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Introducción

Los resultados que contiene esta memoria son una contribución al estudio de la dinámica no
uniformemente hiperbólica, la cual constituye el escenario donde se plantean muchas cuestiones
de actualidad sobre complejidad dinámica. En contraposición, la dinámica uniformemente hiper-
bólica comenzó a ser bien entendida durante los años sesenta a partir de los primeros traba-
jos de Anosov [Ano67] y Smale [Sma67]. Tres décadas antes, en un elaborado trabajo [Bir35],
Birkhoff probó que en general, cerca de los puntos homoclínicos transversales, introducidos por
Poincaré [Poi90], existía un intrincado conjunto de órbitas periódicas, la mayoría con un peri-
odo muy alto. A fin de iluminar este resultado de Birkhoff y otros resultados posteriores sobre
la existencia de infinidad de órbitas periódicas en la ecuación de Van der Pol [CL45, Lev49],
Smale colocó en un entorno de un punto homoclínico transversal su ingenio geométrico: la apli-
cación herradura. Esta aplicación, así como los ejemplos propuestos por Anosov sobre el toro, son
difeomorfismos cuyo conjunto no errante Ω es hiperbólico y coincide con la clausura de los puntos
periódicos. Difeomorfismos con estas propiedades fueron denominados Axioma A o difeomorfismos
uniformemente hiperbólicos, y se planteó el estudio de estos difeomorfismos como un subconjunto
del espacio Diffr(M) de los difeomorfismos de clase Cr sobre una variedad compacta M .

Un resultado fundamental para el estudio de los difeomorfismos Axioma A en Diffr(M) fue
el teorema de descomposición espectral dado por Smale [Sma67], según el cual el conjunto no
errante Ω se descompone en una unión disjunta y finita de subconjuntos Λi llamados conjuntos
básicos. Cada Λi es un conjunto compacto, aislado, invariante y transitivo. Dos puntos periódicos
en el mismo conjunto básico Λi tienen variedades estables con la misma dimensión (índice de
estabilidad) y por consiguiente variedades inestables de la misma dimensión (índice de Morse).
Un elocuente y relevante ejemplo de conjunto básico es el conjunto invariante Ω de una aplicación
herradura. La dinámica de la restricción de la aplicación herradura sobre este conjunto se sigue
de su conjugación con el shift de Bernoulli.

Las aplicaciones herradura asociadas a un punto homoclínico transversal constituyen un hito
importante en el estudio de los sistemas dinámicos. Su conjunto invariante Ω aporta un ejemplo
de dinámica casi-aleatoria, consecuencia del caracter expansivo de sus órbitas que implica una alta
sensibilidad de la dinámica a las condiciones iniciales. Sin embargo, Ω no es un atractor por no tener
un recinto de atracción con interior no vacío (o medida positiva) y, por consiguiente, su dinámica
interna no es susceptible de ser observable como la dinámica asintótica de un difeomorfismo. Esta
deficiencia fue salvada por Smale quien, por analogía con la herradura, construyó el solenoide
como un primer ejemplo de atractor extraño (atractor con un órbita densa expansiva) que era
hiperbólico. Este ejemplo de atractor no periódico con una dinámica interna impredecible, por su
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sensibilidad exponencial a las variaciones de las condiciones iniciales, inspiró el celebre artículo de
Ruelle y Takens [RT71] sobre la naturaleza de la turbulencia.

Una vez visto que los difeomorfismos uniformemente hiperbólicos aportaban nuevas inter-
pretaciones dinámicas, se plantearon en el contexto de la teoría de la bifurcación dos impor-
tantes cuestiones: la relación de la hiperbolicidad uniforme con la estabilidad estructural y la
densidad de los difeomorfismos uniformemente hiperbólicos en el espacio Diffr(M), dotado de
la Cr-topología. Después de algunos resultados parciales de Robbin [Rob71], de Melo [Mel73]
y Robinson [Rob74, Rob76], Mañé [Mañ88] probó que, tal y como habían conjeturado Palis y
Smale [PS70], un difeomorfismo f ∈ Diff1(M) es estructuralmente estable si y sólo si es uniforme-
mente hiperbólico y verifica la condición fuerte de transversalidad: todas las variedades invariantes
de los puntos del conjunto no errante Ω tienen que intersecarse transversalmente. En relación con
la densidad, aunque la hiperbolicidad uniforme se creyó en principio abarcando un subconjunto
residual, o al menos denso, de Diffr(M), pronto se constató que esto no era cierto. Hay dos con-
figuraciones importantes que fuerzan la persistencia de la no hiperbolicidad uniforme: los ciclos
heterodimensionales y ciertas tangencias homoclínicas (ver ambos conceptos en Definición 1.1). Los
primeros fueron usados por Abraham y Smale [AS70] y Simon [Sim72] para construir ejemplos de
abiertos de difeomorfismos en Diff1(M), con dimM ≥ 3, que no son uniformemente hiperbólicos.
Las tangencias homoclínicas, cuando se producen entre las variedades invariantes de un punto
periódico que pertenece a un conjunto básico no trivial, son el fundamento del bien conocido
fenómeno de Newhouse, [New70, New74, New79] para C2-difeomorfismos sobre superficies. Para
pequeñas perturbaciones del difeomorfismo ambas configuraciones fuerzan la persistencia de las
tangencias homoclínicas, que implican la presencia de puntos no errantes con diferentes índices
de estabilidad y, en definitiva, la persistencia de la no hiperbolicidad uniforme. Por consiguiente,
el conjunto Diffr(M) es la unión disjunta de dos conjuntos, los uniformemente hiperbólicos y su
complementario, que contienen a su vez conjuntos abiertos.

El conjunto de los uniformemente hiperbólicos contiene al abierto de los estructuralmente
estables y su dinámica es bastante bien entendida. Por contraposición, los difeomorfismos no
uniformemente hiperbólicos, que por ser persistentes son también abundantes, no son estruc-
turalmente estables. Sus dinámicas tienen que comportar infinidad de transiciones y, por consi-
guiente, pertenecerán a su ámbito las dinámicas que se manifiestan más complicadas. Este es el
caso de algunos de los atractores más populares. A partir de su estudio numérico, el atractor de
Lorenz [Lor63] parece ser extraño, persistente pero no estructuralmente estable, mientras que la
persistencia parece fallar en el caso del atractor de Hénon [Hén76]. Puesto que los atractores hiper-
bólicos son persistentes y estructuralmente estables, tanto el atractor de Lorenz como el de Hénon
no pueden ser atractores hiperbólicos. Pero, ¿existen realmente atractores extraños no hiperbóli-
cos? La primera prueba analítica de la existencia de tales atractores fue dada por Benedicks y
Carleson [BC91], quienes probaron que en la familia de Hénon Ha,b(x, y) = (1− ax2 + y, bx) exis-
tían atractores extraños para un conjunto de valores de los parámetros suficientemente próximos
a a = 2 y b = 0 y con medida de Lebesgue positiva (persistencia en el sentido de la medida).
Las ideas y las intrincadas técnicas en [BC91] fueron utilizadas por Mora y Viana [MV93] para
probar que, tal y como había conjeturado Palis, familias genéricas uniparamétricas de difeomor-
fismos sobre una superficie desplegando una tangencia homoclínica tienen atractores extraños con
probabilidad positiva en el espacio de parámetros. La existencia de tales atractores en familias



Introducción iii

de campos vectoriales tridimensionales fue probada en [PR97] a partir de la sección transversal a
una órbita homoclínica de Shil’nikov [Shi65]. La prueba de la existencia de atractores extraños no
hiperbólicos parte en [BC91] de considerar que la familia de Hénon es un despliegue de la familia
límite ha(x) = 1−ax2 que se obtiene al tomar b = 0. Esta familia cuadrática ha sido previamente
bien estudiada en [BC85] y su dinámica expansiva se traslada a la variedad inestable del punto
de silla de Ha,b(x, y) = (1 − ax2 + y, bx) cuando b es suficientemente pequeño. En [MV93] esta
estrategia se aplica después de hacer una adecuada renormalización de la aplicación retorno a un
entorno del punto homoclínico. La familia resultante continua siendo un buen despliegue de la
familia cuadrática (una familia tipo Hénon) y las ideas y técnicas en [BC91] se pueden adaptar
a este caso. En [PR97] se prueba que la familia que se obtiene después de una adecuada renor-
malización es un buen despliegue de una familia límite, que en este caso es la familia unimodal
fa(x) = λ−1 log a+ x+ λ−1 log cosx, y los argumentos en [BC91] continúan siendo válidos.

El objetivo principal en el estudio de los sistemas dinámicos es describir el comportamiento
asintótico de las trayectorias de la mayoría de los sistemas. En el fragor del estudio de los sis-
temas hiperbólicos, Smale conjeturó que el conjunto límite de las trayectorias de un sistema
dinámico genérico debería presentar una dinámica interna hiperbólica: incremento y disminución
exponencial de las distancias en dimensiones complementarias. Sin embargo, los atractores no
hiperbólicos mencionados anteriormente aportaron contraejemplos y plantearon la necesidad de
nuevas propuestas. Desde entonces y hasta el presente, la investigación de la dinámica no uni-
formemente hiperbólica fue principalmente programada por Palis [Pal00a, Pal08], quien propuso
un programa de trabajo compuesto de una serie de conjeturas interrelacionadas y encaminadas a
describir el comportamiento asintótico de familias genéricas de sistemas dinámicos dependiendo
de un número finito de parámetros. Concretamente, conjeturó que, genéricamente, sólo existe
un número finito de atractores transitivos donde se pueden acumular casi todas las trayectorias;
además, estos atractores deberán ser estocásticamente estables y soportar una medida física. A
diferencia del enfoque topológico dado en los años sesenta, el planteamiento ahora es probabilístico
y expresado en términos de la medida de Lebesgue, tanto en el espacio de parámetros como en el
espacio de fases. A partir del teorema de descomposición espectral y de la teoría de Sinai-Ruelle-
Bowen [Sin72, BR75, Rue76], se prueba que para los difeomorfismos uniformemente hiperbólicos
de clase C2 que no tienen ciclos existe a lo sumo un número finito de atractores, que son a su vez
estocásticamente estables y soportan una medida física. Entonces, un paso más allá será buscar
alguna forma robusta de hiperbolicidad (parcial o descomposición dominada) que esté presente
en ausencia de ciclos y donde se pueda probar la conjetura anterior. Esto plantea una dicotomía
entre algún conjunto de difeomorfismos hiperbólicos y aquellos que poseen algún tipo de ciclo.
Concretamente, Palis conjeturó que cualquier sistema dinámico puede ser Cr aproximado por uno
hiperbólico que no tenga ciclos o por uno que presenta alguna tangencia homoclínica o algún ciclo
heterodimensional. Una primera respuesta a esta última conjetura fue dada en la topología C1 por
Pujals y Sambarino en [PS00] para difeomorfismos en superficies. Para dimensión superior, Cro-
visier y Pujals [CP10] probaron que todo difeomorfismo f ∈ Diff1(M) puede ser C1 aproximado
por uno que tiene bien una tangencia homoclina o un ciclo heterodimensional o bien es esenciale-
mente hiperbólico, es decir, tiene un número finito de atractores hiperbólicos transitivos tal que
la unión de sus recintos de atracción es un abierto y denso en el espacio de fases. En definitiva,
las tangencías homoclínica y ciclos heterodimensionales constituyen una completa obstrución a la
hiperbolicidad.
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En relación con las tangencias homoclínicas, y ya en el ámbito de los difeomorfismos de clase
C2 sobre superficies, se han dado resultados notables. Como se ha mencionado más arriba, en fa-
milias genéricas desplegando una tangencia homoclínica entre las variedades de un punto periódico
hiperbólico aislado aparecen atractores extraños no hiperbólicos y persistentes en el sentido de la
medida. Cuando el punto periódico pertenece a un conjunto básico no trivial, la persistencia de las
tangencias homoclínicas para un conjunto abierto U de difeomorfismos se detectada originalmente
en [New70]. En un conjunto residual en U , de medida nula, aparecen simultáneamente infinitos
atractores periódicos [New74], e incluso infinitos atractores extraños de tipo Hénón [Col98]. Estos
resultados se pueden generalizar a situaciones de mayor dimensión [PV94, Via93, Lea08]. El in-
grediente geométrico que subyace en la persistencia de las tangencias homoclínicas es la aplicación
herradura. Concretamente la espesura de las foliaciones estable e inestable de un conjunto básico
Λ, que se prolongan en un entorno del punto homoclínico definiendo, respectivamente, dos con-
juntos de Cantor Ks y Ku sobre un determinado segmento. La prevalencia de la hiperbolicidad o
de la no hiperbolicidad depende de si la dimensión de Hausdorff HD(Λ) = HD(Ks) + HD(Ku) del
conjunto básico Λ es menor o mayor que uno [PY94, MPV01].

En relación con los ciclos heterodimensionales, un resultado temprano de Diaz [Día95] implica
la existencia de un conjunto abierto no vacío de familias C∞ de difeomorfismos (ft)t∈[−1,1] desple-
gando genéricamente un ciclo heterodimensional de f0 y tal que para todo t > 0 suficientemente
pequeño el correspondiente difeomorfismo ft no es uniformemente hiperbólico: las clases homo-
clíncias de dos puntos hiperbólicos de diferentes índices de estabilidad coinciden. La prueba de
este resultado se puede ilustrar con la elección de un difeomorfismo en R3 que tenga un ciclo het-
erodimensional entre dos puntos fijos P y Q. Con hipótesis adicionales de hiperbolicidad parcial,
linealización y estructura producto se comprende que el comportamiento de este difeomorfismo en
un entorno del ciclo se sigue de la dinámica de un sistema iterado de dos funciones reales (ver una
precisa definición de sistema iterado de funciones, en la sección §3.1). Esta reducción indica que
la persistencia de la hiperbolicidad no uniforme asociada a los ciclos heterodimensionales es de
naturaleza diferente a la que se sigue de las bifurcaciones homoclínicas. Si en el fenómeno de New-
house (persistencia de tangencias homoclínicas) el ingrediente geométrico esencial era la aplicación
herradura y la dimensión de Hausdorff de su conjunto básico, ¿qué elemento geométrico subyace
en la persistencia de la hiperbolicidad no uniforme al perturbar un ciclo heterodimensional? La
respuesta fue dada por Bonatti y Díaz al introducir en [BD96] el concepto de mezclador (blender
en inglés). A modo preliminar, un mezclador puede entenderse como un conjunto hiperbólico Γ

suficientemente grueso tal que la clausura de una variedad invariante de dimensión u de un punto
silla en Γ contenga una variedad invariante de dimensión u+ 1. Una primera definición precisa de
mezclador enfatizando sus aspectos geométricos puede ser encontrada en [BDV05]:

Definición (Mezcladores). Sea f un C1 difeomorfismo de una variedad compacta M y Γ ⊂M un
conjunto hiperbólico y transitivo de f con una descomposición dominada de la forma Ess⊕Ecs⊕Eu,
donde su fibrado estable Es = Ess ⊕Ecs tiene dimension igual a s ≥ 2 y Ecs es uno dimensional.
El conjunto Γ es un cs-mezclador si tiene una region de superposición C1-robusta B:

Existen un C1-entorno V of f y un conjunto abierto B de discos encajados en M de dimension
s − 1 tales que para todo difeomorfismos g ∈ V, todo disco Ds ∈ B interseca la variedad local
inestable W u

loc(Γg) de la continuación Γg de Γ para g.

Un cu-mezclador para f es definido como un cs-mezclador para f−1.
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Los mezcladores son el mecanismo subyacente que conduce a la generación de ciclos het-
erodimensionales robustos [BD08] y a tangencias homoclínicas robustas en la topología C1 para
variedades de dimension mayor o igual que tres [BD11]. Los mezcladores fueron también usados
en otras aplicaciones tales como la construcción de difeomorfismos no hiperbólicos robustamente
transitivos [BD96], la discontinuidad de la dimensión de conjuntos hiperbólicos [BDV95] y la
obtención de resultados sobre ergodicidad estable [RHTU07].

Un mezclador Γ para un C1 difeomorfismo f no es más que un conjunto hiperbólico, pero su
existencia presagia la presencia persistente de no hiperbolicidad uniforme. A modo de ejemplo,
esbozaremos como estos conjuntos permiten mezclar puntos de silla de diferentes índices. Supon-
gamos que estamos en dimensión tres, Γ es un cs-mezclador con índice de estabilidad s = 2 y
P ∈ Γ, Q 6∈ Γ son dos puntos periódicos de f , el primero con variedad inestable densa en Γ

y el segundo con índice de estabilidad s − 1 = 1. Asumimos que la variedad estable W s(Q) de
Q contiene un disco Ds en la región de superposición B del mezclador Γ. A partir del Lema de
Inclinación, la sucesión de preiterados de cualquier disco L de dimensión s − 1 = 1 transversal a
W u(Q) convergen a W s(Q). Por lo tanto, para n ≥ 0 suficientemente grande f−n(L) contiene un
disco en B. En vista de que Γ es un cs-mezclador,W u

loc(Γ) interseca a f−n(L) y así por la densidad
la variedad inestable de P se sigue que

W u(Q) ⊂W u(P ).

Esto es, la clausura de la variedad inestable de P (de dimensión uno) contiene a la variedad
inestable (bidimensional) de Q. Tenemos por lo tanto que en cierto sentido (digamos topológico)
la dimensión de la variedad inestable de P es igual a la variedad inestable de Q (esto es dos).
Consecuentemente aumentamos en una unidad la dimensión de la variedad inestable de P , así
para efectos prácticos, tendremos que el punto P tiene variedades invariantes de dimensión dos.

La construcción anterior nos permite ver que todos los puntos en la intersección transversal
γ = W s(P ) tW u(Q) (genéricamente unión de curvas) pertenecen tanto a la clase homoclínica de
P como a la de Q. Por lo tanto, γ esta contenida en el conjunto no errante de f . Obviamente los
puntos de γ no admiten un descomposición hiperbólica del fibrado tangente y se sigue que f no
puede ser uniformente hiperbólico. La persistencia del mezclador hace estos argumentos robustos
bajo C1 perturbaciones y de ahí que se obtiene un abierto de difeomorfismos no uniformente
hiperbólicos.

Nótese que el concepto de mezclador está formulado en el contexto más general de los C1

difeomorfismos. Ya en este contexto se prueba en [DR02] que si f es un C1 difeomorfismo con
un ciclo heterodimensional asociado a dos puntos de silla P y Q con índices s y s + 1 (es decir,
de coíndice uno) y C1 lejos de tangencias homoclínicas, entonces f pertenece a la clausura de un
abierto U de difeomorfismos no uniformemente hiperbólicos. Posteriormente, en [BD08] se probó
que cualquier ciclo heterodimensional de coíndice uno puede ser C1 aproximado por difeomorfismos
teniendo un ciclo heterodimensional C1-robusto. Uno de los pasos para probar este resultado fue
mostrar que aparecen de forma natural mezcladores tipo herraduras en el despliegue de ciclos
heterodimensionales de coíndice uno.
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La representación geométrica más elocuente de un mezclador y su relación con la aplicación
herradura se tiene al construir los llamados mezcladores herradura [BD11]. Esta construcción
involucra un difeomorfismo f definido en un cubo de referencia C = [−1, 1]n+1, con n ≥ 2, como
un producto cruzado de la forma

f : C ⊂ Rn × R→ Rn × R, f(x, y) = (F (x), φ(x, y)),

donde F : Rn → Rn tiene una herradura de Smale Λ ⊂ [−1, 1]n y las aplicaciones sobre las fibras

φ(x, ·) : [−1, 1]→ [−1, 1]

son contracciones de clase C1. Es evidente que si todas las aplicaciones φ(x, ·) son una misma
contracción φ, entonces la aplicación f |C es en esencia una aplicación herradura con un con-
junto invariante maximal Γ = Λ × {y0} donde y0 ∈ [−1, 1] es el punto fijo de la contracción φ.
Supongamos ahora que

H1 ∪H2 = F−1([−1, 1]n) ∩ [−1, 1]n

es la unión de las dos banda horizontales en la definición de una herradura y que φ(x, ·) = φi, según
x ∈ Hi con i = 1, 2, son dos contracciones diferentes, con puntos fijos y1 < y2. Los difeomorfismos
definidos de esta forma, se les conoce con el nombre de productos cruzados localmente constantes.
Entonces, en este caso, Γ ⊂ Λ× [y1, y2] es de nuevo un conjunto hiperbólico transitivo tal que f |Γ
es topológicamente conjugado a F |Λ. La proyección de Γ sobre el intervalo [y1, y2] viene dada por
la dinámica del sistema iterado de funciones generado por las contracciones φ1, φ2. Si existe un
abierto B ⊂ (y1, y2) tal que

B ⊂ φ1(B) ∪ φ2(B)

se prueba que esta proyección contiene a B. Es fácil comprobar que este abierto B sigue estando
contenido en la proyección sobre la recta real de la continuación Γg de Γ para todo difeomorfismo
g producto cruzado localmente contante y C1 próximo de f . Dicho contenido, es suficiente para
mostrar que para todo (x, y) ∈ (H1∪H2)×B, la variedad inestable local W u

loc(Γg) de Γg interseca
a la variedad estable fuerte local de (x, y) para g. Notando que dichas variedades estables fuertes
forman abierto de discos encajados en la variedad, se sigue que Γ satisface la definición de mez-
clador para todos los difeomorfismos productos cruzados localmente constantes C1 próximos a f .
Esta persistencia es el principal escollo a la hora de probar la existencia de un mezclador porque
cualquier difeomorfismo g suficientemente C1 próximo a f no es necesariamente un producto
cruzado y mucho menos, un producto cruzado localmente constante. Esta dificultad se resolverá
siguiendo los resultados de hiperbolicidad normal desarrollados en [HPS77]: bajo determinadas
hipótesis sobre la descomposición hiperbólica de f se concluye que g es topológicamente conju-
gado a un producto cruzado. Por consiguiente, a la hora de probar la persistencia de la condición
de intersección sera suficiente considerar C1 perturbaciones de f en la categoría de los difeomor-
fismos productos cruzados. Por otra parte, puesto que F |Λ es conjugado a un shift de Bernoulli
τ : Σ2 → Σ2 de dos símbolos, los mezcladores-herradura pueden ser estudiados desde el punto de
vista simbólico, considerando productos cruzados de la forma

Φ : Σ2 × R→ Σ2 × R, Φ(ξ, x) = (τ(ξ), φξ(x)),

donde cada φξ : R→ R es una contracción de clase C1.
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El concepto de cs-mezclador está asociado a C1 difeomorfismos que tienen un conjunto parcial-
mente hiperbólico con un descomposición dominada Ess⊕Ecs⊕Eu, y ha sido siempre definido y
manejado en el caso en el que la dirección central Ecs es unidimensional. Esto supone un obstáculo
en contextos donde se planteen variedades centrales de dimensión c ≥ 2. Por lo tanto, una cuestión
natural es manejar y construir mezcladores cuya dirección central no sea necesariamente unidi-
mensional. Siguiendo la propuesta de Nassiri y Pujals [NP12] un camino para ello es considerar la
dinámica simbólica en el contexto de los productos cruzados simbólicos

Φ : Σk × Rc → Σk × Rc, Φ(ξ, x) = (τ(ξ), φξ(x)),

donde Σk = {1, . . . , k}Z, c ≥ 1, y cada φξ : R→ R es de nuevo una contracción de clase C1.
Un mezclador en este contexto será denominado mezclador herradura simbólico o simplemente
mezclador simbólico. El primer objetivo de nuestro trabajo es dar condiciones de existencia de
mezclador simbólico en este contexto más general. Estas condiciones se aplicarán para estudiar
la génesis de mezcladores en perturbaciones de Φ(ξ, x) = (τ(ξ), x) y explicar a partir de ello la
presencia de mezcladores suspendido para campos de vectores en R4 arbitrariamente próximos a
un campo Hamiltoniano XH con una órbita homoclínica bifocal no degenerada, donde un difeo-
morfismo tridimensional se puede definir como la aplicación retorno sobre una sección transversal
a la órbita homoclínica. Por una órbita homoclínica bifocal de un campo de vectores en R4 se
entiende una conexión homoclínica a un punto de equilibrio foco-foco, esto es, que tiene autoval-
ores −ρ1 ± iω1, ρ2 ± iω2. Puesto que en todo despliegue genérico de una singularidad nilpotente
de codimensión cuatro en R4 aparecen órbitas homoclínicas bifocales [BIR11], desplegadas como
continuación de similares conexiones homoclínica en familias límite de campos de vectores Hamil-
tonianos, finalmente mostramos como en estos despliegue de estas singularidades singularidades
podrían aparecer mezcladores.

La exposición de esta memória de tesis se organiza en cuatro capítulos autocontenidos. A
continuación presentamos algunos de los principales resultados que se recogen en cada uno de
ellos:

I – Ciclos robustos y mezcladores – En el primer capítulo de la tesis se introduce con detalle
alguno conceptos preliminares, conjeturas y ejemplos que ya han sido invocados a lo largo de esta
introducción. El objetivo es llegar a introducir el concepto de mezclador y mezclador-herradura
presente en la literatura previa de una forma autocontenida.

II – Mezcladores simbólicos – El segundo capítulo de la memoria de tesis se dedica a estu-
diar la existencia de mezcladores simbólicos. Los principales resultados de este capítulo son en
colaboración con Yuri Ki and Artem Raibekas y recogidos en la prepublicación [BKR12].

Este capítulo se desarrollará en el ámbito de los productos cruzados simbólicos

Φ : Σk ×M → Σk ×M, Φ(ξ, x) = (τ(ξ), φξ(x))

donde M es una variedad de Riemann compacta de dimensión c ≥ 1 y φξ : M →M son Cr difeo-
morfismos, r ≥ 0, los cuales dependen continuamente con respecto ξ. El primer factor del producto
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Σk ×M es llamado base y al segundo es la fibra. Para destacar el papel de los difeomorfismos de
fibras φξ usamos la notación Φ = τ n φξ. Al conjunto de estos productos cruzados simbólicos se
denotará por Sk(M). Cuando φξ sólo depende de la coordenada ξ0 de la bisucesión ξ = (ξi)i∈Z se
dice que Φ es un producto cruzado de un solo paso (o brevemente en inglés one-step) y en tal caso
se escribe Φ = τ n (φ1, . . . , φk) donde φξ = φi si ξ0 = i. El conjunto de los productos cruzados de
un solo paso se denota por Qk(M).

Trabajar con productos cruzados simbólicos Sk(M) es una buena propuesta para estudiar la
existencia de mezcladores en difeomorfismos productos cruzados de la forma

f : N ×M → N ×M, f(x, y) = (F (x), φ(x, y)),

cuando F es un difeomorfismo de una variedad N con una herradura Λ ⊂ N . Como ya anticipamos
más arriba, las C1 perturbaciones de estos difeomorfismos no continúan siendo necesariamente
productos cruzados. A fin de poder garantizar que las perturbaciones de f son conjugadas con
productos cruzados simbólicos se han de imponer a f condiciones de hiperbolicidad parcial y
de dominación que son, y esto es muy importante, condiciones abiertas sobre f . Entonces, de
acuerdo con los recientes trabajos [Gor06, IN10, PSW11], ver Proposición 2.1, existe ε > 0 y una
constante α ∈ (0, 1] que sólo depende del tasa de contracción ν ∈ (0, 1) de la herradura Λ tal
que cualquier pequeña ε-perturbación g de f en la topología C1 tiene un conjunto ∆g invariante
localmente maximal isomorfo a Λ × M , sobre el cual g|∆g es topológicamente conjugado a un
producto cruzado Φ = τnφξ perteneciente al subconjunto PHS1,α

k (M) de Sk(M) de los productos
cruzados simbólicos localmente Hölder continuos y parcialmente hiperbólicos. Este subconjunto se
define imponiendo a Φ = τ n φξ condiciones de regularidad, lipschitzianidad y dominación:

• φξ : M →M son difeomorfismos de clase C1,

• φξ dependen localmente α-Hölder continuamente de ξ en M : existe C ≥ 0 tal que

dC0(φ±1
ξ , φ±1

ξ′ ) ≤ CdΣk(ξ, ξ′)α, para todo ξ, ξ′ ∈ Σk con ξ0 = ξ′0. (1)

El espacio de símbolos Σk = {1, . . . , k}Z se dota de la métrica

dΣk(ξ, ξ′)
def
= ν`, ` = min{i ∈ Z+ : ξi 6= ξ′i or ξ−i 6= ξ′−i}.

Se denota por CΦ la constante no negativa más pequeña que verifica (1).

• φξ son biLipschitz y parcialmente dominadas: Existen constantes positivas γ y γ̂ tales que

– s-dominación y u-dominación (hiperbolicidad parcial):

να < γ < 1 < γ̂−1 < ν−α

– (γ, γ̂−1)-Lipschitziadad en M :

γ
∥∥x− x′∥∥ < ∥∥φξ(x)− φξ(x′)

∥∥ < γ̂−1
∥∥x− x′∥∥ ,

para cualesquiera ξ ∈ Σk y x, x′ ∈M . Con ‖x− x′‖ se denota la distancia en M .
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Un mezclador tipo herradura es un conjunto hiperbólico localmente maximal y por lo tanto
estará vinculado a un subconjunto D abierto y acotado de M . Esto es, se tratará del conjunto
localmente maximal para Φ en Σk × D. De esta forma, podemos imponer condiciones locales
adicionales sobre los productos cruzados simbólicos Φ = τ n φξ con los que estamos trabajando.
Por ejemplo, podemos asumir que la restricción de φξ al conjunto D es una aplicación contractiva
o expansiva. Concretamente, trabajaremos con los siguientes conjuntos de productos cruzados
simbólicos:

Definición (Conjuntos de productos cruzados simbólicos). Sea D ⊂ M un conjunto abierto y
acotado y consideremos constantes 0 < λ < β y 0 ≤ α ≤ 1. Se define Sr, αk,λ,β(D), r ≥ 0, como el
conjunto de los productos cruzados simbólicos Φ = τ n φξ en Sk(M) tales que

• φξ es una aplicación Cr-(λ, β)-Lipschitz en D para todo ξ en Σk, y

• φξ depende localmente α-Hölder continuamente en D con respecto de ξ.

Adicionalmente si β < 1 entonces se impone la condición φξ(D) ⊂ D para todo ξ ∈ Σk, y, en el
caso 1 < λ se impone D ⊂ φξ(D) para todo ξ ∈ Σk. Se dotará al conjunto Sr,αk,λ,β(D) de la distancia

dS(Φ,Ψ) = sup
ξ∈Σk

dCr(φξ, ψξ) + |CΦ − CΨ|, con Φ = τ n φξ y Ψ = τ n ψξ.

Por conveniencia, Sk,λ,β(D) y Sαk,λ,β(D) denotará S0,0
k,λ,β(D) y S0,α

k,λ,β(D), respectivamente.

Bajo la hipótesis de aplicaciones de fibras contractivas, el siguiente resultado proporciona una
descripción del maximal invariante de Φ en Σk × D y muestra la dependencia respecto a Φ del
conjunto

KΦ
def
= P(Per(Φ)) ∩D

donde Per(Φ) es el conjunto de los puntos periódicos de Φ y P : Σk ×M → M es la proyección
estándar en M . Aunque este teorema es un caso particular de los resultados de [HPS77], será muy
útil disponer de una prueba completa y detallada en el contexto de productos cruzados simbólicos.
Se denota por K(D) la colección de los subconjuntos compactos de D dotada de la métrica de
Hausdorff y

W u((ξ, x); Φ)
def
= {(ζ, y) ∈ Σk ×M : lim

n→∞
d(Φ−n(ζ, y),Φ−n(ξ, x)) = 0}

es el conjunto inestable de (ξ, x) para Φ.

Teorema A (Geometría del maximal invariante). Consideremos Φ ∈ Sαk,λ,β(D) con β < 1 y
α > 0. Entonces la restricción de Φ a el conjunto

ΓΦ =
⋂
n∈Z

Φn
(
Σk ×D

)
=
⋂
n∈N

Φn
(
Σk ×D

)
es conjugado con el Bernoulli shift τ de k símbolos. Más aún, W u((ξ, x); Φ) ⊂ ΓΦ para todo
(ξ, x) ∈ ΓΦ y existe una única función continua gΦ : Σk → D tal que para todo punto periódico
(ϑ, p) de Φ en Σk ×D se tiene que,

ΓΦ = W u((ϑ, p); Φ)) = {(ξ, gΦ(ξ)) : ξ ∈ Σk} and P(ΓΦ) = KΦ ∈ K(D).

Finalmente, el mapa L : Sαk,λ,β(D)→ K(D) dado por L (Φ) = KΦ es continuo.
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Con objeto de introducir un mezclador simbólico, primeramente definiremos una familia de
discos casi horizontales los cuales proporcionan la región de superposición del mezclador.

Definición (Discos casi horizontales). Fijado α > 0 y dado un subconjunto abierto B ⊂ D, se
dice que Ds es un disco δ-horizontal en Σk ×B si existen ζ ∈ Σk, z ∈ B, alguna constante C ≥ 0

y una función (α,C)-Hölder continua h : W s
loc(ζ, τ)→ B tal que

Ds = {(ξ, h(ξ)) : ξ ∈W s
loc(ζ; τ)}, ‖z − h(ξ)‖ < δ para todo ξ ∈W s

loc(ζ, τ) y Cνa < δ.

Aquí W s
loc(ζ; τ)

def
= {ξ ∈ Σk : ξi = ζi para todo i ≥ 0} denota el conjunto estable local de ζ para τ .

La motivación para considerar como región de superposición en la definición de mezclador un
conjunto de discos encajados en la variedad es que las variedades locales estables fuertes deben
formar parte de este conjunto. Obsérvese que para cualquier δ > 0, el conjunto W s

loc(ζ; τ) × {z}
con ζ ∈ Σk y z ∈ B, es un disco δ-horizontal en Σk × B y en el caso de un producto cruzado de
un solo paso coincide con el conjunto estable fuerte local. Ya que nuestra intención es estudiar
Hölder perturbaciones de un one-step (o de un producto cruzado próximo a uno de un solo paso),
es suficiente considera como región de superposición el conjunto de los discos casi horizontales.

Desde el Teorema A se sigue que W u(ΓΦ) = ΓΦ para todo Φ ∈ Sαk,λ,β(D) con β < 1, donde

W u(ΓΦ)
def
=
{

(ξ, x) ∈ Σk ×M : lim
n→∞

d(Φ−n(ξ, x),ΓΦ) = 0
}

es el conjunto inestable del conjunto maximal invariante ΓΦ. Por lo tanto, la definición de mezclador
en el contexto de mezcladores simbólicos puede ser escrita del siguiente modo:

Definición (Mezcladores simbólicos). Sea Φ ∈ Sαk,λ,β(D) con α > 0 y β < 1.

Se dice que el conjunto invariante maximal ΓΦ de Φ en Σk ×D es un cs-mezclador herradura
simbólico si existe δ > 0, un conjunto no vacío B ⊂ D y un entorno V de Φ en Sαk,λ,β(D) tal que
para todo Ψ ∈ V y para cualquier disco δ-horizontal Ds en Σk ×B se verifica que

ΓΨ ∩Ds 6= ∅, donde ΓΨ es la continuación de ΓΦ para Ψ.

Al conjunto abierto B se le denomina región de superposición del mezclador herradura simbólico.

Para definir cu-mezclador herradura simbólico, primeramente necesitamos introducir productos
cruzados simbólicos inversos. Dado Φ = τ n φξ ∈ Sαk,λ,β(D), se llama producto cruzado simbólico
inverso asociado con Φ al producto cruzado simbólico

Φ∗ = τ n φ∗ξ ∈ Sαk, β−1, λ−1(D), donde φ∗ξ : M →M dado por φ∗ξ(x) = φ−1
τ−1(ξ∗)

(x).

Aquí, ξ∗ = (. . . ξ1; ξ0, ξ−1, . . .) denota la bisucesión conjugada a ξ = (. . . ξ−1; ξ0, ξ1, . . .). Obsérvese
que como τ(ξ)∗ = τ−1(ξ∗) entonces Φ∗ se corresponde con los iterados de Φ−1. Esta obser-
vación nos permite definir cu-mezcladores simbólicos para un productos cruzados simbólico Φ en
Sαk,λ,β(D) with λ > 1. Concretamente, cu-mezclador herradura simbólico para Φ se define como un
cs-mezclador herradura simbólico para Φ∗. En lo que sigue, sólo consideraremos cs-mezcladores
simbólicos y nos referiremos a ellos preferentemente por brevedad como mezcladores simbólicos.
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A partir del Teorema A se tiene también que W u((ϑ, p); Φ) = ΓΦ para todo punto periódico
(ϑ, p) ∈ Σk ×D de un producto cruzado simbólico Φ parcialmente hiperbólico. Se probará en la
Proposición 2.5 que cada conjunto local estable fuerte W ss

loc((ξ, x); Φ) es un disco casi horizontal.
Si Φ es suficientemente próximo a un producto cruzado de un solo paso entonces este disco es una
pequeña Hölder perturbación del disco horizontal W s

loc(ξ; τ) × {x}. Por consiguiente, si además
ΓΦ es un cs-mezclador simbólico para Φ con región de superposición B, entonces se verifica que

W u((ϑ, pΨ); Ψ) ∩W ss
loc((ξ, x); Ψ) 6= ∅, para todo (ξ, x) ∈ Σk ×B

y para toda perturbación Ψ ∈ Sαk,λ β(D) de Φ, donde (ϑ, pΨ) es la continuación de (ϑ, p) por Ψ.

Un conjunto de aplicaciones φ1, . . . , φk definidas en D se dice que tienen la propiedad de
cobertura si existe un abierto B ⊂ D tal que B ⊂ φ1(B) ∪ . . . ∪ φk(B). Uno de los objetivos
es comprender como llevar propiedades robustas de un sistema iterado de funciones generado
por φ1, . . . , φk a propiedades robustas del producto cruzado Φ = τ n (φ1, . . . , φk) bajo Hölder
perturbaciones. El siguiente resultado describe como la propiedad de cobertura se traslada a una
propiedad robusta en el lenguaje de los productos cruzados localmente Hölder.

Teorema B (Caracterización de la propiedad de cobertura). Sea Φ = τn(φ1, . . . , φk) ∈ Sαk,λ,β(D)

con να < λ < 1, α > 0 and B ⊂ D un conjunto abierto. Entonces,

B ⊂ φ1(B) ∪ . . . ∪ φk(B)

si y sólo si existe δ > 0 y un entorno V de Φ en Sαk,λ,β(D) tal que para todo Ψ ∈ V

Γ+
Ψ(B) ∩Ds 6= ∅ para todo disco δ-horizontal Ds en Σk ×B

donde Γ+
Ψ(B) es el conjunto maximal invariante por las iteradas positivas de Ψ en Σk ×B.

Con la hipótesis β < 1 si Φ = τ n (φ1, . . . , φk) ∈ Sαk,λ,β(D) se tiene que φi(D) ⊂ D para
i = 1, . . . , k. En tal caso, para cualquier pequeña perturbación Ψ = τ n ψξ de Φ también se
verifica que ψξ(D) ⊂ D y se tiene que

Γ+
Ψ(B)

def
=
⋂
n≥0

Ψn(Σk ×B) ⊂
⋂
n∈Z

Ψn(Σk ×D)
def
= ΓΦ.

Entonces, combinando el resultado anterior con la definición de mezclador simbólico obtenemos
como consecuencia la existencia de mezcladores simbólicos usando la propiedad de cobertura:

Teorema C (Existencia de mezcladores simbólicos). Sea Φ = τ n (φ1, . . . , φk) ∈ Sαk,λ,β(D) con
α > 0 y να < λ < β < 1. Supongamos que existe un conjunto abierto B ⊂ D tal que

B ⊂ φ1(B) ∪ . . . ∪ φk(B).

Entonces el conjunto maximal invariante ΓΦ de Φ en Σk ×D es un cs-mezclador herradura sim-
bólico de Φ cuya región de superposición contiene a B.

Una parte de este segundo capítulo se dedica al estudio de un subconjunto de producto cruza-
dos simbólicos S+

k (M) llamados productos cruzados simbólicos unilaterales que generaliza a los
one-step. Este conjunto consiste de las aplicaciones Φ = τ n φξ tales que φξ = φξ′ si ξi = ξ′i
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para todo i ≥ 0. En la Proposición 2.3 se muestra que la presencia de una holonomía estable
(ver Definición 2.3) para una aplicación Φ en Sk(M) permite conjugar topológicamente Φ con
un producto cruzado simbólico unilateral Φ̃ ∈ S+

k (M). Este hecho, nos permitiría restringir el
conjunto de perturbaciones de productos cruzados que tiene que ser considerado e introducir así
otra definición (en el contexto unilateral) del concepto de mezclador herradura simbólico (ver
Definición 2.11). Concretamente, en la sección §2.4 se estudian perturbaciones dentro del conjunto
S+
k,λ,β(D) = S+

k (M) ∩ Sk,λ,β(D) con β < 1.

En la Proposición 2.5 se prueba la existencia de holonomía estable para todo producto cruzado
simbólico s-dominado, en particular, para Φ = τnφξ ∈ PHS1,α

k (M)∩Sk,λ,β(D). El correspondiente
producto cruzado unilateral conjugado con Φ viene dado por

Φ̃ = τ n φ̃ξ ∈ S+
k (M) donde φ̃ξ = hsτ(ξ),π(τ(ξ)) ◦ φξ ◦ h

s
π(ξ),ξ

siendo π la proyección de Σk sobre una sección transversal Σ a la partición estable W s
loc(ξ; τ),

ξ ∈ Σk y hsξ,ξ′ : M → M la familia de aplicaciones que define la holonomía estable. Se prueba en
Proposición 2.6 que cada aplicación hsξ,ξ′ es Hölder continua con constante de Hölder uniforme para
todo ξ y ξ′; pero esto no es suficiente para concluir que Φ̃ ∈ S+

k,λ,β(D). Para garantizar que Φ̃ ∈
Sk,λ,β(D) necesitamos incrementar la regularidad Φ y añadir condiciones de agrupamiento de las
fibras. Concretamente, la Proposición 2.9 prueba que las aplicaciones hsξ,ξ′ que definen la holonomía
estable son C1 difeomorfismos si Φ = τ n φξ es fibra agrupado (ver Definición 2.7) y pertenece al
conjunto PHS2,1+α

k (M) de los productos cruzados parcialmente hiperbólicos cuyos aplicaciones
de fibras son de clase C2 dependiendo localmente Hölder diferenciablemente con respecto de la
base, es decir,

dC1(φ±1
ξ , φ±1

ξ′ ) ≤ CdΣk(ξ, ξ′)α, para todo ξ, ξ′ ∈ Σk con ξ0 = ξ′0.

Esta regularidad de la holonomía implica que Φ̃ = τ n φ̃ξ pertence a S+
k,λ,β(D). De acuerdo

con [Gor06], ver Teorema 2.2, se sigue que estas condiciones adicionales de regularidad y agru-
pamiento de las fibras pueden ser inferidas para el producto cruzado simbólico Ψ = τ n ψξ

conjugado a una C2 perturbación g del C2 difeomorfismo f = F × id, donde F : N → N es una
aplicación herradura y id : M → M es la aplicación identidad. De está forma se concluye que
un mezclador herradura simbólico en el contexto unilateral da lugar a un mezclador para un C2

difeomorfismo con región de superposición C2 robusta.

Los resultados anteriores sobre la existencia de mezcladores simbólicos se han dado para pro-
ductos cruzados simbólicos Φ = τ n (φ1, . . . , φk) de tipo one-step (de un sólo paso). Al margen de
las hipótesis de regularidad y dominación impuestas para restringir el espacio de perturbaciones,
la condición de existencia de mezclador se reduce a la propiedad de cobertura, que se formula
en términos de las contracciones φ1, . . . , φk. Esto permite considerar la estructura de mezclador
como algo propio de los productos cruzados de un paso que persiste bajo buenas perturbaciones.
Parafrasenado lo dicho para la prueba de la existencia de atractores extraños tipo Hénon, los
productos cruzados de un solo paso se pueden considerar las aplicaciones límite cuya dinámica
hay que comprender, del mismo modo que se necesita entender la dinámica de la familia límite
ha(x) = 1− ax2 para comprender la existencia de los atractores de Hénon en [BC91]. A partir de
esta reflexión, se introduce también en este segundo capítulo la sección §2.3 dedicada al estudio
de los mezcladores simbólicos en el contexto de los productos cruzados de un solo paso. Es decir,
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considerando perturbaciones sólo en el conjunto Qk,λ,β(D). Se muestra de qué manera la dinámica
de un one-step Φ = τ n (φ1, . . . , φk) viene dada por la dinámica del sistema iterado de funciones
generado por φ1, . . . , φk y cómo el concepto de mezclador emerge ya de las propiedades de esta
dinámica. Dicha sección es una antesala del siguiente capítulo de la memoria.

III – Sistemas iterados de funciones – El tercer capítulo de la tesis se dedica al estudio de los
sistemas iterados, bien definidos sobre un intervalo o sobre la circunferencia S1. Los principales
resultados de este capítulo son en colaboración con Artem Raibekas y se recogen en su tesis
doctoral [Rai11] y en la prepublicación [BR].

Un sistema iterado de funciones (FS a partir de ahora) generado por la familia de difeomor-
fismos Φ = {φ1, . . . , φk} de un variedad M es el conjunto IFS(φ1, . . . , φk) de todas las posibles
composiciones de los difeomorfismos φi ∈ Φ (incluyendo la identidad). Esto es, el semigrupo
con la operación composición generado por φ1, . . . , φk, id. Debido a la estrecha relación entre
los productos cruzados de un paso y los sistemas iterados de funciones, escribiremos IFS(Φ) =

IFS(φ1, . . . , φk) entendiendo que el IFS es generado por la familia Φ = {φ1, . . . , φk} asociada al
one-step Φ = τ n (φ1, . . . , φk) definido sobre Σk ×M .

Como ya anticipamos, la dinámica de un producto cruzado de un paso viene dada por la
dinámica de su sistema iterado de funciones asociado. Para poder hablar de dinámica de un IFS
es necesario introducir la noción básica de órbita. La órbita de un punto x ∈M por IFS(Φ) es la
acción del IFS sobre el punto x, es decir,

OrbΦ(x)
def
= {h(x) : h ∈ IFS(Φ)} ⊂M.

Con esta noción de órbita, algunos conceptos dinámicos conocidos para sistemas dinámicos son
traducidos al ámbito de los sistemas iterados. A modo de ejemplo, un conjunto Λ ⊂ M se dice:
invariante si Λ = OrbΦ(x) para todo x ∈ Λ; transitivo si existe una órbita densa en Λ, es decir,

Λ ⊂ OrbΦ(x) para algún x ∈ Λ;

y minimal si todo punto x ∈ Λ tiene órbita densa en Λ. El ω-límite de un punto x ∈ M para el
IFS(Φ) es el conjunto

ωΦ(x)
def
= {y : existe (hn)n ⊂ IFS(Φ) \ {id} tal que lim

n→∞
hn ◦ · · · ◦ h1(x) = y}

mientras que el ω-límite de IFS(Φ) es

ω(IFS(Φ))
def
= cl{y ∈M : existe x ∈M tal que y ∈ ωΦ(x)},

donde con "cl" indicamos la clausura del conjunto. Análogamente se define el α-límite de un punto
x ∈M y del sistema iterado de funciones IFS(Φ). Finalmente, el conjunto límite L(IFS(Φ)) es la
unión de ω-límite y α-límite del IFS(Φ). A partir de estas nociones, conocer la dinámica de un IFS
implica entender cuales son los posibles conjuntos invariantes para el IFS, describir los ω-límite o
α-límite de sus órbitas mostrando, si es posible, una descomposición espectral del conjunto límite
de sus órbitas como se hizo en el caso de difeomorfismos para un sistema dinámico hiperbólico.
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A fin de encontrar propiedades robustas bajo perturbaciones es importante introducir el con-
cepto de proximidad dentro del conjunto de los IFS. Esto es, IFS(ψ1, . . . , ψk) se dice C1 próximo
de IFS(φ1, . . . , φk) si cada uno de los difeomorfismos ψi es próximo a φi en la topología C1. Como
ejemplo de propiedad robusta por perturbaciones se puede pensar en los mezcladores simbólicos
definidos en el segundo capítulo y en su traducción al lenguaje de los IFS:

Definición (Región mezcladora). Un conjunto abierto B ⊂ M es un región mezcladora del sis-
tema iterado de funciones IFS(Φ) si B es C1-robustamente minimal para IFS(Φ), es decir,

B ⊂ OrbΨ(x) para todo x ∈ B y todo IFS(Ψ) C1 próximo de IFS(Φ).

En el caso de un producto cruzado de un paso con aplicaciones de fibras contractivas, en
Proposición 2.21 se prueba que la existencia de una región mezcladora es equivalente a tener un
mezclador simbólico en el contexto de productos cruzados tipo one-step. El principal objetivo a lo
largo de este tercer capítulo es probar la existencia de regiones mezcladoras para sistema iterados
de funciones generados por difeomorfismos genéricos en la recta realM = R y en el círculoM = S1

próximos a la identidad id : M →M .

En la sección §3.2 estudiamos regiones mezcladoras en la recta real. Definiremos un intervalo
con un tipo de configuración para un par de funciones f0, f1 (ver Figura 3.1(a)) que será un
candidato a ser región mezcladora para IFS(f0, f1). Denotemos por Diffr+(R) el conjunto de los
Cr difeomorfismos en la recta real que preservan la orientación.

Definición (ss-intervalos). Dado Φ = {f0, f1} ⊂ Diff1
+(R), se dice que un intervalo [p0, p1] ⊂ R

es un ss-intervalo para IFS(Φ) si:

• [p0, p1] = f0([p0, p1]) ∪ f1([p0, p1]),

• (p0, p1) ∩ Fix(fi) 6= ∅ para i = 1, 2, y pj 6∈ Fix(fi) para i 6= j,

• p0 y p1 son puntos fijos atractores de f0 y f1 respectivamente.

Denotaremos por Kss
Φ a los ss-intervalo [p0, p1] para el sistema iterado de funciones IFS(Φ).

El siguiente teorema implica que cualquier abierto contenido en un ss-intervalo para un sistema
iterado de funciones IFS(Φ) con generadores suficiente próximos de la identidad con puntos fijos
hiperbólicos es un región mezcladora para IFS(Φ). Este teorema es una generalización de un lema
debido a Duminy [Dum70] que forma parte de la prueba del llamado Teorema de Duminy (ver
Teorema 3.27) relativo a la dinámica de grupos de difeomorfismos en el círculo. La prueba que
aquí presentamos es diferente de la prueba original del Lema de Duminy (ver [Nav11] para más
detalles) y nos permitirá mejorar ligeramente las conclusiones del Teorema de Duminy. Denotamos
por Per(IFS(Φ)) al conjunto de los puntos periódicos de IFS(Φ), es decir, el conjunto de los puntos
x = h(x) para algún h 66= id en IFS(Φ).

Teorema D (Lema de Duminy). Sea Φ = {f0, f1} ⊂ Diff2
+(R) y Kss

Φ un ss-intervalo para IFS(Φ)

con los puntos fijos de f0 y f1 en Kss
Φ hiperbólicos. Entonces, existe ε ≥ 0.17 tal que si f0|Kss

Φ
,

f1|Kss
Φ

son ε-próximas a la identidad en la topología C2 se tiene que

Kss
Ψ ⊂ Per(IFS(Ψ)) y Kss

Ψ = OrbΨ(x) para todo x ∈ Kss
Ψ

y para todo sistema iterado de funciones IFS(Ψ) C1 próximo de IFS(Φ).
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En la sección §3.3.2 nos ocupamos de generalizar este teorema para difeomorfismos Morse-
Smale en el círculo. Ver Teorema 3.35. Esta generalización, forma parte de la prueba de un resul-
tado para IFS tipo Teorema de Denjoy. Recordar que, teniendo en cuenta el número de rotación de
un difeomorfismo f del círculo tenemos que: (i) f tiene un punto periódico, (ii) todas las órbitas
(para iterados positivos) de f son densas, y (iii) existe un intervalo errante para f . Los intervalos
errantes se tratan de los "gaps" de un conjunto de Cantor Λ ⊂ S1 invariante por f y contenido en
el ω-límite para f de todos los puntos de S1. Estas propiedades dinámicas pueden ser transladadas
facilmente para un IFS:

Definición (Cantor invariante minimal). Sea Φ = {f0, f1} ⊂ Diff1(S1) y Λ ⊂ S1. Se dice que Λ

es un conjunto de Cantor invariant y minimal para IFS(Φ) si

• Λ es un conjunto de Cantor,

• Λ = OrbΦ(x) para todo x ∈ Λ.

Del Teorema de Denjoy [Den32] se sigue que este tipo de conjuntos no pueden aparecer para
difeomorfismos del círculo con cierta regularidad suficientemente próximos de la identidad. Concre-
tamente, existe ε > 0 tal que si f ∈ Diff2(S1) y es ε-próximo de la identidad en la topología C2

entonces no existen conjuntos de Cantor invariantes y minimales. Más aún, son equivalente las
siguientes afirmaciones: S1 es minimal para los sistemas iterados de funciones IFS(f), y, f no tiene
puntos periódicos. Cuando el número de generadores del IFS aumenta los puntos periódicos dejan
de ser la obstrucción a la minimalidad. Ahora, ese papel es jugado por los ss-intervalos.

Teorema E (Denjoy para IFS). Existe ε > 0 tal que si f0, f1 ∈ Diff2(S1) son difeomorfismos
Morse-Smale ε-próximos de la identidad en la topología C2 sin puntos periódicos en común, en-
tonces, no existen conjuntos de Cantor invariantes y minimales para el IFS(f0, f1).

Más aún, denotando ni el periodo de fi, son equivalentes:

• S1 es minimal para IFS(fn0
0 , fn1

1 ),

• no existen ss-intervalos para IFS(fn0
0 , fn1

1 ).

A diferencia de lo ocurre para un único difeomorfismo f en el circulo donde S1 no puede ser
C1-robustamente minimal, en el caso de IFS, esta robustez si que puede llegar a obtenerse. De
hecho, hemos de notificar que el teorema anterior es C1-robusto en el siguiente sentido:

Nota (C1-robustez). Las conclusiones del Teorema de Denjoy para IFS son robustas bajo C1

perturbaciones del sistema iterado de funciones IFS(f0, f1), es decir, para todo IFS(g0, g1) donde
g0 y g1 son C1-perturbaciones de f0 y f1 respectivamente.

Como consecuencia de este teorema tipo Denjoy para IFS, finalizaremos este tercer capítulo
de la memoria de tesis mostrando un teorema de descomposición espectral en el círculo. Este
teorema afirma que el conjunto límite de IFS(Φ) con Φ = {fn0

0 , fn1
1 }, donde f0, f1 ∈ Diff2(S1) en

la condiciones del teorema anterior, se descompone en unión finita de conjuntos básicas disjuntas:
aislados y transitivos. Un conjunto A con A ∩ Per(IFS(Φ)) 6= ∅ se dice aislado para el IFS(Φ) si
existe un abierto D tal que A ⊂ D y Per(IFS(Φ)) ∩D ⊂ A.
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Teorema F (Descomposición Espectral para IFS). Existe ε > 0 tal que si f0, f1 ∈ Diff2(S1) son
difeomorfismos Morse-Smale de períodos n0 y n1, respectivamente, ε-próximos de la identidad en
la topología C2 y sin puntos periódicos en común, entonces, existe un numero finito de intervalos
K1, . . . ,Km dos a dos disjuntos, aislados y transitivos para IFS(fn0

0 , fn1
1 ) tales que

L(IFS(fn0
0 , fn1

1 )) =

m⋃
i=1

Ki.

Más aún, esta descomposición del conjunto límite de IFS(fn0
0 , fn1

1 ) es C1-robusta.

IV – Ciclos en despliegues de la singularidad nilpotente – En el último capítulo se trasladan
al ámbito de los campos vectoriales las conclusiones dinámicas obtenidas en la primera parte de
la tesis. El principal resultado de este capítulo es en colaboración con Santiago Ibañéz y J. Ángel
Rodríguez y se recoge en [BIR11].

El interés allí por la dinámica asociada a ciclos heterodimensionales obligó a considerar difeo-
morfismos en dimensión n ≥ 3. Es bien sabido que estos difeomorfismos se pueden definir como
aplicaciones de Poincaré sobre secciones transversales al flujo de un campo en R4 cerca de un ciclo
o de una órbita periódica.

Filosóficamente, las dinámicas posibles en sistemas discretos se elevan al ámbito de los sis-
temas continuos mediante el proceso de suspensión, que permite definir en un entorno de una
órbita periódica un flujo que tiene como sección de Poincaré un difeomorfismo determinado. Sin
embargo, el verdadero interés radica en determinar con algún criterio manejable cuando un campo
vectorial o, en su defecto una familia de campos vectoriales, posee este o aquel comportamiento
dinámico. El estudio de las bifurcaciones globales asociadas a distintos ciclos permitió explicar
transiciones dinámicas al tiempo que explicaba la naturaleza del comportamiento. La presencia
de infinitas herraduras en un entorno de una órbita de tipo Sil´nikov es un ejemplo. Sin embargo,
constatar que en una familia de campos se tiene un determinado ciclo no es tarea fácil, al menos
que esa familia sea construida ad hoc. Ese es el caso en [Rod86] para una familia de campos
vectoriales cuadráticos que presenta órbitas de Sil´nikov. Como una alternativa a esta búsqueda
y captura de ciclos, se puede plantear la prueba de criterios que permitan concluir la presencia de
determinada dinámica interesante a partir de los elementos más simples de un campo vectorial:
sus singularidades. En estos términos uno puede preguntarse, por ejemplo, cuál es la singularidad
de menor codimensión (más frecuente) desde la que se despliegan genéricamente órbitas de tipo
Sil´nikov y, consecuentemente, atractores extraños. Una respuesta parcial fue dada en [IR95] al
probar que esta configuración se presentaba genéricamente en los despliegues de la singularidad
nilpotente de codimensión cuatro en R3 y posteriormente en [IR05] para la singularidad nilpo-
tente de codimensión tres. Una singularidad nilpotente es un campo de vectores C∞ en Rn que,
en apropiadas coordenadas, en un entorno de origen (punto de equilibrio) puede ser escrito como

n−1∑
k=1

xk+1
∂

∂xk
+ f(x1, . . . , xn)

∂

∂xn
,

con f(x) = O(‖x‖2) donde x = (x1, . . . , xn). Se dice que es una singularidad nilpotente de codi-
mensión n si se cumple la condición genérica ∂2f/∂x2

1(0) 6= 0.
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La posible presencia genérica de atractores extraños en el despliegue de singularidades de
menor codimensión posible, esto es, en la singularidad Hopf-cero que es de codimensión dos, está
siendo analizada en [DIKS]. Los resultados en [IR05] permitieron concluir la presencia de atractores
extraños en el acoplamiento de dos Brusselator por difusión lineal [DIR07], avanzando así en una
via para generar complejidad por acoplamiento propuesta por Turing [Tur52] y contemplada por
Smale en [Sma74]. Por Brusselator se entiende un campo cúbico bidimensional que se propone
como modelo de reacción química. El acoplamiento de dos de estos campos conduce a un campo
vectorial que tiene una singularidad nilpotente de codimensión cuatro en R4. El primer objetivo
propuesto al inicio de la tesis fue estudiar los despliegues genéricos de esta singularidad para
encontrar ciclos que pudieran implicar dinámicas propias de dimensión n ≥ 4: atractores extraños
con más de un exponente de Lyapunov positivo y ciclos heterodimensionales. En [BIR11] se probó
la existencia de bifocos homoclínicos en todor despliegue genérico de la singularidad nilpotente de
codimensión cuatro en R4.

Teorema G. En todo despliegue genérico de una singularidad nilpotente de codimensión cuatro
en R4 hay una hipersuperficie de órbitas homoclínicas bifocales.

Recuérdese que una órbita homoclínica bifocal es una conexión homoclínica a un punto de
equilibrio de un campo de vectores en R4 con dos pares de autovalores ρk± iωk, con k = 1, 2, tales
que ρ1 < 0 < ρ2. La aplicación de Poincaré definida en un entorno de este ciclo será un difeomor-
fismo tridimensional, susceptible de presentar un mezclador. Se prueba que existen mezcladores
suspendidos para campos de vectores arbitrariamente próximos a un campo Hamiltoniano con una
órbita homoclínica bifocal no degenerada. Para este campo Hamiltoniano la aplicación retorno se
puede escribir con una adecuada elección de coordenadas de la forma

f : [−ε, ε]2 × [−c0, c0]→ [−ε, ε]2 × [−c0, c0] f(x, c) = (Fc(x), c),

donde Fc tine un conjunto hiperbólico Λc para 0 < c ≤ c0 conjugado con el shift de Bernoulli sobre
Σn(c) (ver Teorema 4.16). Además, la familia de conjuntos {Λc}0<c≤c0 satisface que Λc−ε contiene
a la continuación dinámica de Λc para cualquier ε > 0 suficientemente pequeño. Esta propiedad
permite tomar como un subsistema de f a un skew-product de la forma Φ = τ × id definido sobre
Σn(c) × (0, c).

Para probar el teorema anterior, nosotros mostramos que, para algunos valores de los paráme-
tros, la familia límite de un despliegue genérico de la singularidad nilpotente son campos de vectores
Hamiltonianos con una órbita homoclínica bifocal no degenerada. Las perturbaciones sobre la
hipersuperficie de órbitas homoclínicas bifocales tienen una aplicación de Poincaré conjugada con
un producto cruzado simbólico el cual es una perturbación de Φ = τ × id. Como se sigue del tercer
capítulo, perturbaciones genéricas de Φ = τ × id del tipo productos cruzados de un paso, tienen
o bien una región mezcladora o bien su dinámica es trivial. Por lo tanto, concluimos el cuarto
capítulo estudiando la posible presencia de mezcladores suspendidos y ciclos heterodimensionales
en despliegue genéricos de la singularidad nilpotente.
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The results contained in this thesis are a contribution to the study of non-uniformly hyperbolic
dynamics, the context under which there arises many of the current issues concerning dynamical
complexity. In contrast, uniformly hyperbolic dynamics began to be well understood in the sixties
from the early works of Anosov [Ano67] and Smale [Sma67]. Three decades earlier, in an elaborate
work [Bir35], Birkhoff proved that, in general, near a transversal homoclinic point, introduced by
Poincaré [Poi90], there exists an intricate set of periodic orbits, most with a large period. In order
to explain this Birkhoff’s result and other subsequent results on the existence of infinitely many
periodic orbits in the equation of Van der Pol [CL45, Lev49], Smale placed his geometric device,
the Smale horseshoe map, in a neighborhood of a transversal homoclinic point. This application
and the examples given by Anosov on the torus, are diffeomorphisms whose non-wandering set Ω

is hyperbolic and coincides with the closure of the periodic points. Diffeomorphisms with these
properties were called Axiom A or uniform hyperbolic diffeomorphisms and their study as a subset
of the space Diffr(M) of the Cr-diffeomorphisms over a compact manifold was proposed.

A key result for the study of Axiom A diffeomorphisms in Diffr(M) was the Spectral Decom-
position Theorem by Smale [Sma67]. According to this the non-wandering set Ω is decomposed
into a disjoint union of finitely many subsets Λi called basic sets. Each Λi is an invariant isolated
transitive hyperbolic compact set. Two periodic points in the same basic set have stable manifolds
with the same dimension (stability index ) and therefore unstable manifolds of the same dimen-
sion (Morse index ). An eloquent and relevant example of a basic set is the invariant set Ω of a
horseshoe map. The dynamics of the restriction of a horseshoe map to this set follows from its
conjugation to the Bernoulli shift.

Horseshoe maps associated with a transversal homoclinic point are an important landmark in
the study of dynamical systems. Its invariant set Ω gives an example of quasi-random dynamics.
This randomness is consequence of the expansive character of the orbits in Ω that implies a
high sensitivity dynamical to initial conditions. However, Ω is not an attractor because it has
no basin of attraction with non-empty interior (or positive measure) and, therefore, its internal
dynamics cannot be observable as an asymptotic behavior. This deficiency was solved by Smale
who, by analogy with the horseshoe, constructed the solenoid as a first example of strange attractor
(attractor with a dense expansive orbit) being hyperbolic. This example of non-periodic strange
attractor inspired the famous work of Ruelle and Takens [RT71] on the nature of turbulence.
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Having seen that uniformly hyperbolic diffeomorphisms provided new dynamical interpreta-
tions, two important issues raised in the context of bifurcation theory: the relation between uniform
hyperbolicity and structural stability, and the density of uniform hyperbolic diffeomorphisms in
the space Diffr(M), endowed with the Cr-topology. After some partial results by Robbin [Rob71],
Melo [Mel73] and Robinson [Rob74, Rob76], Mañé [Mañ88] proved that, as Palis and Smale con-
jectured in [PS70], a diffeomorphism f ∈ Diff1(M) is structural stable if and only if it is uniformly
hyperbolic and satisfies the strong transversality condition: all stable and unstable manifolds of
points of the non-wandering set are transversal. Regarding to density , although the uniform
hyperbolicity was firstly believed to envolve a residual, or at least dense, subset of Diffr(M),
it soon emerged that this was not true. There are two important configurations that force the
persistence of non-uniform hyperbolicity: heterodimensional cycles and certain homoclinic tan-
gencies (see both concepts in Definition 1.1). The first was used by Abraham and Smale [AS70]
and Simon [Sim72] to construct examples of an open set of non-uniformly hyperbolic diffeomor-
phisms in Diff1(M), with dimM ≥ 3. Homoclinic tangencies between the invariant manifolds of
a saddle belong to a non-trivial basis set and are the basis of the well-known Newhouse phe-
nomenon [New70, New74, New79] for C2-diffeomorphisms on surface. For small perturbations of
the diffeomorphism both configurations force the persistence of homoclinic tangencies, which im-
ply the presence of non-wandering points with different stability indices and thus the persistence
of non-uniform hyperbolicity. Therefore, Diffr(M) is disjoint union of two sets, the uniformly
hyperbolic diffeomorphisms and its complementary, which contain in turn open sets.

The set of uniformly hyperbolic diffeomorphisms contains the open set of those structurally
stable and their dynamics is quite well understood. In contrast, the non-uniformly hyperbolic
diffeomorphisms, persistent while abundant, are not structurally stable. Their dynamics must
involve a great number of transitions and therefore it belongs to the word of dynamical complexity.
This is the case with some of the most popular attractors. From the numerical study, the Lorenz
attractor [Lor63] seems to be strange, persistent but not structurally stable, while the persistence
seems to fail in the case of the Hénon attractor [Hén76]. Since the hyperbolic attractors are
persistent and structurally stable, neither of them can be a hyperbolic attractors. The question
is: do non-hyperbolic strange attractors really exist? The first analytic proof of the existence
of such attractors was given by Benedicks and Carleson [BC91], who proved that in the Hénon
family Ha,b(x, y) = (1− ax2 + y, bx) there exist strange attractors for a set of parameter values of
positive Lebesgue measure (persistent in the sense of measure) close enough to a = 2 and b = 0.
Intricate ideas and techniques in [BC91] were used by Mora and Viana [MV93] to prove that, as
conjectured by Palis, generic one-parameter families of diffeomorphisms on a surface unfolding
a homoclinic tangency have strange attractors with positive probability in the parameter space.
The existence of such attractors in three-dimensional families of vector fields was proven in [PR97]
for the cross-section of a Shil’nikov homoclinic orbit [Shi65]. The proof of the existence of non-
hyperbolic strange attractors starts in [BC91] considering the Hénon family as an unfolding of the
limit family ha(x) = 1 − x2 which is obtained by taking b = 0. This quadratic family had been
well studied previously in [BC85] and its expansive dynamics moves into the unstable manifold of
a saddle point of Ha,b(x, y) = (1− x2 + y, bx) when b is small enough. In [MV93] this strategy is
then applied to a suitable renormalization of the return map to a neighborhood of a homoclinic
point. The resulting family is still a good unfolding of the quadratic family (a Hénon-like family)
and the ideas and techniques in [BC91] can be adapted to this case. In [PR97] it is proved that the
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family obtained after an appropriate renormalization is a good unfolding of a limit family, which
in this case is an unimodal family fa(x) = λ−1 log a+ x+ λ−1 log cosx, and arguments in [BC91]
remain valid.

The main goal in the study of dynamical systems is to describe the asymptotic behavior of
trajectories of most systems. In the heat of the study of hyperbolic systems, Smale conjectured
that the limit set of trajectories of a dynamical system should present a generic hyperbolic inter-
nal dynamics: exponential increase and decrease of the distances in complementary dimensions.
However, non-hyperbolic attractors above provided counterexamples and raised the need for new
proposals. From then until the present, investigation of non-uniformly hyperbolic dynamics has
been mainly programmed by Palis [Pal00a, Pal08], who proposed a work program consisting of
several interrelated conjectures aimed at describing the asymptotic behavior of generic families of
dynamical systems depending on a finite number of parameters. In particular, Palis conjectured
that, generically, there is only a finite number of transitive attractors which can accumulate almost
all trajectories, in addition, these attractors should be stochastically stables and support a physical
measure. Unlike the topological approach taken in the sixties, the probabilistic approach is now ex-
pressed in terms of the Lebesgue measure, both in the parameter space as in the phase space. From
the Spectral Decomposition Theorem and the theory of Sinai-Ruelle-Bowen [Sin72, BR75, Rue76],
it is proved that for uniformly hyperbolic C2-diffeomorphisms while no cycles there exists at most a
finite number of attractors, which are in turn stochastically stable and support a physical measure.
Then one step further will seek some robust form of hyperbolicity (partial or dominated decompo-
sition) that is present in the absence of cycles, which can prove the above conjecture. This raises
a dichotomy between some set of hyperbolic diffeomorphisms and those with some kind of cycles.
Namely, Palis conjectured that any dynamical system can be Cr-approximated by a hyperbolic
system without cycles or one that has a homoclinic tangency or a heterodimensional cycle. A first
answer to this last conjecture was given in the C1-topology by Pujals and Sambarino in [PS00] for
diffeomorphisms on surfaces. For higher dimension, Crovisier and Pujals [CP10] proved that every
diffeomorphism f ∈ Diff1(M) can be C1-approximated by one that has a homoclinic tangency
or a heterodimensional cycle, or by an essentially hyperbolic diffeomorphism, i.e. one with a finite
number of transitive hyperbolic attractors such that the union of their basins of attraction is an
open and dense set in the phase space. In short, homoclinic tangencies and heterodimensional
cycles are a complete obstruction to hyperbolicity.

With regard to homoclinic tangencies, and already in the field of C2-diffeomorphisms on sur-
faces, there have been remarkable results. As mentioned above, in generic families unfolding a ho-
moclinic tangency between the invariant manifolds of an isolated hyperbolic periodic point there
appear non-hyperbolic strange attractors, persistent in the sense of the measure. When the peri-
odic point belongs to a nontrivial basic set, the persistence of homoclinic tangencies for an open set
U of diffeomorphisms was originally detected in [New70]. On a residual set in U , of measure zero,
there are simultaneously infinite periodic attractors [New74] and even infinite Hénon-like strange
attractors [Col98]. These results can be generalized to greater dimension [PV94, Via93, Lea08].
The geometric ingredient underlying the persistence of homoclinic tangencies is the horseshoe map.
Namely, the thickness of the stable and unstable foliations of a basic set Λ, which extend in a
neighborhood of the homoclinic point to define, respectively, two Cantor setsKs andKu on a given
segment. The prevalence of hyperbolicity or non-hyperbolicity depends on whether the Hausdorff
dimension HD(Λ) = HD(Ks) + HD(Ku) of Λ is less than or greater than one [PY94, MPV01].
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With regard to heterodimensional cycles, an early result by Díaz [Día95] implies the existence
of a non-empty open set of parameterized C∞ families of diffeomorphisms (ft)t∈[−1,1] unfolding
generically a heterodimensional cycle of f0 and such that for all small positive t > 0 the cor-
responding diffeomorphism ft is non-uniformly hyperbolic: the homoclinic classes of two saddle
points of different indices coincide. The proof of this result can be illustrated with the choice of
a diffeomorphism on R3 which has a heterodimensional cycle between two fixed points P and
Q. Under additional hypothesis about partial hyperbolicity, linearization and product structure,
it is understood that the behavior of this diffeomorphism in a neighborhood of the cycle follows
from the dynamics of an iterated system of two real functions (see a precise definition of iterated
function system in Section §3.1). This reduction indicates that the persistence of non-uniform hy-
perbolicity associated with heterodimensional cycles is of different nature from that which follows
from the homoclinic bifurcations. In the Newhouse’s phenomenon (persistence of homoclinic tan-
gencies) the essential geometric ingredient was the horseshoe map and the Hausdorff dimension of
its basic set but, which geometric element lies under the persistence of non-uniform hyperbolicity
by perturbing a heterodimensional cycle? The answer was given by Bonatti and Díaz introducing
in [BD96] the notion of blender. Roughly speaking, a blender can be understood as a sufficiently
thick hyperbolic set Γ such that the closure of an invariant manifold of dimension u of a saddle
point in Γ contains an invariant manifold of dimension u + 1. The first precise definition of a
blender emphasizing its geometrical aspects can be found in [BDV05]:

Definition (Blenders). Let f be a C1-diffeomorphism of a compact manifold M and Γ ⊂ M a
transitive hyperbolic set of f with a dominated splitting of the form Ess ⊕ Ecs ⊕ Eu, where its
stable bundle Es = Ess ⊕ Ecs has dimension equal to s ≥ 2 and Ecs is one-dimensional. The set
Γ is a cs-blender if it has a C1-robust superposition region B:

there are a C1-neighborhood V of f and a C1-open set B of embeddings of s − 1 dimensional
disks Ds into M such that for every diffeomorphism g ∈ V, every disk Ds ∈ B intersects the local
unstable manifold W u

loc(Γg) of the continuation Γg of Γ for g.

A cu-blender for f is defined as a cs-blender for f−1.

Blenders are the subjacent mechanism leading to the generation of robust heterodimensional
cycles [BD08] and robust homoclinic tangencies in the C1-topology for a manifold of dimension
greater than or equal to three [BD11]. Blenders were also used in other applications such as the
construction of robust non-hyperbolic transitive diffeomorphisms [BD96], the discontinuity of the
dimension of hyperbolic sets [BDV95] and to obtain results about stable ergodicity [RHTU07].

A blender Γ for a C1-diffeomorphism f is just a hyperbolic set, but its existence presages the
presence of persistent non-uniform hyperbolicity. By way of example, we will sketch how these
sets allow us to mix saddle points of different indices. Suppose we are in dimension three, Γ is a
cs-blender with stability index s = 2 and P ∈ Γ, Q 6∈ Γ are two periodic points of f , the first with
unstable manifold dense in Γ and the second with stability index s− 1 = 1. We assume that the
stable manifoldW s(Q) ofQ contains a diskDs in the superposition region B of the blender Γ. From
the Inclination Lemma, the sequence of backward iterates of any disk L of dimension s − 1 = 1

crossing W u(Q) converge to W s(Q). Therefore, for n ≥ 0 large enough f−n(L) contains a disk in
B. Since Γ is a cs-blender, W u

loc(Γ) intersects f−n(L) and so because of the density of the unstable
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manifold of P it follows that
W u(Q) ⊂W u(P ).

That is, the closure of the unstable manifold of P (of dimension one) contains the unstable manifold
(two dimensional) of Q. Therefore we have in some sense (say, topological) that dimension of the
unstable manifold of P is equal to dimension of unstable manifold of Q (i.e. two). Consequently,
the dimension of the unstable manifold of P is increased in a unit, so for practical purposes, we
obtain that P has invariant manifolds of dimension two.

The above construction allows us to see that all points in a transversal intersection γ =

W s(P ) t W u(Q) (generically an union of curves) belong to both, the homoclinic clase of P and
the homoclinic clase of Q. Therefore, γ is contained in the non-wandering set of f . Obviously
the points of γ do not admit a hyperbolic splitting and it follows that f cannot be uniformly
hyperbolic. The persistence of the blender makes these arguments robust under C1-perturbations
and then we get an open set of non-uniformly hyperbolic diffeomorphisms.

Note that the notion of blender is formulated in the general context of C1-diffeomorphisms.
Already in this context it is proved in [DR02] that if f is a C1-diffeomorphism with a heterodi-
mensional cycle associated with two saddle points P and Q with indexes s and s+ 1 (i.e. co-index
one) and C1 away from homoclinic tangencies, then f belongs to the closure of an open U of non-
uniformly hyperbolic diffeomorphisms. Later, in [BD08] it is proved that any heterodimensional
cycle of co-index one can be C1-approximated by diffeomorphisms having a C1-robust heterodi-
mensional cycle. One of the steps to prove this result was to show that horseshoes of blender type
occur naturally in an unfolding of a heterodimensional cycle of co-index one.

