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Abstract

The main goal of this thesis is to develop computer assistedtation and machine transla-
tion systems which present a more robust synergy with tltergial users. Hence, the main
purpose is to make current state-of-the-art systems mganemic, intuitive and efficient,
so that the human expert feels more comfortable when userg.thror doing this, different
techniques are presented, focusing on improving the abli¢iptaand response time of the
underlying statistical machine translation systems, dkagea strategy aiming at enhancing
human-machine interaction within an interactive machraaglation setup. All of this with
the ultimate purpose of filling in the existing gap betweea #iiate of the art in machine
translation and the final tools that are usually availabtdte final human translators.

Concerning the response time of the machine translatiolersgs a parameter pruning
technique is presented, whose intuition stems from the eqatnaf bilingual segmentation,
but which evolves towards a full parameter re-estimatioatstly. By using such strategy,
experimental results presented here prove that it is plesgbachieve reductions of up to
97% in the number of parameters required without a significass im translation quality.
Being robust across different language pairs, these sssuilience that the pruning technique
presented is effective in a traditional machine transtaioenario, and could be used for
instance in a post-editing setup. Nevertheless, expetsrenried out within a simulated
interactive machine translation environment are slighglgs convincing, since a trade-off
between response time and translation quality is needed.

Two orthogonally different approaches are presented highplurpose of increasing the
adaptability of the statistical machine translation syste On the one hand, we investigate
how to increase the adaptability of the language model, bglisiding it into several smaller
language models which are then interpolated in transldimo@ according to the source sen-
tence to be translated. The specific sub-models are buikrelty taking advantage of su-
pervised information present in certain bilingual corpava by performing unsupervised
clustering on the training set, with the aim of uncoveringdfic sub-topics or language
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styles present. On the other hand, Bayesian predictivetatiapis elucidated as an efficient
strategy for adapting the translation models present ite-sththe-art machine translation
systems. Although adaptation experiments are only peddnwithin the traditional machine
translation framework, the results obtained are compmekinough for implementing them
within an interactive setup, and such work will be done intlear future. Nevertheless, it
should be noted that the techniques developed may be réagilgmented within a computer
assisted translation scenario, in which a statistical imednanslation system is providing the
translations that the user needs to modify and validate.

Finally, special attention is devoted to increasing theesgm between the human expert
and the interactive machine translation system. With thigppse, two different forms of
weaker feedback are studied, which intend to increase thduptivity of the human transla-
tor. For doing this, two different changes to the traditidnteraction scheme are presented.
The first one aims at anticipating the user’s actions, andeltend one is targeted at increas-
ing the flexibility of the system whenever the user signads there is an error he wants the
system to correct.
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Resumen

La principal meta de esta tesis es desarrollar sistemasadiecirion asistida y de traduccién
automatica que presenten mayor sinergia con sus usuat@smies. Por ello, el objetivo es
hacer los sistemas estado del arte mas ergondmicos vatujtieficientes, con el fin de que
el experto humano se sienta mas cémodo al utilizarlos. Cerfiesse presentan diferentes
técnicas enfocadas a mejorar la adaptabilidad y el tiempegjriesta de los sistemas de tra-
duccion automatica subyacentes, asi como también se faesenestrategia cuya finalidad
es mejorar la interaccion hombre-maquina en un entorn@deadcion interactiva. Todo ello
con el propdsito dltimo de rellenar el hueco existente egltestado del arte en traduccion
automética y las herramientas que los traductores humigmesta su disposicion.

En lo que respecta al tiempo de respuesta de los sistemaaddedidn automatica, en
esta tesis se presenta una técnica de poda de los paranechoesubdelos de traduccién ac-
tuales, cuya intuicién esta basada en el concepto de seggi@nbilinglie, pero que termina
por evolucionar hacia una estrategia de re-estimaciondmsliparametros. Utilizando esta
estrategia se obtienen resultados experimentales quesdmnuque es posible podar la tabla
de segmentos hasta en @i{%, sin mermar por ello la calidad de las traducciones obtasnida
Ademas, estos resultados son coherentes en diferentesdetenguas, lo cual evidencia
gue la técnica que se presenta aqui es efectiva en un en®traddccion automatica tradi-
cional, y por lo tanto podria ser utilizada directamente erescenario de post-edicion. Sin
embargo, los experimentos llevados a cabo en traducciérattiva son ligeramente menos
convincentes, pues implican la necesidad de llegar a un mMigo entre el tiempo de re-
spuestay la calidad de los sufijos producidos.

Por otra parte, se presentan dos técnicas de adaptacior| poopdésito de mejorar la
adaptabilidad de los sistemas de traduccion automaticapringera de ellas se centra en
mejorar la adaptabilidad del modelo de lenguaje, mediantibdivisién en varios mode-
los de lenguaje mas pequefios, pero mas especificos. Unachez ésto, tales submodelos
se interpolan en tiempo de traduccién en funcion de la freserdrada en cuestién. Los
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submodelos especificos son construidos o bien teniendoesracinformacion procedente
de etiquetas supervisadas existentes en diferentes tosjie datos bilingles, o bien medi-
ante estrategias de agrupamiento no supervisadas, capékito de descubrir determinados
temas o estilos linguisticos. La segunda técnica de adéptgae se presenta en esta tesis
consiste en aplicar la adaptacion predictiva Bayesiana anladelos de traduccion subya-
centes en los sistemas de traduccion automéatica actualpsesa de que los experimentos
de adaptacion se han llevado a cabo en un entorno de traduagiomatica pura, los re-
sultados obtenidos son lo suficientemente prometedores pam implementar las técnicas
desarrolladas en esta tesis en un entorno interactivo emuebfcercano. Sin embargo, vale
la pena recalcar que las técnicas presentadas aqui puedmmpkenentadas tal cual en un
escenario de traduccion asistida, en el cual un sistemadiedrion automética proporciona
las traducciones que el usuario debe corregir y validar.

Por dltimo, también se dedica una especial atencion a nmdégosaergia entre el experto
humano y el sistema de traduccién interactiva. Para ellestsslian dos formas diferentes de
realimentacién débil, con la intencién de mejorar la pragidad del traductor humano. Con
este fin, se presentan dos modificaciones al esquema trzalicie interaccion. La primera
pretende anticipar las acciones del usuario, mientrasagseglunda tiene por finalidad mejo-
rar la flexibilidad del sistema en el caso en que el usuarialsefue hay un error que quiere
que el sistema corrija.
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Resum

El principal objectiu d'aquesta tesi és desenvoluparmistede traduccio assistida i de tra-
ducci6 automatica que presenten una major sinergia ambéuwgsisuaris potencials. Per tant,
el proposit és dissenyar sistemes més ergonomics, irgi#ficients, amb la intencio de que
I'expert huma es senti més comode a I'hora d’emprar-losaRérar a aquest fi es presenten
diferents tecniques enfocades a millorar I'adaptabiliglttemps de resposta dels sistemes
de traducci6 automatica subjacents, aixi com també esrjieesea estrategia per a millorar
la interaccid6 home-maquina en un entorn de traduccio ictigea Tot aixd amb el proposit
ultim d’emplenar el buit existent entre I'estat de I'art emduccié automatica i les eines que
tenen els traductors humans a la seva disposicié.

Pel que fa al temps de resposta dels sistemes de traducoiatida, en aquesta tesi es
presenta una técnica de poda dels parametres dels modetddecié actuals, la intuicio
de la qual esta basada en el concepte de segmentacio bjlipgideque acaba per evolu-
cionar cap a una estratégia de re-estimacio d’aquestanpaes. Emprant aquesta estratégia
s'obtenen resultats experimentals que demostren que éibleggodar la taula de segments
fins un97%, sense minvar amb aixo la qualitat de les traduccions obdieg. A més, aquests
resultats s6n coherents en diferents parells de llenggigsidl cosa evidencia que la técnica
gue es presenta aci és efectiva en un entorn de traduccihatita tradicional, i per tant
podria ser utilitzada directament en un escenari de pastéedNo obstant aixo, els experi-
ments duts a terme en traduccid interactiva sén lleugeramenys convincents, donat que
impliquen la necessitat d’arribar a un compromis entrereptede resposta i la qualitat dels
sufixos produits.

D’altra banda, es presenten dues técniques d’adaptacid,ehmroposit de millorar
I'adaptabilitat dels sistemes de traducci6 automaticapriraera d’elles es centra en millorar
I'adaptabilitat del model de llenguatge, mitjancant lasssubdivisio en diversos models de
llenguatge més petits, pero meés especifics. Una vegadadetaios submodels s’interpolen
en temps de traducci6é en funcié de la frase d’entrada eniquigds submodels especifics

Xi



sén construits bé tenint en compte informacié procedettigdietes supervisades existents
en diferents conjunts de dades bilinglies, o bé mitjancdrdtégies d’agrupament no su-
pervisades, amb el proposit de descobrir determinats tenessils linglistics. La segona
tecnica d’adaptacié que es presenta en aquesta tesi ednaistplicar I'adaptacio predictiva
Bayesiana als models de traducci6 subjacents als sistesrteadiiccié automatica actuals.
Tot i que els experiments d’adaptacié s’han dut a terme emtanrede traduccié automatica
pura, els resultats obtinguts sén prou prometedors comng@eimentar les técniques de-
senvolupades en aquesta tesi en un entorn interactiu emueldoper. Tot i aixo, val la
pena recalcar que les técniques desenvolupades en acemgt@den ser implementades
sense modificacions en un entorn de traduccié assistida@mélin sistema de traduccié
automatica estadistic proporciona les traduccions qeediti haura de modificar i validar.
Finalment, també es dedica especial atencio a millorankxgia entre I'expert humai el
sistema de traduccid interactiva. Per a aix0, s’estudies thrmes diferents de realimentacio
feble, amb la intencié de millorar la productivitat del tuatbr huma. Amb aquesta finalitat,
es presenten dues modificacions a I'esquema tradicionatieddccié. La primera pretén
anticipar les accions de l'usuari, mentre que la segonartéirditat millorar la flexibilitat
del sistema en el cas en que I'usuari assenyali que hi haa gal que el sistema corregeixi.
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Preface

Machine translation is a thriving research field that hasiyeeeiving an increasing amount
of attention with the up-rise of globalisation. Informatitechnologies, and the popularisa-
tion of user-generated content such as assistance foraws|éd big corporations to intro-
duce the use of machine translation, with the purpose of mgalanguage-specific content
available to all their potential customers, which are ofi@rated in different parts of the
world and may not be able to understand one common languayee\¢r, machine transla-
tion is not only needed in fields where the amount of data isvelvelming, but also in fields
where the bilingual data is perhaps less abundant, butlatéors quality is critical, such as
foreign affairs, medicine or in the military domain. Hentlee need for more task-oriented
machine translation systems arises. In these scenan®gfien the case that machine trans-
lation systems need to collaborate closely with human egpeith the purpose of achieving
high quality translations efficiently, giving rise to themgdarisation of the computer assisted
translation (CAT) and interactive machine translation Thbaradigms. In these scenarios,
the interaction between the machine translation systemadndnan translator is crucial for
obtaining high quality translations in an efficient maniwghile CAT is a very broad research
field covering all imaginable tools which can be made avéglédthe human expert for light-
ening his job, IMT is a specific sub-field of computer-aideshsiation. Under this translation
paradigm, the computer software that assists the humasiatanattempts to predict the text
the user is going to input by taking into account all the infation it has available. When-
ever such prediction is wrong and the user provides feedioettie system, a new prediction
is performed considering the new information availablectSprocess is repeated until the
translation provided matches the user’s expectationss theisis explores three main prob-
lems that arise when attempting to build task-specific systehich are thought to be used
within a computer assisted translation scenario: systafoymeance, adaptability and usabil-
ity.

In the first place, state-of-the-art statistical machia@station (SMT) systems are often
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unable to yield real-time performance. This problem is ewense when the system has
been trained on very large amounts of data, which is alwagsat#e given that more data
usually implies higher model coverage. When the amountwisiation options and bilingual
data made available to the system increases, translationghput is necessarily affected,
and model pruning strategies need to be applied with thegserpf not having the human
translator waiting too long for the system to produce itgpatitwhich would be on the one
hand exasperating, and on the other hand economicallydieeffi In this thesis, we focused
on proposing a model pruning strategy which proves to betalbdecrease system response
time drastically, while keeping translation quality withstate-of-the-art ranges.

Another topic tackled in this thesis is system adaptabilifyere is extensive work in
SMT which proves that the translation quality produced bygcal machine translation
system drops significantly when the text to be translateshstieom a different topic than
the data which has been used to train the system. In adddiffarent human translators
may have different styles when translating a document, virigplies that lexical choice
or sentence length may be required to vary even when workitignwone single domain.
Furthermore, from a user point of view it is mentally exhangsfor a human translator to
correct the same mistakes over and over again, while hakigripression that those same
mistakes will keep on appearing because the system is noingarom its own errors. For
these reasons, system adaptability is unveiled as a keyréeadthin a machine translation
system that is setup within a human-machine collaboratarméwork. In the present thesis,
two different model adaptation techniques are presentid fifst one deals with the problem
of language model adaptation, i.e., adapting the specificgbdhe translation system that
controls word ordering and structure in the hypothesesymred. The second one deals with
the adaptation of the translation model itself, which isplaet of the translation system that
will account for lexical choice and sentence length, amotigeiofeatures. Although the
techniques proposed in the current thesis are only appliadciassical machine translation
scenario, they are perfectly suitable for usage within apaer assisted translation scenario,
whenever the translation proposed to the user is genergtetehns of a typical statistical
machine translation system. Applying the most promissantpniques developed within an
interactive machine translation scenario is left for fetwork.

Lastly, usability of interactive machine translation gyss is also a very important topic
when attempting to build systems that are to be used by husens,uvhose expertise when
using computers should not always be assumed. Hence, ipisriemt to take special care
when designing the interaction scheme, so that the humaslatar feels as comfortable
as possible when using the translation interface. In thidepd, it is important to realise
that the keyboard is not the only input device that the humsar may use, but rather that
richer interaction schemes might boost productivity. Nthedess, it is also important to
keep the interaction interface simple, so that the humaengxp not overburdened. In this
thesis, we propose a very simple and intuitive extensiohecctassical interactive machine
translation interaction scheme, which takes into accdumtactions that the user performs
before correcting any word of the proposed hypothesis.

The objective of this thesis is, hence, to confront thrednefrhain problems that prevent
IMT systems from being more widely used. More precisely, gbientific contributions of
this thesis can be divided into three groups as follows:
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1. Speeding up decoding in statistical machine translationA novel parameter pruning
technique is presented. Such technique relies on the cooftkifingual segmentation
for obtaining one single segmentation of each bilingualesere present in the training
corpus. This technique is then refined and re-oriented al$ eftameter re-estimation
strategy, which has as side-effect an important reducfitireccomputational resources
required at translation time. Experimental results arentepl on several different lan-
guage pairs and involving both a SMT and an IMT framework.

2. Language model adaptation.Starting from the idea of bilingual clustering, we pro-
pose a novel method for performing language model adaptafithin SMT. For doing
this, the training data is first divided into different sutsseThis subdivision step is
either performed in a fully unsupervised manner, or by tgkirio account supervised
labels present in different bilingual corpora. Assumingttbach one of these subsets
presents specific characteristics, such as topic or lamgsiyte, specific sub-models
are built from them. These smaller language models are theandically interpolated
in translation time according to the text to be translatecheEiments are conducted in
a classical SMT setting, involving several different laage pairs and corpora.

3. Bayesian translation model adaptation. Bayesian predictive adaptation (BPA) is
an adaptation strategy which has proved to be successfuffarent research areas
where adaptation is needed. In this thesis, BPA is revisddtagore ideas are applied
within a classical SMT framework. For doing this, the theimad formulation is first
presented, for both a batch and an online adaptation sceathaustive experiments
analysing BPA performance on different corpora are present

4. Enriching user-machine interaction. We study the possibility of considering the
mouse as an additional interaction device between the madhanslation back-end
and the human user. Two different scenarios are considarést scenario in which
the user does not need to be explicitly collaborative, anithvtakes advantage of the
different actions performed by the user, and a second scenarhich a collaborative
user is assumed, and which provides more flexibility to thal fiser interface. Ex-
perimental results within a simulated IMT environment dreven, involving different
language pairs, for both extensions presented.

The above contributions are sequentially organised amapters that cover most of the
work developed in this thesis. A sequential reading of theudwent is recommended if the
readers wish to learn about the complete work. However,se tize readers be only interested
in a specific research topic, they can also opt to read onlghibpters that are related to that
topic, taking into account the following dependency grapioag chapters:
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| 1. Preliminaries |

2. Speeding up decoding in 5. Enriching
statistical machine translation user-machine interactig

>

Y
3. Language model adaptatioh

Y
>4 Bayesian translation model

adaptation
v o

| 6. Conclusions |

The parameter pruning strategy is proposed in Chapter 2 tWinelifferent approaches
to this strategy are presented together with experimeesallts assessing the quality of the
translations produced by the pruned systems.

The language model adaptation technique is presented ipt€h3, in both its unsu-
pervised and supervised forms. Then, the application oEBiay predictive adaptation for
translation model adaptation is presented in Chapter 4 cifsgaly, BPA is applied both
in an online and in a batch adaptation setting, and for adgither the log-linear model
weights present in state-of-the-art SMT systems or theifedtinctions that are leveraged by
such weights. In doing so, the fundamental equation of SM&vssed, so as to include the
adaptation data and marginalise the model parameters.

The user-machine interaction scheme is revised in Chaptéef, both modifications to
the classical interaction scheme are presented, alongdidexperimental results within a
simulated IMT environment.

The final chapter, Chapter 6, summarises the conclusionsc#mbe drawn from all
the work described here, together with the work that sk lahead and the most important
scientific publications that have been derived from thisithe
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No man was ever wise by chance.
Lucio Anneo Seneca

Contents
1.1 Introduction . . .. . . . . . . ... 3
1.2 Statistical machine translation. . . . . . .. ... ... ....... 4
1.3 Interactive machinetranslation . . . ... ... ... ........ 17
1.4 Mainbilingualcorpora. . . . ... .. .. ... 21
1.5 Toolkits . . . . . . . e 23
Bibliography . . . . . . . 25




Chapter 1. Preliminaries

Todo lo que usted quiera, si sefior, pero son las palabrasidasamtan, las que subeny
bajan... Me prosterno ante ellas... Las amo, las adhierpdesigo, las muerdo, las derrito...
Amo tanto las palabras... Las inesperadas... Las que glotente se esperan, se escuchan,
hasta que de pronto caen... Vocablos amados... Brillan piedoas de colores, saltan como
platinados peces, son espuma, hilo, metal, rocio... Readiginas palabras... Son tan her-
mosas que las quiero poner todas en mi poema... Las agauelal euando van zumbando,
y las atrapo, las limpio, las pelo, me preparo frente al platsiento cristalinas, vibrantes,
eblrneas, vegetales, aceitosas, como frutas, como atas, agatas, como aceitunas... Y
entonces las revuelvo, las agito, me las bebo, me las zaagpdijtlro, las emperejilo, las
liberto... Las dejo como estalactitas en mi poema, comogitedade madera brufiida, como
carbon, como restos de naufragio, regalos de la ola... Tatdcea la palabra...

Confieso que he vivido. Pablo Neruda.

Everything you want, yessir, but it is the words that sing, fise and fall... | prostrate
before them... | love them, sticks them, the chase, bite, tiienmelt... | so love the words...
The unexpected... Those who greedily hoped for, we hedrsuddenly fall... Fold loved...
Sparkle like colored stones, platinum leap like fish, ararfpthread, metal, spray... | chase
a few words... They are so beautiful that | put all my poemhe @rip on the fly when they
humming, and caught, clean the hair, | prepare against tla¢epll feel clear, vibrant, Eburne,
vegetables, oily, like fruit, like algae, like agates, lieses... And then stir, agitations, | did
drink, I did zampa, crush, dress up, the freedom... | leaeentin my poem like stalactites,
like bits of polished wood, and coal, as a wreck, gifts of tlevev.. Everything is in the
word...

| confess that | have lived. Google Translate.
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1.1. Introduction

1.1 Introduction

Natural language processing (NLP) is a research field di@atiintelligence and linguistics
that is gaining more and more importance with the up-risecofiguterised communication
technologies. The mass usage of Internet and also the ct@ages possibilities that com-
puters offer have given humanity the opportunity to record store unprecedented amounts
of linguistic data. At this moment, scientists estimate tha total amount of stored data is
somewhere in the whereabouts of 295 exabytes9&: 10'® bytes, 0r295 - 10° terabytes).
Moreover, the pace at which such data is growing keeps istrga In order to cope with
such a huge amount of data, computerised approaches dedling have become neces-
sary. Of course, not all this data is susceptible to be pssukby NLP systems. However,
this symbolises the fact that, as the amount of data incsedleP is elucidated as the only
way in which such large amounts of data can be analysed.

Machine translation (MT) is a specific sub-field of NLP, anddsts the way in which
automatic systems should be developed so that they are@ablnslate a certain sentence
in a source language into a sentence in a given target laegsagh that source and target
sentences preserve the exact same meaning, while beingvblitformed sentences in their
respective languages. The idea of developing an automattegure by means of which a
source text could be translated into a target language wittthee intervention of a human
can be traced back to the 17th century, when René Descadessad a universal language
which would be able to represent all ideas contained withiy existing language. Since
then, the idea of amterlinguato and from which the translation process is simple has been
present in the MT community, although such a language haerfeen found.

More recently, after World War 1l and at the beginning of th@ldCWar, the Georgetown-
IBM experiment achieved during January 1954 to gain a lamgeumt of interest, both
from the general public and from funding agencies, leadinthe famous publication by
Weaver (Weaver, 1955). Although the experiment was peedeas a success and the authors
claimed that, with the appropriate funding, MT would be alvgelved problem within three
or five years, the fact was that the experiment implied a systentaining only six grammar
rules and 250 vocabulary entries. As progress on MT evoltedrauch slower pace than
expected, funding was severely cut after the 1960 reponteoALPAC (Automatic Language
Processing Advisory Committee) (Bar-Hillel, 1960).

The 1960 ALPAC report lead to drastic direction shift in MBearch that led to the up-
rise of rule-based machine translation (RBMT) (Hutchirg8@) systems in the early 1970s.
Such systems, which are currently loosing weight in theestditthe art, rely on linguistic
information of both source and target languages, which sschlly retrieved from bilingual
dictionaries and grammars. Two different RBMT paradigmsangdeveloped: transfer RBMT
systems, which attempt to map the source language into thettlnguage directly, and
interlingual RBMT systems, which make use of an intermedianguage which is assumed
to be easy to translate into and from. Although RBMT systerasstll in use, many of the
commercial systems implementing RBMT are shifting towatdsistical MT, such as Systran
and Google translate.

It was not until the late 1980s that statistical machine dlaion (SMT), the pattern
recognition approach to MT, transformed the state of thénaMT completely, by devel-
oping statistical models which were able to learn to traestetween different languages
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in a word-to-word fashion. It was then when the researcheifseal BM Thomas J. Watson
Research Center contributed most significantly to the reeéa SMT by developing word-
based statistical translation models (Brown et al., 1988pularly known as IBM models,
which are even nowadays used in current state-of-the-aft Sidtems. Together with the in-
troduction of phrase-based models (Koehn et al., 2003; $and Casacuberta, 2001; Zens
etal., 2002), word-alignment models were critical for tiperise of SMT, which is nowadays
the most dominant technology in MT.

In recent MT evaluations (Callison-Burch et al., 2011; Rewdl., 2010), the most domi-
nanttechnology was the statistical approach to MT, whithene that is currently receiving
the most attention. Nevertheless, recent user reportddiMabd, 2011; Yuste et al., 2010)
claim that it is possible to achieve better results, fromex psint of view, by combining both
SMT and RBMT. This idea has recently given rise to the soecdiybrid MT technologies,
which attempt to leverage the strengths of both paradigms.

1.2 Statistical machine translation

Statistical machine translation (SMT), systems have gtomethe last years to be an im-
portant alternative to rule-based MT systems, being evenaftoutperforming commercial
machine translation systems in the tasks they have beeretrain (Callison-Burch et al.,
2007). Moreover, the development effort behind a rule-Basachine translation system
and an SMT system is dramatically different, the latter Qeible to adapt to new language
pairs with little or no human effort, whenever suitable agare available (Hutchings and
Somers, 1992).

The grounds of modern SMT were established in (Brown et 883}, where the problem
of machine translation was defined as the problem of tranglatcertain sentence from a
given source language into a target sentapdeeing

r = T1...T5j...7g J)jGX
Yy = Y1--Yi---Yyr Y €Y

wherez; andy; denote source and target words, each one belonging resggoti the source
and target vocabularies! and). J = |z| andI = |y| are the lengths of the source and
target sentences, respectively.

In SMT, it is assumed that every source string (or sentemcejay be the translation
of every target stringy. Then, the key idea of SMT is to establish a procedure by means
of which every pair of stringéx, y) is assigned a scoygy|x), which is interpreted as the
probability thaty is an appropriate translation for a given Such procedure is the SMT
model, which we will denote byM, and then the probability @j being a translation ot is
given by the expression

Pr(ylz) =~ ply|x; M) (1.1)
 plyyM)p(z | y; M)
= T @M (1-2)

where Bayes’' theorem has been applied between Equationntl. Equation 1.2. In the
following, M will be assumed implicit, with the purpose of simplifyingtation.
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1.2. Statistical machine translation

Once the SMT model has been established, translating arceetatence: can be formu-
lated as the problem of finding that specific sentefp¢leat maximises the probability given
in Equation 1.2, i.e.

<>
I

argmax(y | x) (1.3)
Yy

argyma&)(w ly)-p(y) (1.4)

wherep(z) does not affect the maximisation and has been hence negjiacEguation 1.4,
which is often referred to as the fundamental equation of SMi@l also source-channel ap-
proach. Herep(y | ) has been decomposed into two different probabilities:sthéstical
language modebf the target language(y) andthe (inverse) translation modelz | y).
Although it might seem odd to model the probability of the m@usentence given the tar-
get sentence, this decomposition has a very intuitive pnggation: the translation model
p(x | y) will capture the word or phrase relations between both igmat output language,
whereas the language moggly ) will penalise ill-formed sentences of the target language.

The first translation models were word-based, i.e. sourcelsvavere translated into
one or more target words, and these words were then re-arderas to compose the final
output sentence. For building this word-to-word corregfmrtes, word alignments were in-
troduced (Brown et al., 1993). In the inverse version of tleedralignment models, a source
word z; is aligned to a set of target word positioas= {i1,...,%;}. From a generative per-
spective, such an alignment implies that source wgrdenerates target words, , . . ., y;, .
Modelling the translation process in such a way requiresguai hidden variable, since
alignments cannot be observed in the training processligigl

plxly)= Y. plx.aly) (1.5)

acA(z,y)

whereA denotes the set of all possible alignments betweandy.

A large number of different word-alignment models have beeaposed. To start with,
Brown et al. already proposed five different models in themmal work in (Brown et al.,
1993), with an increasing degree of complexity and whicheviretended to be trained sequen-
tially by means of the Expectation-Maximisation (EM) (Destgr et al., 1977; Wu, 1983),
each of them yielding good initial values for the next modétnce, these five models were
intended to be trained sequentially. In addition, otheharg (Och, 2003; Vogel et al., 1996)
proposed further models, which have also gained populdfigure 1.1 illustrates a typical
alignment between an input and an output sentence.

However, an important breakthrough in SMT was achieved whersource-channel ap-
proach was replaced by a maximum entropy (Berger et al.,)I86elling of the translation
process. By modelling(y | ) directly, it became possible to introduce a sefid@ifferent
feature functiong.,,, (x, y) into the translation process (Och and Ney, 2002; Papineali,et
1998), withm = 1,..., M. Each feature function is then assigned a feature weight
which represents how important is featurg for the translation ofc into y. This approach
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Vienna = s =« u« W = = =« =

se ha celebrado en viena una gran conferencia . S

held s s Wl e e s
conference R R
major = = = = = = . o=

a = = = = = -

a major conference was held in vienna .

ha

se
celebrado

una W
gran

viena
conferencia

Figure 1.1: Example of word alignments computed automatically by medasword-
alignment model. The left side shows the alignment as aifmaf the source sentence
(up) and the target sentence (down). On the right side, tharaént is shown in a
matricial form, as is often done in SMT.

leads to the so-called log-linear models, where

M
exp ) 1 Amhm (T, y
pyle) = oP L Anln(@:9) 1.6)

>y XD Yy Ami (@, Y)
expA-h(x,y)

T T, oA ey &

hm(x,y) is a score function representing an important feature fertthnslation ofc into

y, as for example the language model of the target languagmredearing model or several

translation models. Typically, the largest part of the station models included into current
state-of-the-art SMT systems can be defined locally, budratiodels, such as reordering or
language models, can only be defined at the sentence levéd threger-range dependencies
among translation units. The weighXs= [\; ... \y/|T are normally optimised with the use

of a development set.

In the expression above, it should be noted that the norataisterm present in Equa-
tion 1.6 has been omitted, since it is considered constaheimaximisation and is hence not
needed when searching for the best output sentgntais is important, since computing the
normalisation term would be very costly. Neverthelesshaaom is very often needed when
developing more sophisticated approaches, as will be se€hapter 4.

Note that, in Equation 1.6, the feature functions(x, y) are typically defined in the
logarithmic domain. This means that, in the case that aiceig@ature represents a proba-
bility, the feature itself will be the logarithm of such patility. For example, if the feature
is ought to represent the direct translation probabjpity | «), the feature itself will be
logp(y | ). Nevertheless, in practise some of the features actualtgpieesent logarithms
of probabilities, but others, as will be described in nextiea, do not.
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Given Equation 1.6, the decision rule is given by the exjoess

M

§ = argmax® _ Aphum(x, y) = argmaxi - h(z,y) (1.8)
Yy

Y m=1

The use of log-linear models implied an important brealodigh in SMT, allowing for
a significant increase in the quality of the translationgdpaed. However, it should also be
noted that the log-linear approach is actually a genetaisaf the source-channel approach
described above: if the set of features is limited to

hi(z,y) = logp(y)
he(z,y) = logp(x|y)

and the corresponding weights are set to one,Ae= A2 = 1, searching for the optimum
translationy in Equation 1.8 is exactly equivalent to searchinggdn Equation 1.4.

1.2.1 Phrase-based statistical machine translation

One of the most popular instantiations of log-linear mod@eISMT are phrase-based (PB)
models (Koehn, 2010; Koehn et al., 2003; Tomas and Casaei2001; Zens et al., 2002).
PB models allow to capture contextual information to leaamslations for whole phrases
instead of single words. The basic idea of phrase-basesl&taon is to segment the source
sentence into phrases, then to translate each source [ii@adarget phrase, and finally to
re-order the translated target phrases in order to compesarget sentence. For this purpose,
phrase-tables are produced, in which a source phrasead lisgether with several target
phrases and the probability of translating the former it fatter. PB models constitute
nowadays the core of the state of the art in SMT, although mewrent approaches, such as
hierarchical models (Chiang, 2005) or finite state modetséCuberta and Vidal, 2004) are
able to yield similar translation quality (Callison-Burehal., 2010; Koehn and Monz, 2006;
Paul et al., 2010).

The model

The derivation of PB models stems from the concept of bilaigegmentation, i.e. sequences
of source words and sequences of target words. Usuallyagsamed that only segments of
contiguous words are considered, and that no overlap batageh segments may exist. In
such case the number of source segments is equal to the nofitbaget segments (sdy)
and each source segment is aligned with only one target segme vice versa.

From a generative point of view, the process of translatiaguace sentence into a target
sentence by means of a PB SMT model is accomplished by meaims fafllowing steps:

1. Segment source sentene@to K source phrasee, ... Ty ... Tk}
2. Translate each one of the source phrases into targetg{fas . . i . . . Uk }-

3. Re-order the target phrases so as to build the final outptéscey.
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Typically, some of the features included into PB-modelstoadefined at the local phrase
level, such as the direct translation probability|x) = Zszlp(gjk | Zx). However, other
features, such as the language model or phrase-reordeddglsncannot be defined at the
translation unit level. We shall denote b¥(-,-) a feature which can be defined at the local
phrase level, and, conversely;(-,-) will denote a feature which cannot be defined at the
local phrase level. Let be a certain segmentation of sentence fajry), which segments
such sentence pair intld phrases, such that

xr = I1...%%...TK :EkEB(w)

y = ?:llgkgK ngB(y)

whereB(z) C X is the set of all possible sequences of contiguous wordsmstntence
x. EquivalentlyB(y) C Yt is the set of all possible segments (i.e. sequences of cantfy
words) of the target sentence. Note that, by formulating Riélets as above, the model
is restricted to have the same amount of segments in botltes@und target sides of the
bilingual sentence. This implies that source phrases muosiyge exactly one phrase in the
target sentence. In addition, sinBéx) and5(y) have been defined as a subset of the positive
closure over alphabefs and), respectively, empty phrases are not allowed, i.e. eadcksghr
must contain at least one word. Although these two conditame quite restrictive, these are
a very common assumption made in order to make the searcheprobore tractable.

Then, the probability of sentence péit, y) can be formulated as follows, separating and
re-grouping those feature functions which can be defineldedical phrase level:

plylz) = Zp (ylx; k) (1.9)
eX o /\mhm w)

ply | zk) = pz’”;} ( y)/ (1.10)
Zy' exp Zm:1 Ambm (Y )
exp{sz’lzfll l(:zk?gmzftf‘lv hs,(z,y)}

Sy exp{ Yy Sy Al (5, 5) + Sy As b (9}
exp{34C, S Minhin(xk,kaZm 1 Ambo (2, y)}
Yy DLy Yoy A bl (B, 1) + Sy A (2, 97)}

exp{Yiy 0" (@ k) + 9° (=, y)}

- L9 Ty k) (1.11)
Zy/ eXp{Zk:l gl(xka y;g) + gs(mvy)}

In this last expressiong!(-,-) represents the combination of features defined at the local
phrase level, each one weighted accordingly, @t(d -) represents the combination of fea-
tures which cannot be defined at the local phrase level.

Although Equation 1.9 implies that all possible segmeatetiof the candidate hypothesis
need to be computed upon search, in practise the Viterbi setation is used, and only
the maximum probability segmentation is taken into consitlen. If the probability of the
segmentatiop(k) is considered constant, such approximations lead to thenfimlg decision
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1.2. Statistical machine translation

rule:
K
y = argmaxz g'(@x. Gk) + g° (. y) (1.12)
R k=1
where the normalisation denominator in Equation 1.11 has lneglected because it has no
influence on the maximisation. Although it is not common inTSherature to separate local
and global features, this will be useful later on in othemtbes of this thesis.

Learning phrase-based models

The most important step when learning a PB model is to compptease-tablewhich is
a translation table containing each one of the phrase paifp observed during training,
alongside with the value of each one of the local featuretfans.

Hence, the first step when learning PB models is to extraetgghpairs from a sentence-
aligned bilingual corpus. In the last years, a wide varidtiieuristic techniques to produce
PB models have been researched and implemented (Koehn 20@R). Firstly, a direct
learning of the inverse translation mogeke|y) was attempted (Marcu and Wong, 2002;
Tomas and Casacuberta, 2001). Other approaches have wmaygesloring more linguisti-
cally motivated techniques (Sanchez and Benedi, 2006;\Ab&et al., 2003). However, the
one technique which has been more widely adopted involheisahristic extraction of phrase
pairs (Zens et al., 2002), in which all phrase pairs cohesdthta given word alignment are
extracted. In most cases, one of the IBM alignments destiib@revious section is used
for this purpose. Since these word alignments are veryicggé because each target word
is assigned only zero or one source words, source-to-targktarget-to-source alignments
are combined heuristically. This procedure is often cadlgdmetrisationOnce this is done,
the set of phrases consistent with the symmetrised wordrakgts is extracted from every
sentence pair in the training set. An illustration of hovstisidone can be seen in Figure 1.2

Most typically, the different local featurés,, (-, -) that are included into the translation
table are:

Inverse translation probability, given by the formula

- C@,9)
whereC'(z, g) is the number of times segmeritandy were extracted throughout the
whole corpus, and’(z) is the count for phrase.

