
“Thesisfinal” — 2018/5/1 — 17:24 — page i — #1i
i

i
i

i
i

i
i

UNIVERSITAT DE VALÈNCIA
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Programa de Doctorado en Estad́ıstica y Optimización

Introducción

El análisis de supervivencia es una metodoloǵıa estad́ıstica diseñada para

analizar datos procedentes de estudios cient́ıficos relativos a tiempos de

ocurrencia de uno o varios eventos de interés. La duración de estos

tiempos suele conocerse como tiempos de supervivencia debido a los

particulares oŕıgenes de esta metodoloǵıa en contextos exclusivamente

médicos y demográficos. Durante las últimas décadas, la literatura

cient́ıfica en este campo ha sido muy proĺıfica y su aplicación se ha

extendido a múltiples áreas de conocimiento.

Los procedimientos estad́ısticos propios de esta metodoloǵıa empezaron

a abordarse desde el marco inferencial frecuentista. Sin embargo, en

los últimos años la utilización de la metodoloǵıa bayesiana, tanto en

desarrollos teóricos como en estudios reales, ha experimentado un enorme

interés. Uno de los elementos más importantes que pueden ayudar a

entender el aumento de su presencia es, sin duda, el desarrollo de entornos

y herramientas computacionales rápidos y eficientes.

El atractivo principal de la metodoloǵıa bayesiana es estrictamente

conceptual. Proporciona un marco teórico que permite cuantificar

de forma probabiĺıstica cualquier tipo de incertidumbre asociada al

http://www.uv.es
http://www.uv.es/matematiques
http://www.uv.es/eio
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problema objeto de estudio y permite, también, la incorporación de

información experta al proceso inferencial, que es de especial relevancia

en escenarios de tipo biológico y médico. Además, en el contexto del

análisis de la supervivencia, la estad́ıstica bayesiana incorpora de forma

natural y sencilla el tratamiento de mecanismos de censura y sobretodo,

de truncamiento.

Objetivos

Este proyecto de tesis tiene como objetivo principal desarrollar e

implementar nuevas propuestas metodológicas en el contexto del análisis

de supervivencia y en el marco del paradigma bayesiano, al que

consideramos una metodoloǵıa adecuada y robusta para abordar el

tratamiento de modelos de supervivencia complejos. Nuestra visión de

la estad́ıstica no se circunscribe únicamente al mundo de la metodoloǵıa

y la teoŕıa. También concebimos la estad́ıstica como una herramienta

poderosa y necesaria para el estudio de problemas reales basados en

datos. Por ello, ilustramos el comportamiento de estas propuestas

metodológicas combinando el uso de datos simulados y de datos

procedentes de estudios de áreas de conocimiento de distinta naturaleza,

como son el área de la mejora genética de plantas, de la microbioloǵıa de

alimentos y de las ciencias de la salud.

Uno de los objetivos espećıficos de esta memoria es proponer y evaluar

modelizaciones de tipo paramétrico bajo diferentes esquemas de censura,

concretamente en contextos de censura por la derecha y censura por

intervalos.

El segundo de los objetivos espećıficos de esta memoria es proponer y

analizar modelizaciones flexibles en el contexto del modelo de riesgos

proporcionales de Cox (Cox, 1972), aśı como en extensiones de dicho

modelo en el marco de los modelos conjuntos para datos longitudinales

y de supervivencia. Nuestra propuesta se fundamenta en el estudio de
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diferentes especificaciones, paramétricas y no paramétricas, de la función

de riesgo basal. Esta componente tiene un papel clave en la modelización

estad́ıstica debido a su influencia directa en la estimación de la función

de riesgo y, en consecuencia, en la función de supervivencia, por lo

que su inespecificación o su incorrecta especificación puede condicionar

negativamente el proceso inferencial y, por tanto, conducir a conclusiones

erróneas o poco precisas.

El tercer gran objetivo espećıfico de esta memoria se orienta al

tratamiento de modelos de supervivencia complejos. Estudiamos algunos

modelos de supervivencia inicialmente intratables a través del entorno

integrated nested Laplace approximation (INLA) (Rue et al., 2009) como

son los modelos de curación de tipo mixtura. Nuestra propuesta se basa

en la adaptación del algoritmo propuesto por Gómez-Rubio (2017) para

ajustar modelos de mixtura con INLA.

Para finalizar, querŕıamos comentar que en esta memoria también

trabajamos, aunque de forma transversal, temas relativos a los

procedimientos bayesianos de regularización a través de estructuras

de correlación en las distribuciones a priori, la computación de

distribuciones a posteriori de cantidades de interés relevantes en los

problemas objeto de estudio, la evaluación de modelos a través de

algunos de los criterios de selección más relevantes, aśı como también

la comparación entre los dos procedimientos más comunes para llevar a

cabo inferencia bayesiana: los métodos de simulación basados en métodos

de cadenas de Markov Monte Carlo (MCMC) y la metodoloǵıa INLA.

Estructura de la memoria

Después de introducir brevemente el marco teórico en que se fundamenta

esta memoria y los objetivos, en esta sección presentamos de forma

detallada sus contenidos:



“Thesisfinal” — 2018/5/1 — 17:24 — page xii — #12i
i

i
i

i
i

i
i

• Caṕıtulo 1. Introducción. Este caṕıtulo introduce el contexto

de la presenta memoria y hace un resumen de los contenidos que

se abordan en la misma.

• Caṕıtulo 2. Análisis bayesiano de supervivencia. Este

caṕıtulo proporciona una introducción muy general al análisis de

supervivencia y una visión general de los conceptos caracteŕısticos

de este tipo de análisis. Concretamente, definimos de forma

detallada la función de supervivencia y la función de riesgo,

aśı como también los fenómenos de censura y truncamiento y

su influencia en la construcción de la función de verosimilitud.

También abordamos con detalle la descripción de las distribuciones

de probabilidad más habituales en este contexto y los modelos de

regresión de supervivencia que usaremos a lo largo de este trabajo.

Finalmente, presentamos una visión general de la metodoloǵıa

bayesiana que incluye una breve descripción de los métodos MCMC

y la metodoloǵıa INLA.

• Caṕıtulo 3. Análisis bayesiano de supervivencia en mejora

genética de plantas y en microbioloǵıa de alimentos.

Este caṕıtulo exporta el análisis bayesiano de supervivencia a los

contextos de la mejora genética de plantas y la microbioloǵıa de

alimentos para el tratamiento de diferentes esquemas de censura,

concretamente censura por intervalos y censura por la derecha.

Estas dos áreas de conocimiento han sido fundamentales en el

desarrollo de la estad́ıstica, sin embargo, en algunas ocasiones

infrautilizan mucha de la metodoloǵıa existente. En el contexto

de la mejora genética de plantas proponemos el uso de los modelos

de tiempo de fallo acelerado (AFT) con distribución de base de

valores extremos para evaluar una nueva variedad de planta en

términos de su resistencia y tolerancia frente a un virus espećıfico.

Añadimos al estudio una comparación con los métodos inferenciales

clásicos para evaluar su robustez con respecto al tratamiento de

observaciones censuradas. En el contexto de la microbioloǵıa

de alimentos proponemos un modelo de riesgos proporcionales
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de Cox (CPH) para evaluar los cambios de virulencia de un

patógeno humano de transmisión alimentaria como consecuencia

de diferentes frecuencias de aplicación de un nuevo tratamiento de

preservación. Aprovechamos este ejemplo ilustrativo para realizar

una comparativa entre los métodos MCMC y la metodoloǵıa INLA.

• Caṕıtulo 4. Funciones de riesgo basal en el modelo

bayesiano de riesgos proporcionales de Cox. Este caṕıtulo

presenta una doble finalidad. La primera se centra en evaluar

la influencia de la especificación de la función de riesgo basal

en el marco del modelo CPH. Abordamos la definición de la

mencionada función a través de una elección paramétrica basada en

la distribución de Weibull y dos no paramétricas, definidas a través

de una mixtura de funciones constantes y a través combinaciones

lineales de bases cúbicas de B-splines, respectivamente. La

segunda, se centra en la evaluación del efecto de la regularización

bayesiana a través de la definición de estructuras de correlación en

las distribuciones a priori que describen los parámetros implicados

en las propuestas no paramétricas. Los procesos inferenciales

sujetos a especificaciones no paramétricas de la función de riesgo

basal pueden presentar problemas de sobreajuste e inestabilidad

y la regularización bayesiana a través de la especificación de

escenarios a priori que contengan estructuras de correlación se

presenta como una posible solución. Estas propuestas se ilustran

haciendo uso del conjunto de datos usados en el Caṕıtulo 2, que

recogen información sobre un ensayo de virulencia en el contexto

de la microbioloǵıa de alimentos. Además, hacemos usos de la

simulación para generar diferentes escenarios de interés en base a

la metodoloǵıa presentada. Acometemos la evaluación de los dos

objetivos descritos con anterioridad realizando una comparativa

entre los diferentes escenarios de modelización propuestos en base a

las distribuciones a posteriori de los parámetros de interés aśı como

también de algunas cantidades derivadas, como las distribuciones

a posteriori de las funciones de riesgo y supervivencia. También
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valoramos las distintas modelizaciones en términos de bondad

de ajuste y de capacidad predictiva a través de dos criterios de

selección de modelos como son el “deviance information criterion”

(DIC) (Spiegelhalter et al., 2002) y el “log pseudo-marginal

likelihood ”(LPML) (Geisser and Eddy, 1979).

• Caṕıtulo 5. Modelos bayesianos de curación de tipo

mixtura usando R-INLA. En este Caṕıtulo proponemos la

implementación de una extesión del software bayesiano R-INLA

para estimar modelos de curación de tipo mixtura. INLA es una

metodoloǵıa alternativa a los métodos de MCMC para realizar

inferencia bayesiana. Sin embargo, en el caso de los modelos de

curación basados en mixturas no se puede aplicar de forma directa.

Ilustramos el comportamiento de esta propuesta a través de dos

estudios paradigmáticos en el área de la medicina, el primero en

temas oncológicos y el segundo relativo a transplantes de médula

ósea. Valoramos la bondad de nuestra propuesta a través de una

comparación completa con la técnicas MCMC.

• Caṕıtulo 6. Funciones de riesgo basal en modelos

bayesianos conjuntos. Este Caṕıtulo comparte la base

metodológica explorada en el Caṕıtulo 4 pero extiende el material

propuesto al contexto de los modelos bayesianos conjuntos para

datos longitudinales y datos de supervivencia. En particular,

nos centramos en una formulación de la modelización conjunta

estándar, en la que definimos el submodelo de supervivencia a

través de un modelo de riesgos proporcionales de Cox (CPH) y

el submodelo longitudinal a través de un modelo lineal mixto,

estableciendo la correlación entre los dos procesos a través de los

efectos aleatorios. El caṕıtulo también contempla el desarrollo de

cuestiones metodológicas referidas a la modelización espećıfica de

riesgos competitivos, ya que nuestras propuestas se ilustran con

datos pertenecientes a un estudio que persigue evaluar la relación

entre los eventos “morir” y “ser dado de alta” y un marcador

longitudinal que valora el ı́nidice de gravedad de pacientes con
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ventilación mecánica ingresados en unidades de cuidados intensivos

(UCI). Evaluamos las diferencias en todos los procesos inferenciales

acometidos comparando las estimaciones a posteriori de los

parámetros más relevantes en la modelización y las distribuciones

a posteriori de cantidades interés propias del contexto de la

aplicación. En este caṕıtulo también hacemos una comparativa

entre los diferentes escenarios de modelización en términos de la

bondad del ajuste y de la capacidad predictiva de los mismos a

través de los siguientes criterios de selección de modelos: “deviance

information criterion” (DIC) (Spiegelhalter et al., 2002) y “log

pseudo-marginal likelihood ” (LPML) (Geisser and Eddy, 1979).

• Caṕıtulo 7. Conclusiones y trabajo futuro. En el último

caṕıtulo de esta memoria se subrayan las principales conclusiones

obtenidas y las ĺıneas de trabajo futuro.

• Apéndice A. Método de la transformación inversa. En este

apéndice mostramos la adaptación del método de la transformación

inversa (Crowther and Lambert, 2013) en el contexto del análisis

de supervivencia para acometer la simulación de datos en el marco

del modelo de riesgos proporcionales de Cox bajo especificaciones

paramétricas y no paramétricas de la función de riesgo basal.

Conclusiones

En este trabajo, hemos propuesto y desarrollado diferentes propuestas

metodológicas en el contexto del análisis de supervivencia bajo el

paradigma bayesiano. Las principales conclusiones obtenidas a través

de los estudios plasmados en esta memoria se resumen a continuación.

• Los resultados obtenidos en el Caṕıtulo 3 respaldan tres

conclusiones relevantes. En primer lugar, se pone en evidencia la

potencia de la metodoloǵıa bayesiana en el contexto del análisis de
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supervivencia, aśı como la existencia de software bayesiano robusto

y accesible para implementar procesos inferenciales complejos. En

segundo lugar, se manifiesta la utilidad del análisis bayesiano de

supervivencia en ciertas áreas de investigación en que su aplicación

es escasa. En tercer lugar, se constata la gran robustez de esta

metodoloǵıa con respecto al enfoque clásico para proporcionar

inferencias sólidas en contextos donde se presentan esquemas de

censura complejos.

• Los resultados obtenidos en el Caṕıtulo 4 subrayan la utilidad de

los métodos bayesianos para incorporar flexibilidad a través de

especificaciones no paramétricas de la función de riesgo basal en

el contexto del modelo de riesgos proporcionales de Cox (CPH). A

este respecto, observamos que las especificaciones no paramétricas

de la función de riesgo basal son capaces de incrementar la

adaptabilidad de la modelización en lo que se refiere a la captura

de patrones de la función de riesgo con tendencias que están fuera

de la monotonicidad. También se pone de manifiesto la eficacia del

proceso de regularización bayesiano para minimizar los problemas

de sobreajuste e inestabilidad propios de las modelizaciones que

contemplan una especificación no paramétrica de la función de

riesgo basal. Además nuestras propuestas metodológicas parecen

superar las limitaciones del enfoque clásico para abordar el proceso

inferencial basado en el método de la “verosimilitud parcial”, en el

que el proceso de estimación se aborda omitiendo la especificación

de la función de riesgo basal. La aplicación de esta metodoloǵıa

en el análisis de datos procedentes de un estudio real y bajo

diferentes escenarios de simulación subraya también la importancia

de abordar correctamente la estimación de la función de riesgo

basal y de capturar su tendencia con objeto de completar todo el

proceso inferencial y de proporcionar resultados precisos en lo que

se refiere, sobretodo, a la estimación de cantidades a posteriori de

interés, como por ejemplo las probabilidades de supervivencia a

posteriori.
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• Los principales resultados del Caṕıtulo 5 refuerzan la capacidad

del software R-INLA como alternativa a los métodos MCMC para

realizar análisis de supervivencia bayesiana aśı como también las

posibilidades de su extensión a modelos más complejos. Nuestra

propuesta extiende el uso de INLA para la estimación de modelos

de curación de tipo mixtura a través de una descomposición

de las distribuciones marginales a posteriori en términos de las

distribuciones condicionales a posteriori dada toda la información

latente del modelo y el uso de un algoritmo adaptado basado en

la propuesta de Gómez-Rubio (2017). Los resultados inferenciales

obtenidos para los dos ejemplos ilustrativos son buenos y precisos

en comparación con los que proporcionan las métodos MCMC.

• Los resultados obtenidos en el Caṕıtulo 6 apoyan nuevamente

las conclusiones que se derivan del Caṕıtulo 4, pero en el

contexto de los modelos conjuntos para datos longitudinales y

de supervivencia con objetivos de supervivencia. Los resultados

obtenidos enfatizan de nuevo las fortalezas del enfoque bayesiano

para introducir flexibilidad en el submodelo de supervivencia por

medios de escenarios similares a los discutidos en el Caṕıtulo 4.

Además, se refuerza la solidez de esta metodoloǵıa en el ajuste

de modelos conjuntos permitiendo completar todos los procesos

inferenciales (proceso longitudinal, proceso de supervivencia, y la

asociación entre los dos procesos), cuantificando la incertidumbre,

y estimando y lidiando con el fenómeno de censura de manera

eficiente.
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Chapter 1

Introduction

1.1 Main objectives

Survival analysis groups a great variety of statistical methods for

analysing data whose main response variable is the time until the

ocurrence of an event of interest. Its relevance in the field of

statistics is very substantial due to its extensive application in many

fields of science. Literature for survival analysis shows an use of

both frequentist and bayesian statistical approaches. However, in

recent years bayesian methods for new analysis have proliferated

considerably due to several reasons which are summarised in the

following paragraph.

Possibly, the most important elements are related to the

improvement of computational methods, the increase of the

processing capacity, and the development of statistical software.

On the other hand, the bayesian paradigm allows to deal with

complex censoring and truncation schemes easily and, furthermore

the availability of software eases their implementation. In addition,

bayesian methodology enables the assessment of uncertainty

estimates through explicit probabilistic tools. Point and interval

1
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2 1.1. Main objectives

estimates are naturally derived form the subsequent posterior

distribution such as, for instance, posterior variances and posterior

probabilities and features of the survival curves with regard to

relevant covariate patterns. It is also remarkable that bayesian

methods make also possible the incorporation of prior information

to the inferential process, thus improving and enhancing estimation

and prediction of any outcome of interest (Guo and Carlin,

2004). See Ibrahim et al. (2001) for further explanation about the

advantages of bayesian survival analysis.

This PhD dissertation relies on the fact that the bayesian approach

is a suitable and robust methodology to perform survival analyses

beyond the standard survival models. This conception is based

on the bayesian hierarchical model formulation which allows the

introduction and implementation of complex structures in survival

modeling in an easy and intuitive manner. Specifically, the aim of

this PhD is to provide an appropiate methodology that will allow us

to describe and illustrate the use and application of flexible survival

models in many biometrical contexts.

The specific objectives of this Thesis are:

• To place on value the potentialities of bayesian survival

analysis in contexts in which that methodology has not been

widely used. In that regard, we play special attention to

some of the advantages that this approach offers compared

to frequentist inference.

• To propose and implement a general survival modeling

framework in the context of Cox proportional hazards (CPH)

models (Cox, 1972). There are many studies that need

to go beyond the standard approach of CPH model (Cox,

1972) in which the baseline hazard is usually unespecified
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1. Introduction 3

or parametrically defined. Baseline hazard functions are

a key component in the CPH model definition and its

misspecification can imply a lost of valuable model information

that can make impossible to fully report estimated outcomes

of interest, such as posterior probabilities and survival curves

for all relevant groups patterns.

In that regard, different model scenarios are adressed and

discussed based on:

– Parametric and non-parametric specifications of the

baseline hazard function. Weibull distribution is the

default choice to illustrate the parametric specification

while non-parametric specifications are defined by means

of mixtures of piecewise constant functions (Sahu et al.,

1997) and cubic B-spline functions (Hastie et al., 2009).

– Different prior scenarios that introduce regularization

procedures to avoid overfitting and unstability (Breiman,

1996) in the estimation process of the models defined via

non-parametric baseline hazard proposals.

• To propose and implement a feasible extension to estimate

standard mixture cure models by means of the integrated

nested Laplace approximation (INLA, Rue et al., 2009).

At this point it is worth mentioning that our intention in this PhD

project has a transversal objective based on comparing two of the

most usual methods for accounting bayesian inference in the context

of survival analysis: Markov chain Monte Carlo (MCMC) simulation

methods and the INLA methodology.
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4 1.2. Layout

1.2 Layout

After this introductory part which briefly describes the aims of this

PhD dissertation, the contents are outlined as follows:

Chapter 2. Bayesian survival analysis. This Chapter

provides a very general introduction to survival analysis and

an overview of the main concepts, such as the survival and the

hazard functions. We also emphasise the concept of censoring

and underline its influence in the construction of the likelihood

function. We describe the most usual survival probabilistic

distributions. Then, we introduce the survival regression

models that we will use throughout this dissertation. Finally,

we present an overview of the bayesian methodology which

includes a brief description of the most widely used computing

tools to account for the inference process.

Chapter 3. Bayesian survival analysis in plant

breeding and food microbiology. This Chapter highlights

the potentialities of bayesian survival analysis in plant

breeding and food microbiology, two research areas in which

the bayesian survival analysis is not very common. In plant

breeding area, we use accelerated failure time (AFT) models

to evaluate a new plant variety for resistance and tolerance

to a specific virus. We add to the study a comparison

with its relative frequentist counterpart to underline the

strengths of the bayesian methodology with regard to the

treatment of censored observations. On the other hand,

in the context of food mircrobiology we propose a Cox

proportional hazards (CPH) model to assess virulence changes

in a foodborne pathogen as a consequence of different

frequencies of application of a new preservation treatment.
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The inferential process is based on MCMC methods and the

INLA methodology with the aim of carrying out a comparison

between the results from both methodologies.

Chapter 4. Baseline hazard functions in the bayesian

Cox proportional hazards model. This Chapter presents

a twofold objective. The first one is focused on assessing

the influence of the specification of the baseline hazard

function in the context of the CPH model. We consider a

parametric election based on the Weibull distribution and

two paradigmatic non-parametric ones, defined by means of

mixture of piecewise constant functions and cubic B-spline

functions. The second objective, is centered on evaluating

the effect of regularization with different prior proposals

for the coefficients associated to non-parametric baseline

hazard models. Note that inferential processes in which a

non-parametric proposal is used to define the baseline hazard

function can suffer overfitting and unstability problems. We

illustrate these issues by means of a real dataset which collects

information about a virulence assay in the context of food

microbiology as well as a simulation study. Differences in all

statistical processes were evaluated through relevant posterior

estimates as well as other derived quantities resulted from

posterior hazard and survival functions. We also discussed

two model selection scores to measure the goodness of fit and

the predictive ability of the different models considered.

Chapter 5. Bayesian mixture cure models using

R-INLA In this Chapter, we propose a feasible INLA

extension for estimating mixture cure models. INLA is

currently an alterntative to MCMC methods to perform

bayesian inference, however in the case of mixture cure models

it is not directly applicable. We illustrate our proposal by
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6 1.2. Layout

means of two benchmark paradigmatic datasets and confirm

the accuracy of our proposal through a comparison with

MCMC methods.

Chapter 6. Baseline hazard functions in bayesian

joint models. This Chapter shares the main objectives

and methodology with Chapter 4 but extends the proposals

to the context of bayesian joint models for longitudinal and

survival data. In particular, we focus on a simple joint

model, with the survival part defined in terms of a CPH

model which accounts for longitudinal information described

in terms of a mixed lineal model. We discuss several important

issues in a benchmark survival study devoted to assess the

relationship between the risk of death or be discharged alive

and a longitudinal disease severity index marker in patients

hospitalized at intensive care units. It is worth noting

that the survival model is defined by means of a competing

risks survival for the two events of interest (death discharged

alive). Differences in all inferential processes were evaluated

comparing relevant posterior estimates as well as other derived

quantities. Goodness of fit and predictive ability was assessed

in terms of different models selection scores.

Chapter 7. Conclusions and future researh. This is the

last chapter of this dissertation. It presents some conclusions

and suggests different issues for future research.

The final part of the project includes the usual section with

all the bibliographic references mentioned in the document as

well as one Appendix, Appendix A, devoted to develop the

inversion method to simulate survival times.
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Chapter 2

Bayesian survival analysis

2.1 Introduction

This Chapter introduces time-to-event models as well as the general

objectives of its statistical analysis. Some fundamental concepts

and procedures are introduced and commonly used methods of

estimation are described. The framework in this Chapter is the

basis for the methodological proposals and applications presented

in subsequent chapters.

Time-to-event analysis refers to the statistical methodology

developed to study outcome variables that describe the time from

a starting time until an event of interest or end point occurs. It

is also named as survival analysis (Collet, 2015; Ibrahim et al.,

2001) given its extended use in the fields of medicine and biology.

This methodology is known as event history analysis when it is

applied in the area of sociology, failure time analysis or reliability

analysis in engineering, and duration analysis or transition analysis

in economics.

7
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8 2.2. Survival and hazard functions

The main objectives of survival analysis include the analysis of

event time patterns, comparison of survival times in different groups

of individuals, and the assessment of covariates associated to the

risk of the occurrence of the event of interest (Kartsonaki, 2016).

Its statistical treatment requires taking into account the following

two special features: i) the response variable time is generally

positively skewed, and ii) not all individuals experience the event

of interest within the follow-up period (i.e., they are censored

observations) (Crowther, 2014).

2.2 Survival and hazard functions

Let T be a non-negative random variable, which represents the time

up to a given event. Consequently, its probabilistic behaviour can be

equivalently described by the survival function, the density function,

and the hazard function. Mathematically, they can all be written in

terms of one another. It is worth noting that in all this document the

survival time is always considered as a continuous random variable.

Next, we describe those functions with a special emphasis on their

relationships, according to definitions in Lee and Wang (2013).

The survival function S(t) is defined as the probability of surviving

longer than time t:

S(t) = P (T > t), t > 0. (2.1)

S(t) is a non-increasing function with S(0) = 1 and S(t) → 0 as

t → ∞. It is related to the cumulative distribution function (cdf),

F (t), as

F (t) = 1− S(t), (2.2)
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2. Bayesian survival analysis 9

which represents the probability that an individual experiences the

event of interest before time t.

Survival time T has a density function, f(t), defined as the limit of

the probability that an individual experiences the event of interest

in the interval (t, t + ∆t), i.e., the probability of failure within a

interval:

f(t) = lim
∆t→0

P (t < T < t+ ∆t)

∆t
. (2.3)

The density function, also known as the unconditional failure rate,

satisfies:

1. f(t) > 0, t > 0 and f(t) = 0, t < 0

2.
∫∞

0
f(t) dt = 1.

Hazard Function

The hazard function, h(t), also known as the conditional failure rate,

is defined as

h(t) = lim
∆t→0

P (t < T < t+ ∆t | T > t)

∆t
. (2.4)

This function is also known as the conditional failure rate in

reliability, the force of mortality in demography, the intensity

function in stochastic processes, the age-specific failure rate in

epidemiology, the inverse of the Mill’s ratio in economics, or simply

as the hazard rate (Klein and Moeschberger, 2005). The hazard

function must be positive, h(t) ≥ 0 and its integral over [0,∞] must

be infinite. Moreover, it can be increasing, decreasing, constant or
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10 2.2. Survival and hazard functions

a combination of both. It can be expressed in terms of the density

function as follows:

h(t) =
f(t)

1− F (t)
. (2.5)

The cumulative hazard function, H(t), is a relative expression of the

hazard function:

H(t) =

∫ t

0

h(u) du. (2.6)

We show all possible transformations of the three essential functions

described above. The hazard function, h(t), combining (2.2) and

(2.5) can be rewritten as

h(t) =
f(t)

S(t)
. (2.7)

The density function, f(t), can be expressed as

f(t) =
d

dt
[1− S(t)] = −S ′(t), (2.8)

given that it is defined as the derivative of the cumulative hazard

function, H(t).