The most eloquent geometric representation of a blender and its relation to the horseshoe map
follows from the construction of the so-called blender-horseshoe [BD11]. This construction involves
a diffeomorphism f defined in a reference cube C = [−1, 1]n+1, with n ≥ 2, as a skew-product of
the form

f : C ⊂ Rn × R→ Rn × R, f(x, y) = (F (x), φ(x, y)),

where F : Rn → Rn has a Smale horseshoe Λ ⊂ [−1, 1]n and the maps φ(x, ·) : [−1, 1] → [−1, 1]

are C1-contractions. Clearly, if every application φ(x, ·) is the same contraction φ, then the map
f |C is essentially a normally embedded horseshoe map with maximal invariant set Γ = Λ× {y0},
where y0 ∈ [−1, 1] is the fixed point of φ. Suppose now that

H1 ∪H2 = F−1([−1, 1]n) ∩ [−1, 1]n

is the union of two horizontal strings in the definition of the Smale horseshoe and that φ(x, ·) = φi

if x ∈ Hi, with i = 1, 2, are two different contractions, with fixed points y1 < y2, respectively.
The diffeomorphisms defined of this way are called locally constant skew-product diffeomorphisms.
Hence, in that case, Γ ⊂ Λ×[y1, y2] is again a transitive hyperbolic set such that f |Γ is topologically
conjugated to F |Λ. The projection of Γ on the interval [y1, y2] is given by the dynamics of the
iterated function system generated by the contractions φ1, φ2. If there exists an open set B ⊂
(y1, y2) such that B ⊂ φ1(B)∪φ2(B), it is proved that this projection contains B. It is easy to verify
that this open setB is still contained in the projection on the real line of the continuation Γg of Γ for
every locally constant skew-product diffeomorphism g close to f in the C1-topology. Such inclusion
is sufficient to show that for all (x, y) ∈ (H1 ∪H2) × B, the local unstable manifold W u

loc(Γg) of
Γg intersects the local strong stable manifold of (x, y) for g. Notice that these local strong stable
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manifolds are an open set of embedded disks and thus, it follows that Γ satisfies the definition of
blender for all locally constant skew-product diffeomorphisms C1-close to f . This persistence is the
main obstacle to prove the existence of a blender because any diffeomorphism g sufficiently C1-close
to f is not necessarily a skew-product, much less, a locally constant skew-product diffeomorphism.
This difficulty is resolved by following the normal hyperbolic result in [HPS77] since with additional
assumptions concerning the strength of the hyperbolic splitting for f |C we conclude that g is
topologically conjugate to a skew-product. Thus, in that case, when we try to prove the persistence
of the intersection condition it will be sufficient to consider C1-perturbations of f in the class of
skew-product diffeomorphisms. Moreover, since F |Λ is conjugated to a Bernoulli shift τ : Σ2 → Σ2

of two symbols, the blender-horseshoe can be studied from a symbolic point of view, taking skew-
products maps of the form

Φ : Σ2 × R→ Σ2 × R, Φ(ξ, x) = (τ(ξ), φξ(x)),

where each φξ : R→ R is a C1-contraction.

The notion of cs-blender is associated with C1-diffeomorphisms having a partially hyperbolic
dominated splitting Ess⊕Ecs⊕Eu and it has always been defined and handled in the case where
the central bundle Ec is unidimensional. This represents an obstacle in the contexts where central
manifolds of dimension c ≥ 2 are raised. Therefore, a natural question is to handle and to construct
blenders whose central bundle is not necessarily one-dimensional. Following the proposal of Nassiri
and Pujals [NP12] a way to do this is to consider the symbolic dynamics in the context of the
symbolic skew-products

Φ : Σk × Rc → Σk × Rc, Φ(ξ, x) = (τ(ξ), φξ(x)),

where Σk = {1, . . . , k}Z, c ≥ 1, and each φξ : Rc → Rc is a new C1-contraction. A blender in this
context will be called symbolic blender-horseshoe or shortly symbolic blender. The first objective
of our work is to give conditions for the existence of symbolic blender in this general setting. These
conditions will be used to study the genesis of blenders in perturbations of Φ(ξ, x) = (τ(ξ), x) and
so to explain the presence of suspended blenders for vector fields in R4 arbitrarily close to a Hamil-
tonian vector field XH with a non-degenerate bifocal homoclinic orbit, where a three-dimensional
diffeomorphism can be defined as the return map on a cross section. A bifocal homoclinic orbit
of a vector field on R4 is a homoclinic connection with a focus-focus equilibrium, i.e., having
eigenvalues −ρ1 ± iω1, ρ2 ± iω2. Since in every generic unfolding of the nilpotent singularity of
codimension four in R4 there are bifocal homoclinic orbits [BIR11], which are unfolded as con-
tinuation of similar homoclinic connections for Hamiltonian vector fields in the limit families, we
finally show how suspended blenders could appear in these unfoldings.

This thesis is organized into four self-contained chapters. Let us summarize the main results
in each chapter.

I – Robust cycles and blenders – In the first chapter of the thesis we introduce in detail
preliminary concepts, assumptions and examples which have been mentioned throughout this
introduction. The objective is to introduce the notions of blender and blender-horseshoe already
present in the literature in a self-contained form.
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II – Symbolic blenders – The second chapter of the thesis focuses on the study of the existence
of symbolic blenders. The main results of this chapter are in collaboration with Yuri Ki and Artem
Raibekas and are collected in prepublication [BKR12].

This chapter is developed in the context of symbolic skew-products

Φ : Σk ×M → Σk ×M, Φ(ξ, x) = (τ(ξ), φξ(x))

where M is a compact Riemannian manifold of dimension c ≥ 1 and φξ : M → M is a Cr-
diffeomorphism with r ≥ 0 for all ξ ∈ Σk, which depends continuously with respect to ξ. The first
factor of the product Σk ×M is called base and the second fiber. To emphasize the role of fiber
diffeomorphisms φξ we use the notation Φ = τ n φξ. This set of symbolic skew-products will be
denoted by Sk(M). When φξ only depends on the coordinate ξ0 of the bisequence ξ = (ξi)i∈Z,
we say that Φ is a one-step skew-product and, in that case, we write Φ = τ n (φ1, . . . , φk) where
φξ = φi if ξ0 = i. The set of one-step skew-products maps is denoted by Qk(M).

Working with symbolic skew-products Sk(M) is a good idea to study the existence of blenders
in skew-product diffeomorphisms of the form

f : N ×M → N ×M, f(x, y) = (F (x), φ(x, y)),

where F is a diffeomorphism of a manifold N with a horseshoe Λ ⊂ N . As already mentioned,
C1-perturbations of these diffeomorphisms are not necessarily skew-products. In order to ensure
that perturbations of f are conjugated to symbolic skew-products we need to impose on f partial
hyperbolicity and dominated conditions which are open conditions. Then, according to recent
work [Gor06, IN10, PSW11], see Proposition 2.1, there exist ε > 0 and a constant α ∈ (0, 1], only
depending on the rate of contraction ν ∈ (0, 1) of the horseshoe Λ, such that any ε-perturbation
g of f in the C1-topology has a locally maximal invariant set ∆g isomorphic to Λ ×M , so that
g|∆g is topologically conjugated to a symbolic skew-product Φ = τ nφξ in the subset PHS1,α

k (M)

of Sk(M) consisting of locally Hölder continuous and partially hyperbolic symbolic skew-products.
This set is defined by imposing to Φ = τ n φξ extra conditions of regularity, Lipschitz character
and domination:

• φξ : M →M is C1-diffeomorphisms for each ξ.

• φξ depends locally α-Hölder continuously on ξ in M : there exists C ≥ 0 such that

dC0(φ±1
ξ , φ±1

ξ′ ) ≤ CdΣk(ξ, ξ′)α, for all ξ, ξ′ ∈ Σk with ξ0 = ξ′0. (2)

The space of symbols Σk = {1, . . . , k}Z is endowed with the distance

dΣk(ξ, ξ′)
def
= ν`, ` = min{i ∈ Z+ : ξi 6= ξ′i or ξ−i 6= ξ′−i}.

We will denote by CΦ the smallest non-negative constant satisfying (2).

• φξ is biLipschitz and partially dominates: There exist positive constants γ and γ̂ such that

– s-domination and u-domination (partial hyperbolicity): να < γ < 1 < γ̂−1 < ν−α

– (γ, γ̂−1)-Lipschitz in M :

γ
∥∥x− x′∥∥ < ∥∥φξ(x)− φξ(x′)

∥∥ < γ̂−1
∥∥x− x′∥∥ ,

for all ξ ∈ Σk and x, x′ ∈M . Here ‖x− x′‖ denotes the distance in M .
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A blender-horseshoe is a locally maximal hyperbolic set and therefore it will be linked to a
bounded and open set D ⊂M . That is, it will be the locally maximal invariant set for Φ in Σk×D.
Thus, we can impose additional local conditions for the symbolic skew-products Φ = τ n φξ with
which we work. For instance, we assume that the restriction of φξ to the set D is a contraction or
expansion. Namely, we will work with the following sets of symbolic skew-products:

Definition (Sets of symbolic skew products). Let D ⊂ M be a bounded open set and consider
constants 0 < λ < β and 0 ≤ α ≤ 1. We define Sr, αk,λ,β(D), r ≥ 0, as the set of symbolic skew-
product maps Φ = τ n φξ ∈ Sk(M) such that

• φξ is a Cr-(λ, β)-Lipschitz on D for all ξ in Σk, and

• φξ depends locally α-Hölder continuously on D with respect to ξ.

Additionally, if β < 1 we impose the condition φξ(D) ⊂ D for all ξ ∈ Σk, and, in the case 1 < λ

the imposed condition is D ⊂ φξ(D) for all ξ ∈ Σk. We endow Sr,αk,λ,β(D) with the distance

dS(Φ,Ψ) = sup
ξ∈Σk

dCr(φξ, ψξ) + |CΦ − CΨ|, with Φ = τ n φξ and Ψ = τ n ψξ.

For notational convenience, Sk,λ,β(D) and Sαk,λ,β(D) denote S0,0
k,λ,β(D) and S0,α

k,λ,β(D), respectively.

Under the hypothesis of contractive fiber maps, the following result provides a description of
the maximal invariant of Φ in Σk ×D and shows the dependence on Φ of the set

KΦ
def
= P(Per(Φ)) ∩D

where Per(Φ) is the set of periodic points of Φ and P : Σk ×M →M is the standard projection
on M . Although this theorem is a special case of the results of [HPS77] it will be very useful to
have a complete and detailed proof in the context of symbolic skew-products. It is denoted by
K(D) the collection of compact subsets of D endowed with the Hausdorff metric and

W u((ξ, x); Φ)
def
= {(ζ, y) ∈ Σk ×M : lim

n→∞
d(Φ−n(ζ, y),Φ−n(ξ, x)) = 0}

is the unstable set of (ξ, x) for Φ.

Theorem A (Geometry of the maximal invariant set). Consider Φ ∈ Sαk,λ,β(D) with β < 1 and
α > 0. Then the restriction of Φ to the set

ΓΦ =
⋂
n∈Z

Φn
(
Σk ×D

)
=
⋂
n∈N

Φn
(
Σk ×D

)
is conjugated to the full shift τ of k symbols. Moreover, W u((ξ, x); Φ) ⊂ ΓΦ for all (ξ, x) ∈ ΓΦ and
there exists a unique continuous function gΦ : Σk → D such that for every periodic point (ϑ, p) of
Φ in Σk ×D it holds that,

ΓΦ = W u((ϑ, p); Φ)
)

= {(ξ, gΦ(ξ)) : ξ ∈ Σk} and P(ΓΦ) = KΦ ∈ K(D).

Finally, the map L : Sαk,λ,β(D)→ K(D) given by L (Φ) = KΦ is continuous.

In order to introduce a symbolic blender, firstly we define a family of almost horizontal disks
that provides the superposition region of the blender.
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Definition (Almost horizontal disks). For a fixed α > 0 and given an open subset B ⊂ D, we say
that Ds is a δ-horizontal disk in Σk × B if there exist ζ ∈ Σk, z ∈ B, a positive constant C ≥ 0

and a (α,C)-Hölder continuous map h : W s
loc(ζ; τ)→ B such that

Ds = {(ξ, h(ξ)) : ξ ∈W s
loc(ζ; τ)}, ‖z − h(ξ)‖ < δ for all ξ ∈W s

loc(ζ; τ) and Cνα < δ.

Here W s
loc(ζ; τ) = {ξ ∈ Σk : ξi = ζi for all i ≥ 0} denotes the stable set of ζ ∈ Σk.

The main reason for considering the set of embedded disks in the definition of blender is that
the local strong stable manifolds will be part of this set. Observe that for any δ > 0, the set
W s
loc(ζ; τ)× {x} is a δ-horizontal disk and, in the case of one-step maps, coincides with the local

strong stable set of (ζ, x). Since we want to study Hölder perturbations of a one-step map, it is
enough to consider as superposition region the family of almost horizontal disks.

From Theorem A, it follows W u(ΓΦ) = ΓΦ for all Φ ∈ Sαk,λ,β(D) with β < 1, where

W u(ΓΦ)
def
=
{

(ξ, x) ∈ Σk ×M : lim
n→∞

d(Φ−n(ξ, x),ΓΦ) = 0
}

is the unstable set with respect to the maximal invariant set ΓΦ. Hence, the corresponding defini-
tion of cs-blender in the context of symbolic skew products can be written as follows:

Definition (Symbolic cs-blender-horseshoes). Let Φ ∈ Sαk,λ,β(D) with β < 1 and α > 0.

The maximal invariant set ΓΦ of Φ in Σk ×D is said to be symbolic cs-blender-horseshoe if
there exist δ > 0, a non-empty open set B ⊂ D and a neighborhood V of Φ in Sαk,λ,β(D) such that
for every Ψ ∈ V and for any δ-horizontal disk Ds in Σk ×B, it holds that

ΓΨ ∩Ds 6= ∅, where ΓΨ is the continuation of ΓΦ for Ψ.

The open set B is called superposition region of the symbolic cs-blender-horseshoe.

To define symbolic cu-blenders-horseshoes, firstly we need to introduce the associated inverse
symbolic skew product for Φ = τ n φξ. Given Φ = τ n φξ ∈ Sαk,λ,β(D), the symbolic skew product

Φ∗ = τ n φ∗ξ ∈ Sαk, β−1, λ−1(D), where φ∗ξ : M →M given by φ∗ξ(x) = φ−1
τ−1(ξ∗)

(x),

is called associated inverse skew product for Φ. Here ξ∗ = (. . . ξ1; ξ0, ξ−1, . . .) denotes the conjugate
sequence of ξ = (. . . ξ−1; ξ0, ξ1, . . .). Note that since τ(ξ)∗ = τ−1(ξ∗) the iterates of Φ∗ correspond
with iterates of Φ−1. This observation allows us to define symbolic cu-blender-horseshoes for
symbolic skew products in Sαk,λ,β(D) with λ > 1 and α > 0. Namely, a symbolic cu-blender-
horseshoe for Φ is defined as a symbolic cs-blender-horseshoe for Φ∗. In what follows, we only
consider symbolic cs-blenders.

From Theorem A, it follows that W uu((ϑ, p); Φ) = ΓΦ for every periodic point (ϑ, p) ∈ Σk×D
of a partially hyperbolic symbolic skew-product Φ. In Proposition 2.5, we will prove that each
local strong stable set W ss

loc((ξ, x); Φ) is an almost horizontal disk. Hence, if ΓΦ is close enough to
a one-step map then this disk is a small Hölder perturbation of the horizontal diskW s

loc(ξ; τ)×{x}.
Therefore, if moreover Γ is a symbolic cs-blender for Φ with superposition region B, then it holds

W u((ϑ, pΨ); Ψ) ∩W ss
loc((ξ, x); Ψ) 6= ∅, for all (ξ, x) ∈ Σk ×B

and every Sα-perturbation Ψ of Φ where (ϑ, pΨ) is the continuation of (ϑ, p) for Ψ.
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A set of maps φ1, . . . , φk defined on D is said to have the covering property if there is an open
set B ⊂ D such that B ⊂ φ1(B) ∪ · · · ∪ φk(B). One of the objectives is to understand how to
translate robust dynamical properties of an iterated function system generated by φ1, . . . , φk to
robust dynamical properties of Φ = τ n (φ1, . . . , φk) under Sα-perturbations. The following result
describes how the covering property translates to a robust property in the language of Hölder
symbolic skew products.

Theorem B (Covering property characterization). Consider Φ = τ n (φ1, . . . , φk) ∈ Sαk,λ,β(D)

with να < λ < 1, α > 0 and let B ⊂ D be an open set. Then,

B ⊂ φ1(B) ∪ · · · ∪ φk(B)

if and only if there are δ > 0 and a neighborhood V of Φ in Sαk,λ,β(D) such that for every Ψ ∈ V

Γ+
Ψ(B) ∩Ds 6= ∅ for all δ-horizontal disk Ds in Σk ×B

where Γ+
Ψ(B) is the forward maximal invariant set of Ψ in Σk ×B.

Under the hypothesis β < 1, if Φ = τ n (φ1, . . . , φk) ∈ Sαk,λ,β(D) then φi(D) ⊂ D for all
i = 1, . . . , k. In such case, for any small perturbation Ψ = τ n ψξ of Φ it holds that ψξ(D) ⊂ D

and it follows that

Γ+
Ψ(B)

def
=
⋂
n≥0

Ψn(Σk ×B) ⊂
⋂
n∈Z

Ψn(Σk ×D)
def
= ΓΦ.

Therefore, combining the above result with the definition of symbolic blender we obtain the fol-
lowing consequence on the existence of symbolic blenders using the covering property.

Theorem C (Symbolic blender existence). Consider Φ = τ n (φ1, . . . , φk) ∈ Sαk,λ,β(D) with
να < λ < β < 1, α > 0. Assume that there exists an open set B ⊂ D such that

B ⊂ φ1(B) ∪ · · · ∪ φk(B)

Then the maximal invariant set ΓΦ of Φ in Σk×D is a symbolic cs-blender-horseshoe for Φ whose
superposition region contains B.

Part of this second chapter is devoted to the study of a subset of symbolic skew-products
S+
k (M) called symbolic unilateral skew-products, which generalizes the one-step maps. This set

consists of the maps Φ = τ n φξ such that φξ = φξ′ if ξi = ξ′i for all i ≥ 0. In Proposition 2.3
it is showed that if there exists a stable holonomy (see Definition 2.3) for Φ ∈ Sk(M) then Φ is
topologically conjugated to a unilateral symbolic skew-product Φ̃ ∈ S+

k (M). This would allow us
to restrict the set of perturbations of skew-products that must be considered and thus introduce
another definition (in the unilateral setting) of symbolic blender-horseshoe (see Definition 2.11).
Namely, in §2.4 perturbations in the set S+

k,λ,β(D) = S+
k (M) ∩ Sk,λ,β(D) with β < 1 are studied.

In Proposition 2.5, it is proved the existence of stable holonomy for every s-dominated sym-
bolic skew-products, in particular, for Φ = τ n φξ ∈ PHS1,α

k (M) ∩ Sk,λ,β(D). The corresponding
conjugated unilateral skew-product is given by

Φ̃ = τ n φ̃ξ ∈ S+
k (M) where φ̃ξ = hsτ(ξ),π(τ(ξ)) ◦ φξ ◦ h

s
π(ξ),ξ
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with π denoting the projection of Σk on a transversal section Σ to the stable partition W s
loc(ξ; τ),

ξ ∈ Σk and hsξ,ξ′ : M →M the family of maps that define the stable holonomy. In Proposition 2.6,
it is proved that each hsξ,ξ′ is a Hölder continuous map with uniform Hölder constant for all ξ
and ξ′; but this is not sufficient to conclude that Φ̃ ∈ S+

k,λ,β(D). To ensure that Φ̃ ∈ Sk,λ,β(D)

we need to increase the regularity of Φ and impose additional conditions on fiber maps. Namely,
Proposition 2.9 proves that the maps hsξ,ξ′ are C

1-difeomorfismos if Φ = τ n φξ is fiber bunched
(ver Definición 2.7) and belongs to the set PHS2,1+α

k (M) of the parcial hyperbolic skew-products
whose fiber maps are C2-diffeomorphisms that depend locally Hölder differenciatiable with respect
to the base point, that is,

dC1(φ±1
ξ , φ±1

ξ′ ) ≤ CdΣk(ξ, ξ′)α, for all ξ, ξ′ ∈ Σk with ξ0 = ξ′0.

This regularity in the holonomy implies that Φ̃ = τnφ̃ξ belongs to S+
k,λ,β(D). According to [Gor06],

see Theorem 2.2, it follows that these additional regularity and fiber bunching conditions can be
obtained for the symbolic skew-product Ψ = τ n ψξ conjugated to a C2-perturbation g of the
C2-diffeomorphism f = F × id where F : N → N is a horseshoe map and id : M → M is the
identity map. In this way, a symbolic blender-horseshoe in the unilateral setting leads a blender
for a C2-diffeomorphism with a C2-robust superposition region.

The above results about the existence of symbolic blenders are given for one-step symbolic
skew-products Φ = τ n (φ1, . . . , φk). Apart from the assumption of regularity and domination
imposed to restrict the space of perturbations, the condition of existence of symbolic blender is
reduced to the covering property, which is formulated in terms of the contractions φ1, . . . , φk. This
allows us to consider the structure of a symbolic blender as something specific to the one-step
skew-products that persists under good perturbations. By drawing a parallel with the proof of
the existence of Hénon-like strange attractors, one-step skew-products could be considered as the
limit maps whose dynamics must be understood, just as one needs to understand the dynamics of
the limit family ha(x) = 1− x2 to understand the existence of Hénon attractors in [BC91]. From
this view, Section §2.3 is introduced to study symbolic blenders in the one-step setting, that is,
only considering perturbations in the set Qk,λ,β(D). It is showed how the dynamics of a one-step
map Φ = τ n (φ1, . . . , φk) is given by the dynamics of the iterated function system generated by
φ1, . . . , φk. In this way the concept of blender emerges as a property of this iteration function
system dynamics. This section is a prelude to the next section of the PhD dissertation.

III – Iterated function systems – The third chapter of thesis focuses on the study of iterated
function systems, defined on both, an interval or a circle. The main results in this chapter are
in collaboration with Artem Raibekas and are collected in the PhD theses [Rai11] and in the
prepublication [BR].

By an iterated function system, shortly IFS from now on, generated by a family of diffeomor-
phism Φ = {φ1, . . . , φk} on a manifoldM , we mean the set IFS(φ1, . . . , φk) of all possible composi-
tions of diffeomorphism φi ∈ Φ (including the identity map id). That is, the semigroup with iden-
tity (a monoid) generated by the compositions of φ1, . . . , φk. Because of the close relation between
one-step symbolic skew-products and iterated function systems we write IFS(Φ) = IFS(φ1, . . . , φk),
meaning that the IFS is generated by the family Φ = {φ1, . . . , φk} associated with the one-step
Φ = τ n (φ1, . . . , φk) defined on Σk ×M .
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As already mentioned, the dynamics of a one-step skew-product is given by the dynamics of its
associated iterated function system. In order to talk about the dynamics of an IFS it is necessary
to introduce the basic notion of orbit. The orbit of x ∈M for IFS(Φ) is the action of the IFS over
the point x, i.e.,

OrbΦ(x)
def
= {h(x) : h ∈ IFS(Φ)} ⊂M.

With this notion of orbit, some dynamical concepts known for dynamical system are translated
to the field of the iterated function systems. As an example, a set Λ ⊂ M is said to be invariant
if OrbΦ(x) ⊂ Λ for all x ∈ Λ; transitive if there exists a dense orbit in Λ, i.e.,

Λ ⊂ OrbΦ(x) for some x ∈ Λ;

and minimal if every x ∈ Λ has a dense orbit in Λ. The ω-limit of x ∈M for IFS(Φ) is the set

ωΦ(x)
def
= {y : there exists (hn)n ⊂ IFS(Φ) \ {id} such that lim

n→∞
hn ◦ · · · ◦ h1(x) = y},

while the ω-limit of IFS(Φ) is

ω(IFS(Φ))
def
= cl

(
{y ∈M : there exists x ∈M such that y ∈ ωΦ(x)}

)
,

where "cl" denotes the closure of a set. Similarly we define the α-limit of both, a point x ∈M and
the iterated function system IFS(Φ). Finally, the limit set L(IFS(Φ)) is the union of ω-limit and
α-limit of IFS(Φ). From these concepts, understanding the dynamics of an IFS requires to know
the possible invariant sets for the IFS, in order to describe the ω-limit or α-limit of their orbits,
and show, if possible, a result on spectral decomposition of the limit set as it was done in the case
of a hyperbolic diffeomorphisms.

In order to find robust properties under perturbations it is important to introduce the concept
of proximity into the set of the IFS. That is, an iterated function system IFS(ψ1, . . . , ψk) is said to
be C1-close to IFS(φ1, . . . , φk) if each of the diffeomorphisms ψi is close to φi in the C1-topology.
As an example of a robust property by perturbations one can think in the translation to the
language of the IFS of the symbolic blenders defined in the previous chapter:

Definition (Blending region). An open set B ⊂ M is said to be a blending region for IFS(Φ) if
B is C1-robustly minimal for IFS(Φ), i.e.,

B ⊂ OrbΨ(x) for all x ∈ B and every IFS(Ψ) C1-close to IFS(Φ).

In the case of a one-step skew-product with contracting fibers, in Proposition 2.21 it is proved
that the existence of a blending region is equivalent to have a symbolic blender in the one-step
setting. The main goal along this third chapter is to prove the existence of blending regions for
IFS generated by generic diffeomorphisms, on both the real line M = R and the circle M = S1

close to the identity map id : M →M .

In Section §3.2 we will study blending region on the real line. We will introduce a type of
interval with a concrete configuration for a pair of maps f0, f1 (see Figure 3.1(a)). It will be a
candidate to blending region for IFS(f0, f1). Denote by Diffr+(R) the set of orientation preserving
Cr-diffeomorphisms on the real line.



Introduction xxxi

Definition (ss-intervals). Given Φ = {f0, f1} ⊂ Diff1
+(R), an interval [p0, p1] ⊂ R is called

ss-interval for IFS(Φ) if:

• [p0, p1] = f0([p0, p1]) ∪ f1([p0, p1]),

• (p0, p1) ∩ Fix(fi) 6= ∅ for i = 1, 2, and pj 6∈ Fix(fi) for i 6= j,

• p0 and p1 are attracting fixed points of f0 and f1 respectively.

We will denote by Kss
Φ a ss-interval [p0, p1] for the iteration function system IFS(Φ).

The next theorem implies that any open set contained in a ss-interval for IFS(Φ), with gen-
erators close enough to the identity and with hyperbolic fixed points, is a blending region for
IFS(Φ). This theorem is a generalization of a lemma due to Duminy [Dum70], which is part of
the proof of the so-called Duminy’s Theorem (see Theorem 3.27) about the dynamics of groups
of diffeomorphisms in the circle. We will prove this result using some different arguments from
the original proof of Duminy’s Lemma (see [Nav11] for details) and we will improve slightly the
conclusions of Duminy’s Theorem. We denote by Per(IFS(Φ)) the set of periodic points of IFS(Φ),
i.e., the set of points x = h(x) for some h 66= id in IFS(Φ).

Theorem D (Duminy’s Lemma). Let Kss
Φ be a ss-interval for an iterated function system IFS(Φ)

with Φ = {f0, f1} ⊂ Diff2
+(R) such that the fixed point of fi|Kss

Φ
is hyperbolic. Then, there exists

ε ≥ 0.17 such that if f0|Kss
Φ
, f1|Kss

Φ
are ε-close to the identity in the C2-topology, it holds that

Kss
Ψ ⊂ Per(IFS(Ψ)) and Kss

Ψ = OrbΨ(x) for all x ∈ Kss
Ψ ,

for every iterated function system IFS(Ψ) C1-close to IFS(Φ).

The Section §3.3.2 is concerned with the generalization of the above theorem for Morse-Smale
diffeomorphisms on the circle (see Theorem 3.35). This generalization is part of the proof of
a Denjoy type theorem for IFS. Remember that, taking into account the rotation number of
a diffeomorphism f of the circle we have three possibilities: (i) f has a periodic point, (ii) all
orbits (for forward iterates) of f and f−1 are dense, and (iii) there is a wandering interval for f .
Wandering intervals are the gaps of a f -invariant Cantor set Λ ⊂ S1, which is contained in the
ω-limit for f of all points of S1. These dynamical properties can be easily translated for IFS:

Definition (Invariant minimal Cantor set). Let Φ = {f0, f1} ⊂ Diff1(S1) and Λ ⊂ S1. A subset
Λ ⊂ S1 is said to be minimal invariant Cantor set for IFS(Φ) if

• Λ is a Cantor set and

• Λ = OrbΦ(x) for all x ∈ Λ.

From Denjoy’s Theorem [Den32] it follows that these Cantor sets cannot appear for diffeomor-
phisms on the circle with enough regularity and close to the identity. Namely, there is ε > 0 such
that if f ∈ Diff2(S1) and it is ε-close to identity in the C2-topology, then there are no minimal
invariant Cantor sets. Moreover, the following statements are equivalent: S1 is minimal for the
iterated function systems IFS(f), and f does not have periodic points. When the number of gen-
erators of the IFS increases the periodic points are no longer the obstruction to the minimality.
Now, that role is played by the ss-intervals.
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Theorem E (Denjoy for IFS). There exists ε > 0 such that if f0, f1 ∈ Diff2(S1) are Morse-Smale
diffeomorphisms ε-close to the identity in the C2-topology with no periodic point in common then,
there are no invariant minimal Cantor sets for IFS(f0, f1).

Moreover, denoting by ni of period of fi, the following conditions are equivalents:

• S1 is minimal for IFS(fn0
0 , fn1

1 ),

• there are no ss-intervals for IFS(fn0
0 , fn1

1 ).

Unlike what occurs for a single diffeomorphism f on the circle where S1 cannot be C1-robust
minimal, in the case of IFS, the robustness can be obtained. In fact, notice that the above theorem
is C1-robust in the following sense:

Remark (C1-robustness). The assertions of the Denjoy’s Theorem for IFS are robust under C1-
perturbations of IFS(f0, f1), i.e., for every IFS(g0, g1) where g0 and g1 are C1-perturbations of f0

and f1 respectively.

As a consequence of this Denjoy’s theorem for IFS, we will finish the third chapter of this
thesis showing a Spectral Decomposition Theorem on the circle. This theorem states that the
limit set of IFS(Φ) with Φ = {fn0

0 , fn1
1 }, where f0, f1 ∈ Diff2(S1) in the hypothesis of the previous

theorem, is decomposed into finite union of disjoint basic intervals: isolated and transitive intervals
for IFS(Φ). A set A with A ∩ Per(IFS(Φ)) 6= ∅ is said isolated for IFS(Φ) if there exists an open
set D such that A ⊂ D and A contains the closure of Per(IFS(Φ)) ∩D.

Theorem F (Spectral decomposition for IFS). There exists ε > 0 such that if f0, f1 ∈ Diff2(S1)

are Morse-Smale diffeomorphisms of periods n0 and n1, respectively, ε-close to the identity in the
C2-topology and with no periodic point in common, then there are finitely many isolated, transitive
pairwise disjoint intervals K1, . . . ,Km for IFS(fn0

0 , fn1
1 ) such that

L(IFS(fn0
0 , fn1

1 )) =
m⋃
i=1

Ki.

Moreover, this decomposition of the limit set of IFS(fn0
0 , fn1

1 ) is C1-robust.

IV – Cycles in unfoldings of nilpotent singularities – In the last chapter we translate the
conclusions obtained in the first part of the thesis to the framework of vector fields . The main
result of this chapter is in collaboration with Santiago Ibáñez and J. Ángel Rodríguez and are
collected in [BIR11].

The dynamics associated with heterodimensional cycles force us to consider diffeomorphisms
in dimension n ≥ 3. It is well-known that these diffeomorphisms can be defined as Poincaré maps
on cross-sections of a vector field in R4 near a cycle or a periodic orbit. Philosophically, dynamics
in discrete systems are lifted to the field of continuous systems by the suspension process. However,
the real interest lies in obtaining some manageable criterion to determine when a family of vector
fields has this or that dynamical behavior. The study of global bifurcations associated with different
cycles explains the dynamical transitions and the nature of the behavior. The presence of infinitely
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many horseshoes in a neighborhood of an orbit of Sil’nikov type is an example. However, proving
that a family of vector fields has a certain cycle is not easy, unless that family is constructed ad
hoc. This is the case in [Rod86] for a family of quadratic vector fields having Sil’nikov orbits. As an
alternative to this search of cycles, one can consider the proof of criteria that conclude the presence
of interesting dynamics determined from the simplest elements of a vector field: its singularities.
In these terms one may ask for the singularity of lower codimension (more common) from which
Sil’nikov homoclinic orbits (and therefore strange attractors) can be generically unfolded. A partial
answer was given in [IR95] where the existence of these configurations was proved in the generic
unfoldings of nilpotent singularities of codimension four in R3. Later, in [IR05] this result was
proved for the nilpotent singularity of codimension three. A nilpotent singularity is a C∞ vector
field in Rn such that, in appropriate coordinates, in an neighborhood of the origin (equilibrium
point) it can be written as

n−1∑
k=1

xk+1
∂

∂xk
+ f(x1, . . . , xn)

∂

∂xn
,

with f(x) = O(‖x‖2) where x = (x1, . . . , xn). It is said to be a nilpotent singularity of codimension
n if it holds the generic condition ∂2f/∂x2

1(0) 6= 0.

Existence of strange attractors in the unfolding of a lower dimensional singularity, a Hopf-cero
singularity of codimension two, is studied in [DIKS]. The result in [IR05] allows to conclude the
presence of strange attractors in the coupling of two Brusselator by linear diffusion [DIR07]. Hence,
complicated dynamics was proved to emerge in couple system, as Turing [Tur52] proposed and
Smale [Sma74] completed, regarding the genesis of oscillations. By a Brusselator we mean a cubic
bidimensional vector field which is proposed as a model in a chemistry reaction. The coupling of two
of these dynamics leads to a vector field having a nilpotent singularity of codimension four in R4.
The first objective proposed at the beginning of this thesis was the study of the generic unfolding
of these singularities to find cycles such that they could imply proper dynamics of dimension
n ≥ 4: strange attractors with more than one positive Lyapunov exponent and heterodimensional
cycles. In [BIR11] we proved the existence of bifocal homoclinic orbits in every generic unfolding
of the nilpotent singularity of codimension four in R4.

Theorem G. In every generic unfolding of a four-dimensional nilpotent singularity of codimension
four there is a bifurcation hypersurface of bifocal homoclinic orbits.

Recall that a bifocal homoclinic orbit is a homoclinic connection to an equilibrium point of a
vector field on R4 with two pairs of eigenvalues ρk± iωk with k = 1, 2, such that ρ1 < 0 < ρ2. The
Poincaré map defined in a neighborhood of this cycle will be a three-dimensional diffeomorphism,
susceptible to present a blender. We will prove the existence of suspended blenders for vector field
arbitrarily close to a Hamiltonian vector fields in R4 with a non-degenerate bifocal homoclinic
orbit. For this Hamiltonian vector field the Poincaré map can be written, with a suitable choice
of coordinates, as

f : [−ε, ε]2 × [−c0, c0]→ [−ε, ε]2 × [−c0, c0] , f(x, c) = (Fc(x), c),

where Fc has a hyperbolic maximal invariant set Λc for |c| ≤ c0 conjugated to the Bernoulli shift
Σn(|c|) (see Teorema 4.16). Moreover, the family of sets {Λc}0≤c≤c0 satisfies that Λc−ε contains the
dynamically continuation of Λc for every ε > 0 small enough. Similarly for the family {Λc}−c0≤c≤0.
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These properties allow us to conjugate a subsystem of f to a symbolic skew-product of the form
Φ = τ × id defined on Σn(|c|) × [−c, c] with 0 < |c| ≤ c0.

In order to prove the above theorem we will show that, for some parameter values, the limit
after rescaling of the generic unfolding of the nilpotent singularities is a family of Hamiltonian
vector fields with a non-degenerate bifocal homoclinic orbit. Perturbations on the hypersurface
of bifocal homoclinic orbits of each one of these Hamiltonian vector fields have a Poincaré return
map conjugated to a symbolic skew-product perturbation of Φ = τ n id. As follows from the third
chapter, generic one-step perturbations of Φ = τ × id has either, a blending region or its dynamics
is trivial. Thus, we will conclude the fourth chapter discussing the possible presence of suspended
blenders and heterodimensional cycles in the generic unfoldings of nilpotent singularities.



Robust cycles and blenders

One of the basic problems in the study of diffeomorphisms was the characterization of the
structurally stable dynamics. This was obtained by means of the hyperbolicity. Then the need
arises to know the obstructions to hyperbolicity. Two main mechanisms appear to yield robust
non-hyperbolic behavior: homoclinic tangencies and heterodimensional cycles. Blenders are
hyperbolic sets that appear as the subjacent mechanism leading to the generation of robust
heterodimensional cycles and robust homoclinic tangencies. Blender-horseshoes are examples
of blenders which can be constructed by means of skew-product diffeomorphisms called non-
normally hyperbolic horseshoes.

1.1 Hyperbolicity and stability

Given a Cr-diffeomorphism f of a Riemannian compact manifold M , we say that a f -invariant
compact set Λ ⊂ M is hyperbolic if there is a continuos Df -invariant splitting EsΛ ⊕ EuΛ of the
tangent bundle TΛM and there are constants C > 0, λ < 1, such that

‖Dxf
n(v)‖ ≤ Cλn‖v‖ and ‖Dxf

−n(w)‖ ≤ Cλn‖w‖

for all v ∈ Esx, w ∈ Eux , x ∈ Λ and n ≥ 1. The vector bundle EsΛ and EuΛ are the stable and
unstable directions of Λ. In particular, when Λ = M , the diffeomorphisms f is called Anosov
diffeomorphism.

A hyperbolic set Λ of a diffeomorphism f is called basic set if it is transitive (i.e. there is a
dense orbit of f in Λ), isolated (i.e. there is a neighborhood U of Λ such that Λ = ∩i∈Zf i(U))
and contains a dense subset of periodic points. It follows as a consequence of the continuity of the
Df -invariant splitting EsΛ⊕EuΛ of a hyperbolic set Λ that the dimension of Esx and Eux with x ∈ Λ

is locally constant. In addition, if Λ is also transitive then these dimensions are constant. In this
case, the dimension of the stable bundle EsΛ is called s-index and is denoted by inds(Λ).

A relevant f -invariant compact set is the non-wandering set, denoted by Ω(f), which consists
of the points x ∈ M such that for any neighborhood U of x, there is an integer n ≥ 1 such that
fn(U)∩U 6= ∅. Note that the set of periodic points Per(f) is contained in Ω(f). A diffeomorphism
f is called Axiom A or uniformly hyperbolic if Ω(f) is a hyperbolic set for f and Per(f) is dense
in Ω(f). In that case, the Spectral Decomposition Theorem due by Smale [Sma67] asserts that
the non-wandering set Ω(f) is decomposed as a finite pairwise disjoint union of hyperbolic basic
set which are called basic pieces of the spectral decomposition. These basic pieces are hyperbolic
isolated homoclinic classes: a homoclinic class of a saddle P of f , denoted byH(P, f), is the closure
of the transverse intersections of the stable and unstable manifolds of the orbit of P . Notice that
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a homoclinic class that is not reduced to a saddle contains a horseshoe [Bir27, Sma67]. In that
case, we say that the homoclinic class is non-trivial.

The homoclinic class H(P, f) can be equivalently defined as the closure of the set of the
saddles Q homoclinically related to P : the stable manifold of the orbit of Q meets transversely the
unstable manifold of the orbit of P and vice-versa. Although all saddles homoclinically related
to P have the same s-index as P , the homoclinic class H(P, f) may contain periodic orbits of
different s-index from the s-index of P . As a final comment, notice that a homoclinic class is an
f -invariant transitive set with dense periodic points.

The following conjecture proposes the relation between the hyperbolicity and the structurally
stable dynamical behavior. We recall that a diffeomorphism f is Cr-structurally stable if there is
a Cr-neighborhood V of f such that every diffeomorphism g ∈ V is Cr-conjugated to f . At the
end of the 60’s Palis and Smale proposed in [PS70] a complete characterization of the structurally
stable systems:

Conjeture (Palis-Smale’s Structural Stability Conjecture). A diffeomorphism f is Cr-structurally
stable if and only if it is Axiom A and all the stable and unstable manifolds associated with the
points of the non-wandering set are transversal.

The additional condition about the general position between the stable and unstable manifold is
called strong transversality condition. Robbin [Rob71] and Robinson [Rob76] showed that Axiom A
and strong transversality condition are sufficient to structural stability. In addition, it is also
known that in presence of Axioma A, strong tranversality is a necessary condition for stability.
The hardest part was to prove that stable system should be uniformly hyperbolic. The key name
here is Mañe, who along several works developed new ideas and fundamental techniques that allow
him to give a positive answer to the stability conjecture. This result was achieved in [Mañ88], in
the C1 topology:

Theorem 1.1. A diffeomorphism on a compact manifold is C1-structurally stable if and only if
it is Axiom A and verifies the strong transversality condition.

A weak property, called Cr Ω-stability is defined requiring Cr-conjugacy only restricted to the
non-wandering set. Another conjecture in [PS70] proposes a characterization of Ω-stable system:

Conjeture (Palis-Smale’s Ω-stability Conjecture). A diffeomorphism f is Cr Ω-stable if and only
if it is Axiom A and there is no basis pieces in their spectral decompositions cyclically related by
intersections of the corresponding stable and unstable manifolds.

The additional condition about the cyclically intersections between the stable and unstable
manifolds of basic pieces is called no-cycle condition. The Ω-stability theorem of Smale [Sma70]
states that the uniform hyperbolicity and no-cycle condition are sufficient in the Cr sense. Palis
[Pal70] proved that the no-cycle condition is necessary for Ω-stability in any Cr topology. Recall
that if f is a C1-structurally stable diffeomorphism then f is C1 Ω-stable. So, the conjecture was
proved by Palis [Pal88] in the C1 setting, based on the ideas of Mañe [Mañ88]:

Theorem 1.2. A diffeomorphism on a compact manifold is C1 Ω-stable if and only if it is Axiom A
and verifies the no-cycle condition.
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Given ε > 0, a sequence {xn}n∈N is called ε-pseudo-orbit of a diffeomorphism f if the distance
between f(xn) and xn+1 is less than ε for all n ∈ N. A point x is chain recurrent if for every
ε > 0 there are ε-pseudo orbits starting and ending at x. The set of all chain recurrent points is
called chain recurrent set and denoted by R(f). The chain recurrence class of x for f , denoted
by C(x, f), is the set of points y such that, for every ε > 0, there are ε-pseudo orbits starting at
x, passing ε-close to y and ending at x. The diffeomorphism f is called R-hyperbolic if its chain
recurrent set is hyperbolic. By the Smale spectral theorem [Sma70], this is equivalent to be Axiom
A and satisfy the no-cycle condition. Therefore, the C1 Ω-stable systems are the R-hyperbolic
diffeomorphism. Actually, the R-hyperbolic systems coincide with the interior, respect to the C1

topology, of the set of diffeomorphisms whose all periodic orbits are hyperbolic [Aok92, Hay92].

Although uniform hyperbolicity was originally intended to encompass a residual, or at least
dense subset of all dynamical systems, it was soon realized that this is not true. There are two
main mechanisms (see the following definition) that yield robustly non-hyperbolic behavior, that
is, whole open sets of non-hyperbolic systems. They are at the heart of recent developments that
we are going to review in the next sections.

Definition 1.1 (Homoclinic bifurcations). A diffeomorphism f : M →M has a

• homoclinic tangency associated with a transitive hyperbolic set Λ of f if there is a pair of
points x, y ∈ Λ such that the stable manifold W s(x) of x and the unstable manifold W u(y)

of y have some non-transverse intersection.

• heterodimensional cycle associated with transitive hyperbolic sets Λ and Σ of f if these sets
have different s-indices and their invariant manifolds meet cyclically, that is, if

W s(Λ) ∩W u(Σ) 6= ∅ and W u(Λ) ∩W s(Σ) 6= ∅.

The heterodimensional cycle has coindex c ≥ 1 if |inds(Λ)− inds(Σ)| = c.

The firsts examples of C1-open subsets of non-hyperbolic diffeomorphism were given by Abra-
ham, Smale [AS70] and Simon [Sim72] for manifolds of dimension d ≥ 4 and d = 3 respectively.
These examples arise from heterodimensional cycle. These cycles can only exist in dimension 3 or
higher and force the coexistence of periodic points with different s-indices inside the same transi-
tive set. The first robust example of non-hyperbolic diffeomorphisms on surface were constructed
by Newhouse [New70], exploiting the homoclinic tangencies. In that work, Newhouse considers a
surface C2-diffeomorphism f with a homoclinic tangency q associated with a hyperbolic periodic
point p and a hyperbolic basic set Λ of f containing p (see Figure A). In order to obtain homoclinic
tangencies associated with Λ let consider a curve ` (called curve of tangencies) containing the ini-
tial homoclinic tangency and project the Cantor sets Λs = Λ∩W s

loc(p) and Λu = Λ∩W u
loc(p) to `

along the stable, respectively unstable, leaves. This gives a pair of Cantor set Ks and Ku in the
curve `. Note that q ∈ Ks∩Ku. By the same construction, for any g close to f , one can obtain two
new Cantor sets Ks

g and Ku
g on the curve ` from Λsg = Λg∩W s

loc(pg) and Λug = Λg∩W u
loc(pg) where

Λg and pg are the continuation of Λ and p for g, respectively. Each intersection point between Ks
g

and Ku
g corresponds to a homoclinic tangency of Λg.

Now, the key ingredient is a kind of fractal dimension called thickness τ(K) of a Cantor set
K of the real line (see [PT93] for details). The Gap Lemma [PT93] states that if τ(Λsg)τ(Λug ) > 1
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Fig. A: Homoclinic tangency

then either Ks
g ∩Ku

g 6= ∅ or one of two Cantor sets is contained in a gap of the other one. The
geometric position of Ks

g and Ku
g implies that no Cantor set can be contained in a gap of the

other one. Hence these sets have non empty intersection.

We say that Λ is a thick hyperbolic set if the condition τ(Λs)τ(Λu) > 1 is fulfilled. The final and
essential ingredient of Newhouse’s construction is that, the property of having a thick hyperbolic
set is C2-open. That is, for every g which is close to f in the C2-topology, the continuation of
Λg of Λ is a thick hyperbolic set. This allows us to prove that if Λ is a thick hyperbolic set of f
then for any g C2-close to f , the Cantor set Ks

g intersects Ku
g and one gets C2-robust homoclinic

tangencies:

Definition 1.2 (Robust homoclinic bifurcation). A Cr-diffeomorphism f has a

• Cr-robust homoclinic tangency associated with a hyperbolic basic set Λ of f if there is a
Cr-neighborhood V of f such that for every g ∈ V the continuation Λg of Λ for g has a
homoclinic tangency. The neighborhood V is called Cr-open of persistence of homoclinic
tangencies.

• Cr-robust heterodimensional cycle associated with hyperbolic basic sets of f , Λ and Σ, if there
is a Cr-neighborhood V of f such that every diffeomorphism g ∈ V has a heterodimensional
cycle associated with the continuations Λg and Σg of Λ and Σ, respectively.
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Note that, by Kupka-Smale theorem [Kup63, Sma63], Cr-generically, invariant manifolds of
periodic points are in general position. Hence, generically, the non-transverse intersections in a
robust homoclinic intersection (tangency or heterodimensional cycle) involve non-periodic points,
i.e., at least a non-trivial hyperbolic set.

Let V be the Cr-open of persistence of homoclinic tangencies, in Definition 1.2. It is well known
(see [New74, PT93]) that, in dimension two, there exits a dense subset D of V such that each g ∈ D
exhibits a homoclinic tangency associated with a hyperbolic periodic point.

A dissipative saddle is a hyperbolic periodic point p which has the absolute value of the product
of the eigenvalues of Dfn(p) less than one, where n is the period of p.

Newhouse in [New79] proved that, in dimension two, homoclinic tangencies associated with a
saddle of C2-diffeomorphisms yield thick horseshoes with C2-robust homoclinic tangencies. That
is, any C2-diffeomorphism with a hyperbolic periodic point such that both its stable and unstable
manifolds have a non-transverse intersection belongs to the closure of a C2-open of persistence
of homoclinic tangencies. With the same regularity assumption, theorems in [PV94, Rom95] ex-
tend Newhouse result, proving that homoclinic tangencies in any dimension lead to C2-robust
homoclinic tangencies.

The above construction of thick horseshoes with robust tangencies involves distortion estimates
which are typically C2. The results in [Ure95] present some obstacles for carrying this construction
to the C1-topology: C1-generic surface diffeomorphisms do not have thick horseshoes. Recent
results by Moreira in [Mor11] are a strong indication that there are no surface diffeomorphisms
exhibiting C1-robust homoclinic tangencies:

Theorem 1.3. There are no C1-robust homoclinic tangencies associated with hyperbolic basic sets
of surface diffeomorphisms.

If every transitive hyperbolic set of a surface diffeomorphism is contained in a hyperbolic
basic set then Moreira’s result would imply the non existence of robust tangencies associated with
hyperbolic transitive sets of surface diffeomorphisms. This is an important step in direction of the
following conjeture:

Conjeture (Smale C1-density Conjecture). The uniform hyperbolic diffeomorphisms of a compact
surface S are dense in Diff1(S).

Heterodimensional cycles of coindex one yield C1-robust heterodimensional cycles of coindex
one after small C1-perturbation [BD08]. However, in dimension d ≥ 3, we do not know when and
how homoclinic tangencies may occur in a C1-robust way. Actually, all the known examples about
C1-robust tangencies also exhibit C1-robust heterodimensional cycles. Hence, it is natural to ex-
pect that robust tangencies lead to heterodimensional cycles (and so C1-robust heterodimensional
cycles) as it is conjectured in [Bon11]:

Conjeture (Bonatti). Let U be a C1-open set of diffeomorphisms f having a hyperbolic basic set
Λf varying continuously with f and exhibiting a robust tangency. Then there is a C1-dense open
subset D of U such that for f ∈ D there is a hyperbolic basic set Σf of different index as Λf and
such that f has a C1-robust heterodimensional cycle associated with Λf and Σf .

In dimension two, there are no robust cycles, so this conjecture means that there are no C1-
robust tangencies (see Theorem 1.3 and Smale C1-density Conjecture).
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1.2 Homoclinic bifurcations and blenders

At the end of the 80’s, Palis proposed a research line whose main goal was to get a geometri-
cal description about the behavior of most dynamical systems in compact manifold (see [PT93,
Pal00a, Pal08]). According to [CP10], this program of research is known as mechanisms versus
phenomena. Mechanism (or dynamical configuration) means a simple dynamical configuration for
one diffeomorphism (involving for instance few periodic points and their invariant manifolds) that
has the following properties: it "creates or destroys" rich and different dynamics for nearby sys-
tems and it "generates itself", that is, the system exhibiting this configuration is not isolated.
For instance, homoclinic bifurcations (tangencies and heterodimensional cycles) are mechanisms.
Dynamical phenomenon means any dynamical property which provides a good global description
of the system (like hyperbolicity, transitivity, minimality, zero entropy, spectral decomposition)
and which happens on a "rather large" subset of systems.

We relate those above notions and say that a a dynamical configuration is a complete ob-
struction to a dynamical phenomena, if it not only prevents the phenomenon to happen but it
also generates itself creating rich dynamics. It is common in the complement of the prescribed
dynamical phenomenon (see [CP10] for more details).

We recall that Morse-Smale diffeomorphisms are those for which the set of non-wandering
points is finite and hyperbolic, and the invariant manifolds of the periodic orbits pairwise inter-
sect transversally. Those diffeomorphisms define "simple" dynamics, in particular they have no
horseshoes. We say that there is a transverse homoclinic intersection if the stable manifold of a
hyperbolic periodic point meets transversally its unstable manifold. This implies the existence of
horseshoes [Bir27, Sma67] and therefore "complicate" dynamical behavior.

In some sense, the following dichotomy is between simple dynamics (Morse-Smale) and com-
plicate dynamics (horseshoes). That is, the transverse homoclinic bifurcations are a complete
obstruction to the Morse-Smale dynamics:

Conjeture (Palis’s weak Cr-density Conjecture). The set of Morse-Smale diffeomorphisms and
the set of diffeomorphisms that admit a transverse homoclinic intersection, are two disjoint open
sets whose union is dense in Diffr(M).

The weak C1-density Conjecture in 3-dimensional manifolds was proven by Bonatti, Gan and
Wen in [BGW07]. Recently, Crovisier [Cro10] proved it in any dimension:

Theorem 1.4. Any diffeomorphism can be C1-approximated by a Morse-Smale diffeomorphism
or by one exhibiting a transverse homoclinic intersection.

As we mentioned before, there are two main local mechanisms associated with periodic saddles
for breaking hyperbolicity of systems: homoclinic tangency and heterodimensional cycle. Palis
conjectured that this homoclinic bifurcations are "always" responsible for non-hyperbolicity:

Conjeture (Palis’s Cr-density Conjecture). The union of uniform hyperbolic diffeomorphisms and
diffeomorphisms having a homoclinic tangency or a heterodimensional cycle is dense in Diffr(M).

It is easy to see that this second conjecture implies the first one since the dynamics at a
homoclinic bifurcation can be perturbed in order to create a transverse homoclinic intersection.
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In addition, note that these conjectures hold when M is one-dimensional. Actually, in this case
Peixoto proved in [Pei62] that Morse-Smale diffeomorphisms are dense in Diffr(M) for r ≥ 1.
In dimension two, heterodimensional cycles do not exist and consequently this conjecture can be
written as a dichotomy between hyperbolic diffeomorphisms and homoclinic tangencies. In [PS00],
Pujals and Sambarino proved the C1-density Conjecture of Palis for surfaces:

Theorem 1.5. Any surface diffeomorphism can be C1-approximated either by uniform hyperbolic
diffeomorphisms or by diffeomorphisms exhibiting a homoclinic tangency.

Crovisier and Pujals in [CP10] proved a slightly modified version of that mentioned Palis’s
conjecture in the C1-topology for any dimension introducing the next new weaker notion of hyper-
bolicity: a diffeomorphism is essentially hyperbolic provided that has a finite number of transitive
hyperbolic attractors and the union of their basin of attraction is open and dense in the manifold.
The essential hyperbolicity recovers the notion of Axiom A: most of the trajectories (in the Baire
category) converge to a finite number of transitive attractors that are well described from a both
topological and statistical point of view. However, the set of these diffeomorphism is not open a
priori.

Theorem 1.6. Any diffeomorphism can be C1-approximated either by an essentially hyperbolic dif-
feomorphisms or by diffeomorphisms exhibiting a homoclinic tangency or heterodimensional cycle.

The Palis’s C1-density Conjecture is known to be true for diffeomorphisms whose dynamics
splits into finitely many pieces only:

Theorem 1.7. Any diffeomorphism can be C1-approximated by a diffeomorphism which is R-
hyperbolic or has a heterodimensional cycle or has infinitely many chain-recurrence classes.

The above result was proved on surfaces by Mañé [Mañ82] and for compact manifolds of
dimension d ≥ 3 by Abdenur [Abd03] and Gan-Wen [GW03]. See also [Cro09].

Previous results of Bonatti and Díaz [BD08] proved that if any diffeomorphism having a
heterodimensional coindex one cycle associated with a pair of saddles is C1-approximated by
diffeomorphisms having a C1-robust heterodimensional coindex one cycle. Recently in [BD11]
showed that if at least one of the homoclinic classes of these saddles is non-trivial then the C1-
robust heterodimensional coindex one cycles are associated with a hyperbolic basic set containing
the continuations of the saddles. Bering in mind this remark, the previous theorem was formulated
in [BD08] for tame diffeomorphisms: a diffeomorphism is called tame if it has a finitely many
chain recurrent classes in a robust way. Let denote by T (M) the set of tame diffeomorphisms of
a manifold M . Note that this set is C1-open in Diff1(M). The set W(M) = Diff1(M) \ T (M) is
called wild diffeomorphism set. Bonatti and Díaz proved:

Theorem 1.8. There is an open dense subset D of T (M) such that every f ∈ D is either R-
hyperbolic or has a C1-robust heterodimensional cycle.

This result also holds in the C1-settings of the conservative diffeomorphisms (see [Cro09]).
These comments and the Bonatti’s Conjecture lead to the following strong version of Palis’s C1-
density Conjecture:

Conjeture (Bonatti-Díaz). The union of R-hyperbolic diffeomorphism and diffeomorphisms hav-
ing a C1-robust heterodimensional cycle is dense in Diff1(M).
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Λ

q
p

Fig. B: Heterodimensional cycle

A C1-robust heterodimensional cycle example

We will construct examples of persistent non-hyperbolic diffeomorphisms in the C1-topology. These
examples consist of diffeomorphism exhibiting a C1-robust heterodimensional cycle. Note again
that heterodimensional cycles may only exist in dimension three or higher. In order to simplify
the next exposition, we will work in a compact manifold M of dimension three.

A simple example of heterodimensional cycle is associated with periodic points p and q as it
is shown in Figure B. Since the one dimensional manifolds of p and q have a quasi-transverse
intersection, that is, there is x ∈W s(q) ∩W u(p) such that

TxW
s(q) + TxW

u(p) = TxW
s(q)⊕ TxW u(p) 6= TxM,

the heterodimensional cycle associated with p and q is not robust. So, in order to construct a
robust heterodimensional cycle, we must involve at least a non-trivial transitive hyperbolic basic
set. Thus, we introduce non-trivial transitive hyperbolic set Λ contained p. To obtain a robust
cycle it is necessary that for any diffeomorphism g close to f the stable manifold W s(qg) of the
continuation qg of q for g meets the local unstable manifold W u

loc(Λg) of the continuation Λg of Λ

for g. Recall that
W u
loc(Λg) =

⋃
x∈Λg

W u
loc(x)

and therefore the persistence of the heterodimensional cycle is the intersection betweenW s(qg) and
W u
loc(x) for some x ∈ Λ. We also can assume that q belongs to a non-trivial transitive hyperbolic
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Fig. C: C1-robust heterodimensional cycles

set Σ so that the robustness of the heterodimensional cycle is reduced to the intersection between
the stable leaf of the continuation Σg of Σ for g, that isW s(x) where x ∈ Σg, and the local unstable
leaf W u

loc(x) of Λg. In general, if Σ and Λ are Cantor sets then these laminations are a Cantor
sets of segments and therefore persistence of the heterodimensional cycle may resemble to the
construction of robust tangencies of Newhouse. However, the idea here to obtain the robustness is
different. It is about increasing the topological dimension of the local unstable manifold of Λ in a
robust sense. That is, for any diffeomorphism g close in the C1-topology of f , the local unstable
manifold W u

loc(Λg) of the continuation Λg of Λ is a topological surface.

The construction we will present here is based in the examples of Abraham-Smale [AS70],
Simon [Sim72] or more recently [Asa08]. This construction uses a non-trivial (not a periodic orbit)
hyperbolic transitive attractor Λ on surface. Plykin [Ply74] proved that if Λ is not just a periodic
orbit, then the trapping region of Λ must have at least three holes removed (see also [Rob99]).
Because of this theorem, any of these attractors are called Plykin attractors.

We consider a surface diffeomorphism F : S → S with a Plykin repeller Σ, i.e. a Plykin
attractor for F−1. Since Σ is a hyperbolic set then one has that TΣS = Ess ⊕ Eu where Ess and
Eu are, respectively, the stable and unstable one-dimensional vector bundles. In particular, for
each point x ∈ Σ we follow the existence of one dimensional local unstable manifold W u

loc(x, F ).
Since Σ is a repeller, its local unstable manifold W u

loc(Σ, F ) is a local compact neighborhood N of
Σ on the surface. Namely, this local unstable manifold is foliated by the one dimensional leaves
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W u
loc(x, F ), x ∈ Σ. One can embed N × [−1, 1] in a compact three dimensional M and consider

the diffeomorphism f ∈ Diff1(M) coinciding with the map

f(x, y) = (F (x), λy), (x, y) ∈ Σ× [−1, 1]

where 0 < λ < 1 small enough. The set Λ = Σ × {0} is a hyperbolic basic set of f . The tangent
bundle TΛM splits in EsΛ⊕EuΛ where EsΛ = Ess⊕Ecs and EuΛ is one-dimensional bundle. However,
the unstable manifold of Λ is a topological surface homeomorphic to N × {0}. We assume that
the two dimensional stable manifold W s(Λ, f) of Λ transversally intersects the unstable manifold
of an extra hyperbolic periodic point q of s-index equal to one. Also, we suppose that W s(q, f)

quasi-transversally meets the local unstable manifold W u
loc((x, 0), f) = W u

loc(x, F ) × {0} of some
point (x, 0) ∈ Λ. Hence, f exhibits a heterodimensional cycle associated with Λ and q. Moreover,
since the stable manifold of q transversally intersects the embedded repelling region of Σ (see
Figure C) then W s(q, f) and W u(Λ, f) persistently intersect and so the heterodimensional cycle
associated with Λ and q is C1-robust.

The hyperbolic basic set Λ in the above example plays the role of thick horseshoes in Newhouse
construction. In fact, the characteristic property of that basis set is that its unstable manifold
intersects every one-dimensional disks contained in an open set as shown in Figure C. From this
motivation we introduce the general definition of blender. This definition emphasizes the geometric
aspects of a blender where the two key ingredients are the existence of a dominated splitting and
of a superposition region. A splitting TΛM = E1 ⊕ · · · ⊕Ek over a f -invariant compact set Λ of a
manifold M it is called dominated splitting if it is Df -invariant and there exist constants C > 0

and 0 < λ < 1 such that for every i < j, every x ∈ Λ and every pair of unit vector u ∈ Ei(x)

and v ∈ Ej(x), one has ‖Dxf
n(u)‖ ≤ Cλn‖Dxf

−n(v)‖ for all n ≥ 1 and the dimension of Ei(x)

is independent of x ∈ Λ for every i ∈ {1, . . . , k}.

Definition 1.3 (Blenders). Consider f a C1-diffeomorphism of compact manifold M . Let Γ ⊂M
be a transitive hyperbolic set of f with a dominated splitting of the form Ess ⊕ Ecs ⊕ Eu, where
its stable bundle Es = Ess ⊕ Ecs has dimension equal to s ≥ 2 and Ecs is one-dimensional. We
say that the set Γ is a cs-blender if has a C1-robust superposition region B:

There are a C1-neighborhood V of f and a C1-open set B of embeddings of s− 1 dimensional
disks Ds into M such that for every diffeomorphism g ∈ V, every disk Ds ∈ B intersects the local
unstable manifold W u

loc(Γg) of the continuation Γg of Γ for g.

A cu-blender for f is defined as a cs-blender for f−1.

By definition, the property of a diffeomorphism having a cs-blender is a C1-robust property.
The notion of a blender was introduced in [BD96] as a class of examples, without a precise and
formal definition. The above definition of blenders is given in [BDV05]. Blenders were used to
get C1-robust transitivity, [BD96], and robust heterodimensional cycles, [BD08]. The relevance
of blenders comes from their internal geometry and not from their dynamics: a cs-blender is a
(uniformly) hyperbolic transitive set whose unstable set robustly has Hausdorff dimension greater
than its unstable bundle. In [BD11] Bonatti and Díaz defined a special class of blenders which
they called blender-horseshoes, a sort of hyperbolic basic sets conjugated with a Smale horseshoe
with geometrical properties resembling the thick horseshoes introduced by Newhouse. In this work,
in the context of critical dynamics (some suitable non-domination property), is showed that the
blender-horseshoes yield C1-robust tangencies.
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1.2.1 Non-normally hyperbolic horseshoes

In the example which motivated the definition of blender we consider a hyperbolic transitive
basic set which is a normally repeller. That is, a planar repeller embedded in a three dimensional
manifold, as an invariant, normally contracting submanifold. This section shows that it is also
possible to embed a horseshoe in a higher dimensional manifold increasing the dimension of the
unstable manifold. Following the results in [BDV95], we will show as a horseshoe can be perturbed
to obtain a thick horseshoe where thick means with Hausdorff dimension greater or equal to one.
That non-normally hyperbolic horseshoe explains how invariant manifolds (stable or unstable)
associated with a hyperbolic bundle of dimension k may behave topologically as a manifold of
dimension k + 1. Firstly, we recall the concept of Hausdorff dimension.

Given α > 0, the Hausdorff α-measure of a compact space X is

mα(X) = lim
ε→0+

inf
∑
U∈U

diam(U)α,

where the infimum is taken over all finite coverings U of X by sets with diameter less than ε. Then
there is a unique d ∈ [0,∞] such that mα(X) = ∞ if α < d and mα(X) = 0 if α > d. We will
denote d = HD(X) and it is said to be Hausdorff dimension of X. Here we make used of the fact
that Hausdorff dimension is non-increasing under Lipschitz maps.

Since our construction is local, it is not restrictive to consider M = Rn+1, n ≥ 2 and we do
so from now on. We begin taking a Cr-diffeomorphism F of Rn with a basic set Λ (a horseshoe)
such that F |Λ is conjugated to the full shift of two symbols. Assume we can split Rn into stable
and unstable variables Rn = Rs × Ru such that

Λ =
⋂
i∈Z

F i(R), with R = [−1, 1]s × [−1, 1]u

and F−1(R)∩R consisting of two connected component R̂1 = [−1, 1]s×R1 and R̂2 = [−1, 1]s×R2.
We take F to be affine on each of these components: there are two linear maps

Si : Rs → R and Ui : Ru → Ru, i = 1, 2,

such that

DF |R̂i =

(
Si 0

0 Ui

)
, ‖Si‖, ‖U−1

i ‖ < 1/2, i = 1, 2.

Consider 1/2 < λ < 1 and the diffeomorphism

f : Rn × R→ Rn × R, f(X,x) = (F (X), λx).

Note that f has a horseshoe Γf = Λ× {0} and HD(Γf ) = HD(Λ). Let P = (ps, pu) be some fixed
point of F in Λ. Then p = (P, 0) is a hyperbolic fixed point of f and

W s(p, f) = W s(P, F )× R and W u(p, f) = W u(P, F )× {0}.

Assume that every contracting eigenvalue of DF (P ) is smaller than 1/2 and then the strong stable
manifold of p is

W ss(p, f) = W s(P, F )× {0}.
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Here, the tangent bundle TpM splits into Es ⊕ Eu where Es = Ess ⊕ Ecs and

Ess = (Rs × {0u} × {0}), Ecs = ({0s} × {0u} × R), Eu = ({0s} × Ru × {0}).

Since W s(P, F ) and W u(P, F ) meet each other transversely at some X ∈ Rn the manifolds
W u(p, f) and W ss(p, f) have a quasi-transverse intersection at x = (X, 0). Then we consider an
arc of Cr-diffeomorphisms {fµ}µ∈[−1,1], with f0 = f , which unfolds generically this intersection.
This arc is defined by

fµ((xs, xu), x) = (F (xs, xu), φµ(xu, x))

where

φµ(xu, x) =

{
λx if xu ∈ R1,

λx+ µ if xu ∈ R2.

The following proposition shows an important geometrical property of this generic unfolding
of a normally hyperbolic horseshoe (strong homoclinic intersection). As a consequence of this
geometrical property we obtain a thick continuation horseshoes and increasing the topological
dimension of the unstable manifold.

Proposition 1.9. For each µ ∈ [−1, 1], there is a cube Cµ = R× Iµ where Iµ is the close interval
of endpoint 0 and µ(1 − λ)−1 such that the unstable manifold W u(pµ, fµ) of the continuation pµ
of p for fµ intersects transversely any cs-strip of the form

[−1, 1]s × {xu} × J, where J ⊂ Iµ is an open interval and xu ∈ R1 ∪R2.

Furthermore, the continuation Γµ of Γ0 = Γf for fµ satisfies HD(Γµ) ≥ 1 for every µ 6= 0.

Proof. Suppose µ > 0. The case µ < 0 is completely analogous. Set Iµ = [0, µ(1 − λ)−1] and
let pµ = (psµ, p

u
µ, 0) be the continuation of p for fµ. The following claim is the procedure of the

classical blender argument in [BD96].

Claim 1.9.1. Let J ⊂ Iµ be an open interval and xu ∈ R1 ∪R2. Then, either

• f−1
µ ([−1, 1]s × {xu} × J) intersects W u

loc(pµ, fµ),

• or it contains at least one cs-strip

[−1, 1]s × {x̃u} × J̃ with x̃u ∈ R1 ∪R2, J̃ ⊂ Iµ

and the width |J̃ | = λ−1|J | > |J |.

Proof of the claim. Note that the image by F−1 of a s-strip [−1, 1]s × {xu} ⊂ R̂1 ∪ R̂2 contains
two disjoint s-strip. That is, there exist xu1 ∈ R1 and xu2 ∈ R2 such that

F−1([−1, 1]s × {xu}) ⊃ ([−1, 1]s × {xu1}) ∪ ([−1, 1]s × {xu2}).

Take φi : Iµ → Iµ given by φi = φµ|Ri×Iµ , i = 1, 2. Since λ > 1/2, Iµ = φ1(Iµ) ∪ φ2(Iµ). Thus
either J ⊂ φi(Iµ) for some i or φ1(Iµ)∩φ2(Iµ) ⊂ J . In the first case, we have that J̃ = φ−1

i (J) ⊂ Iµ
with the width |J̃ | = λ−1|J | and f−1

µ ([−1, 1]s×{xu}×J) ⊃ [−1, 1]s×{xui }× J̃ . In the other case,
0 ∈ φ−1

1 (J) and so f−1
µ ([−1, 1]s × {xu} × J) ⊃ [−1, 1]s × {xu1} × {0}. Note that

W u
loc(pµ, fµ) = {psµ} × [−1, 1]u × {0}

and therefore the image by f−1
µ of the cs-strip [−1, 1]s × {xu} × J intersects W u

loc(pµ, fµ).
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Repeating this procedure, we get an intersection point between W u
loc(pµ, fµ) and a backward

iterate of the cs-strip [−1, 1]s × {xu} × J . It gives in turn a transverse intersection point between
the initial cs-strip and W u(pµ, fµ). This ends the proof of the first part of the proposition.

As for the second one, it is now a direct consequence. From the first part of this lemma, for
all open interval J ⊂ Iµ one has the unstable manifold W u(pµ, fµ) of pµ transversally intersect
the cs-strip [−1, 1]s ×{puµ}× J . Note that this cs-strip is contained in W s

loc(pµ, fµ) then for every
J ⊂ Iµ open interval

([−1, 1]s × {puµ} × J) ∩W u(pµ, fµ) ∩W s(pµ, fµ) ∩ Cµ 6= ∅.

Therefore Iµ ⊂ π(H(pµ, fµ)), where π : R× R→ R, π(X,x) = x.

Denote by Γµ the continuation for fµ of the basic set Γ0 = Λ×{0} of f0. Observe that Λµ is the
maximal invariant set in Cµ = R× Iµ and coincides with the closure of all transverse homoclinic
points of pµ in Cµ. That is, Γµ = H(pµ, fµ) ∩ Cµ. Finally, since π is a Lipschitz map, it follows
that

HD(Γµ) ≥ HD(π(Γµ)) ≥ 1,

which proves the lemma.

1.2.2 Blender-horseshoes

Blender-horseshoe was introduced in [BD11] as a special type of blender. A cs-blender-horseshoe
Γ is the maximal invariant set in a cube C and it has a hyperbolic splitting with three non-trivial
bundles

TΓM = Ess ⊕ Ecs ⊕ Euu,

such that the stable bundle of Γ is Es = Ess ⊕ Ecs and Ecs is one-dimensional. Moreover, the
set Γ is conjugated to the complete shift of two symbols (the usual Smale horseshoes). Thus the
blender has exactly two fixed points, say P and Q, called distinguished points of the blender.

Consider the cube

C = [−1, 1]n+1 = [−1, 1]s × [−1, 1]× [−1, 1]u

with n ≥ 2. We split the boundary of C into three parts:

∂sC = ∂([−1, 1]s)× [−1, 1]× [−1, 1]u,

∂cC = [−1, 1]s × [−1, 1]× {−1, 1} × [−1,−1]u,

∂uC = [−1, 1]s × [−1, 1]× ∂[−1, 1]u.

Let us define a local diffeomorphism f : C → Rn+1 having a maximal invariant set Γ in the
cube C,

Γ =
⋂
i∈Z

f i(C)

and satisfying the following C1-robust condition (BH1)-(BH6). Blender-horseshoes will be defined
through this local diffeomorphism (see Definition 1.7).
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Ess

f(A)

f(B)

Ecs

B

A

Eu

Ecs

Ess

∂cC

∂uC

∂sC

Fig. D: Reference cube of blender-horseshoe

(BH1) Associated Markov partition: The intersection f(C)∩C consist of two connected component,
denoted f(A) and f(B). Furthermore,

– The sets A and B are the non-empty connected components of f−1(C) ∩ C.

– f(A) ∪ f(B) is disjoint from ∂sC ∪ ∂cC and A ∪B is disjoint from ∂uC.

More precisely,

f(A) ∪ f(B) ⊂ (−1, 1)s × (−1, 1)× [−1, 1]u

A ∪B ⊂ [−1, 1]s × [−1, 1]× (−1, 1)u.

(BH2) Cone-fields: There are families of cones Csα(x), Cssα (x), Cuα(x) define for each α ∈ (0, 1) and
x ∈ Rn+1 as

Csα(x) = {(vs, vc, vu) ∈ Rs ⊕ Rc ⊕ Ru = TxM : ‖vu‖ ≤ α‖vs + vc‖},
Cssα (x) = {(vs, vc, vu) ∈ Rs ⊕ Rc ⊕ Ru = TxM : ‖vc + vu‖ ≤ α‖vs‖},
Cuα(x) = {(vs, vc, vu) ∈ Rs ⊕ Rc ⊕ Ru = TxM : ‖vs + vc‖ ≤ α‖vu‖}.

These cone-fields satisfice the following properties: there is 0 < α′ < α such that, for every
x ∈ f(A) ∪ f(B)

Df−1(Csα(x)) ⊂ Csα′(f−1(x)) and Df−1(Cssα (x)) ⊂ Cssα′ (f−1(x)),

and for every x ∈ A ∪B
Df(Cuα(x)) ⊂ Cuα′(f(x)).

Moreover, the cones-field Cuα and Csα are uniformly expanding and contracting respectively.
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As a consequence of (BH2), the maximal invariant set Γ in the cube C has a hyperbolic
splitting TΓM = Es ⊕ Eu where Es = Ess ⊕ Ecs. We say that Ess and Ecs are the strong
unstable bundle and the one-dimensional central-stable bundle of Γ, respectively. Thus, by (BH1),
{A,B} is a Markov partition generating Λ. Therefore the dynamics of f in Λ is conjugate to the
full shift of two symbols. In particular, the hyperbolic set Λ contains exactly two fixed points
of f , P ∈ A and Q ∈ B. The local invariant manifolds W s

loc(P ), W ss
loc(P ) and W u

loc(P ) are the
connected components of the intersections of W s(P )∩C, W ss(P )∩C and W u(P )∩C containing
P , respectively. The definition of the local invariant manifolds of Q is analogous.

Definition 1.4 (ss-disk). A disk ∆ ⊂ [−1, 1]s×R×Ru of dimension s is a ss-disk if Tx∆ ⊂ Cssα (x)

for all x ∈ ∆ and ∂∆ ⊂ ∂([−1, 1]s)× R× Ru.

(BH3) ss-disk through the local unstable manifold of P and Q: Let ∆ and ∆′ be two different
ss-disks such that ∆ ∩W u

loc(P ) 6= ∅ and ∆′ ∩W u
loc(P ) 6= ∅. Then

∆ ∩ ∂cC = ∆′ ∩ ∂cC = ∆ ∩∆′ = ∅.

Similar assumption for ss-disks through the local unstable manifold of Q.

There are two different homotopy classes of ss-disks contained in [−1, 1]s × R × [−1, 1]u and
disjoint from W u

loc(P ). We call these classes ss-disks at the right and at the left of W u
loc(P ). We

use the following criterion:

Definition 1.5 (ss-disk at the right and left). The ss-disks that do not intersect W u
loc(P ) in the

homotopy class of W ss
loc(Q) are at the right of W u

loc(P ). The ss-disks disjoint from W u
loc(P ) in the

other homotopy class are at the left of W u
loc(P ). Similarly ss-disks at the left and at the right of

W u
loc(Q), where ss-disks at the left of W u

loc(Q) are in the class of W ss
loc(P ).

(BH4) Position of preimages of ss-disk (I): Given any ss-disk ∆ ⊂ C, the following holds:

i) if ∆ is at the right of W u
loc(P ) then f−1(∆∩ f(A)) is a ss-disk at the right of W u

loc(P ),

ii) if ∆ is at the left of W u
loc(P ) then f−1(∆ ∩ f(A)) is a ss-disk at the left of W u

loc(P ),

iii) if ∆ is at the right of W u
loc(Q) then f−1(∆∩ f(B)) is a ss-disk at the right of W u

loc(Q),

iv) if ∆ is at the left of W u
loc(Q) then f−1(∆ ∩ f(B)) is a ss-disk at the left of W u

loc(P ),

v) if ∆ is at the left of W u
loc(P ) or ∆ ∩W u

loc(P ) 6= ∅ then f−1(∆ ∩ f(B)) is a ss-disk at
the left of W u

loc(P ), and

vi) if ∆ is at the right of W u
loc(Q) or ∆ ∩W s

loc(Q) 6= ∅ then f−1(∆ ∩ f(A)) is a ss-disk at
the right of W u

loc(Q).

