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functions which are extensions of a scalarization function existing in the literature.

Moreover, we use them to characterize set relations and minimal solutions of a

set optimization problem, and we introduce improvements of results existing in

the literature for other scalarizations.
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Resumen

Los problemas de optimización de multifunciones son una generalización de

los problemas de optimización vectorial que admiten múltiples aplicaciones. Para

estos problemas, Kuroiwa introdujo en 1997 un criterio conjuntista de solución

que es el que se considera en esta tesis. La escalarización permite relacionar las

soluciones de un problema de optimización de multifunciones con las soluciones

de problemas de optimización escalares. En esta memoria se estudian funciones

de escalarización conjuntistas y sus aplicaciones en problemas de optimización

de multifunciones. El Caṕıtulo 1 se dedica a la introducción y a exponer los

objetivos de la tesis. Además, se fija el marco de trabajo y se dan las notaciones,

conceptos y resultados previos.

En el Caṕıtulo 2 se introducen las escalarizaciones conjuntistas existentes en

la literatura, extensiones de la función de Gerstewitz y de la distancia orientada

de Hiriart-Urruty. En un espacio normado ordenado por un cono convexo no

necesariamente sólido, se presentan extensiones conjuntistas de tipo sup-inf de la

distancia orientada y se estudian relaciones entre ellas. Además, para dichas fun-

ciones de tipo sup-inf, se obtienen resultados de finitud usando cono-propiedad,

cono-acotación y una propiedad de cono-acotación con respecto a un conjunto que

hemos introducido. Por otro lado, se estudian sus propiedades como, por ejemplo,

convexidad, Lipschitz continuidad, monotońıa, etc. Mediante esas propiedades,

se caracterizan las relaciones conjuntistas inferior y superior de Kuroiwa y sus re-

spectivas relaciones estrictas. Por último, se estudia la monotońıa estricta de las

funciones de tipo sup-inf antes mencionadas. Se aportan mejoras de resultados

existentes para extensiones de la función de Gerstewitz.

En el Caṕıtulo 3 se presentan extensiones conjuntistas nuevas de tipo sup-inf

ix



x Preface

e inf-sup de la distancia orientada. Para esas funciones, se estudian sus rela-

ciones, algunas caracterizaciones y sus propiedades; además, dichas funciones se

usan para dar interesantes caracterizaciones de las seis relaciones conjuntistas

de Kuroiwa y de sus respectivas relaciones estrictas, que representan mejoras de

resultados similares para la función de Gerstewitz.

En el Caṕıtulo 4 usando las funciones de tipo sup-inf e inf-sup y algunas

de sus propiedades, las caracterizaciones de las seis relaciones conjuntistas de

Kuroiwa y las caracterizaciones de sus respectivas relaciones estrictas, se obtienen

condiciones necesarias y suficientes de soluciones minimales y minimales débiles

para seis problemas de optimización de multifunciones.

Finalmente, en el Caṕıtulo 5 se recogen las conclusiones y las futuras ĺıneas

de desarrollo que han aparecido durante la elaboración de esta tesis doctoral.
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Chapter 1

Introduction, objectives and

preliminaries

1.1 Introduction

In real life it is often necessary to take decisions which usually involve several

conflicting objectives. Decision problems in the real world require to choose a best

solution among a set of possible alternatives according to a certain optimality

criteria. Mathematical optimization can be understood as a mathematical model

of decision problems that deals with the problem of finding the best element with

regard to some criterion from some set of available alternatives. In optimization

problems the aim is minimizing or maximizing an objective function over some

feasible set (a constraint set). These problems are faced with conflicting goals

which have to be minimized or maximized simultaneously and, therefore, an

optimal solution has to be found by a compromise among these goals. These

kind of problems are among the most important in engineering and finance when,

for example, minimizing production cost, maximizing profits, maximizing safety,

minimizing pollution are tried.

An optimization problem is called scalar optimization problem if the objec-

tive function is scalar-valued, and is called vector optimization problem if the

objective function is vector-valued. A multiobjective optimization problem [119]

is a vector optimization problem with an objective function taking its values

1



2 Introduction, objectives and preliminaries

in the m-dimensional Euclidean space Rm, for m ≥ 2. These latter problems

are called multicriteria decision making problem [24] in economics. The first re-

searches about vector optimization go back to F.Y. Edgeworth (1881) and V.

Pareto (1896) who provided the definition of standard optimality concept in mul-

tiobjective optimization, although in mathematics this branch of optimization

started with the paper of H.W. Kuhn and A.W. Tucker (1951). In engineering

and economics, minimal or maximal elements of a set are often called efficient,

Edgeworth-Pareto optimal or nondominated.

The main difference between scalar optimization and vector optimization lies

in the comparison between the values of the objective function. In the first case,

this comparison is clear and, in the second case, it is not obvious anymore how

to compare the values of the objective function. Therefore, the key lies in the

underlying preference orders involved on the objective space. In the scalar case,

the functions to be maximized or minimized are valued in R where a complete

order is given. Due to this important feature, it can be decided for each pair of

alternatives which of them is preferred and, moreover, a feasible element will be

an optimal solution if the objective function takes in that element its smallest (or

largest) scalar value. However, this important feature is no longer valid in the

vector case since the preference orders are generally not complete. This fact leads

to many difficulties in determining concepts of solutions, monotonicity, convexity,

etc. As it is not clear how to compare the values of the objective function, for

defining optimality for a vector optimization problem, first of all, it is necessary

to define how to compare the elements in a real linear space. To overcome the

difficulties caused by the noncompleteness of the orders, there exist techniques

to convert the vector optimization problems into appropriate scalar optimization

problems.

Unlike traditional mathematical programming with a single objective func-

tion, an optimal solution in the sense of one that minimizes or maximizes all the

objectives simultaneously does not necessarily exist in multiobjective optimiza-

tion problems, because in decision making problems with multiple objectives there

are conflicts among objectives. In order to compare elements in Rn, Edgeworth
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and Pareto used the natural ordering cone given by the nonnegative orthant Rn
+

which corresponds to the componentwise partial ordering. By using this idea, in

vector optimization it is often assumed that the linear space is ordered by the pre-

order induced by a convex cone K (see, for example, [56,62,103]), compatible with

the linear structure of the space, which will be partial order if K is in addition

pointed. It means that in vector optimization problems, incomparable elements

and indifferent elements can be found. So, an element is an optimal element (or

an efficient element) of a set if it is not dominated by any other feasible alter-

native with respect to the preorder considered in the linear space. In this way,

different concepts of optimality in a partially ordered linear space are discussed

in the literature. It is worth that in many areas as, for instance, in mathematical

economics, it is common to have preferences that are not necessarily preorder

since only the reflexive or transitive property is verified.

Optimization problems arise in, for example, functional analysis (the Hahn-

Banach theorem, the lemma of Bishop-Phelps, Ekeland’s variational principle),

multiobjective programming, multi-criteria decision making, statistics (Bayes so-

lutions, theory of tests, minimal covariance matrices), approximation theory (lo-

cation theory, simultaneous approximation, solution of boundary value problems)

and cooperative game theory (cooperative n player differential games and, as a

special case, optimal control problems).

In the last decades, vector optimization problems have been extended to

problems with set-valued maps, that is, with set-valued objective functions or

set-valued constraints. These problems are called set-valued optimization or set

optimization problems, noted SOP Min{F (x) : x ∈ S} where F : S ⊂ X ⇒ Y

is a set-valued map, S is a nonempty set and X, Y are real linear spaces. Opti-

mization problems with a set-valued objective function F provide an important

generalization and they allow us to unify scalar as well as vector optimization

problems since the notion of set-valued maps subsumes single-valued maps. In re-

cent years, set-valued optimization problems (see, for instance, [5,38,48,51,53,88])

have received an increasing attention due to extensive applications in many areas,

since numerous problems that arise in different fields can be modeled as a set-
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valued optimization problem. This is what happens in, for example, uncertain

multiobjective problems and robust optimization, mathematical finance, welfare

economics, optimal control, differential inclusions, viability theory, game theory,

fuzzy optimization, duality principles in vector optimization, gap functions for

vector variational inequalities, image processing, management science, stochastic

programming, and so on (see [6,62,78]). A detailed introduction to set optimiza-

tion and its applications can be seen in [71], and applications in finance can be

seen in [46,47].

For a set-valued optimization problem it seems natural that the first thing

that has to be done is to decide how to compare elements of the power set of

Y , since the values F (x) are now sets, although it has to be said that is not

the only criterion of solution as it can be seen below. In set-valued optimization

problems, there exists mainly two criteria of solutions that are reduced to the

usual notion of efficiency whenever the set-valued F is a vector single-valued

function: the vector criterion (see [12, 17, 62, 63, 78, 103]) and the set criterion

(see [5,41,51,62,85,94,129]), which was introduced by Kuroiwa in 1997. On the

one hand, by considering the vector criterion, it looks for efficient elements in

the union of all objective values of F with respect to the order structure on Y ,

that is, in this criterion the efficient elements are taken in the vector sense and

the set-valued optimization problem is reduced to a vector optimization problem.

So, (x0, y0) is a solution (or minimizer) of the set-valued optimization problem

if for x0 ∈ S there exists at least one element y0 ∈ F (x0) which is an efficient

point of the image set F (S). Therefore, a minimizer (x0, y0) only depends on the

certain special element y0 of F (x0) by which other elements of F (x0) are ignored,

but one efficient element in some sense does not reveal any information about

the performance of the remaining elements in that particular solution set. For

this reason, although it is of mathematical interest, it cannot be often used in

practice. A set-valued optimization problem with vector criterion is usually called

set-valued vector optimization problem or vector optimization problem with set-

valued maps.
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On the other hand, by using the set criterion, the sets F (x) are compared

through set relations with the aim to choose the best set in some sense, that is,

this criterion is based on comparisons among values of the set-valued objective

map F by means of different set order relations which are preference relations

that allow to compare the sets F (x) and to decide which is the best set (efficient

set) with respect to the set relation that is considered. A set-valued optimization

problem with set criteria will be called a set optimization problem, and represents

a natural extension of vector optimization problem. The relationships between

vector and set criteria have been studied, for instance, in [51, 52, 75]. It is also

worth emphasizing that there is another approach criteria of solution newly devel-

oped called the lattice criteria (see [71,101]), based on order structure generated

by the inclusion between the conical extensions of sets, that is, in this criterion

the lattice structure of the space of conical extensions of the subsets of the image

space is considered. This last criterion is used in order to apply set optimization

to mathematical finance.

Set relations (see [65, 70, 87, 89]) on the power set of the objective space Y ,

relying on the ordering structure given in Y , play one of the most essential roles

in set optimization problems since they act as preference relations which provide

a natural way to compare the values of the set-valued objective map F . Through

these binary relations, given two sets, it is possible to decide if one set domi-

nates another set in a certain sense. As there are several set relations on 2Y ,

it is possible to define different concepts of optimal solutions in set optimiza-

tion problems according to the set relation involved. Set relations are concerned

with different fields as, for instance, Ekeland’s variational principle (see [3, 48]),

well-posedness (see [37,43,134]), minimax theorem for vector-valued functions [7],

stability [30], optimality conditions for set-valued optimization problems [21], con-

cepts of efficiency for uncertain multiobjective optimization problems [58], fuzzy

programming, interval analysis, etc. In particular, the lower and upper set pre-

orders of Kuroiwa have been commonly used to describe, for example, convexity

(see [73, 79, 89, 91–93, 95, 96, 106, 111, 120, 129]) and semicontinuity of set-valued

maps (see [79, 88, 107]). The set less order relation has been used outside the
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optimization community to define a directional derivative from a computational

point of view based on a set difference (see [21,64]).

Kuroiwa is credited for the introduction of set relations on the power set

of Y and by being the first who used them for defining optimality notions for

optimization problems with a set-valued objective function, although these set

relations were independently introduced in different fields as, for example, in

terms of algebraic structures by Young in 1931 [130], in theory of fixed points

of monotonic operators by Nishnianidze in 1984 [112], in interval arithmetic by

Chiriaev and Walster in 1998 [15], in theoretical computer science by Brink in

1993 [10], etc. In [4,70,76] new set order relations are defined by using Minkowski

difference of sets. In [59] eight types of fuzzy-set relations based on a convex cone

are proposed as new comparison criteria of fuzzy sets. In [50, 83] very general

definitions of set order relations are introduced, where the involved set describing

the domination structure does not need to be convex or a cone. In [80] several

variable order relations in a linear topological space are considered and set order

relations equipped with a variable order structure are introduced to compare sets

and to study set optimization problems endowed with these variable ordering

structures, which generalize the concept of variable ordering structures in vector

optimization [26].

In the setting of vector optimization theory, scalarization processes (see [57,

60,114]) means the replacement of a vector optimization problem VOP by a suit-

able scalar optimization problem, in order to obtain the solutions of the original

problem VOP by means of solutions of a scalar optimization problem. So, by

using a scalarization function, scalarization technique allows to characterize and

compute solutions of vector optimization problems as solutions of scalar opti-

mization problems, which is of great importance since scalar optimization theory

is widely developed in the literature. In vector optimization, order-preserving

and order-representing properties to the scalarization function have been used

to characterize minimal solutions through scalarization. To be precise, if the

scalarization function is monotone (or also called order-preserving) then suffi-

cient optimality conditions can be obtained, and if it is order-representing then
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necessary optimality conditions can be derived for the problem VOP .

Among the scalarization techniques, the standard linear scalarization is his-

torically the first method proposed and it is based more on analytical aspects

than on a geometrical approach to construct the scalarization function, by us-

ing the elements of the positive polar cone of the order cone K. It is used in

the separation of two convex sets and to obtain necessary optimality conditions

by using convexity assumptions. However, without the convexity (or generalized

convexity) assumptions, vector optimization problems may not be equivalently

characterized by linear scalar problems. A classical approach to the scalarization

of a nonconvex problem is the minimization of some type of distance [60] which is

a geometrical approach to the scalarization procedure that avoids the convexity

requirements typical of the linear case [109].

In the set-valued case, via scalarization, a set-valued optimization problem

is replaced by a family of scalar optimization problems which allow to relate

qualitatively the solutions of both problems and solve the initial problem by

a numerical method applicable for the scalar problems. Usually, these scalar

optimization problems are defined by the composition of the objective mapping

F with the elements of a parametric family {ϕp}p∈P of extended real-valued

mappings ϕp : 2Y → R ∪ {±∞}, where P is an index set. So, the scalarization

processes relate the solutions of problem SOP with the solutions of the scalar

optimization problems Min{(ϕp ◦ F )(x) : x ∈ S}.

In practice, scalarization functions are used to check whether one set is better

than another set by means of set relations, that is, through a scalarization function

it is able to decide if a set relation is fulfilled for two sets evaluating one inequality.

Recently, in analogy to the scalarization, it has appeared a vectorization [63]

approach for set optimization problems which means the replacement of a set

optimization problem by a suitable vector optimization problem.

In view of the foregoing, scalarization methods are one of the most essential

tools in vector optimization (see [12,31,62,103,109]) and set-valued optimization

(see [5,14,41,51,89,107]) from theoretical as well as computational points of view.

Among their multiple applications, it is emphasized the characterization of differ-
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ent types of set relations (see [5, 38, 113]) (this is important to obtain numerical

methods to solve set optimization problems [81]), scalar representations [51], to

obtain optimality conditions (see [5,51,94,95]), nonconvex separation type theo-

rems [5], Gordan’s type alternative theorems (see [5, 110,113]), Takahashi’s type

minimization theorems (see [4,5]), minimal element theorems (see [4,48]), general-

izations of the Ekeland’s variational principle (see [4,27,48]), well-posedness [43],

fuzzy theory [59], equilibrium problems [36], set-valued Ky Fan minimax inequal-

ity [95], minimax theorems [91], existence theorems for saddle points (see [91,96]),

stability results [44], vector variational inequalities [19], Caristi’s fixed point theo-

rem [4], robustness and stochastic programming [77], approximate solutions [39],

etc.

In vector optimization, there are two important types of scalarization func-

tions: Gerstewitz’s function (see [12,31,36]) defined in a topological vector space

with a solid cone K, and the oriented distance of Hiriart-Urruty (see [54,55,133])

defined in a normed space with a not necessarily solid convex cone K. Some rela-

tions between Gerstewitz’s function and the oriented distance function of Hiriart-

Urruty can be found in [98]. On the one hand, Gerstewitz’s function was proposed

in 1990 to give separation theorems for not necessarily convex sets, and it is widely

used in vector optimization problems and related problems. For example, it is

used in scalarization, optimality conditions, stability in vector optimization, vec-

tor equilibrium problems, well-posedness, multicriteria decision problems, Fan’s

type inequalities, robustness and stochastic programming [77], to characterize

cone-quasiconvex functions (see [97, 103]), etc. In [12, 31, 36, 51, 71, 124] many of

its properties can be seen. This function was also introduced and used in abstract

convexity analysis under the name of topical function [117], in mathematical fi-

nance under the name of coherent risk measure [71] and in economics under the

name of shortage function. This scalarizing function is the smallest strictly mono-

tonic (increasing) function with respect to the ordering structure [103]. It should

be noted that certain Minkowski functionals and norms coincide with Gerstewitz’s

function on a subset of the space.
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On the other hand, the oriented distance, or sometimes called signed dis-

tance function [105], was introduced in nonlinear analysis by Hiriart-Urruty in

1979, and was used to build necessary optimality conditions for non-smooth op-

timization problems from the geometric point of view. This function has been

applied to study well-posedness [19], stability [109], to give characterizations of

different minimal solutions for vector optimization problems (see [4, 18,32,109]),

to characterize various notions of solutions of a vector optimization problem in

terms of minimal solutions of a scalarized problem (see [33, 74, 133]), to study

approximation of set-valued functions by single-valued ones [34], to obtain gap

functions and error bounds for vector variational inequalities (see [8, 128]), to

obtain necessary optimality conditions (see [2, 55, 109, 133]), existence of the La-

grange multipliers for ε-Pareto optimality in vector optimization problems [23], to

characterize ε-weak Pareto minimal point in terms of approximate solutions of the

associated scalar optimization problem [123], existence of Lagrange-Kuhn-Tucker

multipliers for Pareto multiobjective programming problems [16], to deal with

approximate efficient solutions of single-valued and set-valued vector optimization

problems [28], to obtain some results about E-optimality in vector optimization

with respect to an improvement set E [135], etc. In [11, 26, 45, 55, 100, 129, 133]

many of its properties can be seen. In [100] some dual representation results for

the Hiriart-Urruty function are given.

In the literature, set extensions of Gerstewitz’s function can be found, for

example, in [5, 38, 42, 43, 48, 51, 70, 73, 90, 94, 95, 103, 107, 134]. To the best of our

knowledge, the first set extension of Gerstewitz’s function defined on a topological

linear space with a solid cone was introduced by Hamel and Löhne [48] in 2006,

based on two types of set order relations introduced in [89], to obtain minimal

set theorems and new variants of Ekeland’s principle in a topological vector space

without strong assumptions as convexity; there, it is considered a fixed set that

plays the role of parameter which is crucial in order to characterize minimal

solutions of set-valued optimization problems with set orderings through solutions

of associated scalar optimization problems.
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Hernández and Rodŕıguez-Maŕın [51] in 2007, introduced a generalization of

Gerstewitz’s function presented in [48], they studied its properties in deep and,

for the first time in the literature, they characterized minimal and weak minimal

solutions of set-valued optimization problems with the lower set less order via

solutions of associated scalar optimization problems. In 2009, Zhang et al. [134],

by using a generalized version of Gerstewiz’s function given in [51] and cone-

bounded sets, gave some new properties of this scalarization mapping, and used

this function to derive well-posedness properties of set-valued optimization prob-

lems with set orderings; specifically, these authors obtained the equivalent rela-

tion between the well-posedness of set optimization problems with cone-closed

and cone-bounded objectives and the well-posedness of scalar optimization prob-

lems. In 2010, Kuwano et al. [94] defined unified scalarizations which included

the scalarization given in [51], and based on the approach of Hamel and Löhne

and with respect to six kinds of set order relations introduced in [89], twelve

types of set scalarization functions were proposed and optimality conditions were

presented.

Gutiérrez, Jiménez, Novo and Thibault [42] in 2010, defined a sup-inf type

scalarization mapping based on Hamel and Löhne function and via this map-

ping these authors derived approximate strict minimal element theorems and

approximate versions of the Ekeland’s variational principle for set orderings. In

2012, Gutiérrez, Miglierina, Molho and Novo [43] derived new properties of the

scalarization mappings due to Hamel and Löhne, generalized the well-posedness

properties obtained in [134] and characterized pointwise well-posedness of set op-

timization problems through the well-posedness of a family of scalar optimization

problems. In 2015, Gutiérrez, Jiménez and Novo [41] derived general necessary

and sufficient optimality conditions for minimal and weak minimal solutions of

set-valued optimization problems with set orderings by dealing with abstract

scalarization mappings which satisfy certain order preserving and order repre-

senting properties. Other authors have emphasized the importance of considering

extensions of Gerstewitz’s function, and have investigated their properties and its

applications in set-valued optimization (see, for instance, [5, 49,70,73,95,107]).
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It should be noted that there are only a few set extensions of the oriented

distance function of Hiriart-Urruty defined in a normed space with a convex cone

K not necessarily solid (see [18,38,45,129]). In 2006, Crespi et al. [18] introduced

a generalized version of the oriented distance function and characterized minimal

solutions and weak minimal solutions of set-valued optimization problems with

the vector criterion, but this generalized version does not seem to be suitable to

discuss set optimization problems, since it does not have appropriate properties.

In 2014, Gutiérrez, Jiménez, Miglierina and Molho [38] proposed another exten-

sion of oriented distance function, they proved some of their properties and used

this function to provide characterizations of some types of minimal elements to

a family of sets. Furthermore, Xu and Li in 2016 [129] presented a more general

version of the oriented distance function and discussed some of its properties,

they established some alternative theorems and obtained some optimality con-

ditions and scalar representations for set-valued optimization problems with the

set criterion without any convexity assumptions.

The expression supy∈B infx∈AD(x − y,−K), without a specific name, was

used by Chen et al. [11] in 2017, in order to provide a characterization of the

lower set less order relation; moreover, they presented some characterizations of

various set order relations using the oriented distance function and, by using the

characterizations of set order relations given, necessary and sufficient conditions

were derived for four types of optimal solutions of constrained set optimization

problem with the set criterion. In 2017, Ansari et al. [3,11] characterized several

set order relations by defining scalarization functions in terms of the oriented

distance function by using variable domination structures instead of a convex cone

K, and studied the optimality conditions of set-valued optimization problems.

In 2018, Ha [45] used the expression supy∈B infx∈AD(x − y,−K) to define a

Hausdorff-type distance between two sets and thus be able to define a directional

derivative for a set-valued map that was applied to optimization problems with

set-valued maps.

It should be pointed out that, most recently, Gao et al. [29] in 2018, considered

co-radiant sets (more general sets than a cone) which are a main tool in the
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study of approximate solutions in vector optimization problems; besides, they

investigated properties of the oriented distance with respect to a co-radiant set as,

for instance, these authors showed that this function is not necessarily positively

homogeneous with respect to a co-radiant set. Furthermore, Ansari et al. [4,70] in

2018, characterized new set order relations defined by using Minkowski difference

of sets by using the oriented distance function.

1.2 Objectives

This memory is mainly concerned with the study of set scalarization func-

tions and their applications in set-valued optimization problems. The main goals

focus on to derive minimality and weak minimality conditions for six set opti-

mization problems with the set criterion of solution. To achieve these aims, in

the setting of normed spaces with a convex cone K not necessarily solid, six

set scalarization functions of type sup-inf and inf-sup which are set extensions

of the oriented distance of Hiriart-Urruty are introduced, their main properties

are studied and relations among set scalarizations existing in the literature are

provided. After that, these six set scalarization functions and their properties are

applied to characterize the six set order relations of Kuroiwa [86, 87] and their

corresponding strict set order relations. Finally, by applying all the foregoing,

the characterization by scalarization of minimal and weak minimal solutions for

six set optimization problems with the set criterion are derived.

To be more precise, the thesis is structured in five chapters as follows.

In Section 1.3, the setting of work is fixed, the notations and previous concepts

are collected, and the results needed are gathered. Throughout the thesis, it

is considered that Y is a normed space which is ordered by a convex cone K

not necessarily solid, unless otherwise stated. Moreover, some results are given

as, for example, it is proved that the function of Khoshkhabar-amiranloo et al.

[73] coincides with the excess of a set over the conic extension of another set,

by considering the norm ‖.‖e generated by Minkowski’s functional of an order

interval.
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In Chapter 2, set scalarization functions are investigated. Firstly, in Section

2.1, set scalarization functions between two sets existing in the literature, which

are concerned with Gerstewitz’s function and set oriented distance function of

Hiriart-Urruty, are recalled. Moreover, a new set extension of oriented distance of

type sup-inf is introduced and some new relationships among the set scalarization

above mentioned are established. Secondly, in Section 2.2, new properties for the

sup-inf set oriented distances given in Definition 2.1.14, denoted Dsi and D̂
si

, are

presented. More specifically, by using cone-properness and cone-boundedness,

and a new concept of cone-boundedness with respect to a set which has been

introduced by us, results about their finitude are presented. Besides, some new

fundamental properties as convexity, Lipschitz continuity, positive homogeneity,

invariance respect to conic extensions, monotonicity, diagonal null, invariance

with respect to closure, etc. are presented. Finally, in Section 2.3, by using the

useful properties that have been shown in the former section, new characterization

of the lower set less relation 2∀∃ and the upper set less relation 4∀∃ of Kuroiwa by

means of the set scalarization functions Dsi and D̂
si

are provided and, furthermore,

if K is a solid convex cone, characterizations for the corresponding strict set

relations 2∀∃s and 4∀∃s , by requiring assumptions of K-compactness, are discussed.

We also deal with strict monotonicity for the functions Dsi and D̂
si

with respect

to the strict lower set less relation 2∀∃s and the strict upper set less relation 4∀∃s .

The results stated in this chapter are collected in our works [66, Sections 3,4 and

5] and [67, Sections 3 and 4].

Chapter 3 is concerned with set scalarization functions, which are extensions of

the oriented distance, in the above mentioned setting of work. In Section 3.1, six

set scalarization of type sup-inf and inf-sup, which are extensions of the oriented

distance, denoted by Dα
K(A,B) and D̂

α

K(A,B) are presented, four of which are

new. Relationships among them are presented, characterization of these scalar-

izations are given and, furthermore, some of their main properties are studied as,

for example, finitude under suitable assumptions of cone-properness and cone-

boundedness, invariance by conic extensions, monotonicity by considering the six

set relations introduced by Kuroiwa, and closure property.
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In Section 3.2, new characterizations of six set relations of Kuroiwa are derived

by using the six set scalarizations Dα
K(A,B) and D̂

α

K(A,B) which are introduced in

the former section. Furthermore, some examples to illustrate the results obtained

are provided but especially to emphasize that the assumptions required cannot

be removed. The importance of these results lies in the fact that they could be

applied in Section 4.1 to analyze minimality conditions for a set optimization

problem with the set criterion of solution.

In Section 3.3, by considering a solid convex cone K and under suitable

assumptions, strict monotonicity for the six set scalarizations Dα
K(A,B) and

D̂
α

K(A,B) by using the six strict set relations of Kuroiwa is investigated. To

this purpose, some new important results which deal with inequalities for the

functions Dα
K(A,B) and D̂

α

K(A,B) when one of the variables is a sum of two sets

are presented; moreover, it should be noted that these results do not exist in the

literature for the Gerstewitz’s function. The results about strict monotonicity

which are above mentioned will be applied in Section 4.2 to derive minimality

conditions for a set optimization problem with the set criterion of solution. In

the literature, there are very few authors who have researched strict monotonicity

(see [5, 41, 51, 94, 96, 107]) and, in all these cases, Gerstewitz’s function has been

used. The results obtained represent an improvement since they require weakest

assumptions.

In Section 3.4, by considering a solid convex cone K, new characterizations

of six strict set relations of Kuroiwa are derived by using the six set scalariza-

tions Dα
K(A,B) and D̂

α

K(A,B). Moreover, some examples to illustrate the results

obtained are provided with the aim to emphasize that the assumptions required

cannot be removed. These results will be used in section 4.2 to deduce weak

minimality conditions for a set optimization problem with the set criterion of so-

lution. The results stated in this chapter are collected in our works [68, Sections

3 and 4] and [69, Sections 3 and 4].

In Chapter 4, applications to set optimization problems with the set criterion

of solution by means of set relations of Kuroiwa are searched. In Section 4.1,

by considering some good properties of the six set scalarizations Dα
K(A,B) and
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D̂
α

K(A,B) presented in Section 3.1 as, for example, finitude, monotonicity and

their performance with respect to equivalent sets, and by applying the charac-

terizations of the set relations of Kuroiwa which are given in Section 3.2, several

characterizations by scalarization of minimal solutions for six set optimization

problems are derived. In Section 4.2, by considering some nice properties of the

six set scalarizations Dα
K(A,B) and D̂

α

K(A,B) presented in Section 3.1 as, for

example, finitude and monotonicity, as well as their strict monotonicity studied

in Section 3.3 and by applying the characterizations of the strict set relations

of Kuroiwa, which are given in Section 3.4, several characterizations by scalar-

ization of weak minimal solutions for six set optimization problem are achieved.

The results stated in this chapter are collected in our papers [68, Section 5]

and [69, Section 5].

Finally, in Chapter 5, we collect the conclusions and future lines of research

which have arisen during the elaboration and preparation of this memory.

1.3 Preliminaries

Let Y be a real topological linear space, unless otherwise is stated. Given

a subset A ⊂ Y , we denote the interior, the closure and the boundary of A by

intA, clA and bdA, respectively. Let P0(Y ) be the set of all nonempty subsets

of Y . For every A,B ∈ P0(Y ) and λ ∈ R, we denote

A+B = {y1 + y2 : y1 ∈ A, y2 ∈ B}, λA = {λy : y ∈ A}.

We assume that A+ ∅ = ∅+A = ∅, λ∅ = ∅, for all A ⊂ Y , and we consider that

inf ∅ = +∞ and sup ∅ = −∞.

A subset K of Y is a cone if λK ⊂ K for all λ ≥ 0 (0 ∈ K), a cone K is

convex if K + K ⊂ K, is solid if intK 6= ∅, is pointed if K ∩ (−K) = {0} and

is proper if {0} 6= clK 6= Y . If A ∈ P0(Y ) and the convex cone K is solid, then

A+ intK = int(A+K) (see [38,129]).

From now on, we shall consider that Y is an ordered space by the preorder

≤K (reflexive and transitive) generated by a convex cone K defined as follows:

x ≤K y ⇔ y − x ∈ K, ∀x, y ∈ Y.
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Moreover, if K is solid, it is defined x ≤intK y if y − x ∈ intK.

Therefore, by using the preorder ≤K , we can find non-comparable elements

and indifferent elements in Y . In the case that K is pointed, there are not any

indifferent elements since the relation ≤K is antisymmetric and, therefore, the

preorder is a partial order. To compare elements in Rn, Edgeworth and Pareto

used the natural ordering cone given by the nonnegative orthant Rn
+, generally

called Pareto order, which corresponds to the componentwise partial ordering,

that is, for x = (x1, ..., xn), y = (y1, ..., yn) ∈ Rn we define x ≤K y if and only if

xi ≤ yi for i = 1, .., n. In R, we have that R1
+ = R+.

Recall that given x, y ∈ Y , with x ≤K y, the order interval of extremes x and

y is defined as [x, y]K = {z ∈ Y : x ≤K z, z ≤K y} = (x+K) ∩ (y −K).

In [75], a preference relation based on an arbitrary nonempty proper subset

S instead of a solid convex cone K is induced, by considering that x ≤S y if and

only if y − x ∈ S, for all x, y ∈ S.

A subset A ⊂ Y is K-proper if A + K 6= Y . We denote by P0,K(Y ) the set

of all nonempty K-proper subsets of Y . It is said that A is K-closed if A + K

is closed, is K-bounded if for each neighborhood U of zero in Y there exists a

positive number t such that A ⊂ tU +K, and is K-compact if any cover of A of

the form {Uα +K : α ∈ I, Uα is open} admits a finite subcover.

Remark 1.3.1. (i) Every K-compact set is K-closed and K-bounded (see [5,51,

71,73,89,103,122,129]).

(ii) If A is K-bounded, then A is K-proper.

Recall that A+K (resp., A−K) is the conic extension of A with respect to

K (resp., (−K)).

For T : P0(Y )→ R, given y ∈ Y we will write T (y) instead of T ({y}).

Now, we focus on the following six set relations introduced in 1997 by Kuroiwa

[89] which represent certain six binary relations that are generalizations of an

ordering for vectors induced by a convex cone in a vector space. These six set

relations have been studied, for example, in [59,65,79,86,87,93,96,113,122,131,

132].
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Definition 1.3.2. Let A,B ∈ P0(Y ). We consider the following set relations:

(i) A4∀∀B ⇔ ∀a ∈ A, ∀b ∈ B : a − b ∈ −K ⇔ A ⊂
⋂
b∈B

(b −K) ⇔ A − B ⊂

−K.

(ii) A4∃∀B ⇔ ∃a ∈ A,∀b ∈ B : a− b ∈ −K ⇔ A ∩
⋂
b∈B

(b−K) 6= ∅.

(iii) A2∀∃B ⇔ ∀b ∈ B, ∃a ∈ A : a− b ∈ −K ⇔ B ⊂ A+K.

(iv) A2∃∀B ⇔ ∃b ∈ B, ∀a ∈ A : a− b ∈ −K ⇔
⋂
a∈A

(a+K) ∩B 6= ∅.

(v) A4∀∃B ⇔ ∀a ∈ A,∃b ∈ B : a− b ∈ −K ⇔ A ⊂ B −K.

(vi) A4∃∃B ⇔ ∃a ∈ A, ∃b ∈ B : a− b ∈ −K ⇔ A ∩ (B −K) 6= ∅.

These relations correspond to [94, Definition 2.1] although there, they are

denoted, respectively, A 4(1) B, . . . , A 4(6) B. Two more definitions could be

added:

• A 2∀∀ B ⇔ ∀b ∈ B, ∀a ∈ A : a− b ∈ −K, and

• A 2∃∃ B ⇔ ∃b ∈ B, ∃a ∈ A : a− b ∈ −K,

but it is clear that they coincide with 4∀∀ and 4∃∃, respectively.

If it is necessary to indicate the cone K, we will write A 2αK B (resp., A 4αK

B), instead of A 2α B (resp., A 4α B), where α ∈ {∀∀, ∃∀,∀∃,∃∃}.

We observe that the set relations 2∀∃ and 4∀∃ are, respectively, the lower set

less preorder and the upper set less preorder, which are widely studied in the

literature (see, for example, [51, 65,87,129] and the references there). In [65,71],

the weakest relation 4∃∃ is named possibly less order relation, and in some papers

(see, for instance, [11, 65, 71, 81]) a slight modification of the strong relation 4∀∀

is called certainly less order relation.

When K is a solid cone, we can define the corresponding strict set relations

as follows.

Definition 1.3.3. Let A,B ∈ P0(Y ) and K be solid. The relations 2αs (respec-

tively, 4αs ) are the corresponding strict set relations to 2α (respectively, 4α), and

they are defined as in Definition 1.3.2 but changing K by intK.

For instance,

• A2∀∃s B ⇔ ∀b ∈ B, ∃a ∈ A : a− b ∈ − intK ⇔ B ⊂ A+ intK,

• A4∀∃s B ⇔ ∀a ∈ A,∃b ∈ B : a− b ∈ − intK ⇔ A ⊂ B − intK.
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If it is necessary to indicate the cone K, we will write A 2αs,K B or A 4αs,K B.

The relations 2∀∃s and 4∀∃s have been used, for example, in [5, 51,107,129].

We denote

R = {4∀∀,4∃∀,2∀∃,2∃∀,4∀∃,4∃∃} and Rs = {4∀∀s ,4∃∀s ,2∀∃s ,2∃∀s ,4∀∃s ,4∃∃s }.

If - denotes a set relation of R, then -s the corresponding strict set relation

of Rs.

If we consider a set relation -αK with α ∈ R, we can define an equivalent

relation with respect to α, denoted by ∼α, as follows. If A,B ∈ P0(Y ), it is said

that A and B are α-equivalent, denoted by A ∼α B, if and only if A-αK B and

B-αK A. In this case, they belong to the same equivalence class and we write

B ∈ [A]α.

In the literature, there exist other set relations (see [4, 11, 65, 70]), some of

them have been defined by using Minkowski difference of sets. In [59] eight types

of fuzzy-set relations based on a convex cone are proposed as new comparison

criteria of fuzzy sets. In [50, 75, 83] very general definitions of set order relations

are introduced, where the involved set describing the domination structure does

not need to be convex or a cone. Recently, more general lower set less relation

have been defined by considering an arbitrary nonempty proper set S instead of

a solid convex cone K [75]. In [80] set order relations equipped with a variable

order structure are introduced to compare sets and to study set optimization

problems endowed with these variable ordering structures, which generalize the

concept of ordering structures in vector optimization [26].

To illustrate Definition 1.3.2 we give a simple example.