Combining (2.8) in (2.7), the hazard function can also be defined as

h(t) = −S
′(t)

S(t)
= − d

dt
log(S(t)). (2.9)

Integrating (2.9) and combining it with (2.6), the following identity

is obtained:
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2. Bayesian survival analysis 11

−
∫ t

0

h(u) du = log(S(t)). (2.10)

Alternatively, it can be expressed as:

S(t) = exp[−H(t)] = exp
[
−
∫ t

0

h(u)du
]
. (2.11)

Finally, using (2.7) and (2.11), the density function can also be

rewritten as:

f(t) = h(t) exp[−H(t)] . (2.12)

2.3 Censoring and truncation

One of the reasons why survival analysis requires “special”

techniques is because of the possibility that the event of interest

could not be fully observed for some individuals. These incomplete

observations are usually referred to censored or truncated and

cannot be removed from the analysis. Furthermore, they need to

be correctly identified and handled appropiately in the statistical

model. Based on the excellent book by Klein and Moeschberger

(2005), censoring patterns can be classified as:

1. Right censoring.

(a) Type I censoring.

(b) Type II censoring.

(c) Random right censoring.

2. Left censoring.
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12 2.3. Censoring and truncation

3. Interval censoring.

4. Truncation.

(a) Right truncation.

(b) Left Truncation.

Next, we explain riefly the meaning of each of these patters.

Right censoring

In the case of right censored observations, times to event are known

to be above a certain time CR. Hence, if T denotes the observed

relative lifetimes instead of their lifetimes then T = min(T ∗, CR),

where T ∗ is the time-to-event randon variable. An indicator variable

is used for describing whether an survival time is censored, that is

δ =

{
1, if T ∗ ≤ CR

0, otherwise.

Observations will be expressed in terms of pairs (T, δ).

Right censoring CR can be fixed or random depending on the

characteristics of the study. This situation generates the following

right censoring types:

(a) Type I censoring: the end of the period of the study CR is

known and pre-fixed before it begins.

(b) Type II censoring: it is a special case of Type I censoring,

in which the pre-fixed time CR is determined by the failure of

a pre-specified number of individuals.
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2. Bayesian survival analysis 13

(c) Random right censoring: this censoring situation arises

when some individuals in the study experience some

competing event which causes them to be removed from the

study. In this situation, event and censoring times may not

be independent. Depending on whether the condition of

independence is fullfilled, inference must be tackled in different

ways. Typical examples of independent random censoring

times of the main event time of interest are accidental deaths

and migration of individuals.

Left censoring

For left censored observations, time-to-event is known to be below

a certain value. With CL denoting censoring time, observed

and true survival times (T and T ∗, respectively) are related as

T = max(T ∗, CL). Observations are pairs (T, δ) where now δ is a

non-censoring indicator with value δ = 1 when the event is observed

and δ = 0 when it is not.

Interval censoring

Time to event is somewhere in an interval [CL, CR] which could be

understod as a generalization of left and right censoring.

Truncation

Truncation occurs when only those individuals whose event time lies

within a certain observational window (TL, TR) are observed. An

individual whose event time is not in this interval is not observed
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14 2.3. Censoring and truncation

and no information on this subject is available to the investigator.

This situation contrasts to censoring where there is at least

partial information on the censored individuals. Because individual

event times belong to the observational window, the inference for

truncated data is restricted to conditional estimation (Klein and

Moeschberger, 2005). This is a problem for doing frequentist

inference but has a natural and simple approach within the bayesian

reasoning (Armero and Bayarri, 1994).

(a) Left truncation: it occurs when TR is infinite. Here we only

observe those individuals whose observed event time T exceeds

the truncation time YL, that is T > TL.

(b) Right truncation: it occurs when TL = 0, hence survival

times T are only observed when T ≤ TR.

2.3.1 Likelihood function

The likelihood function is a key element in the inferential process.

In the context of survival data analysis its construction requires

special attention because it depends on the type of censoring and

truncation observations. Assuming independency between lifetimes

and censoring, the likelihood of the parameters of the model can be

written by incorporating the corresponding elements such as:

(a) The density of of the survival time at the observed time t,

f(t), when the exact lifetime is known.

(b) The survival function at the censoring time, S(CR), in the case

of a right-censored observation.

(c) The cumulative distribution function at the censoring time,

F (CL) = 1−S(CL), in the case of a left-censored observation.
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2. Bayesian survival analysis 15

(d) The difference between the survival function at times S(CL)

and S(CR), in the case of an interval-censored observation

between CL and CR.

(e) The density of the survival time at observed time t conditional

on the survival time is greater than TL, f(t)/S(TL), in the case

of a left truncated observation in which T > TL.

(f) The density of the survival time at observed time t conditional

on the survival time is less than TL, f(t)/(1 − S(TR)), in the

case of a right truncated observation in which it is assumed

that T ≤ TR.

2.4 Survival distributions

In this Section we will present the most ususal probability

distributions in the survival analysis framework. Exponential,

Weibull, log-normal and log-logistic distributions are introduced

by means of their density, survival, hazard and cumulative hazard

function. All the information included here comes from Klein and

Moeschberger (2005) and Christensen et al. (2011).

2.4.1 Exponential distribution

The exponential distribution, (T | λ) ∼ Exp(λ), with λ > 0 as the

rate of failure, is a fundamental distribution in survival analysis

because of its historical significance, simplicity and important

properties. Its hazard, survival and density function are expressed,

respectivwly, as:

• f(t | λ) = λ e−λ t,
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16 2.4. Survival distributions

• S(t | λ) = e−λ t,

• h(t | λ) = λ.

Therefore, if we assume that the hazard rate is constant then the

survival times will follow an exponential distribution. Figure 2.1

shows density, survival and hazard functions for different values of

the parameter λ.

(a) f(t) (b) S(t) (c) h(t)

Figure 2.1: Density, survival and hazard function for the
exponential distribution Exp(λ) for different values of λ.

2.4.2 Weibull distribution

A more flexible choice than the exponential distribution is the

Weibull distribution, (T | α, λ) ∼ We(α, λ), with α > 0 and λ > 0,

as the shape and scale parameters, respectively. Its density, survival

and hazard function are:

• f(t | α, λ) = λαtα−1e−λt
α
,

• S(t | α, λ) = e−λt
α
,
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2. Bayesian survival analysis 17

• h(t | α, λ) = λαtα−1.

The Weibull distribution introduces more flexibility for the hazard

function, which can now be monotonically increasing if α > 1 or

decreasing if α < 1. Note that if α = 1 the Weibull distribution

reduces to the exponential distribution.

We illustrate some of the shapes of the density, survival and hazard

functions for different α and λ values in Figure 2.2.

(a) f(t) (b) S(t) (c) h(t)

Figure 2.2: Density, survival and hazard function for the
Weibull distribution We(α, λ) for different values of α and λ.

2.4.3 Log-normal distribution

The log-normal distribution, (T | µ, σ) ∼ LN(µ, σ), with µ ∈ R and

σ > 0 as the location and scale parameters, respectively, is another

reference distribution in survival analysis. Its density, survival and

hazard function are:

• f(t | µ, σ) = 1
t σ
√

2π
exp
{
− 1

2σ2 (log(t)− µ)2
}
,
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18 2.4. Survival distributions

• S(t | µ, σ) = 1 − Φ
[

(log(t)−µ)

σ

]
, where Φ(.) is the cdf for the

N(0, 1),

• h(t | µ, σ) = f(t | µ, σ)/S(t | µ, σ).

The hazard rate of the log-normal at time 0 is zero, it increases

to a maximum and then decreases to 0 as t approaches infinity.

Figure 2.3 shows the density, survival and hazard function for

different values of the parameters. Observe how the log-normal

model is not ideal to describe the lifetime distribution, because the

hazard, as t increases, is a decreasing function. This fact does not

seem reasonable, except in special cases in which larger values of t

are not considered (Perra, 2013).

(a) f(t) (b) S(t) (c) h(t)

Figure 2.3: Density, survival and hazard function for the
log-normal distribution LN(µ, σ) for different values of µ and

σ.

2.4.4 Log-logistic distribution

A random variable T is said to follow a log-logistic distribution T ,

(T | α, λ) ∼ LL(α, λ), with α > 0 and λ > 0, as the shape and scale
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parameters, respectively. Its density, survival and hazard function

are:

• f(t | α, λ) = αλ tα−1

(1+α tα)2
,

• S(t | α, λ) = 1
1+α tα

,

• h(t | α, λ) = αλ tα−1

1+α tα
.

The numerator of the hazard function is the same as the

Weibull hazard function but the entire hazard has the following

characteristics: monotone decreasing for α ≤ 1, while for α > 1 the

hazard rate increases initially to a maximum at time [(α− 1)/λ]1/α

and then decreases to zero as time approaches infinity. For this

reason, it presents the same problems that the log-normal model in

practical applications. Figure 2.4 shows the density, survival and

hazard function for different values of the parameters.

(a) f(t) (b) S(t) (c) h(t)

Figure 2.4: Density, survival and hazard function for the
log-logistic distribution LL(α, λ) for different values of α and

λ.
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20 2.5. Survival regression models

2.5 Survival regression models

In this Section we give a description of the survival regression models

that will be used in the following chapters. Firstly, we present the

most standard regression models: accelerated failure time (AFT)

and Cox proportional hazard (CPH) models. Then, we introduce

a general framework for to the joint models of longitudinal and

survival data, and the mixture cure rate models.

2.5.1 Accelerated failure time models

The AFT model mimics the general structure of linear models. It

is a log-linear-regression model for survival times T defined as,

log (T ) = µ+ x′β + σε, ε ∼ Fε(·) (2.13)

where µ is an intercept parameter, x is a vector with r covariates, β

is a vector of r regression coefficients, σ is a scale parameter, and ε

is a random error term with known baseline cdf Fε(·), density fε(·),
survival function Sε(·) and hazard function hε(·) = fε(·)/Sε(·).

For each distribution of the error term (ε), there is a corresponding

distribution for T . Common choices for the error distribution

include the standard normal distribution which yields a log-normal

AFT model, the logistic distribution, which yields a log-logistic AFT

model or the extreme value distribution, which yields a Weibull

AFT model. Table 2.1 summarizes common baseline distributions

for ε and their corresponding distributions of T . Textbooks of Cox

and Oakes (1984); Klein and Moeschberger (2005); Lawless (2011);

Collet (2015) contain further details of AFT models.
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Distribution for ε fε(u) Fε(u) Distribution for T

Standard Normal (2π)−1/2e−u
2/2 Φ(u) log-normal

Logistic(0,1) eu/(1 + eu)2 eu/(1 + eu) log-logistic

Standard Gumbel e−ue−eu 1− e−eu Weibull

Table 2.1: Relationship between the distribution of the random
error ε and the survival time T in an AFT model.

Survival, density and hazard function of exponential, Weibull,

log-logistic and log-normal AFT models are described without

covariate information in Section 2.4. Generally, covariate

information is usually included in a linear predictor which is additive

on the logarithmic transformation of the “scale” of the reference

distribution. Table 2.2 shows this information and the relationships

with the survival distributions introduced in Section 2.4. Note that

σ parameter refered to equation (2.13) has the following relationship

with the parameter α of the Weibull distribution σ = 1/α.

Model Naive distribution AFT distribution

Exponential Ex(λ) Ex(exp{−(µ+ x′β)})
Weibull We(α, λ) We(α, exp{−(µ+ x′β)α})
Log-normal LN(µ, σ) LN((µ+ x′β), σ)

Log-logistic LL(α, λ) LL(α, (µ+ x′β))

Table 2.2: Relationships between standard parametric survival
distributions and their corresponding AFT.

A key feature of the AFT models is that the effect of the

covariates on survival times T is expressed in the exponential scale

as exp{−x′β}. Hence, depending on the sign of the regression
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coefficients, the time is either accelerated or decelerated. This is the

main reason of the name, accelerated failure time, of these models.

A relevant quantity for AFT models is the Relative Median

(RM) between two individuals with covariate vectors x1 and x2,

respectively, which is defined as:

RM = exp{(x′1 − x′2)β}.

The survival, density and hazard function of T can be expressed

in relation to the distribution of the random error ε. The survival

function for the time to event T is:

S(t |x, µ,β, τ, Fε) = P (T > t | x, µ,β, τ, Fε)

= P (logT > log t | x, µ,β, τ, Fε)

= P ((logT − (µ+ x′β))
√
τ > (log t− (µ+ x′β))

√
τ | x, µ,β, τ, Fε)

= P (ε > (log t− (µ+ x′β))
√
τ | x, µ,β, τ, Fε)

= Sε((log t− (µ+ x′β))
√
τ | x, µ,β, τ, Fε). (2.14)

The density function of T is:

f(t | x, µ,β, τ, Fε) = d(F (t | x, µ,β, τ, Fε))/dt

= (
√
τ/t) fε((log(t)− (µ+ x′β))

√
τ). (2.15)

And the hazard function of T is:

h(t | x, µ,β, τ, Fε) =
f(t | x, µ,β, τ, Fε)
S(t | x, µ,β, τ, Fε)

=
(
√
τ/t) fε((log(t)− (µ+ x′β))

√
τ)

Sε((log(t)− x′β)
√
τ)

=
√

(τ/t)hε((log(t)− (µ+ x′β))
√
τ). (2.16)
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Although AFT models provide a direct extension of the classical

linear model for survival data, its use is restricted by the specific

distribution of the random error assumed.

2.5.2 Cox proportional hazards models

The main approach to model the effects of covariates in survival

models is through the hazard rate function. Two general classes

of models have been used to account for covariate effects in

survival analysis, which are the family of multiplicative hazard

models and the family of additive hazard rate models (Klein and

Moeschberger, 2005). The multiplicative hazard model is the most

popular approach and it is usually known as the Cox proportional

hazards model (CPH). Focused on the hazard function, Cox (1972)

introduced the proportional hazards model defined as:

h(t | h0,x,β) = h0(t) exp{x′β}, (2.17)

in which the hazard function is expressed as the product of a baseline

hazard function, h0(·), and an exponential term that contains

covariate information, exp{x′β}. Note that h0(·) is a completely

arbitrary hazard function that determines a baseline distribution

with density f0(·), cdf F0(·), and survival function S0(·), and β is a

vector of unknown parameters associated to covariates x.

The cumulative hazard function for the time to event T is,

H(t | h0,x,β) =
∫ t

0
h(s | h0,x,β) ds = exp{x′β}

∫ t
0
h0(s) ds

= exp{x′β}H0(t), (2.18)

whith H0(·) as the baseline cumulative hazard function.
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The survival function of T is:

S(t | h0,x,β) = exp [−H(t | h0,x,β)] = exp [−exp{x′β}H0(t)]

= exp [−H0(t)]exp{x′β} = [S0(t)]exp{x′β}. (2.19)

Consequently, if x′1β < x
′
2β then S(t | h0,x1,β) < S(t | h0,x2,β).

The density function of T is then:

f(t | h0,x,β) =h(t | h0,x,β)S(t | h0,x,β)

=h0(t) exp{x′β}[S0(t)]exp{x′β}. (2.20)

A relevant characteristic of the CPH model is that the hazard ratio

(HR) (relative risk) of an individual with risk factor x1 having the

event as compared to an individual with risk factor x2, i.e.,

HR(β,x′1,x
′
2) =

h(t | h0,x1,β)

h(t | h0,x2,β)
= exp{(x′1 − x′2)β}, (2.21)

is time independent.

The key assumption of equation (2.17) comes from the above

expression (2.21) and is based on the statement of the proportional

hazard condition:

h(t | h0,x1,β) = HR · h(t | h0,x2,β),

which assumes that survival curves for individuals with distinct

covariates never cross.

The plausibility of the proportional hazards assumption should

always be ckecked. There are different proposals in the literature

to assess it (Grambsch and Therneau, 1994), but generally it can

be checked graphically by examining different types of residuals. A
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typical graphical check used specially with categorical covariates,

is to plot log(−log(S(t, h0,β | x))) against t for the different

values of x. Note that −log(S(t, h0,β | x)) corresponds to

Cox-Snell residuals definition (Cox and Snell, 1968). Under the

proportional hazards assumption the curves should be separated by

a constant vertical deviation, equal to the effect β of the explanatory

variable. Thus if separation varies with time, or curves cross, the

assumption is not appropriate. For more than one explanatory

variables the plot could be done on combinations of possible values

of the variables (Kartsonaki, 2016). Bayesian computation of this

methodology is described in Wang et al. (2018).

A possible solution to a model for which the proportional hazards

assumption seems not to be plausible is to change the set of

covariates included in the model or alternatively to stratify by a

categorical variable. Stratification in this context means to group

individuals into strata and to allow a different baseline hazard h0k(·)
in each stratum k but to still assume that the effect of the covariates

on the outcome is the same for the entire dataset. It might also be

used if it is thought that there are differences between the groups

defined by the strata which cannot be fully accounted for by the

covariates (Kartsonaki, 2016).

To deal with interactions, another alternative can be the

introduction of time dependent covariates, which is an extension

of the standard Cox model (Therneau and Grambsch, 2013).

Remarkably, the automatic inclusion of time-dependent covariates

should be avoided because the Cox model only works properly

with exogenous covariates (Rizopoulos, 2012). A time-varying

covariate is considered as exogenous if its value at any time point

t is not affected by an event occurring at an earlier time point

s < t. Environmental factors as humidity, pollution levels or

temperature are some standard examples. Reversely, covariates
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measured for individuals in survival studies are endogenous. For

a more formal definition of exogenous and endogenous time-varying

covariates (see Kalbfleisch and Prentice (2002) and Rizopoulos

(2012)). In contrast, joint modeling of survival and longitudinal

data is a robust alternative modeling to introduce endogenous

time-dependent covariates (see Section 2.5.3 for further details) in

survival studies.

Regarding the AFT models described in Section 2.5.1, CPH models

are more flexible in the sense that baseline hazard function, h0(·),
can be specified both parametrically and non-parametrically (see

Chapter 4). It is worth mentioning that the case of a CPH model

with a Weibull baseline hazard function is equivalent to the AFT

Weibull model.

2.5.3 Joint models of longitudinal and survival

data

In many medical and biological studies, longitudinal and survival

data are frequently collected in the same period of time and

related to the main scientific questions of the study. Given the

association between both types of data, a separate analysis may

lead to inefficient or biased conclussions. Hence, joint models of

longitudinal and survival data are an alternative modeling option

that allows in a natural way the connection of both types of

information thus providing valid and efficient inferences.

Joint data analysis can aim for different objectives, longitudinal,

survival or both. In particular, when the analysis has a longitudinal

aim joint models allow for the introduction of informative dropouts

in the longitudinal scenarios by means of survival outcomes (Wu

and Carroll, 1988). By contrast, when the analysis is focused on
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survival interest, the joint analysis allows for the introduction of

endogenous temporal covariates defined in terms of longitudinal

information (Tsiatis et al., 1995). In addition, in other contexts,

the main objetive recalls in the association between the longitudinal

process and survival process.

Joint models for longitudinal and survival data are exppressed as a

full joint probability distribution for the longitudinal (y) and the

survival (s) process as well as for individual random effects (b)

and relevant parameters (θ). Particularly, that generic probability

distribution is usually factorized as follows:

f(y, s, b | x,θ) = f(y, s | b,x,θ, ) f(b | θ), (2.22)

where x are baseline covariates, f(y, s | b,θ,x) is the conditional

joint distribution of y and s given the random effects, parameters,

and covariates and f(b | θ) is the conditional distribution of the

random effects given the parameters of the model. The set of

covariates could also affect the particular specification of f(b | θ)

but it has been omitted in (2.22) for simplicity.

There are several approaches to properly model the correlation

between both processes. The most popular are the so-called

conditional models (Little, 2009), which include the random

pattern-mixture and the random selection models (Sousa, 2011),

the shared parameter formulation (Albert and Follmann, 2009), the

random effects models (Wu and Carroll, 1988) and the joint latent

class models (Proust-Lima et al., 2015). In this Section, we only

describe the shared parameter formulation because it is possibly

the one more prevalent in the literature and, moreover, it is the

approach we used in Chapter 6.

Shared-parameter models (Albert and Follmann, 2009) use random

effects as the common elements that connect the survival and
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the longitudinal processes, and provide conditional independence

between them in the form:

f(y, s | b,θ,x) = f(y | b,θ,x) f(s | b,θ,x). (2.23)

This generic type of model has been intensively used in a

great number of studies about the human immunodeficiency virus

infection carried out in the 1990s (DeGruttola and Tu, 1994). A

very appealing feature of it is that the separate interpretation of

the parameters in the longitudinal and the survival models is the

same that the one in the joint model (Verbeke and Davidian, 2009).

Furthermore, this model also allows to establish strong correlations

between the longitudinal and the survival processes.

Standard joint model formulation

In essence, a joint model is made of two submodels: a model for the

trajectory of the longitudinal measurements, a model for the event

occurrence, and some probabilistic element that connects them. A

basic version of a joint shared random effects joint model generally

expresses the conditional distribution of the longitudinal process,

f(y | b,θ,x), by means of q linear mixed-effects model (LMM) and

the conditional distribution of the survival outcomes, f(s | b,θ,x),

throughout a CPH model. Next we discuss with a more detail those

standard longitudinal and survival models, that obviously have to

be understood only as a basic specification with the only aim of

introducing them.

Longitudinal submodel

The longitudinal submodel for the longitudinal information

corresponding to the ith individual, i = 1, . . . , n, in the sample
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is given by(
yi(t) | µi(t), σ

)
∼ N

(
µi(t), σ

2
)
,(

µi(t) | bi,β
)

= β0 + b0i + (β1 + b1i) t,(
bi | σ0, σ1

)
∼ N

((
0, 0
)>
, diag (σ2

0, σ
2
1)
)
,

(2.24)

where yi(t) expresses the value of the longitudinal covariate for the

ith individual at time t, which is normally distributed with mean

µi(t) and variance σ2. The parameters β0 and β1 are regression

coefficients for the intercept and the slope of µi(t), respectively, and

b0i and b1i are their subsequent random effects. Random effects b0i

and b1i are considered as independent and normally distributed with

mean 0 and variances σ2
0 and σ2

1, respectively.

Survival submodel

The time-to-event modeling is expressed through the CPH Model

(see Section 2.5.2),

hi
(
t | h0, bi,γ, α0, α1

)
= h0(t) exp

[
x′iγ + α0b0i + α1b1it

]
, t ≥ 0,

(2.25)

where parameters α0 and α1 quantify the association between the

individual characteristics of the longitudinal outcome and the risk

for the survival event, xi represents the set of baseline covariates of

the ith individual and γ its corresponding coefficient vector.

2.5.4 Mixture cure rate models

In survival analysis, it is usually assumed that every individual in the

study is susceptible to experience the event of interest. However, this

assumption can be unrealistic in some specific situations in which

there is a subpopulation of individuals immune to the occurrence of

such event. The standard survival methodology is inappropriate
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to address them and it is necessary the incorporation of a cure

fraction in the survival model in order to assess the ability of a

certain “treatment” to “cure”. The existing statistical methodology

to handle such type of data is broad and is generally referred to as

cure rate models (Lambert, 2007).

In a cure model, the target population is considered as a mixture

of susceptible and non-susceptible (cured) individuals. Hence, the

main objective of this model is to provide a simultaneous estimation

of the proportion of “inmune” individuals and of the distribution of

the survival times for the “susceptible” ones. The standard mixture

model (Boag, 1949; Berkson and Gage, 1952) is the most common

cure survival model.

Let T a continuous and non-negative random variable that describes

the time-to-event of an individual in some target population. Let Z

a latent variable defined as Z = 0 if that individual is susceptible

of experiencing the event of interest and Z = 1 if she/he is cured or

immune for that event. If we define 1− η and η as the probabilities

for Z = 0 and Z = 1, respectively, the survival function for

individuals in the cured and uncured population, Sc(t) and Su(t)

are

Su(t) = P (T > t | Z = 0)

Sc(t) = P (T > t | Z = 1) = 1.

The general survival function for T can be expressed in terms of a

mixture of both cured and uncured populations in the form:

S(t | η, Su) = P (T > t) = η + (1− η)Su(t). (2.26)

It is important to point out that Su(t) is a proper survival function

but S(t) is not. It goes to η and not to zero when t goes to infinity.
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The cure fraction η is also known as the “incidence” model and the

time-to-event part (Su(t)) as the “latency” model .

This modeling representation makes use of the latent variable Z,

which classifies each observation to one of the two groups, uncured

and cured. Hence, mixture cure models are a combination of

two independent models, “incidence” and “latency”. Covariate

information can be included assuming two specific covariate vectors,

xc for the cure fraction and xu for the uncured survival function.

The general equation in (2.26) can be rewritten following a more

bayesian notation as:

S(t | x,θ) = η(z | xc,θc) + (1− η(z | xc,θc))Su(t | xu,θu) (2.27)

with x = (xc,xu) and general parametric vector θ = (θc,θu).

Generally, the effect of the covariate vector xc on the cure proportion

is typically modeled using a logistic link, although other link

functions such as the probit link or the complementary log-log

link can be used. Covariates in the uncured survival function

can be specified by means of the two main types of regression

survival models, which are the AFT models and the CPH model

(see Chapter 5 for further details).

2.6 Bayesian inference

2.6.1 Bayes' theorem

In bayesian inference, all types of uncertainty are always expressed

in terms of probability distributions (Schoot et al., 2014). There
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are three essential ingredients underlying the bayesian statistics

methodology (Bayes and Price, 1763; Stigler, 1986). The first

ingredient refers to all knowledge available before the data is

observed, which is expressed in the so-called prior distribution

π(θ), a probability distribution that contains all the available prior

information about the parametric vector θ. The second ingredient

is the information from the data D, whose relationship with the

unknown parametric vector is expressed in terms of the likelihood

function of θ (L(θ)). The third ingredient is obtained by combining

the first two elements. Prior distribution and the likelihood function

of θ are combined via Bayes' theorem and summarized by the

so-called posterior distribution π(θ | D), which is a compromise

between the prior knowledge and the experimental evidence. The

posterior distribution reflects the updated knowledge, balancing

prior knowledge with observed data.