(1.13)

e Direct translation probability)(z | §), which is obtained analogously.

e Inverse and direct lexicalised features(z | ), which attempt to account for the
lexical soundness of each phrase pair, estimating how \aeh ef the words in one
language translates to each of the words in the other lamguBtese lexicalised fea-
tures were defined in (Zens et al., 2002)

e A constant feature, ggshrase penaltywhose purpose is to avoid the use of many small
phrases in decoding time, and favour the use of longer ongscdlly, this feature is
set to numbee.

GST-DSIC-UPV 9



Chapter 1. Preliminaries

se ha was
celebrado held
e & =« = = « =} en in
vienna | = = [« I viena vienna
inlll« = 5 . s ow . una a
held || = = o gran major
was I W = = = s« % x| conferencia conference
conference | = = = = = |« . : .
major | + + = = = iﬁ . celebrado en held in
al s = & & . en viena in vienna
8895885 unagran a major
g 2 3 > % gran conferencia major conference
° 3 se ha celebrado en was held in
© § celebrado en viena held in vienna

una gran conferencia a major conference

Figure 1.2: Example of how consistent phrases are extracted from a wigmthzent.
On the left, the alignment matrix after symmetrisation i@wh. Black squares represent
word alignments, whereas extracted phrases are markedwittangle involving one
or more squares. On the right, the phrases that would becéatrfrom that matrix.
Note that wordse cannot be extracted on its own because its alignment requioed
hato be extracted together with it so as to preserve alignmamistency.

In addition to the local features, typical state-of-the@IMT systems also include a re-
ordering model. In fact, the non-monotonicity problem iartslation is one of the toughest
problems that SMT systems need to face. Different languagtad different word order, and
systems which do not tackle the re-ordering problem in any are mostly unable to yield
satisfactory results when translating between languaige fpam different origin. This prob-
lem has been well-known in SMT for some time, and (Berger.e18P6) already introduced
in their alignment models what they called distortion madah an effort towards includ-
ing in their SMT system a solution for the re-ordering praoble(Vilar et al., 1996), tried
to partially solve the problem by monotonising the most jatdb non-monotone alignment
patterns and adding a mark in order to be able to rememberitjiaal word order. (Kumar
and Byrne, 2005) learnt weighted finite state transducessuatting for local re-orderings
of two or three positions. Other works, such as (Kanthak .e28l05; Zens et al., 2004),
dealt with input sentence re-ordering, where the main idéa ieorder the input sentence in
such a way that the translation model will not need to acctarmossible word re-orderings.
Other works (Xiong et al., 2006) deal with the re-orderinglgem from a maximum entropy
point of view, establishing a re-ordering model based ont afsfeatures which the authors
consider to be important for assessing the (non-) monatgrttwo specific phrases.

However, the re-ordering model which has found perhaps thst nvidespread accep-
tance among PB SMT systems is the one proposed in (Koehn, &08i5), where a lex-
icalised re-ordering model is proposed. L@, ;) be the current phrase being consid-

10 GST-DSIC-UPV



1.2. Statistical machine translation

I il
:::J;@?:::
o SORES

Figure 1.3: Alignment matrix with the different re-ordering typas.stands for mono-
tone,s stands for swap, andistands for discontinuous.

ered,(Zx—1,yr—1) the previous one, in the order established by the sourcesesntand
(Zrk+1, Uk+1) the next phrase pair to be translated by the decoding ahgoriT hree possible
re-ordering types, also called orientations, are conegiemonotone, swap, and discontinu-
ous. A swap occurs when inverting the order between phasé. ) and the previous phrase
(Zx—1, Jr—1) would result in a monotonic ordering of the phrases, and@disnuity when-
ever such swap would still yield a non-monotonic orderingguFe 1.3 shows examples of
these three classes of orientations. Then, the probabfléygiven phrase paitzy, g ) hav-
ing a certain orientationwith respect to the previous phragg._1, yx—1) is given, following
the maximum likelihood principle, by
~ o~ C(Oa‘%kagk)

p(o| T, Jk) SO0, 7, 58) (1.14)
whereC(o, Zx, gx) is the number of times that phrase péif;, ) has been observed to
appear in orientation with respect to the previous phrase in the training data.

In addition to considering the orientation with respect togse pai(z;_1, Jx—1), it is
also common to include into the model the probability of gleraair(z, ) presenting a
certain orientation with respect (@1, Jx+1). Since this implies the estimation of a large
amount of parameters, it may lead to sparsity issues. Fore¢hsonp(o | Zx, gx) is typically
smoothed by the prior of orientatien

The re-ordering model is an example of feature which caneotiéfined at the local
phrase level, since it depends on the position of the phrasslated before the current phrase.
Other non-local features also include the language modkehavord penalty, which attempts
to regulate the fertility of the source words.

To sum up, typical features present in most state-of-th&BrSMT systems include
fourteen different feature functiors:

o the five local features described above, péz | §), p(7 | Z), w(Z | §), w(y | ) and
numbere

¢ the six probabilities defined by the lexicalised re-ordgrimdel when considering the
orientation with the previous and with the next phrase. bitiah, it is also common to
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include an exponential function penalising very long-margrorderings. This accounts
to a total of seven feature functions belonging to the resond) model.

e the language model

e the word penalty

Tuning in phrase-based models

Once the bilingual phrases have been extracted from a sentdigned bilingual corpus,
the featuresh described in the previous section can already be computedieter, at this
point it is still necessary to obtain an appropriate valuetfie scaling factors\. The pro-
cess of obtaining such a vector is often calfeding To this end, numerous methods have
been proposed. For instance, (Watanabe et al., 2007) mapasse of the margin infused
relaxed algorithm (MIRA) (Crammer et al., 2006) for the dfie¢ask of adjustingh. More
recently, (Sokolov and Yvon, 2011) proposed to view therigrproblem as a set of opera-
tions over a specific semi-ring. Alternatively, (Hopkinsldviay, 2011) proposed to view the
problem as a ranking problem, where each step of the tunimgepiure consists in deciding
whether a given translation hypothesis should be rankeéraw higher within the set of
possible hypotheses that are provided by the search praee8umilarly, (Martinez-Gémez
etal., 2011) propose to view the problem as a regressiongmmbvhere the problem of tun-
ing is re-defined as a regression problem in which the logalirtombination in Equation 1.6
should approximately fit the translation quality functicsed.

However, perhaps the most popular approach for adjustimgehling factors is the one
proposed in (Och, 2003), commonly referred to as minimuwreate training (MERT). This
algorithm implements a coordinate-wise global optim@atnd consists on two basic steps.
First, n-best hypotheses are extracted for each one of the sentehaagven development
set. Next, the optimum is computed so that the best hypotheses imthest list, according
to a reference translation and a given metric, are the orsdhk search algorithm would
produce. Since it is often the case that there is not a sikglector that would promote all
the best hypothesis throughout the whole development gbetéirst position in the:-best
list, a compromise is often achieved, in which the specifiedritis maximised. These two
steps are iteratively repeated until convergence, whgmmains unchanged.

Decoding in phrase-based models

Once the model for PB translation has been establisheddingaio Equation 1.11 and the
appropriate decision rule has been stated in Equation anl&@gorithm is needed for carrying
out the maximisation described and establishing whicheshiiast candidate hypothegj$
that should be produced as final translation. However, taechgproblem in SMT has been
shown to be an NP-complete problem (Knight, 1999; Udupa aaji, [2006), which implies
that different approximations and simplifications need eéantade in order to deal with the
problem efficiently. To this end, different algorithmic stibns have been proposed, such as
the multi-stack depth-first decoding algorithm (Ortiz-Maez, 2011) proposed by (Berger
et al., 1996) for word-based models, greedy strategiesni@en et al., 2001), or dynamic
programming solutions (Garcia-Varea, 2003).
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However, the decoding algorithm which has found the mosesfpdead acceptance in
SMT is the one proposed by (Tillmann and Ney, 2003), and whian adaptation to SMT
of the classic beam search algorithm proposed in (Jelir@d8)ifor speech recognition. In
this algorithm, the translation is generated sequentiadiy left to right, and re-ordering be-
tween source and target phrases happens when the next pbwase to be translated,,
is not located directly after the one that has just been lagets z,.—1. A typical procedure
for translating a certain input sentence is exemplified guFé 1.4. In this figure, the initial
(empty) hypothesis is first expanded into several partiglolyeses by using the different
phrases extracted in Figure 1.2. The use of these phrasksttedifferent coverage vectors,
denoted in the figure by, indicating which words of the source sentence have alrbadp
translated. The reason for keeping track of which words ladready been translated is dou-
ble: on the one hand, for the purpose of not accounting fovangsource word twice in the
translation hypothesis; on the other hand, because in thisdf algorithm only hypothe-
ses with the same amount of source words covered competeadthother. Given that the
probability of a certain hypothesis is computed as a prqdbetmore the amount of source
words translated, the less the probability mass assignélaatospecific hypothesis. Since
hypothesis expansion is done by expanding first those hgpethwith the most probability,
the algorithm would keep expanding hypotheses with fewsledad words. This is conve-
niently solved by means of the coverage vector by allowingampete among each other
only those hypotheses with the same amount of translatedisivéor example, in Figure 1.4,
the hypotheses that would compete among each other wo@) &ed (). Note that it is not
normal to have the same sentence both for training and foratsough such a thing could
eventually happen, in this case the same sentence is uséddtrative purposes.

Coverage problems in phrase-based SMT

As described in Section 1.2.1, phrase extraction is tylyiciine by a heuristic procedure,
which attempts to extract a rather large amount of phrasas fhe bilingual sentences seen
in training. However, given that the heuristic algorithmpayed relies on word-alignments
and on the concept coherent phrases, it might be possitigltihases which actually do
appear in the training data, but are not considered coheraptend up resulting as unseen
for the SMT system. This means, in practise, that the SMTegydtained may actually be
unable to account for the correct output sentente Furthermore, given the large number
of segments that are extracted from each bilingual sentegheemaximum word length of
a phrase is often restricted for performance reasons, diosvfiog common knowledge that
establishes that longer phrases tend to never be seen again.

If the training data was composed only by the bilingual secg¢dan Figure 1.2, a word as
simple as the Spanish wosg (a reflexive pronoun) would be considered out of vocabulary
by the PB SMT system, even though such word was actually seteaining. More dramatic
is the example shown in Figure 1.5. In this example, whichldesen extracted from a real
training procedure, only three phrase pairs will be exedcand the remaining words will
not be included into the PT. The problem here can be easiljnpkited by looking at the
word cannot which presents multiple alignments. In order to includgeéa wordcannot
within a consistent alignment, one would need to includedparedointo the alignment, but
including wordpuedoimplies that word is also included. Including also forces the two
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y:a maj or conference was
Kw:**----**---

p:0.22 ®

4/»/\«x\,
— N

Figure 1.4: Example of decoding procedure following the phrases etddadén
Figure 1.2, with the input sentence beinge" ha cel ebrado en vi ena una
gran conferencia .". kg illustrates the coverage vector of that specific partial
hypothesis. The coverage vectgy of a specific hypothesis keeps track of which words
of the source sentenaehave been translated until that point, so that words thatdiy
have their counterpart in the target sentegcare not translated again. In this figure,
character at then-th position specifies that source watg has not been translated
yet, and+ indicates that already has. The probabilitpf each hypothesis is only for
illustrative purposes.

commas to be included, together with whatever words appeaden both. Continuing with
this procedure leads to the necessity of including the whettence pair (except for the final
dot) as a phrase before being able to incladanotinto a consistent alignment. However,
as explained above, it is quite common to restrict the mawrintength of the phrases to be
extracted. If such maximum is set to e.g. 7, the completeesertpair will not be included
into the system, andannotwill remain unknown despite having been observed in trgnin

As will be seen in the other chapters, the coverage probldhbevan issue when dealing
with the different techniques and algorithms describedis thesis, and different approxi-
mations will be needed to confront it. So as to provide a aatsa about the importance
of the coverage problem, this problem implies that a st&the@-art SMT system is not able
to produce the reference present in a bilingual corpus iuaB0% to 80% of the cases,
depending on the specific corpus being considered.

1.2.2 Statistical machine translation evaluation metrics

Evaluation in SMT is a very controversial issue. On the onedhduman evaluation is
way too costly for experimentation purposes. Having a hutremslator assess the quality
of the output produced by a SMT system for every combinatibpasameters that need
to be adjusted in tuning time would render research in SMTeasible. This leads to the
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n n | | | | n n | | E
pronunciarme = =« [l Il = = = =

puedo ll W = = = = & =
no = N

2 B = " " n n " n
momento = =« =« « | =~ H -
|

de = u n .

[ |
say u =
thisill =

stages =

cannot =
anything =

Figure 1.5: Example of word alignment that results in coverage problelteaximum
phrase length of 7 is assumed. Black squares represent Vigmchants, whereas ex-
tracted phrases are marked with a rectangle involving omecoe squares.

wide-spread use of automatic evaluation metrics that ang sleeap to use. On the other
hand, however, there is a growing feeling in the MT commultfitgt claims that current
SMT systems are not optimising translation quality as shahare rather optimising a given
evaluation metric without taking into consideration thalrenpact on the usability of the
translations produced. This is due mainly to the problematfiraving a reference sentence
which can be considered ground truth, as is the case in othBrrisearch fields such as
speech recognition or handwritten character recognitibims implies that it is often very
difficult to assess how good a certain SMT output is, even fionéns.

Many different evaluation metrics have been proposed, hisd4sue has even been the
topic of recent SMT workshops (Callison-Burch et al., 202011). Typically, the main
goal when designing automatic SMT evaluation metrics isctieve a metric presenting a
high correlation with human judgements of translation gualHowever, even this is of-
ten questioned, specially when taking into account thariahnotator agreement is often
low (Callison-Burch et al., 2011).

In this thesis, SMT output will be evaluated by means of BLEdineni et al., 2001) and
TER (Snover et al., 2006), which are two of the most populah&tion metrics employed in
SMT.

BLEU (Bilingual Evaluation Understudy) scareThis score measures the precision of uni-
grams, bigrams, trigrams, and four-grams with respect &t afseference translations,
with a penalty for too short sentences (Papineni et al., REIEU is not an error rate,
i.e. the higher the BLEU score, the better. BLEU can be simglenulti-reference, but
in the present thesis only single-reference BLEU will bedudae to corpus restric-
tions. In practise, BLEU implements a geometrical averdge-gram precision. The
consequence of this is that BLEU is often only well-definedttoa corpus level, but
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not on the sentence level. Consider for instance a sentdibece words. Such sen-
tence will never share a common four-gram with the referesscgence, and BLEU
will score zero even when the hypothesis produced by thesysind the reference
sentence are identical. As will be seen in further chapthrs,may lead to problems
when attempting to identify the best translation for a @rigput sentence. BLEU will

be reported as a percentage, ranging from 0 to 100.

TER (Translation Edit Rate)Translation Error Rate (Snover et al., 2006) is an errorrimet
for MT that measures the number of edits required to changesi@ra output into
one of the references. TER is computed as the minimum nunfletits required to
modify the system hypothesis so that it matches the refergaaslation, normalised
by the average number of reference words. In this case jpesslits include insertion,
deletion, substitution of single words and shifts of wordsnces. In the original
work, the authors claimed that single-reference TER cateslas well with human
judgements of MT quality as the four-reference variant oERBL As in BLEU, TER
can also be multi-reference, but in this thesis singleregfee TER will be used. TER
will also be reported as a percentage, although it can yiliges over 100.

In addition to BLEU and TER results, confidence interval sizgdl also be provided, with
the purpose of assessing whether differences in BLEU andarERtatistically significant or
not. To this end, the methods described in (Koehn, 2004)heiliollowed. Specifically, two
different statistical significance tests will be used, betlying on bootstrap re-sampling.

e Test-specifibootstrap re-sampling. Typically, for establishing a cdefice interval
for a given score it would be necessary to translate a cgtampe) number of different
test sets. However, if only one test getf size|£| is available, an equivalent approach
consists in drawing fron§ a random sample of sentences of §iZg with repetition.
After evaluating the translation quality of such samples firocedure is repeateéd
times, whereb depends on the precision we would like for the confidencevate
If a precision of one decimal digit is desired, then= 1000, and if two decimal
digits are requested, thén= 10,000. Onceb random samplings are extracted, and
their translation quality has been assessed, sdlores are sorted. Dropping the upper
2.5% of the scores obtained yields the upper bound ford& confidence interval,
and dropping the lowe2.5% yields the lower bound for th&5% confidence interval.
Then, under the assumption that the sentences within theetsare independent, we
have the certainty that thteue score that the SMT system tested would obtain would
be within that intervad5% of the times.

e Pairedbootstrap re-sampling. The previous bootstrap re-sampdichnique is appro-
priate for evaluating the confidence on the score provided bgrtain system. How-
ever, if we are interested in establishing whether a ceBMi systemA performs bet-
ter than another syste, regardless of where the true score may lie, then we need to
performpairedbootstrap re-sampling. This is done by sampling the testtsandom,
in the same way as described above, but this sampling ismpeetbon both systems
at the same time, i.e., tHé€| sentences sampled will be translated by both systéms
and B at the same time. Then, the difference in scare;, A) — (€, B), between
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both systems will be measured, and it is such differencehlwhitt be sorted, and from
which the confidence interval will be obtained. Hence, angirmgnder the assump-
tion that the sentences withjé| are independent, if both upper and lower bounds of
the confidence interval are positive, it can be said thatesyst performs better than
systemB 95% of the times, and if both such bounds are negative, it canidetsat B
performs (significantly) better thas.

For reporting confidence intervals in this thesis, an efficimplementation of the two
methods above was used. The key idea for performing sucleimgitation relies in per-
forming the bootstrap re-sampling on the sentence-lewahisovhich lead to the translation
scores used, and not on the sentences as such. Hence, myaitabomal effort is saved,
since it is not needed to transldigest sets, obtain such counts, and then compute the fi-
nal translation quality scores; the only thing needed i®fmeat the computation of the final
scored times. For this reason, obtaining the confidence intervads ep being very cheap,
and hence the confidence intervals reported in this thesis wlgtained after performing
b = 10, 000 bootstrap re-sampling repetitions, unless stated otlserwi

1.3 Interactive machine translation

Information technology advances in modern society havedettie need of more efficient
methods of translation. It is important to remark that corfT systems are not able to
produce ready-to-use texts (Arnold, 2003; Hutchins, 19@§;, 1997). Indeed, MT systems
are usually limited to specific semantic domains and thestagions provided require human
post-editing in order to achieve a correct high-qualitp$iation.

A way of taking advantage of MT systems is to combine them withknowledge of a
human translator, constituting the so-called computsisted translation (CAT) paradigm.
CAT offers different approaches in order to benefit from theesgy between humans and
MT systems.

An important contribution to interactive CAT technology svaarried out around the
TransType (TT) project (Foster, 2002; Foster et al., 20@dlais et al., 2002; Och, 2003).
This project entailed an interesting focus shift in whictenaction directly aimed at the pro-
duction of the target text, rather than at the disambiguatdiothe source text, as in former
interactive systems. The idea proposed was to embed datndviT techniques within the
interactive translation environment.

Following these TT ideas, (Barrachina et al., 2009; Ortiartihez, 2011) propose the us-
age of fully-fledged statistical MT (SMT) systems to prodiudetarget sentence hypotheses,
or portions thereof, which can be partially or completelgeqted and amended by a human
translator. Each partial correct text segment is then ugeithdo SMT system as additional
information to achieve further, hopefully improved suggess. In this thesis, we also focus
on the interactive and predictive, statistical MT (IMT) apach to CAT. The IMT paradigm
fits well within theinteractive pattern recognitioframework introduced in (Romero et al.,
2011; Vidal et al., 2007).

Figure 1.6 illustrates a typical IMT session. Initiallyetliser is given an input sentence
x to be translated. The referengeprovided is the translation that the user would like to
achieve at the end of the IMT session. At iteratijrthe user does not supply any correct
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SOURCE (x): Para encender la impresora:
REFERENCE (y):  To power on the printer:
) (p) 0
ITER-O (8n) To switch on:
(p) To
ITER-1 (s1) switch on:
(k) power
(sn) on the printer:
(p) To power on the printer:
(s1) ()
ITER-2
(k) *)
(8n) 0
FINAL p=v) To power on the printer:

Figure 1.6: IMT session to translate a Spanish sentence into Englism-Vdtidated
hypotheses are displayed in italics, whereas accepteagseiie printed in normal font.

text prefixp to the system, for this reasgnis shown as empty. Therefore, the IMT system
has to provide an initial complete translatiop as if it were a conventional SMT system. At
the next iteration, the user validates a prefias correct by positioning the cursor in a certain
position ofs,. In this case, after the wordlt’. Implicitly, he is also marking the rest of
the sentence, the suffsg, as potentially incorrect. Next, he introduces a new wararhich

is assumed to be different from the first word in the suffixs; which was not validated,
i.e., k # s;,. This being done, the system suggests a new suffix hypotkgsisubject
to §p, = k. Again, the user validates a new prefix, introduces a new vaot so forth.
The process continues until the whole sentence is corrédthvis validated introducing the
special word #". In this example, a potential user of the IMT system wouldégyped only
one word out of five. Assuming that, without the IMT systeng tiser would have had to
translate the whole sentence, the potential benefit cangistn effort reduction of 80%. If
a post-edition environment is assumed as baseline, thenmédd have typed three words,
versus only one in the case of IMT, leading to an effort reidmcof 66% with respect to
post-edition.

As the reader could devise from the IMT session describedeghbl T aims at reducing
the effort and increasing the productivity of translatevkjle preserving high-quality trans-
lation. For instance, in Figure 1.6, only three interactiarere necessary in order to achieve
the reference translation.

Formally, IMT is specified as an evolution of the SMT framely@nd hence its formula-
tion stems from the so-called fundamental equation of SMT, Equation 1.3. However, this
equation needs to be modified according to the IMT scenaodar to take into account the
part of the target sentence that is already translatedistipedndk:

8, = argmaxPr(sy|x, p, k) (1.15)

Sh

where the maximisation problem is defined over the suffix This allows us to rewrite
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y: table y: green
p: 0.3 p: 0.3

y: green
p: 0.7

y: green
p: 0.2

y: chair
p: 0.01

Figure 1.7: Example of word graph illustrating the translationl@fmesa verdek,, is

the coverage vector of the input sentence (see Section) lwthére symbot indicates

an uncovered word, and symboln input word that has already been translated. Each
edge is labelled with both the word emitted when transitimgugh that edge, and the
probability assigned. Note that, for the sake of simpliditys word graph is not a real
example generated during a true search process.

Eq. 1.15, by decomposing the right side appropriately aintirghting constant terms, achiev-
ing the equivalent criterion

s, = argmaxPr(p, k, sp|x). (1.16)
Sh
An example of the intuition behind these variables is shawRigure 1.6.

Note that, sincép k s;,) = y, Eq. 1.16 is very similar to Eq. 1.3. The main difference
is that the argmax search is now performed over the set okeaffj, that completgp k),
instead of complete sentencesif Eg. 1.3). This implies that we can use the same models
if the search procedures are adequately modified (Barratial., 2009).

The phrase-based approach presented in Section 1.2.1 easibeadapted for its use in
an IMT scenario. The most important modification is to relyaoword graph that represents
possible translations of the given source sentence. Thefugerd graphs in IMT has been
studied in (Barrachina et al., 2009) in combination with tfferent translation techniques,
namely, the alignment templates technique (Och and Ney;206h et al., 1999), and the
Stochastic Finite State Transducers technique (Casadeudadt Vidal, 2007).

1.3.1 IMT using word graphs

Word graphs (Ueffing et al., 2002) have been successfulljieapfor a long time in other
natural language processing fields, such as speech reicogftirrtmanns et al., 1997) and
natural language generation (Knight and Hatzivassilogl®95). A word graph is a weighted
directed acyclic graph, composed out of nodes and edgeb. rifate represents one or more
partial translation hypotheses (see Figure 1.4). In thiecae say one or more because
different hypotheses may be grouped into a same node if tharg $he same coverage vector
K and the same completion options. Then, the edges connexties represent transitions
between such nodes, and are labelled each with one word dghtpet sentencey,, and
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y: hello y: hello
p: 0.6 p: 0.6

G @@

: good mornin
v 84 g y: good Y
p- Y p:0.4 p:

Figure 1.8: Example of conversion of a phrase graph (left) into a worglgr@ight).

weighted by a score assigned by the translation model, whialuates how likely it is to

emit wordy, after having already emitted the current partial transtakiypothesis. In (Och,
2003), the use of a word graph is proposed as interface betarealignment-template SMT
model and the IMT engine. Analogously, in this thesis, a wgnaph built during the search
procedure performed on a PB SMT model will be used.

During the search process performed by the beam searchithigqiSection 1.2.1), it
is possible to create phrase graph In such a graph, each node represents a state of the
SMT model, and each edge a weighted transition betweersdtielled with a sequence
of target words. Whenever a hypothesis is expanded, a nee enlgnecting the state of
that hypothesis with the state of the extended hypothesidded. The new edge is labelled
with the sequence of target words that has been incorpoiatbe extended hypothesis and
is weighted appropriately by means of the score given by M& 8 odel. Once the phrase
graphis generated, it can be easily converted into a wogthdrg the introduction of artificial
states for the words that compose the target phrases assbtiathe edges. Figure 1.8
illustrates an example of this procedure.

During the process of IMT for a given source sentence, thieesymakes use of the word
graph generated for that sentence in order to complete #fexgs accepted by the human
translator. Specifically, the system finds the best pathemwtbrd graph associated with a
given prefix so that it is able to complete the target sentebemg capable of providing
several completion suggestions for each prefix.

A common problem in IMT arises when the user sets a prefix whaimot be found
in the word graph, since in such a situation the system islertakfind a path through the
word graph and provide an appropriate suffix. The commoneztore to face this problem
is to perform a tolerant search in the word graph. This tolesaarch uses the well known
concept of Levenstein distance in order to obtain the maositasi string for the given prefix
(see (Ortiz-Martinez, 2011) for more details).

1.3.2 IMT evaluation metrics

As explained in Section 1.2.2, automatic evaluation ofltessia difficult problem in MT. In
fact, it has evolved to a research field with own identity.sTisidue to the fact that, given an
input sentence, a large amount of corract different output sentences may exist. Hence,
there is no sentence which can be considered ground truth,the case in speech or text
recognition. By extension, this problem is also applicableMT.
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The two metrics most commonly used in IMT are:

WSR Word Stroke Ratio This metric is computed as the quotient between the number o
word-strokes a user would need to perform in order to achieedranslation he has
in mind and the total number of words in the sentence (Bamacét al., 2009). In
this context, a word-stroke is interpreted as a single actiowhich the user types a
complete word, and is assumed to have constant cost. Mareaah word-stroke also
takes into account the cost incurred by the user when readdéengew suffix provided
by the system.

KSR Key Stroke RatioSimilarly as for WSR, KSR measures the total number of kegkes

a user would need to perform before validating the final tegims, divided by the
total number of characters present in the sentence (Banaeh al., 2009). KSR is
clearly an optimistic measure, since in the scenario pregtise system is constantly
proposing translation options after every key stroke, &ediser is often overwhelmed
by receiving a great amount of information. However, sifieetime taken by the user
to read all those hypothesis is not considered, KSR may notdmsuring the user’s
effort accurately. For these reasons, in the present thesiavour the use of WSR,
instead of KSR.

1.4 Main bilingual corpora

Given that SMT needs huge bilingual sentence-aligned carfamr training the statistical
models that lie at the ground of the SMT system, this tectgywleenefited greatly from
the existence of multinational organisations, such as t@a@ian Parliament, the European
Parliament, or the United Nations, which need to transleeoroceedings of their meetings
into all the languages which are official within the core oflserganisations. One of the first
real-sized corpora that appeared was the Canadian Harsamlss, which was the corpus
used in the original works that established the fundameotfsbMT (Brown et al., 1993).

Since then, many corpora have been developed and gatheneel of them being smaller
but more task-specific than the Canadian Hansards corpusthar corpora preserving gen-
eral domain have become very large, nourished by the inagasimber of multinational
organisations which translate their documentation inti@int languages.

The most important corpus used throughout the present wortheé Europarl cor-
pus (Koehn, 2005). This corpus is built from the transcoiptof European Parliament
speeches published on the web. The data was collected inltbéidial languages of the
European Union, in the period comprised between 1996 an@.20&as obtained by crawl-
ing the web, then it was aligned at the document level and isppdi sentences, normalised,
tokenised and aligned at the sentence level. This corpubhad a very widespread use in
the SMT community, and has been used for numerous SMT ei@uzampaigns (Callison-
Burch et al., 2011; Paul et al., 2010). One main advantagbéeturoparl corpus when
compared with other similar-sized corpora is that the Earlogoprpus can be downloaded for
free. Given that this corpus increases in size year afterlyeeause of its nature, some of
the experiments conducted during the time taken to eladdié thesis were conducted on
the second version of the corpus, while others were conduetehe third version, after such
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De En Es En Fr En
Sentences 751k 731k 688k
WMTO7 | Running words 15.3M 16.1M| 15.7M 15.2M| 15.6M 13.8M
training | Average length 20.3 214 | 215 20.8 | 22.7 20.1
Vocabulary size 195k 66k 103k 64k 80k 62k
Sentences 1219k 1272k 1251k
WMT10 | Running words 249M 26.1M| 27.5M 26.6M| 28.1M 25.6M
training | Average length 20.4 214 | 21.6 209 | 225 20.5
Vocabulary size 255k 82k 126k 83k 101k 81k
Sentences 2000 2000 2000
Devel Running words 55k 59k 61k 59k 67k 59k
' Average length 27.6 29.3 | 30.3 29.3 | 33.6 29.3
OoV wrt WMTO7 | 432 125 208 127 144 138
OoV wrt WMT10 | 348 103 164 99 99 104
Sentences 2000 2000 2000
Devtest Running words 54k 58k 60k 58k 66k 58k
Average length 27.1 29.0 | 30.2 29.0 | 331 29.3
OoV wrt WMTO7 | 377 127 207 125 139 133
OoV wrt WMT10 | 310 111 172 112 114 112
Sentences 3064 3064 3064
Test Running words 82k 85k 92k 85k 101k 85k
Average length 26.9 27.8 | 29.9 27.8 | 329 27.8
OoV wrt WMTO7 | 1020 488 470 502 536 519
OoV wrt WMT10 | 825 404 383 419 424 415

Table 1.1: Characteristics of Europarl for each of the sub-corpora/ €tands for “Out
of Vocabulary” words with respect to (wrt) the specifiedtiag corpus. Devel. stands
for Development, k for thousands of elements and M for miiof elements.

version was released, with the purpose of providing sthteeart quality results. In order
to make the results reported in the present thesis comgavathl other results reported in
other works, standard partitions of the corpus will be usgadlch partitions are the ones es-
tablished in the 2007 Workshop on Statistical Machine Tedim (WMT) (Callison-Burch
et al., 2007) of the Association for Computational Lingaisin the case of the version 2 of
the Europarl corpus, and the partition established for S@02VMT (Callison-Burch et al.,
2010) in the case of version 3. Statistics for the languages psed in the present work
are provided in Table 1.1. THeevt est partition is the test set that was provided for the
2007 WMT for internal evaluation purposes, ahest partition is the set used for the fi-
nal evaluation. At this point, it is important to point outathitheTest partition included

a surpriseout-of-domain subset, which is the reason why the numbeutbbévocabulary
words is so high for that specific set. The out-of-domain stbyvas extracted from the News-

Commentary corpus (see next paragraph).
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De En Es En Fr En
Sentences 86.9k 80.9k 67.6k
Training Running words 18M 18M| 18M 16M| 1.6M 1.4M
Average length 21.2 20.7| 225 20.1| 231 20.0
Vocabulary size | 86.7k 40.8k| 53.5k 38.8k| 43.3k 35.6k
Sentences 2051 2051 2051
Runningwords | 47.2k 49.8k| 52.6k 49.8k| 55.4k 49.8k
NC 08 Average length 23.0 243| 257 243| 270 243
OoV wrttraining | 2941 1445| 1781 1493| 1736 1593
OoVwrt WMT10 | 2015 962 | 1028 955 | 998 961
Sentences 2525 2525 2525
Running words 62.7k 65.6k| 68.1k 65.6k| 72.6k 65.6k
NC 09 Average length 248 26.0| 27.0 26.0| 28.7 26.0
OoV wrttraining | 3629 1853| 2467 1916| 2478 2035
OoVwrt WMT10 | 2410 1247| 1357 1229| 1446 1247
Sentences 2489 2489 2489
Running words 61.3k 61.9k| 65.5k 61.9k| 70.5k 61.9k
NC 10 Average length 246 249\ 263 249 283 249
OoV wrttraining | 4056 1923| 2404 2004| 2312 2081
OoVwrt WMT10 | 2834 1349| 1394 1327| 1375 1353

Table 1.2: Characteristics of the three News-Commentary test setsmiiebe used.
Tr ai ni ng refers to the News-Commentary training set. OoV stands €ut“of
Vocabulary” words with respect to (wrt) the specified tragnicorpus. NC stands for
News-Commentary, k for thousands of elements and M for omdliof elements.

Another corpus that will be used in several chapters is thesNEommentary corpus
This corpus was obtained from different news feeds and wea as test set for the WMT in
all its editions after year 2007. For this reason, resultdifferent test sets will be reported,
although standard partitions will always be respecteds Tbrpus will be used mainly for
test purposes, but the training partition of the corpus algb be used. Characteristics are
provided in Table 1.2.

In addition, other smaller corpora will also be used for thepose of evaluating the
techniques described in some specific chapters. Givenhtbse tcorpora will only be used in
isolated occasions, their description will be given in thaecific chapter.

1.5 Toolkits

For conducting the experiments reported in this thesissre¢different NLP toolkits have
been used, with the purpose of focusing on the main ideaswhativate this thesis. These
toolkits are, mainly, the two SMT toolkits Moses and Thote thord-alignment toolkit

davailable from http://www.statmt.org/iwmt11
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GlZA++ and the language modelling toolkit SRILM.

Moses SMT toolkit

Moses (Koehn et al., 2007) is an open source SMT toolkitnkeel under the LGPL license,
which includes a large amount of tools for training and opation of PB SMT systems, as
well as a decoder for translating source texts by means ahtiaels built. Recent versions
of Moses also include a tree-based SMT system, althoughsrthibsis only the PB SMT
system will be used. The most standard setup provides aletitare functions described in
Section 1.2.1, including the lexicalised re-ordering maléscribed. Unless stated otherwise,
this will be the standard setup used throughout this thesiggtablishing the experimental
baselines for assessing the techniques proposed.

Thot SMT toolkit

Thot (Ortiz-Martinez et al., 2005) is also a toolkit to tré&B SMT models and is licensed
under the GPL license. As GPL software, Thot only includdti&oe to train SMT mod-
els. However, since Thot has been developed at the UniaeRiditecnica de Valéencia, the
present work benefited of internal versions which also iela decoder and a phrase aligner.
In contrast with Moses, however, Thot does not include Eised re-ordering models, and
re-ordering is limited to the an exponential function on ditance. Nevertheless, although
lexicalised re-ordering models have evolved to becomeralatal when translating between
European languages, the benefit in translation qualitpéhiced is scarce, which means that
results achieved by means of Thot are very near to the staite airt.