Example 1.3.4. Consider Y = R, K = R+ and the intervals A = [ai, as] and

B = [bi, bs] with ai ≤ as and bi ≤ bs. It is derived the following characterization

in this particular case (see also [65, Example 3.2]):

A 4∀∀ B ⇔ as ≤ bi, A 2∃∀ B ⇔ as ≤ bs,

A 4∃∀ B ⇔ ai ≤ bi, A 4∀∃ B ⇔ as ≤ bs,

A 2∀∃ B ⇔ ai ≤ bi, A 4∃∃ B ⇔ ai ≤ bs.
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The next example illustrates Definition 1.3.3.

Example 1.3.5. Let K ⊂ Y be a solid cone and let us consider the order intervals

A = [ai, as]K and B = [bi, bs]K with ai ≤K as and bi ≤K bs. It can be checked the

following characterization (see also [65, Example 3.2]):

A4∀∀s B ⇔ as ≤intK bi, A2∃∀s B ⇔ as ≤intK bs,

A4∃∀s B ⇔ ai ≤intK bi, A4∀∃s B ⇔ as ≤intK bs,

A2∀∃s B ⇔ ai ≤intK bi, A4∃∃s B ⇔ ai ≤intK bs.

The following properties and relationships between the set relations given in

Definitions 1.3.2 and 1.3.3 are immediate or well-known.

The following remark can be found in [94].

Remark 1.3.6. (i) The five first relations of R and Rs are transitive.

(ii) The relations 2∀∃, 4∀∃ and 4∃∃ are reflexive.

The next properties can be seen, for example, in [94,113].

Proposition 1.3.7. Let A,B ∈ P0(Y ). Then

(i) A4∀∀B ⇒ A4∃∀B ⇒ A2∀∃B ⇒ A4∃∃B.

(ii) A4∀∀B ⇒ A2∃∀B ⇒ A4∀∃B ⇒ A4∃∃B.

(iii) Parts (i) and (ii) are also true for the corresponding strict set relations.

(iv) A-sB ⇒ A-B, for all - ∈ R.

Lemma 1.3.8. Let - ∈ R and A,B ∈ P0(Y ). Then

(i) A-B ⇒ A+ y-B + y, for all y ∈ Y .

(ii) A-B ⇒ tA- tB, for all t > 0.

Next, we collect some basic and useful properties that show a certain duality

between two pairs of relations and the corresponding strict relations.

Lemma 1.3.9. Let A,B ∈ P0(Y ). Then

(i) A4∀∃K B ⇔ B2∀∃−K A.

(ii) A2∃∀K B ⇔ B4∃∀−K A.

(iii) A4∀∃s B ⇔ B2∀∃s,−K A.

(iv) A2∃∀s B ⇔ B4∃∀s,−K A.
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It is also worth emphasizing that the lower set less preorder and the upper set

less preorder are not antisymmetric and, hence, for these two set relations there

exist indifferent sets. That is, given A,B ∈ P0(Y ), if A2∀∃B and B2∀∃A then

this does not imply that A is equal to B (the same can be said for 4∀∃). In this

case, it is well known that A ∼2∀∃
B if and only if A+K = B+K and A ∼4∀∃

B

if and only if A−K = B −K [71]. These two statements could be false for the

relations ∼2∀∃
s and ∼4∀∃

s , that is, could be fulfilled A + intK = B + intK (or

A− intK = B − intK) although A 6∼2∀∃
s B (or A 6∼4∀∃

s B).

Now, recall the definition of --monotonicity for a function being - a set

relation.

Definition 1.3.10. Let T : P0(Y )→ R ∪ {±∞} and - ∈ R.

(a) T is --increasing (resp., --decreasing) if for all A,B ∈ P0(Y ), A-B

implies T (A) ≤ T (B) (resp., T (A) ≥ T (B)).

(b) T is strictly -s-increasing (resp., -s-decreasing) if for all A,B ∈ P0(Y ),

A-sB implies T (A) < T (B) (resp., T (A) > T (B)).

It is said that g : Y → R is K-increasing (resp., K-decreasing) if for all

y1, y2 ∈ Y , y1 ≤K y2 implies g(y1) ≤ g(y2) (resp., g(y1) ≥ g(y2)). Note that g is

K-increasing if and only if g is (−K)-decreasing.

In the following lemma, we relate increasing and decreasing maps with respect

to (in short, w.r.t.) “dual” relations.

Lemma 1.3.11. Let T : P0(Y )→ R ∪ {±∞}.

(i) T is 2∀∃−K-increasing ⇔ T is 4∀∃K -decreasing.

(ii) T is 2∀∃−K-decreasing ⇔ T is 4∀∃K -increasing.

Both equivalences are true if we replace 2∀∃−K with 4∃∀−K and 4∀∃K with 2∃∀K .

A relation - in P0(Y ) can be seen as a subset of P0(Y ) × P0(Y ), which is

defined by (A,B) ∈ - if and only if A-B.

Definition 1.3.12. Let -1 and -2 two set relations defined on P0(Y ). It is said

that -1 implies -2 if for all A,B ∈ P0(Y ), A-1B implies A-2B, that is, if as

subsets one has -1 ⊂ -2.
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Now, we are going to use the last definition to relate monotonicity for two

relations.

Lemma 1.3.13. (i) If -1 implies -2 and T is -2-increasing (resp., decreasing),

then T is -1-increasing (resp., decreasing).

(i) If -1 implies -2 and T is strictly -2-increasing (resp., decreasing), then

T is strictly -1-increasing (resp., decreasing).

Next, we recall the Gerstewitz’s scalarization function introduced in 1990 (see

[5,12,31,36,38,103,126,127]) which is defined, in contrast with other scalarization

functions existing in the literature, in a topological vector space with a solid

convex cone K.

Definition 1.3.14. Let K ⊂ Y be a convex closed and solid cone, and e ∈ intK.

The Gerstewitz’s function hinf : Y × Y → R, is defined as follows:

hinf(x, y) = inf{t ∈ R : x ≤K te+ y},

Moreover, it can be defined hsup(x, y) = sup{t ∈ R : te + y ≤K x} and it is

shown that hsup(x, y) = −hinf(−x,−y).

In [12,31,36,43,51,71,99,102,103,110,121,124] many of its properties can be

seen. These properties were used to deal with various problems as, for instance,

existence and continuity of solutions, optimality conditions, gap functions, dual-

ity, vector variational principles, well-posedness, vector minimax inequalities and

vector equilibrium problems.

In [12] it is proved that for all z ∈ Y it is verified that hinf(z, 0) = maxξ∈Ke〈ξ, z〉,
where Ke = {ξ ∈ K+ : 〈ξ, e〉 = 1} with e ∈ intK and K+ the positive polar cone

of K in the dual space Y ∗.

When Y is the l-dimensional Euclidean space Rl, K = Rl
+, e = (e1, ..., el)

T and

x = (x1, ..., xl)
T , then we have that hinf(x, y) can be rewritten for y = (y1, ..., yl)

T

as follows

hinf(x, y) = max{(xi − yi)/ei : 1 ≤ i ≤ l}.

The function hinf(x, y) assigns the smallest value t such that the property

x ∈ te + y − K is fulfilled, it was used to give nonconvex separation theorems
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and, moreover, it has extensive applications in vector optimization. Gertewitz’s

function was also introduced and used in abstract convexity analysis under the

name of topical function [117], in mathematical finance under the name of co-

herent risk measure [71] and in economics under the name of shortage function.

This scalarizing function is the smallest strictly monotonic (increasing) function

with respect to the ordering structure [103]. It should be noted that certain

Minkowski functionals and norms coincide with Gerstewitz’s function on a sub-

set of the space.

In [75], a generalized version of Gerstewitz’s function was given based on an

arbitrary nonempty proper set S instead of a solid convex cone K.

In 2006, Hamel and Löhne [48] introduced the next function which is an

extension to set optimization of Gerstewitz’s function, by using a solid convex

cone K. If e ∈ intK, it is defined hlinf : P0(Y )× P0(Y )→ R ∪ {±∞} as follows:

hlinf(A,B) = inf{t ∈ R : A2∀∃ te+B}. (1.1)

Note that A is not a K-proper set if and only if hlinf(A,B) = −∞ and,

moreover, if B is not a K-proper set and A is a K-proper set, then hlinf(A,B) =

+∞ (see [38, 41]).

This scalarizing function measure how far a set needs to be moved towards a

specific direction to fulfil each set relation above while the other set is fixed, and

were used to obtain minimal set theorems and new variants of Ekeland’s principle

in a topological vector space without strong assumptions as convexity. Hamel and

Löhne considered a fixed set that plays the role of parameter which is crucial in

order to characterize minimal solutions of set-valued optimization problems with

set orderings through solutions of associated scalar optimization problems.

In the literature, expressions using sup-inf of the Gerstewitz’s function can be

found in several papers (see [38, 41,49,50,81–84]).

In the next theorem (see [38, Theorem 5.5]) the function (1.1) is expressed by

means of sup-inf (see [38,41,51]).

Theorem 1.3.15. Given A,B ∈ P0(Y ), then

hlinf(A,B) = sup
y∈B

inf
x∈A

inf{t ∈ R : te+ y ∈ x+K}.
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In [38, 41, 94] this function has been used to obtain necessary and sufficient

optimality conditions in set optimization problems with the set criterion.

A consequence of Theorem 1.3.15 is the next corollary (see [38,41,51]).

Corollary 1.3.16. Given A,B ∈ P0(Y ) and y ∈ Y , then

(i) hlinf(A, y) := inf{t ∈ R : te + y ∈ A + K} = infx∈A inf{t ∈ R : te + y ∈
x+K}.

(ii) hlinf(A,B) = supy∈B h
l
inf(A, y).

It should be noted that in the literature for Hamel and Löhne’s function, we

can find other versions in [95, 96, 113, 131] by using the set relations given in

Definition 1.3.2 and, moreover, we can see that there exist other versions type

supremun in [79, 93–95]. Moreover, we can find other versions of this function

by using a new set order relations defined by using Minkowski difference of sets

(see [4, 70]).

There are several authors who have emphasized the importance of consider-

ing extensions of Gerstewitz’s function, and have investigated their properties

(see [5, 38, 41–43, 49, 51, 70, 73, 94, 95, 107, 134]) and its applications in set-valued

optimization problems (see, for instance, [5, 38, 41,51,70,73,94,95,107]).

In Khoshkhabar-amiranloo et al. [73] and in Sach [118] the nonlinear scalar-

ization functions ϕle,B, ϕ
u
e,B : P0(Y ) → R+ ∪ {+∞}, with B ∈ P0(Y ), are given

as follows:

ϕle,B(A) = inf{t ≥ 0 : A2∀∃ te+B},

ϕue,B(A) = inf{t ≥ 0 : A4∀∃ te+B}.

Note that

ϕle,B(A) = max{0, hlinf(A,B)}. (1.2)

Using (1.2) and Corollary 1.3.16(ii), it follows that

ϕle,B(A) = sup
y∈B

ϕle,y(A). (1.3)

Similarly,

ϕue,B(A) = sup
x∈A

ϕue,B(x).
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Moreover, it is verified that ϕue,B(A) = ϕle,−A(−B).

These functions are used in [73] to characterize some optimal solutions to a

set optimization problem with the set criterion.

Let y ∈ Y and A,B ⊂ Y , U0 the unit open ball, U0 the unit closed ball

in Y and Uy(ε) is the open ball with center y and radius ε > 0. Recall that

the distance of y to a set A is given by d(y, A) = infx∈A ‖x − y‖, being +∞ if

A = ∅. The distance between two sets is defined by d(A,B) = infx∈A d(x,B) =

infx∈A,y∈B d(x, y). The excess of the set B over the set A is defined by ρB(A) =

supy∈B d(y, A), being +∞ if A = ∅. We observe that d(A,B) ≤ ρA(B).

Recall some properties of the distance of a point to a set.

Proposition 1.3.17. Let x, y ∈ Y and A ⊂ Y . Then

(i) d(y,−A) = d(−y, A) and d(x,A) = d(y + x, y + A).

(ii) d(x− y, Y \(−A)) = d(y, Y \(x+ A)).

(iii) d(y, A+K) = infx∈A d(y, x+K).

In 1979, Hiriart-Urruty [55] introduced the next nonlinear scalarization func-

tion which was used to deal with non-smooth optimization problems from the

geometric point of view.

Definition 1.3.18. Let A ⊂ Y . The oriented distance D(·, A) : Y → R∪ {±∞}
is defined as follows:

D(y, A) = d(y, A)− d(y, Y \A) =

 d(y, A) if y ∈ Y \A
−d(y, Y \A) if y ∈ A.

It is considered that D(y, ∅) = +∞ and D(y, Y ) = −∞. It holds that

D(y, A) ≤ d(y, A). This function has been used in vector optimization to give

necessary optimality conditions.

It should be emphasized that the main advantage of the oriented distance func-

tion D(y, A), in contrast to Gerstewitz’s scalarization function, is that D(y, A)

does not require that A be a solid set.

In the sequel, we collect the basic properties of this function (see, for instance,

[3, 23,55,71,129,133]).
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Lemma 1.3.19. Let A,B ∈ P0(Y ), A 6= Y and y ∈ Y . Then

(i) D(x,A) ∈ R for all x ∈ Y and D(·, A) is Lipschitz of rank 1.

(ii) If A is convex, then D(·, A) is convex.

(iii) D(y, A) < 0⇔ y ∈ intA.

(iv) D(y, A) = 0⇔ y ∈ bdA.

(v) D(y, A) > 0⇔ y /∈ clA.

(vi) If A is a cone, then D(·, A) is positively homogeneous.

(vii) If A ⊂ B then D(y,B) ≤ D(y, A).

(viii) If K is a closed convex cone, then D(·,−K) is K-increasing.

If, in addition, K is solid, then

y1 ≤intK y2 ⇒ D(y1,−K) < D(y2,−K).

(ix) If K is a convex cone, then D(y1 + y2,−K) ≤ D(y1,−K) + D(y2,−K),

for all y1, y2 ∈ Y .

(x) If intA 6= ∅ and int clA = intA, then D(y, clA) = D(y, A).

(xi) If intA 6= ∅ and cl intA = clA, then D(y, intA) = D(y, A).

(xii) If the convex cone K is solid, then D(y, A+ intK) = D(y, A+K).

(xiii) D(−y,−A) = D(y, A).

(xiv) D(y, A) = D(x+ y, x+ A), for all x ∈ Y .

(xv) D(y, Y \A) = −D(y, A).

Proof. We only have to prove parts (x), (xi) and (xii), the remainder can be found

in [55,71,133].

(x) This part has the same proof that [71, Remark 5.3.1].

(xi) Firstly, using the basic property d(y,M) = d(y, clM) and the hypothesis,

we have

d(y, intA) = d(y, cl intA) = d(y, clA) = d(y, A).

Secondly, d(y, Y \ intA) = d(y, cl(Y \A)) = d(y, Y \A). Now, the conclusion is

clear taking into account Definition 1.3.18.

(xii) From [9, Lemma 2.5] it follows that cl int(A + K) = cl(A + intK) =

cl(A + K). Now, part (xii) is obtained from part (xi) with A + K instead of

A.
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Remark 1.3.20. From part (iii) it follows that D(y, A) = d(y, A) ≥ 0 whenever

intA = ∅.

It is observed that the oriented distance function D(·, A) has good properties

by depending on the properties of the set A which has been considered. It is well-

known that the main properties between Gerstewitz’s function and the oriented

distance function are very similar. Some relations between Gerstewitz’s function

and the oriented distance function of Hiriart-Urruty can be found in [98].

In [29,32–34,100] some dual representation results for Hiriart-Urruty function

were given. In these papers, it is said that when A is a convex set, it holds that

D(y, A) = sup
‖ξ‖=1

(〈ξ, y〉 − sup
a∈A
〈ξ, a〉).

Moreover, in the case that A = −K is a convex cone, it follows that

D(y,−K) = sup
‖ξ‖=1,ξ∈K+

〈ξ, y〉,

where K+ = {ξ ∈ Y ∗ : 〈ξ, y〉 ≥ 0, y ∈ K} is the positive polar cone corresponding

to K and Y ∗ is the dual space of Y .

It should be noted that there are only a few set extensions of the oriented

distance function of Hiriart-Urruty defined in a normed space with a convex cone

not necessarily solid (see [18,38,45,129]).

In the setting of the order variable structures, some expressions of type sup-inf

by using oriented distance function can be found in the literature [3].

The next example illustrates Definition 1.3.18.

Example 1.3.21. Let Y = R2, K = R2
+ and y = (y1, y2) ∈ R2. Then, it holds

D(y,−R2
+) =



√
(y1)2 + (y2)2 if y1, y2 ≥ 0

y2 if y1 ≤ 0, y2 ≥ 0

max{y1, y2} if y1, y2 ≤ 0

y1 if y1 ≥ 0, y2 ≤ 0.

In the following, we give some results that will be needed later on.

Lemma 1.3.22. Let A ∈ P0(Y ), y ∈ Y and r ≥ 0. If y 6∈ A + rU0, then

d(y, A) = r + d(y, A+ rU0).
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Proof. Let R = r+d(y, A+rU0). We have to prove: 1) d(y, a) ≥ R, for all a ∈ A
and 2) for all ε > 0, there exists a ∈ A such that d(y, a) < R + ε.

1) Let a ∈ A and take u = r y−a
‖y−a‖ . It is clear that z = a+ u ∈ A+ rU0 since

‖u‖ = r. Then

d(a, y) = d(a, z) + d(z, y) ≥ d(a, z) + d(y, A+ rU0) = r + d(y, A+ rU0) = R.

2) Given ε > 0, let r′ = d(y, A + rU0). Then, there exists z ∈ A + rU0 such

that d(y, z) < r′+ ε
2
. Moreover, it is verified that d(z, A) ≤ r and, therefore, there

exists a ∈ A such that d(z, a) < r+ ε
2
. Consequently, d(y, a) ≤ d(y, z) +d(z, a) ≤

r′ + ε
2

+ r + ε
2

= R + ε.

Remark 1.3.23. In general, if intA 6= ∅, intA ⊂ S ⊂ clA and cl intA = clA,

then d(y, S) = d(y, intA) = d(y, clA).

Lemma 1.3.24. Let A ∈ P0(Y ), y ∈ Y and r ≥ 0. It is verified that y ∈
cl(A+rU0) if and only if d(y, A) ≤ r. This is equivalent to say that cl(A+rU0) =

{y ∈ Y : d(y, A) ≤ r}.

Proof. (⇒) If r = 0, it is clear. So, let r > 0 and Ar := {y ∈ Y : d(y, A) ≤ r}.
Then, we have

A+ rU0 ⊂ A+ rU0 ⊂ Ar,

since d(a+u, a) = ‖u‖ ≤ r, for all u ∈ rU0 and all a ∈ A. As the function d(·, A)

is continuous, we deduce that Ar is closed and, consequently, cl(A+ rU0) ⊂ Ar.

(⇐) Suppose that d(y, A) ≤ r and y 6∈ cl(A + rU0). Then, there exists ε > 0

such that Uy(ε) ∩ (A + rU0) = ∅, and thus d(y, A + rU0) ≥ ε. Therefore, by

Lemma 1.3.22, we derive that d(y, A) = r + d(y, A + rU0) ≥ r + ε > r, and this

is a contradiction.

Corollary 1.3.25. Let A ∈ P0(Y ). If 0 ≤ r′ < r, then cl(A+ r′U0) ⊂ A+ rU0.

Proof. Let y ∈ cl(A+r′U0). By Lemma 1.3.24, we have that d(y, A) ≤ r′. Assume

that y 6∈ A+ rU0. If y ∈ A+ rU0, then d(y, A) = r and this is a contradiction. If

y 6∈ A+ rU0, by Lemma 1.3.22, it is verified that d(y, A) = r+d(y, A+ rU0) ≥ r,

and this is a contradiction too.
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Lemma 1.3.26. For y1, y2 ∈ Y and for all A ∈ P0(Y ), we have that d(y1, A) −
d(y2, A) ≤ d(y1, y2).

In the rest of this chapter, we assume that K ⊂ Y is a closed convex pointed

and solid cone. So, if e ∈ intK then the order interval associated with K is given

by [−e, e]K = (−e+K) ∩ (e−K).

Next, we recall the definition of norm ‖.‖e generated by Minkowski’s functional

of an order interval with e ∈ intK (see [35, 38,61,62,103,109,133]).

Definition 1.3.27. Let y ∈ Y and e ∈ intK. The norm ‖.‖e generated by

Minkowski’s functional is defined as follows:

‖y‖e = inf{t > 0 : (1/t)y ∈ [−e, e]K}.

In [38], with this norm it is proved that for all y ∈ Y and A ⊂ Y ,

d(y, A) = inf{t ∈ R+ : y ∈ t[−e, e]K + A}. (1.4)

Moreover, we have that t[−e, e]K +K = −te+K, for all t ∈ R+ and, therefore,

t[−e, e]K + A+K = −te+ A+K, ∀t ∈ R+. (1.5)

In the next proposition, we obtain expressions for the distance between a point

and the conic extension to a set.

Proposition 1.3.28. If y ∈ Y , A ⊂ Y and we consider the norm ‖.‖e, then we

have

d(y, A+K) = inf{t ∈ R+ : y ∈ −te+ A+K} = ϕle,y(A), (1.6)

d(y, A−K) = inf{t ∈ R+ : y ∈ te+ A−K} = ϕue,A(y). (1.7)

Proof. Firstly, the first equality in (1.6) is a consequence of (1.4) and (1.5), and

the second one is clear. Secondly, we have that t[−e, e]K −K = te −K, for all

t ∈ R+ and, consequently, t[−e, e]K + A −K = te + A −K. Now, the equality

(1.7) follows as a consequence of (1.4).
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Remark 1.3.29. (a) If x 6∈ − intK, then hinf(x, 0) ≥ 0 and, therefore, hinf(x, 0) =

d(x,−K) = inf{t ∈ R+ : x ∈ te−K} = ϕue,0(x).

(b) We have that d(x − y,−K) coincides with ϕle,y(x) and ϕue,y(x). Indeed,

taking into account (1.6), ϕle,y(x) = d(y, x + K) = d(y − x,K) = d(x − y,−K),

and applying (1.7), ϕue,y(x) = d(x, y − K) = d(x − y,−K) (we have also used

Proposition 1.3.17(i)).

After that, it is proved that the function ϕle,B(A) (respectively, ϕue,B(A)), co-

incides with the excess of B (respectively, A) over A + K (respectively, over

B −K).

Theorem 1.3.30. If A,B ⊂ Y and we consider the norm ‖.‖e, then

(i) ϕle,B(A) = ρB(A+K).

(ii) ϕue,B(A) = ρA(B −K).

Proof. We prove only part (i) since the proof of part (ii) is similar. By the

characterization for the function ϕle,B(A) given in (1.3), Proposition 1.3.28 and

definition of ρB(A+K), we have that

ϕle,B(A) = sup
y∈B

ϕle,y(A) = sup
y∈B

d(y, A+K) = ρB(A+K).

The results stated in this chapter are collected in [66, Section 2].





Chapter 2

Set scalarization functions

In this chapter, we have gathered some set scalarization functions available in

the literature, which are extensions of Gerstewitz’s function either of the oriented

distance function of Hiriart-Urruty. Set extensions of Gerstewitz’s function can be

found in (see [5,38,42,43,48,51,70,73,94,95,103,107,134]) and, to the best of our

knowledge, the first set extension of Gerstewitz’s function defined on a topological

linear space with a solid convex cone K was introduced by Hamel and Löhne [48]

in 2006, based on two set order relations introduced in [89], such as the lower set

less preorder and the upper set less preorder of Kuroiwa. It should be noted that

there are only a few set extensions of the oriented distance function of Hiriart-

Urruty defined in a normed space with a convex cone K not necessarily solid (see

[38,45,129]). We recall the set extension of oriented distance function of Hiriart-

Urruty introduced by Ha [45] and we present a new set scalarization function of

type sup-inf which is an extension of the oriented distance function of Hiriart-

Urruty too. It is worth noting that the generalized oriented distance functions are

simpler in structure and easier to calculate than generalized Gerstewitz’s function

(see [37, 129]).

The results stated in this chapter are collected in [66, Sections 3,4 and 5]

and [67, Sections 3 and 4].

31
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2.1 Relations among set scalarizations

We recall set scalarization functions between two sets existing in the litera-

ture, which are concerned with Gerstewitz’s function and set oriented distance of

Hiriart-Urruty (see [18, 38, 129]). We call set oriented distances to the set exten-

sions of the oriented distance function, which are generalizations to sets of the

oriented distance function of Hiriart-Urruty and defined in a normed space with

a convex cone K not necessarily solid. Moreover, a new set extension of oriented

distance of type sup-inf is introduced and some new relationships among the set

scalarization mentioned above are established.

In Crespi et al. [18] it is introduced the next scalarization function D : P0(Y )×
2Y → R ∪ {±∞}.

Definition 2.1.1. Let A ∈ P0(Y ) and B ⊂ Y . The oriented distance function

of Crespi et al. for A and B is given as follows:

D(A,B) = inf
x∈A

D(x,B). (2.1)

If B = ∅, then D(A, ∅) = +∞. As D(x,B) ≤ d(x,B) if we take infima in

x ∈ A, we obtain that D(A,B) ≤ d(A,B). If intB = ∅, then D(A,B) = d(A,B)

according to Remark 1.3.20

This function is used in [18] to characterize minimal and weak minimal solu-

tions to a set optimization problem with the vector criterion.

In the next proposition we obtain a characterization for the distance of Crespi

et al.

Theorem 2.1.2. If A ∈ P0(Y ) and B ⊂ Y , then

D(A,B) = d(A,B)− ρA(Y \B) =

 d(A,B) if A ∩B = ∅
−ρA(Y \B) if A ∩B 6= ∅.

Proof. First of all, if A ∩ B = ∅, then x 6∈ B, for all x ∈ A and, in this case,

D(x,B) = d(x,B), so we have D(A,B) = infx∈A d(x,B) = d(A,B) and we

conclude.
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Secondly, by Definition 2.1.1 we have that D(A,B) = infx∈AD(x,B). Now,

if we suppose that A ∩ B 6= ∅, then infx∈AD(x,B) = infx∈A∩BD(x,B). Fur-

thermore, it is verified that infx∈A∩BD(x,B) = infx∈A∩B[−d(x, Y \B)] by Defini-

tion 1.3.18. Since inf(−f) = − sup f , we deduce that infx∈A∩B[−d(x, Y \B)] =

− supx∈A∩B d(x, Y \B). Finally, as supx∈A∩B d(x, Y \B) = supx∈A d(x, Y \B), if we

apply the definition of excess, it results that

− sup
x∈A∩B

d(x, Y \B) = − sup
x∈A

d(x, Y \B) = −ρA(Y \B),

and we conclude.

Now, the following oriented distance functions between two sets are intro-

duced. As the previous one, it is not required that the cone K is solid.

Definition 2.1.3. Let B ∈ P0(Y ). The functions δB,∆B, ∆̂B : 2Y → R∪ {±∞}
are given as follows:

δB(A) = ρB(A)− d(B, Y \A),

∆B(A) = δB(A+K), (2.2)

∆̂B(A) = δB(A−K).

For A = ∅, we have δB(∅) = +∞, and if A = Y , then δB(Y ) = −∞.

The function ∆B is the oriented distance between two sets given by Gutiérrez

et al. [38].

If A = ∅, then ∆B(∅) = +∞ and, moreover, ∆B(A) = −∞ if and only if A is

not K-proper [38]. Analogously, if A = ∅, then ∆̂B(∅) = +∞ and, furthermore,

∆̂B(A) = −∞ if and only if A is not (−K)-proper.

Remark 2.1.4. (a) We have that ∆y(x) = D(x−y,−K), for all x, y ∈ Y . Indeed,

∆y(x) = ρy(x + K) − d(y, Y \(x + K)) = d(x − y,−K) − d(x − y, Y \(−K)), for

all x, y ∈ Y (we have used Proposition 1.3.17(ii)).

(b) We have that ∆y(A) = D(y, A+K), for all y ∈ Y and A ⊂ Y .

In Xu and Li [129] the nonlinear scalarization function DA : P0(Y ) → R ∪
{±∞} is introduced as follows.
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Definition 2.1.5. Let A ⊂ Y and B ∈ P0(Y ). The oriented distance of Xu and

Li for A and B is given as follows:

DA(B) = sup
y∈B

D(y, A). (2.3)

If A = ∅, then D∅(B) = +∞, and DY (B) = −∞ if A = Y . We have

DA(B) ≤ ρB(A). If intA = ∅, then DA(B) = ρB(A) according to Remark 1.3.20.

Remark 2.1.6. We have that D(B,A) ≤ DA(B) since D(B,A) = infy∈BD(y, A)

and DA(B) = supy∈BD(y, A). Thus, D(B,A) ≤ DA(B) ≤ ρB(A).

In [129] the function DA is applied to obtain alternative theorems, some op-

timality conditions and scalar representations to set optimization problems with

the set criterion.

After that, we present a relation between the oriented distances of Crespi et

al. (2.1) and Xu and Li (2.3).

Theorem 2.1.7. If A ⊂ Y and B ∈ P0(Y ), then we have

DA(B) = −D(B, Y \A) = ρB(A)− d(B, Y \A) = δB(A).

Proof. Taking into account that sup f = − inf(−f) and Lemma 1.3.19(xv), we

have

DA(B) = sup
y∈B

D(y, A) = − inf
y∈B

[−D(y, A)] = − inf
y∈B

D(y, Y \A)

= −D(B, Y \A).

The second equality follows from Theorem 2.1.2, and the last equality is the

definition of δB.

If A = ∅, then DA(B) = −D(B, Y \A) = δB(A) = +∞, and if A = Y , it is

verified that DA(B) = −D(B, Y \A) = δB(A) = −∞.

By the previous Theorem 2.1.7, it follows that if B∩(Y \A) 6= ∅, then DA(B) =

ρB(A).

An interesting consequence of Definition 2.1.3 and Theorem 2.1.7 is the next

corollary, where the oriented distance of Gutiérrez et al. is related to the distances

of Crespi et al. and Xu and Li.
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Corollary 2.1.8. If A ⊂ Y and B ∈ P0(Y ), then we have

DA+K(B) = ∆B(A) = −D(B, Y \(A+K)),

DA−K(B) = ∆̂B(A) = −D(B, Y \(A−K)).

Let us see a characterization of the distance ∆B(A).

Proposition 2.1.9. Let A ⊂ Y and B ∈ P0(Y ). Then, we have

∆B(A) = sup
y∈B

D(y, A+K) = sup
y∈B

∆y(A).

Proof. Applying Corollary 2.1.8, Definition 2.1.5 and Remark 2.1.4(b) it results

that ∆B(A) = DA+K(B) = supy∈BD(y, A+K) = supy∈B ∆y(A).

In Gutiérrez et al. [38, Theorem 6.15] the next theorem, which is essential for

our purposes, is proved.

Theorem 2.1.10. Let Y be a normed space with the norm ‖.‖e, K ⊂ Y is a

closed pointed and solid cone, and e ∈ intK. If B ∈ P0(Y ), then

hlinf(A,B) = ∆B(A), ∀A ⊂ Y.

By the previous Theorem 2.1.10 and Remark 2.1.4(a), using the norm ‖.‖e,
we derive that

D(x− y,−K) = hinf(x, y), ∀x, y ∈ Y. (2.4)

The next relation between the function hlinf(A,B) and DA+K(B) is a conse-

quence of Corollary 2.1.8 and Theorem 2.1.10.

Corollary 2.1.11. Let A ⊂ Y , B ∈ P0(Y ) and K ⊂ Y be a closed pointed and

solid cone. If we consider the norm ‖.‖e, then we have

DA+K(B) = hlinf(A,B).

Next, by using the norm ‖.‖e, the function hlinf(A, y) is related to D(y, A+K).

Proposition 2.1.12. If A ∈ P0(Y ), y ∈ Y and we consider the norm ‖.‖e, then

(i) hlinf(A, y) = infx∈AD(x− y,−K) = D(A− y,−K).

(ii) D(y, A+K) = hlinf(A, y) = infx∈AD(y, x+K).
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Proof. (i) By Corollary 1.3.16(i) and equality (2.4), we have

hlinf(A, y) = inf
x∈A

hinf(x, y) = inf
x∈A

D(x− y,−K).

The second equality is deduced by Definition 2.1.1.

(ii) In Theorem 2.1.10, particularized to the case B = {y}, it results that

hlinf(A, y) = ∆y(A), for all A ⊂ Y . Then, by applying part (i), it follows that

∆y(A) = hlinf(A, y) = inf
x∈A

D(x− y,−K).

Finally, by Remark 2.1.4(b), we have that ∆y(A) = D(y, A + K) and, conse-

quently,

D(y, A+K) = inf
x∈A

D(x− y,−K) = inf
x∈A

D(y, x+K)

by parts (xiii) and (xiv) of Lemma 1.3.19.

Remark 2.1.13. As x + K ⊂ A + K, for all x ∈ A, then by Lemma 1.3.19(vii)

it follows that D(y, A + K) ≤ D(y, x + K), for all x ∈ A, being y ∈ Y and,

therefore, for any norm it follows that

D(y, A+K) ≤ inf
x∈A

D(y, x+K).

In general, for y ∈ A+K this inequality is strict (see Example 2.1.23).

Now, in the following definition, we study two set extensions of type sup-inf

of the oriented distance function of Hiriart-Urruty. First of all, we deal with

a set scalarization function of type sup-inf, denoted Dsi
K(A,B), introduced by

Ha [45] and, secondly, we present another function, denoted D̂
si

K(A,B), which

is an extension of the oriented distance function of Hiriart-Urruty too, and that

was introduced by us. Moreover, we investigate some of their properties and their

relationships to other scalarization functions which are available in the literature.

The first function, was used by Ha to define a Hausdorff-type distance between

two sets and thus be able to define a directional derivative for a set-valued map

and, afterwards, it was applied to optimization problems with set-valued maps.

So, in the following definition, we are going to provide the two set scalarization

functions of type sup-inf mentioned above, that can be regarded as an oriented

distance between two sets, which are set extensions of the oriented distance func-

tion of Hiriart-Urruty.
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Definition 2.1.14. The function Dsi
K : P0(Y ) × P0(Y ) → R ∪ {±∞} is defined

as follows

Dsi
K(A,B) = sup

y∈B
inf
x∈A

D(x− y,−K). (2.5)

We also define D̂
si

K(A,B) = supx∈A infy∈BD(x− y,−K).

Without a specific name, the expression supy∈B infx∈AD(x− y,−K) appears

in [11] in order to provide a characterization of the lower set less order relation.

If the cone K is understood, for the sake of simplicity, we write Dsi(A,B)

and D̂
si

(A,B) instead of Dsi
K(A,B) and D̂

si

K(A,B). Similar expressions for the

Gerstewitz’s function appear in other papers as, for example, in [81,83].

Remark 2.1.15. (a) If A = {x} and B = {y}, then we have Dsi(x, y) = D(x−
y,−K).

(b) Taking into account Lemma 1.3.19(xiii), we have the next relation between

the generalized oriented distances Dsi and D̂
si

:

D̂
si

K(A,B) = Dsi
−K(B,A) = Dsi

K(−B,−A). (2.6)

(c) By definition, it follows that

Dsi(A,B) = sup
y∈B

Dsi(A, y), (2.7)

Moreover, we have that D̂
si

(A,B) = supx∈A D̂
si

(x,B).

(d) It is verified that

Dsi(A, y) ≤ Dsi(A,B) ≤ Dsi(x,B), ∀x ∈ A,∀y ∈ B.

The first inequality is obvious in view of (2.7). To prove the second one, let a0 ∈ A
and r0 = Dsi(a0, B) = supb∈BD(a0 − b,−K). Therefore, infa∈AD(a − b,−K) ≤
D(a0 − b,−K) ≤ r0, for all b ∈ B. Then, we have that

Dsi(A,B) = sup
b∈B

inf
a∈A

D(a− b,−K) ≤ r0.

Let us give some properties of the scalarization function Dsi(A,B) defined

above.
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Proposition 2.1.16. Let A,B ∈ P0(Y ) and y ∈ Y . Then, we have

Dsi(A, y) ≤ d(y, A+K) and Dsi(A,B) ≤ ρB(A+K).

Proof. Indeed, for the first inequality, one has D(x− y,−K) ≤ d(x− y,−K) and

it is enough to take infima with x ∈ A and to use Proposition 1.3.17(iii):

Dsi(A, y) = inf
x∈A

D(x−y,−K) ≤ inf
x∈A

d(x−y,−K) = inf
x∈A

d(y, x+K) = d(y, A+K).

For the second inequality, using the first one, taking suprema with y ∈ B and

in view of equation (2.7), we have that Dsi(A,B) ≤ ρB(A+K).

Proposition 2.1.17. Let A ∈ P0(Y ) and y ∈ Y . If y 6∈ A+K or Dsi(A, y) ≥ 0

or if K is not solid, then

Dsi(A, y) = d(y, A+K).

Proof. In the case of y 6∈ A+K, by definition of Dsi, we have that

Dsi(A, y) = inf
x∈A

[d(y, x+K)− d(y, Y \(x+K))]

and it is clear that d(y, Y \(x+K)) = 0, for all x ∈ A, and therefore Dsi(A, y) =

infx∈A d(y, x + K) = d(y, A + K) by Proposition 1.3.17(iii). On the other hand,

if K is not solid, by Remark 1.3.20 we have D(x − y,−K) = d(x − y,−K), for

all x, y ∈ Y and, consequently,

Dsi(A, y) = inf
x∈A

D(x− y,−K) = inf
x∈A

d(y, x+K) = d(y, A+K).

We present two examples in order to illustrate the above definition.

