2
2) + Φ(2w2

2) + Φ(3k) + Φ(k + w2
2) + Φ(2k + w2

2) (5.18)

for all k ∈ {0, 1, . . . , 7}. Let A3 be the right-hand side of (5.18). First, for

k = 0, it is easy to see that (5.18) holds. For k = 1, note that, by Proposition

19, Φ(2) = Φ(3) + Φ(1) and Φ(w2) + Φ(2) + Φ(w2 + 2) = Φ(−2(w2 � 2)).

Therefore,

A3 = Φ(2w2
2) + Φ(w2

2 + 1) + Φ(−2(w2
2 � 2))

= Φ(2w2
2) + Φ(2) + Φ(w2

2 + 1) + Φ(2) + Φ(−2(w2
2 � 2)).

Again, by Proposition 19, we have that

A3 = Φ(2w2
2 + 2) + Φ(w2

2 + 3) + Φ(−2(w2
2 � 2))+

+ Φ(−2(2w2
2 � 2)) + Φ(−2((w2

2 + 1)� 2)).

It is easy to check that the sum of the three last terms is x + z + y = 0. In

a similar way, it holds for k = 3. The rest of the cases, k ∈ {2, 4, 5, 6, 7}, can
also be checked easily, so (5.18) holds.

Now, we consider that, at least one of i, j, k is equal to 1. If i = j = k = 1,

or i = j = 1, then the result is trivial. If i = k = 1 (or j = k = 1), the result

is equivalent to prove (5.18) with k = 1. Finally, if k = 1, it is equivalent

to (5.14) with k = 1, and if i = 1 (or j = 1), it is equivalent to (5.16) with

k = 1. Therefore, the result holds. QED

Lemma 73. Let Ht1,0,0 be a Z8-additive Hadamard code of type (n; t1, 0, 0).
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Let wi be the ith row of At1,0,0, 1 ≤ i ≤ t1. Then, given i, j, k ∈ {1, . . . , t1},

Φ(wi + wj + 1) = Φ(2wi) + Φ(2wj) + Φ(1) + Φ(wi + 1)+

+ Φ(wj + 1) + Φ(wi + wj) + Φ(2wi + wj) + Φ(wi + 2wj),

Φ(wi + wj + wk + 1) = Φ(wi + 1) + Φ(wi + wj) + Φ(wi + 2wj)+

+ Φ(2wi + wj) + Φ(wj + 1) + Φ(wk) + Φ(2wk) + Φ(wk + 1)+

+ Φ(2wi + wk) + Φ(2wj + wk) + Φ(wi + wj + 2wk) + Φ(wi + wj + wk).

Proof. First, if 2 ≤ i < j < k, by Remark 58, the above equations can

be showed to be true by checking that they hold for w3
2,w

3
3,k for all k ∈

{0, 1, . . . , 7}. It is also easy to see that they hold if some of the elements

i, j, k are equal, or at least one of them is equal to 1. QED

Lemma 74. Let Ht1,t2,t3 be a Z8-additive Hadamard code of type (n; t1, t2, t3).

Let w be a row of At1,0,0. Then,

Φ(3w) = Φ(3) + Φ(w) + Φ(w + 1) + Φ(w + 2).

Proof. Let A = Φ(3) + Φ(w) + Φ(w + 1) + Φ(w + 2). By Proposition 19,

we have that Φ(w + 1) + Φ(w + 2) = Φ(2w + 3 − 2((w + 1) � (w + 2))).

It easy to check that ord(−2((w + 1) � (w + 2))) = 2, so A = Φ(3) +

Φ(w)+Φ(2w+3)+Φ(−2((w+1)� (w+2))). Now, by applying Lemma 71

to the term Φ(2w + 3) and using that Φ(1) + Φ(2) = Φ(3), we obtain that

A = Φ(3)+Φ(w)+Φ(−2((w+1)�(w+2)))+Φ(2w+2)+Φ(2w+1)+Φ(2w).

By Proposition 19, we have that Φ(2w) + Φ(w) = Φ(3w) + Φ(−2(w� 2w)),

thus

A = Φ(3) + Φ(3w) + Φ(2w + 2) + Φ(2w + 1)+

+ Φ(−2(w � 2w)) + Φ(−2((w + 1)� (w + 2))).

It easy to check that Φ(−2(w� 2w)) + Φ(−2((w + 1)� (w + 2))) = Φ(4w).

Finally, since Φ(−2((2w + 1) � (2w + 2))) = 0, we have that Φ(2w + 2) +
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Φ(2w + 1) = Φ(4w + 3) = Φ(4w) + Φ(3). Therefore, A = Φ(3w) and the

result holds. QED

Proposition 75. Let t1 be a positive integer. Then, rank(Φ(Ht1+1,0,0)) =

rank(Φ(Ht1,0,0)) + 4t1 + 2
(
t1−1

2

)
+ 1 +

(
t1−1

3

)
.

Proof. By (3.1), the generator matrix of H′ = Ht1+1,0,0 is

At1+1,0,0 =

(
A A A A A A A A

0 1 2 3 4 5 6 7

)
,

where A = At1,0,0 is the generator matrix of H = Ht1,0,0. Note that H′

can be seen as the union of eight cosets of the 8-fold replication code of H,
(H,H,H,H,H,H,H,H), which are

C0 : (H, H, H, H, H, H, H, H)

C1 : (H, H, H, H, H, H, H, H) + (0, 1, 2, 3, 4, 5, 6, 7)

C2 : (H, H, H, H, H, H, H, H) + (0, 2, 4, 6, 0, 2, 4, 6)

C3 : (H, H, H, H, H, H, H, H) + (0, 3, 6, 1, 4, 7, 2, 5)

C4 : (H, H, H, H, H, H, H, H) + (0, 4, 0, 4, 0, 4, 0, 4)

C5 : (H, H, H, H, H, H, H, H) + (0, 5, 2, 7, 4, 1, 6, 3)

C6 : (H, H, H, H, H, H, H, H) + (0, 6, 4, 2, 0, 6, 4, 2)

C7 : (H, H, H, H, H, H, H, H) + (0, 7, 6, 5, 4, 3, 2, 1).

Note that rank(Φ(C0)) = rank(Φ(H)) = r. Let {Φ(g1), . . . ,Φ(gr)} be a

basis of 〈H〉. Then, a basis of 〈Φ(C0)〉 is {Φ(g′1), . . . ,Φ(g′r)}, where g′i =

(gi,gi,gi,gi,gi, gi,gi,gi) for all i ∈ {1, . . . , r}. Letw′ = (0,1,2,3,4,5,6,7).

By the proof of Proposition 67, we have that 〈Φ(C0 ∪ C2 ∪ C4 ∪ C6)〉 =

〈Φ(C0 ∪ C2 ∪ C4)〉 = 〈Φ(g′1), . . . ,Φ(g′r),Φ(2w′),Φ(M ′)〉, where M ′ is de-

�ned as in the mentioned proof using 2w′ = (0,2,4,6,0,2,4,6) instead of

v′ = (0,2,4,6).

Note that, if u′ ∈ C5, then u′ = (u,u+5,u+2,u+7,u+4,u+1,u+6,u+

3) = (u,u,u,u,u,u,u,u) +w′+ (0,4,0,4,0,4,0,4) with u ∈ H. Similarly,

if u′ ∈ C7, then u′ = (u,u + 7,u + 6,u + 5,u + 4,u + 3,u + 2,u + 1) =

(u,u,u,u,u,u,u,u)+3w′+(0,4,0,4,0,4,0,4) with u ∈ H. Thus, it is easy
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to see that 〈Φ(C0∪C1∪C2∪C3∪C4∪C5∪C7)〉 = 〈Φ(C0∪C1∪C2∪C3∪C4)〉, by
Corollary 26. Now, we will �nd a base for 〈Φ(C0∪C1∪C2∪C4)〉 by extending
the given base for 〈Φ(C0 ∪C2 ∪C4)〉. After that, we will see that 〈Φ(C3)〉 is
linearly dependent of 〈Φ(C0 ∪ C1 ∪ C2 ∪ C4)〉.

Let B2 = {w1,w2, . . . ,wt1 , 2w1, . . . , 2wt1 , 4w1, . . . , 4wt1} be a 2-base of

H and recall that ord(wi) = 8 for all i ∈ {1, . . . , t1}. Let u ∈ H. We

know that u =
∑3t1

i=1 λibi, where bi ∈ B2 is the ith element of B2 and

λi ∈ {0, 1}. Let E = {1 ≤ i ≤ 3t1 : λi 6= 0}, E1 = {1 ≤ i ≤ t1 : i ∈
E} ∪ {1 ≤ i ≤ t1 : t1 + i ∈ E} ∪ {1 ≤ i ≤ t1 : t1 + i ∈ E} as a multiset,

and E4 = {1 ≤ i ≤ t1 : 2t1 + i ∈ E}. Let u′ = (u,u,u,u,u,u,u,u) and

w′i = (wi,wi,wi,wi,wi,wi,wi,wi) for all i ∈ {1, . . . , t1}. Let si be the ith

element of the ordered multiset {w′i : i ∈ E1}. Now, we consider the element

u′+w′ ∈ C1. By Corollary 26, Φ(u′+w′) = Φ(
∑

i∈E1
w′i+w′)+

∑
i∈E4

Φ(4w′i).

Therefore, by Lemma 71, we have that Φ(u′ + w′) =

=
∑

i∈E4
Φ(4w′i)

+
∑

i<j<k<p<q Φ(si + sj + sk + sp) +
∑

i<j<k<q Φ(si + sj + sk + w′)

+q0

(∑
i<j<k<q Φ(si + sj + sk) +

∑
i<j<q Φ(si + sj + w′)

)
+(q0 + q1)

(∑
i<j<q Φ(si + sj) +

∑
i<q Φ(si + w′)

)
+q0(q0 + q1)

(∑
i<q Φ(si) + Φ(w′)

)
,

where q = |E1| + 1 and [q0, q1, . . .]2 is the binary expansion of q. We know

that
∑

i∈E4
Φ(4w′i), Φ(si + sj + sk + sp), Φ(si + sj + sk), Φ(si + sj), and Φ(si)

belong to 〈Φ(C0)〉.

We will see that Φ(u′+w′)−
∑

i∈E4
Φ(4w′i) ∈ 〈Φ(C0∪C2)∪L1∪L2∪L3∪

{Φ(w′)}〉, where L1 = {Φ(w′i+w′) : 1 ≤ i ≤ t1}∪{Φ(2w′i+w′) : 1 ≤ i ≤ t1},
L2 = {Φ(w′i +w′j +w′) : 2 ≤ i < j ≤ t1}, and L3 = {Φ(w′i +w′j +w′k +w′) :

2 ≤ i < j < k ≤ t1}. First, it is clear that Φ(si + w′) ∈ L1. Now, we

consider the terms of the form A = Φ(si+sj +w′). If A = Φ(2w′i+w′), then

A ∈ L1; if A = Φ(1 + w′i + w′) with 2 ≤ i ≤ t1, then A ∈ 〈Φ(C0 ∪ C2) ∪ L1〉
by Lemma 73; and if A = Φ(w′i + w′j + w′) with 2 ≤ i < j ≤ t1, then

A ∈ L2. Next, we consider the terms of the form B = Φ(si + sj + sk + w′).

If B = Φ(2w′i + w′ + w′k), then B ∈ 〈Φ(C0 ∪ C2) ∪ L1 ∪ {Φ(w′)}〉 by using
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Lemma 72 and taking Φ(w′i + 2w′+w′k) ∈ Φ(C2) as the other addend in the

left-hand side of the equation of the lemma. If B = Φ(1+w′i+w′j +w′) with

2 ≤ i < j ≤ t1, then B ∈ 〈Φ(C0 ∪ C2) ∪ L1 ∪ L2 ∪ {Φ(w′)}〉 by Lemma 73.

Finally, if B = Φ(w′i +w′j +w′k +w′) with 2 ≤ i < j < k ≤ t1, then B ∈ L3.

The elements of L1, L2 and L3 are linearly independent from each other.

Therefore, the elements of L1 ∪ L2 ∪ L3 ∪ {Φ(w′)} are linearly independent

and rank(〈L1∪L2∪L3∪{Φ(w)}〉) = 2t1 +
(
t1−1

2

)
+
(
t1−1

3

)
+1. It is also easy to

see that they are linearly independent from the elements in 〈Φ(C0∪C2∪C4)〉,
so rank(〈Φ(C0∪C1∪C2∪C4)〉) = r+4t1 +2

(
t1−1

2

)
+1+

(
t1−1

3

)
by Proposition

67.