GIZA++ word-alignment toolkit

GlZA++ (Och and Ney, 2003) is a SMT toolkit that implementsing and search for IBM
models 1-5 and HMM. It also includes other tools which becdrardy when working in
SMT, such as a tool to generate word classes or a tool to tnansd corpus made out of
strings into a numeric format. Since GIZA++ is used to build tvord-alignments which are
the key step when inferring a phrase-table, GIZA++ is uselddiit Moses and Thot.

SRI Language Modelling toolkit

SRILM (Stolcke, 2002) is a toolkit for building and applyistatistical LMs, and is currently
under development since 1995 by the Stanford ResearckubestSRI) Speech Technology
and Research Laboratory. It also underwent important atgwithin the John Hopkins Uni-
versity/CLSP summer workshops in 1995, 1996, 1997, and.2A@2ough SRILM includes

a set of executable programs and scripts for performing thet standard tasks when mod-
elling language, it also provides a wide range of librariédgclv can be used independently
of the binaries.
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CHAPTER

Speeding up decoding in statistical
machine translation

Pour examiner la vérité, il est besoin, une fois dans sa \@anéttre toutes choses en doute
autant qu'il se peut.
René Descartes
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Chapter 2. Speeding up decoding in statistical machinslation

— Bonjour, dit le petit prince.

— Bonjour, dit le marchand.

C’était un marchand de pilules perfectionées qui apaisesbif. On en avale une par
semaine et I'on n’éprouve plus le besoin de boire.

— Pourquoi vends-tu ¢a? dit le petit prince.

— C’est un grosse économie de temps, dit le marchand. Lestexp# fait des calculs.
On épargne cinquante-trois minutes par semaine.

— Et que fait-on de ces cinquante-trois minutes?

— On en fait ce que I'on veut...

« Moi, se dit le petit prince, si j'avais cinquante-trois miies a dépenser, je marcherais
tout doucement vers une fontaine... »

Le Petit Prince. Antoine de Saint-Exupéry.

— Hello, said the little prince.

— Hello, said the merchant.

He was a merchant for the ultimate pills that quench thirste swallowed by a weeks
and we feel no need to drink.

— Why are you selling? said the little prince.

— It's a big savings in time, said the merchant. The expensltalculated.

We save fifty-three minutes a week.

— And what about those fifty-three minutes?

— We do what we want...

"I, said the little prince, if | had fifty-three minutes to sk | would walk slowly into a
fountain... "

The Little Prince. Google Translate.
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2.1. Introduction

2.1 Introduction

Nowadays, the key step of the process of statistical madhamslation (SMT) involves in-
ferring a large table of phrase pairs that are translatiéesch other from a large corpus of
aligned sentences. The set of all phrase pairs, togethlerestimates of conditional proba-
bilities and other useful features, is included into thegskrtable. Such phrases are applied
during the decoding process, combining their target sidéartn the final translation.

A variety of algorithms to extract phrase pairs has been gseg@ (Marcu and Wong,
2002; Och and Ney, 2000, 2003; Ortiz-Martinez et al., 20@8eV, 2005; Zens et al., 2002).
Typically, these algorithms heuristically collect a higihkdundant set of phrases from each
training sentence pair generating phrase-tables with a hugnber of elements.

This bulk comes at a cost. Large phrase-tables lead to latgestructures that require
more resources and more time to process. More importandyatge computational cost that
such complex structures entail often implies that SMT syistare not able to yield real-time
translation speed, which is crucial for the wide-spreadi@mgntation of PB IMT systems
within modern CAT systems. Typical SMT systems will takeesay seconds to translate a
certain input sentence, depending on the length of theiseate be translated, but also on the
amount of bilingual data made available at training times tiore training data, the larger
the phrase-table that is estimated. In addition, effornsjre handling large tables could
likely be more usefully employed in more features or morehistitated search processes.
Finally, this is also the main restriction for the widesmtegplication of SMT techniques in
small portable devices like cell phones, PDAs or hand-haldgconsoles; one can imagine
many scenarios that could benefit from a lightweight traimtedevice: tourism, medicine,
military, etc.

In this chapter, it is shown that it is possible to prune theapb-table by removing those
phrase pairs that have little influence on the final trarmtagierformance. The present ap-
proach consists in selecting only those phrase pairs ¢&ttéom the most probable segmen-
tation of the training sentences, which are the ones thdikafg to be used during decoding
time.

The technique presented here has several advantagesfilstp&&ce, it does not depend
on the actual algorithm used to extract the phrase pairstteréfore it can be applied to
every imaginable method that assigns probabilities toghpairs. In addition, it provides a
straightforward method for pruning the phrase-tabledouit the need of adjusting any addi-
tional parameter. Moreover, it does not significantly affeenslation quality, as measured by
BLEU or TER scores, while very substantial savings in terfroonputational requirements
are reported.

The rest of the chapter is organised as follows. SectioneXi2ws previously published
techniques to prune the phrase-table. Section 2.3 reviensilingual segmentation problem
in order to present our technique to filter the phrase-taBleolution taking into account
both source and target sentence information is providederrtié 2.4. Then, a source-
driven solution for that same problem is, in turn, provide®ection 2.5. This source-driven
solution is revised in Section 2.6, by focusing more on thebf@m confronted, leading to
a novel formula for the estimation of phrase-pairs withia ffinrase-table. Experiments are
presented in Section 2.7, and the conclusions drawn from #re presented in Section 2.8.
Future work yet to be done is also presented in this last@ecti
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Chapter 2. Speeding up decoding in statistical machinslation

2.2 Related work

Most phrase-based decoders already include severalitvttiitesholds in order to prune the
size of phrase-tables estimated from training corpora (iKoet al., 2007; Ortiz-Martinez
et al., 2005). They are usually related either to absoluteescof phrase pairs in the phrase-
table or to relative scores between the phrase pairs shifw@igsource phrase.

Apart from phrase-table threshold pruning techniqueschlviaire usually employed in
SMT, different complementary methods in order to reducenavere the size of phrase-
tables have been explored within the last years. For ingtgdohnson et al., 2007) propose
to use significance testing in order to select only thosegghpairs which are the most co-
occurring ones in the training corpus. In their experimetitey show that they are able
to reduce the phrase-table in ab®it% without any loss in translation quality. However,
they also report that such percentage seems to decreaskrgitih corpora, since in larger
corpora the amount of phrases with high frequency counte#@ses. In this chapter, we
present a phrase-table pruning technique which is abledioceethe phrase-table in about
97%. Even though the experimental conditions are differentcaesider the difference in
reduction and in methodology to be significant. Howevemfeitwork will involve a more
close comparison between the technique presented in @oletal., 2007) and the methods
presented in the current chapter.

Another work approaching this problem, inspired by thermptibrain damage algorithm,
relies on the idea of usage statistics. For this purposd €Eal., 2007) suggest to translate
a large amount of in-domain data with the current SMT model leeep only those phrase
pairs that were frequently used for the final translationaléernatively considered during
the decoding process. They report that they are able to @hioet50% of the phrase-table
without any loss in translation quality. The work preseritethe current chapter resembles
to the work by (Eck et al., 2007) in that the techniques preskhere also rely on analysing
how likely a certain phrase pair will be used during the tlatien phase. However, the tech-
niques presented here do not require additional data, busfon which phrase pairs would
be used for generating the current training corpus, in arbistyle training. Furthermore,
experimental results show that the techniques presentedane able to yield even larger
reductions in phrase-table size.

The work presented in this chapter also relies heavily ondéa of bilingual segmenta-
tion. Similarly, (Wuebker et al., 2010) propose the use dhgle bilingual segmentation in
order to re-estimate translation probabilities by leavimg-out. As a side effect, the amount
of model parameters is also reduced. In the present workevemthe goal of reducing the
size of phrase-tables is directly targeted, thus achiavingh larger reductions.

2.3 Bilingual segmentation

The problem of segmenting a bilingual sentence pair in suohm@ner that the resulting seg-
mentation is the one that contains, without overlap, the¢ pkesases that can be extracted
from that pair is a difficult problem. First, because of thg@dmumber of possible segmenta-
tions that are to be considered. Second, because a measytgadlity must be established.

Consider the example:
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2.3. Bilingual segmentation

Source: Lacasaverde.
Target: The green house .

When considering this example, one would probably statealyod segmentation for this
bilingual pair is{{La, The}, {casa verde , green house}, {. ,..}However, why is such a

segmentation better thdfLa , The},{casa verde . , green house?}As humans, we could
argue with more or less convincing linguistic terms in favot the first option, but that

does not necessarily mean that such a segmentation is theapm®priate one for SMT.

Furthermore, one could possibly think of several lingagty motivated segmentations for
this small example.

As described in Chapter 1, a variety of algorithms to extpicise pairs for SMT have
been proposed (Marcu and Wong, 2002; Och and Ney, 2003; Tanth€asacuberta, 2001;
Vogel, 2005). Typically, the bilingual phrases that congppsrase-tables are extracted by
using a heuristic algorithm (Zens et al., 2002). Such h&ar&gorithm is driven by the
following constraint: bilingual phrases must bensistentwith their corresponding word
alignment matrix. However, this process generates hugesphsables with highly redundant
phrase pairs, since a large number of possible overlappipgentations are extracted, with
the purpose of extracting that segmentation that is usefulhfe SMT engine. Obviously,
such an aggressive approach is bound to be computatiowally cand decoding time greatly
suffers because of this issue.

For this reason, the main purpose of this chapter is to rethecextremely high redun-
dancy in the amount of phrase-pairs that current stat&efrt SMT systems contain, with
the purpose of reducing the time that a human user would bngaictively for the output
to be produced. For doing this, we first examine two differapthods to obtain one single
segmentation per sentence pair. These two methods relyeaoticept of bilingual segmen-
tation. Of course, extracting several overlapping segatemts from a single sentence pair
may be beneficial, provided that such segmentations areatorHowever, obtaining only
the single-best segmentation proves to provide good sesdtwill be shown in Section 2.7.
Nevertheless, obtaining several possible segmentatooakd dealt with implicitly in this
chapter, in Section 2.6, where the possibility of obtaininlgest segmentations is studied.

In SMT, the concept of phrase-based segmentation entahstbe fact of dividing both
source and target sentences into phrases, as well as glsitafpla phrase-based alignment
between the phrases obtained. Moreover, such segmentatiaits the use of a certain set
of bilingual phrase, which are the ones that the decoding algorithm would usextstate
a certain input sentence so as to produce a certain output sentepc&Ve will denote the
(ordered) set of phrases used for translatingto y by x(x, y), wherex(x,y) C B(x) x
B(y). with B(x) andB(y) being the sets of all possible sequences of consecutivesyisee
Section 1.2.1), ofc andy, respectively. In addition, the ordered pairs containes(in, y)
have to include all the words of both the source and targeeseas, without overlap. Then,
the problem of finding the best segmentatidix, y) (or Viterbi segmentation) between
andy can be stated formally as

k(z,y) = argmaxp(k | z,y) (2.1)
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Chapter 2. Speeding up decoding in statistical machinslation

Operating with this last equation, one easily reach the@falhg, equivalent formulation:

Ae,y) = argmay(k |z,y)

argmaxp(x, y | ) (2.2)

In addition, it is also possible to reach the last equatiorstayting from Equation 1.3,
describing the typical search process in SMT, which woudddyihe segmentatiotx, y) as
a by-product:

y = argmayp(y | x)
Yy
= argmax) p(k,y|x) (2.3)
Y K
~ argmaxmaxp(k,y | ) (2.4)
y K

Then, considering the output sentence fixed leads to the faimella as the one presented
in Equation 2.2. At this point, three different options ftwetoutput sentencg could be
considered: the first one, the most obvious one, would be nisider the reference present
in the training datay™, leading toi(x, y™). Alternatively, one could also considgr either
the one that would be obtained from Equation 2.3 or the onevtbald be obtained from
Equation 2.4, if both do not match, leadingie, ¢). Hence, one would suggest that we can
perform a search process using a regular SMT system whielsfits phrase-table to obtain
those translations af that are compatible witly™ or ¢. Unfortunately, such problem cannot
be easily solved, since standard estimation tools such as(Thtiz-Martinez et al., 2005)
and Moses (Koehn et al., 2007) do not guarantee completeagw®f sentence pairs seen
in training due to the large number of heuristic decisionslved in the estimation process,
as described in Section 1.2.1. This means that it is oftercélse that the SMT system is
not able to produce the correct output sentegiteln this chapter, two different solutions to
this problem are proposed. The first one pursues the goaltainitg atrue phrase-based
segmentation betweenandy™, whereas the second one focuses on the primary goal of this
work, i.e. reducing the amount of bilingual phrases deriveth each sentence pair, leading
to asource-drivenbilingual segmentation betweanandy.

2.4 True bilingual segmentation

As described in the previous section, coverage problemsrémt to state-of-the-art SMT
systems imply that it is often impossible to obtain the \iisegmentation of a given sentence
pair. For this reason, a possible way of overcoming such rageeproblems is proposed
in (Ortiz-Martinez et al., 2008). In their work, the main @& to consider every source
phrase oft as a possible translation of every target phrasg dfor this purpose, two main
things are needed: first, a general mechanism to assignlglitiba to phrase pairs is heeded,

36 GST-DSIC-UPV



2.4. True bilingual segmentation

regardless if they are contained in the phrase-table oandtsecond, a search algorithm that
enables efficient exploration of the set of possible phragengntations for a sentence pair.

Such mechanism can be implemented by means of the appfiaaitismoothing tech-
niques over the phrase-table. As shown in (Foster et al§R0@&ll-known language model
smoothing techniques can be imported into the PB transl&tionework, and these can also
be applied to obtain a phrase-level segmentation. AccgririOrtiz-Martinez et al., 2008),
the best smoothing techniques combine a maximum likelildwdse-based model statistical
estimator with a lexical distribution by means of lineaeirgolation or backing-off. The lexi-
cal distribution uses an IBM 1 alignment model (Brown etH93) that allows to decompose
phrase-to-phrase translation probabilities into wordvtod translation probabilities. In the
experiments presented here, a phrase-based statisticadtes has been combined with a
lexical distribution by means of linear interpolation. ledition, (Ortiz-Martinez et al., 2008)
also proposes the use of a log-linear model to control diffeaspects of the segmentation,
such as the number of phrases in which the sentences aredlitlte length of the source
and the target phrases, the re-orderings and so on. Thiggstriaas also been adopted in the
present work. Hence, Equation 2.1 can be rewritten as:

k(x,y") = argmayp(k,y” | x) (2.5)

wherep(y™, k | ) is given, in this case, by smoothed phrase-based modelibedabove.

Although it might seem that Equation 2.5 matches exactly#ending problem in SMT,
this is not so, since the maximisation takes place only dweisegmentation, and is subject
to the constraint thay is the actual reference sentence givwgh, Hence, the typical PB SMT
model needs to be smoothed, and the search space is altered.

Once the scoring function for phrase pairs has been definsglargh algorithm to find
the bilingual segmentations is required. For this purpasearch strategy based on the well-
knownstack-decodinglgorithm (Jelinek, 1969) can be used. The stack-decodguyithm
for SMT attempts to iterativelgxpandpartial solutions, called hypotheses, until a complete
translation is found. The expanded hypotheses are staied stack data structure which al-
lows the efficient exploration of the search space. Sincatingber of possible alignments for
a given sentence pair may become huge, it is necessary tplagypiistic prunings in order to
reduce the search space. The stack-decoding algorithnhMf@rcannot be directly applied to
bilingual segmentation without certain modifications. 8fieally, the stack-decoding algo-
rithm for bilingual segmentation executes a modified exjmamalgorithm that guarantees the
efficient exploration of the set of possible bilingual segilagions for a sentence pair. Such
heuristic prunings include the limitation of the maximunmmer of hypotheses that can be
stored in the stack and also the maximum length of the talgeses that can be linked to an
unaligned source phrase when expanding a partial hypst{@sdiz-Martinez et al., 2008).

The bilingual segmentation procedure that has been deskaitove allows us to compute
one true segmentation for each sentence pair. Once the stgions for every sentence pair
have been computed, it is possible to build a phrase-tabtnlyytaking into account those
segments that are contained in the set of true segmentations

GST-DSIC-UPV 37



Chapter 2. Speeding up decoding in statistical machinslation

2.5 Source-driven bilingual segmentation

As it has been explained in Section 2.3, computifig, y™) according to a given phrase-table
is not an easy task. Specifically, a specific source-targehentation is often impossible to
generate due to coverage problems of the phrase-based.modéde previous section it
has been shown how to compute a true phrase segmentatioadretwo given sentences.
However, such method must bear with the constraint of hathiegoutput sentence fixed.
Although such restriction seems logical at training tinhshiould not be underestimated that
this will not be the case in translation time, and such retsbm may introduce a non-intended
bias. The bilingual segmentation technique described tti@e 2.4 allows to overcome
coverage problems by combining smoothing techniques witpgropriate search algorithm.
This is done at the cost of modifying the scoring functiondudering the search process due
to the application of smoothing techniques, and also bydhicing new segment pairs. As
said in Section 1, phrase-extraction is typically done byearistic algorithm, which has
proved to provide appropriate bilingual segments, andiaiesuch segments may not be a
good idea.

Since the goal is to discard unnecessary segment pairsinedta the phrase-table, an
alternative bilingual segmentation technique that olstaource-drivenbilingual segmenta-
tions is proposed, by relaxing the restriction considenelquation 2.5, leading to

R(z,y) = argmax(k,y | ) (2.6)

with ¢ being the output sentence provided by the search algoritiwording to the standard
search problem in SMT:

y = argmaxy(y | =) (2.7)
Yy

Note that, in this casgy may not be the true optimal output sentence according tadms+
lation model, but only the best sentence found by the deceddch may not match with
the true optimal output sentence due to heuristic decisapyoximations and pruning steps
performed within the decoder.

Hence, the output sentenges allowed to be different from the true reference, and the
segmentation has been induced by taking into account oelyngput sentence. By using
R(z,y) instead ofi(x, y™), we ensure that only segments present in the current pkelate-
are used, and no new segments are introduced.

The maximisation described in Equation 2.6 is exactly thmesaroblem as the one of
finding the best translation of a source sentence within agghbased system, where the seg-
mentation is obtained as a by-product. Hence, for computiihg only necessary to translate
each source training sentence and include into the phaddethose phrase pairs that com-
pose the output hypothesis. Certainly, translating thecgosentence does not necessarily
produce the target sentence in the training pair, but on therdand no artificial bilingual
segments will be introduced into the phrase-table. In &idiis shown in Section 2.7, ex-
periments show that this approach might be good enough teghe phrase-table without a
significant loss in translation quality.
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2.6 Phrase-table pruning and parameter re-estimation

In this section, the source-driven segmentation is geiserhl However, to understand the
idea behind this generalisation it is key to forget abouthiiegual segmentation concept,
and consider the source-driven segmentation techniquefalt parameter re-estimation
method, in which the probability of the phrase pairs is repated as the expected num-
ber of times that such phrase would be used in translatios timaddition, such probability
may also be re-estimated according to the expected quélibedranslation generated using
that specific phrase pair. To this end, it must be noted timathhe one hand, only parameters
(i.e. phrase pairs) that previously had a score greaterziianmay yield a score greater than
zero after the re-estimation (i.e. no new phrase pairs mpgapuring the source-driven re-
estimation process). On the other hand, phrase pairs whitlalscore greater than zero may
now yield zero score if such phrase pair is never used duniegdurce-driven segmentation,
which is the key towards phrase-table pruning.

To state the problem more formally, [t be a set of training data andt a SMT model
estimated ory". Then the re-estimation technique works as follows:

1. Obtain a set of good translatiof¥x) for each source sentenaec 7 using SMT
model M.

2. Extract the set of phrase pairs used to generate all &attosy € G(z),Vx € T,
using the phrase alignments provided/by.

3. Score each phrase pair according to the number of timds @u@se pair has been
used.

Here,G(x) is defined following two criteria: on the one hand, translasi inG(x) are
selected according to the score assigned by SMT madgbn the other hand, in training
time we do have the reference translatign and hence se¥(x) can be chosen according to
a translation quality metrig(y™, v).

Having defined7(x) and after obtaining the set of phrases used when genelG@finy
the probability of each phrase pady, &) is re-estimated according to the number of times it
was used, weighted by the quality of the hypothesis it apgukis: Hence, segments likely to
be used often and within good quality translations obtagiéi probability. Formally:

S c@ il y) - qly)

o~ z€T yeG(x)

PO~ S5 ) )

g xeT yeG(x)

(2.8)

wherec(z, g|x, y) is the total number of times that phrase gairy) is used when translating
source sentence into hypothesigy, andq(y) is a weighting factor which accounts for how
good does translate intay. Three different approaches are analysed:

1. ¢(y) = 1: assume that the probability of a phrase pair does not depetite quality
of the hypothesis it has appeared in. This is the standanmbapp to score segments in
state-of-the-art SMT systems (Zens et al., 2002).
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2. q(y) = p(y|x): assign each phrase pair a weight given by the likelihoodeofsiating
x into y according to SMT model/.

3. q(y) = p(y,y7): assign each phrase pair a weight given by quality metic-).
Since we are generating(y) with M, the translations provided may differ from the
reference translatio, which is given in training time. Hence, we can assess the
real quality of hypothesig. This implies that a given phrase pair will be weighted
according to the expected quality of the sentence it appears

Although Equation 2.8 implies a re-estimation of the tratish parameters, it must be
noted that it also implies an aggressive pruning in the amofiparameters present in the
translation model, i.e. the number of phrases in the phiasle: since the estimation of
p(g|Z) is based on a se&¥(x) of good translations af, only those phrases present in such
translations will be assigned a probability greater thaw,zand the rest will be pruned out.
Although it might seem that a smoothing step is needed, théig@ctually to prune those
phrase pairs that do not seem to be useful, and experimestats show that, in fact, such
smoothing is not necessary. In this way, a phrase-tablagong only those segments likely
to be used in translation time is obtained. Note, howevat,ttte smoothing mentioned here
implies smoothing the probabilities of existing phraserqaand its effects are completely
different from those introduced by smoothing in the casénefttue segmentation strategy.

2.7 Experimental results

Experiments on this subject will be conducted by means ofTinet and Moses toolkits.
On the one hand, the experiments concerning both bilinggahentation techniques will be
conducted by means of Thot, since this toolkit includes aftmesegmenting both input and
output sentences following the true segmentation strateigyce, for comparison reasons,
the source-driven technique will also be performed by medrtee Thot toolkit. On the
other hand, once these experiments were performed and thatiab of both techniques
was established, the generalisation of the source-dradmique, described in Section 2.3,
is analysed by using the more state-of-the-art toolkit Mpséth the purpose of providing
results which could be comparable with those provided iemeSEMT evaluation campaigns.
The corpora used will be the Europarl corpus (see Section 1.4

2.7.1 Bilingual segmentation experiments

Experiments for assessing the effectiveness of the sairieen and true bilingual segmenta-
tion techniques were performed by means of the Thot todkie (Section 1.5), in its default
monotonic setup. Results for the source-driven segmentatiategy are shown in Table 2.1.
In addition to the typical BLEU and TER scores, and since tlannpurpose is to measure
computational efficiencyspeedugS,) and phrase-table size are also provided. On the one
hand, speedup is defined as

Sp=Ty/T, (2.9)

whereT, is the time taken by the baseline system dhds the time taken by the system
with the reduced phrase-table. On the other hand, phrasedize is presented in millions
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Baseline Source-driven

Pair | BLEU TER size w/s | BLEU TER size w/s | sizered. S,
Es-En| 28.2 56.0 5.0 93 275 56.2 0.05 1500 99.0% 16
En-Es| 276 56.6 5.1 76 272 56.6 012 700 97.6% 9
De-En| 216 648 4.2 100 21.1 64.8 0.06 1500 98.6% 15
En-De| 15.2 70.9 55 46 15.1 70.2 0.14 400 97.5% 9

Table 2.1: Translation quality, number of model parameters measuréerins of mil-
lions of phrase pairs, number of translated words per seeowdspeedup,) ob-
tained when using a PB translation system for the soureersegmentation tech-
nigue. Monotonic search was considered. PB model size éngivmillions of phrase-
pairs.

of phrase-pairs, measured after filtering the phrase-tatderding to the current test set,
as is typically done when the test set is available beforélm@tause loading the complete
phrase-table without any kind of filtering is usually unfieéseven with modern machines.

Since these experiments are somewhat older, they were ctatthn the Europarl corpus,
in the partition established for the WMTO07 Workshop (setied..4). The development set
was used for estimating the weigtXf the log-linear combination and the test set was used
for evaluation purposes. Note that, since Testset was used, and not tibevtestset, the
evaluation data contains an out-of-domain subset, whigtié®s that the problem of reducing
the phrase-table is even more challenging because theggdpechniques need to avoid the
possible over-fitting that such reduction could entail.

Results for the source-driven segmentation technique eaeén in Table 2.2. As shown,
translation quality is not significantly affected by the wetlon of the size of the phrase-
table proposed. On the one hand BLEU scores are slightlyridves those of the baseline
system, although confidence tests conducted by mearestspecifibootstrap re-sampling
(see Section 1.2.2) showed that these differences areatististlly significant. On the other
hand, TER scores seem to remain completely unaltered, boeigh a very slight variation
can be observed (2 worse for Es—En).7 better for En—De).

As for the number of parameters of the models used, it candretbat such number is
reduced in two orders of magnitude, i.e. the number of pat@ameemaining in the phrase-
table after applying the source-driven technique is onbuad 2% the original number of
parameters. Moreover, translation speed is increased agtarfobetween 9 and 16, all this
without a significant loss in translation quality. In additj given that the resulting phrase-
table is much smaller, it would be possible to fit the complgtease-table (i.e. without
test-specific filtering) into memory, which implies that tB®IT system could be set online
for translation without the need of knowing the test set inaamte or using phrase-table
binarisation techniques.

Results for the true segmentation strategy are shown ireTaBl As opposed to source-
driven segmentation, translation quality does drop sigaily (although not consistently)
with respect to the baseline, ranging frén3 to 4.4 BLEU points and fron0.2 to 5.1 TER
points. In addition, the reduction in size is slightly srealthan in the case of the source-
driven segmentation, and it also seems that the segmerttisicepuce quite some ambiguity,

GST-DSIC-UPV 41



Chapter 2. Speeding up decoding in statistical machinslation

since speedup is significantly lower than in the former case.

One key difference between the two proposed techniquessteis the degree of sim-
ilarity of the pruned phrase-tables obtained by the teasgwith respect to the original
phrase-table. Although the true bilingual segmentatitowa to obtain a complete segmen-
tation of the source and target sentences, this comes abgteotintroducing smoothing
techniques. Hence, the resulting segmentations contaaselpairs that are not present in
the original phrase-table. In the experiments carriedthetpruned phrase-tables generated
by the true bilingual segmentation contained a relativéhimumber of phrase pairs that
were not present in the original phrase-tables, ranging ft60% to 50% depending on the
language pair. In contrast, the source-driven bilingughsentation, since it merely consists
in translating the source sentence, always generates agpplmase-table that is a true sub-
set of the original phrase-table. This suggests that theegegmentation technique not only
prunes the original phrase-table, but also has an impaxmin the estimation of new model
parameters, which could be the reason for the degradatithe dfanslation quality.

Baseline True
Pair | BLEU TER size w/s | BLEU TER size w/s | sizered. S,
Es-En| 282 56.0 50 93 23.8 608 0.07 380 98.6%
En-Es| 276 56.6 51 76 247 601 0.16 250 96.9%
De-En| 216 648 4.2 10Q 175 699 0.22 280 94.8%
En-De| 152 709 55 4 147 711 031 170 94.4%

A wWWDH

Table 2.2: Translation quality, number of model parameters, numbetrarislated
words per second and speeduff) X obtained when using a PB translation system for
the true segmentation technique. Monotonic search wasdmes. PB model size is
given in millions of phrase-pairs.

2.7.2 Parameter re-estimation experiments

Once it was established that the source-driven segmentegahnique works properly for

pruning the phrase-table, such technique was consideragase parameter re-estimation
method, as described in Section 2.6. In this case, the Moséisttwas used for the exper-

iments, with the purpose of providing state-of-the-artfssthat could be compared with
those presented in recent SMT evaluation campaigns and $isccomparison between the
source-driven and true segmentation techniques has glbeseh established. In addition, the
more recent version of the Europarl corpus was used, i.epah@ion of the corpus estab-
lished in the WMT10 Workshop (Section 1.4). The test set disedvaluation purposes was,
as in the previous section, tiiestsubset (see Section 1.4).

As for theG(-) andq(+) functions described, three settings are analysed:

1. ¢(y) = 1 andG(x) chosen according to the order in thebest list provided by the
SMT model. This approach is equivalent to the original setddven segmentation
strategy, when using only the first-best hypothesis. Thigngewill be referred to by
flat.
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Figure 2.1: Amount of phrases present in the reduced system, given asi¥egipect
to the original system.
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Figure 2.2: Decoder speed for original and filtered systems.

2. q(y) = p(y|x) andG(x) chosen as above. This setting will be referred tdvbg Scor e.

3. q(y) = u(y,y™) andG(x) chosen according to the order defined by quality metric

u(+,+). This setting will be referred to b@Scor e.

The effect of applying the different settings describedvabwas studied. The amount of
phrases present in the phrase-table for each of the settesgsibed is shown in Figure 2.1.
The method implemented achieves a reduction of about 97Biarmount of phrases present
in the phrase-table, without a significant loss in transtatjuality, yielding a SMT system
that is able to fit into portable devices: when considerinly ¢ime first-best hypothesis, the
size of the phrase-table that the decoder had to load intoanewas only about 14MB, and
about 35MB when including 50 hypotheses ifitar), versus 450MB for the original system.
Although these sizes were measured after filtering the phiase according to the test set,
as is usually done in SMT, similar conclusions can be obthimieen analysing the complete

GST-DSIC-UPV

43



Chapter 2. Speeding up decoding in statistical machinslation

33

32.8

BLEU

32.6

324

French --> English

- A
[ S /,g
A
- B e
e p T
X
B - e
L baseline -------*
e flat —-=—-
ModScore ---x---
i, QScore g
1 10 100
Number of hypotheses within G(x)
French --> English
o baseline --------
Eo flat —-=-
ModScore ---x---
B QScore -t
B R e +
L T
- *
F_
—— B
I, R, =
il L il
1 10 100

Number of hypotheses within G(x)

32.8

32.6

324

BLEU

32.2

32

53.2
53
K528
'—
52.6

52.4

Spanish --> English

- <
- ,/X'
L e baseline --------
flat ——e--
| ModScore ---*---
. e, QScore g
1 10 100
Number of hypotheses within G(x)
Spanish --> English
. baseline --------
flat ——=-
RN ModScore ---x---

SN QScore -t

Number of hypotheses within G(x)

Figure 2.3: Translation quality, as measured by BLEU and TER, for theli@s system
and the pruned systems.

phrase-tables. As expected, the phrase-table size inotervben considering an increasing
size of G(x). Settings | at andMbdScor e present the same amount of phrases, since both

use the samé&/(x). In order to study the impact of phrase-table size reductramslation
speed was measured. As shown in Figure 2.2, the speed thptuhed system is able to
deliver increases in a very significant manner, achievingentioan three times the original
speed. In this plot, it can be seen that the speed of the hassistem is much slower than

in the case of the previous subsection, in the experimeg&sdeng the comparison between
the source-driven and true segmentation techniques. §histibecause Thot is much faster

than Moses, but because in the present case lexicalisedeeir is considered, whereas in
the previous case only monotonic decoding was taken intowac In Figure 2.1 it can also
be seen that an average sentence of 30 words, as is the casstiofithe corpora considered
in the present thesis, will take less than one second tol#t@ngven when considering re-
ordering, which is perfectly tolerable even with a humamstator waiting actively for the

translation.

The effect on translation quality of the re-estimation téghes described was also stud-

ied, and translation quality results are shown in Figure 2s3shown, using only the first-best
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Figure 2.4: Relationship between speed/phrase-table size and theatian quality
achieved for the three different strategies analysed.

hypothesis fo7(x) leads to a slight degradation in translation quality, asalss the case in
the experiments with the segmentation techniques. Howesrem including 10 hypotheses
into G(x), this difference is already very scarce, and increasingiteeofG(x) yields SMT
systems that are able to deliver the same translation gaalithe original system, for all the
settings analysed. Another thing that can be noted is th#g&Scor e appears to perform
better than the other settings considered, which seemsrnable since(x) takes into ac-
count the translation quality of a given sentence befortuding the phrases it is built of.
Although it might seem that it is able to improve the baseim&erms of translation quality
for French—English, this is not statistically significant, and such firtgpjwas not coherentin
other language pairs.

So as to illustrate the translation quality that would beested when required a certain
speed, or when having certain memory restrictions, spedghrase-table size are plotted
against BLEU in Figure 2.4. Although, as in the plots, thared method that clearly per-
forms better (or worse) than the others, it does appeartieafitdScor e setting is the one
that performs worse in terms of requirements/translaticadity ratio.

However, there appears to be no significant difference hegtviee three settings anal-
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Figure 2.5: Relative frequency for each discretized valuepdf|z), considering
baseline system and different sizes(®fx) for the ModScor e setting (left) and the

QScor e setting (right).

ysed. This can be explained by considering Figure 2.5. Fattipg this figure, the direct
translation probability(y|x) was rounded to have only one decimal number, and then the
relative frequency of each value was plotted. The plotsesponding to the other language
pairs studied were almost undistinguishable from the mtem@es (even concerning the shape
of the baseline system). Note that the y-axis is in logarithgnale for visibility purposes.
As shown, the original system presents a relatively largelver of phrase pairs with low
probabilities: for about 35% of the phrase papsy|xz) < 0.4. However, in the reduced
system, less than 10% of the phrase pairs have a probabiigrithan 0.95. In fact, in the
case of considering only the first-best hypothegig|x) = 1 for about 84% of the phrase
pairs, versus 47% for the original system. This means twagthi on the one hand, that the
actual choice fog(-) will have a limited effect, since it will only affect 16% of ¢hphrase
pairs, although such statement does not necessarily ndsalddor the selection function
G(-). On the other hand, that in most cases a certain source phitabe associated with a
single target phrase, and the only decisions that the deedll@eed to take regard how to
segment the source sentence and then re-order target ph@isserving Figure 2.5, it could
be argued that a faster technique for phrase-table pruoig be to keep only those phrases
that havep(y|xz) = 1. However, such strategy leads to a phrase-tableréf the original
size, and a BLEU score of 12, i.e. larger phrase-tables aruhmvorse translation quality.

One last note regards average phrase length. Althoughetsonable to think that the
reduced systems will tend to keep longer phrases, this issmétigated by the fact that
phrase length is also a feature considered within stateesfirt SMT systems, and its weight
is adjusted by the MERT procedure according to a given deveémt set. In this sense, it
was observed that the pruned phrase-tables presentetlyslyiger phrases, although the
difference was never abowd% in the experiments detailed in this section. The differance
average phrase length seemed to depend more on the iZe) than ong(-), and including
more segmentations per sentence tended to yield shortergevphrase lengths.

46 GST-DSIC-UPV



2.7. Experimental results

French --> English Spanish --> English
NN baseline -------- 60 E~
60 S SN flat ——=—- 50 e TSRTIoax
| Tl I ModScore ---x--- o e RO
59 \\Q\ QScore -+ e \,\:\
B8 |- e G Tl
= T e =, | baseline - P e
57 S flat —o—- T
A ModScore ---x--- R
56 56 - QScore -t
55 fo---- PR R PN i 55 |----- PN B Y I
1 10 100 1 10 100
Number of hypotheses within G(x) Number of hypotheses within G(x)

Figure 2.6: WSR achieved when applying the parameter re-estimatiomigoes
detailed above, for FrenehEnglish and SpanishEnglish translation. fl at,
ModScor e andQscor e are the settings defined in the previous sub-section. Con-
fidence intervals are not shown for clarity reasons, but thiee was always between
1.64 and1.90.