Example 2.1.18. Let Y = R2, K = R2
+, A = {(x, y) ∈ R2 : y = −x, x ≤ 0}

and B = {b} with b = (0, 0). Then, Dsi(A, b) = infa∈AD(a− b,−K) = 0.

Example 2.1.19. Let Y = R2, K = R2
+, A = {(x, y) ∈ R2 : y = x, x ≥ 0}

and B = {(x, y) ∈ R2 : y = 1
x
, x < 0}. As b 6∈ A + K, for all b ∈ B, by

Proposition 2.1.17 we have that Dsi(A, b) = d(b, A + K) and, then, Dsi(A,B) =

supb∈B Dsi(A, b) = supb∈B d(b, A+K) = supb∈B
√
b21 + b22 = +∞ with b = (b1, b2).
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As a consequence of Remark 2.1.15(c) and Proposition 2.1.17, we have the

next result.

Proposition 2.1.20. If A,B ∈ P0(Y ) and K is not solid, then

(i) Dsi(A,B) = ρB(A+K).

(ii) Dsi(A,B) ≥ 0.

Hence it is a necessary condition for Dsi(A,B) < 0 that intK 6= ∅. Moreover,

if K is not solid and B ⊂ cl(A+K) then Dsi(A,B) = 0.

In the next proposition, the distances (2.1), (2.2) and (2.5) are related, con-

sidering any norm in Y .

Proposition 2.1.21. If A,B ∈ P0(Y ), then we have

D(B,A+K) ≤ ∆B(A) ≤ Dsi(A,B) ≤ ρB(A+K). (2.8)

Proof. The first inequality is obtained by Corollary 2.1.8 and Remark 2.1.6. To

prove the second one, by Remark 2.1.13 and Lemma 1.3.19 parts (xiii) and (xiv),

we have that

D(y, A+K) ≤ inf
x∈A

D(y, x+K) = inf
x∈A

D(x− y,−K).

Therefore, taking suprema with y ∈ B we have that

sup
y∈B

D(y, A+K) ≤ sup
y∈B

inf
x∈A

D(x− y,−K) = Dsi(A,B)

and so the inequality is proved by Proposition 2.1.9. The third inequality is

Proposition 2.1.16.

In the following, we derive a relation by the previous Theorem 2.1.21.

Corollary 2.1.22. If A ∈ P0(Y ) and B = {y}, then we have

D(y, A+K) ≤ Dsi(A, y) ≤ d(y, A+K).

It is worth noting that this result can also be obtained by using Remark 2.1.13

and Proposition 2.1.16.

The following example shows that the equality in (2.8), in general, do not

hold.
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Example 2.1.23. Let Y = R2, K = R2
+, A = {(x, y) ∈ R2 : x + y = 0} and

B = {b1, b2}, where b1 = (1, 1) and b2 = (1, 0). We have:

• D(B,A + K) = infb∈BD(b, A + K) = mini=1,2{−d(bi, Y \ (A + K))} =

min{−
√

2,−
√

2/2} = −
√

2.

• ∆B(A) = ρB(A+K)− d(B, Y \ (A+K)) = −d(b2, Y \ (A+K)) = −
√

2/2.

• Dsi(A,B) = supb∈B infa∈AD(a− b,−K) = maxi=1,2 infa∈AD(a, bi −K).

The infimum in a ∈ A of D(a, bi−K) is attained at the point ai where A cuts

to the line y = x for i = 1 and to the line y = x−1 for i = 2. So a1 = (0, 0) ant

a2 = (1/2,−1/2). Therefore, Dsi(A,B) = maxi=1,2{−d(ai, Y \ (bi − K))} =

max{−1,−1/2} = −1/2.

• ρB(A+K) = supb∈B d(b, A+K) = 0.

In consequence, (2.8) is satisfied with strict inequalities: −
√

2 < −
√

2/2 <

−1/2 < 0.

Now, we show that the four scalarization functions Dsi, D, ∆ and hlinf are the

same if we consider the norm ‖.‖e.

Theorem 2.1.24. If we consider the norm ‖.‖e in Y , then

Dsi(A,B) = DA+K(B) = ∆B(A) = hlinf(A,B), ∀A,B ∈ P0(Y ).

Proof. By Corollary 2.1.8, we have that DA+K(B) = ∆B(A). By Theorem 2.1.10,

we obtain that ∆B(A) = hlinf(A,B). Applying Corollary 1.3.16 parts (ii) and (i),

and equation (2.4), it results that

∆B(A) = hlinf(A,B) = sup
y∈B

hlinf(A, y) = sup
y∈B

inf
x∈A

hinf(x, y)

= sup
y∈B

inf
x∈A

D(x− y,−K) = Dsi(A,B).

In the next theorem, we relate the functions Dsi, ∆ and D, considering any

norm in Y .
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Theorem 2.1.25. Let A ∈ P0,K(Y ) and B ∈ P0(Y ) such that B∩(Y \(A+K)) 6=
∅. Then

DA+K(B) = ∆B(A) = Dsi(A,B) = ρB(A+K).

Proof. Applying Corollary 2.1.8, we obtain the following

∆B(A) = DA+K(B) = sup
y∈B

[d(y, A+K)− d(y, Y \(A+K))].

As B ∩ (Y \(A+K)) 6= ∅, it results that

sup
y∈B

[d(y, A+K)− d(y, Y \(A+K))] = sup
y∈B

d(y, A+K) = ρB(A+K).

If we take y 6∈ A + K, then y 6∈ x + K, for all x ∈ A and, therefore, we obtain

d(y, x+K) = D(y, x+K). Hence, by Propositions 2.1.17 and 1.3.17(iii), we have

that

d(y, A+K) = D(y, A+K) = inf
x∈A

D(y, x+K).

Then, if B ∩ (Y \(A+K)) 6= ∅, we obtain that

∆B(A) = sup
y∈B

d(y, A+K) = sup
y∈B∩(Y \(A+K))

d(y, A+K)

= sup
y∈B∩(Y \(A+K))

inf
x∈A

D(y, x+K) = sup
y∈B

inf
x∈A

D(y, x+K) = Dsi(A,B).

Now, we derive an interesting result as a consequence of the previous Theorem

2.1.25.

Corollary 2.1.26. If A ∈ P0(Y ) and y 6∈ A + K, then Dsi(A, y) = ∆y(A) =

DA+K(y) = d(y, A+K) = D(y, A+K).

Remark 2.1.27. In Theorem 2.1.25, we require that the set A is K-proper

because otherwise condition B ∩ (Y \(A+K)) 6= ∅ is not true for any B.

Let us observe that it has been proved in Example 2.1.23 that, in general,

DA+K(B) = ∆B(A) 6= Dsi(A,B) whenever B ⊂ A+K.
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2.2 Properties for set oriented distances of type

sup-inf

In the previous section, we have presented two set extensions of type sup-inf in

Definition 2.1.14, denoted Dsi and D̂
si

, to the oriented distance function of Hiriart-

Urruty, the first one, introduced by Ha [45] and, the second one, introduced by us.

In this section, we investigate new properties for the functions Dsi and D̂
si

. More

specifically, by using cone-properness and cone-boundedness, and a new concept

of cone-boundedness with respect to a set which have been introduced, results

about their finitude are presented. Besides, some new fundamental properties as

convexity, Lipschitz continuity, positive homogeneity, invariance respect to conic

extensions, monotonicity, diagonal null, invariance with respect to closure, etc.

are presented.

Now, we start with a theorem which establishes a condition in order to the

function Dsi can be smaller or equal to a non-negative real number.

Theorem 2.2.1. Let A,B ∈ P0(Y ) and r ≥ 0. Then

Dsi(A,B) ≤ r ⇔ B ⊂ cl(rU0 + A+K).

Proof. (⇒) Ad absurdum, assume that there exists y0 ∈ B with y0 6∈ cl(rU0 +

A+K). By Lemma 1.3.24, we have that r0 = d(y0, A+K) > r. In this case, by

Corollary 2.1.26, we obtain that Dsi(A, y0) = d(y0, A + K) = r0 > r. Therefore,

Dsi(A,B) = supy∈B Dsi(A, y) ≥ r0 > r, which is a contradiction.

(⇐) By Lemma 1.3.24, we have that d(y, A + K) ≤ r, for all y ∈ B. By

Proposition 2.1.16, we deduce Dsi(A, y) ≤ d(y, A+K) ≤ r, for all y ∈ B. Then,

Dsi(A,B) = supy∈B Dsi(A, y) ≤ r, and we conclude.

In the following, let us see a proposition which provides an equivalent condition

to Dsi(A, y) = −∞.

Proposition 2.2.2. Let A ∈ P0(Y ), y ∈ Y and K solid. Then, Dsi(A, y) = −∞
if and only if there exists a sequence (an) ⊂ A such that d(an − y, Y \(−K)) →
+∞.
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Proof. It is clear since

Dsi(A, y) = inf
a∈A

D(a− y,−K) = inf
a∈A

[d(a− y,−K)− d(a− y, Y \(−K))],

and this value is −∞ if infa∈A[−d(a − y, Y \(−K))] = −∞, which is equivalent

to supa∈A d(a− y, Y \(−K)) = +∞. The last equality is true if and only if there

exists a sequence (an) ⊂ A such that d(an − y, Y \(−K))→ +∞.

Next, we give equivalent conditions to Dsi(A,B) = −∞.

Proposition 2.2.3. Let A ∈ P0(Y ) and K solid. Then, the next statements are

equivalent:

(i) Dsi(A, y0) = −∞, for some y0 ∈ Y .

(ii) Dsi(A, y) = −∞, for all y ∈ Y .

(iii) Dsi(A,B) = −∞, for some B ∈ P0(Y ).

(iv) Dsi(A,B) = −∞, for all B ∈ P0(Y ).

Proof. We only see the implication (i) ⇒ (ii) since the rest are obvious. As

Dsi(A, y0) = −∞, by Proposition 2.2.2, there exists (an) ⊂ A such that d(an −
y0, Y \(−K)) → +∞. By Lemma 1.3.26 applied to A = Y \(−K), y2 = an − y
and y1 = an − y0, we have that

d(an − y, Y \(−K)) ≥ d(an − y0, Y \(−K))− d(y, y0).

Furthermore, as d(an−y0, Y \(−K))→ +∞, it follows that d(an−y, Y \(−K))→
+∞, for all y ∈ Y . Therefore, by Proposition 2.2.2, we conclude that Dsi(A, y) =

−∞, for all y ∈ Y .

In the next lemma, we obtain a characterization for K-proper sets.

Lemma 2.2.4. Let K be solid and e ∈ intK. Then, A is K-proper if and only

if there exists t0 > 0 such that A ⊂ Y \(−t0e− intK).

Proof. (⇒) By contradiction, let us suppose that there exists tn → +∞ such that

A 6⊂ Y \(−tne− intK). Then, for each n,

∃ an ∈ A such that an ∈ −tne− intK. (2.9)
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Now, we assert that
⋃
n

(an +K) = Y . Otherwise,

∃ y0 ∈ Y such that y0 6∈ an +K, ∀n. (2.10)

By (2.9), we have

−an ∈ tne+ intK, ∀n. (2.11)

On the other hand, we know that Y =
⋃
t>0

(−te + intK) and, then, there exists

t > 0 such that y0 ∈ −te+ intK. Therefore, in view of (2.11), it results that

y0 − an ∈ −te+ intK + tne+ intK ⊂ (tn − t)e+ intK.

For n large enough, tn− t > 0 and, consequently, y0−an ∈ (tn− t)e+ intK ⊂
intK, which contradicts (2.10). Hence, A + K = Y and this is a contradiction

since A is K-proper.

(⇐) It is clear because

A+K ⊂ Y \(−t0e−intK)+K = −t0e+Y \(− intK)+K ⊂ −t0e+Y \(− intK) 6= Y.

The second inclusion is true since if y /∈ − intK and k ∈ K, then y+k /∈ − intK;

otherwise, if y+ k ∈ − intK then we have that y ∈ −k− intK ⊂ − intK, which

is a contradiction.

Now, we establish a characterization of the lack of K-properness of a set in

the case when K is solid.

Proposition 2.2.5. Let A,B ∈ P0(Y ) and let K be solid. Then, A is not K-

proper if and only if Dsi(A,B) = −∞.

Proof. (⇒) By Proposition 2.2.3, it is sufficient to prove that Dsi(A, 0Y ) = −∞
and, in accordance with Proposition 2.2.2, it is sufficient to find a sequence (an) ⊂
A such that supn d(an, Y \(−K)) = +∞. If e ∈ intK and A is not K-proper, by

Lemma 2.2.4 it results that

A 6⊂ Y \(−te− intK), ∀t > 0. (2.12)

Now, if tn → +∞ then, taking into account (2.12), we obtain that there exists

an ∈ A such that an 6∈ Y \(−tne− intK), that is,

an ∈ −tne− intK. (2.13)
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Let us see that supn d(an, Y \(−K)) = +∞. Assume that supn d(an, Y \(−K)) =

α. Then, for all n,

an ∈ Y \(−K) + 2αU0. (2.14)

In view of (2.13) and (2.14), it follows that an = −tne − kn = −yn + zn, with

kn ∈ intK, yn ∈ Y \K, zn ∈ 2αU0. Then,

−e =
1

tn
(−yn + kn) + t−1n zn ∈ Y \(−K) + t−1n zn,

since −yn + kn ∈ −Y \K + intK ⊂ −Y \K. As t−1n zn → 0 because ‖zn‖ < 2α,

we obtain that −e ∈ cl[Y \(−K)] = Y \(− intK), that is, e ∈ Y \ intK, which is

a contradiction.

(⇐) By contradiction, suppose that there exists y ∈ Y \(A+K). As Dsi(A,B) =

−∞, by Proposition 2.2.3, we can assume Dsi(A, 0Y ) = −∞ and, by Propo-

sition 2.2.2, there exists (an) ⊂ A such that d(0, an + Y \K) → +∞. Since

an + K ⊂ A + K, or equivalently, Y \(A + K) ⊂ Y \(an + K) = an + Y \K, it

follows that

0 = d(y, Y \(A+K)) ≥ d(y, an + Y \K).

By Lemma 1.3.26, we have that

0 ≥ d(y, an + Y \K) ≥ d(0, an + Y \K)− d(y, 0),

and d(0, an + Y \K) ≤ ‖y‖, for all n, which is a contradiction because d(0, an +

Y \K)→ +∞.

The following result is a direct consequence of Propositions 2.2.5 and 2.1.20(ii).

Corollary 2.2.6. Let A,B ∈ P0(Y ). If A is K-proper, then Dsi(A,B) 6= −∞.

Other authors have obtained similar results to Corollary 2.2.6. For example,

in [45, Lemma 3.1] it is required that A is K-bounded, however, we ask weaker

assumptions as A is K-proper and, therefore, our result represents an extension.

In the next proposition, we characterize that A is not a K-proper set for the

case that K is not solid.



46 Set scalarization functions

Proposition 2.2.7. Let A ∈ P0(Y ) and assume that K is not solid. Then, we

have

(i) If A is not K-proper, then Dsi(A,B) = 0, for all B ∈ P0(Y ).

(ii) The reverse is true if we suppose that A is K-closed.

Proof. (i) Indeed, by Proposition 2.1.20(i) we have Dsi(A,B) = ρB(A + K) = 0

because A+K = Y .

(ii) If we assume Dsi(A, y) = 0, ∀y ∈ Y , by Theorem 2.2.1, it follows that

y ∈ cl(A + K) for all y ∈ Y , that is, Y ⊂ cl(A + K) and as A is K-closed we

conclude that Y = A+K.

In the following proposition, we characterize the K-boundedness through the

function Dsi.

Proposition 2.2.8. Let A,B ∈ P0(Y ) and let A be K-bounded. Then, B is

K-bounded if and only if Dsi(A,B) < +∞.

Proof. (⇒) If B is K-bounded and a0 ∈ A, we have that B − a0 is also K-

bounded. Therefore, for the open unit ball U0, there exits r > 0 such that

B − a0 ⊂ rU0 +K, and it follows that B ⊂ a0 + rU0 +K. By Theorem 2.2.1 we

obtain that Dsi(a0, B) ≤ r and, by Remark 2.1.15(d), Dsi(A,B) ≤ Dsi(a0, B) ≤
r < +∞.

(⇐) Let Dsi(A,B) ≤ r with r > 0. By Theorem 2.2.1 and Corollary 1.3.25,

it results that B ⊂ cl(rU0 + A + K) ⊂ r1U0 + A + K for r < r1. As A is

K-bounded, then for U0 there exists t > 0 such that A ⊂ tU0 + K. Therefore,

B ⊂ (r1 + t)U0 +K, so B is K-bounded.

Note that in the ’⇒’ part, the requirement A is K-bounded is not used.

Remark 2.2.9. Similar results to Proposition 2.2.8 have been proved by other

authors. For example, in [51, Theorem 3.6] for the Gerstewitz’s scalarization when

we consider Ge(A,B) but it is required that B is K-proper, and in [129, Theorem

3.1] for the function DA+K(B) of Xu and Li where it is also required that the set

B is K-proper. Therefore, Proposition 2.2.8 is an improvement.
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Now, let us look at a characterization so that a set be K-bounded.

Proposition 2.2.10. Let B ∈ P0(Y ). The next statements are equivalent:

(i) B is K-bounded.

(ii) Dsi(y,B) < +∞, for all y ∈ Y .

(iii) Dsi(y0, B) < +∞, for some y0 ∈ Y .

(iv) Dsi(A,B) < +∞, for all A ∈ P0(Y ).

(v) Dsi(A,B) < +∞, for some K-bounded set A.

Proof. (i)⇒ (ii) follows from Proposition 2.2.8 since {y} is bounded and, there-

fore, K-bounded.

(ii)⇒ (iii), (iv)⇒ (ii) and (v)⇒ (ii) are obvious.

(iii)⇒ (i) follows from Proposition 2.2.8.

(ii)⇒ (iv) is an immediate consequence of the next inequality

Dsi(A,B) ≤ Dsi(a,B), ∀a ∈ A,

given in Remark 2.1.15(d).

(i)⇒ (v) follows from Proposition 2.2.8.

Next, we provide a condition which ensures that the function Dsi is finite.

Corollary 2.2.11. Let A,B ∈ P0(Y ). If A is K-proper and B is K-bounded,

then Dsi(A,B) ∈ R.

Proof. By applying Proposition 2.2.10, we have that Dsi(A,B) < +∞ and, by

Corollary 2.2.6, Dsi(A,B) 6= −∞. Therefore, we conclude that Dsi(A,B) ∈
R.

We present an example for illustrating the previous Proposition 2.2.10, where

the function Dsi takes the value +∞, B is not K-bounded but B is K-proper.

Example 2.2.12. Let Y = R2, K = R2
+, y0 = (0, 0) and B = {(x, y) ∈ R2 : y =

x2, x ≤ −1}. We have that

Dsi(y0, B) = sup
b∈B

D(y0 − b,−K) = sup
b∈B

D(b,K) = +∞.

By Proposition 2.2.10, it follows that B is not K-bounded although is K-proper.
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Remark 2.2.13. Let K be solid. If A ∈ P0(Y ) is not K-proper and B is not

K-bounded, we obtain

(a) Dsi(A,B) = −∞ by Proposition 2.2.5.

(b) Dsi(A, b) = −∞, for all b ∈ B by Proposition 2.2.5.

(c) Dsi(a, b) ∈ R, for all a ∈ A and all b ∈ B.

(d) Dsi(a,B) = +∞, for all a ∈ A by Proposition 2.2.10.

Next, we introduce the concept of K-boundedness w.r.t. a set.

Definition 2.2.14. Let A,B ∈ P0(Y ). We say that B is K-bounded with respect

to A (w.r.t. A) if there exits r > 0 such that

B ⊂ rU0 + A+K.

We observe that if A2∀∃B, then B is K-bounded with respect to A.

Remark 2.2.15. (a) B is K-bounded if and only if B is K-bounded w.r.t. {0}.

(b) If B1 is K-bounded w.r.t. A and B2 is K-bounded, then B1 + B2 is

K-bounded w.r.t. A.

(c) If B is K-bounded w.r.t. A and A is K-bounded, then B is K-bounded.

Now, let us look at a characterization so that a set be K-bounded w.r.t a set.

Proposition 2.2.16. Let A,B ∈ P0(Y ). Then, B is K-bounded w.r.t. A if and

only if Dsi(A,B) < +∞.

Proof. (⇒) It is a consequence of former Definition 2.2.14 and Theorem 2.2.1.

(⇐) Let r ≥ 0 such that Dsi(A,B) ≤ r. By Theorem 2.2.1, we have that

B ⊂ cl(rU0 + A + K). Choosing r′ > r, by applying Corollary 1.3.25, we derive

B ⊂ cl(rU0 + A+K) ⊂ r′U0 + A+K, and then B is K-bounded w.r.t. A.

In the next proposition, we introduce a condition so that the function Dsi can

take a real value.

Proposition 2.2.17. Let A,B ∈ P0(Y ) and let A be K-proper. Then, B is

K-bounded w.r.t. A if and only if Dsi(A,B) ∈ R.
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Proof. (⇒) By applying Proposition 2.2.16, we have that Dsi(A,B) 6= +∞ and,

by Corollary 2.2.6, we derive that Dsi(A,B) 6= −∞.

(⇐) It follows from Proposition 2.2.16.

In the following proposition, we provide a condition what ensures the equiv-

alence between K-boundedness and K-boundedness w.r.t. a set.

Proposition 2.2.18. Let A,B ∈ P0(Y ) and let A be K-bounded. Then, B is

K-bounded if and only if B is K-bounded w.r.t. A.

Proof. (⇒) By applying Proposition 2.2.8, we have that Dsi(A,B) < +∞, and

by Proposition 2.2.16 we conclude.

(⇐) It is Remark 2.2.15(c).

Proposition 2.2.18 extends Remark 2.2.15(a) since now if B is K-bounded,

then B is K-bounded w.r.t. to any K-bounded set A.

The following corollary is a consequence of Proposition 2.2.16.

Corollary 2.2.19. Let A,B ∈ P0(Y ). Then, B is not K-bounded w.r.t. A if

and only if Dsi(A,B) = +∞ and, moreover, in either case we can ensure that A

is K-proper.

Proof. Indeed, it is Proposition 2.2.16 and the final part is true because if A were

not K-proper, then B ⊂ A+K = Y , and B would be K-bounded w.r.t. A, which

is a contradiction.

Next, we establish conditions for a set B not to be K-proper.

Theorem 2.2.20. Let B ∈ P0(Y ) and let K be solid. The following statements

are equivalent:

(i) B is not K-proper.

(ii) B is not K-bounded w.r.t. any K-proper set A.

(iii) B is not K-bounded w.r.t. −Y \K.

(iv) Dsi(A,B) = +∞, for any K-proper set A.

(v) Dsi(−Y \K,B) = +∞.
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Proof. (i) ⇒ (ii) By contradiction, assume that B is K-bounded w.r.t. A for

some K-proper set A. Then, B ⊂ rU0 + A + K, for some r > 0. It follows that

Y = B +K ⊂ rU0 + A+K +K = rU0 + A+K, that is,

Y = rU0 + A+K, (2.15)

but this cannot happen if intK 6= ∅ and A is K-proper since in this case, by

Lemma 2.2.4, we have that A ⊂ −t0e − Y \ intK and, from this, it follows that

A+K ⊂ −t0e− Y \ intK +K ⊂ −t0e− Y \ intK. Therefore,

Y = rU0 + A+K ⊂ −t0e+ rU0 − Y \ intK. (2.16)

Choosing tn → +∞, in view of (2.16), we have −tne ∈ −t0e + rU0 − Y \ intK,

that is, −e ∈ −t0
tn
e+ r

tn
U0−Y \ intK, for all n. Taking the limit to n→ +∞, since

−Y \ intK is closed and U0 is bounded, we have that −e ∈ −Y \ intK, which is

a contradiction.

(ii)⇒ (iii) We obtain this implication because Y \(−K) is K-proper.

(iii) ⇒ (i) If B is not K-bounded w.r.t. −Y \K, then there exits sequences

rn → +∞ and (bn) ⊂ B such that

bn 6∈ rnU0 − Y \K. (2.17)

It is stated that ⋃
n

(bn +K) = Y, (2.18)

because otherwise,

∃ y0 ∈ Y such that y0 6∈ bn +K, ∀n. (2.19)

If e ∈ U0 ∩ intK, then −rne ∈ rnU0 and, therefore, −rne− Y \K ⊂ rnU0− Y \K.

By (2.17), we have that bn 6∈ −rne−Y \K, for all n, that is, bn 6∈ −rne−Y \K =

Y \(−rne − K). This implies that bn ∈ −rne − K and, then, −bn ∈ rne + K.

From here and by (2.19), we deduce that

y0 − bn 6∈ K e y0 − bn ∈ y0 + rne+K. (2.20)
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Now, for n large enough, it is verified that y0 + rne ∈ intK since 1
rn
y0 + e ∈ intK

because e ∈ intK, intK is open and 1
rn
y0 → 0. By (2.20), we obtain that

y0 − bn ∈ y0 + rne+K ⊂ intK +K = intK,

and this contradicts the fact that y0− bn 6∈ K. Thus, we have proved (2.18) and,

therefore, B +K = Y .

Equivalences (iii)⇔ (v) and (ii)⇔ (iv) are clear by Proposition 2.2.16.

Remark 2.2.21. (a) If K is not solid, then the implication (i)⇒ (ii) of Theorem

2.2.20 is false, that is, equality (2.15) may be true when A is K-proper. See

Example 2.2.22 and observe that rU0 + A+K = Y when A is K-proper.

(b) If K is not solid and A is K-proper, as a consequence of Proposition 2.1.20,

we have that Dsi(A,B) ∈ [0,+∞].

Let us consider some illustrative examples. Example 2.2.22 proves Remark

2.2.21(b) and Example 2.2.23 illustrates Proposition 2.2.17.

Example 2.2.22. Let Y = R2, K = {(x, 0) : x ≥ 0}, r ≥ 0, A = R2 \ {(x, y) :

x ≤ 0, 0 ≤ y ≤ r} and B = Q × R. We have that A + K = A and B + K = Y ,

supb∈B d(b, A+K) = r/2 and Dsi(A,B) = r/2.

If now A = {(x, y) : x ≥ 0 or y ≤ 0}, then Dsi(A, b) = d(b, A + K) =

min{−b1, b2} for b 6∈ A. Therefore, Dsi(A,B) = +∞.

Example 2.2.23. Let Y = R2, K = R2
+, A = {(x, y) : y = −x + r, x ≤ 0}

with r ≥ 0, which is not K-bounded, and B = {(x, y) : y = −x, x ≤ 0} which is

K-bounded w.r.t. A. We have Dsi(A,B) =
√

2 r/2.

If we take B = {(x, 0) : x ≤ 0}, which is not K-bounded w.r.t. A, we have

that Dsi(A,B) = +∞.

Next, we need an useful result to study properties of the set scalarization

function Dsi. The following theorem is obtained from Theorem 2.2.1 with r = 0.

Theorem 2.2.24. Let A,B ∈ P0(Y ). Then

Dsi(A,B) ≤ 0⇔ B ⊂ cl(A+K).
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Now, we are going to study some properties of the set scalarization function

Dsi. First of all, we will prove the convexity of Dsi(·, B).

Proposition 2.2.25. If B ∈ P0(Y ), then Dsi(·, B) is convex on P0(Y ).

Proof. By Lemma 1.3.19(ii), the oriented distance function D(·,−K) is convex

on Y . Then, for all A1, A2 ∈ P0(Y ), b ∈ Y and λ ∈ [0, 1], we have

Dsi(λA1 + (1− λ)A2, b) = inf
z∈λA1+(1−λ)A2

D(z − b,−K)

= inf
a1∈A1,a2∈A2

D(λa1 + (1− λ)a2 − b,−K)

= inf
a1∈A1,a2∈A2

D(λ(a1 − b) + (1− λ)(a2 − b),−K)

≤ inf
a1∈A1,a2∈A2

[λD(a1 − b,−K) + (1− λ)D(a2 − b,−K)]

= inf
a1∈A1

λD(a1 − b,−K) + inf
a2∈A2

(1− λ)D(a2 − b,−K)

= λDsi(A1, b) + (1− λ)Dsi(A2, b).

This tells us that Dsi(·, b) is convex on P0(Y ) for all b ∈ Y .

Therefore, by Remark 2.1.15(c) it results the following

Dsi(λA1 + (1− λ)A2, B) = sup
b∈B

Dsi(λA1 + (1− λ)A2, b)

≤ sup
b∈B

[λDsi(A1, b) + (1− λ)Dsi(A2, b)]

≤ sup
b∈B

λDsi(A1, b) + sup
b∈B

(1− λ)Dsi(A2, b)

= λDsi(A1, B) + (1− λ)Dsi(A2, B).

In the following proposition, we state that Dsi is positively homogeneous.

Proposition 2.2.26. If A,B ∈ P0(Y ), then Dsi(λA, λB) = λDsi(A,B), for all

λ > 0, that is, the function Dsi is positively homogeneous.

Proof. First of all, we are going to prove that Dsi(λA, λb) = λDsi(A, b), for all λ >

0, b ∈ Y . Indeed, as the oriented distance D(·,−K) is positively homogeneous
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by Lemma 1.3.19(vi), one has

Dsi(λA, λb) = inf
y∈λA

D(y − λb,−K) = inf
a∈A

D(λa− λb,−K)

= inf
a∈A

λD(a− b,−K) = λDsi(A, b).

On the other hand, by Remark 2.1.15(c) and the previous expression it follows

the general case:

Dsi(λA, λB) = sup
y∈λB

Dsi(λA, y) = sup
b∈B

Dsi(λA, λb) = λDsi(A,B).

Next, we study the Lipschitz continuity of functions Dsi(A, ·) and Dsi(·, B).

Theorem 2.2.27. Given A ∈ P0,K(Y ), then the function Dsi(A, ·) : Y → R is

Lipschitz continuous of rank 1.

Proof. First of all, we observe that Dsi(A, y) ∈ R for all y ∈ R, by Corollary

2.2.11. Let us prove that D(y − x,−K) ≤ ‖y − x‖. The oriented distance

function D(·, A) of Hiriart-Urruty is Lipschitz continuous of rank 1 by Lemma

1.3.19(i), that is, |D(y1,−K)−D(y2,−K)| ≤ ‖y1 − y2‖, for all y1, y2 ∈ Y .

If we take y1 = y − x and y2 = 0, then

|D(y − x,−K)| ≤ ‖y − x‖, ∀x, y ∈ Y. (2.21)

For x, y ∈ Y , by applying Lemma 1.3.19(ix) with y1 = a− y and y2 = y − x, we

have that

Dsi(A, x) = inf
a∈A

D(a− x,−K) ≤ D(a− x,−K)

≤ D(a− y,−K) +D(y − x,−K), ∀a ∈ A.

From here, Dsi(A, x) − D(y − x,−K) ≤ D(a − y,−K), for all a ∈ A. Then,

Dsi(A, x)−D(y − x,−K) ≤ infa∈AD(a− y,−K) = Dsi(A, y). So, if we consider

(2.21), it results that

Dsi(A, x)− Dsi(A, y) ≤ D(y − x,−K) ≤ ‖y − x‖. (2.22)



54 Set scalarization functions

Changing x for y, we have that

Dsi(A, y)− Dsi(A, x) ≤ D(x− y,−K) ≤ ‖x− y‖. (2.23)

From (2.22) and (2.23), we obtain∣∣Dsi(A, x)− Dsi(A, y)
∣∣ ≤ ‖x− y‖.

Therefore, Dsi(A, ·) is Lipschitz continuous of rank 1.

Theorem 2.2.28. Assume that B ∈ P0(Y ) is K-bounded. Then, the function

Dsi(·, B) : Y → R is Lipschitz continuous of rank 1.

Proof. First, we observe that Dsi(y,B) ∈ R by Corollary 2.2.11 since B is K-

bounded. Let x, y ∈ Y two arbitrary points. Applying Lemma 1.3.19(ix) and

taking into account (2.21), we derive that for all b ∈ B,

D(y − b,−K) ≤ D(y − x,−K) +D(x− b,−K) ≤ ‖y − x‖+D(x− b,−K).

Taking suprema in b ∈ B, we obtain

sup
b∈B

D(y − b,−K) ≤ ‖y − x‖+ sup
b∈B

D(x− b,−K),

that is, Dsi(y,B) ≤ ‖y − x‖ + Dsi(x,B). From here, it follows that Dsi(y,B) −

Dsi(x,B) ≤ ‖y − x‖. Changing y for x, it results that Dsi(x,B) − Dsi(y,B) ≤
‖x− y‖ and, consequently, |Dsi(y,B)−Dsi(x,B)| ≤ ‖x− y‖. So, we have proved

that Dsi(·, B) is Lipschitz continuous of rank 1.

In the next results we prove that the function Dsi is invariant by conic exten-

sions (K-invariance property) and some related results. Recall that A+K is the

conic extension of A.

Lemma 2.2.29. If A ∈ P0(Y ) and y0 ∈ Y , then

Dsi(A, y0) = Dsi(A+K, y0).

Proof. Since the function D(·,−K) is K-increasing by Lemma 1.3.19(viii) and as

a− y0 ≤K a+ q − y0, for all q ∈ K and a ∈ Y , it follows that

D(a− y0,−K) ≤ D(a+ q − y0,−K),
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and, consequently, D(a − y0,−K) ≤ infq∈K D(a + q − y0,−K). From this, it

results that

Dsi(A, y0) = inf
a∈A

D(a− y0,−K) ≤ inf
a∈A

inf
q∈K

D(a+ q − y0,−K) = Dsi(A+K, y0).

On the other hand, since A ⊂ A + K, then from the definition of infimum, it

follows that

Dsi(A+K, y0) = inf
y∈A+K

D(y − y0,−K) ≤ inf
a∈A

D(a− y0,−K) = Dsi(A, y0),

and we conclude.

Next, by using Lemma 2.2.29, we are going to prove K-invariance property

for the function Dsi.

Proposition 2.2.30. If A,B ∈ P0(Y ), then

Dsi(A,B) = Dsi(A+K,B) = Dsi(A,B +K) = Dsi(A+K,B +K).

Proof. The third equality follows from the two first ones. The first equality is a

consequence of Remark 2.1.15(c) and Lemma 2.2.29.

Now let us prove the equality Dsi(A,B) = Dsi(A,B+K). First of all, a− b−
q ≤K a − b, for all a, b ∈ Y and all q ∈ K, and as D(·,−K) is K-increasing we

deduce that D(a − b − q,−K) ≤ D(a − b,−K), for all a, b ∈ Y and all q ∈ K.

From this, infa∈AD(a− b− q,−K) ≤ infa∈AD(a− b,−K), for all b ∈ Y and all

q ∈ K and, therefore,

sup
b∈B

inf
a∈A

D(a− b− q,−K) ≤ sup
b∈B

inf
a∈A

D(a− b,−K) = Dsi(A,B),

for all q ∈ K. Then, by definition we have that

Dsi(A,B +K) = sup
b∈B,q∈K

inf
a∈A

D(a− b− q,−K)

= sup
q∈K

sup
b∈B

inf
a∈A

D(a− b− q,−K) ≤ Dsi(A,B). (2.24)

Secondly, as B ⊂ B +K, by Remark 2.1.15(c) it follows that

Dsi(A,B) = sup
y∈B

Dsi(A, y) ≤ sup
y∈B+K

Dsi(A, y) = Dsi(A,B +K). (2.25)

By (2.24) and (2.25) we conclude.
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Similar results to Proposition 2.2.30 have been proved by other authors. For

example, in Propositions 4.4 and 6.3(a) of Gutiérrez et al. [38] for the functions

ϕe,B(A) and ∆B(A), respectively, and in Lemma 3.4(i) of Ha [45] it is demanded

that A is K-bounded. Therefore, Proposition 2.2.30 is an extension or an im-

provement of these results.

The following sufficient conditions of invariance in a variable for the function

Dsi are an immediate consequence of Proposition 2.2.30.

Proposition 2.2.31. (i) If A1, A2, B ∈ P0(Y ) and A1 ∼2
∀∃
A2, then we have

Dsi(A1, B) = Dsi(A2, B).

(ii) If B1, B2, A ∈ P0(Y ) and B1 ∼2
∀∃
B2, then we have

Dsi(A,B1) = Dsi(A,B2).

Analogous results to Proposition 2.2.31 are Proposition 4.2(b) of Gutiérrez et

al. [38] for the function ϕe,B(A) and Theorem 3.8 of Hernández and Rodŕıguez-

Maŕın [51] for the Gerstewitz’s scalarization Ge(A,B) but asking that A1, A2, B1

and B2 are K-proper.

We are going to present an example where we can see that the inverse of

Proposition 2.2.31 is false.

Example 2.2.32. Let Y = R2, K = R2
+, A1 = {(x, y) ∈ R2 : y = −x, x ≤ 0},

A2 = {(x, y) ∈ R2 : y = x, x ≥ 0} and B = {b} with b = (0, 0). We have

Dsi(A1, B) = Dsi(A2, B) = 0 and, however, A1 6∼2
∀∃
A2.

Let us see a necessary condition so that two sets are ∼2∀∃
-equivalent.

Proposition 2.2.33. Let A,B ∈ P0(Y ). If A ∼2∀∃
B, then Dsi(A,B) =

Dsi(B,A).