All these ingredients are part of the Bayes' theorem, which states,

that our updated understanding of the parameters of interest

given our current data depends on our prior knowledge about the

parameters of interest weighted by the current evidence of the data,

i.e.,

π(θ | D) =
L(θ)π(θ)

m(D)
∝ L(θ)π(θ). (2.28)

Here, m(D) =
∫
L(θ)π(θ) dθ is the normalising constant, also

called model evidence or marginal likelihood of the data D (Robert,

2007). This constant makes the posterior distribution π(θ | D)

integrate to one. However, as it is referred in the second expression

of equation (2.28), m(D) can often be ignored and work in terms of

proportionality rather than equality.
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2.6.2 Sampling from the posterior distribution:

MCMC and INLA

Although the basis of the bayesian methodology is simple and

intuitive, its application to complex real problems in non-standard

probabilistic scenarios and high-dimensional problems was initially

very difficult (Robert, 2014). Particularly, in a great number of

models and applications, m(D) does not have an analytic closed

expression, and therefore the posterior distribution π(θ | D) does

not have a closed form (Ibrahim et al., 2001).

The intensive development of Markov chain Monte Carlo (MCMC)

sampling methods during last decades has made bayesian inference

a feasible methodology to solve properly many statistical problems.

Furthermore, other bayesian procedures such as the integrated

nested Laplace approximations (INLA) (Rue et al., 2009) have

gained importance. In the following paragraphs we describe briefly,

the most two habitual MCMC algorithms: Metropolis-Hastings

sampling (Metropolis et al., 1953; Hastings, 1970) and Gibbs

sampler (Gelfand and Smith, 1990), as well as the INLA

approximation and highlight the main differences between both

methodologies.

Markov chain Monte Carlo methods

MCMC simulation methods are a class of stochastic algorithms for

sampling from posterior distributions. These methods allow to draw

samples from some probability distribution without knowing their

exact density. Therefore, with MCMC we do not get a closed form of

the posterior but a sample of values from it. These samples can then

be directly used to obtain inferences upon key derived quantities of

interest (Jackson, 2015).
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Metropolis-Hastings

The Metropolis-Hastings (M-H) algorithm is possibly the most

general and simplest MCMC procedure. It basically constructs a

Markov chain whose limit distribution is the target density, that is,

the posterior distribution π(θ | D). The M-H algorithm begins with

an initial value θ(0) and specifies a rule for simulating values from

the target distribution based on a proposal density (a Markovian

kernel) q(· | ·). The algorithm can be described as

Step 0. Select and arbitrary starting point θ(0) and consider m = 0.

Step 1. Simulate a candidate value θ(∗) from the proposal density

q(θ(∗) | θ(m)) and an observation u from the uniform distribution

U(0, 1).

Step 2. Compute the acceptance probability

a(θ(∗),θ(m)) = min
( π(θ(∗) | D) q(θ(m)|θ(∗))

π(θ(m) | D) q(θ(∗)|θ(m))
, 1
)
,

and set θ(m+1) = θ(∗) if u ≤ a(θ(∗),θ(m)) and θ(m+1) = θ(m)

otherwise. Note that both posterior probabilities π(θ(∗) | D)

and π(θ(m) | D) can be approximated using Bayes' rule, hence

they would be proportional to the product of their corresponding

likelihood function and prior distribution.

Step 3. Consider m = m+ 1, and return to Step 1.

Gibbs sampler

Let π(θ | D) be the posterior distribution of the parametric

vector θ = (θ1, θ2, . . . , θp) given data D. The Gibbs sampler

is an algorithm which, at each iteration, draws a sample from

the distribution of each component of θ conditional on the rest
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of components, i.e., the full conditional. The algorithm can be

described as:

Step 0. We start with an arbitrary vector θ(0) = (θ
(0)
1 , . . . , θ

(0)
p )

and consider m = 0.

Step 1. Simulate θ(m+1) = (θ
(m+1)
1 , . . . , θ

(m+1)
p ) as follows:

• Simulate θ
(m+1)
1 from π(θ1|θ(m)

2 , . . . , θ
(m)
p ,D)

• Simulate θ
(m+1)
2 from π(θ2|θ(m+1)

1 , θ
(m)
3 . . . , θ

(m)
p ,D)

• Simulate θ
(m+1)
3 from π(θ3|θ(m+1)

1 , θ
(m+1)
2 , θ

(m)
4 . . . , θ

(m)
p ,D)

. . .

• Simulate θ
(m+1)
p from π(θp|θ(m+1)

1 , θ
(m+1)
2 , . . . , θ

(m+1)
p−1 ,D)

Step 2. Consider m = m+ 1, and return to Step 1.

Integrated nested Laplace approximation

The INLA approximation, proposed by Rue et al. (2009) and

implemented in the R-INLA package, is a numerical approximation

for bayesian inference. INLA uses Laplace approximations to

approximate the marginal posterior distribution of the relevant

components in θ (Laplace, 1986; Tierney and Kadan, 1986).

INLA is applicable to a very popular subset of structured additive

regression models named latent Gaussian models LGM) (Rue and

Held, 2005). Specifically, it can be applied only if these models

can be expressed as latent Gaussian Markov random field (GMRF)

because of their important computational properties (for details, see

Rue et al. (2009) ). Under these assumptions, they are a special class

of bayesian additive models that cover a wide range of applications
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(Rue et al., 2017), including survival models (see Martino et al.

(2011)).

The structure and main elements of the INLA approach are

summarised below. Let us assume a set of n variables T =

(T1, . . . , Tn) mutually conditionally independent given a latent

GMRF, θ, and a set of hyperparameters φ1. The latent GMRF, θ,

depends on hyperparameters φ2 and can include effects of different

types (regression coefficientes, random effects, seasonal effects, etc).

The joint posterior distribution for (θ,φ), where φ = (φ1,φ2),

after data D have been observed can be written as

π(θ,φ | D) ∝
n∏
i=1

Li(θ,φ1) π(θ,φ)

∝
n∏
i=1

Li(θ,φ1)π(θ | φ2) π(φ). (2.29)

The posterior marginal distributions of interest are π(θm | D) and

π(φj | D). They can be obtained as

π(θm | D) =

∫
π(θm | φ,D) π(φ | D) dφ, (2.30)

π(φj | D) =

∫
π(φ | D) dφ−j, (2.31)

where φ−j are all elements in φ except φj.

INLA makes use of the Laplace approximation (Rue et al., 2009)

to obtain approximations π̃(φ | D) and π̃(θm | φ,D) of π(φ | D)

and π(θm | φ,D), respectively. Posterior distributions π(θm | D) are

approximated by numerical integration as:
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π̃(θm | D) ≈
∑
k

π̃(θm | φk,D) π̃(φk | D) ∆k, (2.32)

where φk are points in the parametric space Φ and ∆k integration

weights. Posterior marginal distribution π̃(φk | D) can also be

derived by numerical integration according to the expression in

equation (2.31).



“Thesisfinal” — 2018/5/1 — 17:24 — page 38 — #74i
i

i
i

i
i

i
i



“Thesisfinal” — 2018/5/1 — 17:24 — page 39 — #75i
i

i
i

i
i

i
i

Chapter 3

Bayesian survival analysis

in plant breeding and food

microbiology

3.1 Introduction

Bayesian survival analysis has increased its popularity in many

fields of research. Its direct and intuitive quantification of the

uncertainty through explicit probabilistic inference, the flexibility

in the modeling, and the existence of specific software such

as WinBUGS (Lunn et al., 2000), JAGS (Plummer, 2003) or

INLA (Rue et al., 2009) have made possible its feasibility for both

practitioners and researchers.

We dedicate this Chapter to highlight the strong potential of

the bayesian methodology for dealing with survival studies in the

framework of two different scientific areas such as plant breeding and

food microbiology. Firstly, we illustrate the use of accelerated failure

time modeling (AFT) to evaluate a new plant variety for resistance

39



“Thesisfinal” — 2018/5/1 — 17:24 — page 40 — #76i
i

i
i

i
i

i
i
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and tolerance to a specific virus. MCMC simulation methods are

used to estimate the posterior distribution of the parameters of

interest and the frequentist approach is also considered to compare

the results. Secondly, we implement a Cox prorportional hazard

(CPH) model to assess virulence changes in a foodborne pathogen

as a consequence of different frequencies of application of a new

preservation treatment. Posterior inference is made with the

INLA approximation and MCMC to check how both methodologies

behave. We show a detailed comparison in which we highlight

strengths and weaknesses of both techniques.

3.2 Evaluating a new plant variety

against a virus disease

Virus diseases are one of the most important threats to large-scale

production of crops causing important economical losses and

undermining sustainability (Gallitelli, 2000). According to Lecoq

et al. (2004), introgression of genes conferring resistance and/or

tolerance by plant breeding is the most efficient and simplest

strategy for disease control. Most breeding programs are aimed

at finding and implementing resistance based on the absence

of systemic infection. However, new proposals suggest that

considering degrees of resistance (reduction of virus infectivity

and/or multiplication), and/or tolerance (reduction of symptom

severity) may be useful to rescue valuable phenotypes (Soler et al.,

2015).

The main scientific question addressed in this study was to evaluate

a new plant variety, characterised by its genotype, for resistance

and tolerance to a specific virus through a comparison with other
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well-known varieties. Resistance was defined as the time, in days,

from virus inoculation to virus infection and, tolerance, as the

time, in days, from virus inoculation to the appearance of severe

symptoms.

3.2.1 Resistance and tolerance data

Three genotype characterizations (G1 for susceptible plants, G2 for

resistant, and G3 for plants to evaluate) and two different virus

biotypes (V 1 with capacity to only infect plants G1 plants, and

V 2 with a resistance-breaking capacity to infect G2 plants) were

considered. A total of 180 plants with genotypes G1, G2 and

G3 were inoculated with virus biotypes V 1 and V 2 according to

a balanced two-factor factorial design which generated six groups

with 30 plants each.

All plants were evaluated in terms of resistance and tolerance

at monitoring times 7, 14, 21, and 28 days post inoculation

(dpi). Hence, both resistance and tolerance times were considered

interval-censored when the event of interest occurred between two

consecutive monitoring times or right-censored when it was not

observed at the end of the study (28 dpi). In both survival processes

time zero was synchronised with the time at which the virus was

inoculated.

Tables 3.1 and 3.2 show the observed resistance and tolerance

frequency, respectively, for the plants of each of the six groups

considered. Groups G2V 1 and G3V 1 contain a great number of

individuals right censored for both events. This is not the case of

the observations in the G1V 1 group where all plants experienced

both events before the end of the study. Remarkably, the number of

right censored plants for virus V 2 was at most 7 in nearly all groups.
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However, in the G3V2 group neither of the plants developed severe

symptoms.

Genotype Virus (0, 7] (7, 14] (14, 21] (21, 28] 28<

G1 V 1 8 14 7 1 0

V 2 21 9 0 0 0

G2 V 1 0 0 0 0 30

V 2 2 12 3 6 7

G3 V 1 1 2 1 3 23

V 2 2 12 3 6 7

Table 3.1: Frequency of resistance survival times regarding to
plant genotype and virus biotype.

Genotype Virus (0, 7] (7, 14] (14, 21] (21, 28] 28<

G1 V 1 0 2 23 5 0

V 2 1 3 26 0 0

G2 V 1 0 0 0 0 30

V 2 0 4 11 15 0

G3 V 1 0 0 0 0 30

V 2 0 0 0 0 30

Table 3.2: Frequency of tolerance survival times regarding to
plant genotype and virus biotype.

3.2.2 Modeling

Resistance and tolerance times are analysed independently through

an accelerated failure time (AFT) model (see Section 2.5.1 for
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further details of this type of modeling):

logTi =µ + x′iβ + σεi, i.i.d. εi ∼ Sε(·) (3.1)

= βG1V 1 + βG2V 1 IG2V 1(i) + βG3V 1 IG3V 1(i) + βG1V 2 IG1V 2(i)+

βG2V 2 IG2V 2(i) + βG3V 2 IG3V 2(i) + σ εi,

where Ti can be for resistance or tolerance time for individual i,

i = 1, . . . , n. Note that, in both modelings, the baseline covariates

are indicator variables for identifying the relevant plant genotype

and virus biotype combination in the study. G1 plants inoculated

with biotype V 1 (G1V 1) was considered the reference category, and

hence, it was introduced as the intercept term µ = βG1V 1. The

distribution Sε(·) was specified as a standard Gumbel distribution

implying a conditional (on the vector β of all regression coefficients

and σ) Weibull survival model for Ti with shape α = 1/σ and scale

λ(µ,β) = e−(µ+x′iβ)/σ parameters (Christensen et al., 2011).

Both bayesian models were completed with the specification of

a prior distribution for their corresponding parameters. A prior

independent default scenario was considered. The marginal prior

distribution for each regression coefficient βGjVk , j = 1, 2, 3, k = 1, 2,

was elicited as a normal distribution centered at zero and a wide

variance, π(βGjVk) = N(0, 1000). A uniform distribution Un(0, 100)

was selected as the marginal prior distribution for σ. Note that all

marginal prior distributions are scarcely informative. This fact is

even more evident due to the logarithmic scale for the survival times

that compacts the information.

The likelihood function of (µ,β, σ) for the observed data D is the

product of the likelihood function for each individual. Individual

time-to-event data are right or interval censored. A right censored

data corresponds to individuals that have not experienced the
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event of interest at the end of the period of the study, 28 dpi.

Its contribution to the likelihood is P (Ti > 28 | xi, µ,β, σ), its

survival function at 28 dpi. Interval censored data for individual

i arises when the event of interest occurred between the current

monitoring time (tiu) and the previous one (til) and its contribution

to the likelihood is Si(til | xi, µ,β, σ) − Si(tiu | xi, µ,β, σ) with

Si(t | xi, µ,β, σ) as the survival function for individual i, Si(t |
xi, µ,β, σ) = exp{− t(1/σ) e−(µ+x′iβ)/σ}. Consequently

L(µ,β, σ) =
n∏
i=1

Li(µ,β, σ) (3.2)

=
R∏
i

Si(28 | xi, µ,β, σ)
I∏
i

[Si(til | xi, µ,β, σ)− Si(tiu | xi,β, σ)],

where R is the set of right (interval) censored data and I is the set

of interval censored data.

3.2.3 Posterior inferences

For each model, the posterior distribution of the parameters was

estimated by means of MCMC methods with the WinBUGS

software (Lunn et al., 2000). Specifically, simulations were run

considering three Markov chains with 100,000 iterations and a

burn-in period with 10,000. In addition, the chains were thinned by

keeping every 10th iteration in order to reduce autocorrelation in the

saved sample and avoid space computer problems. Trace plots of the

simulated values of the chains seem to appear overlap one another,

indicating stabilization. Convergence of the chains to the posterior

distribution was assessed using the potential scale reduction factor,

R̂, and the effective number of independent simulation draws, neff.

In all cases, the R̂ values were equal or close to 1 and neff > 100,
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thus indicating that the distribution of the simulated values between

and within the three chains was practically identical, and that

enough MCMC samples had been obtained, respectively (Gelman

and Rubin, 1992).

Both models were also estimated using the frequentist approach

in order to compare bayesian and frequentist results. Frequentist

estimation was performed through the function survreg in the

survival R package (Therneau, 2015; Therneau and Grambsch,

2013).

Results are arranged in two parts for tolerance and resistance

separately. However, as both survival times were studied with the

same type of model, outcomes are both presented following the same

scheme to detect similarities and differences between them. We

focused on the effect of covariates on the estimated probabilities

of remaining free of infection and free of the appearance of severe

symptoms. A Section for comparing bayesian and frequentist results

is also included.

Resistance

Posterior summaries of the estimated posterior distribution for the

regression coefficients and the error scale parameter are shown

in Table 3.3. Genotype plants G1 shows the shortest resistance

times among the plants inoculated with V 1. Posterior probabilities

P (βG2V 1 > 0 | D) = 1 and P (βG3V 1 > 0 | D) = 1 provide strong

evidence that G2 and G3 plants show a better resistance behaviour

compared to G1 under V 1 infection. In addition, genotype G2 is the

most resistant variety with P (βG2V 1 > βG3V 1 | D) = 1 despite of the

wide variability of its estimated coefficient. Under biotype infection

V 2, resistance is worse for all genotypes although G3 genotype
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improves resistance in relation to G2 (P (βG3V 2 > βG2V 2 | D) =

0.99).

Parameter Mean Sd CI95% P (· > 0)

βG1V 1 2.27 0.12 [2.02, 2.51] 1.00
βG2V 1 4.97 1.24 [2.62, 7.00] 1.00
βG3V 1 1.64 0.26 [1.15, 2.24] 1.00
βG1V 2 -0.66 0.15 [-0.96, -0.36] 0.00
βG2V 2 0.22 0.16 [-0.08, 0.55] 0.93
βG3V 2 0.65 0.16 [0.34, 0.98 ] 1.00
σ 0.55 0.06 [0.46, 0.67]

Table 3.3: Summary of the MCMC estimated posterior
distribution for the resistance model: mean, standard deviation,
95% credible interval, and posterior probability that the
subsequent parameter is positive. Group G1V 1 is the reference

category.

Figure 3.1 shows the posterior mean of the probability of remaining

free of infection over time (from 0 to 28 dpi) for each genotype

plant under virus infection V 1 and V 2. For both virus biotypes, G1

plants show the lowest probability values in all the monitoring times

(7, 14, 21 and 28 dpi). Plants G2 exhibit the highest probability

values under V 1 infection and G3 under V 2 infection. Remarkably,

the pattern of the differences between genotypes G2 and G3 under

virus V 1 and V 2 is very different. Under V 2 infection, differences

among posterior probabilities (in favour of no infection for G3) are

stable enough from 14 dpi and for any time they exceed the value of

0.27. In the case of V 1, there is an increasing difference over time in

favour of no infection for G2 with a maximum distance of 0.21 at 28

dpi. Posterior mean of the probability of remaining free of infection

decreases with time for all genotypes under infection V 2 highlighting

V 2 resistance-breaking capacity. At 14 dpi (the midpoint of the

monitoring times), the estimated mean of that probability is 0.26,
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1, and 0.93 for groups G1V 1, G2V 1 and G3V 1, and 0.02, 0.40, and

0.65 for G1V 2, G2V 2 and G3V 2, respectively.

(a) V 1 infection (b) V 2 infection

Figure 3.1: Posterior mean of the probability of remaining free
of infection over time (from 0 to 28 dpi) for G1 (in solid red line),
G2 (in solid green line) and G3 (in dotted orange line) genotypes
under infection V 1 and V 2. Monitoring times 7, 14, 21 and 28

dpi are highlighted with dots.

Tolerance

Table 3.4 shows a summary of the posterior distribution for the

regression coefficients and the error scale parameter in the AFT

model for tolerance times. Estimation in terms of the sign of the

posterior outcomes are quite similar to the subsequent results of

the resistance model, but we can also appreciate some noticeable

differences. It is worth mentioning the similar effect of biotype V 1 on

G2 and G3 plants and the overwhelming estimated effect related to

G3 genotype under V 2 infection. Plants G3 show a similar tolerance

pattern for both virus biotypes.

The posterior mean of the probability of remaining free of the

appearance of severe symptoms during the period of the study (from
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Parameter Mean Sd CI95% P (· > 0)

βG1V 1 2.91 0.04 [2.84, 2.98] 1.00
βG2V 1 3.90 1.77 [1.08, 6.95] 1.00
βG3V 1 4.09 1.74 [1.16, 6.93] 1.00
βG1V 2 -0.12 0.05 [-0.23, -0.03] 0.00
βG2V 2 0.12 0.05 [0.02, 0.21] 1.00
βG3V 2 4.00 1.81 [1.07, 6.89] 1.00
σ 0.15 0.02 [0.12, 0.19]

Table 3.4: Summary of the MCMC approximate posterior
distribution for the tolerance model: mean, standard deviation,
95% credible interval, and posterior probability that the
subsequent parameter is positive. Group G1V 1 is the reference

category.

0 to 28 dpi) for biotype and virus groups is displayed in Figure 3.2.

Under V 1 infection, plants G2 and G3 exhibit similar probability

values, very close to one. They are higher than the subsequent

for G1 values, which show a decreasing trend with a strong slope

between 14 and 21 dpi’s. Plants G1 and G3 behave analogously

under V 1 and V 2 infection. However, probabilities for G2 are

very different for both virus: G2 is similar to G3 for infection V 1

but its behaviour changes under V 2 infections. In particular, G2

shows a decreasing probability of remaining free of infection from

14 dpi on, which at the end of the monitoring time is equal to the

value of variety G1. At 14 dpi (the midpoint of the monitoring

times), the posterior mean of the probability of remaining free of

the appearance of severe symptoms is 0.89, 1, and 1 for G1V 1,

G2V 1 and G3V 1 crosses, and 0.77, 0.95, and 1 for G1V 2, G2V 2

and G3V 2, respectively.
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(a) V 1 infection (b) V 2 infection

Figure 3.2: Posterior mean of the probability of remaining free
of the appearance of severe symptoms over time (from 0 to 28
dpi) for G1 (in solid red line), G2 (in solid green line) and G3
(in dotted orange line) genotypes under infection V 1 and V 2.
Monitoring times 7, 14, 21 and 28 dpi are highlighted with dots.

Resistance and tolerance: frequestist and bayesian

modelings

Results in this subsection are focused on the frequentist approach to

the resistance (Table 3.5) and the tolerance (Table 3.6) AFT model.

Both tables try to reproduce the structure of Table 3.3 (bayesian

resistance model) and Table 3.4 (bayesian tolerance model) with

regard to the frequentist concepts (estimate, standard error, 95%

confidence interval, and p-value) which could be considered (in a

not rigorous and very broad sense) as somehow parallel to bayesian

posterior mean, standard deviation, 95% credible interval, and

posterior probability for a positive regression coefficient.

At first glance, most of the numerical (but not conceptual) results

provided by the two inferential approaches seem not to be very

different. But a more leisurely observation of them shows relevant

differences in the punctual and interval estimation of the regression
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Parameter Estimate Sd. error CI95% p-value

βG1V 1 2.47 0.10 [2.27, 2.67] < 0.05
βG2V 1 11.54 2523.17 [-4933.79, 4956.87] 1.00
βG3V 1 1.55 0.24 [1.09, 2.02] < 0.05
βG1V 2 -0.65 0.15 [-0.94, -0.35] < 0.05
βG2V 2 0.22 0.14 [-0.06, 0.49] 0.13
βG3V 2 0.63 0.15 [0.34, 0.93] < 0.05
log(σ) -0.65 0.10 < 0.05

Table 3.5: Summary of the regression parameter estimation for
the resistance model under the frequentist approach: estimate,
standard error, 95% confidence interval and p-value. Group

G1V 1 is the reference category.

Parameter Estimate Sd. error CI95% p-value

βG1V 1 2.97 0.03 [2.90,3.03] <0.05
βG2V 1 3.60 1710 [-3340.72,3347.92] 1.00
βG3V 1 3.60 1710 [-3340.72,3347.92] 1.00
βG1V 2 -0.12 0.05 [-0.22,-0.02] <0.05
βG2V 2 0.12 0.05 [0.02,0.21] <0.05
βG3V 2 3.60 1710 [-3340.72,3347.92] 1.00
log(σ) -1.92 0.11 <0.05

Table 3.6: Summary of the regression parameter estimation
for the tolerance model under the frequentist approach:
estimate, standard error, 95% confidence interval and p-value.

Group G1V 1 is the reference category.

coefficients, particularly in those groups in which all the observations

were right censored. This is the case of the G2V 1 group for the

resistance model and groups G2V 1, G3V 1 and G3V 2 for tolerance.

In the case of the resistance model for group G2V 1, the punctual

frequentist and bayesian estimates are very different 11.54 and 4.97

dpi, respectively. But the more relevant differences are in variability,

with enormous confidence intervals and p-values close to 1. This is
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also the case of the frequentist results for tolerance in groups G2V 1,

G3V 1 and G3V 2, all having the same enormous 95% confidence

interval.

The inferences achieved indicate that the AFT frequentist model

has difficulties in the estimation corresponding to groups with data

with very little signal. This is not the case of the bayesian analyses

that accommodate very well for the particular data of the study.

This situation agrees with the general comment in Ibrahim et al.

(2001) about the advantages of the bayesian methodology over the

frequestist in survival analysis with regard to estimation problems

in the presence of complex censoring data. Moreover, the bayesian

results are more compatible with the agronomic expectations based

on preliminary studies.

3.2.4 Discussion

Agronomical conclusions indicated that genotype G3 did not

suppose an improvement in terms of resistance with respect to

G2. However, they showed a very high tolerance to the specific

virus considered. This process is not easy because it is necessary

to identify the sources of tolerance and subsequently select the

appropriate procedures to be included in the study.

Bayesian survival regression models provide a useful tool for

quantifying differences among the different genotype × virus

biotype groups as well as to assess the degree of resistance and

tolerance. They also make possible the incorporation of censoring

and truncation mechanisms that are frequent in this type of studies

with good inference results. Frailty models (Christensen et al., 2011)

are a future line of work in order to approach a more suitable model

that can better capture all the uncertainties of the real problem.
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3.3 Assessing virulence changes in a

foodborne pathogen

Increased consumption of fresh fruits and vegetables has been

associated with a rise in foodborne disease outbreaks (Olaimat and

Holley, 2012). Salmonella spp., specifically the serotype Salmonella

enterica serovar Typhimurium (S. Typhimurium), is one of the most

habitual serotypes related to salnonellosis outbreaks.

Different alternative preservation treatments have been developed

to reduce or eliminate S. Typhimurium load and also preserve food

properties. The addition of bioactive substances from nature or

agroindustrial by-products with antimicrobial effect (Viuda-Martos

et al., 2008) as well as the application of non-thermal

treatments (Mosqueda-Melgar et al., 2012) are some of the

innovative techniques that are currently being tested against

S. Typhimurium. However, these treatments have important

drawbacks because their repeated use can generate serious

antimicrobial resistance problems (Kisluk et al., 2013; Vanlint,

2013), such as changes in virulence patterns.

Host organisms are frequently used to study the multi-factorial

nature of the microbial pathogenicity and, in consequence, to assess

virulence. The natural feeding (bacteria) of the host organisms is

replaced by the pathogen organism which is going to be assessed.

Hence, virulence assays are based on the study of the ability of the

foodborne pathogen to kill the host organism and, in particular,

virulence is assessed by means of the analysis of host organism life

span after infection.

In the case of S. Typhimurium, Caenorhabditis elegans (C. elegans),

a nematode that inhabits soils around the world, is considered a
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good model (Aballay et al., 2000; Labrousse et al., 2000) to explore

the pathogenesis of S. Typhimurium by making the worms feed on

the pathogen and not Escherichia coli (strain OP50), its usual

laboratory food.

A common goal in virulence studies is the comparison of survival

profiles among the different treatment and control groups. Most

of the studies in the area only use Kaplan-Meier estimation to

construct graphs of the observed survival curves and the log-rank

test (Chai-Hoon et al., 2010; Sem and Rhen, 2012) to compare

survival curves from two different groups. Survival regression

models are rarely used and Cox proportional hazards (CPH) models

are in general the frequent option.

