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Introduction

Subgroups of the group of automorphisms of a regular rooted tree have turned
out to be a source of many interesting examples in group theory. Specially
after pretty examples by Grigorchuk |Gri80] (the First and the Second Grig-
orchuk groups) and Gupta and Sidki [GS83] (the Gupta-Sidki groups), which
were proved to be among the first counterexamples of the General Burn-
side Problem. More relevantly, Grigorchuk groups were the first examples of
groups of intermediate word growth, amenable but not elementary amenable,
and branch groups that are finitely generated.

We devote Chapter [2 to a well-known family that generalizes the First
Grigorchuk group, the spinal groups. And Chapter [3| and {] deal with GGS-
groups, a generalization of the Second Grigorchuk group and the Gupta-Sidki
groups.

The main of our subjects of study in this thesis is the order of the con-
gruence quotients and, as a consequence, the Hausdorff dimension of (the
closures of) these groups in I', where T is the group of p-adic automorphisms.
This is the goal in Chapters [2] and [3]

In Chapter [2] furthermore, we determine the set S of all rational numbers
that appear as Hausdorff dimensions of spinal groups (for primes p > 2). A
key ingredient in our approach to this problem is provided by a general pro-
cedure for decomposing spinal groups as a semidirect product, which allows
us to reduce to the case of 2-generator spinal groups.

As for Chapter [3 if the GGS-group G is defined by the vector e =

(€1,...,6p-1) € Fg_l, the determination of the order of G, is split into three

1



Introduction

cases, according as e is non-symmetric, non-constant symmetric, or constant.
It is relevant that an important feature to solve this problem has been the
theory of p-groups of maximal class.

In Chapter [ we focus on non-symmetric GGS-groups and we describe
them in terms of zeros of equations. The group I' of p-adic automorphisms
of the p-adic rooted tree can naively be identified with the p-group IFE, using
pointwise addition + in the portraits of the automorphisms. We prove that
the operation + is also internal for all non-symmetric GGS-groups (as an ex-
ample, the Gupta-Sidki group). In order to get this, we introduce the notion
of equation, or pattern, for subgroups of I', and we describe all equations for
these groups.

We proceed to give the details of the main results of this thesis.

Let G be a countably based profinite group, and let {G(n)},en be a base
of neighbourhoods of the identity consisting of open normal subgroups. If H
is a closed subgroup of GG, then the value

dimg H = liminf log, [HG(n)/G(n)|
n—oo log, |G/G(n)]

gives a way of measuring the relative size of H in GG. For instance, provided
that G is infinite, we have dimg H = 1 if H is open in G, and dimg H = 0
if H is finite. As shown by Abercrombie [Abe94], and Barnea and Shalev
[BS97], dimg H coincides with the Hausdorff dimension of H when G is
considered with the natural metric induced by the family {G(n)}. The set of

all values of the Hausdorff dimension of the closed subgroups of G is called
the spectrum of G, and if we only consider the dimensions corresponding to a
particular family ¥ of subgroups, we speak of the ¥-spectrum of G. In [BS97],
Barnea and Shalev also show that the spectrum of a p-adic analytic pro-p

group consists only of rational numbers, if one works with the subgroups
G(n) = Gr".

Let 7 be the p-adic tree, for a prime p and let Aut7 be the group of

automorphisms of 7.



Introduction

Any g € Aut7 can be completely determined by describing how g sends
the descendants of every vertex u to the descendants of g(u). This can be
done by indicating, for every x € X = {1,...,p}, the element a(x) € X such
that g(ur) = g(u)a(r). Then « is a permutation of X, which we call the
label of g at u, and we denote by gq,). The set of all labels of g constitutes
the portrait of g. Thus ¢ is determined by its portrait.

An important automorphism of 7 is the automorphism that permutes
the p subtrees hanging from the root rigidly according to the permutation
o= (12 ... p). This is called the rooted automorphism corresponding to o
and will be denoted by the letter a.

Let I' € Aut7 be the set of all automorphisms that only have powers
of o in their portraits. Then I' is a Sylow pro-p subgroup of Aut7, and it
is natural to take I'(n) = Stabr(n), the stabilizer in I" of all vertices in the
n-th level of 7. Klopsch showed in [Klo99, Chapter VIII, Section 5] that
the spectrum of all profinite branch groups is the full interval [0, 1], and this
applies in particular to I'. (See Section for the definition and [Gri00] for
the basic theory of branch groups.) Later, Abért and Virag [AV05, Theo-
rem 2| proved that every value A € [0,1) can be obtained as the Hausdorff
dimension of a closed subgroup of I" which can be (topologically) generated
by at most 3 elements. However, the probabilistic nature of their arguments
does not provide explicit examples for every possible A, and more specifically
any examples for irrational A. In the same paper, they also show that solu-
ble subgroups of I' have dimension 0 (see the remark after Theorem 5). On
the other hand, Bartholdi has proved [Bar(6, Proposition 2.7] that a reqular
branch subgroup of I' has positive rational Hausdorff dimension.

In the recent paper [Sie(8], Siegenthaler has considered the case p = 2,
and has provided an explicit formula for the Hausdorff dimension of the
closures of a special family of discrete subgroups of I'; the spinal groups. As a
consequence, he finds 3-generator spinal groups whose closure has irrational,
even transcendental, Hausdorff dimension in I'.

Spinal groups can be given in the form (a, B), where a is as before, and

3
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where B is an elementary abelian finite p-group consisting of automorphisms
whose action is concentrated on a special subset of vertices of 7", which we
call a spine. We refer the reader to Section for details about spinal groups.
In particular, spinal groups are branch if p > 2, but not necessarily regular
branch.

The key ingredient for the construction of spinal groups is to consider
a sequence 2 = (wy,),>1 of linear functionals of a finite-dimensional vector
space E over [F,,. We write Spinal(€2) for the spinal group G constructed from
. One of our main results in Chapter [ is the determination, for p > 2, of
a formula for the Hausdorff dimension in I' of the closure G, in terms of the

sequence ().

Theorem A. Let G = Spinal(Q2) be a spinal group, where p > 2. Then:

(i) If w; =0 for some i, then dimr G = 0.

(ii) Ifw; # 0 for alli, let m be the dimension of the subspace of E* generated
by Q2. For n big enough and for every ¢« = 1,...,m, let r,; be the
minimum number of terms of the sequence (wy_1, . ..,w1), in that order,

that are needed to generate a subspace of dimension i. Then,

— 1 1 1
dimpG:(p—l)liminf< + +- )

n—oo p"'n,l prn,2 prn,m

By using Theorem A, we are able to determine the set of all values that
are taken by the Hausdorff dimension for the family > of the closures of all
spinal subgroups of I'. In other words, we calculate the Y-spectrum of I'; to

which we refer as the spinal spectrum.

Theorem B. If p is odd, then the spinal spectrum of I' consists of 0 and all

numbers whose p-adic expansion is of the form 0.a; .. .a,, where
(i) a; =0 orp—1 for everyi=1,...,n.

(i) ay =p—1.
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In particular, the spinal spectrum is contained in Q.

Thus, the situation for odd primes is dramatically different from that of
the even prime. Note also that Theorems A and B generalize to all spinal
groups (in the case of odd primes) a result of Suni¢ [Sun07, Theorem 2] deal-
ing with a special class of spinal groups, for which the Hausdorff dimension
A is always of the form A = 0.a; ... a, in base p, with all a; equal top—1. A
particular case, for p = 3, of the groups considered by Suni¢ is the so-called
Fabrykowski-Gupta group. The Hausdorff dimension of this group in I had
been previously calculated by Bartholdi and Grigorchuk in [BG02]; according
to Corollary 6.6 in there, the dimension is 2/3, in agreement with Theorem
A.

On the other hand, we want to point out that our proof of Theorem B
is constructive, in the sense that it provides an algorithm which, given a
number A whose p-adic expansion is of the appropriate type, yields a spinal

group of Hausdorff dimension equal to A.

For the proof of Theorem A, we need to calculate the orders of the quotient
groups G,, = G/ Stabg(n) for every n. This is achieved in two steps: first,
in Section [2.4] we get these orders for 2-generator spinal groups; and then,
in Section [2.5] we obtain the formula for the general case. The key for this
transition from 2-generator to arbitrary spinal groups is given by a general
result about semidirect product decompositions of spinal groups. We think
that these decompositions may have an independent interest, broader than
just for the determination of the Hausdorff dimension. The result is valid for

all primes, and reads as follows.

Theorem C. Let G = (a, B) be a spinal group. Then, for every subgroup
By of B, there exists a complement By in B such that G = {(a, B;) x BY.
In particular, if By is a maximal subgroup of B, then the normal closure BS

has a complement in G which is a 2-generator spinal group.

As a matter of fact, if G is constructed from a sequence {2 of linear
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functionals, then it is possible to give an explicit choice of B; in terms of B,
and 2; details are given in Section

In Chapter |3, we focus on GGS-groups.

Let 7 be the m-adic rooted tree. If an automorphism ¢ fixes a vertex
u, then the restriction of g to the subtree hanging from u induces an auto-
morphism ¢, of 7. In particular, if g € Stab(1) then g; is defined for every

1=1,...,m, and we can consider the map

¢ @ Stab(l) — Aut7 x ---x AutT
g — (gla"'vgm)'

Clearly, 1 is a group isomorphism.

Let a be the rooted automorphism corresponding to (1 2 ... m). Since
a has order m, it makes sense to write a* for k € Z/mZ. Now, given a
non-zero vector € = (ey,...,em_1) € (Z/mZ)™ !, we can define recursively

an automorphism b of 7 via

(b)) = (a, ..., a1 D).

We say that the subgroup G = (a,b) of Aut 7 is the GGS-group correspond-
ing to the defining vector e. If m = 2 then there is only one GGS-group,
which is isomorphic to D, the infinite dihedral group. The second Grig-
orchuk group is obtained by choosing m = 4 and e = (1,0, 1), and the Gupta-
Sidki group arises for m equal to an odd prime and e = (1, —1,0,...,0). The
groups corresponding to e = (1,0, ...,0) and arbitrary m have also deserved
special attention. In the case m = 3, this group was introduced by Fab-
rykowski and Gupta in [FG85]. As a reference for GGS-groups, the reader
can consult Section 2.3 of the monograph [BGS03] by Bartholdi, Grigorchuk,
and Sunié¢, the habilitation thesis [Roz96] of Rozhkov, or the papers [Vov(0]
by Vovkivsky and [Per00, Per07] by Pervova.

Little is known about the orders of the congruence quotients GG,, when G

is a GGS-group. In the case that e = (1,0,...,0) and m = p is a prime,

6
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Suni¢ found in [Sun07] that, for every n > 2,

n—1 e
p"~t+1, ifpisodd,
log,, |G| =
M2 19 ifp =2,

Hence we may always assume that m > 3, as far as the problem of determin-
ing |G| is concerned. To the best of our knowledge, the only other cases in
which the order of GG,, has been determined for every n correspond to m = 3.
For the Gupta-Sidki group, Sidki himself (see [Sid87]) proved that

logs |G| =2-3""2+1, for every n > 2.

On the other hand, for e = (1, 1), Bartholdi and Grigorchuk showed in [BG02]

that
3" 4+ 2n + 3

4 Y

Now, we assume that m is equal to an odd prime p, and so 7 stands

log |G| = for every n > 2.

for the p-adic tree. The first of our main results is the determination of
the order of GG, for all GGS-groups under this assumption. Before giving
the statement of the theorem, we introduce some notation. Given a vector
a=(ay,...,a,), we write C'(a) to denote the circulant matrix generated by
a, i.e. the matrix of size n X n whose first row is a, and every other row is
obtained from the previous one by applying a shift of length one to the right.
In other words, the entries of C'(a) are ¢;; = a;j_;+1, where a;, is defined for
every integer k by reducing k£ modulo n to a number between 1 and n. If e is
the defining vector of a GGS-group, then we write C(e,0) for the circulant
matrix C'(eq, ..., e,—1,0) over F,. We say that e is symmetric if e; = e,_; for

alli=1,...,p—1.

Theorem D. Let G be a GGS-group over the p-adic tree, where p is an odd
prime, and let e be the defining vector of G. Then, for every n > 2, we have

n—2 n—2
_ phe—1 P —=(n—-2)p+n-—3
log, |Gn| =tp" 2 +1—9§ — ,
08, |G| = tp p—1 c (p—1)2

7
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where t is the rank of the circulant matriz C(e,0),

1, if e is symmetric, 1, if e is constant,
0= and €=

0, otherwise, 0, otherwise.

Observe that, under the assumption m = p that we have made, all GGS-
groups are subgroups of I'. According to Theorem 1 of [Vov00], the require-
ment that e is non-zero implies that GGS-groups are infinite if m = p. Since
they are countable groups, they cannot be closed in the pro-p group I'.

As an immediate consequence of Theorem A, we get the Hausdorff di-

mension of the closure of any GGS-group.

Theorem E. Let G be a GGS-group over the p-adic tree, where p is an odd
prime, and let e be the defining vector of G. Then

— -t 6 €
dier:(p—Q)—j_—Qa
p P> (p—1p
where t is the rank of the circulant matriz C(e,0),
1, if e is symmetric, 1, if e is constant,
0= and €=
0, otherwise, 0, otherwise.

Our proof of Theorem D relies on finding some kind of branch structure
inside a GGS-group G. In particular, if e is not constant, we show that GG
is regular branch (see Section for the definition). This result had been
previously proved by Pervova and Rozhkov for periodic GGS-groups. On the
other hand, it is worth mentioning that the theory of p-groups of maximal
class plays also a crucial role in the proof of Theorem D, particularly in the

case that e is constant.

In Chapter [4] as in the preceding chapters, we consider the p-adic rooted
tree 7, for an odd prime p, and I', the Sylow pro-p subgroup of Aut7
corresponding to o = (1 ... p) € S,. Then I is in one-to-one correspondence
with IFff*, the set of infinite sequences of the form (m,),ex- with m, € F,,

via portraits.
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Roughly speaking, as it is explained in detail in Section [4.2] this corre-
spondence allows us to describe every closed set, in particular closed subgroup
G of T" as the set of zeros of an ideal of polynomials. The polynomials are
taken over the field F, and the indeterminates are indexed by the vertices of
the tree. We will say that these polynomials that vanish in G are equations
for G or patterns [Gri05]. If such a polynomial has degree 1 we will say that
it is a linear equation for G.

Section introduces and looks more closely at all these concepts. In
Section we focus on GGS-groups and we explicitly describe a generating

set for all the equations of non-symmetric GGS-groups.

The first of the two main results in this chapter can be summarized as

follows.

Theorem F. Let G be a non-symmetric GGS-group. Then there are p linear

equations that generate all equations for G.

We give the explicit expression of these p linear equations in Theorem
4.4.6, and the way in which these linear equations “generate” all equations

will be explained in Section

It is interesting to know these equations explicitly for several reasons.
First, we can describe the closure G (in the profinite topology of I') of such
a group G as the set of zeros of these equations and their translates, as it
is shown in Theorem [£.4.6 Secondly, since these generating equations are
linear and satisfy some extra conditions, we get to prove the second of the two
main results in this chapter, Theorem G below. And finally, it also enriches
the information contained in the Hausdorff dimension of the closures of these
groups.

In Chapter [3| we compute the Hausdorff dimension of the closures of all
GGS-groups. In this chapter, we recover the same values for non-symmetric
GGS-groups in Corollary [£.4.7, another consequence of Theorem In-

deed, the Hausdorff dimension can be computed very easily if we know a
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convenient generating set of equations, as we show in Theorem It is
relevant to underline, anyway, that we actually rely on many of the results
proved in Chapter [3]

Finally, Section is devoted to the proof of the last significant result in
this chapter, Theorem G, namely that non-symmetric GGS-groups possess
another group operation that is abelian. In particular, we conclude that
the Gupta-Sidki group has such a structure. The linearity and also the
convenient construction of the polynomials of the generating set in Theorem

F is important for the proof of this result.

Theorem G. Let G be a non-symmetric GGS-group. Pointwise addition in

the portraits of elements gives G the structure of an abelian group.

We would like to point out that the consequences of the coexistence of
these two group operations are yet to be explored. A reasonable direction to
examine would be the relationship between the present work and Lie algebras,
as we now explain.

The description of the elements of I' in terms of portraits is equivalent to

a certain choice of a set-map
[e.e]
m:T — A= []Stabr(i)/ Stabr (i + 1),
=0
where [] denotes the unrestricted product. The group A is an elementary

abelian p-group with the operation inherited from I'. This is exactly the sum

of portraits. Now Theorem G can be rephrased as:
Theorem G’. The image of G under w is a subgroup of A.

One can compare this construction with the Lie algebra constructed by
Magnus [Mag40]:

£(6) = D(G)/rin(C),

where 7;(G) is the ith term of the lower central series of G. The addition on

L(G) is the operation induced by the group structure of G, and commutation

10
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in G yields the Lie bracket. There is another similar construction, based on
the dimension series, also known as the Brauer, Jennings [Jen4l], Lazard
[Lazb3] or Zassenhaus [Zas4(] series, which yields a restricted Lie algebra
(see [JacT9] for the definition of restricted Lie algebras).

It would be interesting to investigate whether there is a map

H %i(G) /Y41 (G) —> [ ] Stabr(i)/ Stabr(i + 1)

i=0
which would enable to “read” the Lie algebra structure of £(G) directly on
the portraits of the elements of G. Note that the Lie algebras associated
to the Gupta-Sidki group have been explicitly described in [BG00], and the
terms of the lower central series also admit a nice description in terms of
portraits (see Theorem 4.2.4 in [Sie09)]).

In this chapter we follow the approach developed in Olivier Siegenthaler’s
PhD thesis [Sic09]. We refer the reader to [Gri05], [Sun07], [Sunll] and the
appendix in [AleKSO?] for previous works on the subject.

11
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Chapter 1
Preliminaries

“The best time to plant a tree
was 20 years ago.
The next best time is now.”

Chinese Proverb

1.1 The group of automorphisms of the p-

adic rooted tree

1.1.1 Rooted trees

In graph theory, a tree is a connected graph with no cycles. There is a type
of tree which is particularly interesting because of the rich group theoretical
properties that appear in its group of isometries. We are refering to the reg-
ular d-adic rooted tree, denoted by 7; ‘rooted’ because it has a distinguished
vertex and ‘regular’ and ‘d-adic’ because every vertex has the same degree
d + 1 (except for the root, whose degree is d). If X is an alphabet on d let-
ters, then the elements of X*, the free monoid on X, can be identified with
the vertices of the regular d-adic rooted tree. In such a way that the root
corresponds to the empty word () and two words u,v € X* are connected by

an edge if there exists x € X such that u = vx or v = ux. We will take X to

13



1. Preliminaries

be {1,...,d} in this work.

11 12 22 320 33

The 3-adic rooted tree with vertices labelled as words in X = {1,2,3}.

The set X™ of words of length n is the nth level of the tree, and if we
consider the set X =" of all words of length < n, then we have a finite tree 7,,,
which we refer to as the tree T truncated at level n. The set of right-infinite
sequences over X will be called the boundary of the tree and denoted by X*.
The elements of the boundary are the infinite paths or ends of the tree. If
u € X*UXY, then v € X* is a prefiz of u if there is w € X* U X¥ such that
u=ovw. If S C X*U XY we define Prefix(S) as the set of all prefixes of all
elements in S. If u € X*, the subtree uX™* of X* is the set of all the vertices
v € X* with u as a prefix and the same edges as in 7. There is a canonical
graph isomorphism between uX* and X* which corresponds to deleting u
from the beginning of the words, and so uX* is a regular d-adic rooted tree.
The children of a vertex u € X* are the d vertices hanging from w, that is,
ul,u2,...,ud. And the d subtrees 1.X*,...,dX™* are usually called the main
subtrees of X*.

The graph structure of the tree induces a natural metric on the vertices:
the distance between two vertices is the number of edges of the shortest

path connecting them. In terms of words, the distance between u,v € X* is
defined by

d(u,v) = |ul + |v| = 2lu Av|,

where |u| denotes the length of the word v and u A v is the longest common

prefix of v and v.

14



1.1. The group of automorphisms of the p-adic rooted tree

1.1.2 Automorphisms of the regular rooted tree

Definition 1.1.1. An automorphism of T is a bijection of the vertices that
preserves incidence. The group of automorphisms of 7 will be denoted by
AutT.

Similarly, an automorphism of the truncated tree 7, is a bijection of its
vertices preserving incidence, and Aut 7, will be the group of automorphisms
of 7,.

Thus an automorphism is a graph isomorphism from 7 onto itself or,
equivalently, an isometry of 7 with respect to the metric defined in the
previous subsection.

The following properties of an automorphism f are straightforward: f
fixes the root (); since f is an isometry and the mth level is the sphere of
radius n centered at the root, then f preserves the levels, and for the same
reason every f € Aut7 induces by restriction an element of Aut 7,,; and the
image of a vertex u under f determines the images of all its prefixes, i.e. the
vertices in the path connecting u to the root.

Next we define the portrait of an automorphism, which is another way of
describing it, capturing the action of the automorphism on each vertex.

Any f € Aut7 can be completely determined by describing how f sends
the children of every vertex u to the corresponding children of f(u). This
can be done by indicating, for every x € X, the element a(x) € X such that
f(uz) = f(u)a(x). Then « is a permutation of X, which we call the label
of f at u, and we denote by fr,). The set of all labels of f constitutes the
portrait of f. Thus f is determined by its portrait. We have the following

rules for labels under composition and inversion:

(f9w = fuwdgwy and  (FHw = (furw) ™ (1.1.1)

As a mnemonic for these rules, observe the similarity of these relations
with the rules of derivation of real functions. Be also careful that (f~1), is

not the same permutation as (f(,)) !
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From these formulas we also get

() o) = (9w) " fw9irw)- (1.1.2)

Note that even if we write images as f(u), we write the composition of f
and g as fg. Thus (fg)(u) = g(f(u)).

f(1111) = 2221

An automorphism f of the dyadic tree given by means of its portrait.

As the reader might have noticed, given the portrait of an automorphism,
if we want to know the image of a vertex u, we only need the permutations
attached to the vertices of the path that goes from u to 0, i.e. the prefixes of
u. In fact, the image of this path is exactly the path that goes from f(u) to

(). All these properties may be read off from the following formula:

f(xixa . zn) = fo)(21) flan) (@2) - flarzn1)(Tn)-

The support of an automorphism f € Aut7 is the set of all vertices of
X* with non-trivial label. If the support of f is contained in {(}, we say that

[ is the rigid or rooted automorphism corresponding to the permutation fg).

Definition 1.1.2. If f € Aut7 and u € X*, the section of f at u is the
unique automorphism f, of 7 defined by

flw) = f(u) fu(v)
for every v € X*.

16



1.1. The group of automorphisms of the p-adic rooted tree

A close look to this definition shows that f, is the automorphism of 7°
whose portrait is a copy the labelling of f in the subtree u.X™.

The same rules and that we have seen for labels apply if
we want to obtain the sections of a composition, an inverse or a conjugate;

simply erase parentheses where necessary.

1.1.3 The structure of Aut7

Definition 1.1.3. The subgroup Stab(n) of Aut 7 consisting of the automor-
phisms that fix the nth level is called the nth level stabilizer. More generally,
if G < Aut7 we define Stabg(n) = Stab(n) N G.

Remarks 1.1.4. (i) An element in Stab(n) fixes all vertices of the truncated
tree 7,.

(ii) The subgroup Stab(n) is the kernel of the natural epimorphism ,, :
Aut T — Aut 7, obtained by restriction. Hence Stab(n) is normal in Aut 7
and Aut7 /Stab(n) = Aut7,. In particular, Stab(n) has finite index in
Aut 7.

These stabilizers can be considered as natural congruence subgroups for
Aut7. If G is a subgroup of Aut7, then we refer to the quotient G, =
G/ Stabg(n) as the nth congruence quotient of G. Since the kernel of the
action of G on 7, is Stabg(n), it follows that G,, can be naturally seen as a
subgroup of Aut7,.

As a matter of fact, all subgroups of Aut 7, arise as G,, for some subgroup
G of Aut7. To see this, let us define, for every f € Aut7,, the extension
ext(f) as the automorphism of the infinite tree 7 which has the same labels
as f in 7,, and the rest of labels equal to 1. The map ext is a homomorphism,
and so if L is a subgroup of Aut 7,,, then G = ext(L) is a subgroup of Aut 7.
Now, if we compose ext with the canonical map from G to GG,,, we obtain an

isomorphism between L and G,, which preserves the action on 7,,.
Suppose now that an automorphism f fixes a vertex u. Then the restric-

17



1. Preliminaries

tion of f to the subtree hanging from u induces the section automorphism
fuof T. If f € Stab(1) then f; is defined for every i = 1,...,d, and we can

consider the map

¢ ¢ Stab(l) — AutT x-°-x Aut7T
f — (f17-~,fd)~

Clearly, 1 is a group isomorphism.
In a similar way, the homomorphisms ¢,, and En defined below are group

isomorphisms, for every n € N.

¥, @ Stab(n) — Aut7 x % Aut T
o= (fo)vexn.

" ¢ Stabawr (1) — Auwt7Z_, x - AutT,_,
f — (f1s-oes fa).

Observe that f € Aut7, is determined by the images of the vertices of
the nth level and so Aut 7,, can be seen as a subgroup of Sg.. However, not
all possible permutations of these vertices are allowed, in other words, Aut 7,
is a proper subgroup of Sg». On the other hand, Aut 7 acts transitively on
each of the levels of 7. In the same way, it acts transitively on the boundary
of the tree.

