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Abstract

When designing a controller for autonomous off-road vehicles

there are two main issues to consider apart from the vehicle

dynamics: velocity and terrain irregularities. Those issues

make the system to be time-varying, and whereas the first one

is measurable, the effects of the terrain irregularities over

the dynamic of the vehicle, can be very difficult to determine.

Solutions to cover these issues could be very complex, time con-

suming and impractical to be implemented in an embedded system

with limited resources. There are proposed solutions in the lit-

erature for the usage of Model Reference Adaptive Control (MRAC).

Nevertheless, there is still room for improvement in terms of

robustness, scope of the controller and complexity.

The research presented in this thesis consists of two different

approaches: a cascade self-tuning regulator and a robust self-

tuning regulator. The first one consists of two nested loops, the

inner one contains the regulator for the yaw rate dynamics, and

the outer one is a PID controller for the lateral position, man-

aged by a gain scheduler. The second approach is only one robust

controller that covers directly the lateral position. Both self-

tuning regulators use an RST digital controller. The algorithm

used in the first regulator is a Minimum Degree Pole Placement

(MDPP), and for the second approach, a robust pole placement with

regulation dynamics is used. Additionally, a gain scheduler is

implemented to adjust the parameters of the regulation dynamics

according to the measured forward speed. In both approaches, an

online estimation of the yaw rate dynamics is proposed, using two
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possible algorithms: Recursive least-squares and Online gradi-

ent.

The controllers proposed in this work were validated in simu-

lated and real environments, and compared against a well known

optimal controller used as a benchmark, with very satisfactory

results. Also, they can be used for vehicles with different steer-

ing systems such as Skid-steering and Ackermann-steering. Fur-

thermore, they are linear and have lightweight capabilities in

terms of implementation in an ECU with limited resources, reduc-

ing by this the gap of the transition from research prototypes to

commercial machines.

Keywords: Trajectory tracking; Path following; Robotics; Off-

road vehicles; Autonomous vehicles; Guidance control; Robust

digital control; RST Controller; Digital pole placement; Agri-

cultural robotics; Skid-steering robot; Self-tuning regulator;

Tractor-Implement system.
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Resumen

A la hora de diseñar un controlador para vehículos todo terreno

no tripulados existen dos aspectos a tener en cuenta, además de

la propia dinámica del vehículo: la velocidad y las irregular-

idades del terreno. Estos aspectos hacen que el comportamiento

del sistema varíe en el tiempo y, mientras que el primer aspecto

puede ser medible, determinar cómo afectan las irregularidades

del terreno a la dinámica del vehículo puede ser extremadamente

difícil. Las soluciones que cubren esta problemática pueden

ser muy complejas y requerir gran cantidad de recursos tanto de

tiempo como de conocimientos, haciendo que su implementación en

sistemas embebidos sea poco práctica. La literatura propone solu-

ciones basadas en la implementación de controladores adaptativos

con modelo de referencia (MRAC, por sus siglas en inglés). Sin

embargo, aun existen aspectos a mejorar en términos de robustez,

alcance del controlador y complejidad de diseño e implementación.

El trabajo de investigación desarrollado en esta tesis consiste

en el análisis e implementación de dos tipos de controladores: un

regulador auto ajustable en cascada y un regulador auto ajustable

robusto. El primero consiste en dos lazos de control anidados,

donde el lazo interno contiene el regulador auto ajustable para

la velocidad de viraje y el lazo externo contiene un controlador

tipo PID para la posición lateral del vehículo, el cual es ges-

tionado por un planificador de ganancias para ajustar los parámet-

ros del controlador según la velocidad del vehículo. El segundo

controlador es un regulador auto ajustable robusto que controla

directamente la posición lateral del vehículo. Ambos reguladores

usan un controlador digital tipo RST, en el primero el algoritmo

usado se basa en posicionamiento de polos de grado mínimo (MDPP,

por sus siglas en inglés), mientras que en el segundo se basa en

un posicionamiento de polos robusto basado en un modelo de regu-

lación de segundo orden. Adicionalmente, este último contiene un
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planificador de ganancias que ajusta los parámetros del modelo

de regulación según la velocidad medida del vehículo. Para la

identificación en tiempo real de la dinámica de viraje, en ambos

controladores se han propuesto dos tipos de algoritmos: Recur-

sividad con mínimos-cuadrados y Gradiente en tiempo real.

Las controladores propuestos en esta tesis fueron validados en

entornos simulados y reales, y comparados favorablemente frente

a un controlador de tipo óptimo ampliamente conocido. Además de

utilizarse en robots agrícolas con dirección deslizante, pueden

aplicarse en vehículos con diferente tipo de sistema de direc-

ción, al ser los controladores lineales y "ligeros" en términos

de programación, lo que favorece su implementación en sistemas

embebidos pequeños, reduciendo así la brecha de transición de

prototipos de investigación a vehículos comerciales.

Palabras clave: Robótica; Seguimiento de caminos; Seguimiento

de trayectoria; Vehículos todoterreno; Vehículos autónomos; Con-

trol de navegación; Navegación automática; Control digital ro-

busto; Controlador RST; Localización digital de polos; Robótica

en la agricultura; Robots con dirección deslizante; Regulador

auto-ajustable; Sistema tractor-apero.
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Chapter 1

Introduction

With an expected population growth of 30%, some sources forecast

an increase of up to 9.6 billion inhabitants by 2050 (U.Nations,

2013). To be able to feed so many people, the agricultural pro-

cesses play an important role since the load on the planet to

produce enough food for everybody will increase as well. This

means that our need for food is jeopardizing our planet and con-

sequently, and ironically, our existence at the same time (Foley,

2017). For instance, by working the field with heavy machinery we

increase the soil compaction and this will turn the field into a

sterile area in the long run (Shah et al., 2017). There has been

an increasing research interest on agricultural robotics and au-

tomation to help improve all different kind of agricultural pro-

cesses and deal with the aforementioned and other agricultural

problems. The goal is to use resources such as tools, machinery,

water, fertilizer, working area, seeds, etc., to more efficiently

increase yield without having to increase the working area. This

is especially very important since the area of the planet that can

be used for agricultural tasks is limited. Regarding field ma-

chinery, we can basically find two approaches to help solve some

of those issues: The first one is to automate heavy machinery such

as tractors, harvesters and working implements to make them even

drive autonomously (Moorehead et al., 2012); the second one is to

change and specialize the technology according to our needs and

to use small machinery to complete these tasks (Auat Cheein and
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Carelli, 2013; Jinlin and Liming, 2010; Kohanbash et al., 2012).

Regarding the first approach, precision farming includes differ-

ent solutions such as the dosage of fertilizers and pesticides

by the use of e.g. section and rate control (Luck et al., 2010;

Sharda et al., 2013). Regarding the second approach, there are

different projects and concepts like the one presented by Blender

et al. (2016), where the energy and seeds are rationalized.

The common ground in both approaches, and its relation to this

text, is the need for autonomous driving. Agricultural robotics

is a topic that has been gaining more and more attention and the

necessity of developing different kinds of off-road autonomous

vehicles for agricultural tasks has increased in the last couple

of years.

1.1 Background

The autonomous land vehicle problem has been researched for decades

and one of the first interesting results was made be MacAdam

(1980, 1981). Later in the same decade, Carnegie Mellon Uni-

versity together with DARPA (Defense Advanced Research Projects

Agency) and other institutions founded the Autonomous Land Vehi-

cle project (ALV) (Kanade et al., 1986; Wallace et al., 1985),

with the aim of building intelligent, vision-based mobile robots.

The first results were brought to the field with ALVINN (An Au-

tonomous Land Vehicle In a Neural Network) (Pomerleau, 1989).

In the same decade in the area of agriculture, vision guid-

ance was also researched by Gerrish and Surbrook (1984); Gerrish

et al. (1986) and Searcy and Reid (1986). And what seems to be

the first adaptive approach for an agricultural tractor, was pre-

sented by Noh (1990), Noh and Erbach (1993) with a very good analy-

sis of the state-of-the-art technologies and methods of that time.

Later, parallel to the visual-based guidance results presented

by Gerrish et al. (1997) and Ollis and Stentz (1996) from Carnegie
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Mellon University, the advances in the Global Positioning System

(GPS), brought also results in the area of autonomous GPS-based

land machines (Michael O’Connor et al., 1996; O’Cornnor, 1997;

Stombaugh et al., 1998).

Nowadays, autonomous driving vehicles have been gaining more

and more interest, and a lot of research has been performed in

the area of agricultural, and off-road machines (Bayar et al.,

2016a; Bergerman et al., 2015; Blender et al., 2016; Mousazadeh,

2013; Vroegindeweij et al., 2018; Zhang et al., 2018). Also, even

though the use of GNSS (Global Navigation Satellite System) for

autonomous guidance is state of the art in modern land and agri-

cultural machines, improvements in the design and implementation,

as well as in the robustness of path following controllers, is

still a challenge in all kind of ground vehicles (Amer et al.,

2017).

1.2 Problem formulation

There are two main factors that can affect the dynamics of a land

vehicle during its operation: speed and contact with the soil.

Although these factors can be accounted for ground vehicles in

general, off-road vehicles will be more affected by them. For

instance, the changes in the soil for urban vehicles are less

dramatic compared to agricultural vehicles, which should be able

to drive through all different kind of terrains. An agricultural

vehicle will be facing loose, slippery and wet earth which makes

the driving a very difficult task. If that is not enough, it

will carry different kind of implements or tools adding different

dynamics to the vehicle, and changing even their weight on the

go. Furthermore, the precision required to drive autonomously

through the lanes, should be very high, so the vehicle does not

destroy the crops. All this requires high accuracy controllers

which should be able to adapt to the soil uncertainties and to

the changes in the weight, the speed and the form of the vehicle
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caused by the use of different implements. This complexity will

affect not only the know-how needed to implement a solution, but

also the processing power required in real-time, to be carried by

the machines – not to mention the time needed to implement such a

controller.

1.3 Motivation

As mentioned, one of the biggest challenges of automating an off-

road vehicle is that the dynamics of the system are changing

constantly. This is due to different factors such as driving in

different soils, changes in the soil itself (which can not be pre-

dicted), changes in the driving speed, and changes in the load

that the vehicle carries itself or through an implement. This

makes the design of a controller a very difficult task, since

finding a set of control parameters for every single situation

is nearly impossible. A good tuned controller will need a lot of

time and resources for its implementation in an off-road vehicle.

For instance, tuning a classical PID controller for a tractor

with an implement, will imply to perform the tuning in all dif-

ferent possible soils, covering all possible velocities and with

all different combinations of front and rear implements for all

the different situations. And all that has to be performed for

the different types of vehicles with different steering systems

such as Ackermann, 4-Wheeled and Skid-steering. Furthermore, the

computational resources available in such vehicles are limited,

and complex systems with heavy calculations are not always pos-

sible, especially when they have to be performed online and in

real-time.

Some solutions that specifically address this problem, have

been proposed for the case of a tractor with an implement (Derrick

and Bevly, 2008; Derrick et al., 2008; Derrick and Bevly, 2009;

Gartley and Bevly, 2008). Nevertheless, the solution here for the

changes in the speed is not ideal, nor its implementation in dif-
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ferent types of steering systems, and it is also time consuming.

Controllers for specific types of vehicles can be found in the

literature, but they are either complex or need a lot of comput-

ing resources for real-time calculations (see Ch. 2). Therefore,

the motivation of this research is to find a controller that is

capable of covering for changes in the vehicle dynamics, terrain

uncertainties, which is also lightweight, easy to implement in

an embedded system with limited resources, and finally, that is

flexible enough to be implemented in different types of steering

systems with small time investment for tuning.

1.4 Objective of this work

The general objective of this work is to find a controller, able

to cover for changes in the dynamics of an autonomous off-road

vehicle. Specifically a digital controller should be addressed

to make its implementation in a real-time embedded system easier.

Also, to limit the resources needed by the processor, the con-

troller should be lightweight and no heavy calculations should

be performed. The main challenges that should be covered by the

controller, are the changes in speed, weight and terrain irreg-

ularities. The controller should also be constructed in such a

general way, that different kind of steering systems can be con-

trolled by the same approach. Finally, the implementation and

tuning of the controller should be easy enough to save time and

resources.

1.5 Methodology

At the beginning of this work, a literature review is performed

in order to find available solutions. With the literature review,

different control approaches were proposed. Since the implemen-

tation and testing of the approaches require a lot of resources

in terms of machinery and field tests, different types of simula-

tions were performed using Matlab, C and C++ libraries. With the
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help of the simulations, some preliminary results were addressed

in order to then implement the best approaches in a real vehi-

cle. Different tests were performed in different terrains to be

able to compare the proposed solutions. A preliminary compari-

son of results was performed visually in order to get a feeling

of the behaviors of the vehicle according to the soil. Finally,

the errors of the lateral position were calculated in order to

compare the results and conclude which approach dropped the best

performance.

1.6 Contribution of this work

The main contribution of this work is the design of a digital,

robust and adaptive path following controller, for autonomous

off-road and land vehicles. This approach focuses, on the one

hand, on adaptive control to cover for changes in the dynamics of

the vehicle, and on the other hand, it is supported by a robust

design to cover for uncertainties in the model and in the contact

with the soil. The algorithms proposed here are also lightweight

and based on digital control, to facilitate its implementation in

a real-time embedded system with limited resources. This require-

ment will help to reduce the gap between a platform used mainly

for research and an end-product ready to market due to different

reasons. First, because by limiting the technology inside the

machine, the cost will be reduced making the platform more af-

fordable for the end user. Second, to reduce resources related

to its design and implementation. And finally, the aim is also to

find an approach that could be implemented in different machines

and steering systems by tuning only a few parameters.

Some results obtained during this research can also be found

in the following publications:

1. In Fernandez et al. (2016), the simulation used for comparing

different vehicles and steering systems is explained. This

simulation was fully developed under the scope of this re-
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search, to be able to analyse the effect of different ap-

proaches in a real-time environment. Also, it is implemented

in an interactive manner to be able to make changes on the

go, not only to tune and check different approaches in the

same environment, but also to be able to manipulate the un-

certainties and manually change the vehicle dynamics in real-

time. Furthermore, the way that the vehicles are simulated,

as well as the navigation path and the controller, is very

close to the real platform in order to reduce the gap between

the simulation and the real environment. Another advantage

of the simulation is to save time and resources, since it

is possible to test the algorithms first there, before hav-

ing to invest the time in moving machinery and equipment to

the field. Finally, the weather plays an important role as

well, since during winter or in raining season, it is very

difficult to test the vehicles on the field.

2. In Fernandez et al. (2018a), the first results of using ba-

sic adaptive control in a tractor with varying hitch forces

is introduced. Some analysis of the effects produced by a

combination of changes in the speed and in the hitch forces

to the behavior of the vehicle is also presented. Here, the

yaw rate is controlled by a self-tuning regulator. Neverthe-

less, improvements to adapt the lateral position, as well as

robustness in the design, are still missing.

3. In Fernandez et al. (2018b) a robust design is presented

with the advantage of covering the yaw rate and the lateral

position in the same controller. A design methodology is

presented together with some analysis of the robustness of

the system. The method is implemented on a skid-steering

agricultural robot, and the results gathered from the field

test are very satisfactory.

In the publications mentioned above, only a partial represen-

tation of the systems is introduced. Therefore, these methods
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are presented with all their details in Chapter 3. Also, an ex-

tended analysis of results can be found in Chapter 4. Finally,

for the benchmark, an observer-based optimal controller is used.

This controller was selected, since some good results were found

in the literature for the application of optimal control to the

path-following problem (see Sec. 2.2.8). Furthermore, some im-

provements were done to this controller by the introduction of

an observer and the online calculation of the Riccati equation.

Even though this observer-based type of optimal controller is

very well known, no publications were found related to the appli-

cation of this controller to problem of path following. There-

fore, the results related to this controller presented Chapter 4,

are also very interesting.

1.7 Outline of the thesis

This document intends to present the scope of this research in-

cluding an analysis of the problem, proposed solutions and an

analysis of simulation and field tests, with the respective chap-

ter distribution as follows:

Chapter 2 presents first a general and abstract representation

of a vehicle and its positioning system, focused on the problem

of autonomous driving. For this, three factors are important to

take into account: Navigation path, Control strategy and Lat-

eral dynamics. Based on that, a literal review follows, covering

these three factors in order to better understand the needs and

direction to be taken for this research. At the end of this chap-

ter, a summary of the literature review and a conclusion about the

theory and methods to be used for these research are presented.

Chapter 3 dives into the methods proposed to solve the problem

presented in Sec. 1.2. This chapter is divided first into three

sections presenting three different control approaches: Cascade

self-tuning regulator, Robust self-tuning regulator and Optimal
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digital control, where the latest is used as benchmark. At the

end of the chapter, a comparison of the different controllers is

presented.

Chapter 4 introduces first two different vehicles used for the

simulations and tests of the proposed methods: Tractor-Implement

model and a Skid-steering robot. After that, the following sec-

tions present respectively the simulations and results of the

three methods mentioned in Chapter 3. At the end of the chapter,

a comparison of results is presented.

Chapter 5 concludes finally with a discussion of the results and

an introduction of improvements of the proposed solution as well

as possible research directions for future work.





Chapter 2

State of the art

Figure 2.1 illustrates a very general representation of the posi-

tioning and motion system of a ground vehicle. Here, the inputs

are the desired speed and curvature. On the one hand, the Forward

Dynamics bring the vehicle to a desired speed in the driving di-

rection (Vx), which is also influenced by the desired curvature.

On the other hand, the Steering System brings the vehicle to a de-

sired radius of curvature. After the curvature and forward speed

are reached, the Lateral Dynamics move the vehicle with its re-

spective yaw rate β̇ and lateral speed Vy. Finally, integrating

the forward speed, the lateral speed and the yaw rate, we can

find the vehicle’s position, x and y, in the heading direction β

in a Cartesian coordinate system. As it can be seen, the Forward

Dynamics as well as the Lateral Dynamics are time varying and the

main factor for that variation is the contact between the wheels

and the ground, especially if the ground has a lot of irregulari-

ties as is the case for off-road vehicles. The block called Steer-

ing System represents the different constellations that can be

found in a vehicle such as Ackermann-steering, 4-Wheel-steering,

Skid-steering and Articulated-steering among other less common.

It should be taken into account, that for differential steering

systems such as the Skid-steering, the Forward Dynamics are di-

rectly related and depend on the steering and vice-versa. Whereas

for the Ackermann-steering, the Forward Dynamics and the Steer-

ing System are not dependent on each other. For instance, the
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radius of curvature of an Ackermann-vehicle will only depend on

the steering angle (and the slip angle produce by the contact to

the ground), almost regardless of the vehicle’s speed. Whereas

the radius of curvature in a stationary skid-system will always

be infinity and one will need to produce some speed in both right

and left tracks of the vehicle, to produce forward speed and a

radius of curvature.

Forward
Dynamics

Steering
System

Lateral
Dynamics

∫Desired
speed & curvature

.

Vx .

Vy, β̇

. x, y, β

Figure 2.1 General positioning representation of an off-road vehicle.

