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INTRODUCTION 

 

General characteristics of the work 

Dynamic characteristics of strongly coupled one-component 

plasmas are studied within the moment approach with local constraints by 

an algorithm similar to that of Schur. Some simulations of two-component 

plasmas are analyzed using sum rules and other exact relations.  

 

Main part 

It became clear by the end of the last millennium that due to the 

scientific and, especially, technological progress there has appeared a 

strong necessity in increasing production of electrical power. On the other 

hand the natural deposits of oil, gas and coal currently used in power 

plants will be rapidly depleting in the very near future. Therefore, in 

addition to nuclear fission reactors the search for alternative energy 

sources has been under way for past decades. One of the promising 

solutions to this problem could be a thermonuclear reactor based on 

fusion of light nuclei. 

Since the late fifties of the past century an intensive research was 

started throughout the world to construct a fusion plant prototype with 

the magnetic confinement of plasmas. Later on an alternative approach 

emerged, the so-called inertial confinement fusion in which the 

thermonuclear reactions occur in deuterium and tritium targets due to the 

pressure compression created by evaporating outer shells. In such 
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installations plasmas under extreme conditions are produced by powerful 

either laser or ion beams.  

That is why the European Union adopted the special programme 

(HEDgeHOB - high energy density matter generated by heavy ion beams, 

http://hedgehob.physik.tu-darmstadt.de) which is aimed at theoretical 

and experimental studies of the properties of dense strongly coupled 

plasmas. At the same time the laser inertial fusion is currently advocated 

in the U.S. at the Lawrence Livermore National Laboratory which is called 

the National Ignition Facility (https:// lasers.llnl.gov/). 

It has to be mentioned that besides installations for controlled 

nuclear fusion non-ideal or strongly coupled plasmas, i.e. plasmas in which 

the average interaction energy between charged particles is of the order 

of magnitude or even larger than their average kinetic energies of thermal 

motion, are also encountered in various astrophysical objects. 

Researches in the field of plasma physics were initiated in the early 

twenties of the XXth century whereas dense Coulomb systems appeared 

in focus some fifty years later. Experimental investigations of dense 

plasmas remain quite complicated and expensive; therefore a number of 

theoretical methods were put forward to analyze their equilibrium and 

non-equilibrium properties. Among them is the pseudopotential theory of 

equilibrium systems in which particles interactions are described by 

effective potentials. A standard physical picture is also of wide use 

implying applications of modern methods of quantum statistical 

mechanics of many-body systems. 
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It is noteworthy that to describe the properties of dense Coulomb 

systems various models are utilized including a one-component plasma 

(OCP), a two-component plasma, etc. 

On the other hand, one evidences a very wide spread of computer 

simulation techniques, such as molecular dynamics (MD) and Monte Carlo 

(MC). In those simulations all interparticle interactions are assumed to be 

known a priori. Then, one writes down the equations of motion or the 

transition probability from one particular state to another and the 

macroscopic characteristics are simply determined by averaging over 

corresponding microscopic states. Results of numerical simulations are 

considered the most reliable, since they are based on first principles and 

essentially deprived of far-reaching physical assumptions. A very special 

place is taken by the particle-in-cell (PIC) simulations designed for studying 

the dynamics of a continuous media.  

Since dense Coulomb systems possess no perturbation parameters 

we apply, in the present work, the method of moments which is based on 

sun rules and other exact relations and is intrinsically non-perturbative. 

One of the main problems of modern plasma physics is to obtain an 

analytic expression for the dielectric function determining the screening 

effects, the dispersion relations and other dynamic characteristics, such as 

the conductivity, the reflectivity, etc. The dielectric function can be 

derived from the linear-response theory [1], using the methods of the 

kinetic theory or hydrodynamics [2] and by means of the perturbation 

expansion of the Kubo formula [3]. On the other hand, the dielectric 

function can be deduced on the basis of the method of moments [4]. All 

methods mentioned above are mostly applicable in a limited range of 
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plasma parameters where some perturbation expansions are applicable. 

On the contrary, the method of moments [5, 6] imposes no such 

restrictions on the plasma parameters thereby reconstructing any 

Nevanlinna class function by its convergent power moments. In physics 

those functions play a special role and are called response functions which 

are due to the causality principle and satisfy the Kramers-Kronig relations. 

A simple example is the plasma inverse dielectric function.  

Another important dynamic characteristic is the dynamic structure 

factor which is related, via the fluctuation-dissipation theorem, to the 

imaginary part of the inverse dielectric function and can be extracted from 

experimental data [7]. Thus, from both the practical and mathematical 

points of view, the study of the dynamic structure factor is of great 

significance. 

There exist several approaches to the investigation of the dynamic 

structure factor. Beyond experimental and theoretical methods one has to 

mention simulation techniques based on the first principles of mechanics 

and statistical physics. It is curious that the results of the pioneering work 

[8] remain in a good agreement with the most recent data of [9].  

In the present thesis, the one-component plasma dynamic structure 

factor is modeled by the first three terms of its asymptotic expansion at 

high frequencies and its values at a few interpolation points on the real 

axis. This makes the dynamic structure factor a non-rational function 

whose extension onto the upper half-plane of the complex frequency is 

holomorphic with a non-negative imaginary part and with a continuous 

extension to the real axis. In the Schur-like algorithm [10] a free 

parameter of the non-rational model function is obtained from the 
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Shannon entropy maximization procedure. The results automatically 

satisfy not only the sum rules (the power moments) and other exact 

relations but, also, interpolate between the chosen frequencies. Quite a 

good agreement is obtained with the available simulation data on the 

plasma dynamic properties. The method permits to take into account the 

energy dissipation processes so that the results of the alternative 

theoretical approaches are included into the moment scheme and are to 

be complemented as well. Of course, such an algorithm can be used in a 

much broader setting. 

Additionally, the classical molecular dynamic simulation data on the 

charge-charge dynamic structure factor of two-component plasmas 

modeled in [11] and [12] are analyzed and verified using the sum rules and 

other exact relations. The convergent power moments of the imaginary 

part of the model system dielectric function are expressed in terms of its 

partial static structure factors computed by the method of hypernetted 

chains using the Deutsch and other effective potentials. The high-

frequency asymptotic behavior of the dielectric function is specified to 

include the effects of inverse bremsstrahlung.  

Finally, we apply the above described approach to the modeling of 

optical properties of moderately coupled plasmas. On the basis of the 

Hölder inequalities, the monotonicity of the real part of the long-

wavelength dynamic conductivity, predicted by the classical Drude-Lorentz 

model, is studied.  