Theorem 1.1.5. If T is the d-adic rooted tree, then

Aut7, = rSd ! ( oL (Sd l Sd)};

where ! denotes the permutational wreath product, and
Aut7T = liLnAut']}b = .. (SdZ (SdZSd))

is a profinite group, where {Stab(n)},>1 is a fundamental system of neigh-
bourhoods of 1.

In the remainder of this subsection, we assume that d is equal to a prime

p. This case is specially interesting for several group theoretical reasons.

18



1.1. The group of automorphisms of the p-adic rooted tree

Theorem 1.1.6. Let T be the p-adic rooted tree and let P, be a Sylow p-
subgroup of Aut7,. Then

n
A

-~

pch)"'>7

I

P20 (..

—~

and if I' is a Sylow pro-p subgroup of Aut T, then
[=liml, =2 ... 0 (C (G Gy)).

Observe that, from the previous theorem, a Sylow p-subgroup of Aut 7,

is, at the same time, a Sylow p-subgroup of Spn.

There are some Sylow pro-p subgroups of Aut 7 that particularly interest

us and are easy to visualize in terms of portraits.

Lemma 1.1.7. Fiz a p-cycle 0 € S, and let I' C Aut7T be the set of all
automorphisms that only have powers of o in their portraits. Then I' is a

Sylow pro-p subgroup of Aut T .

If o € S, is a p-cycle, then the Sylow pro-p subgroup of Aut7 con-
structed as in the previous lemma will be refereed as the Sylow pro-p sub-
group corresponding to . Throughout the thesis, unless otherwise stated, I
will denote the Sylow pro-p subgroup of Aut7 corresponding to the p-cycle
o= (1...p). In the literature, the group I' is sometimes called the group of
p-adic automorphisms and denoted by Aut, 7.

Next, we define a family of maps defined over I' that turn out to be
homomorphisms. They will be useful in Section [2.2]

For every level n, we have a product map p, : I' — ((1 ... p)) given by
o) =TI fo (1.1.3)
veX™

It follows from (1.1.1)) that p, is a homomorphism. Similarly, the map

pt : Stabp(1) — ((1...p))

veiXn—1

(1.1.4)
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1. Preliminaries

is a homomorphism for every ¢ € {1,...,p}. Observe that p' (f) is simply
the product of all labels of f at the vertices of the nth level of 7 which lie

in the main subtree hanging from the vertex 1.

1.1.4 Important classes of groups acting on rooted trees

There are several families of groups acting on rooted trees that have become

important for their ‘good” behaviour. Here we present some of them.

Definition 1.1.8. We say that a subgroup G of Aut 7 is spherically transi-

tive if it acts transitively on all levels X™.

Definition 1.1.9. A subgroup G of Aut7 is said to be a branch group
provided that:

(i) G is spherically transitive.
(ii) For every n > 1, the image of Stabg(n) under the map

¥, : Stab(n) — Aut7 X Pl AutT
f — (fv)vEX"

n

contains a subgroup of finite index of the form L,, x Foox L,.

See [Gri00, Section 5] and the monograph [BGS03] for more information

on the class of branch groups.

Definition 1.1.10. Let G be a subgroup of Aut7. We say that G is self-

similar if every section of every element of GG is an element of G.

In particular, if G < Aut7 is self-similar, then the image of Stabg(n)

. . . p"
under 1, is contained in G x --- X G.

Definition 1.1.11. Let G be a self-similar spherically transitive group of
automorphisms of 7, and let K be a non-trivial subgroup of Stabg(1). We
say that G is weakly reqular branch over K if

K x-Y x K C(K).
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1.2. Hausdorff dimension

If furthermore K has finite index in G, we say that G is reqular branch over
K.

Remark 1.1.12. Let GG be a subgroup of Aut 7. If GG is self-similar, then so
is its closure in the profinite topology G. And if G is regular branch over K

and K is a congruence subgroup, then G is regular branch over K.

1.2 Hausdorff dimension

Our goal in this section is to introduce some background on Hausdorff dimen-
sion and to present some important results concerning Hausdorff dimension
in groups acting on rooted trees, which are the starting point of the work
done in Chapters [2] and [3]

Suppose we have a subgroup H of a finite group G, and that we want to
measure the relative size of H with respect to G. We can use the quotient
|H|/|G|, or even better log |H|/log |G| if G is a finite p-group. Indeed, if the
orders of G and H are p* and p°, respectively, then the number |H|/|G| =
p°/p* = p®~® may hide the size relation between H and G for high values of
p. That is why we are more interested in knowing the relation between a and

b and why we consider log |H|/log |G| = b/a instead.

If G is infinite, the first problem is that both |H|/|G| and log |H|/log |G|
are meaningless. If we rewrite |H|/|G| as 1/|G : H| and interpret 1/co
as 0, then we could make this choice for the dimension of H in G, but it
presents some problems: it does not distinguish subgroups of infinite index,
and, intuitively, a subgroup of finite index of an infinite group should have
dimension 1. On the other hand, the alternative of log|H|/log |G| does not

even allow a direct reinterpretation in the infinite setting.

Abercrombie proposed a way to overcome this situation in the case of

profinite groups, using the concept of Hausdorff dimension of a metric space.
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1.2.1 Hausdorff dimension in metric spaces

We introduce the definition of Hausdorff dimension over a metric space. The
reader may find more extensive and complete information about the topic
over the reals in Falconer’s books [Fal85] and [Fal90].

Let (X, d) be a metric space, U C X, and let s be a non-negative number.

For any 0 > 0 we define

H;(U) = inf Y " (diam U;)*,
i=1
where {U;}2, is a cover of U by sets of diameter diamU; < 4, and the
infimum is taken over such covers. As 0 decreases, the family of allowed
covers of U is reduced. Therefore, the infimum H3(U) increases, and so
approaches a limit as 6 — 0, that we write as
H(U) = (lsin%Hg(U).

We call H*(U) the s-dimensional Hausdorff measure of U, and it can be
proved that it actually is a measure on X.

On the other hand, for any given set U C X and 6 < 1, Hj(U) is non-
increasing with s, hence so is H*(U). In fact, if ¢ > s and {U;} is a cover of
U by sets of diameter < §, we have

Z(diam U)t = Z(diam Uy % (diam U;)® <

(3 (2

(2

07y (diam Up)* < ) (diam Uy)*.
Also HY(U) < 6" 5H3(U), and letting 6 — 0, we get the following lemma:

Lemma 1.2.1. If H*(U) < oo for some s, then H'(U) =0 for all t > s.

Thus we see that there is a critical value of s at which H*(U) ‘jumps’
from oo to 0. This critical value is called the Hausdorff dimension of U, and

written dimy U. In other words,

dimy U =inf{s > 0 | H*(U) = 0} = sup{s > 0 | H*(U) = oo}.
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1.2. Hausdorff dimension

1.2.2 Hausdorff dimension in countably based profi-

nite groups

Suppose that the profinite group G is countably based i.e. that there exists
a descending chain {G(n)},en of open normal subgroups which form a base
of neighbourhoods of the identity. This is the case, in particular, if G is
(topologically) finitely generated. In this situation, there is a natural metric
in G, induced by {G(n) }nen:

: 1 _
d(x,y) = inf {m =y (mod G(n))} .

This gives GG the structure of a metric space and therefore we can compute
the Hausdorff dimension of a subset of G with respect to this metric. Note
that the topology defined by this metric coincides with the original topology
of G.

There is a nice formula due to Abercrombie [Abe94] and Barnea-Shalev
[BS97] that provides the Hausdorff dimension of an arbitrary closed subgroup
H of G. Note that it is given in purely algebraic (and analytic) terms, in
contrast with the (quite nasty) geometric definition given in the previous

subsection:
1 HG G
dimg H = liminf ng‘ (n)/G(n)]

g, 1G/Cm) (1:21)

Observe the similarity with the finite case. The finite quotients G/G(n)
give approximations of the group G, which are better as n increases. In the

formula above, we project H in these finite quotients and compute its relative

log |[HG(n)/G(n)]
log |G/ G (n)]

limit when n — 0o to see the asymptotic behaviour of these numbers (the

size inside them, which is the quotient . Finally, we take the
lim inf is necessary since the limit need not exist).

In principle, the Hausdorff dimension of a closed subgroup of G' depends
on the filtration {G(n)} used to define the metric of G, and there are examples
showing that this is so (see [BS97|, Example 2.5). In any case, there is

usually a natural choice for the system of neighbourhoods of the identity.
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For example, for a finitely generated pro-p group, we can take G(n) = GP",
and for the group of automorphisms of the p-adic rooted tree, we can consider
the chain of the level stabilizers.

In the following proposition we show some easy properties of the Hausdorff

dimension in a countably based profinite group.

Proposition 1.2.2. Let G be an infinite countably based profinite group and
H <. G. Then if we compute Hausdorff dimension with respect to the filtra-
tion {G(n)}, we have

(i) dime H € [0,1].

(i) If K <. G and K < H, then dimg K < dimg H. If in addition
|H : K| < oo, then dimg K = dimg H.

(iii) Open subgroups have Hausdorff dimension 1 and finite subgroups 0.
(iv) The Hausdorff dimension is invariant under conjugation.

(v) If H is a (not necessarily closed) subgroup of G, then

= og|HG(n)/G(n)]
dlmgH—hgloIOIf log |GG ()|

(1.2.2)

Proof. Part (i) and the first assertion of (ii) are clear because the expression
in the limit itself does satisfy the corresponding inequalities. For the second
part of (ii), note that

| _log|HG(n)/G(n)|
d H=1 f
B =TT Tel ]

g 28 (HG()/G(n) : KG(n)/G(n)[|[KG(n)/G(n)))
e log |G/G(n)|

— lim inf 108 17 G(n)/G(n) : KG(n)/G(n)| + log |[KG(n)/G(n)|
e log |G/G(n)| '

Now |HG(n)/G(n) : KG(n)/G(n)| = |HG(n) : KG(n)| < |H : K] is
bounded for all n and log |G/G(n)| — oo, since G is infinite. Consequently

. . log|KG(n)/G(n)|
d H=1 f
e T RS T 1og|G/G ()|
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1.2. Hausdorff dimension

Part (iii) follows from (ii) and the trivial observation that dimg G = 1 and
dimg{1} = 0.

For (iv), suppose that H, K < G and that there exists ¢ € G such that
K = HY9. Then

[KG(n)/G(n)| = [H'G(n)/G(n)| = [(HG(n)/G(n))’| = [HG(n)/G(n)],

and the result holds.

Finally, as for (v), HG(n) < HG(n) is obvious. On the other hand,
we have G(n) <, G, and so HG(n) is open and also closed in G. Then
H < HG(n) and HG(n) < HG(n) as wanted. O

In the same way that the Hausdorff dimension changes with the filtration,

it is not invariant under isomorphisms.

Example 1.2.3. Consider the p-adic rooted tree 7, G = Aut7 and the
filtration of the stabilizers G(n) = Stab(n), and a closed subgroup H of G.
Let us consider the closed subgroup K of G which is obtained by hanging
all the automorphisms of H at the first main subtree of 7', and the identity
at the rest of the main subtrees. Then ¥(K) = H x {1} x --- x {1}, and
so K = H. Also |[KG(n) : G(n)| = |K : Stabg(n)| = |H : Stabgy(n — 1)| =
|[HG(n — 1) : G(n — 1), and |G : G(n)| = (p)1PT " = pl|G : G(n —1)|P.
So if we apply the formula given in (1.2.1)), we get

1
dimg K=- dlmG H.
p

Definition 1.2.4. Having fixed a filtration, the set Spec(G) = {dimg H :
H <. G} is the spectrum of G. If we only consider the dimensions corre-

sponding to a particular family ¥ of subgroups, we speak of the X-spectrum
of G.

The spectrum may be useful if we want to measure the ‘complexity’ of

the subgroup structure of G.
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Theorem 1.2.5. (Barnea and Shalev, [BS97]) If G is a p-adic analytic pro-p
group and H <. G, and dimg H denotes the Hausdorff dimension of H with
respect to the chain G(n) = GP", then
Dim H
dimg H = ———
T = Dim G

where Dim G denotes the dimension of G as a p-adic Lie group. Therefore,
if we write d = Dim G, then

12 d—1
C =y, —, 1
SpeC(G) = {07 d7 d? ) d ) }

18 finite and contains just rational numbers.

1.2.3 Hausdorff dimension in I’

Let us consider the profinite group Aut 7 with d = p a prime. We fix a p-cycle
o and we consider I', the set of all automorphisms of 7 whose portrait only
contains powers of ¢. By Theorem [1.1.6{and Lemma[1.1.7, T" is a countably
based pro-p group.

The determination of the Hausdorff dimension of closed subgroups of I'
has received special attention in the last few years (see [AV05, [Sie08, [Sun07]).
The most natural choice is to calculate the Hausdorff dimension with respect
to the metric induced by the filtration of I' given by the level stabilizers
Stabr(n).

Observe that as a consequence of Theorem [I.1.6{and Lemma [L.1.7] again,
' is the inverse limit of the finite p-groups I',;, and I';, can be seen as a Sylow

p-subgroup of the symmetric group on p™ letters. In particular,

IT,| = p®" /1),

If H is a subgroup of I, it readily follows from ((1.2.2)) that

_ log |H, log |H,
dimp H = lim inf M = (p— 1) liminf #.

= 1.2.3
n—oo logp |Fn| N—00 P ( )
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Lemma 1.2.6. Let H and J be two subgroups of I' that are conjugate in
Aut 7. Then dimr H = dimr J.

Proof. If J = H with f € Aut 7T, then J = T and the result follows by the
same proof as for the one given for (iv) of Proposition [[.2.2] (Note that we
can not apply that result directly because in the present case the dimension

is computed in I', and the subgroups are conjugate in Aut7.) ]

In the following theorem, we give an important result concerning the

spectrum of I", proved by Abért and Virdg in [AV05)].

Theorem 1.2.7. For every A € [0,1], there exists H <. I' (topologically)
finitely generated by 3 elements such that dimp H = X\. Therefore, Spec(I') =
0, 1].

The methods used to prove this result are probabilistic and they do not
give specific examples of 3-generated subgroups of an arbitrary Hausdorff
dimension.

The problem is that, as is also proved in [AV05], subgroups of I" generated
by three random elements have Hausdorff dimension 1 with probability 1.

Obviously, this is an obstacle if we are interested in finding concrete examples.

As a first approximation, Siegenthaler [Sie08|] succeeded in showing that
there are subgroups of I' (when p = 2), among a family of subgroups that we
call spinal groups, of transcendental Hausdorff dimension. See Chapter 2] for

more information on spinal groups.

1.3 Circulant matrices over F,

Given a vector a = (ay, ..., a,), we write C'(a) to denote the circulant matrix
generated by a, i.e. the matrix of size n x n whose first row is a, and every
other row is obtained from the previous one by applying a shift of length one

to the right. In other words, the entries of C'(a) are ¢;; = a;_;+1, where ay, is
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defined for every integer k by reducing £ modulo n to a number between 1
and n.

To conclude with this preliminary chapter, we give a lemma about the
rank of circulant matrices. Part (i) can be useful in order to compute the
rank of circulant matrices in particular examples, and (ii) and (iii) will be

very useful in the proofs of several results in Chapters [3 and [4

Lemma 1.3.1. Let p be a prime, and let (ag,...,a,—1) € Fb be a non-zero
vector. If C' = C(ag,...,ap-1), then:

(i) tk C' = p—m, where m is the multiplicity of 1 as a root of the polynomial
a(X)=apta X+ -+a, 1 XP~1. As a consequence, we have tk C' < p
if and only if Zf:_ol a; = 0.

(ii) If 1 denotes the column vector of length p all of whose entries are equal

to 1, then
kC =1k (C|1).

(iii) The first tkC' rows (columns) of C are linearly independent.

Proof. If we consider the quotient ring V' = F,[X]/(X? — 1) as an [F,-vector
space, then both

B={1X,.. . Xr1}

and
B = {T,X— ..., (X =11}

are bases of V. Multiplication by a(X) defines a linear map ¢ : V' — V and
the matrix of ¢ with respect to B is C' (we construct the matrix by rows).
Thus rk C' = rk ¢.

On the other hand, we can write a(X) = (X — 1)™b(X), with b(X) €
F,[X] and b(1) # 0. Let b(X) = by + by (X — 1)+ -+ -+ bp_1 (X —1)*1, where
k =p—m and by # 0. Then the matrix of ¢ with respect to B’ is the block
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matrix
bo b1 - br_a br
0 B 0 by -+ brp_3 bp_
, where B = ’ ks T , (1.3.1)
0 0 Do : :
0O 0 --- 0 bo

since (X —1)"=01in V for all i > p. Thus

imep = (X —1)m,..., (X — 1)), (1.3.2)

and we also have rk ¢ = k, from which (i) follows.

Let us now prove (ii). We first prove that

C
rk C' =rk (1”'1> . (1.3.3)

Since C' is the matrix of ¢ with respect to B constructed by rows, it is clear
that 1) is equivalent to 1 + X + - - - + XP~! lying in the image of ¢. Note

that, since we are working with coefficients in F,, we have

I+ X+ XP = (X —1)P !,

and from (|1.3.2)), it follows that (X — 1)P=1 € im ¢, as desired (since
(ag,...,ap,_1) is a non-zero vector, then 1 < rkC < p, and hence 0 < m <
p—1).

Now, since the transpose C! of C'is also a circulant matrix, we can apply

(11.3.3) to C* and get

t

C
rkC—rkCt—rk<1 1)—rk(0]1)t—rk(C|1).

For the last part of the lemma, it suffices to prove that the first k rows
of C' are linearly independent: observe that the first k£ columns of C' are the
first k rows of C*, and we may apply the result for the rows of the circulant
matrix C*, and get the result for the columns of C. In (1.3.1)), we see that the
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first k rows of the matrix of ¢ with respect to B’ are linearly independent.

Since k is the full rank, this is equivalent to

imp = (p(1), (X = 1)),..., o((X = 1)*71)).

At the same time,

imp = (p(D),.... (X =DF D) = o ((L....(X—1F 1)

= (X, X)) = (o), (X)), . o(XF))

tells us that the first k£ rows of the matrix of ¢ with respect to B are linearly

independent, i.e. the first k rows of C are linearly independent, as desired. [

Notation. The ith row and jth column of a matrix C' are denoted by C; and
(Y, respectively.
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Chapter 2

Hausdorftf dimension of spinal

groups

2.1 Introduction

Let p be a prime, 7 the p-adic rooted tree, and I'" the Sylow pro-p subgroup
corresponding to the p-cycle (1 ... p). Klopsch showed in [KIo99, Chapter
VIII, Section 5] that the spectrum of all profinite branch groups is the full
interval [0, 1], and this applies in particular to I'. (See Section for the
definition and [Gri00] for the basic theory of branch groups.) Later, Abért
and Virdg [AV05, Theorem 2] proved that every value A € [0,1) can be ob-
tained as the Hausdorff dimension of a closed subgroup of I' which can be
(topologically) generated by at most 3 elements. However, the probabilistic
nature of their arguments does not provide explicit examples for every possi-
ble A, and more specifically any examples for irrational A. In the same paper,
they also show that soluble subgroups of I' have dimension 0 (see the remark
after Theorem 5). On the other hand, Bartholdi has proved [Bar(6, Proposi-
tion 2.7] that a regular branch subgroup of " has positive rational Hausdorff
dimension (see Subsection for the definition of regular branch groups).

In the recent paper [Sie08], Siegenthaler has considered the case p = 2,

and has provided an explicit formula for the Hausdorff dimension of the
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closures of a special family of discrete subgroups of I', usually called spinal
groups in the literature. As a consequence, he finds 3-generator spinal groups
whose closure has irrational, even transcendental, Hausdorff dimension in I.

Spinal groups can be given in the form (a, B), where a is the rooted auto-
morphism corresponding to (12 ... p), and where B is an elementary abelian
finite p-group consisting of automorphisms whose action is concentrated on
a special subset of vertices of 7', which we call a spine. We refer the reader
to Section for details about spinal groups. In particular, spinal groups
are branch if p > 2, but not necessarily regular branch.

The key ingredient for the construction of spinal groups is to consider
a sequence 2 = (wy)p>1 of linear functionals of a finite-dimensional vector
space E over IF,. We write Spinal({2) for the spinal group G constructed from
). One of our main results is the determination, for p > 2, of a formula for

the Hausdorff dimension in I" of the closure G, in terms of the sequence (2.

Theorem A. Let G = Spinal(Q2) be a spinal group, where p > 2. Then:

(i) If w; = 0 for some i, then dimp G = 0.

(ii) Ifw; # 0 for alli, let m be the dimension of the subspace of E* generated
by Q2. For n big enough and for every i« = 1,...,m, let r,; be the
minimum number of terms of the sequence (w,_1,...,w1), in that order,

that are needed to generate a subspace of dimension i. Then,

_ 1 1 1
dimpG:(p—l)hminf< + +-F )
n—oo prn,l an,Q pT'n,m
By using Theorem [A] we are able to determine the set of all values that
are taken by the Hausdorff dimension for the family > of the closures of all
spinal subgroups of I'. In other words, we calculate the Y-spectrum of I'; to

which we refer as the spinal spectrum.

Theorem B. If p is odd, then the spinal spectrum of I' consists of 0 and all

numbers whose p-adic expansion is of the form 0.a; ...a,, where
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(i) a; =0 orp—1 for everyi=1,...,n.

(i) ay =p—1.
In particular, the spinal spectrum is contained in Q.

Thus, the situation for odd primes is dramatically different from that of
the even prime. Note also that Theorems [A] and [B] generalize to all spinal
groups (in the case of odd primes) a result of Suni¢ [Sun07, Theorem 2] deal-
ing with a special class of spinal groups, for which the Hausdorff dimension
A is always of the form A = 0.a; ... a, in base p, with all a; equal top—1. A
particular case, for p = 3, of the groups considered by Sunié is the so-called
Fabrykowski-Gupta group. The Hausdorff dimension of this group in I had
been previously calculated by Bartholdi and Grigorchuk in [BG02]; according
to Corollary 6.6 in there, the dimension is 2/3, in agreement with Theorem
Al

On the other hand, we want to point out that our proof of Theorem [B]
is constructive, in the sense that it provides an algorithm which, given a
number A whose p-adic expansion is of the appropriate type, yields a spinal
group of Hausdorff dimension equal to A.

For the proof of Theorem[A] we need to calculate the orders of the quotient
groups G,, = G/ Stabg(n) for every n. This is achieved in two steps: first,
in Section [2.4] we get these orders for 2-generator spinal groups; and then,
in Section 2.5 we obtain the formula for the general case. The key for this
transition from 2-generator to arbitrary spinal groups is given by a general
result about semidirect product decompositions of spinal groups. We think
that these decompositions may have an independent interest, broader than
just for the determination of the Hausdorff dimension. The result is valid for

all primes, and reads as follows.

Theorem C. Let G = (a, B) be a spinal group. Then, for every subgroup
By of B, there exists a complement By in B such that G = {(a, B;) x BY.
In particular, if By is a maximal subgroup of B, then the normal closure BS

has a complement in G which is a 2-generator spinal group.
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2. Hausdorff dimension of spinal groups

As a matter of fact, if G is constructed from a sequence 2 of linear
functionals, then it is possible to give an explicit choice of By in terms of By
and 2; details are given in Section

In this chapter, we deal (as in many cases in the literature) with spinal
groups for which the corresponding spines have only one vertex at every level.
However, it is also interesting to allow more than one vertex, and this class of
spinal groups (which we call multi-edge spinal groups) have also received spe-
cial attention. For example, several well-known and relevant groups, such as
the Grigorchuk and Gupta-Sidki groups, fall within this family. In Chapter
we study the Hausdorff dimension of the so-called GGS-groups, an impor-
tant type of 2-generator multi-edge spinal groups which is modelled by the
second Grigorchuk group and the Gupta-Sidki group. Again, we work with
the p-adic rooted tree for an odd prime p. In that setting, we determine the

Hausdorff dimension of all GGS-groups.

This chapter is adapted from of the already published paper [FAZR11],
written by the author and her advisor.
Notation. In this chapter, we use brackets to enclose every countable col-
lection of elements for which it is important to know how the elements are
ordered. Thus we write sequences (finite or infinite), and bases of a finite-
dimensional space with brackets. Of course, ordinary sets are written by

using curly brackets.

2.2 Basic theory of spinal groups

Spinal groups have been considered in a number of research papers ([BGS03,
BSO1, Gri00] are basic references), sometimes with small differences in the
definitions. Particular attention has been devoted to the case when the spine
has one vertex at every level, and when the spinal group is contained in I'.
We also work under these hypotheses here but, as will be explained below,

our approach is more general than in previous accounts. Because of this
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2.2. Basic theory of spinal groups

greater generality, it is convenient to give an exposition of the basic theory
of spinal groups in some detail, and we do so in this section.

Let P = (pn)n>0 be an infinite path in 7 beginning at the root. If we
consider, for every n > 1, an immediate descendant s,, of p,_; not lying in

P, we say that the sequence S = ($,),>1 is a spine of 7.

A spine (sp)p>1 (in red) in the 3-adic rooted tree, associated to the path (pn)n>0-

An automorphism b € I is said to be spinal over S if its support is
contained in S. Note that we do not exclude the possibility that b has a
trivial label at a vertex of S. It is clear from that a non-trivial
spinal automorphism has order p, and that any two spinal automorphisms
defined over the same spine commute. A spinal group defined over S is
a subgroup G = (a, B) of I, where B is a finite subgroup consisting of
spinal automorphisms corresponding to S, and a is the rooted automorphism
corresponding to (1 ... p). Note that B is an elementary abelian p-group,
and so it can be seen as a vector space over F,. Obviously, |G : G'| < p|B|
is finite. In the sequel, we write A to denote the subgroup generated by a.

