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Introduccion

Los resultados que contiene esta memoria son una contribuciéon al estudio de la dindmica no
uniformemente hiperbélica, la cual constituye el escenario donde se plantean muchas cuestiones
de actualidad sobre complejidad dindmica. En contraposicion, la dindmica uniformemente hiper-
bélica comenzb a ser bien entendida durante los anos sesenta a partir de los primeros traba-
jos de Anosov | | v Smale | |. Tres décadas antes, en un elaborado trabajo | ],
Birkhoff probd que en general, cerca de los puntos homoclinicos transversales, introducidos por
Poincaré | |, existia un intrincado conjunto de érbitas periddicas, la mayoria con un peri-
odo muy alto. A fin de iluminar este resultado de Birkhoff y otros resultados posteriores sobre
la existencia de infinidad de orbitas periodicas en la ecuacion de Van der Pol | , ],
Smale colocod en un entorno de un punto homoclinico transversal su ingenio geométrico: la apli-
cacion herradura. Esta aplicacion, asi como los ejemplos propuestos por Anosov sobre el toro, son
difeomorfismos cuyo conjunto no errante €2 es hiperbélico y coincide con la clausura de los puntos
periddicos. Difeomorfismos con estas propiedades fueron denominados Axioma A o difeomorfismos
uniformemente hiperbdlicos, y se planted el estudio de estos difeomorfismos como un subconjunto
del espacio Diff" (M) de los difeomorfismos de clase C” sobre una variedad compacta M.

Un resultado fundamental para el estudio de los difeomorfismos Axioma A en Diff" (M) fue
el teorema de descomposicion espectral dado por Smale | |, segtn el cual el conjunto no
errante {2 se descompone en una unién disjunta y finita de subconjuntos A; llamados conjuntos
basicos. Cada A; es un conjunto compacto, aislado, invariante y transitivo. Dos puntos periodicos
en el mismo conjunto béasico A; tienen variedades estables con la misma dimension (indice de
estabilidad) y por consiguiente variedades inestables de la misma dimension (indice de Morse).
Un elocuente y relevante ejemplo de conjunto béasico es el conjunto invariante {2 de una aplicaciéon
herradura. La dinamica de la restriccién de la aplicacion herradura sobre este conjunto se sigue
de su conjugacién con el shift de Bernoulli.

Las aplicaciones herradura asociadas a un punto homoclinico transversal constituyen un hito
importante en el estudio de los sistemas dinamicos. Su conjunto invariante {2 aporta un ejemplo
de dindmica casi-aleatoria, consecuencia del caracter expansivo de sus érbitas que implica una alta
sensibilidad de la dinamica a las condiciones iniciales. Sin embargo, {2 no es un atractor por no tener
un recinto de atraccion con interior no vacio (o medida positiva) y, por consiguiente, su dinamica
interna no es susceptible de ser observable como la dinamica asintética de un difeomorfismo. Esta
deficiencia fue salvada por Smale quien, por analogia con la herradura, construyé el solenoide
como un primer ejemplo de atractor extrano (atractor con un orbita densa expansiva) que era

hiperboélico. Este ejemplo de atractor no peridédico con una dindmica interna impredecible, por su
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sensibilidad exponencial a las variaciones de las condiciones iniciales, inspir6 el celebre articulo de

Ruelle y Takens | | sobre la naturaleza de la turbulencia.

Una vez visto que los difeomorfismos uniformemente hiperbolicos aportaban nuevas inter-
pretaciones dindmicas, se plantearon en el contexto de la teoria de la bifurcaciéon dos impor-
tantes cuestiones: la relacion de la hiperbolicidad uniforme con la estabilidad estructural y la
densidad de los difeomorfismos uniformemente hiperbolicos en el espacio Diff" (M), dotado de

la C"-topologia. Después de algunos resultados parciales de Robbin | |, de Melo | ]
y Robinson | , |, Mané | | prob6 que, tal y como habian conjeturado Palis y
Smale | ], un difeomorfismo f € Diff! (M) es estructuralmente estable si y solo si es uniforme-

mente hiperbélico y verifica la condicion fuerte de transversalidad: todas las variedades invariantes
de los puntos del conjunto no errante €2 tienen que intersecarse transversalmente. En relacién con
la densidad, aunque la hiperbolicidad uniforme se creyé en principio abarcando un subconjunto
residual, o al menos denso, de Diff" (M), pronto se constatd que esto no era cierto. Hay dos con-
figuraciones importantes que fuerzan la persistencia de la no hiperbolicidad uniforme: los ciclos
heterodimensionales y ciertas tangencias homoclinicas (ver ambos conceptos en Definicion 1.1). Los
primeros fueron usados por Abraham y Smale | | v Simon | | para construir ejemplos de
abiertos de difeomorfismos en Diff 1(M ), con dim M > 3, que no son uniformemente hiperbolicos.
Las tangencias homoclinicas, cuando se producen entre las variedades invariantes de un punto
periddico que pertenece a un conjunto bésico no trivial, son el fundamento del bien conocido
fenémeno de Newhouse, | , , | para C2-difeomorfismos sobre superficies. Para
pequenas perturbaciones del difeomorfismo ambas configuraciones fuerzan la persistencia de las
tangencias homoclinicas, que implican la presencia de puntos no errantes con diferentes indices
de estabilidad y, en definitiva, la persistencia de la no hiperbolicidad uniforme. Por consiguiente,
el conjunto Diff" (M) es la union disjunta de dos conjuntos, los uniformemente hiperbélicos y su

complementario, que contienen a su vez conjuntos abiertos.

El conjunto de los uniformemente hiperboélicos contiene al abierto de los estructuralmente
estables y su dindmica es bastante bien entendida. Por contraposiciéon, los difeomorfismos no
uniformemente hiperbélicos, que por ser persistentes son también abundantes, no son estruc-
turalmente estables. Sus dindmicas tienen que comportar infinidad de transiciones y, por consi-
guiente, perteneceran a su ambito las dindmicas que se manifiestan mas complicadas. Este es el
caso de algunos de los atractores mas populares. A partir de su estudio numérico, el atractor de
Lorenz | | parece ser extrano, persistente pero no estructuralmente estable, mientras que la
persistencia parece fallar en el caso del atractor de Hénon | |. Puesto que los atractores hiper-
bélicos son persistentes y estructuralmente estables, tanto el atractor de Lorenz como el de Hénon
no pueden ser atractores hiperbolicos. Pero, jexisten realmente atractores extranios no hiperboéli-
cos? La primera prueba analitica de la existencia de tales atractores fue dada por Benedicks y
Carleson | ], quienes probaron que en la familia de Hénon H,p(z,y) = (1 — az? + y, bx) exis-
tian atractores extranos para un conjunto de valores de los parametros suficientemente proximos
aa=2yb=0y con medida de Lebesgue positiva (persistencia en el sentido de la medida).
Las ideas y las intrincadas técnicas en | | fueron utilizadas por Mora y Viana | | para
probar que, tal y como habia conjeturado Palis, familias genéricas uniparamétricas de difeomor-
fismos sobre una superficie desplegando una tangencia homoclinica tienen atractores extranos con

probabilidad positiva en el espacio de parametros. La existencia de tales atractores en familias
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de campos vectoriales tridimensionales fue probada en | | a partir de la seccion transversal a
una 6rbita homoclinica de Shil’nikov | |. La prueba de la existencia de atractores extranos no
hiperbolicos parte en | | de considerar que la familia de Hénon es un despliegue de la familia
limite hq(7) = 1 —az? que se obtiene al tomar b = 0. Esta familia cuadratica ha sido previamente
bien estudiada en | | v su dindmica expansiva se traslada a la variedad inestable del punto
de silla de H,p(z,y) = (1 — az? + y,bx) cuando b es suficientemente pequefio. En | | esta
estrategia se aplica después de hacer una adecuada renormalizaciéon de la aplicacién retorno a un
entorno del punto homoclinico. La familia resultante continua siendo un buen despliegue de la
familia cuadratica (una familia tipo Hénon) y las ideas y técnicas en | | se pueden adaptar
a este caso. En | | se prueba que la familia que se obtiene después de una adecuada renor-
malizacién es un buen despliegue de una familia limite, que en este caso es la familia unimodal

fa(z) = Atloga + = + A" tlogcosz, y los argumentos en | | contintian siendo validos.

El objetivo principal en el estudio de los sistemas dinamicos es describir el comportamiento
asintotico de las trayectorias de la mayoria de los sistemas. En el fragor del estudio de los sis-
temas hiperbdlicos, Smale conjeturdé que el conjunto limite de las trayectorias de un sistema
dindmico genérico deberia presentar una dindmica interna hiperbélica: incremento y disminucion
exponencial de las distancias en dimensiones complementarias. Sin embargo, los atractores no
hiperbélicos mencionados anteriormente aportaron contraejemplos y plantearon la necesidad de
nuevas propuestas. Desde entonces y hasta el presente, la investigaciéon de la dindmica no uni-
formemente hiperbolica fue principalmente programada por Palis | , |, quien propuso
un programa de trabajo compuesto de una serie de conjeturas interrelacionadas y encaminadas a
describir el comportamiento asintético de familias genéricas de sistemas dindmicos dependiendo
de un numero finito de parametros. Concretamente, conjeturd que, genéricamente, sélo existe
un numero finito de atractores transitivos donde se pueden acumular casi todas las trayectorias;
ademés, estos atractores deberén ser estocasticamente estables y soportar una medida fisica. A
diferencia del enfoque topoldgico dado en los anos sesenta, el planteamiento ahora es probabilistico
y expresado en términos de la medida de Lebesgue, tanto en el espacio de pardmetros como en el
espacio de fases. A partir del teorema de descomposicién espectral y de la teoria de Sinai-Ruelle-
Bowen | , , |, se prueba que para los difeomorfismos uniformemente hiperboélicos
de clase C? que no tienen ciclos existe a lo sumo un ntimero finito de atractores, que son a su vez
estocasticamente estables y soportan una medida fisica. Entonces, un paso més alla seré buscar
alguna forma robusta de hiperbolicidad (parcial o descomposicién dominada) que esté presente
en ausencia de ciclos y donde se pueda probar la conjetura anterior. Esto plantea una dicotomia
entre algin conjunto de difeomorfismos hiperbdlicos y aquellos que poseen algin tipo de ciclo.
Concretamente, Palis conjeturé que cualquier sistema dinamico puede ser C" aproximado por uno
hiperbélico que no tenga ciclos o por uno que presenta alguna tangencia homoclinica o algin ciclo
heterodimensional. Una primera respuesta a esta tltima conjetura fue dada en la topologia C! por
Pujals y Sambarino en | | para difeomorfismos en superficies. Para dimension superior, Cro-
visier y Pujals | | probaron que todo difeomorfismo f € Diff!(M) puede ser C'! aproximado
por uno que tiene bien una tangencia homoclina o un ciclo heterodimensional o bien es esenciale-
mente hiperbdlico, es decir, tiene un ntmero finito de atractores hiperbélicos transitivos tal que
la unién de sus recintos de atraccién es un abierto y denso en el espacio de fases. En definitiva,
las tangencias homoclinica y ciclos heterodimensionales constituyen una completa obstrucion a la

hiperbolicidad.
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En relacién con las tangencias homoclinicas, y ya en el ambito de los difeomorfismos de clase
C? sobre superficies, se han dado resultados notables. Como se ha mencionado més arriba, en fa-
milias genéricas desplegando una tangencia homoclinica entre las variedades de un punto periédico
hiperbdlico aislado aparecen atractores extrafios no hiperbolicos y persistentes en el sentido de la
medida. Cuando el punto peridédico pertenece a un conjunto basico no trivial, la persistencia de las
tangencias homoclinicas para un conjunto abierto U de difeomorfismos se detectada originalmente

en | ]. En un conjunto residual en U, de medida nula, aparecen simultaneamente infinitos
atractores periodicos | |, e incluso infinitos atractores extranos de tipo Hénoén | |. Estos
resultados se pueden generalizar a situaciones de mayor dimension | , , |. El in-

grediente geométrico que subyace en la persistencia de las tangencias homoclinicas es la aplicacién
herradura. Concretamente la espesura de las foliaciones estable e inestable de un conjunto basico
A, que se prolongan en un entorno del punto homoclinico definiendo, respectivamente, dos con-
juntos de Cantor K y K, sobre un determinado segmento. La prevalencia de la hiperbolicidad o
de la no hiperbolicidad depende de si la dimension de Hausdorff HD(A) = HD(K) + HD(K,,) del

conjunto basico A es menor o mayor que uno | , |.

En relacion con los ciclos heterodimensionales, un resultado temprano de Diaz | | implica
la existencia de un conjunto abierto no vacio de familias C*° de difeomorfismos (f;)¢e[—1,1) desple-
gando genéricamente un ciclo heterodimensional de fy y tal que para todo ¢t > 0 suficientemente
pequeno el correspondiente difeomorfismo f; no es uniformemente hiperboélico: las clases homo-
clincias de dos puntos hiperbolicos de diferentes indices de estabilidad coinciden. La prueba de
este resultado se puede ilustrar con la elecciéon de un difeomorfismo en R? que tenga un ciclo het-
erodimensional entre dos puntos fijos P y . Con hipétesis adicionales de hiperbolicidad parcial,
linealizacién y estructura producto se comprende que el comportamiento de este difeomorfismo en
un entorno del ciclo se sigue de la dindmica de un sistema iterado de dos funciones reales (ver una
precisa definicion de sistema iterado de funciones, en la seccion §3.1). Esta reduccion indica que
la persistencia de la hiperbolicidad no uniforme asociada a los ciclos heterodimensionales es de
naturaleza diferente a la que se sigue de las bifurcaciones homoclinicas. Si en el fenémeno de New-
house (persistencia de tangencias homoclinicas) el ingrediente geométrico esencial era la aplicacion
herradura y la dimension de Hausdorff de su conjunto bésico, jqué elemento geométrico subyace
en la persistencia de la hiperbolicidad no uniforme al perturbar un ciclo heterodimensional? La
respuesta fue dada por Bonatti y Diaz al introducir en | | el concepto de mezclador (blender
en inglés). A modo preliminar, un mezclador puede entenderse como un conjunto hiperbélico T
suficientemente grueso tal que la clausura de una variedad invariante de dimensién « de un punto
silla en I" contenga una variedad invariante de dimensiéon u + 1. Una primera definicién precisa de
mezclador enfatizando sus aspectos geométricos puede ser encontrada en | |:

Definicién (Mezcladores). Sea f un C* difeomorfismo de una variedad compacta M y T C M un
congunto hiperbolico y transitivo de f con una descomposicion dominada de la forma E**®E“OE"Y,
donde su fibrado estable E° = E*° @ E°® tiene dimension tgual a s > 2 y E°° es uno dimensional.

El conjunto T' es un cs-mezclador si tiene una region de superposicion C-robusta B:

Existen un C'-entorno V of f y un conjunto abierto B de discos encajados en M de dimension
s — 1 tales que para todo difeomorfismos g € V, todo disco D® € B interseca la variedad local
inestable W}t (I'g) de la continuacion 'y de T para g.

Un cu-mezclador para f es definido como un cs-mezclador para f=1.
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Los mezcladores son el mecanismo subyacente que conduce a la generacién de ciclos het-
erodimensionales robustos | | v a tangencias homoclinicas robustas en la topologia C! para
variedades de dimension mayor o igual que tres | |. Los mezcladores fueron también usados
en otras aplicaciones tales como la construcciéon de difeomorfismos no hiperbdlicos robustamente
transitivos | |, la discontinuidad de la dimensiéon de conjuntos hiperbolicos | | v la
obtencion de resultados sobre ergodicidad estable | |.

Un mezclador T' para un C' difeomorfismo f no es mas que un conjunto hiperbélico, pero su
existencia presagia la presencia persistente de no hiperbolicidad uniforme. A modo de ejemplo,
esbozaremos como estos conjuntos permiten mezclar puntos de silla de diferentes indices. Supon-
gamos que estamos en dimensién tres, I' es un cs-mezclador con indice de estabilidad s = 2 y
P eTl, @Q ¢ 7T son dos puntos peridédicos de f, el primero con variedad inestable densa en I’
y el segundo con indice de estabilidad s — 1 = 1. Asumimos que la variedad estable W*(Q) de
@ contiene un disco D? en la regién de superposicion B del mezclador I'. A partir del Lema de
Inclinacién, la sucesion de preiterados de cualquier disco L de dimensiéon s — 1 = 1 transversal a
W*(Q) convergen a W#*(Q). Por lo tanto, para n > 0 suficientemente grande f~"(L) contiene un
disco en B. En vista de que I" es un cs-mezclador, W} (I') interseca a f~"(L) y asi por la densidad

la variedad inestable de P se sigue que

W*(Q) C Wu(P).

Esto es, la clausura de la variedad inestable de P (de dimensién uno) contiene a la variedad
inestable (bidimensional) de @. Tenemos por lo tanto que en cierto sentido (digamos topoldgico)
la dimension de la variedad inestable de P es igual a la variedad inestable de @ (esto es dos).
Consecuentemente aumentamos en una unidad la dimension de la variedad inestable de P, asi
para efectos practicos, tendremos que el punto P tiene variedades invariantes de dimensién dos.

La construccién anterior nos permite ver que todos los puntos en la interseccién transversal
v =W?*(P) h W"(Q) (genéricamente union de curvas) pertenecen tanto a la clase homoclinica de
P como a la de Q. Por lo tanto, v esta contenida en el conjunto no errante de f. Obviamente los
puntos de v no admiten un descomposiciéon hiperbélica del fibrado tangente y se sigue que f no
puede ser uniformente hiperbolico. La persistencia del mezclador hace estos argumentos robustos
bajo C' perturbaciones y de ahi que se obtiene un abierto de difeomorfismos no uniformente
hiperbélicos.

Notese que el concepto de mezclador esta formulado en el contexto més general de los C*
difeomorfismos. Ya en este contexto se prueba en | ] que si f es un C! difeomorfismo con
un ciclo heterodimensional asociado a dos puntos de silla Py @ con indices s y s + 1 (es decir,
de coindice uno) y C! lejos de tangencias homoclinicas, entonces f pertenece a la clausura de un
abierto U de difeomorfismos no uniformemente hiperboélicos. Posteriormente, en | | se probo
que cualquier ciclo heterodimensional de coindice uno puede ser C'' aproximado por difeomorfismos
teniendo un ciclo heterodimensional C'-robusto. Uno de los pasos para probar este resultado fue
mostrar que aparecen de forma natural mezcladores tipo herraduras en el despliegue de ciclos

heterodimensionales de coindice uno.
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La representaciéon geométrica mas elocuente de un mezclador y su relaciéon con la aplicacion
herradura se tiene al construir los llamados mezcladores herradura | |. Esta construccion
. . . . 1
involucra un difeomorfismo f definido en un cubo de referencia C' = [—1,1]""", con n > 2, como

un producto cruzado de la forma
f:OCR"XR=R" xR, f(z,y) = (F(z),¢(z,y)),
donde F : R"™ — R™ tiene una herradura de Smale A C [—1,1]" y las aplicaciones sobre las fibras
¢(z,-) : [=L1] = [=1,1]

son contracciones de clase C!. Es evidente que si todas las aplicaciones ¢(z,-) son una misma
contraccion ¢, entonces la aplicacion f|c es en esencia una aplicacion herradura con un con-
junto invariante maximal I' = A x {yp} donde yy € [—1,1] es el punto fijo de la contraccion ¢.
Supongamos ahora que

HyUHy,=F Y[-1,1]")n[-1,1]"

es la union de las dos banda horizontales en la definicién de una herradura y que ¢(z,-) = ¢;, segin
x € H; con i = 1,2, son dos contracciones diferentes, con puntos fijos y; < y2. Los difeomorfismos
definidos de esta forma, se les conoce con el nombre de productos cruzados localmente constantes.
Entonces, en este caso, I' C A X [y1, y2]| es de nuevo un conjunto hiperbélico transitivo tal que f|p
es topologicamente conjugado a F'|. La proyeccion de I' sobre el intervalo [y, y2] viene dada por
la dindmica del sistema iterado de funciones generado por las contracciones ¢, ¢2. Si existe un
abierto B C (y1,y2) tal que
B C ¢1(B) U $2(B)

se prueba que esta proyeccion contiene a B. Es facil comprobar que este abierto B sigue estando
contenido en la proyeccion sobre la recta real de la continuacion I'y de I' para todo difeomorfismo
g producto cruzado localmente contante y C'' proximo de f. Dicho contenido, es suficiente para
mostrar que para todo (z,y) € (HyUHy) x B, la variedad inestable local W} (I'y) de Iy interseca
a la variedad estable fuerte local de (x,y) para g. Notando que dichas variedades estables fuertes
forman abierto de discos encajados en la variedad, se sigue que I' satisface la definicién de mez-
clador para todos los difeomorfismos productos cruzados localmente constantes C' proximos a f.
Esta persistencia es el principal escollo a la hora de probar la existencia de un mezclador porque
cualquier difeomorfismo ¢ suficientemente C' préximo a f no es necesariamente un producto
cruzado y mucho menos, un producto cruzado localmente constante. Esta dificultad se resolvera
siguiendo los resultados de hiperbolicidad normal desarrollados en | |: bajo determinadas
hipotesis sobre la descomposicién hiperbolica de f se concluye que g es topolégicamente conju-
gado a un producto cruzado. Por consiguiente, a la hora de probar la persistencia de la condicién
de interseccién sera suficiente considerar C'! perturbaciones de f en la categoria de los difeomor-
fismos productos cruzados. Por otra parte, puesto que F'|5 es conjugado a un shift de Bernoulli
T : Y9 — Yo de dos simbolos, los mezcladores-herradura pueden ser estudiados desde el punto de

vista simbélico, considerando productos cruzados de la forma
D Z2 xR — 22 X Rv @(f,l‘) = (T(S)a ¢§(x))7

donde cada ¢¢ : R — R es una contraccion de clase C L
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El concepto de cs-mezclador esta asociado a C'! difeomorfismos que tienen un conjunto parcial-
mente hiperboélico con un descomposiciéon dominada E*® @ E° @ E¥, v ha sido siempre definido y
manejado en el caso en el que la direcciéon central £ es unidimensional. Esto supone un obstéaculo
en contextos donde se planteen variedades centrales de dimensién ¢ > 2. Por lo tanto, una cuestién
natural es manejar y construir mezcladores cuya direcciéon central no sea necesariamente unidi-
mensional. Siguiendo la propuesta de Nassiri y Pujals | | un camino para ello es considerar la
dindmica simboélica en el contexto de los productos cruzados simbdlicos

P: Yy xR = Ty xRE, (&, 2) = (7(£), ¢e (),

donde ¥ = {1,.. .,k}Z, c > 1,y cada ¢¢ : R— R es de nuevo una contraccion de clase Cct.
Un mezclador en este contexto serd denominado mezclador herradura simbdlico o simplemente
mezclador simbolico. El primer objetivo de nuestro trabajo es dar condiciones de existencia de
mezclador simboélico en este contexto méas general. Estas condiciones se aplicardn para estudiar
la génesis de mezcladores en perturbaciones de ®(§,x) = (7(§),x) y explicar a partir de ello la
presencia de mezcladores suspendido para campos de vectores en R* arbitrariamente proximos a
un campo Hamiltoniano Xy con una érbita homoclinica bifocal no degenerada, donde un difeo-
morfismo tridimensional se puede definir como la aplicacién retorno sobre una seccién transversal
a la orbita homoclinica. Por una drbita homoclinica bifocal de un campo de vectores en R?* se
entiende una conexién homoclinica a un punto de equilibrio foco-foco, esto es, que tiene autoval-
ores —pj * iwq, pa £ iwy. Puesto que en todo despliegue genérico de una singularidad nilpotente
de codimension cuatro en R* aparecen érbitas homoclinicas bifocales | |, desplegadas como
continuacion de similares conexiones homoclinica en familias limite de campos de vectores Hamil-
tonianos, finalmente mostramos como en estos despliegue de estas singularidades singularidades
podrian aparecer mezcladores.

La exposicién de esta memoria de tesis se organiza en cuatro capitulos autocontenidos. A
continuaciéon presentamos algunos de los principales resultados que se recogen en cada uno de
ellos:

I — Ciclos robustos y mezcladores — En el primer capitulo de la tesis se introduce con detalle
alguno conceptos preliminares, conjeturas y ejemplos que ya han sido invocados a lo largo de esta
introduccién. El objetivo es llegar a introducir el concepto de mezclador y mezclador-herradura
presente en la literatura previa de una forma autocontenida.

IT — Mezcladores simbolicos — El segundo capitulo de la memoria de tesis se dedica a estu-
diar la existencia de mezcladores simbélicos. Los principales resultados de este capitulo son en
colaboracion con Yuri Ki and Artem Raibekas y recogidos en la prepublicacion | |.

Este capitulo se desarrollara en el &mbito de los productos cruzados simbdlicos
D : Ek XM—>EI€ XM: q)(f,I') = (T(f),(ﬁg((lﬁ))

donde M es una variedad de Riemann compacta de dimension ¢ > 1y ¢¢ : M — M son C" difeo-

morfismos, r > 0, los cuales dependen continuamente con respecto £. El primer factor del producto
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Y X M es llamado base y al segundo es la fibra. Para destacar el papel de los difeomorfismos de
fibras ¢¢ usamos la notacion ® = 7 x ¢¢. Al conjunto de estos productos cruzados simbolicos se
denotara por S,(M). Cuando ¢¢ solo depende de la coordenada &y de la bisucesion § = (&;)icz se
dice que ® es un producto cruzado de un solo paso (o brevemente en inglés one-step) y en tal caso
se escribe ® = 7 X (¢1,...,¢x) donde ¢¢ = ¢; si {o = i. El conjunto de los productos cruzados de
un solo paso se denota por Qg (M).

Trabajar con productos cruzados simbolicos Si(M) es una buena propuesta para estudiar la
existencia de mezcladores en difeomorfismos productos cruzados de la forma

fiNXM—=NxM,  f(x,y)=(F(z),9(z,y)),

cuando F' es un difeomorfismo de una variedad N con una herradura A C N. Como ya anticipamos
mas arriba, las C'!' perturbaciones de estos difeomorfismos no contintian siendo necesariamente
productos cruzados. A fin de poder garantizar que las perturbaciones de f son conjugadas con
productos cruzados simbolicos se han de imponer a f condiciones de hiperbolicidad parcial y
de dominacién que son, y esto es muy importante, condiciones abiertas sobre f. Entonces, de
acuerdo con los recientes trabajos | , , |, ver Proposicién 2.1, existe £ > 0 y una
constante a € (0, 1] que s6lo depende del tasa de contraccion v € (0,1) de la herradura A tal
que cualquier pequefia e-perturbacién g de f en la topologia C'! tiene un conjunto A, invariante
localmente maximal isomorfo a A x M, sobre el cual g|a, es topologicamente conjugado a un
producto cruzado ® = 7 X ¢¢ perteneciente al subconjunto PHS ia(M ) de Si(M) de los productos
cruzados simbolicos localmente Holder continuos y parcialmente hiperbdlicos. Este subconjunto se
define imponiendo a ® = 7 x ¢¢ condiciones de regularidad, lipschitzianidad y dominacion:

® ¢¢: M — M son difeomorfismos de clase cl,
e ¢¢ dependen localmente a-Hélder continuamente de £ en M: existe C > 0 tal que
deo (g, dg") < Cds, (€,€)*,  para todo &,& € £ con & = &, (1)
El espacio de simbolos ¥y = {1,..., k}Z se dota de la métrica
ds,(6€) =0, (=min{i€Z" &£ &oréi #E ).
Se denota por Cg la constante no negativa més pequena que verifica (1).
® ¢¢ son biLipschitz y parcialmente dominadas: Existen constantes positivas v y 4 tales que
— s-dominacion y u-dominacion (hiperbolicidad parcial):
<y <l<y <y
— (7,4~ 1)-Lipschitziadad en M:
vl = 2| < [loe(@) = ge(@)]| <37 [la =],

para cualesquiera £ € 3y y z, 2’ € M. Con ||z — 2'|| se denota la distancia en M.
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Un mezclador tipo herradura es un conjunto hiperbdlico localmente maximal y por lo tanto
estara vinculado a un subconjunto D abierto y acotado de M. Esto es, se tratara del conjunto
localmente maximal para ® en ¥; x D. De esta forma, podemos imponer condiciones locales
adicionales sobre los productos cruzados simbolicos ® = 7 X ¢¢ con los que estamos trabajando.
Por ejemplo, podemos asumir que la restriccion de ¢¢ al conjunto D es una aplicaciéon contractiva
o expansiva. Concretamente, trabajaremos con los siguientes conjuntos de productos cruzados
simbélicos:

Definicion (Conjuntos de productos cruzados simbolicos). Sea D C M un conjunto abierto y
acotado y consideremos constantes 0 < A < f y 0 < a < 1. Se define l:i:\Xﬁ(D)’ r >0, como el
conjunto de los productos cruzados simbolicos ® = T x ¢¢ en Sp(M) tales que

o ¢¢ es una aplicacion C"-(\, B)-Lipschitz en D para todo & en Xy, y

e ¢¢ depende localmente a-Holder continuamente en D con respecto de .

Adicionalmente si 3 < 1 entonces se impone la condicion ¢¢(D) C D para todo § € y, y, en el
T,

caso 1 < X\ se impone D C ¢¢(D) para todo & € y,. Se dotard al conjunto ra (D) de la distancia
ds(®,¥) = Eseuzpk dor (e, ve) +1Co — Cy|,  con P=7x ¢ y ¥=1K1.
Por conveniencia, Sy 5(D) y Si ) 5(D) denotard S,g,’gﬁ(D) Yy Slg:iﬁ(D)’ respectivamente.
Bajo la hipotesis de aplicaciones de fibras contractivas, el siguiente resultado proporciona una
descripcion del maximal invariante de ® en ¥j, x D y muestra la dependencia respecto a ® del

conjunto

Ko < 2 (Per(®))N D

donde Per(®) es el conjunto de los puntos periodicos de & y & : ¥ x M — M es la proyeccion
estandar en M. Aunque este teorema es un caso particular de los resultados de | |, sera muy
atil disponer de una prueba completa y detallada en el contexto de productos cruzados simbélicos.
Se denota por K(D) la coleccién de los subconjuntos compactos de D dotada de la métrica de
Hausdorff y

W€ ) @) = {(Cy) € Ty x M ¢ lim d(@ (), 8" (6,2) = 0)
es el conjunto inestable de (&, z) para ®.

Teorema A (Geometria del maximal invariante). Consideremos ® € Sgy 5(D) con 8 < 1y

a > 0. Entonces la restriccion de ® a el conjunto
Ty =[] 2"(Zk x D) = () 2"(Zk x D)
neZ neN

es conjugado con el Bernoulli shift 7 de k simbolos. Mds ain, W*((¢,x); ®) C T'e para todo
(&,7) € Tg y ewiste una tinica funcion continua ge : X — D tal que para todo punto periddico
(9,p) de ® en Xg x D se tiene que,

Le = W ((0,p); @) = {(&,90()) : £ € B} and P (T's) = Ko € K(D).

Finalmente, el mapa £ : Sgy 5(D) — K(D) dado por £(®) = K¢ es continuo.
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Con objeto de introducir un mezclador simbélico, primeramente definiremos una familia de

discos casi horizontales los cuales proporcionan la regién de superposicién del mezclador.

Definiciéon (Discos casi horizontales). Fijado o > 0 y dado un subconjunto abierto B C D, se
dice que D?® es un disco d-horizontal en Xy X B si existen ( € X, z € B, alguna constante C' > 0
y una funcion (o, C)-Hélder continua h : Wi (¢, 7) = B tal que

D* =A{(& () : £ € Wige(G )}, [z = h(E)]l < 6 para todo & € Wii,.(C,7) y Cv* < 6.

def

Aqui W (¢ 1) = {€ € By, 1 & = ¢ para todo i > 0} denota el conjunto estable local de ¢ para T.

La motivacién para considerar como regiéon de superposiciéon en la definicién de mezclador un
conjunto de discos encajados en la variedad es que las variedades locales estables fuertes deben
formar parte de este conjunto. Obsérvese que para cualquier § > 0, el conjunto W} ({;7) x {z}
con ( € ¥y z € B, es un disco d-horizontal en ¥ x B y en el caso de un producto cruzado de
un solo paso coincide con el conjunto estable fuerte local. Ya que nuestra intencién es estudiar
Holder perturbaciones de un one-step (o de un producto cruzado préximo a uno de un solo paso),
es suficiente considera como regién de superposiciéon el conjunto de los discos casi horizontales.

Desde el Teorema A se sigue que W*(I's) = I'g para todo ® € S, 5(D) con 8 < 1, donde

WTe) = {(&,x) € X x M = lim d(® (&, x),Tp) = 0}

n—oo

es el conjunto inestable del conjunto maximal invariante I'g. Por lo tanto, la definicion de mezclador
en el contexto de mezcladores simbdlicos puede ser escrita del siguiente modo:

Definicién (Mezcladores simbolicos). Sea ® € Si') 5(D) cona >0y B <1.

Se dice que el conjunto invariante mazimal Ty de ® en X, x D es un cs-mezclador herradura
simbolico si existe § > 0, un conjunto no vacio B C D y un entorno V de ® en SI?AB(D) tal que
para todo W € V y para cualquier disco d-horizontal D® en X X B se verifica que

Iy ND*#0, dondeT'y esla continuacion de I'e para V.

Al conjunto abierto B se le denomina regiéon de superposicién del mezclador herradura simbolico.

Para definir cu-mezclador herradura simboélico, primeramente necesitamos introducir productos
cruzados simbolicos inversos. Dado ® = 7 X ¢¢ € S B(D)’ se llama producto cruzado simbdlico
inverso asociado con ® al producto cruzado simbodlico

P =7 X ¢¢ €S} g1 y-1(D), donde ¢ : M — M dado por ¢¢(x) = ;}1(5*)(x)'
Aqui, & = (...&1;&0,&-1,...) denota la bisucesion conjugada a £ = (...&_1;&p,&1, . ..). Obsérvese
que como 7(£)* = 771(£*) entonces ®* se corresponde con los iterados de ®~!. Esta obser-
vacion nos permite definir cu-mezcladores simbolicos para un productos cruzados simbélico ® en
A\ B(D) with A > 1. Concretamente, cu-mezclador herradura simbolico para ® se define como un
cs-mezclador herradura simboélico para ®*. En lo que sigue, s6lo consideraremos cs-mezcladores

simbélicos y nos referiremos a ellos preferentemente por brevedad como mezcladores simbolicos.
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A partir del Teorema A se tiene también que W*((¢,p); ) = I's para todo punto periodico
(9,p) € ¥ x D de un producto cruzado simboélico ¢ parcialmente hiperboélico. Se probaré en la

Proposicién 2.5 que cada conjunto local estable fuerte W7*

2 ((&,x); ®) es un disco casi horizontal.

Si @ es suficientemente préoximo a un producto cruzado de un solo paso entonces este disco es una
pequena Holder perturbacion del disco horizontal W (§;7) x {z}. Por consiguiente, si ademas
I'g es un cs-mezclador simbolico para ® con regiéon de superposicion B, entonces se verifica que

Wu((0, pw); W) N Wige((§,2); ¥) # 0, para todo (§, ) € Xj, x B

y para toda perturbacion ¥ € S,?/\ﬁ(D) de @, donde (9, py) es la continuacion de (¢, p) por V.

Un conjunto de aplicaciones ¢, ..., ¢ definidas en D se dice que tienen la propiedad de
cobertura si existe un abierto B C D tal que B C ¢1(B) U ... U ¢x(B). Uno de los objetivos
es comprender como llevar propiedades robustas de un sistema iterado de funciones generado
por ¢1,...,¢r a propiedades robustas del producto cruzado ® = 7 x (¢1,...,¢r) bajo Holder
perturbaciones. El siguiente resultado describe como la propiedad de cobertura se traslada a una
propiedad robusta en el lenguaje de los productos cruzados localmente Holder.

Teorema B (Caracterizacion de la propiedad de cobertura). Sea ® = 7x (¢1, ..., ¢x) € S 5(D)
con v < A<1,a>0and B C D un conjunto abierto. Entonces,

B C ¢1(B)U...U¢r(B)
si y sdlo si existe § > 0 y un entorno V de ® en S, 5(D) tal que para todo ¥ €V
e (B)ND® £ 0  para todo disco §-horizontal D® en ¥y, x B

donde F$(B) es el conjunto maximal invariante por las iteradas positivas de ¥ en X X B.

Con la hipotesis 8 < 181 ® = 7 X (¢1,...,¢) € Sﬁ)\’ﬁ(D) se tiene que ¢;(D) C D para
it = 1,...,k. En tal caso, para cualquier pequenia perturbacion ¥ = 7 x 9 de ® también se
verifica que )¢ (D) C Dy se tiene que

I'y(B) = (| (3% x B) C (| ¥"(k x D) = Ty
n>0 ne”

Entonces, combinando el resultado anterior con la definiciéon de mezclador simbélico obtenemos
como consecuencia la existencia de mezcladores simbélicos usando la propiedad de cobertura:

Teorema C (Existencia de mezcladores simbélicos). Sea @ = 7 x (¢1,...,¢x) € Sy 5(D) con
a>0yv* <A< p<l. Supongamos que existe un conjunto abierto B C D tal que

B C ¢1(B)U...U¢r(B).

Entonces el conjunto maximal invariante 'y de ® en X x D es un cs-mezclador herradura sim-

bolico de ® cuya region de superposicion contiene a B.

Una parte de este segundo capitulo se dedica al estudio de un subconjunto de producto cruza-
dos simbdlicos S,j (M) llamados productos cruzados simbélicos unilaterales que generaliza a los

one-step. Este conjunto consiste de las aplicaciones ® = 7 x ¢¢ tales que ¢¢ = ¢g si &§ = &
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para todo ¢ > 0. En la Proposicién 2.3 se muestra que la presencia de una holonomia estable
(ver Definicion 2.3) para una aplicacion ® en Si(M) permite conjugar topolégicamente $ con
un producto cruzado simbolico unilateral ® € S,:r (M). Este hecho, nos permitiria restringir el
conjunto de perturbaciones de productos cruzados que tiene que ser considerado e introducir asi
otra definiciéon (en el contexto unilateral) del concepto de mezclador herradura simbélico (ver
Definicion 2.11). Concretamente, en la seccion §2.4 se estudian perturbaciones dentro del conjunto

Siy5(D) = S (M) N Spap(D) con f < 1.

En la Proposicién 2.5 se prueba la existencia de holonomfia estable para todo producto cruzado
simbolico s-dominado, en particular, para ® = 7X@, € PHS,lq’a(M)OSkAﬁ(D). El correspondiente

producto cruzado unilateral conjugado con ® viene dado por
P =r71Kx qgg € S:(M) donde &5 = hi(&),w(f(@) o g0 hfr(g),g

siendo 7 la proyeccion de ¥j sobre una seccion transversal ¥ a la particion estable W (&;7),
Eedry hgg, : M — M la familia de aplicaciones que define la holonomia estable. Se prueba en
Proposicion 2.6 que cada aplicacion hgg, es Holder continua con constante de Holder uniforme para
todo £ y &'; pero esto no es suficiente para concluir que ® € S,j,)\’ﬁ(D). Para garantizar que ® €
Sk 5(D) necesitamos incrementar la regularidad ® y afiadir condiciones de agrupamiento de las
fibras. Concretamente, la Proposicién 2.9 prueba que las aplicaciones hg’g, que definen la holonomia
estable son C! difeomorfismos si ® = 7 x ¢ es fibra agrupado (ver Definicion 2.7) y pertenece al
conjunto PHSi’Ha
de fibras son de clase C? dependiendo localmente Hélder diferenciablemente con respecto de la

(M) de los productos cruzados parcialmente hiperbolicos cuyos aplicaciones

base, es decir,

den (68, ¢ < Cds, (€,€)%,  para todo &€’ € B con & = &,

Esta regularidad de la holonomia implica que d = 7K (;35 pertence a S,I/\yﬁ(D). De acuerdo
con | |, ver Teorema 2.2, se sigue que estas condiciones adicionales de regularidad y agru-
pamiento de las fibras pueden ser inferidas para el producto cruzado simbdlico ¥ = 7 x )¢
conjugado a una C? perturbacién g del C? difeomorfismo f = F x id, donde F : N — N es una
aplicaciéon herradura y id : M — M es la aplicacion identidad. De estd forma se concluye que
un mezclador herradura simbélico en el contexto unilateral da lugar a un mezclador para un C?
difeomorfismo con region de superposicion C? robusta.

Los resultados anteriores sobre la existencia de mezcladores simboélicos se han dado para pro-
ductos cruzados simbolicos ® = 7 X (¢1,. .., ¢) de tipo one-step (de un solo paso). Al margen de
las hipodtesis de regularidad y dominacién impuestas para restringir el espacio de perturbaciones,
la condicion de existencia de mezclador se reduce a la propiedad de cobertura, que se formula
en términos de las contracciones ¢q, ..., ¢r. Esto permite considerar la estructura de mezclador
como algo propio de los productos cruzados de un paso que persiste bajo buenas perturbaciones.
Parafrasenado lo dicho para la prueba de la existencia de atractores extranos tipo Hénon, los
productos cruzados de un solo paso se pueden considerar las aplicaciones limite cuya dindmica
hay que comprender, del mismo modo que se necesita entender la dindmica de la familia limite
ha(z) = 1 — az? para comprender la existencia de los atractores de Hénon en | |. A partir de
esta reflexion, se introduce también en este segundo capitulo la seccién §2.3 dedicada al estudio

de los mezcladores simbélicos en el contexto de los productos cruzados de un solo paso. Es decir,
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considerando perturbaciones sélo en el conjunto Qy, » g(D). Se muestra de qué manera la dindmica
de un one-step ® = 7 X (¢1,...,dx) viene dada por la dinamica del sistema iterado de funciones
generado por ¢1,...,¢ vy como el concepto de mezclador emerge ya de las propiedades de esta

dindmica. Dicha seccién es una antesala del siguiente capitulo de la memoria.

IIT — Sistemas iterados de funciones — El tercer capitulo de la tesis se dedica al estudio de los
sistemas iterados, bien definidos sobre un intervalo o sobre la circunferencia S'. Los principales
resultados de este capitulo son en colaboracién con Artem Raibekas y se recogen en su tesis

doctoral | | v en la prepublicacion [BR].

Un sistema iterado de funciones (FS a partir de ahora) generado por la familia de difeomor-
fismos ® = {¢1,...,¢r} de un variedad M es el conjunto IFS(¢1, ..., ¢r) de todas las posibles
composiciones de los difeomorfismos ¢; € ® (incluyendo la identidad). Esto es, el semigrupo
con la operaciéon composiciéon generado por ¢1,...,¢g,id. Debido a la estrecha relacién entre
los productos cruzados de un paso y los sistemas iterados de funciones, escribiremos IFS(®) =
IFS(¢1, ..., o) entendiendo que el IFS es generado por la familia ® = {¢1,...,¢x} asociada al
one-step ® =7 X (¢1,...,¢x) definido sobre X x M.

Como ya anticipamos, la dindmica de un producto cruzado de un paso viene dada por la
dindmica de su sistema iterado de funciones asociado. Para poder hablar de dinamica de un IFS
es necesario introducir la nocion bésica de oérbita. La drbita de un punto z € M por IFS(®) es la

accién del IF'S sobre el punto x, es decir,
Orbg(z) < {h(x) : h € IFS(®)} C M.

Con esta nocion de 6rbita, algunos conceptos dinamicos conocidos para sistemas dinamicos son
traducidos al 4mbito de los sistemas iterados. A modo de ejemplo, un conjunto A C M se dice:
invariante si A = Orbg(x) para todo x € A; transitivo si existe una 6rbita densa en A, es decir,

A C Orbg(xz) para algin z € A;

y minimal si todo punto x € A tiene érbita densa en A. El w-limite de un punto x € M para el
IFS(®) es el conjunto

we(z) = {y : existe (hn)n C IFS(®) \ {id} tal que li_>m hpo---ohi(z) =y}
n—oo
mientras que el w-limite de IFS(®) es
w(IFS(®)) = cl{y € M : existe x € M tal que y € we(z)},

donde con "cl" indicamos la clausura del conjunto. Anadlogamente se define el a-limite de un punto
x € M y del sistema iterado de funciones IFS(®). Finalmente, el conjunto limite L(IFS(®)) es la
union de w-limite y a-limite del IFS(®). A partir de estas nociones, conocer la dinamica de un IFS
implica entender cuales son los posibles conjuntos invariantes para el IFS, describir los w-limite o
a-limite de sus 6rbitas mostrando, si es posible, una descomposiciéon espectral del conjunto limite

de sus orbitas como se hizo en el caso de difeomorfismos para un sistema dindmico hiperbélico.
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A fin de encontrar propiedades robustas bajo perturbaciones es importante introducir el con-
cepto de proximidad dentro del conjunto de los IFS. Esto es, IFS(¢1, ..., 1) se dice C' prozimo
de IFS(¢1, ..., ¢x) si cada uno de los difeomorfismos 1; es proximo a ¢; en la topologia C'!. Como
ejemplo de propiedad robusta por perturbaciones se puede pensar en los mezcladores simbélicos
definidos en el segundo capitulo y en su traducciéon al lenguaje de los IF'S:

Definiciéon (Region mezcladora). Un conjunto abierto B C M es un regiéon mezcladora del sis-

tema iterado de funciones IFS(®) si B es C'-robustamente minimal para IFS(®), es decir,

B C Orby(z) para todo = € B y todo IFS(¥) C* prézimo de TFS(®).

En el caso de un producto cruzado de un paso con aplicaciones de fibras contractivas, en
Proposicion 2.21 se prueba que la existencia de una regiéon mezcladora es equivalente a tener un
mezclador simbélico en el contexto de productos cruzados tipo one-step. El principal objetivo a lo
largo de este tercer capitulo es probar la existencia de regiones mezcladoras para sistema iterados
de funciones generados por difeomorfismos genéricos en la recta real M = Ry en el circulo M = S*
préoximos a la identidad id : M — M.

En la seccion §3.2 estudiamos regiones mezcladoras en la recta real. Definiremos un intervalo
con un tipo de configuraciéon para un par de funciones fy, fi (ver Figura 3.1(a)) que serda un
candidato a ser region mezcladora para IFS(fo, f1). Denotemos por Diff’, (R) el conjunto de los

C" difeomorfismos en la recta real que preservan la orientacion.

Definicién (ss-intervalos). Dado ® = {fo, f1} C Diff}(R), se dice que un intervalo [py,p1] C R
es un ss-intervalo para IFS(®) si:

e [po, 1] = fo([po,p1]) U fi([po,p1]),
® (po,p1) NFix(f;) # 0 parai = 1,2, y p; & Fix(fi) parai # j,

® po y p1 son puntos fijos atractores de fo y f1 respectivamente.
Denotaremos por K§ a los ss-intervalo [po, p1] para el sistema iterado de funciones IFS(®).

El siguiente teorema implica que cualquier abierto contenido en un ss-intervalo para un sistema
iterado de funciones IFS(®) con generadores suficiente proximos de la identidad con puntos fijos
hiperbélicos es un region mezcladora para IFS(®). Este teorema es una generalizacion de un lema
debido a Duminy | | que forma parte de la prueba del llamado Teorema de Duminy (ver
Teorema 3.27) relativo a la dinamica de grupos de difeomorfismos en el circulo. La prueba que
aqui presentamos es diferente de la prueba original del Lema de Duminy (ver | | para mas
detalles) y nos permitird mejorar ligeramente las conclusiones del Teorema de Duminy. Denotamos
por Per(IFS(®)) al conjunto de los puntos periddicos de IFS(®), es decir, el conjunto de los puntos
x = h(z) para algun h # id en IFS(®).

Teorema D (Lema de Duminy). Sea ® = {fo, f1} C DiffZ (R) y K3° un ss-intervalo para IFS(®)
con los puntos fijos de fo y f1 en K3’ hiperbdlicos. Entonces, existe € > 0.17 tal que si fo’Kgf,
f1|K3)s son e-prozimas a la identidad en la topologia C? se tiene que

Ky C Per(IFS(V)) y Kyg = Orby(z) para todo x € Ky

y para todo sistema iterado de funciones IFS(¥) C* prozimo de IFS(®).
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En la seccion §3.3.2 nos ocupamos de generalizar este teorema para difeomorfismos Morse-
Smale en el circulo. Ver Teorema 3.35. Esta generalizacion, forma parte de la prueba de un resul-
tado para IFS tipo Teorema de Denjoy. Recordar que, teniendo en cuenta el nimero de rotacion de
un difeomorfismo f del circulo tenemos que: (i) f tiene un punto periddico, (ii) todas las orbitas
(para iterados positivos) de f son densas, y (iii) existe un intervalo errante para f. Los intervalos
errantes se tratan de los "gaps" de un conjunto de Cantor A C S' invariante por f y contenido en
el w-limite para f de todos los puntos de S'. Estas propiedades dindmicas pueden ser transladadas
facilmente para un IFS:

Definicion (Cantor invariante minimal). Sea ® = {fo, f1} € Diff}(S') y A ¢ S*. Se dice que A
es un conjunto de Cantor invariant y minimal para IFS(®) si

e A es un conjunto de Cantor,

e A = Orbg(z) para todo x € A.

Del Teorema de Denjoy | | se sigue que este tipo de conjuntos no pueden aparecer para
difeomorfismos del circulo con cierta regularidad suficientemente proximos de la identidad. Concre-
tamente, existe € > 0 tal que si f € Diff?(S!) y es e-proximo de la identidad en la topologia C?
entonces no existen conjuntos de Cantor invariantes y minimales. Mas atn, son equivalente las
siguientes afirmaciones: S es minimal para los sistemas iterados de funciones IFS(f), y, f no tiene
puntos periddicos. Cuando el ntimero de generadores del IFS aumenta los puntos periédicos dejan

de ser la obstruccion a la minimalidad. Ahora, ese papel es jugado por los ss-intervalos.

Teorema E (Denjoy para IFS). Eziste ¢ > 0 tal que si fo, fi € Diff?(S1) son difeomorfismos
Morse-Smale e-prézimos de la identidad en la topologia C? sin puntos periddicos en comiin, en-

tonces, no existen conjuntos de Cantor invariantes y minimales para el IFS(fo, f1).

Mds ain, denotando n; el periodo de f;, son equivalentes:

o S es minimal para IFS(fJ°, fi'),

e 10 existen ss-intervalos para IFS(f)°, f1'*).

A diferencia de lo ocurre para un tnico difeomorfismo f en el circulo donde S' no puede ser
C'-robustamente minimal, en el caso de IFS, esta robustez si que puede llegar a obtenerse. De

hecho, hemos de notificar que el teorema anterior es C'-robusto en el siguiente sentido:

Nota (C'-robustez). Las conclusiones del Teorema de Denjoy para IFS son robustas bajo C*
perturbaciones del sistema iterado de funciones IFS(fo, f1), es decir, para todo 1IFS(gg, g1) donde
go y g1 son Cl-perturbaciones de fo y fi respectivamente.

Como consecuencia de este teorema tipo Denjoy para IFS, finalizaremos este tercer capitulo
de la memoria de tesis mostrando un teorema de descomposicion espectral en el circulo. Este
teorema afirma que el conjunto limite de IFS(®) con ® = {f°, f{"'}, donde fo, f1 € Diff>(S!) en
la condiciones del teorema anterior, se descompone en unién finita de conjuntos bdsicas disjuntas:
aislados y transitivos. Un conjunto A con A N Per(IFS(®)) # 0 se dice aislado para el IFS(®) si
existe un abierto D tal que A C D y Per(IFS(®)) N D C A.
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Teorema F (Descomposicion Espectral para IFS). Eriste ¢ > 0 tal que si fo, f1 € Diff?(S') son
difeomorfismos Morse-Smale de periodos ng y n1, respectivamente, e-proximos de la identidad en

la topologia C? y sin puntos periddicos en comain, entonces, existe un numero finito de intervalos

Ki,...,Kp, dos a dos disjuntos, aislados y transitivos para IFS(f)°, fi"*) tales que
m
LAFS(fg°, /i) = |J K.
i=1

Mds aiun, esta descomposicion del conjunto limite de IFS(fy°, fi'*) es C'-robusta.

IV — Ciclos en despliegues de la singularidad nilpotente — En el dltimo capitulo se trasladan
al ambito de los campos vectoriales las conclusiones dindmicas obtenidas en la primera parte de
la tesis. El principal resultado de este capitulo es en colaboracién con Santiago Ibanéz y J. Angel
Rodriguez y se recoge en | |.

El interés alli por la dindmica asociada a ciclos heterodimensionales obligd a considerar difeo-
morfismos en dimensiéon n > 3. Es bien sabido que estos difeomorfismos se pueden definir como
aplicaciones de Poincaré sobre secciones transversales al flujo de un campo en R* cerca de un ciclo
o de una o6rbita periddica.

Filosoficamente, las dindmicas posibles en sistemas discretos se elevan al ambito de los sis-
temas continuos mediante el proceso de suspension, que permite definir en un entorno de una
orbita periddica un flujo que tiene como secciéon de Poincaré un difeomorfismo determinado. Sin
embargo, el verdadero interés radica en determinar con algtn criterio manejable cuando un campo
vectorial o, en su defecto una familia de campos vectoriales, posee este o aquel comportamiento
dindmico. El estudio de las bifurcaciones globales asociadas a distintos ciclos permitié explicar
transiciones dindmicas al tiempo que explicaba la naturaleza del comportamiento. La presencia
de infinitas herraduras en un entorno de una o6rbita de tipo Sil ‘nikov es un ejemplo. Sin embargo,
constatar que en una familia de campos se tiene un determinado ciclo no es tarea facil, al menos
que esa familia sea construida ad hoc. Ese es el caso en | | para una familia de campos
vectoriales cuadraticos que presenta orbitas de Sil ‘nikov. Como una alternativa a esta busqueda
y captura de ciclos, se puede plantear la prueba de criterios que permitan concluir la presencia de
determinada dindmica interesante a partir de los elementos mas simples de un campo vectorial:
sus singularidades. En estos términos uno puede preguntarse, por ejemplo, cuél es la singularidad
de menor codimension (mas frecuente) desde la que se despliegan genéricamente orbitas de tipo
Sil ‘nikov y, consecuentemente, atractores extranos. Una respuesta parcial fue dada en | | al
probar que esta configuracion se presentaba genéricamente en los despliegues de la singularidad
nilpotente de codimensién cuatro en R3 y posteriormente en | | para la singularidad nilpo-
tente de codimensién tres. Una singularidad nilpotente es un campo de vectores C° en R" que,
en apropiadas coordenadas, en un entorno de origen (punto de equilibrio) puede ser escrito como

n—1

0 0
E xk)+1ax +f(x177xn)8x )
=1 k n

con f(z) = O(||z||*) donde z = (21,...,2,). Se dice que es una singularidad nilpotente de codi-

mension n si se cumple la condicién genérica 62 f/0x2(0) # 0.
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La posible presencia genérica de atractores extranos en el despliegue de singularidades de
menor codimensién posible, esto es, en la singularidad Hopf-cero que es de codimensiéon dos, esta
siendo analizada en | |. Los resultados en | | permitieron concluir la presencia de atractores
extrafios en el acoplamiento de dos Brusselator por difusion lineal | |, avanzando asi en una
via para generar complejidad por acoplamiento propuesta por Turing | | v contemplada por
Smale en | |. Por Brusselator se entiende un campo ctbico bidimensional que se propone
como modelo de reaccién quimica. El acoplamiento de dos de estos campos conduce a un campo
vectorial que tiene una singularidad nilpotente de codimensién cuatro en R*. El primer objetivo
propuesto al inicio de la tesis fue estudiar los despliegues genéricos de esta singularidad para
encontrar ciclos que pudieran implicar dinamicas propias de dimensién n > 4: atractores extraios
con mas de un exponente de Lyapunov positivo y ciclos heterodimensionales. En | | se probo
la existencia de bifocos homoclinicos en todor despliegue genérico de la singularidad nilpotente de

codimension cuatro en R%.

Teorema G. En todo despliegue genérico de una singularidad nilpotente de codimension cuatro
en R* hay una hipersuperficie de drbitas homoclinicas bifocales.

Recuérdese que una érbita homoclinica bifocal es una conexién homoclinica a un punto de
equilibrio de un campo de vectores en R* con dos pares de autovalores py, £iwy, con k = 1,2, tales
que p1 < 0 < py. La aplicacion de Poincaré definida en un entorno de este ciclo serd un difeomor-
fismo tridimensional, susceptible de presentar un mezclador. Se prueba que existen mezcladores
suspendidos para campos de vectores arbitrariamente préximos a un campo Hamiltoniano con una
orbita homoclinica bifocal no degenerada. Para este campo Hamiltoniano la aplicaciéon retorno se
puede escribir con una adecuada eleccion de coordenadas de la forma

f = e]? x [—co, co] = [—e,e]* x [—co, co f(z,¢) = (Fu(x),¢),

donde F, tine un conjunto hiperbélico A, para 0 < ¢ < ¢y conjugado con el shift de Bernoulli sobre
Yn(e) (ver Teorema 4.16). Ademas, la familia de conjuntos {Ac}q_ <., satisface que Ac_. contiene
a la continuacion dindmica de A, para cualquier € > 0 suficientemente pequeno. Esta propiedad
permite tomar como un subsistema de f a un skew-product de la forma & = 7 x id definido sobre
Y@ % (0,2).

Para probar el teorema anterior, nosotros mostramos que, para algunos valores de los parame-
tros, la familia limite de un despliegue genérico de la singularidad nilpotente son campos de vectores
Hamiltonianos con una o6rbita homoclinica bifocal no degenerada. Las perturbaciones sobre la
hipersuperficie de 6rbitas homoclinicas bifocales tienen una aplicacién de Poincaré conjugada con
un producto cruzado simboélico el cual es una perturbaciéon de ® = 7 x id. Como se sigue del tercer
capitulo, perturbaciones genéricas de ® = 7 x id del tipo productos cruzados de un paso, tienen
o bien una regiéon mezcladora o bien su dinadmica es trivial. Por lo tanto, concluimos el cuarto
capitulo estudiando la posible presencia de mezcladores suspendidos y ciclos heterodimensionales
en despliegue genéricos de la singularidad nilpotente.






Introduction

The results contained in this thesis are a contribution to the study of non-uniformly hyperbolic
dynamics, the context under which there arises many of the current issues concerning dynamical

complexity. In contrast, uniformly hyperbolic dynamics began to be well understood in the sixties

from the early works of Anosov | | and Smale | |. Three decades earlier, in an elaborate
work | |, Birkhoff proved that, in general, near a transversal homoclinic point, introduced by
Poincaré | |, there exists an intricate set of periodic orbits, most with a large period. In order

to explain this Birkhoff’s result and other subsequent results on the existence of infinitely many
periodic orbits in the equation of Van der Pol | , |, Smale placed his geometric device,
the Smale horseshoe map, in a neighborhood of a transversal homoclinic point. This application
and the examples given by Anosov on the torus, are diffeomorphisms whose non-wandering set 2
is hyperbolic and coincides with the closure of the periodic points. Diffeomorphisms with these
properties were called Aziom A or uniform hyperbolic diffeomorphisms and their study as a subset
of the space Diff" (M) of the C"-diffeomorphisms over a compact manifold was proposed.

A key result for the study of Axiom A diffeomorphisms in Diff" (M) was the Spectral Decom-
position Theorem by Smale | |. According to this the non-wandering set €2 is decomposed
into a disjoint union of finitely many subsets A; called basic sets. Each A; is an invariant isolated
transitive hyperbolic compact set. Two periodic points in the same basic set have stable manifolds
with the same dimension (stability indez) and therefore unstable manifolds of the same dimen-
sion (Morse index). An eloquent and relevant example of a basic set is the invariant set Q of a
horseshoe map. The dynamics of the restriction of a horseshoe map to this set follows from its

conjugation to the Bernoulli shift.

Horseshoe maps associated with a transversal homoclinic point are an important landmark in
the study of dynamical systems. Its invariant set ) gives an example of quasi-random dynamics.
This randomness is consequence of the expansive character of the orbits in ) that implies a
high sensitivity dynamical to initial conditions. However, €2 is not an attractor because it has
no basin of attraction with non-empty interior (or positive measure) and, therefore, its internal
dynamics cannot be observable as an asymptotic behavior. This deficiency was solved by Smale
who, by analogy with the horseshoe, constructed the solenoid as a first example of strange attractor
(attractor with a dense expansive orbit) being hyperbolic. This example of non-periodic strange

attractor inspired the famous work of Ruelle and Takens | | on the nature of turbulence.
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Having seen that uniformly hyperbolic diffeomorphisms provided new dynamical interpreta-
tions, two important issues raised in the context of bifurcation theory: the relation between uniform
hyperbolicity and structural stability, and the density of uniform hyperbolic diffeomorphisms in
the space Diff" (M), endowed with the C"-topology. After some partial results by Robbin | ],
Melo | | and Robinson | , |, Mané | | proved that, as Palis and Smale con-
jectured in [ ], a diffeomorphism f € Diff' (M) is structural stable if and only if it is uniformly
hyperbolic and satisfies the strong transversality condition: all stable and unstable manifolds of
points of the non-wandering set are transversal. Regarding to density , although the uniform
hyperbolicity was firstly believed to envolve a residual, or at least dense, subset of Diff" (M),
it soon emerged that this was not true. There are two important configurations that force the
persistence of non-uniform hyperbolicity: heterodimensional cycles and certain homoclinic tan-
gencies (see both concepts in Definition 1.1). The first was used by Abraham and Smale | |
and Simon | | to construct examples of an open set of non-uniformly hyperbolic diffeomor-
phisms in Diff!(M), with dim M > 3. Homoclinic tangencies between the invariant manifolds of
a saddle belong to a non-trivial basis set and are the basis of the well-known Newhouse phe-
nomenon | , , | for C2-diffeomorphisms on surface. For small perturbations of
the diffeomorphism both configurations force the persistence of homoclinic tangencies, which im-
ply the presence of non-wandering points with different stability indices and thus the persistence
of non-uniform hyperbolicity. Therefore, Diff" (M) is disjoint union of two sets, the uniformly
hyperbolic diffeomorphisms and its complementary, which contain in turn open sets.

The set of uniformly hyperbolic diffeomorphisms contains the open set of those structurally
stable and their dynamics is quite well understood. In contrast, the non-uniformly hyperbolic
diffeomorphisms, persistent while abundant, are not structurally stable. Their dynamics must
involve a great number of transitions and therefore it belongs to the word of dynamical complexity.
This is the case with some of the most popular attractors. From the numerical study, the Lorenz
attractor | | seems to be strange, persistent but not structurally stable, while the persistence
seems to fail in the case of the Hénon attractor | |. Since the hyperbolic attractors are
persistent and structurally stable, neither of them can be a hyperbolic attractors. The question
is: do non-hyperbolic strange attractors really exist? The first analytic proof of the existence
of such attractors was given by Benedicks and Carleson | |, who proved that in the Hénon
family H,p(z,y) = (1 — ax? +y, bx) there exist strange attractors for a set of parameter values of
positive Lebesgue measure (persistent in the sense of measure) close enough to a = 2 and b = 0.
Intricate ideas and techniques in | | were used by Mora and Viana | | to prove that, as
conjectured by Palis, generic one-parameter families of diffeomorphisms on a surface unfolding
a homoclinic tangency have strange attractors with positive probability in the parameter space.
The existence of such attractors in three-dimensional families of vector fields was proven in | ]
for the cross-section of a Shil’'nikov homoclinic orbit | |. The proof of the existence of non-
hyperbolic strange attractors starts in | | considering the Hénon family as an unfolding of the
limit family hq(2) = 1 — 22 which is obtained by taking b = 0. This quadratic family had been
well studied previously in | | and its expansive dynamics moves into the unstable manifold of
a saddle point of Hy,p(z,y) = (1 — 22 + y,bz) when b is small enough. In [ | this strategy is
then applied to a suitable renormalization of the return map to a neighborhood of a homoclinic
point. The resulting family is still a good unfolding of the quadratic family (a Hénon-like family)
and the ideas and techniques in | | can be adapted to this case. In | | it is proved that the
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family obtained after an appropriate renormalization is a good unfolding of a limit family, which
in this case is an unimodal family f,(z) = A"'loga + = + A~ ! logcosz, and arguments in | |

remain valid.

The main goal in the study of dynamical systems is to describe the asymptotic behavior of
trajectories of most systems. In the heat of the study of hyperbolic systems, Smale conjectured
that the limit set of trajectories of a dynamical system should present a generic hyperbolic inter-
nal dynamics: exponential increase and decrease of the distances in complementary dimensions.
However, non-hyperbolic attractors above provided counterexamples and raised the need for new
proposals. From then until the present, investigation of non-uniformly hyperbolic dynamics has
been mainly programmed by Palis | , |, who proposed a work program consisting of
several interrelated conjectures aimed at describing the asymptotic behavior of generic families of
dynamical systems depending on a finite number of parameters. In particular, Palis conjectured
that, generically, there is only a finite number of transitive attractors which can accumulate almost
all trajectories, in addition, these attractors should be stochastically stables and support a physical
measure. Unlike the topological approach taken in the sixties, the probabilistic approach is now ex-
pressed in terms of the Lebesgue measure, both in the parameter space as in the phase space. From

) ) ]7

it is proved that for uniformly hyperbolic C2-diffeomorphisms while no cycles there exists at most a

the Spectral Decomposition Theorem and the theory of Sinai-Ruelle-Bowen |

finite number of attractors, which are in turn stochastically stable and support a physical measure.
Then one step further will seek some robust form of hyperbolicity (partial or dominated decompo-
sition) that is present in the absence of cycles, which can prove the above conjecture. This raises
a dichotomy between some set of hyperbolic diffeomorphisms and those with some kind of cycles.
Namely, Palis conjectured that any dynamical system can be C"-approximated by a hyperbolic
system without cycles or one that has a homoclinic tangency or a heterodimensional cycle. A first
answer to this last conjecture was given in the C!'-topology by Pujals and Sambarino in | | for
diffeomorphisms on surfaces. For higher dimension, Crovisier and Pujals | | proved that every
diffeomorphism f € Diff!(M) can be C'-approximated by one that has a homoclinic tangency
or a heterodimensional cycle, or by an essentially hyperbolic diffeomorphism, i.e. one with a finite
number of transitive hyperbolic attractors such that the union of their basins of attraction is an
open and dense set in the phase space. In short, homoclinic tangencies and heterodimensional
cycles are a complete obstruction to hyperbolicity.