The standard of the CPH models in virulence studies is based on

the so called partial likelihood that does not take into account the

specification of the baseline hazard function (Cox, 1972) (See Yang

et al. (2011); Han et al. (2016); Ziehm and Thornton (2013) for

online applications OASIS, OASIS2, and SurvCurv, respectively).

This approach makes impossible the estimation of all the outcomes

of interest, such as hazard and survival curves for relevant covariate

patterns (Royston, 2011). Additionally, in the context of microbial

virulence the baseline hazard function, h0(t), can be considered as

a meaningful measure of the natural course of the infection.

3.3.1 Virulence data

Virulence data came from an experiment designed to assess the

effect of the use of a cauliflower by-product infusion treatment in

S. Typhimurium virulence behavior. One and three expositions to

the treatment were evaluated as well as a pathogen population non

exposed to the treatment that was considered as the control group.
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Each group (S. Typhimurium non treated, S. Typhimurium treated

once, and S. Typhimurium treated three times) was the source of

nutrition of 250 synchronized young adult nematodes. All worms

were kept in identical environmental conditions (20oC) during all

their lifespan (three weeks as maximum approximately). Virulence

was defined in terms of their subsequent survival time which was

individually evaluated at intervals of between 48 and 56 hours.

Worms were placed in plates to facilitate its monitoring. Survivor

worms at the times of each observation period were always

transferred to a new plate to avoid confusions and interferences with

the eggs laid by them. The experiment finished when all the worms

eventually died. It is worth to mentioning that a small amount of

worms accidentally died during the transfer process (see Sanz-Puig

et al. (2017) for more details about the validation and special

conditions of the experiment).

Due to the experimental collection strategy, survival data accounted

for interval and right-censored patterns. The vast majority of

the data were interval-censored, which means that the relevant

information about the subsequent survival times is that the events

can occur between two consecutive monitoring times and in this

study are very closed to each other. The number of right censored

data, which belonged to survival times of worms killed accidentally

during the transfer between plates, was scarce: 0, 1, and 5

individuals for S. Typhimurium non treated, S. Typhimurium

treated once and S. Typhimurium treated three times, respectively.

Figure 3.3 shows the individual life span, in days, of the worms

of the sample (ranked in increasing order) according to each

S. Typhimurium population considered. Lifetimes pattern for

individuals feed on S. Typhimurium were generally lower than the

ones of the experimental groups, with median survival time 5 days
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compared to medians 8 and 8 days for S. Typhimurium exposed

once or three times, respectively. Differences between the survival

patterns of the worms feed on S. Typhimurium treated one and

three times are practically imperceptible and seem to indicate a

high degree of similarity between them.

(a) (b) (c)

Figure 3.3: Ranked survival times, in days, for individuals feed
on a) untreated S. Typhimurium, b) S. Typhimurium exposed
one time, and c) S. Typhimurium exposed three times to the

antimicrobial treatment.

3.3.2 Modeling

Virulence times (worms lifespan) are modelled by means of a CPH

model (see Section 6 on Chapter 2 for further details of these

models),

hi(t | h0,xi,β) = h0(t) exp{x′i β}
= h0(t) exp{β1 I1(i) + β3 I3(i)}, (3.3)

where the baseline hazard function is specified by means of a

Weibull distribution with hazrad function h0(t | α, λ) = λα tα−1,

β = (β1, β3), and covariate vector xi which includes both treatment
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groups in terms of dummy variables, I1(i) for S. Typhimurium

treated one time and I3(i) for S. Typhimurium treated three times.

It is important to highlight that hi(t | ·) = h0(t) in the case of

untreated S. Typhimurium, which acts as the control group, hi(t |
·) = h0(t) exp{β1 I1(i)} when S. Typhimurium is exposed one time

to the antimicrobial treatment, and hi(t | ·) = h0(t) exp{β3 I3(i)}
when it is exposed three times. This fact indicates that the

specification of a baseline hazard function, h0(t), in our study

is a relevant issue of the statistical modeling. We will return

to these data in Chapter 4 to discuss different parametric and

non-parametric proposals for h0(t) that have been widely used

within the bayesian literature.

It is known that the Bayes theorem combines the prior distribution

of the unknown elements in the model and the likelihood function

of them for the observed data to compute the posterior distribution

π(h0,β | D) ∝ L(h0,β) π(h0,β),

where L(h0,β) is the likelihood function of all unknown elements in

h0(t) and β (h0,β), for data D, and π(h0,β) the prior distribution.

The prior distribution was elicited considering a prior independent

default scenario among the parameters associated to the baseline

hazard function and the regression coefficients. Prior independence

was also reckoned between the regression coefficients within a non

informative scenario, with normal distributions centered at zero and

a wide known variance:

π(h0,β) = π(α) π(log(λ))π(β1) π(β3)

= Ga(α | 0.01, 0.01) N(log(λ) | 0, 1000) N(β1 | 0, 1000) N(β3 | 0, 1000).

(3.4)
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The likelihood function L(h0, β) for the observed data, D, can be

expressed as the product of the likelihood for each individual. For

right censored observations, its contribution to the likelihood is

its corresponding survival function, P (Ti > ti | xi, h0 β). The

contribution to the likelihood function of an interval censored

observation is the difference between its corresponding survival

functions evaluated in the lower (til) and upper (tiu) monitoring

times, Si(til | xi, h0 β)− Si(tiu | xi, h0 β). Consequently,

L(h0,β) =
n∏
i=1

Li(h0,β) (3.5)

=
R∏
i

Si(ti | xi, h0,β)
I∏
i

[Si(til | xi, h0,β)− Si(tiu | xi, h0,β)],

where R (I) is the set of right (interval) censored data, and the

survival function for individual i

Si(t | xi, h0,β) = exp{−H0(ti)exp{x′iβ}}, t > 0, (3.6)

with H0(t) =
∫ t

0
h0(u) du as the cumulative baseline hazard

function, that in the case of the Weibull baseline hazard function is

H0(t) = λtα, t > 0.

3.3.3 Posterior inferences

Bayesian inference has also been performed using INLA

approximation by means of the R-INLA package, in which Weibull

CPH models are properly implemented (see Martino et al., 2011, for

further details of INLA implementation). Results are discussed in

terms of posterior inferences for the regression parameters as well as
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posterior hazard and survival distributions with regard to covariate

patterns of interest. Note that the plausibility of the proportional

hazards assumption has been checked.

Furthermore, the model has been also estimated by means of

MCMC simulation using WinBUGS software (Lunn et al., 2000).

Specifically, simulations were run considering three Markov chains

of 100,000 iterations with a burn-in period of 10,000, thinning each

10th iteration. All posterior samples showed good convergence

properties with values of the potential scale reduction factor R̂

values equal or close to 1 and effective number of independent

simulation draws greater than 100 (neff > 100). Hence, a subsection

for comparing INLA and MCMC is also included where we highlight

similarities and discrepancies between INLA and MCMC approaches

as well as their subsequent strengths and weaknesses in bayesian

inference.

Regression coefficients

Table 3.7 summarizes the estimated posterior marginal distribution

of the regression coefficients, π(β1 | D) and π(β1 | D).

Parameter Mean Sd CI95% P (· > 0)
β1 -0.452 0.091 [-0.631,-0.273] 0
β3 -0.422 0.091 [-0.601,-0.243] 0

Table 3.7: Summary of the marginal posterior distribution
for the regression parameters: mean, standard deviation, 95%
credible interval, and posterior probability that the parameter is

positive.

The last column of Table 3.7 shows that the regression parameters

associated to changes in virulence, have posterior probabilities

associated to negative values close to one. The estimated model
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clearly indicates a relevant and negative effect of the alternative

antimicrobial treatment applied once ([-0.631, -0.273] is a 95% CI).

The marginal posterior distribution associated to β1 is concentrated

on real negative values and therefore exhibits a shrinkage of the

hazard function with regard to the one corresponding to the

untreated S. Typhimurium. Hence, when the foodborne pathogen

is exposed to the antimicrobial treatment the infection hazard

decreases, so S. Typhimurium seems to become less virulent than

in untreated conditions. Posterior values associated to β1 and β3

are similar thus practically reporting no changes in the virulence

behaviour.

Hazard and survival function

Figure 3.4a shows the mean of the posterior distribution of the C.

elegans hazard function, π(h(t) | D), for each of the two cauliflower

by-product infusion treatments as well as the control group. The

posterior mean of the hazard function associated to the control

group is a monotonic increasing curve. Obviously, this monotonic

trend is a direct consequency of the previous specification of the

Weibull hazard baseline model.

Figure 3.4b presents the posterior mean of the survival function

distribution, π(S(t | h0, β) | D), for C. elegans fed with each

microbial populations. It is hard to distinguish between survival

prospects related to both cauliflower treatments. In fact, the

posterior mean of the survival probability at day 2, 12 and 22 is

0.869, 0.260, 0.055 for S. Typhimurium treated one time, and 0.865,

0.249, 0.051 for S. Typhimurium treated three times, respectively.

With regard to the control group, the survival probabilities are lower

than the ones of both cauliflower treatments, with posterior median

survival probabilities 0.802, 0.121, and 0.011 at day 2, 12 and 22,
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(a) (b)

Figure 3.4: (a): Mean of the posterior distribution for
the hazard function of C. elegans fed with untreated S.
Typhimurium (in red), S. Typhimurium treated one time (in
purple), and S. Typhimurium treated three times (in green).
(b): Mean of the posterior distribution for the survival function
of C. elegans fed with untreated S. Typhimurium (in red), S.
Typhimurium treated one time (in purple) and S. Typhimurium

treated three times (in green).

respectively. Again, the results corroborate that the repetitively

application of the antimicrobial treatment does not seem to have

consequences on the virulence of S. Typhimurium.

INLA and MCMC comparison

MCMC sampling procedures were also used for bayesian inference.

Results in this subsection are focused on comparing INLA and

MCMC outcomes. Figure 3.5 shows the posterior marginal

distribution of the regression coefficients approximated by INLA

(black solid line) and MCMC-based density estimates (red dashed

line). INLA and MCMC marginal posterior distributions for β1

and β2 are in almost perfect agreement, but in terms of speed,

the respective model could be fitted in roughly 0.50 seconds on
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an IntelCore i7-7700 3.60 GHz processor, while MCMC sampling

required approximately 14 minutes.

Figure 3.5: Posterior marginal distributions approximated
by INLA (black solid line) and MCMC (red dashed line) for

regression parameters associated to β1 and β3.

Regarding posterior estimates of the hazard function and survival

probabilities, INLA and MCMC obviously, displays similar results

as it can be observed in Tables 3.8 and 3.9. However, it is worth

mentioning that in case of the INLA approach, computation of the

posterior marginals of certain derived quantities such as hazard

functions and survival probabilities is not directly available in

INLA default outcomes. It can be done by means of the function

inla.posterior.samples(), with which it is possible to generate

n samples, from the approximated joint posterior distribution of the

fitted model. These samples can then be further processed to derive

quantities of interest. Remarkably, we have noted that accuracy and

uncertainty of the samples are influenced by the number of samples

generated (n), being necessary to account this.
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Model Group t = 2 t = 12 t = 22

INLA

ST0 0.139 [0.120, 0.160] 0.223 [0.191,0.260] 0.263 [0.217, 0.316]

ST1 0.089 [0.076, 0.103] 0.142 [0.124,0.163] 0.168 [0.141, 0.198]

ST3 0.091 [0.078, 0.106] 0.147 [0.127,0.169] 0.173 [0.145, 0.204]

MCMC

ST0 0.139 [0.120, 0.159] 0.223 [0.190,0.259] 0.263 [0.217, 0.315]

ST1 0.089 [0.076, 0.103] 0.142 [0.123,0.163] 0.167 [0.140, 0.197]

ST3 0.091 [0.078, 0.106] 0.146 [0.127,0.167] 0.172 [0.145, 0.202]

Table 3.8: INLA and MCMC mean and 95% credible interval
of the posterior distribution for the hazard function at days 2, 12
and 22 days of treatments untreated S. Typhimurium (ST0), S.
Typhimurium treated one (ST1) and S. Typhimurium treated

three times (ST3).

Model Group t = 2 t = 12 t = 22

INLA

ST0 0.802 [0.769, 0.833] 0.120 [0.090,0.154] 0.011 [0.005, 0.019]

ST1 0.869 [0.843, 0.892] 0.260 [0.217,0.305] 0.055 [0.036, 0.079]

ST3 0.865 [0.839, 0.888] 0.249 [0.207,0.293] 0.051 [0.032, 0.073]

MCMC

ST0 0.802 [0.769, 0.833] 0.121 [0.090,0.157] 0.011 [0.005, 0.020]

ST1 0.869 [0.843, 0.891] 0.260 [0.218,0.304] 0.056 [0.036, 0.079]

ST3 0.866 [0.839, 0.889] 0.250 [0.209,0.294] 0.051 [0.033, 0.073]

Table 3.9: INLA and MCMC mean and 95% credible interval
of the posterior distribution for the survival function at days 2,
12 and 22 days of treatments untreated S. Typhimurium (ST0),
S. Typhimurium treated one (ST1) and S. Typhimurium treated

three times (ST3).

3.3.4 Discussion

The bayesian CPH model seems to be an appropiate methodology to

assess virulence changes in the field of Pathogenicity and Microbial

Virulence. Results indicate that the virulence of S. Typhimurium

decreases when it is treated with cauliflower by-product infusion but

also that the repetitively application of this antimicrobial treatment

does not seem to have additional consequences in its virulence.
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The INLA approach seems to be a fast alternative to MCMC,

although we can not forget that MCMC is an asimptoticaly

exact method whereas INLA is an approximation. Regarding the

computations of derived quantities, in MCMC-based analysis it is

easy to obtain them as of the parameter samples being possible its

direct specification through the model syntax. While in INLA, it is

necessary to make use of the simulation to obtain samples of the joint

posterior distribution to compute quantities of interest. Remember

that the posterior marginal distribution of non-linear combinations

between different latent components are not direct available in INLA

outcomes.

The bayesian approach allows the easy implementation of the

baseline hazard function in the model definition, which allows

the estimation and prediction of hazard and survival curves for

given covariate patterns. However, other parametric as well as

non-parametric options can be easily specificated.

In the modeling presented, we have chosen the Weibull distribution

as the default option. However, since in that context, the baseline

hazard function is considered as a meaningful measure of the natural

course of the infection, in Chapter 4 we address the influence

of baseline hazard specification in the whole inferential process

comparing different baseline hazard definitions (parametric and

non-parametric specifications) using this dataset as an illustrative

example.



“Thesisfinal” — 2018/5/1 — 17:24 — page 64 — #100i
i

i
i

i
i

i
i



“Thesisfinal” — 2018/5/1 — 17:24 — page 65 — #101i
i

i
i

i
i

i
i

Chapter 4

Baseline hazard functions in

the bayesian Cox

proportional hazards model

4.1 Introduction

The Cox proportional hazards (CPH) model (Cox, 1972; Cox and

Oakes, 1984) is the most popular regression model in survival

analysis. It expresses the hazard function h(t) of the survival time of

each individual of the target population as the product of a common

baseline hazard function h0(t), which determines the shape of h(t),

and an exponential term which includes the relevant covariates, and

possibly, other effects.

The estimation of the regression coefficients in the CPH model

under the frequentist approach can be obtained without specifying

a model for the baseline hazard function by using partial likelihood

methodology (Cox, 1972). However, depending on the context of

the study, the baseline hazard misspecification can imply a lost of

65
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66 4.1. Introduction

valuable model information that makes impossible to fully report

the estimation of the outcomes of interest, such as probabilities and

survival curves for relevant covariate patterns (Royston, 2011). This

is specially important in survival studies where h0(t) represents the

natural course of a disease or an infection, or even the control group

when comparing several treatments. Bayesian Inference provides a

natural framework to jointly analyse all elements and uncertainties

involved in the statistical modeling. In particular it allows in a

natural manner, the analysis of both parametric and non-parametric

baseline hazard functions.

Parametric approaches imply restricted shapes which do not enable

the presence of irregular patterns (Dellaportas and Smith, 1993; Kim

and Ibrahim, 2000). Non-parametric choices result in more flexible

baseline hazard shapes (Sahu et al., 1997; Ibrahim et al., 2001) but

which may suffer from overfitting and unstability (Breiman, 1996).

Regularization methods try to modify the estimation procedures

to give reasonable answers to these type of situations. Bayesian

reasoning usually accounts for regularization through the prior

distribution.

In this Chapter, we have a twofold objective: assessing the

role of the baseline hazard function specification as well as the

effect of regularization for non-parametric proposals in the CPH

inferential process. We illustrate our objectives by means of

two different studies: the first one is based on a real data set

which collects information about a virulence assay in the context

of food microbiology and the second one is a simulation study.

We consider two different flexible specifications for h0(t) that

allow for multimodal patterns: a mixture of piecewise constant

functions (Sahu et al., 1997) and a cubic B-spline function (Hastie

et al., 2009). We set regularization considering different prior

scenarios which vary the great flexibility provided by prior
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independence to some particular correlated structures. A baseline

hazard Weibull distribution, the usual parametric proposal for h0(t)

given its ability to represent different types of monotonic risks, is

also included for comparison purposes.

4.2 Baseline hazard functions

Chapter 2 introduces extensively the CPH model. Recall that it

expresses the hazard function of the survival time

h(t | h0,x,β) = h0(t) exp{x′ β}, (4.1)

as the product of a baseline hazard function, h0(·), and an

exponential term where x is a vector of covariates and β is

the vector of regression coefficients. Here, we deepen into the

baseline hazard function definition. We describe three paradigmatic

proposals, one parametric based on the Weibull distribution and

two non-parametric ones, a mixture of piecewise constant functions

and a cubic B-spline function.

Weibull baseline hazard functions

The baseline hazard function corresponding to a Weibull

distribution, We(α, λ), with shape and scale parameter α > 0 and

λ > 0, respectively, is:

h0(t | α, λ) = λα tα−1, t > 0. (4.2)

This is a traditional model for survival data in biometric

applications. It is very appealing due to its computational
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simplicity, especially in small-sample settings, and flexibility

in representing different types of risks, but always within the

monotonicity (Lee et al., 2016).

Mixture of piecewise constant functions

This proposal is based on piecewise functions defined by polynomial

functions. They generate a flexible framework for modeling

univariate survival data and have a long tradition (Henschel et al.,

2009; Ibrahim et al., 2001) in the bayesian survival literature as

alternative models to the Weibull h0(t). The overall shape of the

baseline hazard function does not have to be imposed in advance as

with the parametric models.

We assume a finite partition of the time axis with knots c0 ≤ c1 ≤
. . . ≤ cK , where c0 = 0, and cK is usually taken as the last observed

survival or censoring time. The hazard function is a flexible mixture

of piecewise constant functions defined as

h0(t | ϕ) =
K∑
k=1

ϕk I(ck−1,ck](t), t > 0, (4.3)

where ϕ = (ϕ1, . . . , ϕK), I(ck−1,ck](t) is the indicator function

defined as 1 when t ∈ (ck−1, ck] and 0 otherwise. This baseline

hazard function is usually known as piecewise constant function

(PC from now on) because it is assumed to be constant within the

K predetermined intervals (ck−1, ck] for k = 1, 2, . . . , K.

Cubic B-spline functions

We assume the same finite partition of the time axis specified for the

PC baseline hazard function. The spline function for the baseline

hazard function is usually defined in logarithmic scale (Murray et al.,
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2016) to accommodate for normality the subsequent selection of

prior distributions. It is defined as

logh0(t | γ) =
K+3∑
k=1

γk B(k,4)(t), t > 0, (4.4)

where γ = (γ1, . . . , γK+3), and {B(k,4)(t), k = 1, ..., K+ 3} is a cubic

basis of B-splines with boundary knots c0 and cK and internal knots

ck, k = 1, .., K − 1 (Hastie et al., 2009). It is worth noting that the

definition of this B-spline function needs the augmentation of the

original knot sequence c = (c0, c1, . . . , cK) to the new one τ defined

as

τ1 ≤ . . . ≤ τ4 ≤ c0,

τj+4 = cj, j = 1, 2, . . . , K − 1,

cK ≤ τK+4 ≤ . . . ≤ τK+7. (4.5)

This modeling strategy in known as a piecewise cubic B-spline

function (PS from now on). Note that functions in the hazard

function shown in equation (4.3) are also B-spline functions, in

particular B-splines of order 1.

4.2.1 Regularization

We considered a prior independent default scenario between the

parameters associated to the baseline hazard function and the

regression coefficients associated to covariates. We also reckoned

prior independence between the regression coefficients within a non
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informative scenario, with normal distributions centered at zero and

a wide known variance:

π(h0,β) = π(h0) π(βj) = π(h0)
∏J

j=1 N(βj | 0, σ2
j ). (4.6)

It is worth noting that π(h0) represents the prior distribution of all

relevant parameters and hyperparameters in h0(t).

PC and PS baseline hazard functions can accommodate different

shapes depending on the characteristics of the partition of the time

axis. This is a relevant issue with a great research activity: Breslow

(1974) considers various failure times as end points of intervals;

Kalbfleisch and Prentice (1973) support that the selection of the

grid should be made independently of the data; Henschel et al.

(2009) fix the intervals assuming the condition that all the intervals

contain comparable information, i.e. similar number of events; and

Lee et al. (2016) avoid reliance on fixed partitions of the time scale

by introducing the number of splits as a parameter to be estimated.

When K is large, all kind of shapes of h0(t) tend to be similar.

However, too small choices of K will lead to poor model fitting.

In addition, it is important to point out that in the cases where

the number of parameters is greater than the number of data we

would need some shrinkage or regularization procedure, which in

the bayesian setting is usually carried out by means of informative

prior distributions that restrict the freedom of the parameters.

The elicitation of prior distributions for PC and PS baseline

hazard functions includes different prior distributions proposals for

coefficients ϕ and γ, respectively. They range from a default

situation of prior independence among all the coefficients to

correlated prior distributions that account for shape restrictions in

order to avoid overfitting and strong irregularities in the estimation

process.
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We consider four prior scenarios for baseline hazard functions

defined in terms of a mixture of piecewise constant functions. They

are based on different correlation patterns among the coefficients

associated to the piecewise functions.

Scenario PC1. Independent gamma prior distributions

π(ϕk) = Ga(ηk, ψk), k = 1, 2, ....K. (4.7)

This is the most flexible and general prior scenario. A common

selection is ηk = ψk = 0.01 (Sahu et al., 1997).

Scenario PC2. Independent gamma prior distributions defined

by means of a discrete-time Gamma process prior (Ibrahim et al.,

2001) for the cumulative hazard baseline function.

π(ϕk) = Ga(w0 η0 (ck − ck−1), w0 (ck − ck−1)), k = 1, . . . , K. (4.8)

All these marginal prior distributions share the same prior

expectation, η0, but the prior variance of each ϕk is inversely

proportional to the corresponding interval length, ck − ck−1. The

selection w0 = 0.01 is a usual value which provides a high level

of uncertainty to the prior. We will assume the ad hoc proposal

by Christensen et al. (2011) for the elicitation of η0 that considers

η0 = 0.69315/t̃, where t̃ is the median survival time of the reference

group.

Scenario PC3. Correlated conditional gamma prior distributions

π(ϕk | ϕ1, . . . , ϕk−1) = Ga(ηk, ηk/ϕk−1), k = 2, . . . , K. (4.9)
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This prior is based on a discrete-time martingale process (Sahu

et al., 1997) which correlates coefficients of adjacent intervals so that

E(ϕk | ϕ1, . . . , ϕk−1) = ϕk−1 and Var(ϕk | ϕ1, . . . , ϕk−1) = ϕ2
k−1/ηk.

The parameter ηk is very important because it controls the level

of smoothness, which decreases when ηk goes to zero. A common

elicitation is ηk = 0.01, k = 2, . . . , K and π(ϕ1) = Ga(0.01, 0.01).

Scenario PC4. Correlated conditional normal prior distributions

for the coefficients in logarithmic scale

π(log (ϕk) | ϕ1, . . . , ϕk−1) = N(log (ϕk−1), σ2
ϕ), k = 2, . . . , K,

(4.10)

with π(log (ϕ1)) = N(0, σ2
ϕ). This is also a proposal based on a

discrete-time martingale process. It comes from the areas of spatial

statistics (Banerjee et al., 2014) and bayesian B-splines (Lang

and Brezger, 2004) where it is more known as a first-order

random walk. Correlation between the log(ϕk)’s corresponding

to neighboring intervals is expressed assuming conditional normal

prior distributions.

Non-informative prior distributions for the variance σ2
ϕ have been

generally taken as inverse gamma distributions, IG(ν0, ν0), with

small values for ν0. However, there are some research that

questions the role of these distributions for describing lack of prior

information. Gelman (2006) proposes the use of proper uniforms and

half-t distributions for the standard deviations as sensible choices

for non-informative priors, which understand as reference models

to be used as a standard of comparison or a starting point of the

inferential process (Bernardo, 1979).

We also considered different prior specifications for the coefficients

associated to the baseline hazard function of the PS modeling
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following the idea of smoothing its level of flexibility and prevent

overfitting. These scenarios are not a mere repetition of those

considered for PC baseline hazard functions. They have been

chosen because they are usual proposals in the statistical literature

regarding cubic B-splines especifications.

Scenario PS1. Independent normal prior distributions

π(γk) = N(0, σ2
k), k = 1, . . . , K + 3. (4.11)

This is the most simple scenario, similar to PC1, in which γk are

considered independent and normally distributed with a known and

wide variance.

Scenario PS2. Hierarchical normal prior distributions

π(γk | σ2
γ) = N(0, σ2

γ), k = 1, . . . , K + 3, (4.12)

where σ2
γ is the common and unknown variance population. As

mentioned before, a usual election for the hyperprior distribution

for σ2
γ is an inverse gamma distribution or also a proper uniform

distribution (Gelman, 2006).

Scenario PS3. Correlated conditional normal prior distributions

defined as

π(γk | γ1, . . . , γk−1) = N(γk−1, σ
2
γ), k = 2, . . . , K + 3, (4.13)

and based on a first order Gaussian random walk which involves

an intrinsic Gaussian Markov random field as the conditional joint

prior distribution for the spline coefficients given σ2
γ. This proposal

comes from the so called bayesian P-splines (Lang and Brezger, 2004;
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Fahrmeir and Kneib, 2011) and has been widely used in bayesian

spatial statistics (Banerjee et al., 2014), where it is usually expressed

in terms of conditional distributions in the form

π(γk | γ−k) = N(
1

2
(γk−1 + γk+1), 2σ2

γ), k = 2, . . . , K + 3, (4.14)

where γ−k denotes all splines coefficients except γk. Popular

marginal prior distributions choices for σγ that try to be as

neutral as possible are Ga(1, 0.0005) (Lang and Brezger, 2004) and

Ga(0.001, 0.001) as a default option in the software BayesX (Belitz

et al., 2015). This scenario is analogue to Scenario PC4.

