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Summary

The aim of this dissertation is to study a class of Reidemeister torsion invariants for a com-
plete, hyperbolic three-manifold of finite volume.

Let M be an oriented, complete, hyperbolic three-manifold of finite volume. The hyper-
bolic structure of M yields the holonomy representation:

HolM : π1(M,p) → Isom+H3,

where Isom+H3 denotes the isometry group of hyperbolic 3-space H3. Using the upper
half-space model, Isom+H3 is naturally identified with PSL(2,C) = SL(2,C)/{±1}. It is
known that HolM can be lifted to SL(2,C); moreover, such lifts are in canonical one-to-one
correspondence with spin structures on M . Thus, attached to a fixed spin structure η on M ,
we get a representation

Hol(M,η) : π1(M,p) → SL(2,C).

On the other hand, for all n > 0 there exists a unique (up to isomorphism) n-dimensional,
complex, irreducible representation of the Lie group SL(2,C), say:

ςn : SL(2,C) → SL(n,C).

Hence, composing Hol(M,η) with ςn we get the following representation:

ρn : π1(M,p) → SL(n,C).

This representation will be called the canonical n-dimensional representation of the spin-
hyperbolic manifold (M,η).

Roughly speaking, the Reidemeister torsion invariants that we want to study are those
coming from ρn. The first issue that arises in trying to define the Reidemeister torsion con-
cerns the cohomology groups H∗(M ; ρn) (i.e. the cohomology groups ofM in the local system
defined by ρn). If all these groups vanish, then it makes sense to consider the Reidemeister
torsion τ(M ; ρn); however, if some of them are not trivial, then a choice of bases for H∗(M ; ρn)
is required.

An important case for which ρn is acyclic (i.e. H∗(M ; ρn) = 0) is whenM is closed. This is
a particular case of Raghunathan’s vanishing theorem. For M closed, the invariant τ(M ; ρn)
has been considered by W. Müller in [Mül], and for n = 3 by J. Porti in [Por97].

In general, the representation ρn need not be acyclic for a cusped manifoldM . Therefore,
we need to choose bases in (co)homology to define τ(M ; ρn). Obviously, if we want an invari-
ant of the manifold, these bases must be chosen in a somehow canonical way. Unfortunately,

v



vi Summary

we do not know if this is possible. J. Porti proved in [Por97] that for n = 3 a natural choice
of bases can be done once a basis for H1(∂M ;Z) is chosen. Using the same approach, we will
prove the following result: given non-trivial cycles {θi} in H1(∂M ;Z), one for each connected
component of ∂M , there is a canonical family of bases of H∗(M ; ρn) such that any member of
this family yields the same Reidemeister torsion, say τ(M ; ρn; {θi}). Moreover, we will show
that for k > 1 the following quotients are independent of the choices {θi}:

T2k+1(M,η) :=
τ(M ; ρ2k+1; {θi})

τ(M ; ρ3; {θi})
∈ C∗/{±1},

T2k(M,η) :=
τ(M ; ρ2k; {θi})

τ(M ; ρ2; {θi})
∈ C∗/{±1}.

Thus, for all n ≥ 4, Tn(M,η) is an invariant of the spin-hyperbolic manifold (M,η). Notice
that if n is odd the quantity Tn(M,η) is independent of the spin structure (this is an im-
mediate consequence of the fact that an odd dimensional irreducible complex representation
of SL(2,C) factors through PSL(2,C)), and hence we will denote it simply by T2k+1(M).
The invariant Tn(M,η) will be called the normalized n-dimensional Reidemeister torsion of
the cusped spin-hyperbolic manifold M . We will also refer to these invariants as the higher-
dimensional Reidemeister torsion invariants. These invariants are the focus of study of the
present dissertation.

Remark. It is possible to assign a well defined sign to Tn(M,η): if n is even, this can be
done for τ(M ; ρn) (see Turaev’s book [Tur01]); if n is odd, this can be done because, roughly
speaking, the sign indeterminacy of τ(M ; ρn) is the same for τ3(M ; ρn). In spite of this, we
will work up to sign in general, as our main results concern just the modulus of Tn(M,η).

This dissertation is organized into two parts, which we briefly summarize separately.

Twisted cohomology

Most of the material presented in the two chapters of this part is not new, and some of their
contents will be probably well known to the reader. However, we think it is worthwhile to
outline it in an elementary, self-contained way to make it more accessible to the non-expert.

The first chapter concerns the definition of a spin-hyperbolic 3-manifold and some general
properties about them. The definition of the canonical n-dimensional representation and some
other related notions are also given in that chapter.

The second chapter deals with the cohomology groups H∗(M ; ρn) of a complete spin-
hyperbolic 3-manifold (M,η) in the local system of coefficients given by ρn. Our main result
is the following.

Theorem. Let (M,η) be a complete, spin-hyperbolic 3-manifold of finite volume, or, more
generally, non-elementary and topologically finite, and let n ≥ 2. Then the inclusion ∂M ⊂M
induces an injection,

H1(M ; ρn) →֒ H1(∂M ; ρn),
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with dimH1(M ; ρn) =
1
2 dimH1(∂M ; ρn), and an isomorphism

H2(M ; ρn) ∼= H2(∂M ; ρn).

The chapter then continues with the analysis of the cohomology groups of the ends of the
manifold, namely the groups H∗(∂M ; ρn). As a result of this, we prove the following result.

Theorem. Let (M,η) be a complete spin-hyperbolic 3-manifold of finite volume with a single
cusp. If k ≥ 1, then H∗(M ; ρ2k) = 0.

Finally, it is worth noting that these two theorems are infinitesimal rigidity results, and
that they have applications to local rigidity. This is discussed at the end of the second
chapter.

Higher-dimensional Reidemeister torsion invariants

To simplify the exposition in this introduction, we will restrict ourselves to odd-dimensional
representations. Thus we do not need any spin structure on M . Our main result concerns
the asymptotic behaviour of {T2k+1(M)}.

Theorem. Let M be an oriented, complete, finite-volume, hyperbolic 3-manifold. Then

lim
k→∞

log |T2k+1(M)|

(2k + 1)2
= −

Vol(M)

4π
.

For M compact, this result was established by W. Müller in [Mül]. To explain our ap-
proach to the above theorem, we need to discuss Müller’s result.

Let us assume that M is closed. According to Müller’s Theorem on the equivalence
between Reidemeister torsion and Ray-Singer torsion for unimodular representations (see
[Mül93]), we have

|τ(M ; ρn)| = Tor(M ; ρn),

where Tor(M ; ρn) is the Ray-Singer torsion of M with respect to ρn. For a manifold of
negative curvature and a unitary representation ρ, D. Fried established in [Fri86] and [Fri95]
a deep relationship between Tor(M,ρn) and the twisted Ruelle zeta function. The twisted
Ruelle zeta function of M and ρ is formally defined by

Rρ(s) =
∏

ϕ∈PC(M)

det
(
Id− ρn(ϕ)e

−sl(ϕ)
)
, (1)

where PC(M) denotes the set of oriented, prime, closed geodesics inM , and l(ϕ) is the length
of ϕ (we are using the identification between PC(M) and the set of hyperbolic conjugacy
classes of π1M , so the expression appearing inside the above product makes sense). D. Fried
proved that, for any representation ρ, the function Rρ(s) admits a meromorphic extension
to the whole plane; moreover, if ρ is assumed to be acyclic and unitary, then |Rρ(0)| =
Tor(M,ρn)

2. The work of U. Bröcker [Brö98] and A. Wotzke [Wot08] shows that a similar
result also holds for a compact hyperbolic manifold and representations of its fundamental
group arising from representations of Isom+Hn. In our particular case, the result is the
following.
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Theorem (A. Wotzke, [Wot08]). Let (M,η) be a compact spin-hyperbolic 3-manifold.
Then, for n > 1, Rρn(s) admits a meromorphic extension to the whole complex plane and

|Rρn(0)| = Tor(M ; ρn)
2.

O. Bröcker established in [Brö98] a functional equation for Rρn(s) involving the volume of
the manifold. Using this equation and other related material, Müller has recently established
in [Mül] the following formula for |τ(M ; ρn)|, which involves the volume of the closed manifold
M and some related Ruelle zeta functions Rk(s),

log

∣∣∣∣
τ(M,ρ2k+1)

τ(M,ρ5)

∣∣∣∣ =
k∑

j=3

log |R2j(j)| −
1

π
VolM (k(k + 1)− 6) . (2)

One of the advantages of this formula is that the Ruelle zeta functions Rk(s) are evaluated
inside the corresponding region of convergence, and hence they have an expression similar
to that of Equation (1). The result about the asymptotics of the torsion is then deduced by
showing that the sum appearing in the right hand side of Equation (2) is uniformly bounded
in k.

In trying to adapt Müller’s proof to the non-compact case, some difficulties arise, the
main one being the fact that the Ray-Singer torsion is a priori not defined for non-compact
manifolds. Nevertheless, the terms appearing in Equation (2) still make sense for cusped
manifolds. Thus this equation is meaningful for such manifolds also; we prove that this true
in Chapter 6. Roughly speaking, our proof will consist in approximating the manifold M by
the compact manifolds {Mp/q} obtained by performing Dehn fillings on M . Then we will get
a formula relating T2k+1(M) and T2k+1(Mp/q) in Chapter 4. This will be done using a Mayer-
Vietoris argument. As a by-product of this formula, the behaviour of the higher-dimensional
Reidemeister torsion invariants under Dehn filling will be established as well.

The other thing we must take into account concerns the limit of the Ruelle zeta functions
of the manifolds Mp/q as (p, q) goes to infinity. Our main tool to deal with this will be the
continuity of the complex-length spectrum, which we briefly discuss now.

Definition. The prime complex-length spectrum of M , denoted µspM , is the measure on C
defined by

µspM =
∑

ϕ∈PC(M)

δeλ(ϕ) ,

where λ is the complex-length function of M , and δx denotes the Dirac measure centered at
x. In other words, µspM is the image measure of the counting measure in PC(M) under the
exponential of the complex-length function.

Remark. The complex-length spectrum is usually regarded as a collection of complex num-
bers and multiplicities. This is of course equivalent to our definition; however, we think that
regarding it as a measure puts some questions in a natural context.
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We can consider the prime complex-length spectrum as a map fromM, the set of complete
oriented hyperbolic 3-manifolds of finite volume, to M(C \ D), the set of measures on the
exterior of the unit disc D. Both spaces are endowed with natural topologies: the former
with the geometric topology, and the latter with the topology of weak convergence. Using
standard techniques from hyperbolic geometry we will prove the continuity of this map in
Chapter 5.

Theorem. The map µsp : M → M(C \ D) which assigns to every finite volume complete
oriented hyperbolic 3-manifold its complex-length spectrum is continuous.

With this formalism, Equation (2) can be expressed in terms of the complex-length spec-
trum measure. Using some complex analysis, we will prove that if we know all the values
{|T2k+1(M)|}k≥N , for some N ≥ 4, then we also know the values of the following integrals

Mk =

∫

|z|>1
(z−k + z̄−k) dµspM(z), k ≥ N.

Using the Cauchy transform we will prove that for this kind of measure this information is
enough to recover the measure up to complex conjugation, that is, we do not know µspM
but

µspM + µspM,

where µspM denotes the image measure of µspM under complex conjugation. As a conse-
quence, we will obtain the following result.

Theorem. Let M be an oriented complete hyperbolic 3-manifold of finite volume. For all
N ≥ 4, the sequence of values {|T2k+1(M)|}k≥N determines the complex-length spectrum of
M up to complex conjugation.

Remark. This theorem may be regarded as a geometric interpretation of the information
encoded in the higher-dimensional Reidemeister torsion invariants.

As a particular case, if M admits an orientation-reversing isometry (this is for instance the
case of the complement of the figure eight knot), then µspM = µspM , and hence the sequence
{|T2k+1(M)|}k≥N determines the complex-length spectrum completely.

Using Wotzke’s Theorem we obtain the following corollary of the above theorem.

Corollary. Let M be an oriented compact hyperbolic 3-manifold. Knowing the invariants
|T2k+1(M)| for all k ≥ N ≥ 4 is equivalent to knowing the complex-length spectrum of M up
to complex conjugation.

Our last result concerns the behaviour of τ(M ; ρn) under mutation. More concretely, if
K is a hyperbolic knot in S3 and Kτ is a mutant of K, then we have the following theorem.

Theorem. Let µ be a meridian of K, and consider ρ and ρτ lifts of the holonomy represen-
tation of π1(S

3 \K) and π1(S
3 \Kτ ) respectively such that trace ρ(µ) = trace ρτ (µ). Then

the following equality of signed refined holds:

τ(S3 \K; ρ) = τ(S3 \Kτ ; ρτ ) ∈ C.
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Remark. It is worth noting that the above theorem is no longer true for n > 2, that is
τ(S3 \K; ρn) 6= τ(S3 \Kτ ; ρτn) in general. For n = 4, 6 the Kinoshita-Terasaka knot and the
Conway knot provide an example of this fact, see Chapter 8. Thus for n > 2 the higher-
dimensional Reidemeister torsion invariants may be used to distinguish mutant knots.
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Chapter 1

Spin-hyperbolic three-manifolds

The aim of this chapter is to review and establish some facts and constructions concerning a
spin-hyperbolic 3-manifold. The definition of the object under consideration is quite obvious.

Definition. A spin-hyperbolic 3-manifold is a pair (M,η) where M is an oriented hyperbolic
3-manifold and η a spin structure on M .

The first section reviews the relation between spin structures and lifts of the holonomy
representation; although this material is well known (see for instance [Cul86]), we think it is
worth to expose it in an elementary and self-contained way. In the second section we give
the definition of the n-dimensional canonical representation of a spin-hyperbolic 3-manifold;
some basic results about irreducible finite-dimensional complex representations of SL(2,C)
are also recalled.

1.1 Lifts of the holonomy representation

LetM be a connected, oriented, hyperbolic 3-manifold which is not necessarily complete. We
will use the following definition of a spin structure, see [Kir89]. The SO(3)–principal bundle
of orthonormal positively oriented frames on M is denoted by PSO(3)M .

Definition. A spin structure on M is a (double) cover of PSO(3)M by a Spin(3)–principal
bundle over M .

The above definition is equivalent to say that a spin structure on M is a double cover of
PSO(3)M such that the preimage of any fiber of PSO(3)M is connected. One can deduce from
this observation that there is a natural identification between the set of spin structures on
M and the following set:

{
α ∈ H1(PSO(3)M ;Z/2Z) | i∗(α) = 1 ∈ H1(SO(3);Z/2Z)

}
.

On the other hand, the hyperbolic structure of M defines a canonical flat Isom+H3–
principal bundle over M , see [Thu97]. Let us recall how it is defined. Let H3 be hyperbolic
space of dimension three with a fixed orientation. Consider an (Isom+H3,H3)–atlas on M

3



4 Chapter 1. Spin-hyperbolic three-manifolds

defining the hyperbolic structure. Thus we have local charts φi : Ui → H3 covering M such
that the changes of coordinates are restrictions of orientation-preserving isometries of H3.
We can assume that the local charts preserve the fixed orientations on both M and H3. Let
ψij be the change of coordinates from (φj , Uj) to (φi, Ui), that is,

ψij : Ui ∩ Uj → Isom+H3, ψij ◦ φj = φi.

The analyticity of the elements of Isom+H3 implies that ψij is a locally constant map. Since
these maps also satisfy the cocycle condition ψij ◦ ψjk = ψik, they define a flat Isom+H3–
principal bundle over M ,

Isom+H3 → PIsom+
H3M

π
→M.

Let us fix a base point p ∈ M . Given u ∈ PIsom+
H3M with π(u) = p, it makes sense to

consider the holonomy representation of this principal bundle,

Holu : π1(M,p) → Isom+H3.

By definition, if σ : [0, 1] →M is a loop based at p, Holu(σ) is the unique element of Isom+H3

such that

σ̃(1) ·Holu(σ) = σ̃(0),

where σ̃(t) is the horizontal lift of σ(t) starting at u. It can be checked that this holonomy
is, up to a conjugation, the same as the one given in terms of the developing map. In other
words, for some suitable initial choices, we have Holu = HolM .

In what follows, we will identify Isom+H3 with PSL(2,C).

Proposition 1.1.1. There is a canonical one-to-one correspondence between the following
sets:

1. The set of covers of PPSL(2,C)M by SL(2,C)–principal bundles over M .

2. The set of lifts of HolM to SL(2,C).

Proof. Let us assume that we have chosen a base point u ∈ PPSL(2,C)M with π(u) = p ∈M ,
such that Holu = HolM . Let PSL(2,C)M be an SL(2,C)–principal bundle over M covering
PPSL(2,C)M . Take one of the two points ũ ∈ PSL(2,C)M that projects to u, and consider the
corresponding holonomy representation Holũ. It is clear that Holũ is a lift of Holu; moreover,
it is independent of the choice of the base point ũ, since the other choice is obtained by
conjugating it by − Id ∈ SL(2,C). This gives a well defined correspondence between the set
of covers of PPSL(2,C)M by SL(2,C)–principal bundles over M and the set of lifts of HolM to
SL(2,C). Finally, this correspondence is one-to-one, as we can recover the flat bundle from
its holonomy representation.

Next, we want to embed the frame bundle PSO(3)M into PPSL(2,C)M . To that end,
identify PSL(2,C) with PSO(3)H

3 by fixing a positively oriented frame RO ∈ PSO(3)H
3 based

at O ∈ H3. Notice that this gives a concrete embedding of SO(3) into PSL(2,C) as the
isometry group of the tangent space at O with fixed basis RO. Now let u ∈ PPSL(2,C)M
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and p = π(u). A local chart (φj , Uj) of the hyperbolic structure containing p gives a local
trivialization Uj × PSL(2,C) of PPSL(2,C)M , with respect to which the point u is written as
a pair (p, g) ∈ Uj × PSL(2,C). We will say that u is based at p ∈ M , if g ∈ PSL(2,C) ∼=
PSO(3)H

3 is a frame based at φj(p). It can be checked that this definition does not depend
on the choice of the local chart (φj , Uj), and that we have the following identification:

{
u ∈ PPSL(2,C)M | u is a frame based at π(u)

}
∼= PSO(3)M.

Thus we have obtained a concrete embedding PSO(3)M →֒ PPSL(2,C)M , which is easily seen
to be compatible with the actions of the respective structural groups SO(3) and PSL(2,C).
In other words, we have an explicit reduction of the structural group with respect to the fixed
embedding SO(3) ⊂ PSL(2,C). Although this embedding depends on the choices that we
have done, it must be pointed out that its homotopy class does not.

Proposition 1.1.2. There is a canonical one-to-one correspondence between the following
sets:

1. The set of covers of PPSL(2,C)M by SL(2,C)–principal bundles over M .

2. The set of spin structures on M .

Proof. The set of spin structures on M is canonically identified with the following set:

{
α ∈ H1(PSO(3)M ;Z/2Z) | i∗(α) = 1 ∈ H1(SO(n);Z/2Z)

}
.

The same argument shows that the set of covers of PPSL(2,C)M by SL(2,C)–principal bundles
over M is identified with

{
α ∈ H1(PPSL(2,C)M ;Z/2Z) | i∗(α) = 1 ∈ H1(SL(2,C);Z/2Z)

}
.

The result then follows from the fact that the map PSO(3)M →֒ PIsom+
H3M defined above,

whose homotopy class is canonical, is a homotopy equivalence, for SO(3) ≃ PSL(2,C).

Corollary 1.1.3. The holonomy representation of a hyperbolic 3-manifold can be lifted to
SL(2,C). The number of such lifts is |H1(M ;Z/2Z)|.

Proof. An oriented 3-manifold admits |H1(M ;Z/2Z)| different spin structures.

1.2 Positive spin structures

LetM be a complete, oriented, hyperbolic 3-manifold of finite volume. ThusM is the interior
of a compact manifold whose boundary consists of tori T1, . . . , Tk.

Definition. We will say that a spin structure η on M is positive on Ti if for all g ∈ π1Ti we
have:

traceHol(M,η)(g) = +2.

Otherwise, we will say that η is nonpositive on Ti.
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The aim of this section is to prove the existence of spin structures that are nonpositive
on each torus Ti. Let T 2 be one of these tori. We can assume that T 2 is a horospheric
cross-section, and that

HolM (π1T
2) =

〈[(
1 1
0 1

)]
,

[(
1 τ
0 1

)]〉
< PSL(2,C), with Im τ > 0.

Let PSO(3)T
2 ⊂ PPSL(2,C)T

2 be the restriction of PSO(3)M ⊂ PPSL(2,C)M to T 2, and let
HolT 2 be the restriction of HolM to π1T

2. Using the Euclidean structure of T 2 and the
outward normal vector of T 2, we can construct a section s of the bundle PSO(3)T

2 that is
canonical up homotopy as follows: fix p ∈ T 2 and define s(p) ∈ PSO(3)T

2 as any frame based
at p whose third component is equal to the outward normal vector at p; for all q ∈ T 2, define
s(q) as the parallel transport (with respect to the Euclidean structure) of s(p) along a curve
joining p and q on T 2. This yields a well defined section which is canonical up to homotopy.
Thus we have a canonical trivialization PSO(3)T

2 ∼= T 2 × SO(3), and hence a distinguished
spin structure T 2 × Spin(3). All other spin structures arise as quotients of the form

ηα =
(
T̃ 2 × Spin(3)

)
/π1T

2,

where α ∈ H1(T 2;Z/2Z) = Hom(π1T
2; {±1}), and the action of σ ∈ π1T

2 on Spin(3) is by
multiplication by α(σ) Id. Therefore, spin structures of PSO(3)T

2 are in canonical one-to-one

correspondence with H1(T 2;Z/2Z).
A similar argument proves the following result.

Lemma 1.2.1. Let α ∈ H1(T 2;Z/2Z) = Hom(π1T
2; {±1}), ηα be the associated spin struc-

ture on T 2, and Hol(T 2,ηα) be the corresponding lift of the holonomy representation. Then we
have

α(σ) = sgn traceHol(T 2,ηα)(σ), for all σ ∈ π1T
2.

Now we can prove the existence of spin structures that are nonpositive on each torus Ti.

Proposition 1.2.2. Let M be an oriented, complete, hyperbolic 3-manifold of finite volume.
For each boundary component Ti take a closed simple curve γi. Then there exists a spin
structure η on M such that

traceHol(M,η)([γi]) = −2,

where [γi] denotes the conjugacy class of π1(M,p) defined by γi.

Proof. Let N be the manifold obtained by performing a Dehn filling along each of the curves
{γi}. Fix a spin structure η on N . We claim that the restriction of η to M gives the required
spin structure.

Assume that γ is one of the curves γi, and that it is contained in a horospheric cross-
section T 2. We can assume also that γ is a closed geodesic with respect to the Euclidean
structure of T 2. Let PSpin(3)T

2 → PSO(3)T
2 be the corresponding Spin(3)–bundle over T 2

defined by η, and α ∈ H1(T 2;Z/2Z) the associated cohomology class. Consider the canonical
section s : T 2 → PSO(3)T

2 constructed above using as starting frame one whose first vector is
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tangent to γ. Then the closed curve s ◦ γ can be lifted to PSpin(3)T
2 if and only if α(γ) = 1.

On the other hand, if s ◦ γ could be lifted to PSpin(3)T
2, then such a lift could be extended

to the added disk bounding γ (there is no obstruction in doing it because π1 Spin(3) = {1}),
and hence s ◦ γ could be extended to that disk, which is not possible by construction. Thus
α(γ) = −1, and the preceding lemma implies the result.

As a corollary of the proof of the Proposition 1.2.2, we obtain the following result.

Corollary 1.2.3. Let γ ⊂ ∂M be a simple closed curve non-homotopically trivial in ∂M ,
and Mγ be the manifold obtained by performing a Dehn filling along γ. A spin structure η
on M extends to a spin structure on Mγ if and only if

traceHol(M,η)(γ) = −2.

The following corollary of Proposition 1.2.2 gives a sufficient condition to guarantee the
existence of nonpositive spin structures.

Corollary 1.2.4. Assume that for each boundary component Ti of M , the map induced by
the inclusion,

H1(Ti;Z/2Z) → H1(M ;Z/2Z),

has non-trivial kernel. Then all spin structures on M are nonpositive on each Ti. In partic-
ular, if M has only one cusp, all spin structures on M are nonpositive on each Ti.

Proof. If the hypothesis holds, then for each Ti there exists a closed simple curve γi ∈ Ti that
is zero in H1(M ;Z/2Z). Take a spin structure on M such that traceHol(M,η)([γi]) = −2, for

all γi. Now let η′ be another spin structure on M , and α ∈ H1(M ;Z/2Z) be the cohomology
class relating η and η′. Then, using multiplicative notation, we have

Hol(M,η′)(γi) = α(γi)Hol(M,η)(γi).

Since [γ] ∈ H1(M ;Z/2Z) is zero, we have α(γi) = 1, and hence Hol(M,η′)(γi) has trace −2,
as we wanted to prove. The rest of the result follows from the fact that in any compact
3-manifold M the map

i∗ : H1(∂M ;Z/2Z) → H1(M ;Z/2Z)

induced by the inclusion i : ∂M →M has a non-trivial kernel.

1.3 The canonical n-dimensional representation

Irreducible, complex, finite-dimensional representations of SL(2,C) are well known: for all
n there is exactly one irreducible representation of dimension n which is given by Vn =
Symn−1 V2, the (n− 1)-th symmetric power of the standard representation V2 = C2. We use
the convention that Sym0 V2 is the base field.

Definition. Let (M,η) be a spin-hyperbolic 3-manifold with spin holonomy representation
Hol(M,η). We define the canonical n-dimensional representation of M as the composition of
Hol(M,η) with Vn.
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The decomposition into irreducible factors of the tensor product of two representations
of SL(2,C) is given by the Clebsch-Gordan formula (see [FH91, §11.2]).

Theorem 1.3.1 (Clebsch-Gordan formula). For nonnegative integers n and k we have:

Vn ⊗ Vn+k =
n−1⊕

i=0

V2(n−i)+k−1.

Lemma 1.3.2. Let V be a finite-dimensional complex representation of SL(2,C). Then there
exists a nondegenerate C–bilinear invariant pairing

φ : V × V → C.

Moreover, if V is irreducible, then there exists, up to multiplication by nonzero scalars, a
unique C–bilinear invariant pairing, which a fortiori is non-degenerate.

Proof. On one hand, the natural pairing between V ∗ and V always yields a nondegenerate
C–bilinear invariant map. From the classification of irreducible representations of SL(2,C),
we deduce that V ∗ is isomorphic to V , and hence the first part of the lemma is proved. On
the other hand, invariant bilinear maps are in one-to-one correspondence with fixed vectors
of V ∗⊗V ∗. Thus the second assertion follows from the Clebsch-Gordan formula, which shows
that (Vn ⊗ Vn)

∗ ∼= Vn ⊗ Vn has a unique irreducible factor of dimension 1, on which SL(2,C)
acts trivially.

Remark. Roughly speaking, the C–bilinear invariant pairing on Vn = Symn−1 V2 is the
(n − 1)-th symmetric power of the determinant. To be precise, let S(V2) be the symmetric
algebra on V2, that is,

S(V2) =
⊕

i≥0

Symi V2.

With respect to a fixed basis (e1, e2) of V2, the determinant is given by:

det = e∗1 ⊗ e∗2 − e∗2 ⊗ e∗1,

where (e∗1, e
∗
2) is the dual basis of (e1, e2). The determinant thus can be regarded as an

element of S(V ∗)⊗ S(V ∗). This latter vector space is an algebra in a natural way, and hence
it makes sense to consider the power detn. Notice that detn ∈ Symn(V ∗) ⊗ Symn(V ∗), so
detn defines a bilinear pairing on Vn+1. On the other hand, it can be checked that we have:

g · detn = (g · det)n, for all g ∈ SL(2,C).

Hence, detn is SL(2,C)–invariant, for so is det, and Lemma 1.3.2 implies that this pairing is
nondegenerate. Notice also that detn is alternating for n odd and symmetric for n even.

From Lemma 1.3.2 we get the following result (see [Gol86, Sec. 2.2]), which will be used
very often in the sequel.
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Corollary 1.3.3. Poincaré duality with coefficients in ρn holds.

Let Ad: SL(n,C) → Aut(sl(n,C)) denote the adjoint representation of SL(n,C). Com-
posing it with the representation Vn we get a representation

SL(2,C) → Aut(sl(n,C)),

which makes sl(n,C) into an SL(2,C)–module. Next we want to decompose sl(n,C) into
irreducible factors.

Lemma 1.3.4. As SL(2,C)–modules, we have:

sl(n,C) ∼= V2n−1 ⊕ V2n−3 · · · ⊕ V3.

Proof. Consider the action of SL(2,C) on gl(n,C) obtained by composing the n-dimensional
representation Vn with the adjoint representation. We have the following isomorphisms of
SL(2,C)–modules:

Vn ⊗ V ∗
n
∼= gl(n,C) ∼= sl(n,C)⊕C,

where the factor C corresponds to diagonal matrices. The result now follows from the Clebsh-
Gordan formula applied to Vn ⊗ V ∗

n
∼= Vn ⊗ Vn.





Chapter 2

Vanishing cohomology

Let (M,η) be a spin complete hyperbolic 3-manifold. For n > 0, consider its n-dimensional
canonical representation ρn. The associated flat vector bundle will be denoted by Eρn . Let
us recall the following definition.

Definition. A hyperbolic 3-manifold M is said to be topologically finite if it is the interior
of a compact manifold M .

Remark. By the proof of Marden’s conjecture [Ago, CG06], to be topologically finite is
equivalent to say that π1(M) is finitely generated.