Finally, we will show that 〈Φ(C0∪C1∪C2∪C3∪C4)〉 = 〈Φ(C0∪C1∪C2∪
C4)〉. We consider the element u′+3w′ ∈ C3. By Corollary 26, Φ(u′+3w′) =

Φ(
∑

i∈E1
w′i + 3w′) +

∑
i∈E4

Φ(4w′i). Therefore, by Lemma 71, we have that

Φ(u′ + 3w′) =

=
∑

i∈E4
Φ(4w′i)

+
∑

i<j<k<p≤q−3 Φ(si + sj + sk + sp) +
∑

i<j<k≤q−3 Φ(si + sj + sk + w′)

+
∑

i<j≤q−3 Φ(si + sj + w′ + w′) +
∑

i≤q−3 Φ(si + w′ + w′ + w′)

+q0

(∑
i<j<k≤q−3 Φ(si + sj + sk) +

∑
i<j≤q−3 Φ(si + sj + w′)

+
∑

i≤q−3 Φ(si + w′ + w′) + Φ(w′ + w′ + w′)
)

+(q0 + q1)
(∑

i<j≤q−3 Φ(si + sj) +
∑

i≤q−3 Φ(si + w′) + Φ(w′ + w′)
)

+q0(q0 + q1)
(∑

i≤q−3 Φ(si) + Φ(w′)
)
,

where q = |E1|+ 3. All the addends belong to 〈Φ(C0∪C1∪C2∪C4)〉, except
the ones of the form Φ(w′ + w′ + w′) and Φ(si + w′ + w′ + w′). First, we

have that Φ(3w′) ∈ 〈Φ(C0 ∪ C1 ∪ C2 ∪ C4)〉 by Lemma 74. Finally, by using

Lemma 72 with Φ(si + 2w′ + w′) and Φ(2si + w′ + w′) ∈ Φ(C2), we have

that Φ(si + w′ + w′ + w′) ∈ 〈Φ(C0 ∪ C1 ∪ C2 ∪ C4)〉. Therefore, the result

holds. QED

Lemma 76. Let t, k ∈ N. Then,

t∑
i=1

(
i

k

)
=

(t+ 1− k)
(
t+1
k

)
+ (k − 1)

(
1
k

)
k + 1

.
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Proof. Straightforward by induction on the integer t. QED

Corollary 77. Let t1 be a positive integer. Then,

rank(Φ(Ht1,0,0)) =
t41
24
− t31

12
+

35t21
24

+
7t1
12

+ 1.

Proof. We know that rank(Φ(H1,0,0)) = 3. By applying Proposition 75 re-

cursively, we have that

rank(Φ(Ht1,0,0)) = 3 + 4

t1−1∑
i=1

i+ 2

t1−2∑
i=1

(
i

2

)
+ (t1 − 1) +

t1−2∑
i=1

(
i

3

)
.

Finally, by Lemma 76, it is easy to see that the result holds. QED

Corollary 78. Let t1 and t2 be nonnegative integers with t1 ≥ 1. Then,

rank(Φ(Ht1,t2,0)) = rank(Φ(Ht1,0,0)) +
t2
2

(t21 + t1 + t2 + 1).

Proof. By applying Proposition 67 recursively, it is easy to see that

rank(Φ(Ht1,t2,0)) = rank(Φ(Ht1,0,0)) + t2

(
2t1 +

(
t1 − 1

2

)
+
t2 − 1

2

)
.

Since t2(2t1 +
(
t1−1

2

)
+ t2−1

2
) = t2

2
(t21 + t1 + t2 + 1), the result follows. QED

Theorem 79. Let H = Ht1,t2,t3 be a Z8-additive Hadamard code. Then,

rank(Φ(H)) =
t41
24
− t31

12
+

35t21
24

+
7t1
12

+
t2
2

(t21 + t1 + t2 + 1) + t3 + 1.

Proof. Straightforward from Proposition 60 and Corollaries 77 and 78. QED

5.2 Classi�cation of Z8-linear Hadamard codes

The classi�cation of the Z4-linear Hadamard codes of length 2t, for any t ≥ 3,

can be established by using either the rank or the dimension of the kernel

[Kro01, PRV06]. In Chapter 4 it is shown that, in general, for s > 2, the
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dimension of the kernel is not enough to establish a complete classi�cation

of the Z2s-linear Hadamard codes of length 2t, for any t ≥ 3. In this section,

we show that for s = 3, a complete classi�cation can be given by using both

invariants: the dimension of the kernel and the rank, computed in Chapter

4 and the previous section, respectively.

First, recall that the dimension of the kernel for Z8-linear Hadamard codes

is given by the following proposition that is, Theorem 46 for s = 3:

Proposition 80. Let H = Ht1,t2,t3 be a Z8-additive Hadamard code. If Φ(H)

is nonlinear, then ker(Φ(H)) = t1 + t2 + t3 + σt1 , where σt1 = 1 if t1 ≥ 2 and

σt1 = 2 if t1 = 1.

In Chapter 4, it is also shown that, in order to obtain a complete classi-

�cation of nonlinear Z2s-linear Hadamard codes of length 2t, it is enough to

focus on t ≥ 5, since all Z2s-linear Hadamard codes of length 2t are linear

for t < 5. It is also mentioned in Chapter 4 that, at least for any 3 ≤ t ≤ 11,

these codes can be fully classi�ed by using only the values of the rank. This

pointed out that, maybe, it was possible to obtain a complete classi�cation

for any t ≥ 5 by using just this invariant. However, the following example

shows that both invariants, the rank and the dimension of the kernel, are

necessary in some cases.

Example 81. Consider the Z8-linear Hadamard codes of length 217 = 131072,

(t = 17), H2,6,0 and H4,1,4. By Theorem 79, we have that rank(H2,6,0) =

rank(H4,1,4) = 47. However, since ker(H2,6,0) = 9 and ker(H4,1,4) = 10 by

Proposition 80, they are not equivalent even though they have the same rank.

The rest of 23 nonlinear such codes of length 217 have a di�erent rank, so

we have that there are exactly 26 nonequivalent Z8-linear Hadamard codes of

length 217.

Although we cannot completely classify the Z8-linear Hadamard codes

by using only the rank, the following result shows that if two such nonlinear

codes have the same dimension of the kernel, then their values of the rank

are di�erent.
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Theorem 82. Let 5 ≤ t ∈ Z. Then, for every pair, H t1,t2,t3 and H t′1,t
′
2,t
′
3, of

nonlinear Z8-linear Hadamard codes of length 2t with (n; t1, t2, t3) 6= (n; t′1, t
′
2, t
′
3)

and ker(H t1,t2,t3) = ker(H t′1,t
′
2,t
′
3), we have that rank(H t1,t2,t3) 6= rank(H t′1,t

′
2,t
′
3).

Proof. Let k = ker(H t1,t2,t3) = ker(H t′1,t
′
2,t
′
3). By Proposition 80, we have

that k = t1 + t2 + t3 + σt1 . Moreover,

t1 + t2 + t3 + σt1 = k

3t1 + 2t2 + t3 = t+ 1

}
⇐⇒

{
t2 = σt1 − k + t+ 1− 2t1

t3 = t1 + 2k − 2σt1 − t− 1.

(5.19)

By replacing the formulas in (5.19) into the expression of the rank, given by

Theorem 79, we have that

rank(H t1,t2,t3) =
t41
24
− t31

12
+

35t21
24

+
7t1
12

+

+
1

2
(σt1 − k + t+ 1− 2t1)(t21 + t1 + σt1 − k + t+ 1− 2t1 + 1)+

+ t1 + 2k − 2σt1 − t− 1 + 1.

Since the above expression does not depend on t2 and t3, we will write

rank(t1, t, k) instead of rank(H t1,t2,t3). Moreover, we have that this expression

is equal to

rank(t1, t, k) =
t41
24
− 13

12
t31 + (

71

24
+

1

2
(t− k + σt1))t

2
1−

− (
11

12
+

3

2
(t− k + σt1))t1 +

1

2
((t− k + σt1)

2 + t+ k − σt1 + 2).

Now, we suppose that rank(H t1,t2,t3) = rank(H t′1,t
′
2,t
′
3) for (n; t1, t2, t3) 6=

(n; t′1, t
′
2, t
′
3) or, equivalently, rank(t1, t, k) = rank(t′1, t, k) for t1 6= t′1. With-

out loss of generality, we can assume that t′1 < t1. Note that if t′1 = t1, then

t2 = t′2 and t3 = t′3, so both codes are equal.

First, we consider that 2 ≤ t′1 < t1. In this case, we have to see that

rank(t1, t, k)− rank(t′1, t, k) 6= 0. Since t1, t′1 ≥ 2, σt1 = σt′1 = 1 and we have
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that

rank(t1, t, k)− rank(t′1, t, k) =

t41
24
− 13

12
t31 + (

71

24
+

1

2
(t− k + 1))t21 − (

11

12
+

3

2
(t− k + 1))t1+

− t′41
24

+
13

12
t′31 − (

71

24
+

1

2
(t− k + 1))t′21 + (

11

12
+

3

2
(t− k + 1))t′1.

By using the identity x2 − y2 = (x+ y)(x− y), we have that

rank(t1, t, k)− rank(t′1, t, k) =

1

24

[
(t1+t′1)(t21+t′21 )−26(t21+t1t

′
1+t′21 )+(t1+t′1)(83+12(t−k))−58−36(t−k)

]
=

1

24

[
(t1 + t′1)(t21 + t′21 + 83)− 26(t21 + t1t

′
1 + t′21 )− 58

+ 12(t− k)(t1 + t′1 − 3)
]
, (5.20)

which can be written as rank(t1, t, k)−rank(t′1, t, k) = f(t1, t
′
1)+(t−k)g(t1, t

′
1),

where f(t1, t
′
1) = 1/24

[
(t1 + t′1)(t21 + t′21 + 83) − 26(t21 + t1t

′
1 + t′21 ) − 58

]
and

g(t1, t
′
1) = 1/2(t1 + t′1 − 3). Note that (t − k)g(t1, t

′
1) ≥ 0 for all integer

pairs (t1, t
′
1) ∈ D, where D = {(t1, t′1) : 2 ≤ t′1 < t1}. It is easy to see

that f(t1, t
′
1) > 0 for all t′1 ≥ 26, since we can rewrite this expression in the

following form:

t21(t1 + t′1) + t′21 (t1 + t′1) + 83(t1 + t′1) > 26t21 + 26t′1(t1 + t′1)− 58, (5.21)

and we can observe that t21(t1 + t′1) > 26t21, t
′2
1 (t1 + t′1) ≥ 26t′1(t1 + t′1) and

83(t1 + t′1) > −58. Similarly, f(t1, t
′
1) > 0 for all t1 ≥ 26, considering the

left-hand side of (5.21) as 26t1(t1 + t′1) + 26t′21 − 58. Therefore, if there exists

a pair of integers (t1, t
′
1) such that rank(t1, t, k)− rank(t′1, t, k) = 0, this pair

has to be in R = {(t1, t′1) : 2 ≤ t′1 < t1, t
′
1 < 26, t1 < 26} ⊂ D. There are

1 + 2 + · · · + 23 = 276 pairs (t1, t
′
1) ∈ R, and it can be checked that any of

them is a solution of the equation.

Finally, we consider that 1 = t′1 < t1. In this case, we have to prove that

rank(t1, t, k) − rank(t′1, t, k) 6= 0. Then, since t1 ≥ 2 and t′1 = 1, σt1 = 1,
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σt′1 = 2, and we obtain that

rank(t1, t, k)− rank(1, t, k) =

t41
24
− 13

12
t31 + (

71

24
+

1

2
(t− k + 1))t21 − (

11

12
+

3

2
(t− k + 1))t1+

+
1

2
((t− k + 1)2 + t+ k + 1)−

− 1

24
+

13

12
− 71

24
− 1

2
(t−k+ 2) +

11

12
+

3

2
(t−k+ 2)− 1

2
((t−k+ 2)2 + t+k).

By simplifying, we have that

rank(t1, t, k)−rank(1, t, k) =
1

24

[
t41−26t31+83t21−58t1+12(t−k)(t21−3t1)

]
.

Let f(t1, t, k) = rank(t1, t, k) − rank(1, t, k). We know that t − k = 2t1 +

t2 − 2 ≥ 2t1 − 2. Since 12(t − k)(t21 − 3t1) ≥ 0 for t1 ≥ 3, we have that

f(t1, t, k) ≥ g(t1) =
1

24
[t41 − 26t31 + 83t21 − 58t1 + 12(2t1 − 2)(t21 − 3t1)] =

1

24
[t1(t31 − 2t21 − 13t1 + 14)]. By computing the zeros of the polynomial g(t1)

and analyzing its behavior, we have that f(t1, t, k) ≥ g(t1) > 0 for t1 ≥ 5.

Therefore, we just need to compute f(t1, t, k) when t1 ∈ {2, 3, 4}. For these
cases, we have that

f(2, t, k) = 1− (t− k) = 0 ⇔ t− k = 1

f(3, t, k) = −2

f(4, t, k) = 2(t− k)− 13 = 0 ⇔ t− k = 13/2.

Note that if t1 = 2, then t − k = t2 + 2 ≥ 2, so t − k 6= 1. Therefore, for

t1 ∈ {2, 3, 4}, f(t1, t, k) 6= 0 and the result holds. QED

Recall that it is already known that there are b t−1
2
c nonequivalent Z4-

linear Hadamard codes of length 2t, t ≥ 3 [Kro01]. Now, we establish how

many nonequivalent Z8-linear Hadamard codes of length 2t there are, once

the length 2t if �xed, for t ≥ 5. In Chapter 4, some upper and lower bounds

are given for certain values of t. By Theorems 79 and 82, we know that

if H t1,t2,t3 and H t′1,t
′
2,t
′
3 are nonlinear Z8-linear Hadamard codes of the same
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length with (t1, t2, t3) 6= (t′1, t
′
2, t
′
3), then their corresponding pairs, (r, k),

where r is the rank and k is the dimension of the kernel, are di�erent. Then,

we have the following result:

Theorem 83. Let At,3 be the number of nonequivalent Z8-linear Hadamard

codes of length 2t. Then, for any t ≥ 5,

At,3 =
⌊t+ 1

3

⌋
+

b(t+1)/3c∑
i=1

⌊t+ 1− 3i

2

⌋
− 1.