The problem of controlling the position of a moving off-road

vehicle consists mainly in dealing with the changes in the for-

ward dynamics and in the lateral dynamics, where the last ones

depend themselves on the forward dynamics. Therefore, for the

sake of simplicity we will deal only with the lateral dynamics

and assume that controlling the vehicle to reach a desired for-

ward speed is already covered. Now our problem reduces to achiev-

ing some desired lateral dynamics, which depend on the forward

dynamics, on the steering system and on the contact between the

wheels and the ground, with the aim of following a path in an

autonomous manner.

The autonomous off-road vehicle problem can be addressed into

three parts. The first part concerns the reference used for navi-

gation, i.e. the way-path or navigation path used as a reference

for the vehicle to be followed. The second part is related to

the control approach or scheme to be implemented, i.e. how to

bring the vehicle from a current position to a desired one inside

the navigation path. The last part concerns the model that will

represent the vehicle behaviour (equation of motion) and which
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will be used by the control scheme for a correct navigation. This

equation of motion could be represented either by the kinematics

of the vehicle, by its dynamics or by an estimation without real

physical meaning. It is necessary to know what work has been done

in this areas to be able to contribute with a new approach. For

that, the following sections present first a literature review

about the state of the art in how to solve this autonomous off-

road vehicle problem. Then, a summary of the state of the art

will be introduced in order to help to understand the research

direction followed in this work. Finally, a theoretical basis

for this research will be presented.

2.1 Navigation path

According to De Luca et al. (1998), the type of motion of an

autonomous terrain vehicle can be divided into three main strate-

gies: Point-to-point motion, Path following and Trajectory track-

ing. In point-to-point, the vehicle only aims to arrive at a goal

point from an initial one regardless of the geometry between them.

For path following, the vehicle is expected to follow a path, i.e.

apart from reaching a goal point, the contour between the initial

and end point should be specified and followed. Finally in tra-

jectory tracking, the vehicle is not only intended to follow the

path, but the velocity of the system is also controlled which

implies that for each point, an arrival time is expected. As

aforementioned at the beginning of this chapter, we will be deal-

ing only with the lateral dynamics and assume that the vehicle

is able to achieve a desired forward speed. Therefore, trajec-

tory tracking will be out of the scope of this research. That

leave us with path following, since the contour between points

should also be followed by the autonomous off-road vehicle. How

the way-points are connected, could be divided into continuous

and discontinuous. A discontinuous path, connects the navigation

points with straight lines as it is illustrated at the left side

of Figure 2.2. A continuous path will smooth the connections
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around the navigation points as it is depicted at the right side

of the same figure, where for example, the angles of entering

and leaving each point are specified. In this example a very

simple rule of thumb is followed, i.e. 90o and 270o between the

first two points and 90o and 180o between the second and the third

point. Nevertheless, the aim is to specify the curves accord-

ing to the vehicle’s physical characteristics and limitations,

since the control signal will represent the curvature radius. A

very common technique for smoothing the contour at the connec-

tion points with circles was first presented by Dubins (1957),

but there are other methods like splines, Bèzier curves or sim-

ple curvature path planning (SCPP) (Scheuer and Fraichard, 1997).

Barton (2001), presents a summary and literature review of dif-

ferent methods for continuous curvature path planing (CCPP). Also

newer methods like Voronoi diagrams and Fermat’s spirals can be

found in Candeloro et al. (2013).

.

.

.

.

.

.
.

.

Figure 2.2 Discontinuous path at the left and continuous path at the
right.

Apart from the approach where the user places the desired nav-

igation points manually, an automatic way of distributing the

way-points is also a very extended topic of research known as

Coverage Path Planning (CPP), which can be compared to the trav-

elling salesman problem (TSP). The first interesting survey on
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CPP was presented by Choset (2001) and followed by Galceran and

Carreras (2013) with some interesting updates such as multi-robot

CPP.

2.2 Control strategies

The control strategy to be used for an autonomous vehicle is based

on its behaviour and can be represented either by the geometry of

the vehicle, by the vehicle kinematics or by its dynamics. For

systems where the dynamics are not known, geometric and kinematic

approaches should be enough, especially if the tracking strategy

is based on point-to-point. For path following and trajectory

tracking approaches, kinematic or dynamic models can be used.

Figure 2.3 presents a distribution of control schemes according

to the vehicle model based (Amer et al., 2017).

Model type



Geometric/Kinematic



Follow the Carrot
Pure Pursuit
Stanley Method
Ribbon Model
Back Stepping
Classical (PID)

Dynamic (linear/nonlinear)



Classical (PID)
Back Stepping
Sliding mode
Model based
Optimal control
Adaptive
Robust

Figure 2.3 Controller according to the model type.

Although pure pursuit has been used as a standard benchmark to

validate new controllers, optimal controllers are very popular

in modern control theory and a study by Sharp (2005) presents

excellent path following performance, also in the presence of

changes in the vehicle dynamics. Nevertheless, if the system is

time varying, an adaptive controller could be more attractive.

The following subsections present more details and a literature

review of each control scheme.
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2.2.1 Follow the carrot

This is the simplest path following controller and the name comes

from the idea of guiding a donkey by dangling a carrot in front

of it. First Rankin et al. (1996) and later Barton (2001) present

some applications and details about this method, which basically

consists of adjusting the steering angle, by using a look-ahead

distance, as design parameter to find the next following point on

the way-path (the carrot). It can be deduced from Figure 2.4, the

difference between the orientation of vehicle and the orientation

of the carrot point as follows:

βe = βk − β. (2.1)

Using a proportional control law K, we can then find the con-

trol signal

δ = K · βe, (2.2)

where δ is the desired steering angle. This method can be directly

applied to an Ackermann-steering vehicle. For its usage in other

steering system such as Skid-steering, the equivalent curvature

has to be calculated.

Some improvements can be done by extending the control law to

include an integral and a derivative part as proposed by Amer

et al. (2017). The behaviour of the method will depend on the

look-ahead distance: if it is very small, the vehicle will tend

to oscillate, and if it is too big, it will cut edges. This method

can be extended to include the cross-track error in the control

law having a MISO system (Barton, 2001).

2.2.2 Pure pursuit

Pure pursuit is an extension of the follow-the-carrot method. In

this case, the curvature between the vehicle and the carrot point

can be directly calculated. According to Barton (2001), the

method presents better performance and less oscillations than
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Figure 2.4 Follow the carrot.

follow-the-carrot. This method is one of the widest used meth-

ods (Amer et al., 2017) and can be first found in Wallace et al.

(1985) and then with more details and some first results in Amidi

(1990) and Coulter (1992). Very interesting results comparing

pure pursuit against other popular methods can be found in Wit

et al. (2004) and Snider (2009). In Figure 2.5, it can be seen

that the calculation of the curvature radius R can be done by

applying the law of sines and cosines as follows (Snider, 2009):

Ld

sin (2βe)
=

R

sin (π2 − βe)
, (2.3)

which can also be rewritten as

Ld

2 sin (βe) cos (βe)
=

R

cos (βe)
, (2.4)

and solving for R we have

R =
Ld

2 sin (βe)
. (2.5)

For controlling a wider range of vehicles, one can use curva-

ture as the control signal, which is the inverse of the radius

(1/R). If the steering angle δ is to be used as the control sig-
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nal, some calculations have to be done based on the geometry and

measurements of the vehicle to be controlled. As previously men-

tioned, this method is very popular and has been widely applied.

For more details on how and where it has been applied, the reader

is recommended to refer to Amer et al. (2017).
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Figure 2.5 Pure pursuit.

2.2.3 Stanley

A general geometric representation of the Stanley method can be

seen in Figure 2.6. Its name comes from the robot that won the

2005 DARPA Grand Challenge, Stanley (Thrun et al., 2006). It was

developed by Stanford University for its autonomous Ackermann-

steering robot and the idea is based on the cross-track error and

the orientation error, which is calculated as follows:

βe = βp − β. (2.6)

Since this method was developed for an Ackermann-steered ve-

hicle, the steering angle is a nonlinear function of the cross-

track error e and the heading error βe:

δ(t) = βe(t) + tan−1

(
k · e(t)
Vx(t)

)
, (2.7)



2.2 Control strategies 19

where k is a design parameter. It can be seen from Eq. (2.7)

that as the cross-track increases, so does the steering angle

towards the path. On the other hand, assuming the vehicle drives

along the path, the cross-track is zero and the steering angle

equals the heading error, i.e. the steering angle adjusts to the

heading error. The original detailed explanation of the steering

algorithm can be found in Hoffmann et al. (2007). Figure 2.6

illustrates a possible representation for a general vehicle (not

necessarily Ackermann-steering), where a transformation from the

steering angle to the radius of curvature should be done if a

different steering system is to be used.

⊗
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th

.Nearest

point on path e

β
δ

Vx

βe

Figure 2.6 Stanley method.

2.2.4 Other basic algorithms

Vector pursuit is a bit more complex than Follow the carrot and

Pure pursuit. It was first explained in Wit (2000) and the au-

thor also presented some very interesting results in Wit et al.

(2004), where it can be seen that it performs remarkably better,

especially for look-ahead distances where follow the carrot and

pure pursuit are unstable. The only disadvantage that can be seen

in the results, is that in steady state, vector pursue seems to

have a steady state error in the "U" path and in the figure-eight
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path. Nevertheless, it is discussed here, that at higher speed,

vector pursuit will remain stable compared to follow-the-carrot

and pure pursuit. This method is based on screw theory and it

also takes into account arriving at the way-point with the cor-

rect orientation and curvature, which is not considered in the

previous methods. Nevertheless, it does not seem to be as popular

and there is not much information and results in the literature

to be found.

Follow the past is another pursuit method based on a look-ahead

distance and can be found in Hellström and Ringdahl (2006). It

uses the recording behaviours of the vehicle about steering and

orientation to solve the problem of cutting corners. It focuses

on forest vehicles which use articulated steering, and defines

three independent behaviours: Turn towards the recorded orienta-

tion; Mimic the recorded steering angle; Move towards the path.

A Lyapunov based method is presented in Kanayama et al. (1990)

for controlling non-holonomic vehicles using as input a reference

posture [xr(t) yr(t) θr(t)]
T and a reference velocity [vr(t) ωr(t)]

T,

which are functions of time. This control approach aims to achieve

desired linear and rotational speeds [v(t) ω(t)]T. This makes the

method more suitable for a trajectory tracking design which, as

already mentioned, is a more complex problem.

Ribbon model method was first introduced in Sun et al. (2012)

and later in Chen et al. (2014). The basic idea is that the per-

formance of the path-following controller depends on the model

and therefore, a new vehicle-road model called "ribbon" was de-

veloped. It considers the road width and the vehicle geometry.

Based on this model, a steering controller and a speed controller

were designed. The combination of model and controller allows to

adapt to different kind of environments. Its name comes from the

idea that the designed path to be followed is a "ribbon" with

left and right edges delimiting the road. Here the idea is to
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keep the vehicle inside of this "ribbon" and depending on the

road conditions, the speed is adjusted.

Back stepping is similar to the Lyapunov based method since the

aim is to bring the tracking errors [e1 e2 e3]
T to zero, as it

presented by Ye (2008) and Hima et al. (2011). In those examples,

it is used for a differential steering vehicle, where


e1

e2

e3

 =


cosβ sinβ 0

− sinβ cosβ 0

0 0 1




xr − x

yr − y

βr − β

 (2.8)

and the control signal takes the form

 v

ω

 =

 vd + ṽ

ωd + ω̃

 . (2.9)

Here, ṽ and ω̃ are defined as virtual control errors and vd

ωd

 =

 vr cos (e3) + k1(vr, ωr)e1

ωr + kyvre2 + k2(vr, ωr) sin (e3)

 , (2.10)

where ky is constant and k1 and k2 are functions of the reference

linear and angular velocities vr and ωr (Fierro and Lewis, 1995;

Jiangdagger and Nijmeijer, 1997). This method can be found also

in agricultural applications (Fang et al., 2005).

Sliding mode treats the control signals as discontinuous func-

tions, similar to switching control, where the signal slides from

one boundary to another. Therefore the name, sliding mode. This

makes the controller suitable for nonlinear systems. Neverthe-

less, a drawback could appear when generating high frequency con-

trol signals since the stress in the actuator increases and that

could lead to failure or shorter lifetime. This technique is

very popular and has being applied in numerous cases for the

path following problem (Aithal and Janardhanan, 2013; Arslan and

Temeltas, 2011; Canale et al., 2009; Dagci et al., 2003; Kigezi

et al., 2015; Martin et al., 2013; Raffo et al., 2009; Solea and
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Cernega, 2015; Solea and Nunes, 2007; Wang et al., 2008; Yang and

Kim, 1999; Zhou et al., 2005), including agriculture vehicles (Li

and Hu, 2014; Matveev et al., 2013).

Other less popular methods can be found in the literature such

as a Kinematic-based model (De Luca et al., 1998; Snider, 2009);

Future prediction control (Zakaria et al., 2013, 2012); Linear

interpolation (Scaglia et al., 2010, 2015) and Virtual force (Ros-

setter, 2003);

2.2.5 Classical control: PID

Figure 2.7 presents a general representation for a cascade con-

troller of the lateral position. Here, each controller can take

the form of a PID, or a combination of P, I and D. This basic

configuration, as such, and with some modifications can be found

in different applications (Amer et al., 2016; Derrick and Bevly,

2008; Derrick et al., 2008; Derrick and Bevly, 2009; Gartley and

Bevly, 2008; Kayacan et al., 2015; Ping et al., 2010). A transfer

function of a PID controller will consist of three parts, the

proportional (P), integral (I) and the derivative (D) part

GPID = kp +
ky
s

+ kd · s, (2.11)

where kp, ky and kd are the parameter to be tuned.

In Figure 2.7, the most inner loop represents the steering sys-

tem, which for a standard tractor, could be formed by a hydraulic

valve with dead band and saturation. The controller consists of a

lookup table and an integral action "I" (Derrick and Bevly, 2009;

Gartley, 2005). The following loop in the cascade system repre-

sents the yaw rate which can be generated by a kinematic or a dy-

namic model. In any case, a proportional action should be enough

to control the yaw rate. Finally, the outer loop will cover the

lateral position or cross-track, which is unstable since apply-

ing a constant steering angle will keep the vehicle turning. For
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this case a PID action is used, although only a proportional and

an integral action should be sufficient.

Steering
System

. Y aw
Rate

. Lateral
Position

.Steering
Controller

-Y awrate
Controller

-LateralP.
Controller

-

δ

β̇

x-track

Figure 2.7 Block diagram of a cascade controller for the lateral posi-
tion of a vehicle.

As already mentioned, the dynamics of the vehicle will change

depending on the forward speed. This will be reflected in the

DC gain, which will increase as the speed increases. For high

speed, the proportional action of the yaw rate controller will

not be enough to achieve zero steady state as the DC gain will

be very high. In order to maintain zero steady state, a feed-

forward gain has to be included, as it is the case in the studies

of Barton (2001), Gartley (2005) and Snider (2009). This can be

represented in Figure 2.8.

GPδ
. GPr

. GPx
.GCδ

-GCr

GCff

-GCx
.-

δ

β̇

x-track

Figure 2.8 Block diagram of a cascade controller with feed-forward for
the lateral position of a vehicle.

Despite the simplicity of the method, one of the drawbacks

of using this approach in a fast driving vehicle, is that the

parameters correspond only to one configuration of forward speed

and terrain interaction. Changes in the operating conditions

will require tuning a new set of parameters. This is especially
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expensive if one would like to tune different parameter for a

wide range of operating conditions.

2.2.6 Model predictive control (MPC)

Model predictive controllers can be found in linear and nonlin-

ear forms. Backman et al. (2012) presents some results for agri-

cultural application in its nonlinear form. It also presents a

short review of MPC for tractor-trailer systems. One of the draw-

backs of MPC is its high demand for real-time calculations in

order to find reliable predictions. Especially for high speeds

such as 20 m/s (∼70 km/h), the calculations have to take place

faster to achieve accurate predictions. Perhaps desktop proces-

sors could make performing such high frequency calculations pos-

sible, nevertheless, current commercial embedded systems still

have limited resources varying from 100 Mhz to a max of 450 Mhz.

This computational problem seems to be approached in works such

as Keviczky et al. (2006), Falcone et al. (2007), Klančar and

Škrjanc (2007), Kühne (2005), Kuhne et al. (2005). Finally, even

though in Amer et al. (2017) is claimed that the solution to the

high demand for calculation resources could be the use of meta-

heuristics (Merabti et al., 2016; Xue et al., 2017), guaranteeing

stability appears to be an issue (Backman et al., 2012).

2.2.7 Other nonlinear controllers

Fuzzy logic and artificial neural networks play also an impor-

tant role in the problems of path following and trajectory track-

ing. Kayacan et al. (2012), Cao et al. (2017) and Zhu et al.

(2005) present some approaches for the agricultural applications

and Zhang et al. (2013) for off-road vehicles. There are also

other interesting approaches to be found in the literature for

ground vehicles such as the ones presented by Yoo et al. (2006), Ahmed

and Petrov (2015), Faress et al. (2005), Wai and Liu (2009) and Liao

et al. (2006).
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Although Kayacan et al. (2012) presents very interesting re-

sults and claims to use a computational simple method, the com-

plexity of those approaches as well as the resources needed are

not really suitable for its implementation in commercial embedded

systems with limited resources.

2.2.8 Modern control: Optimal pole placement

The method of pole placement is one of the most simplest control

strategies. Figure 2.9 depicts a state feedback system, where the

aim is to place the poles in such a way that the closed loop stays

stable. The big question is where the poles should be placed to

guaranty a trade-off between performance and control effort, and

the solution to that is called optimal control. This problem is

also referred to as the Linear Quadratic Gaussian (LQG) problem

and is based on minimizing the cost function of the form

V =

∫ ∞

0
(yT (t)y(t) + uT (t)Ru(t))dt, R > 0 (2.12)

where the optimal control law that minimizes this function takes

the form

uopt = F · x. (2.13)

Here, R is a tuning parameter and x are the states of our

system. More details on how to solve this problem in a digital

form can be found in Ogata (1995).

Plant- +

F

.r u

ω υ
y

Figure 2.9 Closed-loop system with state feedback.

Regarding the path following problem, Snider (2009) presented

some results for the use of optimal control for autonomous car-

like robots. These results demonstrate that an optimal con-
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troller with a feed-forward to compensate for increasing gain

with the speed (as mentioned in the PID method in Section 2.2.5)

and a past-observations model to address overshoot, performs bet-

ter than other more basic controllers (pure pursuit). The past-

observations model is based on optimal preview control and de-

tailed application for the path following problem can be found

in Sharp (2005), where some results also demonstrate good ro-

bustness against changes in the dynamics of the vehicle. Alter-

natively, to approach the changes in speed, Sharp (2012) makes

use of gain scheduling to adapt this approach to different gains

in a motorcycle application. In addition to performing better

at higher speeds, this controller also covers a wider range of

driving scenarios. Snider (2009) explains that this method per-

formance is similar to the MPC but consumes less computational

resources, although it requires past-observations that have to

be processed. Nevertheless one of its disadvantages, besides

that the overshoot is not completely reduced, is that it is not

very robust to speed changes. To reduce computational resources

and make the system more robust to rapid changes and measurement

noise, the use of an observer that works as a filter can be ap-

plied. A general representation of such a system with an observer

and a state feedback can be found in Figure 2.10, where ω is the

process noise, υ is the measurement noise and x̂ are the state

estimations.