In what follows, we will assume that M is non-elementary, which means, in the context
of three-manifolds, that its holonomy is an irreducible representation in PSL(2,C). The
following results are still true for elementary manifolds with a straightforward proof because
of the simplicity of these manifolds (cf. Lemma 2.2.3).

Theorem 2.0.5. Let (M,η) be a complete, non-elementary, spin-hyperbolic 3-manifold that
is topologically finite, and let n ≥ 2. Then the inclusion ∂M ⊂M induces an injection,

H1(M ;Eρn) →֒ H1(∂M ;Eρn),

with dimH1(M ;Eρn) =
1
2 dimH1(∂M ;Eρn), and an isomorphism

H2(M ;Eρn)
∼= H2(∂M ;Eρn).

The above theorem implies that (M,η) is ρn-acyclic if and only if so is ∂M . Therefore, by
Poincaré duality and an Euler characteristic argument, this can only happen if ∂M is a union
of tori T1, . . . , Tk, and H0(Ti;Eρn) = 0 for each torus Ti. An easy computation shows that for
n ≥ 3 odd H0(Ti;Eρn) is never trivial (see Section 2.2), whereas for n ≥ 2 even H0(Ti;Eρn)
is zero if and only if η is nonpositive on Ti.

Definition. Let M be an oriented, complete, hyperbolic 3-manifold of finite volume. A spin
structure η on M will be called acyclic if the cohomology groups H∗(M ; Hol(M,η)) are all

trivial, or, equivalently, if η is nonpositive on all connected components of ∂M .

11
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As we have said, the existence of spin acyclic structures is equivalent to the existence of
spin structures that are nonpositive on each Ti. Thus, by Corollary 1.2.4, all spin structures
are acyclic on one-cusped manifolds; hence, Theorem 2.0.5 gives the following result.

Theorem 2.0.6. Let (M,η) be a complete spin-hyperbolic 3-manifold of finite volume with
a single cusp. Then for k ≥ 1 we have

H∗(M ;Eρ2k) = 0.

Theorem 2.0.5 has applications to infinitesimal rigidity. The space of infinitesimal defor-
mations of ρn is isomorphic to H1(M ;EAd ◦ρn), where

Ad: SL(n,C) → Aut(sl(n,C))

is the adjoint representation.

The following theorem is an infinitesimal rigidity result for ρn in SL(n,C) relative to
the boundary. Its proof, which uses the decomposition of the representation sl(n,C) into
irreducible factors given in Lemma 1.3.4, will be given in Section 2.3.

Theorem 2.0.7. Let (M,η) be a complete, hyperbolic, non-elementary spin 3-manifold that
is topologically finite. If ∂M is the union of k tori and l surfaces of genus g1, . . . , gl ≥ 2, and
n ≥ 2, then

dimCH1(M ;EAd ◦ρn) = k(n− 1) +
∑

(gi − 1)(n2 − 1).

In particular, if M is closed then H1(M ;EAd ◦ρn) = 0. In addition, all nontrivial elements in
H1(M ;EAd ◦ρn) are nontrivial in H1(∂M ;EAd ◦ρn) and have no L2-representative.

When n = 2, this is Weil’s infinitesimal rigidity in the compact case, and Garland’s
L2-infinitesimal rigidity in the noncompact case. This has been generalized to cone three-
manifolds by Hodgson-Kerckhoff [HK98], Weiss [Wei05] and Bromberg [Bro04].

Let X(M, SL(n,C)) be the variety of characters of π1(M) in SL(n,C). The character
of ρn is denoted by χρn . From the previous theorem and standard results on the variety
of characters, we deduce the following result (for n = 2, this is Theorem 8.44 of Kapovich
[Kap01]).

Theorem 2.0.8. Let M be a topologically finite, hyperbolic, non-elementary and orientable
3-manifold as in Theorem 2.0.7. If n ≥ 2, then the character χρn is a smooth point of
X(M, SL(n,C)) with tangent space H1(M ;EAd ◦ρn).

This chapter is organized as follows. Section 2.1 is devoted to Raghunathan’s vanishing
theorem and to Theorem 2.0.5. Theorem 2.0.6 is proved in Section 2.2, where we compute the
cohomology of the ends, and discuss the existence of acyclic spin structures. Section 2.3 deals
with applications to infinitesimal and local rigidity, in particular, we prove Theorems 2.0.7
and 2.0.8. Appendix A reviews some results about principal bundles that are required in
Section 2.1.
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2.1 Raghunathan’s vanishing theorem

The aim of this section is to prove Theorem 2.1.1 stated below. This theorem is a particular
case of a theorem due to Raghunathan [Rag65]. Before stating it, let us recall some well
known facts.

The homogeneous manifold SL(2,C)/ SU(2) is endowed with a Riemannian structure
using the Killing form on sl(2,C) (see section 2.1.1 for details), which makes this space
isometric to hyperbolic 3-dimensional space H3.

Let Γ be a discrete torsion-free subgroup of SL(2,C), andM = Γ\H3 be the corresponding
complete hyperbolic manifold. Let V be a finite-dimensional representation of SL(2,C),
ρ : Γ → SL(V ) be the induced representation and Eρ be the associated flat vector bundle
over M . The space of Eρ–valued differential forms on M will be denoted by Ω∗(M ;Eρ). An
SU(2)–invariant inner product on V yields a well defined inner metric on Eρ, and hence on
Ω∗(M ;Eρ) as well. In particular, it makes sense to talk about L2-forms in Ω∗(M ;Eρ) as
those which are square integrable.

Theorem 2.1.1 ([Rag65]). Let Γ be a discrete torsion-free subgroup of SL(2,C). Let V be an
irreducible, finite-dimensional, complex representation of SL(2,C), and consider the induced
representation,

ρ : Γ → SL(V ).

Then, for p = 1, 2, every closed L2-form in Ωp(Γ\H3;Eρ) is exact.

As an immediate corollary of Theorem 2.1.1 we get a particular case of Raghunathan’s
vanishing theorem.

Corollary 2.1.2 ([Rag65]). Let M be a closed hyperbolic three-manifold. If V is an irre-
ducible, finite-dimensional, complex representation of SL(2,C), then

H1(M ;Eρ) = 0.

Remark. Raghunathan’s theorem applies to lattices of a semisimple Lie group G and a
broader family of representations, see [Rag65].

From Theorem 2.1.1 we can easily deduce Theorem 2.0.5.

Proof of Theorem 2.0.5. For some discrete torsion-free subgroup Γ of SL(2,C), we have

(M,η) = Γ\ SL(2,C)/ SU(2).

If M is compact then the result is clear from Theorem 2.1.1, so we can assume M is noncom-
pact. The space Hp(M,∂M ;Eρ) can be identified with the cohomology group of compactly
supported Eρ–valued p-forms on M ; hence, an element [α] ∈ Hp(M,∂M ;Eρ) is represented
by a closed form α on M with compact support. Therefore, Theorem 2.1.1 implies that
for p = 1, 2 the image of [α] under the map Hp(M,∂M ;Eρ) → Hp(M ;Eρ) induced by the
inclusion is zero. The theorem now follows from the long exact sequence of the pair, and
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Poincaré duality. Indeed the long exact sequence of the pair (M,∂M) splits into two short
exact sequences

0 → H1(M ;Eρn) → H1(∂M ;Eρn) → H2(M,∂M ;Eρn) → 0, (2.1)

0 → H2(M ;Eρn) → H2(∂M ;Eρn) → H3(M,∂M ;Eρn) → 0. (2.2)

Poincaré duality yields:

dimH1(M ;Eρn) = dimH2(M,∂M ;Eρn),

and from sequence (2.1) we deduce the first assertion of Theorem 2.0.5. On the other hand,
Lemma 2.2.5, to be proved later, states that dimCH0(M ;Eρn) = 0. Poinacré duality then
shows that sequence (2.2) yields an isomorphism,

0 → H2(M ;Eρn) → H2(∂M ;Eρn) → 0.

The proof given by Raghunathan in [Rag65] of its vanishing theorem is based in two facts,
which we briefly discuss now.

The first one is the following theorem due to Andreotti and Vesentini [AV65]. Although
the original theorem is for complex manifolds, there is an adaptation by Garland [Gar67,
Thm. 3.22] to the real case.

Theorem 2.1.3 (Andreotti-Vesentini [AV65], Garland [Gar67]). Let E be a flat vector bundle
over a complete Riemannian manifold M . Assume that E is endowed with an inner product,
and there exists c > 0 such that for every α ∈ Ωp(M ;E) with compact support we have:

(∆α, α) ≥ c(α, α),

where ( , ) denotes the inner product on the space of E–valued forms. Then every square-
integrable closed p-form is exact.

The second point in Raghunathan’s proof is the work by Matsushima and Murakami
concerning the theory of harmonic forms on a locally symmetric manifold [MM63]. One
of the goals of that work is the proof of a Weitzenböck formula for the Laplacian. This
allows to prove the strong-positivity hypothesis of the Laplacian required in Theorem 2.1.3
by establishing the positivity of a certain linear operator H, which is defined on a finite-
dimensional space, see Subsection 2.1.1. Although this is an important technical reduction,
it remains to prove the positivity of the operator H. Raghunathan was able to prove it for
a large family of locally symmetric manifolds and representations (see [Rag65]), which also
include the ones we are dealing with.

The rest of this section is divided into two parts. The first one is a review of the work
of Matsushima and Murakami concerning the Laplacian of a locally symmetric manifold.
The material presented here is almost entirely based on Matsushima-Murakami [MM63], and
Raghunathan’s book [Rag72]. Although it does not bring in a new conceptual approach, we
think that it is worth to review it here for both completeness and to make it more accessible
to the non-expert. The proof of Theorem 2.1.1 will be given in Subsection 2.1.2.
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2.1.1 Harmonic forms on a locally symmetric manifold

Let G be a connected semi-simple Lie group and K < G be a maximal compact subgroup of
G. The respective Lie algebras are denoted by g and k, with the convention that they are Lie
algebras of left invariant vector fields.

Let B denote the Killing form of g. We recall that it is defined by

B(V,W ) = trace(adV ◦ adW ), for V,W ∈ g.

Cartan’s criterion implies that B is nondegenerate if, and only if, g is semisimple. In that
case, we have a canonical decomposition g = m ⊕ k, where m is the orthogonal complement
to k with respect to B. This decomposition satisfies the following well known properties: B
is negatively-definite on k, B is positively-definite on m, [k,m] ⊂ m and [m,m] ⊂ k.

The Killing form defines a pseudo-Riemannian metric on G which is invariant under
the action of G by right translations and positively-definite (resp. negatively-definite) on m

(resp. k). Therefore, the Killing form defines a Riemannian metric on the homogeneous space

X = G/K.

Notice that G acts on the left on X by orientation preserving isometries. Let Γ be a discrete
torsion-free subgroup of G. The quotient M = Γ\X is then a Riemannian manifold, which
is called a locally symmetric manifold.

The quotient map X →M identifies X with the universal cover of M , and Γ with π1M .
Just for notational convenience, we will regard X as a principal bundle overM with structure
group Γ.

Remark. In what follows we will use the convention that the action of the structure group
on a principal bundle is on the right.

Therefore we must turn the left action of Γ on X into a right action, which is done as usual:
if g ∈ Γ and x ∈ X, then x · g := g−1 · x. We will also regard X as a flat bundle.

Consider the G–principal bundle P = X ×Γ G over M endowed with the flat connection
induced from the trivial connection on the product X × G (see Appendix A for notation).
We can embed X on P using the section X → X×G whose second coordinate is the identity
element, and then projecting it to P . Thus we can think of X as a reduction of the structure
group. Obviously, the connection on P is reducible to X, as the horizontal leaves of X are
also horizontal leaves of P .

On the other hand, the principal bundle P has a canonical reduction of its structure group
from G to K. To get such a reduction, consider the embedding

i : Γ\G→ P (2.3)

[g] 7→ [(gK, g)]. (2.4)

Denote by Q the image of Γ\G under this embedding. It is easily checked that Q is invariant
under the bundle action of K < G on P . Hence, Q is the wanted canonical reduction.
However, it is worth noticing that the connection defined on P is not reducible to Q; this
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follows from the fact that the horizontal distribution on P is not tangent to Q (to see this,
take a curve on X × G whose second component is constant; this curve is horizontal on P ,
and if the horizontal distribution were tangent to Q, then this curve would be contained in
Q, which does not happen). Nevertheless, the action of K on g preserves the decomposition
g = m ⊕ k because [k,m] ⊂ m. This allows us to apply the following standard result, see
[KN96].

Remark. We may identify g with the space of vector fields on Γ\G that are projections of
left invariant vector fields on G. In what follows we will tacitly do this identification.

Proposition 2.1.4. Let η ∈ Ω1(P ; g) be the connection form of the connection defined on P
above. Put η = ηm + ηk, where ηm and ηk are the m and k components of η respectively. Then
we have:

1. The restriction of ηk to Q is a connection form on Q.

2. Let ω ∈ Ω1(Γ\G; g) be the left Maurer-Cartan form of G. Then i∗(η) = ω, where i is
the embedding defined in (2.3).

3. The horizontal distribution on Γ\G defined by i∗(ηk) agrees with the one defined by m.

Consider a finite-dimensional linear representation ρ : G → Aut(V ), and the associated
vector bundle Eρ = X ×Γ V . This bundle is canonically identified with both P ×G V and
Q×K V . The flat connection on P defines an exterior covariant differential

dρ : Ω
r(M ;Eρ) → Ωr+1(M ;Eρ).

The space Ωr(M ;Eρ) consists of sections of
∧r T ∗M ⊗ Eρ, and the covariant differential dρ

is defined using the exterior differential to differentiate forms and the connection on Eρ to
differentiate sections of Eρ. We can however differentiate forms onM by using the connection
that we have on Q, which should be regarded as a “Levi-Civita” connection. Formally, this
can be expressed as follows.

Consider the space Ω∗
Hor(Γ\G;V )K of K–equivariant horizontal V –valued differential

forms on Γ\G (see Appendix A). The connection defined on Q defines a covariant differ-
ential

D : ΩrHor(Γ\G;V )K → Ωr+1
Hor (Γ\G;V )K .

Using the canonical isomorphism between Ω∗
Hor(Γ\G;V )K and Ω∗(M ;Eρ) (see Appendix A)

we can then define another covariant differential on Ω∗(M ;Eρ). We want to compare these
two differentials. It is easier to perform this comparison in Ω∗

Hor(Γ\G;V )K rather than in
Ω∗(M ;Eρ). To that end, we transfer the operator dρ to an operator Dρ on Ω∗

Hor(Γ\G;V )K

through the canonical isomorphism. The following proposition relates the operators D and
Dρ. Before stating it, let us introduce the following operator:

T : ΩrHor(Γ\G;V )K → Ωr+1
Hor (Γ\G;V )K

α 7→ ρ(ωm) ∧ α,

where ωm is the m–component of the left Maurer-Cartan form on Γ\G.
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Proposition 2.1.5. Let α be a form in ΩrHor(Γ\G;V )K . We have the following decomposition

Dρα = Dα+ Tα.

Proof. The differential covariant on P is given by dα+ρ(η)∧α, see Proposition A.0.4. Hence,
if we transfer it to Q via i, we get Dρα = dα + ρ(i∗η) ∧ α, and the proposition follows from
the fact that i∗η = ω.

Notation. We will use the following conventions. Let V be a finite-dimensional vector space.
If (e1, . . . , en) is a basis for V , then its dual basis will be denoted by (e1, . . . , en). If A ∈

⊗r V ∗

is an r-times covariant tensor, then its components relative to a fixed basis will be denoted as
usual by Ai1,...,ir . Concerning the exterior product

∧∗ V ∗, we will follow the convention that
e1 ∧ · · · ∧ en is the determinant with respect to the basis (e1, . . . , en). We will use Einstein
notation. Thus an alternate form α ∈

∧r V ∗ is written as

α = αi1,...,ire
i1 ⊗ · · · ⊗ eir ,

where αi1,...,ir are scalars satisfying αiσ(1),...,iσ(r)
= sgn(σ)αi1,...,ir , for any permutation σ on

the set {1, . . . , r}.

Let us fix an orientation on k and m, and an orthonormal basis for g,

(X1, . . . , Xn, Y1, . . . , Ym),

such that (X1, . . . , Xn) and (Y1, . . . , Ym) are positively-oriented orthonormal bases for k and
m, respectively. Here, orthonormality means that

B(Xi, Xj) = −δij B(Yi, Yj) = δij , B(Xi, Yj) = 0.

From now on, all the tensors will be written in the fixed basis of g. The following proposition
gives the expression of D and T with respect to the fixed basis.

Proposition 2.1.6. For α ∈ ΩrHor(Γ\G;V )K , the operators D and T are given by the fol-
lowing equations:

(Dα)i1,...,ir+1 =

r+1∑

k=1

(−1)k+1Yikαi1,...,îk,...,ir+1
(2.5)

(Tα)i1,...,ir+1 =
r+1∑

k=1

(−1)k+1ρ(Yik)αi1,...,îk,...,ir+1
. (2.6)

Proof. Put α = αi1,...,ir ⊗ Y i1 ∧ · · · ∧ Y ir , with αi1,...,ir ∈ V . By definition, Dα is the
horizontal component of dα. On one hand, it is immediate to check that dY k has no horizontal
component, indeed we have:

(dY k)(Yi, Yj) = Y k([Yi, Yj ]) = 0,
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because [Yi, Yj ] ∈ k. Thus we get,

Dα = (dαi1,...,ir) ∧ Y
i1 ∧ · · · ∧ Y ir .

And hence:

Dα = (Yjαi1,...,ir)⊗ Y j ∧ Y i1 ∧ · · · ∧ Y ir .

Rearranging indices we get Equation (2.5). The other equation follows easily from the defi-
nition of T .

Let us define the following two forms ΩK = X1∧· · ·∧Xn and ΩM = Y 1∧· · ·∧Y m. These
forms are independent of the orthonormal bases chosen, and hence they yield well-defined
forms on Γ\G. Note that ΩK is vertical whereas ΩM is horizontal, and that they both are
right K–invariant (this is a consequence of the fact that the right action of K on g leaves
both the Killing form and the decomposition g = k ⊕ m invariant). Observe also that ΩM
defines a volume form on M which is compatible with the metric structure on M .

Next we want to define an inner product on the fibers of Eρ. To that end, fix aK–invariant
inner product 〈 , 〉V on V , and use it to define a metric on the fibers of Eρ = Q×K V . Then
define an inner product on Ω∗(M ;Eρ) as usual:

(α, β) =

∫

M
〈α(x), β(x)〉xΩM , for all α, β ∈ Ω∗(M ;Eρ),

where 〈 , 〉x denotes the extension of the inner product defined on the fiber of Eρ at x to its
exterior powers. Here ΩM is interpreted as a form on M . On the other hand, we can define
an inner product on Ω∗

Hor(Γ\G;V )K by

(α̃, β̃) =
1

µ(K)

∫

Γ\G
〈α̃(u), β̃(u)〉uΩK ∧ ΩM , for all α̃, β̃ ∈ Ω∗

Hor(Γ\G;V )K ,

where 〈 , 〉u is the inner product on
∧r H∗⊗V induced by the Killing form and the inner

product on V , and µ(K) =
∫
K ΩK is the volume ofK. Proposition A.0.6 gives the relationship

between these two products.

Proposition 2.1.7. The canonical isomorphism between the spaces Ω∗
Hor(Γ\G;V )K and

Ω∗(M ;Eρ) is an isometry.

Next we want to get an expression of the formal adjoint of D and T . We consider the
Hodge star operator defined on the horizontal bundle

∗ : ΩrHor(Γ\G;V )K → Ωm−r
Hor (Γ\G;V )K .

Recall that if α = αi1,...,ir ⊗ Y i1 ∧ · · · ∧ Y ir , with αi1,...,ir ∈ V , then

∗α = αi1,...,ir ⊗ Y jr+1 ∧ · · · ∧ Y jm ,

where Y i1 ∧ · · · ∧ Y ir ∧ Y jr+1 ∧ · · · ∧ Y jm = Y 1 ∧ · · · ∧ Y m.
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Proposition 2.1.8. Let α ∈ ΩrHor(Γ\G;V )K with compact support. Then,

D∗α = (−1)r ∗−1 D ∗ α (2.7)

T ∗α = (−1)r−1 ∗−1 ρ(ω)∗ ∧ (∗α), (2.8)

where ρ(ω)∗ denotes the adjoint of ρ(ω) with respect to the fixed inner product on V , that is,
for all vector field X on Γ\G, ρ(ω)∗(X) is the adjoint of ρ(ω)(X) ∈ End(V ).

Proof. We want to use Proposition A.0.7. We claim that

∫

P
Dα ∧ β ∧ ΩK = (−1)r

∫

P
α ∧Dβ ∧ ΩK , (2.9)

for α and β forms of Ω∗
Hor(Γ\G;V ) with compact support of degree r−1 andm−r respectively.

Indeed, since Dα is the horizontal component of dα, we have Dα ∧ ΩK = dα ∧ ΩK . Then,

d(α ∧ β ∧ ΩK) = dα ∧ β ∧ ΩK + (−1)r−1α ∧ dβ ∧ ΩK ,

since ΩK is closed. Therefore, equation (2.9) follows by Stokes’ Theorem. Proposition A.0.7
then gives formula (2.7).

Let us prove now Equation (2.8). By Proposition A.0.7, it suffices to prove that

(ρ(ω) ∧ α) ∧ β = (−1)r−1α ∧ (ρ(ω)∗ ∧ β).

Let us fix an orthonormal basis for V so that we can write α and β as column vectors of
forms and ρ(ω) as a matrix of 1-forms. The expression of (ρ(ω) ∧ α) ∧ β in this basis is
(ρ(ω) ∧ α)t ∧ β̄, where the bar denotes complex conjugation and the superscript t denotes
matrix transposition. We have:

(ρ(ω) ∧ α)t ∧ β̄ = (−1)r−1αt ∧ ρ(ω)t ∧ β̄.

The result then follows by taking into account that ρ(ω)
t
= ρ(ω)∗.

A similar proof of Proposition 2.1.6 and the formulae found in the previous proposition
give the following result.

Proposition 2.1.9. For α ∈ ΩrHor(Γ\G;V )K with compact support, the operators D∗ and
T ∗ are given by the following equations:

(D∗α)i1,...,ir−1 =
m∑

k=1

−Ykαk,i1,...,ir−1 (2.10)

(T ∗α)i1,...,ir−1 =
m∑

k=1

ρ(Yk)αk,i1,...,ir−1 . (2.11)

Lemma 2.1.10. If the inner product on V is symmetric with respect to the action of m, then
the operator S = TD∗ + T ∗D +DT ∗ +D∗T is zero for every form with compact support.
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Before proving the lemma we need the following result.

Lemma 2.1.11. For every function f with compact support on Γ\G and for all Y ∈ g we
have: ∫

Γ\G
(Y f)ΩM ∧ ΩK = 0.

Proof. On one hand, Cartan’s formula LY = ιY ◦ d+ d ◦ ιY yields

LY (fΩM ∧ ΩK) = d (ιY (fΩM ∧ ΩK)) .

Since f has compact support, Stokes’ Theorem then shows that we have:

0 =

∫

Γ\G
LY (fΩM ∧ ΩK),

On the other hand, since Y is an infinitesimal isometry, we have LY ΩK = LY ΩM = 0, and
thus

LY (fΩM ∧ ΩK) = (Y f)ΩM ∧ ΩK .

The result then follows immediately.

Proof of Lemma 2.1.10. Since S is a self-adjoint operator, S = 0 if and only if (Sα, α) = 0
for every α with compact support. Let us take α ∈ Ω∗

Hor(Γ\G;V )K with compact support.
We must show that

(Sα, α) = (Dα, Tα) + (Tα,Dα) + (D∗α, T ∗α) + (T ∗α,D∗α) = 0.

It suffices to prove that (Dα, Tα)+(D∗α, T ∗α) = 0. Moreover, using the fact that the Hodge
∗ operator is an isometry, we must prove that

(Dα, Tα) + (D(∗α), T (∗α)) = 0.

Let us compute first (Dα, Tα). Put α = αi1,...,ir ⊗ Y i1 ∧ · · · ∧ Y ir . Using the expression of D
and T given in Proposition 2.1.6, we see that (Dα, Tα) is a sum of terms of the form:

(−1)i+j
∫

Γ\G

〈
Yijαi1,...,îj ,...,ir+1

, ρ(Yik)αi1,...,îk,...,ir+1

〉
V
dµG.

Let us write the summands according to whether the avoided sub-indices îj and îk are equal
or not. Therefore, one term is a sum of terms of the form

∫

Γ\G
〈Yjαi1,...,ir , ρ(Yj)αi1,...,ir〉V dµG, j /∈ {i1, . . . , ir},

and the rest is a sum of terms of the form

(−1)j+k
∫

Γ\G

〈
Yijαi1,...,îj ,...,ik,...,ir , ρ(Yik)αi1,...,ij ,...,îk,...,ir

〉
V
dµG, (2.12)
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with ij 6= ik. We can apply this formula to ∗α to compute (D(∗α), T (∗α)). The formula we
get is just the above formula with the range of the indices changed by their complementary;
that is, on one hand we get terms of the form

∫

Γ\G
〈Yjαi1,...,ir , ρ(Yj)αi1,...,ir〉V dµG, j ∈ {i1, . . . , ir},

and on the other hand terms of the form

(−1)j+k
∫

Γ\G

〈
Yikαi1,...,îj ,...,ik,...,ir , ρ(Yij )αi1,...,ij ,...,îk,...,ir

〉
V
dµG, (2.13)

for ij 6= ik. By Lemma 2.1.11, the term (2.13) is minus the term (2.12). Hence, it suffices to
prove that for every Y ∈ m, and f ∈ C(Γ\G;V ), we have

∫

Γ\G
〈Y f, ρ(Y )f〉V dµG = 0.

This is a consequence of Lemma 2.1.11 and the symmetry of ρ(Y ). The lemma now follows
immediately.

Corollary 2.1.12 (Matsushima-Murakami formula). Assume that the inner product on V is
symmetric with respect to the action of m. Then

∆ρ = ∆+H,

where ∆ = DD∗ +D∗D, and H = TT ∗ + T ∗T .

Proof. We have ∆ρ = DρD
∗
ρ +D∗

ρDρ = ∆+H + S, and Lemma 2.1.10 yields the result.

The operator T can be extended in an obvious way to operators on Ω∗
Hor(Γ\G;V ), namely

its definition does not use the K–equivariance. Moreover, T is C∞(Γ\G)–linear. On the other
hand, since the horizontal bundle on Γ\G is trivial, we have:

ΩrHor(Γ\G;V ) = C∞(Γ\G)⊗

(
V ⊗

r∧
m∗

)
.

Let us define T as the restriction of T to V ⊗
∧r

m∗. The C∞(Γ\G)–linearity of T then
implies that we can recover T from T; hence, all properties of T are encoded somehow in T .
Analogous considerations applied to T ∗ and H yield operators T∗ and H.

Notice that H is positive definite if and only so is H. Therefore, by Theorem 2.1.3 we get
the following result.

Corollary 2.1.13. If the operator H is positively-definite in degree r, then every closed
square integrable r-form in ΩrHor(Γ\G;V )K is exact.

The next result gives an explicit expression of the operator H in terms of the fixed basis
of m.
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Proposition 2.1.14. Let α ∈ V ⊗
∧p

m∗. Then we have,

(Hα)i1,...,ir =
m∑

j=1

ρ(Yj)
2αi1,...,ir +

r∑

k=1

m∑

j=1

(−1)k+1ρ([Yik , Yj ])αj,i1,...,îk,...,ir

Proof. Put βi1,...,ir+1 = (Tα)i1,...,ir+1 and γi1,...,ir−1 = (T∗α)i1,...,ir−1 . On one hand we have

(TT∗α)i1,...,ir =

r∑

k=1

(−1)k+1ρ(Yik)γi1,...,îk,...,ir

=
r∑

k=1

(−1)k+1ρ(Yik)
m∑

j=1

ρ(Yj)αj,i1,...,îk,...,ir .

On the other hand, we have

(T∗Tα)i1,...,ir =
m∑

j=1

ρ(Yj)βj,i1,...,ir

=
m∑

j=1

ρ(Yj)

(
ρ(Yj)αi1,...,ir +

r∑

k=1

(−1)kρ(Yik)αj,i1,...,îk,...,ir

)
.

The proposition then follows by rearranging terms.

2.1.2 Proof of the vanishing cohomology theorem

We want to apply Corollary 2.1.13 to our particular case. First we need to choose an or-
thonormal basis for su(2) with respect to the Killing form (in fact, it will be a constant
multiple of it). Let us define

X1 =

(
i 0
0 −i

)
, X2 =

(
0 1
−1 0

)
, X3 =

(
0 i
i 0

)
.

Then (X1, X2, X3) is an orthonormal basis for su(2). The orthogonal complement to su(2)
with respect to the Killing form is given by Yk = iXk, for k = 1, 2, 3. On the other hand, we
have [Xi, Xi+1] = 2Xi+2, for i = 1, 2, 3, where the indices are taken modulo 3.

Lemma 2.1.15. Let ρ : sl(2,C) → End(V ) be a complex, finite-dimensional, irreducible
representation with dim(V ) ≥ 2. Then the operator H is positively definite on degree 1 and
2.

Proof. Since H = TT∗ + T∗T, to show that H is positively definite is equivalent to show
that its kernel is trivial. Let α ∈ V ⊗m∗. We have α =

∑3
i=1 αi ⊗ Y i, with αi ∈ V . Assume

Hα = 0. Then Tα = 0 must vanish too, and from Proposition 2.1.6 Equation (2.6) we obtain

0 = (Tα)(Yi, Yj) = ρ(Yi)αj − ρ(Yj)αi, i, j = 1, 2, 3. (2.14)
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Proposition 2.1.14 yields

(Hα)(Yj) =
3∑

k=1

(
ρ(Yk)

2αj + ρ([Yj , Yk])αk
)
.