Finally, we state the last condition (which will play a key role) in the definition of blender-
horseshoes. We need the following concept:

Definition 1.6 (ss-disk in between). A ss-disk is in between W u
loc(P ) and W u

loc(Q) if it is a
ss-disk at the right of W u

loc(P ) and at the left of W u
loc(Q).

(BH5) Position of preimages of ss-disk (II): Let ∆ be a ss-disk in between W u
loc(P ) and W u

loc(Q).
Then either f−1(∆∩ f(A)) or f−1(∆∩ f(B)) is a ss-disk in between W u

loc(P ) and W u
loc(Q).
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As a consequence of (BH4)-(BH5) we obtain an open region of ss-disk in between:

Remark 1.10 (C1-open set of embedding ss-disk). There is a non-empty open subset U of C
such that any ss-disk through a point x ∈ U is in between W u

loc(P ) and W u
loc(Q). In particular,

every ss-disk ∆ ⊂ [−1, 1]s × R× [−1, 1]u in between W u
loc(P ) and W s

loc(Q) is contained in C and
is also disjoint from ∂cC.

We are now ready to define blender-horseshoes:

Definition 1.7 (Blender-horseshoes). Let M be a manifold of dimension n ≥ 3 and f : M → M

be a C1-differomorphism. A hyperbolic set Γ of f is a cs-blender-horseshoe if there are a cube C
and families of cone-fields Cs, Css, and Cu verifying conditions (BH1)-(BH5).

We say that C is the reference cube of the cs-blender-horseshoe Γ and that the saddles P and
Q are distinguished saddles points of Γ. A cu-blender-horseshoe is a cs-blender-horseshoe for f−1.

In [BD11] is shown that the conditions (BH1)-(BH5) are C1-robust. This means that there is a
C1-neighborhood V of f such that for all g ∈ V the continuation Γg of Γ for g is a blender-horseshoe
with reference cube C and distinguished saddles points Pg and Qg.

Definition 1.8 (cs-strip). A cs-strip S through the cube C is the image by a diffeomorphism
φ : [−1, 1]s × [−1, 1]→ C such that:

• TxS ⊂ Csα(x) for all x ∈ S,

• for each t ∈ [−1, 1] the curves St = φ([−1, 1]s, t) satisfice that TxSt ⊂ Cssα (x) for all x ∈ St
and ∂sSt = φ(∂([−1, 1]s), t) ⊂ ∂sC.

The width of S, denoted by |S|, is the minimal length of the curves tangents to the central-stable
direction Ecs contained in S joining φ([−1, 1]s,−1) and φ([−1, 1]s, 1).

The following lemma shows that a cs-blender-horseshoe Γ is a cs-blender in the sense of
Definition 1.3, where the ss-disks in between W s

loc(P ) and W s
loc(Q) define its superposition region.

Again, the argument here is the classical blender argument in [BD96].

Lemma 1.11. Let Γ be a blender-horseshoe of a diffeomorphism f with reference cube C and
distinguished saddles P and Q. Then every ss-disk in between W u

loc(P ) and W u
loc(Q) intersects

W u
loc(Γ).

Proof. Note that a cs-strip S is foliated by the family of ss-disk St where t ∈ [−1, 1]. We say that
a cs-strip S is in between W u

loc(P ) and W u
loc(Q) if all of ss-disk St are in between W u

loc(P ) and
W u
loc(Q).

Claim 1.11.1. Let S be a cs-strip in between W u
loc(P ) and W u

loc(Q). Then, there is λ > 1 such
that either

• f−1(S) intersects W u
loc(P ),

• or it contains at least one cs-strip S̃ in between W u
loc(P ) and W u

loc(Q) with width |S̃| ≥ λ|S|.
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Proof. Since S ⊂ C is a cs-strip foliated by ss-disk St, then f−1(S) contains at least the union of
two cs-strip f−1(S ∩ f(A)) and f−1(S ∩ f(B)) by the hypothesis (B5). Their width is larger than
λ|S|, where λ > 1 is a lower bound of the expansion of Df−1 in the central-stable direction Ecs

inside C. We assume by contradiction that neither of them intersect W u
loc(P ) nor it is a cs-strip in

between W u
loc(P ) and W u

loc(Q). Since S is cs-strip in between W u
loc(P ) and W u

loc(Q), in particular,
for each t ∈ [−1, 1] one has that St is a ss-strip at the right of W u

loc(P ) and at the left of W u
loc(Q).

Thus, by (BH5) the ss-strip f−1(St ∩ f(A)) is at the right of W u
loc(P ). By assumption, it is also

at the right of W u
loc(Q). The same argument for the ss-strip f−1(St∩f(B)) shows that it is at the

left of W u
loc(P ). However, this contradicts (BH6) since either f−1(St ∩ f(A)) or f−1(St ∩ f(B)) is

a ss-disk in between W u
loc(P ) and W u

loc(Q).

Repeating this procedure, we get an intersection point betweenW u
loc(P ) and a backward iterate

of the cs-strip S. It gives in turn a transverse intersection point between the initial cs-strip and
W u(P ). Let Ds be a ss-disk in between W u

loc(P ) and W u
loc(Q). Consider a nested sequence of

cs-strip Sn such that for some tn ∈ [−1, 1] the ss-disk Sntn = Ds for all n ≥ 1. Then by the above
observation W u(P ) ∩ Sn 6= ∅ for all n ≥ 1. Now, for each n ∈ N, we consider zn ∈ Γ ∩W u(P )

such that W u
loc(zn)∩Sn 6= ∅. Let z ∈ Γ be an accumulation point of the sequence (zn)n ⊂ Γ. Then

z ∈ Γ∩W u(P ) and from the election of the nested sequence of cs-strip Sn (that isDs ⊂ Sn+1 ⊂ Sn)
it follows W u

loc(z) ∩ Ds 6= ∅. Therefore W u
loc(Γ) intersects every ss-disk between W u

loc(P ) and
W u
loc(Q) and we conclude the proof.

A blender-horseshoes example: non-normally hyperbolic horseshoes

Now, we will show that the non-normally hyperbolic horseshoes construct in §1.2.1 are really
cs-blender-horseshoes. We recall that for each fixed λ ∈ (1/2, 1), we constructed an arc of local
Cr-diffeomorphism {fλ,µ}µ∈[−1,1] of Rn+1 given by

fµ,λ(X,x) = (F (X), φλ,µ(X,x)) (1.1)

where F : Rn → Rn has an affine Smale horseshoe Λ with Markov partition {R̂1, R̂2} and

φλ,µ(X,x) =

{
λx if X ∈ R̂1,

λx+ µ if X ∈ R̂2.
(1.2)

We denote by Γλ,µ the maximal invariant set of fλ,µ in the cube Cλ,µ = R × Iλ,µ given in the
Proposition 1.9. Let C be a big cube containing Cλ,µ for all µ ∈ [−1, 1] and λ < 1 close to 1 such
that Γλ,µ is also the maximal invariant set in C. Recall that Γλ,0 = Λ × {0} and thus fλ,0 has
two different fixed points p = (P, 0) and q = (Q, 0) in Γλ,0. Let pλ,µ and qλ,µ be the continuation
points of p and q for fλ,µ.

Proposition 1.12. For every λ < 1 close to 1 and µ ∈ [−1, 1], the set Γλ,µ is a cs-blender-
horseshoe with reference cube C and distinguished saddles point pλ,µ and qλ,µ.

The proof of this proposition can be found in [BD11, Propisition 5.1]. In the next chapter,
we will give an estimate on how much should be λ close to 1. Note that F |Λ is conjugated to
symbolic dynamics. For this reason, we will focus to understand how the C1-perturbations of
this class of non-normally hyperbolic skew-product diffeomorphisms can be studied by means of
skew-products with symbolic dynamics on the base. This allows us to know more about this class
of blender-horseshoe examples.



18 1. Robust cycles and blenders



Symbolic blenders

Remarkable partially hyperbolic diffeomorphisms are the skew-products over hyperbolic sets,
namely, over horseshoes. These horseshoes in the base are well understood from symbolic
dynamics. In fact, it shows that C1-perturbations of a dominated skew-product diffeomor-
phisms of this type can be understood through the study of perturbations of symbolic Hölder
skew-products. Geometrical properties as the existence of strong stable and unstable sets,
holonomies or invariant graphs, are studied for symbolic skew-products. Symbolic cs-blender-
horseshoes are introduced as locally maximal invariant sets of symbolic Hölder skew-products
with contracting fiber maps. These invariant sets meet, in a robust sense, any almost horizon-
tal disk through an open region and thus, they are understood as blenders with center bundle
of any dimension. Symbolic blender-horseshoe examples are constructed from dominated
symbolic one-step skew-product maps with covering property in a bounded open set.

2.1 Partial hyperbolicity and skew-product diffeomorphisms

An important restriction in the general definition of cs-blender, Definition 1.3, is that the center
direction Ecs of the blender is one-dimensional. This is an important constrain for applications
in several settings where the center bundle is two-dimensional. Thus, a natural question is to
construct blenders where this center bundle has dimension bigger than one. A first approach to
this problem was done by Nassiri-Pujals in [NP12] where symbolic blenders were introduced to
build robust transitive sets in symplectic diffeomorphisms and Hamiltonian systems.

The construction of blender-horseshoes involves a diffeomorphism f defined in a reference
cube C = [−1, 1]n+1, n ≥ 2. The blender-horseshoe is the maximal invariant set Γ of f in C

which is conjugated to a Smale horseshoe. Blender-horseshoes examples (non-normally hyperbolic
horseshoes) are constructed in the context of skew-product C1-diffeomorphisms

f : C ⊂ Rn × R→ Rn × R, f(x, y) =
(
F (x), φ(x, y)

)
,

where F : Rn → Rn has a horseshoe Λ ⊂ [−1, 1]n and φ(x, ·) : R → R is a C1-contraction. A
problem in this context (regarding the robustness of the blender) is that the diffeomorphisms g
close to f are not necessarily skew-product maps. This difficulty is solved using the normal hyper-
bolic theory [HPS77] since with additional assumptions concerning the strength of the hyperbolic
splitting on C we can conclude that g is conjugated to a skew-product map. In that case, the open
set V in Definition 1.3 can be taken consisting of skew-product maps. Also, since F |Λ is conjugated
to the Bernoulli shift, these blender-horseshoes examples can be studied from the symbolic point
of view. In what follows of this section we will explain the details of this reduction. Firstly, it is
necessarily to introduce partial hyperbolic diffeomorphisms.
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2.1.1 Partially hyperbolic diffeomorphisms

We say that a C1-diffeomorphism f : M →M of a compact Riemannian manifold M is partially
hyperbolic if there is a nontrivial Df -invariant splitting of the tangent bundle

TM = Es ⊕ Ec ⊕ Eu (2.1)

and there exists a Riemannian metric for which we can choose continuous positives functions ν,
ν̂, γ and γ̂ with

ν, ν̂ < 1 and ν < γ < γ̂−1 < ν̂−1 (2.2)

such that, for any unit vector v ∈ TxM ,

‖Dxf(v)‖ < ν(x) if v ∈ Esx, (2.3)

γ(x) <‖Dxf(v)‖ < γ̂(x)−1 if v ∈ Ecx, (2.4)

ν̂(x)−1 <‖Dxf(v)‖ if v ∈ Eux . (2.5)

In another words, Dxf |Esx is a uniform contraction, Dxf |Eux is a uniform expansion, and, the
behavior of Dxf |Ecx lies in between those two (not quite as contracting nor as expanding, respec-
tively). Partial hyperbolicity is a C1-open condition: any diffeomorphism sufficiently C1-close to
a partially hyperbolic diffeomorphism is itself partially hyperbolic.

The stable and unstable bundles Es and Eu of f are uniquely integrable and their integral
manifolds form two transverse (continuous) foliations Ws and Wu, whose leaves are immersed
submanifolds of the same class of differentiability as f . These foliations are referred to as the
strong stable and strong unstable foliations. They are f -invariant, meaning that

f(W ss(x)) = W ss(f(x)) and f−1(W uu(x)) = W uu(f−1(x)),

whereW ss(x) andW uu(x) denote the leaves ofWs andWu, respectively, passing through x ∈M .

The center bundle Ec is not always integrable. An invariant center foliation is obtain assuming
that f is dynamical coherent. A partial hyperbolic diffeomorphism f is said to be dynamically co-
herent if there exist f -invariant center-stable and center-unstable foliations Wcs andWcu, tangent
to the bundles Es ⊕ Ec and Ec ⊕ Eu, respectively. An invariant center foliation Wc is followed
intersecting the leaves of Wcs and Wcu (see [BW08]). It is not known whether every perturbation
of a dynamically coherent diffeomorphism is dynamically coherent, but this holds for systems that
are plaque expansive. In order to define plaque expansivity, we introduce the notion of central-
plaque. A central-plaque of a small enough length δ > 0 inWc through x ∈M , denoted byW c

δ (x),
is the connected component of W c(x) ∩ B(x, δ) containing x, where W c(x) is the leaf of Wc

passing through of x and B(x, δ) denotes the open ball centering in x of radius δ. Then, roughly
speaking, f is plaque expansive if there exists ε > 0 such that any two ε-pseudo-orbits in different
central-plaques will eventually (under forward or backward iterates) be separated by a distance ε.
The notion of plaque expansiveness was introduced by Hirsch, Pugh, and Shub [HPS77]. They
proved, among other things, that any C1-perturbation of a plaque expansive partial hyperbolic
diffeomorphism is dynamically coherent. Plaque expansiveness holds in a variety of natural set-
tings; in particular if f is dynamically coherent, and either Wc is a C1 foliation or the restriction
of f to Wc leaves is an isometry, then f is plaque expansive, and so every C1-perturbation of f is
dynamically coherent.
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If f is dynamically coherent, then each leaf of Wcs is simultaneously subfoliated by the leaves
of Wc and by the leaves of Ws. Similarly Wcu is subfoliated by Wc and Wu. This implies that
for any two points x, y ∈ M with y ∈ W ss(x) there is a homeomorphism hsx,y : W c

δ′(x) → W c
δ (y)

between central-plaques W c
δ′(x) and W c

δ (y) with the property that hsx,y(x) = y and, in general,

hsx,y(z) ∈W ss(z) ∩W c
δ (y).

We refer to hsx,y as a (local) stable holonomy map. We similarly define unstable holonomy maps
between local center leaves.

Because of Df restricted to the stable (reps. unstable) bundle is uniformly contracting (resp.
expanding), the leaves of strong stable (resp. unstable) foliation are always contractible (resp.
expansible). This is not the case for center foliations. We say that f is center bunched if the
functions ν, ν̂, γ and γ̂ can be chosen so that can be

ν < γγ̂ and ν̂ < γγ̂. (2.6)

It is said that Df |Ec is conformal if ‖Dxf(v)‖ = ‖Dxf |Ecx‖ for any unit vector v ∈ Ecx. In this
case, we can choose both γ(x) and γ̂(x)−1 slightly smaller and bigger than ‖Dxf |Ecx‖ respectively.
By doing this, we may make the ratio γ(x)/γ̂(x)−1 = γ(x)γ̂(x) arbitrarily close to 1, and hence,
larger than both ν(x) and ν̂(x). That is, center bunching always holds when Df |Ec is conformal.
In particular, center bunching holds whenever Ec is one-dimensional since in this case Df |Ec is
conformal. Center bunching means that the hyperbolicity of f dominates the nonconformality
of Df on Ec. Notice that the center bunching property is C1-open: any sufficiently small C1-
perturbation of a center bunched partial hyperbolic diffeomorphism is center bunched.

According to [PSW97], when f is dynamically coherent, center bunched inequalities (2.6) en-
sure that the leaves of Wcs, Wcu, and Wc are C1. If f is C2 and dynamically coherent then these
inequalities also imply that the local stable and local unstable holonomies are C1 local diffeo-
morphisms. In general, without this additional regularity assumption, in [PSW97, AV10, PSW11,
SW00] it is proved that the holonomies maps are only Hölder continuous homeomorphisms.

The Cartesian product of an Anosov diffeomorphism with the identity or with an isometry
such as a rotation, provides trivial examples of partially hyperbolic dynamical systems. The second
factor is the central direction. The same holds if the second factor is any dynamical system whose
maximal expansion is separated from the slowest expansion rate of the Anosov diffeomorphism
and likewise for the contraction rates. A slight generalization of this idea is that of skew-product
maps. Examples of these can be obtained from an Anosov diffeomorphism F on a manifold X and
a family gx : Y → Y for x ∈ X whose rates are again uniformly inside the rate gap of f by setting
f(x, y) = (F (x), gx(y)).

As in the case of uniformly hyperbolic dynamical systems, the definition of partial hyperbolic
extends readily to compact invariant sets. In general, a partial hyperbolic set is defined to be a
compact invariant set Λ of a diffeomorphism f such that the tangent space at every x ∈ Λ admits
an invariant splitting as (2.1) that satisfies the contraction and expansion conditions described
in (2.3)-(2.5). In what follows, we will restrict our attention to study partially hyperbolic sets for
skew-product C1-diffeomorphisms.
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2.1.2 Skew-products over hyperbolic sets

Let X be a compact Riemannian manifold and suppose that F : X → X is a C2-diffeomorphism
with a locally maximal hyperbolic invariant set Λ ⊂ X. Assume that there is a DF -invariant
splitting of the tangent bundle

TΛX = EsΛ ⊕ EuΛ

and there exists a Riemannian metric on X for which we can choose real numbers 0 < µ ≤ ν < 1

such that
µ ≤ ‖DxF (v)‖ ≤ ν and µ ≤ ‖DxF

−1(w)‖ ≤ ν

for all unit vectors v ∈ Esx, w ∈ Eux and x ∈ Λ. Note that if µ = 0, then we get the standard notion
of hyperbolicity. In the sequel, let us consider that the locally maximal hyperbolic invariant set
Λ in the above conditions is a horseshoe with k legs. That is, F |Λ is conjugated to the Bernoulli
shift τ : Σk → Σk where Σk = {1, . . . , k}Z denotes the space of bi-sequences of k symbols.

In order to define a skew-product diffeomorphism over F , we take another compact manifold
Y and consider the Cartesian product X × Y . A skew-product diffeomorphism over F is defined
as any C1-diffeomorphism of the form

f : X × Y → X × Y, f(x, y) = (F (x), φ(x, y)) (2.7)

where φ(x, ·) : Y → Y is a family of C1-diffeomorphisms such that there are positive numbers γ
and γ̂ satisfying

γ dY (y, y′) < dY (φ(x, y), φ(x, y′)) < γ̂−1 dY (y, y′), (2.8)

for all y, y′ ∈ Y and x ∈ Λ.

Note that, since f is a C1-diffeomorphism then dY (φ(x, y), φ(x′, y)) ≤ d(f(x, y), f(x′, y)) ≤
‖f‖ dX(x, x′) for all y ∈ Y and x, x′ ∈ X where ‖f‖ denotes the Lipschitz constant of f . Similarly,
for each y ∈ Y the map φ−1(·, y) : X → Y is also Lipschitz. Fixed δ > 0 small enough, set

Lf = sup
{ dY (φ±1(x, y), φ±1(x′, y)

)
dX(x, x′)

: x, x′ ∈ Λ, 0 < dX(x, x′) < δ and y ∈ Y
}
≥ 0.

We say that Lf is the local Lipschitz constant of f (or f−1). Note that Lf ≤ max{‖f‖, ‖f−1‖}
and in general the inequality is strict. For instance, if φ(x, ·) is the identity map id on X then
Lf = 0 while ‖f‖ > 0.

We will assume that the skew-product (2.7) satisfies that

ν + Lf < ν−1 and ν < γ < γ̂−1 < ν−1. (2.9)

These conditions are called modified dominated splitting condition in [IN10]. The first inequality
is clearly verified if Lf = 0. The another inequalities are the dominated conditions (2.2) in the
definition of partial hyperbolicity. So, a skew-product as (2.7) satisfying ν < γ < γ̂−1 < ν−1 is
called partial hyperbolic skew-product.

Cartesian products (also called direct-products) are a special type of skew-product diffeomor-
phisms where the maps φ(x, ·) : Y → Y are constantly the same function φ : Y → Y . As we have
already mentioned for f = F × id, in these trivial cases of direct-products, Lf = 0.
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Definition 2.1. A diffeomorphism f as (2.7) is called locally constant skew-product if Lf = 0.

Partial hyperbolic locally constant skew-products over a horseshoe satisfy the modified domi-
nated splitting condition in [IN10]. Modified dominated splitting condition is a C1-open condition
since the same property is satisfied for any diffeomorphism C1-close. However, a C1-close diffeo-
morphism g of f is a priori not a skew-product. With the additional dominated assumptions (2.9),
from Hirsch-Pugh-Shub theory [HPS77] or from the recently work [IN10], it follows that g is
topologically conjugated to a skew-product. We explain more about this.

For each x ∈ Λ we consider the fiber Lx = {x} × Y . The collection L of these fibers is an
invariant lamination of f . In [HPS77, Theorems 7.1] and also in [IN10, Theorem A] is showed
that this lamination is C1-persistent. The C1-persistence of such lamination means that for any
C1-perturbation of f , there exists a lamination, C1-close to L, which is preserved by the new
dynamics, and such that the dynamics induced on the space of the leaves remains the same.
Namely, given ε > 0 small enough we take g a C1-diffeomorphism ε-close to f in the C1-topology.
Notice that, g(x, y) = (F̃ (x, y), φ̃(x, y)), where φ̃(x, ·) : Y → Y is a C1-diffeomorphism such that

γ dY (y, y′) < dY (φ̃(x, y), φ̃(x, y′)) < γ̂−1dY (y, y′) (2.10)

for all y, y′ ∈ Y and x in a neightbohood of Λ. For each x ∈ Λ, the fiber Wσ(x) continuation of Lx
for g is parametrice by the graph of a C1-map Q(x, ·) : Y → X. According to [IN10, Theorem A]
and since g is ε-close to f , it follows that

dX(Q(x, y), Q(x, y′)) ≤ O(ε) dY (y, y′), (2.11)

dC0(Q(x, ·), x) ≤ O(ε). (2.12)

For C1 maps, the C0 norm of the first derivative is equal the best Lipschitz constant. Hence, the
above inequalities show that dC1(Q(x, ·), x) ≤ O(ε).

Let
∆ =

⋃
x∈Λ

Wσ(x) ⊂ X × Y.

SendingWσ(x) to x defines a continuous projection P : ∆→ X such that P (∆) = Λ and F |Λ ◦P =

P ◦g. Moreover, h : ∆→ Λ×Y, given by h(x, y) = (P (x, y), y) is an homeomorphism whose inverse
is h−1(x, y) = (Q(x, y), y). Let g̃ = h ◦ g|∆ ◦ h−1 : Λ× Y → Λ× Y . Observe that

g̃(x, y) = (P ◦ g ◦ h−1(x, y), φ̃ ◦ h−1(x, y))

= (F |Λ ◦ P ◦ h−1(x, y), φ̃(Q(x, y), y)) = (F (x), ψ(x, y)).

Thus, g̃ is a skew-product diffeomorphism defined on Λ× Y which is conjugated to g by means of
the conjugation h. Since for each x ∈ Λ the map ψ(x, ·) is a composition of C1-maps then it is a
C1-map. In addition, we can easy check that the rate of contraction and expansion of these maps
are uniformly close to γ̂−1 and γ respectively. Indeed,

dY (ψ(x, y), ψ(x, y′)) ≤ dY (φ̃(Q(x, y), y), φ̃(Q(x, y), y′)) + dY (φ̃(Q(x, y), y′), φ̃(Q(x, y′), y′)).

By means of (2.10) and (2.11) it follows

dY (ψ(x, y), ψ(x, y′)) < γ̂−1dY (y, y′) +O(ε) dY (y, y′) ≤ (γ̂−1 +O(ε)) dY (y, y′).
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In the same way, also from (2.10) and (2.11) we obtain

dY (ψ(x, y), ψ(x, y′)) ≥ |dY (φ̃(Q(x, y), y), φ̃(Q(x, y), y′))− dY (φ̃(Q(x, y), y′), φ̃(Q(x, y′), y′))|
> |γ dY (y, y′)−O(ε) dY (y, y′)| ≥ |γ −O(ε)| dY (y, y′).

Taken ε > 0 small enough, we can assume that γ̂−1 and γ remain, respectively, the rates of
contraction and expansion for ψ(x, ·). This calculation shows that the derivative of ψ(x, ·) and
φ(x, ·) are O(ε)-close. Moreover, in view of the C1-closeness of Q(x, ·) to the constant function
y 7→ x, it follows that ψ(x, ·) and φ(x, ·) are O(ε)-close. Consequentely dC1(ψ(x, ·), φ(x, ·)) ≤ O(ε).

Although for each x ∈ Λ, the maps ψ(x, ·) are C1-diffeomorphisms, the map g̃ is not a C1-
diffeomorphism since h is not a C1-conjugation. However, according to [IN10, Theorem A and
page 21], it follows that h and h−1 are locally α-Hölder continuous maps with α = log ν/ logµ > 0.
Following [Gor06, Definition 2.3], a map H between metric spaces is called locally α-Hölder if there
exist δ > 0 and C ≥ 0 such that if d(z, w) < δ then d(H(z), H(w)) ≤ Cd(z, w)α. Thus, the map
ψ = πY ◦ g ◦ h−1 is locally α-Hölder continuos with respect to the base points, i.e., there exsts
δ > 0 such that if dX(x, x′) < δ it holds that

dC0(ψ(x, ·), ψ(x′, ·)) ≤ Lg dC0(h−1(x, ·), h−1(x′, ·)) ≤ LgChdX(x, x′)α (2.13)

where Lg and Ch are the local Lipschitz and α-Hölder constants of g (or g−1) and h (or h−1)
respectively.

Recall that F |Λ is conjugated to the Bernoulli shift τ : Σk → Σk. Let ` : Σk → Λ be the
topological conjugation: τ = `−1 ◦F |Λ ◦ `. From [KH95, Theorem 19.1.2], a topological conjugacy
between two locally maximal hyperbolic sets and its inverse are Hölder continuous maps. In [Gor06,
Theorem 2.2], this result was generalized to include the conjugation with Bernoulli shifts. This
reference also provides an estimate the Hölder exponent of the obtained conjugacy. To calculate
this exponent for `, we need to know the Lipschitz constant of τ .

Let Σk = {1, . . . , k}Z be the space of the bi-sequences of k symbols endowed with the metric

dΣk(ξ, ξ′) = νm, m = min{i ∈ Z+ : ξi 6= ξ′i or ξ−i 6= ξ′−i}, (2.14)

where ξ = (ξi)i∈Z, ξ′ = (ξ′i)i∈Z ∈ Σk. Given a bi-sequence ξ = (. . . , ξ−1; ξ0, ξ1, . . .) the symbol at
the right of ";" is the "0 coordinate" of the bi-sequence ξ. Define the Bernoulli shift map (or left
shift map) τ : Σk → Σk by τ(ξ) = ξ′, where ξ′i = ξi+1. The local unstable and stable sets of a
sequence ξ = (ξi)i∈Z are defined by

W u
loc(ξ; τ) = {ξ′ = (ξ′i)i∈Z ∈ Σk : ξ′i = ξi for all i ≤ 0},

W s
loc(ξ; τ) = {ξ′ = (ξ′i)i∈Z ∈ Σk : ξ′i = ξi for all i ≥ 0}.

Thus, we obtain that

dΣk(τ(ξ), τ(ξ′)) ≤ ν dΣk(ξ, ξ′) for all ξ, ξ′ ∈W s
loc(ζ; τ),

dΣk(τ−1(ξ), τ−1(ξ′)) ≤ ν dΣk(ξ, ξ′) for all ξ, ξ′ ∈W u
loc(ζ; τ).

That is, ν is the contraction rate on both stable and unstable local sets of the Bernoulli shift τ .
In addition, dΣk(τ±1(ξ), τ±1(ξ′)) ≤ ν−1 dΣk(ξ, ξ′), for all ξ, ξ′ ∈ Σk. By [Gor06, Theorem 2.3] the
equality1 νν−1 = 1 implies that ` is a Lipschitz map. That is, dX(`(ξ), `(ξ′)) ≤ L` dΣk(ξ, ξ′).

1The condition in Gorodetski’s result appears as an strict inequality, but from the proof of this result one can
follow that the assertion also holds for the equality.
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Therefore, it follows that g̃ is conjugated to the skew-product

Ψ : Σk × Y → Σk × Y, Ψ(ξ, y) = (τ(ξ), ψξ(y)) (2.15)

where ψξ = ψ(`(ξ), ·) : Y → Y is a C1-diffeomorphism satisfying

γ dY (y, y′) < dY (ψξ(x, y), ψξ(x, y
′)) < γ̂−1 dY (y, y′) for all ξ ∈ Σk, (2.16)

dC0(ψξ, ψξ′) ≤CΨ dΣk(ξ, ξ′)α, ξ, ξ′ ∈ Σk with ξ0 = ξ′0, (2.17)

with CΨ = LgChL
α
` ≥ 0 and α = log ν/ logµ > 0. The last local Hölder condition comes from the

imposition in [IN10, pag. 21] that F |Λ has local product structure for δ > 0 in (2.13).

Same arguments work to g−1 as small perturbation of f−1 and therefore we obtain that the
inverse map Ψ−1 : Σk × Y → Σk × Y is also locally Hölder skew-product with the same Hölder
exponent α and local Hölder constant CΨ.

Summarizing, we have proved the following result.

Proposition 2.1. Let f : X × Y → X × Y be a C1-diffeomorphism skew-product of the form
of (2.7) satisfying (2.8) and (2.9). Then given ε > 0 small enough, any ε-perturbation g of f in
the C1-topology has a locally maximal invariant set ∆ ⊂ X × Y such that g|∆ is conjugated to a
skew-product Ψ : Σk × Y → Σk × Y of the form (2.15) satisfying (2.16) and (2.17).

The restriction of the skew-product f given in (2.7) to the set Λ×Y is conjugated to a symbolic
locally Lipschitz skew-product. Namely, f |Λ×Y is conjugated to

Φ : Σk × Y → Σk × Y, Φ(ξ, y) = (τ(ξ), φξ(y))

where φξ = φ(`(ξ), ·) : Y → Y is a family of C1-diffeomorphisms satisfying that

dC0(φ±1
ξ , φ±1

ξ′ ) ≤ CΦ dΣk(ξ, ξ′)α, for ξ, ξ′ ∈ Σk with ξ0 = ξ′0

with CΦ = C` Lf where Lf is the local Lipschitz constant of f (or f−1). Under the remaining
assumptions in Proposition 2.1, we can identify C1-perturbations g of f with symbolic locally
Hölder skew-product perturbations Ψ of Φ with uniform Hölder exponent α = log ν/ logµ > 0

and local Hölder constant CΨ = C` LgCh ≥ 0. Here, Lg is the local Lipschitz constant of g (or
g−1) which is close to Lf . Also, the local Hölder constant Ch of h (or h−1) varies continually with
respect to h which in turn depends continuously with g. In fact, in view of (2.12) it follows that
h and h−1 are close to the identity and thus, we obtain that CΨ is close to CΦ.

In the context of C2-perturbations in [Gor06, Theorem B], it was proved the following result:

Theorem 2.2. Let f : X × Y → X × Y , f = F × id, be a C2-diffeomorphism. Then for any
diffeomorphism g close to f in the C2-topology, there is an invariant subset ∆g and homeomor-
phism H : Λ × Y → ∆g. Moreover, if p : Λ × Y → Λ is the projection in the first factor, then
the map P : ∆g → Λ, P = p ◦ H−1, is a semiconjugacy, and the leaves P−1(x) are C2-smooth
and depend Hölder continuously on a point x ∈ Λ in the C1-metric. The Hölder exponent and the
Hölder constant are uniform in a small C2-neighborhood of f .

A similar argument as above using this theorem allows us to conjugate the restriction g|∆g of
any perturbation g of f = F × id in the C2-topology to a symbolic skew-product map of the form
Ψ(ξ, y) = (τ(ξ), ψξ(y)) where ψξ : Y → Y are C2-diffeomorphism satisfying (2.16) and

dC1(ψ±1
ξ , ψ±1

ξ′ ) ≤ CΨ dΣk(ξ, ξ′)α, for ξ, ξ′ ∈ Σk with ξ0 = ξ′0

where CΨ is a constant close to CΦ = C`Lf .
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2.2 Symbolic skew-products

We consider skew-product maps Φ over the left shift map τ of k symbols of the form

Φ : Σk ×M → Σk ×M, Φ(ξ, x) = (τ(ξ), φξ(x)) (2.18)

where M is a (not necessarily compact) Riemanniana manifold of dimension c ≥ 1, φξ : M →M

are homeomorphisms which depend continuously with respect to the base point ξ. These maps
are referred to as symbolic skew-products. The first factor of the product Σk×M is called the base
and the second one is the fiber. To emphasize the role of the fiber maps we write Φ = τ n φξ. We
define Sk(M) as the set of symbolic skew-product maps Φ = τ n φξ of the form (2.18). A special
case of skew-product maps are the one-step ones.

Definition 2.2 (One-step maps). A symbolic skew-product map Φ = τnφξ is one-step if the fiber
maps φξ only depend on the coordinate ξ0 of the bi-sequence ξ = (ξi)i∈Z ∈ Σk. In this case, we have
φξ = φi if ξ0 = i, say that Φ is associated with the maps φ1, . . . , φn, and write Φ = τn(φ1, . . . , φn).

We will denote by Qk(M) the subset of Sk(M) consisting of the one-step maps. An extension
of one-step maps are the skew-product maps Φ = τ n φξ whose fiber maps φξ only depend either
on the stable sets of ξ or on the unstable sets of ξ. In this case, we say that Φ = τ n φξ belongs
to S+

k (M) (resp. S−k (M)) if Φ ∈ Sk(M) and φξ = φξ′ if ξ′i = ξi for all i ≥ 0 (resp. i ≤ 0).

Definition 2.3. A stable holonomy, or shortly s-holonomy, for Φ = τ n φξ is a family hs of
homeomorphisms hsξ,ξ′ : M → M defined for all ξ and ξ′ in the same local stable set of τ and
satisfying

i) hsξ′,η ◦ hsξ,ξ′ = hsξ,η and hsξ,ξ = id,

ii) φξ′ ◦ hsξ,ξ′ = hsτ(ξ),τ(ξ′) ◦ φξ, and

iii) (ξ, ξ′, x) 7→ hsξ,ξ′(x) is continuous.

In the last condition (ξ, ξ′) varies in the space of pairs of points in the same local stable set.
Unstable holonomy, or shortly u-holonomy, is defined analogously for pairs of points in the same
local unstable set of τ . The following result shows that the existence of s-holonomy for a skew-
product Φ = τ nφξ in Sk(M) implies that Φ is conjugated to a symbolic skew-product in S+

k (M).
We will denote by Σ a fixed transversal section to the local stable partition W s

loc(ξ; τ), ξ ∈ Σk and
we will consider the projection π : Σk → Σ given by π(ξ) = W s

loc(ξ; τ) ∩ Σ.

Proposition 2.3. Let Φ = τ n φξ be a symbolic skew-product in Sk(M). Suppose that there is
a s-holonomy hs for Φ. Then h : Σk × M → Σk × M , given by h(ξ, x) = (ξ, hsπ(ξ),ξ(x)) is a
homeomorphism and the symbolic skew-product

Φ̃ : Σk ×M → Σk ×M, Φ̃ = h−1 ◦ Φ ◦ h ∈ S+
k (M)

is conjugated to Φ. Moreover, Φ̃ = τ n φ̃ξ with fiber maps φ̃ξ = hsτ(ξ),π(τ(ξ)) ◦ φξ ◦ h
s
π(ξ),ξ.
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Proof. Since the projection π is a continuous map and ξ and π(ξ) always belong in the same local
stable set, it follows from (iii) in the definition of s-holonomy that h is a continuous map. By (i),
it follows that the inverse of h is h−1(ξ, x) = (ξ, hsξ,π(ξ)(x)). Then h is a homeomorphism and

Φ̃(ξ, x) = h−1 ◦ Φ ◦ h(ξ, x) =
(
τ(ξ), hsτ(ξ),π(τ(ξ)) ◦ φξ ◦ h

s
π(ξ),ξ(x)

)
.

The properties (i) and (ii) in Definition 2.3 provide that

φ̃ξ
def
= hsτ(ξ),π(τ(ξ)) ◦ φξ ◦ h

s
π(ξ),ξ = hsτ(ξ),π(τ(ξ)) ◦ h

s
τ(π(ξ)),τ(ξ) ◦ φπ(ξ) = hsτ(π(ξ)),π(τ(ξ)) ◦ φπ(ξ).

This shows that φ̃ξ is constant on the local stable set of any point ξ. Indeed, since for every
ξ′ ∈W s

loc(ξ; τ) it holds that π(ξ′) = π(ξ) and π ◦ τ(ξ′) = π ◦ τ(ξ), it follows that φ̃ξ = φ̃ξ′ . Finally,
notice that the fiber maps φ̃ξ are homeomorphisms which depend continuously on the base point ξ.
Therefore Φ̃ = τ n φ̃ξ ∈ S+

k (M) and we conclude the proof of the proposition.

Notice that there exists a dual result for skew-product Φ = τ n φξ in Sk(M) with u-holonomy
provides a conjugation between Φ and a skew-product with constant fiber maps on the unstable
local sets. The next step is to investigate whether a skew-product Φ = τ nφξ has s-holonomy and
the regularity of the holonomy maps. In order to do this, we need to impose additional conditions
for Φ about regularity and dominated dynamics.

Definition 2.4 (Sets of symbolic skew-products). Let γ and γ̂ be positive constants such that
γ < γ̂−1. A map φ : M →M is called (γ, γ̂−1)-Lipschitz (in M) if

γ ‖x− x′‖ < ‖φ(x)− φ(x′)‖ < γ̂−1 ‖x− x′‖, for all x, x′ ∈M.

Here, ‖x − x′‖ denotes the distance between x and x′ in M . Given α ∈ (0, 1], a skew-product
Φ = τ n φξ ∈ Sk(M) is said to be locally α-Hölder continuous (in M), or shortly Hölder skew-
product, if there is a non-negative constant C ≥ 0 such that

dC0(φ±1
ξ , φ±1

ξ′ ) ≤ C dΣk(ξ, ξ′)α, for all ξ, ξ′ ∈ Σk with ξ0 = ξ′0.

We will denote by Sr, α
k,γ,γ̂−1(M) the subset of Sk(M) consistent of locally α-Hölder continuous

symbolic skew-products with Cr-fiber maps (r ≥ 0) which are (γ, γ̂−1)-Lipschitz. For notational
convenience, we will denote S0,α

k,γ,γ̂−1(M) by Sαk,γ,γ̂−1(M).

Sometimes to refer that Φ = τ n φξ is locally α-Hölder we say that the fiber maps φξ of Φ

depend locally α-Hölder continuously (in M) with respect to the base points. We will denote

CΦ
def
= sup

{ ‖φ±1
ξ (x)− φ±1

ξ′ (x)‖
dΣk(ξ, ξ′)α

: ξ, ξ′ ∈ Σk, with ξ0 = ξ′0 and x ∈M
}
≥ 0.

This constant is called local α-Hölder (continuous) constant of Φ = τ n φξ.

Recall that in (2.14) we endowed the space of the bi-sequences of k symbols Σk = {1, . . . , k}Z

with the metric dΣk(ξ, ξ′) = νm, where m = min{i ∈ Z+ : ξi 6= ξ′i or ξ−i 6= ξ′−i}, and ν is a
fixed positive constant less than 1. That is, ν is the contraction rate on both stable and unstable
local sets of the Bernoulli shift τ . Since the Bernoulli shift τ on the space of k symbols represents
F |Λ in the precious section, we could assume that if the number of symbols k increases then the
contraction ν of F |Λ decreases. Therefore, we could expect that the following dominated conditions
must be satisfied for a large number k of symbols.
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Definition 2.5 (Dominated skew-products). A symbolic skew-product Φ ∈ Sαk,γ,γ̂−1(M) is said
to be s-dominated (resp. u-dominated) if να < γ (resp. γ̂−1 < ν−α). In particular, if Φ is both,
s-dominated and u-dominated, i.e. να < γ < γ̂−1 < ν−α, it said to be partial hyperbolic.

Let us explain the geometric meaning of the dominated conditions. For each ξ ∈ Σk the
fiber map φξ is a (γ, γ̂−1)-Lipschitz diffeomorphism in M . The rate γ is an lower bound for the
contraction, and γ̂−1 is a upper bound for the expansion exhibited by the action of φξ on the
fiber {ξ}×M . First, consider α = 1. The s-dominated and u-dominated conditions become ν < γ

and γ̂−1 < ν respectively. The first condition means the base map τ contracts local stable sets
stronger than the skew-product Φ = τ n φξ contracts fibers; the second one means that the base
map expands local unstable sets stronger than Φ = τ n φξ. In other words, these conditions of
domination mean that Φ is partially hyperbolic transformation, with the fibers as central leaves.
This interpretation extends immediately to the general case α ∈ (0, 1]. It suffices to note that
dΣk(·, ·)α is also a metric in Σk. With this new metric, the Hölder skew-product Φ has Hölder
exponent α = 1. This reduces the general case to the previous particular one α = 1.

In view of the theory of partial hyperbolic systems [BP74, HPS77, PSW97], one expects that
such dominated conditions imply the existence of smooth invariant strong stable an strong unstable
foliations for Φ = τ n φξ in Σk ×M , transverse to the fibers. Theses foliations allow us to find
s-holonomy and u-holonomy for a symbolic skew-product Φ. In the next subsection, we will show
that this is indeed so.

Notation 2.4. Given Φ = τ n φξ for every n > 0 and every (ξ, x) ∈ Σk ×M we set

φnξ (x)
def
= φτn−1(ξ) ◦ · · · ◦ φξ(x) and φ−nξ (x)

def
= φ−1

τ−(n−1)(ξ)
◦ · · · ◦ φ−1

ξ (x).

Note that, for all n ≥ 0, we have Φn(ξ, x) = (τn(ξ), φnξ (x)) and Φ−n(ξ, x) = (τ−n(ξ), φ−n
τ−1(ξ)

(x)).

2.2.1 Strong stable and unstable sets and holonomies

The stable and unstable sets of a point (ξ, x) ∈ Σk ×M for a skew-product map Φ = τ n φξ

as (2.18) are defined by

W s
(
(ξ, x); Φ

)
= {(ζ, y) ∈ Σk ×M : lim

n→∞
d(Φn(ζ, y),Φn(ξ, x)) = 0},

W u
(
(ξ, x); Φ

)
= {(ζ, y) ∈ Σk ×M : lim

n→∞
d(Φ−n(ζ, y),Φ−n(ξ, x)) = 0}.

where d denotes the product metric in Σk×M . In this section we will assume thatM is a compact
manifold. Under the s-domination condition the usual graph transform argument yields a strong
stable lamination for the symbolic skew-product Φ. This strong stable lamination allows us to
define a s-holonomy hs for Φ.

Proposition 2.5 ([AV10, ASV11]). Consider a s-dominated skew-product Φ = τnφξ ∈ Sαk,γ,γ̂−1(M)

Then, there exists a partition

Ws = {W ss
loc((ξ, x); Φ) : (ξ, x) ∈ Σk ×M}

of Σk ×M such that denoting C = CΦ(1− γ−1να)−1 ≥ 0, it holds that
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i) every leaf W ss
loc((ξ, x); Φ) is the graph of α-Hölder function γsξ,x : W s

loc(ξ; τ) → M with α-
Hölder constant less or equal than C (uniform on ξ and x),

ii) Φ(W ss
loc((ξ, x)); Φ) ⊂W ss

loc(Φ(ξ, x); Φ) for all (x, ξ) ∈ Σk ×M , and

iii) the family of maps hsξ,ξ′ : M → M defined by hsξ,ξ′(x) = γsξ,x(ξ′), for ξ′ ∈ W s
loc(ξ; τ), is a

s-holonomy for Φ. Moreover,

a) dC0(hsξ,ξ′ , id) ≤ C dΣk(ξ, ξ′)α, and

b) hsξ,ξ′ coincides with the uniform limit of (φnξ′) ◦ φnξ as n→∞.

In [AV10, Proposition 5.2] the continuous dependence of the invariant graphs with respect to Φ

is also proved. The partition Ws =Ws(Φ) given by Proposition 2.5 is a s-lamination for Φ. That
is, Φ sends leaf in leaf of the partition and exponentially contracts points on the same leaf. Indeed,
it suffices to show that points inW ss

loc((ξ, x); Φ) are exponentially contracted. This is followed since
theses local leaves are α-Hölder graphs with uniform Hölder constant on ξ, and therefore

d(Φn(ξ, x),Φn(ξ′, x′)) ≤ νndΣk(ξ, ξ′) + CνnαdΣk(ξ, ξ′)α ≤ C0ν
nαd((ξ, x), (ξ′, x′))

for all (ξ′, x′) ∈ W ss
loc((ξ, x); Φ), where C0 > 1 is a uniform constant. For the above reason,

W ss
loc((ξ, x); Φ) is referred to as the local strong stable set of the point (ξ, x) ∈ Σk ×M for the

skew-product Φ. The strong stable set of point (ξ, x) for Φ is defined as

W ss((ξ, x); Φ)
def
=
⋃
n≥0

Φ−n
(
W ss
loc(Φ

n(ξ, x); Φ)
)
⊂W s((ξ, x); Φ).

Notice that there is a dual statement of Proposition 2.5 for u-dominated symbolic skew-
product maps. Hence, by this dual result, it also follows a partition Wu = Wu(Φ) whose leaves
W uu
loc ((ξ, x); Φ) are called local strong unstable sets. As above, the strong unstable set of a point

(ξ, x) ∈ Σk ×M for Φ is

W uu((ξ, x); Φ)
def
=
⋃
n≥0

Φn
(
W uu
loc (Φ

−n(ξ, x); Φ)
)
⊂W u((ξ, x); Φ).

In addition, we have the c-lamination Wc(Φ) = {W c
loc((ξ, x); Φ) = {ξ} ×M : (ξ, x) ∈ Σk ×M}.

In order to show as s-domination condition are used in the graph transform argument we give
the details of the proof of Proposition 2.5.

Proof of Proposition 2.5: Existence (i) and invariance (ii) of the familyWs follow from a standard
application of the graph transform argument [HPS77]. Define for each (ξ, x) ∈ Σk×M and n > 0,

γs,nξ,x : W s
loc(ξ; τ)→M, γs,nξ,x (ξ′) = (φnξ′)

−1 ◦ φnξ (x).

Then

‖γs,n+1
ξ,x (ξ′)− γs,nξ,x (ξ′)‖ ≤ γ−n‖φ−1

τn(ξ′) ◦ φτn(ξ) ◦ φnξ (x)− φ−1
τn(ξ′) ◦ φτn(ξ′) ◦ φnξ (x)‖

≤ γ−n−1‖φτn(ξ) ◦ φnξ (x)− φτn(ξ′) ◦ φnξ (x)‖.

Using that Φ = τ n φξ is locally α-Hölder skew-product and recalling that ν is the contraction
rate of τ on the stable sets we have ‖γs,n+1

ξ,x (ξ′) − γs,nξ,x (ξ′)‖ ≤ CΦ(γ−1να)n+1 dΣk(ξ, ξ′)α. Hence,
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since να < γ then the sequence {γs,nξ,x (ξ′)} is Cauchy and therefore converges. Denote the limit by
γsξ,x(ξ′). Note that (ii) is consequence of the fact that

φξ′ ◦ γsξ,x(ξ′) = lim
n→∞

φξ′ ◦ (φnξ′)
−1 ◦ φnξ (x)

= lim
n→∞

(φn−1
τ(ξ′))

−1 ◦ φn−1
τ(ξ) ◦ φξ(x) = γsτ(ξ),φξ(x) ◦ τ(ξ′).

(2.19)

In order to prove that γsξ,x is a α-Hölder map, we require again the s-domination condition. By
means of the triangular inequality we get

‖γs,nξ,x (ξ′)− x‖ = ‖γs,nξ,x (ξ′)− γs,nξ,x (ξ)‖ ≤
n∑
i=1

si(ξ
′) (2.20)

where si(ξ′) is given by

‖(φn−iξ′ )−1 ◦ φ−1
τn−i(ξ′)

◦ (φi−1
τn+1−i(ξ)

)−1 ◦ φnξ (x)− (φn−iξ′ )−1 ◦ φ−1
τn−i(ξ)

◦ (φi−1
τn+1−i(ξ)

)−1 ◦ φnξ (x)‖.

With the estimate si(ξ′) ≤ CΦ(γ−1να)n−idΣk(ξ, ξ′)α and taking n → ∞ in the above inequality
it follows ‖γsξ,x(ξ′) − γsξ,x(ξ)‖ ≤ CdΣk(ξ, ξ′)α for all ξ′ ∈ W s

loc(ξ; τ) where C = CΦ(1 − γ−1να)−1.
This shows that γsξ,x is α-Hölder. Indeed, for every ξ′, ξ′′ ∈ W u

loc(ξ; τ), denoting x′ = γsξ,x(ξ′) and
noting that γsξ,x(ξ′′) = γsξ′,x′(ξ

′′), we obtain that

‖γsξ,x(ξ′)− γsξ,x(ξ′′)‖ = ‖γsξ′,x′(ξ′)− γsξ′,x′(ξ′′)‖ ≤ CdΣk(ξ′, ξ′′)α.

Note that, the Hölder constant obtained is uniform on ξ and x.

For every bi-sequences ξ and ξ′ in the same local stable set of τ , we consider the map hsξ,ξ′ :

M →M given by hsξ,ξ′(x) = γsξ,x(ξ′). Notice that, because of the laminationWs is invariant under
Φ, i.e. from (2.19), it follows that for every n ≥ 0

hsξ,ξ′ = (φnξ′)
−1 ◦ hsτn(ξ),τn(ξ′) ◦ φ

n
ξ . (2.21)

The estimative calculated for (2.20) allows us to obtain a bounded for the uniform C0-distance
from hsξ,ξ′ to the identity. Namely,

dC0(hsτn(ξ),τn(ξ′), id) ≤ CdΣk(τn(ξ), τn(ξ′))α ≤ CναndΣk(ξ, ξ′)α. (2.22)

Putting these two observations together, we find that

dC0(hsξ,ξ′ , (φ
n
ξ′)
−1 ◦ φnξ ) ≤ γ−ndC0(hsτn(ξ),τn(ξ′), id) ≤ C(γ−1να)ndΣk(ξ, ξ′)α.

Hence, hsξ,ξ′ coincides with the uniform limit of (φnξ′)
−1 ◦ φnξ as n→∞. Notice that by definition

of hsξ,ξ′ we have (hsξ,ξ′)
−1 = hsξ′,ξ and so it follows these inverse maps also as an uniform limit.

Therefore, as consequence of the above observations, the family of maps hsξ,ξ′ is a s-holonomy for
Φ = τ n φξ and we conclude the proof of the proposition.

We will say that hs is a %-Hölder s-holonomy if the homeomorphisms hsξ,ξ′ are %-Hölder con-
tinuous with uniform Hölder constant in ξ and ξ′. The proof of the following proposition can be
found in [AV11].
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Proposition 2.6. Consider a s-dominated skew-product Φ = τ n φξ ∈ Sαk,γ,γ̂−1(M). Then the
holonomies maps hsξ,ξ′ : M →M are %-Hölder with % = (1 + 3 log γγ̂−1/ log γ−1να)−1 ∈ (0, 1) and
uniform Hölder constant in ξ and ξ′.

Proof. We have to check that the maps hsξ,ξ′ are Hölder maps. Fix two bi-sequence ξ and ξ′ in the
same local stable set of τ . Recall that 0 < να < γ < 1 < γ̂−1. Hence θ = 3 log γγ̂/ log γ−1να > 0

and % = (1 + θ)−1 < 1. We will prove that hsξ,ξ′ is locally %-Hölder with uniform local Hölder
constant on ξ, ξ′. Notice that by standard argument this claim also shows that hsξ,ξ′ is globally
%-Hölder (see for instance [Gor06, Proprosition 2.4]).

Let m be a natural number such that 2Cνmα < 1 where C = CΦ(1 − γ−1να) ≥ 0. From the
continuity of hsξ,ξ′ there exists δ > 0 such that if ‖x−x′‖ < δ then ‖hsξ,ξ′(x)−hsξ,ξ′(x′)‖ < νmα. Fix
x and x′ in M such that ‖x− x′‖ < δ and write η = ‖hsξ,ξ′(x)− hsξ,ξ′(x′)‖ < νmα. Hence, from the
s-domination condition there is n ∈ N such that η3 ≤ (γ−1να)n ≤ η2. Indeed, it suffices to take
n between 2 log η/ log γ−1να and 3 log η/ log γ−1να which it is possible since η < νmα ≤ γ−1να.
Using the above inequality, recalling that the fiber maps φξ are (γ, γ̂−1)-Lipschitz diffeomorphisms
and since by (2.21) it holds that φnξ′ ◦ hsξ,ξ′ = hsτn(ξ),τn(ξ′) ◦ φ

n
ξ , we obtain that

dΣk(τn(ξ), τn(ξ′))α ≤ ναndΣk(ξ, ξ′)α ≤ γnη2 dΣk(ξ, ξ′)α < η ‖φnξ′ ◦ hsξ,ξ′(x)− φnξ′ ◦ hsξ,ξ′(x′)‖
≤ νmα ‖hsτn(ξ),τn(ξ′) ◦ φ

n
ξ (x)− hsτn(ξ),τn(ξ′) ◦ φ

n
ξ (x′)‖.

This inequality and the limitation obtained in (2.22) imply that

‖hsτn(ξ),τn(ξ′) ◦ φ
n
ξ (x)− hsτn(ξ),τn(ξ′) ◦ φ

n
ξ (x′)‖ ≤

≤ ‖hsτn(ξ),τn(ξ′) ◦ φ
n
ξ (x)− φnξ (x)‖+ ‖φnξ (x)− φnξ (x′)‖+ ‖hsτn(ξ),τn(ξ′) ◦ φ

n
ξ (x′)− φnξ (x′)‖

≤ 2CdΣk(τn(ξ), τn(ξ′))α + ‖φnξ (x)− φnξ (x′)‖
≤ 2Cνmα ‖hsτn(ξ),τn(ξ′) ◦ φ

n
ξ (x)− hsτn(ξ),τn(ξ′) ◦ φ

n
ξ (x′)‖+ ‖φnξ (x)− φnξ (x′)‖.

Since 1− 2Cνmα > 0 then we obtain that

‖hsτn(ξ),τn(ξ′) ◦ φ
n
ξ (x)− hsτn(ξ),τn(ξ′) ◦ φ

n
ξ (x′)‖ ≤ (1− 2Cνmα)−1‖φnξ (x)− φnξ (x′)‖.

Finally, this estimate together with (2.21) provides

‖hsξ,ξ′(x)− hsξ,ξ′(x′)‖ ≤ γ−n‖hsτn(ξ),τn(ξ′) ◦ φ
n
ξ (x)− hsτn(ξ),τn(ξ′) ◦ φ

n
ξ (x′)‖

≤ (1− 2Cνmα)−1γ−n‖φnξ (x)− φnξ (x′)‖ ≤ (1− 2Cνmα)−1(γγ̂)−n‖x− x′‖.

Since (γ−1να)n ≥ η3 then n ≤ 3 log η/ log γ−1να = θ log η/ log γγ̂. This implies that (γγ̂)−n ≤ η−θ

and therefore ‖hsξ,ξ′(x) − hsξ,ξ′(x
′)‖1+θ ≤ (1 − 2Cνmα)−1‖x − x′‖. This concludes that hsξ,ξ′ is

locally %-Hölder showing our assertion. Moreover, we here observe the uniformity of the Hölder
constant. Hence the family of maps hsξ,ξ′ is a %-Hölder s-holonomy and therefore the proposition
is completed.

Remark 2.7. The local %-Hölder constant provides by the above proof is Kloc = (1 − 2Cνmα)−%

where C = CΦ(1 − γ−1να)−1. The natural number m was chosen to provide that Kloc > 0. This
choice is not necessary if CΦ is close enough to zero. In such case, K = (1 − 2C)−% is close to
one and this constant can be taken as the global %-Hölder constant of hsξ,ξ′ .
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Remark 2.8. If the fiber maps φξ are isometries then γγ̂ may be taken arbitrarily close to one
and thus the Hölder exponent % is also arbitrarily close to one. The same observation holds when
the fiber maps φξ of Φ = τ n φξ are perturbations of the identity id : M →M .

Under the conditions of the previous proposition the holonomy maps are Hölder continuous.
In order to increase this regularity we need to impose additional properties for Φ = τ n φξ. We
will need C2-fiber maps φξ whose first derivative depends Hölder continuously with respect to ξ.

Definition 2.6. Let α ∈ (0, 1]. A skew-product Φ = τ n φξ ∈ Sk(M) with C1-fiber maps is called
locally α-Hölder differentiable (in M) if there is a non-negative constant C ≥ 0 such that

dC1(φ±1
ξ , φ±1

ξ′ ) ≤ C dΣk(ξ, ξ′)α, for all ξ, ξ′ ∈ Σk with ξ0 = ξ′0.

We will denote by Sr,1+α
k,γ,γ̂−1(M) the subset of Sk(M) consistent of symbolic skew-products locally

α-Hölder differentiable with Cr-fiber maps (r ≥ 1) which are (γ, γ̂−1)-Lipschitz .

Recall that the center bunched inequalities for partial diffeomorphisms ensure the regularity of
the foliations and the holonomies. The following definition introduces the equivalent inequalities
for symbolic skew-products.

Definition 2.7 (Fiber bunched skew-products). A symbolic skew-product Φ ∈ S1,1+α
k,γ,γ̂−1(M) is said

to be fiber bunched if να < γγ̂.

The following proposition states the C1-regularity of the s-holonomy maps under the above
conditions. This result is showed in [AV10, Remark 5.4] although also can be followed from [BGV03,
Lemma 1.21] and [ASV11, Proposition 3.4].

Proposition 2.9. Consider a s-dominated fiber bunched skew-product Φ = τ nφξ ∈ S2,1+α
k,γ,γ̂−1(M).

Then, the holonomies maps hsξ,ξ′ are C
1-diffeomorphisms.

Proof. We will denote y = (ξ, x) and A(y) = Dφξ(x). Then

‖A(y)−A(y′)‖ ≤ ‖Dφξ(x)−Dφξ(x′)‖+ ‖Dφξ(x′)−Dφξ′(x′)‖.

By assumption, the skew-product Φ is α-Hölder differentiable and its fiber maps φξ are C2-
diffeomorphisms. Hence, there are non-negative constants L, C̃ and K̃ such that

‖A(y)−A(y′)‖ ≤ L‖x− x′‖+ C̃dΣk(ξ, ξ′)α ≤ K̃d(y, y′)α. (2.23)

Since Φ = τ n φξ is s-dominated, from Proposition 2.5 it follows a s-lamination Ws for Φ with
d(Φn(y),Φn(y′)) ≤ (1 + 2C)νnαd(y, y′) for all y and y′ in the same local strong stable leaf where
C = CΦ(1− γ−1να)−1 ≥ 0. Since Φ is fiber bunched then there is n ∈ N such that

‖An(y)‖‖An(y)−1‖(1 + 2C)νnα ≤ (γγ̂)−n(1 + 2C)νnα < 1. (2.24)

Here, An(y) = A(Φn−1(y)) · · ·A(Φ(y))A(y). Consider now, the linear cocycle FA over Φ, given
by FA(y, v) = (Φ(y), A(y)v) with y = (ξ, x) and v ∈ TxM . The estimates (2.23) and (2.24) show
that this linear cocycle is in the assumptions of Proposition 3.4 in [ASV11]. This result shows the
existence of a linear isomorphism Hs

y,y′ : TxM → Tx′M such that Hs
y,y′ is the uniform limit of

An(y′)−1An(y). That is, (φξ′)
−1◦φnξ converges uniformly to hsξ,ξ′ in the C1-topology. In particular,

in this case the s-holonomy maps are C1-diffeomorphisms.
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2.2.2 Invariant graph

A closed set Γ of Σk ×M is called invariant graph of a symbolic skew-product Φ = τ n φξ if
Φ(Γ) = Γ and there is a function g : Σk → M such that Γ = {(ξ, g(ξ)) : ξ ∈ Σk}. Bony graphs
are a generalization of invariant graphs. A closed set Γ of Σk ×M is said to be bony graph for Φ

if Φ(Γ) = Γ and it intersects almost every fiber {ξ} ×M by a single point, and the rest of the
fibers by some compacts, connected and non-empty sets called bones or spines. Note that a bony
graph Γ can be represented as the disjoint union of sets P and Q. The set P is the union of spines
Pξ = π−1(ξ) where π : Γ → Σk denotes the projection on the base space. The set Q is the graph
set of a function g : Σk \ π(P )→M . Note that τ ◦ π = π ◦Φ|Γ. If the bony graph Γ has infinitely
many spines, the function g : Σk \ π(P )→M is continuous and Γ is the maximal invariant set

Γ =
⋂
n∈Z

Φn(Σk ×D)

where D is a bounded open set of M , then it is called porcupine. A bounded open and connected
set D ofM is said to be trapping region (resp. inverse trapping region) for a symbolic skew-product
Φ = τ n φξ ∈ Sk(M) if φξ(D) ⊂ D (resp. D ⊂ φξ(D)) for all ξ ∈ Σk.

Proposition 2.10. Let D be a trapping region (resp. inverse trapping region) for Φ = τ n φξ.
Then the maximal invariant set Γ in Σk × D is a bony graph. Moreover, if Φ ∈ S−k (M) (resp.
S+
k (M)) and there exists a periodic point (ϑ, p) ∈ Σk ×D for Φ of period s ≥ 1 such that p is a

repelling (resp. attracting) fixed point of φsϑ = φτs−1(ϑ) ◦ · · · ◦ φϑ then Γ is a porcupine.

Proof. Suppose that D is a trapping region for Φ. The case of inverse trapping region is totally
analogous. Thus, since φξ(D) ⊂ D for all ξ ∈ Σk then the maximal invariant set Γ intersects the
fiber over the bi-sequence ξ in the set

Dξ =
⋂
n≥1

φnτ−n(ξ)(D) where φnτ−n(ξ)(D) = φτ−1(ξ) ◦ · · · ◦ φτ−n(ξ)(D).

Indeed, if (ξ, x) ∈ Γ then (ξ, x) ∈ Φn(Σk ×D) for all n ∈ Z. Hence x ∈ D and for each n > 0 we
get that x belongs to both φnτ−n(ξ)(D) and φ−n

τn−1(ξ)
(D). Since D is a trapping region we obtain

that φnτ−n(ξ)(D) ⊂ D and D ⊂ φ−n
τn−1(ξ)

(D) for all n > 0 and therefore

x ∈ φnτ−n(ξ)(D) ∩ φ−n
τn−1(ξ)

(D) = φnτ−n(ξ)(D), for all n > 0.

That is, x ∈ Dξ. Reciprocally, if x ∈ Dξ from the above equation x belongs to both φnτ−n(ξ)(D)

and φ−n
τn−1(ξ)

(D) and therefore (ξ, x) ∈ Φn(Σk ×D) for all n ∈ Z. That is, (ξ, x) ∈ Γ.

Note that since φn+1
τ−(n+1)(ξ)

= φnτ−n(ξ) ◦ φτ−(n+1)(ξ) then the connected compact sets φnτ−n(ξ)(D)

are nested and hence Dξ is a single point or a connected compact set (with more than one point).
This proves that the maximal invariant set Γ is a bony graph.

Now, assuming that Φ ∈ S−k (M), we will prove that the function g : Σk \ π(P ) → M is
continuous where P is the collection of spines π−1(ξ). Take a point (ξ, x) in the graph set Q =

Γ \ P of g and a positive ε > 0. For sufficient large n, the connected compact set φnτ−n(ξ)(D)

is contained in the open ball B(x, ε) around of x of radius ε > 0. Hence, since the fiber maps
φξ only depends on the unstable manifold of τ then φnτ−n(ξ′)(D) ⊂ B(x, ε) for any sequence ξ′
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such that ξ′−i = ξ−i for i = 1, . . . , n. That is, the function g is continuous. To prove that Γ is a
porcupine only remains to show that it has infinitely many spines π−1(ξ). We are assuming that
there exist a periodic bi-sequence ϑ ∈ Σk of period s and a repelling fixed point p ∈ D of φsϑ. Let
U ⊂ D be a neighborhood of p such that φsϑ(U) ⊃ U . For any bi-sequence ξ ∈ Σk of the form
ξ = (. . . ϑ−2, ϑ−1, ξ−n, . . . , ξ−1; ξ0, ξ1, . . .) the connected compact set Dξ contains at least the set
φnτ−n(ξ)(U). Note that set of all such bi-sequences is dense and therefore Γ has infinitely many
spines. This concludes the prove of the proposition.

Given a bounded open set D of M , in this section we will study the maximal invariant in
Σk ×D. The next result claims the existence of a unique invariant attracting graph in Σk ×D for
maps Φ = τ n φξ in Sk(M) whose fiber maps φξ are locally (λ, β)-Lipschitz in D with β < 1.

Definition 2.8 (Sets of local symbolic skew-products). Let D ⊂ M be a bounded open set and
consider constants 0 < λ < β and 0 ≤ α ≤ 1. We define Sr, αk,λ,β(D), r ≥ 0, as the set of symbolic
skew-product maps Φ = τ n φξ ∈ Sk(M) such that

• φξ is a Cr-diffeomorphism;

• λ ‖x− x′‖ < ‖φξ(x)− φξ(x′)‖ < β ‖x− x′‖ for all ξ ∈ Σk and x, x′ ∈ D;

• ‖φξ(x)− φξ′(x)‖ ≤ C dΣk(ξ, ξ′)α for all ξ′ ∈ Σk with ξ′0 = ξ0 and x ∈ D;

We will denote by CΦ the smallest (uniform) non-negative constants satisfying the above last
inequality. Additionally, if β < 1 we impose the condition φξ(D) ⊂ D for all ξ ∈ Σk, and, in the
case 1 < λ the imposed condition is D ⊂ φξ(D) for all ξ ∈ Σk. We also set

Sr, α,+k,λ,β (D) = Sr, αk,λ,β(D) ∩ S+
k (M) and Sr, α,−k,λ,β (D) = Sr, αk,λ,β(D) ∩ S−k (M).

For notational convenience, S0,0
k,λ,β(D), S0,0,±

k,λ,β (D) and S0,α
k,λ,β(D) denote Sk,λ,β(D), S±k,λ,β(D) and

Sαk,λ,β(D) respectively.

We endow Sr,αk,λ,β(D) with the distance

dS(Φ,Ψ) = sup
ξ∈Σk

dCr(φξ, ψξ) + |CΦ − CΨ| with Φ = τ n φξ and Ψ = τ n ψξ. (2.25)

Here, one can see dCr(φξ, ψξ) as the Cr-distance between the restriction of φξ and ψξ to D.

In what follows of this subsection, we will consider a fixed bounded open set D in M and
unless otherwise stated we will assume that 0 ≤ λ < β < 1.

Theorem 2.11 ([HPS77]). Consider Φ = τ n φξ ∈ Sk,λ,β(D) with β < 1. Then there exists a
unique bounded continuous function gΦ : Σk → D such that

i) Φ
(
ξ, gΦ(ξ)

)
=
(
τ(ξ), gΦ(τ(ξ))

)
for all ξ ∈ Σk, and

ii) ‖φnξ (x)− gΦ(τn(ξ))‖ ≤ βn‖gΦ(ξ)− x‖ for all (ξ, x) ∈ Σk ×D and n ≥ 0.

In [BHN99, Section 6] the continuous dependence of the invariant graphs with respect to Φ is
also proved. On the other hand, notice that the above theorem is a reformulation of the results in
[HPS77] which can also be found in [Sta99, Theorem 1.1]. Although the proof is simple we present
it here since can be useful to understand better this invariant graph.
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Proof. Let C0(Σk, D) be the space of bounded continuous functions g : Σk → D. We define the
usual metric of uniform convergence on C0(Σk, D) by

dC0(g, g̃) = sup
ξ∈Σk

‖g(ξ)− g̃(ξ)‖,

where g and g̃ belong to C0(Σk, D). Note that, C0(Σk, D) with this metric is a complete metric
space. Define the usual graph transform Υ for Φ = τ n φξ by

Υ[g](ξ) = φτ−1(ξ) ◦ g ◦ τ−1(ξ), for g ∈ C0(Σk, D) and ξ ∈ Σk.

We claim that Υ[g] ∈ C0(Σk, D). Indeed, we only need to show that Υ[g](Σk) ⊂ D. This follows
from the assumption φξ(D) ⊂ D for all ξ ∈ Σk noting that g : Σk → D. Thus, Υ: C0(Σk, D) →
C0(Σk, D). Now, since Φ = τnφξ uniformly contracting inD with contraction constant 0 < β < 1,
it follows that ‖Υ[g](ξ)−Υ[g̃](ξ)‖ ≤ β ‖g(τ−1(ξ))−g̃(τ−1(ξ))‖ ≤ β dC0(g, g̃). Taking the supremum
over all ξ ∈ Σk, we get that dC0(Υ[g],Υ[g̃]) ≤ β dC0(g, g̃). Hence, by the Contraction Mapping
Theorem, Υ has a unique attracting fixed point gΦ : Σk → D.

By definition gΦ ◦ τ(ξ) = Υ[gΦ](τ(ξ)) = φξ ◦ gΦ(ξ). Hence, as required, the graph of gΦ is
invariant under Φ. Finally, by induction we have gΦ ◦ τn(ξ) = φnξ ◦ gΦ(ξ) and so for every x ∈ D
‖φnξ (x)− gΦ(τn(ξ))‖ = ‖φnξ (x)− φnξ (gΦ(ξ))‖ ≤ βn‖x− gΦ(ξ)‖. Thus, taking as n→∞ the graph
of gΦ is attracting under Φ = τ n φξ and we complete the proof of the theorem.

Under the additional assumption that Φ = τ nφξ is locally α-Hölder continuous skew-product
for some 0 < α ≤ 1, the following result provides the same degree of regularity for the invari-
ant graph gΦ restricted to local unstable manifolds of τ . The proof of this result can be found
in [BHN99, Lemma 2.6]. Here, we give a different proof following the ideas in [Wil98, Theorem 3.3].

Theorem 2.12. Consider Φ = τ n φξ ∈ Sαk,λ,β(D) with β < 1. Then there is a positive constant
K ≤ CΦ(1− βνα)−1 such that

‖gΦ(ξ)− gΦ(ξ′)‖ ≤ K dΣk(ξ, ξ′)α, ξ, ξ′ ∈ Σk with ξ′ ∈W u
loc(ξ; τ).

Proof. Let K = CΦ(1 − βνα)−1. We define Cα,K as the subspace of the bounded continuous
function g : Σk → D such that ‖g(ξ) − g(ξ′)‖ ≤ K dΣk(ξ, ξ′)α, ξ, ξ′ ∈ Σk with ξ′ ∈ W u

loc(ξ; τ).
Endow this space with the uniform topology. The idea is to show that the graph transformation
Υ carries Cα,K into itself. Clearly, Cα,K is a closed subspace of C0(Σk, D), and hence the unique
fixed point of Υ, gΦ, lies in Cα,K .

Recall that Υ[g](ξ) = φτ−1(ξ) ◦ g ◦ τ−1(ξ). We want to show that Υ[g] ∈ Cα,K if g ∈ Cα,K .
Indeed, given two bi-sequences ξ and ξ′ in the same local unstable set for τ we have that

‖Υ[g](ξ)−Υ[g](ξ′)‖ ≤ ‖φτ−1(ξ) ◦ g ◦ τ−1(ξ)− φτ−1(ξ) ◦ g ◦ τ−1(ξ′)‖
+ ‖φτ−1(ξ) ◦ g ◦ τ−1(ξ′)− φτ−1(ξ′) ◦ g ◦ τ−1(ξ′)‖ ≤ β‖g ◦ τ−1(ξ)− g ◦ τ−1(ξ′)‖
+ CΦ dΣk(τ−1(ξ), τ−1(ξ′))α ≤ (βK + CΦ)dΣk(τ−1(ξ), τ−1(ξ′))α ≤ (βK + CΦ)ναdΣk(ξ, ξ′)α.

From the choice of K, it follows that βK+CΦ ≤ K and thus ‖Υ[g](ξ)−Υ[g](ξ′)‖ ≤ K dΣk(ξ, ξ′)α.
That is, Υ[g] ∈ Cα,K and therefore we conclude the proof of the theorem.
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The Pointwise Hölder Section Theorem in [Wil98, Theorem 3.3] states that β < να is a suf-
ficient condition for the invariant graph gΦ : Σk → M to be α-Hölder. In fact, from [BHN99,
Theorem 1.3] it follows that this inequality is generically necessary. The inequality β < να means
that Φ contracts the fiber {ξ} ×D more sharply at Hölder scale α than it contracts the base at
ξ. It is exactly the opposite of the s-dominating condition which we need to ensure the existence
of strong stable lamination for Φ in Proposition 2.5. Therefore, as we will work in the context of
s-dominated skew-products we only obtain that the invariant graph function is α-Hölder along to
the unstable manifold, as Theorem 2.12 claims.

Bearing in mind Notation 2.4, Item (i) of Theorem 2.11 implies that for every n > 0

φnξ ◦ gΦ(ξ) = gΦ ◦ τn(ξ) and φ−n
τ−1(ξ)

◦ gΦ(ξ) = gΦ ◦ τ−n(ξ) (2.26)

for all ξ ∈ Σk. Let graph[gΦ] : Σk → Σk ×M , graph[gΦ](ξ) = (ξ, gΦ(ξ)), be the invariant graph
map and denote the invariant graph set by

ΓΦ
def
= {(ξ, gΦ(ξ)) : ξ ∈ Σk} ⊂ Σk ×D.

The following proposition shows that the invariant graph of Φ is the locally maximal invariant
set inside of Σk ×D.

Proposition 2.13. Consider Φ = τ n φξ ∈ Sk,λ,β(D) with β < 1. Then, the restriction Φ|ΓΦ
of

Φ to the set ΓΦ is continuously conjugated to τ . Moreover, the invariant graph set

ΓΦ =
⋂
n∈Z

Φn(Σk ×D) =
⋂
n∈N

Φn(Σk ×D)

is the maximal invariant set in Σk ×D.

Proof. By (i) in Theorem 2.11, it follows Φ◦graph[gΦ] = graph[gΦ]◦τ. Hence graph[gΦ] conjugates
the maps Φ|ΓΦ

and τ . To get the continuity just note that graph[gΦ] is continuous and that
graph[gΦ]−1 : Σk ×M → Σk is the projection on the first coordinate, thus it is also continuous.
So, we conclude the first part of the proposition.

Recall that periodic points of the shift map τ are dense in Σk, i.e., Σk = Per(τ). Conjugation
in the first part of this proposition implies that ΓΦ = Per(Φ|ΓΦ

). Let Γ be the local maximal
invariant set of Φ in Σk ×D. Note that φξ(D) ⊂ D for all ξ ∈ Σk. Hence Γ = ∩n∈ZΦn(Σk ×D)

and ΓΦ = Per(Φ|ΓΦ
) ⊂ Γ.

In order to prove that Γ ⊂ ΓΦ given any (ξ, x) ∈ Γ it suffices to see that x = gΦ(ξ). As the
set ΓΦ is bounded, we have that K = sup{d(γ,ΓΦ), γ ∈ Γ} ∈ [0,+∞). Since the maps φξ are
contractions with contraction constant 0 < β < 1 we deduce that

‖x− gΦ(ξ)‖ = ‖φnξ ◦ φ−nξ (x)− φnξ ◦ φ−nξ (gΦ(ξ))‖ ≤ βn‖φ−nξ (x)− φ−nξ (gΦ(ξ))‖

= βnd
(
Φ−n(ξ, x),Φ−n(ξ, gΦ(ξ))

)
≤ Kβn.

Taking n→∞ we get x = gΦ(ξ) and thus (ξ, x) ∈ ΓΦ, implying that Γ ⊂ ΓΦ. This completes the
proof of the proposition.
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Next, we will give more information about the maximal invariant set. In particular, if the
symbolic skew-product Φ belongs to Sk,λ,β(D) with β < 1 then it satisfies the u-dominating
condition: β < 1 < ν−1. Thus we could expect the existence of strong unstable lamination through
the point of the maximal invariant set ΓΦ in Σk ×D.

Proposition 2.14. Consider Φ = τ n φξ ∈ Sk,λ,β(D) with β < 1 and let ΓΦ be the maximal
invariant set in Σk ×D. Then, there exists a lamination

Wu
ΓΦ

= {W uu
loc ((ξ, x); Φ) : (ξ, x) ∈ ΓΦ}

such that

i) every leaf W uu
loc ((ξ, x); Φ) is the graph of a continuous function γuξ,x : W u

loc(ξ; τ)→M ,

ii) φ−1
τ−1(ξ′)

◦ γuξ,x(ξ′) = γuη,y ◦ τ−1(ξ′) where η = τ−1(ξ), y = φ−1
τ−1(ξ)

(x) and ξ′ ∈W u
loc(ξ; τ),

iii) if (ϑ, p) ∈ ΓΦ is a periodic point of Φ then W uu
loc ((ϑ, p); Φ) ⊂W u((ϑ, p); Φ).