If G = (A, B) is a spinal group over S, then G is completely determined
by the labels of every b € B at all vertices s, € S. Since b € I', all these

labels are powers of the cycle (1 ... p). Then we can write
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for some exponent w,(b), which can be seen as an element of F,,. This way,
we obtain a sequence of label maps w, : B — ), which are actually homo-
morphisms (or linear functionals), i.e. elements of the dual space B*. Clearly,

we have

ﬂ ker w, = 1. (2.2.1)

Conversely, if we want to construct a spinal group over S, then we can choose
(i) a finite-dimensional vector space E over F,, and
(ii) a sequence Q = (wy,)nen of elements of the dual space E*.

Then we can define a representation X : E' — I by assigning to each e € F

the spinal automorphism labelled with the permutation

(1...p)~©

at the vertex s,, for every n > 1, and with 1 otherwise. If we put B = X(FE),
then G = (A, B) is a spinal group, which we denote by Spinal(2). (Note that
the vector space E is implicit in €.) If X is faithful, then we can identify B
with £/, and then the label maps of B can be identified with the sequence (2.

Clearly, all spinal groups arise by using this construction. Observe that
our definition is more general than some others in the literature, in that we
do not require that w,, # 0 for all n > 1 or that X should be faithful (that
is, that the sequence ) should fulfil condition (2.2.1))). As we will see in
Proposition 2.2.5] if w,, = 0 for some n, then G is finite. On the other hand,
if X is not faithful, it suffices to replace £ with E/ker X in order to get a
faithful representation. Thus, it seems that the larger degree of freedom of
our definition does not make a big difference. However, when one is trying
to prove results about spinal groups, it does. As will become clear below, if
G = Spinal(2) is a spinal group, one has usually to deal also with groups
of the form G = Spinal(ﬁ), where Q = (Wn)n>t+1 for some integer ¢ > 0.

According to our definition, these are all again spinal groups. However, if we
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2.2. Basic theory of spinal groups

require that the representation should be faithful, then we need the condition

ﬂ kerw, =1

n>t+1

for all ¢, and not only . This is a restriction which is usually found in
the literature. Of course, G can be written via a faithful representation by
changing F, but we want both G' and G to come from the same E. On the
other hand, it also turns out that it is better not to banish the groups with
some w, equal to 0 from the realm of spinal groups. This way, we may always
assert that the complement (A, By) of Theorem |C|is again a spinal group.
(See the remark after Corollary 2.3.3]) As a matter of fact, as we will see in
Sections and [2.5] the key to the determination of the Hausdorff dimension
of a spinal group is the examination of where the linear functionals become

0 in (A, By), when this complement is a 2-generator spinal group.

Spines and spinal groups can be defined in the same way over the trun-
cated trees 7,. In that case, we use sequences of linear functionals of length
n — 1, instead of infinite sequences. For every spinal group G = Spinal(f)
defined over 7, with corresponding representation X : £ — I', the group
G, acting on 7, is also spinal, via the representation X,, : £ — I',, which
is naturally induced from X. Thus if we write Q,, = (w1,...,w,_1), then we
have G, = Spinal(£2,). All spinal subgroups of Aut 7, arise in this way, as
explained in Subsection [1.1.3| of the Preliminaries. More precisely, assume
that L is spinal over 7,,, defined via a sequence ®. Let ext(®) denote the
sequence which is obtained by extending ® with an infinite sequence of ze-
ros (the zero linear functional). Then we can identify L with H,, where
H = Spinal(ext(®)).

In the literature, spinal groups usually appear associated to the particular
spine U consisting of the vertices u,, = p?~!pl, for n > 1. Our first theorem
shows that, as far as Hausdorff dimension is concerned, this is not a real

restriction.
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2. Hausdorff dimension of spinal groups

Theorem 2.2.1. Let G be a spinal group. Then G is conjugate in AutT to
a spinal group J defined over U. Hence, dimp G = dimr J.

Proof. Let G = (A, B) be defined over the spine S = (s,,),>1, and let P =
(pn)n>o0 be the path corresponding to S. Let us write p,+1 = p,x, and
Sp41 = PnYn for every n > 0, with z,,y, € X. For every n > 0, let 0, € 5,

be defined by means of the following two conditions:
(i) on(x,) =p and o,(y,) = 1.
(ii) (1 ...p)°" is a power of (1 ... p).

Observe that there is one (in fact, only one) such permutation in S,: since

(1...p)7" = (0,(1) ... 0u(p))

and the positions of 1 and p in this last tuple are predetermined by the images
of z,, and y,, there is only one way to choose the rest of the images if we
want to obtain a power of (1 ... p).

Now consider the automorphism f of 7 having the label o,, at all vertices
of the nth level, for every n > 0. Observe that, according to condition (i) of
the definition of o,,, we have f(S) =U. If b € B, then it follows from (|1.1.2)
that (b/)(s()) is the conjugate of b, by o, for all v € X™. By condition (ii),
and since b is spinal over S, we deduce that b/ is spinal over U. For the same
reason, a’ is a non-trivial power of a. Thus G’ = (a/, B/) = (a, BY) is a
spinal group over U, and we can take J = G.

Finally, by Lemma we conclude that dimp G = dimp J. [

Note that, if G is defined by using a sequence €2, the sequence € cor-
responding to the group J in the last theorem is not necessarily equal to
: we have w], = m,w, for all n > 1, where m,, is the exponent such that
(1...p) = (1...p)™. In the sequel, all spinal groups considered are
defined over the particular spine U.

In studying a spinal group G' = (A, B), it is usually necessary to work

with the sections of the elements of G at a particular vertex of the tree.
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2.2. Basic theory of spinal groups

For example, if b € B, then the section b at the vertex p.”.p is again a
spinal automorphism. If G is constructed from a sequence Q = (w;);>1, and
X : E — T is the corresponding representation, then we can write b = X(e)
for some e € E, and we have b= %(e), where X is the representation of
associated to the sequence 0= (Wi)i>n+1. Thus b lies in the spinal group
G = Spinal(ﬁ), which is constructed from the same abstract vector space as
G, but with a different representation.

More generally, the section of b € B at any vertex v of the nth level is

a“n® if = pnTlpl,
b, = 3, if v=mp."7p, (2.2.2)

1, otherwise,

and again b, belongs to G.

At this point, it is convenient to introduce the following notation.

Definition 2.2.2. If Q = (w;);>1 is a sequence and n > 0 is an integer, then

the sequence 0”2 = (w;);>n+1 is called the shift of Q2 of step n.

The first statement of the next proposition is a direct consequence of
the formula for the section of a composition. On the other hand, the two
properties of part (ii) can be proved simultaneously by induction on n. (See
the proof of Theorem 5 in [Gri00], and the paragraph before Lemma 4.1 in
[BS01].)

Proposition 2.2.3. Let G = Spinal(Q2) be a spinal group, and let v be a
vertex in the nth level of T. Let us write 1, for the map sending each g € G
to gv, and G = Spinal(c"Q). Then:

(i) ¢u(G) is contained in G.

(i) If wi,...,wy are all different from 0, then ¥,(Stabg(n)) = G, and G
acts transitively on the n + 1-st level of the tree T .
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2. Hausdorff dimension of spinal groups

Remark 2.2.4. If we write B for X(E), then we have G = (A, B). Now,
even if B = {b | b € B}, it is erroneous to write G = {§ | ¢ € G}. First of
all, note that we have only defined g for g € B, and that it is not clear how
we should define g for an arbitrary g € G. After all, every section g, with
v € X" lies in G and, contrary to the case of an element of B, there is no
special reason to choose a particular section as g instead of the others. On
the other hand, and more importantly, if w,, = 0 then it follows from (1.1.1]
that every g € G has a trivial label at all vertices of X™. Thus the sections
g» with v € X™ all lie in Stabg(1) and cannot cover the whole of G.

As we next see, the condition w, = 0 has strong effects on G.

Proposition 2.2.5. Let G = Spinal(Q2) be a spinal group, and suppose that
wy, =0 for somen > 1. Then G is finite.

Proof. Let g € G, and let v € X". If g = a1by...apby with a; € A and
b; € B, then we have g, = (b1)y, - .. (bk)., for some v; € X™. Since w, =0, it
follows from that (b;),, =1 or /l;, for every i = 1,...,k. Thus g, € é,
and we can consider the injective map

p" =

¥, : Stabg(n) — Bx'-xB

g > (Go)vexn-

Thus |Stabg(n)| < |BJP" is finite. Since |G : Stabg(n)| is also finite, we
conclude that G is finite. [

Our next proposition deals with the case in which all linear functionals
wy, are non-trivial. See Section for the definition of a branch group.

Proposition 2.2.6. Let G = Spinal(Q2) be a spinal group, and suppose that
p>2andw, #0 for alln > 1. Then G is a branch group.

Proof. By Proposition we know that G satisfies condition (i) in the
definition of a branch group. Let us see that also (ii) holds. Put G =
Spinal(¢"Q?) for every n > 1 and, for simplicity, write G instead of GO,
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2.2. Basic theory of spinal groups

Note that 1, (Stabg(n)) € G™ x LA G™ again by Proposition [2.2.3, We

are going to show that

(G™Y x P x (G™Y C b (G' N Stabg(n)). (2.2.3)

Since |CA¥ s | is finite, it will follow from here that G is a branch group.

Let us then prove , by induction on n. Consider first the case
n=1. Since G = (a,g\ b € B), we have G/ = ([a,g]h |be B,h €G). There
exists ¢ € B such that wy(c) = 1, since wy # 0. Then 9(c) = (a,1,...,1,¢),
and consequently v ([c,b%]) = ([a,g],l,...,l). (We need p > 2 for this.)
Now, by (ii) of Proposition , for every h € G we can find f € Stabg(1)
such that the first component of (f) is h. Thus, if g = [c, %]/ € G, we
have ¥(g) = ([a,g]h, 1,...,1). By considering conjugates of the form g%, we
can place the element [a,g]h in any other component of the tuple, and the
rest of the components will be 1. This proves that the whole direct product
G’ x -+ x G’ lies in the image of G’ under .

Consider now the general case of the induction. Given a tuple (hy,..., hyn)
in (G x ¥
element in G'. By the inductive hypothesis, there exist elements fi,..., f,
in G’ such that

X (@(”))’, we have to see that it is the image under v,, of some

¢n—1(fi) - (h(i_l)pnfl_H, R ,hipn71)7
for all : = 1,...,p. Now, by the case n = 1, we can find g € G’ such that
Y(g) = (f1,..., fp). Hence

¢n(9) - (hl’ SRR hp")7

which completes the induction, and the proof of the proposition. O

Clearly, spinal groups admit a natural decomposition as a semidirect

product.

Proposition 2.2.7. Let G = (A, B) be a spinal group. Then G = A x BY,
and B¢ = Stabg(1) = (0* |be B, i=0,...,p—1).
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If G = (A, B) is a spinal group and g = a1b; ...aiby is an element of
G, with a; € A and b; € B, then Bartholdi and Suni¢ have shown [BS01,
Lemma 4.7] that the product by ...0b; is independent of the factorization of
g. In the following lemma we present an alternative proof of this result, and
we generalize it in the case of an element g € Stabg(1) to show that, given
any decomposition g = bj* ...b.*, it is not only the product b; ... b, which is
well-defined, but also the product of those b; that appear conjugated by the

same element of A.
Lemma 2.2.8. Let G = (A, B) be a spinal group. Then:

(i) The map pg : G — B given by
pG<a1b1 . akbk) = b1 . bk

s a well-defined homomorphism.

(ii) For everyi € {0,...,p— 1}, the map piG : Stabg (1) — B given by

) Hb%’,

where

1, ifa;=d,

5ij =
0, otherwise,

15 a well-defined homomorphism.

Proof. (i) First of all, observe that an automorphism b € B has at most
one non-trivial label in every level, and thus, by , pn(b) is nothing
but the value of that label. Consequently, b is completely determined by
the sequence (p,(b))n>1. In our situation, if g = a1b; ... agby, then we have
Pn(g) = pu(by ... by) for all n > 1, since p, is a homomorphism and p,(a) =
1. Since p,(g) only depends on g, this means that the product by ...by is
independent of the factorization of g.

(ii) This can be proved as in (i), by using the product maps pit* and p?,
for n > 2, where 7 and i + 1 are to be reduced to the interval [1, p] modulo
p. ]
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2.3. Spinal groups as semidirect products

2.3 Spinal groups as semidirect products

In Proposition of the previous section, we have seen that a spinal group
G = (A, B) can be decomposed as a semidirect product in the form A x B,
On the other hand, Bartholdi and Sunié¢ [BS01, Proposition 4.9] have given a
decomposition of the form (A, By) x B, where Bj is a particular subgroup of
index p in B, and Bs is an arbitrary complement of By in B. The goal of this
section is to provide a broad generalization of these facts by showing that,
for every subgroup B, of B, we can always find an appropriate complement
B in B such that the semidirect product decomposition G = (A, B;) x BY
holds. This result will be given in Theorem [2.3.2] and it will allow us to
reduce the study of the Hausdorff dimension of spinal groups to the case of

2-generator groups.

If we want to produce semidirect product decompositions as those above
for spinal groups, it is convenient to have a way of handling subgroups of B
easily. Suppose that G is defined via a sequence {2 of linear functionals, and
let X : E — I be the corresponding representation. Then the subgroups
of B are all epimorphic images of the subspaces of E under X. By standard
linear algebra, the subspaces of E are in one-to-one correspondence with
the subspaces of E* by taking null spaces, where the null space ©+ of a
subset © of E* is defined to be the intersection (\,.o kerd of the kernels
of all linear functionals in ©. For the properties of this correspondence, we
refer the reader to [BMLTT, pages 211-213]. Of course, we have the equality
(©)+ = ©+. With a little abuse of terminology, we say that the subgroup
X(©1) is the null space of © in B. (Note that the action of an element
¥ € © on B is not well-defined unless ker X, i.e. the null space of €2, is
contained in ker¢).) Thus all subgroups of B arise as null spaces of subsets
(or subspaces) of E*, and if necessary, we may assume that the subset is

linearly independent.

If B is the null space of © in B, then the spinal group G = (A, §>

can be written in the form Spinal(€), where Q = (&;);>1 consists of the
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restrictions to the subspace E = 61 of the elements of 2. On occasions, it
may be interesting to express w; in terms of a basis of E*. For this purpose,
assume that © = {¥y,...,9,} is linearly independent, and extend it to a

basis B = (d1,...,9,) of E*. Then the restrictions (J,,1,...,0,) form a

basis of E*, and if we decompose each w; with respect to B,
wi = N1V + - A + AU+ A,

then we have

Wi = )\i,r+1§r+l + -+ Azmgm

Thus w; can be obtained as the restriction to E of the projection of w; to the

subspace (9,41, ...,7,), with respect to the basis B.

Let G = (A, B) be a spinal group defined via a sequence 2, and consider
the quotient G, = G/Stabg(n) as a subgroup of AutZ,. If we want to
produce a subgroup of B,,, we can take a subgroup B of B and consider its
image B, in G,,. As already mentioned, B can be obtained as the null space
in B of a subspace U of E*, and thus we have B, = X,(U+). (Here, as in
Section 2.2 X,, denotes the representation of F in I, naturally induced by
X.) Now, if H = (A, (C) is another spinal group, generated by a sequence A
such that Q, = A, (thus, in particular, the elements of A also lie in E*),
then we have H,, = G,,. So we may produce a subgroup C,, of G,, by the same
procedure as above, i.e. by taking the null space in C' of another subspace V'
of E*. Clearly, if U =V then we have En = 6n In the next proposition, we
see that the same conclusion holds if U and V' only coincide in the subspace

generated by €2, the part of €2 which is ‘visible’ in the action of G,,.

Proposition 2.3.1. Let G = (A, B) and H = (A,C) be spinal groups,
defined by two sequences € and A such that ), = A,,. Suppose that U and
V' are subspaces of E*, and let B and C be their null spaces i B and C),
respectively. Then, the following two conditions are equivalent:

(i) B, = C.,, i.e. the subgroups B and C have the same image in G,
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(i) UN Q) =V ().

Proof. Let X and 1 be the representations corresponding to G and H, re-
spectively. Since 2, = A,,, we have X,, = I,,. By the paragraph before this
proposition, we have to prove that X,(U1) = X, (V). This is equivalent to
Ut +ker X, = V1 +ker X,, or, in other words, to U+ + (Q,,)+ =V +(Q,)*.
By the properties of null spaces of subspaces of E*, this amounts to asking

that U N () = V N Q). O

We are now ready for the main result of this section. In the proof of part
(ii), we will apply the previous proposition in the case that A = ext(€2,,), for
which the condition €2,, = A,, trivially holds. Recall that H is then naturally

isomorphic to H,,, which is in turn equal to G,,.

Theorem 2.3.2. Let G = Spinal(Q) be a spinal group, and let By be an
arbitrary subgroup of B. Then, there exists a complement By of B such that,
if we put H = {(a, B,) and K = B, we have:

(i) G=Hx K.

(ii) G, = H, X K, as groups of automorphisms of the truncated tree 7T,,.

As a consequence, |G| = |Hy|| Ky

More precisely, By can be given explicitly as follows. If we write By as the
null space of a linearly independent subset © of E*, then we can choose By
to be the null space of the subset © of Q which is constructed according to
the following rule: w; belongs to ©" if and only if it is linearly independent

with © U {wl, c. ,wi,l}.

Proof. Write © = {¢1,...,9,} and © = {U,,1,...,9,,}, and set E; = (©')*
and Fy = O+, i.e.

E; = ﬁ ker 1J;, and 1= h ker 9;.
i=1

i=r+1
Thus, if X : E — T is the representation corresponding to the spinal group
G, we have By = X(F;) and By = X(F>).
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(i) By the construction of ©, the subspaces () and (©’) of E* have
trivial intersection. By taking null spaces, it follows that F = E; + FEj.
Hence B = B; By, and consequently

G = (A, B)= (A B, By) = (A, B))BS = HK.

Thus, it suffices to prove that H N K = 1. Before proceeding, we make some
considerations.

If © is empty, then O is a basis of the subspace (€2), and consequently
Ey =0+ =Qt =kerX. So K = BY = 1, and there is nothing to prove.
Hence we may assume that 9,,, is defined. Let t > 0 be the integer such
that ¥,.1 = wyyr1. Thus wyyq is the first linear functional of the sequence (2
which is linearly independent from O, i.e. we have wq,...,w; € (Vq,...,9,)
but w1 & (Vq,...,9,).

Put G = Spinal(c'Q)), and let X : E — T denote the representation of
E corresponding to G. Write also B = %(E), B = %(El), and B, = %(Eg)

Claim 1. B, N By = 1.

Ifb = %(61) = :/%\:(62) with e; € Fy and ey € Fy, we have to prove that
b= 1. For this purpose, it suffices to show that w;(es) = 0 for all # > ¢ + 1.
If w; € © then w;(e;) = 0, since £, = (©')*. Since %(el) = .%(62), it follows
that also w;(es) = 0. Let us assume now that w; ¢ ©’. By the construction

of ©’, we know that wj; is a linear combination of the form
Wi = /\1191 +-+ )\rﬁr + )\r+119r+1 + -+ )\j’l9j,

where the linear functionals ,44,...,9; € ©’ appear in the sequence

Wity .., wi—1. Thus, as argued above, we have
(Ars1¥p1 + -+ A05)(e2) = 0.
On the other hand, since Ey = (,_, kerd;, we also have
(Mg + -+ N0 (e2) = 0.
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Hence w;(e2) = 0 also in this case, which proves the claim.
Claim 2. K is contained in Stab(t + 1).

Since K = BY, it suffices to see that b € Stab(t + 1) for every b € Bs.
Let us write b = X(e) with e € Ey. Then ¥;(e) =0 fori =1,...,r, and since
Wiy .. wy € (Yq,...,0,), we also have w;(e) = 0 for ¢ = 1,...,t. Thus the
label of b at the vertex pi=ipl is 1 for all i = 1,...,t. Consequently, b fixes

all vertices of the tree at level £ 4+ 1, and the claim is proved.

Now let h be an element of H N K, and let us prove that h = 1. As the
elements of K fix all the vertices of the ¢ first levels of the tree, it suffices to
see that h, = 1 for every v € X*. By Proposition , we have h, € H.
Since h € Stab(t + 1), it follows that

h, € Stab (1) = (0" |be By, i =0,...,p—1).

Observe that everyg € El has a trivial label at the vertex 1, since w1 (e) =0
for every e € FE;. As a consequence, all the conjugates b have disjoint
support, and so they commute with each other. Hence the group Stabgz(1) is
abelian, and we can write the section h, as a product of conjugates of some b
by powers of a, ordered in such a way that we first have the elements which
appear conjugated by a”, then those conjugated by a, and so on, until we
finally have the elements conjugated by a?~!. According to the definition of
the homomorphisms p}, given in Lemma , we can express this fact as

follows:

I
—

p

he = [ ] p(he)”.

~
Il
o

We are going to see that h, = 1 by proving that p’é(hv) =1 for all i =
0,...,p — 1. Observe that p’é(hv) € B;,. Then the proof of (i) will be
completed once we prove the following claim, since we know that B 1 ﬂgg =1,

by Claim 1.

~

Claim 3. p%(hv) € B,.
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2. Hausdorff dimension of spinal groups

Since h € K = BY, we can write h = b{" ... b{*, with b; € By and g; € G.
Then

hy = (b7 )y - - (07 )y (2.3.1)

for some w; € X' If b € By, g € G, and w € X', then by the formula for the

section of a conjugate, we have

(0w = (9u) ™" bubus (2.3.2)

where u = g~ (w), since b € Stab(t). If we write b = X(e) with e € Fy, then
wi(e) = 0, and consequently b, = 1 or b by (2.2.2). By (2.3.1) and (2.3.2),

the section h, is a subproduct (i.e. a product of some of the factors, in the

same order) of
OVERNON
where
fi= (gi)gi_l(wi)
belongs to G. Let us write fi = a;q;, for some a; € A and some ¢; € Stabg(1).

Then A, is a subproduct of

(Bi)™ . (b

By applying the homomorphism p’é to this last expression, it follows that
pia(hv) is a subproduct of b; . .. by, which proves that p’é(hv) € B,, as desired.

(ii) Let P = (A, C) be the spinal group over 7 defined by the sequence
ext(£2,,), and let us apply part (i) to P. For this purpose, construct ©” from
© and ext(£2,) in the same way as ©’' is obtained from © and 2. Then we
have a semidirect product decomposition P = @ X R, where Q = (A, C})
and R = CF, and where C; and C, are the null spaces in C' of ©” and O,
respectively.

Since all the automorphisms in P have label 1 in all vertices at or below
the nth level of 7, it follows that we can identify P with P,, and thus we
have P, = @), X R,. On the other hand, we have GG,, = P, and, since B,

and C5 have the same images in G,,, also K,, = R,. Thus we only need to
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2.3. Spinal groups as semidirect products

prove that H, = (),, which will be true if we see that B; and C; have the
same image in G,. Recall that By is the null space of © in B, and that
C1 is the null space of ©” in C. By construction, we have ©” = @' N Q,,
(©)N(O) =0, and (©,0,) = (0,0"). It follows that

(07) = (0") N () < (0) N ()
and, on the other hand,
(©7) N () € (O) N ((B) + (07)) = ((6') N (©)) + (8") = (6").

Thus
(©) N (Q2n) = (0") N {Q),

and we deduce that By, and C have the same image in G,, by using Propo-

sition [2.3.11 O

The semidirect product decomposition given by Bartholdi and Sunié in
Proposition 4.9 of [BSOl] is a special case of the previous theorem, if we
take as © any subset which, together with w;, forms a basis of E*. (We
may assume that w; # 0, since the result is trivial otherwise.) Following the
notation of Theorem we then have ©' = {w; }. This amounts to saying
that B is the null space of w; in B, and that B, can be any complement of
B; in B.

We are interested in the opposite situation, when we choose © small. If ©
is empty, then we have a trivial decomposition, so we consider the case when
© = {9} consists of only one non-trivial linear functional. Then the null space
By of © in B is cyclic, By is the null space of ¥, and G = (A, B;) x BS. Recall
that the spinal group H = (A, B;) can be written as Spinal(ﬁ), where the

sequence () consists of the restrictions of the elements of ) to the subspace

E = (©')%. We put this in more detail in the following corollary.

Corollary 2.3.3. Let G = Spinal(Q2) be a spinal group, and let © = {9} C
E*, with 9 # 0. Define © as in Theorem [2.3.9, and consider a basis B of
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2. Hausdorff dimension of spinal groups

E* which contains © UO'. For every i > 1, let \;¥ be the projection of w; to
the subspace (9), with respect to the basis B. If Q = (&;)i>1 is the sequence

of restrictions of the w; to E = (&)L, then we have:

(i) @& = N0, for alli > 1.

(ii) H = Spinal(f2) is a 2-generator subgroup of G.

(iii) If By is the null space of ¥ in B and we put K = BS, then G = H x K
and G, = H, x K,, for everyn > 1.

Even if w; # 0 for every ¢ > 1, it might happen that some w; is the null
map. This is the main reason why we allow the possibility that w; = 0 for

some ¢ in the definition of a spinal group.

2.4 Hausdorff dimension: the 2-generator case

In this section, we deal with spinal groups in which B = (b) is cyclic. Thus
G = (a, b) is generated by 2 elements. Our goal is to determine the order of
G, for every n in terms of the values of the sequence Q. If we write b; = b*'

fori=0,...,p—1, then we have G = (a) x (b, ..., by,_1).

Theorem 2.4.1. Let G = {a, b) be a two-generator spinal group, and suppose
that wy = 0. If £ is the first index for which w, # 0, then for every positive
integer n > 1 we have

1, ifn<(;
logp\Gn| =

p+1, ifn>/~.
(Note that we may have ¢ = cc.)