The work is terminated by a short comparison between the method 

of moments and a classical method of continuous fractions (as applied to 
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the investigation of dynamic properties of physical systems), which is, due 

to Stieltjes, mathematically equivalent to the moment one. 

 

Objectives: 

1. To apply the mathematical method of moments, particularly 

with local constraints, to the investigation of dynamic properties of dense 

Coulomb systems.  

2. To analyze the non-monotonicity of the dynamic electrical 

conductivity of non-ideal plasmas.  

 

Dissertation structure 

In the Introduction the applicability of the chosen research topic, 

the aims, the methods and the way for reaching the goals are generally 

presented.  

The first section presents a background discussion introducing the 

model and methods that form a core of the second section of the 

dissertation. Then the results on dynamic characteristics of one-

component plasmas such as dynamic structure factors, the mode 

spectrum and the decrement of damping are presented. 

The second section is devoted to the description of the calculation 

of the dynamic structure factor for two-component plasmas based on the 

knowledge of the static limits and the interaction potential for different 

values of the plasma parameters.  
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The third section deals with some additional results on the 

characteristics of two-component plasmas and the relation of the classical 

method of continuous fractions to the method of moments is outlined. 

The thesis is ended by the Conclusions of the work and the Bibliography – 

the list of used references.  
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1 APPLICATION OF THE METHOD OF MOMENTS TO A SPECIFIC PHYSICAL 

SYSTEM 

 

1.1 One-component plasma model  

The classical one-component plasma (OCP) might be considered as a 

test-tube for the modeling of strongly interacting Coulomb systems [13], 

see also [9, 14] for more recent reviews. OCP is often employed as a 

simplified version of real physical systems ranging from electrolytes and 

charged-stabilized colloids [15], laser-cooled ions in cryogenic traps [16] to 

dense astrophysical matter in white dwarfs and neutron stars [17]. 

Another modern and highly interesting pattern of the OCP is a dusty 

plasma with the pure Coulomb interparticle interaction potential 

substituted by the Yukawa effective potential [18]. 

The classical OCP is defined as a system of charged particles (ions) 

immersed in a uniform background of the opposite charge. It is 

characterized by a unique dimensionless coupling parameter 

 

 

 
(1.1) 

 

Here  stands for the temperature in energy units,  designates the 

ion charge, and  is the Wigner-Seitz radius with  being 

the number density of charged particles. For  the interaction effects 
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determine the physical properties of the OCP. 

The OCP static properties like the pair correlation function  the 

static structure factor (SSF), , and the static local-field correction, 

, can be extracted from computer simulations, see [9, 14]. Moreover, 

molecular dynamics (MD) as well as other simulations provide invaluable 

information on the dynamic structure factor (DSF),  and some 

other dynamic characteristics. 

Here, the OCP dynamic properties are studied within the moment 

approach based on sum rules and other exact relations, see [19, 20] and 

references therein and comparison is made with the simulation data of 

Hansen et al. [8] and of Wierling et al. [9].  

Consider five convergent sum rules which are frequency power 

moments of the system DSF, 

 

 

 

(1.2) 

 

All odd-order moments vanish since the DSF is an even function of 

frequency in a statistically classical system.  

The method of moments is, generally speaking, capable of handling 

an arbitrary number of convergent sum rules. In two-component plasmas, 

though, all higher-order frequency moments diverge which can be 

attributed to and understood [4] from the exact asymptotic expansion of 



 
11 

 

the imaginary part of the dielectric function [21]. There is no such clear 

theoretical result for the model system to be dealt with here and, thus, it 

is simply impossible to presume that the three first even order moments 

Eq. (1.2) are the only convergent frequency sum rules of even order. 

However, the ambiguity of higher-order frequency moments [22], related 

to our scarce knowledge of the triplet and, presumably, higher-order 

correlation functions, remains insuperable nowadays and can only impede 

our understanding of the physical processes to be described below. 

It is well known [6] that the analytic prolongation of the positive 

function of frequency, DSF, onto the upper half-plane , is 

constructed by means of the Cauchy integral formula,  

 

 

 

(1.3) 

 

and admits the asymptotic expansion: 

 

 

 
(1.4) 

 

The zero-order moment is, obviously, the SSF, , while 

the second moment is the -sum rule, 
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(1.5) 

 

and the fourth moment equals 

 

 

 
(1.6) 

 

 

 
(1.7) 

 

Here ,  refers to the plasma frequency, and 

is the Debye wavelength with  being the ion mass, 

and  

 

 

 

(1.8) 
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where 

 

 

 

 

(1.9) 

 

  (1.10) 

 

The last contribution to the fourth moment is due to the ion-ion 

interactions in the OCP, while the second term represents the Vlasov 

correction to the ideal-gas dispersion relation of the plasmon mode 

. 

As in [23] the following limits hold 

 

 

 
(1.11) 

 

 

 
(1.12) 

 

where, by virtue of the Parseval theorem, 
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(1.13) 

 

is the average interaction energy between two ions with 

 

 

 
(1.14) 

 

The Nevanlinna formula of the classical theory of moments [5, 6] 

expresses the response function [19], 

 

 

 
(1.15) 

 

in terms of a Nevanlinna class function , analytic in the upper 

half-plane  with a positive imaginary part , 

. The function  should additionally satisfy the limiting 

condition: 

 

 

 
(1.16) 



 
15 

 

 

Such a function admits the integral representation [5, 6] 

 

 

 

(1.17) 

 

with  and a non-decreasing bounded function  such that 

 

 

 

(1.18) 

 

Furthermore, the polynomials , , are orthogonal 

with respect to the measure  together with their conjugate 

counterparts ,  determined as 

 

 

 

(1.19) 

 

These polynomials have only real coefficients and alternating zeros [5, 6]. 

A rather routine renormalization casts these polynomials as 



 
16 

 

 

  

 

 

 

(1.20) 

 

The frequencies  and  in Eq. (1.20) are defined by the 

respective ratios of the moments  [19] and, thus, are determined by 

the system static characteristics: 

 

 

 
(1.21) 

 

 

 
(1.22) 

 

The DSF is therefore found from Eq. (1.3) as 

 

 

 

(1.23) 
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Here we approximate the Nevanlinna interpolation function  

by its static value , where the “relaxation time” is 

selected to reproduce an exact static value of the dynamic structure factor 

in Eq. (1.23): 

 

 

 
(1.24) 

 

Alternatives in determination of the relaxation time were discussed in [24, 

25]. Note that 

 

 

 
(1.25) 

 

due to the Cauchy-Schwarz inequality. It is important that the DSF, Eq. 

