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ABSTRACT

This thesis is about Pattern Recognition. In the last decades, huges éifee been
made to develop automatic systems able to rival human capabilities in this field. Al-
though these systems achieve high productivity rates, they are notegesiagh in
most situations. Humans, on the contrary, are very accurate but caivelgrguite
slower. This poses an interesting question: the possibility of benefiting It
worlds by constructing cooperative systems.

This thesis presents diverse contributions to this kind of collaborativeoapbp.
The point is to improve the Pattern Recognition systems by properly introdacing
human operator into the system. We call tmeractive Pattern RecognitiofiPR).

Firstly, a general proposal for IPR will be stated. The aim is to develoarad-
work to easily derive new applications in this area. Some interesting IPRsissae
also introduced. Multi-modality or adaptive learning are examples of extesfiat
can naturally fit into IPR.

In the second place, we will focus on a specific application. A novel method
obtain high quality speech transcriptions (CAEImputer Assisted Speech Tran-
scription). We will start by proposing a CAST formalization and, next, we will cope
with different implementation alternatives. Practical issues, as the syssponse
time, will be also taken into account, in order to allow for a practical implementation
of CAST. Word graphs and probabilistic error correcting parsing asks timat will
be used to reach an alternative formulation that allows for the use of CA&Teal
scenario.

Afterwards, aspecialapplication within the general IPR framework will be dis-
cussed. This is intended to test the IPR capabilities id@m@emesnvironment, where
no input pattern is available and the system only has access to the uses &xoo-
duce a hypothesis. Specifically, we will focus here on providing assistamthe
problem of text generation. The use of adaptive learning in this scendrioe em-
phasized. Besides, two derived applications will be also considerddbNpothe use
of text prediction for information retrieval systems.

In addition, we will pose an interesting question about IPR systems. The inclu
sion of multi-modality as a natural part of IPR. The design of a speech infguface
for Computer Assisted Translation (CAT) will be addressed. To this eedyi de-
scribe several interaction scenarios, which facilitate the speech lioogorocess
by taking advantage of the CAT environment.

Finally, a set of prototypes that include the main features of the work femed-d
oped will be presented. The main motivation is to provide real examples #imut
feasibility of implementing the techniques here described.
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RESUMEN

El presente trabajo versa sobre Reconocimiento de Formas. Hititags decadas,

se han destinado numerosos esfuerzos en construir sistemastcwsroapaces de
competir con las habilidades humanas en este campo. Aunque dichos sistamas s
capaces de obtener niveles de productividad muy altos no son lo sidfinimte pre-
cisos en muchos casos. Los seres humanos, por otra parte, resstb/@noblema

de forma bastante precisa, aunque no pueden competir en cuanto aactldesde
hecho plantea un problema interesante: la posibilidad de combinar ambrisrepro
ciones construyendo sistemas cooperativos.

Esta tesis se centra en presentar diferentes contribuciones a unpromvesta
encuadrada dentro de este tipo de sistemas colaborativos. Para elipassgncluir
al usuario como parte del propio sistema. Esta aproxibmeaz conoce con el nombre
de Reconocimiento Asistido de Formas (IPReractive Pattern Recognitign

En primer lugar, se propor@iuna formula@dn general para el problema del Re-
conocimiento Asistido de Formas. Se pretende, de esta manera, desarrafiarco
formal que permita el desarrollo de nuevas aplicaciones dentro de egpe.cRor
otra parte, se discufin ciertos aspectos generales, relevantes dentro del marco de
IPR. Cuestiones como la multi-modalidad o el aprendizaje adaptativo constituye
extensiones naturales al problema en coesti

En segundo lugar, se desarrodlama nueva aplica@n destinada a obtener trans-
cripciones del habla de calidad. Para ello, primeramente se e&tudiarforma-
lizacion de dicha aplicadn para, mas adelante, proponer diferentes alternativas de
implementadn. Se discutain, aderas, diversos aspectosagticos, como por ejem-
plo el tiempo de respuesta que presenta un sistema de este tipo. El ustodelgra
palabras y lasécnicas de alisis sinfctico corrector de errores &erincluidas en
una formulacddn alternativa encaminada a mejorar dicho tiempo de respuesta.

A continuacdn, se describir un caso especial de aplicagj en la cual no se
dispone de un pain de entrada a reconocer y el sisterabp puede basarse en las
acciones realizadas por el usuario para generar nuevatesip Desde un punto
de vista pactico, este enfoque pretende facilitar la genéradie texto en diferentes
situaciones. Adeds, se descritiin dos aplicaciones derivadas de esta propuesta,
destacando el uso de sistemas de gene@maie texto en sistemas de recupdraale
informacbn, que se presenta como una aproxiagompletamente nueva en este
campo.

Por otra parte, se discudifa incluson de interfaces multi-modales en un sistema
IPR. En concreto, se abordael diséo de un interfaz basado en reconocimiento
del habla para un sistema de traddccasistida. Se estudar, para ello, diferentes
escenarios de interadei.



Pordltimo, se presentaruna serie de prototipos que implementan algunas de las
técnicas agudesarrolladas, con el objeto de mostrar su viabilidad como aplicaciones
finales para el usuario.
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RESUM

El present treball versa sobre Reconeixement de formes. Hiltiees decades,
s’han destinat nombrosos esfor¢os a construir sistemes atitsmapacos de com-
petir amb les habilitats humanes en aquest camp. Encara que aquests siétemes s
capacos d’'obtenir nivells de productivitat molt alts, Ba prou precisos en molts ca-
sos. Elsessers humans, per altra banda, resolen aquest problema de fornpaigero
cisa, encara que no poden competir quant a velocitat. Aquest fet plantegjablema
interessant: la possibilitat de combinar ambdues aproximacions constrigntess
cooperatius.

Aquesta tesi se centra a presentar diferents contribucions a una mpasta
enquadrada dins d’aquest tipus de sistemedabalratius. Amb aquesta finalitat,
es proposa incloure a l'usuari com part del propi sistema. Aquestxiapacb es
coneix amb el nom de Reconeixement Assistit de Formes (RBactive Pattern
Recognition.

En primer lloc, es proposaruna formulad general per al problema del Re-
coneixement Assistit de Formes. Es pretd’aquesta manera, desenvolupar un marc
formal que permeta el desenvolupament de noves aplicacions dinsestasamp.
D’altra banda, es discutiran certs aspectes generals, rellevants timardale IPR.
Questions com la multi-modalitat o I'aprenentatge adaptatiu constitueixen extension
naturals al problema enigstb.

En segon lloc, es desenvolupama nova aplicaéidestinada a obtenir transcrip-
cions del parla de qualitat. Amb aquesta finalitat, en primer lloc s’estudiaa
formalitzacd d’aquesta aplicadiper a, neés endavant, proposar diferents alternatives
d'implementadd. Es discutiran, a 85 a nés, diversos aspectesaptics, com ara
el temps de resposta que presenta un sistema d'aquest tipisdd grafs de pa-
raules i les &cniques d’aalisi sinfactica correctores d’errors seran incloses en una
formulacb alternativa encaminada a millorar aguest temps de resposta.

A continuacb, es descriur un cas especial d'aplicégien la qual no es disposa
d’'un patd d’entrada a recaixer i el sistema noés pot basar-se en les accions re-
alitzades per l'usuari per a generar novesdtegis. Des d’'un punt de vistagmtic,
aquest enfocament pégt facilitar la generadide text en diferents situacions. Aes
a mes, es descriuran dues aplicacions derivades d’aquesta progpestacant s
de sistemes de generadie text en sistemes de recupedadiinformacb, que es
presenta com una aproximaaompletament nova en aquest camp.

Per altra banda, es discutila incluso d’interficies multi-modals en un sistema
IPR. En concret, s'abordarel disseny d’'una inteidie basada en reconeixement de
la parla per a un sistema de traducessistida. S’estudiaran, amb aquesta finalitat,
diferents escenaris d’interaéci
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Finalment, es presentauna grie de prototips que implementen algunes de les
tecniques dadesenvolupades, amb I'objecte de mostrar la seua viabilitat com aplica-
cions finals per a l'usuari.
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PREFACE

Pattern Recognition is a very natural task for us, human beings. Milliors ez,
accurately recognizing faces could represent the difference betifeeind death.
Confusing an enemy or predator for a family member constituted a terriblesand u
ally deadly mistake. Evolutively, we have acquired mechanisms able to eatrdct
identify different kind of patterns from our environment. Speech anguage gave
us a considerable advantage over our competitors, since it allowed ustowdcate
in a very precise and efficient way. Color and shape identification pedvis with
a way to distinguish between healthy and poisonous food. These skillSuveta-
mental for our survival and, because of that, we are highly-accpedtern decoders.
Since sufficient computation power was available, we have tried to emulage thes
capabilities by constructing artificial systems. Some success have beaewveacbo
far but not to the extent to which we can replace a human operator in nuest.da-
stead, only in some specific and constrained situations we can fully relytomatic
Pattern Recognition.
This problem can prevent these system from being used in real talglss some
human supervision is added to the process. An operator can be emplay@uetct
the mistakes produced by the system. This can make sense when the results ar
precise enough, since these users only have to modify a small portionafttteenes
and these changes are easy to make. However, when the numbersistoo high
and/or they are difficult to be identified and corrected, a utterly manuakpsocan
instead be more productive.
In some situations some mistakes can be assumed. This is generally the case of
applications where the result itself is not what really matters but only somemafo
tion that can be derived from it (for instance, when an automatic transtatised to
get the gist of a text written in a foreign language). On the contrary, duacg to the
translation example, formal documents are not expected to have ertbpsednct
results are required in this case. We can cite the specific example of legal do
ments, where the consequences of an inaccurate translation can bedreaibtic
and, therefore, considering complete automation here is not possible at all.
Focusing, however, on fully automatic systems is not the only alternative. In
stead, devising tools that can complement the work of a human operatars@n’y'
is quite worth it. The goal here is to keep the human Pattern Recognition skills while
achieving a high productivity. Building semi-automatic, cooperative applicgtio
where the user is an integral part of the system, is a way to accomplish thisivdnje
In this thesis, we are going to study some of the possibilities that this kind of
paradigm can offer. Since Pattern Recognition is such a wide field, wgoéamg
to focus on the problem of Natural Language Processing. Speeafjnition, assis-
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tance in the generation of text documents or user interfaces based oal laatguage
are interesting problems that will be addressed in this work. Clearly, thesendy

a few examples and a great number of new possibilities are ready to beeskplo
nowadays.

The organization of this thesis is as follows:

Chapter 1 presents an introduction to Pattern Recognition and Natural Lan-
guage Processing. In addition, the main goals of the work are discusded a
the specific tasks used in the experiments are described.

Chapter 2 introduces the concept dhteractive Pattern Recognition (IPR)
describing in detail the fundamentals and the motivation of this proposal. Be-
sides, a formal framework to develop IPR systems is proposed. Finafl-dif
ent system architectures as well as important issues derived from tiesaje
framework are discussed.

Chapter 3is devoted to presenting a specific application of the IPR paradigm.
The case of Computer Assisted Speech Transcription (CAST) is address
We include an extension from the well known statistical speech recognition
problem to fit this application into IPR. Experiments on several tasks are also
described.

Chapter 4 is concerned about gpecial IPR-related application, Interactive
Text Generation (ITG). In this case, no input pattern is available andydie s
tem can only rely on the user feedback. The aim is to provide a system able
to semi-automatically generate text documents. Different theoretical aod pra
tical issues will be addressed and experiments on very different taksew
discussed in detail.

Chapter 5 is focused on an important IPR issue, multi-modality and how to
deal with the user feedback. Multi-modal interfaces can be naturally iedlud
into IPR and the very nature of the IPR can facilitate their development. A
specific multi-modal computer assisted translation system will be studied in
this chapter from both theoretical and practical points of view.

Next, in Chapter 6, several conclusions about the work developed are pre-
sented. In addition, different future lines or problems suitable to be ssiglie
are proposed.

Finally, the bibliography used in the work is enumerated along with an ap-
pendix describing real prototypes for the applications proposed here.
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CHAPTER1

INTRODUCTION

1.1 Pattern Recognition

Pattern Recognition (PR) can be defined as “the act of taking in raw dettakn

ing an action based on the category of the pattern” [16]. PR is heavily defate
perception and, therefore, the most straightforward application of PRe iddkign
and construction of systems able to imitate (to some extent) the human senses. The
benefits obtained by the application of such systems are clear and huglee Ome
hand, there are environments where using human beings is not possibig o
risky (the outer space, the ocean depths, the inner earth, etc.). On d¢ngetloghpro-
ductivity that can be achieved by a human operator is clearly limited. Forehagson,

in these extreme environments, or when a high throughput is requirethatitsys-
tems seem to be the only solution. In addition to these examples, PR can Hdaisefu
better understand how biological systems recognize patterns in nature.

A typical PR process usually consists of three steps:

e Preprocessing: A signal or stimulus is captured from the real world. This
stimulus can contain a set of patterns to be recognized along with some useless
data. In this step, a segmentation process is usually carried out in order to
separate the different patterns captured. In addition, the noise chyritok
signal is removed or limited.

e Feature extraction: Once the input is segmented aridan the relevant infor-
mation is extracted. The point here is to achieve a suitable representation for
the upcoming recognition process.

e Recognition The final step consists in interpreting the input pattern.

From all the ways in which a pattern can be characterized (for instapceeans
of a complex linguistic description or by a set of nominal features), labeliag#t-
tern as an instance of a class is, maybe, the most convenient way fotcanadic
processing. To this end, this label has to somehow summarize the relevanmanf
tion included into the pattern. This classification can be performed on a pslyio
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Chapter 1. Introduction

defined set of classes (supervised classification) or, alternatiesl\he intended to
group the patterns into a set of unknown classes that will be discoveretydhe
classification task itself (unsupervised classification).