Proof. An upper bound is given, by Theorem 52, for the amount of di�erent

nonequivalent Z2s-linear Hadamard codes for any t ≥ 3 and 2 ≤ s ≤ t − 1.

In particular, when s = 3, we have the following bound:

At,3 ≤ |{(t1, t2, t3) ∈ N3 : t = 3t1 + 2t2 + t3 − 1, t1 ≥ 1}| − 1. (5.22)

By Theorems 79 and 82, we know that this bound is tight. Therefore, we

just have to see that

|{(t1, t2, t3) ∈ N3 : t = 3t1+2t2+t3−1, t1 ≥ 1}| =
⌊t+ 1

3

⌋
+

b(t+1)/3c∑
i=1

⌊t+ 1− 3i

2

⌋
.

This means that we need to compute the amount of di�erent solutions,

(t1, t2, t3), of the equation t = 3t1 + 2t2 + t3 − 1 with t1 ≥ 1.

It is easy to see that 1 ≤ t1 ≤
⌊t+ 1

3

⌋
. Once the value of t1 is �xed,

we can see that t2 is bounded by 0 ≤ t2 ≤
⌊t+ 1− 3t1

2

⌋
. Note that, once

t1 and t2 are �xed, there is a unique value for t3. Then, the amount of

di�erent solutions of t = 3t1 + 2t2 + t3 − 1 with t1 ≥ 1, or equivalently

|{(t1, t2, t3) ∈ N3 : t = 3t1 + 2t2 + t3 − 1, t1 ≥ 1}|, is

b(t+1)/3c∑
i=1

(⌊t+ 1− 3i

2

⌋
+ 1
)

=
⌊t+ 1

3

⌋
+

b(t+1)/3c∑
i=1

⌊t+ 1− 3i

2

⌋
,

so the result holds. QED
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5.3 Equivalences among Z4-linear and Z8-linear

Hadamard codes

Next, we show that there are Z8-linear Hadamard codes which are equivalent

to a Z4-linear Hadamard code. Actually, we will see that these codes coincide

with the ones that have the same invariants, rank and dimension of the kernel.

Table 5.1 shows the type, rank, and dimension of the kernel for all Z2s-linear

Hadamard codes of length 2t, with s ∈ {2, 3} and 6 ≤ t ≤ 9, where the types

of the ones having the same invariants are uni�ed.

From now on, in order to avoid any confusion, let Φ4 : Zn4 → Z2n
2 and

Φ8 : Zn8 → Z4n
2 be the Gray maps over Z4 and Z8, respectively. Let γ =

(2, 3) ∈ S4. Then, for n = 1 we have that

Φ8((0)) = (0, 0, 0, 0) = γ((0, 0, 0, 0)) = γ(Φ4((0, 0)))

Φ8((1)) = (0, 1, 0, 1) = γ((0, 0, 1, 1)) = γ(Φ4((0, 2)))

Φ8((2)) = (0, 0, 1, 1) = γ((0, 1, 0, 1)) = γ(Φ4((1, 1)))

Φ8((3)) = (0, 1, 1, 0) = γ((0, 1, 1, 0)) = γ(Φ4((1, 3)))

Φ8((4)) = (1, 1, 1, 1) = γ((1, 1, 1, 1)) = γ(Φ4((2, 2)))

Φ8((5)) = (1, 0, 1, 0) = γ((1, 1, 0, 0)) = γ(Φ4((2, 0)))

Φ8((6)) = (1, 1, 0, 0) = γ((1, 0, 1, 0)) = γ(Φ4((3, 3)))

Φ8((7)) = (1, 0, 0, 1) = γ((1, 0, 0, 1)) = γ(Φ4((3, 1))).

(5.23)

We can de�ne the function τ : Z8 → Z2
4 given by

τ(u) = Φ−1
4 (γ−1(Φ8(u))), (5.24)

for u ∈ Z8. Note that, for u ∈ {0, 1, 2, 3}, we have that τ(2u) = (u, u) and

τ(4u) = 2(u, u). Moreover, we have the following result:

Lemma 84. Let ui ∈ {0, 2, 4, 6} for i ∈ {2, . . . , n} and u1 ∈ Z8 . Then,

τ(
n∑
i=1

ui) =
n∑
i=1

τ(ui). (5.25)

Proof. Let ui = 2vi, vi ∈ {0, 1, 2, 3} for i ∈ {2, . . . , n} and v1 = λ + 2v1
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for λ ∈ {0, 1}, v1 ∈ {0, 1, 2, 3}. By (5.23) it is easy to see that τ(λ +

2v1) = τ(λ) + τ(2v1). Then,
∑n

i=1 τ(ui) = τ(λ) +
∑n

i=1 τ(2vi) = λ(0, 2) +∑n
i=1(vi, vi) = λ(0, 2) + (

∑n
i=1 vi,

∑n
i=1 vi) = τ(λ) + τ(2

∑n
i=1 vi) = τ(λ +

2
∑n

i=1 vi) = τ(
∑n

i=1 ui).

QED

Corollary 85. Let ui ∈ {0, 2, 4, 6} for i ∈ {2, . . . , n} and u1 ∈ Z8 . Then,

Φ8(
n∑
i=1

ui) = γ(Φ4(
n∑
i=1

τ(ui))). (5.26)

Proof. Straightforward from Lemma 84. QED

Note that Corollary 85 also works for codewords such that ord(u1) ≤ 8

and ord(ui) ≤ 4 for i ∈ {2, . . . , n}.

t = 7 t = 8 t = 9
type (r, k) type (r, k) type (r, k)

Z4

(1, 6) (8,8) (1, 7) (9,9) (1, 8) (10,10)
(2, 4) (8,8) (2, 5) (9,9) (2, 6) (10,10)
(4, 0) (11,5) (5, 0) (16,6)

Z4
(3, 3) }

(10,7)
(3, 4) }

(11,8)
(3, 2) }

(9,6)
(1, 2, 2) (1, 2, 3)

Z8
(1, 2, 1) (4, 1) }

(12,6)
(4, 2) }

(13,7)
(1, 3, 0) (1, 3, 1)

Z8

(1, 0, 5) (8,8) (1, 0, 6) (9,9) (1, 0, 7) (10,10)
(1, 1, 3) (8,8) (1, 1, 4) (9,9) (1, 1, 5) (10,10)
(2, 0, 2) (10,5) (2, 0, 3) (11,6) (2, 0, 4) (12,7)
(2, 1, 0) (12,4) (2, 1, 1) (13,5) (2, 1, 2) (14,6)

(3, 0, 0) (17,4) (2, 2, 0) (17,5)
(3, 0, 1) (18,5)

Table 5.1: Type, rank and kernel of all Z4-linear and Z8-linear Hadamard
codes of length 2t.

Now, we component-wise extend τ in (5.24) to τ : Zn8 → Z2n
4 and de�ne
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τ̃ = ρ−1 ◦ τ , where ρ ∈ S2n is de�ned as(
1 2 . . . i . . . n n+ 1 . . . n+ i . . . 2n

1 3 . . . 2i− 1 . . . 2n− 1 2 . . . 2i . . . 2n

)
. (5.27)

If u = (u1, u2, . . . , un) ∈ Zn8 and τ(ui) = (u1
i , u

2
i ) for all i ∈ {1, . . . , n}, then

τ(u) = (u1
1, u

2
1, u

1
2, u

2
2, . . . , u

1
n, u

2
n) and τ̃(u) = (u1

1, . . . , u
1
n, u

2
1, . . . , u

2
n).

Let w̄i and wi be the ith row of At1,t2 and At1,t2,0, respectively, 1 ≤ i ≤ t1;

and v̄j and vj be the (t1 + j)th row of At1,t2 and At1,t2,0, respectively, 1 ≤
j ≤ t2. Note that w̄1 = 1 and w1 = 1 by construction and, for 1 ≤ i ≤ t1,

1 ≤ j ≤ t2, we have thatwi is a codeword of order 8, w̄i and vj are codewords

of order 4, and v̄j is a codeword of order 2.

Lemma 86. Let w1, v1, . . . ,vt1−1 be the rows of A
1,t1−1,0 and w̄1, . . . , w̄t1,v̄1

the rows of At1,1. Then,

(i) τ̃(w1) = v̄1, τ̃(2w1) = w̄1, τ̃(4w1) = 2w̄1,

(ii) τ̃(vi) = w̄i+1 and τ̃(2vi) = 2w̄i+1, 1 ≤ i ≤ t1 − 1.

Proof. First, we have that τ̃(w1) = τ̃(1) = (0,2) = v̄1, τ̃(2w1) = τ̃(2) =

(1,1) = w̄1 and τ̃(4w1) = τ̃(4) = (2,2) = 2w̄1.

Note that if u = (u1, . . . , un) ∈ Zn8 , with ui ∈ {0, 1, 2, 3} for all i ∈
{1, . . . , n}, then τ̃(2u) = (u,u) and τ̃(4u) = 2(u,u). Let v∗i be the vector

whose coordinates are in {0, 1, 2, 3} and 2v∗i = vi, for all i ∈ {1, . . . , t1 − 1}.
Note that w̄i+1 = (v∗i ,v

∗
i ) by construction. Therefore, τ̃(vi) = τ̃(2v∗i ) =

(v∗i ,v
∗
i ) = w̄i+1 and τ̃(2vi) = τ̃(4v∗i ) = 2(v∗i ,v

∗
i ) = 2w̄i+1. QED

Proposition 87. Let t1 ∈ Z, with t1 ≥ 1. Then, the Hadamard codes H t1,1

and H1,t1−1,0 are permutation equivalent.

Proof. Let Ht1,1 be the Z4-additive code such that H t1,1 = Φ4(Ht1,1) and

H1,t1−1,0 be the Z8-additive code such that H1,t1−1,0 = Φ8(H1,t1−1,0). Since

H t1,1 and H1,t1−1,0 have both length 2t, where t = 2t1, the length of Ht1,1

and H1,t1−1,0 are 2t−1 and 2t−2, respectively.

Let w1, v1, . . . ,vt1−1 be the rows of A1,t1−1,0 and w̄1, . . . , w̄t1 ,v̄1 the rows

of At1,1. If we consider B8 = {b8
1, . . . ,b

8
2t1+1} = {w1, 2w1, 4w1,v1, . . . ,vt1−1,
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2v1, . . . , 2vt1−1} the 2-base of H1,t1−1,0 and B4 = {b4
1, . . . ,b

4
2t1+1} = {v̄1, w̄1,

2w̄1, w̄2, . . . , w̄t1 , 2w̄2, . . . , 2w̄t1} the 2-base ofHt1,1, then we have that τ̃(b8
i ) =

b4
i for 1 ≤ i ≤ 2t1 + 1 by Lemma 86.

Let ρ̃ ∈ S2t be a permutation such that Φ4 ◦ ρ = ρ̃ ◦ Φ4, where ρ is

de�ned as in (6.1). Let γ = Π2t−2−1
i=0 (4i + 2 , 4i + 3) ∈ S2t , i.e., the permu-

tation that permute the two coordinates in the middle of each block of four

coordinates. Then, by (5.24), Φ8(b8
i ) = γ(Φ4(τ(b8

i ))) = γ(Φ4(ρ(τ̃(b8
i )))) =

γ(ρ̃(Φ4(b4
i ))) = (γ ◦ ρ̃)(Φ4(b4

i )).

Now, let w =
∑2t1+1

i=1 λib
8
i be a codeword of H1,t1−1,0, where λi ∈ {0, 1}.

Then, by Corollary 85, we have that

Φ8(w) = Φ8(

2t1+1∑
i=1

λib
8
i ) = (γ ◦ ρ̃)(Φ4(

2t1+1∑
i=1

λib
4
i ))).

Since
∑2t1+1

i=1 λib
4
i ∈ Ht1,1, we have that the result holds. QED

Example 88. Let H1,1,0 be the Z8-additive Hadamard code, which is gener-

ated by

A1,1,0 =

(
1111

0246

)
,

and H2,1 be the Z4-additive Hadamard code, which is generated by

A2,1 =

 1111 1111

0123 0123

0000 2222

 .

Let w1,v1 be the rows of A1,1,0 and w̄1, w̄2, v̄1 be the rows of A2,1. The set

B8 = {b8
1, . . . ,b

8
5} = {w1, 2w1, 4w1,v1, 2v1} is a 2-base of H1,1,0 and B4 =

{b4
1, . . . ,b

4
5} = {v̄1, w̄1, 2w̄1, w̄2, 2w̄2} a 2-base of H2,1. Let γ = (2, 3)(6, 7)

(10, 11)(14, 15) ∈ S16. Let

ρ =

(
1 2 3 4 5 6 7 8

1 3 5 7 2 4 6 8

)
∈ S8,

so ρ((u1
1, . . . , u

1
4, u

2
1, . . . , u

2
4)) = (u1

1, u
2
1, u

1
2, u

2
2, . . . , u

1
4, u

2
4), and ρ̃ ∈ S16 such
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that Φ4 ◦ ρ = ρ̃ ◦Φ4. We have that Φ8(
∑5

i=1 λib
8
i ) = γ ◦ ρ̃ ◦Φ4(

∑5
i=1 λib

4
i ) =

γ ◦ Φ4(ρ(
∑5

i=1 λib
4
i )), λi ∈ {0, 1}. Actually, for the elements of the 2-base,

we have that

Φ8(w1) = Φ8(1111) = γ(Φ4(ρ(v̄1))) = γ(Φ4(02020202))

Φ8(2w1) = Φ8(2222) = γ(Φ4(ρ(w̄1))) = γ(Φ4(11111111))

Φ8(4w1) = Φ8(4444) = γ(Φ4(ρ(2w̄1))) = γ(Φ4(22222222))

Φ8(v1) = Φ8(0246) = γ(Φ4(ρ(w̄2))) = γ(Φ4(00112233))

Φ8(2v1) = Φ8(0404) = γ(Φ4(ρ(2w̄2))) = γ(Φ4(00220022)).