Taking the indices modulo 3, and using the Lie algebra relations, we get

3∑

k=1

ρ([Yj , Yk])αk = ρ([Yj , Yj+1])αj+1 + ρ([Yj , Yj+2])αj+2

= 2
(
ρ(−Xj+2)αj+1 + ρ(Xj+1)αj+2

)

= 2i
(
ρ(Yj+2)αj+1 − ρ(Yj+1)αj+2

)
.

Notice that in the last equality we have used the complex structure. Hence, using Equation
(2.14), we get (Hα)(Yj) =

∑3
k=1 ρ(Yk)

2αj , and then

0 = 〈Hα, α〉 =
3∑

j=1

3∑

k=1

〈
ρ(Yk)

2αj , αj
〉

=

3∑

j,k=1

〈ρ(Yk)αj , ρ(Yk)αj〉 ,

which implies ρ(Yj)αk = 0 for j, k = 1, 2, 3. Hence, for a fixed k, we have ρ(Z)αk = 0 for
every Z ∈ sl(2,C). Since we are assuming that ρ is irreducible and nontrivial, we get αk = 0
for all k. It proves the lemma in degree 1. Since m∗ ∼=

∧2
m∗, the same proof holds in degree

2.

2.2 Cohomology of the ends

Assume that (M,η) is a complete, noncompact, non-elementary, spin-hyperbolic manifold
with finite topology; in particular, M is the interior of a compact manifold M with boundary
∂M . The aim of this section is to analyse the cohomology groups of H∗(∂M ;Eρn). When
the ends of the manifold are cusps, these cohomology groups depend on the chosen lift of the
holonomy.

Definition. Let G be a group acting on a vector space V . The subspace of invariants of V ,
denoted by V G, is the subspace consisting of elements of V that are fixed by G. That is,

V G = {v ∈ V | g · v = v, for all g ∈ G}.

Lemma 2.2.1. Let F be a connected component of ∂M . For every n > 1 we have,

dimCH0(F ;Eρn) = dimC V
π1(F )
n

dimCH1(F ;Eρn) = 2 dimC V
π1(F )
n − nχ(F ),

dimCH2(F ;Eρn) = dimC V
π1(F )
n .
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Proof. Since F is a K(π1(F ), 1) space, H0(F ;Eρn) = H0(π1(F );Eρn), and this is identified

with V
π1(F )
n . It proves the first equality. The third one follows from Poincaré duality, and

the second one from an Euler characteristic argument.

Therefore, all the cohomological information comes from the subspace of invariants V
π1(F )
n .

We distinguish two cases according to whether F has genus g ≥ 2 or F is a torus.

Proposition 2.2.2. Let F be a connected component of ∂M and n > 1. If F has genus

g ≥ 2, then V
π1(Fg)
n = 0. If F is a torus T 2, then we have the following cases,

V π1(T 2)
n =





0 for n even and η is nonpositive on T 2,
C for n even and η positive on T 2,
C for n odd.

Before proving it, we need the following lemmas. The first one can be found in standard
references about Kleinian groups (see [Kap01]).

Lemma 2.2.3. Let M be a hyperbolic three-manifold. Then the following are equivalent:

1. M is elementary (its holonomy is reducible in PSL(2,C)).

2. π1(M) is abelian.

3. M is homeomorphic to either the product of the plane with a circle, R2 × S1, or to the
product of a 2-torus with a line, S1 × S1 ×R.

Lemma 2.2.4. Let F be a connected component of ∂M . If F has genus g ≥ 2, then
Hol(M,η)(π1(F )) is an irreducible subgroup of SL(2,C).

Proof. When F is π1–injective (i.e. when π1(F ) injects into π1(M)) then the holonomy re-
stricts to a discrete faithful representation of π1(F ), and irreducibility follows because π1(F )
is non-abelian. Otherwise, when F is not π1–injective, according to Bonahon [Bon83] and
McCullough-Miller [MM86] there are two possibilities: either M is a handlebody or F is a
boundary component of a characteristic compression body C ⊆ M . A handlebody is the
result of attaching one handles to a 3-ball; in particular when M is a handlebody then
π1(F ) surjects onto π1(M), thus Hol(π1(F )) = Hol(π1(M)) and irreducibility comes from the
hypothesis that M is non-elementary. Next, assume that F is the positive boundary of a
characteristic compression body C, namely C ⊆ M is a codimension 0 closed submanifold,
whose boundary splits as a union ∂C = ∂−C ∪ ∂+C, so that ∂+C = F , the components
of ∂−C are π1–injective in M , and C is the result of gluing 1-handles to ∂−C × [0, 1] along
∂−C × {1}. In particular π1(F ) surjects onto π1(C) and Hol(π1(F )) = Hol(π1(C)). Thus, if
F = ∂+C and one of the components of ∂−C has genus ≥ 2, then we are done by the π1–
injective case. Finally if F = ∂+C and all components of ∂−C are tori, since incompressible
tori in M are boundary parallel, then the inclusion C ⊆M is a homotopy equivalence. Thus
π1(F ) surjects onto π1(M) and irreducibility follows again because M is non-elementary.
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Lemma 2.2.5. Let (M,η) be a non-elementary spin-hyperbolic three-manifold. Then, for
n ≥ 2 the subspace of invariants of Vn is trivial, that is,

V π1(M)
n = 0.

Proof. Let us fix a basis for Vn. Let e1 = ( 10 ) and e2 = ( 01 ), so that (e1, e2) is the standard
basis for V2 = C2. Thus (

en−1
1 , en−2

1 e2, . . . , e
n−1
2

)

is a basis for Vn = Symn−1(V2). Since M is non-elementary, there exists at least one element
γ ∈ π1(M) whose holonomy is non-parabolic (see [Kap01, Corollary 3.25]). Up to conjugation,
we have

Hol(M,η)(γ) =

(
λ 0
0 λ−1

)
.

for some λ ∈ C, with |λ| > 1. This means that the vectors e1 and e2 of the standard basis
for C2 are eigenvectors. Since Vn is the (n− 1)-symmetric power of C2, for n even the only
element of Vn that is γ-invariant is zero. For n odd, the subspace of γ-invariants of Vn is

the line generated by e
n−1
2

1 e
n−1
2

2 . Any other matrix of SL(2,C) that fixes e
n−1
2

1 e
n−1
2

2 is either
diagonal or antidiagonal (zero entries in the diagonal). Antidiagonal matrices have trace zero,
hence they have order four, so they cannot occur because the holonomy of M has no torsion
elements. Also, any element γ′ ∈ π1(M) that does not commute with γ has non-diagonal
holonomy, thus 0 is the only element of Vn invariant by both γ and γ′.

Proof of Proposition 2.2.2. When F has genus g ≥ 2, then by Lemma 2.2.4 the following
quotient is a non-elementary spin-hyperbolic 3-manifold.

Hol(M,η)(π1(F ))\H
3.

We apply Lemma 2.2.5 to conclude that V
π1(F )
n = 0. The case of the torus follows easily.

Applying Lemma 2.2.1, Proposition 2.2.2, Theorem 2.0.5 and Lemma 2.2.5, we get the
following corollaries.

Corollary 2.2.6. Let (M,η) be a spin-hyperbolic 3-manifold with k cusps and l ends of
infinite volume of genus g1, . . . , gl, and let n ≥ 2. Then we have:

dimCH0(∂M ;Eρn) = a,

dimCH1(∂M ;Eρn) =
l∑

i=1

2n(gi − 1) + 2a,

dimCH2(∂M ;Eρn) = a,

where a is equal to k if n is odd, and is equals to the number of cusps for which η is nonpositive
if n is even.
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Corollary 2.2.7. Let (M,η) be as in Corollary 2.2.6. Then we have

dimCH0(M ;Eρn) = 0,

dimCH1(M ;Eρn) =
l∑

i=1

n(gi − 1) + a,

dimCH2(M ;Eρn) = a.

2.3 Infinitesimal Rigidity

In this section we prove Theorem 2.0.7 which we restate now.

Theorem 2.3.1. Let M be a complete hyperbolic 3-manifold that is topologically finite. If
∂M is the union of k tori and l surfaces of genus g1, . . . , gl ≥ 2, and n ≥ 2, then

dimCH1(M ;EAd ◦ρn) = k(n− 1) +
∑

(gi − 1)(n2 − 1).

In particular, if M is closed then H1(M ;EAd ◦ρn) = 0. In addition, all nontrivial elements in
H1(M ;EAd ◦ρn) are nontrivial in H1(∂M,EAd ◦ρn) and have no L2-representative.

Proof. By Lemma 1.3.4 we have sl(n,C) ∼= V2n−1 ⊕ V2n−3 · · · ⊕ V3. Hence,

H1(M ;EAd ◦ρn)
∼= H1(M ;Eρ2n−1)⊕H1(M ;Eρ2n−3)⊕ · · · ⊕H1(M ;Eρ3). (2.15)

The theorem now follows from this isomorphism, Corollary 2.2.6 and Theorem 2.0.5.

Next we want to prove Theorem 2.0.8. See [LM85] for basic results about representation
and character varieties. The variety of representations of π1(M) in SL(n,C) is

R(M, SL(n,C)) = hom(π1(M), SL(n,C)).

Since π1(M) is finitely generated, this is an algebraic affine set. The group SL(n,C) acts by
conjugation on R(M, SL(n,C)) algebraically, and the quotient in the algebraic category is
the variety of characters:

X(M, SL(n,C)) = R(M, SL(n,C))// SL(n,C).

For a representation ρ ∈ R(M, SL(n,C)) its character is the map

χρ : π1(M) → C
γ 7→ trace(ρ(γ)).

The projection R(M, SL(n,C)) → X(M, SL(n,C)) maps each representation ρ to its charac-
ter χρ.

Weil’s construction gives a natural isomorphism between the Zariski tangent space to
a representation TZarρ R(M, SL(n,C)) and Z1(π1(M), VAd ◦ρ), the space of group cocycles
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valued in the Lie algebra sl(n,C), which as π1(M)–module is also written as VAd ◦ρ. Namely,
Z1(π1(M), VAd ◦ρ) is the set of maps d : π1(M) → VAd ◦ρ that satisfy the cocycle relation

d(γ1γ2) = d(γ1) + Adρ(γ1) d(γ2), ∀γ1, γ2 ∈ π1(M).

Notice that R(M, SL(n,C)) may be a non reduced algebraic set, so the Zariski tangent space
may be larger than the Zariski tangent space of the underlying algebraic variety.

The space of coboundaries B1(π1(M), VAd ◦ρ) is the set of cocycles that satisfy d(γ) =
Adρ(γ)m−m for all γ ∈ π1(M) and for some fixed m ∈ VAd ◦ρ. The space of coboundaries is
the tangent space to the orbit by conjugation, so under some hypothesis the cohomology may
be identified with the tangent space of the variety of characters (Proposition 2.3.2). Since M
is aspherical, the group cohomology of π1(M)

H1(π1(M);VAd ◦ρ) = Z1(π1(M), VAd ◦ρ)/B
1(π1(M), VAd ◦ρ)

is naturally isomorphic to H1(M ;EAd ◦ρ).

Definition. A representation ρ : π1(M) → SL(n,C) is semi-simple if every subspace of Cn

invariant by ρ(π1(M)) has an invariant complement.

Thus a semi-simple representation decomposes as a direct sum of simple representations,
where simple means without proper invariant subspaces.

The following summarizes the relation between tangent spaces and cohomology. See
[LM85] for a proof.

Proposition 2.3.2. Let ρ ∈ R(M, SL(n,C)).

1. There is a natural isomorphism

Z1(π1(M), VAd ◦ρ) ∼= TZarρ R(M, SL(n,C)).

2. If ρ is semisimple, then it induces an isomorphism

H1(π1(M);VAd ◦ρ) ∼= TZarρ X(M, SL(n,C)).

3. If ρ is semisimple and a smooth point of R(M, SL(n,C)), then its character χρ is a
smooth point of X(M, SL(n,C).

A point in an algebraic affine set is smooth if and only if it has the same dimension that
its Zariski tangent space. So to prove smoothness we need to compute these dimensions.

Lemma 2.3.3. Let ρn be as in Theorem 2.0.8, and T 2 a component of ∂M corresponding to
a cusp. Then the restriction of ρn to π1(T

2) is a smooth point of R(T 2, SL(n,C)).

Proof. Knowing that dimR(T 2, SL(n,C)) ≤ dimZ1(T 2, VAd ◦ρn), we want to show that equal-
ity of dimensions holds. Before the cocycle space, we first compute the dimension of the
cohomology group. By Equation (2.15) in the proof of Theorem 2.3.1:

dimH1(T 2;EAd ◦ρn) =

n∑

i=2

dimH1(T 2;Eρ2i−1).
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Hence, by Corollary 2.2.6,

dimH1(T 2;EAd ◦ρn) = 2(n− 1).

We apply the same splitting for computing the dimension of the coboundary space. It is the
sum of terms dimB1(T 2, Eρk), for k odd from 3 to 2n− 1. Since we have an exact sequence

0 → V
π1(T 2)
k → Vk → B1(T 2, Eρk) → 0,

dimB1(T 2, Eρk) = k − dimV
π1(T 2)
k = k − 1, by Lemma 2.2.2. Thus

dimB1(T 2, EAd ◦ρn) = (2n− 2) + (2n− 4) + · · ·+ 2 = n2 − n.

Hence as H1(T 2;EAd ◦ρn) = Z1(T 2, EAd ◦ρn)/B
1(T 2, EAd ◦ρn), we have:

dimZ1(T 2, EAd ◦ρn) = dimH1(T 2, EAd ◦ρn) + dimB1(T 2, EAd ◦ρn)

= n2 + n− 2.

Now we look for a lower bound of dimR(T 2, SL(n,C)). Fix {γ1, γ2} a generating set of
π1(T

2). The representation ρn restricted to π1(T
2) has eigenvalues equal to ±1. By deform-

ing the representation of π1(T
2) to SL(2,C), and by composing it with the representation

of SL(2,C) to SL(n,C), there exists a representation ρ′ ∈ R(T 2, SL(n,C)) arbitrarily close
to ρn such that all eigenvalues of ρ′(γ1) are different, in particular ρ′(γ1) diagonalises. Now,
to find deformations of ρ′, notice that ρ′(γ1) can be deformed with n2 − 1 = dim(SL(n,C))
parameters, and having all eigenvalues different is an open condition. As ρ′(γ2) has to com-
mute with ρ′(γ1), it has the same eigenspaces, but one can still choose n− 1 eigenvalues for
ρ′(γ2). This proves that the dimension of some irreducible component of R(T 2, SL(n,C))
that contains ρn is at least

n2 − 1 + n− 1 = n2 + n− 2.

As this is dimZ1(T 2, EAd ◦ρn), it must be a smooth point.

Proof of Theorem 2.0.8. Using Proposition 2.3.2, we just need to prove that ρn is a smooth
point of the variety of representations.

Given a Zariski tangent vector v ∈ Z1(M,VAd ◦ρn), we have to show that it is integrable,
i.e. that there is a path in the variety of representations whose tangent vector is v. For this,
we use the algebraic obstruction theory, see [Gol86, HP05]. There exists an infinite sequence
of obstructions that are cohomology classes in H2(M,VAd ◦ρn), each obstruction being defined
only if the previous one vanishes. These are related to the analytic expansion in power series
of a deformation of a representation, and to Kodaira’s theory of infinitesimal deformations.
Our aim is to show that this infinite sequence vanishes. This gives a formal power series, that
does not need to converge, but this is sufficient for v to be a tangent vector by a theorem
of Artin [Art68] (see [HP05] for details). We do not give the explicit construction of these
obstructions; we just use that they are natural and that they live in the second cohomology
group.
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By Theorem 2.0.5 we have an isomorphism:

H2(M ;EAd ◦ρn)
∼= H2(∂M ;EAd ◦ρn). (2.16)

Now, H2(∂M ;EAd ◦ρn) decomposes as the sum of the connected components of ∂M . If Fg has
genus g ≥ 2 then H2(Fg;EAd ◦ρn) = 0. Thus, only the components of ∂M that are tori appear
in H2(∂M ;EAd ◦ρn). By Lemma 2.3.3 and naturality, the obstructions vanish when restricted
to H2(T 2;EAd ◦ρn), hence they vanish in H2(M ;EAd ◦ρn) by the isomorphism (2.16).





Appendix A

Some results on principal bundles

Throughout this appendix G will be a Lie group and P a G-principal bundle over a manifold
M . The bundle projection will be denoted by

πP : P →M.

We will follow the convention that G acts on P on the right. For g ∈ G, we will denote the
action of g on P as

Rg : P → P.

Let us recall the following common construction. Let F be a differentiable manifold on
which G acts on the left. The associated bundle P ×G F is the quotient of P × F by the
diagonal right action of G, that is

(u, x) · g = (ug, g−1x), with g ∈ G and (u, x) ∈ P × F.

The space P ×G F has in a natural way a structure of fiber bundle over M with typical fiber
F .

Remark. The definition of P ×G F shows that a point u in P can be interpreted as an
isomorphism between F and the fiber of P ×G F at πP (u): if π denotes the quotient map
P × F → P ×G F , then π(u, ·) is an isomorphism from F to FπP (u). Note that π(ug, x) =
π(u, gx).

Assume that we have a connection on P defined by a g-valued form ω ∈ Ω1(P ; g). Recall
that ω then satisfies the following two conditions (see [KN96]):

R∗
gω = Ad(g−1)ω, for all g ∈ G,

ω(X∗) = X, for all X ∈ g,

where Ad is the adjoint action of G on g, and X∗ is the fundamental vector field on P
generated by X ∈ g, see [KN96]. This connection defines a horizontal vector bundle H over
P whose fibers are given by

Hu = Kerωu, u ∈ P.
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A vector field on P is called horizontal if it is tangent to H. The differential of the projection
map πP is an isomorphism when restricted to H. Thus given Vp ∈ TpM and u ∈ π−1

P (p),
there exists a unique Ṽu ∈ Hu that is projected to Vp. The vector Ṽu is called the horizontal
lift of Vp at u.

The above definitions are extended in a natural way to the cotangent bundle and its
exterior powers. Thus it makes sense to consider the space of V -valued horizontal r-forms on
P , which we will denote as ΩrHor(P ;V ).

Remark. A form α ∈ Ωr(P ;V ) is horizontal if and only if it vanishes on vertical directions,
that is

ιX∗α = 0, for all X ∈ g.

Let us fix a linear representation ρ : G→ GL(V ). Then it makes sense to consider the space
Ωr(P ;V )G of V -valued G-equivariant forms on P , that is

Ωr(P ;V )G =
{
α ∈ Ωr(P ;V ) | R∗

gα = ρ(g−1)α for all g ∈ G
}
.

The space of horizontal V -valued differential forms over P that are G-equivariant will be
denoted by

Ω∗
Hor(P ;V )G.

Consider now E = P ×K V the vector bundle over M defined by ρ, and Ωr(M ;E) the
space of E-valued r-forms on M .

We want to recall the definition of the canonical isomorphism between Ωr(M ;E) and
Ω∗
Hor(P ;V )G. To that end, consider the bundle Q =

∧rH∗ ⊗ V , where H is the horizontal
vector bundle of P . We let G act on Q on the right by

(αp ⊗ wp) · g =
(
R∗
g−1αp

)
⊗ ρ(g)−1wp ∈ Qpg, for all αp ⊗ wp ∈ Qp.

The quotient space Q/G defines a vector bundle over M whose sections are identified with
Ω∗
Hor(P ;V )G.

We define an isomorphism between Q/G and
∧r T ∗M ⊗ E as follows. Let p ∈ M and

u ∈ π−1(p). Use the horizontal lift process to define an isomorphism

ψu :
r∧
H∗ →

r∧
T ∗
pM.

Interpreting u as an isomorphism between V and Ep, we get an isomorphism

ϕu = ψu ⊗ u : Qu =
r∧
H∗ ⊗ V →

r∧
T ∗
pM ⊗ Ep.

Notice that we have ϕu(v) = ϕug(vg) for all v ∈ Q. Therefore, it induces an isomorphism
between Q/G and

∧r T ∗M ⊗ E, and hence an isomorphism,

ϕ : ΩrHor(P ;V )G → Ωr(M ;E). (A.1)
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The connection on P defines an exterior covariant differential on ΩrHor(P ;V )G by

Dα = (dα) ◦ πh, for α ∈ ΩrHor(P ;V )G,

where πh is the projection on the horizontal distribution H. On the other hand, a connection
on P induces a connection on the vector bundle E, and hence an exterior covariant differential
dρ on Ωr(M ;E). It can be verified that the canonical isomorphism (A.1) commutes with the
exterior covariant differentiation, see [KN96, p. 76].

Proposition A.0.4. Let ω ∈ Ω1(P ; g) be a connection form defined on P . Then the following
formula holds

Dα = dα+ ρ(ω) ∧ α, for all α ∈ ΩrHor(P ;V )G.

Remark. If V1, . . . , Vp+1 are vector fields on P , by definition,

(ρ(ω) ∧ α)(V1, . . . , Vp+1) =

p+1∑

i=1

(−1)i+1ρ(ω(Vi))
(
α(V1, . . . , V̂i, . . . , Vp+1)

)
.

Taking a basis of V , ρ(w) is just a matrix of 1-forms, α a column vector of p-forms, and the
product ρ(ω) ∧ α is just the wedge product of a matrix by a vector.

Proof. Let α ∈ ΩrHor(P ;V )G. We must show that the form dα + ρ(ω) ∧ α is horizontal,
and that agrees with Dα on horizontal vectors. The second assertion is obvious from the
definition of D and the fact that ω vanishes on horizontal vectors. Thus it remains to prove
that dα+ ρ(ω) ∧ α is horizontal. It is enough to prove that

ιX∗ (dα+ ρ(ω) ∧ α) = 0, for all X ∈ g,

where X∗ is the fundamental vector field associated to X ∈ g. On one hand we have:

ιX∗ (dα+ ρ(ω) ∧ α) = ιX∗(dα) + ρ(X)α,

as ιX∗α = 0 and ιX∗ω = X. On the other hand, Cartan’s identity L = d ◦ ι+ ι ◦ d yields:

ιX∗(dα) = LX∗α− d(ιX∗α) = LX∗α.

Finally, the infinitesimal version of the G-equivariance of α states that LX∗α = −ρ(X)α. We
conclude from this that dα+ ρ(ω) ∧ α is horizontal.

Now assume that M is an oriented Riemannian manifold with volume form ωM . From
now on we will assume that G is compact. To avoid confusions with the previous chapter,
we will denote G by K to emphasize that K is compact. Let us fix a K-invariant inner
product on V , say 〈·, ·〉. This inner product induces an inner product on the vector bundle
E = P ×K V .

We can define an inner product on Ωr(M ;Eρ) as usual:

(α, β) =

∫

M
〈α(x), β(x)〉x ωM , with α, β ∈ Ωp(M ;E),
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where ωM is the volume form of M .
On the other hand, we can define an inner product on ΩrHor(P ;V )K as follows. First, pull

back the metric of TM to the horizontal bundle H through the projection map πP ; next,
take ωK a right-invariant volume form on K, and consider the right-invariant form ω∗

K on P
that it defines; finally, define an inner product on ΩrHor(P ;V )K by

(α, β) =

∫

P
〈α(u), β(u)〉u π

∗
P (ωM ) ∧ ω∗

K , with α, β ∈ ΩrHor(P ;V )G.

To get the relationship between these two inner products under the canonical isomor-
phism, we will use the following lemma.

Lemma A.0.5. Let f be a function defined on P , and define its average on the fibers by

f̄(u) =

∫

K
f(ug)ωK .

The function f̄(u), being constant along the fibers, can be seen as a function on M . The
following equality then holds:

∫

P
f(u)π∗P (ωM ) ∧ ωK =

∫

M
f̄(x)ωM .

Proof. Take an open set U ⊂M so that there exists a trivializing map ψ : U ×K → π−1
P (U).

Denote by πU and πK the projection of U ×K on the first and the second factor respectively.
The formula of the change of variables then gives

∫

π−1
P (U)

f(u)π∗P (ωM ) ∧ ω∗
K =

∫

U×K
f(ψ(x, g))ωM ∧ ωK .

The right hand side integral is

∫

U

(∫

K
f(ψ(x, g))ωK

)
ωM =

∫

U
f̄(x)ωM .

The result then follows by taking a partition of the unity subordinated to a trivializing open
cover.

The above lemma then implies the following result.

Proposition A.0.6. With the above notation, we have:

(α, β) = µ(K)(ϕ(α), ϕ(β)), for all α, β ∈ ΩrHor(P ;V )G,

where µ denotes the measure defined by the volume form ωK , and ϕ is the canonical isomor-
phism (A.1).

Proof. The function 〈α̃(u), β̃(u)〉V is constant along the fibers, and is equal to 〈α(x), β(x)〉x,
where x = πP (u). Lemma A.0.5 then implies the result.
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Using the usual wedge product and the inner product on V , it makes sense to consider
the wedge product of two V -valued forms, which yields a C-valued form. In particular, we
have:

ΩrHor(P ;V )K × ΩqHor(P ;V )K −→ Ωr+qHor (P ;C)K

(α, β) 7−→ α ∧ β.

Let us consider also the pairing

φ : ΩrHor(P ;V )K × Ωm−r
Hor (P ;V )K −→ C

(α, β) 7−→
∫
P (α ∧ β) ∧ ωK ,

The metric on the horizontal bundle and the orientation that we have fixed on it allow us to
consider the Hodge star operator on the space of horizontal forms:

∗ : ΩrHor(P ;V )K −→ Ωm−r
Hor (P ;V )K .

Note that we have (α, β) = φ(α, ∗β)

Proposition A.0.7. Let T : ΩrHor(P ;V )K → Ωr+kHor (P ;V )K be a linear operator that decreases
supports. Assume that we have a linear operator

S : Ω
m−(r+k)
Hor (P ;V )K → Ωm−r

Hor (P ;V )K

such that φ(Tα, β) = φ(α, Sβ). Then, the formal adjoint of T is given by

T ∗ = (−1)r(m−r) ∗ S ∗ .

Proof. Let Ωr denote ΩrHor(P ;V )K . We have the following commutative diagram,

Ω∗
r+k

T t
// Ω∗
r

Ωr+k

OO

T ∗

// Ωr

OO

where the vertical arrows are the isomorphisms given by the metrics, T t is the dual map of
T , and T ∗ is its adjoint. We have the following commutative diagram:

Ω∗
r+k

T t
// Ω∗
r

Ωm−(r+k)

φ(·,)

OO

S // Ωm−r

φ(·,)

OO

Ωr+k

∗

OO

T ∗

// Ωr

∗

OO

.

The proposition now follows from the fact that on degree r we have ∗−1 = (−1)r(m−r)∗.





Part II

Higher-dimensional Reidemeister

torsion invariants
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Chapter 3

Higher-dimensional Reidemeister

torsion

In this chapter we define the n-dimensional normalized Reidemeister torsion for a complete
spin-hyperbolic 3-manifold of finite volume and an integer n ≥ 4. We will refer to these
invariants as the higher-dimensional Reidemeister torsion invariants.

Let (M,η) be a spin-hyperbolic 3-manifold, and ρn be its canonical n-dimensional repre-
sentation. We want to define the Reidemeister torsion ofM with respect to the representation
ρn. However, to do that we need either M to be ρn-acyclic (i.e. the groups H∗(M ; ρn) are all
trivial), or, if it does not happen, to fix bases on (co)homology.

If M is compact, then, as a particular case of Raghunathan’s vanishing Theorem (Corol-
lary 2.1.2), the cohomology groups H∗(M ; ρn) are all trivial. Thus for M closed the Reide-
meister torsion τ(M ; ρn) is already defined.

On the other hand, if M is non-compact, these groups do not need to be trivial, as we
have seen in Chapter 2 (Corollary 2.2.7). Thus we need to choose bases in (co)homology in
that case. Of course, if we want to get an invariant of the manifold we must choose bases in
a somehow canonical way. Unfortunately, we do not know how to do this. Nevertheless, we
have at least the following result. Its proof will be given in Section 3.2.

Remark. In the whole present chapter we will restrict ourselves to finite-volume manifolds.
Thus M is the interior of a compact manifold M such that

∂M = T1 ∪ · · · ∪ Tl,

where each connected component Ti is homeomorphic to a torus T 2.

Proposition 3.0.8. Let n > 0. For each connected boundary component Ti of M such
that H0(Ti; ρn) is not trivial, fix a non-trivial cycle θi ∈ H1(Ti;Z). Then there exists a
canonical family of bases for the homology groups H∗(M ; ρn) such that any basis of this family
determines the same Reidemeister torsion, say τ(M ; ρn; {θi}). Moreover, for all k > 0 the
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following quantities are independent of {θi}

T2k+1(M,η) :=
τ(M ; ρ2k+1; {θi})

τ(M ; ρ3; {θi})
∈ C∗/{±1},

T2k(M,η) :=
τ(M ; ρ2k; {θi})

τ(M ; ρ2; {θi})
∈ C∗/{±1}.

Definition. Let (M,η) be a complete spin-hyperbolic 3-manifold of finite volume. For n ≥ 4,
the invariant Tn(M,η) defined in the above proposition will be called the normalized n-
dimensional Reidemeister torsion of the spin-hyperbolic manifold (M,η). If n = 2k + 1 is
odd, T2k+1(M ; η) is independent of η, and will be denoted by T2k+1(M).

The rest of this chapter is devoted to the proof of Proposition 3.0.8. To that end, we will
analyse the groups H∗(M ; ρn).

