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sota la direcció d’Àngel Calsina Ballesta.
Bellaterra, maig de 2018.
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Abstract

In this thesis we propose a mathematical framework to analyse the dynamics of microorganisms
growing within the guts of animals. Such a framework consists of a hyperbolic system of PDEs
with non-linear reaction terms and certain boundary conditions that link the microbes in the
environment with those inside the hosts.

In chapter 1 we solve the Abstract Cauchy Problem associated to the model by considering
the semilinear formulation on a certain Banach space X. The semilinear structure of the system
obtained in this way is special because, on the one hand, the evolution law can be expressed as
the sum of a linear unbounded operator and a non-linear Lipschitz function (which is typical)
but, on the other hand, the non-linear perturbation takes values not in X but on a larger space
Y which is related to X (which is atypical). In order to deal with this situation we use the
theory of dual semigroups. Stability results around steady states are also given when the non-
linear perturbation is Fréchet differentiable. These results are based on two propositions: one
relating the local dynamics of the non-linear semiflow with the linearised semigroup around the
equilibrium, and a second relating the dynamical properties of the linearised semigroup with
the spectral values of its generator. The later is proven by showing that the Spectral Mapping
Theorem always applies to the semigroups one obtains when the semiflow is linearised.

In chapter 2 an autonomous semi-linear hyperbolic pde system for the proliferation of bacte-
ria within a heterogeneous population of animals is presented and analysed. It is assumed that
bacteria grow inside the intestines and that they can be either attached to the epithelial wall
or as free particles in the lumen. A condition involving ecological parameters is given, which
can be used to decide the existence of endemic equilibria as well as local stability properties
of the non-endemic one. Some implications on phage therapy are addressed. In chapter 3 the
basic reproduction number associated to the bacterial population, i.e. the expected number
of daughter cells per bacterium, is given explicitly in terms of biological parameters. In addi-
tion, an alternative quantity is introduced based on the number of bacteria produced within
the intestine by one bacterium originally in the external media. The latter depends on the
parameters in a simpler way and provides more biological insight than the standard reproduc-
tion number, allowing the design of experimental procedures. Both quantities coincide and are
equal to one at the extinction threshold, below which the bacterial population becomes extinct.
Optimal values of both reproduction numbers are derived assuming parameter trade-offs.
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Introduction

The second half of the 17th century saw a curious man entering for the first time into
the bacterial world. He was Antoine van Leeuwenhoek (1632-1723) and the scene took place
in Delft. Like a child with a new toy, he used a microscope designed by himself to observe
nature as never before. In his journey to the universe of the tiny things, Animalcules (now
microorganisms) were set to become the biggest surprise. In a letter sent to the Royal Society
of London on 9 October 1676 [83], he described the living beings inhabiting various kinds of
water and plant based infusions. In one of his observations he wrote:

For me this was among all the marvels that I have discovered in nature the most mar-
vellous of all, and I must say that, for my part, no more pleasant sight has yet met my
eye than this of so many thousands of living creatures in one small drop of water, all
huddling and moving, but each creature having its own motion. And even if I said that
there were a hundred thousand animalcules in one drop of water which I took from the
surface of the water, I should not err. Others, seeing this, would estimate the number at
quite ten times more, of which I have instances, but I give the lowest numbers.

The excitement behind these words was probably not due to the simple view of microbes:
Leeuwenhoek was amazed to see that microscopic life could be so small, so diverse and so
abundant. Today, more than three centuries after the first encounter, microbiologists are still
astonished by the domain of bacteria.

Bacteria were the first forms of life on Earth, evolving from organic matter 4 billions years
ago. Since then, they have had time to adapt to almost every niche in the planet, even in
extreme conditions such as hot springs or ice. Because their metabolic repertoire has diverged
in many different ways, the whole ensemble of bacteria has become a huge reservoir of genes.
And what is more, these genes are not necessarily linked to a specific lineage of bacteria but,
on the contrary, they can be transmitted to other individuals (either directly through bacterial
conjugation or indirectly via viral particles). That is, bacterial genes move not only vertically
through generations, but also horizontally within the population. These two properties, genetic
diversity and genetic traffic, turn bacterial communities into complex entities which are highly
adaptable to changing environments. Whereas each cell is specialized in the synthesis of a few
metabolites or in the neutralization of a particular toxin, the community creates a medium
rich in nutrients and produces shields against damaging substances.

It could be said that bacterial communities are plastic in the sense that the proportion of
their constituents can be readjusted to exploit the environment more efficiently. Multicellular
organisms, on the other side, are more rigid because the relation between their constituents is
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genetically determined during development. This difference may explain why so many animals
and plants live in close association with particular bacterial communities [59, 71, 74, 61]. These
communities belong to what is known as the microbiome, defined as the microbial ensemble
associated to a given host. Somehow, the microbiome of multicellular organisms can be thought
of as an organ capable of undergoing fast reorganizations in response to environmental clues.
In this sense the microbiome is far from being nothing more than unspecific bacteria acquired
by chance without any functional link with the host. This possibility, although plausible,
would not be evolutionarily stable. Indeed, as soon as the microbiome could respond to signals
from the host and vice versa, selection for favourable partnerships would take place. This
view is supported by many examples in which the microbiome is known to have multiple
functions on the host. The nitrogen fixing bacteria that grow symbiotically in the roots of
leguminoses are paradigmatic. The metabolic role of microbiomes in animals is also well known.
Gut bacteria produce vitamins and enhance nutrient intake. In ruminants they are vital to
digest the grass they eat. Microbiomes also tend to act as defensive barriers. By adhering
to epithelial surfaces they may create a protective biofilm that prevents the colonization by
harmful microbes. In addition, such biofilms may induce changes in the underlying epithelium,
for example by regulating cell division or stimulating the immune system.

In the last decades scientists have shown that microbiomes consist of many different classes
of bacteria. The human microbiome is particularly well documented for obvious reasons [23, 69],
although most of its properties are presumably common to other hosts. The approximately 1013

bacteria carried by each human being can be classified in hundreds of different “species level”
phylotypes (based on the divergence degree of a highly conserved RNA sequence). The amount
of non-redundant genes stored in each of these bacterial communities is also huge: around half
million, more than 10 times the number of human genes. Even more interesting is the high
diversity in both bacterial composition and genes across healthy individuals. It seems that
samples from the same person obtained at different times are more similar to one another than
those obtained from different individuals. However, by focusing on functional diversity rather
than genetic diversity, it has been shown that the metabolic profile of microbiomes is much
more conserved between individuals. This suggests that multiple bacterial consortia capable
of performing equivalent processes exist. Moreover, these consortia are relatively stable along
time, although environmental disruptors such as antibiotic usage or strong dietary changes
could drive them towards other stable configurations [56].

Since the microbiome of any individual is both unique and characterizable, the classifica-
tion of microbiomes has become an important topic in current research. A special attention
is given to those microbiomes associated with some kinds of pathology, such as chronic infec-
tions or inflammatory reactions. Answering how these dysfunctional consortia arise and, more
importantly, how they can be modified into healthier configurations would have clear impli-
cations on the way doctors treat these patients. A recent trend in this direction consists in
transplanting the fecal microbiome from a healthy donor into the gut of a receptor affected by
some recurrent infection. This technique has been proved to be surprisingly effective in cases
in which the only option was the continued use of antibiotics [5]. In addition to clinical issues,
understanding the dynamics of microbiomes could also be useful in the design of new strategies
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to control plagues and vector-borne diseases. Beyond human oriented applications, the role of
microbiomes in the structure of ecosystems is important by itself and deserves to be considered
carefully. In this line, an increasing number of studies are focusing on the relation between
the behaviour of hosts and their microbiome, and it seems that some of the behaviours driven
by the microbiome could lead to major changes in the food web. For example, it has been
observed that mating choice in flies is affected by the diet through the microbiome [31]. The
flies of those experiments were more likely to mate between them than the flies reared with dif-
ferent diets, and such preferences disappeared when the flies were treated with antibiotics [73].
From the evolutionary point of view, this could be interpreted as if the microbiome favoured
the specialization of the flies to different nutritional sources. Somehow, the microbiome would
be promoting a speciation event in which a generalist population of flies splits into two new
specialized species.

Most studies classify the diversity of microbiomes from an empiric perspective, that is, by
means of data and statistical tools. This approach is highly powerful in identifying patterns
in real systems. However, the overwhelming amount of variables involved in these assays
makes it difficult to focus on mechanistic processes set at the level of bacteria. At this point
mathematical modelling comes into play. In order to complement available data, appropriate
models can be used to get insights on how a certain bacterial property affects the microbiome
(which, in turn, has an impact on the host population). In this thesis we follow this approach
and propose a mathematical framework to analyse the dynamics of microorganisms growing
within the guts of animals. Instead of going directly to our model and discussing its pros and
cons, we first give a brief detour in order to review how mathematics started to be used in the
study of populations.

Modelling populations

Not many years before Leeuwenhoek’s death, Leonard Euler was born in Basel. Among his
deep and broad contributions to mathematics, a relatively mundane work about the growth of
human populations can be found [35]. Through a series of practical questions Euler described
some relations between demographic variables in a population which grows geometrically and
whose age distribution is stationary. He showed, for example, how to recover the total popu-
lation and the rate at which it is increasing using the number of births, the number of deaths
and the probability to survive until each year of life. This work was published in 1760 and it
is important not only for being one of the first studies in which mathematics was applied to
model populations [3]: the dynamical system used by Euler is specially interesting because it
considers a structured population, that is, a population whose individuals are classified accord-
ing to some structural variable. Indeed, the state of the system in Euler’s model was not the
total population but the distribution of individuals according to their age.

Euler already knew that the assumption on the geometric growth of populations was only
reasonable if ecological limitations were negligible, and presumably this idea was commonly
accepted among demographers of that time. Its popularization, however, occurred in 1798 due
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to the economical controversies raised by Thomas Robert Malthus in his book An essay on the
Principle of Population [58]. This is why now it is said that a population is experiencing a
Malthusian growth if its individuals do not compete between them, which in some sense means
that they behave as independent agents. Mathematically, the Malthusian growth is the same
as the geometric growth given by

pt+1 = (1 + r)pt (0.0.1)

if the population is modelled at discrete times, and the same as the exponential growth given
by

p′(t) = rp(t) (0.0.2)

if the population is modelled continuously in time. In both cases the parameter r is the growth
rate of the population, known also as the Malthusian parameter. The description given by
Malthus on the population growth was purely verbal, and in this sense neither equation (0.0.1)
nor equation (0.0.2) should be attributed to him. Nevertheless, the influence his book had
on academia arrived to Pierre François Verhulst who, in 1838, formulated equation (0.0.2)
mathematically and generalised it into

p′(t) = rp(t)− ϕ(p(t)) (0.0.3)

in order to take into account the effects of resources scarcity [84]. Such effects were represented
by means of function ϕ, whose precise expression depended on the population under study and
in general was not known. With this equation Verhulst introduced the first family of non-linear
population models. Among other particular cases, he considered what, in modern notation,
would be written as ϕ(p) = rp2/K, with K being the maximum number of individuals that
the environment can support, which results in the famous logistic equation

p′(t) = rp(t)

(
1− p(t)

K

)
. (0.0.4)

The model proposed by Euler was linear but structured. By contrast, the model of Ver-
hulst was unstructured but non-linear. It seems that a population model combining these two
properties was about to be formulated in the upcoming years. However, the spread of scientific
ideas was far from being perfect at that time. During the 19th century the logistic equation
was reintroduced independently by other authors. The age structured model that constituted
the basis of Euler’s paper had to wait until Alfred James Lotka reformulated it in 1907 [54, 55].
The population modelled by Lotka changed continuously in time, although the model was lin-
ear as the one of 1760. The non-linear version arrived many years later when, in 1974, Morton
Gurtin and Richard MacCamy fused the ideas of Lotka and Verhulst [41]. By that time, other
non-linear structured models had already been proposed. Instead of age, the structural vari-
able in these models was the spatial position of the individuals. One of the most important
examples is the Fisher-KPP equation, derived in 1937 independently by Ronald Fisher on one
side and Andrey Kolmogorov, Ivan Petrovsky and Nicola Piskunov on the other [37, 51]. The
equation takes the form

∂tp(x, t) = k ∂xxp(x, t) + f(p(x, t)) (0.0.5)
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with k being the diffusion coefficient and f being a function that gives the population growth
rate in the absence of diffusion. In fact, Fisher derived the equation to study how the frequency
of a favourable allele spreads in a population, which resulted in f(p) = mp(1−p) with m being
the relative fitness of the new allele with respect to the common one.

Whether non-linear models were structured by age, space or whatever variable of interest,
it can fairly be said that the mathematics to analyse them flourished during the last century.
These new mathematics were not directly inspired by structured populations; the motivation
behind them was more fundamental and was related to the way deterministic dynamical systems
were understood. Originally, dynamical systems were defined by means of evolution laws, that
is, differential equations of the form

p′(t) = f(p(t)) (0.0.6)

describing the velocity at which the state p of the system moves. The discipline took this path
because the derivation of physical models relies on what happens during small intervals of time:
the evolution law is the mathematical object one reaches when trying to model the motion of
the universe. Using the evolution law one can define the trajectory associated to a given initial
condition p(0) = p0 as the solution of{

p′(t) = f(p(t))
p(0) = p0

. (0.0.7)

This approach, however, raises some issues since it is not clear at all if system (0.0.7) has any
solution and, in case it does have one, if it is unique. Since the existence and uniqueness of
solutions are not guaranteed in general, the evolution law (0.0.6) is said to define a dynamical
system if the trajectory into the future associated to any initial condition exists and it is unique.
If, in addition, the trajectories are continuous in time and behave continuously with respect to
the initial conditions, then the dynamical system defined by (0.0.6) is said to be well posed. The
notion of continuity in the previous condition is related to the phase space of the system, which
is the normed space containing all the possible states of the physical system. The question
of whether a differential equation as (0.0.6) defines a well posed dynamical system in a phase
space P is known as the Abstract Cauchy Problem. As one should expect, the complexity of
this problem depends on the properties of f and P . Since the work of Picard and Lindelöf on
ordinary differential equations, it is known that, if the phase space P is a Banach space, then
the system is well posed if the function f : P → P is Lipschitz. Although this result is very
useful when the dimension of P is finite, the property of being Lipschitz is quite restrictive if
P has infinite dimension. Linear functions (or operators) such as those appearing in partial
differential equations are not even continuous from P to P and, in fact, they fail to be defined
on the whole space P . This obstacle required extending the classical theory built on finite
dimensional spaces. To this end, dynamical systems were studied directly from the point of
view of trajectories, thus skipping the problematic evolution law. More precisely, a well posed
dynamical system was defined as a function

T : [0,∞)× P → P (0.0.8)
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satisfying:

i. for each p0 ∈ P , there exists tp0 ∈ (0,∞] such that [0, tp0) × {p0} is the intersection of
[0,∞)× {p0} with the domain of T ,

ii. for all p0 ∈ P , the identity T (0, p0) = p0 holds,

iii. for all p0 ∈ P and t < tp0 , the semigroup property T (t, p0) = T (t − s, T (s, p0)) holds for
all s ∈ [0, t],

iv. the function T is separately continuous in its domain, i.e. T (·, p0) is continuous for all
p0 (continuity with respect time) and T (t, ·) is continuous for all t ≥ 0 (continuity with
respect initial conditions).

Because of items ii and iii, the function T is said to be a one-parameter semigroup or semiflow.
Such a new focus allowed to ask which properties the evolution laws associated to dynamical
systems must satisfy. In particular, when the semigroup T is linear with respect to the state
variable, then its associated evolution law is determined by a linear operator (i.e. f in (0.0.6) is
linear), although it is not necessarily continuous. The characterization of those linear operators
f defining a well posed system is one of the major achievements of the theory of linear semi-
groups, the result now being known as the Hille-Yosida Theorem. Whereas the linear theory of
dynamical systems is well understood, the theory to deal with general non-linear systems is still
incomplete. However, some work has been devoted to solving the Abstract Cauchy Problem
for different classes of functions f (see, for instance, the classical monographs of Pazy [68] and
Henry [44] for semilinear semigroups and Miyadera [65] for dissipative systems).

In the context of population dynamics, the phase space of the system is given by all the
possible configurations the population can have. In the model proposed by Verhulst it is
assumed that the state of the population is given by the total number of its individuals,
so that the phase space can be represented by the unidimensional space R: each element
P ∈ R represents a population state with P individuals. The situation is different in the
model proposed by Lotka, since there the state of the population is given by the distribution
of its individuals with respect to their age. A possible phase space in this case is given by
the set of real functions defined on the interval [0,∞): each function P would represent a
population state in which the density of individuals with respect to their age is P . This set,
however, presents some inconveniences. On the one hand, the representation is not one to
one: two different functions can represent the same population density. On the other hand, it
includes functions that may fail to be integrable around some point, which somehow represent
populations infinitely large. These inconveniences can be solved by taking the equivalent classes
within the space of integrable functions, that is, L1(0,∞). Although this is a reasonable choice,
notice that when using functions to represent population densities, we are ignoring, for example,
distributions in which the individuals are concentrated at a specific age. In order to take into
account these states, the space of measures on [0,∞) should be used, but this would certainly
complicate the analysis of the model. In any case, the phase space associated to Lotka’s model
is infinite-dimensional. This is also the case for any model dealing with populations structured
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by a continuous variable, such as the one given by equation (0.0.5) or the one analysed in this
thesis. For these kind of models, the tools of functional analysis developed to treat the Abstract
Cauchy Problem are highly valuable. Many works illustrate this assertion, but, because of their
relevance in the field, it is appropriate to emphasize the monographs of Glenn Webb [87], and
Hans Metz and Odo Diekmann [63].

A model of gut bacteria in heterogeneous populations

In order to study how bacteria grow and move within the guts of a host population, we
assume that bacteria can be found in different states. Inside the hosts they can be either
attached to the intestinal epithelium or suspended in the lumen. Outside the hosts they
are modelled as free living particles. Due to mechanistic effects, bacteria can detach from
the epithelium and enter into the luminal compartment. Similarly, suspended bacteria can
interact with the epithelium and become part of the attached community. When suspended
in the lumen, bacteria move towards the anus (the end of the digestive tract) dragged by
the intestinal flow. Eventually they leave the host and become environmental bacteria. The
cycle is closed when hosts ingest those bacteria found in the media. This process is passive if,
for example, hosts eat food which is contaminated with microbes. Sometimes, however, this
process can also be active. Some insects, such as the dung beetle, feed exclusively from feces
whereas a variety of species eat feces occasionally in order to obtain certain nutrients or to
improve their gut flora [78]. Before moving to the specific equations of the model, notice that
other microbes such as virus and inert substances such as nutrients or toxins can be modelled
in the same way as we have done with bacteria.

The conceptual lines of the system presented above are formalised as follows. Consider a
population with n hosts and m microbial “species” (for example, bacteria and bacteriophage or
simply different types of bacteria). Let H = {1, 2, · · · , n} and S = {1, 2, · · · ,m} be the indices
sets for the hosts and the microbial species (or strains), respectively. The scalar variable x
gives the position along the intestines. The point x = 0 indicates the start of the gut of every
host. Let us call uh,s(x, t) and vh,s(x, t) the densities of attached and luminal microbes of type
s in the host h, respectively, and rs(t) the density of strain s in the soil, all of them at time t.
Then the set of equations describing the dynamics of the microorganisms can be written as

∂tuh,s(t, x) = gh,s(x, uh(t, x), vh(t, x)) ∀(h, s) ∈ H × S,
∂tvh,s(t, x) = −∂x(ch(x)vh,s(t, x)) + fh,s(x, uh(t, x), vh(t, x)) ∀(h, s) ∈ H × S,
drs(t)

dt
= ms(r(t)) +

∑
h∈H kh,s(ch(lh)vh,s(t, lh))−

∑
h∈H λh,srs(t) ∀s ∈ S.

(0.0.9)
Here, uh = (uh,1, . . . , uh,m), vh = (vh,1, . . . , vh,m) and r = (r1, . . . , rm). The parameter lh is the
intestine length of host h (thus, the spatial domain of uh and vh is [0, lh]) and ch(x) stands for
the velocity of its intestinal flow at position x (thus, its domain is [0, lh]). The functions gh,s and
fh,s take into account the ecological processes occurring locally at position x of the intestine
(thus, their domains are [0, lh]×Rm×Rm). Besides replication and mortality of bacteria, these
functions may also reflect migration between epithelium and lumen, competition interactions or
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whatever we are interested in. Similarly, the function ms describes the ecology in the external
media of the population of type s, and kh,s is a function that gives the amount of particles of
type s leaving the intestine of host h per time unit. Finally, we assume that microbes enter
the intestine at a rate which is proportional to their amount in the soil. Thus, λh,s represents
a kind of ingestion rate of particles of type s by host h. Consequently, a boundary condition
for vh,s must be incorporated relating such reinfection term, which is

ch(0)vh,s(0, t) = λh,srs ∀(h, s) ∈ H × S. (0.0.10)

Notice that the above system is as a kind of metapopulation model [42], where each host acts
as a distinct patch, the dynamics within each patch is structured and the transitions between
patches occur through a pool of delocalised individuals.

Model (0.0.9)-(0.0.10) can be interpreted as an extension of the model formulated by Ballyk,
Smith and Jones [7, 49, 76] to study the ecology of biofilms in the intestines. Both models are
essentially the same inside the gut, what changes is the relation of the intestine with the external
world. Whereas Ballyk and collaborators considered the input entering into the intestine to
be independent from the output leaving the intestine, in our extension a link exists between
these two phenomena. Such a link is similar to the one considered in the linear model used by
Boldin to explore the Escherichia coli growth within a pig intestine [11]. As Boldin showed in
her work, reinfection events can be decisive in determining the outcome of a primary infection,
which means that, at least in certain circumstances, bacteria leaving the intestine should not
be neglected. The model used by Boldin was specially suited to study the propagation of
bacteria in an isolated animal. Our framework, on the contrary, makes it possible to study the
spread of bacteria through a heterogeneous group of hosts. This is done by adding the variable
r that represents the amount of microbes in the external media. In addition, by modelling
the environmental bacteria it is possible to study which actions not on the animals but on the
environment might have an impact on the spread of bacteria, something that was infeasible in
any of the two models mentioned above.

Several simplifications are implicitly assumed in model (0.0.9)-(0.0.10). Since they may be
fundamental in determining the limitations of the model, making them explicit is mandatory.
Let us list them in order to be as precise as possible:

• The physiological characteristics of the hosts are constant over time.

• The intestinal flow is constant over time.

• The transversal sections of the lumen and the epithelium are well mixed compartments.

• The external media is a well mixed compartment.

• The random motion of particles along the intestine is neglected.

Although these assumptions compromise the realism of the model, avoiding them could result
in a set of equations too complex to work with. A theory for the simplified model can be
useful to study those dynamics in which the obviated properties do not play a major role. In
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addition, when it is necessary to extend the model, the knowledge derived from the simpler
one might be helpful. However, it should be pointed out that generalised versions of the
dynamics within the intestines have been analysed by Smith and collaborators. In fact, in
[7] longitudinal diffusion of luminal bacteria was already considered, and diffusion of both
luminal and epithelial bacteria was treated later in [77]. The analysis of biofilm formations in
explicit three dimensional digestive tracts can be found in [48]. Periodic advection speeds were
considered not in the context of microbial growth within the intestines but to study how insect
populations can persist in river ecosystems. The mathematical treatment of this problem was
conducted primarily by Lutscher and collaborators, whose work was based on an earlier work
by Speirs and Gurney [79]. In [67] they first considered a model analogous to the one treated in
[7], in which individuals could be either immobile in the benthos or could flow along the river.
In a further work, time periodic coefficients were included in order to study how seasonality
could affect the population dynamics [57] (see also [88]).

Structure of the thesis

Up to our knowledge, the model proposed in this thesis is original in the sense that it
combines the dynamics within the host (using the ideas presented in [49]) with the dynamics
between hosts. In this sense, it is essential to study if equations (0.0.9) together with the
boundary conditions (0.0.10) define a well posed dynamical system in a proper Banach space.
This is addressed in the first chapter using the theory of semilinear semigroups. Specifically,
the differential equations of the model are rewritten as an Abstract Cauchy Problem of the
form

p′(t) = Ap(t) + ϕ(p(t))

where A is a linear (but unbounded) operator defined on a dense subspace of the phase space
and ϕ is a Lipschitz function from the phase space to a certain extension of it. As it is shown in
the first chapter, the reason why the images of function ϕ does not belong to the phase space
is twofold. On the one side, the phase space we use depends on the boundary conditions and
ϕ does not preserve them in general. On the other hand, the population densities of attached
bacteria belong to a larger functional space than that where luminal densities belong. As a
consequence, the components of ϕ associated to the luminal populations take values in the
larger space. Such a property of function ϕ differs from the one needed to apply the semilinear
formulation presented by Pazy, in which ϕ is defined from the phase space to itself. The more
general framework of sun dual semigroups [18, 19], however, can be used to treat the problem
and to define in which sense our model is well posed.

Once the fact that the model defines a coherent dynamical system is proven, we focus on
the local behaviour around steady states, that is, those distributions of microbes within the
environment and hosts that are constant with time. This is also done in the first chapter. There
we show that if ϕ is differentiable, then the dynamics around a steady state can be linearised,
in the sense that the non-linear semiflow around the steady state can be approximated by
its linearisation, which is a semigroup of bounded linear operators. The generator of that
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semigroup is given explicitly in terms of the parameters of the model. In addition, we show
that the linearised semigroup is eventually norm continuous, which makes it possible to study
certain dynamical properties of the semigroup (and hence the non-linear semiflow) in terms of
the spectral properties of its generator.

In the second chapter we become less general and we consider a particular biological sce-
nario. Our main goal there is to study how the properties of the hosts’ population and the
environment affect the spread of pathogenic bacteria that proliferate in the guts. This is done
by identifying the stationary points of the system and analysing if they are unstable or locally
asymptotically stable. As a result, we find for which parameters of the model the bacterial
population is able to proliferate and persist. In order to evaluate possible strategies intended
to eliminate bacteria in those systems where they are endemic, an additional population of
bacteriophages is taken into account. Such scenario reflects a situation in which phage therapy
is applied to treat the infection, and the model can be useful to get some intuition about the
best way to distribute the viruses among the hosts.

In the third chapter, we analyse the model of pathogenic bacteria from a more biological
perspective. In order to understand the meaning of some expressions derived in the second
chapter, we compute the Reproduction Number of bacteria, defined as the expected offspring
produced by bacteria at low densities [27]. The descendants of bacteria are counted following
two different interpretations of what a birth event is. This gives rise to two non-equivalent
Reproduction Numbers although both of them reflect, as expected, if an initial infection is going
to spread or not. If the Reproduction Number is bigger than one, then each bacterium is, on
average, able to replace itself and give rise to some more bacteria, so that the population tends
to grow. Alternatively, if the Reproduction Number is smaller than one, then the population
shrinks over time.
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Chapter 1

Semilinear formulation of a hyperbolic
system of PDEs

1.1 Introduction

In this chapter we analyse a dynamical system related to the model (0.0.9) and (0.0.10)
presented in the introduction. Its formulation as a PDE system is the following. Let u and v
be functions with domain [0, 1] × [0,∞) taking values in Rn and Rm respectively. Let r be a
Rk valued function with domain [0,∞). Let

g : [0, 1]× Rn × Rm → Rn

f : [0, 1]× Rn × Rm → Rm

h : Rm × Rk → Rk

be differentiable functions, and let c : [0, 1] → Rm be a bounded function such that ci(x) ≥ 1
for all x ∈ [0, 1] and i ∈ {1, , . . . ,m}, where we use an index i to denote the ith component of
a vector valued function (such as u, v, r, g, f , h and c). Let Λ be a m× k real matrix. Then
consider the following system of first order partial differential equations with initial condition:

∂tu(x, t) = g(x, u(x, t), v(x, t)),
∂tv(x, t) = −c(x) · ∂xv(x, t) + f(x, u(x, t), v(x, t))
r′(t) = h(v(1, t), r(t))
u(x, 0) = u0(x), v(x, 0) = v0(x) and r(0) = r0,

(1.1.1)

with boundary condition
v(0, t) = Λr(t). (1.1.2)

The problem above is said to be well posed if, at least for small times t, it determines
unambiguously the trajectory of the system and such trajectories present some continuity with
respect to initial conditions. In order to prove that this is really the case the problem can be
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interpreted as a semilinear evolution problem defined on a certain Banach space X,
du
dt

= G(u, v)
dv
dt

= −c · ∂xv + F(u, v)
dr
dt

= H(v, r)
(v(0), u(0), r(0)) = (v0, u0, r0) ∈ X

, (1.1.3)

and then try to proceed as in the case of ordinary differential equations. The first difficulty
one encounters is related to the fact that the operator defining the right hand side of (1.1.3) is
not smooth enough (i.e. Lipschitz) to apply the Picard iterative scheme, being the differential
operator ∂x the reason of that. To overcome this problem Ammon Pazy [68] developed a
theory to treat the system composed only by the “difficult” (but linear) principal part (i.e.
the differential operator or whatever that creates the loss in regularity) and after consider the
whole system as a smooth perturbation of the system generated by just the principal part.
The tool to link the perturbed system with the unperturbed one is the variation of constants
formula, which makes possible to prove not only the well posedness of the problem but also the
principle of linearised stability. Although this is a typical procedure to deal with semilinear
partial differential equations, in our case some difficulties arise due to the nonlinearities G and
F involved, which take the form of Nemytskij operators defined by g and f , namely

G(u(·, t), v(·, t))(x) = g(x, u(x, t), v(x, t)) and F(u(·, t), v(·, t))(x) = f(x, u(x, t), v(x, t)).