Proof. Since w; = 0, the support of b is contained in the subtree pX*. It
follows that by, ..., b,—1 have disjoint support, and consequently they com-
mute with each other. Hence B® = (by) x --+ x (b,_1). If we use the bar

notation in the quotient G, it follows that |G,| = po(b)P. If n < ¢, then b
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2.4. Hausdorff dimension: the 2-generator case

acts trivially on the truncated tree 7,,. So b =1 and |G,| = p. If n > ¢, then
b has order p, and we have |G,,| = pP*L. O

Next we deal with the more complicated case where w; # 0. Under this
assumption, we give the value of log, |G| in Theorem W The idea is to

work by induction on n, and to use the relation
|G| = |G| Stabg, (n — 1)].
Thus the main task is to determine the order of the stabilizer Stabg, (n — 1).
Since G/ Stabg (1) = (a) = C,, the following result is clear.

Lemma 2.4.2. [f we write an element g € G in the form g = a™ b’ ...a"* b,
with r;, s; € Z, then g € Stabg(1) if and only if r1 + - - - + 11 is a multiple of
.

On the other hand, by Proposition [2.2.3] there is an embedding

Y : Stabg(l) — Gx---xG

g = (gu)uEX )

where G = Spinal(c?). Note that, in this case, g, is simply the restriction
of g to the subtree uX™*, viewed in a natural way as an automorphism of the
whole tree 7.

Let @ and b be the sections of b at the vertices 1 and p, respectively. If

w1 = 0, then @ is the trivial automorphism, and consequently

~

U(bo) = (L 1,...,1,b),v(b) = (0, 1,...,1,1),...,
Wby_t) = (1,1,...,b,1). (2.4.1)
Thus ¢ maps Stabg (1) onto the direct product B x -*- x B, where B = (B),
and Stabg, (n — 1) corresponds to Stabg  (n —2) x Kox Stabg  (n —2).

Let ¢ be, as in Theorem the first index for which wy # 0. Then b fixes
the vertices at level n — 2 if and only if £ > n — 1. If that is the case, then
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2. Hausdorff dimension of spinal groups

the only value for which the image of bin B,_; is non-trivial is for £ = n — 1.
Hence

1, ifn#l+l,
| Stabg, (n — 1)| = 7

pP, ifn=0+1.

(2.4.2)

Observe that Theorem is a direct consequence of this result. Of course,
the proof given before is shorter, but will also be necessary in order
to obtain Theorem (see the proof of Lemma [2.4.4]).

Suppose now that w; # 0. Then @ is a non-trivial power of a, and by
replacing b with an appropriate power of b, we may assume that @ = a. In

this case, we have

o~

Wb) = (a,1,1...,1,b),%(by) = (b,a,1,...,1,1),...,
W(by—t) = (1,1,1,...,ba). (2.4.3)

Let us next see what the elements of the stabilizer Stabg(2) look like. If
g € Stabg(2), then in particular g € BY, and g can be written as a word in
bo, - - -, by—1. Of course, if w; = 0 then Stabg(2) is the whole of BE.

Lemma 2.4.3. Ifw; # 0, then g € Stabg(2) if and only if the weight of each

b; in a word representing g is a multiple of p.

Proof. We have g € Stabg(2) if and only if ¢)(g) € Stabg (1) x Zox Stabg(1).
If we look at the ith component of ¥(g), we find from that the only
non-trivial contributions come from b;_; and b;, which yield a and B, respec-
tively. (The indices in b;_; and b; are taken as residues modulo p between 0
and p — 1.) Now, by Lemma [2.4.2] a word in a and b lies in Stabg(1) if and
only if the weight of a is a multiple of p, and the result follows. O

Lemma 2.4.4. Let G = {(a,b) be a two-generator spinal group, and suppose
that p > 2 and wy # 0. Then:

(1) If we =0, and ¢ is the first index greater than 2 such that wy # 0, then
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2.4. Hausdorff dimension: the 2-generator case

for every n > 3,

1, ifn#0+1,
| Stabg, (n — 1)| = fn# (2.4.4)
pPe D ifn=0+1.
Here, we take { = oo if w; =0 for all i > 2.
(i) If wy # 0, then
(p=1), ifn=3,
| Stabg, (n — 1)| = ¥ / (2.4.5)

|Stabg  (n—2)|P, ifn >4,
where G = Spinal((2).

Proof. Put R =" for i = 0,...,p— 1. First of all, we prove that

p

$(Stabe(2)) = L x -*- x L,

where L is the subgroup of G consisting of all elements which, written as a
word in a and Z, satisfy that the weight of both a and b is divisible by p.
Equivalently, L consists of the elements that can be represented as a word
in the 31 whose total length is a multiple of p. (This is clear if we collect all
occurrences of a to the left in the expression of an element of L as a word
in a and B) The inclusion C is a direct consequence of Lemma , taking
into account the values of ¥(by), ..., ¥ (by-1), given in (2.4.3). Let us now
prove the reverse inclusion. It suffices to see that L x FXox L Cim ¥. Since
¥ is a homomorphism, we only need to see that (h,1,...,1) € im for all
h € L (the same argument applies if & is in a different component). Let us
write h as a word in a and /b\, say h = a’ib .. a’"k/l;s’“, with r;, s; € Z. By the
definition of L, both r =7 +--- 4+ 1, and s = s1 + - - - + s, are divisible by
p. If g = bi'bit ... b3, it follows from that the first component of
¥(g) is exactly h, the second component is a®, the last component is BT, and
the rest of the components are 1. (Note that it is at this point where we use
the condition that p > 2.) Since r and s are divisible by p, we conclude that
¥(g) = (h,1,...,1), as desired.
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2. Hausdorff dimension of spinal groups

As a consequence, we have | Stabg, (n — 1)| = |Staby, ,(n — 2)J? for all
n > 3.

(i) Assume that wy = 0. If n # £+ 1, then we have Stabgs  (n —2) =1
by and a fortiori Staby, ,(n —2) = 1. Hence Stabg, (n — 1) = 1. If

n =4{+1, then b fixes all vertices of the n — 2-nd level, and consequently

A~ A~

Stabg(n —2) = (bo) x -+ X (bp-1)

is elementary abelian of order pP. By using the natural identification of
Stabg(n —2) with the vector space F?, the subspace Staby(n —2) of words in
the /b\l of total length divisible by p corresponds to the hyperplane zg + --- +
x, 1 = 0. Hence |Staby,_,(n —2)] = pP~! and | Stabg, (n — 1)| = pr®~1,
which concludes the proof of (i).

(ii) Assume now that ws # 0. If n = 3, then Stabg (1) is the direct
product of the subgroups generated by the images of the E, and we can
argue as in the last part of (i) to prove that |Stabg,(2)| = pPP~Y.

Assume now that n > 4. Since wy # 0, it follows from Lemma that
Stabg(2) € L. Hence |Stabg, (n — 1)| = [Stabg _ (n —2)[P, as desired. [

Theorem 2.4.5. Let G = {a, b) be a two-generator spinal group, and suppose
that wy # 0. Let k be the first index for which wy, = 0 and let £ be the first
index greater than k such that w, # 0 (if there are not such indices, put

k=00 or{ =0o0). Then, for every positive integer n > 1, we have

(

1, ifn=1,

-1 .
Pt 41, ifl<n<k,
log, |G| =
PP+l ifk<n<d,

PP+, ifn > (.

Proof. We use induction on n. The cases n = 1 and n = 2 are obvious,

so suppose that n > 3. Since |G,| = |G,_1||Stabg, (n — 1), the result will
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2.5. Hausdorff dimension: the general case

follow immediately if we prove that

Pl if3<n <k,

ifk<n</,
log, | Stabg, (n — 1)| = 4
pF — pk=1l ifn=1~+1,

0, ifn>0+1.

Suppose first that 3 < n < k. Since w; # 0 for 1 < i < n — 2, we may
apply n — 3 times the recurrence relation ((2.4.5) of Lemma [2.4.4] to get

log,, | Stabg, (n — 1)| = p"~* log, | Stabg, (2)],

where G = Spinal(¢"73Q)). Now we also have w,_»,w,_1 # 0, so we may still

apply Lemma m to the group G to conclude that
log,, | Stabg, (n — 1)| = p"*(p — 1).
If n > k, then we apply k — 2 times (2.4.5). It follows that
log,, | Stabg, (n — 1)| = p*~* log, | Stabg , ,(n—k+1)],

where now G = Spinal(c*72Q). Since wy, = 0, we find that G satisfies the
conditions of part (i) of Lemma [2.4.4 Then we may use directly (2.4.4) to

obtain, as desired, that
0, ifn#0+1,

log, | Stabg, (n — 1)| = o1, i .
p—1), un=~0+1

p

2.5 Hausdorff dimension: the general case

In this section, we will get a formula for the Hausdorff dimension in I' of the

closure of a spinal group G = Spinal(£2) in terms of the sequence 2, provided
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2. Hausdorff dimension of spinal groups

that p > 2. If we have w,, = 0 for some n > 1, then G is finite by Proposition
Hence the closure G coincides with G, and is also finite. Consequently,
dimp G = 0 in this case. For this reason, in the results of this section we
make the assumption that all the linear functionals in the sequence () are
non-trivial. We follow to a great extent the arguments used by Siegenthaler

in [Sie08] for the case p = 2.

Proposition 2.5.1. Let G = Spinal(Q2) be a spinal group, where p > 2 and
wi # 0 for all i. Provided that dim($,) > 2, let t € {1,...,n — 2} be the

largest integer such that wy, . ..,w; are proportional to wi. Then, we have
logp |Gn| = 1 +pt(10gp |Gn—t| - 5(”))7
where G = Spinal(¢'()), and

5 0, if wy is linearly independent from wiiq, ... ,Wn_1,
" 1, otherwise.

Proof. We apply Corollary to the groups G = Spinal(f2) and G =
Spinal(o'Q2), with ¥ = wy. In principle, we would need to consider two bases
B and B of E*, one for each case, since the subset ©" might be different for G
and for G. However, if we follow the procedure for constructing ©', we can
see that we get the same ©’ for both groups, because we have chosen ¥ = w;.
Thus we may assume that B = B.

For every i > 1, let @; be the restriction of w; to the subspace ()% of E,
and put Q = (&;);>1. As indicated in Corollary we have w; € () for
all 7, and w; = 0 if and only if w; does not appear in the decomposition of
w; with respect to the basis B. By the definition of B and t, it follows that
w; Z0fori=1,...,t, and w1 = 0.

If By is the null space of w; in B, then the null space of w; in B is ég.
Thus, if we apply Corollary [2.3.3] we get semidirect product decompositions
G, =H, x K,, and @n = ﬁn X L, for every n > 1, where H = Spinal(@),
K=Bfand L = Egé (Here, it is important that ©’ is the same for G and G

in order to know that the first subgroup in the decomposition of (A}n is f[n)
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2.5. Hausdorff dimension: the general case

Now, we have |G,| = |H,||K,|, and so it suffices to calculate the orders of

H,, and K,,. Since H = Spinal({2) is a 2-generator spinal group with w; # 0,
we may apply Theorem to calculate |H,|. The first trivial term of the
sequence Q is wir1. Let £ be the first index greater than ¢ 4+ 1 for which
we # 0. One readily checks that ¢ is also the first index for which w; is

linearly dependent with w;yq,...,w,. Hence
log, | Ha| = p00) + 1, (2.5.1)

where 6(n) is as in the statement of the proposition.

On the other hand, since the first functional of otQ) is wir1 = 0, we may
use Theorem to get

log, |H,—| = d(n)p + 1. (2.5.2)

Next, we relate K = BY with L = EQ@ . Consider the injective homomor-

phism
W, ¢ Stabg(t) — Gx - xG
g > (Gu)uext-

We have 14(Bs) = {1} x - -+ x {1} x B,, and we claim that
Yi(BS) = BS x --- x BS. (2.5.3)

Since

(07w = (bg1(w)? "
for every b € By, g € G, and u € X!, the inclusion C is clear. For the reverse
inclusion, put v = p.*.p. By Proposition , for every f € G we can find
g € Stabg(t) such that ¥,(g) = f, and then ,(b9) = (1,..., 1,3f) for every
b € By. This proves that

U(R) = {1} x --- x {1} x BY

for some subgroup R of BY. Now, let u be an arbitrary vertex of X*. We
know by Proposition that G acts transitively on X'. Let us choose
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2. Hausdorff dimension of spinal groups

g € G such that g(v) = u. Then
P(RI) ={1} x -+ % {1}><§2a>< {1} x -+ x {1},

where the non-trivial component is in the position of u. It follows that
Ezé X - X §§ is contained in ;(BS), which concludes the proof of claim
(2.5.3)).

As a consequence, we have |K,| = |L,_|”". Hence, by using and
, we conclude that

log, |G| = log, |H,| +log, | K,| =1 + o) 4 pt log,, | Ly
= 1+ p™™ 4 pl(log, |Gri| — log, | Ho—y)
= 1+ p'(log, |G| + 9" = 5(n)p— 1)
=1+ p'(log, |Gni| — 8(n)).

O

Proposition 2.5.2. Let G = Spinal(Q2) be a spinal group, where p > 2 and
wi # 0 for all i. Provided that dim(Q),) > 2, let k € {1,...,n — 2} be
the smallest integer such that wy, is linearly independent from wgi1, ..., wW,_1.

Then
log, |G| =1 + p" log,, \@n,k|,

where G = Spinal(a*2).

Proof. We first make a partition of the first k terms of the sequence () in

blocks of proportional linear functionals, where each block is as long as pos-
sible:

t1 prop. to wy t2 Prop. to we;+1 3 Prop. to wsy41 tg prop. to ws,_;+1
7\ 7\ 7\ 7\
7 7 N 7 N 7 N
Wiy ooy Wy Wei 41y ooy Wegy Wegtly e oo yWszy oo oy Wy 141y 0y Ws,y-
Here, s; =t +---+t; for every : = 1,...,¢, and s, = k. For convenience,

we also put sg =tg = 0.

o8



2.5. Hausdorff dimension: the general case

Put GO = Spinal(JSiQ) for i = 0,...,¢. Thus GO = G. If we apply
Proposition 1|to GO for i =0,...,0 — 1, we have
1+pwwm%u;”1|—1) ifi=0,...,0—2,

e (2.5.4)
if i =0 — 1.

log, |G}, | =
1+ p*log, G

n— 8[|

Now, if we multiply equation (2.5.4)) by p for all ¢ = 0,...,¢ — 1 and sum
all the results, we get the desired equality. ]

Theorem 2.5.3. Let G = Spinal(2) be a spinal group, where p > 2 and
wi; # 0 for all i. Provided that dim(S),) = m, let k; be the smallest integer
such that dim{wg, 1, ...,wn_1) =1, for every i =1,...,m. (Note that k,, =
0.) Then, we have

log, |G| = Z PP Tl = 1 phmt pmee gk
=1

Proof. If m = 1, then G,, is generated by 2 elements, and log, |G| = 1+p" "
by Theorem [2.4.5, Thus the result holds in this case.

Assume now that m > 2, and let G® = Spinal(c*Q), for i = 1,...,m.
Thus G™ = G. By the previous proposition, we have

logp]@ |—1+p11kllogp|Gll) |, fori=2,...,m.
On the other hand, by arguing as in the case m = 1, we have
log, |G, | = 14 p" 01,
By putting all these equalities together, we get the desired result. ]

Theorem 2.5.4. Let G = Spinal(Q2) be a spinal group, where p > 2 and w; #
0 for alli. If dim(QY) = m, let ng be the first integer such that dim(2,,) = m.
For everyn > ny andi=1,...,m, let r,; be the minimum number of terms
of the sequence (wy,_1,...,w1), in that order, that are needed to generate a
subspace of dimension i. (For fized i, the number r,; may vary with n, but

we always have 1,1 =1.) Then,

— 1 1 1
dimpG:(p—l)liminf( + + )

n— oo p"'n,l p"’n,Q prn,m
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2. Hausdorff dimension of spinal groups

Proof. This is an immediate consequence of ([1.2.3]) and the previous theorem:
note that, for a fixed value of n, we have r,,; =n —k;_; fort =1,...,m, if

we put kg =n — 1. O

2.6 The spinal spectrum

In this final section, we determine completely the set of values which can be
taken by the Hausdorff dimension of the closure of spinal groups, provided
that p > 2. We begin by introducing some useful notation.

To every finite sequence ¥ = (14, ...,1,) of elements of E*, we associate

a number A\(V) € [0, 1] as follows. Let us define
m; = dim(eq, ..., 1), foreveryi=1,...,q,
and
my, if i = 1,

n; =
m; — m;_q, 1f1<Z§q

Note that n; = 0 or 1 for every ¢. Then we put
AW) = 0.1y ...0g,
where the expression is taken in base p. Also, we write W (i) for the sequence

(¢i+17 s 7wi+Q)7

where the subindices are reduced modulo ¢ to a value between 1 and ¢q. Thus
U(0) =W and U(i) = V(i + q) for every i > 0.

Lemma 2.6.1. Let G = Spinal(Q2) be a spinal group, where p > 2 and
w; # 0 for all i. Suppose that the sequence ) is periodic, with period 11 =
(m1,...,7g), and let ¥ = (my,...,m). Then,

dimpr G = (p — 1) min{A(¥(0)),..., A(¥(qg —1))}.
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Proof. Put m = dim(Q) = dim(II). According to Theorem [2.5.4] we have

dimpr G = (p — 1) liminf A,

n—oo

where
1 1

et
prn,l an,Q prn,m
is defined for n > ¢. Clearly, the sequence (\,),>, is periodic with period of

An =

length ¢, and so we have

liminf A, = min{A 41, ..., Ay}

n—oo

Also, by the definition of r, ;, we have
A = MWn-1, -+, Wn—q)

for all n > ¢. It follows that the set {A,41,..., Aoy} coincides (not in the

same order) with
{A(T(0)), - A(¥(g = 1))},

and we are done. O
Now we prove Theorem [B]

Theorem 2.6.2. If p is odd, then the spinal spectrum of I' consists of 0 and

all numbers whose p-adic expansion is of the form 0.ay ... a,, where
(i) a; =0 orp—1 for everyi=1,...,n.
(i) ay =p—1.

In particular, the spinal spectrum is contained in Q.

Proof. By Proposition [2.2.5, if G = Spinal({2) and w; = 0 for some 4, then
dimp G = 0. Thus it suffices to prove that, in the case that w; # 0 for all i,
the set of values taken by the Hausdorff dimension consists of all numbers in

the interval [0, 1] whose p-adic expansion is of the form specified above.
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2. Hausdorff dimension of spinal groups

On the one hand, let G = Spinal(Q2) be a spinal group for which w; # 0
for all . Put m = dim(Q) and

1 1 1
T + T Tt T )
p n,1 p n,2 p n,m
where r,,; is defined as in Theorem [2.5.4] and in particular r,; = 1. Then

dimp G = (p — 1)\, where A = liminf,, ., A,. Now, the p-adic expansion of

An =

every A, has m non-zero digits (one of which is the first digit), and they are
all equal to 1. It follows that the same is true for the p-adic expansion of A,
with the only exception that it may have m or fewer non-zero digits.

Conversely, let © = 0.ay...a, be as in the statement of the theorem
(of course, we may assume a, = p — 1), and let us see that there exists
G = Spinal(Q) such that dimp G = p. More precisely, we prove that we can
choose G such that the sequence € of linear functionals is periodic. In the
next two paragraphs, we explain how to construct the period II for 2. By
Lemma[2.6.1], it is more convenient to define II backwards; thus, we construct
a sequence ¥ = (¢,...,1,) and then put II = (¢, ..., ¢1).

Put A = u/(p—1), and write A = 0.b; ... b, (so that b, = 1). Let m be the
number of ones in the p-adic expansion of A, and choose a vector space E of
dimension m over F,. Let © = (¢4, ...,7,,) be a basis of E*. If n = m, then
we can simply take U = ©. Assume then that n > m, i.e. that there is at
least one zero in the p-adic expansion 0.b; ...b,. We can see this expansion
as formed by alternating blocks of the form 1...1 and 0...0 (beginning and
ending with ones). Let ky,. .., k. be the lengths of the blocks of ones, so that
k1 +-- -+ k. = m. This decomposition of m gives rise to a partition of © into
blocks of lengths k1, ..., k., which we denote by ©4,...,0,. We are going to
obtain the sequence ¥ from © by inserting some carefully chosen elements of
E* in between these blocks, and possibly also after the last block ©,. More
precisely, if /1, ..., ,_1 are the lengths of the blocks of zeros in the expansion
of A, we insert exactly ¢; linear functionals between the blocks ©; and ©,;,;.
The number of elements to be inserted after the last block will be clear later

on.
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2.6. The spinal spectrum

For simplicity, let us write &£ and ¢ for k; and ¢;. We begin by inserting
the whole sequence
(VS PV (2.6.1)

[¢/k] times between the blocks of ©, taking care of inserting at each position
the number of linear functionals that has been indicated. (It might happen
that we had to put some elements after the last block of ©.) Then we

introduce the whole sequence
O+ Dty U + Oty Ot (2.6.2)

at least once, and so many times as to guarantee that all the ‘holes’ in between
the blocks have been filled. (Again, it might be necessary to put elements
after the last block.) This completes the construction of ©, and hence also
of II and ).

In order to make sure that dimpr G = u for G = Spinal(Q2) (and to un-
derstand the construction of ¥), note that we have A\(W) = 0.b; ... b,, since
all the elements that we have introduced between the blocks of © are lin-
early dependent with the linear functionals that appear before. According to
Lemma [2.6.1], we only need to prove that A(¥(i)) > A(¥) fori =1,...,¢—1,
where ¢ is the length of W. Let U’ be the sequence which is obtained from
U by deleting the blocks O, ...,0,. Then we are only left with some repe-
titions of the sequence , followed by some repetitions of . As a

consequence, we have the following two properties:
(i) Any sequence of k consecutive elements of W' is linearly independent.

(ii) Any sequence of k + 1 consecutive elements of W' which contains at
least one element from ([2.6.2)) is linearly independent.

Here, ¥’ should be considered as a cycle, so that ‘k+ 1 consecutive elements’
also covers the case when we choose t < k£ + 1, and we consider the last ¢
elements of U’ together with the first £+ 1—¢ elements. Observe that (i) and

(ii) imply that any sequence of k + 1 consecutive elements of ¥ containing
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2. Hausdorff dimension of spinal groups

at least one element of the blocks O,, ..., 0, is linearly independent. This
property, together with (ii), yields that the p-adic expansion of A(¥(7)) begins
with £+ 1 ones for i = ¢,...,q — 1. Thus A(¥ (7)) > A\(¥) in this case. Now,
suppose that 1 <i < ¢/—1. Then, ¥(7) begins with the k linearly independent
elements ¥y, ..., (probably in a different order), followed by ¢ — i of these

same elements, and then 9. It follows that

is also greater than A(V), which concludes the proof. O

Actually, the proof of the previous theorem provides an algorithm which,
given a number p € [0, 1] with an appropriate p-adic expansion, constructs
a periodic sequence € such that G' = Spinal(f2) satisfies dimp G = . Let us

illustrate this with a couple of examples.

Examples 2.6.3. (i) Let us produce a period II which yields a spinal group
with Hausdorff dimension (p — 1)\, where A = 0.111100101 in base p. We
choose a vector space E of dimension 6 over [F,,, and a basis {¢1,...,7s} of

E*. By following the steps of the last proof, we take
\IJ - (1917 1927 1937 1947 1917 1927 195, 7937 ?967 1947 791 + 195, 192 + 1957 193 + 195) /194 + 1957 /195)7

and we let II be the same sequence written in reverse order.
(ii) Let us now obtain a group with Hausdorff dimension (p—1)A, with A =
0.11101. In this case, it suffices to choose E of dimension 4. If {¢y,..., 9,4}

is a basis of E*, we can take
U = (U1,79,03, 01,04, 02,03, 01 + Uy, Ug + U4, 03 + 04, 9y).
Observe that the simpler choice
U = (¥q, 09,03, 01,04, Vg, 03, V1, 02, V3, 04)

is not valid, even if A\(¥) = A. The reason is that, in this case, A(V(5)) =

0.111001 is smaller than A. This shows that we cannot use the sequence

1917 s 719k719k+1
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2.6. The spinal spectrum

instead of (2.6.2) in the proof of Theorem [2.6.2, and explains why we have
had to add ¥4 in all but the last component.
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Chapter 3

GGS-groups: order of
congruence quotients and

Hausdorff dimension

3.1 Introduction

The second of the Grigorchuk groups and the Gupta-Sidki group are partic-
ular instances of the family of GGS-groups (GGS after Grigorchuk, Gupta,
and Sidki, a term coined by Gilbert Baumslag), to which this chapter is de-
voted. We work over the p-adic rooted tree, where p is an odd prime, and
we determine the order of all congruence quotients of GGS-groups; these are
the automorphism groups induced by GGS-groups on the finite trees which
are obtained by truncating the p-adic tree at every level. As a consequence,

we also obtain the Hausdorff dimension of the closures of GGS-groups.

Let 7 be the d-adic rooted tree, by now, with vertices indexed by X*,
the free monoid on the alphabet X = {1,...,d} and let us define a as the
rooted automorphism corresponding to (1 2 ... d). Since a has order d,
it makes sense to write a* for k € Z/dZ. Now, given a non-zero vector

e=(ey,...,eq 1) € (Z/dZ)*!, we can define recursively an automorphism
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3. GGS-groups: congruence quotients and Hausdorff dimension

b of T via
P(b) = (a®, ..., a% 1, b).