Consequently, all the discussion regarding the elicitation of the prior

distribution for the variance σ2
γ (precision or standard deviation τγ

and σγ, respectively) also applies here.

4.2.2 Likelihood function

The model needs to be formulated on data D = {(ti, δi,xi), i =

1, . . . , n}, where ti is the observed survival time for the ith

individual, δi the indicator taking 1 if the event has occurred and 0

otherwise, and xi the subsequent covariates or risk factors.

The likelihood function of (h0,β) for D which, in the absence of tied

observations, is defined by Ibrahim et al. (2001) as

L(h0,β) =
n∏
i=1

h0(ti)
δi exp{−H0(ti)}[exp{x′i β}]δiexp{exp{x′i β}},

(4.15)
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with H0(t) =
∫ t

0
h0(u) du as the cumulative baseline hazard

function.

In the case of the Weibull hazard baseline function, the cumulative

baseline hazard function is:

H0(t) = λtα, t > 0. (4.16)

When the baseline function is defined via mixture of piecewise

constant functions,

H0(t) =
∑k−1

m=1 ϕm(cm − cm−1) + ϕk(t− ck−1), (4.17)

ck−1 ≤ t < ck, k = 1, . . . , K.

The expression of the cumulative baseline hazard for the h0(t)

defined in terms of cubic B-spline functions needs to take into

account some properties of B-splines (Boor, 1978). In particular,

H0(t) =

∫ t

0

K+3∑
k=1

γk B(k,4)(u)du =
K+4∑
k=1

φk B(k,5)(t), (4.18)

with φ1 = 0, and

φm+1 =
τm+1 − τ5

4

m∑
j=1

γj, m = 1, 2, . . . , K + 3

Note that H0(t) in (4.18) is defined in terms of B-splines of order

5 which need to add two additional nodes to the augmented knot

sequence τ in (4.5).
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4.3 Virulence in foodborne pathogens

study

4.3.1 Database

A dataset involving a virulence assay is taken into account to

explore the different baseline hazard specifications presented above

for the CPH model. The data came from an experiment designed

to assess the effect of the use of a cauliflower by-product infusion

treatment in S. Typhimurium virulence behaviour. Salmonella

enterica serovar Typhimurium (S. Typhimurium) is currently

one the most usual serotypes related to salmonellosis outbreaks

and cauliflower by-product infusion treatment is an alternative

preservation treatment against it. The experiment pays special

attention to the effect of a reiterative use of the preservation

treatment in the virulence behaviour.

One and three expositions to the treatment were evaluated as

well as a pathogen S. Typhimurium population non-exposed to

the treatment that was considered as the control group. A

nematode, Caenorhabditis elegans (C. elegans) was the host model

used for quantifying virulence of S. Typhimurium. Each group,

S. Typhimurium non treated (ST0 ), S. Typhimurium treated once

(ST1 ), and S. Typhimurium treated three times (ST3 )) was the

source of nutrition of 250 synchronized young adult nematodes

kept in identical environmental conditions (20oC) during all their

lifespan (three weeks as maximum approximately). Virulence for

each worm was defined in terms of their subsequent survival time

(see Sanz-Puig et al. (2017) for more details about the validation

and special conditions of the experiment).
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4.3.2 Modeling

We modeled virulence for each worm i by means of the following

CPH model

hi(t | h0,xi,β) = h0(t) exp{β1 I1(i) + β3 I3(i)}, (4.19)

where I1(i) and I3(i) are dummy variables for groups ST1 and ST3,

respectively. It is important to highlight that hi(t | ·) = h0(t) in

the case of the group ST0, which acts as the control group, hi(t |
·) = h0(t) exp{β1 I1(i)} when ST1, and hi(t | ·) = h0(t) exp{β3 I3(i)}
when S. Typhimurium is exposed three times, ST3.

We assumed for PC and PS baseline hazard functions a common

finite partition of the time axis with K = 10, 9 internal knots and

c10 = 24.50 days, which was the longest survival time observed. As

recommended by Murray et al. (2016), we selected the intervals of

the partition with the same length, 2.45 days.

4.3.3 Posterior inferences

We carried out eight survival inferential processes which where the

result of the combination of the three generic specifications of the

baseline hazard function presented above with the different prior

scenarios. The posterior distribution for each model was estimated

through the JAGS software (Plummer, 2003). For each estimated

model, we run three parallel Markov chains with 50,000 iterations

plus 5,000 dedicated to the burn-in period. Moreover, the chains

were additionally thinned by storing every 10th iteration in order to

reduce autocorrelation in the sample. Convergence was guaranteed

monitoring that the potential scale reduction factor R̂ were close to
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1 and the effective number of independent simulation draws higher

than 100 (neff > 100).

Regression coefficients

We first focus on the posterior stability of the posterior distribution

for the regression coefficients as well as the behaviour of the

subsequent marginal posterior distribution for the baseline hazard

function and for the survival function.

Discrepancies between the posterior marginal distributions for the

regression coefficients associated to groups ST1 and ST3. π(β1 | D)

and π(β3 | D), are only the result of the different specifications

for h0(t) and its prior distribution. Figure 4.1 shows the posterior

mean and a 95% credible interval for the coefficients associated to

experimental groups ST1 and ST3. The first thing that attracts our

attention is that both graphics are almost equal, thus indicating

no substantial changes in the virulence when the antimicrobial

treatment is applied one or three times. Secondly, it is clearly

appreciated that PC2 model shows marginal posterior results very

different (near zero) than those for the rest of models, which provide

quite similar inferences. PS models give very stable results with

slightly lower values than PC1, PC3 and PC4 models. Weibull and

PC inferences (except PC2 model) are closer than PS models, with

a very broad degree of overlap in both posterior estimations.

Results from scenario PC2 need a bit of attention. The marginal

prior distribution for each ϕk is Ga(0.00304, 0.0245), with prior

expectation and variance 0.1242 and 5.0646, respectively. It is

derived from a discrete-time Gamma process prior, (see expression

(4.8), constructed from the sample median t̃0 = 5.58 days and the

election of w0 = 0.01 and η0 = 0.69315/5.58 = 0.1242. This is an
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informative prior greatly skewed in favour of values near zero and

low variability which acts as a dominant element in the inferential

process. Both posteriors, concentrated around zero, would indicate

no differences in the lifetime of the worms in the experimental groups

with regard to the control group. This would be a strong conclusion.

(a) β1 (b) β3

Figure 4.1: Posterior mean and 95% credible interval for the
regression coefficients β1 (a) and β3 (b) associated to groups ST1
and ST3, respectively, for all survival models under evaluation.

Baseline hazard and baseline survival functions

Below we discuss the posterior distribution for the baseline hazard

and the survival function of the different models of the study.

Figure 4.2 is a matrix of figures. Row one is for Weibull baseline

hazard, row two for piecewise constant, and row three for cubic

B-spline specification. Each figure shows the mean of the logarithm

of the baseline hazard function, which is also the hazard function

associated to control group.

Parametric and non-parametric specifications of the baseline hazard

report different shapes of the log baseline hazard function. The
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Weibull model displays an increasing monotone log hazard behavior

with a mild concavity profile which seems to be levelling off from

the eighth day approximately. All PC and PS models report an

increasing convex-exponential pattern with different intensities. PC

models, show, in general similar results for all prior scenarions,

even model PC2, which had shown remarkable differences for the

coefficient regression estimates. PS models show more irregularities

that PC models as a consequence of its definition in terms of cubic

splines, possibly more flexible than piecewise constant functions.

It is interesting to note that the hierarchical modelling in PS2

introduce scarce differences with regard to the independent PS1

scenario. In the case of PS3 we can appreciate a patternmuch more

smoothed than the ones in PS1 and PS2 scenarios.
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(a) We

(b) PC1 (c) PC2 (d) PC3 (e) PC4

(f) PS1 (g) PS2 (h) PS3

Figure 4.2: Posterior mean and 95% credible interval for
the log baseline hazard function, log(h0(t)), under the different
modeling scenarios (row one is for the We model, row two for

PC models, and row three for PS models).
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(a) We

(b) PC1 (c) PC2 (d) PC3 (e) PC4

(f) PS1 (g) PS2 (h) PS3

Figure 4.3: Posterior mean and 95% credible interval for the
baseline survival, S0(t), function under the diferent modeling
scenarios (row one is for the We model, row two for PC models,

and row three for PS models).

Hazard information (even logarithmic transformation) is usually

difficult to interpret and that is why the survival function is in

general a more widely output of interest. Figure 4.3 describes

graphically the posterior mean and 95% credible intervals (CI) of the

posterior distribution of the baseline survival function and Table 4.1

shows the posterior mean and 95% CI at days 2, 12, and 22. These
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outputs confirm the fact that the particular choice of h0 is relevant in

the posterior distribution π(S0(t) | D). PC models present similar

inferences, except for PC2, as we expected. PS models also show

close outcomes.

Model t = 2 t = 12 t = 22

We 0.841 [0.813, 0.866] 0.139 [0.106,0.174] 0.011 [0.006, 0.020]

PC1 0.824 [0.792, 0.852] 0.222 [0.203,0.241] 0.008 [0.004, 0.012]

PC2 0.961 [0.956, 0.965] 0.401 [0.343,0.458] 0.051 [0.026, 0.084]

PC3 0.824 [0.793, 0.853] 0.237 [0.193,0.284] 0.012 [0.005, 0.022]

PC4 0.819 [0.787, 0.848] 0.233 [0.190,0.281] 0.011 [0.004, 0.021]

PS1 0.811 [0.776, 0.844] 0.171 [0.134,0.214] 0.001 [0.000, 0.002]

PS2 0.801 [0.772, 0.841] 0.167 [0.130,0.208] 0.000 [0.000, 0.002]

PS3 0.806 [0.772, 0.839] 0.173 [0.134,0.215] 0.000 [0.000, 0.003]

Table 4.1: Mean and 95% credible interval of the posterior
baseline survival probabilities at days 2, 12 and 22 for the eight

estimated models.

Model selection criteria

We considered the deviance information criterion

(DIC) (Spiegelhalter et al., 2002) and the log pseudo-marginal

likelihood (LPML) (Geisser and Eddy, 1979) for model selection.

DIC measures the information of a model by means of its

deviance penalized with regard to its complexity. LPML is

based on predictive criteria. It combines, in a logarithmic scale,

the conditional predictive ordinate value (CPO) associated to

observations of each individual (Gelfand, 1996). Smaller values

for DIC are preferred, while LPML larger values indicate better

predictive performance.

Table 4.2 shows the DIC and LPML values corresponding to

all estimated models. Results indicate that PS baseline hazard
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functions exhibit better behaviour (lower DIC and larger LPML

values) than Weibull or PC specifications. In addition, the PS3

model, in which the prior distribution is defined through a first

order random walk for the coefficients of h0(t), has the lowest DIC

and the largest LPML. Differences among PS models are not very

important and not only because of DIC differences are less than 2

but also because all PS models report similar inferences. Weibull

hazard modeling is the second best choice (supported by DIC and

LPML criteria) while PC models are the worst, in particular the

PC2 model, with DIC and LPML values that differ substantially

from the rest of the PC models. According to model selection, it is

important to point out the necessity to also consider the nature of

the problem to tackle. In that example, the baseline hazard reflects

the natural course of the infection, and it seems reasonable that PS

models reflect very well that process.

Model DIC LPML

We 4553.309 -2276.334

PC1 4751.743 -2373.499

PC2 4939.347 -2467.535

PC3 4751.913 -2373.565

PC4 4750.871 -2373.198

PS1 4461.602 -2231.980

PS2 4461.333 -2231.770

PS3 4459.937 -2229.443

Table 4.2: DIC and LPML values for the survival models
defined by means of different specifications of the baseline hazard

function.
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4.4 Simulation study

In this Section, we explore the impact of the baseline hazard

specification in the whole inferential process, specifically in the

posterior estimates of the regression coefficients as well as in the

posterior distributions for the hazard and survival function. For

this purpose, we conduct three simulation studies (based in three

different baseline hazard definitions) to assess the performance of

the generic modelings (We, PC and PS ) previously developed in

this Chapter.

4.4.1 Simulation scenarios

Under three simulation scenarios survival times have been obtained

from a generic CPH model:

h(t | h0,x,β) = h0(t) exp{x′1 β1}. (4.20)

The baseline hazard funcion for each simulated scenario is

(a) Scenario 1, a standard Weibull distribution with increasing

hazard funtion (α = 1.5 and λ = 0.5).

(b) Scenario 2, a mixture of piecewise functions.

h0(t | ϕ) =
3∑

k=1

ϕk I(ck−1,ck](t), t > 0,

with three pieces, ϕ1 = 0.5 in 0 < t ≤ 0.4, ϕ2 = 2.5 in

0.4 < t ≤ 1 and ϕ3 = 1.5 in t > 1.
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86 4.4. Simulation study

(c) Scenario 3, a mixture of two Weibull distributions with shape

and scale parameters, α1, α2, λ1 and λ2, respectively, and a

mixing probability parameter p,

h0(t | α1, α2, λ1, λ2) =

λ1 α1 t
α1−1 p exp{−λ1 t

α1}+ λ2 α2 t
α2−1 (1− p) exp{−λ2 t

α2}
p exp{−λ1 tα1}+ (1− p) exp{−λ2 tα2}

with α1 = 3, λ1 = 0.1, α2 = 1.6, λ2 = 0.1 and p = 0.8.

All the scenarios included a binary treatment covariate drawn from a

Bernoulli distribution with probability 0.5, Be(0.5), with associated

log-hazard ratio β1 = 1. We apply administrative right censoring

at time (CR) which was previously fixed for each scenario from the

following restriction S0(CR) = 0.1, where S0(·) denoting the baseline

survival function. For each scenario we generated 100 replicates,

each one with sample size of N = 100.

We analyse each simulated dataset via the eight generic modeling

proposed in this Chapter (We, PC1, PC2, PC3, PC4, PS1, PS2

and PS3 ). It is worth mentioning that for the estimation of models

PC and PS for the data in Scenarios 1 and 3, we assume a finite

partition of the time axis c0 ≤ c1 ≤ . . . cK with K = 10 knots defined

according to the theoretical baseline hazard function from which

the data have been simulated. Concretely, each ck−1, defined for

k = 1, . . . , 10, was assigned considering S0(ck−1) = 1− 0.09 (k − 1).

4.4.2 Generating survival times

We follow the inversion method (Bender et al., 2005; Austin, 2012;

Crowther and Lambert, 2013) to simulate survival data for Scenario
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1 and Scenario 2. The method is based on using the relationship

F (T ) = U for t ≥ 0, where F (t) represents the cumulative

distribution function (CDF) of a survival random variable T , and

U is a standard uniform random variable. Hence, solving T =

F−1(U) we can obtain a random draw from the distribution of

T . This procedure can be directly applied when the cumulative

hazard function has a closed form expression and can be directly

inverted. It is easily implemented in any standard software with

a random number generator, and in the case of the R software (R

Core Team, 2013) we can use the simsurv (Brilleman, 2018) and

SimSCRPiecewise (Chapple, 2016) packages.

Specifically, for the Scenario 3 in which a more complex baseline

hazard function is considered, the inversion method is not directly

suitable. The cumulative hazard function has a closed form

expression, but it can not be directly inverted. We must use iterative

root-finding techniques (Crowther and Lambert, 2013) to solve it.

This procedure is implemented for the R software (R Core Team,

2013) in the simsurv (Brilleman, 2018) package. Further details of

the inversion method and its corresponding extension to simulate

complex baseline hazard functions are described in Appendix A.

4.4.3 Posterior inferences

Each simulation dataset was used to estimate different survival Cox

models based on the three generic specifications of the baseline

hazard function and the different prior scenarios discussed in

the first part of this Chapter. We have obtained the posterior

distribution by using JAGS software (Plummer, 2003). For the

estimation of the uncertainties in each model, we have run three

parallel chains with 20,000 iterations plus 2,000 (10%) dedicated to

the burn-in period. Moreover, the chains were additionally thinned
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by storing every 10th iteration in order to reduce the autocorrelation

of the sample. In all inferential process, the convergence of the

chains to the posterior distribution was guaranteed by monitoring

that the potential scale reduction factor R̂ were close to 1 and the

effective number of independent simulation draws, neff > 100.

4.4.4 Regression coefficients

Remember that we ran 100 replicates of each inferential process,

and consequently, we had 100 approximate random samples of the

subsequent posterior distributions. Next, we present in a very simple

and general notation the 100 replicates of the approximate marginal

posterior sample for a generic regression coefficient β. In particular,

a replica is represented by {β(r)
1 , . . . , β

(N)
r } with r = 1, . . . , 100 and

N the size of each posterior sample.

We considered four different measures for assessing the stability of

the posterior distribution for the regression coefficients:

• Bias. It is the difference between the average of the posterior

means of the replicas and the true regression coefficient,

(
∑R

r=1 β̄r/R)−β, where R is the number of replicas, R = 100,

and β̄r the sample mean of the posterior sample corresponding

to the replica r.

• Standard error (SE). It is the square root of the average of the

posterior variances of the replicas,
√∑R

r=1 s
2
r/100, where s2

r

is the sample variance of the posterior sample for the replica

r.

• Standard deviation (SD). It is defined as the standard

deviation of the set that includes the posterior mean of the

regression coefficient of all replicas.
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• Coverage probability (CP). It is the proportion of the R = 100

replicate 95% credible intervals which contain the true value

of the regression coefficient.

Tables 4.3, 4.4 and 4.5 display the values of the Bias, SE, SD

and CP referred to the three simulation scenarios, respectively.

It is important to note that the only regression coefficient in the

model (4.20) is β1, which corresponds to the binary covariate x1.

Model Bias SE SD CP

We -0.011 0.218 0.214 0.96

PC1 -0.137 0.223 0.202 0.93

PC2 0.488 0.250 0.352 0.54

PC3 -0.136 0.224 0.203 0.94

PC4 -0.282 0.224 0.194 0.77

PS1 -0.014 0.224 0.225 0.94

PS2 -0.176 0.221 0.216 0.84

PS3 -0.024 0.225 0.222 0.94

Table 4.3: Bias, SE, SD and CP corresponding to all inferential
and replicate processes for the regression coefficient β1 of the

simulated model (4.20) under simulation Scenario 1.
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Model Bias SE SD CP

We -0.024 0.221 0.219 0.95

PC1 -0.988 0.208 0.123 0.00

PC2 0.045 0.282 0.365 0.89

PC3 -0.988 0.208 0.123 0.00

PC4 -0.998 0.200 0.114 0.00

PS1 0.034 0.227 0.242 0.95

PS2 0.021 0.224 0.229 0.95

PS3 0.032 0.228 0.240 0.95

Table 4.4: Bias, SE, SD and CP corresponding to all inferential
and replicate processes for the regression coefficient β1 of the

simulated model (4.20) under simulation Scenario 2.

Model Bias SE SD CP

We 0.147 0.227 0.200 0.95

PC1 -0.089 0.224 0.180 0.98

PC2 0.366 0.234 0.285 0.65

PC3 -0.089 0.224 0.180 0.98

PC4 -0.165 0.222 0.171 0.94

PS1 0.019 0.224 0.200 0.99

PS2 -0.038 0.225 0.193 0.99

PS3 0.048 0.228 0.200 0.98

Table 4.5: Bias, SE, SD and CP corresponding to all inferential
and replicate processes for the regression coefficient β1 of the

simulated model (4.20) under simulation Scenario 3.

The Weibull modeling of the baseline hazard function in Scenario

1 produces the least unbiased estimates and the best coverage

probabilities. PS1 and PS3 models also reports good estimates with

low bias values and high coverage probabilities. SE and SD presents

similar values in all models. On the contrary, PS2 model shows
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the worst values, highlighting again the strong influence of its prior

distribution. The performance of the models in Scenario 2 evidences

similar patterns to the ones in Scenario 1, We and PS models show

the lowest bias values and the highest coverage probabilities. SE

and SD estimates are close under all models. However, PC2 model

shows better estimates than its counterparts PC1, PC3 and PC4.

In the case of Scenario 3 results obtained are in accordance with

the obtained in Scenario 1, but with a clear improvement of PS and

PC models.

4.4.5 Hazard function

We evaluate the performance of all models under the three

simulation scenarios, Weibull, a mixture of piecewise functions,

and a mixture of Weibull models, in terms of the baseline hazard

estimates. We work with the logarithmic transformation of the

baseline hazard h0(t) to scale values and facilitate the visual

comparison among estimates. For the posterior sample of each

replica, we can construct an approximate posterior sample of the

baseline hazard function at t, whose average can be used as

a punctual estimates of the true baseline hazard at that time,

h0(t). And we can merge the information of all replicas to

obtain a better estimation by averaging among all replicas. We

represent this estimation as log(ĥ0(t) . The above procedure is also

useful for extracting information about its posterior variability and

constructing, for example, a 95% credible interval for the posterior

of the baseline hazard at t.

We mesure the accurary of our proposal by computing the square

of the difference between the posterior estimation of h0(t) and the

true hazard function at t. A general measure that accounts for



“Thesisfinal” — 2018/5/1 — 17:24 — page 92 — #128i
i

i
i

i
i

i
i

92 4.4. Simulation study

this difference over the time interval of the study is the root-mean

squared deviation (RMSD) computed as

RMSD =

√∑m
i=1[log(ĥ0(tm))− log(h0(tn))]2

m
(4.21)

a discrete approximation based on the idea of the Riemann sums

to aproximate the continuous sum, an integral. At this point, we

would like to note that we have considered a wide partition of the

time axis, with m knots spaced 0.01 time points.

Figure 4.4 displays the posterior mean of the baseline hazard

function and a 95% credible bound for the models from simulated

Scenario 1. The Figure also shows the true hazard baseline function

and the estimated RMSD. Figures 4.5 and 4.6 contain the same

information than Figure 4.4 but for simulated Scenarios 2 and 3,

respectively.
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(a) We. RMSD=0.021

(b) PC1. RMSD=0.342 (c) PC2. RMSD=1.205 (d) PC3. RMSD=0.342 (e) PC4. RMSD=0.281

(f) PS1. RMSD=0.169 (g) PS2. RMSD=0.140 (h) PS3. RMSD=0.102

Figure 4.4: Average pointwise of the posterior approximate
means of the log-baseline hazard estimate (black solid line) of
the replicas, average of the posterior 95% credible intervals
(grey area) of the replicas, true log-baseline hazard function (red
dashdotted line) and reported RMSD for the estimated survival
models in the simulated Scenario 1 (row one is for the We model,

row two for PC models, and row three for PS models).

We know that the Scenario 1 was simulated from a Weibull model

and it is clear from Figure 4.4 that the estimated Weibull model

(We) provides the closest fit to the true function, as expected.

PS models also seem to capture the underlying shape quite
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accurately concretely and, in particular, PS3 performs very well

evidencing the effect of the prior distribution in the estimation of the

baseline shape. PC models show the worst performance, possibly

because the baseline hazard estimates for them are discontinuos

piecewise estimates, and this situation complicates the capture of

the curvature of the true baseline hazard function. Remarkably, it

is also noticeable, in PC models, the effect of the regularization by

means of correlated prior distributions.
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(a) We. RMSD=0.520

(b) PC1. RMSD=0.787 (c) PC2. RMSD=2.374 (d) PC3. RMSD=1.000 (e) PC4. RMSD=0.509

(f) PS1. RMSD=0.356 (g) PS2. RMSD=0.307 (h) PS3. RMSD=0.320

Figure 4.5: Average pointwise of the posterior approximate
means of the log-baseline hazard estimate (black solid line) of
the replicas, average of the posterior 95% credible intervals (grey
area) of the replicas, true log-baseline hazard function (red solid
line) and reported RMSD for the estimated survival models in
the simulated Scenario 2 (row one is for the We model, row two

for PC models, and row three for PS models).

Outcomes related to Scenario 2 in which the baseline hazard

function was simulated from a mixture of piecewise functions

highlight that the estimated PC4 model provides the most similar

fit to the true function (in terms of visual comparison). Remarkably,
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the rest of PC models show poor fitting as well as certain inability to

capture the true shape of the baseline hazard (visual outcomes and

RMSD values confirm these statements). This fact underlines the

inferential sensitivity to prior scenarios in bayesian procedures and

the necessity of accounting for regularization when non-parametric

specifications are used in baseline hazard definitions. PS models

also seem to capture the behaviour (increases and downs) of the

true function quite accurately. Furthermore they also present the

lowest values of RMSD. As it would be expected, We model exhibits

estimates with different trend (monotonic increasing function),

however it shows lower RMSD values than PC1, PC2 and PC3

models.
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(a) We. RMSD=0.663

(b) PC1. RMSD=0.974 (c) PC2. RMSD=1.492 (d) PC3. RMSD=1.002 (e) PC4. RMSD=0.677

(f) PS1. RMSD=0.213 (g) PS2. RMSD=0.253 (h) PS3. RMSD=0.299

Figure 4.6: Average pointwise of the posterior approximate
means of the log-baseline hazard estimate (black solid line) of
the replicas, average of the posterior 95% credible intervals (grey
area) of the replicas, true log-baseline hazard function (red solid
line) and reported RMSD for the estimated survival models in
the simulated Scenario 3 (row one is for the We model, row two

for PC models, and row three for PS models).

Scenario 3 is defined by the baseline hazard function simulated

from a mixture of two Weibull distributions. In that context,

PS models perform very well, with estimates very close to the

true function, in terms of visual comparison as well as in RMSD



“Thesisfinal” — 2018/5/1 — 17:24 — page 98 — #134i
i

i
i

i
i

i
i

98 4.5. Discussion

values. In particular, PS3 model show the best estimates which

also exhibits lower variability than its counterparts. Despite the

implicit discontinuity of PC4 model, it also shows good performance

in capturing the trend of the true function. Once again, the effect

of the prior distribution also plays a strong effect in PC estimates,

not only in the estimation of the shape but also in its involved

uncertainty. The worst performace is accounted for the We model,

its estimate differs substainally from the true one, however it shows

the smallest variability.

4.5 Discussion

In this Chapter we have presented a few options to perform a

fully bayesian analysis of time-to-event data in the context of

the CPH model considering both parametric and non-parametric

definitions of the baseline hazard function. Bayesian analysis

allows the implementation of baseline hazard functions easily, even

non-parametric proposals which are necessary in contexts in which

it is expected certain complexity in the shape of the underlying

function. We have considered some of the most popular proposals

in the literature of the subject: the Weibull distribution as the most

common parametric model and piecewise constant and piecewise

cubic B-spline baseline hazards as non parametric definitions.