2.7.3 Interactive machine translation results

In addition to the experiments conducted in the SMT framéwadditional experiments
were conducted with the purpose of assessing whether thengter re-estimation technique
presented here provides equivalent results in IMT. Forglthis, the PB SMT systems devel-
oped in the previous subsection were employed for produemgl-graphs, and these were
then used as back-end for the IMT system. The results in teffY8SR for this experi-
mentation can be seen in Figure 2.6. As shown, when appliimgarameter re-estimation
technique described in Section 2.6, the reduced systersemira lower performance than
the baseline system, as measured by WSR. However, it sheuldted that this difference is
only statistically different when the size 6f(x) is smaller thar20. In addition, it also seems
that theQ@Scor e setting is the one that yields the best performance compartd other
reduced systems. Nevertheless, even though this obsersséms to be mostly true in the
experiments performed, the differences are not statilstis@nificant.

In terms of the time required by the system to produce itsutufpigure 2.7 shows two
different comparisons. The upper two plots display theltatarage time required by the
system to produce the final output. As shown in the plots, #seline system is about three
times slower than the reduced systems, when setting the&iZéx) to 1, and about0%
slower when the size af(x) is set t0200. At this point, it should be remembered that this
time is computed by simulating the user, i.e. by assuminghizeuser would want to produce
exactly the same sentence present in the reference, anbyaéssuming that interaction of
the user takes no time at all. In addition, the total time taltlso depends on the number
of interactions simulated, i.e., the total number of timest ta suffix had to be produced.
For this reason, the average time taken by each system toageadsuffix hypothesis was
also measured, and these are the results shown in the tvanbplbts of Figure 2.7. In this
case, the reduced systems perform about three times fastethe baseline system when
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Figure 2.7: Temporal evaluation of the re-estimation techniques etabove, for
French—English and SpanishEnglish translation. The two plots on the top show
how many sentences were produced per second in a user-&thatavironment, while
the two plots on the bottom show the time consumed in aver@geoduce one single
suffix-hypothesis.

|G(x)| = 1, and about twice as fast as the baseline wid&x)| = 200. Although this plot

is more meaningful, since it shows the average time takerhéysystem to respond after
a given interaction of the user, there is still one aspectivinakes these plots not totally
clear: when the suffix hypothesis to be produced is the whalestation, the IMT system
takes much more time than when the suffix to be produced isquse words long. However,
the speed gains achieved by applying the pruning stratdgi®sibed in the present chapter
do not seem to depend much on the length of the suffix to be peatiun the worst of the
cases, the suffix to be produced is the whole sentence, waitble isame case as in the SMT
experiments. Since the speedup achieved in SMT is coarseilasto the one achieved in
IMT on a per suffix basis, it can be concluded that the comjmrtatgain does not depend on
the length of the suffix to be produced. Nevertheless, inlabsterms, the system will take
much more time to produce longer suffices, and hence the rigeedring techniques will be
more evident.
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2.8 Conclusions and future work

In the present chapter, a technique for pruning the phiase-is presented. Such technique
relies mainly on the concept of bilingual segmentatiorhalgh a generalisation may turn
it into a parameter re-estimation technique. The techngyasented attempts to assess how
likely is it for a given phrase pair to be used in translationet, and discard it whenever it
is too unlikely to be used. In an attempt to promote those segenwhich appear in good
quality translations, the resulting phrase pairs may bghted by the quality of the sentence
produced.

Four main conclusions are drawn. First, that it is possibleetiuce the phrase-table by
97% without any significant loss in translation quality,lgliag a decoding speed of about
four times faster the original speed, making it possiblege a PB SMT system in a real-
time environment where a human translator is waiting altiv&iven that the translation
model obtained is much smaller, the presented techniquisdsamlequate for integrating
SMT systems into hand-held devices without the need offsaing translation quality.

Second, that the true segmentation technique does not sdeerain appropriate phrase-
table reduction technique. This is most probably becaussrioothing needed to compen-
sate for the coverage problems present in PB SMT systemeddhe introduction of too
many new phrase pairs, which may not be the most adequate.

Third, that the amount of phrase pairs present in the phedse-after the source-driven
segmentation technique (or the specific approaches ddriverts generalisation) has been
applied is already very close to the minimum set of phrasstsatte needed within the phrase-
table if no degradation in translation quality is desiredlisTis evidenced by the fact that an
important amount of the resulting phrase pairs are assigrashbility1 in the different SMT
models (i.e. feature functions) present. Hence, perfagraine-estimation of the parameters
may not be able to yield positive results at all, since theiltiegy phrase-table is already
almost deterministic.

Lastly, experimental results concerning IMT show that tleedvgraphs produced by the
pruned systems are not as rich as the ones produced by tHmbasgstem. For this reason,
a human translator would need to perform more interactionsder to correct the initial
hypothesis in the case of the pruned systems. However, sgcbaise might be welcome
whenever the sentences to be translated are sufficienty, with the purpose of having
the system respond in real time. In this sense, one possitdason to the present work
would be to use the pruned system only with the purpose ofrgéing the first translation
hypothesis, and then use the word-graphs provided by thalibasystems to produce the
successive suffices, in the spirit of improving the time telag the system only in those cases
where such time is critical.

An inmediate direction for extending the work presenteclh®to develop other smooth-
ing strategies for the true segmentation technique. Inghitse, it is reasonable to assume
that the result achieved by the source-driven approachdloustitute a sort of lower bound
for the true approach, i.e. the purpose should be to achighelve true segmentaticat least
the same results obtained with the source-driven segni@mtat

Another topic which still deserves a deeper analysis is gfaition of G(-). It appears
that considering different(-) functions does not have an important effect on the final trans
lation quality achieved, since the resulting phrase-thbkea very low ambiguity. However,
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exploring further options fo€/(-) may still present a promising extension.
The source-driven segmentation strategy presented irchiaigter was first published in
an international workshop:

e G. Sanchis-Trillesand F. Casacuberta. Increasing Translation Speed in PBeessl
Models via Suboptimal Segmentation. Pnoceedings of the 8th International Work-
shop on Pattern Recognition in Information Systems, PROB,3tages 135-143, IN-
STICC Press, Barcelona (Spain), June 2008.

The source-driven segmentation strategy also lead to dgatibh in an international
conference, by applying it for building Finite State Traneselrs:

e J. GonzélezG. Sanchis-Trillesand F. Casacuberta. Learning Finite State Transducers
Using Bilingual Phrases. IRroceedings of the 9th International Conference on Intel-
ligent Text Processing and Computational Linguistics, IGt@ 2008 pages 411-422,
Lecture Notes in Computer Science, Haifa (Israel), Felyra@08.

Finally, the comparison between both source-driven areldtrategies was published in
an international conference:

e G. Sanchis-Trilles D. Ortiz-Martinez, J. Gonzalez-Rubio, J. Gonzéalez andesaCu-
berta. Bilingual segmentation for phrasetable pruningtati§ical Machine Transla-
tion. In Proceedings of the 15th Annual Conference of the Europeaadetion for
Machine Translation, EAMT 201 pages 257-264, Leuven (Belgium), May 2011.

The experimental results achieved by generalising thecsediriven segmentation strat-
egy are not yet published, although an article is being pegpfor submission to an interna-
tional conference.

50 GST-DSIC-UPV



Bibliography

Bibliography

Peter F. Brown, Stephen Della Pietra, Vin-
cent J. Della Pietra, and Robert L. Mer-

meeting of the Association for Computa-
tional Linguistics: Demo and Poster Ses-
sions pages 177-180, June 23-30 2007.

cer. The mathematics of machine trand2aniel Marcu and Daniel Wong. A phrase-

lation. Computational Linguistics19(2):
263-311, 1993.

Matthias Eck, Stephan Vogel, and Alex
Waibel. Translation model pruning via us-
age statistics for statistical machine trans-

based, joint probability model for statis-
tical machine translation. IRroceedings
of the conference on Empirical Methods in
Natural Language Processinpages 133—
139, July 6-7 2002.

lation. In Proceedings of Human Lan-Franz J. Och and Hermann Ney. Improved
guage Technologies: The Conference of statistical alignment models. IAroceed-

the North American Chapter of the Associ-
ation for Computational Linguisticpages
21-24, April 22—-27 2007.

ings of the annual meeting of the Associa-
tion for Computational Linguisticspages
440-447, October 1-8 2000.

George Foster, Roland Kuhn, and Howar'éranz J. Och and Hermann Ney. A systematic

Johnson. Phrasetable smoothing for statis-

tical machine translation. IRroceedings
of the conference on Empirical Methods in

Natural Language Processingages 53— b ortiz-Martinez. |

61, July 22—-23 2006.

Frederick Jelinek.
ing algorithm using a stackilBM Journal
of Research Developmenit3(6):675—685,
1969.

Howard Johnson, Joel Martin, George Fos-
ter, and Roland Kuhn. Improving trans-
lation quality by discarding most of the
phrasetable. IrProceedings the confer-
ence on Empirical Methods in Natural

Fast sequential decod-

comparison of various statistical alignment
models.Computational Linguistic29(1):
19-51, 2003.

. Garcia-Varea, and
F. Casacuberta. The scaling problem in the
pattern recognition approach to machine
translation. Pattern Recognition Letters
29(8):1145-1153, 2008.

Daniel Ortiz-Martinez, Ismael Garcia-Varea,

and Francisco Casacuberta. Thot: a toolkit
to train phrase-based statistical transla-
tion models. InProceedings of the Ma-
chine Translation Summit,Xpages 141—
148, September 12—16 2005.

Language Processing and Computation@aniel Ortiz-Martinez, Ismael Garcia-Varea,

Natural Language Processingages 967—
975, June 28-30 2007.

Philipp Koehn, Hieu Hoang, Alexandra
Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan,
Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexan-

and Francisco Casacuberta. Phrase-level
alignment generation using a smoothed
loglinear phrase-based statistical align-
ment model. In Proceedings of the
conference of the European Association
for Machine Translationpages 158-167,
September 22-23 2008.

dra Constantin, and Evan Herbst. Mosedesis Tomas and Francisco Casacuberta.

open source toolkit for statistical machine
translation. InProceedings of the annual

51

GST-DSIC-UPV

Monotone statistical
word groups.

translation using
In Proceedings of the



Bibliography

Machine Translation Summit ,Xpages
357-361, September 18-22 2001.

Stephan Vogel. PESA: Phrase Pair Extraction
as Sentence Splitting. IRroceedings of
the Machine Translation Summit ages
251-258, September 12—-16 2005.

Joern Wuebker, Arne Mauser, and Hermann
Ney. Training phrase translation mod-
els with leaving-one-out. IfProceedings
of the annual meeting of the Association
for Computational Linguisticpages 475—
484, July 11-16 2010.

Richard Zens, Franz J. Och, and Hermann
Ney. Phrase-based statistical machine
translation. InProceedings of Advances in
Artificial Intelligence: the annual German
conference on Artificial Intelligen¢pages
18-32, September 16—-20 2002.

52

GST-DSIC-UPV



CHAPTER

Language model adaptation for statistical

machine translation

Someone will do it. We have to be that one.
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Chapter 3. Language model adaptation for statistical madhanslation

He felt faint again now but he held on the great fish all theistitzat he could. | moved
him, he thought. Maybe this time | can get him pull over. Podinds, he thought. Hold up,
legs. Last for me, head. Last for me. You never went. This tithgull him over.

[...]

“I wish | had a stone for the knife,” the old man said after hel lshecked the lashing
on the oar butt. “I should have brought a stone.” You shoulteHarought many things, he
though. But you did not bring them, old man. Now is no time timkhof what you do not
have. Think of what you can do with what there is.

The Old Man and the Sea. Ernest Hemingway.

Se sentia débil ahora de nuevo, pero él llevd a cabo en el geartqda la tensién que
podia. Lo movia, pensd. Quizas esta vez pueda conseguieqletissiera. Pull, las manos,
pensé. Levante las piernas. Ultima para mi, con la cabeztimdipara mi. Que nunca fue.
Esta vez lo voy a tirar encima.

[...]

“Me gustaria tener una piedra por el cuchillo”, dijo el anai@ después de haber com-
probado los azotes en el culo remo. “Tendria que haber traida piedra.” Usted deberia
haber traido muchas cosas, sin embargo. Sin embargo, nodfdotrviejo. Ahora no es
momento de pensar en lo que no tienen. Piense en lo que se lpamsstecon lo que hay.

El viejo y el mar. Google Translate.
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3.1 Introduction

In this chapter, the problem of language model adaptaticapatied to statistical machine
translation is examined. In this contextgram mixtures of language models are investigated,
which are obtained by clustering bilingual training dataev&al clustering techniques are
analysed, some of them attempting to exploit existing méywaanotated information, others
researching different ways of clustering the training datbomatically in an unsupervised
manner. Then, in translation time, the mixture weights ateérated at several degrees of
granularity, ranging from the pure sentence level to weigtstimated on the complete test
set. Experimental results show that, by training diffeispecific language models weighted
according to the actual input instead of using a single taeggyuage model, translation
guality improvements can be achieved, both in terms of BLEWia terms of TER.

Hence, the purpose of this chapter is to study different vedgsigmenting the LM com-
ponent of the SMT system by introducing parameters that daptad dynamically to the
input text. With this purpose, the LM is implemented as a migtof specialised sub-LMs,
which are conveniently estimated through some bilinguadtelring of the training data and
then combined following different weighting schemes.

Most part of the work detailed in this chapter was carrieddawring a 3-month internship
at theFondazione Bruno Kesslén Trento, Italy, in collaboration with Dr. Marcello Fedeo
and Mauro Cettolo. The author of this thesis is very grat&flloth of them for granting him
such an opportunity.

This chapter is organised as follows. Section 3.2 brieftg lisher works dealing with re-
lated issues, both regarding LM adaptation in SMT and ottlated fields, and also regarding
the use of mixture models for adaptation in SMT. The geneaah&work for LM adaptation
by means ofr-gram mixtures researched in this chapter is described actid®e3.3. Sec-
tion 3.4 describes the different supervised approachdgstuvhen dealing with the cluster-
ing problem. Then, in Section 3.5, different unsupervidadtering approaches are analysed
for the case where no manually annotated data exists. Biffestrategies for assigning the
n-gram mixture weights are described in Section 3.6. The xgatal results obtained by
means of these procedures are described in Section 3.7harmbmclusions which can be
drawn from the present work are described in Section 3.8s [Blst section also describes the
future work still to be done.

3.2 Related work

One of the first approaches to adaptation in SMT was propog€édHgarda and Juan, 2003),
in which the translation model is implemented as an unsugadvmultinomial mixture of
translation models, where each component is supposed teotyate most of its probabil-
ity mass on a certain topic. Mixture models for adaptationensdso explored in (Civera and
Juan, 2007). However, in this case the mixtures were degiigmevord alignment modelling.
With this purpose, the authors proposed to replace the atdmabrd-alignments by mixtures
of the HMM alignment model. Since mixture modelling indusest partitions, topic spe-
cific alignments were defined by each mixture component. QAltfh achieving interesting
improvements in terms of alignment error rate, improveménterms of translation quality
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were more limited given the large amount of heuristics agupéifter the word-alignment step
in order to extract phrases.

Slightly later, (Nepveu et al., 2004) applied other adaptatechniques to interactive
MT, following the ideas in (Kuhn and Mori, 1990) and addinglea language and translation
models to their system. Following the same concept preselnatidware cache memories,
the purpose of TM and LM caches is to track short-term fluébnatin word (or phrase pair)
frequency. Then, these caches are combined in a log-liashidn with the generic LM and
TMs. Although the language model caches did produce irttagesnprovements in terms of
translation quality, translation model caches did not seeprovide further improvements.

Other authors followed a different approach when confranthe adaptation problem.
For instance, (Koehn and Schroeder, 2007) studied diffevays to combine in-domain data
with out-of-domain data. Their experiments ranged fronsingple concatenation of all data
available to more complex combination strategies, suctstbkshing different translation
and language models which were combined in a log-lineaidastn a conceptually similar
work, (Bertoldi and Federico, 2009) also explored difféneays to combine in-domain and
out-of-domain data, although in this case the data addeulyssource language data.

Language model adaptation has been deeply explored sideasatthe mid 90s in the
ambit of speech recognition (Bellagarda, 2001; Mori anddfed, 1999). Nowadays, also in
the SMT community the interest for LM adaptation is continsly growing. More specifi-
cally, there has been a recent effort towards providing & System with a more adaptable
LM. For example, (Zhao et al., 2004) propose to build a quesgnfa list of candidate trans-
lations for each source sentence. Such query is used tevesimilar sentences from a very
large training corpus, and the sentences retrieved aretadmdlld specific LMs which are
then interpolated in translation time with a background Léfireated on all the data avail-
able. Finally, the source sentence is re-translated bygui@interpolated LM. By doing this,
they report that they are able to provide stable, although lirited improvements over the
single-LM baseline.

Similarly, (LU et al., 2007) propose to userm frequency-inverse document frequency
(TF-IDF) to select similar data within the same trainingpmes, and then prepare specific
LMs and TMs. These specific models are then interpolatechimstation time according to
different weighting schemes. As in the case of (Zhao et 8042, they also report minor
but stable improvements in translation quality metrics.alsimilar work, (Yamamoto and
Sumita, 2007) propose to cluster the bilingual trainingpe@rso as to minimise the entropy of
each subset, and then train independent language andatranshodels from these smaller
bilingual corpora, which are in turn recombined in trariskatime by performing domain
prediction. Differently, in the present work the final comdiion of target LMs is obtained
by re-using the weights estimated by maximising the prditaluf generating the source
sentence by means of the linear interpolation of source 84

3.3 General framework for language model adaptation

The key idea behind the language model adaptation techpigasented in this chapter con-
sists in replacing the language model present in Equati®nvihich is one of the feature
functionsh(-, -). Specifically, such feature is typically the language maddéhe output sen-
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Figure 3.1: Basic procedure for LM adaptation.

SRC
TEXT

tence, i.e.
h(z,y) = logp(y) (3.1)

which provides the logarithm of the probability assignedtbg target LM to the output
sentencey. Typically, this probability is most often given by a singl®rd-based LM. In
this work, this formula is extended by considering that spitbability is given by a linear
interpolation (mixture) of word-based language modets, i.

M
p(y) = Z w;p;i(y) (3.2)
i=1

where eachp;(y) is a LM trained on sentences of the target language. Howewnsjdering
the final probabilityp(y) as a linear interpolation allows the introduction of seldifierent
language models, which may be estimated from different isigidns of the training data
available. With the help of Figure 3.1, the basic procedaré.M adaptation is described in
the following. Note that this procedure is thought for adlaptn LMs trained on the target
side of the parallel corpus in consideration, i.e., LMsrteai on other (monolingual) corpora
cannot be adapted by means of this procedure.

Let us assume that the parallel training data have beenipa€il into a set oMbilingual
clusters, according to some criterion. On each clusteguage specific LMs are estimated,
which are then organised into two language specific mixtuéets. All operations described
so far are performed off-line. Now let us consider a sourgedesentence to be translated.
Before translation, the input is used to estimate optimagdiate of the source language mix-
ture through Expectation-Maximisation. This being dohe,key step is to assume that such
weights contain very valuable information about the disttion of the source language mod-
els, and this information can be passed on to the target meixtilanguage models by means
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of a certain mapping of the source weights to the target wgigrhis mapping being done,
the target language model mixture is then used as LM featuretibn by the SMT system.
In the present work, such mapping will be performed by diyesétting the target weights
equal to the source weights. One could easily think of mophisticated, and possibly more
appropriate, ways of performing this mapping. Howeves thia research direction that still
needs to be explored.

In this chapter, two different frameworks for clustering tinaining data are considered.
On the one hand, it will be first assumed that manually anaedtegxts are readily available,
and the adaptation procedure will attempt to estimate teeweighting of these supervised
clusters. On the other hand, since manual annotations aways available, it will also
be studied how to perform LM adaptation by means of unsupedvclustering, while still
following the procedure described in Figure 3.1.

3.4 Supervised labelled data for language model adaptation

In this section, we describe how to take advantage of sugpgshinformation present in dif-
ferent bilingual corpora for the specific purpose of languangpdel adaptation. By exploiting
such labels, the bilingual corpus needed for training thelT Syistem will be divided into
several different sub-corpora, and these sub-corporalvéh be used within the adaptation
framework presented in Figure 3.1. The sub-corpora built serve as starting point for
building adapted SMT systems as described in Section 3.8.d&iog this, two different
bilingual corpora will be considered: the IWSt@nd Nespole! (Lavie et al., 2006) corpora.
For the purpose of differentiation, the tewtusterwill only be employed whenever these
sub-corpora are built in a fully automated manner, whereasdrmsub-corpuswill be used

in other cases.

Before pursuing with the description of the different ldbdlcorpora employed and how
these labels will be used, a brief overview is necessary 40 &eep the motivation clear.
Specifically, part of the IWSLT corpus contains translagiofdialogues in a tourism domain,
and has two kinds of labels:

e Labels grouping sentences into the dialogues where sutbrsms were originated.
Since such dialogues are too short so as to estimate a LM, iagtmgdes will then
be grouped into different clusters by means of an off-thafstiustering algorithm,
treating each complete dialogue as a single sample for thmpe of clustering. These
clusters (of dialogues) will then serve as starting poimtthe adaptation procedure
described in Figure 3.1.

e Labels describing the nature of the speaker. Four diffexgedker types are considered,
giving rise to four different sub-corpora, which, againl|l\serve as starting point for
the adaptation procedure. No unsupervised clusteringabeabin this case, since the
labels themselves already divide the corpus into four sefftty large sub-corpora.

On the other hand, the Nespole! corpus contains also dialbguslations in a tourism
domain, and presents several labels:

ahttp://mastarpj.nict.go.jp/IWSLT2009/
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e One label for each type of dialogue act. There are many typledels, but the corpus
will be divided into only three different sub-corpora so asptevent sparsity: the
two most different labels will constitute two of such suldmara, and the rest of the
sentences will constitute the remaining sub-corpus.

Note, however, that the final experiments will be reportedrenlWSLT corpus, which
implies that the labels present in the Nespole! data firstl nede carried on to the IWSLT
data (the procedure for doing this is described below). N@lgwnsupervised clustering
takes place here, although the sentences within the IWStJusawill be assigned different
labels on the basis of likelihood.

With this overview in mind, a more detailed description & torpora and methods used
follows.

IWSLT

The corpus provided for the 2008ternational Workshop on Spoken Language Translation
(IWSLT) is composed of two different sub-corpora in ChindsSeglish: a larger corpus be-
longing to the general tourism domain and a smaller corpmgslalonging to the tourism do-
main, but in the more specific context of hotel conversatidie larger sub-corpus, named
Basic Travel Expressions CorpyBTEC) has no manual annotations, whereas the smaller
corpus, theChallenge TasKCT) corpus, does have manual annotations regarding speake
and dialogue number. Since the purpose is to perform adapttite experiments conducted
focused on the CT data, which is the smaller part, in correcbgnition results, Chinese—
English (Zh—En) and English—Chinese (ExZh) language pairs. The CT corpus includes
for each sentence a dialogue identifier and the speaker, classagent, customer or inter-
preter. Table 3.1 reports statistics (running words an@bolary size) of the training corpora
used in our experiments after the preprocessing performetdans of the tools supplied by
the organisers; the numbers for the two directions arerdiffie despite the original texts are
the same, because casing and punctuation have been remaweskiurce texts, but kept on
target texts. The reason for this is that the IWSLT campasgabiut speech translation, and
source texts are not provided as sentences as such, butfiortheroduced by the speech
recogniser.

Zh—En Chinese English

task [W| V] 5 | |W]|] |V]| 5
BTEC | 148K 8408 7.4| 183K 8344 9.1
CT 89K 3734 8.9| 141K 3696 14.0

En—Zh English Chinese
task |W| |V]| s |W| |V]| s
BTEC | 153K 7294 7.7| 172K 8428 8.6
CT 119K 3271 11.8) 102K 3737 10.2

Table 3.1: Statistics of the IWSLT training datgw| stands for running wordsy | for
vocabulary size and for average sentence length.
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Since we are going to exploit speaker and dialogue annatatibthe CT corpus, more
detailed statistics are reported in Table 3.2. The figurgartethe target side for the ZkEn
task, being those for the other direction very similar.

speaker | |W]| \ 3
native 46.7K 2240 14.8
interpreter| 26.8K 1626 14.1
native | 33.3K 2082 13.9
interpreter| 33.8K 1878 12.9

agent

customer

Table 3.2: Speaker-based statistics of the CT training set.

By exploiting the annotation of the training and developitemts, the data available
can be subdivided in two different ways, one related to djaés and the other to speakers.
Then, these sub-corpora may be used for building differéfg,lwhich will then, in turn, be
considered for interpolation within Equation 3.2.

Dialogue based clustering: the CT data is split ir#®4 different dialogues representing a
complete conversation between an agent and a customeie @iledsgues are provided with
identifiers, so that each single dialogue can be separabed e rest, and the different
dialogues can be clustered as a whole, i.e. each one of thkimgsclusters will contain
several complete dialogues. For doing this, each dialogagerepresented as a bag of both
source and target words. The rationale behind this is tdhketctustering algorithm decide
which dialogues appear to be similar and are appropriatauiddting a specific LM. Since the
clusters are formed relying on the words used in each diagogjalogues which have many
words in common will end up in the same cluster, and dialogugish present less words
in common will belong to different clusters, and (hopefullgpic-specific LMs will arise.
For the clustering procedure, both source and target sides used, as suggested by a slight
performance gain observed in preliminary investigatiohe iumber of clusters tested was
2, 4, 6 and 8, and on each of them a different LM was trained F&gpare 3.1). Additional
LMs were built on the complete BTEC+CT data for smoothingooses.

Speaker (agent/customer/interpreter) based grouping: In additemthe information de-
scribed above, which identifies each dialogue as a wholeClheata also contains infor-
mation regarding the role of the current speaker. Since thel&@a consists of interpreter-
mediated conversations, four different roles appear: tlstotner, the agent, and the inter-
preter taking the role of either of the previous two. Henoey fdifferent sub-corpora can be
built exploiting this type of annotation, namely one of agimns, one of customer turns, and
two of interpreter turns which are translations of agenteustomer utterances, respectively.
Then, four different language models can be estimated dm see (i.e., language) of each
sub-corpus. In this case, two additional LMs trained on thaglete BTEC and BTEC+CT
were included into the interpolation in Equation 3.2.
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3.4. Supervised labelled data for language model adaptatio

Nespole!

Nespole? (NEgotiating through SPOken Language in E-commerce) .aval., 2006) was
a European Union funded project, running during years 2000R. It aimed at providing a
system capable of supporting advanced needs in e-commedoe-service by resorting to
automatic speech-to-speech translation. In particuterad the two implemented showcases
supported multilingual negotiations and discussion betwa tourist information/service
provider (a so-called destination) and a customer who vettoterganise a trip exploring all
available possibilities, including travel, accommodatiattractions and recreation, cultural
events, dining and so on. Collected data mirrored such siceif@r the purposes of the work
presented here, 58 Nespole! dialogues were used; they wigeted in year 2000 involving
Italian speakers, then translated into English and mayladklled in terms of dialogue acts.
Table 3.3 reports corpus statistics regarding the Engiihaf the dialogues, while Table 3.4
provides the (self-explanatory) labels and counters ofithet frequent dialogue acts.

#turns | W] \% 5
2522 15335 1344 6.1

Table 3.3: English side statistics of the Nespole! dialogues.

label counter
gi ve-information 963
affirm 408
descriptive 285
request-information 199
acknow edge 122
greeting 80
negat e-gi ve-i nformati on 62
t hank 55
request-action 55
total 2522

Table 3.4: Most frequent Nespole! dialogue acts.

The English side of Nespole! data (see Section 3.7.1) wadogen for subdividing
the IWSLT training data. Since the Nespole! data includbsli&regarding the kind of di-
alogue act of each utterance, the purpose was to carry onisfarination to the IWSLT
training data, in order to mine possible differences inderi, syntactic structure or punctu-
ation that different dialogue acts may entail. For doing,ttihe Nespole! corpus was first
subdivided into three sub-corpora, according to the diadogctsgi ve- i nf or mati on,
request - i nf ormati on, and all the rest. Then, three different 5-gram LMs were- esti
mated on the English side of such sub-corpora. This being,daath English sentence of the

bhttp://nespole.itc.it
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IWSLT corpus was labelled with the tagsve- i nf or mat i on,r equest -i nf or mati on,
or ot her, according to which LM of the Nespole! sub-corpora assigosenprobability to
that specific sentence. Mirroring such assignments on tlweGé side of the IWSLT corpus
gives rise to three different bilingual sub-corpora, anesththree different sub-corpora can
then be used as starting point for the adaptation procedserithed in Figure 3.1. The ra-
tionale behind choosingi ve-i nf or mat i on,r equest -i nf or mat i on andot her s
for the initial Nespole! subdivision is these first two digie acts are expected to label quite
different sentences in terms of lexicon, syntactic stmectind punctuation (when available).
Nespole! texts are quite different from IWSLT texts, altgbwoth of them are tourism-
related. In this sense, it is specially illustrative that ttross-corpus perplexity is around
900, while the perplexity of IWSLT development/test setsges approximately from 50 to
200. Nevertheless, Nespole! data include valuable semamtiotation which might be worth
exploiting. Note that, since the final evaluation experitsavill be performed on the CT data
and using the whole IWSLT corpus for training, the labelsspre in the CT data constitute
reliable information towards building the final LM interpdion. In contrast, the information
present in the Nespole! corpus first needs to be carried oubetiIWSLT data.

3.5 Unsupervised clustering for language model adaptation

It should be clear that the fundamental intermediate stepefpproach presented here is
the clustering of bilingual training data. The elementsaxtecluster are sentences. Hence,
the goal of this stage is to group together sentences whelsiarilar to each other from
the lexical point of view. However, since it is not always ttese that supervised labels
are readily available, in this section we explore the usensiupervised clustering for this
purpose. Unless differently specified, the clustering i$quened by

e representing each sentence pair as a bag of both sourcergetitards;

e setting the number of clusters to 4, since a preliminarystigation revealed this num-
ber as begin able to generate clusters quite specialisedando sparse.

On both source and target sides, in addition to the 4 LMsehon each cluster and for
smoothing purposes, the LM built on the whole training data &lso been considered.
In the following subsections, three different clusterichames are described.

Direct clustering

As a first approach, we investigated clustering the traidiaig directly.

Development-induced clustering

Although the direct clustering of the training data is thestrairaightforward choice, it might
not be the best one, since by definition the goal of any adaptarocedure is to cover
possible mismatches between training and developmentéesitions. With this in mind,
the idea is to cluster a given development set, and then pttenmirror such clustering on
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Figure 3.2: Procedure for obtaining development-induced clusterihthe training
data.

the training data. The procedure for doing this is shown guFé 3.2 and is summarised in
the following algorithm:

1. Cluster the bilingual development text
2. Estimate source and target LMs for each cluster from gtep (

3. Partition training data by classifying each sentencegmaiording to eq. 3.3 (see below)
In step (3), each bilingual training sentences assigned to the clustér by the rule:

m = argmaxcos(t, d? ) + cos(t¥,d¥) (3.3)
wheret andd are vectors of\/ (the number of clusters) LM weights and the cosine between
two vectors is defined a®s(a,b) = W' with - being the dot product and || being
the 2-norm. In particulat?® is the set o% LM weights that maximises the probability of the
source sentence of the training text, according to the linear interpolatiminsource LMs
estimated in step (2)t¥ is the twin oft? for the target sided?, is the vector of weights
which maximise the probability of again the source LMs opgt2) but on the whole source
side of clustern of the development sedl¥, is the twin ofd?, for the target side.

The intuitive explanation of eq. 3.3 relies on the meaningarhponents of vectoitsand
d. Let us start by the fact that in some sense a LM trained fropeaific cluster is a compact
representation of the sentences in that cluster; henceptiteisation of LM weights on a text
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provides, through each single weight, a measure of theaiityilof that text with a specific
LM, that is a specific cluster. Vectotsandd can then be considered as “fingerprints” of each
training sentence and development cluster, respectiVelycos() operation on them is then
applied to compute the similarity of training sentencesiwiach clustem.

Test-induced clustering

For inducing the clustering of the bitext training data ip@ssible to use the test set instead
of the development set. Since in this case the target side svailable, the clustering is per-
formed only on the source data, and the classification ruéz08.3 is modified accordingly:

m = argmaxcos(tZ, d¥ ) (3.4)

m

In this cased?, refers to the vector of weights which maximise the probsbdif source
LMs on the source side of clustet of the partitioning of thetestset. Note that even if
eq. 3.4 relies only on the source side, it is used to classifit bides of each sentenaeof
the training data.

The idea behind performing a test-induced clustering isdhtaking profit of the infor-
mation available in the actual text to be translated, withghrpose of grouping together test
sentences which are similar. Nevertheless, the possiblefite of using such information
may not be completely reliable, since only the source sideaslable and the clustering is
instead induced on bilingual data. Note, however, that &fggming this kind of clustering
the test data must be known beforehand.

3.6 Weight optimisation strategies

Once different clusters have been obtained and approptitehave been estimated for
each set of clusters, a set of weights is needed for perfgrthie actual interpolation of

LMs that will be used in translation time. For this purposeet different approaches were
investigated, each one with a different degree of granylari

Set specific weights

The LM-interpolation weights were estimated on the souide af the complete test set. This
approach, which is the most straightforward, has nevestisehn important drawback: the
estimated weights are those that well model the whole téstis&verage, without considering
possibly significant differences between specific sentenékence, the potential benefit of
estimating several LMs may fade.

Sentence specific weights

In this case, one specific set of weights is estimated for sanokence of the test set. By
doing so, the purpose is to allow complete freedom to the Edtgaiure when assigning
the LM weights, and hence achieve better results when dipgthe training corpus into

several subsets. However, weights computed in such a marayebe less reliable, since the
estimation is performed on few data (one single sentence).
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Two-step weight estimation

This approach merges the previous two in the attempt of kegpieir advantages and over-
coming the drawbacks. Once sentence specific weights haredmnputed, each (source)
sentence is assigned to the specific cluster corresponditigetmost weighted LM. This
being done, one set of weights can be re-estimated for eazlofaine clusters obtained in
this way. This approach has the intuitive benefit of mirrgrihe clustering of the training
data into the test set, while still avoiding the possibleadgtarseness issue that can affect the
sentence specific weight estimation. This procedure istitiied in Figure 3.3.

TEST e e J
TEXTS [ [

SRC

SRC

‘ 3 OPTIMIZATION | w,

| ‘ i [ INTERPOLATION
| CLSTR, [ﬂ}— of SRC LMs

; . | INTERPOLATION of TGT LMs

3 CLSTRWE;J 3 . TRANSLATION
! ‘ SMT

CLASSIFICATION

Figure 3.3: Two-step weight estimation technique.

3.7 Experimental results

This section reports the results of both language modeltatiap strategies described in
Sections 3.4 and 3.5. Translation quality results will beoréed in terms of BLEU and
TER. However, with the purpose of getting some insight abalat is really happening
during the adaptation process, additional results willdgorted in terms of perplexity (PP).
Perplexity (Bahl et al., 1983) is a measure stemming fromrmftion theory, and is defined
as2 raised to the power of the entropy of a given test¥et {y,,...,y,,,---, Y}, Such
that

PP(Y) = 2% Zm 082 L0 (Un) (3.5)

for a given language model LM and wheheé stands for the total number of words in the
test set. In more intuitive terms, perplexity is often ursteod as the average number of
possible words that are likely to follow a given prefix. Howevperplexity may be used

for two different (but complementary) purposes: on the oaedh perplexity may be used to
compare two different language models, and on the other thamay also be used to assess
the complexity of a given task. In this chapter, perplexiill ae used with the purpose of

comparing different language models, i.e. the monolitlsisdline language model with the
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interpolated language model built by means of the clusgegohniques described. However,
it must be noted that improvements in perplexity are not gévairrored by improvements

in system performance. This implies that perplexity mayphelvards establishing which

language model performs best, but such conclusion mustaliva backed up by coherent
results in terms of system performance — translation quialithe case of SMT.