With regard to homoclinic tangencies, and already in the field of C?-diffeomorphisms on sur-
faces, there have been remarkable results. As mentioned above, in generic families unfolding a ho-
moclinic tangency between the invariant manifolds of an isolated hyperbolic periodic point there
appear non-hyperbolic strange attractors, persistent in the sense of the measure. When the peri-
odic point belongs to a nontrivial basic set, the persistence of homoclinic tangencies for an open set

U of diffeomorphisms was originally detected in | |. On a residual set in U, of measure zero,
there are simultaneously infinite periodic attractors | | and even infinite Hénon-like strange
attractors | |. These results can be generalized to greater dimension | , , |.

The geometric ingredient underlying the persistence of homoclinic tangencies is the horseshoe map.
Namely, the thickness of the stable and unstable foliations of a basic set A, which extend in a
neighborhood of the homoclinic point to define, respectively, two Cantor sets K5 and K, on a given
segment. The prevalence of hyperbolicity or non-hyperbolicity depends on whether the Hausdorff
dimension HD(A) = HD(K) + HD(K,,) of A is less than or greater than one | , |.
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With regard to heterodimensional cycles, an early result by Diaz | | implies the existence
of a non-empty open set of parameterized C*° families of diffeomorphisms (f;);e[—1,1) unfolding
generically a heterodimensional cycle of fy and such that for all small positive ¢ > 0 the cor-
responding diffeomorphism f; is non-uniformly hyperbolic: the homoclinic classes of two saddle
points of different indices coincide. The proof of this result can be illustrated with the choice of
a diffeomorphism on R? which has a heterodimensional cycle between two fixed points P and
Q. Under additional hypothesis about partial hyperbolicity, linearization and product structure,
it is understood that the behavior of this diffeomorphism in a neighborhood of the cycle follows
from the dynamics of an iterated system of two real functions (see a precise definition of iterated
function system in Section §3.1). This reduction indicates that the persistence of non-uniform hy-
perbolicity associated with heterodimensional cycles is of different nature from that which follows
from the homoclinic bifurcations. In the Newhouse’s phenomenon (persistence of homoclinic tan-
gencies) the essential geometric ingredient was the horseshoe map and the Hausdorff dimension of
its basic set but, which geometric element lies under the persistence of non-uniform hyperbolicity
by perturbing a heterodimensional cycle? The answer was given by Bonatti and Diaz introducing
in | | the notion of blender. Roughly speaking, a blender can be understood as a sufficiently
thick hyperbolic set I' such that the closure of an invariant manifold of dimension u of a saddle
point in I'" contains an invariant manifold of dimension u 4+ 1. The first precise definition of a
blender emphasizing its geometrical aspects can be found in | |:

Definition (Blenders). Let f be a Cl-diffeomorphism of a compact manifold M and T' C M a
transitive hyperbolic set of f with a dominated splitting of the form E° & E @ EY, where its
stable bundle E° = E%° ® E has dimension equal to s > 2 and E® is one-dimensional. The set
I' is a cs-blender if it has a C'-robust superposition region B:

there are a C'-neighborhood V of f and a C'-open set B of embeddings of s — 1 dimensional
disks D* into M such that for every diffeomorphism g € V, every disk D® € B intersects the local
unstable manifold W}t (L'g) of the continuation I'y of I for g.

A cu-blender for f is defined as a cs-blender for f~1.

Blenders are the subjacent mechanism leading to the generation of robust heterodimensional
cycles | ] and robust homoclinic tangencies in the C'-topology for a manifold of dimension
greater than or equal to three | |. Blenders were also used in other applications such as the
construction of robust non-hyperbolic transitive diffeomorphisms | |, the discontinuity of the

dimension of hyperbolic sets | | and to obtain results about stable ergodicity | |.

A blender T for a C'-diffeomorphism f is just a hyperbolic set, but its existence presages the
presence of persistent non-uniform hyperbolicity. By way of example, we will sketch how these
sets allow us to mix saddle points of different indices. Suppose we are in dimension three, I' is a
cs-blender with stability index s =2 and P € ', Q ¢ I' are two periodic points of f, the first with
unstable manifold dense in I' and the second with stability index s — 1 = 1. We assume that the
stable manifold W*(Q) of @ contains a disk D* in the superposition region B of the blender I". From
the Inclination Lemma, the sequence of backward iterates of any disk L of dimension s —1 =1
crossing W*(Q) converge to W#(Q). Therefore, for n > 0 large enough f~"(L) contains a disk in
B. Since I is a cs-blender, W} (') intersects f~"(L) and so because of the density of the unstable
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manifold of P it follows that

WH@Q) c W(P).

That is, the closure of the unstable manifold of P (of dimension one) contains the unstable manifold
(two dimensional) of Q. Therefore we have in some sense (say, topological) that dimension of the
unstable manifold of P is equal to dimension of unstable manifold of @ (i.e. two). Consequently,
the dimension of the unstable manifold of P is increased in a unit, so for practical purposes, we

obtain that P has invariant manifolds of dimension two.

The above construction allows us to see that all points in a transversal intersection v =
W#(P) h W*(Q) (generically an union of curves) belong to both, the homoclinic clase of P and
the homoclinic clase of @. Therefore, v is contained in the non-wandering set of f. Obviously
the points of v do not admit a hyperbolic splitting and it follows that f cannot be uniformly
hyperbolic. The persistence of the blender makes these arguments robust under C''-perturbations

and then we get an open set of non-uniformly hyperbolic diffeomorphisms.

Note that the notion of blender is formulated in the general context of C'!-diffeomorphisms.
Already in this context it is proved in | | that if f is a C!-diffeomorphism with a heterodi-
mensional cycle associated with two saddle points P and @ with indexes s and s+ 1 (i.e. co-index
one) and C'' away from homoclinic tangencies, then f belongs to the closure of an open U of non-
uniformly hyperbolic diffeomorphisms. Later, in | | it is proved that any heterodimensional
cycle of co-index one can be Cl-approximated by diffeomorphisms having a C'-robust heterodi-
mensional cycle. One of the steps to prove this result was to show that horseshoes of blender type

occur naturally in an unfolding of a heterodimensional cycle of co-index one.

The most eloquent geometric representation of a blender and its relation to the horseshoe map

follows from the construction of the so-called blender-horseshoe | |. This construction involves
a diffeomorphism f defined in a reference cube C' = [—1, 1]"“, with n > 2, as a skew-product of
the form

fiOCR XROR' xR, f(r.y) = (F().d(z.9)),
where F' : R" — R" has a Smale horseshoe A C [—1,1]" and the maps ¢(z,-) : [-1,1] = [—1,1]

are C''-contractions. Clearly, if every application ¢(z,-) is the same contraction ¢, then the map
flc is essentially a normally embedded horseshoe map with maximal invariant set I' = A x {yp},

where yo € [—1,1] is the fixed point of ¢. Suppose now that
HyUHy=FY([-1,1]")n[-1,1]"

is the union of two horizontal strings in the definition of the Smale horseshoe and that ¢(z,-) = ¢;
if x € H;, with i = 1,2, are two different contractions, with fixed points y; < y2, respectively.
The diffeomorphisms defined of this way are called locally constant skew-product diffeomorphisms.
Hence, in that case, I' C Ax[y1, y2] is again a transitive hyperbolic set such that f|r is topologically
conjugated to F|p. The projection of " on the interval [y1,ys2] is given by the dynamics of the
iterated function system generated by the contractions ¢1, ¢o. If there exists an open set B C
(y1,y2) such that B C ¢1(B)Uga(B), it is proved that this projection contains B. It is easy to verify
that this open set B is still contained in the projection on the real line of the continuation I'y of I" for
every locally constant skew-product diffeomorphism ¢ close to f in the C'-topology. Such inclusion
is sufficient to show that for all (x,y) € (H1 U H2) x B, the local unstable manifold W} (I'y) of
I'y intersects the local strong stable manifold of (z,y) for g. Notice that these local strong stable
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manifolds are an open set of embedded disks and thus, it follows that I' satisfies the definition of
blender for all locally constant skew-product diffeomorphisms C'-close to f. This persistence is the
main obstacle to prove the existence of a blender because any diffeomorphism g sufficiently C'-close
to f is not necessarily a skew-product, much less, a locally constant skew-product diffeomorphism.
This difficulty is resolved by following the normal hyperbolic result in | | since with additional
assumptions concerning the strength of the hyperbolic splitting for f|c we conclude that g is
topologically conjugate to a skew-product. Thus, in that case, when we try to prove the persistence
of the intersection condition it will be sufficient to consider C!'-perturbations of f in the class of
skew-product diffeomorphisms. Moreover, since F'| is conjugated to a Bernoulli shift 7 : X9 — 3
of two symbols, the blender-horseshoe can be studied from a symbolic point of view, taking skew-
products maps of the form

D E2 X R — E2 X Ra @(gvl') = (T(g)a ¢§($))7

where each ¢¢ : R — R is a C'-contraction.

The notion of cs-blender is associated with C'-diffeomorphisms having a partially hyperbolic
dominated splitting £*° @& E ® E* and it has always been defined and handled in the case where
the central bundle E€ is unidimensional. This represents an obstacle in the contexts where central
manifolds of dimension ¢ > 2 are raised. Therefore, a natural question is to handle and to construct
blenders whose central bundle is not necessarily one-dimensional. Following the proposal of Nassiri
and Pujals | | a way to do this is to consider the symbolic dynamics in the context of the

symbolic skew-products
b Ek x R¢ — Ek X ch (D(gax) = (T<€)7 ¢£(‘T))7

where X5, = {1,...,k}%, ¢ > 1, and each ¢¢ : R — R is a new C'-contraction. A blender in this
context will be called symbolic blender-horseshoe or shortly symbolic blender. The first objective
of our work is to give conditions for the existence of symbolic blender in this general setting. These
conditions will be used to study the genesis of blenders in perturbations of ® (£, x) = (7(§), x) and
so to explain the presence of suspended blenders for vector fields in R* arbitrarily close to a Hamil-
tonian vector field Xz with a non-degenerate bifocal homoclinic orbit, where a three-dimensional
diffeomorphism can be defined as the return map on a cross section. A bifocal homoclinic orbit
of a vector field on R?* is a homoclinic connection with a focus-focus equilibrium, i.e., having
eigenvalues —p1 &+ iw1, pa £ twe. Since in every generic unfolding of the nilpotent singularity of
codimension four in R* there are bifocal homoclinic orbits | |, which are unfolded as con-
tinuation of similar homoclinic connections for Hamiltonian vector fields in the limit families, we

finally show how suspended blenders could appear in these unfoldings.

This thesis is organized into four self-contained chapters. Let us summarize the main results

in each chapter.

I — Robust cycles and blenders — In the first chapter of the thesis we introduce in detail
preliminary concepts, assumptions and examples which have been mentioned throughout this
introduction. The objective is to introduce the notions of blender and blender-horseshoe already

present in the literature in a self-contained form.
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IT — Symbolic blenders — The second chapter of the thesis focuses on the study of the existence
of symbolic blenders. The main results of this chapter are in collaboration with Yuri Ki and Artem

Raibekas and are collected in prepublication | |.

This chapter is developed in the context of symbolic skew-products
D : Ek x M — Ek X M7 ‘I)(g,.f) = (T(f),¢§($))

where M is a compact Riemannian manifold of dimension ¢ > 1 and ¢¢ : M — M is a C"-
diffeomorphism with r > 0 for all £ € ¥, which depends continuously with respect to £. The first
factor of the product ¥ x M is called base and the second fiber. To emphasize the role of fiber
diffeomorphisms ¢¢ we use the notation ® = 7 x ¢¢. This set of symbolic skew-products will be
denoted by Si(M). When ¢¢ only depends on the coordinate &y of the bisequence § = (&)iez,
we say that @ is a one-step skew-product and, in that case, we write ® = 7 X (¢1, ..., ¢r) where
¢¢ = ¢ if o = i. The set of one-step skew-products maps is denoted by Q. (M).

Working with symbolic skew-products S (M) is a good idea to study the existence of blenders
in skew-product diffeomorphisms of the form

fiNxXM—NxM,  flz,y)=(F(z),9(y)),

where F' is a diffeomorphism of a manifold N with a horseshoe A C N. As already mentioned,
C'-perturbations of these diffeomorphisms are not necessarily skew-products. In order to ensure
that perturbations of f are conjugated to symbolic skew-products we need to impose on f partial
hyperbolicity and dominated conditions which are open conditions. Then, according to recent
work | , , |, see Proposition 2.1, there exist € > 0 and a constant a € (0, 1], only
depending on the rate of contraction v € (0,1) of the horseshoe A, such that any e-perturbation
g of f in the Cl-topology has a locally maximal invariant set A, isomorphic to A x M, so that
gla, is topologically conjugated to a symbolic skew-product ® = 7 x ¢¢ in the subset PHS,IC’O‘(M )
of Sk (M) consisting of locally Hélder continuous and partially hyperbolic symbolic skew-products.
This set is defined by imposing to ® = 7 X ¢¢ extra conditions of regularity, Lipschitz character

and domination:

o ¢¢: M — M is C'-diffeomorphisms for each &.
e ¢¢ depends locally a-Hélder continuously on § in M: there exists C' > 0 such that
deo (¢!, 6g") < Cds, (€,6)*, for all £,¢' € Ty, with & = &, (2)
The space of symbols ¥, = {1,...,k}” is endowed with the distance
ds, (€)= v, t=min{ieZ" &#&or b #E}.
We will denote by Cg the smallest non-negative constant satisfying (2).
® ¢ is biLipschitz and partially dominates: There exist positive constants v and % such that

«

— s-domination and u-domination (partial hyperbolicity): v* <y <1 <41 <v~
— (7 @_1)—Lipschitz in M:

v lle = || < llée(@) = gel@)]| <47 [l =2

)

for all £ € ¥, and x, 2’ € M. Here ||x — 2’| denotes the distance in M.
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A blender-horseshoe is a locally maximal hyperbolic set and therefore it will be linked to a
bounded and open set D C M. That is, it will be the locally maximal invariant set for ® in X x D.
Thus, we can impose additional local conditions for the symbolic skew-products ® = 7 x ¢¢ with
which we work. For instance, we assume that the restriction of ¢¢ to the set D is a contraction or
expansion. Namely, we will work with the following sets of symbolic skew-products:

Definition (Sets of symbolic skew products). Let D C M be a bounded open set and consider
constants 0 < A < B and 0 < a < 1. We define S;’SB(D), r > 0, as the set of symbolic skew-
product maps ® =7 x ¢¢ € Si,(M) such that

o ¢¢ is a C"-(\, B)-Lipschitz on D for all  in Sy, and

e ¢¢ depends locally a-Hélder continuously on D with respect to €.

Additionally, if 8 < 1 we impose the condition gi)g(ﬁ) C D for all £ € ¥, and, in the case 1 < A
the imposed condition is D C ¢¢(D) for all § € Xy, We endow S5 5(D) with the distance

ds(®,¥) = sup dor(¢¢, ) + |[Co — Cu|,  with ®=7x ¢¢ and V=17 x 9.
£€Xy

For notational convenience, Sy, g(D) and Sg ) 5(D) denote S,S’?\ 5(D) and S,S’f\xﬁ(D), respectively.

Under the hypothesis of contractive fiber maps, the following result provides a description of
the maximal invariant of ® in ¥; x D and shows the dependence on ® of the set

def

Ko % P(Per(®)) N D

where Per(®) is the set of periodic points of ® and &2 : ¥ x M — M is the standard projection
on M. Although this theorem is a special case of the results of | | it will be very useful to
have a complete and detailed proof in the context of symbolic skew-products. It is denoted by
K(D) the collection of compact subsets of D endowed with the Hausdorff metric and

W((6,2); @) = {(Cy) € Sp x M : lim d(®7"(C,y), 27"(¢,2)) = 0}
is the unstable set of (£, x) for ®.

Theorem A (Geometry of the maximal invariant set). Consider ® € S, 5(D) with 8 <1 and
a > 0. Then the restriction of ® to the set

Ty =()®"(Sk x D) =[] ®"(Zk x D)
neZ neN

is conjugated to the full shift T of k symbols. Moreover, W"((&,z); ®) C Iy for all (§,x) € Ty and
there exists a unique continuous function ge : X — D such that for every periodic point (9,p) of
D in X x D it holds that,

Lo =W((9,p); @) = {(&90(8)) : £ €T} and P(Te) = Ko € K(D).
Finally, the map 2 : Sit) 5(D) — K(D) given by £ (®) = K¢ is continuous.

In order to introduce a symbolic blender, firstly we define a family of almost horizontal disks

that provides the superposition region of the blender.
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Definition (Almost horizontal disks). For a fized o > 0 and given an open subset B C D, we say
that D? is a 0-horizontal disk in X x B if there exist ( € X, z € B, a positive constant C > 0
and a (o, C)-Hélder continuous map h : W2 ((;7) — B such that

D ={(&,h(8)) : £ € Wise(Gs 1)} N1z = h(§)] <0 for all § € Wi (¢;7) and Cv® < 6.

Here Wi (¢;7) = {€ € By : & = ( for all i > 0} denotes the stable set of ( € X,.

The main reason for considering the set of embedded disks in the definition of blender is that
the local strong stable manifolds will be part of this set. Observe that for any 0 > 0, the set
W (¢ 1) x {z} is a d-horizontal disk and, in the case of one-step maps, coincides with the local
strong stable set of ({,x). Since we want to study Holder perturbations of a one-step map, it is
enough to consider as superposition region the family of almost horizontal disks.

From Theorem A, it follows W"(I'p) = I'e for all ® € Si') 5(D) with 8 < 1, where
W*(Te) = {(£,2) € S x M : lim d(®"(¢,2),Tg) =0}
n—oo

is the unstable set with respect to the maximal invariant set I's. Hence, the corresponding defini-
tion of cs-blender in the context of symbolic skew products can be written as follows:

Definition (Symbolic cs-blender-horseshoes). Let ® € Sty 5(D) with 8 <1 and o > 0.

The mazimal invariant set T'g of ® in Xi, x D is said to be symbolic cs-blender-horseshoe if
there exist 6 > 0, a non-empty open set B C D and a neighborhood V of ® in Sﬁx,g(D) such that
for every W € V and for any d-horizontal disk D® in ¥ x B, it holds that

Iy ND*#0, where T'y is the continuation of T'e for W.

The open set B 1is called superposition region of the symbolic cs-blender-horseshoe.

To define symbolic cu-blenders-horseshoes, firstly we need to introduce the associated inverse
symbolic skew product for ® =7 x ¢¢. Given © = 7 X ¢¢ € S\ ﬁ(D), the symbolic skew product
O" =17 K ¢f € S g1 y-1(D),  where ¢f : M — M given by ¢¢(x) = ¢, .y (@),
is called associated inverse skew product for ®. Here £* = (...&1;&0,&-1,...) denotes the conjugate
sequence of £ = (... & 1;&o, €1, .. .). Note that since 7(£)* = 771(£*) the iterates of ®* correspond
with iterates of ®~!. This observation allows us to define symbolic cu-blender-horseshoes for
symbolic skew products in Sﬁ)\ﬁ(D) with A > 1 and a > 0. Namely, a symbolic cu-blender-
horseshoe for @ is defined as a symbolic cs-blender-horseshoe for ®*. In what follows, we only

consider symbolic cs-blenders.

From Theorem A, it follows that W ((¢, p); ®) = I'g for every periodic point (9, p) € Xg x D
of a partially hyperbolic symbolic skew-product ®. In Proposition 2.5, we will prove that each
local strong stable set W% ((§,x); ®) is an almost horizontal disk. Hence, if Iy is close enough to

a one-step map then this disk is a small Holder perturbation of the horizontal disk W} .(&;7) x {x}.

Therefore, if moreover I is a symbolic ¢s-blender for ® with superposition region B, then it holds

W (9, pw); W) NWEL((&,2); W) #0, forall (§,2) € ¥y x B

loc

and every S®-perturbation ¥ of ® where (¢, py) is the continuation of (¢, p) for W.
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A set of maps ¢1, ..., ¢ defined on D is said to have the covering property if there is an open
set B C D such that B C ¢1(B) U--- U ¢g(B). One of the objectives is to understand how to
translate robust dynamical properties of an iterated function system generated by ¢1,...,¢g to
robust dynamical properties of ® = 7 X (¢1,. .., ¢r) under S*-perturbations. The following result
describes how the covering property translates to a robust property in the language of Holder
symbolic skew products.

Theorem B (Covering property characterization). Consider ® = 7 x (¢1,...,¢x) € S 5(D)
with v* <A <1, a>0 and let B C D be an open set. Then,

B C ¢1(B)U--Ugy(B)
if and only if there are § > 0 and a neighborhood V of ® in Sﬁ/\ﬂ(D) such that for every ¥ € V
Iy (B)YND®*#0  for all 5-horizontal disk D® in Xj x B

where FJ\IZ(B) is the forward maximal invariant set of ¥ in Xy X B.

Under the hypothesis 8 < 1, if ® = 7 x (¢1,...,¢x) € Sy 5(D) then #i(D) C D for all
i =1,...,k. In such case, for any small perturbation ¥ = 7 x t)¢ of ® it holds that 1¢(D) C D
and it follows that

Ty(B) = [ ¥"(Sk x B) C [ ¥"(Sk x D) £ Te.
n>0 neL

Therefore, combining the above result with the definition of symbolic blender we obtain the fol-
lowing consequence on the existence of symbolic blenders using the covering property.

Theorem C (Symbolic blender existence). Consider ® = 7 X (¢1,...,¢%) € Sg) 5(D) with
v¥ < A< B <1, a>0. Assume that there exists an open set B C D such that

BCo(B)U--Uei(B)

Then the mazimal invariant set Ty of ® in Xj, x D is a symbolic cs-blender-horseshoe for ® whose

superposition region contains B.

Part of this second chapter is devoted to the study of a subset of symbolic skew-products
S,;"(M ) called symbolic unilateral skew-products, which generalizes the one-step maps. This set
consists of the maps ® = 7 x ¢¢ such that ¢ = ¢g if & = & for all ¢ > 0. In Proposition 2.3
it is showed that if there exists a stable holonomy (see Definition 2.3) for ® € S (M) then ® is
topologically conjugated to a unilateral symbolic skew-product ® € S,;L (M). This would allow us
to restrict the set of perturbations of skew-products that must be considered and thus introduce
another definition (in the unilateral setting) of symbolic blender-horseshoe (see Definition 2.11).
Namely, in §2.4 perturbations in the set SIIA,B(D) = SH(M) NSk 3(D) with B < 1 are studied.

In Proposition 2.5, it is proved the existence of stable holonomy for every s-dominated sym-
bolic skew-products, in particular, for ® = 7 x ¢¢ € PHS,lg’a(M) NSk 3(D). The corresponding

conjugated unilateral skew-product is given by

b — 7 x qgg € S (M) where <;~5§ = hf.(g)ﬂr(T(g)) © b 0 hze) e
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with 7 denoting the projection of ¥} on a transversal section ¥ to the stable partition W2 (&;7),
& € ¥ and h5 ¢ : M — M the family of maps that define the stable holonomy. In Proposition 2.6,
it is proved that each hg’g, is a Holder continuous map with uniform Holder constant for all &
and ¢&'; but this is not sufficient to conclude that ® € SIZA,B(D)' To ensure that ® € Sy 5(D)
we need to increase the regularity of ® and impose additional conditions on fiber maps. Namely,
Proposition 2.9 proves that the maps hs ¢ are C'-difeomorfismos if ® = 7 x ¢¢ is fiber bunched
(ver Definicion 2.7) and belongs to the set 777-[82 lJrO‘( M) of the parcial hyperbolic skew-products
whose fiber maps are C?-diffeomorphisms that depend locally Hélder differenciatiable with respect
to the base point, that is,

der (g, ¢3) < Cds, (6,€),  for all §,¢' € Ty, with & = &,

This regularity in the holonomy implies that ® = 7x (;35 belongs to S,:f A5(D). According to [ ],
see Theorem 2.2, it follows that these additional regularity and fiber bunching conditions can be
obtained for the symbolic skew-product ¥ = 7 x )¢ conjugated to a C?-perturbation g of the
C?-diffeomorphism f = F x id where F' : N — N is a horseshoe map and id : M — M is the
identity map. In this way, a symbolic blender-horseshoe in the unilateral setting leads a blender
for a C?-diffeomorphism with a C2-robust superposition region.

The above results about the existence of symbolic blenders are given for one-step symbolic
skew-products ® = 7 X (¢1,...,¢r). Apart from the assumption of regularity and domination
imposed to restrict the space of perturbations, the condition of existence of symbolic blender is
reduced to the covering property, which is formulated in terms of the contractions ¢1, ..., ¢g. This
allows us to consider the structure of a symbolic blender as something specific to the one-step
skew-products that persists under good perturbations. By drawing a parallel with the proof of
the existence of Hénon-like strange attractors, one-step skew-products could be considered as the
limit maps whose dynamics must be understood, just as one needs to understand the dynamics of
the limit family hy(x) = 1 — 22 to understand the existence of Hénon attractors in | |. From
this view, Section §2.3 is introduced to study symbolic blenders in the one-step setting, that is,
only considering perturbations in the set Qj » g(D). It is showed how the dynamics of a one-step
map ® = 7 X (¢1,...,dk) is given by the dynamics of the iterated function system generated by
¢1,...,¢r. In this way the concept of blender emerges as a property of this iteration function
system dynamics. This section is a prelude to the next section of the PhD dissertation.

IIT — Iterated function systems — The third chapter of thesis focuses on the study of iterated
function systems, defined on both, an interval or a circle. The main results in this chapter are
in collaboration with Artem Raibekas and are collected in the PhD theses | | and in the
prepublication [BR].

By an iterated function system, shortly IFS from now on, generated by a family of diffeomor-
phism ® = {¢1,...,¢r} on a manifold M, we mean the set IFS(¢1, ..., @) of all possible composi-
tions of diffeomorphism ¢; € ® (including the identity map id). That is, the semigroup with iden-
tity (a monoid) generated by the compositions of ¢1, ..., ¢x. Because of the close relation between
one-step symbolic skew-products and iterated function systems we write IFS(®) = IFS(¢1, .. ., o),
meaning that the IFS is generated by the family ® = {¢1,..., ¢} associated with the one-step
O =17x(f1,...,0r) defined on Xy x M.
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As already mentioned, the dynamics of a one-step skew-product is given by the dynamics of its
associated iterated function system. In order to talk about the dynamics of an IF'S it is necessary
to introduce the basic notion of orbit. The orbit of x € M for IFS(®) is the action of the IFS over
the point z, i.e.,

Orbg(x) < {h(z) : h € IFS(®)} C M.

With this notion of orbit, some dynamical concepts known for dynamical system are translated
to the field of the iterated function systems. As an example, a set A C M is said to be tnvariant
if Orbg () C A for all x € A; transitive if there exists a dense orbit in A, i.e.,

A C Orbg(x) for some z € A;

and minimal if every x € A has a dense orbit in A. The w-limit of x € M for IFS(®) is the set

def

wa(z) = {y : there exists (hy), C IFS(®) \ {id} such that li_)m hpo---ohi(x) =y},

while the w-limit of IFS(®) is

w(IFS(®)) & cl({y € M : there exists z € M such that y € we(z)}),
where "cl" denotes the closure of a set. Similarly we define the a-limit of both, a point x € M and
the iterated function system IFS(®). Finally, the limit set L(IFS(®)) is the union of w-limit and
a-limit of IFS(®). From these concepts, understanding the dynamics of an IFS requires to know
the possible invariant sets for the IFS, in order to describe the w-limit or a-limit of their orbits,
and show, if possible, a result on spectral decomposition of the limit set as it was done in the case
of a hyperbolic diffeomorphisms.

In order to find robust properties under perturbations it is important to introduce the concept
of proximity into the set of the IF'S. That is, an iterated function system IFS(¢, ..., ¢y) is said to
be C'-close to IFS(¢1, ..., ¢x) if each of the diffeomorphisms 1; is close to ¢; in the C''-topology.
As an example of a robust property by perturbations one can think in the translation to the
language of the IFS of the symbolic blenders defined in the previous chapter:

Definition (Blending region). An open set B C M is said to be a blending region for IFS(®) if
B is Cl-robustly minimal for IFS(®), i.e.,

B C Orby(z) for all z € B and every TFS(¥) C'-close to IFS(®).

In the case of a one-step skew-product with contracting fibers, in Proposition 2.21 it is proved
that the existence of a blending region is equivalent to have a symbolic blender in the one-step
setting. The main goal along this third chapter is to prove the existence of blending regions for
IFS generated by generic diffeomorphisms, on both the real line M = R and the circle M = S*
close to the identity map id : M — M.

In Section §3.2 we will study blending region on the real line. We will introduce a type of
interval with a concrete configuration for a pair of maps fy, fi (see Figure 3.1(a)). It will be a
candidate to blending region for IFS( fo, f1). Denote by Diff’, (R) the set of orientation preserving

C"-diffeomorphisms on the real line.
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Definition (ss-intervals). Given ® = {fo, f1} C Diff} (R), an interval [po,p1] C R is called
ss-interval for IFS(®) if:

e [po,p1] = fo([po,p1]) U fi([po, p1)),
o (po,p1) NFix(f;) # 0 fori=1,2, and p; & Fix(f;) for i # j,

e py and p1 are attracting fized points of fo and f1 respectively.
We will denote by K3 a ss-interval [po, p1] for the iteration function system IFS(P).

The next theorem implies that any open set contained in a ss-interval for IFS(®), with gen-
erators close enough to the identity and with hyperbolic fixed points, is a blending region for
IFS(®). This theorem is a generalization of a lemma due to Duminy | |, which is part of
the proof of the so-called Duminy’s Theorem (see Theorem 3.27) about the dynamics of groups
of diffeomorphisms in the circle. We will prove this result using some different arguments from
the original proof of Duminy’s Lemma (see | | for details) and we will improve slightly the
conclusions of Duminy’s Theorem. We denote by Per(IFS(®)) the set of periodic points of IFS(®),
i.e., the set of points x = h(x) for some h # id in IFS(®P).

Theorem D (Duminy’s Lemma). Let K3® be a ss-interval for an iterated function system IFS(®)
with ® = {fo, f1} C Diffi(R) such that the fived point of fi|kss is hyperbolic. Then, there erists
€ > 0.17 such that if fO’K;S; fl’KgS are e-close to the identity in the C?-topology, it holds that

Ky C Per(IFS(¥)) and Ky = Orbg(z) for all z € Ky,
for every iterated function system IFS(¥) C*-close to IFS(®).

The Section §3.3.2 is concerned with the generalization of the above theorem for Morse-Smale
diffeomorphisms on the circle (see Theorem 3.35). This generalization is part of the proof of
a Denjoy type theorem for IFS. Remember that, taking into account the rotation number of
a diffeomorphism f of the circle we have three possibilities: (i) f has a periodic point, (ii) all
orbits (for forward iterates) of f and f~! are dense, and (iii) there is a wandering interval for f.
Wandering intervals are the gaps of a f-invariant Cantor set A C S, which is contained in the
w-limit for f of all points of S'. These dynamical properties can be easily translated for IFS:

Definition (Invariant minimal Cantor set). Let ® = {fo, f1} C Diff'(S') and A C S'. A subset
A C S* is said to be minimal invariant Cantor set for IFS(®) if

o A is a Cantor set and

e A = Orbg(z) for all z € A.

From Denjoy’s Theorem | | it follows that these Cantor sets cannot appear for diffeomor-
phisms on the circle with enough regularity and close to the identity. Namely, there is € > 0 such
that if f € Diff?(S') and it is e-close to identity in the C?-topology, then there are no minimal
invariant Cantor sets. Moreover, the following statements are equivalent: S! is minimal for the
iterated function systems IFS(f), and f does not have periodic points. When the number of gen-
erators of the IFS increases the periodic points are no longer the obstruction to the minimality.

Now, that role is played by the ss-intervals.
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Theorem E (Denjoy for IFS). There exists € > 0 such that if fo, fi € Diff2(S') are Morse-Smale
diffeomorphisms e-close to the identity in the C?-topology with no periodic point in common then,

there are no invariant minimal Cantor sets for IFS( fo, f1).

Moreover, denoting by n; of period of f;, the following conditions are equivalents:

o St is minimal for IFS(f)°, 1),

e there are no ss-intervals for IFS(fg°, fi").

Unlike what occurs for a single diffeomorphism f on the circle where S! cannot be C'-robust
minimal, in the case of IF'S, the robustness can be obtained. In fact, notice that the above theorem
is C1l-robust in the following sense:

Remark (C'-robustness). The assertions of the Denjoy’s Theorem for IFS are robust under C*-
perturbations of IFS(fo, f1), i.e., for every IFS(go, g1) where go and g1 are C*-perturbations of fo
and f1 respectively.

As a consequence of this Denjoy’s theorem for IFS, we will finish the third chapter of this
thesis showing a Spectral Decomposition Theorem on the circle. This theorem states that the
limit set of IFS(®) with ® = {fJ°, f"'}, where fo, f1 € Diff?(S!) in the hypothesis of the previous
theorem, is decomposed into finite union of disjoint basic intervals: isolated and transitive intervals
for IFS(®). A set A with AN Per(IFS(®)) # () is said isolated for IFS(®P) if there exists an open
set D such that A C D and A contains the closure of Per(IFS(®)) N D.

Theorem F (Spectral decomposition for IFS). There exists € > 0 such that if fo, fi € Diff?(S1)
are Morse-Smale diffeomorphisms of periods ng and ny, respectively, e-close to the identity in the
C?-topology and with no periodic point in common, then there are finitely many isolated, transitive
pairwise disjoint intervals K1, ..., Ky, for IFS(fy°, fi'*) such that

m

LIFS(f5°, i)

1
(e
=

=1

1

Moreover, this decomposition of the limit set of IFS(f)'°, f{"*) is C'-robust.

IV — Cycles in unfoldings of nilpotent singularities — In the last chapter we translate the
conclusions obtained in the first part of the thesis to the framework of vector fields . The main
result of this chapter is in collaboration with Santiago Ibanez and J. Angel Rodriguez and are
collected in | |.

The dynamics associated with heterodimensional cycles force us to consider diffeomorphisms
in dimension n > 3. It is well-known that these diffeomorphisms can be defined as Poincaré maps
on cross-sections of a vector field in R* near a cycle or a periodic orbit. Philosophically, dynamics
in discrete systems are lifted to the field of continuous systems by the suspension process. However,
the real interest lies in obtaining some manageable criterion to determine when a family of vector
fields has this or that dynamical behavior. The study of global bifurcations associated with different

cycles explains the dynamical transitions and the nature of the behavior. The presence of infinitely
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many horseshoes in a neighborhood of an orbit of Sil'nikov type is an example. However, proving
that a family of vector fields has a certain cycle is not easy, unless that family is constructed ad
hoc. This is the case in | | for a family of quadratic vector fields having Sil'nikov orbits. As an
alternative to this search of cycles, one can consider the proof of criteria that conclude the presence
of interesting dynamics determined from the simplest elements of a vector field: its singularities.
In these terms one may ask for the singularity of lower codimension (more common) from which
Sil'nikov homoclinic orbits (and therefore strange attractors) can be generically unfolded. A partial
answer was given in | | where the existence of these configurations was proved in the generic
unfoldings of nilpotent singularities of codimension four in R3. Later, in | | this result was
proved for the nilpotent singularity of codimension three. A nilpotent singularity is a C*° vector
field in R™ such that, in appropriate coordinates, in an neighborhood of the origin (equilibrium

point) it can be written as

n—1
0 0
Zﬂ?kﬂi + f(z1,.an) 5,
oxp Oy,
k=1
with f(z) = O(||z||?) where & = (21, ..., 2y). It is said to be a nilpotent singularity of codimension

n if it holds the generic condition 9% f/dz3(0) # 0.

Existence of strange attractors in the unfolding of a lower dimensional singularity, a Hopf-cero
singularity of codimension two, is studied in | |. The result in | | allows to conclude the
presence of strange attractors in the coupling of two Brusselator by linear diffusion | |. Hence,
complicated dynamics was proved to emerge in couple system, as Turing | | proposed and
Smale | | completed, regarding the genesis of oscillations. By a Brusselator we mean a cubic
bidimensional vector field which is proposed as a model in a chemistry reaction. The coupling of two
of these dynamics leads to a vector field having a nilpotent singularity of codimension four in R*.
The first objective proposed at the beginning of this thesis was the study of the generic unfolding
of these singularities to find cycles such that they could imply proper dynamics of dimension
n > 4: strange attractors with more than one positive Lyapunov exponent and heterodimensional
cycles. In | | we proved the existence of bifocal homoclinic orbits in every generic unfolding
of the nilpotent singularity of codimension four in R*.

Theorem G. In every generic unfolding of a four-dimensional nilpotent singularity of codimension

four there is a bifurcation hypersurface of bifocal homoclinic orbits.

Recall that a bifocal homoclinic orbit is a homoclinic connection to an equilibrium point of a
vector field on R* with two pairs of eigenvalues py, & iwy, with k& = 1,2, such that p; < 0 < py. The
Poincaré map defined in a neighborhood of this cycle will be a three-dimensional diffeomorphism,
susceptible to present a blender. We will prove the existence of suspended blenders for vector field
arbitrarily close to a Hamiltonian vector fields in R* with a non-degenerate bifocal homoclinic
orbit. For this Hamiltonian vector field the Poincaré map can be written, with a suitable choice
of coordinates, as

fi[=ee]® x [—co, co] = [—e,e]* x [—co, co], f(x,¢) = (Fu(x),c),

where F, has a hyperbolic maximal invariant set A, for |c| < ¢y conjugated to the Bernoulli shift
Yn(lel) (see Teorema 4.16). Moreover, the family of sets {Ac}o< <, satisfies that A._. contains the
dynamically continuation of A, for every e > 0 small enough. Similarly for the family {A.}_ co<e<0"
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These properties allow us to conjugate a subsystem of f to a symbolic skew-product of the form
® = 7 x id defined on ¥,,¢) x [-¢,¢] with 0 < [¢] < cp.

In order to prove the above theorem we will show that, for some parameter values, the limit
after rescaling of the generic unfolding of the nilpotent singularities is a family of Hamiltonian
vector fields with a non-degenerate bifocal homoclinic orbit. Perturbations on the hypersurface
of bifocal homoclinic orbits of each one of these Hamiltonian vector fields have a Poincaré return
map conjugated to a symbolic skew-product perturbation of ® = 7 x id. As follows from the third
chapter, generic one-step perturbations of ® = 7 x id has either, a blending region or its dynamics
is trivial. Thus, we will conclude the fourth chapter discussing the possible presence of suspended

blenders and heterodimensional cycles in the generic unfoldings of nilpotent singularities.



Robust cycles and blenders

One of the basic problems in the study of diffeomorphisms was the characterization of the
structurally stable dynamics. This was obtained by means of the hyperbolicity. Then the need
arises to know the obstructions to hyperbolicity. Two main mechanisms appear to yield robust
non-hyperbolic behavior: homoclinic tangencies and heterodimensional cycles. Blenders are
hyperbolic sets that appear as the subjacent mechanism leading to the generation of robust
heterodimensional cycles and robust homoclinic tangencies. Blender-horseshoes are examples
of blenders which can be constructed by means of skew-product diffeomorphisms called non-
normally hyperbolic horseshoes.

1.1 Hyperbolicity and stability

Given a C7"-diffeomorphism f of a Riemannian compact manifold M, we say that a f-invariant
compact set A C M is hyperbolic if there is a continuos D f-invariant splitting E3 @ E} of the
tangent bundle ThA M and there are constants C' > 0, A < 1, such that

1D f* ()| < CA*[Jof| - and  |[Dyf~" (w)]| < CA"||w]

for all v € Ej, w € EY

T

x € A and n > 1. The vector bundle £} and E} are the stable and
unstable directions of A. In particular, when A = M, the diffeomorphisms f is called Anosov

diffeomorphism.

A hyperbolic set A of a diffeomorphism f is called basic set if it is transitive (i.e. there is a
dense orbit of f in A), isolated (i.e. there is a neighborhood U of A such that A = N;ezf*(U))
and contains a dense subset of periodic points. It follows as a consequence of the continuity of the
D f-invariant splitting E3 @ E} of a hyperbolic set A that the dimension of £ and EY with z € A
is locally constant. In addition, if A is also transitive then these dimensions are constant. In this
case, the dimension of the stable bundle E} is called s-indez and is denoted by ind®*(A).

A relevant f-invariant compact set is the non-wandering set, denoted by Q(f), which consists
of the points € M such that for any neighborhood U of x, there is an integer n > 1 such that
f™(U)NU # 0. Note that the set of periodic points Per(f) is contained in Q(f). A diffeomorphism
f is called Aziom A or uniformly hyperbolic if Q(f) is a hyperbolic set for f and Per(f) is dense
in Q(f). In that case, the Spectral Decomposition Theorem due by Smale | | asserts that
the non-wandering set Q(f) is decomposed as a finite pairwise disjoint union of hyperbolic basic
set which are called basic pieces of the spectral decomposition. These basic pieces are hyperbolic
isolated homoclinic classes: a homoclinic class of a saddle P of f, denoted by H (P, f), is the closure

of the transverse intersections of the stable and unstable manifolds of the orbit of P. Notice that
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a homoclinic class that is not reduced to a saddle contains a horseshoe | ) |. In that

case, we say that the homoclinic class is non-trivial.

The homoclinic class H(P, f) can be equivalently defined as the closure of the set of the
saddles @ homoclinically related to P: the stable manifold of the orbit of () meets transversely the
unstable manifold of the orbit of P and vice-versa. Although all saddles homoclinically related
to P have the same s-index as P, the homoclinic class H(P, f) may contain periodic orbits of
different s-index from the s-index of P. As a final comment, notice that a homoclinic class is an

f-invariant transitive set with dense periodic points.

The following conjecture proposes the relation between the hyperbolicity and the structurally
stable dynamical behavior. We recall that a diffeomorphism f is C"-structurally stable if there is
a C"-neighborhood V of f such that every diffeomorphism g € V is C"-conjugated to f. At the
end of the 60’s Palis and Smale proposed in | | a complete characterization of the structurally
stable systems:

Conjeture (Palis-Smale’s Structural Stability Conjecture). A diffeomorphism f is C" -structurally
stable if and only if it is Aziom A and all the stable and unstable manifolds associated with the

points of the non-wandering set are transversal.

The additional condition about the general position between the stable and unstable manifold is
called strong transversality condition. Robbin | | and Robinson | | showed that Axiom A
and strong transversality condition are sufficient to structural stability. In addition, it is also
known that in presence of Axioma A, strong tranversality is a necessary condition for stability.
The hardest part was to prove that stable system should be uniformly hyperbolic. The key name
here is Maifie, who along several works developed new ideas and fundamental techniques that allow
him to give a positive answer to the stability conjecture. This result was achieved in | ], in
the C! topology:

Theorem 1.1. A diffeomorphism on a compact manifold is C'-structurally stable if and only if

it is Aziom A and verifies the strong transversality condition.

A weak property, called C" Q-stability is defined requiring C"-conjugacy only restricted to the

non-wandering set. Another conjecture in | | proposes a characterization of Q-stable system:

Conjeture (Palis-Smale’s 2-stability Conjecture). A diffeomorphism f is C" Q-stable if and only
if it is Aziom A and there is no basis pieces in their spectral decompositions cyclically related by
intersections of the corresponding stable and unstable manifolds.

The additional condition about the cyclically intersections between the stable and unstable
manifolds of basic pieces is called no-cycle condition. The Q-stability theorem of Smale [ |
states that the uniform hyperbolicity and no-cycle condition are sufficient in the C” sense. Palis
[ | proved that the no-cycle condition is necessary for {2-stability in any C” topology. Recall
that if f is a C''-structurally stable diffeomorphism then f is C! Q-stable. So, the conjecture was
proved by Palis | ] in the C! setting, based on the ideas of Maiie | |:

Theorem 1.2. A diffeomorphism on a compact manifold is C* Q-stable if and only if it is Aziom A

and verifies the no-cycle condition.
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Given ¢ > 0, a sequence {x, }nen is called e-pseudo-orbit of a diffeomorphism f if the distance
between f(z,) and x,4;1 is less than ¢ for all n € N. A point z is chain recurrent if for every
€ > 0 there are e-pseudo orbits starting and ending at . The set of all chain recurrent points is
called chain recurrent set and denoted by R(f). The chain recurrence class of = for f, denoted
by C(z, f), is the set of points y such that, for every € > 0, there are e-pseudo orbits starting at
x, passing e-close to y and ending at x. The diffeomorphism f is called R-hyperbolic if its chain
recurrent set is hyperbolic. By the Smale spectral theorem | |, this is equivalent to be Axiom
A and satisfy the no-cycle condition. Therefore, the C' )-stable systems are the R-hyperbolic
diffeomorphism. Actually, the R-hyperbolic systems coincide with the interior, respect to the C*
topology, of the set of diffeomorphisms whose all periodic orbits are hyperbolic | , |.

Although uniform hyperbolicity was originally intended to encompass a residual, or at least
dense subset of all dynamical systems, it was soon realized that this is not true. There are two
main mechanisms (see the following definition) that yield robustly non-hyperbolic behavior, that
is, whole open sets of non-hyperbolic systems. They are at the heart of recent developments that

we are going to review in the next sections.

Definition 1.1 (Homoclinic bifurcations). A diffeomorphism f: M — M has a

e homoclinic tangency associated with a transitive hyperbolic set A of f if there is a pair of
points x,y € A such that the stable manifold W*(x) of x and the unstable manifold W"(y)

of y have some non-transverse intersection.

e heterodimensional cycle associated with transitive hyperbolic sets A and % of f if these sets

have different s-indices and their invariant manifolds meet cyclically, that is, if
WA NWHE)#D and WU(A)NW(X) £ 0.
The heterodimensional cycle has coindex ¢ > 1 if |ind®(A) — ind®*(2)| = c.

The firsts examples of C''-open subsets of non-hyperbolic diffeomorphism were given by Abra-
ham, Smale | | and Simon | | for manifolds of dimension d > 4 and d = 3 respectively.
These examples arise from heterodimensional cycle. These cycles can only exist in dimension 3 or
higher and force the coexistence of periodic points with different s-indices inside the same transi-
tive set. The first robust example of non-hyperbolic diffeomorphisms on surface were constructed
by Newhouse | |, exploiting the homoclinic tangencies. In that work, Newhouse considers a
surface C?-diffeomorphism f with a homoclinic tangency g associated with a hyperbolic periodic
point p and a hyperbolic basic set A of f containing p (see Figure A). In order to obtain homoclinic
tangencies associated with A let consider a curve ¢ (called curve of tangencies) containing the ini-
tial homoclinic tangency and project the Cantor sets A* = ANW (p) and A* = ANW . (p) to £
along the stable, respectively unstable, leaves. This gives a pair of Cantor set K® and K" in the
curve £. Note that ¢ € K*NK". By the same construction, for any g close to f, one can obtain two
new Cantor sets K and K’ on the curve £ from A = AgNW (pg) and Ay = AgNW (pg) where
A4 and py are the continuation of A and p for g, respectively. Each intersection point between K
and K corresponds to a homoclinic tangency of Ag.

Now, the key ingredient is a kind of fractal dimension called thickness 7(K) of a Cantor set
K of the real line (see | | for details). The Gap Lemma | | states that if 7(Ag)7(Ay) > 1
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Fig. A: Homoclinic tangency

then either K7 N Ky # () or one of two Cantor sets is contained in a gap of the other one. The
geometric position of K and Kj implies that no Cantor set can be contained in a gap of the
other one. Hence these sets have non empty intersection.

We say that A is a thick hyperbolic set if the condition 7(A®)7(A*) > 1 is fulfilled. The final and
essential ingredient of Newhouse’s construction is that, the property of having a thick hyperbolic
set is C%-open. That is, for every g which is close to f in the C?-topology, the continuation of
A4 of Ais a thick hyperbolic set. This allows us to prove that if A is a thick hyperbolic set of f
then for any g C?-close to f, the Cantor set K ; intersects K and one gets C?-robust homoclinic

tangencies:

Definition 1.2 (Robust homoclinic bifurcation). A C”-diffeomorphism f has a

e ("-robust homoclinic tangency associated with a hyperbolic basic set A of f if there is a
C"-neighborhood V of f such that for every g € V the continuation Ay of A for g has a
homoclinic tangency. The neighborhood V is called C"-open of persistence of homoclinic

tangencies.

e ("-robust heterodimensional cycle associated with hyperbolic basic sets of f, A and 33, if there
1s a C"-neighborhood V of f such that every diffeomorphism g € V has a heterodimensional
cycle associated with the continuations Ay and X4 of A and 3, respectively.
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Note that, by Kupka-Smale theorem | , |, C"-generically, invariant manifolds of
periodic points are in general position. Hence, generically, the non-transverse intersections in a
robust homoclinic intersection (tangency or heterodimensional cycle) involve non-periodic points,

i.e., at least a non-trivial hyperbolic set.

Let V be the C"-open of persistence of homoclinic tangencies, in Definition 1.2. It is well known
(see | , |) that, in dimension two, there exits a dense subset D of V such that each g € D

exhibits a homoclinic tangency associated with a hyperbolic periodic point.

A dissipative saddle is a hyperbolic periodic point p which has the absolute value of the product
of the eigenvalues of D f"(p) less than one, where n is the period of p.

Newhouse in | | proved that, in dimension two, homoclinic tangencies associated with a
saddle of C2-diffeomorphisms yield thick horseshoes with C2-robust homoclinic tangencies. That
is, any C2-diffeomorphism with a hyperbolic periodic point such that both its stable and unstable
manifolds have a non-transverse intersection belongs to the closure of a C?-open of persistence
of homoclinic tangencies. With the same regularity assumption, theorems in | , | ex-
tend Newhouse result, proving that homoclinic tangencies in any dimension lead to C2-robust

homoclinic tangencies.

The above construction of thick horseshoes with robust tangencies involves distortion estimates
which are typically C2. The results in | | present some obstacles for carrying this construction
to the C'-topology: C'-generic surface diffeomorphisms do not have thick horseshoes. Recent
results by Moreira in | | are a strong indication that there are no surface diffeomorphisms
exhibiting C'-robust homoclinic tangencies:

Theorem 1.3. There are no C'-robust homoclinic tangencies associated with hyperbolic basic sets

of surface diffeomorphisms.

If every transitive hyperbolic set of a surface diffeomorphism is contained in a hyperbolic
basic set then Moreira’s result would imply the non existence of robust tangencies associated with
hyperbolic transitive sets of surface diffeomorphisms. This is an important step in direction of the
following conjeture:

Conjeture (Smale C'-density Conjecture). The uniform hyperbolic diffeomorphisms of a compact
surface S are dense in Diff'(S).

Heterodimensional cycles of coindex one yield C'-robust heterodimensional cycles of coindex
one after small C''-perturbation | |. However, in dimension d > 3, we do not know when and
how homoclinic tangencies may occur in a C''-robust way. Actually, all the known examples about
C'-robust tangencies also exhibit C'-robust heterodimensional cycles. Hence, it is natural to ex-
pect that robust tangencies lead to heterodimensional cycles (and so C'-robust heterodimensional

cycles) as it is conjectured in | |:

Conjeture (Bonatti). Let U be a Ct-open set of diffeomorphisms f having a hyperbolic basic set
Ay varying continuously with f and exhibiting a robust tangency. Then there is a C'-dense open
subset D of U such that for f € D there is a hyperbolic basic set Xy of different index as Ay and
such that f has a C*-robust heterodimensional cycle associated with Ay and Xy.

In dimension two, there are no robust cycles, so this conjecture means that there are no C''-

robust tangencies (see Theorem 1.3 and Smale C'-density Conjecture).
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1.2 Homoclinic bifurcations and blenders

At the end of the 80’s, Palis proposed a research line whose main goal was to get a geometri-
cal description about the behavior of most dynamical systems in compact manifold (see | ,

, |). According to | |, this program of research is known as mechanisms versus
phenomena. Mechanism (or dynamical configuration) means a simple dynamical configuration for
one diffeomorphism (involving for instance few periodic points and their invariant manifolds) that
has the following properties: it "creates or destroys" rich and different dynamics for nearby sys-
tems and it "generates itself", that is, the system exhibiting this configuration is not isolated.
For instance, homoclinic bifurcations (tangencies and heterodimensional cycles) are mechanisms.
Dynamical phenomenon means any dynamical property which provides a good global description
of the system (like hyperbolicity, transitivity, minimality, zero entropy, spectral decomposition)

and which happens on a "rather large" subset of systems.

We relate those above notions and say that a a dynamical configuration is a complete 0b-
struction to a dynamical phenomena, if it not only prevents the phenomenon to happen but it
also generates itself creating rich dynamics. It is common in the complement of the prescribed
dynamical phenomenon (see | | for more details).

We recall that Morse-Smale diffeomorphisms are those for which the set of non-wandering
points is finite and hyperbolic, and the invariant manifolds of the periodic orbits pairwise inter-
sect transversally. Those diffeomorphisms define "simple" dynamics, in particular they have no
horseshoes. We say that there is a transverse homoclinic intersection if the stable manifold of a
hyperbolic periodic point meets transversally its unstable manifold. This implies the existence of
horseshoes | , | and therefore "complicate" dynamical behavior.

In some sense, the following dichotomy is between simple dynamics (Morse-Smale) and com-
plicate dynamics (horseshoes). That is, the transverse homoclinic bifurcations are a complete

obstruction to the Morse-Smale dynamics:

Conjeture (Palis’s weak C"-density Conjecture). The set of Morse-Smale diffeomorphisms and
the set of diffeomorphisms that admit a transverse homoclinic intersection, are two disjoint open

sets whose union is dense in Diff" (M).

The weak C!-density Conjecture in 3-dimensional manifolds was proven by Bonatti, Gan and
Wen in | |. Recently, Crovisier | | proved it in any dimension:

Theorem 1.4. Any diffeomorphism can be C'-approzimated by a Morse-Smale diffeomorphism

or by one exhibiting a transverse homoclinic intersection.

As we mentioned before, there are two main local mechanisms associated with periodic saddles
for breaking hyperbolicity of systems: homoclinic tangency and heterodimensional cycle. Palis
conjectured that this homoclinic bifurcations are "always" responsible for non-hyperbolicity:

Conjeture (Palis’s C"-density Conjecture). The union of uniform hyperbolic diffeomorphisms and
diffeomorphisms having a homoclinic tangency or a heterodimensional cycle is dense in Diff" (M).

It is easy to see that this second conjecture implies the first one since the dynamics at a

homoclinic bifurcation can be perturbed in order to create a transverse homoclinic intersection.
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In addition, note that these conjectures hold when M is one-dimensional. Actually, in this case
Peixoto proved in | | that Morse-Smale diffeomorphisms are dense in Diff" (M) for r» > 1.
In dimension two, heterodimensional cycles do not exist and consequently this conjecture can be
written as a dichotomy between hyperbolic diffeomorphisms and homoclinic tangencies. In | ],
Pujals and Sambarino proved the C'-density Conjecture of Palis for surfaces:

Theorem 1.5. Any surface diffeomorphism can be C-approzimated either by uniform hyperbolic
diffeomorphisms or by diffeomorphisms exhibiting a homoclinic tangency.

Crovisier and Pujals in | | proved a slightly modified version of that mentioned Palis’s
conjecture in the C''-topology for any dimension introducing the next new weaker notion of hyper-
bolicity: a diffeomorphism is essentially hyperbolic provided that has a finite number of transitive
hyperbolic attractors and the union of their basin of attraction is open and dense in the manifold.
The essential hyperbolicity recovers the notion of Axiom A: most of the trajectories (in the Baire
category) converge to a finite number of transitive attractors that are well described from a both
topological and statistical point of view. However, the set of these diffeomorphism is not open a
priori.

Theorem 1.6. Any diffeomorphism can be C'-approzimated either by an essentially hyperbolic dif-
feomorphisms or by diffeomorphisms exhibiting a homoclinic tangency or heterodimensional cycle.

The Palis’s C''-density Conjecture is known to be true for diffeomorphisms whose dynamics

splits into finitely many pieces only:

Theorem 1.7. Any diffeomorphism can be C'-approzimated by a diffeomorphism which is R-
hyperbolic or has a heterodimensional cycle or has infinitely many chain-recurrence classes.

The above result was proved on surfaces by Mané | | and for compact manifolds of
dimension d > 3 by Abdenur | | and Gan-Wen | |. See also | |.
Previous results of Bonatti and Diaz | | proved that if any diffeomorphism having a

heterodimensional coindex one cycle associated with a pair of saddles is C'-approximated by
diffeomorphisms having a C!-robust heterodimensional coindex one cycle. Recently in | |
showed that if at least one of the homoclinic classes of these saddles is non-trivial then the C'-
robust heterodimensional coindex one cycles are associated with a hyperbolic basic set containing
the continuations of the saddles. Bering in mind this remark, the previous theorem was formulated
in | | for tame diffeomorphisms: a diffeomorphism is called tame if it has a finitely many
chain recurrent classes in a robust way. Let denote by 7 (M) the set of tame diffeomorphisms of
a manifold M. Note that this set is C''-open in Diff'(M). The set W(M) = Diff} (M) \ T (M) is
called wild diffeomorphism set. Bonatti and Diaz proved:

Theorem 1.8. There is an open dense subset D of T (M) such that every f € D is either R-

hyperbolic or has a C'-robust heterodimensional cycle.

This result also holds in the Cl-settings of the conservative diffeomorphisms (see | D.
These comments and the Bonatti’s Conjecture lead to the following strong version of Palis’s C'!-

density Conjecture:

Conjeture (Bonatti-Diaz). The union of R-hyperbolic diffeomorphism and diffeomorphisms hav-
ing a C*-robust heterodimensional cycle is dense in Diff*(M).
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Fig. B: Heterodimensional cycle

A C'-robust heterodimensional cycle example

We will construct examples of persistent non-hyperbolic diffeomorphisms in the C'-topology. These
examples consist of diffeomorphism exhibiting a C'-robust heterodimensional cycle. Note again
that heterodimensional cycles may only exist in dimension three or higher. In order to simplify
the next exposition, we will work in a compact manifold M of dimension three.

A simple example of heterodimensional cycle is associated with periodic points p and ¢ as it
is shown in Figure B. Since the one dimensional manifolds of p and g have a quasi-transverse
intersection, that is, there is x € W*(q) N W*¥(p) such that

T.W*(q) + TuW*(p) = T:W*(q) @ T.W"(p) # T M,

the heterodimensional cycle associated with p and ¢ is not robust. So, in order to construct a
robust heterodimensional cycle, we must involve at least a non-trivial transitive hyperbolic basic
set. Thus, we introduce non-trivial transitive hyperbolic set A contained p. To obtain a robust
cycle it is necessary that for any diffeomorphism g close to f the stable manifold W*(q4) of the
continuation ¢, of ¢ for g meets the local unstable manifold W} _(Ag) of the continuation Ay of A
for g. Recall that
Wise(Ag) = | Wik(@)
x€Ay
and therefore the persistence of the heterodimensional cycle is the intersection between W?*(q,) and

W (x) for some x € A. We also can assume that ¢ belongs to a non-trivial transitive hyperbolic
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Fig. C: C'-robust heterodimensional cycles

set 2 so that the robustness of the heterodimensional cycle is reduced to the intersection between
the stable leaf of the continuation ¥, of ¥ for g, that is W*(x) where 2 € ¥, and the local unstable
leaf W}t () of Ay. In general, if ¥ and A are Cantor sets then these laminations are a Cantor
sets of segments and therefore persistence of the heterodimensional cycle may resemble to the
construction of robust tangencies of Newhouse. However, the idea here to obtain the robustness is
different. It is about increasing the topological dimension of the local unstable manifold of A in a
robust sense. That is, for any diffeomorphism ¢ close in the C'-topology of f, the local unstable
manifold W} (Ay) of the continuation Ay of A is a topological surface.

The construction we will present here is based in the examples of Abraham-Smale [AS70],
Simon [Sim72] or more recently [Asa0g]. This construction uses a non-trivial (not a periodic orbit)
hyperbolic transitive attractor A on surface. Plykin [Ply74] proved that if A is not just a periodic
orbit, then the trapping region of A must have at least three holes removed (see also [Rob99]).
Because of this theorem, any of these attractors are called Plykin attractors.

We consider a surface diffeomorphism F' : S — S with a Plykin repeller ¥, i.e. a Plykin
attractor for F~1. Since ¥ is a hyperbolic set then one has that 755 = E** @ E* where E** and
EY are, respectively, the stable and unstable one-dimensional vector bundles. In particular, for
each point € ¥ we follow the existence of one dimensional local unstable manifold W} (z, F).
Since ¥ is a repeller, its local unstable manifold W} (%, F) is a local compact neighborhood N of

Y. on the surface. Namely, this local unstable manifold is foliated by the one dimensional leaves



10 1. Robust cycles and blenders

W (x,F), x € ¥. One can embed N x [—1,1] in a compact three dimensional M and consider
the diffeomorphism f € Diff! (M) coinciding with the map

f(xay) = (F($)7>‘y)> (:B:y) €3 X [_171}

where 0 < A < 1 small enough. The set A = X x {0} is a hyperbolic basic set of f. The tangent
bundle Ty M splits in £} ® E} where E{ = E* @ E and EY is one-dimensional bundle. However,
the unstable manifold of A is a topological surface homeomorphic to N x {0}. We assume that
the two dimensional stable manifold W#(A, f) of A transversally intersects the unstable manifold
of an extra hyperbolic periodic point ¢ of s-index equal to one. Also, we suppose that W?*(q, f)
quasi-transversally meets the local unstable manifold W} ((z,0), f) = W.(x, F)) x {0} of some
point (z,0) € A. Hence, f exhibits a heterodimensional cycle associated with A and ¢q. Moreover,
since the stable manifold of ¢ transversally intersects the embedded repelling region of ¥ (see
Figure C) then W5(q, f) and W¥(A, f) persistently intersect and so the heterodimensional cycle
associated with A and g is C'-robust.

The hyperbolic basic set A in the above example plays the role of thick horseshoes in Newhouse
construction. In fact, the characteristic property of that basis set is that its unstable manifold
intersects every one-dimensional disks contained in an open set as shown in Figure C. From this
motivation we introduce the general definition of blender. This definition emphasizes the geometric
aspects of a blender where the two key ingredients are the existence of a dominated splitting and
of a superposition region. A splitting TAM = FE1 @ - - - @ E} over a f-invariant compact set A of a
manifold M it is called dominated splitting if it is D f-invariant and there exist constants C' > 0
and 0 < A < 1 such that for every i < j, every x € A and every pair of unit vector u € F;(x)
and v € Ej(z), one has |D,f"(u)|| < CX*[|Dyf~"(v)| for all n > 1 and the dimension of E;(x)
is independent of x € A for every i € {1,...,k}.

Definition 1.3 (Blenders). Consider f a C'-diffeomorphism of compact manifold M. Let T ¢ M
be a transitive hyperbolic set of f with a dominated splitting of the form E®*° & E @ E", where
its stable bundle E° = E*° & E has dimension equal to s > 2 and E° is one-dimensional. We

say that the set T' is a cs-blender if has a C'-robust superposition region B:

There are a C'-neighborhood V of f and a C'-open set B of embeddings of s — 1 dimensional
disks D?® into M such that for every diffeomorphism g € V, every disk D® € B intersects the local
unstable manifold W}t (L'g) of the continuation I'y of I for g.

A cu-blender for f is defined as a cs-blender for f~1.

By definition, the property of a diffeomorphism having a cs-blender is a C'-robust property.

The notion of a blender was introduced in | | as a class of examples, without a precise and
formal definition. The above definition of blenders is given in | |. Blenders were used to
get Cl-robust transitivity, | |, and robust heterodimensional cycles, | |. The relevance

of blenders comes from their internal geometry and not from their dynamics: a cs-blender is a
(uniformly) hyperbolic transitive set whose unstable set robustly has Hausdorff dimension greater
than its unstable bundle. In | | Bonatti and Diaz defined a special class of blenders which
they called blender-horseshoes, a sort of hyperbolic basic sets conjugated with a Smale horseshoe
with geometrical properties resembling the thick horseshoes introduced by Newhouse. In this work,
in the context of critical dynamics (some suitable non-domination property), is showed that the

blender-horseshoes yield C'-robust tangencies.
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1.2.1 Non-normally hyperbolic horseshoes

In the example which motivated the definition of blender we consider a hyperbolic transitive
basic set which is a normally repeller. That is, a planar repeller embedded in a three dimensional
manifold, as an invariant, normally contracting submanifold. This section shows that it is also
possible to embed a horseshoe in a higher dimensional manifold increasing the dimension of the
unstable manifold. Following the results in | |, we will show as a horseshoe can be perturbed
to obtain a thick horseshoe where thick means with Hausdorff dimension greater or equal to one.
That non-normally hyperbolic horseshoe explains how invariant manifolds (stable or unstable)
associated with a hyperbolic bundle of dimension k may behave topologically as a manifold of
dimension k + 1. Firstly, we recall the concept of Hausdorff dimension.