Therefore, the codes H2,1 = Φ4(H2,1) and H1,1,0 = Φ8(H1,1,0) of length 16 are

permutation equivalent.

Example 89. Let H1,2,0 be the Z8-additive Hadamard code, which is gener-

ated by

A1,2,0 =

 1111 1111 1111 1111

0246 0246 0246 0246

0000 2222 4444 6666

 ,

and H3,1 be the Z4-additive Hadamard code, which is generated by

A3,1 =


1111 1111 1111 1111 1111 1111 1111 1111

0123 0123 0123 0123 0123 0123 0123 0123

0000 1111 2222 3333 0000 1111 2222 3333

0000 0000 0000 0000 2222 2222 2222 2222

 .

Let w1,v1,v2 be the rows of A1,2,0 and w̄1, w̄2, w̄3, v̄1 be the rows of A3,1.

The set B8 = {b8
1, . . . ,b

8
7} = {w1, 2w1, 4w1,v1,v2, 2v1, 2v2} is a 2-base of

H1,2,0 and B4 = {b4
1, . . . ,b

4
7} = {v̄1, w̄1, 2w̄1, w̄2, w̄3, 2w̄2, 2w̄3} a 2-base of

H3,1. Let γ = (2, 3)(6, 7)(10, 11)(14, 15)(18, 19)(22, 23)(26, 27)(30, 31)(34, 35)

(38, 39)(42, 43) (46, 47)(50, 51)(54, 55)(58, 59)(62, 63) ∈ S26. Let

ρ =

(
1 2 . . . i . . . 16 17 . . . 16 + i . . . 32

1 3 . . . 2i− 1 . . . 31 2 . . . 2i . . . 32

)
∈ S32,

so ρ((u1
1, . . . , u

1
16, u

2
1, . . . , u

2
16)) = (u1

1, u
2
1, u

1
2, u

2
2, . . . , u

1
16, u

2
16), and ρ̃ ∈ S64
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such that Φ4◦ρ = ρ̃◦Φ4. We have that Φ8(
∑7

i=1 λib
8
i ) = γ◦ρ̃◦Φ4(

∑7
i=1 λib

4
i ) =

γ ◦ Φ4(ρ(
∑7

i=1 λib
4
i )), λi ∈ {0, 1}. Actually, for the elements of the 2-base,

we have that

Φ8(w1) = Φ8(1111111111111111) = γ(Φ4(ρ(v̄1)))

= γ(Φ4(02020202020202020202020202020202))

Φ8(2w1) = Φ8(2222222222222222) = γ(Φ4(ρ(w̄1)))

= γ(Φ4(11111111111111111111111111111111))

Φ8(4w1) = Φ8(4444444444444444) = γ(Φ4(ρ(2w̄1)))

= γ(Φ4(22222222222222222222222222222222))

Φ8(v1) = Φ8(0246024602460246) = γ(Φ4(ρ(w̄2)))

= γ(Φ4(00112233001122330011223300112233))

Φ8(v2) = Φ8(0000222244446666) = γ(Φ4(ρ(w̄3)))

= γ(Φ4(00000000111111112222222233333333))

Φ8(2v1) = Φ8(0404040404040404) = γ(Φ4(ρ(2w̄2)))

= γ(Φ4(00220022002200220022002200220022))

Φ8(2v2) = Φ8(0000444400004444) = γ(Φ4(ρ(2w̄3)))

= γ(Φ4(00000000222222220000000022222222)).

Therefore, the codes H3,1 = Φ4(H3,1) and H1,2,0 = Φ8(H1,2,0) of length 26 are

permutation equivalent.

Theorem 90. Let t1, t2 ∈ Z, with t1 ≥ 1 and t2 ≥ 1. Then, the Hadamard

codes H t1,t2 and H1,t1−1,t2−1 are permutation equivalent.

Proof. We proof this theorem by induction on the integer t2. Note that, by

Proposition 87, the statement holds for t2 = 1. Now, we suppose that it is

true for t2. Let ρ ∈ S2t be the permutation such that H1,t1−1,t2−1 = ρ(H t1,t2)

and we de�ne ρ′ = (ρ, ρ) ∈ S2t+1 .

By construction, we have that H1,t1−1,t2 = C0∪C0 + (0,4) and Ht1,t2+1 =

C ′0∪C ′0+(0,2), where C0 = (H1,t1−1,t2−1,H1,t1−1,t2−1) and C ′0 = (Ht1,t2 ,Ht1,t2).

Then, Φ8(H1,t1−1,t2) = Φ8(C0 ∪ C0 + (0,4)) = Φ8(C0) ∪ Φ8(C0 + (0,4)).

On one hand, by the induction hypothesis, Φ8(C0) = Φ8((H1,t1−1,t2−1,

H1,t1−1,t2−1)) = (H1,t1−1,t2−1, H1,t1−1,t2−1) = ρ′((H t1,t2 , H t1,t2)) = ρ′(Φ4((
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Ht1,t2 ,Ht1,t2))) = ρ′(Φ4(C ′0)). On the other hand, by Corollary 26 and tak-

ing into account that Φ8((0,4)) = Φ4((0,2)) = ρ′(Φ4(0,2)), we also have

that Φ8(C0 + (0,4)) = Φ8(C0) + Φ8((0,4)) = ρ′(Φ4(C ′0)) + ρ′(Φ4((0,2))) =

ρ′(Φ4(C ′0) + Φ4((0,2))) = ρ′(Φ4(C ′0 + (0,2))).

Therefore, H1,t1−1,t2 = Φ8(H1,t1−1,t2) = ρ′(Φ4(C ′0))∪ρ′(Φ4(C ′0 + (0,2))) =

ρ′(Φ4(C ′0 ∪ C ′0 + (0,2)) = ρ′(H t1,t2+1) and the result holds. QED

Now, we know that there are nonlinear Hadamard codes which are both,

Z4-linear and Z8-linear. From the above results, we can �nally give the

classi�cation of the Z2s-linear Hadamard codes for s ∈ {2, 3}.

Proposition 91. Every Z4-linear Hadamard code of length 2t is equivalent

to a Z8-linear Hadamard code, except the Z4-linear Hadamard code H(t+1)/2,0

with t ≥ 5 odd. Therefore, the number of nonequivalent Z2s-linear Hadamard

codes of length 2t with s ∈ {2, 3} coincides with At,3 if t is even or t ≤ 3,

and with At,3 + 1 if t is odd and t ≥ 5.

Proof. First of all, we know that for t ≤ 4, all Z2s-linear Hadamard codes

are linear, so they are permutation equivalent to the binary linear Hadamard

code of length 2t. Recall that, for s = 2, we have that t = 2t1 + t2 − 1.

Then, if t is even, all the solutions for t = 2t1 + t2 − 1 satisfy that t2 ≥ 1.

Then, by using Theorem 90, we have that every Z4-linear Hadamard code

H t1,t2 of length 2t is permutation equivalent to the Z8-linear Hadamard code

H1,t1−1,t2−1.

If t is odd, then there exists one solution for t = 2t1 + t2 − 1 with t2 =

0, that is, when t1 = (t + 1)/2. For the rest of solutions with t2 ≥ 1,

again by using Theorem 90, we know that each Z4-linear Hadamard code

is permutation equivalent to a Z8-linear Hadamard code. Finally, we have

to see that the code H(t+1)/2,0 is not permutation equivalent to a Z8-linear

Hadamard code.

Suppose that there exists a Z8-linear Hadamard code H t1,t2,t3 that is

permutation equivalent to H(t+1)/2,0. We know that both codes should have

the same length and dimension of the kernel. Recall that ker(H(t+1)/2,0) =

(t+ 1)/2 + 1 since t ≥ 5 [Kro01]. We also have that ker(H t1,t2,t3) = t1 + t2 +



102 Chapter 5. Rank of Z8-linear Hadamard codes

t3 + σt1 , where σt1 = 1 if t1 ≥ 2 and σt1 = 2 if t1 = 1 by Proposition 80. On

the one hand, if t1 = 1, then σt1 = 2 and from the equations t+1 = 3+2t2+t3

and (t + 1)/2 + 1 = 1 + t2 + t3 + 2 we obtain that t3 = −1. On the other

hand, if t1 ≥ 2, then σt1 = 1 and we have the following equations

t+ 1 = 3t1 + 2t2 + t3
t+ 1

2
+ 1 = t1 + t2 + t3 + 1

⇒
 t3 = t1

t2 =
t+ 1− 4t1

2

.

These two codes should also have the same rank, so rank(H t1,(t+1−4t1)/2,t1) =

rank(H(t+1)/2,0). By Proposition 12, we have that if t1 ≥ 1 and t2 ≥ 0, then

rank(Φ(Ht1,t2)) = 2t1 + t2 +

(
t1 − 1

2

)
.

Moreover, by Theorem 79 and after simplifying, we obtain that

t31 − 26t21 + (6t+ 65)t1 − 18t− 4 = 0. (5.28)

Note that the right-hand side of equation (5.28) is strictly positive for t1 ≥
26, since we can rewrite it as t31 + (6t + 65)t1 > 26t21 + 18t + 4. For t1 ∈
{3, 6, 8, 9, 10, 12, . . . , 25}, equation (5.28) has no any integer solution for t.

For t1 = 1, it has solution t = 3, but recall that t ≥ 4. For t1 = 4, it has

solution t = 16, but in this case t2 = 1/2 6∈ Z. Finally, for t1 ∈ {2, 5, 7, 11},
it has solutions t = 5, 17, 20, 23, respectively, but in all these cases, t2 < 0.

Therefore, the result holds. QED

We have shown that the classi�cation of the Z2s-linear Hadamard codes

for s ∈ {2, 3} is complete. Speci�cally, there exists only one binary nonlinear

Hadamard code of length 2t that is Z4-linear, but not Z8-linear, when t

odd. When t is even, all the Z4-linear Hadamard codes of length 2t are also

Z8-linear. This means that to generate all the Z2s-linear Hadamard codes

with s ∈ {2, 3} of a certain length, it is enough to generate all the Z8-linear

Hadamard codes and, if t is odd, add the code H(t+1)/2,0.



Chapter 6

Equivalent Z2s-linear Hadamard

codes

�Logic merely sanctions the conquests of the

intuition."

�Jacques Hadamard

In Chapter 4, the dimension of the kernel for Z2s-linear Hadamard codes

with s > 2 is established, and it is proved that this invariant only provides

a complete classi�cation for some values of t and s. The rank is computed

in Chapter 5 only for s = 3, and it is proved that in this case the rank

together with the dimension of the kernel provides a full classi�cation for any

t ≥ 3. Furthermore, it is shown that it gives a full classi�cation for Z2s-linear

Hadamard codes with s ∈ {2, 3}. Along this thesis, we have observed that

there are many nonlinear such codes having the same rank and dimension of

the kernel for di�erent values of s, once the length 2t is �xed (see Tables 4.4,

4.5 and 5.1, and Examples 50 and 81). In Chapter 6, we show that these

codes, the ones having the same rank and dimension of the kernel, are in

fact equivalent, which allows us to obtain a more accurate classi�cation than

the one given in Chapter 4. More speci�cally, in Section 6.1, we show that

there exist families of equivalent codes with di�erent values of s, once t is

�xed. Finally, in Section 6.2, we improve the partial classi�cation given in

Chapter 4 by re�ning the upper bound on the number of nonequivalent such

103
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codes of length 2t, denoted by At; and we show that this bound is tight for

3 ≤ t ≤ 11.

6.1 Equivalences among Z2s-linear Hadamard

codes

In this section, we give some properties of the generalized Gray map Φ and

some equivalence relations among the Z2s-linear Hadamard codes of length

2t, once t is �xed.

Recall that, to specify that the domain is Z2s and Zn2s , we will denote the
Gray maps by φs and Φs instead of φ and Φ, respectively. Let γs ∈ S2s−1 be

the permutation de�ned as

(
1 2 . . . 2s−2 2s−2 + 1 2s−2 + 2 . . . 2s−1

1 3 . . . 2s−1 − 1 2 4 . . . 2s−1

)
.

For example, we have that γ3 = (2, 3) ∈ S4 and γ4 = (2, 3, 5)(4, 7, 6) ∈ S8.

Then, we can de�ne the generalization of function τ given in (5.24), τs :

Z2s → Z2
2s−1 , as

τs(u) = Φ−1
s−1(γ−1

s (φs(u))), (6.1)

for u ∈ Z2s .