Plant- +

ObserverF

..r u

ω υ
y

x̂

Figure 2.10 Closed-loop system with state feedback and an observer.

2.2.9 Adaptive control

Adaptive control is a well known branch of Control theory and

a very good overview and summary of different approaches can be
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found in Tao (2014). Also a very extensive book, which focuses

on digital systems for adaptive and robust control can be found

in Landau et al. (2011). One can find adaptive control designs for

linear and nonlinear systems, and each of them can take a deter-

ministic approach (using models without considering noise) or a

stochastic approach introducing measurement noise in the models.

Also regarding how the control parameters are updated, we can

have direct methods or indirect methods where e.g. the control

parameters are updated through an estimation process. Regarding

the parameter adaptation, the estimation can be designed with a

gradient algorithm or with a least-squares algorithm.

Some examples of direct methods could be Gain scheduling and

Model Reference Adaptive Systems (MRAS). Examples of indirect

methods could be Self Tuning Regulators (STR) and Dual Control.

Although those classifications were covered in a general way, Åström

and Wittenmark (1994) and Tao (2014) explained that both methods

(STR and MRAS) could take both forms (direct and indirect).

Gain scheduling can be considered one of the simples ways of

adaptive control. As it is depicted in Figure 2.11, in a system

where the Process variations depend on the Environment, the param-

eters of the Controller can be adjusted with the Gain Scheduler

as long as the changes in the Environment are measurable. For in-

stance, the Gain Scheduler could take the form of a look-up table

or the form of a function f(.) where . represents the Environment

variable to be measured. The aim is to produce a control signal

u that brings the process output y to a desired reference value.

This approach is well known in aviation, where the environment

variable that changes the Process is the altitude (Åström and

Wittenmark, 1994). Also in the case of steering systems, there

are different publications where this scheme is used to control

the steering valve of heavy machines (Baslamisli et al., 2007;

Derrick and Bevly, 2009).
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Figure 2.11 Gain scheduling.

A Model Reference Adaptive System (MRAS) is displayed in Fig-

ure 2.12 and depends on a Reference Model to measure how well the

Process converges to the desired reference. These deviations are

measured by the Adaptation Mechanism, which is the key of the so-

lution and it is normally based on a parameter adjustment called

the MIT (Massachusetts Institute of Technology) rule:

dθ

dt
= −γe

∂e

∂θ
, (2.14)

where e is the error between the Process output and the Reference

Model output, θ represents the control parameters and γ is the

adaptation rate. This can be seen as a gradient method with the

aim of minimizing the error. This scheme of adaptive control

has been widely researched by Derrick and Bevly (2008), Derrick

and Bevly (2009), Derrick et al. (2008) and Gartley and Bevly

(2008) in the area of agricultural machines showing good results.

Here, the adaptive controller is used to adjust the yaw rate

feed-forward gain in a cascade system as the one illustrated in

Figure 2.8.

Self Tuning Regulator (STR) is another very popular adaptive

system and its main difference to MRAS is that it can be based

either on pole placement design or on a minimum variance design.

According to Landau et al. (2011), in its digital form the pole

placement design requires no common factors between poles (A)

and zeros (B), or if there are common factors, they should be

stable (inside the unit circle). The advantage of this method is
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Figure 2.12 Model Reference Adaptive Control (MRAC).

that the zeros are not required to be asymptotically stable. It

was already stated that the STR can take a direct form. This is

the case when using a stochastic model of the form A ·y = B ·u+C ·e,

where e is random measurement noise. By making the desired closed

loop poles P = C, the system takes the form of a minimum variance

controller, which is similar to the MRAC. For the minimum vari-

ance design, either the zeros are required to be asymptotically

stable, or the polynomials Q(q−1) and P (q−1) and the scalar λ in

its combination λQA + PB is asymptotically stable. The general

form of the STR is illustrated in Figure 2.13, where it can be

appreciated that the Estimator is in charge of finding an approx-

imation of the Process, which is time varying. The estimation

should fulfill the requirements (above outlined for pole place-

ment or minimum variance) and, if that is the case, the Controller

Design will be in charge of finding the corresponding control pa-

rameters according to the user specifications. Similar to the

MRAS, u is the control signal so the output y converges to a de-

sired reference. As it can be seen, the Controller block can take

different forms according the user design. One advantage of STR

over MRAS is that the zeros does not have to be stable, which is

not the case for MRAS. Nevertheless, for a real physical systems

the zeros are not always stable. Another advantage of STR over

MRAS is that, through pole placement, the user can define desired

closed loop poles based on a second order system. An example of

a self-tuning controller for a tractor was presented by Noh and
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Erbach (1993), based on his thesis (Noh, 1990). This approach

uses a stochastic model based on a minimum variance design which,

as previously mentioned, is very similar to the MRAC. Although

the idea is very interesting, it was designed as a controller for

the lateral position, which in theory, could contain unstable

zeros. The simulation used for testing, is based on a model that

approximates the lateral position producing always stable zeros.

In a real system, this could be a problem, and the solution might

be to use pole placement instead of minimum variance. Another

problem arises by using a 2nd order system for the lateral posi-

tion where, in a tractor with an hydraulic steering system and

tire relaxation, the order of the system might be up to 5.

Controller

.

. Process .

Esimator
Controller
Design

reference u y

Reference modelSpecifications

Figure 2.13 Self-tuning regulator.

Dual control was mentioned by Åström and Wittenmark (1994) as an

approach that, in contrast to MRAS and RST, takes into account pa-

rameter uncertainties. Even though Åström and Wittenmark (1994)

claimed at that time that this approach is too complicated to

be implemented in a practical case, the concept is worth to be

mentioned. Figure 2.14 illustrates the idea, where the hyper-

state is a nonlinear estimator of the probability distribution

of the measured states. This will allow for rapid changes in the

states, covering then the uncertainties. The problem with this

method is the complexity of solving the hyperstate problem which

should take place in real-time. The simplest example of the hy-
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perstate could be a model represented by its mean and covariance

as explained in Åström and Wittenmark (1994).

Nonlinear
Controller

. Process .

Hyperstate
Calculation

reference u y

Hyperstate

Figure 2.14 Dual control.

Other types of adaptive controllers have been presented in the

literature (Landau et al., 2011) with examples such as Multiple

Model Adaptive Control, Adaptive Regulation, Feed-forward Com-

pensation, Parameter Adaption Algorithms and Iterative Identifi-

cation which has been used in Liu and Alleyne (2014) for vehicle

model identification. There are also special cases of adaptation

applied to the autonomous trajectory tracking and path following

problems (Chen, 2011; Das et al., 2006; Khatib et al., 2015; Li

et al., 2015; Martins et al., 2008; Yoo, 2010). Interesting is

for instance the work in Fukao et al. (2000), which used the back-

stepping strategy and compared a real robot with a virtual one

tracking a desired trajectory. Here, the real model has unknown

parameters such as wheel radius and width, that keep changing

until the error between both robots is minimized. Also regarding

backstepping, Hima et al. (2011) presented an adaptive controller

law for passenger vehicles. For agricultural applications, Bayar

et al. (2016b) developed a slippage estimator that changes the

model on the go and adapts the controller. Lenain et al. (2003)

presented a nonlinear adaptive controller for tractors in the

presence of sliding.

2.2.10 Robust control

There are situation where it is really difficult to model non

linearities and uncertainties. In those cases, the design of the
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controller should some how take these changes into account to

make the controller robust. The idea is to have a nominal model

and a family of models to cover for possible changes and based

on that, design a controller that covers the family of models.

For that, two main approaches can be applied: Additive model

uncertainty (see Fig. 2.15) and Multiplicative model uncertainty

(see Fig.2.16). For the case of additive uncertainties we can see

from Figure 2.15 that the family of models can be represented by

G′(z−1) = Process(z−1) + δ(z−1)Wa(z
−1), (2.15)

where Process is the nominal plant, δ and Wa are stable transfer

functions and ∥δ(z−1)∥∞ ≤ 1.

Controller . Process +

δWa

reference u y

Figure 2.15 Additive model uncertainty.

For the case of multiplicative uncertainties we can see from

Figure 2.16 the that family of models can be represented by

G′(z−1) = Process(z−1)
[
1 + δ(z−1)Wm(z−1)

]
. (2.16)

Here again Process is the nominal plant, δ and Wa are stable

transfer functions and ∥δ(z−1)∥∞ ≤ 1.

Landau et al. (2011) presents another type of uncertainties

called Feed-back uncertainties, which take the form

G′(z−1) =
Process(z−1)

1 + δ(z−1)Wr(z−1)
. (2.17)

There are robust solutions to be found in the literature ap-

plied to the trajectory tracking and path following problems (Pan
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Figure 2.16 Multiplicative model uncertainty.

et al., 2014; Zhou et al., 2005). A couple of them have been

mainly applied to nonholonomic and skid-steering robots(Arslan

and Temeltas, 2011; Hwang et al., 2013; Inoue et al., 2013; Normey-

Rico et al., 2001; Roy et al., 2015; Wai et al., 2010). Neverthe-

less, these solutions appear in its majority to be either complex,

nonlinear and/or demand computational resources especially when

combined with MPC (Bahadorian et al., 2012). They also appear

to be applied to specific type of vehicles and for an indoor con-

trolled environment.

2.3 Lateral dynamics

In the previous Subsection 2.2, different control schemes were

mentioned. To be able to design and implement those control

schemes, a model or representation of the vehicle is needed. For

instance, Amer et al. (2017) divides the different types of ve-

hicle models into four categories: Geometric model, Kinematic

model, Linear dynamic model and Nonlinear dynamic model.

The geometric model considers only the dimensions of the ve-

hicle as well as the geometry formed by the steering system in

relation to the navigation points. This could be the case for

Ackermann-steering but might not be the case for skid-steering

where a differential speed is needed to steer the vehicle. The

kinematic model can represent the vehicle only by its position

and speed, including heading and yaw rate without considering

the forces that produce the motion. Finally the dynamic models
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(nonlinear and linear) extend the kinematic model and include the

forces that produce the motion. The most precise approach that

considers all the factor that affect the motion of the vehicle is

the nonlinear model.

Now the challenge of using the same controller in different

vehicles, is that each type of vehicle will have a different non-

linear model and different considerations have to be taken into

account such as tire relaxation and non-holonomic 1 constrains.

One way of simplifying the problem is to use a linear controller,

which implies that the model of the vehicle to be used can also

be linear.

In some cases the model can be linearised, as it is the case

of a tractor-implement system presented in Section 4.1, whereas

in other cases, such as in a skid-steered vehicle, it is not pos-

sible to linearise the model. A way of finding a linear model

in those cases is through a system identification. This will

require to measure the corresponding inputs and outputs of the

system and in order to have an accurate model, the input signal

should contain a reach range of frequencies, where the vehicle is

expected to be stimulated in the real situations. There are also

other situations where it is very helpful to find an identified

model. For instance, in some cases the physical parameters such

as the cornering stiffness or momentum of inertia are not avail-

able. Another advantage is that the identification can also take

place online, which is very helpful for the cases of a time vary-

ing system. Furthermore, using system identification, the form

of the equation can be represented in a desired order without the

need of having parameters with a physical meaning.
1In a non-holonomic system, the controllable Degrees of Freedom (DOF) are

less than the total DOF of the system itself (Amer et al., 2017). For instance,
a ground vehicle will have three DOF in an Cartesian coordinate system (x,y and
vehicle heading β), but only forward speed and steering angle can be controlled.
Therefore, a ground vehicle can be considered as a non-holonomic system.
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Landau and Zito (2006) presents two different types of identi-

fication algorithms: Gradient and Least-squares, where each of

them have their off-line and online (real-time) version. Here,

the online methods (recursive) are also presented in two sets:

one related to the whitening of the prediction error and another

related to the non-correlation of the observations vector. Re-

garding the first set, we have the following methods:

• Recursive Least Squares (RLS)

• Extended Least Squares (ELS)

• Generalized Least Squares (GL)

• Recursive Maximum Likelihood (RML)

• Output Error with Extended prediction Model (OEEPM)

And regarding the uncorrelation of observations, we have the

following methods:

• Instrumental Variable with Auxiliary Model (IVAM)

• Output Error with Fixed Compensator (OEFC)

• Output Error with Filtered Observations (OEFO)

• Output Error with Adaptive Filtered Observations (OEAFO)

The methods mentioned above are used for Single Input Single

Output systems (SISO). They identify the parameters of a transfer

function of the type Auto-Regressive with eXogenous input (ARX).

In presence of stochastic (random) disturbances, a transfer func-

tion of the type Auto-Regressive Moving Average with eXogenous

input (ARMAX) can be used. One can say that the most popular

method is the least-squares, and Åström and Wittenmark (1994)

dedicates a whole chapter for the real-time parameter estimation

using this method.
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For finding Multiple Input Multiple Output systems (MIMO), one

could use Subspace Identification Methods (SIM). Qin (2006) presents

an overview of SIM, dividing them into open and closed loop sys-

tems. For open loop methods, the author pointed out the following

methods:

• Canonical Variate Analysis (CVA) (Larimore, 1990)

• Numerical State Space Subspace System Identification (N4SID) (Over-

schee and Moor, 1994)

• Subspace Splitting (Jansson and Wahlberg, 1996)

• MIMO Output-Error State Space model identification (MOESP) (Ver-

haegen and Dewilde, 1992)

And for the closed loop methods, we could find the following

representative ones:

• Prediction Error Methods (PEMs) (Forssell and Ljung, 1999)

• Errors in variables (EIV) (Chou and Verhaegen, 1997)

An iterative learning method for a dynamic model can be found

in Liu and Alleyne (2014). Also regarding linear identification

of off-road vehicles, Karkee and Steward (2011) applied a combi-

nation of PEM and Gradient optimization (Levenberg-Marquard) for

the parameter estimation of a tractor with a single axle towed

implement. Gartley and Bevly (2008) applied an Extended Kalman

Filter(EKF), where the updated covariance matrix included the pa-

rameters of the model. This method can be comparable to the RLS

presented in Åström and Wittenmark (1994). Kayacan et al. (2015)

and Yi et al. (2009) also used the EKF for the estimation of the

motion parameters. Iagnemma et al. (2004) applied a RLS algorithm

for the estimation of terrain parameters. Finally, an optimiza-

tion algorithm was used in Caldwell and Murphey (2011) for the

estimation of the motion parameters of agricultural vehicles.
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2.4 Summary of literature review

In the literature review, three main aspects were analysed to

address the problem of autonomous off-road vehicles: Navigation,

which describes the way and form a navigation path is going to be

followed; Control strategy, which describes the method to be used

to make the vehicle follow the navigation path; Lateral dynamics,

which is needed by the control strategy in order to calculate

appropriate control parameters.

Navigation could be divided into three different approaches:

Point-to-point concerns only the arriving at each point, no mat-

ter how the vehicle moves from point to point; Path following

concerns the way the vehicle drives between the points, connect-

ing them in a smooth way (continuous curvature path) or in a

simple way (discontinuous curvature path); Trajectory tracking

not only concerns the way the vehicle drives, but also the timing

to arrive at each way-point.

Control strategy presented a summary of different schemes for

the navigation problem (point-to-point, path following and tra-

jectory tracking). These strategies can be used for three differ-

ent vehicle representations: Geometric, Kinematic and Dynamic,

where each of them could be linear or nonlinear. Some strategies

such as PID can be applied to all three representations, whereas

others are only suitable for one or two of them. The results

presented by Snider (2009) and Barton (2001) explained that the

basic schemes such as Pure pursuit, Stanley and Kinematic based,

have some drawbacks such as oscillations, bad robustness against

disturbances and discontinuous paths, cutting corners and steady

state error at high speeds. In Snider (2009), the best perfor-

mance was thrown by the Preview optimal control with fair to good

results in all assessments. Regarding Skid-steering, where the

maneuver is a result of a difference between the angular veloc-

ities of the right and left wheels, there are different methods

that deal with its modeling and representation (Al-Milli et al.,
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2010; Caldwell and Murphey, 2011; Guo and Peng, 2013; Maclaurin,

2011; Martínez et al., 2005; Wang et al., 2015; Xueyuan et al.,

2013; Yi et al., 2009) but as already mentioned in Section 2.2.10,

due to the complexity of the system dynamics the solution to

the control problem is also complex and non-linear (Arslan and

Temeltas, 2011; Caracciolo et al., 1999; Inoue et al., 2013; Jun

et al., 2014; Pazderski and Kozłowski, 2008; Pazderskit et al.,

2004; Tchoń et al., 2015; Yi et al., 2007). Another way to deal

with this complexity is the approach of Adaptive control. For in-

stance, for the problem of off-road vehicles where the changes in

the terrain and speed introduce more uncertainties, the answer

appeared to be adaptive control. For example, for Ackermann-

steering different research has been performed, more specifi-

cally for a tractor with varying hitch forces where Gartley and

Bevly (2008) have done an analysis of a tractor-implement system.

Derrick and Bevly (2008, 2009) as well as Derrick et al. (2008),

proposed a MRAS for the yaw rate dynamics. An adaptive and pre-

dictive nonlinear controller for off-road vehicles is presented

in Lenain et al. (2007). Even though the results using Adaptive

control are very satisfactory, one of the main drawbacks of MRAS

is that the zeros have to be stable. Therefore, this approach

was used only for the yaw rate gain and a cascade PID has to be

used for the lateral position. Another limitations of Adaptive

control is its lack of robustness to noise and disturbances. Also

according to Landau et al. (2011), only in especial applications

the design assumptions that the digital plant will have stable

zeros will work (delays bigger than half sampling period will

produce unstable zeros).

Lateral dynamics concerns the way the vehicle behaves. As a

consequence of the different control strategies, the way the ve-

hicle is represented is of key importance. This can be done

geometrically, by the kinematics of the vehicle or by its dynam-

ics. Also, a system identification could be performed in case

some model parameters are not known a priori. Another advantage
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of system identification, is that the parameters of the model to

be identified do not necessarily need a physical meaning. For

system identification, two main approaches can be used: Least-

squares algorithms or Gradient algorithms, where both can take

an off-line form or an on-line (recursive) form. For instance,

if an adaptive controller is to be used, an online identification

of the model has to be performed to account for changes in the

dynamics of the vehicle.

2.5 Theoretical basis of this research

Recalling the problem formulation of Section 1.2, it addresses

the need for a controller that is capable of covering changes

in the vehicle dynamics and terrain uncertainties, which is also

lightweight and easy to implement in an embedded system with lim-

ited resources and finally, that is flexible enough to be imple-

mented universally in different types of steering systems.