3.1 Cohomology of the boundary

Let Tj be a connected component of ∂M (recall that we are assuming that M has finite
volume), and Uj ∼= Tj × [0,∞) be the corresponding cusp. It is well known that Tj can be
identified with the set of rays contained in Uj , and that this endows Tj with a canonical
similarity structure; in particular, Tj has a canonical holomorphic structure. Let us consider
the canonical projection from Uj to Tj which sends a point in Uj to the ray it belongs to;
denote this projection as

πj : Uj → Tj .

Let En be the flat vector bundle over M defined by the representation ρn. To compute
H∗(Ti; ρn) we will interpret it as H∗(Ti;En), that is the cohomology of the de Rham complex

(Ω∗(Ti;En), d∇),

where d∇ denotes the covariant differential defined by the flat connection on En. This complex
is isomorphic to the complex (Ω∗(T̃i;Vn)

π1Ti , d) of equivariant Vn–valued differential forms
on T̃i with the usual exterior differential.

On the other hand, En is a holomorphic vector bundle with respect to the holomorphic
structure of Ti. This yields the following canonical decomposition:

Ω1(Ti;En) = Ω1,0(Ti;En)⊕ Ω0,1(Ti;En),

where Ω1,0(Ti;En) and Ω0,1(Ti;En) are the spaces of En-valued 1-forms of type (1, 0) and
(0, 1) respectively. Let us denote as Hr,s(Ti;En) the projection of Ωr,s(Ti;En) ∩ Ker d onto
H1(Ti;En), with (r, s) = (0, 1), (1, 0).

Proposition 3.1.1. Assume that H0(Ti;En) 6= 0. Then,

H1(Ti;En) = H0,1(Ti;En)⊕H1,0(Ti;En).
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Proof. We can assume that for all γ ∈ π1Ti we have:

HolM (γ) =

[(
1 a(γ)
0 1

)]
∈ PSL(2,C).

This choice of the holonomy representation gives a complex coordinated z on T̃i. Identifying
Vn with the space of (n− 1)-th degree homogeneous polynomials in the variables X and Y ,
we define the following two forms on Ω1(T̃i;Vn),

α = dz̄ ⊗Xn−1, β = dz ⊗ (zX + Y )n−1.

Let us check that these forms are equivariant. Let γ ∈ π1Ti, and denote by Lγ the action of

γ on T̃i. Notice that Lγ(z) = z + a(γ). Hence, on one hand, we have:

L∗
γ(α) = d(z̄ + ā(γ))⊗Xn−1 = α,

L∗
γ(β) = dz ⊗ ((z + a(γ))X + Y )n−1 ,

and on the other hand:

ρ(γ)α = dz ⊗ (γ ·X)n−1 = dz ⊗ (ǫX)n−1,

ρ(γ)β = dz ⊗ (zγ ·X + γ · Y )n−1 = dz ⊗ (ǫ(zX + a(γ)X + Y ))n−1 ,

where ǫ = ±1 is the sign of the trace of γ determined by the lift of the holonomy represen-
tation. If n is odd, these two forms are clearly equivariant. If n is even, then the condition
that H0(Ti;En) is not trivial is equivalent to say that Hol(M,η)(σ) has trace 2 for all σ ∈ π1Ti;
hence, ǫ = 1, and the two forms are equivariant. Since α and β are closed forms, they de-
fine cohomology classes in H1(Ti;En), and hence [α] ∈ H0,1(Ti;En) and [β] ∈ H1,0(Ti;En).
To conclude the proof, it remains to prove that [α] and [β] are linearly independent, as
dimCH1(Ti; ρm) = 2. This is equivalent to say that [α] ∧ [β] ∈ H2(T 2;C) is not zero. A
simple computation shows that

α ∧ β = φ
(
Xn−1, (zX + Y )n−1

)
dz̄ ∧ dz = dz̄ ∧ dz,

where φ is the non-degenerate SL(2,C)–invariant pairing of Vn, see Section 1.3. This shows
that [α] ∧ [β] is not zero, and hence the two classes must be linearly independent.

Remark. It may seem somehow artificial to consider the induced holomorphic structure on
the tori Ti. Nevertheless, Proposition 3.1.1 shows that it yields a canonical decomposition
(i.e. depending only on the hyperbolic structure) of the cohomology group H1(Ti;En), which
is all we need.

Next we want to characterize the image of the map induced by the inclusion

i∗ : H1(M ;En) → H1(∂M ;En).
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Although this description will not be complete, it will be enough to give bases for the ho-
mology groups H∗(M ; ρn). Before analysing the general case, let us discuss briefly the case
n = 3.

The representation V3 is the adjoint representation of SL(2;C), and the cohomology
group H1(M ;E3) has a geometrical interpretation in terms of infinitesimal deformations of
the complete hyperbolic structure. The vector bundle E3 is identified with the bundle of
germs of Killing vector fields on M , and, with the same notation as in the proof of the
above proposition, it can be checked that the global section X2 corresponds to the vector
field ∂

∂zj
. With this description, the 1-form dz̄j ⊗

∂
∂zj

is a (0, 1)-form that takes values in

the vector bundle of holomorphic fields. According to the theory of deformations of complex
manifolds, this cohomology class describes the deformations of the holomorphic structure of
Tj by deformations of the defining lattice; in particular, it gives a deformation of the euclidean
structure through euclidean structures. On the other hand, a non-trivial deformation of the
complete hyperbolic structure is encoded by a cohomology class ω ∈ H1(M ;E3), and i

∗(ω)
encodes the corresponding deformation of the similarity structure in each torus. Since this
deformation cannot be through euclidean structures on all tori (otherwise it will yield a
complete hyperbolic structure on M , contradicting thus the Mostow-Prasad rigidity), then,
for some Tj , the restriction of i∗(ω) to Tj can not be contained in H0,1(Tj ;E3). This shows
that we have the following decomposition:

H1(∂M ;E3) = Im i∗
k⊕

j=1

H0,1(T 2
j ;E3). (3.1)

We will prove that the above decomposition holds also for n ≥ 2. Since we do not
have an interpretation of the cohomology group H1(M ;En) in geometrical terms such as
deformations, we proceed in a different way. Our key tool will be Theorem 2.1.1, which
states that a class ω ∈ H1(M ;En) cannot be represented by a square-integrable form, with
respect to a suitable inner product on En. Let us recall the definition of the inner product
on En. Choose any SU(2)–invariant inner product 〈·, ·〉 on Vn (we are considering SU(2) as a
subgroup of SL(2,C)). Identify H3 with SL(2,C)/ SU(2), and let p ∈ H3 be the class of the
identity. Define an inner product on the trivial vector bundle H3 × Vn by

〈(q, w1), (q, w2)〉q = 〈gw1, gw2〉, where g · q = p.

Then it induces an inner product on the vector bundle En = H3 ×π1(M,p) Vn.

Lemma 3.1.2. Assume that H0(Tj ;En) 6= 0. Then there exists a form αj ∈ Ω0,1(Tj ;En)
representing a non-trivial element in H0,1(Tj ;En) such that π∗j (αj) ∈ Ω1(Uj ;En) is L

2.

Proof. Let us work in the model of the half-space H3 = C× (0,∞). If (z, t) = (x, y, t) ∈ H3,
the metric is given by

g =
1

t2
(dx2 + dy2 + dt2).

Proceeding as in the proof of Proposition 3.1.1, we obtain the form α = dz̄ ⊗Xn−1. We will
be done if we prove that π∗j (α) is L2. To compute the norm of dz̄ ⊗Xn−1, we may assume
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that the cusp Uj is isometric to C× [1,∞)/(HolM π1T
2). Thus we have:

|dz̄ ⊗Xn−1|(w,t) = |dz̄|(w,t)|X
n−1|(w,t).

On one hand,

|dz̄|2(w,t) = |dx|2(w,t) + |dy|2(w,t) = 2t2.

On the other hand, by definition of the metric of En, it can checked that

|Xn−1|2(w,t) = t1−n|Xn−1|2,

where |Xn−1| is the norm ofXn−1 in Vn with respect to the fixed hermitian metric. Therefore,
if R is a fundamental domain for T 2, we get

∫

Uj

|dz̄ ⊗Xn−1|2dVolUj = 2|Xn−1|2
∫

R×[1,∞]

t3−n

t3
dxdydt = C

∫ ∞

1
t−ndt <∞,

and the lemma is proved.

Now we can prove that the decomposition (3.1) holds for all n ≥ 2.

Proposition 3.1.3. Assume that T1, . . . , Tr are all the connected components of ∂M such
that H0(Tj ;En) 6= 0. Then we have the following decomposition:

r⊕

j=1

H1(Tj ;En) = Im i∗
r⊕

j=1

H0,1(Tj ;En).

Proof. It is enough to prove that Im i∗ ∩
⊕r

j=1H
0,1(Tj ;En) = 0. Let [ω] ∈ H1(M ;En) such

that i∗([ω]) ∈
⊕k

j=1H
0,1(T 2

j ;En). Let us work with the cusps Uj ∼= Tj × (0,∞), and assume
that they are disjoint. Let αj be the forms given by the above lemma. Then

ω = λjπ
∗
i (αj) + dfj , on Uj ,

for some λj ∈ C and fj ∈ Ω0(Uj ;En). Let F ∈ Ω0(M ;En) such that F|Tj×[1,∞) = fj and

vanishing outside the cusps. By the above lemma, ω − dF is L2, and hence the class [ω] has
an L2 representative, which implies that [ω] = 0, as we wanted to prove.

3.2 The homology groups H∗(M ; ρn)

The aim of this section is to prove Proposition 3.0.8 concerning the existence of a distinguished
family of bases for the groups H∗(M ; ρn).

We will use the following construction for the homology of a finite CW–complex X in the
local system defined by a representation ρ : π1(X, p) → GL(V ). Consider the right action of
π1(X, p) on V , so that γ ∈ π1(X, p) maps v ∈ V to ρ(γ)−1v. We will write Vρ to emphasize

the fact that V is a π1(X, p)–right module. Let C∗(X̃;Z) denote the complex of singular
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chains on the universal covering, in which π1(X, p) acts on the left by deck transformations,
and let

C∗(X;Vρ) = Vρ ⊗C[π1(X,p)] C∗(X̃;Z).

Then H∗(X; ρ) is the homology of the following complex of C-vector spaces,

(C∗(X;Vρ), Id⊗∂∗) .

We will use the Kronecker pairing between homology and cohomology with twisted coeffi-
cients. To define it we need an invariant and non-degenerated bilinear map

φ : V × V → C.

If X is a differentiable manifold, then the Kronecker pairing can be defined at the level of
smooth chains and forms as follows:

Cr(X;Vρ)× Ωr(X̃;Vρ)
π1X −→ C

(vθ ⊗ θ, ω ⊗ vω) 7−→

∫

θ
φ(vθ, vω)ω

The Kronecker pairing does not depend on the different choices, but on the respective
classes in cohomology and homology, and it is natural and non-degenerate.

We want to prove the following result from which Proposition 3.0.8 is immediately de-
duced. Before stating it, let us recall the following definition.

Definition. Let θ1, θ2 ∈ H1(Tj ;Z) be two non-trivial cycles in a boundary component Tj of
M . Using the natural identification between H1(Tj ;Z) ∼= π1Tj , let us assume that

HolM (θi) =

[(
1 a(θi)
0 1

)]
∈ PSL(2,C)

for some a(θi) ∈ C∗, i = 1, 2. Then define the cusp shape of the pair (θ1, θ2) as

cshape(θ1, θ2) =
a(θ1)

a(θ2)
.

Notice that cshape(θ1, θ2) is well defined, because a : π1Tj → C is unique up to homothety.

Proposition 3.2.1. Let T1, . . . , Tr be the boundary components of M that are not ρn-acyclic.
Let Gj < π1(M,p) be some fixed realization of the fundamental group of Tj as a subgroup
of π1(M,p). For each Tj choose a non-trivial cycle θj ∈ H1(M ;Z), and a non-trivial vector
wj ∈ Vn fixed by ρn(Gj). If ij : Tj →M denotes the inclusion, then we have:

1. A basis for H1(M ; ρn) is given by

(i1∗([w1 ⊗ θ1]), . . . , ir∗([wr ⊗ θr])) .
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2. Let [Tj ] ∈ H2(Tj ;Z) be a fundamental class of Tj. A basis for H2(M ; ρn) is given by

(i1∗([w1 ⊗ T1]), . . . , ir∗([wr ⊗ Tr])) .

3. If we choose different non-trivial cycles θ′1, . . . , θ
′
r then

ij∗([wj ⊗ θj ]) = cshape(θj , θ
′
j)ij∗([wj ⊗ θ′j ]).

Proof. Let [αj ] and [βj ] be generators of H0,1(T 2
j ;En) and H1,0(T 2

j ;En) respectively. We
claim that the Kronecker pairing ([wj ⊗ θj ], [αk]) is zero for all j, k, and ([wj ⊗ θj ], [βk])
is zero if and only if j 6= k. We can assume that k = j. Let us fix Tj . Proceeding as
in the proof of Proposition 3.1.1, we may assume that wj = Xn−1, αj = dz̄ ⊗ Xn−1 and
βj = dz ⊗ (zX + Y )n−1. We have

([wj ⊗ θj ], [βj ]) =

∫

θ
φ
(
Xn−1, (zX + Y )n−1

)
dz =

∫

θ
φ
(
Xn−1, Y n−1

)
dz =

∫

θ
dz 6= 0. (3.2)

On the other hand, since φ(Xn−1, Xn−1) = 0, ([wj ⊗ θ], [αj ]) = 0. This proves the claim.
Let us prove now the first assertion. Assume that we have:

r∑

j=1

λji∗[wj ⊗ θj ] = 0, with λj ∈ C.

The naturality and the non-degeneracy of the Kronecker pairing imply that this is equivalent
to

r∑

j=1

λj (wj ⊗ θj , i
∗(ω)) = 0, for all [ω] ∈ H1(M ;En),

where (·, ·) denotes the Kronecker pairing. By Proposition 3.1.3, each βj is uniquely written
as

βj = γj +
r∑

k=1

µkjαk, with γj ∈ Im i∗ and µkj ∈ C.

Moreover, (γ1, . . . , γr) is a basis of Im i∗. The preceding discussion then implies λj = 0 for
all j. The first assertion is thus proved.

Let us prove Assertion 2. The long exact sequence in homology for the pair (M,∂M)
shows that the inclusion ∂M ⊂M yields an isomorphism

i∗ : H2(∂M ;En) =
r⊕

j=1

H2(Tj ;En) → H2(M ;En).

Thus it is enough to prove that [wj ⊗ Tj ] is not zero. This can be proved using Poincaré
duality PD. Indeed, if we identify H0(Tj ;En) with the subspace of Vn of invariant vectors,
then it can be checked that

PD(wj) = [wj ⊗ Tj ].

Assertion 3 follows easily from Equation (3.2).





Chapter 4

Behaviour under hyperbolic Dehn

filling

The aim of this chapter is to analyse the behaviour of the n-dimensional Reidemeister torsion
under hyperbolic Dehn surgery. Before discussing it, we need to fix some notation.

Throughout this chapter M will denote an oriented complete hyperbolic 3-manifold of
finite volume with l cusps. For each connected boundary component Ti of M we fix two
closed simple oriented curves ai, bi in Ti generating H1(Ti;Z). We define the following sets:

A = {(p, q) = (p1, . . . , pl, q1, . . . , ql) ∈ Zl × Zl | gcd(pi, qi) = 1},

AM = {(p, q) ∈ A |Mp/q :=Mp1/q1,...,pl/ql is hyperbolic }.

Remark. We may regard A as a directed set with respect to the following preorder:

(p, q) ≤ (p′, q′) ⇔ (pi)
2 + (qi)

2 ≤ (p′i)
2 + (q′i)

2 for all i = 1, . . . , l.

The hyperbolic Dehn surgery theorem by Thurston implies that AM is also a directed subset
of A , namely any two elements of AM have a common greater element. The limit of an
AM -net {xp/q} in some topological space, when it exists, will be denoted by:

lim
(p,q)→∞

xp/q.

In analysing the relation between the n-dimensional torsion invariants of M with those
of Mp/q, some issues arise. In order to discuss them, we distinguish two cases according to
the parity of n.

We consider first the case n = 2k+1, with k > 0. In that case we find two difficulties. The
first one is that we need some extra data in order to define the torsion invariant for M (we
must choose non-trivial cycles θi ∈ Hi(Ti;Z)), whereas for Mp/q this is already defined. The
second one is due to the following result proved in [Por97, p. 110] (notice that our torsion is
the inverse of the one considered in [Por97]),

lim
(p,q)→∞

∣∣τ3(Mp/q)
∣∣ = 0.

47
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The proof of the above limit also works for any odd number n ≥ 3. Moreover, the asymptotic
growth of these sequences does not depend on the dimension n. These facts suggest that the
above question should be formulated in terms of normalized torsions. In that case, we will
prove the following result.

Proposition 4.0.2. The set of cluster points of the following net in C/{±1},

{
T2k+1(Mp/q)

}
(p,q)∈AM

,

is the segment joining the origin and the point 22(k−1)lT2k+1(M).

Let us analyse now the even dimensional case n = 2k, for k > 0. In this case, the
main difficulty comes from the fact that we need a spin structure to define the n-dimensional
torsion invariant. Hence, we somehow need a way to relate spin structures on M with those
of Mp/q. To that end, for a fixed spin structure η on M , we define the following set

AM,η =
{
(p, q) ∈ AM | η can be extended to Mp/q ⊃M

}
.

Remark. Notice that if η can be extended toMp/q then the extension is unique (this follows
from the fact if a spin structure on ∂D2 can be extended to D2, then the extension is unique).
In such case the extension will be denoted by ηp/q.

Using Corollary 1.2.3, we get easily the following characterization of AM,η.

Proposition 4.0.3. For each Ti let ǫai , ǫbi = ±1 be the sign of the trace of Hol(M,η)(ai) and
Hol(M,η)(bi) respectively. Then (p, q) ∈ AM,η if and only if

ǫpiaiǫ
qi
bi
= −1, for all i = 1, . . . , l.

Definition. We will say that a spin structure η on M is compactly isolated if AM,η is empty;
otherwise, we will say that η is compactly approximable.

As a corollary of the above proposition and the definition of an acyclic spin structure, we
get the following result.

Corollary 4.0.4. A spin structure η of M is compactly approximable if and only if it is
acyclic.

Remark. If η is compactly approximable, Proposition 4.0.3 implies that AM,η is infinite; in
particular, AM,η is a directed set as well. The terminology introduced in the above definition
is coherent with the geometric topology of the space MS of spin-hyperbolic 3-manifolds,
see Chapter 5. For instance, if η is compactly approximable then the net of compact spin-
hyperbolic manifolds {(Mp/q, ηp/q)}(p,q)∈AM,η

converges to (M,η) in MS.

If η is compactly approximable, then H∗(M ; ρ2k) = 0 for all k > 0, and hence it makes
sense to consider the Reidemeister torsion τ(M ; ρ2k). On the other hand, for all (p, q) ∈
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AM,η we have the 2k-dimensional canonical representation of the spin-hyperbolic manifold
(Mp/q, ηp/q):

ρ
p/q
2k : π1Mp/q → SL(2k,C).

The compactness of Mp/q guarantees the acyclicity of this representation. Hence, it also

makes sense to consider τ(Mp/q; ρ
p/q
2k ). We will prove the following result.

Proposition 4.0.5. Let η be a compactly approximable (or acyclic) spin structure on M .
The set of cluster points of the following net in C/{±1},

{
± τ(Mp/q; ρ

p/q
2k )

}
(p,q)∈AM,η

,

is the segment joining the origin and ±22kl τ(M ; ρ2k).

The proof of both propositions will be based on surgery formulas for the torsion, which
will be deduced from the Mayer-Vietoris formula. These formulae involve the spin complex
lengths of the core geodesics added on the Dehn filling. The above results then will follow
essentially from the fact that the cluster point set of the imaginary part of the spin complex
lengths of the added geodesics in Mp/q, as (p, q) varies in AM,η, is R/〈4π〉, see [Mey86].

The rest of this chapter is organized as follows. The first section is a brief account of the
deformations of the holonomy representation of M . The second and third sections contain
the proofs of Propositions 4.0.5 and 4.0.2 respectively.

4.1 Deformations

Consider a family of continuous local deformations of the complete hyperbolic structure of
M given by:

HolM : U × π1M → PSL(2,C), U ⊂ Cl,

with U an open ball containing the origin, and with

HolM (0, γ) = HolM (γ), for all γ ∈ π1(M).

The open set U is usually called Thurston’s slice, and is a double branched covering of a
neighborhood of the variety of characters of M around the complete hyperbolic structure. If
we fix a boundary component Ti, then we can assume that

HolM (u, ai) =

[(
eui/2 1

0 e−ui/2

)]
, HolM (u, bi) =

[(
evi(u)/2 τi(u)

0 e−vi(u)/2

)]
,

where vi(u) and τi(u) are analytic functions on u which are related by

sinh
vi(u)

2
= τi(u) sinh

ui
2
.

This last equation follows by imposing that the two matrices commute.
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By Thurston’s surgery theorem, for (p, q) large enough, the holonomy representation of the
complete hyperbolic structure of Mp/q is given at some value of u, say up/q. More concretely,
we have the following commutative diagram,

π1(M)
HolM (up/q ,·)

&&MMMMMMMMMMM

i
p/q
∗ ����
π1(Mp/q)

HolMp/q

// PSL(2;C)

where i
p/q
∗ is the induced morphism on the fundamental groups by the inclusion

ip/q : M →֒Mp/q.

The map i
p/q
∗ is surjective with kernel the normal subgroup generated by the curves {apii b

qi
i }

(here we are identifying H1(Ti;Z) with π1Ti, and the latter group with a subgroup of π1M),
we have the so-called Dehn filling equations

piu
p/q
i + qivi(u

p/q) = 2πi, for all i = 1, . . . , l. (4.1)

Moreover, we also have:

lim
(p,q)→∞

up/q = 0.

4.2 Even dimensional case

Let us retain the notation used in the previous section. Fix a spin structure η on M , and
consider the lift of the whole family of representations HolM (u, ·) starting at u = 0 with
Hol(M,η). By continuity, all these lifts are also group morphisms. Thus we obtain a family of
representations

Hol(M,η) : U × π1M → SL(2,C).

The representation Hol(M,η)(up/q, ·) of π1M needs no longer to yield a representation of
π1Mp/q. We can characterize this condition in terms of spin structures.

Lemma 4.2.1. The representation Hol(M,η)(u
p/q, ·) yields a representation of π1Mp/q if and

only if (p, q) ∈ AM,η.

Proof. Hol(M,η)(u
p/q, ·) yields a representation of π1Mp/q if and only if

Hol(M,η)(up/q, a
pi
i b

qi
i ) = Id ∈ SL(2,C), for all i = 1, . . . , l.

By Proposition 4.0.3, (p, q) ∈ AM,η if and only if

ǫpiaiǫ
qi
bi
= −1 for all i = 1, . . . , l,
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where ǫai , ǫbi = ±1 is the sign of the trace of Hol(M,η)(0, ai) and Hol(M,η)(0, bi) respectively.
On the other hand, for a fixed i we can assume that

Hol(M,η)(u, ai) = ǫai(u)

(
eui/2 1

0 e−ui/2

)
, HolM (u, bi) = ǫbi(u)

(
evi(u)/2 τi(u)

0 e−vi(u)/2

)
.

By continuity, for u close to 0, ǫai(u) = ǫai and ǫbi(u) = ǫbi . Thus, Equation (4.1) yields:

(
Hol(M,η)(u

p/q, ai)
)pi (

Hol(M,η)(u
p/q, bi)

)qi
= −ǫpiaiǫ

qi
bi
Id,

The result then follows immediately.

Now let η be a compactly approximable (equivalently, acyclic) spin structure on M . Con-
sider the composition of Hol(M,η)(u, ·) with the 2k-dimensional irreducible representation of
SL(2,C)

ρ2k : U × π1M → SL(2k,C).

Since η is acyclic, for u = 0 the representation ρ2k(u, ·) is acyclic. The following more or less
well-known result then implies that ρ2k(u, ·) is also acyclic for u close to 0.

Proposition 4.2.2. Let X be a finite CW–complex, and consider a continuous family of
representations

ρ : U × π1(X,x0) → GL(n,C),

where U is some space of parameters. For a fixed m ≥ 0, define the map F : U → Z by
F (u) = dimHm(X; ρu), where ρu := ρ(u, ·). Then F is upper semicontinuous, that is,

lim sup
u→u0

F (u) ≤ F (u0), for all u0 ∈ U.

Proof. The idea is that the rank of a matrix, viewed as a map from the space of matrices
to Z, is lower a semicontinuous function. The details are as follows. The homology groups
H∗(X; ρu) can be defined as the homology groups of the complex

(
V ⊗ρ(u) C∗(X̃;Z), Id⊗∂∗

)
.

Let us fix (w1, . . . , wn) a basis of V . Let {ej1, . . . , e
j
ij
} be the cells of X of dimension j, and

let {ẽj1, . . . , ẽ
j
ij
} be fixed lifts of these cells to X̃. Then the set {wi ⊗ ẽjk} gives a basis of

V ⊗ρu Cj(X̃;Z). With respect to these bases, the boundary map ∂j(u) is written as a matrix
Aj(u) whose entries depend continuously on u. Then we have

F (u) = dimKerAj(u)− rankAj+1(u).

Since the rank of a matrix is lower semicontinuous, the dimension of the kernel is upper-
semicontinuous, and hence F (u) is upper semicontinuous.
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Remark. The above result can be regarded as a special case of a further result stated in
[Har77] as “The semicontinuity Theorem”, which establishes the upper semicontinuity of the
dimension function of some cohomology groups in a much more general context.

Let us put ρ2k(u) := ρ2k(u, ·). The above proposition shows that it makes sense to consider
τ(M ; ρ2k(u)) for u close to 0. On the other hand, for (p, q) ∈ AM,η large enough, Lemma
4.2.1 implies that we have the following commutative diagram:

π1(M)
ρ2k(up/q)

&&MMMMMMMMMMM

i
p/q
∗ ����
π1(Mp/q)

ρ
p/q
2k // SL(2k;C)

Since Mp/q is compact, the representation ρ
p/q
2k is acyclic. Therefore, it also makes sense

to consider τ(Mp/q; ρ
p/q
2k ). The following lemma gives the relationship between these two

quantities.

Lemma 4.2.3. Let γ1, . . . , γl be the core geodesics added on the (p, q)-Dehn filling Mp/q, and
λp/q be the spin-complex-length function with respect to the spin-hyperbolic structure ηp/q.
Then we have

τ(Mp/q; ρ
p/q
2k ) = ± τ(M ; ρ2k(up/q))

k−1∏

j=0

l∏

i=1

(
e(

1
2
+j)λp/q(γi) − 1

)(
e−( 1

2
+j)λp/q(γi) − 1

)
.

Proof. By induction, we can assume that M has only one cusp. We will apply the Mayer-
Vietoris sequence to the decompositionMp/q =M∪N(γ), where N(γ) is a tubular neighbour-
hood of the core geodesic γ added on the Dehn filling. We must show first that all the involved

spaces are ρ
p/q
2k -acyclic. We already know it forM . Since HolMp/q

(γ) has no fixed vector other

than 0, H0(γ; ρ
p/q
2k ) is trivial, and hence so is H1(γ; ρ

p/q
2k ); this proves that N(γ) ≃ γ is acyclic.

The same argument shows that Hr(∂N(γ); ρ
p/q
2k ) is trivial for r = 0, 2, which implies (Euler

characteristic argument) that this holds for r = 1 as well. The Mayer-Vietoris sequence then
yields the formula,

τ(Mp/q; ρ
p/q
2k ) τ(∂N(γ); ρ

p/q
2k ) = τ(M ; ρ

p/q
2k ) τ(γ; ρ

p/q
2k ).

The torsion of the torus ∂N(γ) is ±1, as it is the Reidemeister torsion of an even dimensional
manifold, see [Mil62]. Finally, an easy computation shows that

τ(γ; ρ
p/q
2k ) =

k−1∏

j=0

(
e(

1
2
+j)λp/q(γ) − 1

)(
e−( 1

2
+j)λp/q(γ) − 1

)
.

Now we can prove Proposition 4.0.5.
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Proof of Propostion 4.0.5 . The formula of Lemma 4.2.3 can be written as

τ(Mp/q; ρ
p/q
2k )

τ(M ; ρ2k(up/q))
= 22kl

k−1∏

j=0

l∏

i=1

1− cosh
(
(12 + j)λp/q(γi)

)

2
.

Since τ(M ; ρ2k(up/q)) converges to τ(M ; ρ2k) as (p, q) goes to infinity (this can be proved in
the same way as Proposition 4.2.2), to prove the result we may restrict our attention to the
product of the right hand side of the above equation. Consider the map defined by

F : [0,∞)× [0, 4π] −→ C

(t, θ) 7−→
k−1∏

j=0

1− cosh
(
(12 + j)(t+ θ i)

)

2
.

The image of {0} × [0, 4π] under F is [0, 1], since F ({0} × [0, 4π]) ⊂ [0, 1], F (0, 0) = 0 and
F (0, 2π) = 1. The result then follows from the fact that the real part of λp/q(γi) goes to zero,
and that the cluster point set of the imaginary parts of (λp/q(γ1), . . . , λp/q(γl))(p,q)∈AM,η

is

dense on [0, 4π]l, see [Mey86].

4.3 Odd dimensional case

We will use the same notation as in the previous sections. Throughout this section we will
assume that n = 2k + 1 and k > 0.