Flexibility and overfitting was discussed within both non-parametric

options with regard to different regularization schemes expressed in

terms of prior distributions. These developments provide a unified

framework to conduct a fully bayesian analysis of complex survival

data that we hope will encourage more comprehensive analyses,

which currently often rely on some version of the CPH model

without further exploration. The modifiability of our approach
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eases investigations into prior sensitivity and assumptions about the

relationship between covariates and the hazard function.

The S. Typhimurium data analysis in Section 3 illustrates

the proposed methods, and all models proposed (except PC2 )

verify the conclusion of Sanz-Puig et al. (2017) that cauliflower

by-product infusion can be considered an alternative preservation

treatment. Outcomes highlight that piecewise constant and

B-splines specification capture flexibility in the baseline hazard

function. However, piecewise constant options are less flexible

given that their own definition implies discontinuous piecewise linear

estimates. Furthermore, the induction of smoothing restrictions

by means of a correlated prior process in non-parametric scenarios

seems to overcome the problem of overfitting and unstability in

estimates. The Weibull proposal behaves very well but it is not

appropiate if we expect irregularities in the hazard, and data seem

to provide substantial evidence of that fact. PS models show the

better fit based on DIC and LPML criteria, compared to Weibull and

piecewise constant models. It is important to note that a mechanical

application of some of the proposal discussed, just as we had done

with the gamma process prior in model PS2, can produce inadequate

analysis and results of questionable validity.

We have also exemplified our model proposals through a variety

of simulation studies. In particular, by simulating from Weibull,

piecewise constant and a mixture of two Weibull distributions

baseline hazard function distributions, respectively. In general,

outcomes have shown that moderate bias can be observed in

estimates of the regression coefficient for a treatment effect when

fitting a CPH model in which baseline hazard function specification

does not match with the specification from which data has been

generated. Remarkably, PC models (except PC2 ) display a suspect

behaviour in relation to treatment effect estimates in piecewise
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100 4.5. Discussion

simulation scenario. For baseline hazard estimates, in general,

small differences between the true baseline hazard and the estimated

(visual assessment) and lower RMSD values are in close relationship

to the data-generating model. The Weibull model provides the

most accurate baseline hazard estimates in Weibull simulated data;

the PC4 model in the case of piecewise constant simulated data,

although PS models show the lower RMSD values; and PS provides

the best estimates for the Weibull mixture data. Remarkably, the

PC2 model presents in all scenarios a questionable performance that

may be the subject of further studies.

Although in this Chapter we have extolled the potential of bayesian

inference in dealing with non-parametric specifications in the

context of the CPH model, it must be stated that in many settings

a simpler distribution may be adequate. However, using a more

complex distribution can provide much more realistic data inference

in certain situations. Some interesting issues that are beyond

the contents developed here are to consider different partitions

of the time axis, introduce uncertainty in its size, include new

regularization proposals such as penalized complexity priors or even,

to carry out a sensitivity analysis within each scenario.
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Chapter 5

Bayesian mixture cure

models using R-INLA

5.1 Introduction

The integrated nested Laplace approximation (INLA, Rue et al.,

2009) is currently an alternative to MCMC methodology within the

bayesian framework. In the field of survival analysis, INLA has been

adapted to analyze most of the standard models (Martino et al.,

2011). However, in the case of mixture cure models INLA is not

directly applicable. Currently, it is possible to extend the number

of models that R-INLA can fit with little extra effort. Bivand et al.

(2015) describe a way to increase the number of models that R-INLA

can manage in the framework of spatial analysis. Gómez-Rubio and

Rue (2017) propose a novel methodology that combines INLA and

MCMC to be applied in the context of complex hierarchical models,

and Gómez-Rubio (2017) extends this approach to the field of

mixture models.

101
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102 5.2. Mixture cure models

In this Chapter, we propose a feasible INLA extension for estimating

mixture cure models based on the above mentioned method for

finite mixture models developed by Gómez-Rubio (2017). Two

paradigmatic datasets, the Eastern Cooperative Oncology Group

(ECOG) phase III clinical trial e1684 dataset (Kirkwood et al.,

1996) and the bonemarrow transplant study dataset (Kersey et al.,

1987) are used to illustrate our novel approach. Subsequently, the

accuracy of our proposal has been evaluated by means of a thorough

comparison with MCMC inference methods.

5.2 Mixture cure models

Chapter 2 includes a brief introduction to cure survival models.

In mixture cure rate models, the target population consists of

two subpopulations: cured and uncured individuals. However,

the observed data do not include complete information about the

subpopulation to which each observation belongs. For this reason,

mixture cure models are often represented using a latent auxiliary

variable that indicates the population to which observations belong.

Random variable Z is a cure indicator variable (latent variable),

with Z = 0 if the individual is susceptible to experience the event

of interest and Z = 1 if it is cured for that event; η and 1 − η

are the probabilities for Z = 1 and for Z = 0, respectively. The

overall survival function for an individual of the target population

is expressed as the mixture model

S(t | η, Su) = P (T > t) = η + (1− η)Su(t), (5.1)

where Su(t) denotes the survival function for individuals in the

uncured subpopulation and η the cure fraction.
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5. Bayesian mixture cure models using R-INLA 103

The mixture cure model can be considered as a combination of two

models, the incidence model, which accounts for the probability of

curation η, and the latency model for the event time in the uncured

population. For these reasons, the most basic strategy involves

separately modeling the cure proportion and the survival function

of the uncured patients.

The incidence model in the presence of a covariate vector xc is

typically modeled using a logistic link function, logit[η(γ)] = x′cγ,

also expressed as

η(γ) =
exp{x′cγ}

1 + exp{x′cγ}
, (5.2)

where γ is the vector of regression coefficients associated to

covariates xc. Note that other link functions such as the probit link

or the complementary log-log link (see Robinson, 2014, for more

details) can be used to connect the cure fraction with the vector of

covariates xc .

The latency model in the presence of a covariate vector xu can be

modeled in a very different number of ways, but the most common

proposals are based on the Accelerated Failure Time (AFT) model

and on the Cox Proportional Hazard (CPH) model. Note that

both types of models are extensively explained in Chapter 2, hence

here we only introduce them briefly and adapted to the cure rate

modeling context.
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104 5.2. Mixture cure models

5.2.1 Accelerated failure time mixture cure

models

The Accelerated Failure Time Mixture Cure Model (AFTMC)

formulation is based on modeling the survival time Tu of individuals

from the uncured subpopulation as

log(Tu) = µ+ x′uβ + σε. (5.3)

The logarithmic transformation of Tu is expressed as the sum of a

general mean µ plus a linear combination of the covariates xu, and

an error term ε amplified or reduced by a scale factor σ. Common

distributions for ε are normal, logistic and extreme value that

respectively imply log-normal, log-logistic and Weibull distributions

for Tu. Covariate information xu is additively included in a linear

predictor with unknown coefficients β.

The specific case of the Weibull AFT model assumes a Weibull

distribution with shape α and scale parameter λ(µ,β) = −(µ +

x′uβ)α and consequently hazard and survival function

hu(t | α, µ,β) = α tα−1 exp{−(µ+ x′uβ)α} (5.4)

and

Su(t | α, µ,β) = exp{−tαe−(µ+x′uβ)α}. (5.5)
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5.2.2 Cox proportional hazards mixture cure

models

Under the Cox Proportional Hazards Mixture Cure (CPHMC)

model the hazard function for event time Tu is expressed as

hu(t | hu0,β) = hu0(t) exp{x′uβ}, (5.6)

where hu0(t) is the baseline hazard function that determines the

shape of the hazard function. Model (5.6) can also be presented in

terms of the survival function as

Su(t | Su0,β) = [Su0(t)]exp{x′uβ}, (5.7)

where Su0(t) = exp{−
∫ t

0
hu0(s)ds} is the survival baseline function.

As it was mentioned in Chapter 4, fully bayesian methods specify

a model for hu0(t) which may be of parametric or non-parametric

nature. Exponential, Weibull and Gompertz hazard functions

are common proposals in the empirical literature. Mixture of

piecewise constant functions or B-splines basis functions are the

usual counterpart in non-parametric selections. They provide a

great flexibility to the modeling but some caution is needed when

eliciting prior distributions for the subsequent coefficients in order

to avoid overfitting.

In the case of a Weibull We(α, λ) baseline hazard function, the

hazard and survival function of Tu expressions (5.6) and (5.7) turn

out to be

hu(t | α, λ,β) = λα tα−1 exp{x′uβ} (5.8)

and

Su(t | α, λ,β) = exp{−λtα ex
′
uβ}. (5.9)
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Note that the Weibull is the only continuous distribution that yields

both an Accelerated Failure Time and a Cox Proportional hazards

model (Klein and Moeschberger, 2005). Hence, equation (5.4) is

equivalent to (5.8) and equation (5.5) with (5.9) from what it

follows that µ = −log(λ) and β∗ = −β/α (β∗ denotes coefficients

belonged to AFT specification).

5.2.3 Likelihood function

We will continue by expressing the full likelihood function for

the mixture cure model. Likelihood is a key element in bayesian

Inference but also in the frequentist approach, in which the common

procedure of estimating parametes involves maximizing it.

Let us consider non-informative and independent right censoring.

Consequently, the survival time for individual i, i = 1, . . . , n, is

defined as the pair (Ti, δi), where Ti = min(T ∗i , CRi), CRi being the

censoring time, and δi an indicator function defined as δi = 0 when

the observation is censored (T ∗i > CRi), and δi = 1 when it is not.

We represent by Dobs,i = (ti, δi,xi) the observed data for individual

i where xi = (xci,xui) are the possible covariates in the incidence

and latency terms of the model, respectively, and Dobs = ∪ni=1Dobs,i.
The complete data for individual i, Di = (ti, δi,xi, zi), also includes

the value zi of the subsequent latent variable that classifies this

individual as cured or not, and D = ∪ni=1Di.

The likelihood function of θ = (γ, µ,β, Su0) for the observed data

D is the product of the likelihood function for each individual
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L(θ) =

n∏
i=1

Li(θ) (5.10)

=

n∏
i=1

ηi(θ)zi (1− ηi(θ))1−zi hiu(ti | θ)δi (1−zi) Siu(ti | θ)(1−zi).

where η is the probability of being cured and hu(·) is the hazard

function associated to “uncured” individuals corresponding to Su(·).

5.3 INLA to estimate mixture cure

models

Our proposal for estimating mixture cure models by means of

INLA is based on Gómez-Rubio (2017). It basically uses INLA

for estimating the relevant uncertainties of the model when the

latent vector which determines the subpopulation to which each

individual belongs to is known. Our proposal is based on the

combination of two different posterior distributions. The first one

is the marginal posterior distribution for the latent cure indicator

vector, π(z | Dobs), where z = (z1, . . . , zn), which is approximated

by means of a variation of the “modal” Gibbs sampling algorithm

proposed by Gómez-Rubio (2017) for analyzing mixture models

via INLA. The second is the posterior distribution for each single

parameter in θ which is obtained by means of INLA, that from

now on we will represent by θ·. Both posterior distributions are

combined to approximate the posterior marginal distribution of θ·
as

π(θ· | Dobs) =
∑
z∈Z

π(θ· | D) π(z | Dobs), (5.11)
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where Z represents the parameter space of the cure indicator

variables, which is the n-dimensional Cartesian product of the

binary set {0, 1}.

Expression (5.11) needs some additional discussion. Note that

survival observations can be censored or uncensored. In the

case of censored ones, they can or can not experience the event

of interest, hence their belonging to the uncured or the cured

subpopulation is unknown and consequently, there is uncertainty

about the value of the corresponding cure indicator variable, zcen.

Conversely, in the case of an uncensored observation we know

that he subsequent individual has surely experienced the event of

interest and consequently she/he always belongs to the uncured

subpopulation. This situation implies total certainty about the

latent indicator zunc, zero with probability one. For this reason,

π(z | Dobs) = π(zcen, zunc | Dobs)
= π(zcen | Dobs), (5.12)

and consequently, expression (5.11) can be rewritten as

π(θ· | Dobs) =
∑

zcen∈Zcen

π(θ· | D) π(zcen | Dobs), (5.13)

where now Zcen is the parameter space of the cure indicator variables

for the censored observations, with lower dimensionality that Z.

The above procedure can be described via the following algorithm:

Step 0. Assign initial values to the latent cure indicator of the

ncen censored observations, z
(0)
cen, and consider zunc = 0 for the

uncensored observations. Define z(0) = {z(0)
cen, zunc}.
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For m = 1, 2, . . . , repeat:

Step 1. Use INLA to approximate π(θ· | Dobs, z(m−1)), θ· ∈ θ.

Step 2. Obtain posterior (conditional) modes θ̂(m−1) of θ from

π(θ· | Dobs, z(m−1)).

Step 3. Sample z
(m)
cen = (z

(m)
cen,1, . . . , z

(m)
cen,ncen) from the full

conditional distribution for the cure latent variable (Marin et al.,

2005),

π(z
(m)
cen,i = 0 | Dobs, θ̂

(m−1)) =
(1− ηi(θ̂(m−1)))Siu(ti | θ̂(m−1))

ηi(θ̂(m−1)) + (1− ηi(θ̂(m−1)))Siu(ti | θ̂(m−1))
.

(5.14)

Note that the starting point of the algorithm begins with a random

assignment of the vector zcen. Remember that the randomness of

this assignament only concerns the censored observations of the

sample because the uncensored always will belong to the uncured

group. Once we have a possible configuration of vector z, we

estimate the incidence and the latency submodels (conditional

on z) using INLA and approximate π(θ· | Dobs, z), θ· ∈ θ.

After that process, we use the (conditional) modes of the vector

of parameters to sample from the “marginalised” full conditional

posterior distribution of zcen. All the resulting conditionals are

combined using bayesian model averaging to obtain π(θ· | Dobs)
(Hoeting et al., 1999; Bivand et al., 2014), as in equation (5.11).

It is worth to mentioning that since we use INLA to estimate

those conditional models, the modeling specification includes a wide

range of distributions for both the incidence and the latency part.

In particular, in the case of the incidence implementation, INLA

supports not only the logistic link function but also the probit link
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and the complementary log-log, among others. On the other hand,

for the latency computing, INLA currently implements four popular

parametric survival regression models, including the exponential,

Weibull, log-normal, and log-logistic model as well as the CPH

model with piecewise constant baseline hazard function (see, for

example http://www.r-inla.org/models/latent-models for all

the available latent models).

5.4 Illustrative examples

This Section illustrates our proposal for estimating mixture cure

models via INLA. In particular, we consider two popular datasets:

the so-called Eastern Cooperative Oncology Group (ECOG) phase

III clinical trial e1684 dataset (Kirkwood et al., 1996) and the

bonemarrow transplant study dataset (Kersey et al., 1987). In both

studies, we have compared our results with the ones obtained via

MCMC methods.

All analyses in this Chapter were performed on a Windows laptop

with an Intel(R) Core(TM) i7-7700 3.60GHz processor. All

implementations were made in the R environment (version 3.4.3).

We used the R-INLA package for implementing our proposal, and the

JAGS software (version 4.3.0) (Plummer, 2003) through the rjags

package for MCMC.

5.4.1 ECOG study

The aim of the ECOG phase III clinical trial was to evaluate the

high dose interferon alpha-2b (IFN) regimen against the placebo as

the postoperative adjuvant therapy (Kirkwood et al., 1996). We

http://www.r-inla.org/models/latent-models
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estimate a generic CPHMC model with baseline hazard function

(hu0) specified as a Weibull distribution. We have included in the

analysis information of a total number of 284 observations, 88 of

which are right-censored. The response variable was taken to be

the relapse-free survival, in years. Covariate information included

gender (0 = man, 1 = woman), group (0 = control, 1 = treatment),

and age (continuous variable measured in years and centered on

the sample mean). Figure 5.1 displays the frequency of the two

categories of the gender and treatment covariates as well as an

estimated kernel density of the age. Figure 5.2 presents a description

of the response variable (in years) against gender (a) and group (b),

respectively. It is worth mentioning that all covariate information

was incorporated both in the incidence model and also in the latency

model.

(a) sex (b) group (c) age

Figure 5.1: Graphical description of the ECOG study
covariates: gender, group and age.
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(a) sex (b) group

Figure 5.2: Survival times (in years) with regard to gender
and group.

Modeling

The cure proportion in the incidence model was expressed in terms

of a binary regression logistic model defined as

logit[ηi(γ)] = γ0 + γWoman IWoman(i) + γTrt ITrt(i) + γAgeAgei,

(5.15)

where γ0 represents the reference category, to be a man in the control

group, and IA(i) is an indicator variable with value 1 if individual i

has the characteristic A and 0 otherwise.

Survival times for the uncured subpopulation in the latency model,

was modeled by a CPH model here expressed in terms of the survival

function,

Sui(t | Su0(·),β) = [Su0(t)]exp{β′xui}, (5.16)

with β′xui = βWoman IWoman(i) + βTrt ITrt(i) + βAgeAgei and

baseline survival function Su0(t) = exp{−λtα} specified by means

of a Weibull distributionWe(α, λ). The model is completed with the

elicitation of a prior distribution for all uncertainties in the model.



“Thesisfinal” — 2018/5/1 — 17:24 — page 113 — #149i
i

i
i

i
i

i
i

5. Bayesian mixture cure models using R-INLA 113

We assume prior independence and select vague normal distributions

centered at zero and variance 1,000 for all the regression coefficients

in (5.15) and (5.16) as well as for log(λ). The elicited prior

distribution for α is Ga(0.01, 0.01), a very common election in these

models.

Posterior inferences

After some preliminary testing, our algorithm configuration

included 50 burn-iterations followed by other 450 iterations for

inference. In addition, the simulations were thinned by storing

one in five iteration in order to reduce autocorrelation in the

saved sample. The convergence was evaluated by examinig whether

the marginal log-likelihood (conditional on z) estimates achieved

stability during the iteration steps of our algorithm. The posterior

distribution of the remainder parameters in the mixture cure

model has been obtained by using bayesian model averaging

with conditional posterior marginals (on the latent cure indicator

variable).

Note that the marginal likelihood is a fundamental quantity in the

bayesian statistics, which is extensively adopted for bayesian model

selection and averaging in various settings (Hubin and Storvik,

2016). It is approximated by INLA when the model is completely

fitted with it (Gómez-Rubio, 2017). Hence, under our model

approach, its computation comes down to combine by addition the

marginal log-likelihood of the incidence and the latency models,

given that are directly approximated by INLA.

We will compare the results obtained with our proposal to those

obtained via MCMC methods with the JAGS software (Plummer,

2003). MCMC algorithm was run considering three Markov chains
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Parameter Mean Sd CI95% P (· > 0)

Incidence

INLA

γ0 -1.200 0.235 [-1.676,-0.753] 0
γWoman 0.061 0.275 [-0.483,0.597] 0.587
γTrt 0.573 0.271 [0.045,1.107] 0.983
γAge -0.015 0.010 [-0.035,0.005] 0.076

MCMC

γ0 -1.220 0.239 [-1.701,-0.777] 0
γWoman 0.058 0.283 [-0.518,0.595] 0.585
γTrt 0.572 0.277 [0.044,1.107] 0.983
γAge -0.016 0.011 [-0.037,0.006] 0.073

Latency

INLA

βWoman 0.131 0.161 [-0.187,0.442] 0.794
βTrt -0.106 0.154 [-0.410,0.195] 0.244
βAge -0.007 0.005 [-0.018,0.004] 0.098
α 0.918 0.052 [0.818,1.022]
λ 0.938 0.113 [0.729,1.173]

MCMC

βWoman 0.133 0.168 [-0.201,0.437] 0.779
βTrt -0.108 0.165 [-0.441,0.209] 0.269
βAge -0.007 0.006 [-0.018,0.003] 0.102
α 0.909 0.055 [0.802,1.016]
λ 0.921 0.114 [0.715,1.152]

Table 5.1: Summary of the INLA and MCMC approximate
posterior distributions: mean, standard deviation, 95%
credible interval, and posterior probability that the subsequent

parameter is positive.

with 100,000 iterations and a burn-in period with 20,000. In

addition, the chains were thinned by storing one in two hundred

iteration in order to reduce autocorrelation in the saved sample and

avoid space computer problems. Convergence was assessed based

on the potential scale reduction factor, R̂, and the effective number

of independent simulation draws, neff (Gelman and Rubin, 1992).

Note that the number of iterations that we needed for accomplishing

convergence under our proposal is much smaller than in MCMC

configuration. This fact is a consequence that our algorithm

only explore the parameter space of the cure indicator variable

for censored observations Zcen and not the full parameter space

of Z because uncensored observations will always belong to the

uncured subpopulation. Regarding computational times, with INLA
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approach we get reliable estimates in 17 minutes and the MCMC

sampler needed around 13 minutes.

Table 5.1 shows a summary of the mixture cure model parameters

estimated with INLA and with MCMC-based inference. Figures 5.3

and 5.4 show the posterior marginals of the incidence and latency

parameters derived from INLA (by bayesian model averaging on the

conditional posterior marginals) and from MCMC. In all cases, the

agreement is quite high and confirms that our approach provides

similar estimates to MCMC.

Figure 5.3: Posterior marginal distribution estimates for the
incidence regression parameters approximated by INLA (black

solid line) and by MCMC (red dashed line).

From the point of view of the study, it is interesting the estimation

of the cure proportion as well as the survival profiles for groups of
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Figure 5.4: Posterior marginal distribution for the parameters
of the latency model approximated by INLA (black solid line)

and by MCMC (red dashed line).

individuals with certain covariate values. In this regard, it is worth

mentioning that our approach does not provide a directly way to

compute them. Remember that in INLA non-linear combinations or
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multivariate posterior marginals are not direct available as default

outcomes. On the contrary, it is very easy to estimate them via

JAGS from the joint posterior MCMC samples and subsequently,

selecting the approximate subsample from the posterior distribution

of interest.

However, our algorithm allows in a simple way from the computation

of the marginal log-likelihood. This function can be used to select

the most likely configuration of the latent vector z that has been

generated during the sampled process to approximate the posterior

distribution. The function inla.posterior.samples() may be

used to generate n samples from the approximated joint posterior

distribution of the estimated model (we select the most likely

model), hence these samples can then be further processed to derive

posterior distributions for the quantities of interest.

Figure 5.5 and Table 5.2 present graphically and numerically

respectively the posterior distribution of the cure proportion for

mean aged individuals in the groups of interest: Man-Non treated

(M-N ), Man-Treated (M-T ), Woman-Non Treated (W-N ) and

Woman-Treated (W-T ) obtained with INLA (selecting the poster

z configuration) and with MCMC. Outcomes obatined are in close

agreement for both estimation methods and highlight that the group

W-T presents the highest cure proportion estimates and the group

M-N the lowest.

Figure 5.6 displays the mean of the posterior distribution of the

“uncured” survival function for mean aged individuals in the groups

of interest: M-N, M-T, W-N and W-T estimated from INLA

and from MCMC. Estimation of both approaches differs slightly

revealing in both cases the best survival profiles for the M-T group

and the worst for the W-N one.
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Figure 5.5: Posterior distribution of the cure proportion
of mean aged individuals in the groups: Man-Non Treated
(M-N ), Man-Treated (M-T ), Woman-Non Treated (W-N ) and
Woman-Treated (W-T ) approximated by INLA (black) and by

MCMC (red).

Group Mean Sd CI95%

INLA

M-N 0.242 0.042 [0.166,0.333]
M-T 0.363 0.046 [0.280,0.453]
W-N 0.258 0.048 [0.172,0.357]
W-T 0.382 0.056 [0.278,0.495]

MCMC

M-N 0.231 0.042 [0.230,0.315]
M-T 0.345 0.048 [0.252,0.443]
W-N 0.242 0.049 [0.151,0.346]
W-T 0.358 0.057 [0.248,0.475]

Table 5.2: Summary of posterior distribution of the probability
of curation for mean aged individuals in the groups: Man-Non
Treated (M-N ), Man-Treated (M-T ), Woman-Non Treated
(W-N ) and Woman-Treated (W-T ) computed with INLA and

MCMC.

5.4.2 Bone marrow transplant study

We consider the bone marrow transplant study dataset in Kersey

et al. (1987) to illustrate the Weibull AFTMC model. This study

was undertaken to compare autologous and allogeneic marrow
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(a) M-N (b) M-T

(c) W-N (d) M-T

Figure 5.6: Posterior mean of the “uncured” survival function
for mean aged individuals in the groups: Man-Non Treated
(M-N ), Man-Treated (M-T ), Woman-Non Treated (W-N ) and
Woman-Treated (W-T ) computed with INLA (black solid line)

and MCMC (red dashed line).

transplantation with regard to survival times of patients affected

with lymphoblastic leukemia and poor prognosis. A total of 91

patients were treated with high-doses of chemoradiotherapy and

followed-up during a period between 1.4 to 5.0 years. Forty-six

patients with a HLA-matched donor received allogeneic marrow (

allogeneic transplanted), and forty-five patients without a matched

donor received their own marrow taken during remission and purged
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of leukemic cells with the use of monoclonal antibodies (autologous

transplanted). The survival variable was, time to death, in days,

which ranges from 11 to 1845 days. Data contain 22 right-censored

observations and 69 uncensored, and in general, times to death

are longer for autollogous transplanted patients than for allogeneic

transplanted ones (see Figure 5.7). It is worth mentioning that all

covariate information was incorporated both in the incidence and

the latency terms respectively.

Figure 5.7: Survival times (in days) with regard to the type of
transplant.

Modeling

Cure proportion in the incidence model was expressed in terms of

a regression logistic model defined as

logit[ηi(γ)] = γ0 + γAuto IAuto(i), (5.17)

where γ0 represents the effect of the reference category, to be

an individual with an allogeneic transplant, and IAuto(i) is an

indicator variable with value 1 if individual i has been autologous

transplanted.
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In the latency model, survival times for the uncured subpopulation

was modeled by a Weibull AFT model here expressed in terms of

the survival function,

Sui(t | α, µ,β) = exp{−tα exp{(µ+ β′xui)}}. (5.18)

where µ represents the effect of the reference category, to be

an individual treated with the allogeneic treatment and β′xui =

βAuto IAuto(i) with IAuto(i) as an indicator variable with value 1 if

individual has received an autologous transplant and 0 otherwise.

Note that formulation presented in equation (5.18) differs from the

standard Weibull AFT specification described in Chapter 2 and in

Section 5.2.1 for the particular case of Weibull AFTMC. This is

because INLA has implemented Weibull likelihood consistently to

the Cox model and we have adapted our modeling to this feature.

So, in our outputs, a positive value of the risk coefficient must be

associated with poor survival profiles.

The model is completed with the elicitation of a prior distribution

for all parameters in the model. We assume prior independence

and select vague normal distributions centered at zero and variance

1,000 for all the regression coefficients in (5.17) and (5.18) as well

as for log(λ). The elicited prior distribution for α is Ga(0.01, 0.01).