With that in mind, it can be concluded after the literature re-

view in the previous subsections, that the best approach for the

autonomous off-road vehicle is the implementation of an adaptive

controller. Ideally, a trajectory tracking strategy will facili-

tate the error reduction, especially in the turning points, since

it has to consider vehicle constraints for the design of proper

forward speed and turning curvature. Nevertheless, as already

mentioned at the beginning of this chapter, for the sake of sim-

plicity and since the aim of this research is to focus on the

control strategy, the approach to follow in this research for

the navigation is a Discontinuous Curvature Path, and the abil-

ity to control a desired forward speed Vx will be assumed. As for

the model to be used, the question remains open if a static model

(either kinematic or dynamic) will perform better than an online

estimation. For the last case, a comparison between lest-squares

and gradient algorithms could be very interesting.
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Regarding the adaptive control scheme, MRAS was already tested

with successful results. Nevertheless, STR could bring advan-

tages over MRAS such as the ability of working with unstable

zeros and the use of pole placement for the design of a desired

closed loop response.

On the other hand, the lack of robustness in the adaptive con-

trol scheme is also explained in the literature review (Sec. 2.4).

Therefore, a robust approach is also considered for this research.

Also, Amer et al. (2017) concludes in its summary, the importance

of robust controllers to be able to effectively navigate vari-

ous types of paths. A well known approach to solve the robust

control problem in the domain of frequency, is by shaping some

sensitivity functions through weights that enclose the family

of models as presented in Section 2.2.10, with the help of some

norms like the H∞ and H2 as constraints. There are also other

methods such as linear matrix inequalities, to express both H∞

and H2 constraints. One problem here could be the difficulty to

enclose a family of models since the uncertainties of the terrain

can not be known a priori. Another problem that could be faced,

apart from the complexity of the approach, is the fact that these

methods still have to be translated to a digital domain for its

implementation in an embedded system with limited resources. One

solution could be to work directly in the digital domain. For

that, the robust pole placement approach presented by Landau and

Zito (2006) can be used. Also, with this approach it is possible

to shape the sensitivity functions without the definition of the

family of models beforehand.

Consequently, a combination of adaptive and robust control

could be the ideal solution for the autonomous off-road vehicle

problem. Parallel to that, the work in Snider (2009) presented

very good results for the method called preview optimal control,

with minor problems of overshooting. As already mentioned in Sec-

tion 2.2.8, these overshooting problems could be solved by the
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implementation of an observer in the optimal controller. This

improvement in the optimal controller will be presented in Chap-

ter 3, to be used as a benchmark for its comparison with the STR

solutions proposed in this research.





Chapter 3

Adaptive, robust and optimal

discrete-time control

This chapter presents the three methods proposed in this research

for the control of the lateral position of off-road vehicles. The

first section presents a straightforward way of implementing an

adaptive RST controller. The system consists of two nested closed

loops where the inner loop controls the yaw rate dynamics with

the help of an estimator. The outer loop controls the lateral

position in feedback with a PID controller. The second section

extends the RST controller by working directly with the lateral

position and by considering tracking and regulation performance

as well as by introducing a robust design. The third section

presents an observer-based optimal controller chosen as a bench-

mark for this research due to its filtering capabilities and to

its energy efficiency. Also, it is a well-known controller used

for autonomous vehicles (Snider, 2009)

3.1 Cascade self-tuning regulator

In this section, a nested cascade system for controlling the lat-

eral position of an off-road vehicle is presented. The inner

loop consists of a self-tuning regulator to control the yaw rate

dynamics with the help of an estimator. The outer loops consist

of a PID managed by a gain scheduler to control the lateral posi-
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tion. This solution is the starting point of this research and

is inspired by the method presented by Derrick and Bevly (2008),

which is also based on a cascade system. The main difference lies

in the inner loop, where a MRAC is used instead. Even though the

MRAC showed good results, this method requires that the zeros of

the system are stable and this can restrict the scope of the solu-

tion. Also, an exact model of the vehicle as reference is needed

and that might not always be the case. Furthermore, although the

MRAC is based on a cost function to find an optimal solution, the

user has no influence in changing the behaviour of the vehicle.

Therefore, there are three main solutions covered by the system

proposed in this section: 1. A pole placement method for the yaw

rate dynamics that allows the user to change the desired behav-

ior of the vehicle; 2. A recursive system identification to find

changes in the model in real-time; 3. A gain scheduler for man-

aging the PID parameters used in the outer loop for the lateral

position.

This solution is illustrated in Figure 3.1. As already men-

tioned, it is based on a gain scheduler and a self-tuning regu-

lator, which is made up of a recursive least-squares parameter

identification algorithm for the yaw rate dynamics β̇ combined

with a minimum-degree pole placement (MDPP) method for changing

the parameters of a digital RST controller in real time. The MDPP

is computed by solving the Diophantine equation (also called Be-

zout polynomial) for the desired closed-loop reference 2nd order

model based on ωm and ζm. Here, r(t) is the reference point for

a desire lateral position y(t) and a classical PID controller is

to be used. Furthermore, since the lateral position depends on

the forward speed, a Gain Scheduler is used as a look-up table

to apply the PID parameters that better fit the desired system

response.
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r(t) PID − T −

Controller

Design

1
R
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Scheduler
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z−dBβ̇

Aβ̇
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z−dBy
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Dynamics

y(t)

Vx

ωm, ζm

u β̇uc

Figure 3.1 Block diagram of an indirect self-tuning regulator for ter-
rain vehicles.

3.1.1 Gain scheduler

Since the motion dynamics of a vehicle depend on the forward

speed, one will need to work with non-linear models for control-

ling the lateral position. On the other hand, a Gain Scheduler

controller works well when one can find measurable variables that

can be correlated to changes in the process, and in the major-

ity of the cases, measuring the forward speed of a vehicle is

possible with high accuracy. Therefore, one can correlate the

forward speed to the PID control parameters of the lateral po-

sition. Therefore, one can make use of a PID look-up table for

the desired range of velocities. Alternatively, if one can say

in general that the gain of the closed loop system of a vehicle

is inversely proportional to its speed, one can then use the same

proportion where the parameters P, I and D are a function of the

forward speed. Nevertheless, it is a common approach to tune the

parameters manually and the question arises what should be the

nominal conditions of the vehicle, such as speed and terrain, for

the tuning process. Based on those decisions, one should assess

in a real environment if a linear correlation between the con-

trol parameters and the forward speed will deliver satisfactory

results, otherwise all parameters should be adjusted individu-

ally for each different scenario. As mentioned before, this task
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is not trivial since e.g. for tuning a tractor to adapt well

to different terrains and implements a lot of resources will be

needed, not only time but also the preparation and transport of

the machinery itself to proceed with the tests in different ter-

rains.

3.1.2 Estimator

Assuming that the yaw rate defined by
z−dBβ̇

Aβ̇
in Figure 3.1 can

be modeled with a second order system, we can use the next pulse

transfer function as the model to be identified by the estimator:

Gβ̇(z
−1) =

b0 + b1z
−1

1 + a1z−1 + a2z−2
. (3.1)

For an online estimation of the process parameters, we can

start with the following performance cost function:

V (θ) =
1

2

t∑
i=1

λt−i(β̇(i)− φT (i)θ̂)2, (3.2)

where

θ̂ = [−a1 − a2 b0 b1]
T (3.3)

and

φ =


β̇(i− 1)

β̇(i− 2)

u(i− 1)

u(i− 2)

 . (3.4)

The objective is to find the parameters that minimize the per-

formance index

θ̂ = arg min
θ

V (θ), (3.5)

through an iterative search of the form:

θ̂(t) = θ̂(t− 1) +K(t)(y(t)− φT (t)θ̂(t− 1))

K(t) = P (t− 1)φ(t)(λ+ φT (t)P (t− 1)φ(t))−1

P (t) = (I −K(t)φT (t))P (t− 1)/λ,

(3.6)



3.1 Cascade self-tuning regulator 47

which is a recursive, least-squares method with exponential for-

getting, where 0 < λ ≤ 1 is the forgetting factor (Åström and Wit-

tenmark, 1994). The flow diagram of the recursive estimation can

be seen in Figure 3.2. The initial conditions for the estimation

vector and the measurements vector can be zero (θ̂(t−1) = 0; φ(t) = 0)

and the initial condition for K(t) and P (t) can take the following

unit value:

K(t− 1) =


1

1

1

1



P (t− 1) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

(3.7)

After each iteration, the parameters of the model are identi-

fied and if the error produced by those parameters is under a

desired limit (e.g. 1 rad/s), then the identified parameters can

be used for the Controller Design.

3.1.3 Controller design

The controller of the form

R(z−1)u(k) = T (z−1)uc(k)− S(z−1)y(k) (3.8)

is calculated by the "Controller design" using the minimum-degree

pole placement of Algorithm 1, which was first described by Åström

and Wittenmark (1994). The aim is to have a desired closed-loop

response based on the following second order reference model de-

fined by ωm and ζm:

y(z−1)

u(z−1)
=

bm0z
−1

1 + am1z−1 + am2z−2
. (3.9)



48 Adaptive, robust and optimal discrete-time control

Initial conditions:

θ̂(t− 1), α(t), K(t) and P (t)

Measure output:

β̇

Update vectors:

φ, θ̂(t− 1) (Eqs. (3.3) and (3.4))

Calculate estimation:

θ̂(t),K(t), P (t) (Eq.(3.6))

Calculate error:

ε = β̇ − ϕT θ̂

|ε| ≤ lim ?

Controller
Design

yes

no

Figure 3.2 Flow diagram for the recursive least-squares estimator.

This method can be used for different vehicles (of different

sizes). Nevertheless, we should first find the desired and real-

istic response for the vehicle that we are planning to control.

Algorithm 1: Minimum-degree pole placement (MDPP) with self-
tuning regulator

Require: Polynomials A, B
Ensure: Closed loop polynomials Am, Bm and Ao
1: 0 Online estimation of polynomials A and B.
2: 1 Check compatibility conditions:

degAm = degA
degBm = degB
degAo = degA− degB+ − 1

Bm = B−B′m
3: 2 Factor B as B = B+B−, where B+ is monic.
4: 3 Find the solution R′ and S with degS < degA from

AR′ +B−S = AoAm.
5: 4 Form R = R′B+ and T = AoB

′
m, and compute the control signal

from the control law Ru = Tuc − Sy.
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To apply the minimum-degree pole placement self-tuning algo-

rithm, we first identify the polynomials A and B by the estimator

as described in the flow diagram 3.2. Checking the compatibil-

ity condition one sees that degAm = degA = 2; degBm = degB = 1;

degAo = degA− degB+ − 1 = 1 which implies that degB+ = 0. Therefore

factoring B makes B+ = 1 and B−1 = B = b0 + b1z
−1 and the reduced

Diophantine equation is as follows:

(1 + am1z
−1 + am2z

−2)(1 + a0z
−1) =

(1 + a1z
−1 + a2z

−2)(1 + r1z
−1) + (b0 + b1z

−1)(s0 + s1z
−1). (3.10)

Finally, the following equations system presents the solution

to R, S and T for each cycle, to produce the control signal u in

real-time for the given reference set point uc:

r1 =
b1
b0

+
(b21 − am1b0b1 + am2b

2
0)(−b1 + aob0)

b0(b21 − a1b0b1 + a2b20

s0 =
b1(a0am1 − a2 − am1a1 + a21 + am1 − a1ao)

b21 − a1b0b1 + a2b20

+
b0(am1a2 − a1a2 − aoam2 + aoa2)

b21 − a1b0b1 + a2b20

s1 =
b1(a1a2 − am1a2 + aoam2 − aoa2)

b21 − a1b0b1 + a2b20

+
b0(a2am2 − a22 − aoam2a1 + aoa2am1)

b21 − a1b0b1 + a2b20

T =β(1 + aoz
−1)

β =
1 + am1 + am2

b0 + b1
.

(3.11)

3.2 Robust self-tuning regulator

Figure 3.3 illustrates an evolution and more robust version of

the first solution presented in the previous Section 3.1 (Fig. 3.1).

This solution is proposed for two main reasons. First, the usage

of only one controller to avoid a nested system. And second, to be

able to introduce a robust design to the pole placement to cover

for uncertainties in the terrain. Since two of the main factors

that affect the system are the contact with the soil and the for-

ward speed, this approach divides the vehicle model into two: yaw
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rate dynamics
z−dBβ̇

Aβ̇
and lateral position z−dBy

Ay
. The first one is

related to the changes in the soil, which are calculated online

with the Estimator, and the second one is related to the forward

speed. The Estimator calculates in real-time the parameters of

the yaw rate characteristic and passes them to the Controller De-

sign which knowing the forward speed Vx constructs an estimation

of the whole plant z−dB
A and, in contrast to the approach of Sec-

tion 3.1, calculates the control parameters for the whole system.

Other intrinsic advantages come along with this method. For in-

stance, tuning a PID for all the range of working speeds is time

consuming. In contrast, this system requires fewer parameters to

be tuned for one nominal speed, an they can be linearly adjusted

by the Gain scheduler as a function of the vehicle speed.

r(t) Bm
Am

T −

Controller

Design

1
S

Gain

Scheduler

R

z−dBβ̇

Aβ̇

Estimator

z−dBy

Ay

Forward

Dynamics

y(t)

Vx

ωt, ζt
ωr, ζr, α1, α2

u β̇y∗

Figure 3.3 Block diagram of a robust and adaptive digital controller
for terrain vehicles.

To be able to find the control parameters R, S and T, the

Controller Design needs the dominant and auxiliary poles PD and

PF to solve the Bezout polynomial of Eq. (3.27). For that, the

Gain Scheduler delivers ωr and ζr for the regulation dynamics used

in PD and α1 and α2 used for PF. This system also introduces some

tracking dynamics defined by Bm
Am

based on the parameters ωt and

ζt which depend on the forward dynamics and are also delivered by

the Gain Scheduler.
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3.2.1 Gain scheduler

For the system depicted in Figure 3.3, the Gain Scheduler will

have two tasks. The first one will be in charge of changing the

tracking dynamics, which can be represented with a second order

system based on ωt and ζt. For instance, a system with ωt = 3 and

ζ = 1 will respond to a unit step achieving the steady state in

approximately 3 s. For a terrain vehicle this means changing to a

lane that is 1 m to the left in less than 3 s. With a forward speed

of 0.25 m/s the vehicle will need 75 cm to change the lane which

is quiet acceptable. Now driving at 1 m/s, in 3 s the vehicle will

need 3 m to change the lane instead of 0.75 m, which might not be

desirable. Therefore, in this case it is more important to spec-

ify the maximum desired forward distance to change to a lane 1 m

away and based on that, use different tracking dynamics depending

on the forward speed. Another factor to consider is the physical

limitation of the vehicle. For instance, a differential steering

will be in theory able to turn with a zero radius, whereas in an

Ackermann-steering, the maximum turning radius will be limited

by the maximum steering angle and the distance between axes. In

summary, one option could be to choose ζt = 1 to avoid overshooting

and make the natural frequency a function of the forward speed

ωt = f(Vx).

The second task will be in charge of changing the regulation

dynamics of the system depending on the forward speed, which are

related to the reaction of the system against measurement noise

and disturbances. For instance, high values of ωt at slow speeds

will make the system very reactive and introduce oscillations. On

the other hand, small values of ωr at higher speeds will increase

the error of the system since the system will not correct its

position fast enough. Also here the physical limitations of the

system should be considered. A slow hydraulic steering system

will not react fast enough to high values of ωr. The auxiliary

poles play also an important role in the regulation dynamics and
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its function will be described in more detail in the following

sections. Also in this case, one could choose ζr = 1 to avoid

overshooting and make the natural frequency a function of the

forward speed ωr = f(Vx). Finally, for the sake of simplicity, one

could pick a fixed value for α1 and α2 between -0.05 and -0.5.

3.2.2 Estimator

Section 3.1.2 presented a recursive least-squares method with

exponential forgetting for an online estimation of the process.

Here, we present another method using gradient search. Figure 3.4

illustrates the general approach of the gradient algorithm. Af-

ter measuring the output of the plant, an estimation is calcu-

lated with the input vector of past input and outputs measure-

ments (φ) and the model parameters vector (θ̂). Then, the error

ε is calculated and used by the gradient algorithm which updates

the model parameters. Since we want to adapt the model parame-

ters to real-time changes in the system dynamics, this loop is

repeated endlessly.

+Plant

Gradient
algorithm

Θ̂

β̂ ε

ˆ̇
β

φ1...φr

Figure 3.4 Gradient-based algorithm for the online estimation of the
vehicle’s yaw rate parameters.

To know if the parameters are adapting in the right direction,

this method is based on a performance index of the form

V (θ) =
1

2N

N∑
k=p

(β̇(k)− ˆ̇
β(k|k − 1, θ))2 =

1

2N

N∑
k=p

ε2(k, θ), (3.12)
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where the estimation can be calculated by means of a linear pre-

dictor model as follows:

ˆ̇
β(k|k−1) = −a1β̇(k−1)− ...−anβ̇(k−n)+b0u(k−d)+ ...+bmu(k−d−m). (3.13)

Recalling the objective of the least-squares method (Eq. (3.5)),

we can see that here the aim of finding the parameters that mini-

mize our cost function is the same

θ̂ = arg min
θ

V (θ), (3.5)

with the difference of using a different iterative search of the

form

θ(l + 1) = θ(l) + αf(l). (3.14)

Here l represents the iteration step, f(l) ∈ ℜnp is called the

search direction and α is the learning rate. The combination

of αf(l) could take different forms: Steepest descent when f(l) is

replaced by the negative gradient described by Eq. (3.15); Newton

method when αf(l) is replaced by the Hessian (Eq. (3.16)) times the

negative of the gradient; Levenberg-Marquardt is a combination

of both Steepest descent and Newton. Those are some of the same

methods used for training artificial neural networks with the

difference that here only one artificial neuron is used, which

means that no back-propagation of the error is needed. Also,

instead of using batch training, we are using online training.

∇V (θ) =

[
∂V

∂θ1
...

∂V

∂θnp

]T
. (3.15)

∇2V (θ) =



∂2V
∂θ21

∂2V
∂θ1∂θ2

· · · ∂2V
∂θ1∂θnp

∂2V
∂θ2∂θ1

∂2V
∂θ22

· · · ∂2V
∂θ2∂θnp

...
...

...
...

∂2V
∂θnp∂θ1

∂2V
∂θnp∂θ2

· · · ∂2V
∂θ2np


. (3.16)
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Each ith element of the gradient of the performance index (∇V (θ))

takes then the following form:

∂V (θ)

∂θi
=

1

2N

N∑
k=1

∂(β̇(i)− ˆ̇
β(k|θ))2

∂θi
= − 1

N

N∑
k=1

∂ŷ(k|θ)
∂θi

ε(k|θ), (3.17)

where N is the number of measurements in a batch. Nevertheless,

since we are aiming for online identification, N = 1 and so we

have that
∂V (θ)

∂θ
=

∂(β̇(i)− ˆ̇
β(k|θ))2

∂θi
= −∂

ˆ̇
β(k|θ)
∂θi

ε(k|θ). (3.18)

Rewriting (3.13) we have that

ˆ̇
β(k|θ) = θi · φ, (3.19)

where

θ = [−a1 · · · an b0 · · · bm] (3.20)

and

φ =



β̇(k − 1)
...