In fact, these difficulties were also highlighted in [53] for a hyperbolic system similar, but not
reducible, to (1.1.3).

First of all, we have to decide which Banach space X we could use in order to study the
system above. From a conceptual point of view, if u and v are densities on the interval [0, 1], it
would be natural to consider spaces based on L1 for these variables. However, the Nemytskij
operators G and F defined on a space of integrable R-valued functions on [0, 1] are very often
not well defined and more importantly, they are Fréchet differentiable only if g and f are affine
functions (see [52]). This makes impossible to linearise the system around steady states in order
to study their stability properties. Although this lack of differentiability do not invalidate the
principle of linearised stability per se, it makes necessary to use ad hoc techniques to analyse
the behaviour of the system around stationary points (see [30] for an example of that).

In order to avoid this lack of smoothness related to the Nemytskij operators on L1, we
may use spaces based on the sup norm. It is easy to prove that this operators inherit the
smooth properties of its associated functions in spaces with the sup norm. In particular, if g
is differentiable, then the Fréchet derivative of G at a point (ū, v̄) is the operator

DG(ū, v̄)

(
u
v

)
= D2g(·, ū(·), v̄(·))u(·) +D3g(·, ū(·), v̄(·))v(·), (1.1.4)

and analogously for f . Specifically, the sup norm space X we are going to work with is

X = Ln∞ × Cb (1.1.5)
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where Ln∞ = (L∞(0, 1))n and

Cb =
{

(v, r) ∈ C([0, 1],R)m × Rk | v(0) = Λr
}
.

Realise that the definition of space Cb comprises the boundary conditions of the system. The
reason why we choose X to have this form rather than a simpler one such as Ln∞×C([0, 1],R)m×
Rk or Ln∞ × Lm∞ × Rk is that the trajectories would not be continuous on these spaces.

In order to follow the standard semilinear formulation of system (1.1.3) as it is described in
[68], we consider the linear principal part and the nonlinear Lipschitz perturbation separately.
Thus, the operator A defined as

A

 u
v
r

 =

 0
−c · v′

0

 (1.1.6)

with domain
D(A) = {(u, v, r) ∈ X | (0, c · v′, 0) ∈ X},

is the infinitesimal generator of a strongly continuous semigroup1 T . The prime symbol ′ in the
previous expressions refers to the generalised notion of derivative. Being the principal part of
the system specified, the perturbation is the operator P that sends elements (u, v, r) ∈ X into
P(u, v, r) = (G(u, v),F(u, v),H(v, r)). At this point, however, we encounter an obstacle that
prevents us from applying the standard semilinear formulation in a straightforward manner.
It turns out that the range of the perturbation P is not within X but contained in the bigger
space Y = Ln∞ × Lm∞ ×Rk. Since P is Lipschitz from X into Y , the problem is now not a lack
of regularity but a lack of definition of the semigroup T on the space Y , in the sense that the
variation of constants equation u(·, t)

v(·, t)
r(t)

 = T (t)

 u0(·)
v0(·)
r0

+

∫ t

0

T (t− s)P

 u(·, s)
v(·, s)
r(s)

 ds

is ambiguous. To overcome this difficulty the semigroup T should be extended into Y , and the
natural way to do that is to define the operator A in Y instead of X. However, this procedure
is not as easy as it could seem. In X some hypotheses are satisfied by A that guarantee the
existence of a strongly continuous semigroup whereas in Y such hypotheses could not hold.
In order to deal with semigroups that fail to be strongly continuous we apply the sun-dual
framework developed in [18, 19]. This theory extends the standard semilinear formulation by
allowing perturbations that take values on certain Banach space related to the phase space in
which the system is defined. It is worth pointing out that this theory has commonly been used
to treat systems of delay differential equations [28, 26], whereas here it is applied to a system
of PDEs (similarly as in [53]).

1A brief introduction to strongly continuous semigroups and their infinitesimal generators can be found in
Appendix A.

13



A comprehensive review of the theory of sun dual semigroups is given in section 1.2. There
we provide the main tools to give a semilinear formulation of the dynamical systems (1.1.1) and
(1.1.2). This is done in section 1.3, where such a formulation allows us to solve the Abstract
Cauchy Problem (Theorem 1.3.2) as well as to study the dynamics of the system around steady
states by means of the linearised system at these points (Theorem 1.3.6). We also show that
the semigroups associated to the linearised systems are eventually norm continuous, so that
the dynamics of these semigroups can be summarised in terms of the dominant eigenvalues and
eigenvectors of their generators. In the discussion we finally show how the results of section
3 can be applied to equations (0.0.9) and (0.0.10) that model the growth of microorganisms
along the intestines of animals. In addition, we also illustrate how the systems introduced in
this chapter are suited to study the formation of biofilms on complex networks where certain
liquid is flowing and diffusion is negligible.

1.2 Sun-dual formalism and evolution equations

Next we recall the most important results (for our purposes) of the work done by Clement
et al. [18, 19], which are based on a generalised version of the variation of constants formula.
We will state two main theorems. The first gives a result of local existence and uniqueness
of solutions, while the second is related to stability properties of the steady states. Although
similar brief summaries exist written by the same authors [26], we have decided to include
our own in order to present a more comprehensible work and because slight variations are
introduced to deal with non sun-reflexive spaces for which the variation of constants formula
is well defined (see [29] for another reference where this semilinear formulation is undertaken
without the sun-reflexivity hypothesis). Thus some of the theorems stated below are not exactly
the same as the ones found in [18, 19], even though the arguments to prove them can be applied
essentially in the same way.

1.2.1 Linear theory

Let X be a Banach space, and denote by X∗ its dual space. An element x∗ ∈ X∗ is, by
definition, a linear continuous operator from X to R. We denote the image of an element
x ∈ X by x∗ with the bracket 〈x∗, x〉.

Given a closed operator C on X, its adjoint operator C∗ is a linear operator from X∗ to
X∗ with domain

D(C∗) = {x∗ ∈ X∗ | ∃ζ∗ ∈ X∗ such that 〈x∗, Cx〉 = 〈ζ∗, x〉 ∀x ∈ D(C) ⊂ X}.

It turns out that if x∗ ∈ D(C∗) then only one ζ∗ ∈ X∗ exists satisfying 〈x∗, Cx〉 = 〈ζ∗, x〉 for all
x ∈ D(C), so that the image of x∗ by C∗ is defined unequivocally as C∗x∗ = ζ∗. In particular if
C is a bounded operator, then C∗ is also a bounded operator and satisfies 〈C∗x∗, x〉 = 〈x∗, Cx〉
for all x∗ ∈ X∗ and x ∈ X.
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Given a strongly continuous semigroup T on X, the sun-dual space of X relative to T is a
subspace of the dual space X∗ defined by:

X�T := {x∗ ∈ X∗ | ‖T ∗(t)x∗ − x∗‖ → 0 as t ↓ 0} ,

where T ∗(t) is the adjoint of the operator T (t). We denote by T�(t) the restriction of T ∗(t) to
X�T , so that T� is, by construction, a strongly continuous semigroup on X�T whose infinites-
imal generator is denoted as AT� . Repeating this procedure on the pair (T�, X�T ) we define
the double-sun-dual of X relative to T as:

X��T := (X�T )�T� .

The canonical injection j : X↪−→X�T ∗ := (X�T )∗ is determined by the pairing

〈j(x), x�〉 = 〈x�, x〉 ∀x� ∈ X�T .

In [18] it is shown that
‖j(x)‖X�T ∗ 6 ‖x‖X 6M‖j(x)‖X�T ∗ , (1.2.1)

where M is a constant which depends on T . Among other things, this implies that

j(X) ⊂ X��T (1.2.2)

since it is easily checked that T�∗(t)j(x) = jT (t)x and then

‖T�∗(t)j(x)− j(x)‖X�T ∗ 6 ‖T (t)x− x‖X −→ 0 as t ↓ 0.

The canonical injection makes possible to introduce two important concepts for the develop-
ment of the theory.

Definition 1.2.1. X is said to be sun-reflexive relative to a strongly continuous semigroup T
on X if j(X) = X��T .

Definition 1.2.2. Let T be a strongly continuous semigroup on X. Let Y be a subspace of
X�T ∗. We say that T is closed by �∗-integration on Y if, for all f ∈ C([0,∞), Y ) and for all
t ≥ 0, ∫ t

0

T�∗(t− s)f(s) ds ∈ j(X). (1.2.3)

The integral in (1.2.3) must be understood as an element of X�T ∗, and specifically (due to
Bochner integral properties) as the functional satisfying〈∫ t

0

T�∗(t− s)f(s) ds, x�
〉

=

∫ t

0

〈T�∗(t− s)f(s), x�〉 ds .

Notice that a semigroup T is always closed by �∗-integration on j(X) since∫ t

0

T�∗(t− s)f(s) ds = j

∫ t

0

T (t− s)j−1f(s) ds .

A well known result of the theory states that the kind of integrals given by (1.2.3) take values
not in the whole space X�T ∗ but in the subset X��T .
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Proposition 1.2.3. ([18], Theorem 3.2) Let T be a strongly continuous semigroup on X and
f ∈ C([0,∞), X�T ∗). Then ∫ t

0

T�∗(t− s)f(s) ∈ X��T ∀t ≥ 0

Taking into account this proposition together with inclusion (1.2.2) it follows:

Corollary 1.2.4. If X is sun-reflexive relative to T , then T is closed by �∗-integration on
X�T ∗.

As already commented, most propositions in the series of papers [18, 19] as well as in the
book [28] assume that a given Banach space X is sun-reflexive relative to a semigroup T .
However, it is possible to prove similar results by means of analogous arguments assuming the
closedness of T by �∗-integration on a subspace Y of X�T ∗. Let us give the reformulated
statements we need for the present thesis.

Theorem 1.2.5. ([18], Theorem 4.2) Let T be a strongly continuous semigroup generated by
A and closed by �∗-integration on Y ⊂ X�T ∗. Let B be a bounded linear operator from X into
Y . Then the equation

S(t)x = T (t)x+ j−1

∫ t

0

T�∗(t− s)BS(s)xds (1.2.4)

uniquely defines a strongly continuous semigroup S on X. The partial sums of

∞∑
k=0

Sk,

with S0 = T and

Sk+1(t) = j−1

∫ t

0

T�∗(t− s)BSk(s)ds ∀t ≥ 0,

converge towards S uniformly on compact intervals, i.e.

lim
n→∞

sup
t∈[0,τ ]

‖S(t)−
n∑
k=0

Sk(t)‖ = 0 ∀τ > 0.

The generator of S is AS with domain

D(AS) = {x ∈ X | j(x) ∈ D(A∗T�) and A∗T�j(x) +Bx ∈ j(X)}

and images ASx = j−1(A∗T�j(x) +Bx).

The semigroup implicitly defined by equation (1.2.4) makes natural to ask for its sun-dual
spaces, that is for X�S and X��S . The following result shows that these spaces are determined
just by the generator A, so they do not depend on the perturbation B.
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Proposition 1.2.6. ([18], Lemma 4.3) Let T , A, B and S be as in Theorem 1.2.5. Then
X�S = X�T and X��S = X��T .

Not only the sun-dual spaces are invariant with respect bounded perturbations from X into
Y . The property of being closed by �∗-integration on Y is also satisfied by the perturbed
semigroup S. Notice that this makes sense since Proposition 1.2.6 ensures that Y is a subspace
of X�S∗. This is stated formally in the following proposition. The same proposition relates the
evolution family obtained when T is perturbed by B + f with the evolution family obtained
when S is perturbed by f , where f is a continuous function of time from [0,∞) into Y .

Proposition 1.2.7. ([19], Proposition 2.5) Let T , A, B and S be as in Theorem 1.2.5. Then
S is closed by �∗-integration on Y . Moreover, for every x ∈ X and every function f ∈
C([0,∞), Y ), u(t;x) defined as

u(t;x) = S(t)x+ j−1

∫ t

0

S�∗(t− τ)f(τ)dτ

is the only solution of

u(t;x) = T (t)x+ j−1

∫ t

0

T�∗(t− τ)(Bu(τ ;x) + f(τ))dτ.

Corollary 1.2.8. Let T , A, B and S be as in Theorem 1.2.5. Let B1 and B2 be bounded
operators from X into Y ⊂ X�T ∗ such that B = B1 +B2, and let S1 be the semigroup obtained
when T is perturbed by B1. Then S is equal to the semigroup obtained when S1 is perturbed by
B2 (in the sense of Theorem 1.2.5).

The above reformulation of the perturbation theory for dual semigroups is useful when, on
the one hand, the unperturbed semigroup T is defined on a non sun-reflexive space X, but, on
the other hand, T is closed by �∗-integration on some subspace Y bigger than j(X) (so that
the standard semilinear formulation is not enough to solve the problem). At this point it is
mandatory to show that semigroups satisfying these properties do exist.

Example 1.2.9. Let X = X1 × X2 be a Banach space and T = diag(T1, T2) be a strongly
continuous semigroup with a “diagonal” structure, i.e. T (t)(x1, x2) = (T1(t)x1, T2(t)x2) for all
t ≥ 0. Let X2 be sun-reflexive with respect T2. For i ∈ {1, 2} let ji be the canonical inclusion

from Xi into X�Ti∗ and define Y = j1(X1)×X�T2
∗

2 . Then T is closed by �∗-integration on Y .

Proof. Take f ∈ C([0,∞), Y ) arbitrary, and define f1 and f2 the component functions of f in

j1(X1) and X
�T2
∗

2 respectively. On the one hand, since j1 is a linear bounded operator and
j1T1(t) = T�∗1 (t)j1, then∫ t

0

T�∗1 (t− s)f1(s)ds = j1

(∫ t

0

T1(t− s)j−1
1 f(s)ds

)
∈ j1(X1).
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On the other hand, since f2 is norm continuous from [0,∞) to X
�T2
∗

2 , Proposition 1.2.3 implies∫ t

0

T�∗2 (t− s)f2(s)ds ∈ X��T2
2 ,

and this is enough because X
��T2
2 = j2(X2) due to the sun-reflexivity condition.

Notice that the subspace Y in the previous example is in general bigger than j(X) because

X
�T2
∗

2 is in general bigger than X
��T2
2 . Notice also that X could be non sun-reflexive if, for

example, T1(t) = Id for all t ≥ 0 and X1 were non-reflexive. Arguably one could say that the
example above is very degenerate due to the diagonal structure of the semigroup T . However,
Proposition 1.2.7 allows us to take any perturbation of T by a bounded linear perturbation
from X into Y , which give a collection of less trivial examples.

1.2.2 Semi-Linear theory

In some applications, as we write the evolution law of a dynamical system, we may obtain
equations of the type 

dv(t)
dt

= ATv(t) +H(v(t))

v(0) = x ∈ X
, (1.2.5)

where AT is the generator of a strongly continuous semigroup T which is closed by �∗-
integration on Y (see Definition 1.2.2) and H : X → Y ⊂ X�T ∗ is a Lipschitz function.

Due to the fact that H takes values in Y ⊂ X�T ∗, it is clear that (1.2.5) is a non-standard
initial value problem which even fails to be well defined. Such an issue can be overcome
reinterpreting the equation not in X but in j(X). The natural way to do this is by writing

djv(t)
dt

= jATv(t) +H(v(t))

jv(0) = j(x) ∈ j(X)

. (1.2.6)

Alternatively, we can go a bit further thanks to the equivalence between the adjoint operator
A∗T� and the weak-star generator of T�∗.

Proposition 1.2.10. ([28], Theorem AII.3.5) Let T be a strongly continuous semigroup T on
X with generator AT . Then, A∗T coincides with the weak-star generator of T ∗, that is,

D(A∗T ) =

{
x∗ ∈ X∗ | ∃ ω∗−lim

t→0

T ∗(t)x∗ − x∗

t

}
and A∗Tx

∗ = ω∗−lim
t→0

T ∗(t)x∗−x∗
t

when x∗ ∈ D(A∗T ).
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By means of such an equivalence one can check that for all x ∈ D(AT ), j(x) ∈ D(A∗T�) and
jATx = A∗T�j(x), so that if jv(t) is a classical solution of (1.2.6) then it has to be a classical
solution of 

djv(t)
dt

= A∗T�jv(t) +H(j−1(jv(t)))

jv(0) = j(x) ∈ j(X)

. (1.2.7)

Now we deal with a perfectly defined IVP. Although it is not the kind of standard Lipschitz
perturbations of linear evolution equations treated in [68], it resembles them in some sense.
In fact, in this case similar arguments can be made by means of a generalised version of the
variation of constants equation, which takes the form

jv(t) = jT (t)x+

∫ t

0

T�∗(t− s)H(v(s)) ds . (1.2.8)

The functions v : [0,∞)→ X satisfying this integral equation are its solutions, though we also
refer to the composition jv as solutions. One reason to consider such an integral equation is
that any classical solution of (1.2.7) is a solution of (1.2.8). This relation suggests the notion
of mild solution:

Definition 1.2.11. A function v : [0,∞)→ X is a mild solution of (1.2.5) if it is continuous
and it satisfies the integral equation (1.2.8). If v is a mild solution of (1.2.5), then we say
jv : [0,∞)→ j(X) is a mild solution of (1.2.6).

It seems evident that other notions of generalised solutions may exist, that is, sets of
functions which contain all classical solution of (1.2.7). Therefore, we should justify in which
sense the above definition is special. Although it is not an easy question with still open issues,
the main argument is that mild solutions defined in this way behave continuously with respect
to initial data (see Theorem 1.2.12 stated below). This is somehow related with the fact that
for any mild solution v given by (1.2.8), there is an abstract Cauchy problem somehow close to
(1.2.7) with a classical solution close to v (see Theorem 4.2.7 in [68]). Therefore, by analysing
the solutions of (1.2.8), one can derive results about the trajectories of our original problem
(1.2.5).

Two fundamental properties of mild solutions are given in the following theorem. It ad-
dresses the question of how many, if any, solutions the equation (1.2.8) has, as well as some
regularity properties with respect to initial conditions. It was proven in [19] and the proof is
based on the contraction principle as it is done in ODEs theory or in the standard semilinear
formulation. The main difference is justifying that for any continuous function f : [0, t] → X
the integral ∫ t

0

T�∗(t− s)H(f(s)) ds

belongs to j(X). However, in our setting this issue presents no problems since we assume
H : X → Y to be Lipschitz (and in particular continuous) and T to be closed by �∗-integration
on Y (see Definition 1.2.2).
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Theorem 1.2.12. ([19], Theorem 3.1) For every x ∈ X there exists a unique mild solution
v(·;x) of (1.2.5). Moreover, v satisfies the semigroup property v(t + s;x) = v(t; v(s;x)) and
v(t; ·) is Lipschitz. We refer to v(·; ·) as the semiflow of (1.2.5).

Therefore, if jv is a classical solution of (1.2.6) it has to be unique. When H is Fréchet
differentiable, a result on the differentiability with respect to initial conditions around a steady
state can be given. Here, by steady state we mean an element x̄ ∈ X such that

jx̄ = jT (t)x̄+

∫ t

0

T�∗(t− s)H(x̄) ds ∀t > 0.

However, as it occurs in the standard semilinear formulation, the steady states satisfying the
above integral conditions coincide with the equilibrium points of system (1.2.7), i.e., the points
x̄ ∈ X such that

jx̄ ∈ D(A∗T�) and A∗T�jx̄+H(x̄) = 0.

This equivalence enables us to use, on the one hand, the differential equation (1.2.7) to find the
stationary mild solutions of (1.2.5), and, on the other hand, the variation of constants formula
to linearise the semiflow around such solutions as well as to give some stability results.

Theorem 1.2.13. ([28] Proposition VII.5.6]) Let x̄ be a steady state of (1.2.8). Assume H is
Fréchet differentiable in x̄ and define B := H′(x̄) ∈ B(X, Y ). Then the semiflow v(·; ·) given
by (1.2.8) is uniformly Fréchet differentiable at x̄, i.e. for all t1 > 0 and all ε > 0 there exists
δ > 0 such that if ||x− x̄|| < δ and t ∈ [0, t1] then

||v(t;x)− x̄−Dxv(t; x̄)(x− x̄)|| < ε||x− x̄||.

The family of linear operators S defined as S(t) := Dxv(t; x̄) : X −→ X for all t ≥ 0, is given
implicitly by

jS(t)x = jT (t)x+

∫ t

0

T�∗(t− s)BS(t)x ds ∀t ≥ 0, (1.2.9)

and explicitly by the series

S =
∞∑
n=0

Sn (1.2.10)

with S0 = T and

Sn(t) = j−1

∫ t

0

T�∗(t− s)BSn−1(s)ds ∀t ≥ 0.

Moreover, the partial sums in (1.2.10) converge uniformly on compact intervals.

Notice that S(t) is well defined because, since T is closed by �∗-integration on Y and B
is continuous and takes values in Y , Theorem 1.2.5 ensures the existence of a unique strongly
continuous semigroup S which is solution of (1.2.9). The generator of S is also given by
Theorem 1.2.5.
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From the previous theorem it follows that, for all fixed t > 0, v(t;x) can be approximated
by x̄ + S(t)(x − x̄) for those x close enough to x̄. It seems a good strategy to infer the
behavior of v(·;x) close to x̄ by means of the stability properties of S. However, we must
justify carefully the validity of this procedure because, a priori, the asymptotic behavior of S
could not determine the stability of the equilibrium x̄. To our knowledge, it is yet an open
question if it could exist non-linear semiflows with an asymptotically stable equilibrium for
which the linearised system around it is unstable. Fortunately, some results in the literature
can be applied to our system in order to discard this pathological possibility. Before exposing
them let us recall a couple of concepts.

Definition 1.2.14. The growth bound of a strongly continuous linear semigroup T on a Banach
space X is defined as

ω0(T ) := inf{ω ∈ R | ∃M ≥ 1 such that ‖T (t)‖ ≤Meωt ∀t ≥ 0}.

Definition 1.2.15. A strongly continuous linear semigroup T is said to be exponentially stable
if its growth bound is strictly negative. Similarly, T is said to be exponentially unstable if its
growth bound is strictly positive.

If S is exponentially stable (i.e. there exists M ≥ 1 and ω > 0 such that ‖S(t)‖ ≤Me−ωt),
it can be shown that x̄ is a locally asymptotically stable equilibrium (the continuity of v(·;x)
makes possible to apply essentially the same argument used in the theory of ODEs [64]).

Theorem 1.2.16. ([19] Theorem 4.2) Let x̄, v and S as in Theorem 1.2.13. If ω0(S) < 0 then
x̄ is locally asymptotically stable in the Lyapunov sense. More precisely, there exist ω > 0 and
δ > 0 such that if ‖x− x̄‖ < δ,

eωt(v(t;x)− x̄)→ 0 as t→∞.

In order to give an instability result some additional hypotheses other than ω0(S) > 0 have
to be assumed.

Theorem 1.2.17. ([19] Theorem 4.3) Let x̄, v and S as in Theorem 1.2.13, and denote AS
the generator of S. Assume ω0(S) > 0 and that X admits a decomposition

X = X1 ⊕X2 (1.2.11)

into S-invariant subspaces with X1 finite-dimensional. For i ∈ {1, 2} let Si be the restriction
of S to Xi and let ASi be the corresponding generators. If

ω0(S2) < min{Reλ | λ ∈ Spectrum(AS1)}

then x̄ is unstable, i.e. there exist M > 0 and a sequence {xn, tn}n≥1 ⊂ X × R satisfying
xn → x̄ and tn →∞ such that ‖(v(tn, xn)− x̄‖ ≥M .
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The above results are useful provided we have a method to study the dynamics of S. In
general this cannot be done in a straightforward manner because S is given either implicitly
or as a series. One way to overcome this problem is by means of the generator AS, whose
expression is usually explicit and relatively simple. Indeed, some relations are known between
the growth bound of a semigroup T and the spectral bound of its infinitesimal generator AT ,
which is defined as follows.

Definition 1.2.18. The spectral bound of a closed operator A, denoted by s(A), is defined as

s(A) := sup{Reλ | λ ∈ Spectrum(A)}.

In general one can only say that s(AT ) ≤ ω0(T ), since counterexamples exist in which the strict
inequality holds (see chapter 5 of [33] and [66] for a review on asymptotics of semigroups).
However, by imposing some further regularity on the semigroup T beyond strong continuity,
one can obtain stronger results such as the relation s(AT ) = ω0(T ) or even a mapping linking
the spectrum of T (t) with the spectrum of AT .

Definition 1.2.19. A strongly continuous semigroup T is said to be eventually norm contin-
uous if there exist t∗ ≥ 0 such that

lim
h→0
‖T (t+ h)− T (t)‖ = 0 ∀t > t∗,

where ‖ · ‖ denotes the operator norm.

Theorem 1.2.20. ([33] Theorem IV.3.10) Let T be an eventually norm continuous semigroup
on a Banach space X with generator AT . Then T satisfies the Spectral Mapping Theorem:
for all t ≥ 0, the spectrum of T (t) and the spectrum of AT , denoted by σ(T (t)) and σ(AT )
respectively, satisfy the following set relation

σ(T (t)) \ {0} = etσ(AT ).

In particular the equality ω0(T ) = s(AT ) holds.

Taking this into account, Theorems 1.2.16 and 1.2.17 can be modified in terms that they only
involve information about the spectrum of AS, i.e. the generator of the linearised semigroup
S.

Theorem 1.2.21. Let x̄, v and S as in Theorem 1.2.13, and denote AS the generator of S. If
S is eventually norm continuous then

(i) x̄ is locally asymptotically stable if s(AS) < 0,

(ii) x̄ is unstable if there exists ω > 0 such that the spectrum of AS within the region {λ ∈
C | Re(λ) > ω} is non-empty and is composed only by a finite number of eigenvalues with
finite algebraic multiplicity.
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Proof. Statement (i) follows directly from Theorem 1.2.16 and the relation s(AS) = ω0(S) due
to the eventually norm continuity of S. To prove statement (ii) we use the decomposition
theorem (Theorem 6.17 in [50]) by taking a Jordan curve enclosing the eigenvalues to the right
of ω. This implies that AS : D(AS) ⊂ X → X can be decomposed on X = X1 ⊕ X2 as
AS(x1 + x2) = AS1x1 + AS2x2, with X1 being the eigenspace associated to the eigenvectors
to the right of ω and AS1 and AS2 being closed operators on X1 and X2 respectively. The
assumption on the eigenvalues to the right of ω ensures that X1 is finite-dimensional. Moreover,
both AS1 and AS2 are generators of strongly continuous semigroups, namely S1 on X1 and S2

on X2 respectively, in such a way that S(t)(x1 + x2) = S1(t)x1 + S2(t)x2 for all t ≥ 0 and
(x1, x2) ∈ X1 ×X2. Thus, a decomposition as the one appearing in Theorem 1.2.17 is derived
from the hypotheses. From the decomposition theorem it also follows that the spectrum of
AS1 is composed by the spectral values of AS to the right of ω whereas the spectrum of AS2

corresponds to the spectrum of AS located to the left of ω. Finally, since S1 is norm continuous
(because X1 is finite dimensional), the eventually norm continuity of S implies the eventually
norm continuity of S2. Then we obtain

ω0(S2) = s(AS2) < ω < min{Reλ | λ ∈ Spectrum(AS1)},

which, through Theorem 1.2.17, implies the instability of x̄.

By analysing the previous proof one can check that the eventually norm continuity of the
semigroup S is only used to derive the relations s(AS) = ω0(S) and s(AS2) = ω0(S2). Thus,
similar results could be given assuming that semigroup S satisfies weaker properties than the
eventual norm continuity. However, we have decided to use this version of the theorem because,
as it will be shown in the next section, the linearised semigroups associated to (1.1.3) are indeed
eventually norm continuous.

We finish this section recalling that the property of being eventually norm continuous is
preserved under compact perturbations (Proposition III.1.14 in [33] states this result in the
standard case, i.e. when the perturbation K is defined from X to X).

Theorem 1.2.22. Let T be an eventually norm continuous semigroup generated by A and
closed by �∗-integration on Y ⊂ X�T ∗. Let K be a compact operator from X into Y . Then the
semigroup S generated by A+K (in the sense of Theorem 1.2.5) is eventually norm continuous.