(1.23), by virtue of Eq. (1.16), obeys the correct asymptotic expansion (1.4) 

and, hence, satisfies the sum rules (1.2) by construction, regardless of the 

form of the Nevanlinna parameter function . On the other hand, 

this means that the asymptotic expansion (1.4) holds for any adequate 

choice of the function . 

Within the approximation described above we adopt 
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(1.26) 

 

The static characteristics, i.e. ,  together with the 

moments ,  and , which, in turn, determine the 

characteristic frequencies , , and , are to be calculated 

independently, e.g., in the hypernetted chain (HNC) approximation or to 

be taken directly from the MD simulation data on the DSF. Note that the 

DSF Eq. (1.26) contains an exact static value, .  

In a classical system and due to the fluctuation-dissipation theorem 

(FDT), 

 

 

 
(1.27) 

 

so that the moments in Eq. (1.2) are proportional, for a given value of the 

wave number, to the corresponding moments of the loss function 

 

 

 
(1.28) 

 

in the following way: 
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(1.29) 

 

where 

 

 

 

(1.30) 

 

and  stands for the plasma inverse dielectric function (IDF) which 

is a genuine response (Nevanlinna) function of frequency. 

Since the DSF has previously been constructed on the basis of the 

Nevanlinna formula [5, 6], we, thus, obtain for the IDF [19]: 

 

 

 

 

(1.31) 

 

where the Nevanlinna parameter function  coincides with that 

in Eq. (1.15) due to relation (1.27). 
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1.2 Method of moments with local constraints 

Consider the mixed Löwner-Nevanlinna problem [5, 6, 22, 26-28], 

see also Ref. [29] for the matrix version of the problem. 

Problem 1. Given a set of real numbers , a finite set of 

points  on the real axis, and a set of complex numbers 

 with non-negative imaginary parts, find a positive function 

  such that 

 

 

 

(1.32) 

 

and 

 

 

  

(1.33) 

 

The Problem 1 is a mixture of the truncated Hamburger moment 

problem [5, 26, 27] with the Löwner-type interpolation problem in the 

class of Nevanlinna functions [28]. 

We describe and test numerically an algorithm for finding of non-
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rational solutions to this problem. We are particularly interested in the 

possibility to solve the problem when only a very small number of 

moments and constraints (data at the interpolation nodes) are known.  

The mixed problem solution 

Assume that the set of moments is positively definite so that the 

truncated Hamburger moment problem is solvable [5, 26, 27], and that 

there exists an infinite set of non-negative measures  on the real axis 

such that 

 

 

 

(1.34) 

 

Then, the formula, 

 

 

 

 

(1.35) 

 

according to Nevanlinna’s theorem *5+, establishes a one-to-one 

correspondence between the set of all measures  satisfying (1.34) and 

the Nevanlinna functions , i.e., functions which are analytic in the 

upper half-plane , continuous on its closure  with a 
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positive imaginary part at  and such that , 

.  

The polynomials  form the orthogonal system with respect 

to each -measure satisfying (1.34) and can be found by the Gram-

Schmidt procedure applied to the basis , while  is 

the corresponding set of conjugate polynomials [5]. Notice that the zeros 

of each orthogonal polynomial  are real and, by virtue of the 

Schwarz-Christoffel identity, the zeros of  alternate with the zeros 

of  as well as with the zeros of . 

To meet the constraints (1.33) it is enough now to substitute into 

the right hand side of (1.35) any function z  which satisfies the 

following conditions: 

 

 

 
(1.36) 

 

Note that . Thus, Problem 1 reduces to Problem 2. 

Problem 2. Given a finite number of distinct points  of the 

real axis and a set of complex numbers  with positive 

imaginary parts, find the set of functions  that are continuous in 

the closed upper half-plane and satisfy conditions (1.36). 
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Each Nevanlinna function  in the upper half-plane admits the 

Caley representation, 

 

 

 
(1.37) 

 

where 

 

 

 
(1.38) 

 

is a holomorphic function (in the upper half-plane) with contractive 

values, i.e. , . Therefore, Problem 2 is equivalent to the 

following problem for contractive functions.  

Let  be the set of all contractive functions which are holomorphic 

in the upper half-plane and continuous on its closure. 

Problem 3. Given a finite number of distinct points  of the 

real axis and a set of points , 

 

 

 
(1.39) 

 



 
24 

 

find a set of functions  such that 

 

  (1.40) 

 

Problem 3 is a limiting case of the Nevanlinna-Pick problem [5, 6] 

with interpolation nodes on the real axis. Its solvability for any 

interpolation data ,…,   inside the unit circle was actually proven in 

Ref. [30]. The point is that the associated Pick matrix is automatically 

positively definite for any given contractive interpolation values as soon as 

the interpolation nodes are close enough to the axis; this guarantees that 

the approximate Nevanlinna-Pick problem is solvable if the interpolation 

nodes are close enough to the real axis. Then, the Vitali-Montel theorem is 

applied to take the limit of the interpolation nodes approaching the real 

axis. This also implies that the Nevanlinna-Pick problem is solvable even if 

some or all .  

We describe below an algorithm of solving Problem 3 when all 

, which is a simple modification of the Schur algorithm. An 

alternative algorithm, similar to the Lagrange method of the interpolation 

theory, can be applied if some or even all  [27]. 

 

1.3 Schur algorithm and its application  

Note that a function  satisfies the condition , 

, if and only if it admits the representation, 
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(1.41) 

 

where  and . In case of the Nevanlinna-Pick problem, i.e., 

when  belongs to the upper half-plane, the function  admits the 

representation: 

 

 

 
(1.42) 

 

where  is an arbitrary contractive function in the upper half-plane. 

There is no such simple form for the contractive function  when 

.  

Here we carry out the reconstruction procedure using the non-

rational functions, as suggested in Ref. [27]: 

 

 

 

(1.43) 
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with a unique free parameter 0,1 . Here  is any function from  

such that 

 

 

 
(1.44) 

 

Such a choice of  guarantees that conditions (1.40) are all 

verified. Hence, Problem 3, initially formulated for  interpolation nodes 

on the real axis and strictly contractive values of the functions to be found 

at these nodes, reduces to the same problem but with  interpolation 

nodes and modified values at these nodes given by (1.44). Repeating the 

above procedure  times with a suitable choice of the parameter α 

and modifying the values of emerging contractive functions at the 

remaining points  according to (1.44), permits to obtain a 

solution to Problem 3. Note that contrary to the Nevanlinna-Pick problem 

with nodes in the open upper half-plane, Problem 3 is always solvable if 

the values of the function to be reconstructed are contractive at the 

interpolation nodes. 