Proof. By definition of ∼2∀∃
-equivalent sets, we have that A + K = B + K. By

applying Proposition 2.2.30, it follows that

Dsi(A,B) = Dsi(A+K,B +K) = Dsi(B +K,A+K) = Dsi(B,A).
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In the following proposition, we prove that Dsi is diagonal null on K-proper

sets.

Proposition 2.2.34. If A ∈ P0(Y ) is K-proper, then Dsi(A,A) = 0.

Proof. By Theorem 2.2.24, since A ⊂ A+K, it follows that Dsi(A,A) ≤ 0. Let us

suppose that Dsi(A,A) = −r0 < 0 with r0 > 0. Then, supb∈A infa∈AD(b, a+K) =

−r0. Therefore, for all b ∈ A, we have that infa∈AD(b, a+K) ≤ −r0. As a+K ⊂
A+K, for all a ∈ A, by Lemma 1.3.19(vii), we obtain that D(b, A+K) ≤ D(b, a+

K), for all a ∈ A and, consequently, D(b, A + K) ≤ infa∈AD(b, a + K) ≤ −r0.
Since D(b, A+K) ≤ −r0 < 0, we deduce that D(b, A+K) = −d(b, Y \(A+K)) ≤
−r0. So, d(b, Y \(A+K)) ≥ r0 > 0, for all b ∈ A, which is impossible because A

is a K-proper set in the normed space Y .

In the next proposition, we state a characterization of∼2∀∃
-equivalence through

Dsi.

Proposition 2.2.35. Let A ∈ P0(Y ) and B ∈ P0,K(Y ).

(i) If A ∼2∀∃
B, then Dsi(A,B) = 0 and Dsi(B,A) = 0.

(ii) The reverse implication is true if we assume that A and B are K-closed.

Proof. (i) By definition of ∼2∀∃
-equivalent sets, we have that A + K = B + K.

By applying Propositions 2.2.30 and 2.2.34, it follows that

Dsi(A,B) = Dsi(A+K,B +K) = Dsi(B +K,B +K) = Dsi(B,B) = 0.

By Proposition 2.2.33, we conclude Dsi(B,A) = 0.

(ii) First of all, by Theorem 2.2.24 we have that B ⊂ cl(A+K) = A+K and,

consequently, B+K ⊂ (A+K)+K = A+K. Secondly, A ⊂ cl(B+K) = B+K

and, hence, A+K ⊂ (B +K) +K = B +K. Therefore, A+K = B +K.

Results of type of Propositions 2.2.33, 2.2.34 and 2.2.35(i), but for the Gerste-

witz’s scalarization Ge, are Theorems 3.8(iv), 3.10(i) and 3.10(ii) in Hernández

and Rodŕıguez-Maŕın [51], with stronger assumptions in general. Also some of

them can be found in Proposition 6.6(a) of Gutiérrez et al. [38] for the function
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∆B(A) or in Lemma 3.4(ii) of Ha [45], where it is required that K is solid or the

set A has efficient points.

After that, we are going to study 2∀∃-monotonicity for the function Dsi.

Proposition 2.2.36. (i) Let B ∈ P0(Y ). The function Dsi(·, B) is 2∀∃-monotone

increasing on P0(Y ).

(ii) Let A ∈ P0(Y ). The function Dsi(A, ·) is 2∀∃-monotone decreasing on

P0(Y ).

Proof. (i) Let A1, A2 ∈ P0(Y ) and assume that A12∀∃A2. Then A2 ⊂ A1 + K,

and we deduce that infz∈A1+K D(z − b,−K) ≤ infy∈A2 D(y − b,−K), for all b ∈
B, that is, Dsi(A1 + K, b) ≤ Dsi(A2, b). Therefore, supb∈B Dsi(A1 + K, b) ≤
supb∈B Dsi(A2, b), that is, Dsi(A1+K,B) ≤ Dsi(A2, B) by Remark 2.1.15(c). Since

Dsi(A1 + K,B) = Dsi(A1, B) by Proposition 2.2.30, we have that Dsi(A1, B) ≤

Dsi(A2, B).

(ii) Let B1, B2 ∈ P0(Y ) and assume that B12∀∃B2, or equivalently, B2 ⊂
B1 +K. Using this fact, by Remark 2.1.15(c) we have that

Dsi(A,B2) = sup
y∈B2

Dsi(A, y) ≤ sup
y∈B1+K

Dsi(A, y) = Dsi(A,B1 +K) = Dsi(A,B1),

since the last equality is true by Proposition 2.2.30.

Results as Proposition 2.2.36 are Proposition 4.2(a) in Gutiérrez et al. [38] for

the function ϕe,B(A) and Theorem 3.8 in Hernández and Rodŕıguez-Maŕın [51]

for the Gerstewitz’s scalarization Ge but demanding that the sets A and B are

K-proper.

In the following proposition we show that the function Dsi is invariant with

respect to the closure.

Proposition 2.2.37. Let A,B ∈ P0(Y ), then

(i) Dsi(A,B) = Dsi(A, clB).

(ii) Dsi(A,B) = Dsi(clA,B).

Proof. (i) As clB2∀∃B, it follows that Dsi(A,B) ≤ Dsi(A, clB) since the func-

tion Dsi(A, ·) is 2∀∃-monotone decreasing by Proposition 2.2.36(ii). By contradic-

tion, assume that Dsi(A,B) < Dsi(A, clB). As Dsi(A, clB) = supy∈clB Dsi(A, y)
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by Remark 2.1.15(c), there exists y0 ∈ clB such that

Dsi(A,B) < Dsi(A, y0) ≤ Dsi(A, clB).

Since y0 ∈ clB, there exists a sequence yn ∈ B such that yn → y0. As by Theorem

2.2.27 the function y → Dsi(A, y) is continuous, we obtain that Dsi(A, yn) →

Dsi(A, y0). Therefore, for n large enough, it follows that Dsi(A,B) < Dsi(A, yn),

and this is a contradiction because Dsi(A,B) = supy∈B Dsi(A, y) and yn ∈ B.

(ii) As clA2∀∃A, it follows that Dsi(clA,B) ≤ Dsi(A,B) since the func-

tion Dsi(·, B) is 2∀∃-monotone increasing by Proposition 2.2.36(i). By contra-

diction, assume that Dsi(clA,B) < Dsi(A,B). As Dsi(A,B) = supb∈B Dsi(A, b)

by Remark 2.1.15(c), there exists b ∈ B such that Dsi(clA,B) < Dsi(A, b) ≤

Dsi(A,B). Since Dsi(clA,B) = supy∈B Dsi(clA, y), it follows that Dsi(clA, b) ≤

Dsi(clA,B) < Dsi(A, b), with Dsi(clA, b) = infz∈clAD(z − b,−K). Therefore,

there exists z0 ∈ clA such that

inf
z∈clA

D(z − b,−K) ≤ D(z0 − b,−K) < inf
y∈A

D(y − b,−K).

Since z0 ∈ clA, there exists a sequence zn ∈ A such that zn → z0. As the function

y → D(y,−K) is continuous by Lemma 1.3.19(i), we have that D(zn− b,−K)→
D(z0 − b,−K). Therefore, for n large enough, we have that D(zn − b,−K) <

infy∈AD(y − b,−K), with zn ∈ A, which is a contradiction.

Remark 2.2.38. As a consequence of Propositions 2.2.30 and 2.2.37,

Dsi(A,B) = Dsi(cl(clA+K), cl(clB +K)) = Dsi(cl(A+K), cl(B +K)),

since cl(clA+K) = cl(A+K) as it can be easily checked. This remark explains

why in many results it is necessary to require K-closedness, which is due to the

fact that the function Dsi does not distinguish A from cl(A+K).

If K is a solid convex cone, then by using Remark 2.2.38, [9, Lemma 2.5] and

Proposition 2.2.37 we derive that Dsi(A,B) = Dsi(A + intK,B + intK), since

A+ intK = int(A+K).

Next, we collect some similar results now for the upper set less order relation

4∀∃ and the function D̂
si

.
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Theorem 2.2.39. Let A,B,A1, A2, B1, B2 ∈ P0(Y ). It is verified the following

assertions:

(i) D̂
si

(A,B) = D̂
si

(A−K,B) = D̂
si

(A,B −K) = D̂
si

(A−K,B −K).

(ii) If A ∼4∀∃
B, then D̂

si
(A,B) = D̂

si
(B,A).

(iii) If A ∈ P0,−K(Y ), then D̂
si

(A,A) = 0.

(iv) Let A ∈ P0,−K(Y ). If A ∼4∀∃
B, then D̂

si
(A,B) = D̂

si
(B,A) = 0.

The reverse implication is true if A and B are (−K)-closed.

(v)(a) If B1 ∼4
∀∃
B2, then D̂

si
(A,B1) = D̂

si
(A,B2).

(b) If A1 ∼4
∀∃
A2, then D̂

si
(A1, B) = D̂

si
(A2, B).

(vi)(a) The function D̂
si

(A, ·) is 4∀∃-monotone decreasing on P0(Y ).

(b) The function D̂
si

(·, B) is 4∀∃-monotone increasing on P0(Y ).

(vii) It is verified that D̂
si

(A,B) = D̂
si

(A, clB) = D̂
si

(clA,B).

Proof. We only prove part (a) of (vi). If B14∀∃B2, then by Lemma 1.3.9 we have

that B22∀∃−K B1. Applying Proposition 2.2.36(i), it follows that Dsi
−K(B2, A) ≤

Dsi
−K(B1, A). By Remark 2.1.15(b), it results that D̂

si
(A,B2) ≤ D̂

si
(A,B1).

The rest of results are proved using the same ideas.

Some results of the type Theorem 2.2.39 have been proved in other papers.

For example, Propositions 3.3(iii), 3.2(i), 3.2(ii) and 3.3(i) in Xu and Li [129]

for the function DA−K(B) are, respectively, similar to parts (i), (iii), (iv) and

(vi)(b) of Theorem 2.2.39. In Araya [5] for the function ϕe,B(A), parts (iii) and

(iv) of Theorem 3.2 are extended and improved, respectively, by parts (vi)(a) and

(vi)(b) of Theorem 2.2.39.

2.3 Characterization of lower and upper set re-

lations of Kuroiwa

In this section, by using the useful properties which have been shown in the

former section, new characterizations of the lower set less relation 2∀∃ and the

upper set less relation 4∀∃ of Kuroiwa by means of the set scalarization functions



2.3 Characterization of lower and upper set relations of Kuroiwa 61

Dsi and D̂
si

given in Definition 2.1.14, are provided. In the case of K is a solid

convex cone, characterizations for the corresponding strict set relations 2∀∃s and

4∀∃s by requiring assumptions of K-compactness are discussed. We also deal with

strict monotonicity for the functions Dsi and D̂
si

with respect to the strict lower

set less relation 2∀∃s and the strict upper set less relation 4∀∃s .

In the following theorem, which is an immediate consequence of Theorem

2.2.24, we establish a characterization of the preorder 2∀∃ using the function Dsi.

Theorem 2.3.1. If A,B ∈ P0(Y ), then

A2∀∃B ⇔ Dsi(A,B) ≤ 0.

For ‘⇐’ part it is required that A is K-closed.

Similar results to Theorem 2.3.1 have been proved by other authors. For

example, in Theorem 3.10(iii) of Hernández and Rodŕıguez-Maŕın [51] for the

Gerstewitz’s scalarization Ge(A,B), in Proposition 6.6(b) of Gutiérrez et al. [38]

for the function ∆B(A), in Proposition 4.11 of Gutiérrez et al. [38] for the func-

tion ϕB(A) and in Proposition 3.8 of Chen et al. [11], where it is assumed that

infa∈AD(a − b,−K) is achieved for all b ∈ B. In Lemma 3.3 of Ha [45] it is re-

quired that A is K-compact and, therefore, our theorem represents a meaningful

improvement since it requires weaker hypothesis.

In Theorem 2.3.1, the K-closedness of A cannot be removed as it is showed

in the following example.

Example 2.3.2. Consider Y = R2, K = R2
+, A = {(x, x) : 0 < x ≤ 1} and

B = {(1, 0)}. One has Dsi(A,B) = 0 and, however A 62∀∃B. Note that A is not

K-closed.

Next, we state other characterization of the preorder 2∀∃.

Theorem 2.3.3. If A,B ∈ P0(Y ), then

A2∀∃B ⇔ Dsi(A, y) ≤ Dsi(B, y), ∀y ∈ Y.

For ‘⇐’ part it is required that A is K-closed.
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Proof. (⇒) If A2∀∃B, then we have the conclusion taking into account that the

function Dsi(·, y) is 2∀∃-monotone increasing for each y ∈ Y due to Proposition

2.2.36(i).

(⇐) By contradiction, let us suppose that A 62∀∃B. Then there exists b0 ∈ B
such that b0 /∈ A+K. As A is K-closed, one has b0 /∈ cl(A+K), and by Theorem

2.2.24 we deduce that Dsi(A, b0) > 0.

On the other hand, from the hypothesis with y = b0, it follows that

Dsi(A, b0) ≤ Dsi(B, b0) ≤ 0

since Dsi(B, b0) = infb∈BD(b − b0,−K) ≤ 0 because for b = b0 we have D(b0 −
b0,−K) = 0 and, therefore, we have obtained a contradiction.

The following necessary condition is obtained by applying Proposition 2.2.36(ii).

Theorem 2.3.4. Let A,B ∈ P0(Y ). If A2∀∃B, then

Dsi(y, A) ≥ Dsi(y,B), ∀y ∈ Y.

An immediate consequence of Theorems 2.3.3 and 2.3.4, (taking into account

Lemma 1.3.19(xiii) for part (ii)) choosing y = 0, is the next result, which states

necessary conditions for the fulfillment of A2∀∃B.

Corollary 2.3.5. Let A,B ∈ P0(Y ). If A2∀∃B, then

(i) infa∈AD(a,−K) ≤ infb∈BD(b,−K).

(ii) supa∈AD(a,K) ≥ supb∈BD(b,K).

A similar result to Corollary 2.3.5(i), but for the Gerstewitz function ge,K , is

Theorem 3.7 of Köbis and Köbis [81]. The last part of Example 2.3.6 proves that

part (i) of Corollary 2.3.5 is satisfied and however part (ii) does not, that is, parts

(i) and (ii) are independent.

The necessary condition of Theorem 2.3.4 is not sufficient as the following

example shows.

Example 2.3.6. Consider Y = R2, K = R2
+, A = {a1 = (0, 0), a2 = (−2, 2)}

and B = {b = (−1, 1)}. For every y ∈ Y , the function D(·, y + K) is convex on
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Y by Lemma 1.3.19(ii), and as b = 1
2
a1 + 1

2
a2, we deduce that

D(b, y+K) ≤ 1
2
D(a1, y+K)+ 1

2
D(a2, y+K) ≤ max{D(a1, y+K), D(a2, y+K)}.

Therefore the conclusion of Theorem 2.3.4 is satisfied, however A 62∀∃B.

If we change A to A = {a1}, then part (i) of Corollary 2.3.5 is satisfied but

part (ii) does not.

In the following theorem, we establish a sufficient condition to obtain A2∀∃B.

Theorem 2.3.7. Let A,B ∈ P0(Y ). Then, we have that

Dsi(A, b) < 0, ∀b ∈ B ⇒ A2∀∃B.

In particular, the hypothesis is true if Dsi(A,B) < 0.

Proof. Let Dsi(A, b) < 0, for all b ∈ B, that is, infa∈AD(a − b,−K) < 0, for

all b ∈ B. By contradiction, assume that A 62∀∃B, that is, B 6⊂ A + K. Then,

there exists b0 ∈ B such that b0 6∈ A + K, that is, b0 6∈ a + K, for all a ∈ A.

Consequently, by Lemma 1.3.19(v) we have that D(a − b0,−K) ≥ 0, for all

a ∈ A. Thus, we obtain that Dsi(A, b0) = infa∈AD(a − b0,−K) ≥ 0, which is a

contradiction.

In the next example, we can see that Theorem 2.3.7 works and, however,

Proposition 3.8 in Chen et al. [11] does not work.

Example 2.3.8. Consider Y = R2, K = R2
+, A = {(0, y) : y > 0} and B =

{bn = (n, 1/n) : n ∈ N}. We have Dsi(A, bn) = −1/n < 0 for all n, and so we

can apply Theorem 2.3.7 and to deduce that A2∀∃B. However, Proposition 3.8

in Chen et al. [11] is not applicable because infa∈AD(a− b,−K) is not achieved

for any b ∈ B.

In the following lemma, we give conditions in order to a function g : Y → R

achieves its minimum or maximum on a set A.

Lemma 2.3.9. Let A ∈ P0(Y ). If g : Y → R is continuous, K-increasing

(resp., K-decreasing) and A is K-compact, then g achieves its minimum (resp.,

maximum) on A.
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Proof. First of all, let us see that g is lower bounded on A.

Indeed, for all n ∈ N we define Un = {x ∈ Y : g(x) > −n}. The sets Un are

open because g is continuous. Moreover, Un + K = Un since if x ∈ Un, q ∈ K,

then x ≤K x+ q and as g is K-increasing, it follows that g(x+ q) ≥ g(x) > −n,

that is, x + q ∈ Un. It is satisfied that A ⊂
∞⋃
n=1

Un =
∞⋃
n=1

(Un + K). Since A is

K-compact, we can extract a finite subcover of {Un : n ∈ N} and as Un ⊂ Un+1

for all n, we can assume that there exists n such that A ⊂ Un, which means that

g is lower bounded on A by −n.

Consequently, we have that L = infy∈A g(y) is finite. By contradiction, we

assume that the function g does not achieve its infimum L on A. Then, for all

x ∈ A, we define the positive number

δ(x) := (g(x)− L)/2.

For each x ∈ A, we consider the set

Ux = {z ∈ Y : g(z) > L+ δ(x)}.

It is verified that Ux = Ux + K, which is proved as before with Un. The sets Ux

are open because g is continuous. Furthermore, A ⊂
⋃
x∈A

Ux =
⋃
x∈A

(Ux + K) as

x ∈ Ux for all x ∈ A. Since A is K-compact, there exist x1, . . . , xn ∈ A such that

A ⊂
n⋃
i=1

Uxi . Let δ = min{δ(xi) : i = 1, . . . , n} > 0. Therefore, for all x ∈ A

there exists xi such that x ∈ Uxi , and by definition of Uxi it results that

g(x) > L+ δ(xi) ≥ L+ δ,

which is a contradiction since the infimum is L = infx∈A g(x) ≥ L+ δ.

Finally, we must prove that if g is K-decreasing, then it achieves its maximum,

but this can be proved in a similar way and, hence, we omit the proof.

The next proposition provides conditions so that the function D(· − y,−K)

achieves its finite minimum on A and the function Dsi(A, ·) achieves its finite

maximum on B.
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Proposition 2.3.10. Let A,B ∈ P0(Y ).

(i) If A is K-compact, then the function D(· − y,−K) achieves its finite

minimum on A, for all y ∈ Y .

(ii) If A is K-proper and B is K-compact, then the function y → Dsi(A, y) ∈
R, y ∈ Y , achieves its finite maximum on B. In consequence, there exists b0 ∈ B
such that Dsi(A,B) = Dsi(A, b0).

Proof. (i) It is a consequence of Lemma 2.3.9, since we observe that for all y ∈ Y ,

the function g(x) = D(x − y,−K) is continuous by Lemma 1.3.19(i) and K-

increasing by Lemma 1.3.19(viii).

(ii) As A is K-proper, by Theorem 2.2.27 the function y → g(y) = Dsi(A, y)

takes its values in R and is continuous and, moreover, it is K-decreasing by

Proposition 2.2.36(ii). So, by Lemma 2.3.9 the supremum supb∈B g(b) is achieved,

that is, there exists b0 ∈ B such that supb∈B Dsi(A, b) = Dsi(A, b0) and, therefore,

by Remark 2.1.15(c), Dsi(A,B) = Dsi(A, b0).

Analogous results to previous Proposition 2.3.10(ii) have been proved in the

literature. For example, in Proposition 3.4 of Hernández and Rodŕıguez-Maŕın

[51] for the Gerstewitz’s scalarization function Ge(A,B), and in Theorem 3.2 of

Xu and Li [129] for the function DA+K(B) of Xu and Li. In both results, in

addition to our assumptions, it is required that A is K-closed, and moreover in

the first one it is demanded that Ge(A,B) < ∞. In Lemma 3.2 of Ha [45] it is

required that A is K-bounded and B is K-compact.

Now, we are going to give a characterization for the strict lower set less pre-

order relation 2∀∃s based on K-compactness.

Theorem 2.3.11. Let A,B ∈ P0(Y ) and let K be solid. Then

A2∀∃s B ⇔ Dsi(A,B) < 0.

For ‘⇒’ part it is required that B is K-compact.

Proof. If A is not K-proper, the result is clear by Proposition 2.2.5 (both parts

of the equivalence are true for all B ∈ P0(Y )). Thus, assume that A is K-proper.
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(⇒) A2∀∃s B if and only if B ⊂ A + intK, that is, for all b ∈ B there exists

a0 ∈ A such that b ∈ a0 + intK and, therefore, a0 − b ∈ − intK. By Lemma

1.3.19(iii), it follows that D(a0 − b,−K) < 0 and, then

Dsi(A, b) = inf
a∈A

D(a− b,−K) < 0, ∀b ∈ B.

Hence, as B is K-compact and A is K-proper, by Proposition 2.3.10(ii) one has

Dsi(A,B) = Dsi(A, b0) for some b0 ∈ B, and so it results that Dsi(A,B) < 0.

(⇐) Assume that A 62∀∃s B, that is, B 6⊂ A+ intK. Then, there exists b ∈ B
such that b 6∈ A + intK. So, for all a ∈ A we have that a − b 6∈ − intK

and, therefore, by Lemma 1.3.19(iii) we have that D(a − b,−K) ≥ 0, for all

a ∈ A. This implies that Dsi(A, b) = infa∈AD(a − b,−K) ≥ 0. Consequently,

by Remark 2.1.15(c) it results that Dsi(A,B) = supb∈B Dsi(A, b) ≥ 0, which is a

contradiction.

A result as Theorem 2.3.11 is Corollary 3.11(i) of Hernández and Rodŕıguez-

Maŕın [51] for the Gerstewitz’s scalarization Ge(A,B) where it is required that

the sets A and B are K-compact.

Corollary 2.3.12. If B is K-compact, B ⊂ intA and K is solid, then Dsi(A,B) <

0.

Proof. Since B ⊂ intA ⊂ int(A + K) = A + intK, we can apply the previous

Theorem 2.3.11 and we obtain the conclusion.

Let us illustrate with an example that even when B ⊂ int(A+K), we cannot

ensure that Dsi(A,B) < 0, that is, the conclusion of Theorem 2.3.11 is not true

if B is not K-compact.

Example 2.3.13. With the data of Example 2.3.8, where B is not a K-compact

set, one has A2∀∃s B and, however, Dsi(A,B) = supn{−1n } = 0.

Remark 2.3.14. Let A ∈ P0(Y ) and let K be solid. If A is K-compact, then

A 62∀∃s A.

Indeed, if were A2∀∃s A, by Theorem 2.3.11 we derive that Dsi(A,A) < 0, but

by Proposition 2.2.34 it follows that Dsi(A,A) = 0, which is a contradiction. Let

us observe that A is K-proper by Remark 1.3.1 since is K-compact.
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Next, we are going to study the properties of strict 2∀∃s -monotonicity of the

function Dsi.

Proposition 2.3.15. (i) Assume that A1, A2, B ∈ P0(Y ), A2 and B are K-

compact and K is solid. If A12∀∃s A2, then Dsi(A1, B) < Dsi(A2, B).

(ii) Assume that A,B1, B2 ∈ P0(Y ), A and B2 are K-compact and K is solid.

If B12∀∃s B2, then Dsi(A,B1) > Dsi(A,B2).

Proof. (i) If A1 is not K-proper, then Dsi(A1, B) = −∞ and Dsi(A2, B) ∈ R by

Corollary 2.2.11 and Proposition 2.2.5 since B is K-bounded and A2 is K-proper

by Remark 1.3.1 and, therefore, the conclusion is satisfied. Thus, assume that A1

is K-proper.

By definition of strict 2∀∃s -preorder, we have that A12∀∃s A2 if and only if for

all a2 ∈ A2, there exists ã1 ∈ A1 such that ã1 ≤intK a2 and, hence, ã1 − b ≤intK

a2 − b, for all b ∈ B. By Lemma 1.3.19(viii), it results that D(ã1 − b,−K) <

D(a2 − b,−K), for all b ∈ B. From this, we have that

Dsi(A1, b) = inf
a1∈A1

D(a1 − b,−K) < D(a2 − b,−K), ∀a2 ∈ A2,∀b ∈ B.

Since A2 is K-compact, by Proposition 2.3.10(i) it follows that there exists ā2 ∈
A2 such that

Dsi(A1, b) < Dsi(A2, b) = D(ā2 − b,−K) = inf
a2∈A2

D(a2 − b,−K), ∀b ∈ B. (2.26)

Since B is K-compact and A1 is K-proper, by Proposition 2.3.10(ii) there exists

b0 ∈ B such that Dsi(A1, b0) = supb∈B Dsi(A1, b) = Dsi(A1, B). By (2.26) and

Remark 2.1.15(c), it follows that

Dsi(A1, B) = Dsi(A1, b0) < Dsi(A2, b0) ≤ sup
b∈B

Dsi(A2, b) = Dsi(A2, B).

Consequently, Dsi(A1, B) < Dsi(A2, B).

(ii) As B12∀∃s B2, we have that for all b2 ∈ B2 there exists b̃1 ∈ B1 such that

b̃1 ≤intK b2. Then, a − b2 ≤intK a − b̃1, for all a ∈ A. By Lemma 1.3.19(viii), it

follows that D(a− b2,−K) < D(a− b̃1,−K), for all a ∈ A. Therefore,

Dsi(A, b2) = inf
a∈A

D(a− b2,−K) < D(a− b̃1,−K), ∀a ∈ A.
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By Proposition 2.3.10(i), since A is K-compact,

Dsi(A, b2) < Dsi(A, b̃1) = inf
a∈A

D(a− b̃1,−K),

and this implies Dsi(A, b2) < Dsi(A, b̃1) ≤ supb1∈B1 D
si(A, b1) = Dsi(A,B1), for

all b2 ∈ B2. Since B2 is K-compact and A is K-proper (see Remark 1.3.1), by

Proposition 2.3.10(ii) there exists b̄2 ∈ B2 such that Dsi(A,B2) = Dsi(A, b̄2) <

Dsi(A,B1).

Corollary 2.3.16. If A is a K-compact set of Y , then Dsi(A, ·) (resp., Dsi(·, A))

is strictly 2∀∃s -monotone decreasing (resp., increasing) on K-compact sets of Y .

Some results of sort of Proposition 2.3.15 have been proved in several papers.

For example, in Theorem 3.9 of Hernández and Rodŕıguez-Maŕın [51] for the

Gerstewitz’s scalarization Ge, where it is required that all sets are K-compact,

and in Theorem 3.5(g) of Gutiérrez et al. [41] for the function ϕe,B(A) where it

is assumed that B is K-bounded and A2 is K-compact.

Now, we translate the obtained results for the 2∀∃-preorder to the 4∀∃-

preorder in the following theorem. Its proof follows the same ideas that the

proof of Theorem 2.2.39, and for this reason is omitted.

Theorem 2.3.17. Let A,B,A1, A2 ∈ P0(Y ). Then

(i) A4∀∃B if and only if D̂
si

(A,B) ≤ 0. For ‘⇐’ part it is required that B is

(−K)-closed.

(ii) A4∀∃B if and only if D̂
si

(y, A) ≥ D̂
si

(y,B), for all y ∈ Y . For ‘⇐’ part

it is required that B is (−K)-closed.

(iii) A4∀∃B implies that D̂
si

(A, y) ≤ D̂
si

(B, y), for all y ∈ Y .

(iv) If D̂
si

(a,B) < 0, for all a ∈ A, then A4∀∃B.

(v) If K is solid, then A4∀∃s B if and only if D̂
si

(A,B) < 0. For ‘⇒’ part it

is required that A is (−K)-compact.

(vi) If K is solid, and A1 and B are (−K)-compact, then A14∀∃s A2 implies

D̂
si

(A1, B) < D̂
si

(A2, B) and D̂
si

(B,A1) > D̂
si

(B,A2).

Similar results to parts (i), (v) and (vi) of Theorem 2.3.17 are, respectively,

Proposition 3.2(iii), Proposition 3.2(iv) (it is required B is (−K)-closed and A
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is (−K)-compact) and Proposition 3.3(ii) (it is required B1 and B2 are (−K)-

compact) in Xu and Li [129] for the function D−K(B) of Xu and Li.





Chapter 3

Six set extensions of oriented

distance function

This chapter is concerned with set oriented distances which are set scalar-

ization functions extensions of the oriented distance function of Hiriart-Urruty,

noted Dα
K(A,B) and D̂

α

K(A,B), four of which are new. Although we are going to

define functions of type sup-sup, sup-inf, inf-sup and inf-inf, they will be called

scalarization functions of type sup-inf and inf-sup for the sake of simplicity.

It is worth noting that in Theorem 1.3.15 of Gutiérrez, Jiménez, Miglierina

and Molho, we have found inspiration to define the new set oriented distances.

The results stated in this chapter are collected in [68, Sections 3 and 4] and [69,

Sections 3 and 4].

3.1 Definitions and properties

In this Section, six set scalarizations of type sup-inf and inf-sup which are

extensions of the oriented distance, denoted by Dα
K(A,B) and D̂

α

K(A,B), are

presented. Relationships among them are presented, characterizations of these

scalarizations are given and, furthermore, some of their main properties are stud-

ied as, for example, finitude under suitable assumptions of cone-properness and

cone-boundedness, invariance by conic extensions, monotonicity by considering

71
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the six set relations introduced by Kuroiwa, and closure property.

We start by presenting the six set scalarization functions based on the oriented

distance mentioned above. Two of them have been treated in Section 2.1.

Definition 3.1.1. If A,B ∈ P0(Y ), we define the following functions from

P0(Y )× P0(Y ) into R ∪ {±∞} as follows:

(i) Dss(A,B) = supb∈B supa∈AD(a− b,−K).

(ii) D̂
is

(A,B) = infa∈A supb∈BD(a− b,−K).

(iii) Dsi(A,B) = supb∈B infa∈AD(a− b,−K).

(iv) Dis(A,B) = infb∈B supa∈AD(a− b,−K).

(v) D̂
si

(A,B) = supa∈A infb∈BD(a− b,−K).

(vi) Dii(A,B) = infb∈B infa∈AD(a− b,−K).

Remark 3.1.2. We can check that Dss takes its values in R ∪ {+∞} and Dii in

R ∪ {−∞}.

We can define two further functions as follows:

• D̂
ss

(A,B) = supa∈A supb∈BD(a− b,−K) and

• D̂
ii
(A,B) = infa∈A infb∈BD(a− b,−K),

but it is clear that D̂
ss

(A,B) = Dss(A,B) = sup(a,b)∈A×BD(a − b,−K) and

D̂
ii
(A,B) = Dii(A,B) = inf(a,b)∈A×BD(a− b,−K).

If it is necessary to indicate the cone K, we will write Dα
K(A,B) and D̂

α

K(A,B)

instead of Dα(A,B) and D̂
α
(A,B), where α ∈ {ss, is, si, ii}. Note that in (ii) and

(v) we write D̂ because they are given in the order (a ∈ A, b ∈ B), unlike the

other four functions.

The function Dsi was introduced by Ha [45], and Dsi and D̂
si

have been treated

in a previous chapter, where they have been denoted D and D̂, respectively. The

other four are new.

We denote D :=
{
Dss, D̂

is
,Dsi,Dis, D̂

si
,Dii

}
.

There follows, we are going to study some basic properties.

Remark 3.1.3. Let A,B ∈ P0(Y ) and D̄ ∈ D. Then

(i) If K is a non solid cone, then D̄(A,B) ≥ 0.

(ii) D̄(A+ y,B + y) = D̄(A,B), for all y ∈ Y .
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(iii) D̄K(A,B) = D̄−K(−A,−B).

Property (iii) follows from Lemma 1.3.19(xiii).

In the following lemma we state inequality relationships between the functions

D̄ ∈ D given in Definition 3.1.1.

Lemma 3.1.4. The following inequalities hold:

(i) Dii ≤ Dsi ≤ D̂
is
≤ Dss.

(ii) Dii ≤ D̂
si
≤ Dis ≤ Dss.

Proof. We only prove the central inequalities, since the rest are easy to check.

Let A,B ∈ P0(Y ). It is verified that for all a ∈ A and all b ∈ B,

inf
a∈A

D(a− b,−K) ≤ D(a− b,−K) ≤ sup
b∈B

D(a− b,−K).

Then, supb∈B infa∈AD(a − b,−K) ≤ infa∈A supb∈BD(a − b,−K) and, therefore,

Dsi(A,B) ≤ D̂
is

(A,B).

Similarly, one has that infb∈BD(a− b,−K) ≤ supa∈AD(a− b,−K) for all a ∈
A and all b ∈ B. Then, supa∈A infb∈BD(a−b,−K) ≤ infb∈B supa∈AD(a−b,−K)

and, therefore, D̂
si

(A,B) ≤ Dis(A,B).

The following result is easy to prove (it is enough to take into account Lemma

1.3.19(xiii)) and shows a duality between several pairs of functions in D.

Lemma 3.1.5. Let A,B ∈ P0(Y ). The following assertions are true:

(i) D̂
si

K(A,B) = Dsi
−K(B,A) = Dsi

K(−B,−A).

(ii) D̂
is

K(A,B) = Dis
−K(B,A) = Dis

K(−B,−A).

(iii) Dss
K(A,B) = Dss

−K(B,A) = Dss
K(−B,−A).

(iv) Dii
K(A,B) = Dii

−K(B,A) = Dii
K(−B,−A).

Part (i) is Remark 2.1.15(b).

In the next example, we can see that the null diagonal property for Dsi given

in Proposition 2.2.34 and for D̂
si

given in Theorem 2.2.39(iii) are not valid for

the other scalarizations.

Example 3.1.6. Consider Y = R2 and K = R2
+.

(a) Let A = {(0, 0), (1, 1)}. Then, Dss(A,A) =
√

2 and Dii(A,A) = −1.

(b) Let A = {(0, 0), (−1, 1)}. Then, Dis(A,A) = D̂
is

(A,A) = 1.
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Remark 3.1.7. In general, one has Dii(A,A) ≤ 0, Dss(A,A) ≥ 0 and Dis(A,A) =

D̂
is

(A,A) ≥ 0 for every A ∈ P0(Y ), as it can be checked.

We observe that if K is a non solid cone, then by Remarks 3.1.3(i) and 3.1.7

we deduce that Dii(A,A) = 0.

In order to simplify our development and to deal with it in an easy and

systematic way, we introduce the following functions hi, ĥi : P0(Y )→ R∪ {−∞}
and hs, ĥs : P0(Y )→ R ∪ {+∞}.

Definition 3.1.8. Let A ∈ P0(Y ). We define:

(i) hi(A) = infa∈AD(a,−K).

(ii) hs(A) = supa∈AD(a,−K).

(iii) ĥi(A) = infa∈AD(−a,−K) = infa∈AD(a,K).

(iv) ĥs(A) = supa∈AD(−a,−K) = supa∈AD(a,K).

If it were necessary to indicate the cone, we would write hiK , hsK , etc. We

denote H := {hi, hs, ĥi, ĥs}.

Lemma 3.1.9. Let A ∈ P0(Y ). Then

(i) ĥiK(A) = hi−K(A) = hiK(−A).

(ii) ĥsK(A) = hs−K(A) = hsK(−A).

We note in particular that if A = −A, then we have ĥiK(A) = hiK(A) and

ĥsK(A) = hsK(A). This is the case, for example, when A = U0.

It is clear that the functions D̄ ∈ D can be defined through the functions

h̄ ∈ H as follows.

Lemma 3.1.10. Let A,B ∈ P0(Y ). Then

(i) Dss(A,B) = supb∈B h
s(A− b).

(ii) D̂
is

(A,B) = infa∈A ĥ
s(B − a).

(iii) Dsi(A,B) = supb∈B h
i(A− b).

(iv) Dis(A,B) = infb∈B h
s(A− b).

(v) D̂
si

(A,B) = supa∈A ĥ
i(B − a).

(vi) Dii(A,B) = infb∈B h
i(A− b).
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Now, we are going to study some properties to the basic functions h̄ ∈ H
given in Definition 3.1.8.

Lemma 3.1.11. Let A ∈ P0(Y ). Then

(i) hi(A) = Dsi
K(A, 0) and ĥi(A) = Dsi

−K(A, 0).

(ii) hs(A) = Dsi
−K(0, A) and ĥs(A) = Dsi

K(0, A).

In the following proposition, we provide necessary and sufficient conditions so

that the functions h̄ ∈ H are finite.

Proposition 3.1.12. Let A ∈ P0(Y ). Then

(i) A is K-proper or K is not solid if and only if hi(A) ∈ R.

(ii) A is (−K)-bounded if and only if hs(A) ∈ R.

(iii) A is (−K)-proper or K is not solid if and only if ĥi(A) ∈ R.

(iv) A is K-bounded if and only if ĥs(A) ∈ R.

Proof. Parts (i) and (iii) follow from Lemma 3.1.11(i) and Proposition 2.2.5.

Parts (ii) and (iv) follow from Lemma 3.1.11(ii) and Proposition 2.2.8.

The next theorem establishes sufficient conditions so that the functions D̄ are

finite.