Given « > 0, the Hausdorff a-measure of a compact space X is
me(X) = lim inf diam(U)“,
e—0t
veu

where the infimum is taken over all finite coverings U of X by sets with diameter less than €. Then
there is a unique d € [0, 00] such that my(X) = 0o if & < d and my(X) = 0 if @ > d. We will
denote d = HD(X) and it is said to be Hausdorff dimension of X. Here we make used of the fact
that Hausdorff dimension is non-increasing under Lipschitz maps.

Since our construction is local, it is not restrictive to consider M = R"*! n > 2 and we do
so from now on. We begin taking a C"-diffeomorphism F' of R™ with a basic set A (a horseshoe)
such that F'|, is conjugated to the full shift of two symbols. Assume we can split R™ into stable
and unstable variables R” = R® x R" such that

A=()F\(R), with R=[-1,1]° x [-1,1]
1€EZ

and F~'(R)N R consisting of two connected component Ry = [—1,1]* x Ry and Ry = [—1,1]* x Ry.
We take F' to be affine on each of these components: there are two linear maps

Si:R* >R and U;: R* - RY i=1,2,
such that

S; 0
DF|, ="' , Sl U <1/2, i=1,2.
|2, (0 Ui) 1Sill U7l < 1/2, i

Consider 1/2 < X < 1 and the diffeomorphism
R XR=>R"xR, f(X,z)=(F(X),Az).

Note that f has a horseshoe I'y = A x {0} and HD(I'y) = HD(A). Let P = (p®,p*) be some fixed
point of F'in A. Then p = (P,0) is a hyperbolic fixed point of f and

We(p, f) = WS (P, F) x R and Wp, f) = WP, F) x {0}.

Assume that every contracting eigenvalue of DF(P) is smaller than 1/2 and then the strong stable
manifold of p is

W*(p, f) = W*(P, F) x {0}.
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Here, the tangent bundle T,,M splits into £* @ E* where E* = E** @ E* and
E* = (R* x {0“} x {0}), E“ =({0°} x{0“} xR), E“=({0°} xR* x {0}).

Since W*(P, F) and W*(P, F') meet each other transversely at some X € R™ the manifolds
W(p, f) and W*5(p, f) have a quasi-transverse intersection at = (X,0). Then we consider an
arc of C"-diffeomorphisms { fu}ue[—Ll}, with fo = f, which unfolds generically this intersection.
This arc is defined by

ful(a®,2%), ) = (F(2°,2%), (2", x))

where

) Az if %€ Ry,
a AT+ [ if 2% € Ry.

The following proposition shows an important geometrical property of this generic unfolding
of a normally hyperbolic horseshoe (strong homoclinic intersection). As a consequence of this
geometrical property we obtain a thick continuation horseshoes and increasing the topological
dimension of the unstable manifold.

Proposition 1.9. For each pu € [—1,1], there is a cube Cy, = R x I, where I, is the close interval
of endpoint 0 and (1 — X)~! such that the unstable manifold W"(p,, f.) of the continuation p,,
of p for f,, intersects transversely any cs-strip of the form

[—1,1)% x {z"} x J,  where J C I, is an open interval and z" € R1 U R.
Furthermore, the continuation I, of T'o =T'y for f, satisfies HD(I',,) > 1 for every p # 0.
Proof. Suppose p1 > 0. The case u < 0 is completely analogous. Set I, = [0, u(1 — X\)7!] and

let p, = (pz,pﬁ, 0) be the continuation of p for f,,. The following claim is the procedure of the
classical blender argument in | |.

Claim 1.9.1. Let J C I, be an open interval and x* € R1 U Ry. Then, either
. f;l([—l, 1]% x {z"} x J) intersects W (pu, fu),
e or it contains at least one cs-strip
[—1,1)° x {&"} x J with &€ RyURy, JC I,
and the width |J| = X~1J| > |J|.

Proof of the claim. Note that the image by F~' of a s-strip [—1,1]* x {2"} C Ry U Ry contains
two disjoint s-strip. That is, there exist 2} € Ry and zf§ € Ra such that

F7H(=1,10° x {2*}) O ([=1, 1) x {2 }) U ([=1,1]° x {23}).

Take ¢; : I, — I, given by ¢; = ¢p|r,x1,, i = 1,2. Since X > 1/2, I, = ¢1(I,,) U ¢2(I,). Thus
either J C ¢;(I,,) for some i or ¢1(I,,)Na(I,) C J. In the first case, we have that J = ¢; ' (J) C I,
with the width |.J| = A~!|.J| and FoH(=1108 x{a) x J) D [=1,1)° x {z}'} x J. In the other case,
0 € ¢ (J) and so St (=110 x {2} x J) D [—1,1]° x {«}} x {0}. Note that

WigePus fu) = {pj} > [=1,1]* x {0}

and therefore the image by f;l of the cs-strip [—1,1]° x {a"} x J intersects W} (pu, fu)- O
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Repeating this procedure, we get an intersection point between W} (pu, fu) and a backward
iterate of the cs-strip [—1,1]® x {z"} x J. It gives in turn a transverse intersection point between

the initial cs-strip and W*"(p,, fu). This ends the proof of the first part of the proposition.

As for the second one, it is now a direct consequence. From the first part of this lemma, for
all open interval J C I, one has the unstable manifold W"(p,, f.) of p, transversally intersect
the cs-strip [—1,1]* x {pj;} x J. Note that this cs-strip is contained in W, (py, fu.) then for every
J C I, open interval

([=1,1]° x {pZ} xJ)N Wu(pmfu) N Ws(p/u f,u) NCy # 0.

Therefore I, C 7(H (pu, fu)), where 7 : R x R = R, n(X,z) = .

Denote by I', the continuation for f,, of the basic set 'y = Ax {0} of fo. Observe that A, is the
maximal invariant set in €, = R x I, and coincides with the closure of all transverse homoclinic
points of p,, in C,. That is, 'y, = H(py, fu) N C,. Finally, since 7 is a Lipschitz map, it follows
that

HD(T',) > HD(n(T',)) > 1,

which proves the lemma. ]

1.2.2 Blender-horseshoes

Blender-horseshoe was introduced in | | as a special type of blender. A cs-blender-horseshoe
I" is the maximal invariant set in a cube C and it has a hyperbolic splitting with three non-trivial
bundles

TrM = E* & E ® E*,

such that the stable bundle of I' is £° = E% ¢ E° and E° is one-dimensional. Moreover, the
set I' is conjugated to the complete shift of two symbols (the usual Smale horseshoes). Thus the
blender has exactly two fixed points, say P and @, called distinguished points of the blender.

Consider the cube
C=[-1,1]"" = [-1,1]® x [-1,1] x [-1,1]“
with n > 2. We split the boundary of C' into three parts:

9°C = 9([~1,1°) x [~1,1] x [~1,1]%,
9°C = [~1,1]° x [-1,1] x {—1,1} x [-1,—1]",
9UC = [~1,1]° x [-1,1] x 9[-1,1]“.

Let us define a local diffeomorphism f: C — R""! having a maximal invariant set I" in the
cube C,
r=r©
1E€EL
and satisfying the following C'-robust condition (BH1)-(BH6). Blender-horseshoes will be defined
through this local diffeomorphism (see Definition 1.7).
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Fig. D: Reference cube of blender-horseshoe

(BH1) Associated Markov partition: The intersection f(C')NC consist of two connected component,
denoted f(A) and f(B). Furthermore,

— The sets A and B are the non-empty connected components of f~1(C)N C.
— f(A) U f(B) is disjoint from 9°C' U 9°C' and AU B is disjoint from 0"C.

More precisely,

f(A)Uf(B) C (-1,1)° x (=1,1) x [-1,1]*
AUBC[-1,1° x [-1,1] x (=1,1)"

(BH2) Cone-fields: There are families of cones C(x), C3*(x), C4(x) define for each o € (0,1) and
r € R" as

C3(w) = {(v°,05,0%) ER* SREORY = TLM : o] < afjo® + o]},
(05,00 ERTPREPRY =T, M = ||v°+ 0" < «f[v?]},
Ci(x) ={(v*,v%v") e REOR @GR =T, M : ||v® 4+ v < af[v"|}.

)
@
S
S~—
Il
—~

These cone-fields satisfice the following properties: there is 0 < o/ < « such that, for every

z e f(A)Uf(B)
DfHCa(x)) € Cu(fH(w)) and DfTHC () C CI(fH(2)),

and for every x € AU B
Df(Co(x)) C Co(f()).

Moreover, the cones-field C¥ and C? are uniformly expanding and contracting respectively.
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As a consequence of (BH2), the maximal invariant set I' in the cube C' has a hyperbolic
splitting TtM = E° @& E* where E° = E® @ E. We say that E® and E° are the strong
unstable bundle and the one-dimensional central-stable bundle of I', respectively. Thus, by (BH1),
{A, B} is a Markov partition generating A. Therefore the dynamics of f in A is conjugate to the
full shift of two symbols. In particular, the hyperbolic set A contains exactly two fixed points
of f, P € Aand Q € B. The local invariant manifolds W (P), WS (P) and W} (P) are the

connected components of the intersections of W*(P)NC, W#*(P)NC and W*(P)NC containing
P, respectively. The definition of the local invariant manifolds of @) is analogous.

Definition 1.4 (ss-disk). A disk A C [—1,1]*xRxR" of dimension s is a ss-disk if T,A C C3°(x)
for all z € A and OA C O([—1,1)%) x R x R".

(BH3) ss-disk through the local unstable manifold of P and Q: Let A and A’ be two different
ss-disks such that ANW}Y (P) # 0 and AN W} (P) # 0. Then

ANJC=ANoC=ANA =0.

Similar assumption for ss-disks through the local unstable manifold of Q.

There are two different homotopy classes of ss-disks contained in [—1,1]° x R x [—1,1]* and
disjoint from W} (P). We call these classes ss-disks at the right and at the left of W} (P). We
use the following criterion:

Definition 1.5 (ss-disk at the right and left). The ss-disks that do not intersect W} (P) in the
homotopy class of Wi (Q) are at the right of W}t (P). The ss-disks disjoint from W} (P) in the

loc

other homotopy class are at the left of W .(P). Similarly ss-disks at the left and at the right of
WE(Q), where ss-disks at the left of W (Q) are in the class of W2 (P).

(BH4) Position of preimages of ss-disk (I): Given any ss-disk A C C, the following holds:

i) if A is at the right of W (P) then f~1(AnN f(A)) is a ss-disk at the right of W (P),
ii) if A is at the left of W (P) then f~1(A N f(A)) is a ss-disk at the left of W} (P),
iii) if A is at the right of W (Q) then f~1(AN f(B)) is a ss-disk at the right of W} (Q),
iv) if A is at the left of W (Q) then f~1(A N f(B)) is a ss-disk at the left of W} (P),
v) if A is at the left of W (P) or AN WL (P) # 0 then f~Y(A N f(B)) is a ss-disk at

the left of W} (P), and

vi) if A is at the right of W%.(Q) or ANWS (Q) # 0 then f~1(AN f(A)) is a ss-disk at
the right of W} .(Q).

Finally, we state the last condition (which will play a key role) in the definition of blender-
horseshoes. We need the following concept:
Definition 1.6 (ss-disk in between). A ss-disk is in between W} (P) and W} .(Q) if it is a
ss-disk at the right of W (P) and at the left of W} (Q).

(BH5) Position of preimages of ss-disk (I): Let A be a ss-disk in between W} _(P) and W} .(Q).
Then either f~1(AN f(A)) or f~1(AN f(B)) is a ss-disk in between W _(P) and W},(Q).
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As a consequence of (BH4)-(BH5) we obtain an open region of ss-disk in between:

Remark 1.10 (C'-open set of embedding ss-disk). There is a non-empty open subset U of C
such that any ss-disk through a point x € U is in between W (P) and W} .(Q). In particular,
every ss-disk A C [—1,1]° x R x [=1,1]" in between W .(P) and W} (Q) is contained in C and

is also disjoint from 0°C.

We are now ready to define blender-horseshoes:

Definition 1.7 (Blender-horseshoes). Let M be a manifold of dimension n >3 and f: M — M
be a C'-differomorphism. A hyperbolic set T of f is a cs-blender-horseshoe if there are a cube C
and families of cone-fields C*, C**, and C* verifying conditions (BH1)-(BH5).

We say that C' is the reference cube of the cs-blender-horseshoe I' and that the saddles P and
Q are distinguished saddles points of I'. A cu-blender-horseshoe is a cs-blender-horseshoe for f1.

In | | is shown that the conditions (BH1)-(BHS5) are C!-robust. This means that there is a
C'-neighborhood V of f such that for all g € V the continuation I’y of T for g is a blender-horseshoe
with reference cube C' and distinguished saddles points P, and Q).

Definition 1.8 (cs-strip). A cs-strip S through the cube C is the image by a diffeomorphism
¢: [—1,1)° x [-1,1] = C such that:

o 1S CCi(x) forallx € S,

o for each t € [—1,1] the curves Sy = ¢([—1,1]%,t) satisfice that TSy C C*(x) for all x € Sy
and 0°Sy = ¢(0(]—1,1]°),t) C 9°C.

The width of S, denoted by |S|, is the minimal length of the curves tangents to the central-stable
direction E® contained in S joining ¢([—1,1]%, —1) and ¢(]—1,1]°,1).

The following lemma shows that a cs-blender-horseshoe I' is a cs-blender in the sense of
Definition 1.3, where the ss-disks in between W3 (P) and W} .(Q) define its superposition region.
Again, the argument here is the classical blender argument in | ].

Lemma 1.11. Let ' be a blender-horseshoe of a diffeomorphism f with reference cube C' and
distinguished saddles P and Q. Then every ss-disk in between W (P) and W' .(Q) intersects
Wige(I').-

Proof. Note that a cs-strip S is foliated by the family of ss-disk S; where ¢ € [—1,1]. We say that
a cs-strip S is in between W} (P) and W} (Q) if all of ss-disk S; are in between W} (P) and

Wise(Q).

Claim 1.11.1. Let S be a cs-strip in between Wi (P) and W} .(Q). Then, there is X > 1 such
that either

o f71(S) intersects W (P),

e or it contains at least one cs-strip S in between WE(P) and W .(Q) with width 15| > \|S].
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Proof. Since S C C is a cs-strip foliated by ss-disk S;, then f~!(S) contains at least the union of
two cs-strip f~1(S N f(A)) and f~1(SN f(B)) by the hypothesis (B5). Their width is larger than
A|S|, where A > 1 is a lower bound of the expansion of Df~! in the central-stable direction E°
inside C'. We assume by contradiction that neither of them intersect W}%_ (P) nor it is a cs-strip in
between W} (P) and W% (Q). Since S is cs-strip in between W}% (P) and W} _(Q), in particular,
for each t € [—1, 1] one has that Sy is a ss-strip at the right of W} _(P) and at the left of W}’ (Q).
Thus, by (BH5) the ss-strip f~1(S; N f(A)) is at the right of W} (P). By assumption, it is also
at the right of W} (Q). The same argument for the ss-strip f~!(S;N f(B)) shows that it is at the
left of W _(P). However, this contradicts (BH6) since either f~1(S; N f(A)) or f~1(S; N f(B)) is
a ss-disk in between W} (P) and W} (Q). O

Repeating this procedure, we get an intersection point between W} _(P) and a backward iterate
of the cs-strip S. It gives in turn a transverse intersection point between the initial cs-strip and
WH"(P). Let D® be a ss-disk in between W} (P) and W}".(Q). Consider a nested sequence of
cs-strip S™ such that for some t,, € [~1,1] the ss-disk S;* = D? for all n > 1. Then by the above
observation W¥(P) N S™ # () for all n > 1. Now, for each n € N, we consider z, € ' N W*(P)
such that W} _(2,) NS™ # (. Let z € T" be an accumulation point of the sequence (zy), C I'. Then
z € TNW(P) and from the election of the nested sequence of cs-strip S™ (that is D* C S"*! C S™)
it follows W} (2) N D® # (. Therefore W} (') intersects every ss-disk between W} (P) and
W.(Q) and we conclude the proof. O

A blender-horseshoes example: non-normally hyperbolic horseshoes

Now, we will show that the non-normally hyperbolic horseshoes construct in §1.2.1 are really
cs-blender-horseshoes. We recall that for each fixed A € (1/2,1), we constructed an arc of local
C"-diffeomorphism { fx .} ue—1,1] of R"*! given by

fur(X;x) = (F(X), oxu(X, 2)) (1.1)
where F': R®™ — R" has an affine Smale horseshoe A with Markov partition {Rl, Rg} and
Az if X € R,

AT+ p if XeR,.

We denote by I'y , the maximal invariant set of f) , in the cube C), = R x I, given in the

(X, @) = { (1.2)

Proposition 1.9. Let C' be a big cube containing C) ,, for all ;€ [-1,1] and A < 1 close to 1 such
that I'y , is also the maximal invariant set in C. Recall that I'y g = A x {0} and thus f)o has
two different fixed points p = (P,0) and ¢ = (Q,0) in I'y o. Let py , and ¢y, be the continuation
points of p and q for f) .

Proposition 1.12. For every A < 1 close to 1 and p € [—1,1], the set I'y, is a cs-blender-

horseshoe with reference cube C' and distinguished saddles point py , and qy .

The proof of this proposition can be found in | , Propisition 5.1]. In the next chapter,
we will give an estimate on how much should be A close to 1. Note that F| is conjugated to
symbolic dynamics. For this reason, we will focus to understand how the C'-perturbations of
this class of non-normally hyperbolic skew-product diffeomorphisms can be studied by means of
skew-products with symbolic dynamics on the base. This allows us to know more about this class

of blender-horseshoe examples.
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Symbolic blenders

Remarkable partially hyperbolic diffeomorphisms are the skew-products over hyperbolic sets,
namely, over horseshoes. These horseshoes in the base are well understood from symbolic
dynamics. In fact, it shows that C'-perturbations of a dominated skew-product diffeomor-
phisms of this type can be understood through the study of perturbations of symbolic Hélder
skew-products. Geometrical properties as the existence of strong stable and unstable sets,
holonomies or invariant graphs, are studied for symbolic skew-products. Symbolic ¢s-blender-
horseshoes are introduced as locally maximal invariant sets of symbolic Holder skew-products
with contracting fiber maps. These invariant sets meet, in a robust sense, any almost horizon-
tal disk through an open region and thus, they are understood as blenders with center bundle
of any dimension. Symbolic blender-horseshoe examples are constructed from dominated
symbolic one-step skew-product maps with covering property in a bounded open set.

2.1 Partial hyperbolicity and skew-product diffeomorphisms

An important restriction in the general definition of cs-blender, Definition 1.3, is that the center
direction £ of the blender is one-dimensional. This is an important constrain for applications
in several settings where the center bundle is two-dimensional. Thus, a natural question is to
construct blenders where this center bundle has dimension bigger than one. A first approach to
this problem was done by Nassiri-Pujals in | | where symbolic blenders were introduced to

build robust transitive sets in symplectic diffeomorphisms and Hamiltonian systems.

The construction of blender-horseshoes involves a diffeomorphism f defined in a reference
cube C' = [-1,1]"", n > 2. The blender-horseshoe is the maximal invariant set I of f in C
which is conjugated to a Smale horseshoe. Blender-horseshoes examples (non-normally hyperbolic
horseshoes) are constructed in the context of skew-product C!-diffeomorphisms

f:OCR"XR—=R"xR,  f(z,y) = (F(z),é(z,y)),

where F' : R® — R”™ has a horseshoe A C [~1,1]" and ¢(x,-): R — R is a C'-contraction. A
problem in this context (regarding the robustness of the blender) is that the diffeomorphisms g
close to f are not necessarily skew-product maps. This difficulty is solved using the normal hyper-
bolic theory | | since with additional assumptions concerning the strength of the hyperbolic
splitting on C' we can conclude that g is conjugated to a skew-product map. In that case, the open
set V in Definition 1.3 can be taken consisting of skew-product maps. Also, since F'|, is conjugated
to the Bernoulli shift, these blender-horseshoes examples can be studied from the symbolic point
of view. In what follows of this section we will explain the details of this reduction. Firstly, it is

necessarily to introduce partial hyperbolic diffeomorphisms.
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2.1.1 Partially hyperbolic diffeomorphisms

We say that a C'-diffeomorphism f : M — M of a compact Riemannian manifold M is partially
hyperbolic if there is a nontrivial D f-invariant splitting of the tangent bundle

TM = E* @ E°® E* (2.1)

and there exists a Riemannian metric for which we can choose continuous positives functions v,
v, v and ¥ with
v, 0 <1 and v<y<A <ot (2.2)

such that, for any unit vector v € T, M,

| Dz f(v)]| < v(z) itveE;, (2.3)
(@) <|Daf(v)|| <A(x)™" ifve B, (2.4)
o(z)7t <||Def ()] ifveEY. (2.5)

In another words, D, f|gs is a uniform contraction, D, f|gu is a uniform expansion, and, the
behavior of Dy f|ge lies in between those two (not quite as contracting nor as expanding, respec-
tively). Partial hyperbolicity is a C'-open condition: any diffeomorphism sufficiently C!-close to
a partially hyperbolic diffeomorphism is itself partially hyperbolic.

The stable and unstable bundles E° and EY of f are uniquely integrable and their integral
manifolds form two transverse (continuous) foliations W#® and W", whose leaves are immersed
submanifolds of the same class of differentiability as f. These foliations are referred to as the

strong stable and strong unstable foliations. They are f-invariant, meaning that
W () = W*(f(z)) and [fTHW"(2)) = W (f~ (2)),

where W**(x) and W"*(x) denote the leaves of W?* and W*, respectively, passing through = € M.

The center bundle E° is not always integrable. An invariant center foliation is obtain assuming
that f is dynamical coherent. A partial hyperbolic diffeomorphism f is said to be dynamically co-
herent if there exist f-invariant center-stable and center-unstable foliations YW and W<, tangent
to the bundles E* & E°¢ and E° @ EY, respectively. An invariant center foliation W€ is followed
intersecting the leaves of W and W (see | |). It is not known whether every perturbation
of a dynamically coherent diffeomorphism is dynamically coherent, but this holds for systems that
are plaque expansive. In order to define plaque expansivity, we introduce the notion of central-
plaque. A central-plaque of a small enough length 6 > 0 in W through « € M, denoted by Wy (x),
is the connected component of W¢(z) N B(x,§) containing x, where W¢(z) is the leaf of W¢
passing through of z and B(z,d) denotes the open ball centering in x of radius ¢. Then, roughly
speaking, f is plaque expansive if there exists € > 0 such that any two e-pseudo-orbits in different
central-plaques will eventually (under forward or backward iterates) be separated by a distance ¢.
The notion of plaque expansiveness was introduced by Hirsch, Pugh, and Shub | |. They
proved, among other things, that any C'-perturbation of a plaque expansive partial hyperbolic
diffeomorphism is dynamically coherent. Plaque expansiveness holds in a variety of natural set-
tings; in particular if f is dynamically coherent, and either W€ is a C' foliation or the restriction
of f to W leaves is an isometry, then f is plaque expansive, and so every C''-perturbation of f is

dynamically coherent.
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If f is dynamically coherent, then each leaf of W is simultaneously subfoliated by the leaves
of W€ and by the leaves of W?. Similarly W is subfoliated by W¢ and W*. This implies that
for any two points z,y € M with y € W*¥(z) there is a homeomorphism A3 , : W§(z) — W5(y)
between central-plaques Wy (z) and W§(y) with the property that h; () = y and, in general,

B, (2) € W™ (2) N WE(y).

We refer to h3 , as a (local) stable holonomy map. We similarly define unstable holonomy maps
between local center leaves.

Because of D f restricted to the stable (reps. unstable) bundle is uniformly contracting (resp.
expanding), the leaves of strong stable (resp. unstable) foliation are always contractible (resp.
expansible). This is not the case for center foliations. We say that f is center bunched if the
functions v, 7, v and 4 can be chosen so that can be

v <y and U< 4. (2.6)

It is said that D f|ge is conformal if || D, f(v)|| = || Dz f|ec|l for any unit vector v € Eg. In this
case, we can choose both y(z) and 4(x)~" slightly smaller and bigger than || Dy f|gc || respectively.
By doing this, we may make the ratio y(x)/4(x)~! = y(x)4(x) arbitrarily close to 1, and hence,
larger than both v(z) and o(z). That is, center bunching always holds when D f|ge is conformal.
In particular, center bunching holds whenever E° is one-dimensional since in this case D f|ge is
conformal. Center bunching means that the hyperbolicity of f dominates the nonconformality
of Df on E°. Notice that the center bunching property is C'-open: any sufficiently small C-
perturbation of a center bunched partial hyperbolic diffeomorphism is center bunched.

According to | |, when f is dynamically coherent, center bunched inequalities (2.6) en-
sure that the leaves of W, W and W¢ are C!. If f is C? and dynamically coherent then these
inequalities also imply that the local stable and local unstable holonomies are C' local diffeo-
morphisms. In general, without this additional regularity assumption, in | , , ,

| it is proved that the holonomies maps are only Holder continuous homeomorphisms.

The Cartesian product of an Anosov diffeomorphism with the identity or with an isometry
such as a rotation, provides trivial examples of partially hyperbolic dynamical systems. The second
factor is the central direction. The same holds if the second factor is any dynamical system whose
maximal expansion is separated from the slowest expansion rate of the Anosov diffeomorphism
and likewise for the contraction rates. A slight generalization of this idea is that of skew-product
maps. Examples of these can be obtained from an Anosov diffeomorphism F on a manifold X and
a family g, : Y — Y for x € X whose rates are again uniformly inside the rate gap of f by setting

f(@,y) = (F(2), 92(v))-

As in the case of uniformly hyperbolic dynamical systems, the definition of partial hyperbolic
extends readily to compact invariant sets. In general, a partial hyperbolic set is defined to be a
compact invariant set A of a diffeomorphism f such that the tangent space at every z € A admits
an invariant splitting as (2.1) that satisfies the contraction and expansion conditions described
in (2.3)-(2.5). In what follows, we will restrict our attention to study partially hyperbolic sets for

skew-product C'-diffeomorphisms.
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2.1.2 Skew-products over hyperbolic sets

Let X be a compact Riemannian manifold and suppose that F: X — X is a C?-diffeomorphism
with a locally maximal hyperbolic invariant set A C X. Assume that there is a D F-invariant
splitting of the tangent bundle

ThAX = E}{ © EY

and there exists a Riemannian metric on X for which we can choose real numbers 0 < p <v <1
such that
p<DF)| <voand p<[|DFH(w)] < v

for all unit vectors v € E3, w € E¥ and x € A. Note that if y = 0, then we get the standard notion
of hyperbolicity. In the sequel, let us consider that the locally maximal hyperbolic invariant set
A in the above conditions is a horseshoe with k legs. That is, F| is conjugated to the Bernoulli
shift 7 : ¥y — Xj where Xy = {1,..., k}Z denotes the space of bi-sequences of k symbols.

In order to define a skew-product diffeomorphism over F', we take another compact manifold
Y and consider the Cartesian product X x Y. A skew-product diffeomorphism over F' is defined

as any C'-diffeomorphism of the form
[ X XY =X %Y, f(zy)=(F(),¢(y)) (2.7)

where ¢(x,-) : Y — Y is a family of C!-diffeomorphisms such that there are positive numbers
and 4 satisfying

vdy (y,y') < dy ($(x,), 6(2,y') <3 dy (y,9), (2.8)
for all y, 4/ € Y and x € A.

Note that, since f is a C'-diffeomorphism then dy (¢(z,%), ¢(2',y)) < d(f(x,v), f(z',y)) <
|/l dx (z,2") for ally € Y and z, 2’ € X where || f|| denotes the Lipschitz constant of f. Similarly,
for each y € Y the map ¢~ !(-,y) : X — Y is also Lipschitz. Fixed § > 0 small enough, set

dy (¢ (2, y), ¢+ (2", )
dx(x,z")

szsup{ : x,az'EA,O<dX(:U,;E')<5andy€Y}20.

We say that Ly is the local Lipschitz constant of f (or f~1). Note that Ly < max{||f||, ||~}
and in general the inequality is strict. For instance, if ¢(z,-) is the identity map id on X then
Ly =0 while || f|| > 0.

We will assume that the skew-product (2.7) satisfies that

1

v+Lp<vh and v<y<Al<yh (2.9)

These conditions are called modified dominated splitting condition in | |. The first inequality
is clearly verified if Ly = 0. The another inequalities are the dominated conditions (2.2) in the
definition of partial hyperbolicity. So, a skew-product as (2.7) satisfying v < v < 4~} < vl is
called partial hyperbolic skew-product.

Cartesian products (also called direct-products) are a special type of skew-product diffeomor-

phisms where the maps ¢(x,-) : Y — Y are constantly the same function ¢ : Y — Y. As we have

already mentioned for f = F' x id, in these trivial cases of direct-products, Ly = 0.
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Definition 2.1. A diffeomorphism f as (2.7) is called locally constant skew-product if Ly = 0.

Partial hyperbolic locally constant skew-products over a horseshoe satisfy the modified domi-
nated splitting condition in | ]. Modified dominated splitting condition is a C'-open condition
since the same property is satisfied for any diffeomorphism C'-close. However, a C'-close diffeo-
morphism g of f is a priori not a skew-product. With the additional dominated assumptions (2.9),
from Hirsch-Pugh-Shub theory | | or from the recently work | |, it follows that g is
topologically conjugated to a skew-product. We explain more about this.

For each x € A we consider the fiber L, = {z} x Y. The collection £ of these fibers is an
invariant lamination of f. In | , Theorems 7.1] and also in | , Theorem A| is showed
that this lamination is C'-persistent. The C'-persistence of such lamination means that for any
Cl-perturbation of f, there exists a lamination, C'-close to £, which is preserved by the new
dynamics, and such that the dynamics induced on the space of the leaves remains the same.
Namely, given £ > 0 small enough we take g a C''-diffeomorphism e-close to f in the C'-topology.
Notice that, g(z,y) = (F(z,y), #(z,y)), where ¢(z,-) : Y — Y is a C'-diffeomorphism such that

vdy (ya y/) < dY(&(l" y)a QE(:L" y/)) < '?_ldy (y7 y,) (210)

for all y, ' € Y and  in a neightbohood of A. For each z € A, the fiber W, continuation of L,
for g is parametrice by the graph of a C'-map Q(z,-) : Y — X. According to | , Theorem A
and since g is e-close to f, it follows that

dx(Q(337 y)’ Q(l', y/)) S
dco (Q(.T, ')’ l‘) <

(&) dv(y,y), (2.11)
(€). (2.12)

For C' maps, the C° norm of the first derivative is equal the best Lipschitz constant. Hence, the
above inequalities show that do1 (Q(z, ), z) < O(e).

Let
A= UWU(x)CXXY
TEA
Sending W) to x defines a continuous projection P: A — X such that P(A) = A and F|yo P =
Pog. Moreover, h : A — AXY, given by h(z,y) = (P(z,y),y) is an homeomorphism whose inverse
is RNz, y) = (Q(x,y),y). Let § =hoglaoh™: AxY — A x Y. Observe that

g(z,y) = (Pogoh ' (z,y), 00 h™ (z,9))
= (Flao Poh™(z,y),6(Q(z,y),9)) = (F(x),¢(z,y)).
Thus, g is a skew-product diffeomorphism defined on A x Y which is conjugated to g by means of

the conjugation h. Since for each € A the map v (z,-) is a composition of C'-maps then it is a

C'-map. In addition, we can easy check that the rate of contraction and expansion of these maps

1

are uniformly close to 47" and ~ respectively. Indeed,

dYWJ(% y)vw(xv y/)) < dY(&(Q(may)vy)v &(Q(xvy)ﬁy/)) + dY((Z;(Q(CII,y), yl)7 (ZN)(Q(xa yl)vy/))'

By means of (2.10) and (2.11) it follows

dY(W% y)v 1/1(337 y/)) < PAy_ldY(:%y/) + O({f) dy(y,y,) < (’Ay_l + 0(8)) dy(y, y/)'
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In the same way, also from (2.10) and (2.11) we obtain

dY(W%?J)W(%?/)) > Idy(qE(Q(x,y),y), (Q(x7y)7yl)) - dY((g(Q(xay)vl/)?&(Q(xvy/)?y,))’
> |vdy(y,y) — O(e) dy (y.y)| = |y — O(e) dy (y, %))

1

Taken € > 0 small enough, we can assume that 47" and v remain, respectively, the rates of
contraction and expansion for ¢ (x,-). This calculation shows that the derivative of ¢ (z,-) and
¢(x,-) are O(g)-close. Moreover, in view of the C'-closeness of Q(z,-) to the constant function

y — x, it follows that ¥ (z, ) and ¢(z, ) are O(e)-close. Consequentely do1 (¢¥(x,-), p(x,-)) < O(e).

Although for each # € A, the maps 9 (z,-) are C''-diffeomorphisms, the map § is not a C-
diffeomorphism since A is not a C'-conjugation. However, according to | , Theorem A and
page 21|, it follows that h and h~! are locally a-Holder continuous maps with a = logv/log > 0.
Following | , Definition 2.3|, a map H between metric spaces is called locally a-Hélder if there
exist 0 > 0 and C > 0 such that if d(z,w) < § then d(H(z), H(w)) < Cd(z,w)®. Thus, the map
¥ = my o go h™! is locally a-Holder continuos with respect to the base points, i.e., there exsts
d > 0 such that if dx(z,2’) < ¢ it holds that

dco (d)(xv ')7 ¢($l7 )) < Lg dCO(h_l(xa ')7 h_1($,7 )) < LgChdx({L‘, m/)a (213)
where L, and Cj, are the local Lipschitz and a-Holder constants of g (or g=%) and h (or A1)

respectively.

Recall that F'|j is conjugated to the Bernoulli shift 7 : ¥ — 3j. Let £ : X5 — A be the
topological conjugation: 7 = £~ o F|5 o £. From | , Theorem 19.1.2], a topological conjugacy
between two locally maximal hyperbolic sets and its inverse are Holder continuous maps. In | ,
Theorem 2.2|, this result was generalized to include the conjugation with Bernoulli shifts. This
reference also provides an estimate the Hoélder exponent of the obtained conjugacy. To calculate

this exponent for ¢, we need to know the Lipschitz constant of 7.

Let 35, = {1,...,k}” be the space of the bi-sequences of k symbols endowed with the metric

dy, (§,€) =v", m=min{i € Z" : & # & or &y # €L}, (2.14)

where £ = (§)iez, § = (§))iez € Tg. Given a bi-sequence § = (...,&_1;&0,&1,...) the symbol at
the right of ";" is the "0 coordinate" of the bi-sequence &. Define the Bernoulli shift map (or left
shift map) 7: X — Xi by 7(§) = &, where £ = &1. The local unstable and stable sets of a
sequence & = (&;);ez are defined by

Wi (& 1) ={& = (&)iez € Zi: & =& for all i <0},
Wise(§7) = {€' = (§iez € Bg: &§ =& for all i > 0}
Thus, we obtain that

ds, (1), 7(§) S vds, (&€) forall £, € Wi (G 7),
ds, (T71(€), 7€) Swvds, (§,€) forall §,¢" € Wik.(¢; 7).
That is, v is the contraction rate on both stable and unstable local sets of the Bernoulli shift 7.

In addition, ds, (751(€), 75H(¢)) < vldy, (€,¢), for all £,¢' € Sk By | , Theorem 2.3] the
equality! vv~! =1 implies that £ is a Lipschitz map. That is, dx (£(£),4(¢")) < Leds, (&,€).

The condition in Gorodetski’s result appears as an strict inequality, but from the proof of this result one can
follow that the assertion also holds for the equality.



2.1. Partial hyperbolicity and skew-product diffeomorphisms 25

Therefore, it follows that g is conjugated to the skew-product

VS xY =S xY,  U(Ey) = (7(£),ve(y)) (2.15)
where ¢ = ¢(£(£),-) : Y = Y is a C'!-diffeomorphism satisfying
vdy (y,y') < dy (Ve(@,y), de(a,y') <4 dy(y,y) forall € € Xy, (2.16)
deo (e, er) <Cu ds, (€,6)*, &, & € Xg with & = &, (2.17)
with Cy = LyCy LY > 0 and o = logv/log it > 0. The last local Holder condition comes from the
imposition in [ ,pag. 21] that F'|z has local product structure for § > 0 in (2.13).

I as small perturbation of f~! and therefore we obtain that the

Same arguments work to g~
inverse map U1 : ¥, x Y — 3, x Y is also locally Holder skew-product with the same Holder

exponent « and local Holder constant C'y.
Summarizing, we have proved the following result.

Proposition 2.1. Let f : X xY — X x Y be a C'-diffeomorphism skew-product of the form
of (2.7) satisfying (2.8) and (2.9). Then given € > 0 small enough, any e-perturbation g of f in
the C-topology has a locally mazimal invariant set A C X x Y such that g|a is conjugated to a
skew-product VU : X x Y — 3 X Y of the form (2.15) satisfying (2.16) and (2.17).

The restriction of the skew-product f given in (2.7) to the set A xY is conjugated to a symbolic
locally Lipschitz skew-product. Namely, f|axy is conjugated to

D Ek xY — Zk X Y7 ©(£7y) = (T(§)7 ¢§(y))
where ¢¢ = ¢(£(£),-) : Y — Y is a family of C'-diffeomorphisms satisfying that

deo (¢ 65") < Cods, (§,€)%, for &, & € Sy with & = &

with Cp = Cy Ly where Ly is the local Lipschitz constant of f (or f~1). Under the remaining
assumptions in Proposition 2.1, we can identify C'-perturbations g of f with symbolic locally
Hélder skew-product perturbations W of ® with uniform Hoélder exponent o = logv/logpu > 0
and local Holder constant Cy = Cy LyCp, > 0. Here, L, is the local Lipschitz constant of g (or
g~ ') which is close to Ly. Also, the local Holder constant Cj, of h (or h~1) varies continually with
respect to h which in turn depends continuously with g. In fact, in view of (2.12) it follows that
h and h~! are close to the identity and thus, we obtain that Cy is close to Cgp.

In the context of C2-perturbations in | , Theorem B, it was proved the following result:

Theorem 2.2. Let f: X xY — X x VY, f = F xid, be a C?-diffeomorphism. Then for any
diffeomorphism g close to f in the C*-topology, there is an invariant subset Ay and homeomor-
phism H: A xY — A, Moreover, if p: A x Y — A is the projection in the first factor, then
the map P: Ay — A, P =po H™', is a semiconjugacy, and the leaves P~'(z) are C?-smooth
and depend Hélder continuously on a point x € A in the C'-metric. The Hélder exponent and the
Hoélder constant are uniform in a small C?-neighborhood of f.

A similar argument as above using this theorem allows us to conjugate the restriction g|a, of
any perturbation g of f = F x id in the C?-topology to a symbolic skew-product map of the form
V(& y) = (T(€),v¢(y)) where ¢ : Y — Y are C?-diffeomorphism satisfying (2.16) and

dor (Ve a') < Cuds, (6,6)%, for &, ¢ € 5y with § = &

where Cy is a constant close to Ce = CyLy.
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2.2 Symbolic skew-products

We consider skew-product maps ® over the left shift map 7 of k& symbols of the form

where M is a (not necessarily compact) Riemanniana manifold of dimension ¢ > 1, ¢¢ : M — M
are homeomorphisms which depend continuously with respect to the base point . These maps
are referred to as symbolic skew-products. The first factor of the product X x M is called the base
and the second one is the fiber. To emphasize the role of the fiber maps we write ® = 7 x ¢.. We
define Si (M) as the set of symbolic skew-product maps ® = 7 x ¢¢ of the form (2.18). A special

case of skew-product maps are the one-step ones.

Definition 2.2 (One-step maps). A symbolic skew-product map ® = 7 X ¢¢ is one-step if the fiber
maps ¢¢ only depend on the coordinate §y of the bi-sequence § = (&;)icz € Y. In this case, we have
be = ¢ if o = 1, say that @ is associated with the maps ¢1, ..., ¢pn, and write ® = T (¢1,...,¢p).

We will denote by Qy (M) the subset of Si(M) consisting of the one-step maps. An extension
of one-step maps are the skew-product maps ® = 7 x ¢¢ whose fiber maps ¢¢ only depend either
on the stable sets of £ or on the unstable sets of £. In this case, we say that ® = 7 x ¢, belongs
to S (M) (resp. S (M)) if @ € (M) and ¢¢ = ¢ if & =& for all i > 0 (resp. i < 0).

Definition 2.3. A stable holonomy, or shortly s-holonomy, for ® = 7 x ¢¢ is a family h*® of
homeomorphisms hgél : M — M defined for all & and &' in the same local stable set of T and
satisfying

i) W, o hd e =, and b = id,
W) de o e e = M) 2er) © P and

ii) (§,€',x) = hi o (x) is continuous.

In the last condition (&,&’) varies in the space of pairs of points in the same local stable set.
Unstable holonomy, or shortly u-holonomy, is defined analogously for pairs of points in the same
local unstable set of 7. The following result shows that the existence of s-holonomy for a skew-
product ® = 7 X ¢¢ in Si(M) implies that @ is conjugated to a symbolic skew-product in S,j (M).
We will denote by 3 a fixed transversal section to the local stable partition W} (&;7), £ € £j and
we will consider the projection 7 : X — ¥ given by 7(§) = W (§;7) N X,

Proposition 2.3. Let & = 7 X ¢¢ be a symbolic skew-product in Si(M). Suppose that there is
a s-holonomy h® for ®. Then h : X x M — ¥ x M, given by h(§,z) = (§,hfr(£)£(x)) s a

homeomorphism and the symbolic skew-product
D% x M — X, x M, d=hlodoheSH(M)

is conjugated to ®. Moreover, ® = T x ¢~>£ with fiber maps gz;s = hf—(g) 2(r(€)) © pe 0 hfr(&) ¢
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Proof. Since the projection 7 is a continuous map and £ and 7(§) always belong in the same local
stable set, it follows from (iii) in the definition of s-holonomy that h is a continuous map. By (i),

it follows that the inverse of h is h=(£,z) = (¢, e rie) (x)). Then h is a homeomorphism and

B¢ 2) =h Moo h(&,x) = (1) B (6) n(rie)) © De © Py £(®))-

The properties (i) and (ii) in Definition 2.3 provide that

7 def ;5 s 15 s 15
Pe = Moo mir(e)) © D€ © Pnie) ¢ = Nre)m(r(6)) © Mr(mie))r(6) © Pr(&) = Nr(mie)) m(r () © P()-

This shows that 455 is constant on the local stable set of any point £. Indeed, since for every
¢ € Wi (& 7) it holds that 7(¢') = 7(€) and wo7(¢') = o 7(£), it follows that ¢¢ = der. Finally,
notice that the fiber maps qgg are homeomorphisms which depend continuously on the base point £.
Therefore ® = 7 x gZ)g € S,j (M) and we conclude the proof of the proposition. O

Notice that there exists a dual result for skew-product ® = 7 x ¢¢ in Si(M) with u-holonomy
provides a conjugation between ® and a skew-product with constant fiber maps on the unstable
local sets. The next step is to investigate whether a skew-product ® = 7 x ¢, has s-holonomy and
the regularity of the holonomy maps. In order to do this, we need to impose additional conditions

for @ about regularity and dominated dynamics.

Definition 2.4 (Sets of symbolic skew-products). Let v and 4 be positive constants such that
v <A Amap ¢: M — M is called (v,4")-Lipschitz (in M) if

vz = 'l < ll¢(@) = ¢l <57 o = 2'll,  for all w, 2" € M.

Here, ||z — 2'|| denotes the distance between x and x’ in M. Given o € (0,1], a skew-product
® =17 x ¢¢ € Si(M) is said to be locally a-Holder continuous (in M), or shortly Holder skew-

product, if there is a non-negative constant C' > 0 such that

deo (08, ¢g') < Cds, (6,€)%, for all &, € € Sy with & = &

We will denote by SZ’;YW,I(M) the subset of Sp(M) consistent of locally a-Hélder continuous
symbolic skew-products with C"-fiber maps (r > 0) which are (v,4~')-Lipschitz. For notational

. . 0,
convenience, we will denote Sk,j,&—l(M) by Sﬁ%@A(M)-

Sometimes to refer that ® = 7 x ¢¢ is locally a-Hélder we say that the fiber maps ¢¢ of ®
depend locally a-Hélder continuously (in M) with respect to the base points. We will denote

¢z () = dg" ()
dEk (57 g/)a

This constant is called local a-Hélder (continuous) constant of ® =7 X .

Co = sup { 0 &, ¢ €Ny, with§g=¢ andz e M} > 0.

Recall that in (2.14) we endowed the space of the bi-sequences of k symbols ¥ = {1,... ,k}*
with the metric dy, (£,£') = v™, where m = min{i € Z1 : § # & or £, # ¢ ,}, and v is a
fixed positive constant less than 1. That is, v is the contraction rate on both stable and unstable
local sets of the Bernoulli shift 7. Since the Bernoulli shift 7 on the space of k& symbols represents
F| in the precious section, we could assume that if the number of symbols k increases then the
contraction v of F'|s decreases. Therefore, we could expect that the following dominated conditions

must be satisfied for a large number k of symbols.
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Definition 2.5 (Dominated skew-products). A symbolic skew-product ® € Si, ﬁ,l(M) is said
to be s-dominated (resp. u-dominated) if v < v (resp. ¥~ < v=%). In particular, if ® is both,

s-dominated and u-dominated, i.e. v <y <A1 < v~ it said to be partial hyperbolic.

Let us explain the geometric meaning of the dominated conditions. For each £ € X the
fiber map ¢¢ is a (7,4~ 1)-Lipschitz diffeomorphism in M. The rate v is an lower bound for the

contraction, and 4!

is a upper bound for the expansion exhibited by the action of ¢¢ on the
fiber {¢} x M. First, consider & = 1. The s-dominated and u-dominated conditions become v < 7
and 4~ < v respectively. The first condition means the base map 7 contracts local stable sets
stronger than the skew-product ® = 7 x ¢¢ contracts fibers; the second one means that the base
map expands local unstable sets stronger than ® = 7 x ¢¢. In other words, these conditions of
domination mean that ® is partially hyperbolic transformation, with the fibers as central leaves.
This interpretation extends immediately to the general case a € (0,1]. It suffices to note that
dy, (-,-)" is also a metric in ¥;. With this new metric, the Holder skew-product ® has Holder

exponent o = 1. This reduces the general case to the previous particular one a = 1.

In view of the theory of partial hyperbolic systems | , , |, one expects that
such dominated conditions imply the existence of smooth invariant strong stable an strong unstable
foliations for ® = 7 X ¢¢ in Xj x M, transverse to the fibers. Theses foliations allow us to find
s-holonomy and u-holonomy for a symbolic skew-product ®. In the next subsection, we will show
that this is indeed so.

Notation 2.4. Given ® =7 x ¢¢ for every n > 0 and every (§,z) € ¥ x M we set
def — def |, _ _
¢?($) = be”*l(g) 0---0 ¢£(m) and ¢g "(z) = 7.71(%1)(5) ©:--0 ¢§ 1(37)

Note that, for all n > 0, we have ®"(§, z) = (7"(€), ¢¢ (2)) and ©7"(§, z) = (17"(§), T_fbl(g) (x)).

2.2.1 Strong stable and unstable sets and holonomies

The stable and unstable sets of a point (§,z) € Xj x M for a skew-product map ® = 7 x ¢
as (2.18) are defined by

WO((62): @) = {(Cv) € Sp x M« Tim d(®"(C,), &"(€,x)) = 0},
WH((6,2):®) = {(Cy) € S x M+ lim d(@"(C,y), @7"(€,x)) = 0}.

where d denotes the product metric in Xj x M. In this section we will assume that M is a compact
manifold. Under the s-domination condition the usual graph transform argument yields a strong
stable lamination for the symbolic skew-product ®. This strong stable lamination allows us to
define a s-holonomy h?® for ®.

Proposition 2.5 (| , |). Consider a s-dominated skew-product ® = Tx¢¢ € S (M)

ko, y—t
Then, there exists a partition

WS = (WS ((€,2); D) : (€,2) € Sp x M}

loc

of Xx x M such that denoting C = Cg(1 —~~w*)~1 >0, it holds that
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loc

i) every leaf W75 ((&,x); @) is the graph of a-Hdélder function Ve Wp (& 1) = M with -

Hélder constant less or equal than C (uniform on & and x),

i) @WES((&,x)); @) C WES(D(E, x); P) for all (x,€) € X x M, and

loc loc

iti) the family of maps hi o : M — M defined by hg o (z) = ¢ (§), for & € Wi (&), is a

s-holonomy for ®. Moreover,

a) doo(hfe,id) < Cds, (§,€)*, and
b) hg’g, coincides with the uniform limit of (gi)?,) o qsg as n — 00.

In | , Proposition 5.2] the continuous dependence of the invariant graphs with respect to ®
is also proved. The partition W?* = W?*(®) given by Proposition 2.5 is a s-lamination for ®. That
is, ® sends leaf in leaf of the partition and exponentially contracts points on the same leaf. Indeed,
it suffices to show that points in W%’ ((&, ); ®) are exponentially contracted. This is followed since
theses local leaves are a-Holder graphs with uniform Hoélder constant on £, and therefore

d(2"(&,x), @"(¢',2")) < v"dy, (€, &) + Cv™dy, (€, €) < Cor™d((€, 2), (€', 2))

for all (¢,2") € Wi ((&, x); ®), where Cy > 1 is a uniform constant. For the above reason,

Wps((€,x); @) is referred to as the local strong stable set of the point (£, z) € Xy x M for the

loc

skew-product ®. The strong stable set of point (&, z) for ® is defined as

W ((&,2); @) Z ([ &7 (Wi (@&, ); ®)) C W*((&,2); ).

n>0

Notice that there is a dual statement of Proposition 2.5 for u-dominated symbolic skew-
product maps. Hence, by this dual result, it also follows a partition W* = W*(®) whose leaves

WE((&, x); @) are called local strong unstable sets. As above, the strong unstable set of a point

(&, x) € X, x M for ® is

W (&, 2); @) = | 0" (Wint(27" (6, 2);®)) € WH((£,2): D).

n>0
In addition, we have the c-lamination W(®) = {W ((§,x); @) = {&} x M : (§,x) € B x M},
In order to show as s-domination condition are used in the graph transform argument we give

the details of the proof of Proposition 2.5.

Proof of Proposition 2.5: Existence (i) and invariance (ii) of the family W?* follow from a standard
application of the graph transform argument | |. Define for each (§,z) € X x M and n > 0,

Vet Wibe(&7) = M, 37(€) = (68) 7 0 0 ().
Then
||q/S n+1(§ ) — ’7;’;1(5/)” < 'Y_anb;nl(g/) © ¢T"(§) © ¢?($) - gb;”l(f’) ° ¢Tn(£,) ° (;5?(.%)”
<A I Brnie) © B () = drn(ery 0 PE ().

Using that ® = 7 x ¢¢ is locally a-Hélder skew-product and recalling that v is the contraction
rate of 7 on the stable sets we have ||/’ n+1(§) Yem () < Co(y )"l dy, (&, ¢). Hence,



30 2. Symbolic blenders

. s,n . ..
since v < 7 then the sequence {~v ' (&)} is Cauchy and therefore converges. Denote the limit by
¢ (€). Note that (i) is consequence of the fact that

b 08 4(€) = lim e o ()" 0 B (2)
S , (2.19)
= Jim (&%)~ © 97) © Pe(2) = V2(e),0¢ () © T(E)-

In order to prove that fyg . 15 a a-Holder map, we require again the s-domination condition. By
means of the triangular inequality we get

Ve (€)=l = Igr(€) —gn @l < ) sil€) (2.20)

where s;(¢') is given by

H((ﬁg/_i)_l ° ¢;n1—i(£l) o ( :‘—;}Flfi(g))_l © ¢?(x) - (¢7g/_i)_1 o (b;nl—i(g) © ((bj—jklklfi(g))_l © ¢?(x)H

With the estimate s;(¢') < Co(y~tvY)"idy, (€,€')® and taking n — oo in the above inequality
it follows |[7¢ (&) — 7 (Ol < Cdx, (§,£)* for all £ € Wi (§;7) where C = Co(1 — 7
This shows that 7 , is a-Holder. Indeed, for every £',£" € Wi (£;7), denoting 2’ = ~¢ ,(¢') and
noting that 7¢ ,(§") = 74 ,/(§"), we obtain that

17.2(8") = Y2 = g 2 (€)) = 78 2 (€M) < Cdz, (€7, 67)%

Note that, the Holder constant obtained is uniform on £ and =z.

For every bi-sequences £ and £ in the same local stable set of 7, we consider the map hg o
M — M given by hg . (z) = ¢ ,(§). Notice that, because of the lamination WW* is invariant under
®, i.e. from (2.19), it follows that for every n > 0

s n\—1 s n
hé-’é'l = ((b&/) e} th(f)yTn(é'/) e} ¢§ . (221)

The estimative calculated for (2.20) allows us to obtain a bounded for the uniform C°-distance
from hg ¢ to the identity. Namely,

dco(hin(§)77n(§,)7id) < Cdy, (T"(£),7"(&)* < Cv™*™dy, (&,&)7. (2.22)

Putting these two observations together, we find that

deo(hier, (98) " 0 9F) <A "o (B (g) gn(ery id) < C(y 1) s, (€,€).

Hence, hgf, coincides with the uniform limit of (d)?,)_l o ¢ as n — oo. Notice that by definition
of hi ¢ we have (hz,g/)_l = hg ¢ and so it follows these inverse maps also as an uniform limit.
Therefore, as consequence of the above observations, the family of maps hgé, is a s-holonomy for
® = 7 X ¢¢ and we conclude the proof of the proposition. O

We will say that h® is a p-Hdélder s-holonomy if the homeomorphisms hz ¢ are o-Holder con-
tinuous with uniform Holder constant in £ and &’. The proof of the following proposition can be

found in | |.
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Proposition 2.6. Consider a s-dominated skew-product ® = 7 x ¢¢ € 5?7 &,1(M). Then the
holonomies maps hg ¢ : M — M are o-Hélder with 0 = (1+ 3log Y41/ logy )L € (0,1) and

uniform Hélder constant in & and £'.

Proof. We have to check that the maps h2,£’ are Holder maps. Fix two bi-sequence £ and £ in the
same local stable set of 7. Recall that 0 < v* < v < 1 < 47!, Hence 0 = 3logy¥/logy v > 0
and o0 = (1 +6)~! < 1. We will prove that hgg, is locally p-Holder with uniform local Hélder
constant on &, ¢. Notice that by standard argument this claim also shows that hg,g is globally
o-Holder (see for instance | , Proprosition 2.4]).

Let m be a natural number such that 2Cv™* < 1 where C' = Cg(1 — vy~ 1v%) > 0. From the
continuity of h{ ., there exists ¢ > 0 such that if ||z — 2’| < & then ||hf o/ (x) — b o ()| < V™. Fix
z and 2’ in M such that ||z — 2| < ¢ and write n = [[h{ o/ (x) — h{ o (2")|| < ™. Hence, from the

s-domination condition there is n € N such that 73 < (y71v®)"® < 72, Indeed, it suffices to take

—1 —1 (e

n between 2logn/logy~'v® and 3logn/log~y~'v™ which it is possible since n < v™® < 4~ 1p%,

Using the above inequality, recalling that the fiber maps ¢¢ are (v, 4~1)-Lipschitz diffeomorphisms
and since by (2.21) it holds that bgr o hi o = hin(g) n(er) © ¢g, we obtain that

ds, (T"(£), 7(€)* < v™dy, (£,€)* <A™ dy, (£,€)* <n ||¢?/ o hi () — dgi o hg ¢ ()|
SV B gy pnery © OE (X) = Biney on(ery © OE (2)]]-

This inequality and the limitation obtained in (2.22) imply that

1B5n g (ery © B (X) = Al (g) rnen © D8 (&) <
< B3n(e) rnen © D€ (@) — g (@) + |6 () — ¢ (@) + [ (g) n(ery © P (&) — @2 ()]
< 2Cdy, (T"(€), 7€) + |16 (x) — ¢?(33')H
<20V ([Rln gy n(ery © D (2) = hin(e) rn(eny © PE ()| + (|6 (2) — d¢ ().

Since 1 — 2Cv™¢ > 0 then we obtain that

1h3n ey on(ery © B (%) = Mg onery © SE (@) < (1= 200™) [0 () — ¢ ()]

Finally, this estimate together with (2.21) provides

Ihge(2) = B () < 97" 1n(g) ey © 96 (@) = hine) on(ery © B (#)]
< (1- 200m) 1y 62(a) - RG] < (1 200m) o3) e - o

0

1.«

Since (y~'v®)™ > 73 then n < 3logn/logy~'v® = #logn/logy4. This implies that (74)™" < n~
and therefore [|hg o (x) — h{ o (2 )| < (1 — 2Cv™*) 7|z — 2'||. This concludes that he ¢ s
locally p-Hélder showing our assertion. Moreover, we here observe the uniformity of the Holder
constant. Hence the family of maps hg ¢ is a p-Holder s-holonomy and therefore the proposition

is completed. O

Remark 2.7. The local o-Hélder constant provides by the above proof is Kioe = (1 — 2CV™*)™¢
where C' = Cp(1 — 7_11/0‘)_1. The natural number m was chosen to provide that Kj,. > 0. This
choice is not necessary if Cg is close enough to zero. In such case, K = (1 —2C)~¢ is close to
one and this constant can be taken as the global o-Hdlder constant of hf,gl-
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Remark 2.8. If the fiber maps ¢¢ are isometries then vy may be taken arbitrarily close to one
and thus the Holder exponent ¢ is also arbitrarily close to one. The same observation holds when
the fiber maps ¢¢ of ® = 7 X ¢¢ are perturbations of the identity id: M — M.

Under the conditions of the previous proposition the holonomy maps are Holder continuous.
In order to increase this regularity we need to impose additional properties for ® = 7 x ¢¢. We

will need C2%-fiber maps ¢¢ whose first derivative depends Holder continuously with respect to &.

Definition 2.6. Let o € (0,1]. A skew-product ® = 7 x ¢¢ € Si(M) with C*-fiber maps is called
locally a-Holder differentiable (in M) if there is a non-negative constant C' > 0 such that

den (0, 6g") < Cds, (6,€)%, for all &, € € Sy with & = &,

We will denote by S,:’,l;;oil(M) the subset of Sp(M) consistent of symbolic skew-products locally
a-Holder differentiable with C™-fiber maps (r > 1) which are (y,4~')-Lipschitz .

Recall that the center bunched inequalities for partial diffeomorphisms ensure the regularity of
the foliations and the holonomies. The following definition introduces the equivalent inequalities

for symbolic skew-products.

Definition 2.7 (Fiber bunched skew-products). A symbolic skew-product ® € S,i’};ofl(M) is said
to be fiber bunched if v* < 4.

The following proposition states the C'-regularity of the s-holonomy maps under the above
conditions. This result is showed in | , Remark 5.4] although also can be followed from | )
Lemma 1.21] and | , Proposition 3.4].

Proposition 2.9. Consider a s-dominated fiber bunched skew-product ® = 7 X ¢¢ € SZ’i;Ofl(M).

Then, the holonomies maps hg g are C'-diffeomorphisms.

Proof. We will denote y = (£, ) and A(y) = D¢¢(x). Then

IA(y) = AWl < IDde(x) — Doe(a)|| + | Doe(a’) — Doper (a)]].

By assumption, the skew-product ® is a-Holder differentiable and its fiber maps ¢¢ are C?-
diffeomorphisms. Hence, there are non-negative constants L, C and K such that

1A(y) = A@)I < Lljz - o'|| + Cds, (€,€)* < Kd(y,y')*. (2.23)

Since ® = 7 X ¢¢ is s-dominated, from Proposition 2.5 it follows a s-lamination W?* for ® with
d(®"(y), ®"(y')) < (1 4+ 2C)v"¥d(y,y) for all y and ' in the same local strong stable leaf where
C=Cos(l— 7*1V°‘)*1 > (. Since ® is fiber bunched then there is n € N such that

1A I A™ ) THIA + 200" < (v7) " (1 + 200" < 1. (2.24)

Here, A™(y) = A(®" 1(y))--- A(®(y))A(y). Consider now, the linear cocycle F4 over ®, given
by Fa(y,v) = (®(y), A(y)v) with y = (£, z) and v € T, M. The estimates (2.23) and (2.24) show
that this linear cocycle is in the assumptions of Proposition 3.4 in | |. This result shows the
existence of a linear isomorphism H;y, : ToM — T, M such that H;y, is the uniform limit of
A™(y')"TA™(y). That is, (¢e) ™! oy converges uniformly to h{ ., in the C'-topology. In particular,

in this case the s-holonomy maps are C'-diffeomorphisms. O
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2.2.2 Invariant graph

A closed set I' of Xj, x M is called invariant graph of a symbolic skew-product ® = 7 x ¢ if
®(T') =T and there is a function g: Xx — M such that T' = {(£,¢9(¢)): £ € X }. Bony graphs
are a generalization of invariant graphs. A closed set I' of ¥, x M is said to be bony graph for ®
if ®(I") = I" and it intersects almost every fiber {¢} x M by a single point, and the rest of the
fibers by some compacts, connected and non-empty sets called bones or spines. Note that a bony
graph I' can be represented as the disjoint union of sets P and ). The set P is the union of spines
P = 771(€¢) where 7: I' — X denotes the projection on the base space. The set @ is the graph
set of a function ¢g: Xi \ m(P) — M. Note that 7 om = 7 o ®|p. If the bony graph I' has infinitely
many spines, the function ¢g: Xy \ 7(P) — M is continuous and I' is the maximal invariant set

I'=()®" (= x D)
nez
where D is a bounded open set of M, then it is called porcupine. A bounded open and connected

set D of M is said to be trapping region (resp. inverse trapping region) for a symbolic skew-product
® =17 K ¢¢ € Sg(M) if p¢(D) C D (resp. D C ¢¢(D)) for all £ € Zy.

Proposition 2.10. Let D be a trapping region (resp. inverse trapping region) for ® = 7 x ¢¢.
Then the mazimal invariant set T' in Sy x D is a bony graph. Moreover, if ® € S, (M) (resp.
S,j(M)) and there exists a periodic point (9,p) € Xy x D for ® of period s > 1 such that p is a
repelling (resp. attracting) fized point of ¢f = Grs—1(9) © -0 @y then I' is a porcupine.

Proof. Suppose that D is a trapping region for ®. The case of inverse trapping region is totally
analogous. Thus, since ¢¢ (D) C D for all £ € X then the maximal invariant set I intersects the

fiber over the bi-sequence £ in the set

De = ﬂ Pr—n(e) (D) where Pr-n(e) (D) = ¢r—1(g) 0 -+ 0 Pprn(e) (D).

n>1

Indeed, if (&,7) € T then (£, ) € ®™*(X) x D) for all n € Z. Hence x € D and for each n > 0 we
get that 2 belongs to both ¢7_,, (D) and ¢T_’?*1(E) (D). Since D is a trapping region we obtain
that qb?,n(g)(D) CDand D C gb;,?,l(g) (D) for all n > 0 and therefore

T € PLng (D)n ¢T_7?_1(§) (D) = - (e) (D), for all n > 0.

That is, € D¢. Reciprocally, if x € D¢ from the above equation z belongs to both gbﬁ,n(g) (D)
and qb;’f,l(é) (D) and therefore (£,2) € ®*(3;, x D) for all n € Z. That is, (£, z) € T.

Note that since ¢:2L<1n+1>(5) =
are nested and hence Dy is a single point or a connected compact set (with more than one point).

¢:-L—n(§) o ¢r—("+1>(§) then the connected compact sets ¢¢_n(§) (D)

This proves that the maximal invariant set I' is a bony graph.

Now, assuming that ® € S (M), we will prove that the function g : ¥ \ n(P) — M is
continuous where P is the collection of spines 7~1(¢). Take a point (¢, ) in the graph set Q =
'\ P of g and a positive ¢ > 0. For sufficient large n, the connected compact set ¢”_, © (D)
is contained in the open ball B(z,e) around of = of radius € > 0. Hence, since the fiber maps
¢¢ only depends on the unstable manifold of 7 then dﬁ,n(g,)(ﬁ) C B(z,e) for any sequence &’
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such that ¢, = &, for ¢ = 1,...,n. That is, the function g is continuous. To prove that I' is a
porcupine only remains to show that it has infinitely many spines 7~!(£). We are assuming that
there exist a periodic bi-sequence 1 € X, of period s and a repelling fixed point p € D of ¢j. Let
U C D be a neighborhood of p such that ¢5(U) D U. For any bi-sequence £ € Xy of the form
E=(..-2,9-1,6n,...,-150,&1,- . .) the connected compact set D¢ contains at least the set
¢Z—"(§)(U ). Note that set of all such bi-sequences is dense and therefore I' has infinitely many
spines. This concludes the prove of the proposition. O

Given a bounded open set D of M, in this section we will study the maximal invariant in
Y x D. The next result claims the existence of a unique invariant attracting graph in Xj x D for
maps ® = 7 x ¢¢ in S,(M) whose fiber maps ¢¢ are locally (X, 3)-Lipschitz in D with 8 < 1.

Definition 2.8 (Sets of local symbolic skew-products). Let D C M be a bounded open set and
consider constants 0 < A < B and 0 < o < 1. We define Sl:’fﬁ(D), r >0, as the set of symbolic
skew-product maps ® =7 x ¢¢ € S,(M) such that

o ¢¢ is a C"-diffeomorphism;
o Mz — /|| < é¢(x) — de(a’)]| < Blle — | for all € € B and x,a' € D;

o ||pe(x) — per ()| < Cdyx, (&,€)* for all & € By, with & = & and x € D;

We will denote by Cg the smallest (uniform) non-negative constants satisfying the above last
inequality. Additionally, if B < 1 we impose the condition ¢¢(D) C D for all & € X, and, in the
case 1 < X\ the imposed condition is D C ¢¢(D) for all & € 3. We also set

Sing (D) =SpsD)NSH (M) and  Sp35 (D) = 80 5(D) NS (M)

For notational convenience, Sg’gﬁ(D), S,S’R’;(D) and S,?’gﬁ(D) denote Si x 5(D), S,;t/\B(D) and
St (D) respectively.