Let  be a contractive function emerging after  steps 

in the course of solving Problem 3 by the above described method, and let 

, . It follows from the above stated arguments 

that should the initial parameters  be strictly contractive, there 

exists a set of solutions to Problem 3 described by the formula, 
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(1.45) 

 

where the matrix elements of linear fractional transformation (1.45) are 

non-rational functions constructed as described above and  runs the 

subset of all functions from  satisfying the condition . 

This matrix can be calculated as 

 

 

 

(1.46) 

 

where the indices  in the right-hand-side matrix factors increase from left 

to right.  

Observe that the simplest choice for the function  in (1.45) is 

just to assume . Hence, if initial parameters  in 

Problem 3 are strictly contractive, then, among the solutions to this 

problem there are non-rational functions of the kind we consider.  

 

1.4 Dynamic structure factors 

Since in physical applications we usually try to reconstruct certain 

non-negative densities, the solvability of the moment problem is not an 

issue. In each case the absolutely continuous non-negative measure with 
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this density is just one of the solutions to the moment problem.  

To apply the Schur-like algorithm described above, one has to know 

not only the values of some power moments of the distribution density 

 under investigation, 

 

 

 

(2.47) 

 

but also the values of the Nevanlinna function at the set of 

points : 

 

 

 

(1.48) 

 

In all cases considered below we use only three non-zero moments, 

, with three interpolation nodes, ; the latter principal value 

integrals have been computed numerically and the orthogonal 

polynomials are calculated directly as 
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  (1.49) 

 

 

where , . 

To find the free parameter  of the auxiliary function 

 

 

 

 

(1.50) 

 

we make use of the Shannon entropy [31], 

 

 

 

(1.51) 

 

maximization procedure [32], where the density  is reconstructed 

in the above described algorithm and represents the imaginary part 

(divided by ) of the model function obtained in the Schur-algorithm 

procedure. The density  has no real poles and is positive over the 
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whole real axis, hence it is quite easy to solve the maximization procedure 

equation: . 

To check the quality of the reconstruction technique proposed 

above, we carry out an extensive study of the present approach with 

application to the simulation data of [9]. In particular, we apply the 

Nevanlinna theorem to the OCP dynamic structure factor (DSF), , 

which is expressed in terms of the Nevanlinna parameter function , 

reconstructed by the above algorithm, as 

 

 
(1.52) 

 

Here 

 

 

 

(1.53) 

 

stands for the static structure factor. Notice that with the space dispersion 

taken into account, the moments, 
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(1.54) 

 

and the frequencies ,  have 

been calculated directly from the numerical data on the dynamic structure 

factor [9]. The latter is an even function of frequency and the moments 

 and  simply vanish. 

The numerical results on the dynamic structure factor have been 

compared to the simulation data of [9] and are summarized in Figures 1.1-

1.5. In all figures the squares correspond to the data of [9] with  being 

the plasma frequency,   and  is a value of wave number. In the 

figures we observe good agreement between the data of the numerical 

experiments and the calculations performed in the dissertation by the 

method of moments with local constrains. And we see that the maximum 

shifts to higher frequencies with increasing wave number (Figures 1.1 and 

1.2).  
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Figure 1.1 – The OCP normalized dynamic structure factor in comparison 

with the simulation data of [9] (boxes) at  = 0.993 and  = 0.6187. 
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Figure 1.2 – The OCP normalized dynamic structure factor in comparison 

with the simulation data of [9] (boxes) at  = 1 and  = 0.49109. 
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Figure 1.3 – The OCP normalized dynamic structure factor in comparison 

with the simulation data of [9] (boxes) at  = 2 and  = 0.60145. 
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Figure 1.4 – The OCP normalized dynamic structure factor in comparison 

with the simulation data of [9] (boxes) at  = 4 and  = 0.6945. 
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Figure 1.5 – The OCP normalized dynamic structure factor in comparison 

with the simulation data of [9] (boxes) at  = 8 and  = 1.389. 
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1.5 Spectrum and decrement of damping 

To study the characteristics of the plasmon mode we use the data 

for the Nevanlinna parameter function ( ; )z k  to solve the dispersion 

equation 

 

 
 (1.55) 

 

If the parameter function  vanishes, the dispersion reduces 

to the frequency . These results are presented in Figures 1.6-1.10 

together with our data on the frequency  and the interpolation 

dispersion relation of [2]. It is seen how the unsystematic behavior of the 

fourth moment is corrected by the present approach to obtain a very 

satisfactory agreement with the simulation data. Finally, we mention that 

the short-time asymptotic behavior of the dynamic structure factor is 

qualitatively quite similar to that obtained in [9] where the recurrence 

relation method was used. Certainly, the  asymptotic behavior of the 

DSF observed in [9] follows directly from (1.52) as long as the imaginary 

part of the Nevanlinna parameter function  is a positive constant. 

The solution of the dispersion equation (1.53) produces also the 

decrement of  damping of the plasmon mode and the results are displayed 

in Figure 1.11.  

We can conclude that the algorithm proposed gives a quantitative 

agreement between the simulation data on the plasma dynamic 

characteristics and their non-rational counterparts reconstructed by a few 
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integral characteristics, i.e., the power moments together with the local 

constraints. 
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represent the positions of the maxima of the 

DSF 

stand for the solutions of the dispersion 

equation (1.55)  

correspond to  

calculated by the interpolation formulas of 

[33]  

 

 

Figure 1.6 – The plasmon dispersion relation, i.e., the real part of the 

solution of the dispersion equation (1.55) vs.  at  = 0.993. 
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represent the positions of the maxima of the 

DSF 

stand for the solutions of the dispersion 

equation (1.55)  

correspond to  

calculated by the interpolation formulas of 

[33]  

 

 

Figure 1.7 – The plasmon dispersion relation, i.e., the real part of the 

solution of the dispersion equation (1.55) vs.  at  = 1. 
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represent the positions of the maxima of the 

DSF 

stand for the solutions of the dispersion 

equation (1.55)  

correspond to  

calculated by the interpolation formulas of 

[33]  

 

 

Figure 1.8 – The plasmon dispersion relation, i.e., the real part of the 

solution of the dispersion equation (1.55) vs.  at  = 2. 
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represent the positions of the maxima of the 

DSF 

stand for the solutions of the dispersion 

equation (1.55)  

correspond to  

calculated by the interpolation formulas of 

[33]  

 

 

Figure 1.9 – The plasmon dispersion relation, i.e., the real part of the 

solution of the dispersion equation (1.55) vs.  at  = 4. 
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represent the positions of the maxima of the 

DSF 

stand for the solutions of the dispersion 

equation (1.55)  

correspond to  

calculated by the interpolation formulas of 

[33]  

 

 

Figure 1.10 – The plasmon dispersion relation, i.e., the real part of the 

solution of the dispersion equation (1.55) vs.  at  = 8. 
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Figure 1.11 – The plasmon mode damping decrement, i.e., the imaginary 

part of the solution of the dispersion equation (1.55) vs.  for  = 0.5 

(squares),  = 1.0 (triangles),  = 2.0 (circles),  = 4.0 (diamonds), and  = 

8.0 (rectangles). 