Lemma 4.3.1. Let Tj be a fixed boundary component of ∂M . Assume that

HolM (u, aj) =

[(
euj/2 1

0 e−uj/2

)]
, HolM (u, bj) =

[(
evj(u)/2 τj(u)

0 e−vj(u)/2

)]
,

where aj , bj are generators of the fundamental group of Tj. For u = (u1, . . . , ul) ∈ U ⊂ Cl

such that uj 6= 0, consider the following vector

wj(u) := Xk
(
X − 2 sinh

uj
2
Y
)k

∈ V2k+1
∼= S2k[X,Y ],

where Sn[X,Y ] is the space of homogeneous polynomials of degree n in the variables X,Y .
Then, for u close to 0 with uj 6= 0, the vector wj(u) is ρ2k+1(u)-invariant. Moreover, the
map

Ω∗(Tj ;C) → Ω∗(Tj ;Eρ2k+1(u))

ω 7→ ω ⊗ wj(u)

induces isomorphisms in de Rham cohomology.
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Proof. Let Hol(M,η) be a lift of the holonomy representation. Since the matrices Hol(M,η)(aj)
and Hol(M,η)(bj) diagonalize and commute, there exists a basis (e1, e2) of C

2 that simultane-
ously diagonalize them. It can be checked that we can take

e1 = X, e2 = X − 2 sinh
uj
2
Y.

The vector ek1e
k
2 ∈ V2k+1 is then independent of the chosen lift and invariant by both

Hol(M,η)(aj) and Hol(M,η)(bj). This shows that wj(u) is ρ2k+1(u)-invariant, and the first
part of the lemma is proved.

For the second part, notice that the vector wj(u) gives a parallel nowhere-vanishing section
of the flat vector bundle Eρ2k+1(u). On the other hand, the SL(2,C)-invariant pairing (see
Section 1.3)

φ : Vn × Vn → C,

defines a non-degenerate symmetric bilinear form on Eρ2k+1(u). We have,

φ (wj(u), wj(u)) = 2
(
−2 sinh

uj
2

)k
.

Therefore, for sinh
uj
2 6= 0, we have a decomposition Eρ2k+1(u)|Tj

= L ⊕ L⊥, where L is the

line bundle defined by wj(u), and L
⊥ is the orthogonal complement with respect to φ. Note

that both sub-bundles are flat, so we have

H∗(Tj ;Eρ2k+1(u)) = H∗(Tj ;L)⊕H∗(Tj ;L
⊥).

The line bundle L is trivialized using the section wj(u). Therefore, tensorization by wj(u)
yields an isomorphism H0(Tj ;L) ∼= H0(Tj ;C). On the other hand, counting dimensions we
deduce that H0(Tj ;L

⊥) is trivial. This proves the last assertion of the lemma for degree 0.
The lemma then follows by Poincaré duality and an Euler characteristic argument.

Proposition 4.3.2. There exists a neighbourhood of the origin W ⊂ U such that for all
u ∈W ,

dimCH1(M ; ρ2k+1(u)) = dimCH2(M ; ρ2k+1(u)) = l,

where l is the number of connected components of ∂M .

Proof. By Poincaré duality and an Euler characteristic argument, we deduce that

dimCH1(M ; ρ2k+1(u)) = dimCH1(M,∂M ; ρ2k+1(u)).

The long exact sequence of the pair (M,∂M) yields the following short exact sequence,

H1(M,∂M ; ρ2k+1(u)) → H0(∂M ; ρ2k+1(u)) → 0.

Therefore,

dimCH1(M ; ρ2k+1(u)) ≥ dimCH0(∂M ; ρ2k+1(u)) =
l∑

j=1

dimCH0(Tj ; ρ2k+1(u)).
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The vector space H0(Tj ; ρ2k+1(u)) has dimension 1. Indeed, if uj = 0 this is clear by a direct
inspection, and if uj 6= 0, this follows from Lemma 4.3.1. Hence,

dimCH1(M ; ρ2k+1(u)) ≥ l, for u ∈ U.

Since dimCH1(M ; ρ2k+1(0)) = l, the upper semicontinuity of the dimension function (Propo-
sition 4.2.2) implies the result.

Proposition 4.3.3. Let {θj} be a collection of nontrivial cycles with θj ∈ H1(Tj ;Z). Then
there exists a neighbourhood of the origin W ⊂ U such that for all u ∈ W the following
assertions hold:

1. A basis of H1(M ; ρ2k+1(u)) is given by

(i∗[w1(u)⊗ θ1], . . . , i∗[wl(u)⊗ θl]) .

2. A basis of H2(M ; ρ2k+1(u)) is given by

(i∗[w1(u)⊗ T1], . . . , i∗[wl(u)⊗ Tl]) .

In both cases, the vectors wj(u) are the ones given by Lemma 4.3.1, [Tj ] ∈ H2(Tj ;Z) is a
fundamental class of ∂M , and i∗ is the map induced in homology by the inclusion i : ∂M →M .

Proof. Proposition 3.2.1 shows that the two assertions are true for u = 0. The result then
follows proceeding as in the proof of Proposition 4.2.2.

It makes sense therefore to consider τ(M ; ρ2k+1(up/q); {θj}), the Reidemeister torsion of
M with respect to the representation ρ2k+1(up/q) and the bases in homology associated to
the family of non-trivial cycles {θj} given by the Proposition 4.3.3. We want to get a surgery
formula for τ(M ; ρ2k+1(up/q); {θj}). It turns out that it is easier to work with the bases given
by the following lemma.

Lemma 4.3.4. For sufficiently large (p, q), a basis of H1(M ; ρ2k+1(up/q)) is given by,

(
i
p/q
∗ [w1(up/q)⊗ (p1a1 + q1b1)], . . . , i

p/q
∗ [wl(up/q)⊗ (plal + qlbl)]

)
, (4.2)

where i
p/q
∗ is the map induced is the inclusion i : M →Mp/q.

Proof. This is a Mayer-Vietoris argument as in Lemma 4.2.3. We have the decomposition

Mp/q =M ∪N, with N =

l⋃

j=1

N(γj),

where {N(γj)} is a collection of disjoint tubular neighbourhoods of the core geodesics γj
added in the Dehn filling. By compactness, Mp/q is ρn(up/q)-acyclic. The Mayer-Vietoris
exact sequence then gives an isomorphism

H∗(∂M ; ρn(up/q)) ∼= H∗(M ; ρn(up/q))⊕H∗(N ; ρn(up/q)).
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The group H∗(Tj ;C) is isomorphic to H∗(Tj ; ρn(up/q)) via tensorization wj(up/q) ⊗ − (this
is the homological counterpart of Lemma 4.3.1). The same isomorphism also holds true for
N(γj) ≃ γj . Since [pjaj + qjbj ] ∈ H1(N(γj);Z) is zero by construction, the vectors described
in (4.2) must be linearly independent.

The surgery formula is now easily obtained.

Lemma 4.3.5. Let γ1, . . . , γl be the core geodesics added on the (p, q)-Dehn filling Mp/q, and
λp/q be the complex-length function of Mp/q. Then we have

τ(Mp/q; ρ
p/q
2k+1) = τ(M ; ρ2k+1(up/q), {pjaj + qjbj})

k∏

j=1

l∏

i=1

(ejλp/q(γi) − 1)(e−jλp/q(γi) − 1).

Proof. This is again a Mayer-Vietoris argument. With the same notation as in the preceding
proof, we have Mp/q =M ∪N . The formula for the torsion is

τ(Mp/q; ρ
p/q
2k+1)τ(∂M ; ρ

p/q
2k+1) = τ(M ; ρ

p/q
2k+1, {pjaj + qjbj})τ(N ; ρ

p/q
2k+1)τ(H∗),

where τ(H∗) is the torsion of the Mayer-Vietoris complex computed using the bases that has
been chosen to compute the involved torsions in the decomposition. To compute the torsions

we choose bases in homology as follows. For H∗(Tj ; ρ
p/q
2k+1), we take in degree 0, [P jn(up/q)⊗σj ],

where σj is a generator of H0(Tj ;Z), in degree 1, [P jn(up/q)⊗ (pjaj + qjbj)], and in degree 2,

[P jn(up/q)⊗Tj ]. For H∗(N(γj); ρ
p/q
2k+1), we take in degree 0, [P jn(up/q)⊗ i2,∗(σj)], and in degree

1, [P jn(up/q) ⊗ i2,∗(γ)], where i2,∗ is the map induced by the inclusion i2 : ∂M = ∂N → N ,

and γ ∈ H1(∂M ;Z) is such that i1,∗(γ) ∈ H1(M ; ρ2k+1(up/q)) is zero (notice that such a curve

always exists and i2,∗(γ) ∈ H1(D2 × S1;Z) is homologous to the core geodesic). Respect to
these bases, we have τ(H∗) = 1, since the isomorphism i1,∗ + i2,∗ appearing in the Mayer-
Vietoris sequence is represented by the identity matrix. On the other hand, the torsion of
∂M is ±1, as it is an even dimensional manifold. Thus we have

τ(Mp/q; ρ
p/q
2k+1) = τ(M ; ρ

p/q
2k+1, {pjaj + qjbj})

l∏

j=1

τ(γj ; ρ
p/q
2k+1).

Finally, a straightforward computation gives

τ(γj ; ρ
p/q
2k+1) =

k∏

h=1

(
ehλp/q(γj) − 1

)(
e−hλp/q(γj) − 1

)
.

Let us normalize torsions in the formula of Lemma 4.3.5. Thus we get:

T2k+1(Mp/q) =
τ(M ; ρ2k+1(up/q), {pjaj + qjbj})

τ(M ; ρ3(up/q), {pjaj + qjbj})

k∏

j=2

l∏

i=1

(
ejλp/q(γi) − 1

)(
e−jλp/q(γi) − 1

)
.
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Let us focus on the quotient of torsions appearing in the right hand side of the above equation.
We shall write down a formula relating the torsion of M with respect to the basis {aj} and
{pjaj + qjbj}. To that end, let A2k+1(p, q) be the change of basis matrix from the basis
{[wj(up/q) ⊗ aj ]} to {[wj(up/q) ⊗ (pjaj + qjbj)]}. Then the change of basis formula for the
torsion yields:

τ(M ; ρ2k+1(up/q), {pjaj + qjbj}) detA2k+1(p, q) = τ(M ; ρ2k+1(up/q), {aj}).

This equation implies

τ(M ; ρ2k+1(up/q), {pjaj + qjbj})

τ(M ; ρ3(up/q), {pjaj + qjbj})
=
τ(M ; ρ2k+1(up/q), {aj})

τ(M ; ρ3(up/q), {aj})

detA3(p, q)

detA2k+1(p, q)
. (4.3)

On one hand, working as in in Proposition 4.2.2, it can be checked that

lim
u→0

τ(M ; ρ2k+1(u), {aj}) = τ(M ; ρ2k+1(0), {aj}) = τ(M ; ρ2k+1, {aj}).

Hence,

lim
(p,q)→∞

τ(M ; ρ2k+1(up/q), {aj})

τ(M ; ρ3(up/q); {aj})
= T2k+1(M). (4.4)

On the other hand, we have the following result.

Lemma 4.3.6. For any k ≥ 3,

lim
(p,q)→∞

detA2k+1(p, q)

detA3(p, q)
= 1.

Proof. We have

A2k+1(p, q) = diag(p) + diag(q)B2k+1(up/q),

where B2k+1(u) is the change of basis matrix from the basis {[wj(u) ⊗ aj ]} to the basis
{[wj(u) ⊗ bj ]}. Working as in Proposition 4.2.2, it can be checked that B2k+1(u) depends
analytically on u. Note that at u = 0 we have

B2k+1(0) = diag(cshape(b1, a1), . . . , cshape(bl, al)).

Let us write P = diag(p), Q = diag(q) and C = B2k+1(0). Notice that C is independent of
k. The lemma will follow easily once we have proved the following equality:

lim
(p,q)→∞

det(P +QC)

det(P +QB2k+1(up/q))
= 1.

We have,
det(P +QC)

det(P +QB2k+1(up/q))
=

det(Q−1P + C)

det(Q−1P +B2k+1(up/q))
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Let us put D = Q−1P + C and E(up/q) = B2k+1(up/q)− C. Then we have

det(P +QC)

det(P +QB2k+1(up/q))
=

detD

det(D + E2k+1(up/q))

=
1

det(Id+D−1E2k+1(up/q))
.

If D = (dij) then we have

|djj | = |pj/qj + cshape(aj , bj)| > | Im cshape(aj , bj)| > 0.

Therefore, the entries of the diagonal matrix D−1 are bounded, and hence

lim
(p,q)→∞

D−1E2k+1(up/q) = lim
(p,q)→∞

D−1(B2k+1(up/q)−B2k+1(0)) = 0.

Finally, taking limits in Equation (4.3), and using Equation (4.4) and Lemma 4.3.6, we
get:

lim
(p,q)→∞

τ(M ; ρ2k+1(up/q), {pjaj + qjbj})

τ(M ; ρ3(up/q); {pjaj + qjbj})
= T2k+1(M).

Just for future references, we summarize the preceding results in the following lemma.

Lemma 4.3.7. With the above notation, for k > 1 we have

T2k+1(Mp/q) =
detA3(p, q)

detA2k+1(p, q)

τ(M ; ρ2k+1(up/q), {aj})

τ(M ; ρ3(up/q), {aj})

k∏

j=2

l∏

i=1

(ejλp/q(γi) − 1)(e−jλp/q(γi) − 1).

Moreover,

lim
(p,q)→∞

detA2k+1(p, q)

detA3(p, q)
= 1,

lim
(p,q)→∞

τ(M ; ρ2k+1(up/q), {aj})

τ(M ; ρ3(up/q), {aj})
= T2k+1(M).

Proof of Proposition 4.0.2. By Lemma 4.3.7, the result is reduced to prove that the set of
cluster points of the following net





k∏

j=2

l∏

i=1

(ejλp/q(γi) − 1)(e−jλp/q(γi) − 1)





(p,q)∈AM

is [0, 4(k−1)l], which may be proved in the same way as in the even dimensional case (see
Proposition 4.0.5).



Chapter 5

Complex-length spectrum

The aim of this chapter is to prove the continuity of the complex-length spectrum in a sense
that we shall precise.

5.1 Closed geodesics in a hyperbolic manifold

Although the material of this section is well known, we think it is worth to review it for the
sake of completeness.

Let M be an oriented, complete, hyperbolic 3-manifold, and HolM be its holonomy rep-
resentation. Let us consider C(M) the set of closed (constant-speed) geodesics in M up to
orientation-preserving reparametrisation. We will describe C(M) as the following quotient
set,

C(M) =
{
ϕ : S1 →M | ϕ is a geodesic

}
/S1.

The action of S1 on a closed geodesic is given by translation on the parameter. We are
interpreting S1 as R/Z. If k ∈ Z and ϕ : S1 → M is a closed geodesic, kϕ will denote the
closed geodesic t 7→ ϕ(kt).

Definition. A closed geodesic ϕ is said to be prime if ϕ 6= kψ for any k > 1 and any closed
geodesic ψ (i.e. ϕ is prime if it traces its image exactly once). A class [ϕ] ∈ C(M) is said to
be prime if ϕ is prime. The set of prime classes of C(M) will be denoted by PC(M).

We will also need the group theoretic definition of primality.

Definition. Let G be a group. An element g ∈ G is said to be prime if g 6= hk for all h ∈ G
and k > 1 (note that we are excluding the identity from this definition). If C(G) denotes the
set of conjugacy classes of G, then [g] ∈ C(G) is said to be prime if g is prime.

The identification between the set C (π1(M,p)) of conjugacy classes of π1(M,p) and loops
in M up to free homotopy yields a natural map

ψ : C(M) → C (π1(M,p)) .

59
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Let HypC(π1(M,p)) be the set of hyperbolic conjugacy classes of π1(M,p), that is,

HypC(π1(M,p)) = {[γ] ∈ C (π1(M,p)) | HolM (γ) is of hyperbolic type} .

The following result is well known, and is easily deduced from the fact that an isometry
of H3 of hyperbolic type has exactly one axis.

Proposition 5.1.1. The natural map ψ : C(M) → C(π1(M,p)) is a bijection onto the set
HypC(π1(M,p)). Moreover, [ϕ] ∈ C(M) is prime if and only if so is ψ([ϕ]).

Proof. Let π : (M̃, p̃) → (M,p) be the universal cover of M . Since M is complete M̃ is
isometric to hyperbolic 3-space. Let us take a closed geodesic [ϕ] ∈ C(M). By definition,
ψ([ϕ]) is the conjugacy class of the loop τ = σϕσ−1, where σ : [0, 1] → M is any path such

that σ(0) = p and σ(1) = ϕ(0). Now let σ̃ be the lift of σ with σ̃(0) = p̃, and ϕ̃ : R → M̃
be the lift of ϕ : S1 → M with ϕ̃(0) = σ̃(1). The deck transformation Tτ defined by τ sends
ϕ̃(0) to ϕ̃(1). Since ϕ̃ is a geodesic, it must be invariant by Tτ . Hence, Tτ is an isometry
of hyperbolic type. This proves that the image of ψ is contained in HypC(π1(M,p)). Let
us prove injectivity. If [ϕ′] ∈ C(M) is such that ψ([ϕ]) = ψ([ϕ′]), then there exists a path
σ′ : [0, 1] → M such that σ′(0) = p, σ′(1) = ϕ′(0), and σ′ϕ′σ′−1 = τ . The same construction
as before gives a lift ϕ̃′ of ϕ′ that is invariant under Tτ . Since Tτ is an isometry of hyperbolic
type the two lines ϕ̃, ϕ̃′ must be equal, which implies that [ϕ] = [ϕ′]. To prove surjectivity,
let [γ] be a conjugacy class in HypC(π1(M,p)). The isometry HolM (γ), being of hyperbolic
type, has an axis which projects to a closed geodesic in M . As it is easily verified, the image
of this closed geodesic under ψ is γ. The other assertion concerning primality is now quite
obvious.

It is useful to endow the set C(M) with the (quotient) supremum metric. More explicitly,
if [ϕ1], [ϕ2] ∈ C(M) then its distance is defined by

d([ϕ1], [ϕ2]) = min
s∈S1

max
t∈S1

{d(ϕ1(t+ s), ϕ2(t))} .

The following observation is an immediate consequence of the previous proposition, and will
be used quite often in the subsequent sections.

Proposition 5.1.2. Let [ϕ], [ϕ′] be two distinct elements of C(M), and let m be the minimum
of the injectivity radius at ϕ. Then d([ϕ], [ϕ′]) ≥ m.

Proof. Assume that d([ϕ], [ϕ′]) = m′ < m. With suitable parametrisations, we have that for
all t ∈ S1, d(ϕ(t), ϕ′(t)) ≤ m′. By the hypothesis on the injectivity radius, there exists a
unique minimizing geodesic joining ϕ(t) and ϕ′(t). Therefore, we can define a free homotopy
from ϕ to ϕ′, which contradicts Proposition 5.1.1.

This section ends with an estimate on the growth of the number of closed geodesics in
function of their length. The following estimate, though not the best possible (see for instance
[Mar69], [CK02]), has the advantage of being explicit. Its proof is very close to the proof of
Lemma 5.3 in [CK02].
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Lemma 5.1.3. Let M be a complete hyperbolic 3-manifold. For a compact domain K ⊂ M
define

PK(t) = #
{
ϕ ∈ C(M) | ϕ(S1) ∩K 6= ∅, l(ϕ) ≤ t

}
.

Then, PK(t) ≤ Ce2t, with C = π e
8 diamK

VolK .

Proof. Let M = H3/Γ, with Γ a subgroup of IsomH3, and let π : H3 → M denote the
covering projection. Pick a point p ∈ H3 with π(p) ∈ K and consider the Dirichlet domain
centred at p:

D(p) = {x ∈ H3 | d(x, γ(p)) ≤ d(x, p), ∀γ ∈ Γ}.

The intersection K̃ = D(p) ∩ π−1(K) is a fundamental domain for K, which means that

π−1(K) =
⋃

γ∈Γ

γ(K̃),

Vol(γ1(K̃) ∩ γ2(K̃)) = 0, for all γ1 6= γ2 ∈ Γ.

Moreover, diam K̃ ≤ 2 diamK and Vol K̃ = VolK. Now let ϕ ∈ C(M) intersecting K.
Then there exists an isometry γ ∈ Γ of hyperbolic type representing ϕ whose axis intersects
K̃. We claim that

γ(K̃) ⊂ B(p, 4 diamK + l(ϕ)).

To prove this inclusion, we pick a point q ∈ K̃ that lies in the axis of γ. For any q′ ∈ K̃,

d(p, γ(q′)) ≤ d(p, q) + d(q, γ(q)) + d(γ(q), γ(q′)) ≤ 4 diamK + d(q, γ(q))

and d(q, γ(q)) = l(ϕ), which proves the claim. Hence, for any geodesic contributing to
PK(t), there is a hyperbolic isometry whose axis is a lift of this geodesic and such that
γ(K̃) ⊂ B(p, 4 diamK + t). In addition, Vol(γ1(K̃) ∩ γ2(K̃)) = 0, for all γ1 6= γ2 ∈ Γ. Thus
we get the inequality:

PK(t)VolK = PK(t)Vol K̃ ≤ VolBp(4 diamK + t) ≤ πe8 diamK+2t.

We have used that the volume of a ball of radius R in H3 is less than πe2R.

5.2 Complex-length spectrum

Any closed geodesic ϕ ∈ C(M) has attached two geometric invariants: its length and its
geometric torsion. Recall that the geometric torsion of ϕ is defined as the oriented angle
between an orthogonal vector to ϕ and the parallel transport of it along ϕ. In terms of the
holonomy representation, these two invariants are the translation distance and the rotational
part of the corresponding hyperbolic isometry. More explicitly, if [γ] ∈ HypC(π1(M,p)), then

HolM (γ) ∼

[(
eλ/2 0

0 e−λ/2

)]
∈ PSL(2,C), Re(λ) > 0,
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Re(λ) is the length of the corresponding closed geodesic, and Im(λ) its geometric torsion.
The parameter λ is called the complex length of γ, and it is only well defined up to 2πi. We
will regard this as a function

λ : C(M) → C/〈2πi〉
ϕ 7→ λ(ϕ) = l(ϕ) + i torsion(ϕ).

To avoid the 2πi indeterminacy, we will work with the exponential of this map.

Definition. The (prime) complex-length spectrum of M , denoted as µspM , is the measure
on C defined by

µspM =
∑

ϕ∈PC(M)

δeλ(ϕ) ,

where δx is the Dirac measure centered at x. In other words, µspM is the image measure of
the counting measure in PC(M) under the exponential of the complex-length function. The
(prime) length spectrum of M , denoted as µlspM , is the measure on R defined by

µlspM =
∑

ϕ∈PC(M)

δl(ϕ).

Thus we have:

#{ϕ ∈ PC(M) | a < l(ϕ) < b} = µspM{z ∈ C | ea < |z| < eb}.

Remark. The prime complex-length spectrum is usually regarded as a collection of numbers
and multiplicities. This is of course equivalent to the definition made above; however, we
think that some of the results that we will present in what follows are better expressed in
these terms.

The following properties of µspM are immediately implied by Lemma 5.1.3 and the fact
that a closed geodesic cannot be contained in a cusp.

Proposition 5.2.1. Assume that M has finite volume. The following assertions then hold:

1. The measure µspM is locally finite with discrete support. In particular, it is a Radon
measure on the complex plane.

2. Let N1, . . . , Nj be cusps of M in such a way that K =M \
⋃

1≤j≤nNj is compact. Then
for all R > 1,

µspM
(
{|z| ≤ R}

)
≤ CMR

2,

where CM = π e
8 diamK

VolK .

Next we want to analyse the complex-length spectrum as a map

M 7→ µspM.
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The domain of this map will be the set M of all (isometry classes of) oriented, complete,
hyperbolic 3-manifolds of finite volume. This set is naturally endowed with the geometric
topology, which is briefly discussed in next section. On the other hand, the target of this map
will beM(C\D), the vector space ofC-valued Radon measures defined on the complementary
of the closed unit diskD. We will endowM(C\D) with the topology of the weak convergence.
Thus a sequence {µn} converges weakly to µ in M(C \D) if for every continuous function f
with compact support contained in C \D, we have:

lim
n→∞

∫

|z|>1
f(z)dµn(z) =

∫

|z|>1
f(z)dµ(z).

The aim of the rest of this chapter is essentially to prove that this map is continuous.

Theorem 5.2.2. The map µsp : M →M(C \D) is continuous.

Remark. If instead of the space M(C\D) we consider M(C), then the above theorem is no
longer true. For instance, let M ∈ M be a one-cusped manifold, and Mp/q be the manifold
obtained by a hyperbolic (p, q)-Dehn filling. Then {Mp/q}(p,q) converges to M as (p, q) goes
to infinity. However, the sequence of the corresponding measures do not even converge. To
see this, let ±ϕp/q be the two (oriented) core prime geodesics added in the Dehn filling. Then
the length of ϕp/q goes to zero, and the geometric torsion is dense in R/2πZ, which implies

that this sequence of measures does not converge. Restricting our attention to M(C \D) we
avoid these phenomena. Nevertheless, this bad behaviour is the worst that can happen; this
is expressed in the following result.

Theorem 5.2.3. Let M ∈ M with k > 0 cusps, and {Mn} be a sequence converging to M in
M. Assume that the number of cusps of Mn is eventually constant and is equal to l. Then
the sequence of real-length spectrum measures {µlspMn} converges weakly in M(R) to the
measure

µlspM + 2(k − l)δ0.

Theorem 5.2.2 and Theorem 5.2.3 will be proved in Section 5.4 after having discussed the
geometric topology.

5.3 The geometric topology

Most of the material in this section is based on [CEM06].

Let MF be the set of (isometry classes of) oriented, complete, hyperbolic 3-manifolds of
finite volume and with a baseframe. Thus an element of MF is a pair (M,E), where E is an
orthonormal frame based at some point p in the oriented hyperbolic 3-manifold M of finite
volume.

Remark. Our notation differs from [CEM06], whereMF is defined without the finite volume
restriction.
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If we fix a base frame on hyperbolic space H3, then the holonomy representation of a
member of MF is unambiguously defined (i.e. not only up to conjugation). Therefore, MF
is in one-to-one correspondence with the set of discrete torsion-free subgroups of PSL(2,C)
with finite co-volume. The latter set is endowed with the geometric topology. We recall its
definition in the general context of Lie groups, see [Thu].

Definition. A sequence {Γn} of closed subgroups of a Lie group G converges geometrically
to a group Γ if the following conditions are satisfied:

1. Each γ ∈ Γ is the limit of a sequence {γn}, with γn ∈ Γn.

2. The limit of every convergent sequence {γnj}, with γnj ∈ Γnj , is in Γ (nj is an increasing
sequence of natural numbers).

Two related spaces are MB and M. The former is obtained by forgetting the frame, but
retaining the basepoint, and the latter by forgetting both the frame and the basepoint. Both
sets are endowed with the quotient topology given by the corresponding forgetful maps.

The following results are well known, and will play an important role in the following
sections. See [CEM06] for a proof.

Lemma 5.3.1. Let injR(M,p) be the infimum of the injectivity radius on the ball BR(p) ⊂M .
Then for any R > 0 the map injR : MB → (0,∞) is continuous.

Lemma 5.3.2. Let ǫ > 0 smaller than the Margulis constant. Let {Mn} be a sequence
converging to M in M. Then there exists a uniform bound on the diameter of the thick parts
{Mn,[ǫ,∞)}.

Theorem 5.3.3 (Jorgensen). The map Vol : M → R that assigns to each manifold its volume
is continuous.

The following theorem due to Thurston describes how a non-trivial convergence sequence
in M is. We recall that we are assuming that all manifolds have finite volume.

Theorem 5.3.4 (Thurston). Let {Mn} be a sequence converging to M in M. Assume that
{Mn} is not eventually constant, and that M has k cusps. Then Mn is obtained by hyperbolic
Dehn surgery Mp1,n/q1,n,...,pk,n/qk,n, with p

2
i,n + q2i,n → ∞, as n→ ∞.

Corollary 5.3.5. Let {(Mn, En)} be a sequence converging to (M,E) in MF . Then, for n
large enough, we have a commutative diagram,

π1(M,p)
ρn //

in
∗

��

PSL(2;C)

π1(Mn, pn)

HolMn

77ooooooooooo

Moreover, the sequence of representations {ρn} converges to HolM both algebraically (that is,
for all σ ∈ π1(M,p) the sequence {ρn(σ)} converges to HolM (σ)), and geometrically (that is,
the sequence of discrete groups {ρn(π1(M,p))} converges geometrically to HolM (π1(M,p))).
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It can be proved that if a sequence {(Mn, pn)} converges to (M,p) in MB, then it also
converges to (M,p) in the pointed Hausdorff-Gromov sense, see [CEM06].

Next we want to give the following ad hoc definition concerning the convergence of
geodesics.

Definition. With the above notation, we will say that a sequence of parametrised closed
geodesics {ϕn : [0, 1] →Mn} converges to ϕ : [0, 1] →M if for all n there is a lift of ϕn (with
respect to the covering map πn)

ϕ̃n : [0, 1] → H3,

such that the sequence of maps {ϕ̃n} converges pointwise to a lift of ϕ (with respect to the
covering map π).

Remark. The above definition coincides with the more general (and natural) definition of
convergence of maps {fn : Xn → Yn}, where {Xn} and {Yn} are sequences of compact metric
space converging in the Hausdorff-Gromov sense to X and Y respectively, see [GP91].

With the above definition, it is quite obvious that the limit of parametrised closed
geodesics is also a geodesic whose length is the limit of the lengths of the converging geodesics.

Definition. We will say that a sequence {ϕn} of closed geodesics, with ϕn ∈ C(Mn), con-
verges to ϕ ∈ C(M) if for all n we can choose parametrisations of ϕn converging to a parametri-
sation of ϕ (in the sense of the above definition).