We say that the subgroup G = (a,b) of Aut 7 is the GGS-group correspond-
ing to the defining vector e. If d = 2 then there is only one GGS-group, which
is isomorphic to D, the infinite dihedral group. The second Grigorchuk
group is obtained by choosing d = 4 and e = (1,0, 1), and the Gupta-Sidki
group arises for d equal to an odd prime and e = (1, —1,0,...,0). The groups
corresponding to e = (1,0,...,0) and arbitrary d have also deserved special
attention. In the case d = 3, this group was introduced by Fabrykowski and
Gupta in [FG85]. As a reference for GGS-groups, the reader can consult Sec-
tion 2.3 of the monograph [BGS03| by Bartholdi, Grigorchuk, and Sunié¢, the
habilitation thesis [R0oz96] of Rozhkov, or the papers [Vov00] by Vovkivsky
and [Per00, [Per07] by Pervova.

Little is known about the orders of the congruence quotients G,, when
G is a GGS-group. In the case that e = (1,0,...,0) and d = p is a prime,
Suni¢ found in [Sun07] that, for every n > 2,

log, |Gal = p" 11, if pisodd,
2242, ifp=2.

Hence we may always assume that d > 3, as far as the problem of determining
|G| is concerned. To the best of our knowledge, the only other cases in which

the order of G, has been determined for every n correspond to d = 3. For
the Gupta-Sidki group, Sidki himself (see [Sid87]) proved that

logs |G| =232 41, for every n > 2.

On the other hand, for e = (1, 1), Bartholdi and Grigorchuk showed in [BGO2]

that
3" 4+2n+3

1 , for every n > 2.

log, |Gn‘ =

From now onwards, we assume that d is equal to an odd prime p, and so 7

stands for the p-adic tree. The first of our main results in this chapter is the
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determination of the order of GG,, for all GGS-groups under this assumption.
Before giving the statement of the theorem, we introduce some notation.
Recall first the definition of a circulant matrix (see Section [L.3). If e is the
defining vector of a GGS-group, then we write C'(e, 0) for the circulant matrix
C(e1,...,ep_1,0) over F, and we say that e is symmetric if e; = e,_; for all

i=1,...,p—1.

Theorem D. Let G be a GGS-group over the p-adic tree, where p is an odd
prime, and let e be the defining vector of G. Then, for every n > 2, we have
6p”_2—1 _8p"_2— (n—2)p+n-—3

p—1 (p—1)° ’

where t is the rank of the circulant matriz C(e,0),

log, |G| = tp" 2 +1—

1, if e is symmetric, 1, if e is constant,
0= and €=

0, otherwise, 0, otherwise.

Let us define I' as usual in this work and observe that, under the as-
sumption d = p that we have made, all GGS-groups are subgroups of I'.
According to Theorem 1 of [Vov((], the requirement that e is non-zero im-
plies that GGS-groups are infinite if d = p. Since they are countable groups,
their Hausdorff dimension is 0 inside the uncountable group I'.

Our second main result is related to the Hausdorff dimension of the clo-
sures of GGS-groups.

As an immediate consequence of Theorem [D] we get the Hausdorff di-

mension of the closure of any GGS-group.

Theorem E. Let G be a GGS-group over the p-adic tree, where p is an odd
prime, and let e be the defining vector of G. Then

.= (p=Dt ¢ £
dimprG = ~—+ — — — ————,
: p? P (p—1)p?

where t is the rank of the circulant matriz C(e,0),
1, if e is symmetric, 1, if e is constant,

S = and €
0, otherwise, 0, otherwise.
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3. GGS-groups: congruence quotients and Hausdorff dimension

Our proof of Theorem [D] relies on finding some kind of branch structure
inside a GGS-group G. In particular, if e is not constant, we show that G is
regular branch (see Subsection for the definition). This result had been
previously proved by Pervova and Rozhkov for periodic GGS-groups. On the
other hand, it is worth mentioning that the theory of p-groups of maximal
class plays also a crucial role in the proof of Theorem [D] particularly in the

case that e is constant.

In this chapter we adapt the paper [FAZR], that has already been submit-
ted, and whose authors are Gustavo A. Fernandez-Alcober and the author of

this dissertation.

3.2 (General properties of GGS-groups

Throughout this chapter, a and b denote the canonical generators of a GGS-
group G, and b; = b*' for every integer i. Note that b; = b ifi = j (mod p).
The images of the elements b; under the map 1 of the introduction can be

easily described:

(3.2.1)
P(bp—1) = (a®,a%,...,b,a).
We begin with some easy facts about GGS-groups.
Theorem 3.2.1. If G = (a,b) is a GGS-group, then:
(i) Stabg(1) = (b)Y = (by,...,by_1) and G = (a) x Stabg(1).
(ii) Stabg(2) < G' < Stabg(1).
(iii) |G: G'|=p* and |G : 13(G)| = p’.
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3.2. General properties of GGS-groups

Proof. One can easily check the equalities in part (i). Thus G/ Stabg(1) is
cyclic and G' < Stabg(1).

The quotient G/G' = (aG’,bG’) is elementary abelian of order at most p?.
It follows that G’ /v3(G) = ([a,b]v3(G)) has order at most p. If G' = v3(G)
then ~;(G) = G’ for every @ > 3. On the other hand, since G is residually
a finite p-group, the intersection of all the ~;(G) is trivial. Consequently
G' = 1, which is a contradiction, since b* # b by . We conclude that
|G : v3(G)| = p. Now, if |G : G'| < p then G/G’ is cyclic, and G' = v3(G).
Hence we necessarily have |G : G’| = p?, and (iii) follows.

It only remains to prove that N = Stabg(2) is contained in G’. Since
|G : G'| = p?, it suffices to prove that |G/N : (G/N)| = p* If |G/N :
(G/N)'| < p then G/N, being a finite p-group, must be cyclic. This is a
contradiction, since (aN) and (bN) are two different subgroups of order p in
G/N. (Note that (bN) is contained in Stabg(1)/N while (aN) is not.) O

Now if g € Stabg(1), it readily follows from (3.2.1) and the previous
theorem that g; € G for all ¢ = 1,...,p. Thus the image of Stabg(1) under

Y is actually contained in G x Ko G, and so
¥ (Stabg(k)) C Stabg(k — 1) x -*+ x Stabg(k — 1) (3.2.2)
for all £ > 1. Another important property of the map v is the following.

Proposition 3.2.2. If G is a GGS-group, then the composition of ¥ with

the projection on any component is surjective from Stabg(1) onto G.

Proof. Let us fix a position i € {1,...,p}, and let j € {1,...,p — 1} be
such that e; # 0. It follows from that ¢ (b;—;) and ¢ (b;) have the
entries a® and b in the ith component. Since G = (a, b) = (a%, b}, the result
follows. O

Recall that for every positive integer n, we can define an isomorphism En
from the stabilizer of the first level in Aut 7, to the direct product Aut 7,,_; X

Ko Aut 7,1, in the same way as v is defined. Since G,, can be seen as a
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3. GGS-groups: congruence quotients and Hausdorff dimension

subgroup of Aut7,, we can consider the restriction of ¥ to Stabg, (1). It

follows from ((3.2.2)) that
¥"(Stabg, (k) C Stabg,, (k—1) x -+ x Stabg,_, (k — 1).

Obviously, (G; is of order p, generated by the image @ of a. Next we deal
with G5. Let us write g for the image of an element ¢ € G in GG. Since
Gy = (a) x Stabg, (1), it suffices to understand Stabe, (1) = (bo, ..., by_1).
Observe that EQ sends Stabg, (1) into Gy x -*+ x Gy, which can be identified
with P under the linear map

@, ...,a») — (iy,...,ip,).

This allows us to consider Stabg, (1) as a vector space over F,,.

Before analyzing G5 in the next theorem, we need the following lemma
(see Exercise 4 in Section 1 of the book [Ber(8]) about finite p-groups of

maximal class, which will be also used at some other places in this chapter.

Lemma 3.2.3. Let P be a finite p-group such that |P : P'| = p*>. If P
has an abelian maximal subgroup A, then P is a group of mazimal class.

Furthermore, if go € P\ A, then:
(i) If a € A\ (P), then vo(P)/v3(P) is generated by the image of [a, go].

(i) Ifi > 2 and a € v(P) \ vi41(P), then vip1(P)/vi+2(P) is generated by
the image of |a, go).
Theorem 3.2.4. Let G be a GGS-group with defining vector e, and put
C = C(e,0). Then:
(i) The dimension of Stabg, (1) coincides with the rank t of C.
(i) Go is a p-group of mazimal class of order p'™!.

Proof. (i) If g € Stabg, (1) and @2(57) = (a",...,a"), where we consider the
exponents 7y, ...,%, as elements of F,,, we define

=2

T(5) = (ir, ..., ip) €T
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3.2. General properties of GGS-groups

Observe that ¥~ is injective.

By (2.

Eg(bo) = (61, €2,...,€p—1, O) = (e> 0)

coincides with the first row of C'. Since the components of the rest of the b;
are obtained by permuting cyclically those of by, and since C' = C(e,0), it
follows that @2(51) is the (7+1)st row of C. Thus the dimension of Stabg, (1)
coincides with the dimension of the subspace of F? generated by the rows of
C, i.e. with the rank ¢ of the matrix C.

(ii) We have

|Ga| = |G : Stabg, (1)|| Stabg, (1)| = p - p* = p'*.

On the other hand, it follows from (ii) and (iii) of Theorem that |Gs :
G| = p?. Since Stabg, (1) is an abelian maximal subgroup of G, we conclude
from Lemma that G5 is a p-group of maximal class. ]

As a consequence, we can improve part (ii) of Theorem [3.2.1}
Corollary 3.2.5. If G is a GGS-group, then Stabg(2) < 73(G).

Proof. Since the defining vector e of G is different from (0, ...,0), it is clear
that the rank ¢ of the matrix C(e, 0) is at least 2. It follows from the previous
theorem that G5 = G/ Stabg(2) is a p-group of maximal class of order greater
than or equal to p3. Thus |Gy : 13(G2)| = p* = |G : 13(G)|, and consequently
Stabg(2) is contained in v3(G). O

We have seen in Theorem that G' < Stabg(1). Next we want to
characterize which elements of Stabg(1) belong to G’. This goal will be
achieved in Theorem [3.2.10| If g € Stabg(1) = (bo,...,by—1), then we can

write ¢g as a word in by, ..., b,_1, i.e. we can write g = w(by, . ..,b,—1), where
w = w(xo,...,Tp—1) is a group word in the p variables x, ..., x,_;.
Definition 3.2.6. Let w be a group word in the variables z, ..., z,_1, where

p is a prime. Then:
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3. GGS-groups: congruence quotients and Hausdorff dimension

(i) The partial p-weight of w with respect to a variable z;, with 0 <i < p—
1, is the sum of the exponents of x; in the expression for w, considered

as an element of [,

(ii) The total p-weight of w is the sum of all its partial p-weights.

It is not difficult to give examples showing that the representation of an
element g € Stabg (1) as a word in by, ..., b,—1 is not unique. Our first step
towards the proof of Theorem will be to see that, however, the partial
and total p-weights are the same for all word representations.

Let g = w(by, ...,b,_1) be an arbitrary element of Stabs(1), and suppose
that the partial p-weight of w with respect to x; is r;, for i =0,...,p—1. It

follows from (|3.2.1)) that
@b(‘g) = (amlwl(bo, c. ,bp_l), . ,ampwp(bo, ce ey bp_l))7 (323)

where each w; is a word of total p-weight r; (and where 7, is to be understood
as rg), and

m;=(rory ... 7p1)C". (3.2.4)

Theorem 3.2.7. Let G be a GGS-group, and let g € Stabg(1). Then the
partial and total p-weights are the same for all representations of g as a word

m bo,...,bpfl.

Proof. It suffices to see that, if w is a word such that w(by,...,b,—1) = 1,
then the total p-weight of w is 0, and the partial p-weight r; of w with respect
to x; is equal to 0, for every i = 0,...,p— 1. Obviously, the second assertion

implies the first one, but the proof will go the other way around.

As in (3.2.3), we write
@D(Ld(bo, . ,bp_l)) = (amlw:[(bo, o ,bp_l), . ,ampwp(bo, c. ,bp_l)). (325)

Since this element is equal to 1, it follows that m; = 0 for ¢ = 1,...,p.
According to (3.2.4)), this means that

(ror1 ... 7p_1)C'=(00 ... 0).
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Now, since tk C' = rk(C' | 1) by Lemmal|l.3.1] we also have (rg 7y ... r,_1)1 =
0, that is,
7’0+T1+"'+7’p_1 =0.

This proves that the total p-weight of w is 0.
Now we return to (3.2.5). Since w(by,...,b,—1) = 1 by hypothesis, then
we also have w;(bg,...,b,—1) = 1 for all i = 1,...,p. Now, since the total

p-weight of w; is r;, it follows from the previous paragraph that r, =0. O

The independence of the partial and total p-weights from the word rep-

resentation allows us to give the following definition.

Definition 3.2.8. Let G be a GGS-group, and let g € Stabg(1). We define
the partial weight of g with respect to b;, and the total weight of g, as the

corresponding p-weights for any word w representing g.

We prefer to speak simply about weights instead of p-weights in the case
of an element g € Stabg(1), since all elements b; (with respect to which the

weights are considered) have order p. Now the following result is clear.

Theorem 3.2.9. Let G be a GGS-group. Then the maps from Stabg(1) to
F, sending every g € Stabg(1) to its partial weight with respect to one of the

b; or to its total weight are well-defined homomorphisms.

Theorem 3.2.10. Let G be a GGS-group. Then the derived subgroup G’

consists of all the elements of Stabg (1) whose total weight is equal to 0.

Proof. The map ¢ sending each element of Stabg(1) to its total weight is
a homomorphism onto the abelian group F,, and consequently G' < ker 9.
Since |G : G'| = p* and |G : Stabg(1)| = | Stabg (1) : kerd| = p, the equality
follows. [

Definition 3.2.11. Let G be a GGS-group. If g € Stabg(1) has partial
weight r; with respect to b; fori = 0,...,p—1, we say that (ro,...,7,-1) € F}

is the weight vector of g.
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3. GGS-groups: congruence quotients and Hausdorff dimension

As we next see, we can analyze the subgroups Stabg(2) and Stabg(3) by

using the weight vector.

Theorem 3.2.12. Let G be a GGS-group with defining vector e, and put
C = C(e,0). If the weight vector of g € Stabg(1) is (rg,...,7p-1), then:

(i) We have g € Stabg(2) if and only if (ro ... 7,-1)C' = (0 ... 0).
(ii) If g € Stabg(3) then (ro,...,mp—1) = (0,...,0).

Proof. (i) If we write 1(g) as in (3.2.3)), then g € Stabg(2) if and only if
m; = 0in [, for every ¢ = 1,...,p. Now, by , this is equivalent to the
condition (rg ... r,—1)C' = (0 ... 0).

(ii) Again we use the expression in (3.2.3). If g € Stabg(3) then
wi(bg, ..., by_1) € Stabg(2) for all i = 1,...,p. As mentioned above,
wi(bg,...,by_1) is an element of total weight r;. Let (sg,...,s,_1) be the
weight vector of this element, so that r; = so+ --- + s,—1. Then, by (i), we
have (sg ... sp-1)C' = (0 ... 0). Since rkC' =rk(C'| 1) by Lemma[1.3.1] it
follows that r; = so + -+ + 5,1 = 0, as desired. O

One may wonder whether the converse holds in (ii) of the previous theo-
rem, i.e. if the weight vector of an element is (0, . .., 0), does it lie in Stabg(3)?

We make things clearer in the following theorem.

Theorem 3.2.13. Let G be a GGS-group. Then Stabg(1)" consists of all
elements of Stabg(1) whose weight vector is (0,...,0). Furthermore, we
have |G : Stabg(1)'| = pP+.

Proof. The map p which sends every element of Stabg(1) to its weight vec-
tor is a homomorphism onto Fb. Thus |Stabg(1) : kerp| = pP. Since FP
is abelian, it follows that Stabg(1) < kerp. On the other hand, since
Stabg(1) = (bo,...,b,—1) and every b; has order p, we have |Stabg(1) :
Stabg(1)'] < pP. Hence ker p = Stabg(1)" and | Stabg(1) : Stabg(1)'| = pP.
Since |G : Stabg(1)| = p, we are done. O
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In particular, we have Stabg(3) < Stabg(1)’. Once we prove Theorem
[D] it will follow that |G : Stabg(3)| = p'+1=%, where ¢ is the rank of C(e,0)
and ¢ is 1 or 0, according as e is symmetric or not. Since t is always at least
2, we have |G : Stabg(3)| > pP*! in every case. Hence Stabg(3) is always
a proper subgroup of Stabg(1)’, and the converse of (ii) in Theorem
does not hold.

Next we prove a result which will allow us to reduce, for the calculation
of the order of congruence quotients and of the Hausdorff dimension, to the
case of GGS-groups with defining vectors of the form e = (1,e3,...,¢€,-1).

We need the following lemma.

Lemma 3.2.14. Let p be a prime, and let 0 = (1 2 ... p). Assume that

a € S, satisfies the following two conditions:
(i) a normalizes the subgroup (o).
(i) a(p) = p.
Then, for everyi=1,...,p—1, if a(i) = j we have a(p — 1) =p — j.

Proof. 1f we think of S, as the set of permutations of the field F,, then o
corresponds to the map ¢ — ¢+1, and the normalizer of () in S, corresponds
to the affine group over F, (see Lemma 14.1.2 of [Cox04]). Thus a(¢) = al+b
for some a € F and b € F,. Since a(p) = p, it follows that b = 0, and so

a(l) = al for every ¢ € F,. Hence « is a linear map and, as a consequence,
a(p— i) = a(—i) = —a(i) = —j = p— j.
O]

We say that an automorphism f of 7 has constant portrait if f has
the same label at all vertices of 7. By formula for the labels of a
composition, the set of all automorphisms of constant portrait is a subgroup
of Aut 7.
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3. GGS-groups: congruence quotients and Hausdorff dimension

Theorem 3.2.15. Let G be a GGS-group with defining vector e =
(€1,...,€p—1), and assume that e, # 0. Then there exists f € AutT of
constant portrait such that L = G7 is a GGS-group whose defining vector

e = (€),...,e, ) satisfies:

(i) € is a permutation of the vector e/ey, that is, there exists o € S,y

such that €] = eqy/ex foralli=1,...,p—1.
(ii) a(1) =k, and so €| = 1.

(i) If a(i) = j then a(p —1i) = p—j. In other words, two values which are
placed in symmetric positions of € are moved (after division by ey) to

symmetric positions of €. Thus €' is symmetric if and only if e is.
(iv) tkC(e,0) =k C(€’,0).
Furthermore, we have |G,| = |L,| for every n, and dimp G = dimr L.

Proof. Observe that there exists a permutation 3 € S,, in fact only one, that
normalizes the subgroup (o) and such that G(k) = 1 and ((p) = p. Indeed,
since o = (B(1) ...B(p)) and the positions of 1 and p are already fixed in
this last tuple, there is only one way to choose the rest of the images of 3 if
we want to obtain a power of o. Let  be defined by the condition ¢? = o,
and set o = 371, Note that a(1) = k and that, by Lemma [3.2.14] if a(i) = j
then a(p—i) =p—7.

Now we define an automorphism f of 7 by choosing the labels at all
vertices of 7 equal to . We claim that L = G/ satisfies the properties of

the statement of the theorem. We have

(9 )w) = B 9u-1 B

for every g € G and every vertex v of the tree. It readily follows that a/ = a’.
We now consider ¢ = b/. Let S be the set of all vertices of the form p.”.pi,
wheren > 0and 1 <i <p-—1. If v € S, then we have f(v) = p.?.p3(i), and
consequently f~(v) = p.”.pa(i). Thus

Clo) = Bilb(p...pa(i))ﬂ = (O’e“(“)B = g Cal)
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3.2. General properties of GGS-groups

in this case. On the other hand, if v € S, then also f~'(v) € S, and so we
have bf-1(,)) = 1 and c¢(,) = 1. Thus c is the automorphism given by the

recursive relation

P(e) = ("W, ... a" =D c).

Now, let £ be the inverse of req 1) modulo p, and put 0’ = c’. Then L = (a,V'),

where b’ is the automorphism defined by
W) = (a,...,a%%1,b),

i.e. L is the GGS-group with defining vector €. This proves (i), (ii), and
(i)

Let us now check (iv). If C' = C(e,0), C" = C(¢€’,0) and we define e, = 0,
then

ng = €a(j—i+1)/ €k = €a(j)—ali)+a(1)/€k = Ca(i)—a(1)+1.a(j)/ €k

since we know that a is a homomorphism by the proof of Lemma [3.2.14]
(Here, all indices are taken modulo p between 1 and p.) By observing that

the maps ¢ — a(i) — (1) + 1 and j — a(j) are permutations of F,, we
conclude that rk C' = rk C".

Finally, since G and L are conjugate, we obviously have |G, | = |L,|, and
by Lemma [1.2.6] also dimr G = dimp L. O]

We want to stress the fact that the automorphism f conjugating G' to L
in the previous theorem has constant portrait. This has nice consequences,

such as the following one.

Proposition 3.2.16. Let J and K be two subgroups of Aut 7, where J is
contained in Stab(1). If f € AutT has constant portrait, then we have

K x -2 x K Ca(J)

if and only if

79



3. GGS-groups: congruence quotients and Hausdorff dimension

Proof. Since f~! is also an automorphism of constant portrait, it suffices to
prove the ‘only if” part. Let 3 be the permutation appearing at all labels of f.
Then we can write f = ch, where c is the rooted automorphism corresponding
to @ and h € Stab(1) is such that ¥(h) = (f,..., f).

Let us now consider an arbitrary tuple (ki, ..., k,), with k; € K for every
i =1,...,p. By hypothesis, there exists j € J such that ¢(j) = (k1,...,kp).
Then ¥(5¢) = (kg-1q1), - - -, kg-1¢p)), and consequently

V(i) = (VW = (ks kar) T = (R k)

Clearly, this implies that K/ x --- x K/ C(J7). ]

The previous proposition will be useful when we want to find a branch

structure in a GGS-group. The same can be said about the following result.

Proposition 3.2.17. Let G be a GGS-group, and let L and N be two normal
subgroups of G. If L = (X) for a subset X of G, and (z,1,...,1) € ¥(N)
for every x € X, then

Lx -2 x L Cy(N).

Proof. By Proposition if g € G there exists h € Stabg(1) such that
the first component of ¥ (h) is g. Since (z,1,...,1) € ¢(N) and N is normal
in G, it follows that (29,1,...,1) € () for every x € X and g € G. Hence

Lx {1} x 70 x {1} C o),

since L= (29 |z € X, g € G).
Now, if ¢(n) = (1,0, ..., L,) then ¥(n®) = (€y, 01, ..., €,—1). As a conse-

quence,
{1} <o x {1} x Lox {1} x -+ x {1} S 9(N),

where [ may appear at any position. The result follows. O
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3.8. GGS-groups with non-constant defining vector

3.3 GGS-groups with non-constant defining

vector

In this section we prove Theorems [D] and [E] in the case that the defining
vector e of the GGS-group G is not constant. As it turns out, the key is to

prove that G has a certain branch structure. Recall the concepts given in

Subsection [L.1.4]
It is well-known (and an immediate consequence of Proposition (3.2.2)
that every GGS-group G is self-similar and spherically transitive. We next

see that, if e is not constant, then G is regular branch over v3(G).

Lemma 3.3.1. Let G be a GGS-group with non-constant defining vector e.
Then

$((Staba (1)) = 74(G) x ¥+ x 34(G).
In particular,
15(G) x - x 15(G) € $((E)
and G is a regular branch group over v3(QG).

Proof. Since 1(Stabg(1)) is contained in G x -*- x G, it clearly suffices to
prove the inclusion O. By Theorem [3.2.15] and Proposition |3.2.16] we may

assume that e = (1,es,...,€,_1). If ¢,01 = 0 then

»(b) = (a,...,a®*2 1,b),

and consequently

¥ ([bo, b1, bo]) = ([a, b,al,1,...,1)
and

W ([bo, b1,b1]) = ([a, b,0],1,...,1).
Since G = (a,b), it follows that v3(G) = ([a,b,al, [a,b,b])¢, and then by
Proposition [3.2.17, we have 13(G) x -+ x 73(G) C ¢(y3(Stabg(1))). Thus

we may assume that e,_; # 0.

Now we consider the following two cases separately:
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3. GGS-groups: congruence quotients and Hausdorff dimension

(i) There exists k € {2,...,p — 2} such that (ex_1,ex) and (eg, €x+1) are

not proportional.
(i) (ex—1,ex) and (e, exy1) are proportional for all k =2,...,p — 2.

Observe that if p = 3 then case (ii) vacuously holds.
(i) Let us put

— Kek —Ck—1
Ik = bpfkqtlbpfk

for 2 <k <p—2, so that

W(gy) = (ak—er1em ).