 

 

Notice that alternative approaches like the QLCA or the continued-

fraction method do not predict the damping of the plasmon modes.  
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2 APPLICATION OF THE CLASSICAL METHOD OF MOMENTS  

TO THE INVESTIGATION OF DYNAMICAL PROPERTIES OF  

A PHYSICAL SYSTEM 

 

2.1 Nevanlinna parameter function 

In contrast to one component plasma, a two-component plasma is 

described by two parameters: the dimensionless coupling parameter 

mentioned above and the dimensionless density parameter, 

 

 

 
(2.1) 

 

where  is the Bohr radius. 

The Deutsch pseudopotential is taken as an interaction potential, 

which is finite at small interparticle distances because of the diffraction 

effects and coincides with the Coulomb potential at large distances,  

 

 

 
(2.2) 
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where  is the reduced mass of an a-b pair,  designates the species a 

mass, and   is the Planck constant. The fact that the potentials (2.2) 

remain finite as , is a consequence of the uncertainty principle and 

prevents the Coulomb collapse. In the temperature range of interest 

, with  being the “ion-sphere” radius. Thus the effective ion-ion 

interaction is virtually identical to the bare Coulomb one at all separations.  

 

Static correlation functions that are used to compute the dynamic 

characteristics of two-component plasmas are calculated by the method 

of hypernetted chain equations [34]. Precisely, the pair correlation 

function,  

 

  (2.3) 

 

can be derived from the direct correlation function  by Ornstein-

Zernicke relation [34], 

 

 

 
(2.4) 
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On the other hand, the radial distribution function is 

 

  (2.5) 

 

Equations (2.3) – (2.5) form a closed loop set of equations and can 

be solved numerically to required precision. 

Below the scheme is presented for calculation of dynamic structure 

factor on the basis of the method of moments. The power moments are 

 

 

 
(2.6) 

 

 
 (2.7) 

 

 
 (2.8) 

 

Notice that the moment  is expressed, by virtue of the FDT, in 

terms of the static structure factors, the second moment is actually the -

sum rule, and does not depend on interactions in the system. The fourth 

moment contains various contributions:  
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  (2.9) 

 

The first contribution proceeds from the kinetic term of the system 

Hamiltonian. In a classical limit it coincides with the Vlasov term in the 

dispersion equation: 

 

 

 
(2.10) 

 

In our case it has the following form [35]: 

 

 

 
(2.11) 

 

including both thermal and quantal contributions. 

The last two terms in the fourth moment follow from contributions 

that are responsible for interaction in the system Hamiltonian and, 

therefore, depend on the interaction potential used,  
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(2.12) 

 

 

 

(2.13) 

 

where 

 

 

 

 

(2.14) 

 

 

Consider the following characteristic frequencies,  

 

 

 

(2.15) 

 

 

 

(2.16) 
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These frequencies were estimated by the method of hypernetted chain 

equations.  

To specify the Nevanlinna parameter function and, hence, 

the non-canonical solution given by the Nevanlinna formula for the IDF,  

 

 

 
(2.17) 

 

we have to reconsider the details of energy absorption in the system 

without violating the sum rules. 

Precisely, we might try to satisfy the well-known Perel'-Eliashberg 

classical asymptotic relation for the imaginary part of the dielectric 

function. The latter result can be summarized in the following way. 

In a completely ionized plasma for , the microscopic 

acts of the electromagnetic field energy absorption become the processes 

inverse with respect to the bremsstrahlung during pair collisions of 

charged particles. 

As it was shown by L. Ginzburg [36], this circumstance permits to 

use the detailed equilibrium principle to express the imaginary part of the 

dielectric function,  of a completely ionized plasma in terms of 

the bremsstrahlung cross section and leads to the following asymptotic 

form of  in a completely ionized (for simplicity, hydrogen-like) 
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plasma obtained by Perel' and Eliashberg in [21] and amended later in [37, 

38]: 

 

 

 
(2.18) 

   

 

where 

 

 

 
(2.19) 

   

 

This result also implies that higher even order frequency moments, 

, , diverge. 

To take into account all convergent sum rules (power frequency 

moments) and the exact asymptotic relation [21] we apply the Nevanlinna 

formula with the following model expression for the Nevanlinna 

parameter function on the real axis [39]: 

 



 
52 

 

 

 

 

(2.20) 

 

where  

 

 

 
(2.21) 

 

2.2 Dynamic structure factors 

 

 Using the Nevanlinna parameter function  of (2.20), one can 

calculate the dynamic structure factor, 

 

 

    

(2.22) 

 

with . 

 The accuracy of obtained results is checked by the sum rules, 
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(2.23) 

 

Particularly, for  = 0, 

 

 

 

(2.24) 

 

The results on the charge-charge dynamic structure factor are 

presented in Figures 2.1-2.4 below. In the figures we can see that the 

obtained results for dynamic structure factors, that were calculated via 

the static values from NHC scheme and using the method of moments 

with dynamic Nevanlinna function, agree with corresponding MD data of 

[40] quantitatively and in figure 2.2 qualitatively.  It is also seen that the 

DSF calculated using classical expression for kinetic term (2.10) agrees 

better with the experimental data than when the quantal case (2.11) is 

used. And finally we observe that the asymptotic tales of the modeled 

points of [40] cross the calculated ones but in some case they do not, as in 

figure 2.2. 
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Classical case (2.10) with =0.3898 

Classical case with =0.7795 

Quantal case (2.11) with =0.3898 

Quantal case with =0.7795 

Results of Ref.[40] with =0.3898 

Results of Ref.[40] with =0.7795 

 

 

Figure 2.1 – Normalized charge-charge dynamic structure factor vs. 

frequency at Г = 0.5 and   = 0.4. 
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Classical case (2.10) with =0.3898 

Classical case with =0.7795 

Quantal case (2.11) with =0.3898 

Quantal case with =0.7795 

Results of Ref.[40] with =0.3898 

Results of Ref.[40] with =0.7795 

 

 

Figure 2.2 – Normalized charge-charge dynamic structure factor vs. 

frequency at Г = 1  and  = 0.2. 
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Classical case (2.10) with =0.3898 