We endow S, 5(D) with the distance

ds(®,¥) = sup dor (¢, ¢) + [Co — Cy|  with ® =7 x ¢¢ and ¥ =17 X ). (2.25)
€T

Here, one can see dor (¢, ¢) as the C"-distance between the restriction of ¢¢ and )¢ to D.

In what follows of this subsection, we will consider a fixed bounded open set D in M and
unless otherwise stated we will assume that 0 < A < 8 < 1.

Theorem 2.11 (] |). Consider ® = 7 x ¢¢ € Spap(D) with B < 1. Then there exists a
unique bounded continuous function go : X — D such that
i) ‘b(fqu)(f)) = (T(f),gq>(7'(§))) for all £ € Xy, and

ii) [|¢g (x) — go (T ()]l < B |9 (&) — | for all (&, ) € Ty x D and n = 0.

In | , Section 6] the continuous dependence of the invariant graphs with respect to @ is
also proved. On the other hand, notice that the above theorem is a reformulation of the results in
[ | which can also be found in | , Theorem 1.1]. Although the proof is simple we present

it here since can be useful to understand better this invariant graph.
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Proof. Let C°(Xg, D) be the space of bounded continuous functions g : ¥ — D. We define the

usual metric of uniform convergence on C°(Xy, D) by

deo(g,9) = sup 19(&) = g()Il,

where g and § belong to C°(3y, D). Note that, C°(X, D) with this metric is a complete metric
space. Define the usual graph transform T for ® = 7 x ¢¢ by

T[g](€) = ¢r-1(ey 0907 (€), for g € C%(Sk, D) and € € By

We claim that Y[g] € C°(Xg, D). Indeed, we only need to show that Y[g](Xx) C D. This follows
from the assumption ¢¢(D) C D for all £ € X noting that g : ¥ — D. Thus, T: C°(Zy, D) —
C%(Zg, D). Now, since & = 7x ¢¢ uniformly contracting in D with contraction constant 0 < 8 < 1,
it follows that | T[g)(€)—[3E)] < 5 lg(r~(€))—3(r(€)]] < B den (g, ). Taking the supremum
over all £ € X, we get that dco(Y[g], Y[g]) < Bdco(g,g). Hence, by the Contraction Mapping
Theorem, Y has a unique attracting fixed point g¢: X — D.

By definition go o 7(£) = T[ga](7(£)) = ¢¢ o gao(§). Hence, as required, the graph of go is
invariant under ®. Finally, by induction we have gg o 77(§) = o¢ © go (¢) and so for every x € D

16¢ () — ga (") = |92 (x) — d¢ (92 (E))I] < " ||z — ga(£)]]. Thus, taking as n — oo the graph
of ge is attracting under ® = 7 x ¢¢ and we complete the proof of the theorem. O

Under the additional assumption that ® = 7 x ¢¢ is locally a-Hélder continuous skew-product
for some 0 < a < 1, the following result provides the same degree of regularity for the invari-
ant graph ge restricted to local unstable manifolds of 7. The proof of this result can be found

in | , Lemma 2.6|. Here, we give a different proof following the ideas in | , Theorem 3.3].

Theorem 2.12. Consider ® = 7 x ¢¢ € S 5(D) with 8 < 1. Then there is a positive constant
K < Co(1 — Bv*)~! such that

l90(§) — 9o (&)l < K ds, (£,6)7, & & € By with &' € Wigo(§ 7).

Proof. Let K = Cg(1 — pr*)~1. We define C*¥ as the subspace of the bounded continuous
function g : X — D such that [|g(§) — g(&)|| < Kdyx, (£,€)* &, & € Ty with & € WE(& 7).
Endow this space with the uniform topology. The idea is to show that the graph transformation
T carries C** into itself. Clearly, C¥ is a closed subspace of C°(Xy, D), and hence the unique
fixed point of T, g, lies in C*X.

Recall that Y[g](§) = ¢,-1(¢) 0 g o 7 1(£). We want to show that Y[g] € C*F if g € C*K.
Indeed, given two bi-sequences £ and £’ in the same local unstable set for 7 we have that

IT[g](€) = YIgIENN < lpr-1y 0 g0 7€) — b1y 0 go T (&)
+ll¢r-1gy0 g0 T HE) — dr-renogo T HEN < BllgoT () —go (&)
+ Co dy, (T71(€), 77 HEN)* < (BK + Co)dg, (r71(£), 771(€))* < (5K+0¢) *ds, (€€

From the choice of K, it follows that SK +Ce < K and thus || T[g](§) — Y[g](¢)| < K dx, (€, &)
That is, T[g] € C*X and therefore we conclude the proof of the theorem. O
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The Pointwise Holder Section Theorem in | , Theorem 3.3 states that f < v is a suf-
ficient condition for the invariant graph g : ¥ — M to be a-Hélder. In fact, from | ,
Theorem 1.3] it follows that this inequality is generically necessary. The inequality 8 < v® means
that ® contracts the fiber {¢} x D more sharply at Holder scale o than it contracts the base at
&. Tt is exactly the opposite of the s-dominating condition which we need to ensure the existence
of strong stable lamination for ® in Proposition 2.5. Therefore, as we will work in the context of
s-dominated skew-products we only obtain that the invariant graph function is a-Holder along to
the unstable manifold, as Theorem 2.12 claims.

Bearing in mind Notation 2.4, Item (i) of Theorem 2.11 implies that for every n > 0

B oga(€) = gnor"(E) and ¢7" 0 ga(E) = goor () (2.26)

for all £ € Xj. Let graph[gs]: Xk — Xk x M, graph[ge](&) = (£, 95(£)), be the invariant graph
map and denote the invariant graph set by

o & {(€,90(6): €€} C By x D.

The following proposition shows that the invariant graph of ® is the locally maximal invariant
set inside of ¥j, x D.

Proposition 2.13. Consider ® = 7 x ¢¢ € S\ g(D) with § < 1. Then, the restriction ®|r, of
D to the set I'yp 1s continuously conjugated to 7. Moreover, the invariant graph set

T =)2" (% x D) = (] 2"(Zk x D)
nez neN

is the mazimal invariant set in Xy, x D.

Proof. By (i) in Theorem 2.11, it follows ® ograph[ge| = graph[ge|o 7. Hence graph[gs] conjugates
the maps ®|p, and 7. To get the continuity just note that graph[gs] is continuous and that
graph[ge]~': Xx x M — ¥ is the projection on the first coordinate, thus it is also continuous.
So, we conclude the first part of the proposition.

Recall that periodic points of the shift map 7 are dense in Y, i.e., ¥ = Per(7). Conjugation
in the first part of this proposition implies that ' = m. Let I' be the local maximal
invariant set of ® in X; x D. Note that ¢¢(D) C D for all £ € Xj. Hence I' = Ny,ez®" (X x D)
and 'y = Per(®|r,) C T.

In order to prove that I' C T'g given any (§,x) € T it suffices to see that © = g¢(&). As the
set I'p is bounded, we have that K = sup{d(y,T's),7 € I'} € [0,+00). Since the maps ¢, are
contractions with contraction constant 0 < 8 < 1 we deduce that

2 = g2l = |9 © ¢ " (x) — ¢¢ © o " (92 (£))I| < B"[|9¢ " () — &¢ " (92 (£))]
= B"d(®7"(,2), 27"(¢, 90 (€))) < KB

Taking n — oo we get © = go(€) and thus (¢, z) € 'y, implying that I' C I'g. This completes the
proof of the proposition. O
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Next, we will give more information about the maximal invariant set. In particular, if the
symbolic skew-product ® belongs to Sp »5(D) with 8 < 1 then it satisfies the u-dominating
condition: B < 1 < v~!. Thus we could expect the existence of strong unstable lamination through

the point of the maximal invariant set I'e in 3 x D.

Proposition 2.14. Consider ® = 7 x ¢¢ € Sp (D) with B < 1 and let 'y be the mazimal

invariant set in ¥ x D. Then, there exists a lamination

WF@ = { loc(( )7¢)) : (57]}) € F“I)}

such that

i) every leaf Wiy!((§,2); @) is the graph of a continuous function v¢, : Wit (& 7) — M,

loc
1) 6711 ey 01 a(€) = Ay 0 7 1) where n=171(€), y = &7y o) (x) and € € W (&),

iii) if (9,p) € T'g is a periodic point of ® then W' ((9,p); ) C W*((9,p); ®).

loc

In addition, if ® is locally a-Hdélder then Ve We(&T) = M is an a-Hélder function and
Wipe((§,2); @) € WH((£,2); @) for all (§,z) € T'p.

Proof. Let (¢,z) € T'g. Following Proposition 2.5, we define ’y T WE(&T) = M by
72;(5/) = ¢Z—n(5f) o ( Z—n(g))_l(x) =97~ n(er) © o 5)( ).

Note that since z = g¢(£) then ’ygf(ﬁ’) = @ nien © o © © g3 (&). Thus, for simplicity in the
notation we will forget the subindex x and denote this map as v;"". Observe that {7} is a
sequence in the complete metric space CO(W}.(&;7), M). We will show that this sequence is

Cauchy and so converges.

By (2.26) it follows that
¢ e 090(8) =goor "(€) €D, forallneN.

Then, since ¢¢(D) C D for all £ € i, we have that ¢, ,n(g, o qﬁ;"l(f) 0 gs(&) € D for every
0 < i < mn. Since ® =7 X ¢ is in S » (D) we gett that || u"+1(§) Ve (&)l 1s less or equal
than

B[ pr—n-1(ery 0 ¢;_1n_1(5 0 ¢ Mg 0 9a(§) — Prn-1(g)© ¢;_1n_1(£, ° ¢ Mgy 0 g2 (&)
/3n+1H¢T n—1(g) © (;37_1"1(0 o ga(§) — (bT n—1(¢ry © ¢ —1( Og<1>(§)||
Given any € > 0 and using that gbgl depends uniformly continuously with respect to base point

&, we find ng € N such that for every & € W} (& 7) it holds that dco(qb;ln,l(g),qf);}n,l(g,)) <e
for all n > ng. Thus, for n > ny we get || unH(ﬁ) 7?’”(5’)” < B"Hle. Hence,

deo( gnH ") < e for all n > ny.

This implies that the sequence {vg ™1 is Cauchy and therefore converges. We will denote the limit
by 7¢ € COWL.(&7), M).
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Item (ii) is a consequence of the fact that qb;ll(g) (x) = qb;ll(g) 0 ga (&) = go o 77 H(€) and

;}1(5/) © Vg(fl) = lim ¢_}1 e © ¢:—L*n(§/) °© ¢;111(€) ° g93(§)

= lim ¢"=! 00, ) 0 ge 0 TTHE) = g 0 TTHE).

n—oo

Let (9,p) € I'p be a periodic point of ®. We will show that W4 ((9,p); ®) € W*((J,p); P).

Given any point (€, ) in WiA((9, p); @) we et € € Wi, (9: ) and 7 = §(€). Thus,
A(@(E,2), (0, p)) = dy, (1) () + 677 o (@) — 6 ) (D] .
< Vs, (6,9) + 677 ) 0 V4(E) = 677 ) D)1
Now, using that
Vg 0 T ) = ga o T() = 67 ) 0 g0 (9) = 677 ) (0)
and ¢ o) 0 V() = 7wy © T () we infer that
1677 ) © 15E) = 775 iy )l = 12y 0 7€) = Ym0 T @) (228)

Note that since ¥ € X, is a periodic bi-sequence then we only have a finite number of functions
. ( 19)}. Namely v*_; ) fori =1,...,s where s is the period of 9. From the uniform continuity
of these maps and since ds;, (77"(§), 77 "(¥)) — 0 then ”/ﬁ‘"(ﬂ) o ™) — Vi-n () © 7)) — 0
as n — oo. This implies that (2.27) goes to zero as n goes to infinity and therefore (£, ) belongs
to W*((¢,p); ®).

In order to prove that *yg is a-Holder if the skew-product @ is locally a-Holder we proceed as
in Proposition 2.5 obtaining that

¢ (€) =7 (€ < Cdg, (¢,6")* for all &, € Wi (&;7)

where C' = Cp(1 — Bv*)~L. In particular, using this regularity in (2.28) and substituting in (2.27)
it follows that
d(®7"(&,x), 27" (0, p)) < v'dx, (&, 9) + Cv*dy, (€,0)

for all point (9, p) € I's. This shows that W' “((J,p); ®) C W*((9,p); ®) for all (¥,p) € I'p and

loc
we conclude the proof of the Proposition. O

By construction, each one of the leaves of Wy is the local strong unstable set Wit ((£, x); @)
followed from the dual result of Proposition 2.5 through the point (£, z) in I'g. Recall that these
local leaves allow us to define the strong unstable set of (€, ) € I's and I'g respectively as

WY (€, ); derq)" (@&, 2); @) and W (I'g) & U WY (&, z); D).

n>0 (§x)eTs

The next proposition shows the relation between the invariant graph I'g, the unstable set and the
strong unstable lamination for I'¢. Before that, we introduce some notations. For each ® = 7 x ¢
we denote Per(®) the set of periodic points of ® and & : ¥ x M — M is the canonical projection

on the fiber space.
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Proposition 2.15. Consider ® = 7 x ¢¢ € Sp ) g(D) with 5 < 1. Then for every periodic point
(9,p) in Xy, x D of ® it holds

i) W'(T'g) =Tg,

ii) W ((9,p); ) = W((9,p); @), and

i) K™ (Per(®)) N D = 2(We((0,p); 9)) = 2(Is) = go(S).
In addition, if ® is locally a-Hélder then W*((&,x); @) = W' ((§,z); ) C T'g for all ({,z) € I'p.

Proof. In order to prove that W**((d,p); ®) C W*((¥,p); ®) for all periodic point (¢, p) in I'y we
take (§,x) € W*((¢,p); ®) and we will show that

lim d(®"(&,z), & (9, p)) = 0.

n—oo

Since (&, z) belongs to the local strong unstable set, there exist m € Nand (£, ') € W (™ (¥, p);

loc

such that (§,z) = ®™(&',2). Let us denote (n,y) = & (9,p). Notice that (n,y) is a periodic
point in T'g, (&', 2") € W((n,y); ®) and

loc

d(®7"(&,2), 8" (9, p)) = d(@~ (¢, ), &7 (n, y)).
From Proposition 2.14, we have that W'%((n,y); ®) C W"((n,y);®) and thus it follows that

loc

d(®~"(&,x), (Y, p)) — 0 as n — oco. Note that if ® is locally a-Holder the same argue works
to show that W ((&, z); ®) C W¥((&, z); ®) for all (£, x) € I'p.

We will show that if (£, z) € I'g then we obtain that the unstable set W*((, x); ®) is contained
in the strong unstable set W"%((&, z); ®). Indeed, take (¢',2") € WH*((&, z); ®). It suffices to show
that there is m € N such that @™ (¢, ') € W (™ (&, x); ). By definition of unstable set,

loc

nll_}ngo ds, (77"(€),7(€)) =0 and nh_)rrolo ||¢;f1(§,)(x’) — " (5)(1:)” =0. (2.29)

—1

Since (&, z) € I'p then ¢ 1) (x) € D for all n > 0. Thus, there exists m € N such that
T(E) € Wige(rT(§):7) and ¢ ff?n () €D
for all n > m. Let us denote (n,y) = ®~"(&, z) and (1/,y") = @~"(&’,2’). Hence, since gi)"_fl(n)
T*l(n) (y) and ¢T*"(77’) o d)T,l(n,)(y ) belong to D for all 0 < i < n, we get

o

Hy/ - 7#711(77/)” = nh—>Holo H¢Z*n(n ¢7- Ly )( ) - Z*n(n') 0 T_T“l(n)(y)H
< lm 8677 0y () = 677y -

by (2.29) and since 8 < 1, it follows that the above limit is equal zero and so y' = Yy (7'). That
is, @~ (¢,2") € WE(®~™ (&, x); @) and therefore (¢,2") € W**((§,x); ®). This concludes, in

particular, that W**((¢, p); ®) = W*((9, p); ®) for all periodic point (¢, p) in the locally maximal

invariant set I's.

Now we will show that W**(I's) = I's. Observe that by definition I'e C W**(I'p). Hence,
to complete Item (i) it suffices to see that W*((&,z); ®) C T'p for all (§,z) € T's. Consider

loc

(& 2"y e WHu((€,x); @). By (2.26) and noting that = g¢ (&) we get

loc

g2 (&) = A€ (E) = Hm [67-n(ey 0 g2 07 ") = Fn(ey 0o g 0T "(E)]-

)
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Since g¢ : X — D is a continuous bounded function it follows

l9a(€) AL < Tim B"lgn o ()~ gaor "(E)] < lim 'K

n—o0

where K is a bound of the diameter of D. Since this limit is equal to zero we have just shown
that go(¢) = 7¢,(¢) = 2’ and so (¢',2') € T'p. Therefore, we conclude the first item of this

proposition.

It only remains to prove (iii). Consider any periodic point 1 € ¥ of 7 and note that W*(¢; 1)
and Per(7) are both dense in Y. By means of the conjugation in Lemma 2.13 and both, the first
and the second items in this proposition, we get

Per(®|r,) = Te = W*((3, ga(9)); @) = W((9, ga(9)); D). (2.30)

Note that if (J,p) € X x D is a periodic point of ®, from the assumption ¢¢(D) C D, it follows
that ®"(9,p) € X x D for all n € Z. Moreover, since gg is the unique invariant graph of ®
restricted to ¥ x D, then p = go (). From this, we have

Per(®|r,) = Per(®ly, ) = Per(®) N (S x D). (2.31)

Thus, recalling that Kg is the closure of projection by &2 of the periodic points of ® in M and
since the projection Z is a closed map and ¥ is a compact set, we infer from (2.30) and (2.31)
that

P(Tg) = P(Wu((9,p); ®)) = P (Per(®|r,)) = 2 (Per(®)) N D = Kg.
Finally, we note that, from the above equation, K¢ = go(Xx) C D. Now, the proof of item (iii) is

complete and therefore we conclude the proposition. O

Let K(D) denote the complete metric space whose elements are the compact subsets of D
endowed with the Hausdorff metric di given by

dr(A, B) = sup{d(a, B),d(b,A) :a € A,b € B}, A, Be€K(D).

From the above proposition it follows that K¢ € K(D) for all ® € Sy, (D). Here we gives
some properties of the Hausdorff metric which we will use along this chapter. Given a non-empty
compact set C' C D and § > 0, the set Cs = {x € D : there is y € C such that ||z — y|| < 0} is
called generalize 6-ball around C.

Remark 2.16. Let A, B be non-empty subsets of D. Then
dH(A, B) = inf{5 >0: BCAs and A C Bg},

dy(A,B) = dg(A, B) and dg(T(A),T(B)) < Lip(T)dy (A, B) where T : D — D is a Lipschitz
map. Also, if A; and B; are non-empty subsets for all i in a set of index I then

du ( U A;, U B;) < 5161? dm(Ai, B;).
iel iel v

We can define the map . : Sy g(D) — K(D), given by .£(®) = Kg. The following proposi-

tion shows that this map is continuous.
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Proposition 2.17. Consider ® = 7 x ¢¢ € Spr5(D) with f < 1. Then, for each € > 0 there is
d > 0 such that for every ¥ =7 x 9)¢ € S » g(D) with

d00(¢§,¢§) <6 it holds that dH(Kq>,K\p) = dH(g((I)),g(\I’)) <E.

Proof. Fixed smalle > ¢ > 0let § = ¢(1—3)/2 > 0. Take a fixed point 9 € Xy, of 7. As ¢9(D) C D,
by Brouwer’s Fixed Point Theorem, there is pp € D such that ¢y(ps) = ps. Thus, (¥, ps) is a
fixed point of ® in ¥j x D. Then, if ¢ is small enough, for every ¥ = 7 x )¢ with deo(de, ¥¢) < 9
there is py € D close to pp which is a fixed point of ¥y. We say (¢, py) € I'y is the continuation
of (9,pg) € I'g for ¥ where I'y and 'y are the invariant set graph for ¥ and @ respectively. Take
© =7 x 0 € {®,V}. Since from Proposition 2.15 the strong unstable set and the unstable set
coincide, it follows

2 (W (9:p0):0)) = | 2 0 0" (Wi (9. 6); ©)).

n>0

By Proposition 2.14, the graph set of the function v W .(9;7) — M is precisely the local
strong set of (¥,pe) for ©. Thus, for each n > 0, the projection by & of ®"(W“((¥,pe);0)) is
exactly En(0) = {07 0§, (§): £ € Wj.(J;7)}. Hence, by Proposition 2.15

Ko = 2(W*((0,p0);0)) = | J En(©), ©=0,¥.
n>0

According to Remark 2.16

di (Ko, Ky) < supdp (Ep(®), En(V)).

n>0

On the other hand, for each n > 0, we get

di (En(®), En(V)) < sup  [|6¢ 09§, (€) — U¢ 075y, (O)]- (2.32)
EEW (¥57)

loc

Fix £ € W} (¥; 7). Firstly we will estimate (2.32) for n = 0. From the Item (ii) in Proposition 2.14
we get for every m € N that v, &) = Oﬁim(g) VS pe © 77"™(€). Thus, from this we infer that

175 g (€) = 7 g, (E)|I is less or equal than

B g © 7€) = Yy T O] F 6 me) © Vi © T (E) = Uy © Vi © T O]

By continuity and since £ is in the local unstable manifold of the fixed point ¥ for 7 we get the
limit of [|vy . o 77™(&) = V5, 0T (&)l as m — oo is |[pe — pw||. Hence the limit of the first
term in the above sum as m — oo is equal to zero. Now, we will estimate the limit of the second

term:

167-16) © B7ne) © Vopy © T (€)= Wr-1(e) O U e © Vg © T (O <
< lbrte) 0 87k 0 Wiy © T E) — Urm1(6) © B ) 0 Vi 0 T O
+ |91y © Gﬁfﬂl(g) OVipe OT (&) — (g0 ﬂﬁ?nl(@ °Ygpg 0T
<O+ B e © Ve © T E) = Yroi(e) 0 Yk 0 Mgy 0 T O
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Arguing inductively

m—1

6T ey © Vopy © T ™E) = Yy © Vi py 0T (O <8 Y B (2.33)
k=0
Taking limit as m — oo it follows the upper bound §(1 — 3)~! for the second term of the previous
sum. Putting together this estimates we get ||vj . (§) =7, (I < (1 — B)~! < e. Now, for each
n > 1, with a similar calculation we obtain that

108 © 75 pg (§) = V£ 095 g, (O < B 175 pg (§) = 75 (O + 1B 075y, (€) — ¥ © 75y, (-

Arguing as before when we have estimated (2.33), it follows [|¢g o vj , (§) — ¢ o vy, (O <
§(1—B)~1. Since 8" < 1, the same bounded it is also followed for the first term in the above sum.
Hence, [|¢¢ o vy . (§) — ¥F ovf,, (I < 26(1 — B)~1 = . Therefore, by (2.32), this implies that

di (Ko, Ky) < supdy (En(®), En(¥)) <€ <e,
neN

ending the proof of the proposition. O

Let (9, p) be a periodic point of ® = 7 x ¢¢ with period n. Then 7"(¥J) = ¥ and ¢}(p) = p.
In this case we write ¥ € Per,(7) and p € Fix(¢y). This point (¢, p) is called fiber-hyperbolic
periodic point if p is a hyperbolic fixed point of the map ¢rn-1(9) 0 -0 ¢y. If p is an attractor,
repeller or saddle point of ¢ n-1(9)0---0¢y then (9, p) is said to be fiber-attractor, fiber-repeller or
fiber-saddle point of ® respectively. In any case, if ¥ = 7 X )¢ is close to ® then 1 n-1(9)0 -0ty
has a fixed point py close to p that is also a hyperbolic fixed point (attractor, repeller or saddle
respectively). The periodic point (¢, py) of W is called continuation of (9,p) for W.

2.2.3 Symbolic blenders-horseshoes

In Proposition 1.12 we showed that non-normally hyperbolic horseshoes are blender-horseshoes.
In particular, the maximal invariant set in the blender-horseshoe reference cube is a hyperbolic
basic set conjugated to the Bernoulli shift of two symbols. Throughout §2.2.2 we have shown a
similar result for symbolic skew-products in Sy g(D) with < 1 which we summarize here (see
Theorem 2.12, Propositions 2.13, 2.15 and 2.17):

Theorem A. Consider ® € S\ g(D) with B < 1. Then the restriction of ® to the set

Ty =[] ®"(Zk x D) = (] (S x D)
neZ neN
is congugated to the full shift T of k symbols. Moreover, W% (I'g) = ' and there exists a unique
continuous function go : X — D such that for every periodic point (9,p) of ® in Xy x D it holds
that, W*((9,p); ®) = W**((J,p); ) and

Ly = Wue((d,p); @) ={(§ 90(8)) : § € Tp} with P (T's) = Ko € K(D).

Finally, the map £ : Sk (D) — K(D) given by £ (®) = K¢ is continuous.

In addition, if ® is locally a-Hélder continuous then W*((&,x); ®) = WY ((&,x);P) for all
(&, x) €Tg and go : W(&;7) = D is a-Hélder continuous for all £ € .
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In order to introduce symbolic cs-blender-horseshoes, we firstly define a family of almost

horizontal disks which provides the superposition region of the blender.

Definition 2.9 (Almost horizontal disks). For a fized o > 0 and given an open subset B C D,

we say that D? is a d-horizontal disk in X x B if there are { € ¥, z € B, some positive constant
C >0 and a (o, C)-Hoélder function h : W ((;7) = B such that

D ={(&h(§)) : § € Wig(G )}y Nz = h(§)I] < & for all § € Wi,.(¢;7) and Cv® < 6.

From Theorem A, it follows Wji(I'p) = T'g for all @ € S 5(D) with 3 < 1. Hence, the
corresponding definition of ¢s-blender in | |, Definition 1.3, in the context of symbolic skew-

product can be written as follows:

Definition 2.10 (Symbolic cs-blender-horseshoes). Let ® € Sg) 5(D) with 8 <1, a > 0.

The maximal invariant set Ty of ® in Xy x D is said to be symbolic cs-blender-horseshoe if
there are § > 0, a non-empty open set B C D and a neighborhood V of ® in S,‘j"/\ﬁ(D) such that
for every W € V and for any d-horizontal disk D® in X x B, it holds that

Iy ND*#0, where 'y is the continuation of T'g for W. (2.34)

The open set B is called superposition region of the symbolic cs-blender-horseshoe.

From Theorem A, it follows that Wu«((d,p); ®) = I'e for every periodic point (¢, p) € X x D.
In Proposition 2.5, we proved that each local strong stable set W ((§{,x); ®) in ¥ x B is an
almost horizontal disk. Hence, if I'g is a symbolic cs-blender-horseshoe for ® then Equation (2.34)

implies that

W (9, pw); W) N Wige((§,2); W) # 0 (2.35)

for all S%perturbation ¥ of ® where (¢, py) is the continuation periodic point of (¢, p) for W.
Observe that, in particular, if ® € Slj/\ﬁ(D) then W2 ((§,x); @) = W (& 1) x {x}. In this case,

we infer that W**((4J, p); ®) N (W (& 7) x U) # 0 for all neighborhood U of =. From this fact we
introduce the following definition:

Definition 2.11 (Symbolic ¢s-blender-horseshoes in the unilateral setting). Consider a symbolic
skew-product ® € S;f, 5(D) with B < 1.

The mazimal invariant set Tg of ® in Xi, x D is said to be symbolic cs-blender-horseshoe in
the unilateral setting if there are a non-empty open set B C D, a fixed point (9,p) € X x D of
® and a neighborhood V of ® in S,j/\ ﬁ(D) such that for every W €V, it holds that

W (0, pw); ©) N (Wi (&) x U) # 0, (2.36)

for every € € X and every non-empty open subset U in B. The open set B is called superposition

region of the symbolic cs-blender-horseshoe in the unilateral setting.

In | ; Definition 3.5, the above definition was given for symbolic skew-product in §; , 45(D).
Nevertheless, to get (2.35) from (2.36) we need that W**((§, z); ®) = W .(§;7) x {z}. This is only
possible if the local strong stable lamination is linear and consequently the skew-products have to
belong to SI:F,A,,B(D)'
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To define symbolic cu-blenders-horseshoe, firstly we need to introduce the associated inverse

symbolic skew-product for ® = 7 x ¢¢. Given ® = 7 X ¢¢ € S B(D)’ the symbolic skew-product
D" =7 X ¢ €S g1 \-1(D),  where ¢z : M — M given by ¢¢(x) = ;11(5*)(33),

is called associated inverse skew-product for ®. Here £* = (...&1;&0,&-1,...) denotes the con-
jugate sequence of & = (...£_1;&0,&1,...). Note that since 7(£)* = 771(£*) then iterates of ®*
are corresponded to iterates of ®~1. This observation allows us to define symbolic cu-blender-
horseshoes for symbolic skew-products in gy 5(D) with A > 1 and o > 0. Namely, a symbolic
cu-blender-horseshoe for ® is defined as a symbolic cs-blender-horseshoe for ®*. Also, observe that
if @ €Sy 4(D) then @* € S5,
the unilateral setting is defined as symbolic cs-blender-horseshoes in the unilateral setting for ®*.

(D) and thus, analogously symbolic cu-blender-horseshoes in

Proposition 2.18. Consider ® € Sy (D) with B < 1. Let I's, (¥,p) and B be the mazimal
invariant set in Xy, x D, a fized point in X x D of ® and an open set in D respectively. Then,

the following statements are equivalents:

i) W ((9,p); @) N (WE(&7) xU) # 0 for all non-empty open set U in B and § € y,

i) gwen (§,x) € X, x B there is (£',2') € Ty such that WE((&',2"); ®)N(WE (& 1) x{x}) # 0,

loc

iii) B C go(Wi,(&7) for all § € S,

Proof. Let {U,}nen be a sequence of nested open neighborhoods of = whose intersection is the
point x. By (i), it follows W"*((¥,p); ®)N (W .(&§;7) x Uy,) # 0 for all n € N. Now, for each n € N,
we consider (£, p") € W"*((0,p); ) C I'p such that Wi ((£",p"); ®) meets W (§;7) x Uy,. Let
(¢',2") be an accumulation point of the sequence {(£",p™)}nen. Then this accumulation point
belongs to I's and from the choice of the nested sequence of neighborhood U, it follows that
Wt (& 2"); OYN(WE (& 7) x{x}) # 0 and so we obtain (ii). Reciprocally, using that the unstable
manifold of a fixed point W**((d, p); ®) is dense in ' = W**(I'g) we conclude that (ii) implies (i).
Finally, it follows that (ii) is equivalent to I' N (W} .(&; 7) x {x}) # 0 for all € B. Hence, noting
that T is the graph of a continuous function g¢ : ¥ — D we obtain that the above assertion is
equivalent to (iii), i.e., B C go(W}}.(&;7)). Therefore, we conclude the proposition. O
Remark 2.19. If ® € S]:f)\ﬁ(D) then W2 ((&,2); ®) = WP (& 7) x {z} and hence (ii) in Propo-

loc
sition 2.18 can be written as

loe (Ta) MW ((€,2); @) # 0 for all (§,x) € ¥y, x B.

In §2.1.2, a skew product C'-diffeomorphism f over a horseshoe F': A — A was considered.
Under the modified dominating splitting condition, in Proposition 2.1 it showed that any C'-
perturbation g close enough to f has a maximal invariant A, such that the restriction of g to this
set is conjugated to a a-Holder continuous symbolic skew-product. Now, we focus our attention
in the conjugate Holder symbolic skew-product @ of f|xx s restricted to the local region ¥y x D.
Let 'y be the maximal invariant set in ¥j x D of ®. Assuming 8 < 1, suppose that I'y is a cs-
blender-horseshoe for ®. By Definition 2.10 it follows that the local strong stable set of any point
(&, x) € X x B meets robustly local strong unstable sets of points in I'¢ under S®-perturbations.
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That is, W' (T'g) N WES((€,2); ¥) # 0 for all (£, z) € ¥j x B and small enough S*-perturbation

loc loc
U of ®. Via conjugation, this assertion is also obtained for f under C'-perturbations.

In §2.2.1, the conjugation between a symbolic Holder skew-product and a symbolic unilateral
skew-product was studied. Namely, from Propositions 2.3 and 2.9, assuming that the symbolic
skew-product @ is fiber bunched a-Hélder differentiable and has C?-fiber maps it follows that
® is conjugated to a unilateral symbolic skew-product in S;’J“(M ). By Theorem 2.2 it follows
that these additional assumptions of regularity to obtain the conjugation can be inferred for the
conjugate skew-products of C?-perturbations of the C?-diffeomorphism f = F x id. Hence, if
I'g is a symbolic cs-blender-horseshoe in the unilateral setting for a unilateral skew-product ®
conjugated to some partially hyperbolic skew-product C?-diffeomorphism f restricted to A x M
then, from Definition 2.11, Remark 2.19 and via conjugation, we only could infer that C2-robustly
WD) N WS (2, ); £) # 0 for all (z,2) € A x B,

In the rest of this chapter, we will study the existence of symbolic blenders. Namely, given a
one-step & = 7 X (¢1,...,¢r) we will give properties for the maps ¢1, ..., ¢x such a way that
has a symbolic cs-blender-horseshoe. For instance, the maps ¢1, ..., ¢ defined on D must satisfy
the covering property: there exists an open set B C D such that B C ¢1(B) U --- U ¢(B). The
following result describes how to the covering property translates to a robust property in the
language of Holder symbolic skew-products:

Theorem B (Covering property characterization). Consider ® = 7 X (¢1,...,¢%) € SI?AB(D)
with v* < A < 1 and let B be an open set in D. Then,

B C ¢1(B)U--Ugy(B) (2.37)
if and only if there are 6 > 0 and a neighborhood V of ® in SI?,/\,B(D) such that for every ¥ €V
Iy (B)YND®* £0  for all 5-horizontal disk D* in ¥j x B (2.38)

where T'y,(B) is the forward mazimal invariant set of ¥ in Xj x B.

Under the additional hypothesis 5 < 1if ® =7 x (¢1,...,¢x) € Sy 5(D) then ¢;(D) C D for
i=1,...,k. In such case, for any small perturbation ¥ = 7 x 1¢ of ® it holds that ¢¢(D) C D
and it follows

Ty(B) = [ ¥"(Zk x B) C [ ¥"(k x D) = T
n>0 nez
Therefore, combining the above result with Definition 2.10, we obtain the following consequence
on the existence of symbolic blenders using the covering property.

Theorem C (Symbolic blender-horseshoe existence). Consider ® =7 x (¢1,...,¢x) € Si'y 5(D)
with v* < A< B <1, a > 0. Assume that there exists an open set B C D such that

BCéu(B)U---Ugi(B).

Then the mazimal invariant set 'y of ® in Xp, x D is a symbolic cs-blender-horseshoe for ® whose
superposition region contains B.

Remark that under the covering property assumption we also show the existence of symbolic
cs-blender-horseshoe in the unilateral setting (see Theorem 2.30). Before showing these theorems,
we will studied symbolic blenders in the one-step setting. That is, given a one-step map ® we will
study the property (2.36) under Q-perturbations ¥ of ®. We think that proceeding in this way
helps to understand the property (2.36) in the general context of Definition 2.11.
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2.3 Symbolic blenders in the one-step setting

Let ® = 7 X (¢1,...,¢r) be a one-step skew-product map. We denote by IFS(¢1,...,¢x) or
IFS(®) the set of all compositions of the maps ¢1, ..., ¢ (together the identity map id) and we
will refer it as the associated iterated function system (shortly IFS). For each subset A C M let
Go(A) = ¢1(A)U---Upr(A). The orbit of a point = € M for IFS(¢1, ..., dk), also called Gp-orbit
of z, is the set

Orbg () = {GR(z) :n > 0} = {¢(x) : ¢ € IFS(¢1,..., b))}

The relation between a one-step map and its associated IFS is through the dynamics of a unstable
disk D*. In fact, the first observation is that since ® = 7 X (¢1,...,dx) is a one-step map then
WEt((&,x); @) = WE.(& 1) x {x}. From here, an unstable disk through the point (£, ) for a

loc
one-step map @ is

D¥(&,x) = BWie(d71(&,2); @) = S(Wis (771 ();7) x {o ! (2)}) = V(&5 7) x {a}

where V" (§;7) = {¢§ € ¥p : & = & forall © < 0}. That is, a compact piece of the strong

unstable set of (£,z) which contains the point (£, x). For each i € {1,...,k}, define the set
Uy = {¢ € X : (o = i}. These sets U; form a partition of ¥j. The unstable disk D"(¢,x)
intersects every U; x M, i € {1,...,k}. Note that if ( € V% (&;7) NU; then ¢¢ = ¢;. Hence, the
image of D"(&,z) N (U; x M) by ® is the unstable disk D"(7(€), ¢5(z)). Then

k k
(D" () = (| D& 2) N (WU x M)) = | D(r(€), 6i(x).
=1 =1

From a similar argument,
E ok
o*(D"(¢,2)) = [J | D*(72(€), ¢j © di()).
i=1j=1
Inductively, we note that the dynamics on the fiber of these new disks is given by

{pi, 0o---0¢i(x): n>1, i; €{l,...,k}} = Orbg(z).

The following proposition shows that if (£, z) is a fixed point of ® then the above set is the
projection on the fiber space of the strong unstable set of (§,x).

Proposition 2.20. Consider ® = 7 X (¢1,...,¢r) a one-step map and let (¥, p) be a fized point
of ®. Then

PW(9,p); @) = {p(p): ¢ € IFS(¢1,...,x)} = Orbe(p).

Proof. Since (1, p) is a fixed point of ® then
Wuu v p U (I)n loc )’(I)))

On the other hand, for each n > 1 it holds

(VVloc((ﬁvp); (I)) = {(TH(C)a ¢7’"—1(() ©--0 d)C(p)) :C € ‘/Vlléc(ﬁ; T)}
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Since @ is a one-step, ¢,i(¢) = ¢, and noting that ¢¢(p) = ¢y(p) = p it follows that

P (D" (Wipe ((9,0); @) = {@prn-1(c) 0 -+ - 0 br(e)(P) + ¢ € Wig(957)}
:{¢in710---0¢i1(p) : Z] & {1,...,]€}, 1 S] <n}

Hence this projection on the fiber space is Orbg (p). This concludes the proof of the proposition. [

As a consequence of the above proposition, we will show that the density property (2.36) of
the strong unstable set in the one-step setting is reduced to a density property of an orbit of the
associated IFS. First, recall that by a neighborhood V of ® in 9y, \ g() we mean a neighborhood
in the topology of Sﬁ)\ﬂ(D) intersection with Qj » g(D). Having in mind that the topology of
Siix (D) is induced by the distance given in (2.25) and noting that for every U € Q5 s(D) the
Holder constant is Ciy = 0, we get that ¥ = 7 x (¢1,...,¢g) is d-close to & = 7 X (¢1,...,Pk) if
do(¥, ®) = max{dco(Yi|p,dilp) :i=1,...,k} <.

Proposition 2.21. Consider ® = 7x (¢1,...,0r) € Qr (D), a non-empty open set B C D and
a fiber-hyperbolic fized point (9,p) € X x D of ®. Then, the following statement are equivalent:

i) There is a neighborhood V of ® in Qy x g(D) such that for every W € V, it holds that
W (9, pw)s ) N (Wi (&7) x U) # 0,
for every € € X and every non-empty open subset U in B;

ii) B C Orby(py) for every ¥ =171 x (¢1,...,¢x) € Qpr (D) close to ® =17 X (¢1,...,¢k).

Proof. By Proposition 2.20, if (¢, py) is a fixed point of any one-step ¥ = 7 x (1)1,...,1;) then
P W (9, py); ¥)) = Orby(py). Thus, in this case, Ttem (i) implies that B C Orby(py) for
every U = 7 x (¢1,...,9%,) € Qpapg(D) close to ® = 7 X (¢1,...,¢%). In order to prove the
converse, fix U C B and £ € Yj. By Item (ii), there is 1, o --- o1y, € IFS(¢1,...1y) such
that @ = ;, o -+~ 0y, (py) € U. Let ( = (... 910,41, .,1n;&0,&1,-..). Note that (¢,z) €
W (& 1) x U. We will prove that (¢,z) € W**((¢,py); ®). Since (¥, py) is a fixed point of ¥,

\Il_n_l(ga .’E) = (( .- 719*1; 19031'17 cee 7in7§07£15 .. )ap\I/) € W/;éc(ﬂ77') X {p‘l’}
Therefore (¢,z) € U™ (WL (9;7) x {py}) = "W ((Y,py); ¥)) C W*((J, py); ¥). This

loc
implies Item (i) and proves the proposition. O

If (9, p) in the above proposition is a fiber-attractor of ® = 7 X (¢1, ..., ¢x) with B contained
in the attracting region of p for ¢y then (ii) is equivalent to

B C Orbg(z) forallz € B (2.39)

for every U € Qy 5 g(D) close to ®. Indeed, it suffices to show that Item (ii) in Proposition 2.21
implies (2.39). To do this, let ¥ =7 x (¢1,...,9) € Q. s(D) be a O-perturbation of ®. Let U
be a non-empty open set in B and x € B. By hypotheses, there is 1) € IFS(¢1,...,) such that
Y(py) € U. Since U is open and v is continuous then there exists a neighborhood V' of py such
that (V) C U. If ¥ is close enough to ® then B is also in the attracting region of py for ¥y = v
where i = 0. Thus there is n € N such that ¢!"(z) € V and hence 9 o ¢ (x) € U. This shows

that B C Orby(z) for all x € B.
Motivated from (2.39), we give the following definition:
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Definition 2.12 (Blending region). Let ¢1,...,¢ be C'-diffeomorphism of M. A non-empty
open set B C M is called blending region for IFS(¢1, ..., ¢r) if for every ¥ =1 x (Y1,...,0k)
close enough to ® =7 X (¢1,...,0k) it holds taht

B C Orby(z) for all z € B.

Here, we mean by closeness that the fiber map 1; of ¥ is C'-close to the fiber map ¢; of ®.

There is a similar definition of blending region from the Control Theory | |. Aset AC M
is called precontrol set for the TFS(¢1,...,¢x) if A C Orbg(z) for all 2 € A and int A # 0. A
precontrol set which is maximal with respect to set inclusion is called control set. The difference
between blending region and (pre)control set is the additional condition of robustness by perturba-
tions of the IFS. Sometimes we will refer to both, item (ii) in Proposition 2.21 and Equation 2.39,

saying that B is robustly transitive and robustly minimal for IFS(¢1, . .., ¢x) respectively.

Proposition 2.22. Let ® = 7 X (¢1,...,¢) € Qrap(D). Consider B an open set in D and
suppose that there exist a hyperbolic fized point p € D of some ¢; and a map ¢ € IFS(é1, ..., dk)
such that ¢(p) € B. Then if B is a blending region for IES(¢1, ..., ¢r) it follows that the mazimal
invariant set To of ® in X x D is a symbolic cs-blender in the one-step setting.

Proof. The proof follows from the equivalence between (i) and (ii) in Proposition 2.21. By hypoth-
esis, there exist a fixed point p € D of some ¢; and a map ¢;, o--- 0 ¢;, € IFS(¢1,...,dx) such
that ¢;, o---0 ¢ (p) € B. Since B is an open set, if ¥ = 7 X (¢1,...,19) is close enough to ®
then v;, o---01;, (py) € B where py is the continuation of p for ;. Now, since B is a blender-like
set for IFS(¢1, ..., ¢k) it follows that

B C Ol“bq;(wln 0--:0 %‘1 (pq;)) C Ol"b\y(p\y).

This concludes the proof of the proposition. O

2.3.1 Blending region for contracting IFS

We will work with contracting one-step skew-products maps. Recall that ® = 7 x (¢1,...,¢) €
Qi p(D) is a contracting one-step skew-product if every ¢; is a contraction with contraction
constant 0 < 8 < 1. Here, we will prove the existence of symbolic blender-horseshoes in the
one-step setting. Although this has already been proven in | , Proposition 3.6], our approach
here is a little bit different. The one-step skew-product maps, or one-step maps for short, & =
TX (¢1,...,¢k) considered in | | satisfy the covering property and well-distribution of periodic
points. The maps ¢1, ..., ¢ have the covering property if there is an open set B C D such that

k
Bc|Jei(B). (2.40)
i=1
The set of fixed points of ¢1, ..., ¢y is well-distributed if any open ball of diameter d and centered
in B contains a fixed point of ¢; for some i € {1,...,k}, where
d > max{r > 0: for all z € B, there is ¢ such that B(z,r) C ¢;(B)}.

We will see that, in this one-step setting, the well-distribution property is not necessary to obtain
symbolic blenders. Indeed, our first approach involves the so-called Hutchinson operator of a

contracting IFS.
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The Hutchinson attractor

Associated with a one-step map ® = 7 X (¢1,...,¢r) € Qi g(D) with 0 < § < 1, or with its

associated contracting IFS, we define the Hutchinson’s operator by

Go: K(D) = K(D),  Go(A) =¢1(A)U...Ugy(4)

where we recall that (D) denotes the complete metric space whose elements are compact sub-
sets of D endowed with the Hausdorff metric. Since the maps ¢; are contractions, then Gg is a
contracting map. This fact leads to the following result:

Proposition 2.23 (| , ). Let ® =7 % (¢1,...,01) € Qrap(D) with0 < B < 1. Then
there exists a unique compact set Kg, € K(D) such that

Kg, = Go(Kg,) = Per(IFS(®)) N D & Kg.

Moreover, the set Kg, depends continuously on the one-step map ® and it is the global attractor
of Go: for every A € K(D) it holds li_r>n du (9§ (A), Kg,) = 0.
m o0

In the above proposition, Per(IFS(®)) denotes the projection Z7(Per(®)). That is, the set
of the fixed point of the compositions maps in the associated IFS of ® = 7 x (¢1,...,¢x). The
compact set K¢, (in the sequel denotes by Kg) is called Hutchinson’s attractor of the contracting
one-step map ® restricted to Xj, x D or of its associated IFS on D.

By Proposition 2.23, G7'(z) — Kg. Thus K¢ C Orbg(z), for all z € D. We have the following

consequences of Proposition 2.23:

Corollary 2.24. Consider ® = 7 X (¢1,...,¢r) € Qrrg(D) with 0 < B < 1 and let Ko be its
Hutchinson’s attractor. It holds that:

i) If A€ K(D) such that A C Go(A) then A C K¢ C Orbg(x) for all x € D;
ii) For every p € Kg there is a sequence (op)nen € {1,...,k} such that

gnlo...ogb;ll(p) € Ko forallneN;

iii) For each open set V' such that V N Kg # 0, there exist n € N and (iy,...,i,) € {1,...,k}"
such that ¢;, 0--- o0 ¢i, (Ke) C V.

Proof. In order to prove the first item, note that by hypothesis A C Go(A) C ... C GF(A) for all

m > 1. Since GF'(A) — K¢ this implies that A C Kg. Thus, we obtain that A C K¢ C Orbg ()
for all z € D, and conclude (i).

According to Proposition 2.23, K¢ = ¢1(Kg) U ... U ¢r(Kg). Thus given p € Kg there exits
o1 € {1,...,k} such that ¢, (p) € Ko. Arguing inductively, we get a sequence (o )nen such that
$glo---0p l(p) € Ko for all n € N and therefore we prove Item (ii).

Finally, to prove Item (iii), consider ¢ € {1,...,k} and the fixed point s of ¢;. By the first
item we have K¢ C Orbg(s). Hence, there are m € N and (o1,...,0m) € {1,...,k}™ such that
Go,, 0 0Py (s) € V and thus gb;ll o-- -ogb;}z (V) is a neighborhood of s. Since gb;l is an expansion
and K¢ is bounded, there exists ¢ € N such that K¢ C ¢;£O¢;11 o---0¢ (V). Now it is enough to

take n = £+m and the sequence (i,.¢.,4,01,...,0.). This completes the proof of the corollary. [J
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Remark 2.25. From the above corollary it follows that if ® =7 X (¢1,...,¢r) € Qi (D) with
0< B<1and B C D is a non-empty open set such that B C Go(B), then

B C B C K¢ C Orbg(z), forallz € D.

The following corollary shows that B in the above remak is a blending region for IFS(¢1, ..., ¢x).
Thus, by Proposition 2.22, this result implies the existence of symbolic c¢s-blender-horseshoe in
the one-step setting:

Corollary 2.26. Consider ® =7 x (¢1,...,¢) € Qeag(D) with0 <A< < 1. Let BC D be
a non-empty bounded open set with B C Go(B). Then for every U € Oy » 3(D) close enough to ®
it holds B C Ky C Orbg(x), for all z € D.

Proof. If W =71 x (¢1,...,9) € Q. p(D) is close enough to ® then dy(Gy(B),Ge(B)) is small.
From this proximity and since Gg(B) is open, it follows B C Gy (B) C Gy(B). Inductively, we get
B C GFY(B) for all m > 0. Let Ky be the Hutchinson attractor of ¥ restricted to X x D. Since
Ky is closed and W}Hn di(GR(B), Ky) = 0 we obtain B € Ky C Orbg(z) for all 2 € D. O

Without using the Hutchinson theory

Next, we will show that if B C Gg(B) then B C Orbg(x) for all # € D, without to involve the
Hutchinson theory. To this end, the following proposition is the key to understood the symbolic
cs-blender-horseshoes in the one-step setting.

Proposition 2.27. Let IFS(é1, ..., ¢r) be a (N, B)-Lipschitz iterated function system on D C M
with 0 < X\ < B < 1 such that ¢;(D) C D fori=1,..., k. We assume that there is a no-empty open
set B satisfying the covering property (2.40). Then there are C°-neighborhood U; of ¢;, i = 1,... .k
such that for every family {11, ...,vr} of homeomorphisms with v; € U; fori=1,...,k and for
every x € B there is a sequence (i;)j>0, i; € {1,...,k} such that

x = li_>m i, 00t (y) forally € B.

Proof. Note that since the maps ¢; are (), 8)-Lipschitz on D with 0 < A < 8 < 1 then ¢;(B) are
open sets. Then the covering property B C Gg(B) is a robust property. That is, there is small
enough CY-neighborhood U; of ¢; of homeomorphisms of M for i =1, ...,k such that if

= (\v(B) fori=1,... .k

YeU;
then BC BfU---U Bj. Taking U; small enough we can assume that any ¢ € U; is also a (X, 3)-
Lipschitz on D for i = 1,..., k. Given a family {¢1, ..., 9} of maps with ¢; € U; fori =1,... k,
we define recursively for n > 1 the sets
Bl i, =i, (B zn ) =i, 00 (B) fori;=1,...,kandj=1,...,n
Claim 2.27.1. For all n € N it holds
B! C U Bl and Bc |J B}

12.. ’Ln+1 2112.. Zn+1
i1=1 T genes int+1=1
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Proof The proof is by induction on n. Firstly, we will show that B1 C UZ1 1312”2 and B C

B? . . By definition and using that B; C Bi1 and BC BfU...U By it follows

11 Jo=1""1112"

k k k
U By, = |J vu(B) =vi(|J Bl) 2 ¢n(| B} > in(B) = Bi,.

i1=1 11=1 i1=1 i1=1

From this we obtain that UZ1 o 1BZ122 22 1B1 D B. Now, we assume the lemma holds for

n — 1 and we will prove it for n. In the same way as before,

+1
U anl An41 U wanrl 11 zn) wanrl U le zn)'

i1=1 i1=1 i1=1

By hypothesis of induction, we have that B?~L UZl 1B, and then

12...0n $112...0n

k
n+1 . n—1 n
U B’Ll An41 ) w1n+1(B22 Jin ) Blg Ap41”

i1=1

Now, note that we have that Bf2 e UZ1 1Bf1—~;21.~iz+1 forevery 1 </ <nandforalli; =1,...,k
with 7 =2,...,£+ 1. Then

k k
n+1 n
U Bi1-v-in+1 ) U Bi2-~-in+1 = U an+1
i17...7in+1:1 ’ig,...,in+1:1 ’Ln+1 1
and the proof of the claim is completed. ]

Since B C U?ZlB}, for each # € B there is i1 € {1,...,k} such that = € B}. We now
proceed recursively. For n > 1 we suppose that we have i; € {1,...,k} for j =1,...,n such that
z € B ;. By Claim 2.27.1 we have B} , C U B"Jr1 . Then there is 11 € {1 ., k} such
that z E B”Jrl .i,- From this, we construct a posmve bequence i =111g... = (z])]>0 such that

in41in
z € B ,; for all n > 1. Thus, we get

i1
T € ﬂ B i, = m Yip oo, (B m Ap

n>1 n>1 n>1

where A, = N4, o+ o1, (B) for all n € N. Note that, since ¢;(D) C D for i = 1,...,k then
if the neighborhood U; are small enough it holds A, y; C A,, C ¥, o---0);, (B) C D. Hence, sice
every 1 € UF_ U; is a (), B)-contracting map in D, it follows

diam(A4,) < diam(¢;, o --- o1, (B)) < f"diam(B)

where diam(A) denotes the diameter of a bounded subset A of M. Therefore A, is a nested
sequence of sets whose diameters goes to zero and so {z} = Ny>1B] ;. = Np>19i, 0+ 01y (B).

Finally, from this we deduce that given y € B,

[$i 0 -+ 09y, (y) — af| < diam(4i, 0 - -~ 0 4, (B)) < f"diam(B)

for every n € N. Since lim,,_,o, 8" = 0, then z = lim,,_,o0 ¥, 0 -+ 0 9;, (y) and we conclude the

proof of the proposition. O
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Recall that, given a one-step ® = 7 X (¢1,...,¢x) or an iterated function system IFS(P)

Per(IFS(®)) <= | J {Fix(¢yn-1(9) 00 dy): 0 € Pery(r)} = P (Per(d))
neN

={x e M: ¢(x) =z for some ¢ € IFS(¢1,..., %)}
The next lemma gives some relations between closure of this set and the closure of some Gg-orbits.

Lemma 2.28. For every one-step ® =7 x (¢1,...,05) € Qurpg(D) with 0 < B < 1 it holds that

i) Per(IFS(®)) N D C Orbg(z) for all x € D,

ii) Per(IFS(®)) N D = Orbg(p) for all p € Per(IFS(®)) N D.

Proof. Let x € D. If p € Per(IFS(®)) N D, then there is a sequence (pp)ney C D and h, €
IFS(¢1, ..., ¢k) such that lim, oo pp, = p and hy,(pn) = pp. Since the maps ¢; are contracting in
D and ¢;(D) C D fori=1,...,k then h,, are also contracting maps in D. Thus for all £ > 0 there
are m and £,, in N such that ||p,, — p|| < /2 and ||hfm (z) — pp|| < €/2. Hence, ||hém (z) —pl|| < e.
Therefore p is in the closure of Orbg () for all 2 € D. This proves Item (i).

To prove the second item we only need to show that given p € Per(IFS(¢1,...,¢r)) N D

Orbg(p) C Per(IFS(®)) N D.

Since ¢;(D) C D for all i = 1,...,k then Orbg(p) C D. Let & € Orbg(p) C D. Then there is a
sequence (hy), C IFS(®) such that lim,, h,(p) = z. Hence, for all € > 0 there is m € N such that
hm(p) € D belongs to the open ball B(z,¢) centered at x and radius €. From the continuity of
hy, there is § > 0 such that h,,(B(p,d)) C B(z,e) N D. In the other hand, since p € Per(IFS(®))
then there is h € IFS(®) such that h(p) = p. Since h is a contracting map in D there exists £ € N
such that h*(B(zx,¢) N D) C B(p,d). Thus

hum o hY(B(x,€) N D) C hy(B(p,6)) C B(x,¢).

Therefore, B(z,e) meets Per(IFS(®)) for all & > 0 and consequently the point = belongs to
Per(IFS(®)). This completes the proof of the lemma. O

As a consequence of Proposition 2.27 and Lemma 2.28, recalling that

Ko < Per(IFS(®)) N D = Z(Per(®))ND,  ®=71x(d1,...,01),
we reprove Corollary 2.26 without using the Hutchinson Theory. That is, we show the existence
of symbolic cs-blender-horseshoe in the one-step setting from Proposition 2.27 and Lemma 2.28.

Proof of Corollary 2.26. If U = 7 x (¢1,...,v%;) € Qkr3(D) is close enough to ® then ; € U; for
i=1,...,k, where Y; are the neighborhoods given in Proposition 2.27. Thus, B C Orby(z) for all
x € B. In particular, fixed x € B, there is (hy,)n, C IFS(¢1,...,%) such that lim,_ . hy(z) = x.
Since h,, are contractions in D, for a given ¢ > 0 small enough there exists m € N such that

hm(B(z,¢)) C B(x,e) and thus the fixed point p,, of h,, belongs to B(x,¢) C B. By Lemma 2.28,

B C Per(IFS(¢1,...,9%%)) N D C Orby(z) for allz € D

and the corollary is proved. O
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2.4 Symbolic blenders in the unilateral setting

Given a bi-sequence £ = (...,&1;&0,&1,...) € Xk, the negative (resp. positive) tail of £ is the
sequence £~ = (&;)i<o (vesp. £ = (&)i>0). These tails of a bi-sequence can be seen as an unilateral
sequence in Zk ={1,..., k}Z . This space of unilateral sequences is endowed of a topology taken
the same metric dy, restricted to Zz. We will denote by o : Z; — Ez the restriction of left shift

map T : X — Xk to the space of the unilateral sequences.

Let us consider skew-product maps H over the unilateral shift map of k symbols of the form
H:SPx M — S5 x M, H(w,z) = (ow, hy(x)) (2.41)

where hy, : M — M are homeomorphisms and the map w — h,, is continuous. We will use the
notation H = o X h,,. This map can be understood by studying forward iterations of the skew-
product ® = 7 X ¢¢ in S]j (M) where ¢¢ = het. Reciprocally, for each skew-product ® = 7 x ¢
in S,j (M) we associate the skew-product ®; = o x ¢¢+ of the form of (2.41). In fact, denoting by
Py Y X M — Zz x M the projection given by &2, (£, z) = (€1, x), we have

94_0(1):@4,_0@4_.

Thus, we can also see S; (M) as the set of skew-product maps of the form of (2.41). Similarly, we
will understand that Qy, » 3(D) and S; A ﬂ(D) are also sets of symbolic skew-product over unilateral
Bernoulli shift o. So, we extend the previously definitions introduced for bi-lateral symbolic skew-
products ® = 7 x ¢¢ such as fiber-hyperbolic periodic points, continuation point, etc., to unilateral

symbolic skew-products H = o x h,, and we will denote

hZ(:U) d:ézf honflw ©---0 hw(iﬁ), Hn(w7$) = (anv hZ(ZL‘))

Now, we will try to reduce the geometrical property (2.36) in Definition 2.11 for a skew-product
¢ =7Kq € ‘Sle B(D) to the associated skew-product @4 = o X ¢¢+. Firstly, we introduce some
standard definitions.

We define (strong) unstable disks for ® = 7 x ¢¢ through the point (§,x) € ) x M as an
embedded compact disk D" in the strong unstable set of (£, x) for ® which contains the point
(&, x) and intersects every Markov partition element. More precisely, D%, also denoted D"(§, x),
is the graph set of

’A}/g,:p : ‘/lgc(f;T) — M, ﬁ/g (§> ¢r— 1N 07 =1(€),¢

»L

—1/gt
or (&)
N OO
where V%.(&7) = {¢ € X : & = & forall i < 0}. Note that, since the unstable lamination
is invariant (see for instance Item (ii) in Proposition 2.14) if ¢ € W .(&7) C ViL.(&7) then
Y, (€) = ¢ ,(§') and D* = graph[§¢,] C W**((&,2); ?). Recall that the strong unstable set of
the point (£, x) for ® is given by

W (g 2); @) = (] @ (Wie(@7"(62); @) = [ 2" (D) (2.42)
n>0 n>1

where D} = (W“u( ", x); <I>)) is the unstable disk through the point ®'~"(¢,z) for n > 1.

loc

Since the iteration by @ of an unstable disk D" provides k& new unstable disks it follows that

WHe((&, xz); @) is a numerable union of finitely many unstable disks.
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We say that DY = D% (w, ) is a (strong) unstable disk for @ through (w,z) € X x M if
there is £ € ¥j, with positive tail {* = w such that DY is the projection by 22 of the unstable
disk D* = D*(£, z) for ®. Observe that, since 2, (V}%.(&;7)) = &} then DY is the graph set of a
continuous function g : Z; — M. Applying the projection &7, in (2.42) it follows that

P (W (&, 2);®) = | @1 o 2 (DY) = | 21N (D) (2.43)
n>1 n>1
Similarly, the projection by £, of a es-strip W .(§;7) x U is the set {7} x U. Therefore, we
easily obtain the following result:

Lemma 2.29. Consider ® =7 x ¢¢ € S,j/\ﬂ(D) with B < 1 and let T'g be the mazimal invariant
set in X, x D of ®. Then, the following statements are equivalent:

i) Tg is a symbolic cs-blender-horseshoe in the unilateral setting with superposition region B;

ii) there is a fized point (91, p) € Z;‘ X D of &, = 0 X ¢¢t such that for every small enough
STt -perturbation Uy = o X Ye+ of 4 it holds

WD) O ({wh x U) £0 with DY = 2, o W(WE((0, pu); 1)) (2.44)
for all w € ZZ‘, non-empty open set U C B and for some natural number n = n(w,U).

Proof. Let I'g be a symbolic cs-blender-horseshoe in the unilateral setting for ® with superposition
region B. Then there is a fixed point (9,p) € X x D of ® such that for every ST-perturbation
U =17 KX in S,IA,ﬁ(D) it holds that W*""((¢},p); ¥) mets any cs-strip W} (&;7) x U in X}, x B.
Now, we identify these ST-perturbations ¥ = 7 x ¢¢ of & = 7 X ¢¢ with unilateral skew-products
U, = 0 X g+, that is, with ST-perturbations of ®, = o x ¢e+. So, the continuation point
(97, pw, ) of (97, p) for ¥, is well defined and thus, from (2.43), the strong unstable set of (9, py)
meets any cs-strip in X x B, if and only if for every w € E;; and every open set U in B, there is
n € N such that ¥/ 1(D%) N ({w} x U) # 0. This concludes the proof of the lemma. O

The next theorem shows the existence of symbolic cs-blender-horseshoe in the unilateral setting
according to Definition 2.11. We will consider ST-perturbations of a contracting one-step satisfying

the covering property.

Theorem 2.30. Consider ® = 7 X (¢1,...,¢0x) € S;AB(D) with A < B < 1 and assume that
there exists a non-empty open set B C D such that

B C ¢1(B)U...U¢p(B).

Then the mazimal invariant set Tg in Xy x D for ® is a symbolic cs-blender-horseshoe in the

unilateral setting for ® whose superposition region contains B.

The essence of the idea of the proof of this result can be found in | , Lemma 4.1].
In | | also some relations between robust minimal IFS, robust topologically mixing skew-

products and symbolic blenders-horseshoes in the unilateral setting are discussed.

Notation 2.31. Let i =1g...i,_1 be a finite word in {1,...,k}". Given a sequence w € ¥}, we
denote by iw the sequence £ € Eg such that §0+ =10,... ,5;11 = i1 and §7J{+j = wj forallj > 0.
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Let H = o x hy, be an ST-perturbation of ®, = o X (¢1,...,d;). Suppose that the open set
B C D in Theorem 2.30 satisfies B C hi(B) U -+ U hy(B) for every w € X;. Then, it follows
that for each w € EZ and n € N,

Bc | hB)c | hLD). (2.45)
li|l=n i|=

Indeed, (2.45) is immediate for n = 1. For n = 2, since for each i € {1,...,k} we have that

B C hijw(B) U... U hyiu(B) for all w € £, it follows that

B | hiw(B) C | hiw(hiw(B)U... Uhkiu(B) = | U hiw © hjiw(B) = | b2,
|i]=1 li]=1 li|=1j=1 li]=2
Ague similarly by induction we obtain (2.45). Note that H = o x h,, belongs to S;AB(D) with
B < 1. Thus, h,, is a contracting map on D for every unilateral sequence w. Hence

lim diam(hj, (D)) = 0. (2.46)

|t|=n—00

Now, we can conclude that for every w € E;: and every non-empty open subset U in B there is
n € N such H*(DY) N ({w} x U) # 0 with D% any unstable disk contained in ¥ x D. Indeed,
from (2.46) there is ng € N such that for every n > ng it holds that diam(hZ (D)) < diam(U)/3
for all : € {1,...,k}". Since U is a non-empty open subset of B, from (2.45) we find n > ny and
i € {1,...,k}" such that A (D) C U. In particular, since the unstable disk DY is the graph of a
continuous function g : ;7 — D then the point (iw, g(iw)) is in the unstable disk DY and its fiber
coordinate g(iw) € D. Therefore H" (iw, g(iw)) € {w} x A (D) C {w} x U. So, by Lemma 2.29
we infer that ® has a symbolic cs-blender-horseshoe in the unilateral setting in ¥ x D with

superposition region containing B.