Again the following result holds in a more general context, see [GP91]. Its proof in our
case is quite obvious.

Theorem 5.3.6 (Ascoli-Arzela, Grove-Petersen.). Let R > 0 and {ϕn} be a sequence of
closed geodesics with ϕn ⊂ BR(pn) ⊂ (Mn, pn). If there exists a common upper bound on the
lengths of {ϕn}, then {ϕn} has a converging subsequence.

5.4 Proof of the continuity

In this section we want to prove the continuity of the complex-length spectrum as a map
from M toM(C\D). An obvious observation is that we can assume that this map is defined
from MF to M(C \D), since the topology of M is the quotient topology coming from the
forgetful map MF → M.

Hereafter {(Mn, En)} will denote a sequence converging to {(M,E)} in MF . In order to
simplify notation, we will write µn and µ∞ for µspMn and µspM , respectively. We want to
prove that the sequence of measures {µn} converges to µ∞ in M(C \D). Our first task is to
translate this into geometrical terms.

Recall from last section, Corollary 5.3.5, that we have a commutative diagram,

π1(M,p)
ρn //

in
∗

��

PSL(2;C)

π1(Mn, pn)

HolMn

77ooooooooooo
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Furthermore, the sequence of representations {ρn} converges both algebraically and geomet-
rically to HolM .

Let σ ∈ π1(M,p) be a hyperbolic element. The algebraic convergence of {ρn} implies that
ρn(σ) is also of hyperbolic type for large n (it follows for instance from the fact that the set
of hyperbolic isometries is open in PSL(2,C)). As a consequence, for large n, the conjugacy
class of in∗ (σ) defines a closed geodesic in Mn; moreover, the complex length of ρn(σ) is close
to that of HolM (σ).

Let 0 < a < b. Then, for large n, the map in∗ : π1(M,p) → π1(Mn, pn) gives a well defined
map

ιa,b,n : {ϕ ∈ C(M) | a < l(ϕ) < b} → {ϕ ∈ C(Mn) | a < l(ϕ) < b} .

Lemma 5.4.1. Assume that for all 0 < a < b not in the real-length spectrum of M there
exists N(a, b) such that for all n > N(a, b) the map ιa,b,n is a bijection when restricted to
prime geodesics. Then {µn} converges weakly to µ∞.

Proof. For two real numbers a < b put Da,b = {z ∈ C | ea < |z| < eb}. Let f be a continuous
function with compact support contained in the exterior of the unit disk. Take 1 < a < b
such that supp f ⊂ Da,b, with both a and b not in the real length spectrum of M . Let
A = {ϕ1, . . . , ϕk} be the set of prime closed geodesics in M with complex length in Da,b.
Therefore, we have

∫

|z|>1
f(z)dµ∞(z) =

∫

Da,b

f(z)dµ∞(z) =
k∑

i=1

f(λ(ϕi)).

By hypothesis, for n > N(a, b), we have

∫

|z|>1
f(z)dµn(z) =

∫

Da,b

f(z)dµn(z) =

k∑

i=1

f(λn(ιn,a,b(ϕi))),

where λn is the complex-length function of Mn. The algebraic convergence implies

lim
n→∞

λn(ιn,a,b(ϕi)) = λ(ϕi),

and the continuity of f gives

lim
n→∞

∫

|z|>1
f(z)dµn(z) =

∫

|z|>1
f(z)dµ∞(z).

Hence, µn converges weakly to µ∞.

Next we want to prove that the hypothesis of the above lemma is satisfied. Hereafter,
a and b will denote two fixed positive real numbers not in the length spectrum of M with
a < b. We will write ιn instead of ιa,b,n.

The following lemma is an immediate consequence of the convergence of {(Mn, En)} to
(M,E).
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Lemma 5.4.2. Let ϕ ∈ C(M). Then the sequence of closed geodesics {ιn(ϕ)} converges to
ϕ.

Proposition 5.4.3. Let ϕ1, ϕ2 ∈ C(M). If ϕ1 6= ϕ2 then, for n large enough, ιn(ϕ1) 6=
ιn(ϕ2).

Proof. We have d(ϕ1, ϕ2) > 0. The above lemma then implies that for large n also

d(ιn(ϕ1), ιn(ϕ2)) > 0.

Proposition 5.4.4. If ϕ ∈ C(M) is prime, then, for n large enough, ιn(ϕ) is also prime.

Proof. Take R > 0 such that ιn(ϕ) ⊂ BR(pn) for all n. If the lemma were false, then (up
to a subsequence) for all n, ιn(ϕ) = knψn for some integer kn ≥ 2 and some ψn ∈ PC(Mn).
By Lemma 5.3.1, the injectivity radius on BR(pn) is uniformly bounded from below away
from zero; hence, kn must be bounded from above. Therefore, (up to a subsequence) for
all n, ιn(ϕ) = kψn, for some fixed k ≥ 2. The geodesics {ψn} have bounded length and
are contained in BR(pn); hence, by Ascoli-Arzela (up to a subsequence) they converge to a
geodesic ψ which satisfies ϕ = kψ, contradicting the primality of ϕ.

These two preceding results imply that, for large n, ιn gives an injective map

{ϕ ∈ PC(M) | a < l(ϕ) < b} → {ϕ ∈ PC(Mn) | a < l(ϕ) < b} ,

Next we want to prove that, for a larger n, this map is surjective. We will proceed by
contradiction using an Arzela-Ascoli argument. Before doing this, we need to prove that we
have a control on the set of prime closed geodesics in Mn whose lengths are in (a, b). This is
the content of the following result, which is just an application of the thick-thin decomposition
of a complete finite-volume hyperbolic manifold.

Lemma 5.4.5. There exists R > 0 such that for all n any prime closed geodesic in (Mn, pn)
of length in (a, b) is contained in BR(pn).

Proof. Let ǫ > 0 be smaller than a/2 and the Margulis constant. If necessary, take a smaller
ǫ > 0 to guarantee that pn ∈ Mn,[ǫ,∞). If ϕ is a closed geodesic in Mn of length l(ϕ) > a,
then ϕ must intersect the ǫ-thick part Mn,[ǫ,∞) (otherwise ϕ would be the core of a Margulis
tube in Mn,(0,ǫ), and the injectivity radius in that tube would be achieved by the curve ϕ, so
a/2 < l(ϕ)/2 < ǫ, which is absurd). The result then follows from the fact that the diameter
of Mn,[ǫ,∞) is uniformly bounded on n.

Lemma 5.4.6. There exists N such that for all n > N the following holds: if ϕn is a prime
closed geodesic in Mn of length a < l(ϕn) < b, then there exists a prime closed geodesic in M
of length a < l(ϕ) < b with ϕn = ιn(ϕ).
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Proof. Assume that the lemma is false. Up to a subsequence, for all n there exists a prime
closed geodesic ϕn on Mn with l(ϕn) ∈ (a, b) such that ϕn 6= ιn(ψ), for all ψ ∈ PC(M) of
length in (a, b). Take the R given by Lemma 5.4.5. By the continuity of the injectivity radius,
there exists a uniform lower bound ǫ > 0 on the injectivity radius on BR(pn). Therefore, by
Proposition 5.1.2, for all ψ ∈ PC(M) of length in (a, b),

d(ιn(ψ), ϕn) > ǫ.

Up to a subsequence, {ϕn} converges to a closed geodesic ϕ in M . It is easily seen that ϕ
must be prime. Since l(ϕ) ∈ (a, b) (recall that a and b do not belong to the length spectrum
of M), the above inequality gives

d(ιn(ϕ), ϕn) > ǫ.

It contradicts the fact that both {ϕn} and {ιn(ϕ)} converge to ϕ.

Proof of Theorem 5.2.2. Propositions 5.4.3 and 5.4.4 prove that ιn is injective, and Lemma
5.4.6 states that ιn is surjective. Then Lemma 5.4.1 proves that {µn} converges to µ∞
weakly.

It remains to prove Theorem 5.2.3. In order to do it, we can assume that M has k cusps,
and that the sequence {Mn} converging to M in M is obtained by performing Dehn fillings
on l (≤ k) fixed cusps of M . We must prove that the sequence of (real) length spectrum
measures {µlspMn} converges in M(R) to

µlspM + 2(k − l)δ0.

By Theorem 5.2.2, it is enough to prove that there exists δ > 0 smaller than the length of
the shortest geodesic in M such that

lim
n→∞

µlspMn([0, δ)) = 2(k − l).

In geometrical terms, it is equivalent to the following well known result.

Lemma 5.4.7. Let {±ϕ1
n, . . . ,±ϕ

l
n} be the core geodesics (oriented and prime) in Mn added

on the Dehn filling. Let δs be the length of the shortest geodesic in M , and δ ∈ (0, δs). Then,
for large n, the only prime closed geodesics in Mn of length < δ are the core geodesics.

Proof. Take ǫ > 0 smaller than both the Margulis constant and δ/2. Thus M(0,ǫ) consists
only of cusps. Since l(ϕin) goes to zero as n goes to infinity, for large n, all the geodesics ϕin
are in Mn,(0,ǫ). Let T

i
n be the Margulis tube corresponding to ϕin, and {C l+1

n , . . . , Ckn} be the
cusp components of Mn,(0,ǫ) corresponding to the non-deformed cusps. Let

Fn = T 1
n ∪ · · · ∪ T ln ∪ C

l+1
n ∪ · · · ∪ Ckn ⊂Mn,(0,ǫ).

For large n, Mn,[ǫ,∞) is homeomorphic to M[ǫ,∞); in particular, Mn,(0,ǫ] has k boundary
components. It implies that, for large n, Fn =Mn,(0,ǫ), and the result follows.
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We will need the following improvement of Theorem 5.2.2 in the following chapter.

Proposition 5.4.8. Let f : C → C be a continuous function with supp f not necessarily
compact but contained in C \D. Assume that there exists ǫ > 0, and K > 0 such that

|f(z)| ≤
K

|z|2+ǫ
,

for all z ∈ C. Then we have:

1. For any M ∈ M, ∫

|z|>1
|f(z)|dµspM(z) <∞.

2. If {Mn} converges to M in M, then

lim
n→∞

∫

|z|>1
f(z)dµspMn(z) =

∫

|z|>1
f(z)dµspM(z).

Proof. Let δ be the Margulis constant. Then for all M ∈ M any prime closed geodesic in M
of length ≥ 2δ intersects the thick part M[δ,∞). Let M ∈ M, and put µ = µspM . Fix R≫ 1.
By Lemma 5.1.3, we have

µ({e2δ ≤ |z| ≤ R}) ≤ CR2,

where C = π e
8 diamM[δ,∞)

VolM[δ,∞)
. Then we have,

∫

|z|≥R
|f(z)|dµ(z) =

∞∑

k=0

∫

R2k≤|z|<R2k+1

|f(z)|dµ(z)

≤
∞∑

k=0

∫

R2k≤|z|<R2k+1

K

|z|2+ǫ
dµ(z)

≤
∞∑

k=0

K

(R2k)2+ǫ

∫

R2k≤|z|<R2k+1

dµ(z)

≤
∞∑

k=0

K

(R2k)2+ǫ
C(R2k+1)2

=
KC

Rǫ

∞∑

k=0

22k+2

2k(2+ǫ)
=

4KC

Rǫ
1

1− 1
2ǫ

=
C ′

Rǫ
,

where C ′ is a constant depending only on C,K, and ǫ. The first assertion is then proved.
Now let {Mn} be a sequence converging to M in M. Let us put µn = µspMn. Since both
diamMn,[δ,∞) and VolMn are uniformly bounded on n, the first assertion implies that there
exists a constant C ′′ such that for all n

∫

|z|≥R
|f(z)|dµn(z) ≤

C ′′

Rǫ
.



70 Chapter 5. Complex-length spectrum

Thus we have∣∣∣∣∣

∫

|z|>1
f(z)(dµn(z)− dµ(z))

∣∣∣∣∣ ≤

∣∣∣∣∣

∫

1<|z|<R
f(z)(dµn(z)− dµ(z))

∣∣∣∣∣

+

∣∣∣∣∣

∫

|z|≥R
f(z)(dµn(z)− dµ(z))

∣∣∣∣∣

≤

∣∣∣∣∣

∫

1<|z|<R
f(z)(dµn(z)− dµ(z))

∣∣∣∣∣+
C ′′ + C ′

Rǫ
.

Theorem 5.2.2 shows that

lim
n→∞

∣∣∣∣∣

∫

|z|>1
f(z)(dµn(z)− dµ(z))

∣∣∣∣∣ ≤
C ′′ + C ′

Rǫ
.

Since R is arbitrary and independent of both C and C ′′, the left hand side of the above
equation must vanish. This proves the proposition.

5.5 Spin-complex-length spectrum

Let (M,η) be an spin complete hyperbolic 3-manifold, and consider its holonomy represen-
tation,

Hol(M,η) : π1(M,p) → SL(2,C).

If γ ∈ π1(M,p) is of hyperbolic type then,

Hol(M,η)(γ) ∼

(
eλ/2 0

0 e−λ/2

)
∈ SL(2,C), Re(λ) > 0.

The spin complex length of γ is by definition the parameter λ ∈ C/〈4πi〉. Hence, in contrast
to the usual complex length, eλ/2 is well defined (we have a well defined sign given by the lift
of the holonomy). We propose the following definition.

Definition. The (prime) spin-complex-length spectrum of (M,η) is defined by

µsp(M,η) =
∑

ϕ∈PC(M)

δeλ(ϕ)/2 ,

where δx is the Dirac measure centered at x.

Remark. The image measure of µsp(M,η) under the function z 7→ z2 is µspM .

The results obtained for the length spectrum in the previous sections extend in a natural
way for the spin-complex-length spectrum, and their proofs will be omitted. To do that we
must consider the space MSF of spin-hyperbolic manifolds with a baseframe. In this case
we have the identification between MSF and the space of discrete torsion-free subgroups of
SL(2,C) with finite co-volume. We topologize MSF in such a way that this identification
becomes a homeomorphism. The quotient spaces MSB and MS are then defined as in the
non-spin case.



5.5. Spin-complex-length spectrum 71

Theorem 5.5.1. The map µsp : MS →M(C \D) is continuous.

As in the non-spin case, we can improve the continuity in the following sense. Notice
that the condition on the decay at infinity must be replaced, since the measure of the ball
BR(0) ⊂ C under the measure µsp(M,η) is equal to the measure of the ball BR2(0) under
the measure µspM .

Proposition 5.5.2. Let f : C → C be a continuous function with support contained in
|z| > 1. Assume that there exists ǫ > 0, and K > 0 such that

|f(z)| ≤
K

|z|4+ǫ
,

for all |z| > 1. If {(Mn, ηn)} converges to (M,η) in MS, then

∫

|z|>1
|f(z)|dµ(z),

∫

|z|>1
|f(z)|dµn(z) <∞,

and

lim
n→∞

∫

|z|>1
f(z)dµn(z) =

∫

|z|>1
f(z)dµ(z).

Where µ = µsp(M,η) and µn = µsp(Mn, ηn).





Chapter 6

Asymptotic behavior

The aim of this chapter is to establish the asymptotic behavior of the n-dimensional hyperbolic
Reidemeister torsion. More concretely, we will prove the following result.

Theorem 6.0.3. Let M be a connected, complete, hyperbolic 3-manifold of finite volume.
Then

lim
k→∞

log |T2k+1(M)|

(2k + 1)2
= −

Vol(M)

4π
.

In addition, if η is an acyclic spin structure on M , then

lim
k→∞

log |T2k(M,η)|

(2k)2
= −

Vol(M)

4π
.

For a compact manifold, the above result is due to Müller, see [Mül]. In this case, we can
consider τn(M ; η) for all n (i.e. there is no need to consider the normalized torsion Tn(M,η)).

Theorem 6.0.4 (W. Müller, [Mül]). Let (M,η) be a connected spin-hyperbolic 3-manifold.
Then we have:

lim
n→∞

log | τn(M ; η)|

n2
= −

Vol(M)

4π
.

The proof given by Müller is based on the fact that the Reidemeister torsion coincides with
the Ray-Singer analytic torsion for a compact manifold. Since a priori the Ray-Singer torsion
is not even defined for non-compact manifolds, it seems difficult to adapt Müller’s proof to the
non-compact case. Nevertheless, Müller’s techniques are still powerful in the non-compact
case, and will play a crucial role in our proof of Theorem 6.0.3. Roughly speaking, our
approach will consist in approximating the cusp manifold M by compact manifolds obtained
by hyperbolic Dehn filling; then we will apply Müller’s theorem to these compact manifolds
and the surgery formulas for the torsion stated in Chapter 4. The continuity of the (spin-
)complex-length spectrum established in Chapter 5 will allow us to handle this limit process.

The distribution of this chapter is as follows. The first section is an exposition of the
notions concerning the Ray-Singer analytic torsion and Ruelle zeta functions that will be
needed in the subsequent sections; that section ends with Wotzke’s theorem in dimension
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three, which gives the relationship between Ruelle zeta functions and the Reidemeister tor-
sion invariants that we are studying. In the second section, we will state the theorem by
Müller from which he deduces the asymptotic behaviour for the compact case. That the-
orem establishes a formula for the Ray-Singer analytic torsion, which will be the essential
ingredient for the proof of Theorem 6.0.3 given in the last section.

6.1 Ruelle zeta functions

Let M be a differentiable closed n-manifold with a Riemannian metric g. Let us assume that
we have an acyclic orthogonal (or unitary) representation of the fundamental group

ρ : π1M → O(n).

The analytic Ray-Singer torsion T (M ; ρ), introduced by Ray and Singer in the seminal paper
[RS71], is a certain weighted alternating product of regularized determinants of the Laplacians

∆q : Ωq(M ;Eρ) → Ωq(M ;Eρ).

A theorem proved in [RS71] states that the Ray-Singer torsion is independent of the chosen
metric. Hence, it is usually denoted simply as T (M ; ρ), without making reference to the
metric g.

In the paper mentioned above, Ray and Singer conjectured that the Reidemeister torsion
τ(M ; ρ) agrees with the analytic torsion T (M ; ρ). This conjecture was proved independently
by Cheeger and Müller in [Che79] and [Mül78] respectively. In [Mül93], Müller extended the
definition of the analytic torsion to unimodular representations

ρ : π1M → SL(n,C).

As in the orthogonal case, this definition requires a Riemannian metric, but, in contrast to
the orthogonal case, this new analytic torsion is only metric independent for odd dimensions.
In that paper, Müller also proved that both the analytic torsion and the Reidemeister torsion
agree for an odd dimensional closed manifold.

An important part of this story concerns the relation between the Ray-Singer torsion and
Ruelle zeta functions for a compact negatively curved manifoldM . Since it will play a crucial
role in the proof of our main theorem, we will spend the rest of this section to explain it.

Let Γ be a torsion free co-compact subgroup of Isom+Hn, and let M = Hn/Γ be the
corresponding hyperbolic manifold. The classical Ruelle zeta function associated to M is
formally defined as

R(s) =
∏

[γ]∈PC(Γ)

(
1− e−sl(γ)

)
,

where l(γ) is the length of the prime oriented closed geodesic defined by the prime conjugacy
class [γ] of Γ. The region of convergence of R(s) can be determined using the asymptotic
behaviour of the number of closed geodesics of length less or equal than a given value. To
that end, define P (t) as

P (t) = #
{
[γ] ∈ PCΓ | l(γ) ≤ t

}
.
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Margulis studied the function P (t) for a closed manifold of negative curvature in [Mar69].
Among other things, he proved that

lim
t→∞

P (t)

eht/ht
= 1,

where h is the topological entropy of the geodesic flow. The topological entropy of a hyperbolic
manifold of dimension n is h = n − 1. Using Margulis’ result, the region of convergence of
R(s) is easily seen to be {

s ∈ C | Re(s) > n− 1
}
.

In [Fri86], Fried gave the following generalization on the definition of the Ruelle zeta function.
Given an orthogonal representation ρ : π1(M) → O(d), which need not to be acyclic, the
twisted Ruelle zeta function associated to ρ is defined as

Rρ(s) =
∏

[γ]∈PCΓ

det
(
Id− ρ(γ)e−sl(γ)

)
.

The region of convergence of Rρ(s) is the same as the one of the classical Ruelle zeta function
(here we are using that ρ is an orthogonal representation). In that same paper, Fried proved
that Rρ(s) has a meromorphic extension to the whole complex plane; moreover, if ρ is acyclic,
then Rρ(s) is regular at s = 0 and |Rρ(0)| = T (M ; ρ)2 (if ρ is not acyclic, Rρ(s) can have a
pole at s = 0, and T (M ; ρ)2 is equal to the leading term of the Laurent expansion of Rρ(s)
at the origin).

In a posterior paper [Fri95], Fried proved that for a general representation ρ : π1M →
GL(d;C) the twisted Ruelle zeta function Rρ(s) has also a meromorphic extension to the
whole plane. However, he was not able to prove its relationship with the Ray-Singer ana-
lytic torsion. Nevertheless, three years later U. Bröcker proved in his thesis a similar result
for representations of the fundamental group that are restrictions of finite-dimensional irre-
ducible representations of Isom+Hn ∼= SO0(n, 1), see [Brö98]. According to Müller [Mül], the
methods used by Bröcker are based on elaborate computations which are difficult to verify.
Nonetheless, this problem has been overcome by Wotzke in his thesis [Wot08]. The following
section is dedicated to state Wotzke’s Theorem in dimension 3.

6.1.1 Wotzke’s Theorem

Let (M,η) be a connected, closed, spin-hyperbolic 3-manifold. If Γ is the image of π1(M,p)
under the Hol(M,η), then

(M,η) = Γ\ SL(2;C)/SU(2).

Let ρ be a real finite-dimensional representation of SL(2;C), regarded as a real Lie group.
Denote by θ the Cartan involution of SL(2;C) with respect to SU(2), and put ρθ = ρ ◦ θ.
Let Eρ → M be the flat vector bundle associated to ρ. Introduce some metric on Eρ, and
consider the Laplacians ∆q : Ωr(M ;Eρ) → Ωr(M ;Eρ).

Theorem 6.1.1 (Wotzke,[Wot08]). With the above notation, the following assertions hold:
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1. If ρθ is not isomorphic to ρ, then Rρ(s) is regular at s = 0 and

|Rρ(0)| = T (M ; ρ)2.

2. Assume that ρ ◦ θ is isomorphic to ρ. If ρ is not trivial, then the order hρ at s = 0 of
Rρ(s) is given by

hρ = 2
3∑

q=1

(−1)q dimker∆q,

and for the trivial representation we have hρ = 4− 2 dimH1(M ;R). The leading term
of the Laurent expansion of Rρ(s) at s = 0 is given by

T (M ; ρ)2shρ .

Remark. The Cartan involution of the real Lie algebra sl(2;C) is given by θ(X) = −X
t
. It

can be checked that a complex representation ρ of SL(2;C) is not equivalent to ρ ◦ θ.

6.2 Müller’s Theorem

Let us retain the same notation as in the previous section; in particular, M will be assumed
to be closed. For n > 0, let ρn be the n-dimensional canonical representation of (M,η),

ρn : π1(M,p) ∼= Γ → SL(n;C).

Müller’s theorem on the equivalence of the Reidemeister torsion and the Ray-Singer an-
alytic torsion implies that

T (M ; ρn,η) = | τ(M ; ρn)|.

Let us denote by Rn(s) the Ruelle zeta function associated to the representation ρn. Wotzke’s
Theorem gives

|Rρn(0)| = | τ(M ; ρn)|
2.

Following [Mül], the Ruelle zeta function Rρn(s) can be expressed in terms of the following
related Ruelle zeta functions,

Rk(s) =
∏

[γ]∈PC(Γ)

(
1− σk(γ)e

−sl(γ)
)
,

where σk(γ) is defined by
σk(γ) = eki Imλ(γ)/2 = ekiθ(γ)/2,

with θ(γ) the geometric spin torsion of the closed geodesic defined by γ. A straightforward
computation then shows that

Rρn(s) =
n∏

k=0

Rn−2k(s− (n/2− k)).

The following theorem by Müller relates the Reidemeister torsion, Ruelle zeta functions
and the volume of the manifold M .
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Remark. Müller uses in [Mül] the notation τn to designate the representation coming from
the nth symmetric power, so his τn is our ρn+1.

Theorem 6.2.1 (Müller [Mül]). Let (M,η) be a closed spin-hyperbolic 3-manifold, and for
m ≥ 3 let ρm be its m-dimensional canonical representation. Then we have the following
equations,

log

∣∣∣∣
τ(M ; ρ2m+1)

τ(M ; ρ5)

∣∣∣∣ =
m∑

k=3

log |R2k(k)| −
1

π
VolM (m(m+ 1)− 6) ,

log

∣∣∣∣
τ(M,η; ρ2m)

τ(M,η; ρ4)

∣∣∣∣ =

m−1∑

k=2

log

∣∣∣∣R2k+1

(
k +

1

2

)∣∣∣∣−
1

π
VolM(m2 − 4)

Müller then deduces Theorem 6.0.4 from the following lemma, [Mül].

Lemma 6.2.2. For a closed spin-hyperbolic 3-dimensional manifold (M,η) there exists a
constant C > 0, depending only on the manifold M , such that for all m ≥ 3, we have

m∑

k=3

|log |R2k(k)|| < C,
m−1∑

k=2

∣∣∣∣log
∣∣∣∣R2k+1

(
k +

1

2

)∣∣∣∣
∣∣∣∣ < C.

6.3 The noncompact case

Let (M,η) be a compactly approximable spin-hyperbolic 3-manifolds of finite volume. In this
section we want to prove that Theorem 6.0.3 holds for (M,η) as well. We will do this by
proving that Theorem 6.2.1 holds also for (M,η).

The definition of the Ruelle zeta function Rρn for (M,η) is obvious if we define it in terms
of prime closed geodesics; more concretely, we define

Rρn(s) =
∏

ϕ∈PC(M)

det
(
Id− ρn(ϕ)e

−sl(ϕ)
)
.

Of course, it makes sense also to define

Rk(s) =
∏

ϕ∈PC(M)

(
1− σk(ϕ)e

−sl(γ)
)
.

The function Rρn(s) is related to the functions R(s, σk) in the same way as in the compact
case. The estimations concerning the growth of closed geodesics in M imply that R(s, σk)
converges for Re(s) > 2. More accurate estimations will probably allow to conclude that
the region of convergence of R(s, σk) is exactly that half-plane. Therefore, the region of
convergence of Rρn(s) contains the half-plane Re(s) > 2 + n/2.

It is worth noticing that the following equation holds.
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Lemma 6.3.1. For k ≥ 3 we have:

log

∣∣∣∣Rk
(
k

2

)∣∣∣∣ =
∫

|z|>1
log |1− z−k|dµsp(M,η)(z). (6.1)

With the same notation as in Chapter 4, we have the following formula.

Lemma 6.3.2. Let (p, q) ∈ A(M,η), and A = {±ϕp1/q1 , . . . ,±ϕpl/ql} be the prime oriented
core geodesics in Mp/q added in the Dehn filling. For an integer m ≥ 3, we have

log

∣∣∣∣∣
τ(M ; ρ

p/q
2m )

τ(M ; ρ
p/q
4 )

∣∣∣∣∣ = −
(m− 2)(m+ 2)

2

l∑

i=1

l(ϕip/q)−
1

π
Vol(Mp/q)(m

2 − 4) +

m−1∑

k=2

B
p/q
2k+1,

where

B
p/q
j =

∑

ϕ∈PC(Mp/q)\A

log
∣∣∣1− e−jλp/q(ϕ)/2

∣∣∣.

Proof. For the sake of simplicity we will prove it only for one-cusped manifolds. The surgery
formula given by Lemma 4.2.3, yields

log

∣∣∣∣∣
τ(Mp/q; ρ

p/q
2m )

τ(M ; ρ
p/q
2m )

∣∣∣∣∣ =
m−1∑

k=0

log
∣∣∣
(
e(

1
2
+k)λ(ϕp/q) − 1

)(
e−(

1
2
+k)λ(ϕp/q) − 1

)∣∣∣ .

It follows that,

log

∣∣∣∣∣
τ(Mp/q; ρ

p/q
2m ) τ(M ; ρ

p/q
4 )

τ(Mp/q; ρ
p/q
4 ) τ(M ; ρ

p/q
2m )

∣∣∣∣∣ =
m−1∑

k=2

log
∣∣∣
(
e(

1
2
+k)λ(ϕp/q) − 1

)(
e−(

1
2
+k)λ(ϕp/q) − 1

)∣∣∣ .

Since Mp/q is compact, Müller’s Theorem 6.3.4 gives

log

∣∣∣∣∣
τ(Mp/q; ρ

p/q
2m )

τ(Mp/q; ρ
p/q
4 )

∣∣∣∣∣ =
m−1∑

k=2

log

∣∣∣∣R
p/q
2k+1

(
k +

1

2

)∣∣∣∣−
1

π
Vol(Mp/q)(m

2 − 4).

From these last two equations, we get

− log

∣∣∣∣∣
τ(M ; ρ

p/q
4 )

τ(M ; ρ
p/q
2m )

∣∣∣∣∣ =
m−1∑

k=2

log

∣∣∣∣R
p/q
2k+1

(
k +

1

2

)∣∣∣∣−
1

π
Vol(Mp/q)(m

2 − 4)

−
m−1∑

k=2

log
∣∣∣e(

1
2
+k)λ(ϕp/q) − 1

∣∣∣
∣∣∣e−( 1

2
+k)λ(ϕp/q) − 1

∣∣∣ .