Nevertheless, regarding the recognition process as a mere classifteatiaran
turn out in a very constrained point of view. In the case of Natural uagg Pro-
cessing (NLP), discussed in sectionl1.2, it is more appropriate to cotisidénal PR
step as an interpretation process.

This step can be approached following different techniques. A de@uapv
proximation could be used when the knowledge needed to perform thgnigoa
is available and can be, as well, properly formalized and representagevdn this
knowledge is normally not available or it is extremely vague or imprecise aad, b
cause of this, inductive technigues are often more appropriate hezee Téchniques
are based otearninga model from a set of samples (training samples) that, some-
how, captures the information needed to solve the problem. This model attempts to
extract general patterns from the training samples in order to recognize inputs.
Statistical PR is one of the most representative examples of this inductivexapp
imation. In this case, the model is actually a (or a set of) probability distribution
that relates the possible inputs to the recognition outcomes. Here, eagier{pro
represented) pattern can be seen as a pointdrdianensional space which has to
be scored according to this probability distribution. In the case of NLPftarpas
actually defined by a set of relationships among these points.

Formally, given an input pattern and a previously trained modéV, the clas-
sifier will produce a recognition hypothesis from the setH of all the hypotheses
considered, leading to the following expressfon

h = argmaxPrys(h | x) (1.1)
heH
Eqg. (1.1) formalizes theptimal classification ruleand it is aimed at minimizing
the number of recognition errors produced.
Usually, some information about the prior probability of each hypothesisit av
able and we can benefit from including this information into our statistical m&gel.
applying Bayes’ theorem to Eq. (1.1), we can obtain Eq. (1.2).

h = argmaxPr(z | h) - Pr(h) 1.2)
hen

Now, we still have a model that connects the inputs to the claBsés | h) but
we have, as well, a new term for the hypotheses prior probaity:).

1.2 Natural language processing

Natural language processing (NLP) is about the human language afibeale be-
hind NLP is to provide methods to automatically deal with this kind of language.

@Usually, M is assumed to be known and it is not included as part of the notation
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1.3. Scientific goals

Among all the problems addressed by NLP, we can cite:

¢ Information extraction

e Automatic summarization

e Text-to-speech conversion
e Speech recognition

e Machine translation

e Handwritten text recognition
e Dialogue systems

e etc.

In spite of the fact that human language is the most natural way for us to com-
municate, it is not clear how to represent and capture its relevant featuadiow for
an utterly automatic processing. Pattern Recognition can be applied to NL&} sinc
on the one hand, some NLP tasks are actually about pattern decodirigsttorce,
speech recognition) and, on the other, some PR techniques are well tsudedl
with other NLP problems (for instance, machine translation). In NLP, wegean
erally find an underlying structure within the set of features that destmdb@put
pattern (syntactic pattern recognition). This way, this pattern can be desethnto
simpler sub-patterns and the interpretation process is usually perfornaedilygzing
these sub-patterns and the relationships among them.

In order to make this decomposition, it is usually assumed the language to be a
Markovianprocess. Thus, the input is split into sequentially consecutive sub-patter
which are interpreted according to the local structure of the global patterthis
senseHidden Markov Modelsused in speech recognition to identify the phonetic
constituents of the spoken discourse, angram language models, widely employed
to cope with the syntactic structure of a sentence, will be described in Clgapte

Finally, it is interesting to mention that most NLP problems are concerned with
transforming an input language fragment into a different representat8peech
recognition, machine translation or automatic summarization are examples of this.
Nevertheless, NLP can be also used in generation tasks (for instande avita-
logue system). A particular case of this approach will be studied in this wmarkgly,
an application to automatically suggest portions of text.

1.3 Scientific goals

The main scientific goals of this thesis can be summarized in the following points
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Chapter 1. Introduction

e Firstly, we try to develop a general framework for Interactive Pattecogei-
tion. This framework should allow for deriving specific applications.

e Secondly, some representative IPR applications should be exploremmalf
development along with a detailed experimental work would have to be carried
out in order to assess the feasibility of the applications developed.

e Different inherent IPR issues should be studied in detail. In particular, th
opportunities arisen from aspects as multi-modality or adaptive learning are
interesting points to be considered.

1.4 Description of the Tasks used in the experiments

In order to evaluate the different approximations presented, sevgratiments in-
volving real tasks have been carried out. In this section we are going/¢oagi
overview of the tasks used. More details will be given when describingbeific
experimental framework for each application.

1.4.1 BUTRANS

EUTRANS is a corpus devised during theuERANS project [18]. It provides sen-
tences corresponding to the interactions performed in a hotel desk. dnpigscis
a low perplexity corpus with a vocabulary of about 700 words. On thehamal,
the EUTRANS corpus has been used to easily test the different proposals and, on the
other, to test if even in tasks where the automatic systems are able to prowvide hig
accurate results, the interactive approach can be still useful.

This corpus has been used, specifically, in CAST (Chapter 3). In thiss 835
spoken utterances were employed. Each utterance correspondsiteracegn Span-
ish. In addition, the text part of the corpus has been also employed inegues of
Interactive Text Generation (ITG, Chapter 4). About 3000 sentimc8panish were
used as test set.

1.4.2 ALBAYZIN geographic corpus

Albayzin[15] is a corpus designed to facilitate the development of automatic speech
recognition systems for Spanish. Three corpora were built with diffgrarposes
(acoustic model training, problematic environments and a real applicationglestin
One of these corpus consists of sentences corresponding to oresgteea geo-
graphic database. About 1500 oral sentences were employed to t&3t (Chap-

ter 3). In addition the text transcriptions were used in ITG (Chapter 4) agxample

of a real application: accessing to a database by means of naturaldagngua
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1.4. Description of the Tasks used in the experiments

1.4.3 XEROX corpus

The Xeroxcorpus was produced during the TransType 2 project [13], asliatiea
task to fully test the Computer Assisted Translation (CAT) proposal. This ésa-p
lel corpus about printer manuals from tKeroxcompany. This task is more difficult
than the two previously described because both the size of vocabuldthemer-
plexity are significantly higher (about ten thousand words and about siz tiigaer,
respectively).

From this task, two corpora were derived. A corpus consisting of whjoddken
sentences was used for testing CAST. The corresponding transcsiptiene also
used in ITG as a good opportunity to compare the accuracy of ITG andfCA&
second corpus was specifically designed to test the multi-modal interfa€aAfo
systems described in Chapter 5 and it is composed of sentence fragmeantadte
These fragments are aimed at selecting parts of the system predictionsdioidio
ing possible continuations to a previously validated prefix.

1.4.4 WSJ corpus

The Wall Street Journal speech corpus [42] is a corpus widely adlaptepeech
recognition experiments. This corpus is actually split into two different taish w
vocabularies of 5000 and 20000 words respectively. In this work\WBd corpus
was used to test the different wordgraph based approximation to CE&ap(er 3).

1.4.5 Other ITG tasks

ITG was also assessed on additional corpora. First, ttredBARL Corpus, contain-

ing transcriptions of parliamentary sessions. This corpus is consideliffctalt task
owing to the vocabulary size and perplexity and constitutes a good exampge to s
how ITG can behave in a very realistic situation. On the other hand, a Viéeyd
ent task was also adopted. Seve3hbkespearelays were collected from publicly
available web sites to check ITG in an extreme environment were few samples a
available for training purposes and the test vocabulary is very diffén@mn the train-

ing one. Finally, some of the source files of B&IU Linuxoperative system were
also employed as a new task not so much related with NLP.
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CHAPTER2

INTERACTIVE PATTERN
RECOGNITION

2.1 Motivation

Nowadays, Pattern Recognition systems are widely used. Speechiteegdar in-
stance, is employed in very different environments. Phone customéresgrdesktop
dictation software, biometrics, are only a few examples. This is also truetier o
tasks as machine translation, image recognition, etc. Nevertheless, tbesasgre
not perfect and, therefore, some amount of errors will be produCht is accept-
able in some situations, where the benefit obtained by the use of such sysies
up for imperfect results.

Conversely, in some scenarios, it may not be convenient to rely on automatic
Pattern Recognition. We can focus, for instance, on the case of machmséation.
When translating legal documents, a small change in one term could caose a c
plete change in the global meaning with all the problems that it would entail. The
same thing happens in fields such as medicine, technical manuals for cyifitahs
in engineering, etc. When a perfect outcome is needed, the presembamfn oper-
ator is required to verify and correct the system results. This humarppostssing
is reasonable when the amount of mistakes is not too high and they ard|,asase
to correct. Otherwise, a completely manual process can be more adequate.

In addition to these examples, there are environments where the complete au-
tomation does not make any sense. As an example, we can cite one of tlan®ob
addressed in this thesis. The basic idea consists in helping a user totgéeerdoc-
uments by reducing typing effort. We could think how important this effodtiotion
could be for a disabled person that has to communicate with his/her envirbbgnen
typing text through specific devices. Here, a fully automatic system is redilge
since we need some user feedback (in the form of the previously prddext, as
will be discussed later) to be able to generate new responses.



Chapter 2. Interactive Pattern Recognition

2.2 Introduction to Interactive Pattern Recognition

Usually, Pattern Recognition systems are built based only on the kind of iaputs
pected and on the outputs to be produced. The role of the human opéfratam(
considered) is rarely included into the system itself. Instead, this is megdyded
as a minor implementation issue and, the treatment of the system outcomes is not
something to be concerned about.

In this chapter, we aim at developing a framework where the user actaiehg
part in the process. As a result, we will have a semiautomatic and interagsies s
We call this Interactive Pattern Recognition (IPR)[52].

Before continuing, the benefits that we can expect from this kind ofcambr
should be discussed. As the most relevant points, we can cite:

e The cooperation between an automatic Pattern Recognition system and a hu-
man user ensures the achievement of a perfect result (this is guaraimiee
the user is who actually controls all the process). On the other hand, the
throughput can be significantly increased (the automatic part of the system
provides this feature) in comparison to a whole manual process.

e The adoption of an interactive paradigm should improve the system argosio
The user is now part of the system and he or she is not limited to deal with the
final (and usually imperfect) system outcomes. Besides, the systemssugge
tions can help the user to consider new solutions to the problems being solved.
For instance, in a translation task, the system could achieve alternatites tha
the human translator was not thinking of at that moment.

e The system can benefit from the fact that the user is constantly prowidiing
dation and/or corrections to its outputs. This feedback can be used to ienprov
the accuracy in several ways (see below). Typically, a Pattern Rscogsys-
tem does not have the opportunity to check whether its responses watre rig
or not and, what is more, to obtain a corrected version for the wrong. dne
IPR, on the contrary, the system is always aware of the correct asn$wvehe
previous inputs.

In Figure 2.1 a possible architecture for an IPR system is depicted. The IP
operation mode is summarized in the following steps:

1. Initially, when a new input pattern is available, the system proposes a initial
hypothesis for this input. In this case, it actually behaves as a typical and
automatic Pattern Recognition system.

2. The hypothesis produced is shown to the user, who starts a validatioesgt
If an error is found, some feedback about this error is sent to thensy€éh-
erwise, if the prediction is fully correct, the process is finished and thewurr
hypothesis constitutes the final result (the fact that the user completely vali-
dates an outcome can be also considered as useful feedback infopmation
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2.2. Introduction to Interactive Pattern Recognition

3. The system benefits from the previous feedback to obtain a new ¢pedLily
improved) prediction.

4. Goto step 2.

As can be observed, the process is completely human-supervisedadibgbal
is to take advantage of the user interactions to produce better and betbéhdsgs
until a perfect one is achieved.

The previous discussion is focused on the opportunities that the availsdale u
feedback brings in the short term (specifically, in the decoding of thecumput).
Nevertheless, as will be discussed in section 2.5, we can also take apbvahthis
cooperation in the long run.

—><—

FEEDBACK

INTERACTIVE

PATTERN RECOGNITION

INPUT
SYSTEM PREDICTION

\/

\

STATISTICAL
PREDICTION

MODEL

Figure 2.1: Architecture of an IPR system.
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2.3 A formal framework for Interactive Pattern Recogni-
tion

In this section we present a formal framework for IPR. ket X be an input ob-
servation or signal (i.e. the pattern to be recognized).hLetH be a hypothesis or
prediction (a recognition outcome), derived by the system fromnd letf € F the
feedback coming from the user.

Whenz arrives to the system, an initial predictiénis generated (no user inter-
vention yet). In this situation, thedassicalapproach to Pattern Recognition discussed
in Chapter 1 is used to derive this first hypothesis:

h = argmaxPr(h | z) (2.1)
heH
Once this initial outcome is produced, the user, after analyziagd/, sends
some feedbaclf to the system. From now on (i.e. in the second and successive
predictions), we will incorporate this feedback into the recognition potgsg to
make the following hypotheses more accurate.

h = argmaxPr(h | z, f) (2.2)
heH

where f stands for the feedback, interaction-derived informations; e.g., in tine fo
of partial hypothesesr constraintson .

Clearly, the more feedback available the greater the opportunity to obtain bette
h. Nevertheless, solving the maximization (2.2) may be more difficult than in the
case of our Eq (2.1). Adequate solutions will be discussed when pirgapecific
applications for this framework in the next chapters.

A direct estimation of this model might not be feasible. From here, and applyin
Bayes'’ rule, we can write:

h = argmaxPr(z | h, f) - Pr(f | h) - Pr(h) (2.3)
heH
which allows us to introduce two new statistical models to deal with the problem and
therefore, to (hopefully) perform a more reliable estimation. On the oné, han
Pr(f | h), accounts for the probability of observing a specific feedback actiengi
the current hypothesis and, on the ottiarih) models the hypothesis prior probabil-
ity.