Example 92. For s = 3, the relations that de�ne the map τ3 are shown in
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(5.23). For s = 4, we have that

φ4(0) = (0, 0, 0, 0, 0, 0, 0, 0) = γ4((0, 0, 0, 0, 0, 0, 0, 0)) = γ4(Φ3((0, 0)))

φ4(1) = (0, 1, 0, 1, 0, 1, 0, 1) = γ4((0, 0, 0, 0, 1, 1, 1, 1)) = γ4(Φ3((0, 4)))

φ4(2) = (0, 0, 1, 1, 0, 0, 1, 1) = γ4((0, 1, 0, 1, 0, 1, 0, 1)) = γ4(Φ3((1, 1)))

φ4(3) = (0, 1, 1, 0, 0, 1, 1, 0) = γ4((0, 1, 0, 1, 1, 0, 1, 0)) = γ4(Φ3((1, 5)))

φ4(4) = (0, 0, 0, 0, 1, 1, 1, 1) = γ4((0, 0, 1, 1, 0, 0, 1, 1)) = γ4(Φ3((2, 2)))

φ4(5) = (0, 1, 0, 1, 1, 0, 1, 0) = γ4((0, 0, 1, 1, 1, 1, 0, 0)) = γ4(Φ3((2, 6)))

φ4(6) = (0, 0, 1, 1, 1, 1, 0, 0) = γ4((0, 1, 1, 0, 0, 1, 1, 0)) = γ4(Φ3((3, 3)))

φ4(7) = (0, 1, 1, 0, 1, 0, 0, 1) = γ4((0, 1, 1, 0, 1, 0, 0, 1)) = γ4(Φ3((3, 7)))

φ4(8) = (1, 1, 1, 1, 1, 1, 1, 1) = γ4((1, 1, 1, 1, 1, 1, 1, 1)) = γ4(Φ3((4, 4)))

φ4(9) = (1, 0, 1, 0, 1, 0, 1, 0) = γ4((1, 1, 1, 1, 0, 0, 0, 0)) = γ4(Φ3((4, 0)))

φ4(10) = (1, 1, 0, 0, 1, 1, 0, 0) = γ4((1, 0, 1, 0, 1, 0, 1, 0)) = γ4(Φ3((5, 5)))

φ4(11) = (1, 0, 0, 1, 1, 0, 0, 1) = γ4((1, 0, 1, 0, 0, 1, 0, 1)) = γ4(Φ3((5, 1)))

φ4(12) = (1, 1, 1, 1, 0, 0, 0, 0) = γ4((1, 1, 0, 0, 1, 1, 0, 0)) = γ4(Φ3((6, 6)))

φ4(13) = (1, 0, 1, 0, 0, 1, 0, 1) = γ4((1, 1, 0, 0, 0, 0, 1, 1)) = γ4(Φ3((6, 2)))

φ4(14) = (1, 1, 0, 0, 0, 0, 1, 1) = γ4((1, 0, 0, 1, 1, 0, 0, 1)) = γ4(Φ3((7, 7)))

φ4(15) = (1, 0, 0, 1, 0, 1, 1, 0) = γ4((1, 0, 0, 1, 0, 1, 1, 0)) = γ4(Φ3((7, 3))).

These equalities de�ne the map τ4 : Z16 → Z2
8 as τ4(0) = (0, 0), τ4(1) = (0, 4),

τ4(2) = (1, 1), τ4(3) = (1, 5), τ4(4) = (2, 2), τ4(5) = (2, 6), τ4(6) = (3, 3),

τ4(7) = (3, 7), τ4(8) = (4, 4), τ4(9) = (4, 0), τ4(10) = (5, 5), τ4(11) = (5, 1),

τ4(12) = (6, 6), τ4(13) = (6, 2), τ4(14) = (7, 7) and τ4(15) = (7, 3).

Lemma 93. Let s ≥ 2. Then,

(i) τs(1) = (0, 2s−2),

(ii) τs(2
iu) = 2i−1(u, u) for all i ∈ {1, . . . , s−1} and u ∈ {0, 1, . . . , 2s−1−1}.

Proof. First, τs(1) = Φ−1
s−1(γ−1

s (φs(1))) = Φ−1
s−1(γ−1

s ((0, 1, 0, 1, . . . , 0, 1))) =

Φ−1
s−1((0,1)) = (0, 2s−2), and (i) holds.

In order to prove (ii), let u ∈ Z2s and [u0, . . . , us−1]2 be its binary expan-

sion. The binary expansion of 2iu is [0, . . . , 0, u0, . . . , us−i−1]2 and we have
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that φs(2iu) = (us−i−1, . . . , us−i−1) + (0, . . . , 0, u0, . . . , us−i−2)Ys−1. It is easy

to see by (2.20) that

γ−1
s (Ys−1) =

(
0 1

Ys−2 Ys−2

)
. (6.2)

Then, we have that

γ−1
s (φs(2

iu)) =

= (us−i−1,
(2s−1). . . , us−i−1) + (0, (i). . ., 0, u0, . . . , us−i−2)

(
0 1

Ys−2 Ys−2

)
=

= (us−i−1,
(2s−1). . . , us−i−1) + (0, (i−1). . . , 0, u0, . . . , us−i−2)

(
Ys−2 Ys−2

)
=

= (φs−1(2i−1u), φs−1(2i−1u)) = Φs−1(2i−1(u, u)).

Therefore, τs(2iu) = Φ−1
s−1(γ−1

s (φs(2
iu))) = 2i−1(u, u), and (ii) holds. QED

Proposition 94. Let s ≥ 2 and λi ∈ {0, 1} ⊂ Z2s, i ∈ {0, . . . , s− 1}. Then,

φs(
s−1∑
i=0

λi2
i) = γs(Φs−1(

s−1∑
i=0

τs(λi2
i))). (6.3)

Proof. By Lemma 93, we know that for all i ∈ {1, . . . , s − 1}, τs(2i) =

(2i−1, 2i−1) and τs(1) = (0, 2s−2). Then, by Lemma 36, we have that

γs(Φs−1(
s−1∑
i=0

τs(λi2
i))) = γs(

s−1∑
i=0

Φs−1(τs(λi2
i))).

Moreover, since γs commute with the summation, and applying the de�nition

(6.1) of τs, we obtain that

γs(Φs−1(
s−1∑
i=0

τs(λi2
i))) =

s−1∑
i=0

γs(Φs−1(τs(λi2
i))) =

s−1∑
i=0

φs(λi2
i),

which is equal to φs(
∑s−1

i=0 λi2
i), by Lemma 36. QED

Now, we extend the permutation γs ∈ S2s−1 to a permutation γs ∈
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S2s−1n such that restricted to each set of 2s−1 coordinates {2s−1i+ 1, 2s−1i+

2, · · · , 2s−1(i + 1)}, i ∈ {0, . . . , n − 1}, acts as γs ∈ S2s−1 . Then, we

component-wise extend function τs de�ned in (6.1) to τs : Zn2s → Z2n
2s−1 and

de�ne τ̃s = ρ−1 ◦ τs, where ρ ∈ S2n is de�ned as(
1 2 . . . i . . . n n+ 1 . . . n+ i . . . 2n

1 3 . . . 2i− 1 . . . 2n− 1 2 . . . 2i . . . 2n

)
.

If u = (u1, u2, . . . , un) ∈ Zn2s and τs(ui) = (u1
i , u

2
i ) for all i ∈ {1, . . . , n}, then

τs(u) = (u1
1, u

2
1, u

1
2, u

2
2, . . . , u

1
n, u

2
n) and τ̃s(u) = (u1

1, . . . , u
1
n, u

2
1, . . . , u

2
n). Note

also that

Φs(u) = γs(Φs−1(ρ(τ̃s(u))))

for all u ∈ Zn2s , since τ̃s(u) = ρ−1(τs(u)) = ρ−1(Φ−1
s−1(γ−1

s (Φs(u)))).

Let w(s)
i be the ith row of At1,...,ts , 1 ≤ i ≤ t1 + · · ·+ ts. By construction,

w
(s)
1 = 1 and ord(w

(s)
i ) ≤ ord(w

(s)
j ) if i > j. Let σi be the integer such that

ord(w
(s)
i ) = 2σi . Then, Bt1,...,ts = {2piw(s)

i : 1 ≤ i ≤ t1 + · · · + ts, 0 ≤ pi ≤
σi − 1} is a 2-base of Ht1,...,ts .

Example 95. LetH2,1 andH1,1,0 be the Z4-additive and Z8-additive Hadamard

codes, which are generated by

A2,1 =

 1 1 1 1 1 1 1 1

0 1 2 3 0 1 2 3

0 0 0 0 2 2 2 2

 , and A1,1,0 =

(
1 1 1 1

0 2 4 6

)
,

respectively. The corresponding 2-bases are B2,1 = {(1, 1, 1, 1, 1, 1, 1, 1), (2, 2, 2,

2, 2, 2, 2, 2), (0, 1, 2, 3, 0, 1, 2, 3), (0, 2, 0, 2, 0, 2, 0, 2), (0, 0, 0, 0, 2, 2, 2, 2)}, and
B1,1,0 = {(1, 1, 1, 1), (2, 2, 2, 2), (4, 4, 4, 4), (0, 2, 4, 6), (0, 4, 0, 4)}.

Proposition 96. Let ts ≥ 1, and Ht1,...,ts and H1,t1−1,t2,...,ts−1,ts−1 be the Z2s-

additive and Z2s+1-additive Hadamard codes with generator matrices At1,...,ts

and A1,t1−1,t2,...,ts−1,ts−1, respectively. Let w
(s)
i and w

(s+1)
i be the ith row of

At1,...,ts and A1,t1−1,t2,...,ts−1,ts−1, respectively. Then, we have that

(i) τ̃s+1(2piw
(s+1)
i ) = 2piw

(s)
i , for all i ∈ {2, . . . , t1 + · · · + ts − 1} and

pi ∈ {0, . . . , σi − 1}, where σi is the integer such that ord(w
(s)
i ) = 2σi;
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(ii) τ̃s+1(2j+1w
(s+1)
1 ) = 2jw

(s)
1 , for all j ∈ {0, . . . , s− 1};

(iii) τ̃s+1(w
(s+1)
1 ) = w

(s)
ts .

Proof. Consider At1,...,ts with ts ≥ 1, and w
(s)
i its ith row for i ∈ {1, . . . , t1 +

· · ·+ ts}. Then, the matrix over Z2s+1
w

(s)
1

2w
(s)
2
...

2w
(s)
t1+···+ts


is, by de�nition, A1,t1−1,t2,...,ts−1,ts . Moreover, by construction we have that

A1,t1−1,t2,...,ts−1,ts =

(
A1,t1−1,t2,...,ts−1,ts−1 A1,t1−1,t2,...,ts−1,ts−1

0 2s

)
.

Therefore, if w(s+1)
i is the ith row of A1,t1−1,t2,...,ts−1,ts−1 for i ∈ {2, . . . , t1 +

t2 + · · · + ts − 1}, we have that (w
(s+1)
i ,w

(s+1)
i ) = 2w

(s)
i and ord(w

(s)
i ) =

ord(w
(s+1)
i ) = σi. Let v

(s+1)
i be the vector over Z2s+1 such that w

(s+1)
i =

2v
(s+1)
i and w

(s)
i = (v

(s+1)
i ,v

(s+1)
i ). Let (v

(s+1)
i )j be the jth coordinate of

v
(s+1)
i . By the de�nition of τ̃s+1 and Lemma 93, for pi ∈ {0, . . . , σi − 1}, we

have that

τ̃s+1(2piw
(s+1)
i ) = ρ−1(τs+1(2piw

(s+1)
i )) = ρ−1(τs+1(2pi+1v

(s+1)
i )) =

= ρ−1(2pi((v
(s+1)
i )1, (v

(s+1)
i )1, . . . , (v

(s+1)
i )n, (v

(s+1)
i )n)) =

= 2pi(v
(s+1)
i ,v

(s+1)
i ) = 2piw

(s)
i ,

and (i) holds.

Since w(s)
1 = (w

(s+1)
1 ,w

(s+1)
1 ) = 1 and w

(s)
ts = (0,2s−1), then the equalities

in items (ii) and (iii) hold, by the de�nition of τ̃s+1 and Lemma 93. QED

Note that, from the previous proposition, we have that τ̃s is a bijection

between the 2-bases, Bt1,...,ts and B1,t1−1,...,ts−1,ts−1.
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Example 97. Let H1,1,0 and H2,1 be the same codes considered in Example

95. The length of H1,1,0 is n = 4. Then, the extension of γ3 = (2, 3) ∈ S4 is

γ3 = (2, 3)(6, 7)(10, 11)(14, 15) ∈ S16, and

ρ =

(
1 2 3 4 5 6 7 8

1 3 5 7 2 4 6 8

)
∈ S8. (6.4)

In this case, we have that

Φ3((1, 1, 1, 1)) = γ3(Φ2(0, 2, 0, 2, 0, 2, 0, 2)) = γ3(Φ2(ρ(0, 0, 0, 0, 2, 2, 2, 2)))

Φ3((2, 2, 2, 2)) = γ3(Φ2(1, 1, 1, 1, 1, 1, 1, 1)) = γ3(Φ2(ρ(1, 1, 1, 1, 1, 1, 1, 1)))

Φ3((4, 4, 4, 4)) = γ3(Φ2(2, 2, 2, 2, 2, 2, 2, 2)) = γ3(Φ2(ρ(2, 2, 2, 2, 2, 2, 2, 2)))

Φ3((0, 2, 4, 6)) = γ3(Φ2(0, 0, 1, 1, 2, 2, 3, 3)) = γ3(Φ2(ρ(0, 1, 2, 3, 0, 1, 2, 3)))

Φ3((0, 4, 0, 4)) = γ3(Φ2(0, 0, 2, 2, 0, 0, 2, 2)) = γ3(Φ2(ρ(0, 2, 0, 2, 0, 2, 0, 2))).