Proof. By Theorem 1.2.5 we know that S is given by equation (1.2.4). Since K is compact,
the integral

I(t) = j−1

∫ t

0

T�∗(t− s)KS(s)ds

is a compact operator from X to X for every t (see Theorem A.2 of [26] or Theorem 1.3 of
[85]). Let t∗ > 0 be the time beyond which T is norm continuous. Then, since

‖S(t+ h)− S(t)‖ ≤ ‖T (t+ h)− T (t)‖+

+‖j−1
∫ t+h

0
T�∗(t+ h− s)KS(s)ds− j−1

∫ t
0
T�∗(t− s)KS(s)ds‖,
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for t > t∗ it follows that S is norm continuous from the right. Indeed,

lim
h↓0
‖S(t+ h)− S(t)‖ ≤ lim

h↓0

∥∥j−1(T�∗(h)− Id)jI(t)
∥∥ = lim

h↓0
‖(T (h)− Id)I(t)‖ = 0,

where the limit above vanishes because the strong continuity of T implies that T is norm
continuous when restricted to compact sets of X (see Lemma I.5.2 in [33]), such as the image
of the unit ball by I(t). Finally, using the semigroup property of S we conclude that, for t > t∗,
S is also norm continuous from the left. Indeed, taking t̂ ∈ (t∗, t), it follows

lim
h↑0
‖S(t+ h)− S(t)‖ ≤ lim

h↑0
‖S(t− t̂+ h)‖ ‖S(t̂)− S(t̂− h)‖ = 0,

where the limit vanishes because, on the one hand, ‖S(t̂)−S(t̂−h)‖ tends to 0 due to the norm
continuity from the right of S at t̂ > t∗ and, on the other hand, ‖S(t − t̂ + h)‖ is uniformly
bounded as h approaches 0 due to the strong continuity of S.

1.3 Semilinear formulation of the problem

Now we are ready to deal with problem (1.1.3). First we are going to give a formula for
the semigroup T generated by A (see (1.1.6)) and then we will show that T is indeed closed by
�∗-integration on Y . This is done by checking that T has the structure of Example 1.2.9. Once
verified these properties about T , the well posedness of the problem will be derived by means of
the theory reviewed in the previous section. Finally, we show that the linearised semigroup S
around any stationary point of (1.1.3) is eventually norm continuous, so that Theorem 1.2.21
gives a method to determine the stability of equilibria based only on the spectrum of the
infinitesimal generator AS of S.

1.3.1 Existence and uniqueness of solutions

The semigroup T on X generated by A can be obtained through the method of character-
istics, and acts in the following way:

T (t)

 u
v
r

 =

 u(·)
ṽ(·; t, v, r)

r

 (1.3.1)

where the ith component of ṽ(·; t, v, r) is

(ṽ(x; t, v, r))i = ṽi(x; t, vi, r) = Λir1−(ϕi(−t, x)) + vi(ϕi(−t, x))1+(ϕi(−t, x)), (1.3.2)

being Λi the ith row of Λ and ϕi(t, x) the unique function satisfying ∂tϕi(t, x) = ci(ϕi(t, x)) and
ϕi(0, x) = x (although the function ci(x) is not necessarily Lipschitz, the uniqueness property
can be deduced because ci(x) ≥ 1 for all x). The functions 1− and 1+ stand for the indicator
functions on (−∞, 0) and [0,∞) respectively. To give a meaning to ϕi(−t, x) for any −t < 0
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is enough to assume that the function ci is prolonged by any positive constant (for instance
1) for negative values of their arguments. Notice that ϕi(·, x) describes, as a function of t,
the characteristic curve passing through the point x at time 0, so that ϕi(−t, x) should be
interpreted as the position that a point moving with velocity c had t units of times into the
past. Therefore, a point that at time t is at position x, was at position ϕi(−t, x) at time 0. In
particular, if ϕi(−t, x) < 0 then we deduce that the point was outside the interval [0, 1] at time
0, hence its value is not given by the initial condition of v but by the boundary condition.

Clearly, T is a diagonal semigroup on X = Ln∞ × Cb. Let T1 and T2 be the associated
semigroups of T on Ln∞ and Cb respectively. Since Y = Ln∞×Lm∞×Rk, in order to show that T
is closed by �∗-integration on Y it is enough to verify that i) Lm∞ × Rk can be identified with

a subspace of C
�T2
∗

b and that ii) Cb is sun-reflexive with respect to T2 (as showed in Example
1.2.9). Notice that here Y has not exactly the same meaning as in the previous section. There
Y was a subspace of X�∗ whereas here Y is a representation of a subspace of X�∗. We proceed
in this way because then we can consider X as a subspace of Y and avoid the use of the
inclusion j : X → X�∗ in the formulation of the results. Next we show that the two conditions
mentioned above (i and ii) hold and, in addition, we specify how T�∗2 is defined on Lm∞ × Rk.

Proposition 1.3.1. Let Cb and T2 be as above. Then

Lm∞ × Rk ∼= C
�T2
∗

b and Cb ∼= C
��T2
b .

Moreover, T�∗2 is the natural extension of T2 into Lm∞ × Rk, i.e.

T�∗2 (t)

(
v
r

)
=

(
ṽ(·; t, v, r)

r

)
with ṽ exactly given as in (1.3.2).

Proof. The methodology of the proof is based on the one used in section II.5 of [28], and hence
we only expose the main ideas 2. First the Riesz representation theorem is used to represent C∗b
using the spaceMm

b ×Rk, whereMb is the set of real Borel measures µ satisfying µ({0}) = 0.
Instead of µ({0}) = 0 other conditions could be imposed in order to identify Borel Measures
(seen as functionals on C([0,∞),R)m × Rk) that are equivalent on Cb due to the boundary
condition. The pairing between C∗b and Cb can be written as〈(

µ
q

)
,

(
v
r

)〉
=

m∑
i=1

∫ 1

0

vi(s)dµi(s) + 〈q, r〉 .

In order to work with a functions rather than measures, a isometric isomorphism between real
Borel measures and normalised functions of bounded variation is used, so that C∗b is represented
as NBVm

b ×Rk with η ∈ NBVb if η is a function of bounded variation, right continuous in [0, 1]
and satisfies η(0) = 0 (the norm in NBVb is the total variation norm).

2A more detailed version of the proof is given in Appendix B.

25



The next step consists in showing C
�T2
b
∼= (L1(0, 1))m × Rk where the norm in L1(0, 1)m is

weighed by function c (in the sense that ‖ν‖ =
∑m

i=0

∫ 1

0
|νi(s)/ci(s)|ds). This is done taking

into account the result D(A∗T2
) = C

�T2
b (which is a particular case of the equality D(A∗T ) = X�T

that holds for any strongly continuous semigroup T generated by AT on a Banach space X,
proved in Proposition AII.3.8 of [28]). To apply this result first D(AT2)∗ is determined, which
results in the pairs (η, q) ∈ NBVm

b × Rk satisfying q ∈ Rk and for all component of η there
exists νi ∈ NBVb such that

ηi(s) =

∫ 1

0

νi(σ

c(σ)
dσ ∀s ∈ [0, 1].

Then the closure D(A∗T2
) is shown to be isometrically isomorphic to (L1(0, 1))m × Rk when

weighting by c the norm of (L1(0, 1))m.

Since we represent C
�T2
b ⊂ C∗b by means of (L1(0, 1))m × Rk, we can define a pairing

between (L1(0, 1))m × Rk and Cb. The natural pairing is the one obtained as 〈(ν, q), (v, r)〉 =
〈(φ((ν, q)), (v, r)〉 where φ is the isometric isomorphism between (L1(0, 1))m×Rk and D(A∗T2

) ⊂
NBVm

b × Rk, which is given by〈(
ν
q

)
,

(
v
r

)〉
=

m∑
i=0

∫ 1

0

vi(s)
νi(s)

ci(s)
ds+ r · q.

Finally it is proven that C
��T2
b

∼= Cb. Indeed, using (L1(0, 1))m × Rk as a representation

of C
�T2
b clearly implies C

�T2
∗

b
∼= (L∞(0, 1))m × Rk. In this case the norm of (L∞(0, 1))m is the

standard one (i.e. is not affected by function c) if the pairing〈(
v
r

)
,

(
ν
q

)〉
=

m∑
i=1

∫ 1

0

vi(s)

ci(s)
νi(s)ds+ r · q

is used, as we do. On the other hand, the semigroup T�2 on (L1(0, 1))m × Rk is specified by

T�2 (t)

(
ν
q

)
=

(
ν̃(·; t, ν)

q +
∑m

i=1

∫ 1

0
νi(s)
ci(s)

1−(ϕi(−t, s))ds Λi

)

where the ith component of ν̃(·; t, ν) is

ν̃i(·, t, ν) = ci(·)
νi(ϕi(t, ·))
ci(ϕi(t, ·))

∂2ϕi(t, ·)1+(ϕi(−t, 1)− ·).

Similarly, T�2 is used to give an explicit formula for the semigroup T�∗2 on Lm∞ × Rk, which
results in the natural extension of T2 in Lm∞ × Rk.

Then, the infinitesimal generator of T�2 on (L1(0, 1))m × Rk is determined as

D(AT�2 ) =
{

(ν, q) ∈ (L1(0, 1))m × R | ν is absolutely continuous and ν(1) = 0
}
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and AT�(ν, q) = (cν ′,
∑m

i=1 Λiνi(0)). By saying that ν is absolutely continuous we mean that
the condition is satisfied component-wise, i.e. for each component of ν. The adjoin of AT�2 is
consequently determined as

D(A∗
T�2

) = {(v, r) ∈ (L∞(0, 1))m × R | v is Lipschitz and v(0) = Λr} (1.3.3)

and A∗
T�2

(v, r) = (−cv′, 0). By taking the closure of D(A∗
T�2

) we obtain C
��T2
b . When doing so

we lose the Lipschitz condition on v but the continuity remains. Therefore,

C
��T2
b

∼=
{

(v, r) ∈ C([0, 1],R)m × Rk | v(0) = Λr
}

= Cb,

as desired.

Once shown that T is closed by �∗-integration on Y , we can use Theorem 1.2.12 to conclude
that one and only one semiflow Σ associated to (1.1.3) exists. This result is stated below in
the form of a theorem.

Theorem 1.3.2. Problem (1.1.1) is well posed on X = Ln∞ × Cb defined in (1.1.5), i.e. there
exists a unique function Σ from Ω to X, with Ω being an open subset of [0,∞) × X (in the
induced topology), satisfying the following:

• for all initial condition x = (u0, v0, r0) ∈ X there exists tx ∈ (0,∞] such that [0, tx)×{x}
is the intersection of Ω with [0,∞)× {x},

• for all x = (u0, v0, r0) ∈ X, the function Σ(·;x) from [0, tx) to X is a mild solution of
(1.1.1) (in the sense of Defintion 1.2.11). Thus, Σ satisfies the semigroup property, i.e.
Σ(t+ s, x) = Σ(t,Σ(s, x)) for positive s and t with t+ s < tx, whereas the function Σ(t; ·)
is locally Lipschitz in x.

1.3.2 Linearisation around steady states

Given a steady state (ū, v̄, r̄) ∈ X of the semiflow Σ, Theorem 1.2.13 ensures that there
exists a strongly continuous linear semigroup S(t) on X such that S(t) = D2Σ(t; (ū, v̄, r̄)).
Moreover, using that (v, r) ∈ D(A∗

T�2
) if and only if v is Lipschitz and v(0) = Λr (see (1.3.3)),

it follows that the domain of AS (see Theorem 1.2.5) can be written as

D(AS) = {(u, v, r) ∈ X |v is Lipschitz and (0,−c · v′, 0) +DH(ū, v̄, r̄)(u, v, r) ∈ X}

and then

AS

 u
v
r

 =

 0
−c · v′

0

+DH(ū, v̄, r̄)

 u
v
r

 for all

 u
v
r

 ∈ D(AS). (1.3.4)

Next, in order to study the asymptotic behaviour of Σ around (ū, v̄, r̄), we show that S(t)
is eventually norm continuous (see Theorem , so that Theorem 1.2.21 can be applied and a
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characterization of the local dynamics around (ū, v̄, r̄) can be given in terms of the eigenvalues
of the operator AS (see Theorem 1.3.6 in the end of the section). The proof is long and will
occupy the rest of the section.

Let us start noticing that DH(ū, v̄, r̄) has the form

DH(ū, v̄, r̄)

 u
v
r

 =

 B11u+B12v
B21u+B22v

K̃(v, r)

 .

where
B11 ∈ L∞((0, 1),Mn×n(R)),
B12 ∈ L∞((0, 1),Mn×m(R)),
B21 ∈ L∞((0, 1),Mm×n(R)),
B22 ∈ L∞((0, 1),Mm×m(R)),

and K̃ is a bounded operator from Cb into Rk. Thus, the generator AS can be formally written
as

AS

 u
v
r

 = A

 u
v
r

+B

 u
v
r

+K

 u
v
r

 ,

where B and K are bounded operators from X into X�T ∗. Their explicit expressions are

B

 u
v
r

 =

 B11u+B12v
B21u+B22v

0

 and K

 u
v
r

 =

 0
0

K̃(v, r)

 . (1.3.5)

Notice that K is a compact operator because it takes values in a finite dimensional subspace
of X�∗, namely {0} × {0} × Rk. Thus, in order to show that S is eventually norm continuous
it is enough to prove the eventually norm continuity of the simpler semigroup generated by
A+B. This is so because compact perturbations of eventually continuous semigroups are also
eventually norm continuous (see Theorem 1.2.22 in the previous section).

The proof of the eventual norm continuity of the semigroup SB generated by A+B is based
on the series formula for SB given in Theorem 1.2.5. From that theorem we know that the
series

∞∑
k=0

Sk,

with S0 = T and Sk =
∫ ·

0
T�∗(· − s)BSk−1(s)ds for n > 1, converge uniformly (on compact

time intervals) towards SB. By the Uniform Convergence Theorem, we know that if function
Sk is continuous in [t0,∞) for each k, then so is SB. Therefore, it is enough to prove that each
term in the series defining SB is continuous on [1,∞) in order to conclude that SB is eventually
norm continuous from 1 onwards.

As it is seen in the proof below, the specific value at which the functions defining the
series become continuous is 1 due to the fact that ci(x) ≥ 1 for all i, which implies that
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ϕi(−t, x) < 0 for all (t, x) ∈ (1,∞) × [0, 1]. The proof consists in showing that the operator
norm of (Sk(t+h)−Sk(t)) can be bounded as ‖(Sk(t+h)−Sk(t))‖ < Mt,k|h| for all k ∈ N, t > 1
and |h| small enough, where Mt,k is a constant that only depends on t and k. In order to do
that the image of a point (u, v, r) by Sk(t+ h)−Sk(t) is expressed as the sum of several terms
and each of them is properly bounded. Hence the methodology is technical, though the tricks
are mostly elementary. Unfortunately, we failed in given a proof by induction on the index k.
In order to keep track of the long proof, the different steps are introduced with particular font
styles.

Lemma 1.3.3. Let T and T�∗ be defined by (1.3.1) on X and X�T ∗ respectively. Let B be
defined by (1.3.5). The functions

S0(t) = T (t),

Sk(t) = j−1
∫ t

0
T�∗(t− s)BSk−1(s)ds, ∀k ∈ N

from [0,∞) into X are continuous within [1,∞).

Proof. The case k = 0 follows immediately from the definition of T (·) in (1.3.1). Indeed, let
t > 1 and h > 1− t. Then∥∥∥∥∥∥(T (t+ h)− T (t))

 u
v
r

∥∥∥∥∥∥ =

∥∥∥∥∥∥
 u− u

r − r
r − r

∥∥∥∥∥∥ = 0,

that is ‖T (t+ h)− T (t)‖ = 0 for all h > 1− t, and in particular the limit as h tends to zero is
also zero.

The general case k > 0 requires some more work. First of all let us recall that the norms
of X and j(X) are equivalent (Proposition 1.2.1), so that there exists M > 0 such that∥∥∥∥∥∥j

 u
v
r

∥∥∥∥∥∥
X�∗

6

∥∥∥∥∥∥
 u

v
r

∥∥∥∥∥∥
X

6M

∥∥∥∥∥∥j
 u

v
r

∥∥∥∥∥∥
X�∗

. (1.3.6)

In the following we show that for all t > 1 and h ∈ (max{1 − t,−1}, 1) the operator norm of
(Sk(t + h)− Sk(t)) can be bounded as ‖(Sk(t + h)− Sk(t))‖ < Mt|h|, where Mt is a constant
that only depends on t. We start considering the case h ∈ (0, 1), since then the case h ∈
(max{1−t,−1}, 0) will be a simple consequence. In order to accomplish this ‖(Sk(t+h)−Sk(t))‖
is split into treatable expressions according to the following diagram (which hopefully helps to
follow the proof):
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Case h ∈ (0, 1)

The definition of Sk implies∥∥∥∥∥∥(Sk(t+ h)− Sk(t))

 u
v
r

∥∥∥∥∥∥
X

6

6M

∥∥∥∥∥∥∫ t+h0
T�∗(t+ h− s)BSk−1(s)

 u
v
r

 ds−
∫ t

0
T�∗(t− s)BSk−1(s)

 u
v
r

 ds

∥∥∥∥∥∥
X�∗

6

6M

∥∥∥∥∥∥
 û(·; t+ h)− û(·; t)

v̂(·; t+ h)− v̂(·; t)
0

∥∥∥∥∥∥
X�∗

6

6M(‖û(·; t+ h)− û(·; t)‖Ln∞ + ‖v̂(·; t+ h)− v̂(·; t)‖Lm∞)
(1.3.7)

where, defining the projection πu : Ln∞ × Lm∞ × Rm → Ln∞ so that πu(u, v, r) = u,

û(·; t) =

∫ t

0

πuBSk−1(s)

 u
v
r

 ds, (1.3.8)

and, defining the projections πv : Ln∞ × Lm∞ × Rm → Lm∞ so that πv(u, v, r) = v,

v̂(·; t) =

∫ t

0

πvT
�∗(t− s)BSk−1(s)

 u
v
r

 ds. (1.3.9)

From inequality (1.3.7) it follows that in order to obtain the bound ‖(Sk(t+h)−Sk(t))‖ < Mth
we can split the proof in two parts: a part in which a bound of the type

‖û(·; t+ h)− û(·; t)‖Ln∞ < M̃th

is provided and another part that gives a bound of the type

‖v̂(·; t+ h)− v̂(·; t)‖Lm∞ < M̃th.

A bound for ‖û(·; t+ h)− û(·; t)‖Ln∞
The term ‖û(·; t+h)− û(·; t)‖Ln∞ in (1.3.7) can be bounded properly because the operator norm
of Sk−1(s) is uniformly bounded within bounded intervals. Indeed, using expression (1.3.8),
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one has

‖û(·; t+ h)− û(·; t)‖Ln∞ 6

6

∥∥∥∥∥∥πu
∫ t+h

0
BSk−1(s)

 u
v
r

 ds−
∫ t

0
BSk−1(s)

 u
v
r

 ds

∥∥∥∥∥∥
Ln∞

6

6
∫ t+h
t

∥∥∥∥∥∥BSk−1(s)

 u
v
r

∥∥∥∥∥∥
X�∗

ds 6 h‖B‖ sups∈[0,t+1] ‖Sk−1(s)‖

∥∥∥∥∥∥
 u

v
r

∥∥∥∥∥∥
X

.

(1.3.10)

A bound for ‖v̂(·; t+ h)− v̂(·; t)‖Lm∞
Let us focus now on the terms ‖v̂(·; t+h)− v̂(·; t)‖Lm∞ of (1.3.7). Notice that B initially defined
from X into X�∗ can be extended to a bounded operator from X�∗ into itself given by the
same expression of B (see (1.3.5)). Thus, it is possible to enter the operators T�∗(t− sk) and
B inside the integral that defines Sk(s) in (1.3.9). That is, v̂(·; t) can be written as

v̂(·; t) =
∫ t

0
πvT

�∗(t− sk)B
∫ sk

0
T�∗(sk − sk−1)BSk−2(sk−1)

 u
v
r

 dsk−1dsk =

=
∫ t

0

∫ sk
0
πvT

�∗(t− sk)BT�∗(sk − sk−1)BSk−2(sk−1)

 u
v
r

 dsk−1dsk,

and, inductively, one obtains

v̂(·; t) =
∫ t

0

∫ sk
0
· · ·
∫ s2

0

πvT
�∗(t− sk)BT�∗(sk − sk−1)B · · ·T�∗(s2 − s1)BT (s1)

 u
v
r

 ds1 · · · dsk−1dsk.
(1.3.11)

In order to simplify the above equation recall that X�∗ = Ln∞×Lm∞×Rm and observe that the
operators T�∗(sl+1−sl)B : X�∗ → X�∗ for l ∈ {1, . . . , k} (setting sk+1 = t) can be synthesised
as matrices of operators:

T�∗(sl+1 − sl)B ∼

 B11 B12 0

T̃ (sl+1 − sl)B21 T̃ (sl+1 − sl)B22 0
0 0 0

 ,

where T̃ (s) : Lm∞ → Lm∞ is defined as

(T̃ (s)v)i = vi(ϕi(−s, ·))1+(ϕi(−s, ·)) ∀i ∈ {1, . . . ,m}.
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The product of operators

1∏
l=k

T�∗(sl+1 − sl)B = T�∗(t− sk)BT�∗(sk − sk−1)B · · ·T�∗(s2 − s1)B,

written as a matrix of operators, becomes:

J ∼

 J11 J12 0
J21 J22 0
0 0 0


where, for (i0, ik+1) ∈ {1, 2} × {1, 2},

Ji0ik+1
=

2∑
i1=1

2∑
i2=1

· · ·
2∑

ik=1

Ji0i1i2···ikik+1
(t− sk, sk − sk−1, . . . , s2 − s1)

with

Ji0i1i2···ikik+1
(t− sk, sk − sk−1, . . . , s2 − s1) =

= (T�∗(t− sk)B)i0i1(T�∗(sk − sk−1)B)i1i2 · · · (T�∗(s2 − s1)B)ikik+1
.

(1.3.12)

In particular, using ṽ(·; s1, v, r) defined in (1.3.2) the integrand in (1.3.11) can be expressed as

πv

(
1∏
l=k

T�∗(sl+1 − sl)B

)
T (s1)

 u
v
r

 = J21u+ J22ṽ(·; s1, v, r)

so that (1.3.11) becomes the sum

v̂(·; t) =
2∑

i1=1

2∑
i2=1

· · ·
2∑

ik=1

I2 i1i2···ik1(t, u) +
2∑

i1=1

2∑
i2=1

· · ·
2∑

ik=1

I2 i1i2···ik2(t, v, r) (1.3.13)

where

I2 i1i2···ik1(t, u) =

∫ t

0

∫ sk

0

· · ·
∫ s2

0

J2 i1i2···ik1(t− sk, sk − sk−1, . . . , s2 − s1)uds1 · · · dsk−1dsk

and

I2 i1i2···ik2(t, v, r) =

∫ t

0

∫ sk

0

· · ·
∫ s2

0

J2 i1i2···ik2(t−sk, sk−sk−1, . . . , s2−s1)ṽ(·; s1, v, r)ds1 · · · dsk−1dsk.

Clearly, from (1.3.13) it follows

‖v̂(·; t+ h)− v̂(·; t)‖Lm∞ 6
∑2

i1=1

∑2
i2=1 · · ·

∑2
ik=1 ‖I2 i1i2···ik1(t+ h, u)− I2 i1i2···ik1(t, u)‖Lm∞ +

+
∑2

i1=1

∑2
i2=1 · · ·

∑2
ik=1 ‖I2 i1i2···ik2(t+ h, v, r)− I2 i1i2···ik2(t, v, r)‖Lm∞

(1.3.14)
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In order to give a bound for ‖v̂(·; t+ h)− v̂(·; t)‖Lm∞ , we show that each summand on the right

hand side in (1.3.14) can be bounded properly, i.e. by something of the form hM̃t‖(u, v, r)‖.
This is done by performing a change of variables to the “shifted integrals” (the ones evaluated
at t + h) so that the new integrand coincides with the integrand of the “unshifted integrals”
(the ones evaluated at t). The equality between integrands makes, on the one hand, that the
difference between integrals vanishes over the domain of integration that is common to both
integrals. On the other hand, the domains of integration that are specific to each integral have
a Lebesgue measure proportional to h. These statements are developed in the following. To do
so we treat separately the terms in the first summation from those in the second summation.

Let us consider the terms in (1.3.14) of the form

‖I2 i1i2···ik1(t+ h, u)− I2 i1i2···ik1(t, u)‖Lm∞ .

Applying a translation τh to the integration variables so that

τh(s1, s2, . . . , sk) = (s1 + h, s2 + h, . . . , sk + h)

the integral I2 i1i2···ik1(t+ h, u) becomes∫ t

−h

∫ sk

−h
· · ·
∫ s2

−h
J2 i1i2···ik1(t− sk, sk − sk−1, . . . , s2 − s1)uds1 · · · dsk−1dsk.

Therefore, using ‖T�∗(s)‖X�∗ 6 1 for all s > 0, one has

‖I2 i1i2···ik1(t+ h, u)− I2 i1i2···ik1(t, u)‖Lm∞ =

=
∥∥∥∫ t−h ∫ sk−h · · · ∫ min{s2,0}

−h J2 i1i2···ik1(t− sk, sk − sk−1, . . . , s2 − s1)uds1 · · · dsk−1dsk

∥∥∥
Lm∞

6

6 h(t+ h)k−1‖B‖k‖(u, v, r)‖ 6 h(t+ 1)k−1‖B‖k‖(u, v, r)‖
(1.3.15)

as desired.

Let us consider now the terms in (1.3.14) of the form

‖I2 i1i2···ik2(t+ h, v, r)− I2 i1i2···ik2(t, v, r)‖Lm∞ .

In this case it is not clear whether it is possible to make a change of variables that transforms
the integrand of I2 i1i2···ik2(t+h, v, r) into the integrand of I2 i1i2···ik2(t, v, r). The problem is that
the integration variables do not only appear in the function that determines J2 i1i2···ik2, but they
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also play a role in the term ṽ. Specifically, finding a change of variables that transforms the
integrand

J2 i1i2···ik2(t+ h− sk, sk − sk−1, . . . , s2 − s1)ṽ(·; s1, v, r)

into
J2 i1i2···ik2(t− σk, σk − σk−1, . . . , σ2 − σ1)ṽ(·;σ1, v, r)

seems to be the same as solving the following system of k + 1 equations and k unknows:

t+ h− sk = t− σk
sk − sk−1 = σk − σk−1

...
s2 − s1 = σ2 − σ1

s1 = σ1

, (1.3.16)

which is impossible. However, the fact is that one of the equations in the system above is
unnecessary to find the desired change of variables. To justify this let us distinguish the case
I2 22···22 from the cases I2 i1i2···ik2 in which at least one index is 1.

Consider I2 i1i2···ik2 such that il = 1.

Then the term (T�∗(sk − sk−1)B)ilil+1
appearing in (1.3.12) is

(T�∗(sk−l+1 − sk−l)B)ilil+1
= (T�∗(sk−l+1 − sk−l)B)1il+1

= B1il+1
,

so that J2 i1i2···ik2 is independent of the difference sk−l+1 − sk−l. Thus, the desired change of
variables can be obtained without imposing the relation

sk−l+1 − sk−l = σk−l+1 − σk−l.

This means that this equation can be removed from system (1.3.16) so that it becomes com-
patible. The solution of the reduced system is the desired change of variables, which is a
translation τh given by

τh(s1, s2, . . . , sk) = (s1, . . . , sk−l, sk−l+1 + h . . . , sk + h).

By using this transformation on the “shifted integral” one has

I2 i1i2···ik2(t+ h, v, r) =

=
∫ t
−h

∫ sk
−h · · ·

∫ sk−l+2

−h

∫ sk−l+1+h

0

∫ sk−l
0
· · ·
∫ s2

0
J2 i1i2···ik2(t− sk, . . . , s2 − s1)ṽ(·; s1, v, r)ds1 · · · dsk,

and, similarly as done in (1.3.15), one concludes

‖I2 i1i2···ik2(t+ h, v, r)− I2 i1i2···ik2(t, v, r)‖Lm∞ 6 h(t+ 1)k−1‖B‖k‖(u, v, r)‖. (1.3.17)

Consider now the particular integral I222···22.
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In this case the term J222···22 depends on all the differences sl+1 − sl with l ∈ {1, . . . k}, which
means that all the first k rows of system (1.3.16) have to be imposed. The unnecessary equation
in this case is the last equation of (1.3.16). Indeed, let us show that, for all t > 1, the following
holds

J222···22(t− sk, sk − sk−1, . . . , s2 − s1)ṽ(·; s1, v, r) = J222···22(t− sk, sk − sk−1, . . . , s2 − s1)Λr.
(1.3.18)

First of all notice that, denoting dl = sl+1 − sl, the ith component of J222···22(dk, . . . , d1)v is

(J222···22(dk, . . . , d1)v)i = (T̃ (dk)B22T̃ (dk−1)B22 · · · T̃ (d1)B22v)i =

=
∑m

lk=1 · · ·
∑m

l1=1 T̃i(dk)B22,ilk T̃lk(dk−1)B22,lklk−1
· · · T̃l2(d1)(B22,l2l1vl1) =

=
∑m

lk=1 · · ·
∑m

l1=1(T̃i(dk)B22,ilk T̃lk(dk−1)B22,lklk−1
· · · T̃l2(d1)B22,l2l1)

(T̃i(dk)T̃lk(dk−1) · · · T̃l2(d1)vl1).
(1.3.19)

In the last equality we have used that, for all i ∈ {1, . . . ,m} and for all f, g ∈ L∞(0, 1), the
operator T̃i(d) satisfies

T̃i(d)(fg) = f(ϕi(−d, ·))g(ϕi(−d, ·))1+(ϕi(−d, ·)) =

= (f(ϕi(−d, ·))1+(ϕi(−d, ·)))(g(ϕi(−d, ·))1+(ϕi(−d, ·))) = (T̃i(d)f)(T̃i(d)g),

(1.3.20)

so that for all triad b, f, g ∈ L∞(0, 1) one has

bT̃i(d)(fg) = (bT̃i(d)f)(T̃i(d)g).