In the case of NLP and, owing to the sequential nature of language |ihifg
strategy seems to be quite natural. Firstly, the system provides a wholetjomrefic
the input and the user reads it sequentially. When an error is foundrefie goming
before the mistake is preserved and the rest of the sentence is remnveedurfent
prefix implicitly includes the sequence of the previous interactions, andgftrer
they are not needed anymore. As a result, just the last interaction is reafly.uUANn
example of this, borrowed from Computer Assisted Translation (CAT) beaseen
in Figure 2.2.
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ITER-O0 (tp) O
(&) (Haga clic para cerrar el dialogo de impresion)
(a) (Haga clic)
ITER-1
(] (en)
(t,) (Haga clic en)
() (ACEPTAR para cerrar el didlogo de impresion)
(a) (ACEPTAR para cerrar el)
ITER-2
(k) (cuadr o)
(tp) (Haga clic en ACEPTAR para cerrar el cuadro)
() (de dialogo de impresion)
FINAL (a) (de dialogo de impresion)
(k) #)
t,=t) (Haga clic en ACEPTAR para cerrar el cuadro de dialogo de impresion)

Figure 2.2: Example of a Computer Assisted Translation Session tolatns
the sentencéClick Ok to close print dialog” In the first interaction the prefix
t, is empty (no user feedback is available yet) and the systerduges a whole
translatiort,. Next, the user set a prefix)of this translation. Then, he or she
adds some text, thereby generating a new translation prefjy.(This process
is iterated until the user validates the whole system suiyes

Clearly, other alternatives are possible. For instance, let's considgadication
to recover images from a database. The system provides the user witif passible
candidates and the user can label some as “appropriate” and somemgsdim@ate”.
For a specific interaction, the current feedback would consist in botbf seages
(the “appropriate” and the “inappropriate” ones). To take full advgaaf this user
feedback, not only the last set of labeled images is useful but alsodh®ps ones.
Because of this, the whole feedback history is actually informative andiir@ach
described in EqQ. (2.2) would have to be strictly followed.

Although we claimed that, for NLP applications, the first order approacts tout
to be quite useful, there are, indeed, some opportunities to be exploredchkinyg
all the past user actions. We could, for instance, identify recurrestesymistakes
which are, usually, really annoying in order to try to prevent these £from occur-
ring in the future.

2.4 Multi-modality in IPR

One of the consequences of the previous IPR description is that multi-modaadity
pears in a very natural way since the system has to deal with two kind asinPm
the one hand, we have the input patterhto be decoded and, on the other, we have
a set of user feedback actiong)( The domains from where both inputs come are
often very different. In the CAT example, the input is a text source seateRe-
garding the user actions, typing text can be used to introduce new amesdmen
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interesting multi-modality yet) but we could also allow for more natural communi-
cation modalities. Speech or an e-pen are some alternatives to consideallyAc
several interaction modalities can be allowed simultaneously, which turns aut in
multi-modal interface for an IPR.

The description above could be seen as a rough attempt to unnaturallyuicerod
multi-modality here. However, the very nature of IPR systems can reallyt io@s
development of multi-modal interfaces. In CAT, we have proposed thefuggeech
to dictate the corrections [51]. The point here is that we expect the ugdetavords
that are translations of part of the source sentence. This way, weusittlis knowl-
edge to improve the speech recognition accuracy. On the other hand, tbdinger
choose among different input modalities should make the system more cdotdorta
thereby increasing the final throughput.

The previous example illustrates how a multi-modal interface can be naturally de
vised within IPR. Generally speaking, this multi-modal interface should bedetkn
to decode the possible user feedback actions (coming from differerdide: speech,
keyboard, mouse, e-pen, gestures, etc.) into a suitable represematioa $ystem.
This multi-modal interface can benefit from the IPR environment by takingratdge
of the available information (input pattern to be recognized, IPR curigdthesis,
etc.) in order to better interpret the different user actions. In Figure p@saible
structure for multi-modal IPR is depicted.

From a more formal point of view, we have the system hypothgsthe input
patternz and the current user actiom, The goal is to decodeinto a proper feedback
information f for the IPR system:

f=argmaxPr(f |z, h,a) (2.4)
f

Now, some assumptions can be made leading to different scenarios. mersige
framework for multi-modal IPR will be discussed for a specific speechexidnput
interface in Chapter 5.

2.5 Adaptive learning

Under the IPR paradigm, we are always exposed to the user feedBadhar, this
fact has been only used to improve the accuracy in the short term (foea igput
pattern) but this could be also useful to increase the system accuraeylamthterm
(that is, for future inputs). Maybe, the simplest way, but not the only comesists in
considering the (perfect) system outcomes as new training material as scistael
next.

When developing a statistical Pattern Recognition system, two well-separated
stages are usually identified. In the first place, a statistical model is lgamtd
set of samples or training set. As a result, we obtain a probabilistic model that, to
some extent, captures some general knowledge from these samples.pbithjishe
system can begin its normal operation mode, recognizing new samples. This is
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— G

ACTION

y

MULTIMODAL
INTERFACE

USER FEEDBACK

INTERACTIVE

NPUT PATTERN RECOGNITION
SYSTEM PREDICTION

\

\/

STATISTICAL
PREDICTION
MODEL

Figure 2.3: Multi-modal IPR system

ally known as “batch-training”. In IPR, a similar strategy can be followedwElver,
we have a user that ensures the correctness of the results producegtde opera-
tional stage and, thus, they can be used to improve the statistical predicti@ismod
Moreover, we can expect to find some similarities in the inputs processedvera g
moment. This way, the knowledge from the current input (and the camekipg out-
come) will be quite useful for the next ones. In other words, the oppitytof con-
tinuously adapting the system to the task being currently solved easily aiitbés w
IPR. In Figure 2.4 a possible architecture for IPR incorporating adajpgarning is
shown.

It can be argued that a similar approach can be followedlassical Pattern
Recognition, where the system outputs can be also used as new trainingainater
However, this could be a double-edge sword unless we have high acoedide our
system accuracy. Besides, we have to tackle the issue of dealing withvaatg eot
observed before, In IPR, the user can, implicitly, introduce new elemenhtern in
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the training stage. For instance, in NLP, the user can produce a sdfzown word.
Following an IPR approach, this new word can be easily incorporated lat@aage
model. In fully automated Pattern Recognition, to the best of our knowledgeah
not be done reliably.

FEEDBACK

INTERACTIVE

NPUT > | PATTERN RECOGNITION PREDICTIONV
SYSTEM

|

OFF-LINE STATISTICAL ON-LINE
TRAINING PREDICTION LEARNING
DATA MODEL SYSTEM

Figure 2.4: IPR system incorporating an adaptive learning module.

2.6 Evaluating an IPR System

In Pattern Recognition, performance is usually measured by considegngtib
between the number of times that an input has been incorrectly recogmidetiea
overall number of inputs processed. In the specific case of NLP, noplasticated
metrics are adopted. We can citdord Error Rate(WER), Character Error Rate
(CER) for speech recognition diranslation Word Error Ratd TWER) and BLEU

for machine translation. WER and TWER can be seen as an adequate estiohation
the off-line, word-level post-edition effort required to achieve ag@erfesult (i.e, the
number of words that have to be inserted, deleted or modified).

For IPR, a different strategy has to be followed. Perfect results waeagteed
and, hence, it is necessary to focus on how the system can increaseeth@oduc-
tivity. To this end, we can consider two alternative baseline scenariosmalete
manual process or, instead, a human post-processing the outputsubdaratic sys-
tem. We can assume the second option to be more realistic in most situations and,
from now on, we will adopt it as our baseline. Notice that using the firshago
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would generally translate into better results for our proposals but, this teadidus
to achieve biased and less accurate conclusions.

From this point of view, an IPR system should perform better when the huma
intervention is low (the lower the user activity is, the quicker the results daedérega).
Thus, a possible way to assess the IPR performance is based on ngpéseiniser
effort needed to carry out some predefined task. Several metriedleawn developed
to this end. On the one handiord Stroke Rati¢QWWSR) estimates the average number
of word-level user interactions actually performed. On the other hidag,Stroke
Ratio (KSR) defines an interaction as a key stroke, this way measuring thegavera
number of user key strokes. Despite what the previous descriptioruggest, real
users do not have to be involved in the experiments, since they can be sinulate
by means of a suitable set of reference results (that are usually humearatgs,
though). We can go now a little bit further to conclude that it is possible to estimate
the amount of effort that an IPR system can save (or, equivalentlynthease in
productivity that can be expected) with respect to a fully automatic systemgplu
post-edition process by comparing the off-line measures (WER, TWERE®) @
the online (and interactive) ones (WSR or KSR). The difference in thegfggean be
then used as an estimator for this effort reduction.

At this point, we can not elude an important issue. We really think that real
users are necessary to get a clear picture of the actual perfornashcleemce, they
will have to be eventually included into the experimental framework. The atialu
method can be improved by means of other quality indicators obtained frommisuma
performing real sessions with the system. However, in this work we try, & mu
as we can, to follow a strictly scientific point of view. Because of this, walnee
some objective way to analyze the techniques that will be proposed in thevifaio
chapters and, therefore, WSR and KSR will be employed all along this.work

Finally, we would like to introduce a final consideration. Automatic or semi-
automatic systems are not always welcome in real situations. Some peopg&iare r
tant to rely on these assistance tools since they can feel they are ndiyaictoharge
of the process. This is especially noticeable in tasks entailing some soeativer
work. Translation is good example of it. A human translator usually likes to leave
his or her mark on the final result. IPR is not planned to interfere with thewrsd
but only as a tool to speed the process up. The user has always thveldst

2.7 Summary of contributions

In this first chapter, a formal framework for developing IPR applicatioas been
described in detail. Next, different architectures for IPR systems hers diso dis-
cussed. Finally, we have proposed some extensions to the initial cor® pbésed

on the inclusion of two interesting features: multi-modality and adaptive learning
All these contributions extend the basic IPR proposal presented in [52].
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CHAPTER 3

INTERACTIVE SPEECH
RECOGNITION

3.1 Introduction to Speech Recognition

One of the most interesting and successful applications of Pattern Recogsio-
tomatic Speech Recognition, (ASRuman computer interaction, dialogue systems
or transcription of speeches, are only a few examples of the use of A&RIyday
life. However, ASR systems are not perfect. Some of the issues that maR&SR
problem hard to be solved are:

e Speaker variability. The speaking style is usually not uniform among people
Features such as voice, accent, cadence, etc. are highly variabtaasel
confusion to ASR systems. In addition, the language (vocabulary, grananatic
constructions, etc) is also speaker-dependent.

e Spontaneous speech. Spontaneous speech is considerably mank (bHigses,
corrections, skipping phonemes or words, etc.) which introduces nusere
rors.

e Noise: The signal coming to the system not only contains the speech to be
decoded but also additional components (other speakers, envirohmastg
etc.). Separating the voice from the rest of the elements in the signal is a
challenging task (blind signal separation).

3.1.1 Automatic Speech Recognition Systems

An automatic speech recognition (ASR) system takes an input audio sigmhalea
codes this signal producing a text transcription of the words uttered. iiMgtart by
describing all the stages needed to achieve this goal.

17
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Speech acquisition

The human voice generates a series of variations in the air pressuresthvarnsmit-
ted through the air. These pressure changes can be captured by sgiagial type
of transducer (microphone). As a result, this transducer producasaag electric
signal suitable to be stored and processed. However, analog pracpessents im-
portant drawbacks (noise, need of specific hardware, etc). Comspotethe other
hand, are digital systems unable to directly deal with analog inputs. Hencsigiéd
is converted into the digital domain. In this process, the analog input is jeaityd
sampled and a set of discrete samples is produced as a result. The sarepliegéy
(that is, the number of samples taken per second) is crucial to ensucelaate cod-
ification of the original signal. According to the Nyquist-Shannon theor&nj the
sampling frequency must be, at least, two times the maximum frequency in the sig-
nal. Otherwise, it is not possible to obtain a perfect representation. Tkienona
frequencies present in a speech signal are around 8 Khz andiotieer sampling
frequency of 16 Khz is typically used.

Pre-process and feature extraction

Once the signal is in the digital domain, the relevant information for speety+e
nition has to be extracted. Different representations have been g fmsspeech
signals. One of the most widely employed in ASR is based on the use of ttadled-c
Mel Frequency Cepstrum CoefficiefddFCCs). These coefficients are obtained as
follows. Initially, the signal is split into a sequence of overlapped fragmgnitis-
dows” or “frames”) where each fragment of signal can be consillarstationary
process (each window typically has a size between 10 and 20 millisecomts).
spectrum of every window is then computed and frequencies are gtaipe (non-
linear) series of bands (collectively known as filter bank) accordingedvtél scale,
which is, approximately, linear below 1 KHz and logarithmic above. This waghe
speech window (frame) is represented as a vector storing the avdrdgeenergy
of the frame after passing through the corresponding filter (usually 2@to 40 fil-
ters are employed). Finally, the Discrete Cosine Transform (DCT) is apieach
output vector and the first DCT components (usually from 10 to 15) ayeech The
first and second time-derivative of each DCT vector are usually co@astavell.

As a result of this process, the signal is represented as a sequefeauwé
vectors of dimension between 30 and 40.

Statistical Speech Recognition

Now that we have the input signal properly pre-processed andsemted as a se-
guencex (in Figure 3.1 the notation followed in this chapter is summarized) of fea-
ture vectors, we can discuss the recognition process itself. In statis&f] given

an input signak, we have to obtain the optimal sequence of uttered werds it is
stated in Eqg. (3.1) (notice that, heseandw represent: andh in Eq. (1.1)).
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A math font letter indicates an everit is the observation in a Markov model,
w is a generic word, etc.). This is also used (along with greek letters) to denote
a parameter in a model.

A boldfaced letter indicates a sequence of eventsrdicates a sequence |of
words).