Since Φ3(u) = γ3(Φ2(ρ(τ̃3(u)))) for all u ∈ Z4
8, the map τ̃3 sends the elements

of the 2-base B1,1,0 into the elements of the 2-base B2,1. That is, as it is shown

in Proposition 96,

τ̃3(w
(3)
1 ) = Φ3((1, 1, 1, 1)) = (0, 0, 0, 0, 2, 2, 2, 2) =w

(2)
3

τ̃3(2w
(3)
1 ) = Φ3((2, 2, 2, 2)) = (1, 1, 1, 1, 1, 1, 1, 1) =w

(2)
1

τ̃3(4w
(3)
1 ) = Φ3((4, 4, 4, 4)) = (2, 2, 2, 2, 2, 2, 2, 2) = 2w

(2)
1

τ̃3(w
(3)
2 ) = Φ3((0, 2, 4, 6)) = (0, 1, 2, 3, 0, 1, 2, 3) =w

(2)
2

τ̃3(2w
(3)
2 ) = Φ3((0, 4, 0, 4)) = (0, 2, 0, 2, 0, 2, 0, 2) = 2w

(2)
2 ,

(6.5)

so τ̃3 is a bijection between both 2-bases. By Proposition 94, it is easy to

check that the corresponding binary codes of length 16, H2,1 = Φ2(H2,1) and

H1,1,0 = Φ3(H1,1,0), are, in fact, equivalent.

The following theorem determines which Z2s′ -linear Hadamard codes are

equivalent to a given Z2s-linear Hadamard code H t1,...,ts . We denote by 0j the

all-zero vector of length j. Let σ be the integer such that ord(w
(s)
2 ) = 2s+1−σ,

so σ = s+ 1− σ2.

Theorem 98. Let H t1,...,ts be a Z2s-linear Hadamard code.
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(i) If σ = 1 and ts ≥ 1, then H t1,...,ts is equivalent to the Z2s+`-linear

Hadamard code H1,0`−1,t1−1,t2,...,ts−1,ts−`, for ` ∈ {1, . . . , ts}.

(ii) If σ > 1, then (t1, . . . , ts) = (1,0σ−2, tσ, . . . , ts) and H t1,...,ts is equiva-

lent to the Z2s+`-linear Hadamard code H1,0σ−2+`,tσ ,...,ts−`, for ` ∈ {2 −
σ, . . . , ts}, and to the Z2s−σ+1-linear Hadamard code H tσ+1,tσ+1,...,ts−1,ts+σ−1.

Proof. Straightforward from Propositions 94 and 96. QED

Corollary 99. Let H t1,...,ts be a Z2s-linear Hadamard code. Then, there exists

a Z2s+`-linear Hadamard code equivalent to H t1,...,ts, for all ` ∈ {1−σ, . . . , ts}.

Example 100. The Z23-linear Hadamard code H2,1,3, with σ = 1 and t3 =

3 ≥ 1, is equivalent to the following Z2s′ -linear Hadamard codes: H1,1,1,2,

H1,0,1,1,1 and H1,0,0,1,1,0, with s′ = 4, 5 and 6, respectively. An example with

σ > 1 is the Z25-linear Hadamard code H1,0,0,2,2, with σ = 4. In this case, the

code is equivalent to H3,5, H1,2,4, H1,0,2,3, H1,0,0,2,2, H1,0,0,0,2,1 and H1,0,0,0,0,2,0,

with s′ = 2, 3, 4, 5, 6 and 7, respectively.

If H t1,...,ts is a Z2s-linear Hadamard code with σ = 1 and ts = 0, then

Theorem 98 cannot be applied. In this case, we conjecture that H t1,...,ts is

not equivalent to any other code H t′1,...,t
′
s′ , for s′ 6= s. From Tables 4.1, 4.4

and 4.5, we can see that this conjecture is satis�ed for t ≤ 11. The values of

(t1, . . . , ts) for which the codes H t1,...,ts are not equivalent to any other such

code can be found in Table 6.1 for t ≤ 11.

Example 101. There is no other Z2s-linear Hadamard code H t1,...,ts of length

27 equivalent to H2,1,0.

In Tables 4.1, 4.4 and 4.5, for t ≤ 11 and s ∈ {2, . . . , t + 1}, we show

all possible values (t1, . . . , ts) for which there exists a Z2s-linear Hadamard

code H t1,...,ts of length 2t. For each one of them, the values (r, k), where

r is the rank and k is the dimension of the kernel, are also shown. These

two invariants have been computed by using the computer algebra system

Magma [BCFS16, PV17]. Note that if two codes have di�erent values (r, k),

then they are not equivalent. Now, by Theorem 98, we have that the Z2s-

linear Hadamard codes of length 2t with t ≤ 11 having the same values (r, k)

are equivalent.
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t = 5 (3,0), (2,0,0)
t = 7 (4,0), (2,1,0), (2,0,0,0)
t = 8 (3,0,0)
t = 9 (5,0), (2,2,0), (2,0,1,0), (2,0,0,0,0)
t = 10 (3,1,0), (2,1,0,0)
t = 11 (6,0), (2,3,0), (4,0,0), (2,0,2,0), (3,0,0,0), (2,0,0,1,0), (2,0,0,0,0,0)

Table 6.1: Type of all Z2s-linear Hadamard codes of length 2t with σ = 1
and ts = 0.

Example 102. From Table 4.1, we can see that there are four Z2s-linear

Hadamard codes of length 28 having rank equal to 10 and dimension of the

kernel equal to 7: the Z4-linear Hadamard code H3,3, the Z8-linear Hadamard

code H1,2,2, the Z16-linear Hadamard code H1,0,2,1, and the Z32-linear Hadamard

code H1,0,0,2,0. By Theorem 98, all these codes are equivalent.

6.2 Improvement of the partial classi�cation

In this section, we improve some partial results, given in Section 4.2, on the

classi�cation of the Z2s-linear Hadamard codes of length 2t, once t is �xed.

Given t ≥ 3 and 2 ≤ s ≤ t + 1, recall that we de�ne At,s as the number

of nonequivalent Z2s-linear Hadamard codes of length 2t. Given t ≥ 3, At
denote the number of nonequivalent Z2s-linear Hadamard codes of length 2t

with any s ≥ 2. In Section 4.2, Theorems 52 and 56 give upper bounds for

At,s and At, respectively.
In Table 6.2, for t ∈ {3, . . . , 11}, the lower bound given by the number

of di�erent dimensions of the kernel and the upper bound given by (4.4) in

Theorem 56 are shown.

Corollary 103. Let H t1,...,ts be a Z2s-linear Hadamard code. Then, H t1,...,ts

is equivalent to exactly one Z2s′ -linear Hadamard code H t′1,...,t
′
s′ with t′1 > 1.

Proof. If t1 > 1, then s′ = s and t′i = ti for all i ∈ {1, . . . , s}. Otherwise, if

t1 = 1, the result holds by (ii) of Theorem 98. QED

By Corollary 99, we have that any Z2s-linear Hadamard code H t1,...,ts is
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t 3 4 5 6 7 8 9 10 11
lower bound 1 1 3 3 5 5 7 7 9

upper bound (6.6) 1 1 3 3 6 7 11 13 20
upper bound (6.7) 1 1 3 4 9 12 22 28 47
upper bound (4.4) 1 1 3 5 10 16 26 38 57
upper bound (4.5) 1 1 3 5 10 16 26 38 57

Table 6.2: Bounds for the number At of nonequivalent Z2s-linear Hadamard
codes of length 2t with t ∈ {3, . . . , 11}.

equivalent to σ + ts Z2s′ -linear Hadamard codes (including H t1,...,ts). More-

over, Corollary 103 tells us that, always, exactly one of these σ+ts equivalent

codes has t1 > 1.

Example 104. For t = 7, by Theorem 98, we can see that the codes H3,2,

H1,2,1, H1,0,2,0 are equivalent and only one of them, H3,2, has t1 > 1 as it is

shown in Corollary 103. Similarly, the codes H2,0,2, H1,1,0,1 and H1,0,1,0,0 are

also equivalent and one of them, H2,0,2, satis�es that t1 > 1.

Corollary 105. Let H be a nonlinear Z2s-linear Hadamard code of length 2t.

If s ∈ {b(t+ 1)/2c+ 1, . . . , t+ 1}, then there exists an equivalent Z2s′ -linear

Hadamard code of length 2t with s′ ∈ {2, . . . , b(t+ 1)/2c}.

Proof. Let H t1,...,ts be a Z2s-linear Hadamard code with s ∈ {b(t + 1)/2c +

1, . . . , t + 1}. Since
∑s

i=1(s + 1 − i)ti = t + 1, then t1 = 1 and we have

that σ > 1. Therefore, by the (ii) in Theorem 98, H t1,...,ts is permutation

equivalent to the Z2s−σ+1-linear Hadamard code H = H tσ+1,tσ+1,...,ts−1,ts+σ−1.

Now, we just need to see that s−σ+1 < b(t+1)/2c. Since the length of H
is 2t, we have that t+1 = (s−σ+1)(tσ+1)+

∑s−σ+1
i=2 (s−σ+2−i)tσ−1+i+σ−1.

Therefore, (s − σ + 1)(tσ + 1) ≤ t + 1 and s − σ + 1 ≤ (t+ 1)/(tσ + 1). By

the de�nition of tσ, we know that tσ ≥ 1, so s− σ + 1 ≤ b(t+ 1)/2c. QED

From the previous two corollaries, note that we can focus on the Z2s-

linear Hadamard codes of length 2t with s ∈ {2, . . . , b(t + 1)/2c} in order

to classify all such codes for a given t ≥ 3. Let X̃t,s = |{(t1, . . . , ts) ∈
Ns : t + 1 =

∑s
i=1(s − i + 1)ti, t1 ≥ 2}| for s ∈ {3, . . . , b(t + 1)/2c} and
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X̃t,2 = |{(t1, t2) ∈ N2 : t + 1 = 2t1 + t2, t1 ≥ 3}|. Note that we de�ne X̃t,2

with t1 ≥ 3 because, if t1 = 2, the code is linear [Kro01].

Theorem 106. For t ≥ 3,

At ≤ 1 +

b t+1
2
c∑

s=2

X̃t,s (6.6)

and

At ≤ 1 +

b t+1
2
c∑

s=2

(At,s − 1). (6.7)

Moreover, for 3 ≤ t ≤ 11, �rst bound is tight.

Proof. Straightforward from Theorem 98. QED

This last result improves the partial classi�cation given in Section 4.2,

since it gives a better bounds for At. It is easy to see that (6.6) is a better

upper bound than (4.4) since X̃t,s ≤ Xt,s, for all t and s ∈ {2, . . . , t−2}, and
also the amount of addends is lower. It is also trivial to see that (6.7) is a

better bound than (4.5) since the amount of addends is lower.





Chapter 7

Conclusions

�Even the very wise cannot see all ends."

�J. R. R. Tolkien, Gandalf, The Lord of the

Rings, The Fellowship of the Ring

7.1 Summary

In [HKC+94], a linear structure over Z4 is provided for some families of non-

linear binary codes such that Kerdock, Preparata, Goethal and related codes.

Later, in [Kro01, PRV06], also the well-known family of binary Hadamard

codes having a linear structure over Z4 are studied and classi�ed. The main

goal of this dissertation is to generalize this research line. We consider a

family of the binary Hadamard codes having linear structures over Z2s con-

structed in [Kro07] and study their classi�cation by using two invariants, the

rank and dimension of the kernel.

In Chapters 1 and 2, we contextualize the research presented in this dis-

sertation. We also give basic concepts and previous known results on binary

codes, binary Hadamard codes, rank and kernel of binary codes, Z2s-linear

codes, and generalized Gray maps.

Later, in Chapter 3, we give a recursive construction of the generator

matrices with minimum number of rows of the Z2s-additive Hadamard codes.

We also show that the Gray map images of the constructed codes, called
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Z2s-linear Hadamard codes, are, in fact, binary Hadamard codes. We also

determine for which types the Z2s-linear Hadamard codes are linear.

In Chapter 4, the kernel of Z2s-linear Hadamard codes of length 2t has

been studied for s > 2. We compute the kernel of these codes and its di-

mension in order to classify them. In general, we have seen that we cannot

completely classify these codes by using only the dimension of the kernel,

once t and s are �xed. Nevertheless, we have determined for wich values of

t ≤ 11 and any s, we can use this invariant to distinguish between nonequiv-

alent Z2s-linear Hadamard codes of length 2t. Computationally, for these

values of t and s, we have also shown that the rank is enough to classify

them. Finally, we have established some bounds for the exact number of

nonequivalent Z2s-linear Hadamard codes of length 2t, when both t and s

are �xed, and also when just t is �xed; denoted by At,s and At, respectively.
Again, computationally, we have provided their exact values for t ≤ 11.