In particular, the ith component of J222···22(dk, . . . , d1)ṽ(·; s1, v, r) is

(J222···22(dk, . . . , d1)ṽ(·; s1, v, r))i = Σv + Σr

with

Σv =
∑m

lk=1 · · ·
∑m

l1=1(T̃i(dk)B22,ilk T̃lk(dk−1)B22,lklk−1
· · · T̃l2(d1)B22,l2l1)

(T̃i(dk)T̃lk(dk−1) · · · T̃l2(d1)(vl1(ϕl1(−s1, ·))1+(ϕl1(−s1, ·))))

and

Σr =
∑m

lk=1 · · ·
∑m

l1=1(T̃i(dk)B22,ilk T̃lk(dk−1)B22,lklk−1
· · · T̃l2(d1)B22,l2l1)

(T̃i(dk)T̃lk(dk−1) · · · T̃l2(d1)(Λl1r1−(ϕl1(−s1, ·)))).

Since the operators T̃i(d) satisfy

T̃i(d)(fg) = f(ϕi(−d, ·))g(ϕi(−d, ·))1+(ϕi(−d, ·)) = (T̃i(d)f)g(ϕi(−d, ·)),
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for all f ∈ L∞(0, 1) and g ∈ L∞(R) (and considering that the product of a function f in
L∞(0, 1) with a function g in L∞(R) is the product of f with the projection of g in L∞(0, 1)),
the factors in each summand of Σv that depend on v, i.e the terms of the form

T̃i(dk)T̃lk(dk−1) · · · T̃l2(d1)(vl1(ϕl1(−s1, ·))1+(ϕl1(−s1, ·))),

can be written as the product

(T̃i(dk)T̃lk(dk−1) · · · T̃l2(d1)vl1(ϕl1(−s1, ·)))
1+(ϕl1(−s1, ·) ◦ ϕl2(−d1, ·) ◦ · · · ◦ ϕlk(−dk−1, ·) ◦ ϕi(−dk, ·)),

whereas the factors in each summand of Σr that depend on r can be written as

(T̃i(dk)T̃lk(dk−1) · · · T̃l2(d1)Λl1r)
1−(ϕl1(−s1, ·) ◦ ϕl2(−d1, ·) ◦ · · · ◦ ϕlk(−dk−1, ·) ◦ ϕi(−dk, ·)).

It turns out that the functions

1+(ϕl1(−s1, ·) ◦ ϕl2(−d1, ·) ◦ · · · ◦ ϕlk(−dk−1, ·) ◦ ϕi(−dk, ·))

and
1−(ϕl1(−s1, ·) ◦ ϕl2(−d1, ·) ◦ · · · ◦ ϕlk(−dk−1, ·) ◦ ϕi(−dk, ·))

as elements of L∞(0, 1) are, respectively, the constant functions 0 and 1. To see that notice
that for all x ∈ [0, 1] and t > 1 one has

ϕl1(−s1, ·) ◦ ϕl2(−d1, ·) ◦ · · · ◦ ϕlk(−dk−1, ·) ◦ ϕi(−dk, ·) < 0.

Indeed, using that ∂tϕj(t, x) > 1 for all j ∈ {1, . . . ,m}, which implies ϕj(−d, x) 6 ϕj(0, x)−d =
x− d for all d > 0, we deduce

ϕl1(−s1, ·) ◦ ϕl2(−d1, ·) ◦ · · · ◦ ϕlk(−dk−1, ·) ◦ ϕi(−dk, ·)(x) 6

6 ϕl2(−d1, ·) ◦ · · · ◦ ϕlk(−dk−1, ·) ◦ ϕi(−dk, ·)(x)− s1 6

6 ϕl3(−d2, ·) ◦ · · · ◦ ϕlk(−dk−1, ·) ◦ ϕi(−dk, ·)(x)− d1 − s1 6 · · · 6

6 ϕlk(−dk−1, ·) ◦ ϕi(−dk, ·)(x)−
∑k−2

i=1 di − s1 6

6 ϕi(−dk, x)−
∑k−1

i=1 di − s1 6 x−
∑k

i=1 di − s1 =

= x−
∑k

i=1(si+1 − si)− s1 = x− t < 0
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since t > 1 and x ∈ [0, 1]. Therefore, the term Σv is zero whereas Σr equals

m∑
lk=1

· · ·
m∑
l1=1

(T̃i(dk)B22,ilk T̃lk(dk−1)B22,lklk−1
· · · T̃l2(d1)B22,l2l1)(T̃i(dk)T̃lk(dk−1) · · · T̃l2(d1)Λl1r),

which clearly coincides with the ith component of J222···22(dk, . . . , d1)Λr if one uses the expres-
sion (1.3.19). That is, for all i ∈ {1, . . . ,m} one has

(J222···22(dk, . . . , d1)ṽ(·; s1, v, r))i = (J222···22(dk, . . . , d1)Λr)i ,

which implies the equality stated in (1.3.18). The solution of system (1.3.16) with the last
equation removed gives the desired change of variables, which is τh(s1, s2, . . . , sk) = (s1 +
h, s2 + h, . . . , sk + h) and transforms the integral I222···22(t+ h, v, r) into∫ t

−h

∫ sk

−h
· · ·
∫ s2

−h
J222···22(t− sk, sk − sk−1, . . . , s2 − s1)Λrds1 · · · dsk−1dsk,

so that, similarly as done in (1.3.15) and taking into account Λr = v(0), one concludes

‖I222···22(t+ h, v, r)− I222···22(t, v, r)‖Lm∞ 6 h(t+ 1)k−1‖B‖k‖(u, v, r)‖. (1.3.21)

Putting all the estimates together

By using the bounds (1.3.15), (1.3.17) and (1.3.21) in inequality (1.3.14) it follows

‖v̂(·; t+ h)− v̂(·; t)‖Lm∞ < 2k+1h(t+ 1)k−1‖B‖k
∥∥∥∥∥∥
 u

v
r

∥∥∥∥∥∥
X

. (1.3.22)

Finally, (1.3.10) and (1.3.22) are applied in inequality (1.3.7) to obtain

‖(Sk(t+ h)− Sk(t))‖X 6 hMt (1.3.23)

for all t > 1 and h ∈ (0, 1) as stated.

Case h ∈ (max{1− t,−1}, 0)

If h is negative, that is if t > 1 and h ∈ (max{1 − t,−1}, 0), then inequality (1.3.23) can be
applied as

‖(Sk(t+ h)− Sk(t))‖X = ‖(Sk(t+ h+ |h|)− Sk(t+ h))‖X 6 kt+h|h| 6Mt|h|,

since, on the one hand, t+ h is still bigger than 1 and, on the other hand, the constant

Mt = M(‖B‖ sup
s∈[0,t+1]

‖Sk−1(s)‖+ 2k+1(t+ 1)k−1‖B‖k)
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is increasing as a function of t.

Therefore, by combining the results for positive and negative h, one concludes that for t > 1
and h ∈ (max{1− t,−1}, 1) exists a constant Mt (which depends on t) such that

‖(Sk(t+ h)− Sk(t))‖X 6 |h|Mt.

As a corollary of Lemma 1.3.3 and the uniform convergence of the series defining SB (see
the comments that motivated the lemma) we conclude:

Theorem 1.3.4. The semigroup SB generated by A + B (in the sense of Theorem 1.2.5) is
eventually norm continuous.

Then, since K is a compact operator from X into X�∗, Theorems 1.3.4 and 1.2.22 imply:

Theorem 1.3.5. The semigroup S generated by A + B + K (in the sense of Theorem 1.2.5,
using either A+ (B +K) or (A+B) +K) is eventually norm continuous.

Finally, the eventual norm continuity of the linearised semigroup S makes possible to apply
Theorem 1.2.21, so that the following result on linearisation specific to problem (1.1.1) can be
stated:

Theorem 1.3.6. Let (ū, v̄, r̄) ∈ X be a steady state of the semiflow Σ associated to (1.1.1)
and let AS the operator defined in (1.3.4). Then,

(i) (ū, v̄, r̄) is locally asymptotically stable if s(AS) < 0,

(ii) (ū, v̄, r̄) is unstable if there exists ω > 0 such that the spectrum of AS within the region
{λ ∈ C | Re(λ) > ω} is non-empty and is composed only by a finite number of eigenvalues
with finite algebraic multiplicity.

1.4 A model for the gastrointestinal ecosystem

The diversity in gut lengths across hosts makes that, a priori, system (0.0.9) has not the
form of system (1.1.1). Fortunately, we can perform a change in the spatial variables to rewrite
(0.0.9) properly. Such a change is possible because microbes within a host do not affect what
happens in a different host. Indeed, by defining ṽh(x, t) := vh(lh x, t) and ũh(x, t) := uh(lh x, t),
we have, on the one hand, that the spatial domains of ũh,s and ṽh,s are the interval [0, 1] for all
(h, s) ∈ H × S and, on the other hand, that system (0.0.9) transforms into

∂tũh,s(t, x) = gh,s(lh x, ũh(t, x), ṽh(t, x)),
∂tṽh,s(t, x) = −∂x(ch(lh x)ṽh,s(t, x)) + fh,s(lh x, ũh(t, x), ṽh(t, x)),
drs(t)

dt
= ms(r(t)) +

∑
h∈H kh,s(ch(lh)ṽh,s(t, 1))−

∑
h∈H λh,srs(t).

(1.4.1)
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with the boundary condition

ṽh,s(0, t) =
λh,s
ch(0)

rs(t) ∀(h, s) ∈ H × S.

In particular, by considering vectors ũ and ṽ to be indexed by one number instead of two, for
example by writing ũm(h−1)+s instead of ũh,s (analogously for ṽ), then the initial value problem
associated to 1.4.1 has the form of problem (1.1.1). Thus, in order to apply Theorems 1.3.2
and 1.3.6 to system (1.4.1) (which is equivalent to system (0.0.9)) the phase space we have to
work on is the Banach space

X = L∞(0, 1)n×m × Cb
where

Cb =

{
(ṽ, r) ∈ C([0, 1],R)n×m × Rm | ṽm(h−1)+s(0) =

λh,s
ch(0)

rs ∀(h, s) ∈ H × S
}
.

1.5 Discussion

As explained in the introduction, the system analysed in this chapter is motivated by a
model of gut bacteria spreading through the fecal-oral route. The general results derived here
are going to be applied in the next chapter to study the dynamics of some pathogenic bacteria.
Before moving on, however, we want to mention that problem (1.1.3) can be applied not only
to gut microorganisms, but also to substances or living beings inhabiting networks with a
high advection to diffusion ratio and whose vertices behave as well mixed compartments. To
visualise this let us consider a species whose individuals are distributed through a graph. The
spatial coordinates of each individual are given by an edge and a scalar x ∈ (0, 1) denoting
the position within the edge. By using indices i to refer the edges of the graph and denoting
vi(t, x) the density of individuals in position x of edge h, then the dynamics of the population
in each edge can be modelled as

∂tvi(t, x) = −∂x(ci(x)vi(t, x)) + fi(x, vi(t, x)) (1.5.1)

where ci(x) > 0 is the flow within the edge at position x and fi is related to the biological
processes occurring locally at x that depend on the population at that point. In order to
link the dynamics of the different edges, we model the vertices of the graph as independent
compartments. Then, the population rj(t) in a vertex j satisfies

r′j(t) =
∑
i∈In(j)

ci(1)vi(t, 1)−
∑

i∈Out(j)

λji rj(t) + hj(rj(t))

where In(j) are the edges flowing into vertex j whereas Out(j) are the edges taking flow from
vertex j, λji are the per capita rates at which individuals from vertex j enter edge i and hj
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models the intrinsic population changes within the vertex. Notice that the definition of λji
implies boundary conditions at the origin of the edges, namely

ci(0)vi(t, 0) = λj,i rj(t)

for each vertex j and each edge i ∈ Out(j). The above equations form a system that is a
particular case of the one given in (1.1.1). It is particular in the sense that does not involve
the component of type u. It is easy to imagine an extension of the previous model in which the
component u naturally arises. Indeed, if we let the individuals to attach to the edge, then a
new set of dependent variables is needed to denote the density ui(t, x) of individuals attached
at position x of edge i. In this case the arguments of fi in (1.5.1) have to include ui(t, x) and
the dynamics of attached bacteria can be modelled as

∂tui(t, x) = gi(x, vi(t, x), ui(t, x)).

The above construction can be done in a similar way in order to incorporate multiple species.
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Chapter 2

Stability analysis of an enteropathogen
population growing within a
heterogenous group of animals

The content in this chapter is published [8].

2.1 Introduction

Most enteropathogenic microorganisms such as Salmonella, enterotoxigenic Escherichia,
Yersinia or protozoans within the Giarda genus have the potential to infect a broad spectrum
of animals, including humans and livestock. They are able to adhere to the intestinal epithelium
in order to persist in the gut in a way that they may damage some tissues and promote harmful
inflammatory responses. As a consequence, the absorption of nutrients by the infected animal
becomes severely reduced. Hence, before humans turn into a plant based diet, epidemics
driven by enteropathogens must be controlled in farms not only to improve production and the
animal welfare, but also to prevent infection of people through food derivatives, eggs and meat
primarily, or by contamination of rivers and lakes. Nowadays, the rising levels of multidrug
resistant bacteria make the use of antibiotics a controversial option [60], while more ecologically
based alternatives are becoming more popular, such as viral therapy with bacteriophage [2] or
probiotic usage [39].

It is well known that the complex relations between the agents in such epidemiological
scenarios make mathematical modelling a powerful tool to better understand the infection pro-
gression as well as to search and test different strategies designed to prevent and/or eradicate
it (reviewed in [45] and [12]). Several theoretical results exist relating the epidemics evolu-
tion with bacteria-bacteriophage interactions [75, 16, 15], competition between virulent and
innocuous strains [20, 6, 81], or the spatial and physiological structures of the host populations
[46, 86]. They provide valuable information on how we can take advantage of certain processes
in order to treat a group of animals just changing some ecological parameter. However, the link
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between the pathogen ecology inside and outside the host is in general not considered explicitly.
From our point of view this issue deserves to be analysed carefully when dealing with living
beings as therapeutic agents. This may give clues about how the cleaning of animals enclosures
affects the bacterial growth. For example, if the detergents are more harmful for bacteriophage
than for bacteria, then it could be better doing nothing instead of adopting certain hygienic
policies. This work is partially motivated by this idea. Although we are not attempting to
give precise therapeutic protocols, the qualitative results we derive shed some light on how
the external environment together with the structure of the susceptible population affect the
epidemic progression.

Our main goal is to analyse the dynamics of a population of enterobacteria in terms of
some ecological parameters, such as number of susceptible hosts or their sizes. To this end
we focus on a specific competition scenario which is a particular case of the class of models
presented in the introduction, given in (0.0.9). Thus, the theoretical framework developed in
chapter 1 can be applied. This is done in section 2.2, where, in addition to presenting the
equations, conditions on the parameters are given ensuring the existence of an endemic steady
state (Theorem 2.2.7). In Theorem 2.2.11 we apply the theorems of the previous chapter to
show that this equilibrium is stable whenever it exists. In order to study the effects of a phage
therapy consisting in the administration to the host animals of a certain dose of bacteriophage
mixed with their food, the system is extended in order to include the population of phages.
This is done in section 2.3, where the stability of the free bacteria stationary state is also
addressed.

2.2 Spread of bacteria within a population of multiple

hosts

In this section we consider a strain of bacteria growing within the intestines of an hetero-
geneous group of n animals enclosed in the same pen. Let h ∈ H = {1, 2, . . . , n} be an index
for each animal and consider

∂tuh = γh1 (uh)uh + αhvh − δhuh
∂tvh = −ch∂xvh + γh2 (vh)vh − αhvh + δhuh
ṙ =

∑
h∈H(chvh(lh, t)− λhr)− µr

chvh(0, t) = λhr

, (2.2.1)

where, uh(x, t) and vh(x, t) are, respectively, the attached and luminal bacteria found at the
position x of host h at time t, and r(t) is the amount of bacteria in the environment at time t
(see (0.0.9) in the introduction for further details). The parameter lh is the gut length of host
h and ch stands for the velocity of its intestinal flow (here assumed to be constant along the
intestine). Bacteria on the external environment are eliminated at a per capita rate µ and are
ingested by host h at a per capita rate λh. The parameters α and δ are per capita attachment
and detachment rates to the epithelium respectively. The functions γ1 and γ2 are per capita
growth rates. The sub and super indices h indicate that these parameters may depend on
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which host the bacteria is inside. We make the assumption that

∀h ∈ H, γh1 and γh2 are smooth functions on [0,∞), have negative
derivative and are negative valued for large enough arguments,

(2.2.2)

thus reflecting competition interactions both in the epithelium and in the lumen. Notice that
we also assume that bacteria cannot grow in the external media, which means that the soil
acts as a sink for the bacteria. The model may serve to decide if an infective microorganism
such as Salmonella can spread and persist. The linear approximation of the attachment and
detachment rates keeps the equations tractable and allows us to give qualitative results of the
asymptotic behaviour of the population depending on α and δ. However, we are aware that it
seems very difficult to determine experimentally how bacterial cells move from the epithelium
to the lumen and vice versa (see the model in [7], inspired by [38], for an example of non-linear
attachment and detachment rates).

By Theorem 1.3.2 we know that system 2.2.1 together with an initial condition is a well
posed problem on the Banach space

X =

(
n∏
h=1

L∞(0, lh)

)
× Cb

with

Cb =

{
(v, r) ∈

(
n∏
h=1

C([0, lh],R)

)
× R | chvh(0) = λhr

}
.

The stationary states of the system above are the solutions of
0 = γh1 (uh)uh + αhvh − δhuh
0 = −chv′h + γh2 (vh)vh − αhvh + δhuh
0 =

∑
h∈H(chvh(lh)− λhr)− µr

chvh(0) = λhr

. (2.2.3)

Clearly (u, v, r) = (0, 0, 0) is always an equilibrium point, which corresponds to the infection free
scenario. The interesting question is when positive solutions exist depending on the parameters.
To address this issue, we will assume λh > 0 for all h ∈ H, which implies that every host
is susceptible to be infected by environmental bacteria. We refer to such situation as the
reinfection case. At the end of section 2.2 it is shown that if λh = 0 for some h, then system
(2.2.1) becomes degenerate in some sense and a non-numerable set of equilibria may exist.

2.2.1 Stationary states in the reinfection case

Existence of an endemic equilibrium

First of all notice that, using the monotony properties of γh1 , for every scalar ṽh > 0 there
is a unique value ũh = ũh(ṽh) satisfying

γh1 (ũh)ũh + αhṽh − δhũh = 0
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(see the graphical proof in Proposition 2.2.1 below). Moreover, the corresponding function
ũh(ṽh) is increasing, regular and unbounded from above in the domain ṽh ∈ (0,∞). We denote
ũh(0) the limit of ũh(ṽh) as ṽh decreases to zero. The following property relates ũh(0) with the
sign of γh1 (0)− δh.
Proposition 2.2.1. If γh1 (0)− δh ≤ 0, then ũh(0) = 0, and if γh1 (0)− δh > 0, then ũh(0) > 0.

Proof. Realise that ũh(ṽh) is nothing but the inverse function of ṽh(ũh) = −(γh1 (ũh)−δh)ũh/αh,
which takes the following forms depending on the hypotheses.

Notice that if ṽh(ũh) > 0 then ṽ′h(ũh) > 0, and also that ṽ′h(ũh) > δh/αh for large values ũh.

Let (u, v, r) be an endemic equilibrium. The relation between uh and ũh is given by uh(x) =
ũh(vh(x)) provided vh(x) > 0.

Proposition 2.2.2. The component r of any endemic equilibrium (u, v, r) satisfying (2.2.3)
must be positive.

Proof. Suppose r = 0. Then vh(0) = vh(lh) = 0 for all host h since ch > 0 for all h. If
vh(x) ≡ 0, then the second equation in (2.2.3) gives uh(x) ≡ 0. Otherwise, vh(x) is solution of
the scalar differential equation chv

′
h = γh2 (vh)vh − αhvh + δhũh(vh), which is autonomous and

whose right hand side is smooth for vh > 0. Hence, vh(x) is necessarily monotone, which is not
compatible with the boundary conditions vh(0) = vh(lh) = 0 unless vh(x) ≡ 0.

The above observations reduce system (2.2.3) to
v′h = (γh2 (vh)vh − αhvh + δh ũh(vh))/ch =: gh(vh),
vh(0) = λhr/ch,
0 =

∑
h∈H(chvh(lh)− λhr)− µr.

(2.2.4)

Next we are going to show that, if vh(0) > 0, then equation v′h = gh(vh) with initial condition
vh(0) has a well defined solution ϕh(x; vh(0)) > 0 for all x ≥ 0. Therefore, there are as many
non trivial solutions of (2.2.3) as positive solutions r̄ > 0 has the equation

0 =
∑
h∈H

(chϕh(lh;λhr/ch)− λhr)− µr. (2.2.5)

The equilibrium is expressed in terms of r̄ as

ūh(·) = ũh(v̄h(·)) and v̄h(·) = ϕh(·;λhr̄/ch) ∀h ∈ H.

In order to prove the existence of the functions ϕh(x; vh(0)) we use the lemmas below. We
omit the indices h because all we need to use are the structural properties of γh1 and γh2 given
in (2.2.2), which are shared by all hosts.
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Lemma 2.2.3. The function c g(v)
v

= γ2(v)v−αv+δũ(v)
v

is strictly decreasing for v > 0 and it is
either always negative or it vanishes at some value v∞ > 0.

Proof. First we prove the monotony property. Since γ2(v) decreases, it is enough to show
that h(v) := ũ(v)/v is strictly decreasing. From the definition of ũ(v) we obtain the equation
(γ1(vh(v))− δ)h(v) + α = 0, and taking the derivative we have

γ′1(vh(v))(h(v) + vh′(v))h(v) + (γ1(vh(v))− δ)h′(v) = 0.

Therefore, the derivative h′(v) can only vanish if h(v) vanishes too. In addition it is easily seen
that h′(v) < 0 for some v small enough, since limv↓0 h(v) = ∞ if γ1(0) − δ ≥ 0 and, on the
other hand, using L’Hôpital’s rule and the second derivative of the inverse function, we have

lim
v↓0

h′(v) =
1

2
ũ′′(0) = −1

2

ṽ′′(0)

ṽ′(0)3
= −α2 γ′1(0)

(γ1(0)− δ)3
< 0

if γ1(0)− δ < 0. Finally, as h(v) is always positive for v > 0, we conclude that h′(v) < 0 for all
v > 0.

Now we show that γ2(v)v − αv + δũ(v) is negative for v large enough, which implies the
second claim of the lemma. Since γ2(v) eventually becomes negative, it suffices to prove
δ ũ(v) < αv for large values of v. Taking into account the negativeness of γ1(u) for large
arguments, and also that ũ(v) is an increasing function of v unbounded from above, it follows
−γ1(ũ(v))ũ(v) > 0 for v large enough. Then, using that γ1(ũ(v))ũ(v) + αv − δũ(v) = 0 we
finally obtain αv = δũ(v)− γ1(ũ(v))ũ(v) > δũ(v), for all v large enough.

Now we prove two rather general lemmas on autonomous scalar ode’s that will be helpful
to prove existence and uniqueness of the non-trivial steady states (Theorem 2.2.7).

Lemma 2.2.4. Let ϕ(x;ϕ0) be the solution of the initial value problem

ϕ′(x) = f(ϕ(x))ϕ(x), ϕ(0) = ϕ0 > 0,

where f is a strictly decreasing smooth function defined on (0,∞). Then, ϕ(x;ϕ0) is uniquely
defined and positive for all x ≥ 0. Moreover, for any l > 0, the function

h(ϕ0; l) :=
ϕ(l;ϕ0)

ϕ0

is a strictly decreasing function of ϕ0 ∈ (0,∞).

Proof. We start by proving that ϕ(x;ϕ0) is uniquely defined for all x ≥ 0. On the one hand,
either f(ϕ) > 0 for some ϕ > 0 and therefore ϕ(x;ϕ0) increases for ϕ0 small enough, or
f(ϕ) < 0 for all ϕ > 0, in which case one easily obtains the lower bound ϕ(x;ϕ0) ≥ ϕ0e

f(ϕ0)x.
In any case ϕ(x;ϕ0) keeps away from 0 and positive for finite x. On the other hand, ϕ(x;ϕ0)
cannot grow up to infinity for finite positive values of x because, for any ε > 0, f(ϕ)ϕ < f(ε)ϕ
when ϕ ≥ ε.
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Having established that h(ϕ0; l) is well defined for all l > 0, we show that it is strictly
decreasing. Consider 0 < ϕ1 < ϕ2. It is clear that, for any s, 0 < ϕ(s;ϕ1) < ϕ(s;ϕ2)
holds, so that f(ϕ(s;ϕ1)) > f(ϕ(s;ϕ2)) due to the monotony of f . Finally, since lnh(ϕ0; l) =∫ l

0
f(ϕ(s;ϕ0))ds, it follows that h(ϕ1; l) > h(ϕ2; l) for all l ∈ (0,∞).

Lemma 2.2.5. Under the hypotheses of Lemma 2.2.4,

i) If limϕ↓0 f(ϕ) =∞, then limϕ0↓0
ϕ(l;ϕ0)
ϕ0

=∞.

ii) If f(0) := limϕ↓0 f(ϕ) <∞, then limϕ0↓0
ϕ(l;ϕ0)
ϕ0

= ef(0)l

Proof. Notice that ϕ(l;ϕ0) is a positive increasing function of ϕ0. In case i), if ϕ(l;ϕ0) tends
to a positive limit when ϕ0 goes to 0, the conclusion is obvious. Otherwise, since ϕ(x;ϕ0)
increases with x (when ϕ0 is small) and f is a decreasing function, we easily obtain ϕ(l;ϕ0) ≥
ϕ0 + lf(ϕ(l;ϕ0))ϕ0 which clearly implies

lim
ϕ0↓0

ϕ(l;ϕ0)

ϕ0

≥ lim
ϕ0↓0

(1 + lf(ϕ(l;ϕ0))) = 1 + l lim
ϕ↓0

f(ϕ) =∞.

In case ii), limϕ0↓0 ϕ(l;ϕ0) = 0 and the limit of the ratio ϕ(l;ϕ0)/ϕ0 turns out to be undeter-
mined. To resolve this, we compute the first variation ∂2ϕ(l; 0) and we get

ϕ(l;ϕ0) = ϕ(l; 0) + ∂2ϕ(l; 0)ϕ0 + o(ϕ0) = ϕ0e
f(0)l + o(ϕ0),

which gives the claim.

Remark 2.2.6. In case i), ϕ(l;ϕ0) can indeed tend to 0 as ϕ0 goes to 0. An example is given
by f(ϕ) = − ln(ϕ).

Realise that Lemma 2.2.3 ensures that gh(v)/v satisfies the hypotheses on f of Lemma
2.2.4, so that not only ϕh(x; v) exists for any initial condition v > 0, but also satisfies that
ϕh(x; v)/v is a decreasing function with respect to v. Moreover, since gh(v) < 0 if v is large
enough, ϕh(x; v)/v < 1 for such large v values. These properties allows us to prove that (2.2.5)
has at most one positive solution. Indeed, dividing (2.2.5) by r > 0 we get

0 =
∑
h∈H

(
λh
ϕh(l;λhr/ch)

λhr/ch
− λh

)
− µ =: k(r).

The properties of ϕh mentioned above clearly imply that k(r) is an eventually negative de-
creasing function. So, equation (2.2.5) has a unique solution if and only if limr↓0 k(r) > 0, that
is if

lim
r↓0

∑
h∈H

λh
ϕh(lh;λhr/ch)

λhr/ch
> µ+

∑
h∈H

λh . (2.2.6)

Defining

εh :=
λh

µ+
∑

j∈H λj
,

we proceed to prove a theorem which gives necessary and sufficient conditions for the existence
of an endemic equilibrium of system (2.2.1).

46



Theorem 2.2.7. In the reinfection case (i.e., if λh > 0 for all h ∈ H), system (2.2.1) has an
endemic equilibrium if and only if

i) γh1 (0) ≥ δh for some h ∈ H, or

ii) γh1 (0) < δh for all h ∈ H and

∑
h∈H

εhe
lh
ch

(
γh2 (0)−αh+

αhδh
δh−γ

h
1 (0)

)
> 1 . (2.2.7)

This endemic equilibrium is unique whenever it exists.

Proof. Recall that for each gh(v), the function

fh(v) :=
gh(v)

v
=
γh2 (v)v − αhv + δhũh(v)

ch v

satisfies the hypotheses on f of Lemma 2.2.4 (due to Lemma 2.2.3).
In case i), fh(v) tends to infinity at the origin for some host h. Indeed, this is clear if

γh1 (0) > δh since then ũh(0) > 0, whereas if γh1 (0) = δh then ṽh(u)/u = (δh − γh1 (u))/αh → 0 as
u tend to 0 and so ũh(v)/v →∞ as v tends to 0 (recall Proposition 2.2.1 and the definition of
ṽh(u) therein). Hence,

lim
r↓0

ϕh(lh;λhr/ch)

λhr/ch
=∞

by Lemma 2.2.5. Therefore, the limit in (2.2.6) equals infinity and an endemic equilibrium
must exist.