A subscripted boldfaced letter denotes an element of a sequendrdicates
the second element of the sequemce

A subscripted and superscripted bolfaced letter denotes a subseqseh
denotes the first three elementsi).

)

Pr(') will be used to denote “true” probability functions, whig ) will denote
model approximations.

Figure 3.1: Summary of the notation used in this and following chapters

w = argmaxPr(w | x) (3.1)

The first problem to be addressed here is how to estimate this posteriabjirob
ity. From a practical point of view, we have a set of training examplesyevhach
sample is composed of a speech signal and its corresponding transcaipdioinom
this, we have to perform a reliable estimation of the probabkitityw | x). Ideally,
we could assume that our set of samples is fully representative of therosalbility
distribution. However, this assumption is far from being true and, thusgigyutirect
estimation of the previous probability is not actually reasonable. As in Eq, (€2
can apply Bayes’ theorem to Eq. (3.1) to achieve Eq. (3.2).

x = argmaxPr(x | w) Pr(w) (3.2)

In this case, we have two different models that can be estimated sepaiately.
will see later on, the estimation &f(x | w) is easier than the estimation of the prob-
ability in Eq. (3.1) and, on the other hand, the additional term in the maximization,
Pr(w) provides additional information about the hypotheses produced. Syadigifi
the first termPr(x | w) corresponds to aacoustic modelwhich accounts for the
distribution of the sounds present in the signal given the set of phoniertes lan-
guage.

The second terrr(w) is calledlanguage modeind deals with the distribution
of the sentences in the language so that correct sentences in the knagedgope-
fully) scored with high probability and, consequently, incorrect serggiace scored
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with low probability?

3.1.2 Acoustic modelling

In this section, we are going to address the problem of estim&tirig | w). From a
generative point of view, we need a model able to produce a speect &iga given
sequence of words with certain probability. Speech is a process in time wigighs
that this model has to be able to deal with temporal series. Moreover spaebe
seen as a non-stationary process described by a set of short-timeastatwants.
From this, and assuming the Markov property, we can reach a suitabtalfsm to
deal with the acoustic modeling problem.

3.1.3 Introduction to Hidden Markov Models

The Hidden Markov Model (HMM) is, so far, the most successful gaya for
stochastic modeling of phonetic units. Formally, an HMM is defined by:

e Asetofstates) =1,2,...,N.

e A transition probability distribution over the states:
aq.ey = P(q|q’), whereq, ¢’ € Q.

e A emission (observation) probability distribution in each state
bq(k) = P(k|q), wherek is an observation ange Q.

e An initial state probability distributiomr, = P(q), whereg € Q.

The observations can be both discrete or continuous. In the last casgjrauous
probability density function is employed and, therefore, the observatiaapility
in each state is specified by the parameters of the density function. In Bduas
example of a discrete HMM is shown.

Hidden Markov Model for acoustic modelling

In speech recognition, the acoustic units usually vary from phonemesrtswAs

a result, an HMM can be used to model an isolated phoneme, contextual sinits a
diphonemes or triphonemes or even whole words. The main features of HNIM
ASR are:

e On the one hand, the structure of these models is usuégifg-so-right topol-
ogy. Each state has one transition to itself and another to the following state
(no skip transitions are usually used). This structure is shown in Figure 3.3

#Actually, an additional model is needed to properly deal with the probafilifx | w) since the
acoustic model only copes with phonemes ands a sequence of words. This will be discussed in
section 3.1.6.
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Figure 3.2: Example of discrete Hidden Markov Model. This figure depécs
state model where only the symbal&ndy can be generated. The probability
on the top right of each state represents the probabilityHigrstate to be an
initial state.

OsnOun®

Figure 3.3: HMM usual topology for speech recognition

e On the other hand, each observation consists in an n-dimensional véctor o
continuous components obtained as explained in section 3.1.1. The dluserva
model in each state is a mixture 8 Gaussian distributions. Owing to this
fact, the probability of generating a vectoin the statey is given by Eq. (3.3),
wherec,,, is the weight (prior) for then-th component in the mixture.

M

be(k) = Z Cqm 'N(k;uqmv Egm) (3.3)

m=1

3.1.4 The estimation problem in HMMs

HMMs are quite useful in speech recognition (as well as in other fieldsg gime
parameters associated to the model can be automatically learned from aamt-of
ples. Actually, the parameters of the probability distributions for both transiton
observations have to be learned.
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Approximations based on a Maximum Likelihood criterion have been typically
used to this end (however, alternative approaches as, for instarecbased on Max-
imum Mutual Information [36] can also be found in the literature).

In the case of Maximum Likelihood, the estimation is performed through the
Baum-Welclor Forward-Backward43] algorithm, which it essentially an Estima-
tion Maximization (EM) algorithm. Before continuing, it is necessary to defime th
concepts oforward («) andBackward(5) probabilities on which the algorithm re-
lies. In our speech recognition problem, Etbe the length of the feature vector
sequence, denoted ax?. The Forward probability is defined as:

a(q) = P(x1,q) (3.4)

and represents the probability that the HMM is in stedtimet, having observed the
subsequence!. This probability can be computed by using the following recursion
formula:

a(q) = | Y or-1(q)agq | be(xs) (3.5)
q7€Q
wherea; (q) = mgbg(x1). In our specific ASR three-state topology, we have a single
initial state (the first one). So, = 1, if ¢ = 1 andm, = 0 otherwise. Regarding the
Backward probability, it is given by:

Bi(q) = P(XtT+1»Q) (3.6)

i.e, the probability of generating the sequelsrxffg1 given that the HMM is in state
at timet. Again, this probability can be expressed in a recursive way:

Bi(a) = | Y aggby (xi11)Br41(q) (3.7)

q7eq

where the base case is normally given®y(q) = 1/|Q|. Again, in our specific
model, we have a single final state (the third one). 8¢¢) = 1, if ¢ = 3 and
Br(q) = 0 otherwise.

From the Forward and Backward probabilities, we can estimate the HMM pa-
rameters. Specifically, the initial state distributia)) the transition probabilities,,
and the emission probabilitigg (x) have to be defined. We employ the notation
A = {a, b, 7} to refer to a model and its current parameters

The algorithm starts from an initial set of parameters (this set is often obtaine
randomly) to iteratively perform a parameter re-estimation to maximize the likeli-
hood of the model given the training samples observed. The re-estimationl&s

The topology of the model, is considered previously fixed (see Figure 3.3).
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are computed as follows. In the first place, for the transition probabilitycamede-
fine the probability of being in stateat timet¢ and going to state’ given the current
model parameters as:

Op—1 (Q)aq,q’bq (Xt)ﬁt (q/)
Z ar(s)
seQ

Intuitively, we try to estimate the transition probability, as the expected num-
ber of transitions from state to stateq’ divided by the overall expected number of
transitions leaving staig what leads to the re-estimation formula shown in Eq 3.9.

T
> e q)
Qgq = ;:1— (3.9)
Z Z "}’t(s, Q>
t=1 s€Q

Regarding the observation probability, we define the probability of beintaie s
g attimet as:

Y(q,4) = P(q,d'|x1,\) = (3.8)

> a(q)B85(q)
Jj=1

The estimation of the emission probabilities is performed by computing the ex-
pected number of times that the process is in statleserving the symbdi, divided
by the overall expected number of times in state

In our case, the observation probability is modeled as a Gaussian mixturee He
we define the probability of being in stageat timet, with the m-th component of
the mixture accounting fox; as:

at(Q)ﬁt(Q) ) Cqm * N(Xt; Hagm qu)

Y(q) = Pglx], \) =

Yi(g,m) = (3.11)
ZsGQ a;(s)Bi(s) Zﬁ/lzl N (X5 fgns Xgn)
From this, we can compute the mixture paramenters as:
T
Z V(g
Cqm = — 1M (3.12)
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T
Z ’Yt(qv ’I?’L) * Xt
figm = = (3.13)

T
> (g, m)

T
Z%(Qa m) - (x; — qu)(xt - qu)tr
t=1

T
> g, m)
t=1

where'” denotes the transposed matrix. Finally, the initial probability distribution
is simply estimated according to the number of times in sjad time 1, that is,
g = 71(q) (in our case, this probability has been previously set according to the
model topology).

™M»
|

(3.14)

qm —

3.1.5 The decoding problem in an HMM

After the training stage, the learned HMMs can be used to decode (fitza)san
input speech signal. We can assume, for the sake of simplicity, that eadh idM
tied to a phoneme and, therefore, we have as many HMMs as differenepies
exist in a language.

The process of decoding an input utterance consists in finding the madgtdike
guence of HMMs that can produce this input. As was described bef@dorward
probability accounts for the probability of a specific model generating aesem
of observations. Similarly, we can devise and algorithm to obtain the besthath
reaches a state to finally obtain the best sequence of states and modeisofwr a
servation sequence. Formally, we can compute the path probabiitresursively
as:

Vilg) = mgbi(x1)

Vilg) = g}gg [W—l(q,)aq’q] be(X¢) (3.15)
whereV;(q) denotes the probability of the most likely sequence that generates the
observations<} and ends in state. Notice that the sum in the Forward probability
has been replaced here by a maximization. Algorithm 1 shows a complete definitio
of the Viterbi algorithm for HMMs decoding.

At this point, we have all the elements needed to decode a speech fragimeat. S
we known how to obtain the optimal sequence of HMM states that generaitgsuan
we can build a huge HMM , where the final state of each HMM is connecteceto th
initial state of others. By simply computing the most likely state sequence over this
huge HMM, the input speech is then represented as a successiomefighmits.
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Algorithm 1: Viterbi Algorithm for HMM decoding. Given an observation se-
quencex and a HMM(Q, a, b, ), the algorithm returns the highest probability
sequence of states with which the HMM generaies

input :x =x1,X9,...,Xx7  The input observation sequence
output: The optimal sequence of states for the input observation
Algorithm:
begin

DeclareN = |Q)|

DeclareV[N + 2][T + 2] and initialize to O

Declarepath§numStates2][ 1" + 2]

forall ¢ € Q do

| VI4l[0]=mq

t=0;

while t < T do

forall ¢ € Q do

forall transitiong — ¢’ do
score:= V[g][t] - agq- by(x¢t)
if score> V[¢'][t + 1] then
LV[q’][t + 1] := score
path4q][t + 1] = ¢

| t:=t+1

Perform a backtrace on theths array starting in the element with highest
probability stored in the column ofV and return the resulting path.

end

Nevertheless, there are two important issues to be solved. In the firet phec
phonetic units have to be transformed into words. Secondly, we haveltwitiethe
second term in Eq. (3.2). In the following sections, these questions willtheased
to obtain, finally, a complete description of a speech recognizer.

3.1.6 Lexical modelling

Speech recognition is not merely decoding phonemes. Because writtels @
composed of letters we need a link between the acoustic units and the letllers, sy
bles and, in the end, words in our language. Hence, some kind of lexiag!rs
needed. In most cases a dictionary storing a word and the correspaetjnence
of phonemes is enough. However, more sophisticated models are al#ugoSer
instance, simple deterministic automata are typically employed to permit different
pronunciations for a specific word (see Figure 3.4).

Lexical models are normally constructed by following a knowledge-baped a
proach since the information needed to build such models is easily availahle [55
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house: haus]
cat: [kaet]
table:  ferbel]

Figure 3.4: Example of lexical models. A simple phonetic dictionary ¢en
used to map the words to the phonemes. An alternative is ta figée state
automaton for modelling multiple pronunciations as it iswh for the word
“direct”

3.1.7 Language modelling

We have already described how to obtain a sequence of words froeealspignal.
In very constrained tasks, when only a few spoken commands are useertcin
with a computer or to control a robot, for instance, we do not need any#igsey
Nonetheless, if we want to address more complex tasks, involving decottiolg
sentences in natural language, large vocabularies, etc. something nmeedisd.
Acoustic models are not precise enough. Expecting a perfect decotiialt the
acoustic units in a sentence is not realistic at all. Things are even worseveanc
have to tackle situations as disfluent speakers, noisy environments, etc.

When dealing with real NLP applications, it is necessary to use a model that
allows us to know whether a specific sequence of words is likely or not fardve
duced. Given a sequenee = w; ... w,, a statistical language model provides the
probability Pr(w) = Pr(w;...w,) so that a syntactically and semantically cor-
rect sequence of words (for instance, “This room is painted in whitegaag’) is
scored with high probability and a bad-formed sequence is given a lobabiidy
(for instance, “Black the house is on”).

Trying to deal with the joint probabilitr(w . . . w;) directly is not feasible due
to the scarcity of samples usually available. For that reason, an approxirehtiald
be taken here. The-gram model is the most widely kind of language model used
in ASR (as well as in other NLP tasks). It is based on the following appraeima
factorization of the joint probability:

l
Pr(wy...w) ~ [[ P(wilwiZ},)) (3.16)
=1

In ann-gram model, each word is conditioned by just the 1 previous word%

°As in [53], we assume that for any striagthe substringaf denotes the string’ if ¢ < 0 and X if
j < 0. In addition, we assume th&t(z|\) = P(z)
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In order to allow for an accurate probability estimation, long term depemdenc
are not included in the model. In Figure 3.5 an example of a “2-gram” (bigreum)
shown.

Training samples (L) Bigram
abcd p(al<s>)=1 p(dlc)=1
géf p(bja)=0.66 P(c|e)=0.33
apeg p(cla)=0.17 Pp(fle)=0.33
ae p(ela)=0.17 p(g|e)=0.33
p(c|b)=0.25
p(e|b)=0.75

Figure 3.5: Example of bigram language model. From the training sample
list the conditional probabilities are inferred. This mbdan also be easily
represented as an automaton as the bottom part of the figuns sh

N-gram models are estimated by following a maximum likelihood approach.
Specifically, the estimation formula is given by:

C(w™, w)
C(wn)

wherew is a word,w(™ is a sequence of words,C (w(™)) represents the number of
times that the stringv™ occurs in the training set ar@d(w"™, w) denotes the number
of times that the wordy comes after the string™ in the training set.