Using the expression

log |R
p/q
2k+1(k +

1

2
)| = log |1− e−(k+ 1

2
)λ(ϕp/q)|2 +B

p/q
2k+1,
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the above equation is written as

log

∣∣∣∣∣
τ(M ; ρ

p/q
2m )

τ(M ; ρ
p/q
4 )

∣∣∣∣∣ =

m−1∑

k=2

log
|1− e−(k+ 1

2
)λ(ϕp/q)|2

|e(
1
2
+k)λ(ϕp/q) − 1||e−( 1

2
+k)λ(ϕp/q) − 1|

−
1

π
Vol(Mp/q)(m

2 − 4) +
m−1∑

k=2

B
p/q
2k+1.

We have,

|1− e−(k+ 1
2
)λ(ϕp/q)|2

|e(
1
2
+k)λ(ϕp/q) − 1||e−( 1

2
+k)λ(ϕp/q) − 1|

= e−( 1
2
+k)Reλ(ϕp/q).

Hence, summing up the terms, we get

m−1∑

k=2

log

(
|1− e−(k+ 1

2
)λ(ϕp/q)|2

|e(
1
2
+k)λ(ϕp/q) − 1||e−( 1

2
+k)λ(ϕp/q) − 1|

)
= −

(m− 2)(m+ 2)

2
l(ϕp/q),

and the lemma follows.

Lemma 6.3.3. With the same notation as in the preceding lemma, for k ≥ 5 we have

lim
(p,q)→∞

B
p/q
k = log

∣∣∣∣Rk
(
k

2

)∣∣∣∣ .

Moreover, the following series is absolutely convergent

∞∑

k=5

log

∣∣∣∣Rk
(
k

2

)∣∣∣∣ .

Proof. Let δ be the length of the shortest closed geodesic in M . By Lemma 5.4.7, for (p, q)
large enough, the only prime closed geodesics on Mp/q whose lengths are less than δ/2 are
the core geodesics A = {±ϕp1/q1 , . . . ,±ϕpl/ql}. In that case,

B
p/q
k =

∑

ϕ∈PC(Mp/q)\A

log
∣∣∣1− e−kλ(ϕ)/2

∣∣∣ =
∫

|z|>eδ/4
log |1− z−k|dµp/q(z).

where µp/q = µsp(Mp/q, ηp/q). Now we want to apply Proposition 5.5.2. We shall show that
for large |z| we have

| log |1− z−k|| ≤
C

z5
, for k ≥ 5, (6.2)

where C is some constant. First notice that for w ∈ C with |w| < 1 the following inequality
holds

|log |1− w|| ≤ − log |1− |w||.
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On the other hand, for |w| small enough,

− log |1− |w|| ∼ |w|.

Inequality (6.2) then follows easily from the last two inequalities. Therefore, we can use
Proposition 5.5.2 to conclude that

lim
(p,q)→∞

B
p/q
k = log

∣∣∣∣Rk
(
k

2

)∣∣∣∣ .

Finally, if µ = µsp(M,η), we have

∞∑

k=5

∣∣∣∣log
∣∣∣∣Rk

(
k

2

)∣∣∣∣
∣∣∣∣ ≤

∞∑

k=5

∫

|z|>eδ/2
| log

∣∣1− |z|−k||dµ(z)

≤
∞∑

k=5

∫

|z|>eδ/2

C

|z|k
dµ(z)

=

∫

|z|>eδ/2

C

|z|5
1

1− 1
|z|

dµ(z)

≤
C

1− eδ/2

∫

|z|>eδ/2

1

|z|5
dµ(z) <∞,

the last integral being finite by Proposition 5.5.2.

Finally, letting (p, q) go to infinity in the equation of Lemma 6.3.2, using the continuity
of the complex-length spectrum, the continuity of the volume, and the fact that the lengths
of the core geodesics ϕip/q go to zero, we deduce the following generalization of Theorem 6.2.1
for even dimensions n. In the following theorem we have also included the odd dimensional
case, as its proof is handled in a similar way.

Theorem 6.3.4. Let M be a complete hyperbolic 3-manifold of finite volume. Then for
m ≥ 3

log

∣∣∣∣
T2m+1(M)

T5(M)

∣∣∣∣ =
m∑

k=3

log |R2k(k)| −
1

π
VolM (m(m+ 1)− 6) .

If in addition M is enriched with an acyclic spin structure, then for m ≥ 3

log

∣∣∣∣
T2m(M,η)

T4(M,η)

∣∣∣∣ =
m−1∑

k=2

log

∣∣∣∣R2k+1

(
k +

1

2

)∣∣∣∣−
1

π
VolM(m2 − 4).

The proof of Theorem 6.0.3 now follows easily.

Proof of Theorem 6.0.3. Theorem 6.3.4 and Lemma 6.3.3 imply that

lim
n→∞

log |Tn(M,η)|

n2
= −

VolM

4π
.



Chapter 7

Reidemeister torsion and length

spectrum

The results of last chapter, especially Theorem 6.3.4, show that there is a close relationship
between the spin-complex-length spectrum of a complete, acyclic, spin-hyperbolic 3-manifold
of finite volume (M,η) and its higher-dimensional Reidemeister torsion invariants. In this
chapter we want to focus on this question; more concretely, we want to study at what extent
the sequence {Tn(M,η)} determines the spin-complex-length spectrum of the manifold. The
equivalence between these two invariants should be regarded as a geometric interpretation of
the information encoded in these invariants.

Definition. We will say that two (spin-)hyperbolic 3-manifolds are (spin-)isospectral if the
have the same prime (spin-)complex-length spectrum.

The notion of isospectrality, as stated in the above definition, has been already considered
by C. Maclachlan and A.W. Reid in [MR03]. They prove the following theorem.

Theorem 7.0.5 (C. Maclachlan and A.W. Reid, [MR03]). For any integer n ≥ 2, there are
n isospectral non-isometric closed hyperbolic 3-manifolds.

As an immediate consequence of Theorem 7.0.5 and Wotzke’s Theorem 6.1.1, we get the
following result.

Theorem 7.0.6. For any integer n ≥ 2, there are n non-isometric, closed, hyperbolic 3-
manifolds M1, . . . ,Mn such that for all k > 0,

|τ2k+1(Mi)| = |τ2k+1(Mj)|, for all i, j = 1, . . . , n.

Unfortunately, we will need to weaken the notion of isospectrality, and rather consider
isospectrality up to complex conjugation. Before giving its definition, let us make the fol-
lowing considerations. Let (M,η) be a spin-hyperbolic 3-manifold, and let (M,η) be the
corresponding spin manifold with the orientation reversed (here we are using the canonical

81
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one-to-one correspondence between spin structures on M and M). The relationship between
the spin-complex-length spectra of these two manifolds is easily established. Indeed we have:

µsp(M,η) =
∑

ϕ∈PC(M)

δeλ(ϕ)/2 ,

µsp(M,η) =
∑

ϕ∈PC(M)

δ
eλ(ϕ)/2 ,

where λ(ϕ) is the spin-complex-length function of (M,η). Notice that µsp(M,η) is the image
measure of µsp(M,η) under the complex conjugation map.

Definition. We will say that two complete spin-hyperbolic 3-manifolds (M1, η1) and (M2, η2)
are spin isospectral up to complex conjugation if they have the same spin-complex-length
spectrum up to complex conjugation, that is,

µsp(M1, η1) + µsp(M1, η1) = µsp(M2, η2) + µsp(M2, η2).

The definition for “non-spin” manifolds is analogous.

Remark. The reason to consider isospectrality up to complex conjugation is essentially that
Wotzke’s Theorem 6.1.1 is an equality between the moduli of the Ruelle zeta function and
Reidemeister torsion; if we had also equality between the arguments, then there should be
no need to consider isospectrality up to complex conjugation.

Remark. If two complete spin-hyperbolic 3-manifolds are spin-isospectral up to complex
conjugation, then they have the same real length spectrum. The same holds true for non-
spin manifolds.

Theorem 7.0.7. Let (M1, η1), (M2, η2) be two complete spin acyclic hyperbolic 3-manifolds
of finite volume. Assume that there exists N ≥ 4 such that for all n ≥ N we have

|Tn(M1, η1)| = |Tn(M2, η2)|.

Then the following assertions hold:

1. The spin manifolds (M1, η1) and (M2, η2) are spin-isospectral up to complex conjugation.
In particular, they have the same real length spectrum.

2. The equality |Tn(M1, η1)| = |Tn(M2, η2)| holds for all n ≥ 4.

The proof of Theorem 7.0.7 will be given in Section 7.2. Before doing that, we need a
result on complex analysis which we prove in the following section.
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7.1 Some results on complex analysis

The aim of this section is to provide a proof of the following analytical result needed to prove
Theorem 7.0.7. We are indebted to J. Ortega-Cerdà, N. Makarov, and A. Nicolau for the
proof of Proposition 7.1.3.

Proposition 7.1.1. Let µ be a Radon complex-valued measure with compact support suppµ
contained in the interior of the unit disk D. Assume that µ satisfies the following conditions:

1. C \ suppµ is connected.

2. suppµ has zero Lebesgue measure.

3. There exists a positive integer N and a holomorphic function ψ on the open unit disk
with ψ(0) = 0, ψ′(0) = 1 such that

∫

D

ψ(zn)

zN
dµ(z) = 0.

for all n ≥ N .

Then µ = 0.

We will prove first the special in which the holomorphic function ψ appearing in the
third condition of the above proposition is the identity. Then we will show that if ψ is any
holomorphic function on the open unit disk with ψ(0) = 0, and ψ′(0) = 1, for all N > 0 the

linear span of {ψ(z
n)

zN
}n≥N is dense in the space of holomorphic functions on the open unit

disk endowed with the topology of the uniform convergence on compact sets.
A way to prove Proposition 7.1.1 is to use the Cauchy transform. If µ is a Radon complex-

valued measure compactly supported in the complex plane, then its Cauchy transform is
defined by

µ̂(ζ) =

∫

C

dµ(z)

z − ζ
.

We will need only the following properties of the Cauchy transform, see [Gam69].

Proposition 7.1.2. Let Ĉ be the Riemann sphere. The Cauchy transform has the following
properties:

1. µ̂(ζ) is analytic on Ĉ \ suppµ and vanishes at infinity.

2. If µ̂ = 0 Lebesgue-almost everywhere, then µ = 0.

With this result we can prove the following particular case of Proposition 7.1.1 mentioned
above.

Proposition 7.1.3. Let µ be a Radon complex-valued measure compactly supported in the
complex plane that satisfies the following conditions:

1. C \ suppµ is connected.
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2. suppµ has zero Lebesgue measure.

3. For all n ≥ 0,
∫
C
zndµ(z) = 0.

Then µ = 0.

Proof. Let µ̂(ζ) be the Cauchy transform of µ. We know that µ̂(ζ) is analytic on Ĉ \ suppµ
and vanishes at ∞. Take |ζ| large enough so that |z/ζ| < 1 for all z ∈ suppµ. Then, we have

µ̂(ζ) =

∫

C

dµ(z)

z − ζ
= −

1

ζ

∫

C

dµ(z)

1− z
ζ

= −
1

ζ

∑

n≥0

∫

C

zn

ζn
dµ(ζ) = 0

The last term being zero by hypothesis. Thus µ̂ is identically zero in a neighbourhood of ∞,
and hence it must be identically zero in Ĉ \ suppµ, as C \ suppµ is connected. Since suppµ
has zero Lebesgue measure, we have µ̂ = 0 Lebesgue-almost everywhere. Proposition 7.1.2
then implies that that µ = 0, as we wanted to prove.

Now, to prove Proposition 7.1.1, it remains to prove the following result.

Proposition 7.1.4. Let H(D) be the space of holomorphic functions on the open unit disk
endowed with the topology of the uniform convergence on compact sets, and let ψ ∈ H(D)
such that ψ(0) = 0 and ψ′(0) = 1. Then, for all N ≥ 1, the linear span of

{
ψ(zk)

zN

}

k≥N

is dense in H(D).

Remark. We have not been able to find this result in the literature, we provide a proof of
it in this section.

In what follows, ψ(z) will denote a fixed holomorphic function inH(D) such that ψ(0) = 0
and ψ′(0) = 1. Thus we have,

ψ(z) = z +
∑

k≥1

ψkz
k, for all z ∈ D.

The fact that the linear span of the monomials {zn}n≥0 is dense in H(D) implies that
Proposition 7.1.4 is equivalent to say that for all n ≥ 0 there exists a sequence {ank}k≥N of
complex numbers such that

zn =
∑

k≥N

ank
ψ(zk)

zN
,

with the right hand side converging uniformly on every compact set of D. Using the power
series expansion of ψ(z), the above equality yields a linear system with {ank}k≥N as unknowns.
Since ψ(0) = 0 and ψ′(0) = 1, this system is lower triangular with ones in the diagonal,
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and hence it has a unique solution. The difficult point is to prove the convergence of the
corresponding sequence. Fortunately, we can proceed in a slightly different way.

Let us denote by H(DR) the space of holomorphic functions on the open disk of radius
R,

DR = {z ∈ C | |z| < R}.

We will work with the Bergman space on DR, which is defined by

A2(DR) =

{
f ∈ H(DR) |

∫

DR

|f(z)|2dA(z) <∞

}
,

where dA(z) is the usual area measure, see [HKZ00] for details. It is well known that A2(DR)
is a Hilbert space with respect to the following inner product (see [HKZ00]),

〈f, g〉 =

∫

DR

f(z)g(z)dA(z).

The reason to consider A2(DR) instead of H(DR) is due to the fact that it is a Hilbert
space (so it is easier to work with it), and to the fact that convergence in the former implies
convergence in the latter, as expressed by the following result (see [HKZ00]).

Proposition 7.1.5. If a sequence of functions {fn} in A2(DR) converges to f in A2(DR),
then {fn} converges to f uniformly on each compact set of DR.

For 0 < R < 1, consider the linear operator Aψ : A
2(DR) → A2(DR), with domain the

linear space of monomials, defined as follows:

Aψ(1) = 1,

Aψ(z
n) = ψ(zn) = zn +

∑

j≥2

ψjz
nj for n ≥ 1.

The following result shows that Aψ is a bounded operator.

Proposition 7.1.6. For R < 1, let Aψ = I +Bψ. Then Bψ : A
2(DR) → A2(DR) is Hilbert-

Schmidt. In particular, Bψ is compact and Aψ is bounded.

Proof. A basis of A2(DR) is given by the following functions, which are just normalizations
of the monomials {zk},

φn(z) =

√
n+ 1

π

zn

Rn+1
.

To be Hilbert-Schmidt then means that

∑

n≥0

〈Bψ(φn), Bψ(φn)〉 <∞.
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In terms of the basis {φn}, Bψ is written as follows: Bψ(φ0) = 0, and for n ≥ 1,

Bψ(φn) =

√
n+ 1

π

1

Rn+1

∑

j≥2

ψjz
nj =

√
n+ 1

π

1

Rn+1

∑

j≥2

ψj

√
π

nj + 1
Rnj+1φnj

=
∑

j≥2

ψj

√
n+ 1

nj + 1
Rn(j−1)φnj .

Therefore,

∑

n≥0

〈Bψ(φn), Bψ(φn)〉 =
∑

n≥1

∑

j≥2

|ψj |
2 n+ 1

nj + 1
R2n(j−1) ≤

∑

j≥2

2|ψj |
2

j

∑

n≥1

R2n(j−1)

=
∑

j≥2

2|ψj |
2

j

R2(j−1)

1−R2(j−1)
≤

2

R2(1−R2)

∑

j≥2

|ψj |
2

j
R2j .

The last series is finite because it is exactly π times the square of the norm in A2(DR) of
(ψ(z)− z)/z. Indeed,

∥∥∥∥
ψ(z)− z

z

∥∥∥∥
2

A2(DR)

=
∑

j≥1

|ψj+1|
2
∥∥zj
∥∥2
A2(DR)

= π
∑

j≥1

|ψj+1|
2R

2(j+1)

j + 1
.

Corollary 7.1.7. For R < 1, the operator Aψ : A
2(DR) → A2(DR) is invertible.

Proof. We have Aψ = I +Bψ, with Bψ a compact operator. The matrix of the operator Aψ
in the basis {φn} is lower triangular, and has ones in the diagonal; hence, the kernel of Aψ is
trivial, and the Fredholm alternative implies that Aψ is invertible.

Corollary 7.1.8. The linear span of {1, ψ(z), ψ(z2), . . . } is dense in H(D).

Proof. Let us fix g(z) ∈ H(D). Let 0 < R < 1. By the above corollary, there exists
fR(z) ∈ A2(DR) such that Aψ(fR) = g. Then we have

fR(z) =
∑

n≥0

an(R)z
n,

and the series a0(R)+
∑

n≥1 an(R)ψ(z
n) converges to g inA2(DR), so it converges uniformly to

g in every compact contained in DR. Since fR(z) also belongs to A2(DR′) for all 0 < R′ < R,
and is holomorphic, the coefficients an(R) are independent of R, so an(R) = an. Hence
a0 +

∑
n≥0 anψ(z

n) converges to g in every compact set contained in the unit disk, and this
proves the result.

The proof of Proposition 7.1.4 now follows easily.
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Proof of Proposition 7.1.4. Consider the following linear subspace of H(D)

CN = {φ ∈ H(D) | φ(j)(0) = 0, 0 ≤ j ≤ N − 1}.

Since the derivative is continuous in H(D), CN is closed in H(D). By the preceding corol-
lary, it follows that CN is the closure of {ψ(zN ), ψ(zN+1), . . . }. On the other hand, CN is
homeomorphic to H(D) via the linear map

H(D) → CN

φ(z) 7→ zNφ(z).

Therefore, the closure of the linear span of {ψ(z
k)

zN
}k≥N is the whole H(D), as we wanted to

prove.

7.2 Isospectrality and torsion

We start this section with the proof of Theorem 7.0.7.

Proof of Theorem 7.0.7. We can assume that N ≥ 6. Let us put µi = µsp(Mi, ηi) and
µi = µsp(Mi, ηi), for i = 1, 2. From Theorem 6.3.4 we deduce that for k ≥ 3,

log

∣∣∣∣
T2k+3(Mi)

T2k+1(Mi)

∣∣∣∣ = log |RMi
2k+2(k + 1)| −

2(k + 1)

π
VolMi

log

∣∣∣∣
T2k+2(Mi)

T2k(Mi)

∣∣∣∣ = log

∣∣∣∣R
Mi
2k+1

(
k +

1

2

)∣∣∣∣−
2k + 1

π
VolMi.

By hypothesis, for all n ≥ N , |Tn(M1, η1)| = |Tn(M2, η2)|. Then, by Theorem 6.0.3, we have
VolM1 = VolM2. On the other hand, by Lemma 6.3.1, we have:

log

∣∣∣∣R
Mi
j

(
j

2

)∣∣∣∣ =
∫

|z|>1
log |1− z−j |dµi(z).

Therefore, for all n ≥ N + 1, we have

∫

|z|>1
log |1− z−n|dµ1(z) =

∫

|z|>1
log |1− z−n|dµ2(z). (7.1)

On the other hand,

∫

|z|>1
2 log |1− z−n|dµi(z) =

∫

|z|>1
log (1− z−n)dµi(z) +

∫

|z|>1
log (1− z−n)dµi(z).

Let νi be the image measure of µi+µi under the map z 7→ 1
z . Then Equation 7.1 is equivalent

to, ∫

|z|<1
log(1− zn)dν1(z) =

∫

|z|<1
log(1− zn)dν2(z),
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for all n ≥ N + 1. The measure νi is not Radon since any neighbourhood of the origin has
infinite measure. Nevertheless, by Proposition 5.5.2, z5νi is finite. Hence, ν = zN+1(ν1 − ν2)
is a Radon measure that satisfies

∫

|z|<1

log(1− zn)

zN+1
dν(z) = 0, for all n ≥ N + 1.

Now we can apply Proposition 7.1.1 with ψ(z) = − log(1− z) to conclude that ν = 0, which
is equivalent to say that

µ1 + µ1 = µ2 + µ2.

The first part of the theorem is then proved. The second part is now easily deduced by using
the first part and Theorem 7.0.7.

A similar proof shows that the following result holds.

Theorem 7.2.1. Let M1 and M2 be two complete hyperbolic 3-manifolds of finite volume.
Assume that there exists K ≥ 2 such that for all k ≥ K we have

|T2k+1(M1)| = |T2k+1(M2)|.

Then the following assertions hold:

1. The manifolds M1 and M2 are isospectral (as “non-spin” manifolds) up to complex
conjugation. In particular, they have the same real length spectrum.

2. The equality |T2k+1(M1)| = |T2k+1(M2)| holds for all k ≥ 2.

Proof of Theorem 7.2.1. The proof is the same as the proof of Theorem 7.0.7, but considering
only odd dimensional representations.

Wotzke’s Theorem 6.1.1 and the above theorem yield the following result.

Theorem 7.2.2. Let (M1, η1) and (M2, η2) be two closed spin-hyperbolic 3-manifolds. Then
the following assertions are equivalent:

1. There exists N ≥ 2 such that for all n ≥ N ,

| τn(M1, η1)| = | τn(M2, η2)|.

2. The manifolds (M1, η1) and (M2, η2) are isospectral up to conjugation.

Proof. If the first assertion is true, then Theorem 7.0.7 implies that the two manifolds are
isospectral up to complex conjugation. In order to prove the converse, let us make the
following observation. Let (M,η) be a closed spin-hyperbolic 3-manifold. By definition, the
spin-complex-length spectrum of µsp(M,η) determines the Ruelle zeta function RMρn(s), and
if we only know it up to conjugation, it determines the following function,

FM (s) := RMρn(s)R
M
ρn(s).
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By definition, for Re(s) > 2 + n/2, we have:

RMρn(s̄) = RMρn(s).

Since both right and left hand side of the above equation are meromorphic functions, the
above equality must hold for all s ∈ C. By Wotzke’s Theorem 6.1.1, we get then:

FM (0) = RMρn(0)R
M
ρn(0) = |RMρn(0)|

2 = |τn(M,η)|4.

The proof that Assertion 2 implies Assertion 1 is now clear.





Chapter 8

Mutation

Let K be a hyperbolic knot. The knot Kτ ⊂ S3 obtained by cutting along a Conway sphere
C and gluing again after composing with an involution τ : C → C is called the mutant knot.
Ruberman [Rub87] showed that Kτ is also hyperbolic, and that M τ = S3 \ N (Kτ ) has the
same volume as M = S3 \ N (K). See [DGST10, MR09] for a recent account on invariants
that distinguish or not K from Kτ .

The aim of this chapter is to prove that the n-dimensional Reidemeister torsion invariants
of M and M τ agree for n = 2.

Theorem 8.0.3. Let K, M , τ and M τ be as above. Let ρ and ρτ be lifts of the holonomy
representations of M and M τ respectively, with trace(ρ(µ)) = trace(ρτ (µ′)), where µ and µ′

are two meridians of K and Kτ , respectively. Then

tor(M,ρ) = tor(M τ , ρτ ).

This theorem is not true for any representation of π1(M). Wada proved in [Wad94] that
the twisted Alexander polynomials could be used to distinguish mutant knots. N. Dunfield,
S. Friedl and N. Jackson [DFJ] computed the torsion for the representation ρ twisted by the
abelianization map (namely, the corresponding twisted Alexander polynomials), and proved
that it distinguishes mutant knots. However, the evaluation at ±1 of these polynomials gives
numerical evidence of Theorem 8.0.3.

By computing the fourth and sixth dimensional torsion of the Conway and the Kinoshita-
Terasaka mutants, we show that these invariants may be used to distinguish these two knots,
see Section 8.6. In particular, Theorem 8.0.3 is not true in general for n > 2.

The chapter is organized as follows. In Section 8.1, we discuss the basic constructions for
representations of mutants, and we give a sufficient criterion in Proposition 8.2.3 for invariance
of the torsion under mutation. The sufficient criterion of Proposition 8.2.3 is stated in terms
of the action of the involution τ on the cohomology of S = M ∩ C with twisted coefficients.
This is applied to the proof of the case when the trace of the meridian is −2 in Section 8.3.
The proof when the trace is +2 in Section 8.4 is different, because the involved cohomology
groups are different. In Section 8.5 we compute an example, the Kinoshita-Terasaka and
Conway mutants, and Section 8.6 is devoted to further discussion.
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τ1

τ2

τ3

Figure 8.1: The involutions on the Conway sphere

8.1 Mutation

Let K ⊂ S3 be a hyperbolic knot and C ⊂ S3 be a Conway sphere; namely C intersects
transversally K in four points. We write τ : (C,C ∩K) → (C,C ∩K) to denote any of the
three involutions in Figure 8.1.

Let B1 and B2 denote the components of S3 \ N (C), so that the pairs (Bi, Bi ∩K) are
tangles with two strings. The exterior of the knot is denoted by

M = S3 \ N (K).

We also denote

S = C ∩M, M1 =M ∩B1, and M2 =M ∩B2.

Write a commutative diagram for the inclusions:

S
i1 //

i2
��

M1

��
M2

// M

so that π1(M) is an amalgamated product with respect the inclusions i1 and i2,

π1(M) = π1(M1) ∗(π1(S),i1∗,i2∗) π1(M2).

The knot Kτ ⊂ S3 obtained by cutting along a conway sphere C and gluing again after
composing with τ : C → C is called the mutant knot. The exterior of Kτ is denoted by

M τ = S3 \ N (Kτ ).
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The fundamental group π1(M
τ ) is constructed also as the amalgamated product with the

inclusions given by j1 = i1 and j2 = i2 ◦ τ ,

π1(M
τ ) = π1(M1) ∗(π1(S),j1∗,j2∗) π1(M2).

Let ρ : π1(M) → SL(2,C) be a lift of the holonomy representation. A lift of the holonomy
representation of M τ is easily constructed thanks to the following result. We will use the
following notation:

ρa(·) = aρ(·)a−1, a ∈ SL(2,C).

Theorem 8.1.1 ([CL96, Rub87, Til04]). There exists a ∈ SL(2,C) such that

ρa(τ∗(γ)) = ρ(γ), for all γ ∈ π1(S) < π1(M).

Moreover, such matrix a is unique up to sign.

Remark. Notice that the matrix a of the above theorem corresponds to a rotation of order
two in hyperbolic space, therefore a is conjugate to

a ∼

(
i 0
0 −i

)
. (8.1)

The representation ρτ : π1(M
τ ) → SL(2,C) is then defined as follows:

ρτ |π1(M1) = ρ|π1(M1) and ρτ |π1(M2) = ρa|π1(M2).

This is easily checked to be well defined by Theorem 8.1.1.

8.2 A sufficient condition for the invariance

We will use the Mayer-Vietoris exact sequence for the pair (M1,M2) to compute the torsion
of M and M τ . To this end, we need to compute some cohomology groups. We start with the
planar surface with four boundary components S =M1 ∩M2.

Lemma 8.2.1. Hi(S; ρ) = 0 for i 6= 1 and H1(S; ρ) ∼= C4.

Proof. First, H0(S, ρ) = 0 because ρ(π1(S)) contains hyperbolic elements, so there is no
nontrivial fixed vector in C2. On the other hand, Hi(S, ρ) = 0 for i ≥ 2, because S has the
homotopy type of a graph. Finally,

dimCH1(S; ρ) = −χ(S) dim(C2) = 4.

Lemma 8.2.2. For k = 1, 2, Hj(Mk; ρ) = 0 for j 6= 1 and H1(Mk; ρ) = C2.
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Proof. By Mayer-Vietoris, and using the fact that H∗(M ; ρ) = 0, we have

Hj(M1; ρ)⊕Hj(M2; ρ) ∼= Hj(S; ρ).

The lemma follows from Lemma 8.2.1, and taking into account that

χ(Mk) =
1

2
χ(∂Mk) = 1,

as ∂Mk is an orientable closed surface of genus 2.

Mayer-Vietoris for M and M τ gives the following isomorphisms:

i∗1 ⊕ i∗2 : H1(M1; ρ)⊕H1(M2; ρ) → H1(S; ρ), (8.2)

j∗1 ⊕ j∗2 : H1(M1; ρ)⊕H1(M2; ρ
a) → H1(S; ρ). (8.3)

In order to relate H1(M2; ρ) and H1(M2; ρ
a) we define a map at the level of the flat vector

bundles Eρ = M̃2 ×ρ V and Eρa = M̃2 ×ρa V as follows:

ϕa : Eρa → Eρ
[(x, v)] 7→ [(x, a−1v)].

It is straightforward to check that ϕa is an isomorphism of flat vector bundles. Thus it
induces an isomorphism in cohomology ϕ∗

a : H1(M2; ρ) → H1(M2; ρ
a). On the other hand,

τ induces an isomorphism of Eρ|S , since ρ(τ∗(γ)) = ρ(γ) for all γ ∈ π1(S). We have the
following commutative diagram:

Eρ|S
i2 // Eρ

Eρ|S
j2 //

ϕa◦τ

OO

Eρτ .

ϕa

OO

Let us write τa = ϕa ◦ τ . Notice that τ2a (vx) = −vx for all vx ∈ Eρ|S , as a2 = − Id
(see Equation (8.1)) and τ2 = Id. The above commutative diagram yields the following
commutative diagram in cohomology:

H1(M2; ρ)
i∗2 //

ϕ∗

a

��

H1(S; ρ)

(ϕa◦τ)∗=τ∗a
��

H1(M2; ρ
a)

j∗2 // H1(S; ρ)

Notice that

(τ∗a )
2 = − Id . (8.4)
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Choose bi a basis for H1(Mi; ρi) as C-vector space. In particular ϕ∗
a(b2) is a basis for

H1(M2; ρ
a). By Milnor’s formula [Mil66] for the torsion of a long exact sequence applied to

(8.2) and (8.3):

τ(M,ρ) =±
τ(M1, ρ, b1) τ(M2, ρ, b2)

τ(S, ρ, i∗1(b1) ⊔ i
∗
2(b2))

τ(M τ , ρτ ) =±
τ(M1, ρ, b1) τ(M2, ρ

a, ϕ∗
a(b2))

τ(S, ρ, j∗1(b1) ⊔ j
∗
2(ϕ

∗
a(b2)))

.