In case ii), fh(v) tends to

1

ch

(
γh2 (0)− αh +

δhαh
δh − γh1 (0)

)
at the origin for all h (since now limv↓0 ũh(v)/v = ũ′h(0) = 1/ṽ′h(0) = αh/(δh−γh1 (0)). Therefore,
by Lemma 2.2.5,

lim
r→0

ϕh(lh;λhr/ch)

λhr/ch
= e

lh
ch

(
γh2 (0)−αh+

αhδh
δh−γ

h
1 (0)

)
.

Then, condition (2.2.6) can be rewritten as (2.2.7) and the theorem is proven.

Stability of the equilibria

Next we give stability results related to the steady states of system (2.2.1). Recall that we
take perturbations within the Banach space X = (

∏
h∈H L

∞(0, lh) )× Cb, where

Cb :=

{
(v, r) ∈

(∏
h∈H

C([0, lh],R)

)
× R | chvh(0) = λhr

}
.
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Let (ū, v̄, r̄) be an equilibrium of (2.2.1), where ū and v̄ have n components, one for each
host. In view of section 2, let A be the generator of the linearised semigroup around (ū, v̄, r̄).
According to (1.3.4), (u, v, r) ∈ X belongs to D(A) if, for all h ∈ H, vh is Lipschitz, v̂h :=
−chvh′ + (γh2 (v̄h)− αh +

(
γh2
)′

(v̄h)v̄h)vh + δhuh is continuous on [0, lh] and

chv̂h(0) = λhr̂,

where r̂ :=
∑

h∈H(chvh(lh, t)− λhr)− µr (recall that v′ indicates the weak derivative of v). In
addition, denoting

ah1(x) := γh1 (ūh(x))− δh +
(
γh1
)′

(ūh(x))ūh(x)

ah2(x) := γh2 (v̄h(x))− αh +
(
γh2
)′

(v̄h(x))v̄h(x)
,

the operator A is given by

A

 u
v
r

 =

 û
v̂
r̂

 where
ûh = ah1(x)uh + αhvh
v̂h = −chv′h + ah2(x)vh + δhuh
r̂ =

∑
h∈H(chvh(lh)− λhr)− µr

. (2.2.8)

Lemma 2.2.8. The spectrum of the linear operator A is the set

σ(A) = σess(A)
⋃
{η ∈ C \ σess(A)|Γ(η) = 0},

where σess(A) =
⋃
h∈H

ess range ah1(·) is the essential spectrum of A and Γ(η) is the characteristic

function

Γ(η) := µ+ η +
∑
h∈H

λh −
∑
h∈H

λh exp

(
1

ch

∫ lh

0

ah2(s)− δh αh
ah1(s)− η

− η ds
)
. (2.2.9)

Proof. By definition, η ∈ σ(A) if the operator A−ηId : D(A)→ X does not have a continuous
inverse. Take (û, v̂, r̂) ∈ X and consider the system

ah1(x)uh + αhvh − ηuh = ûh
−chv′h + ah2(x)vh + δhuh − ηvh = v̂h∑

h∈H(chvh(lh)− λhr)− µr − ηr = r̂
chvh(0) = λhr

. (2.2.10)

Clearly, the system above fails to have a solution for all (û, v̂, r̂) if, for some h ∈ H, the function
(ah1(·) − η)−1 does not belong to L∞(0, lh), and this condition determines the set σess(A). If
η /∈ σess(A), the component uh can be isolated and the equations for vh in (2.2.10) reduce to{

−v′h + 1
ch

(
ah2(x)− η − δh αh

ah1 (x)−η

)
vh = 1

ch

(
v̂h − δh ûh

ah1 (x)−η

)
vh(0) = λh

ch
r

. (2.2.11)
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Solving the above differential equations by means of the variation of constants formula, one in
particular gets

vh(lh) =
λh
ch
r exp

(
1

ch

∫ lh

0

ah2(s)− δh αh
ah1(s)− η

− η ds
)

+ Ih(η, ûh, v̂h) (2.2.12)

where Ih(η, ûh, v̂h) depends continuously on the pair (ûh, v̂h) and can be given explicitly. Finally,
we use (2.2.12) in the third equation of system (2.2.10), so that r must satisfy

−Γ(η) r = r̂ −
∑
h∈H

chIh(η, ûh, v̂h). (2.2.13)

Therefore, since the right hand side of (2.2.13) can be any real value because it depends on
the arbitrary elements ûh, v̂h and r̂, we conclude that system (2.2.10) fails to have a unique
solution for all points (û, v̂, r̂) ∈ X if Γ(η) = 0.

Proposition 2.2.9. If A has a real eigenvalue ηd greater than maxh∈H
(
ess sup ah1(·)

)
, then

there exists ω ∈ R such that ηd > ω > supη∈σ(A),η 6=ηd Re(η).

Proof. Notice that Γ|R : (maxh∈H(ess sup ah1(·)),∞) −→ R is a strictly increasing function, so
that only one real eigenvalue greater than maxh∈H(ess sup ah1(·)) may exist. Assume such a real
eigenvalue, referred as ηd, exists. Now we show that all other complex eigenvalues are located
to the left of ηd. Define, for real ρ and y,

fh(ρ, y) :=
1

ch

(
αhδh

∫ lh

0

(ρ− ah1(x))dx

y2 + (ρ− ah1(x))2
+

∫ lh

0

ah2(x)dx− ρ lh
)

and

gh(ρ, y) := − 1

ch

(
αhδh

∫ lh

0

ydx

y2 + (ρ− ah1(x))2
+ y lh

)
,

which are, respectively, the real and the imaginary part of

1

ch

∫ lh

0

ah2(x)− δhαh
ah1(x)− (ρ+ iy)

− (ρ+ iy) dx.

Then, for all (ρ+ iy) ∈ C with y 6= 0 satisfying maxh∈H(ess sup ah1(·)) < ρ, one can easily check
that fh(ρ, y) < fh(ρ, 0) for all h ∈ H and

Re(Γ(ρ+ iy)) = ρ+ µ+
∑

h∈H λh −
∑

h∈H λhe
fh(ρ,y) cos gh(ρ, y) >

> ρ+ µ+
∑

h∈H λh −
∑

h∈H λhe
fh(ρ,0) = Γ(ρ).

This inequality implies that, if ρ ≥ ηd, then Re(Γ(ρ + iy)) > Γ(ρ) ≥ Γ(ηd) = 0 (recall Γ|R is
increasing), so that (ρ+ iy) cannot be an eigenvalue.

Finally, let us prove that there exists a strip (ω, ηd)× iR in the complex plane which does
not include any spectral value. Choose ω > maxh∈H ess sup ah1(·). Next we show that function

49



Γ can only have a finite number of zeros in the stripe determined by such an ω. On the one
hand, since

lim
|y|→∞

|Im(Γ(ρ+ iy))| = lim
|y|→∞

∣∣∣∣∣y −∑
h∈H

λhe
fh(ρ,y) sin gh(ρ, y)

∣∣∣∣∣ =∞

uniformly in ρ ∈ (ω, ηd), the solutions of Γ(ρ + iy) = 0 within the strip are a bounded set.
On the other hand, since Γ is holomorphic in the stripe, the set of its zeros cannot have
accumulation points. These two facts clearly imply that Γ(η) only vanishes for finitely many
values η within the strip. Hence, for an ω close enough to ηd the strip will not include any
solution of Γ.

Theorem 2.2.10. In the reinfection case (λh > 0 for all h ∈ H),

i) If a non-trivial equilibrium of (2.2.1) exists, then the trivial one is unstable.

ii) If the trivial equilibrium is the only stationary solution of (2.2.1), then it is asymptotically
stable or it is non-hyperbolic (more precisely, such that the spectral bound of A is zero).

Proof. Setting (ū, v̄, r̄) = (0, 0, 0), we obtain ah1(x) ≡ γh1 (0)− δh and ah2(x) ≡ γh2 (0)−αh, so the
characteristic function (2.2.9) reduces to

Γ(η) = η + µ+
∑
h∈H

λh −
∑
h∈H

λhe
lh
ch

(
γh2 (0)−αh−

αhδh
γh1 (0)−δh−η

−η
)
.

Denote ah1 = γh1 (0)− δh. Since limρ↓maxh∈H ah1
Γ(ρ) = −∞ and limρ↑∞ Γ(ρ) = ∞, there exists a

real number ηd > maxh∈H a
h
1 such that Γ(ηd) = 0. Hence, by Proposition 2.2.9, the stability

of the trivial state depends on the sign of ηd (see Theorem 1.3.6). Let us first assume either
γh1 (0) ≥ δh for some h or γh1 (0) < δh for all h and

∑
h∈H

εhe
lh
ch

(
γh2 (0)−αh+

αhδh
δh−γ

h
1 (0)

)
> 1

(i.e. that there exists a non-trivial equilibrium by Theorem 2.2.7). Then, in the first case

ηd > max
h∈H

(γh1 (0)− δh) ≥ 0,

while in the second case we obtain Γ(0) < 0 which also implies ηd > 0. Thus the trivial steady
state is unstable (by Theorem 1.3.6 and Proposition 2.2.9). On the other hand, let us now
assume that the trivial state is the only steady state and that the strict inequality

∑
h∈H

εhe
lh
ch

(
γh2 (0)−αh+

αhδh
δh−γ

h
1 (0)

)
< 1
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holds. Then Γ(0) > 0, so that ηd is negative. In this case, the trivial steady state is stable (by
using 1.3.6 and 2.2.9 again).

Finally notice that the remaining special case γh1 (0) < δh for all h and equality in (2.2.7),
implies Γ(0) = 0 and ηd = s(A) = 0, where s(A) denotes the spectral bound of A. In order
to determine the trivial state stability in this situation other non-linear techniques should be
used, but such an analysis is beyond our scope.

Theorem 2.2.11. The endemic equilibrium is locally asymptotically stable whenever it exists.

Proof. Since, for all h ∈ H, the functions ūh(x) and v̄h(x) giving the endemic equilibrium are
positive and differentiable (it is easy to check that), then ah1(x) and ah2(x) are also differentiable
within [0, lh]. In particular, this implies that Γ(ρ)→ −∞ as ρ tends to maxh∈H(ess sup ah1(·))
from above. We will see that ah1(·) < 0 for all h and Γ(0) > 0, which ensures, due to the
monotony and continuity of Γ, the existence of a unique ηd ∈ (maxh∈H(ess sup ah1(·)), 0) satis-
fying Γ(ηd) = 0. Recall

Γ(0) = µ+
∑
h∈H

λh −
∑
h∈H

λhe
fh(0,0),

where fh is defined in Proposition 2.2.9. Next we show that

fh(0, 0) < ln
v̄h(lh)

v̄h(0)
for all h ∈ H.

Using the positiveness of ūh and v̄h, the assumption (2.2.2) on the functions γ, and the equilib-
rium conditions of (2.2.3), namely 0 = γh1 (ūh)ūh+αhv̄h−δhūh and ch v̄

′
h = γh2 (v̄h)v̄h−αhv̄h+δhūh,

we obtain (recall the definitions of ah1 and ah2 in (2.2.8))

ah1(x) < −αh
v̄h(x)

ūh(x)
< 0 and ah2(x) <

chv̄
′
h(x)− δhūh(x)

v̄h(x)
.

Therefore,

fh(0, 0) =
1

c

(
αδ

∫ l

0

dx

−a1(x)
+

∫ l

0

a2(x)dx

)
<

1

c

(
αδ

∫ l

0

ū(x)

αv̄(x)
dx+

+

∫ l

0

cv̄′(x)− δū(x)

v̄(x)
dx

)
=

∫ l

0

v̄′(x)

v̄(x)
dx = ln

v̄h(lh)

v̄h(0)
,

where the subindex h is supressed in the intermediate steps for ease of reading. Since v̄h(0) =
λhr̄/ch (boundary condition), then

Γ(0) = µ+
∑

h∈H λh −
∑

h∈H λhe
fh(0,0) >

> µ+
∑

h∈H λh −
∑

h∈H λh
v̄h(lh)
v̄h(0)

= µ+
∑

h∈H λh −
∑

h∈H ch
v̄h(lh)
r̄

= 0

where the last equality is due to the equilibrium condition 0 =
∑

h∈H(chvh(lh)−λhr)−µr (see
(2.2.5)). Finally, by means of Theorem 1.3.6 and Proposition 2.2.9 the asymptotic stability of
the endemic equilibrium is proven.
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Biological interpretation and implications

The condition on the parameters appearing in Theorem 2.2.7 together with the stability
results given in Theorem 2.2.10 can be used to predict in which situations bacteria can spread
across the population of hosts. The theoretical results make natural to distinguish the condition
involving one host from the one involving the population as a whole. Therefore, we proceed to
comment them separately.

A spreading scenario will occur if there is a host in which attached bacteria at low densities
proliferate more than they detach. This is what point i) in Theorem 2.2.7 says. Notice that in
this case an outbreak may occur even if bacteria cannot grow in most of the population but only
on a few hosts, whose intestinal epithelium act as a kind of bacterial source or reactor. One
has to be specially aware of this possibility if the microbes in question exert its pathogenesis
through toxins, since theses substances can either accumulate to the environment or be harmful
at low concentrations.

If no host has a gut epithelium acting as a bacterial source, i.e. if γh1 (0) < δh for all host
h, then the fate of the pathogens depend on how they grow and move on the lumen as well
as their degradation rate in the soil. The inequality (2.2.7) synthesizes such information. The
effect of host h is represented by the h summation term. The higher it is, the more bacteria
are produced within such host. As in the previous case, it is enough for the bacteria to be
sufficiently well adapted to a few hosts in order to spread through all the individuals. However,
an outbreak can also occur if bacteria barely grow within each intestine but the host population
is big enough to compensate the losses occurring in the soil. In the first case a few terms of the
summation in inequality (2.2.7) are high enough to satisfy the condition by themselves while
in the second case all the terms are small but the sum of them is greater than one. Clearly,
a precise biological interpretation of these summation terms is needed to use condition (2.2.7)
as a tool to control epidemics driven by enteropathogens. To this end, we consider an isolated
host so that the condition for bacteria to persist is

λ

λ+ ρ
e
l
c

(
γ2(0)−α+ αδ

δ−γ1(0)

)
> 1 . (2.2.14)

The term λ/(λ+ρ) can be thought as the probability that a bacterium in the soil is ingested by
the host before dying. Thus, the other term (the exponential factor) seems to be the expected
number of descendants of this recently ingested bacteria that succeed to leave the intestine.
Indeed, if the product of this two conceptual quantities is greater that one, then each cycle of
infection ends with a greater number of bacteria so they persist. Otherwise, if the product is
lower than one, then the converse holds and bacteria cannot spread. The relation between these
facts and inequality (2.2.14) is what suggested us the interpretation of the exponential factor
given above. If we now return to the system with multiple hosts, then an arbitrary term h of
the summation is interpreted analogously. That is, εh is the probability that a bacterium in
the soil enters host h before dying or being ingested by a different animal while the exponential
term represents the descendants of this bacterium that will leave the intestine. Of course,
this interpretation is only valid when assuming that bacteria are at low concentration so that
the non-linear effects due to competition are negligible. This is why the exponential factors
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in (2.2.7) only depend on the pathogen growth rates at low density (actually at zero). As
expected, the exponential term increases with these growth rates in both the gut lining (γh1 (0))
and the lumen (γh2 (0)). If pathogens grow more than they die in the epithelium (γh1 (0) > 0, but
still in the case γh1 (0) < δh), then the exponential term also increases with the attachment rate
(αh) and decreases with the detachment rate (δh). Conversely, if the epithelium has a kind of
bactericidal effect, then the effects of αh and δh reverse. Similarly, a higher intestinal transit
time (lh/ch) have a beneficial effect on the microbes population if

γh2 (0)− αh
αh

>
δh

γh1 (0)− δh
,

and it is detrimental if the parameters satisfy the converse inequality. One can easily check
that, since αh and δh are non-negative, the above condition is always true if both γh1 (0) and
γh2 (0) are positive, whereas the condition is always false if they are both negative.

We end this section showing how the introduction of animals in which bacteria grow badly
can affect the infection progression. In the field this could be achieved treating part of the
animals in the pen or using different species with physiological particularities. In any case,
they act as bacterial sinks, so that they release less pathogens to the soil than what they ingest
from it. This means that the exponential factor in (2.2.14) associated to them is lower than
one. The hosts producing a net amount of pathogens are characterized by an exponential part
greater than one. Being that said, let us consider a population of n bacterial producers and
m bacterial sinks, whose respective exponential terms are denoted by ep > 1 and es < 1. We
assume that all the animals have the same ingestion rate λ. Then condition (2.2.7) reduces to

λ

µ+ (n+m)λ
(nep +mes) > 1,

so that m(1− es) has to be greater than n(ep− 1)− µ/λ in order to avoid the outbreak. Since
es < 1, if m is large enough then the epidemics will be controlled. Of course, we are assuming
that none of the n producers has an epithelium acting as a bacterial source. Otherwise, (2.2.7)
is nonsense and eradication is no possible using animals acting as bacterial sinks. Although the
previous example is rather simple, we think that it illustrates quite well how to apply the above
theoretical results to real systems once information on the population structure is available.

2.2.2 Stationary states in the case of no reinfection

In the case λ = 0 similar results exist, although the uniqueness of endemic equilibria does
not hold any more. We may restrict to the case n = 1 without loss of generality. This is
so because any animal satisfying λh = 0 does not depend on the infection state of the other
animals. Next we show that when γ1(0) = δ a kind of non-standard bifurcation occurs in which
an uncountable set of equilibriums are suddenly generated. We must say that this subsection
is more a mathematical curiosity rather than a useful biological result. This is because the
continuum of endemic equilibria disappears if diffusion is taken into account, which would be
the case in a more realistic situation.
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Theorem 2.2.12. If λ = 0 and γ1(0) < δ, then the only equilibrium state is the trivial one.

Proof. If γ1(0) < δ, then the equation 0 = γ1(u)u+ αv − δu defines a unique function ũ(v) on
[0,∞) which is Lipschitz and satisfies u(0) = 0. Therefore, a solution (ū, v̄, r̄) of (2.2.3) must
satisfy {

c v̄′ = γ2(v̄)v̄ − αv̄ + δũ(v̄),
v̄(0) = 0,

, (2.2.15)

ū(x) = ũ(v̄(x)), and r̄ = cv̄(l)/µ. However, problem (2.2.15) has a unique solution v̄(x) = 0
because the right hand side of the differential equation is Lipschitz and it vanishes at zero, so
that (ū, v̄, r̄) = (0, 0, 0).

Theorem 2.2.13. If λ = 0 and γ1(0) > δ, then there is an uncountable set of non-trivial
equilibrium states.

Proof. If γ1(0) > δ, then the equation 0 = γ1(u)u+αv− δu defines two functions of v ∈ [0,∞)
that only differ at v = 0. The first one referred as ũ(v) is Lipschitz on [0,∞) and satisfies
ũ(0) > 0. The second one is a version of ũ(v) that vanishes at v = 0, so it is not continuous
at this point. This phenomenon implies that the initial value problem (2.2.15) has multiple
solutions of the form

v̄x0(x) = v̄0(x− x0)1[x0,l](x),

where v̄0(x) is the unique solution of (2.2.15) satisfying v̄0(0) = 0 and v̄0(x) > 0 for all x ∈ (0, l].
Such solution is unique because ũ(v) is positive and smooth within [0,∞). Therefore, for each
x0 ∈ [0, l) there is an associated non trivial equilibrium of the form

(ūx0(x), v̄x0(x), r̄x0) = (ũ(v̄x0(x))1[x0,l](x), v̄x0(x), c v̄x0(l)/µ).

Notice that ūx0 is not continuous at x0 (it has a jump discontinuity of height ũ(0)), so that the
endemic equilibria are isolated as points of X.

At the bifurcation point γ1(0) = δ, the equation 0 = γ1(u)u+αv− δu still defines a unique
function ũ(v) on [0,∞) satisfying u(0) = 0, though ũ(v) fails to be Lipschitz at v = 0. In
this case two situations may occur depending on some integrability properties of the function
h(v) := (γ2(v)v − αv + δũ(v))/c, specifically on the value of the limit

∆0(v0) := lim
ε↓0

∫ v0

ε

dy

h(y)
,

where v0 > 0 is any value such that h(y) > 0 for all y ∈ (0, v0]. Notice that h(v) is positive
for v small enough since, when γ1(0) = δ, ũ(v)/v tends to infinity as v ↓ 0 (see the proof of
Theorem 2.2.7).

Theorem 2.2.14. In the case λ = 0 and γ1(0) = δ,

i) if ∆0(v0) =∞, then the trivial equilibrium is the only solution of (2.2.3),
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ii) if ∆0(v0) <∞, then (2.2.3) has an uncountable set of solutions.

Proof. Consider the differential equation v′(x) = h(v(x)) (the same equation as in (2.2.15))
with initial condition v(0) = v0. Since h(y) > 0 for all y ∈ (0, v0], ∆0(v0) is nothing but the
distance to the left of 0 at which the trajectory through v0 reaches 0, so that v(−∆0(v0); v0) = 0
and v(−x; v0) > 0 if x < ∆0(v0). Therefore, any solution of (2.2.15) satisfying v̄(x0) > 0 for
some x0 > 0 must reach zero at some point in [0, x0), which implies ∆0(v̄(x0)) ≤ x0. This
clearly proves i), and to conclude ii) we can use the same arguments as in Theorem 2.2.13.
However, notice that in this case the functions ūx0 are continuous, so that the endemic equilibria
form a connected set in X.

2.3 Effects of bacteriophage therapy on the spread of

bacteria

System (2.2.1) can be extended in order to include a bacteriophage population used to
control an epidemics in a farm. As a first approximation to this scenario we may neglect the
effects of latency periods of viruses, so that the associated dynamical system takes the form

∂tuh = γh1 (uh)uh + αhvh − δhuh − κh1uhph
∂tvh = −ch∂xvh + γh2 (vh)vh − αhvh + δhuh − κh2vhph
ṙ =

∑
h∈H(chvh(lh, t)− λh1r)− µ1r

∂tph = −ch∂xph + b(κh1uh + κh2vh)ph
q̇ =

∑
h∈H(chph(lh, t)− λh2q)− µ2q

chvh(0, t) = λh1r
chph(0, t) = λh2q + qh0

. (2.3.1)

Notice that two families of new dependent variables have been added to system (2.2.1),
namely ph(x, t) which represent the bacteriophage density in host h being drafted by the
intestinal flow of host h, and q(t) which is the amount of bacteriophage in the soil. We assume
a mass action law for the infection process, where κ1 and κ2 are phage adsorption constants
rates in the epithelium and lumen respectively. Parameter b stands for the amount of viruses
released per infected cell and q0 is the amount of bacteriophage per time unit given to the
animals as part of the therapy.

Our main goal in this section is to show that a non-endemic stationary state always exist
and give a condition on the parameters that determines if it is stable or it is not. We are
specially interested in the dependence of the terms qh0 in the previous condition, since such
parameters are the ones that can be tuned as part of the viral therapy. In the calculations
below we avoid writing so many details as in the previous section since they can be tackled
essentially in the same way.

A mere checking shows that the point (u, v, r, p, q) = (0, 0, 0, p̄, q̄), with

p̄h(x) ≡ λh2 q̄ + qh0
ch

and q̄ =
∑
h∈H

qh0
µ2

, (2.3.2)
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is a steady state of (2.3.1), which corresponds to the non-endemic state or bacteria free scenario.
To study if it is stable or not, we analyse the linearised system around this equilibrium, which
we call A. Specifically, we give a formula for the spectral bound of A, and we show that its
sign determines the stability or instability of the non-endemic state.

Using (1.3.4), we have that A is given by

A


u
v
r
p
q

 =


û
v̂
r̂
p̂
q̂

 where

ûh = (γh1 (0)− δh − κh1 p̄h)uh + αhvh
v̂h = −chv′h + (γh2 (0)− αh − κh2 p̄h)vh + δhuh
r̂ =

∑
h∈H(chvh(lh)− λh1r)− µ1r

p̂h = −chp′h + bκh1 p̄huh + bκh2 p̄hvh
q̂ =

∑
h∈H(chph(lh)− λh2q)− µ2q

, (2.3.3)

with (u, v, r, p, q) in the domain of A if, for all h ∈ H, vh and ph are Lipschitz, v̂h and p̂h are
continuous, and the boundary conditions chv̂h(0) = λh1 r̂ and chp̂h(0) = λh2 q̂ hold (notice that
the constant quantities qh0 do not appear in the last boundary condition because they cancel
out due to the linearisation). In order to simplify the coefficients let us denote

ah1 = γh1 (0)− δh − κh1 p̄h and ah2 = γh2 (0)− αh − κh2 p̄h.

Lemma 2.3.1. The spectrum of the operator A is the set

σ(A) = σess(A)
⋃
{η ∈ C \ σess(A)|Γ1(η)Γ2(η) = 0},

where

σess(A) =
⋃
h∈H

{ah1},

Γ1(η) = η + µ1 +
∑
h∈H

λh1 −
∑
h∈H

λh1e
lh
ch

(
γh2 (0)−κh2 p̄h−αh−

αhδh
γh1 (0)−κh1 p̄h−δh−η

−η
)
, (2.3.4)

Γ2(η) = µ2 +
∑
h∈H

λh2 −
∑
h∈H

λh2e
− lh
ch
η
. (2.3.5)

Proof. We can start proceeding exactly in the same way as in the proof of Lemma 2.2.8. Simply
notice that the components u, v and r of the preimages of (û, v̂, r̂, p̂, q̂) by (A−η I) only depend
on (û, v̂, r̂). This implies that if η /∈ σess(A) and Γ1(η) 6= 0, then for all (û, v̂, r̂, p̂, q̂) the triple
(u, v, r) of the preimage is always well defined. Once we dispose of (u, v, r) in terms of (û, v̂, r̂)
we can use them to compute p and q. First we solve the differential equations for ph(x) taking

into account the boundary conditions ph(0) =
λh2
ch
q as the initial condition. Secondly, using the

resulting expressions for ph(lh) in the last equation of (2.3.3), we obtain a scalar equation for
q. Specifically,

−

(
µ2 +

∑
h∈H

λh2 −
∑
h∈H

λh2e
− lh
ch
η

)
q = q̂ +R(η, û, v̂, r̂, p̂).

where R is a residual term that depends continuously on their arguments. Since the right hand
side can be any value, the above equation fails to have a solution for q if Γ2(η) = 0.
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Next, the characteristic equation from the previous lemma is used to determine the spectral
bound of the operator A. In addition, the conditions needed to apply Theorem 1.3.6 are
verified. Altogether, these two steps prove a stability/instability result related to the non-
endemic equilibrium. As before, we use εh1 as the quotient λh1/(µ1 +

∑
j∈H λ

j
1).

Theorem 2.3.2. In the reinfection case (i.e., if λh > 0 for all h ∈ H), the non-endemic
equilibrium of system (2.3.1) is asymptotically stable if γh1 (0) < δh + κh1 p̄h for all h ∈ H and

∑
h∈H

εh1 e
lh
ch

(
γh2 (0)−αh−κh2 p̄h+

αh δh
δh+κh1 p̄h−γ

h
1 (0)

)
< 1, (2.3.6)

and it is unstable if

i) γh1 (0) ≥ δh + κh1 p̄h for some h ∈ H, or

ii) γh1 (0) < δh + κh1 p̄h for all h ∈ H and

∑
h∈H

εh1 e
lh
ch

(
γh2 (0)−αh−κh2 p̄h+

αh δh
δh+κh1 p̄h−γ

h
1 (0)

)
> 1 (2.3.7)

Proof. In order to compute the spectral bound of A, denoted by s(A), first notice that s(A) ≥
suph∈H a

h
1 . Therefore, since all the solutions of Γ2(η) = 0 have negative real part, to determine

the sign of s(A) we may focus on the zeros of Γ1(η) in the semiplane Re(η) ∈ (suph∈H a
h
1 ,∞).

Since Γ1(η) is increasing on the real line (suph∈H a
h
1 ,∞) and it is unbounded as η goes to both

interval limits, we conclude that a unique real solution ηd > suph∈H a
h
1 of Γ1(η) = 0 always

exist. The inequalities Γ1(η) > 0 and Γ1(η) < 0 reduce to expressions (2.3.6) and (2.3.7)
respectively. Moreover, we can proceed in the same way as in Proposition 2.2.9 to show that
ηd is the solution of Γ1(η) = 0 with higher real part and that there is a gap between ηd and
the real part of the other zeros of Γ1. One can also check that the part of the spectrum related
to the zeros of Γ2 is also dominated by a real value. Therefore, Theorem 1.3.6 can be applied
and we conclude that the non-endemic state of (2.3.1) is stable if s(A) < 0 and unstable if
s(A) > 0. In other words, it is stable if γh1 (0) < δh + κh1 p̄h for all h ∈ H and (2.3.6) holds,
whereas it is unstable whenever condition i) or condition ii) of the statement above holds.