β̇(k − n)

u(k − d)
...

u(k − d−m)


. (3.21)

Applying the chain rule to Eq. (3.17) to find the gradient, we

have that
∂
ˆ̇
β(k|θ)
∂θ

= φ(k). (3.22)

Rewriting Eq. 3.14 for the steepest descent method we have that

θ(k + 1) = θ(k)− α
∂V

∂θ

∣∣∣∣
k

. (3.23)

Substituting Eq. (3.22) into (3.18) and the result into Eq. (3.23)

we obtain the following online iteration where one epoch has one
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iteration (l 7→ k):

θ(k + 1) = θ(k) + α · φ(k)′ · ε(k). (3.24)

Figure 3.5 shows a flow diagram to implement the algorithm into

the embedded ECU of the vehicle. We need first to set the ini-

tial conditions of the model parameters and pick a learning rate

α, which should be as small as possible (α << 1) to avoid cal-

culating unstable parameters due to picks and measurement noise

due to changes in the terrain. For the initial conditions, the

model parameters could be first calculated in a simulation, so

there are only few iterations needed on the real environment. In

the second step, the yaw rate should be measured by means of e.g.

an Inertial Measurement Unit (IMU). In the following steps, the

input vector with past measurements of inputs and output should

be constructed and multiplied by the model parameters to find an

output estimation in order to be able to measure the error pro-

duced by the model parameters to be used. If the error produced

by using the last updated model parameters is under certain limit

(e.g. under 1 m), we can use it to update the parameters vector in

the next cycle, otherwise the results are ignored and the model

parameters are calculated with the new measurements. The updated

model parameters are then used by the Controller Design to update

the control parameters, making the system adaptive to changes in

the system dynamics.

3.2.3 Pole placement: Regulation and tracking

A canonical digital controller called RST is illustrated in Fig-

ure 3.6. This structure allows one to impose different dynamics

by obtaining the polynomials R and S in order to satisfy the

desired regulation performance. T introduces a tracking perfor-

mance that filters at the same time a desired trajectory y∗(t+d+1)

from a tracking model system Bm
Am

.
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Initial conditions:

θ, α, ε

Measure output:

β̇

Update input vector:

φ (Eq. (3.21))

Calculate output:
ˆ̇
β (Eq.(3.19))

Calculate error:

ε = β̇ − ˆ̇
β

|ε| ≤ lim ?

Update model parameters:

θ(k + 1) (Eq.(3.24))

Controller
Design

yes

no

Figure 3.5 Flow diagram for the online gradient-algorithm estimator.

r(t) Bm
Am

y∗(t + d + 1)

T − 1
S

R

u(t) z−dB
A

y(t)

Figure 3.6 Digital canonical controller for tracking and regulation.

The process to be controlled is represented by z−dB
A and the

closed loop function from the desired trajectory y∗ to the output

y is represented in Eq. (3.25).

HCL(z
−1) = z−dB(z−1)T (z−1)

A(z−1)S(z−1)+z−dB(z−1)R(z−1)
, (3.25)
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where d is the time delay and

A(z−1) = 1 + a1z
−1 + ...+ anAz

−nA

B(z−1) = b1z
−1 + b2z

−2 + ...+ bnBz
−nB

S(z−1) = 1 + s1z
−1 + ...+ snSz

−nS

R(z−1) = r0 + r1z
−1 + ...+ rnRz

−nR .

(3.26)

3.2.3.1 Regulation

To compute the coefficients R and S of the digital controller we

solve a Bezout polynomial equation of the form

P (z−1) = PD(z
−1)PF (z

−1) = A(z−1)S(z−1) + z−dB(z−1)R(z−1). (3.27)

The characteristic polynomial P contains dominant and auxil-

iary poles. The dominant poles PD are chosen from the digital-

ization of a second-order system defined by ω0 and ζ. The digital

auxiliary poles PF improve the robustness of the controller and

are normally smaller (faster) than the real part of the dominant

poles. Typical values for the auxiliary poles are −0.05 ≤ α1 ≤ −0.5

and α2 either equals 0 or α2 = α1. By defining the characteristic

equation

P (z−1) = 1 + p1z
−1 + ...+ pnP z

−nP , (3.28)

we obtain R and S by solving

x = M−1p, (3.29)

where
xT = [1, s1, ..., snS , r0, ..., rnR ]

pT = [1, p1, ..., pnP , 0, ..., 0]
(3.30)
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and

M =



1 0 ... 0 0 ... ... 0

a1 1 . b′1

a2 0 b′2 b′1

1 . b′2

a1 . .

anA a2 b′nB
.

0 . 0 . . .

0 ... 0 anA 0 0 0 b′nB



. (3.31)

Here, b′i = 0 for i = 0, 1, ..., d and b′i = bi−d for i ≥ d+ 1 and:

nA = degA(z−1)

nB = degB(z−1)

nS = degS(z−1) = nB + d− 1

nR = degR(z−1) = nA − 1

nP = degP (z−1) ≤ nA + nB + d− 1.

(3.32)

3.2.3.2 Tracking

The reference model Hm = Bm
Am

can be used to have an output y that

follows a desired trajectory y∗ each time a reference r is changed.

This tracking model Hm can take the form of a second order system

with desired ω0 and ζ. This leads to choose T (z−1) to have a unit

static gain between y∗ and y and to compensate between regulation

dynamics defined by P (z−1) and tracking dynamics defined by the

poles of the reference model (Am):

T (z−1) = G ∗ P (z−1), (3.33)

where

G =

 1/B(1) if B(1) ̸= 0

1 if B(1) = 0.
(3.34)

Having R, S, T and a desired trajectory y∗ we obtain a control

law of the form

S(z−1)u(t) +R(z−1)y(t) = T (z−1)y∗(t+ d+ 1). (3.35)
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3.2.4 Robust pole placement design

As already mentioned, we can say in a general way that the un-

certainties in the dynamics of an off-road vehicle are related

to the changes in speed and soil irregularities. Regarding the

changes in speed, a gain scheduler system parametrization can be

used. Regarding soil irregularities, one solution is to design a

system that considers these uncertainties due to nonlinearities

and time varying elements. Here we present a methodology for

the design and implementation of a robust digital RST controller

using pole placement. There are automatic methods for finding

the parameters and shaping the sensitivity functions using con-

vex optimization or H∞ optimization (Landau and Karimi, 1998;

Langer and Constantinescu, 1999; Langer and Landau, 1999). Nev-

ertheless, this section presents a method to control the lateral

position of an off-road vehicle by manually shaping the sensi-

tivity functions (Landau and Zito, 2006) due to its simplicity

compared to the automatic methods. This also allows for more

flexibility in the design and a deep understanding of how the

system reacts to changes in the controller design. Besides, one

has also the flexibility to manually change the shaping that best

fits different terrains. In order to consider uncertainties in

our control design, the structure of Figure 3.6 can be extended

into Figure 3.7 where p(t) are disturbances, b(t) is noise and v(t)

disturbances on the plant input.

r(t) Bm
Am

T − 1
S + B

A
+

+R

y(t)

y∗(t+ d+ 1) v(t)

u(t)

p(t)

b(t)

Figure 3.7 Digital canonical controller with disturbances and noise.
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We can obtain then the following output, input, noise, and

disturbance sensitivity functions respectively:

Syp(z
−1) =

A(z−1)S(z−1)

A(z−1)S(z−1) +B(z−1)R(z−1)

Sup(z
−1) =

−A(z−1)R(z−1)

A(z−1)S(z−1) +B(z−1)R(z−1)

Syb(z
−1) =

−B(z−1)R(z−1)

A(z−1)S(z−1) +B(z−1)R(z−1)

Syv(z
−1) =

B(z−1)S(z−1)

A(z−1)S(z−1) +B(z−1)R(z−1)
.

(3.36)

As we can see, the common denominator happens to be the charac-

teristic equation of the closed loop system of Eq. (3.25). The

noise sensitivity function Syb with a negative sign is also known

in the literature as the complementary sensitivity function and

from Eq. (3.36) we see that Syp − Syb = 1. Furthermore, the robust-

ness of the closed loop system can be evaluated by the distance

of the critical point [−1, j0] to the Nyquist plot of the nominal

plant and by the frequency characteristics of the sensitivity

functions (Eq. (3.36)). The elements that help to evaluate this

robustness are the following four margins: gain, phase, delay

and modulus margin.

Especially the modulus margin is very important because it de-

fines the maximum admissible value of the output sensitivity

function Syp and defines the tolerance with respect to nonlin-

ear or time varying elements that may belong to the system. A

good modulus margin also guarantees good values for the gain and

phase margins. The modulus margin ∆M is the inverse of the max-

imum of the output sensitivity function Syp. Typical values for

a good modulus margin are ∆M ≥ 0.5(−6dB).

Therefore, we use these margins to shape the frequency charac-

teristics of the sensitivity functions Syp and Sup and guarantee

both robustness and closed loop performance. To be able to shape

the sensitivity functions using pole placement, we have to intro-

duce fixed parts to the Bezout polynomial equation (Eq. (3.27))
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as follows:

P (z−1) = A(z−1)HS(z
−1)S′(z−1) + z−dB(z−1)HR(z

−1)R′(z−1). (3.37)

The solution to Eq. (3.37) is found in the same way Eq. (3.27)

is solved with Eq. (3.29), after replacing A(z−1) by A′(z−1) =

A(z−1)HS(z
−1) and B(z−1) by B′(z−1) = B(z−1)HR(z

−1) with the following

new conditions:

nP = degP (z−1) ≤ nA + nHS
+ nB + nHR

+ d− 1

n′
S = degS′(z−1) = nB + nHR

+ d− 1

n′
R = degR′(z−1) = nA + nHS

− 1.

(3.38)

3.2.4.1 Shaping the input sensitivity function Sup

The input sensitivity function reflects the actuator stress, there-

fore, we should limit its magnitude at high frequencies. By plot-

ting the inverse of its magnitude |Sup(e
−jω)|, we check and impose

and upper bound maximum by imposing the prefixed value HR(z
−1)

presented in Eq. (3.39), which e.g. makes |Sup| = 0 at 0.5fs by

choosing β = 1, where fs is the sampling frequency.

HR(z
−1) = 1 + βz−1; 0 < β ≤ 1. (3.39)

3.2.4.2 Shaping the noise sensitivity function Syb

The noise sensitivity function is related to the delay margin

∆τ and considering ∆τ = Ts we impose a frequency template of a

digital integrator of the form

|S−1
yb (z

−1)|dB < −20log|1− z−1|; z = ejw; 0 ≤ ω ≤ π. (3.40)

3.2.4.3 Shaping the output sensitivity function Syp

We already mentioned a typical value for a good modulus margin

(∆M ≥ 0.5(−6dB)). Imposing that to the output sensitivity func-

tion we have that

|Syp(z
−1)| ≤ −∆M ; z = ejw; 0 ≤ ω ≤ π. (3.41)
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Furthermore, we can use the complementary function defined

by Syp(z
−1) = 1 + Syb(z

−1) and with the use of triangle inequality

impose an upper and lower delay margin defined by the following

equation:

1− |Syb(z
−1)| ≤ |Syp(z

−1)| ≤ 1 + |Syb(z
−1)|. (3.42)

By substituting Eq. (3.40) into (3.42) we obtain Eq. (3.43).

1− |1− z−1|−1 ≤ |Syp(z
−1)| ≤ 1 + |1− z−1|−1. (3.43)

Again, in order to find a closed loop function that fits in-

side of the upper and lower bounds of the template defined by

Eqs. (3.41) and (3.42), we can pick specified parts for HS. For

example making HS = 1 − z−1 we introduce a zero at the zero fre-

quency allowing perfect rejection of constant disturbances.

3.2.5 Controller design

Section 3.2.4 presented a robust pole placement design in Fig-

ure 3.7 for the control of the vehicle position with a model

described by B
A. Therefore, the Controller Design will use the

model of the yaw rate delivered by the Estimator and the forward

speed delivered by the Forward Dynamics to first calculate the

lateral position model z−dBy

Ay
and then calculate the vehicle model

as follows:
A

B
=

z−dBβ̇

Aβ̇

· z
−dBy

Ay
. (3.44)

Once having the model of the vehicle, it will use the regula-

tion dynamics ωr, ζr, α2 and α2 for the real-time calculation of

the control parameters R, S and T as described in the previous

section. Finally, the tracking dynamics will be also calculated

in real-time with the parameters ωt and ζt delivered by the Gain

Schedule as well.
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3.3 Optimal digital control

This section presents and describes the third method proposed in

this research as a reference, with the main objective of com-

paring the previous two methods. This approach is picked as

a benchmark because, apart from the intrinsic benefits of the

Linear Quadratic Regulator (LQR), there has been some results

that demonstrate attractive stability properties and robustness

against uncertainties by using optimal controllers (Chen, 2014;

Chen and Holohan, 2014a,b; Snider, 2009). Therefore, one option

to deal with the mentioned changes in the dynamics of off-road

vehicles is the implementation of an observer-based optimal dig-

ital controller.

An extended version of the optimal controller of Figure 2.10 is

illustrated in Figure 3.8. It contains tracking dynamics (K) and

it is adapted for the problem of controlling the lateral position

(y) of a terrain vehicle. In this case, the Forward Dynamics

are measuring the vehicle speed Vx to be used by the Controller

Design which is in charge of the real-time calculation of the

Observer, the state feedback F and the tracking dynamics K. The

output of the Observer contains the estimated or "observed" state

variables of the Vehicle (x̂) which are used for the pole placement

by multiplying them with the state feedback. The control signal

u is the desired curvature which is the inverse of the turning

radius (1/km) and the set point r is the desired lateral position

in meters.

3.3.1 Observer-based control

Figure 3.9 depicts the detailed part of the observer-based opti-

mal controller of the system presented in Figure 3.8. As it can be

seen, the observer is constructed with a copy of the plant plus

the estimator gain L for correcting the error between the mea-

sured output and the output produced by the observer. As already

explained, the signal to be controlled is the lateral position
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r K − V ehicle

ObserverF

Forward

Dynamics

Controller

Design

yu

x̂

..

Vx

.

Figure 3.8 Block diagram of an observer-based controller for terrain
vehicles.

y, which is not stable in open loop since a step in the steering

input u will keep the vehicle turning in circles. The system is

closed with an Observer and a state feedback F for the regulation

dynamics. For the tracking dynamics, the gain K is added to be

able to follow a reference lateral position r, i.e. zero when the

vehicle drives along the desired path and one for driving 1 m to

the left, parallel to the desired path (see Fig. 4.2). Negative

values used for the reference have the meaning of driving on the

right side of the desired path.

r(k) K
u(k)

+ Γ + z−1

Φ

+ C y(k).

x(0)

x(k + 1) x(k)

L

Γ + z−1

Φ

C

F

+

.

.

.

.

x̂(k + 1) x̂(k)

V ehicle

Observer

Figure 3.9 Block diagram of an observer-based state space controller.
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3.3.1.1 Regulation

Generally speaking, the conditions for the design of the observer-

based controller are that the system (the Vehicle) is observable

and controllable. This means that the observer should be able

to estimate all the state variables of the system and that the

feedback should be able to bring all the poles to a desired place.

To ensure this, the conditions presented here without proof are

that the observability and the controllability matrices have full

rank (Eqs. (3.45) and (3.46) respectively).

rank



C

CΦ

CΦ2

...

CΦ(n−1)


= n. (3.45)

rank(Φ ΦΓ Φ2Γ ... ΦnΓ) = n. (3.46)

Where n is the number of state variables. Then, using the

linear regulation problem we can find the solution to the system

in Figure 3.9 by first finding the state feedback u = F · x that

minimizes the performance index

JLQG =
1

2

∞∑
k=0

[xT (k)Qx(k) + uT (k)Ru(k)], (3.47)

where the optimal solution is

F = −(R+ ΓT · Pf · Γ)−1 · ΓT · Pf · Φ (3.48)

and Pf is the solution to the Riccati equation

Pf = Q+ΦT · Pf · Φ

− ΦT · Pf · Γ · (R+ ΓT · Pf · Γ)−1 · ΓT · Pf · Φ.
(3.49)
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For the Observer, the state estimate L is equivalent to the

state feedback F by making the following replacements:

Q → Qe; R → Re; Φ → ΦT ;

Γ → CT ; F → L; Pf → Pl.
(3.50)

Therefore, by duality the optimal estimator gain is

L = −((Re + C · Pl · CT )−1 · C · Pl · ΦT )T , (3.51)

where Pl is the solution to the Riccati equation

Pl = Qe +Φ · Pl · ΦT

− Φ · Pl · CT · (Re + C · Pl · CT )−1 · C · Pl · ΦT .
(3.52)

Here Q, Qe, R and Re can be used as tuning parameters to deal

with uncertainties in the system. The details about how to find

the solution to this problem are described in Åström and Witten-

mark (1997) and Ogata (1995).

3.3.1.2 Tracking

To achieve zero steady-state error, i.e. the system output y

equals the reference input r in steady state, the static gain

should be 1. This can be done by finding the static gain of

the system and multiplying it by its inverse. For instance, the

static gain from r to y for the system in Figure 3.9 is K · C(Φ +

ΓF − I)−1Γ. Therefore, we can choose

K =
1

C(Φ + ΓF − I)−1Γ
. (3.53)

This requires calculating the inverse of the matrix (Φ+ΓF − I)

which is assumed to be non-singular since we expect a constant

static gain for a stable system. Nevertheless, calculating the

inverse of a matrix could consume a lot of computing resources.

An alternative to solve this problem is by assuming that in steady

state, the state vector x as well as the control input u will

take the constant values xss and uss respectively and that yss = rss.
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Therefore, in steady state the system will take the form

xss = Φxss + Γuss

rss = Cxss
(3.54)

and for the system of Figure 3.9 the control law will take the

form

uss = Fxss +Krss, (3.55)

since for an observable system we can assume that x̂ss ≈ xss. We can

relate the steady-state vector to the constant reference input

as xss = Kxrss and the steady-state control input that keeps x at

xss as uss = Kurss. Rewriting then the control law of Eq. (3.55) we

have that Kurss = FKxrss +Krss and solving for K we find that

K = F ·Kx +Ku. (3.56)

To find Kx and Ku we use the same relation as for the control

law and rewriting Eq. (3.54) we have that

Kxrss = ΦKxrss + ΓKurss

rss = CKxrss.
(3.57)

Solving for Kx and Ku we then find the solution to the fol-

lowing equation without using the inverse by applying the Gauss

elimination or the Gauss-Jordan method: 0

1

 =

 Φ− I Γ

C 0

 Kx

Ku

 . (3.58)

3.3.2 Controller design

Since the model of the vehicle depends on the forward speed Vx,

the Controller Design is in charge of calculating the vehicle

model in real-time using the measured forward speed Vx. This

model will be different depending on the type of vehicle we are

working with. Once a vehicle model is available, it can be used

in the Observer and for the calculation of the state feedback F,



68 Adaptive, robust and optimal discrete-time control

the state estimate L and tracking gain K with the help of Eqs.