Classical case with =0.7795 

Quantal case (2.11) with =0.3898 

Quantal case with =0.7795 

Results of Ref.[40] with =0.3898 

Results of Ref.[40] with =0.7795 

 

 

Figure 2.3 – Normalized charge-charge dynamic structure factor vs. 

frequency at Г = 1 and  = 0.8. 
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Classical case (2.10) with =0.3898 

Classical case with =0.7795 

Quantal case (2.11) with =0.3898 

Quantal case with =0.7795 

Results of Ref.[40] with =0.3898 

Results of Ref.[40] with =0.7795 

 

 

Figure 2.4 – Normalized charge-charge dynamic structure factor vs. 

frequency at Г = 2 and  = 0.4. 
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3 SOME ADDITIONAL RESULTS 

 

3.1 Non-monotonic behavior of the dynamic conductivity of 

hydrogen and aluminum plasmas 

External conductivity [41] 

To characterize the optical properties of plasmas one should, in the 

first place, distinguish the long wavelength limiting values  of the 

external  and internal  conductivities, the former 

being a genuine response (Nevanlinna) function describing the system 

reaction to the external, not the Maxwellian harmonic field [19, 37, 38].  

If a certain number of frequency power moments of the real part of 

the external conductivity is known, then the Riesz-Herglotz representation 

[5, 42] can be generalized in such a way that  

becomes a fractional-linear transformation of the Cauchy-type integrals. 

This new representation is obtained here on the basis of the Nevanlinna 

formula of the classical theory of moments. 

Consider the even function [38], 

 

  (3.1) 

 

Additional information on this function is contained in the 

“negative” sum rule *19+, 
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(3.2) 

 

and the second 

 

 

 

(3.3) 

 

 

and the fourth order 

 

 

 

(3.4) 

 

frequency moments,  being the plasma frequency; the 

odd order moments are all equal to zero, higher even order moments 

diverge. An explicit expression for the frequency  is related to static 

correlations in a plasma, and is model-dependent [37, 38, 42]. In 

particular, it was shown [37] that in a completely ionized hydrogen-like 
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plasma, the moment (3.4) depends on the probability to encounter an 

electron and an ion at the same spatial point: 

 

 

 
(3.5) 

 

The parameter  was first evaluated in the modified RPA in [37], this 

result was recently generalized in [43]: 

 

 

 
(3.6) 

 

The truncated Hamburger moment problem [18] consists in the 

construction of a Nevanlinna class function, i.e., a function with a positive 

imaginary part which is analytic in the closed upper half-plane , 

by its first 2  +1  power moments. In our case .  

Introduce the set of orthonormalized polynomials , 

=0,1,…,2 , over the measure :  

 

 

 

(3.7) 
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These polynomials and their conjugate counterparts, 

 

 

 

(3.8) 

 

are determined in the process of the Gramm-Schmidt orthogonalization 

procedure of the first five elements of the canonical basis . 

Let  be the set of all non-decreasing functions of bounded 

variation , such that 

 

 

 

(3.9) 

 

The Nevanlinna theorem [44], see also [45], states that there exists a one-

to-one correspondence between the set  of all solutions of the 

moment problem and the Nevanlinna functions ,  with the 

following additional property: 

 

 

 
(3.10) 
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the Riesz-Herglotz representation for these functions  is simplified 

into 

 

 

 

(3.11) 

 

with   being a non-decreasing function such that 

 

 

 

(3.12) 

 

This correspondence is established by the Nevanlinna formula, 

 

 

 

(3.13) 

 

In particular, among the functions (3.11) there is a unique function 

 which, for a given , would yield: 
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(3.14) 

 

Hence, for the external electrical conductivity (at  = 0) we have: 

 

 

 

(3.15) 

 

In what follows, instead of the orthonormalized polynomials   and 

  it turns out more convenient to use the polynomials    and   

by normalizing their higher order coefficients to unity or , respectively. 

Their employment in the Nevanlinna formula (3.15) is equivalent to the 

multiplication of an unknown parameter function  by a positive factor. 

These polynomials, 

 

 

 

  (3.16) 
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satisfy the Christoffel identity [5, 6], 

 

 

 
(3.17) 

 

their zeros are all real and alternate [5]. 

We have put in (3.16): 

 

 

 
(3.18) 

 

Thus (3.15) can be reduced to 

 

 

 
(3.19) 

 

The asymptotic expansion of (3.19) as  in the upper half-

plane is determined by the moments, 

 

 

 
(3.20) 
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independently of the specific form of the Nevanlinna parameter function 

, though that of the l.h.s. of (3.14) is simply 

 

 

 

(3.21) 

 

Internal conductivity 

The internal and external conductivities are closely related by the 

expression 

 

 

 

(3.22) 

 

In particular, if  is given by formula (3.19), then 

 

 

 
(3.23) 
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Due to the causality principle and the parity of  [37], the 

function  is analytic in the upper closed half-plane . 

Provided the static conductivity, 

 

 ,  

 

is finite and 

 

 

 
(3.24) 

 

in the open upper half-plane . According to the Akhiezer theorem 

[6], this is equivalent to say that the non-negative, even function  

possesses two non-zero, convergent power moments [19, 37]: 

 

 , (3.25) 

 

 . (3.26) 

 

Monotonicity 
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Though the power moments are only integral characteristics of the 

system, knowledge of even a finite number of them can provide the 

possibility to make meaningful conclusions on the local properties of the 

response function in question.  

As an example, consider a non-monotonous behavior of the internal 

conductivity. Intervals of negative differential conductivity can be 

observed on the Ohm-second characteristics of dense plasmas both in 

computer simulations and theory.  

The stereotype opinion about a monotonous decrease of  

at  is based on the Drude-Lorentz approximation, 

 

 

 
(3.27) 

 

(with ) which is well justified for many metals up to the ionic 

excitation frequency.  

Suppose the static conductivity  and the values of the moments 

 and  are known. Then it is possible to prove the following general 

result with respect to the non-monotonicity of . 

Given the static conductivity  and the moment  and , if the 

real part of the system internal conductivity  is a monotonously 

decreasing function of frequency, then 
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(3.28) 

 

In classical plasmas with the Coulomb collapse, formally   

and inequality (3.28) is satisfied automatically. In a real hydrogen-like 

plasma, though, , and 

 

 

 
(3.29) 

 

Violation of (3.28) implies the non-monotonicity of the function 

. In liquid metals with high static conductivity (3.28) is satisfied. 

In highly ionized non-ideal plasmas the static electrical conductivity might 

be smaller than the plasma frequency, so that the inequality (3.29) might 

be violated, and then . demonstrates a non-monotonous behavior. 