Whenever unsupervised clustering is required, such aginake of exploiting dialogue
annotation (Section 3.4) or in the case of building unsuigedsclusters (Section 3.5), such
clustering will be performed by means of the CLUTfackage. Its default setup includes
thedi r ect clustering algorithm, which computes tkavay clustering directly by means of
the K-means algorithm (Zhao and Karypis, 2005). The cosinemistavas used as criterion
function.

3.7.1 Experiments using supervised labels

In order to study the similarity, or better the differendestween training and testing condi-
tions, the statistics shown in Table 3.2 for the CT trainiagedwvere also computed for the
development data set (Table 3.5). It clearly results thatwho sets differ not only in sentence
length, but also in terms of distribution of utterances friim interpreter. We will see later if
and in which cases this mismatch affects system performance

speaker | |W| |V| s

native 25K 427 151
interpreter| 0.8K 218 13.2

natve | 0.5K 152 11.8
interpreter| 1.7K 307 12.3

agent

customer

Table 3.5: Speaker-based statistics of the CT development set.

So as to provide an upper bound of the performance that cagdobed with the super-
vised adaptation technique presented in this chaptemaptentence specific weights have
also been estimated on the reference translations.

Coherently to what has been written at the beginning of thidisn, experiments were
performed on the development sets of the Challenge Task &L.IW9, Zh—En/En—Zh,
correct recognition result transcripts tasks. They wetli isptwo parts (DEV1 including 4
dialogues, DEV2 with 6 dialogues) which were alternatiuedgd for MERT and evaluation.

Results are provided in Figures 3.4-3.11. Each of them deduwo plots: the plot on
the top shows BLEU scores, the one on the bottom displaydepétyp Figures 3.4, 3.5, 3.8
and 3.9 report results obtained by dynamically estimatiregibterpolation weights at the
sentence level (Section 3.6), while Figures 3.6, 3.7, 3ritD311 refer to the two-step tech-
nique (Section 3.6). Finally, Figures 3.4, 3.5, 3.6 and BaWsperformance for the ErzZh
direction, while Figures 3.8, 3.9, 3.10 and 3.11 for the-Z#n task.

The five curves in each plot refer to different systems:

basel i ne: SMT system using one single LM estimated on the whole tngjicorpus;

CAvailable from http://glaros.dtc.umn.edu/gkhome/vigsiigto
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Figure 3.4: En—Zh results (BLEU scores and perplexity) for set DEV1 witHeatiént
grouping methods, sentence specific weight estimation.

di al ogue: interpolation of LMs built on the dialogue based clustgras described in
Section 3.4;

nespol e: interpolation of LMs built on the sub-corpora induced by thNespole! data
(Section 3.4);

AC! : interpolation of LMs built on the speaker-based sub-coapas described in Sec-
tion 3.4;

or acl e: the LMs are those built on the dialogue basis, but the imlatgpn weights are
estimated by means of an oracle. So as to provide an uppedlmduine performance
that can be reached with the adaptation technique presanteection 3.4, optimal
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Figure 3.5: En—Zh results (BLEU scores and perplexity) for set DEV2 witHeliént
grouping methods, sentence specific weight estimation.

sentence specific weights have also been estimated on gremeé translations.

In the case of theespol e andAC!I curves, the number of classes is fixed3tand5,
respectively, and should be hence plotted as a single fonihis shown in the plots as a short
segment for the purpose of visibility.

Results achieved by interpolating LMs with weights estmdadt the test set level (Sec-
tion 3.6) are not reported for the sake of simplicity and liseghey are not better than those
of the competing techniques, as expected.

Before the detailed analysis, a general comment is thatinstef perplexity the idea of
building LMs on some motivated partition of the trainingaland then interpolate them with
weights estimated on the actual input performs very wedllding significant improvements
whatever the grouping technique, the number of sub-corhdia) and the scheme followed
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Figure 3.6: En—Zh results (BLEU scores and perplexity) for set DEV1 witHeatiént
grouping methods, two-step weight estimation.

for the estimation of interpolation weights. Moreover, BidEU score of ther acl e system
confirms that the approach is really appealing. On the ofidey;, $or the fair systems the
impressive improvement in terms of perplexity is not alwayisrored in the BLEU score,
especially for sub-corpora built exploiting either Nesgdannotation or speaker information,
for which even a degradation is observed in some cases.

In relation to the experimental outcomes, the followingitiddal remarks can be made:

e theor acl e curves are uni-modal and mostly present a peak at six ciystdrich is
then the optimal number of LMs to be interpolated;

e the shape of the curves of the two-step procedure (Figufes33Z, 3.10 and 3.11),
although are not higher than those of the estimation peddron single sentences
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Figure 3.7: En—Zh results (BLEU scores and perplexity) for set DEV2 witHetiént
grouping methods, two-step weight estimation.

(Figures 3.4,3.5,3.8,3.9), are more similar to those obtiaele (uni-modal), fact that
makes its behaviour more predictable;

¢ thedi al ogue based clustering improves or at least does not worsen tob ivase-
line BLEU scores, even if it tends to be quite far from the teayuality; there is no
clear evidence about the optimal number of clusters;

e ACI works quite well for the Er»Zh task but not for the ZkEn direction;
e nespol e partitioning does not seem to be effective in terms of BLEGreg

e performance by switching the role of DEV1 and DEV?2 is quitiéedent;
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Figure 3.8: Zh—En results (BLEU scores and perplexity) for set DEV1 witHetiént
grouping methods, sentence specific weight estimation.

e improvements over the baseline are larger ons&Zh direction than on Zk>En.

It is important to stress the fact that training/developtasrd test conditions were quite
different in the experiments conducted. This was alreadgtpd out by the comparison of
figuresin Tables 3.2 and 3.5, but it is even more evident bgmisy that MERT is effective
only for the En~Zh direction and when DEV2 and DEV1 are used for developmedt a
evaluation respectively, while it degrades the perforreasfche initial setup in all the other
three cases; Table 3.6 gathers the variations of the BLEUWedmetween initial and final
configurations of the SMT system for the two directions{AEn and Er+Zh) and with the
two possible roles for DEV1 and DEV2. This disappointingdébur is probably due to the
too small size of DEV1, fact that could also explain why ouagpt@tion technique does not
work very well on DEV2, i.e. when DEV1 is used for development
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Figure 3.9: Zh—En results (BLEU scores and perplexity) for set DEV2 witHetiént
grouping methods, sentence specific weight estimation.

test mert A BLEU

on on CE EC
DEV1 | DEV2 | -0.19 | +3.39
DEV2 | DEV1 | -0.67 | -1.12

Table 3.6: MERT effect on the BLEU score.

It can also be observed that, in some rare casespttet| e BLEU scores drop below
thedi al ogue scores. This could be due to the fact that we assume that thatekpolation
weights computed on the reference sentence are the ondsetiatxploit the provided mod-
els. However, such assumption could not be true in the caaesefrere mismatch between
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Figure 3.10: Zh—En results (BLEU scores and perplexity) for set DEV1 wittietiént
grouping methods, two-step weight estimation.

such models and reference sentences, leading to the pibgsitachieving better scores with
other weights.

A final remark is needed on the fluctuating performance of t# gub-corpora. Its
purpose is to obtain speaker-role specific LMs, which shthédretically perform better than
generic LMs when it is possible to know which is the role of #tual speaker. However, if
training and test conditions within each dialogue role erés severe mismatch, as seems to
be the case according to Tables 3.2 and 3.5, such an appsdaatnid to yield a very limited
benefit, if any.

Despite all the precautions required by the fact that theexgental outcomes are not
unquestionable, an encouraging conclusion can be drawmetges that the LM adaptation
approach proposed here is promising and can guaranteestalile improvements over the
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Figure 3.11: Zh—En results (BLEU scores and perplexity) for set DEV2 witHietiént
grouping methods, two-step weight estimation.

baseline quality when the clustering is built at the leveti@logues and the interpolation
weights are estimated with the two-step scheme.

3.7.2 Unsupervised clustering experiments

The experiments conducted for assessing the unsupenlisgtéring LM adaptation tech-
nique were performed on the Europarl corpus, in the pantiéstablished for the WMT06
workshop (see Section 1.4). In this case, the languagelet/on the experimentation were
English—~German, English»Spanish and EnglishFrench. The baseline and subsequent
systems were built by means of the Moses SMT toolkit, and thights\ of the log-linear
model were optimised by means of MERT for the baseline systettheDevel . set, and
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Language| Weight Signif
pair optimisation PP BLEU ~ TER BLEU/TER
baseline 78.5 30.8 54.9 -
En—Es sentence 71.3 30.4 54.6| yeslyes
two-steps 71.2 30.3 54.5| yeslyes
test set 100.1  30.3 54.5| yeslyes
baseline 141.5 19.0 67.4 -
En—De sentence 129.0 18.2 67.4 yes/no
two-steps 129.7 18.1 67.4 yes/no
test set 202.3 18.0 67.6 yes/no
baseline 50.0 329 553 -
En—Fr sentence 45.4 32.7 55.0 nol/yes
two-steps 45.5 32.6 54.9| yeslyes
test set 64.5 325 55.0| yeslyes

Table 3.7: Performance of the direct clustering approach.

then re-used for all other systems. Although there coulddasaons for re-running MERT
when the LM changes, this was done so in order to better esthateffects of including dif-
ferent LMs into the SMT system. As baseline LM, a 5-gram wbaded LM was estimated
on the target side of the training corpus, smoothed accoririhe improved Kneser-Ney
technique (Chen and Goodman, 1999), by means of the SRILMc{&t, 2002) toolkit. The
final translation quality was measured on e/t est set.

The adaptation procedures presented in Section 3.5 havedsperimentally assessed
by translating different test sets, whose quality was measin terms of BLEU (Papineni
etal., 2001) and TER (Snover et al., 200Birwisestatistical significance tests using paired
bootstrap re-sampling (see Section 1.2.2) were also cadpuith ten thousand bootstrap
repetitions. These tests, showing whether the improveifoerdrop) in translation quality
with respect to the baseline performance is significant &b 86nfidence level, were com-
puted for both BLEU and TER and are provided in 8iggni f column. Note, however, that
even though paired bootstrap re-sampling proves somensydte be statistically differen-
tiable, confidence intervals were in most of the cases inghge o0f0.7, both in case of TER
and in case of BLEU.

Finally, the columnPP shows the perplexity value of either the single LM (baséliore
the interpolation of LMs (other cases) computed on the tetsteserences.

Direct clustering

Results observed by directly clustering the training datdeshown in Table 3.7, for all three
weight optimisation schemes and for all three languagespair

A degradation of the BLEU score is observed in any conditwimje TER slightly im-
proves for the En—Es and En—Fr pairs, especially when ditleesentence-based or the two-
steps estimation schemes are adopted. However, sincesrasaihot coherent for both scores,
it cannot be definitely stated whether this form of LM adaptabvercomes the use of the
single baseline LM.
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Language| Weight Signif
pair optimisation PP BLEU ~ TER BLEU/TER
baseline 78.5 30.8 54.9 -
En—Es sentence 68.3 31.3 544 yeslyes
two-steps 68.3 313 54.3 yeslyes
test set 105.6  30.9 54.6| vyeslyes
baseline 141.5 19.0 67.4 -
En—De Sentence 126.0 19.2 66.7 yeslyes
two-steps 126.3 19.2 66.7 yeslyes
test set 206.6 18.7 67.2 yes/no
baseline 50.0 329 553 -
En—Fr sentence 43.5 33.2 54.9 yeslyes
two-steps 43.5 33.3 54.8 yeslyes
test set 65.0 32.9 55.1 nol/yes

Table 3.8: Performance of the development-induced clustering agphrod he best
results are marked in bold.

Development-induced clustering

Results for the development-induced clustering are regddrt Table 3.8. In this case, the
LM adaptation does improve the baseline consistently, &th lscores and significantly in
almost every setup. Again, the best performing weight oigtition scheme is the two-steps
one, which improves the baseline in all language pairs imssitally significant way. Per-
formances comparable to those of two-steps optimisatiermbtained also with weights es-
timated at the single test sentence level. Again, the opéititin of weights on the whole test
set does not seem to be appropriate.

Test-induced clustering

Lastly, Table 3.9 collects results when the clustering aifing data is induced by the test
set. This kind of clustering seems not to be able to explaittést information provided to
the system; in fact, BLEU is non-differentiable from the &lase in almost every setup, while
TER is improved only at a limited extent. Concerning the wéigptimisation, here the best
choice is to perform it on the whole test set, differentlynfrarhat happened in the other types
of clustering. This could be originated from the fact that 4 &fe built on clusters induced
by just the test set. For this reason, in this specific caseigbeof the whole test set allows
an effective trade-off between the estimation of weightsctvlare good on average on the
whole test set and the sparseness of data on which the ogtiiomss done. Nevertheless, it
is worth noticing that differences in translation qualitg anostly not statistically significant.
Results in Tables 3.7, 3.8 and 3.9 show the different imgeaitthe proposed clustering
and weight optimisation schemes for LM adaptation have onpgdiformance. In particu-
lar, the best scores measured in our experiments, markealdrirb Table 3.8, are achieved
when using development-induced clustering combined wighwo-steps (or sentence-based)
weight optimisation. With this setup, the translation dyallways improves the one obtained
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3.7. Experimental results

Language| Weight Signif
pair optimisation PP BLEU ~ TER BLEU/TER
baseline 78.5 30.8 54.9 -
En—Es sentence 72.4 30.9 54.6 nolyes
two-steps 72.2 30.9 546 nolyes
test set 105.7 31.0 54.6| yeslyes
baseline 141.5 19.0 67.4 -
En—De sentence 133.7 18.9 67.3 no/no
two-steps 133.9 18.9 67.3 no/no
test set 2044 189 67.1 nol/yes
baseline 50.0 329 553 -
En—Fr sentence 46.6 32.8 55.2 no/no
two-steps 46.4 32.8 55.3 no/no
test set 65.2 33.0 55.2 no/no

Table 3.9: Performance of the test-induced clustering approach.

by the baseline system. Such results, which are statistgighificant and coherent through-
out all language pairs and for both considered evaluatioresg prove that there is a potential
benefit behind the use afgram mixtures in SMT, also in the non-supervised setup.

From another viewpoint, it seems that the sentence-basaghdlation technique is able
to yield the same translation quality than the two-stepgyttedptimisation. This should
indirectly prove that the input sentence alone containfcserfit information to make the
interpolation procedure stable enough. In fact, averagesee length for the test sets ranges
from 33 words per sentence for French, to 27 words per semfen€&erman, i.e. fairly long
sentences. Given this experimental evidence and the fatittis computationally cheaper,
the sentence-based optimisation should be the first choipeeisence of quite long input
sentences.

It must also be noted that, although all the subsets of thegzult corpora belong to the
same domain, they were not extracted randomly: specifidalyytraining corpus comprises
data from year 1997 to year 2003, although the developmehtiest data are extracted from
the fourth quarter of year 2000. This fact should explain gbed results obtained with
the development-induced clustering, since both test amdld@ment sets belong to a very
narrow time frame, in which the topics being debated in theogeian Parliament were likely
similar. Hence, development-induced clustering may be &blmake a better use of the
uneven distribution of training and development/test gsitece it resembles the test data, and
contains bilingual information (as opposed to test-indudastering).

The fact that test-driven clustering only relies on sowsertence information is an impor-
tant drawback that cannot be ignored: preliminary invesiigns revealed that including both
source and target information into the clustering procedlid have an important impact,
which is evidenced in this case as well. Although it mightnsebat monolingual cluster-
ing relies on half of the information of bilingual clusteginthis is even optimistic: in fact,
bilingual clustering does not only take into account bothrse and target sides, but also the
interaction between the two, since it also takes into actaimether a given source word
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cooccurs with a given target word.

3.8 Conclusions and future work

In this chapter, a technique for adapting the LM of SMT systdamthe actual input has
been presented. The assumption is that the LM is providediasax interpolation of sub-
LMs, each estimated on a specific portion of the training.dBlte interpolation weights are
then estimated dynamically on the text to be translated wi@aimum likelihood EM-based
procedure.

Different methods for subdividing the training data haverbpresented, both in a super-
vised and in an unsupervised manner. Regarding supervibeli/gsion, manually annotated
texts have been used for subdividing the training datarddg@unsupervised clustering, dif-
ferent strategies were presented, some of them attemptiadge advantage of development
or test information.

Different schemes for estimating the interpolation weidghdve also been experimentally
tested when combined with both supervised and unsupereigstéring strategies.

Results have shown that small improvements may be obtapngaiitioning the train-
ing data into more specific sub-corpora, and learning indéeet language models from
them. However, these improvements were not always statifstisignificant. In the case
of unsupervised clustering, the best results were achieyeadustering the training data by
exploiting both sides (source and target) of the developsetn and estimating the weights
at the sentence level or by means of the two-step approach.

Results achieved in this work reveal that the improvemdrgsdan be obtained by our
LM adaptation approach greatly depend on the subdivisicimtiggue employed. Since here
only the surface form of single words has been used for dingt¢he training data, possible
alternatives include clustering the training data aceaydo»-gram or PoS-tag information.

Another issue which deserves an investigation regardsitbgoolation of target LMs by
re-using weights estimated for the optimal interpolatibsaurce LMs. In fact, although it
appears as a reasonable choice, it could happen that tlibdibké on the target side is max-
imised with different weights than those which ensures tagimum likelihood on the source
side. A source-to-target weight map could be learnt fromralfgd development/training set.

Lastly, future work also involves comparing the languagedeli@daptation technique
presented here with other thechniques present in thetliterssuch as the ones described in
Section 3.2. However, it is also worth noting that the tegbripresented here is compatible
with the most of the techniques described in the above-mieadi section, and hence should
not be viewed as competing approaches.

The biggest part of the work done in this chapter was donenduan internship at the
Fondazione Bruno Kesslein collaboration with M. Federico and M. Cettolo. The first
publication about the supervised LM adaptation technigag published in an international
workshop:

e G. Sanchis-Trilles M. Cettolo, N. Bertoldi and M. Federico Online Language Mbd
Adaptation for Spoken Dialog Translation. Rroceedings of the International Work-
shop on Spoken Language Translation, IWSLT 2@@ges 160-167, Tokyo (Japan),
December 2009.
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The work presented above was also used within an SMT systemittad for evaluation

to that same workshop. Notably, the EnghksEhinese systems submitted ranked second and
third, depending on the task and evaluation method.

e N. Bertoldi, A. Bisazza, M. Cettoloz. Sanchis-Trilles and M. Federico FBK @
IWSLT 2009. InProceedings of the International Workshop on Spoken Laggua
Translation, IWSLT 20Q%ages 160-167, Tokyo (Japan), December 2009.

The work about unsupervised LM adaptation was presented intarnational confer-
ence:

e G. Sanchis-Trillesand M. Cettolo Online Language Model Adaptation via N-gram
Mixtures for Statistical Machine Translation. Rroceedings of the 14th Conference

of the European Association for Machine Translation, EAMIL@ Saint-Raphaél,
(France), May 2010.

In addition, work on bilingual sentence clustering derifrenn the work presented in this
chapter was presented in another international workshop:

e J. Andrés-Ferrers. Sanchis-Trillesand F. Casacuberta Similarity Word-Sequence

Kernels for Sentence Clustering. Broceedings of the 8th International Workshop on
Statistical Pattern Recognition, S+SSPR 20C68sme (Turkey), August 2010.
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Chapter 4. Bayesian translation model adaptation

“What good is your reality, when justice fails and dishogésiglossed over and the ones
who keep faith suffer. Helene kept her bargain about Ellid smdid 1. What good is your
reality then?”

“Look here,” Furii said. “l never promised you a rose gardémever promised you
perfectjustice...” (She remembered Tilda suddenly, hrgadut of the hospital in Nurenburg,
disappearing into the swastika-city, and coming back lsgythat hard, rasping parody of
laughter. “Sholom Aleichem, Doctor, they are crazier thaml!”)... and | never promised
you peace or happiness. My help is so that you can be free tdfdigall of these things. The
only reality | offer is challenge, and being well is beingdr® accept it or not at whatever
level you are capable. | never promise lies, and the rosgegawrorld of perfection is a lie...
and a bore, too!”

| never promised you a rose garden. Joanne Greenberg.

“Lo bueno es tu realidad, cuando la justicia y la deshonestitio es pasado por alto y
los que mantienen la fe sufre. Helen mantiene su negociolideyBlo también ¢Qué, pues
bueno es su realidad?”

“Mira aqui”, dijo Furii. “Nunca te prometi un jardin de rosasYo nunca te prometi ...
justicia perfecta (De pronto recordd Tilda, saliendo dekspital en Nurenburg, desapare-
ciendo en la cruz gamada de la ciudad, y volver riendo que ladlia dura, aspera de la
risa. “Sholem Aleijem, el doctor, son mas locos que yo!Y..yo nunca te prometi la paz o
la felicidad. Mi ayuda es para que pueda ser libre de luchartpdas estas cosas. La Unica
realidad que ofrecen es el desafio, y de ser asi se esta lébazeptar o no al nivel que sea
que usted es capaz. Prometo nunca miente, y el mundo jardrede de la perfeccién es
una mentira... y un taladro, también!”

Yo nunca te prometi un jardin de rosas. Google Translate.
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4.1. Introduction

4.1 Introduction

Nowadays, there are large amounts of bilingual data aveiledy very specific domains,
such as parliamentary speeches or news-wire articles. Wowgypical IMT systems are
usually used for aiding human translators in very diffetasks, such as translating patient
information leaflets or printer manuals. Such situatio$et® a strong discrepancy between
the data on which the underlying SMT system has been trainddtee data on which it
is going to be applied. In order to bridge this discrepanoydel adaptatiortechniques
are often used. The aim of such techniques is to make the bestfua small amount of
adaptation data, belonging to the domain which is going téréeslated, in order to take
profit of the generality provided by the massive amount chdagilable in more resourceful
domains.

Adaptation has become a very popular issue in machine amsi(Koehn, 2010). Typi-
cally, the adaptation problem arises when two very diffesets of training data are available,
which implies also that two different sets of model paramsetan be obtained. The first set
of data, which will be referred to as training dgfais typically very large and usually rather
generic in domain. The second set of data, referred to agattapdataA, is usually over-
whelmingly smaller thary”, but belongs the specific task of interest. In such scenté,
challenge is to modify the output of our system appropnyalsi taking into consideration
both7 and.A: on the one hand, making usepfis ought to provide robustness to the esti-
mation of the model parametefis and on the other hand should introduce a certain bias
towards the specific task that is being tackled. This definitf adaptation is specially ap-
propriate for the Bayesian learning paradigm, where theahpdrameter§ are treated as
(hidden) random variables which are governed by some kiral fiori distributionp(8).
This distribution represents our prior knowledge abouttwiadues forf are good estimates.
Estimatingp(@) by using7, and consideringl within the Bayesian predictive distribution to
be used when translating a given sentence leads precisglydenario in which the decision
regarding the output sentence is guidedbd) (i.e., the prior distribution estimated &f),
while including a bias towards the adaptation data. Intelyi, the Bayesian framework has
as benefit that the decision regarding the estimatio@l & not taken by considering only
the topic-specific data available (i.el), which could lead to over-trained estimations. If the
amount of such data is small, the parameter prié) will compensate this issue and provide
robustness to the resulting estimation.

In this chapter, we will be focusing on adapting either thgelioear weights\ or the fea-
ture functionsh present in state-of-the-art SMT systems (see Equationsir®e appropriate
values of such parameters for a given domain do not necgswaply a good combination
in other domains. One naive way in which some sort of adaptatan be performed is to
re-estimate\ or h from scratch only on the adaptation data. However, this iglls not
a good idea, since the amount of adaptation data availabisuially not enough to provide
stable estimations, yielding over-trained values of thelehparameters that do not perform
well in test time. In addition, such re-estimation is oftet feasible given the high compu-
tational cost associated, which may range from a couple wfshim even days depending on
the amount of adaptation data available. In this contertBhyesian paradigm seems to be
appropriate, since the inclusion of the prior over the mquebmeters should compensate
the lack of data. In the work presented in the current chapeyesian predictive adapta-
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tion (BPA) will be used to solve both problems presented. Oxlgr A will be adapted,
alternatively. Nevertheless, the theory described hemlalso be used to adapt both.

In Section 4.2 a brief review of current approaches to teitsl model adaptation in
SMT is provided. Although we are only aware of another wodkliag adaptation in SMT
from the Bayesian perspective, numerous works dealingtiviiproblem by means of other
methods have been reported in the literature. In additieraiao review some works applying
BPA in other fields of natural language processing, suchescprecognition. Contributions
of the present work are also explained in this section. 8edti3 reviews briefly the Bayesian
learning paradigm. Following these ideas, the formal dgiowv of BPA as applied to SMT
is presented. We describe how to adapt bAtand h, although in the present work we
will not attempt to adapt both at the same time. In additioantalysing BPA in the most
traditional case, as described above, we also study thébgitg®f extending the application
to other similar scenarios: in Section 4.4, we analyse hapfdy BPA in a scenario in which
adaptation data is generated on the fly by a human expert waménding the sentences
produced by the system. Hence, it might well be the case ltlea¢ tis no adaptation data at
all when the system is required to start translating, angtatian has to take place in real time
with the user interacting with the system. For such reasteptation time is critical, since it
is not affordable for the human translator to be awaitingHersystem to adapt and produce
an adapted translation hypothesis. Another differentageris considered in Section 4.5,
namely, a scenario in which there is only a small amount ofdpilal data available, both
for 7 and.A. In such a scenario, state-of-the-art SMT systems becotherranstable, and
small changes in the training or adaptation data have a weppitant impact on the final
translation quality produced. Because of this, the maiaresdt behind applying BPA in
this case is to stabilise the paramet@restimated. Since Bayesian learning often implies
computing the integral over the complete parametric spsapling techniques are often
used to solve this problem. The sampling methods studielisnchapter are presented in
Section 4.6. Section 4.7 details the different practicparagimations that need to be assumed
before attempting to implement BPA within a real-world SMfStem. Section 4.8 reports
the experiments performed in order to assess how well thptaiilan process performs in
the different scenarios studied. For this purposbest hypotheses provided by a state-of-
the-art SMT system are re-ranked according to the Bayesedigtive distribution. Finally,
conclusions of the present work and future research dinestire detailed in Section 4.9.

4.2 Related work

In addition to the works described in Chapter 3 concernimgleage model adaptation in
SMT and other approaches tackling adaptation from the mextuodel point of view, there
are other numerous works that confront the problem of tediasi model adaptation from
different perspectives. For instance, Foster et al. (Festd., 2010) apply instance weighting
techniques in order to weight out-of-domain phrase paicemting to the similarity of such
phrase to the specific domain, and establishing whethetahlye to general language. The
weights are established by means of a logistic model whidgkstanto account simple features
such as the number of tokens of that specific phrase paireigméncy, the number of out-
of-vocabulary words it contains, etc. In doing so, they shbat it is possible to achieve
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consistent improvements. Another strategy that has begiedgor adapting SMT systems
is to mine unseen words from dictionaries (Daume IIl and dagaudi, 2011). In this sense,
the authors improve translation results by extractingdietions from other domains for those
words that are considered out-of-vocabulary by the systerthht specific domain. Finally,
other works attempt to perform domain adaptation by selgais training corpus only those
sentences belonging to a large collection of data that seelne important in the specific
domain tackled (Axelrod et al., 2011; Gasco et al., 2010).

With respect to Bayesian methods applied to SMT, Zhang €Zalang et al., 2008) ap-
ply Bayesian learning in order to estimate appropriate valighments within a synchronous
grammar. Similarly, replacing the expectation-maxima@afEM) algorithm by Bayesian in-
ference has also been studied (Mermer and Saraclar, 201d jeaults have shown that ap-
plying Bayesian inference by means of a Gibbs sampler lesid¢eresting improvements in
translation quality. Furthermore, the proposed methodsis shown to overcome a common
problem with EM-estimated word-alignment models, namilgt rare words tend to accu-
mulate too much probability mass. The phrase-alignmeriilpro has also been researched
under the Bayesian learning paradigm (DeNero et al., 2008)at work, the authors develop
a phrase extraction algorithm that does not depend on adtieygiocess, but rather attempts
to extract the phrases through sampling from a translatiodehincluding Bayesian prior
information by means of a Gibbs sampler. Recently, the Bagdsarning paradigm was
applied with the purpose of adapting the word alignmentsahaincluded in most state-of-
the-art SMT systems (Duh et al., 2011). In that work, the axgtlpropose the use of sequen-
tial Bayesian methods with the purpose of adapting alignmesdels estimated on a broad
domain corpus to a more specific domain, showing consisteptavements among differ-
ent language pairs. In the present work, however, our pergo® adapt the parameters of
the final phrase-based model directly, and not the parametéhe single-word models that
precede the estimation of the phrase-based model. Lastj)edtan inference has also been
applied successfully to decipherment (Ravi and Knight,1220hich is a problem closely
related to SMT.

Although only recently applied to SMT, Bayesian adaptatias been broadly and suc-
cessfully applied in other natural language processingsaich as speech recognition (Huo
et al., 1995; Kenny et al., 2000; Yu and Gales, 2005). In facttk done in this direc-
tion is very broad, covering both batch adaptation (Yu ante§a&005) and online adap-
tation (Yu and Gales, 2006). Variational Bayes approaches hlso been studied (Valente
and Wellekens, 2005), which attempt to find a lower bound foreximate the intractable
marginal likelihood (i.e., the likelihood where model paeters have been marginalised),
yielding point estimates of the model parameters. An adttiva to variational Bayes consists
in approximating the marginal likelihood directly by saimglfrom the posterior distribution
of the data given the model parameters (Yu and Gales, 20@3Jjryg an approximation of
the real distribution, rather than a point estimate. Thigfeapproach is often referred to as
Bayesian predictive adaptation (BPA), and usually leadsdee robust estimates. This is the
approach that will be followed in the present work.

The present chapter extends work already published in atil@ptn SMT in the following
aspects:

e Bayesian predictive adaptation is presented as an apptegdrmal framework for
conducting SMT model adaptation.
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¢ Positive results concerning the adaptation of either logdr weights or feature func-
tions are presented.

o Different sampling strategies are analysed for their @aitbn in Bayesian predictive
adaptation.

e An online version of Bayesian predictive adaptation is shdwhave an appropriate
behaviour when adapting the log-linear weights.

e Finally, Bayesian predictive adaptation is also used ireptd provide more robustness
to the log-linear weights\ of a state-of-the-art SMT system trained in low-resource
conditions.

Note that the work presented in this chapter is compatibth wiuch of the work pre-
sented so far concerning adaptation in SMT. For instancA,B&y be applied in combina-
tion with the language model adaptation technique predeént€hapter 3 or different data
combination strategies (see Section 3.2). However, in thegmt chapter the purpose is to
analyse the performance of the Bayesian predictive adaptstrategies presented, leaving
such combination experiments for future work.

4.3 Bayesian predictive adaptation for SMT

The process of adaptation can be viewed as a statisticaégsac which some prior knowl-
edge exists regarding the estimation of the model parasdiat there is still some uncer-
tainty about what the exact best estimation might be. Inratloeds, a canonical model with
parameter® is already available, and it can be assumed that such emtimata robust
estimation obtained from a large collection of data. Thenfuather evidence arrives, we
would like that such estimations are revised so that thegceethe newly arrived data. Such
is the case in the Bayesian learning paradigm (Bishop, 2D06a et al., 2001), where model
parameters are viewed as random variables having some kiagbiori distribution. Ob-
serving these random variables leads to a posterior demgdifgh sharpens with additional
observations, and which typically peaks at the optimaleslof the model parameters.

An important advantage of the Bayesian learning paradighmisit allows to incorporate
prior knowledge in the form of a parameter prior. By doing idés able to provide robust
parameter estimates whenever the evidence provided byainenty data (or adaptation data
in this case) is not significant enough, i.e., the amountahing (adaptation) data is small.
However, the effect of such prior knowledge fades when ipomating further evidence to
our training data, until a point in which the contributiontb® parameter prior towards the
complete model distribution is negligible. In additionetBayesian learning paradigm does
not attempt to obtain a single best point estimate of the mnpal@meters, but rather relies
on considering all possible parameter values, allowingettainty regarding what the best
estimations of such parameters might be.

Within the Bayesian learning paradigm, the probabijlity | =) within Equation 1.1 can
be reformulated by means of the predictive distribution as

ply| & T) = / p(y,0 | z:T)do, (a.1)
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whereT represents the complete training set @rate the model parameters.
However, since we are interested in Bayesidaptation we need to consider one training
set7 and one adaptation sgf, leading to

ply | 2T, A) = / p(y.0| @ T, A)d6 4.2)
= /p(0 | ; T, A) ply | =,0;T,A)d0 (4.3)
~ / p(6 | T, A) ply | ,0)de. (4.4)

From Equation 4.3 to Equation 4.4 it has been assumed, om#hband, that the probability
of the output sentenagdoes not depend on the complete training and adaptatioyvdada-
ever the model parametefisare known. On the other hand, it has also been assumed that
the model parameters are independent from the actual ieptéscec. Such simplifications
lead to a decomposition of the integral in two parts: the firgt,p(0 | 7, A) will assess how
good the current model parameters are, and the secong@nesx, ), will account for the
quality of the translationy given the current model parameters. In addition, the irtegrer
the complete parametric space will force the model to tateancount all possible values of
the model parameters, although the prior over the parameféitbias the final distribution
towards those values which are closer to our prior knowledge
Operating with the probability o by means of the Bayes' rule, we obtain:
p(A[6:;T)p0|T)

POITA) = e 7) e | 7 a0 (49)
In order to simplify Equation 4.5, and focusing on the praligiof the adaptation datad,
of size|.4|, we obtain:

|A|
p(A|07T)%p(.A|0) = Hp(;ca,ya |0) (46)
a=1
|A]
= [Iv(@a!6)p(ya|za.0), (4.7)
a=1

where the probability of the adaptation data has been asktorize independent of the train-
ing data given tha is known and has been modelled as the probability of eachghuidl
sample(z,, y,) € A being generated independently by a given translation model

For modelling the prior over the model parameters, péd, | 7), we will assume that
the model parameters follow a normal distribution centred#, i.e., the parameter values
estimated on the training data, and with a diagonal coveeamatrix/ - o7, yielding

1 0—0r|]
R s e B

with the variancer assumed to be uniform for all parameters. Although theréntriig rea-
sons for considering a full covariance matrix instead ofeydial one, or even a co-variance
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matrix where the diagonal is not constant, in the presestthe- will be considered bounded
for all parameters. Such co-variance matrix, which couléft@mated by means of a devel-
opment set, is left as a possible generalisation to the presark. d is the dimensionality
of 8, i.e., the number of parameters that are going to be adaptetis Equation, as in the
rest of the present thesis, symbolmeans thap(@ | T) is distributed following a certain
distribution, which is specified to the right of such symid&dr now, and in order to preserve
generality, we will not instantiate parametérs
To summarisep(y | x; T, .A) is given by expression

p(y |z T,A)

Q

z/p<A|o;T>p<e | T) ply | =,6) d6
[A|

2 [ TLp(w. | 2 0) N©:67.1-07) ply | 2.6) d6. (4.)
a=1

Q

Here, Z is the normalisation constant required for ensuring fgtx; 7, A) is actually a
probability. The ternp(z,, | 8) present in Equation 4.7 can be simplified{fd | 8;7) is
plugged into Equation 4.5. The intuitive reason for this lie the definition of the model
of p(y | x) itself. One of the main advantages of using a conditionalehp@ly | x) (dis-
criminative model), instead of attempting to model the falistributionp(y, «) (generative
model), is that the conditional model does not need to irednodel ofp(x) (Sutton and
McCallum, 2006). For this reasop(x) can be assumed to be independent of the model
parameter®. Hence, the term(x, | 6) present in Equation 4.7 can be out-factored in the
integral in the denominator of Equation 4.5, and then sifiggliwith the same term in the
numerator.