Although the above argument can be seen as a proof of Theorem 2.30, we will obtain this
result from another similar proof which allows us to give more information about superposition
region. Firstly, we need to calculate the iterate H" (D' ) where H = o x h,, and DY is an unstable
disk for H in Z; x D. As above, we can write DY as a graph of a continuous function g from E:
to D. We consider a thin strip S containing the unstable disk DY . That is

S = U {w} x I, where I, = B(g(w),e,) C D.

wGE:
Hence,
k k
=J U {w} xhiwliw) = | {w} x [ hiw i
iilwezg wezg i=1
Repeating this reasoning, further iterates H"(S) is k™ full thin strips in Ez x D which each one
of them contains a new unstable disk in H"(DY). The collection of these strips is

HY(S) = {J ({w}x | ni(i)
|i|l=n

wEZz

This calculation motives to introduce the following operator. For each w € Ez and n € N we
define the operator £, (w) associated with H = o X hy, by

Ly(w): K(D) x ¥'.x K(D) = K(D), La(w)[{Ai}jij=n U h (2.47)



56 2. Symbolic blenders

Lemma 2.32. Consider H =0 X hy, € S,j)\B(D) with 3 < 1. Then, for each w € &} and n € N

we obtain the following properties:
i) du(Ln(W)[{Ai}i=n)s Ln(W)[{Bityii=n]) < B" max;=, du (Ai, B;),
ii) L1 (@) LA in1] = £1(0) [{LeGw) {Ai Har=al Yo ],
i) di(Ln1(w)[{Ai}jij=nia], Lo (@) [{Bi}jij=n]) < 8" diam(D).

Proof. The first item is obtained from the properties of the Hausdorff distance:

di (Ln(w)[{Ai}ij=n)s Ln(W)[{Bi}yii=n]) < maxdu(hi,(Ai), hig,(B;)) < 8" maxdy (A;, B;).

li|=n li|=n
In order to prove the second item, recall that h], = hyn-1,,0--- 0o hy. Hence,
£n+1(w)[{‘4i}|i|:n+1] = U hn+1 U U h]w © hzyw l])
li|=n+1 lil= 1||
= U hjo( U Whu(Ay)) = L2(0) [{£alie) {Aii=nl } 1= ]-
lil=1 [i|=n

Using this equality, we obtain that

—dH(El [{5 jw) {Au}u }m 1] L@ [{ L1 G){BisHi=n-1} 1))

<51|fnﬁxdﬂ( n(J0)[{Aij Hij=n)s La—1(Gw){Bij}jij=n-1])-

Arguing by induction, we get

A (Lot (W) {Ai}ij=n+1]s Lo(@)[{Bi}jij=n)) <

<t e, din(Lai) [{Ashica). £ [{Bis} )

=p" max dig (£a(5w) [{L1(05) {Aies o=} g ] s £2G9) [{Bighy2a])

= \a?lixlﬂaxdbr(ﬁl(fjw) [{Aitj}ij=1], Bej) = 8" max dy (L1(jw) [{ Az }jij=1]. Bj)-

Since

(]w) {AZ]}H 1 U hz]w 2]

li|=1

then dp (Ln+1(W)[{Ai}ij=ns1]s La(@){Bi}jij=n]) < 6" maxjj—n, maxj;—y du (hijw(Aij), Bj). Now,
recalling that H = o x hy, € S}, 5(D) with 8 <1 and hence hy, (D) C D for all w € ¥ it follows
that dp(hijw(Aij), Bj) < diam(D). Consequently

A (L1 (@) {Ai}ij=n+1ls Ln(W){Bi}jij=n]) < f"diam(D)

and we conclude the proof of the lemma. O

Proposition 2.33. Consider H =0 X hy, € S;Aﬁ(D) with B < 1. Then, for each w € ¥ there
is a compact set K, in D such that for every sequence of collection {Ai}\z‘\:n of compact sets

A; € K(D) with i € {1,...,k}" it holds
lim dp (Ln(w)[{Ai})ij=n], Ko) = 0.

n—oo

Moreover, the maps L : X — K(D) given by L(w) = K, is continuous.
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Proof. For eachn € N, let {4;}|;/—, be a collection of compact sets A; € K(D) withi € {1,...,k}".
We define K, = L, (w)[{Ai}jij=n] € K(D). From Item (iii) in Lemma 2.32 it follows that the
sequence {K, }nen is Cauchy for the Hausdorff distance. Since K(D) is a complete metric space
with the Hausdorff distance then { K, },cn converges. We denote the limit by K (w,{A;}). Now,
we will show that this limit is independent of the sequence of compact sets {A;}. To do this, take
another different collection of compact sets B; € (D) with i € {1,...,k}™ for all m € N. Hence,

for every n € N,

(K (w, {4i}), K(w, {Bi})) < dn (K (w,{A:}), Ln(w)[{Ai}}i=n])
+dp (L (W) [{Aiij=nl, Lo(w)[{Bi}jij=n]) + dt (Ln(w)[{ Bi}ji=nl, K (0, {Bi})).

From (i) in Lemma 2.32, noting that dy(A;, B;) < diam(D), we have that the second term in
the above sum is less or equal than g"diam(D). Thus, taken limit as n — oo it follows that
di(K(w,{Ai}), K(w,{B;})) =0 and so K(w,{4;}) = K(w,{B;}). We denote this limit by K.

We will show that £ : X — K(D) given by £(w) = K, is continuous. Fix ¢ > 0 and consider
e’ =¢e(1 - f)/3. Since w > hy, is continuous, there exists 6 > 0 such that

if dzz (w,w’) < & then deo(hy, hy) < €. (2.48)

We take a compact set A € K(D) and two unilateral sequences w and w’ such that d2$ (w,w') < 0.
From the first part since L, (w)[{A}ij=n] and Ly, (w’)[{A}}jj=n] converge to K, and K, respectively
in the Hausdorff metric we obtain n € N such that

At (Ln(@)[{ A pn)s Ku) < /3 and  dy(La(@){A}pn), Kur) < /3.
Then,
At (Ko Kor) < it (Kooy £n(@)[{AYi1=nl) + it (£n(@)[{AYs=n), £ )[{Abyi=n])
+dp (L) [{A}ij=n), Kur) < §e+dH( (@A i)y Ln(@) LAY in])- (2.49)
Now,

i (Ln(w){A}ji=n], Ln(W)[{A}=n]) =
= du(|J hi(A), | his(4)) < maxdp(hil,(A), b, (A)).

il=n il=n =
Fix i = i1...4, € {1,...,k}"™. Hence, since dzz(inw,inw’) < dej(‘*”w/) < wd <6, by (2.48) it
follows that
dr (higy (A),hi (A)) < dpg(hiw © By (A), B 0 by ' (A))
+ i (R © ity (A), by 0 B (A)) < Bdp (R (A), byt (A)) + €

iw’

Arguing by induction,

I
—

n /
n n <¢ i< S %
dH(hzw(A)vhzw (A)) =€ : ﬁ =71_ ﬁ 3

i
o

Putting together this inequality and (2.49) we obtain that dy(L(w), L(w')) < € an so we conclude
the proof of the proposition. O
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Proof of Theorem 2.30. Let U; be neighborhood of ¢; : D — D such that the family

B;=int( (| MB)), i=1,....k,
hel;

is an open covering of B. By shrinking the size of the sets I; we can assume that any h € U;
is also (), B)-Lipschitz homeomorphism on D for all i = 1,...,k. Consider a ST-perturbation
H=o0xh,of ®; =0 X (¢1,...,¢) such that hy, € U; if wg = i. For each n € N, consider L, (w)
the operator associated with H defined in (2.47).

For each n € N, let {B};—, be the collection {B;};—, with B; = B for all i € {1,...,k}".
We claim that for every w € X} and every n € N it holds that B C L,,(w)[{B}j=n]. The proof of
this claim is by induction. For n = 1, noting that h;, € U; for all = 1,..., k and having in mind
the choice of these neighborhoods it follows

k k
Ly(w){B}yj=1] = U hiw(B) D U B; O B.
i=1 i—1
We argue inductively. Assuming that the claim holds for n, we see that it also holds for n + 1.

From Item (ii) in Lemma 2.32 we get

Lnp1(@H{B}jij=n+1] = L1(W){Ln(G@){ B} jij=nl}j=1]-

By the induction hypothesis it follows that L, 11(w)[{B}jij=nt+1] D L1(w)[{B}|jj=1]. From this,
using the first step of the induction, we obtain the desired assertion.

Now, we will conclude the proof of the theorem from Lemma 2.29. Let DY C E;f x D be an
unstable disk through a fixed point of H. Recall that DY is the graph of a continuous function g
from E: to D. Fix w € Z; and a non-empty open set U in B. Proposition 2.33 and the above
claim imply that B C K,,. Note that K, is the limit in the Hausdorff metric of £, (w)[{g(iw)}ij=n].
Then, since U is non-empty open set in Ky, there is n € N such that U N Ly, (w)[{g(iw)}}jj=n] # 0.
This implies that the iterate H" (D) meets {w} x U and we conclude the proof of the theorem. O

Let ® = 7 X (¢2,...,0r) be a skew-product in the hypothesis of Theorem 2.30. Consider
U = 7 X ¢ a St-perturbation of ®. For each w € EZ let K, be the compact set followed from
Proposition 2.33 for W = o X t)¢+. Notice that the above proof of Theorem 2.30 shows that

def

Bc () K. =Ky,

weEz

Argue as Proposition 2.15, it is possible to prove that this compact set K, depends continuously
with respecto to W. Let V be a small enough neighborhood of S*-perturbations ¥ of ®, and set

def
K*= () K.
vey
Notice that B C K*. Also, note that we have precisely proved in the above proof of Theorem 2.30

that if ¥ € V and DY is a unstable disk through a fixed point of W then for every open set U
in K* there exists n € N such that U7 (D%) N ({7} x U) # 0 for all sequence £T € X, From
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Lemma 2.29, this is equivalente to the following: if (¢, p) € X x D is a fixed point of ® then for
every ¥ € V and every open set U C K* it holds

W (9, pw); @) N (Wie(&7) x U) £ 0 for all £ € 3.

Hence, B* = int(K™) is the superposition region of the symbolic ¢s-blender-horseshoe I'g in the
unilateral setting for ®.

2.5 Symbolic blenders in the Holder setting

In this section we will prove Theorem B. In order to prove this theorem, we need to introduce
some notation and preliminary Holder-like estimates. Given a word W = w_, ... w_1 Wy Wy . . . Wn,

we define the bi-lateral cylinder

Co={Eesy: §=uw;, —n<j<n}
Lemma 2.34. Consider ¥V = 7 X 1)¢ € Sk)\,B( ), a Word W = W_p ... W_1WW1 ...wy, and a point
x € D such that for every ¢ € Cy it holds that )7 1) (x) € D for 1 < j <n. Then,

i—1
67 @) — ¥ o @) < Can =) (a1,
J

Il
o

foralll1 <i<mn and all £,¢ € Cy.

Proof. The proof is by induction. For ¢ = 1, the Hdélder property and &,( € Cs imply that
||¢T_,11 © (x) — w;ll( 0 (z)|| < Cyr®™=1. We argue inductively. Assuming that the lemma holds for

i —1, i < n, we see that it also holds for i. By the triangle inequality, one has that
—i —i —i - —(i-1
Hd}Tfl({) (1’ o 11}7'*1((: x H < HwT*1 :Z:) o T’Z)T—ll(g) © ¢T£1(<)) ($)H
[ e o U (@) = 0 o @)]]-

Let y < w;(llzcl))(m) € D. Since the inverse of these functions expand at most 1/\ we obtain that

the above equation is less than or equal to

Hw S @ = e S @+ e g ) = Wl

Since y € D, we can apply to the second term the Holder inequality. Namely, since &, ¢ € C, we
get Hz/JT_,li(g) (y) — w;}i(C) ()| < Cy v*™= . By the induction hypothesis we bound the first term
and we get
i—1
O\I/)\ a n—i+1 Z AL + C\I/Va(n i) _ C\I/Va(nfi) (Aflya)]”
J

Il
=)

which concludes the proof of the lemma. O

Right now, we will prove Theorem B.
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Proof of Theorem B. Assume that the covering property (2.37) is not fulfilled. That is, there
exists x € B such that 2 does not belong to ¢;(B) for all i =1, ..., k. Without loss of generality,
we can assume that x € B. Otherwise, we can take an arbitrarily small one-step perturbation
U =17 X (¢1,...,9) such that the covering property in B for the IFS(¢)1,...,1y) is not satisfied
for a point in B. Then ®~1(¢,2) € ¥y, x B for all £ € ¥ and hence

(& 2) ¢ () @Sk x B) for all € € 5.
n>0

This shows that I'§ (B) does not meet any (almost) horizontal disk through B of the form D* =
W (& 7) x {z} and therefore the intersection property (2.38) is not fulfill.

Now we will prove that the covering property (2.37) implies the intersection property (2.38).
Recall that given an open covering C of a compact set X of a metric space there is a constant
L > 0, called Lebesgue number of C, such that every subset of X with diameter less than L is
contained in some member of C. Let L > 0 be the Lebesgue number of the open covering (2.37).

There are C%-neighborhoods U; of ¢; such that the family

Bi:int< N ¢(B)), i=1,... .k

YeU;

is an open covering of B. By shrinking the size of the sets I/; we can assume that the number L > 0
is also a Lebesgue number of this covering and in addition any ¢ € U; is also a C°-(\, 8)-Lipschitz
map on D foralli=1,...,k.

Remark 2.35 (Choice of the perturbation I). Let Vi be an neighborhood of ® in iy 5(D) such
that if ¥ = 7 X 1)¢ € V1 then ¢ € U; where § = i. In that case, we get that

;_11@@) C B forall € € Xy, with & = i.

Note that if ® is a one-step map then ¢¢ = ¢¢ for every § and ¢ with §y = (p. Hence we can
take Cp = 0. If ¥ is S%-close to @, then from the distance considered in (2.25), it follows that Cy
is close to Cy = 0. Thus, since the one-step map ® satisfies the condition A > v, we obtain the

following remark:

Remark 2.36 (Choice of the perturbation II). Let Vy be an neighborhood of ® in Spy 5(D) such
that of W = 7 X ¢ € Vs then

o

Cy Y (A< Lj2. (2.50)
=0

In what follows we will consider the neighborhood V =V NV, of @ in Sy 5(D).

Fix 0 < § < L/2 such that A™16 < L/2. Consider V = £(D?*) C B where D* is a §-horizontal
disk in 3j, x B associated with W2 (¢;7) x {2z}, z € B, { € Ej. Note that diam(V) < 2§ < L.
Then there is i; € {1,...,k} such that V C B;,. Given a word 0 = 6,,...6;, we denote

def

C‘g: {fEVV[ZC(C;T)Igfl'ZQi fOTiZl,...,TL}.

Let 61 =iy and Vi = 2(D* N (Cy, x V)). Given z and y in Vi, there exist &, n € Cy, such that
x = h(§) and y = h(n). From the Holder continuity of h, it follows ||z —y|| < Cdy, (&, 7)* < Cv™.
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Thus, Vi C V and diam(V;) < Cv® = % 5. Then, by Remark 2.35, for every ¥ = 7 x e €V we
obtain that

Suppose constructed a word 6,, and a closed set V;,, C V,,_1 with diam(V,,) < Cv"™® S ép, such
that for every skew-product ¥ = 7 x ¢¢ € V it holds
T__”l(g)(Vn) C B and diam( r_—nl(g)(vn)) <A, forall§ € Cy .

We will construct a word 6,1 and a closed set V;,411 C V,, satisfying analogous inclusions and

= U ¢ a

§eCy,

inequalities. Let

Given ¥ and y in A, there exist x,y € Vj,, and §, € Cy such that T = 1[);_"1(5) (x) and § =
)

(y). By means of Lemma 2.34, Remark 2.36 and since
AT, =0 e <o < Al < L)2

we obtain that
I = 311 < 7 g ) — U7 @)+ 675 () — V% ] < L/2 4 A6, < L.
Hence diam(A,,) < L and so there is i,41 € {1,...,k} such that A, C B;,,,. Let
Ont1 = int10, and Vo = P(D°N(Cy, x Vp)).

Given 2 and y in V;,41, there exist {,n € Cy such that 2 = h(§) and y = h(n). From the (o, C)-
Hélder continuity of i, we have that ||z — y|| < Cds, (&,7)® < Cv"+De. Thus, V41 C V,, with
diam(V;,) < Cprthe o On41 such that for every W = 7 x ¢ € V it holds

O (Var) € B and - diam (v U (Vn)) <4705, forall €€ Gy, -

Note that {V,,} is a sequence of nested closed sets such that lim,,_,~ diam(V},) = 0. Then

{(&.2)} = (G5, x Va) N D> € Wi, (G;7) x B. (2.51)

neN
From this, it follows that ¢;n1(£) (z) € B for all n € N. So, U""({,x) € ¥j x B for for all n € N.
Therefore, (£,2) € D* belongs to the maximal forward invariant set I'y,(B) in Xj x B. This

concludes the proof of the theorem. O

2.5.1 Symbolic blender-like sets

Let us return to the statement of Theorem B and remember Proposition 2.10. If we do not
impose the condition 8 < 1 cannot conclude that I'g is conjugate to the Bernoulli shift of k
symbols. Therefore, we cannot talk about symbolic blender-horseshoe. However, according to

Proposition 2.10, I'g can be a porcupine. This fact, gives rise the following notion:
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Definition 2.13 (Symbolic blender-like set). Consider ® € Sit) 5(D) with A <1 < 3, a > 0.

The mazimal invariant set g of ® in X x D is said to be symbolic cs-blender-like set with
superposition region an open set B in D if there is § > 0 such that for every S*-perturbation ¥
of @ it holds

Ly ND°#0  for all 5-horizontal disk D* in Xy x B

where Iy is the mazimal invariant set of ¥ in Xy, x D.

The next result is an immediately consequence of Theorem C. Fix a € (0, 1] and recall that D

is an open set in the c-dimensional manifold M.

Lemma 2.37. Let ¢1 : D — D be a (N, B)-Lipschitz map with v* < X < B < 1. Then there are
a natural number k and translations (in local coordinates) ¢a, ..., ¢ of ¢p1 such that the one-step
map ® = 7 X (P1,...,05) € S,‘;A’B(D) has a symbolic cs-blender-horseshoe with superposition
region a neighborhood of the fized point of ¢1.

Proof. Consider the open ball B(p,e) C D of radius € > 0 centered at the fixed point p of ¢;.
Note that there are k = k(c, A) > 0 and points d; = p and d; € B(p,¢), i = 2,...,k, such that

A A

Blp.e) C B(dl,%e) UB(ds, 5 €)U...UB(di, 5 )

Consider (in local coordinates) translations ¢; of ¢1, i = 2,...,k, such that B(d;, \e/2) C
®i(B(p,€)). Then the choice of the points d; and the inclusion above imply that

B(p,e) C ¢1(B(p,e)) U...U ¢ (B(p,e)). (2.52)

Consider the contracting iterated function system IFS(¢q,..., @) and its associated one-step
skew-product map ® = 7 X (¢1,...,0x). Then, by Equation (2.52), the covering property is
satisfied. Thus, the map ® satisfies the hypotheses in Theorem C and hence it has symbolic
blender-horseshoe with B(p, ) contained in its superposition region. O

We observe that the number k of translations of ¢ depends on the dimension of M and
the contraction bound A of ¢. The following proposition is motivated from | | and shows a
construction of a one-step ® = 7 X (¢1, ¢2) on Yo x M such that has a symbolic cs-blender-like
set with superposition region an small neighborhood of an e-weak hyperbolic periodic attractor
with period large enough. A periodic point p of diffeomorphism ¢ is said to be e-weak hyperbolic
periodic attractor of period n if

1 —e<m(D¢"(p)) <[ D¢"(p)|| <1

where m(A) is the conorm of a linear operator A, i.e., the infimum of ||Av|| as v vsaries over the

unit vectors in the dominie of A.

Theorem 2.38. Let ¢1 : D — D be a C'-(\, B)-Lipschitz map with 0 < A < 1 < 3 having an
e-weak hyperbolic attracting periodic point p with sufficient large period n such that v® < (1 —e)™.
Then there is ¢g arbitrarily C'-close to ¢1 such that ® = 7 x (¢1,$2) € S§A75(D) has a symbolic

cs-blender-like set with superposition region a neighborhood of p.
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Proof. Let D; = ¢i(Dy) be a sufficiently small neighborhoods of ¢i(p), for i = 0,...,n — 1. We
consider a local coordinate on each D;. Denoting T, the translation map by the vector ¢ in local
coordinates, from Lemma 2.37 we find small vectors ¢; = 0,c2...,c; (with k& < n)? such that
the maps ¢ = T¢, 0 ¢, Ty, 0 @}, ..., Tr, 0 ¢} from Dy to Dy satisfy the covering property in a
neighborhood B C Dy of p. Let ¢3 be a diffeomorphism C'-close to ¢; such that on D,,_; it is
equal to gbi_i oT,, 0¢% fori=1,... k. Observe that ¢s is well defined if D; are disjoint and ¢; are
sufficiently small. Further, h; = (ﬁi_l o g9 oqﬁ?_i on Dy is equal to T,, 097 for ¢ =1,..., k. Then the
contracting iterated function system IFS(hq,...,hs) on Dy is a subsystem of IFS(¢1, ¢2) which
satisfies that B C h1(B) U...U hg(B). We choose open sets B; for i = 1,...,k such that

EChl(B) and B C BjU...UBy.

Let L > 0 be the Lebesgue number of this above open covering. For each ¢ = 1,... &k we define

the word W; = wj1 . .. win where w;; = 1 forall j #n—i+1 and w;; = 2 for j = n—i+1. With this

notation, since p is a e-weak hyperbolic periodic attractor, it follows that h;l = gb;iln 0---0 gb;}l

restricted to B; expands at most (1 —¢)™" for all i = 1,..., k. Hence, there are C%-neighborhoods

Uy and Uy of ¢ and ¢y respectively such that for each ¢ = 1,..., k, given any map ¢; € U,,; for

j=1,...,n it holds that ¢;; ' o--- 09y *(B;) C B and ¢, o ---04p ! restricted to B; expands at
n

most (1 —¢e)™™.

The rest of the proof of this proposition is analogous with the proof of Theorem C. We will

indicate some modifications in the corresponding choice of the perturbation:

Remark 2.39 (Choice of the perturbation I). Let Vi be a neighborhood of ® = 7 X (¢1,¢2) in
Sé;f)\’ﬁ(D()) such that if ® = 7 X ¢ € Vy then V¢ € U; where i = &y. In particular, for every
U =71 X e €V it holds that, for everyi=1,...,k

T__”l(g)(E) C B forall £€3ywith §&_j=w;; for j=1,...,n

-n — _1 .« .. _1 ) 7‘ pr— —_— -n
ige) = Uron(e © 7 O sz_l(g) restricted to B; expands at most k = (1 —e)™"™.

and 1)

Since by hypothesis k£ > v, we obtain the following remark:

Remark 2.40 (Choice of the perturbation II). Let Vo be an neighborhood of ® = 1 X (¢1,¢2) in
835 5(Do) such that if ¥ =1 X ¢ € Vo then one has that

Cy Z(/ﬁflua)i < L/2.
=0

Fix 0 < § < L/2 such that k716 < L/2. Consider V = £(D*) C B where D* is a d-horizontal
disk in B associated with W} ((;7) x {2}, 2 € B, ( € ¥. Note that diam(V) < 26 < L. Then
there is 41 € {1,...,k} such that V C B;,. Recall that, given a word § = 6,, ... 61,

Cog={eW;.(¢;T):é_i=0;fori=1,... ,m}.

Let 61 = w;, and Vi = 2(D* N (Cy, x V)). Given & and y in V1, there exist &, € Cy, such that
x = h(§) and y = h(n). From the Holder continuity of A, it follows

[ =yl < Cdg, (&, m)* < Cv™.

2Since p is e-weak hyperbolic attracting periodic point if € goes to zero then the number k of translations to
obtain the covering property goes to zero.
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o def

Thus, Vi C V and diam(V;) < Cv® = §1. Hence, by Remark 2.39, for every ¥ =7 x 9 € V we
obtain that

TV € B and  diam(y " (V1)) < k16 forall £ € Cy .
Suppose constructed a word 6,, and a closed set V,,, C Vj,_1 with diam(V,,) < Cv™* S Om
such that for every ¥ = 7 X 9)¢ € V it holds that

g (V) € B and - diam(v " (Vin) < 8770 forall € € G,

We will construct a word 6,1 and a closed set V41 C V;, satisfying analogous inclusions and
inequalities. Let
A= |J ¢ (Vi) C B.
EEC@m

Given 7 and ¥ in A,,, there exit x,y € Vi, and §,n € Cy such that T = 1/);77’(2) (x) and y =
—mn

() (y). So, from Lemma 2.34, Remark 2.40 and since

K6 = C(k v < Crh v < k16 < L/2
we obtain that

12— gl < ;710 (@) — e (@) 4+ 730 (@) = 6 @] < L/2 + "8 < L.

Hence diam(A,,) < L and so there is i;,41 € {1,...,k} such that A,, C B;, . Let

Omi1 = Wi O0m and Vi1 = Z(D°N(Cy, % V).

Given x and y in Vi, 11, there exit £, € Cp  such that x = h(£) and y = h(n). From the (a, C)-
Holder continuity of h, we have that ||z — y|| < Cdx, (&, n)* < cymtDe Thus, Vi1 C Vy, with
diam(V,,,) < Cpy(m+la & Om+1 such that for every ® = 7 x ¢h¢ € V it holds that

O 0 Vi) € B and - diam (50 (Vinga)) < 575,000 forall €€ G -

Note that {V,,,} is a sequence of nested close set such that lim,, . diam(V,,) = 0. Then
{(&.2)} = [)(Cs,, X Vi) N D* C Wiie((s) x B (2.53)

neN
Note that since 1,(D) C D for all 5 then ¥"(¢,x) € ¥ x D for all n € N. On the other hand,
from (2.53) it follows that w;ff(g) (x) € B for all m € N. So, ¥~ (¢, x) € X9 x B for all m € N.
Therefore, (£,z) € D?® belongs in the maximal invariant set I'y in Y2 x D and we conclude the

proof of the proposition. O

Observe that if ¢ — 0 in the definition of e-weak hyperbolic periodic atractor then the periodic
point p becomes in non-hyperbolic. Note that since in the special case with one-dimensional fiber
the covering property only needs of two maps, then it is not necessary the assumption that
the period n of p is sufficient large. In fact, it suffices n = 1. Hence, we can consider as limit
situation ® = 7 x id with 7 : 39 — X9 and the identity map in a one-dimensional manifold.
In order to study perturbations of this maps is helpful to understood the dynamics of one-step
maps ¥ = 7 X (11,192) with ¢; and 1, close enough to the identity. This task can be reduce
to understood some dynamical property of IFS(11,12). In the next chapter we focus to study

iterated function system on dimension one generates by two maps close to the identity.
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2.5.2 A blender-horseshoe example: non-normally hyperbolic horseshoes

We will show again, using the theory developed in this chapter, that the non-normally hyperbolic
horseshoes introduced in the first chapter are blender-horseshoes. The following proposition, is
a slightly generalization of Proposition 1.12. Recall that we mean by a non-normally hyperbolic
horseshoes the embedded horseshoes introduced in §1.2.1. That is, a horseshoe for a locally con-
stant skew product diffeomorphism g on R™*! which is not contained in a hyperplane of the form
R™ x {t} for some ¢t € R. When g is not a locally constant skew product diffeomorphism but it is
conjugated to a symbolic skew product ¥ = 7 x 1)¢ on Xj X I where I is a close real interval, a
horseshoe I'y is also said to be non-normally hyperbolic for g if there are pairwise disjoint C'-open
sets Uy, . . . Uy, of diffeomorphisms on I such that ¢ € U; if §g =i for i =1,..., k. Observe that the
restriction of ¥ to the corresponding invariant set I'y via conjugation to I'j; must be conjugated
to the Bernoulli shift of k£ symbols and I'y cannot be contained in any subset of the form ¥ x {t}
with t € I.

Proposition 2.41. Let F : N — N be a C'-diffeomorphisms with a Smale horseshoe

Ap = ﬂ F"(U), where U C N is open set
nez

and consider D an open set in a closed real interval I. Let g be a C'-diffeomorphism on N x I
close enough in the C' topology to f = F x id on U x I such that

r,= "0 = D)
neN

is a non-normally hyperbolic Smale horseshoe for g. Then Iy is blender for g.

Proof. Since g is a C-perturbation of f|a,x7, according to Proposition 2.1 there are a g-invariant
set Ay in U x I homeomorphic to Ap x I and a symbolic locally a-Hélder skew product ® = 7 x ¢
belongs to Sz(I) such that g|a, is conjugated to ®. From the same proposition also it follows that
small C'-perturbations of g should be conjugated to locally a-Holder skew products close to
®g = 7 x id. Notice that I'y C A,4. Hence g|r, is conjugated to ®|r, where

Ty =) 2"(Zk x D).
neL

To prove that Iy is a blender for g it suffices to see that I'y is a symbolic blender-horseshoe for ®.

Since g is a Cl-perturbation of f = F x id it follows that A, is a partial hyperbolic set for g.
That is, the tangent bundle of N xI on A, decomposes into the dominating splitting F**® E°®E“"
where E¢ is a one-dimensional bundle. On the other hand, since Iy is a transitive hyperbolic set
(it is a horseshoe) then Tt (N x I) = E* @ E* and the dimension of stable bundle £° is constant.
For this reason, either E* = E** @ E° or E* = E° on I'y. To describe the following arguments we
choose £® = E** @ E° and E* = E*" on I'y.

By shrinking the size of D if necessary, we assume that the fiber maps ¢¢ : D — D are
(A, B)-Lipschitz with 0 < A < 8 < 1 close to the identity map id : I — I which depend locally

a-Hoélder continuously with respect to £. Since I'y is a non-normally hyperbolic horseshoe for g,

there are disjoint small C'-open sets U; of diffeomorphisms on I such that ¢ € U it § = i for
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i = 1,2. In order to prove that I'y is a symbolic cs-blender-horseshoe for ® = 7 x ¢¢ we will show
that the robust covering property (Remark 2.35) and the local constant condition (Remark 2.36)
in the proof of Theorem B are fulfilled. If the symbolic skew product ® = 7 x ¢, satisfies this two
remarks then verifies the assertion of Theorem B and so, I'g is a symbolic cs-blender-horseshoe.

The local constant condition is immediately satisfied since ® = 7 X ¢ is close to &g = 7 x id.
Also this proximity implies the robust covering property. Indeed, since I's is a non-normally
hyperbolic horseshoe then there are fixed points (1, p) and (2, q) of ® with p # ¢. Let us denote ¢,
and ¢9 the fiber maps ¢7 and ¢35 respectively. Note that since ¢; and ¢9 are close to the identity,
if K* denotes the (non-trivial) interval between p and ¢, then K** = ¢1(K*%) U ¢2(K**). Since
U; are disjoint neighborhoods of ¢; it follows that there exists an open interval B in K®° such
that B C 1 (B) U o(B) for all 1; € U; for i = 1,2. This implies Remark 2.36 in the proof of
Theorem B and concludes the proof of this proposition. O



Iterated function systems

Some dynamical properties such as transitivity, minimality, density of periodic orbits, can be
also studied for iterated function systems (IFS). Blending regions are introduced as open sets
which are minimal sets for an IFS under small C'-perturbations. Duminy's Lemma shows
examples of blending regions for an IFS generated by two maps on the real line close enough
to the identity. An extension of this lemma allows us to study the dynamics of IFS of generic
diffeomorphisms on the circle close enough to the identity. As in the Denjoy's Theorem,
no invariant minimal Cantor sets appear under conditions of regularity in the IFS. In this
setting, it is characterized when S' is a minimal set of an IFS and it is obtained an spectral
decomposition result about of the dynamic of the limit set of an IFS.

3.1 Preliminaries of IFS

Let ¢1, ..., ¢x be continuous selfmaps of a complete metric space X. The iterated function system,
(IF'S for short) of these maps, denoted by IFS(¢1, . .., ¢), is the set of all finite forward composition
of these maps. That is, the semigroup generated by the family of maps ¢1,..., ¢

IFS(¢1,..., 1) S {h: X = X: h=¢i,0---0¢y, i € {1,....,k}}U{id: X - X}.

In similar way it defines the IFS of maps ¢;: D; C X — X. In this case, the possible compositions
of ¢;’s depend on each point: ¢;(D;) is not necessarily a subset of D; and so ¢; o ¢; is only defined
on Diﬁgb;l (D;). For simplicity, for the moment, we will consider IFS defined in the whole space X.

Because of the close relationship between IFS and one-step symbolic skew-product maps in-
troduced in the previous chapter, we will write IFS(®) = IFS(¢1, . .., ¢x) meaning that the IFS is
generated by the family ® = {¢1,..., ¢} associated with the one-step map ® =7 x (¢1,. .., dr)
defined on X x M.

Associated with the iterated function system IFS(®), we define the operator
Go(A) = ¢1(A) U Ugk(4)

on the subsets A C X. We define the Gg-orbit of a point x € X, also called orbit of x for IFS(®),

as the set of the form
Orbe(z) £ {GR(2): n >0} = {h(x): h e IFS(®)} C X.

The Gg-orbit of a subset D C X is defined as the union of all its orbits. The next set of definitions
generalizes usual notions of dynamical systems for IFS. Before this, given h = ¢;, o --- 0 ¢;; in

IFS(®) we denote by |h| the number of generators in this composition, i.e., |h| = n.
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Definition 3.1. Let ® = {¢1,...,¢r} be a family of selfmaps of X. A subset A C X is said to be
e invariant for IFS(®) if Orbg(z) C A for all x € A;

e minimal for IFS(®) if for every x € A and open set U C X which has non-empty intersection
with A, there exists h € IFS(®) with h(x) € U;

e topologically transitive for IFS(®) if for any pair of open sets U,V C X which have non-
empty intersection with A, there exists h € IFS(®) such that h(V)NU # 0;

e topologically mixing for IFS(®) if for any pair of open sets U,V C X there exists ng € N
such that for every n > ng there is h € IFS(®) with |h| = n such that h(V)NU # 0.

The next result shows some typically equivalent definition for the above notions:

Proposition 3.1. Let ® = {¢1,...,¢r} be a family of selfmaps of X and consider A C X. Then

i) A is a minimal set for IFS(®) if and only if A C Orbg(x) for all x € A,
it) if A is minimal for IFS(®) then it is topologically transitive,

iii) if A is topologically mizing for IFS(®) then it is topologically transitive,

i) if there is x € A such that A C Orbg(x) then A is topologycally transitive for IFS(®),

v) assuming that X is separable and A with the restricted topology is Baire, it holds that

if A topologically transitive for IFS(®) then there is x € A such that A C Orbg(x),

vi) assuming invertibility, and denoting ®~' = {gf);l, el gb;l} the inverse family, it holds that
if A is topologically transitive for IFS(®) then it is topologically transitive for IFS(®~1).

Proof. Ttem (i) is followed immediately from definition of a dense set. Items (ii)-(iv) are clear from
Definition 3.1. Similarly, the transitivity for the inverse IFS, i.e. item (vi), is immediately obtained

again from Definition 3.1. Finally, to prove the proposition only remains to show item (v).

Assume that X is a separable metric space. Hence, there is a numerable base of the restricted
topology to A whose open sets are U, = V,, N A where V,, is an open set in the topology of X. We
denote by

Orbg (VanA)= | Orbg(x),
zeVpNA
where Orbg(z) denotes the orbit of x for IFS(®~'). Firstly, observe that the negative orbit

Orbg (V,, N A) is dense in A. Indeed, given any non-empty set U N A where U is an open set
of X, by the topological transitivity, there exists h € IFS(®) such that h(U) NV, # (. Then
UnNh~1(V,) is a non-empty set contained in U N Orbg (V},). Suppose now that A is Baire. Hence,
we obtain that @ = N,enOrbg (V) is a dense set in A. Thus, for every z € @ it follows that
z € Orbg (V4,) and hence V;, N Orbg (x) # 0 for all n € N. Therefore, we have proved that the orbit
of z for IFS(®) is dense in A completing the proof of the proposition. O

Notice that in ours definition of minimal set A C X for an IFS we do not impose that A needs
to be invariant for IFS(®). Consequently, every single point A = {x} C X and every subset of

a minimal subset for an IFS are minimal set for IFS(®). If we combine the notions of invariance
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and minimality, then we obtain that a closed subset A C X is invariant and minimal for IFS(®)

if and only if

A = Orbg(z) forall z € A.

For short, we will say that A is a closed invariant minimal set for IFS(®) if it satisfies the above
equality. In this case, A is minimal regarding the inclusion, i.e., its only closed invariant subsets
for IFS(®) are the empty set and A itself.

Set oF = {1,...,k} and let ¢; € Hom(X) be homeomorphisms on X for i = 1,..., k. For
every n > 1 and every o = (0;);eny € ¥} we will use the notation

def —n def -1 -1 -1
¢g:¢0no"'o¢o1 and (ban:((bg) :(balo"'o(ban‘
Now, using this above notation, we can extend the definition of limit sets for IFS.

Definition 3.2 (Limit sets for IFS). Consider v € X, ® = {¢1,..., ¢} C Hom(X) and o € & .
We define the w-limit set of x with respect to the sequence o as the set

wo(z) L {y € X : there exists n; — oo such that lim ¢ (z) = y}.

71— 00
The union of the w-limit sets of x for all sequence o € E; is called w-limit set of z for IFS(®)
and we write this set as

def

wo(z) ={y € X: there exists 0 € X} and n; — oo such that lim ¢ (z) = y}.

11— 00

Finally, we define the forward or w-limit of IFS(®) as
w(IFS(®)) = cl({y € X : there exists x € X such that y € we(x)})

where cl denote the closure of a set.

Similarly, the backward or a-limit of IFS(®) is defined as a(IFS(®)) = w(IFS(®1)) where
ol = {gbfl, cel gb,;l} From the backward and forward limit, we define the limit set of IFS(®) as

L(IFS(®)) € w(IFS(®)) U a(IFS(®)).

We denote by Orbg(x)’ the set of accumulation points of Orbg(x). That is, the set of points
y € X such that there exists a sequence (g,), C IFS(®) satisfying that y = lim, o gn(z) and
gn(x) # y for all n € N. Notice that the set of accumulation points is always a closed set. A
point z € X is called periodic point for IFS(®) if there exists h € IFS(®) with h # id such that
h(z) = z. In this case, we denote the set of periodic points by

def

Per(IFS(®)) = {z € X: h(x) = x for some h € IFS(®), h # id}.
Observe that &2 (Per(®)) = Per(IFS(®)) where Per(®) is the set of periodic points of the symbolic
skew-product ® = 7 X (¢1,...,¢x) and & is the projection on the fiber space.

Definition 3.3. Let A be a subset of X such that ANPer(IFS(®)) # 0. We say that A is isolated
for IES(®) if there exists an open set D of X such that A C D and Per(IFS(®)) N D C A.

The next lemma shows some properties and relations between the set of periodic points, the
w-limit sets, the accumulation sets and the orbits of an IFS. This properties will be necessary for

the proof of some results in the later sections.
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Lemma 3.2. Consider a subset ® = {¢1,...,¢r} C Hom(X), a non-empty open set B C X and
a subset K of X. Then it holds that:

i) we(h(z)) C we(x) C Orbg(z) for all x € X and for h € IFS(®);

it) if v € Per(IFS(®)) then x € we(x);

iii) if K = Orbg(z) for all z € K then K = we(x) = wa(z) for allx € K;

iv) if K C Orbg(x) for all x € X then K C we(x) for all x € X;

v) if B C Orbg(x) for all x € B then B C we(x) for all z € B;

vi) Orbg(x)’ = ¢1(Orbg(x)’)U---U@p(Orbg(x)) for all z € X.

Proof. Tt is clear that by definition of w-limit set of a point x € X it holds that we(h(z)) C we(z)
for all h € IFS(®). On the other hand, since

Orbg(z) = {y € X : there exists (g5 ), C IFS(®) such that y = le gn(z)}
and we can rewrite the w-limit set of  for IFS(®) in the form
we(z) = {y € X : there exists (hy)n C IFS(®) \ {id} such that y = li_)In hpo---ohi(z)},

it follows that we(x) is a subset of the closure of the orbit of = for IFS(®). Therefore, we con-
clude (i). Item (ii) is immediately obtained from the definition of w-limit set and periodic point
for an IFS.

According to the first item, to obtain (iii) it suffices to prove that K C we(z) for all z € K. In
order to prove this, we fix z,y € K and consider a sequence of positive real numbers e, = 1/n — 0.
It is not hard to construct by induction a sequence (hy,), C IFS(®) \ {id} such that the distance
d(y,hpo---ohi(zx)) between y and hy, o---ohy(z) is less than &,. Indeed, since the orbit of x for
IFS(®) is dense in K, we find hy € IFS(®) with h; # id such that d(y, h1(z)) < e1. Similarly, since
hi(z) € Orbg(x) C K then the orbit of hy(z) for IFS(®) is dense in K and by the same density
argument we find ho such that d(y, hs o h1(x)) < e2. Argue inductively we obtain the desired
sequence (hy), C IFS(®) \ {id}. Hence, y = limy,_yo0 hy, © - -+ 0 hy(z) and thus y € we(x) for all
x,y € K. This concludes (iii). A slight modification in this argue allows us to prove (iv) and (v).

We will now prove the last item. That is, we will show that Orbg(z)’ is a selfsimilar set. Note
that ¢;(Orbg(x)’) C Orbg(z)" for all i@ = 1,...,k. Indeed, if y is an accumulation point of the
orbit of = for IFS(®), then ¢;(y) is approximated by points of the form ¢;0g,(x) € Orbg(z) where
y = limy, 00 gn(z) and g,(x) # y for all n € N. This implies that ¢;(y) is also an accumulation
point of Orbg(z) and so, we conclude one of the inclusions. In order to show the other inclusion
Orbg(z)" C ¢1(Orbg(z)’) U -+ U ¢r(Orbg(x)’), we fix any y € Orbg(x)’. Hence there exists
(gn) C IFS(®) such that y = limy, o0 gn(x) and g,(x) # y for all n € N. Since the semigroup
IFS(®) is finitely generated, taking a subsequence if necessary, we can assume that for some fixed
i € {1,...,k} we have that g, = ¢; o g, with g, € IFS(®). Hence, ¢; *(y) = limy, o0 gn(x) and
Gn(y) # ¢; '(y). Thus, since the accumulation set is a closed set, it holds that ¢; '(y) € Orbg(x)".
This implies that y € ¢;(Orbg(x)’) obtaining the desired inclusion and therefore (vi). The proof

of the lemma is now concluded. O
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In what follows, X is a Riemannian manifold and ¢, ..., ¢ are C'-diffeomorphisms of X.
Let W = {¢1,...,¢} and ® = {é1,...,éx} be two subset of Diff'(X). We say that IFS(¥) is
Cl-close to IFS(®) if v; is close to ¢; in the C'-topology for i = 1,...,k. A set A C X is C'-
robustly minimal (topologically transitive) for IFS(®) if A is minimal (topologically transitive) for
any Cl-close IFS(¥) to IFS(®). In the case of A = X, we also say that IFS(®) is Cl-robustly
minimal (topologically transitive). Note that in this last case, A = X is an open set. With this
additional condition in the C'-robust minimality definition we obtained the notion of blending

region (see also Definition 2.22):

Definition 3.4 (Blending region). An open set B of X is called blending region for IFS(®) if

B C Orby(z) for all x € B and every TFS(V) C-close to IFS(®).

Blending regions can be constructed for contracting maps as in Section §2.3.1. In the next
section we will construct blending regions for not necessarily contracting IFS on the real line.

3.2 Blending region for IFS on the real line

We denotes the orientation preserving C"-diffeomorphism on the real line by Diff’, (R). Note that
if f € Diff’ (R) then D f(x) © f(z) > 0 for all z € R, f(z) < f(y) if z < y and thus its only
periodic points are the fixed points.

Definition 3.5 (xx-intervals). Consider ® = {fo, f1} C Diff}.(R). Let [p,q] be an interval such
that Fix(f;) N (p,q) =0 fori=10,1 and

[p,q] € fo(lp,q]) U fi([p, q])-

We say that [p, q] is a sx-interval for IFS(®) and write K3* = [p, q] with *x € {ss,su} when p
and q satisfy additional properties (see Figure A):

Ss

o K3¥ attractor: p = fo(p) and q = fi(q) are both attractors and fo(q) # q, f1(p) # p,

o K3 saddle: p and q are an attractor-repeller pair for the same map say fo. In this case we
ask that fi > id in [p,q] and fi([p,q]) N [p,q] # 0.

A wu-interval (repeler), denoted by K¥“, is defined as ss-interval for IFS(fO_I, fl_l).

In the Figure A we show an example of a ss-interval and of a su-interval. An example of
uu-interval is the inverse of a ss-interval. We will study the IFS(fy, f1) for fo and fi restricted
to a xx-interval for xx € {ss,su}. In the case of wu-intervals for fy and f; it follows the same
results for the IFS(fofl7 ffl) Ours goal in the next subsection is to prove that if fy and f; are
close enough to the identity then any sx-interval for fy and f; with #*x € {ss,su} is a minimal
set for the IFS(fo, f1). Observe that K3 = fo(K3°) U f1(K§®) where K§° is a ss-interval and
Orbg(z) C K3 for all € K§’. However the above equality does not follow for a su-interval. In
the case of a su-interval notice that one of the endpoint of the interval K§* cannot have dense
orbit for the IFS. However, for unify notations, sometimes we say that an sx-interval is minimal

for the IFS or we write that K3* C Orbg(x) for all x € K3 for x € {ss, su}.
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(a) ss-interval (b) su-interval

Fig. A: Examples of xx-intervals

3.2.1 Duminy’s Lemma

The next result is a generalization of a lemma that is part of the proof of Duminy’s Theorem.
Dumniny’s Theorem is in an unpublished manuscript [Dum70]| and it deals with the dynamics of
groups of diffeomorphisms on the circle. We will give more details of Duminy’s Theorem in the
next section (see Theorem 3.27 and [Nav1l]|). The following statement is slightly different from
the original one by Duminy, and include some improvements about the robustness and the density

of periodic points.

Theorem D (Duminy’s Lemma). Consider ® = {fo, fi} C Diff3 (R) and let K3* be an +*-interval
for IFS(®) with *x € {ss, su}. There exists € > 0.17 such that if folkz, filky are e-close to the

identity in the C?-topology then there are open sets U; in the C'-topology for i = 0,1 such that
fi €U; and for every IFS(V) where ¥ = {go, g1} with g; € U; it holds

Ky C Per(IFS(V)) and K C Orby(z) for allx € Ky

Moreover, if the fized points of fo and f1 in K3* are hyperbolic then f; € U; for i =0, 1.

We infer from the above theorem the following corollary:

Corollary 3.3. If ® = {fo, fi} C Diff2 (R) are e-close to the identity in the C*-topology where
g > 0 is given in Theorem D, and their fized points are hyperbolic, then every open set B contained
in a xx-interval for IFS(®) with ** € {ss,su} is a blending region for IFS(®).

Now, we will give here a proof of Theorem D which is slightly different from the original proof
due to Duminy’s. This different proof allows us to improve the result and it will be key to show
forthcoming theorems. We must to note that we will actually prove this theorem under more

general hypotheses. Namely:



3.2. Blending region for IF'S on the real line 73

fi o= o o = =

0 fl(lo) fo_ffl(o)

Fig. B: Definition of first return map R: A — A

Remark 3.4. Theorem D holds if fo and f1 are in Diﬂ“}r(]R) such that, setting fr as the map
which has a fixed point in K3*,

<1 inf ka(m) )1/4 > max sup m
2 sup |Dfr(z) — 1| i=0,1 Dfi_l(y)

where the supremum and infimum are taken in K3*. It is easy to check that this condition is

equivalent to the existence of € > 0 such that
|Dfp(z) — 1| <& forallz € K and (1 —e)e e ¢ >2

where C' > 0 is the largest distortion constant of fo_l and fl_l in K3*, that 1s,
-1
i (z)

—t——=: r,ye K;}.
Df; 1(y)

C' = maxsup{ log
i=0,1

For simplicity we assume that K3* = [0,1], fo(0) = 0 and fy < id and f; > id in (0, 1). Note
that from definition of sx-intervals for xx € {ss,su}, the overlap condition is verified, that is,
Fo(KE) N f1(K%) # 0. This condition implies that A = (f1(0), f5 ' (f1(0))] C [0, 1]. Next, we will
define a first return map R : A — A.
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Creating a return map

For each € A let m(z) > 1 be the smallest positive number such that fl_m(x) () ¢ A and let
k(z) be the first time for which fl_m(x) (x) returns to A by iterations of f(;l. Then we can define

the first return map R in the following way
R:A= A R@)=f""e i)

Note that this map can also be given by R(z) = FF@+m() (1) for z € A, where F : [0,1] — [0, 1]
is define by F = f;! in [0, f1(0)] and F = f; " in (f1(0), 1]. Therefore, for every x € [0, 1] there is
a smallest non-negative number n(z) > 0 such that F™®)(z) € A and R can be extended to the
whole interval [0, 1] by taking

R:[0,1] —=[0,1],  R(z)= Fkm+r(g),

where n = n(z), m = m(F"(x)) and k = k(F"(x)).

A point d € A is said to be a discontinuity of R if R(d) = fo_lfl(O) or equivalently, if
d=f" @ f(’f (@-1 f1(0). These points define a partition on A . In other to describe this partition we
have to consider two cases: f2(0) ¢ A and f2(0) € A. In the first case m(z) = 1 for all x € A and
we write Iy = A. In the second case, consider m € N such that f* f;(0) € A, but "™ £,(0) ¢ A.
Then fffl (0) for j =1,2,...,m define a partition on A given by

Io= (f7"f1(0), fo ' f1(0)] and
Ly = (f"7 £1(0), fP1£1(0)] for 0 < iy < m.

On the other hand, m(z) = m+1—i; for each z € I;, and fl_m(x) (Ii;) = (0, f1(0)] for iy = 0,...,m.
At this point, both cases can be studied together assuming m > 0. Finally, it will be useful to
prove the following lemma to note that, the sequence of points fg f1(0), 7 > 0, defines a partition
on the interval (0, f1(0)].

Lemma 3.5 (Return map). In the above hypothesis, there exist two families of respectively right-
closed pairwise disjoint intervals I;;, C A and I;;, C A, natural numbers m;,, m; i, and maps
hiyi, € IFS(fo, f1) with 0 < i1 < m for some m > 0 and iy > 0 such that

i) Liyi, C I, and I;; is contained in a fundamental domain of fi. Furthermore,

A=J 5= U Lo

11=0 11=0122=0

.. —1 —Mygq4 —m; . .
ii) hm2 =fo 'Pofy ", where mj; = m+1—1i1 and mj i1 = M4y, + 1 with

mij0o=1 111 >0 and
moo > 1 such that 5" (f1(0)) < f7 ™ (f5 (f1(0))) < £~ (f1(0)),

iii) Rlr, .. = hi+ with hog (Ino) C A and h; } (I;,:,) = A if otherwise,

i1i9 1112 1112

w) if d € A\ {fy (f1(0))} is an endpoint of I; s, then it is a discontinuity of R and so, it is in
the orbit of 0 for IFS(fo, f1)-
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Fig. C: Infinitely many discontinuities of R

Proof. For each 0 < i1 < m, set
diyiy = 1m+1—i1 © f(Z)2 (f1(0)) € I;; for all i3 > 0.

Note that di¢ < diy if € > i and diiy — f1" " (f1(0)) when 49 goes to infinity. Moreover,
diyo = f" 79 (£1(0)) is the right endpoint of the interval I;,. Hence

Ly = Ly, with  Lijsy < (diyipr1, diyiy) = /{770 0 fi2TH(A).

i2>0

For i1 = 0, we take ¢ = fl_(m+1)(f0_1(f1(0))) € (0, f1(0)]. As 0 is the unique attractor of fp in
the interval [0, f1(0)], there is j € N such that fJ(f1(0)) < ¢ < fi7'(f1(0)). So, we denote

def

doo = f1"(c) = f ' (f1(0)) € Iy and

doi, = f" o g+i2(f1(0)) €Iy forall iy >0.
Note that doy < do; if ¢ > i and do;, — f7*(f1(0)) when i2 goes to infinity. Hence

Io=J IToiy with Ioi, <= (doip+1, doiy)-

i2>0

Note that

Ioo = f Lo FA((A1(0), £ (0)]) and  Ioiy = Y0 f72(A) f iz > 0.
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Thus, taking the natural numbers m;; = m + 1 —4;, mo;, = j + i2 and m;,;, = 42 + 1 if i3 > 0,
and writing hj, i, = f”l o émliQ it follows that

R(x)=fo 2o fi " (z) = hy ) (x) if € i,
Too = hoo((f1(0), fo7(¢)]) and T4y = hiyi,(A) if otherwise.

This concludes the items (ii) and (iii) in the lemma. The items (i) and (iv) are followed from the

construction of the intervals I;,,. O

Estimation of the derivative for the return map

Let f be a C'-map of a compact interval I such that D f(x) # 0 for all z € I. The non-negative

number
Df(z)
Df(y)

is called distortion constant of f in I. Note that Dist(f~1, I) = Dist(f, f~*(I)).

Dist(f,I) = sup log
z,yel

The main result in this step is the following estimate of the derivative for the return map:

Proposition 3.6. Let C' > 0 be the largest distortion constant of f(;l and ffl in [0, fof1(0)] and
[f1(0), 1] respectively. Consider € > 0 such that |D fo(x) — 1| < e for all x € (0,1). Then

m e}
R/ (x) > e te ¢ if we€ U U Liyig s
11=012=1
1
Rl(z) > 5 (1~ g)ele4C if @€ oo

In order to estimate the derivative of the map h;lllé on the interval I; ;, we would need
a bounded distortion estimate. The following standard lemma gives some condition to obtain
bounded distortion for the iterates of a map f. Here, we denote by |J| the length of the any

interval J.

Lemma 3.7. Let f be a C'-map of a compact interval I C [0,1] such that Df(z) # 0 for all
x € I and the map x € I — log|Df(x)| € R has Lipschitz constant C. Then

n—1
Dist(f",I) < C > _[f/(I)].
=0

In particular, if 1, f(I),..., f""Y(I) are disjoints intervals in [0,1], then Dist(f",I) < C and so
for every pair of intervals J and L contained in I

I o _ 15D _ ol
e - < <e’ +— for all 0 < k < n.
IL| |fR(L)] |L|

We omit here the proof of this general lemma since it is similar to the proof we will give to
obtain the bounded distortion estimate of h;lzlé in I; ;, (see Lemma 3.9). Before that, it is necessary

to show the disjointness of some intervals:
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Lemma 3.8 (Disjointness). Let i1iy be a fized multi-indez. Then

U, & I ( Liyi,) for0<{€<m; and

def —m;
z1€—f0 of 1(1112) f0r0§€<mi1i2

are right-closed pairwise disjoint intervals in [0, 1].

Proof. Note that I;,;, C I;, where I;, is contained in a fundamental domain of f;. Thus U, are
pairwise disjoint intervals. Also, from Lemma 3.5, it follows

fo " o N Ti) = hipl, (Tnia) C A.

Hence f; " (Iyi,) C fmzm( ). Since A is a fundamental domain of fy then f; ' (I,s,) is also
contained in a fundamental domain of fy and thus U;, ¢ are pairwise disjoint intervals. On the
other hand, since m;, and m;,;, are, respectively, the first time at Which the points of [;;, left A
by iterations of ff and the first time at which the points of f1 " (I;,i,) come back to A by

iterations of f;° ! then

fl_g(Iz-m) CA for0</¢<m; and
fO_z o fl_mz1 (Iiliz) - (07 fl(o)} for O < < Miyig-

Therefore Uy for 0 < ¢ < m;, and U;, ¢ for 0 < £ < m;,;, are pairwise disjoint intervals. O]

From now on, Cp and Cj denotes the distortion constant of fi ' and f; ' in [0, f1(0)] and
[f1(0), 1] respectively. For simplicity we will just say that Cy and C; are the distortion constant of
fo L and fi ! yespectively omitting the intervals where these are calculated. Also, we will denote
by C' > 0 the largest of these distortion constant. That is, C' = max{Cyp, C1} > 0.

Lemma 3.9 (Distortion). Let C' > 0 be the largest distortion constant of fo_1 and fl_l. Then

Dlst(hzm, Tii,) <C  and Dlst(th_H,ImQ) <2C.

Consequently, for every pair of intervals J and L contained in I; ;,

ﬂ e < |h217,2(‘])‘ < eC M &nd m e < ‘h1112+1(‘])| < 620 M
’L‘ ‘hz112(L)| B ’L‘ ‘L‘ ’h’zlzg—&-l(L)’ - ’L‘
Moreover, if I = Ij,i,+1 U I i, then
hivip1 ()] _ hiyiyin (1)
‘Jfﬁ“’ < Dhi} 1(2) < %Egﬁﬁr—f forall z € I.

Proof. Recall that by} = fo *2of; "*.Then Dh; | (x) = Dfy “2(f; *(z))Df, " (z) and,

2112
from chain rule

Miyig— 1 mil—l

H Dfg (fefo i " (@) [T DA ().
£=0
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Using the distortion control of fy and f; we obtain that for every z,y € I;,;,

Dh;;(:p) 1
‘logm‘ llogDhm{Z() IOgDth( )
1112
Mijig—1 iy —
<C Z [fo o fy @) = foto f T W)+ C Z @) = ()]
Miqig— 1 mil—l
<C( D (Uial+ D 1U).
¢=0 ¢=0
Similarly, since mj,i,+1 = M4y, + 1, denoting Uiy m, ,, = fy 2 ofi TN (i),
1 m;, —1
D ($) m2112+1 a1
| log “Zfﬂ |<C Z Uil +C > U
Dhnm—i—l(y {=0
My ig— 1 milfl
<C( Y. Und+ D 1U) + C Uiy, |-
£=0 £=0

Note that Ui, m, ,, = hzm( I;)i,) C A. Finally, the disjointness of Uy, 0 < ¢ < my, and Uj, 4,
0 < ¢ < my,i, showed in Lemma 3.8 implies that

Dhi ! (x Dh ! T
iz )| <C and |log iniz+1(7)

Dhi i (y) ~ Dh; i 1(y)

From here it follows the first part of lemma. To conclude the lema, we will show the last inequality.
Let diyi, = o™ o f{ "2 (f1(0)) be the right endpoint of I; ;,+1 and the left endpoint of I;,;,. Then
forall z,y € I = Livigv1 U L4

th_122+1(x) o Dh1112+1( ) Dh;lz+1(di1i2+1)
thlig—i-l(y) ‘Dh;zg—f—l(dllm'f‘l) Dhn}Q—f—l( )

|log | <2C. (3.1)

From this, and using the estimates (3.1) it follows that

Dh; 1 x
e 30 < %1() <& forallz,yel. (3.2)
Dh‘zl'LQJ,»l (y)
Now, let J and L be a pair of intervals in I. By Mean Value Theorem, there is x € J and y € L
such that |hm2+1( )]/|hi_111»2+1(L)] th_lz2+1( x)- |J\/(Dh;122+1( )+ |L|). From this, and using the
inequality (3.2) it follows that

-1
M e_3 < |h1112+1(J)‘ < eg(j M

< . (3.3)
IZ| iy 1 (D)) IZ|

Finally, given z € I, we consider any interval J C I such that z € J. Then from (3.3) for the pair
of interval J and L = I we obtain that

—1 —1
|h2112+1( )‘ 6_30 < hi1i2+1(‘])‘ < 630 ’hi1i2+1(]—)|
1] I O 1|

Taking the length of J goes to zero we follow the desire inequality and conclude the lemma. [
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We will need the following lemma to obtain an estimate of the derivative of h“; on the

interval I; ;,. This lemma consists of a lower bounded distortion estimate between the length of
I;; and I;

Q102

Lemma 3.10 (Compared intervals). Let C; > 0 be the distortion constant of fl_l. Consider e > 0
such that |Dfo(z) — 1| < & for all z € (0,1). Then |I;;|/|L;i,| > e te™C1 for all multi-index i1is.

Proof. Recall that I;, is contained in a fundamental domain of f;. Therefore f;*(I;,) for i > 0 are
disjoints intervals in [0, 1]. From Lemma 3.7 it follows that

|Ill|/ul112| > e_CI |f1 mZI( 11)‘/|f1 m”( 1112)|
Note that f1 (L) = fz)n“k(A) for all i1k # 00. By construction in Lemma 3.5,
Too = (do1, doo] = (J7"° f5"°* £1(0), f5 " f1(0)]

and thus, f; " (Ino) = (f3"" f1(0), f; ™ fy 1 f1(0)]. Then, since m; 11 = myx +1 and I;; = UI,,},
it follows that

mzl U f1 mll Zlk U mzlk U f1 mll( 110) ( fmllofo lfl(o)].

Therefore, since 0 is an attractor of fy it follows that f; " *(I;;) D (0 fm”k( £y H(f1(0)))] for all
k > 0. From this,

" )L f5 " 11(0)

" Tna)| 1o A1) = £ T A(0)]
Since 0 is a fixed point of fp then from Mean Value Theorem we can write fgl 12(£(0) =
Dfy(€) - mlmil(fl (0)) for some &. Now, from the assumption we get

I m1122
‘ ‘ > e o 1f fl( ) > 5_18_01-
iz f 2 (£1(0)) - IDfo(€) — 1
Therefore, the proof of the lemma is completed. O

Now, we are ready to obtain the estimation desired for the return map in Proposition 3.6.

Proof of Proposition 3.6. Let x € A. Without loss of generality, we assume that x is not a discon-
tinuity point of R. If x is a discontinuity, the first return map only has lateral derivative on this
point. A similar argument allows to estimate a bound for its lateral derivative. Hence, since x is
not a discontinuity, we find 79 > 0 and a unique interval I;,;, such that for every 0 < n < ng, the
interval J = (z — n, x + n) satisfies that J C I;,;,. Notice that R(J) = h; L (J).

1119
Suppose that i1i5 # 00. Then hlm( Iii,) = A D Ii; D Iy, From Lemma 3.9 we have that
Wt (L

R 2 o Pl oo lul )

| 1112‘ ’ 1112

By Lemma 3.10 and since C' > 0 is the largest distortion constant of f L and f1 ! then it holds

IR(J)| > e 1e2¢|J|. If n — 0 (and so J goes to x) then R'(z) = thm( x) > e te72¢ for all
x € IZ‘”'Q with 4119 75 00.
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For the case 7172 = 00, recalling that m;, ;,+1 = mj,4, + 1 it follows that
hoo = fg ™ 0 fi™ = foo fg ™ o fi ™ = foo hy

Then, by the Mean Value Theorem, there are £ € hgll(J ) and ¢ € J such that
IR(T)| = [Dfo(&)||Dho; (Ol > (L — )| Dhg! (O)]|J]-

In the previous case, we estimate the derivative of hall on the interval Iy;. As ( € J C Iy, we
need again to estimate Dhal1 but now on the interval Ipg. To do this, we will use the estimate
of Dhg;t on the I = Iy U Igg obtained in Lemma 3.9. That is, Dhgl(¢) > e 3C|hg(I)]/|1]. As
ho(I) D A D I then |hg (I)| > |Ip|. Then, by Lemma 3.10, noting again that C' > 0 is the

largest distortion constant of f; L and fi 1 we see that

—1
|hor (1) > Tol _ (|101| lfoo\)—1 )
1] 1] (ol [0l 2
Finally, |R(J)| > 4(1 —e)e~te~4“ | J|. Therefore, if n — 0 (and so J goes to ) then it holds that
R/(z) = Dhog (z) > (1 — e)e1e™4C/2 for all z € Iy and we conclude the proposition. O

End of the proof of Duminy’s Lemma for IFS(®)

Consider ® = {fy, f1} C Diff%(R) and let K3* be an s*-interval for IFS(®) with *x € {ss, su}.
Then, we are now ready to prove Duminy’s Lemma for IFS(®), that is, the first part of Theorem D.
Namely, we will prove that there exists € > 0 such that if de2(fi|kz+,1d) < e for i = 0,1 then

K3 C Per(IFS(®)) and Kg* C Orbg(z) forall z € K3 (3.4)

Note that without losing of generality, and for simplicity we have scaled the #x-interval assuming
that K3* =[0,1], fo(0) =0 and fy <id and f; > id in (0,1). The first simplification to prove the
minimality property in (3.4), it is note that it is enough to show that the orbit of 0 for IFS(®) is

dense in the interval [0, 1].

Lemma 3.11. Suppose that [0,1] C Orbg(0). Then [0,1] C Orbg(x) for all z € [0, 1].

Proof. Consider z € [0,1] and V any open set in [0, 1]. From the density of the Gg-orbit of 0, there
is h € IFS(®) such that ~(0) € V. Since h is a continuous map and 0 is a global attractor point of
fo in [0,1], then exists ¢ € N such that f{(x) is close enough of 0 such that ho f§(z) € V. Hence,
the orbit of = for IFS(®) is dense in [0, 1] and we conclude the proof of the lemma. O

Since we are assuming that fo and f; are C2-invertible maps (close to the identity) then the

distortion constants of f, Land fi 1 can be written

D*fy ! (x) D ()
Dfy () Df; ()

Note that |D2f; H(x)|/|Df; ()| = D2 fi(f7 (@) |/|Dfi(f; *(2))| and so Cy and Oy are also the
distortion constant of fo and f1 in [0, f; ' f1(0)] and [0, 1] respectively. Let C' = max{Cp, C1} > 0.

>0, and Cj = max > 0.

Cp = max
z€(f1(0),1]

z€[0,f1(0)]
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Remark 3.12. If e > 0 is such that fo and fi are e-close to the identity in the C*-topology then
0<C<e(l—¢e)"t Thus, for 0 < e < 0.175, from Proposition 3.6 it follows that

R(x) > =(1 - 5)5_16_45(1_5)_1 >1 forallxz € A.

DO | =

That is, R is an expanding return map over the fundamental domain A.