 

Nevanlinna parameter function q 

In general, there is no immediate phenomenological method in sight 

to determine the Nevanlinna parameter function . The simplest is to 

put it equal to zero, i.e. . However, a direct relation between 

 and the conductivity or the dielectric function, permits to evaluate it 

in a somewhat more precise and physically interesting way. Presume that 

 with . In order to determine the value of this 
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positive parameter we can assume that  exists, together with the 

continuity of  and  at , to get 

 

  (3.30) 

 

In this case, the long wavelength limit of the internal conductivity is of the 

form: 

 

 

 
(3.31) 

 

Consider the properties of the long wavelength expression for the 

internal dynamic conductivity (3.31) on the real axis  [37]. In the 

first place, by definition and construction,  

 

 
 

(3.32) 

 

Secondly, if , the real part of (3.31) on the real axis, 
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(3.33) 

 

possesses two symmetric maxima shifted to 

 

 

 

(3.34) 

 

But if , (3.33) is a monotonous function similar to the real 

part of the Drude-Lorentz model conductivity.  

To take into account all convergent sum rules (power frequency 

moments) and the exact asymptotic relation (2.18), we can apply the 

Nevanlinna theorem with the following model expression for the 

Nevanlinna parameter function on the real axis: 

 

 

 
(3.35) 

 

with  

 

 
(3.36) 

Notice that 
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(3.37) 

so that 

 

 

 

(3.38) 

Observe that this expression for the Nevanlinna parameter function, as 

above, also implies that higher even order frequency moments, , 

, diverge. 

The application of this model extension for the Nevanlinna function 

was discussed for different systems in [46] and [4]. For further study of 

dynamic properties of cold plasmas in comparison with the simulation and 

experimental data, see [45]. 

 

Dynamic conductivity of model two-component plasmas 

Two-component plasmas (TCPs) constitute the simplest model that 

simulates the physical properties of real plasmas. In particular, dense 

hydrogen plasmas  were studied by molecular dynamics (MD) 

simulations of Hansen and McDonald [11]. Whereas in MD simulations 

charged particles are assumed to evolve according to the classical 

mechanics laws of motion, TCP statistical properties unravel its genuine 

quantum mechanical nature. In particular, the effects of quantum 

delocalization preventing the system collapse are accounted for by the 
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employment of the Deutsch pair effective potential [47] which mimics 

quantum-diffraction effects, 

 

 

 
(3.39) 

 

 

 

(3.40) 

 

where  is the reduced mass of an a-b pair and the exchange or 

symmetry contribution is excluded. Unlike the bare Coulomb potential, 

potential (3.39) remains finite at the origin , as a consequence of the 

uncertainty principle. Once more, in the temperature range of interest 

 ,  being the “ion-sphere” radius; hence the effective ion-ion 

interaction is virtually identical to the bare Coulomb at all separations.  

The difference of the effective potential (3.39) from the bare 

Coulomb potential manifests itself in the value of the moment (3.26), 

which takes the form: 

 

 

 
(3.41) 

 

with 
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(3.42) 

 

The model partial static structure factor  was computed in 

[11], and more recently in [48], using the hypernetted-chain (HNC) 

approximation with the Deutsch effective potential. In Table we present 

our data on the interaction parameter  (Eq. (3.42)) as obtained in [48]. 

For the sake of completeness, in the same Table we reproduce the values 

(taken from [11]) of the relaxation time , which determines the plasma 

static conductivity. 

 

Table 1 The static characteristics of the model plasma under the 

conditions of [11]: the relaxation time (Table III of [11]) and the parameter 

 calculated in the HNC approximation (see [48]). 

 

=0.5, =0.4  =0.5, =1  =2, =1 

 =45.239  =27.018  =13.823 

=0.080265 =0.202421 =0.137148 

 =12.817  

=12.156 

 

=5.1191 

 

Upon specification of the characteristic frequency  and the static 

conductivity, we need to choose the form of the Nevanlinna parameter 
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function which closes the algorithm of calculation of the system dynamic 

conductivity up. For all three thermodynamic conditions studied here, we 

observe a very similar behavior of the conductivity for any of the two 

model functions  derived previously, i.e. either expression (3.35) or its 

static value. In fact, both can hardly be distinguished here from the known 

Drude-Lorentz model, 

 

 

 
(3.43) 

 

which indicates that the model plasma studied in [11] is a highly 

conducting non-ideal system. This metallic character can be further 

confirmed by checking that the condition (3.28) is very well satisfied for 

the values in Table 1. Similar results were obtained recently for real 

systems in [49].  

The following Fig. 3.1 shows the dynamic conductivity (3.22) with q  

given by (3.35) compared to the Drude-Lorentz model (3.43). It is 

important to note that, although the latter seems to be applicable here, 

the dynamic conductivity model (3.22) is a generalization of the former, as 

it possesses a convergent second order power moment (3.26), which 

shows up in its asymptotic behavior. This additional convergent second 

order power moment is related to the satisfaction of the known third 

order frequency sum rule for the structure factor, which has been widely 

acknowledged to apply in completely ionized plasmas.  
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Figure 3.1 Real and imaginary parts of the internal dynamic conductivity 

for a TCP at the thermodynamic conditions simulated in [11]: (a) and (b)  

=0.5, =0.4; (c) and (d)  =0.5, =1; (e) and (f)  =2, =1. Three different 

models are used for : Drude-Lorentz formula (3.43) (solid line), two-

moment model (3.23) with  given by (3.35) (dashed line), and its static 

value (dash-dot). The relevant parameters are taken from Table 1. 

 

a) b) 

d) c) 

e) f) 
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Dynamic conductivity of aluminum plasmas 

More recently aluminum plasmas were studied by means of 

Quantum Molecular Dynamics simulations (QMD) in Ref. [45]. This 

simulation technique uses Density Functional Theory (DFT) to treat the 

electronic subsystem through the package VASP. The ionic subsystem is 

simulated by means of pseudopotential consistent with an assumed 

ionization model. Thus, the Kohn-Sham electronic wave functions and 

eigenenergies are computed for some fixed ionic configuration. Those 

results are then used as inputs for the Kubo-Greenwood formula, instead 

of the many-electron eigenstates [50]. This makes it possible to deal with 

partially ionized plasmas in an approximate manner.  