When estimating an-gram model and, due to the scarcity of training data, many
of the conditionah-gram probabilities are set to zero, independently whether or not
they are real strings in the language. This problem has been addi®speopos-
ing an extended version of thegram model, in which a smoothing of the condi-
tional probability distribution is included. The basic idea is to discount somie-pro
ability mass from the observed events to be assigned to non-seen evemtsalF
the smoothing techniques that have been proposed in the last yeadks§@er-ney
method has been chosen in all the experiments performed in this work.

P(wlw™)) = (3.17)
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3.2 Computer Assisted Speech Transcription

Once we have described the fundamentals of speech recognition weiagetg
introduce the Computer Assisted Speech Transcription (CAST) appfoats we
discussed in Chapter 2, Pattern Recognition systems are not perfecte tagh
of speech recognition, highly accurate results can be obtained in somgosisua
However, when dealing with complex tasks (especially in the case of sgantan
speech), a significant number of errors can arise. Because of thas, ligh quality
transcriptions are needed, a human transcriber is required to verifgarett the
(imperfect) system transcriptions.

As it was also mentioned in Chapter 2, this process is usually perfooffiéide.
In the case of ASR, the system initially returns a full transcription of all ttadialvle
input audio stream. Next, a human transcriber reads it sequentially (whileitigte
to the original audio signal) and corrects the possible mistakes made by temsys

ASR is a good candidate to apply the IPR paradigm. By adopting an interactive
scenario, transcriptions could be generated more efficiently. Here Sihakd a
human transcriber can cooperate to achieve a perfect final transeriftios way,
we can benefit from the strengths of both contributions (accuracy raigtivity).

The CAST operation mode is similar to what was described for generic IRKR. T
following steps are performed within a CAST session:

1. Initially, for a suitable fragment of the input speech signal, the systeposes
a whole initial transcription (in this case, the system behaves like an “stdhdar
ASR)

2. The user goes over the transcription proposed. If no mistakes wand,fthe
process ends with a perfect transcription of the input fragment. Otherthése
part of the sentence after the last correct word is removed. As a nesuiiave
an error-free prefix.

3. Next, the user adds some words (or characters) to the previous frefefore
obtaining a new longer prefix.

4. The prefix generated in step 3 constitutes the user feedback. Tteensydl
now complete this prefix by generating a suffix so that a full transcriptien hy
pothesis is produced.

5. Goto step 2.

3.2.1 Formal framework for CAST

As we discussed in section 3.1.1, statistical speech recognition can beasates
problem of searching for a sequence of wostisthat with maximum probability has
produced a given utterance(see Eq. (3.1)).

dSpeech recognition has a wide range of applications as dialogue, spaesiation, human com-
puter interaction, etc. From all these tasks, CAST is intended to work withegarded spoken docu-
ments (as parliamentary sessions, lectures, etc.) that require aceerag transcription.

28 LRR- DSIC-UPV



3.2. Computer Assisted Speech Transcription

In CAST, user feedback is available and it can be used to improve thersyste
predictions. In this case, the feedback consists in the ppefinotice that hergp
represents in Eq. (2.4)) validated and corrected in the previous iteration. Conse-
guently, the ASR system should try to complete this prefix by searching fontise
likely suffixs as:

§ = argmaxPr(s|x,p)
S

argmaxPr(x | p,s) - Pr(s | p) (3.18)

Eg. (3.18) is very similar to Eq. (3.1), wheve is the concatenation qf ands.
The main difference is that heteis given. Therefore, the search must be performed
over all possible suffixes of p and the language model probabiliy(s | p) must
account for the words that can be uttesdter the prefixp.

In order to solve Eq. (3.18), the signals considered split into two fragments}
andbeH, whereT is the length in frames of. By further considering the boundary
pointb as a hidden variable in Eqg. (3.18), we can write:

s = argmaxz Pr(x,b|s,p) - Pr(s|p)

S

0<b<T
= argmax Z Pr(x},xt,4]s,p) - Pr(s | p) (3.19)
5 0<b<T

Before continuing, we can make thaive (but realistic) assumption that the prob-
ability of the initial signal fragment® givenp does not depend on the suffix and the
probability ofbeJrl givens does not depend on the prefix, to rewrite Eq. (3.19) as:

§ ~argmax » _ Pr(x}|p) - Pr(xi,,|s) - Pr(s|p) (3.20)
S 0<b<T

Finally, the sum over all the possible segmentations can be approximated by the
dominating term, leading to:

& [~ b . T .
S~ argsmaxorgbaung Pr(x7|p) - Pr(xp,4|s) - Pr(s|p) (3.21)

This optimization problem entails finding an optimal boundary pci}inassoci—
ated with the optimal suffix decoding, That is, the signak is actually split into
two segmentsx, = x% andxs = XBT+1' The first one corresponds to theefixand
the second one to thmuffix On account of this, the search for the best suffix can be
performed just over segments of the signal corresponding to the posisifikes and,
on the other hand, we can take advantage of the information coming fronetfie p
to tune the language model constraints modelle®bis | p). This is discussed in
the next subsections.
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3.2.2 Adapting the language model

Perhaps the simplest way to deal with(s | p) in Eq. (3.21) is to adapt an-gram
language model to cope with the consolidated prefix. Given that a conmahtio
gram models the probabiliti’r(w) (wherew is the concatenation gb ands, i.e
the whole sentence), it is necessary to introduce some modifications toitretiev
conditional probabilityPr(s | p).

Letp = w} be a consolidated prefix arsd= w§€+1 be a possible suffix. We can
computePr(s|p) as it is shown in Eq. (3.22).

Pr(s|p) = Pr(p,S)/Pr(p)’
I, P(w; | Wizl )

k ;
[Tim) P(w; | Wz—}wl)

l
= J[ Powilwii,) (3.22)
i=k+1

Moreover, for the terms fromk + 1 to k£ + n — 1 of this factorization, we have
additional information coming from the already known Wow@_nw, leading to:

k+n—1 [
Pr(s|p) ~ [] Pwilwiio)- [] Pwilwiihiy)
i=k+1 i=k+n
n—1 l—k
—1 —1
= [ P6spinir-si™) - [] P(silsinin) (3.23)
j=1 j=n

The first term accounts for the probability of the— 1 words of the suffix, whose
probability is conditioned by words from the validated prefix, and the stoome is
the usuah-gram probability for the remaining suffix words.

3.2.3 Searching

Once we have a CAST formalization available, a possible implementation of a CATS
decoder will be described. In the initial CAST iteratignis empty and the decoder
has to generate a full transcriptionofis in Eq. (3.1). Afterwards, the user-validated
prefixp has to be used to generate a suitable continuatiothe following iterations
of the interactive process.

A simple possibility would be to perform the decoding in two steps: first, the
validated prefixp could be used to segment the sigrahto x, andxs and, thenxs
could be decoded by using a “suffix language model” (SLM) as in Eq3]3.2he
problem here is that the signal can not be optimally segmentecjnémdx, if only
the information of the prefiy is considered.
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Prefix = gb

Original bigram (L) Model for the prefix (Lp)

Figure 3.6: Example of a CAST language model. Given thgram language
model for whole sentences in the figurdireear model (,,) which accounts

for the prefixgb is constructed. Then, these two models are combined into a
single model {,, L) as shown.

A better approach is to explicitly rely on Eq. (3.21) to implement a decoding
process in one step, ascdfassicalspeech recognition. The decoder should be forced
to matchthe previously validated prefig and then continue searching for a suffix
according to the constraints in Eg. (3.23). To this end, we can build a $|zewaage
model which can be seen as the “concatenation” bifi@ar model, which strictly
accounts for the successive wordspinand the SLM in Eq. (3.23). An example of
this LM is shown in Figure 3.6.

Owing to the finite-state nature of this special LM, the search involved inE22{L)
can be efficiently carried out using the sakiterbi algorithm [54] as in Eq.(3.15).
Apart from the optimal suffix decoding, a correspondingly optimal segmentation
of the speech signal is then obtained as a byproduct.
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3.3 More Efficient Search Approaches. Using Word Graphs

We have described a possible implementation of CAST that fits well with the formal
proposal. However, we have to bear in mind that our final purpose isvelaje

an application to be employed in a real situation. In spite of the fact that a simple
theoretical approach can be useful as a first practical solution, evgang to be
concerned, as well, about some important practical issues.

CAST is an interactive application and, as such, some specific requirehasets
to be fulfilled. For instance, no matter how precise the ASR can be if the timedeed
to obtain a hypothesis is too high. In the most extreme case, if the prediction sys
tem is as slow as the user performing the task manually, CAST does not make an
sense. To summarize, we can claim that, in order for the user to feel dafitowith
the system, we have to ensure an appropriate time response. Although)qmene e
iments in this sense will be described later, we can say, for the time being, ¢hat th
implementation scheme shown in section 3.2.3 presents a response time higher than
3 secondsn some tasks. In consequence, we need to explore an alternative CAST
implementation.

In a speech decoding, there are many computations to be performedcfor ea
frame in the input signal. The acoustic score, for instance, requiredcialate the
probability of a Gaussian mixture for each state in all the actives HMMs. Wilco
save a lot computation effort if we were able to obtain, for each input todre tr
scribed, a representation that stores a sufficient number of decogintheses along
with their scores. This way, all the interactive CAST search would beopegd on
this model, achieving a better time response.

The previous discussion suggests the use of a well known ASR dattusty,ue
word graph. A word graph is, indeed, a compact way to representdarge set of
n-best hypotheses along with additional information about how they werdrped.
Formally, a word graph can be defined as a directed acyclic graplifisgday:

A word graph is an acyclic, directed graph specified by the followingrpatars:

e Asetofnodes) = q1,...,qn.

¢ A function t(q) that associates a state to a specific time (frame) in the input
speech signal.

e A set of arcsA, where each arc is defined by;, a;, a.,, a;] wherea, denotes
the source nodey; denotes the target node, denotes the word produced by
the arc andy; denotes the likelihood (this likelihood represent the combination
of the acoustic and the language model probabilfjjes

Word graphs can be constructed as a byproduct of the speechntgpoacess by
storing the best acoustic and language model probabilities for each pgp@hesis.

°Because acoustic and language model probabilities are expressef@iardifagnitude orders a
Language Model Scale Fact@ usually employed here to properly combine them.
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Next, all the paths starting from initial states and reaching final states desl ad
the graph [35, 41].

Once the word graph is available for a specific input, it can be used torperf
the search described in Eq. (3.21). Now, we will study how to addressehish.
Basically, the idea consists in, when a new user prefix is available, panssngyefix
over the word graph. This is aimed at obtaining a set of nodes that dpyaims the
best signal segmentation (the first two terms in Eq. (3.21)). Moreoveprife-
based language maodel probability in Eq. (3.21) can be easily computedtfeoancs
leaving these nodes. Once this set of nodes is available, we can pradiis&T
hypothesis (suffix) by searching for the best (or the n-best) pattingtdrom these
nodes. In the upcoming sections, different details of this process atesded.

3.3.1 Error Correcting Prefix Parsing

In our case, we have a directed acyclic graph and have to find the &tbstgm-
patiblewith the prefix. Ideally, this graph would contain all the possible recognition
outcomes for the input signal but, unfortunately, this is not actually truesiatioe.
Firstly, the stochastic model that conducts the word graph generationelas b
trained from a finite set of samples (although smoothed models can be us@disth
still the problem of out-of-vocabulary words). Secondly, a prunireyaeis usually
applied because of computer memory constraints. As a result of this, weotan
expect the word graph to account for every possible user prefixth@ab reason, a
more sophisticated approach has to be adopted. This is the case of thE€ &rmert-
ing Parsing (ECP) described as follows. To start with, we can defineranreodel
to address the problem of generating a styng-= y1,...,y, from another string
z =71,...,Zny. This generation is based on a well defined set of operations:

e Substitution: Consists in replacing a symbgqlin the source string with a
symbolz; in the target string (denoted gs — z;).

e Deletion: Consists in removing a symhbw] in the source string (denoted as
yi = A).

e Insertion: Consists in inserting a symhwj in the target string (denoted as
A— Zj).

Each operation has an associated cost. This cost is usually chosedirgto
the specific task to be solved. The overall cost of generating one stamganother
is computed by summing up all the editing costs involved in transforming the source
string into the target one. For a given sequence of editing operatienss, ..., e,
the cost ofe is then defined as:

n

C(e) =) cost(e;) (3.24)

i=1
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wherecost(e;) denotes the cost of the editing operatign It is easy to see that a
specific target string can be generated from a given source in vdeyafif ways.
Generally, we are only interested in the sequence of minimum cost. optiimal
sequence is known as the (weightédyenshteimlistance [46]:

d(y,z) = mein{cost(e) |y —°z} (3.25)

wherey —*© z denotes a sequence of edition operations to reafrom y.
To compute thd_evenshteirdistance in a polynomic time, the following dynamic
programming algorithm can be followed (notice thhand; denote positions in the
source and the target sentence respectively). Given two styiragglz, d(y, z) is
computed as:

e Recursive general term:

(i, j) = min{d(i —1,j = 1) + cost(y; — 2,),
d(i—1,7) + cost(y; — ),
d(i,j — 1) 4 cost(A — zj))}

e Base case:

d(0,0) = 0
Vi d(i,0) = d(i — 1,0) + cost(y; — A)
V5 d(0,5) = d(0,j — 1) + cost(A — z;)

In CAST we have a string (prefix) and a representation of many stringg alo
with their probabilities (word graph) and we have to parse the prefix oiegthph.
This problem is similar to the problem of finding the minimum distance between a
regular language and a given string [20].