Poesterior inferences

After some preliminary testing, our algorithm configuration for

this specific model included 20 burn-iterations and other 180

iterations for inference. In addition, the simulations were thinned

by storing every 2nd iteration in order to reduce autocorrelation

in the saved sample. The convergence was evaluated by examinig

whether the conditional (on z) marginal log-likelihood estimates
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achieved stability during the iteration steps of our algorithm. The

posterior distribution of the remainder parameters in the mixture

cure model has been obtained by using bayesian model averaging

with conditional posterior marginals (on the latent cure indicator

variable). As we have mentioned previously, marginal log-likelihood

computation was obtained by adding the marginal log-likelihood of

the incidence and the latency models conditional on z, respectively,

both quantities are provided by INLA.

Parameter Mean Sd CI95% P (· > 0)

Incidence

INLA
γ0 -0.988 0.341 [-1.691,-0.351] 0
γAuto -0.404 0.505 [-1.407,0.575] 0.211

MCMC
γ0 -1.025 0.355 [-1.763,-0.367] 0
γAuto -0.413 0.524 [-1.437,0.665] 0.203

Latency

INLA

β0 -6.372 0.652 [-7.709,-5.131] 0
βAuto 0.759 0.262 [0.247, 1.277] 0.998
α 1.138 0.103 [0.941,1.343]

MCMC

β0 -6.305 0.631 [-7.572,-5.118] 0
βAuto 0.754 0.267 [0.238, 1.287] 1
α 1.124 0.101 [0.934,1.325]

Table 5.3: Summary of the approximate posterior distribution
for the incidence and latency parameters of the cure model
obtained from INLA (by bayesian model averaging) and MCMC:
mean, standard deviation, 95% credible interval, and posterior

probability that the subsequent parameter is positive.

We will compare the results obtained with our current approach

to those obtained via MCMC with the JAGS software (Plummer,

2003). MCMC simulation was run considering three Markov chains

with 200,000 iterations and a burn-in period with 40,000 iterations.

In addition, the chains were thinned by storing every 400th iteration

in order to reduce autocorrelation in the saved sample and avoid

space computer problems. Convergence was assessed based on the

potential scale reduction factor, R̂, and the effective number of

independent simulation draws, neff (Gelman and Rubin, 1992).
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As we have remarked in the ECOG study, in this case our proposed

method has needed less iterations than MCMC configuration

to reach convergence and accuracy results. This is because

we introduce information about the parametric space of the

cure indicator variable Z by means of the information provided

by uncensored obervations which always belong to the uncured

subpopulation. So, we only have to conveniently explore Zcen,

the parametric space of the cure indicator variable of censored

observations.

Table 5.3 shows a summary of the mixture cure model parameters

obtained under our proposal and with MCMC-based inference.

Figures 5.8 and 5.9 show the posterior marginal distribution of

the model parameters obtained with INLA (by bayesian model

averaging on the conditional posterior marginals) and with MCMC.

In all cases the agreement is quite high, which confirms that our

approach and MCMC provide similar outputs.

Figure 5.8: Posterior marginal distribution estimates for the
incidence regression parameters approximated by INLA (black

solid line) and by MCMC (red dashed line).

In the case of the estimation of derived quantites of interest, we

proceed in a similar way as in the ECOG study. We estimate

the cure proportion for individuals in the group of allogeneic and
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Figure 5.9: Posterior marginal distribution for the parameters
of the latency model approximated by INLA (black solid line)

and by MCMC (red dashed line).

autollogous transplants, as well as their “uncured” survival function.

Note that the computation of these quantities with our proposal

with INLA has been performed analogously as it has been done in

MCMC. That is to say, taking the approximate posterior samples

for all involved parameters and subsequently, computing from them

the posterior distribution of interest. Note also that, to obtain

posterior samples in the case of INLA outcomes, we have selected

the most likely model (by means of conditional log-likelihood

criteria) among all sampled models. And subsequently, through

the inla.posterior.samples() function we have generated a

sufficient number of samples from the approximated joint posterior
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distribution.

Figure 5.10 and Table 5.4 present graphically and numerically the

posterior distribution of the cure proportion for allogeneic and

autollogous transplanted patients obtained with INLA (selecting

the model with the most likely z configuration) and with MCMC.

Outcomes obtained present slight differences and underline that

autologous transplanted patients present a higher cure proportion

posterior mean estimates than allogeneic ones, although they display

a very broad degree of overlap.

Figure 5.11 displays the posterior mean of the “uncured”

survival function for autologous and alogeneic transplanted patients

computed from INLA and MCMC. The estimates of both quantities

seems to be very close, thus indicating that our procedure has good

accurary. We also can observe that autologous transplanted patients

have better survival profiles.

Figure 5.10: Posterior distribution for the cure proportion for
Autologous and Allogeneic transplanted patients approximated

by INLA (black) and by MCMC (red).
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Group Mean Sd CI95%

INLA
Allogeneic 0.198 0.057 [0.094,0.319]
Autologous 0.270 0.067 [0.146,0.410]

MCMC
Allogeneic 0.206 0.059 [0.105,0.334]
Autologous 0.288 0.065 [0.172,0.425]

Table 5.4: Summary of posterior distribution of the cure
proportion computed from INLA and MCMC: mean, standard

deviation, 95% credible interval.

(a) Allogeneic (b) Autologous

Figure 5.11: Posterior mean of the uncured survival function
for Allogeneic and Autologous transplanted patients computed

from INLA (black solid line) and MCMC (red dashed line).

5.5 Discussion

In this Chapter we have proposed a feasible INLA extension

for mixture cure models based on a general proposal for finite

mixture models by Gómez-Rubio (2017). Our method combines

the computation of the posterior distribution of the latent indicator

variable which identifies the “cured” and “uncured” subpopulations

and the incidence and latency model fitting using INLA. The

Bayesian learning process is completed by approximating the

posterior marginals of the parameters involved in both processes
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by means of bayesian model averaging of the conditional posterior

marginals computed with INLA.

Our methodological proposal has been illustrated with two specific

data sets which come from well known medical studies and outcomes

obtained seem to show that it is not only a sensible method but also

performs quite well in practice. In fact, inference outcomes obtained

under our proposal match considerably with MCMC. Remarkably,

it presents several other advantages, such as, lower number of

iterations to reach convergence and to explore conveniently the

parametric space of the latent variable z. Furthermore, the

use of INLA to fit conditional models does not force the use of

conjugate prior and allows the direct computation of the marginal

log-likelihood, a very useful measure to tackle model selection (see

Gómez-Rubio, 2017).

On the other hand, MCMC approach provides slightly faster

computational times. However, our proposal can be improved by

minimizing computational efforts and storage requirements. Note

that INLA adjusts two complete new models (incidece and latency

models) in each iteration. This leads to a computational burden

due to in each iteration two complete process are generated and

consequently new temporary files and other secondary process . So,

if we limit the default outcomes provided by INLA and we define

prior distribution based on the inference of the previous interation,

computational savings can be achieved.
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Chapter 6

Baseline hazard functions in

bayesian joint models

6.1 Introduction

In the joint modeling framework, the Cox proportional hazards

(CPH) model (Cox, 1972; Cox and Oakes, 1984) is also the most

recurrent option to define the survival submodel. In that context,

it is also possible accounting for the inference process without

specificating the baseline hazard function (see for example Wulfsohn

and Tsiatis, 1997; Henderson et al., 2000). However, leaving this

model component unspecified precludes the estimation of relevant

outcomes such as absolute measures of the risk as well as survival

individual predictions.

The bayesian treatment of the CPH model has become a natural

framework to account for non-parametric specification of the

baseline hazard function easily as it has been illustrated in

Chapter 4. Furthermore, bayesian methodology in the joint

modeling framework allows the incorporation of prior information

129
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to the study, improving and enhancing estimation and prediction of

any outcome of interest (Guo and Carlin, 2004). More specifically,

it makes possible to estimate and predict characteristics of the

longitudinal variable as well as the survival function estimates and

the prediction of survival times for individuals in the current sample

or even for new individuals that could enter to the study (Alvares,

2017).

Our main objective in this Chapter is addressing the analysis of the

impact of different parametric and non-parametric proposals for the

baseline hazard function in the framework of bayesian joint models.

This is an important issue that naturally would need more work and

dedication than the devoted in this dissertation. But we think that

is interesting to take here a first look to the problem.

We know that some parametric approaches provide strictly

monotone baseline hazard estimations and non-parametric choices

allow for more flexible patterns. We considered the same choices

for the baseline hazard function as in Chapter 4, the Weibull

distribution as a parametric choice, and piecewise constant and

B-splines basis functions as non-parametric proposals. We also

account for regularization of the non-parametric proposals by means

of the same prior scenarios. These proposals have been illustrated

in a benchmark survival study devoted to assess the relationship

between the risk of death or be discharged alive and a longitudinal

disease severity index marker in patients hospitalized at intensive

care units.
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6.2 Bayesian joint models for

longitudinal and survival data

Bayesian joint models for longitudinal and survival data assume

a full joint distribution for the longitudinal (y) and the survival

process (s) as well as for the individual random effects (b) and

relevant parameters and hyperparameters (θ). This probability

distribution is usually factorized as follows

f(y, s, b,θ | x) = f(y, s | b,θ,x) f(b | θ)π(θ), (6.1)

where x are baseline covariates; f(y, s | b,θ,x) is the conditional

joint distribution of y and s given the random effects, parameters

and hyperparameters, and covariates; f(b | θ) is the conditional

distribution of the random effects given the hyperparameters of the

model, and π(θ) is a prior distribution of θ. The set of covariates

could also affect the particular specification of f(b | θ) and π(θ)

but it has been omitted in equation (6.1) for simplicity.

As we have mentioned in Chapter 2, there are different approaches to

properly model the correlation between both processes, which imply

different factorization patterns of the joint conditional distribution

f(y, s | b,θ,x). We centered here in the shared-parameter

approach (Albert and Follmann, 2009) in which all random-effects

are common elements that connect the survival and the longitudinal

processes providing conditional independence between them in the

form in which the distribution in equation (6.1) turns out

f(y, s | b,θ,x) = f(y | b,θ,x) f(s | b,θ,x) f(b | θ) π(θ). (6.2)

Turning back to the bayesian paradigm and the role of the Bayes’

theorem to compute the relevant posterior distribution, the posterior
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distribution (Armero et al., 2016),

π(θ, b | D) ∝ L(θ, b) f(b | θ)π(θ), (6.3)

where L(θ, b) is the likelihood function of (θ, b) for the observed

data D.

In next Sections, we will adapt to the specific context of our

illustrative example the particular specifications of the conditional

distributions of the longitudinal and survival process, f(y | b,θ,x)

and f(s | b,θ,x), and the conditional distribution of the random

effects, f(b | θ). Furthermore, we will also select π(θ) and discuss

the likelihood funtion L(θ, b) in more details.

6.3 Data description

The dataset comes from a benchmark study studied in Rué et al.

(2017) that focused on patients admitted in intensive care units

(ICU) who recieved mechanical ventilation (MV). These patients

were followed from the first day in MV until ICU discharge or

day 30 after MV initiation, whichever ocurred the first. Two main

survival events were of interest in the study: death in the ICU or

to be discharged alive from the ICU. A total of 139 patients were

recorded, among which 28 died, 97 were discharged alive and 14

were administrative censored (they did not experience any of both

events before day 30 in MV). Figure 6.1 shows a summary of the

survival data.
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Figure 6.1: Survival times (days) with regard to the survival
event of interest.

A severity marker, the sequential organ failure assessment (SOFA)

score was daily evaluated for each individual. The SOFA score

measures the degree of organ dysfunction in six human body

systems: respiratory, cardiovascular, renal, coagulation, hepatic,

and neurological. Each system is assessed with scores from 0

(normal) to 4 (most abnormal) and the final SOFA value is obtained

by the aggregation of the six resulting punctuations.

To illustrate our proposal we consider the SOFA score index in

the model as log(SOFA + 1). With this transformation, we can

accomodate normality for the longitudinal modeling and increase

the signal of the longitudinal biomarker. See Figures 6.2a and

6.2b and observe from Figure 6.2b that trajectories for patients

who died are generally higher than those for patients who were

discharged alive. It is worth mentioning that in many cases, the last

SOFA measurement was recorded several days before the patient

experienced one of the events of interest or was administratively

censored.
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(a) SOFA

(b) log(SOFA+ 1)

Figure 6.2: a) SOFA and b) log(SOFA + 1) longitudinal
measurements for patients who were administratively censored

(black), died (red) and were discharged alive (purple).

6.4 Modeling

We propose a simple bayesian model specification in which the

longitudinal process for the SOFA biomarker trajectory is specificied

by means of a linear mixed-effects (LMM) model. The survival

process for variables time to death and time to be discharged alive

was set by a competing risks (Pintilie, 2006) model because of both

possible causes of failure (death and to be discharged alive) were

mutually exclusive. The longitudinal and the survival process have

been connected by means of a shared random-effects approach which

will be described below.
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6.4.1 Longitudinal submodel

The longitudinal submodel for the ith patient, with i = 1, . . . , 139,

is defined as:(
yi(t) | µi(t), σ

)
∼ N

(
µi(t), σ

2
)
,(

µi(t) | bi,β(y)
)

= β
(y)
0 + b0i +

(
β

(y)
1 + b1i

)
t+ β

(y)
2 Agei,(

bi | σ0, σ1

)
∼ N

((
0, 0
)>
, diag (σ2

0, σ
2
1)
)
,

(6.4)

with yi(t) denoting the ith log(SOFA + 1) patient observation

at time t, which was assumed normally distributed with mean

µi(t) and variance σ2. Parameters β
(y)
0 and β

(y)
1 are the regression

coefficients associated to the intercept and the slope of µi(t),

respectively. Elements b0i and b1i are intercept and slope random

effects, considered as independent and normally distributed with

mean 0 and variance σ2
0 and σ2

1, respectively. Parameter β
(y)
2 is the

regression coefficient associated to covariate Agei which is the age

of the ith patient, in years.

6.4.2 Survival submodel

The survival submodel was specified by means of a cause-specific

hazards model (Prentice et al., 1978; Gaynor et al., 1993; Chen

et al., 2013), which is one of the most usual modeling strategies for

survival analysis in the context of competing risks.

We define T ∗iv as the time from MV initiation to the occurrence of

the event v for the ith patient, with v = 1 associated to death and

v = 2 to be discharged alive. The cause-specific hazard function

from a given cause v at time t for the ith patient, for i = 1, . . . , 139
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is defined as

hiv(t) = lim
∆t→0

P
(
t ≤ T ∗iv < t+ ∆t, δi = v | T ∗iv ≥ t

)
∆t

, t ≥ 0, (6.5)

with δi = v indicating that event v has been occurred for the ith

patient and ∆t is an incremental time. It is worth mentioning that

the cause-specific hazard function measures the instantaneous risk of

failing at a given time from a specific cause v, among all individuals

at risk.

We assume a Cox proportional hazards (CPH) model structure for

each cause. Hence the cause-specific hazard function (6.5) is defined

as

hiv
(
t | bi,θ

)
= h0v(t) exp

[
β(s)
v Agei + ρ0vb0i + ρ1vb1it

]
, t ≥ 0, (6.6)

where h0v(t) represents a generic baseline cause-specific hazard

function at time t for v = 1, 2. Terms ρ0v and ρ1v are

parameters which quantify the association between the individual

characteristics of the biomarker and the risk for event v, for k = 1, 2.

Again, Agei represents the age of the ith patient and β
(s)
v is its

corresponding fixed effects coefficient, for v = 1, 2.

We define CRi as the administrative right censoring time (day 30

after MV initiation). We expand the definition of the event indicator

and introduce the value δi = 0 when the subsequent patient did

not experience any of the events of interest and was, consequently,

censored. Hence, we express the observed event time for the ith

patient as Ti = min (T ∗i1, T
∗
i2, CRi).
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6.4.3 Cause-specific baseline hazard functions

We also deepen into the cause-specific baseline hazard function

specification in order to assess its impact in the whole inferential

process. We consider the same three paradigmatic scenarios

discussed in Chapter 4, one parametric, based on the Weibull

distribution, and two non-parametric ones, a mixture of piecewise

constant functions and a cubic B-spline function, but now adapted

to the competing risk environment.

Weibull

The Weibull cause-specific baseline hazard function defined for event

v = 1 (death) and v = 2 ( to be discharged alive) is

h0v(t | αv, λv) = λv αv t
αv−1, t > 0, (6.7)

where αv > 0 and λv > 0 are the shape and the scale parameters of

the subsequent Weibull distributions.

Mixture of piecewise constant functions

This specification allows to acommodate possible multimodalities

in the shape of the cause-specific baseline hazard funcion. It is

assumed to be constant within K predetermined intervals (ck−1, ck]

for k = 1, 2, . . . , K. We consider for causes v = 1 (death) and

v = 2 (to be discharged alive) a common time axis partition =

{0, 2, 4, . . . , 14, 18, . . . , 30}, thus K = 11 with c0 = 0 and c11 = 30

(administrative censoring time). The cause-specific baseline hazard

function for cause v is defined as a flexible mixture of piecewise

constant functions,

h0v(t | ϕv) =
K∑
k=1

ϕkv I(ck−1,ck](t), t > 0, (6.8)
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where ϕv = (ϕ1v, . . . , ϕKv), I(ck−1,ck](t) is the indicator function

defined as 1 when t ∈ (ck−1, ck] and 0 otherwise. Consistently with

Chapter 4, we also refered to this proposal as PC.

Cubic B-spline functions

The same finite partition of the time axis specified for the PC

cause-specific baseline hazard function is also here assumed. We

define a spline basis function for the cause-specific baseline hazard

function for cause v in the logarithmic scale (Murray et al., 2016)

to accommodate the subsequent selection of prior distributions for

normality. It is defined as

log (h0v(t | γv)) =
K+3∑
k=1

γkv B(k,4)(t), t > 0, (6.9)

where γv = (γ1v, . . . , γK+3,v), {B(k,4)(t), k = 1, ..., K + 3} is a cubic

basis of B-splines with boundary knots c0 and cK and internal knots

ck, k = 1, .., K − 1 (Hastie et al., 2009). This specification of

the cause-specific baseline hazard function is called PS. Note that

functions in hazard equation (6.8) are also B-spline functions, in

particular B-splines of order 1.

6.4.4 Prior scenarios

We considered a prior independent default scenario with

non-informative marginal prior distributions. Specifically, we

elicited normal distributions centered at zero with a wide known

variance for the regression coefficients associated to the longitudinal

and survival submodels and for the association coeffients between

the longitudinal biomarker and the risk of event v, for v = 1, 2:
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π(β
(y)
0 ) = π(β

(y)
1 ) = π(β

(y)
2 ) = N(0, 1000),

π(β
(s)
1 ) = π(β

(s)
2 ) = N(0, 1000),

π(ρ01) = π(ρ02) = N(0, 1000),

π(ρ11) = π(ρ12) = N(0, 1000).

On the other hand, for the standard deviation of the error term

associated to the longitudinal variable, as well as for the standard

deviations associated to the intercept and slope random effects, we

assume the following uniform distributions:

π(σ) = U(0, 20),

π(σ0) = π(σ1) = U(0, 10).

In the case of the cause-specific baseline hazard parameters, we

considered the same default prior scenarios used in Chapter 4. For

the Weibull cause-specific baseline hazard function:

π(α1) = π(α2) = Ga(0.1, 0.1),

π(log(λ1)) = π(log(λ2)) = N(0, 1000).

For the generic PC specification, note that we discussed four prior

scenarios for the regularization process (see Chapter 4 for further

details). The assumed partition of the axis time has generated 11

intervals, thus, all PC priors secenarios assume k = 1, 2, ....11.

Scenario PC1. Independent gamma prior distributions,

π(ϕk1) = Ga(0.01, 0.01),

π(ϕk2) = Ga(0.01, 0.01).
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Scenario PC2. Independent gamma prior distributions:

π(ϕk1) = Ga(0.016, 0.16),

π(ϕk2) = Ga(0.016, 0.16),

defined by means of a discrete-time Gamma process prior (Ibrahim

et al., 2001) for the cumulative hazard baseline function. This prior

specification corresponds to the generic expression

π(ϕkv) = Ga(w0 η0 (ck − ck−1), w0 (ck − ck−1)),

in which all the marginal prior distributions share the same prior

expectation, η0, but the prior variance of each ϕk is inversely

proportional to the corresponding interval length, ck − ck−1. We

fix w0 = 0.01 because it is a usual value which provides a high level

of uncertainty to the prior, and η0 = 0.08 after some preliminary

tests.

Scenario PC3. Correlated conditional gamma prior distributions.

This proposal correlates the ϕk‘s of adjacent intervals based on

a discrete-time martingale process (Sahu et al., 1997). We elicit

π(ϕ11) = Ga(0.01, 0.01) and π(ϕ12) = Ga(0.01, 0.01), so that for

k = 2, . . . , K prior distributions are defined in a recurrent way as

π(ϕk1 | ϕ11, . . . , ϕ(k−1)1) = Ga(0.01, 0.01/ϕ(k−1)1),

π(ϕk2 | ϕ12, . . . , ϕ(k−1)2) = Ga(0.01, 0.01/ϕ(k−1)2).

Note that these conditional distributions imply that E(ϕkv |
ϕ1v, . . . , ϕ(k−1)v) = ϕ(k−1)v and Var(ϕkv | ϕ1v, . . . , ϕ(k−1)v) =

ϕ2
(k−1)v/0.01, for v = 1, 2.

Scenario PC4. This proposal is analogous to the one in

Scenario PC3 but with the particularity that now prior marginal
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distributions are set on log(ϕk)’s to accomodate for normality.

We set π(log (ϕ11)) = N(0, σ2
ϕ1) and π(log (ϕ12)) = N(0, σ2

ϕ2),

with π(σ2
ϕ1) ∼ IG(0.01, 0.01) and π(σ2

ϕ1) ∼ IG(0.01, 0.01), thus

the correlation between log(ϕkv)’s (for v = 1, 2) is expressed

assuming the following conditional normal prior distributions, for

k = 2, . . . , K:

π(log (ϕk1) | ϕ11, . . . , ϕ(k−1)1) = N(log (ϕ(k−1)1), σ2
ϕ1

),

π(log (ϕk2) | ϕ12, . . . , ϕ(k−1)2) = N(log (ϕ(k−1)2), σ2
ϕ2

).

We discuss now PS scenarios. We also considered different prior

specifications for the coefficients associated to the cause-specific

baseline hazard function associated to that PS proposal with the

aim of imposing certain flexibility restrictions and preventing the

problem of overfitting (see Chapter 4 for further details). It is

worth mentioning that in the PS proposal, k = 1, . . . , K + 3, with

K = 11. This is because the number of basis functions needed to

define properly the B-spline is determined by the addition of the

grade, 3, and the number of internal knots, 11. For this specific

study we will have 3 + 11 = 14 basis.

Scenario PS1. Independent normal prior distributions:

π(γk1) = N(0, 1000),

π(γk2) = N(0, 1000).

Scenario PS2. Hierarchical normal prior distributions:

π(γk1 | σ2
γ1

) = N(0, σ2
γ1

),

π(γk2 | σ2
γ2

) = N(0, σ2
γ2

),

where σ2
γv , for v = 1, 2, are the common and unknown variances

population which are defined as π(σγv) ∼ U(0, 40).
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Scenario PS3. Correlated conditional normal prior distributions

defined as

π(γk1 | γ11, . . . , γ(k−1)1) = N(γ(k−1)1, σ
2
γ1

),

π(γk2 | γ12, . . . , γ(k−1)2) = N(γ(k−1)2, σ
2
γ2

).

We set π(γ1v) = N(0, 0.1) and π(σγv) ∼ U(0, 40) for v = 1, 2.

6.4.5 Likelihood

We will continue by expressing the full likelihood function, L(θ, b),

for the observed data D in which θ represents both parameters and

hyperparameters and b the latent elements. Assuming that the

observed data are D = ∪ni=1Di, where Di = { (yi,1:ni , (ti, δi), Agei)}
with yi,1:ni = (yi1, . . . , y1ni) is the vector of follow-up measurements

for the ith patient and yij is the observed log(SOFA + 1) score at

time tij; (ti, δi) is the pair with the observed survival time and the

value of the event indicator for the ith patient (remember that δi =

0, 1, 2 when the i-th pacient was censored, died or was discharged

alive); and Agei the age of the patient in years, which is the

only baseline covariate considered in both longitudinal and survival

submodels. The vector of parameters and hyperparameters is θ =

(β, σ, σ0, σ1,ρ1,ρ2, h01, h02) with β =
(
β

(y)
0 , β

(y)
1 , β

(y)
2 , β

(s)
1 , β

(s)
2

)
,

ρ1 = (ρ01, ρ11), ρ2 = (ρ02, ρ12) and h01(·) and h02(·) denoting

baseline hazard parameters which will depend on the cause-specific

baseline hazard specification.

The likelihood function of (θ, b) for the information Di gathered for

individual i can be expressed as,
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Li(θ, b) = f
(
yi,1:ni , (ti, δi) | θ, bi

)
,

= f
(
yi,1:ni | θy, bi

)
f
(
(ti, δi) | θs, bi

)
.

(6.10)

with θy specifying parameters and hyperparameters involved in the

longitudinal process and θs the subsequent ones in the survival

process. It is very important to note that the factorization of the

likelihood as the product of the likelihood contribution between

the longitudinal and the survival information is a result of the

shared-parameter approach to joint modelling, see expression (6.2).

The longitudinal contribution to the likelihood in (6.10) f
(
yi,1:ni |

θy, bi
)
, is the product of normal densities evaluated at observations

y1:ni , expressed by,

f
(
yi,1:ni | θy, bi

)
=

ni∏
j=1

N(yi,1:ni | µi(t1:ni), σ)

=

ni∏
j=1

(
1

2πσ2

)ni
2 exp

[
− 1

2σ2 ‖yi,1:ni − µi(ti,1:ni)‖
2] .

(6.11)

where ‖v1:ni‖
2 =

∑ni
j=1 v

2
j represents the Euclidean distance.

The survival contribution to the likelihood in equation (6.10),

f
(
(ti, δi) | θs, bi

)
is the following:

f
(
ti, δi | θs, bi

)
=

2∏
v=1

hiv
(
ti | θs, bi

)I(δi=v)
Siv
(
ti | θs, bi

)
=

2∏
v=1

hiv
(
ti | θs, bi

)I(δi=v)
exp

(
−
∫ t

0
hiv(s | θs, bi) ds

)
.

(6.12)
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in which not censored observations contribute with the product of

the cause-specific hazard function and the cause-specific survival

function both evaluated at the observed survival times. Conversely,

censored observations contributed with the cause-specific survival

function at the observed censored time. Note that likelihood

contribution for each specific cause implies the treament of the other

cause observations as censored.