Now, we will prove (3.4). That is, the Duminy’s Lemma for the IFS generated by ® = {fo, f1}
(see Theorem D). Later, we will prove the robustness of these assertions under C''-perturbations

as Theorem D states.

Proof of Duminy’s Lemma for IFS(®). Recall that the first return map R : A — A can be ex-
tended to the interval [0, 1]. In particular, this implies that for any interval I C [0, 1], there exists
h € IFS(®) such that h=1(I) N A # (). From Remark 3.12, for every 0 < ¢ < 0.175, the return
map R is expanding map in A. Thus, there is n € N such that R*(h~1(I) N A) contains some
discontinuity of R. Recall that the discontinuities d € A are points in the orbit of 0 for IFS(®),
ie., d = f" o f571(f1(0)) for some m > 1 and k > 1. Then, one has ho f* o fF=1 o f1(0) € I.
Therefore, the orbit of 0 for IFS(®) is dense. Finally, from Lemma 3.11 we get

[0,1] C Orbg(x) for all z € [0, 1].

Now, given z € [0, 1] we will show that 2 € Per(IFS(®)). We will use that 0 is a global attractor
for fo whose orbit for IFS(®) is dense in [0, 1]. So, let I be any open interval such that = € I. From
the density of the orbit of 0, there is h € IFS(®) such that h(0) € I. Since h is a continuous map
there is § > 0 such that h((—6,6)) C I. Using now that 0 is a global attractor point of fy then
there is £ > 0 such that f§(I) C (—6,6). Then ho f(I) C I. By Brouwer’s Fixed Point Theorem,
ho f§ has a fixed point in I and thus I N Per(IFS(®)) # ). This implies the [0, 1] C Per(IFS(®))
and the proof of the theorem for IFS(®) is concluded. O]

Notice that the density of periodic points is a consequence of the transitivity property of the
global attractor of the map fo for IFS(®). Therefore, this density property is C'-robust if the
transitivity property of the global attractor of fq for IFS(®) is C''-robust. The next result yields

the robustness of K3* C Orbg(0) under C'-perturbations of fy and f;.

Theorem 3.13. Let ® = {¢1,..., ¢} C Diff'(M). Suppose that there exist n € N, non-empty
bounded open sets B, B; and maps h; € IFS(®) fori=1,...,n such that

i) covering property: B C By U---U B, with h;l(E) C B and the restriction of h;l to B; is
an expanding map fori=1,...,n.

i) density property: there are a point p € M and £ € {1,...,k} such that B C Orbg(p) and p
is a hyperbolic fixed point of ¢y.

Then, there is C*-neighborhood U; of ¢; such that for every IFS(V) with ¥ = {¢1,...,¢%} and
v €U; fori=1,...,k it holds B C Orbg(py), where py is the continuation point of p for 1.
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Let IFS(¢1, ..., ¢x) be an iterated function system satisfying the covering property (i). Since

h;l restricted to B; is an expanding map then there exists £ > 1 such that

flle =yl < Ik (x) = b ()]

(2
for all z,y € B; and for each i = 1,...,n. Furthermore, this inequality is persistent:

Remark 3.14 (Choice of perturbation I). There are C1-neighborhoods U} of ¢; such that for every
IFS(¢1, ..., ) with ; € U} fori = 1,... k it holds that there are maps h; € IFS(¢1, ..., ¢¥k)
fori=1,... ,n such that ﬁ;l(E) C B and ﬁ;llgi s expanding with expansion at least k > 1.

Recall that given an open covering of a compact set X of a metric space there is a constant
L > 0, called Lebesgue number of the covering, such that every subset of X with diameter less
than L is contained in some open set of the covering. Let L be the Lebesgue number of the
open cover in the assumption of covering property (i) and suppose that there is a hyperbolic
fixed point p € M of some ¢y such that B C m. Since the Gg-orbit of p is dense in B,
there exists m € N and maps g; € IFS(¢1,...,¢x) for i = 1,...,m such that the set of point
{gi(p) : i =1,...,m} is L/3-dense in B. That is, for every open ball V in B of radius greater

than L/3 there is ¢ € {1,...,m} such that g;(p) € V. Thus, we obtain the following remak:

Remark 3.15 (Choice of perturbation II). There are C*-neighborhoods Z/{Z? of &; such that for ev-
ery IFS(1, ..., g) with ¥; € U? fori=1,... k it holds that there are maps §; € IFS(¢1, ..., Pk)
fori=1,...,m such that the set of point {g;(pw) : i =1,...,m} is L/3-dense in B where py is
the continuation point of p for .

In order to prove the above theorem we will show the following lemma:

Lemma 3.16. Consider 0 < r < L/2 and x € B such that B(z,7) C B. Then, for every
IFS(¢1, ..., Px) with ; € UL fori=1,... k there is he IFS(¢1, ..., ¢%) such that

h'(B(z,r)) C B, and diam (ifl (B(z,r))) > L.

Proof. Let IFS(¢1, ..., 1) be an iterated function system with 1; € U}. Since r < L/2 and L is
the Lebesgue number of the open cover then B(z,r) C By, for some i1 € {1,...,k}. According
to Remark 3.14, it follows that there is h;, € IFS(41,...,1y) such that fzi_ll(B(:U,r)) C B and
diam (fLi_ll(B(x, 7)) > 2kr. If kr < L/2, then we find iy € {1,..., k} such that iLi_ll(B(x, r)) C Bi,
and again from Remark 3.14, there exists h;, € IFS(¥) such that

hiloh Y(B(z,r)) C B and diam (hi_21 o hi_ll(B(:C, r))) > rdiam (ﬁz_ll(B(a;,r))) > 227,

Since k > 1, there exists m € N such that «™r > L/2. Thus, by repeating the above proce-
dure m times, we find A = hy, o --- o h;,, € IFS(41,..., 1) such that A~ '(B(z,r)) C B, and
diam(h—'(B(x,r))) > 26™r > L. This concludes the proof of the lemma. O

Proof of Theorem 3.13. We will take the C'-neighborhoods U; of ¢; given by U; = u} ﬁZ/lZZ for all
i =1,...,k. Consider z € B and let r > 0 be any positive number such that B(x,r) C B. Let
IFS(¥) be an iterated function system with W = {¢1,...,9x} and ¢; € Y; for i = 1,..., k. To
prove the theorem we need to show that there is ¢ € IFS(V) such that ¢ (py) € B(z,r).
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By Remark 3.15, if r > L /3 then there exists g; € IFS(¥) such that g;(py) € B(x,r). Therefore,
in this case, it is enough to take ¢ = g;. If 0 < r < L/3 < L/2 then from Lemma 3.16 there is
h € IFS(¢1, ..., %) such that =1 (B(x,r)) C B and diam(h~"(B(z,))) > L. This implies that
there are z € h'(B(z,r)) and a p > L/3 such that B(z,p) C h~'(B(zx,r)) C B. Again from
Remark 3.15 there exists §; € IFS(¥) such that ;(py) € B(z,p). Hence, for ¢ = ho §; € IFS(¥)

it follows that ¢ (pw) € B(z,r). Therefore,

B C Orby(py) for all IFS(¥) C*-close enough to IFS(®)

and the proof of the theorem is completed. O

In the next subsection we will show that IFS(®) satisfies the assumptions in Theorem 3.13

and thus it follows the Ct-robustness assertions in Theorem D.

Robustness of the minimality property and density of periodic points

Consider ® = {fy, fi} C Diff2 (R) and let K3* be an #x-interval for IFS(®) with x € {ss, su}.
If fo and f1 are in the assumptions of Theorem D then we have proved that Kg* C m for
all x € K3*. Note that, at least one of the endpoints of K3* is an global attracting fixed point of
either fo or fi. Thus, the Gg-orbit of this endpoint is dense in any open interval contained in K3*.
In particular, this implies the density property in Theorem 3.13. In what follows, we will show
that also the covering property is satisfied: there are n € N, non-empty bounded open intervals B,
B; C K3 and maps h; € TFS(®) such that B C BoU...UB, with h;*(B;) C B and Dh; *(x) > 1
for all x € B; and fori=0,...,n.

Recall that we had show the Duminy’s Lemma for IFS(®) constructing an expanding first
return map R over a fundamental domain A = (f1(0), f(;lfl(())] of fo. As shown in Figure C,
this return map has infinite expanding branches or discontinuities. In the following lemma, we
will show that generically we can define a new expanding return map R over A with only a finite

number of discontinuities as shown in Figure D.

Lemma 3.17. Consider fo, fi in Diff} (R) and let A = (f;(b),b] be a fundamental domain of f;
for some j € {0,1}. Suppose that there are € > 0, a families of maps h; € IFS(fo, f1) and pairwise
disjoint right-closed intervals I; for i > 0 such that

(a) A=TgU...UL,U..., withb € Iy and h; *(I;) C A for all i >0,
(b) ho=ho f[* withm >1 and h € IFS(fo, f1),
(¢c) 1—e< Dfj(b) <1+e and Dh; (x) > 1 for all x € I; and i > 0 with Dhy'(b) > 1 +e¢.

Then there exists an interval A* = (a*,b*], maps g; € IFS(fo, f1) and close intervals J; = [tiy1,ti]
fori=0,....M witha* =ty1 <ty <...<ty <tyg=>b* such that

i) ACF:J()U...UJM,
i) g; *(J;) € A* for alli =0,..., M with g; ' (b*), g3/ (a*) € int A*, and
iii) Dg; *(x) > 1 for all x € J; and everyi=0,..., M.

Moreover, with the aditional generic condiction hy*(b) € int A it follows A* = A.
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Proof. Let d € A be an accumulation point of endpoints of intervals I;. Hence, since A is union
of pairwise right-closed intervals I;, then there exists ¢ > 0 such that d is the right-endpoint of I;.
If h;l(d) € int A then, as h;l is an expanding map, there is a closed interval J such that d € J,
h;'(J) € A and Dh; '(z) > 1 for all « € J. So, we replace an infinite number of expanding by
taking g~' = h; ' on J = I; U J. Let us suppose that h;'(d) ¢ int A, that is, h; '(d) = b. Set
g = h; o hy € IFS(fo, f1). Hence g~ (d) = hy'(b) € A and

Dg!(d) = Dhy (b)Dh; 1 (d) > (1 +¢) > 1.

Firstly, we assume the generic condition hy L(b) € int A and we will prove the lemma for
A* = A. In this case, by continuity we find a closed interval J such that d € intJ, g~}(J) C A
and Dg~!(z) > 1 for all x € J. Thus, again we replace an infinite number of expanding branches
defined on intervals I; by the expanding branch g on J. This process lets remove all of accumulating
points of endpoints of intervals I; in A. Therefore, now, the only point accumulated by endpoints
of these intervals could be f;(b). Relabeling the intervals if necessary we suppose f;(b) is the
only point in such a condition and we will apply the above argument once more. Let us take
g = f;johg € IFS(fo, f1) then g~1(f;(b)) = hy ' (b) € int A and from assumption (c)

Dy~ (f;(b)) = Dhy () DF; (£ (0) > (1+e)(1+2) " = 1.

Hence, we find a closed interval J with f;(b) € J such that g7*(J) C A and Dg~!(z) > 1 for all
x € J. So, we obtain that there are M € N, maps g; = h; € IFS(fo, f1) and close intervals J; = I;
for i =0,...,M — 1 such that A = JyU...UJy and g5 ' (b), g7 (f;(0)) € int A with Jyy = J and
grr = g. Moreover, g; ! (J;) € A and Dg; () > 1 for all 2 € J,.

Let us now suppose that hy'(b) ¢ int A. Hence ho(b) = b. Set hoo = f; 0 ho € IFS(fo, f1)
and h_; = hjj o fj_1 for n large enough. From assumption (b), it follows that h_y € IFS(fo, f1).
Moreover, we have that h'(f;(b)) = hg'(b) = b, h_1(b) = £;(b) and

Dh(£i(b)) = Dhg'(0)Df;7 1 (f5(0) > (1 +e)(1+e)" =1

and

Dh=1(b) = Df;(b)Dhy™(b) > (1 —&)(1 +&)" > 1.

By continuity we find closed intervals I, = [a*, f;(b)] and I_; = [b,b*] such that h!(a*) and
h~1(b*) belong to int A and where h7! restricted to I, and h~] restricted to I_; are both expand-
ing maps. Set A* = (a*,b*]. Just as the previous case, we can increase a little bit I, on the right
and so replace the infinite number of expanding branches which are accumulated in f;(b). There-
fore, there is M € N, maps gi+1 = h; € IFS(fo, f1) and close intervals J;11 fori =0,..., M — 1
such that A* = JyU...UJys and go_l(b*), g]T/[l(a*) € int A* with I, C Jy, Jo =11 and gpr = heo,
go = h_1. Note that, also gi_l(JZ-) C A* and Dgi_l(x) > 1 for all z € J;. Therefore, the proof of

the lemma is concluded. O

As already mentioned, the first return map R : A — A where A = (f1(0), f; 1 (f1(0))] =
(fo(b),b] constructed in Lemma 3.5 to prove Duminy’s Lemma for IFS(®) satisfies the above

lemma. Therefore, we obtain the following remak:



3.2. Blending region for IF'S on the real line 85
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Fig. D: Modified return map over A with a finite number of discontinuities

Remark 3.18. Let R : A — A be an expanding return map for an IFS of two maps fo and f1 with
an infinite number of expanding branches (or discontinuities) as the one in Lemma 3.5. Assuming
the generic condition R(b) € int A, there exists a new expanding return map over A

R:Z-}Z, 7‘é|(]i:g._1

(2

fori=0,..., M.

which only has a finite number M of discontinuities.

The following lemma shows that we can always construct an expanding return map R : A — A,
with A = (f;(b),b] a subset of a su-interval for IFS( fo, f1), satisfying the above generic condition
R(b) € int A.

Lemma 3.19. Every su-interval for fo and fi close enough to the identity in the C?-topology has
an expanding return map satisfying the generic condition in Remark 3.18.

Proof. Let K3" be a su-interval for IFS(fo, f1) with f; close enough to the identity. Without loss
of generality, we suppose Kz* = [0,1], b = f; ' f1(0) and A = (fo(b),b]. We will show that some
expanding branches of R : A — A can be modified to obtain this generic condition. Suppose that
hgo (b) = b and recall that Dhog (b) > 1. We need the following claim:



86 3. Iterated function systems

1
IMmMm

i
|
]
/ 9o1
i
|
I
I
]
]
]
]
I
1
L]

Fig. E: Covering property on B = int A for the modified expanding return map over A.

Claim 3.19.1. Let (a,b) be a non-empty interval on the real line. Suppose that there are maps
h,g € IFS(fo, f1) such that g=1(b) € (a,b), h=1(b) = b and Dh=1(b) > 1. Then there is

f € IFS(fo, f1) such that f~(b) € (a,b) and Df1(b) > 1.
Proof of the claim. Since b is a repeler fixed point of h~! there is n € N such that
D(g~t o h™™)(b) = Dg~}(b)Dh™"(D) > 1.
Set f =h"og € IFS(fo, f1). Then f~1(b) =g ' oh™™(b) = g~ (b) € (a,b) and DR™1(b) > 1. O

According to Duminy’s Lemma for IFS(®) and since K3 is an su-interval for both, IFS(®)
and TFS(®~1) = TFS(f, %, f; 1), it follows that K" is a minimal set for IFS(®~'). Thus, there is

g ' € IFS(® 1) such that g~ *(b) € int A.

From Claim 3.19.1 it gets that we can replace the expanding branch haol by a new expanding

branch f~! on a small interval J = [b—d,b] with f~1(b) € int A. So, we conclude the proof of this
lemma. O

Let B be the interior of the set A* in Lemma 3.17. By means of a slight restructuring of this
new expanding return map for the IFS( fo, f1), the following result shows that IFS( fo, f1) satisfies
the covering property in Theorem 3.13 for the open set B.
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Lemma 3.20. Consider fy, f1 in Diﬁ’i_(R) and assume that there exists a non-empty interval
A* = (a*,b*], maps g; € IFS(fo, f1) and closed intervals J; = [ti11,t;] fori = 0,..., M with
a* =ty <ty <...<tp <tg=10b" such that

(i) PZJ{)U...UJM,

(ii) g; '(J;) € A* for alli=0,..., M with g5 *(b*), g5, (a*) € int A*, and

(iii) Dg;*(x) > 1 for allx € J; and everyi=0,..., M.
Then there exist n € N, non-empty bounded open intervals B; and maps h; € IFS(fo, f1) for

1=0,...,n such that
A* C ByU...UB,

with hy*(B;) C int A* and Dh;*(x) > 1 for all x € B; and fori=0,...,n.
Proof. By assumption, g, L and g;/[l are expanding maps in Jy and Jps such that gy 1(b*) and
gyi (@*) belong to the interior of A. Thus, there is closed intervals [t,to] C Jo and [tar41, 5] C Jus

such that gy ([t,t0]) and g3/ ([tar41,5]) are contained in the interior of A*. For simplicity of
notation, we denote these two closed intervals by Jy and Jy,.

Now, we extend the closed intervals Jy and Jys to open intervals Byg and Bjpsys such that for
each k € {0, M},

9;1(37%) Cint A* and Dg,?l(x) > 1 for all z € Byy.
Similarly, as g;l(Ji) C A*, we can find open intervals B} such that J; C B} and
g7 (Bf) C BooUA*UByy fori=1,...,M —1.

For each k € {0, M} and for every i = 1,...,M — 1, we denote Ly; = Bf N g;(Bkx) and set
9ki = 9i © gk € IFS(fo, f1). Then for each k € {0, M} and for every i =1,...,M — 1

9t (Li) = g5, 0 g7 1 (BF) N g;, ' (Brg) C int A,

Let L.; be the closure of B} \ (Lo; U Lps;). Observe that Ly; C intJ;. Hence, writing g, = ¢;, it
follows that g_;'(L.;) C int g; *(J;) C int A* for every i = 1,..., M — 1. Therefore, briefly, it holds
that for each k € {0, M, «} and for every i =0,..., M

9o (L) Cint A* and  Dg;'(z) > 1 for all @ € Ly,.

Finally, from here, taking open intervals By; such that Lg; C By, gk_ll(Bik,) C int A* and
Dyt (z) > 1 for all z € By, it follows that

M M
U UB]“DUJ@:F
=0

k=0,M,* i=0

Renaming the opens intervals and the return maps we complete the lemma. ]

Now, we are ready to prove the C'-robustness in Theorem D.
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Proof of C'-robustness in Duminy’s Lemma. For simplicity, we can assume that the fixed point
of f; in K3 are hyperbolic. As we have already noted, Lemma 3.20 implies the covering property
of Theorem 3.13 taking B the interior of A* C K3* in this lemma. From the first part of Duminy’s
Lemma we also have Gg-orbit of p is dense in B where p is the global attractor of f; in K3
Therefore, Theorem 3.13 implies the existence C'-neighborhood U; of f; for i = 0,1 such that
the Gg-orbit of py is dense in B for all IFS(¥) with ¥ = {g0, 91}, g; € U; and where py is the
continuation point of p.

The argument to show the minimality is standard. Firstly, note that by Lemma 3.11 it suffices
to show the Gy-orbit of py is dense in K§". Let I be any interval in K§". Since K" is a **-interval
there is a first return map over B which can be extend to the interval Kg*. In particular this
implies that there exists kg € IFS(¥) such that hy'(I) N B # (. Since the Gy-orbit of py is dense
in B then there is h; € IFS(V¥) such that hi(py) € hy'(I) N B and so hg o hi(py) € I. This
concludes the density and therefore also the minimality. Finally, notice that the robustness of the
density of periodic points is followed from this minimality property as previously notified in the
proof of Dumniny’s Lemma for IFS(®). Therefore, the proof of Theorem D is concluded. O

3.2.2 Spectral decomposition

Let f be a diffeomorphism on the real line. We say that f is Morse-Smale diffeomorphism on
the real line if it has countable non-empty set of fixed points all of them hyperbolic. The next
theorem gives a completely description the global topological dynamics of a IFS of two Morse-
Smale diffeomorphisms on the real line close to the identity. In oder to state the theorem we have to
enlarge the set of different types of x*-intervals for an IFS generated by a pair of diffeomorphisms
on the real line. Now the *x can also be s or v and in this case KF" denotes an unbounded interval.

Namely,

o K§ = [p,00) semi-attractor: if p is an attracted fixed point of a map, say fy, satisfying
fo <idin (p,o00) and f; >id in [p,00). The case K3 = (—00, q] is defined analogously.

o K§ semi-repeler: if it is a s-interval for f; ! and fi L

The proof of Duminy’s Lemma (Theorem D) is exactly the same for s-intervals and so they
are minimality sets and have dense periodic point for IFS(fy, f1) if fo and fi are C2-close to
the identity. This implies that a u-interval for IFS(fy, f1) is transitive and has also dense set of
periodic points.

Theorem 3.21 (Spectral decomposition on the real line). Let fo and fi be Morse-Smale diffeo-
morphisms of the real line with no fixed points in common. Then, there exists € > 0.17 such that if
de2(fi,id) < e for i = 0,1 then there are m € NU{oo} and pairwise disjoint isolated topologically
transitive intervals K; for IFS(fo, f1), fori=1,...,m such that

L(IFS(fo, f1)) \ {£oo} = U K;.
i—1

Moreover, each K; is either a sx-interval for IFS(fo, f1) with xx € {ss, su,uu, s,u}, or a single
fized point of fy or fi.
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Proof. Consider z € L(IFS(fo, f1)) \ {£oo}. We can assume that z € w(IFS(fo, f1)) since the
situation for the closure of a-limit of IFS(fy, f1) is followed by a similar arguments. Then, by
definition of w-limit of IF'S( fo, f1), the point z is approximated by points of the form y,,, € we ().
Each of these points y = y,, are again approximated by points of the form fg ¥(z) with © = x,,
¢ =¢(m) € I and ny = ng(m) — co when k — oo. We claim that if y = limj_,o fg““ (z), then
either y belongs to some sx-interval for IFS( fo, f1) with xx € {ss, su,uu, s,u} or it is a fixed point
of fo or fi. This claim concludes the theorem since either, z is a fixed point of fy or fi, or then
for mg large enough y,, belongs in the same s*-interval for IFS(fo, f1) for all m > my and thus z

is also in this **-interval.

In order to prove the above claim, let {p;} be the ordered set of fixed pints of both maps fy
and fi. Without loos of generality, we suppose that y > 0. We can assume that y € [p;, pi+1]-
Otherwise, there is a fixed point p; such that p; < p; for all i and y € [p;,00). It is not hard to
check, via the geometry of the functions, that in this case is not possible that fy, fi > id in (p;, o0]
since then y = oo. In other case, [pj,00) is s or u-interval or y = p;.

If p; and p;y1 are both attractors or repellers but for different maps, from the closeness of fj
and f1 to the identity it follows that [p;, piy1] is a ss or uu-interval. So, we may assume that p;
and p;41 are an attractor-repeler pair for the same maps, say fo. Note that in this case fo < id
in (p;, pit1). We have two options: fi <id or fi; > id in [p;, pi+1]. In the first case, both maps are
below to the identity and then if fgk () € [pi,pi+1] for all k large enough implies that &,, =0
and so ¥y = limy_,o fg”“ (z) = p;. For the second case, fi > id in (p1,pi+1) and we have again two
options: f1([p1, pi+1]) N [p1,pit1] # 0 or fi([ps, pit1]) N [pi, pis1] = 0. In the first option, [p;, pit1]
is a su-interval for IFS(fo, f1). For the other option, it follows as before that y = p;. Therefore y
belongs to a xx-interval for IFS( fo, f1) with s« € {ss, su,uu, s,u} or it is a fixed point of fy or f.

Finally, note that from Duminy’s Lemma (Theorem D), ss, su and s-intervals are minimal set
for the IFS(fo, f1). In particular are transitive set and thus uwu and u-intervals are also transitive
set for the IFS(fo, f1). Similarly, again from Duminy’s Lemma (Theorem D) it follows that are
isolated sets. This concludes the proof of the theorem. O

The above Spectral Decomposition Theorem can be extended for an IFS generated by a pair of
diffeomorphisms on a compact interval I. In order to do this, we understand the compact interval
I like the compactified real line [—oo,o0]. So, the endpoints of the interval I became in 400
respectively. In this way, we will understand a s*-interval K** C I for *x € {s,u} as a xx-interval
for the IF'S defined on the real line. Therefore, Theorem 3.21 concludes the following remark. Here,
by a Morse Smale diffeomorphism on a compact interval I we mean a diffeomorphism f with a

non-empty finite set of fixed points in the interior of I and all of them hyperbolic.

Remark 3.22. If fo and f1 are Morse Smale diffeomorphisms on a compact interval I close enough
to the identity map in the C?-topology and with no periodic points in common in the interior of I,
then L(IFS(fo, f1)) is finite union of pairwise disjoint intervals. Namely each interval is either a
sx-interval for IFS(fo, f1) with xx € {ss, su,uu, s,u} or a single fized point of fo or f1.

We want to note that these results about the spectral decomposition of the limit set of
the IFS(fo, f1) are C'-robust. That is, the same property holds for any IFS generates by C'-
perturbations of fy and f1. This is followed from the fact of all of fixed point are hyperbolic and

from the C'-robustness of the Duminy’s Lemma (Theorem D).
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3.3 Blending regions for IFS on the circle

Let f be an orientation preserving circle homeomorphism. Taking into account the rotation number
of f, this maps can have either rational rotation number or irrational rotation number. With
rational rotation number f has at least a periodic point while with irrational rotation number
either each orbit of f is dense in S' or there is a wandering interval for f. Let us consider the group
of orientation preserving circle homeomorphisms Hom  (S'). Note that, the forward and backward
iterations of f are a particular case of a subgroup G(f) of Hom (S!) finitely generated. In order
to extend the above classification for general subgroup of orientation preserving homeomorphisms,

we need to explain the notion of invariant subset of S by a subgroup.

Let G(®) be a subgroup of Hom, (S') generated by a family ® of homeomorphisms on the
circle and let A be a subset of S*. The orbit of a point z € S! for G(®) is the set of elements of
S! to which z can be moved by the elements of G(®). Following the notation for IFS, when no
confusion can arise, the orbit of x for G(®) is denoted as

Orbg (x) £ {g(z): g € G(D)}.

We say that A is invariant for G(®) if Orbg(x) C A for all x € A. Assuming that A is also
compact, it is said to be closed invariant minimal set for G(®) if its only closed invariant subsets

for G(®) are the empty set and A itself, or equivalently if

A = Orbg(z) for all z € A.

Now, we introduce a special type of minimal set:

Definition 3.6 (Exceptional minimal set). Let G(®) be group generated by a family ® C Hom  (S1).
A subset A C S is said to be an exceptional minimal set for G(®) if

e A is a Cantor set,

o A = Orbg(z) for all z € A,

e A C Orbg(z) for all z € St.

Notice that we can define w-limit set we(x) of x € S for the action of group G(®) in a
manner similar to the action of IFS. Hence, Item (iii) in Lemma 3.2 can also be shown for G(®)
with the same proof that for IFS. Consequently, it follows that, the second and third properties
in the above definition are, respectively, equivalent to A = wg(z) for x € A and A C we(x) for all
x € S'. Moreover, as an immediately consequence of these two properties, we obtain the following

remark:

Remark 3.23. If A C S' is an exceptional minimal for action of a group G(®) of circle homeo-

morphisms then A is the unique closed minimal invariant set for G(®).

Notice that in the particular case of a unique map f, the above definition is closely related to
the notion of wandering interval. In fact, the wandering intervals are the gaps of the exceptional
minimal set. In this particular case of a single generator, the exceptional minimal set A is invariant

for f and for f~1.

The following proposition is a classic result that can be find for instance in | |.
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Proposition 3.24. Let G(®) be a subgroup of Hom (S'). Then one (and only one) of the fol-

lowing possibilities occurs:

i) there exists a finite orbit,
i) St is a minimal for G(®) (i.e., all orbits are dense),

iii) there exists an exceptional minimal set for G(®).

Proof. The family of non-empty closed invariant subsets of S! is ordered by inclusion. Since the
intersection of nested compact sets is a non-empty compact set, the Zorn Lemma allows us to
conclude the existence of a minimal (regarding the inclusion) non-empty closed invariant set A.
Namely, if K is a non-empty close invariant set for G(®) contained in A then K = A. Observe
that this is equivalent to that A is an closed invariant minimal set for G(®). The boundary A
and the set A’ of the accumulation points of A are closed invariant sets contained in A. By the
minimality (regarding the inclusion) of A, one of the following possibilities occurs:

(i) A’ is empty: in this case A is a finite orbit,
(ii) OA is empty: in this case A = S, and therefore all the orbits are dense,

(ili) A = A’ = OA: in this case A is a closed set with empty interior and having no isolated point.

In other words, A is homeomorphic to the Cantor set.

We will show that, in the last case, A is an exceptional minimal set. Namely, we will prove that

A C Orbg(z) for all z € S,

which clearly together with the invariant minimality implies its uniqueness. For x € A, this follows
since A is an invariant minimal set for G(®). Let = and y be arbitrary points in S*\ A and A,
respectively. We need to show that there exists a sequence (gy,,), C G(®) such that g,(x) converges
to y. In order to prove this, let us consider the interval I = (a,b) contained in S*\ A such that
both a, b belong to A and x € I.

Claim 3.24.1. There exists (gn)n C G(®) such that gn(a) — y and g, (I) are two-by-two disjoint.

Proof. Since A is the closure of the orbit of a for G(®) and A = A’ it follows that A = Orbg(a)’
and thus there exists (hy,), C G(®) such that h,(a) tends to y with hy(a) # y for all n € N.
The collection of intervals {hy(I) : n € N} cannot be finite otherwise, h,(a) only takes a finite
number of values (the endpoints of this intervals) and then it could not tend to y at least that
hn(a) = y, but this is not possible from the choice of (hy,),. Moreover, either h,(I) N hy,(I) # 0
or hy(I) = hp(I). Indeed, if hy,(I) meets h,,(I) but hy(I) # hy,(I) then at least one of the
endpoints of Ay, (I), say h.,(a), belongs to hy,(I) and so, (hy) ! ohmy(a) € AN since a € A and A
is invariance for G(®). However, this is not possible since I is a gap of the Cantor set A. Therefore,
we can choice a subsequence of (g, ), of (hy), such that g,(I) are two-by-two disjoint since in

otherwise we have a finite collection of intervals h,(I). O

From the above claim, we observe that the length of the intervals g,(I) must go to zero, and

thus gy, (x) converges to y (since g,(a) tends to y). This concludes the proof. O
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The next result provides a similar classification as above for IF'S. Notice that this classification
describes the shape of possible attractors of an IF'S generated by homeomorphisms on an arbitrarily

compact manifold M.

Theorem 3.25. Consider IFS(®) generated by a family ® = {f1,..., fnv} C Hom(M) of homeo-

morphisms of a compact manifold M. Then exists a non-empty closed subset K of M such that

N
K = U fi(K) and K = Orbg(z) = we(x) for alz € K.
i=1

Moreover, one (and only one) of the following possibilities occurs:
i) K is a finite orbit,
it) K have non-empty interior,

iti) K is a Cantor set.

Proof. The family of non-empty closed subset A of M such that A = f1(A)U---U fy(A) is ordered
by inclusion. Since the intersection of nested compact sets is compact and non-empty, the Zorn
Lemma allows us to conclude the existence of a minimal (regarding the inclusion) non-empty
closed set K such that K = Uf;(K). We will show that K is an invariant minimal set for IFS(®)

K = Orbg(xz) forallz € K. (3.5)

Then, according to Item (iii) in Lemma 3.2, we have K = Orbg(z) = we(z) for all x € K.

In order to prove (3.5), since K is an closed invariant set we get

Orbg(z)’ C Orbg(z) C K forallz € K.

On other hand, according to (vi) in Lemma 3.2, for each z € K the set of accumulation points
Orbg(z)’ is a closed selfsimilar set. Since K is minimal (regarding the inclusion) then either,
Orbg ()’ is an empty set or K = Orbg(x)’. We have two possibilities:

(i) there is z € K such that Orbg(z)’ is empty;

(ii) for all x € K, it holds that K = Orbg(x)’.

In the first case, it follows that Orbg(x) is finite set, and therefore, it is a non-empty closed
selfsimilar set contained in K. This implies that K = Orbg(z) = we(x). In the second case, we
obtain that K is an invariant minimal set for IFS(®). Note that in this case K’ = K. Moreover,
we also have two options: K has non-empty interior or the interior of K is empty and thus K is

a Cantor set. This concludes the proof of the theorem. O

An invariant minimal Cantor set K C M for IFS(®) is said to be exceptional minimal set
for TFS(®) if it is the unique attractor of the IFS or, equivalently, if the orbit of any point
of M is dense in K. Notice that an invariant minimal Cantor set for IFS(®) obtained in the
above theorem is not necessarily an exceptional minimal set. An example of an IFS with at least
two attractors, being one of them a Cantor set, is constructed by taking two disjoints regions
D1, Dy C M. Each one of the generators f; € ® of IFS(®) is a contracting map on D; and satisfies
[i(D;) C Dy, for all i = 1,2; but, for Dy at least, the overlapping condition fails to verify, i.e.
fe(D1) N f;(D1) = 0 for all k # j.
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3.3.1 Duminy’s Theorem

An example of a circle homeomorphism with irrational rotation number admitting an invariant
minimal Cantor set for f is a Denjoy diffeomorphism. Notice that, in this case, this Cantor set is an
"exceptional" minimal set for both IFS(f) and IFS(f~!) and consequently it is also an exceptional
minimal set for the group generated by f. These examples are only possible for diffeomorphisms of
class C! at the most. Indeed, from a classical theorem due to Denjoy, C?-diffeomorphisms have not
invariant minimal Cantor sets. Namely, if f is a orientation preserving circle C?-diffeomorphism
with irrational rotation number p(f), then f is topologically conjugate to the rotation of angle
p(f). In fact, since every diffeomorphism close enough to the identity is orientation preserving, we

can obtain the following implication of Denjoy’s Theorem:

Theorem 3.26 (Denjoy). There exists € > 0 such that if f € Diff>(S') is e-close to the identity in
the C%-topology then there are no invariant minimal Cantor sets for neither IFS(f) nor IFS(f~1).

Moreover, the following conditions are equivalents:

i) St is minimal for IFS(f),
i) S' is minimal for IFS(f~1),

ii1) there are no periodic points for f.

As a consequence of the above equivalences, if any of the theses conditions is satisfied then S*
is also minimal for G(f). For action groups Duminy, at the end of the seventies in an unpublished
work | |, proved that there is no an exceptional minimal set for a group generated by circle
diffeomorphisms with certain regularity. The key idea is to create a ss-interval for an IF'S generated
by two maps in the group G(fp, f1) which are obtained making the necessary compositions by
means of the inverse of fy or fi. Then Duminy’s Lemma (Theorem D) implies the minimality of
this interval for the IFS, and thus, for G(fo, f1). With the help of same inverse map this minimality

is moved around the whole circle.

Theorem 3.27 (Duminy). There exists € > 0 such that if fo and fi in Diff?(S') are e-close
to the identity in the C*-topology and at least one of them, say fo, has finitely many periodic
points, then there is no exceptional minimal set for G(fo, f1). Moreover, the following conditions

are equivalents' :

i) St is minimal for G(fo, f1),

it) fi(Per(fo)) # Per(fo).

The condition about the regularity in Denjoy’s Theorem as well as Duminy’s Theorem can be
improved. In fact, Duminy’s Theorem can be proved for a group G(fo, f1) of orientation preserving
circle diffeomorphisms where the distortion constant of fy and f; is bounded by a positive universal
constant. This condition means that fy and f; are close to rotations: the equality Dist(f;) = 0 is

satisfied if and only if f; is a rotation. Concerning the hypothesis of existence of at least a generator

!Condition (ii) is satisfies if fo and f; have not periodic points in common.
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with isolated periodic points, let us point out that it is generically satisfied. See | , | for
more details about Duminy’s result (non-existence of exceptional minimal set for action group). We
round off Duminy’s result by adding the second part in Theorem 3.27, which states the equivalence
between minimality of the action group G(fy, f1) and condition (ii) about the common periodic
points. This equivalence together with the genericity (open and dense) of the set of Morse-Smale
diffeomorphisms in Diff?(S') implies the following remark:

Remark 3.28. While the periodic dynamics are generic (open and dense) in Diff?(S'), even
close to the identity, generically S is minimal for action groups on the circle with at least two

generators close enough to the identity (open an dense set of a neighborhood U C Diff?(S') of id).
We will now give a proof of Duminy’s Theorem slightly different from the proof in | |.

Proof of Theorem 3.27. Set ® = {fo, f1i}. According to Denjoy’s Theorem, the set of periodic
points of each element in G(®) is non-empty, otherwise S! is minimal for G(®) and we conclude
the theorem. By hypothesis, we assume that the periodic points of fj are isolated. Let us denote
by Per(fy) the set of these points.

Claim 3.28.1. If either there exists exceptional minimal set for G(®) or fo and fi have not
periodic points in common, then there exists p € Per(fo) such that fi(p) or f{ (p) is in SY\Per(fo).

Proof. Firstly, we assume that fy and f; do not have periodic points in common. If for every
p € Per(fy) one has that fi(p) and f;!(p) are in Per(fy) then fi(Per(fo)) = Per(fo). As Per(fo)
is a finite set then there are m € N and p € Per(fy) such that f{"(p) = p contradicting that fo

and f1 do not have periodic points in common.

We now assume that there exists A exceptional minimal set for G(®) and denote

P(fo) = Per(fo) N A.

Notice that P(fy) is non-empty. Indeed, if the period of the periodic points of fy is k and p € A
is not a fixed point of f(’f, then

lim f*(p)

i—+oo
are fixed points of fok contained in A. Just like the previous case, there exists p € P(fy) such that

fi(p) or fil(p) is in ST\ P(fo). Otherwise, the finite set P(fy) would be invariant for G(fo, f1),
thus contradicting the minimality of A. O

In what follows, we will assume that there exists p € Per(fy) such that fi(p) or f; '(p) belongs
to ST\ Per(fo). Otherwise, according to the above claim the first part of the theorem follows. Under
this assumption we will show that S* is minimal for G(®). This makes impossible the existence of
an exceptional minimal set for G(®) and therefore we again obtain the first part of the theorem.
Whit regard to the second part of the theorem, since (ii) implies that there exists p € Per(fp)
such that f1(p) € S'\ Per(fy), once proved the minimality of S! under this assumption, we
obtain that (ii) implies (i). In order to prove that (i) implies (ii), according to Proposition 3.24,
if ST is minimal for G(®) then there is no finite orbit and this implies (ii). Indeed, suppose that
f1(Per(fo)) = Per(fo) then this finite set is invariant by fp and f; and therefore it is a finite orbit,

which is a contradiction.
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Fig. F: Configuration in the proof of Duminy’s theorem.

Let us now prove that S' is minimal for G(®). Since G(®) = G(fo, f; 1), without loss of
generality, we will suppose that fi(p) € S\ P(fo). Let k be the period of the periodic points of
fo. Let g = fé“ € G(fo, f1) and let us denote by u and v the periodic points of fy immediately
to the left and to the right of fi(p), respectively.? The map f = f1 0 go f; ' has a fixed point in
[u, v], namely fi(p). Let a be the first fixed point of this map to the left of v, and let b be the first

1

fixed point to the right of a. Replacing g by ¢g~' and/or f by f~! if necessary, we may suppose

that f(z) < x and g(z) > x for every x € (a,v). See Figure F.
We now claim that [a,v] is a ss-interval for IFS(f,g). We only need to show the overlap
condition: f~!(g(a)) € (a,v). To show this, we first notice that

k—1

Dist(f, [a,b]) <Y Dist(fio foo fi'', fro fio fi ' ([a,b))

1=0
< Dist(fy 0 foo f; 1, ) <3C

where C' is the largest distortion constant of fy and f; in S'. In the same way one obtains
Dist(g, [u,v]) < C. Let zg € (a,v) and yo € (a,b) be such that

Df(ao) == Df(u)=1.

Clearly, we have |log D f(yo) —log D f(z0)| < Dist(f,[a,b]), and hence f(v) —a > e3¢ (v —a). By

a similar argument it follows that v — g(a) > e~ (v — a). If f~'(g(a)) were not contained in the

*We work with the lift map of g for which the existence of at least two fixed points of g is guarantied.
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interval (a,v), then f(v) < g(a) and hence, from the above inequalities,
v—a> fv) —a+v—gla) > (e +e ) (v—a)
Therefore, e3¢ + ¢=¢ < 1 which is imposible if fy and f; are e-close to the identity in the

C2-topology for £ > 0 small enough, because of 0 < C < g(1 — &)L

The elements f and g in G(®) are thus as in Figure F over the interval [a, v] and therefore this
interval is a ss-interval for f and g. We will show that this interval is minimal for IFS(f,g). In
order to prove this, we apply the Duminy’s Lemma showing that f and g satisfy the assumptions
in Remark 3.4:

l—-e<Df(zr)<l+4+e, 1—e<Dg(zx)<l+4+e and (1—6)571674é>2

where C is the largest distortion constant of f~! and ¢~! in [a,v]. Observe that, the distortion
constant of f~! in [a, b] and the distortion constant of g=! in [u, v] coincide with Dist(f, [a,b]) and
Dist(g, [u, v]) respectively. Thus, as we have noticed, this constants are less than or equal to 3C
and C, respectively, and so C' < 3C.

Now, notice that for every xz € (a,b) it holds |log Df(x)| = |log Df(x) — log Df(yo)| <
Dist(f, [a,b]) < 3C and hence

e3¢ < Df(z) <3¢ forall z € [a,v].

Similarly, we follow an analogous inequality for the absolute value of the derivative of the logarithm
in [u,v] and we obtain

e3¢ <Y < Dg(x) <e <3¢ forall z € [a,v].
Recall that as fp and fi are e-close to the identity we have C' < £(1 —¢)~!. Then since et3e(l—e)™!
and 1 4+ ¢ are equivalent infinitesimals, it follows

1—cn~e 3097 o Df(x), Dg(x) < 0= L14e forallze [a, v]. (3.6)
Finally, for € > 0 small enough we get
(1— 8)6_16_40 >(1- 6)6_16_125(1_8)71 > 2. (3.7)

Therefore, since Equations (3.6) and (3.7) are the desired assumptions to apply the Duminy’s
Lemma we obtain that [a,v] is minimal for IFS(f, g). Now, we will move the minimality of this
interval along the whole circle, again by means of the inverse maps. Let I be and open interval in
St and let x be any point in S*. Since [a,v] contains at least a fundamental domain of f and g
we can find® F and H in G(f, g) such that

F(I)Nnla,v]#0 and H(z) € [a,v].
By the minimality of this interval there is h € IFS(f, g) such that h o H(x) € F(I). Therefore,
F_lohoH(JI) el

with F~'oho H € G(fy, f1). This shows the minimality of S* for G(fo, f1) and the proof of the
theorem is completed. O

3More details of this claim can be understood in Section §3.3.3 where we study cycles for IFS.
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The following theorem shows a generalization of Denjoy’s Theorem for IFS. Namely, this result
shows that there are no invariant minimal Cantor sets for any IFS generated by a family of circle
diffeomorphisms with at least two generators C?-close to the identity satisfying certain generic

conditions.

Theorem E (Denjoy for IFS). There exists € > 0 such that if fo, fi € Diff?(S') are e-close to the
identity in the C?-top. with no periodic points in common and both maps have finitely many periodic

points then there are no invariant minimal Cantor sets for neither IFS( fo, f1) nor IFS(fal, ffl)

Moreover, if n; is the periodic of f;, then there are no invariant minimal Cantor sets for neither
IFS(fy°, fi*) nor IFS(f, ™, f1 ™) and the following conditions are equivalents:

i) St is minimal for IFS(fJ°, f"), iii) there are no ss-intervals for IFS(f)°, fi'),

i) St is minimal for IFS(fy ™, fi™), iv) there are no uu-intervals for IFS(f3°, f1*).

If the periodic points of two maps in the hypothesis of the above theorem are hyperbolic then
both diffeomorphisms are Morse-Smale. Recall that, the set of Morse-Smale diffeomorphisms is
open and dense in Difo(Sl). On the other hand, the non-existence of common periodic points
is also a generic condiction. Therefore, this subset of diffeomorphisms in Difo(S 1) satisfying the
hypothesis of Theorem E, is open and dense in a neighborhood of the identity.

Remark 3.29. Under the additional generic assumption of hyperbolic periodic points, the asser-
tions in Theorem 3.27 and Theorem E are C-robust. That is, if fo and f1 are C?-diffeomorphisms
with hyperbolic fixed points in the corresponding assumptions of Theorem 3.27 and Theorem E then
there exist Ct-neighborhoods U; of f; such that for every pair go € Uy and g1 € Uy the assertions
in both theorems are fulfilled.

In order to prove the Theorem E, we can assume that the set of periodic points of fy and fi is
non-empty, otherwise, by Denjoy’s Theorem, S! is minimal for both IFS( fy, f1) and IFS(fo_l, fl_l).
By the assumption of finiteness of periodic points, fo and f; cannot be rational rotations. Al-
though this periodic points are not necessarily hyperbolic, we will assume that fy and f; are
Morse-Smale diffeomorphisms but we will never use along the proof of the above theorem the
hyperbolic character of its periodic points. This proof is given in the following two sections. We
will find € > 0 such that for every pair of Morse-Smale diffeomorphisms, fy, f1, in the hypoth-
esis of Theorem E with a ss-interval for IFS(fy°, f{"*), there are no invariant minimal Cantor
sets for none of them: IFS(fo, f1), IFS(fy ', f11), IFS(£5°, f1*) and IFS(f; "™, f; ™). See Propo-
sition 3.36 and Remark 3.37. Previously, we need to generalize Duminy’s Lemma for Morse-Smale
diffeomorphisms. See Theorem 3.35. Then, in Section §3.3.3, under the assumption that there are

no ss-intervals for IFS(fy°, fi'*), we will prove the equivalences in the statement of Theorem E

(i) — (iti)
(i1) — (iv) & (i)
(i41) = (i) and (i4).

according to the following scheme:

Here, "—" means an immediately implication. The other two implications "<" and "=" will be
shown in Proposition 3.38 and Theorem 3.53 (see also Proposition 3.39) respectively. Therefore,

it follows from this equivalences that, in this case, there can be no invariant minimal Cantor sets

for neither IFS(fo, f1) nor IFS(f(fla ffl)
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3.3.2 Duminy’s Lemma for Morse-Smale diffeomorphisms

Let fy and f; be two C?-diffeomorphisms on the circle. We want to show that if fy and f; are
close enough to the identity then there are no invariant Cantor sets for IFS(fo, f1). According
to Denjoy’s Theorem (Theorem 3.26) we must assume that fy and f; have periodic points. In
addition, we will suppose that both maps, fo and f1, have finitely many periodic points all of
them different (i.e., with no periodic points in common). Duminy’s Lemma (Theorem D) provides
a neighborhood of the identity such that if fy and f; belong to this neighborhood and there exists
a ss-interval for IFS(fy, f1) then there is no exceptional minimal set. This claim follows from the
uniqueness of the exceptional minimal set for an IF'S since a ss-interval for an IFS in this hypothesis
is an invariant minimal set. When fy and f; have periodic points of period, respectively, ng and
n1 larger than one, we could consider IFS( £y, fi'*), which is called periodic IFS. The distortion
constant of this periodic maps f;" is n;C; where C; is the distortion constant of f;. If we try
to apply Duminy’s Lemma for the periodic IFS, then the estimate for the return map derivative
obtained in Proposition 3.6 (see also Remarks 3.4 and 3.18) will be

R'(x) > =(1—¢e)e e forallze A

N —

where C' = max{Cy,C1} and n = max{ng,n1}. That is, the estimate depends on the period.
When the period increases this estimate goes to zero and we need to reduce the size of € > 0 to
obtain an expanding first (periodic) return map. Notice that this is a problem if we are looking
for a uniform neighborhood of the identity.

The first goal of this section is to show that actually we can obtain a new bound for the
periodic return map derivative independent of the periods n;. In the sequel we will assume that fj
and f; are Morse-Smale diffeomorphisms on the circle of period ng and ni, respectively, and such
that there exists a sx-interval for IFS(fi'°, f"*) with =« € {ss, su}. For simplicity, we scale the
s*-interval into the interval [0, 1] and assume that f°(0) = 0, f}° < id and f;"* > idin (0,1). Asin
the proof of Duminy’s Lemma we can construct a first (periodic) return map R on a fundamental

domain
A= (f1(0), fo " (f1*(0))] € [0,1]

of fi® (see Lemma 3.5). Note that now the return maps h;,;, correspond to IFS(fy°, fi"*). It will
be helpful to write go = f° and g1 = f;"*. We will indicate the modifications required while
estimating the return map derivative in Section §3.2.1.

In order to extending Duminy’s Lemma for Morse-Smale diffeomorphisms with arbitrarily large

period we will need the following properties of Morse-Smale dynamics on the circle.
Lemma 3.30. Let f € Diff>(S') be a Morse-Smale diffeomorphism with period n. Set

D*f(x)
Df(x)

the distortion constant of f in S* and let I be a fundamental domain of f. Then

C' = max{ cx € S}

i) e ¢ < Df*(z) < e forall x € S,

i) fAI)N fI(I) =0 for all i # j (not necessarily multiples of n).
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Proof. Consider J = [p, q] any interval in S' where p and q are two consecutive fixed points of
f™. We will show that
e ¢ < DfYx) <e’ forallze (3.8)

Since S is finite union of theses intervals we obtain (i). Since the interval J always contains a
point with derivative equals one, according to Lemma 3.7, we only need to show the disjointness
of J, f(J),..., f*1(J) to prove (3.8). In order to prove this, suppose that f*(J) N f7(J) # 0 for
0<i<j<n-—1 Then f7=%(J) meets J. Since n is the period of f and 0 < j — i < n then this
two closed intervals cannot be the same. Thus, either f7=¢(p) or f/=(q) belongs to the interior of
J. Since any of these points are fixed points of f™ and f™ has not fixed point into the interior of

J, we find a contradiction.

In a similar way, in order to prove the statement (ii), we consider a fundamental domain I
for f™. Then I is contained in some interval J of consecutive fixed points of f™. Suppose that
FUI) N fI(I) # 0 with 4 < j. Then f7=%(J) N J # (). This two intervals must be the same since
on the contrary arguing as above we obtain a contradiction. Thus j — ¢ must be a multiple of the
period n. We write j —i = kn for k > 0. So, f*"(I) NI # () which is a contradiction since I is a

fundamental domain for f™. Therefore, the proof of the lemma is now concluded. O

As a consequence of the above lemma, we modify Disjointness Lemma (Lemma 3.8) as follows:

Lemma 3.31 (Disjointuness). Let i1iz be a fized multi-index. Then,

def

i) Ur = fiIysy) for € >0 are pairwise disjoint right-closed intervals of S*;

i) Uiy 0 & fO of S (Liyi,) for £ >0 are pairwise disjoint right-closed intervals of S*.
Proof. Note that I; ;, C I;, where I;, is contained in a fundamental domain of g; = f;"*. Thus,
by Lemma, 3.30, it follows that the intervals U, C S* are right-closed disjoint with respect to each
other. Also, according to Lemma 3.5, we have that

—Miqi —m; -
90 1 © 01 1( 1122) hi i ( 1112) C A

1172

Hence f; """ (Iiyiy) = g1 *(Iiyiy) C gg%m (A). Since A is a fundamental domain of go = f;°
then f; """ (I;,,) is contained in a fundamental domain of fo® and thus, by Lemma 3.30, it
follows that the intervals U;, , C S I are pairwise disjoint. This concludes the lemma. O

The above lemma allows us to obtain a new estimate for the distortion of hl122 which is
independently of the period n;. Namely, the statement of Distortion Lemma (Lemma 3.9) takes

the following form:

Lemma 3.32 (Distortion). Let C' > 0 be the largest distortion constant of fo and f1 in S*. Then

for every j > 0 it follows that Dist(h; ;,Img) < 2C'. Consequently, for every pair of intervals J

and L contained in I;,;, and for j > 0, it holds that

Wl s O] e 1]
7 hkml = I

Moreover, if I = I;,j41 U I;,; then for every j > 0, it holds that

|h11j+1( )| Dh_

40|h213+1( )‘
|I| 21]+1< ) Se—=

forall z € I.
1]
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—Miyj —Miy

Proof. Recall that h;; =g ° g

—noMiyj

= f, of, " Then

nomiljfl nlmilfl

Dhii(x)= [ DfSeto i ™ @) [ D).
=0 £=0

By means of the distortion control of fy and f1, we obtain that for every x,y € I;;,

[log—=—| < C( Uiy o] + Ug]).
Dh; 5(y) =0 =0

The disjointness of each families of intervals U, and U;, o for £ > 0 showed in Lemma 3.31 implies
that Dist(hﬁ-, iris) < 2C. The rest of the proof of this lemma is analogous of second part in
Lemma 3.9. O

As in Lemma 3.10 we can obtain the same lower bounded distortion estimate between the
length of I;, and I;,.

Lemma 3.33 (Compared intervals). Let C7 > 0 be the distortion constant of fi in St. Consider
d > 0 such that |Dfy°(x) — 1| < ¢ for all x € (0,1). Then
|Ii1|
‘Ii1i2‘

S

for all multi-index iqis.

Proof. Recall that I;, is contained in a fundamental domain of g; = f]"*. Therefore, from Lemma 3.30
we see that f “(I,) for i > 0 are disjoints intervals in S'. Using Lemma 3.7 we still have that
f ()] oy g ()

Il o e |
ze —n1miy =€ —miy

|Ii1i2| |f1 (Ii1i2)| |gl (Ii1i2)|

The rest of the proof is the same that Lemma 3.10. Observe that we only need to use the bounded

distortion estimate from above and the assumption |Dgo(x) — 1| < d for all z € (0,1). Therefore,
it follows the desired result. O

Now, we are ready to obtain an estimation for the derivative of the periodic return map.

Proposition 3.34. Let C' > 0 be the largest distortion constant of fo and f1. Consider § > 0
such that |Dfi°(x) — 1| <6 for all x € (0,1). Then

R/(.'E) Z 5_16_30 Zf UAS U U Ii1’ig7
11=012=1
1
R'(x) > 5 (1= 8)6~te™¢ if x € Ioo.

Proof. With the help of the above lemmas the proof of these estimates in the case of Morse-Smale
diffeomorphisms turns into the proof of Proposition 3.6. We only indicate how these lemmas are

used to obtain the new estimates.
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Let x be a interior point of I;,;,. Take an arbitrarily small open interval J such that z € J C
Iiyi,- Notice that R(J) = h; L (J). Suppose that iyiy # 00. Then h; L (I;;,) = A D I, D I;yi,. By

1112 1112

Lemma 3.32, it follows that

hl(r.. .
|R(J)| > 6720 1112( 11’2)| ‘J| > 6720 |Ill| |J|
|]i1i2| |1€112|

By Lemma 3.33, since C' > 0 is the largest distortion constant of fy and f; then |R(J)| >
6~ Le=3¢|.J|. The above inequality implies that R’ (z) = Dhi_lll2 (x) > 6 'e™2C for all x € I;,4, with
i1i2 # 00. For the case i1ip = 00, recalling that m; i, +1 = mj,4, + 1 it follows haol = fg”o o hall.

Then, by Mean Value Theorem, there are £ € hall(J ) and ¢ € J such that
[R(D)| = [Dfg* ()| Dho; (O] > (L = 8)[Dhgt (O)]|]-

From the estimate of Dhal1 on the I = Iy; Ulyg obtained in Lemma 3.32 it follows that, Dhal1 ¢) >
e | H(D)]/|T]. As ho (I) D A D I then |hy'(I)| > |Ip|. Then, by Lemma 3.33, taking into
account again that C' > 0 is the largest distortion constant of fy and f;, we see that

—1
lhoy (DI o ol _ (|—701| |—700|)—1 ey

| = 1] M| ol 2

Finally, |R(J)| > (1 — 6)6~te™>7|J|. This implies that R'(z) = Dhgg (v) > (1 — §)6~Le™>¢/2
for all z € Iyp and we conclude the proposition. ]

Now, we are ready to extend the Duminy’s Lemma for Morse-Smale diffeomorphisms:

Theorem 3.35 (Duminy’s Lemma for Morse-Smale diffeomorphisms). There exists € > 0.13 such
that if fo, f1 € DiffZ(Sl) are Morse-Smale diffeomorphisms of period ng and ny, respectively, and e-
close to the identity in the C*-topology, then for any xx-interval K3 for IFS(®) with xx € {ss, su}
and ® = {f3°, f{"*}, there are neighborhoods U; of fi in the C'-topology such that

Ky C Per(IFS(V)) and K C Orby(z) for all x € Ky

for every U = {g3°, g7 } with g; € U;.

Proof. Take § = 0.17 > 0. Then (1 — §)6~'e™® > 2. Let £ > 0 small enough such that
1—6<e 97 097" 2 145 and e(1—e) <. (3.9)

Note that these conditions are satisfies for every positive € < 0.13.

As we are assuming that fo and f; are C2-diffeomorphisms then the distortion constants of fy

and f; can be written

D f1(z)

Dfi ! (x)

D2f0(.%')

Dfy ! ()

>0, and C; = max > 0.

Ch = max
zeSt

zeSt

Note that
|D?fi(x)|/| D fil)| = | D? £ ()| /|D f;7 ()]
and so the constant Cp and (7 are also the distortion constant of f; ! and f1 L Set C =

max{Cp, C1} > 0. Since f; are e-close to the identity in the C2-topology and by choosing of
e > 01in (3.9) it follows that 0 < C < e(1 —¢)~! < 4.
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We will show that |Df}°(x) — 1| < ¢ for all z € K3* = [0, 1]. By Lemma 3.30 it follows that
for every z € S1,

6—8(1—5)*1 < €_C < Df(?)lo(l,) < GC < es(l—a)*l‘
Substituting (3.9) in this inequality we conclude that [Df}°(z) — 1| < § for all z € S*.

Proposition 3.6 and the above estimates calculated for both, the distortion constant C and
the derivative of fp, imply that

(1-6)0te ¢ > 1(1 —8)ote™™ > 1 forall x € A.

R/ (x) > 5

N |

That is, R is an expanding return map over the fundamental domain A.

The rest of the proof of this theorem and the proof of Duminy’s Lemma (Theorem D) are
totally analogous. With regard to the C'-robustness, again we can use the same argument of
Duminy’s Lemma and thus this part follows from Theorem 3.13. So, the proof of this result is
completed. O

The following result shows that in the presence of a ss-interval for the periodic IFS there are

no invariant minimal Cantor sets.

Proposition 3.36. Let € > 0 be in Theorem 3.35. Let fo, fi € Diff2(S') be a pair of Morse-Smale
diffeomorphisms of period ng and ny, respectively, and e-close to the identity in the C?-topology.
Assume that they have no common periodic points and there exists a ss-interval for IFS(fy°, fi").

Then there are no minimal invariant Cantor sets for neither IFS(fy°, f1'*) nor IFS(fo, f1).

Proof. Observe that, by Theorem 3.35, any ss-interval K§* for IFS(®) satisfies that

K3 = Orbg(z) for all x € Kg

where ® = {f;°, f{"'}. Moreover, note that K3’ is also an invariant minimal set for IFS( fo, f1)
since IFS(®) is contained in IFS(fo, f1). Let us denote by F either, IFS(®) or IFS(fo, f1) since
the argument to exclude the invariant minimal Cantor sets is analogous for both of them.

Suppose that A is an invariant minimal Cantor set for F. The first observation is that there are
attracting fixed points of f;" in A for ¢ = 1,2. In order to prove this, we fix any point p € A. Hence,
since f;" is a Morse-Smale diffeomorphism then ¢ = limj_,o ff "i(p) is an attracting fixed point
of f/" and since A is closed invariant for F then ¢ € A. We claim® that one of these fixed points is
the endpoint of a ss-interval for IFS(®). Indeed, since there are no common periodic points, the
same above argument to find periodic points in A allows us to move out through the basin of the
attracting fixed point of f/" to an endpoint of some ss-interval K3° for IFS(®). Finally, since A
is an invariant minimal set for F, the closure of the orbit of this endpoint of K’ is A. However,
as already mentioned, the closure of orbit of this endpoint for F is the K3’ and hence K§° = A
which is a contradiction since A is a Cantor set and K has not empty interior. Therefore, it
follows that there is no exceptional minimal set for F, that is, for both IFS(®) and IFS(fo, f1),

and so, we conclude the proof of the proposition. O

4More details of this claim can be understood in the following Section §3.3.3 where we study cycles for IFS.



3.3. Blending regions for IF'S on the circle 103

In the following section, we will show that the existence of a ss-interval for IFS(f'°, fi"*) implies
the existence of a uu-interval for the same IFS (see Proposition 3.38) and thus, the existence of
a ss-interval for IFS(f; ", f{ ™"*). If necessary, we reduce the size of the neighborhood of the
identity to obtain that for every fo and fi1 in this new neighborhood, f; L and f1 L are e-close to
the identity. So, from the above proposition it follows that:

Remark 3.37. Under the assumptions of Proposition 3.36, it holds that there are no invariant
minimal Cantor sets for both TES(fy ™, f{™) and IFS(fy %, fi1).

3.3.3 Cycles for IF'S on the circle

Recall that a ss-interval for IFS(fy, f1) close enough to the identity map is an interval define by
a pair of consecutive attractors each from a different diffeomorphism f;, ¢ = 0, 1. In a similar way,
a uu-interval for IFS(fo, f1) is define as a ss-interval for TFS(fy ', £ 1).

Proposition 3.38. Let fy, fi be Morse-Smale circle diffeomorphisms with no fized points in com-
mon. Then, there is a ss-interval for IFS( fo, f1) if and only if there is a uwu-interval for IFS( fo, f1).

Proof. We only need to prove that if IFS( fo, f1) has an interval K" then also has an interval K3°.
Consider S' parametrice by [0,1] mod1. By abuse of notation, we continue to write f; for the lift
map. Note that since fj is a circle diffeomorphism then the number of fixed point is even. Thus,
we may denote by p; and p; for ¢ = 1,...n the attractor and repeler fixed points of fj respectively
ordered in the real order on [0, 1]. In a similar way, g; and ¢; for j = 1,...,m denote the attractor
and repeler points of f; respectively ordered in the real order on [0, 1]. We may assume without
loss of generality that 0 = p1 < 1 < p1 < g2 and that p,, < ¢, < 1. Thus K§* = [p1, ¢1] and the
rest of the fixed points of fy and fi belong to the interval [p1, g,]. Note that, since K§" has only
two fixed points of fp and fi then, in [p1, ¢ ] there is an even number of fixed points. We assume
that there are no ss-intervals. Then, since there are no fixed points in common, we may construct
a sequence of attractor p1 < q1 < ... < p; < qj, < Pipy < ... < pp < gm Where p;, is in the
basin of attraction of ¢;, and gj, is in the basin p;, . From this, we have the partition

Since there are no ss-intervals then in each interval of the above partition there are an even number
of fixed points of fy and f;. Hence, there is an even number of fixed point in (p1, g,]. This leads

to a contradiction with the number of fixed points in [p1, ¢,,] and it proves the proposition. [

We introduce the notion of cycle for an IFS of two diffeomorphisms on the circle.

Definition 3.7 (Cycle). Let fo and fi be two circle diffeomorphisms. Denote by p; the attractors
of fo and by g; the attractors of fi. Define a partial order on the attracting points by p; < q; if and
only if p; belongs to the basin of attraction of q; for f1. Similar definitions for q; < pj. A sequence
of attractors forms a cycle of length n for IFS(fo, f1) if we have

Piy = Qiy < Pig < ... < i, < Dinyy and Py = Dip. -

The cycle is said to be minimal if it has no sub-cycles, that is, there are no 1 < j < k < n such

that Pi; = Piy, OT Qi; = iy, -
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A consecutive pair of attractors for two different diffeomorphisms fy and f; close enough to
the identity is a minimal cycle of length 2. Note that this type of cycle of length 2 define an
ss-interval for IFS(fo, f1). The following result shows the existence of a minimal cycle for an IFS
of Morse-Smale diffeomorphisms with fixed points on the circle.

Proposition 3.39. Let fy and f1 are Morse-Smale diffeomorphisms on S* of period one with no

fized points in common. Then there exists at least one minimal cycle for IFS( fo, f1).

Proof. 1f the IFS has a ss-interval then has a minimal cycle of length 2. Suppose that there are no
ss-intervals. By Proposition 3.38, there are no uu-intervals. In the proof of that result we actually
construct a cycle for IFS(fo, f1). Hence, argue in a similar way, we find a minimal cycle for it
follows IFS( fo, f1) and therefore we conclude the proof of the proposition. O

In the sequel, we assume that fy and f; are Morse-Smale diffeomorphisms on S' of period
one (n; = 1) and with no fixed points in common. Let C, = {pj, < ¢j, < ... < ¢;, < pj,} be a
minimal cycle for IFS(fo, f1). Note that the length n of the minimal cycle is even. We will use
the symbols s; for £ =0,...,n to denote of cycle elements. In particular, sg9;—1 = B (2i-1)41 and
820 = Pjn_s;q for i =1,...,n/2. Note that with this new notation

Sp < Sp_1=<...<8 <81 <8 and sg= sp.

Note that s, is an attracting fixed point for frmoq2. That is, if £ is an even number then sg
is a fixed point of fy and if k is an odd number then of f;. We consider S' parametrice by
[s0,580 + 1]mod 1. Then sg < s < sop+ 1 for k = 1,...,n — 1 in the real order on the interval
[s0, 50 + 1]. We denote by s, and SZ_ the repelling points of f mod2 closest from the left and right
respectively to si. For the special case k = 0 note that the ordered on the interval [sg, s + 1] is
s0 < sg <8y =8, < sp=s0+1.Since s; < s then s1 € (so,sg)u(so_,so—i—l). We may suppose,
without losing generality, that s; € (so, sg ).