This algorithm returns thieevenshteiulistance along with the graph nodes (“non-
terminals”) reached after parsing the input string. The search for stesh#fix can
be then performed by applying\4terbi-like search from these nodes. In figure 3.7
an example of ECP over a word graph is shown.

3.3.2 A general model for probabilistic prefix parsing

So far, we have a tool (Error Correcting Parsing) that allows us toparh CAST
search within word graphs. However, there are some issues to besdiddsfore
going on with this approach. On the one hand, it is not clear how to relateGRe E
procedure to Eqg. (3.20) and Eq. (3.21). On the other, as a result BGRewe have
a set of states with an associated cost (the ECP cost) and probability ¢tyebpity
given by the path(s) in the word graph that reaches the state). Thaogquisshow
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a B
. comput. is .

Given the previous word graph fragment, and gipetithe printer”, we can compute
the ECP cost to reach each state. For all the states in this model fragmerayave
cost@1)=2 (2 deletions); cosif)=2 (1 substitution and 1 deletion); cog)=1 (1
deletion); costd,)=1 (1 deletion); costgs)=1 (1 substitution); cosiyf)=2 (2 substi-
tutions)

Figure 3.7: Example of error prefix correcting parsing on a word graphg-fra
ment

to combine these two terms to carry out the search for the suffix as Eq) Eh@dss.
Different heuristics can be applied here. For instance, all the states witmuamn
cost can be chosen as initial states to continue the search for the optifnal Bois
approach has been used in some word graph-based CAT apprfbthes

To overcome this problem, a new formulation can be attempted in order to prop-
erly include ECP into word graph CAST approximations. Starting from E4.8{3
we can introduce a hidden varialgleto represent a possible boundary node between
the prefix and the suffix in the word graph:

>
I

argmaxPr(s | p) - Pr(x | p,s) =
S

= argmaxPr(s | p) Z Pr(x,q | p,s) =
s BeEQ

= argmaxPr(s | p) > Pr(x| a,p,s) - Pr(q | p;s) (3.26)
® BER

Notice that in Eqg. (3.19), Eqg. (3.20) and Eg. (3.21) the boundary gog#n
be directly computed on the input signal. Here that point has to be approximate
according to the nodes in the word graphs (which are tied to a specific frathe
input signal). We can make the naive assumption thdbes not depend qf given
qp to rewrite Eq. (3.18) as:

§ = argmaxPr(s | p) Z Pr(x | g, s) - Pr(q | P, S)
s BweQ
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Additionally, we can assume th@f only depends on the prefix (this issue will be
discussed later), leading to:

§ = argmaxPr(s | p) Z Pr(x | gp,s) - Pr(g | P)
s ®EQ
Finally, the usual approximation of the sum by the dominating term can be addopte
to obtain:

s ~ argmaxPr(s | p) max Pr(x | g, s) - Pr(qp | P)
S ®EQ

To properly deal wittPr (g | p) itis necessary to define the editing operations in
a probabilistic way. This can be easily done by constructing an stochagiimaton
representing the string to be parsed (in our case, the prefix) so théffénert editing
operations can be modeled as groups of arcs in the automaton (see F&)ure 3

> So [

z

¥ —A{a}

Figure 3.8: Example of extended automaton for probabilistic ECP given t
prefix ab. From each state, we have four groups of arcs. The first one cor
responds to the operation of replacing a symbol with itssitg labeled as
form gl to g2 and from g2 to gq3). The second group represents the substi-
tution of a symbol for another symbol. Here, we have an areémh symbol

in the vocabulary except the symbol represented in the guevijroup. The
third group models a deletion, which is represented by)tlac to the next
state. Finally, the last group is for insertions, involvimgarc for each symbol

in the alphabek from a state to itself. Notice that, in order to representz re
probability distribution the sum of all the arcs leaving atstmust be exactly
one.

In the ECP cost-based approach, all the operations are usually dedihade
a similar cost except the substitution of a symbol by itself which is usually a no-
cost operation. Directly translating these costs into probabilities is not teviall.
Intuitively, the case of the no-cost could be mapped to a probability ofsines the
substitution of a symbol by itself does not entail a real transformation oftthngys
However, this would imply to use aull score for the remaining set of operations.
Alternatively, some uncertainty can be assigned to spiscialoperation and, this
way, some probability mass is available to be distributed among the other ones.

To start with, we can consider any editing operation equivalent. To this end
we can group the probability so that any insertion, deletion and real sulostiare
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equally likely. This actually means that all the arcs in the ECP automaton in Fig-
ure 3.8 should be labeled with the same probability. Those arcs not involvieg a
transformation of the string, however, will have a different treatment. Amtigher
probability should be considered for them. By assigning, for instandéphthe
overall probability mass to these arcs and equally distributing the other haligamo
the other operations, we can reach the following expressions

(1
5 Yi =125
1
m Vi # Z;
P(y; — zj) = 1 N (3.27)
S\
az @

Here, the score of each editing operation is set so that each arc in thaleCP
tomaton has the same probability (except those arcs that do not transimnpth
string). X represents the vocabulary. Notice, that in the case of substitutions and
insertions, the probability mass is grouped for all the symbols in the vocalytiher
amount of probability assigned to these groups of arcs woul%gé and% for
substitutions and insertions respectively) . For that reason, a spea#idion of
substitution will be scored with the same probability as a deletion.

Now, we can define,, = ey, -..ep,, as a sequence of editing operations
that allows to reach the stategiven the current prefip. Assuming independence
among these operations, we can compute this sequence probability as:

P(epg) = [[ P(epa;) (3.28)
=0
From this, we can easily define the optimal sequengeas:

épq = argmaxP(epq) (3.29)

€pg

To finally compute the probabilit#’r(g, | p) as:

Pl
Pr(gy | p) = 7@"‘?’) (3.30)
P(eépg)
q€Q
where( is the set of all states in the word graph. In Figure 3.9, an very simple
example of probabilistic error parsing based on this proposal is depicted.
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Given the previous word grapp="aa", and X = {a, b, c¢,d}. We can assume, ac-
cording to Eq. (3.27), the probability for a specific substitution, insertiothetetion
as%. In addition, the probability of substituting a symbol for itsel%isTherefore
we can compute the ECP probability for each state as:

épp = a — A\ a— A Pr(épg,) = 1/16-1/16 = 0.0625
bpgy =0 — a,a— N, Pr(épg) =1/2-1/16 = 0.0625
épgs =a — b,a— X; Pr(épg,) = 1/16 - 1/16 = 0.0039
€pg =0 — C,a — A, Pr(épg,) =1/16-1/16 = 0.0039
pgs = a — a,a — b; Pr(épg;) = 1/2-1/16 = 0.0625
bpg = — ba—d  Prlépg)=1/16-1/16 = 0.0039

From this and normalizing on the sum of the previous probabilitied92) we can
compute the probability’(¢|p) V¢ € Q as:

P(ai|p) = $952 = 0.313
P(go|p) = 39525 = 0.313
P(gs|p) = 39539 = 0.020
P(qalp) = 39539 = 0.020
P(gs|p) = 39525 = 0.313
P(gs|p) = 29539 = 0.020

Figure 3.9: Example of computation of probabilistic error correctirayging.
Here, due to space constraints, the vocabulary in Figure&sbeen replaced
by other composed of symbols instead of words
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Clearly, other distributions can be considered by applying some knowédune
the problem. For instance, we could define the editing operations at phoneghe le
This way, ECP parsing would be used to find the most similar phoneme seguenc
given the prefix aimed at achieving a more realistic segmentation.

3.3.3 An adaptive learning approach to estimate the editiomperations
probability

Theuniformdistribution for the ECP operations proposed in section 3.3.2 is, maybe,
the most natural choice when a reliable estimation of this probability can natrbe ¢
ried out. However, we can take advantage of the fact that in CAST, theciiations
obtained are completely user-validated. As a consequence, we haveatadout

the real task to attempt a better estimation of that distribution. Next, an algorithm to
estimate the editing operation probabilities in CAST will be discussed.

Firstly, we can define a sét of tuplesc = (¢;, ¢4, cs, cwsr) Where the first three
elements in each tuple represents a point in the space of the probability distribu
for the editing operations. (that is;, ¢4 andcs, represent a possible value for the
insertion, deletion and substitution probabilities respectively @ang denotes the
WSR achieved by using this probability distribution on the current sentede$
set(C' is intended to split the continuous probability space into discrete points so that
the search for the best probability distribution will be performed accorttirthese
points. In order to better understand whaactually represents, we can give a simple
example (non ECP-related). Let’s suppose that we have three posshts® , as,
andag for a specific stochastic variablé. From all the ways in which the proba-
bility in A can be assigned t@,, as andag, we can choose some points from this
space oPr(A). Forinstance, the s€0.9,0.1,0.0), (0.5,0.2,0.3), (0.3,0.6,0.1) can
be defined (where the elements in each tuple repredeiits = a;), Pr(A = a2)
andPr(A = a3) respectively). The rationale behind this is to search for the optimal
distribution for A only on this set of points. In our case, each point corresponds to a
possible distribution for the editing operations. For instance, the poisit0.3,0.2)
would denote that the insertion probability is set to 0.5 and the deletion antktsubs
tion probabilities are set to 0.3 and 0.2 respectively.

When a new fully transcribed sentence is available, we compute, for epleh tu
¢ in C the WSR for this sentence using the distribution defined by the first three
elements inc. This WSR figure is accumulated in the fourth tuple element.

(that is, we store here the cumulatii®SR obtained for all the sentences already
transcribed). Then, for the next sentence to be transcribed, we witiseh as the
current ECP probability distribution, thafor which thec,, s, element is minimum.

3.3.4 The role of the word graph probabilities in probabilistic prefix
ECP

To conclude this section, there are some issues derived from the pistizaprefix
ECP formulation and its corresponding application to word graphs thatwidese
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detailed explanation.

First, we can notice that in Eq. (3.27) there is no term for the prefix acoustic
probability. On the one hand, these are good news, since we can notisothjs
probability from the word graphs (notice that this prefix could not be ingvaph).

In the original CAST approach (Eg. (3.21)) we had a term for this goidiba In the
word graph approximation (Eg. (3.27)) this role is somehow playeix|q, s).
This probability has to be interpreted as the acoustic probability of the graibh p
reaching the statg, and then obtaining the suffix The probability Pr(g,|p) is
used, on the other hand, to find the optimal segmentation between the pakfhean
suffix in the word graph.

Regarding the language modély(s | p) can not be properly modeled using
the word graph only. When searching for a suffix after the ECP, wé fstemn the
nodes reached as result of this ECP. These nodes, howevesaeigpaths containing
distortedversion of the prefix, as a result of the different editing operationiexhp
As a consequence, the language model probabilities in those nodes, otitpetthe
proper ones. For that reason, they should be replaced by the-ggam probabilities
in order to benefit from the actual prefix. Figure 3.10 shows an exanfptieio
replacement.

3.4 Experimental results

In the following sections, our CAST experimental framework is describetkiail.

3.4.1 Corpora

Two different tasks have been mainly used. The first one corresponthe H-
TRANS corpus [1], composed of sentences used in conversations betweensa to
and a hotel receptionist. The second one is tiERX corpus [13], consisting of
spoken utterances from printer manuals. The initial version of this canpusisted
of fragment sentence utterances aimed at testing a speech interfacsgdfop Com-
puter Assisted Translation (CAT) systems discussed in Chapter 5. Theas later
extended to be employed in CAST. The main features of both corporaesened
in Table 3.1. In addition, the well knowwall Street Jouna{WSJ) corpus [42] was
used in the word graph CAST experiments.

Regarding the training corpora, the acoustic models, on the one harelggrer
timated from the ABazyIN and WSJ corpora, as shown in Table 3.2. In the E
TRANS and XeROx experiments, monophone HMMs (obtained with the HTK toolkit
[55]) were employed. For WSJ, triphones were used. Speech poegsing and fea-
ture extraction consisted in speech boundary detection, followed by thputation
of the first ten MEL cepstral coefficients plus the energy, along with thespond-
ing first and second derivatives [30].

On the other hand, the language models for both tasks were estimated from the
corpora described in Table 3.3. The SRILM toolkit [48] was used to estiKiagtser-
Ney smoothed 3-grams [9].
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p = llabll
replaced by P(c|t

c/0.7

% d/1.0 .@placedbyP(ell

replaced by P(f|k

b/0.2 al/l.0 f/1.0
\&/ allo

Figure 3.10: Example of substituion of language model probabilitiegmaft
ECP. Given the previous word graph fragment, where onlyahguage model
probabilities are shown (a bigram can be assumed), letsaagpthap="ad”

is the current prefix. After ECP, all the states will have anPE&@obability
associated and, therefore, the search for the suffix wilt 8tam any state. If
we focus, for instance, on statgsandgg, we can see that, in order to reach
qs, a substitution{ — d) has to be performed. The same fgr with the
substitution § — a). As a result, when starting the search for the suffix, we
have the arcs leaving scored with the probabilitieB(c|d) andP(e|d) where
the final word in the prefix i$ and notd. The same happens with (in this
case, withP(f|a)). In order to benefit from the prefix information in a better
way, the probabilities in the arcs leavigg should be replaced b¥(c|b) and
P(e|b) respectively. The same in the caseg@fwhere the arc leaving this state
should be rescored with the probabil®( f|b)

Table 3.1: Features of the ETRANS, XEROX and WSJ test corpora

EUTRANS | XEROX | WSJ XK | WSJ 2k
Test sentences 336 875 330 333
Running words 3340 8569 5683 5974
Test-set perplexity (3-grams) 7 41 60 155

3.4.2 Error Measures

The metrics used in the experiments tries to gives an estimation of the usér effor
required to transcribe a set of sentences through a CAST approactkiiid of mea-
sures have been adopted. On the one handywétieknownword error rate (WER)
has been used. On the other hand, the word stroke ratio (WSR) (123), A mea-
sure borrowed from CAT has been employed. This measure is computesirgy
reference transcriptions of the speech segments considered. Aftst @GAIST hy-
pothesis, the longest common prefix between this hypothesis and thenoefesen-
tence is obtained, and the first unmatching word from the hypothesis i<eelptsy

41
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Table 3.2: Features of the SpanishLAAYZIN and English WSJ acoustic train-
ing corpus (K= x1,000)

Spanish ABAYZzIN | English WSJ
Speakers 164 45
Running words 42K 136K

Table 3.3: Features of the ETRANS, XEROX and WSJ LM-training corpora

EUTRANS | XEROX | WSJ K | WSJ 2k

Training sentences 10k 55k 1612k 1612k
Running words 97k 627581 | 38500k | 38500k
Vocabulary size 684 10835 4989 19982

the corresponding reference word. This process is iterated until anatth with
the reference sentence is achieved. The WSR is, therefore, the nafmequired
corrections divided by the overall number of reference words.