(3.48), (3.51) and (3.56) respectively.

3.4 Summary of methods

In this chapter, three different lateral position digital con-

trollers are presented to address the problem of time varying

dynamics of off-road vehicles. The first one is based on MDPP

and uses a second order transfer function as a reference. A re-

cursive lest-squares estimator is used to identify the changes

in the yaw rate dynamics in real time. For the speed adaptation,

a gain scheduler is in charge of changing the PID parameters of

the lateral position controller. The second controller is an im-

provement of the first one. Although it is also based on pole

placement, it introduces a robust design. Additionally, the pole

placement is based on regulation dynamics. For the lateral po-

sition, a tracking model is also introduced. In contrast to the

first controller, it is directly applied to the lateral posi-

tion and no PID parameters have to be tuned. Instead, a second

order model is used as a reference for the desired closed loop

response, leaving only two variables to be tuned: ωt for the

tracking response and ωr for regulation dynamics. For the gain

scheduler, a linear interpolation function can be used for those

variables (ωt,r = f(Vx)). The rest of the control parameters can

be set fixed in the implementation process (ζr, ζt, α1 and α2).

The third controller is an optimal one, with an observer to fil-

ter measurement noise and disturbances. It is picked to be used

as a benchmark due to its good characteristics and its previous

results used for path following (Chen, 2014; Chen and Holohan,

2014a,b; Snider, 2009). Each controller has its pros and cons

and they are discussed in Table 3.1.

It can be said in general, that even though the robust con-

troller works with more complex theory, it might produce better

results in terms of all the different scenarios that could be
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covered. Also in terms of implementation, the tuning should be

straightforward since in theory, only the natural frequencies (ωt

for the tracking model and ωr for the regulation model) will be

tuned by the end user.

Table 3.1 Summary of controllers.

Controller Pros, cons and comments

Cascade
STR

Pros: ∗The model is reduced to a 2nd order
system using MDPP. ∗The user can change the
desired behavior of the yaw rate.
Cons: ∗Tuning the PID is time consuming.
∗Using recursive lest-squares might not al-
ways find a stable system. ∗Online calcula-
tions need few resources.
Comments: Using a reduced model can generate
overshoot in some vehicles e.g. where the
steering increases the order of the system,
reducing the accuracy of the controller.

Robust
STR

Pros: ∗No need for tuning a PID. ∗Tracking
and regulation behaviours can be tuned by
the user. ∗Frequency response can be tuned
as well.
Cons: ∗Technically more complex. ∗Requires
more know-how. ∗Not limited to 2nd order
system. ∗Online gradient estimation has a
higher level of complexity. ∗Online esti-
mation might need more resources for faster
identification.
Comments: Requires more knowledge and there
are more factors to take into account since
the fixed parts can take many forms.

Optimal
LQR

Pros: ∗The energy used for the actuators
is less. ∗No high frequency parts in the
control signal. ∗Low level of complexity.
∗Straightforward approach.
Cons: ∗Less flexibility in tuning the be-
haviour of the vehicle. ∗Online calcula-
tions might need a lot of resources. ∗Slower
response against disturbances.
Comments: The system requires a model. Nev-
ertheless, it could be a kinematic approx-
imation making the design easier but less
accurate.





Chapter 4

Experimental setup and

results

The first two sections of this chapter introduce the models of

the two different vehicles used for the experiments: a tractor-

implement system and a skid-steering robot. Then, the results

of the experiments of the different methods explained in Chap-

ter 3 are presented respectively. The first test for the cascade

self-tuning regulator was done using the model of the tractor-

implement system and, since performing the tests using a real

tractor with an implement that changes its cornering stiffness

on a field is very complicated due to the resources needed, a

3D real-time simulations was used for validation instead. From

the lessons learned with the cascade self-tuning regulator, the

robust self-tuning regulator was simulated and implemented in a

skid-steered robot which was available in real form for the vali-

dation of the method. Finally, the optimal controller was used as

a benchmark for comparison with the other two methods presented.

4.1 Vehicle models

The two vehicle models used to verify that the controllers pro-

posed in this research can be universally applied to different

vehicles were the tractor-implement model and a kinematic-based

skid-steering model.
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4.1.1 Tractor-implement model

To be able to understand the system, an analysis of the vehicle

dynamics, kinematics and its root-locus has to be performed. The

dynamics and kinematics lead to the equation of motion of the sys-

tem and its root-locus tells the response of the system according

to the changes in the velocity, soil and hitch forces. This is

essential for finding the model to be used as a reference for the

controller design. If the dynamics of the reference model are

too fast, the closed-loop system will experience steady state os-

cillations and even instability and if the dynamics are too slow,

the controller will have a lot of room for improvement.

Figure 4.1 illustrates a 3-wheeled tractor-implement bicycle

model. Here, β̇ is the yaw rate around the center of gravity, δ is

the steering angle and αf, αr and αh are the front, rear and hitch

slip angles, respectively. The distances from the front and rear

axis to the center of gravity are a and b, respectively, and c

is the distance from the rear axis to the hitch. Lateral forces

at front, rear and hitch tires are represented by Ff, Fr and

Fh, respectively, and by assuming constant longitudinal velocity

(Vx), the longitudinal acceleration is null and the longitudinal

forces are neglected. Therefore, the yaw rate dynamics of the

model represented by Figure 4.1, can be expressed by analysing

the simplified lateral dynamics with Eq. (4.1).

Figure 4.1 Bicycle model of a tractor with an implement.

∑
Fy = m · ay∑

MCG = Iz · β̈.
(4.1)



4.1 Vehicle models 73

From a kinematics point of view, and since the system has null

longitudinal acceleration, the lateral acceleration is expressed

in Eq. (4.2).

ay = V̇y + β̇ · Vx. (4.2)

Substituting into Eq. (4.1) and using the small angle approxi-

mation, we obtain the following simplified equation of motion:

m · (V̇y + β̇ · Vx) = Ff + Fr + Fh

Iz · β̈ = a · Ff − b · Fr − (c+ b) · Fh.
(4.3)

Assuming constant lateral forces, their relationship to the

slip angles are given in Eq. (4.4) (Derrick and Bevly, 2009;

Gillespie, 1992).

Ff = −Cαf
· αf

Fr = −Cαr · αr

Fh = −Cαh
· αh,

(4.4)

where Cαf
, Cαr and Cαh

are the front, rear and hitch cornering

stiffness and vary depending on the conditions and types of soil.

By substituting (4.4) into (4.3), the equation of motion looks

as follows:

m · (V̇y + β̇ · Vx) = −Cαf
· αf − Cαr · αr − Cαh

· αh

Iz · β̈ = −a · Cαf
· αf + b · Cαr · αr + (c+ b) · Cαh

· αh.
(4.5)

Assuming a rigid body, we can say in general that the absolute

lineal velocity at any of its points can be expressed as the

lineal velocity of its center of gravity plus the velocity of

the point with respect to its center of gravity and so we get

Eq. (4.6), where each velocity is represented by its x and y



74 Experimental setup and results

coordinates.

Vfy

Vfx

=
Vy + β̇ · a

Vx

Vry

Vrx

=
Vy − β̇ · b

Vx

Vhy

Vhx

=
Vy − β̇ · (b+ c)

Vx
.

(4.6)

We can also observe from Figure 4.1 that

tan(αf + δ) =
Vfy

Vfx

tan(αr) =
Vry

Vrx

tan(αh) =
Vhy

Vhx

,

(4.7)

and by substituting Eq. (4.6) into Eq. (4.7), applying the small

angle approximation and solving for α, the relationship between

the slip angles and the longitudinal and lateral velocities of

the center of gravity is found as follows:

αf =
Vy + β̇ · a

Vx
− δ

αr =
Vy−β̇ · b

Vx

αh =
Vy−β̇ · (b+ c)

Vx
,

(4.8)

and substituting Eq. (4.8) into Eq. (4.5) results into

m · (V̇y + β̇ · Vx) =− Cαf
· (Vy + β̇ · a

Vx
− δ)

− Cαr ·
Vy − β̇ · b

Vx
− Cαh

· Vy − β̇ · (b+ c)

Vx

Iz · β̈ =− a · Cαf
· (Vy + β̇ · a

Vx
− δ)

+ b · Cαr ·
Vy − β̇ · b

Vx
+ (c+ b) · Cαh

· Vy − β̇ · (b+ c)

Vx
.

(4.9)
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By introducing the following new variables C1, C2 and C3 such

as
C1 = −a · Cαf

+ b · Cαr + (b+ c) · Cαh

C2 = Cαf
+ Cαr + Cαh

C3 = a2 · Cαf
+ b2 · Cαr + (b+ c)2 · Cαh

,

(4.10)

Eq. (4.9) can be rewritten into the following state space equa-

tion of motion with state variables Vy and β̇:

 V̇y

β̈

 =

 − C2
m·Vx

C1
m·Vx

− Vx

C1
Iz ·Vx

− C3
Iz ·Vx

 ·

 Vy

β̇

+

 Cαf

m
a·Cαf

Iz

 · δ. (4.11)

Using Laplace transform, the transfer function between the

steering angle and the yaw rate can be found by solving the fol-

lowing equation:
˙β(s)

δ(s)
=

C · adj(s · I −A) ·B
det(s · I −A)

, (4.12)

where C = [0 1] since it is solved only for β̇, and so one gets

that
˙β(s)

δ(s)
=

b2 · s+ (b1 · a21 − b2 · a11)
(s− a11)(s− a22)− a12 · a21

, (4.13)

with

a11 = − C2

m · Vx

a12 =
C1

m · Vx
− Vx

a21 =
C1

Iz · Vx

a22 = − C3

Iz · Vx

b1 =
Cαf

m

b2 =
a · Cαf

Iz
.

(4.14)

Finally, the simplified transfer function of the yaw rate

with respect to the steering angle is presented in Eqs. (4.15)

and (4.16).

Gβ̇ =
n1s+ n0

s2 + d1s+ d0
. (4.15)
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n0 =
Caf · C1 + a · Caf · C2

Iz ·m · Vx

n1 =
a · Cαf

Iz

d0 =
C2 · C3 − C2

1

Iz ·m · V 2
x

+
C1

Iz

d1 =
C2

m · Vx
+

C3

Iz · Vx
.

(4.16)

4.1.2 Skid-steering simplified model

Besides the aforementioned changes in the vehicle dynamics due

to changes in the speed and the interaction with the terrain, a

skid-steered vehicle have some other challenges to be covered.

There are intrinsic non-linearities related to the steering sys-

tem of such vehicles that make the design of a controller a very

complex task. Therefore, a simplified model of a skid-steered

vehicle presented here will facilitate the use of some linear

controllers.

Figure 4.2 shows a representation of a skid-steered robot where

y is the lateral position to a desired path and it is also the

variable to be controlled. The yaw rate of the robot (ω) and its

linear velocity (V ) are produced by the difference between the

velocities of the right and left axis (VR and VL respectively),

where β represents the angle of the velocity vector to the center

of gravity. The angular velocities of the right and left wheels

are represented by ωR and ωL,respectively, and the distance be-

tween axes is 2c. The angle with respect to the desired path is

represented by ν and r is the wheel radius.

From the kinematic point of view, we can define the yaw rate

at the center of gravity and the linear velocity by the following

equations:

V = r ∗ ωL + ωR

2
, (4.17)

ω = r ∗ −ωL + ωR

2c
. (4.18)
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Figure 4.2 Skid-steering model with lateral position.

By rewriting Eq. (4.18) into right and left velocities we ob-

tain Eq. (4.19). And by defining a time delay τ we find a first

order yaw-rate transfer function presented in Eq. (4.20).

ω =
VR − VL

2c
=

∆V

2c
. (4.19)

Gω(s) =
ω(s)

∆V (s)
=

1/2c

τ · s+ 1
. (4.20)

Finally using the z-transform we obtain the following digital

transfer function:

Gω(z
−1) =

br1z
−1

1 + ar1z
−1

(4.21)

where
br1 = (1/2c) ∗ (1− e−Ts/τ )

ar1 = −e−Ts/τ .
(4.22)

Generally speaking, the lateral position y with respect to a

desired path is related to the yaw rate of the vehicle in the form

of Eq. (4.23), where β is the side slip angle and ν the course

angle with respect to the desired path (Fig. 4.2) (Gartley and

Bevly, 2008).

ẏ = V sin(ν)

ν̇ = ω + β̇.
(4.23)
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Neglecting side slip, linearising and using the small angle ap-

proximation we find the transfer function of the lateral position

with respect to the yaw rate in Eq. (4.24).

Gy(s) =
y(s)

ω(s)
=

V

s2
. (4.24)

Again, using the z-transform we obtain the following digital

transfer function of the lateral position with respect to the yaw

rate:

Gy(z
−1) =

bl0 + bl1z
−1

1 + al1z
−1 + al2z

−2
, (4.25)

where
bl0 = V ∗ T 2

s /2

bl1 = V ∗ T 2
s /2

al1 = −2

al2 = 1.

(4.26)

Multiplying Eqs. (4.21) and (4.25) we obtain the digital model

of the lateral position with respect to a desired path of a

skid-steered robot to be used for our RST controller design

(Eq. (4.27)).

GB
A
=

b2z
−2 + b3z

−3

1 + a1z−1 + a2z−2 + a3z−3
, (4.27)

where
b2 = br1 ∗ bl0
b3 = br1 ∗ bl1
a1 = al1 + ar1

a2 = 1 + al1 ∗ ar1
a3 = ar1 .

(4.28)

Finally, the following digital state space of third order can

be used to represent our plant model:

x(k + 1) = Φx(k) + Γu(k)

y(k) = Cx(k)
(4.29)
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where

Φ =


0 1 0

0 0 1

−a3 −a2 −a1



Γ =


0

0

1


C =

[
b3 b2 0

]
.

(4.30)

This simplified first order model presented above can be used

for the representation of a real agricultural skid-steered robot

(Fig. 4.3) electrically powered with 4 wheels able to reach a

maximal speed of 1.0 m/s. It has a weight of 40 kg and a state-of-

the-art GNSS receiver with RTK-correction which provides global

geographic position. The ECU with a 400 MHz processor, contains

a gyroscope, WLAN module and a CAN interfaces for the different

internal communications. The angular velocity of the motors is

measured with hall sensors.

Figure 4.3 Skid-steered robot for corn seeding provided by AGCO GmbH |
Fendt.

4.2 Cascade self-tuning regulator

This section presents the results of applying the first con-

troller proposed in this research, to a tractor system with vary-

ing hitch forces. Since this method is based on a pole placement
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design, an analysis of the pole-zero plots will illustrate the

changes in the system dynamics and help to pick the desired poles

for the characteristic polynomial of the closed-loop reference

model. This analysis will also help to understand the behaviour

of the vehicle according the changes in the speed or in the hitch

forces or a combination of both.

From the system described in Eqs. (4.15) and (4.16), the changes

in the system dynamics can be analysed by changing the velocity

and cornering stiffness. Table 4.1 presents the data of a Fendt

Tractor Vario 939 to be used as an example and for the sake of sim-

plicity, the values used at the front and rear are approximated,

whereas the values for the hitch are moving from 0 to 5000 to be

able to test the adaptation of the method.

Table 4.1 Technical data of a Fendt tractor of the model Vario 939

Tractor data

a 1.696 m
b 3.958 m
c 2.190 m
m 18000 kg
Izz 59312 kg-m
Caf 3600 N/deg
Car 6250 N/deg
Cah 0-5000 N/deg
Vx 2-15 m/s

It can be seen from table 4.2 that at relative medium speed

and cornering stiffness, there will be two poles and one zero.

On pole with a higher response and the other pole, together with

the zero, are placed in a lower response nearer to the origin. It

can also be observed in the following Figures 4.4 and 4.5 that,

on the one hand, as the cornering stiffness increases, so does

the response in the negative half-plane for all poles and zeros

(see tables 4.3 and 4.4 ). On the other hand, as the velocity

increases, the response moves in the negative plane nearer to

the center up to a place where the imaginary part of the poles

increases along with the increments of the cornering stiffness
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(see Fig. 4.5 and Tab. 4.4). This means that e.g. one will find

the higher oscillations at a lineal velocity of 15 m/s with a

cornering stiffness of around 3000 N/deg. In real conditions the

maximum working speed will rarely reach the 25 km/h (Approx. 7

m/s) however, 15 m/s is used for this analysis.

Table 4.2 Poles-Zeros mapping (Vx = 5 m/s and Cαh
=1000 N/deg)

Poles-Zeros

Cαh
P 02 P 01 Z 01

1000 -7.034 -0.475 -0.132

Contrary to Figure 4.5, a mapping of a varying velocity using

the same cornering stiffness can be seen in Figure 4.6, which can

be interpreted as increasing the velocity while the weight and

soil contact at the implement stays constant. It can be seen that

the steering system will start oscillating at a velocity of 12.5

m/s and the oscillations will increase as the velocity increases

(Tab. 4.5).

Table 4.3 Poles-Zeros mapping Cαh
(100-5000 N/deg) @ Vx =2.5 m/s

Poles-Zeros

Cαh
P 02 P 01 Z 01

100 -8.0627 -0.133 -0.126
814 -13.305 -0.304 -0.237

1528 -18.647 -0.377 -0.347
2242 -24.021 -0.416 -0.457
2956 -29.410 -0.441 -0.568
3670 -34.807 -0.458 -0.678
4384 -40.208 -0.471 -0.788

Table 4.4 Poles-Zeros mapping Cαh
(100-5000 N/deg) @ Vx =15 m/s

Poles-Zeros

Cαh
P 02 P 01 Z 01

100 -1.281 -0.084 -0.021
814 -1.134-1.019i -1.134+1.019i -0.039

1528 -1.585-1.424i -1.585+1.424i -0.057
2242 -2.036-1.616i -2.036+1.616i -0.076
2956 -2.487-1.669i -2.487+1.669i -0.094
3670 -2.938-1.598i -2.938+1.598i -0.113
4384 -3.389-1.384i -3.389+1.384i -0.131
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Figure 4.4 Poles-Zeros mapping of a tractor with an implement at 2.5
m/s with a varying hitch cornering stiffness (Cαh

) from 100 to 5000
N/deg.
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Figure 4.5 Poles-Zeros mapping of a tractor with an implement at 15 m/s
with a varying hitch cornering stiffness (Cαh

) from 100 to 5000 N/deg.
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Figure 4.6 Poles-Zeros mapping of a tractor with an implement at
Cαh

=3000 N/deg with a varying speed (Vx) from 2.5 to 15 m/s.

We can say in general, that an increasing value of cornering

stiffness means that the implement gets more load. This means

that achieving a certain yaw rate will be easier when driving with

empty load. Also, the maximum steering angle that the machine is

able to apply will limit the response of the system. All these

factors, along with measurement disturbances and terrain changes,

have to be taken into account in the design.