Under those conditions, our two-moment model (3.23) is still 

applicable, but some comments are in order. First, as the -sum rule is 

extended to the total electronic density, we cannot differentiate between 

electrons which are ’free’ or ’bound’, according to what it is obtained 

through this numerical approach.  Second, we extend the validity of the 

existence of a third-frequency sum rule, although its value obviously 

depends on the properties of the system to be simulated. Then, for the 

reconstruction of the spectra obtained in Ref. [45], the values of the 

moments  and  are to be calculated from the computed spectra. In 

particular, we must understand here that the plasma frequency computed 

from the simulations is an effective one, accounting for the total 

electronic density.  
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We report in Table 2 the values of the quantity  for 

some of the thermodynamic conditions simulated in [51]. As we have 

seen, the monotonicity of  implies (3.28) that this quantity should 

not be smaller than 1. We can identify that this inequality is violated when 

the density is 0.5 , what allows us to predict the departure from 

the Drude-Lorentz model (3.43).  

 

Table 2 Values of the quantity  for aluminum plasmas at 

different thermodynamic conditions, as obtained in [51] through the QMD 

simulations 

 

 1.4  1.0  0.5  

10 kК 3.88999 1.81524 0.27307 

25 kК 3.12871 2.14840 0.63521 

 

 We can indeed confirm this prediction in Figure 3.2, where some of 

the simulation results of Ref. [51] for the dynamic conductivity are 

plotted. It is clear how the plasma goes from a highly conducting metallic 

phase at high densities, to the non-conducting one at lower densities.  

In Figure 3.2 we also show our results on the dynamic conductivity 

obtained with  as given by (3.31), which yields the best 

approximation to the simulation data here. We can clearly identify the 

maxima shown by this model at the values given by (3.34), which appear 
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for . This is applicable for the cases with the density equal to 1.0 

 and 0.5 . 

Another parameterized model [52] for the dynamic conductivity 

was employed in [51] to describe these simulation results. The expression 

in [52] accounts for memory effects in the current-current autocorrelation 

function in a simplified manner. In fact, our model parameter Nevanlinna 

function  can be seen to play exactly this role [53]. Beyond the 

suitability of the different models to fit the simulation spectra at the given 

interval, there are important mathematical differences between our 

expression and the one of Ref. [52]. More particularly, the latter does not 

satisfy the convergent power moment  in (4.26), just as the Drude-

Lorentz model does, and, therefore, cannot lead to the correct asymptotic 

behavior in (3.24). 
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Figure 3.2 Real part of the internal dynamic conductivity for aluminum 

plasmas as simulated in Ref. [51]: (a) 10 kK, 1.4 ; (b) 10 kK, 1.0 

; (c) 10 kK, 0.5 ; (d) 25 kK, 1.4 ; (e) 25 kK, 1.0 

; (f) 25 kK, 0.5 . 

  

a) b) 

d) c) 

e) f) 



 
80 

 

3.2 Comparison with the classical method of continuous fractions 

There is another good approximation for calculation of dynamic 

properties of dense plasmas which is called the method of continued 

fractions [53-55]. The approach is based on recurrence relations within 

the dielectric response theory. One of the main quantities of this theory is 

a response function. Taking into account the dynamic local field correction 

, it has the form 

  

 

 
(3.44) 

 

where 

 

 

 
(3.45) 

 

is the response function for the system of non-interacting particles, i.e., in 

the random-phase approximation. In the expression for , 

 

(3.46) 
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In equation (3.46) the notation   is used. 

According to [55] let us present here the essence of the method of 

continuous fractions. Let  be a dynamical variable whose time evolution 

is required to understand the dynamics of a system under consideration. 

The time evolution  may be expressed in terms of orthogonal bases 

 spanning, a -dimensional dynamical Hilbert 

space, i.e.,  

 

 

(3.47) 

The inner product of this Hilbert space is defined as , 

where  and the asterisk mean the classical ensemble average and 

complex conjugate, respectively, and ,  are elements of the Hilbert 

space.  

 If we set  and apply the orthogonalization process, the 

following recurrence relation [53, 55] for  can be obtained: 

  (3.48) 

 

where , , and ,  is the 

Hamiltonian. Here   represents the Poisson bracket. Another 

recurrence relation [53] for the coefficients  of equation (3.45) can 

be obtained by substituting (3.48) into (3.45), i.e., 
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  (3.49) 

 

where . The Laplace transform of equation (3.49) is written as 

 

  (3.50) 

 

  (3.51) 

 

 is the normalized Laplace 

transformed relaxation function of the dynamical variable А. The 

relaxation function appears here as an autocorrelation function. By 

choosing the density fluctuation  as a dynamical 

variable, one can relate  to the density-response function such that 

 

 
(3.52) 

where . The frequency-dependent response function is 

obtained by setting . Dividing equations (3.50) and (3.51) by 

 and manipulating a little we have a continued fraction expression 

for  as:  

 

 
(3.53) 

where 
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… 

Since  contains all ’s except  in the same manner as , it can 

be understood that  is the relaxation function of the random force 

. Similarly, we get the same structure of continued fraction for , 

, etc. starting from , , etc. respectively. Therefore one 

understands that they are simply relaxation functions of higher-order 

random forces , , and so on.  

While studying a OCP the ’s are given by the frequency moments: 

 

 

 

Here  stands for the second frequency moment.  

In the case of investigation of DSF the frequency moments are  

, that have the same meaning as in (2.23). 



 
84 

 

CONCLUSIONS 
 

It has been shown in Section 1 how the unsystematic behavior of 

the fourth moment is corrected by the present approach to obtain a very 

satisfactory agreement with the simulation data. Finally, we mention that 

the short-time asymptotic behavior of the dynamic structure factor is 

qualitatively quite similar to that obtained in [9] where the recurrent 

relation method was used. Certainly, the 
6
 asymptotic behavior of the 

DSF observed in [9] follows directly from (1.52) as long as the imaginary 

part of the Nevanlinna parameter function ( , )k  is a positive constant. 

We can conclude that the algorithm proposed within the method of 

moments with local constraints gives a quantitative agreement between 

the simulation data on the plasma dynamic characteristics and their non-

rational counterparts reconstructed by a few integral characteristics, i.e., 

the power moments and the local constraints.  

The agreement between our results on the dynamic structure 

factors of two-component plasmas and the corresponding MD results of 

Ref. [40] described in Section2 is qualitatively good. The introduction of 

the non-constant Nevanlinna parameter function (2.17), accounting for 

the exact high-frequency asymptotic expansion of the system dielectric 

function, permits to obtain a better agreement with respect to the 

position of the plasmon peaks, and also leads to an adequate broadening 

(damping) of the plasmon mode. 

It has been shown in Section 3 that, at least, under the 

thermodynamic conditions considered above, the Drude-Lorentz model 

for the dynamic conductivity is qualitatively applicable. These results are 
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in agreement with existing experimental and simulation data. 

Nevertheless, departures from the Drude-Lorentz model have also been 

studied and the results have been compared to recent simulation data 

with a semi-quantitative agreement being achieved. 
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