In Chapter 5, we focus on s = 3. We study the rank of the Z8-linear

Hadamard codes of length 2t, giving an explicit construction of the linear

independent vectors that generate the span. We observe that the rank, by

itself, is not enough to obtain a complete classi�cation. The �rst value of

t for which the rank does not classify is t = 17. However, we prove that

the full classi�cation is possible by using both of the invariants, the rank

and dimension of the kernel. We also provide the amount of nonequivalent

Z8-linear Hadamard codes of length 2t for a given t. Finally, we show that

all the generated Z4-linear Hadamard codes are permutation equivalent to a

Z8-linear Hadamard code except the codes of type (n; t1, 0) with t1 ≥ 3.

The results presented in Chapter 6 allow us to improve the partial clas-

si�cation of the Z2s-linear Hadamard codes of length 2t, given in Chapter 4

and obtained by using the rank and dimension of the kernel, once t is �xed.

Speci�cally, we establish that there are some families of such codes which are

equivalent. This result permit us to give a new upper bound on the number

of nonequivalent such codes, once t is �xed. Moreover, we have that this

upper bound coincides with the lower bound and is tight for any 3 ≤ t ≤ 11.
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7.2 Future research

In this section, we give some open problems that derive from this dissertation

which may be considered for future research on this topic:

• The Z4-linear Hadamard codes can be classi�ed by using just the di-

mension of the kernel [Kro01]. Establish for which values of t and s, the

dimension of the kernel is enough to classify the Z2s-linear Hadamard

codes of length 2t. From the results up to t = 11, given in Chapter 4,

we conjecture that only for any t ≥ 8 and s ∈ {2, t− 4, t− 3, t− 2} the
dimension of the kernel can be used to classify all Z2s-linear Hadamard

codes of length 2t once we �x s and t.

• For Z2s-linear Hadamard codes of length 2t, with t ≤ 11, we have seen

that the dimension of the kernel belongs to {3, ..., t−1, t+1} if t is odd,
and it belongs to {4, . . . , t − 1, t + 1} if t is even. Establish whether

this fact is also true for any �xed t. Moreover, prove that there exists a

Z2s-linear Hadamard code having any possible dimension of the kernel.

• In Chapter 5, a basis of the span and its dimension, the rank, for the

Z8-linear Hadamard codes, in terms of the type of the code, are com-

puted. This result for Z4-linear Hadamard codes is given in [PRV06].

Generalize these results for the Z2s-linear Hadamard codes with s ≥ 4.

• In case that an explicit formula for the rank of the Z2s-linear Hadamard

codes with s ≥ 4 is not found, compute the values for such codes when

t ≥ 12 and s ≥ 4. Up to t = 11, these values have been found by using

Magma [BCFS16] and our own developed functions. When t ≥ 12, it

takes too long, so it is necessary to use another approach to speed up

the computations.

• The Z4-linear Hadamard codes can be classi�ed by using just the

rank [PRV06]. From the formula that gives the rank of the Z8-linear

Hadamard codes, given in Chapter 5, we have that this invariant al-

lows us to classify these codes for any t ≤ 16; and it is not possible for
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t = 17. Determine for which values of t ≥ 18, the rank is enough to

classify them. In general, determine for which values of t and s ≥ 3,

the rank classi�es all Z2s-linear Hadamard codes of length 2t once we

�x s and t.

• There are values of t and s for which neither the dimension of the

kernel nor the rank, independently, can be used to classify Z2s-linear

Hadamard codes of length 2t; for example, for t = 17 and s = 3.

However, in Chapter 5, we have shown that for any t and s = 3, the

classi�cation is possible by using both invariants. Prove that it is also

possible for any t and s ≥ 4 or �nd counterexamples in this direction.

• Recall that At,s is the number of nonequivalent Z2s-linear Hadamard

codes of length 2t. An explicit expression for s = 2 is given in [Kro01].

In Chapter 4, an upper bound for At,s is established. Moreover, com-

putationally, the exact values for any t ≤ 11 and s ≥ 3, which coincide

with the upper bound, have been found. Determine an explicit expres-

sion for At,s for any t and s ≥ 3.

• Recall that At is the number of nonequivalent Z2s-linear Hadamard

codes of length 2t with any s ≥ 2. When only t is �xed, we have seen

that it is necessary to take into account the rank and dimension of

the kernel to distinguish between nonequivalent Z2s-linear Hadamard

codes of the same length. A lower bound for At considering these two

invariants can be de�ned. Computationally, the exact values for any

t ≤ 11, which coincide with this lower bound, have been determined in

Chapter 6. An upper bound is also given from the number of di�erent

nonlinear such codes. Improve these bounds or determine an explicit

expression for At for any t.

• In Chapter 5, we have shown that Z4-linear Hadamard codes of length

2t, t ≥ 5, and type (n; t1, t2) = (2t−1; (t + 1)/2, 0) are not equivalent

to any Z8-linear Hadamard code. Note that in this case t is odd and

t1 > 1. Later, in Chapter 6, we have seen that Z2s-linear Hadamard

codes of type (n; t1, · · · , ts) with t1 > 1 and ts = 0 are not equivalent
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to any other Z2s′ -linear Hadamard code with s 6= s′ for t ≤ 11. Find

for which types (n; t1, . . . , ts) the code is not equivalent to any other

Z2s′ -linear Hadamard code of the same length.

• Establish whether all Z2s-linear Hadamard codes of the same length,

having the same rank and dimension of the kernel, are equivalent. This

is equivalent to prove whether it is enough to use both invariants to

classify all Z2s-linear Hadamard codes of length 2t, once t is �xed. In

this dissertation, we have seen that this fact is true for t up to t = 11.

• Show all equivalence relations among the Z2s-linear Hadamard codes

considered in this dissertation, that is, the ones obtained from the Car-

let's Gray map. This map is a particular case of the Krotov's general-

ization of the Gray map [Kro07]. Consider other families of Z2s-linear

Hadamard codes obtained from a Krotov's Gray map, and establish

whether there exist nonequivalent nonlinear Hadamard codes in the

new families. Compare the new families with the one studied in this

dissertation to determine whether there are other Z2s-linear Hadamard

codes that are not equivalent to those obtained as images of the Carlet's

Gray map.

• The classi�cation of all Z2Z4-linear Hadamard codes of length 2t with

α 6= 0 is given in [PRV06]. In [KV15], it is shown that each Z2Z4-linear

Hadamard code with α 6= 0 is equivalent to a Z4-linear Hadamard code,

except the one of type 214δ as a group when t = 2δ is even. In Chapter

4, through an example, we have seen that these Z2Z4-linear Hadamard

codes for t ∈ {4, 6, 8, 10} are not equivalent to any Z2s-linear Hadamard

code with s ≥ 3. Prove whether this is also true for any t ≥ 12 even.

• In [BBFV15], a permutation decoding algorithm is described for Z2Z4-

linear codes, and in particular for Z4-linear ones. In [BV15, BV16a],

PD-sets with minimum number of elements were given, to perform a

partial permutation decoding for some families of Z4-linear codes, in-

cluding Z4-linear Hadamard codes. Generalize these results describing
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a permutation decoding algorithm for Z2s-linear codes and �nding PD-

sets for the ones that are Hadamard. In a more general approach, �nd

other e�cient decoding algorithms for Z2s-linear codes in general, and

for Z2s-linear Hadamard codes in particular.

• All computational results given in this dissertation have been done us-

ing the computer algebra system Magma [BCFS16]. We have also used

some functions from the packages [PPV12, PV17], which are for linear

codes over Z4 and for nonlinear codes over �nite �elds, respectively.

New functions to deal with Z2s-additive codes and their corresponding

Gray map images, based on these packages, have been implemented.

Complete these functions in order to develop a new Magma package

for these codes.

• In [SWK18], the results given in [Kro07] are generalized. Speci�cally,

the authors show that, considering two di�erent generalized Gray maps

φ and ϕ, if C is a ZpZps-additive code and C⊥ its dual, the weight

enumerators of φ(C) and ϕ(C⊥) are formally dual. Moreover, they

prove the existence of 1-perfect codes over mixed alphabets of the form

ZpZp2 · · ·Zps . Classify, and obtain similar results to the ones given in

this dissertation, for the dual of these 1-perfect codes codes over the

mixed alphabets, which represent generalized Hadamard codes over Zp.



Bibliography

[AAF+09] V. Álvarez , J. A. Armario, M. D. Frau, and P. Real �The

homological reduction method for computing cocyclic Hadamard

matrices,� Journal of Symbolic Computation, vol. 44, pp. 558�

570, 2009.

[AK92] E. F. Assmus and J. D. Key, Designs and Their Codes, Cam-

bridge University Press, Great Britain, 1992.

[AA09] N. Aydin and T. Asamov, �A database of Z4 codes,� Journal of

Combinatorics, Information and System Sciences, vol. 34, nos.

1�4, pp. 1�12, 2009. http://Z4Codes.info/.

[AS13] I. Aydogdu and I. Siap, �The structure of Z2Z2s-additive codes:

bounds on the minimum distance,� Appl. Math. Inf. Sci., vol. 7,

no. 6, pp. 2271�2278, 2013.

[AS14] I. Aydogdu and I. Siap, �On ZprZps-additive codes,� Linear and

Multilinear Algebra, vol. 63, pp. 2089�2102, 2014.

[BDH+99] E. Bannai, S. T. Dougherty, M. Harada, and M. Oura, �Type

II codes, even unimodular lattices, and invariant rings,� IEEE

Trans. Inf. Theory, vol. 45, no. 4, pp. 1194�1205, 1999.

[BV15] R. D. Barrolleta and M. Villanueva, �PD-sets for (nonlinear)

Hadamard Z4-linear codes,� in Proc. of the 21st Conference

on Aplications of Computer Algebra (ACA 2015), Kalamata,

Greece, pp. 135�139, 20�23 July 2015.

121

http://Z4Codes.info/


122 Bibliography

[BV16a] R. D. Barrolleta and M. Villanueva, �Partial permutation decod-

ing for binary linear and Z4-linear Hadamard codes,� Designs,

Codes and Cryptography, vol. 86, no. 3, pp. 569-586, 2017.

[BV16c] R. D. Barrolleta and M. Villanueva, �Partial permutation decod-

ing for several families of Z4-linear codes,' to appear in IEEE

Trans. Inf. Theory, 2018. DOI:10.1109/tit.2018.2840226

[BGH83] H. Bauer, B. Ganter, and F. Hergert, �Algebraic techniques for

nonlinear codes,� Combinatorica, vol. 3, no. 1, pp. 21�33, 1983.

[BBFV15] J. J. Bernal, J. Borges, C. Fernández-Córdoba, and M. Vil-

lanueva, �Permutation decoding of Z2Z4-linear codes,� Designs,

Codes and Cryptography, vol. 76, no. 2, pp. 269�277, 2015.

[BGL05] M. C. Bhandari, M. K. Gupta, and A. K. Lal, �On linear codes

over Z2s ,� Designs, Codes and Cryptography, vol. 36, no. 3, pp.

227�244, 2005.

[Bla72] I. F. Blake, �Codes over certain rings,� Information and Control,

vol. 20, pp. 396�404, 1972.

[Bla75] I. F. Blake, �Codes over integer residue rings,� Information and

Control, vol. 29, no. 4, pp. 295�300, 1975.

[BFP+10] J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà, and M. Vil-

lanueva, �Z2Z4-linear codes: generator matrices and duality,�

Designs, Codes and Cryptography, vol. 54, no. 2, pp. 167�179,

2010.

[BFP+14] J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà, and M. Vil-

lanueva, �Survey on Z2Z4-additive codes,� in Proc. of the Con-

tact Forum Galois Geometries and Applications. Royal Flemish

Academy of Belgium for Science and the Arts (October 5, 2012),

pp. 19�67, 2014.



Bibliography 123

[BFP05] J. Borges, C. Fernández-Córdoba, and K. T. Phelps, �Quater-

nary Reed-Muller codes,� IEEE Trans. Inf. Theory, vol. 51, no.

7, pp. 2686�2691, 2005.

[BFP08] J. Borges, C. Fernández-Córdoba, and K. T. Phelps, �ZRM

codes,� IEEE Trans. Inf. Theory, vol. 54, no. 1, pp. 380�386,

2008.

[BFR01] J. Borges, C. Fernández and J. Rifà, Every Z2k-code is a binary

propelinear code, in �COMB'01. Electronic Notes in Discrete

Mathematics,� 10 (2001), Elsevier Science.

[BFR09] J. Borges, C. Fernández and J. Rifà, Propelinear structure of

Z2k-linear codes, arXiv:0907.5287, 2009

[BPR03] J. Borges, K. T. Phelps, and J. Rifà, �The rank and kernel of

extended 1-perfect Z4-linear and additive non-Z4-linear codes,�

IEEE Trans. Inf. Theory, vol. 49, no. 8, pp. 2028�2034, 2003.

[BPRZ03] J. Borges, K. T. Phelps, J. Rifà, and V. Zinoviev, �On Z4-

linear Preparata-like and Kerdock-like codes,� IEEE Trans. Inf.

Theory, vol. 49, no. 11, pp. 2834�2843, 2003.

[BCFS16] W. Bosma, J. J. Cannon, C. Fieker, and A. Steel (eds.),

Handbook of Magma functions, Edition 2.22 (2016) 5669 pages.

http://magma.maths.usyd.edu.au/magma/.

[Car91] C. Carlet, �The automorphism group of Kerdock codes,� Journal

of Information and Optimization Sciences, vol. 12, pp. 378�400,

1991.