To validate the method presented in Section 3.1, two sets of

tests were performed: one using a Matlab simulation and one using

an Openframeworks-OpenGL environment. For the Matlab simulation,

Eqs. (4.15) and (4.16) together with the data from table 4.1

were combined to generate the response for different values of

Vx and Cαh. This data was used to identify the system and apply

the control algorithm. For the Openframeworks environment, and

since measuring real online changes of the cornering stiffness

is very complicated, an online simulation was implemented using

a combination of an identified system of a Fendt Tractor Vario

939 with the model of Eqs. (4.15) and (4.16) (Fernandez et al.,

2016). This was also programmed using threads for each component

(steering, yaw rate, lateral position, etc.) in a similar way
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Table 4.5 Poles-Zeros mapping Vx(2.5-15 m/s) @ Cαh
=3000 N/deg

Poles-Zeros

Vx P 02 P 01 Z 01

2.5 -29.742 -0.442 -0.574
3.0 -24.672 -0.482 -0.479
3.5 -21.032 -0.529 -0.410
4.0 -18.284 -0.581 -0.359
4.5 -16.132 -0.637 -0.319
5.0 -14.395 -0.697 -0.287
5.5 -12.960 -0.760 -0.261
6.0 -11.750 -0.827 -0.239
6.5 -10.712 -0.897 -0.221
7.0 -9.808 -0.971 -0.205
7.5 -9.011 -1.049 -0.191
8.0 -8.299 -1.133 -0.179
8.5 -7.655 -1.222 -0.169
9.0 -7.065 -1.318 -0.159
9.5 -6.519 -1.424 -0.151

10.0 -6.004 -1.541 -0.143
10.5 -5.511 -1.675 -0.136
11.0 -5.028 -1.832 -0.130
11.5 -4.534 -2.027 -0.125
12.0 -3.986 -2.302 -0.119
12.5 -3.018-0.228i -3.018+0.228i -0.115
13.5 -2.902-0.852i -2.902+0.852i -0.110
13.5 -2.794-1.152i -2.794+1.152i -0.106
14.5 -2.695-1.366i -2.695+1.366i -0.102
14.5 -2.602-1.532i -2.602+1.532i -0.099
15.5 -2.515-1.668i -2.515+1.668i -0.095

as it is done inside a vehicle taking into account cycle times

and separation of actuation and output signals. The analysis of

both test-results are described in more detail in the following

subsections.

4.2.1 Simulation

Using the data from table 4.1, the following closed-loop refer-

ence model system is to be used (Eq. (4.31)), which corresponds

to a second order system with a natural frequency ωn = 4, a damping

ratio ζ = 0.8 and a sampling time of 40 ms.

y(q)

u(q)
=

0.022q

q2 − 1.751q + 0.773
(4.31)
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The goal is to make the closed-loop yaw rate dynamics, to fol-

low the reference model of Eq. (4.31) using Algorithm 1. For that,

Eq. (3.8) can be rewritten in the form of R · δ = T · β̇des − S · β̇mea,

where R, S and T are the control parameters to be updated online.

The lower part of Figure 4.7 shows in blue a row of desired

set-points (β̇des) to be followed by a tractor with an implement

driving at 3.6 kmph. For this scenario, a cornering stiffness

of 300 N/deg at the hitch represents an implement of relatively

low load. Given a low initial value of the parameters to be

identified (e.g. 0.1), the yaw rate of the vehicle is measured

(β̇mea) and used to identify the tractor-implement system with

the help of Eq. (3.6). Then, the identified parameters are used

iteratively to calculate the new control parameters R, T and S

(Eq. (3.11)). This can be noticed in the first seconds where the

measured and the identified lines present some abrupt changes

until the identified parameters converge and the correct control

parameters are calculated stabilizing the system.

The upper part of the same figure presents the form of the con-

trol signal δ applied to the steering system of the vehicle. It

can be observed that small steering angles (2 to 8 degrees) are

enough to bring the vehicle to the desired yaw rates. Figure 4.8

presents the same vehicle driving at higher speed and having big-

ger load at the hitch. Here, the steering input to be applied has

to be bigger to compensate for those changes.

Normally one could expect that at higher velocities, the ve-

hicle is more sensitive to small changes in the steering input.

Nevertheless, we can see in Figures 4.8 and 4.9 that as the cor-

nering stiffness increases, so does the amplitude of the steer-

ing angle. Also, with higher values of cornering stiffness, the

adaptive steering input increases gradually as a ramp to main-

tain the same yaw rate, whereas at lower values the input takes

more the form of a step. As a result, this demonstrates that the
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Figure 4.7 Yaw rate response for Vx = 2 m/s and Cαh = 300 N/deg. (a)
Steering input (deg). (b) Yaw rate (deg/s).

algorithm adapts the control signal quite well to the different

velocities and hitch cornering stiffness. It is very important

to mention, that the adaptation depends on the identified system.

For instance, Figure 4.9 depicts that the measured signal fol-

lows quite well the identified one. Nevertheless, the identified

signal deviates from the original one producing a steady state

error.
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Figure 4.8 Yaw rate response for Vx =5 m/s and Cαh =1000 N/deg. (a)
Steering input (deg). (b) Yaw rate (deg/s).

4.2.2 Validation

In contrast to the Matlab simulation, the 3D environment with

Openframeworks presented here, also includes the hydraulic-steering

dynamics. This would increase the order of the plant from 2nd

to 5th, since the hydraulic steering system is represented by a

third order system. For the steering input, curvature was used

since a real tractor uses it as the control signal. Figures 4.10

to 4.12 present some results of the Openframeworks validation.
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Figure 4.9 Yaw rate response for Vx =10 m/s and Cαh =3000 N/deg. (a)
Steering input (deg). (b) Yaw rate (deg/s).

It also contains measurement noise and control disturbances. In

this case, the control signal (curvature in km−1) of the self-

tuning regulator is applied to the steering system and the mea-

sured curvature as well as the measured yaw rate are the outputs.

We can appreciate that the control signal saturates at around 120

km−1 since the real steering system is not able to turn more than

28o. From the aspect of the pole-placement analysis presented in

Section 4.2.1, we expect to have more oscillations as the veloc-
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ity and cornering stiffness increase (Figs. 4.5 and 4.6). This

effect is amplified due to the increment of order by the steering

system and since the designed self-tuning regulator was based

on a 2nd order reference model (Eq. (4.31)), the order of the

identified and reference models has to be increased as well to

mitigate the oscillations seen in Figures 4.11 and 4.12. Never-

theless, the identified 2nd order system seems to be enough for

the adaptation to be able to control the vehicle. Compared to Fig-

ures 4.8 and 4.9, the tendency of increasing the control signal

as the velocity and hitch cornering stiffness increases, is also

to be found here. Finally, we can say that in general the results

are satisfactory and the algorithm is able to adapt the control

signal to the changes of velocity and hitch cornering stiffness.

4.3 Robust self-tuning regulator

This section presets the experiment and results obtained by ap-

plying the second controller proposed in this research. The first

improvement expected here is the use of only one controller for

the lateral position. Also, the introduction of tracking and reg-

ulation dynamics, including a robust design. In contrast to the

last experiment in the previous section using a tractor model,

this method is implemented on an agricultural robot. This fact

indirectly help us to assess the capabilities of this method to

be used for different vehicles. The calculations done for the

controller design presented in Section 3.2 are performed online

inside an ECU of the real robot presented in Section 4.1.2, but

for demonstration purposes the lateral speed is neglected and a

fixed forward speed can be used (Vx = V = 0.5m/s). The sampling

time of the digital system is 100 ms. The track-width of 0.455

m corresponds also to the real robot described in Section 4.1.2,

with a time constant of 100 ms (see Tab. 4.6).
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(a)

(b)

Figure 4.10 Yaw rate control. Validation with Openframeworks for Vx =2
m/s and Cαh =300 N/deg. (a) Steering input (1/km). (b) Yaw rate
(rad/s).
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(a)

(b)

Figure 4.11 Yaw rate control. Validation with Openframeworks for Vx =5
m/s and Cαh =1000 N/deg. (a) Steering input (1/km). (b) Yaw rate
(rad/s).
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(a)

(b)

Figure 4.12 Yaw rate control. Validation with Openframeworks for Vx =10
m/s and Cαh =3000 N/deg. (a) Steering input (1/km). (b) Yaw rate
(rad/s).
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Table 4.6 Technical data of a skid-steered robot.

Robot data

Ts 0.100 ms
τ 0.100
2c 0.455 m
Vx 0.500 m/s

Substituting the data from table 4.6 into Eqs. (4.22), (4.26)

and (4.28) we get the following plant model parameters:

d = 0

B(z−1) = 0.003z−2 + 0.003z−3

A(z−1) = 1− 2.368z−1 + 1.736z−2 − 0.367z−3.

(4.32)

To shape the sensitivity functions we choose the fixed parts

represented in Eq. (4.33) and the new poles and zeros to be

used in the right part of the Bezout Eq. (3.37) are expressed

in Eq. (4.34).

HR(z
−1) = 1 + 0.5z−1

HS(z
−1) = 2− 1.0z−1.

(4.33)

B′(z−1) = 0.003473z−2 + 0.0069461z−3 + 0.003473z−4

A′(z−1) = 1− 2.868z−1 + 2.92z−2 − 1.236z−3 + 0.1839z−4.
(4.34)

For the regulation dynamics we use Ts = 0.1, ωr = 1.5+0.6·Vx, ζr =

1.0 and α1 = α2 = −0.5 and so with a forward speed of 0.5 m/s, the

left part of the Bezout Eq. (3.37) appears as follows:

P (z−1) = PD · PF = (1− 1.846z−1 + 0.8521z−2) · (1− 0.5z−1)2. (4.35)

For the tracking dynamics we use Ts = 0.1; ωt = 2.5 + 0.5 · Vx; and

ζt = 1.0 to find the following parameters of the reference model

Hm:

Bm(z−1) = 0.01752z−1 + 0.01534z−2

Am(z−1) = 1− 1.637z−1 + 0.6703z−2.
(4.36)
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Finally, using these results to solve Eqs. (3.29) and (3.33),

we find the following control parameters R, S and T:

R(z−1) = 1− 0.4784z−1 + 0.04941z−2 − 0.005427z−3 − 0.01235z−4

S(z−1) = 8.788− 6.796z−1 − 7.374z−2 + 6.903z−3 − 1.308z−4

T (z−1) = 144− 409.7z−1 + 424.4z−2 + 189.1z−3 − 30.67z−4.

(4.37)

4.3.1 Simulation

With these results we can prove the robustness of the design

for the different sensitivity functions. Figure 4.13 depicts

the Nyquist plot of the open loop function Hol = S−1
yp − 1 in green.

Since the critical point [−1, j0] is at the left of the plot, we

conclude that the open loop system has no unstable poles. Here,

the inverse of the gain margin 1/∆G and the phase margin ∆Φ are

stability margins with respect to the critical point. It can be

seen that the modulus margin ∆M is the radius of a circle cen-

tered at the critical point and tangent to the Nyquist plot. It

tells us the distance between Hol and the critical point. There-

fore, a good modulus margin (e.g. ∆M ≥ 0.5) implies stable gain

and phase margins.
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Figure 4.13 Nyquist plot.

Figure 4.14 shows in blue the applied modulus and delay mar-

gins to the output sensitivity function Syp. The upper-left bound

is built by a modulus margin ∆M = 0.5(−6dB) (Eq. (3.41)) and the

upper-right and lower bounds represent the limits of the delay
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margin (Eq. (3.43)). The output sensitivity function in green is

the result of imposing the fixed part HS(z
−1) to the pole place-

ment design in an iterative way until a satisfactory result was

found (Eq. (4.33)) (Landau and Zito, 2006). It can be seen that

using different values for the fixed part HS will shape the out-

put sensitivity function differently. It can also be seen that,

although using HS = 1 − 1z−1 (dashed green line) will reject con-

stant disturbances in steady state, the shaped Syp is closer to

the upper margin. This will make the system less tolerant to

changes on the system dynamics at lower frequencies and to fix

that we should impose slower regulation dynamics (e.g. ω0 < 0.8).

On the other hand, using HS = 1− 0.5z−1 (solid green line) will de-

crease the gain, making the system more tolerant to uncertainties

with faster regulation dynamics.
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Figure 4.14 Output sensitivity function.

Figure 4.15 shows in green the noise sensitivity function Syb

and in blue the bound related to the delay margin ∆τ = Ts (Eq. (3.40)).

The delay margin was already set for the margins of the output

sensitivity function (Syp) with good results (Fig. 4.14). Nev-

ertheless, the delay margin is related to the noise sensitivity

function and the fact that Syb is under the bound confirms the

good choice of the fixed parts (Eq. (4.33)).

Figure 4.16 shows in green the input sensitivity function (Sup)

for a pole placement with the imposed fixed part HR = 1 + 1z−1
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Figure 4.15 Noise sensitivity function.

(Eq. (4.33)) which will impose a zero at 0.5fs reducing the actua-

tor stress at higher frequencies. This has the effect of limiting

not only the actuator stress but also the reaction to measurement

noise and disturbances making the robot drive more smoothly and

not react right away after every stone or irregularity in the

soil. It will also reduce the energy consumed by the motors and

increase their lifetime.
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Figure 4.16 Input sensitivity function.

The resulting step response of the different shaping of the

output sensitivity functions is illustrated in Figure 4.17. The

dashed green line corresponds to the response using the fixed

part HS = 1 − 1.0z−1, whereas the solid green one corresponds to

the use of HS = 1 − 0.5z−1. It can be seen that the solid green
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line arrives faster at the steady state (around 4 s) whereas

the dashed one needs more than 8 s and contains oscillations. As

mentioned before, the oscillations can be fixed by picking slower

regulation dynamics (ω0 < 0.8) or by driving faster. Nevertheless,

we could reduce the error at the turning points by reducing the

speed and to this end, it is desirable to have the system react

faster to changes.
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Figure 4.17 Step response over 1 m cross-track.

A 3D real-time simulation using the results of Eqs. (4.32), (4.36)

and (4.37) is shown in Figure 4.18. It depicts representative

results which are also useful to prove the robustness of the be-

haviour in an interactive environment (Fernandez et al., 2016).

For the simulation, a real path with geographic coordinates was

used so we could compare these results with the results of a real

robot using the same path. The simulation presents very satisfac-

tory results where the largest error (at the fifth turning point)

is around 20 cm which is comparable to other more complex solu-

tions (Arslan and Temeltas, 2011; Caracciolo et al., 1999; Hwang

et al., 2013; Inoue et al., 2013; Jeon and Jeong, 2015; Tchoń

et al., 2015). These errors at the turning points are expected

since in order to be able to turn with zero curvature radius, the

skid-steered robot should stop completely. In contrast, in the

simulation the robot was reducing its velocity to 0.1 m/s to test

its robustness and adaptation.
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Figure 4.18 3D real-time simulation with Openframeworks and OpenGL. The
yellow line represents the desired navigation path and the red line is
the actual driven path.

4.3.2 Validation

The same coordinates used for the simulation (Fig. 4.18) were

sent to the real robot and the results are shown in Figure 4.19.

It can be seen that the robot was successfully following the path

with a similar type of error in the turning points as presented in

the simulation with a maximum of 18 cm also at the fifth turning

point (see Fig. 4.20). In contrast to the simulation, distur-

bances due to terrain irregularities can be appreciated in the

real approach. Nevertheless, the controller was able to react

very smooth to disturbances without producing an error of more

than 2 cm once on the lane. The same path was tested in different

terrains and the skid-steered robot produced similar results.

The Figure 4.20 shows at the top the error of the lateral posi-

tion or cross-track of the vehicle and at the bottom the forward

speed. The vehicle was driving with a minimum speed of 0.1 m/s

at the turning points and a maximum speed of 0.5 m/s once on the

lane. It can be seen how the vehicle slows down near to each

turning point and speeds up right after the turning point. It

can also be seen that at the headland, the vehicle does not have

enough lane to speed up to the maximum speed when the next turn-

ing point approaches making the vehicle slow down again. The

test was performed on a gravel terrain where the wheels were able
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Figure 4.19 Real skid-steered robot. Lane-tracking control on the
field. Visualisation with Google-Earth. The white line represents
the desired path sent to the robot and the red line is the actual path
driven by the robot.

to easily slip when turning. The slow speed allows for a high

driving accuracy with a low cross-track root-mean-square error

(RMSE) of 0.07. Furthermore, not estimation was used, instead, a

reduce model (Eq. (4.32)) was used for the online calculation of

the controller parameters R, S and T.

In Figures 4.21 and 4.22, the test was performed in a more

difficult terrain, ploughed, with a lot of stones and with some

parts dry and others very wet. Furthermore, the vehicle was driv-

ing faster with a minimum speed of 0.2 m/s at the turning points

and a maximum speed of 1.5 m/s on the lane. It can be seen in Fig-

ure 4.21 how the vehicle has more difficulties at staying on the

lane compared to the previous terrain (Fig. 4.19). The increase

in the error at the turning points is due to the fact that the

minimum speed is 0.2 m/s instead of 0.1 m/s. This was desired

since the goal is to drive as fast as possible with a minimum

acceptable error. The irregularities at the curves are due to

the high irregularities in the terrain. Nevertheless, the re-

sults are satisfactory since the vehicle managed to follow the

lane with a maximum error of 10 cm. Including the headland-error,

the rsme equals 0.17, which is acceptable since the error at the

curves increased due to the speed increment.



100 Experimental setup and results

0 50 100 150
-1

-0.5

0

0.5

1

(a)

Cr
os

s-
tr

ac
k

(m
)

Cross-track RMSE: 0.077634

0 50 100 150
0

0.5

1

1.5

Time (s)

(b)

Fo
rw

ar
d

sp
ee

d
(m

/s
)

Figure 4.20 (a) Lateral position error throughout the driven path. (b)
Change of forward speed throughout the driven path. Minimum Vx =0.1 m/s
and maximum Vx =0.5 m/s.

In comparison with Figure 4.20, the lower part of Figure 4.22

presents shorter times when driving on the lane due to the speed

increment of 1 m/s on the lane. The times when taking the curve

at the headland are almost three times bigger that the time on

the lane. Nevertheless, with the new speeds the vehicle was able

to achieve one curve and one lane more within the same time.
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Figure 4.21 Real skid-steered robot. Lane-tracking control on a very
difficult field. Visualisation with Google-Earth.

The Figure 4.23 shows the control signal in km−1, which is the

inverse of the curvature radius. High frequency elements can be

appreciated since the closed loop system is of 4th order. The

measurements of the yaw rate were done using the raw data from

the IMU and the control signal could be smoothed if a filter is

applied to the IMU data. Nevertheless, some accuracy could be

lost and we opted to use the raw data also to test the reaction

of controller against measurement noise.

As aforementioned, the results and figures shown above, repre-

sent the system without using the online estimator. In contrast,

some results using the online gradient estimator are illustrated

in Figure 4.24. Here, the vehicle was driving with a minimum

speed of 0.2 m/s at the curves and a maximum speed of 1.5 m/s

once on the lane. The lanes distribution are the same used above

with a length of 10 m per lane and a separation of around 0.33

m. The results appear to be very positive, having errors similar

to those when driving slower. The following Figure 4.25 shows

at the top a cross-track comparison of both methods (with online

gradient estimator in blue and with the static model in green).