The comparison between WER and WSR would give us an idea about th@gamou
of effort required by a CAST user with respect to the effort neegadsing a classical
speech recognition system followed by a manual post-editing processifwefer
to this asEstimated effort reductiqQrEER, from now on).

3.4.3 Experiments

The experiments consisted in a series of block validation on the test coffsaming
is always carried out on the whole set of acoustic and text training datenatized
in Tables 3.2 and 3.3. This way of proceeding slightly resembles the apypcaled
K-fold cross validation but, in this case, one block (development) wasechfos
optimizing some parameters of the search. Once these parameters hageto@en
the development block, the remaining blocks (test) were used as the pespset.
This framework is aimed at trying to draw more general conclusions on #msep
test data available. In the usually employed holdout method, one single pagfition
the original test data into development and test sets is considered. Ixpauireents,
the original test was split into several blocks so that different develapared test
sets could be derived from these blocks. Specifically, five blocks, vziés ®f 67 and
175 sentences, have been considered fof ®ANS and XEROX, respectively. The
experiments were actually carried out in five trials. In trial numhtbke block number
1 was used as development set and the four remaining blocks were usst @¢®ere
we are trying to follow a realistic approach, where only a small developnetns s
available during the system design. The real test for the system is biggeris
consists of all the transcriptions obtained during its normal operation mooléceN
that in K-fold cross validation only one block is used as test and the remainieg)
are used for training).
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On the other hand, WSJ 5k and WSJk2€orpora have been also used to test
the word graph based approximation, which constitutes the most feasibiegeeh
to actually use CAST in real environments.

The development sets were specifically used to tuné.dmguage Model Scale
Factor which, as was mentioned, is basically a scaling factor for the second term in
Eq. (3.1).

3.4.4 Results

In Table 3.4 the mean and the standard deviation of the results on the fivettest s
obtained as described in section 3.4.3 are reported. In the first twoa@emparison
between two estimations of the off-line (WER) and interactive (WSR) udertef

is shown. As can be observed, significant improvements are obtaineu weimey

the CAST approach with respect to the classical ASR followed by a humstr po
processing approach.

In addition, the WSR results for the word graph based techniques areralso
sented (the results on the WSJ corpus are in Table 3.5. As can be notieeteth
of the word graphs does not affect the performance significantly, vimiieoving
the WER baseline. The results obtained by the initial ECP presented in se@&itn 3
and the probabilistic word ECP described in section (WECPP) 3.3.2 are quite s
lar. However, we have to take into consideration that the margin of improuemen
actually constrained by the WSR results on the original CAST implementation. On
the other hand, a significant number of sentences in both corporaeaeguinter-
actions, as it is shown in Figure 3.11, which causes that some improvemeata ha
small impact on the overall results. In order to clarify this a little more, tlE&XX
corpus has been split into different sets based on the cumulative distnilstimtbovn
in Figure 3.11 (that is, the first set contains all the sentences that reql@ast one
interaction, the second one contains the sentences that require at leastenac-
tions and so on). Table 3.6 shows the WSR results for the baseline CA$Jaapp
the initial ECP and the new WECPP based on this sentence distribution.

Notice that for sentences with exactly one error, the post-editing agpsbeuld
be similar to CAST in effort terms, since a properly designed user intesiageld
permit to disable the prediction engine when only a mistake is found (for smgen
with more than one interaction an EER of 22.4% is achieved, as it is shown in Ta-
ble 3.6).

The previous results show that the use of word graphs is competitive in terms
of WSR. However,it is still necessary to check whether this new approximea#n
actually improve or not the system time response. To this end, the CAST system
latency was measured in the following way. First, experiments corresppnalin
the approach described in section 3.2.3 (in the first two rows of Table & w
carried out, where, for each user interaction, a complete speechmitoogrocess
is conducted. Since an exhaustive search in speech recognition iy psahibitive,

a pruned search approach was adopted in these experiments to aoragypeapriate
tradeoff between accuracy and time response as Tables 3.4 and 3.7 show
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Table 3.4: Results obtained on thetHRANS and XEROX corpus. The mean
and the standard deviation for the test sets in the 5 blodlatédn series are
shown. The first row corresponds to the post-editing approddhe second
an the third rows show the results for the interactive basapproach and the
ECP word graph based approach described in section 3.pdatésely. In the
four row, the results correspond to the Probabilistic WofPEdiscussed in
section 3.3.2. Finally, the last row shows the results ofateptive learning
technique described in section 3.3.3. We can notice an EBf{&ted Effort
Reduction) of about 39% and 19% for the two corpora respelgtiv

EUTRANS XEROX

mean| sd || mean| sd
WER 77 | 1.3 229 | 24
Direct WSR 47 |14 186 | 2.1
ECP WSR 48 |14 195 2.1
Word graph| PWECP WSR 47 |13} 193 | 2.1
ALPWECPWSR| 46 | 1.2 188 | 2.0

Table 3.5: Results obtained on the WSJ corpora. The mean and the stiandar

deviation for the test sets in the 5 block validation seriesshown. The first
row corresponds to the post-editing approach. The secorideathird rows
show the results for ECP word graph described in sectiod 3A8ID to the

Probabilistic Word ECP discussed in section 3.3.2. Fingly last row shows
the results of the adaptive learning technique describesgétion 3.3.3. The
EER achieved is about 12%

WSJ XK WSJ 2k
mean| sd || mean| sd
WER 6.2 | 15| 106 | 1.7

ECP WSR 59 [ 13| 99 |16
PWECP WSR 56 |14 95 |20
ALPWECPWSR| 55 | 13| 93 |21

Table 3.6: Results (WER and WSR) oneRox corpus for different CAST
techniques based on the distribution of the sentences showigure 3.11.
The baseline column shows the results obtained by the aliGiAST approach
without using word graphs

WER WSR

Baseline| ECP | WECPP
1 interaction or more| 39.6 33.1 35.1 34.3

2 interactions or more 50.9 40.1 44.3 43.2
3 interactions or more 54.6 45.6 51.0 49.8
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In the case of the word graph approaches, we have to take into ateaudif-
ferent kinds of computations. Firstly, we have to generate the word draphthe
input signal. This process entails a standard speech decoding plus dditienal
work necessary to obtain the word graph. Nevertheless, it is redsoimaissume
that we can generate the word graphs “in advance” before startingST GAssion
(or as a look-ahead background computation). This assumption is badbd fact
that, in our case, speech transcription is carried out from recordedlsigrherefore,
we can consider the construction of the word graphs as a batch andtegpacess
from the interactive transcription task itself. In any case, this word gogpiera-
tion time is included in the third row in Table 3.7 for informative purposes. In the
case of the direct approach, it is not possible to perform any off-liod &part from
the usual signal pre-processing and feature extraction. To summnthezateractive
word graph time response is exclusively given by the cost of the séarthe suffix
on the word graphs.

As expected, thevord graphapproach notably outperforms the baseline. Espe-
cially, in the case of XR0X, where the baseline technique seems to be too slow to
be even considered and the word graph approach proves to be theohgi®n to
implement CAST in a real environment

In addition to this, we can expect a diminishing time response when using word
graphs as the number of interactions grows for a sentence. Wheregaisi#heystem
hypothesis is actually a whole sentence prediction, following predictionsttebe
shorter as the prefix length increases. Since the computational costpoéthepars-
ing is significantly lower than the search for the suffix, the time responsedmen.

To quantify this fact, Figure 3.12 shows the average response@X CoOrRPU$ time
based on the specific number of interaction performed (that is, the firgtipdhe
graph is for the initial system prediction, the second one for the predictienane
user interaction and so on). The cumulative distribution histogram showigin F
ure 3.11 for the XRox may help to better understand the previous results.

In order to give a reference point for the different time results, werngantion
that all the experiments were performed on a 3.2 Ghz Intel Xeon CPU.

Table 3.7: Average interaction time response. The first row shows the ti
response of the baseline approach to CAST. The second rastsehe inter-
active time response of the word graph approximation. Binalthe third row
the average time needed to generate the word graphs is stdiithe times
are in seconds

Approach EUTRANS | XEROX
Baseline CAST 0.9 3.3
word graph CAST 0.4 0.5
Including word graph generation time 1.7 1.9
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Figure 3.11: Cumulative sentence distribution based on the number af use
interactions needed to obtain a perfect transcription. filsebar shows the
percentage of sentences that are perfectly transcribédzeib 0 more interac-
tions (the whole corpus in this case), the second bar theeptge for one or
more interactions and so on
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Figure 3.12: Average word graph CAST time response based on specific in-
teraction number within a sentence
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3.5 Summary of contributions

A new approach to the production of perfect speech transcriptiorsdesispresented.
This approach combines the efficiency of an automatic speech recognititens
with the accuracy of a human transcriber. Firstly, a direct implementation of this
system has been described and some experiments have been cartiedssess the
improvements that these techniques can achieve.

Next, an alternative proposal aimed at improving the system efficiencigdes
presented. In the first place the use of word graphs along with em@uatimg parsing
has been tested to, posteriorly, propose a formulation to properly intdmpttéech-
nigques. Finally, an adaptive learning method has been proposed aimathatdghe
ECP probabilities for each specific task by using the information obtained the
user feedback.
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CHAPTER4

INTERACTIVE TEXT
GENERATION

4.1 Introduction

Since the adoption of the written language by the ancient human societiesgwritin
texts has become a very common task. The discovering of electronic compater
significantly facilitated this process. Computers allow us to generate text éaste
more comfortably than before. However, so far, the approach adegted using a
computer is basically the same as centuries ago. Computers are, essentiafly, mu
more sophisticated replacements of paper, pencil and eraser, but tgping still a
manual process and the incredible computational power that computeidegeve
barely used here. Only tools like orthographic and grammatical chedkers with
thesaurus are generally employed.

Developing automatic assistance system in this field can be completely worth it
since the time spent in typing (or in thinking about what it is going to be typed) is
quite high in many environments. A system able to predict (with, of coursee so
degree of accuracy) what someone is going to type and thereby savismierable
amounts of effort could be utterly helpful.

In some situations, on the other hand, typing becomes a too slow and untomfor
able task. In some devices, such as mobile phones, no suitable inputdesehiave
been developed. Besides, some disabled people are not able to achidfieiant
typing speed and, unfortunately, this can be the only way for them to comatanic

Different approaches to this topic can be found in the literature. Mosteofith
only attempt to predict the next single word [50] and/or they are condeabeut
measuring the accuracy of off-line text predictions [2]. Here, we icensa more
general setting where not only single words but multi-word fragments |bsén-
tences are predicted under an interactive paradigm.
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4.1.1 Interactive Text Generation and Interactive PatternRecognition

Providing assistance in text typing is a task that can be easily included imizus |
active Pattern Recognition approach. The basic process would cangiséslicting
(completing) some portion of text based on the text previously typed. Usintgth
minology adopted in this approach, we would have to find a suitable continuation
(suffix) for a given prefix. However there is a big difference in thisecthat should
be discussed before going further.

In the general IPR framework, the goal is to decode some input sigdaltar In
our proposal for text prediction, no input is available and the systenhassto find
the most suitable text according to the prefix. In other words, the usdbdek is
the only thing we can use to produce an outcome (actually, this formulationecan b
interpreted in a different way by considering the prefix as the input patading to
aclassicalPattern Recognition problem). This fact makes this task much harder since
the system hypotheses can not be derived and constrained by ampéaijarh. For
that reason, the possible set of suitable system outputs is much biggénenedore,
we can expect a considerable drop in the system accuracy.

We can formalize this process as the search for the most likely continuatibn (s
fix) s given the text typed so far (prefiyp),

§ = argmaxPr(s|p) 4.1)

This is similar to what was described for CAST. Initially, no prefix (feeddas
available, and the system makes an initial prediction. The user validatesetiie-pr
tion, selects an error-free prefix and adds some text to this prefix., Tielystem
will complete this user-validated and corrected text until the whole predictiao-is
cepted.

It could be interesting to discuss some practical aspects that arise in thiasiew
On the one hand, the initial prediction (when no prefix is available) will beagbdw
identical since the conditional probability in Eq. (4.1) only depends on thxpand
it is empty. Because of this, an initial prediction can be useless (or, in othretsw
very inaccurate) and a better approximation is to wait for the user to typetisimge
before starting predicting. Nonetheless, there can be some scenase avimitial
prediction could be justified (for instance, documents starting with a fixeueseg
of words). This can be merely regarded as an implementation issue ancetibé us
prediction models for this case is not even worth mentioning.

In addition to this, in CAST, we have an input that somehow help us to determine
the prediction length. On the contrary, in text generation, a new strategioHze
developed in order to know when to stop generating words. Predictingresiord
after the prefix seems to be the easiest thing to do but we could reach mefé bg
predicting multi-word fragments.