Theorem 3.1.13. Let A,B ∈ P0(Y ).

(i) If A is (−K)-bounded and B is K-bounded, then Dss(A,B) ∈ R.

(ii) If A is K-proper and B is K-bounded, then D̂
is

(A,B) ∈ R.

(iii) If A is K-proper and B is K-bounded, then Dsi(A,B) ∈ R.

(iv) If A is (−K)-bounded and B is (−K)-proper, then Dis(A,B) ∈ R.

(v) If A is (−K)-bounded and B is (−K)-proper, then D̂
si

(A,B) ∈ R.

(vi) If either A is K-proper and B is (−K)-bounded or A is K-bounded and B is

(−K)-proper, then Dii(A,B) ∈ R.

Proof. (i) First of all, we are going to show that if A is (−K)-bounded and B is

K-bounded, then A−B is (−K)-bounded.

Indeed, as A is (−K)-bounded and B is K-bounded, there exist positive

numbers t and t′ such that A ⊂ tU0 −K and B ⊂ t′U0 +K. Then,

A−B = A+ (−B) ⊂ tU0 −K + t′(−U0)−K ⊂ t′′U0 −K
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with t′′ = t + t′ > 0 since −U0 = U0 and, therefore, we derive that A − B is

(−K)-bounded.

Since Dss(A,B) = hs(A − B), then by Proposition 3.1.12(ii), we obtain that

Dss(A,B) ∈ R.

(ii) Firstly, if we take a fixed b ∈ B, then

D̂
is

(A, b) = inf
a∈A

D(a− b,−K) = hi(A− b). (3.1)

Furthermore, we have that D(a − b,−K) ≤ supb∈BD(a − b,−K) and by taking

infima with a ∈ A, it follows that

D̂
is

(A, b) = inf
a∈A

D(a− b,−K) ≤ inf
a∈A

sup
b∈B

D(a− b,−K) = D̂
is

(A,B). (3.2)

Therefore, in view of (3.1) it follows that D̂
is

(A, b) = hi(A−b) ∈ R by Proposition

3.1.12(i) and, then, by (3.2) we deduce that D̂
is

(A,B) > −∞.

Secondly, by Lemma 3.1.10(ii) we have that D̂
is

(A,B) = infa∈A ĥ
s(B − a). If

B is K-bounded then B − a is K-bounded too, and by Proposition 3.1.12(iv) we

have that ĥs(B − a) < +∞, and so D̂
is

(A,B) < +∞.

(iii) This is Corollary 2.2.11.

(iv) This a consequence of Lemma 3.1.5(ii) and part (ii).

(v) This is a consequence of Lemma 3.1.5(i) and part (iii).

(vi) Assume that intK 6= ∅ since in another case by Remark 3.1.3(i) we have

that Dii(A,B) ≥ 0. First of all, we are going to prove that if A is K-proper and

B is (−K)-bounded, then A−B is K-proper.

Indeed, as A is K-proper then by Lemma 2.2.4 we have that there exists t0 > 0

such that A ⊂ −t0e − Y \ intK with e ∈ intK and, moreover, as B is (−K)-

bounded then for the neighborhood U0 of zero there exists a positive number t

such that B ⊂ tU0 − K. Moreover, as e ∈ intK, there exits t′ > 0 such that

e + t′U0 ⊂ intK, so t′U0 ⊂ −e + intK and, therefore, U0 ⊂ −t′′e + intK where

t′′ = 1/t′. Thus, tU0 = −tU0 ⊂ −t1e+ intK with t1 = tt′′ > 0 and, consequently,

−B ⊂ −tU0 +K ⊂ −t1e+ intK +K = −t1e+ intK.

Then,

A−B ⊂ −t0e− Y \ intK − t1e+ intK ⊂ −t2e− Y \ intK
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since −Y \ intK+intK ⊂ −Y \ intK and t2 := t0 + t1. By applying Lemma 2.2.4

we have that A−B is K-proper.

Now, taking into account that Dii(A,B) = hi(A−B), by Proposition 3.1.12(i),

we obtain that Dii(A,B) ∈ R.

Finally, if A is K-bounded and B is (−K)-proper, by symmetry A − B =

(−B) + A is also K-proper (the roles of A and B are exchanged in the previous

proof).

The above conditions are only sufficient for finitude. In general, they are not

necessary conditions. For example, with the following data: Y = R2, K = R2
+,

A = B = {(x, y) : y = −x}, one has Dsi(A,B) = 0, Dii(A,B) = 0, and A is

K-proper but B is not K-bounded.

The following result about h̄ ∈ H is needed and it is easy to check.

Lemma 3.1.14. hi is ⊂-decreasing and hs is ⊂-increasing.

Next, we are going to study the invariance by conic extensions to the functions

h̄ ∈ H.

Lemma 3.1.15. Let A ∈ P0(Y ). Then, it holds that

(i) hi(A) = hi(A+K).

(ii) hs(A) = hs(A−K).

Proof. (i) First of all, as A ⊂ A + K, then by applying Lemma 3.1.14 we have

that hi(A + K) ≤ hi(A). Secondly, since a ≤K a + q, for every q ∈ K, a ∈ Y ,

then by Lemma 1.3.19(viii) we deduce that D(a,−K) ≤ D(a + q,−K), for all

q ∈ K, a ∈ Y and, then, by taking infima in q ∈ K we obtain that D(a,−K) ≤
infq∈K D(a + q,−K), for all a ∈ Y . Now, taking infima in a ∈ A we derive

that infa∈AD(a,−K) ≤ infa∈A,q∈K D(a + q,−K). So, hi(A) ≤ hi(A + K) and,

consequently, hi(A) = hi(A+K).

(ii) The proof is similar, but we consider a−q ≤K a instead of a ≤K a+q.

Note that part (ii) is Proposition 3.3(iii) of Xu-Li [129].

The following result provides conditions so that the functions h̄ ∈ H achieve

a minimum or a maximum on a set A.
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Lemma 3.1.16. Let A ∈ P0(Y ).

(i) If A is K-compact, it holds that hi(A) = mina∈AD(a,−K) and ĥs(A) =

maxa∈AD(a,K).

(ii) If A is (−K)-compact, then hs(A) = maxa∈AD(a,−K) and ĥi(A) =

mina∈AD(a,K).

This result follows from Lemma 1.3.19, parts (i) and (viii), and Lemma 2.3.9.

Let us observe that D(·, K) is (−K)-increasing by Lemma 1.3.19(viii), and there-

fore it is K-decreasing.

In the following proposition, we are going to show some properties for the

functions h̄(A− y), where h̄ ∈ H.

Proposition 3.1.17. Let A ∈ P0(Y ). Then

(i) The functions y → hi(A− y) and y → hs(A− y) are K-decreasing. More-

over, they are Lipschitz of rank 1, the first one if A is K-proper and the second

one if A is (−K)-bounded.

(ii) The functions y → ĥi(A − y) and y → ĥs(A − y) are K-increasing.

Moreover, they are Lipschitz of rank 1, the first one if A is (−K)-proper and the

second one if A is K-bounded.

Proof. (i) First, let us see that hi(A − ·) is K-decreasing. Indeed, if y1 ≤K y2

then a − y2 ≤K a − y1 for all a ∈ A, and by Lemma 1.3.19(viii) we have that

D(a − y2,−K) ≤ D(a − y1,−K), for all a ∈ A. Therefore, by taking infima

in a ∈ A we derive that infa∈AD(a − y2,−K) ≤ infa∈AD(a − y1,−K) and,

consequently, we obtain that hi(A− y2) ≤ hi(A− y1).
Secondly, we are going to prove that hi(A− y) is Lipschitz of rank 1 knowing

that it is real valued by Proposition 3.1.12(i) since A− y is K-proper because A

is K-proper. Indeed, by applying Lemma 1.3.19(ix) we have that

D(a− y1,−K) ≤ D(a− y2,−K) +D(y2 − y1,−K), ∀a ∈ A. (3.3)

Then, by taking infima in a ∈ A we deduce that hi(A−y1) ≤ hi(A−y2)+D(y2−
y1,−K), that is,

hi(A− y1)− hi(A− y2) ≤ D(y2 − y1,−K) ≤ ‖y2 − y1‖.
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The last inequality is true because D(y,−K)−D(0,−K) ≤ ‖y‖ since D(·,−K)

is Lipschitz of rank 1 by Lemma 1.3.19(i). Interchanging y1 and y2, we conclude.

Similarly to hi(A− ·), we demonstrate that hs(A− ·) is K-decreasing too.

Now, let us see that hs(A − ·) is Lipschitz of rank 1 knowing that it is real

valued since A − y is (−K)-bounded because A is a (−K)-bounded set (see

Proposition 3.1.12(ii)). Indeed, if in (3.3) we take suprema in a ∈ A, we derive

that hs(A−y1) ≤ hs(A−y2)+D(y2−y1,−K) and, therefore, hs(A−y1)−hs(A−
y2) ≤ ‖y2 − y1‖. Interchanging y1 and y2, we conclude.

(ii) It is enough to take into account that ĥi(A − y) = hi((−A) − (−y)) by

Lemma 3.1.9(i) and to apply that the function y → −y is K-decreasing and

hi((−A)−·) is K-decreasing by part (i), to obtain that ĥi(A−·) is K-increasing.

Moreover, ĥi(A−y) = hi((−A)− (−y)) is Lipschitz of rank 1 if A is (−K)-proper

by part (i).

Finally, a similar reasoning is valid for ĥs(A− y).

The following result is a consequence of Lemma 2.3.9 and Propositions 3.1.17

and 3.1.12 (and Lemma 3.1.16 for the “resp” parts). Remember also that if g is

K-increasing, then g is (−K)-decreasing.

Corollary 3.1.18. Let A,B ∈ P0(Y ).

(i) If A is (−K)-bounded (resp., (−K)-compact) and B is K-compact, then

Dss(A,B) = max
b∈B

hs(A− b) (resp., Dss(A,B) = max
b∈B

max
a∈A

D(a− b,−K)).

(ii) If B is K-bounded (resp., K-compact) and A is K-compact, then

D̂
is

(A,B) = min
a∈A

ĥs(B − a) (resp., D̂
is

(A,B) = min
a∈A

max
b∈B

D(a− b,K)).

(iii) If A is K-proper (resp., K-compact) and B is K-compact, then

Dsi(A,B) = max
b∈B

hi(A− b) (resp., Dsi(A,B) = max
b∈B

min
a∈A

D(a− b,−K)).

(iv) If A is (−K)-bounded (resp., (−K)-compact) and B is (−K)-compact, then

Dis(A,B) = min
b∈B

hs(A− b) (resp., Dis(A,B) = min
b∈B

max
a∈A

D(a− b,−K)).
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(v) If B is (−K)-proper (resp., (−K)-compact) and A is (−K)-compact, then

D̂
si

(A,B) = max
a∈A

ĥi(B − a) (resp., D̂
si

(A,B) = max
a∈A

min
b∈B

D(a− b,K)).

(vi) If A is K-proper (resp., K-compact) and B is (−K)-compact, then

Dii(A,B) = min
b∈B

hi(A− b) (resp., Dii(A,B) = min
b∈B

min
a∈A

D(a− b,−K)).

In the next lemma, we are going to study monotonicity properties of the

functions h̄ ∈ H.

Lemma 3.1.19. The following statements are true:

(i) hi is 2∀∃-increasing.

(ii) hs is 4∀∃-increasing.

(iii) ĥi is 4∀∃-decreasing.

(iv) ĥs is 2∀∃-decreasing.

Proof. (i) If A12∀∃A2, then A2 ⊂ A1+K. By using Lemmas 3.1.14 and 3.1.15(i),

we have hi(A1) = hi(A1 +K) ≤ hi(A2).

(ii) If A14∀∃A2, then A1 ⊂ A2 −K. By using Lemmas 3.1.14 and 3.1.15(ii),

we have hs(A1) ≤ hs(A2 −K) = hs(A2).

(iii) and (iv) are proved in a similar way or they may be reduced to parts (i)

and (ii) by using Lemma 3.1.9.

The second statement in Lemma 3.1.19 is Proposition 3.3(i) in Xu-Li [129].

Now, our goal is to show K-invariance for the functions D̄ ∈ D.

Theorem 3.1.20. Let A,B ∈ P0(Y ). Then

(i) Dss(A,B) = Dss(A−K,B) = Dss(A,B +K) = Dss(A−K,B +K).

(ii) D̂
is

(A,B) = D̂
is

(A+K,B) = D̂
is

(A,B +K) = D̂
is

(A+K,B +K).

(iii) Dsi(A,B) = Dsi(A+K,B) = Dsi(A,B +K) = Dsi(A+K,B +K).

(iv) Dis(A,B) = Dis(A−K,B) = Dis(A,B −K) = Dis(A−K,B −K).

(v) D̂
si

(A,B) = D̂
si

(A−K,B) = D̂
si

(A,B −K) = D̂
si

(A−K,B −K).

(vi) Dii(A,B) = Dii(A+K,B) = Dii(A,B −K) = Dii(A+K,B −K).
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Proof. The third equality in all parts follows from the other two equalities.

(i) Using Lemma 3.1.15(ii), we have

Dss(A−K,B) = hs(A−K −B) = hs(A−B) = Dss(A,B), and

Dss(A,B +K) = hs(A−B −K) = hs(A−B) = Dss(A,B).

(iv) Using Lemma 3.1.15(ii), we obtain

Dis(A,B) = inf
b∈B

hs(A− b) = inf
b∈B

hs(A− b−K) = Dis(A−K,B).

Now, let us prove that Dis(A,B) = Dis(A,B − K). On the one hand, as

B ⊂ B −K, it follows

Dis(A,B) = inf
b∈B

hs(A− b) ≥ inf
y∈B−K

hs(A− y) = Dis(A,B −K).

On the other hand, as b−q ≤ b for all q ∈ K, b ∈ Y , and hs(A−y) is K-decreasing

in y by Proposition 3.1.17(i), we deduce that hs(A − b) ≤ hs(A − b + q), for all

q ∈ K, b ∈ Y . Thus, hs(A− b) ≤ infq∈K h
s(A− b+ q), for all b ∈ Y , and then

Dis(A,B) = inf
b∈B

hs(A− b) ≤ inf
b∈B

inf
q∈K

hs(A− b+ q)) = Dis(A,B −K).

Therefore, Dis(A,B −K) = Dis(A,B).

(iii) This is Proposition 2.2.30.

(ii) By applying successively Lemma 3.1.5(ii) and part (iv) of the present

theorem, we have

D̂
is

K(A,B) = Dis
−K(B,A) = Dis

−K(B +K,A) = D̂
is

K(A,B +K),

D̂
is

K(A,B) = Dis
−K(B,A) = Dis

−K(B,A+K) = D̂
is

K(A+K,B).

(v) This is Theorem 2.2.39(i). It is proved as (ii).

(vi) It is proved as (i) using Lemma 3.1.15(i) and the fact that Dii(A,B) =

hi(A−B).

In the following theorem, we establish the monotonicity of the functions

D̄ ∈ D, but previously an additional result, whose proof is omitted because it

is immediate, is stated.
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Lemma 3.1.21. Let A,B ∈ P0(Y ). If A ⊂ B, then A4∀∃B and B2∀∃A.

Theorem 3.1.22. Let A,B ∈ P0(Y ).

(i-a) Dss(A, ·) is increasing w.r.t. ⊂ and decreasing w.r.t. 4∀∀, 4∃∀ and 2∀∃.

(i-b) Dss(·, B) is increasing w.r.t. ⊂, 4∀∀, 2∃∀ and 4∀∃.

(ii-a) D̂
is

(A, ·) is increasing w.r.t. ⊂ and decreasing w.r.t. 4∀∀, 4∃∀ and 2∀∃.

(ii-b) D̂
is

(·, B) is decreasing w.r.t. ⊂ and increasing w.r.t. 4∀∀, 4∃∀ and 2∀∃.

(iii-a) Dsi(A, ·) is increasing w.r.t. ⊂ and decreasing w.r.t. 4∀∀, 4∃∀ and

2∀∃.

(iii-b) Dsi(·, B) is decreasing w.r.t. ⊂ and increasing w.r.t. 4∀∀, 4∃∀ and

2∀∃.

(iv-a) Dis(A, ·) is decreasing w.r.t. ⊂, 4∀∀, 2∃∀ and 4∀∃.

(iv)-b) Dis(·, B) is increasing w.r.t. ⊂, 4∀∀, 2∃∀ and 4∀∃.

(v-a) D̂
si

(A, ·) is decreasing w.r.t. ⊂, 4∀∀, 2∃∀ and 4∀∃.

(v-b) D̂
si

(·, B) is increasing w.r.t. ⊂, 4∀∀, 2∃∀ and 4∀∃.

(vi-a) Dii(A, ·) is decreasing w.r.t. ⊂, 4∀∀, 2∃∀ and 4∀∃.

(vi-b) Dii(·, B) is decreasing w.r.t. ⊂ and increasing w.r.t. 4∀∀, 4∃∀ and 2∀∃.

Proof. (i-a) and (i-b). 1. If A14∀∃A2, then A1 − b4∀∃A2 − b, for all b ∈ Y by

Lemma 1.3.8(i). In view of Lemma 3.1.19(ii), we obtain hs(A1− b) ≤ hs(A2− b).
Taking supb∈B, it follows that

Dss(A1, B) = sup
b∈B

hs(A1 − b) ≤ sup
b∈B

hs(A2 − b) = Dss(A2, B),

i.e., Dss(·, B) is 4∀∃-increasing.

2. If B12∀∃K B2, then by Lemma 1.3.9(i), one has B24∀∃−K B1. According to

the previous point 1, Dss
−K(·, A) is 4∀∃−K-increasing, so Dss

−K(B2, A) ≤ Dss
−K(B1, A).

Therefore Dss
K(A,B2) ≤ Dss

K(A,B1) since Dss
K(A,B) = Dss

−K(B,A) by Lemma

3.1.5(iii). In consequence, Dss
K(A, ·) is 2∀∃-decreasing.

3. By Proposition 1.3.7(ii), 4∀∀ ⇒ 2∃∀ ⇒ 4∀∃, and by Lemma 1.3.13 taking

into account the previous point 1, we derive that Dss(·, B) is increasing w.r.t. 4∀∀

and 2∃∀.
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4. Similarly, by Proposition 1.3.7(i), 4∀∀ ⇒ 4∃∀ ⇒ 2∀∃, and by Lemma 1.3.13

taking into account the previous point 2, we deduce that Dss(A, ·) is decreasing

w.r.t. 4∀∀ and 4∃∀.

5. If A1 ⊂ A2, then A14∀∃A2 by Lemma 3.1.21, and using the previous point

1, we obtain that Dss(A1, B) ≤ Dss(A2, B).

6. If B1 ⊂ B2, then B22∀∃B1 by Lemma 3.1.21, and using the previous point

2, we derive that Dss(A,B1) ≤ Dss(A,B2).

In the rest of the parts from (ii) to (vi), we will not prove the points 3, 4, 5

and 6 because they are very similar to the proof of the same points in part (i).

(iv-a) and (iv-b). 1. If B14∀∃B2, that is, B1 ⊂ B2−K, then infz∈B2−K h
s(A−

z) ≤ infb1∈B1 h
s(A−b1), that is, Dis(A,B2−K) ≤ Dis(A,B1). Hence, by Proposi-

tion 3.1.20(iv) we have that Dis(A,B2) ≤ Dis(A,B1), which implies that Dis(A, ·)
is 4∀∃-decreasing.

2. If A14∀∃A2, then A1 − b4∀∃A2 − b, for all b ∈ Y by Lemma 1.3.8(i). In

view of Lemma 3.1.19(ii), we obtain hs(A1 − b) ≤ hs(A2 − b). Taking infb∈B, it

follows that Dis(A1, B) ≤ Dis(A2, B), that is, Dis(·, B) is 4∀∃-increasing.

(ii-a) and (ii-b). 1. If A12∀∃K A2, by Lemma 1.3.9(i) we have that A24∀∃−K A1.

As Dis
−K(B, ·) is 4∀∃−K-decreasing by part (iv)-(a), it follows that Dis

−K(B,A1) ≤

Dis
−K(B,A2). Consequently, D̂

is
(A1, B) ≤ D̂

is
(A2, B) by Lemma 3.1.5(ii), i.e.,

D̂
is

(·, B) is 2∀∃-increasing.

2. If B12∀∃K B2, by Lemma 1.3.9(i) we have that B24∀∃−K B1. As Dis
−K(·, A)

is 4∀∃−K-increasing by part (iv-b), point 2, we have Dis
−K(B2, A) ≤ Dis

−K(B1, A).

Consequently, D̂
is

(A,B2) ≤ D̂
is

(A,B1) by Lemma 3.1.5(ii), i.e., D̂
is

(A, ·) is 2∀∃-

decreasing.

Parts (iii) and (vi) are demonstrated similarly to (iv) and (i), resp., and part

(v) in a similar way to (ii).

Remark 3.1.23. In the empty cells of Table 3.1, the corresponding function

D̄(A, ·) or D̄(·, B) is not monotone.

Indeed, Dss(A, ·) is not4∃∃-increasing. By contradiction, assume that Dss(A, ·)
is 4∃∃-increasing. Then by Proposition 1.3.7 we have 4∀∀ ⇒ 4∃∃ and from

Lemma 1.3.13 it follows that Dss(A, ·) is 4∀∀-increasing, which is a contradiction.
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Similarly, it is proved that Dss(A, ·) is not increasing w.r.t. 2∃∀ or 4∀∃.

Dss(A, ·) is not decreasing w.r.t. 2∃∀ or 4∀∃ or 4∃∃ as the following data

show: Y = R, K = R+, B1 = {1}, B2 = {0, 2}, A = {3}, one has B12∃∀B2 (and

so B14∀∃B2 and B14∃∃B2) and however Dss(A,B1) = 2 < Dss(A,B2) = 3.

For the rest of functions it is argued in a similar way or simple counter-

examples can be found.

We collect the results of Theorem 3.1.22 in Table 3.1.

⊂ 4∀∀ 4∃∀ 2∀∃ 2∃∀ 4∀∃ 4∃∃

Dss(A, ·) Incr Decr Decr Decr

D̂
is

(A, ·) Incr Decr Decr Decr

Dsi(A, ·) Incr Decr Decr Decr

Dis(A, ·) Decr Decr Decr Decr

D̂
si

(A, ·) Decr Decr Decr Decr

Dii(A, ·) Decr Decr Decr Decr

Dss(·, B) Incr Incr Incr Incr

D̂
is

(·, B) Decr Incr Incr Incr

Dsi(·, B) Decr Incr Incr Incr

Dis(·, B) Incr Incr Incr Incr

D̂
si

(·, B) Incr Incr Incr Incr

Dii(·, B) Decr Incr Incr Incr

Table 3.1. Theorem 3.1.22. Monotonicity of D̄ w.r.t. the set relations (“Decr”

means decreasing and “Incr”, increasing).

Next, we are going to prove a necessary result for what follows.

Proposition 3.1.24. Let A ∈ P0(Y ). If g : Y → R is continuous, then

inf
a∈clA

g(a) = inf
a∈A

g(a) and sup
a∈clA

g(a) = sup
a∈A

g(a).

Proof. First, we are going to show that infa∈clA g(a) = infa∈A g(a). As A ⊂ clA,

then α := infz∈clA g(z) ≤ β := infa∈A g(a). Assume that α < β. Then, by

definition of infimum we have at least a z0 ∈ clA such that α ≤ g(z0) < β. As
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z0 ∈ clA, there exist a sequence (an) ⊂ A such that an → z0 and, by continuity

of the function g, we derive that g(an)→ g(z0). So, g(an) < β for n large enough,

which contradicts that β = infa∈A g(a).

Secondly, in a similar way, we demonstrate that supa∈clA g(a) = supa∈A g(a).

Now, we show closure properties for the functions h̄ and D̄. The following

result is an immediate consequence of Proposition 3.1.24 and Lemma 1.3.19(i).

Proposition 3.1.25. Let A ∈ P0(Y ). Then, it holds that h̄(clA) = h̄(A), for all

h̄ ∈ H.

Remark 3.1.26. We deduce from the previous proposition and from Lemma

3.1.15 that hi(A) = hi(clA) = hi(cl(A + K)) and hs(A) = hs(clA) = hs(cl(A −
K)).

Proposition 3.1.27. Let A,B ∈ P0(Y ). Then, it is verified that

D̄(clA,B) = D̄(A, clB) = D̄(A,B), ∀ D̄ ∈ D .

Proof. They are a consequence of Lemma 3.1.10 and Propositions 3.1.24 and

3.1.25. In the proof, we follow the order (i)-(vi) of Definition 3.1.1.

(i) For Dss. We are going to distinguish two cases.

Case 1. A is (−K)-bounded. Then hs(A − ·) is continuous by Proposition

3.1.17(i) and so we can apply Proposition 3.1.24. Therefore, we have

Dss(A,B) = sup
b∈B

hs(A− b) = sup
b∈clB

hs(A− b) = Dss(A, clB).

Moreover, from Proposition 3.1.25 it follows

Dss(clA,B) = sup
b∈B

hs(clA− b) = sup
b∈B

hs(cl(A− b)) = sup
b∈B

hs(A− b)

= Dss(A,B).

Case 2. A is not (−K)-bounded. Then hs(A− y) = +∞ for all

y ∈ Y by Proposition 3.1.12(ii), and so Dss(A,B) = +∞ for all B ∈ P0(Y ).

Consequently, Dss(A, clB) = Dss(A,B) and Dss(clA,B) = Dss(A,B) because

clA is not (−K)-closed either.
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(ii)-(vi) It is similar for the rest of the functions. We have to apply Propo-

sitions 3.1.25, 3.1.12 and 3.1.17, but it is necessary to distinguish two cases,

according to the following scheme: for D̂
is

(A,B), B is or is not K-bounded; for

Dsi(A,B) and for Dii(A,B), A is or is not K-proper; for Dis(A,B), A is or is not

(−K)-bounded and for D̂
si

(A,B), B is or is not (−K)-proper.

We may give a remark for each function D̄ ∈ D as Remark 3.1.26 taking into

account Theorem 3.1.20.

3.2 Characterization by scalarization

In this section, we are going to derive new characterizations of the six set

relations of Kuroiwa given in Definition 1.3.2 by using the six set scalarizations

Dα
K(A,B) and D̂

α

K(A,B) given in Definition 3.1.1, which are introduced in the

former section. Furthermore, some examples to illustrate the results obtained

are provided but especially for emphasize that the assumptions required cannot

be removed. The importance of these results lies in the fact that they could be

applied in Section 4.1 to derive necessary and sufficient minimality conditions for

a set optimization problem with the set criterion of solution.

Next, in the following theorem we propose a characterization to the set re-

lations given in Definition 1.3.2 by using the set scalarization functions given in

Definition 3.1.1.

Theorem 3.2.1. Let A,B ∈ P0(Y ) and let K be closed. Then

(i) A4∀∀B if and only if Dss(A,B) ≤ 0.

(ii) If A4∃∀B, then D̂
is

(A,B) ≤ 0. The converse is true if A is K-compact

and B is K-bounded.

(iii) If A2∀∃B, then Dsi(A,B) ≤ 0. The converse is true if A is K-closed.

(iv) If A2∃∀B, then Dis(A,B) ≤ 0. The converse is true if A is (−K)-

bounded and B is (−K)-compact.

(v) If A4∀∃B, then D̂
si

(A,B) ≤ 0. The converse is true if B is (−K)-closed.
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(vi) If A4∃∃B, then Dii(A,B) ≤ 0. The converse is true if A is K-compact

and B is (−K)-compact.

Proof. (i) (⇒) By hypothesis, for all a ∈ A and all b ∈ B, we have that a− b ∈
−K. Hence, by Lemma 1.3.19(v) it follows that D(a− b,−K) ≤ 0, for all a ∈ A
and all b ∈ B and, consequently,

Dss(A,B) = sup
b∈B

sup
a∈A

D(a− b,−K) ≤ 0. (3.4)

(⇐) Since (3.4) is satisfied, it results that D(a − b,−K) ≤ 0, for all a ∈ A and

all b ∈ B. As K is closed, by Lemma 1.3.19(v) we deduce that a − b ∈ −K, for

all a ∈ A and all b ∈ B, that is, A4∀∀B.

(ii) (⇒) By hypothesis, there exists a0 ∈ A such that for all b ∈ B, we have

that a0− b ∈ −K. Hence, by Lemma 1.3.19(v) it follows that D(a0− b,−K) ≤ 0

for all b ∈ B and, consequently, supb∈BD(a0 − b,−K) ≤ 0. Therefore, it results

that D̂
is

(A,B) = infa∈A supb∈BD(a− b,−K) ≤ 0.

(⇐) By contradiction, suppose that A 64∃∀B. Then, for all a ∈ A, there exists

b̃ ∈ B (that depends on a) such that a − b̃ 6∈ −K. So, by Lemma 1.3.19(v) we

derive that D(a− b̃,−K) > 0 since K is closed and, consequently,

D̂
is

(a,B) = ĥs(B − a) = sup
b∈B

D(a− b,−K) ≥ D(a− b̃,−K) > 0, ∀a ∈ A. (3.5)

Since B is K-bounded and A is K-compact, by Corollary 3.1.18(ii) we have

D̂
is

(A,B) = mina∈A ĥ
s(B − a), and so there exists a0 ∈ A such that

D̂
is

(A,B) = D̂
is

(a0, B) > 0

in view of (3.5), which contradicts the hypothesis.

(iii) It is Theorem 2.3.1.

(iv) (⇒) By Lemma 1.3.9(ii), we have that B4∃∀−K A, and applying part

(ii) it follows that D̂
is

−K(B,A) ≤ 0. Using Lemma 3.1.5(ii), we conclude that

Dis
K(A,B) ≤ 0.

(⇐) By Lemma 3.1.5(ii), it holds that Dis
K(A,B) = D̂

is

−K(B,A). By hypothe-

sis, we have that D̂
is

−K(B,A) ≤ 0, B is (−K)-compact and A is (−K)-bounded,

and using part (ii) it follows that B4∃∀−K A. We conclude that A2∃∀B by Lemma

1.3.9(ii).
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(v) It is Theorem 2.3.17(i).

(vi) (⇒) By hypothesis, there exist a0 ∈ A and b0 ∈ B such that a0−b0 ∈ −K.

Therefore, by Lemma 1.3.19(v) we deduce that D(a0 − b0,−K) ≤ 0 since K is

closed and, consequently, Dii(A,B) = infb∈B infa∈AD(a− b,−K) ≤ 0.

(⇐) By hypothesis, Dii(A,B) ≤ 0. Since A is K-compact and B is (−K)-

compact, from Corollary 3.1.18(vi) it follows that

Dii(A,B) = min
b∈B

min
a∈A

D(a− b,−K) = D(a0 − b0,−K)

for some a0 ∈ A and b0 ∈ B. Consequently, we have that

Dii(A,B) = D(a0 − b0,−K) ≤ 0

and this implies that a0 − b0 ∈ −K by Lemma 1.3.19(v) because K is closed, so

we deduce that A4∃∃B.

In [81, 83] for the Gerstewitz’s function ge,K(y) := inf{t ∈ R : y ∈ te − K},
we find close results to parts (iii), (v) and (vi) of Theorem 3.2.1 but assuming

that it is attained infa∈A ge,K(a− b) for all b ∈ B, infb∈B ge,K(a− b) for all a ∈ A
and inf(a,b)∈A×B ge,K(a− b), respectively. Moreover, Theorem 3.13 in [83] for the

Gerstewitz’s function ge,K (with an arbitrary closed set K) is similar to Theorem

3.2.1(i). Furthermore, results as parts (iii), (v) and (vi) of Theorem 3.2.1 are

Propositions 3.8, 3.3 and 3.14 in [11] for the oriented distance but assuming that it

is attained infa∈AD(a−b,−K), infb∈BD(a−b,−K) and inf(a,b)∈A×BD(a−b,−K);

finally, part (i) of Theorem 3.2.1 is Proposition 3.12 in [11]. Conditions that allow

to ensure that such infima are attained are not given.

To illustrate Theorem 3.2.1, we provide an example.

Example 3.2.2. With the data of Example 1.3.4, we can obtain the six scalar-

izations:

Dss(A,B) = as − bi,
D̂
is

(A,B) = Dsi(A,B) = ai − bi,

Dis(A,B) = D̂
si

(A,B) = as − bs,

Dii(A,B) = ai − bs.
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Since A and B are K-compact and (−K)-compact, we can apply Theorem 3.2.1

and it results:

A 4∀∀ B ⇔ Dss(A,B) = as − bi ≤ 0 ⇔ as ≤ bi,

A 4∃∀ B ⇔ D̂
is

(A,B) = ai − bi ≤ 0 ⇔ ai ≤ bi,

A 2∀∃ B ⇔ Dsi(A,B) = ai − bi ≤ 0 ⇔ ai ≤ bi,

A 2∃∀ B ⇔ Dis(A,B) = as − bs ≤ 0 ⇔ as ≤ bs,

A 4∀∃ B ⇔ D̂
si

(A,B) = as − bs ≤ 0 ⇔ as ≤ bs,

A 4∃∃ B ⇔ Dii(A,B) = ai − bs ≤ 0 ⇔ ai ≤ bs.

which corroborates the results obtained in Example 1.3.4.

In the following examples, we can see that if the restrictions required in parts

(ii)-(vi) of Theorem 3.2.1 are removed, then the reciprocal ones are not true.

Example 3.2.3. Let Y = R2, K = R2
+, A = {(−n, 1/n) : n ∈ N} and B =

{(0, 0)}. We have that

Dii(A,B) = inf
b∈B

inf
a∈A

D(a− b,−K) = inf
n∈N

1

n
= 0

and, however, A 64∃∃B, that is, the reciprocal part of Theorem 3.2.1(vi) is not

fulfilled because A is not K-compact. Moreover, D̂
is

(A,B) = infa∈A supb∈BD(a−
b,−K) = 0 and, however, A 64∃∀B, that is, the reciprocal part of Theorem

3.2.1(ii) is not satisfied because A is not K-compact. Finally, Dsi(A,B) = 0

and, however, A 62∀∃B, that is, the reciprocal part of Theorem 3.2.1(iii) is not

satisfied because A is not K-closed.

Example 3.2.4. Let Y = R2, K = R2
+, B = {(n,−1/n) : n ∈ N} and A =

{(0, 0)}. We have that Dis(A,B) = infb∈B supa∈AD(a− b,−K) = infn∈N 1/n = 0

and, however, A 62∃∀B, that is, the reciprocal part of Theorem 3.2.1(iv) is not

true because B is not (−K)-compact. We also have that

D̂
si

(A,B) = sup
a∈A

inf
b∈B

D(a− b,−K) = 0

and, however, A 64∀∃B, that is, the reciprocal part of Theorem 3.2.1(v) is not

satisfied because B is not (−K)-closed.
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3.3 Strict monotonicity

In this section, by considering a solid convex cone K and under suitable

assumptions, strict monotonicity for the six set scalarizations Dα
K(A,B) and

D̂
α

K(A,B) by using the six strict set relations of Kuroiwa, is investigated. To

this purpose, some new important results wich deal with inequalities for the

functions Dα
K(A,B) and D̂

α

K(A,B) when one of the variables is a sum of two sets

are presented; moreover, it should be noted that theses results does not exist in

the literature for the Gerstewitz’s function. The results about strict monotonicity

which are above mentioned could be applied in Section 4.2 to derive minimality

conditions for a set optimization problem with the set criterion of solution. In

the literature, there are very few authors that have researched strict monotonicity

(see [5,41,51,94,96,107]) and, in all these cases, Gerstewitz’s function have been

used. The results obtained represent an improvement since they require weakest

assumptions.

We start with some needed results to achieve the objectives. We are going to

show a kind of generalized subaditive property for the functions hα.

Lemma 3.3.1. Let A,B ∈ P0(Y ). The following inequalities hold:

(i) hi(A)− ĥs(B) ≤ hi(A+B) ≤ hi(A) + hi(B).

(ii) hs(A)− ĥi(B) ≤ hs(A+B) ≤ hs(A) + hs(B).

Proof. (i) On the one hand, by Lemma 1.3.19(ix) we have

D(a+ b,−K) ≤ D(a,−K) +D(b,−K), ∀a ∈ A, ∀b ∈ B. (3.6)

Taking infima in a ∈ A, b ∈ B, we deduce that infa∈A,b∈BD(a + b,−K) ≤
infa∈AD(a,−K)+infb∈BD(b,−K), that is, we obtain hi(A+B) ≤ hi(A)+hi(B)

by Definition 3.1.8(i), which is the second inequality of (i).

On the other hand, by Lemma 1.3.19(ix) it follows

D(a,−K) = D(a+ b− b,−K) ≤ D(a+ b,−K) +D(−b,−K),

that is,

D(a,−K)−D(b,K) ≤ D(a+ b,−K) (3.7)
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since D(−b,−K) = D(b,K) by Lemma 1.3.19(xiii). Taking infima in a ∈ A, b ∈
B, we deduce

inf
a∈A

D(a,−K) + inf
b∈B

[−D(b,K)] ≤ inf
a∈A,b∈B

D(a+ b,−K) = hi(A+B).

Hence, hi(A) − supb∈BD(b,K) ≤ hi(A + B), which is the first inequality of (i)

since ĥs(B) = supb∈BD(b,K) by Definition 3.1.8(iv).