Clearly, the conditions appearing in the above result are nothing but extended versions of
the ones appearing in Theorem 2.2.7. Here they include the bacteriophage dose given to the
animals (in terms of p̄h defined in (2.3.2)). In fact, if qh0 = 0 for all hosts h, then we recover the
same conditions of Theorem 2.2.7. Therefore, the bacteriophage population cannot prevent a
bacterial outbreak by themselves, but an external source of viruses is needed in order to reduce
the term of the left hand side of (2.3.6) below 1. In other words, without an administration
of new viral particles to the system, phage only partially reduce the mean level of bacteria
when these are able to grow in a free-phage environment. Conversely, if qh0 is large enough for
some h, then the stability of the free bacteria state is guaranteed. Indeed, the left hand side

57



Figure 2.1: Bifurcation diagram showing epidemic progression (dark regions) or eradication
(white regions) in a system with two hosts. The changing parameters are the fraction of
bacteriophage given to the first host (q1

0/(q
1
0 + q2

0) ranging from 0 to 1) and its detachment rate
(δ1 ranging from 0 to 1.5). The bacterial and bacteriophage distributions along the intestine
once the system has converged to the equilibria are shown for two different set of parameters
A and B. The dashed line refers to attached bacteria while gray color is used for host one and
black for host two. The other fix parameters used to do the numeric simulations are the total
bacteriophage dose per time unit q1

0 + q2
0 = 11 and: ch = lh = 1, γh1 (u) = 1− u, γh2 (v) = 1− v,

αh = 4, b = 4, κh1 = 0.06, κh2 = 0.1, λh1 = λh2 = 0.1, µ1 = 0.4 and µ2 = 0.1 for all h ∈ 1, 2 and
δ2 = 0.5. Notice that the two hosts only differ in their detachment rate (δ1 and δ2) and the
treatment received (q1

0 and q2
0).

of (2.3.6) converges to 0 as p̄h grows to infinity for all h, and this condition holds provided
qh0 →∞ for some h. Such a behaviour depending on the phage dose is not a big surprise, since
something similar happens in the simplified system{

Ṡ = (a− S)S − k SP
Ṗ = bSP −mP + P0

,

in which the only equilibrium in the S = 0 axis is (0, P0/m) and it is asymptotically stable if
and only if P0 ≥ am/k. In particular, notice that both in our case and in this simplified model,
the so called burst size b does not play a role in the stability of the uninfected equilibrium.

From our point of view, the main contribution of condition (2.3.6) is that it may be used
to compute efficient phage doses in non homogeneous populations, such as the ones found
when a pen harbours animals of different species or ages. For example, it could be useful
to decide whether to split a given dose among all the animals or, alternatively, to treat only
a few of them and take advantage of their capacity to produce bacteriophage particles. To
illustrate this idea we show in Figure 2.1 a bifurcation diagram for a system with two hosts.
We assume that a given amount per time unit Q of bacteriophage is used to treat the animals,
so that q1

0 + q2
0 = Q. All the parameters are fixed but the detachment rate of the first host

and the distribution of bacteriophage given to the couple. Thus, the abscissa axis represents
the proportion of bacteriophage received by the first host while the ordinate axis indicates its
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detachment rate. The detachment rate of the second host is constant but its bacteriophage dose
changes according to q2

0 = Q− q1
0. The gray scale in the graphic reflects the amount of bacteria

in the external media once the system has converged to an equilibrium, so that parameters
in the darker zones imply larger epidemic states while parameters in the white zone control
the infection. The gray curve splitting these regions has been drawn taking into account the
theoretical conditions of Theorem 2.3.2, so that the figure also provides a computational check
to the analytical results of the paper. Observe that in this scenario a set of effective ways to
dispense the viral particle among the two animals always exist, even when the detachment rate
of the first host vanishes. The strategies that avoid the spread of bacteria require treating both
animals when they have low detachment rates. If the detachment rate of the first host is high
enough, then eradication can also be achieved by giving all the bacteriophage to the second
animal. However, the black region in the right of the graphic indicates that the epidemic control
is not guaranteed independently of the dosing strategy. Even when the first host has a very
high detachment rate, bacteria manage to proliferate if only a small percentage of the therapy
is directed to the second host which has a low detachment rate. This phenomenon in which
control is possible only for some dosage patterns appears in many other sets of parameters.
Although the difficulty in estimating some of the parameters appearing in condition (2.3.6),
we think that this expression can be a useful starting point to get some intuition about how
to distribute the bacteriophage among the animals.

2.4 Discussion

Reinfection phenomena of enteropathogens may have a critical role in epidemic outbreaks.
In the present paper we have followed the ideas of [11] to show how the structure of the host
population determines the proliferation of bacteria within the ecosystem. This relation is illus-
trated by means of a condition involving important ecological parameters, such as reinfection
probabilities, residence times of bacteria within the intestines and local bacterial growth rates
(see Theorem 2.2.7). Interestingly, the condition we are referring to is neither the basic repro-
duction number R of the bacterial population nor its population growth rate [27, 80]. Rather,
it resembles the expected number of bacteria that will leave the intestines as a result of a
founder bacterium in the soil. We think that this quantity emerges as a result of the different
scales of the model, namely the dynamics within the intestines and the dynamics in the soil.
This suggests that other biologically relevant values that determine the dynamics of a given
population may exist, whose empirical computation could be easier and more natural in com-
parison with the one used to obtain, for example, R. In the next chapter this issue is treated
with more detail.

The results obtained in this chapter leave many open questions related to the asymptotic
behaviour of the trajectories. Preliminary simulations suggest that the only locally stable
equilibrium found in system (2.2.1) is indeed a global attractor. However we could not find
a formal proof for that. In relation to the extended system with bacteriophage (2.3.1), such
a global property could not hold. In fact, in this scenario it is not easy at all to prove the

59



existence of an endemic equilibrium when the trivial one is locally unstable (at least using the
same techniques of this paper). This implies solving a system of two differential equations with
a boundary condition that links the trajectory endpoints. In order to address this problem
general results from bifurcation theory could be applied [17]. Finally, we must say something
about possible extensions of systems (2.2.1) and (2.3.1). Among the many refinements these
models may include, we are specially interested in generalising the constants ch, which give the
speeds of the intestinal flows, into time-periodic functions ch(t). This not only would improve
the model realism, but it would also represent a tool for studying how feeding patterns may
affect the microbial dynamics.
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Chapter 3

On the reproduction number of a gut
microbiota model

The content in this chapter is published [9].

3.1 Introduction

Population density plays an important role in regulating the dynamics of the population.
When many individuals are sharing the same niche, the interactions between them and their
effects on the environment are by no means negligible. At low densities, however, these inter-
actions and effects are rare. This implies, on the one hand, that the environment is essentially
insensitive to the population and, on the other hand, that the individuals behave mainly as
independent agents. Mathematically, these two properties translate into a linear dynamical
system describing the changes of the modelled population. Of course, if the environment is
not stable but changes according to its own dynamics (due to the seasons or to the resident
communities), then the system may become non-autonomous, but it will still be linear. The
linearity is commonly lost when modelling populations at higher densities, and this explains
why it is easier to analyse the colonization success of a group of living beings than predicting
what will happen to them in the long run. Fortunately, in many applications the interesting
questions are related to the initial steps of an invasion event. Indeed, any species reintroduc-
tion program must perform studies to know under which conditions a small group of animals
or plants are able to expand in a given place. Epidemiology cares about the factors that pre-
vent the proliferation of small inoculations of microbes. Evolution itself deals with low density
populations since mutants are necessarily rare (at least when they are generated).

The linear model reflecting the dynamics of a population at low densities is the main
mathematical tool the (deterministic) modeller has at hand in order to answer if the population
tends to grow or, alternatively, becomes extinct. The standard way to do that is by computing
the highest per capita rate at which the population can grow, that is the Malthusian parameter
in the terminology of demography. In principle if this rate is positive then the population
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increases whereas it decreases if the rate is negative. It is worth saying that the above relation is
relatively easy to formulate and prove if the linear system is autonomous and finite dimensional.
Complications arise either in the non-autonomous setting (i.e., when the environment changes
with time) or when the population structure cannot be specified by a finite number of quantities
[87, 47, 4]. In any case, since the Malthusian parameter is a rate, it not only reflects the
qualitative behaviour of the population, but it contains information about the velocity at
which the changes occur.

An alternative approach to analyse the stability of the linear model is based on the popu-
lation ratio between successive generations, so that values above one would imply proliferation
and values below one regression. Here the term generation is not specified, but it can be defined
in different ways to highlight important aspects of the model. Classically, two successive gen-
erations have been characterized by the fact that the individuals in the later generation are the
offspring of the former one. When this definition is taken into account the ratios between suc-
cessive generations converge to the famous basic reproduction number [27, 80], roughly defined
as the expected number of offspring produced by each member of the population. However, as
Cushing and Diekmann have noticed in a recent paper [25], different interpretations of what
a birth event is, give rise to different generational schemes, and hence alternative basic repro-
duction numbers are obtained. See [82] where it is shown that the growth rate has the same
sign as R − 1 for ode models and [80] where this significant result is generalized to infinite
dimensional models.

The range of suitable quantities to determine the growth of a population lead us to wonder
if some of them are better than others. From the mathematical point of view little differences
exist. The Malthusian parameter and the basic reproduction numbers are related to the spectral
properties of certain operators, so that technical difficulties are more or less comparable. In
contrast, some of these numbers may be much easier to compute empirically than others. Thus,
it is on the biological side of the problem where one should focus on to decide which birth event,
though artificial, is accessible and measurable.

In this chapter we use our model (2.2.1) for the growth of intestinal bacteria to show which
kind of birth events lead to useful reproductive numbers. To this end, we consider the linearised
version of (2.2.1) around the free bacteria equilibrium, which, in the case of an isolated host
(i.e. n = 1), takes the form

∂tu(x, t) = γ1u(x, t) + αv(x, t)− δu(x, t)

∂tv(x, t) = −c∂xv(x, t) + γ2v(x, t)− αv(x, t) + δu(x, t)

b′(t) = cv(l, t)− ρb(t)− µb(t)
cv(0, t) = ρb(t)

, (3.1.1)

with γ1 and γ2 being the bacterial intrinsic rates of increase in the epithelium and the lumen re-
spectively (notice that in this chapter we use b instead of r and ρ instead of λ). The asymptotic
behaviour of the bacterial population is then analysed from two generational points of view.
By considering that two bacteria are born when a mother bacterium divides, the standard re-
production number is obtained. Although biologically meaningful, the derived expression this
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way does not have a clear mechanistic interpretation to work with. A more understandable
reproduction number is obtained when, instead, we consider that bacteria are “born” at the
moment they leave the intestine. Moreover, it is shown how the rationale behind this number
makes possible to design experiments for its empirical computation.

The chapter is organized as follows. Section 3.2 is a brief introduction to the generational
perspective of population dynamics problems, based primarily on [27]. In Section 3.3, we
properly derive the next-generation operator associated to model (3.1.1) and explicitly compute
its spectral radius which gives the standard reproduction number. Similarly, Section 3.4 is
devoted to the alternative reproduction number based on counting the amount of bacteria that
leave the intestine and descend from a bacterium originally at the external media. A little
algebra is enough to show that both reproduction numbers coincide and are equal to one at the
extinction threshold. In Section 3.5, assuming trade-offs between parameters, we study if both
reproduction numbers are maximized at the same parameter values. Finally, in Section 3.6 we
present the design of two possible experimental procedures that could be used to approximate
the determination of the alternative reproduction number in real situations.

3.2 Next-generation Operator framework

The dynamics of a population can be analysed from a generational point of view by giving
the distribution of newborns of the different generations in terms of a founder population
(here by distribution we refer to a non-normalized density). This is achieved by considering
the next-generation operator (G1) defined as the function that takes a founder population
and returns the state-at-birth distribution of its first descendants. Clearly, in an autonomous
system and under the assumption that individuals behave independently (i.e. no interactions
between them), the next-generation operator becomes linear. In this case, the state-at-birth
distribution of the n-th generation pn of a founder population p0 is given by

pn = Gn
1p0,

simply because the n-th generation of newborns acts as the founder population of the (n+ 1)-
generation. This formula can be used to compute the mean offspring-per-descendant of a
founder population p0. The concept offspring-per-descendant refers to the expected amount
of newborns produced by a certain descendant. Obviously, depending on the state-at-birth of
the descendant (or the state-at-foundation if the descendant is actually a founder) this number
will be higher or lower. However, when we take the average of these values we end up with a
number related to the fecundity of the descendants as a whole, which commonly determines
the population dynamics [80]. To compute this average define the norm || · || as the one that
corresponds to the total number of individuals of a population distribution, so we can think
of || · || to be the L1 norm. Then, if we distribute uniformly all the n-th descendants among
the individuals in the founder population, it can be said that each founder individual has, on
average,

||Gn
1p0||
||p0||
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n-th descendants. Similarly, it can also be said that the offspring of each individual below the
n-th generation is

n

√
||Gn

1p0||
||p0||

on average. This is so because the amount of individuals in each level of the genealogical tree
grows geometrically if everybody has the same number of offspring. In particular, notice that
the mean offspring per individual may change depending on the number of generations we use
to compute it. However, if the limit

lim
n→∞

n

√
||Gn

1p0||
||p0||

exists, then it gives the mean offspring-per-descendant taking into account all the lineages of
the founder individuals, which are represented by p0. In fact, the upper limit is bounded from
above by

lim sup
n→∞

n

√
||Gn

1p0||
||p0||

≤ lim
n→∞

n
√
||Gn

1 ||, (3.2.1)

and for a generic founder population p0, this bound is attained [27]. This motivates the defi-
nition of Reproduction number (R) as the mean offspring-per-descendant of a generic founder
population that has colonized the environment. Thus, R is essentially independent of the
founder population and coincides with the right hand side of expression (3.2.1), which in turn
is equivalent to the spectral radius of the next-generation operator (denoted by ρ(G1)), i.e.,

R = lim
n→∞

n
√
||Gn

1 || = ρ(G1).

Alternatively, the Reproduction number can also be defined as the expected number of
offspring produced by a typical individual [27], where a typical individual can be understood
as a random descendant of the n-th generation of any generic founder population p0 as n tends
to infinity. Formally,

R = lim
n→∞

E(Offspring(Zn)) = lim
n→∞

E(||G1δZn||)

where δZn is the Dirac mass at Zn and Zn is a random variable with probability density pn
given by

pn =
Gn

1p0

||Gn
1p0||

, n ≥ 1.

Although the sequence {pn}n∈N depends on the founder population p0, generically, as n goes to
infinity the vectors pn tend to align along the eigenspace corresponding to the largest eigenvalue
of G1, which is independent of p0 and precisely

lim
n→∞

n
√
||Gn

1 ||. (3.2.2)
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In particular, the sequence of norms ||G1pn|| converge to the expression (3.2.2) as n goes to
infinity. Thus,

R = lim
n→∞

E(||G1δZn||) = lim
n→∞

∫
||G1δz||pn(z)dz = lim

n→∞
||G1pn|| = lim

n→∞
n
√
||Gn

1 ||,

which gives the same value obtained in the previous interpretation. In fact, since (3.2.2) is equal
to the spectral value of the next-generation operator, the reproduction number is sometimes
defined directly as the spectral radius of G1.

In [27] it is shown how to obtain the next-generation operator from the linear dynamical
system that determines the population growth. Briefly, in these cases one has to distinguish
the linear operator B associated to the birth part from the linear operator −M , which gives the
transition part in the population dynamics model. The birth part contains all the information
related to new individuals entering to the system while the transition part is everything else
so that B−M is the operator that generates the dynamical system. For a given population p,
the product B pdt gives the state-at-birth distribution of the offspring produced by p during
dt units of time. The problem is that p is not fixed through time since it is affected by the
biological process collected by −M . To solve this issue, the idea is to firstly consider the system
without births and study how the individuals of the population move through the state space
and die. If −M generates a strongly continuous semigroup T−M(t) on some Banach space X,
then for each population distribution p0 ∈ X the image T−M(t)p0 gives the distribution of the
population at time t due to transitions in the state space. The number of deaths occurred
during the time window [0, t] is simply ||p0|| − ||T−M(t)p0||. In principle this number cannot
be negative because this would imply that some new individual has entered the system, but
this is not possible by definition of the operators M and B. Moreover, since we are dealing
with living beings, a reasonable and useful assumption is that the death rate of any individual
is strictly positive. Mathematically, this amounts to the existence of a negative number that
bounds from above the real part of all the spectral values of −M , so that 0 belongs to the
resolvent set of −M and the formula∫ ∞

0

T−M(t)p0 dt = M−1p0 holds ∀p0 ∈ X . (3.2.3)

This follows from the fact that the resolvent of the generator is equal to the Laplace transform
of the semigroup [34]. Then, provided B is a bounded operator, the next-generation operator
can be written as

G1p0 =

∫ ∞
0

B T−M(t)p0 dt = B

∫ ∞
0

T−M(t)p0 dt = BM−1p0 .

Although there are different ways to express the next-generation operator, the formula G1 =
BM−1 is really useful when the population dynamics is given in terms of a differential equation
as in (3.1.1).
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3.3 Standard generational approach of the model

In this section we compute the next-generation operator associated to system (3.1.1) as well
as the reproduction number of the system in terms of the model parameters. We consider that
two bacteria are born when a mother cell divides (and, hence, also dies). This definition of a
birth event in a bacterial population is the standard one, so that the generational approach we
are going to follow is the usual one.

3.3.1 Next-Generation Operator

In order to compute the birth part B in (3.1.1) we must specify precisely the meaning of
γ1 and γ2 in the model since for the moment these are growth rates that take into account cell
division as well as cell death. It is possible to take auxiliary parameters d and m for the division
and mortality rates respectively, in order to express growth rate as γ = 2d− d−m (assuming
symmetrical division, i.e., the mother cell disappears giving rise to two descendants). The value
of R depends then on the relation between the values of the parameters d and m. However,
the critical value R = 1 is independent of the values of d and m provided that γ = d−m. For
this reason and in order to simplify notation, we will assume that the death rates of bacteria
inside the intestine are zero and we will use γ as division rate. In this case,

B

 u
v
b

 =

 2γ1u
2γ2v
0

 , M

 u
v
b

 =

 γ1u− αv + δu
cv′ + γ2v + αv − δu
−cv(l) + ρb+ µb

 ,

and the next-generation operator is formally given by

G1 = BM−1 =

 2γ1 0 0
0 2γ2 0
0 0 0

 γ1 + δ −α 0
−δ c∂x + γ2 + α 0
0 −cδl ρ + µ

−1

where δl stands for the evaluation operator at the point x = l. In the expressions above we
consider M as a closed linear operator on the Banach lattice X = L1(0, l)× L1(0, l)× R with
domain D = L1(0, l) × {(v, b) ∈ W 1,1(0, l) × R : cv(0) = ρb}. Notice that the space we use in
this chapter does not belong to the class of spaces used in chapters 1 and 2. This is because in
the previous chapters we were interested in the dynamics of non-linear systems for which the
L1 norm presented some inconveniences (see the introduction in chapter 1), whereas here we
already have a linear system and we want to “count individuals” (hence we use the L1 norm).
It can be checked that −M is the generator of a positive strongly continuous semigroup and
that 0 does not belong to the spectrum of M , which implies that M−1 is a bounded positive
operator on X. Therefore, since B is also a bounded positive operator, BM−1 turns out to be
a positive bounded linear operator on X.

Throughout the rest of the paper, we avoid the degenerate case γ1 = δ = 0 and we assume
γ1 > 0 or δ > 0 (as well as c > 0, ρ > 0 and b > 0).
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3.3.2 Basic reproduction number

We are going to compute the basic reproduction number R which is interpreted here as the
expected number of newborns produced by each bacterium (in the long run). In our case, the
limit that defines R (see Section 3.2) coincides with the spectral radius of the next-generation
operator, so that R = ρ(BM−1). Recall that the spectral radius of a positive bounded linear
operator always belongs to the spectrum of the operator, see e.g. [72]. Thus, we restrict to the
computation of real spectral values of BM−1.

Let us consider the operator Lλφ̂ := BM−1φ̂− λφ̂ defined on X. Denoting φ = M−1φ̂, we
have that Mφ = φ̂ and hence that Lλ is surjective if and only if Range(B − λM) is the whole
space X. Notice that

λ̃ =
2γ1

γ1 + δ

belongs to the spectrum σ(BM−1). Indeed, the first component of the image by (B − λ̃M) of
any (u, v, b) ∈ D equals to λ̃αv ∈ W 1,1(0, l). Hence, (B − λ̃M) is not surjective. Moreover,
notice that 0 ≤ λ̃ < 2.

Now we are ready to show that BM−1 always has a unique real spectral value larger than
the value λ̃ computed above, and therefore the former will coincide with the spectral radius.
Actually, it will be a positive eigenvalue.

Indeed, let us compute the inverse of the operator (B − λM) for λ > λ̃, i.e., let us look for
solutions of

(B − λM)

 u
v
b

 =

 f
g
k

 .

From the first equation (2γ1u(x)− λ(γ1u(x)− αv(x) + δu(x)) = f(x)) we obtain

u(x) =
αv(x)

γ1(1− 2/λ) + δ
− f̃(x) , (3.3.1)

for a suitable function f̃ , where the denominator does not vanish since λ > λ̃. From the second
equation, we obtain

cv′(x) =

(
−(γ2 + α) +

αδ

γ1(1− 2/λ) + δ
+

2γ2

λ

)
v(x) + g̃(x) and cv(0) = ρb ,

for a suitable function g̃ and setting z = 1− 2/λ, it can be written as

cv′(x) = −
(

αγ1z

γ1z + δ
+ zγ2

)
v(x) + g̃(x) and cv(0) = ρb . (3.3.2)

Note that z takes values in the interval (−δ/γ1, 1] which always contains the value 0. The
solution of equation (3.3.2) is given by

v(x) =
ρb

c
e
−
(
αγ1z
γ1z+δ

+zγ2

)
x
c +

1

c

∫ x

0

e
−
(
αγ1z
γ1z+δ

+zγ2

)
x−y
c g̃(y) dy , (3.3.3)
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Finally, using the last component we obtain

(
−ρe−

(
αγ1z
γ1z+δ

+zγ2

)
l
c + ρ+ µ

)
b = k̃ for a suitable

number k̃, so that, a generic (f, g, k) has a unique pre-image if and only if

F (z) :=
ρ

ρ+ µ
e
−
(
αγ1z
γ1z+δ

+zγ2

)
l
c 6= 1 .

Since the function F (z), defined for z ∈ (−δ/γ1, 1], decreases, tends to infinity as z ↓ − δ
γ1

and fulfils F (0) = ρ
ρ+µ
≤ 1 , the existence of a unique z∗ ∈ (− δ

γ1
, 0] such that F (z∗) = 1 is

guaranteed. Moreover, F (z∗) = 1 is transformed into
(
αγ1z∗

γ1z∗+δ
+ z∗γ2

)
= c

l
ln ρ

ρ+µ
=: A ≤ 0 and

thus

z∗ =
−(αγ1 + δγ2 − γ1A) +

√
(αγ1 + δγ2 − γ1A)2 + 4γ1γ2δA

2γ1γ2

. (3.3.4)

So, λ = 2/(1−z∗) > λ̃ is the largest real spectral value of BM−1, and then it is the spectral
radius R. Actually, it is an eigenvalue with associated eigenfunction:

v(x) = b
ρ

c
exp

{
−
(

αγ1z
∗

γ1z∗ + δ
+ z∗γ2

)
x

c

}
,

u(x) =
α

γ1z∗ + δ
v(x) , and b 6= 0 .

In summary, the basic reproduction number for the gut microbiota model (3.1.1) is explicitly
given by

R =
2

1− z∗
(3.3.5)

with z∗ ≤ 0 defined in (3.3.4). As expected, it is not bigger than 2.

3.4 Alternative generational approach of the model

This section is as the previous one with the difference that we depart from a different
definition of birth event. Here we consider that the offspring of a mother cell originally in the
external media are all the bacteria that leave the intestine and descend from her. Somehow
one can think of the mother cell as an extended organism composed by all its clones while in
the intestine. When each of these clones leaves the host it becomes a new individual, in fact it
becomes a daughter of the mother cell. Although this interpretation is certainly strange and
artificial, it leads to an alternative reproduction number closely related to the biology of the
problem.

The birth part B and the transition part M in (3.1.1) assuming that births occur at the
moment that bacteria leave the intestine is simply

B

 u
v
b

 =

 0
0

cv(l)

 , M

 u
v
b

 =

 −γ1u− αv + δu
cv′ − γ2v + αv − δu
ρb+ µb

 ,
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where we recall that δl is the evaluation operator at the point x = l. As in the previous section,
we consider M as a closed linear operator on the Banach lattice X = L1(0, l) × L1(0, l) × R
with domain D = L1(0, l)× {(v, b) ∈ W 1,1(0, l)× R : cv(0) = ρb}.

Since now we are dealing with a special birth definition, some individuals may be produced
in the transition part. This invalidates the formula given in (3.2.3) when the spectral bound
of the semigroup generated by −M is positive. In fact, this is the case if γ1 ≥ δ, which means
that the attached bacteria grow faster than they detach. In terms of the concepts introduced
at the beginning of this section, this implies that a part of the mother (some of its clones) is
attached forever and never leaves the intestine, so that it is immortal and produces infinitely
many daughters. Thus the reproduction number in this case is infinite. If γ1 < δ, then the
spectral bound of −M is negative and the next-generation operator becomes

G1 = BM−1 =

 0 0 0
0 0 0
0 cδl 0

 −γ1 + δ −α 0
−δ c∂x − γ2 + α 0
0 0 ρ + µ

−1

.

Clearly, due to the birth part B, the operator G1 can only have eigenvectors which are
multiples of (0, 0, 1). By performing a calculation similar to the one in the previous section,

we obtain that the eigenvalue associated to (0, 0, 1) is ρ
ρ+µ

e

(
αγ1
δ−γ1

+γ2

)
l
c . So, the alternative

reproduction number obtained with the birth events detailed above is given by

R̃ =
ρ

ρ+ µ
e

(
αγ1
δ−γ1

+γ2

)
l
c (3.4.1)

if γ1 < δ and R̃ =∞ if γ1 ≥ δ.
Finally, we can check that R > 1 if and only if R̃ > 1 (and the same respectively when

R = 1 and R < 1). Indeed, recall that R = 2/(1− z∗) where z∗ is the only solution of

F (z) =
ρ

ρ+ µ
e
−
(
αγ1z
γ1z+δ

+zγ2

)
l
c = 1 ,

within the interval (−δ/γ1, 0) (see section 3.3). Therefore, if γ1 ≥ δ (so that R̃ =∞ > 1), then
necessarily z∗ ∈ (−1, 0) which implies R > 1. Otherwise, i.e. if γ1 < δ, then z∗ ∈ (−1, 0) if and
only if F (−1) > 1 (recall that F (z) is decreasing). Since F (−1) is precisely R̃ when γ1 < δ,
the previous equivalence implies that R > 1 if and only if R̃ > 1. Analogously, one can prove
that R < 1 if and only if R̃ = F (−1) < 1.

3.5 Optimal reproduction number

So far we have obtained two explicit expressions of the basic reproduction number for the
gut microbiota model, coming from two interpretations of what a birth event is for such a
population. Namely, the standard one

R =
2

1− z∗
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with z∗ the non-positive solution of the quadratic equation
(
αγ1z∗

γ1z∗+δ
+ z∗γ2

)
= A with A =

c
l
ln ρ

ρ+µ
, and the alternative one

R̃ =
ρ

ρ+ µ
e

(
αγ1
δ−γ1

+γ2

)
l
c .

The parameters of the model can be classified into two groups. Increasing each parameter
in the first group enhances the probability of infection (ρ), the proliferation (γ1 and γ2) and the
permanence time of the bacteria inside the intestine (l and α), respectively, whereas increasing
each parameter in the second group enhances the exterior mortality (µ) and the expulsion rate of
bacteria from the intestine (δ and c), respectively. Note that an increase of the environmental
bacteria mortality reduces the reinfection probability and that an increase of the bacteria
expulsion rate reduces the average time of permanence within the host. This means that
both reproduction numbers, R and R̃, are increasing in ρ, γ1, γ2, α, l and decreasing in µ, δ, c.
Therefore, in absence of trade-offs between ecological parameters of the model, a competition
between types of bacteria would evolve to ever-increasing or ever-decreasing values of any
single parameter of the model. However, if there exists some trade-off between two parameters
one would expect to find a type of bacteria maximizing the basic reproduction number and
therefore being a candidate to persist among the other types. See e.g. the papers [62, 70] on
the evolution of virulence in epidemic models. Since we have taken two different approaches,
one question arises here: assuming the same trade-off function, would standard and alternative
reproduction numbers maximize at the same point?

To answer the question and in order to illustrate the richness of the model we have con-
sidered, on the one hand, a trade-off between detachment rate and division rate of attached
bacteria: δ(γ1) as an increasing function, and on the other hand, a trade-off between attach-
ment rate and division rate of free bacteria: α(γ2) as a decreasing function. The first situation
reflects the feasible fact that, during mitosis, attached bacteria lose adherence to the epithe-
lium. The second situation assumes that free bacteria with high division rates tend to be less
sticky, possibly because adhesion molecules are not synthesized.