(The intermediate values represented by the dots are not necessarily 1 in
this case.) Since (ej_1,ex) and (e, exy1) are not proportional, we have e —

ex_1€x+1 # 0. Hence there is a power g of g, such that

On the other hand, since
w(blb;fﬁ’l) = (ba=®%=1 ... 1),

with the help of g we can get an element h € Stabg(1) such that

Consequently,
Y([bo, b1, g]) = ([a,b,a],1,...,1)
and

w([bo,bu h]) = ([a’b7 b]? | 1)7

and the result follows as before from Proposition |3.2.17]
(ii) Since e; = 1, it follows that e; = 5 * for every i = 1,...,p—1. (Note

that this is valid all the same if p = 3.) Hence e = (1,m, m?, ..., m?~?) with
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3.8. GGS-groups with non-constant defining vector

m # 1, because e is not constant. Since e,_; # 0, we also have m # 0, and

consequently mP~! = 1. Then

W(boby™) = (ab™™,1,...,1,ba™")

and
Y(biby™) = (ba ' ab™™ 1,...,1).
Hence
U([bo, b1, b165™)) = ([a, b,ba™"],1,...,1)
and

(b5, b1, b1 ™)) = ([a,b,ab™™], 1,...,1).
Now, since G = ([a, b])¢ and (ab™™, ba~') = (b'=™ ba~1) is the whole of G
(at this point, it is essential that m # 1), it follows that
v3(G) = ([a, b, ab™™], [a, b, ba*])C.
Thus the result is again a consequence of Proposition [3.2.17] O

As a consequence of the previous lemma, we can show that, for e non-
constant and n > 3, there is a close relation between Stabg(n) and Stabg(n—

1) in a GGS-group G.

Lemma 3.3.2. Let G be a GGS-group with non-constant defining vector e.

Then, for every n > 3 we have
¥(Stabg(n)) = Stabg(n — 1) x -+ x Stabg(n — 1)

and

—n+1

(8

Proof. Clearly, it suffices to prove the first equality. By using Corollary
and Lemma |3.3.1, we have

(Stabg,,,(n)) = Stabg, (n — 1) x -*- x Stabg, (n — 1).

Stabg(2) x -%- x Stabg(2) C 73(G) x -~ x v3(G) C ¥ (5(G)).

Thus Stabg(n—1) x - - - x Stabg(n — 1) is contained in the image of Stab (1)
under 1 for all n > 3, and the result follows. ]
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3. GGS-groups: congruence quotients and Hausdorff dimension

If the vector e is non-symmetric, we can improve Lemma [3.3.1] as follows.

Lemma 3.3.3. Let G be a GGS-group with non-symmetric defining vector.

Then
p

W(Stabe(1)) =G x X x @

In particular,
G x-Lox G C (@)
and G is a reqular branch group over G'.

Proof. By Theorem3.2.15|and Proposition|3.2.16, we may assume that e; = 1

and e,_; # 1, since e is non-symmetric. Let us write m for e,_;.

By using (3.2.1)), we get

?ﬁ([bo, bl]) - ([a7 b]v 17 ceey 17 [bv am])
[@,0),1,...,1,[a,0]™) (mod ~5(G) x -*+ x 75(G)),

(
@Z)([bp—l? bO]m) = (17 s L [b’ am]m’ [CL, b]m)
(

(b, a™™ " [a, o)™ ' 1,...1)
(la, b7 Ja, 0™, 1,...,1)  (mod ~3(G) x -~ x v3(G)).

Y([by, bo]™ )

Since m? = m (recall that m € [F,), if we multiply together all the expressions

above, we obtain that

W([bo, ba][by—1, bo)™ . . . [b1, o)™ ") = ([a, b)) ™, 1, ..., 1)
(mod 3(G) x -*+ x 73(G)).

If we use the inclusion
73(G) x ¥+ x 73(G) € ¢p(Stabg(1)),
which is a consequence of Lemma [3.3.1] we get
([a,0]'"™,1,...,1) € 1(Stabg(1)").
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3.8. GGS-groups with non-constant defining vector

Now, since G = (a,b) and m # 1, it follows that G’ is the normal clo-
sure of [a,b]'™™. By Proposition [3.2.17, we conclude that G’ x --- x G’ C

W (Staba(1Y). O

Now we can proceed to calculate the order of G,, for every n > 1, and as
a consequence, to obtain the Hausdorff dimension of G in T, provided that
the defining vector e is not constant. We deal separately with the following
two cases: (i) e is not symmetric; (ii) e is symmetric and not constant. In

both cases, the key is to determine the order of Stabg,(2) and to use Lemma

3.3.2 We begin by case (i).

Theorem 3.3.4. Let G be a GGS-group with non-symmetric defining vector
e. Then
| Stabe, (2)| = p',

where t is the rank of C(e,0).

Proof. By Theorem , we may assume that e; = 1 and e,_; # 1. For
simplicity, let us write C' for C(e,0). Since Stabg,(2) = Stabg(2)/ Stabg(3),
we are going to study the image of Stabg(2) under the canonical epimorphism
w3 : Aut 7 — Aut 73 that takes G onto Gj.

Let g be an arbitrary element of Stabg (1), and let (ro,...,r,—1) denote
the weight vector of g. By Theorem , we have g € Stabg(2) if and only
if

(ror ... 7p—1)C=(00 ... 0).

Since the rank of C' is ¢, this system has p~* solutions, which we denote by
r® = (T(()i), . ,T(i) ),

fori=1,...,pP"". We may assume that »™) = (0,...,0).

Each solution 7 determines a subset R® of Stabg(2), consisting of all
the elements whose weight vector is ). Put S® = m3(R®). By the discus-
sion in the previous paragraph, we know that Stabg,(2) is the union of all

the S® for i =1,...,p"*. We will prove the following:
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3. GGS-groups: congruence quotients and Hausdorff dimension

(i) If i # j then S® and SV are disjoint. (By Theorem we know
that R® and RY) are disjoint, but we have to rule out the possibility

that an element in R® and an element in RY) have the same image in

Gs.)
(ii) |S@] = prt=D for all i =1,...,pP~"

Once (i) and (ii) are proved, it readily follows that | Stabg,(2)| = p'*~Y, as
desired.

We begin by proving (i). For this purpose, assume that g € R® and
h € RY) are two elements with the same image in G'3. Then gh™ € Stabg(3)
and, by Theorem [3.2.12] the weight vector of gh™ is (0,...,0). Since the
weight vector defines a homomorphism from Stabg(1) to F?, it follows that
r® =0 and so i = j, as desired.

Now we proceed to the proof of (ii). By definition, each S® is non-
empty. If h; is an element of S, then it is clear that S® = h,SM. Thus
S| = |SW]|, and it suffices to see that S™ has the desired cardinality. Let g
be an arbitrary element of Stabs(2). According to , we have g € R if
and only if each component of ¢ (g) has total weight equal to 0. By Theorem
[3.2.10], this is equivalent to 1(g) lying in G’ X --- x G'. On the other hand,
since G’ < Stabg(1), we have ¢~} (G' x --- x G') < Stab(2). Hence

RY =GNy G x--- x G). (3.3.1)

Note that this equality is valid for any defining vector e. Now, since we are
working under the assumption that e is non-symmetric, we have G’ x - -+ X
G' < 9¥(G') by Lemma Thus we conclude that R = ¢~(G'x---x G')

in this case or, equivalently, that

YRV =G x - x G
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3.8. GGS-groups with non-constant defining vector

We consider now the following commutative diagram:
RO _m S

wl W (3.3.2)

/ ) T2 X X2 G/ G/
G x G Stabe(2) " Stabe(2)’

where w5 denotes reduction modulo Stabg(2). (Take into account that G’
contains Stabg(2) by Theorem [3.2.1]) By the discussion of the preceding
paragraph, the left vertical arrow of the diagram is surjective. Consequently,
the right vertical arrow is also surjective, and since it is obviously injective,

it follows that it is a bijective map. In particular,

|1SW| = |G’ : Stabg(2)P.

Now, by Theorems3.2.1|and|3.2.4] we have |G : G| = p? and |G : Stabg(2)| =
p''. Thus |G’ : Stabg(2)| = p'~!, and we conclude that [SM)| = pPt=1)  as
desired. ]

Theorem 3.3.5. Let G be a GGS-group with non-symmetric defining vector
e. Then
log, |G| = tp" 2+ 1, for everyn > 2,

where t is the rank of C(e,0), and
(p— 1)t

P
Proof. We argue by induction on n > 2. By Theorem [3.2.4] we have |G| =
p'™L. Suppose now that n > 2 and that the result is true for n — 1. By using

dimr a =

Lemma [3.3.2, we have

| Stabg, (n — 1)| = | Stabg, , (n — 2)|P = - -+ = | Stabg, (2)[”"

Since | Stabg, (2)| = p!®~Y) by Theorem we conclude that
(Gl = [Groa|| Stabg, (n — 1) = p#" 1 p™ ) =

as desired. Finally, the value of dimp G follows directly from (1.2.3)). [
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Next we consider the case when the vector e is non-constant and symmet-
ric. As in the non-symmetric case, the key is to obtain the order of Stabg,(2)
and to use Lemma [3.3.2

Theorem 3.3.6. Let G be a GGS-group with symmetric non-constant defin-
ing vector e. Then
| Stabg, (2)] = p'®~ V1,

where t is the rank of C(e,0).

Proof. Let 7, R® and S® for i = 1,...,p?~* be as in the proof of Theorem
The plan of the proof is the same as in that theorem. The difference

is that, in this case, we need to see that
|| = prt=D-1,

For that purpose, it suffices to prove that the image of S under the injective
map 3 is a subgroup of index p of
G’ G’
S — X “ .. X _—
Stabg(Q) Stabg(Q)
We know from (3.3.1) that RV = G Ny~ (G’ x --- x G') consists of

all elements of G whose weight vector is (0,...,0). According to Theorem
3.2.13, we have R(Y) = Stabg(1)’. Hence
RW = ([b;,b;]" | 0<i,5 <p—1, h € Stabg(1)). (3.3.3)

Let us consider again the commutative diagram in (3.3.2)). Since
ker(m x - -+ X ) = Stabg(2) X - -+ X Stabg(2) = 1 (Stabg(3))

by Lemma [3.3.2) and since Stabg(3) < R by Theorem [3.2.12] it follows
that the index

G G’ N
Stabe(2) " Stabe(2) (5] =
(7 X X TG X x G (7 x x 7)(Y(RW))]
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3.8. GGS-groups with non-constant defining vector

is the same as

IG' % - x G p(RW)].

Thus it suffices to prove that this last index is p.

Let ¢ the map from R to G’ /y5(G) x-* - x G’ /v5(G) which is obtained by
first applying ¢ and then reducing every component modulo v3(G). Observe
that G’ /v3(G) x -*+ x G’ /~3(G) can be seen as a vector space of dimension p
over F,, since |G’ : v3(G)| = p. Since we may assume that e; = 1, and since

ep—1 = €1, we have
W([bi, bisa]) = (1,...,1,[b,al,|a,b],1,...,1), fori=1,...,p—1,

where [b, a] appears at the ith position. Now, G'/v3(G) is generated by the
image of [b, a], and so it readily follows that the dimension of ¥)(RW) is at
least p — 1. Hence

G’ x - x G p(RY)(13(G) x -+ x 15(G))| = 1 or p.

Since v3(G) x - - x 13(G) < (RMW) by Lemma [3.3.1) and (3.3.1]), we get

IG' x - x G p(RW)| =1 or p.

Thus it suffices to see that ([a,b],1,...,1) & ¥(RWY) in order to conclude
that |G’ x --- x G’ : (RW)| = p, as desired.
Let A : Stabg(1) — F, be the homomorphism given by

where (rg,...,7,—1) is the weight vector of g. If g € Stabg(1) then the
weight vector of ¢” is also (rg,...,7, 1), and the weight vector of g2 is

(Tp—1,70,---,7p_2). Hence A\(g?) = A(g), and if g € G', then furthermore

)\(ga) = iTi_l = Ti—1 + (Z — 1>Ti—1 = /\(Q),
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since rg + -+ - +r,_; = 0 by Theorem [3.2.10, It follows that A(¢") = A(g) for
every g € G' and h € G.

Now we define A : G’ x --- x G — F,, by means of

Algr, -, 9p) = Mar) + -+ Mgp)-

By the preceding paragraph, we have
Ag") =A(g), forallge G x---xG andheGx - xG.

Hence ker A is a normal subgroup of G x --- x G.

For every 1 <17 < j < p, we have

V(b bs]) = (1,...,1,[b,a%],1,..., 1, [a¥=,b],1,...,1) =
(1,..., 1, e, 1,0 1,0 bo, 1,000, 1),

€5 —

where the non-trivial components are at positions ¢ and j. Since e is sym-

metric, we have e,_; = e;_;, and consequently

A(p([bi; bj])) = €imj — €j—i = 0.

Hence ([, b;]) € ker A, and since ker A is a normal subgroup of G x - -- X G,
it follows from (3.3.3) that 1(RM) < ker A. Since

A([(l, b]’ 17 ctty 1) = A(bl_lb()a ]-) ctty 1) = _17
we deduce that ([a,b],1,...,1) € ¥ (RM), which completes the proof. ]

Theorem 3.3.7. Let G be a GGS-group with a non-constant symmetric
defining vector e. Then

n—2 _ 1
log, |G| = tp" Tt 41— . for everyn > 2,

p—1
where t is the rank of C(e,0), and

— -t—-1
ST
p
Proof. The proof is completely similar to that of Theorem [3.3.5] O
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3.4 GGS-groups with constant defining vec-

tor

In this section, we deal with the case where the defining vector is constant,

say e = (e,...,¢e), where e € FY. Let m be the inverse of e in F)/, and
b* = b™. Then G = (a,b*), and ¥ (b*) = (a,...,a,b*). For this reason, we
may assume in the remainder of this section that e = (1,...,1).

We begin by defining a sequence of elements of GG that will be fundamental
in the sequel. We put yo = ba~! and, more generally, y; = ygi for every integer
. Thus yf‘j = Yy, for all ¢, 7 € Z. Also,

b

aaq 1
Y=yt =yl (3.4.1)

Observe that y; = y; if i = j (mod p), so that the set {vo,...,yp—1} already
contains all the y;. In the following lemma, we collect some important prop-
erties of the elements y;. We adopt the following convention: given a vector v
of length p and an integer 7, not lying in the range {1, ..., p}, the ith position
of v is to be understood as the jth position, where j € {1,...,p} and i = j
(mod p).

Lemma 3.4.1. Let G be a GGS-group with constant defining vector. Then:

() Yp-1Yp-2--- Y190 = 1.

1

(i) If z; is the tuple of length p having yo at position i — 2, y; = at position

1 — 1, and 1 elsewhere, then
O(lyiy;]) = ziz; ', for every i and j. (3.4.2)
(iii) We have

[yia 3/]'] = [Qm yileyifh yifZ] ce [yj+1, yj]v for every i > j. (3-4-3)
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Proof. (i) We have

Yp1Yp2- - 1Yo = a P VbaP 2 q=P=DpaP =3 q7h . ba !
=q P Vppgt = 1.
(ii) Clearly, it is enough to see the result for ¢ > j. On the other hand,

since both sequences (y;) and (z;) are periodic of period p, we may assume

that i and j lie in the set {3,...,p+2}. If r =75 —3 and k =i — r, then

I

i, us) = W vs ] = [y, vs

Y

and so ¥([y;, y;]) is the result of applying to 1 ([yk, y3]) the permutation which

moves every element 7 positions to the right. It readily follows that it suffices

to prove (3.4.2)) for [yx, ys] with 4 < k <p+ 2.

Since y; = a~*ba*"! = a~'b;_; for every i, we have

[k ys] = bilyaby ' br-ra™ by = Bl by byaby = (b7 'br2)™ ! (0L D).
(3.4.4)
Now, it follows from ({3.2.1]) that
k—2

w((bl_lbk—2)bk71) = (?h_l, 17 ]?747 17 Y1, 17 HR) 1)((17

(ys L 1,04 L y0,1,..0,1), f4<k<p+1,

,a,b,a,...,a)

(yl_ly2_1yl717"'717y2)7 1fk:p+2
Here, we have used that y? = y3' by (3.4.1)). Similarly,

¢(b_1 b ) o (17y1717’?74’17173/171717’”71)7 1f4§k§p—|—1,
k—1Y2) —
(y;17y1717"‘71>7 lfk:p+2

By taking these values to (3.4.4), we obtain that ¥([ys,ys]) = 2xz3 ', as
desired.

(iii) This follows immediately from (ii), since

Oy, ys]) = (22 ) (zicaz ) - (zi4az)
= ([yi, Y1)V ([Wi-1, yi2]) - - (Y41, 95])
= ¢([?Ju yifl][yifla yzez] . [yj+1, yj])-
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3.4. GGS-groups with constant defining vector

]

Next we introduce a maximal subgroup K of G that will play a key role

in the determination of the order of (G,, in the case that e is constant.

Lemma 3.4.2. Let G be a GGS-group with constant defining vector, and let
K = (ba™1)¢. Then:

(i) G < K and |G : K| =p.

(i) K = (Yo, y1s---»Yp-1) and K' = {[y1,40])°.

(i) K/ x -*-x K' Cy(K') C(@) C K x-*-x K. In particular, G is a

weakly reqular branch group over K'.

(iv) If L = ¢ K' x -*- x K') (which, by (iii), is contained in K'), then

the conjugates [yiH,yi]bj, where 0 < i,j < p—1, generate K’ modulo

L.

Proof. (i) Since [a,ba™'] = [a,b]* € K and K is normal in G, it follows
that G’ is contained in K. Then |G : K| =|G/G' : K/G'| = p.

(i) Let us first prove that K = (yo,%1,...,Yp—1). For this purpose, it
suffices to see that N = (yo,v1,...,Yp—1) is a normal subgroup of G. This is

clear, since y¢ = y;41 and y° = yit, for every i.
It follows that

K'={lyi,y;] |1 0<j<i<p—1% =(lys,y;] |0<j<i<p—1)°,

where the second equality holds because K’ is normal in G. By , every
commutator [y;,y;] with 0 < 7 <7 < p —1 can be expressed in terms of the
[ yr_1] with & = 1,...,p — 1. Since [yr, ys_1] = [y1,v0]* ', we conclude
that K" = {[y1, yo])©.

(iii) Let us first prove the inclusion (G") C K x . x K. We have

Y([b,a)) =) = (ata ... a0 (b,a,. .., a,a)
=(a'b1,... . 1,b7a) e Kx -\ x K
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Now, since K is normal in G, it readily follows that
W([b,al?) € K x -*- x K, for every g € G.

This proves the desired inclusion.

Now we focus on proving that K’ x Lox K C Y(K'). By Proposition

3.2.17 and (ii), it suffices to see that
([yhyo]) 17 ey ]-) € ¢(K/)

We consider separately the cases p > 5 and p = 3.
Suppose first that p > 5. By using (3.4.2), we have

Uy, vel) = (v, 1,y Ly, yy 'yn )

and
¢([y3,y4]) = (yz,yflygl,yl, 1,..., 1).
If & = [[ys, ya], [y1, y2]], it follows that

77Z}(k:) = ([y2a yl]a 17 T 1)7
since p > 5. Hence
(fyr,g0l, 1, 1) = w(K) € (),

as desired.

Assume now that p = 3. We have

U([y1,v0)) = (v1vo. vo 'y ),

since yo1190 = 1, by (i) of Lemma m Hence

¢([y07 yl]b) = (yalyflv Yo, yl)(a,a,b) = (yflygla Y1, yll)>
= ((y21) " w1, 98") = (Yo, y1, (o 'wi YY)
= (Yo, 1,41 Yo ),
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and
([y1: w0l 1, 1) = ¥([yo, y1]" w1, wo)) € Y(K7),

which completes the proof.
(iv) Let us consider an arbitrary element g € G, and let us write g = ha't’

for some i,j € Z, h € G'. Then

a'b’

1, v0)? = ([, vollyr, o, 1) = [y1, 90" = [yisr, 4i)”  (mod L),

since ¥ ([y1, yo, h]) € Y(G") C K'x LXK’ by (iii). Now, since the conjugates
[y1, o] generate K’ by (ii), the result follows. O

In the following results, we consider the action of an element of G by
conjugation as an endomorphism of K /K’ which allows us to multiply several

conjugates of an element of K, modulo K’, by adding the elements by which

. : o . : . a1
we are conjugating. This gives a meaning to expressions like g!Tet+e¢"™" ¢

K’ for an element g € K.

Lemma 3.4.3. Let G be a GGS-group with constant defining vector, and let
K ={ba1)C. Ifg € K then

ceedgP—1
g1+a+ +a c K/.

Proof. The map R sending g € K to gtot t 'K’ is a well-defined ho-
momorphism from K to K/K', and we want to see that R is the trivial
homomorphism. Since K = (yo, ..., yp-1) by (ii) of Lemma [3.4.2] it suffices
to check that y; € ker R for every i. Now,

R(yi) = yityi1 - Ypr¥o-- - Yir K = Yp 1yp 2. .. nyo K = K’
by (i) of Lemma [3.4.1, and we are done. O

Lemma 3.4.4. Let G be a GGS-group with constant defining vector, and let
K = (ba™1)¢. If g € K’ and we write ¥(g) = (g1,-..,9p), then:

(1) gp9p-1-.-91 € K.
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3. GGS-groups: congruence quotients and Hausdorff dimension

(i) TI gf ™ e K

Similarly, if g € K'Stabg(n) for some n > 1, then both g,g,—1...g1 and
Hf:_ll gf‘+“2+"'+ai lie in K' Stabg(n — 1).

Proof. We first deal with the case that g € K’. Let us consider the following

two maps:
P: Kx-"xK — K/K
(glv"'agp) — gp---glKla
and
Q : Kx-"xK — K/K'

(g1,--,0) — L5 gt K
Clearly, P and @) are homomorphisms. By (iii) of Lemma , P(K') is
contained in the domain of P and (), and our goal is to prove that it is
actually in the kernels of these maps. Since the image of K’ x Pox K s
trivial, it suffices to see that 1(g) € ker P and 1(g) € ker Q) for every g in a
system of generators of K’ modulo L, where L = )~ (K’ x Hox K'). By (iv)
of Lemma m, the conjugates [y;.1, yi]bj, for i,7 = 0,...,p — 1 constitute
such a set of generators.
Let ¢ € I be defined by means of ¢(c) = (a,a,...,a). We claim that

¢*=g° (mod L), forevery g€ K'. (3.4.5)

Indeed, we have ¥(b) = ¥(c)(1,...,1,a7'b), and so

D(g") = (g°) 1Y = (g9 [ (g°), (1, .., 1,a7'D)]
(g% (mod K’ x -°- x K'),

since 1(¢g°) € K x - x K and a™'b € K.

As a consequence of (3.4.5), it suffices to see that w([yiﬂ,yi]cj) lies in
both ker P and ker (). Since

P (i 1)) = POy ui])”
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and
Q(%Z’([yiﬂ,yi]cj)) = Q(%Z’([?Jiﬂ,yi]))aj»

we have reduced ourselves to proving that ¢ ([y;41,v:]) is in the kernel of P

and Q for every 4. According to (3.4.2), we have ¥ ([yiy1, vi]) = zip12; 1, with
z; as defined in Lemma [3.4.1l Now, one can easily check that

P(z) =y, 'y K" and Q(z) =y, 'K’ for every i,
where in the case of () and i = 1 we need to use that
B =g (mod K,

by Lemma [3.4.3] It readily follows that t([y;11,:]) lies in both ker P and
ker ), as desired.

Assume now that g € K’ Stabg(n), and let us write g = fh, with f € K’
and h € Stabg(n). Put ¢¥(f) = (f1,..., fp,) and ¥(h) = (h4,..., h,). Since

hi,...,h, € Stabg(n — 1), which is a normal subgroup of G, we have

gp-"gl:fphp--'flhl:fp'-'flh*7

for some h* € Stabg(n — 1). Since f € K', we already know that f,... f; €
K’, and so we conclude that g¢,...¢91 € K’'Stabg(n — 1), as desired. The

second assertion can be proved in a similar way. ]

Theorem 3.4.5. Let G be a GGS-group with constant defining vector, and let
K = (ba™")¢ and L = Y (K' x - x K'). Then the following isomorphisms
hold:

KL= K/K x""x K/K',

and
K’ Stabe(n) /L Stabg(n) 2 K/K' Staba(n — 1) x -+ x K/K' Stabg(n — 1),
for every n > 3.
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Proof. Let 7* be the map given by
Kx-"xK — K/Kx""xK/K
(91,---.9p) +— (iK' ... gp—2K'),

and let R be the composition of ¢ : K/ — K X Yo% K with 7. If we see
that R is surjective, and that ker R = L, then the first isomorphism of the
statement follows.

Let g € K’ be an element lying in ker R. If ¢(g9) = (¢g1,...,9p), then we
have gi,...,g,—2 € K'. By (ii) of Lemma [3.4.4] it follows that

a+-+aP~1 !
gp—l € K )

and by applying Lemma we get g,—1 € K'. Now, (i) of Lemma m
immediately yields that also g, € K’. This proves that ker R = L.

Now we prove that
K/K' x {1} x --- x {1} C R(K"). (3.4.6)

Then, by arguing as in the proof of Proposition it follows that R is

surjective. By (13.4.2)), we have
?/J([?/b y2]) - (yla ]-7 RS 17 hp—lv h’P)

for some elements h,_;, h, € K. Hence

w([yla y?]bFl) = (yla L., 1 h;—la h;)

for every i, and we are done, since K = (yo, ..., Yp—1)-

The second isomorphism can be proved in a similar way. Observe that
the condition n > 3 guarantees that Stabg(n—1) < G’ < K, so that it makes
sense to write K/K'Stabg(n — 1). Consider this time the homomorphism

—2
™ o Kx-texK — K/K'Stabg(n—1) x - x K/K'Stabg(n — 1)

(91,---,9p) +— (g1 K'Stabg(n—1),...,g,—2K"Stabg(n — 1)),
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and let R, be the composition of 1 : K’ — K x -*- x K with 7. Observe
that the surjectiveness of R already implies that R,, is surjective. Let us
prove that ker R, = L Stabg(n) N K’. The same proof as above, but using
the last part of Lemma [3.4.4] shows that

W(ker R,) = (K'Stabg(n — 1) x -*+ x K’ Stabg(n — 1)) N ¢(K")
= (K" x - x K")(Stabg(n — 1) x %+ x Stabg(n — 1)) N (K).
Since K’ x -+ x K' C (K'), we can apply Dedekind’s Law to get
p(ker R,) = (K’ x -~ x K')((Stabg(n — 1) x -*- x Stabg(n — 1)) N(K")).
Now, since n > 3, we have
(Stabg(n — 1) x %+ x Stabg(n — 1)) N (K') = 1(Stabg(n)) N (K")
= 1)(Stabg(n) N K'),

and it follows that

p

Ylker Ry) = (K’ x %+ x K')(Stabe(n) N K') = (L)y(Stabe(n) N K7)

— (L(Stabe(n) N K7)).