In addition, if Φ is locally α-Hölder then γuξ,x : W u
loc(ξ; τ) → M is an α-Hölder function and

W uu
loc ((ξ, x); Φ) ⊂W u((ξ, x); Φ) for all (ξ, x) ∈ ΓΦ.

Proof. Let (ξ, x) ∈ ΓΦ. Following Proposition 2.5, we define γu,nξ,x : W u
loc(ξ; τ)→M by

γu,nξ,x (ξ′) = φnτ−n(ξ′) ◦ (φnτ−n(ξ))
−1(x) = φnτ−n(ξ′) ◦ φ

−n
τ−1(ξ)

(x).

Note that since x = gΦ(ξ) then γu,nξ,x (ξ′) = φnτ−n(ξ′) ◦ φ
−n
τ−1(ξ)

◦ gΦ(ξ). Thus, for simplicity in the
notation we will forget the subindex x and denote this map as γu,nξ . Observe that {γu,nξ } is a
sequence in the complete metric space C0(W u

loc(ξ; τ),M). We will show that this sequence is
Cauchy and so converges.

By (2.26) it follows that

φ−n
τ−1(ξ)

◦ gΦ(ξ) = gΦ ◦ τ−n(ξ) ∈ D, for all n ∈ N.

Then, since φξ(D) ⊂ D for all ξ ∈ Σk, we have that φn−i
τ−n(ξ′) ◦ φ

−n
τ−1(ξ)

◦ gΦ(ξ) ∈ D for every

0 < i ≤ n. Since Φ = τ n φξ is in Sk,λ,β(D) we gett that ‖γu,n+1
ξ (ξ′) − γu,nξ (ξ′)‖ is less or equal

than

βn‖φτ−n−1(ξ′) ◦ φ−1
τ−n−1(ξ)

◦ φ−n
τ−1(ξ)

◦ gΦ(ξ)− φτ−n−1(ξ′) ◦ φ−1
τ−n−1(ξ′)

◦ φ−n
τ−1(ξ)

◦ gΦ(ξ)‖

≤ βn+1‖φ−1
τ−n−1(ξ)

◦ φ−n
τ−1(ξ)

◦ gΦ(ξ)− φ−1
τ−n−1(ξ′)

◦ φ−n
τ−1(ξ)

◦ gΦ(ξ)‖.

Given any ε > 0 and using that φ−1
ξ depends uniformly continuously with respect to base point

ξ, we find n0 ∈ N such that for every ξ′ ∈ W u
loc(ξ; τ) it holds that dC0(φ−1

τ−n−1(ξ)
, φ−1

τ−n−1(ξ′)
) < ε

for all n ≥ n0. Thus, for n ≥ n0 we get ‖γu,n+1
ξ (ξ′)− γu,nξ (ξ′)‖ ≤ βn+1ε. Hence,

dC0(γu,n+1
ξ , γu,nξ ) ≤ βn+1ε for all n ≥ n0.

This implies that the sequence {γu,nξ } is Cauchy and therefore converges. We will denote the limit
by γuξ ∈ C0(W u

loc(ξ; τ),M).
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Item (ii) is a consequence of the fact that φ−1
τ−1(ξ)

(x) = φ−1
τ−1(ξ)

◦ gΦ(ξ) = gΦ ◦ τ−1(ξ) and

φ−1
τ−1(ξ′)

◦ γuξ (ξ′) = lim
n→∞

φ−1
τ−1(ξ′)

◦ φnτ−n(ξ′) ◦ φ
−n
τ−1(ξ)

◦ gΦ(ξ)

= lim
n→∞

φn−1
τ−n(ξ′) ◦ φ

−(n−1)
τ−2(ξ)

◦ gΦ ◦ τ−1(ξ) = γuτ−1(ξ) ◦ τ
−1(ξ′).

Let (ϑ, p) ∈ ΓΦ be a periodic point of Φ. We will show that W uu
loc ((ϑ, p); Φ) ⊂ W u((ϑ, p); Φ).

Given any point (ξ, x) in W uu
loc ((ϑ, p); Φ) we get ξ ∈W u

loc(ϑ; τ) and x = γuϑ(ξ). Thus,

d(Φ−n(ξ, x),Φ−n(ϑ, p)) = dΣk(τ−n(ξ), τ−n(ϑ)) + ‖φ−n
τ−1(ξ)

(x)− φ−n
τ−1(ϑ)

(p)‖

≤ νndΣk(ξ, ϑ) + ‖φ−n
τ−1(ξ)

◦ γuϑ(ξ)− φ−n
τ−1(ϑ)

(p)‖.
(2.27)

Now, using that

γuτ−n(ϑ) ◦ τ
−n(ϑ) = gΦ ◦ τ−n(ϑ) = φ−n

τ−1(ϑ)
◦ gΦ(ϑ) = φ−n

τ−1(ϑ)
(p)

and φ−n
τ−1(ξ)

◦ γuϑ(ξ) = γuτ−n(ϑ) ◦ τ
−n(ξ) we infer that

‖φ−n
τ−1(ξ)

◦ γuϑ(ξ)− φ−n
τ−1(ϑ)

(p)‖ = ‖γuτ−n(ϑ) ◦ τ
−n(ξ)− γuτ−n(ϑ) ◦ τ

−n(ϑ)‖. (2.28)

Note that since ϑ ∈ Σk is a periodic bi-sequence then we only have a finite number of functions
{γuτ−n(ϑ)}. Namely γu

τ−i(ϑ)
for i = 1, . . . , s where s is the period of ϑ. From the uniform continuity

of these maps and since dΣk(τ−n(ξ), τ−n(ϑ))→ 0 then ‖γuτ−n(ϑ) ◦ τ
−n(ξ)− γuτ−n(ϑ) ◦ τ

−n(ϑ)‖ → 0

as n→∞. This implies that (2.27) goes to zero as n goes to infinity and therefore (ξ, x) belongs
to W u((ϑ, p); Φ).

In order to prove that γuξ is α-Hölder if the skew-product Φ is locally α-Hölder we proceed as
in Proposition 2.5 obtaining that

‖γuξ (ξ′)− γuξ (ξ′′)‖ ≤ CdΣk(ξ′, ξ′′)α for all ξ′, ξ′′ ∈W u
loc(ξ; τ)

where C = CΦ(1− βνα)−1. In particular, using this regularity in (2.28) and substituting in (2.27)
it follows that

d(Φ−n(ξ, x),Φ−n(ϑ, p)) ≤ νndΣk(ξ, ϑ) + CναndΣk(ξ, ϑ)α

for all point (ϑ, p) ∈ ΓΦ. This shows that W uu
loc ((ϑ, p); Φ) ⊂ W u((ϑ, p); Φ) for all (ϑ, p) ∈ ΓΦ and

we conclude the proof of the Proposition.

By construction, each one of the leaves of Wu
ΓΦ

is the local strong unstable set W uu
loc ((ξ, x); Φ)

followed from the dual result of Proposition 2.5 through the point (ξ, x) in ΓΦ. Recall that these
local leaves allow us to define the strong unstable set of (ξ, x) ∈ ΓΦ and ΓΦ respectively as

W uu((ξ, x); Φ)
def
=
⋃
n≥0

Φn
(
W uu
loc (Φ

−n(ξ, x); Φ)
)

and W uu(ΓΦ)
def
=

⋃
(ξ,x)∈ΓΦ

W uu((ξ, x); Φ).

The next proposition shows the relation between the invariant graph ΓΦ, the unstable set and the
strong unstable lamination for ΓΦ. Before that, we introduce some notations. For each Φ = τ nφξ
we denote Per(Φ) the set of periodic points of Φ and P : Σk×M →M is the canonical projection
on the fiber space.
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Proposition 2.15. Consider Φ = τ n φξ ∈ Sk,λ,β(D) with β < 1. Then for every periodic point
(ϑ, p) in Σk ×D of Φ it holds

i) W uu(ΓΦ) = ΓΦ,

ii) W uu((ϑ, p); Φ) = W u((ϑ, p); Φ), and

iii) KΦ
def
= P

(
Per(Φ)

)
∩D = P

(
W u((ϑ, p); Φ)

)
= P(ΓΦ) = gΦ(Σk).

In addition, if Φ is locally α-Hölder then W u((ξ, x); Φ) = W uu((ξ, x); Φ) ⊂ ΓΦ for all (ξ, x) ∈ ΓΦ.

Proof. In order to prove that W uu((ϑ, p); Φ) ⊂W u((ϑ, p); Φ) for all periodic point (ϑ, p) in ΓΦ we
take (ξ, x) ∈W uu((ϑ, p); Φ) and we will show that

lim
n→∞

d(Φ−n(ξ, x),Φ−n(ϑ, p)) = 0.

Since (ξ, x) belongs to the local strong unstable set, there existm ∈ N and (ξ′, x′) ∈W uu
loc (Φ

−m(ϑ, p); Φ)

such that (ξ, x) = Φm(ξ′, x′). Let us denote (η, y) = Φ−m(ϑ, p). Notice that (η, y) is a periodic
point in ΓΦ, (ξ′, x′) ∈W uu

loc ((η, y); Φ) and

d(Φ−n(ξ, x),Φ−n(ϑ, p)) = d(Φ−(n−m)(ξ′, x′),Φ−(n−m)(η, y)).

From Proposition 2.14, we have that W uu
loc ((η, y); Φ) ⊂ W u((η, y); Φ) and thus it follows that

d(Φ−n(ξ, x),Φ−n(ϑ, p)) → 0 as n → ∞. Note that if Φ is locally α-Hölder the same argue works
to show that W uu((ξ, x); Φ) ⊂W u((ξ, x); Φ) for all (ξ, x) ∈ ΓΦ.

We will show that if (ξ, x) ∈ ΓΦ then we obtain that the unstable setW u((ξ, x); Φ) is contained
in the strong unstable set W uu((ξ, x); Φ). Indeed, take (ξ′, x′) ∈W u((ξ, x); Φ). It suffices to show
that there is m ∈ N such that Φ−m(ξ′, x′) ∈W uu

loc (Φ
−m(ξ, x); Φ). By definition of unstable set,

lim
n→∞

dΣk(τ−n(ξ′), τ−n(ξ)) = 0 and lim
n→∞

‖φ−n
τ−1(ξ′)

(x′)− φ−n
τ−1(ξ)

(x)‖ = 0. (2.29)

Since (ξ, x) ∈ ΓΦ then φ−n
τ−1(ξ)

(x) ∈ D for all n ≥ 0. Thus, there exists m ∈ N such that

τ−m(ξ′) ∈W u
loc(τ

−m(ξ); τ) and φ
−(n+m)
τ−1(ξ′)

(x′) ∈ D

for all n ≥ m. Let us denote (η, y) = Φ−m(ξ, x) and (η′, y′) = Φ−m(ξ′, x′). Hence, since φn−i
τ−n(η)

◦
φ−n
τ−1(η)

(y) and φn−i
τ−n(η′) ◦ φ

−n
τ−1(η′)

(y′) belong to D for all 0 < i ≤ n, we get

‖y′ − γuη,y(η′)‖ = lim
n→∞

‖φnτ−n(η′) ◦ φ
−n
τ−1(η′)

(y′)− φnτ−n(η′) ◦ φ
−n
τ−1(η)

(y)‖

≤ lim
n→∞

βn ‖φ−n
τ−1(η′)

(y′)− φ−n
τ−1(η)

(y)‖.

by (2.29) and since β < 1, it follows that the above limit is equal zero and so y′ = γuη,y(η
′). That

is, Φ−m(ξ′, x′) ∈ W uu
loc (Φ

−m(ξ, x); Φ) and therefore (ξ′, x′) ∈ W uu((ξ, x); Φ). This concludes, in
particular, that W uu((ϑ, p); Φ) = W u((ϑ, p); Φ) for all periodic point (ϑ, p) in the locally maximal
invariant set ΓΦ.

Now we will show that W uu(ΓΦ) = ΓΦ. Observe that by definition ΓΦ ⊂ W uu(ΓΦ). Hence,
to complete Item (i) it suffices to see that W uu

loc ((ξ, x); Φ) ⊂ ΓΦ for all (ξ, x) ∈ ΓΦ. Consider
(ξ′, x′) ∈W uu

loc ((ξ, x); Φ). By (2.26) and noting that x = gΦ(ξ) we get

‖gΦ(ξ′)− γuξ,x(ξ′)‖ = lim
n→∞

‖φnτ−n(ξ′) ◦ gΦ ◦ τ−n(ξ′)− φnτ−n(ξ′) ◦ gΦ ◦ τ−n(ξ)‖.
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Since gΦ : Σk → D is a continuous bounded function it follows

‖gΦ(ξ′)− γuξ,x(ξ′)‖ ≤ lim
n→∞

βn‖gΦ ◦ τ−n(ξ′)− gΦ ◦ τ−n(ξ)‖ ≤ lim
n→∞

βnK

where K is a bound of the diameter of D. Since this limit is equal to zero we have just shown
that gΦ(ξ′) = γuξ,x(ξ′) = x′ and so (ξ′, x′) ∈ ΓΦ. Therefore, we conclude the first item of this
proposition.

It only remains to prove (iii). Consider any periodic point ϑ ∈ Σk of τ and note that W u(ϑ; τ)

and Per(τ) are both dense in Σk. By means of the conjugation in Lemma 2.13 and both, the first
and the second items in this proposition, we get

Per(Φ|ΓΦ
) = ΓΦ = W u

(
(ϑ, gΦ(ϑ)); Φ

)
= W uu

(
(ϑ, gΦ(ϑ)); Φ

)
. (2.30)

Note that if (ϑ, p) ∈ Σk ×D is a periodic point of Φ, from the assumption φξ(D) ⊂ D, it follows
that Φn(ϑ, p) ∈ Σk × D for all n ∈ Z. Moreover, since gΦ is the unique invariant graph of Φ

restricted to Σk ×D, then p = gΦ(ϑ). From this, we have

Per(Φ|ΓΦ
) = Per(Φ|Σk×D) = Per(Φ) ∩ (Σk ×D). (2.31)

Thus, recalling that KΦ is the closure of projection by P of the periodic points of Φ in M and
since the projection P is a closed map and Σk is a compact set, we infer from (2.30) and (2.31)
that

P(ΓΦ) = P
(
W u((ϑ, p); Φ)

)
= P

(
Per(Φ|ΓΦ

)
)

= P
(
Per(Φ)

)
∩D def

= KΦ.

Finally, we note that, from the above equation, KΦ = gΦ(Σk) ⊂ D. Now, the proof of item (iii) is
complete and therefore we conclude the proposition.

Let K(D) denote the complete metric space whose elements are the compact subsets of D
endowed with the Hausdorff metric dH given by

dH(A,B) = sup{d(a,B), d(b, A) : a ∈ A, b ∈ B}, A, B ∈ K(D).

From the above proposition it follows that KΦ ∈ K(D) for all Φ ∈ Sk,λ,β(D). Here we gives
some properties of the Hausdorff metric which we will use along this chapter. Given a non-empty
compact set C ⊂ D and δ ≥ 0, the set Cδ = {x ∈ D : there is y ∈ C such that ‖x − y‖ < δ} is
called generalize δ-ball around C.

Remark 2.16. Let A, B be non-empty subsets of D. Then

dH(A,B) = inf{δ ≥ 0 : B ⊂ Aδ and A ⊂ Bδ},

dH(A,B) = dH(A,B) and dH(T (A), T (B)) ≤ Lip(T ) dH(A,B) where T : D → D is a Lipschitz
map. Also, if Ai and Bi are non-empty subsets for all i in a set of index I then

dH
(⋃
i∈I

Ai,
⋃
i∈I

Bi
)
≤ sup

i∈I
dH(Ai, Bi).

We can define the map L : Sk,λ,β(D)→ K(D), given by L (Φ) = KΦ. The following proposi-
tion shows that this map is continuous.
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Proposition 2.17. Consider Φ = τ n φξ ∈ Sk,λ,β(D) with β < 1. Then, for each ε > 0 there is
δ > 0 such that for every Ψ = τ n ψξ ∈ Sk,λ,β(D) with

dC0(φξ, ψξ) < δ it holds that dH(KΦ,KΨ) = dH(L (Φ),L (Ψ)) < ε.

Proof. Fixed small ε > ε > 0 let δ = ε(1−β)/2 > 0. Take a fixed point ϑ ∈ Σk of τ . As φϑ(D) ⊂ D,
by Brouwer’s Fixed Point Theorem, there is pΦ ∈ D such that φϑ(pΦ) = pΦ. Thus, (ϑ, pΦ) is a
fixed point of Φ in Σk ×D. Then, if δ is small enough, for every Ψ = τ nψξ with dC0(φξ, ψξ) < δ

there is pΨ ∈ D close to pΦ which is a fixed point of ψϑ. We say (ϑ, pΨ) ∈ ΓΨ is the continuation
of (ϑ, pΦ) ∈ ΓΦ for Ψ where ΓΨ and ΓΦ are the invariant set graph for Ψ and Φ respectively. Take
Θ = τ n θ ∈ {Φ,Ψ}. Since from Proposition 2.15 the strong unstable set and the unstable set
coincide, it follows

P
(
W u((ϑ, pΘ); Θ)

)
=
⋃
n≥0

P ◦ Φn
(
W uu
loc ((ϑ, pΘ); Θ)

)
.

By Proposition 2.14, the graph set of the function γuϑ,pΘ
: W u

loc(ϑ; τ) → M is precisely the local
strong set of (ϑ, pΘ) for Θ. Thus, for each n ≥ 0, the projection by P of Φn(W uu

loc ((ϑ, pΘ); Θ)) is
exactly En(Θ) = {θnξ ◦ γuϑ,pΘ

(ξ) : ξ ∈W u
loc(ϑ; τ)}. Hence, by Proposition 2.15

KΘ = P
(
W u
(
(ϑ, pΘ); Θ)

)
=
⋃
n≥0

En(Θ), Θ = Φ, Ψ.

According to Remark 2.16

dH
(
KΦ,KΨ

)
≤ sup

n≥0
dH
(
En(Φ), En(Ψ)

)
.

On the other hand, for each n ≥ 0, we get

dH
(
En(Φ), En(Ψ)

)
≤ sup

ξ∈Wu
loc(ϑ;τ)

‖φnξ ◦ γuϑ,pΦ
(ξ)− ψnξ ◦ γuϑ,pΨ

(ξ)‖. (2.32)

Fix ξ ∈W u
loc(ϑ; τ). Firstly we will estimate (2.32) for n = 0. From the Item (ii) in Proposition 2.14

we get for every m ∈ N that γuϑ,pΘ
(ξ) = θmτ−m(ξ) ◦ γ

u
ϑ,pΘ
◦ τ−m(ξ). Thus, from this we infer that

‖γuϑ,pΦ
(ξ)− γuϑ,pΨ

(ξ)‖ is less or equal than

βm‖γuϑ,pΦ
◦ τ−m(ξ)− γuϑ,pΨ

◦ τ−m(ξ)‖+ ‖φmτ−m(ξ) ◦ γ
u
ϑ,pΨ
◦ τ−m(ξ)− ψmτ−m(ξ) ◦ γ

u
ϑ,pΨ
◦ τ−m(ξ)‖.

By continuity and since ξ is in the local unstable manifold of the fixed point ϑ for τ we get the
limit of ‖γuϑ,pΦ

◦ τ−m(ξ) − γuϑ,pΨ
◦ τ−m(ξ)‖ as m → ∞ is ‖pΦ − pΨ‖. Hence the limit of the first

term in the above sum as m→∞ is equal to zero. Now, we will estimate the limit of the second
term:

‖φτ−1(ξ) ◦ φm−1
τ−m(ξ)

◦ γuϑ,pΨ
◦ τ−m(ξ) − ψτ−1(ξ) ◦ ψm−1

τ−m(ξ)
◦ γuϑ,pΨ

◦ τ−m(ξ)‖ ≤

≤ ‖φτ−1(ξ) ◦ φm−1
τ−m(ξ)

◦ γuϑ,pΨ
◦ τ−m(ξ) − ψτ−1(ξ) ◦ φm−1

τ−m(ξ)
◦ γuϑ,pΦ

◦ τ−m(ξ)‖

+ ‖ψτ−1(ξ) ◦ φm−1
τ−m(ξ)

◦ γuϑ,pΦ
◦ τ−m(ξ) − ψτ−1(ξ) ◦ ψm−1

τ−m(ξ)
◦ γuϑ,pΨ

◦ τ−m(ξ)‖

≤ δ + β ‖φm−1
τ−m(ξ)

◦ γuϑ,pΦ
◦ τ−m(ξ) − ψτ−1(ξ) ◦ ψm−1

τ−m(ξ)
◦ γuϑ,pΨ

◦ τ−m(ξ)‖.
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Arguing inductively

‖φmτ−m(ξ) ◦ γ
u
ϑ,pΨ
◦ τ−m(ξ)− ψmτ−m(ξ) ◦ γ

u
ϑ,pΨ
◦ τ−m(ξ)‖ ≤ δ

m−1∑
k=0

βk. (2.33)

Taking limit as m→∞ it follows the upper bound δ(1−β)−1 for the second term of the previous
sum. Putting together this estimates we get ‖γuϑ,pΦ

(ξ)−γuϑ,pΨ
(ξ)‖ ≤ δ(1−β)−1 < ε. Now, for each

n ≥ 1, with a similar calculation we obtain that

‖φnξ ◦ γuϑ,pΦ
(ξ)− ψnξ ◦ γuϑ,pΨ

(ξ)‖ ≤ βn‖γuϑ,pΦ
(ξ)− γuϑ,pΨ

(ξ)‖+ ‖φnξ ◦ γuϑ,pΨ
(ξ)− ψnξ ◦ γuϑ,pΨ

(ξ)‖.

Arguing as before when we have estimated (2.33), it follows ‖φnξ ◦ γuϑ,pΨ
(ξ) − ψnξ ◦ γuϑ,pΨ

(ξ)‖ ≤
δ(1−β)−1. Since βn < 1, the same bounded it is also followed for the first term in the above sum.
Hence, ‖φnξ ◦ γuϑ,pΦ

(ξ)− ψnξ ◦ γuϑ,pΨ
(ξ)‖ ≤ 2δ(1− β)−1 = ε. Therefore, by (2.32), this implies that

dH(KΦ,KΨ) ≤ sup
n∈N

dH
(
En(Φ), En(Ψ)

)
≤ ε < ε,

ending the proof of the proposition.

Let (ϑ, p) be a periodic point of Φ = τ n φξ with period n. Then τn(ϑ) = ϑ and φnϑ(p) = p.

In this case we write ϑ ∈ Pern(τ) and p ∈ Fix(φnϑ). This point (ϑ, p) is called fiber-hyperbolic
periodic point if p is a hyperbolic fixed point of the map φτn−1(ϑ) ◦ · · · ◦ φϑ. If p is an attractor,
repeller or saddle point of φτn−1(ϑ) ◦ · · ·◦φϑ then (ϑ, p) is said to be fiber-attractor, fiber-repeller or
fiber-saddle point of Φ respectively. In any case, if Ψ = τ nψξ is close to Φ then ψτn−1(ϑ) ◦ · · · ◦ψϑ
has a fixed point pΨ close to p that is also a hyperbolic fixed point (attractor, repeller or saddle
respectively). The periodic point (ϑ, pΨ) of Ψ is called continuation of (ϑ, p) for Ψ.

2.2.3 Symbolic blenders-horseshoes

In Proposition 1.12 we showed that non-normally hyperbolic horseshoes are blender-horseshoes.
In particular, the maximal invariant set in the blender-horseshoe reference cube is a hyperbolic
basic set conjugated to the Bernoulli shift of two symbols. Throughout §2.2.2 we have shown a
similar result for symbolic skew-products in Sk,λ,β(D) with β < 1 which we summarize here (see
Theorem 2.12, Propositions 2.13, 2.15 and 2.17):

Theorem A. Consider Φ ∈ Sk,λ,β(D) with β < 1. Then the restriction of Φ to the set

ΓΦ =
⋂
n∈Z

Φn
(
Σk ×D

)
=
⋂
n∈N

Φn
(
Σk ×D

)
is conjugated to the full shift τ of k symbols. Moreover, W uu(ΓΦ) = ΓΦ and there exists a unique
continuous function gΦ : Σk → D such that for every periodic point (ϑ, p) of Φ in Σk ×D it holds
that, W u((ϑ, p); Φ) = W uu((ϑ, p); Φ) and

ΓΦ = W uu((ϑ, p); Φ)) = {(ξ, gΦ(ξ)) : ξ ∈ Σk} with P(ΓΦ) = KΦ ∈ K(D).

Finally, the map L : Sk,λ,β(D)→ K(D) given by L (Φ) = KΦ is continuous.

In addition, if Φ is locally α-Hölder continuous then W u((ξ, x); Φ) = W uu((ξ, x); Φ) for all
(ξ, x) ∈ ΓΦ and gΦ : W u

loc(ξ; τ)→ D is α-Hölder continuous for all ξ ∈ Σk.
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In order to introduce symbolic cs-blender-horseshoes, we firstly define a family of almost
horizontal disks which provides the superposition region of the blender.

Definition 2.9 (Almost horizontal disks). For a fixed α > 0 and given an open subset B ⊂ D,
we say that Ds is a δ-horizontal disk in Σk×B if there are ζ ∈ Σk, z ∈ B, some positive constant
C ≥ 0 and a (α,C)-Hölder function h : W s

loc(ζ; τ)→ B such that

Ds = {(ξ, h(ξ)) : ξ ∈W s
loc(ζ; τ)}, ‖z − h(ξ)‖ < δ for all ξ ∈W s

loc(ζ; τ) and Cνα < δ.

From Theorem A, it follows W uu
loc (ΓΦ) = ΓΦ for all Φ ∈ Sαk,λ,β(D) with β < 1. Hence, the

corresponding definition of cs-blender in [BDV95], Definition 1.3, in the context of symbolic skew-
product can be written as follows:

Definition 2.10 (Symbolic cs-blender-horseshoes). Let Φ ∈ Sαk,λ,β(D) with β < 1, α > 0.

The maximal invariant set ΓΦ of Φ in Σk ×D is said to be symbolic cs-blender-horseshoe if
there are δ > 0, a non-empty open set B ⊂ D and a neighborhood V of Φ in Sαk,λ,β(D) such that
for every Ψ ∈ V and for any δ-horizontal disk Ds in Σk ×B, it holds that

ΓΨ ∩Ds 6= ∅, where ΓΨ is the continuation of ΓΦ for Ψ. (2.34)

The open set B is called superposition region of the symbolic cs-blender-horseshoe.

From Theorem A, it follows thatW uu((ϑ, p); Φ) = ΓΦ for every periodic point (ϑ, p) ∈ Σk×D.
In Proposition 2.5, we proved that each local strong stable set W ss

loc((ξ, x); Φ) in Σk × B is an
almost horizontal disk. Hence, if ΓΦ is a symbolic cs-blender-horseshoe for Φ then Equation (2.34)
implies that

W uu((ϑ, pΨ); Ψ) ∩W ss
loc((ξ, x); Ψ) 6= ∅ (2.35)

for all Sα-perturbation Ψ of Φ where (ϑ, pΨ) is the continuation periodic point of (ϑ, p) for Ψ.
Observe that, in particular, if Φ ∈ S+

k,λ,β(D) then W ss
loc((ξ, x); Φ) = W s

loc(ξ; τ)× {x}. In this case,
we infer that W uu((ϑ, p); Φ)∩ (W s

loc(ξ; τ)×U) 6= ∅ for all neighborhood U of x. From this fact we
introduce the following definition:

Definition 2.11 (Symbolic cs-blender-horseshoes in the unilateral setting). Consider a symbolic
skew-product Φ ∈ S+

k,λ,β(D) with β < 1.

The maximal invariant set ΓΦ of Φ in Σk ×D is said to be symbolic cs-blender-horseshoe in
the unilateral setting if there are a non-empty open set B ⊂ D, a fixed point (ϑ, p) ∈ Σk ×D of
Φ and a neighborhood V of Φ in S+

k,λ,β(D) such that for every Ψ ∈ V, it holds that

W uu
(
(ϑ, pΨ); Ψ

)
∩
(
W s
loc(ξ; τ)× U

)
6= ∅, (2.36)

for every ξ ∈ Σk and every non-empty open subset U in B. The open set B is called superposition
region of the symbolic cs-blender-horseshoe in the unilateral setting.

In [NP12, Definition 3.5], the above definition was given for symbolic skew-product in S−k,λ,β(D).
Nevertheless, to get (2.35) from (2.36) we need thatW ss((ξ, x); Φ) = W s

loc(ξ; τ)×{x}. This is only
possible if the local strong stable lamination is linear and consequently the skew-products have to
belong to S+

k,λ,β(D).
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To define symbolic cu-blenders-horseshoe, firstly we need to introduce the associated inverse
symbolic skew-product for Φ = τ n φξ. Given Φ = τ n φξ ∈ Sαk,λ,β(D), the symbolic skew-product

Φ∗ = τ n φ∗ξ ∈ Sαk, β−1, λ−1(D), where φ∗ξ : M →M given by φ∗ξ(x) = φ−1
τ−1(ξ∗)

(x),

is called associated inverse skew-product for Φ. Here ξ∗ = (. . . ξ1; ξ0, ξ−1, . . .) denotes the con-
jugate sequence of ξ = (. . . ξ−1; ξ0, ξ1, . . .). Note that since τ(ξ)∗ = τ−1(ξ∗) then iterates of Φ∗

are corresponded to iterates of Φ−1. This observation allows us to define symbolic cu-blender-
horseshoes for symbolic skew-products in Sαk,λ,β(D) with λ > 1 and α > 0. Namely, a symbolic
cu-blender-horseshoe for Φ is defined as a symbolic cs-blender-horseshoe for Φ∗. Also, observe that
if Φ ∈ S−k,λ,β(D) then Φ∗ ∈ S+

k,β−1,λ−1(D) and thus, analogously symbolic cu-blender-horseshoes in
the unilateral setting is defined as symbolic cs-blender-horseshoes in the unilateral setting for Φ∗.

Proposition 2.18. Consider Φ ∈ Sk,λ,β(D) with β < 1. Let ΓΦ, (ϑ, p) and B be the maximal
invariant set in Σk ×D, a fixed point in Σk ×D of Φ and an open set in D respectively. Then,
the following statements are equivalents:

i) W uu((ϑ, p); Φ) ∩ (W s
loc(ξ; τ)× U) 6= ∅ for all non-empty open set U in B and ξ ∈ Σk,

ii) given (ξ, x) ∈ Σk×B there is (ξ′, x′) ∈ ΓΦ such that W uu
loc ((ξ

′, x′); Φ)∩(W s
loc(ξ; τ)×{x}) 6= ∅,

iii) B ⊂ gΦ(W s
loc(ξ; τ)) for all ξ ∈ Σk.

Proof. Let {Un}n∈N be a sequence of nested open neighborhoods of x whose intersection is the
point x. By (i), it followsW uu((ϑ, p); Φ)∩(W s

loc(ξ; τ)×Un) 6= ∅ for all n ∈ N. Now, for each n ∈ N,
we consider (ξn, pn) ∈W uu((ϑ, p); Φ) ⊂ ΓΦ such that W uu

loc ((ξ
n, pn); Φ) meets W s

loc(ξ; τ)×Un. Let
(ξ′, x′) be an accumulation point of the sequence {(ξn, pn)}n∈N. Then this accumulation point
belongs to ΓΦ and from the choice of the nested sequence of neighborhood Un it follows that
W uu
loc ((ξ

′, x′); Ψ)∩(W s
loc(ξ; τ)×{x}) 6= ∅ and so we obtain (ii). Reciprocally, using that the unstable

manifold of a fixed pointW uu((ϑ, p); Φ) is dense in ΓΦ = W uu(ΓΦ) we conclude that (ii) implies (i).
Finally, it follows that (ii) is equivalent to Γ ∩ (W s

loc(ξ; τ)× {x}) 6= ∅ for all x ∈ B. Hence, noting
that Γ is the graph of a continuous function gΦ : Σk → D we obtain that the above assertion is
equivalent to (iii), i.e., B ⊂ gΦ(W s

loc(ξ; τ)). Therefore, we conclude the proposition.

Remark 2.19. If Φ ∈ S+
k,λ,β(D) then W ss

loc((ξ, x); Φ) = W s
loc(ξ; τ)× {x} and hence (ii) in Propo-

sition 2.18 can be written as

W uu
loc (ΓΦ) ∩W ss

loc((ξ, x); Φ) 6= ∅ for all (ξ, x) ∈ Σk ×B.

In §2.1.2, a skew product C1-diffeomorphism f over a horseshoe F : Λ → Λ was considered.
Under the modified dominating splitting condition, in Proposition 2.1 it showed that any C1-
perturbation g close enough to f has a maximal invariant ∆g such that the restriction of g to this
set is conjugated to a α-Hölder continuous symbolic skew-product. Now, we focus our attention
in the conjugate Hölder symbolic skew-product Φ of f |Λ×M restricted to the local region Σk ×D.
Let ΓΦ be the maximal invariant set in Σk ×D of Φ. Assuming β < 1, suppose that ΓΦ is a cs-
blender-horseshoe for Φ. By Definition 2.10 it follows that the local strong stable set of any point
(ξ, x) ∈ Σk ×B meets robustly local strong unstable sets of points in ΓΦ under Sα-perturbations.
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That is, W uu
loc (ΓΨ) ∩W ss

loc((ξ, x); Ψ) 6= ∅ for all (ξ, x) ∈ Σk ×B and small enough Sα-perturbation
Ψ of Φ. Via conjugation, this assertion is also obtained for f under C1-perturbations.

In §2.2.1, the conjugation between a symbolic Hölder skew-product and a symbolic unilateral
skew-product was studied. Namely, from Propositions 2.3 and 2.9, assuming that the symbolic
skew-product Φ is fiber bunched α-Hölder differentiable and has C2-fiber maps it follows that
Φ is conjugated to a unilateral symbolic skew-product in S1,+

k (M). By Theorem 2.2 it follows
that these additional assumptions of regularity to obtain the conjugation can be inferred for the
conjugate skew-products of C2-perturbations of the C2-diffeomorphism f = F × id. Hence, if
ΓΦ is a symbolic cs-blender-horseshoe in the unilateral setting for a unilateral skew-product Φ

conjugated to some partially hyperbolic skew-product C2-diffeomorphism f restricted to Λ ×M
then, from Definition 2.11, Remark 2.19 and via conjugation, we only could infer that C2-robustly
W uu
loc (Γf ) ∩W ss

loc((z, x); f) 6= ∅ for all (z, x) ∈ Λ×B.

In the rest of this chapter, we will study the existence of symbolic blenders. Namely, given a
one-step Φ = τ n (φ1, . . . , φk) we will give properties for the maps φ1, . . . , φk such a way that Φ

has a symbolic cs-blender-horseshoe. For instance, the maps φ1, . . . , φk defined on D must satisfy
the covering property : there exists an open set B ⊂ D such that B ⊂ φ1(B) ∪ · · · ∪ φk(B). The
following result describes how to the covering property translates to a robust property in the
language of Hölder symbolic skew-products:

Theorem B (Covering property characterization). Consider Φ = τ n (φ1, . . . , φk) ∈ Sαk,λ,β(D)

with να < λ < 1 and let B be an open set in D. Then,

B ⊂ φ1(B) ∪ · · · ∪ φk(B) (2.37)

if and only if there are δ > 0 and a neighborhood V of Φ in Sαk,λ,β(D) such that for every Ψ ∈ V

Γ+
Ψ(B) ∩Ds 6= ∅ for all δ-horizontal disk Ds in Σk ×B (2.38)

where Γ+
Ψ(B) is the forward maximal invariant set of Ψ in Σk ×B.

Under the additional hypothesis β < 1 if Φ = τ n (φ1, . . . , φk) ∈ Sαk,λ,β(D) then φi(D) ⊂ D for
i = 1, . . . , k. In such case, for any small perturbation Ψ = τ n ψξ of Φ it holds that ψξ(D) ⊂ D

and it follows
Γ+

Ψ(B)
def
=
⋂
n≥0

Ψn(Σk ×B) ⊂
⋂
n∈Z

Ψn(Σk ×D)
def
= ΓΦ.

Therefore, combining the above result with Definition 2.10, we obtain the following consequence
on the existence of symbolic blenders using the covering property.

Theorem C (Symbolic blender-horseshoe existence). Consider Φ = τ n (φ1, . . . , φk) ∈ Sαk,λ,β(D)

with να < λ < β < 1, α > 0. Assume that there exists an open set B ⊂ D such that

B ⊂ φ1(B) ∪ · · · ∪ φk(B).

Then the maximal invariant set ΓΦ of Φ in Σk×D is a symbolic cs-blender-horseshoe for Φ whose
superposition region contains B.

Remark that under the covering property assumption we also show the existence of symbolic
cs-blender-horseshoe in the unilateral setting (see Theorem 2.30). Before showing these theorems,
we will studied symbolic blenders in the one-step setting. That is, given a one-step map Φ we will
study the property (2.36) under Q-perturbations Ψ of Φ. We think that proceeding in this way
helps to understand the property (2.36) in the general context of Definition 2.11.
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2.3 Symbolic blenders in the one-step setting

Let Φ = τ n (φ1, . . . , φk) be a one-step skew-product map. We denote by IFS(φ1, . . . , φk) or
IFS(Φ) the set of all compositions of the maps φ1, . . . , φk (together the identity map id) and we
will refer it as the associated iterated function system (shortly IFS). For each subset A ⊂ M let
GΦ(A) = φ1(A)∪ · · · ∪φk(A). The orbit of a point x ∈M for IFS(φ1, . . . , φk), also called GΦ-orbit
of x, is the set

OrbΦ(x)
def
= {GnΦ(x) : n ≥ 0} = {φ(x) : φ ∈ IFS(φ1, . . . , φk)}.

The relation between a one-step map and its associated IFS is through the dynamics of a unstable
disk Du. In fact, the first observation is that since Φ = τ n (φ1, . . . , φk) is a one-step map then
W uu
loc ((ξ, x); Φ) = W u

loc(ξ; τ) × {x}. From here, an unstable disk through the point (ξ, x) for a
one-step map Φ is

Du(ξ, x) = Φ(W uu
loc (Φ

−1(ξ, x); Φ)) = Φ(W u
loc(τ

−1(ξ); τ)× {φ−1
ξ−1

(x)}) = V u
loc(ξ; τ)× {x}

where V u
loc(ξ; τ) = {ξ′ ∈ Σk : ξ′i = ξi for all i < 0}. That is, a compact piece of the strong

unstable set of (ξ, x) which contains the point (ξ, x). For each i ∈ {1, . . . , k}, define the set
Ui = {ζ ∈ Σk : ζ0 = i}. These sets Ui form a partition of Σk. The unstable disk Du(ξ, x)

intersects every Ui ×M , i ∈ {1, . . . , k}. Note that if ζ ∈ V u
loc(ξ; τ) ∩ Ui then φζ = φi. Hence, the

image of Du(ξ, x) ∩ (Ui ×M) by Φ is the unstable disk Du
(
τ(ξ), φi(x)

)
. Then

Φ(Du(ξ, x)) = Φ
( k⋃
i=1

Du(ξ, x) ∩ (Ui ×M)
)

=

k⋃
i=1

Du(τ(ξ), φi(x)).

From a similar argument,

Φ2(Du(ξ, x)) =
k⋃
i=1

k⋃
j=1

Du(τ2(ξ), φj ◦ φi(x)).

Inductively, we note that the dynamics on the fiber of these new disks is given by

{φin ◦ · · · ◦ φi1(x) : n ≥ 1, ij ∈ {1, . . . , k}} = OrbΦ(x).

The following proposition shows that if (ξ, x) is a fixed point of Φ then the above set is the
projection on the fiber space of the strong unstable set of (ξ, x).

Proposition 2.20. Consider Φ = τ n (φ1, . . . , φk) a one-step map and let (ϑ, p) be a fixed point
of Φ. Then

P(W uu(ϑ, p); Φ)) = {φ(p) : φ ∈ IFS(φ1, . . . , φk)}
def
= OrbΦ(p).

Proof. Since (ϑ, p) is a fixed point of Φ then

W uu(ϑ, p); Φ) =

∞⋃
n=0

Φn(W uu
loc ((ϑ, p); Φ)).

On the other hand, for each n ≥ 1 it holds

Φn(W uu
loc ((ϑ, p); Φ) = {(τn(ζ), φτn−1(ζ) ◦ · · · ◦ φζ(p)) : ζ ∈W u

loc(ϑ; τ)}.
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Since Φ is a one-step, φτ i(ζ) = φζi and noting that φζ(p) = φϑ(p) = p it follows that

P(Φn(W uu
loc ((ϑ, p); Φ)) = {φτn−1(ζ) ◦ · · · ◦ φτ(ζ)(p) : ζ ∈W u

loc(ϑ; τ)}
= {φin−1 ◦ · · · ◦ φi1(p) : ij ∈ {1, . . . , k}, 1 ≤ j < n}.

Hence this projection on the fiber space is OrbΦ(p). This concludes the proof of the proposition.

As a consequence of the above proposition, we will show that the density property (2.36) of
the strong unstable set in the one-step setting is reduced to a density property of an orbit of the
associated IFS. First, recall that by a neighborhood V of Φ in Qk,λ,β(D) we mean a neighborhood
in the topology of Sαk,λ,β(D) intersection with Qk,λ,β(D). Having in mind that the topology of
Sαk,λ,β(D) is induced by the distance given in (2.25) and noting that for every Ψ ∈ Qk,λ,β(D) the
Hölder constant is CΨ = 0, we get that Ψ = τ n (ψ1, . . . , ψk) is δ-close to Φ = τ n (φ1, . . . , φk) if
dQ(Ψ,Φ) = max{dC0(ψi|D, φi|D) : i = 1, . . . , k} < δ.

Proposition 2.21. Consider Φ = τn(φ1, . . . , φk) ∈ Qk,λ,β(D), a non-empty open set B ⊂ D and
a fiber-hyperbolic fixed point (ϑ, p) ∈ Σk ×D of Φ. Then, the following statement are equivalent:

i) There is a neighborhood V of Φ in Qk,λ,β(D) such that for every Ψ ∈ V, it holds that

W uu
(
(ϑ, pΨ); Ψ

)
∩
(
W s
loc(ξ; τ)× U

)
6= ∅,

for every ξ ∈ Σk and every non-empty open subset U in B;

ii) B ⊂ OrbΨ(pΨ) for every Ψ = τ n (ψ1, . . . , ψk) ∈ Qk,λ,β(D) close to Φ = τ n (φ1, . . . , φk).

Proof. By Proposition 2.20, if (ϑ, pΨ) is a fixed point of any one-step Ψ = τ n (ψ1, . . . , ψk) then
P(W uu((ϑ, pΨ); Ψ)) = OrbΨ(pΨ). Thus, in this case, Item (i) implies that B ⊂ OrbΨ(pΨ) for
every Ψ = τ n (ψ1, . . . , ψk) ∈ Qk,λ,β(D) close to Φ = τ n (φ1, . . . , φk). In order to prove the
converse, fix U ⊂ B and ξ ∈ Σk. By Item (ii), there is ψin ◦ · · · ◦ ψi1 ∈ IFS(ψ1, . . . ψk) such
that x = ψin ◦ · · · ◦ ψi1(pΨ) ∈ U . Let ζ = (. . . ϑ−1ϑ0, i1, . . . , in; ξ0, ξ1, . . .). Note that (ζ, x) ∈
W s
loc(ξ; τ)× U . We will prove that (ζ, x) ∈W uu((ϑ, pΨ); Φ). Since (ϑ, pΨ) is a fixed point of Ψ,

Ψ−n−1(ζ, x) =
(
(. . . , ϑ−1;ϑ0, i1, . . . , in, ξ0, ξ1, . . .), pΨ

)
∈W u

loc(ϑ; τ)× {pΨ}.

Therefore (ζ, x) ∈ Ψn+1
(
W u
loc(ϑ; τ) × {pΨ}

)
= Ψn+1

(
W uu
loc ((ϑ, pΨ); Ψ)

)
⊂ W uu

(
(ϑ, pΨ); Ψ

)
. This

implies Item (i) and proves the proposition.

If (ϑ, p) in the above proposition is a fiber-attractor of Φ = τ n (φ1, . . . , φk) with B contained
in the attracting region of p for φϑ then (ii) is equivalent to

B ⊂ OrbΨ(x) for all x ∈ B (2.39)

for every Ψ ∈ Qk,λ,β(D) close to Φ. Indeed, it suffices to show that Item (ii) in Proposition 2.21
implies (2.39). To do this, let Ψ = τ n (ψ1, . . . , ψk) ∈ Qk,λ,β(D) be a Q-perturbation of Φ. Let U
be a non-empty open set in B and x ∈ B. By hypotheses, there is ψ ∈ IFS(ψ1, . . . , ψk) such that
ψ(pΨ) ∈ U . Since U is open and ψ is continuous then there exists a neighborhood V of pΨ such
that ψ(V ) ⊂ U . If Ψ is close enough to Φ then B is also in the attracting region of pΨ for ψϑ = ψi

where i = ϑ0. Thus there is n ∈ N such that ψni (x) ∈ V and hence ψ ◦ ψni (x) ∈ U . This shows
that B ⊂ OrbΨ(x) for all x ∈ B.

Motivated from (2.39), we give the following definition:
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Definition 2.12 (Blending region). Let φ1, . . . , φk be C1-diffeomorphism of M . A non-empty
open set B ⊂ M is called blending region for IFS(φ1, . . . , φk) if for every Ψ = τ n (ψ1, . . . , ψk)

close enough to Φ = τ n (φ1, . . . , φk) it holds taht

B ⊂ OrbΨ(x) for all x ∈ B.

Here, we mean by closeness that the fiber map ψi of Ψ is C1-close to the fiber map φi of Φ.

There is a similar definition of blending region from the Control Theory [AS91]. A set A ⊂M
is called precontrol set for the IFS(φ1, . . . , φk) if A ⊂ OrbΦ(x) for all x ∈ A and intA 6= ∅. A
precontrol set which is maximal with respect to set inclusion is called control set. The difference
between blending region and (pre)control set is the additional condition of robustness by perturba-
tions of the IFS. Sometimes we will refer to both, item (ii) in Proposition 2.21 and Equation 2.39,
saying that B is robustly transitive and robustly minimal for IFS(φ1, . . . , φk) respectively.

Proposition 2.22. Let Φ = τ n (φ1, . . . , φk) ∈ Qk,λ,β(D). Consider B an open set in D and
suppose that there exist a hyperbolic fixed point p ∈ D of some φi and a map φ ∈ IFS(φ1, . . . , φk)

such that φ(p) ∈ B. Then if B is a blending region for IFS(φ1, . . . , φk) it follows that the maximal
invariant set ΓΦ of Φ in Σk ×D is a symbolic cs-blender in the one-step setting.

Proof. The proof follows from the equivalence between (i) and (ii) in Proposition 2.21. By hypoth-
esis, there exist a fixed point p ∈ D of some φi and a map φin ◦ · · · ◦ φi1 ∈ IFS(φ1, . . . , φk) such
that φin ◦ · · · ◦ φi1(p) ∈ B. Since B is an open set, if Ψ = τ n (ψ1, . . . , ψk) is close enough to Φ

then ψin ◦ · · · ◦ψi1(pΨ) ∈ B where pΨ is the continuation of p for ψi. Now, since B is a blender-like
set for IFS(φ1, . . . , φk) it follows that

B ⊂ OrbΨ(ψin ◦ · · · ◦ ψi1(pΨ)) ⊂ OrbΨ(pΨ).

This concludes the proof of the proposition.

2.3.1 Blending region for contracting IFS

We will work with contracting one-step skew-products maps. Recall that Φ = τ n (φ1, . . . , φk) ∈
Qk,λ,β(D) is a contracting one-step skew-product if every φi is a contraction with contraction
constant 0 < β < 1. Here, we will prove the existence of symbolic blender-horseshoes in the
one-step setting. Although this has already been proven in [NP12, Proposition 3.6], our approach
here is a little bit different. The one-step skew-product maps, or one-step maps for short, Φ =

τn(φ1, . . . , φk) considered in [NP12] satisfy the covering property and well-distribution of periodic
points. The maps φ1, . . . , φk have the covering property if there is an open set B ⊂ D such that

B ⊂
k⋃
i=1

φi(B). (2.40)

The set of fixed points of φ1, . . . , φk is well-distributed if any open ball of diameter d and centered
in B contains a fixed point of φi for some i ∈ {1, . . . , k}, where

d ≥ max{r > 0: for all x ∈ B, there is i such that B(x, r) ⊂ φi(B)}.

We will see that, in this one-step setting, the well-distribution property is not necessary to obtain
symbolic blenders. Indeed, our first approach involves the so-called Hutchinson operator of a
contracting IFS.
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The Hutchinson attractor

Associated with a one-step map Φ = τ n (φ1, . . . , φk) ∈ Qk,λ,β(D) with 0 < β < 1, or with its
associated contracting IFS, we define the Hutchinson’s operator by

GΦ : K(D)→ K(D), GΦ(A) = φ1(A) ∪ . . . ∪ φk(A)

where we recall that K(D) denotes the complete metric space whose elements are compact sub-
sets of D endowed with the Hausdorff metric. Since the maps φi are contractions, then GΦ is a
contracting map. This fact leads to the following result:

Proposition 2.23 ([Wil71, Hut81]). Let Φ = τ n (φ1, . . . , φk) ∈ Qk,λ,β(D) with 0 < β < 1. Then
there exists a unique compact set KGΦ

∈ K(D) such that

KGΦ
= GΦ(KGΦ

) = Per(IFS(Φ)) ∩D def
= KΦ.

Moreover, the set KGΦ
depends continuously on the one-step map Φ and it is the global attractor

of GΦ: for every A ∈ K(D) it holds lim
m→∞

dH
(
GmΦ (A),KGΦ

)
= 0.

In the above proposition, Per(IFS(Φ)) denotes the projection P(Per(Φ)). That is, the set
of the fixed point of the compositions maps in the associated IFS of Φ = τ n (φ1, . . . , φk). The
compact set KGΦ

(in the sequel denotes by KΦ) is called Hutchinson’s attractor of the contracting
one-step map Φ restricted to Σk ×D or of its associated IFS on D.

By Proposition 2.23, GmΦ (x)→ KΦ. Thus KΦ ⊂ OrbΦ(x), for all x ∈ D. We have the following
consequences of Proposition 2.23:

Corollary 2.24. Consider Φ = τ n (φ1, . . . , φk) ∈ Qk,λ,β(D) with 0 < β < 1 and let KΦ be its
Hutchinson’s attractor. It holds that:

i) If A ∈ K(D) such that A ⊂ GΦ(A) then A ⊂ KΦ ⊂ OrbΦ(x) for all x ∈ D;

ii) For every p ∈ KΦ there is a sequence (σn)n∈N ∈ {1, . . . , k}N such that

φ−1
σn ◦ · · · ◦ φ

−1
σ1

(p) ∈ KΦ for all n ∈ N;

iii) For each open set V such that V ∩KΦ 6= ∅, there exist n ∈ N and (i1, . . . , in) ∈ {1, . . . , k}n

such that φin ◦ · · · ◦ φi1(KΦ) ⊂ V .

Proof. In order to prove the first item, note that by hypothesis A ⊂ GΦ(A) ⊂ . . . ⊂ GmΦ (A) for all
m ≥ 1. Since GmΦ (A)→ KΦ this implies that A ⊂ KΦ. Thus, we obtain that A ⊂ KΦ ⊂ OrbΦ(x)

for all x ∈ D, and conclude (i).

According to Proposition 2.23, KΦ = φ1(KΦ) ∪ . . . ∪ φk(KΦ). Thus given p ∈ KΦ there exits
σ1 ∈ {1, . . . , k} such that φ−1

σ1
(p) ∈ KΦ. Arguing inductively, we get a sequence (σn)n∈N such that

φ−1
σn ◦ · · · ◦ φ

−1
σ1

(p) ∈ KΦ for all n ∈ N and therefore we prove Item (ii).

Finally, to prove Item (iii), consider i ∈ {1, . . . , k} and the fixed point s of φi. By the first
item we have KΦ ⊂ OrbΦ(s). Hence, there are m ∈ N and (σ1, . . . , σm) ∈ {1, . . . , k}m such that
φσm ◦· · ·◦φσ1(s) ∈ V and thus φ−1

σ1
◦· · ·◦φ−1

σm(V ) is a neighborhood of s. Since φ−1
i is an expansion

and KΦ is bounded, there exists ` ∈ N such that KΦ ⊂ φ−`i ◦φ−1
σ1
◦· · ·◦φ−1

σm(V ). Now it is enough to
take n = `+m and the sequence (i, `. . ., i, σ1, . . . , σm). This completes the proof of the corollary.
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Remark 2.25. From the above corollary it follows that if Φ = τ n (φ1, . . . , φk) ∈ Qk,λ,β(D) with
0 < β < 1 and B ⊂ D is a non-empty open set such that B ⊂ GΦ(B), then

B ⊂ B ⊂ KΦ ⊂ OrbΦ(x), for all x ∈ D.

The following corollary shows thatB in the above remak is a blending region for IFS(φ1, . . . , φk).
Thus, by Proposition 2.22, this result implies the existence of symbolic cs-blender-horseshoe in
the one-step setting:

Corollary 2.26. Consider Φ = τ n (φ1, . . . , φk) ∈ Qk,λ,β(D) with 0 < λ < β < 1. Let B ⊂ D be
a non-empty bounded open set with B ⊂ GΦ(B). Then for every Ψ ∈ Qk,λ,β(D) close enough to Φ

it holds B ⊂ KΨ ⊂ OrbΦ(x), for all x ∈ D.

Proof. If Ψ = τ n (ψ1, . . . , ψk) ∈ Qk,λ,β(D) is close enough to Φ then dH(GΨ(B),GΦ(B)) is small.
From this proximity and since GΦ(B) is open, it follows B ⊂ GΨ(B) ⊂ GΨ(B). Inductively, we get
B ⊂ GmΨ (B) for all m ≥ 0. Let KΨ be the Hutchinson attractor of Ψ restricted to Σk ×D. Since
KΨ is closed and lim

m→∞
dH(GmΨ (B),KΨ) = 0 we obtain B ⊂ KΨ ⊂ OrbΦ(x) for all x ∈ D.

Without using the Hutchinson theory

Next, we will show that if B ⊂ GΦ(B) then B ⊂ OrbΦ(x) for all x ∈ D, without to involve the
Hutchinson theory. To this end, the following proposition is the key to understood the symbolic
cs-blender-horseshoes in the one-step setting.

Proposition 2.27. Let IFS(φ1, . . . , φk) be a (λ, β)-Lipschitz iterated function system on D ⊂M
with 0 < λ < β < 1 such that φi(D) ⊂ D for i = 1, . . . , k. We assume that there is a no-empty open
set B satisfying the covering property (2.40). Then there are C0-neighborhood Ui of φi, i = 1, . . . , k

such that for every family {ψ1, . . . , ψk} of homeomorphisms with ψi ∈ Ui for i = 1, . . . , k and for
every x ∈ B there is a sequence (ij)j>0, ij ∈ {1, . . . , k} such that

x = lim
n→∞

ψi1 ◦ · · · ◦ ψin(y) for all y ∈ B.

Proof. Note that since the maps φi are (λ, β)-Lipschitz on D with 0 < λ < β < 1 then φi(B) are
open sets. Then the covering property B ⊂ GΦ(B) is a robust property. That is, there is small
enough C0-neighborhood Ui of φi of homeomorphisms of M for i = 1, . . . , k such that if

B∗i =
⋂
ψ∈Ui

ψ(B) for i = 1, . . . , k

then B ⊂ B∗1 ∪ · · · ∪ B∗k. Taking Ui small enough we can assume that any φ ∈ Ui is also a (λ, β)-
Lipschitz on D for i = 1, . . . , k. Given a family {ψ1, . . . , ψk} of maps with ψi ∈ Ui for i = 1, . . . , k,
we define recursively for n > 1 the sets

Bn
i1...in = ψin(Bn−1

i1...in−1
) = ψin ◦ · · · ◦ ψi1(B) for ij = 1, . . . , k and j = 1, . . . , n.

Claim 2.27.1. For all n ∈ N it holds

Bn
i2...in+1

⊂
k⋃

i1=1

Bn+1
i1i2...in+1

and B ⊂
k⋃

i1,...,in+1=1

Bn+1
i1...in+1

.
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Proof. The proof is by induction on n. Firstly, we will show that B1
i2
⊂ ∪ki1=1B

2
i1i2

and B ⊂
∪ki1,i2=1B

2
i1i2

. By definition and using that B∗i ⊂ B1
i and B ⊂ B∗1 ∪ . . . ∪B∗k it follows

k⋃
i1=1

B2
i1i2 =

k⋃
i1=1

ψi2(B1
i1) = ψi2(

k⋃
i1=1

B1
i1) ⊃ ψi2(

k⋃
i1=1

B∗i1) ⊃ ψi2(B) = B1
i2 .

From this we obtain that ∪ki1,i2=1B
2
i1i2
⊃ ∪ki2=1B

1
i2
⊃ B. Now, we assume the lemma holds for

n− 1 and we will prove it for n. In the same way as before,

k⋃
i1=1

Bn+1
i1...in+1

=
k⋃

i1=1

ψin+1(Bn
i1...in) = ψin+1(

k⋃
i1=1

Bn
i1...in).

By hypothesis of induction, we have that Bn−1
i2...in

⊂ ∪ki1=1B
n
i1i2...in

and then

k⋃
i1=1

Bn+1
i1...in+1

⊃ ψin+1(Bn−1
i2...in

) = Bn
i2...in+1

.

Now, note that we have that B`
i2...i`+1

⊂ ∪ki1=1B
`+1
i1i2...i`+1

for every 1 ≤ ` ≤ n and for all ij = 1, . . . , k

with j = 2, . . . , `+ 1. Then

k⋃
i1,...,in+1=1

Bn+1
i1...in+1

⊃
k⋃

i2,...,in+1=1

Bn
i2...in+1

⊃ · · · ⊃
k⋃

in+1=1

B1
in+1
⊃ B

and the proof of the claim is completed.

Since B ⊂ ∪kj=1B
1
j , for each x ∈ B there is i1 ∈ {1, . . . , k} such that x ∈ B1

i1
. We now

proceed recursively. For n > 1 we suppose that we have ij ∈ {1, . . . , k} for j = 1, . . . , n such that
x ∈ Bn

in...i1
. By Claim 2.27.1 we have Bn

in...i1
⊂ ∪kj=1B

n+1
jin...i1

. Then there is in+1 ∈ {1, . . . , k} such
that x ∈ Bn+1

in+1in...i1
. From this, we construct a positive sequence i = i1i2 . . . = (ij)j>0 such that

x ∈ Bn
in...i1

for all n ≥ 1. Thus, we get

x ∈
⋂
n≥1

Bn
in...i1 =

⋂
n≥1

ψi1 ◦ · · · ◦ ψin(B) =
⋂
n≥1

An

where An = ∩n`=1ψi1 ◦ · · · ◦ ψi`(B) for all n ∈ N. Note that, since φi(D) ⊂ D for i = 1, . . . , k then
if the neighborhood Ui are small enough it holds An+1 ⊂ An ⊂ ψi1 ◦ · · · ◦ψin(B) ⊂ D. Hence, sice
every ψ ∈ ∪ki=1Ui is a (λ, β)-contracting map in D, it follows

diam(An) ≤ diam(ψi1 ◦ · · · ◦ ψin(B)) ≤ βndiam(B)

where diam(A) denotes the diameter of a bounded subset A of M . Therefore An is a nested
sequence of sets whose diameters goes to zero and so {x} = ∩n≥1B

n
in...i1

= ∩n≥1ψi1 ◦ · · · ◦ψin(B).

Finally, from this we deduce that given y ∈ B,

‖ψi1 ◦ · · · ◦ ψin(y)− x‖ ≤ diam(ψi1 ◦ · · · ◦ ψin(B)) ≤ βndiam(B)

for every n ∈ N. Since limn→∞ β
n = 0, then x = limn→∞ ψi1 ◦ · · · ◦ ψin(y) and we conclude the

proof of the proposition.
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Recall that, given a one-step Φ = τ n (φ1, . . . , φk) or an iterated function system IFS(Φ)

Per(IFS(Φ))
def
=
⋃
n∈N

{
Fix(φτn−1(ϑ) ◦ · · · ◦ φϑ) : ϑ ∈ Pern(τ)

}
= P(Per(Φ))

= {x ∈M : φ(x) = x for some φ ∈ IFS(φ1, . . . , φk)}.

The next lemma gives some relations between closure of this set and the closure of some GΦ-orbits.

Lemma 2.28. For every one-step Φ = τ n (φ1, . . . , φk) ∈ Qk,λ,β(D) with 0 < β < 1 it holds that

i) Per(IFS(Φ)) ∩D ⊂ OrbΦ(x) for all x ∈ D,

ii) Per(IFS(Φ)) ∩D = OrbΦ(p) for all p ∈ Per(IFS(Φ)) ∩D.

Proof. Let x ∈ D. If p ∈ Per(IFS(Φ)) ∩D, then there is a sequence (pn)n∈N ⊂ D and hn ∈
IFS(φ1, . . . , φk) such that limn→∞ pn = p and hn(pn) = pn. Since the maps φi are contracting in
D and φi(D) ⊂ D for i = 1, . . . , k then hn are also contracting maps in D. Thus for all ε > 0 there
are m and `m in N such that ‖pm− p‖ < ε/2 and ‖h`mm (x)− pm‖ < ε/2. Hence, ‖h`mm (x)− p‖ < ε.
Therefore p is in the closure of OrbΦ(x) for all x ∈ D. This proves Item (i).

To prove the second item we only need to show that given p ∈ Per(IFS(φ1, . . . , φk)) ∩D

OrbΦ(p) ⊂ Per(IFS(Φ)) ∩D.

Since φi(D) ⊂ D for all i = 1, . . . , k then OrbΦ(p) ⊂ D. Let x ∈ OrbΦ(p) ⊂ D. Then there is a
sequence (hn)n ⊂ IFS(Φ) such that limn hn(p) = x. Hence, for all ε > 0 there is m ∈ N such that
hm(p) ∈ D belongs to the open ball B(x, ε) centered at x and radius ε. From the continuity of
hn, there is δ > 0 such that hm(B(p, δ)) ⊂ B(x, ε) ∩D. In the other hand, since p ∈ Per(IFS(Φ))

then there is h ∈ IFS(Φ) such that h(p) = p. Since h is a contracting map in D there exists ` ∈ N
such that h`(B(x, ε) ∩D) ⊂ B(p, δ). Thus

hm ◦ h`(B(x, ε) ∩D) ⊂ hm(B(p, δ)) ⊂ B(x, ε).

Therefore, B(x, ε) meets Per(IFS(Φ)) for all ε > 0 and consequently the point x belongs to
Per(IFS(Φ)). This completes the proof of the lemma.

As a consequence of Proposition 2.27 and Lemma 2.28, recalling that

KΦ
def
= Per(IFS(Φ)) ∩D = P(Per(Φ)) ∩D, Φ = τ n (φ1, . . . , φk),

we reprove Corollary 2.26 without using the Hutchinson Theory. That is, we show the existence
of symbolic cs-blender-horseshoe in the one-step setting from Proposition 2.27 and Lemma 2.28.

Proof of Corollary 2.26. If Ψ = τ n (ψ1, . . . , ψk) ∈ Qk,λ,β(D) is close enough to Φ then ψi ∈ Ui for
i = 1, . . . , k, where Ui are the neighborhoods given in Proposition 2.27. Thus, B ⊂ OrbΨ(x) for all
x ∈ B. In particular, fixed x ∈ B, there is (hn)n ⊂ IFS(ψ1, . . . , ψk) such that limn→∞ hn(x) = x.
Since hn are contractions in D, for a given ε > 0 small enough there exists m ∈ N such that
hm(B(x, ε)) ⊂ B(x, ε) and thus the fixed point pm of hm belongs to B(x, ε) ⊂ B. By Lemma 2.28,

B ⊂ Per(IFS(ψ1, . . . , ψk)) ∩D ⊂ OrbΨ(x) for all x ∈ D

and the corollary is proved.
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2.4 Symbolic blenders in the unilateral setting

Given a bi-sequence ξ = (. . . , ξ−1; ξ0, ξ1, . . .) ∈ Σk, the negative (resp. positive) tail of ξ is the
sequence ξ− = (ξi)i≤0 (resp. ξ+ = (ξi)i≥0). These tails of a bi-sequence can be seen as an unilateral
sequence in Σ+

k = {1, . . . , k}Z+ . This space of unilateral sequences is endowed of a topology taken
the same metric dΣk restricted to Σ+

k . We will denote by σ : Σ+
k → Σ+

k the restriction of left shift
map τ : Σk → Σk to the space of the unilateral sequences.

Let us consider skew-product maps H over the unilateral shift map of k symbols of the form

H : Σ+
n ×M → Σ+

n ×M, H(ω, x) = (σω, hω(x)) (2.41)

where hω : M → M are homeomorphisms and the map ω 7→ hω is continuous. We will use the
notation H = σ n hω. This map can be understood by studying forward iterations of the skew-
product Φ = τ n φξ in S+

k (M) where φξ = hξ+ . Reciprocally, for each skew-product Φ = τ n φξ

in S+
k (M) we associate the skew-product Φ+ = σnφξ+ of the form of (2.41). In fact, denoting by

P+ : Σk ×M → Σ+
k ×M the projection given by P+(ξ, x) = (ξ+, x), we have

P+ ◦ Φ = Φ+ ◦P+.

Thus, we can also see S+
k (M) as the set of skew-product maps of the form of (2.41). Similarly, we

will understand thatQk,λ,β(D) and S+
k,λ,β(D) are also sets of symbolic skew-product over unilateral

Bernoulli shift σ. So, we extend the previously definitions introduced for bi-lateral symbolic skew-
products Φ = τnφξ such as fiber-hyperbolic periodic points, continuation point, etc., to unilateral
symbolic skew-products H = σ n hω and we will denote

hnω(x)
def
= hσn−1ω ◦ · · · ◦ hω(x), Hn(ω, x) = (σnω, hnω(x)).

Now, we will try to reduce the geometrical property (2.36) in Definition 2.11 for a skew-product
Φ = τ n φξ ∈ S+

k,λ,β(D) to the associated skew-product Φ+ = σn φξ+ . Firstly, we introduce some
standard definitions.

We define (strong) unstable disks for Φ = τ n φξ through the point (ξ, x) ∈ Σk ×M as an
embedded compact disk Du in the strong unstable set of (ξ, x) for Φ which contains the point
(ξ, x) and intersects every Markov partition element. More precisely, Du, also denoted Du(ξ, x),
is the graph set of

γ̂uξ,x : V u
loc(ξ; τ)→M, γ̂uξ,x(ξ′) = φτ−1(ξ′) ◦ γuτ−1(ξ),φ−1

τ−1(ξ)
(x)
◦ τ−1(ξ′)

where V u
loc(ξ; τ) = {ξ′ ∈ Σk : ξ′i = ξi for all i < 0}. Note that, since the unstable lamination

is invariant (see for instance Item (ii) in Proposition 2.14) if ξ′ ∈ W u
loc(ξ; τ) ⊂ V u

loc(ξ; τ) then
γ̂uξ,x(ξ′) = γuξ,x(ξ′) and Du = graph[γ̂uξ,x] ⊂ W uu((ξ, x); Φ). Recall that the strong unstable set of
the point (ξ, x) for Φ is given by

W uu((ξ, x); Φ) =
⋃
n≥0

Φn
(
W uu
loc (Φ

−n(ξ, x); Φ)
)

=
⋃
n≥1

Φn−1(Du
n) (2.42)

where Du
n = Φ

(
W uu
loc (Φ

−n(ξ, x); Φ)
)
is the unstable disk through the point Φ1−n(ξ, x) for n ≥ 1.

Since the iteration by Φ of an unstable disk Du provides k new unstable disks it follows that
W uu((ξ, x); Φ) is a numerable union of finitely many unstable disks.
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We say that Du
+ = Du

+(ω, x) is a (strong) unstable disk for Φ+ through (ω, x) ∈ Σ+
k ×M if

there is ξ ∈ Σk with positive tail ξ+ = ω such that Du
+ is the projection by P+ of the unstable

disk Du = Du(ξ, x) for Φ. Observe that, since P+(V u
loc(ξ; τ)) = Σ+

k then Du
+ is the graph set of a

continuous function g : Σ+
k →M . Applying the projection P+ in (2.42) it follows that

P+

(
W uu((ξ, x); Φ)

)
=
⋃
n≥1

Φn−1
+ ◦P+(Du

n) =
⋃
n≥1

Φn−1
+ (Du

n+) (2.43)

Similarly, the projection by P+ of a cs-strip W s
loc(ξ; τ) × U is the set {ξ+} × U . Therefore, we

easily obtain the following result:

Lemma 2.29. Consider Φ = τ n φξ ∈ S+
k,λ,β(D) with β < 1 and let ΓΦ be the maximal invariant

set in Σk ×D of Φ. Then, the following statements are equivalent:

i) ΓΦ is a symbolic cs-blender-horseshoe in the unilateral setting with superposition region B;

ii) there is a fixed point (ϑ+, p) ∈ Σ+
k ×D of Φ+ = σ n φξ+ such that for every small enough

S+-perturbation Ψ+ = σ × ψξ+ of Φ+ it holds

Ψn−1
+ (Du

+) ∩
(
{ω} × U

)
6= ∅ with Du

+ = P+ ◦Ψ(W uu
loc ((ϑ, pΨ); Ψ)) (2.44)

for all ω ∈ Σ+
k , non-empty open set U ⊂ B and for some natural number n = n(ω,U).

Proof. Let ΓΦ be a symbolic cs-blender-horseshoe in the unilateral setting for Φ with superposition
region B. Then there is a fixed point (ϑ, p) ∈ Σk ×D of Φ such that for every S+-perturbation
Ψ = τ n ψξ in S+

k,λ,β(D) it holds that W uu((ϑ, p); Ψ) mets any cs-strip W s
loc(ξ; τ)× U in Σk ×B.

Now, we identify these S+-perturbations Ψ = τ nψξ of Φ = τ nφξ with unilateral skew-products
Ψ+ = σ n ψξ+ , that is, with S+-perturbations of Φ+ = σ n φξ+ . So, the continuation point
(ϑ+, pΨ+) of (ϑ+, p) for Ψ+ is well defined and thus, from (2.43), the strong unstable set of (ϑ, pΨ)

meets any cs-strip in Σk ×B, if and only if for every ω ∈ Σ+
k and every open set U in B, there is

n ∈ N such that Ψn−1
+ (Du

+) ∩
(
{ω} × U

)
6= ∅. This concludes the proof of the lemma.

The next theorem shows the existence of symbolic cs-blender-horseshoe in the unilateral setting
according to Definition 2.11. We will consider S+-perturbations of a contracting one-step satisfying
the covering property.

Theorem 2.30. Consider Φ = τ n (φ1, . . . , φk) ∈ S+
k,λ,β(D) with λ < β < 1 and assume that

there exists a non-empty open set B ⊂ D such that

B ⊂ φ1(B) ∪ . . . ∪ φk(B).

Then the maximal invariant set ΓΦ in Σk × D for Φ is a symbolic cs-blender-horseshoe in the
unilateral setting for Φ whose superposition region contains B.

The essence of the idea of the proof of this result can be found in [Hom11, Lemma 4.1].
In [HN11] also some relations between robust minimal IFS, robust topologically mixing skew-
products and symbolic blenders-horseshoes in the unilateral setting are discussed.

Notation 2.31. Let i = i0 . . . in−1 be a finite word in {1, . . . , k}n. Given a sequence ω ∈ Σ+
k , we

denote by iω the sequence ξ+ ∈ Σ+
k such that ξ+

0 = i0, . . . , ξ
+
n−1 = in−1 and ξ+

n+j = ωj for all j ≥ 0.
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Let H = σ n hω be an S+-perturbation of Φ+ = σ n (φ1, . . . , φk). Suppose that the open set
B ⊂ D in Theorem 2.30 satisfies B ⊂ h1ω(B) ∪ · · · ∪ hkω(B) for every ω ∈ Σ+

k . Then, it follows
that for each ω ∈ Σ+

k and n ∈ N,

B ⊂
⋃
|i|=n

hniω(B) ⊂
⋃
|i|=n

hniω(D). (2.45)

Indeed, (2.45) is immediate for n = 1. For n = 2, since for each i ∈ {1, . . . , k} we have that
B ⊂ h1iω(B) ∪ . . . ∪ hkiω(B) for all ω ∈ Σ+

k , it follows that

B ⊂
⋃
|i|=1

hiω(B) ⊂
⋃
|i|=1

hiω(h1iω(B) ∪ . . . ∪ hkiω(B)) =
⋃
|i|=1

k⋃
j=1

hiω ◦ hjiω(B) =
⋃
|i|=2

h2
iω(B).

Ague similarly by induction we obtain (2.45). Note that H = σ n hω belongs to S+
k,λ,β(D) with

β < 1. Thus, hω is a contracting map on D for every unilateral sequence ω. Hence

lim
|i|=n→∞

diam
(
hniω(D)

)
= 0. (2.46)

Now, we can conclude that for every ω ∈ Σ+
k and every non-empty open subset U in B there is

n ∈ N such Hn(Du
+) ∩ ({ω} × U) 6= ∅ with Du

+ any unstable disk contained in Σ+
k ×D. Indeed,

from (2.46) there is n0 ∈ N such that for every n ≥ n0 it holds that diam(hniω(D)) ≤ diam(U)/3

for all i ∈ {1, . . . , k}n. Since U is a non-empty open subset of B, from (2.45) we find n ≥ n0 and
i ∈ {1, . . . , k}n such that hniω(D) ⊂ U . In particular, since the unstable disk Du

+ is the graph of a
continuous function g : Σ+

k → D then the point (iω, g(iω)) is in the unstable disk Du
+ and its fiber

coordinate g(iω) ∈ D. Therefore Hn(iω, g(iω)) ∈ {ω} × hniω(D) ⊂ {ω} × U . So, by Lemma 2.29
we infer that Φ has a symbolic cs-blender-horseshoe in the unilateral setting in Σk × D with
superposition region containing B.

Although the above argument can be seen as a proof of Theorem 2.30, we will obtain this
result from another similar proof which allows us to give more information about superposition
region. Firstly, we need to calculate the iterate Hn(Du

+) where H = σnhω and Du
+ is an unstable

disk for H in Σ+
k ×D. As above, we can write Du

+ as a graph of a continuous function g from Σ+
k

to D. We consider a thin strip S containing the unstable disk Du
+. That is

S =
⋃

ω∈Σ+
k

{ω} × Iω where Iω = B(g(w), εω) ⊂ D.

Hence,

H(S) =
k⋃
i=1

⋃
ω∈Σ+

k

{ω} × hiω(Iiω) =
⋃

ω∈Σ+
k

(
{ω} ×

k⋃
i=1

hiω(Iiω)
)
.

Repeating this reasoning, further iterates Hn(S) is kn full thin strips in Σ+
k ×D which each one

of them contains a new unstable disk in Hn(Du
+). The collection of these strips is

Hn(S) =
⋃

ω∈Σ+
k

(
{ω} ×

⋃
|i|=n

hniω(Iiω)
)
.

This calculation motives to introduce the following operator. For each ω ∈ Σ+
k and n ∈ N we

define the operator Ln(ω) associated with H = σ n hω by

Ln(ω) : K(D)× kn. . .×K(D)→ K(D), Ln(ω)[{Ai}|i|=n] =
⋃
|i|=n

hniω(Ai). (2.47)
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Lemma 2.32. Consider H = σ n hω ∈ S+
k,λ,β(D) with β < 1. Then, for each ω ∈ Σ+

k and n ∈ N
we obtain the following properties:

i) dH(Ln(ω)[{Ai}|i|=n],Ln(ω)[{Bi}|i|=n]) ≤ βn max|i|=n dH(Ai, Bi),

ii) Ln+1(ω)[{Ai}|i|=n+1] = L1(ω)
[{
Lk(jω)[{Aij}|i|=n]

}k
j=1

]
,

iii) dH(Ln+1(ω)[{Ai}|i|=n+1],Ln(ω)[{Bi}|i|=n]) ≤ βn diam(D).

Proof. The first item is obtained from the properties of the Hausdorff distance:

dH(Ln(ω)[{Ai}|i|=n],Ln(ω)[{Bi}|i|=n]) ≤ max
|i|=n

dH(hniω(Ai), h
n
iω(Bi)) ≤ βn max

|i|=n
dH(Ai, Bi).

In order to prove the second item, recall that hnω = hσn−1ω ◦ · · · ◦ hω. Hence,

Ln+1(ω)[{Ai}|i|=n+1] =
⋃

|i|=n+1

hn+1
iω (Ai) =

⋃
|j|=1

⋃
|i|=n

hjω ◦ hnijω(Aij)

=
⋃
|j|=1

hjω
( ⋃
|i|=n

hnijω(Aij)
)

= L1(ω)
[{
Ln(jω)[{Aij}|i|=n]

}
|j|=1

]
.