Let us study which value of γ1 maximizes R and R̃ under the assumption that δ increases
with γ1. To this end we consider

R(γ1) =
2

1− z∗(γ1)
and R̃(γ1) =

ρ

ρ+ µ
e

(
αγ1

δ(γ1)−γ1
+γ2

)
l
c ,

with z∗(γ1) satisfying
(

αγ1z∗(γ1)
γ1z∗(γ1)+δ(γ1)

+ z∗(γ1)γ2

)
= A. The critical points of z∗(γ1) are given

implicitly as the solutions of

d

dγ1

(
αγ1z

∗(γ1)

γ1z∗(γ1) + δ(γ1)
+ z∗(γ1)γ2

)
= 0,

which implies, using d
dγ1
z∗(γ1) = 0, that γ1 is a critical point of z∗(γ1) if and only if

d

dγ1

δ(γ1)

γ1

= 0. (3.5.1)
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Since R is increasing with z∗, see (3.3.5), the above equation also gives a characterization of
the critical points of R(γ1). On the other hand, the critical points of R̃(γ1) satisfy

d

dγ1

(
ρ

ρ+ µ
e

(
αγ1

δ(γ1)−γ1
+γ2

)
l
c

)
= 0,

which reduce precisely to condition (3.5.1). Thus, the critical points of R(γ1) coincide with
the critical points of R̃(γ1), and it is the case that γ1 is a local maximum of R(γ1) if and only
if it is a local maximum of R̃(γ1) (see Figure 3.1, left).

Interestingly, the previous equivalence does not hold if, instead of γ1, we analyse the effects
of γ2 in R and R̃. In this case we assume that α decreases with γ2, so that R and R̃ can be
written as

R(γ2) =
2

1− z∗(γ2)
and R̃(γ2) =

ρ

ρ+ µ
e

(
α(γ2)γ1
δ−γ1

+γ2

)
l
c ,

with z∗(γ2) satisfying
(
α(γ2)γ1z∗(γ2)
γ1z∗(γ2)+δ

+ z∗(γ2)γ2

)
= A. As we did before, the critical points of

z∗(γ2), which coincide with the critical points of R(γ2), are given as the solutions of

d

dγ2

(
α(γ2)γ1z

∗(γ2)

γ1z∗(γ2) + δ
+ z∗(γ2)γ2

)
= 0,

which implies, using d
dγ2
z∗(γ2) = 0, that

γ1α
′(γ2) + γ1z

∗(γ2) + δ = 0. (3.5.2)

Alternatively, the critical points of R̃(γ2) are given by

d

dγ2

(
ρ

ρ+ µ
e

(
α(γ2)γ1
δ−γ1

+γ2

)
l
c

)
= 0,

or equivalently
γ1α

′(γ2)− γ1 + δ = 0,

which is not the same as condition (3.5.2) unless z∗(γ2) = −1, but this is not true in general.
Thus, the local maxima of R(γ2) are different to the local maxima of R̃(γ2) (see Figure 3.1,
right).

In addition, one may wonder which optimal division rate, if any, is selected by evolutionary
changes. See e.g. the adaptive dynamics framework [40, 70]. We want to point out that,
although the trade-off approach can not assess which is the evolutionary outcome [24], at least
it can give some sound clues on evolutionary issues of the ecological problem. For instance, in
the second trade-off considered here, where the optimal division rate is different for the standard
and the alternative threshold, we can guess that in most cases, evolution does not lead to the
maximization of the basic reproduction number since it depends on the interpretation of what
a birth event is in this case.
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Figure 3.1: Standard (R) and alternative (R̃) reproduction numbers of system (3.1.1). In
the left pannel a trade-off is imposed between the growth rate of attached bacteria (γ1) and
their detachment rate (δ) through the function δ(γ1) = 0.3 + γ2

1 . The other parameters satisfy
µ/ρ = 4, l/c = 1.5, γ2 = 1 and α = 0.05. In the right pannel a trade-off is imposed between
the growth rate of luminal bacteria (γ2) and their attachment rate (α) through the function
α(γ2) = 1− γ2

2 . The other parameters satisfy µ/ρ = 4, l/c = 1.5, γ1 = 0.5 and δ = 1.

3.6 Suggestions for an experimental computation of R̃
In this section we determine the alternative reproduction number R̃ from a biological per-

spective instead of applying the systematic generational framework as in the previous section.
Beyond the mathematical relevance that the methodology presented below can have by itself,
it also motivates experimental procedures to obtain R̃ empirically in the field. We follow two
different strategies that lead to the same result. From our point of view the redundancy in
the results is outweighed by the biological details they provide separately. Specifically, we
introduce two additional systems which are slight modifications of the original gut microbiota
model. In the first modified system we assume that the bacteria leaving the intestine are not
allowed to reinfect the host any more, whereas in the second one, we assume that the bacteria
leaving the intestine are also removed from the system but there is an extra supply of bacteria
to the external medium.

3.6.1 Following one infection event

Let us recall that R̃ corresponds to the expected number of bacteria that leave the intestine
and descend from a bacterium originally in the external media. It is important to point out
that the offspring of the mother cell are the microbes that return to the environment for the
first time, so that R̃ only counts the bacteria leaving the intestine in the first cycle of infection
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and not the descenders of environmental bacteria that descend from the founder mother.
In order to compute this quantity first notice that the factor ρ/(ρ+µ) gives the probability

that the founder bacterium eventually enters the intestine. Hence, R̃ should be this probability
times the expected total number of bacteria leaving the intestine for the first time given that
there is a single one at the beginning of the intestine. The latter can be computed solving
the following initial value problem with an initial condition that reduces to a Dirac measure
centred at the point x = 0:

∂tu(x, t) = γ1u(x, t) + αv(x, t)− δu(x, t)

∂tv(x, t) = −c∂xv(x, t) + γ2v(x, t)− αv(x, t) + δu(x, t)

b′(t) = cv(l, t)

cv(0, t) = 0

v(x, 0) = δ0(x) , u(x, 0) ≡ 0 , b(0) = 0

(3.6.1)

Indeed, we then have that

R̃ =
ρ

ρ+ µ
lim
t→∞

b(t) =
ρ

ρ+ µ

∫ ∞
0

b′(t) dt =
ρ

ρ+ µ

∫ ∞
0

cv(l, t) dt. (3.6.2)

Notice that here the equation for b(t) is uncoupled and can be suppressed without affecting
the argument.

Thanks to the paper by Barbara Boldin [11], we have an explicit expression for the solution
of the previous problem. In order to apply the result in [11] we make a change of variables
which transforms (3.6.1), without the equation for b(t), to exactly the system that is considered
in that paper. Defining ξ = x/l, τ = ct/l and

ũ(ξ, τ) = u

(
lξ,

lτ

c

)
, ṽ(ξ, τ) = v

(
lξ,

lτ

c

)
,

(3.6.1) becomes to 
ũτ (ξ, τ) = l(γ1−δ)

c
ũ(ξ, τ) + lα

c
ṽ(ξ, τ)

ṽτ (ξ, τ) = −ṽξ(ξ, τ) + lδ
c
ũ(ξ, τ) + l(γ2−α)

c
ṽ(ξ, τ)

ṽ(0, τ) = 0
ṽ(ξ, 0) = δ0(lξ) = 1

l
δ0(ξ)

or equivalently 
ũτ (ξ, τ) = α11ũ(ξ, τ) + α12ṽ(ξ, τ)
ṽτ (ξ, τ) = −ṽξ(ξ, τ) + α21ũ(ξ, τ) + α22ṽ(ξ, τ)
ṽ(0, τ) = 1

l
δ0(τ)

ṽ(ξ, 0) = 0

.

with α11 = l(γ1 − δ)/c, α12 = lα/c, α21 = lδ/c and α22 = l(γ2 − α)/c. Therefore, from (3.6.2)
we have that

R̃ =
ρ

ρ+ µ

∫ ∞
0

cṽ

(
1,
tc

l

)
dt =

lρ

ρ+ µ

∫ ∞
0

ṽ(1, τ)dτ.
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In [11] an explicit solution of the system is obtained. In particular it turns out that,

ṽ(ξ, τ) =
eα22ξ

l
δ0(τ − ξ) +

e(α22−α11)ξ

l
eα11τ

√
α12α21ξ

τ − ξ
I1

(
2
√
α12α21ξ(τ − ξ)

)
H(τ − ξ) (3.6.3)

where I1 is one of the so-called modified Bessel functions of the first kind and H is the Heaviside
function. So we obtain∫ ∞

0

ṽ(1, τ)dτ =
1

l
eα22 +

1

l
e(α22−α11)

∫ ∞
1

eα11τ

√
α12α21

τ − 1
I1

(
2
√
α12α21(τ − 1)

)
dτ.

This leads to the equality

R̃ =
ρ

ρ+ µ
eα22

(
1 +

∫ ∞
1

eα11(τ−1)

√
α12α21

τ − 1
I1

(
2
√
α12α21(τ − 1)

)
dτ

)
. (3.6.4)

If γ1 ≥ δ (i.e. if the population growth rate of the attached bacteria is larger than or equal
to their detachment rate), the improper integral in the previous equation does not converge,
meaning that in this case the expected total number of bacteria leaving the intestine is infinite,
i.e., R̃ =∞.

Next we compute the right hand side of (3.6.4), assuming γ1 < δ. The change of variables
2
√
α12α21(τ − 1) = y leads to write the integral in (3.6.4) as

∫∞
0
e−ay

2
I1(y) dy, where a :=

−α11

4α12α21
> 0. For this we have, using the series expansion for the modified Bessel function and

the Lebesgue’s monotone convergence theorem,∫ ∞
0

e−ay
2

I1(y) dy =
∞∑
k=0

∫∞
0
y2k+1e−ay

2
dy

22k+1k!(k + 1)!
=
∞∑
k=0

1/(4a)k+1

(k + 1)!
= e

1
4a − 1 (3.6.5)

So, the right hand side of (3.6.4) reduces to

ρ

ρ+ µ
eα22e

1
4a =

ρ

ρ+ µ
e
α11α22−α12α21

α11 =
ρ

ρ+ µ
e

(
αγ1
δ−γ1

+γ2

)
l
c , (3.6.6)

which means that, if γ1 < δ, then R̃ = ρ
ρ+µ

e

(
αγ1
δ−γ1

+γ2

)
l
c .

Notice, on the one hand, that the initial condition in system (3.6.1) reflects an experimental
procedure consisting in giving an initial bacterial dose to the animal under study. On the other
hand, the bacteria that leave the intestine of such an animal corresponds to the variable b(t)
in (3.6.1) as t goes to infinity. Therefore by computing the ratio between the recollected
bacteria and the given dose the field researcher could obtain the amount of bacteria released
to the environment per bacteria initially inoculated to the animal. If in addition one knows
the probability that an external bacterium is ingested by the animal, then the reproduction
number R̃ can be determined in this way.
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3.6.2 Bacteria released per bacteria supplied

Instead of giving a single dose to the animal and counting all the bacteria that it releases,
one can also supply bacteria to the environment at a constant rate and compute the ratio
between the released bacteria and the supplied ones. By this means the probability that a
bacterium is ingested by the host before dying is implicitly incorporated into the experimental
system. To model this situation, we modify System (3.1.1) in such a way that the bacteria
leaving the intestine are lost (i.e., they do not return to the environment), while we assume
a constant influx of bacteria to the external medium (the supplied bacteria), denoted by the
constant β. Thus,

∂tu(x, t) = γ1u(x, t) + αv(x, t)− δu(x, t)

∂tv(x, t) = −c∂xv(x, t) + γ2v(x, t)− αv(x, t) + δu(x, t)

b′(t) = −ρb(t)− µb(t) + β

cv(0, t) = ρb(t)

(3.6.7)

Assuming that initially there are no bacteria in the system, we postulate that the expected
number of bacteria that leave the intestine per bacterium supplied to the external medium
equals R̃. Specifically, we are going to show that

R̃ = lim
t↑∞

bs(t)

be(t)
, (3.6.8)

where bs(t) is the expected number of bacteria that leave the intestine during the time interval
[0, t] and be(t) is the number of bacteria supplied during the same time. In fact, one has

bs(t) =

∫ t

0

cv(l, s)ds and be(t) = βt.

It can be checked that, if γ1 > δ, then the solutions of system (3.6.7) diverge exponentially
fast at a rate γ1− δ > 0. In particular, for large values of t, bs(t) is of the order et(γ1−δ). Thus,
the limit in (3.6.8) becomes infinite and the equality R̃ =∞ holds as desired. This is also true
when γ1 = δ, but in this case bs(t) is of the order t2.

Alternatively, if γ1 < δ, the solutions of system (3.6.7) tend to the steady state (û, v̂, b̂)
given by the solution of 

u(x) = αv(x)/(δ − γ1)
cvx(x) = γ2v(x)− αv(x) + δu(x)
b = β/(ρ+ µ)
cv(0) = ρb

, (3.6.9)

which in particular satisfies the formula

cv̂(x) =
βρ

ρ+ µ
e

(
αγ1
δ−γ1

+γ2

)
x
c .
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In fact, one can even say that the component v of the solutions converge to v̂ not only in
the L1 norm but in the supremum norm. A way of showing this is as follows. Notice that if
(u, v, b) is a solution of system (3.6.7), then (u− û, v − v̂, b− b̂) solves (3.6.7) with β = 0. The
right hand side of this last system generates a positive strongly continuous semigroup S(t) on
L1(0, l)× L1(0, l)× R with spectral bound max(γ1 − δ,−ρ− µ) < 0, and hence with negative
growth bound. Since the initial condition for (u, v, b) is the origin, the initial condition for
(u− û, v− v̂, b− b̂) is −(û, v̂, b̂) which belongs to the domain D of the generator. The semigroup
S(t) restricted to the Banach space defined by the domain D endowed with the graph norm
(which here is equivalent to the W 1,1-norm) is also a strongly continuous semigroup with the
same growth bound as S(t) (see [34], Chap. II.2.c). By the Sobolev embedding theorem
(W 1,1(0, l) continuously embedded in C0(0, l)), it turns out that (u − û, v − v̂, b − b̂) tends to
0 exponentially in the supremum norm.

Therefore, we can write,

lim
t↑∞

bs(t)

be(t)
= lim

t↑∞

∫ t
0
cv(l, s)− cv̂(l)ds

βt
+ lim

t↑∞

∫ t
0
cv̂(l)ds

βt
∗
=
cv̂(l)

β
=

ρ

ρ+ µ
e

(
αγ1
δ−γ1

+γ2

)
l
c = R̃,

which results in equation (3.6.8). Notice that in
∗
= we have used for the first limit that, if

f(s) ∈ L1(0,∞) and f(s) → 0 uniformly as s tends to infinity (i.e., if f tends to 0 in the
supremum norm), then ∫ t

0

f(s) ∈ o(t) when t ↑ ∞.

Indeed, given ε > 0, there exists Tε such that if s > Tε then |f(s)| 6 ε. Hence,

lim
t↑∞

∣∣∣∣1t
∫ t

0

f(s)ds

∣∣∣∣ 6 lim
t↑∞

1

t

∫ Tε

0

|f(s)|ds+ lim
t↑∞

1

t

∫ t

Tε

εds = lim
t↑∞

ε(t− Tε)
t

= ε,

which implies limt↑∞
1
t

∫ t
0
f(s)ds = 0.

3.7 Discussion

The reproduction number was rigorously introduced in a 1925 paper by Dublin and Lotka
[32] (see also [43] and references therein). They realised that the ratio of total births between
successive generations was easy to obtain from empirical data, namely the age tables of fecun-
dity and mortality, and that it could be used to infer changes in the growth rate of a certain
population. Among the reasons that made this possible was the fact that they worked with
an age structured model, in which all individuals were assumed to be born at the same state,
i.e., at age zero. If this is not the case, giving the reproduction number in terms of measur-
able parameters could be unworkable. However, other meaningful quantities may exist with
a natural derivation from the biological system. The work presented here is a clear example
of that in a model of continously structured populations, in the line of the simpler examples
given in [25], see also e.g. [16]. Indeed, bacteria can divide (i.e. be born) along the whole

76



intestine, so that there is an infinite number of states-at-birth. This is why the standard re-
production number R given by (3.3.5) and (3.3.4) has such a complicate expression. If instead
one focuses on the environmental bacteria and considers the intestine as a kind of biological
reactor, then the states-at-birth reduce dramatically to just one: all bacteria are “born” in the
environment as they leave the intestine. Notice that strictly speaking no bacteria is born in
the external media, since they divide only within the intestine. However, by reinterpreting the
life history of bacteria in such a way, useful biological quantities pop up. Indeed, the value R̃
defined in (3.4.1) has a simpler expression than R and, more importantly, it can be empirically
obtained by conducting the experimental designs represented by the systems introduced in
section 3.6. In many other occasions the researcher may gain a better comprehension of the
system by identifying suitable artificial generations characterized by two properties. On the
one hand, individuals recently generated must present small differences, i.e., they must share
similar physiological and physical conditions. On the other hand, the generation events have
to be accessible by the observer. Then, the ratio of total individuals produced between such
generations, which is not necessarily the standard reproduction number but a generalization
of it, could give clearer information of the population dynamics.
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Conclusions

The problem treated in this thesis was originally motivated by some experiments performed
by Montserrat Llagostera and her team from the Universitat Autònoma de Barcelona. Among
other research lines, they design and evaluate different phage therapies to treat Salmonella in
chicks [22, 21] and, in this sense, they are specially interested in determining how Salmonella
propagates and persists in a given population and how bacteriophages could affect these pro-
cesses. Although several empirical studies exist about important dynamical properties of both
viruses and bacteria, most of them are performed in vitro, so that it is unclear to what extent
they can be used to explain what happens in vivo: many different microorganisms and organic
substances found in the guts of animals could dramatically modify some of the rates observed
in vitro. We realised that the biological information was too limited to write a quantitative
model in accordance with Llagostera’s experiments, hence we decided to focus on more con-
ceptual models that could improve our understanding of the gut ecosystem. To this end, the
models presented in [7] and [11] have been, in some aspects, generalised into a dynamical sys-
tem that links the external environment with the gut environment, so that questions about the
interrelation between them could be addressed.

The class of models proposed in this thesis can be used to study dynamical properties in a
precise way through their semilinear formulation. This fact has been illustrated in the second
chapter, in which issues such as identifying stationary points and determining their stability in
terms of certain parameters have been successfully addressed for a specific example. In addition,
the biological meaning of the model makes possible to study the dynamics from a generational
point of view, which is useful in cases where data are acquired discretely according to certain
intrinsic rhythm of the individuals. For instance, in the third chapter we have computed the
expected number of bacterial cells that leave the intestine after a primary infection, a quantity
that seems easier to obtain experimentally than the mean division rate of bacteria in the system.

Arguably, the example we have examined in this work is exceptional in the sense that it
is possible to perform many computations explicitly. Notice that neither the size of the host
population nor its heterogeneity makes the computations more difficult. This is because, on
the one hand, what happens inside each host is independent of what happens in the guts of
the other hosts, and, on the other hand, although the pool of environmental bacteria depends
dynamically on all the hosts, its complexity as a variable is always the same (a scalar quantity
if only one microbial type is modelled, a two dimensional vector if two microbial types are
modelled, etc). However, if instead of increasing the number of hosts we increase the number
of bacterial strains, then the analysis of the system becomes much more complex and the results
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necessarily rely on numerical simulations.
I would like to finish this thesis by mentioning a couple of open questions we faced, unsuc-

cessfully, during the course of this research. The first question is about Biology, and it focuses
on clarifying to what extent the microbiome can affect the mating preferences of individuals
and, ultimately, participate in the evolution of new species. As mentioned in the introduction,
this idea was proposed some years ago as a possible mechanism of speciation [13, 71, 74]. Here,
by speciation we refer to the process by which a population composed by individuals of a single
species splits into two or more reproductive isolated sub-populations. Despite the broad agree-
ment in the mechanisms that shape the evolution of a single species (mutations, genetic drift,
natural selection and gene flow), understanding the origin of new species is still a controversial
topic in the field of evolutionary biology [14]. There are multiple ways by which reproductive
barriers can develop, but it is unclear whether some of them have a major impact than others.
In fact, an old debate exists about the importance of geographical barriers. Whereas some
scientists defend that geographic isolation of populations is a fundamental step in the course of
a speciation event, others argue that strong reproductive barriers may arise as a consequence of
several ecological mechanisms taking place in a single habitat. Could the microbial community
act as one of these mechanisms? Analysing this question either empirically or theoretically
is challenging, although it may be worth doing it if we take into account the recent studies
showing how microorganisms can affect the behaviour of their hosts [36, 1].

The second question is about Mathematics. Recall that in the first chapter we proved
that a certain semigroup was eventually norm continuous. This property implied the Spectral
Mapping Theorem, which essentially gives a one to one relation between the spectrum of the
semigroup evaluated at t and the spectrum of its generator. The proof, however, relied on
the particular structure of the system we considered and, from our point of view, this was
not optimal. By studying alternative ways to treat the problem, we realised that the kind of
semigroup we were analysing was obtained by perturbing an eventually continuous semigroup
by a bounded operator (in fact, the bounded operator was atypical in the sense that it was
defined from the base space X to X�T ∗, with T being the unpertuberd semigroup, but let
us set aside this particluarity now). A natural question at this point is if the perturbation
of an eventually continuous semigroup by a bounded perturbation is also eventually norm
continuous. As Nagel and Engel show in their book, this is not true in general (see Example
III.1.15 in [33], in which the unperturbed semigroup is even nilpotent), although if the bounded
perturbation is also compact, then the perturbed semigroup does inherit the eventual continuity
of the unperturbed semigroup (see Theorem 1.2.22). Since in our case the compactness of the
perturbation was not something we could assume, deducing the eventual continuity of the
perturbed semigroup by means of general results seemed unfeasible. However, our final goal
was not to show that the perturbed semigroup was eventually continuous, we wanted to prove
the Spectral Mapping Theorem for the perturbed semigroup, which is something weaker. In
this sense, we need a general result as the following.

Conjecture 1. Let X be a Banach space. Let T be an eventually norm continuous semigroup
on X generated by A. Let B be a bounded operator on X. Then the Spectral Mapping Theorem
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holds for the semigroup S generated by A+B, i.e.

σ(S(t)) \ {0} = et σ(A+B)

holds for all t ≥ 0

Our attempts to prove or disprove the above conjecture were unfruitful, but since we have not
found any reference to this problem in the specialised literature [33, 66], we present it here for
those with more expertise. Similarly, a weaker version of the above conjecture that, if proved
to be true, would also imply Theorem 1.3.6 as a corollary is the following.

Conjecture 2. Let X be a Banach space. Let T be an eventually norm continuous semigroup
on X generated by A. Let B be a bounded operator on X. Then the growth bound of the
semigroup S generated by A+B is equal to the spectral bound of the operator A+B, i.e.

ω0(S) = s(A+B).

We finish, therefore, with two questions stemming from the same work and yet quite dif-
ferent from one another. One hardly could justify that they are related in any way. Is this
strange? I doubt it. In my opinion this feature is found from time to time by those working
on Mathematical Biology. A mystery from the living world turns into a mystery in the world
of immutable truths. The paths diverge. Choosing is no easy job.
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Appendix A

The standard semilinear formulation

The main purpose of this appendix is to introduce the theory of operator semigroups to
the unfamiliar reader. To this end, the text below is based on a series of examples, definitions
and results that culminate with the semilinear formulation developed by Amon Pazy [68], the
framework over which this thesis builds on (through the generalisation carried out by Clement
and collaborators [18, 19]). The reader interested in a more complete introduction to the theory
of operator semigroups is referred to the textbooks [33], [68] and [10].

Strongly continuous semigroups

Let (X, ‖ · ‖) be a Banach space (whose elements can be thought as possible states/con-
figurations of a physical system). Let T be a family of continuous operators from X to X
parametrized by t ∈ [0,∞), that is, for each t ≥ 0 the operator T (t) : X → X is defined on all
X and is continuous. Given a point x of X, the set {T (t)x, t ∈ [0,∞)} can be interpreted as
the orbit into the future of state x: that is, the image of x by T (t) is associated to the state t
units of time into the future of a system originally at x. The following definition characterises
the families T defining continuous orbits into the future.

Definition A.0.1. The family T is said to be strongly continuous if, ∀t ≥ 0,

lim
h→0
‖T (t+ h)x− T (t)x‖ = 0 ∀x ∈ X,

the limit being only from the right when t = 0.

Similarly, the following definition characterizes the families T representing deterministic
dynamical systems, in the sense that the future states are determined by the current state.

Definition A.0.2. The family T is said to be a semigroup of operators if

T (0) = Id,
T (t+ s) = T (t)T (s) ∀t, s > 0.
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Notice that, by taking x ∈ X as the current state of the system, the first condition above
means that the state the system has 0 units of time into the future is nothing but x, whereas
the second condition means that the state of the system t+ s units of time into the future, i.e.
T (t+ s)x, can be obtained by computing first the state of the system s units of time into the
future, i.e. T (s)x, and, secondly, the state t units of time into the future starting from T (s)x,
i.e. T (t)T (s)x. Now we are ready to combine the above two definitions, emphasising the fact
that the operators of the family T are not necessarily linear.

Definition A.0.3. The family T is said to be a nonlinear strongly continuous semigroup
if T is a semigroup of operators and T is strongly continuous. The simpler term strongly
continuous semigroup is reserved to the cases in which the operators of T are linear.

Unless otherwise stated, now T refers to a family of linear operators. Thanks to the semi-
group property, proving that a semigroup of linear operators is strongly continuous is easier
than it might seem a priori. Specifically, if T is a semigroup of linear operators, then T is
strongly continuous if and only if

lim
h↓0
‖T (h)x− x‖ = 0 ∀x ∈ X.

This is seen by computing

lim
h↓0
‖T (t+ h)x− T (t)x‖ = lim

h↓0
‖T (t)(T (h)x− x)‖ ≤ lim

h↓0
‖T (t)‖‖T (h)x− x‖ = 0,

where ‖T (t)‖, which denotes the operator norm of T (t), is finite because T (t) is a continuous
operator. The limit as h ↑ 0 when t > 0 requires the use of the Uniform Boundedness Principle
to justify that the operators T (s) are uniformly bounded for all s ∈ [0, t], so that

lim
h↑0
‖T (t+ h)x− T (t)x‖ = lim

h↑0
‖T (t+ h)(x− T (−h)x)‖ ≤ lim

h↓0
‖T (t− h)‖‖T (h)x− x‖ = 0.

In fact, the Uniform Boundedness Principles can be used to prove that for each strongly
continuous semigroup T , there exist constants M and ω such that

‖T (t)‖ ≤Meωt. (A.0.1)

Since the trajectories of strongly continuous semigroups are continuous, it makes sense to
ask if they are also differentiable so that a link between strongly continuous semigroups and
differential equations can be drawn.

Definition A.0.4. The infinitesimal generator (or simply generator) of a strongly con-
tinuous semigroup T is a linear operator from X to X with domain

D(A) = {x ∈ Xsuch that the limit lim
h↓0

T (h)x− x
h

exists in X}

and images Ax = limh↓0
T (h)x−x

h
.

84



It can be proved that the generator is a closed operator with a dense domain. This is
important because it somehow implies that the generator stores much of the information of
the semigroup. In fact, the name generator comes from the fact that any strongly continuous
semigroup can be recovered from its generator. That is, if two strongly continuous semigroups
T and S have the same generator A, then necessarily T = S.

From the definition above it is clear that the generator can be used to compute the right
derivative of the trajectory T (·)x at any point t. Indeed, if T (·)x is differentiable at t, then its
derivative, which coincides with its right derivative, satisfies

lim
h↓0

T (t+ h)x− T (t)x

h
= lim

h↓0

T (h)T (t)x− T (t)x

h
= AT (t)x,

or in other words, the trajectory of u := T (·)x is a solution of the system{
u′(t) = Au(t)
u(0) = x

. (A.0.2)

It can be shown that T (·)x is the only solution of the above system. Indeed, if v(·) were another
solution, then for fixed t > 0 and 0 < s < t,

d
ds

(T (t− s)v(s)) = lim
h→0

T (t−s−h)v(s+h)−T (t−s)v(s)
h

=

= lim
h→0

T (t−s−h)v(s+h)−T (t−s−h)v(s)
h

+ lim
h→0

T (t−s−h)v(s)−T (t−s)v(s)
h

=

= T (t− s)v′(s)− T (t− s)Av(s) = 0,

where in the last equation we used that v is a solution of the system, so that v′(s) = Av(s).
Integrating from 0 to t both sides of

d

ds
(T (t− s)v(s)) = 0

we finally conclude v(t) = T (t)v(0) = T (t)x = u(t) for any t ≥ 0.
As we pointed before, saying that u = T (·)x is a solution of system (A.0.2) is clear if u

is differentiable for all t ≥ 0 (which implies that u(t) ∈ D(A) for all t ≥ 0). Thanks to the
semigroup property, u is differentiable for all t provided it is differentiable at 0, i.e. if x ∈ D(A).
In these cases we refer to u as a classic solution. If x 6∈ D(A), then function u is said to be a
generalised solution of (A.0.2). It is generalised in the sense that, for any sequence of initial
conditions {xn}n∈N ⊂ D(A) converging to x (which exist because D(A) is dense in X), the
associated sequence of orbits {un}n∈N converges to u uniformly on compact intervals (the orbit
un is the solution of u′n(t) = Aun(t) with un(0) = xn).

Definition A.0.3 shows how the generator can be obtained in terms of the semigroup. How-
ever, in most applications the situation is the opposite: one knows the generator A and needs
some information on the semigroup T . The methodology to accomplish this is one of the main
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problems that has motivated the development of the theory of strongly continuous semigroups.
The philosophy to address the problem is based on the expression

“T (t) = eAt ” (A.0.3)

which, at least formally, implies

d

dt
T (t)x =

d

dt
eAtx = AeAtx = AT (t)x.