Note that the formulation presented here is general enoagis 40 consider as model
parameters both the log-linear weigtksnd the feature functiorfs(-, -) detailed in Equa-
tion 1.6. In the following, a detailed formulation about htavapply BPA to the log-linear
weightsA or, alternatively, to the feature functions, is presentegden though the formula-
tion allows considering both as parameters, and the fortiounleequired for adapting both is
pretty straight-forward once the formulation for adaptiagh independently is available, we
will not attempt to adapt both in the present work. The redsonhis is that, as it will be
analysed later on, adapting the feature functions is ajraaery sparse and computationally
costly problem. Hence, adapting both together is a probleh4till requires much more
research before being able to yield satisfactory results.

If the adaptation data is known beforehand, i.e., there ibraghal set of data that may be
used for adaptation purposes before the actual test nebgdtanslated, the BPA procedure
may take place in an offline setting, in which computatioeatrictions are not so demanding.
We will name this kind of adaptatiomatchadaptation, and in such case the above formulae
can be applied directly. Alternatively, if there is no addjmn set readily available before
the actual test set is to be translated, it is also possibles¢othe test sentences that have
already been translated as adaptation data for the nexdrsm# to be translated, assuming
an interactive scenario in which each sentence is correntddvalidated by a human user
immediately after such sentence is translated by the sysfEms, the adaptation data is
viewed by the system as a data stream, in which each samplesaat a given time and
the system needs to make the best out of the information thewn This kind of scenario
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will be calledonline adaptation, and in this case computational restrictioagvarch more
important given that the system needs to adapt its parasiatezal time. Section 4.4 will be
devoted to instantiating the formulae presented in this@eto an online scenario.

4.3.1 Adaptation of log-linear weights

One way to cope with the adaptation problem is to adapt thiingcaeights A present in
state-of-the-art SMT systems, described in Equation 1.6 as

M
§ = argmaxd _ A hm(x,y) = argmaxr - h(z, y).
£ A — Y
These weights adjust the importance of each single modeiwttie specific task being dealt
with. However, good values for a certain task might not beapiate values for other tasks.
To exemplify this, consider for instance that the origimahslation model has been trained
on a domain in which sentences tend to be long, such as forggama parliamentary
debate. Then, if we intend to translate another domain irckveentences are rather short,
such as sentences of medical diagnosis, we would ideadythi&t\ is adjusted conveniently
to reflect this fact. Obviously, adaptifgwill have the drawback that the individual models
(i.e., the featurea (-, -)) will not be adapted to the new task, and, furthermore, umsgents
that did not appear iff” but do appear ind will still be considered unseen by the adapted
model. Nevertheless, and although adapthgs a coarse-grained adaptation strategy, it
cannot be underestimated, since adjusting the importaineeeoy single model present in
state-of-the-art SMT systems often leads to very large @vgments in the final translation
quality delivered by the system. Adaptingcould be seen as an efficient adaptation strategy
aimed at adaptation between tasks which are different, dudramatically different. When
attempting to adapt a translation model to a very differaskt adapting\ might possibly
not be enough, since e.g. out-of-vocabulary words will heaveuch more important effect
thanA.

Typically, the weights of the log-linear combination in Edion 1.6 are optimised by
means ofminimum error rate training MERT) (Och, 2003), as described in Section 1.2.1.
Such algorithm consists of two basic steps. Finshest hypotheses are extracted for each
one of the sentences of a given development set. Next, ti@amt\ is computed so that
the best hypotheses in thebest list, according to a reference translation and a givetric,
are the ones that the search algorithm would produce. Thesateps are repeated until
convergence.

This approach has two main problems. On the one hand, thaitilly relies on having
a fair amount of data available as development set. On ther dilind, that ionly relies
on the data in the development set. These two problems havernsgquence that, if the
development set made available to the system is not big éndugRT will most likely
become unstable and fail in obtaining an appropriate weigbtor A (Clark et al., 2011;
Gasco et al., 2010).

However, it is quite common to have a great amount of datdaddaiin a given domain,
but only a small amount from the specific domain we are inteceim translating. Precisely
this scenario is appropriate for BPA: under this paradidra,weight vectoi\ is biasedto-
wards the optimal one according to the adaptation set, vehidéding over-training towards
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such set by not forgetting the generality provided by thaing set. Furthermore, recom-
puting A from scratch by means of MERT may imply a computational ogathwhich may
not be acceptable in certain environments, such as SMTregstenfigured for on-line trans-
lation or interactive machine translation, in which the ffihaman user is waiting for the
translations to be produced.

For adapting the log-linear weighdsby means of BPA, Equation 4.9 needs to be instan-
tiated by considering as translation model a log-linear ehodlhen, we can assume that the
only parameters of our model are the log-linear weightse.,® = A, and that the feature
functionsh are fixed. By doing so, we obtain

py| T, A) = 2/p<A|A;T>p<A|T>p<y|w,A>dA

/ f[l €Xp Zm )‘mhm(xm ya)
am1 Zy’ eXp Zm /\mhm(wa; y/)

X = Ar]?
R

exp . Amhm (T, y)
Zy’ exp Zm, /\mhm(wv y/)

R

A, (4.10)

with the decision rule given by

g =argmayp(y | z; T, A). (4.11)
Yy

It should be noted that the predictive distribution in Edguat4.10 includes, in its last
term, the same distribution present in the original deaqisigle given in Equation 1.6, but
complemented with the prior over the model parameters angribbability of the adaptation
sample.

When taking a look at Equation 4.10, it is easy to think thatghactical implementation
of such formula will be too costly in computational terms. fatt, a common drawback
when applying the Bayesian framework to real-sized taskwésisely the computational
expensiveness of the algorithms derived from such forraulatNevertheless, we will see
later on, in Section 4.6 that this issue can be efficientlydhethby means of random sampling
strategies, which will prove experimentally to yield an eqgriate performance.

4.3.2 Adaptation of log-linear features

A natural extension of the adaptation)dflescribed above consists in adapting the log-linear
feature functionss = {hy,...,hx}. However, adapting is not an easy task, since such
feature functions are often of a very different nature. Rstance, some of them, as e.g. the
translation models, are often defined at the local phrass. l&his implies that the value of
that specific locally-defined featutefor a given sentence pafr, y) can be computed as
the summation of the value of that feature for each one of tiragesz, §) that compose
that sentence pair, i.eb(x,y) = >, h(Zx,yx). Note that, in this case, we are using a
summation instead of a product because the features aredéfithe logarithmic domain.
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However, other features, such as the reordering modeinptt®®o model long-range depen-
dencies among phrases, and hence cannot be defined at thghiecse level. Other common
features are the number of phrases present in the sentedabemumber of words that
compose the output sentence, which cannot be adapted.uglthtbe theoretical framework
would possibly be suitable for adapting all feature funasigwhich allow adaptation), and
there could be reasons for doing so, in the present work weowly attempt to adapt those
feature functions which can be defined at the local phrass.|&iven the premise that such
feature functions are defined at the phrase level, they camhsidered either as functions
assigning scores to certain phrase pairs, which is zerccli plirase pair has not been ob-
served in training time, or as vectors containing the scofdbe phrases seen in training
time. Hence, the amount of parameters to be adapted in thésisaisually in the range of
several millions of parameters, i.e., the number of phrishave been observed in training
time multiplied by the number of features to be adapted./lket the set of feature functions
defined at the local phrase level. Then, instead of adap#nhg ene of the feature functions
in ¢, we will simplify the problem by defining as the weighted combination of such features,
and attempt to adagtinstead. Formallyy is defined as

g(@,y) = > Nhu(@,y) = > Nhulin, Gx) = Y 9(Fx, s)- (4.12)
et etk k

Then, in order to reduce sparseness, we can study the effetapting the translation models
defined at the local level by adaptiggHence, as done in Section 4.3.1, Equation 4.9 can be
instantiated considerin = g as

py|mT, A) = 2 / (Al g Tolg | TIply | = e)dg

A
~ / Al exp {g(wa,ya) +Em¢€ )\mhm(waaya)}
e Ey, exp {g(wa, y’) + ngg /\mhm(waa yl)}

llg —g7l?
exp BT —

exp {g(wv y) + Zm,¢8 )\m hm (mv y)}
Ey' €xXp {g(xv y/) + Emgg Am hm(wa yl)}

dg. (4.13)

In this last equation, the terftg — g7||> present in the parameter prior is well defineg i
understood as a vector with the size of the phrase-table.

As explained in Section 4.3.1, in this case the integral inidfign 4.13 will also be
handled by means of random sampling strategies. Howewenst also be considered that
in the case of Section 4.3.1 the sizedfin that case, the log-linear weighk$ is very small,
since the amount of models included in state-of-the-adilogar models is usually around
14. In contrast, when adapting the feature functions the siz2 (@n this case the features
g defined at the local translation unit level) is much largerthie range of several millions
of parameters. For this reason, and as will be explained inodetail in Section 4.8, the
adaptation of the feature functions under the BPA paradigimat be as successful as the
adaptation of the log-linear weighis
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4.4 Online Bayesian adaptation

The adaptation problem becomes even more important in sosvehere collaboration be-
tween a human expert and a machine translation system iseddua order to achieve high
quality translations in an efficient manner. This is the dasEenarios such ammputer as-
sisted translatiofCAT) andinteractive machine translatioiMT) (Barrachina et al., 2009)
(see Section 1.3), where human-machine interaction isigéak& produce high quality re-
sults while profiting of the efficiency of machine translatigystems. In these scenarios, the
SMT system proposes a translation hypothesis to the hunpartexwho may then amend the
sentence or accept it completely as correct. Then, the hirawasiator expects the system to
learn from its own errors and improve its future translasiby using the feedback provided.
To make this problem even more challenging, it is often tteedhat human translators need
to translate documents with different styles and topicenen the same day. For this rea-
son, two main challenges arise: first, to make use of the atiaptdata provided by the user
even when such adaptation data is very scarce because heshatjted working on a new
domain. Second, to perform adaptation based on the cumeut data, which might be dif-
ferent from the data collected previously, implying thatgraeters computed for the first set
of sentences might not be appropriate for subsequent oheseTwo problems are specially
adequate for aonlineimplementation of BPA, given that the stability will be pided by the
prior over the model parameters. However, since adaptiedehture functions is way too
costly for an online setting, in this case we will only attdrtgppadapt the log-linear weights
. By considering as adaptation sét= A; only the last|.4;| sentences already corrected
by the human translator at time and considering as model parametars= 6, the BPA
paradigm may also be applied for online adaptation by intisttimg Equation 4.9 as follows:

Py =T, A) = 2 / (A N TP | Thply | 2, A)dA

[Ac

exp >, Ak hi(Ta, y,)
x Z
‘/JIXQ*%thAkthmyq

[IA = Ar|P?
expq — S0

exp >y Ak hi(x, y)
Doy exP Yy A b (. y)

Note that the data withingl; may be as small as one sentence, or even only an incomplete
sentence. In the casel;| = 1, we have that the system may already start with the online
adaptation with as few as one adaptation sentence. Furbherifithe SMT system is be-
ing used within an interactive environment, such as IMA4;| may even be less than one:
whenever a human translator has validated part of the semtéat is being translated, the
SMT system may already start the adaptation process by asimgw evidence the chunk
of sentence that has already been validatédcould be seen as a sort of cache, or trailing
sliding window, whose purpose is to bias the model distrdmutowards the data seen more
recently.

As will be seen later in Section 4.6, in the Bayesian framéwibis quite typical to re-
place the integral over the complete parametric space bydora sampling. Assuming such

. (4.14)
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sampling fixed, Equation 4.14 allows an efficient, increrabimhplementation. To under-
stand why this is so, let us analyse each component indeptydérst, p(A | 7) can be
precomputed. Secong(y | x,\) needs to be computed for each test sentence, and for
each hypothesis considered, including the summation irdédm®minator. However, once
p(y | x,A) has been computed(.A; | A; T) only requires one division and one multipli-
cation in order to incorporate the last sentence. Since efitte adaptation samples within
p(A: | A; T) were, at a given time, test sentences, incorporating thieghibity of the sen-
tence seen at time— 1 into .4; only requires one multiplication and one division. Hence,
applying Eq. 4.9 in an on-line setting does not require ai@@mt computational overhead
when compared to the cost of performing the search for theubgentence.

4.5 Bayesian adaptation for model stabilisation

Although the main goal of BPA is model adaptation, anothessfide application of BPA is
for model stabilisation, where the main goal is to achieveoaehthat is less prone to over-
train towards specific characteristics of the training sevigled. This is quite frequent when
training data is scarce. In the model adaptation task, gssmed that there is a large amount
of bilingual data readily available from a given domain, baty few data from the specific
domain we are interested in translating. However, it is hgags reasonable to assume that
such large amount of data is available in order to obtain algstimation fol8+. In some
tasks, such as the recent Haitian Creole translatiorftalsk amount of data available for that
specific translation pair is very scarce, and techniques beudeveloped for avoiding model
over-training, which would lead to an unstable system inglation time. BPA can also be
applied under this framework, with the purpose of allewigtihe problems derived from data
scarcity. In this work, we will be exploring the stabilisati of the log-linear model weights
A, whose estimation has been shown to be critical and repggtedtable (Clark et al., 2011;
Gasco et al., 2010). Specifically, we explored two diffeqprgsibilities:

e Assume that a small development etC 7 is available. This development set may
not be enough to obtain a good estimatiot\ef, but may be enough to be used as mean
vector for the Gaussian parameter prior within BPA. Thea slampling procedure will
account for taking into consideration the neighbouringipowithin the parameter hy-
perplane, thus allowing the SMT system to consider a widageaf different parame-
ters. Hence, the parameter prior is given by expregsidn 7) ~ N (A; Ap, I - op),
with Ap andop being estimated on sé.

e Assume there is no appropriate development set at all, btttbaet that would be used
as development set would be best used as training data, mtleatesuch development
setis available and it is possible to obtain a cerdgin but thisAp is not an appropriate
value for the mean of the Gaussian prior. However, we willassthat there is some
canonical set of parametehs;, which was obtained beforehand in some way which
is not important at this point (i.e., a very different tadb)f which is considered to be
robust enough. In this cagg\ | 7) ~ N (A; A¢, I - o¢).

awww.statmt.org/wmtl1/featured-translation-task.html
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Input: 8+, the parameter mean vector of sige
Output: §(61), a (pseudo-)random sampling &f
Initialise: S(01) = {071}

Foriin {1,..., N4} do:
S = OT
k =1imod Q
Sk = sk + rand(—0.5,0.5)
S(67) = S(67) U {s}

Figure 4.1: Algorithm for performing the heuristic sampling describethnd(a, b)
is a value drawn randomly in the interval, b], N is the desired size af(6+) and
s = [s1,...,sx]7 is asingle sample.

4.6 Sampling methods

Although Equation 4.9 is the correct thing to do from a théoet point of view, in practise
computing the integral over the complete parametric spacafieasible from the computa-
tional point of view. Moreover, it may also be the case that filnction to be integrated
is not even integrable. For this reason, it is quite commoaparoximate such integral by
means of a discrete sum over a sampling of such parametéhss bhapter, several sampling
techniques are explored, ranging from a simple heuristicdstatistically sound Metropolis-
Hastings algorithm (Hastings, 1970).

In order to preserve generality, the sampling methods destin the following will
be formulated in terms of, which may be appropriately instantiated according to Sec-
tions 4.3, 4.4, and 4.5. In the following, a specific samplifig will be denoted byS(01).
Although some of the algorithms presented for obtaidi(@ ) will actually depend on other
variables asidé7, S(0r) is adopted for denoting a generic samplédoaindS,,.) (07) is
employed for denoting that the sample has been obtaineddicgdo distributionp(-). This
subindex will be dropped especially in the experimentssecEection 4.8, with the purpose
of keeping notation unclogged and whenever such subindekeassumed.

4.6.1 Heuristic sampling

As a first approach to sampling the integral in Equation 418,dlose neighbourhood of the
mean vector of the parameter prior was explored. For doiisgélach one of the components
of the parameter vector was perturbed by a random amourdessigely, as described in
Figure 4.1. In this cas&§(61) does not include any subindex because the distribution from
which it has been obtained is unknown and relies on pure $tadecisions motivated by
working well in practise.

Once an appropriate samp#6+) has been obtained, Equation 4.9 is approximated in
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this case as

p(y =T, A)

z / (A 60:T)p(8 | T)py | ,0) do
~ Z' Y p(Al6;T)p0 | Tply | =,0). (4.15)

0cS(07)

Note that normalisation constafithas been replaced I8/ so thatp(y | =; T, .A) is still an
appropriately normalised probability.

Although this algorithm obviously involves a series of hstic decisions and does not
depend on the actual probability to be sampled, it has one athiantage: it is independent
fromp(A | 6; T). This means that most of the terms within the integral in Eiqual.15 can
be precomputed, except for the probability of the curresttsentence, i.ep(y | x, 8). Ob-
viously, this implies thasS(6) does not need to be recomputed whenever a new adaptation
sample arrives, which would be far too costly when applyiff\Bn an online scenario.

However, this heuristic algorithm has an important drab&ther sampling algorithms,
such as Markov chain Monte-Carlo (Bishop, 2006), are apatgofor sampling from un-
normalised distributions, but the algorithm presentee lisensible to normalisation. This
can be seen e.g. in Equation 4.10: dropping normalisatiosteats leads to a product of
probabilities when computing the probability of the adéiptasample, which implies that
larger amounts of adaptation data will lead to smaller nieneues. Hence, increasing the
size of A might fail to bias the final integral in a more stronger fashichen compared to the
prior p(@ | T). For this reason, Equation 4.15 is complemented with a ¢égieg factord,
such that )

ply |z T, A= > (p(A|6;T)p(y|x.6))° p6|T). (4.16)

0cS(61)

Although there are other ways of adding this leveraging teverchose this one for numeric
reasons.

Note that, although this algorithm resembles slightly thighs sampling procedure (Ge-
man and Geman, 1984), there are important differences. bhsGsampling, each one of
the components & would be drawn from the distribution(6, | 6\;,), where6,, denotes
01, ...,0x butwith @, omitted. This drawing procedure is repeated by cyclingulgtoeach
one of the components, but when a new sample is drawn, the akwe vfé, is used for
drawing the next sample, hence building a Markov chain. Ehi®t the case in the algorithm
presented above. Hence, it cannot be said to form a Markan etmal it is not guaranteed
that it will finally sample from the desired distribution. &udition, from a pure theoretical
point of view, the ternp(@ | 7)) should be removed from Equation 4.15 (and hence also from
Equation 4.16) whenever it can be assumed that the hewgdstipling method described here
is obtaining a sample qf(@ | 7). However, experimental results show that it presents an
appropriate behaviour for the specific task tackled here.

4.6.2 Gaussian sampling

The algorithm described in the previous section has therddga that it does not require
the adaptation set to be known beforehand, and hence ledds benefit of being able to
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precompute most of the terms in Equation 4.15. On the othad litis a heuristic approach
that requires the introduction of an additional parameten alternative approach that is
still independent from the adaptation data, but has a cledation to the actual probability
being sampled is to sample the normal distribution (i.e garameter prior) directly, without
taking into account the probability of the adaptation d#tethis way, the samples obtained
will follow the distributionp(@ | 7) ~ N(0;07,1 - o), which implies that they are more
closely related to the actual probability that should befgach However, it is not necessary
to re-compute the parameter sampling whenever new adaptddita arrives, as is the case
with the sampling strategy to be presented in the next sectio

When samplin@ according tap(0 | T'), then Equation 4.9 can be approximated, by the
Strong Law of Large Numbers (Robert and Casella, 2004), as

oy | =T, A) = 2 / p(A|6:T)p(6 | Thp(y | ,0) do
~ 2 > pA6;T)py|x,6), (4.17)

0cS 0/ (07)

where the approximation will be an equality ¥, g7 (67)| — oc.

Looking at Equation 4.17 makes it obvious that consideriti¢gzeraging factor is mean-
ingless when considering Gaussian sampling, since the jpib| 7) is not even presentin
the summation.

4.6.3 Markov chain Monte Carlo

The purpose oMarkov chain Monte CarldMCMC) methods (Bishop, 2006) is to obtain
a set of samples,,(.,(01) of a variable (in this cas@), where each sample is assumed to
be drawn from a certain distributigs(-), in this case the one comprised within the integral
in Equation 4.4, i.ep(@ | T, A). MCMC methods are widely used in the machine learning
community when applying Bayesian methods and are speeipfiyopriate for sampling from
distributions where it is possible to evaluate such distiin except for a certain normali-
sation constant (Bishop, 2006). For doing this, a (first grééarkov chain is established,
where each new samplé* depends on the previous sample Specifically, in this chapter
we will be using the Metropolis-Hastings (MH) algorithm ($fegs, 1970).

The MH algorithm basically consists of two steps. First, engke 8* from a given
proposal distributiory(6 | 8) is drawn. Next, such sample is accepted with probability
A(0*,80"), given by expression

A(6%,0') = min <1, w> , (4.18)
p(0)q(6” | 6')

with p(8) = p(0)/ Z, being the distribution from which we intend to sampi | 7, A) =

p(@ | T)p(A | 6;T)/Z, in this case), an&, being the normalisation term fgr(6). In

Equation 4.18, it does not matter whethéf) is used instead gf(9), since the normalisation

bTypically, MCMC establishes a Markov chain between stafebe Markov blanket, and the samples denoted
here by@ are actually statez of the Markov blanket. However, to simplify notation, inghihapter we assume
z=0.
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term Z, within p(@) can be simplified and the resulting Markov chain would be iidah
This is in practise very useful, since there are many apiiics, such as BPA in SMT, where
Z, cannot be computed. In addition, if the proposal distrinuis symmetric, termg(- | -)
can also be simplified.

Once an appropriate sam@g 9|7,.4)(07) of p(@ | T, A) has been obtained, Equation
4.9 is approximated, again by the Strong Law of Large Num{ieebert and Casella, 2004),
in this case as

ply|aT,A) = 2 / (A 6 T)p(6 | Thp(y | ,6) do

~ 2z > p(y |z, 0), (4.19)

0€S,0|7,4)(07)

where the approximation will be an equality fi@,g|7,.4)(07)| — oco. As in the case of
Gaussian sampling, including&leveraging term when dealing with MCMC sampling is
pointless.

Even though it might seem odd that tepiod | 8; T') is dropped in Equation 4.19, but not
in Equation 4.17, the reason for this is that in the case of NGk #-samples are obtained
from the conjugate(A | 0;7) - p(6 | T), which is the same as obtaining them from the
posterior density(€ | T, .A), since the normalisation term can be neglected safely lsecau
it is simplified in Equation 4.18. However, in the case of Gaars sampling thé@-samples
are extracted from(0 | 7) directly, without taking into consideration the adaptatample.

In fact, droppingp(A | 6;7T) in Equation 4.17 leads empirically to very bad results. In
this context, it is also interesting to point out that, f8(6+)| — oo, both methods should
theoretically converge to the same distribution. Nevdett® the different meta-parameters
that control both sampling strategies may imply that oneisry strategy converges slower,
as would be the case, e.g., if the MCMC chain gets stuck ina mmtimum of the probability
density function.

When building a MCMC chain, there are several things thatine®e taken into account.
In the first place, the proposal distributigmeeds to be established. Quite often, this is done
by setting

Q(O | 01) ~ ./\/(0,0’,_[ ' Jo)v (420)
where N (6',1 - 0,) is the normal distribution with mean vectéf and covariance matrix
a diagonal matrix with main diagonal,, whenever independence between the components
of 8 can be assumed. However, establishing an appropriai critical; on the one hand,
because too small values of will lead to a high rejection rate and a slow mixing chain,
meaning that the sampling chain will most likely get stuck &ical maximum of the density
hyper-surface. On the other hand, becausg i§ chosen too big it will lead to a chaotic chain
which will keep moving back and forth and will not be able tangde the density function
appropriately.

Another aspect that needs to be taken into account whenitgild MCMC chain is
the burn-in phase, which is the number of samples that nedx tdrawn in order to be
able to assume independence from the initial state of thekd¥achain. This point may
be very important, since if the starting point is not well s, the first samples obtained
by the MCMC procedure may introduce a non-desired bias wtads not depend on the
distribution being sampled, but rather on the starting pafithe Markov chain.
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4.6.4 Viterbi-like approach

One last approach to the sampling problem is the Viterks-Bbproach. Under this frame-
work, the core idea is to approximate the integral in Equredi® by

4|
ply @ T, A) =[] p. | za.0) N(6;07,07) ply | ,0) (4.21)
a=1
where
A |A|
6 = argmax[ [ p(y, | x4, 0) N (0;07,07) p(y | 2,6) (4.22)
0€S(07) {1

One important note regarding this kind of sampling is thdiewassuming the Viterbi-like
approach for the integral, the resulting formulation fitderger into the Bayesian paradigm.
The key aspect of the Bayesian framework is precisely ttaaias not rely on a single point-
estimate of the model parameters, but rather keeps the gjgynerovided by considering
all possible parameters. When assuming a Viterbi-like @g@gh, we are in fact assigning a
single-best point estimate of the model parameters. Neieds, the Viterbi-like approach
is, from an intuitive point of view, a very straight-forwaaghproximation to the integral de-
scribed in the BPA formulation, and, for this reason, we aiflo conduct experiments with
this approach. It is worth noting that this single-best pestimate is still conceptually dif-
ferent from the single-best point estimate that would baioletd by applying the maximum-
likelihood framework, or even by using MERT in the case ofdeg A (see Section 4.3),
since in this Viterbi-like approach the parameter pfi# | 7) is still present, and this is not
the case in non-Bayesian approaches.

The intuition behind the Viterbi-like approximation is thay | «;7,.4) could be, in
fact, a very sharp distribution, havilgaccumulate most of its probability mass. This is often
the case in many natural language processing tasks, asdmpda in speech recognition. In
other terms, this sampling approach could be seen as a sgmplwhich|S(0r)| = 1,
but with the specific = S(67) being chosen probabilistically according to distribution
p(y,0 |z T, A).

In this chapterd will be computed as the be8tobserved when samplingy | =; 7, .A)
according to the algorithm described in Figure 4.1.

4.7 Practical approximations

In addition to performing a random sampling instead of cotimguthe complete integral,
there are several issues that need to be taken care of befenepting to implement the
formula described in Equation 4.9 directly.

Firstly, the denominator within the componeptsd | 8; 7) andp(y | «, 8) contains a
sum over all possible sentences of the target languagehwhimot computable. For this rea-
son,Zy/ is approximated as the sum over all the hypothesis withimthest list generated
by the decoder. Moreover, instead of performing a full Seafdhe best possible translation
of a given input sentence, we will perform a re-rank ofthkest list provided by the decoder
according to Equation 4.9.
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In addition, typical state-of-the-art phrase-based SM3teays do not guarantee com-
plete coverage of all possible sentence pairs due to the guaaber of heuristic decisions
involved in the estimation of the translation models (seetiSe 1.2.1). Furthermore, out-
of-vocabulary words may imply that the SMT model is unablexplain a certain bilingual
sentence completely. This implies that the translation ehcdoften unable to account for
a source sentence having a fixed translation, as is the cabe adaptation data. Hence,
computingh(x,,y,) may not always be possible. For this reason, instead of ubsmtrue
reference present in the adaptation set, we will be usingpéiseé possible translation that the
system is able to provide, hence approximagngd | 8; 7) as

4
o exp Y . Ak fr(Ta, Y})
A > LS Cass At v a2

wherey* represents the best hypothesis the search algorithm isapteduce, according to

a given translation quality measure. This approximatios assumed both when considering
6 = X (Section 4.3.1) an@ = g (Section 4.3.2), so that Equation 4.23 may be instantiated
appropriately following to Equations 4.10, 4.13, and 4.14.

Note that, after the approximations described above, appBPA for feature function
adaptation as described in Section 4.3.2 implies that ¢walyd phrases already present in the
phrase-table, i.e., phrases that have already been selea fraining data, may be affected
by the BPA procedure. In order to introduce new phrases, utldvbe first necessary to solve
the coverage problem described. This being done, it woulgdssible to introduce new
phrases into the phrase-table with a certastore, and then allow the BPA procedure to
determine whether that new phrase pair should be promoteebrétically, the formulation
presented in Section 4.3 would allow the introduction ofagrsphrases into the phrase-table
with a (possibly small) score and then allow the adaptation procedure to determine weheth
such phrase should gain more weight in the translation ggodd¢owever, in the experiments
performed in this chapter this was not done for comparisasars, since our purpose is
to analyse how well the BPA is able to adapt existing modehmpeters: introducing new
phrases has already been done in other works (Ortiz-Maréal., 2010), and is known to
provide interesting improvements.

Lastly, adaptindr is a very costly operation, since the amount of parametdrs tmapted
is usually in the range of several millions. For this readostead of obtaining fully ran-
domised parameter samples (i.e. sampling the whiplere restrained such sampling to only
those entries of(z, g) that may actually produce a change in the translation ofekesen-
tence being considered. This implies considering for ategt only those phrase pairs that
are present only in some of the translation hypothesesmitian-best list, but not in all
of them. However, this is also costly, since it implies tHast, it must be assessed which
phrases are to be considered. Then, parameter sampling togeel performed once for each
one of the sentences present in the test set. Note that, gaimpling ofg is performed
without constraints, it is most likely that'y | ) no longer describes a probability distri-
bution, since a re-normalisation step would be requiredwéler, since the normalisation
constant required would have no effect on the maximisatestdbed in Equation 1.6, this
re-normalisation step may be safely omitted.
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4.8 Experiments

Experiments were performed by means of the open-source bikitdloses (Koehn et al.,
2007) in its default non-monotonic configuration. The pertables were generated by means
of symmetrised word alignments obtained with GIZA++ (Ocld &ley, 2003). The language
model used was a 5-gram with modified Kneser-Ney smoothing$kr and Ney, 1995), built
with the SRILM toolkit (Stolcke, 2002). The log-linear comhbtion weights in Equation 1.6
were optimised usingiinimum error rate trainindMERT) (Och, 2003).

In this section, whenever a figure shows two plots side by, sideleft plot will display
translation quality and the right plot will display the cesponding confidence interval sizes.
In addition, and unless stated otherwise, thaxis will always be in logarithmic scale. The
scale of they-axis will be linear whenever the plot displays translatiprality, and logarith-
mic in the case of the confidence interval sizes.

4.8.1 Corpora

The experiments conducted in this chapter were carried mthree different bilingual cor-
pora, belonging each one to a different domain.

In the first place, the Europarl and the News-Commentaryaraspn their WMT210 parti-
tion, were considered (see Section 1.4 for further detailthese corpora). Due to its generic
nature, the Europarl corpus is suitable for training a fiestanical SMT system, which will
be then adapted to more specific tasks. Specifically, thelatdrieatured were estimated
on the training partition, whereas the log-linear comhoratveights\ were estimated on the
development subsé&® by means of MERT. This set of weights will be referred tadas In
addition, the training part of the News-Commentary corpiklve used for the purpose of
obtaining adaptation samples, which will be then used edkedaptation samplé within
BPA, or as development set when re-estimatvgy means of MERT. Translation quality
will be assessed on the NC 2009 test set.

Lastly, validation experiments were also conducted on B8 Torpus. This corpus is
obtained from a collection of public speeches on a varietiopics for which video, tran-
scripts and translations are freely available on the Webail\ghe domain is very broad,
since there is no restriction on the subject of the talks. él@x, due to the nature of the cor-
pus, language style is very different from the other corpeeationed. This corpus was used
in a recent evaluation campaign (Paul et al., 2010), andlisamailable for French—English
translation. Statistics are shown in Table 4.2. As for N@, tifaining part will be used for
obtaining adaptation samples.

The major part of the experiments reported in this chapteeywerformed by using the
NC 2009 set as test data, and hence with the adaptation data dt random from the NC
training data. However, some experiments were also pegdrom the TED data, with the
purpose of validating the conclusions drawn from the NC .dd&nce, all of the experiments
reported in this section were conducted on the NC data ustatsd otherwise.

102 GST-DSIC-UPV



4.8. Experiments

German  English
Training Sentences 100k
(Adaptation4) | Run. words| 2.5M 2.4M
Vocabulary | 102.6k 47.2k
Sentences 2525
Test 2009 Run. words | 62.7k 65.6k
OoV. words | 3352 1683

Table 4.1: Main figures of the

News-Commentary corpu€oV stands for Out of
Vocabulary. k/M stands for thousands/millions of elements

French  English
Training Sentences 47.5k
(AdaptationA4) | Run. words| 792.9k  747.2k
Vocabulary | 31.7k 24.6k
Sentences 641
Test Run. words | 12.8k 12.6k
OoV.words | 954 427

Table 4.2: Main figures of the TED corpusOoV stands for Out of Vocabulary. k/M
stands for thousands/millions of elements.

4.8.2 Machine translation evaluation measures

For the purpose of computing the best hypothgsias described in Equation 4.23, TER will
be used. Although BLEU is slightly more popular in the SMT counity, BLEU is only
well defined on the corpus level, but not on the sentence (seel Section 1.2.2). Hence, itis
not well suited for our purposes since the complete setbést candidates provided by the
decoder can score zero. For coherence reasons, resulbewdported with TER.

In the case of online adaptation, translation quality wélneasured before adaptation
takes place, i.e., first the system will propose a hypothtss the translation quality of that
hypothesis is evaluated, and finally the adaptation praeeduactivated. This implies that
the final translation quality is the average over the conepikedt set, although the system was
not adapted at all when translating the first sentences.

4.8.3 Batch adaptation results

In the first place, the effect of BPA in a batch setup was stijdie., in a scenario where
there is an adaptation set available beforehand. In thiegbrall of the sampling algorithms
described in Section 4.6 can be applied. The experimentgtezpin the following were
conducted by using the Europarl training data as trainih@ send the Europarl development
data for estimating the initial set of weighks- = X\, (see Table 1.1). The baseline system
reported refers to the non-adapted system, i.e., using= ¢ as weight vector within the
decoder to obtain the final translations. The adaptatiotdssas extracted from the News-
Commentary or TED training data at random, and this exwactias performed 10 times,
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so that each one of the points in the plots presented in tlaigteh constitutes the average of
these 10 repetitions. Finally, the final test set used foluatimn purposes was the 2009 test
set (see Table 4.1) in the case of the News-Commentary caapdghe Test set in the case
of the TED corpus.

To synthesise the experimental setup, the different SMiesys compared in this section
when adaptind\ are:

e Baseline system: Phrase-pairs extracted from the Eurtyparing corpus (i.eh esti-
mated on the Europarl training data). Log-linear weighisstimated on the develop-
ment partition of the Europarl corpuly = ¢

e BPA: Initial setup identical to the baseline system. Thefgmation samplegl were
randomly extracted from the training partitions of the wrthin corpora (i.e., NC or
TED). The set\ estimated on the Europarl development data is usedrawithin the
parameter priop(X | 7) in all the experiments concerning the adaptation of

e MERT: Initial setup identical to the baseline system. Thée,adaptation sample$
described above were used for estimating a new set of legdliweights by means of
MERT.

e MERT+: Initial setup identical to the baseline system. THaath.4 and the Europarl
development set were used for estimating a new sat of

The MERT andMERT+ settings will be used in the last part of this section, whemgaring
the performance of the BPA systems.