Lemma 3.40. If there are no ss-intervals for IFS(fo, f1) then
Sk < Sppq < Sk+1 < s;r fork=0,...,n—1.

Proof. Since there are no ss-intervals from the geometry of the functions, we cannot have an
attractor-attractor pair for IFS(fo, f1). Hence, since s; < so and s; € (so, sg), the fixed point
of fi in this interval closest to sg is a repeller s; . Therefore sop < 57 < 51 < sar. Note that this
shows the claim for & = 0. Inductively suppose that sx_1 < s, < s < sz_l. Since Sk4+1 < Sk then
Sp+1 € (8, 8%) U (sk,sz). If sp41 € (55, 8%) then sp_1 < 5, < spp1 < 8 < 3;—1 contradicting
that s < sg_1. Thus sg41 € (sk,sz). As there are no ss-intervals and sp11 < s then the fixed
point of fr11mod2 in (g, 3:) closest to sy is a repeller s; ;. Therefore sg11 < s, ;| < sp1 < s;:
and in n — 1 steps of this induction we conclude the proof of the lemma. O

If TIFS(fo, f1) has a minimal cycle of length 2 defining a ss-interval then, according to Propo-
sition 3.38, it has a wu-interval. Note that, now, this uu-interval defines a minimal cycle of length
2 for IFS(fy L f1 1). We will show the same observation for a general cycle C,,. Before that, we
denote by 5 the repeler of frmoqo closest of si. This means that 5, satisfies that there are no
repeler 5 of fimoq2 with the order s;_1 < § < § on the interval [sg, sp + 1].
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Lemma 3.41. If there are no ss-intervals for IFS(fo, f1) then
§51 < ... =8y < Sp+1  where Sp41 = §1

is a minimal cycle for TFS(f5 4, fi1).

Proof. We will show that §; belongs to the basin of attraction of §;11. Note that by definition
of 5, and from Lemma 3.40 we have §; < s,  for k = 1,...,n. So, we have the following order
Sp—1 < 85 < 5, < S < 5p41. Hence, as s < s it follows that the interval (sy_1,s;] has no
fixed point of fi+1mod2. By definition, Sx11 is the closest fixed points of fi41mod2 from the right
to si. Thus, the interval (sk_1, Sg+1] is contained in the basin of attraction of §j for f,;rll mod 2
and therefore also §;. The minimality of this cycle is followed from the minimality of C,. O

According to Proposition 3.39, we always have a minimal cycle C,, for IFS( fo, f1). If the cycle
is a ss-interval for IFS( fo, f1) then, according to Proposition 3.38, this IFS has also a uu-interval.
Under the assumption that fy and f; are close enough to the identity map, Theorem D implies
that theses intervals are minimal sets for TFS(fo, f1) and TFS(fy !, f; ') respectively. If the cycle is
not a ss-interval for IFS( fo, f1), Proposition 3.41 shows the existence of a minimal cycle different
of a uu-interval for IFS(f; L fi 1). The following theorem shows that in this case, S' is minimal
for both TFS(fo, f1) and TFS(f;t, fi71).

Theorem 3.42 (Cycle). There exists € > 0.23 such that if fo, fi € Diff?(S') are Morse-Smale
diffeomorphisms e-close to the identity in the C?-topology with a minimal cycle for IFS(fo, f1)
different of a ss-interval, then S* is C'-robustly minimal for IFS(fo, f1) and IFS(f(fl, ffl)

The proof will be very similar to the local case in the Duminy’s Lemma (see Theorem D). Here

the expanding return map will be of global character.

Creating a return map

Lemma 3.43 (Creating a return map). In the hypothesis of Theorem 3.42, there exist families of
right-closed pairwise disjoint intervals I;, . ;, C St and maps hi,..i, € IFS(fo, f1) with i; > 0 for
j=1,...,n such that

i) A= (so, fi ' (s0)] = Uiy

i) hit. (Ii,.5) CAifin=0andh ' (L ;) =Aifi, >0,

11...0n 1 ..in

iii) if c € A\{fy (s0)} is an endpoint of I, ;, then there exist h € IFS(fo, f1) and s € Cy, such
that h(s) = c. That is, it is in the orbit of the cycle for IFS(fo, f1).

Proof. By Lemma 3.40 we have sp_1 < s, < s < s;;. Then s < f,;:lmodz(sk) < Sppq-
Thus, we can define a non-empty fundamental domain of fxi1mod2, Ak = (Sk, f1;+11 mod 2(Sk)] for
k= 0...,n. As on the circle sp = s,, then we also identify on S' the intervals in the real line
Ag = (s0, f{ H(s0)] and A, = (s, f{ *(sn)]. We denote this interval by A. In order to create the

expanding return map we will divide this fundamental domain inductively.
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As s1 < sq, there exists j € N such that sg < fg(sl) < ffl(so) < fgil(sl) < s1. Then

A= (307f1 U 1117

11=0

with Ip = (f(s1), fi "(s0)] and Iy = (f57" (s1), 37 7 (s1)] if i1 > 0. Let hyy = f77", we have
that hi_ll(Ii ) = (s1,c¢i,] where co = fi7 o fit(s0) € (s1,fy  (s1)] and ¢;; = fy'(s1) if i3 > 0.
Therefore, hy'(Ip) C Ay and h;, ( 1) = Ay if iy > 0. Let ¢ € A\ {f; ' (s0)} be an endpoint of I;,.
Then either ¢ = fJ(s1) if iy = O or ¢ € {fI7" (s1), fiT" " (s1)} if 41 > 0. In any case, ¢ belongs
to the orbit of the cycle. This completes the first step of the induction and now we proceed with
the inductive hypothesis. Suppose that we have families of right-closed pairwise disjoint intervals
L, i, C St and maps hy, _;, € IFS(fo, f1) with ij >0 for j =1,...,k such that

(i> A= UIiLnikv
(ii) h; !

Q1. zk(

if 7, > 0. Therefore, h; 1

IZI lk) = (Skvcll lk] where Ciy..ijy_10 € (5k7f];|}1mod2(5k)] and Ciy.iy = fl;}lmodz(sk)
(Ill A 10) C Ak and h ( 1. Zk) = Ak if i > 0.

Zk 10

(iii) if ¢ € A\ {f; ' (s0)} is an endpoint of I, _;, then there exist h € TFS(fo, f1) and s € C,, such
that h(s) = ¢

Recall that by Lemma 3.40 it follows that s < f,;_:l mod2(8k) < 8. Hence, from the inductive
hypothesis we have s, < ¢;,. 4, < f,;rll mod2(8k) < Sk41. Now, since sp11 < sy, for each multi-index
1...% there exists j;; ;. € N such that

Jiq .. Ji
Sk < fulo (k1) < Ciyoi < frloth (5k+1) < Skt1-

Then
hl:llk(llllk) (8K Ciy.. lk UJ’Ll gk
with
' Jiy i T4 Jig v, +(—1) _
Jiano = ’fmod?(sk“) Cir.i) and Jiy e = (frmoda (Sk+1)s frmod2 (sk+1)] if £>0.

By construction the intervals J;, ;.

¢ for £ > 0 are pairwise disjoint. Define I;; ;¢ C I;; 4, by
Liy e = hiy iy (Jiyipe)- By definition, fixed a multi-index 4y ..., the intervals I;, ;¢ for £ >0

are also pairwise disjoint. Since I;, ;¢ C I; and as by induction hypothesis the intervals I;, ;.

1k

are pairwise disjoint then {I; ij > 0for j =1,...k+1} is a family of right-closed pairwise

1odhgr -
disjoint intervals. Note that each right-closed interval I;, ;, is union of the intervals I;

ir...ipe for
£ > 0. Then, by the induction hypothesis it also follows that A = UI;

1o fhot1”
In order to prove the third item, we fix an interval I;, ;, ¢. For every £ > 0 the left endpoints

P s . . Jlllk‘f'g
of this interval is hi;..i, © fi o

(Sk+1)- So, it belongs to the orbit of the cycle. The right is

hhlk (C“Zk) if =0 and hulk o gilzgék2+e_1(sk+1) if £ > 0.

Note that hj, i, (¢iy..i,) is the endpoint of I;, ;, . Therefore, by the inductive hypothesis, either
hiy i (Civ i) = ffl(s[)) or hi, i, (¢iy..i,) = h(s) for some h € IFS(fo, f1) and s € Cy,.
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Jig i Flk+1

Set Ry iyipr = Niviy © fimod2 . By construction
-1 o iy Ty — o
hil...z‘k+1<IZ1,---1k+1) = Jkmod?2 <J11---Zk1k+1) = (5k+17cz1---1k+1]

-1 o
where ¢, iivr = Somod2(Sk+1) if dgy1 > 0 and

-1 —Ji -1
Ciy...i0 = hil...ik() ° h’ilmik (Clllk) - kmlédgk (Clllk) S (SkJrla fkmod2(5k+1)]'

I

Therefore, hzl i oiy.ip,0) C Agq1 and h i1oingr) = Apgr if dgyp > 0.

171.. zk+1(

Going through the n steps of the cycle we conclude the lemma. O

Remark 3.44. From the above lemma we define the return map over A = (so, ffl(so)] as

RIA—)A, R‘] . :h.ﬁl

i1...in 1.0 "

The endpoint of the intervals I;,. ;, are called discontinuities of R. Note that this discontinuities
points are in the orbit of the cycle for the IFS(fo, f1).

Addemdum to Lemma 1. For each k =1,...,n, there exist a family
{Liy gy Py i, My iy,) 215 >0 5 =1,... k}

with I, 4, pairwise disjoint right-closed intervals of St hi, i, € IFS(fo, f1) and m;, _;, natural
numbers such that A = (sp, ffl(so)] =Ul; 4, and fork=1,...,n—1

i) Ly . ivigy C Liy.ip and I, is contained in a fundamental domain of fo,

My .4 _ My .. —m; —M, 4 —m;
i) ht 1o pt i oo fi 2o f

i1.. zkzk+1 kmod 2 1. ’Lk — Jkmod2 k—1mod?2 © ’

ii1) hZl i 10(11'1-..%710) = (Sk, Ciy..i| and h;, 1 (Liy .i,) = A if i, > 0 with

01...0p

Sk < Ciroip < Frttmod2(Sk)  and A = (sk, fiih mod2(sk)]:

W) Miy iy +1 = Miy ., + 1 and my, i, 0 > 1 satisfies that

My ..i 0 Mgy .. 10—1
fkmlod2k ' (Sk-l-l) < Cir...cip, < fkmlodzk ! (Sk+1).

Proof. We only need to show the second item. Let m;, = j +¢1 and m;, i, = Ji;...i, + tk41. Note

that h_ =1 "1 From the construction in the inductive process in proof of Lemma 3.43,

-1 o Jiy i TR —1 Mg 1
11 BT fkmodZ © hll k3% fkmod? hll gt
T Mgy e My TMiyig e~ Mg
Hence by the induction hypothesis we have hl1 i = femod2  ©Ji_1mod=20" " 0f1 of,

Therefore, in n step of this induction it follows the addendum. O



108 3. Iterated function systems

Estimation of the derivative for the return map

The main result in this step is the following estimate of the derivative for the return maps:

Proposition 3.45. Let C > 0 the largest distortion constant of f(;l and ffl Consider € > 0
such that |D fi(x) —id| < e for all x € (0,1) and i = 0,1. Then

R(x) > (1—e)ete @ if x€ U Ly in 105
=1
R'(z) > (1 —e)2e te3C if € Ufz'l...in,lo-

As in the case of Proposition 3.6 in the proof of Duminy’s Lemma, we need of some preliminar

lemmas to obtain the bound distortion estimate of hl_llzn in I 4,

Lemma 3.46 (Disjointness). Let i; .. .4, be a fized multi-index. Then

U, et fag(hlmin) for 0 <€ <my and

def iy -1
Ui1,.4.ik,Z = fkmod2 o hi1 (Iz1zn) fO’I" k= 1, Lo, = 1 and 0 < ! < My gy -

are right-closed pairwise disjoints intervals in S'.

e
. 71
Proof. By construction I, ., C hi..i, © kr;lodg““ (Sk+15 frmoan(Sk+1)]- As Liy i, C Liy iy,
then
) 1 My gy —F 1
Uiy .igt € Jrmod2 © Miy iy (Lir.inin) € frmodo— (Sk+15 frmod2(Sk+1)]-

My iy —F _ - .
Since 0 < € < My, 4p,, then f U0 (spin, frmoqa(Sk41)] C (S, Sp+1]. This implies that

Ui, i, ¢ is contained in a fundamental domain of fimod2 in the interval (s, Sg41]. Suppose that

Uiyoipt VUi v 7 0. Then (sk, Sk41] N (Sm, Smt1] # 0. Hence k = m. Now, it follows that
Miq iy —L _1 Miq gy —T _1
kmlod 2k+1 <3k+17 fk m0d2(3k+1)] N fk mlod 2k+1 (SkJrl? fk mod2(8k+1)} 7é @
where 0 <7, £ < my, . This it is only possible if r = /. O

Lemma 3.47 (Distortion). Let C > 0 be the largest distortion constant of fo and f1. Then

Dist(h; ! . ,T;.:.) <C and Dist(h ' I;

11...0p ) Tl i1...0p+17 T ln

) < 2C.
Consequently, for every pair of intervals J and L contained in I;, ;,

(g Rl J
M e_c S | Z_llln( )| E 6C M and M 6_2C S | z_li..zn—i—l( )’ S 620 M
L] iy, (L) L] L] iy i1 (D)) L]

Moreover, if I = I;,. 5,41 U L, i, then

it 1Dl 5o o it iy (D)
1T e3¢ < Dhil.l“inﬂ(z) <ed 1T forall z € 1.
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Proof. Recall that for every k=1,...,n—1

Mg iy My g Mgy Mg 1
11 1 fkmon Ofk 1mod2 © ”Ofl of fkmod? hzl K

For simplicity of notation, we mean for k = 0 that map k' . is the identity map. Then

1.0k

n—1 Mgy 1

- My - -1 —£ -1
Dhn din H kamO(llQ kﬂ(hu zk H H D fimod2(frmod2 © hil...ik(x))'
k=0  £=0

By means of the distortion control of fo and f1, for every x,y € I;; s,

o 21540} 1o Dt (0) tog DR, ()
og ——— O O
g Dhllln (y) g ’51 Z g 1. Z

n—1Miy. iy 1

< CZ Z |fl;§lod2 © hilzk (z) — f/;rflon ° hi:.l..ik(y”
k=0 (=0

n—1"Miy.igyq 1

< CZ Z \Ui, .. e
k=0 (=0

The disjointness of U;, ., ¢ showed in Lemma 3.46, implies that Dlst(h I;, ) < C. Similarly,

i1...0n?
as Mg, . i,+1 = My,..i, + 1, we have that

n—2 Miy..ipyq—1

-1 —Miy i -1 ¢ -1
Dhil...in—i-l( z)=Df, 1r1nod2+1( 21 e 1 H H kamodZ(fkmonOhil...ik(x))
k=0 (=0

n—1M4y1. iy —

— —Miy . ip -1 —£ -1
- ‘Df 1mod2(fn—1 ;non Z1 Ap— 1 H H kamon(fk’modZ o h’L1Zk (l‘))
k=0 £=0

Denoting U; = f;ﬁzrlnogb hl_1 oy (I;;..4,), we have that for every z and y in I;, _;,,

Lo, My g,

n—1 Mg iy —1

Dh; ! (x)
| log —&tnt—— Wt < o Uiy i el + ClUiy iy m, o, | < 2C.
Dhit, 1 (y) kzo Z:: o ' '

From this Dlst(h“1 i1 I;, i) < 2C and we conclude the first part of the lemma. The rest of
the assertions of this lemma are followed analogously as in Lemma 3.9. Therefore the proof of the

lemma is concluded. O

Proof of Proposition 3.45. Let x € A. Without loss of generality, we assume that x is not a
discontinuity point of R. If = is a discontinuity, the first return map only has lateral derivative on
this point. A similar argument allows to estimate a bound for its lateral derivative. Hence, since x
is not a discontinuity, we find 779 > 0 and a unique interval I;, ; such that for every 0 < n < g,
the interval J = (z — 1,z + n) satisfies that J C I, ;, . Notice that R(J) = h; ' . (J).

i1...0n

From Lemma 3.46 we have that

] (3.10)
Ly i |

R(J)| = e
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By construction I, 4. C Ly C (f5 *(s1), énilil( D). Then [L;, .| < |fg *(s1) — émlil(slﬂ.
We write this bounded as [fy " (s1) — fo ' (s1)| = |so — fy " (s1)] — |s0 — fy " (s1)]. Since sg

is a fixed point of fy then, from Mean Value Theorem, there exits ¢ € (so, fy il_l(sl)) such that
mz ml -1
1so — fo " (s1)| = [Dfo(¢)|lso — fo ' (s1)|- Therefore,

15 (s1) = fo T (s1)l = (L= D So(Q))]so — fo " (s1)] < el fo™ " (s1) — sol.
Finally,
Liyinl < 10 (s1) = £ (1)) < el f5 7 (s1) = sol. (3.11)

In order to obtain a bounded for |h; ! i, (Liy.i, )|, we divide in two different cases:

i) bty (i) N1y, # 0.

Note that if i, > 0 by Lemma 3.43 h_ i (iy..i,) = A and then we are in this case.

We write h; ! i (Liy.in,) = (s0,¢iy..4,)- Recall that I;; 4, C ( o (s1), 8’1“_1(31)]. Since

L i, N (307011...zn] # 0 then so < f™i1(s1) < ¢y..4,- Let k € N be the first time such that
fé“(sl) € (80, ¢iy..ip)- Then sp < fgnil (s1) < fé“(sl) < c¢iy.i, < fg_l(sl). Hence,

hit s (i)l = |eiyin — 50| = |5 (s1) — sol.

Again, since sg is a fixed point of fy and from Mean Value Theorem we have £ € (sp, f(’f*l(so))
such that |f¥(s0) — so| = |Dfo()||fE (1) — sol > (1 — €)|f¥ (s0) — s0|. Therefore, since that

mil

£ (s1) < fY(sy), it follows that

Wt i i) = (L= @) 57 51) = 50| = (1= )™ (1) = sol- (3.12)

Now, substituting this bounded and the inequality (3.11) in the equation (3.10) we obtain [R(J)| >
e~ (1 —¢)e~!]J]. Since this holds for all intervals J C I;
bound for the derivative of R at the point x.

1..i, contained z, then we have the same

) hz_1 in ( 1. Zn)mIiL..in :@

Observe that this case only is possible if i, = 0. Note that h; 1 _o=ho hZ1 4i,_,1- By means
of Mean Value Theorem |R(J)| = \Dfl(go)HDhZ_ll i 11(51)|]J| > (1—¢ ]th_l i 1(ED)[J] for
some &y € hz_l i,,1(J) and & € J. From Lemma 3.47 we have estimate thll 4,_,1 on the
interval I = I, . 1 UIZl 4,10 and so |DhZl 1) > e 3C]h“ i,_1(DI/I]. Note that
hz_l in_y1Tiy i 41) C hl_1 i,_,1(I). Then, from the bounded obtain in the equation (3.12) of the

previous case it follows

milfl

hit s D=kt T, )] = (=)l f (51) — sol-

Note that I C I;; 4, , C Iy C (fg (81) gn”_l( 1)]. Then, as in the equation (3.11), we have
1T < |fy " (s1) = fo* 1(31)] < 6| m” (51) — 50|. Thus, |Dh“ i1 > e 3¢ (1 —¢e)e~! for all
y € I. Therefore, [R(J)| > e3¢ (1 — €)%¢~!. Finally, as J = (x — 1,z +7) for all 0 < < 19, we
take n — 0 and conclude the same bounded for the derivative at x. O
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End of the proof of Cycle Theorem

Now, we will conclude Theorem 3.42 for IFS(fo, f1). Recall that C' = max{Cp, C1} where C; is
the distortion constant of f;. If fo and f; are e-close to the identity in the C? topology then

Ci = max{|f] (@)||f{ ()| :x € §'} <e(1 — )7

for i = 1,2. Therefore C' < g(1 —¢)~!. For 0 < £ < 0.23, if fo and f; are e-close to the identity in
the C? topology then there exists A > 1 such that R/(z) > X for all z € A. That is,

Remark 3.48. There is € > 0.23 such that R is an expanding return map over A.

Proof of cycle Theorem for IFS(fo, f1). Let I C S! be an interval. Fixed € S*. In order to prove
the minimality of S! for IFS(fo, f1), we should show that there is a map h € IFS(fo, f1) such that
h(z) € I. Let C,, be a minimal cycle. We follow the notation and the assumptions for the cycle used
in the above lemmas. So, we have an expanding return map R: A — A where A = (s, fl_l(so)]
with sg € C,,. Let y € I. By means of the cycle for IFS(fO_I,fl_l) constructed in Lemma 3.41,
there is g € IFS(f; ', fo'!) such that g(y) € (sn—1,35,). Note that 3, < s, where s, = so + 1 on
the lift. However, on S we have that s, = so. Hence, we also write that A is the fundamental
domain of f; parametrice by (sn, f{ *(sn)]. There is k € N such that f; % o g(y) € A. That is,
there exists go € IFS(fo, f1) such that gal(l) N A # (. From Remark 3.48 the return map R is
expanding map in A. Thus, there is n > 0 such that R"(f, 1(I) N A) contains some discontinuity
of R. Note that R™(f;1(I) N A) = g, '(f;1(I) N A) for some g; € IFS(fo, f1). Recall that the
discontinuities are the endpoint of I;,. ;.. That points are in the orbit of the cycle C,. Therefore,
there is go € IFS(fo, f1) and s € C,, such that go(s) € g7 (gy*(I) N A). From the continuity of g
it follows § > 0 such that ga2((s — 6,5 +3)) C g7 (g5 *(I) N A). As the union of the basin of the
attractor points in the cycle C, is S, then there is g3 € IFS(fy, f1) such that g3(z) € (s—§,s+0).
Therefore, taken h = ggo g1 0 g2 0 g3 € IFS(fo, f1) it follows h(z) € I. Finally, by Lemma 3.41, we
have again a minimal cycle of fixed point different of a ss-interval for IFS(f; L fi 1). Therefore,
the same proof works to prove that S! is minimal for IFS( fo L 1 1) and so, we conclude the
proposition. O

Robustness of Cycle Theorem

We have prove the first part in the Cycle Theorem (Theorem 3.42) for IFS( fo, f1) constructing a
return map R : A — A with an infinite number of expanding branches. Each expanding branches
is a different map in IFS(fo, f1). This expansivity of R allows us to show that A is minimal for
IFS(fo, f1) and so, using the cycle, we move this minimality property throughout the whole circle.
Any C'-close iterated function system IFS(go, g1) to IFS(fo, f1) has a minimal cycle different of an
ss-interval. However, since return map R involves an infinite number of composition of fy and f;
then we cannot guarantee that corresponding analogous return map for IFS(go, g1) is expansive.
In order to show this expansiveness it suffices, as in Section 3.2.1 was done (see Remark 3.18),
modify the expanding return map R over A to obtain a new return map R which only has a finite
number of expanding branches (or discontinuities). Thus, now it follows that any IFS C'-close
to IFS(fo, f1) has also and expanding return maps close to R and a minimal cycle different of

an ss-interval. With these two ingredients, repeating the same proof of the Cycle Theorem for
IFS(fo, f1) it follows that S! is minimal for any C'-close IFS.
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3.3.4 Periodic cycles for IFS on the circle

Let fo and f; be Morse-Smale diffeomorphism on the circle of period ng and n; respectively.

Assume that there is a cycle
Cn={Sn <Sp—1=<+"+=<81 =<8 =5n}

different of a ss-interval for IFS(f}°, f{"*). We say that C,, is a periodic cycle for IFS(fy, f1). As
we noted in Section §3.3.2 for a periodic *xx-interval, if we use directly the estimates calculated
obtained in Proposition 3.45 for the derivative of the corresponding return map for IFS(f}°, fi"*)
then this bound depends on the period m = max{ng, n;}. In fact, when the period increasing this
bounded estimate goes to zero, and thus, we need to reduce the size of the neighborhood. This is

again a problem if we are looking for a uniform neighborhood of the identity.

In this subsection we will show a new estimative for the (periodic) return map derivative
independent of the period m. As in the proof of Cycle Theorem we can construct a first return
map R on a fundamental domain A = (sg, f; "*(so)] of fi'"* (see Lemma 3.43). Note that now
the return maps h;,;, are with respect to the system IFS(f)°, f{"*). It will be helpful to write
go = fy® and g1 = f;"*. We will indicate the modifications required in estimating the return map
derivative in Subsection 3.2.1.

Lemma 3.49 (Disjointness). Let i1 ...4, be a fized multi-index. Then the right-closed intervals

i) Uy of f(;z(lil...in) for £ > 0 are disjoint with respect to each other, and

def

i) Uiy it = f]:rflomohi_l.l“ik([il__in) fork=1,...,n—1 and £ > 0 are also pairwise disjoint.

Proof. Note that from the Addendum of Lemma 3.43, I;
a fundamental domain of go = f;°. Thus, by Lemma 3.30, it follows that U, are right-closed

1.in C 1I;; where I;; is contained in

intervals in S! disjoint with respect to each other. Also, by Lemma 3.43,

My -1 -1 -1
gkmgé;kﬂ © hil.“ik([iln-’in) C hil.“ik“([il-..ikﬂ) C Akﬂ - (3k+179km0d2<3k+1)]-

Miq...4 . . .
Hence h;llk (Li1.in) C Gpmods  (Agg1). Since Apyq is a fundamental domain of gpmod2 then
-1
his i
it follows that U;, ;. ¢ are pairwise disjoint intervals in S L O

(I;,..4,) is also contained in a fundamental domain of g meq 2 and thus, again by Lemma 3.30,

Lemma 3.50 (Distortion). Let C' > 0 be the largest distortion constant of fo and fi. Then for
every j > 0 it holds that Dist(h;.l”in_lj, I;, i) < nC. Consequently, for every pair of intervals J
and L contained in I;,  ;, and for 7 >0

-1
Me_nc < ‘hzlzn,lj(‘])’ < encﬂ
|L| ~|ht (L)| — |L|

11 -~~Z'7L71j

Moreover, of I = 1;, . ;,_,j+1 U1 i,_j then

|hi:.1..in_1j+1 ()]
1]

ot
() < eC i cin a2 (D] forall z € 1.

e—QnC < Dhl_ll ’I’

~in71j+1
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Proof. Recall that hl_1 e = gk::;é 2%*1 o hl_lllk where for simplicity of notation, hl_lllk for k=0

is the identity map. Then, denoting by nj the period of frmod2, that is, gkmod2 = fj ¥ oqo, and
to shorten writing mj, . ;,_,s, instead of m;, s, ,;, it holds that

n—1TkMiy. gy —1

— _ ) _
Dh21 dn—1] ) - H H kal’ilon(fk mod 2 © h‘zllzk (.f))
k=0 (=0

By means of the distortion control of fo and fi, for every z,y € I;, ;.

1..0n

— NEm; 3 -1
1 x n—1 1 %k41

DhZ Z — — — —
| log Dh- 1 U( | <C Z Z |fkr€10d2 © hil.l..ik (z) - fkrion © hz’1.1..ik ]
7»1 A — 1] y

n—1 nkm214.41k+1 -1

< CZ Z \Ui, i e
k=0 =0

The disjointness of each families of intervals U;, ;, , for £ > 0 showed in Lemma 3.50 implies that

Dist(h; ! I, i) < nC. The rest of the proof of this lemma is analogous of second part in

11...ip—1]"

Lemma 3.47 and 3.9. Therefore the proof of the lemma is concluded. O

Lemma 3.51 (Compared intervals). Let C' > 0 be the largest distortion constant of fo and fi.
Consider § > 0 such that |Df]"(z) — 1| < § for all x € S* and for i = 0,1. Then

I; _
al (1— )5 te )
iy |
for all multi-index i1 ... 1y.
Proof. Recall that ff1 =g, frlnozfz hnl 4i,_, Where for simplicity of notation, hz’:.l..ikfl fork=1
is the identity map. Argue as in the proof of Lemma 3.50, we have that h; ! (Li,..,) as well as

21 Zk: 1
— miq ... .
hil_ll_ik_1 (L;,..i, ) are contained in I = g, "} %, (Ay). Note that A = (sk,gk_lmon(sk.)] is a funda-

mental domain of gx_1moq2. Hence, gk—lmon( I) for 0 < £ < m;, , are pairwise disjoint intervals.

Thus, from the classical distortion lemma (see Lemma 3.7) it follows that Dist(g, Trilrlnoszi) <C
and consequently, for every K =1,...,n — 1 one has that

-1
hzlzk,l([lllk)‘ > e_CM
|h’;12k_1(‘[211n)‘ N |h11 'Lk( 21 Zn)|

In the particular case of k = 1 we have that |I;,|/|i; i, | > e_C|hZ-_1 ( ,1)]/|h21 (Iiy .4, )|- Multiply-
ing by \hi_ll(I¢1i2)\/]hi_11(fili2)] and using (3.13) gives

(3.13)

Ll o 2 B (T by, (T
Liy | |hi_11(12122)| |hl”2( i1.miin)|

Repeating this argue n — 1 times we obtain

Iy U 5 I P TR O R LN
‘[Zl Zn’ |h;11(12112)| |hi1i2(111i2i3)’ |h11 i 1(Ii1-~.in)‘

(3.14)

Claim 3.51.1. |h;' ; (1i,.i,)l/|hs",; (I >0 =685t forallk=1,....,n—1.

U1l
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Proof of the claim. We have that h;, ! ( iroin) = (Sky Ciy..ip,) Where ¢4, 0 € (Sk,g,;_il mod 2(5k)]
and ¢, i, = 9k+1mod2(5k) if 4, > O. On the other hand, from the construction of the return map
in Lemma 3.43

h“l Zk( 11 sz) Jil...’iko - (gk;l;lodlso(sk—‘rl)ac’h Zk] and
-1 o
hlll Zk:( 7,1 /Lk+1) - J’il...l'k+1 — (gk:nlodz (Sk‘-‘rl) gk$0d7‘§+1 (Sk+1)] 1f Zk+1 > 0
—1
In the case ir11 > 0, as s < gkrillodzlz““ (Sk+1) < €iy...i,, We obtain
’hzl ’Lk( .. 'Lk)‘ - ’Skicil Zk|
T My My iy, —1
|h11 Zk( i) |gkmlodlgc+1 (Sk+1) — gknllodSJr (Skt1)]
My 4 —1
|k = Gkmods  (Sk1)] sk — q|

Mg .igy MMiq.igyq

-1 - —
9k mod 2 (sk-i-l) gkmodg (8k+1)’ |gkm0d2(Q) Q|

7 K 1 . .
where ¢ = g,:nmlo 15"t (Sg41). Using the mean value theorem it follows that

|9k mod2(q) — | = |(sk — @) = (Gkmod2(q) — sk) | = |5k — q| |1 — Dgimoa2(§)|

for some ¢ € S'. Since |Dg;(z) — 1| < § where g; = fI' for x € S and i = 0,1 we have that
|hz_112k (I’Lllk)’/|hz—111k (Ii1~~~ik+1)| >

. B My ...ip,0 My ..i,0—1 .
In the case ir41 =0, as Sg < Gy moqs Sk+1) < Ciroip, < oy (Sk+1) We obtain

’hll Zk( .. lk)| |Sk cil...ik‘
hz_llzk (Ii1-~-ik0)| \gkmlod”g“ (Sk41) — Ci1~~-ik|
sk — gkmlodso(skJrl)‘ > 15k — Gk mod2(q)]
My ...ig0 iy, 0— 1 - |gk‘m0d2(q) — q‘

9k mod 2 (Sk‘H) gk—l—lmon (Sk‘i‘l)‘

1 'l 1 .
where ¢ now denotes gk+11m032 (Sk+1)- Since [$g— gk mod2(q)| = Dgrmoa2(&)|sk—q| > (1—9)|sx—q|

then |h11 i, iy zk)|/|h“ i GLinig0)| > (1=6) |8k —ql/|gk moa2(q) —q|. Arguing as above, it follows
that ]h” i, iy Zk)\/|h; i Tiyag0)| > (1= 6)0~ . O

Finally, using the above claim in (3.14), it follows |;,|/|L;,. 4, | > e~ (1 — §)n—15— (-1
and therefore the proof of the lemma is concluded. O

Proposition 3.52. Let C' > 0 be the largest distortion constant of fo and fi1 and n the length of
the minimal cycle for IFS(fo, f1). Consider 6 > 0 such that |Df]" (x) — 1| < ¢ for all x € (0,1)
and fori=0,1. Then

R'(z) > (1= 6)5 e 20) e € if xe|JTL i e
/=1
R (x) > %560((1 —§)o e 3" if xe| L 0

Proof. Let x be a interior point of I;, ;. Take an arbitrarily small open interval J such that
x € J C I ;. Notice that R(J) = hz_llln(J) Suppose that i, > 0. Then h; ! i€y i) = AD
Ii, D I . 4,. From Lemma 3.50 we have that

‘Iil‘

hiti (i
|R(J)| 2 e_nC | Zl...ln( 1. n)‘ ’J| 2 e_nC ‘I ’
i1.in

1.
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By Lemma 3.51 it follows [R(J)| > ((1—6)6"te~¢)"~1e™"C |.J|. The above inequality implies that

R/ (z) = Dht (x) > ((1 — 5)5_16_20)71716_0 for all x € I;;. 4, with i, > 0.

i1...0n

For the case i, = 0, recalling that m;, ;.41 = mj,.i, + 1 it follows hlll 4n_10 = Gn—1mod2 ©

hz‘_l.l..z'n,ll- Then, by the mean value theorem, there are £ € hil.l‘.in,ll( ) and ¢ € J such that

IR(D)| = IDgn-1moaz(OIIDh" ;. 1(ONI| > (1= 8)[Dhi” ;5 1(OIJ].

From the estimate othl1 iy_,1 00 the I =1;, 4, 1U1'1
that, Dh;t, 1(¢) > e*M\h“ int DI/ As B!

|Ip|. Then, by Lemma 3.51, we see that

1...in_,0 Obtained in Lemma 3.50 it follows
( ) D> A D Ij then |h11 A 11( )‘ >

110 tp—11

Pt D [T
1] —

iy i1l iy i g0l -1 1 1 —C\n-1
= ~ + L >—((1—=46)0""e n=t,
( | To] o] ) 2 ( ) )

Finally, |R(J)| > (1 = 8)e™2"“((1 — 6)6~te~¢)"~1|.J|/2. This implies that
560((1 — 5)(5—16_30)n forall x € I;, 4, 0

and we conclude the proposition. ]

Now, we are ready to extend the Cycle Theorem (Theorem 3.42) for Morse-Smale diffeomor-
phisms with arbitrarily large period:

Theorem 3.53 (Periodic Cycle). There exists ¢ > 0.12 such that if fo, f1 € Diff?(S') are Morse-
Smale diffeomorphisms of period ng and ni, respectively, and e-close to the identity in the C?-
topology with a minimal cycle for IFS(fy*, f1'°) different of a ss-interval, then St is Cl-robustly
manimal for IFS(fy°, fi*) and IFS(f,"°, f1 .

Proof. Take § = 0.15 > 0. Hence (1 — 6)2671e™® > 2. Let £ > 0 small enough such that
1-6<e 0797 2097 14§ and e(l—e)t <. (3.15)

Note that these condition are satisfies for every positive € < 0.12. We are assuming that fy and
f1 are C?-diffeomorphisms e-close to the identity. Thus, the largest distortion constants of fy and
f1is0 < C <e(l—e)"' < 4. From Lemma 3.30 it follows that e (197" < ¢=C¢ < D fM(z) <

C <« es(1=9)"" for all z € St and for i = 0, 1. Using Equation (3.15) in this inequality we conclude
that |Df"(z) — 1| < § for all z € S. Note that n > 2 and (1 — §)6te 3¢ > (1 —4§)d te™% > 1.
Hence, Proposition 3.6 implies that

1

R/ (x) > %560((1 - 5)5716730) (1-6)2%"1e™ >1 forallze A

[\

That is, R is an expanding return map over the fundamental domain A.

The rest of the proof of this theorem and the proof of Cycle Theorem are totally analogous.
See end of the proof of cycle Theorem and robustness in Subsection 3.3.3. So, finally, the proof of
the this theorem is completed. O
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3.3.5 Spectral decomposition

We finish this chapter with the following theorem:

Theorem F (Spectral decomposition on the circle). There exists ¢ > 0 such that if fo, f1 €
Diﬂ'Q(Sl) are two Morse-Smale diffeomorphisms of period ng and ny, respectively, e-close to the

identity in the C?-topology and with no fized points in common, then, there is finitely many inter-

vals K, ..., Ky, pairwise disjoints, isolated and transitive for IFS(fy°, fi'*) such that
m
LaFS(fe, 1)) = | K
i=1

Moreover, each K; is either a sx-interval for IFS(f)°, fi'*), or a single fized point of fo of fi.

We want to remark that the above decomposition of the limite set of IFS(fJ°, f{'*) is C*-
robust. This means that the same assertion it holds for every IFS(gy°, ;") where g and g; are

C'-close enough to fo and f; respectively.

Proof. This result is immediately followed from the Theorem 3.21, Theorem 3.35 and Theo-
rem 3.53. Indeed, consider fi'® and f{" the lift on the real line of fi" and f}". Note that fI' and
f{“ are periodic function. Arguing as in Theorem 3.21 it follows a decomposition in pairwise dis-
joints intervals of L(IFS(fJ°, f{"))\ {00} on the real line. From the periodicity, it follows that this
intervals project on the circle in a finitely many pairwise disjoint #*-intervals for xx € {ss, su, uu}.
Also, notice that from Theorem 3.35 these intervals are isolates and topologically transitive. We
only need to study the limit set of point whose w-limit (or a-limit) contains +oco. This only can
be happened if there is a cycle for IFS(f}'°, f{"*) different of an ss-interval. In this case, Theo-
rem 3.53 implies that S! is minimal for IFS(f)°, f1'*) and IFS(f; ™, f{ ™). Therefore, we obtain

a decomposition of the limit set and conclude the proof of the theorem. O



Cycles in unfoldings of nilpotent

singularities

Singularities of a vector field are simplest elements from which interesting dynamics may
emerge. For instance, it is proved that any generic nilpotent singularity of codimension four
in R* unfolds a bifurcation hypersurface of bifocal homoclinic orbits, that is, homoclinic orbits
to equilibrium points with two pairs of complex eigenvalues. All return map defined over a
transversal section to this homoclinic orbit is a diffeomorphism in R? and thus, susceptible to
exhibit heterodimensional cycles. We will approach the study of the existence of these cycles
showing how suspended blenders could appear in the generic unfoldings of these nilpotent

singularities.

4.1 Nilpotent singularity

The relationship between dynamic complexity and the presence of homoclinic orbits was dis-
covered by Poincaré more than a century ago. In his famous essay on the stability of the solar
system | |, Poincaré showed that the invariant manifolds of a hyperbolic fixed point of a
diffeomorphism could cut each other at points, called homoclinics, which yield the existence of
more and more points of this type and consequently, a very complicated configuration of the
manifolds. Many years later, Birkhoff | | showed that, in general, near a homoclinic point
there exists an extremely intrincated set of periodic orbits, mostly with a very long period. By the
mid 60’s, Smale | | placed his geometrical device, the Smale horseshoe, in a neighborhood
of a transversal homoclinic point. The horseshoes explained the Birkhoff’s result and arranged
the complicated dynamics that occur near a homoclinic orbit by means of a conjugation to the
Bernoulli’s shift. In | | it is proved the appearance of strange attractors during the process of
creation or destruction of the Smale horseshoes. These attractors are like those shown in | |
for the Hénon family, that is, they are nonhyperbolic and persistent in the sense of measure.

In the framework of vector field, Shil'nikov | | proved that in every neighborhood of
a homoclinic orbit to a hyperbolic equilibrium point of an analytical vector field on R3, with
eigenvalues A and —p 4+ wi such that 0 < o < A, that is, the so-called Shil’nikov homoclinic orbit,
there exists a countable set of periodic orbits. This result is similar to that found by Birkhoff for
diffeomorphisms and thus, it should be understood in a manner similar to that devised by Smale.
Indeed, Tresser | | showed that in every neighborhood of such a homoclinic orbit, an infinity
of linked horseshoes can be defined in such a way that the dynamics is conjugated to a subshift of

finite type on an infinite number of symbols. Once again, these horseshoes appear and disappear
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by means of generic homoclinic bifurcations leading to persistent in the sense of the measure non

hyperbolic strange attractors like those in | , |.

As follows from | |, nonhyperbolic dynamics is dense in the space X of vector fields with
a Shil'nikov homoclinic orbit. In particular, for each € > 0, the subset of vector fields with a
homoclinic tangency to a hyperbolic periodic orbit in an e-neighbourhood of the homoclinic orbit is
dense in X'. These tangencies give rise to suspended Hénon-like strange attractors. In | , ]
it was proved that infinitely many of these strange attractors can coexist in non generic families of
vector fields with a Shil’'nikov homoclinic orbit, for parameter values in a set of positive Lebesgue
measure. Later | |, it was proved that an infinity of such attractors can coexist in a more
general context. For an extensive study of the phenomena accompanying homoclinic bifurcations,

see | , , |.

Because of the importance of homoclinic orbits in Dynamics, many papers were devoted to
prove their existence. A seminal work was due to Melnikov | |, who introduced original ideas
to prove the existence of transversal homoclinic orbits in non-autonomous perturbations of a
planar hamiltonian vector field. These ideas were developed in | | in order to determine
both, homoclinic bifurcation curves and the existence of subharmonics in two-parameter families
of non-autonomous second order differential equations. In | |, Palmer developed a theory
involving transversal homoclinic points and exponential dichotomies that was very useful for the
study of homoclinic bifurcations in higher dimensions.

Since Shil’nikov homoclinic orbits are not transversal, Melnikov’s techniques had to be modified
in order to prove their existence in families of vector fields. In | |, generic families of quadratic
three dimensional vector fields with Shil’'nikov homoclinic orbits were given. Putting together ideas
from | , , |, it was proved in | | that Shil’nikov homoclinic orbits appear in
generic unfoldings of a nilpotent singularity of codimension four in R3. A nilpotent singularity is

a C'* vector field on R™ which in appropriate coordinates in a neighborhood of the origin can be

written as
n—1
0 0
x — + (21, Ty) —,
; k+1 aﬂfk f( 1 n)axn

with f(z) = O(||z||*) where 2 = (x1,...,x,). It is said that X is a nilpotent singularity of codi-
mension n if the generic condition 82 f/9x2(0) # 0 is fulfilled. Since singularities (non-hyperbolic
equilibrium points) are the simplest elements to be found in phase portraits of vector fields, ar-
guing the existence of homoclinic orbits from the presence of singularities is a highly relevant
task. Nevertheless, in order to get the greatest interest in applications, such singularities should
be of codimension as low as possible. With this in mind, the result obtained in | | was im-
proved in | , |, where it was showed that Shil'nikov homoclinic orbits appear in every
generic unfolding of the nilpotent singularity of codimension three in R3. Proving that Shil'nikov
homoclinic orbits can be unfolded generically from a singularity of codimension less than three is
currently a very interesting open problem. The dimension of the corresponding center manifold
should be at least three. The lowest codimension singularities in R3 with a three-dimensional
center manifold are the Hopf-zero singularities which have codimension two | |. The difficul-
ties that appear on studying the existence of Shil’'nikov homoclinic orbits in generic unfoldings of

Hopf-zero singularities are discussed in | |.
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The above result about Shil’'nikov homoclinic orbits and nilpotent singularities was essential
in | | to prove the existence of persistent strange attractors in the four parametric family
of vector fields obtained when two Brusselators are linearly coupled by diffusion. Indeed, this
family is a generic unfolding of three-dimensional nilpotent singularities of codimension three.
Therefore it displays Shil’'nikov homoclinic orbits and, consequently, persistent strange attractors.
Nevertheless, this family may display a richer dynamics. Three-dimensional nilpotent singularities
appear along two bifurcation curves which emerge from a bifurcation point corresponding to a
four-dimensional nilpotent singularity of codimension four, for which the family is also a generic
unfolding. Therefore, one should wonder whether a different class of homoclinic orbits can take
place from this four-dimensional nilpotent singularity. In this chapter, we will prove the following
result which is collected in | |:

Theorem G. In every generic unfolding of a four-dimensional nilpotent singularity of codimension
four there is a bifurcation hypersurface of bifocal homoclinic orbits.

Bifocal homoclinic orbits are homoclinic orbits to equilibrium points with two pairs of eigenval-
ues pptwyi, with k = 1,2, such that p; < 0 < po. Shil'nikov | | was again the first one in study-
ing the dynamics associated with them. He proved, as in | |, the existence of a countable set of
periodic orbits in the non-resonant case —p; # pa2. Subsequent works | , , , |
were devoted to analyze the formation and bifurcations of these periodic orbits by studying the
Poincaré map associated with the flow in a neighborhood of the bifocal homoclinic orbit. Devaney
[ | considers the hamiltonian case, hence with —p; = p2. He proves that for any local trans-
verse section to the homoclinic orbit, and for any positive integer NV, there is a compact invariant
hyperbolic set on which the Poincaré map is topologically conjugate to the Bernoulli shift on NV
symbols. In seeking to determine the invariant set of this Poincaré map in the general case, it is
shown in | | that this set is contained in a neighborhood of a spiral sheet (shaped like a scroll).
In fact, the invariant set is a neighborhood of the intersection of this scroll and its image under
the map, which is another scroll, in general skewed and offset from the original. In | | the
authors extend the known theory regarding bifocal homoclinic bifurcations and present numerical
verification of the more interesting theoretical predictions that had been made. Hérterich | |
studies bifocal homoclinic orbits arising in reversible systems, hence again with —p; = py. He
proves that for any N > 2 there exists infinitely many N-homoclinic orbits in a neighborhood of
the primary homoclinic orbit. Each of them is accumulated by one or more families of N-periodic

orbits.

As for Shil'nikov homoclinic orbits, it has been proved (see | |) that homoclinic tangencies
to hyperbolic periodic orbits are dense in the space of vector fields with a bifocal homoclinic
orbit. Nevertheless, despite the abundant literature regarding bifocal homoclinic orbit, as far as
we know, no result has been established relating the existence of these homoclinic bifurcations with
the existence of persistent strange attractors. This, in spite of a bifocal homoclinic orbit seems to
be a scenario for more complicated dynamics than those inherent to Shil’nikov homoclinic orbits,
where the existence of such strange attractors has been proved. In fact it seems natural to think
that the dynamical complexity associated with homoclinic cycles increases with dimension. For

instance, strange attractors with more than one positive Lyapunov exponent could appear.
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4.1.1 Generic unfoldings

Let X be a C*° vector field in R™ with X (0) = 0 and 1-jet at the origin linearly conjugated to
Tht1 75— -
el + al'k
Introducing appropriate C'° coordinates, X can be written as:

n—1

0 0
Zxk-‘rlaixk—i—f(xlv'“’mn)%’ (41)
k=1 "

with f(x) = O(||x||?) where = (1,...,2y,). It is said that X has a nilpotent singularity of
codimension n at 0 if the generic condition 82 f/0x2(0) # 0 is fulfilled. The vector field X itself
will be often referred to as a nilpotent singularity of codimension n.

Nilpotent singularities of codimension n are generic in families depending on at least n param-

eters and according to | , Lemma 2.1| we can state the following result:

Lemma 4.1. Any n-parametric generic unfolding of a nilpotent singularity of codimension n in

R™ can be written as

n—1 n

0 9 0
Zfﬂkﬂaixk + ( + Zﬂkﬂﬂk +xi+ h(%ﬂ))ai%, (42)
k=1 k=2

where 1 = (p1, ..., pun) € R, h(0, 1) = 0, Oh/0z;(0,1) = 0 fori=1,...,n, 8?h/0z3(0,u) = 0,
h(z, 1) = O(||(z, ) |I?) and h(z, ) = O(||(22, ..., 2a)|)-

Remark 4.2. Besides the condition 82 f /0x3(0) # 0 in (4.1), genericity assumptions in Lemma 4.1
include a transversality condition involving derivatives of the family with respect to parameters.

The classical techniques of reduction to normal forms could be used to remove terms in the
Taylor expansion of A but we do not need to work with simpler expressions. To obtain the results
provided in the next sections we will have to impose

0h
K= 0,0) # 0, 4.3
9100, 0 # (4.3)
as an additional generic assumption.
4.1.2 Rescalings and limit families
Generalizing the techniques used in | | for dimension three, we rescale variables and parameters
by means of
H1 = 52” v,
we = "l fork=2,...,n, (4.4)
zp = TPy, fork=1,...,n,

with € > 0 and v + ...+ v2 = 1, and also multiply the whole family by a factor 1/e.
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In new coordinates and parameters (4.2) can be written as

n—1 n
0 0
> Uktim— (1 D vy + ol +eryiyz + O(e2) 5, (4.5)
k=1 Py k=2 On

with k as introduced in (4.3) and where y = (y1, . .. yn) belongs to an arbitrarily big compact in R™.

The first step to understand the dynamics arising in generic unfoldings of n-dimensional nilpo-
tent singularities of codimension n is the study of the bifurcation diagram of the limit family

n—1 n
) 0
E — + + E + -, 4.6
k=1 st Ok (Vl k=2 o yl) OYn (4.6)

obtained by taking € = 0 in (4.5). Structurally stable behaviours and generic bifurcations in (4.6)
should persist in (4.5) for ¢ > 0 small enough.

If v1 > 0 then (4.6) has no equilibrium points. Moreover the function

L(yi,- - Yn) = Yn — 12Y1 — V3Y2 — - - - — UpYn—1

is strictly increasing along the orbits and therefore the maximal compact invariant set is empty.
Hence we only need to pay attention to the case v; < 0.

On the other hand, up to a change of sign, family (4.6) is invariant under the transformation

(V? y) = (Vla (71)”‘_1”27 (71)71_2”37 -eyUn—1,"Vn, (4 7)

(_1)nyla (—1)n_1927 (—1)n_2?/37 <o Yn—1, _yn) )
with v = (vq,...,v,). As a first consequence, the study of bifurcations can be reduced to the
region R = {(v1,...,vn) €S"1: vy <0, v, < 0}. Moreover, since the limit family is invariant

under (4.7) up to a change of sign, for parameter values on the set
T ={(v1,...,vn) €S" iy 9 =0withi=0,...,[(n—2)/2]},

where |-] denotes the floor function, the correspondent vector fields in the limit family (4.6) are

time-reversible with respect to the involution

R: (yla Y2,Y3, . .- 7yn) = ((—1)71?/17 (_1)n_1y2> sy Yn—1, _yn)

We said that the manifold 7 of dimension |n/2| — 1 is the reversibility set of the n-dimensional

nilpotent limit family.

Note that the divergence of the limit family (4.6) takes the constant value v,. Therefore the
condition v, = 0 characterizes a subfamily of volume-preserving vector fields. Assuming that n is
even and defining m = n/2, for parameter values in T the limit family (4.6) can be written as

m—1

n—1
) D
— —_— 4.8
kzl Yk+1 Do + (1 + kzl Vak1Y2k+1 + Y1) o, (4.8)
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Theorem 4.3. Introducing the new variables ¢ =S - (y1,y3, -, Yn—1)" and p = (y2,Y4,- -, yn)’,

—U3 —lV5 ... —UVUn—-1 1
—VUs 0
S - ’
—VUn-1
1 0 0

the family (4.8) transforms into a Hamiltonian vector field X, H(q,p) = % < Sp,p > +V(q).
The potential V is defined as

1 1 m—1 lm/2]
Vig) = —gng -3 > vokpabrrign, — 5 D bmogjriar,
k=1 j=1
m—1 m—1 m/2] m—j—1
- > vakribicmikt1GiGm — 3 Y bitiGm—j — Vidm,
k=1 i=m—Fk =1 i=j
where, given by =1,
i—1
bi = Z Vz(m_i+g)+1bg f07‘ 1= 2, e, M.
/=1

In order to prove this theorem we will use the following technical result:

Lemma 4.4. Given a symmetric upper anti-triangular matric

Ay, Q1 as 1
Am—1 0
A= ,
a2
1 0 0

0 0 1
bo
A7t =
0 bmfl
1 by ... bno1 bm
where, given by =1,
i-1

by = — Zai_g+1b[, fori=2,....,m.
(=1
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Proof. Let P be an anti-diagonal matrix with all entries equal to 1. Hence

1 0 B
a
L=PA=
Qy—1 .0
Ay Am—1 ... a9 1

is a lower triangular matrix. Therefore, L™! = (b; ;) is also a lower triangular matrix and hence

A7l = L7'P~! = L71P is a lower anti-triangular matrix. In fact, using the well know formulas

for the calculation of the inverse of a triangular matrix, it follows that, for all j =1,...,m
bjj =1,
bij =0 foralli=1,...,5—1,
i—1
bij = — ZaiféJrlbé,j foralli=j5+1,...,m
t=j

On the other hand, b; j = bj41,j4+1 foralli = j+1,...,m—1. Indeed it is clear for s = j+1. For
t=j+2,...,m—1 we can argue by induction. Finally, by defining b; = b; 1 for all i =1,...,m,
and calculating A=! = L' P the proof is finished. O

Proof of Theorem 4.3. It follows from Lemma 4.4 that

0o ... ... 0 1
b2
S~ =
0 bmfl
1 b2 e bmfl bm
where, defining b; = 1,
i—1
b; = Z Va(m—ito)41be fori=2,....m
=1
or equivalently
m—1
g1 = Z va(jee-1ypabe = Y vansibrjsr for j=1,...,m—1. (4.9)
k=j

Writing family (4.8) in the new variables we get

m—1 m a m—1
+ b; k41Gi ) =— + (1 + Vo 41Dk + 00y) =
k=1 z—;k Y opy ( % ! ") Opm

To obtain a function V' (g) such that p = —VV(q) we need

LoV
aql _pl

foralli=1,...,m
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In particular

8V m—1 .
T Tt Z Vo 1Pk + s
qm 1
and therefore
m—1 m—1 1
_V(Q) =Vigm + Z V2k+1 bk-i—lqm + Z bi— m+k+1Qsz) + 3(]7?;1 + ©m— 1(Q17 ce >Qm71)-
i=m—~k

From the identity —0V/d¢;,—1 = pm—1 and taking into account the equation (4.9) we get

a(p m—1 m—1
1
8qm X g big; — g Vok+1bkGm = E biq;
- k=1 i—1

and therefore

m—2

Wm—l(leume—l) *bm 1qm 1+ZbZQZQTn 1+ ©m— 2(Q1,---7(Jm—2)-
=1

Since =0V /qm—2 = Pm—2, a similar computation leads to

a(p m—1 m—2
2
3 = sz 19 — Z Vok+10k—1Gm — bm—2@m-1 = Z bi—1Gi-
Im—2 k=2 =2
and hence
m—3
Pm—2(q1;- -+ gm—2) = *bm 300 o+ > bi10iGm-2+ Om-3(q1,- ., dm-3).
=2
A recursive argument provides
a@ ) m m—1 m—1
3 T = higgi— Y vaknibe = > bijndi = Z bi—j+14i;
m—j i=j k=j i=m—j+1
for all j =1,...,|m/2] and consequently,
1 m—j—1
Om—j(q1, - Gm—j) = §bmf2j+1q3n_j + ) biGigm—j + Pm—j-1 (a1, 1)
i=j

where for j = [m/2] the function ¢, |, /21 is constant. Therefore we get a function V(¢) with

m—1 m—1
1
_V(Q) = Vigm + Z 1/2k+1< bk+1qm + Z bi— m-‘rk—i—l%@lm) + 3(]%
k=1

i=m—~k

1

1 =

+ (ibm—Qj—i-l(Z?n_j + Z biQiQm—j) + Om—|m/2]-1
i=j

<.
Il
—

such that p = —VV(q). This concludes the proof of Theorem 4.3. O
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4.2 Nilpotent singularity of codimension four in R*

Along this section we will take n = 4 in all the general expressions introduced in §4.1.2 and we will
prove Theorem G. That is, we will prove that in any generic unfolding of a nilpotent singularity
of codimension four in R?* there exists a bifurcation hypersurface of homoclinic connections to

bifocus equilibria.

It follows from Lemma 4.1 that any generic unfolding of the nilpotent singularity of codimension
four in R* can be written as in (4.2). After applying the rescaling (4.4) we get

0
+ya=— + (11 + voy2 + v3ys + vaya + yi +eryryz + O(e)) —, (4.10)

0
Y1 % 0y, 0ys

8

0y 0y3

with v = (v1,v9,v3,14) € S® and € > 0. As mentioned in §4.1.2 the first step to understand the
dynamics arising in (4.10) is the study of the limit family

0

—, 4.11
o (4.11)

TYs Tt Yag— (V1 + Vay2 + V3ys + vays + ZJ%)

81 0y 0y3

obtained from (4.10) taking ¢ = 0. As argued in §4.1.2 one only need to pay attention to parameters
in the region R = {(v1,v0,v3,v4) € S® : 11 <0, vy < 0}. When v € R, vector fields in the limit
family (4.11) have equilibrium points py+ = (+1/—v1,0,0,0) with characteristic equations

rt — gr® — usr? — ver F 2¢/—11 = 0. (4.12)

Local bifurcations arising in the family were discussed in | |.

For parameters on the reversibility curve 7 = {(Vl, Vo, V3, V4) € Sy =vy = 0} with 11 <0,
the characteristic equations reduces to r* — v3r? T 2y/—v1 = 0. It follows that the linear part at
p+ always have a pair of real eigenvalues and a pair of complex eigenvalues with non-zero real
part. Local behaviour at p_ is richer and it is depicted in Figure A. Note that we only have to
pay attention to V% + u§ =1 with v; < 0. It easily follows that the linear part at p_ has

e a double zero eigenvalue and eigenvalues +£1 at BT = (0,0, 1,0);

a double zero eigenvalue and a pair of pure imaginary eigenvalues at HDZ = (0,0, —1, 0);

e two double real eigenvalues +(v3/2)'/2 at BD = (v1,0,v3,0) with v2 — 8,/—v; = 0 and
vz > 0;

e two double pure imaginary eigenvalues +i(—v3/2)/? at HH = (11,0, v3,0) with 12 = 8,/—1;
and vg < 0;

e four non-zero real eigenvalues £, with £ = 1,2 for parameters along the open arc SR
between BD and BT;

e four complex eigenvalues with non-zero real part p + wi and —p 4 wi for parameters along
the open arc DF between BD and HH; and

e four pure imaginary eigenvalues +wyi, with k = 1, 2, for parameters along the open arc HH
between HH and HDZ.
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Fig. A: The reversibility curve T attending to the type of eigenvalues at p_.

From the analysis of the linear part at the equilibrium points it follows that a bifocal homoclinic
orbit is only possible at p_. Then, we will study the existence of homoclinic orbits to p_ for
parameter values along 7 and in this case, since the limit family (4.11) for this parameter values
a Hamiltonian vector field, it said to be conservative bifocal homoclinic orbit.

4.2.1 Conservative bifocal homoclinic orbits in the limit family

In order to study the family (4.10) close to the reversibility curve 7 with 11 < 0 it is more
convenient to use a directional version of the rescaling (4.4) taking 11 = —1 and (vo,v3,14) =
(72, 13, 74) € R3 to get
0 0 0 0
— 147 U3ys + I T+e +0(e?)) 5
o +usg - 2+y4a " + (= 1+ ays + D3ys + vaya + yi + exyryz + O( ))3y4
The equilibrium points when € = 0 are given by ¢+ = (£1,0,0,0). Note that in fact g+ are the

(4.13)

only equilibrium points even for ¢ > 0 because in (4.2) h(z,u) = O(]||(z2,...,2,)||) and this
property is preserved by the rescaling. In order to compare with equations already considered in
the literature we translate g_ to the origin applying the change of coordinates

=(y1 +1)/2, Lo = yo/2°/4, x3 = y3/254, xy = ya)274,

0 (4.13) and multiplying by the factor 2'/4 to obtain

+r3— 0 + x4i + (= @1 + mowo + 323 + Mazy + z? + BT + O(EQ)) 9
20 T 0wy T Oy ! Oy

with ng = 2_3/4(52 —€K), N3 = 2~ Y2ps ny = 27145 and & = 21/%¢.

(4.14)



4.2. Nilpotent singularity of codimension four in R* 127

The equilibrium point ¢_ in (4.13) corresponds to the equilibrium point of (4.14) at the origin.

The limit subfamily for 7y = n4 = & = 0 is now given as

Tagyr + g F g (—x1+773$3+x§)874' (4.15)

Writing u = x1, the vector field (4.15) is equivalent to the fourth order differential equation
u™) (1) + Pu"(t) + u(t) — u(t)? =0, (4.16)
with P = —ns. This equation has been widely studied | , , , | due to its

role in some applications as the study of travelling waves of the Korteweg- de Vries equation
Up = Ugzor — DUgze + 2Utly,

or the description of the displacement of a compressed strut with bending softness resting on a
nonlinear elastic foundation | |. In particular, according to | |, when n3 = 2 the vector
field (4.15) has a homoclinic orbit to a hyperbolic equilibrium point at which the linear part has
a pair of double real eigenvalues +1. An essential fact used in | | to prove the existence of
homoclinic orbits in (4.15) is that it is a family of hamiltonian vector fields as we have stated in
Theorem 4.3 for a more general case. This permits to apply the general theory developed in | ,
Theorem 2| to conclude that, for each P < —2, there exists an even solution u with u(t) — 0
when ¢ — +oo satisfying that u > 0, v’ < 0 and (P/2)u’ + v > 0 on (0,00). They also prove
that for all P < —2 any such even solution is unique. From | | it follows that this unique
homoclinic orbit v is transversal for the restriction to the level surface of the hamiltonian function

which contains it and, consequently, it is non-degenerate in the following sense:

Definition 4.1. A homoclinic orbit v to a hyperbolic equilibrium point p of a vector field X is
said non-degenerate if

dim T, W?(p) N T, W"(p) =1,

with x € . Otherwise 7y is said degenerate.

Moreover, again in | |, the persistence of such homoclinic solutions is argued for P > —2
but close enough to —2. Variational methods used in | | allow to prove that at least one
homoclinic solution exists for P < 2. On the other hand, in | , Section 2| authors check
all hypothesis required in | , Theorem 4.4] to conclude that a Belyakov-Devaney bifurcation
takes place at P = —2. It consists in the emerging from the primary homoclinic solution and for
each n € N of a finite number of n-modal secondary homoclinics (or n-pulses) which cut n times
a section transversal to the primary homoclinic orbit | , ) |. Heuristic arguments
in | |, supported by numerical results, show that the non-degenerate n-modal homoclinic
orbits arising at P = —2 become in degenerate orbits and disappear gradually when P varies from
P = -2 to P = 2 through a cascade of coalescences and bifurcations. In particular, it is known
from | | that for P close to P = 2 there exist at least two even homoclinic solutions and from

the numerical results it seems that no other homoclinic orbits reaches P = 2.

All the above results about the existence of homoclinic solutions of (4.16) can be directly
translated to family (4.15) and also to the reversible subfamily of (4.11) obtained restricting to
parameter values along the previously defined reversibility curve 7 (or, in this even dimensional
case, also called conservative curve because Theorem 4.3). For the later case we can conclude that

(see Figure A):
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Fig. B: Schematic bifurcation diagram of homoclinic solutions of (4.16).

e for parameter values along DF U {BD} U SR there exists a symmetric homoclinic orbit at
p— which is unique and non-degenerate along {BD} USR,

e BD is a Belyakov-Devaney bifurcation point and thus non-degenerate bifocal homoclinic
orbits arising at this point,

e numerical continuation shows that non-degenerate n-modal homoclinic orbits arising at BD
become in degenerate orbits and disappear gradually when parameters move along DF in
the direction of HH. Close to that point only two symmetric homoclinic orbits persist.

4.2.2 Bifocal homoclinic orbits in generic unfoldings

In order to study the persistence of homoclinic orbits we will consider (4.10) as an unfolding
of the Belyakov-Devaney bifurcation point BD. As already mentioned it is better to work with
expression (4.14) for the rescaled unfolding. With respect to parameters (12,73, 74,&) the point
BD corresponds to (0,2,0,0). Note that (4.14) can be written as

o’ = f(z) +g(\ 2), (4.17)
where A = ()\17 A2’)\37)\4) = (7727773 - 277747§>7
f(x) = ($2,$3,$4, —x1 + 2-:U3 + .CU%)

and
g()\, l’) = (0, 0,0, A1z + Aox3 + A3xq + MykT1T9 + O(Ai))

As already mentioned, g+ are the only equilibrium points of (4.13) for all € > 0 and hence
g(A,0) = 0 for all A. Observe that only bifurcations occurring inside the region of parameters with

A4 > 0 will be observed in the unfolding of the singularity.
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Theorem 4.5. In a neighbourhood of A = 0 there exists a bifurcation hypersurface Hom corre-

sponding to parameter values for which (4.17) has homoclinic orbits to the origin. Moreover:

There exist two bifurcation surfaces Hom™ and Hom™ contained in Hom corresponding to pa-
rameter values for which the origin has a double negative and positive, respectively, real eigenvalue.
The surfaces Hom™ and Hom™ intersect transversely along a curve Hom™ corresponding to pa-
rameter values for which the origin has a pair of double real eigenvalues {ri,ra} with r1 < 0 < ro.
Hom™ U Hom™ splits Hom into four regions:

Hompp: homoclinic orbits to a focus-focus equilibrium (bifocus case),
o Hompy+p-: homoclinic orbits to a (repelling) node-(attracting) focus equilibrium,

e Homp+n-: homoclinic orbits to a (repelling) focus-(attracting) node equilibrium,

Hompyn: homoclinic orbits to a node-node equilibrium.
All bifurcations are transverse to Ay = 0.