(ii) Taking suprema in a ∈ A, b ∈ B in equation (3.6), we deduce

sup
a∈A,b∈B

D(a+ b,−K) ≤ sup
a∈A

D(a,−K) + sup
b∈B

D(b,−K),

that is, we obtain hs(A+B) ≤ hs(A) + hs(B) by Definition 3.1.8(ii).

Taking now suprema in a ∈ A, b ∈ B in (3.7), we derive

sup
a∈A

D(a,−K) + sup
b∈B

[−D(b,K)] ≤ sup
a∈A,b∈B

D(a+ b,−K) = hs(A+B).

Hence, hs(A) − infb∈BD(b,K) ≤ hs(A + B), which is the first inequality of (ii)

since ĥi(B) = infb∈BD(b,K) by Definition 3.1.8(iii).

Now, let us see the strict monotonicity of the functions hα.

Proposition 3.3.2. Let A,B ∈ P0(Y ) and let K be solid.

(i) If B is K-compact and A2∀∃s B, then hi(A) < hi(B).

(ii) If A is (−K)-compact and A4∀∃s B, then hs(A) < hs(B).

Proof. (i) As B is K-compact, by Definition 3.1.8(i) and Lemma 3.1.16, there

exists b0 ∈ B such that hi(B) = infb∈BD(b,−K) = D(b0,−K). As A2∀∃s B,

then for all b ∈ B there exists a ∈ A such that a ≤intK b and, in particular, for

b0 there exists a0 ∈ A such that a0 ≤intK b0. By Lemma 1.3.19(viii), we have

D(a0,−K) < D(b0,−K) = hi(B), and consequently, hi(A) = infa∈AD(a,−K) ≤
D(a0,−K) < hi(B).

(ii) The proof of this part is analogous and is omitted.

An immediate consequence of the previous proposition is the next result.

Corollary 3.3.3. Let K be solid. Then the function hi (resp., hs) is strictly 2∀∃s

(resp., 4∀∃s ) -increasing on K (resp., (−K)) -compact sets.
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Corollary 3.3.3, for 4∀∃s , is Proposition 3.3(ii) in [129].

Next, we provide inequalities for the functions D̄ ∈ D when one of the variables

is a sum of two sets.

Lemma 3.3.4. Let A,B,N ∈ P0(Y ). Then, the following inequalities hold:

(i-a) Dss(A,B)− ĥi(N) ≤ Dss(A+N,B) ≤ Dss(A,B) + hs(N).

(i-b) Dss(A,B)− hi(N) ≤ Dss(A,B +N) ≤ Dss(A,B) + ĥs(N).

(ii-a) D̂
is

(A,B)− ĥs(N) ≤ D̂
is

(A+N,B) ≤ D̂
is

(A,B) + hi(N).

(ii-b) D̂
is

(A,B)− hi(N) ≤ D̂
is

(A,B +N) ≤ D̂
is

(A,B) + ĥs(N).

(iii-a) Dsi(A,B)− ĥs(N) ≤ Dsi(A+N,B) ≤ Dsi(A,B) + hi(N).

(iii-b) Dsi(A,B)− hi(N) ≤ Dsi(A,B +N) ≤ Dsi(A,B) + ĥs(N).

(iv-a) Dis(A,B)− ĥi(N) ≤ Dis(A+N,B) ≤ Dis(A,B) + hs(N).

(iv-b) Dis(A,B)− hs(N) ≤ Dis(A,B +N) ≤ Dis(A,B) + ĥi(N).

(v-a) D̂
si

(A,B)− ĥi(N) ≤ D̂
si

(A+N,B) ≤ D̂
si

(A,B) + hs(N).

(v-b) D̂
si

(A,B)− hs(N) ≤ D̂
si

(A,B +N) ≤ D̂
si

(A,B) + ĥi(N).

(vi-a) Dii(A,B)− ĥs(N) ≤ Dii(A+N,B) ≤ Dii(A,B) + hi(N).

(vi-b) Dii(A,B)− hs(N) ≤ Dii(A,B +N) ≤ Dii(A,B) + ĥi(N).

Proof. We are going to prove the inequalities in the order (i), (iv), (vi), (iii), (ii)

and (v).

(i-a) By Lemma 3.3.1(ii), we have

hs(A− b)− ĥi(N) ≤ hs(A+N − b) ≤ hs(A− b) + hs(N). (3.8)

By taking suprema with b ∈ B, we derive

sup
b∈B

hs(A− b)− ĥi(N) ≤ sup
b∈B

hs(A+N − b) ≤ sup
b∈B

hs(A− b) + hs(N),

which is exactly the inequality (i-a) taking into account Lemma 3.1.10(i).

(i-b) By Lemma 3.1.10(i), we know that Dss(A,B +N) = supb∈B,n∈N h
s(A−

b− n). By Lemma 3.3.1(ii), we deduce

hs(A− b)−D(n,−K) ≤ hs(A− b− n) ≤ hs(A− b) +D(−n,−K). (3.9)
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By taking suprema with b ∈ B and n ∈ N , we have

sup
b∈B

hs(A− b)− inf
n∈N

D(n,−K) ≤ sup
b∈B,n∈N

hs(A− b− n)

≤ sup
b∈B

hs(A− b) + sup
n∈N

D(−n,−K).

Consequently, by applying Lemma 3.1.10(i) and Definition 3.1.8 parts (i) and

(iv), we obtain precisely part (i-b).

(iv-a) By taking infima with b ∈ B in the inequality (3.8), we derive

inf
b∈B

hs(A− b)− ĥi(N) ≤ inf
b∈B

hs(A+N − b) ≤ inf
b∈B

hs(A− b) + hs(N).

Therefore, by applying Lemma 3.1.10(iv), it results just part (iv-a).

(iv-b) By Lemma 3.1.10(iv), we know that Dis(A,B+N) = infb∈B,n∈N h
s(A−

b− n). Then, by taking infima with b ∈ B and n ∈ N in the inequality (3.9), we

have

inf
b∈B

hs(A− b)− sup
n∈N

D(n,−K) ≤ inf
b∈B,n∈N

hs(A− b− n)

≤ inf
b∈B

hs(A− b) + inf
n∈N

D(−n,−K).

Consequently, by applying Lemma 3.1.10(iv) and Definition 3.1.8 parts (ii) and

(iii), we obtain precisely part (iv-b).

Parts (vi) and (iii) are proved as parts (i) and (iv), by using Lemma 3.3.1(i)

instead of Lemma 3.3.1(ii).

(ii-a) and (ii-b) are obtained from parts (iv-b) and (iv-a), respectively, for the

particular case that we take −K instead of K by Lemmas 3.1.5(ii) and 3.1.9.

(v-a) and (v-b) are obtained from parts (iii-b) and (iii-a), respectively, for the

particular case that we take −K instead of K by Lemmas 3.1.5(i) and 3.1.9.

Remark 3.3.5. In the proof of Theorem 3.3.8, we will use Lemma 3.3.4 with

N = rU0, r > 0, and we will need the sign of h̄(rU0) for all h̄ ∈ H. If K is solid,

then

ĥi(rU0) = hi(rU0) < 0 and ĥs(rU0) = hs(rU0) > 0.

Indeed, the equalities follow from Lemma 3.1.9 since −rU0 = rU0. The first

inequality is true since

hi(rU0) = inf
u∈rU0

D(u,−K) = inf
u∈rU0∩(− intK)

D(u,−K) < 0
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by Definition 1.3.18 and because rU0∩ (− intK) 6= ∅. The inequality hs(rU0) > 0

is true since

hs(rU0) = sup
u∈rU0

D(u,−K) = sup
u∈rU0\(−K)

D(u,−K) > 0

by Definition 1.3.18 and because rU0\(−K) 6= ∅.

In the following lemma, we show a property that will be useful in the sequel.

Lemma 3.3.6. Let A,B ∈ P0(Y ) and let K be solid. If A2∀∃s B and B is

K-compact, then there exits r > 0 such that A2∀∃s B + rU0, that is,

B ⊂ A+ intK ⇒ ∃r > 0 : B + rU0 ⊂ A+ intK.

Proof. If A is not K-proper, the result is evident. Thus, suppose that A is K-

proper.

Since a+K ⊂ A+K for all a ∈ A, then by Lemma 1.3.19(vii), (xii) and (xiii)

we have D(y, A+K) ≤ D(y, a+K) = D(a− y,−K) for all a ∈ A and all y ∈ Y
and, consequently, by Definition 3.1.1(iii), we have

D(y, A+K) ≤ inf
a∈A

D(a− y,−K) = Dsi(A, y), ∀y ∈ Y. (3.10)

By hypothesis, B ⊂ A + intK and so b ∈ A + intK for all b ∈ B. Hence, by

using Lemma 1.3.19(xii) and Definition 1.3.18, we have

D(b, A+K) = D(b, A+ intK) = −d(b, Y \(A+ intK)), ∀b ∈ B.

Therefore, by taking suprema with b ∈ B, we obtain

sup
b∈B

D(b, A+K) = sup
b∈B

(−d(b, Y \(A+ intK)))

= − inf
b∈B

d(b, Y \(A+ intK)) = −d(B, Y \(A+ intK)). (3.11)

Let r = d(B, Y \(A+ intK)). In view of (3.10) and (3.11), it follows

sup
b∈B

Dsi(A, b) ≥ sup
b∈B

D(b, A+K) = −d(B, Y \(A+ intK)) = −r. (3.12)

As A is K-proper and B is K-compact, by Corollary 3.1.18(iii) there exists b0 ∈ B
such that

sup
b∈B

Dsi(A, b) = Dsi(A, b0). (3.13)
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Since b0 ∈ A + intK, there exists a0 ∈ A such that a0 − b0 ∈ − intK, and using

Definition 3.1.1(iii) and Lemma 1.3.19(iii) we get

Dsi(A, b0) = inf
a∈A

D(a− b0,−K) ≤ D(a0 − b0,−K) < 0.

Taking into account (3.12) and (3.13), we derive that 0 > Dsi(A, b0) ≥ −r,
that is, r > 0. Therefore, since infb∈B d(b, Y \(A + intK)) = r, it follows that

d(b, Y \(A + intK)) ≥ r, for all b ∈ B, and so (b + rU0) ∩ (Y \(A + intK)) = ∅,
for all b ∈ B. This is equivalent to b + rU0 ⊂ A + intK for all b ∈ B, that is,

B + rU0 ⊂ A+ intK.

We are going to provide an identical result to Lemma 3.3.6 but in terms of

the relation 4∀∃s .

Lemma 3.3.7. Let A,B ∈ P0(Y ) and let K be solid. If A4∀∃s B and A is

(−K)-compact, then there exits r > 0 such that A+ rU04∀∃s B, that is,

A ⊂ B − intK ⇒ ∃r > 0 : A+ rU0 ⊂ B − intK.

Next, under suitable assumptions, we establish the strict monotonicity for our

six set scalarization functions with respect to each variable.

Theorem 3.3.8. Let A,B,C ∈ P0(Y ) and let K be solid.

(i-a) If C is (−K)-bounded, B is K-compact and A2∀∃s B, then Dss(C,A) >

Dss(C,B).

(i-b) If C is K-bounded, A is (−K)-compact and A4∀∃s B, then Dss(A,C) <

Dss(B,C).

(ii-a) If C is K-proper, B is K-compact and A2∀∃s B, then D̂
is

(C,A) >

D̂
is

(C,B).

(ii-b) If C is K-bounded, B is K-compact and A2∀∃s B, then D̂
is

(A,C) <

D̂
is

(B,C).

(iii-a) If C is K-proper, B is K-compact and A2∀∃s B, then Dsi(C,A) >

Dsi(C,B).

(iii-b) If C is K-bounded, B is K-compact and A2∀∃s B, then Dsi(A,C) <

Dsi(B,C).
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(iv-a) If C is (−K)-bounded, A is (−K)-compact and A4∀∃s B, then Dis(C,A) >

Dis(C,B).

(iv-b) If C is (−K)-proper, A is (−K)-compact and A4∀∃s B, then Dis(A,C) <

Dis(B,C).

(v-a) If C is (−K)-bounded, A is (−K)-compact and A4∀∃s B, then D̂
si

(C,A) >

D̂
si

(C,B).

(v-b) If C is (−K)-proper, A is (−K)-compact and A4∀∃s B, then D̂
si

(A,C) <

D̂
si

(B,C).

(vi-a) If C is K-proper, A is (−K)-compact and A4∀∃s B, then Dii(C,A) >

Dii(C,B).

(vi-b) If C is (−K)-proper, B is K-compact and A2∀∃s B, then Dii(A,C) <

Dii(B,C).

(vii-a) Parts (i-a), (ii-a), (iii-a), (ii-b), (iii-b) and (vi-b) are also true if we

assume A4∀∀s B or A4∃∀s B instead of A2∀∃s B.

(vii-b) Parts (iv-a), (v-a), (vi-a), (i-b), (iv-b) and (v-b) are also true if we

assume A4∀∀s B or A2∃∀s B instead of A4∀∃s B.

Proof. (i-a) As B is K-compact, by Lemma 3.3.6, there exists r > 0 such that

A2∀∃s B + rU0, which implies A2∀∃B + rU0 by Proposition 1.3.7(iv). As the

function Dss(C, ·) is 2∀∃-decreasing by Theorem 3.1.22(i), by applying Lemma

3.3.4(i-b), we have

Dss(C,A) ≥ Dss(C,B + rU0) ≥ Dss(C,B)− hi(rU0) > Dss(C,B).

The last inequality is true because hi(rU0) < 0 by Remark 3.3.5, and Dss(C,B) ∈
R by Theorem 3.1.13(i) since C is (−K)-bounded and B is K-bounded as it is

K-compact.

(i-b) As A is (−K)-compact, and A4∀∃s B, then by Lemma 3.3.7 there exists

r > 0 such that A + rU04∀∃s B, which implies A + rU04∀∃B by Proposition

1.3.7(iv). As the function Dss(·, C) is 4∀∃-increasing by Theorem 3.1.22(iii), by

applying Lemma 3.3.4(i-a) we have

Dss(B,C) ≥ Dss(A+ rU0, C) ≥ Dss(A,C)− ĥi(rU0) > Dss(A,C).
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The last inequality is true because ĥi(rU0) < 0 by Remark 3.3.5, and Dss(A,C) ∈
R by Theorem 3.1.13(i) since C is K-bounded and A is (−K)-bounded as it is

(−K)-compact.

Parts (ii)-(vi) are proved in a similar way.

(vii) By Proposition 1.3.7 parts (i) and (ii), we know that 4∀∀ ⇒ 4∃∀ ⇒ 2∀∃

and 4∀∀ ⇒ 2∃∀ ⇒ 4∀∃. Then, by parts (i)-(vi) and Lemma 1.3.13, we obtain

the conclusion.

We summarize the results of Theorem 3.3.8 in Table 3.2.

-s Assumptions

TC 4∀∀s 4∃∀s 2∀∃s 2∃∀s 4∀∃s 4∃∃s C is A is B is

Dss(C, ·) s.D. s.D. s.D. (−K)-b. K-c.

D̂
is

(C, ·) s.D. s.D. s.D. K-p. K-c.

Dsi(C, ·) s.D. s.D. s.D. K-p. K-c.

Dis(C, ·) s.D. s.D. s.D. (−K)-b. (−K)-c.

D̂
si

(C, ·) s.D. s.D. s.D. (−K)-b. (−K)-c.

Dii(C, ·) s.D. s.D. s.D. K-p. (−K)-c.

Dss(·, C) s.I. s.I. s.I. K-b. (−K)-c.

D̂
is

(·, C) s.I. s.I. s.I. K-b. K-c.

Dsi(·, C) s.I. s.I. s.I. K-b. K-c.

Dis(·, C) s.I. s.I. s.I. (−K)-p. (−K)-c.

D̂
si

(·, C) s.I. s.I. s.I. (−K)-p. (−K)-c.

Dii(·, C) s.I. s.I. s.I. (−K)-p. K-c.

Table 3.2. Theorem 3.3.8, Strict monotonicity. A-sB ⇒ TC(A) < TC(B) (s.I.)

or TC(A) > TC(B) (s.D.), where TC = D̄(C, ·) or TC = D̄(·, C). (“s.D.” means

strictly decreasing; “s.I.”, strictly increasing; “K-b.”, K-bounded, “K-p.”,

K-proper and “K-c.”, K-compact).

Parts (iii) and (v) of this theorem improve Proposition 2.3.15 and Theorem

2.3.17(vi), where it is additionally assumed that C is K-compact and (−K)-

compact, respectively.
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Results about strict monotonicity for extensions of Gerstewitz’s function and

for 2∀∃s or 4∀∃s have been considered in Maeda [107, Theorem 3.3] (with Y = Rn

and K = Rn
+), Kuwano [91, Proposition 3.4], Kuwano et al. [94, Proposition 3.6]

(they consider the five first relations of R), Hernández and Rodŕıguez-Maŕın [51,

Theorem 3.9], Araya [5, Theorem 3.2(xii) and (xiii)], Gutiérrez et al. [41, Theorem

3.5(g)], etc., most of them require that A, B and C are compact or cone-compact.

Remark 3.3.9. If the assumption on cone-compactness in Theorem 3.3.8 is not

satisfied, the conclusion can be false. In this way, in Example 3.4.2(a), we have

A2∀∃s B and however (we choose C = B) Dsi(A,B) = Dsi(B,B) = 0, note that

B is not K-compact. In Example 3.4.2(b), we have A4∀∃s B and however (we

choose C = A) D̂
si

(A,A) = D̂
si

(A,B) = 0, observe that A is not (−K)-compact.

3.4 Characterization by scalarization of the strict

set relations

In this section, by considering a solid convex cone K, new characterizations

of six strict set relations of Kuroiwa are derived by using the six set scalariza-

tions Dα
K(A,B) and D̂

α

K(A,B). Moreover, some examples to illustrate the results

obtained are provided with the aim to emphasize that the assumptions required

cannot be removed. These results will be used in Section 4.2 to derive weak

minimality conditions for a set optimization problem with the set criterion of

solution.

In the following theorem, by using the six set oriented distances presented in

Definition 3.1.1, we characterize the strict set relations which have been intro-

duced in Definition 1.3.3 considering a solid convex cone K, that is, intK 6= ∅.
This result plays a crucial role in the following chapter when we want to investi-

gate weak optimality in set optimization problems.

Next, in the following theorem we present a characterization for the six strict

set relations by means of the six set oriented distance scalarization functions that

will be used later on.
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Theorem 3.4.1. Let A,B ∈ P0(Y ) and K be solid. Then

(i) If Dss(A,B) < 0, then A4∀∀s B. The reciprocal implication is true if A is

(−K)-compact and B is K-compact.

(ii) If D̂
is

(A,B) < 0, then A4∃∀s B. The reciprocal implication is true if B is

K-compact.

(iii) If Dsi(A,B) < 0, then A2∀∃s B. The reciprocal implication is true if B

is K-compact.

(iv) If Dis(A,B) < 0, then A2∃∀s B. The reciprocal implication is true if A is

(−K)-compact.

(v) If D̂
si

(A,B) < 0, then A4∀∃s B. The reciprocal implication is true if A is

(−K)-compact.

(vi) Dii(A,B) < 0 if and only if A4∃∃s B.

Proof. We are going to prove the theorem in the order (i), (iv), (ii), (iii), (v) and

(vi).

(i) (⇒) Since Dss(A,B) = supb∈B supa∈AD(a − b,−K) < 0, it follows that

D(a − b,−K) < 0 for all a ∈ A and all b ∈ B. Then, by applying Lemma

1.3.19(iii) we deduce a− b ∈ − intK for all a ∈ A and all b ∈ B, that is, A4∀∀s B.

(⇐) By hypothesis, for all a ∈ A and all b ∈ B we have a− b ∈ − intK and,

therefore, D(a − b,−K) < 0 by Lemma 1.3.19(iii). As A is (−K)-compact and

B is K-compact, then we obtain Dss(A,B) = maxb∈B maxa∈AD(a − b,−K) by

Corollary 3.1.18(i), and so there exist a0 ∈ A and b0 ∈ B such that Dss(A,B) =

D(a0 − b0,−K). Therefore, Dss(A,B) < 0.

(iv) (⇒) By contradiction, suppose that A 62∃∀s B. Then, for all b ∈ B, there

exists ã ∈ A such that ã − b 6∈ − intK. Then, by Lemma 1.3.19(iii), we have

D(ã− b,−K) ≥ 0 and, consequently, by Definition 3.1.8(ii) we have hs(A− b) =

supa∈AD(a − b,−K) ≥ D(ã − b,−K) ≥ 0, for all b ∈ B. Hence, by Lemma

3.1.10(iv), we have Dis(A,B) = infb∈B h
s(A− b) ≥ 0, which is a contradiction.

(⇐) By hypothesis, there exists b0 ∈ B such that for all a ∈ A we have

a−b0 ∈ − intK, that is, D(a−b0,−K) < 0 by Lemma 1.3.19(iii). As A is (−K)-

compact, then A− b0 is (−K)-compact too, and by Lemma 3.1.16(ii) there exists

a0 ∈ A such that hs(A−b0) = supa∈AD(a−b0,−K) = D(a0−b0,−K). Therefore,
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hs(A− b0) < 0 and, consequently, Dis(A,B) = infb∈B h
s(A− b) ≤ hs(A− b0) < 0.

(ii) (⇒) By Lemma 3.1.5(ii), it is verified that D̂
is

(A,B) = Dis
−K(B,A). By

using the hypothesis, we have Dis
−K(B,A) < 0, and applying part (iv) it follows

B4∃∀s,−K A. Therefore, we conclude A2∃∀s B by Lemma 1.3.9(iv).

(⇐) By hypothesis A4∃∀s B, and by Lemma 1.3.9(iv), we have B2∃∀s,−K A.

As A is (−K)-compact, applying part (iv) it follows Dis
−K(B,A) < 0. By using

Lemma 3.1.5(ii), we conclude D̂
is

(A,B) < 0.

(iii) Although it is Theorem 2.3.11, we give a different proof here. The “if”

part is as the previous ones. For the reciprocal implication, assume that A2∀∃s B.

As B is K-compact (and so it is also K-bounded), we can apply Theorem 3.3.8(iii-

b) to the function Dsi(·, B), and it results Dsi(A,B) < Dsi(B,B) = 0. The last

equality is true by Proposition 2.2.34 since B is K-proper.

(v) It is Theorem 2.3.17(v), but it can also be proved following the same ideas

as the ones used in part (iii).

(vi) (⇒) By hypothesis, we have infb∈B infa∈AD(a− b,−K) < 0. Then, there

exists b0 ∈ B such that infa∈AD(a− b0,−K) < 0 and, therefore, for that b0 ∈ B
there exists a0 ∈ A such that D(a0 − b0,−K) < 0. So, a0 − b0 ∈ − intK by

Lemma 1.3.19(iii), that is, A4∃∃s B.

(⇐) By hypothesis, there exists a0 ∈ A and exists b0 ∈ B such that a0 − b0 ∈
− intK. Then, D(a0−b0,−K) < 0 by Lemma 1.3.19(iii) and, hence, infa∈AD(a−
b0,−K) < 0. Consequently, Dii(A,B) = infb∈B infa∈AD(a− b,−K) < 0.

Similar results to Theorem 3.4.1 for extensions of Gerstewitz’s function and

for 2∀∃s or 4∀∃s have been considered in Maeda [107, Theorem 3.4] (with Y = Rn

and K = Rn
+ and assuming that A and B are compact sets), Hernández and

Rodŕıguez-Maŕın [51, Corollary 3.11] and Araya [5, Theorem 3.2(xi)], where the

two last ones require that A and B are cone-compact.

We are going to consider some examples in which we can see that without the

conditions required in (i)-(v) of Theorem 3.4.1, the corresponding results are not

true.
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Example 3.4.2. Assume Y = R2 and K = R2
+.

(a) Let A = {(0, 0)} and B = {(n, 1
n
) : n = 1, 2, 3, . . . }. Clearly, we have

that A4∀∀s B, A4∃∀s B and A2∀∃s B and, however, Dss(A,B) = D̂
is

(A,B) =

Dsi(A,B) = supnD((−n, −1
n

),−K) = 0. Hence, in Theorem 3.4.1, the reciprocal

implication in parts (i), (ii) and (iii) is not verified because B is not K-compact.

(b) Let A = {(−n, −1
n

) : n = 1, 2, 3, . . . } and B = {(0, 0)}. We can check that

A2∃∀s B and A4∀∃s B, but Dis(A,B) = D̂
si

(A,B) = supnD((−n, −1
n

),−K) = 0.

Therefore, in Theorem 3.4.1, the reciprocal implication in parts (iv) and (v) is

not verified because A is not (−K)-compact.

We illustrate Theorem 3.4.1 in the next example.

Example 3.4.3. With the data of Example 1.3.5, first of all we are going to

prove the following expressions for the six scalarizations:

Dss(A,B) = D(as − bi,−K), Dis(A,B) = D(as − bs,−K),

D̂
is

(A,B) = D(ai − bi,−K), D̂
si

(A,B) = D(as − bs,−K),

Dsi(A,B) = D(ai − bi,−K), Dii(A,B) = D(ai − bs,−K).

 (3.14)

Indeed, the following relations are clear for [u, v]K with u ≤K v:

[u, v]K +K = u+K and [u, v]K −K = v −K.

Now, if we apply the above relations and Theorem 3.1.20, we obtain:

Dss(A,B) = Dss(A−K,B +K) = Dss(as −K, bi +K) = Dss(as, bi)

= D(as − bi,−K).

The rest of formulas in (3.14) are deduced by using the same ideas.

Secondly, since A and B are K-compact and (−K)-compact, which is checked

via the definition, we can apply Theorem 3.4.1 and Lemma 1.3.19(iii) and we

obtain:

A4∀∀s B ⇔ Dss(A,B) = D(as − bi,−K) < 0 ⇔ as ≤intK bi,

A4∃∀s B ⇔ D̂
is

(A,B) = D(ai − bi,−K) < 0 ⇔ ai ≤intK bi,

A2∀∃s B ⇔ Dsi(A,B) = D(ai − bi,−K) < 0 ⇔ ai ≤intK bi,

A2∃∀s B ⇔ Dis(A,B) = D(as − bs,−K) < 0 ⇔ as ≤intK bs,

A4∀∃s B ⇔ D̂
si

(A,B) = D(as − bs,−K) < 0 ⇔ as ≤intK bs,

A4∃∃s B ⇔ Dii(A,B) = D(ai − bs,−K) < 0 ⇔ ai ≤intK bs.
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which corroborates the results obtained in Example 1.3.5.

Next, we state other characterization for 2∀∃s and 4∀∃s .

Proposition 3.4.4. Let A,B ∈ P0(Y ) and let K be solid.

(i) If B is K-compact, then

A2∀∃s B ⇔ Dsi(A, y) < Dsi(B, y), ∀y ∈ Y.

(ii) If A is (−K)-compact, then

A4∀∃s B ⇔ D̂
si

(y, A) > D̂
si

(y,B), ∀y ∈ Y.

Proof. (i) (⇒) It is a consequence of Theorem 3.3.8(iii-b).

(⇐) By contradiction, let us suppose A 62∀∃s B. Then, there exits b0 ∈ B such

that a − b0 /∈ − intK for all a ∈ A, and so, by Lemma 1.3.19(iii), we obtain

that D(a− b0,−K) ≥ 0. In consequence, Dsi(A, b0) = infa∈AD(a− b0,−K) ≥ 0

by Definition 3.1.1(iii). Moreover, Dsi(B, b0) = infb∈BD(b − b0,−K) ≤ 0 since

b0 ∈ B, and so Dsi(A, b0) ≥ Dsi(B, b0), which contradicts the hypothesis with

y = b0.

(ii) It follows from part (i) taking −K instead of K, and by applying Lemmas

1.3.9(iii) and 3.1.5(i).



Chapter 4

Application to set optimization

problems

In this chapter, by considering a set relation - (see [65, 87–89, 94]), in the

sequel some types of--optimal solutions are defined to a set optimization problem

(--SOP) with the set criterion of solution. Recall that Y is a real normed space

ordered by a convex cone K ⊂ Y . Let S be the decision space (an arbitrary

non-empty set) and F : S ⇒ Y be a set-valued map with F (x) 6= ∅, for all x ∈ S.

We are going to study the following set optimization problem (--SOP), for the

minimun case, with the set criterion of solution by considering the set relation -:

(- -SOP) minimize F (x) subject to x ∈ S.

As application of the results obtained in the previous sections, we aim to char-

acterize by scalarization several types of solution to a set optimization problem.

In Bao and Mordukhovich [6], Hamel and Heyde [46], Heyde et al. [53] and

Khan et al. [71], we can find some practical problems which are modeled by set

optimization problems.

The results stated in this chapter are collected in [68, Section 5] and [69,

Section 5].
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4.1 Characterization by scalarization of mini-

mal solutions

In this section, the monotonicity of the six set oriented distances (see Theorem

3.1.22) and the characterization of the set relations of Kuroiwa (see Theorem

3.2.1) are applied to derive several characterizations of minimal solution to a set

optimization problem where the images of the set-valued ctive map are compared

with one of the set relations belonging toR = {4∀∀, 4∃∀, 2∀∃, 2∃∀, 4∀∃, 4∃∃}
(we use the so-called set criterion of solution). Moreover, K ⊂ Y is a proper closed

convex cone not necessarily solid (we do not assume that K is pointed).

First of all, we are going to introduce some needed definitions which will be

used along the section. We star with the definition of --minimal solution. In the

literature, this concept of solution have been considered in several works (see, for

example, Jahn and Ha [65], Kuroiwa [86], Kuroiwa [88], Kuwano et al. [95]) with

respect to the preorders 2∀∃ and 4∀∃.

Definition 4.1.1. Let x0 ∈ S. It is said that x0 is a --minimal solution to

(--SOP) if F (x)-F (x0) for some x ∈ S, implies F (x0)-F (x).

Definition 4.1.2. Let g : S → R ∪ {+∞}. (a) We say that M ⊂ S is the strict

solution set of the scalar problem min{g(x) : x ∈ S} if

(i) g(x) > 0 for all x ∈ S \M , and

(ii) g(x) = 0 for all x ∈M .

(b) We say that x0 ∈ S (with g(x0) ∈ R) is a solution of the scalar problem

min{g(x) : x ∈ S} if g(x) ≥ g(x0) for all x ∈ S.

Given A,B ∈ P0(Y ) and x0 ∈ S, we denote:

A ∼- B if and only if A-B and B-A,

E(x0,-) = {x ∈ S : F (x) ∼- F (x0)},

Lev(x0,-) = {x ∈ S : F (x)-F (x0)}.

Finally, we denote by F the family of all sets F (x) with x ∈ S. It is said that

a map T : F → R ∪ {+∞} is --increasing until x0 if x ∈ S and F (x)-F (x0)
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implies T (F (x)) ≤ T (F (x0)). Whenever “N” denotes some property of sets in Y ,

we say that F is “N”-valued on X if F (x) has the property “N” for every x ∈ S.

It is obvious that E(x0,-) ⊂ Lev(x0,-). The inverse inclusion is also true for

a --minimal solution. The proof is immediate.

Lemma 4.1.3. The point x0 ∈ S is a --minimal solution of (--SOP) if and

only if E(x0,-) = Lev(x0,-).

The following result is also immediate and, consequently, its proof is omitted.

Lemma 4.1.4. If - is transitive and x0 ∈ S is a --minimal solution of (--SOP),

then each element of E(x0,-) is a --minimal solution of (--SOP).

The next lemma shows us when the scalarizations are not −∞.

Lemma 4.1.5. (i) One has Dss(A,B) 6= −∞ for all A,B ∈ P0(Y ).

(ii) If A is K-proper, then Dsi(A,B) 6= −∞ for all B ∈ P0(Y ).

(iii) If B is (−K)-proper, then D̂
si

(A,B) 6= −∞ for all A ∈ P0(Y ).

Proof. (i) It is Remark 3.1.7.

(ii) It is Corollary 2.2.6

(iii) It is a consequence of Lemma 3.1.5(i) and Proposition 2.2.5.

Next, we are going to give a result which deal with --equivalent sets.

Lemma 4.1.6. (Equivalence Lemma) Let A,B ∈ P0(Y ).

(i) A ∼4∀∀
B if and only if Dss(A,B) = 0 and Dss(B,A) = 0.

(ii) If A ∼4∃∀
B, then D̂

is
(A,B) = 0 and D̂

is
(B,A) = 0. The reciprocal

implication is true if A and B are K-compact.

(iii) Let B be K-proper. If A ∼2∀∃
B, then Dsi(A,B) = 0 and Dsi(B,A) = 0.

The reciprocal implication is true if A and B are K-closed.

(iv) If A ∼2∃∀
B, then Dis(A,B) = 0 and Dis(B,A) = 0. The reciprocal

implication is true if A and B are (−K)-compact.

(v) Let B be (−K)-proper. If A ∼4∀∃
B, then D̂

si
(A,B) = 0 and D̂

si
(B,A) =

0. The reciprocal implication is true if A and B are (−K)-closed.
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Proof. (iii) and (v) are, respectively, Proposition 2.2.35 and Theorem 2.2.39(iv).

(ii) A ∼4∃∀
B if and only if

A4∃∀B and B4∃∀A. (4.1)

These conditions mean that there exist a0 ∈ A and b0 ∈ B such that B ⊂ a0 +K

and A ⊂ b0 + K, which implies that A and B are K-bounded, and so they are

K-proper. In view of (4.1), by Proposition 1.3.7(i) we have that A2∀∃B and

B2∀∃A, that is, A ∼2∀∃
B. Hence, by part (iii), we obtain that Dsi(A,B) = 0

and Dsi(B,A) = 0. By applying Lemma 3.1.4(i) we derive that 0 = Dsi(A,B) ≤
D̂
is

(A,B) and 0 = Dsi(B,A) ≤ D̂
is

(B,A). Now, if we consider Theorem 3.2.1(ii),

in view of (4.1) we deduce that D̂
is

(A,B) ≤ 0 and D̂
is

(B,A) ≤ 0. Therefore, we

conclude that D̂
is

(A,B) = 0 and D̂
is

(B,A) = 0.

The reciprocal implication is an immediate consequence of Theorem 3.2.1(ii).

(iv) A ∼2∃∀
B if and only if A2∃∀K B and B2∃∀K A. Using Lemma 1.3.9(ii),

we deduce that B4∃∀−K A and A4∃∀−K B. By part (ii) we get Dis
−K(B,A) =

Dis
−K(A,B) = 0. Finally, using Lemma 3.1.5(ii), we obtain the conclusion.

The reciprocal implication is an immediate consequence of Theorem 3.2.1(iv).

(i) A ∼4∀∀
B if and only if A4∀∀B and B4∀∀A. By Theorem 3.2.1(i), we

deduce Dss(A,B) ≤ 0 and Dss(B,A) ≤ 0. On the other hand, by Proposition

1.3.7(ii) we have A4∃∀B and B4∃∀A, that is, A ∼4∃∀
B. Hence, by part (ii),

we obtain D̂
is

(A,B) = 0 and D̂
is

(B,A) = 0. By applying Lemma 3.1.4(i), we

deduce 0 = D̂
is

(A,B) ≤ Dss(A,B) and 0 = D̂
is

(B,A) ≤ Dss(A,B). Therefore,

we conclude Dss(A,B) = 0 and Dss(B,A) = 0.

The “if” part is an immediate consequence of Theorem 3.2.1(i).

The following theorem is the main result in this section, and it establishes

necessary and sufficient conditions of minimality.

Theorem 4.1.7. For each relation - ∈ {4∀∀,4∃∀,2∀∃,2∃∀,4∀∃}, let us consider

problem (--SOP) with x0 ∈ S and suppose that F satisfies assumption A(-) of

Table 4.1.
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Assumption Requirements

A(4∀∀) There is not special requirements

A(4∃∀) F is K-compact valued

A(2∀∃) F is K-proper valued and K-closed valued

A(2∃∀) F is (−K)-compact valued

A(4∀∃) F (x0) is (−K)-proper and F is (−K)-closed valued

Table 4.1. Assumptions in Theorem 4.1.7.

Then for each pair

(-, D̄) ∈
{(
4∀∀,Dss

)
,
(
4∃∀, D̂

is )
,
(
2∀∃,Dsi

)
,
(
2∃∀,Dis

)
,
(
4∀∃, D̂

si )}
,

the following statements are equivalent:

(a) x0 is a --minimal solution of (--SOP).

(b) D̄(F (x), F (x0)) > 0 for all x ∈ S \ E(x0,-).

(c) For all x ∈ S one has D̄(F (x), F (x0)) > 0 or D̄(F (x0), F (x)) ≤ 0.

(d) There exists a map T : F → R ∪ {+∞} which is --increasing until x0

and such that

(d1) T (F (x)) > 0 for all x ∈ S \ E(x0,-),

(d2) if x ∈ S and F (x)-F (x0), then T (F (x)) = 0.

Proof. We prove the case (-, D̄) =
(
4∃∀, D̂

is )
, the rest of the cases are similar,

by applying the results of Table 4.1.

Case (-, D̄) =
(
4∃∀, D̂

is )
.

(a)⇒(b). By Lemma 4.1.3, we have that E(x0,4∃∀) = Lev(x0,4∃∀). So, if

x ∈ S \ E(x0,4∃∀), then x /∈ Lev(x0,4∃∀), i.e., F (x) 64∃∀ F (x0), and by Theorem

3.2.1(ii) we have that D̂
is

(F (x), F (x0)) > 0 because F (x0) is K-bounded and

F (x) is K-compact since F is K-compact valued.