In the lower plot of the figure, the distance to the turning point

is depicted. The results using the estimator appear to fit better

the system dynamics. Also, the RMSE is 1/3 smaller than the error
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Figure 4.22 (a) Lateral position error throughout the driven path. (b)
Change of forward speed throughout the driven path. Minimum Vx =0.2 m/s
and maximum Vx =1.5 m/s.

using the static model of Eq. (4.27). Since the static model was

an approximation, the identified estimator finds a model with

shorter time delay and by doing so, the Controller Design calcu-

lates the parameters for a slightly faster system. Also, since

this identified system is faster and with less error, the 5 lanes

are completed almost 30 s faster.
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Figure 4.23 Curvature applied to the motors in km−1 which is the inverse
of the turning radius.

Figure 4.24 Real skid-steered robot. Lane-tracking control using an
online gradient algorithm for the model estimation. Visualisation with
Google-Earth.

4.4 Optimal digital control

This section presents the results of applying an optimal con-

troller to the robot described in Section 4.1.2. These results

can be used as a benchmark to be compared with those of the robust

self-tuning design obtained from the same vehicle in the previous

Section 4.3. Data from Table 4.7 provide sufficient information

to design and implement the controller introduced in Section 3.3,

into the skid-steered robot (Sec. 4.1.2). The parameters Q and

R can be used as tuning parameters to cover for other factors not
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Figure 4.25 Comparison using a defined static model vs. using a gradi-
ent model estimation. In both approaches the minimum Vx =0.2 m/s and
the maximum Vx =1.5 m/s. (a) Lateral position error throughout the
driven path. (b) Distance to next turning point.
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included such as weight and other uncertainties due to the use of

a simplified first order system.

Table 4.7 Technical data of a skid-steered robot.

Robot data

Ts 0.100 ms
τ 0.100
2c 0.455 m
Vx 0.100-1.500 m/s
Q 0.100
R 0.100

Using Vx = V = 0.5 m/s and substituting the rest of the data from

Table 4.7 into Eqs. (4.25), (4.26), (4.27) and (4.28) we obtain

the representation of the vehicle (Eq. 4.30), expressed in the

equation below (4.38) which is used in the observer as well (see

Fig. 3.9). For the range of working speeds, these calculations

take place in real-time in the ECU using the measured forward

speed.

Φ =


0.000 1.000 0.000

0.000 0.000 1.000

0.367 −1.735 2.367



Γ =


0.000

0.000

1.000


C =

[
0.003 0.003 0.000

]
.

(4.38)

The controllability and the observability matrices have full

rank (Eqs. (4.39) and (4.40) respectively). Therefore, our sys-

tem is controllable and observable and we can proceed to find the

optimal solution for the state feedback and state estimate.

rank


0.000 0.000 1.000

0.000 1.000 2.367

1.000 2.367 3.871

 = 3, (4.39)
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rank


0.003 0.003 0.000

0.000 0.003 0.003

0.001 −0.006 0.011

 = 3. (4.40)

It was shown in Section 3.3.1 that the state feedback F and

the state estimate L can be found with the Riccati Eqs. (3.49)

and (3.52)as follows:

Pf = Q+ΦT · Pf · Φ

− ΦT · Pf · Γ · (R+ ΓT · Pf · Γ)−1 · ΓT · Pf · Φ;
(3.49)

Pl = Qe +Φ · Pl · ΦT

− Φ · Pl · CT · (Re + C · Pl · CT )−1 · C · Pl · ΦT .
(3.52)

Nevertheless, as it can be seen, the solution to the differ-

ential nonlinear Riccati equation depends on itself. There are

different methods to solve the equation and one would be in an

iterative manner. Therefore, for a digital system Eqs. (3.49)

and (3.52) can be rewritten as following:

Pf (k) = Q+Φ′ · Pf (k − 1) · Φ

−Φ′ · Pf (k − 1) · Γ

·(R+ Γ′ · Pf (k − 1) · Γ)−1 · Γ′ · Pf (k − 1) · Φ,

(4.41)

Pl(k) = Qe +Φ · Pl(k − 1) · Φ′

−Φ · Pl(k − 1) · C ′

·(Re + C · Pl(k − 1) · C ′)−1 · C · Pl(k − 1) · Φ′,

(4.42)

where the solution can be found by iterating at each cycle time

until Pf and Pl converge (Ogata, 1995). For our problem, the solu-

tion converges after around 100 cycles with the initial values of

Pf = Pl = 0 (Eqs. (4.43) and (4.44)). With a cycle time of 100 ms,

these solutions will be found after 10 s which might be too slow

for our vehicle. For example driving at 1.5 m/s, the vehicle will

not be able to follow the path at least for the first 10 m. To

solve that, the solution can be calculated first in a simulation.

Then, this solution can be used as the initial conditions inside
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the vehicle and since there might be discrepancies between the

simulation and the real vehicle, some calculations still have to

be done. Nevertheless, it will converge only after a couple of

cycle times. This will be the case as well for the different range

of working speeds, since for each speed a different solution has

to be calculated in real-time. Also in this case, the discrepan-

cies of the solutions between different speeds are small enough

to be calculated in real-time.

Pf =


0.003 −0.011 0.009

−0.011 0.046 −0.037

0.009 −0.037 0.029

 . (4.43)

Pl =


544.010 615.560 687.410

615.560 706.210 797.820

687.410 797.820 911.010

 . (4.44)

From the solution to the Riccati equation, the optimal state

feedback and state estimate as well as the tracking gain are

expressed in Eq. (4.45) and the controller is ready to be im-

plemented. Figure 4.26 illustrates a step response of 1 m us-

ing these results (Eqs. (4.38) and (4.45)) to validate the con-

troller.

F =
[
−0.084 0.326 −0.260

]

L =


−35.332

−39.701

−44.083


K = 2.774.

(4.45)

4.4.1 Simulation

A 3D real-time simulation was programmed with C++ using Openframe-

works and some representative results can be seen in Figures 4.27

and 4.28 (Fernandez et al., 2016). The yellow line represents the

way-path to be followed by the robot and contains real geographic

coordinates. The red line is the actual driven path. It can be
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Figure 4.26 Step input of 1 m to the left of the desired path.

seen in Figure 4.28 that the error on the lateral position in-

creases in the turning points since those correspond to an input

step applied by changing the course angle to the desired path (ν

in Figure 4.2).

For the simulation, the forward speed of the robot was changing

from 1.5 m/s on the lane to 0.1 m/s at the headland. After each

turn, we can appreciate some small oscillations before the robot

is completely on the lane and this is due to two factors. The

first one is because Q and R were tuned to provide the quickest

response. Bigger values will avoid the oscillations, but the

robot will take longer to arrive at the lane and the turning

curve will be larger. The second one is because of the change

in the forward speed, which requires new real-time calculations

of the control parameters. When slowing down from 1.5 to 0.5 m/s

before the turning points, the adaptation cannot be appreciated,

which confirms that the solution converges fast enough. When

speeding up again to 1.5 m/s after the headland, some small effect

is appreciated since at higher speeds the vehicle needs higher

response dynamics that have to be calculated, and at those speeds,

if the vehicle needs 5 cycles (500 ms) to calculate the control

parameters it will take around 75 cm.

From Figure 4.27 one could expect that the smoothness of the

robot decreases when following smooth curves, since it will have
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Figure 4.27 3D real-time simulation with Openframeworks and OpenGL
(path following).

a continues input of steps by updating small straight "desired

paths" with their corresponding course angles ν. Nevertheless,

Figure 4.28 illustrates how the robot smoothly follows a lane

change of 2 m. At the bottom of the way-line, the step input is

very clear with a change in the course angle of 90o. Then at the

lane change, in every cycle time the course angle is updated to

the corresponding change and the steps do not affect the driving

smoothness, having an error of around 7 cm at the curve. Similar

errors were found in the different simulations performed.

4.4.2 Validation

Figure 4.29 shows the results using the real robot. Here the

white line is the same as the yellow one used in the simulation

to be able to compare directly with the simulation results. Each

lane is around 10 m long and the separation between lanes is 33

cm. As expected, it can be seen that the real robot presents a

bigger error. The yellow line at the top presents a separation of

around 90 cm at the time of changing the lane(see Fig. 4.30). On
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Figure 4.28 3D real-time simulation with Openframeworks and OpenGL
(lane change).

the other hand, the largest error when entering the lane is around

13 cm (yellow line at the third lane from right to left, almost at

the bottom of Figure 4.29). The results are satisfactory if the

cross-track at the headland is not considered very important by

the user, since the error measured once on the lane is less than

5 cm and can be related to measurement noise and disturbances due

to irregularities on the terrain. This error is also comparable

to results obtained with more complex solutions (Pazderski and

Kozłowski, 2008; Tchoń et al., 2015). The same test was performed

in different terrains and the robot produced similar results.

In Figure 4.31, the signal produced by the controller is pre-

sented in the form of a curvature, which is the inverse of the

turning radius. It can be recognized where the turning points

took place through the peaks (e.g. at 20 and 40 s). One of the

main advantages of using an optimal controller can be seen here,

since the signal does not contain high frequency members and the

changes are very smooth without stressing the motors. Since the
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Figure 4.29 Real skid-steered robot. Lane-tracking control on the
field. Visualisation with Google-Earth.

observer acts as a Kalman filter, the control signal does not

react to unnecessary disturbances and measurement noise without

loosing much responsiveness. On the other hand, it could take

longer to arrive to the lane at the turning points. Nevertheless,

the trade-off between actuator stress and system accuracy of an

optimal controller can be appreciated here.

4.5 Summary of results

The first natural conclusion is that the robust self-tuning ap-

proach has more advantages than the cascade self-tuning one, be-

ginning with the fact that it is not a nested set of controllers.

There is no need for using PID and the only controller used, in-

troduces a robust and more flexible design that can work with

higher order models. This advantage can be used in situations

like the one shown in Figures 4.10 to 4.12, where an overshoot is

produced since the reference model used for the MDPP is of order

two, and the real tractor-implement model would be of order 5

(including the hydraulic steering system).

For the sake of saving resources, the field tests where only

performed with the skid-steered robot whit the robust self-tuning

approach and with the observer-based optimal approach, where the
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Figure 4.30 (a) Lateral position error throughout the driven path. (b)
Change of forward speed throughout the driven path. Minimum Vx =0.2 m/s
and maximum Vx =1.5 m/s.
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Figure 4.31 Curvature applied in km−1.

last one is used as a benchmark. Figure 4.32 presents a compari-

son of the control signals of the two different controllers. At

the top, the curvature produced by the robust self-tuning regu-

lator (also illustrated in Fig. 4.23). At the bottom, the cur-

vature produced by the optimal controller (also illustrated in

Fig. 4.31).

Since the robust self-tuning regulator uses a controller of

5th order, the high frequency oscillations can be appreciated in

contrast to the control signal produced by the optimal controller,

which is of 3rd order. In this case, the optimal controller has

the advantage of driving very smooth and treating the motors more

efficiently. Also the reaction of the robot is more smooth and

can be accounted as rejection against measurement noise and small

disturbances, with the cost of reducing the accuracy of the path

following. The difference in accuracy between both methods can be

appreciated especially by comparing Figures 4.19 and 4.29 where

it can be seen that the robust controller is more accurate and

does not separate too much from the tracks at the headland. Also

the RMSE of the robust controller is 0.17, against 0.28 of the

optimal controller with the same path and same conditions. This

is a big difference and concludes that the self-tuning regulator

produces the best results regarding accuracy.
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Figure 4.32 Curvature comparison in km−1. (a) Curvature generate by
the robust digital controller. (b) Curvature generated by the optimal
controller.



Chapter 5

Conclusions

The dynamics of off-road vehicles are constantly changing due

to different factors such as soil irregularities, tooling and

changes in the speed, making the design and implementation of

autonomous path following systems a very complex task.

To solve this issue, this research presented first a cascade

system with a self-tuning regulator applied to the yaw rate dy-

namics in the inner loop, together with a gain scheduler used

for the PID parameters in the outer loop controlling the lateral

position. Nevertheless, only the implementation of an adaptive

controller is not enough to account for uncertainties on the ter-

rain. Therefore, a robust and adaptive digital method directly

used for the control of the lateral position was implemented.

This approach should not only cover for changes in the vehicle

dynamics due to changes in the speed and in the interaction with

the soil, it also covers different types of vehicles such as

Ackermann-steering and skid-steering. The method is based on

a digital RST pole placement and introduces fixed parts to the

Bezout polynomial in order to shape the different sensitivity

functions to guarantee robustness against uncertainties due to

noise and disturbances as well as non-linearities not considered

in the model. To tune the controller, two second-order systems

are used for modeling desired tracking and regulation dynamics

respectively. Since in this approach, the changes in the speed
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affect both tracking and regulation dynamics, a gain scheduler is

in charge of picking the desired parameters for the tracking and

regulation models according to the measured speed. In addition

to the robustness added to the design, a gradient estimator can

be applied for the yaw rate dynamics to adapt the system to the

soil irregularities, i.e., the parameters of the nominal model

of the vehicle will be shifted by the estimator depending on the

soil changes in order to increase the accuracy of the controller.

Since the robustness of the system should already cover for un-

certainties, this estimator can be switched off and use instead

some preferred static model or previously identified model pa-

rameters. The results presented demonstrated the robustness of

the controller and its ability to react nicely against terrain

irregularities and disturbances. It was also possible to imple-

ment this linear robust digital solution into an ECU with limited

resources and obtain similar results to more complex, even non-

linear approaches presented in the literature.

Finally, an observer-based optimal controller was used as a

general benchmark and the results produced by this controller

were less accurate than those from the adaptive-robust controller.

Nevertheless, the control signal showed its ability to save en-

ergy and increase the life of the actuators due to the lack of

high frequency elements. This advantage can be used in some cases

where high accuracy is not necessarily required at the turning

points.

5.1 Discussion of results

It should be first mentioned, that even though the objectives

presented at the beginning of the document were achieved in a

general way, those were changing throughout the natural evolu-

tion of the research. More precisely, at the beginning of the

research only one general goal of finding a universal adaptive

controller for all vehicles was set. As the research was mov-
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ing forward, it was quite clear that more specific and realistic

goals were needed. For instance, only an adaptive approach was

not enough and a robust design was taken into account. Also, the

decision of leaving nonlinear controllers out of the scope of

this research was taken. Finally, the original objective was to

perform all the tests with a tractor with varying hitch forces.

Nevertheless, the circumstances led to the implementation using

a skid-steering robot which, on the one hand, allowed to verify

that the design can be used in different types of vehicles and, on

the other hand, reduced the amount of resources needed in terms

of machinery, equipment and field tests. This will also help to

better understand the breakdown of the following discussion of

results.

The first adaptive controller examined in this research is the

cascade self-tuning regulator. It was tested for a tractor with

hitch forces and uses recursive least-squares for the estimation

of the yaw rate dynamics. The design used was an online MDPP of

a RST controller. Even though the results were positive, there

were different aspects that could be taken into account for im-

provement. The first aspect is the fact that the controller was

applied only to the yaw rate dynamics. That brought us to the

need of using a cascade controller where the inner part was the

yaw rate controller and the outer one was a lateral position PID

controller. The latter is not adaptable per se, and a tuning

action has to be performed for different speeds. This increases

the system complexity and the time and resources needed in the

implementation phase. The second aspect is the usage of a MDPP,

which limited the system to be of a second order. That perhaps

is not ideal, since a bigger order system can take into account

the steering and other dynamics not considered in a 2nd order

one. For instance, a model of a big tractor with hitch forces

will need to include tire relaxation if one wants to control the

lateral position at higher speeds. This will naturally increase
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the order of the system to be controlled (Kayacan et al., 2015;

Owen and Bernard, 1982; Rolla, 1983).

This led to the need of improving the digital RST controller,

by making it robust and adaptive. Instead of using a MDPP, we

let the order of the system be as big as needed, and we also add

some fixed parts to the characteristic equation in order to shape

the sensitivity functions, introducing robustness to our design.

Also, since the order of the system is no limited, the need of

using a cascade is not necessary anymore, and the controller can

cover the lateral position as well. This means that instead of

looking for the ideal PID parameters for every different forward

velocity, we simply look for the second order characteristic de-

sired for each speed, i.e., a gain scheduler is introduced, and

by picking de damping ζr = 1, we only need to adapt the natural

frequency as a function of the forward speed (ωr = f(Vx)). We

also added a tracking model to shape the input step, which can be

also adapted through the gain scheduler to the different speeds

(ωt = f(Vx)).

The results shown by the robust and adaptive digital controller

were very satisfactory. Nevertheless, in order to benchmark the

results, we implemented an optimal digital controller which has

shown very good path following performance and robustness against

changes in the vehicle dynamics (Sharp, 2005). This controller

seemed to be more stable against disturbances, since the actua-

tors (motors) were not eager to jump to every change in the soil.

Nevertheless it took longer to the vehicle to get into the track,

once it was shifted by a big disturbance. In contrast, the ro-

bust adaptive controller showed more accuracy once on the track,

and was faster at getting into the track with the drawback of

being very responsive to every small disturbance (see Fig. 4.19

vs. Fig. 4.29). Nevertheless, the fixed parts introduced to the

characteristic equation to make the system robust, allowed us to

tune the input sensitivity function and limit the actuators re-
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sponse, making the controller to behave similar to the optimal

one.

Finally, for the estimation used in the robust self-tuning

regulator, both approaches were tested on the field (recursive

least-squares and online gradient). Even though the recursive

least-squares were performing good in the simulations, its real

implementation was making the system unstable, and it was not

really possible to further proceed with the field test without

putting in risk the integrity of the skid-steering robot. In con-

trast, the online gradient algorithm produced good results (see

Fig. 4.24), especially when keeping the learning rate α, small

enough so the estimation does not produced unstable results with

the combination of turning curves and high soil irregularities.

5.2 Future work

A very important feature that gives the system adaptation, is the

online system identification. This topic is very extensive and

ideally, it will need a study to check and compare the different

approaches, to assess which ones identify the changes in the dy-

namics of the vehicle more accurately depending on its character-

istics (size, form, range of working speeds etc.). Also, we could

introduce a disturbance frequency measurement, and automatically

use those frequencies to the fixed parts of the sensitivity func-

tions. Another issue to consider as future work is introducing

the heading to the controller. At the moment, by controlling the

lateral position, we are considering indirectly the heading of

the vehicle. Nevertheless, by specifically taking into account

the heading as a control output, we could improve the performance

on the turning points as well as on the track. This implies indi-

rectly the need of working with a MIMO system. Another topic that

can be considered for future work is to extend the controller in-

troducing predictive control to cover for slow time responses in

bigger machines. For instance a tractor with two-meter-diameter
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wheels, will react slower to an input step and the machine will

lose 1 or 2 s to get in track again. Also, a closed loop adaptive

non-linear system could be an alternative to this work, by us-

ing e.g. artificial neural networks. Nevertheless, the question

regarding this approach remains, if the non-linearities can be

effectively identified online, and if the system remains stable.

Finally, the focus of the problem should be extended from path

following to trajectory tracking to include the forward speed and

increase therefore the performance and accuracy of the autonomous

vehicle.
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