Using this equality, we obtain that

dH
(
Ln+1(ω)[{Ai}|i|=n+1], Ln(ω)[{Bi}|i|=n]

)
=

= dH
(
L1(ω)

[{
Ln(jω)[{Aij}|i|=n]

}
|j|=1

]
, L1(ω)

[{
Ln−1(jω)[{Bij}|i|=n−1]

}
|j|=1

])
≤ βmax

|j|=1
dH
(
Ln(jω)[{Aij}|i|=n], Ln−1(jω)[{Bij}|i|=n−1]

)
.

Arguing by induction, we get

dH
(
Ln+1(ω)[{Ai}|i|=n+1], Ln(ω)[{Bi}|i|=n]

)
≤

≤ βn−1 max
|j|=n−1

dH
(
L2(jω)

[{
Aij}|i|=2

]
, L1(jω)

[{
Bij
}
|i|=1

])
= βn−1 max

|j|=n−1
dH
(
L1(jω)

[{
L1(`jω)[{Ai`j}|i|=1]

}
|`|=1

]
, L1(jω)

[{
Bij
}
|i|=1

])
≤ βn max

|j|=n−1
max
|`|=1

dH
(
L1(`jω)

[
{Ai`j}|i|=1

]
, B`j

)
= βn max

|j|=n
dH
(
L1(jω)

[
{Aij}|i|=1

]
, Bj

)
.

Since
L1(jω)

[
{Aij}|i|=1

]
=
⋃
|i|=1

hijω(Aij)

then dH(Ln+1(ω)[{Ai}|i|=n+1], Ln(ω)[{Bi}|i|=n]) ≤ βn max|j|=n max|i|=1 dH(hijω(Aij), Bj). Now,
recalling that H = σn hω ∈ S+

k,λ,β(D) with β < 1 and hence hω(D) ⊂ D for all ω ∈ Σ+
k it follows

that dH(hijω(Aij), Bj) ≤ diam(D). Consequently

dH(Ln+1(ω)[{Ai}|i|=n+1], Ln(ω)[{Bi}|i|=n]) ≤ βndiam(D)

and we conclude the proof of the lemma.

Proposition 2.33. Consider H = σ n hω ∈ S+
k,λ,β(D) with β < 1. Then, for each ω ∈ Σ+

k there
is a compact set Kω in D such that for every sequence of collection {Ai}|i|=n of compact sets
Ai ∈ K(D) with i ∈ {1, . . . , k}n it holds

lim
n→∞

dH(Ln(ω)[{Ai}|i|=n],Kω) = 0.

Moreover, the maps L : Σ+
k → K(D) given by L(ω) = Kω is continuous.
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Proof. For each n ∈ N, let {Ai}|i|=n be a collection of compact sets Ai ∈ K(D) with i ∈ {1, . . . , k}n.
We define Kn = Ln(ω)[{Ai}|i|=n] ∈ K(D). From Item (iii) in Lemma 2.32 it follows that the
sequence {Kn}n∈N is Cauchy for the Hausdorff distance. Since K(D) is a complete metric space
with the Hausdorff distance then {Kn}n∈N converges. We denote the limit by K(ω, {Ai}). Now,
we will show that this limit is independent of the sequence of compact sets {Ai}. To do this, take
another different collection of compact sets Bi ∈ K(D) with i ∈ {1, . . . , k}m for all m ∈ N. Hence,
for every n ∈ N,

dH
(
K(ω, {Ai}),K(ω, {Bi})

)
≤ dH

(
K(ω, {Ai}),Ln(ω)[{Ai}|i|=n]

)
+ dH

(
Ln(ω)[{Ai}|i|=n],Ln(ω)[{Bi}|i|=n]

)
+ dH

(
Ln(ω)[{Bi}|i|=n],K(ω, {Bi})

)
.

From (i) in Lemma 2.32, noting that dH(Ai, Bi) ≤ diam(D), we have that the second term in
the above sum is less or equal than βndiam(D). Thus, taken limit as n → ∞ it follows that
dH(K(ω, {Ai}),K(ω, {Bi})) = 0 and so K(ω, {Ai}) = K(ω, {Bi}). We denote this limit by Kω.

We will show that L : Σ+
k → K(D) given by L(ω) = Kω is continuous. Fix ε > 0 and consider

ε′ = ε(1− β)/3. Since ω 7→ hω is continuous, there exists δ > 0 such that

if dΣ+
k

(ω, ω′) < δ then dC0(hω, hω′) < ε′. (2.48)

We take a compact set A ∈ K(D) and two unilateral sequences ω and ω′ such that dΣ+
k

(ω, ω′) < δ.
From the first part since Ln(ω)[{A}|i|=n] and Ln(ω′)[{A}|i|=n] converge toKω andKω′ respectively
in the Hausdorff metric we obtain n ∈ N such that

dH(Ln(ω)[{A}|i|=n], Kω) < ε/3 and dH(Ln(ω′)[{A}|i|=n], Kω′) < ε/3.

Then,

dH(Kω,Kω′) ≤ dH
(
Kω, Ln(ω)[{A}|i|=n]

)
+ dH

(
Ln(ω)[{A}|i|=n], Ln(ω′)[{A}|i|=n]

)
+ dH

(
Ln(ω′)[{A}|i|=n], Kω′

)
<

2

3
ε+ dH

(
Ln(ω)[{A}|i|=n], Ln(ω′)[{A}|i|=n]

)
.

(2.49)

Now,

dH
(
Ln(ω)[{A}|i|=n], Ln(ω′)[{A}|i|=n]

)
=

= dH(
⋃
|i|=n

hniω(A),
⋃
|i|=n

hniω′(A)) ≤ max
|i|=n

dH(hniω(A), hniω′(A)).

Fix i = i1 . . . in ∈ {1, . . . , k}n. Hence, since dΣ+
k

(inω, inω
′) ≤ νdΣ+

k
(ω, ω′) < νδ < δ, by (2.48) it

follows that

dH(hniω(A),hniω′(A)) ≤ dH(hinω ◦ hn−1
iω (A), hinω ◦ hn−1

iω′ (A))

+ dH(hinω ◦ hniω′(A), hinω′ ◦ hn−1
iω′ (A)) < β dH(hn−1

iω (A), hn−1
iω′ (A)) + ε′.

Arguing by induction,

dH(hniω(A), hniω′(A)) ≤ ε′
n−1∑
j=0

βj ≤ ε′

1− β
=
ε

3
.

Putting together this inequality and (2.49) we obtain that dH(L(ω),L(ω′)) < ε an so we conclude
the proof of the proposition.
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Proof of Theorem 2.30. Let Ui be neighborhood of φi : D → D such that the family

Bi = int
( ⋂
h∈Ui

h(B)
)
, i = 1, . . . , k,

is an open covering of B. By shrinking the size of the sets Ui we can assume that any h ∈ Ui
is also (λ, β)-Lipschitz homeomorphism on D for all i = 1, . . . , k. Consider a S+-perturbation
H = σn hω of Φ+ = σn (φ1, . . . , φk) such that hω ∈ Ui if ω0 = i. For each n ∈ N, consider Ln(ω)

the operator associated with H defined in (2.47).

For each n ∈ N, let {B}|i|=n be the collection {Bi}|i|=n with Bi = B for all i ∈ {1, . . . , k}n.
We claim that for every ω ∈ Σ+

k and every n ∈ N it holds that B ⊂ Ln(ω)[{B}|i|=n]. The proof of
this claim is by induction. For n = 1, noting that hiω ∈ Ui for all i = 1, . . . , k and having in mind
the choice of these neighborhoods it follows

L1(ω)[{B}|i|=1] =

k⋃
i=1

hiω(B) ⊃
k⋃
i=1

Bi ⊃ B.

We argue inductively. Assuming that the claim holds for n, we see that it also holds for n + 1.
From Item (ii) in Lemma 2.32 we get

Ln+1(ω)[{B}|i|=n+1] = L1(ω)[{Ln(jω)[{B}|i|=n]}|j|=1].

By the induction hypothesis it follows that Ln+1(ω)[{B}|i|=n+1] ⊃ L1(ω)[{B}|j|=1]. From this,
using the first step of the induction, we obtain the desired assertion.

Now, we will conclude the proof of the theorem from Lemma 2.29. Let Du
+ ⊂ Σ+

k ×D be an
unstable disk through a fixed point of H. Recall that Du

+ is the graph of a continuous function g
from Σ+

k to D. Fix ω ∈ Σ+
k and a non-empty open set U in B. Proposition 2.33 and the above

claim imply that B ⊂ Kω. Note thatKω is the limit in the Hausdorff metric of Ln(ω)[{g(iω)}|i|=n].
Then, since U is non-empty open set in Kω, there is n ∈ N such that U ∩Ln(ω)[{g(iω)}|i|=n] 6= ∅.
This implies that the iterateHn(Du

+) meets {ω}×U and we conclude the proof of the theorem.

Let Φ = τ n (φ2, . . . , φk) be a skew-product in the hypothesis of Theorem 2.30. Consider
Ψ = τ n ψξ a S+-perturbation of Φ. For each ω ∈ Σ+

k let Kω be the compact set followed from
Proposition 2.33 for Ψ+ = σ n ψξ+ . Notice that the above proof of Theorem 2.30 shows that

B ⊂
⋂

ω∈Σ+
k

Kω
def
= K∗Ψ.

Argue as Proposition 2.15, it is possible to prove that this compact set K∗Ψ depends continuously
with respecto to Ψ. Let V be a small enough neighborhood of S+-perturbations Ψ of Φ, and set

K∗
def
=
⋂

Ψ∈V
K∗Ψ.

Notice that B ⊂ K∗. Also, note that we have precisely proved in the above proof of Theorem 2.30
that if Ψ ∈ V and Du

+ is a unstable disk through a fixed point of Ψ+ then for every open set U
in K∗ there exists n ∈ N such that Ψn

+(Du
+) ∩ ({ξ+} × U) 6= ∅ for all sequence ξ+ ∈ Σ+

k . From



2.5. Symbolic blenders in the Hölder setting 59

Lemma 2.29, this is equivalente to the following: if (ϑ, p) ∈ Σk ×D is a fixed point of Φ then for
every Ψ ∈ V and every open set U ⊂ K∗ it holds

W uu
(
(ϑ, pΨ); Φ) ∩ (W s

loc(ξ; τ)× U) 6= ∅ for all ξ ∈ Σk.

Hence, B∗ = int(K∗) is the superposition region of the symbolic cs-blender-horseshoe ΓΦ in the
unilateral setting for Φ.

2.5 Symbolic blenders in the Hölder setting

In this section we will prove Theorem B. In order to prove this theorem, we need to introduce
some notation and preliminary Hölder-like estimates. Given a word ω = ω−n . . . ω−1 ω0 ω1 . . . ωn,
we define the bi-lateral cylinder

C̃ω
def
= {ξ ∈ Σk : ξj = ωj , −n ≤ j ≤ n}.

Lemma 2.34. Consider Ψ = τ nψξ ∈ Sαk,λ,β(D), a word ω = ω−n . . . ω−1 ω0 ω1 . . . ωn and a point
x ∈ D such that for every ζ ∈ C̃ω it holds that ψ−j

τ−1(ζ)
(x) ∈ D for 1 ≤ j ≤ n. Then,

∥∥ψ−i
τ−1(ξ)

(x)− ψ−i
τ−1(ζ)

(x)
∥∥ < CΨν

α(n−i)
i−1∑
j=0

(λ−1να)j ,

for all 1 ≤ i ≤ n and all ξ, ζ ∈ C̃ω.

Proof. The proof is by induction. For i = 1, the Hölder property and ξ, ζ ∈ C̃ω imply that
‖ψ−1

τ−1(ξ)
(x)−ψ−1

τ−1(ζ)
(x)‖ ≤ CΨν

α(n−1). We argue inductively. Assuming that the lemma holds for
i− 1, i < n, we see that it also holds for i. By the triangle inequality, one has that∥∥ψ−i

τ−1(ξ)
(x)− ψ−i

τ−1(ζ)
(x)
∥∥ ≤ ∥∥ψ−i

τ−1(ξ)
(x)− ψ−1

τ−i(ξ)
◦ ψ−(i−1)

τ−1(ζ)
(x)
∥∥

+
∥∥ψ−1

τ−i(ξ)
◦ ψ−(i−1)

τ−1(ζ)
(x)− ψ−i

τ−1(ζ)
(x)
∥∥.

Let y def
= ψ

−(i−1)
τ−1(ζ)

(x) ∈ D. Since the inverse of these functions expand at most 1/λ we obtain that
the above equation is less than or equal to

1

λ

∥∥ψ−(i−1)
τ−1(ξ)

(x)− ψ−(i−1)
τ−1(ζ)

(x)
∥∥+

∥∥ψ−1
τ−i(ξ)

(y)− ψ−1
τ−i(ζ)

(y)
∥∥.

Since y ∈ D, we can apply to the second term the Hölder inequality. Namely, since ξ, ζ ∈ C̃ω, we
get ‖ψ−1

τ−i(ξ)
(y) − ψ−1

τ−i(ζ)
(y)‖ ≤ CΨ ν

α(n−i). By the induction hypothesis we bound the first term
and we get

CΨλ
−1(να)n−i+1

i−2∑
j=0

(λ−1να)j + CΨν
α(n−i) = CΨν

α(n−i)
i−1∑
j=0

(λ−1να)j ,

which concludes the proof of the lemma.

Right now, we will prove Theorem B.
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Proof of Theorem B. Assume that the covering property (2.37) is not fulfilled. That is, there
exists x ∈ B such that x does not belong to φi(B) for all i = 1, . . . , k. Without loss of generality,
we can assume that x ∈ B. Otherwise, we can take an arbitrarily small one-step perturbation
Ψ = τ n (ψ1, . . . , ψk) such that the covering property in B for the IFS(ψ1, . . . , ψk) is not satisfied
for a point in B. Then Φ−1(ξ, x) 6∈ Σk ×B for all ξ ∈ Σk and hence

(ξ, x) 6∈
⋂
n≥0

Φn(Σk ×B) for all ξ ∈ Σk.

This shows that Γ+
Φ(B) does not meet any (almost) horizontal disk through B of the form Ds =

W s
loc(ξ; τ)× {x} and therefore the intersection property (2.38) is not fulfill.

Now we will prove that the covering property (2.37) implies the intersection property (2.38).
Recall that given an open covering C of a compact set X of a metric space there is a constant
L > 0, called Lebesgue number of C, such that every subset of X with diameter less than L is
contained in some member of C. Let L > 0 be the Lebesgue number of the open covering (2.37).

There are C0-neighborhoods Ui of φi such that the family

Bi = int
( ⋂
ψ∈Ui

ψ(B)
)
, i = 1, . . . , k,

is an open covering of B. By shrinking the size of the sets Ui we can assume that the number L > 0

is also a Lebesgue number of this covering and in addition any ψ ∈ Ui is also a C0-(λ, β)-Lipschitz
map on D for all i = 1, . . . , k.

Remark 2.35 (Choice of the perturbation I). Let V1 be an neighborhood of Φ in Sαk,λ,β(D) such
that if Ψ = τ n ψξ ∈ V1 then ψξ ∈ Ui where ξ0 = i. In that case, we get that

ψ−1
τ−1(ξ)

(Bi) ⊂ B for all ξ ∈ Σk with ξ−1 = i.

Note that if Φ is a one-step map then φξ = φζ for every ξ and ζ with ξ0 = ζ0. Hence we can
take CΦ = 0. If Ψ is Sα-close to Φ, then from the distance considered in (2.25), it follows that CΨ

is close to CΦ = 0. Thus, since the one-step map Φ satisfies the condition λ > να, we obtain the
following remark:

Remark 2.36 (Choice of the perturbation II). Let V2 be an neighborhood of Φ in Sαk,λ,β(D) such
that if Ψ = τ n ψξ ∈ V2 then

CΨ

∞∑
i=0

(λ−1να)i < L/2. (2.50)

In what follows we will consider the neighborhood V = V1 ∩ V2 of Φ in Sαk,λ,β(D).

Fix 0 < δ < L/2 such that λ−1δ < L/2. Consider V = P(Ds) ⊂ B where Ds is a δ-horizontal
disk in Σk × B associated with W s

loc(ζ; τ) × {z}, z ∈ B, ζ ∈ Σk. Note that diam(V ) ≤ 2δ < L.
Then there is i1 ∈ {1, . . . , k} such that V ⊂ Bi1 . Given a word θ̄ = θn . . . θ1, we denote

Cθ̄
def
= {ξ ∈W s

loc(ζ; τ) : ξ−i = θi for i = 1, . . . , n}.

Let θ̄1 = i1 and V1 = P(Ds ∩ (Cθ̄1 × V )). Given x and y in V1, there exist ξ, η ∈ Cθ̄1 such that
x = h(ξ) and y = h(η). From the Hölder continuity of h, it follows ‖x− y‖ ≤ CdΣk(ξ, η)α ≤ Cνα.
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Thus, V1 ⊂ V and diam(V1) ≤ Cνα
def
= δ1. Then, by Remark 2.35, for every Ψ = τ n ψξ ∈ V we

obtain that

ψ−1
τ−1(ξ)

(V1) ⊂ B and diam(ψ−1
τ−1(ξ)

(V1)) ≤ λ−1δ1 for all ξ ∈ Cθ̄1 .

Suppose constructed a word θn and a closed set Vn ⊂ Vn−1 with diam(Vn) ≤ Cνnα def
= δn such

that for every skew-product Ψ = τ n ψξ ∈ V it holds

ψ−n
τ−1(ξ)

(Vn) ⊂ B and diam(ψ−n
τ−1(ξ)

(Vn)) ≤ λ−nδn for all ξ ∈ Cθ̄n .

We will construct a word θn+1 and a closed set Vn+1 ⊂ Vn satisfying analogous inclusions and
inequalities. Let

An =
⋃

ξ∈Cθ̄n

ψ−n
τ−1(ξ)

(Vn) ⊂ B.

Given x̄ and ȳ in An, there exist x, y ∈ Vn, and ξ, η ∈ Cθ̄n such that x̄ = ψ−n
τ−1(ξ)

(x) and ȳ =

ψ−n
τ−1(η)

(y). By means of Lemma 2.34, Remark 2.36 and since

λ−nδn = C(λ−1να)n ≤ Cλ−1να < λ−1δ < L/2

we obtain that

‖x̄− ȳ‖ ≤ ‖ψ−n
τ−1(ξ)

(x)− ψ−n
τ−1(η)

(x)‖+ ‖ψ−n
τ−1(η)

(x)− ψ−n
τ−1(η)

(y)‖ ≤ L/2 + λ−nδn < L.

Hence diam(An) < L and so there is in+1 ∈ {1, . . . , k} such that An ⊂ Bin+1 . Let

θ̄n+1 = in+1θ̄n and Vn+1 = P(Ds ∩ (Cθ̄n × Vn)).

Given x and y in Vn+1, there exist ξ, η ∈ Cθ̄n such that x = h(ξ) and y = h(η). From the (α,C)-
Hölder continuity of h, we have that ‖x − y‖ ≤ CdΣk(ξ, η)α ≤ Cν(n+1)α. Thus, Vn+1 ⊂ Vn with
diam(Vn) ≤ Cν(n+1)α def

= δn+1 such that for every Ψ = τ n ψξ ∈ V it holds

ψ
−(n+1)
τ−1(ξ)

(Vn+1) ⊂ B and diam(ψ
−(n+1)
τ−1(ξ)

(Vn+1)) ≤ λ−(n+1)δn+1 for all ξ ∈ Cθ̄n+1
.

Note that {Vn} is a sequence of nested closed sets such that limn→∞ diam(Vn) = 0. Then

{(ξ, x)} =
⋂
n∈N

(Cθ̄n × Vn) ∩Ds ⊂W s
loc(ζ; τ)×B. (2.51)

From this, it follows that ψ−n
τ−1(ξ)

(x) ∈ B for all n ∈ N. So, Ψ−n(ξ, x) ∈ Σk × B for for all n ∈ N.
Therefore, (ξ, x) ∈ Ds belongs to the maximal forward invariant set Γ+

Ψ(B) in Σk × B. This
concludes the proof of the theorem.

2.5.1 Symbolic blender-like sets

Let us return to the statement of Theorem B and remember Proposition 2.10. If we do not
impose the condition β < 1 cannot conclude that ΓΦ is conjugate to the Bernoulli shift of k
symbols. Therefore, we cannot talk about symbolic blender-horseshoe. However, according to
Proposition 2.10, ΓΦ can be a porcupine. This fact, gives rise the following notion:
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Definition 2.13 (Symbolic blender-like set). Consider Φ ∈ Sαk,λ,β(D) with λ < 1 < β, α > 0.

The maximal invariant set ΓΦ of Φ in Σk ×D is said to be symbolic cs-blender-like set with
superposition region an open set B in D if there is δ > 0 such that for every Sα-perturbation Ψ

of Φ it holds
ΓΨ ∩Ds 6= ∅ for all δ-horizontal disk Ds in Σk ×B

where ΓΨ is the maximal invariant set of Ψ in Σk ×D.

The next result is an immediately consequence of Theorem C. Fix α ∈ (0, 1] and recall that D
is an open set in the c-dimensional manifold M .

Lemma 2.37. Let φ1 : D → D be a (λ, β)-Lipschitz map with να < λ < β < 1. Then there are
a natural number k and translations (in local coordinates) φ2, . . . , φk of φ1 such that the one-step
map Φ = τ n (φ1, . . . , φk) ∈ Sαk,λ,β(D) has a symbolic cs-blender-horseshoe with superposition
region a neighborhood of the fixed point of φ1.

Proof. Consider the open ball B(p, ε) ⊂ D of radius ε > 0 centered at the fixed point p of φ1.
Note that there are k = k(c, λ) > 0 and points d1 = p and di ∈ B(p, ε), i = 2, . . . , k, such that

B(p, ε) ⊂ B(d1,
λ

2
ε) ∪B(d2,

λ

2
ε) ∪ . . . ∪B(dk,

λ

2
ε).

Consider (in local coordinates) translations φi of φ1, i = 2, . . . , k, such that B(di, λε/2) ⊂
φi(B(p, ε)). Then the choice of the points di and the inclusion above imply that

B(p, ε) ⊂ φ1

(
B(p, ε)

)
∪ . . . ∪ φk

(
B(p, ε)

)
. (2.52)

Consider the contracting iterated function system IFS(φ1, . . . , φk) and its associated one-step
skew-product map Φ = τ n (φ1, . . . , φk). Then, by Equation (2.52), the covering property is
satisfied. Thus, the map Φ satisfies the hypotheses in Theorem C and hence it has symbolic
blender-horseshoe with B(p, ε) contained in its superposition region.

We observe that the number k of translations of φ depends on the dimension of M and
the contraction bound λ of φ. The following proposition is motivated from [HN11] and shows a
construction of a one-step Φ = τ n (φ1, φ2) on Σ2 ×M such that has a symbolic cs-blender-like
set with superposition region an small neighborhood of an ε-weak hyperbolic periodic attractor
with period large enough. A periodic point p of diffeomorphism φ is said to be ε-weak hyperbolic
periodic attractor of period n if

1− ε < m(Dφn(p)) < ‖Dφn(p)‖ < 1

where m(A) is the conorm of a linear operator A, i.e., the infimum of ‖Av‖ as v vsaries over the
unit vectors in the dominie of A.

Theorem 2.38. Let φ1 : D → D be a C1-(λ, β)-Lipschitz map with 0 < λ < 1 < β having an
ε-weak hyperbolic attracting periodic point p with sufficient large period n such that να < (1− ε)n.
Then there is φ2 arbitrarily C1-close to φ1 such that Φ = τ n (φ1, φ2) ∈ Sα2,λ,β(D) has a symbolic
cs-blender-like set with superposition region a neighborhood of p.
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Proof. Let Di = φi1(D0) be a sufficiently small neighborhoods of φi1(p), for i = 0, . . . , n − 1. We
consider a local coordinate on each Di. Denoting Tc the translation map by the vector c in local
coordinates, from Lemma 2.37 we find small vectors c1 = 0, c2 . . . , ck (with k < n)2 such that
the maps φn1 = Tc1 ◦ φn1 , Tc2 ◦ φn1 , . . . , Tck ◦ φn1 from D0 to D0 satisfy the covering property in a
neighborhood B ⊂ D0 of p. Let φ2 be a diffeomorphism C1-close to φ1 such that on Dn−i it is
equal to φ1−i

1 ◦Tci ◦φi1 for i = 1, . . . , k. Observe that φ2 is well defined if Di are disjoint and ci are
sufficiently small. Further, hi = φi−1

1 ◦φ2 ◦φn−i1 on D0 is equal to Tci ◦φn1 for i = 1, . . . , k. Then the
contracting iterated function system IFS(h1, . . . , hk) on D0 is a subsystem of IFS(φ1, φ2) which
satisfies that B ⊂ h1(B) ∪ . . . ∪ hk(B). We choose open sets Bi for i = 1, . . . , k such that

Bi ⊂ hi(B) and B ⊂ B1 ∪ . . . ∪Bk.

Let L > 0 be the Lebesgue number of this above open covering. For each i = 1, . . . , k we define
the word ωi = ωi1 . . . ωin where ωij = 1 for all j 6= n− i+1 and ωij = 2 for j = n− i+1. With this
notation, since p is a ε-weak hyperbolic periodic attractor, it follows that h−1

i = φ−1
ωin ◦ · · · ◦ φ

−1
ωi1

restricted to Bi expands at most (1− ε)−n for all i = 1, . . . , k. Hence, there are C0-neighborhoods
U1 and U2 of φ1 and φ2 respectively such that for each i = 1, . . . , k, given any map ψj ∈ Uωij for
j = 1, . . . , n it holds that ψ−1

n ◦ · · · ◦ψ−1
1 (Bi) ⊂ B and ψ−1

n ◦ · · · ◦ψ−1
1 restricted to Bi expands at

most (1− ε)−n.

The rest of the proof of this proposition is analogous with the proof of Theorem C. We will
indicate some modifications in the corresponding choice of the perturbation:

Remark 2.39 (Choice of the perturbation I). Let V1 be a neighborhood of Φ = τ n (φ1, φ2) in
Sα2,λ,β(D0) such that if Φ = τ n ψξ ∈ V1 then ψξ ∈ Ui where i = ξ0. In particular, for every
Ψ = τ n ψξ ∈ V it holds that, for every i = 1, . . . , k

ψ−n
τ−1(ξ)

(Bi) ⊂ B for all ξ ∈ Σ2 with ξ−j = ωij for j = 1, . . . , n

and ψ−n
τ−1(ξ)

= ψ−1
τ−n(ξ)

◦ · · · ◦ ψ−1
τ−1(ξ)

restricted to Bi expands at most κ = (1− ε)−n.

Since by hypothesis κ > να, we obtain the following remark:

Remark 2.40 (Choice of the perturbation II). Let V2 be an neighborhood of Φ = τ n (φ1, φ2) in
Sα2,λ,β(D0) such that if Ψ = τ n ψξ ∈ V2 then one has that

CΨ

∞∑
i=0

(κ−1να)i < L/2.

Fix 0 < δ < L/2 such that κ−1δ < L/2. Consider V = P(Ds) ⊂ B where Ds is a δ-horizontal
disk in B associated with W s

loc(ζ; τ) × {z}, z ∈ B, ζ ∈ Σ2. Note that diam(V ) ≤ 2δ < L. Then
there is i1 ∈ {1, . . . , k} such that V ⊂ Bi1 . Recall that, given a word θ̄ = θm . . . θ1,

Cθ̄ = {ξ ∈W s
loc(ζ; τ) : ξ−i = θi for i = 1, . . . ,m}.

Let θ1 = ωi1 and V1 = P(Ds ∩ (Cθ̄1 × V )). Given x and y in V1, there exist ξ, η ∈ Cθ̄1 such that
x = h(ξ) and y = h(η). From the Hölder continuity of h, it follows

‖x− y‖ ≤ CdΣ2(ξ, η)α ≤ Cνα.
2Since p is ε-weak hyperbolic attracting periodic point if ε goes to zero then the number k of translations to

obtain the covering property goes to zero.
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Thus, V1 ⊂ V and diam(V1) ≤ Cνα
def
= δ1. Hence, by Remark 2.39, for every Ψ = τ n ψξ ∈ V we

obtain that

ψ−n
τ−1(ξ)

(V1) ⊂ B and diam(ψ−n
τ−1(ξ)

(V1)) ≤ κ−1δ1 for all ξ ∈ Cθ̄1 .

Suppose constructed a word θm and a closed set Vm ⊂ Vm−1 with diam(Vm) ≤ Cνmα
def
= δm

such that for every Ψ = τ n ψξ ∈ V it holds that

ψ−mn
τ−1(ξ)

(Vm) ⊂ B and diam(ψ−mn
τ−1(ξ)

(Vm)) ≤ κ−mδm for all ξ ∈ Cθ̄m .

We will construct a word θm+1 and a closed set Vm+1 ⊂ Vm satisfying analogous inclusions and
inequalities. Let

Am =
⋃

ξ∈Cθ̄m

ψ−mn
τ−1(ξ)

(Vm) ⊂ B.

Given x̄ and ȳ in Am, there exit x, y ∈ Vm and ξ, η ∈ Cθ̄m such that x̄ = ψ−mn
τ−1(ξ)

(x) and ȳ =

ψ−mn
τ−1(η)

(y). So, from Lemma 2.34, Remark 2.40 and since

κ−mδm = C(κ−1να)m ≤ Cκ−1να < κ−1δ < L/2

we obtain that

‖x̄− ȳ‖ ≤ ‖ψ−mn
τ−1(ξ)

(x)− ψ−mn
τ−1(η)

(x)‖+ ‖ψ−mn
τ−1(η)

(x)− ψ−mn
τ−1(η)

(y)‖ ≤ L/2 + κ−mδm < L.

Hence diam(Am) < L and so there is im+1 ∈ {1, . . . , k} such that Am ⊂ Bin+1 . Let

θ̄m+1 = ωim+1θm and Vm+1 = P(Ds ∩ (Cθ̄m × Vm)).

Given x and y in Vm+1, there exit ξ, η ∈ Cθ̄m such that x = h(ξ) and y = h(η). From the (α,C)-
Hölder continuity of h, we have that ‖x− y‖ ≤ CdΣ2(ξ, η)α ≤ Cν(m+1)α. Thus, Vm+1 ⊂ Vm with
diam(Vm) ≤ Cν(m+1)α def

= δm+1 such that for every Φ = τ n ψξ ∈ V it holds that

ψ
−(m+1)
τ−1(ξ)

(Vm+1) ⊂ B and diam(ψ
−(m+1)
τ−1(ξ)

(Vm+1)) ≤ κ−(m+1)δm+1 for all ξ ∈ Cθ̄m+1
.

Note that {Vm} is a sequence of nested close set such that limm→∞ diam(Vm) = 0. Then

{(ξ, x)} =
⋂
n∈N

(Cθ̄m × Vm) ∩Ds ⊂W s
loc(ζ; τ)×B. (2.53)

Note that since ψη(D) ⊂ D for all η then Ψn(ξ, x) ∈ Σ2 × D for all n ∈ N. On the other hand,
from (2.53) it follows that ψ−m

τ−1(ξ)
(x) ∈ B for all m ∈ N. So, Ψ−m(ξ, x) ∈ Σ2 × B for all m ∈ N.

Therefore, (ξ, x) ∈ Ds belongs in the maximal invariant set ΓΨ in Σ2 × D and we conclude the
proof of the proposition.

Observe that if ε→ 0 in the definition of ε-weak hyperbolic periodic atractor then the periodic
point p becomes in non-hyperbolic. Note that since in the special case with one-dimensional fiber
the covering property only needs of two maps, then it is not necessary the assumption that
the period n of p is sufficient large. In fact, it suffices n = 1. Hence, we can consider as limit
situation Φ = τ × id with τ : Σ2 → Σ2 and the identity map in a one-dimensional manifold.
In order to study perturbations of this maps is helpful to understood the dynamics of one-step
maps Ψ = τ n (ψ1, ψ2) with ψ1 and ψ2 close enough to the identity. This task can be reduce
to understood some dynamical property of IFS(ψ1, ψ2). In the next chapter we focus to study
iterated function system on dimension one generates by two maps close to the identity.
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2.5.2 A blender-horseshoe example: non-normally hyperbolic horseshoes

We will show again, using the theory developed in this chapter, that the non-normally hyperbolic
horseshoes introduced in the first chapter are blender-horseshoes. The following proposition, is
a slightly generalization of Proposition 1.12. Recall that we mean by a non-normally hyperbolic
horseshoes the embedded horseshoes introduced in §1.2.1. That is, a horseshoe for a locally con-
stant skew product diffeomorphism g on Rn+1 which is not contained in a hyperplane of the form
Rn × {t} for some t ∈ R. When g is not a locally constant skew product diffeomorphism but it is
conjugated to a symbolic skew product Ψ = τ n ψξ on Σk × I where I is a close real interval, a
horseshoe Γg is also said to be non-normally hyperbolic for g if there are pairwise disjoint C1-open
sets U1, . . .Uk of diffeomorphisms on I such that ψξ ∈ Ui if ξ0 = i for i = 1, . . . , k. Observe that the
restriction of Ψ to the corresponding invariant set ΓΨ via conjugation to Γg must be conjugated
to the Bernoulli shift of k symbols and ΓΨ cannot be contained in any subset of the form Σk×{t}
with t ∈ I.

Proposition 2.41. Let F : N → N be a C1-diffeomorphisms with a Smale horseshoe

ΛF =
⋂
n∈Z

Fn(U), where U ⊂ N is open set

and consider D an open set in a closed real interval I. Let g be a C1-diffeomorphism on N × I
close enough in the C1 topology to f = F × id on U × I such that

Γg =
⋂
n∈N

gn(U ×D)

is a non-normally hyperbolic Smale horseshoe for g. Then Γg is blender for g.

Proof. Since g is a C1-perturbation of f |ΛF×I , according to Proposition 2.1 there are a g-invariant
set ∆g in U×I homeomorphic to ΛF ×I and a symbolic locally α-Hölder skew product Φ = τnφξ
belongs to S2(I) such that g|∆g is conjugated to Φ. From the same proposition also it follows that
small C1-perturbations of g should be conjugated to locally α-Hölder skew products close to
Φ0 = τ × id. Notice that Γg ⊂ ∆g. Hence g|Γg is conjugated to Φ|ΓΦ

where

ΓΦ =
⋂
n∈Z

Φn(Σk ×D).

To prove that Γg is a blender for g it suffices to see that ΓΦ is a symbolic blender-horseshoe for Φ.

Since g is a C1-perturbation of f = F × id it follows that ∆g is a partial hyperbolic set for g.
That is, the tangent bundle ofN×I on ∆g decomposes into the dominating splitting Ess⊕Ec⊕Euu

where Ec is a one-dimensional bundle. On the other hand, since Γg is a transitive hyperbolic set
(it is a horseshoe) then TΓg(N × I) = Es⊕Eu and the dimension of stable bundle Es is constant.
For this reason, either Es = Ess⊕Ec or Es = Ess on Γg. To describe the following arguments we
choose Es = Ess ⊕ Ec and Eu = Euu on Γg.

By shrinking the size of D if necessary, we assume that the fiber maps φξ : D → D are
(λ, β)-Lipschitz with 0 < λ < β < 1 close to the identity map id : I → I which depend locally
α-Hölder continuously with respect to ξ. Since Γg is a non-normally hyperbolic horseshoe for g,
there are disjoint small C1-open sets Ui of diffeomorphisms on I such that φξ ∈ Ui if ξ0 = i for
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i = 1, 2. In order to prove that ΓΦ is a symbolic cs-blender-horseshoe for Φ = τ nφξ we will show
that the robust covering property (Remark 2.35) and the local constant condition (Remark 2.36)
in the proof of Theorem B are fulfilled. If the symbolic skew product Φ = τ nφξ satisfies this two
remarks then verifies the assertion of Theorem B and so, ΓΦ is a symbolic cs-blender-horseshoe.

The local constant condition is immediately satisfied since Φ = τ n φξ is close to Φ0 = τ n id.
Also this proximity implies the robust covering property. Indeed, since ΓΦ is a non-normally
hyperbolic horseshoe then there are fixed points (1̄, p) and (2̄, q) of Φ with p 6= q. Let us denote φ1

and φ2 the fiber maps φ1̄ and φ2̄ respectively. Note that since φ1 and φ2 are close to the identity,
if Kss denotes the (non-trivial) interval between p and q, then Kss = φ1(Kss) ∪ φ2(Kss). Since
Ui are disjoint neighborhoods of φi it follows that there exists an open interval B in Kss such
that B ⊂ ψ1(B) ∪ ψ2(B) for all ψi ∈ Ui for i = 1, 2. This implies Remark 2.36 in the proof of
Theorem B and concludes the proof of this proposition.



Iterated function systems

Some dynamical properties such as transitivity, minimality, density of periodic orbits, can be
also studied for iterated function systems (IFS). Blending regions are introduced as open sets
which are minimal sets for an IFS under small C1-perturbations. Duminy’s Lemma shows
examples of blending regions for an IFS generated by two maps on the real line close enough
to the identity. An extension of this lemma allows us to study the dynamics of IFS of generic
diffeomorphisms on the circle close enough to the identity. As in the Denjoy’s Theorem,
no invariant minimal Cantor sets appear under conditions of regularity in the IFS. In this
setting, it is characterized when S1 is a minimal set of an IFS and it is obtained an spectral
decomposition result about of the dynamic of the limit set of an IFS.

3.1 Preliminaries of IFS

Let φ1, . . . , φk be continuous selfmaps of a complete metric space X. The iterated function system,
(IFS for short) of these maps, denoted by IFS(φ1, . . . , φk), is the set of all finite forward composition
of these maps. That is, the semigroup generated by the family of maps φ1, . . . , φk

IFS(φ1, . . . , φk)
def
= {h : X → X : h = φin ◦ · · · ◦ φi1 , ij ∈ {1, . . . , k}} ∪ {id : X → X}.

In similar way it defines the IFS of maps φi : Di ⊂ X → X. In this case, the possible compositions
of φi’s depend on each point: φi(Di) is not necessarily a subset of Dj and so φj ◦φi is only defined
on Di∩φ−1

i (Dj). For simplicity, for the moment, we will consider IFS defined in the whole space X.

Because of the close relationship between IFS and one-step symbolic skew-product maps in-
troduced in the previous chapter, we will write IFS(Φ) = IFS(φ1, . . . , φk) meaning that the IFS is
generated by the family Φ = {φ1, . . . , φk} associated with the one-step map Φ = τ n (φ1, . . . , φk)

defined on Σk ×M .

Associated with the iterated function system IFS(Φ), we define the operator

GΦ(A)
def
= φ1(A) ∪ . . . ∪ φk(A)

on the subsets A ⊂ X. We define the GΦ-orbit of a point x ∈ X, also called orbit of x for IFS(Φ),
as the set of the form

OrbΦ(x)
def
= {GnΦ(x) : n ≥ 0} = {h(x) : h ∈ IFS(Φ)} ⊂ X.

The GΦ-orbit of a subset D ⊂ X is defined as the union of all its orbits. The next set of definitions
generalizes usual notions of dynamical systems for IFS. Before this, given h = φin ◦ · · · ◦ φi1 in
IFS(Φ) we denote by |h| the number of generators in this composition, i.e., |h| = n.
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Definition 3.1. Let Φ = {φ1, . . . , φk} be a family of selfmaps of X. A subset A ⊂ X is said to be

• invariant for IFS(Φ) if OrbΦ(x) ⊂ A for all x ∈ A;

• minimal for IFS(Φ) if for every x ∈ A and open set U ⊂ X which has non-empty intersection
with A, there exists h ∈ IFS(Φ) with h(x) ∈ U ;

• topologically transitive for IFS(Φ) if for any pair of open sets U, V ⊂ X which have non-
empty intersection with A, there exists h ∈ IFS(Φ) such that h(V ) ∩ U 6= ∅;

• topologically mixing for IFS(Φ) if for any pair of open sets U, V ⊂ X there exists n0 ∈ N
such that for every n ≥ n0 there is h ∈ IFS(Φ) with |h| = n such that h(V ) ∩ U 6= ∅.

The next result shows some typically equivalent definition for the above notions:

Proposition 3.1. Let Φ = {φ1, . . . , φk} be a family of selfmaps of X and consider A ⊂ X. Then

i) A is a minimal set for IFS(Φ) if and only if A ⊂ OrbΦ(x) for all x ∈ A,

ii) if A is minimal for IFS(Φ) then it is topologically transitive,

iii) if A is topologically mixing for IFS(Φ) then it is topologically transitive,

iv) if there is x ∈ A such that A ⊂ OrbΦ(x) then A is topologycally transitive for IFS(Φ),

v) assuming that X is separable and A with the restricted topology is Baire, it holds that
if A topologically transitive for IFS(Φ) then there is x ∈ A such that A ⊂ OrbΦ(x),

vi) assuming invertibility, and denoting Φ−1 = {φ−1
1 , . . . , φ−1

k } the inverse family, it holds that
if A is topologically transitive for IFS(Φ) then it is topologically transitive for IFS(Φ−1).

Proof. Item (i) is followed immediately from definition of a dense set. Items (ii)-(iv) are clear from
Definition 3.1. Similarly, the transitivity for the inverse IFS, i.e. item (vi), is immediately obtained
again from Definition 3.1. Finally, to prove the proposition only remains to show item (v).

Assume that X is a separable metric space. Hence, there is a numerable base of the restricted
topology to A whose open sets are Un = Vn ∩A where Vn is an open set in the topology of X. We
denote by

Orb−Φ(Vn ∩A) =
⋃

x∈Vn∩A
Orb−Φ(x),

where Orb−Φ(x) denotes the orbit of x for IFS(Φ−1). Firstly, observe that the negative orbit
Orb−Φ(Vn ∩ A) is dense in A. Indeed, given any non-empty set U ∩ A where U is an open set
of X, by the topological transitivity, there exists h ∈ IFS(Φ) such that h(U) ∩ Vn 6= ∅. Then
U ∩ h−1(Vn) is a non-empty set contained in U ∩Orb−Φ(Vn). Suppose now that A is Baire. Hence,
we obtain that Q = ∩n∈NOrb−Φ(Vn) is a dense set in A. Thus, for every x ∈ Q it follows that
x ∈ Orb−Φ(Vn) and hence Vn∩OrbΦ(x) 6= ∅ for all n ∈ N. Therefore, we have proved that the orbit
of x for IFS(Φ) is dense in A completing the proof of the proposition.

Notice that in ours definition of minimal set A ⊂ X for an IFS we do not impose that A needs
to be invariant for IFS(Φ). Consequently, every single point A = {x} ⊂ X and every subset of
a minimal subset for an IFS are minimal set for IFS(Φ). If we combine the notions of invariance
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and minimality, then we obtain that a closed subset A ⊂ X is invariant and minimal for IFS(Φ)

if and only if
A = OrbΦ(x) for all x ∈ A.

For short, we will say that A is a closed invariant minimal set for IFS(Φ) if it satisfies the above
equality. In this case, A is minimal regarding the inclusion, i.e., its only closed invariant subsets
for IFS(Φ) are the empty set and A itself.

Set Σ+
k = {1, . . . , k}N and let φi ∈ Hom(X) be homeomorphisms on X for i = 1, . . . , k. For

every n ≥ 1 and every σ = (σi)i∈N ∈ Σ+
k we will use the notation

φnσ
def
= φσn ◦ · · · ◦ φσ1 and φ−nσ

def
= (φnσ)−1 = φ−1

σ1
◦ · · · ◦ φ−1

σn .

Now, using this above notation, we can extend the definition of limit sets for IFS.

Definition 3.2 (Limit sets for IFS). Consider x ∈ X, Φ = {φ1, . . . , φk} ⊂ Hom(X) and σ ∈ Σ+
k .

We define the ω-limit set of x with respect to the sequence σ as the set

ωσ(x)
def
= {y ∈ X : there exists ni →∞ such that lim

i→∞
φniσ (x) = y}.

The union of the ω-limit sets of x for all sequence σ ∈ Σ+
k is called ω-limit set of x for IFS(Φ)

and we write this set as

ωΦ(x)
def
={y ∈ X : there exists σ ∈ Σ+

k and ni →∞ such that lim
i→∞

φniσ (x) = y}.

Finally, we define the forward or ω-limit of IFS(Φ) as

ω(IFS(Φ))
def
= cl

(
{y ∈ X : there exists x ∈ X such that y ∈ ωΦ(x)}

)
where cl denote the closure of a set.

Similarly, the backward or α-limit of IFS(Φ) is defined as α(IFS(Φ))
def
= ω(IFS(Φ−1)) where

Φ−1 = {φ−1
1 , . . . , φ−1

k }. From the backward and forward limit, we define the limit set of IFS(Φ) as

L(IFS(Φ))
def
= ω(IFS(Φ)) ∪ α(IFS(Φ)).

We denote by OrbΦ(x) ′ the set of accumulation points of OrbΦ(x). That is, the set of points
y ∈ X such that there exists a sequence (gn)n ⊂ IFS(Φ) satisfying that y = limn→∞ gn(x) and
gn(x) 6= y for all n ∈ N. Notice that the set of accumulation points is always a closed set. A
point x ∈ X is called periodic point for IFS(Φ) if there exists h ∈ IFS(Φ) with h 6= id such that
h(x) = x. In this case, we denote the set of periodic points by

Per(IFS(Φ))
def
= {x ∈ X : h(x) = x for some h ∈ IFS(Φ), h 6= id}.

Observe that P(Per(Φ)) = Per(IFS(Φ)) where Per(Φ) is the set of periodic points of the symbolic
skew-product Φ = τ n (φ1, . . . , φk) and P is the projection on the fiber space.

Definition 3.3. Let A be a subset of X such that A∩Per(IFS(Φ)) 6= ∅. We say that A is isolated
for IFS(Φ) if there exists an open set D of X such that A ⊂ D and Per(IFS(Φ)) ∩D ⊂ A.

The next lemma shows some properties and relations between the set of periodic points, the
ω-limit sets, the accumulation sets and the orbits of an IFS. This properties will be necessary for
the proof of some results in the later sections.
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Lemma 3.2. Consider a subset Φ = {φ1, . . . , φk} ⊂ Hom(X), a non-empty open set B ⊂ X and
a subset K of X. Then it holds that:

i) ωΦ(h(x)) ⊂ ωΦ(x) ⊂ OrbΦ(x) for all x ∈ X and for h ∈ IFS(Φ);

ii) if x ∈ Per(IFS(Φ)) then x ∈ ωΦ(x);

iii) if K = OrbΦ(x) for all x ∈ K then K = ωΦ(x) = ωΦ(x) for all x ∈ K;

iv) if K ⊂ OrbΦ(x) for all x ∈ X then K ⊂ ωΦ(x) for all x ∈ X;

v) if B ⊂ OrbΦ(x) for all x ∈ B then B ⊂ ωΦ(x) for all x ∈ B;

vi) OrbΦ(x) ′ = φ1(OrbΦ(x) ′ ) ∪ · · · ∪ φk(OrbΦ(x) ′ ) for all x ∈ X.

Proof. It is clear that by definition of ω-limit set of a point x ∈ X it holds that ωΦ(h(x)) ⊂ ωΦ(x)

for all h ∈ IFS(Φ). On the other hand, since

OrbΦ(x) = {y ∈ X : there exists (gn)n ⊂ IFS(Φ) such that y = lim
n→∞

gn(x)}

and we can rewrite the ω-limit set of x for IFS(Φ) in the form

ωΦ(x) = {y ∈ X : there exists (hn)n ⊂ IFS(Φ) \ {id} such that y = lim
n→∞

hn ◦ · · · ◦ h1(x)},

it follows that ωΦ(x) is a subset of the closure of the orbit of x for IFS(Φ). Therefore, we con-
clude (i). Item (ii) is immediately obtained from the definition of ω-limit set and periodic point
for an IFS.

According to the first item, to obtain (iii) it suffices to prove that K ⊂ ωΦ(x) for all x ∈ K. In
order to prove this, we fix x, y ∈ K and consider a sequence of positive real numbers εn = 1/n→ 0.
It is not hard to construct by induction a sequence (hn)n ⊂ IFS(Φ) \ {id} such that the distance
d(y, hn ◦ · · · ◦ h1(x)) between y and hn ◦ · · · ◦ h1(x) is less than εn. Indeed, since the orbit of x for
IFS(Φ) is dense in K, we find h1 ∈ IFS(Φ) with h1 6= id such that d(y, h1(x)) < ε1. Similarly, since
h1(x) ∈ OrbΦ(x) ⊂ K then the orbit of h1(x) for IFS(Φ) is dense in K and by the same density
argument we find h2 such that d(y, h2 ◦ h1(x)) < ε2. Argue inductively we obtain the desired
sequence (hn)n ⊂ IFS(Φ) \ {id}. Hence, y = limn→∞ hn ◦ · · · ◦ h1(x) and thus y ∈ ωΦ(x) for all
x, y ∈ K. This concludes (iii). A slight modification in this argue allows us to prove (iv) and (v).

We will now prove the last item. That is, we will show that OrbΦ(x) ′ is a selfsimilar set. Note
that φi(OrbΦ(x)′) ⊂ OrbΦ(x)′ for all i = 1, . . . , k. Indeed, if y is an accumulation point of the
orbit of x for IFS(Φ), then φi(y) is approximated by points of the form φi◦gn(x) ∈ OrbΦ(x) where
y = limn→∞ gn(x) and gn(x) 6= y for all n ∈ N. This implies that φi(y) is also an accumulation
point of OrbΦ(x) and so, we conclude one of the inclusions. In order to show the other inclusion
OrbΦ(x) ′ ⊂ φ1(OrbΦ(x) ′ ) ∪ · · · ∪ φk(OrbΦ(x) ′ ), we fix any y ∈ OrbΦ(x) ′. Hence there exists
(gn) ⊂ IFS(Φ) such that y = limn→∞ gn(x) and gn(x) 6= y for all n ∈ N. Since the semigroup
IFS(Φ) is finitely generated, taking a subsequence if necessary, we can assume that for some fixed
i ∈ {1, . . . , k} we have that gn = φi ◦ g̃n with g̃n ∈ IFS(Φ). Hence, φ−1

i (y) = limn→∞ g̃n(x) and
g̃n(y) 6= φ−1

i (y). Thus, since the accumulation set is a closed set, it holds that φ−1
i (y) ∈ OrbΦ(x)′.

This implies that y ∈ φi(OrbΦ(x)′) obtaining the desired inclusion and therefore (vi). The proof
of the lemma is now concluded.
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In what follows, X is a Riemannian manifold and φ1, . . . , φk are C1-diffeomorphisms of X.
Let Ψ = {ψ1, . . . , ψk} and Φ = {φ1, . . . , φk} be two subset of Diff1(X). We say that IFS(Ψ) is
C1-close to IFS(Φ) if ψi is close to φi in the C1-topology for i = 1, . . . , k. A set A ⊂ X is C1-
robustly minimal (topologically transitive) for IFS(Φ) if A is minimal (topologically transitive) for
any C1-close IFS(Ψ) to IFS(Φ). In the case of A = X, we also say that IFS(Φ) is C1-robustly
minimal (topologically transitive). Note that in this last case, A = X is an open set. With this
additional condition in the C1-robust minimality definition we obtained the notion of blending
region (see also Definition 2.22):

Definition 3.4 (Blending region). An open set B of X is called blending region for IFS(Φ) if

B ⊂ OrbΨ(x) for all x ∈ B and every IFS(Ψ) C1-close to IFS(Φ).

Blending regions can be constructed for contracting maps as in Section §2.3.1. In the next
section we will construct blending regions for not necessarily contracting IFS on the real line.

3.2 Blending region for IFS on the real line

We denotes the orientation preserving Cr-diffeomorphism on the real line by Diffr+(R). Note that
if f ∈ Diffr+(R) then Df(x)

def
= f ′(x) ≥ 0 for all x ∈ R, f(x) < f(y) if x < y and thus its only

periodic points are the fixed points.

Definition 3.5 (∗∗-intervals). Consider Φ = {f0, f1} ⊂ Diff1
+(R). Let [p, q] be an interval such

that Fix(fi) ∩ (p, q) = ∅ for i = 0, 1 and

[p, q] ⊂ f0([p, q]) ∪ f1([p, q]).

We say that [p, q] is a ∗∗-interval for IFS(Φ) and write K∗∗Φ = [p, q] with ∗∗ ∈ {ss, su} when p

and q satisfy additional properties (see Figure A):

• Kss
Φ attractor: p = f0(p) and q = f1(q) are both attractors and f0(q) 6= q, f1(p) 6= p,

• Ksu
Φ saddle: p and q are an attractor-repeller pair for the same map say f0. In this case we

ask that f1 > id in [p, q] and f1([p, q]) ∩ [p, q] 6= ∅.

A uu-interval (repeler), denoted by Kuu
Φ , is defined as ss-interval for IFS(f−1

0 , f−1
1 ).

In the Figure A we show an example of a ss-interval and of a su-interval. An example of
uu-interval is the inverse of a ss-interval. We will study the IFS(f0, f1) for f0 and f1 restricted
to a ∗∗-interval for ∗∗ ∈ {ss, su}. In the case of uu-intervals for f0 and f1 it follows the same
results for the IFS(f−1

0 , f−1
1 ). Ours goal in the next subsection is to prove that if f0 and f1 are

close enough to the identity then any ∗∗-interval for f0 and f1 with ∗∗ ∈ {ss, su} is a minimal
set for the IFS(f0, f1). Observe that Kss

Φ = f0(Kss
Φ ) ∪ f1(Kss

Φ ) where Kss
Φ is a ss-interval and

OrbΦ(x) ⊂ Kss
Φ for all x ∈ Kss

Φ . However the above equality does not follow for a su-interval. In
the case of a su-interval notice that one of the endpoint of the interval Ksu

Φ cannot have dense
orbit for the IFS. However, for unify notations, sometimes we say that an ∗∗-interval is minimal
for the IFS or we write that K∗∗Φ ⊂ OrbΦ(x) for all x ∈ K∗∗Φ for ∗∗ ∈ {ss, su}.
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(a) ss-interval

f1

f0

p q

(b) su-interval

f1

f0

p q

Fig. A: Examples of ∗∗-intervals

3.2.1 Duminy’s Lemma

The next result is a generalization of a lemma that is part of the proof of Duminy’s Theorem.
Dumniny’s Theorem is in an unpublished manuscript [Dum70] and it deals with the dynamics of
groups of diffeomorphisms on the circle. We will give more details of Duminy’s Theorem in the
next section (see Theorem 3.27 and [Nav11]). The following statement is slightly different from
the original one by Duminy, and include some improvements about the robustness and the density
of periodic points.

Theorem D (Duminy’s Lemma). Consider Φ = {f0, f1} ⊂ Diff2
+(R) and let K∗∗Φ be an ∗∗-interval

for IFS(Φ) with ∗∗ ∈ {ss, su}. There exists ε ≥ 0.17 such that if f0|K∗∗Φ , f1|K∗∗Φ are ε-close to the
identity in the C2-topology then there are open sets Ui in the C1-topology for i = 0, 1 such that
fi ∈ Ui and for every IFS(Ψ) where Ψ = {g0, g1} with gi ∈ Ui it holds

K∗∗Ψ ⊂ Per(IFS(Ψ)) and K∗∗Ψ ⊂ OrbΨ(x) for all x ∈ K∗∗Ψ .

Moreover, if the fixed points of f0 and f1 in K∗∗Φ are hyperbolic then fi ∈ Ui for i = 0, 1.

We infer from the above theorem the following corollary:

Corollary 3.3. If Φ = {f0, f1} ⊂ Diff2
+(R) are ε-close to the identity in the C2-topology where

ε > 0 is given in Theorem D, and their fixed points are hyperbolic, then every open set B contained
in a ∗∗-interval for IFS(Φ) with ∗∗ ∈ {ss, su} is a blending region for IFS(Φ).

Now, we will give here a proof of Theorem D which is slightly different from the original proof
due to Duminy’s. This different proof allows us to improve the result and it will be key to show
forthcoming theorems. We must to note that we will actually prove this theorem under more
general hypotheses. Namely:
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f1

f0

0 f1(0) f−1
0 f1(0)

A

Fig. B: Definition of first return map R : A→ A

Remark 3.4. Theorem D holds if f0 and f1 are in Diff1
+(R) such that, setting fk as the map

which has a fixed point in K∗∗Φ ,

(
1

2

inf Dfk(x)

sup |Dfk(x)− 1|

)1/4

> max
i=0,1

sup
Df−1

i (x)

Df−1
i (y)

where the supremum and infimum are taken in K∗∗Φ . It is easy to check that this condition is
equivalent to the existence of ε > 0 such that

|Dfk(x)− 1| < ε for all x ∈ K∗∗Φ and (1− ε)ε−1e−4C > 2

where C ≥ 0 is the largest distortion constant of f−1
0 and f−1

1 in K∗∗Φ , that is,

C = max
i=0,1

sup{ log
Df−1

i (x)

Df−1
i (y)

: x, y ∈ K∗∗Φ }.

For simplicity we assume that K∗∗Φ = [0, 1], f0(0) = 0 and f0 < id and f1 > id in (0, 1). Note
that from definition of ∗∗-intervals for ∗∗ ∈ {ss, su}, the overlap condition is verified, that is,
f0(K∗∗Φ ) ∩ f1(K∗∗Φ ) 6= ∅. This condition implies that A = (f1(0), f−1

0 (f1(0))] ⊂ [0, 1]. Next, we will
define a first return map R : A→ A.
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Creating a return map

For each x ∈ A let m(x) ≥ 1 be the smallest positive number such that f−m(x)
1 (x) 6∈ A and let

k(x) be the first time for which f−m(x)
1 (x) returns to A by iterations of f−1

0 . Then we can define
the first return map R in the following way

R : A→ A, R(x) = f
−k(x)
0 ◦ f−m(x)

1 (x)

Note that this map can also be given by R(x) = F k(x)+m(x)(x) for x ∈ A, where F : [0, 1]→ [0, 1]

is define by F = f−1
0 in [0, f1(0)] and F = f−1

1 in (f1(0), 1]. Therefore, for every x ∈ [0, 1] there is
a smallest non-negative number n(x) ≥ 0 such that Fn(x)(x) ∈ A and R can be extended to the
whole interval [0, 1] by taking

R : [0, 1]→ [0, 1], R(x) = F k+m+n(x),

where n = n(x), m = m(Fn(x)) and k = k(Fn(x)).

A point d ∈ A is said to be a discontinuity of R if R(d) = f−1
0 f1(0) or equivalently, if

d = f
m(d)
1 f

k(d)−1
0 f1(0). These points define a partition on A . In other to describe this partition we

have to consider two cases: f2
1 (0) 6∈ A and f2

1 (0) ∈ A. In the first case m(x) = 1 for all x ∈ A and
we write I0 = A. In the second case, consider m ∈ N such that fm1 f1(0) ∈ A, but fm+1

1 f1(0) 6∈ A.
Then f j1f1(0) for j = 1, 2, . . . ,m define a partition on A given by

I0 = (fm1 f1(0), f−1
0 f1(0)] and

Ii1 = (fm−i11 f1(0), fm+1−i1
1 f1(0)] for 0 < i1 ≤ m.

On the other hand,m(x) = m+1−i1 for each x ∈ Ii1 and f
−m(x)
1 (Ii1) = (0, f1(0)] for i1 = 0, . . . ,m.

At this point, both cases can be studied together assuming m ≥ 0. Finally, it will be useful to
prove the following lemma to note that, the sequence of points f j0f1(0), j ≥ 0, defines a partition
on the interval (0, f1(0)].

Lemma 3.5 (Return map). In the above hypothesis, there exist two families of respectively right-
closed pairwise disjoint intervals Ii1 ⊂ A and Ii1i2 ⊂ A, natural numbers mi1, mi1i2 and maps
hi1i2 ∈ IFS(f0, f1) with 0 ≤ i1 ≤ m for some m ≥ 0 and i2 ≥ 0 such that

i) Ii1i2 ⊂ Ii1 and Ii1 is contained in a fundamental domain of f1. Furthermore,

A =
m⋃
i1=0

Ii1 =
m⋃
i1=0

∞⋃
i2=0

Ii1i2 ,

ii) h−1
i1i2

= f
−mi1i2
0 ◦ f−mi11 , where mi1 = m+ 1− i1 and mi1i2+1 = mi1i2 + 1 with

mi10 = 1 if i1 > 0 and

m00 ≥ 1 such that fm00
0 (f1(0)) < f−m0

1 (f−1
0 (f1(0))) ≤ fm00−1

0 (f1(0)),

iii) R|Ii1i2 = h−1
i1i2

with h−1
00 (I00) ⊂ A and h−1

i1i2
(Ii1i2) = A if otherwise,

iv) if d ∈ A \ {f−1
0 (f1(0))} is an endpoint of Ii1i2 then it is a discontinuity of R and so, it is in

the orbit of 0 for IFS(f0, f1).
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I0Ii1Im

Im0 Ii1+10 Ii1i2+1 Ii1i2 Ii10 I00

h−1
i10h−1

i1i2h−1
m0

Fig. C: Infinitely many discontinuities of R

Proof. For each 0 < i1 ≤ m, set

di1i2
def
= fm+1−i1

1 ◦ f i20 (f1(0)) ∈ Ii1 for all i2 ≥ 0.

Note that di1` < di1i if ` > i and di1i2 → fm−i11 (f1(0)) when i2 goes to infinity. Moreover,
di10 = fm+1−i1

1 (f1(0)) is the right endpoint of the interval Ii1 . Hence

Ii1 =
⋃
i2≥0

Ii1i2 with Ii1i2
def
= (di1i2+1, di1i2 ] = fm+1−i1

1 ◦ f i2+1
0 (A).

For i1 = 0, we take c = f
−(m+1)
1 (f−1

0 (f1(0))) ∈ (0, f1(0)]. As 0 is the unique attractor of f0 in
the interval [0, f1(0)], there is j ∈ N such that f j0 (f1(0)) < c ≤ f j−1

0 (f1(0)). So, we denote

d00
def
= fm+1

1 (c) = f−1
0 (f1(0)) ∈ I0 and

d0i2
def
= fm+1

1 ◦ f j+i20 (f1(0)) ∈ I0 for all i2 > 0.

Note that d0` < d0i if ` > i and d0i2 → fm1 (f1(0)) when i2 goes to infinity. Hence

I0 =
⋃
i2≥0

I0i2 with I0i2
def
= (d0i2+1, d0i2 ].

Note that

I00 = fm+1
1 ◦ f j0 ((f1(0), f−j0 (c)]) and I0i2 = fm+1

1 ◦ f j+i20 (A) if i2 > 0.
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Thus, taking the natural numbers mi1 = m + 1 − ii, m0i2 = j + i2 and mi1i2 = i2 + 1 if i1 > 0,
and writing hi1i2 = f

mi1
1 ◦ fmi1i20 it follows that

R(x) = f
−mi1i2
0 ◦ f−mi11 (x) = h−1

i1i1
(x) if x ∈ Ii1i2 ,

I00 = h00((f1(0), f−j0 (c)]) and Ii1i2 = hi1i2(A) if otherwise.

This concludes the items (ii) and (iii) in the lemma. The items (i) and (iv) are followed from the
construction of the intervals Ii1i2 .

Estimation of the derivative for the return map

Let f be a C1-map of a compact interval I such that Df(x) 6= 0 for all x ∈ I. The non-negative
number

Dist(f, I) = sup
x,y∈I

log

∣∣∣∣Df(x)

Df(y)

∣∣∣∣
is called distortion constant of f in I. Note that Dist(f−1, I) = Dist(f, f−1(I)).

The main result in this step is the following estimate of the derivative for the return map:

Proposition 3.6. Let C > 0 be the largest distortion constant of f−1
0 and f−1

1 in [0, f0f1(0)] and
[f1(0), 1] respectively. Consider ε > 0 such that |Df0(x)− 1| < ε for all x ∈ (0, 1). Then

R′(x) ≥ ε−1e−2C if x ∈
m⋃
i1=0

∞⋃
i2=1

Ii1i2 ,

R′(x) ≥ 1

2
(1− ε)ε−1e−4C if x ∈ I00.

In order to estimate the derivative of the map h−1
i1i2

on the interval Ii1i2 we would need
a bounded distortion estimate. The following standard lemma gives some condition to obtain
bounded distortion for the iterates of a map f . Here, we denote by |J | the length of the any
interval J .

Lemma 3.7. Let f be a C1-map of a compact interval I ⊂ [0, 1] such that Df(x) 6= 0 for all
x ∈ I and the map x ∈ I 7→ log |Df(x)| ∈ R has Lipschitz constant C. Then

Dist(fn, I) ≤ C
n−1∑
i=0

|f i(I)|.

In particular, if I, f(I), . . . , fn−1(I) are disjoints intervals in [0, 1], then Dist(fn, I) ≤ C and so
for every pair of intervals J and L contained in I

|J |
|L|

e−C ≤ |f
k(J)|
|fk(L)|

≤ eC |J |
|L|

for all 0 ≤ k ≤ n.

We omit here the proof of this general lemma since it is similar to the proof we will give to
obtain the bounded distortion estimate of h−1

i1i2
in Ii1i2 (see Lemma 3.9). Before that, it is necessary

to show the disjointness of some intervals:
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Lemma 3.8 (Disjointness). Let i1i2 be a fixed multi-index. Then

U`
def
= f−`1 (Ii1i2) for 0 ≤ ` < mi1 and

Ui1,`
def
= f−`0 ◦ f

−mi1
1 (Ii1i2) for 0 ≤ ` < mi1i2

are right-closed pairwise disjoint intervals in [0, 1].

Proof. Note that Ii1i2 ⊂ Ii1 where Ii1 is contained in a fundamental domain of f1. Thus U` are
pairwise disjoint intervals. Also, from Lemma 3.5, it follows

f
−mi1i2
0 ◦ f−mi11 (Ii1i2) = h−1

i1i2
(Ii1i2) ⊂ A.

Hence f−mi11 (Ii1i2) ⊂ f
mi1i2
0 (A). Since A is a fundamental domain of f0 then f−mi11 (Ii1i2) is also

contained in a fundamental domain of f0 and thus Ui1,` are pairwise disjoint intervals. On the
other hand, since mi1 and mi1i2 are, respectively, the first time at which the points of Ii1 left A
by iterations of f−1

1 and the first time at which the points of f−mi11 (Ii1i2) come back to A by
iterations of f−1

0 then

f−`1 (Ii1i1) ⊂ A for 0 ≤ ` < mi1 and

f−`0 ◦ f
−mi1
1 (Ii1i2) ⊂ (0, f1(0)] for 0 ≤ ` < mi1i2 .

Therefore U` for 0 ≤ ` < mi1 and Ui1,` for 0 ≤ ` < mi1i2 are pairwise disjoint intervals.

From now on, C0 and C1 denotes the distortion constant of f−1
0 and f−1

1 in [0, f1(0)] and
[f1(0), 1] respectively. For simplicity we will just say that C0 and C1 are the distortion constant of
f−1

0 and f−1
1 respectively omitting the intervals where these are calculated. Also, we will denote

by C > 0 the largest of these distortion constant. That is, C = max{C0, C1} > 0.

Lemma 3.9 (Distortion). Let C > 0 be the largest distortion constant of f−1
0 and f−1

1 . Then

Dist(h−1
i1i2

, Ii1i2) ≤ C and Dist(h−1
i1i2+1, Ii1i2) ≤ 2C.

Consequently, for every pair of intervals J and L contained in Ii1i2

|J |
|L|

e−C ≤
|h−1
i1i2

(J)|
|h−1
i1i2

(L)|
≤ eC |J |

|L|
and

|J |
|L|

e−2C ≤
|h−1
i1i2+1(J)|
|h−1
i1i2+1(L)|

≤ e2C |J |
|L|

.

Moreover, if I = Ii1i2+1 ∪ Ii1i2 then

|h−1
i1i2+1(I)|
|I|

e−3C ≤ Dh−1
i1i2+1(z) ≤ e3C

|h−1
i1i2+1(I)|
|I|

for all z ∈ I.

Proof. Recall that h−1
i1i2

= f
−mi1i2
0 ◦f−mi11 . Then Dh−1

i1i2
(x) = Df

−mi1i2
0 (f

−mi1
1 (x))Df

−mi1
1 (x) and,

from chain rule

Dh−1
i1i2

(x) =

mi1i2−1∏
`=0

Df−1
0 (f−`0 ◦ f

−mi1
1 (x)) ·

mi1−1∏
`=0

Df−1
1 (f−`1 (x)).
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Using the distortion control of f0 and f1 we obtain that for every x, y ∈ Ii1i2

| log
Dh−1

i1i2
(x)

Dh−1
i1i2

(y)
| = | logDh−1

i1i2
(x)− logDh−1

i1i2
(y)|

≤ C
mi1i2−1∑
`=0

|f−`0 ◦ f
−mi1
1 (x)− f−`0 ◦ f

−mi1
1 (y)|+ C

mi1−1∑
`=0

|f−`1 (x)− f−`1 (y)|

≤ C
(mi1i2−1∑

`=0

|Ui1,`|+
mi1−1∑
`=0

|U`|
)
.

Similarly, since mi1i2+1 = mi1i2 + 1, denoting Ui1,mi1i2 = f
−mi1i2
0 ◦ f−mi11 (Ii1i2),

| log
Dh−1

i1i2+1(x)

Dh−1
i1i2+1(y)

| ≤ C
mi1i2+1−1∑

`=0

|Ui1,`|+ C

mi1−1∑
`=0

|U`|

≤ C
(mi1i2−1∑

`=0

|Ui1,`|+
mi1−1∑
`=0

|U`|
)

+ C |Ui1,mi1i2 |.

Note that Ui1,mi1i2 = h−1
i1i2

(Ii1i2) ⊂ A. Finally, the disjointness of U`, 0 ≤ ` < mi1 and Ui1,`,
0 ≤ ` < mi1i2 showed in Lemma 3.8 implies that

| log
Dh−1

i1i2
(x)

Dh−1
i1i2

(y)
| ≤ C and | log

Dh−1
i1i2+1(x)

Dh−1
i1i2+1(y)

| ≤ 2C. (3.1)

From here it follows the first part of lemma. To conclude the lema, we will show the last inequality.
Let di1i2 = fm1

0 ◦ fmi1i21 (f1(0)) be the right endpoint of Ii1i2+1 and the left endpoint of Ii1i2 . Then
for all x, y ∈ I = Ii1i2+1 ∪ Ii1i2

Dh−1
i1i2+1(x)

Dh−1
i1i2+1(y)

=
Dh−1

i1i2+1(x)

Dh−1
i1i2+1(di1i2+1)

·
Dh−1

i1i2+1(di1i2+1)

Dh−1
i1i2+1(y)

.

From this, and using the estimates (3.1) it follows that

e−3C ≤
Dh−1

i1i2+1(x)

Dh−1
i1i2+1(y)

≤ e3C for all x, y ∈ I. (3.2)

Now, let J and L be a pair of intervals in I. By Mean Value Theorem, there is x ∈ J and y ∈ L
such that |h−1

i1i2+1(J)|/|h−1
i1i2+1(L)| = Dh−1

i1i2+1(x) · |J |/(Dh−1
i1i2+1(y) · |L|). From this, and using the

inequality (3.2) it follows that

|J |
|L|

e−3C ≤
|h−1
i1i2+1(J)|
|h−1
i1i2+1(L)|

≤ e3C |J |
|L|

. (3.3)

Finally, given z ∈ I, we consider any interval J ⊂ I such that z ∈ J . Then from (3.3) for the pair
of interval J and L = I we obtain that

|h−1
i1i2+1(I)|
|I|

e−3C ≤
|h−1
i1i2+1(J)|
|J |

≤ e3C
|h−1
i1i2+1(I)|
|I|

.

Taking the length of J goes to zero we follow the desire inequality and conclude the lemma.
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We will need the following lemma to obtain an estimate of the derivative of h−1
i1i2

on the
interval Ii1i1 . This lemma consists of a lower bounded distortion estimate between the length of
Ii1 and Ii1i2 .

Lemma 3.10 (Compared intervals). Let C1 > 0 be the distortion constant of f−1
1 . Consider ε > 0

such that |Df0(x)− 1| < ε for all x ∈ (0, 1). Then |Ii1 |/|Ii1i2 | > ε−1e−C1 for all multi-index i1i2.

Proof. Recall that Ii1 is contained in a fundamental domain of f1. Therefore f−i1 (Ii1) for i ≥ 0 are
disjoints intervals in [0, 1]. From Lemma 3.7 it follows that

|Ii1 |/|Ii1i2 | ≥ e−C1 |f−mi11 (Ii1)|/|f−mi11 (Ii1i2)|.

Note that f−mi11 (Ii1k) = f
mi1k
0 (A) for all i1k 6= 00. By construction in Lemma 3.5,

I00 = (d01, d00] = (fm0
1 fm01

0 f1(0), f−1
0 f1(0)]

and thus, f−m0
1 (I00) = (fm01

0 f1(0), f−m0
1 f−1

0 f1(0)]. Then, since mi1k+1 = mi1k+1 and Ii1 = ∪Ii1k
it follows that

f
−mi1
1 (Ii1) =

∞⋃
k=0

f
−mi1
1 (Ii1k) =

∞⋃
k=1

f
mi1k
0 (A) ∪ f−mi11 (Ii10) = (0, f

mi10

0 f−1
0 f1(0)].

Therefore, since 0 is an attractor of f0 it follows that f−mi11 (Ii1) ⊃ (0, f
mi1k
0 (f−1

0 (f1(0)))] for all
k ≥ 0. From this,

|f−mi11 (Ii1)|
|f−mi11 (Ii1i2)|

≥ f
mi1i2−1
0 f1(0)

|fmi1i20 f1(0)− fmi1i2−1
0 f1(0)|

.

Since 0 is a fixed point of f0 then from Mean Value Theorem we can write fmi1i20 (f1(0)) =

Df0(ξ) · fmi1i2−1
0 (f1(0)) for some ξ. Now, from the assumption we get

|Ii1 |
|Ii1i2 |

≥ e−C1
f
mi1i2−1
0 f1(0)

f
mi1i2−1
0 (f1(0)) · |Df0(ξ)− 1|

> ε−1e−C1 .

Therefore, the proof of the lemma is completed.

Now, we are ready to obtain the estimation desired for the return map in Proposition 3.6.

Proof of Proposition 3.6. Let x ∈ A. Without loss of generality, we assume that x is not a discon-
tinuity point of R. If x is a discontinuity, the first return map only has lateral derivative on this
point. A similar argument allows to estimate a bound for its lateral derivative. Hence, since x is
not a discontinuity, we find η0 > 0 and a unique interval Ii1i2 such that for every 0 < η ≤ η0, the
interval J = (x− η, x+ η) satisfies that J ⊂ Ii1i2 . Notice that R(J) = h−1

i1i2
(J).

Suppose that i1i2 6= 00. Then h−1
i1i2

(Ii1i2) = A ⊃ Ii1 ⊃ Ii1i2 . From Lemma 3.9 we have that

|R(J)| ≥ e−C
|h−1
i1i2

(Ii1i2)|
|Ii1i2 |

|J | ≥ e−C |Ii1 |
|Ii1i2 |

|J |.

By Lemma 3.10 and since C > 0 is the largest distortion constant of f−1
0 and f−1

1 then it holds
|R(J)| > ε−1e−2C |J |. If η → 0 (and so J goes to x) then R′(x) = Dh−1

i1i2
(x) ≥ ε−1e−2C for all

x ∈ Ii1i2 with i1i2 6= 00.
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For the case i1i2 = 00, recalling that mi1i2+1 = mi1i2 + 1 it follows that

h−1
00 = f−m00

0 ◦ f−m0
1 = f0 ◦ f−m01

0 ◦ f−m0
1 = f0 ◦ h−1

01 .

Then, by the Mean Value Theorem, there are ξ ∈ h−1
01 (J) and ζ ∈ J such that

|R(J)| = |Df0(ξ)||Dh−1
01 (ζ)||J | > (1− ε)|Dh−1

01 (ζ)||J |.

In the previous case, we estimate the derivative of h−1
01 on the interval I01. As ζ ∈ J ⊂ I00, we

need again to estimate Dh−1
01 but now on the interval I00. To do this, we will use the estimate

of Dh−1
01 on the I = I01 ∪ I00 obtained in Lemma 3.9. That is, Dh−1

01 (ζ) ≥ e−3C |h−1
01 (I)|/|I|. As

h−1
01 (I) ⊃ A ⊃ I0 then |h−1

01 (I)| ≥ |I0|. Then, by Lemma 3.10, noting again that C > 0 is the
largest distortion constant of f−1

0 and f−1
1 , we see that

|h−1
01 (I)|
|I|

≥ |I0|
|I|

=
( |I01|
|I0|

+
|I00|
|I0|

)−1
>

1

2
ε−1e−C .

Finally, |R(J)| > 1
2(1− ε)ε−1e−4C |J |. Therefore, if η → 0 (and so J goes to x) then it holds that

R′(x) = Dh−1
00 (x) ≥ (1− ε)ε−1e−4C/2 for all x ∈ I00 and we conclude the proposition.

End of the proof of Duminy’s Lemma for IFS(Φ)

Consider Φ = {f0, f1} ⊂ Diff2
+(R) and let K∗∗Φ be an ∗∗-interval for IFS(Φ) with ∗∗ ∈ {ss, su}.