Remarkably, the right term of equation (6.12), exp
(
−
∫ t

0
hiv(s |

bi,θ) ds
)
, is an analytically intractable integral. To address

its approximation we made use of the Q-point Gauss-Legendre

quadrature rule (Stoer and Bulirsch, 2013) with 15 quadrature

points.

6.4.6 Posterior inferences

We carried out eight survival inferential processes as the result

of the combination of the three generic specifications of the

cause-specific baseline hazard function presented above with the

different prior scenarios. The posterior distribution for each model

was approximated through the JAGS software (Plummer, 2003). For

the estimation of each joint model, we run three parallel chains

with 200,000 iterations plus 40,000 (20%) dedicated to the burn-in

period. Moreover, the chains were additionally thinned by storing

every 400th iteration in order to reduce autocorrelation in the saved

sample. In all inferential processes convergence was assessed by

monitoring that the potential scale reduction factor R̂ were close to

1 and the effective number of independent simulation draws higher

than 100, neff > 100.
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Regression coefficients

We first focused on the stability of the posterior distribution of

the regression coefficients, (β
(y)
0 , β

(y)
1 , β

(y)
2 ) and (β

(s)
1 , β

(s)
2 ), associated

to the longitudinal and survival submodels, respectively, as well as

the posterior distribution for the association coefficients, (ρ0v,ρ1v),

between the longitudinal biomarker and the risk of event v, for v =

1, 2.

Discrepancies between the posterior marginal distributions of these

parameters should only be the result of the different specifications

for h0v(t) and its prior distribution. Figure 6.3 shows the posterior

mean and 95% credible interval of the posterior distribution of

regression coefficients associated to the longitudinal submodel

(β
(y)
0 , β

(y)
1 , β

(y)
2 ). The marginal posterior distributions associated to

β
(y)
0 among all models are quite similar, with no strong differences

in relation to posterior means and 95% credible intervals estimates,

which show a very broad degree of overlap. PC2 model shows

marginal posterior results slightly different with higher posterior

means and wide 95% credible interval. Regarding the marginal

posterior distribution associated to β
(y)
1 , the first fact that attracts

our attention is that practically all posterior estimates are equal,

with posterior means and 95% credible intervals very close, even in

the case of the PC2 model. Notoriusly, all the values in the credible

intervals are negative, indicating a decreasing of the longitudinal

marker over the time. Lastly, the marginal posterior distribution

associated to β
(y)
2 also presents a similar behaviour in all the models.

Posterior means and 95% credible interval estimates are comparable,

except for the PC2 model which displays a clear lower posterior

mean. It is also noticeable that all interval values are concentrated

on real positive values but very close to zero, evidencing that older

patients present little higher values of the longitudinal marker.
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Finally, it is interesting to comment that is the PC2 model which

shows the most divergent longitudinal results as it also was observed

in the survival analysis from Chapter 3

(a) β
(y)
0 (b) β

(y)
1

(c) β
(y)
2

Figure 6.3: Posterior mean and 95% credible interval for the
longitudinal regression coefficients β

(y)
0 (a), β

(y)
1 (b) and β

(y)
2 (c)

for all inferential processes.

Figure 6.4 shows the posterior mean and 95% credible interval of the

regression coefficients associated to the survival submodel (β
(s)
1 , β

(s)
2 )

corresponding to covariate Age. The marginal posterior distribution

associated to β
(s)
1 presents certain differences among all inferential
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process. However with the exception of PC2, all of them have

in common that they are defined mainly on real positive values

reflecting that older patients present an increased risk of death.

In relation to β
(s)
2 , its marginal posterior distribution display small

discrepancies among all models, with PC4 and PS2 estimatations

as the most diverging results. Furthermore, all posterior marginals

contains the 0 value next to the middle point of its 95% credible

intervals, thus highlighting that patients age does not give relevant

information about the risk of the cause to be discharged alive.

(a) β
(s)
1 (b) β

(s)
2

Figure 6.4: Posterior mean and 95% credible interval for the
longitudinal regression coefficients β

(s)
1 (a) and β

(s)
2 (b) for all

inferential processes.

Figure 6.5 shows the posterior mean and 95% credible interval of

the association parameters between the longitudinal process and

the risk of death (ρ01, ρ11) and of being discharged alive (ρ02, ρ12).

The marginal posterior distributions of ρ01 and ρ11 present certain

differences among all models. However the more evident outcomes

are related to the posterior distribution of ρ11 in which the Weibull

model, We, resuts in small and most concentrate estimations. For

patients who finally died, these models give more relevance to
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the patient condition at the starting time of the study than to

the follow-up. Despite these differences it is worth mentioning

that all posterior marginals have in common that they are defined

on real positive values evidencing an increasing risk of death as

the longitudinal marker value raises. For the marginal posterior

distribution of ρ02 and ρ12, it is also observable certain variability

among all inferential process, although they are more clear in the

posterior estimation of ρ11 in which PC models outline higher

posterior means and narrower 95% credible intervals. However, for

all models both coefficients present a dominant negative support

denoting that the increase of the longitudinal marker provoques a

decreasing of the risk of being discharged alive. For this event, it

is interesting that practically all the models give the same poor

relevance to the initial condition of the patient and the similar

results from the We and PS models for the specific characteristics

of the patient follow-up.
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(a) ρ01 (b) ρ11

(c) ρ02 (d) ρ12

Figure 6.5: Posterior mean and 95% credible interval for the
association parameters ρ01 (a), ρ11 (b), ρ02 (c) and ρ12 (d) for

all inferential processes.

Cause-specific baseline hazard and cause-specific

cumulative incidence functions

In this Section, we focus on comparing our modeling proposals with

regard to the posterior distribution for the cause-specific baseline

hazard estimates. Figure 6.6 is a matrix of subfigures which

shows the mean of the posterior distribution, π(h01(t | θ, b) | D)
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corresponding to event death for each one of our modeling proposals.

Figure 6.7 is an analogous graphic but it includes the subsequent

95% credible intervals. Row one corresponds to Weibull modeling,

row two is for piecewise constant, and row three for cubic B-spline

specifications.

As it is observed, parametric and non-parametric specifications

report different shapes of the posterior means of the baseline

hazard function. Model We shows an increasing monotone hazard

trend. Conversely, PC and PS models report more flexible shapes,

acommodating increases and decreases of different intensities during

the study period. It is worth mentioning that, despite the different

nature of PC and PS specifications, their related inferences seem

to outline similar trends with the exception of PC2. Regarding the

influence of the prior setting in PC models, the different scenarios

seem not have a strong influence, even though in the uncertainty of

estimation as we can be observed in the Figure 6.7. On the other

hand, PS models seem to be more influenced by the regularization

process, thus PS3 model display the smoothest posterior mean

estimates.

Figure 6.8 is a matrix of subfigures which outlines the mean of

the posterior distribution, π(h02(t | θ, b) | D), for the event to

be discharged alive. Figure 6.7 is an analogous graphic but it

includes the subsequent 95% credible intervals. Subfigures layout

follows the same pattern that the previous one. It is visually clear

that model We shows an increasing monotone hazard and once

again, PC and PS models acommodate for more flexibility with

increases and decreases of different intensity during the study time.

In general terms, PC and PS provide similar trends, although PS

models evidence in a stronger way the influence of the regularization

processes involved. In fact, PS3 model presents more smoothed and

accurate estimates (narrower 95% credible intervals). Regarding PC
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(a) We

(b) PC1 (c) PC2 (d) PC3 (e) PC4

(f) PS1 (g) PS2 (h) PS3

Figure 6.6: Posterior mean for the cause-specific baseline
hazard function, corresponding to event death fot the different
modeling scenarios (row one is for the We model, row two for

PC models, and row three for PS models).

models, outcomes are very similar in all scenarios, even outcomes

related to PC2 model.

The cause-specific cumulative incidence function is a very interesting

concept in competing risk models. It quantifies the probability that

a cause v occurs at time t or before and it is defined as
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(a) We

(b) PC1 (c) PC2 (d) PC3 (e) PC4

(f) PS1 (g) PS2 (h) PS3

Figure 6.7: Posterior mean and 95% credible interval for the
cause-specific baseline hazard function, corresponding to event
death fot the different modeling scenarios (row one is for the We
model, row two for PC models, and row three for PS models).

Fv(t | θ, b) = P (T ≤ t, δ = v | θ, b)

=

∫ t

0

hv(u | θ, b)S(u | θ, b) du, t ≥ 0 and v = 1, 2,

(6.13)
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(a) We

(b) PC1 (c) PC2 (d) PC3 (e) PC4

(f) PS1 (g) PS2 (h) PS3

Figure 6.8: Posterior mean for the cause-specific baseline
hazard function, corresponding to event to be discharged alive
fot the different modeling scenarios (row one is for the We model,

row two for PC models, and row three for PS models).

in which hv(u | θ, b) expresses th cause-specific hazard function and

S(u | θ, b) the overall survival function which is defined as:
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(a) We

(b) PC1 (c) PC2 (d) PC3 (e) PC4

(f) PS1 (g) PS2 (h) PS3

Figure 6.9: Posterior mean and 95% credible interval for the
cause-specific baseline hazard function, corresponding to event
to be discharged alive fot the different modeling scenarios (row
one is for the We model, row two for PC models, and row three

for PS models)
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S(t | θ, b) = P (T > t | θ, b)

= exp{−[

∫ t

0

h1(u | θ, b) du +

∫ t

0

h2(u | θ, b) du]}

(6.14)

We computed the posterior distribution, π(Fv(t | θ.b) | D), of

the cumulative incidence function for the events death and to be

discharged alive for a generic individual aged 63 years (sample

median). It is important to note that the raw distribution from

which we computed this posterior distribution was the marginal

conditional distribution

Fv(t | θ) =

∫
Fv(t | θ, b) f(b | θ) db,

computed by integrating the random effects in Fv(t | θ, b).
Figure 6.10 is a matrix of subfigures with the same pattern that the

ones in this Section which outlines the estimated posterior mean of

the cumulative incidence for both events. Tables 6.1 and 6.2 show

the posterior mean and 95% CI of the cumulative incidence of death

and alive dicharge, respectively, at days 10, 20, and 30. Results

show that the estimation of the cumulative incidence function

for both outcomes presents a certain sentivity with regard to the

baseline hazard specification. We and PS models report very similar

estimations with posterior cumulative incidences for death lower and

a more gentle growth slope than the cumulative incidences for being

discharged alive. Remarkably, We estimation presents narrower

95% credible intervals compared to PS models, in which the effect

of the prior correlated process is clear. On the other hand, PC

specifications present more divergent estimatations in relation to the
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Model t = 10 t = 20 t = 30
We 0.137 [0.075, 0.230] 0.211 [0.116,0.361] 0.222 [0.117, 0.372]

PC1 0.143 [0.081, 0.226] 0.196 [0.116,0.296] 0.205 [0.123, 0.302]
PC2 0.203 [0.107, 0.386] 0.291 [0.160,0.471] 0.300 [0.172, 0.472]
PC3 0.285 [0.119, 0.581] 0.393 [0.197,0.689] 0.400 [0.213, 0.690]
PC4 0.227 [0.110, 0.462] 0.323 [0.168,0.585] 0.339 [0.181, 0.585]
PS1 0.144 [0.078, 0.240] 0.279 [0.137,0.512] 0.294 [0.142, 0.512]
PS2 0.138 [0.080, 0.214] 0.232 [0.123,0.409] 0.249 [0.127, 0.429]
PS3 0.145 [0.081, 0.233] 0.254 [0.136,0.478] 0.277 [0.142, 0.491]

Table 6.1: Mean and 95% credible interval of the posterior
cumulative incidence function for death at days 10, 20 and 30

for all the baseline hazard-based models.

Model t = 10 t = 20 t = 30
We 0.374 [0.288, 0.470] 0.739 [0.583,0.871] 0.786 [0.633, 0.887]

PC1 0.365 [0.286, 0.448] 0.527 [0.384,0.667] 0.551 [0.384, 0.713]
PC2 0.334 [0.251, 0.431] 0.453 [0.304,0.618] 0.470 [0.304, 0.670]
PC3 0.332 [0.245, 0.426] 0.410 [0.263,0.578] 0.413 [0.263, 0.615]
PC4 0.339 [0.258, 0.428] 0.443 [0.290,0.601] 0.455 [0.290, 0.655]
PS1 0.404 [0.322, 0.500] 0.674 [0.481,0.842] 0.703 [0.489, 0.854]
PS2 0.405 [0.318, 0.509] 0.705 [0.541,0.862] 0.752 [0.574, 0.874]
PS3 0.399 [0.319, 0.490] 0.680 [0.512,0.839] 0.730 [0.521, 0.865]

Table 6.2: Mean and 95% credible interval of the posterior
cumulative incidence function for alive dicharge at days 10, 20

and 30 for all the baseline hazard-based models.

We and PS models and also among its counterparts, highlighting an

obvious influence of the prior scenarios. In particular, PC3 and PC4

models provide posterior estimations of the cumulative incidence

function for death higher than the rest. In the case of the posterior

cumulative incidence for being discharged alive cause, it is noticeable

that all PC models displays lower posterior estimations than the

ones via We and PS models.



“Thesisfinal” — 2018/5/1 — 17:24 — page 157 — #193i
i

i
i

i
i

i
i

6. Baseline hazard functions in bayesian joint models 157

(a) We

(b) PC1 (c) PC2 (d) PC3 (e) PC4

(f) PS1 (g) PS2 (h) PS3

Figure 6.10: Posterior mean for the cumulative incidence
function for for events death (in red) and to be discharged alive
(in purple) under the different modeling scenarios (row one is for
the We model, row two for PC models, and row three for PS

models).
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Model selection criteria

We consider the deviance information criterion (DIC) (Spiegelhalter

et al., 2002) and the log pseudo-marginal likelihood

(LPML) (Geisser and Eddy, 1979) criteria for comparing all

models. As we have mentioned in Chapter 4, DIC measures fit

and model complexity and fit and LPML model predictive ability.

Smaller values for DIC are preferred, while LPML larger values

indicate better predictive performance. Table 6.3 shows the value of

the DIC and the LPML for all models considered. PS cause-specific

baseline hazard models exhibit the best behaviours (lower DIC and

larger LPML) values. In particular, the PS1 model has the lowest

DIC and the PS3 model the largest. On the other hand, the PC2

model shows the largest DIC value and PC4 the smallest LPML

model. According to model selection, it is important to point out

that the necessity to also consider the nature of the problem to

estimate. In that example, the goal of the study was to analyse

the contribution of the longitudinal marker in the assessment of

the patients prognosis at UCI considering that each patient in this

unit can only die or to be discharged alive and send to hospital. In

that respect, intensive care specialists think that PS model, and

specifically the PS3 could appropriately reflect the course of the

diseases in ICU patients with mechanical ventilation.

6.5 Discussion

This Chapter has presented several modeling proposals with regard

to survival submodel formulation within a bayesian joint model

framework with survival objectives. Within a CPH survival

formulation, we have discussed model flexibility by adressing
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Model DIC LPML

We 1630 -936.34
PC1 1625 -935.18
PC2 1636 -927.97
PC3 1625 -931.33
PC4 1631 -944.14
PS1 1595 -705.11
PS2 1604 -711.32
PS3 1606 -696.06

Table 6.3: DIC and LPML values for all joint models defined
by mean of different specifications of the cause-specific baseline

hazard function for causes death and to be dischargedalive.

non-parametric definitions of the baseline hazard function. These

approaches can overcome limitations of standard parametric choices

such as the exponential and Weibull distributions, which often lack

enough flexibility to capture complex survival behaviours in real

datasets. Furthermore, bayesian inference addresses them with

simplicity and offers plausible solutions to account for the problems

of overfitting and unstability associated with them by means of

different prior scenarios. These extensions enable the introduction of

more flexibility in bayesian joint model formulations and encourage

the study of prior sensitivity as well as their influence in the whole

inferential process.

We have used the UCI data described in Section 6.3 to illustrate

our proposals. The inferential process was defined troughout a joint

model with competing risk events for a study whose main objective

was to connect the information of a longitudinal biomarker (SOFA)

with two competing events, death and to be discharged alive, in

mechanically ventilated patients hospitalised at intensive care units

(ICU).

Outcomes analysed in Section 6.4.6 raised three important issues.
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Firstly, we observed consistent estimations of the regression

coefficients associated to the longitudinal process among all

modeling scenarios. Secondly, posterior estimations related to

regression coefficients associated to the survival competing risk

model as well as for the association coefficients between the

longitudinal biomarker and the risk of each event have different

patterns with regard to the longitudinal process. However,

they show in general a wide range of overlapping and, in

consequence, go point in the same direction. Lastly, posterior

inferences for the baseline hazard functions and cause-specific

cumulative incidence functions emphasise that piecewise constant

and B-splines specification capture a high degree of flexibility

in cause-baseline hazard functions. However, PC models report

posterior cause-specific cumulative incidence function estimates

strongly different from the previous ones and exhibit a clear

sensitivity to prior scenarios. Modeling based on the We model

reports similar results that PS models, but DIC and LPML criteria

provide more substantial evidence in favour of PS options.

In conclussion, this crearly indicates the potentiality of the bayesian

methodology to account for flexibility in the context of joint models

with survival objectives by means of non-parametric specifications

of the baseline hazard function. However, we also would highlight

that possibly not all studies require the setting of these proposals

and maybe a simpler distribution is sufficient to describe the whole

process. On the other hand, the use of more flexible modeling

approaches in certain situations can provide much more realistic

outputs, above all in the case in which prediction was one of the

aims of the study. Some interesting issues that are beyond the

contents addressed here are to consider the effect of the different

modeling proposals not only in estimation but also in dynamic

estimation and prediction. Note also that a very important issue
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for joint models is dealing with prediction of relevant survival and

longitudinal observations. This is a very relevant issue in many areas

of research, particularly in medical areas focused on personalised

medicine statistical procedures.
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Chapter 7

Conclusions and future

research

7.1 Conclusions

In this work, we have explored and developed different

methodological proposals in the context of bayesian survival

analysis, including the framework of joint models for longitudinal

and survival data. Procedures have been addressed by means

of simulated data and studies from different biometrical areas of

research with the aim of illustrating its broad applicability and

power. The main conclusions of this dissertation, inspired and firmly

rooted in these ideas, are summarized below.

• Results in Chapter 3 support three relevant conclusions.

Firstly, the potentiality of the bayesian methodology in

the context of survival analysis as well as the existence

of different available software for implementing simple and

complex inferential processes. Secondly, the extremely utility

of bayesian survival analysis in certain areas of research in
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which its application is currently limited. Thirdly, the great

capability of this methodology to provide robust inferences

and deal with simplicity the presence of different censoring

and truncation schemes in a simple and natural way.

• The results in Chapter 4 underline the usefulness of bayesian

methods to incorpore flexibility in the Cox Proportional

Hazard model. In this respect, we observed that

non-parametric specifications of the baseline hazard function

are able to provide an appropiate proposal to increase

modeling adaptability. In adition, the possiblity of introducing

some restrictions throughout the definition of correlated prior

distributions is a precious tool to minimise the common

problems of overfitting and unstability associated with them.

Remarkably, these proposals overcome certain limitations

related to the so called partial likelihood approach inherent

to frequentist approach that deals with the estimation process

leaving the baseline hazard function unspecified. These

methods were applied to a benchmark dataset as well as in

different simulated scenarios which highlighted the importance

of estimating and capturing the true shape of the baseline

hazard function to complete the whole inference process and

provide accurate results to other quantities of interest, such as

posterior survival probabilities.

• The main results in Chapter 5 reinforce the already

proven capability of the INLA as an alternative to MCMC

methodology to perform bayesian survival analysis. Our

proposal is focused on extending the use of INLA to mixture

cure models by means of a decomposition of the relevant

posterior marginal distributions in terms of conditional

posterior distributions given all latent information and the use
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of “modal” Gibbs sampling. It is discussed in two benchmark

studies with good and accurate inferential results.

• Results obtained in Chapter 6 support again the potential

of the bayesian methodology but in the context of joint

models for longitudinal and survival data with survival

objectives. The bayesian approach to joint models allows to

complete any inferential process (longitudinal, time-to-event,

and association between both issues), quantify uncertainty

estimation and deal with censoring phenomenon efficiently.

This Chapter stresses the strengths of the bayesian approach

to to introduce model flexibility in the survival modeling by

means of similar scenarios to those discussed in Chapter 4 in

a benchmark data set.

7.2 Future research

In overall, this PhD dissertation has discussed a range of survival

structures with the aim of addressing certain important issues in the

field of survival analysis. But certainly, the scope of time-to-event

analysis is immense. Consequently, there is a great quantity of

interesting research topics that have not been addressed so far. We

only focus here on some possible extensions related to the research

discussed in this work.

• Extend the flexibility scenario to the specification of mixtures

cure models and multistate models based on CPH modeling.

• Implement flexible approaches based on piecewise cubic

B-splines baseline hazard function to INLA software.
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166 7.2. Future research

• Investigate new model structures that accommodate flexibility

in the context of CPH modeling.

• Improve the INLA algorithm proposed in Chapter 5 for

mixture cure models in terms of computational efforts and

storage requirements.

• Explore the capability of the INLA software to account for

survival analysis with the aim of implementing modeling

extensions with potential applied interest.

• Assess the influence of the specification of baseline hazard

functions on prediction in bayesian joint models with survival

processes defined by means of CPH models.

• Start implementing and validating non-standard bayesian

joint models with INLA.

• Discuss model selection and comparison in bayesian joint

models via Bayes factors.
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Appendix A

Inversion method

The inversion method for generating observations from probability

distributions. In the most simple case where the variable of interest

T ∗ is continuous and has an increasing distribution function F (t),

F−1(U), where U is a standard uniform random variable, is the main

tool to generate random samples from the distribution of T ∗.

The survival function of a random variable T ∗ modeled by means of

a generic CPH model is (see equation (2.19)):

S(t) = exp{−H0(t) exp{x′ β}}, (A.1)

where the conditional notation in the survival function has been

omitted for simplicity. Consequently, the cumulative distribution

function for T ∗ will be

F (t) = 1− exp{−H0(t) exp{x′ β}}. (A.2)

167
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The inversion method in this case establishes the following

expression

U = exp{−H0(T ∗) exp{x′ β}} ∼ U(0, 1), (A.3)

or also

T ∗ = H−1
0 {−log(U) exp{−x′ β}}, (A.4)

given that the baseline hazard function is a positive function in all

its domain, h0(t) > 0 for all t, and H0(·) can be inverted. Thus,

simulation of survival times depends only on the calculation of the

inverse of the cumulative hazard function.

In the case of the Weibull baseline hazard function, We(α, λ),

cumulative hazard function has a closed form,

H0(t) = λ tα, (A.5)

and its inverse can be obtained directly as,

H−1
0 (t) = (λ−1 t)

1

α . (A.6)

Consequently, survival times are generated as,

T ∗ =

(
− log(U)

λ exp{x′ β}

) 1

α
. (A.7)

Next, we consider the scenario defined by a mixture piecewise

constant baseline hazard functions defined through a finite partition

of the time axis with knots 0 = c0 ≤ c1 ≤ . . . ≤ cK and a
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baseline hazard vector ϕ = (ϕ0, ϕ1, . . . , ϕK) . For a given interval

cm−1 ≤ t < cm with m = 1, . . . , K, the cumulative hazard function

is defined as

H0(t) =
∑m−1

l=1 ϕl(cl − cl−1) + ϕm(t− cm−1), (A.8)

hence its inverse cumulative hazard function can be expressed as

H−1
0 (t) = cm−1 +

t

ϕm
−
∑m−1

l=1 ϕl(cl − cl−1)

ϕm
. (A.9)

Survival times are thus generated from

T ∗ = cm−1 −
log(U)

exp{x′ β}ϕm
−
∑m−1

l=1 ϕl(cl − cl−1)

ϕm
. (A.10)

In this case, it is important to note that since times are generated

related to the condition cm−1 ≤ t < cm, the simulation process

requires the imposition of the following constraint,

− exp{x′ β}
m−1∑
l=1

ϕl(cl − cl−1) < log(U) ≤ exp{x′ β}
m−1∑
l=1

ϕl(cl − cl−1).

(A.11)

The cumulative baseline hazard function for CPH times in which the

baseline hazard function is a mixture of two Weibull distributions,

We(α1, λ1) and We(α2, λ2), with p as the mixing probability

parameter has a closed form expression:

H0(t) = −log(p exp{−λ1 t
ν1}+ (1− p)exp{−λ2 t

ν2}). (A.12)

When H0(t) in equation (A.12) is substituted into equation (A.3),

it produces an expression which cannot be analytically solved,
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being necessary the use of root finding techniques to overcome this

situation. Crowther and Lambert (2013) propose the use of the

Brent’s univariate root-finding method or the Newton-Raphson root

finder.
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L. Galipienso, and L. Rubio. A new Capsicum baccatum accession
shows tolerance to wild-type and resistance-breaking isolates of
Tomato Spotted Wilt Virus. Annals of Applied Biology, 167(3):
343–353, 2015.

I. Sousa. A review on joint modelling of longitudinal measurements and
time-to-event. Revstat, 9(1):57–81, 2011.

D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. Van Der Linde.
Bayesian measures of model complexity and fit. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 64(4):583–639,
2002.

S. M. Stigler. Laplace’s 1774 Memoir on Inverse Probability. Statistical
Science, pages 359–363, 1986.

179



“Thesisfinal” — 2018/5/1 — 17:24 — page 180 — #216i
i

i
i

i
i

i
i

References

J. Stoer and R. Bulirsch. Introduction to numerical analysis. New York,
New York, Springer-Verlag, 2013.

T. Therneau. A package for survival analysis in S. R package version
2.38. Retrived from http://CRAN. R-project. org/package= survival,
2015.

T. M. Therneau and P. M. Grambsch. Modeling Survival Data: Extending
the Cox Model. New York, Springer-Verlag, 2013.

L. Tierney and J. B. Kadan. Accurate approximations for posterior
moments and marginal densities. Journal of the American Statistical
Association, 81(393):82–86, 1986.

A. A. Tsiatis, V. Degruttola, and M. S. Wulfsohn. Modeling the
Relationship of Survival to Longitudinal Data Measured with Error.
Applications to Survival and CD4 Counts in Patients with AIDS.
Journal of the American Statistical Association, 90(429):27–37, 1995.

D. Vanlint. The evolution of bacterial resistance against high hydrostatic
pressure. PhD thesis, University of Reading, 2013.

G. Verbeke and M. Davidian. Joint models for longitudinal data:
Introduction and overview. In G. Fitzmaurice, M. Davidian,
G. Verbeke, and G. Molenberghs, editors, Longitudinal data analysis,
pages 319 – 326. New York, Chapman & Hall/CRC Press, 2009.

M. Viuda-Martos, Y. Ruiz-Navajas, J. Fernández-López, and
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