Hence
ker R,, = L(Stabg(n) N K') = L Stabg(n) N K7,

as claimed.

Now, we can readily obtain the desired isomorphism:
K'Stabg(n)/L Stabg(n) = K'/(L Stabg(n) N K') = K'/ ker R,
~ R, (K') = K/K'Stabg(n — 1) x *~+ x K/K'Stabg(n — 1).
(]

Theorem 3.4.6. Let G be a GGS-group with constant defining vector, and
let K = (ba=1)¢. Then, for every n > 2, the quotient G/K’ Stabg(n) is a

p-group of maximal class of order p"*i.
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Proof. For simplicity, let us write T,, = K’ Stabg(n), Q, = G/T, and A, =
K/T, (take into account that Stabg(2) < G' < K). Since |Q, : Q)| =
|G : G'| = p? and A, is an abelian maximal subgroup of @,, it follows from
Lemma that @, is a p-group of maximal class. As a consequence, if we
want to prove that |@Q,| = p™*!, it suffices to see that the nilpotency class of
Q) is n.

We need an auxiliary result. Let (x;);>1 be a sequence of elements of
G such that {x1,22} = {a,b} and z; € {a,b} for every i > 3. We claim
that, for every i > 2, the section 7;(Q,)/7i+1(@y) is generated by the image
of the commutator [zy,xs,...,2;]. We argue by induction on i. If i = 2
then we have to show that the image of [a, b] generates 72(Qy)/73(@Qy). This
follows immediately from (i) in Lemma [3.2.3] since [a,b] = [a,a'b], where
vT, € Q, \ A, and a 0T, = (ba™'T},)* € A, \ %2(Q,). Now, if we assume
that the result holds for ¢ — 1, we get it for ¢ by using (ii) of Lemma [3.2.3]

Let us now prove that the class of @), is n, by induction on n. Assume

first that n = 2. We have

U([b,a]) = (a7 'b,1,...,1,b a)

and
U([b,a,b]) = ([a b, a),1,...,1,[b" a,b]) = ([b,al],1,...,1,][a,b]),

so that [b,a,b] € Stabg(2). It follows that the image of [b,a,b] in Q2 is
trivial. By the previous paragraph, we necessarily have 73(Q2) = 74(Q2).
Hence v3(Q2) = 1, and the class of @)y is at most 2. If @)y is of class 1,
then [b,a] € K'Stabg(2) and, by Lemma a'b € K'Stabg(1). Hence
a~! € Stabg(1), which is a contradiction. Thus Q5 is of class 2.

Now we assume the result for n — 1, and we prove it for n. We have
»([b,a, b, 0]) = ([b,a,?7 Y a],1,...,1, [a,b,""1, b)),

and
b,a,"1 al, [a,b,771,b] € K'Stabg(n — 1),
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since (),,_1 has class n — 1 by the induction hypothesis. Thus
W([b,a, b1, b)) € K'Stabg(n — 1) x -*- x K'Stabg(n —1).  (3.4.7)
Now,

(K'Stabg(n — 1) x -+ - x K'Stabg(n — 1)) N (G)
= (K’ x -% x K')(Stabg(n — 1) x -+ x Stabg(n — 1)) N (G)
C (K")(Stabg(n — 1) x -+ x Stabg(n — 1)) N (G)
= »(K")(Stabg(n — 1) x -+ x Stabg(n — 1) N¥(G))
= Y(K")Y(Staba(n)) = (K’ Staba(n)).

It follows that [b, a, b, 771, b] € K'Stabg(n), and so this commutator becomes

trivial in @,,. Since the image of this commutator generates the quotient

Vni1(@n) /Vni2(Qr), we have v,11(Q,) = 1. Hence the class of @, is at most
n.

If @, has class strictly less than n, then since the image of [b, a, b, 772, b]

generates v, (Qn)/Vni1(Qn), it follows that
[b,a,b,"72,b] € K'Stabg(n).
Since
w([b,a,b,7720]) = ([b,a,”72,a],1,...,1,]a,b,"72b]),

it follows from Lemma [B.4.4] that
b,a,772, a] € K' Stabg(n — 1).

This is a contradiction, since @, is of class n—1, and v, _1(Qn—1) /¥ (Qn-1)
is generated by the image of [b, a,”72 a]. Thus we conclude that the nilpo-

tency class of @), is n, which completes the proof of the theorem. ]

Theorem 3.4.7. Let G be a GGS-group with a constant defining vector.
Then

n—2 n—2
_ pre—1 p*—-(n—-2)p+n-—3
log, |Gp|=p" ' +1— - ,
og, |Gl =" + p—1 (p—1)2
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for everyn > 2, and
. = p—2
dimpr G = ——.
p—1
Proof. As on previous occasions, the formula for the Hausdorff dimension

of G is immediate once we obtain log, |G|. For that purpose, we argue by
induction on n. If n = 2, then by Theorem [3.2.4, we have log, |G| =t + 1,
where ¢ is the rank of the matrix C = C(1,271,1,0). By Lemma p—t
is the multiplicity of 1 as a root in [, of the polynomial X?~2 +--- + X + 1.
Thus t = p and log, |G| = p + 1, as desired.
Assume now that n > 3. Let K = (ba=1)¢, and L = ¢ }(K' x -*- x K).
Then we have the following decomposition of the order of G,,:
|G| = |G : K’ Stabg(n)|| K’ Stabg(n) : L Stabg(n)||L Stabg(n) : Stabg(n)].
(3.4.8)
By Theorem [3.4.6, we know that |G : K’ Stabg(n)| = p"™. On the other
hand, since
K’ Stabe(n)/L Stabg(n) = K/K' Staba(n — 1) x -+ x K/K' Stabg(n — 1)
by Theorem [3.4.5, and since |K/K’ Stabg(n —1)| = p"~! (again by Theorem
3.4.6)), it follows that
| K’ Stabg(n) : L Stabg(n)| = p®=D®=2),
Finally,
|L Stabg(n) : Stabg(n)| = |L : Stabp(n)| = |¢(L) : ¥ (Stabg(n))|
= |K/ X e x K': StabK/(n — 1) X e X StabK/(n — 1)|
= |K': Stabg/(n — 1)|? = |K' Stabg(n — 1) : Stabg(n — 1)|P
= |G/ Stabg(n — 1)|?/|G/K' Stabg(n — 1)|P

= |Gpalfp™".
Now, from (3.4.8)) we get

=plog, |Gr1| —n —p+3,
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and the result follows by applying the induction hypothesis to G,,_1.
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Chapter 4

The equations satisfied by
GGS-groups and the abelian
group structure of the

Gupta-Sidki group

4.1 Introduction

As in the preceding chapters, let us consider the p-adic rooted tree 7 for an
odd prime p, and I', the Sylow pro-p subgroup of Aut7 corresponding to
o= (1...p) €S, Then I'is in one-to-one correspondence with IF;(*, the

set of infinite sequences of the form (m,),ex- with m, € [F,, via portraits.

Roughly speaking, as it is explained in detail in Section [4.2] this corre-
spondence allows us to describe every closed set, in particular closed subgroup
G of T' as the set of zeros of an ideal of polynomials. The polynomials are
taken over the field F,, and the indeterminates are indexed by the vertices of
the tree. We will say that these polynomials that vanish in G are equations
for G or patterns |[Gri05]. If such a polynomial has degree 1 we will say that

it is a linear equation for G.
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Section {4.2] introduces and looks more closely at all these concepts. In
Section 4.4} we focus on GGS-groups and we explicitly describe a generating
set for all the equations of non-symmetric GGS-groups. Recall that the
GGS-group with defining vector e = (ey,...,€,_1) € ng is the group G C
I' generated by a, the rooted automorphism corresponding to o, and the
automorphism b that is recursively defined as (b)) = (a®,...,a1,b). If
e; # ep_; for some 1 < i < (p —1)/2, we say that the GGS-group is non-

symmetric.

The first of the two main results in this chapter can be summarized as

follows.

Theorem F. Let G be a non-symmetric GGS-group. Then there are p linear

equations that generate all equations for G.

We give the explicit expression of these p linear equations in Theorem
4.4.6) and the way in which these linear equations “generate” all equations

will be explained in Section [4.3]

It is interesting to know these equations explicitly for several reasons.
First, we can describe the closure G (in the profinite topology of I') of such
a group G as the set of zeros of these equations and their translates, as it
is shown in Theorem Secondly, since these generating equations are
linear and satisfy some extra conditions, we get to prove the second of the two
main results in this chapter, Theorem [G] below. And finally, it also enriches
the information contained in the Hausdorff dimension of the closures of these

groups.

In Chapter |3| we have computed the Hausdorff dimension of the closures
of all GGS-groups. In this chapter, we recover the same values for non-
symmetric GGS-groups in Corollary [£.4.7], another consequence of Theorem
Indeed, the Hausdorff dimension can be computed very easily if we

know a convenient generating set of equations, as we show in Theorem |4.3.6|
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It is relevant to underline, anyway, that we actually rely on many of the

results proved in Chapter

Finally, Section is devoted to the proof of the last significant result in
this chapter, Theorem [G] namely that non-symmetric GGS-groups possess
another group operation that is abelian. In particular, we conclude that
the Gupta-Sidki group has such a structure. The linearity and also the
convenient construction of the polynomials of the generating set in Theorem

is important for the proof of this result.

Theorem G. Let G be a non-symmetric GGS-group. Pointwise addition in

the portraits of elements gives G the structure of an abelian group.

We would like to point out that the consequences of the coexistence of
these two group operations are yet to be explored. A reasonable direction to
examine would be the relationship between the present work and Lie algebras,
as we now explain.

The description of the elements of I' in terms of portraits is equivalent to

a certain choice of a set-map
m:T — A =[] Stabr(i)/ Stabr (i + 1),
i=0
where [] denotes the unrestricted product. The group A is an elementary

abelian p-group with the operation inherited from I'. This is exactly the sum

of portraits. Now Theorem [G] can be rephrased as:
Theorem G’. The image of G under 7 is a subgroup of A.

One can compare this construction with the Lie algebra constructed by
Magnus [Mag40]:

@ % /%—i—l (G),

where 7,;(G) is the ith term of the lower central series of G. The addition on

L(G) is the operation induced by the group structure of G, and commutation
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in GG yields the Lie bracket. There is another similar construction, based on
the dimension series, also known as the Brauer, Jennings [Jen4l], Lazard
[Lazb3| or Zassenhaus [Zas40] series, which yields a restricted Lie algebra
(see [JacT9] for the definition of restricted Lie algebras).
It would be interesting to investigate whether there is a map
[17:(G)/i:1(G) — [ ] Stabr(i)/ Stabr(i + 1)
i=0 i=0
which would enable to “read” the Lie algebra structure of £(G) directly on
the portraits of the elements of (G. Note that the Lie algebras associated
to the Gupta-Sidki group have been explicitly described in [BG0Q], and the
terms of the lower central series also admit a nice description in terms of
portraits (see Theorem 4.2.4 in [Sie09]).
In this chapter we follow the approach developed in Olivier Siegenthaler’s
PhD thesis [Sie09]. We refer the reader to [Gri05], [Sun07], [Sunll] and the
appendix in [AdIHKS07] for previous works on the subject.

This is an extended version of the paper [SZR], that has been accepted
in the Eur. J. Combin. and has been written by Olivier Siegenthaler and the

author.

Notation. In this chapter, we have chosen to use the letter g for elements in
I, as we give f another use. On the other hand, in some of the proofs below,
we have a GGS-group G and we need to work in G,, = G/ Stabg(n). In these
cases, for economy in the notation, we use the same letters a, by, ...,b,_1 to
denote m,(a), m,(bo), - - ., Tn(by—1), i.e. the images of the elements in G under
m,. We believe that it is clear from the context where the elements belong

in each case.

4.2 Algebraic geometry in [

In this subsection we introduce and develop some of the ordinary algebraic

geometry in I'. We rely on Chapters 1 and 2 of the PhD thesis of Siegenthaler
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[Sie09]. As it is shown in Proposition and its preceding lemmas, the
situation is quite peculiar.

Let g be an element of I' and let us think of g as the infinite sequence of
permutations (g))vex+ (i.e. its portrait). In the same way, since g, = o™
where m, € I, for v € X*, we can also choose to think of ¢g as the infinite
sequence (1my,)yex+ € IE‘])f ". In other words, we are giving a correspondence,

X*
as sets, between I' and F,' . Let us state these concepts properly.
We define the following map
Log : (o) — F,

m

o™ — m,

which is clearly a homomorphism, and for v € X* we write [v] for the
following function:
v] : T — F,
9 — Log(gw)-
These maps can be added and multiplied together and they also admit the
product by a scalar (by pointwise operations). In other words, we can con-
struct functions F'([vq], [ve], ..., [vk]), where vy, ... v € X* and F is a poly-

nomial in k indeterminates. Let A be the set of all possible such functions:
A = {F([v1],[v2], .., [vg]) | F a polynomial, vy,...,v, € X" and k € N}.

More than a set, A has an F,-algebra structure, coming from the algebra
structure of F,. Similarly, if n € N, and we define [v] going from I',, to F,,

we define
A, = {F([n1],[va],- -, [v]) | F a polynomial, vy, ...,v, € X=""" and k € N}.

As before, A,, has an F,-algebra structure. On the other hand, the algebras
A, together with the natural injections, form a direct system whose direct
limit is precisely A = UA,,.

The definitions of A and A, are equivalent to the ones in [Sie09], as it is

stated in Corollary 2.1.2 of the same work:
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4. The abelian group structure of the Gupta-Sidki group

Lemma 4.2.1. A consists of all continuous functions I' — F,,.

As a trivial consequence, A, is generated, as an [F,-vector space, by the

characteristic functions {x,}4er, where

1, if s =g;
Xg(8) = {

0, otherwise.

We will say that the depth of [v] € Ais |v| + 1, where |v| is the length of
v as a word in X. In the case of a function f € A, the depth of f is defined

as
depth(f) = min max depth(|v;]) |,
P = @B <1§z‘§k pth( D)
where the minimum is taken over all polynomials so that f = F([v4], ..., [vk])

(k and the v; may vary with F'), and the depth of a constant function is set
to 0.

If f € Ais such that depth(f) = n and g € T, then the value f(g) only
depends on g modulo the nth stabilizer Stabr(n), i.e.

flgh) = f(9) (4.2.1)

for every h € Stabr(n).
If V' is a subset of I', we let Z(V') C A denote the annihilator of V| i.e.

the set of polynomial functions vanishing on V:
I(V)={feA| f(g)=0forall g V}.

If I is a subset of A, we let V(I) be the annihilator of I, i.e. the set
V(I)={g€eT| f(g)=0forall fel}

We will say that f € Z(V) is an equation for V. Note that the name of
equation makes sense for an element in Z(V'), since it really is what we
usually call an equation in an algebraic setting, that is, a polynomial. If

f=F([n],va],-..,[vk]) € Z(V) is a linear combination of its variables, then
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4.2. Algebraic geometry in T’

we say that f is a linear equation for V. This kind of equations will play an
important role in this chapter.

Replacing I by '), and A by A,,, we get the corresponding definitions of
the maps V and 7 in the case of truncated trees.

Ifve X*and f € A, we define v x f € A as follows

vxf ' I' — F,

g — [flgv)
Observe that if v € X* and f = F([v1], [va], ..., [vk]) € A, then
U * f = F([UUl], [UUQ]a ttt [ka]) S A

Remarks 4.2.2. (i) The algebra A,, can naturally be identified with the
subalgebra of A formed by functions of depth < n (more precisely, we identify
f €A, with fom, € A, where the domain of 7, is restricted to I').

(ii) If we have an equation f for G,, for some n € N, then, by (i), we may
think of f as an equation for G. Hence Z(G,) C Z(G) holds for all n € N.

(iii) From the previous two remarks we deduce that if we get all the
equations for G, for all n € N, then we have all equations for G. At the
same time, we get all equations of the closure in the profinite topology G of

G, since m,(G) = m,(G). In other words,

We shall see in Proposition that, in certain cases, it even suffices to
know one specific Z(Gy), if we want to describe Z(G).

But firstly in Proposition we prove several properties of the maps 7
and V that will be useful in some of our results. Let us give some results that
are interesting by themselves but which will also help to prove the mentioned

proposition.

Definition 4.2.3. We call a subset V' C T Zariski-closed if there is I C A
such that V = V(I).
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4. The abelian group structure of the Gupta-Sidki group

It turns out that finite unions and arbitrary intersections of Zariski-closed
sets are again Zariski-closed, hence these sets form the closed sets of a topol-
ogy, the Zariski topology. We show that this topology coincides with the
profinite topology of T'.

Lemma 4.2.4. The Zariski and the profinite topology of I' coincide.

Proof. Consider I C A and let us prove that V(I) is closed in the profinite
topology. Let us define I,, = INA, = {f € I | depth(f) < n}. Note that
V(I,) is a closed subset of ', and therefore so is V(I) = NV(I,,). Conversely,
if V' is closed in I', then

V = (] V Stabr(n).

n>1

Observe that, for each n € N, we can write V Stabr(n) = V,, Stabr(n), where
V, C TI',, thanks to the decomposition I' = T', x Stabr(n). Now, since
the Zariski topology in I'), coincides with the discrete topology, there exists
7, C A, such that V,, = V(I,). Hence, by ([£.2.1), V Stabr(n) = V(I,,) is

Zariski-closed for every n € N and so is V. O]

Recall that an ideal [ is radical if whenever f™ is in I for some n > 0,

then f also belongs to I.
Lemma 4.2.5. All ideals of A are radical.

Proof. The identities ZP" = Z hold in [F, for all m > 0. Therefore they also
hold in A. As a consequence, if f" is in the ideal I for some n > 0, then

fP" € I for some m > 0, and thus f belongs to I. n
Lemma 4.2.6. All prime ideals of A are mazximal.

Proof. For a proper ideal I of A and for each n € N, let us define I,, = {f €
I | depth(f) < n} = I N A,, which is an ideal of A,. Then there exists
k € N such that I, = A, for all n < k and I, # A,. It is an easy exercise

to prove that I is prime (maximal) in A if and only if 7,, is prime (maximal)
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in A, for all n > k. Therefore, it suffices to prove that prime ideals of A,
coincide with those that are maximal. Recall that A,, is generated by the
characteristic functions {x,}ser,. Let p be a prime ideal of A,, and consider
fe A, \p. We will see that x, € p+ (f) for all g € I',,. Let g € T',, be
such that x, ¢ p. Since p is a prime ideal, f - x, ¢ p. On the other hand,
fxg = Axg, with A = f(g) € F,, and from the previous assertion A # 0.
Therefore x, € (f), which concludes the proof. O

The following lemma corresponds to the Weak Nullstellensatz.

Lemma 4.2.7. If m is a proper ideal of A, then
V(m) # 0.

As a consequence, m is maximal in A if and only if m = I(g) for every
g € V(m).

Proof. Suppose, by way of contradiction, that V(m) = (. Consider n > 0
and for every g € Iy, pick a lift g of g in I', and a function f; € m such that
f4(g) # 0. Then f, - x4 = Axy is in m, with A = f,(g) # 0. Thus x, is in
m for all ¢ € T',,, and A,, C m. Since this reasoning holds for all n > 0, the
assumption V(m) = () implies m = A, a contradiction to the properness of
m.

Now, let us prove the second assertion of the lemma. It is clear that Z(g)
is maximal in A for every g € I, being the kernel of the following F,-algebra

homomorphism:
A — T,

[ — flg).

For the converse, let m be a maximal ideal of A and since V(m) # 0, let
us consider g € V(m). It follows that m C Z(g), and therefore m = Z(g),
because m is maximal and Z(g) # A. O

Proposition 4.2.8. Consider the sets [ C A and V CT'. Then
(i) V(1) is closed in I' and Z(V') is an ideal of A.
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4. The abelian group structure of the Gupta-Sidki group

(ii) Z(V(I)) is the ideal generated by I, and V(Z(V')) is the closure of V.

(iii) The maps T and V define order-reversing bijections which are inverse

to one another, between the closed subsets of I' and the ideals of A.

Proof. The first assertion of (i) is a direct consequence of Lemma and
the second one is trivial. At the same time, part (iii) can be easily deduced
from (ii). Now, it is routine to prove that V(Z(V')) is the Zariski closure of
V', and then by Lemma [4.2.4] it coincides with the closure in the profinite
topology of V. Let I be an ideal of A and let us prove now that Z(V(I)) = I.
If we show that Z(V(I)) is equal to the radical Rad(I) of I (an element f is
in Rad([) if some power f™ belongs to I), we will have the desired equality,
due to Lemma [£.2.5] Tt is a well-known fact that

Rad(l)= () »

p prime, ICp

On the other hand,

) = ) 2= (] m

gev(I) m maximal, /Cm
by Lemma Finally, from Lemma we get Z(V(I)) = Rad({). O

Remark 4.2.9. For any n € N, the proposition also holds if we replace A
and I', by A, and I',,. Note that, in this case, the topology is the discrete
topology in I',.

4.3 Branching of ideals and Hausdorff dimen-

sion through equations

Our goal in Section[4.4]is to get to know Z(G) when G < T'is a non-symmetric
GGS-group. For this purpose, we have some concepts and results available

that will be useful.
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If G < T is self-similar and f is an equation for G, it is obvious from
the definitions that v % f is again an equation for G, for every v € X*. So
when G is self-similar there will be many ‘redundant’ elements in Z(G). The

following definitions are motivated by this fact.
Definition 4.3.1. Let I C A be an ideal. We say that [ is
(i) branching if v« f € I for all f € I;

(ii) generated by S C I as a branching ideal if I is generated by
{v*s|veX*and s € S} as an ideal.

We have shown one direction of the lemma below, which can be found in

[Sie09).

Lemma 4.3.2. Let G be a closed subgroup of I'. Then G 1s self-similar if
and only if the ideal Z(G) is branching.

Our next proposition is Corollary 2.2.8 in [Sie09], and it gives more detail
about the branching structure of Z(G) when G is regular branch. It is also

one of the directions of the equivalences that Sunié proves in Theorem 3 of
[Sun07].

Proposition 4.3.3. Let G < T' be reqular branch over K, and suppose that
K contains Stabg(d — 1). Then Z(G) is generated by Z(Gy) as a branching

1deal.

In the last part of this section we show how the Hausdorff dimension of

a closed subgroup G of T' can be read off a nice generating set of Z(G).

Definition 4.3.4. An element f € A of depth n is nice if there is f; € A,,_1
and a linear polynomial fo = Fy([v1],. .., [vx]) # 0 where vy,..., v, € X™7!
such that f = f; + fo. The linear part fy of f will be denoted by L(f).
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4. The abelian group structure of the Gupta-Sidki group

Definition 4.3.5. Let G < I' be a self-similar group, 7' C A a set of nice
functions and for n € N, let us define T,, = {f € T | depth(f) = n} and
Sn={L(f) | f € T,}. We will say that T is a nice generating set for the
ideal Z(G) if for each n € N, it satisfies the following properties:

(i) TYU...UT, generates Z(G,);
(ii) T, C T,y for all z € X;
(iii) |T5| = |Snl|, and S, is linearly independent.

This definition differs slightly from the one given in Section 2.3 of [Sie(9],
being suited for self-similar groups only. Following the proof of Proposition
2.3.3 of the same work, we can show that for every self-similar group G, the

ideal Z(G) admits a nice generating set.

Theorem 4.3.6. Let G be a closed self-similar subgroup of I', T a nice
generating set for Z(G), and d, the number of functions of depth n in T.

Then
Tn

dlmFG =1- 5
pn

n>0

where r,, = dp11 — pd, for n > 0.

Proof. Let T,, and S,, be as in Definition W, and let us compute log, |G|
for n € N. We have the relations

log, |G| = log, |Gy_1| + log, | Stabe, (n — 1) =) "log, | Stabg, (i — 1)|

i=1

(note that Stabg, (0) = G1). Now, for each ¢ > 1, let us consider Stabg, (i —1)
as a linear subspace of IFgH. Since all functions of T" are nice and condition
(i) of the definition is satisfied, it follows that the subspace Stabg,(i — 1)
is exactly the set of zeros of the linear functions of S;. As S; is a linearly

independent family, and |S;| = |T;| = d;, we get
log,, | Stabg, (i — 1) = p"~ " — d;,
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for i € N. Therefore,

logp|Gn|:1+p—|—~--+p"‘1—(d1—|—---+dn)zlogp|Fn|—Zdi
i=1

and by ([.2:3),

n—00 P

1
dimszl—limsupp ~ Zdi'
i=1

an
On the other hand, since T is a nice generating set, it also satisfies the second
condition of Definition 4.3.5|and hence the numbers r,, = d,,,1 — pd,, are non-
negative (note that dyp = 0). Using these relations until getting rid of all the
d; we get

and then we have

n n—1
p—1 ri pt—p
Ay — dz = —
If we define )
i
by, = e
1=0

for n € N, it is clear that a, < b, for all n € N. We will prove that the

difference
1 n—1
bn —Qp = — Ty
goes to 0, when n tends to infinity.
Using the relation r; = d;y1 — pd; for t =0,...,n — 1, we can write
n—1 n—1 n—1 . d
0 zzl — pz pn 1

The sequence b, is clearly non-decreasing and hence it has a limit, X\. Let us
fix £ > 0. Then there exists ng € N such that for all i > ng we have

d;
<A\ (4.3.2)

)\_ggpi—l =

117



4. The abelian group structure of the Gupta-Sidki group
Now, combining (4.3.1]) and ( - we get
n—1 n—1 n—1
Y ori<dy—(p=1) Y di <N =(A=e)(p—1) > _p T ="+ (A—e)pm .
i=0

1=ng i=ng

Summarizing, if we fix € > 0, there exists nyg € N such that for all n > ny,

we have

-1 n—1 _ no—1
0< i Z <P +AN—¢e)p ‘
p"

Hence

’Blm

for all € > 0. Therefore

1
lim (b, — a,) = lim —Z

n—oo n—oo p

and since b,, also has a limit, we deduce that

limsupa, = limsupb, = hm by,
which completes the proof. O

Remark 4.3.7. By Lemma . G self-similar implies Z(G) branching.
Hence 7, measures the number of nice functions of depth n 4+ 1 in a nice
generating set of Z(G), after removing the functions we obtain by using the

fact that Z(G) is branching.