Then, we are now ready to prove Duminy’s Lemma for IFS(Φ), that is, the first part of Theorem D.
Namely, we will prove that there exists ε > 0 such that if dC2(fi|K∗∗Φ , id) < ε for i = 0, 1 then

K∗∗Φ ⊂ Per(IFS(Φ)) and K∗∗Φ ⊂ OrbΦ(x) for all x ∈ K∗∗Φ . (3.4)

Note that without losing of generality, and for simplicity we have scaled the ∗∗-interval assuming
that K∗∗Φ = [0, 1], f0(0) = 0 and f0 < id and f1 > id in (0, 1). The first simplification to prove the
minimality property in (3.4), it is note that it is enough to show that the orbit of 0 for IFS(Φ) is
dense in the interval [0, 1].

Lemma 3.11. Suppose that [0, 1] ⊂ OrbΦ(0). Then [0, 1] ⊂ OrbΦ(x) for all x ∈ [0, 1].

Proof. Consider x ∈ [0, 1] and V any open set in [0, 1]. From the density of the GΦ-orbit of 0, there
is h ∈ IFS(Φ) such that h(0) ∈ V . Since h is a continuous map and 0 is a global attractor point of
f0 in [0, 1], then exists ` ∈ N such that f `0(x) is close enough of 0 such that h ◦ f `0(x) ∈ V . Hence,
the orbit of x for IFS(Φ) is dense in [0, 1] and we conclude the proof of the lemma.

Since we are assuming that f0 and f1 are C2-invertible maps (close to the identity) then the
distortion constants of f−1

0 and f−1
1 can be written

C0 = max
x∈[0,f1(0)]

∣∣∣∣D2f−1
0 (x)

Df−1
0 (x)

∣∣∣∣ > 0, and C1 = max
x∈[f1(0),1]

∣∣∣∣D2f−1
1 (x)

Df−1
1 (x)

∣∣∣∣ > 0.

Note that |D2f−1
i (x)|/|Df−1

i (x)| = |D2fi(f
−1
i (x)))|/|Dfi(f−1

i (x))| and so C0 and C1 are also the
distortion constant of f0 and f1 in [0, f−1

0 f1(0)] and [0, 1] respectively. Let C = max{C0, C1} > 0.
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Remark 3.12. If ε > 0 is such that f0 and f1 are ε-close to the identity in the C2-topology then
0 < C < ε(1− ε)−1. Thus, for 0 < ε ≤ 0.175, from Proposition 3.6 it follows that

R′(x) ≥ 1

2
(1− ε)ε−1e−4ε(1−ε)−1

> 1 for all x ∈ A.

That is, R is an expanding return map over the fundamental domain A.

Now, we will prove (3.4). That is, the Duminy’s Lemma for the IFS generated by Φ = {f0, f1}
(see Theorem D). Later, we will prove the robustness of these assertions under C1-perturbations
as Theorem D states.

Proof of Duminy’s Lemma for IFS(Φ). Recall that the first return map R : A → A can be ex-
tended to the interval [0, 1]. In particular, this implies that for any interval I ⊂ [0, 1], there exists
h ∈ IFS(Φ) such that h−1(I) ∩ A 6= ∅. From Remark 3.12, for every 0 < ε ≤ 0.175, the return
map R is expanding map in A. Thus, there is n ∈ N such that Rn(h−1(I) ∩ A) contains some
discontinuity of R. Recall that the discontinuities d ∈ A are points in the orbit of 0 for IFS(Φ),
i.e., d = fm1 ◦ f

k−1
0 (f1(0)) for some m ≥ 1 and k ≥ 1. Then, one has h ◦ fm1 ◦ f

k−1
0 ◦ f1(0) ∈ I.

Therefore, the orbit of 0 for IFS(Φ) is dense. Finally, from Lemma 3.11 we get

[0, 1] ⊂ OrbΦ(x) for all x ∈ [0, 1].

Now, given x ∈ [0, 1] we will show that x ∈ Per(IFS(Φ)). We will use that 0 is a global attractor
for f0 whose orbit for IFS(Φ) is dense in [0, 1]. So, let I be any open interval such that x ∈ I. From
the density of the orbit of 0, there is h ∈ IFS(Φ) such that h(0) ∈ I. Since h is a continuous map
there is δ > 0 such that h((−δ, δ)) ⊂ I. Using now that 0 is a global attractor point of f0 then
there is ` ≥ 0 such that f `0(I) ⊂ (−δ, δ). Then h ◦ f `0(I) ⊂ I. By Brouwer’s Fixed Point Theorem,
h ◦ f `0 has a fixed point in I and thus I ∩ Per(IFS(Φ)) 6= ∅. This implies the [0, 1] ⊂ Per(IFS(Φ))

and the proof of the theorem for IFS(Φ) is concluded.

Notice that the density of periodic points is a consequence of the transitivity property of the
global attractor of the map f0 for IFS(Φ). Therefore, this density property is C1-robust if the
transitivity property of the global attractor of f0 for IFS(Φ) is C1-robust. The next result yields
the robustness of K∗∗Φ ⊂ OrbΦ(0) under C1-perturbations of f0 and f1.

Theorem 3.13. Let Φ = {φ1, . . . , φk} ⊂ Diff1(M). Suppose that there exist n ∈ N, non-empty
bounded open sets B, Bi and maps hi ∈ IFS(Φ) for i = 1, . . . , n such that

i) covering property: B ⊂ B1 ∪ · · · ∪Bn with h−1
i (Bi) ⊂ B and the restriction of h−1

i to Bi is
an expanding map for i = 1, . . . , n.

ii) density property: there are a point p ∈M and ` ∈ {1, . . . , k} such that B ⊂ OrbΦ(p) and p
is a hyperbolic fixed point of φ`.

Then, there is C1-neighborhood Ui of φi such that for every IFS(Ψ) with Ψ = {ψ1, . . . , ψk} and
ψi ∈ Ui for i = 1, . . . , k it holds B ⊂ OrbΨ(pΨ), where pΨ is the continuation point of p for ψ`.
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Let IFS(φ1, . . . , φk) be an iterated function system satisfying the covering property (i). Since
h−1
i restricted to Bi is an expanding map then there exists κ > 1 such that

κ ‖x− y‖ < ‖h−1
i (x)− h−1

i (y)‖

for all x, y ∈ Bi and for each i = 1, . . . , n. Furthermore, this inequality is persistent:

Remark 3.14 (Choice of perturbation I). There are C1-neighborhoods U1
i of φi such that for every

IFS(ψ1, . . . , ψk) with ψi ∈ U1
i for i = 1, . . . , k it holds that there are maps h̃i ∈ IFS(ψ1, . . . , ψk)

for i = 1, . . . , n such that h̃−1
i (Bi) ⊂ B and h̃−1

i |Bi is expanding with expansion at least κ > 1.

Recall that given an open covering of a compact set X of a metric space there is a constant
L > 0, called Lebesgue number of the covering, such that every subset of X with diameter less
than L is contained in some open set of the covering. Let L be the Lebesgue number of the
open cover in the assumption of covering property (i) and suppose that there is a hyperbolic
fixed point p ∈ M of some φ` such that B ⊂ OrbΦ(p). Since the GΦ-orbit of p is dense in B,
there exists m ∈ N and maps gi ∈ IFS(φ1, . . . , φk) for i = 1, . . . ,m such that the set of point
{gi(p) : i = 1, . . . ,m} is L/3-dense in B. That is, for every open ball V in B of radius greater
than L/3 there is i ∈ {1, . . . ,m} such that gi(p) ∈ V . Thus, we obtain the following remak:

Remark 3.15 (Choice of perturbation II). There are C1-neighborhoods U2
i of φi such that for ev-

ery IFS(ψ1, . . . , ψk) with ψi ∈ U2
i for i = 1, . . . , k it holds that there are maps g̃i ∈ IFS(ψ1, . . . , ψk)

for i = 1, . . . ,m such that the set of point {g̃i(pΨ) : i = 1, . . . ,m} is L/3-dense in B where pΨ is
the continuation point of p for ψ`.

In order to prove the above theorem we will show the following lemma:

Lemma 3.16. Consider 0 < r < L/2 and x ∈ B such that B(x, r) ⊂ B. Then, for every
IFS(ψ1, . . . , ψk) with ψi ∈ U1

i for i = 1, . . . , k there is h̃ ∈ IFS(ψ1, . . . , ψk) such that

h̃−1
(
B(x, r)

)
⊂ B, and diam

(
h̃−1

(
B(x, r)

))
> L.

Proof. Let IFS(ψ1, . . . , ψk) be an iterated function system with ψi ∈ U1
i . Since r < L/2 and L is

the Lebesgue number of the open cover then B(x, r) ⊂ Bi1 for some i1 ∈ {1, . . . , k}. According
to Remark 3.14, it follows that there is h̃i1 ∈ IFS(ψ1, . . . , ψk) such that h̃−1

i1
(B(x, r)) ⊂ B and

diam
(
h̃−1
i1

(B(x, r))
)
≥ 2κr. If κr ≤ L/2, then we find i2 ∈ {1, . . . , k} such that h̃−1

i1
(B(x, r)) ⊂ Bi2

and again from Remark 3.14, there exists h̃i2 ∈ IFS(Ψ) such that

h̃−1
i2
◦ h̃−1

i1
(B(x, r)) ⊂ B and diam

(
h̃−1
i2
◦ h̃−1

i1
(B(x, r))

)
≥ κdiam

(
h̃−1
i1

(B(x, r))
)
≥ 2κ2r.

Since κ > 1, there exists m ∈ N such that κmr > L/2. Thus, by repeating the above proce-
dure m times, we find h̃ = h̃i1 ◦ · · · ◦ h̃im ∈ IFS(ψ1, . . . , ψk) such that h̃−1(B(x, r)) ⊂ B, and
diam(h̃−1(B(x, r))) ≥ 2κmr > L. This concludes the proof of the lemma.

Proof of Theorem 3.13. We will take the C1-neighborhoods Ui of φi given by Ui = U1
i ∩U2

i for all
i = 1, . . . , k. Consider x ∈ B and let r > 0 be any positive number such that B(x, r) ⊂ B. Let
IFS(Ψ) be an iterated function system with Ψ = {ψ1, . . . , ψk} and ψi ∈ Ui for i = 1, . . . , k. To
prove the theorem we need to show that there is ψ ∈ IFS(Ψ) such that ψ(pΨ) ∈ B(x, r).
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By Remark 3.15, if r > L/3 then there exists g̃i ∈ IFS(Ψ) such that g̃i(pΨ) ∈ B(x, r). Therefore,
in this case, it is enough to take ψ = g̃i. If 0 < r ≤ L/3 < L/2 then from Lemma 3.16 there is
h̃ ∈ IFS(ψ1, . . . , ψk) such that h̃−1(B(x, r)) ⊂ B and diam(h̃−1

(
B(x, r))) > L. This implies that

there are z ∈ h̃−1(B(x, r)) and a ρ > L/3 such that B(z, ρ) ⊂ h̃−1(B(x, r)) ⊂ B. Again from
Remark 3.15 there exists g̃i ∈ IFS(Ψ) such that g̃i(pΨ) ∈ B(z, ρ). Hence, for ψ = h̃ ◦ g̃i ∈ IFS(Ψ)

it follows that ψ(pΨ) ∈ B(x, r). Therefore,

B ⊂ OrbΨ(pΨ) for all IFS(Ψ) C1-close enough to IFS(Φ)

and the proof of the theorem is completed.

In the next subsection we will show that IFS(Φ) satisfies the assumptions in Theorem 3.13
and thus it follows the C1-robustness assertions in Theorem D.

Robustness of the minimality property and density of periodic points

Consider Φ = {f0, f1} ⊂ Diff2
+(R) and let K∗∗Φ be an ∗∗-interval for IFS(Φ) with ∗∗ ∈ {ss, su}.

If f0 and f1 are in the assumptions of Theorem D then we have proved that K∗∗Φ ⊂ OrbΦ(x) for
all x ∈ K∗∗Φ . Note that, at least one of the endpoints of K∗∗Φ is an global attracting fixed point of
either f0 or f1. Thus, the GΦ-orbit of this endpoint is dense in any open interval contained in K∗∗Φ .
In particular, this implies the density property in Theorem 3.13. In what follows, we will show
that also the covering property is satisfied: there are n ∈ N, non-empty bounded open intervals B,
Bi ⊂ K∗∗Φ and maps hi ∈ IFS(Φ) such that B ⊂ B0∪ . . .∪Bn with h−1

i (Bi) ⊂ B and Dh−1
i (x) > 1

for all x ∈ Bi and for i = 0, . . . , n.

Recall that we had show the Duminy’s Lemma for IFS(Φ) constructing an expanding first
return map R over a fundamental domain A = (f1(0), f−1

0 f1(0)] of f0. As shown in Figure C,
this return map has infinite expanding branches or discontinuities. In the following lemma, we
will show that generically we can define a new expanding return map R̃ over A with only a finite
number of discontinuities as shown in Figure D.

Lemma 3.17. Consider f0, f1 in Diff1
+(R) and let A = (fj(b), b] be a fundamental domain of fj

for some j ∈ {0, 1}. Suppose that there are ε > 0, a families of maps hi ∈ IFS(f0, f1) and pairwise
disjoint right-closed intervals Ii for i ≥ 0 such that

(a) A = I0 ∪ . . . ∪ In ∪ . . ., with b ∈ I0 and h−1
i (Ii) ⊂ A for all i ≥ 0,

(b) h0 = h ◦ fmj with m ≥ 1 and h ∈ IFS(f0, f1),

(c) 1− ε < Dfj(b) < 1 + ε and Dh−1
i (x) > 1 for all x ∈ Ii and i ≥ 0 with Dh−1

0 (b) > 1 + ε.

Then there exists an interval A∗ = (a∗, b∗], maps gi ∈ IFS(f0, f1) and close intervals Ji = [ti+1, ti]

for i = 0, . . . ,M with a∗ = tM+1 < tM < . . . < t1 < t0 = b∗ such that

i) A ⊂ A∗ = J0 ∪ . . . ∪ JM ,

ii) g−1
i (Ji) ⊂ A∗ for all i = 0, . . . ,M with g−1

0 (b∗), g−1
M (a∗) ∈ intA∗, and

iii) Dg−1
i (x) > 1 for all x ∈ Ji and every i = 0, . . . ,M .

Moreover, with the aditional generic condiction h−1
0 (b) ∈ intA it follows A∗ = A.
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Proof. Let d ∈ A be an accumulation point of endpoints of intervals Ii. Hence, since A is union
of pairwise right-closed intervals Ii, then there exists i > 0 such that d is the right-endpoint of Ii.
If h−1

i (d) ∈ intA then, as h−1
i is an expanding map, there is a closed interval J̃ such that d ∈ J̃ ,

h−1
i (J̃) ⊂ A and Dh−1

i (x) > 1 for all x ∈ J̃ . So, we replace an infinite number of expanding by
taking g−1 = h−1

i on J = Ii ∪ J̃ . Let us suppose that h−1
i (d) 6∈ intA, that is, h−1

i (d) = b. Set
g = hi ◦ h0 ∈ IFS(f0, f1). Hence g−1(d) = h−1

0 (b) ∈ A and

Dg−1(d) = Dh−1
0 (b)Dh−1

i (d) > (1 + ε) > 1.

Firstly, we assume the generic condition h−1
0 (b) ∈ intA and we will prove the lemma for

A∗ = A. In this case, by continuity we find a closed interval J such that d ∈ int J , g−1(J) ⊂ A

and Dg−1(x) > 1 for all x ∈ J . Thus, again we replace an infinite number of expanding branches
defined on intervals Ii by the expanding branch g on J . This process lets remove all of accumulating
points of endpoints of intervals Ii in A. Therefore, now, the only point accumulated by endpoints
of these intervals could be fj(b). Relabeling the intervals if necessary we suppose fj(b) is the
only point in such a condition and we will apply the above argument once more. Let us take
g = fj ◦ h0 ∈ IFS(f0, f1) then g−1(fj(b)) = h−1

0 (b) ∈ intA and from assumption (c)

Dg−1(fj(b)) = Dh−1
0 (b)Df−1

j (fj(b)) > (1 + ε)(1 + ε)−1 = 1.

Hence, we find a closed interval J with fj(b) ∈ J such that g−1(J) ⊂ A and Dg−1(x) > 1 for all
x ∈ J . So, we obtain that there are M ∈ N, maps gi = hi ∈ IFS(f0, f1) and close intervals Ji = Ii

for i = 0, . . . ,M − 1 such that A = J0 ∪ . . .∪ JM and g−1
0 (b), g−1

M (fj(b)) ∈ intA with JM = J and
gM = g. Moreover, g−1

i (Ji) ⊂ A and Dg−1
i (x) > 1 for all x ∈ Ji.

Let us now suppose that h−1
0 (b) 6∈ intA. Hence h0(b) = b. Set h∞ = fj ◦ h0 ∈ IFS(f0, f1)

and h−1 = hn0 ◦ f
−1
j for n large enough. From assumption (b), it follows that h−1 ∈ IFS(f0, f1).

Moreover, we have that h−1
∞ (fj(b)) = h−1

0 (b) = b, h−1
−1(b) = fj(b) and

Dh−1
∞ (fj(b)) = Dh−1

0 (b)Df−1
j (fj(b)) > (1 + ε)(1 + ε)−1 = 1

and

Dh−1
−1(b) = Dfj(b)Dh

−n
0 (b) > (1− ε)(1 + ε)n ≥ 1.

By continuity we find closed intervals I∞ = [a∗, fj(b)] and I−1 = [b, b∗] such that h−1
∞ (a∗) and

h−1
−1(b∗) belong to intA and where h−1

∞ restricted to I∞ and h−1
−1 restricted to I−1 are both expand-

ing maps. Set A∗ = (a∗, b∗]. Just as the previous case, we can increase a little bit I∞ on the right
and so replace the infinite number of expanding branches which are accumulated in fj(b). There-
fore, there is M ∈ N, maps gi+1 = hi ∈ IFS(f0, f1) and close intervals Ji+1 for i = 0, . . . ,M − 1

such that A∗ = J0∪. . .∪JM and g−1
0 (b∗), g−1

M (a∗) ∈ intA∗ with I∞ ⊂ JM , J0 = I−1 and gM = h∞,
g0 = h−1. Note that, also g−1

i (Ji) ⊂ A∗ and Dg−1
i (x) > 1 for all x ∈ Ji. Therefore, the proof of

the lemma is concluded.

As already mentioned, the first return map R : A → A where A = (f1(0), f−1
0 (f1(0))] =

(f0(b), b] constructed in Lemma 3.5 to prove Duminy’s Lemma for IFS(Φ) satisfies the above
lemma. Therefore, we obtain the following remak:
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Fig. D: Modified return map over A with a finite number of discontinuities

Remark 3.18. Let R : A→ A be an expanding return map for an IFS of two maps f0 and f1 with
an infinite number of expanding branches (or discontinuities) as the one in Lemma 3.5. Assuming
the generic condition R(b) ∈ intA, there exists a new expanding return map over A

R̃ : A→ A, R̃|Ji = g−1
i for i = 0, . . . ,M.

which only has a finite number M of discontinuities.

The following lemma shows that we can always construct an expanding return mapR : A→ A,
with A = (fj(b), b] a subset of a su-interval for IFS(f0, f1), satisfying the above generic condition
R(b) ∈ intA.

Lemma 3.19. Every su-interval for f0 and f1 close enough to the identity in the C2-topology has
an expanding return map satisfying the generic condition in Remark 3.18.

Proof. Let Ksu
Φ be a su-interval for IFS(f0, f1) with fi close enough to the identity. Without loss

of generality, we suppose K∗∗Φ = [0, 1], b = f−1
0 f1(0) and A = (f0(b), b]. We will show that some

expanding branches of R : A→ A can be modified to obtain this generic condition. Suppose that
h−1

00 (b) = b and recall that Dh−1
00 (b) > 1. We need the following claim:



86 3. Iterated function systems
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Fig. E: Covering property on B = intA for the modified expanding return map over A.

Claim 3.19.1. Let (a, b) be a non-empty interval on the real line. Suppose that there are maps
h, g ∈ IFS(f0, f1) such that g−1(b) ∈ (a, b), h−1(b) = b and Dh−1(b) > 1. Then there is

f ∈ IFS(f0, f1) such that f−1(b) ∈ (a, b) and Df−1(b) > 1.

Proof of the claim. Since b is a repeler fixed point of h−1 there is n ∈ N such that

D(g−1 ◦ h−n)(b) = Dg−1(b)Dh−n(b) > 1.

Set f = hn ◦ g ∈ IFS(f0, f1). Then f−1(b) = g−1 ◦ h−n(b) = g−1(b) ∈ (a, b) and Dh−1(b) > 1.

According to Duminy’s Lemma for IFS(Φ) and since Ksu
Φ is an su-interval for both, IFS(Φ)

and IFS(Φ−1) = IFS(f−1
0 , f−1

1 ), it follows that Ksu
Φ is a minimal set for IFS(Φ−1). Thus, there is

g−1 ∈ IFS(Φ−1) such that g−1(b) ∈ intA.

From Claim 3.19.1 it gets that we can replace the expanding branch h−1
00 by a new expanding

branch f−1 on a small interval J = [b− δ, b] with f−1(b) ∈ intA. So, we conclude the proof of this
lemma.

Let B be the interior of the set A∗ in Lemma 3.17. By means of a slight restructuring of this
new expanding return map for the IFS(f0, f1), the following result shows that IFS(f0, f1) satisfies
the covering property in Theorem 3.13 for the open set B.
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Lemma 3.20. Consider f0, f1 in Diff1
+(R) and assume that there exists a non-empty interval

A∗ = (a∗, b∗], maps gi ∈ IFS(f0, f1) and closed intervals Ji = [ti+1, ti] for i = 0, . . . ,M with
a∗ = tM+1 < tM < . . . < t1 < t0 = b∗ such that

(i) A∗ = J0 ∪ . . . ∪ JM ,

(ii) g−1
i (Ji) ⊂ A∗ for all i = 0, . . . ,M with g−1

0 (b∗), g−1
M (a∗) ∈ intA∗, and

(iii) Dg−1
i (x) > 1 for all x ∈ Ji and every i = 0, . . . ,M .

Then there exist n ∈ N, non-empty bounded open intervals Bi and maps hi ∈ IFS(f0, f1) for
i = 0, . . . , n such that

A∗ ⊂ B0 ∪ . . . ∪Bn

with h−1
i (Bi) ⊂ intA∗ and Dh−1

i (x) > 1 for all x ∈ Bi and for i = 0, . . . , n.

Proof. By assumption, g−1
0 and g−1

M are expanding maps in J0 and JM such that g−1
0 (b∗) and

g−1
M (a∗) belong to the interior of A. Thus, there is closed intervals [t, t0] ⊂ J0 and [tM+1, s] ⊂ JM
such that g−1

0 ([t, t0]) and g−1
M ([tM+1, s]) are contained in the interior of A∗. For simplicity of

notation, we denote these two closed intervals by J0 and JM .

Now, we extend the closed intervals J0 and JM to open intervals B00 and BMM such that for
each k ∈ {0,M},

g−1
k (Bkk) ⊂ intA∗ and Dg−1

k (x) > 1 for all x ∈ Bkk.

Similarly, as g−1
i (Ji) ⊂ A∗, we can find open intervals B∗i such that Ji ⊂ B∗i and

g−1
i (B∗i ) ⊂ B00 ∪A∗ ∪BMM for i = 1, . . . ,M − 1.

For each k ∈ {0,M} and for every i = 1, . . . ,M − 1, we denote Lki = B∗i ∩ gi(Bkk) and set
gki = gi ◦ gk ∈ IFS(f0, f1). Then for each k ∈ {0,M} and for every i = 1, . . . ,M − 1

g−1
ki (Lki) = g−1

k ◦ g
−1
i (B∗i ) ∩ g−1

k (Bkk) ⊂ intA∗.

Let L∗i be the closure of B∗i \ (L0i ∪ LMi). Observe that L∗i ⊂ int Ji. Hence, writing g∗i = gi, it
follows that g−1

∗i (L∗i) ⊂ int g−1
i (Ji) ⊂ intA∗ for every i = 1, . . . ,M − 1. Therefore, briefly, it holds

that for each k ∈ {0,M, ∗} and for every i = 0, . . . ,M

g−1
ki (Lki) ⊂ intA∗ and Dg−1

ki (x) > 1 for all x ∈ Lki.

Finally, from here, taking open intervals Bki such that Lki ⊂ Bki, g−1
ki (Bki) ⊂ intA∗ and

Dg−1
ki (x) > 1 for all x ∈ Bki it follows that

⋃
k=0,M,∗

M⋃
i=0

Bki ⊃
M⋃
i=0

Ji = A∗.

Renaming the opens intervals and the return maps we complete the lemma.

Now, we are ready to prove the C1-robustness in Theorem D.
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Proof of C1-robustness in Duminy’s Lemma. For simplicity, we can assume that the fixed point
of fi in K∗∗Φ are hyperbolic. As we have already noted, Lemma 3.20 implies the covering property
of Theorem 3.13 taking B the interior of A∗ ⊂ K∗∗Φ in this lemma. From the first part of Duminy’s
Lemma we also have GΦ-orbit of p is dense in B where p is the global attractor of fj in K∗∗Φ .
Therefore, Theorem 3.13 implies the existence C1-neighborhood Ui of fi for i = 0, 1 such that
the GΨ-orbit of pΨ is dense in B for all IFS(Ψ) with Ψ = {g0, g1}, gi ∈ Ui and where pΨ is the
continuation point of p.

The argument to show the minimality is standard. Firstly, note that by Lemma 3.11 it suffices
to show the GΨ-orbit of pΨ is dense in K∗∗Ψ . Let I be any interval in K∗∗Ψ . Since K∗∗Ψ is a ∗∗-interval
there is a first return map over B which can be extend to the interval K∗∗Ψ . In particular this
implies that there exists h0 ∈ IFS(Ψ) such that h−1

0 (I)∩B 6= ∅. Since the GΨ-orbit of pΨ is dense
in B then there is h1 ∈ IFS(Ψ) such that h1(pΨ) ∈ h−1

0 (I) ∩ B and so h0 ◦ h1(pΨ) ∈ I. This
concludes the density and therefore also the minimality. Finally, notice that the robustness of the
density of periodic points is followed from this minimality property as previously notified in the
proof of Dumniny’s Lemma for IFS(Φ). Therefore, the proof of Theorem D is concluded.

3.2.2 Spectral decomposition

Let f be a diffeomorphism on the real line. We say that f is Morse-Smale diffeomorphism on
the real line if it has countable non-empty set of fixed points all of them hyperbolic. The next
theorem gives a completely description the global topological dynamics of a IFS of two Morse-
Smale diffeomorphisms on the real line close to the identity. In oder to state the theorem we have to
enlarge the set of different types of ∗∗-intervals for an IFS generated by a pair of diffeomorphisms
on the real line. Now the ∗∗ can also be s or u and in this case K∗∗Φ denotes an unbounded interval.
Namely,

• Ks
Φ = [p,∞) semi-attractor : if p is an attracted fixed point of a map, say f0, satisfying

f0 < id in (p,∞) and f1 > id in [p,∞). The case Ks
Φ = (−∞, q] is defined analogously.

• Ku
Φ semi-repeler : if it is a s-interval for f−1

0 and f−1
1 .

The proof of Duminy’s Lemma (Theorem D) is exactly the same for s-intervals and so they
are minimality sets and have dense periodic point for IFS(f0, f1) if f0 and f1 are C2-close to
the identity. This implies that a u-interval for IFS(f0, f1) is transitive and has also dense set of
periodic points.

Theorem 3.21 (Spectral decomposition on the real line). Let f0 and f1 be Morse-Smale diffeo-
morphisms of the real line with no fixed points in common. Then, there exists ε ≥ 0.17 such that if
dC2(fi, id) < ε for i = 0, 1 then there are m ∈ N∪ {∞} and pairwise disjoint isolated topologically
transitive intervals Ki for IFS(f0, f1), for i = 1, . . . ,m such that

L(IFS(f0, f1)) \ {±∞} =
m⋃
i=1

Ki.

Moreover, each Ki is either a ∗∗-interval for IFS(f0, f1) with ∗∗ ∈ {ss, su, uu, s, u}, or a single
fixed point of f0 or f1.
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Proof. Consider z ∈ L(IFS(f0, f1)) \ {±∞}. We can assume that z ∈ ω(IFS(f0, f1)) since the
situation for the closure of α-limit of IFS(f0, f1) is followed by a similar arguments. Then, by
definition of ω-limit of IFS(f0, f1), the point z is approximated by points of the form ym ∈ ωΦ(xm).
Each of these points y = ym are again approximated by points of the form fnkξ (x) with x = xm,
ξ = ξ(m) ∈ Σ+

k and nk = nk(m) → ∞ when k → ∞. We claim that if y = limk→∞ f
nk
ξ (x), then

either y belongs to some ∗∗-interval for IFS(f0, f1) with ∗∗ ∈ {ss, su, uu, s, u} or it is a fixed point
of f0 or f1. This claim concludes the theorem since either, z is a fixed point of f0 or f1, or then
for m0 large enough ym belongs in the same ∗∗-interval for IFS(f0, f1) for all m ≥ m0 and thus z
is also in this ∗∗-interval.

In order to prove the above claim, let {pi} be the ordered set of fixed pints of both maps f0

and f1. Without loos of generality, we suppose that y ≥ 0. We can assume that y ∈ [pi, pi+1].
Otherwise, there is a fixed point pj such that pi ≤ pj for all i and y ∈ [pj ,∞). It is not hard to
check, via the geometry of the functions, that in this case is not possible that f0, f1 > id in (pj ,∞]

since then y =∞. In other case, [pj ,∞) is s or u-interval or y = pj .

If pi and pi+1 are both attractors or repellers but for different maps, from the closeness of f0

and f1 to the identity it follows that [pi, pi+1] is a ss or uu-interval. So, we may assume that pi
and pi+1 are an attractor-repeler pair for the same maps, say f0. Note that in this case f0 < id

in (pi, pi+1). We have two options: f1 < id or f1 > id in [pi, pi+1]. In the first case, both maps are
below to the identity and then if fnkξ (x) ∈ [pi, pi+1] for all k large enough implies that ξnk = 0

and so y = limk→∞ f
nk
ξ (x) = pi. For the second case, f1 > id in (p1, pi+1) and we have again two

options: f1([p1, pi+1]) ∩ [p1, pi+1] 6= ∅ or f1([pi, pi+1]) ∩ [pi, pi+1] = ∅. In the first option, [pi, pi+1]

is a su-interval for IFS(f0, f1). For the other option, it follows as before that y = pi. Therefore y
belongs to a ∗∗-interval for IFS(f0, f1) with ∗∗ ∈ {ss, su, uu, s, u} or it is a fixed point of f0 or f1.

Finally, note that from Duminy’s Lemma (Theorem D), ss, su and s-intervals are minimal set
for the IFS(f0, f1). In particular are transitive set and thus uu and u-intervals are also transitive
set for the IFS(f0, f1). Similarly, again from Duminy’s Lemma (Theorem D) it follows that are
isolated sets. This concludes the proof of the theorem.

The above Spectral Decomposition Theorem can be extended for an IFS generated by a pair of
diffeomorphisms on a compact interval I. In order to do this, we understand the compact interval
I like the compactified real line [−∞,∞]. So, the endpoints of the interval I became in ±∞
respectively. In this way, we will understand a ∗∗-interval K∗∗ ⊂ I for ∗∗ ∈ {s, u} as a ∗∗-interval
for the IFS defined on the real line. Therefore, Theorem 3.21 concludes the following remark. Here,
by a Morse Smale diffeomorphism on a compact interval I we mean a diffeomorphism f with a
non-empty finite set of fixed points in the interior of I and all of them hyperbolic.

Remark 3.22. If f0 and f1 are Morse Smale diffeomorphisms on a compact interval I close enough
to the identity map in the C2-topology and with no periodic points in common in the interior of I,
then L(IFS(f0, f1)) is finite union of pairwise disjoint intervals. Namely each interval is either a
∗∗-interval for IFS(f0, f1) with ∗∗ ∈ {ss, su, uu, s, u} or a single fixed point of f0 or f1.

We want to note that these results about the spectral decomposition of the limit set of
the IFS(f0, f1) are C1-robust. That is, the same property holds for any IFS generates by C1-
perturbations of f0 and f1. This is followed from the fact of all of fixed point are hyperbolic and
from the C1-robustness of the Duminy’s Lemma (Theorem D).
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3.3 Blending regions for IFS on the circle

Let f be an orientation preserving circle homeomorphism. Taking into account the rotation number
of f , this maps can have either rational rotation number or irrational rotation number. With
rational rotation number f has at least a periodic point while with irrational rotation number
either each orbit of f is dense in S1 or there is a wandering interval for f . Let us consider the group
of orientation preserving circle homeomorphisms Hom+(S1). Note that, the forward and backward
iterations of f are a particular case of a subgroup G(f) of Hom+(S1) finitely generated. In order
to extend the above classification for general subgroup of orientation preserving homeomorphisms,
we need to explain the notion of invariant subset of S1 by a subgroup.

Let G(Φ) be a subgroup of Hom+(S1) generated by a family Φ of homeomorphisms on the
circle and let Λ be a subset of S1. The orbit of a point x ∈ S1 for G(Φ) is the set of elements of
S1 to which x can be moved by the elements of G(Φ). Following the notation for IFS, when no
confusion can arise, the orbit of x for G(Φ) is denoted as

OrbΦ(x)
def
= {g(x) : g ∈ G(Φ)}.

We say that Λ is invariant for G(Φ) if OrbΦ(x) ⊂ Λ for all x ∈ Λ. Assuming that Λ is also
compact, it is said to be closed invariant minimal set for G(Φ) if its only closed invariant subsets
for G(Φ) are the empty set and Λ itself, or equivalently if

Λ = OrbΦ(x) for all x ∈ Λ.

Now, we introduce a special type of minimal set:

Definition 3.6 (Exceptional minimal set). Let G(Φ) be group generated by a family Φ ⊂ Hom+(S1).
A subset Λ ⊂ S1 is said to be an exceptional minimal set for G(Φ) if

• Λ is a Cantor set,

• Λ = OrbΦ(x) for all x ∈ Λ,

• Λ ⊂ OrbΦ(x) for all x ∈ S1.

Notice that we can define ω-limit set ωΦ(x) of x ∈ S1 for the action of group G(Φ) in a
manner similar to the action of IFS. Hence, Item (iii) in Lemma 3.2 can also be shown for G(Φ)

with the same proof that for IFS. Consequently, it follows that, the second and third properties
in the above definition are, respectively, equivalent to Λ = ωΦ(x) for x ∈ Λ and Λ ⊂ ωΦ(x) for all
x ∈ S1. Moreover, as an immediately consequence of these two properties, we obtain the following
remark:

Remark 3.23. If Λ ⊂ S1 is an exceptional minimal for action of a group G(Φ) of circle homeo-
morphisms then Λ is the unique closed minimal invariant set for G(Φ).

Notice that in the particular case of a unique map f , the above definition is closely related to
the notion of wandering interval. In fact, the wandering intervals are the gaps of the exceptional
minimal set. In this particular case of a single generator, the exceptional minimal set Λ is invariant
for f and for f−1.

The following proposition is a classic result that can be find for instance in [Ghy01].
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Proposition 3.24. Let G(Φ) be a subgroup of Hom+(S1). Then one (and only one) of the fol-
lowing possibilities occurs:

i) there exists a finite orbit,

ii) S1 is a minimal for G(Φ) (i.e., all orbits are dense),

iii) there exists an exceptional minimal set for G(Φ).

Proof. The family of non-empty closed invariant subsets of S1 is ordered by inclusion. Since the
intersection of nested compact sets is a non-empty compact set, the Zorn Lemma allows us to
conclude the existence of a minimal (regarding the inclusion) non-empty closed invariant set Λ.
Namely, if K is a non-empty close invariant set for G(Φ) contained in Λ then K = Λ. Observe
that this is equivalent to that Λ is an closed invariant minimal set for G(Φ). The boundary ∂Λ

and the set Λ′ of the accumulation points of Λ are closed invariant sets contained in Λ. By the
minimality (regarding the inclusion) of Λ, one of the following possibilities occurs:

(i) Λ′ is empty: in this case Λ is a finite orbit,

(ii) ∂Λ is empty: in this case Λ = S1, and therefore all the orbits are dense,

(iii) Λ = Λ′ = ∂Λ: in this case Λ is a closed set with empty interior and having no isolated point.
In other words, Λ is homeomorphic to the Cantor set.

We will show that, in the last case, Λ is an exceptional minimal set. Namely, we will prove that

Λ ⊂ OrbΦ(x) for all x ∈ S1,

which clearly together with the invariant minimality implies its uniqueness. For x ∈ Λ, this follows
since Λ is an invariant minimal set for G(Φ). Let x and y be arbitrary points in S1 \ Λ and Λ,
respectively. We need to show that there exists a sequence (gn)n ⊂ G(Φ) such that gn(x) converges
to y. In order to prove this, let us consider the interval I = (a, b) contained in S1 \ Λ such that
both a, b belong to Λ and x ∈ I.

Claim 3.24.1. There exists (gn)n ⊂ G(Φ) such that gn(a)→ y and gn(I) are two-by-two disjoint.

Proof. Since Λ is the closure of the orbit of a for G(Φ) and Λ = Λ′ it follows that Λ = OrbΦ(a) ′

and thus there exists (hn)n ⊂ G(Φ) such that hn(a) tends to y with hn(a) 6= y for all n ∈ N.
The collection of intervals {hn(I) : n ∈ N} cannot be finite otherwise, hn(a) only takes a finite
number of values (the endpoints of this intervals) and then it could not tend to y at least that
hn(a) = y, but this is not possible from the choice of (hn)n. Moreover, either hn(I) ∩ hm(I) 6= ∅
or hn(I) = hm(I). Indeed, if hn(I) meets hm(I) but hn(I) 6= hm(I) then at least one of the
endpoints of hm(I), say hm(a), belongs to hn(I) and so, (hn)−1 ◦hm(a) ∈ Λ∩ I since a ∈ Λ and Λ

is invariance for G(Φ). However, this is not possible since I is a gap of the Cantor set Λ. Therefore,
we can choice a subsequence of (gn)n of (hn)n such that gn(I) are two-by-two disjoint since in
otherwise we have a finite collection of intervals hn(I).

From the above claim, we observe that the length of the intervals gn(I) must go to zero, and
thus gn(x) converges to y (since gn(a) tends to y). This concludes the proof.
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The next result provides a similar classification as above for IFS. Notice that this classification
describes the shape of possible attractors of an IFS generated by homeomorphisms on an arbitrarily
compact manifold M .

Theorem 3.25. Consider IFS(Φ) generated by a family Φ = {f1, . . . , fN} ⊂ Hom(M) of homeo-
morphisms of a compact manifold M . Then exists a non-empty closed subset K of M such that

K =
N⋃
i=1

fi(K) and K = OrbΦ(x) = wΦ(x) for all x ∈ K.

Moreover, one (and only one) of the following possibilities occurs:

i) K is a finite orbit,

ii) K have non-empty interior,

iii) K is a Cantor set.

Proof. The family of non-empty closed subset Λ ofM such that Λ = f1(Λ)∪· · ·∪fN (Λ) is ordered
by inclusion. Since the intersection of nested compact sets is compact and non-empty, the Zorn
Lemma allows us to conclude the existence of a minimal (regarding the inclusion) non-empty
closed set K such that K = ∪fi(K). We will show that K is an invariant minimal set for IFS(Φ)

K = OrbΦ(x) for all x ∈ K. (3.5)

Then, according to Item (iii) in Lemma 3.2, we have K = OrbΦ(x) = ωΦ(x) for all x ∈ K.

In order to prove (3.5), since K is an closed invariant set we get

OrbΦ(x) ′ ⊂ OrbΦ(x) ⊂ K for all x ∈ K.

On other hand, according to (vi) in Lemma 3.2, for each x ∈ K the set of accumulation points
OrbΦ(x) ′ is a closed selfsimilar set. Since K is minimal (regarding the inclusion) then either,
OrbΦ(x) ′ is an empty set or K = OrbΦ(x) ′. We have two possibilities:

(i) there is x ∈ K such that OrbΦ(x) ′ is empty;

(ii) for all x ∈ K, it holds that K = OrbΦ(x) ′.

In the first case, it follows that OrbΦ(x) is finite set, and therefore, it is a non-empty closed
selfsimilar set contained in K. This implies that K = OrbΦ(x) = ωΦ(x). In the second case, we
obtain that K is an invariant minimal set for IFS(Φ). Note that in this case K ′ = K. Moreover,
we also have two options: K has non-empty interior or the interior of K is empty and thus K is
a Cantor set. This concludes the proof of the theorem.

An invariant minimal Cantor set K ⊂ M for IFS(Φ) is said to be exceptional minimal set
for IFS(Φ) if it is the unique attractor of the IFS or, equivalently, if the orbit of any point
of M is dense in K. Notice that an invariant minimal Cantor set for IFS(Φ) obtained in the
above theorem is not necessarily an exceptional minimal set. An example of an IFS with at least
two attractors, being one of them a Cantor set, is constructed by taking two disjoints regions
D1, D2 ⊂M . Each one of the generators fj ∈ Φ of IFS(Φ) is a contracting map on Di and satisfies
fj(Di) ⊂ Di, for all i = 1, 2; but, for D1 at least, the overlapping condition fails to verify, i.e.
fk(D1) ∩ fj(D1) = ∅ for all k 6= j.
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3.3.1 Duminy’s Theorem

An example of a circle homeomorphism with irrational rotation number admitting an invariant
minimal Cantor set for f is a Denjoy diffeomorphism. Notice that, in this case, this Cantor set is an
"exceptional" minimal set for both IFS(f) and IFS(f−1) and consequently it is also an exceptional
minimal set for the group generated by f . These examples are only possible for diffeomorphisms of
class C1 at the most. Indeed, from a classical theorem due to Denjoy, C2-diffeomorphisms have not
invariant minimal Cantor sets. Namely, if f is a orientation preserving circle C2-diffeomorphism
with irrational rotation number ρ(f), then f is topologically conjugate to the rotation of angle
ρ(f). In fact, since every diffeomorphism close enough to the identity is orientation preserving, we
can obtain the following implication of Denjoy’s Theorem:

Theorem 3.26 (Denjoy). There exists ε > 0 such that if f ∈ Diff2(S1) is ε-close to the identity in
the C2-topology then there are no invariant minimal Cantor sets for neither IFS(f) nor IFS(f−1).
Moreover, the following conditions are equivalents:

i) S1 is minimal for IFS(f),

ii) S1 is minimal for IFS(f−1),

iii) there are no periodic points for f .

As a consequence of the above equivalences, if any of the theses conditions is satisfied then S1

is also minimal for G(f). For action groups Duminy, at the end of the seventies in an unpublished
work [Dum70], proved that there is no an exceptional minimal set for a group generated by circle
diffeomorphisms with certain regularity. The key idea is to create a ss-interval for an IFS generated
by two maps in the group G(f0, f1) which are obtained making the necessary compositions by
means of the inverse of f0 or f1. Then Duminy’s Lemma (Theorem D) implies the minimality of
this interval for the IFS, and thus, for G(f0, f1). With the help of same inverse map this minimality
is moved around the whole circle.

Theorem 3.27 (Duminy). There exists ε > 0 such that if f0 and f1 in Diff2(S1) are ε-close
to the identity in the C2-topology and at least one of them, say f0, has finitely many periodic
points, then there is no exceptional minimal set for G(f0, f1). Moreover, the following conditions
are equivalents1:

i) S1 is minimal for G(f0, f1),

ii) f1(Per(f0)) 6= Per(f0).

The condition about the regularity in Denjoy’s Theorem as well as Duminy’s Theorem can be
improved. In fact, Duminy’s Theorem can be proved for a group G(f0, f1) of orientation preserving
circle diffeomorphisms where the distortion constant of f0 and f1 is bounded by a positive universal
constant. This condition means that f0 and f1 are close to rotations: the equality Dist(fi) = 0 is
satisfied if and only if fi is a rotation. Concerning the hypothesis of existence of at least a generator

1Condition (ii) is satisfies if f0 and f1 have not periodic points in common.
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with isolated periodic points, let us point out that it is generically satisfied. See [Nav04, Nav11] for
more details about Duminy’s result (non-existence of exceptional minimal set for action group). We
round off Duminy’s result by adding the second part in Theorem 3.27, which states the equivalence
between minimality of the action group G(f0, f1) and condition (ii) about the common periodic
points. This equivalence together with the genericity (open and dense) of the set of Morse-Smale
diffeomorphisms in Diff2(S1) implies the following remark:

Remark 3.28. While the periodic dynamics are generic (open and dense) in Diff2(S1), even
close to the identity, generically S1 is minimal for action groups on the circle with at least two
generators close enough to the identity (open an dense set of a neighborhood U ⊂ Diff2(S1) of id).

We will now give a proof of Duminy’s Theorem slightly different from the proof in [Nav11].

Proof of Theorem 3.27. Set Φ = {f0, f1}. According to Denjoy’s Theorem, the set of periodic
points of each element in G(Φ) is non-empty, otherwise S1 is minimal for G(Φ) and we conclude
the theorem. By hypothesis, we assume that the periodic points of f0 are isolated. Let us denote
by Per(f0) the set of these points.

Claim 3.28.1. If either there exists exceptional minimal set for G(Φ) or f0 and f1 have not
periodic points in common, then there exists p ∈ Per(f0) such that f1(p) or f−1

1 (p) is in S1\Per(f0).

Proof. Firstly, we assume that f0 and f1 do not have periodic points in common. If for every
p ∈ Per(f0) one has that f1(p) and f−1

1 (p) are in Per(f0) then f1(Per(f0)) = Per(f0). As Per(f0)

is a finite set then there are m ∈ N and p ∈ Per(f0) such that fm1 (p) = p contradicting that f0

and f1 do not have periodic points in common.

We now assume that there exists Λ exceptional minimal set for G(Φ) and denote

P(f0) = Per(f0) ∩ Λ.

Notice that P(f0) is non-empty. Indeed, if the period of the periodic points of f0 is k and p ∈ Λ

is not a fixed point of fk0 , then
lim

i→±∞
f ik0 (p)

are fixed points of fk0 contained in Λ. Just like the previous case, there exists p ∈ P(f0) such that
f1(p) or f−1

1 (p) is in S1 \ P(f0). Otherwise, the finite set P(f0) would be invariant for G(f0, f1),
thus contradicting the minimality of Λ.

In what follows, we will assume that there exists p ∈ Per(f0) such that f1(p) or f−1
1 (p) belongs

to S1\Per(f0). Otherwise, according to the above claim the first part of the theorem follows. Under
this assumption we will show that S1 is minimal for G(Φ). This makes impossible the existence of
an exceptional minimal set for G(Φ) and therefore we again obtain the first part of the theorem.
Whit regard to the second part of the theorem, since (ii) implies that there exists p ∈ Per(f0)

such that f1(p) ∈ S1 \ Per(f0), once proved the minimality of S1 under this assumption, we
obtain that (ii) implies (i). In order to prove that (i) implies (ii), according to Proposition 3.24,
if S1 is minimal for G(Φ) then there is no finite orbit and this implies (ii). Indeed, suppose that
f1(Per(f0)) = Per(f0) then this finite set is invariant by f0 and f1 and therefore it is a finite orbit,
which is a contradiction.
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Fig. F: Configuration in the proof of Duminy’s theorem.

Let us now prove that S1 is minimal for G(Φ). Since G(Φ) = G(f0, f
−1
1 ), without loss of

generality, we will suppose that f1(p) ∈ S1 \ P (f0). Let k be the period of the periodic points of
f0. Let g = fk0 ∈ G(f0, f1) and let us denote by u and v the periodic points of f0 immediately
to the left and to the right of f1(p), respectively.2 The map f = f1 ◦ g ◦ f−1

1 has a fixed point in
[u, v], namely f1(p). Let a be the first fixed point of this map to the left of v, and let b be the first
fixed point to the right of a. Replacing g by g−1 and/or f by f−1 if necessary, we may suppose
that f(x) < x and g(x) > x for every x ∈ (a, v). See Figure F.

We now claim that [a, v] is a ss-interval for IFS(f, g). We only need to show the overlap
condition: f−1(g(a)) ∈ (a, v). To show this, we first notice that

Dist(f, [a, b]) ≤
k−1∑
i=0

Dist(f1 ◦ f0 ◦ f−1
1 , f1 ◦ f i0 ◦ f−1

1 ([a, b]))

≤ Dist(f1 ◦ f0 ◦ f−1
1 , S1) ≤ 3C

where C is the largest distortion constant of f0 and f1 in S1. In the same way one obtains
Dist(g, [u, v]) ≤ C. Let x0 ∈ (a, v) and y0 ∈ (a, b) be such that

Df(x0) =
f(v)− a
v − a

and Df(y0) = 1.

Clearly, we have | logDf(y0)− logDf(x0)| ≤ Dist(f, [a, b]), and hence f(v)−a ≥ e−3C(v−a). By
a similar argument it follows that v − g(a) ≥ e−C(v − a). If f−1(g(a)) were not contained in the

2We work with the lift map of g for which the existence of at least two fixed points of g is guarantied.
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interval (a, v), then f(v) ≤ g(a) and hence, from the above inequalities,

v − a ≥ f(v)− a+ v − g(a) ≥ (e−3C + e−C)(v − a).

Therefore, e−3C + e−C ≤ 1 which is imposible if f0 and f1 are ε-close to the identity in the
C2-topology for ε > 0 small enough, because of 0 < C < ε(1− ε)−1.

The elements f and g in G(Φ) are thus as in Figure F over the interval [a, v] and therefore this
interval is a ss-interval for f and g. We will show that this interval is minimal for IFS(f, g). In
order to prove this, we apply the Duminy’s Lemma showing that f and g satisfy the assumptions
in Remark 3.4:

1− ε < Df(x) < 1 + ε, 1− ε < Dg(x) < 1 + ε and (1− ε)ε−1e−4C̃ > 2

where C̃ is the largest distortion constant of f−1 and g−1 in [a, v]. Observe that, the distortion
constant of f−1 in [a, b] and the distortion constant of g−1 in [u, v] coincide with Dist(f, [a, b]) and
Dist(g, [u, v]) respectively. Thus, as we have noticed, this constants are less than or equal to 3C

and C, respectively, and so C̃ ≤ 3C.

Now, notice that for every x ∈ (a, b) it holds | logDf(x)| = | logDf(x) − logDf(y0)| ≤
Dist(f, [a, b]) ≤ 3C and hence

e−3C ≤ Df(x) ≤ e3C for all x ∈ [a, v].

Similarly, we follow an analogous inequality for the absolute value of the derivative of the logarithm
in [u, v] and we obtain

e−3C < e−C ≤ Dg(x) ≤ eC < e3C for all x ∈ [a, v].

Recall that as f0 and f1 are ε-close to the identity we have C < ε(1−ε)−1. Then since e±3ε(1−ε)−1

and 1± ε are equivalent infinitesimals, it follows

1− ε ∼ e−3ε(1−ε)−1
< Df(x), Dg(x) < e3ε(1−ε)−1 ∼ 1 + ε for all x ∈ [a, v]. (3.6)

Finally, for ε > 0 small enough we get

(1− ε)ε−1e−4C̃ ≥ (1− ε)ε−1e−12ε(1−ε)−1
> 2. (3.7)

Therefore, since Equations (3.6) and (3.7) are the desired assumptions to apply the Duminy’s
Lemma we obtain that [a, v] is minimal for IFS(f, g). Now, we will move the minimality of this
interval along the whole circle, again by means of the inverse maps. Let I be and open interval in
S1 and let x be any point in S1. Since [a, v] contains at least a fundamental domain of f and g
we can find3 F and H in G(f, g) such that

F (I) ∩ [a, v] 6= ∅ and H(x) ∈ [a, v].

By the minimality of this interval there is h ∈ IFS(f, g) such that h ◦H(x) ∈ F (I). Therefore,

F−1 ◦ h ◦H(x) ∈ I

with F−1 ◦ h ◦H ∈ G(f0, f1). This shows the minimality of S1 for G(f0, f1) and the proof of the
theorem is completed.

3More details of this claim can be understood in Section §3.3.3 where we study cycles for IFS.
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The following theorem shows a generalization of Denjoy’s Theorem for IFS. Namely, this result
shows that there are no invariant minimal Cantor sets for any IFS generated by a family of circle
diffeomorphisms with at least two generators C2-close to the identity satisfying certain generic
conditions.

Theorem E (Denjoy for IFS). There exists ε > 0 such that if f0, f1 ∈ Diff2(S1) are ε-close to the
identity in the C2-top. with no periodic points in common and both maps have finitely many periodic
points then there are no invariant minimal Cantor sets for neither IFS(f0, f1) nor IFS(f−1

0 , f−1
1 ).

Moreover, if ni is the periodic of fi, then there are no invariant minimal Cantor sets for neither
IFS(fn0

0 , fn1
1 ) nor IFS(f−n0

0 , f−n1
1 ) and the following conditions are equivalents:

i) S1 is minimal for IFS(fn0
0 , fn1

1 ),

ii) S1 is minimal for IFS(f−n0
0 , f−n1

1 ),

iii) there are no ss-intervals for IFS(fn0
0 , fn1

1 ),

iv) there are no uu-intervals for IFS(fn0
0 , fn1

1 ).

If the periodic points of two maps in the hypothesis of the above theorem are hyperbolic then
both diffeomorphisms are Morse-Smale. Recall that, the set of Morse-Smale diffeomorphisms is
open and dense in Diff2(S1). On the other hand, the non-existence of common periodic points
is also a generic condiction. Therefore, this subset of diffeomorphisms in Diff2(S1) satisfying the
hypothesis of Theorem E, is open and dense in a neighborhood of the identity.

Remark 3.29. Under the additional generic assumption of hyperbolic periodic points, the asser-
tions in Theorem 3.27 and Theorem E are C1-robust. That is, if f0 and f1 are C2-diffeomorphisms
with hyperbolic fixed points in the corresponding assumptions of Theorem 3.27 and Theorem E then
there exist C1-neighborhoods Ui of fi such that for every pair g0 ∈ U0 and g1 ∈ U1 the assertions
in both theorems are fulfilled.

In order to prove the Theorem E, we can assume that the set of periodic points of f0 and f1 is
non-empty, otherwise, by Denjoy’s Theorem, S1 is minimal for both IFS(f0, f1) and IFS(f−1

0 , f−1
1 ).

By the assumption of finiteness of periodic points, f0 and f1 cannot be rational rotations. Al-
though this periodic points are not necessarily hyperbolic, we will assume that f0 and f1 are
Morse-Smale diffeomorphisms but we will never use along the proof of the above theorem the
hyperbolic character of its periodic points. This proof is given in the following two sections. We
will find ε > 0 such that for every pair of Morse-Smale diffeomorphisms, f0, f1, in the hypoth-
esis of Theorem E with a ss-interval for IFS(fn0

0 , fn1
1 ), there are no invariant minimal Cantor

sets for none of them: IFS(f0, f1), IFS(f−1
0 , f−1

1 ), IFS(fn0
0 , fn1

1 ) and IFS(f−n0
0 , f−n1

1 ). See Propo-
sition 3.36 and Remark 3.37. Previously, we need to generalize Duminy’s Lemma for Morse-Smale
diffeomorphisms. See Theorem 3.35. Then, in Section §3.3.3, under the assumption that there are
no ss-intervals for IFS(fn0

0 , fn1
1 ), we will prove the equivalences in the statement of Theorem E

according to the following scheme:
(i)→ (iii)

(ii)→ (iv)⇔ (iii)

(iii)⇒ (i) and (ii).

Here, "→" means an immediately implication. The other two implications "⇔" and "⇒" will be
shown in Proposition 3.38 and Theorem 3.53 (see also Proposition 3.39) respectively. Therefore,
it follows from this equivalences that, in this case, there can be no invariant minimal Cantor sets
for neither IFS(f0, f1) nor IFS(f−1

0 , f−1
1 ).
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3.3.2 Duminy’s Lemma for Morse-Smale diffeomorphisms

Let f0 and f1 be two C2-diffeomorphisms on the circle. We want to show that if f0 and f1 are
close enough to the identity then there are no invariant Cantor sets for IFS(f0, f1). According
to Denjoy’s Theorem (Theorem 3.26) we must assume that f0 and f1 have periodic points. In
addition, we will suppose that both maps, f0 and f1, have finitely many periodic points all of
them different (i.e., with no periodic points in common). Duminy’s Lemma (Theorem D) provides
a neighborhood of the identity such that if f0 and f1 belong to this neighborhood and there exists
a ss-interval for IFS(f0, f1) then there is no exceptional minimal set. This claim follows from the
uniqueness of the exceptional minimal set for an IFS since a ss-interval for an IFS in this hypothesis
is an invariant minimal set. When f0 and f1 have periodic points of period, respectively, n0 and
n1 larger than one, we could consider IFS(fn0

0 , fn1
1 ), which is called periodic IFS. The distortion

constant of this periodic maps fnii is niCi where Ci is the distortion constant of fi. If we try
to apply Duminy’s Lemma for the periodic IFS, then the estimate for the return map derivative
obtained in Proposition 3.6 (see also Remarks 3.4 and 3.18) will be

R′(x) ≥ 1

2
(1− ε)ε−1e4nC , for all x ∈ A

where C = max{C0, C1} and n = max{n0, n1}. That is, the estimate depends on the period.
When the period increases this estimate goes to zero and we need to reduce the size of ε > 0 to
obtain an expanding first (periodic) return map. Notice that this is a problem if we are looking
for a uniform neighborhood of the identity.

The first goal of this section is to show that actually we can obtain a new bound for the
periodic return map derivative independent of the periods ni. In the sequel we will assume that f0

and f1 are Morse-Smale diffeomorphisms on the circle of period n0 and n1, respectively, and such
that there exists a ∗∗-interval for IFS(fn0

0 , fn1
1 ) with ∗∗ ∈ {ss, su}. For simplicity, we scale the

∗∗-interval into the interval [0, 1] and assume that fn0
0 (0) = 0, fn0

0 < id and fn1
1 > id in (0, 1). As in

the proof of Duminy’s Lemma we can construct a first (periodic) return map R on a fundamental
domain

A = (fn1
1 (0), f−n0

0 (fn1
1 (0))] ⊂ [0, 1]

of fn0
0 (see Lemma 3.5). Note that now the return maps hi1i2 correspond to IFS(fn0

0 , fn1
1 ). It will

be helpful to write g0 = fn0
0 and g1 = fn1

1 . We will indicate the modifications required while
estimating the return map derivative in Section §3.2.1.

In order to extending Duminy’s Lemma for Morse-Smale diffeomorphisms with arbitrarily large
period we will need the following properties of Morse-Smale dynamics on the circle.

Lemma 3.30. Let f ∈ Diff2(S1) be a Morse-Smale diffeomorphism with period n. Set

C = max{D
2f(x)

Df(x)
: x ∈ S1}

the distortion constant of f in S1 and let I be a fundamental domain of fn. Then

i) e−C ≤ Dfn(x) ≤ eC for all x ∈ S1,

ii) f i(I) ∩ f j(I) = ∅ for all i 6= j (not necessarily multiples of n).
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Proof. Consider J = [p, q] any interval in S1 where p and q are two consecutive fixed points of
fn. We will show that

e−C ≤ Dfn(x) ≤ eC for all x ∈ J. (3.8)

Since S1 is finite union of theses intervals we obtain (i). Since the interval J always contains a
point with derivative equals one, according to Lemma 3.7, we only need to show the disjointness
of J, f(J), . . . , fn−1(J) to prove (3.8). In order to prove this, suppose that f i(J) ∩ f j(J) 6= ∅ for
0 ≤ i < j ≤ n− 1. Then f j−i(J) meets J . Since n is the period of f and 0 < j − i < n then this
two closed intervals cannot be the same. Thus, either f j−i(p) or f j−i(q) belongs to the interior of
J . Since any of these points are fixed points of fn and fn has not fixed point into the interior of
J , we find a contradiction.

In a similar way, in order to prove the statement (ii), we consider a fundamental domain I

for fn. Then I is contained in some interval J of consecutive fixed points of fn. Suppose that
f i(I) ∩ f j(I) 6= ∅ with i < j. Then f j−i(J) ∩ J 6= ∅. This two intervals must be the same since
on the contrary arguing as above we obtain a contradiction. Thus j − i must be a multiple of the
period n. We write j − i = kn for k > 0. So, fkn(I) ∩ I 6= ∅ which is a contradiction since I is a
fundamental domain for fn. Therefore, the proof of the lemma is now concluded.

As a consequence of the above lemma, we modify Disjointness Lemma (Lemma 3.8) as follows:

Lemma 3.31 (Disjointness). Let i1i2 be a fixed multi-index. Then,

i) U`
def
= f−`1 (Ii1i2) for ` ≥ 0 are pairwise disjoint right-closed intervals of S1;

ii) Ui1,`
def
= f−`0 ◦ f

−n1mi1
1 (Ii1i2) for ` ≥ 0 are pairwise disjoint right-closed intervals of S1.

Proof. Note that Ii1i2 ⊂ Ii1 where Ii1 is contained in a fundamental domain of g1 = fn1
1 . Thus,

by Lemma 3.30, it follows that the intervals U` ⊂ S1 are right-closed disjoint with respect to each
other. Also, according to Lemma 3.5, we have that

g
−mi1i2
0 ◦ g−mi11 (Ii1i2) = h−1

i1i2
(Ii1i2) ⊂ A.

Hence f−n1mi1
1 (Ii1i2) = g

−mi1
1 (Ii1i2) ⊂ g

mi1i2
0 (A). Since A is a fundamental domain of g0 = fn0

0

then f
−n1mi1
1 (Ii1i2) is contained in a fundamental domain of fn0

0 and thus, by Lemma 3.30, it
follows that the intervals Ui1,` ⊂ S1 are pairwise disjoint. This concludes the lemma.

The above lemma allows us to obtain a new estimate for the distortion of h−1
i1i2

which is
independently of the period ni. Namely, the statement of Distortion Lemma (Lemma 3.9) takes
the following form:

Lemma 3.32 (Distortion). Let C > 0 be the largest distortion constant of f0 and f1 in S1. Then
for every j ≥ 0 it follows that Dist(h−1

i1j
, Ii1i2) ≤ 2C. Consequently, for every pair of intervals J

and L contained in Ii1i2 and for j ≥ 0, it holds that

|J |
|L|

e−2C ≤
|h−1
i1j

(J)|
|h−1
i1j

(L)|
≤ e2C |J |

|L|
.

Moreover, if I = Ii1j+1 ∪ Ii1j then for every j ≥ 0, it holds that

|h−1
i1j+1(I)|
|I|

e−4C ≤ Dh−1
i1j+1(z) ≤ e4C

|h−1
i1j+1(I)|
|I|

for all z ∈ I.
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Proof. Recall that h−1
i1j

= g
−mi1j
0 ◦ g−mi11 = f

−n0mi1j
0 ◦ f−n1mi1

1 . Then

Dh−1
i1j

(x) =

n0mi1j−1∏
`=0

Df−1
0 (f−`0 ◦ f

−n1mi1
1 (x)) ·

n1mi1−1∏
`=0

Df−1
1 (f−`1 (x)).

By means of the distortion control of f0 and f1, we obtain that for every x, y ∈ Ii1i2

| log
Dh−1

i1j
(x)

Dh−1
i1j

(y)
| ≤ C

( n0mi1j−1∑
`=0

|Ui1,`|+
n1mi1−1∑
`=0

|U`|
)
.

The disjointness of each families of intervals U` and Ui1,` for ` ≥ 0 showed in Lemma 3.31 implies
that Dist(h−1

i1j
, Ii1i2) ≤ 2C. The rest of the proof of this lemma is analogous of second part in

Lemma 3.9.

As in Lemma 3.10 we can obtain the same lower bounded distortion estimate between the
length of Ii1 and Ii1i2 .

Lemma 3.33 (Compared intervals). Let C1 > 0 be the distortion constant of f1 in S1. Consider
δ > 0 such that |Dfn0

0 (x)− 1| < δ for all x ∈ (0, 1). Then

|Ii1 |
|Ii1i2 |

> δ−1e−C1

for all multi-index i1i2.

Proof. Recall that Ii1 is contained in a fundamental domain of g1 = fn1
1 . Therefore, from Lemma 3.30

we see that f−i1 (Ii1) for i ≥ 0 are disjoints intervals in S1. Using Lemma 3.7 we still have that

|Ii1 |
|Ii1i2 |

≥ e−C1
|f−n1mi1

1 (Ii1)|
|f−n1mi1

1 (Ii1i2)|
= e−C1

|g−mi11 (Ii1)|
|g−mi11 (Ii1i2)|

.

The rest of the proof is the same that Lemma 3.10. Observe that we only need to use the bounded
distortion estimate from above and the assumption |Dg0(x)− 1| < δ for all x ∈ (0, 1). Therefore,
it follows the desired result.

Now, we are ready to obtain an estimation for the derivative of the periodic return map.

Proposition 3.34. Let C > 0 be the largest distortion constant of f0 and f1. Consider δ > 0

such that |Dfn0
0 (x)− 1| < δ for all x ∈ (0, 1). Then

R′(x) ≥ δ−1e−3C if x ∈
m⋃
i1=0

∞⋃
i2=1

Ii1i2 ,

R′(x) ≥ 1

2
(1− δ)δ−1e−5C if x ∈ I00.

Proof. With the help of the above lemmas the proof of these estimates in the case of Morse-Smale
diffeomorphisms turns into the proof of Proposition 3.6. We only indicate how these lemmas are
used to obtain the new estimates.
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Let x be a interior point of Ii1i2 . Take an arbitrarily small open interval J such that x ∈ J ⊂
Ii1i2 . Notice that R(J) = h−1

i1i2
(J). Suppose that i1i2 6= 00. Then h−1

i1i2
(Ii1i2) = A ⊃ Ii1 ⊃ Ii1i2 . By

Lemma 3.32, it follows that

|R(J)| ≥ e−2C
|h−1
i1i2

(Ii1i2)|
|Ii1i2 |

|J | ≥ e−2C |Ii1 |
|Ii1i2 |

|J |.

By Lemma 3.33, since C > 0 is the largest distortion constant of f0 and f1 then |R(J)| >
δ−1e−3C |J |. The above inequality implies that R′(x) = Dh−1

i1i2
(x) ≥ δ−1e−2C for all x ∈ Ii1i2 with

i1i2 6= 00. For the case i1i2 = 00, recalling that mi1i2+1 = mi1i2 + 1 it follows h−1
00 = fn0

0 ◦ h
−1
01 .

Then, by Mean Value Theorem, there are ξ ∈ h−1
01 (J) and ζ ∈ J such that

|R(J)| = |Dfn0
0 (ξ)||Dh−1

01 (ζ)||J | > (1− δ)|Dh−1
01 (ζ)||J |.

From the estimate of Dh−1
01 on the I = I01∪I00 obtained in Lemma 3.32 it follows that, Dh−1

01 (ζ) ≥
e−4C |h−1

01 (I)|/|I|. As h−1
01 (I) ⊃ A ⊃ I0 then |h−1

01 (I)| ≥ |I0|. Then, by Lemma 3.33, taking into
account again that C > 0 is the largest distortion constant of f0 and f1, we see that

|h−1
01 (I)|
|I|

≥ |I0|
|I|

=
( |I01|
|I0|

+
|I00|
|I0|

)−1
>

1

2
δ−1e−C .

Finally, |R(J)| > 1
2(1 − δ)δ−1e−5C |J |. This implies that R′(x) = Dh−1

00 (x) ≥ (1 − δ)δ−1e−5C/2

for all x ∈ I00 and we conclude the proposition.

Now, we are ready to extend the Duminy’s Lemma for Morse-Smale diffeomorphisms:

Theorem 3.35 (Duminy’s Lemma for Morse-Smale diffeomorphisms). There exists ε ≥ 0.13 such
that if f0, f1 ∈ Diff2(S1) are Morse-Smale diffeomorphisms of period n0 and n1, respectively, and ε-
close to the identity in the C2-topology, then for any ∗∗-interval K∗∗Φ for IFS(Φ) with ∗∗ ∈ {ss, su}
and Φ = {fn0

0 , fn1
1 }, there are neighborhoods Ui of fi in the C1-topology such that

K∗∗Ψ ⊂ Per(IFS(Ψ)) and K∗∗Ψ ⊂ OrbΨ(x) for all x ∈ K∗∗Ψ

for every Ψ = {gn0
0 , gn1

1 } with gi ∈ Ui.

Proof. Take δ = 0.17 > 0. Then (1− δ)δ−1e−5δ > 2. Let ε > 0 small enough such that

1− δ < e−ε(1−ε)
−1
< eε(1−ε)

−1
< 1 + δ and ε(1− ε)−1 < δ. (3.9)

Note that these conditions are satisfies for every positive ε ≤ 0.13.

As we are assuming that f0 and f1 are C2-diffeomorphisms then the distortion constants of f0

and f1 can be written

C0 = max
x∈S1

∣∣∣∣ D2f0(x)

Df−1
0 (x)

∣∣∣∣ > 0, and C1 = max
x∈S1

∣∣∣∣ D2f1(x)

Df−1
1 (x)

∣∣∣∣ > 0.

Note that
|D2fi(x)|/|Dfi(x)| = |D2f−1

i (x)|/|Df−1
i (x)|

and so the constant C0 and C1 are also the distortion constant of f−1
0 and f−1

1 . Set C =

max{C0, C1} > 0. Since fi are ε-close to the identity in the C2-topology and by choosing of
ε > 0 in (3.9) it follows that 0 < C < ε(1− ε)−1 < δ.
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We will show that |Dfn0
0 (x) − 1| < δ for all x ∈ K∗∗Φ = [0, 1]. By Lemma 3.30 it follows that

for every x ∈ S1,

e−ε(1−ε)
−1
< e−C ≤ Dfn0

0 (x) ≤ eC < eε(1−ε)
−1
.

Substituting (3.9) in this inequality we conclude that |Dfn0
0 (x)− 1| < δ for all x ∈ S1.

Proposition 3.6 and the above estimates calculated for both, the distortion constant C and
the derivative of f0, imply that

R′(x) ≥ 1

2
(1− δ)δ−1e−5C >

1

2
(1− δ)δ−1e−5δ > 1 for all x ∈ A.

That is, R is an expanding return map over the fundamental domain A.

The rest of the proof of this theorem and the proof of Duminy’s Lemma (Theorem D) are
totally analogous. With regard to the C1-robustness, again we can use the same argument of
Duminy’s Lemma and thus this part follows from Theorem 3.13. So, the proof of this result is
completed.

The following result shows that in the presence of a ss-interval for the periodic IFS there are
no invariant minimal Cantor sets.

Proposition 3.36. Let ε > 0 be in Theorem 3.35. Let f0, f1 ∈ Diff2(S1) be a pair of Morse-Smale
diffeomorphisms of period n0 and n1, respectively, and ε-close to the identity in the C2-topology.
Assume that they have no common periodic points and there exists a ss-interval for IFS(fn0

0 , fn1
1 ).

Then there are no minimal invariant Cantor sets for neither IFS(fn0
0 , fn1

1 ) nor IFS(f0, f1).

Proof. Observe that, by Theorem 3.35, any ss-interval Kss
Φ for IFS(Φ) satisfies that

Kss
Φ = OrbΦ(x) for all x ∈ Kss

Φ

where Φ = {fn0
0 , fn1

1 }. Moreover, note that Kss
Φ is also an invariant minimal set for IFS(f0, f1)

since IFS(Φ) is contained in IFS(f0, f1). Let us denote by F either, IFS(Φ) or IFS(f0, f1) since
the argument to exclude the invariant minimal Cantor sets is analogous for both of them.

Suppose that Λ is an invariant minimal Cantor set for F . The first observation is that there are
attracting fixed points of fnii in Λ for i = 1, 2. In order to prove this, we fix any point p ∈ Λ. Hence,
since fnii is a Morse-Smale diffeomorphism then q = limk→∞ f

kni
i (p) is an attracting fixed point

of fnii and since Λ is closed invariant for F then q ∈ Λ. We claim4 that one of these fixed points is
the endpoint of a ss-interval for IFS(Φ). Indeed, since there are no common periodic points, the
same above argument to find periodic points in Λ allows us to move out through the basin of the
attracting fixed point of fnii to an endpoint of some ss-interval Kss

Φ for IFS(Φ). Finally, since Λ

is an invariant minimal set for F , the closure of the orbit of this endpoint of Kss
Φ is Λ. However,

as already mentioned, the closure of orbit of this endpoint for F is the Kss
Φ and hence Kss

Φ = Λ

which is a contradiction since Λ is a Cantor set and Kss
Φ has not empty interior. Therefore, it

follows that there is no exceptional minimal set for F , that is, for both IFS(Φ) and IFS(f0, f1),
and so, we conclude the proof of the proposition.

4More details of this claim can be understood in the following Section §3.3.3 where we study cycles for IFS.
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In the following section, we will show that the existence of a ss-interval for IFS(fn0
0 , fn1

1 ) implies
the existence of a uu-interval for the same IFS (see Proposition 3.38) and thus, the existence of
a ss-interval for IFS(f−n0

0 , f−n1
1 ). If necessary, we reduce the size of the neighborhood of the

identity to obtain that for every f0 and f1 in this new neighborhood, f−1
0 and f−1

1 are ε-close to
the identity. So, from the above proposition it follows that:

Remark 3.37. Under the assumptions of Proposition 3.36, it holds that there are no invariant
minimal Cantor sets for both IFS(f−n0

0 , f−n0
1 ) and IFS(f−1

0 , f−1
1 ).

3.3.3 Cycles for IFS on the circle

Recall that a ss-interval for IFS(f0, f1) close enough to the identity map is an interval define by
a pair of consecutive attractors each from a different diffeomorphism fi, i = 0, 1. In a similar way,
a uu-interval for IFS(f0, f1) is define as a ss-interval for IFS(f−1

0 , f−1
1 ).

Proposition 3.38. Let f0, f1 be Morse-Smale circle diffeomorphisms with no fixed points in com-
mon. Then, there is a ss-interval for IFS(f0, f1) if and only if there is a uu-interval for IFS(f0, f1).

Proof. We only need to prove that if IFS(f0, f1) has an interval Kuu
Φ then also has an interval Kss

Φ .
Consider S1 parametrice by [0, 1] mod1. By abuse of notation, we continue to write fi for the lift
map. Note that since f0 is a circle diffeomorphism then the number of fixed point is even. Thus,
we may denote by pi and p̃i for i = 1, . . . n the attractor and repeler fixed points of f0 respectively
ordered in the real order on [0, 1]. In a similar way, qj and q̃j for j = 1, . . . ,m denote the attractor
and repeler points of f1 respectively ordered in the real order on [0, 1]. We may assume without
loss of generality that 0 = p̃1 < q̃1 < p1 < q2 and that pn < qm < 1. Thus Kuu

Φ = [p̃1, q̃1] and the
rest of the fixed points of f0 and f1 belong to the interval [p1, qm]. Note that, since Kuu

Φ has only
two fixed points of f0 and f1 then, in [p1, qm] there is an even number of fixed points. We assume
that there are no ss-intervals. Then, since there are no fixed points in common, we may construct
a sequence of attractor p1 < q1 < . . . < pik < qjk < pik+1

< . . . < pn < qm where pik is in the
basin of attraction of qjk and qjk is in the basin pik+1

. From this, we have the partition

(p1, qm] = (p1, q1] ∪ . . . ∪ (pik , qjk ] ∪ (qjk , pik+1
] ∪ . . . ∪ (pn, qn].

Since there are no ss-intervals then in each interval of the above partition there are an even number
of fixed points of f0 and f1. Hence, there is an even number of fixed point in (p1, qm]. This leads
to a contradiction with the number of fixed points in [p1, qm] and it proves the proposition.

We introduce the notion of cycle for an IFS of two diffeomorphisms on the circle.

Definition 3.7 (Cycle). Let f0 and f1 be two circle diffeomorphisms. Denote by pi the attractors
of f0 and by qi the attractors of f1. Define a partial order on the attracting points by pi ≺ qj if and
only if pi belongs to the basin of attraction of qj for f1. Similar definitions for qi ≺ pj. A sequence
of attractors forms a cycle of length n for IFS(f0, f1) if we have

pi1 ≺ qi2 ≺ pi3 ≺ . . . ≺ qin ≺ pin+1 and pi1 = pin+1 .

The cycle is said to be minimal if it has no sub-cycles, that is, there are no 1 ≤ j < k ≤ n such
that pij = pik or qij = qik .
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A consecutive pair of attractors for two different diffeomorphisms f0 and f1 close enough to
the identity is a minimal cycle of length 2. Note that this type of cycle of length 2 define an
ss-interval for IFS(f0, f1). The following result shows the existence of a minimal cycle for an IFS
of Morse-Smale diffeomorphisms with fixed points on the circle.

Proposition 3.39. Let f0 and f1 are Morse-Smale diffeomorphisms on S1 of period one with no
fixed points in common. Then there exists at least one minimal cycle for IFS(f0, f1).