Since all bifurcations are transverse to Ay = 0 they are also present in the unfolding of the
nilpotent singularity of codimension four. Particularly, Theorem G follows as a corollary of this

theorem.

Remark 4.6. Recall that the bifurcation point A = 0 in (4.17) corresponds to the Belyakov-
Devaney bifurcation point BD in (4.10). In particular, the hypersurface of parameters correspond-

ing to homoclinic orbits to a node-node equilibrium point in family (4.10) cuts e = 0 along the
curve SR. Similarly, Hompp is unfolded from DF.

The proof of Theorem 4.5 requires some background on exponential dichotomies. In Ap-
pendix A we include a brief summary of results about dichotomies in order to get a precise
formulation of the bifurcation equation (see Theorem A.12) which is required in the following
proof of the above result.

Proof of Theorem 4.5. Family (4.17) fulfills all the hypothesis imposed to Equation (A.1) in Ap-
pendix A. In particular, ' = f(x) satisfies the following:
(BD1) It has a first integral

1 1 1
fx% - fx‘rf - x% + Toxy — fazg

H —
(21,22, 23, 24) 5 3 5

(BD2) It is time reversible with respect to

R: ($1,$2,l’3,l’4) = (mla —x2,T3, —1'4)-

(BD3) The origin is a hyperbolic equilibrium point at which the linear part has a pair of double

real eigenvalues +1.
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(BD4) According to | |, there exists a non-degenerate homoclinic orbit

v =A{p(t) = (p1(t), p2(t), p3(t), pa(t)) : t € R}

to the origin such that p;(t) and p3(t) are even functions and py(t) and p4(t) are odd functions
and, moreover, p; > 0, po < 0 and py — p2 > 0 on (0, 00).

(BD5) According to Proposition A.9, since v is a non-degenerate homoclinic orbit, both the vari-
ational equation 2/ = D f(p(t))z and its adjoint 2z’ = —D f(p(t))*z has a unique non trivial
linearly independent bounded solution. The function ¢(t) = f(p(t)) is a bounded solution
of the variational equation and

D(t) = VH(p(t)) = (p1(t) = p1(t)%, pa(t) — 2p2(t), —ps(t), p2(t))
is a bounded solution of adjoint equation.
Finally, let us consider the bifurcation equation for homoclinic solutions £>°(A) = 0, with

£€°: A — R and A C R* a neighbourhood of the origin, as introduced in Lemma A.11. It follows
from Theorem A.12 that under the generic condition VE*(0) = (&x,, &0y, €0 EN,) # 0, where

@:/fwmggmm»@

then (4.17) has homoclinic orbits (continuation of ) for parameters on a hypersurface Hom with
tangent subspace at A = 0 given by

S+ A2 + A3 + EH,A = 0. (4.18)
Note that
%z/'ﬁwﬁ 5Ma/pmmmw
5&a[pwmmﬁ, mzf_@mwmw

Clearly &, # 0. Since paps is an odd function &, = 0. Integrating by parts one gets

Exs = —/OO p3(t)? dt # 0.

—0o0
Finally, since p; is a positive function, we also get that ), # 0. Therefore the tangent sub-

space (4.18) intersects Ay = 0 transversely. Consequently Hom also meets Ay = 0 transversely.

Now we have to study the eigenvalues at the equilibrium point in order to determine which
types of homoclinic orbits can be unfolded by the singularity. Since for A = 0 the linear part
at x = 0 has a pair of double real eigenvalues +1 and dimW?#(0) = dimW"*(0) = 2, for all A
small enough, then we can expect three different types of equilibrium: a focus-focus (bifocus), a
node-node or a focus-node. It easily follows that the characteristic polynomial at z = 0 is given
by

Q(r,\) =1t — DN — C(\)r? — BO\)r — A(N),

with

AN =140, BN =M+002), CA)=2+X+002), D) =I3+0(\).
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The condition for an improper node is given by the discriminant equations

oQ

Q(r,A\) =0, —T(r, A) = 0.

Note that (r, \) = (£1,0) are both solutions of the discriminant equations. Now it follows from a
straightforward application of the Implicit Function Theorem that there exist two hypersurfaces
D~ and DT through the origin in the parameter space such that, for parameter values on D~ (resp.
D) the equilibrium point at the origin has a double negative (resp. positive) real eigenvalue.
Moreover the respective tangent subspaces at A = 0 are A1 — Ao+ A3 = 0 and Ay + A3+ A3 = 0. Let
Nytom = (€xy5600:604,E0,), Np- = (1,—1,1,0) and Np+ = (1,1, 1,0) be the normal vectors to the
tangent spaces of Hom, D~ and Dt at A = 0, respectively. Moreover denote Ny,—o = (0,0,0,1).
Since rank(Nyom, Np-, Na,—0) = 3, there exists a surface Hom™ = HomND~ transverse to Ay = 0
of homoclinic orbits to an equilibrium point with a double negative real eigenvalue. Moreover, since
rank(Nyiom, Np+, Nx,—0) = 3, there exists a surface Hom™ = Hom N DT transverse to Ay = 0
of homoclinic orbits to an equilibrium point with a double positive real eigenvalue. On the other
hand rank(Nyom, Np-, Np+, Na,—0) = 4 if and only if &y, — &), # 0. But, taking into account
that po and py are odd functions and also that po < 0 and py — p2 > 0 on (0, 00) it follows that

i — 6 = /00 pa(t)(p2(t) — palt)) dt > 0.

Hence we can conclude that rank(Nyom, Np—, Np+, Ny,—0) = 4. Therefore there exists a curve
Hom™ = Hom N'D~ NDT transverse to Ay = 0 of homoclinic orbits to an equilibrium point with

a pair of double real eigenvalues one positive and the other negative. O

The eigenvalues of the linear part in the equilibrium point p_ of (4.10) is +(p £ iw) for
parameter values in DJF. Hence, for parameter values close to this curve los autovalores en p_
are also p; £ iw; and py £ iwy with p;1 < 0 < pg. The divergence of this limit family (4.10)
is equal to v4. Then it follows that p1 + p2 = v4/2. Well then, since the homoclinic orbits are
continued for the parameter values A3 # 0 where A3 = 14 = 271/45, according to the equation

Exp A2 + E A3 + &, A = 0, it is concluded that —p; # p2 for some parameter values in Hompp.

Remark 4.7. Bifocal homoclinic orbits under the generic condition (no-resonant case) —p1 # pa
are unfolded from DF for parameter values in Hompp.

4.3 Return map for a conservative bifocal homoclinic orbits

Let us consider a smooth Hamiltonian vector field Xz on R* under the following assumptions:
(H1) pis an equilibrium point of Xy with eigenvalues £\ £ iw, Aw # 0,
(H2) there exists v C W*(p) N W"(p) non-degenerate homoclinic orbit.

A bifocus equilibrium, as (H1), possesses two local smooth two-dimensional submanifolds, stable
W .(p) and unstable W} _(p), lying both in the singular level H(p). This set is a smooth three-
dimensional submanifold near every point, except for the point p, where it has a singularity

We will study the dynamical behavior in a neighborhood of the non-degenerate bifocal homo-

clinic orbit v of the conservative vector field Xg. First result in this direction was obtained by
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ES

Fig. C: Cross-sections and Poincaré return map

Devaney |[Dev76] who carried over the results by Shil’nikov [Shi67] from general systems to Hamil-
tonian ones which required of a special (sympletic) tool. In [Dev76], the existence of infinitely
many hyperbolic subsets in a neighborhood of 4 accumulating onto the bifocal homoclinic orbit
were showed. More precisely, for any positive integer N, Devaney found an invariant subset of the
flow in a critical level which was described as a suspension over the Bernoulli shift with /N symbols.
The presence of subsidiaries bifocal homoclinic orbits was described by Belyakov in [Bel&4, BS90].
A complete symbolic description of the set of all orbits lying wholly on the critical level in a
neighborhood of v was given by Lerman in [Ler91, Ler97, Ler00].

4.3.1 Local coordinates and cross-sections

Next, we will describe the orbits of X lying entirely in some neighborhood U of «. Their study
will be carried out by means of a Poincaré map 7 associated with ~y. This map will be constructed,
see Figure C, as a composition 7 = 7% o 7® of two maps. The map 7% is defined in a neighborhood
of p between two cross-section %° and % of . The map 7° : ¥° — X% will be called the local
map. The other 7 to be defined from X* to X% will be called global map.

Local map

Assume that p = 0 and H(p) = 0. As Xy is a smooth Hamiltonian vector field, in order to
describe the local behavior of flow orbits near a bifocus equilibrium point we can use the Moser’s
normal (see [Mos58| in the analytic case, [Lyc77] for C° vector fields or [BLW96, BIK90] in some
sufficiently smooth cases). Theses results guarantees the existence in some neighborhood V of p
of local symplectic coordinates (z1, z2,y1,y2) such that Hamiltonian takes the form

H(xy,22,y1,y2) = h(&§n) = X +wn+..., §=T1y1 + T2Yy2, N = T1Y2 — T2Y1
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where h is a smooth function and dots means higher order terms in &, 7. We will work locally in

these coordinates. Then, we have the following differential equations in the neighborhood V:

T = _Hy1 = —hgxl + hnl"g,

To = —Hy, = —hyx1 — hexa,
= Hy = heyr + hyyo,
3)2 = Hacz = _hnyl + h&y?;
where the lower indices with respect to variable denote related partial derivatives.
By means of the angular coordinates
x1 =rgcosls, xo=rs8inls and y; =1y, co86y, Yo = 1ysind,.
(4.19) can be written as
Ps = —hers, Os=—hy, Tu=hery, 04,=—hy. (4.20)

Remark 4.8. Notice that
i) In this coordinates in the neighborhood V', the invariant manifolds are linear. The stable
(unstable) manifold coincides with te stable (unstable) subspace 1, =0 (rs =0).

ii) The functions & na n are first integral of the Hamiltonian vector field in (4.19).

According to (i) in the above remark, the following three-dimensional tori

¥ = {(rsvesaruag”U,) T rs=¢g, 1y < 5; esaeu S Sl},
= {(TSuQSuruaeu) 1 rg < (5, ry =¢, 65,0, € Sl}

are cross-section for the flow of (4.20). Let us denote ¢° = v N X% and ¢* = v N X*. With an
appropriate choice of ¢ > 0, we can assume that ¢° = (¢,0,0,0) and ¢* = (0,0,¢,0).

From (ii) in Remark 4.8 it follows that h¢ and h, only depend on § and 7 and both, £ and
7, remain constant along to orbits of (4.20) in V. Thus, the equation in (4.20) are immediately

integrated providing the solutions
re(t) = re0e 0 04(t) = 050 — wot, Tu(t) = ruoe™t, 04 (t) = Ouo — wot, (4.21)

where x19 = rgocosbs, To9 = Ts0SINbs0, Y10 = Two O8Oy and yog = ryosinbyo are the inicial
conditions and Ao, wo are the values of h¢, hy), in §o = x10y10 +220Y20 and 1y = T10Y20 — T20¥10- SO,
we obtain that the time of pass time of passage for any orbit from %% to 3% is T' = /\51 log(e/Tu0)-
Thus, the local map 7% : 3% — X" is given by

w € w €

=1y, 0% = 0,0 — 73 logﬁ, 0% = 040 — 73 logﬁ. (4.22)
u u

where starts are used to distinguis the coordinates on 3.
Next, we will use the local invariance of the functions £, 1 to introduce the new coordinates

(0s,&,m) and (&£, n*,0%) on X%, X%, respectively. These coordinates are given in the following way:

¢ = ery(cosbs cos 0, + sin b, sin 0,,) = ery, cos(by, — bs), £ =er;cos(6;, — 67) (4.23)
1 = ery(cos O sin 0, — sin O cos 0,,) = ery, sin(0, — 0;), n* = er:sin(0), — 05). ‘
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Thus, denoting ® = 6,, — 0, one holds that

2

e+ 712 = (r4e)?, cos® = § and sin® = "

Similar expressions are followed for the coordinates on ¥*. So, we obtain that

22 ={(0s,6m): 0, € S, [ Inl <0} and XU ={(€%0",60;): 0, € S, €], In*| < de).

Submanifolds ¥¢, ¥ are foliated by levels H = ¢ into two-dimensional annuli ¥, 37, respec-
tively. In the neighborhood V' of p, one may regard equation h(§,7) = ¢ to be uniquely solved
with respect to &,

E=ac(n) = te—2"twun+. ..

This allows us to replace £ by a new coordinate ¢ in each cross-section »° and X*. Thus, for each

¢ € R with |¢| small enough,
S ={0sn): 0; €8, o] <de} and TY={("0;): 0, €S, | < de}.

Remark 4.9. The intersection of the estable (reps. unstable) manifold of p with X% (resp. ¥*) is
given by ¢ =0 and n =0 (resp. n* =0).

Next, we will look for the expressions of 7° restricted to the annuli 3. From (4.22) and (4.23)

and we conclude that
n* =erisin(0;, — 0%) = eryosin(fyo — 0s0) = no- (4.24)

Now, since h(ac(n),n) = ¢ then we follow that al(n) = —hy(ac(n),n)/he(ac(n), n). In particular,

evaluating in the initial point a’.(ng) = —wo/No. Also,
ruo = € Sy ac(no)? + ng and 6,0 — 050 = arctan 0__ def D.(no).
ac(mo)
Thus, substituting into (4.22) we obtain
. / 2 / 2
07, = Ouo + ac(no) log m = 050 + a.(o) log m + @¢(no). (4.25)

Therefore, removing in (4.24) and (4.25) the subscript zero which indiques the evaluation in the

initial point we obtain the following expression of the local map 7° restricted to the annuli »2:
o X — XY 7o (0s,m) = (n,0s + be(n) mod 27), (4.26)

where b.(n) = aL(n)log(e?/\/ac(n)? +n?) + ®.(n). Here the function ®.(n) is defined as the
principal branch of arctangent function arctan(n/a.(n)) with ®¢(+0) = 7 — arctan(A\/w) and

®(—0) = — arctan(\/w). The local mapping obtained is symplectic (area preserving), it is discon-

tinuous along the circle n = 0 for ¢ = 0, and smooth for ¢ # 0.

In the following lemma one can find properties of the local map 7.
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Lemma 4.10 (| , , ). There exist € > 0 and co > 0 such that for all |c| < co,
|n| < € the following representations hold

A+0(n) 3w L(e,n) + ag(n)R(e,n) + O([(c,)|*)
b'n:w/ . bp(n)] < and b.(n) = d < ’ d
0(n) 7 6o ()] A (1) % + ac(n)?
with L(c,n) = (A7 = A3w?)e + A 3w(w? + X2 and R(c,n) = —%(772 + ac(n)?) log(n? + ac(n)?).
Moreover, b.. : [—€,€] — R is a monotone function with a unique zero at the point 1,

w? — A2

2
=——+0 < .
Ne w(w2 )\2) (C )7 0< |C| > 0

The following lemma, allows one to distinguish the regions of hyperbolicity and critical dynamic
where the creation of non-hyperbolic fixed points can occur.

Lemma 4.11 (| , |). For a given K > 0 there exist € >0 and k > 0 such that

lbo(n)| > K forall 0<|n| <e, and
1bL(n)| > K for all 0< |c| <co and for |n —n.| > ke with In| <e.

If 65 = u(n) is a function given for |n| small enough, then the image of its graph with respect
to 7¢ is a curve in the strip (n*,0}), being graph of a function 0} = u(n*) + b.(n*) with n* = n.
Next lemma estates properties of this kind of function.

Lemma 4.12 (| , ). There are positive €, cq, do, di, da small enough such that given
a C%-smooth function u : [—e, €] — R with |u(n)| < do, |u'(n)| < di and |u"(n)| < do for |n| < ¢
then it holds that

p:l—eel =R, p(n) =u(n) +be(n) (4.27)

i) for c =0, it is a C*-smooth function everywhere on |n| < € except for the point n = 0 where
it has a logarithmic singularity. Derivative of ¢ satisfies |¢'(n)| > 3w/2X|n].

i) for 0 <|c| < co, it is a C%-smooth unimodal function which reaches at the point

w? — N2

MNe = m + O(CQ), (428)

its minimum/mazimum value given by the representation (n.) = (w/A)log|c| + E(c) with
a bounded function E(c), and (d/dc) o(n.) = (w/A + O(c))/c.

Remark 4.13 (| ). In fact, the function O(c?) in (4.28) depends on u, but for a given dy
small enough, |u'(n)| < di, one has O(c?)/c — 0 uniformly in these u.

Next lemma is used for proofs that tangency is quadratic if stable and unstable manifolds of
some periodic orbit in a neighborhood of v are tangent.

Lemma 4.14 (| , ). Letv : [—¢,¢] = R be a C%-smooth function with C%-norm bounded.
Then, there is ¢y > 0 such that for all |¢| < ¢1 the graph of any function o(n) from (4.27) in
Lemma 4.12 and the graph of v(n) are quadratically tangent if they have a tangent point.
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Global map

As was said above, v intersects X°, X% at points ¢° and ¢ respectively with corresponding coor-
dinates (0,0, 0) on both cross-sections. Therefore, one may choose two neighborhoods V* and V*
of points (0,0,0) in X% X% respectively, such that in these neighborhoods map 7% : V% — V¥,
generated by flow orbits near the global piece of « will be a well defined diffeomorphism. This
map is represented as a family of symplectic maps 7 defined for every |c| small enough from
Vi=3!NV"to VZ =3%5NV?. These symplectic diffeomorphisms have the form

D(P;,Qc)

Trg : ‘/Cu —> ‘/CS? ﬂ-g /'7*76’:, = PC /’7*79:;, ) QC n*70’>|u<, ) det *
(7, 0u) = (Pe(n”, 6,,), Qe(n”,0,)) DG 67)

= +1, (4.29)
with smooth functions P, and Q.. According to Remark 4.9 the traces of W . and W}%_ on X§ and
g are given as 7 = 0 and n* = 0 respectively. The transversally condition in these coordinates
means that the image of the segment n* = 0 on Xj is transversal at the point (0,0) € X§ with
respect to the segment 7 = 0 on 3. This is expressed as (0Qo/00;)(0,0) # 0. Therefore, the
existence of a non-degenerate homoclinic orbit v means that

Qo
0%

Py(0,0) = Qo(0,0) =0 and (0,0) # 0. (4.30)

Ignoring the high ordem term, one can assume that 7 : V* — V? is given by

U * *\ Bc (6% 77* Ac
(0s,m) =7 (n*,0;) = <5C 70) (9:;) - <Bc> mod 27 (4.31)

where from (4.29) and (4.30) it holds

e — 0l =1, Ap =By =0 and 2= 222(0,0) # 0.

Note that for |c| small enough, we infer that . # 0.

4.3.2 A return map like standard map

Next we will provide a symbolic description of the hyperbolic sets lying in a neighborhood of ~.
To this end, we will study the Poincaré return map = = 7% o 7% in a neighborhood of ¢* = v N X°.
Namely, we will use the one-parametric familie 7. = 7 o 7$ for |c| small enough. When the value
c is varied, different bifurcations create parabolic and elliptic fixed points, period two elliptic
points, etc. Although all these results were obtained in | , , |, we will present here

a slightly different proof.

Recall that the Poincaré return map 7. is defined by means of the composition of the diffeo-
morphisms 7} : £5 = X% and 7 : V¥ = V2 with V2 =V N, V¥ =V*NEY where V*® and V'
are neighborhoods of ¢° = v N %% and ¢% = v N X% respectively. We have to study the dynamic
of 7. in a neighborhood of 7 = 0 on the annulus X?. Thus, we will consider this map on the strip
S' x [—e, €] where € > 0 is given from Lemmas 4.10, 4.11 and 4.12. Note that 7 is only well defined
on Ree = (m8)71(V¥) N (ST x [—¢,€]) and, hence 7.(R..) C V,* but not necessarily it is a subset
in R... Namely, 7. : R.. C ¥ — X is given by

77(053 77) = (3077 + ol + acbc(n) + Am 50”7 + ’7095 + Vcbc(n) + Bc) mod 27.
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Fig. D: Construction of f,.

In fact, we will consider 7. : A, — A, where A, is the maximal invariant set
A, = m o (Ree).
neL

In order to simplify the study of dynamics of 7 |a, we will introduce the family of maps

Feo:[~e,e® = [~e,e x S, Fe(n",n) = (1, =" + @ec(n) mod 2), (4.32)
where @, : [—€, €] = R is the continuous unimodal function
©c(n) = (ac + de)n + Yebe(n) + YeAe + (1 — ac) Be. (4.33)

Let . be the maximal invariant set of F,. in [—¢,€]? then, we will prove m|a, is topologically
conjugate to F|q,.

Note that the map F, evokes the so-called standard map: an area preserving map acting on
the 2-torus T? = R?/Z? and given by

Ge(w,y) = (y, —x + 2y + csin(2my)),  (z,y) € T2
In the case of G, the corresponding function ¢, : [0,1] — R is ¢.(y) = 2y+csin(2my) is a bimodal
map. See [Dua94| for more details about the dynamic of this standard map family.

Conjugation map

In Figure D we represent graphically how to define the map (nj,n1) = Fe(n*,n) from the return
map 7. Next we will explain this construction in three step:
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e For each (n*,n) € [—¢,¢]? and € > 0 small enough, using the Implicit Function Theorem, for
|c| small enough we infer that there exists two unique points (6s,7n) € X2 and (n*,6) € X¥
such that (05,m) = 7 (n*, 6;). Namely, solve (4.31) we get

* (0% ac(sc * (6%
98256(77’77):,777‘1'(50_ )n*+A.— —B,

c FYC C

05 =T.(n*,n) =~."(n— 50" — Be).

e Using the local map 7 given in (4.26), the image of (65,7) € X by 77 is
(n1,05,1) = (1, 05 + be(n) mod 27) € X
e Finally, the coordinate 7, is followed from (6}, ;,77). That is, substituting in (4.31)

m = (Y01 + 0cni + Be) mod 21 = (els + vebe(n) + 0cn + Be) mod 2
= ((%ﬂc — aele) N+ (e + 0c) 1+ Yebe(n) + veAe + (1 — ac)Bc) mod 27

Observe that the coefficients of n* is the determinante of D7¥.

Therefore
(i,m) = FE(*,n) = (n, £0* + pc(n) mod 27),  (n,7*) € [—€, €] (4.34)

where . is given in (4.33). Observe that, the coefficients the expression of ¢, are bounded functions
of ¢ for |c| small enough. Notice that 1. : [—€, €] = R, 1.(n) = 72 pc(n) can be written of the
form (4.27) where, in this case, u(n) = 7. ' (e + )0+ A+ 721 (1 — a.) B. depends on c. Since, as
we have noted, its coefficients are bounded functions of ¢ one has that u also is a bounded function
on c. Hence, this observation and Remark 4.13 imply that the same statements of Lemma 4.12
are valid for .. In particular, it follows that ¢, for |c¢| > 0 is a unimodal function whose critical
point is ) )
= s + O,

and

@(ne) = wA e log e + ... = wA™ g log [e] + E(c)
with a bounded function E(c).

Next, we will study the family (4.34). The analysis of the dynamical behavior for both maps,
FF and F,, is analogous. We chose F, = F., to develop the arguments below. Also, in what follows,
since the dynamical behavior of (4.34) for both positive and negatives values of the parameter ¢

is quite similar, for simplicity, we restrict ourselves to the family F,. with parameter ¢ > 0.

An "increasing" family of hyperbolic basic sets

In order to find hyperbolic sets, we will use the following result:

Proposition 4.15. Consider the invertible are-preserving map

F(xay) = (ya -z + W(y))u (ﬂf,y) S TQ

and let A be a F-invariant compact set. Assume that there exists A > 2 such that |¢'(y)| > X for
all (x,y) € A. Then, A is a hyperbolic set (of saddle type).
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0 1
br= <—1 so/(y)>’

In particular, the trace of DF verifies [tr DF| > A\ > 2 so that DF' is uniformly hyperbolic. In
fact, this follows from the fact C¥ = {(v,w) € R? : |v| < aJw|} is an unstable cone-field whenever
(A —1)"! < a < 1 (note that such a choice is possible since A\ > 2). Indeed, if we write DF (v, w)
as (v, w'), we see that

Proof. Note that

V'] = |w| < (A= a) He(y)w —v| = (A = a)"Hu|

so that DF(C¥) C Cg. where 6 = (a(X —a))~! < 1 by the choice of the parameter a. That is, C*
is D F-invariant. Furthermore, denoting by ||(v, w)|| = max{|v|, |w|}, we get, for any (v,w) € C¥,

IDf (v, w)|| = [w'] = (A = a)|w] = (A = a) || (v, w)]

with (A —a) > 1, i.e.,, DF (uniformly) expands any vector inside C. On the other hand, it is not
hard to see that the same above argument can be applied to DF~! in order to get a stable cone-
field. Using the invariant cone-field criterion | , Corolary 6.4.8], the proof is complete. O

Consider an alphabet {1,2,...,4+0c0} consisting of all integers other than zero, supplemented
with the two symbols +o0o and —oo. Let 3, be the set of bi-sequences in above alphabet of symbols
satisfying the following condition: only the symbol 400 can follow 400, and only —oo can precede
—o0. Endowing Y, with the appropriate topology, one can make a compact space this set of
bi-sequences.

For each parameter ¢ > 0 let A, be a basic set of a diffeomorphisms g.. The family {A.}cs0 is
said dynamical "increasing” if given ¢ > 0, for any sufficiently small € > 0, the set A._. contains the
dynamical continuation of A.. The following theorem shows the existence of dynamical increasing
family of hyperbolic basic sets for the one-parametric family of maps F,.. The corresponding version
of the this theorem for the Poincaré return map m, was proved in | , , Theorem 1|.

Theorem 4.16. For the family F,. given in (4.32), there exist € > 0, co > 0 and k > 0 such that

for every positive ¢ < cg, the mazimal invariant set
Ae= (Y F2{(rm) € [=e, e |n—ne| > re®})
ne”L

is a hyperbolic set conjugated to Bernoulli shift of n(c) symbols where
n(c) ~ —(w/mA\)logc.

Moreover, these hyperbolic sets {Ac}o<e<e, are a family of dynamical increasing basis sets and the
restriction of Fy to

% =) B ([,

neL

is conjugated with the Bernoulli shift map 7 : X, — X, where ¥, = {1,2,...,+00}%.
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i n n= =0+ @c(n")

—€ € n*

¥

Fig. E: Scheme of the image of [—¢, ¢]? by F,

Proof. Since the coefficient a., d. and 7. ' in (4.33) are bounded function on ¢, then one can
choose K > 0 greater than (A+|ac+6c|)/|7vc| with A > 2. Hence, by Lemma 4.11 there exist € > 0
and k > 0 such that

e = [rellbe(m)] = lee + dc| > [vel K — |ae + e[ = A > 2

for all ¢ > 0 small enough and | — 7| > kc? with |n| < e. As immediate consequence of Proposi-
tion 4.15 is followed that A, is a dynamically increasing family of hyperbolic sets.

For any |§] < € and ¢ > 0 small enough, the image by F. of a vertical segment n* =46, |n| < e

on the plane (n*,7n) is a curve
m = —0 + pe(n))mod 2w, |ni| <e (with parameter ¢)

on the annulus [—e, €] x S1. This curve intersects [—¢, €]> C [—¢, €] x S! into finitely many full (from
the top to the bottom) branches o}*(d) as it is showed in Figure E. Each of these branches o}(9)
defines a sub-segment o7 () in the vertical segment n* = 4§, || < € such that F.(c7(0)) = o}*(9).
Let o} be the union all these vertical sub-segments o7 (0), |d| < e. Hence, o7 is a horizontal strip
on [—¢, €]? such that F.(cf) = o where o¥ is a vertical strip union of the branches o¥(6), |§| < e.
This observation together with the hyperbolicity of A, imply that F, restricted to A. is conjugated
to a Bernoulli shift.

Let n(c) be the number of symbols of the Bernoulli shift. Let us estimate n(c). For this
propose we find ny = ni(c) and n_ = n_(c) the numbers of subsegments ¢7(d) lying in the
segment n* = J, n. + kc2 < n < € and in the segment n* = §, —e < 1 < 1. — Kc? respectively.
Hence min{n_,n;} < n(c)/2 < max{n_,n4}.
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The number n. is determined by the last sub-segment oy, (d) in [—e, €] x [n. + kc?, €]. Con-
sidering the affine coordinates of the standard covering the annulus [—¢, €] x S, one has that the
image of a point (7*,1) € oy, by Fe is the point nf =1, m — 274 = —6 + ¢c(n) for some m
belongs to [—e¢, €]. Since @, : [n. + rc?, €] — R is monotone increasing and 7. + ke < n < € then

806(776 + HCQ) < ‘PC(n) =m+0—2mng < ‘PC(G)-

Thus, one obtains that

d— ¢ 1 54—671

ot - %@c(e) <ng < ot %SDC

(770 + ’902)-

Using the mean value theorem we have that b.(n.+rc?) = be(ne) +bL(ne+0kc?)kc?, with 0 < 0 < 1,
so that, from Lemma 4.12, it follows
w

3 logc + E(c) + Krc?.

be(ne + Kc?) =

In a similar way one may get the upper estimate for n,, both estimates are asymptotically the

same. The estimate for n_ is similar. Therefore, finally, we get

n(c)

5 BETSY log ¢ + const.

Similarly in the case ¢ = 0, one can defined infinitely many full horizontal and vertical strips,
of and o in [—¢, €]? such Fy(of) = o¥. For more details about the conjugation with 7: 3, — X,
we refer the reader to | , | and this finishes the proof. O

By construction, periodic saddle orbits of the Hamiltonian vector field Xy correspond to
fixed points of Fj. These orbits intersect the cross-section %§ of v once. A periodic point of
period N corresponds to a saddle orbit which intersects this cross-section N times before closing.
Corresponding with a bi-sequence of the type (... — 00, —00,&1,...,£,00,00,...) are homoclinic
orbits of the point p that emerge from the trace n* = 0 on X (the trace of W}%.) and then pass
through a neighborhood of v intersecting n times 3 and then reach n = 0 (the trace of W ).
Consequently the following corollary holds:

Corollary 4.17 (| ) ). There exists a countable set of non-degenerate (bifocal) homo-
clinic orbits of any roundness in a neighborhood of .

Hyperbolic windows and Newhouse intervals

We have show that in the limit ¢ — H(p) the number of symbols of the Bernoulli shift increases
approaching to oco. Hence bifurcations have to occurs giving rise reconstructions in the orbit
structure in the level set H = c¢. The following theorem show some of these bifurcations. The
corresponding version of the this theorem for the Poincaré return map m. was proved in | ,

Theorem 2|. Previously, we introduce some definitions.

Let p be a fixed point of a surface C'-diffeomorphism g. It is said that p is an elliptic fived
point if the eigenvalues of Dg(p) form a complex conjugate pair Ay = A\, A\_ = X, and a parabolic

fized point if Dg(p) has a double eigenvalue Ay = 1 but its Jordan form is not the identity matrix.
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Fig. F: Map F, on [—e¢, €]?.

Theorem 4.18. For the family F, given in (4.32), in the interval of parameters (0, co] there is a

set accumulating zero disjoint intervals I, = (cp,ch,), n € N, such that

i) for c € I,, the maximal invariant set Q. in [—¢, €]? coincides with the hyperbolic basic set A,

it) there are points d),d2 € (1, cn) such that for

a) ¢ =dL a parabolic fized point of F. appears inside of [n. — kc?, ne + kc?)?,

b) c € (d?,d}) the parabolic point has bifurcated into a elliptic and a hyperbolic fized points,

n»-'n

¢) ¢ = d2 the elliptic point becomes a degenerate elliptic fived point with eigenvalue %1,

and

d) ¢ < d? from the degenerate elliptic point appears a new hyperbolic fized point and a
cascade of period doubling bifurcation of elliptic periodic points.

The intervals I, in the above theorem are called hyperbolic windows. When ¢ varies in the
interval between neighboring hyperbolic windows, the second part (ii) in Theorem A.12 shows the
bifurcations associated with formation of a new, well-developed Smale horseshoe (see [YAS3]).

Proof. Notice that the non-hyperbolic region where the creation of parabolic and elliptic fixed
points can occur is located from Theorem 4.16 in R, = {(n*,n) : |n — ne| < k2, |n*| < €}. The
image by F. of this critical region R, is a solid piece in the annulus [n. — kc?, . + kc?] x ST as it

is showed in Figure E. There is no generation of critical dynamic if F.(R.) N R. = () which occurs
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for parameters ¢ in a set of disjoints intervals I,,, n € N on (0, ¢g] accumulating at zero. In this

2

situation, the maximal invariant set . in [—¢, €]* coincides with the hyperbolic basic set A..

Now, let us find the fixed point of the map F, which can appear in the critical region R.. This
is, (n*,n) € R, such that (n*,n) = F.(n*,n) or equivalently, n* = n and 2n* = ¢.(n*) mod 2.
Thus, it comes to studying the intersection in the annulus [, — k2, 7. + kc?] x ST of the curves
n = 21" and n = ¢.(n*). Note that, the eigenvalues of linear part of F, at a fixed point (n*,n) are
given by

1 *
rs = 5 (i) £ VR =1).

Hence, (n*,n) is either hyperbolic or elliptic fixed point if |, (n*)| > 2 or |¢.(n*)| < 2. If YL(n*) = 2
then Ay = 1 and Jordan form of the linear part is not the identity matrix (it is the nilpotent one).

Thus, in this case, the fixed point (n*,n) is parabolic.

Figure F shows the different possibilities position of the graph 7 = ¢.(n*) when the parameter
¢ is varies in an interval (c/, 115 ¢n) between the hyperbolic windows I,,41 and I,,. In this interval
one can find a parameter ¢; = d’ such that the curve n = ¢, (%) mod 27 has a unique tangent
point 7* = p; with the line n = 2n*. This point stisfies that ¢., (p1) = 2p1 and ¢, (p1) = 2.
Thus, (p1,2p1) is a parabolic fixed point of F.. Moreover, it is non-degenerate fixed point since
@ (p1) # 0. This point breaks up to ¢z < ¢1 into hyperbolic fixed point (p2, 2p2) and elliptic fixed
point (ps,2p3), both of them persist till c3 = d2. For this parameter, the continuation 7* = ps of
p3 becames in the critical value the curve n = ¢, (17*). Then, ¢, (ps) = 0 and thus, the eigenvalue
of linar part D f., at (ps,2ps) are Ay = +i. That is, (ps, 2ps) is a degenerate elliptic fixed point of
fes- Finally, when ¢4 < c3 the degenerate elliptic fixed point becames in a hyperbolic fixed point

and a new periodic 2 elliptic periodic point appears. This concludes the proof of the theorem. [J

4.4 Blenders near conservative bifocal homoclinic orbits

Let m = n% o m° be the Poincaré return map on a neighborhood of a non-degenerate bifocal
homoclinic orbit v of a smooth Hamiltonian vector field Xz on R*. This area preserving return
map is defined on a solid tori 3 cross-section of . In adequate coordinates, it can be written as

w(0°,m,¢) = (mc(6°,m),c),  0° €8, [y <ed, |e] <o

where 7. is a symplectic map defines on the annulus 3¢ = %N H~1(c). We introduce the notation
m = 7. X id where id : I — I is the identity function on the interval I = [—¢p, co].

In §4.3.2 we have showed that 7.|a, is conjugated to the area preserving map Fi|q,, where
F.:[—¢€€? — [—¢€,€ x St is given in (4.32). Therefore, it follows that 7 = 7. x id is conjugated
to f = F. x id where

f(z,¢) = (Fe(2),0), with ¢ € I and z € Q..
The following proposition show that we can conjugate the f with a direct product:

Proposition 4.19. There is A C X% such that w|a is conjugated to fo = Fy x id from A’ x I to
itself where N C Qg is a Smale horseshoe for Fy.
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Proof. According to Theorem 4.16, for each ¢ € I, ¢ # 0, there is a hyperbolic basic set A, of F,
in [—e¢, €)% such that F|s, is conjugated with the Bernoulli shift of n(c) > 2 symbols. For ¢ = 0,
from the same theorem, we can take a Smale horseshoe A’ C Qg for Iy such that the continuation
AL of A’ for F., 0 < |c| < cp, is contained in A.. We will show that f = F. x id restricted to

NxTE{(z¢):cel, ze A}

is conjugated to fo = Fy x id restricted to A’ x I.

Since {AL}|¢<c, is a dynamical "increasing" family of Smale horseshoes it follows that there
exist homeomorphisms H, : Al — A, such that Fyo H. = H. o F, for all |¢| < ¢y. Consider

h:A,xT— AN xI, h(z,c) = (He(z),c)

shortly denoted by h = H.xid. Notice that this map is an homeomorphisms such that foh = ho fp.
Therefore, we infer that f|a/.s is conjugated to fo|axs. Finally, since 7 is conjugated to f then
there is A in X¢ such that 7|a is conjugated to fo|a/x7. This concludes the proof. [l

Since Fp : Q. — €. is conjugated to a Bernoulli shift in infinite many symbols, decreasing the
size of the interval I = [—cy, ¢p] and repeating the argue in the proof of the above result we obtain
the following remak:

Remark 4.20. For every k > 2 there exist
0<c<cy, A=A@CY and N =AN(c)CQ

such that 7|a is conjugated to fo = Fy x id from A x I to itself where I = [—¢,¢| and Fy|pr is
conjugated to T : X — Y.

One can study the bifurcation of the non-degenerate bifocal homoclinic orbit v of X outside
of the conservative vector field. This task can be carried out by studying the perturbations of the
return map fy = Fpxid. According to the theory developed in §2.1.2, perturbations of a dominated
skew product diffeomorphism over a horseshoe are conjugated to locally Holder symbolic skew
products. Therefore, it suffices consider S ®-perturbations of ® = 7 x id where 7 : ¥y — 3 is the
shift the Bernoulli in two symbols. That is, perturbations of symbolic Hélder skew products with
Cl-fiber maps in Sp(I), in the notation introduced in the second chapter, Definition 2.4. It is not
difficult to construct an smooth arc of one-step skew products ®, = 7 X (¢u.1,Ppu2), 1t € [0, f10]
such that &y = ® and ®, has a symbolic blender-horseshoe in o x I for all 0 < u < po.
Indeed, it suffices that the small perturbations ¢, 1 and ¢, 2 of the identity map on the interval
I satisfy the covering property. This is possible with only two maps because the fiber space has
dimension one. In this manner, via conjugation (see Proposition 2.1), we obtain an open set V
of C'-diffeomorphism with fy € OV such that for every g € V there exists a blender for ¢g. This

proves the following result:

Proposition 4.21. Let Xy be a Hamiltonian vector field satisfying (H1) and (H2). Then there
exists an open set V of C! vector fields with Xg € 0V such that each vector field X € V has a
suspended blender (contained in a neighborhood U of the bifocal homoclinic orbit v of X ).
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4.4.1 Possible blenders in generic unfoldings of nilpotent singularities

In order to conclude this chapter, we will study the possible existence of suspended blender-
horseshoes in the generic unfoldings of the four-dimensional nilpotent singularities of codimension
four. In order to establish the framework of this problem, we begin by summarizing our progress

in this chapter until this point.
It follows from Equation (4.10) that any generic unfolding of the nilpotent singularity of

codimension four in R*, denoted by Y, ¢, can be written as
Yy 0 +y 0 +y 0 + (v1 + 12y2 + v3y3 + 14y + 92 + eryry +O(52))a
2o — T Y35 — +Yas— 1 2Y2 + V3Y3 + Vaya 1Y2 s
Oy Toyr 7 Oys ! Oya

with v = (v, v0,13,14) € S* and € > 0. According to Theorem 4.3, the limit family, denoted by Y,

9l vl + (v1 + vay2 + v3ys + vays + 2)—6
Y2 Y3 Ya Vi T 12Y2 T V3Ys T VaYs T Y )
Oyr  COyr 7 Oy Y oy,

for parameters on the reversibility curve
T: {(V17Z/27V37V4) S Sg LV =V = 0}

is a Hamiltonian vector field. In §4.2.1 it is showed that the parameter value BD = (v1,0,v3,0)
with u§ —8y/—11 =0, 11 <0 and vz > 0, is a Belyakov-Devaney bifurcation point and, therefore,
conservative non-degenerate bifocal homoclinic orbits arise for every vector field Y, with v €
DF C T close enough to BD. The proof of Theorem 4.5 uses the exponential dichotomy theory to
show that this bifocal homoclinic connections can be continued for the nilpotent singularity Y, .

with parameter values in a codimension one manifold
Hompp C Hom = {(v,€) € S® x (0,00) : £¥(v,e) = 0}.

Fix a parameter v* on the double-focus arc DF close enough to BD. The Hamiltonian vector
field Y,« on R?* satisfies (H1) and (H2), i.e., there exists a non-degenerate bifocal homoclinic
orbit . Thus, from Proposition 4.19, it follows that there is A contained in a cross-section >.°
of the bifocal homoclinic orbit v of Y,« such that the Poincaré return map m,« restricted to A
is conjugated to fo = Fy x id from Af x I to itself. Here, Afj C [—e, €]? is a Smale horseshoe of
the map Fj given in (4.32) and [ is a close real interval [—co, ¢o], being € and ¢y small enough
positives constants. Since for parameter values (v, ¢) € S* x (0, 0) close to (v*,0) the vector field
Y, - is a smooth perturbation of Y,«, in order to understand its possible dynamics, we can study
the perturbations of the return map fo = Fy x id. As we argued in Proposition 4.21, from the
theory developed in §2.1.2, every small C'-perturbations of fo ApxI 18 conjugated to a symbolic
skew-product ® = 7 x ¢¢ in So([I) that is a small St perturbations of ®; = 7 x id. Note that the
fiber-maps are diffeomorphisms on the interval I and thus the endpoints are fixed points of these
maps. Since we try to understand the dynamic of small perturbations near of homoclinic orbit
of Y+, we only have to consider the invariant dynamic of ® in Y9 x J with J an open interval in
the interior of I containing ¢ = 0 (level set of ®g corresponded to the homoclinic connection).

Let us renormalice the close interval I to I = [—1,1]. The generic expression of a fiber map
diffeomorphism ¢¢ : I — I of a S perturbation ® = 7 x ¢e € So(I) of @9 =7 x id is
pe(c) = —(c — 1)(c+1)(dpc + drc+ dac® +...)
2(50—1—5104-((50—52)02—1-...
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where the coefficients §; = §;(§) depend locally Holder continuously on & and satisfy that d; ~ 1
and §; = 0 for all 7 ## 1. Because of the robustness in the definition of blender we can assume that
0i(§) = 9i(&o), i.e., the coefficients only depend on the zero coordinate of the bisequence &. This
implies that ¢¢ = ¢; if {o =4 for i = 1,2 and therefore we have a one-step symbolic skew-product
& = 7 X (¢1,2) where ¢ and ¢9 are smooth diffeomorphisms on I close enough to id : I — I.
Then, two possibilites happen:

i) (non-generic generic): ¢1 and ¢9 have a fixed points in common in the interior of I,

ii) (generic case): ¢1 and ¢2 have no fixed points in common in the interior of I.

Non-generic case

Let ¢ € (—1,1) be a fixed point of both, ¢1 and ¢o. Then the set A = X9 x{c} is ®-invariant and P |,
is conjugated to 7 : 3y — Xo. If ¢ (c) are both less (resp. grater) than one, A is said to be a symbolic
normally hyperbolic horseshoe. Notice that in this case any one-step smooth perturbation ¥ =
T X (¢1,12) of ® = 7 X (¢1, ¢2) satisfying the generic condition (ii) in a neighborhood of ¢ has a
symbolic blender-horseshoe. Indeed, it is enough to note that in a neighborhood of ¢ the fiber maps
1; are both contractions (resp. expansions) and, from the proximity to the identity map, satisfy the
covering property on the interval defined between its fixed points close to c. If ¢ (c) < 1 < ¢h(e),
A is said to be a symbolic shear horseshoe. In this case, only the continuation of the two fixed

points in A survive under generic perturbations.

An interesting case is obtained when the fixed point in common is ¢ = 0. In this case g = 0.
Shrinking the size of I, as follows of the Remark 4.20, we can increase the number of symbols k we
are working with. Then, over a codimension one manifold where the non-generic condition g = 0
is fulfilled, the dynamic of the restriction of ® to A = ¥j x {0} is conjugated to 7 : ¥ — X. In the
limit, via conjugation, it is obtained that Y, . for a parameter value (v, €) in this codimension one
manifold has infinitely many suspended Smale horseshoes. We expect that this situation occurs
for parameter values in Hompp where the results in | , | imply the existence of infinitely
many suspended Smale horseshoe in each neighborhood of the bifocal homoclinic orbit. Thus, we
conjecture that this non-generic case occurs for values of the parameters in the codimension one
manifold Hompp, where a bifocal homoclinic orbit takes place. The condition ¢}(c) < 1 (resp.
Pi(c) > 1)) for i = 1,2 should correspond to the case —p; > pa > 0 (resp. 0 < —p; < p2) in
Remark 4.7.

Generic case

Assume that ¢ and ¢o are Morse-Smale diffeomorphisms on the compact interval I with no
periodic points in common in the interior of I. Recall that by a Morse-Smale diffeomorphisms on
I we mean a diffeomorphism f : I — I with a non-empty finite set of fixed points in the interior
of I and all of them hyperbolic. According to Spectral Decomposition Theorem of an IFS on the
real line, Theorem 3.21 (see also Remark 3.22), we obtain that the limit set L(IFS(¢1, ¢2)) of the
IFS generated by ¢1 and ¢5 is finite union of pairwise disjoint intervals. Moreover, this intervals
are isolated and transitive set for IFS(¢1, ¢2) (see this notions in Definition 3.1 and 3.3). Namely,

each interval is either a s-interval for IFS(¢1, ¢2) with {ss, su,uu, s, u} or a single fixed point
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of ¢1 or ¢y. The isolated fixed points for IFS(¢1, p2) correspond to an isolated periodic orbit
® = 7 X (¢1,¢2) of period one. The sx-intervals for IFS(¢1, ¢2) correspond to the projection on
the fiber space of non-trivial invariant set I'"** for ® = 7 x (¢1, ¢2). Note that the s-intervals (resp.
u-intervals) are always extremal intervals in the decomposition of the limit set of an IFS. Since
we are interesting in the invariant dynamic for @ in ¥; x J with J an open interval in the interior
of I, we can consider a s-interval (resp. the wu-interval) as a subinterval of a ss-interval (resp.
the wu-interval). In the contractive case, from the theory of symbolic blenders in the one-step
setting (see in Section §2.3), the ss-intervals (resp. uu-intervals) for IFS(¢1, ¢2) are the support of
a symbolic cs-blender (resp. cu-blender). Notice that any non-empty open set B in an su-interval
K§" is a blending region for IFS(¢1, ¢2), and thus, from Proposition 2.21, for every one-step map
U close to ® it holds that

W (9, pw); ¥) N (Wi (& 1) x U) #0,

for all £ € ¥ and non-empty open set U in B, where (9, py) is the continuation for ¥ of a fixed
point (¥,p) € ¥ x K3* of ®. That is, the intersection property in the definition of symbolic
blender in the one-step setting (see Definition 2.11). On the other hand, noting that there is a
fixed point ¥ of 7 such that ¢j(x) € K3* for all x € K§" for all n € Z, it follows that the ®-
invariant set I'** from the su-interval K3"* for IFS(¢1, ¢2) contains at least the spine {9} x K"
(see definition of spine in the Section §2.2.2). This implies that ®|ps« is not conjugated to a shift
the Bernoulli 7 : X9 — Y. Moreover, it is not so hard to show the existence of heterodimensional
cycles arbitrarily close to ® = 7 X (¢1, ¢2). In any case, the x*-intervals are the support blender-like
dynamics: symbolic blenders or symbolic blender-like sets.
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Anexo






Dichotomies and bifurcation equations

For a hyperbolic linear vector field, the decomposition of phase space as a direct sum of stable
and unstable subspaces allows us to understand the behavior of their solutions. This property
of the linear flow extends to the case of linear equations of non-autonomous systems under
the name of exponential dichotomy. Such extension is useful to express the persistence of
(homo)heteroclinic connections of a nonlinear autonomous vector field. For this it is essential
to understand the dichotomy of the adjoint equation and the variational equation along these
special solutions. The persistence of the connection is followed from the contact between the
invariant manifolds of the hyperbolic equilibrium points. These contacts are formulated in
terms of a bifurcation equation that allows us to know the set of parameter on which the

(homo)heteroclinic connection persists.

A.1 Dichotamies

Let 2/ = f(x) be a nonlinear equation, where x € R™ and f is a regular enough vector field, and
assume that it has a heteroclinic orbit v = {p(¢) : t € R} connecting two hyperbolic equilibrium
points p4 and p_ (if p; = p_, v is said homoclinic). Consider a family

2 = f(a) + g\ ), (A1)

with A € R* and g regular enough, such that ¢(0,2) = 0. For any )\ small enough, family (A.1)
has hyperbolic equilibrium points p4(A) and p_(A), continuation of p; and p_, respectively, and
the stability index is preserved. In order to study the persistence of the heteroclinic orbit for A
small enough we introduce the change of variables x(t) = z(t) + p(¢) in (A.1) to obtain

2'(t) = Df(p(t)2(t) + b(A, £, 2(1)), (A.2)

where
b(A 1, 2(t)) = f(p(t) + 2(t)) = F(p()) — Df(p(t))2(t) + g(A, p(t) + 2(2)-
Notice that b(0,t,0) = D,b(0,¢,0) =0 for all t € R.

Persistence of heteroclinic orbits in (A.1) implies the existence of bounded solutions for (A.2)

which, in turn, implies the existence of bounded solutions for a equation as

2'(t) = Df(p(t)=(t) + b(t), (A.3)

where b belongs to the space Cp(R,R"). In the sequel C{f(R,R”) denotes the Banach space of

bounded continuous R"-valued functions whose derivatives up to order k exist and are bounded
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Fig. A: Geometric interpretation of projection Z(t).

and continuous on R. The existence of bounded solutions of a linear equation 2/ = A(t)z + b(¢),
as that in (A.3), will be given in terms of exponential dichotomies of the homogeneous equation
¥ = A(t)r and its adjoint w' = —A(t)*w, where A(t)* stands for the conjugate transpose of
A(t). The classical references for the study of exponential dichotomies are | , , ,

|. Here, we will present a brief summary of results about dichotomies in order to get a
precise formulation of the bifurcation equations. For an extended version of this introduction of
dichotomies we recommend the reference | | where it is presented a complete exposition about

dichotomies and bifurcations equations with the proof of the result.

A.1.1 Exponential dichotomy

Let X (t) be a fundamental matrix of
= A(t), x € R", (A4)
where A(t) is defined and continuous on an interval J C R.

Definition A.1. [t is said that the equation (A.]) has an exponential dichotomy on J if there
exists a projection P : R™ — R™, that is, an n by n matriz P with P?> = P, and positive constants

K, L, a and B such that
IX(®)PX " (s)]| < Ke U= fort > s, (A5)
IX()(I - P)X Ys)|| < Le P for s > t. '

forall s,t € J

Let us define 2 (s) = X (s)PX1(s) for each s € J. Notice that, according with the above
definition, Z2(s) is the projection corresponding to the fundamental matrix Y (t) = X ()X ~!(s)

of (A.4) and we can give an alternative definition of exponential dichotomy.
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Definition A.2. It is said that the equation (A.4) has an exponential dichotomy on J if for all
s € J there exists a projection P(s) : R™ — R™ and positive constants K, L, a and (8 independents
of s such that for all t € J the matriz X ~1(t)2(t)X (t) has constant coefficients and

X)X Y (s)P(s)|| < Ke =) forallt > s,
IX(H)X N (s)(I — P(s))|| < Le ™D forall s > t.

Although the notion of exponential dichotomy is stated for any J C R, the most interesting
cases are when J is not bounded. We are particularly interested in J = [1,00) or J = (—o0, 7]. In
such cases the notions of stable and unstable subspaces can be introduced in terms of the ranges

of the projections of the exponential dichotomies.

Definition A.3. Suppose that the matriz A(t) in (A.4) is defined and continuous on J = [1,00)
(resp. J = (—o0,7]). For each ty € J the stable (resp. unstable) subspace for initial time t = tg is
defined as the set

Ef ={¢eR": | X(t)X '(to)&]| = 0 when ¢t — oo}
(resp. By, ={{ €R": | X (1) X ~(to)€]| — 0 when t — —o0}).

Below we give a collection of results which can be helpful to follow the paper. Their proofs are

available in the literature.

Proposition A.1. Suppose that the equation ' = A(t)z has an exponential dichotomy on J.

i) When J = [1,00), B}, coincides with the range R(Z(to)) of P (to) for all to € J. Further-
more
R(P(to)) = {€ € R™ : sup | X(t)X ' (to)¢]l < oo},

t>to

and for all to,t1 € J it follows that Ef = X (t1)X *(to)Ef,.

ii) When J = (—o0, 1|, E}

to

coincides with the kernel N (P (tg)) of P(ty) for all ty € J. Fur-

thermore
N(2(t)) = {€ € R™ : sup || X ()X (to)¢]| < oo},

t<to

and for all to,t1 € J it follows that Ef = X (t1)X ~*(to) B .

From the above proposition it follows that the linear flow sends Ej and Ej to Ej and
E},, respectively. Accordingly, once Ej and Ej are fixed, the stable and unstable subspaces are
determined for all ¢. Therefore, the projections are also determined for each ¢t € J once they are
defined for ¢ = ty. The same observation follows taking into account the uniqueness of solutions
for the equation

P'(s) = X'(s)PXs) + X (s)P(X(s)) = A(s)P(s) — P(s)A(s).

Lemma A.2. If the linear homogeneous equation x' = A(t)x, with t € (—o00,0), has exponential
dichotomy [1,00) (resp. (—oo,T]) for some T € R then it has exponential dichotomy on [tg, c0)
(resp. (—oo,tg]) for all tg € R.
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The next result | , Lemma 7.4] states that exponential dichotomy is a robust property

with respect to small enough perturbations of A(t).

Proposition A.3. Suppose that ' = A(t)x has an exponential dichotomy on J = [a,b] (with
—o0 < a < b < o) with projection matriz function P (t), with constants Ky, Ko and exponents
a1, ag. Let B1 and By be such that 0 < 51 < aq and 0 < By < . Then

there exists 69 = do(K1, Ko, a1, g, 1, B2) > 0 such that if B(t) is a continuous matriz function
with ||B(t)|| < 6 < o for all t € J, the perturbed system

' =[A(t) + B(t)]z

has an exponential dichotomy on J with constants L1, Ly exponents B1, P2 and projection matriz
2(t) satisfying that || 2(t) — 2 (t)|| < N6, where Ly, Ly and N are constants which only depend
on Kq, Ko, a1 and as.

From the above result and Lemma A.2 it follows the existence of an exponential dichotomy
for the homogeneous part 2z’ = Df(p(t))z of the equation (A.3). Since lim; o p(t) = p4+ and
lim;—, oo p(t) = p— and according to Proposition A.3, the equation 2’ = D f(p(t))z has the same
exponential dichotomy than 2’ = D f(py)x (resp. ' = Df(p—)x) on [tg,o0) (resp. (—oo, to]). That
is, if the stable (resp. unstable) subspace of ' = D f(py)z (resp. ' = Df(p_)x) has dimension
k then 2’ = Df(p(t))x has an exponential dichotomy on [tg,00) (resp. (—oo,tg]) with stable

subspace I} (resp. unstable subspace £} ) with dimension k. In fact we have the following result:

Proposition A.4. Let p(t) be a solution of the equation x' = f(x) parametrizing an orbit on
the stable (resp. unstable) manifold of an equilibrium point p. Hence the variational equation

' = Df(p(t))x has exponential dichotomy on [ty,o0) (resp. (—oo,tg]). Moreover,
R(Z(t0)) = Tpu)W*(p) ~ (resp. N(Z(to)) = Tyuo) W (p))-

Now we can apply to (A.3) the result below, which relates the existence of bounded solutions

for a linear equation and for its adjoint.

Theorem A.5. | , Lemma 4.2| Let A(t) be a bounded and continuous matriz defined on
(—00,00). The linear equation x’ = A(t)x has exponential dichotomy on [tg,00) and on (—o0, o)
if and only if the linear operator L : x(t) € CL(R,R™) — 2/(t) — A(t)z(t) € CP(R,R™) is Fredholm.
The index of L is dim B + dim Eff —n. Moreover, b € R(L) if and only if

/OO < w(t),b(t) > dt =0

—0o0

for all bounded solutions w(t) of the adjoint equation w' = —A(t)*w.

To explore the existence of bounded solutions of the adjoint equation one has to study its

properties of exponential dichotomy.

A.1.2 Exponential dichotomy for the adjoint equation

Let X (t) be a fundamental matrix of the equation 2’ = A(t)x. It is well known that the conjugate

* is a fundamental matrix of the adjoint equation w' = —A(t)*w.

transpose of its inverse X ~1(¢)
From this relationship between the fundamental matrices of both equations we can conclude the

following result about the connection between their respective dichotomies.
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Proposition A.6. If the linear equation x' = A(t)x has exponential dichotomy on J with projec-
tion matriz P (t) then the adjoint equation w' = —A(t)*w has exponential dichotomy on J with

projection matriz I — P(t)*. Moreover, for each ty € J

R = R(2(t) L R(I — P(te)") = R(P(to)) L N(P(to)"),
R = R(I - 2(to)) L R(P(te)*) = N(P(t9)) L R(Z(to)").

As done in Definition A.3 we can define now the stable and unstable subspaces for adjoint
equations.

Definition A.4. Suppose that J = [r,00) (resp. J = (—o0,7|) is contained in the interval of
definition of ' = A(t)x. For each ty € J the stable (resp. unstable) subspace for initial time t = tg
of the adjoint equation ¥’ = —A(t)*x is defined as

Ep={weR": | X1 (#)* X (to)*w|| — 0 when t — oo}
(resp. By = {w € R™: ||X_1(t)*X(t0)*wH — 0 when t — —o0}).

The following result about the relationship between the invariant subspaces of the equation
x' = A(t)x and its adjoint follows as a straight consequence of Proposition A.1 and Proposition A.6.

Proposition A.7. Suppose that the equation x' = A(t)x with x € R™ and t € J has exponential
dichotomy in J.

i) If J = [to,00) then
By = R(Z(to)) = {z €R": sup 1 (1) X~ (to)z|| < oo},

B = N(2(to)") = {w € R" : sup | X7 (t)" X (to) "wl| < oo},

t>to
and R" = E}, L E}*.
i) If J = (—o0, to] then
By =N(Z(t)) = {z €R": sup IX ()X~ (to)a| < oo},
>to

Ef* = R(P(tg)*) = {w € R" : tSEtP ||X_1(t)*X(t0)*w|| < oo},
>0

and R"™ = E}f) J_E;g*.

In short, if the linear equation ' = A(t)x has exponential dichotomy in J = [tg,o0) (resp.
(—00,tg]) then the forward (resp. backward) bounded solutions of this equation and its adjoint
are those which tend to zero exponentially when ¢ — oo (resp. t — —00). On the other hand, from
the decompositions of R™ given in Proposition A.7 it follows that, if ' = A(t)x has m linearly
independent forward (resp. backward) bounded solutions, then the adjoint equation w’ = —A(t)*w
has n — m linearly independent forward (resp. backward) bounded solutions.

Proposition A.8. If the linear equation x' = A(t)x has exponential dichotomy in [ty,c0) and

in (—oo,to] then the number of linearly independent bounded solutions of the adjoint equation
w = —A(t)*w is

dim By N By =n — dim By — dim By + dim Ef N Ey .
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Now we apply the above result to determine the number of bounded solutions of the adjoint
equation 2/ = —Df(p(t))*z. As we have already noticed, the number of linearly independent
forward (resp. backward) bounded solutions of the variational equation =’ = Df(p(t))z is given
by the dimension of the stable (resp. unstable) subspace of the equation ' = D f(py)x (resp.
' = Df(p_)z). That is, such number coincides with the dimension of W*(p4) (resp. W*(p-)).

Therefore, taking into account that £ =T,

p(to)W?(p4) and B = T, )W (p—), we can conclude,

from Proposition A.8, the following result.

Proposition A.9. If p(t) is a (homo)heteroclinic solution connecting two equilibrium points p4
and p_ then the number of linearly independent bounded solutions of the adjoint variational equa-
tion w' = —D f(p(t))*w is the codimension of Ty,yW*(p4) + Tpo)W" (p-), that is,

n—dim W*(py) — dim W*(p_) + dim T\ W (p+) N Ty W (p-)-

A (homo)heteroclinic orbit « is said to be non-degenerate if dim T,W*(py) N T,W*(p-) =1,
with p € . Otherwise « is said to be degenerate.

Remark A.10. If the (homo)heteroclinic orbit is non-degenerate, the number of linearly inde-
pendent bounded solutions is obtained directly from the stability indexes of py and p—. More-
over, although dim Ty, \W*(p+) = dim W*(p) and dim T}, \W"(p-) = dim W*"(p_), in general
dim T4y W () N Tp1) W*(p—) does not coincide with dim W*(py) N W*(p_).

In the sequel the (homo)heteroclinic orbit v = {p(t) : t € R} will be non-degenerate.

A.2 Bifurcation equations

As already mentioned, the existence of (homo)heteroclinic orbits for (A.1) implies the existence of
bounded solutions of (A.2) and, consequently, the existence of bounded solutions of (A.3) when
b(t) € CY(R,R™). According to Proposition A.5, if the adjoint variational equation

w' = =D f(p(t))"w

has d linearly independent bounded solutions w;, then the persistence of the (homo)heteroclinic
orbit requieres the fulfillment of the d conditions [ (w;(t),b(t))dt = 0 for i = 1,...,d. The

question now is the sufficiency of such conditions.

When d = 1 the sufficiency could be followed from | |. In general, for d > 1, the
techniques to be used follow the first steps of the Lin’s method | , |. For ||A|| small
enough, one has to look for solutions p (-) and p) (-) of (A.1), contained in the stable and unstable
invariant manifolds of the equilibrium points p4 () and p_()), respectively. Initial values pf (to)
will belong to a section X, transverse to the (homo)heteroclinic orbit v. Namely

St = p(to) + {f(p(t))} = plto) + (WS & Wy, @ Ey)

where Ej = Ej¥ N Ey" and Wth (resp. W, ) is the orthogonal complement of Ef N Ei =
span{f(p(to))} in Ej (resp. Ef.). Moreover the condition £*°(\) = py (to) — p¥ (to) € Ej, will
be required. Under these assumptions there will exist two unique solutions pf() for each A. The
jump £*(X) = p) (to) — pi (to) measures the displacement between the stable and unstable invari-
ant manifolds on the section X, in the direction of the subspace Ej, = [Ef + E{]*.
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p(to) + El;ko

Fig. B: Heteroclinic connection in R?. In this case, Ef = Ef = Ey, (unidimensional), Ef* = Ej* =
Ef (bidimensional) and ¥4, = p(to) + E},. For simplicity we have assumed that f(p+,\) = 0 for
all \.

The proof of the result below can be found in | , Lemma 3.3] and | , Lemma 2.1.2].
Namely, in | | only the first item is proved and, moreover, the proof is developed for the
degenerate case although the non-degenerate one follows in a similar manner. The second item
is proved in | | for the non-degenerate case. In | | is given a completed simpler slightly

different proof of this result:

Lemma A.11. There exists 6 > 0 such that for all A € R*, with ||| < 4,

i) There exists a unique pair of solutions p;\r(t) and py (t) of (A.1) parametrizing orbits on
We(p+ (X)) and W™ (p_ (X)), respectively, such that pf\t(to) € ¥y, and

£2(N) = py (to) — p (to) € Ej,.

Writing the solutions as pf(t) = p(t) —I-zf\c(t), then zf\c() are, respectively, forward and back-

ward bounded solutions of the equation (A.2). They depend regularly on A and the functions

zac are identically zero.

ii) For e > 0 small enough, there exists a (homo)heteroclinic solution py(t) such that ||px(to) —
p(to)|| < € if and only if £°(X) = 0, that is, the components £°(X) of £>°(N) in the basis
{wi:i=1...d} of Ey satisfy

& (N

/O <wi(s),b(A\, 5,2, (s)) > ds

—00

o0
+/ < w;(s),b(A, 8,2 (s)) > ds = 0.
to

According with the above statement the persistence of (homo)heteroclinic orbits follows from
the analysis of the bifurcation equation £°°(A) = 0. The existence of non zero parameter values
A € R¥ such that £%°(\) = 0 follows from the Implicit Function Theorem when D,£°°(0) has rank
d < k. Thus, the following result follows:
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Theorem A.12. Let £2°()\) = 0, with A € R, be the bifurcation equation of the differential
equation (A.1). If k > d and rank Dz{>(0) = d, then (A.1) has a (homo)heteroclinic orbit for
each parameter value A on a reqular manifold of dimension k — d with tangent subspace at A = 0

given by the solutions of the system

k
dogEa =0 i=1,....d
j=1

where

_ 0§
gif':axj
fori=1,...;,dandj=1,... k.

0= [ <uils). Dy g(0.p() > ds

—00

Note that, when k& < d, A\ = 0 is the unique value of A\ € RF for which there exists a
(homo)heteroclinic orbit

Y ={pat) - PA(E) = f(pa(t)) + 9N pa(t)) t € R}

such that sup,cg |[pa(t) — p(t)|| is small enough. If £ > d the homoclinic connection persists for
parameter values on a manifold of codimension d where

d=n—dimW?*(py) —dimW*p_) + 1.

In such a case we say that there is (homo)heteroclinic bifurcation of a non-degenerate orbit at
A = 0 which is of codimension d.
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