The first experiments conducted were performed by adaptiegtaling factors\ and
with the purpose of analysing the effect of the differentgpaeters involved in the heuris-
tic sampling strategy, such as the leveraging faétahe prior variancers, or the size of
S(67). With the same purpose, additional experiments were paddifor the Viterbi, Gaus-
sian and MCMC sampling strategies. Since feature functi@ptation is much more costly
than adapting the scaling factohks most of the experiments reported involve adapthig
although some experiments adaptigre also reported. Adapting by means of BPA is
compared with using the adaptation geas development set for re-estimatindrom scratch
by means of MERT, and also with re-estimatihdy using both the adaptation dataand
the development set.

Heuristic sampling

Effect of different values of the leveraging factoro Results for this kind of sampling
are shown in Figure 4.2, for different values of théeveraging factor and with increasing
number of adaptation samples.

On the one hand, the plot on the left side displays transiafimlity, as measured by TER.
As shown, BPA is able to improve over the unadapted system fhe very beginning. Re-
garding the effect of, the results show that this parameter leveraging factoahasportant
role in the confidence interval sizes, which is why increggiteads to smoother adaptation
curves. In addition, smaller values &flead to a slight degradation in translation quality
when the amount of adaptation samples becomes larger, smgrasent slightly more noisy
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Figure 4.2: Batch adaptation for different values of delta. News-Comtaey corpus
considered. In these plots, the size of thbest list was fixed t@00.
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Figure 4.3: Batch adaptation for different values of delta for the TEDpes. In these
plots, the size of the-best list was fixed t@00.

curves, i.e., with larger confidence intervals. The reasotthiis can be explained by looking
at Equation 4.16. Singeg(.A | ; T) is in practise implemented as a product of probabilities,
the more adaptation samples the smaller becgmids| 8; 7), and a higher value aof is
needed to compensate this fact. Although larger valuésdd not suffer the problem de-
scribed, they yield smaller improvements in terms of tratish quality for smaller amount
of samples. This suggests the need &frghich depends on the size of the adaptation sample.
Despite the fact that the differences between diffevenélues observed in Figure 4.2 for
larger adaptation set sizes are very small, and are in fagtstatistically significant in some
cases, such differences were found to be coherent in othgudme pairs and other corpora
(see Figure 4.3 for results on the TED corpus). Values fmaller tharl were also analysed,
although the resulting curves ended up always between e arresponding th = 1 and

0 = 16, but without displaying a clear behaviour. This result ituadly quite logical, since
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values of§ smaller thanl do not have much sense from a theoretical point of view either

Effect of the prior distribution variance o7 Another (meta-) parameter that needs to be
fixed empirically is the variance of the normal distributiohthe model parameters, i.e.,
p(@ | T)~N(Ar,I-o7). Fordoing thisy = 4 was chosen, according to the experiments
detailed above and given that it appears to be the value tleaepts a good compromise
in quality for small and big adaptation set sizes and in dallipresents a more smooth
behaviour than the curves with smaller valueg.of he result of considering different values
for o is shown in Figure 4.4. The effect of; in the performance achieved by BPA is
very important, since low values ofr lead to low variability and no adaptation takes place.
On the other hand, too high values ®f may yield too abrupt changes, leading to over-
trained adaptation curves and larger confidence inter@asfidence intervals did not seem
to presentimportant changes when varying and are hence omitted here for clarity reasons.
However,c+ = 0.1 did seem to yield slightly smaller confidence intervals than= 0.01,
which is the reason why the rest of the experiments in thisigeevere performed with
o1 = 0.1. Foror > 1, the adaptation curves were practically indistinguisbabl

66
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65
- O7=Y. :
64.5 - 07=0.0001 g;‘:?;\.\ Ol
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| s MR R R | s PR S R
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Number of adaptation samples

Figure 4.4: Translation quality for different variancesr. In this caseg was set tol
and the size of(61) was set t@200.

Considering different n-best list sizes As said in Section 4.7, the BPA implementation
used in the present work approximates the summaﬁqp as the sum over a given-best
list. Moreover, the best hypothesis that the system is ablietiver is also selected from
such ann-best list. For these two reasons, it is also interestingudysthe behaviour of
BPA when incrementing such-best list, and this was done onéeando had been fixed
empirically. In order to avoid an overwhelming amount ofulés only those results obtained
when considering 100 adaptation samples are displayedgimré-i4.5. As it can be seen,
TER drops quite monotonically for adl values, until about 800, where it starts to stabilise.
We consider that this is also an interesting result. Wheregmsing the:-best list size, it is
probable that the hypothegjg is chosen from a deeper position in such list. Although this
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Figure 4.5: Batch adaptation with heuristic sampling for differentued ofé andn-
best. The left plot displays translation quality as measime TER and the right plot
displays confidence interval sizes. The size of the adaptatata was fixed to 100
sentences. Note that, for clarity reasons,tkexis isbroken meaning that the distance
between tha 000 and 10000 ticks is actually altered.

sounds reasonable, it could also be possible that deepenmthe n-best list would yield
degenerate values of TER (Martinez-Gémez et al., 2011 éhkmading to an over-trained
system. However, this does not seem to be the case with BPA.

Effect of increasing the amount of sampled parameters Finally, we also studied the ef-
fect of varying the number of sampled paramet&i®+)|. Theoretically, increasing the size
of this set size should only lead to more stable results, utlsl not have any effect in terms
of translation quality: whenever it can be assumed 8{8t-) is a good representative of the
true distribution of the model parametésincreasing the number of sampled parameters
should only provide more robustness. As expected, (aviteageslation quality was not af-
fected by the size af(6+), and the curves obtained were almost identical. For thisorea
only the confidence interval sizes are reported here. Suwstlitseare shown in Figure 4.6,
with the amount of sampled weighiS(6+)| being represented in the plot Iogv. The re-
sults show that the more sampldthe more stable the results appear to be. However, when
increasindS(6+)| from 1000 to 2000, the improvements in stability are alreasty scarce,
and might not be worth the computational overhead.

Viterbi approach

The Viterbi approach described in Section 4.6.4 was alstysed, and the results obtained
are shown in Figure 4.7, for different valuesiofwhen comparing this set of plots with Fig-
ure 4.2, it is interesting to realise that the effect of theeli approach is that the leveraging
factoré has practically no effect. This is true both when the amofiatiaptation samples is

low, but also when the amount of adaptation samples incse&ethe one hand, this is a de-
sirable behaviour, since it drops the necessity of ugingnen dealing with small adaptation
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Figure 4.6: Effect of increasing the size &(67), i.e.,|S(67)| denoted bynwin the
plot, on the size of the confidence intervadswas set tol, and the size of the-best
list to 200.

sets. On the other hand, however, it means that for larggtatien set$ does not compen-
sate the problem described in Section 4.6.1 and all adaptetirves seem to re-bounce after
about 100 adaptation samples have been seen. The factltbatvas present a very similar
behaviour may be due to the own nature of this sampling styat@nceS(01) is restrained
to one single-best, chosen according to the distribution to be sampled, thdteeare bound
to be very similar.
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Figure 4.7: Batch adaptation with Viterbi sampling and different amioofradaptation
set sizes. The size of thebest list was fixed t€00 ando+ = 0.1.
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Gaussian sampling

The next set of experiments involved sampling only accaytlinthe Gaussian prior. Results
for differento values are shown in Figure 4.8. Different values did not seem to affect
the final translation quality, and the adaptation curvesgmealmost the same shape. As
shown, this sampling strategy performs almost as well asi¢heistic approach until about
80 adaptation samples. At that point, the curves start tmmb®upack in a more chaotic
fashion than in the case of heuristic sampling. Most likélig is due to the larger confidence
intervals entailed by sampling from Gaussian prior, whangared to those obtained with the
heuristic sampling, as shown in the right part of the figuree Teason for this might be that
Gaussian sampling introduces less variability than theisgusampling strategy because of
their own nature: Gaussian sampling obtains marsamples from the close neighbourhood
of A, because of the shape of the Gaussian distribution, whélbehristic sampling strategy

is able to obtain more differett samples. Hence, the hypothesis provided as output in the
case of Gaussian sampling has been chosen by observingaléasility in S(67), and is
thus less robust. Of course, having more variabilits i) while ignoring completely the
distribution being sampled is not beneficial as such, bugrgihat the true distribution being
sampled contains the probability of the adaptation dgtand such probability is ignored by
both the heuristic and Gaussian strategies, increasitgbiity may be, to a certain extent,
the best way to include int&(6+) samples which are actually near the peak of the true
distribution that should sampled.
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Figure 4.8: Gaussian sampling strategy for batch adaptatioh.of

MCMC sampling

As for MCMC sampling, the first experiments were conductedritler to establish appro-
priate values for prior and proposal distribution variam@er ando,, respectively) and the
interaction thereof. As for the case @f in heuristic samplingg+ ando, have a very im-
portant role in MCMC. As explained in Section 4.6.3, on the tland, small values af,
lead to slow mixing chains and no adaptation would take plageon the other hand too high
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Figure 4.9: Translation quality for different values efr and o, within the MCMC
procedure for BPA§ = 1 and size ofi-best set t®00.

values lead to noisy chains that never converge and hencetdgeld appropriate results.
Furthermoreg, is tightly related tar, since they both control how much variation is intro-
duced into the predictive distribution of BPA. Their intetian is shown in Figure 4.9. This
plot displays the translation quality that can be achiewedafgivenos, when varying the
proposal distribution variance,. As expectedg ando, seem to be very closely related,
and the best values far, depend on the prior distribution variance, with all curvessent-
ing an optimum at, = 0.1 - o7. Consideringr, > o7 seems to lead to systems where
no adaptation takes place, and all curves remain steadihyedbaseline translation quality
whenever the proposal distribution variance is higher thamrior variance. As for the case
of heuristic sampling, adequate values #gr seem to bd or 0.1. Again, in the rest of the
experiments within this Sectioa;- was set td).1 for having slightly smaller confidence in-
tervals, and hence, = 0.01. Confidence intervals are omitted in this case because they w
very similar, except for the cases were no adaptation talees pwhere confidence interval
sizes were very near to 0.

Another aspect that needs to be taken into account when mgpikith MCMC is the
length of the burn-in phase. As Figure 4.10 shows, this dspfethe MCMC chain does
have a slight effect on the stability of the resulting systetthough it fades away when
increasing the size of(6+). This was quite expected, since increasing the length of the
Markov chain implies that the initial noise it might conta;mmsmoothed by the rest of the
chain. However, when observing the plot, it does seem thatpgmopriate burn-in phase
should contain between 500 and 1000 samples, although tteeetices observed are so
scarce and incoherent that no final conclusion could be drilewertheless, after observing
this plot, the length of the burn-in phase was set to 500 irrékeof the experiments of this
chapter that involve MCMC.

As for the effect of considering differes{ 0 1) sizes, i.e., different MCMC chain lengths,
the results of such experimentation are presented in Figdre In the left plot, translation
quality is shown, whereas the right plot displays the sizéhefconfidence intervals in the
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Figure 4.10: Effect of considering different burn-in durations, whernryiag the
MCMC chain length. The number of sampled weights after thefu phase (i.e.,
|S(67)]) is denoted byr. The number of adaptation samples was set to &90= 0.1

ando, = 0.01.
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Figure 4.11: Effect on translation quality and confidence interval siaesonsidering
different S(61) sizes, denoted byw in the plot. Burn-in duration was set #90.
o7 = 0.1 ando, = 0.01.

logarithmic scale. Although it might seem th&{6 ) size is a critical factor when applying
MCMC in BPA, such conclusion is not completely true. Takinglaser look at the confi-
dence intervals, these were as large as 3 TER points wheideong only 10 samples of
61. Hence, differences observed in terms of translation tyuafe not significant. What is
significant, however, is that stability in BPA is achievedibgreasing the number of obser-
vations of@+ that approximate the integral in Equation 4.9. As for theeaalsthe heuristic
method above, the difference in stability between perfagndi000 or 2000 sampling steps
may not be worth the computational overhead, since at that giee curves present almost
the same shape.
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Figure 4.12: Translation quality for batch adaptation with MCMC samgland differ-
ent sizes of-best, represented &ln the plot.c = 0.1 ando, = 0.01.

Lastly, and as done for the case of the heuristic samplingeggbge also analysed the
effect of varying the size of the-best list considered. Such results are shown in Figure 4.12
As in the case of heuristic sampling, BPA is able to cope wéh wdditional input infor-
mation, and additional hypotheses in th«best list imply that BPA is able to select better
hypothesis without incurring into over-trained solutions

Comparison between BPA and parameter re-estimation

In addition to results with BPA and for comparison purposeperiments usingl as devel-
opment set for performing a full re-estimation »fwith MERT were also conducted. How-
ever, it could be argued that such setup is not a fair compargnce BPA also makes use of
the information obtained in the training phase, such infation being contained within the
prior over the parameters. For this reason, we also proesldis obtained by re-estimating
on a development set built of the original development sed digr the initial estimation, and
the adaptation data, both concatenated,Re.), A. This setup will be referred to a&RT+.
Nevertheless, note that such baselines are not really @daiparison. On the one hand,
because they are both by far much more costly than BPA, serestimating the parameters
from scratch takes several hours or even days, whereas thingffementation takes only a
couple of minutes. On the other hand, because the MERT puoe@u/olves several transla-
tion steps, each of which re-computes thest list and hence has better chances to obtain
better hypotheses.

Results of such comparison can be seen in Figure 4.13, whndyetlee heuristic and
MCMC sampling strategies are reported in order to avoid gilogjthe plots. It can be seen
that BPA is able to provide better results than re-estingaXifrom scratch for small sizes of
A. If such re-estimation is carried out by using olyit comes to a point where it performs
better than BPA. However, re-estimatingby using both4 and the Europarl development
data (D) provides significantly worse results.

On the other hand, théERT setup displays a rather chaotic curve, which can be explaine
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Figure 4.13: Translation quality, as measured by TER, obtained when eoimgp per-
forming a full re-estimation oA by means of MERT, and when using the same adapta-
tion data as adaptation set within BPA. News-Commentargusoconsidered.

when looking at the plot on the right, which depicts the sizthe confidence interval sizes
in logarithmic scale. For small sizes g, such intervals are relatively large for the case of
MERT, as large as 3 TER points. However, in the case of BPA they aichramaller, as
small as 0.6 even for as few as 10 adaptation samples. InastMERT+ yields very small
confidence interval sizes, but, as seen previously, is Hettatprovide better performance
than BPA.

Regarding the performance of the MCMC sampling strategywveloenpared to the heuris-
tic sampling, the experimental results in Figure 4.13 shuat the heuristic strategy is able
to yield better results in terms of translation quality tithe MCMC strategy, until about
100 adaptation samples, which is the point where the nosat&in problem described in
Section 4.6.1 starts to appear. Nevertheless, it is at thiat where the advantages provided
by BPA start to fade. In addition, the heuristic strategytes smaller confidence interval
sizes, and, furthermore, it is much cheaper in terms of caatiomal resources. Hence, it can
be stated that the heuristic strategy is the one that yibllbést results, when applying BPA
to SMT.

Additional experiments comparing BPA with both samplincagies and the MERT
baselines were performed on the TED corpus. The meta-péeesria BPA were set ac-
cording to the experiments performed previously on the Neasimentary corpus. Such
experiments are shown in Figure 4.14, for the case of TERjraRjure 4.15 for the case of
BLEU. In this case, the conclusions to be drawn are similénése obtained from the News-
Commentary corpus, although in this case both MERT setupaveeslightly worse than in
the previous case. More specifically, tMERT setup presents very high confidence intervals
when the amount of adaptation samples is low, andviERRT+ setup does not achieve to per-
form significantly better than the baseline setup in any .cdEanwhile, both BPA settings
are able to improve performance from the very beginning rawing the baseline by more
than 2 TER (1-2 BLEU) points with as few as 50 adaptation sampln terms of BLEU,
the BPA approaches seem to behave in a slightly less prétidiashion. However, this is
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Figure 4.14: Translation quality, as measured by TER, obtained when eomgp per-
forming a full re-estimation oA by means of MERT, and when using the same adapta-
tion data as adaptation set within BPA. TED corpus consitlere
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Figure 4.15: Translation quality, as measured by BLEU, obtained whenpaoing
performing a full re-estimation oA by means of MERT, and when using the same
adaptation data as adaptation set within BPA.TED corpusidered.

actually expected, since the best possible hypothgsis selected according to TER.

With the purpose of getting some insight about where the avgments come from,
we analysed the-gram precision and the brevity penalty implemented witBirEU. For
a certainn, n-gram precision is computed as the numbenedrams that match between
the candidate hypotheses and the references, normalistiebptal amount ofi-grams
that constitute the references. The brevity penalty is ddfesmin(1, ), beingr the ratio
between hypothesis and reference lengths, and gives aghirebout how well the SMT
system is predicting the length of the reference transiati®y analysing:-gram precision
and brevity penalty, the purpose is to elucidate whetheinipepovements achieved are due to
a better lexical choice of the translation units, or rathes tb a better prediction of reference
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10 adaptation samples 100 adaptation samples

baseline| Heur. MCMC MERT MERT+| Heur. MCMC MERT MERT+
BLEU 16.7| 164 158 14.2 16.9 16.1 16.0 16.2 16.9
1-gram 549 | 555 56.0 56.2 549 56.7 56.8 56.2 55.0
2-gram 235| 236 235 223 235 242 242 239 234
3-gram 115 116 113 105 114 11.8 119 118 11.5
4-gram 6.0 6.0 5.8 52 6.0 6.1 6.1 6.1 6.0
brev. pen. 097 | 095 092 0.88 098 091 090 0.92 0.97

Table 4.3: Analysis ofn-gram precision and brevity penalty fé6 and 100 adapta-
tion samples, considering heuristic and MCMC sampling wiBPA and MERT and
MERT+ strategies (i.e., including the adaptation data,amlyhe adaptation and devel-
opment data for re-estimatingy NC corpus considered.
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Figure 4.16: Time in minutes consumed by the different adaptation apmpres com-
pared. In the case of BPA, 2000 samples Jowere obtained, and the size of the
n-best list was set to 200. Note that both axes are shown initbgac scale. News-
Commentary corpus considered.

length. These results are shown in Table 4.3 when usingnd 100 adaptation samples for
the case of the News-Commentary 2009 test set. In this thidénteresting to see that both
BPA approaches anERT are able to yield highet-gram precision rates than the baseline,
and even than thBERT+ setup, but are severely penalised by the brevity penakyite
to significantly lower BLEU scores than the baseline. Thiswaetually expected, since the
TER score considered within BPA does not include the brgaétyalty. However, the fact that
n-gram precision is higher leads to the conclusion that thEr@vements obtained over the
baseline are due to a better lexical choice of the phrasedvied in the translation process,
and not to a side-effect of adjusting the output sentenaghen

One last word regarding this comparison involves companatitime. Figure 4.16 reports
the time consumed by each one of the approaches reporteduner.13. In the case of the
two BPA strategies, the amount of sampled weights was 2080thie most costly and stable
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experiments involving BPA conducted in this section. Rdgay the time taken by both BPA
approaches, it must be noted that both include the time coeddor generating the-best
lists for the adaptation data and the sentence-level TERtsoun fact, the time taken only
by the BPA implementation ranges fromi minutes up t@®0, depending on the amount of
adaptation samples considered, but computing the sentevedeTER counts gets specially
costly when longer sentences are involved. As the plot shoeth BPA implementations take
much less time than the MERT alternatives, being the héuB&A alternative the fastest one
in a consistent manner. Note that, in Figure 4.16, the y-axidotted in logarithmic scale,
which implies that the BPA implementations are about oneioofimagnitude faster than the
VERT alternative, and two orders of magnitude faster tNBRT+.

Feature function adaptation

Preliminary experiments conducting Bayesian predictil@pdation of the model featurés
were also performed. However, given the extremely high agatjpnal cost involved, only
a small number of these experiments were performed. Spabifin the case of the NC
2009 test set the adapted system achieved a TER scdté (hfcompared t@6.2 of the
baseline system. In the case of the TED test set, the adaygteahsachieved a TER score of
63.0, compared t®3.2 of the baseline system. This (minor) improvement was aelidoy
settingd = 32 and with2000 adaptation samples. However, these experiments are elfrem
costly from a computational perspective. Even when comigiall the features defined at the
local phrase level, as described in Section 4.3, and penfigrthe approximations described
in Section 4.7, re-scoring the translation hypothesesimédavhen translating the test set
takes about one week in a single-threaded implementatitnasily 1000 repetitions of the
heuristic sampling algorithm described in Section 4.6. these reasons, and although there
seems to be some potential in the adaptation of the featnotidumsh, no further experiments
in this direction were performed.

4.8.4 Online adaptation results

In the previous section it has been shown that MCMC has a madisbte behaviour in a
batch adaptation setup than the heuristic algorithm. Nleg&rss, when confronting an on-
line adaptation problem, time constraints imply that MCMGhot applicable, sinc§(01)
would need to be redrawn for each new adaptation sample seémelsystem. Alterna-
tively, sampling from the Gaussian prior seems to be shghtbre unstable than the heuristic
sampling strategy. For these reasons, only experimertigigtheuristic algorithm were per-
formed for online adaptation, and only for the adaptatiotheflog-linear weights\, since
adaptingh proved to be too expensive for an online BPA implementation.

The result of applying BPA in an online setting can be seerignre 4.17. In this figure,
the x-axis is the amount of trailing samples considered,the number of trailing sentences
that are included into the set; described in Section 4.4. This figure only includes the re-
sulting translation quality because the confidence intesizas did not seem to vary much
with §, as was the case with batch adaptation. It is interestingitat put that the translation
quality curves seem to present a minimum at about 100 adapsamples, and adding fur-
ther trailing sentences intd, seems to actually produce a significant degradation in tlaé fin
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Figure 4.17: Effect of differentd leveraging factors in online adaptation. The size of
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Figure 4.18: Confidence interval sizes for different sizes®(f9+), denoted bynwin

the plot.

translation quality achieved. This seems to point towdndgbssibility that there is a certain

locality in the weights.

As for the amount of sampled weight$,(67)|, varying this value did not appear to pro-
duce any change in terms of translation quality. Howevés,whas so only when considering
the average of all th&0 repetitions performed, since the size of the confidencevalte did
present interesting changes. Such confidence intervashaven in Figure 4.18. As expected
after the experiments conducted with batch adaptationsiteeof the confidence intervals
drops significantly when increasing the sizeS§P 1), yielding very small confidence inter-
vals when|S(6+)| = 100000. Nevertheless, each one experiment Wwik@+)| = 100000
takes abouR0 hours, when compared to several minutes in the cas€@)| = 2000.

GST-DSIC-UPV

117



Chapter 4. Bayesian translation model adaptation

baseline ----- N=100 --e-
66 N=10 --=--  N=200 - e -]
N=20 & N=500 —a—

o N=50 —=-  N=1000 -
65.5 ey, .
\\*“»x“n_x/,»

TER

65

64.5

10 100 1000
Number of adaptation samples

Figure 4.19: Translation quality when considering increasingest size.d = 2,
o7 = 0.1 and|S(67)| = 2000.

For this reason, the additional decrease in confidencevaiteizes might not be worth be-
yond|S(67)| = 2000. In addition, note that the size of these confidence intervahnot be
compared directly with the size of the confidence interval®as when applying BPA in a
batch setup, since the experimentation in the batch setagezhobtaining a new adaptation
sample at random for each point in the plot. This is not the eelsen dealing with online
adaptation because re-drawing the adaptation data is ssifgd@ because the adaptation data
A, is fixed to be the last sentences observed in the currenigielsemg translated.

The effect of increasing the siz&¥ of the n-best list was also analysed. Results for
|S(61)| = 1000 and|.A;| = 100 are shown in Figure 4.19. As was expected, the translation
quality provided by including the sliding window; improves when increasing the amount
of n-best considered. However, this improvement seems to dgealally, and increasing
N from 500 to 1000 already yields scarce improvements.

Finally, in Fig. 4.20 the results of varying; of Eq. 4.10 are shown. The translation
quality delivered by the Bayesian sliding window is, in therst case, the same as the base-
line system. For lower values ofr, the sliding window has no effect at all until about 100
samples. The optimal value for- seems to be 1 or 0.1. For all experiments abeye= 0.1
was chosen due to having slightly smaller confidence inteasad because this was also the
value chosen in the case of batch adaptation.

4.8.5 Bayesian adaptation for system stabilisation

Lastly, experiments concerning the use of BPA for systelmilitation purposes, as described
in Section 4.5, were also conducted. For doing this, a lcsouece environment was sim-
ulated by randomly selecting a (small) training §efrom the News-Commentary training
data. In addition, a random developmentBetf 100 sentences was also extracted from the
remainder News-Commentary training data, ensuring Thaind 7 are fully disjoint, i.e.,
DN T = 0. Note that this development set is not the same one refesrizdthe previous
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Figure 4.20: Effect of varyingor within N’ (A7, I - o7). The size of thei-best list
was set t®00. |S(67)| = 2000 andd = 2.

experiments, since in this cagewas obtained from the NC data, and in the previous experi-
ments it was a fixed set belonging to the Europarl data. Themandom training sé€t was
used for phrase extraction and building the phrase-tatildevthe random development set
D was used within MERT for estimating the corresponding seteifjhtsAp. This being
done, two different approaches were used for BPA. In thedjptibn, the set of weights esti-
mated with MERT was used as mean vector within the paramatarip BPA, i.e A+ = Ap
(first option described in Section 4.5). In the second optiba set of weights estimated for
Europarl by means of MERT was used as parameter priorNe= A¢ (second option in
Section 4.5). Finally, the test set used for the final evadnatas the same as in the previous
experiments. The results of this setup are shown in Figutg. 4As shown, all the alterna-
tives present decreasing TER scores when adding morengadiaita, as expected. However,
the two BPA approaches perform slightly better in averaga tthe MERT approach. In
addition, taking a look at the confidence interval sizes ats/an interesting result: the con-
fidence intervals are smaller when using BPA, which actualgans that applying BPA as

a post-processing step does actually provide more statlétse Finally, it can also be seen
that using)¢, i.e., a “well-estimated” prior knowledge within BPA (inithcase)), yields
even more stable results than usinga estimated on much less data, even if such data is
in-domain data (in this caskp). These results lead to the conclusion that using BPA in-
stead of MERT or as a complementary post-process step is @ a@un in low-resource
environments, even if this is not an adaptation problem angér.

4.9 Conclusions and future work

In this chapter, Bayesian predictive adaptation has beemtighly analysed for its appli-
cation to statistical machine translation. On the one hamel theoretical framework for
adapting either the feature functions or the log-lineaights present in most state-of-the-art
statistical machine translation systems has been dewtldpethe other hand, experimental
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Figure 4.21: Translation quality and confidence interval sizes whenq8iRA as a
stabilisation methodbasel i ne computed by means of MERTer t - BPA stands

for the BPA approach when using the MERT-weights as mearowedgthin the BPA
prior, andeur o- BPA stands for the BPA approach when using the Europarl weights
within the BPA prior. Both plots present the x-axis in loggkcand, in addition, the
CFI plot also presents the y-axis in log-scale. The size of thieitrg data is given in
thousands of sentences.

results analysing the effectiveness of such adaptatiorepitres have been reported. In ad-
dition, three different scenarios have been studied whaye8ian adaptation can be applied:
batch adaptation, online adaptation and system stallisat

Regarding the adaptation of the log-linear weights, reslibw that BPA has an interest-
ing potential when the amount of adaptation data is relgtsmall. Consistent improvements
in translation quality are obtained over the baseline systes measured by TER, with as few
as 10 adaptation samples, and up to an amount of adaptatiarihdd allows a complete
re-estimation of the model parameters. Results show that BRen applied to log-linear
weight adaptation, proves to be more stable than MERT, wialiés heavily on the amount
of adaptation data and turns very unstable whenever fewtatitayp samples are available. It
should be emphasised that an adaptation technique, byena&uwnly useful whenever the
amount of adaptation data is low, and our technique provéglave well in such context.
Whenever the amount of adaptation data is high, the begy thiat one can do is to re-
estimate the model parameters from scratch, although suektimation is often very costly.
From a computational point of view, the Bayesian adaptateahnique presented does not
imply a significant computational overhead, the largest piathe computational complexity
being taken by the sentence-level computation of the ta#insl quality counts, which are
required for the adaptation data. Hence, we consider tieattthnique presented here could
easily be implemented within the decoder itself withoutgn#icant increase in computa-
tional complexity. We consider this important, since it ifap that rerunning MERT for each
adaptation set is not needed.

Different parameter sampling strategies have been stwdieth applying Bayesian pre-
dictive adaptation to the adaptation of the log-linear W&sgsuch as Markov chain Monte
Carlo, sampling from the Gaussian prior, an ad-hoc heassatinpling strategy and the Viterbi
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sampling approach. From the experimental results obtainemierges that the ad-hoc heuris-
tic sampling strategy is able to perform at least as well adMCand is computationally less
expensive. Nevertheless, this heuristic strategy regtihi@introduction of an artificial meta-
parameted because the probability distribution is not normalisedctSleveraging factor
must be tuned beforehand. In contrast, the MCMC strategg doerequire thig, but ap-
pears to provide slightly less stable results.

Experimental results also show that BPA is an appropriaaptadion strategy for its ap-
plication to the adaptation of log-linear weights in an orelsetup. In this context, interesting
improvements in translation quality may be obtained withintroducing a significant com-
putational overhead (less than a second per sentenca)dingisuch an adaptation capability
is critical in environments where human translators workdaliaboration with the SMT sys-
tem, such as in an interactive machine translation scenagpmssible extension of the work
presented here regards the assignment of a decaying weigéath sample within the sliding
window (the adaptation samplgly.

In addition, it has also been shown how to apply BPA in ordeadbieve more stability
in the results achieved in conditions where bilingual dataedry scarce. By adopting the
best point-estimation of the model parameters as mean rvedtoin the Gaussian prior,
more stable results are achieved, while yielding improvasim translation quality as well.
Adopting as mean vector an external, canonical set of pasamehich may be assumed to
be well estimated provides even more stability to the result

Regarding the adaptation of the feature functions, exparisconducted in this direction
are not very encouraging: although not negative, the coatiputal overhead introduced is
not justified by the very limited improvements in translatiguality achieved. One possible
reason for this may be that current state-of-the-art SMTesys act more like a memory-
based MT system, rather than a fully-fledged statisticalesysvith properly estimated sta-
tistical distributions. As pointed out in Section 2.7.2hé final amount of phrase pairs that
actually have a competing phrase (i.e., the number of phrthse are not chosen determin-
istically) is very low, re-estimatind is bound to have a very small effect, if any. Another
possible reason might be that there are too many parameteestdapted, in which case sev-
eral strategies could be followed in order to solve both theesity problems derived and the
problem involving the high computational overhead. In thet filace, it would be interesting
to research possible ways of binding the parameters prestr@ phrase-table, such as using
unsupervised clustering algorithms or grouping the déffieébilingual phrases according to
their part-of-speech tags. Another possible strategydafronting this problem is to make
use of the different phrase-table reduction techniquesatepresent in the literature, such
as the ones described in Chapter 2 or the ones presenteddret(&t, 2007; Johnson et al.,
2007).

The author would like to thank Dr. Nicola Cancedda for hispeelpful comments on
a previous version of this chapter, which led to improving tontents in a very significant
manner.

The work presented in this chapter was accepted for puldlicat an international con-
ference and an international workshop, respectively:

e G. Sanchis-Trillesand F. Casacuberta. Bayesian Adaptation for Statisticalhiia
Translation. InProceedings of the Joint IAPR International Workshops aacBtral

GST-DSIC-UPV 121



Chapter 4. Bayesian translation model adaptation

and Syntactic Pattern Recognition and Statistical Techedgin Pattern Recognition,
S+SSPR 201 (pages 620-629, Cesme, Izmir (Turkey), August 2010.

e G. Sanchis-Trillesand F. Casacuberta. Log-linear weight optimisation viadd&@n
Adaptation in Statistical Machine Translation. Rroceedings of the 23rd Inter-
national Conference on Computational Linguistics (postelume), COLING 2010
pages 1077-1085, Beijing (China), August 2010.

In addition, the stabilisation strategy described in $eci.5 was used within the system
presented for an international MT competition:

e G. Gascd, V. Alabau, J. Andrés—Ferrer, J. Gonzalez-Rubid.NRocha,G. Sanchis-
Trilles, F. Casacuberta, J. Gonzalez and J. A. Sanchez. ITI-UP¥mydtscription for
IWSLT 2010 InProceedings of the 2010 International Workshop on Spokegliage
Translation, IWSLT 201(ages 85-92, Paris (France), December 2010.

Furthermore, the online variant of BPA presented, toget¥itr other work on online
adaptation, has also been accepted for publication in amiational journal:

e P. Martinez-Gémez;. Sanchis-Trillesand F. Casacuberta. Online adaptation strate-
gies for statistical machine translation in post-editingrsrios. InPattern Recogni-
tion. (In presg

Lastly, most of the work presented in this chapter has bebmited to an international
journal:

e G. Sanchis-Trillesand F. Casacuberta. Batch and online Bayesian predictagtad
tion in statistical machine translation. (submitted foriseon)
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CHAPTER

Enriching user-machine interaction in
IMT

Probleme kann man niemals mit derselben Denkweise |6sesh die sie entstanden sind.
Albert Einstein
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Chapter 5. Enriching user-machine interaction in IMT

EINSTEIN: »Man sperrt uns ein wie wilde Tierel«
MOBIUS: »Wir sind wilde Tiere. Man darf uns nicht auf die Mehseit loslassen.«
NEWTON: »Gibt es wirklich keinen andern Ausweg?«
MOBIUS: »Keinen.«
EINSTEIN: »Johann Wilhelm Md&bius. Ich bin ein anstandigesrdch. Ich bleibe.«
NEWTON: »Ich bleibe auch. Fir immer.«
MOBIUS: »Ich danke euch. Um der kleinen Chance willen, die die Welt doch noch
besitzt davonzukommenks erhebt sein Glas»Auf unsere Krankenschwestern!«
Sie haben sich feierlich erhoben.
[...]
Sie trinken, stellen die Glaser auf den Tisch.
NEWTON: »Verwandeln wir uns wieder in Verriickte. Geisterin abs Newton daher.«
EINSTEIN: »Fiedeln wie wieder Kreisler und Beethoven.«
MOBIUS: »Lassen wir wieder Salomo erscheinen.«
NEWTON: »Verriickt, aber weise.«
EINSTEIN: »Gefangen, aber frei.«
MOBIUS: »Physiker, aber unschuldig.«
Die Physiker. Friedrich Durrenmatt.

EINSTEIN: “They locked us like wild animals!”

MOBIUS: “We are wild animals. We must not let ourselves to anity.’
NEWTON: “Is there really no other way”?

MOBIUS: “No”.

EINSTEIN: “Johann Wilhelm Mébius. | am a decent person. Itaysg”
NEWTON: “I will stay. For good.”

MOBIUS: “l thank you. To the small chance of sake, which is rbg/world has yet get
away. "He raised his glass$To our nurses!”

You have risen solemnly.

[...]

They drink, the glasses on the table.

NEWTON: “Turn us back into lunatics. Therefore, we SpirssNewton.”
EINSTEIN: “fiddles again as Kreisler and Beethoven.”

MOBIUS: “Let reappear Solomon.”