[Car98] C. Carlet, �Z2k-linear codes,� IEEE Trans. Inf. Theory, vol. 44,

pp. 1543�1547, 1998.

[Cat12] P. Ó Catháin, �Di�erent sets and doubly transitive actions on

Hadamard matrices,� Journal of Combinatorial Theory, vol. 119,

no. 6, pp. 1235�1249, 2012.

http://magma.maths.usyd.edu.au/magma/


124 Bibliography

[Dou17] S. T. Dougherty, Algebraic Coding Theory Over Finite Commu-

tative Rings, Springer, 2017.

[DF11] S. T. Dougherty and C. Fernández-Córdoba, �Codes over Z2k ,

Gray map and self-dual codes,� Adv. in Math. of Commun., vol.

5, no. 4, pp. 571�588, 2011.

[DRV15] S. T. Dougherty, J. Rifà, and M. Villanueva, �Ranks and kernels

of codes from generalized Hadamard matrices,� IEEE Trans.

Inf. Theory, vol. 62, no. 2, pp. 687�694, 2016.

[ER14] T. Etzion and N. Raviv, �Equidistant codes in the Grassman-

nian,� Discrete Applied Mathematics, vol. 186, pp. 87�97, 2015.

[FPV08] C. Fernández-Córdoba, J. Pujol, and M. Villanueva, �On rank

and kernel of Z4-linear codes,� Lecture Notes in Computer Sci-

ence, vol. 5228, pp. 46�55, 2008.

[FPV10] C. Fernández-Córdoba, J. Pujol, and M. Villanueva, �Z2Z4-

linear codes: rank and kernel,� Designs, Codes and Cryptogra-

phy, vol. 56, no. 1, pp. 43�59, 2010.

[FVV16] C. Fernández-Córdoba, C. Vela, and M. Villanueva, �Construc-

tion and classi�cation of the Z2s-linear Hadamard codes,� Elec-

tronic Notes in Discrete Mathematics, vol. 54, pp. 247�252, 2016.

[FVV17] C. Fernández-Córdoba, C. Vela, and M. Villanueva, �On the

kernel of Z2s-linear Hadamard codes,� in Proc. of the 5th In-

ternational Castle Meeting on Coding Theory and Applications,

ICMCTA 2017. Lecture Notes in Computer Science, vol. 10495,

pp. 107�117, 2017.

[FVV18a] C. Fernández-Córdoba, C. Vela, and M. Villanueva, �On the

rank of Z8-linear Hadamard codes,� in Proc. of the 2nd IMA

Conference on Theoretical and Computational Discrete Mathe-

matics. To apperar in Electronic Notes in Discrete Mathematics,

2018.



Bibliography 125

[FVV18b] C. Fernández-Córdoba, C. Vela, and M. Villanueva, �On

Z2s-linear Hadamard codes: kernel and partial classi�cation,�

to appear in Designs, Codes and Cryptography, 2018. DOI

:10.1007/s10623-018-0546-6.

[FVV18c] C. Fernández-Córdoba, C. Vela, and M. Villanueva, �On Z8-

linear Hadamard codes: rank and classi�cation,� Submitted to

IEEE Trans. Inf. Theory, 2018.

[Fla97] D. L. Flannery, �Cocyclic Hadamard matrices and Hadamard

groups are equivalent,� Journal of Algebra, vol. 192, pp. 47�61,

1997.

[Gab85] E. Gabidulin, �Theory of codes with maximal rank distance

(translation),� Problems of Information Transmission, vol. 21,

pp. 1�12, 1985.

[GR16] E. G. Gorla and A. Ravagnani, �Equidistant subspace codes,�

Linear Algebra and its Applications, vol. 490, pp. 48�65, 2016.

[Gra09] M. Grassl, �Code tables: bounds on the parameters of various

types of codes,� online available at http://www.codetables.de.

Accessed on 2016-09-18.

[Had1893] J. Hadamard, �Resolution d'une question relative aux determi-

nants,� Bull. des Sciences Mathematiques, vol. 17, pp. 240�246,

1893.

[Ham50] R. W. Hamming, �Error detecting and error correcting codes,�

Bell Syst. Tech. J., vol. 29, pp. 147�160, 1950.

[HKC+94] A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A.

Sloane, and P. Solé, �The Z4-linearity of Kerdock, Preparata,

Goethals, and related codes,� IEEE Trans. Inf. Theory, vol. 40,

no. 2, pp. 301�319, 1994.

http://www.codetables.de


126 Bibliography

[HS79] M. Harwit and N. J. A. Sloane, Hadamard Transform Optics,

Elsevier, Academic Press, Sydney, 1979.

[Her12] A. Herbert, �A neural architecture based on Hadamard designs,�

The Open Neuroscience Journal, vol. 6, pp. 1�9, 2012.

[Hor07] K. J. Horadam, Hadamard Matrices and Their Applications,

Princeton University Press, U.S.A., 2007.

[Huf98] W. C. Hu�man, Codes and Groups, Handbook of Coding Theory,

(V. S. Pless and W. C. Hu�man, eds.), Elsevier, 1998.

[HP03] W. C. Hu�man and V. Pless, Fundamentals of Error-Correcting

Codes, Cambridge University Press, Cambridge, 2003.

[Ito94] N. Ito, �On Hadamard groups II,� Journal of Algebra, vol. 169,

pp. 936�942, 1994.

[Ito96] N. Ito, �Remarks on Hadamard groups,� Kyushu J. Math., vol.

50, pp. 1�9, 1996.

[Jai89] A. A. Jain, Fundamentals of Digital Image Processing, Prentice-

Hall, Englewood Cli�s, 1989.

[KT05] H. Kharaghani and B. Tayfeh-Rezaie, �A Hadamard matrix of

order 428,� Journal of Combinatorial Designs, vol. 13, no. 6, pp.

435�440, 2005.

[KWZ16] M. Kiermaier, A. Wassermann, and J. Zwanzger, �New upper

bounds on binary linear codes and a Z4-code with a better-than-

linear Gray image,� IEEE Trans. Inf. Theory, vol. 62, no. 12,

pp. 6768�6771, 2016.

[KZ13] M. Kiermaier and J. Zwanzger, �New ring-linear codes from

dualization in projective Hjelmslev geometries,� Designs, Codes

and Cryptography, vol. 66, nos. 1�3, pp. 39�55, 2013.



Bibliography 127

[KB73] B. R. Kowalski and C. F. Bender �The Hadamard transform and

spectral analysis by pattern recognition,� Anal. Chem., vol. 45,

no. 13, pp. 2234�2239, 1973.

[Kro01] D. S. Krotov, �Z4-linear Hadamard and extended perfect codes,�

Electronic Notes in Discrete Mathematics, vol. 6, pp. 107�112,

2001.

[Kro07] D. S. Krotov, �On Z2k-dual binary codes,� IEEE Trans. Inf.

Theory, vol. 53, no. 4, pp. 1532�1537, 2007.

[KV15] D. S. Krotov and M. Villanueva, �Classi�cation of the Z2Z4-

linear Hadamard codes and their automorphism groups,� IEEE

Trans. Inf. Theory, vol. 61, no. 2, pp. 887�894, 2015.

[LT94] A. W. Lam and S. Tantaratana, Theory and Applications of

Spread Spectrum Systems, IEEE/EAB Self-Study Course, IEEE

Inc., Piscataway, 1994.

[Lam13] L. Lambert, Random Network Coding and Designs

over Fq, Master dissertation, Ghent University, 2013.

http://www.network-coding.eu/pubs/Thesis-Lien.pdf.

[LFH00] W. De Launey, D. L. Flannery, and K. J. Horadam �Cocyclic

Hadamard matrices and di�erent sets,� Discrete Applied Math-

ematics, vol. 120, pp. 47�61, 2000.

[LRS99] S. Litsyn, R. M. Rains, and N. J. A. Sloane, �Ta-

ble of nonlinear binary codes,� online available at

http://www.eng.tau.ac.il/ litsyn/tableand/. Accessed

on 2016-09-18.

[MS77] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-

Correcting Codes, North-Holland Publishing Company, U.S.A.,

1977.

http://www.network-coding.eu/pubs/Thesis-Lien.pdf
http://www.eng.tau.ac.il/~litsyn/tableand/


128 Bibliography

[MR15] P. Montolio and J. Rifà, �Construction of Hadamard Z2Z4Q8-

codes for each allowable value of the rank and dimension of the

kernel,� IEEE Trans. Inf. Theory, vol. 61, no. 4, pp. 1948�1958,

2015.

[PPV11] J. Pernas, J. Pujol, and M. Villanueva, �Classi�cation of some

families of quaternary Reed-Muller codes,� IEEE Trans. Inf.

Theory, vol. 57, no. 9, pp. 6043�6051, 2011.

[PPV12] J. Pernas, J. Pujol, and M. Villanueva, �Codes over Z4.

A Magma package,� version 2.1, Universitat Autònoma de

Barcelona, 2017. http://ccsg/uab.cat.

[PRV05] K. T. Phelps, J. Rifà, and M. Villanueva, �Rank and kernel of

binary Hadamard codes,� IEEE Trans. Inf. Theory, vol. 51, pp.

3931�3937, 2005.

[PRV06] K. T. Phelps, J. Rifà, and M. Villanueva, �On the additive (Z4-

linear and non-Z4-linear) Hadamard codes: rank and kernel,�

IEEE Trans. Inf. Theory, vol. 52, no. 1, pp. 316�319, 2006.

[PRS09] J. Pujol, J. Rifà, and F. I. Solov'eva, �Construction of Z4-linear

Reed�Muller codes,� IEEE Trans. Inf. Theory, vol. 55, no. 1,

pp. 99�104, 2009.

[PV17] J. Pujol and M. Villanueva, �Q-ary codes. A Magma pack-

age,� version 1.0, Universitat Autònoma de Barcelona, 2017.

http://ccsg/uab.cat.

[RSV09] J. Rifà, F. I. Solov'eva, and M. Villanueva, �On the intersection

of Z2Z4-additive Hadamard codes,� IEEE Trans. Inf. Theory,

vol. 55, no. 4, pp. 1766�1774, 2009.

[RS14] J. Rifà and E. Suarez, �About a class of Hadamard propelinear

codes,� Electronic Notes in Discrete Mathematics, vol. 46, pp.

289�296, 2014.

http://ccsg.uab.cat
http://ccsg.uab.cat


Bibliography 129

[RS17] J. Rifà and E. Suarez, �Hadamard full propelinear codes of type

Q; rank and kernel,� Designs, Codes and Cryptography, vol. 86,

pp. 1905�1921, 2018.

[RR13] A. del Rio and J. Rifà, �Families of Hadamard Z2Z4Q8-codes,�

IEEE Trans. Inf. Theory, vol. 59, no. 8, pp. 5140�5151, 2013.

[Sha48] C. E. Shannon, �A mathematical theory of communications,�

Bell System Technical Journal, vol. 27, pp. 379�423 and 623�

656, 1948.

[SWK18] M. Shi, R. Wu, and D. S. Krotov, �On ZpZpk-additive codes and
their duality,� arXiv:1809.00008 [cs.IT], 2018.

[Syl1867] J. J. Sylvester, �Thoughts on inverse orthogonal matrices, si-

multaneous sign successions and tesselated pavements in two or

more colours, with applications to Newton's rule, ornamental

tile work and the theory of numbers,� Phil. Mag., vol. 34, pp.

461�475, 1867.

[TV03] H. Tapia-Recillas and G. Vega, �On Z2k-linear and quaternary

codes,� SIAM J. Discrete Math., vol. 17, no. 1, pp. 103�113,

2003.

[TMB+11] A. L. Trautmann, F. Manganiello, and J. Rosenthal, �Orbit

codes - a new concept in the area of network coding,� in Proc.

of the 2010 IEEE Information Theory Workshop (ITW 2010),

Dublin, Ireland, pp. 1-4, 2010.

[Wal23] J. L. Walsh, �A closed set of normal orthogonal functions,�

American Journal of Mathematics, vol. 55, pp. 5-24, 1923.

[Wan97] Z.-X. Wan, Quaternary Codes, World Scienti�c, Singapore,

1997.

[Zen14] F. Zeng, Nonlinear Codes: Representation, Constructions, Min-

imum Distance Computation and Decoding, PhD Thesis, Uni-

versitat Autònoma de Barcelona, 2014.



Carlos Vela Cabello

Cerdanyola del Vallès, September 2018

130


	Abstract
	Resum
	Resumen
	Acknowledgements
	Chapter Introduction
	Chapter State of art
	Basic concepts of binary codes
	Invariants for binary codes
	Binary Hadamard codes
	Z4-linear codes
	Z4-linear Hadamard codes
	Generalized Gray map
	Z2s-linear codes

	Chapter Construction and linearity of Z2s-linear Hadamard codes
	Recursive construction
	Linearity

	Chapter Kernel of Z2s-linear Hadamard codes
	Computation of the kernel
	Partial classification of Z2s-linear Hadamard codes

	Chapter Rank of Z8-linear Hadamard codes
	Computation of the rank
	Classification of Z8-linear Hadamard codes
	Equivalences among Z4-linear and Z8-linear Hadamard codes

	Chapter Equivalent Z2s-linear Hadamard codes
	Equivalences among Z2s-linear Hadamard codes
	Improvement of the partial classification

	Chapter Conclusions
	Summary
	Future research

	Bibliography