Here ⊔ denotes the disjoint union of bases. Notice that Milnor works with torsions up to sign
in [Mil66], but his formalism applies even with sign. Since j∗2 ◦ ϕ

∗
a = τ∗a ◦ i∗2, we get

τ(M,ρ)

τ(M τ , ρτ )
= det(i∗1(b1) ⊔ τ

∗
a (i

∗
2(b2)), i

∗
1(b1) ⊔ i

∗
2(b2)). (8.5)

Namely, the determinant of the matrix whose entries are the coefficients of the basis

i∗1(b1) ⊔ τ
∗
a (i

∗
2(b2))

with respect to i∗1(b1) ⊔ i
∗
2(b2).

The following is a sufficient criterion for invariance of torsion with respect to mutation.

Proposition 8.2.3. Assume that τ∗a : H1(S; ρ) → H1(S; ρ) leaves invariant the image of
i∗2 : H1(M2; ρ) → H1(S, ρ). Then we have

τ(M,ρ) = ± τ(M τ , ρτ ).

Proof. Since (τ∗a )
2 = − Id by Formula (8.4), τ∗a diagonalizes with eigenvalues ±i. Hence,

assuming that τ∗a leaves invariant the image of i∗2, the matrix in Equation (8.5) is conjugate
to 



1 0 0 0
0 1 0 0
0 0 ±i 0
0 0 0 ±i


 ,

hence it has determinant ±1.

8.3 Invariance when trace = −2.

We discuss first the case when the trace of a meridian µ of K is −2, that is

trace(ρ(µ)) = −2.

The proof has three parts. In Subsection 8.3.1 we consider a non-degenerate symmetric
bilinear form B on H1(S; ρ). We show that, for k = 1, 2, the images of i∗k : H1(Mk; ρ) →
H1(S; ρ) are isotropic subspaces. Then in Subsection 8.3.2 we analyze properties of isotropic
planes of H1(S; ρ) ∼= C4, which are viewed as lines in a ruled quadric in the projective
complex space P3. The properties of this ruled quadric are used in a deformation argument
in Subsection 8.3.3 to conclude the proof when trace(µ) = −2.
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8.3.1 A perfect pairing

The cup product in its relative form gives the following non-degenerate bilinear map,

∪ : H1(S, ∂S;Eρ) × H1(S;Eρ) → H2(S, ∂S;C) ∼= C
([α] , [β]) 7→ [α ∧ β],

where the exterior product is computed using the determinant on C2. The isomorphism
H2(S, ∂S;C) ∼= C is given by integration on the relative fundamental class [S], with respect
to a fixed orientation on S. Thus

[α] ∪ [β] =

∫

S
α ∧ β.

Remark. The following lemma assumes that trace(ρ(µ)) = −2, as the whole section, though
it only requires trace(ρ(µ)) 6= 2.

Lemma 8.3.1. If trace(ρ(µ)) = −2 then:

1. H∗(∂S;Eρ) = 0.

2. H∗(S, ∂S;Eρ) = H∗(S;Eρ).

3. For k = 1, 2, the inclusion map induces an isomorphism

i∗k : H1(∂Mk; ρ) → H1(S; ρ).

Proof. Since trace(ρ(µ)) = −2, ρ(µ) has no nontrivial fixed vectors in C2. Thus H0(∂S;Eρ) is
trivial, and by duality H1(∂S;Eρ) is trivial as well. Since H

∗(∂S;Eρ) = 0, the exact sequence
for the pair (S, ∂S) shows that the map induced by restriction H1(S, ∂S;Eρ) → H1(S;Eρ) is
an isomorphism. The last assertion follows from the Mayer-Vietoris sequence applied to S
and ∂Mk \ S, which is the union of the two annuli around the arcs of K ∩ Bk that have the
homotopy type of a component of ∂S. Hence by the first assertion H∗(∂Mk \ S;Eρ) = 0.

Next we want to consider a bilinear form

B : H1(S;Eρ)×H1(S;Eρ) → C, (8.6)

defined as follows. Let [α], [β] ∈ H1(S;Eρ). By the second assertion of Lemma 8.3.1, there
exist 1-forms αc, βc compactly supported in the interior of S such that [α] = [αc] and [β] =
[βc]. Then we define:

B([α], [β]) :=

∫

S
αc ∧ βc.

The following result is easily proved using Lemma 8.3.1 and the fact that Poincaré duality
defines a non-degenerate pairing.

Proposition 8.3.2. The bilinear form B is well defined, symmetric and nondegenerate.
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Lemma 8.3.3. For k = 1, 2, the image of i∗k : H1(Mk;Eρ) → H1(S;Eρ) is an isotropic plane
for B.

Proof. The fact that the image is a plane follows from Lemma 8.2.2 and its proof. To prove
that it is an isotropic subspace, let α1, α2 ∈ Ω1(Mk;Eρ) be closed forms. We must show that
B(i∗k([α1]), i

∗
k([α2])) = 0. Take f1, f2 ∈ Ω0(S;Eρ) such that i∗k(α1) + df1, i

∗
k(α2) + df2 have

support contained in the interior of S. Then we have:

B(i∗k([α1]), i
∗
k([α2])) =

∫

S
(i∗k(α1) + df1) ∧ (i∗k(α2) + df2)

The forms i∗k([αj ]) + dfj can be extended trivially to ∂Mk, as their support is contained in
the interior of S; hence, the 1-forms dfi can also be extended to ∂Mk. Therefore,

∫

S
(i∗k(α1) + df1) ∧ (i∗k(α2) + df2) =

∫

∂Mk

(i∗k(α1) + df1) ∧ (i∗k(α2) + df2).

Now, since the inclusion induces an isomorphism H1(∂Mk;Eρ) ∼= H1(S;Eρ), the 1-forms dfi
are also exact on ∂Mk, and hence can be removed from the above integral as ∂Mk is a closed
manifold. Finally, Stokes’ theorem yields

∫

∂Mk

i∗k(α1) ∧ i
∗
k(α2) =

∫

Mk

d (α1 ∧ α2) = 0,

as α1, α2 are closed.

8.3.2 Finding isotropic planes with the ruled quadric

Let P3 denote the projective space on H1(S; ρ) ∼= C4. Isotropic planes of H1(S; ρ) (with
respect to B) are in bijection with projective lines in the quadric

Q = {x ∈ P3 | B(x, x) = 0}.

Since B is a non-degenrate paring, Q is the standard quadric, which is a ruled surface with
two rulings. We recall next its basic properties.

Proposition 8.3.4. There are two disjoint families of projective lines L+ and L− in Q such
that:

(i) Every line in Q belongs to either L+ or L−.

(ii) Every point in Q belongs to precisely one line in L+ and one in L−. Thus there is a
bijection between Q and L+ × L−.

(iii) Two lines in Q intersect if, and only if, one is in L+ and the other one is in L−.

(iv) Each space of lines L+ and L− is isomorphic (as projective varieties) to P1, in such a
way that the bijection between Q and L+ × L− is also an isomorphism.
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We shall also use the action of SO(4,C), the isometry group of H1(S; ρ). Since the quadric
Q is isomorphic to the product P1 × P1 ∼= L+ × L−, the automorphism groups of Q and
P1 ×P1 are isomorphic. Hence, we have an isomorphism:

ψ : PSL(2,C)× PSL(2,C) → PSO(4,C).

This isomorphism lifts to a unique isomorphism of Lie groups,

ψ̃ : SL(2,C)× SL(2,C)/± (Id, Id) → SO(4,C).

Therefore, PSL(2,C)× {Id} acts trivially on L−, and {Id} × PSL(2,C) acts trivially on
L+.

For i = 1, 2, 3, consider the involutions τi of the Conway sphere C, as in Figure 8.1, and
the associated maps τai defined in the preceding sections.

Lemma 8.3.5. The induced maps τ∗ai on P3, regarded as elements of PSL(2,C)×PSL(2,C),
lie in one of the two factors PSL(2,C)× {Id} or {Id} × PSL(2,C). In addition, all τ∗a1, τ

∗
a2

and τ∗a3 lie in the same factor.

Proof. The map τ∗ai acting on H1(S; ρ) is an element of SO(4,C), whose square is − Id, by
(8.4). The image of τ∗ai under the isomorphism

SO(4,C) ∼= SL(2,C)× SL(2,C)/± (Id, Id),

is represented by a class [(A,B)], whose square is the class [(Id,− Id)], hence either A2 = Id
and B2 = − Id or A2 = − Id and B2 = Id. The first assertion is then deduced from the fact
that a matrix of SL(2,C) whose square is the identity must be ± Id. For the last assertion,
just use that τ∗a1τ

∗
a2 = ±τ∗a3 .

Corollary 8.3.6. Up to permuting L− and L+, we get:

1. τ∗a1, τ
∗
a2 and τ∗a3 act trivially on L−.

2. There is no point in L+ fixed by all τ∗a1, τ
∗
a2 and τ∗a3.

Proof. The first assertion is an immediate consequence of the lemma. For the second one,
notice that the subgroup of PSL(2,C) consisting of the maps induced by the three involutions
and the identity is isomorphic to Z/2Z⊕Z/2Z (also called the 4-Klein group), as each τ∗ai has
order two and τ∗a1τ

∗
a2 = ±τ∗a3 . Now assume that there exists a point on P1 fixed by τ∗a1 , τ

∗
a2

and τ∗a3 . Interpreting PSL(2,C) as the group of Möbius transformations, we can assume that
the fixed point is infinity. We can also assume that τ∗a1 fixes the origin as well; this implies
that τ∗a1 is z 7→ −z. Since the involutions τ∗a2 and τ∗a3 both commute with τ∗a1 , they must fix
the origin as well. Hence, τ∗a1 = τ∗a2 = τ∗a3 , which is not possible, for the group generated by
the three involutions has order 4.

Let Im denote the image. Since Im(i∗1) ⊕ Im(i∗2) = H1(S; ρ), from Proposition 8.3.4 (iii)
we deduce:
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Corollary 8.3.7. Either both Im(i∗1) and Im(i∗2) belong to L−, or they both belong to L+.

Either Im(i∗2) belongs to L− and, by Corollary 8.3.6, we may apply Proposition 8.2.3, or
Im(i∗2) belongs to L+. To get rid of this last case we will use a deformation argument. The
idea is to deform the hyperbolic structure on M2, so that it matches with another tangle
which is invariant under the involutions τi. By Corollary 8.3.6, the tangle invariant by the
involutions satisfies Im(i∗1) ∈ L−, hence Im(i∗2) ∈ L− for the deformed structure on M2, by
Corollary 8.3.7. Then we shall use a continuity argument to have the same conclusion for the
initial structure on M2. Next subsection is devoted to this deformation argument.

8.3.3 A deformation argument

Let A = ∂M2 \ S be the pair of annuli, one around each arc of K ∩ B2. The pair (M2, A) is
a pared manifold.

Definition. A pared manifold is a pair (N,P ), where N is a compact oriented 3-manifold,
and P ⊂ ∂N is a union of tori and annuli such that:

1. no two components of P are isotopic in ∂N ,

2. every abelian noncyclic subgroup of π1(N) is conjugate to a subgroup of a component
or P , and

3. there are no essential annuli (S1 × [0, 1], S1 × ∂[0, 1]) → (M,P ).

We say that a pared manifold (N,P ) is hyperbolic when the interior of N admits a
complete hyperbolic structure with cusps at P . The rank of the cusp is one for an annulus,
and two for a torus.

Lemma 8.3.8. There exists a pared manifold (M3, A
′), such that

1. (M3, A
′) is obtained from a 2-tangle: namelyM3 is the exterior of two properly embedded

arcs in a 3-ball, A′ are the annuli around the arcs of the tangle, and A′ ∪ S = ∂M3.

2. For i = 1, 2, 3, τi : S → S extends to an involution of (M3, A
′).

3. The pared manifolds (M3, A
′) and (M2 ∪M3, A ∪A′) are both hyperbolic.

Proof of Lemma 8.3.8. We take M3 to be the exterior of a simple 2-tangle that is symmetric
with respect to τ1, τ2 and τ3. Here simple means that M3 is irreducible, ∂-irreducible,
atoroidal and anannular. In [Wu96], Wu gives a criterion for deciding when a rational tangle
is simple and provides examples of simple tangles with the required symmetries. In particular,
the pared manifold (M3, A

′) admits a hyperbolic structure with totally geodesic boundary in
S = ∂M3 \ A

′ (and rank one cusps in A′). Since (M3, A
′) is simple and (M2, A) hyperbolic,

standard arguments in 3-dimensional topology prove that (M ′, T ′) = (M2 ∪M3, A ∪ A′) is
irreducible, acylindrical, atoroidal and not Seifert fibered (S should be horizontal in a Seifert
fibration), hence hyperbolic.
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The variety of representations of π1(M2) to SL(2,C) is denoted by

R(M2) = hom(π1(M2), SL(2,C)),

and it is an algebraic subset of affine space CN .

Lemma 8.3.9. If trace(ρ(µ)) = −2, then Im(i∗2) belongs to L−.

Proof. Let us write ρ2 = ρ◦ i2∗, where i2 : M2 →M is the inclusion. We connect ρ2 ∈ R(M2)
to ρ′2 ∈ R(M2), a lift of the holonomy representation ofM2 that matches with the tangleM3 of
Lemma 8.3.8, which is a symmetric tangle. Namely we want to find a path or representations

[0, 1] → R(M2)
t 7→ ϕt

that satisfies:

(i) ϕ0 = ρ2.

(ii) ∀t ∈ [0, 1], ϕt is the lift of the holonomy of a hyperbolic structure on M2, with rank one
cusps at the arcs K ∩B2, and satisfying

trace(ϕt(µ)) = −2.

(iii) ∀t ∈ [0, 1], dimH1(M2;ϕt) = 2.

(iv) ϕ1 = ρ′2 is the lift of the holonomy of a hyperbolic structure on M2 that matches with
M3 in Lemma 8.3.8.

Assuming we have this path of representations, then since M3 is τ1 and τ2-invariant, the
image of i∗3 : H1(M3;ϕ1) → H1(S;ϕ1|π1(S)) is a subspace τ∗ai-invariant. Hence the image of
i∗3 must be contained in L−, by Corollary 8.3.6 (ii). This implies that for this hyperbolic
structure

Im
(
i∗2 : H1(M2; ρ

′
2) → H1(S; ρ′2|S)

)
∈ L−,

by Corollary 8.3.7. Now, since there exists the path ϕt, the ruled quadric of H1(S0;ϕt) is also
deformed continuously (notice that as ϕt|S0 is irreducible and ϕt of a meridian has trace −2,
by (iii), Lemmas 8.2.1, 8.3.1, and 8.3.3 apply to H1(S0;ϕt)). Hence along the deformation,
the image of i∗2 is contained in L−, as L+ ∩ L− = ∅. Hence

Im
(
i∗2 : H1(M2; ρ2) → H1(S; ρ)

)
∈ L−,

as claimed.

Let us justify the existence of the path φt between ρ2 and ρ′2. If both ρ2(π1(M2)) and
ρ′2(π1(M2)) are geometrically finite, then they can be connected along the space of geomet-
rically finite structures of the pared manifold, because by Ahlfors-Bers theorem this space
is isomorphic to the Teichmüller space of S, cf. [Ota98]. In addition, this is an open subset
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of the variety of representations, and since the dimension of de cohomology is upper semi-
continuous (it can only jump in a Zariski closed subset), (iii) can be achieved by avoiding
a proper Zariski closed subset (hence of real codimension ≥ 2). If any of ρ2(π1(M2)) and
ρ′2(π1(M2)) is not geometrically finite, then it lies in the closure of geometrically finite struc-
tures (cf. [Ota96] though this is a particular case of the density theorem), thus there is still
a path in the space of representations satisfying (ii) and (iii).

By Lemma 8.3.9, Corollary 8.3.7 and Proposition 8.2.3,

τ(M,ρ) = ± τ(M τ , ρτ ).

We shall prove that there is also equality of signs.

Proposition 8.3.10. If trace(ρ(µ)) = −2, then

τ(M,ρ) = τ(M τ , ρτ ).

Proof. To remove the sign ambiguity, we use again the deformation ϕt of the proof of
Lemma 8.3.9. Since ∀t ∈ [0, 1], ϕt satisfies the sufficiency criterion of Proposition 8.2.3,
the eigenvalues of τ∗ai restricted to the image of i∗2 belong to {±i}, and they do not change
as we deform t, hence the determinant of τ∗ai restricted to the image of i∗2 is +1, because this
holds for ρ′2 = ϕ1 (as M3 is τi-invariant).

8.4 Invariance when trace = +2.

When trace(ρ(µ)) = 2, Lemma 8.3.1 does not apply, and hence we cannot use the argument
of Section 8.3. Recall that

R(M) = hom(π1(M), SL(2,C))

denotes the variety of representations of π1(M) in SL(2,C). We will consider representations
ρn ∈ R(M) for which the arguments of Section 8.3 apply and such that ρn converges to ρ in
R(M), as n→ ∞.

Let ρ ∈ R(M) be a lift of the holonomy with trace(ρ(µ)) = 2. By Thurston’s hyperbolic
Dehn filling and for n ∈ N large enough, the orbifold with underlying space S3, branching
locus K and ramification index n is hyperbolic. It induces a representation of π1(M) in
PSL(2,C) that lifts to ρn ∈ R(M). The lift satisfies trace(ρn(µ)) = ±2 cos(π/n), and there
is precisely one lift for every choice of sign. We chose the lift satisfying

trace(ρn(µ)) = +2 cos(π/n).

Proposition 8.4.1 ([Thu]). For n ∈ N large enough, there exist ρn ∈ R(M) which is a lift
of the holonomy of the orbifold with underlying space S3, branching locus K and ramification
index n, so that ρn → ρ.
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These orbifolds can also be considered for the mutant knot, and there exist the corre-
sponding mutant representations

ρτn ∈ R(M τ ).

Namely, the lifts of the holonomies of the orbifold structures on Kτ are the “mutant repre-
sentations” of ρn. Moreover, ρτn → ρτ .

Lemma 8.4.2. For n ∈ N large enough, H∗(M ; ρn) ∼= H∗(M τ ; ρτn) = 0 and

τ(M,ρn) = τ(M τ , ρτn).

Proof. We use upper semi-continuity of cohomology (Proposition 4.2.2) to say that

H∗(M ; ρn) ∼= H∗(M τ ; ρτn) = 0.

More precisely, the dimension of cohomology is an upper semi-continuous function on R(M),
and, as ρ and ρτ are acyclic, then all representations in a Zariski open subset containing ρ and
ρτ are acyclic, and so are ρn and ρ

τ
n, as claimed. Since ρn and ρ

τ
n are acyclic, dimH1(M2; ρn) =

dimH1(M2; ρ
τ
n) = 2. In addition, up to conjugation,

ρn(µ) ∼

(
eπi/n 0

0 e−πi/n

)
.

HenceC2 has no ρn(µ)-invariant proper subspaces and Lemma 8.3.1 applies. Thus the pairing
(8.6), Lemma 8.3.3 and all the results of Section 8.3.1 hold true for ρn. To conclude, for the
deformation argument we use that ρn is the lift of the holonomy of an orbifold. Instead of
working with pared structures on (M2, A), we work with orbifold structures with underlying
space the ball B2, branching locus K∩B2 and branching index n. The results on the space of
hyperbolic structures (geometrically finite or infinite) apply, and we may use the deformation
argument of Lemma 8.3.9.

By Proposition 8.4.1 and Lemma 8.4.2, by taking the limit when n→ ∞ we get:

Corollary 8.4.3. If trace(ρ(µ)) = +2, then

τ(M,ρ) = τ(M τ , ρτ ).

The proofs for trace = 2 and trace = −2 are quite different, because H1(∂S; ρ) is non zero
when the trace(ρ(µ)) is +2, and vanishes when it is −2. The generic case is trace(ρ(µ)) 6= 2.
The proof of Section 8.3 applies to the following situation.

Proposition 8.4.4. Let ρ : π1(M) → SL(2,C) be a representation satisfying:

1. H1(M ; ρ) = 0;

2. trace(ρ(µ)) 6= 2;

3. ρ restricted to π1(S) is irreducible;
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4. the representation ρ is in the same irreducible component of R(M) as some represen-
tation such that the image of i∗2 is contained in Q−.

Then τ(M,ρ) = τ(M τ , ρ).

Corollary 8.4.5. For a generic representation ρ of the irreducible component of R(M) that
contains a lift of the holonomy, τ(M,ρ) = τ(M τ , ρτ ).

8.5 The Kinoshita-Terasaka and Conway mutants

Let KT and C be the Kinoshita-Terasaka knot and the Conway knot respectively. It is well
known that they are mutant hyperbolic knots. Using the Snap program [CGHN00], based of
J. Weeks’ SnapPea [Wee], we have obtained all the necessary information to compute their
torsion.

The fundamental groups of these knots have the following presentations:

π1(S
3 \ C) = 〈abc | abACbcbacBCABaBc, aBcBCABacbCbAbacbc〉,

π1(S
3 \KT ) = 〈abc | aBCbABBCbaBcbbcABcbbaB, abcACaB〉.

As usual, capital letters denote inverse.

The image of the holonomy representation is contained in PSL(2,Q(ω)) where Q(ω) is
the number field generated by a root ω of the following polynomial:

p(x) = x11 − x10 + 3x9 − 4x8 + 5x7 − 8x6 + 8x5 − 5x4 + 6x3 − 5x2 + 2x− 1.

The torsions are then elements of Q(ω). In order to express elements in Q(ω), we use the
Q-basis (ω10, ω9, · · · , ω, 1). Tables 8.1 and 8.2 give the coefficients of the torsions of KT and
C with respect to this Q-basis. On each table, the first column gives the element of the basis.
We let n denote the dimension of the irreducible representation of SL(2,C) used to compute
the torsion, and the tables show the values for n = 2 (i.e. the standard representation),
but also n = 4 and n = 6. In order to compare them, the coefficients of the torsion for
Kinoshita-Terasaka (KT ) and Conway (C) knots are tabulated side by side. We give a table
for each lift of the holonomy, one when the trace of the meridian is 2 (Table 8.1) and another
when it is −2 (Table 8.2).

Of course, for n = 2 and for any lift of the holonomy, the torsion of KT and the torsion
of C is the same. Notice that for the 4-dimensional representation, they are also the same
for one lift but different for the other, and that they differ for both lifts when we use the
6-dimensional representation.

As said in the introduction, when n = 2, these had been computed by Dunfield, Friedl
and Jackson in [DFJ]. They computed numerically a twisted Alexander invariant (which are
not mutation invariant) for all knots up to 15 crossings, and the torsions computed here are
just the evaluations at ±1.
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n = 2 n = 4 n = 6
KT C KT C KT C

ω10 356 356 11112880 11112880 676803770859632 662357458754672
ω9 −620 −620 −38963592 −38963592 −640579476284656 −579216259622896
ω8 636 636 36107416 36107416 212555254795952 153724448856752
ω7 −864 −864 −31579196 −31579196 −990061444305088 −943617945204928
ω6 1228 1228 60889040 60889040 1004678681648016 908722528184976
ω5 −1080 −1080 −58195768 −58195768 −444238765345264 −349679698188784
ω4 780 780 36555000 36555000 482101712163904 424247992815424
ω3 −628 −628 −31740272 −31740272 −371824600930944 −320894530449024
ω2 428 428 21313180 21313180 51168266257072 15655188602032
ω1 −188 −188 −8829332 −8829332 −165869512283168 −152117462516768
1 124 124 7476160 7476160 −37602419304496 −50452054740016

Table 8.1: Torsions for the lift of the holonomy with trace of the meridian 2. The table gives
the coefficients of the torsion of n-dimensional representation (with respect to a
Q-basis for Q(ω)).

n = 2 n = 4 n = 6

KT C KT C KT C

ω
10

7352 7352 −106244812 −84923788 −5089618734386048 −5181970358958464

ω
9

12100 12100 −40892392 −98464552 26333637242897408 26767528167113984

ω
8

−18868 −18868 135740632 176373400 −26132678464882128 −26556943437149136

ω
7

−16 −16 81031412 30483572 18961525460403712 19282331500463872

ω
6

−19124 −19124 70025564 154082012 −41268295304316624 −41948393922548432

ω
5

29448 29448 −188927128 −264857368 41815776250571680 42495766908786848

ω
4

−14272 −14272 71097428 118825172 −25207995553964480 −25621419777084608

ω
3

13576 13576 −71628932 −116091140 22311420427155024 22676270315709264

ω
2

−13352 −13352 98553148 124139068 −15990083236426320 −16248280122238544

ω
1

2780 2780 −4562444 −18136844 5898804809613840 5996288593045520

1 −5812 −5812 48068144 56560304 −5891958922292320 −5986195442605152

Table 8.2: Torsions for the lift of the holonomy with trace of the meridian −2, for the n-
dimensional representations. Again the table gives the coefficients with respect to
a Q-basis for Q(ω).
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8.6 Other mutations and other representations

The mutation considered in this paper is called (0, 4)-mutation, because the involved surface
is planar and has 4 boundary components. By tubing along invariant arcs of the knot, this is
a particular case of the so called (2, 0)-mutation, namely, the mutation along a closed surface
of genus 2 and using the hyperelliptic involution.

In [Rub87], Ruberman proved that a (2, 0)-mutant of a hyperbolic manifold is again
hyperbolic. The behavior of invariants under (2, 0)-mutation has been investigated by many
authors, see [CL99, DGST10, MR09] for instance. Unfortunately, our arguments do not
apply, as in Section 8.3 we require two involutions, and in genus two mutation we can use
only the hyperelliptic involution. So we arise:

Question. Is τ(M,ρ) invariant under genus two mutation?

The three dimensional representation of SL(2,C) is conjugate to the adjoint representation
in the automorphism group of the Lie algebra sl(2,C). The representation Adρ is not acyclic,
but a natural choice of basis for homology has been given in [Por97], hence its torsion is well
defined. Moreover, we have:

Proposition 8.6.1 ([Por97]). The torsion τ(M,Adρ) is invariant under (2, 0)-mutation.

The proof is straightforward, as H1(S;Adρ) is the cotangent space to the variety of char-
acters of S, and the action of the hyperelliptic involution is trivial on the variety of characters
of S.

We have seen that if we compose the lift of the holonomy with the 6-dimensional repre-
sentation of SL(2,C) (or the 4-dimensional one when the trace of the meridian is −2), the
torsion is not invariant under (2, 0)-mutation, as it is not invariant under (0, 4)-mutation, see
the example of the previous section.

Question. Working with the lift of the holonomy with trace of the meridian 2, is the torsion
of the 4-dimensional representation invariant under (0, 4)-mutation?

To conclude, we notice that our arguments do not apply if we tensorize ρ : π1(M) →
SL(2,C) with the abelianization map π1(M) ։ Z = 〈t |〉. This torsion gives the twisted
polynomial in C[t±] studied in [DFJ], where it is proved not to be mutation invariant. If
we could apply the arguments of this paper, then we would be in the generic situation of
Proposition 8.4.4 and Section 8.3, because trace(ρ(µ)) = ±(t+ 1/t) 6= 2. Notice that two of
the involutions in Figure 8.1 reverse the orientation of the meridian, and only one preserves
them. Thus we can use only a single involution, and at least two involutions are required in
our argument from Section 8.3, more precisely in Corollary 8.3.6(ii).





Bibliography

[Ago] Ian Agol. Tameness of hyperbolic 3-manifolds. Preprint, arXiv:math/0405568.

[Art68] M. Artin. On the solutions of analytic equations. Invent. Math., 5:277–291, 1968.

[AV65] Aldo Andreotti and Edoardo Vesentini. Carleman estimates for the Laplace-
Beltrami equation on complex manifolds. Inst. Hautes Études Sci. Publ. Math.,
(25):81–130, 1965.

[Bon83] Francis Bonahon. Cobordism of automorphisms of surfaces. Ann. Sci. École
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mension 3. Astérisque, (235):x+159, 1996.

[Ota98] Jean-Pierre Otal. Thurston’s hyperbolization of Haken manifolds. In Surveys in
differential geometry, Vol. III (Cambridge, MA, 1996), pages 77–194. Int. Press,
Boston, MA, 1998.

[Por97] Joan Porti. Torsion de Reidemeister pour les variétés hyperboliques. Mem. Amer.
Math. Soc., 128(612):x+139, 1997.

[Rag65] M. S. Raghunathan. On the first cohomology of discrete subgroups of semisimple
Lie groups. Amer. J. Math., 87:103–139, 1965.

[Rag72] M. S. Raghunathan. Discrete subgroups of Lie groups. Springer-Verlag, New York,
1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68.

[RS71] D. B. Ray and I. M. Singer. R-torsion and the Laplacian on Riemannian mani-
folds. Advances in Math., 7:145–210, 1971.

[Rub87] Daniel Ruberman. Mutation and volumes of knots in S3. Invent. Math.,
90(1):189–215, 1987.

[Thu] William P. Thurston. The Geometry and Topology of Three-Manifolds. Princeton
University, http://www.msri.org/publications/books/gt3m/.

[Thu97] William P. Thurston. Three-dimensional geometry and topology. Vol. 1, volume 35
of Princeton Mathematical Series. Princeton University Press, Princeton, NJ,
1997. Edited by Silvio Levy.

[Til04] Stephan Tillmann. Character varieties of mutative 3-manifolds. Algebr. Geom.
Topol., 4:133–149 (electronic), 2004.

[Tur01] Vladimir Turaev. Introduction to combinatorial torsions. Lectures in Mathematics
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