NEWTON: “Crazy, but wise"”

EINSTEIN: “Trapped, but free”

MOBIUS: “Physicist, but innocent. ”

The physicist. Google Translate.
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5.1. Introduction

5.1 Introduction

Interactive Machine Translation was first introduced witthie TransType (Foster etal., 1997;
Langlais et al., 2000, 2002) project, where it proved to de &bdeliver interesting benefits
to potential users, by considerably reducing the effortdeeen order to translate a com-
plete text. Nevertheless, one aspect which has remainetliymioshanged since those first
approaches to IMT is the user—machine interaction protdcadiitional IMT systems only
received feedback whenever the user typed in a new word. Wawsuch protocol accepts
many improvements. In the present chapter, we show how forenser—machine interac-
tion by making use of weaker feedback. Specifically, two $ypepointer actions (PAs)
are considered here as weaker feedback. The first one, whidiawe namednticipated
proposal, proposes to observe the actions that the user performsehefodifying a given
hypothesis, with the purpose of anticipating such modificatThe second kind of weaker
feedback consists in allowing the user to simply state teaddes not like the (partial) hy-
pothesis provided, and that he wants it to be replaced. attisrlkind of feedback will be
referred to as partial refusal. Both of these interactigrabdities will be implemented in the
present chapter by means of a pointer action (PA), althoughoould easily picture other
devices for performing these kind of actions.

The rest of this chapter is structured as follows. Secti@bBiefly reviews similar work.
Then, Section 5.3 details the main idea behind considergtgr actions as an additional
information source for the system, and how it is possiblake tadvantage of the actions the
user is performing even when no keyboard action is performiectt, in Section 5.4, an ad-
ditional twist to pointer actions is detailed so as to offex tiser different explicit interaction
possibilities, with the purpose of reducing the number wfe the user will need to intro-
duce additional words. Experimental results are present&eéction 5.5, in which an IMT
environment is simulated with the purpose of assessingeheftis that can be achieved by
means of the two different PAs presented. Finally, the amichs that can be drawn from the
work presented in this chapter are detailed in Section bdgther with possible extensions
that will be conducted as future work.

5.2 Related work

A work that is very similar to the one described here was peréal in (Romero et al., 2009).
However, such work researched the use of weaker feedbalckwait interactive handwritten
text recognition scenario, and not in an IMT setting as isdhse in the present chapter.
In addition, weaker feedback has been also researchedtévadative text generation (Ruiz,
2010), where the main goal is to help handicapped peoplertoramicate in cases where
they might have lost the ability to do so by other means suatriisig, oral communication
or typing.

Even though the work presented here does not take advantagmoltimodal setting,
other works exist, in which the classical IMT framework iparded by taking advantage of
multimodality. For instance, (Alabau et al., 2011) proptise use of a speech recognition
system with the purpose of allowing the human user to cothecerrors made by the IMT
system by simply stating, orally, where such errors wereenatbwever, instead of allowing
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SOURCE (x): Para encender la impresora:
REFERENCE (y):  To power on the printer:
(p) 0
ITER-O (1) To switch on:
(p) To
ITER-1 (s1) |switch on:
(Sn) power on the printer:
(p) To power on the printer:
(s1) 0
ITER-2 k) #)
@) 0
FINAL (p=v) To power on the printer:

Figure 5.1: Example of anticipated proposal pointer action which selke error of a
missing word. In this case, the system produces the coméfct s;, immediately after
the user validates a prefix implicitly indicating that we wants the suffix to be changed
without need of any further action. ITER-1, charactef indicates the position where
a pointer action was performed; is the suffix which was rejected by that pointer
action, ands;, is the new suffix that the system suggests after observirtgsihia to
be considered incorrect. Character # is a special charatteduced by the user to
indicate that the hypothesis is to be accepted.

the speech recognition full freedom when recognising thieections of the user, such recog-
nition was biased by the translation model in such a way, tti&best scoring suffixes are
those that are most probable according to both the SMT syatetihe speech recognition
system. In related work, (Alabau et al., 2011) propose alairscenario, but allowing the

user to correct the errors by means of a graphic tablet oescreith which the user may

interact by writing in some word, or even just some kind oftges

5.3 Anticipated proposal as a form of weaker feedback

The key idea behind considering pointer actions as an additcommunication vehicle be-
tween the system and the user is that, in order to correct athgpis, the user first needs
to position the cursor in the place where he wants to type awa it for correcting it, for
introducing a new word, or for deleting an existing one. lis ttase, we will assume that
this is done by performing a pointer action. By doing so, therus already providing a very
valuable information to the system. Namely, he is signgllimat whatever information is
located before the cursor is to be considered as correatehextidating the current prefix
More importantly, however, he is also signalling that hesdoet like whatever word comes
afterp, and that he is about to change it. At this point, the systemcegture this fact and,
knowing that such suffix is to be considered as incorrect/igeoa new translation hypothesis
in which the prefix remains unchanged and the suffix is replégea new one in which the
first word is different to the first word of the previous suffix.

An example of such behaviour can be seenin Figure 5.1. le#ziBple, the SMT system
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5.4. Partial refusal pointer action

first provides a translation which the user does not like.déehe positions the cursor before
word “switch’, with the purpose of typing in Jower. By doing so, he is validating the
prefix “To", and signalling that he wantstvitcH to be replaced. Before typing in anything,
the system realises that he is going to change the word bediter the cursor, and replaces
the suffix by another one, which is the one the user had in nnitiidi first place. Finally, the
user only has to accept the final translation.

Obviously, having the system change the incorrect suffixsdue mean that the new
suffix will be correct. However, given that the system knolet the first word in the current
suffix is incorrect, the worst case would only imply that treamly introduced word would
still be incorrect. This entails that the user would need/fetin the correct word, as he was
going to do anyway. However, if the new proposed suffix happerbe correct, the system
will have spared the user one interaction, which is typinthemnew word, and the user will
happily find that he only needs to accept such word, or perbagsthe complete suffix.

We are naming this kind of pointer action anticipated prapdmcause the user does
not need to perform an explicit action in order to inform tlystem that it needs to change
the suffix: it is the system itself who realises that the usegding to type in a word and
anticipates the user’s intentions, suggesting a new suffpotinesis. For this reason, and
given the fact that the user would need to position the clasgway, it is important to point
out that any improvement achieved by this kind of pointeioaicts an improvemener se
since it requires no further effort from the user. For thissan, it is assumed to have no cost.

The anticipated proposal pointer action can be formulateéven a source sentenge
a consolidated prefip and a suffixs’ suggested by the system in the previous interaction,
search for another suffix such that the first word i@ is different from the first word irs’

s = argmaxP(s|z, p, s’) (5.1)

8:81#8"1

5.4 Partial refusal pointer action

In contrast to anticipated proposal pointer actions, ongdceasily picture a scenario where
the user simply wants a given suffix to be changed, withountpinto consideration whether
the cursor is already located just in front of the first enaueword. Assuming that the
underlying IMT system is efficient enough when attemptingravide high quality suffixes,
the human expert would just need to click before the first wafrthe suffix he intends to
change in order to have it replaced without any further actithis pointer action is named
partial refusal because the user needs to explicitly askyheem for another hypothesis by
means of a pointer action, whereas in the case of anticipaigmbsal pointer actions the user
only performed a pointer action whenever he needed to pasitie cursor before typing.
Obviously, this could also be done by using some other diffedevice, but in this case we
assume this is done using the mouse. Note that this kind eitgroaction does imply an
added cost, since the user needs to perform an explicitreftifosignalling the system that
he wants the suffix to be replaced. However, if the underlifgengine providing suffixes
is powerful enough, the benefit obtained may easily be wbrthhiassle, since performing a
pointer action is less costly than introducing one (or salyevhole new word. Of course, in
this kind of pointer action the system is expecting a pgyétive and collaborative attitude
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SOURCE (x): Seleccione el tipo de instalacion.
REFERENCE (y):  Select the type of installation.
(p) 0
ITER-0 (1) Select the installation wizard.
(p) Select the
ITER-1 (s1) linstallation wizard.
(8n) install script.
(p) Select the
ITER-2 (k) type
(8n) installation wizard.
(p) Select the type
ITER-3 (s1) linstallation wizard.
(8n) of installation.
(p) Select the type of installation.
(s1) 0
ITER-4 k) #)
(8n) 0
FINAL (p=v) Select the type of installation.

Figure 5.2: Example of partial refusal pointer action which correcteaoneous suffix.
In this case, an anticipated proposal pointer action isoperéd inITER-1 with no
success. Hence, the user introduces waypgé€ in ITER-2, which leaves the cursor
position located immediately after wordyp€'. In this situation the user would not
need to perform a pointer action to re-position the cursadr@mtinue typing in order
to further correct the remaining errors, since he could Biropntinue typing the word
he has in mind. However, since he has learnt the potentiafthef pointer actions,
he performs a partial refusal pointer action in order to askafnew suffix hypothesis,
which happens to correct the error.

from the user, which was not the case in the case of antidgai@posal weaker feedback.
An example of such an explicit pointer action correcting emrecan be seen in Figure 5.2

In this case, however, there is a cost associated to thisdipdinter actions, since the
user does need to perform additional actions, which may grmabe beneficial. It is very
possible that, even after asking for several new hypoth#ssuser will even though need
to introduce the word he had in mind, hence wasting the amditipointer actions he had
performed.

Assuming the user has already performegointer actions until the current moment
and is demanding yet another suffifrom the system, the partial refusal problem can be
formalised in a very similar way to the case of anticipatespisal pointer actions:

§= argmax  P(s|z,p,sM, s ... sM) (5.2)
s:slgés(li>,Vi€{1..n}

wheres!” is the first word of the-th suffix discarded, and®, s, ... s(™ is the set of
all n suffixes discarded.
Note that this kind of pointer action could also be impleneenith some other kind of
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interface, e.g. by typing some special key sucka®r Tab. However, the experimental re-
sults would not differ, and in the existing user interfacgeémed more intuitive to implement
it as a pointer action.

5.5 Experimental results

In addition to WSR, and because pointer actions are alsodantred as a new action, results
in terms ofPointer Action RatiaqPAR) will also be reported. PAR is the quotient between
the amount of partial refusal pointer actions performedtaechumber of words of the final
translation. Hence, the purpose is to elicit the numbermés the user needed to request a
new translation (i.e. performed a pointer action), on a pedvbasis.

Also for the case of partial refusal pointer actions, resimtterms of uPAR (useful PAR)
will also be reported. uPAR indicates the amount of pointdioas which weraiseful i.e.
the pointer actions that actually produced a change in teeviiord of the suffix and such
word was accepted. Formally, uPAR is defined as follows:

PAC —n-WSC

uPAR = PAC (5.3)

where PAC stands for “Pointer Action Count” (the total number of peintictions per-
formed),W SC for “Word Stroke Count” (the total number of word strokesfpemed) and
n is the maximum amount of pointer actions allowed before & types in a word. Note
that PAC — n - WSC' is the amount of pointer actions that were useful siic8C is the
amount of word-strokes the user performed even though halheady performed pointer
actions, i.e.n - WSC'is the number ofiseles$As.

Since WSR and PAR will be used with a single reference, thaltseepresented here are
clearly pessimistic. In fact, it is relatively common to kahe underlying SMT system pro-
vide a perfectly correct translation, which is "correcteg'the IMT procedure into another
equivalent translation, increasing WSR and PAR signifigant doing so.

Experiments were conducted on the Europarl corpus, in théipa established for the
WMTOS8 (see Section 1.4). Specifically, the language pairdistl were Spanish> English,
French— English and Germans English.

As a first step, an SMT system was trained for each of the lagggpairs cited in the
previous subsection. This was done by means of the Mosdstt@¢behn et al., 2007), and
the weights\ of the log-linear model were optimised by means of MERT.

This being done, word graphs were generated for the IMT BystEor this purpose,
the multi-stack phrase-based decoder which is part of thu tBlolkit (Ortiz-Martinez et al.,
2005) (see Section 1.5) was employed. The Moses decodeliseasakd in this case because
preliminary experiments performed with it revealed thatdlecoder by (Ortiz-Martinez et al.,
2005) performs clearly better when generating word graphthkir use in IMT. In addition,
an experimental comparison in regular SMT with the Europarpus found that the per-
formance difference between both decoders was negligitidevever, it must be noted that
the experiments performed in this chapter were carriedroyear2008, and since then the
quality of the word graphs provided by the Moses decoder heatly improved (the ver-
sion used at that time was checked out from the official sigieerepository on November
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Table 5.1: WSR improvement when considering non-explicit MAs. “réhtlicates the
relative improvement. All results are given in %.

pair baseline ant. proposal rel.
Es-En | 63.0+0.9 59.2+0.9 6.0:1.4
En-Es | 63.8+0.9 60.5:1.0 5.2t1.6
De-En| 71.6+0.8 69.6:0.9 3.6t1.3
En-De| 75.9+0.8 73.5£0.9 3.2t1.2
Fr-En | 62.9+0.9 59.2+1.0 5.9t1.6
En—Fr | 63.4+0.9 60.0:0.9 5.4-1.4

13, 2007). The decoder was set to only consider monotonic translaimce in real IMT
scenarios considering non-monotonic translation leagg¢essive waiting time for the user.

Finally, the word graphs obtained were used within the IMGgadure to produce the
reference translation contained in the test set, measwidB and PAR. The results of such
a setup can be seen in Table 5.1. As a baseline system, tlt@trabllMT framework pre-
sented in Section 1.3 is reported, in which no pointer acisotaken into account. Then,
anticipated proposal pointer actions were introducecdgiabtg an average improvement in
WSR of about 3.2% (4.9% relative). The table also shows tinéidence intervals at a con-
fidence level of 95%. These intervals were computed follgwive bootstrap technique de-
scribed in Section 1.2.2. Since the confidence intervalsal@mwerlap, it can be stated that
the improvements obtained are statistically significant.

Once the anticipated proposal pointer actions were coresidand introduced into the
system, the effect of performing up to a maximum of 5 partdilisal pointer actions was
analysed, taking as baseline system this time the one ttegtdyl includes anticipated pro-
posal pointer actions. Here, the user was modelled in sucydtvat, in case a given word is
considered incorrect, he will always ask for another tratish hypothesis until he has asked
for as many different suffixes as pointer actions considefée results of this setup can be
seen in Figure 5.3. This yielded a further average improveme/NSR of about 16% (25%
relative improvement) when considering a maximum of 5 exiptiointer actions. However,
relative improvement in WSR and uPAR drops significantly wirereasing the maximum
allowed amount of explicit pointer actions from 1 to 5. Fastieason, it is difficult to imag-
ine that a user would perform more than two or three pointéomas before actually typing
in a new word. Nevertheless, just by asking twice for a neviixsbéfore typing in the word
he has in mind, the user might be saving about 15% of wordea$io

Although the results in Figure 5.3 are only for the transiatiirection “foreign>English,
the experiments in the opposite direction (i.e. Enghsforeign”) were also performed.
However, the results were very similar to the ones displdyar@. Because of this, and for
clarity purposes, we decided to omit them and only displaydirection “foreign>English.
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Figure 5.3: WSR improvement when considering one to five maximum PAsfigures
are given in %. The left column lists WSR improvement versdR Begradation, and
the right column lists WSR improvement versus uPAR. Confideintervals at 95%
confidence level following (Koehn, 2004).

5.6 Conclusions and future work

In this chapter, new input sources for IMT have been intreducBy considering pointer
actions as a form of weaker feedback, it has been shown thgh#icant benefit can be
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obtained, in terms of word-stroke reduction, both when @erghg only anticipated proposal
pointer actions and when considering pointer actions asyaoiaffering the user several
suffix hypotheses (i.e.,partial refusal). In addition sthédeas have been applied on a state-
of-the-art SMT baseline, such as phrase-based models. hievacthis, word graphs were
first obtained for each sentence which is to be translategefiments were carried out on a
reference corpus in SMT.

Note that there are other systems (Esteban et al., 2004)dnat given prefix, provide
n-best lists of suffixes. Although it might seem that such apph is very similar to the
one presented here, the functionality of the present sysestightly (but fundamentally)
different, since the suggestions are demanded to be differ¢heir first word, which implies
that then-best list is scanned deeper, going directly to those hygsaththat may be of interest
to the user. In addition, this can be done “on demand”, whiplies that the system’s
response is faster and that the user is not confronted wiinge list of hypotheses, which
often results overwhelming.

As future work, a human evaluation would be necessary tesagke appropriateness of
the improvements described.

The work presented in this chapter was accepted for pulditat an international con-
ference:

e G. Sanchis-Trilles Daniel Ortiz-Martinez, Jorge Civera, Francisco Casadab&n-
rique Vidal and Hieu Hoang Improving Interactive Machinafslation via Mouse
Actions. InProceedings of the Conference on Empirical Methods in Netuan-
guage Processing, EMNLP 2008ages 485-494, Honolulu, Hawaii (USA), October
2008.

In addition, it also lead to a publication in an internatibmarkshop:

e G. Sanchis-Trilles M.T. Gonzélez, F. Casacuberta, E. Vidal and J. Civera thicong
Additional Input Information into IMT Systems. IAroceedings of the 5th Joint Work-
shop on Multimodal Interaction and Related Machine Leagnilgorithms, MLMI
2008 pages 284—295, Utrecht (The Netherlands), September 2008

Furthermore, currently there is work in progress for putitig an article in an interna-
tional journal, together with similar work done by anothather in the field of interactive
text recognition.
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Asnografia

Leo en un Diccionario: Asnografia.f.: Se dice, irbnicamente, por descripcién del asno.

iPobre asno! jTan bueno, tan noble, tan agudo como eresicdrdente... ¢Por qué?
¢Ni una descripcién seria mereces, tU, cuya descripcidtaceria un cuento de primavera?
iSi al hombre que es bueno debieran decirle asno! iSi al asmegmalo debieran decirle
hombre! Ir6nicamente... De ti, tan intelectual, amigo dejory del nifio, del arroyo y de
la mariposa, del sol y del perro, de la flor y de la luna, paeignteflexivo, melancélico y
amable, Marco Aurelio de los prados...

Platero, que sin duda comprende, me mira fijamente con sz®®jucientes, de una
blanda dureza, en los que el sol brilla, pequefiito y chigeean un breve y convexo firma-
mento verdinegro. jAy! iSi su peluda cabezota idilica stgpigie yo le hago justicia, que yo
soy mejor que esos hombres que escriben Diccionarios,arabueno como él!

Y he puesto al margen del libro: Asnograf§entido figurado: Se debe decir, con ironia
iclaro esta!, por descripcién del hombre imbécil que eseiliiccionarios.

Platero y Yo. Juan Ramon Jiménez.

| read in a Dictionary: Asnografiand: Itis said, ironically, by description of the donkey.

Poor donkey! So good, so noble, so sharp you are! Ironicalyhy? Not even a descrip-
tion would deserve it, you, whose story would be a true dpsori of spring? If the man who
should say good ass! If it's bad ass man should say! IronjcalFrom you, so intellectual,
friend of the old and the child, the stream and the butterfly), and the dog, flower and
moon, patient and thoughtful, melancholy and gentle, M#&wrelio of meadows...

Platero, which undoubtedly includes, stares at me with higeles shining, a soft hard-
ness, where the sun shines, tiny, sparkling in a short andecogreen-black sky. Oh! If
your furry idyllic stubborn | do know that justice, that | anetber than the men who write
dictionaries, almost as good as him!

And | put the book aside: Asnografifigurative sense: It must be said, with irony of
course!, For description of the man who writes dictionaidkt.

Platero y Yo. Google Translate.

140 GST-DSIC-UPV



6.1. Summary

6.1 Summary

The work developed in this thesis confronts three of the npaoblems present in state-
of-the-art statistical machine translation systems, ahathvprevent their wide-spread use
within current computer assisted translation tools. Thepgs are efficiency, adaptability,
and usability.

Striving for decreasing the response time of state-ofatti@nachine translation systems,
we presented a novel technique for pruning the total amofipaameters present in the
translation system. The intuition behind this techniqueisbtain one single segmentation
of each bilingual sentence present in the training datajiagrto a full re-estimation of the
model parameters. With the purpose of reducing the possftdets on translation quality,
n-best segmentations are also considered. In statisticehima translation, experimental
results show that a very aggressive pruning may be perfomitebut any loss at all in
translation quality, achieving very important speedugsatThe experiments were carried
out by using state-of-the-art statistical machine traisliesystems, covering several different
language pairs, and with corpora used in standard mactdnsl#tion tasks. In interactive
machine translation, the performance gains achieved wfihoy loss in system performance
are less impressing, although not negligible at all. Howedtvenust be kept in mind that the
experiments performed in this direction were carried ou simulated interaction setting,
with only one reference translation, which implies thatéfkaluation metric used has a very
important impact on the results obtained.

When confronting the adaptability problem, two differeesearch directions were ex-
plored. On the one hand, we developed a strategy for incrgdisé adaptability of the lan-
guage model, which is a key component of every machine &tiaslsystem. This technique
is inspired by the idea of increasing the flexibility of thexdgmage model by subdividing
it into several, more specific, sub-models. Such models wenstructed either by taking
advantage of supervised labels concerning dialogue aatnvdtion, when such labels are
available, or by building unsupervised clusters of thelabé training data. The results ob-
tained on different standard machine translation taskstpoivards a potential benefit which
can be achieved by applying the technique described. Eargththe improvements ob-
tained in the work presented here are relatively limitedsthare coherent throughout all the
experiments performed, involving different corpora anmjlaage pairs.

On the other hand, adaptability was also pursued by dealitigtie translation model
adaptation problem from the Bayesian perspective. In thigext, Bayesian predictive adap-
tation is unveiled as a powerful adaptation method in dtesismachine translation, with
a statistically sound formulation, allowing an efficientglementation, and which entails
consistent and coherent improvements. Experiments peefdon standard corpora in statis-
tical machine translation and with state-of-the-art aystéave proved that the adaptation of
the log-linear weights present in modern models is an effestay of adapting the transla-
tion model, yielding important improvements in translatiuality even when the amount of
adaptation data is very low. However, adapting the featumetfons led to a less promising
result, since the additional computational burden doegustify the marginal (yet coherent)
improvements obtained.

Finally, concerning the usability of modern interactiveahnime translation systems, we
have presented a simple, yet effective, extension of tlthtimaal interaction scheme. The
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key idea that has led to this extension involves realisirag the the human translator is
not only interacting with the translation system by meanshefkeyboard. In this sense,
we have presented the mouse as a valuable information suggsth in an implicit and in an
explicitway. On the one hand, we have shown how to anticithet@ossible changes the user
might want to perform, and on the other hand we have shown bemtich the information
facilitated to the user, while preventing clogging the ifdee with too much information.
Experimental results in a simulated interactive machiardiation scenario show that there
is much to be gained by adopting the ideas described in thestibn.

To summarise, the main contributions of this thesis aredheviing:

1. It is shown that the phrase-table present in state-ekthsetatistical machine transla-
tion systems can be aggressively pruned without any lossaiskation quality. We
present a technique for doing this, which evolves to a patame-estimation method.

2. Language model mixtures are presented as a promising fyagwading flexibility to
the language model. Results reported on different taskd pmvard potential benefits.

3. Bayesian predictive adaptation is applied to statistitzchine translation. The theo-
retical framework for achieving this is presented, and expental results on different
corpora prove that substantial improvements can be adhieviere specifically, the
adaptation of the log-linear weights provides consisteiprovements, while adapting
the feature functions provides only marginal improvements

4. The traditional interactive machine translation irded is improved by taking into ac-
count the mouse with which the user is able to perform diffeaetions. By doing so,
it is possible to improve the productivity achieved by a hartranslator in about5%.

6.2 Scientific publications

Even though the scientific publications derived from thissib have already been listed in
their corresponding chapters, at this point we would likesdonmarise them, but listed ac-
cording to their importance, rather than their research.are

First, an article was published in an international journath an estimated impact factor
in year2010 of 2.607:

e P. Martinez-Gémez;. Sanchis-Trillesand F. Casacuberta. Online adaptation strate-
gies for statistical machine translation in post-editingrsrios. InPattern Recogni-
tion. (In presg (Relative to Chaptery

In addition, several research articles have been publighétternational conferences
ranked A by the Computing Research and Education Assogiafidustralasia (CORE):

e G. Sanchis-Trilles Daniel Ortiz-Martinez, Jorge Civera, Francisco Casatab&n-
rigue Vidal and Hieu Hoang Improving Interactive Machinafislation via Mouse
Actions. InProceedings of the Conference on Empirical Methods in Netuan-
guage Processing, EMNLP 2008ages 485-494, Honolulu, Hawaii (USA), October
2008. Relative to Chapterp
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e G. Sanchis-Trillesand F. Casacuberta. Bayesian Adaptation for Statisticalhiia
Translation. InProceedings of the Joint IAPR International Workshops aacBtral
and Syntactic Pattern Recognition and Statistical Techesqgin Pattern Recognition,
S+SSPR 2010pages 620-629, Cesme, Izmir (Turkey), August 201Reldtive to
Chapter 4

e J. Andrés-Ferrerc. Sanchis-Trillesand F. Casacuberta Similarity Word-Sequence
Kernels for Sentence Clustering. Broceedings of the 8th International Workshop on
Statistical Pattern Recognition, S+SSPR 20C8sme (Turkey), August 2010Réla-
tive to Chapter 3

e G. Sanchis-Trillesand F. Casacuberta. Log-linear weight optimisation viac€3#&n
Adaptation in Statistical Machine Translation. Hroceedings of the 23rd Inter-
national Conference on Computational Linguistics (postelume), COLING 2010
pages 1077-1085, Beijing (China), August 201Relative to Chapter@

There have also been numerous publications indexed in tiREd@nking, but with less
estimated impact:

e J. Gonzélez(s. Sanchis-Trillesand F. Casacuberta. Learning Finite State Transduc-
ers Using Bilingual Phrases. Rroceedings of the 9th International Conference on
Intelligent Text Processing and Computational LingustiCICLing 2008pages 411—
422, Lecture Notes in Computer Science, Haifa (Israel) rliaaty 2008. Relative to
Chapter 3

e G. Sanchis-Trilles M.T. Gonzalez, F. Casacuberta, E. Vidal and J. Civera thitcing
Additional Input Information into IMT Systems. IRroceedings of the 5th Joint Work-
shop on Multimodal Interaction and Related Machine Leagnikigorithms, MLMI
2008 pages 284—295, Utrecht (The Netherlands), September. 2Réktive to Chap-
ter 5)

e G. Sanchis-Trillesand M. Cettolo Online Language Model Adaptation via N-gram
Mixtures for Statistical Machine Translation. Rroceedings of the 14th Conference
of the European Association for Machine Translation, EAMIL@ Saint-Raphaél,
(France), May 2010 Relative to Chapter)3

e G. Sanchis-Trilles D. Ortiz-Martinez, J. Gonzélez-Rubio, J. Gonzalez anddSaCu-
berta. Bilingual segmentation for phrasetable pruningtati§ical Machine Trans-
lation. InProceedings of the 15th Annual Conference of the Europeandietion
for Machine Translation, EAMT 201 pages 257—-264, Leuven (Belgium), May 2011.
(Relative to Chapter2

Further publications which are neither indexed in the Jauof Citations Report (JCR)
ranking nor in the CORE ranking have also been published:

e G. Sanchis-Trillesand F. Casacuberta. Increasing Translation Speed in PBeesssl
Models via Suboptimal Segmentation. Pnoceedings of the 8th International Work-
shop on Pattern Recognition in Information Systems, PR0OB,3tages 135-143, IN-
STICC Press, Barcelona (Spain), June 208&I&tive to Chapter2

GST-DSIC-UPV 143



Chapter 6. Conclusions

e G. Sanchis-Trilles M. Cettolo, N. Bertoldi and M. Federico Online Language Mbd
Adaptation for Spoken Dialog Translation. Rroceedings of the International Work-
shop on Spoken Language Translation, IWSLT 2@@ges 160-167, Tokyo (Japan),
December 2009 Relative to Chapter)3

e N. Bertoldi, A. Bisazza, M. Cettolo. Sanchis-Trilles and M. Federico FBK @
IWSLT 2009. InProceedings of the International Workshop on Spoken Laggua
Translation, IWSLT 20Q%ages 160-167, Tokyo (Japan), December 20B@lative
to Chapter 3

e V. Alabau, F. Casacuberta, L.A. Leiva, D. Ortiz-Martin€, Sanchis-Trilles  Sis-
tema web para la traduccion automatica interactiva. Adtas del Xl Congreso In-
ternacional de Interaccién Persona Ordenador, INTERACRIZ01Q pages 47-56,
Valencia (Spain), September 201R¢ative to Chapter)s

e G. Gasco, V. Alabau, J. Andrés—Ferrer, J. Gonzalez-Rubidd.NRocha,G. Sanchis-
Trilles, F. Casacuberta, J. Gonzalez and J. A. Sanchez. ITI-UP¥mydtscription for
IWSLT 2010 InProceedings of the 2010 International Workshop on Spokeglage
Translation, IWSLT 201(Qpages 85-92, Paris (France), December 20R@lative to
Chapter 4

Finally, there is one further publication which has beennsitied to an international
journal with an estimated impact factor 2871, but which has not yet been accepted:

e G. Sanchis-Trillesand F. Casacuberta. Batch and online Bayesian predictagtad
tion in statistical machine translation. @omputational Linguistics(submitted for
revision) Relative to Chaptery

In addition, further work carried out during the same peraddime than the present
thesis, but that is not directly related to the topics presthere, was published in several
international conferences and workshops:

e G. Sanchis-Trillesand F. Casacuberta. N-Best reordering in Statistical Mechians-
lation. InProceedings of IV Jornadas en Tecnologia del Habla, IV Jiafjes 99-104,
Zaragoza (Spain), November 2006.

e G. Sanchis-Trillesand F. Casacuberta. Reordering via N-Best Lists for Spanish
Basque Translation. IRroceedings of the 11th International Conference on Theore
ical and Methodological Issues in Machine Translation, TAMI07) pages 191-198,
Skévde (Sweden), September 2007.

e G. Sanchis-Trillesand J.A. Sanchez. Vocabulary Extension via POS Informdtion
SMT. In Proceedings of Mixing Approaches to Machine TranslatiodTWIT 2008
pages 63—70, San Sebastian (Spain), February 2008.

e G. Sanchis-Trillesand J.A. Sanchez. Using Parsed Corpora for Estimating Sstich
Inversion Transduction Grammars. BRioceedings of the 6th edition of the Interna-
tional Conference on Language Resources and EvaluatioB( R008 pages 1825—
1827 , Marrakech (Morocco), May 2008 QORE §
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J. Gonzalez-Rubid;. Sanchis-Trilles Alfons Juan and F. Casacuberta. A novel align-
ment model inspired on IBM Model 1. IRroceedings of the 12th Annual Conference
of the European Association for Machine Translation, EAMT& pages 47-56, Ham-
burg (Germany), September 2006GRE B

e G. Sanchis-Trillesand J.A. Sanchez. Phrase segments obtained with Stochastic
version Transduction Grammars for Spanish-Basque trémisla In Proceedings of
the V Jornadas en Tecnologia del Habla, JTH 200&ges 119-122 , Bilbao (Spain),
November 2008.

e P. Martinez-Gomez;. Sanchis-Trillesand F. Casacuberta. Online learning via dy-
namic reranking for Computer Assisted Translation. Phoceedings of the 12th In-
ternational Conference on Intelligent Text Processing @athputational Linguistics,
CICLing 2011 pages 93-105, Tokyo (Japan), February 20CORE B

e P. Martinez-Gémez5. Sanchis-Trillesand F. Casacuberta. Passive-Aggressive for
On-line Learning in Statistical Machine Translation. Rmoceedings of the Iberian
Conference on Pattern Recognition and Image Analysis, IBRR11, pages 240-247,
Las Palmas de Gran Canaria (Spain), June 20Q0ORE Q

e G. Gasco, M.A. Rochd&;. Sanchis-Trilles J. Andrés-Ferrer and F. Casacuberta. Does
more data always yield better translations?.Pmceedings of the 13th conference of
the european chapter of the Association for Computatiomadlistics, EACL 2012
accepted for publicatiorAvignon (France), April 2012.GORE A

6.3 Future work

Research is a never-ending field of work. One never knows evhewill end, because it
will never end, and the researcher is compelled to keep ohipgighe frontier of human
knowledge in a constant attempt of breaching it. Hence, tiris¢hesis is completed, a large
amount of work remains yet to be done.

Regarding the parameter pruning technique described ipt€ha, there are two main
directions which are worth exploring. The first one conceatreschoice of the weighting
factor G(y). We understand that the choice Gfy) is critical, and the goal should be to
improve the translation quality obtained by the baselirstesy, both in statistical machine
translation and in interactive machine translation. Is #@nse, there has been recent work by
other research groups (Duan et al., 2011) that points irstnge direction, and which shows
that there is a research area worth of being explored. Thandeatdirection which we intend
to explore regards relaxing the different restrictionsligobin translation time. Typically,
there are several constraints which are applied to thelsgaocess so that the computational
cost involved is not too high, such as maximum stack size otirmam number of translation
options per input phrase. However, given that the techisiguesented here reduce such cost,
it would be interesting to analyse the effect on translagjoality of relaxing such restrictions,
given that computational time is not such a big issue aftptyapgy the parameter pruning
technique described.
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Concerning model adaptation, the first step is to apply thgtdion techniques described
in this thesis within an interactive machine translatioarsrio. In this sense, there is already
some work being performed, which unveils the adaptatioblera in IMT as a problem with
its own identity, i.e., techniques that behave correcthaitraditional machine translation
setting cannot be applied directly in an interactive scdenafhe reason for this is that the
metric to be optimised in SMT does not correlate completati the metric to be optimised
in IMT. Although it might seem that this is a minor problemns® adaptation strategies,
such as Bayesian predictive adaptation, need to selecettdppothesis in a non-interactive
SMT scenario. Moreover, adaptation in IMT might take plagerebefore the full sentence
has been validated, and this is bound to open different rels@assibilities as well.

In Bayesian predictive adaptation, the prior over the mgdehmeters has a key role
when computing the best output hypothesis. For this reasmh given the positive results
achieved by the implementation presented, we consideittlsaa problem which deserves
further attention. Furthermore, it can be proved experialgrthat no single set of log-linear
weights is able to produce the best output, in terms of tediasl quality, for each one of the
input sentences present in the adaptation data. Guidedebg ttwvo facts, we consider that it
would be interesting to consider Gaussian mixtures for #raieter prior.

Given that the four sampling strategies presented yieligmifit performance in terms
of final translation quality, another possible extensionhi® work presented in Chapter 4
consists in studying other possible parameter sampliragesjies, as for instance particle
filters or other sequential Monte Carlo methods (Doucet.e@D1).

In addition, we would also like to explore other possible @dton techniques. One
technique that has found a very wide acceptance in speecgnition, but has not been ex-
plored as of yet in machine translation, is maximum liketitidinear regression (MLLR)
(Christensen, 1998). The application of this technique &atmme translation is not straight-
forward, since the different approximations carried outi@ statistical models used in SMT
imply that several counts required for the EM estimation matbe computed easily. Never-
theless, we would like to explore this possibility, and gsalto which extent it can be applied
to SMT.

Finally, even though in this case the extension proposedhiapr 5 was performed
by only considering the mouse, one could easily imaginedfit devices which might be
transparent to the user and do not necessarily imply ovémihg the user with too many
different stimuli, and are yet able to provide the systemhwiéry important information.
Possible examples might be, for instance, a simple optealqy even gaze tracking device.
In addition, one can also imagine other possible interact@hemes that may take advantage
of the mouse (or other devices), and which can boost the ptivity of the human translator
even further. For example, one such scheme might be to etableser to select a given part
of the translation hypothesis, without requiring that spelnt must be a specific suffix, and
ask the system for other possible translation options far $pecific fragment. We plan to
research all these possibilities in the near future.
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