Proof. If the IFS has a ss-interval then has a minimal cycle of length 2. Suppose that there are no
ss-intervals. By Proposition 3.38, there are no uu-intervals. In the proof of that result we actually
construct a cycle for IFS(f0, f1). Hence, argue in a similar way, we find a minimal cycle for it
follows IFS(f0, f1) and therefore we conclude the proof of the proposition.

In the sequel, we assume that f0 and f1 are Morse-Smale diffeomorphisms on S1 of period
one (ni = 1) and with no fixed points in common. Let Cn = {pj1 ≺ qj2 ≺ . . . ≺ qjn ≺ pj1} be a
minimal cycle for IFS(f0, f1). Note that the length n of the minimal cycle is even. We will use
the symbols sk for k = 0, . . . , n to denote of cycle elements. In particular, s2i−1 = qjn−(2i−1)+1

and
s2` = pjn−2i+1 for i = 1, . . . , n/2. Note that with this new notation

sn ≺ sn−1 ≺ . . . ≺ s2 ≺ s1 ≺ s0 and s0 = sn.

Note that sk is an attracting fixed point for fkmod 2. That is, if k is an even number then sk

is a fixed point of f0 and if k is an odd number then of f1. We consider S1 parametrice by
[s0, s0 + 1] mod 1. Then s0 < sk < s0 + 1 for k = 1, . . . , n − 1 in the real order on the interval
[s0, s0 + 1]. We denote by s−k and s+

k the repelling points of fkmod 2 closest from the left and right
respectively to sk. For the special case k = 0 note that the ordered on the interval [s0, s0 + 1] is
s0 < s+

0 ≤ s
−
0 = s−n < sn = s0 +1. Since s1 ≺ s0 then s1 ∈ (s0, s

+
0 )∪ (s−0 , s0 +1). We may suppose,

without losing generality, that s1 ∈ (s0, s
+
0 ).

Lemma 3.40. If there are no ss-intervals for IFS(f0, f1) then

sk < s−k+1 < sk+1 < s+
k for k = 0, . . . , n− 1.

Proof. Since there are no ss-intervals from the geometry of the functions, we cannot have an
attractor-attractor pair for IFS(f0, f1). Hence, since s1 ≺ s0 and s1 ∈ (s0, s

+
0 ), the fixed point

of f1 in this interval closest to s0 is a repeller s−1 . Therefore s0 < s−1 < s1 < s+
0 . Note that this

shows the claim for k = 0. Inductively suppose that sk−1 < s−k < sk < s+
k−1. Since sk+1 ≺ sk then

sk+1 ∈ (s−k , sk) ∪ (sk, s
+
k ). If sk+1 ∈ (s−k , sk) then sk−1 < s−k < sk+1 < sk < s+

k−1 contradicting
that sk ≺ sk−1. Thus sk+1 ∈ (sk, s

+
k ). As there are no ss-intervals and sk+1 ≺ sk then the fixed

point of fk+1 mod 2 in (sk, s
+
k ) closest to sk is a repeller s−k+1. Therefore sk+1 < s−k+1 < sk+1 < s+

k

and in n− 1 steps of this induction we conclude the proof of the lemma.

If IFS(f0, f1) has a minimal cycle of length 2 defining a ss-interval then, according to Propo-
sition 3.38, it has a uu-interval. Note that, now, this uu-interval defines a minimal cycle of length
2 for IFS(f−1

0 , f−1
1 ). We will show the same observation for a general cycle Cn. Before that, we

denote by s̃k the repeler of fkmod 2 closest of sk. This means that s̃k satisfies that there are no
repeler s̃ of fkmod 2 with the order sk−1 < s̃ < s̃k on the interval [s0, s0 + 1].
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Lemma 3.41. If there are no ss-intervals for IFS(f0, f1) then

s̃1 ≺ . . . ≺ s̃n ≺ s̃n+1 where s̃n+1 = s̃1

is a minimal cycle for IFS(f−1
0 , f−1

1 ).

Proof. We will show that s̃k belongs to the basin of attraction of s̃k+1. Note that by definition
of s̃k and from Lemma 3.40 we have s̃k ≤ s−k for k = 1, . . . , n. So, we have the following order
sk−1 < s̃k ≤ s−k < sk < s̃k+1. Hence, as sk ≺ sk−1 it follows that the interval (sk−1, sk] has no
fixed point of fk+1 mod 2. By definition, s̃k+1 is the closest fixed points of fk+1 mod 2 from the right
to sk. Thus, the interval (sk−1, s̃k+1] is contained in the basin of attraction of s̃k+1 for f−1

k+1 mod 2

and therefore also s̃k. The minimality of this cycle is followed from the minimality of Cn.

According to Proposition 3.39, we always have a minimal cycle Cn for IFS(f0, f1). If the cycle
is a ss-interval for IFS(f0, f1) then, according to Proposition 3.38, this IFS has also a uu-interval.
Under the assumption that f0 and f1 are close enough to the identity map, Theorem D implies
that theses intervals are minimal sets for IFS(f0, f1) and IFS(f−1

0 , f−1
1 ) respectively. If the cycle is

not a ss-interval for IFS(f0, f1), Proposition 3.41 shows the existence of a minimal cycle different
of a uu-interval for IFS(f−1

0 , f−1
1 ). The following theorem shows that in this case, S1 is minimal

for both IFS(f0, f1) and IFS(f−1
0 , f−1

1 ).

Theorem 3.42 (Cycle). There exists ε ≥ 0.23 such that if f0, f1 ∈ Diff2(S1) are Morse-Smale
diffeomorphisms ε-close to the identity in the C2-topology with a minimal cycle for IFS(f0, f1)

different of a ss-interval, then S1 is C1-robustly minimal for IFS(f0, f1) and IFS(f−1
0 , f−1

1 ).

The proof will be very similar to the local case in the Duminy’s Lemma (see Theorem D). Here
the expanding return map will be of global character.

Creating a return map

Lemma 3.43 (Creating a return map). In the hypothesis of Theorem 3.42, there exist families of
right-closed pairwise disjoint intervals Ii1...in ⊂ S1 and maps hii...in ∈ IFS(f0, f1) with ij ≥ 0 for
j = 1, . . . , n such that

i) A = (s0, f
−1
1 (s0)] =

⋃
Ii1...in,

ii) h−1
i1...in

(Ii1...in) ⊂ A if in = 0 and h−1
i1...in

(Ii1...in) = A if in > 0,

iii) if c ∈ A\{f−1
1 (s0)} is an endpoint of Ii1...in then there exist h ∈ IFS(f0, f1) and s ∈ Cn such

that h(s) = c. That is, it is in the orbit of the cycle for IFS(f0, f1).

Proof. By Lemma 3.40 we have sk−1 < s−k < sk < s−k+1. Then sk < f−1
k+1 mod 2(sk) < s−k+1.

Thus, we can define a non-empty fundamental domain of fk+1 mod 2, Ak = (sk, f
−1
k+1 mod 2(sk)] for

k = 0 . . . , n. As on the circle s0 = sn then we also identify on S1 the intervals in the real line
A0 = (s0, f

−1
1 (s0)] and An = (sn, f

−1
1 (sn)]. We denote this interval by A. In order to create the

expanding return map we will divide this fundamental domain inductively.
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As s1 ≺ s0, there exists j ∈ N such that s0 < f j0 (s1) < f−1
1 (s0) ≤ f j−1

0 (s1) < s1. Then

A = (s0, f
−1
1 (s0)] =

∞⋃
i1=0

Ii1 ,

with I0 = (f j0 (s1), f−1
1 (s0)] and Ii1 = (f j+i10 (s1), f j+i1−1

0 (s1)] if i1 > 0. Let hi1 = f j+i10 , we have
that h−1

i1
(Ii1) = (s1, ci1 ] where c0 = f−j0 ◦ f−1

1 (s0) ∈ (s1, f
−1
0 (s1)] and ci1 = f−1

0 (s1) if i1 > 0.
Therefore, h−1

0 (I0) ⊂ A1 and h−1
i1

(I1) = A1 if i1 > 0. Let c ∈ A \ {f−1
1 (s0)} be an endpoint of Ii1 .

Then either c = f j0 (s1) if i1 = 0 or c ∈ {f j+i10 (s1), f j+i1−1
0 (s1)} if i1 > 0. In any case, c belongs

to the orbit of the cycle. This completes the first step of the induction and now we proceed with
the inductive hypothesis. Suppose that we have families of right-closed pairwise disjoint intervals
Ii1...ik ⊂ S1 and maps hi1...ik ∈ IFS(f0, f1) with ij ≥ 0 for j = 1, . . . , k such that

(i) A =
⋃
Ii1...ik ,

(ii) h−1
i1...ik

(Ii1...ik) = (sk, ci1...ik ] where ci1...ik−10 ∈ (sk, f
−1
k+1 mod 2(sk)] and ci1...ik = f−1

k+1 mod 2(sk)

if ik > 0. Therefore, h−1
i1...ik−10(Ii1...ik−10) ⊂ Ak and h−1

i1...ik
(Ii1...ik) = Ak if ik > 0.

(iii) if c ∈ A \ {f−1
1 (s0)} is an endpoint of Ii1...ik then there exist h ∈ IFS(f0, f1) and s ∈ Cn such

that h(s) = c.

Recall that by Lemma 3.40 it follows that sk < f−1
k+1 mod 2(sk) < s−k+1. Hence, from the inductive

hypothesis we have sk < ci1...ik ≤ f
−1
k+1 mod 2(sk) < sk+1. Now, since sk+1 ≺ sk, for each multi-index

i1 . . . ik there exists ji1...ik ∈ N such that

sk < f
ji1...ik
kmod 2(sk+1) ≤ ci1...ik < f

ji1...ik−1

kmod 2 (sk+1) < sk+1.

Then

h−1
i1...ik

(Ii1...ik) = (sk, ci1...ik ] =
∞⋃
`=0

Ji1...ik`

with

Ji1...ik0 = (f
ji1...ik
kmod 2(sk+1), ci1...ik ] and Ji1...ik` = (f

ji1...ik+`

kmod 2 (sk+1), f
ji1...ik+(`−1)

kmod 2 (sk+1)] if ` > 0.

By construction the intervals Ji1...ik` for ` ≥ 0 are pairwise disjoint. Define Ii1...ik` ⊂ Ii1...ik by
Ii1...ik` = hi1...ik(Ji1...ik`). By definition, fixed a multi-index i1 . . . ik, the intervals Iii...ik` for ` ≥ 0

are also pairwise disjoint. Since Ii1...ik` ⊂ Ii1...ik and as by induction hypothesis the intervals Ii1...ik
are pairwise disjoint then {Ii1...ik+1

: ij ≥ 0 for j = 1, . . . k+ 1} is a family of right-closed pairwise
disjoint intervals. Note that each right-closed interval Ii1...ik is union of the intervals Ii1...ik` for
` ≥ 0. Then, by the induction hypothesis it also follows that A = ∪Ii1...ik+1

.

In order to prove the third item, we fix an interval Ii1...ik`. For every ` ≥ 0 the left endpoints
of this interval is hi1...ik ◦ f

ji1...ik+`

kmod 2 (sk+1). So, it belongs to the orbit of the cycle. The right is

hi1...ik(ci1...ik) if ` = 0 and hi1...ik ◦ f
ji1...ik+`−1

kmod 2 (sk+1) if ` > 0.

Note that hi1...ik(ci1...ik) is the endpoint of Ii1...ik . Therefore, by the inductive hypothesis, either
hi1...ik(ci1...ik) = f−1

1 (s0) or hi1...ik(ci1...ik) = h(s) for some h ∈ IFS(f0, f1) and s ∈ Cn.
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Set hi1...ikik+1
= hi1...ik ◦ f

ji1...ik+ik+1

kmod 2 . By construction

h−1
i1...ik+1

(Ii1,...ik+1
) = f

−ji1...ik−ik+1

kmod 2 (Ji1...ikik+1
) = (sk+1, ci1...ik+1

]

where ci1...ikik+1
= f−1

kmod 2(sk+1) if ik+1 > 0 and

ci1...ik0 = h−1
i1...ik0 ◦ hi1...ik(ci1...ik) = f

−ji1...ik
kmod 2 (ci1...ik) ∈ (sk+1, f

−1
kmod 2(sk+1)].

Therefore, h−1
i1...ik,0

(Ii1...ik,0) ⊂ Ak+1 and h−1
i1...ik+1

(Ii1...ik+1
) = Ak+1 if ik+1 > 0.

Going through the n steps of the cycle we conclude the lemma.

Remark 3.44. From the above lemma we define the return map over A = (s0, f
−1
1 (s0)] as

R : A→ A, R|Ii1...in = h−1
i1...in

.

The endpoint of the intervals Ii1...in are called discontinuities of R. Note that this discontinuities
points are in the orbit of the cycle for the IFS(f0, f1).

Addemdum to Lemma 1. For each k = 1, . . . , n, there exist a family

{(Ii1...ik , hi1...ik ,mi1...ik) : ij ≥ 0 j = 1, . . . k}

with Ii1...ik pairwise disjoint right-closed intervals of S1, hi1...ik ∈ IFS(f0, f1) and mi1...ik natural
numbers such that A = (s0, f

−1
1 (s0)] = ∪Ii1...ik , and for k = 1, . . . , n− 1

i) Ii1...ikik+1
⊂ Ii1...ik and Ii1 is contained in a fundamental domain of f0,

ii) h−1
i1...ikik+1

= f
−mi1...ik+1

kmod 2 ◦ h−1
i1...ik

= f
−mi1...ik+1

kmod 2 ◦ f−mi1...ikk−1 mod 2 ◦ · · · ◦ f
−mi1i2
1 ◦ f−mi10 ,

iii) h−1
i1...ik−10(Ii1...ik−10) = (sk, ci1...ik ] and h−1

i1...ik
(Ii1...ik) = Ak if ik > 0 with

sk < ci1...ik ≤ f
−1
k+1 mod 2(sk) and Ak = (sk, f

−1
k+1 mod 2(sk)],

iv) mi1...ik+1 = mi1...ik + 1 and mi1...ik−10 ≥ 1 satisfies that

f
mi1...ik−10

kmod 2 (sk+1) < ci1...cik ≤ f
mi1...ik−10−1

kmod 2 (sk+1).

Proof. We only need to show the second item. Let mi1 = j + i1 and mi1...ik = ji1...ik + ik+1. Note
that h−1

i1
= f

−mi1
0 . From the construction in the inductive process in proof of Lemma 3.43,

h−1
i1...ikik+1

= f
−ji1...ik−ik+1

kmod 2 ◦ h−1
i1...ik

= f
−mi1...ik+1

kmod 2 ◦ h−1
i1...ik

.

Hence by the induction hypothesis we have h−1
i1...ikik+1

= f
−mi1...ik+1

kmod 2 ◦f−mi1...ikk−1 mod 2◦· · ·◦f
−mi1i2
1 ◦f−mi10 .

Therefore, in n step of this induction it follows the addendum.
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Estimation of the derivative for the return map

The main result in this step is the following estimate of the derivative for the return maps:

Proposition 3.45. Let C > 0 the largest distortion constant of f−1
0 and f−1

1 . Consider ε > 0

such that |Dfi(x)− id| < ε for all x ∈ (0, 1) and i = 0, 1. Then

R′(x) > (1− ε)ε−1e−C if x ∈
∞⋃
`=1

Ii1...in−1`,

R′(x) > (1− ε)2ε−1e−3C if x ∈
⋃
Ii1...in−10.

As in the case of Proposition 3.6 in the proof of Duminy’s Lemma, we need of some preliminar
lemmas to obtain the bound distortion estimate of h−1

i1...in
in Ii1...in .

Lemma 3.46 (Disjointness). Let i1 . . . in be a fixed multi-index. Then

U`
def
= f−`0 (Ii1...in) for 0 ≤ ` < mi1 and

Ui1,...ik,`
def
= f−`kmod 2 ◦ h

−1
i1...ik

(Ii1...in) for k = 1, . . . , n− 1 and 0 ≤ ` < mi1...ik+1
.

are right-closed pairwise disjoints intervals in S1.

Proof. By construction Ii1...ik+1
⊂ hi1...ik ◦ f

mi1...ik+1

kmod 2 (sk+1, f
−1
kmod 2(sk+1)]. As Ii1...in ⊂ Ii1...ik+1

then

Ui1...ik,` ⊂ f
−`
kmod 2 ◦ h

−1
i1...ik

(Ii1...ik+1
) ⊂ f

mi1...ik+1
−`

kmod 2 (sk+1, f
−1
kmod 2(sk+1)].

Since 0 ≤ ` < mi1...ik+1
then f

mi1...ik+1
−`

kmod 2 (sk+1, f
−1
kmod 2(sk+1)] ⊂ (sk, sk+1]. This implies that

Ui1...ik,` is contained in a fundamental domain of fkmod 2 in the interval (sk, sk+1]. Suppose that
Ui1...ik,` ∩ Ui1...im,r 6= ∅. Then (sk, sk+1] ∩ (sm, sm+1] 6= ∅. Hence k = m. Now, it follows that

f
mi1...ik+1

−`
kmod 2 (sk+1, f

−1
kmod 2(sk+1)] ∩ f

mi1...ik+1
−r

kmod 2 (sk+1, f
−1
kmod 2(sk+1)] 6= ∅

where 0 ≤ r, ` < mi1...ik+1
. This it is only possible if r = `.

Lemma 3.47 (Distortion). Let C > 0 be the largest distortion constant of f0 and f1. Then

Dist(h−1
i1...in

, Ii1...in) ≤ C and Dist(h−1
i1...in+1, Ii1...in) ≤ 2C.

Consequently, for every pair of intervals J and L contained in Ii1...in

|J |
|L|

e−C ≤
|h−1
i1...in

(J)|
|h−1
i1...in

(L)|
≤ eC |J |

|L|
and

|J |
|L|

e−2C ≤
|h−1
i1...in+1(J)|
|h−1
i1...in+1(L)|

≤ e2C |J |
|L|

.

Moreover, if I = Ii1...in+1 ∪ Ii1...in then

|h−1
i1...in+1(I)|
|I|

e−3C ≤ Dh−1
i1...in+1(z) ≤ e3C

|h−1
i1...in+1(I)|
|I|

for all z ∈ I.
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Proof. Recall that for every k = 1, . . . , n− 1

h−1
i1...ik+1

= f
−mi1...ik+1

kmod 2 ◦ f−mi1...ikk−1 mod 2 ◦ · · · ◦ f
−mi1i2
1 ◦ f−mi10 = f

−mi1...ik+1

kmod 2 ◦ h−1
i1...ik

.

For simplicity of notation, we mean for k = 0 that map h−1
i1...ik

is the identity map. Then

Dh−1
i1...in

(x) =
n−1∏
k=0

Df
−mi1...ik+1

kmod 2 (h−1
i1...ik

(x)) =
n−1∏
k=0

mi1...ik+1
−1∏

`=0

Df−1
kmod 2(f−`kmod 2 ◦ h

−1
i1...ik

(x)).

By means of the distortion control of f0 and f1, for every x, y ∈ Ii1...in

| log
Dh−1

i1...in
(x)

Dh−1
i1...in

(y)
| = | logDh−1

i1...in
(x)− logDh−1

i1...in
(y)|

≤ C
n−1∑
k=0

mi1...ik+1
−1∑

`=0

|f−`kmod 2 ◦ h
−1
i1...ik

(x)− f−`kmod 2 ◦ h
−1
i1...ik

(y)|

≤ C
n−1∑
k=0

mi1...ik+1
−1∑

`=0

|Ui1...ik,`|.

The disjointness of Ui1...ik,` showed in Lemma 3.46, implies that Dist(h−1
i1...in

, Ii1...in) ≤ C. Similarly,
as mi1...in+1 = mi1...in + 1, we have that

Dh−1
i1...in+1(x) = Df

−mi1...in+1

n−1 mod 2 (h−1
i1...in−1

(x)) ·
n−2∏
k=0

mi1...ik+1
−1∏

`=0

Df−1
kmod 2(f−`kmod 2 ◦ h

−1
i1...ik

(x))

= Df−1
n−1 mod 2(f

−mi1...in
n−1 mod 2 ◦ h

−1
i1...in−1

(x))

n−1∏
k=0

mi1...ik+1
−1∏

`=0

Df−1
kmod 2(f−`kmod 2 ◦ h

−1
i1...ik

(x)).

Denoting Ui1...in,mi1...in = f
−mi1...in
n−1 mod 2 ◦ h

−1
i1...in−1

(Ii1...in), we have that for every x and y in Ii1...in ,

| log
Dh−1

i1...in+1(x)

Dh−1
i1...in+1(y)

| ≤ C
n−1∑
k=0

mi1...ik+1
−1∑

`=0

|Ui1...ik,`|+ C|Ui1...in,mi1...in | ≤ 2C.

From this Dist(h−1
i1...in+1, Ii1...in) ≤ 2C and we conclude the first part of the lemma. The rest of

the assertions of this lemma are followed analogously as in Lemma 3.9. Therefore the proof of the
lemma is concluded.

Proof of Proposition 3.45. Let x ∈ A. Without loss of generality, we assume that x is not a
discontinuity point of R. If x is a discontinuity, the first return map only has lateral derivative on
this point. A similar argument allows to estimate a bound for its lateral derivative. Hence, since x
is not a discontinuity, we find η0 > 0 and a unique interval Ii1...in such that for every 0 < η ≤ η0,
the interval J = (x− η, x+ η) satisfies that J ⊂ Ii1...in . Notice that R(J) = h−1

i1...in
(J).

From Lemma 3.46 we have that

|R(J)| ≥ e−C
|h−1
i1...in

(Ii1...in)|
|Ii1...in |

|J |. (3.10)
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By construction Ii1...in ⊂ Ii1 ⊂ (f
mi1
0 (s1), f

mi1−1
0 (s1)]. Then |Ii1...in | < |f

mi1
0 (s1) − fmi1−1

0 (s1)|.
We write this bounded as |fmi10 (s1)− fmi1−1

0 (s1)| = |s0 − f
mi1−1
0 (s1)| − |s0 − f

mi1
0 (s1)|. Since s0

is a fixed point of f0 then, from Mean Value Theorem, there exits ζ ∈ (s0, f
mi1−1
0 (s1)) such that

|s0 − f
mi1
0 (s1)| = |Df0(ζ)||s0 − f

mi1−1
0 (s1)|. Therefore,

|fmi10 (s1)− fmi1−1
0 (s1)| = (1− |Df0(ζ)|)|s0 − f

mi1−1
0 (s1)| ≤ ε|fmi1−1

0 (s1)− s0|.

Finally,
|Ii1...in | < |f

mi1
0 (s1)− fmi1−1

0 (s1)| ≤ ε|fmi1−1
0 (s1)− s0|. (3.11)

In order to obtain a bounded for |h−1
i1...in

(Ii1...in)|, we divide in two different cases:

i) h−1
i1...in

(Ii1...in) ∩ Ii1...in 6= ∅.

Note that if in > 0 by Lemma 3.43 h−1
i1...in

(Ii1...in) = A and then we are in this case.

We write h−1
i1...in

(Ii1...in) = (s0, ci1...in ]. Recall that Ii1...in ⊂ (f
mi1
0 (s1), f

mi1−1
0 (s1)]. Since

Ii1...in ∩ (s0, ci1...in ] 6= ∅ then s0 < fmi1 (s1) ≤ ci1...in . Let k ∈ N be the first time such that
fk0 (s1) ∈ (s0, ci1...in ]. Then s0 < f

mi1
0 (s1) ≤ fk0 (s1) ≤ ci1...in < fk−1

0 (s1). Hence,

|h−1
i1...in

(Ii1...in)| = |ci1...in − s0| ≥ |fk0 (s1)− s0|.

Again, since s0 is a fixed point of f0 and from Mean Value Theorem we have ξ ∈ (s0, f
k−1
0 (s0))

such that |fk0 (s0) − s0| = |Df0(ξ)||fk−1
0 (s1) − s0| ≥ (1 − ε)|fk−1

0 (s0) − s0|. Therefore, since that
f
mi1−1
0 (s1) ≤ fk−1

0 (s1), it follows that

|h−1
i1...in

(Ii1...in)| ≥ (1− ε)|fk−1
0 (s1)− s0| ≥ (1− ε)|fmi1−1

0 (s1)− s0|. (3.12)

Now, substituting this bounded and the inequality (3.11) in the equation (3.10) we obtain |R(J)| >
e−C(1− ε)ε−1|J |. Since this holds for all intervals J ⊂ Ii1...in contained x, then we have the same
bound for the derivative of R at the point x.

ii) h−1
i1...in

(Ii1...in) ∩ Ii1...in = ∅.

Observe that this case only is possible if in = 0. Note that h−1
i1...in−10 = f1 ◦ h−1

i1...in−11. By means
of Mean Value Theorem |R(J)| = |Df1(ξ0)||Dh−1

i1...in−11(ξ1)||J | ≥ (1 − ε)|Dh−1
i1...in−11(ξ1)||J | for

some ξ0 ∈ h−1
i1...in−11(J) and ξ1 ∈ J . From Lemma 3.47 we have estimate Dh−1

i1...in−11 on the
interval I = Ii1...in−11 ∪ Ii1...in−10 and so |Dh−1

i1...in−11(ξ1)| ≥ e−3C |h−1
i1...in−11(I)|/|I|. Note that

h−1
i1...in−11(Ii1...in−11) ⊂ h−1

i1...in−11(I). Then, from the bounded obtain in the equation (3.12) of the
previous case it follows

|h−1
i1...in−11(I)| ≥ |h−1

i1...in−11(Ii1...in−11)| ≥ (1− ε)|fmi1−1
0 (s1)− s0|.

Note that I ⊂ Ii1...in−1 ⊂ Ii1 ⊂ (f
mi1
0 (s1), f

mi1−1
0 (s1)]. Then, as in the equation (3.11), we have

|I| < |fmi10 (s1)− fmi1−1
0 (s1)| ≤ ε|fmi1−1

0 (s1)− s0|. Thus, |Dh−1
i1...in−11(y)| > e−3C(1− ε)ε−1 for all

y ∈ I. Therefore, |R(J)| > e−3C(1− ε)2ε−1. Finally, as J = (x− η, x+ η) for all 0 < η < η0, we
take η → 0 and conclude the same bounded for the derivative at x.
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End of the proof of Cycle Theorem

Now, we will conclude Theorem 3.42 for IFS(f0, f1). Recall that C = max{C0, C1} where Ci is
the distortion constant of fi. If f0 and f1 are ε-close to the identity in the C2 topology then

Ci = max{|f ′′i (x)||f ′i(x)|−1 : x ∈ S1} ≤ ε(1− ε)−1

for i = 1, 2. Therefore C ≤ ε(1− ε)−1. For 0 < ε ≤ 0.23, if f0 and f1 are ε-close to the identity in
the C2 topology then there exists λ > 1 such that R′(x) ≥ λ for all x ∈ A. That is,

Remark 3.48. There is ε ≥ 0.23 such that R is an expanding return map over A.

Proof of cycle Theorem for IFS(f0, f1). Let I ⊂ S1 be an interval. Fixed x ∈ S1. In order to prove
the minimality of S1 for IFS(f0, f1), we should show that there is a map h ∈ IFS(f0, f1) such that
h(x) ∈ I. Let Cn be a minimal cycle. We follow the notation and the assumptions for the cycle used
in the above lemmas. So, we have an expanding return map R : A → A where A = (s0, f

−1
1 (s0)]

with s0 ∈ Cn. Let y ∈ I. By means of the cycle for IFS(f−1
0 , f−1

1 ) constructed in Lemma 3.41,
there is g ∈ IFS(f−1

1 , f−1
0 ) such that g(y) ∈ (sn−1, s̃n). Note that s̃n < sn where sn = s0 + 1 on

the lift. However, on S1 we have that sn = s0. Hence, we also write that A is the fundamental
domain of f1 parametrice by (sn, f

−1
1 (sn)]. There is k ∈ N such that f−k1 ◦ g(y) ∈ A. That is,

there exists g0 ∈ IFS(f0, f1) such that g−1
0 (I) ∩ A 6= ∅. From Remark 3.48 the return map R is

expanding map in A. Thus, there is n ≥ 0 such that Rn(f−1
σ (I) ∩A) contains some discontinuity

of R. Note that Rn(f−1
σ (I) ∩ A) = g−1

1 (f−1
σ (I) ∩ A) for some g1 ∈ IFS(f0, f1). Recall that the

discontinuities are the endpoint of Ii1...in . That points are in the orbit of the cycle Cn. Therefore,
there is g2 ∈ IFS(f0, f1) and s ∈ Cn such that g2(s) ∈ g−1

1 (g−1
0 (I) ∩A). From the continuity of g2

it follows δ > 0 such that g2((s − δ, s + δ)) ⊂ g−1
1 (g−1

0 (I) ∩ A). As the union of the basin of the
attractor points in the cycle Cn is S1, then there is g3 ∈ IFS(f0, f1) such that g3(x) ∈ (s−δ, s+δ).
Therefore, taken h = g0 ◦ g1 ◦ g2 ◦ g3 ∈ IFS(f0, f1) it follows h(x) ∈ I. Finally, by Lemma 3.41, we
have again a minimal cycle of fixed point different of a ss-interval for IFS(f−1

0 , f−1
1 ). Therefore,

the same proof works to prove that S1 is minimal for IFS(f−1
0 , f−1

1 ) and so, we conclude the
proposition.

Robustness of Cycle Theorem

We have prove the first part in the Cycle Theorem (Theorem 3.42) for IFS(f0, f1) constructing a
return map R : A→ A with an infinite number of expanding branches. Each expanding branches
is a different map in IFS(f0, f1). This expansivity of R allows us to show that A is minimal for
IFS(f0, f1) and so, using the cycle, we move this minimality property throughout the whole circle.
Any C1-close iterated function system IFS(g0, g1) to IFS(f0, f1) has a minimal cycle different of an
ss-interval. However, since return map R involves an infinite number of composition of f0 and f1

then we cannot guarantee that corresponding analogous return map for IFS(g0, g1) is expansive.
In order to show this expansiveness it suffices, as in Section 3.2.1 was done (see Remark 3.18),
modify the expanding return map R over A to obtain a new return map R̃ which only has a finite
number of expanding branches (or discontinuities). Thus, now it follows that any IFS C1-close
to IFS(f0, f1) has also and expanding return maps close to R̃ and a minimal cycle different of
an ss-interval. With these two ingredients, repeating the same proof of the Cycle Theorem for
IFS(f0, f1) it follows that S1 is minimal for any C1-close IFS.
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3.3.4 Periodic cycles for IFS on the circle

Let f0 and f1 be Morse-Smale diffeomorphism on the circle of period n0 and n1 respectively.
Assume that there is a cycle

Cn = {sn ≺ sn−1 ≺ · · · ≺ s1 ≺ s0 = sn}

different of a ss-interval for IFS(fn0
0 , fn1

1 ). We say that Cn is a periodic cycle for IFS(f0, f1). As
we noted in Section §3.3.2 for a periodic ∗∗-interval, if we use directly the estimates calculated
obtained in Proposition 3.45 for the derivative of the corresponding return map for IFS(fn0

0 , fn1
1 )

then this bound depends on the period m = max{n0, n1}. In fact, when the period increasing this
bounded estimate goes to zero, and thus, we need to reduce the size of the neighborhood. This is
again a problem if we are looking for a uniform neighborhood of the identity.

In this subsection we will show a new estimative for the (periodic) return map derivative
independent of the period m. As in the proof of Cycle Theorem we can construct a first return
map R on a fundamental domain A = (s0, f

−n1
1 (s0)] of fn1

1 (see Lemma 3.43). Note that now
the return maps hi1...in are with respect to the system IFS(fn0

0 , fn1
1 ). It will be helpful to write

g0 = fn0
0 and g1 = fn1

1 . We will indicate the modifications required in estimating the return map
derivative in Subsection 3.2.1.

Lemma 3.49 (Disjointness). Let i1 . . . in be a fixed multi-index. Then the right-closed intervals

i) U`
def
= f−`0 (Ii1...in) for ` ≥ 0 are disjoint with respect to each other, and

ii) Ui1,...ik,`
def
= f−`kmod 2 ◦h

−1
i1...ik

(Ii1...in) for k = 1, . . . , n−1 and ` ≥ 0 are also pairwise disjoint.

Proof. Note that from the Addendum of Lemma 3.43, Ii1...in ⊂ Ii1 where Ii1 is contained in
a fundamental domain of g0 = fn0

0 . Thus, by Lemma 3.30, it follows that U` are right-closed
intervals in S1 disjoint with respect to each other. Also, by Lemma 3.43,

g
−mi1...ik+1

kmod 2 ◦ h−1
i1...ik

(Ii1...in) ⊂ h−1
i1...ik+1

(Ii1...ik+1
) ⊂ Ak+1 = (sk+1, g

−1
kmod 2(sk+1)].

Hence h−1
i1...ik

(Ii1...in) ⊂ g
mi1...ik+1

kmod 2 (Ak+1). Since Ak+1 is a fundamental domain of gkmod 2 then
h−1
i1...ik

(Ii1...in) is also contained in a fundamental domain of gkmod 2 and thus, again by Lemma 3.30,
it follows that Ui1...ik,` are pairwise disjoint intervals in S1.

Lemma 3.50 (Distortion). Let C > 0 be the largest distortion constant of f0 and f1. Then for
every j ≥ 0 it holds that Dist(h−1

i1...in−1j
, Ii1...in) ≤ nC. Consequently, for every pair of intervals J

and L contained in Ii1...in and for j ≥ 0

|J |
|L|

e−nC ≤
|h−1
i1...in−1j

(J)|
|h−1
i1...in−1j

(L)|
≤ enC |J |

|L|

Moreover, if I = Ii1...in−1j+1 ∪ Ii1...in−1j then

|h−1
i1...in−1j+1(I)|
|I|

e−2nC ≤ Dh−1
i1...in−1j+1(z) ≤ e2nC

|h−1
i1...in−1j+1(I)|
|I|

for all z ∈ I.
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Proof. Recall that h−1
i1...ik+1

= g
−mi1...ik+1

kmod 2 ◦h−1
i1...ik

where for simplicity of notation, h−1
i1...ik

for k = 0

is the identity map. Then, denoting by nk the period of fkmod 2, that is, gkmod 2 = fnkkmod 2, and
to shorten writing mi1...in−1in instead of mi1...in−1j , it holds that

Dh−1
i1...in−1j

(x) =

n−1∏
k=0

nkmi1...ik+1
−1∏

`=0

Df−1
kmod 2(f−`kmod 2 ◦ h

−1
i1...ik

(x)).

By means of the distortion control of f0 and f1, for every x, y ∈ Ii1...in

| log
Dh−1

i1...in−1j
(x)

Dh−1
i1...in−1j

(y)
| ≤ C

n−1∑
k=0

nkmi1...ik+1
−1∑

`=0

|f−`kmod 2 ◦ h
−1
i1...ik

(x)− f−`kmod 2 ◦ h
−1
i1...ik

(y)|

≤ C
n−1∑
k=0

nkmi1...ik+1
−1∑

`=0

|Ui1...ik,`|.

The disjointness of each families of intervals Ui1...ik,` for ` ≥ 0 showed in Lemma 3.50 implies that
Dist(h−1

i1...in−1j
, Ii1...in) ≤ nC. The rest of the proof of this lemma is analogous of second part in

Lemma 3.47 and 3.9. Therefore the proof of the lemma is concluded.

Lemma 3.51 (Compared intervals). Let C > 0 be the largest distortion constant of f0 and f1.
Consider δ > 0 such that |Dfnii (x)− 1| < δ for all x ∈ S1 and for i = 0, 1. Then

|Ii1 |
|Ii1...in |

>
(
(1− δ)δ−1e−C

)n−1

for all multi-index i1 . . . in.

Proof. Recall that h−1
i1...ik

= g
−mi1...ik
k−1 mod 2◦h

−1
i1...ik−1

where for simplicity of notation, h−1
i1...ik−1

for k = 1

is the identity map. Argue as in the proof of Lemma 3.50, we have that h−1
i1...ik−1

(Ii1...in) as well as
h−1
i1...ik−1

(Ii1...ik) are contained in I = g
mi1...ik
k−1 mod 2(Ak). Note that Ak = (sk, g

−1
k−1mod 2(sk)] is a funda-

mental domain of gk−1mod 2. Hence, g−`k−1 mod 2(I) for 0 ≤ ` < mi1...ik are pairwise disjoint intervals.

Thus, from the classical distortion lemma (see Lemma 3.7) it follows that Dist(g
−mi1...ik
k−1 mod 2, I) ≤ C

and consequently, for every k = 1, . . . , n− 1 one has that

|h−1
i1...ik−1

(Ii1...ik)|
|h−1
i1...ik−1

(Ii1...in)|
≥ e−C

|h−1
i1...ik

(Ii1...ik)|
|h−1
i1...ik

(Ii1...in)|
. (3.13)

In the particular case of k = 1 we have that |Ii1 |/|Ii1...in | ≥ e−C |h−1
i1

(Ii1)|/|h−1
i1

(Ii1...in)|. Multiply-
ing by |h−1

i1
(Ii1i2)|/|h−1

i1
(Ii1i2)| and using (3.13) gives

|Ii1 |
|Ii1...in |

≥ e−2C
|h−1
i1

(Ii1)|
|h−1
i1

(Ii1i2)|
·
|h−1
i1i2

(Ii1i2)|
|h−1
i1i2

(Ii1...in)|
.

Repeating this argue n− 1 times we obtain

|Ii1 |
|Ii1...in |

≥ e−(n−1)C
|h−1
i1

(Ii1)|
|h−1
i1

(Ii1i2)|
|h−1
i1i2

(Ii1i2)|
|h−1
i1i2

(Ii1i2i3)|
. . .
|h−1
i1...in−1

(Ii1...in−1)|
|h−1
i1...in−1

(Ii1...in)|
. (3.14)

Claim 3.51.1. |h−1
i1...ik

(Ii1...ik)|/|h−1
i1...ik

(Ii1...ik+1
)| > (1− δ)δ−1 for all k = 1, . . . , n− 1.
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Proof of the claim. We have that h−1
i1...ik

(Ii1...ik) = (sk, ci1...ik ] where ci1...ik−10 ∈ (sk, g
−1
k+1 mod 2(sk)]

and ci1...ik = g−1
k+1 mod 2(sk) if ik > 0. On the other hand, from the construction of the return map

in Lemma 3.43

h−1
i1...ik

(Ii1...ik0) = Ji1...ik0 = (g
mi1...ik0

kmod 2 (sk+1), ci1...ik ] and

h−1
i1...ik

(Ii1...ik+1
) = Ji1...ik+1

= (g
mi1...ik+1

kmod 2 (sk+1), g
mi1...ik+1

−1

kmod 2 (sk+1)] if ik+1 > 0.

In the case ik+1 > 0, as sk < g
mi1...ik+1

−1

kmod 2 (sk+1) < ci1...ik we obtain

|h−1
i1...ik

(Ii1...ik)|
|h−1
i1...ik

(Ii1...ik+1
)|

=
|sk − ci1...ik |

|g
mi1...ik+1

kmod 2 (sk+1)− g
mi1...ik+1

−1

kmod 2 (sk+1)|

≥
|sk − g

mi1...ik+1
−1

kmod 2 (sk+1)|

|g
mi1...ik+1

kmod 2 (sk+1)− g
mi1...ik+1

−1

kmod 2 (sk+1)|
≥ |sk − q|
|gkmod 2(q)− q|

where q = g
mi1...ik+1

−1

kmod 2 (sk+1). Using the mean value theorem it follows that

|gkmod 2(q)− q| = |(sk − q)− (gkmod 2(q)− sk) | ≥ |sk − q| |1−Dgkmod 2(ξ)|

for some ξ ∈ S1. Since |Dgi(x) − 1| < δ where gi = fnii for x ∈ S1 and i = 0, 1 we have that
|h−1
i1...ik

(Ii1...ik)|/|h−1
i1...ik

(Ii1...ik+1
)| > δ−1.

In the case ik+1 = 0, as sk < g
mi1...ik0

kmod 2 (sk+1) < ci1...ik ≤ g
mi1...ik0−1

kmod 2 (sk+1) we obtain

|h−1
i1...ik

(Ii1...ik)|
|h−1
i1...ik

(Ii1...ik0)|
=

|sk − ci1...ik |
|gmi1...ik0

kmod 2 (sk+1)− ci1...ik |

≥
|sk − g

mi1...ik0

kmod 2 (sk+1)|

|gmi1...ik0

kmod 2 (sk+1)− gmi1...ik0−1

k+1 mod 2 (sk+1)|
≥ |sk − gkmod 2(q)|
|gkmod 2(q)− q|

where q now denotes g
mi1...ik0−1

k+1 mod 2 (sk+1). Since |sk−gkmod 2(q)| = Dgkmod 2(ξ)|sk−q| > (1−δ)|sk−q|
then |h−1

i1...ik
(Ii1...ik)|/|h−1

i1...ik
(Ii1...ik0)| > (1−δ)|sk−q|/|gkmod 2(q)−q|. Arguing as above, it follows

that |h−1
i1...ik

(Ii1...ik)|/|h−1
i1...ik

(Ii1...ik0)| > (1− δ)δ−1.

Finally, using the above claim in (3.14), it follows |Ii1 |/|Ii1...in | ≥ e−(n−1)C(1 − δ)n−1δ−(n−1)

and therefore the proof of the lemma is concluded.

Proposition 3.52. Let C > 0 be the largest distortion constant of f0 and f1 and n the length of
the minimal cycle for IFS(f0, f1). Consider δ > 0 such that |Dfnii (x) − 1| < δ for all x ∈ (0, 1)

and for i = 0, 1. Then

R′(x) ≥
(
(1− δ)δ−1e−2C

)n−1
e−C if x ∈

∞⋃
`=1

Ii1...in−1`,

R′(x) ≥ 1

2
δeC

(
(1− δ)δ−1e−3C

)n if x ∈
⋃
Ii1...in−10.

Proof. Let x be a interior point of Ii1...in . Take an arbitrarily small open interval J such that
x ∈ J ⊂ Ii1...in . Notice that R(J) = h−1

i1...in
(J). Suppose that in > 0. Then h−1

i1...in
(Ii1...in) = A ⊃

Ii1 ⊃ Ii1...in . From Lemma 3.50 we have that

|R(J)| ≥ e−nC
|h−1
i1...in

(Ii1...in)|
|Ii1...in |

|J | ≥ e−nC |Ii1 |
|Ii1...in |

|J |.
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By Lemma 3.51 it follows |R(J)| > ((1−δ)δ−1e−C)n−1e−nC |J |. The above inequality implies that

R′(x) = Dh−1
i1...in

(x) ≥
(
(1− δ)δ−1e−2C

)n−1
e−C for all x ∈ Ii1...in with in > 0.

For the case in = 0, recalling that mi1...in+1 = mi1...in + 1 it follows h−1
i1...in−10 = gn−1 mod 2 ◦

h−1
i1...in−11. Then, by the mean value theorem, there are ξ ∈ h−1

i1...in−11(J) and ζ ∈ J such that

|R(J)| = |Dgn−1 mod 2(ξ)||Dh−1
i1...in−11(ζ)||J | > (1− δ)|Dh−1

i1...in−11(ζ)||J |.

From the estimate of Dh−1
i1...in−11 on the I = Ii1...in−11∪Ii1...in−10 obtained in Lemma 3.50 it follows

that, Dh−1
i1...in−11(ζ) ≥ e−2nC |h−1

i1...in−11(I)|/|I|. As h−1
i1...in−11(I) ⊃ A ⊃ I0 then |h−1

i1...in−11(I)| ≥
|I0|. Then, by Lemma 3.51, we see that

|h−1
i1...in−11(I)|
|I|

≥ |I0|
|I|

=
( |Ii1...in−11|

|I0|
+
|Ii1...in−10|
|I0|

)−1
>

1

2

(
(1− δ)δ−1e−C)n−1.

Finally, |R(J)| > (1− δ)e−2nC((1− δ)δ−1e−C)n−1|J |/2. This implies that

R′(x) = Dh−1
i1...in0(x) ≥ 1

2
δeC

(
(1− δ)δ−1e−3C

)n for all x ∈ Ii1...in−10

and we conclude the proposition.

Now, we are ready to extend the Cycle Theorem (Theorem 3.42) for Morse-Smale diffeomor-
phisms with arbitrarily large period:

Theorem 3.53 (Periodic Cycle). There exists ε ≥ 0.12 such that if f0, f1 ∈ Diff2(S1) are Morse-
Smale diffeomorphisms of period n0 and n1, respectively, and ε-close to the identity in the C2-
topology with a minimal cycle for IFS(fn1

0 , fn0
1 ) different of a ss-interval, then S1 is C1-robustly

minimal for IFS(fn0
0 , fn1

1 ) and IFS(f−n0
0 , f−n1

1 ).

Proof. Take δ = 0.15 > 0. Hence (1− δ)2δ−1e−5δ > 2. Let ε > 0 small enough such that

1− δ < e−ε(1−ε)
−1
< eε(1−ε)

−1
< 1 + δ and ε(1− ε)−1 < δ. (3.15)

Note that these condition are satisfies for every positive ε ≤ 0.12. We are assuming that f0 and
f1 are C2-diffeomorphisms ε-close to the identity. Thus, the largest distortion constants of f0 and
f1 is 0 < C < ε(1 − ε)−1 < δ. From Lemma 3.30 it follows that e−ε(1−ε)−1

< e−C ≤ Dfnii (x) ≤
eC < eε(1−ε)

−1 for all x ∈ S1 and for i = 0, 1. Using Equation (3.15) in this inequality we conclude
that |Dfnii (x)− 1| < δ for all x ∈ S1. Note that n ≥ 2 and (1− δ)δ−1e−3C ≥ (1− δ)δ−1e−3δ > 1.
Hence, Proposition 3.6 implies that

R′(x) ≥ 1

2
δeC

(
(1− δ)δ−1e−3C

)n ≥ 1

2
(1− δ)2δ−1e−5δ > 1 for all x ∈ A.

That is, R is an expanding return map over the fundamental domain A.

The rest of the proof of this theorem and the proof of Cycle Theorem are totally analogous.
See end of the proof of cycle Theorem and robustness in Subsection 3.3.3. So, finally, the proof of
the this theorem is completed.
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3.3.5 Spectral decomposition

We finish this chapter with the following theorem:

Theorem F (Spectral decomposition on the circle). There exists ε > 0 such that if f0, f1 ∈
Diff2(S1) are two Morse-Smale diffeomorphisms of period n0 and n1, respectively, ε-close to the
identity in the C2-topology and with no fixed points in common, then, there is finitely many inter-
vals K1, . . . ,Km pairwise disjoints, isolated and transitive for IFS(fn0

0 , fn1
1 ) such that

L(IFS(fn0
0 , fn1

1 )) =
m⋃
i=1

Ki.

Moreover, each Ki is either a ∗∗-interval for IFS(fn0
0 , fn1

1 ), or a single fixed point of f0 of f1.

We want to remark that the above decomposition of the limite set of IFS(fn0
0 , fn1

1 ) is C1-
robust. This means that the same assertion it holds for every IFS(gn0

0 , gn1
1 ) where g0 and g1 are

C1-close enough to f0 and f1 respectively.

Proof. This result is immediately followed from the Theorem 3.21, Theorem 3.35 and Theo-
rem 3.53. Indeed, consider f̃n0

0 and f̃n1
1 the lift on the real line of fn1

0 and fn1
1 . Note that f̃n0

0 and
f̃n1

1 are periodic function. Arguing as in Theorem 3.21 it follows a decomposition in pairwise dis-
joints intervals of L(IFS(f̃n0

0 , f̃n1
1 ))\{±∞} on the real line. From the periodicity, it follows that this

intervals project on the circle in a finitely many pairwise disjoint ∗∗-intervals for ∗∗ ∈ {ss, su, uu}.
Also, notice that from Theorem 3.35 these intervals are isolates and topologically transitive. We
only need to study the limit set of point whose ω-limit (or α-limit) contains ±∞. This only can
be happened if there is a cycle for IFS(fn0

0 , fn1
1 ) different of an ss-interval. In this case, Theo-

rem 3.53 implies that S1 is minimal for IFS(fn0
0 , fn1

1 ) and IFS(f−n0
0 , f−n1

1 ). Therefore, we obtain
a decomposition of the limit set and conclude the proof of the theorem.



Cycles in unfoldings of nilpotent
singularities

Singularities of a vector field are simplest elements from which interesting dynamics may
emerge. For instance, it is proved that any generic nilpotent singularity of codimension four
in R4 unfolds a bifurcation hypersurface of bifocal homoclinic orbits, that is, homoclinic orbits
to equilibrium points with two pairs of complex eigenvalues. All return map defined over a
transversal section to this homoclinic orbit is a diffeomorphism in R3 and thus, susceptible to
exhibit heterodimensional cycles. We will approach the study of the existence of these cycles
showing how suspended blenders could appear in the generic unfoldings of these nilpotent
singularities.

4.1 Nilpotent singularity

The relationship between dynamic complexity and the presence of homoclinic orbits was dis-
covered by Poincaré more than a century ago. In his famous essay on the stability of the solar
system [Poi90], Poincaré showed that the invariant manifolds of a hyperbolic fixed point of a
diffeomorphism could cut each other at points, called homoclinics, which yield the existence of
more and more points of this type and consequently, a very complicated configuration of the
manifolds. Many years later, Birkhoff [Bir35] showed that, in general, near a homoclinic point
there exists an extremely intrincated set of periodic orbits, mostly with a very long period. By the
mid 60’s, Smale [Sma67] placed his geometrical device, the Smale horseshoe, in a neighborhood
of a transversal homoclinic point. The horseshoes explained the Birkhoff’s result and arranged
the complicated dynamics that occur near a homoclinic orbit by means of a conjugation to the
Bernoulli’s shift. In [MV93] it is proved the appearance of strange attractors during the process of
creation or destruction of the Smale horseshoes. These attractors are like those shown in [BC91]
for the Hénon family, that is, they are nonhyperbolic and persistent in the sense of measure.

In the framework of vector field, Shil’nikov [Shi65] proved that in every neighborhood of
a homoclinic orbit to a hyperbolic equilibrium point of an analytical vector field on R3, with
eigenvalues λ and −%± ωi such that 0 < % < λ, that is, the so-called Shil’nikov homoclinic orbit,
there exists a countable set of periodic orbits. This result is similar to that found by Birkhoff for
diffeomorphisms and thus, it should be understood in a manner similar to that devised by Smale.
Indeed, Tresser [Tre84] showed that in every neighborhood of such a homoclinic orbit, an infinity
of linked horseshoes can be defined in such a way that the dynamics is conjugated to a subshift of
finite type on an infinite number of symbols. Once again, these horseshoes appear and disappear
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by means of generic homoclinic bifurcations leading to persistent in the sense of the measure non
hyperbolic strange attractors like those in [MV93, BC91].

As follows from [OS86], nonhyperbolic dynamics is dense in the space X of vector fields with
a Shil’nikov homoclinic orbit. In particular, for each ε > 0, the subset of vector fields with a
homoclinic tangency to a hyperbolic periodic orbit in an ε-neighbourhood of the homoclinic orbit is
dense in X . These tangencies give rise to suspended Hénon-like strange attractors. In [PR97, PR01]
it was proved that infinitely many of these strange attractors can coexist in non generic families of
vector fields with a Shil’nikov homoclinic orbit, for parameter values in a set of positive Lebesgue
measure. Later [Hom02], it was proved that an infinity of such attractors can coexist in a more
general context. For an extensive study of the phenomena accompanying homoclinic bifurcations,
see [BDV05, HS10, PT93].

Because of the importance of homoclinic orbits in Dynamics, many papers were devoted to
prove their existence. A seminal work was due to Melnikov [Mel63], who introduced original ideas
to prove the existence of transversal homoclinic orbits in non-autonomous perturbations of a
planar hamiltonian vector field. These ideas were developed in [CHM80] in order to determine
both, homoclinic bifurcation curves and the existence of subharmonics in two-parameter families
of non-autonomous second order differential equations. In [Pal84], Palmer developed a theory
involving transversal homoclinic points and exponential dichotomies that was very useful for the
study of homoclinic bifurcations in higher dimensions.

Since Shil’nikov homoclinic orbits are not transversal, Melnikov’s techniques had to be modified
in order to prove their existence in families of vector fields. In [Rod86], generic families of quadratic
three dimensional vector fields with Shil’nikov homoclinic orbits were given. Putting together ideas
from [Rod86, CHM80, Pal84], it was proved in [IR95] that Shil’nikov homoclinic orbits appear in
generic unfoldings of a nilpotent singularity of codimension four in R3. A nilpotent singularity is
a C∞ vector field on Rn which in appropriate coordinates in a neighborhood of the origin can be
written as

n−1∑
k=1

xk+1
∂

∂xk
+ f(x1, . . . , xn)

∂

∂xn
,

with f(x) = O(‖x‖2) where x = (x1, . . . , xn). It is said that X is a nilpotent singularity of codi-
mension n if the generic condition ∂2f/∂x2

1(0) 6= 0 is fulfilled. Since singularities (non-hyperbolic
equilibrium points) are the simplest elements to be found in phase portraits of vector fields, ar-
guing the existence of homoclinic orbits from the presence of singularities is a highly relevant
task. Nevertheless, in order to get the greatest interest in applications, such singularities should
be of codimension as low as possible. With this in mind, the result obtained in [IR95] was im-
proved in [IR05, BIR11], where it was showed that Shil’nikov homoclinic orbits appear in every
generic unfolding of the nilpotent singularity of codimension three in R3. Proving that Shil’nikov
homoclinic orbits can be unfolded generically from a singularity of codimension less than three is
currently a very interesting open problem. The dimension of the corresponding center manifold
should be at least three. The lowest codimension singularities in R3 with a three-dimensional
center manifold are the Hopf-zero singularities which have codimension two [GH02]. The difficul-
ties that appear on studying the existence of Shil’nikov homoclinic orbits in generic unfoldings of
Hopf-zero singularities are discussed in [DIKS].
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The above result about Shil’nikov homoclinic orbits and nilpotent singularities was essential
in [DIR07] to prove the existence of persistent strange attractors in the four parametric family
of vector fields obtained when two Brusselators are linearly coupled by diffusion. Indeed, this
family is a generic unfolding of three-dimensional nilpotent singularities of codimension three.
Therefore it displays Shil’nikov homoclinic orbits and, consequently, persistent strange attractors.
Nevertheless, this family may display a richer dynamics. Three-dimensional nilpotent singularities
appear along two bifurcation curves which emerge from a bifurcation point corresponding to a
four-dimensional nilpotent singularity of codimension four, for which the family is also a generic
unfolding. Therefore, one should wonder whether a different class of homoclinic orbits can take
place from this four-dimensional nilpotent singularity. In this chapter, we will prove the following
result which is collected in [BIR11]:

Theorem G. In every generic unfolding of a four-dimensional nilpotent singularity of codimension
four there is a bifurcation hypersurface of bifocal homoclinic orbits.

Bifocal homoclinic orbits are homoclinic orbits to equilibrium points with two pairs of eigenval-
ues ρk±ωki, with k = 1, 2, such that ρ1 < 0 < ρ2. Shil’nikov [Shi67] was again the first one in study-
ing the dynamics associated with them. He proved, as in [Shi65], the existence of a countable set of
periodic orbits in the non-resonant case −ρ1 6= ρ2. Subsequent works [Dev76, FS91, LG97, Här98]
were devoted to analyze the formation and bifurcations of these periodic orbits by studying the
Poincaré map associated with the flow in a neighborhood of the bifocal homoclinic orbit. Devaney
[Dev76] considers the hamiltonian case, hence with −ρ1 = ρ2. He proves that for any local trans-
verse section to the homoclinic orbit, and for any positive integer N , there is a compact invariant
hyperbolic set on which the Poincaré map is topologically conjugate to the Bernoulli shift on N
symbols. In seeking to determine the invariant set of this Poincaré map in the general case, it is
shown in [FS91] that this set is contained in a neighborhood of a spiral sheet (shaped like a scroll).
In fact, the invariant set is a neighborhood of the intersection of this scroll and its image under
the map, which is another scroll, in general skewed and offset from the original. In [LG97] the
authors extend the known theory regarding bifocal homoclinic bifurcations and present numerical
verification of the more interesting theoretical predictions that had been made. Härterich [Här98]
studies bifocal homoclinic orbits arising in reversible systems, hence again with −ρ1 = ρ2. He
proves that for any N ≥ 2 there exists infinitely many N -homoclinic orbits in a neighborhood of
the primary homoclinic orbit. Each of them is accumulated by one or more families of N -periodic
orbits.

As for Shil’nikov homoclinic orbits, it has been proved (see [OS91]) that homoclinic tangencies
to hyperbolic periodic orbits are dense in the space of vector fields with a bifocal homoclinic
orbit. Nevertheless, despite the abundant literature regarding bifocal homoclinic orbit, as far as
we know, no result has been established relating the existence of these homoclinic bifurcations with
the existence of persistent strange attractors. This, in spite of a bifocal homoclinic orbit seems to
be a scenario for more complicated dynamics than those inherent to Shil’nikov homoclinic orbits,
where the existence of such strange attractors has been proved. In fact it seems natural to think
that the dynamical complexity associated with homoclinic cycles increases with dimension. For
instance, strange attractors with more than one positive Lyapunov exponent could appear.
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4.1.1 Generic unfoldings

Let X be a C∞ vector field in Rn with X(0) = 0 and 1-jet at the origin linearly conjugated to

n−1∑
k=1

xk+1
∂

∂xk
.

Introducing appropriate C∞ coordinates, X can be written as:

n−1∑
k=1

xk+1
∂

∂xk
+ f(x1, . . . , xn)

∂

∂xn
, (4.1)

with f(x) = O(‖x‖2) where x = (x1, . . . , xn). It is said that X has a nilpotent singularity of
codimension n at 0 if the generic condition ∂2f/∂x2

1(0) 6= 0 is fulfilled. The vector field X itself
will be often referred to as a nilpotent singularity of codimension n.

Nilpotent singularities of codimension n are generic in families depending on at least n param-
eters and according to [DIR07, Lemma 2.1] we can state the following result:

Lemma 4.1. Any n-parametric generic unfolding of a nilpotent singularity of codimension n in
Rn can be written as

n−1∑
k=1

xk+1
∂

∂xk
+
(
µ1 +

n∑
k=2

µkxk + x2
1 + h(x, µ)

) ∂

∂xn
, (4.2)

where µ = (µ1, . . . , µn) ∈ Rn, h(0, µ) = 0, ∂h/∂xi(0, µ) = 0 for i = 1, . . . , n, ∂2h/∂x2
1(0, µ) = 0,

h(x, µ) = O(‖(x, µ)‖2) and h(x, µ) = O(‖(x2, . . . , xn)‖).

Remark 4.2. Besides the condition ∂2f/∂x2
1(0) 6= 0 in (4.1), genericity assumptions in Lemma 4.1

include a transversality condition involving derivatives of the family with respect to parameters.

The classical techniques of reduction to normal forms could be used to remove terms in the
Taylor expansion of h but we do not need to work with simpler expressions. To obtain the results
provided in the next sections we will have to impose

κ =
∂2h

∂x1∂x2
(0, 0) 6= 0, (4.3)

as an additional generic assumption.

4.1.2 Rescalings and limit families

Generalizing the techniques used in [DI96] for dimension three, we rescale variables and parameters
by means of

µ1 = ε2nν1,

µk = εn−k+1νk for k = 2, . . . , n, (4.4)

xk = εn+k−1yk for k = 1, . . . , n,

with ε > 0 and ν2
1 + . . .+ ν2

n = 1, and also multiply the whole family by a factor 1/ε.
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In new coordinates and parameters (4.2) can be written as

n−1∑
k=1

yk+1
∂

∂yk
+
(
ν1 +

n∑
k=2

νkyk + y2
1 + εκy1y2 +O(ε2)

) ∂

∂yn
, (4.5)

with κ as introduced in (4.3) and where y = (y1, . . . yn) belongs to an arbitrarily big compact in Rn.

The first step to understand the dynamics arising in generic unfoldings of n-dimensional nilpo-
tent singularities of codimension n is the study of the bifurcation diagram of the limit family

n−1∑
k=1

yk+1
∂

∂yk
+
(
ν1 +

n∑
k=2

νkyk + y2
1

) ∂

∂yn
, (4.6)

obtained by taking ε = 0 in (4.5). Structurally stable behaviours and generic bifurcations in (4.6)
should persist in (4.5) for ε > 0 small enough.

If ν1 > 0 then (4.6) has no equilibrium points. Moreover the function

L(y1, . . . , yn) = yn − ν2y1 − ν3y2 − . . .− νnyn−1

is strictly increasing along the orbits and therefore the maximal compact invariant set is empty.
Hence we only need to pay attention to the case ν1 ≤ 0.

On the other hand, up to a change of sign, family (4.6) is invariant under the transformation

(ν, y) 7→
(
ν1, (−1)n−1ν2, (−1)n−2ν3, . . . , νn−1,−νn,
(−1)ny1, (−1)n−1y2, (−1)n−2y3, . . . , yn−1,−yn

)
,

(4.7)

with ν = (ν1, . . . , νn). As a first consequence, the study of bifurcations can be reduced to the
region R = {(ν1, . . . , νn) ∈ Sn−1 : ν1 ≤ 0, νn ≤ 0}. Moreover, since the limit family is invariant
under (4.7) up to a change of sign, for parameter values on the set

T = {(ν1, . . . , νn) ∈ Sn−1 : νn−2i = 0 with i = 0, . . . , b(n− 2)/2c},

where b·c denotes the floor function, the correspondent vector fields in the limit family (4.6) are
time-reversible with respect to the involution

R : (y1, y2, y3, . . . , yn) 7→ ((−1)ny1, (−1)n−1y2, . . . , yn−1,−yn).

We said that the manifold T of dimension bn/2c − 1 is the reversibility set of the n-dimensional
nilpotent limit family.

Note that the divergence of the limit family (4.6) takes the constant value νn. Therefore the
condition νn = 0 characterizes a subfamily of volume-preserving vector fields. Assuming that n is
even and defining m = n/2, for parameter values in T the limit family (4.6) can be written as

n−1∑
k=1

yk+1
∂

∂yk
+
(
ν1 +

m−1∑
k=1

ν2k+1y2k+1 + y2
1

) ∂

∂yn
. (4.8)
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Theorem 4.3. Introducing the new variables q = S · (y1, y3, . . . , yn−1)t and p = (y2, y4, . . . , yn)t,

S =



−ν3 −ν5 . . . −νn−1 1

−ν5 . .
.

. .
.

0
... . .

.
. .
.

. .
. ...

−νn−1 . .
.

. .
. ...

1 0 . . . . . . 0


,

the family (4.8) transforms into a Hamiltonian vector field XH , H(q, p) = 1
2 < Sp, p > +V (q).

The potential V is defined as

V (q) = −1

3
q3
m −

1

2

m−1∑
k=1

ν2k+1bk+1q
2
m −

1

2

bm/2c∑
j=1

bm−2j+1q
2
m−j

−
m−1∑
k=1

m−1∑
i=m−k

ν2k+1bi−m+k+1qiqm −
bm/2c∑
j=1

m−j−1∑
i=j

biqiqm−j − ν1qm,

where, given b1 = 1,

bi =
i−1∑
`=1

ν2(m−i+`)+1b` for i = 2, . . . ,m.

In order to prove this theorem we will use the following technical result:

Lemma 4.4. Given a symmetric upper anti-triangular matrix

A =



am am−1 . . . a2 1

am−1 . .
.
. .
.

0
... . .

.
. .
.
. .
. ...

a2 . .
.

. .
. ...

1 0 . . . . . . 0


,

A−1 is a lower anti-triangular symmetric matrix

A−1 =



0 . . . . . . 0 1
... . .

.
. .
.

b2
... . .

.
. .
.

. .
. ...

0 . .
.
. .
.

bm−1

1 b2 . . . bm−1 bm


where, given b1 = 1,

bi = −
i−1∑
`=1

ai−`+1b`, for i = 2, . . . ,m.
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Proof. Let P be an anti-diagonal matrix with all entries equal to 1. Hence

L = PA =



1 0 . . . . . . 0

a2
. . .

. . .
...

...
. . .

. . .
. . .

...

am−1
. . .

. . . 0

am am−1 . . . a2 1


.

is a lower triangular matrix. Therefore, L−1 = (bi,j) is also a lower triangular matrix and hence
A−1 = L−1P−1 = L−1P is a lower anti-triangular matrix. In fact, using the well know formulas
for the calculation of the inverse of a triangular matrix, it follows that, for all j = 1, . . . ,m

bj,j = 1,

bi,j = 0 for all i = 1, . . . , j − 1,

bi,j = −
i−1∑
`=j

ai−`+1b`,j for all i = j + 1, . . . ,m.

On the other hand, bi,j = bi+1,j+1 for all i = j+1, . . . ,m−1. Indeed it is clear for i = j+1. For
i = j + 2, . . . ,m− 1 we can argue by induction. Finally, by defining bi = bi,1 for all i = 1, . . . ,m,
and calculating A−1 = L−1P the proof is finished.

Proof of Theorem 4.3. It follows from Lemma 4.4 that

S−1 =



0 . . . . . . 0 1
... . .

.
. .
.

b2
... . .

.
. .
.

. .
. ...

0 . .
.
. .
.

bm−1

1 b2 . . . bm−1 bm


,

where, defining b1 = 1,

bi =
i−1∑
`=1

ν2(m−i+`)+1b` for i = 2, . . . ,m.

or equivalently

bm−j+1 =

m−j∑
`=1

ν2(j+`−1)+1b` =
m−1∑
k=j

ν2k+1bk−j+1 for j = 1, . . . ,m− 1. (4.9)

Writing family (4.8) in the new variables we get

Sp
∂

∂q
+

m−1∑
k=1

( m∑
i=m−k

bi−m+k+1qi
) ∂

∂pk
+
(
ν1 +

m−1∑
k=1

ν2k+1ṗk + q2
m

) ∂

∂pm
.

To obtain a function V (q) such that ṗ = −∇V (q) we need

−∂V
∂qi

= ṗi for all i = 1, . . . ,m.
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In particular

− ∂V

∂qm
= ν1 +

m−1∑
k=1

ν2k+1ṗk + q2
m,

and therefore

−V (q) = ν1qm +

m−1∑
k=1

ν2k+1

(1

2
bk+1q

2
m +

m−1∑
i=m−k

bi−m+k+1qiqm
)

+
1

3
q3
m + ϕm−1(q1, . . . , qm−1).

From the identity −∂V/∂qm−1 = ṗm−1 and taking into account the equation (4.9) we get

∂ϕm−1

∂qm−1
=

m∑
i=1

biqi −
m−1∑
k=1

ν2k+1bkqm =

m−1∑
i=1

biqi

and therefore

ϕm−1(q1, . . . , qm−1) =
1

2
bm−1q

2
m−1 +

m−2∑
i=1

biqiqm−1 + ϕm−2(q1, . . . , qm−2).

Since −∂V/∂qm−2 = ṗm−2, a similar computation leads to

∂ϕm−2

∂qm−2
=

m∑
i=2

bi−1qi −
m−1∑
k=2

ν2k+1bk−1qm − bm−2qm−1 =

m−2∑
i=2

bi−1qi.

and hence

ϕm−2(q1, . . . , qm−2) =
1

2
bm−3q

2
m−2 +

m−3∑
i=2

bi−1qiqm−2 + ϕm−3(q1, . . . , qm−3).

A recursive argument provides

∂ϕm−j
∂qm−j

=

m∑
i=j

bi−j+1qi −
m−1∑
k=j

ν2k+1bk−j+1 −
m−1∑

i=m−j+1

bi−j+1qi =

m−j∑
i=j

bi−j+1qi,

for all j = 1, . . . , bm/2c and consequently,

ϕm−j(q1, . . . , qm−j) =
1

2
bm−2j+1q

2
m−j +

m−j−1∑
i=j

biqiqm−j + ϕm−j−1(q1, . . . , qm−j−1)

where for j = bm/2c the function ϕm−bm/2c−1 is constant. Therefore we get a function V (q) with

−V (q) = ν1qm +

m−1∑
k=1

ν2k+1

(
1

2
bk+1q

2
m +

m−1∑
i=m−k

bi−m+k+1qiqm

)
+

1

3
q3
m

+

bm/2c∑
j=1

(1

2
bm−2j+1q

2
m−j +

m−j−1∑
i=j

biqiqm−j
)

+ ϕm−bm/2c−1,

such that ṗ = −∇V (q). This concludes the proof of Theorem 4.3.
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4.2 Nilpotent singularity of codimension four in R4

Along this section we will take n = 4 in all the general expressions introduced in §4.1.2 and we will
prove Theorem G. That is, we will prove that in any generic unfolding of a nilpotent singularity
of codimension four in R4 there exists a bifurcation hypersurface of homoclinic connections to
bifocus equilibria.

It follows from Lemma 4.1 that any generic unfolding of the nilpotent singularity of codimension
four in R4 can be written as in (4.2). After applying the rescaling (4.4) we get

y2
∂

∂y1
+ y3

∂

∂y2
+ y4

∂

∂y3
+
(
ν1 + ν2y2 + ν3y3 + ν4y4 + y2

1 + εκy1y2 +O(ε2)
) ∂

∂y4
, (4.10)

with ν = (ν1, ν2, ν3, ν4) ∈ S3 and ε > 0. As mentioned in §4.1.2 the first step to understand the
dynamics arising in (4.10) is the study of the limit family

y2
∂

∂y1
+ y3

∂

∂y2
+ y4

∂

∂y3
+
(
ν1 + ν2y2 + ν3y3 + ν4y4 + y2

1

) ∂

∂y4
, (4.11)

obtained from (4.10) taking ε = 0. As argued in §4.1.2 one only need to pay attention to parameters
in the region R = {(ν1, ν2, ν3, ν4) ∈ S3 : ν1 ≤ 0, ν4 ≤ 0}. When ν ∈ R, vector fields in the limit
family (4.11) have equilibrium points p± = (±

√
−ν1, 0, 0, 0) with characteristic equations

r4 − ν4r
3 − ν3r

2 − ν2r ∓ 2
√
−ν1 = 0. (4.12)

Local bifurcations arising in the family were discussed in [Dru09].

For parameters on the reversibility curve T =
{

(ν1, ν2, ν3, ν4) ∈ S3 : ν2 = ν4 = 0
}
with ν1 ≤ 0,

the characteristic equations reduces to r4 − ν3r
2 ∓ 2

√
−ν1 = 0. It follows that the linear part at

p+ always have a pair of real eigenvalues and a pair of complex eigenvalues with non-zero real
part. Local behaviour at p− is richer and it is depicted in Figure A. Note that we only have to
pay attention to ν2

1 + ν2
3 = 1 with ν1 ≤ 0. It easily follows that the linear part at p− has

• a double zero eigenvalue and eigenvalues ±1 at BT = (0, 0, 1, 0);

• a double zero eigenvalue and a pair of pure imaginary eigenvalues at HDZ = (0, 0,−1, 0);

• two double real eigenvalues ±(ν3/2)1/2 at BD = (ν1, 0, ν3, 0) with ν2
3 − 8

√
−ν1 = 0 and

ν3 > 0;

• two double pure imaginary eigenvalues ±i(−ν3/2)1/2 at HH = (ν1, 0, ν3, 0) with ν2
3 = 8

√
−ν1

and ν3 < 0;

• four non-zero real eigenvalues ±λk, with k = 1, 2 for parameters along the open arc SR
between BD and BT;

• four complex eigenvalues with non-zero real part ρ ± ωi and −ρ ± ωi for parameters along
the open arc DF between BD and HH; and

• four pure imaginary eigenvalues ±ωki, with k = 1, 2, for parameters along the open arc HH
between HH and HDZ.
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BT

BD

HH

HDZ

SR

HH

ν3

DF

ν1

Fig. A: The reversibility curve T attending to the type of eigenvalues at p−.

From the analysis of the linear part at the equilibrium points it follows that a bifocal homoclinic
orbit is only possible at p−. Then, we will study the existence of homoclinic orbits to p− for
parameter values along T and in this case, since the limit family (4.11) for this parameter values
a Hamiltonian vector field, it said to be conservative bifocal homoclinic orbit.

4.2.1 Conservative bifocal homoclinic orbits in the limit family

In order to study the family (4.10) close to the reversibility curve T with ν1 < 0 it is more
convenient to use a directional version of the rescaling (4.4) taking ν1 = −1 and (ν2, ν3, ν4) =

(ν̄2, ν̄3, ν̄4) ∈ R3 to get

y2
∂

∂y1
+ y3

∂

∂y2
+ y4

∂

∂y3
+
(
− 1 + ν̄2y2 + ν̄3y3 + ν̄4y4 + y2

1 + εκy1y2 +O(ε2)
) ∂

∂y4
. (4.13)

The equilibrium points when ε = 0 are given by q± = (±1, 0, 0, 0). Note that in fact q± are the
only equilibrium points even for ε > 0 because in (4.2) h(x, µ) = O(‖(x2, . . . , xn)‖) and this
property is preserved by the rescaling. In order to compare with equations already considered in
the literature we translate q− to the origin applying the change of coordinates

x1 = (y1 + 1)/2, x2 = y2/2
5/4, x3 = y3/2

6/4, x4 = y4/2
7/4,

to (4.13) and multiplying by the factor 21/4 to obtain

x2
∂

∂x1
+ x3

∂

∂x2
+ x4

∂

∂x3
+
(
− x1 + η2x2 + η3x3 + η4x4 + x2

1 + εκx1x2 +O(ε̄2)
) ∂

∂x4
(4.14)

with η2 = 2−3/4(ν̄2 − εκ), η3 = 2−1/2ν̄3, η4 = 2−1/4ν̄4 and ε̄ = 21/4ε.
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The equilibrium point q− in (4.13) corresponds to the equilibrium point of (4.14) at the origin.
The limit subfamily for η2 = η4 = ε̄ = 0 is now given as

x2
∂

∂x1
+ x3

∂

∂x2
+ x4

∂

∂x3
+
(
− x1 + η3x3 + x2

1

) ∂

∂x4
. (4.15)

Writing u = x1, the vector field (4.15) is equivalent to the fourth order differential equation

u(iv)(t) + Pu′′(t) + u(t)− u(t)2 = 0, (4.16)

with P = −η3. This equation has been widely studied [AT92, CT93, BCT96, Buf96] due to its
role in some applications as the study of travelling waves of the Korteweg- de Vries equation

ut = uxxxx − buxxx + 2uux,

or the description of the displacement of a compressed strut with bending softness resting on a
nonlinear elastic foundation [Cha98]. In particular, according to [AT92], when η3 = 2 the vector
field (4.15) has a homoclinic orbit to a hyperbolic equilibrium point at which the linear part has
a pair of double real eigenvalues ±1. An essential fact used in [AT92] to prove the existence of
homoclinic orbits in (4.15) is that it is a family of hamiltonian vector fields as we have stated in
Theorem 4.3 for a more general case. This permits to apply the general theory developed in [HT84,
Theorem 2] to conclude that, for each P ≤ −2, there exists an even solution u with u(t) → 0

when t → ±∞ satisfying that u > 0, u′ < 0 and (P/2)u′ + u′′′ > 0 on (0,∞). They also prove
that for all P ≤ −2 any such even solution is unique. From [BCT96] it follows that this unique
homoclinic orbit γ is transversal for the restriction to the level surface of the hamiltonian function
which contains it and, consequently, it is non-degenerate in the following sense:

Definition 4.1. A homoclinic orbit γ to a hyperbolic equilibrium point p of a vector field X is
said non-degenerate if

dimTxW
s(p) ∩ TxW u(p) = 1,

with x ∈ γ. Otherwise γ is said degenerate.

Moreover, again in [AT92], the persistence of such homoclinic solutions is argued for P > −2

but close enough to −2. Variational methods used in [Buf96] allow to prove that at least one
homoclinic solution exists for P < 2. On the other hand, in [BCT96, Section 2] authors check
all hypothesis required in [CT93, Theorem 4.4] to conclude that a Belyakov-Devaney bifurcation
takes place at P = −2. It consists in the emerging from the primary homoclinic solution and for
each n ∈ N of a finite number of n-modal secondary homoclinics (or n-pulses) which cut n times
a section transversal to the primary homoclinic orbit [Dev76, Bel84, BS90]. Heuristic arguments
in [BCT96], supported by numerical results, show that the non-degenerate n-modal homoclinic
orbits arising at P = −2 become in degenerate orbits and disappear gradually when P varies from
P = −2 to P = 2 through a cascade of coalescences and bifurcations. In particular, it is known
from [IP93] that for P close to P = 2 there exist at least two even homoclinic solutions and from
the numerical results it seems that no other homoclinic orbits reaches P = 2.

All the above results about the existence of homoclinic solutions of (4.16) can be directly
translated to family (4.15) and also to the reversible subfamily of (4.11) obtained restricting to
parameter values along the previously defined reversibility curve T (or, in this even dimensional
case, also called conservative curve because Theorem 4.3). For the later case we can conclude that
(see Figure A):
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primary

‖u‖

multi-modal
(n-pulso)

— symmetric orbit

- - asymmetric orbit

× bifurcation point

• coalescence point

primary

Fig. B: Schematic bifurcation diagram of homoclinic solutions of (4.16).