4.4 Equations for GGS-groups

The goal of this section is to describe Z(G) when G is a non-symmetric GGS-
group. In the first theorem, given an arbitrary GGS-group G, we describe a
family {R;} of linear equations of depth 2 for G. While in Theorem m,
we do the same with {P;}, a set of equations of depth 3. Finally, we see
that if G is non-symmetric, then these linear equations are basically all the

equations. This is proved in Theorem |4.4.6|
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We denote by 0 the column vector (of the appropriate length) all of whose

entries are equal to 0.

Theorem 4.4.1. Let G be a GGS-group with defining vector e, C = C(e,0)
and t =tk C. Let us consider the vector space NullC' = {r € F? | Cr' = 0}
and a basis {r' = (ri{,r},...,r)}'=] of NullC. Then

p
Ri= _rili]
j=1

fori = 1,...,p —t are linearly independent equations of depth 2 for G.

Moreover, they generate Z(Gs) as an ideal.

Proof. Put A = (a) and N = Stabg, (1) = (by, b1,...,b,—1) (we use the same
letters a, by, . . ., b,—1 to denote their images under 7). Since G = N x A and
(na’) () = n(x)a{n(x)) =n(, foralln € N, j € F, and x € X, we first need to
check that actually R; € Z(N) for i = 1,...,p—t. Take into account that N
can be identified with the linear space of dimension ¢ spanned by the rows C;
of C (look at and remember we work modulo Stabg(2)). Therefore,
since {r’ = (ri,r}, ... ,r;) f:_f CNullC, then R; CZ(N) fori=1,...,p—t,

and hence (R; |i=1,...,p—t) C Z(G>). Using Remark [4.2.9] we have
VR |i=1,...p—1) DVI(Gs)) = Cs

Now, from the choice of {r‘} to be a basis, the R; are linearly independent
and we also have [V(R; |i=1,...,p —t)| = p?*1=?= = p'*1 On the other
hand, we also have |Go| = p'*!, by part (ii) of Theorem [3.2.4] Therefore

andso V(R; |i=1,...,p—t) = G5. Finally, we apply the map Z and use (ii)

of Proposition and Remark [4.2.9) we get Z(G2) = (R; |i=1,...,p—1),
as desired. O

Our next step is to get linear equations of depth 3 for a GGS-group.
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Lemma 4.4.2. Let G and K be two groups, and consider a map ¢ : G — K.
Suppose that G has a semidirect product decomposition N x H. If

(i) ¢l and @|y are homomorphisms;
(ii) ¢(nh) = @(n)e(h) for alln € N and h € H; and
(iii) @(n") = n)?M for alln € N and h € H;
then ¢ is a homomorphism.
Proof. 1Tt is an easy exercise. O]

Theorem 4.4.3. Let G be a GGS-group with defining vector e and C =
C(e,0). Then there exists a function € A of the form

8= Z Aili] (4.4.1)

whose restriction to G is a homomorphism with $(a) = 0 and 5(b) = 1. The
tuple of coefficients X = (A1,...,\,) is any that satisfies CA' = 1. We will
say that 3 is a counter of G.

Proof. 1t suffices to prove the result in Go. Put A = (a) and N = Stabg,(1).
Since G = N x A and by Lemma[.4.2] it suffices to find a linear combination

satisfying
) B() = 1, and
(i) B(na’) = B(n) = B(n”) for all n € N and j € F,,.

(Note that the conditions 3(a) = 0, and |4 and 3|y being homomorphisms
are automatically satisfied from the choice of § as a linear combination of the
[i] with i € X.) Let e be the defining vector of G, C' = C(e,0) and t = rk C.
We claim that there exists a linear combination such that

Blbo) = B(b1) = ... = 6(bp71> =1L (4.4.2)
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We will prove this later, but suppose for a moment that such a [ exists.
Condition (i) is clearly satisfied. Observe also that the first equality in (ii)
is obvious since multiplying a to the right only changes the portrait at the
root. On the other hand, let us write an element ¢ € G in the form g =
w(bg, by, ...,by—1)a’ with w a word in p variables and j € F,. Then (3(g)
gives us the total weight in [F,, of the word w. In other words, the existence
of 8 proves that the total weight of an element g € G is well-defined. Note

that this last observation proves the second equality in (ii), since then

ﬁ((ﬂ(bo, b1> e ,bp_l)a) = ﬁ(w(bl, bg, Ce ,bo)) = 6(&}(60, b17 e ,bp_l)).
Let us then prove that there exists such a linear combination 3 satisfying

(4.4.2). Using (3.2.1)), the p equalities in (4.4.2]) are equivalent to the system

of equations

€1 €9 --- 0 /\1 1
0 e -+ e, A 1

' L B R I (4.4.3)
ey e3 -+ e Ap 1

So the existence of (3 is equivalent to the existence of a solution for (4.4.3]),
and this is equivalent to (ii) in Lemma [1.3.1] O

As noted in the proof of the previous theorem, if we write ¢ € G in
the form g = w(bo, b1, ...,b,—1)a’ with w a word in p variables and j € F,,
then ((g) computes the total weight in F, of the word w. In other words,
it proves that the total weight of an element g € G is well-defined. This
is already proved in Theorem m (although it is stated for elements in
Stabg(1)). In the same theorem we prove that the partial weights are also
well-defined homomorphisms Stabg(1) — F,. Recall that the ith partial
weight of an element g € Stabg(1) is the weight of the ith variable b; in a
word w representing g. We may also define the ith partial weight for ¢ € Z,
as the jth partial weight, taking j =4 (mod p) in the range [0,1,...,p — 1].
In the following corollary we give the same result but, as for the total weight,

we give an explicit expression for the homomorphisms involved.
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Corollary 4.4.4. Let G be a GGS-group and 3 a counter of G. Then, for
every i € {1,2,...,p}, the function

Bi=ixpB:I' =T,
restricted to Stabg(1) is the ith partial weight.
Proof. Let g € Stabg(1) and w a word representing g. Then
P(g) = Y(w(bg,...,bp—1)) = (wi(bo,...,bp—1)a™, ... wy(bo, ..., by—1)a™),

where w; is a word in p variables and m; € F,, for ¢ = 1,...,p. Note that

the ith partial weight of ¢ is exactly the total weight of the ith component

of 1(g), by (B2-1). 0

Theorem 4.4.5. Let G be a GGS-group with defining vector e and let 3 be
a counter of G. Then

p
Py=[j] = ej-ili*p)
i=1
for j =1,...,p are equations of depth 3 for G. (The indices of the e;_; are
taken modulo p between 0 and p — 1 and we set eg = 0.)

Proof. Let g € Stabg(1) and let us compute the images of g under the maps
(7] for j =1,..., p, with respect to the images of g under the partial weights

ﬁl,...,ﬁpi

[1](g) = e1Bp(g) + ep—182(g) + - - + e258p-1(9)

Pl(9) = ep-151(9) + ep—2Ba(g) + -+ e1B,-1(9).

(These relations come from (3.2.1]).) Now by Corollary we have 3; = ix[3
and the result follows. O

Let us focus now our attention on GGS-groups with non-symmetric defin-

ing vector.
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Theorem 4.4.6. Let G be a non-symmetric GGS-group with defining vector
e and let t be the rank of C = C(e,0). Let us define R; as in Theorem[{.4.]]
fori=1,...,p—t, and P; as in Theorem[.{.5, for j=1,...,p. Then, the
set

S:{Ri,ﬂ|i:1,...,p—t,j:1,...,t}

generates Z(G) as a branching ideal. Therefore,
G=V{vxQ|veX* QeS}.

Proof. By Theorems and we have S C Z(G). Since G is non-
symmetric, then G is a self-similar, regular branch group over G’ and Stabg(2)
< G’ (by Theorem . Hence we apply Proposition , and we obtain
that Z(G5) generates Z(G) as a branching ideal. So the problem reduces to
understanding Z(Gs). Let us define

§:{Ri,x*Ri,Pj|z'zl,...,p—t,xeX,jzl,...,t}

and prove that S generates Z(G3). First we prove that the functions in S are
linearly independent. Let us consider a linear combination of the elements

in S that is equal to zero,

p—t p—t t
Q= aRi+> Y bi(wxR)+ > dP;=0, (4.4.4)
i=1 j=1

zeX 1=1

and let us prove that all the coefficients are equal to zero. Recall that C =
(¢ij) with ¢;; = e;_;+1 (here we consider the indices modulo p between 1 and
p, and e, = 0). For k =1,...,plet us define g, € I's by means of its portrait
as follows

Cri, ifv=1€eX,

[v](gx) =

0, otherwise.

Then

t

Qlgr) = Z diPi(gr) = Y d;ljl(ge) = Z djcr; =0,

j=1
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for k =1,...,p. These p conditions are equivalent to the following equality

between matrices:

=|:. (4.4.5)

Cp1 " Cpt dt 0

By part (iii) of Lemma|l.3.1} the first ¢ columns of C' are linearly independent.
Thus (4.4.5) implies d; = 0 for i = 1,...,t. Now, taking into account ({4.4.4])

and d; =0 for i =1,...,t, we have

p—t p—t
Q= Z%Rri‘ Zzbf(x*Rz) = 0.
i=1

zEX i=1
But {R;,z«R; |i=1,...,p—t, v € X} is clearly linearly independent and
hence a; =0 and b7 =0 forv=1,...,p—t and x € X. This proves that
S is actually linearly independent. Therefore we have |§ |=p—t+plp—
t)+t=p(p—t+1) independent equations for a vector space of dimension
log, |I's| = p* 4+ p+ 1, hence log, V&) <p*+p+1—plp—t+1)=pt+1.
By Theorem , we also have log, |G| = pt + 1, and then

log, V()] = log, |Gs|.

On the other hand, (S) C Z(Gs) and using Remark we get

V(S5) 2 V(Z(Gs)) = Gs.

From the inequality above and this inclusion, we have V(S) = G3 and apply-
ing the map Z to this equality we deduce (S) = Z(G3), by (ii) in Proposition
and Remark [4.2.9, Therefore S generates Z(G) as a branching ideal,
and thus S generates Z(G) as a branching ideal.

For the last assertion of the theorem, we only need to take into account

part (ii) of Proposition [£.2.8 O

Note that P; € Z(G) for j = t 4+ 1,...,p. They are not necessary as

generators but they may be useful for some calculations.
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4.4. Equations for GGS-groups

As a consequence of the previous theorem, we give the Hausdorff dimen-
sion of the closure of any non-symmetric GGS-group. These values match
the ones obtained in Chapter [3, in Theorem [3.3.5]

Corollary 4.4.7. Let G be a non-symmetric GGS-group with defining vector
e and let t be the rank of C(e,0). Then

Proof. By Theorem |4.4.6), the following subset of A generates the ideal Z(G):
T={vxQ|veX" QeS}

where S ={R,;,P; |i=1,...,p—t,j=1,...,t}. It is easy to see that T is
a nice generating set for Z(G). Then by Theorem and Remark [4.3.7]

J— ’]"n

)
nZOp

where r, is the number of polynomials of depth n 4+ 1 in S. In our case,

ro=0,m11=p—t, ro=tand r, =0 for n > 3, and the result follows. O

Example 4.4.8. Let G be the Gupta-Sidki group for p > 3, i.e. let G be the
GGS-group with defining vector e = (1, —1,0,...,0). The rank of C(e,0) is

p — 1, and the following is a counter of G:

Then the p functions
p
R=Y[i] and P=[]—(—1)=8+(—2) 5
i=1

for j =1,...,p— 1, generate Z(G) as a branching ideal. We also have that
the Hausdorff dimension of the closure of G is

_ 1 —1 —1\?
dimpG=1—--2 :(p )
P




4. The abelian group structure of the Gupta-Sidki group

4.5 Addition in non-symmetric GGS-groups

When we define spinal automorphisms in Chapter 2| we do not include rooted
automorphisms in the definition and hence not all automorphisms of a spinal
group are spinal. On the other hand, the product of two automorphisms
corresponding to two different spines is not a spinal automorphism.

Next, we generalize the definitions of spine, spinal automorphism and
spinal group to g-spine, g-spinal automorphism and g-spinal group respec-
tively (note that the g- stands for generalized), in such a way that we solve
these inconveniences. The new definitions are due to Siegenthaler [Sie09],

although he uses the terms spine and spinal for the generalized versions.

Definition 4.5.1. An element g € Aut7 is finitary if there is n € N such
that g, = 1 for all v € X™. The minimal such n is called the depth of g.

Definition 4.5.2. An element g € Aut7 is called g-spinal if there exists a
finite set S C X¢ (possibly empty) such that for every v € X* \ Prefix(5),
the element g, is finitary. The minimal such S is the set of g-spines of g and

will be denoted by gSpines(g).

Remarks 4.5.3. (i) Note that gSpines(g) = 00 if g € Aut 7 is finitary. So

we also include finitary automorphisms in the definition of g-spinal automor-

phisms. In particular, rooted automorphisms are g-spinal automorphisms.
(ii) Moreover, the product of two g-spinal automorphisms is g-spinal and

the inverse of a g-spinal automorphism is so again (see Subsection 2.7 in
[Sie09)]).

These remarks yield the following definition.

Definition 4.5.4. The subgroup of Aut7 of g-spinal automorphisms is de-
noted by Sp and the subgroups of Sp are called g-spinal groups.

Observe that spinal groups are in particular g-spinal groups, and so are
GGS-groups. Note also that if G < Sp, this does not mean that the closure
G of G is also inside Sp. It is wrong in particular for any GGS-group.
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4.5. Addition in non-symmetric GGS-groups

Our goal is to give a new and suitable description of the elements of non-
symmetric GGS groups. This will be done in Theorem 4.5.12] Let us start

by giving a couple of technical definitions.

Definition 4.5.5. Two sequences vy, v, € X“ are cofinal if they are of the
form

V1 = U0, Vg = U2V,
for some v € X* and words uy, us € X* of the same length.

It is easy to check that being cofinal is an equivalence relation.

Definition 4.5.6. If v € X“, the equivalence class of v with respect to being
cofinal is called the cofinality class of v and denoted by Cof(v).

In the following lemma, we see that if G is a GGS-group and g € G, every

g-spine of ¢ is cofinal with p>.

Lemma 4.5.7. Let G be a GGS-group and g € G. Then
Cof(s) = Cof (p™)

for every s € gSpines(g).

Proof. We prove the statement by induction on the length n of g. Write
g = w(a,b), and let n be the length of the word w. We can assume w is a
positive word, since a and b have finite order. Clearly, if n =1, i.e. ¢ = a or
g = b, the assertion is true. Suppose it true for all elements in G of length

n — 1 and let g be of length n. There are two possible cases:
(i) g =ah with h € G of length n — 1.
(ii) g = bh with h € G of length n — 1.
Write U = gSpines(h). Suppose we are in the first case and let v € X*. Then

ah, if v=0;

ahv:avhav:
(ah) ) {ha(v), if v 0.
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4. The abelian group structure of the Gupta-Sidki group

Here we see that if a(v) ¢ Prefix(U), then (ah), is finitary. Or equivalently, if
v ¢ a~ ! (Prefix(U)) = Prefix(a~!(U)), then (ah), is finitary. In other words,

gSpines(ah) C a (V).
Suppose we are in case (ii) now. For v € X*, we have

bh,, if v =p™ for some m > 0;
(bh)y = byhywy = § aih,, if v=p™i for somem >0,andi=1,...,p—1;

hy(vy, otherwise.

In this case, if v # p™ for every m > 0, v ¢ Prefix(U) and v ¢ b~ (Prefix(U)) =
Prefix(b~!(U)), then we can assure that (bh), finitary. Hence

gSpines(bh) C {p=}uU U Ub (V).

In any case,
Cof(s) = Cof(p™),

for all s € gSpines(g), as desired. To see this, we only need to check that
Cof(s) = Cof(p>) for all s € a™'(U) and s € b=*(U). Let u € X* be such
that Cof(u) = Cof(p>). Then there exists u; € X* such that u = up™.

Then the following is true in any of the two cases ¢ = a or ¢ = b:
cHu) = ¢ Hup™) = ¢ Hur) (€ )y (p%) = ¢ (wr)2p™,

for some x € X depending on ¢ and u;. Therefore, both a=*(u) and b= (u)

are cofinal with p>. O

Definition 4.5.8. Let G be a g-spinal group. Let us define the following
subset of G

G* ={g € GNSp | Cof(s) = Cof (p>°) for all s € gSpines(g)}.

Observe that in the definition of G* are also included finitary automor-

phisms, i.e. automorphisms g € G such that gSpines(g) = 0.
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4.5. Addition in non-symmetric GGS-groups

Lemma [4.5.7| proves that for a GGS-group G, we have
GCG.

The surprising fact is that the other inclusion also holds for non-symmetric
GGS-groups. We state this result in Theorem [4.5.12] which will be proved

with the help of some preliminary lemmas.

Lemma 4.5.9. Let G be a GGS-group. Then all finitary automorphisms in

G are rooted automorphisms, and consequently belong to G.

Proof. Let § € G be a finitary automorphism. Then there exists n € N such
that g, = 1 for all v € X™. If the depth of g is 1 then g is a rooted auto-

morphism and there is nothing to prove. Suppose, by way of contradiction,
that the depth n is > 2. Let u € X" 2. By Theorem and since G is

self-similar it follows that for j =1,...p,
(ux P;)(g) = P(gu) = 0.
Since all labels of g in the nth level of the tree are trivial, we get
0= Pj(gu) = [j1(gu) = [ujl(9),

for all j =1,...,p. To summarize, we get [uj](g) = 0 for any u € X" 2 and
j=1,...,p,ie G, =1 for all w € X" !. But this means that the depth of

g is n — 1, which is a contradiction. ]
We will focus our attention now on the non-symmetric case.

Lemma 4.5.10. Let G be a non-symmetric GGS-group and suppose that
g € G satisfies g; € G for alli=1,...,p. Then

GgeG.

Proof. Let g € G be such that g; € G for all i = 1,...,p. By multiplying an

appropriate power a’ € G of a, we have
hy = ga’ € Stabr(1).
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4. The abelian group structure of the Gupta-Sidki group

The first level sections of h; are still in G, then let ~; € FF, be the total
weight of the ith section of hy, for i« = 1,...,p. Now, if we write hy =

hiby b - b,”7"", we know there exist ¢1,...,¢, € G’ such that

Y(hy) = (a®' ey, ..., a%cy),

where o; € F), for i = 1,...,p (here we are using Theorem [3.2.10). Now, by

Lemma [3.3.3]
G x-2ox G < (@) < ¢(Stabg(1)) (4.5.1)

and so there exists ¢ € Stabg(1) such that ¥ (c) = (¢!, ..., ¢, '), If we write
}_13 = BQC7 then
Y(hs) = (a®, ..., a").

Hence hy € G is finitary and by Lemma [4.5.9, we deduce that h; = 1 € G.
Going all the way back, there exists g € G such that

gI}_lggEG.
[

Corollary 4.5.11. Let G be a non-symmetric GGS-group, set n € N and
suppose that g € G satisfies g, € G for allv € X™. Then

geaq.
Proof. Tt follows by using induction on n and the lemma above. O]
Theorem 4.5.12. Let G be a non-symmetric GGS-group. Then

G=G".

Proof. The inclusion G C G* is given in Lemma and it is true for all
GGS-groups. Let us prove the other inclusion. Let § € G be a g-spinal

automorphism such that
Cof(s) = Cof(p™),
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4.5. Addition in non-symmetric GGS-groups

for all s € gSpines(g). From this fact and since gSpines(g) C X“ is a finite
set, there exists n € N such that for every s € gSpines(g),

s =vp™

for some v € X". If g, € G for all v € X", we have g € G by Corollary
4.5.11) and we are done. Let v € X" and let us prove that, in fact, g, €
G. To simplify notation, let us write h = g, from this point onwards. If
v ¢ Prefix(gSpines(g)), then h is finitary and by Lemma belongs to
G. Suppose now that v € Prefix(gSpines(g)). Then from the choice of n,
it is clear that gSpines(h) = {p>}. For this reason, by Lemma [1.5.9 the
activity of h will be concentrated in the vertices p™ and p™i, where m > 0

and ¢ = 1,...,p, as is shown in the following picture.

pp

ppp

The vertices marked with black dots are the ones that may have activity for h.

Our goal is to prove that h € G, so multiplying by an appropriate power of
a, we may assume that h € Stab(1). We will see that h = b* for some k € F,,,
but let us first prove that

hpmy =1,
for all m > 0. For m = 0, this is true since h € Stab(l). By way of
contradiction, suppose there exists m > 1 such that hgm) # 1. Then since
hym-1 € G (if G is self-similar, then G is also self-similar), in particular we

have

0= P,(hym1) = ([p] — Z epi(i % 5)) (hym-1). (4.5.2)

=1
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4. The abelian group structure of the Gupta-Sidki group

Since hgmy # 1, then [p](hym-1) = Log(hypmy) # 0. Now, using this fact
and 7 we deduce that there exists jk € X? such that j # p and
[jk](hym-1) # 0. But this is a contradiction because we already saw that
there is no activity at distance 2 from the g-spine p*°.

Let us prove now that h = b* for some k € F,. Let us write r; = [i](h),

fori=1,...,p— 1. Since h € G, in particular P;(h) = 0. Equivalently,
ri = ei(p* B)(h).
In other words, there exists k = (p * 3)(h) € F, such that
r; = ke;, (4.5.3)

fori=1,...,p—1. We will prove that [i](hym) =ke; foralli=1,...,p—1
and m > 0, by induction on the level m. As we already proved it for m = 0,
suppose that m > 1 and

(1) = ke,

forall?=1,...,p— 1. If we apply the argument we used for A, to hyn this
time, we get

ke; = ei(p  B)(hym-1),

forall i =1,...,p— 1. On the other hand, applying the same argument to
hym-1, we get

(3] (hym) = le, (4.5.4)
for somel € F,and i =1,...,p—1. Since, by (4.5.4), the activity in the first

level of h,m and ' is the same, then so is their image under 3. Therefore,

ke; = ei(p* B)(hym-1) = €3(hym) = e;5(b') = le;,

foralli =1,...,p—1. Now, there exists some e; # 0 and then we get k = [.
Consequently, [i](hym) = ke; for alli =1,...,p—1 and m > 0, and since the
activity of h is concentrated at distance 1 from p>, we conclude that h = b*,
as desired. O]
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4.5. Addition in non-symmetric GGS-groups

Theorem 4.5.13. Let G be a non-symmetric GGS-group. Then the following
binary operation:

(9 + 1)@ = 9w hw),
for g,h € G and v € X*, gives G the structure of an abelian group.

Proof. Clearly, I" with the operation + is an abelian group. We need to check
that, in fact, G is a subgroup of (I', +), i.e. that + is an operation in G and
that inverses are still in G.

From Theorems [4.4.6] and [£.5.12], the automorphism ¢g € I" belongs to G
if and only if

(i) (v*R;)(g9) = (vxP;)(g) =0, forallve X*, i=1,...,p—t, j=1,...,¢

and

(ii) g € Sp with Cof(s) = Cof(p>), for all s € gSpines(g).

Let g,h € G. Since v * ; and v * P; are both a linear combination of their

variables, and taking into account the definition of +, we have
(v Ri)(g + h) = (v Ri)(g) + (v* R;)(h) = 0,

for all v € X* and ¢ = 1,...,p — ¢t (and similarly for the P;). On the
other hand, observe that if g, and h, are finitary for some v € X*, then

(9 + h)y = gy + hy is finitary. In other words, if
v € (X™\ Prefix(gSpines(g))) N (X™ \ Prefix(gSpines(h)))
= X™\ (Prefix(gSpines(g)) U Prefix(gSpines(h))), (4.5.5)
then g + h is finitary, and so
gSpines(g + h) C gSpines(g) U gSpines(h).

Therefore, g 4+ h satisfies both conditions (i) and (ii), and hence g + h € G.
As for the inverse —g € I' of an element g € G, note that it has to be defined

as

Similarly to how we have done for g + h, we get —g € G. ]
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4. The abelian group structure of the Gupta-Sidki group

It is clear that this pointwise addition + is a group operation in the whole
of I'. The relevance of this theorem is that when G < I' is a non-symmetric

GGS-group, and we operate with +, we still fall down to the same set G.

Examples 4.5.14. The Gupta-Sidki group, given by the defining vector
e = (1,-1,0,...,0), and the Fabrykowski-Gupta group, with e = (1,0,0),
acquire the structure of abelian groups with respect to the pointwise addition

stated in the theorem.
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