(b)⇒(c). If x ∈ S \ E(x0,4∃∀), then by hypothesis, D̂
is

(F (x), F (x0)) > 0. If

x ∈ E(x0,4∃∀), by Lemma 4.1.6(ii) it follows that D̂
is

(F (x0), F (x)) = 0.

(c)⇒(d). Choose T : F → R given by T (F (x)) = D̂
is

(F (x), F (x0)). We have

that T is 4∃∀-increasing until x0 by Theorem 3.1.22(ii-b), and T (F (x)) ∈ R by

Theorem 3.1.13(ii) because F (x) is K-proper and F (x0) is K-bounded since F is

K-compact valued.
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Let us see that E(x0,4∃∀) = Lev(x0,4∃∀). By contradiction, suppose that

there exists x ∈ Lev(x0,4∃∀)\E(x0,4∃∀). Then F (x)4∃∀ F (x0) and F (x0) 64∃∀ F (x).

By Theorem 3.2.1(ii) applied to both inequalities we obtain D̂
is

(F (x), F (x0)) ≤ 0

and D̂
is

(F (x0), F (x)) > 0 because F is K-compact valued, which contradicts the

hypothesis (c). So, E(x0,4∃∀) = Lev(x0,4∃∀).

Therefore, if x ∈ S and F (x)4∃∀ F (x0), then x ∈ E(x0,4∃∀), and by Lemma

4.1.6(ii) it follows that T (F (x)) = D̂
is

(F (x), F (x0)) = 0. Thus, (d2) is proved.

If x ∈ S \E(x0,4∃∀), then F (x) 64∃∀ F (x0), and by Theorem 3.2.1(ii) it follows

that T (F (x)) = D̂
is

(F (x), F (x0)) > 0 since F is K-compact valued. Thus, (d1)

holds.

(d)⇒(a). By contradiction, assume that x0 is not a 4∃∀-minimal solution.

Then, there exists x1 ∈ S such that F (x1)4∃∀ F (x0) and F (x0) 64∃∀ F (x1). From

(d1), it follows that T (F (x1)) > 0 since x1 /∈ E(x0,4∃∀), and by (d2), we have

T (F (x1)) = 0, which is a contradiction. The proof is finished.

Rel - Func D̄ Char A - B Equival. Finite Increase

4∀∀ Dss Th. 3.2.1(i) Lem. 4.1.6(i) Lem. 4.1.5(i) Th. 3.1.22(i-b)

4∃∀ D̂
is

Th. 3.2.1(ii) Lem. 4.1.6(ii) Th. 3.1.13(ii) Th. 3.1.22(ii-b)

2∀∃ Dsi Th. 3.2.1(iii) Lem. 4.1.6(iii) Lem. 4.1.5(ii) Th. 3.1.22(iii-b)

2∃∀ Dis Th. 3.2.1(iv) Lem. 4.1.6(iv) Th. 3.1.13(iv) Th. 3.1.22(iv-b)

4∀∃ D̂
si

Th. 3.2.1(v) Lem. 4.1.6(v) Lem. 4.1.5(iii) Th. 3.1.22(v-b)

Table 4.2. Results that are applied in the proof of Theorem 4.1.7.

Remark 4.1.8. (i) Let us observe that the monotonicity of T is not used to prove

(d)⇒(a). This is useful if we apply (d) as a sufficient condition. However, in order

to have other equivalent expressions to (d) it is necessary that T be --increasing

until x0 (see Remark 4.1.10).

(ii) Under the assumptions of Theorem 4.1.7, the following statement is also

equivalent to (a), (b), (c) and (d):

(d̄) There exists a map T : A → R which is --increasing and such that (d1)

and (d2) holds, where A and R are given in Table 4.3.
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4∀∀ 4∃∀ 2∀∃ 2∃∀ 4∀∃

A P0(Y ) CK(Y ) P0,K(Y ) C−K(Y ) P0,−K(Y )

R R ∪ {+∞} R R ∪ {+∞} R R ∪ {+∞}

Table 4.3. Values of A and R in statement (d̄)

(CK(Y ) is the family of all K-compact subsets of Y ).

Indeed, it is clear that (d̄) ⇒ (d). The proof of (c) ⇒ (d̄) is the same that the

one of (c)⇒ (d) in Theorem 4.1.7, but now we define T (A) = D̄(A,F (x0)) for all

A ∈ A.

(iii) In the statement (d) of Theorem 4.1.7 and in Remark 4.1.10, the map T

actually takes its values in R according Table 4.3.

In the following remarks, we provide other equivalent expressions for state-

ments (b), (c) and (d) of Theorem 4.1.7.

Remark 4.1.9. (i) The following statements are equivalent to (c):

(c′) It does not exist x ∈ S such that

D̄(F (x), F (x0)) ≤ 0 and D̄(F (x0), F (x)) > 0.

(c′′) For each x ∈ S one has D̄(F (x), F (x0)) > 0 or D̄(F (x0), F (x)) = 0.

(c′′′) For each x ∈ S, exactly one of the following statements is true:

(c′′′1 ) D̄(F (x), F (x0)) > 0,

(c′′′2 ) D̄(F (x), F (x0)) = 0 and D̄(F (x0), F (x)) = 0.

(ii) The following statements are equivalent to (c′′′2 ):

(e1) D̄(F (x), F (x0)) ≤ 0 and D̄(F (x0), F (x)) ≤ 0.

(e2) D̄(F (x), F (x0)) ≤ 0 and D̄(F (x0), F (x)) = 0.

(e3) D̄(F (x), F (x0)) = 0 and D̄(F (x0), F (x)) ≤ 0.

So, (c′′′2 ) can be replaced for any of them.

Proof. (i) (c)⇔ (c′). It is clear since not (c′) is just not (c).

(c′′) ⇒ (c). It is also clear, and (c) ⇒ (c′′) because (c) ⇒ (b) and (b) ⇒ (c′′)

(see the proof of (b)⇒ (c) in Theorem 4.1.7 where Lemma 4.1.6 is applied). The

same reasoning serves to prove that (c′′′)⇔ (c).
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(ii) It is clear that (c′′′2 )⇒ (e3)⇒ (e1) and (c′′′2 )⇒ (e2)⇒ (e1). By Theorem

3.2.1, under the assumptions of Table 4.3, one has (e1) ⇒ F (x) ∼- F (x0), and

from Lemma 4.1.6 it follows that F (x) ∼- F (x0)⇒ (c′′′2 ).

Property (c) (or (c′) or (c′′) or (c′′′)) is interesting because it is not necessary

to determine E(x0,-) as in (b) or Lev(x0-) as in (d). If we have a procedure to

calculate D̄(F (x), F (y)) for all x, y ∈ S, property (c) could be useful to obtain all

--minimal solutions. In this situation, it would be easy to construct an algorithm

if S is finite.

Remark 4.1.10. Let T : F → R∪{+∞} and consider the following statements:

(d′) (d′1) T (F (x)) > 0 for all x ∈ S \ E(x0,-),

(d′2) if x ∈ E(x0,-), then T (F (x)) = 0.

(d′′) (d′′1) T (F (x)) ≥ 0 for all x ∈ S,

(d′′2) if x ∈ S then, x ∈ E(x0,-) ⇔ T (F (x)) = 0.

(d′′′) (d′′′1 ) T (F (x)) > 0 for all x ∈ S \ E(x0,-),

(d′′′2 ) if x ∈ S then, x ∈ E(x0,-) ⇔ T (F (x)) = 0.

Then

(i) (d)⇒ (d′)⇔ (d′′)⇔ (d′′′).

(ii) If T is --increasing until x0 and

x0 ∈ E(x0,-) (4.2)

then (d′′)⇒ (d), and so the four statements (d), (d′), (d′′) and (d′′′) are equivalent.

Proof. (i) (d) ⇒ (d′). In Theorem 4.1.7, without using any assumption, it

has been proved that (d) ⇒ (a), and so by Lemma 4.1.3 we have E(x0,-) =

Lev(x0,-). Now it is clear that (d)⇒ (d′).

(d′)⇔ (d′′). We only have to prove the ‘⇐’ part of (d′′2) since the rest is clear.

Let T (F (x)) = 0. If x /∈ E(x0,-), then by (d′1), T (F (x)) > 0, a contradiction,

and so x ∈ E(x0,-).

(d′′)⇔ (d′′′). It is immediate.

(ii) We only have to prove (d2) since (d′′) ⇔ (d′) and (d1) ≡ (d′1). Suppose

that F (x)-F (x0). As (4.2) holds, by using (d′′2) we derive T (F (x0)) = 0. Now,

as T is --increasing until x0, we deduce that T (F (x)) ≤ T (F (x0)) = 0. By (d′′1),

we obtain T (F (x)) ≥ 0, and so we conclude that T (F (x)) = 0.
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Observe that statement (d′) is equivalent to say that E(x0,-) is the strict

solution set of the scalar problem min{T (F (x)) : x ∈ S} according to Definition

4.1.2. Note that the condition (4.2) is satisfied for all x0 ∈ S for the reflexive

relations 4∀∃ and 2∀∃.

We point out that, if (4.2) holds, then statement (d′′1) is equivalent to say that

x0 is a solution of the scalar problem min{T (F (x)) : x ∈ S} since T (F (x0)) = 0

by (d′′2).

Remark 4.1.11. (i) The following statements are equivalent to (b):

(b′) (b′1) D̄(F (x), F (x0)) > 0 for all x ∈ S \ E(x0,-),

(b′2) if x ∈ E(x0,-), then D̄(F (x), F (x0)) = 0.

(b′′) (b′′1) D̄(F (x), F (x0)) ≥ 0 for all x ∈ S,

(b′′2) x ∈ S, x ∈ E(x0,-) ⇔ D̄(F (x), F (x0)) = 0.

(b′′′) (b′′′1 ) D̄(F (x), F (x0)) > 0 for all x ∈ S \ E(x0,-),

(b′′′2 ) x ∈ S, x ∈ E(x0,-) ⇔ D̄(F (x), F (x0)) = 0.

(biv) (biv1 ) D̄(F (x), F (x0)) ≥ 0 for all x ∈ S,

(biv2 ) if x ∈ S and D̄(F (x), F (x0)) = 0, then x ∈ E(x0,-).

The proof of equivalences (b′) ⇔ (b′′) ⇔ (b′′′) is identical to the one given

in Remark 4.1.10 only by changing T (F (x)) for D̄(F (x), F (x0)). The proof of

(b) ⇔ (b′) is clear since (b) ≡ (b′1) and (b′2) is true by Lemma 4.1.6, parts (i) to

(v) as appropriate according to - and Table 4.3. The implication (b′′)⇒ (biv) is

obvious. Finally, to prove (biv) ⇒ (b) we take x ∈ S \ E(x0,-). Then, by (biv2 )

we deduce that D̄(F (x), F (x0)) 6= 0, and taking into account (biv1 ), we conclude

that D̄(F (x), F (x0)) > 0.

(ii) Statement (b′) is equivalent to say that E(x0,-) is the strict solution set

of the scalar problem

min{D̄(F (x), F (x0)) : x ∈ S} (4.3)

according to Definition 4.1.2.

(iii) We point out that, if x0 ∈ E(x0,-), then statement (b′′1) is equivalent to

say that x0 is a solution of the scalar problem (4.3) since D̄(F (x0), F (x0)) = 0 by

(b′′2).
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The following example shows a set optimization problem with a minimal so-

lution which is not solution of the scalarized problem (4.3).

Example 4.1.12. Consider Y = R2, K = R2
+, A = {(1, 1)}, B = {(2, 0), (0, 2)},

S = {0, 1}, F (0) = B and F (1) = A. We have that 0 is a 4∃∀-minimal solution.

However, 0 is not a solution of the scalar problem min{D̂
is

(F (x), F (0)) : x ∈ S}
since D̂

is
(F (1), F (0)) = 1 and D̂

is
(F (0), F (0)) = 2.

Remark 4.1.13. Results that have some similarity with Theorem 4.1.7 are the

following:

1) Hernández and Rodŕıguez-Maŕın [51], Theorems 4.1 and 4.7 and Corollary

4.8 for 2∀∃, in the form (a) ⇔ (d′), (a) ⇔ (d′′) and (a) ⇔ (b′′), by using an

extension of the Gerstewitz’s function and requiring F is K-bounded valued.

2) Kuwano et al. [94], Corollary 4.1 for 4∀∃ in the form (a)⇔ (b′′), Corollary

4.2 for 4∀∀ and 2∃∀ in the form (b′′)⇒ (a), and Corollary 4.3 for 4∃∀ in the form

(b′′) ⇒ (a), by using several extensions of the Gerstewitz’s function. Results for

4∃∃ are not given as our in Theorem 4.1.15.

3) Gutiérrez et al. [41], Corollary 4.4(b) for 2∀∃, in the form (a)⇔ (b′′′), using

a scalarization based on the oriented distance.

4) Xu and Li [129], Theorems 4.1 and 4.7 for 4∀∃, in the form (a)⇔ (d′) and

(a)⇔ (b′′), using a scalarization based on the oriented distance.

5) Khoshkhabar-amiranloo et al. [73], Theorems 3.1(i) and 4.1(i) for 2∀∃ and

4∀∃ resp., both in the form (a) ⇔ (d′′), using a nonegative modification of an

extension of the Gerstewitz’s function.

6) Jiménez et al. [67], Theorems 5.4 and 5.12 for 2∀∃ and 4∀∃, resp., both in

the form (a)⇔ (biv), using the functions Dsi and D̂
si

.

The case (-, D̄) =
(
4∃∃,Dii

)
has not been considered in Theorem 4.1.7 be-

cause it presents some peculiarities and we prefer to deal with it as a separate

case.

First, we examine the equivalence. As a consequence of Theorem 3.2.1(vi) we

have the following result.
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Lemma 4.1.14. Let A,B ∈ P0(Y ). If A ∼4∃∃
B, then Dii(A,B) ≤ 0 and

Dii(B,A) ≤ 0. The reciprocal implication is true if A is K-compact and B is

(−K)-compact.

Note that, unlike Lemma 4.1.6, now we do not obtain the equality to zero.

Theorem 4.1.15. Consider the problem (4∃∃-SOP) and a point x0 ∈ S. Assume

that

F is K-compact valued and (−K)-compact valued. (4.4)

Then, the following statements are equivalent:

(a) x0 is a 4∃∃-minimal solution of (4∃∃-SOP).

(b) Dii(F (x), F (x0)) > 0 for all x ∈ S \ E(x0,4∃∃).

(c) For all x ∈ S one has Dii(F (x), F (x0)) > 0 or Dii(F (x0), F (x)) ≤ 0.

(d) There exists a map T : F → R such that

(d1) T (F (x)) > 0 for all x ∈ S \ E(x0,4∃∃),

(d2) if x ∈ S and F (x)4∃∃ F (x0), then T (F (x)) ≤ 0.

Proof. (a)⇒(b). By Lemma 4.1.3, we have E(x0,4∃∃) = Lev(x0,4∃∃). So, if

x ∈ S \ E(x0,4∃∃), then x /∈ Lev(x0,4∃∃), i.e., F (x) 64∃∃ F (x0), and by Theorem

3.2.1(vi) we have that Dii(F (x), F (x0)) > 0 because F (x) is K-compact and

F (x0) is (−K)-compact since (4.4) holds.

(b)⇒(c). If x ∈ S \ E(x0,4∃∃), by hypothesis, Dii(F (x), F (x0)) > 0. If

x ∈ E(x0,4∃∃), by Lemma 4.1.14 it follows that Dii(F (x0), F (x)) ≤ 0.

(c)⇒(d). Choose T : F → R given by T (F (x)) = Dii(F (x), F (x0)). We have

that T (F (x)) ∈ R by Theorem 3.1.13(vi) because F (x) is K-proper and F (x0) is

(−K)-bounded since (4.4) holds.

Let us see that E(x0,4∃∃) = Lev(x0,4∃∃). By contradiction, suppose that

there exists x ∈ Lev(x0,4∃∃)\E(x0,4∃∃). Then F (x)4∃∃ F (x0) and F (x0) 64∃∃ F (x).

By Theorem 3.2.1(vi) applied to both inequalities since (4.4) holds, we obtain

Dii(F (x), F (x0)) ≤ 0 and Dii(F (x0), F (x)) > 0, which contradicts the hypothesis

(c). So, E(x0,4∃∃) = Lev(x0,4∃∃).

Therefore, if x ∈ S and F (x)4∃∃ F (x0), then x ∈ E(x0,4∃∃), and by Lemma

4.1.14 it follows that T (F (x)) = Dii(F (x), F (x0)) ≤ 0. Thus, (d2) is proved.
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If x ∈ S\E(x0,4∃∃), then F (x) 64∃∃ F (x0), and by Theorem 3.2.1(vi) it follows

that T (F (x)) = Dii(F (x), F (x0)) > 0 since (4.4) holds.

(d)⇒(a). By contradiction, assume that x0 is not a 4∃∃-minimal solution of

(4∃∃-SOP). Then there exists x1 ∈ S such that F (x1)4∃∃ F (x0) and F (x0) 64∃∃ F (x1).

From (d1), it follows that T (F (x1)) > 0 since x1 /∈ E(x0,4∃∃), and by (d2), we

have T (F (x1)) ≤ 0, which is a contradiction. The proof is finished.

Note that the only differences w.r.t. Theorem 4.1.7 are that it is not re-

quired that T is increasing until x0 and in (d2) we conclude T (F (x)) ≤ 0. Other

differences appear in Remarks 4.1.16, 4.1.17 and 4.1.18.

Note also that T may be defined on P0,K(Y ) and is finite.

In the following remarks, we provide other equivalent expressions for state-

ments (b), (c) and (d) in Theorem 4.1.15.

Remark 4.1.16. The following statements are equivalent to (c):

(c′) It does not exist x ∈ S such that

Dii(F (x), F (x0)) ≤ 0 and Dii(F (x0), F (x)) > 0.

(c′′) For each x ∈ S, exactly one of the following statements is true:

(c′′1) Dii(F (x), F (x0)) > 0,

(c′′2) Dii(F (x), F (x0)) ≤ 0 and Dii(F (x0), F (x)) ≤ 0.

Proof. (c)⇔ (c′). It is clear since not (c′) is just not (c).

(c′′) ⇒ (c). It is also clear, and (c) ⇒ (c′′) because (c) ⇒ (b) and (b) ⇒ (c′′)

(see the proof of (b)⇒ (c) in Theorem 4.1.15 where Lemma 4.1.14 is applied).

Remark 4.1.17. Let T : F → R and consider the following statements:

(d′) (d′1) T (F (x)) > 0 for all x ∈ S \ E(x0,4∃∃),

(d′2) if x ∈ E(x0,4∃∃), then T (F (x)) ≤ 0.

(d′′) If x ∈ S then, x ∈ E(x0,4∃∃) ⇔ T (F (x)) ≤ 0.

Then

(i) (d)⇒ (d′)⇔ (d′′).

(ii) If T is 4∃∃-increasing until x0, then (d′)⇒ (d), and so the three statements

(d), (d′) and (d′′) are equivalent.
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Proof. (i) (d) ⇒ (d′). In Theorem 4.1.15, without using any assumption, it

has been proved that (d) ⇒ (a), and so by Lemma 4.1.3 we have E(x0,4∃∃) =

Lev(x0,4∃∃). Now it is clear that (d)⇒ (d′).

(d′)⇔ (d′′). We only have to prove the ‘⇐’ part of (d′′) since the other impli-

cations are clear. Let T (F (x)) ≤ 0. If x /∈ E(x0,4∃∃), then by (d′1), T (F (x)) > 0,

a contradiction, and consequently x ∈ E(x0,4∃∃).

(ii) (d′′)⇒ (d). We only have to prove (d2) since (d′′)⇔ (d′) and (d1) ≡ (d′1).

Suppose that F (x)4∃∃ F (x0). As T is 4∃∃-increasing until x0, we deduce that

T (F (x)) ≤ T (F (x0)). Now, as x0 ∈ E(x0,4∃∃) since 4∃∃ is reflexive, by (d′′) we

derive that T (F (x0)) ≤ 0, and therefore, T (F (x)) ≤ T (F (x0)) ≤ 0.

We point out that statement (d′′) is equivalent to say that E(x0,4∃∃) is exactly

the 0-sublevel set of T ◦ F .

Remark 4.1.18. The following statements are equivalent to (b):

(b′) (b′1) Dii(F (x), F (x0)) > 0 for all x ∈ S \ E(x0,4∃∃),

(b′2) if x ∈ E(x0,4∃∃), then Dii(F (x), F (x0)) ≤ 0.

(b′′) If x ∈ S then, x ∈ E(x0,4∃∃) ⇔ Dii(F (x), F (x0)) ≤ 0.

Its proof is identical to the one of Remark 4.1.17 only by changing T (F (x)) for

Dii(F (x), F (x0)). But to prove the implication (b) ⇒ (b′) we use Lemma 4.1.14.

In this case, (b′)⇒ (b) is obvious.

We also point out that statement (b′′) is equivalent to say that E(x0,4∃∃) is

exactly the 0-sublevel set of Dii(F (·), F (x0)).

To illustrate our results we provide an example.

Example 4.1.19. Consider Y = R2, K = R2
+, and F : N⇒ R2 given by

F (x) = [(x,−x), (x+ 1,−x− 1/2)],

where [u, v] denotes the interval of R2 of extremes u and v. We suppose that

S = N. After some calculations we arrive to the following results:

1. Dss(F (a), F (b)) =


b− a+ 1/2 if a < b

a− b+ 1 if a > b

1 if a = b
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2. Dis(F (a), F (b)) = D̂
is

(F (a), F (b)) =

 |a− b| if a 6= b

1/3 if a = b

3. Dsi(F (a), F (b)) = D̂
si

(F (a), F (b)) = |a− b|.

4. Dii(F (a), F (b)) =


b− a− 1/2 if a < b

a− b− 1 if a > b

0 if a = b

Let us note that F is K-compact valued and (−K)-compact valued. Now it

is easy to determine all minimal solutions for the six problems SOP .

Discussion:

1. (4∀∀-SOP). For each b ∈ S, we have Dss(F (a), F (b)) > 0 for all a ∈ S. So,

statement (c) of Theorem 4.1.7 is fulfilled, and therefore, every b ∈ S is a

4∀∀-minimal solution.

2. (2∃∀-SOP) and (4∃∀-SOP). These problems are exactly as the previous case

using, respectively, Dis and D̂
is

.

3. (2∀∃-SOP). For each b ∈ S, we have Dsi(F (a), F (b)) > 0 for all a ∈ S \ {b}
and for a = b, Dsi(F (b), F (a)) = 0. So, (c) holds and, by applying Theorem

4.1.7, we conclude that every b ∈ S is a 2∀∃-minimal solution.

4. (4∀∃-SOP). This problem is as the previous case.

5. (4∃∃-SOP). For each b ∈ N, E(b,4∃∃) = {b} and we have Dii(F (a), F (b)) > 0

for all a 6= b except if a − b − 1 = 0 with a > b, which is true if and only if

a = b + 1. Therefore, statement (b) of Theorem 4.1.15 is not satisfied and,

accordingly, each b ∈ S is not a 4∃∃-minimal solution. Instead, if S = {x ∈
N : x is even}, then every point of S is a 4∃∃-minimal solution.
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4.2 Characterization by scalarization of weak min-

imal solutions

In this section, the strict monotonicity of the six set oriented distances (see

Theorem 3.3.8) and the characterization of strict set relations of Kuroiwa (see

Theorem 3.4.1) are applied to derive several characterizations of weak mini-

mal solution to a set optimization problem with a set-valued map as objec-

tive where the images are compared with one of the set relations belonging to

Rs = {4∀∀s ,4∃∀s ,2∀∃s ,2∃∀s ,4∀∃s ,4∃∃s } (we use the set criterion of solution). More-

over, K ⊂ Y is a proper closed convex solid cone (we do not assume that K is

pointed).

First of all, we are going to introduce some needed definitions wich will be

used along the section. We star with the definition of weak --minimal solution.

Definition 4.2.1. Let x0 ∈ S.

(a) It is said that x0 is a --minimal (resp., weak --minimal) solution to (--

SOP) if F (x)-F (x0) (resp., F (x)-s F (x0)) for some x ∈ S, implies F (x0)-F (x)

(resp., F (x0)-s F (x)).

(b) It is said that x0 is a strict weak --minimal solution to (--SOP) if

F (x) 6-F (x0) for all x ∈ S.

The notion of weak--minimal solution is very common and the notion of strict

weak --minimal solution has been considered, for example, in [91, Definition

3.1(b)].

It is clear that each strict weak --minimal solution is also a weak --minimal

solution. The relationship between --minimal solution and weak --minimal

solution is given in the next proposition.

Proposition 4.2.2. Consider problem (--SOP) and let x0 ∈ S.

(i) For - ∈ {4∀∀,4∃∀,2∃∀}, one has that if x0 is a --minimal solution to

(--SOP), then x0 is a strict weak --minimal solution to (--SOP).

(ii) If x0 is a 2∀∃-minimal (resp., 4∀∃-minimal) solution to (--SOP), then

x0 is a weak 2∀∃-minimal (resp., 4∀∃-minimal) solution to (--SOP).
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Proof. (i) 1. For 4∃∀. Suppose, to the contrary, that x0 is not a strict weak 4∃∀-

minimal solution to (4∃∀-SOP). So, there exists x1 ∈ S such that F (x1)4∃∀s F (x0).

So, by Definition 1.3.3 there exists y1 ∈ F (x1) satisfying

y1 − F (x0) ⊂ − intK. (4.5)

Moreover, by Proposition 1.3.7(iv), we have F (x1)4∃∀ F (x0), and as by hypoth-

esis x0 is a 4∃∀-minimal solution to (4∃∀-SOP), it follows that F (x0)4∃∀ F (x1).

So, by Definition 1.3.2 there exists y0 ∈ F (x0) such that y0−F (x1) ⊂ −K. From

this last inclusion and (4.5) we deduce y1− y0 ∈ (− intK)∩K. But this leads to

0 ∈ intK and, as K is a cone, we derive that K = Y , which is a contradiction

since K is proper.

2. For 2∃∀ and 4∀∀. The proof is similar, and it is omitted.

(ii) It is Proposition 2.7(i) in [51].

Remark 4.2.3. Proposition 4.2.2 is not true for 4∃∃ as the following data show:

S = {0, 1}, Y = R, K = R+, F (0) = [0, 1] and F (1) = {1}. Then, one has that

x0 = 1 is a 4∃∃-minimal solution but is not a weak 4∃∃-minimal solution.

In the former section, we have provided several characterizations for--minimal

solutions of (--SOP). Now, we focus on weak --minimal solutions.

Given A ∈ P0(Y ), x0 ∈ S and - ∈ R ∪Rs, we denote:

[A,-] = {B ∈ P0(Y ) : A-B and B-A},

E(x0,-) = {x ∈ S : F (x) ∈ [F (x0),-]}.
It is obvious that E(x0,-s) ⊂ Lev(x0,-s). The inverse inclusion is also true

for a weak --minimal solution. The proof is immediate.

Lemma 4.2.4. Let - ∈ R. The point x0 ∈ S is a weak --minimal solution of

(--SOP) if and only if E(x0,-s) = Lev(x0,-s).

In the following lemmas we state some basics properties of the sets [B,-].

Lemma 4.2.5. Let B ∈ P0(Y ). Then, [B,-s] ⊂ [B,-] for all - ∈ R.

Proof. It is obvious because A-sB implies A-B, for all - ∈ R by Proposition

1.3.7(iv).
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Next, we are going to recall the Lemma 4.1.6 about --equivalent sets but by

using the new notation.

Lemma 4.2.6. (Equivalence Lemma) Let A,B ∈ P0(Y ).

(i) A ∈ [B,4∀∀] if and only if Dss(A,B) = 0 and Dss(B,A) = 0.

(ii) If A ∈ [B,4∃∀], then D̂
is

(A,B) = 0 and D̂
is

(B,A) = 0.

(iii) Let B be K-proper. If A ∈ [B,2∀∃], then Dsi(A,B) = 0 and Dsi(B,A) =

0.

(iv) If A ∈ [B,2∃∀], then Dis(A,B) = 0 and Dis(B,A) = 0.

(v) Let B be (−K)-proper. If A ∈ [B,4∀∃], then D̂
si

(A,B) = 0 and D̂
si

(B,A) =

0.

Next, we are going to calculate [A,-s] for the first five strict set order relations.

Lemma 4.2.7. Let B ∈ P0(Y ). It holds that:

(i) [B,4∀∀s ] = ∅.

(ii) [B,4∃∀s ] = ∅.

(iii) If B is K-compact, then [B,2∀∃s ] = ∅.

(iv) [B,2∃∀s ] = ∅.

(v) If B is (−K)-compact, then [B,4∀∃s ] = ∅.

Proof. (ii) By contradiction, assume that there exists a nonempty setA ∈ [B,4∃∀s ].

Then, A4∃∀s B and B4∃∀s A. By definition, there exist a0 ∈ A and b0 ∈ B such

that a0−B ⊂ − intK and b0−A ⊂ − intK. Therefore, a0−b0 ∈ (− intK)∩intK,

which leads to K = Y , a contradiction since K is proper.

(i) It follows from part (ii) since [B,4∀∀s ] ⊂ [B,4∃∀s ] by Proposition 1.3.7(iii).

(iii) Assume, to the contrary, that there exists a nonempty set A ∈ [B,2∀∃s ].

Then, we have that A2∀∃s B and by Theorem 3.4.1(iii) we have Dsi(A,B) < 0

since B is K-compact. Moreover, from Lemma 4.2.5 it follows that [B,2∀∃s ] ⊂
[B,2∀∃], and so A ∈ [B,2∀∃]. By Lemma 4.1.6(iii), we derive that Dsi(A,B) = 0,

which is a contradiction.

(iv) It follows from (ii) since [B,2∃∀s,K ] = [B,4∃∀s,−K ] by Lemma 1.3.9(iv).

(v) It follows from (iii) since [B,4∀∃s,K ] = [B,2∀∃s,−K ] by Lemma 1.3.9(iii).
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In the next theorem we establish necessary and sufficient conditions of weak

minimality in several forms for the five first relations of R and in Theorem 4.2.12

for the sixth one.

Theorem 4.2.8. For each set relation - ∈ {4∀∀,4∃∀,2∀∃,2∃∀,4∀∃}, consider

problem (--SOP), a point x0 ∈ S and suppose that for each pair (-, D̄), F

satisfies the assumptions of Table 4.4.

- D̄ Assumptions

4∀∀ Dss F is (−K)-compact valued and F (x0) is K-compact

4∃∀ D̂
is

F is K-proper valued and F (x0) is K-compact

2∀∃ Dsi F is K-proper valued and F (x0) is K-compact

2∃∀ Dis F is (−K)-compact valued

4∀∃ D̂
si

F is (−K)-compact valued

Table 4.4. Assumptions in Theorem 4.2.8.

Then, for each pair (-, D̄) in Table 4.4 the following statements are equivalent:

(a) x0 is a weak --minimal solution of (--SOP).

(b) x0 is a strict weak --minimal solution of (--SOP).

(c) D̄(F (x), F (x0)) ≥ 0 for all x ∈ S.

(d) There exists a map T : F → R, which is --increasing on F , strictly

-s-increasing on K1-compact sets and such that

(d1) T (F (x)) ≥ 0 for all x ∈ S,

(d2) if x ∈ S and F (x)-s F (x0), then T (F (x)) < 0,

where K1 = −K for 4∀∀, 2∃∀ and 4∀∃, and K1 = K for 4∃∀ and 2∀∃.

(e) There exists a map T : F → R such that (d1) and (d2) are satisfied.

Proof. We prove the case (-, D̄) =
(
4∀∀,Dss

)
, since the remaining cases are

similar, by applying the results of Table 4.4.

Case (-, D̄) =
(
4∀∀,Dss

)
.

(a) ⇒ (b). By contradiction, suppose that there exists x1 ∈ S such that

F (x1)4∀∀s F (x0), that is, x1 ∈ Lev(x0,4∀∀s ). As x0 is a weak 4∀∀-minimal solu-

tion, by applying Lemma 4.2.4 we have Lev(x0,4∀∀s ) = E(x0,4∀∀s ) and, therefore,
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x1 ∈ E(x0,4∀∀s ). However, this contradicts the fact that E(x0,4∀∀s ) = ∅, which is

true since by Lemma 4.2.7(i) one has [F (x0),4∀∀s ] = ∅.

(b) ⇒ (c). The hypothesis (b) means that F (x) 64∀∀s F (x0) for all x ∈ S, and

this implies that Dss(F (x), F (x0)) ≥ 0 for all x ∈ S by Theorem 3.4.1(i), so (c)

holds.

(c)⇒ (d). We define the map T : F → R given by T (F (x)) = Dss(F (x), F (x0)).

Firstly, T (F (x)) ∈ R by Theorem 3.1.13(i) because F (x) is (−K)-bounded and

F (x0) is K-bounded since F is (−K)-compact valued and F (x0) is K-compact

by hypothesis (see Table 4.4). Moreover, T is 4∀∀-increasing on F by Theo-

rem 3.1.22(iii) and strictly 4∀∀s -increasing on (−K)-compact sets by Theorem

3.3.8(i-b). Secondly, (d1) holds by assumption (c). And thirdly, let us prove (d2).

Suppose that x ∈ S and F (x)4∀∀s F (x0). We can apply Theorem 3.4.1(i) because

F (x) is (−K)-compact and F (x0) is K-compact by hypothesis. So, we conclude

T (F (x)) = Dss(F (x), F (x0)) < 0.

(d)⇒ (e). It is obvious.

(e)⇒ (a). By contradiction, assume that x0 is not a weak 4∀∀-minimal solu-

tion. Then, there exists x1 ∈ S such that F (x1)4∀∀s F (x0) and F (x0) 64∀∀s F (x1).

From (d1), it follows that T (F (x1)) ≥ 0, and by (d2), we have T (F (x1)) < 0,

which is a contradiction. The proof is finished.

Next, we summarize the results needed in the proof of Theorem 4.2.8.

- D̄ Ch. A-s B E(x0,-s) = ∅ Finite --incr./str. -s-incr.

4∀∀ Dss Th. 3.4.1(i) Lem. 4.2.7(i) Th. 3.1.13(i) Ths. 3.1.22(iii)/3.3.8(i-b)

4∃∀ D̂
is

Th. 3.4.1(ii) Lem. 4.2.7(ii) Th. 3.1.13(ii) Ths. 3.1.22(iv)/3.3.8(ii-b)

2∀∃ Dsi Th. 3.4.1(iii) Lem. 4.2.7(iii) Th. 3.1.13(iii) Ths. 3.1.22(iv)/3.3.8(iii-b)

2∃∀ Dis Th. 3.4.1(iv) Lem. 4.2.7(iv) Th. 3.1.13(iv) Ths. 3.1.22(iii)/3.3.8(iv-b)

4∀∃ D̂
si

Th. 3.4.1(v) Lem. 4.2.7(v) Th. 3.1.13(v) Ths. 3.1.22(iii)/3.3.8(v-b)

Table 4.5. Results that are applied in the proof of Theorem 4.2.8.

Let us observe that the map T in statement (d) has the same properties as

D̄(·, F (x0)). To obtain necessary minimality conditions it is better to have a lot

of properties; however, viewed (d) as a sufficient condition for (a) it is easier to

find a map T satisfying statement (e).
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Remark 4.2.9. Statement (b) is equivalent to

(b′) F (x) 6-s F (x0) for all x ∈ S\{x0}.

Indeed, under the assumptions of Theorem 3.3.8 one has F (x0) 6-s F (x0), since

otherwise F (x0) ∈ [F (x0),-s], which contradicts Lemma 4.2.7.

Remark 4.2.10. If it holds

F (x0)-F (x0), (4.6)

then statement (c) is equivalent to:

(c′) x0 is a solution of the scalar problem min{D̄(F (x), F (x0)) : x ∈ S}.

Indeed, D̄(F (x0), F (x0)) = 0 by Lemma 4.1.6(i)-(v) (let us observe that under

the assumptions of Theorem 4.2.8, we can apply Lemma 4.1.6(iii) and (v) since

F (x0) is K-proper and (−K)-proper, respectively). Note that condition (4.6) is

satisfied for all x0 ∈ S for the reflexive relations 2∀∃ and 4∀∃.

Results about weak minimal solutions of a set optimization problem for 2∀∃s or

4∀∃s , using extensions of Gerstewitz’s function, have been provided in Hernández

and Rodŕıguez-Maŕın [51, Theorem 4.2 and Corollary 4.11] (in the forms (a) ⇔
(d) and (a) ⇔ (c′)), Araya [5, Theorems 5.2 and 5.4] (in the form (a) ⇔ (c′)),

Gutiérrez et al. [41, Corollary 4.4(a)] (in the form (a)⇔ (c′)) and Khoshkhabar-

amiranloo et al. [73, Theorems 3.2 and 4.2] (in the form (a)⇔ (c′)). By using a

scalarization based on the oriented distance, Xu and Li [129, Theorems 4.6 and

4.8] (in the forms (a)⇔ (d) and (a)⇔ (c′)), and using the functions Dsi and D̂
si

,

Jiménez et al. [67, Theorems 5.7 and 5.15] (in the forms (a) ⇔ (b) ⇔ (c′)). A

result as Lemma 4.2.7 is not given in none of these papers.

The case (-, D̄) =
(
4∃∃,Dii

)
has not been approached in Theorem 4.2.8

because it presents some peculiarities as, for example, Lemma 4.2.7 is not true

for 4∃∃s , so we prefer to deal with it as a separate case.