• for parameter values along DF ∪ {BD} ∪ SR there exists a symmetric homoclinic orbit at
p− which is unique and non-degenerate along {BD} ∪ SR,

• BD is a Belyakov-Devaney bifurcation point and thus non-degenerate bifocal homoclinic
orbits arising at this point,

• numerical continuation shows that non-degenerate n-modal homoclinic orbits arising at BD

become in degenerate orbits and disappear gradually when parameters move along DF in
the direction of HH. Close to that point only two symmetric homoclinic orbits persist.

4.2.2 Bifocal homoclinic orbits in generic unfoldings

In order to study the persistence of homoclinic orbits we will consider (4.10) as an unfolding
of the Belyakov-Devaney bifurcation point BD. As already mentioned it is better to work with
expression (4.14) for the rescaled unfolding. With respect to parameters (η2, η3, η4, ε̄) the point
BD corresponds to (0, 2, 0, 0). Note that (4.14) can be written as

x′ = f(x) + g(λ, x), (4.17)

where λ = (λ1, λ2, λ3, λ4) = (η2, η3 − 2, η4, ε),

f(x) = (x2, x3, x4,−x1 + 2x3 + x2
1)

and
g(λ, x) = (0, 0, 0, λ1x2 + λ2x3 + λ3x4 + λ4κx1x2 +O(λ2

4)).

As already mentioned, q± are the only equilibrium points of (4.13) for all ε ≥ 0 and hence
g(λ, 0) = 0 for all λ. Observe that only bifurcations occurring inside the region of parameters with
λ4 > 0 will be observed in the unfolding of the singularity.
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Theorem 4.5. In a neighbourhood of λ = 0 there exists a bifurcation hypersurface Hom corre-
sponding to parameter values for which (4.17) has homoclinic orbits to the origin. Moreover:

There exist two bifurcation surfaces Hom− and Hom+ contained in Hom corresponding to pa-
rameter values for which the origin has a double negative and positive, respectively, real eigenvalue.
The surfaces Hom+ and Hom− intersect transversely along a curve Hom± corresponding to pa-
rameter values for which the origin has a pair of double real eigenvalues {r1, r2} with r1 < 0 < r2.
Hom− ∪Hom+ splits Hom into four regions:

• HomFF : homoclinic orbits to a focus-focus equilibrium (bifocus case),

• HomN+F−: homoclinic orbits to a (repelling) node-(attracting) focus equilibrium,

• HomF+N−: homoclinic orbits to a (repelling) focus-(attracting) node equilibrium,

• HomNN : homoclinic orbits to a node-node equilibrium.

All bifurcations are transverse to λ4 = 0.

Since all bifurcations are transverse to λ4 = 0 they are also present in the unfolding of the
nilpotent singularity of codimension four. Particularly, Theorem G follows as a corollary of this
theorem.

Remark 4.6. Recall that the bifurcation point λ = 0 in (4.17) corresponds to the Belyakov-
Devaney bifurcation point BD in (4.10). In particular, the hypersurface of parameters correspond-
ing to homoclinic orbits to a node-node equilibrium point in family (4.10) cuts ε = 0 along the
curve SR. Similarly, HomFF is unfolded from DF .

The proof of Theorem 4.5 requires some background on exponential dichotomies. In Ap-
pendix A we include a brief summary of results about dichotomies in order to get a precise
formulation of the bifurcation equation (see Theorem A.12) which is required in the following
proof of the above result.

Proof of Theorem 4.5. Family (4.17) fulfills all the hypothesis imposed to Equation (A.1) in Ap-
pendix A. In particular, x′ = f(x) satisfies the following:

(BD1) It has a first integral

H(x1, x2, x3, x4) =
1

2
x2

1 −
1

3
x3

1 − x2
2 + x2x4 −

1

2
x2

3

(BD2) It is time reversible with respect to

R : (x1, x2, x3, x4) 7→ (x1,−x2, x3,−x4).

(BD3) The origin is a hyperbolic equilibrium point at which the linear part has a pair of double
real eigenvalues ±1.
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(BD4) According to [AT92], there exists a non-degenerate homoclinic orbit

γ = {p(t) = (p1(t), p2(t), p3(t), p4(t)) : t ∈ R}

to the origin such that p1(t) and p3(t) are even functions and p2(t) and p4(t) are odd functions
and, moreover, p1 > 0, p2 < 0 and p4 − p2 > 0 on (0,∞).

(BD5) According to Proposition A.9, since γ is a non-degenerate homoclinic orbit, both the vari-
ational equation z′ = Df(p(t))z and its adjoint z′ = −Df(p(t))∗z has a unique non trivial
linearly independent bounded solution. The function ϕ(t) = f(p(t)) is a bounded solution
of the variational equation and

ψ(t) = ∇H(p(t)) = (p1(t)− p1(t)2, p4(t)− 2p2(t),−p3(t), p2(t))

is a bounded solution of adjoint equation.

Finally, let us consider the bifurcation equation for homoclinic solutions ξ∞(λ) = 0, with
ξ∞ : Λ→ R and Λ ⊂ R4 a neighbourhood of the origin, as introduced in Lemma A.11. It follows
from Theorem A.12 that under the generic condition ∇ξ∞(0) = (ξλ1 , ξλ2 , ξλ3 , ξλ4) 6= 0, where

ξλi =

∫ ∞
−∞
〈ψ(t),

∂g

∂λi
(0, p(t))〉 dt,

then (4.17) has homoclinic orbits (continuation of γ) for parameters on a hypersurface Hom with
tangent subspace at λ = 0 given by

ξλ1λ1 + ξλ2λ2 + ξλ3λ3 + ξλ4λ4 = 0. (4.18)

Note that

ξλ1 =

∫ ∞
−∞

p2
2(t) dt, ξλ2 =

∫ ∞
−∞

p2(t)p3(t) dt,

ξλ3 =

∫ ∞
−∞

p2(t)p4(t) dt, ξλ4 =

∫ ∞
−∞

κp1(t)p2
2(t) dt.

Clearly ξλ1 6= 0. Since p2p3 is an odd function ξλ2 = 0. Integrating by parts one gets

ξλ3 = −
∫ ∞
−∞

p3(t)2 dt 6= 0.

Finally, since p1 is a positive function, we also get that ξλ4 6= 0. Therefore the tangent sub-
space (4.18) intersects λ4 = 0 transversely. Consequently Hom also meets λ4 = 0 transversely.

Now we have to study the eigenvalues at the equilibrium point in order to determine which
types of homoclinic orbits can be unfolded by the singularity. Since for λ = 0 the linear part
at x = 0 has a pair of double real eigenvalues ±1 and dimW s(0) = dimW u(0) = 2, for all λ
small enough, then we can expect three different types of equilibrium: a focus-focus (bifocus), a
node-node or a focus-node. It easily follows that the characteristic polynomial at x = 0 is given
by

Q(r, λ) = r4 −D(λ)r3 − C(λ)r2 −B(λ)r −A(λ),

with

A(λ) = −1 +O(λ2
4), B(λ) = λ1 +O(λ2

4), C(λ) = 2 + λ2 +O(λ2
4), D(λ) = λ3 +O(λ2

4).
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The condition for an improper node is given by the discriminant equations

Q(r, λ) = 0,
∂Q

∂r
(r, λ) = 0.

Note that (r, λ) = (±1, 0) are both solutions of the discriminant equations. Now it follows from a
straightforward application of the Implicit Function Theorem that there exist two hypersurfaces
D− and D+ through the origin in the parameter space such that, for parameter values on D− (resp.
D+) the equilibrium point at the origin has a double negative (resp. positive) real eigenvalue.
Moreover the respective tangent subspaces at λ = 0 are λ1−λ2 +λ3 = 0 and λ1 +λ2 +λ3 = 0. Let
NHom = (ξλ1 , ξλ2 , ξλ3 , ξλ4), ND− = (1,−1, 1, 0) and ND+ = (1, 1, 1, 0) be the normal vectors to the
tangent spaces of Hom, D− and D+ at λ = 0, respectively. Moreover denote Nλ4=0 = (0, 0, 0, 1).
Since rank(NHom, ND− , Nλ4=0) = 3, there exists a surfaceHom− = Hom∩D− transverse to λ4 = 0

of homoclinic orbits to an equilibrium point with a double negative real eigenvalue. Moreover, since
rank(NHom, ND+ , Nλ4=0) = 3, there exists a surface Hom+ = Hom ∩ D+ transverse to λ4 = 0

of homoclinic orbits to an equilibrium point with a double positive real eigenvalue. On the other
hand rank(NHom, ND− , ND+ , Nλ4=0) = 4 if and only if ξλ1 − ξλ3 6= 0. But, taking into account
that p2 and p4 are odd functions and also that p2 < 0 and p4 − p2 > 0 on (0,∞) it follows that

ξλ1 − ξλ3 =

∫ ∞
−∞

p2(t)(p2(t)− p4(t)) dt > 0.

Hence we can conclude that rank(NHom, ND− , ND+ , Nλ4=0) = 4. Therefore there exists a curve
Hom± = Hom ∩D− ∩D+ transverse to λ4 = 0 of homoclinic orbits to an equilibrium point with
a pair of double real eigenvalues one positive and the other negative.

The eigenvalues of the linear part in the equilibrium point p− of (4.10) is ±(ρ ± iw) for
parameter values in DF . Hence, for parameter values close to this curve los autovalores en p−

are also ρ1 ± iw1 and ρ2 ± iw2 with ρ1 < 0 < ρ2. The divergence of this limit family (4.10)
is equal to ν4. Then it follows that ρ1 + ρ2 = ν4/2. Well then, since the homoclinic orbits are
continued for the parameter values λ3 6= 0 where λ3 = η4 = 2−1/4ν̄4, according to the equation
ξλ2λ2 + ξλ3λ3 + ξλ4λ4 = 0, it is concluded that −ρ1 6= ρ2 for some parameter values in HomFF .

Remark 4.7. Bifocal homoclinic orbits under the generic condition (no-resonant case) −ρ1 6= ρ2

are unfolded from DF for parameter values in HomFF .

4.3 Return map for a conservative bifocal homoclinic orbits

Let us consider a smooth Hamiltonian vector field XH on R4 under the following assumptions:

(H1) p is an equilibrium point of XH with eigenvalues ±λ± iw, λω 6= 0,

(H2) there exists γ ⊂W s(p) ∩W u(p) non-degenerate homoclinic orbit.

A bifocus equilibrium, as (H1), possesses two local smooth two-dimensional submanifolds, stable
W s
loc(p) and unstable W u

loc(p), lying both in the singular level H(p). This set is a smooth three-
dimensional submanifold near every point, except for the point p, where it has a singularity

We will study the dynamical behavior in a neighborhood of the non-degenerate bifocal homo-
clinic orbit γ of the conservative vector field XH . First result in this direction was obtained by
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πu

πs

γ

Σu

W u
loc

Σs

πu(Σu)
ΣsW s

loc x

y

Fig. C: Cross-sections and Poincaré return map

Devaney [Dev76] who carried over the results by Shil’nikov [Shi67] from general systems to Hamil-
tonian ones which required of a special (sympletic) tool. In [Dev76], the existence of infinitely
many hyperbolic subsets in a neighborhood of γ accumulating onto the bifocal homoclinic orbit
were showed. More precisely, for any positive integer N , Devaney found an invariant subset of the
flow in a critical level which was described as a suspension over the Bernoulli shift with N symbols.
The presence of subsidiaries bifocal homoclinic orbits was described by Belyakov in [Bel84, BS90].
A complete symbolic description of the set of all orbits lying wholly on the critical level in a
neighborhood of γ was given by Lerman in [Ler91, Ler97, Ler00].

4.3.1 Local coordinates and cross-sections

Next, we will describe the orbits of XH lying entirely in some neighborhood U of γ. Their study
will be carried out by means of a Poincaré map π associated with γ. This map will be constructed,
see Figure C, as a composition π = πu ◦πs of two maps. The map πs is defined in a neighborhood
of p between two cross-section Σs and Σu of γ. The map πs : Σs → Σu will be called the local
map. The other πu to be defined from Σu to Σs will be called global map.

Local map

Assume that p = 0 and H(p) = 0. As XH is a smooth Hamiltonian vector field, in order to
describe the local behavior of flow orbits near a bifocus equilibrium point we can use the Moser’s
normal (see [Mos58] in the analytic case, [Lyč77] for C∞ vector fields or [BLW96, BK96] in some
sufficiently smooth cases). Theses results guarantees the existence in some neighborhood V of p
of local symplectic coordinates (x1, x2, y1, y2) such that Hamiltonian takes the form

H(x1, x2, y1, y2) = h(ξ, η) = λξ + ωη + . . . , ξ = x1y1 + x2y2, η = x1y2 − x2y1
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where h is a smooth function and dots means higher order terms in ξ, η. We will work locally in
these coordinates. Then, we have the following differential equations in the neighborhood V :

ẋ1 = −Hy1 = −hξx1 + hηx2,

ẋ2 = −Hy2 = −hηx1 − hξx2,

ẏ1 = Hx1 = hξy1 + hηy2,

ẏ2 = Hx2 = −hηy1 + hξy2,

(4.19)

where the lower indices with respect to variable denote related partial derivatives.

By means of the angular coordinates

x1 = rs cos θs, x2 = rs sin θs and y1 = ru cos θu, y2 = ru sin θu.

(4.19) can be written as

ṙs = −hξrs, θ̇s = −hη, ṙu = hξru, θ̇u = −hη. (4.20)

Remark 4.8. Notice that

i) In this coordinates in the neighborhood V , the invariant manifolds are linear. The stable
(unstable) manifold coincides with te stable (unstable) subspace ru = 0 (rs = 0).

ii) The functions ξ na η are first integral of the Hamiltonian vector field in (4.19).

According to (i) in the above remark, the following three-dimensional tori

Σs = {(rs, θs, ru, θu) : rs = ε, ru ≤ δ, θs, θu ∈ S1},
Σu = {(rs, θs, ru, θu) : rs ≤ δ, ru = ε, θs, θu ∈ S1}.

are cross-section for the flow of (4.20). Let us denote qs = γ ∩ Σs and qu = γ ∩ Σu. With an
appropriate choice of ε > 0, we can assume that qs = (ε, 0, 0, 0) and qu = (0, 0, ε, 0).

From (ii) in Remark 4.8 it follows that hξ and hη only depend on ξ and η and both, ξ and
η, remain constant along to orbits of (4.20) in V . Thus, the equation in (4.20) are immediately
integrated providing the solutions

rs(t) = rs0e
−λ0t, θs(t) = θs0 − ω0t, ru(t) = ru0e

λ0t, θu(t) = θu0 − ω0t, (4.21)

where x10 = rs0 cos θs0, x20 = rs0 sin θs0, y10 = ru0 cos θu0 and y20 = ru0 sin θu0 are the inicial
conditions and λ0, ω0 are the values of hξ, hη, in ξ0 = x10y10 +x20y20 and η0 = x10y20−x20y10. So,
we obtain that the time of pass time of passage for any orbit from Σs to Σu is T = λ−1

0 log(ε/ru0).
Thus, the local map πs : Σs → Σu is given by

r∗s = ru0, θ∗s = θs0 −
ω0

λ0
log

ε

ru0
, θ∗u = θu0 −

ω0

λ0
log

ε

ru0
. (4.22)

where starts are used to distinguis the coordinates on Σu.

Next, we will use the local invariance of the functions ξ, η to introduce the new coordinates
(θs, ξ, η) and (ξ∗, η∗, θ∗u) on Σs, Σu, respectively. These coordinates are given in the following way:

ξ = εru(cos θs cos θu + sin θs sin θu) = εru cos(θu − θs), ξ∗ = εr∗s cos(θ∗u − θ∗s)
η = εru(cos θs sin θu − sin θs cos θu) = εru sin(θu − θs), η∗ = εr∗s sin(θ∗u − θ∗s).

(4.23)



134 4. Cycles in unfoldings of nilpotent singularities

Thus, denoting Φ = θu − θs one holds that

ξ2 + η2 = (ruε)
2, cos Φ =

ξ√
ξ2 + η2

and sin Φ =
η√

ξ2 + η2
.

Similar expressions are followed for the coordinates on Σu. So, we obtain that

Σs = {(θs, ξ, η) : θs ∈ S1, |ξ|, |η| ≤ δε} and Σu = {(ξ∗, η∗, θ∗u) : θ∗u ∈ S1, |ξ∗|, |η∗| ≤ δε}.

Submanifolds Σs, Σu are foliated by levels H = c into two-dimensional annuli Σs
c, Σs

c, respec-
tively. In the neighborhood V of p, one may regard equation h(ξ, η) = c to be uniquely solved
with respect to ξ,

ξ = ac(η) = λ−1c− λ−1ωη + . . .

This allows us to replace ξ by a new coordinate c in each cross-section Σs and Σu. Thus, for each
c ∈ R with |c| small enough,

Σs
c = {(θs, η) : θs ∈ S1, |η| ≤ δε} and Σu

c = {(η∗, θ∗u) : θ∗u ∈ S1, |η∗| ≤ δε}.

Remark 4.9. The intersection of the estable (reps. unstable) manifold of p with Σs (resp. Σu) is
given by c = 0 and η = 0 (resp. η∗ = 0).

Next, we will look for the expressions of πs restricted to the annuli Σs
c. From (4.22) and (4.23)

and we conclude that

η∗ = εr∗s sin(θ∗u − θ∗s) = εru0 sin(θu0 − θs0) = η0. (4.24)

Now, since h(ac(η), η) = c then we follow that a′c(η) = −hη(ac(η), η)/hξ(ac(η), η). In particular,
evaluating in the initial point a′c(η0) = −ω0/λ0. Also,

ru0 = ε−1
√
ac(η0)2 + η2

0 and θu0 − θs0 = arctan
η0

ac(η0)

def
= Φc(η0).

Thus, substituting into (4.22) we obtain

θ∗u = θu0 + a′c(η0) log
ε2√

ac(η0)2 + η2
0

= θs0 + a′c(η0) log
ε2√

ac(η0)2 + η2
0

+ Φc(η0). (4.25)

Therefore, removing in (4.24) and (4.25) the subscript zero which indiques the evaluation in the
initial point we obtain the following expression of the local map πs restricted to the annuli Σs

c:

πsc : Σs
c → Σu

c , πsc(θs, η) = (η, θs + bc(η) mod 2π), (4.26)

where bc(η) = a′c(η) log(ε2/
√
ac(η)2 + η2) + Φc(η). Here the function Φc(η) is defined as the

principal branch of arctangent function arctan(η/ac(η)) with Φ0(+0) = π − arctan(λ/ω) and
Φ(−0) = − arctan(λ/ω). The local mapping obtained is symplectic (area preserving), it is discon-
tinuous along the circle η = 0 for c = 0, and smooth for c 6= 0.

In the following lemma one can find properties of the local map πsc .
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Lemma 4.10 ([Ler91, Ler97, Ler00]). There exist ε > 0 and c0 > 0 such that for all |c| ≤ c0,
|η| ≤ ε the following representations hold

b′0(η) =
ω/λ+O(η)

η
, |b′0(η)| ≤ 3ω

2λ|η|
and b′c(η) =

L(c, η) + a′′c (η)R(c, η) +O(‖(c, η)‖2)

η2 + ac(η)2

with L(c, η) = (λ−1 − λ−3ω2)c+ λ−3ω(ω2 + λ2)η and R(c, η) = −1
2(η2 + ac(η)2) log(η2 + ac(η)2).

Moreover, b′c : [−ε, ε]→ R is a monotone function with a unique zero at the point ηc

ηc =
ω2 − λ2

ω(ω2 + λ2)
+O(c2), 0 < |c| ≤ c0.

The following lemma allows one to distinguish the regions of hyperbolicity and critical dynamic
where the creation of non-hyperbolic fixed points can occur.

Lemma 4.11 ([Ler97, Ler00]). For a given K > 0 there exist ε > 0 and κ > 0 such that

|b′0(η)| ≥ K for all 0 < |η| ≤ ε, and
|b′c(η)| ≥ K for all 0 < |c| ≤ c0 and for |η − ηc| ≥ κc2 with |η| ≤ ε.

If θs = u(η) is a function given for |η| small enough, then the image of its graph with respect
to πsc is a curve in the strip (η∗, θ∗u), being graph of a function θ∗u = u(η∗) + bc(η

∗) with η∗ = η.
Next lemma estates properties of this kind of function.

Lemma 4.12 ([Ler97, Ler00]). There are positive ε, c0, d0, d1, d2 small enough such that given
a C2-smooth function u : [−ε, ε] → R with |u(η)| ≤ d0, |u′(η)| ≤ d1 and |u′′(η)| ≤ d0 for |η| ≤ ε

then it holds that
ϕ : [−ε, ε]→ R, ϕ(η) = u(η) + bc(η) (4.27)

i) for c = 0, it is a C2-smooth function everywhere on |η| ≤ ε except for the point η = 0 where
it has a logarithmic singularity. Derivative of ϕ satisfies |ϕ′(η)| ≥ 3ω/2λ|η|.

ii) for 0 < |c| ≤ c0, it is a C2-smooth unimodal function which reaches at the point

ηc =
ω2 − λ2

ω(ω2 + λ2)
+O(c2), (4.28)

its minimum/maximum value given by the representation ϕ(ηc) = (ω/λ) log |c| + E(c) with
a bounded function E(c), and (d/dc)ϕ(ηc) = (ω/λ+O(c))/c.

Remark 4.13 ([Ler97]). In fact, the function O(c2) in (4.28) depends on u, but for a given d1

small enough, |u′(η)| ≤ d1, one has O(c2)/c→ 0 uniformly in these u.

Next lemma is used for proofs that tangency is quadratic if stable and unstable manifolds of
some periodic orbit in a neighborhood of γ are tangent.

Lemma 4.14 ([Ler97, Ler00]). Let v : [−ε, ε]→ R be a C2-smooth function with C2-norm bounded.
Then, there is c1 > 0 such that for all |c| ≤ c1 the graph of any function ϕ(η) from (4.27) in
Lemma 4.12 and the graph of v(η) are quadratically tangent if they have a tangent point.
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Global map

As was said above, γ intersects Σs, Σu at points qs and qu respectively with corresponding coor-
dinates (0, 0, 0) on both cross-sections. Therefore, one may choose two neighborhoods V s and V u

of points (0, 0, 0) in Σs, Σu, respectively, such that in these neighborhoods map πu : V u → V s,
generated by flow orbits near the global piece of γ will be a well defined diffeomorphism. This
map is represented as a family of symplectic maps πuc defined for every |c| small enough from
V u
c = Σu

c ∩ V u to V s
c = Σs

c ∩ V s. These symplectic diffeomorphisms have the form

πuc : V u
c → V s

c , πuc (η∗, θ∗u) = (Pc(η
∗, θ∗u), Qc(η

∗, θ∗u)), det
D(Pc, Qc)

D(η∗, θ∗u)
≡ ±1, (4.29)

with smooth functions Pc and Qc. According to Remark 4.9 the traces ofW s
loc andW

u
loc on Σs

0 and
Σu

0 are given as η = 0 and η∗ = 0 respectively. The transversally condition in these coordinates
means that the image of the segment η∗ = 0 on Σu

0 is transversal at the point (0, 0) ∈ Σs
0 with

respect to the segment η = 0 on Σs
0. This is expressed as (∂Q0/∂θ

∗
u)(0, 0) 6= 0. Therefore, the

existence of a non-degenerate homoclinic orbit γ means that

P0(0, 0) = Q0(0, 0) = 0 and
∂Q0

∂θ∗u
(0, 0) 6= 0. (4.30)

Ignoring the high ordem term, one can assume that πuc : V u → V s is given by

(θs, η) = πuc (η∗, θ∗u) =

(
βc αc

δc γc

)(
η∗

θ∗u

)
+

(
Ac

Bc

)
mod 2π (4.31)

where from (4.29) and (4.30) it holds

|γcβc − αcδc| = 1, A0 = B0 = 0 and γ0 =
∂Q0

∂θ∗u
(0, 0) 6= 0.

Note that for |c| small enough, we infer that γc 6= 0.

4.3.2 A return map like standard map

Next we will provide a symbolic description of the hyperbolic sets lying in a neighborhood of γ.
To this end, we will study the Poincaré return map π = πu ◦ πs in a neighborhood of qs = γ ∩Σs.
Namely, we will use the one-parametric familie πc = πuc ◦ πsc for |c| small enough. When the value
c is varied, different bifurcations create parabolic and elliptic fixed points, period two elliptic
points, etc. Although all these results were obtained in [Ler91, Ler97, Ler00], we will present here
a slightly different proof.

Recall that the Poincaré return map πc is defined by means of the composition of the diffeo-
morphisms πsc : Σs

c → Σu
c and πuc : V u

c → V s
c with V s

c = V s ∩Σs
c, V u

c = V u ∩Σu
c where V s and V u

are neighborhoods of qs = γ ∩ Σs and qu = γ ∩ Σu respectively. We have to study the dynamic
of πc in a neighborhood of η = 0 on the annulus Σs

c. Thus, we will consider this map on the strip
S1× [−ε, ε] where ε > 0 is given from Lemmas 4.10, 4.11 and 4.12. Note that πc is only well defined
on Rc,ε = (πsc)

−1(V u
c ) ∩ (S1 × [−ε, ε]) and, hence πc(Rc,ε) ⊂ V s

c but not necessarily it is a subset
in Rc,ε. Namely, πc : Rc,ε ⊂ Σs

c → Σs
c is given by

π(θs, η) = (βcη + αcθs + αcbc(η) +Ac, δcη + γcθs + γcbc(η) +Bc) mod 2π.
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η

η∗

η

θs

θu

η∗

Fig. D: Construction of fc

In fact, we will consider πc : ∆c → ∆c where ∆c is the maximal invariant set

∆c =
⋂
n∈Z

πnc (Rc,ε).

In order to simplify the study of dynamics of πc|∆c we will introduce the family of maps

Fc : [−ε, ε]2 → [−ε, ε]× S1, Fc(η
∗, η) = (η, −η∗ + ϕc(η) mod 2π), (4.32)

where ϕc : [−ε, ε]→ R is the continuous unimodal function

ϕc(η) = (αc + δc)η + γcbc(η) + γcAc + (1− αc)Bc. (4.33)

Let Ωc be the maximal invariant set of Fc in [−ε, ε]2 then, we will prove πc|∆c is topologically
conjugate to Fc|Ωc .

Note that the map Fc evokes the so-called standard map: an area preserving map acting on
the 2-torus T2 = R2/Z2 and given by

Gc(x, y) = (y, −x+ 2y + c sin(2πy)), (x, y) ∈ T2.

In the case of Gc, the corresponding function ϕc : [0, 1]→ R is ϕc(y) = 2y+c sin(2πy) is a bimodal
map. See [Dua94] for more details about the dynamic of this standard map family.

Conjugation map

In Figure D we represent graphically how to define the map (η∗1, η1) = Fc(η
∗, η) from the return

map πc. Next we will explain this construction in three step:
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• For each (η∗, η) ∈ [−ε, ε]2 and ε > 0 small enough, using the Implicit Function Theorem, for
|c| small enough we infer that there exists two unique points (θs, η) ∈ Σs

c and (η∗, θ∗u) ∈ Σu
c

such that (θs, η) = πuc (η∗, θ∗u). Namely, solve (4.31) we get

θs = Sc(η
∗, η) =

αc
γc
η + (βc −

αcδc
γc

) η∗ +Ac −
αc
γc
Bc,

θ∗u = Tc(η
∗, η) = γ−1

c (η − δc η∗ −Bc).

• Using the local map πsc given in (4.26), the image of (θs, η) ∈ Σs
c by πsc is

(η∗1, θ
∗
u,1) = (η, θs + bc(η) mod 2π) ∈ Σu

c .

• Finally, the coordinate η1 is followed from πuc (θ∗u,1, η
∗
1). That is, substituting in (4.31)

η1 =
(
γcθ
∗
u,1 + δcη

∗
1 +Bc

)
mod 2π =

(
γcθs + γcbc(η) + δcη +Bc

)
mod 2π

=
(
(γcβc − αcδc) η∗ + (αc + δc) η + γcbc(η) + γcAc + (1− αc)Bc

)
mod 2π

Observe that the coefficients of η∗ is the determinante of Dπuc .

Therefore
(η∗1, η1) = F±c (η∗, η) = (η, ±η∗ + ϕc(η) mod 2π), (η, η∗) ∈ [−ε, ε]2 (4.34)

where ϕc is given in (4.33). Observe that, the coefficients the expression of ϕc are bounded functions
of c for |c| small enough. Notice that ψc : [−ε, ε] → R, ψc(η) = γ−1

c ϕc(η) can be written of the
form (4.27) where, in this case, u(η) = γ−1

c (αc+ δc)η+Ac+γ−1
c (1−αc)Bc depends on c. Since, as

we have noted, its coefficients are bounded functions of c one has that u also is a bounded function
on c. Hence, this observation and Remark 4.13 imply that the same statements of Lemma 4.12
are valid for ψc. In particular, it follows that ϕc for |c| > 0 is a unimodal function whose critical
point is

ηc =
ω2 − λ2

ω(ω2 + λ2)
+O(c2),

and
ϕ(ηc) = ωλ−1γc log |c|+ . . . = ωλ−1γ0 log |c|+ E(c)

with a bounded function E(c).

Next, we will study the family (4.34). The analysis of the dynamical behavior for both maps,
F+
c and F−c , is analogous. We chose Fc = F−c to develop the arguments below. Also, in what follows,

since the dynamical behavior of (4.34) for both positive and negatives values of the parameter c
is quite similar, for simplicity, we restrict ourselves to the family Fc with parameter c ≥ 0.

An "increasing" family of hyperbolic basic sets

In order to find hyperbolic sets, we will use the following result:

Proposition 4.15. Consider the invertible are-preserving map

F (x, y) = (y, −x+ ϕ(y)), (x, y) ∈ T2

and let Λ be a F -invariant compact set. Assume that there exists λ > 2 such that |ϕ′(y)| ≥ λ for
all (x, y) ∈ Λ. Then, Λ is a hyperbolic set (of saddle type).
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Proof. Note that

DF =

(
0 1

−1 ϕ′(y)

)
,

In particular, the trace of DF verifies |trDF | ≥ λ > 2 so that DF is uniformly hyperbolic. In
fact, this follows from the fact Cua = {(v, w) ∈ R2 : |v| ≤ a|w|} is an unstable cone-field whenever
(λ− 1)−1 < a < 1 (note that such a choice is possible since λ > 2). Indeed, if we write DF (v, w)

as (v′, w′), we see that

|v′| = |w| ≤ (λ− a)−1|ϕ(y)w − v| = (λ− a)−1|w′|

so that DF (Cua ) ⊂ Cuθa where θ = (a(λ− a))−1 < 1 by the choice of the parameter a. That is, Cua
is DF -invariant. Furthermore, denoting by ‖(v, w)‖ = max{|v|, |w|}, we get, for any (v, w) ∈ Cua ,

‖Df(v, w)‖ = |w′| ≥ (λ− a)|w| = (λ− a)‖(v, w)‖

with (λ− a) > 1, i.e., DF (uniformly) expands any vector inside Cua . On the other hand, it is not
hard to see that the same above argument can be applied to DF−1 in order to get a stable cone-
field. Using the invariant cone-field criterion [KH95, Corolary 6.4.8], the proof is complete.

Consider an alphabet {1, 2, . . . ,±∞} consisting of all integers other than zero, supplemented
with the two symbols +∞ and −∞. Let Σ∗ be the set of bi-sequences in above alphabet of symbols
satisfying the following condition: only the symbol +∞ can follow +∞, and only −∞ can precede
−∞. Endowing Σ∗ with the appropriate topology, one can make a compact space this set of
bi-sequences.

For each parameter c > 0 let Λc be a basic set of a diffeomorphisms gc. The family {Λc}c>0 is
said dynamical "increasing" if given c > 0, for any sufficiently small ε > 0, the set Λc−ε contains the
dynamical continuation of Λc. The following theorem shows the existence of dynamical increasing
family of hyperbolic basic sets for the one-parametric family of maps Fc. The corresponding version
of the this theorem for the Poincaré return map πc was proved in [Ler91, Ler97, Theorem 1].

Theorem 4.16. For the family Fc given in (4.32), there exist ε > 0, c0 > 0 and κ > 0 such that
for every positive c ≤ c0, the maximal invariant set

Λc =
⋂
n∈Z

Fnc ({(η∗, η) ∈ [−ε, ε]2 : |η − ηc| ≥ κc2})

is a hyperbolic set conjugated to Bernoulli shift of n(c) symbols where

n(c) ∼ −(ω/πλ) log c.

Moreover, these hyperbolic sets {Λc}0<c≤c0 are a family of dynamical increasing basis sets and the
restriction of F0 to

Ω0 =
⋂
n∈Z

Fn0 ([−ε, ε]2)

is conjugated with the Bernoulli shift map τ : Σ∗ → Σ∗ where Σ∗ = {1, 2, . . . ,±∞}Z.
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ηc + κc2

ηc − κc2

η

η∗ε−ε

Rc

Fc(Rc)

η∗ε−ε

ε

−ε

η

σs1(δ)

σs2(δ)

σu1 (δ)σu2 (δ)

η = −δ + ϕc(η
∗)

Fig. E: Scheme of the image of [−ε, ε]2 by Fc

Proof. Since the coefficient αc, δc and γ−1
c in (4.33) are bounded function on c, then one can

choose K > 0 greater than (λ+ |αc+δc|)/|γc| with λ > 2. Hence, by Lemma 4.11 there exist ε > 0

and κ > 0 such that

|ϕ′c(η)| ≥ |γc||b′c(η)| − |αc + δc| ≥ |γc|K − |αc + δc| ≥ λ > 2

for all c > 0 small enough and |η − ηc| ≥ κc2 with |η| ≤ ε. As immediate consequence of Proposi-
tion 4.15 is followed that Λc is a dynamically increasing family of hyperbolic sets.

For any |δ| ≤ ε and c > 0 small enough, the image by Fc of a vertical segment η∗ = δ, |η| ≤ ε
on the plane (η∗, η) is a curve

η1 = −δ + ϕc(η
∗
1) mod 2π, |η∗1| ≤ ε (with parameter δ)

on the annulus [−ε, ε]×S1. This curve intersects [−ε, ε]2 ⊂ [−ε, ε]×S1 into finitely many full (from
the top to the bottom) branches σui (δ) as it is showed in Figure E. Each of these branches σui (δ)

defines a sub-segment σsi (δ) in the vertical segment η∗ = δ, |η| ≤ ε such that Fc(σsi (δ)) = σui (δ).
Let σsi be the union all these vertical sub-segments σsi (δ), |δ| ≤ ε. Hence, σsi is a horizontal strip
on [−ε, ε]2 such that Fc(σsi ) = σui where σui is a vertical strip union of the branches σui (δ), |δ| ≤ ε.
This observation together with the hyperbolicity of Λc imply that Fc restricted to Λc is conjugated
to a Bernoulli shift.

Let n(c) be the number of symbols of the Bernoulli shift. Let us estimate n(c). For this
propose we find n+ = n+(c) and n− = n−(c) the numbers of subsegments σsi (δ) lying in the
segment η∗ = δ, ηc + κc2 < η < ε and in the segment η∗ = δ, −ε < η < ηc − κc2 respectively.
Hence min{n−, n+} ≤ n(c)/2 ≤ max{n−, n+}.
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The number n+ is determined by the last sub-segment σsn+
(δ) in [−ε, ε] × [ηc + κc2, ε]. Con-

sidering the affine coordinates of the standard covering the annulus [−ε, ε]× S1, one has that the
image of a point (η∗, η) ∈ σsn+

by Fc is the point η∗1 = η, η1 − 2πn+ = −δ + ϕc(η) for some η1

belongs to [−ε, ε]. Since ϕc : [ηc + κc2, ε]→ R is monotone increasing and ηc + κc2 < η ≤ ε then

ϕc(ηc + κc2) ≤ ϕc(η) = η1 + δ − 2πn+ ≤ ϕc(ε).

Thus, one obtains that

δ − ε
2π
− 1

2π
ϕc(ε) < n+ <

δ + ε

2π
− 1

2π
ϕc(ηc + κc2).

Using the mean value theorem we have that bc(ηc+κc2) = bc(ηc)+b′c(ηc+θκc
2)κc2, with 0 < θ < 1,

so that, from Lemma 4.12, it follows

bc(ηc + κc2) =
ω

λ
log c+ E(c) +Kκc2.

In a similar way one may get the upper estimate for n+, both estimates are asymptotically the
same. The estimate for n− is similar. Therefore, finally, we get

n(c)

2
∼ − ω

2πλ
log c+ const.

Similarly in the case c = 0, one can defined infinitely many full horizontal and vertical strips,
σsi and σui in [−ε, ε]2 such F0(σsi ) = σui . For more details about the conjugation with τ : Σ∗ → Σ∗

we refer the reader to [Ler91, Ler97] and this finishes the proof.

By construction, periodic saddle orbits of the Hamiltonian vector field XH correspond to
fixed points of F0. These orbits intersect the cross-section Σs

0 of γ once. A periodic point of
period N corresponds to a saddle orbit which intersects this cross-section N times before closing.
Corresponding with a bi-sequence of the type (. . . −∞,−∞, ξ1, . . . , ξn∞,∞, . . .) are homoclinic
orbits of the point p that emerge from the trace η∗ = 0 on Σu

0 (the trace of W u
loc) and then pass

through a neighborhood of γ intersecting n times Σs
0 and then reach η = 0 (the trace of W s

loc).
Consequently the following corollary holds:

Corollary 4.17 ([Bel84, Ler00]). There exists a countable set of non-degenerate (bifocal) homo-
clinic orbits of any roundness in a neighborhood of γ.

Hyperbolic windows and Newhouse intervals

We have show that in the limit c → H(p) the number of symbols of the Bernoulli shift increases
approaching to ∞. Hence bifurcations have to occurs giving rise reconstructions in the orbit
structure in the level set H = c. The following theorem show some of these bifurcations. The
corresponding version of the this theorem for the Poincaré return map πc was proved in [Ler00,
Theorem 2]. Previously, we introduce some definitions.

Let p be a fixed point of a surface C1-diffeomorphism g. It is said that p is an elliptic fixed
point if the eigenvalues of Dg(p) form a complex conjugate pair λ+ = λ, λ− = λ, and a parabolic
fixed point if Dg(p) has a double eigenvalue λ± = 1 but its Jordan form is not the identity matrix.
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η = 2η∗

Fig. F: Map Fc on [−ε, ε]2.

Theorem 4.18. For the family Fc given in (4.32), in the interval of parameters (0, c0] there is a
set accumulating zero disjoint intervals In = (cn, c

′
n), n ∈ N, such that

i) for c ∈ In the maximal invariant set Ωc in [−ε, ε]2 coincides with the hyperbolic basic set Λc,

ii) there are points d1
n, d

2
n ∈ (c′n+1, cn) such that for

a) c = d1
n a parabolic fixed point of Fc appears inside of [ηc − κc2, ηc + κc2]2,

b) c ∈ (d2
n, d

1
n) the parabolic point has bifurcated into a elliptic and a hyperbolic fixed points,

c) c = d2
n the elliptic point becomes a degenerate elliptic fixed point with eigenvalue ±i,

and

d) c < d2
n from the degenerate elliptic point appears a new hyperbolic fixed point and a

cascade of period doubling bifurcation of elliptic periodic points.

The intervals In in the above theorem are called hyperbolic windows. When c varies in the
interval between neighboring hyperbolic windows, the second part (ii) in Theorem A.12 shows the
bifurcations associated with formation of a new, well-developed Smale horseshoe (see [YA83]).

Proof. Notice that the non-hyperbolic region where the creation of parabolic and elliptic fixed
points can occur is located from Theorem 4.16 in Rc = {(η∗, η) : |η − ηc| ≤ κc2, |η∗| ≤ ε}. The
image by Fc of this critical region Rc is a solid piece in the annulus [ηc − κc2, ηc + κc2]× S1 as it
is showed in Figure E. There is no generation of critical dynamic if Fc(Rc)∩Rc = ∅ which occurs
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for parameters c in a set of disjoints intervals In, n ∈ N on (0, c0] accumulating at zero. In this
situation, the maximal invariant set Ωc in [−ε, ε]2 coincides with the hyperbolic basic set Λc.

Now, let us find the fixed point of the map Fc which can appear in the critical region Rc. This
is, (η∗, η) ∈ Rc such that (η∗, η) = Fc(η

∗, η) or equivalently, η∗ = η and 2η∗ = ϕc(η
∗) mod 2π.

Thus, it comes to studying the intersection in the annulus [ηc − κc2, ηc + κc2]× S1 of the curves
η = 2η∗ and η = ϕc(η

∗). Note that, the eigenvalues of linear part of Fc at a fixed point (η∗, η) are
given by

λ± =
1

2

(
ϕ′c(η

∗)±
√
ϕ′c(η

∗)2 − 4

)
.

Hence, (η∗, η) is either hyperbolic or elliptic fixed point if |ϕ′c(η∗)| > 2 or |ϕc(η∗)| < 2. If ϕ′c(η∗) = 2

then λ± = 1 and Jordan form of the linear part is not the identity matrix (it is the nilpotent one).
Thus, in this case, the fixed point (η∗, η) is parabolic.

Figure F shows the different possibilities position of the graph η = ϕc(η
∗) when the parameter

c is varies in an interval (c′n+1, cn) between the hyperbolic windows In+1 and In. In this interval
one can find a parameter c1 = d1

n such that the curve η = ϕc1(η∗) mod 2π has a unique tangent
point η∗ = p1 with the line η = 2η∗. This point stisfies that ϕc1(p1) = 2p1 and ϕ′c1(p1) = 2.
Thus, (p1, 2p1) is a parabolic fixed point of Fc. Moreover, it is non-degenerate fixed point since
ϕ′′c1(p1) 6= 0. This point breaks up to c2 < c1 into hyperbolic fixed point (p2, 2p2) and elliptic fixed
point (p3, 2p3), both of them persist till c3 = d2

n. For this parameter, the continuation η∗ = p5 of
p3 becames in the critical value the curve η = ϕc3(η∗). Then, ϕ′c3(p5) = 0 and thus, the eigenvalue
of linar part Dfc3 at (p5, 2p5) are λ± = ±i. That is, (p5, 2p5) is a degenerate elliptic fixed point of
fc3 . Finally, when c4 < c3 the degenerate elliptic fixed point becames in a hyperbolic fixed point
and a new periodic 2 elliptic periodic point appears. This concludes the proof of the theorem.

4.4 Blenders near conservative bifocal homoclinic orbits

Let π = πu ◦ πs be the Poincaré return map on a neighborhood of a non-degenerate bifocal
homoclinic orbit γ of a smooth Hamiltonian vector field XH on R4. This area preserving return
map is defined on a solid tori Σs cross-section of γ. In adequate coordinates, it can be written as

π(θs, η, c) = (πc(θ
s, η), c), θs ∈ S1, |η| ≤ εδ, |c| ≤ c0

where πc is a symplectic map defines on the annulus Σs
c = Σs∩H−1(c). We introduce the notation

π = πc o id where id : I → I is the identity function on the interval I = [−c0, c0].

In §4.3.2 we have showed that πc|∆c is conjugated to the area preserving map Fc|Ωc , where
Fc : [−ε, ε]2 → [−ε, ε]× S1 is given in (4.32). Therefore, it follows that π = πc o id is conjugated
to f = Fc o id where

f(z, c) = (Fc(z), c), with c ∈ I and z ∈ Ωc.

The following proposition show that we can conjugate the f with a direct product:

Proposition 4.19. There is ∆ ⊂ Σs such that π|∆ is conjugated to f0 = F0 × id from Λ′ × I to
itself where Λ′ ⊂ Ω0 is a Smale horseshoe for F0.
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Proof. According to Theorem 4.16, for each c ∈ I, c 6= 0, there is a hyperbolic basic set Λc of Fc
in [−ε, ε]2 such that F |Λc is conjugated with the Bernoulli shift of n(c) ≥ 2 symbols. For c = 0,
from the same theorem, we can take a Smale horseshoe Λ′ ⊂ Ω0 for F0 such that the continuation
Λ′c of Λ′ for Fc, 0 < |c| ≤ c0, is contained in Λc. We will show that f = Fc o id restricted to

Λ′c o I
def
= {(z, c) : c ∈ I, z ∈ Λ′c}

is conjugated to f0 = F0 × id restricted to Λ′ × I.

Since {Λ′c}|c|≤c0 is a dynamical "increasing" family of Smale horseshoes it follows that there
exist homeomorphisms Hc : Λ′c → Λ′0 such that F0 ◦Hc = Hc ◦ Fc for all |c| ≤ c0. Consider

h : Λ′c o I → Λ′ × I, h(z, c) = (Hc(z), c)

shortly denoted by h = Hcoid. Notice that this map is an homeomorphisms such that f◦h = h◦f0.
Therefore, we infer that f |Λ′coI is conjugated to f0|Λ′×I . Finally, since π is conjugated to f then
there is ∆ in Σs such that π|∆ is conjugated to f0|Λ′×I . This concludes the proof.

Since F0 : Ωc → Ωc is conjugated to a Bernoulli shift in infinite many symbols, decreasing the
size of the interval I = [−c0, c0] and repeating the argue in the proof of the above result we obtain
the following remak:

Remark 4.20. For every k ≥ 2 there exist

0 < c ≤ c0, ∆ = ∆(c) ⊂ Σs and Λ′ = Λ′(c) ⊂ Ω0

such that π|∆ is conjugated to f0 = F0 × id from Λ′ × I to itself where I = [−c, c] and F0|Λ′ is
conjugated to τ : Σk → Σk.

One can study the bifurcation of the non-degenerate bifocal homoclinic orbit γ of XH outside
of the conservative vector field. This task can be carried out by studying the perturbations of the
return map f0 = F0×id. According to the theory developed in §2.1.2, perturbations of a dominated
skew product diffeomorphism over a horseshoe are conjugated to locally Hölder symbolic skew
products. Therefore, it suffices consider S1,α-perturbations of Φ = τ × id where τ : Σ2 → Σ2 is the
shift the Bernoulli in two symbols. That is, perturbations of symbolic Hölder skew products with
C1-fiber maps in S2(I), in the notation introduced in the second chapter, Definition 2.4. It is not
difficult to construct an smooth arc of one-step skew products Φµ = τ n (φµ,1, φµ,2), µ ∈ [0, µ0]

such that Φ0 = Φ and Φµ has a symbolic blender-horseshoe in Σ2 × I for all 0 < µ ≤ µ0.
Indeed, it suffices that the small perturbations φµ,1 and φµ,2 of the identity map on the interval
I satisfy the covering property. This is possible with only two maps because the fiber space has
dimension one. In this manner, via conjugation (see Proposition 2.1), we obtain an open set V
of C1-diffeomorphism with f0 ∈ ∂V such that for every g ∈ V there exists a blender for g. This
proves the following result:

Proposition 4.21. Let XH be a Hamiltonian vector field satisfying (H1) and (H2). Then there
exists an open set V of C1 vector fields with XH ∈ ∂V such that each vector field X ∈ V has a
suspended blender (contained in a neighborhood U of the bifocal homoclinic orbit γ of XH).
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4.4.1 Possible blenders in generic unfoldings of nilpotent singularities

In order to conclude this chapter, we will study the possible existence of suspended blender-
horseshoes in the generic unfoldings of the four-dimensional nilpotent singularities of codimension
four. In order to establish the framework of this problem, we begin by summarizing our progress
in this chapter until this point.

It follows from Equation (4.10) that any generic unfolding of the nilpotent singularity of
codimension four in R4, denoted by Yν,ε, can be written as

y2
∂

∂y1
+ y3

∂

∂y2
+ y4

∂

∂y3
+
(
ν1 + ν2y2 + ν3y3 + ν4y4 + y2

1 + εκy1y2 +O(ε2)
) ∂

∂y4
,

with ν = (ν1, ν2, ν3, ν4) ∈ S3 and ε > 0. According to Theorem 4.3, the limit family, denoted by Yν ,

y2
∂

∂y1
+ y3

∂

∂y2
+ y4

∂

∂y3
+
(
ν1 + ν2y2 + ν3y3 + ν4y4 + y2

1

) ∂

∂y4
,

for parameters on the reversibility curve

T = {(ν1, ν2, ν3, ν4) ∈ S3 : ν2 = ν4 = 0}

is a Hamiltonian vector field. In §4.2.1 it is showed that the parameter value BD = (ν1, 0, ν3, 0)

with ν2
3 − 8

√
−ν1 = 0, ν1 < 0 and ν3 > 0, is a Belyakov-Devaney bifurcation point and, therefore,

conservative non-degenerate bifocal homoclinic orbits arise for every vector field Yν with ν ∈
DF ⊂ T close enough to BD. The proof of Theorem 4.5 uses the exponential dichotomy theory to
show that this bifocal homoclinic connections can be continued for the nilpotent singularity Yν,ε
with parameter values in a codimension one manifold

HomFF ⊂ Hom = {(ν, ε) ∈ S3 × (0,∞) : ξ∞(ν, ε) = 0}.

Fix a parameter ν∗ on the double-focus arc DF close enough to BD. The Hamiltonian vector
field Yν∗ on R4 satisfies (H1) and (H2), i.e., there exists a non-degenerate bifocal homoclinic
orbit γ. Thus, from Proposition 4.19, it follows that there is ∆ contained in a cross-section Σs

of the bifocal homoclinic orbit γ of Yν∗ such that the Poincaré return map πν∗ restricted to ∆

is conjugated to f0 = F0 × id from Λ′0 × I to itself. Here, Λ′0 ⊂ [−ε, ε]2 is a Smale horseshoe of
the map F0 given in (4.32) and I is a close real interval [−c0, c0], being ε and c0 small enough
positives constants. Since for parameter values (ν, ε) ∈ S3 × (0,∞) close to (ν∗, 0) the vector field
Yν,ε is a smooth perturbation of Yν∗ , in order to understand its possible dynamics, we can study
the perturbations of the return map f0 = F0 × id. As we argued in Proposition 4.21, from the
theory developed in §2.1.2, every small C1-perturbations of f0|Λ′0×I is conjugated to a symbolic
skew-product Φ = τ nφξ in S2(I) that is a small S1,α-perturbations of Φ0 = τ × id. Note that the
fiber-maps are diffeomorphisms on the interval I and thus the endpoints are fixed points of these
maps. Since we try to understand the dynamic of small perturbations near of homoclinic orbit γ
of Yν∗ , we only have to consider the invariant dynamic of Φ in Σ2 × J with J an open interval in
the interior of I containing c = 0 (level set of Φ0 corresponded to the homoclinic connection).

Let us renormalice the close interval I to I = [−1, 1]. The generic expression of a fiber map
diffeomorphism φξ : I → I of a S1,α-perturbation Φ = τ n φξ ∈ S2(I) of Φ0 = τ n id is

φξ(c) = −(c− 1)(c+ 1)(δ0c+ δ1c+ δ2c
2 + . . .)

= δ0 + δ1c+ (δ0 − δ2)c2 + . . .
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where the coefficients δi = δi(ξ) depend locally Hölder continuously on ξ and satisfy that δ1 ≈ 1

and δi ≈ 0 for all i 6= 1. Because of the robustness in the definition of blender we can assume that
δi(ξ) = δi(ξ0), i.e., the coefficients only depend on the zero coordinate of the bisequence ξ. This
implies that φξ = φi if ξ0 = i for i = 1, 2 and therefore we have a one-step symbolic skew-product
Φ = τ n (φ1, φ2) where φ1 and φ2 are smooth diffeomorphisms on I close enough to id : I → I.
Then, two possibilites happen:

i) (non-generic generic): φ1 and φ2 have a fixed points in common in the interior of I,

ii) (generic case): φ1 and φ2 have no fixed points in common in the interior of I.

Non-generic case

Let c ∈ (−1, 1) be a fixed point of both, φ1 and φ2. Then the set Λ = Σ2×{c} is Φ-invariant and Φ|Λ
is conjugated to τ : Σ2 → Σ2. If φ′i(c) are both less (resp. grater) than one, Λ is said to be a symbolic
normally hyperbolic horseshoe. Notice that in this case any one-step smooth perturbation Ψ =

τ n (ψ1, ψ2) of Φ = τ n (φ1, φ2) satisfying the generic condition (ii) in a neighborhood of c has a
symbolic blender-horseshoe. Indeed, it is enough to note that in a neighborhood of c the fiber maps
ψi are both contractions (resp. expansions) and, from the proximity to the identity map, satisfy the
covering property on the interval defined between its fixed points close to c. If φ′1(c) ≤ 1 ≤ φ′2(c),
Λ is said to be a symbolic shear horseshoe. In this case, only the continuation of the two fixed
points in Λ survive under generic perturbations.

An interesting case is obtained when the fixed point in common is c = 0. In this case δ0 = 0.
Shrinking the size of I, as follows of the Remark 4.20, we can increase the number of symbols k we
are working with. Then, over a codimension one manifold where the non-generic condition δ0 = 0

is fulfilled, the dynamic of the restriction of Φ to Λ = Σk×{0} is conjugated to τ : Σk → Σk. In the
limit, via conjugation, it is obtained that Yν,ε for a parameter value (ν, ε) in this codimension one
manifold has infinitely many suspended Smale horseshoes. We expect that this situation occurs
for parameter values in HomFF where the results in [Shi67, FS91] imply the existence of infinitely
many suspended Smale horseshoe in each neighborhood of the bifocal homoclinic orbit. Thus, we
conjecture that this non-generic case occurs for values of the parameters in the codimension one
manifold HomFF , where a bifocal homoclinic orbit takes place. The condition φ′i(c) < 1 (resp.
φ′i(c) > 1)) for i = 1, 2 should correspond to the case −ρ1 > ρ2 > 0 (resp. 0 < −ρ1 < ρ2) in
Remark 4.7.

Generic case

Assume that φ1 and φ2 are Morse-Smale diffeomorphisms on the compact interval I with no
periodic points in common in the interior of I. Recall that by a Morse-Smale diffeomorphisms on
I we mean a diffeomorphism f : I → I with a non-empty finite set of fixed points in the interior
of I and all of them hyperbolic. According to Spectral Decomposition Theorem of an IFS on the
real line, Theorem 3.21 (see also Remark 3.22), we obtain that the limit set L(IFS(φ1, φ2)) of the
IFS generated by φ1 and φ2 is finite union of pairwise disjoint intervals. Moreover, this intervals
are isolated and transitive set for IFS(φ1, φ2) (see this notions in Definition 3.1 and 3.3). Namely,
each interval is either a ∗∗-interval for IFS(φ1, φ2) with {ss, su, uu, s, u} or a single fixed point
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of φ1 or φ2. The isolated fixed points for IFS(φ1, φ2) correspond to an isolated periodic orbit
Φ = τ n (φ1, φ2) of period one. The ∗∗-intervals for IFS(φ1, φ2) correspond to the projection on
the fiber space of non-trivial invariant set Γ∗∗ for Φ = τ n (φ1, φ2). Note that the s-intervals (resp.
u-intervals) are always extremal intervals in the decomposition of the limit set of an IFS. Since
we are interesting in the invariant dynamic for Φ in Σk×J with J an open interval in the interior
of I, we can consider a s-interval (resp. the u-interval) as a subinterval of a ss-interval (resp.
the uu-interval). In the contractive case, from the theory of symbolic blenders in the one-step
setting (see in Section §2.3), the ss-intervals (resp. uu-intervals) for IFS(φ1, φ2) are the support of
a symbolic cs-blender (resp. cu-blender). Notice that any non-empty open set B in an su-interval
Ksu

Φ is a blending region for IFS(φ1, φ2), and thus, from Proposition 2.21, for every one-step map
Ψ close to Φ it holds that

W uu
(
(ϑ, pΨ); Ψ

)
∩
(
W s
loc(ξ; τ)× U

)
6= ∅,

for all ξ ∈ Σk and non-empty open set U in B, where (ϑ, pΨ) is the continuation for Ψ of a fixed
point (ϑ, p) ∈ Σk × Ksu

Φ of Φ. That is, the intersection property in the definition of symbolic
blender in the one-step setting (see Definition 2.11). On the other hand, noting that there is a
fixed point ϑ of τ such that φnϑ(x) ∈ Ksu

Φ for all x ∈ Ksu
Φ for all n ∈ Z, it follows that the Φ-

invariant set Γsu from the su-interval Ksu
Φ for IFS(φ1, φ2) contains at least the spine {ϑ} ×Ksu

Φ

(see definition of spine in the Section §2.2.2). This implies that Φ|Γsu is not conjugated to a shift
the Bernoulli τ : Σ2 → Σ2. Moreover, it is not so hard to show the existence of heterodimensional
cycles arbitrarily close to Φ = τ×(φ1, φ2). In any case, the ∗∗-intervals are the support blender-like
dynamics: symbolic blenders or symbolic blender-like sets.
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Anexo





Dichotomies and bifurcation equations

For a hyperbolic linear vector field, the decomposition of phase space as a direct sum of stable
and unstable subspaces allows us to understand the behavior of their solutions. This property
of the linear flow extends to the case of linear equations of non-autonomous systems under
the name of exponential dichotomy. Such extension is useful to express the persistence of
(homo)heteroclinic connections of a nonlinear autonomous vector field. For this it is essential
to understand the dichotomy of the adjoint equation and the variational equation along these
special solutions. The persistence of the connection is followed from the contact between the
invariant manifolds of the hyperbolic equilibrium points. These contacts are formulated in
terms of a bifurcation equation that allows us to know the set of parameter on which the
(homo)heteroclinic connection persists.

A.1 Dichotamies

Let x′ = f(x) be a nonlinear equation, where x ∈ Rn and f is a regular enough vector field, and
assume that it has a heteroclinic orbit γ = {p(t) : t ∈ R} connecting two hyperbolic equilibrium
points p+ and p− (if p+ = p−, γ is said homoclinic). Consider a family

x′ = f(x) + g(λ, x), (A.1)

with λ ∈ Rk and g regular enough, such that g(0, x) = 0. For any λ small enough, family (A.1)
has hyperbolic equilibrium points p+(λ) and p−(λ), continuation of p+ and p−, respectively, and
the stability index is preserved. In order to study the persistence of the heteroclinic orbit for λ
small enough we introduce the change of variables x(t) = z(t) + p(t) in (A.1) to obtain

z′(t) = Df(p(t))z(t) + b(λ, t, z(t)), (A.2)

where
b(λ, t, z(t)) = f(p(t) + z(t))− f(p(t))−Df(p(t))z(t) + g(λ, p(t) + z(t)).

Notice that b(0, t, 0) = Dzb(0, t, 0) = 0 for all t ∈ R.

Persistence of heteroclinic orbits in (A.1) implies the existence of bounded solutions for (A.2)
which, in turn, implies the existence of bounded solutions for a equation as

z′(t) = Df(p(t))z(t) + b(t), (A.3)

where b belongs to the space C0
b (R,Rn). In the sequel Ckb (R,Rn) denotes the Banach space of

bounded continuous Rn-valued functions whose derivatives up to order k exist and are bounded
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v

u = P(t)u

w

P(t)v

P(t)w

R(P(t))

N (P(t))

R(P(t))⊥

Fig. A: Geometric interpretation of projection P(t).

and continuous on R. The existence of bounded solutions of a linear equation x′ = A(t)x + b(t),
as that in (A.3), will be given in terms of exponential dichotomies of the homogeneous equation
x′ = A(t)x and its adjoint w′ = −A(t)∗w, where A(t)∗ stands for the conjugate transpose of
A(t). The classical references for the study of exponential dichotomies are [MS66, Cop78, Pal84,
Pal00b]. Here, we will present a brief summary of results about dichotomies in order to get a
precise formulation of the bifurcation equations. For an extended version of this introduction of
dichotomies we recommend the reference [Bar09] where it is presented a complete exposition about
dichotomies and bifurcations equations with the proof of the result.

A.1.1 Exponential dichotomy

Let X(t) be a fundamental matrix of

x′ = A(t)x, x ∈ Rn, (A.4)

where A(t) is defined and continuous on an interval J ⊂ R.

Definition A.1. It is said that the equation (A.4) has an exponential dichotomy on J if there
exists a projection P : Rn → Rn, that is, an n by n matrix P with P 2 = P , and positive constants
K, L, α and β such that

‖X(t)PX−1(s)‖ ≤ Ke−α(t−s) for t ≥ s,
‖X(t)(I − P )X−1(s)‖ ≤ Le−β(s−t) for s ≥ t.

(A.5)

for all s, t ∈ J

Let us define P(s) = X(s)PX−1(s) for each s ∈ J . Notice that, according with the above
definition, P(s) is the projection corresponding to the fundamental matrix Y (t) = X(t)X−1(s)

of (A.4) and we can give an alternative definition of exponential dichotomy.
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Definition A.2. It is said that the equation (A.4) has an exponential dichotomy on J if for all
s ∈ J there exists a projection P(s) : Rn → Rn and positive constants K, L, α and β independents
of s such that for all t ∈ J the matrix X−1(t)P(t)X(t) has constant coefficients and

‖X(t)X−1(s)P(s)‖ ≤ Ke−α(t−s) for all t ≥ s,
‖X(t)X−1(s)(I −P(s))‖ ≤ Le−β(s−t) for all s ≥ t.

Although the notion of exponential dichotomy is stated for any J ⊂ R, the most interesting
cases are when J is not bounded. We are particularly interested in J = [τ,∞) or J = (−∞, τ ]. In
such cases the notions of stable and unstable subspaces can be introduced in terms of the ranges
of the projections of the exponential dichotomies.

Definition A.3. Suppose that the matrix A(t) in (A.4) is defined and continuous on J = [τ,∞)

(resp. J = (−∞, τ ]). For each t0 ∈ J the stable (resp. unstable) subspace for initial time t = t0 is
defined as the set

Est0 = {ξ ∈ Rn : ‖X(t)X−1(t0)ξ‖ → 0 when t→∞}
(resp. Eut0 = {ξ ∈ Rn : ‖X(t)X−1(t0)ξ‖ → 0 when t→ −∞}).

Below we give a collection of results which can be helpful to follow the paper. Their proofs are
available in the literature.

Proposition A.1. Suppose that the equation x′ = A(t)x has an exponential dichotomy on J .

i) When J = [τ,∞), Est0 coincides with the range R(P(t0)) of P(t0) for all t0 ∈ J . Further-
more

R(P(t0)) = {ξ ∈ Rn : sup
t≥t0
‖X(t)X−1(t0)ξ‖ <∞},

and for all t0, t1 ∈ J it follows that Est1 = X(t1)X−1(t0)Est0 .

ii) When J = (−∞, τ ], Eut0 coincides with the kernel N (P(t0)) of P(t0) for all t0 ∈ J . Fur-
thermore

N (P(t0)) = {ξ ∈ Rn : sup
t≤t0
‖X(t)X−1(t0)ξ‖ <∞},

and for all t0, t1 ∈ J it follows that Eut1 = X(t1)X−1(t0)Eut0.

From the above proposition it follows that the linear flow sends Est0 and Eut0 to Est1 and
Eut1 , respectively. Accordingly, once E

s
t0 and Eut0 are fixed, the stable and unstable subspaces are

determined for all t. Therefore, the projections are also determined for each t ∈ J once they are
defined for t = t0. The same observation follows taking into account the uniqueness of solutions
for the equation

P ′(s) = X ′(s)PX−1(s) +X(s)P (X−1(s))′ = A(s)P(s)−P(s)A(s).

Lemma A.2. If the linear homogeneous equation x′ = A(t)x, with t ∈ (−∞,∞), has exponential
dichotomy [τ,∞) (resp. (−∞, τ ]) for some τ ∈ R then it has exponential dichotomy on [t0,∞)

(resp. (−∞, t0]) for all t0 ∈ R.
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The next result [Pal00b, Lemma 7.4] states that exponential dichotomy is a robust property
with respect to small enough perturbations of A(t).

Proposition A.3. Suppose that x′ = A(t)x has an exponential dichotomy on J = [a, b] (with
−∞ ≤ a < b ≤ ∞) with projection matrix function P(t), with constants K1, K2 and exponents
α1, α2. Let β1 and β2 be such that 0 < β1 < α1 and 0 < β2 < α2. Then

there exists δ0 = δ0(K1,K2, α1, α2, β1, β2) > 0 such that if B(t) is a continuous matrix function
with ‖B(t)‖ ≤ δt ≤ δ0 for all t ∈ J , the perturbed system

x′ = [A(t) +B(t)]x

has an exponential dichotomy on J with constants L1, L2 exponents β1, β2 and projection matrix
Q(t) satisfying that ‖Q(t)−P(t)‖ ≤ Nδt, where L1, L2 and N are constants which only depend
on K1, K2, α1 and α2.

From the above result and Lemma A.2 it follows the existence of an exponential dichotomy
for the homogeneous part z′ = Df(p(t))z of the equation (A.3). Since limt→∞ p(t) = p+ and
limt→−∞ p(t) = p− and according to Proposition A.3, the equation x′ = Df(p(t))x has the same
exponential dichotomy than x′ = Df(p+)x (resp. x′ = Df(p−)x) on [t0,∞) (resp. (−∞, t0]). That
is, if the stable (resp. unstable) subspace of x′ = Df(p+)x (resp. x′ = Df(p−)x) has dimension
k then x′ = Df(p(t))x has an exponential dichotomy on [t0,∞) (resp. (−∞, t0]) with stable
subspace Est0 (resp. unstable subspace Eut0) with dimension k. In fact we have the following result:

Proposition A.4. Let p(t) be a solution of the equation x′ = f(x) parametrizing an orbit on
the stable (resp. unstable) manifold of an equilibrium point p. Hence the variational equation
x′ = Df(p(t))x has exponential dichotomy on [t0,∞) (resp. (−∞, t0]). Moreover,

R(P(t0)) = Tp(t0)W
s(p) (resp. N (P(t0)) = Tp(t0)W

u(p)).

Now we can apply to (A.3) the result below, which relates the existence of bounded solutions
for a linear equation and for its adjoint.

Theorem A.5. [Pal84, Lemma 4.2] Let A(t) be a bounded and continuous matrix defined on
(−∞,∞). The linear equation x′ = A(t)x has exponential dichotomy on [t0,∞) and on (−∞, t0]

if and only if the linear operator L : x(t) ∈ C1
b (R,Rn) 7→ x′(t)−A(t)x(t) ∈ C0

b (R,Rn) is Fredholm.
The index of L is dimEst0 + dimEut0 − n. Moreover, b ∈ R(L) if and only if∫ ∞

−∞
< w(t), b(t) > dt = 0

for all bounded solutions w(t) of the adjoint equation w′ = −A(t)∗w.

To explore the existence of bounded solutions of the adjoint equation one has to study its
properties of exponential dichotomy.

A.1.2 Exponential dichotomy for the adjoint equation

Let X(t) be a fundamental matrix of the equation x′ = A(t)x. It is well known that the conjugate
transpose of its inverse X−1(t)∗ is a fundamental matrix of the adjoint equation w′ = −A(t)∗w.
From this relationship between the fundamental matrices of both equations we can conclude the
following result about the connection between their respective dichotomies.
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Proposition A.6. If the linear equation x′ = A(t)x has exponential dichotomy on J with projec-
tion matrix P(t) then the adjoint equation w′ = −A(t)∗w has exponential dichotomy on J with
projection matrix I −P(t)∗. Moreover, for each t0 ∈ J

Rn = R(P(t0))⊥R(I −P(t0)∗) = R(P(t0))⊥ N (P(t0)∗),

Rn = R(I −P(t0))⊥ R(P(t0)∗) = N (P(t0))⊥ R(P(t0)∗).

As done in Definition A.3 we can define now the stable and unstable subspaces for adjoint
equations.

Definition A.4. Suppose that J = [τ,∞) (resp. J = (−∞, τ ]) is contained in the interval of
definition of x′ = A(t)x. For each t0 ∈ J the stable (resp. unstable) subspace for initial time t = t0

of the adjoint equation x′ = −A(t)∗x is defined as

Es∗t0 = {w ∈ Rn : ‖X−1(t)∗X(t0)∗w‖ → 0 when t→∞}
(resp. Eu∗t0 = {w ∈ Rn : ‖X−1(t)∗X(t0)∗w‖ → 0 when t→ −∞}).

The following result about the relationship between the invariant subspaces of the equation
x′ = A(t)x and its adjoint follows as a straight consequence of Proposition A.1 and Proposition A.6.

Proposition A.7. Suppose that the equation x′ = A(t)x with x ∈ Rn and t ∈ J has exponential
dichotomy in J .

i) If J = [t0,∞) then

Est0 = R(P(t0)) = {x ∈ Rn : sup
t≥t0
‖X(t)X−1(t0)x‖ <∞},

Es∗t0 = N (P(t0)∗) = {w ∈ Rn : sup
t≥t0
‖X−1(t)∗X(t0)∗w‖ <∞},

and Rn = Est0 ⊥E
s∗
t0 .

ii) If J = (−∞, t0] then

Eut0 = N (P(t0)) = {x ∈ Rn : sup
t≤t0
‖X(t)X−1(t0)x‖ <∞},

Eu∗t0 = R(P(t0)∗) = {w ∈ Rn : sup
t≤t0
‖X−1(t)∗X(t0)∗w‖ <∞},

and Rn = Eut0 ⊥E
u∗
t0 .

In short, if the linear equation x′ = A(t)x has exponential dichotomy in J = [t0,∞) (resp.
(−∞, t0]) then the forward (resp. backward) bounded solutions of this equation and its adjoint
are those which tend to zero exponentially when t→∞ (resp. t→ −∞). On the other hand, from
the decompositions of Rn given in Proposition A.7 it follows that, if x′ = A(t)x has m linearly
independent forward (resp. backward) bounded solutions, then the adjoint equation w′ = −A(t)∗w

has n−m linearly independent forward (resp. backward) bounded solutions.

Proposition A.8. If the linear equation x′ = A(t)x has exponential dichotomy in [t0,∞) and
in (−∞, t0] then the number of linearly independent bounded solutions of the adjoint equation
w′ = −A(t)∗w is

dimEs∗t0 ∩ E
u∗
t0 = n− dimEst0 − dimEut0 + dimEst0 ∩ E

u
t0 .
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Now we apply the above result to determine the number of bounded solutions of the adjoint
equation z′ = −Df(p(t))∗z. As we have already noticed, the number of linearly independent
forward (resp. backward) bounded solutions of the variational equation x′ = Df(p(t))x is given
by the dimension of the stable (resp. unstable) subspace of the equation x′ = Df(p+)x (resp.
x′ = Df(p−)x). That is, such number coincides with the dimension of W s(p+) (resp. W u(p−)).
Therefore, taking into account that Est0 = Tp(t0)W

s(p+) and Eut0 = Tp(t0)W
u(p−), we can conclude,

from Proposition A.8, the following result.

Proposition A.9. If p(t) is a (homo)heteroclinic solution connecting two equilibrium points p+

and p− then the number of linearly independent bounded solutions of the adjoint variational equa-
tion w′ = −Df(p(t))∗w is the codimension of Tp(t0)W

s(p+) + Tp(t0)W
u(p−), that is,

n− dimW s(p+)− dimW u(p−) + dimTp(t0)W
s(p+) ∩ Tp(t0)W

u(p−).

A (homo)heteroclinic orbit γ is said to be non-degenerate if dimTpW
s(p+) ∩ TpW u(p−) = 1,

with p ∈ γ. Otherwise γ is said to be degenerate.

Remark A.10. If the (homo)heteroclinic orbit is non-degenerate, the number of linearly inde-
pendent bounded solutions is obtained directly from the stability indexes of p+ and p−. More-
over, although dimTp(t0)W

s(p+) = dimW s(p+) and dimTp(t0)W
u(p−) = dimW u(p−), in general

dimTp(t0)W
s(p+) ∩ Tp(t0)W

u(p−) does not coincide with dimW s(p+) ∩W u(p−).

In the sequel the (homo)heteroclinic orbit γ = {p(t) : t ∈ R} will be non-degenerate.

A.2 Bifurcation equations

As already mentioned, the existence of (homo)heteroclinic orbits for (A.1) implies the existence of
bounded solutions of (A.2) and, consequently, the existence of bounded solutions of (A.3) when
b(t) ∈ C0

b (R,Rn). According to Proposition A.5, if the adjoint variational equation

w′ = −Df(p(t))∗w

has d linearly independent bounded solutions wi, then the persistence of the (homo)heteroclinic
orbit requieres the fulfillment of the d conditions

∫∞
−∞ 〈wi(t), b(t)〉 dt = 0 for i = 1, . . . , d. The

question now is the sufficiency of such conditions.

When d = 1 the sufficiency could be followed from [CHM80]. In general, for d ≥ 1, the
techniques to be used follow the first steps of the Lin’s method [Lin90, San93]. For ‖λ‖ small
enough, one has to look for solutions p+

λ (·) and p−λ (·) of (A.1), contained in the stable and unstable
invariant manifolds of the equilibrium points p+(λ) and p−(λ), respectively. Initial values p±λ (t0)

will belong to a section Σt0 transverse to the (homo)heteroclinic orbit γ. Namely

Σt0 = p(t0) + {f(p(t0))}⊥ = p(t0) +
(
W+
t0
⊕W−t0 ⊕ E

∗
t0

)
where E∗t0 = Es∗t0 ∩ E

u∗
t0 and W+

t0
(resp. W−t0 ) is the orthogonal complement of Est0 ∩ E

u
t0 =

span{f(p(t0))} in Est0 (resp. Eut0). Moreover the condition ξ∞(λ) = p−λ (t0) − p+
λ (t0) ∈ E∗t0 will

be required. Under these assumptions there will exist two unique solutions p±λ (·) for each λ. The
jump ξ∞(λ) = p−λ (t0)− p+

λ (t0) measures the displacement between the stable and unstable invari-
ant manifolds on the section Σt0 in the direction of the subspace E∗t0 = [Est0 + Eut0 ]⊥.
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p−λ (t)

p+
λ (t)γ

p+
λ (t0)

p−

ξ∞(λ)

p−λ (t0)

p(t0) + E∗t0

p+

p(t0) p(t0) + Et0

Fig. B: Heteroclinic connection in R3. In this case, Est0 = Eut0 = Et0 (unidimensional), Es∗t0 = Eu∗t0 =

E∗t0 (bidimensional) and Σt0 = p(t0) + E∗t0 . For simplicity we have assumed that f(p±, λ) = 0 for
all λ.

The proof of the result below can be found in [San93, Lemma 3.3] and [Kno04, Lemma 2.1.2].
Namely, in [Kno04] only the first item is proved and, moreover, the proof is developed for the
degenerate case although the non-degenerate one follows in a similar manner. The second item
is proved in [San93] for the non-degenerate case. In [Bar09] is given a completed simpler slightly
different proof of this result:

Lemma A.11. There exists δ > 0 such that for all λ ∈ Rk, with ‖λ‖ < δ,

i) There exists a unique pair of solutions p+
λ (t) and p−λ (t) of (A.1) parametrizing orbits on

W s(p+(λ)) and W u(p−(λ)), respectively, such that p±λ (t0) ∈ Σt0 and

ξ∞(λ) = p−λ (t0)− p+
λ (t0) ∈ E∗t0 .

Writing the solutions as p±λ (t) = p(t) + z±λ (t), then z±λ (·) are, respectively, forward and back-
ward bounded solutions of the equation (A.2). They depend regularly on λ and the functions
z±0 are identically zero.

ii) For ε > 0 small enough, there exists a (homo)heteroclinic solution pλ(t) such that ‖pλ(t0)−
p(t0)‖ < ε if and only if ξ∞(λ) = 0, that is, the components ξ∞i (λ) of ξ∞(λ) in the basis
{wi : i = 1 . . . d} of E∗t0 satisfy

ξ∞i (λ) ≡
∫ t0

−∞
< wi(s), b(λ, s, z

−
λ (s)) > ds

+

∫ ∞
t0

< wi(s), b(λ, s, z
+
λ (s)) > ds = 0.

According with the above statement the persistence of (homo)heteroclinic orbits follows from
the analysis of the bifurcation equation ξ∞(λ) = 0. The existence of non zero parameter values
λ ∈ Rk such that ξ∞(λ) = 0 follows from the Implicit Function Theorem when Dλξ

∞(0) has rank
d < k. Thus, the following result follows:
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Theorem A.12. Let ξ∞(λ) = 0, with λ ∈ Rk, be the bifurcation equation of the differential
equation (A.1). If k > d and rankDλξ

∞(0) = d, then (A.1) has a (homo)heteroclinic orbit for
each parameter value λ on a regular manifold of dimension k − d with tangent subspace at λ = 0

given by the solutions of the system

k∑
j=1

ξ∞ij λj = 0 i = 1, . . . , d

where
ξ∞ij ≡

∂ξ∞i
∂λj

(0) =

∫ ∞
−∞

< wi(s), Dλjg(0, p(s)) > ds

for i = 1, . . . , d and j = 1, . . . , k.

Note that, when k ≤ d, λ = 0 is the unique value of λ ∈ Rk for which there exists a
(homo)heteroclinic orbit

γλ = {pλ(t) : p′λ(t) = f(pλ(t)) + g(λ, pλ(t)) t ∈ R}

such that supt∈R ‖pλ(t) − p(t)‖ is small enough. If k > d the homoclinic connection persists for
parameter values on a manifold of codimension d where

d = n− dimW s(p+)− dimW u(p−) + 1.

In such a case we say that there is (homo)heteroclinic bifurcation of a non-degenerate orbit at
λ = 0 which is of codimension d.
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