In fact, equation (A.0.3) makes sense if A is a bounded operator (which is always the case if
X is finite dimensional) through the series

eAt =
∞∑
n=0

tnAn

n!
. (A.0.4)

If A is an unbounded operator the above series does not converge and other meaningful formulas
for eAt have to be used, such as, for instance,

eAt = lim
n↑∞

(1− t

n
A)−n

or
eAt = lim

h↓0
e
T (h)−Id

h
t.

A good example to illustrate the above concepts is given by the translation semigroup. Let
C = C([0, 1],R) be the space of real continuous functions defined on [0, 1], and let ‖ · ‖ be
the supreme norm, i.e. ‖f‖ = sup{f(a) | a ∈ [0, 1]} for all f ∈ C. Let T be a semigroup of
operators on C given by

(T (t)f)(a) =

{
0 a < t
f(a− t) a ≥ t

∀t ≥ 0,

with a ∈ [0, 1]. It turns out that the semigroup T is not strongly continuous. To check that it
is enough to take a constant function in [0, 1], for instance f ≡ 1, and realise that

‖T (h)f − f‖ = ‖ − 1[0,h](·)‖ = 1

so that the limit of ‖T (h)f − f‖ as h decreases towards 0 is 1. The lack of continuity in the
trajectories can be fixed by choosing those f in C whose orbit is continuous, which results in
the subspace of C given by

C0 = {f ∈ C | f(0) = 0}.

Finally, since formally

lim
h↓0

T (h)f − f
h

= lim
h↓0

f(· − h)− f(·)
h

= −f ′(·),
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it follows that the generator of T on C0 is the operator with domain

D(A) = {f ∈ C0 | f ′ ∈ C0}

and images Af = −f ′. Notice that if f is analytic, then T (t)f can be recovered from A using
the exponential series:

(T (t)f)(a) =
∞∑
n=0

(
tnAn

n!
f

)
(a) =

∞∑
n=0

(−t)nf (n)(a)

n!
= f(a− t),

where f is assumed to be extended into the negative values by 0, i.e. by defining f(a) = 0 for
a < 0.

Lipschitz Perturbations of strongly continuous semigroups

Let (X, ‖ · ‖) be a Banach space and T be a strongly continuous semigroup on X generated
by A. Given a function f : [0,∞)→ X, we wonder if the inhomogeneous initial value problem{

u′(t) = Au(t) + f(t)
u(0) = x ∈ X (A.0.5)

has any solution. Let us assume that f is integrable on bounded intervals, i.e. f ∈ L1((0, k), X)∞).
If system (A.0.5) had a solution u, it would be differentiable and u(t) would belong to D(A)
for all t ∈ [0,∞). In this case, for each t > 0 we could define the X valued function
g(s) = T (t− s)u(s) on s ∈ [0, t], which would be differentiable and would satisfy

g′(s) = −AT (t− s)u(s) + T (t− s)u′(s) = T (t− s)f(s),

where in the second equality we have used u′(s) = Au(s) + f(s). Then, by integrating from 0
to t both sides of the above equation, it would finally follow

u(t) = T (t)x+

∫ t

0

T (t− s)f(s)ds. (A.0.6)

Thus, we conclude that, if f is integrable, then system (A.0.5) has at most one solution, and
in case it has, it is given explicitly in terms of x, T and f by the formula (A.0.6), referred as
the variation of constants formula. This somehow motivates the following definition.

Definition A.0.5. Let f be integrable on bounded intervals. Then u given by (A.0.6) is a mild
solution of problem (A.0.5).

Notice that, by definition, system (A.0.5) has always a mild solution. However, as occurred
with the homogeneous equation, the concept of mild solution is more fundamental than that
of an arbitrary definition. Indeed, by taking sequences {xn}n∈N ⊂ D(A) and {fn}n∈N ⊂
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C1([0,∞), X) converging to x (with the X norm) and f (with the L1((0,∞),R)) respectively,
then u is the uniform limit (on bounded intervals) of {un}n∈N defined as

un(t) = T (t)xn +

∫ t

0

T (t− s)fn(s)ds,

and, due to the regularity of fn, each un is the solutions of{
u′(t) = Au(t) + fn(t)
u(0) = xn

.

In other words, the mild solution u of (A.0.5) can be arbitrarily approximated by the regular
solution of an initial value problem close enough to (A.0.5).

The inhomogeneous term f in the differential equation of system (A.0.5) represents an
external “force”, i.e. something that modulates the dynamics independently of the current
state of the system. In many situations, however, is precisely the state of the system what
underlies such a modulation. In these cases the perturbation is given by a function of the state
of the system, that is, instead of f : [0,∞)→ X we must take a function F defined from X to
X. The dynamics of a system initially at state x is then represented by the semilinear initial
value problem {

u′(t) = Au(t) + F(u(t))
u(0) = x

. (A.0.7)

Let us assume that F is continuous, so that, if u is a solution of (A.0.7), then the composition
F ◦u is a continuous function of time, and, consequently, it is also integrable. Thus, in this case
we can interpret F ◦ u as a given inhomogeneous term and follow the same steps as before in
order to conclude that, if u is a solution of (A.0.7) defined on [0, t̂], then u satisfies the integral
equation

u(t) = T (t)x+

∫ t

0

T (t− s)F(u(s))ds (A.0.8)

for all t ∈ [0, t̂], the equation being referred as the variation of constants equation. This
observation motivates the following definition.

Definition A.0.6. Let F be continuous. A continuous function u : [0, t̂) → X is a mild
solution of problem (A.0.7) on [0, t̂] if it is a solution of (A.0.8) for all t ∈ [0, t̂].

We end this appendix by giving an important result about the mild solutions of system
(A.0.7). The methodology to prove it relies on the Banach fixed-point theorem in a similar
way as it is done in the theory of ordinary differential equations. One starts considering the
space of continuous functions from [0, t̂] to X with the supreme norm, which is a Banach space,
and the mapping

V : C([0, t̂], X)→ C([0, t̂], X)

defined as

(V u)(t) = T (t)x+

∫ t

0

T (t− s)F(u(s))ds ∀t ∈ [0, t̂].
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Since, by construction, any fixed point of V is a mild solution of (A.0.7) on [0, t̂] (and vice
versa), system (A.0.7) has one and only one mild solution provided V n is a contraction for
some n ∈ N, i.e. if

‖V nu1 − V nu2‖ < ‖u1 − u2‖ ∀u1, u2 ∈ C([0, t̂], X),

where V n means composing V with itself n times. This condition holds if F is uniformly
Lipschitz in [0, t̂], which means that a constant L exists such that

‖F(x1)−F(x2)‖X ≤ L |x1 − x2‖X ,

since then one can compute, inductively,

‖V u1(t)− V u2(t)‖X ≤
∫ t

0
‖F(u1(s))−F(u2(s))‖X ≤ Lt‖u1 − u2‖,

‖V 2u1(t)− V 2u2(t)‖X ≤
∫ t

0
‖F(V u1(s))−F(V u2(s))‖X ≤ L2 t2

2
‖u1 − u2‖

...

‖V nu1(t)− V nu2(t)‖X ≤
∫ t

0
‖F(V n−1u1(s))−F(V n−1u2(s))‖X ≤ Ln t

n

n!
‖u1 − u2‖,

and conclude that, for n large enough,

‖V nu1 − V nu2‖ ≤ sup
t∈[0,t̂]

‖V nu1(t)− V nu2(t)‖X ≤ Ln
t̂n

n!
‖u1 − u2‖ < ‖u1 − u2‖.

In fact, the Banach fixed-point Theorem also states that the fixed point u of V is the limit of
any sequence {un}n∈N with u1 arbitrary and un = V un−1 for n > 1, so that the mild solution
of (A.0.7) can be approximated in an explicit way.

89



90



Appendix B

In this appendix we give a detailed proof of Proposition 1.3.1 in chapter 1. We restrict to
the simpler case in which m = 1, k = 1 and Λ = 1, so that

Cb = {(v, r) ∈ C([0, 1],R)× R | v(0) = r}

and

T2(t)

(
v
r

)
=

(
r1−(ϕ(−t, ·)) + v(ϕ(−t, ·))1+(ϕ(−t, ·))

r

)
. (B.0.1)

The generator AT2 of T2 is given by

AT2

(
v
r

)
=

(
−cv′

0

)
(B.0.2)

with domain
D(AT2) = {(v, r) ∈ Cb | (cv′, 0) ∈ Cb},

Recall that c is a bounded function satisfying c(x) ≥ 1 and that ∂1ϕ(t, x) = c(ϕ(t, x)). This
simplification facilitates the exposition of the arguments, which could be extended without new
ideas to deal with Proposition 1.3.1. In order to simplify the notation, from now on we use T
instead of T2 and A instead of AT2 . Before showing that

L∞ × R ∼= C�T ∗b and Cb ∼= C��Tb , (B.0.3)

we introduce some terminology and results about functions of bounded variation.

Borel measures and bounded variation functions

Let f : [a, b]→ R be a given function. The total variation function TV(f) is defined as

TV(f)(s) = sup
P (a,s)

N∑
j=1

|f(σj)− f(σj−1)|,

where P (a, s) denotes a finite partition a = σ0 < σ1 < · · · < σN = s of [a, s] (where N is the
size of the partition and depends on P ).
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When TV(f)(b) is bounded it is said that f is of bounded variation. If, in addition, f(0) = 0
and f is right continuous at every point of (a, b] (i.e. right continuity can only fail at point
a), then f is said to be a normalised bounded variation function and in this case we write f ∈
NBV([a, b]). It turns out that NBV([a, b]) is a Banach space with the norm ‖f‖ = TV(f)(b).

Functions of normalised bounded variation are useful because they are in a one-to-one
correspondence with Borel measures. Specifically, let M([a, b]) denote the space of Borel
measures on [a, b] with the norm

‖µ‖ = |µ|([0, 1])

where the function |µ| : B([a, b])→ [0,∞) is defined as

|µ|(ω) = sup
P (ω)

N∑
j=1

|µ(ωj)|, ∀ω ∈ B([0, 1]),

with P denoting a partition {ω1, ω2, . . . , ωN} of ω. Then, the normed spaces NBV([a, b]) and
M([a, b]) are isometrically isomorphic. The natural isometric isomorphism between the two
spaces is φ :M([a, b])→ NBV([a, b)] given by

φ(µ) = ηµ such that ηµ(s) =

{
0 if s = a
µ[a, s] if s ∈ (a, b]

. (B.0.4)

As a consequence, since the Riesz representation theorem states that M([a, b]) is a represen-
tation of the dual space of C([a, b],R), it follows that NBV([a, b]) is also a representation of
C([a, b],R)∗. The pairing between η ∈ NBV([a, b]) and v ∈ C([a, b],R) is given by

〈η, v〉 =

b∫
a

vdη := lim
d(P )↓0

N∑
j=1

v(τj)(η(σj)− η(σj−1)), (B.0.5)

with P a partition a = σ0 < σ1 < · · · < σN = b of [a, b] with |σj − σj−1| < d(P ) for all j and
τj an arbitrary point in [σj−1, σj]. This limit always exists because of the continuity of v (see
Theorem AI.1.7 in [28]). This pairing is called the Riemann-Stieltjes integral of v with respect
to η. Some important properties about these integrals are the integration by parts formula,
that is

b∫
a

vdη = v(b)η(b)− v(a)η(a)−
b∫
a

ηdv,

and the relation
b∫
a

ηdv =

b∫
a

η(s)v′(s)ds

for functions v ∈ C1[a, b]. In addition, the Riemann-Stieltjes integrals can be seen as a partic-
ular case of Lebesgue integral by considering

b∫
a

vdη =

b∫
a

vdµη,
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where µη is the associated Borel measure defined by the φ isomorphism (µη = φ−1(η)). This
makes possible to apply results from integration theory such as the dominated convergence
theorem when dealing with Riemann-Stieltjes integrals.

Once introduced the space of normalised bounded variation functions we are ready to prove
the relations in (B.0.3).

Determining C∗b , D(A∗) and C�T

b

Let us start showing that C∗b
∼=Mb × R, with

Mb = {µ ∈M([0, 1]) | µ(0) = 0}.

This follows from the Riesz representation theorem C([0, 1],R)∗ ∼=M([0, 1]) and the fact that
Cb is a subspace of C([0, 1],R)× R of co-dimension one:

C([0, 1],R)× R = Cb ⊕ 〈(0, 1)〉

where 〈(0, 1)〉 is the space generated by the pair (0, 1) ∈ C([0, 1],R)×R. These two conditions
imply that C∗b can be represented by any subspace of M([0, 1]) × R of co-dimension one. In
particular, the space Mb × R has co-dimension one:

M([0, 1])× R =Mb × R⊕ 〈(δ0, 0)〉

with δ0(ω) = 1 if 0 ∈ ω and 0 otherwise.
We use the isomorphism (B.0.4) between M([0, 1]) and NBV([0, 1]) in order to obtain the

representation C∗b
∼= NBVb × R with

NBVb = φ(Mb) = {η ∈ NBV([0, 1]) | lim
s↓0

η(s) = 0}

and the pairing 〈(η, q), (v, r)〉 = 〈η, v〉+ q · r and

〈η, v〉 =

∫ 1

0

vdη

as defined in (B.0.5). From now on we make an abuse of notation by identifying C∗b with
NBVb × R.

Next we prove that C�Tb
∼= L1(0, 1)× R with the norm

‖(ν, q)‖ = ‖ν‖L1
c

+ |q| :=
∫ 1

0

∣∣∣∣ν(s)

c(s)

∣∣∣∣ ds+ |q| (B.0.6)

and the pairing 〈(
ν
q

)
,

(
v
r

)〉
=

∫ 1

0

v(s)
ν(s)

c(s)
ds+ rq.
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This is shown by means of the identity C�Tb = D(A∗), where A∗ is the adjoin of the generator
of T (see (B.0.1) and (B.0.2)). In order to apply this relation we first characterise the domain
of A∗. Before entering into details observe that (v, r) ∈ D(A) if and only if

v(s) = r +

∫ s

0

g(σ)

c(σ)
dσ for some g ∈ C([0, 1],R).

Indeed, (v, r) ∈ D(A) if cv′ = g ∈ C([0, 1],R) and c(0)v′(0) = g(0) = 0, so that v(s)− v(0) =∫ s
0
g(σ)/c(σ)dσ and v(0) = r because (v, r) ∈ Cb.
By definition, (η, q) ∈ D(A∗) ⊂ NBVb×R if ∃(ν, p) ∈ NBVb×R such that

〈(η, q), A(v, r)〉 = 〈(ν, p), (v, r)〉 ∀(v, r) ∈ D(A). (B.0.7)

Since A(v, r) = (cv′, 0), it follows that (η, q) ∈ D(A∗) if and only if

∃ν ∈ NBVb such that 〈η,−cv′〉 = 〈ν, v〉 ∀(v, r) ∈ D(A). (B.0.8)

Indeed, if (B.0.8) holds then (ν, 0) satisfies (B.0.7). The following proposition gives a character-
ization of D(A∗) by determining the subspace of NBVb in which condition (B.0.8) is satisfied.

Proposition B.0.7. (η, q) ∈ D(A∗) if and only if q ∈ R and

η(s) =

s∫
0

ν(σ)

c(σ)
dσ ∀s ∈ [0, 1], (B.0.9)

where ν ∈ NBVb and satisfies ν(1) = 0.

Proof. Let (η, q) ∈ D(A∗) and ν ∈ NBVb such that

〈η,−cv′〉 = 〈ν, v〉 ∀(v, r) ∈ D(A).

Developing these expressions we get (recall ν(0) = 0 because ν ∈ NBVb)

〈η,−cv′〉 = 〈ν, v〉 =

1∫
0

vdν = v(1)ν(1)−
1∫
0

ν(σ)v′(σ)dσ.

For any s ∈ (0, 1) take {(vn, 0)}n ⊂ D(A) such that c v′n → 1(0,x] and |c v′n| < 1. Then, by the
dominated convergence theorem, we have

lim
n→∞
〈η,−cv′n〉 = −

1∫
0

1(0,s]dη = −η(s) + η(0+) = −η(s)

for one side (where η(0+) means the limit of η at 0 from the right, which is 0 because η ∈ NBVb),
and

lim
n→∞

−
1∫
0

ν(σ)v′n(σ)dσ = −
s∫
0

ν(σ)

c(σ)
dσ
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for the other. Then we obtain

η(s) =

s∫
0

ν(σ)

c(σ)
dσ.

Similarly, for the case s = 1 we take {(vn, 0)}n ⊂ D(A) such that cv′n → 1(0,1], |cv′n| < 1 and
vn(1) = k arbitrary. Then it follows

η(1) = −ν(1)k +

1∫
0

ν(σ)

c(σ)
dσ,

and due to the fact that η(1) is fixed and cannot depend on k we conclude ν(1) = 0.
It remains showing that if η satisfies (B.0.9) then 〈η,−cv′〉 = 〈ν, v〉 holds for all (v, r) ∈

D(A). Indeed, it is clear from (B.0.9) that, for all v ∈ C([0, 1]),

1∫
0

vdη = lim
d(P )↓0

|P |∑
j=1

v(τj)

θj∫
θj−1

ν(s)

c(s)
ds = lim

d(P )↓0

|P |∑
j=1

θj∫
θj−1

v(s)
ν(s)

c(s)
ds =

1∫
0

v(s)
ν(s)

c(s)
ds.

Finally, because of the properties of the Riemann-Stieltjes integral, we get

〈η,−cv′〉 = −
1∫
0

cv′dη = −
1∫
0

c(s)v′(s)ν(s)
c(s)

ds = −
1∫
0

v′(s)ν(s)ds

=
1∫
0

vdν − v(1)ν(1) + v(0)ν(0) =
1∫
0

vdν = 〈ν, v〉 .

for all (v, r) ∈ D(A).

To complete the determination of C�b we must compute the closure of D(A∗). Let Y be the
projection of D(A∗) in NBVb, so that D(A∗) = Y ×R. Since Y × R = Ȳ ×R, we only need to
study the closure of Y . Consider the sequence {ηn}n ⊂ Y such that ηn → η ∈ NBVb and ηn
determined by νn through (B.0.9). The completeness of NBVb, together with the relations

sup
P

|P |∑
j=1

∣∣∣∣∣∣∣
θj∫
θj−1

νn(s)− νm(s)ds

∣∣∣∣∣∣∣ = sup
P

|P |∑
j=1

θj∫
θj−1

|νn(s)− νm(s)| ds =

1∫
0

|νn(s)− νm(s)|ds,

imply
0 = lim

n,m→∞
‖ηn − ηm‖TV = lim

n,m→∞
‖νn − νm‖L1(0,1).
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Hence, because of the completeness of L1(0, 1), there is ν ∈ L1(0, 1) such that νn
L1

−→ ν.
Moreover, η is determined by ν as one would expect, that is,

η(s) =

s∫
0

ν(σ)

c(σ)
dσ ∀s ∈ [0, 1],

as one can deduce by considering

‖η(·)−
∫ ·

0

ν(σ)

c(σ)
dσ‖TV 6 lim

m→∞
‖η − ηm‖TV + ‖ν − νm‖L1

c
= 0.

As a result, we have obtained

Ȳ ⊂

η ∈ NBVb | η(s) =

s∫
0

ν(σ)

c(σ)
dσ for some ν ∈ L1(0, 1)

 .

Reciprocally, for all ν ∈ L1(0, 1) there exists {νn}n ⊂ NBVb such that νn(1) = 0 and νn −→ ν
in L1(0, 1). If we denote as η and ηn the functions determined by ν and νn, then, by the same
equalities as before it follows that ηn → η in NBVb, so that

Ȳ ⊃

η ∈ NBVb | η(s) =

s∫
0

ν(σ)

c(σ)
dσ for some ν ∈ L1(0, 1)

 .

Furthermore, Ȳ is isometrically isomorphic to L1(0, 1) with the norm ‖·‖L1
c

as it is shown using
the natural isomorphism from L1(0, 1) to Ȳ given by

η(s) =

s∫
0

ν(σ)

c(σ)
dσ ∈ Ȳ ∀ν ∈ L1(0, 1).

Now we can summarize the characterizations of C�Tb .

Theorem B.0.8. Let L1
c be the space (L1(1, 0), ‖ · ‖L1

c
). Then the following isometric isomor-

phism

C�Tb = D(A∗) =

η ∈ NBVb | η(s) =

s∫
0

ν(σ)

c(σ)
dσ for some ν ∈ L1(0, 1)

× R ∼= L1
c × R

holds, with the pairing between L1
c × R and Cb given by〈(

ν
q

)
,

(
v
r

)〉
=

∫ 1

0

v(s)
ν(s)

c(s)
ds+ rq.
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Determining C�T ∗
b , A∗T� and C��T

b

Since C�Tb is isomorphic to L1
c × R, from now we represent C�Tb with the space L1

c × R.
This allows us to determine easily

C�∗b = (L1
c × R)∗ ∼= L∞(0, 1)× R =: L∞ × R,

with the pairing between L∞ × R and L1
c × R given by〈(

v
r

)
,

(
ν
q

)〉
=

∫ 1

0

v(s)

c(s)
ν(s)ds+ rq.

The norm of L∞ is the standard one since, as an element of the dual space, one has∣∣∣∣( v
r

)∣∣∣∣ = sup
‖(ν,q)‖≤1

〈(
v
r

)
,

(
ν
q

)〉
= sup

s∈[0,1]

|v(s)|+ |r|.

Next we prove the sun-reflexivity property of Cb with respect T , that is Cb ∼= C��Tb . To
determine C��Tb we need T�. This can be done in an standard way.

Proposition B.0.9. T�(t) : L1
c × R→ L1

c × R is given for t ≥ 0 by

T�(t)

(
ν
q

)
=

 c(·)ν(ϕ(t,·))
c(ϕ(t,·))∂2ϕ(t; ·)1+(ϕ(−t, 1)− ·)

1∫
0

1−(ϕ(−t; s))ν(s)
c(s)

ds+ q


Proof. Let (ν, q) ∈ L1

c×R, then for all (v, r) ∈ Cb〈(
ν
q

)
, T (t)

(
v
r

)〉
=

〈(
ν
q

)
,

(
r1−(ϕ(−t; ·)) + v(ϕ(−t; ·))1+(ϕ(−t; ·))

r

)〉
=

=
1∫
0

r1−(ϕ(−t; s))ν(s)
c(s)

ds+
1∫
0

v(ϕ(−t; s))1+(ϕ(−t; s))ν(s)
c(s)

ds+ qr =

=

(
1∫
0

1−(ϕ(−t; s))ν(s)
c(s)

ds+ q

)
r +

ϕ(−t,1)∫
ϕ(−t,0)

v(σ)1+(σ)ν(ϕ(t,σ))
c(ϕ(t,σ))

∂2ϕ(−t;ϕ(t;σ))−1dσ

=

(
1∫
0

1−(ϕ(−t; s))ν(s)ds+ q

)
r +

1∫
0

v(σ)1+(ϕ(−t, 1)− σ)ν(ϕ(t,σ))
c(ϕ(t,σ))

∂2ϕ(t;σ)dσ

=

〈
T�(t)

(
ν
q

)
,

(
v
r

)〉
.
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Similarly, by reversing the reorganizations and the changes of variables in the previous prove
one obtains the semigroup T�∗ defined on L∞ × R.

Proposition B.0.10. T�∗(t) : L∞ × R→ L∞ × R is given for t ≥ 0 by

T�∗(t)

(
v
r

)
=

(
r1−(ϕ(−t;σ)) + v(ϕ(−t, σ)

r

)
As one would expect, T�∗ is just the extension of T (t) : Cb → Cb in L∞ × R. The point is

that T�∗(t) is not strongly continuous on L∞ × R. In order to determine C��Tb we determine
first the generator of T� on L1

c × R.

Proposition B.0.11. The generator of T� is given by

D(AT�) =
{

(ν, q) ∈ L1
c × R | ν is absolutely continuous and ν(1) = 0

}
and AT�(ν, q) = (cν ′, ν(0)).

The prove consists in computing the limit (T�(h)−Id)
h

(ν, q) and noticing that the limit exists
in L1

c ×R if and only if the condition in the proposition holds. Observe that if (ν, q) ∈ D(AT�)
then cν ′ always belongs to L1

c because c is bounded. Once we have a formula for AT� we
compute A∗T� .

Proposition B.0.12. The adjoin of AT� is given by

D(A∗T�) = {(v, r) ∈ L∞ × R | v is Lipschitz and v(0) = r}

and A∗T�(v, r) = (−cv′, 0).

Proof. Let (v, r) ∈ D(A∗T�) and let A∗T�(v, r) = (w, p). Then, for all (ν, q) ∈ D(AT�) one has,
on the one hand,〈

A∗T�

(
v
r

)
,

(
ν
q

)〉
=

〈(
v
r

)
, AT�

(
ν
q

)〉
=

∫ 1

0

v(s)

c(s)
c(s)ν ′(s)ds+ rν(0),

and, on the other hand,〈
A∗T�

(
v
r

)
,

(
ν
q

)〉
=

〈(
w
p

)
,

(
ν
q

)〉
=

∫ 1

0

w(s)

c(s)
ν(s)ds+ pq

that, using integration by parts, can be written as

ν(1)

(
α +

∫ 1

0

w(σ)

c(σ)
dσ

)
− ν(0)α−

∫ 1

0

(
α +

∫ s

0

w(σ)

c(σ)
dσ

)
ν ′(s)ds+ pq

for some α. Then, since both expressions are the same and ν(1) = 0, one necessarily has
α = −r, p = 0 and

v(s) = −
(
α +

∫ s

0

w(σ)

c(σ)
dσ

)
= r −

∫ s

0

w(σ)

c(σ)
dσ.
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This means that A∗T�(v, r) = (−cv′, 0) and v(0) = r. Moreover, since w belongs to L∞ (so does
w/c), it also follows that v is Lipschitz.

Reciprocally, let r ∈ R and v be a Lipschitz function satisfying v(0) = r. This implies that
v can be written as

v(s) = r +

∫ 1

0

w̃(σ)dσ

for some w̃ ∈ L∞. Thus, defining w(σ) := w̃(σ)c(σ) we can proceed as above to show〈(
v
r

)
, AT�

(
ν
q

)〉
= rν(0)−

∫ 1

0

w(s)

c(s)
ν(s)ds+

(
r +

∫ 1

0

w(σ)

c(σ)
dσ

)
ν(1)− rν(0)

Since ν(1) = 0 and v′ = w/c, we have〈(
v
r

)
, AT�

(
ν
q

)〉
=

〈(
−cv′

0

)
,

(
ν
q

)〉
,

which means that (v, r) ∈ D(A∗T�) and A∗T�(v, r) = (−cv′, 0).

Finally, we can compute C��Tb by taking the closure of D(A∗T�). When doing so we lose
the Lipschitz condition on v but the continuity remains. Therefore,

C��Tb
∼= {(v, r) ∈ C([0, 1],R)× R | v(0) = r} = Cb,

as desired.
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Tomislav Domazet-Lošo, Angela E. Douglas, Nicole Dubilier, Gerard Eberl, Tadashi
Fukami, Scott F. Gilbert, Ute Hentschel, Nicole King, Staffan Kjelleberg, Andrew H.
Knoll, Natacha Kremer, Sarkis K. Mazmanian, Jessica L. Metcalf, Kenneth Nealson,
Naomi E. Pierce, John F. Rawls, Ann Reid, Edward G. Ruby, Mary Rumpho, Jon G.
Sanders, Diethard Tautz, and Jennifer J. Wernegreen. Animals in a bacterial world, a
new imperative for the life sciences. Proceedings of the National Academy of Sciences,
110(9):3229–3236, February 2013.

[62] Sharon L. Messenger, Ian J. Molineux, and J. J. Bull. Virulence evolution in a virus
obeys a trade off. Proceedings of the Royal Society of London B: Biological Sciences,
266(1417):397–404, February 1999.

[63] Johan A. Metz and Odo Diekmann. The Dynamics of Physiologically Structured Popula-
tions. Springer, 1986.

[64] Richard K. Miller and Anthony N. Michel. Ordinary Differential Equations. Academic
Press, 1982.

[65] Isao Miyadera. Nonlinear Semigroups. American Mathematical Soc., 1977.

[66] Jan van Neerven. The Asymptotic Behaviour of Semigroups of Linear Operators.
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Identi�ed misprints of the thesis-n-

In page 17, line -5 it should be: from Xi into Xi
�Ti �

In page 17, line -1 it should be: j1
¡1f1(s)

In page 23, line -3 it should be: Let t� 0

In page 26, lines 2 and 15 it should be:
P

i=1
m

In page 26, line 8 it should be: �i(�)

ci(�)

In page 27, line -1 it should be: (see Theorem 1.3.5 below)

In page 31, line -1 it should be: (T~(s)v)i=T~i(s)vi :=vi('i(¡s; �))1+('i(¡s; �))

In page 39, line -10 it should be: position x of edge i

In page 89, in the inequalities, terms related with sup�2[0;t]T (�) are missing

In page 94, line -6 it sho4uld be: such that cvn0 !1(0;s], jcvn0 j< 1 and vn(1)=0
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