The following result is a direct consequence of Theorem 3.4.1(vi)

Lemma 4.2.11. Let A,B ∈ P0(Y ). Then, A ∈ [B,4∃∃s ] if and only if Dii(A,B) <

0 and Dii(B,A) < 0.
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Theorem 4.2.12. Consider problem (4∃∃-SOP), a point x0 ∈ S and suppose

that the following assumption holds:

(A)

 Either F is K-proper valued and F (x0) is (−K)-bounded, or

F is K-bounded valued and F (x0) is (−K)-proper.

Then, the following statements are equivalent:

(a) x0 is a weak 4∃∃-minimal solution of (4∃∃-SOP).

(b) Dii(F (x), F (x0)) ≥ 0 for all x ∈ S \ E(x0,4∃∃s ).

(c) For all x ∈ S one has Dii(F (x), F (x0)) ≥ 0 or Dii(F (x0), F (x)) < 0.

(d) There exists a map T : F → R such that

(d1) T (F (x)) ≥ 0 for all x ∈ S \ E(x0,4∃∃s ),

(d2) if x ∈ S and F (x)4∃∃s F (x0), then T (F (x)) < 0.

Proof. (a) ⇒ (b). By Lemma 4.2.4, we obtain E(x0,4∃∃s ) = Lev(x0,4∃∃s ). So,

if x ∈ S \ E(x0,4∃∃s ), then x /∈ Lev(x0,4∃∃s ), that is, F (x) 64∃∃s F (x0), and by

Theorem 3.4.1(vi) we derive that Dii(F (x), F (x0)) ≥ 0.

(b) ⇒ (c). For each x ∈ S one has x /∈ E(x0,4∃∃s ) or x ∈ E(x0,4∃∃s ). In

the first case, by (b) we deduce Dii(F (x), F (x0)) ≥ 0, and in the second case, by

Lemma 4.2.11 we get Dii(F (x0), F (x)) < 0.

(c) ⇒ (a). By contradiction, suppose that x0 is not a weak 4∃∃-minimal so-

lution of (4∃∃-SOP). Then, there exists x1 ∈ S such that F (x1)4∃∃s F (x0) and

F (x0) 64∃∃s F (x1). By Theorem 3.4.1(vi) applied to both inequalities we obtain

Dii(F (x1), F (x0)) < 0 and Dii(F (x0), F (x1)) ≥ 0, which contradicts the hypoth-

esis (c). Therefore, statements (a), (b) and (c) are equivalent.

(b) ⇒ (d). We define the mapping T : F → R given by T (F (x)) =

Dii(F (x), F (x0)). We have T (F (x)) ∈ R by Theorem 3.1.13(vi) since assump-

tion (A) holds.

If x ∈ S and F (x)4∃∃s F (x0), then by Theorem 3.4.1(vi) we deduce T (F (x)) =

Dii(F (x), F (x0)) < 0. Thus, (d2) holds.

If x ∈ S \E(x0,4∃∃s ), then T (F (x)) = Dii(F (x), F (x0)) ≥ 0 by hypothesis (b),

and so, (d1) is proved.

(d) ⇒ (a). By contradiction, suppose that x0 is not a weak 4∃∃-minimal

solution of (4∃∃-SOP). Then, there exists x1 ∈ S such that F (x1)4∃∃s F (x0) and



124 Application to set optimization problems

F (x0) 64∃∃s F (x1). From (d1), it follows that T (F (x1)) ≥ 0 since x1 /∈ E(x0,4∃∃s ),

and by (d2), we have T (F (x1)) < 0, which is a contradiction.

In the following remarks, we provide other equivalent expressions for state-

ments (b), (c) and (d) in Theorem 4.2.12.

Remark 4.2.13. The following statement is equivalent to (c):

(c′) It does not exist x ∈ S such that

Dii(F (x), F (x0)) < 0 and Dii(F (x0), F (x)) ≥ 0.

It is clear since not (c′) is just not (c).

Remark 4.2.14. Let T : F → R and consider the following statements:

(d′) (d′1) T (F (x)) ≥ 0 for all x ∈ S \ E(x0,4∃∃s ),

(d′2) if x ∈ E(x0,4∃∃s ), then T (F (x)) < 0.

(d′′) If x ∈ S then, x ∈ E(x0,4∃∃) ⇔ T (F (x)) < 0.

Then

(i) (d)⇒ (d′)⇔ (d′′).

(ii) If T is 4∃∃-increasing until x0 (that is, F (x)4∃∃ F (x0) implies T (F (x)) ≤
T (F (x0))) and x0 ∈ E(x0,4∃∃s ), then (d′)⇒ (d), and so the three statements (d),

(d′) and (d′′) are equivalent.

Proof. (i) (d)⇒ (d′). It is obvious since E(x0,4∃∃s ) ⊂ Lev(x0,4∃∃s ).

(d′)⇔ (d′′). We only have to prove the ‘⇐’ part of (d′′). Let x ∈ S such that

T (F (x)) < 0. If x /∈ E(x0,4∃∃s ), then by (d′1), it follows T (F (x)) ≥ 0, which is a

contradiction and, consequently, x ∈ E(x0,4∃∃s ).

(ii) We only have to prove (d2) since (d1) ≡ (d′1). If we take x ∈ S such that

F (x)4∃∃s F (x0), then F (x)4∃∃ F (x0) by Proposition 1.3.7(iv) and, as T is 4∃∃-

increasing until x0, we deduce T (F (x)) ≤ T (F (x0)). Now, as x0 ∈ E(x0,4∃∃s ) by

hypothesis, using (d′2) we derive T (F (x0)) < 0 and, therefore, T (F (x)) < 0.

Remark 4.2.15. The following statements are equivalent to (b):

(b′) (b′1) Dii(F (x), F (x0)) ≥ 0 for all x ∈ S \ E(x0,4∃∃s ),

(b′2) if x ∈ E(x0,4∃∃s ), then Dii(F (x), F (x0)) < 0.

(b′′) If x ∈ S then, x ∈ E(x0,4∃∃s ) ⇔ Dii(F (x), F (x0)) < 0.
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Its proof is identical to the one of Remark 4.2.14 only by changing T (F (x)) for

Dii(F (x), F (x0)). But to prove the implication (b)⇒ (b′2) we use Lemma 4.2.11.

In this case, (b′)⇒ (b) is obvious.

We illustrate our results with two examples.

Example 4.2.16. Consider Y = R2, K = R2
+, S = R+, and F : R+ ⇒ R2

defined by

F (x) = [(x, x), (x+ r, x+ r)]K ,

where r is a fixed positive number. Using (3.14), it is easy to obtain the six

scalarizations: for all x, x0 ∈ R+, one has

Dss(F (x), F (x0)) = (x− x0 + r)ϕ(x− x0 + r),

D̂
is

(F (x), F (x0)) = Dsi(F (x), F (x0)) = Dis(F (x), F (x0)) = D̂
si

(F (x), F (x0))

= (x− x0)ϕ(x− x0),

Dii(F (x), F (x0)) = (x− x0 − r)ϕ(x− x0 − r),

where ϕ : R→ R+ is given by ϕ(x) = 1 if x < 0 and ϕ(x) =
√

2 if x ≥ 0.

Let us note that F is K-compact valued and (−K)-compact valued. Now it

is easy to determine all minimal solutions for the six problems (--SOP).

1. 4∀∀. We want to check statement (c) of Theorem 4.2.8. Let x, x0 ∈ R+. We

have Dss(F (x), F (x0)) ≥ 0 for all x ∈ R+ if and only if x− x0 + r ≥ 0 for all

x ∈ R+, which is true just if x0 ≤ r. So, we obtain that [0, r] is the set of

weak 4∀∀-minimal solutions.

2. 2∃∀, 2∀∃, 4∃∀ and 4∀∃. These four cases have the same scalarization associ-

ated: D̄(F (x), F (x0)) = (x− x0)ϕ(x− x0). Then, D̄(F (x), F (x0)) ≥ 0 for all

x ∈ R+ if and only if x0 = 0. Therefore, by Theorem 4.2.8 we conclude that

the unique weak minimal solution is 0.

3. 4∃∃. Now, we check statement (c) of Theorem 4.2.12. If Dii(F (x), F (x0)) ≥ 0,

this assertion is equivalent to x−x0− r ≥ 0, is true if x ≥ x0 + r. The second

assertion of (c), Dii(F (x0), F (x)) < 0 is fulfilled if x0 − x − r < 0, that is, if

x > x0 − r. So, each x ∈ R+ satisfying this inequality satisfies also the first
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one. Therefore, it must be x0 < x + r for all x ∈ R+, which is true just if

x0 < r. In consequence, [0, r) is the set of weak 4∃∃-minimal solutions.

Example 4.2.17. Suppose that x0 ∈ S, F is K-proper valued and F (x0) is K-

compact. Let us prove that x0 is a weak 2∀∃-minimal solution of (2∀∃-SOP) if

and only if for all x ∈ S there exists ȳ ∈ F (x0) such that

(F (x)− ȳ) ∩ (− intK) = ∅. (4.7)

(⇒) By Theorem 4.2.8 we have Dsi(F (x), F (x0) ≥ 0 for all x ∈ S. By Corol-

lary 3.1.18(iii), there exists ȳ ∈ F (x0) such that Dsi(F (x), F (x0)) = hi(F (x)− ȳ),

and so hi(F (x)− ȳ) = infy∈F (x)D(y− ȳ,−K) ≥ 0. By Lemma 1.3.19(iii) it follows

that y − ȳ /∈ − intK for all y ∈ F (x), i.e., (4.7) holds.

(⇐) Condition (4.7) implies that Dsi(F (x), ȳ) = infy∈F (x)D(y − ȳ,−K) ≥ 0,

and so Dsi(F (x), F (x0)) = supy∈F (x0)D
si(F (x), y) ≥ 0 for all x ∈ S. Therefore,

by Theorem 4.2.8, we conclude that x0 is a weak 2∀∃-minimal solution.

The result proved in this example is inspired in [1, Proposition 18], which is

more general.



Chapter 5

Conclusions and future lines of

development

In this last chapter, the most important results derived throughout this mem-

ory are summarized with the aim of providing a global vision of the work which

has been carried out. Moreover, some future lines of development are proposed,

which could be interesting directions of research that have appeared along the

thesis.

5.1 Conclusions

The main goal of this thesis focuses on the study of set scalarization functions

and their applications in set-valued optimization problems, in order to derive

necessary and sufficient conditions of minimality and weak minimality with the

set criterion of solution. In this criterion of solution, set relations on the power

set of the objective space Y relying on the ordering structure given in Y play

one of the most essential roles in set optimization problems since they act as

preference relations which provide a natural way to compare the values of the

set-valued objective map. Through these binary relations, given two sets, it is

possible to decide if one set dominates another set in a certain sense. In this

memory, the comparison between two sets needed in the set criterion of solution

127
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has been carried out by means of the set relations of Kuroiwa (see Definition 1.3.2

in Section 1.2) associated with a cone K.

First of all, with a solid convex cone K, by considering the norm ‖.‖e generated

by Minkowski’s functional of an order interval (see [35, 38, 61, 62, 103, 109, 133])

with e ∈ intK, we have established a relationship between the Khoshkhabar-

amiranloo and Soleimani-damaneh function [73] and the excess of a set over the

conic extension of another set (see Theorem 1.3.30).

In Chapter 2, we have gathered the main set scalarization functions between

two sets existing in the literature. On the one hand, the extensions of Gerstewitz’s

function (see [48, 95, 96, 113, 131]) which are defined in a real topological linear

space with a solid convex cone K and, on the other hand, the extensions of

the oriented distance function of Hiriart-Urruty (see [18, 38, 45, 129]) which are

defined in a normed space with a not necessarily solid convex cone K. It should

be highlighted that the main advantage of the oriented distance in contrast with

Gerstewitz’s function is that the solidness of the convex cone K is not required.

Section 2.1 is concerned with the study of the relationships among the set

scalarization functions which can be found in the different papers existing in the

literature. To the best of our knowledge, so far some relations between Gerste-

witz’s function (see Definition 1.3.14 in Section 1.2) and the oriented distance

function of Hiriart-Urruty (see Definition 1.3.18 in Section 1.2) can be found

in [98]. However, as far as we know, there are no research where such compar-

isons have been analyzed for the corresponding set scalarization functions except

in [38, Theorem 6.15] with a solid convex cone K, where Gutiérrez, Jiménez,

Miglierina and Molho showed that their set extension of the oriented distance,

denoted by ∆B(A), coincides with Gerstewitz’s function hlinf(A,B), by consid-

ering the norm ‖.‖e generated by Minkowski’s functional of an order interval

with e ∈ intK. For this reason, this section is very interesting since the results

presented help to clarify the relationships among the different set scalarization

functions for the first time in the literature.

Moreover, we study some new relationships among the existing set scalariza-

tion functions. To be precise, we have proved a characterization for the distance
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D(A,B) of Crespi, Ginchev and Rocca [18] (see Theorem 2.1.2), a relation be-

tween the oriented distances of Crespi et al. and the set oriented distance DA(B)

of Xu and Li [129] (see Theorem 2.1.7), an interesting result where the oriented

distance ∆B(A) of Gutiérrez et al. [38] is related to the distances of Crespi et al.

and the one of Xu and Li (see Corollary 2.1.8) and, moreover, we have presented

a characterization to the extension of Gutiérrez et al. by relating this function to

the oriented distance function D(·, A) of Hiriart-Urruty (see Proposition 2.1.9).

Also, we have presented two set scalarization functions which are set exten-

sions of type sup-inf of the oriented distance function, the first one introduced by

Ha [45], and the second one, a new set extension introduced by us (see Definition

2.1.14), which are denoted by Dsi and D̂
si

, respectively, and that can be called

set oriented distances. Furthermore, some new relationships among the exten-

sions of type sup-inf mentioned and the set scalarization functions existing in the

literature are established (see Proposition 2.1.21, Theorem 2.1.24 and Theorem

2.1.25).

In Section 2.2, to achieve our aims in set optimization problems, new impor-

tant properties for the set scalarization functions Dsi and D̂
si

are derived. More

specifically, by using cone-properness, cone-boundedness and a new concept of

cone-boundedness with respect to a set which have been introduced by us (see

Definition 2.2.14), some results about the finitude of the function Dsi are pre-

sented (see Proposition 2.2.5, Corollaries 2.2.6 and 2.2.11). Besides, some new

good properties as convexity of the function Dsi(·, B) (see Proposition 2.2.25),

positive homogeneity (see Proposition 2.2.26), Lipschitz continuity for the func-

tions Dsi(A, y) and Dsi(y,B) (see Theorems 2.2.27 and 2.2.28), invariance respect

to conic extensions (see Proposition 2.2.30 and Theorem 2.2.39(i)), invariance

by using equivalents sets (see Propositions 2.2.31, 2.2.33 and 2.2.35, and Theo-

rem 2.2.39(ii),(iv) and (v)), diagonal null (see Proposition 2.2.34 and Theorem

2.2.39(iii)), monotonicity (see Proposition 2.2.36 and Theorem 2.2.39(vi)), invari-

ance with respect to closure (see Proposition 2.2.37 and Theorem 2.2.39(vii)), etc.

are presented. As we have said in the corresponding section of the memory, we

have found various results that represent an improvement with respect to the
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corresponding results existing in the literature for another set scalarizations since

we ask weaker assumptions.

In Section 2.3, by using the useful properties which have been shown in the

former section, new characterizations of the lower set less relation 2∀∃ and the

upper set less relation 4∀∃ of Kuroiwa by means of the set scalarization functions

Dsi and D̂
si

are provided (see Theorems 2.3.1 and 2.3.17(i)). Furthermore, if K

is a solid convex cone, characterizations for the strict set relations 2∀∃s and 4∀∃s

corresponding of the set relations of Kuroiwa (see Theorems 2.3.11 and 2.3.17(v))

by requiring assumptions of cone-compactness are derived. We also deal with

strict monotonicity for the functions Dsi and D̂
si

(see Proposition 2.3.15 and

Theorem 2.3.17(vi)) by using the strict lower set less relation 2∀∃s and the strict

upper set less relation 4∀∃s . As we have pointed out in the corresponding section

of the memory, some of our results represent an improvement with respect to the

results existing in the literature for another set scalarizations because we require

weaker assumptions.

Chapter 3 is devoted to introducing new set scalarization functions which

are extensions of the oriented distance function of Hiriart-Urruty. It should be

pointed out that the results achieved have been derived by applying the new set

oriented distances and, therefore, these results are new too.

In Section 3.1, six set scalarizations of type sup-inf and inf-sup, which are

generalizations of the oriented distance function, denoted by Dα and D̂
α
, have

been presented (see Definition 3.1.1), four of which are new. Relationships among

them are presented (see Lemmas 3.1.4 and 3.1.5), characterizations to these six

set scalarizations are given (see Lemma 3.1.10) and, moreover, some of their main

properties have been studied as, for example, finitude under suitable assumptions

of cone-properness and cone-boundedness (see Theorem 3.1.13), invariance by

conic extensions (see Theorem 3.1.20), monotonicity (see Theorem 3.1.22) by

considering the six set relations 4αβ and 2αβ of Kuroiwa introduced in Definition

1.3.2, closure property (see Proposition 3.1.27), etc.

In Section 3.2, new characterizations of the six set relations 4αβ and 2αβ of

Kuroiwa (see Theorem 3.2.1) have been derived, by using the six set scalarizations
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Dα and D̂
α

which are introduced in the former section. Furthermore, some exam-

ples to illustrate the results obtained are provided, especially to emphasize that

the assumptions required cannot be removed. The importance of these results

lies in the fact that they could be applied in Section 4.1 to analyze minimality

conditions for a set optimization problem with the set criterion of solution.

In Section 3.3, by considering a solid convex cone K and under suitable as-

sumptions, strict monotonicity for the six set scalarizations Dα and D̂
α

(see The-

orem 3.3.8) by using the six set relations 4αβ and 2αβ of Kuroiwa has been

investigated. For this purpose, some new important results which deal with in-

equalities for the functions Dα and D̂
α

when one of their variables is a sum of

two sets, are presented; moreover, it should be emphasized that these results do

not exist in the literature for the set Gerstewitz’s function. The results about

strict monotonicity mentioned above are very important because they could be

applied in Section 4.2 to derive weak minimality conditions for a set optimization

problem with the set criterion of solution. It is worth mentioning that in the

literature, there are very few authors who have researched strict monotonicity

(see [5, 41, 51, 94, 96, 107]) and, in all these cases, set Gerstewitz’s function has

been used. As we have said in the corresponding section of the memory, the

results proved represent an extension since they require weakest assumptions.

In Section 3.4, by considering a solid convex cone K, new characterizations of

the six strict set relations 4αβs and 2αβs of Kuroiwa (see Theorem 3.4.1) have been

derived by using the six set scalarizations Dα and D̂
α
. Moreover, some examples

to illustrate the results obtained are provided with the aim to emphasize that the

assumptions required cannot be removed. These results will be used in section

4.2 to deduce weak minimality conditions for a set optimization problem with the

set criterion of solution.

In Chapter 4, applications to set optimization problems with set criterion of

solution by means of set relations 4αβ and 2αβ of Kuroiwa are searched. To be

precise, we characterize by scalarization several types of solution.

In Section 4.1, by considering some good properties of the six set scalarizations

Dα and D̂
α

which have been presented in Section 3.1 as, for example, finitude,
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monotonicity, performance with respect to equivalent sets, and by applying the

characterizations of the set relations of Kuroiwa, which have been given in Section

3.2, several new characterizations by scalarization of minimal solutions for six set

optimization problems with the set criterion have been derived (see Theorems

4.1.7 and 4.1.15). Also, to illustrate our results we have provided an example.

In Section 4.2, by considering some useful properties of the six set scalariza-

tions Dα and D̂
α

presented in Section 3.1 as, for example, finitude and monotonic-

ity, as well as their strict monotonicity studied in Section 3.3 and by applying

the characterizations of the strict set relations of Kuroiwa which are given in

Section 3.4, several new characterizations by scalarization of weak minimal solu-

tions for six set optimization problems (see Theorems 4.2.8 and 4.2.12) with the

set criterion, are achieved. Also, to illustrate our results we have provided an

example.
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5.2 Future lines of development

In this section, the lines of further research we present are deduced as a

result of the work carried out. In general, the proposed developments open new

directions of research related to the accomplished study.

Line 1. In the literature different set order relations have been used to the

comparison of sets in order to solve set optimization problems. In [50, 75, 82, 83]

a more general set order relation were introduced, where the involved set D

describing the domination structure does not need to be a convex cone K. To

be precise, the generalized upper set less order relation (see [50, 82, 83]) and the

generalized lower set less order relation [75] were introduced.

In [98] some properties to the oriented distance function when the associated

set is neither a cone nor a convex set were analyzed. In [29] the properties of

the oriented distance function with respect to a co-radiant set were investigated.

Let us note that co-radiant sets are more general than a cone and are main tools

in the study of approximate solutions in vector optimization problems. In [74]

Gerstewitz’s function with a nonempty proper subset of Y was considered and in

[83] some generalizations of Gerstewitz’s function zD,k to characterize generalized

set order relations were treated where the involved set D does not need to be a

convex cone K.

In [22,108] set relations in analogy to set relations of Kuroiwa were defined by

considering improvement sets (see [13,40]) with the aim of defining new solution

concept for set-valued problems with the set criterion of solution [22] and to

investigate stability of the solution sets for set optimization problems and to

study the upper semi-continuity and lower semi-continuity of solution mapping

to parametric set optimization problems.

In this thesis we have presented new set extensions Dα and D̂α of type sup-inf

and inf-sup of the oriented distance function of Hiriart-Urruty which have been

defined by using a convex cone not necessarily solid. We think that a line of

research could be to introduce the six set oriented distances Dα and D̂α by using

a set D which does not have to be a convex cone K as, for instance, by using free
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disposal, improvement sets [13, 40], or co-radiant sets [29]. In general, to extend

the results we have presented in this thesis in the framework mentioned.

Line 2. In set-valued optimization problems with the set criterion, a set-

valued objective map is minimized (or maximized) with respect to a set order

relation. The variable ordering structures [26] are introduced by a cone-valued

map [25] that associates with each element of the linear space an ordering and,

therefore, generalize the concept of ordering structures in vector and set opti-

mization problems. In the literature, different types of set order relations with a

variable order structure to compare sets in a linear topological space have been re-

cently taking into account (see, for instance, [3,80,84]). By considering a variable

order structure, in respect of scalarization methods to characterize set order re-

lations and minimal elements of set optimization problems with the set criterion,

in [84] a modified Gerstewitz’s function zD,k was used but changing the cone D

for a variable order structure. Furthermore, in [3] the authors have characterized

set order relations defined with a variable order structure, through a version of

the oriented distance function which is given with a variable order structure.

We considerer that a future research could be to define the six set oriented

distances Dα and D̂α presented in this thesis but taking into account a vari-

able ordering structure instead of a convex cone K as, for example, by using

K = ∪a∈AK(a) where A ⊂ Y is a nonempty set and K : Y ⇒ Y is a cone-valued

map. We have another approach by using a Bishop-Phelps cone-valued map to

introduce the variable order structure. In this case, for these six set scalarization

functions, it might be useful to investigate their relationships and their proper-

ties, to characterize generalize set order relations and different kinds of minimal

solutions to set optimization problems and, in general, to extend the results which

we have presented in this thesis to the mentioned framework.

Line 3. In the literature we can find many concepts which may involve the

convergence of sequences of sets (see [22, 30, 74, 116]). The most usual concepts

of set convergence in the power set of a partially ordered normed space Y sup-

plied with a set order relation are the set convergence of Painlevé-Kuratowski or

Pompeiu-Hausdorff.
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We think it could be interesting to define some concepts of set convergence by

using the set oriented distances Dα presented in this thesis, which could be called

upper and lower Dα-convergence, in the power set of a partially ordered normed

space Y supplied with a set order relation. We could define Dα-convergence, as

follows:

An ⇀ A⇔ Dα(An, A)→ 0, An ⇁ A⇔ Dα(A,An)→ 0,

An → A ⇔ (An ⇀ A and An ⇁ A) ⇔ (Dα(An, A) → 0 and Dα(A,An) →
0).

It might be interesting to compare the Dα-convergence with other concepts of

set convergence existing in the literature as, for example, the set convergence of

Painlevé-Kuratowski or Pompeiu-Hausdorff, to investigate their properties and

compatibility with respect to the set relations considered, their behavior by pass-

ing to the limit, etc.

For example, for all n, by using Dsi-convergence, it could be interesting to

prove:

(i) If An2∀∃B and Dsi(A,An)→ 0, then A2∀∃B.

(ii) If B2∀∃An and Dsi(An, A)→ 0, then B2∀∃A.

(iii) If A2∀∃B, Dsi(A,An)→ 0 and Dsi(An, A)→ 0, then An2∀∃B.

(iv) If B2∀∃A, Dsi(An, A)→ 0 and Dsi(A,An)→ 0, then B2∀∃An.

(v) If Dsi(A,An)→ 0, Dsi(B,Bn)→ 0 and An2∀∃Bn, then A2∀∃B.

(vi) If Dsi(An, A)→ 0, Dsi(Bn, B)→ 0 and Bn2∀∃An, then B2∀∃A.

(vii) If An → A and Bn → B, then An+Bn → A+B, that is, Dsi(A+B,An+

Bn)→ 0 and Dsi(An +Bn, A+B)→ 0.

(viii) If An → A and Bn → B, then λAn+µBn → λA+µB, where λ, µ ∈ R+,

that is, Dsi(λA+ µB, λAn + µBn)→ 0 and Dsi(λAn + µBn, λA+ µB)→ 0.

Line 4. Many concepts in set-valued analysis such as stability, differentiation

and approximation may involve the convergence of sequences of sets [30]. In the

power set of a space supplied with an ordering, some usual notions of set con-

vergence are Kuratowski-Painlevé or Pompeiu-Hausdorff convergences [22, 116].

In [30,74] a concept of set convergence compatible with the ordering on the power

set of a partially ordered normed space was used. By using set convergence, sta-
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bility of minimal sets and minimal solutions to set-valued optimization problems

with the set criterion was investigated. Moreover, the upper and lower conver-

gence of approximate minimal solution sets in Kuratowski-Painlevé sense was

established [74], and the asymptotic behavior of sequences of lower bounded sets

was studied [30].

We think that further directions of research could be to investigate stability

results for minimal sets and minimal solutions to set-valued optimization prob-

lems with the set criterion, by considering some new concepts of set convergence

defined by using the set oriented distances Dα and D̂α. Likewise, it might be

fruitful to study the asymptotic behavior of sequences of both minimal sets and

minimal solutions to set-valued optimization problems by using the set conver-

gence above mentioned. More precisely, considering a sequence of K-bounded

subsets An converging in the sense of the new set convergence to a K-bounded

set A, it could be interesting to study the convergence of the minimal elements

of An towards the minimal element of A. Afterwards, considering a sequence of

set-valued optimization problems SOPn , the data of which converging to the data

of a set-valued optimization problem SOP , it might be useful to investigate the

convergence of the minimal solutions to SOPn towards the minimal solutions of

SOP .

Line 5. In 1966, Tykhonov [125] introduced well-posedness for scalar opti-

mization problems, which guarantees the convergence of minimizing sequences

to the unique solution of the problem. More recently, well-posedness for scalar

optimization problems was introduced in [104]. In [43, 134] a generalized version

of Gerstewiz’s function given in [51] was used to introduce the well-posedness

property in the setting of set optimization problems with the set criterion and,

therefore, the well-posedness defined are applicable only for a solid convex cone

K. In [134] by using K-bounded sets, it is established the equivalent between

three kinds of well-posedness for a set optimization problem with set criterion at

a given minimal solution x0 and well-posedness of the three kinds of scalar opti-

mization problems. In [43] the notion of well-posedness due to Zhang et al. [134]

and K-proper sets was used. So, in [43] an extension of the results of [134] is
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given since it is not required K-bounded objective sets; moreover, the equivalence

between the well-posedness of the original set optimization problem at a given

strict minimal solution x0 [45] and the classical Tykhonov well-posedness of the

scalarized problem was obtained under the assumption that the set F (x0) is a

K-proper set.

In [20] a definition of global well-posedness for set optimization problems was

given, and by using an embedding technique a well-posedness property of a class

of generalized convex set-valued maps was proposed and a class of quasiconvex

se-valued maps which guarantees well-posedness of the set optimization problem

was introduced.

In [37] three types of well-posedness for a set optimization problem with the

set criterion of solution were studied by using the u-preorder of Kuroiwa and

a generalization of the oriented distance introduced by Xu and Li [129] and,

therefore, the well-posedness defined are applicable for a not necessarily solid cone

K; moreover, necessary conditions for the well-posedness by using the Hausdorff

set-convergence were obtained. It is worth noting that the results obtained in [37]

are more general than in [43] where the authors studied a notion of well-posedness

for a set optimization problem under the assumption that the ordering cone K is

solid.

We consider that it could be interesting to use the set oriented distances Dα

and Dα-convergence which have been defined with a convex cone K not nec-

essarily solid, in order to introduce different classes of well-posedness for a set

optimization problem with the set criterion of solution and K-bounded sets, by

considering well-posedness of scalar optimization problems; moreover, to establish

the equivalence between the well-posedness of (�-SOP ) and the well-posedness

of scalar optimization problems, by using the functions Dα(·, F (x0)) where x0 is

a �-minimal or weak �-minimal solution to the set optimization problem con-

sidered.

Line 6. Via scalarization techniques, a vector optimization problem is re-

placed by an associated family of scalar optimization problems, which allows

to relate qualitatively the solutions of both problems and to solve optimization
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problems through numerical methods applicable to scalar problems, that is, so-

lutions of optimization problems can be characterized and computed as solutions

of appropriate scalar optimization problems.

In [113,131,132] it was proved that the problem to calculate each value of the

scalarizing functions can be computed in a finite dimensional Euclidean space for

certain polytope sets with a convex polyhedral cone inducing the ordering. This

problem can be decomposed into finite numbers of linear programming subprob-

lems.

We observe that in the literature there exist a few papers dealing with concrete

calculation process to compute values of scalarization functions. However, this

is of great importance since usually many properties on set-valued maps and set

optimization are described by scalarization. In all mentioned papers, Gerstewitz’s

function is the only scalarization that has been used. In the particular case of

a finite dimensional Euclidean space by using the six set oriented distances Dα

and D̂α and polyhedral cones, we believe that it might be fruitful to formulate

an algorithm which allows the comparison of two polytopes sets (that is, convex

hull to a finite set of points), and evaluate whether both sets fulfill an inequality

in a discrete numerical manner.

In [18,29,34], if A is a convex set we can find the following expression:

D(y, A) = sup
‖ξ‖=1

(〈ξ, y〉 − sup
a∈A
〈ξ, a〉).

Moreover, in the case that A = K is a convex cone it follows that

D(y,−K) = sup
‖ξ‖=1,ξ∈K+

〈ξ, y〉.

To be precise, to decide if a set relation is fulfilled by two sets evaluating one

inequality it is necessary to compute numerically the inequality mentioned via

scalarization functions. For this purpose, we need to propose a calculation process

that allows us to compute values of scalarization functions mentioned. So, we

think that considering the representation above introduced, it can be possible to

reform the six set scalarization functions Dα and D̂α with the aim of carrying out

the comparison between two sets to evaluate one inequality. For instance, the
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function Dsi
K(A,B) could be reformulated as follows:

Dsi
K(A,B) = sup

y∈B
inf
x∈A

D(x− y,−K) = sup
y∈B

inf
x∈A

sup
‖ξ‖=1,ξ∈K+

〈ξ, x− y〉.

Line 7. An interesting topic in optimization theory is to characterize cone-

convexity and cone-quasiconvexity of vector-valued or set-valued objective func-

tions in terms of usual convexity or quasiconvexity of certain real-valued functions,

that is, taking into account some appropriate scalarization functions [97, 103].

Hence, it is important and useful to study what kind of scalarizing functions

can be used so that, for example, a set-valued map will inherit its properties by

means of a composition between the set-valued maps given and the scalarization

functions which are considered.

For a set-valued map F , in [43, 72, 79, 92, 95, 96, 106, 111] inherit properties

of different kinds of convexity and continuity are studied by composing the set-

valued map F with scalarization functions. In [43, 72, 95, 96, 106] Gerstewitz’s

function was considered. In [92], compositions of a set-valued map F with exten-

sions of Gerstewitz’s functions were used to prove continuity for the set-valued

map under some convexity assumptions. To be precise, four types of nonconvex

scalarizing functions for set-valued maps based on the compositions hαinf ◦ F and

hαinf ◦ F where α ∈ {2∀∃,4∀∃} were used to show continuity for the set-valued

map F .

We think that further direction of research might be to investigate properties

of the composition of a set-valued map F and the six set scalarization functions

Dα and D̂α. So, it could be useful to study inherited properties of, for instance,

Dα ◦F according to some assumptions of F by defining (Dα(·, F (x0)) ◦ F )(x) =

Dα(F (x), F (x0)). The inverse results could be interesting too.

Line 8. In the literature, different generalizations hαinf(A,B) and hαsup(A,B),

where α ∈ {∀∀,∃∀,∀∃,∃∃}, of Gerstewitz’s function have been introduced (see,

for example, [79, 94, 95]) by using the six set relations of Kuroiwa. For these

functions, several properties have been shown. However, some new interesting

properties and results which have been proved in this thesis for the six set oriented

distances Dα and D̂α by using the six set relations of Kuroiwa, do not exist for
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the Gerstewitz’s function.

We consider that it might be useful to investigate if it is possible to extend

some properties and results presented in this thesis for the functions Dα and D̂α,

for the set extensions of Gerstewitz’s function as, for example, a property given

by the inequalities in Lemma 3.3.4, where one of the variables is a sum of two sets.

Moreover, by considering a solid convex cone K, it could be fruitful to investigate

the relationships between the different set extensions of Gerstewitz’s function and

the six set oriented distances Dα and D̂α, for example, by using the norm induced

by Minkowski’s functional [62, 109, 133]. Also, it could be interesting to look

for similar results of Corollary 3.1.18 for different generalizations of Gerstewitz’s

function (see, for instance, [79, 94, 95]) which have been introduced by using the

six set relations of Kuroiwa.

Line 9. It is well known that Gerstewitz’s function is continuous and convex.

Moreover, the continuity and convexity of the extensions of Gerstewitz’s function

(see [71, 92]) play an important role in the study of the existence of solutions

and the stability of the set of solutions for set optimization problems. These

properties have been shown under some suitable conditions in [49] and were used

to consider the upper semicontinuity and the lower semicontinuity of strongly

approximate solution mappings to the parametric set optimization problems.

We consider that it could be interesting to investigate continuity and convexity

properties for the functions Dα and D̂α given in Definition 3.1.1.

Line 10. In Theorem 2.2.1, we have shown that Dsi(A,B) ≤ r if and only

if B ⊂ cl(rU0 + A + K), where A,B ∈ P0(Y ) and r ≥ 0. We think it could

be interesting to prove Dsi(A,B) = min{r ≥ 0 : B ⊂ cl(rU0 + A + K)}. That

is, Dsi(A,B) is the smallest number r ≥ 0 such that B ⊂ cl(rU0 + A + K).

Moreover, we considerer it could be interesting to prove a result of this kind for

Dsi(A,B) < r as, for example, Dsi(A,B) < r if and only if B ⊂ int(rU0 +A+K),

under suitable assumptions. Also, we think it might be useful to find results of

type Dsi(A,B) ≥ r if and only if A ⊂ cl(rU0 + B +K) and Dsi(A,B) > r if and

only if A ⊂ int(rU0 +B +K).

Line 11. Minimax theory treats a class of extremum problems which involves,



5.2 Future lines of development 141

not simply minimization or maximization, but a combination of both [115]. It

is well-known that saddle point assertions play an important role in scalar opti-

mization due to their relations with other fundamental tools and theories such as

Kuhn-Tucker optimality conditions, duality, minimax theory, etc.

Given A,B ∈ P0(Y ) and a function ϕ : A×B → R ∪ {±∞}, it is possible to

build the functions supy∈B infx∈A ϕ(x, y) and supx∈A infy∈B ϕ(x, y). In [107] we

can find a result of this type but using Gerstewitz’s function.

If we define ϕ(x, y) = D(x − y,−K), we think that it might be useful to

investigate when the expressions sup-inf and inf-sup above mentioned are equal.

Therefore, it could be interesting to find under which conditions there exists a

saddle point for the function ϕ(x, y), that is, to furnish conditions for Dsi(A,B) =

D̂
is

(A,B) and D̂
si

(A,B) = Dis(A,B).

Line 12. In order to obtain minimal solutions to set optimization problems

with the set criterion, one has to analyze whether one set dominates another set

in a certain sense, that is, it is necessary to choose the best set in some sense,

according to the set relation that has been considered. To compare two sets by

means of a set order relation, it is usually necessary to characterize the set order

relations by means of a set scalarization function. In this memory we have applied

the six set order relations of Kuroiwa (Definition 1.3.2) and the six scalarization

functions Dα and D̂α (Definition 3.1.1).

In [4, 70, 76] new set order relations by using Minkowski difference of sets

have been introduced to compare sets. We think that a line of future research is

concerned with the application of the order relations just mentioned instead of

the set relations of Kuroiwa along with our six set oriented functions Dα and D̂α

to extend the results which we have presented in this thesis.
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[36] Göpfert, A.; Riahi, H.; Tammer, C.; Zălinescu, C.: Variational
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