Predicting whole sentences, on the other hand, could be a good choeéuiiu
sentence language model is needed and this kind of models has not beeh forbe
actually useful in language modelling. Letting the user set the length of pimdic
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is, maybe, a good alternative but letting the system itself deal with this proldalu c
be worth it. This issue will also be discussed later.

4.2 Developing an interactive text generation system

Once the problem has been introduced, we are going to address the dedign-
plementation of an Interactive Text Generation (ITG). We will begin bycdemg
the models involved in ITG.

4.2.1 Language modelling. Using.-grams

As was discussed in the previous chaptegrams [21] are the most widely used
language models in NLP applications. Our approach to text generation alemtie
grams but taking into account some considerations that are discusseddlaweng
paragraphs. Basically, the idea when adopting this kind of models is to taéatade
of then — 1 last words in the prefix to suggest an appropriate continuation. Clearly,
these models fail in benefiting from the whole information available and just & sma
portion of it is actually considered.

As was described in section 4.1.1 the process consists in, given a efier pr
p = w¥, finding the optimal completiog to this prefix. Lets = w§§+1 be a possible
suffix hypothesis of arbitrary length- k. The language model used here is identical
to the one specified for CAST. Nevertheless we can write, as a remainder:

k+n—1 l
Prs|p) ~ [ Powilwiip, ) [] Pwilwiisiy)
i=k+1 i=k+n
n—1 -k
i—1 i—1
= H P(Sj|P£—n+1vs]1 )'HP(Sj‘Sé—n+1) (4.2)
j=1 j=n

4.2.2 Searching for a suffix

Next, we are going to focus on the search problem for ITG. By strictly falg
Eq. (4.1), where a conditional probability has to be maximized, we could dbely
usual Dynamic Programming based approach [54]. Notice however thedaube
only a language model is used, the decoding process is easier than inaDA®nly
consists in constructing suffixes according to this LM. At this point, we cdicipate
a problem that will be discussed later. In a usual Pattern Recognitiomtasigve an
input pattern to decode and the algorithm can be stopped when the endpattira
is reached. In this task, we do not have an input and, therefore, wetdbave
any clue to stop predicting words. Moreover, we have to cope with anptbblem
related to the nature of the.gram model since longer predictions can be penalized
over shorter ones. For the time being, we will define a generic funclRR,: (.),
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which, given a prediction hypothesis, returns a score for this hypisthesording to
its length.

Surprisingly enough, the maximization of the posterior probability and the en-
tailed Viterbi search is not necesarily the best search strategy in this case. Rezently,
better and simpler approach has been proposed [40].

4.2.3 A greedy algorithm to predict suffixes

We have just claimed that the usual search strategy in Pattern Recognitiatriti&n
best thing we can do here. We will call this stratédsxPostfrom now on. Let’s see
why it is not optimal in this case.

MaxPostis actually aimed at minimizing the decoding errors. In NLP, this crite-
rion optimizes the number of sentences correctly predicted (here, werssilering
that each input pattern is decoded as a sent&nde other words, the well-known
Sentence Error Rate (SER) metric is the optimization goaWfaxPost

In an interactive task like ITG, the real goal is to save user interactioth$:an
necessarily maximizing the number of correct sentences for the geresel éc-
cording to this, in [40] an optimal strategy to predict suffixes in an interaaiwi-
ronment is achieved. This strategy turns out to be a greedy-like sedgnbtéd as
Greedyfrom now on) and it is based on constructing the final hypothesis by taking
just optimum local decisions.

The superiority of th&reedyapproach could be alternatively derived by applying
the optimal classification rule properly. Let's see how. If we considereaao
where exactly one word is predicted after the prefix, only two possibilitiegiar If
the prediction was correct, the word is added to the prefix (thereby aamga new
prefix) and the process is iterated again. If the word was not correljigied, a
word stroke is computed and the correct word is added, again, to foew grefix.

It is easy to see that this scenario is completely equivalent to the more benera
with respect to the number of word strokes needed to produce a sentdmefore,
the conclusions reached here can be applied, as well, to our multi-wadittioa
case.

By taking this new point of view, we can consider that we are addressing a
iterative classification problem where, in each iteration, we have a prefixe
obtain a label class (the word predicted) for this prefix. By making theoredde
assumption that each classification step is independent from the previeus@can
directly apply the optimal decision rule. This rule tells us that we have to maximize
the posterior probability of the class (word) given the pattern (prefik)s Way, we
should choose, in each iteration, the most probable word given the,pubioh turns
out to be, indeed, a greedy prediction algorithm.

Anyway, it is interesting to deeply analyze the behavior of bddxPostand
Greedyin the interactive scenario. To this end, we are going to rely on the simple
model shown in Figure 4.1.

%n most cases, this approach is followed since working with too long inputetigractical and,
hence, the input is previously segmented into sentences
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Algorithm 2 Viterbi-based algorithm to search for the best continuation to a
prefix. n-gram states are identified as substrings of length 1. Therefore,
if (for example)n = 3, ¢ = w;'_n+2 denotes a state identified as the 2-gram
w;_1w;. Itis assumed that, if < 1, wf is the empty stringX). The function
Fiengtn (i, g) provides the length-conditioned score foriamords sentence with
likelihoodg. Different implementations of this function are discussed in section
4.2.4.
input : user validated prefixy), vocabulary {"), maximum prediction length
(maxLen), n-gram size ¢), length score functionfe,,g¢x)
output: whole sentence prediction
begin
i=pl+Lg=p_). 1
Q = {q},; Il States
Glq] = 0; Il Likelihoods;
W q] = p; I/ Word sequences
Gbest = 0; Wpest = A
while i < maxLen do
Q=@ G =G
W =w,;Q=0;
forall ¢ € Q' do
forall v € V do

q= ¢35 " vl concatenate tow! "} .,
if ¢ ¢ @ then
Q= QU {q};

Glg) = G'[q) P(v|q');

Wigl = W'lq'] - v;

else ifG[q] < G'[q] P(v|¢") then
Glq] = G'[q] P(v|q');

| Wlq] =W'lq'] - v;

g=0;,w* =)
forall ¢ € Q do
if Glg] > g* then
LﬁZGM;

w*=W/gq|; //best result for length

if Gbest < Eength(i; g*) then

Gbest = Eength(L 9*),

| Wpest = W, [/ best result so far
l1=14+1;

return wyeqt;

end
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Figure 4.1: Simple stochastic language model

Let's suppose that we generate the set of strings modeled by this exarhjge. T
set is composed of the strings, ba andbb. Now, we can compute the expected
number of interactions/ required to generate these strings when udiagPost

Eazpost(I) =0-0.4+1-0.24 +2-0.36 = 0.96 (4.3)

That is, the stringua is generated with probability of 0.4 and does not need any
interaction (notice thata represents the most probable path in the automaton). In
the case of the stringa, it is generated with probability of 0.24 and it needs one
interaction (in the first one, with no prefid/axPost predicts the stringia and
after settingy as a prefix, the stringa is finally achieved). Finally, the stringp is
generated with probability of 0.36 and two interactions are needed in this case
In the case oGreedy this expected value is given by:

Ecreeay(I) =1-0.4+1-0.24+0-0.34 = 0.64 (4.4)

Here,Greedystarts by predictingb when no prefix is available (as the third term
in the equation above shows) and two and one interactions are needied $brings
aa andba respectively (as the first and second term indicates).

Therefore, theGreedyapproach is expected to require less overall interaction
effort. But what can be expected about the prediction errors?. Wenatce that
the (expected) number of prediction errors corresponds to the Ex)amumber of
interactions. When the system fails to generate a perfect suffix a usexcinoa is
required. Therefore, we can conclude that, in this case, the numbeeditiion
errors is minimized bysreedyand not byMaxPost proved to be optimal.

From the above example, an apparent paradox about the optimality bfetke
Postapproach is reached. The previous reasoning does not try to disgirewvell
known optimal classification rule. Thntradictionis solved when properly con-
sidering the real context of this rule. We can, in the previous example, entipe
expected full-length prediction errors for the general case (not citeits here) con-
sidering all the possible situations. Specifically, we have three diffetasgitication
problems given by the three different prefixes that the strings in the ncadehave.
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These prefixes ark, a andb. In this simple model, when generating all the possible
strings, these prefixes occur with probabilitie®).4 and0.6 respectively. Thus, the
expected value fomMaxPostin the general case can be expressed as:

E(C)pMazpost =1-0.6 +0.4-0+0.6-0.4 = 0.84 (4.5)

while for Greedy we have:

E(C)Greedy =1+ 0.64+0.4-0+0.6-0.4 = 0.88 (4.6)

This result actually shows that the interactive scenario is quite differahtlae
conclusions reached for the general case do not directly apply in tldokitasks.

Now, we only have to formalize this greedy approach for the case-grams
based ITG. This is described in detail in Algorithm 3.

Algorithm 3: Greedy strategy to complete a user-validated prefix. Note that
the greedy solutions shorter tharaxLenare just the prefixes of the resulting
w

input : user validated prefixy), vocabulary ¥), maximum prediction length
(maxLen), n-gram size ()
output: whole sentence predictiorv]
begin
w=p;i=|p|+1;
while i < maxLen do
v* =X\ gF =0;
forall v € V do
if g* < P(v|w§:711+1) then
LQ* = P(U’Wziiﬂ);

v* = v,
w=w- 0%
|l i=1+1;
return w;
end

4.2.4 Dealing with sentence length

We have already introduced one of the problems arisen in ITG related tm @bta
suitable strategy to stop generating words. This problem, as was mentionétibe
regarded (for simplicity) as one of the practical issues of the system. Hyissimple
solutions such as letting the user set a maximum prediction length could be gdopte
Nevertheless, there is also an important problem related to the nature of teésmo
used in predictions that can not be overlooked. When using a dynangapnming
approach, a trellis containing all the explored hypotheses is construeseth. stage

of the trellis contains same-length hypotheses. Initially, the 1-word hypedhes
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considered. Next, 2-word hypotheses are generated and evaludted an. On the
other hand, am-gram language model scores a sentence by computing the product
of the probabilities of all the.-grams present in the sentence (see Eq (4.2) for the
ITG case). Since all these probabilities are numbers between 0 and Brwsayg
that, in general, the fewer amountwefgrams in the hypothesis the higher the score
is or, in other words, shorter predictions would have (in average) arlsetbee than
longer ones (in the most extreme case, our system would always praduseerd
word prediction).

We are going to propose two different alternatives to approach thisggnoll he
first one is based on normalizing each hypothesis by its length. This normalizatio
can be better expressed by following the usual log-prob computation:

Z logP(wi | Wiy 1)

score(s|p) = =il ;i 4.7)

According to this formula, the best hypotheses are those whose individgram
probabilities are higher on average. This approach, however,riisege important
drawback that should be taken into account: because of the normalizhtsomodel
is not a probabilistic model anymore and some of the desirable propertieshtrat
acterizes this kind of models are now missing.

We propose, in addition, a different approach. We can rely on aagpaiodel to
account for the length (denoted &g,,). For instance, a Gaussian can be chosen as
a distribution over all the possible lengths. This Gaussian distribution is trynad
maximum likelihood criterion on the training samples. Once a explicit length model
is available, a linear interpolation is performed betweenrtfggam model and this
new length model as it is shown in Eq. (4.8).

P(s|p) = a Pen(lp| + [s]) + (1 — @) H P(w; | Wz n+1) (4.8)
i=k+1
In the case of th&reedyapproach, this is not actually an issue. NlaxPost
multiple partial hypotheses are considered in parallelGieedy however, a single
prediction is constructed by inserting words at the end of the hypoth&sasmeans
that the length of the prediction does not significantly modify the content gfirthe
diction itself (but only the number of words). In other words, the beddiption of
lengthm will be identical to the best prediction of length + 1 except that, in this
last case, we have an additional final word.

4.3 Experiments
The evaluation method proposed in section 2.6 will be followed here. We véll us

for the time being. the already defined Word Stroke Ratio (WSR). In Figizred
example of an ITG session and the corresponding WSR computation is shown.
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Iteration 1

Prediction:  Check the printer before sending jobs

Prefix: Check the

Amendment: Check the following

Iteration 2

Prediction:  Check the followingcondi ti ons before conti nui ng

Prefix: Check the following conditions

Amendment: Check the following conditionsto

Iteration 3

Prediction:  Check the following conditions toensure an opti num wor k

Prefix: Check the following conditions to ensure an optimum
Amendment: Check the following conditions to ensure an optimunperformance.
RESULT: Check thefollowing conditions to ensure an optimumperformance.
WSR = g =0.33 — 33%

Figure 4.2: Example of editing session and the corresponding WSR compu-
tation. The system generates an initial prediction. Thiea,user validates a
correct prefix (boldfaced) and introduces a word amendnstayn in italics).

The system, taking into account this information, genarateew prediction.
The process is iterated until a correct, full sentence iseaeld. In the final
result, the user only had to type the two words shown in galithe WSR

is obtained by dividing the number of user word strokes betwile overall
number of words.

4.3.1 Corpora

Three different tasks are considered. The first two were alreasly insCAST, E-
TRANS and XerROX. The third one, ABAYZIN, consists on a set of natural language
based queries to a geographic database. In Table 4.1 the main feattireseofor-
pora are shown.

4.3.2 Results

The experiments performed in this section are aimed at evaluating two differen

things. On the one hand, the accuracy of the ITG proposal has to beireéa®©n

the other, a comparison between the two technidl@sPostandGreedyis needed to

validate the optimality of the last one. In Table 4.2 the main results of the experiments

are shown. In this table, theength Modekolumn refers to the linear interpolation

showed in Eq. (4.8). The final column corresponds to apply a length tiaatian

Eq. (4.7) in the case of the Viterbi algorithm, and to generate predictiondefirred

length in the case of th@reedy The best result for each corpus is shown in boldface.
We can see thabBreedysignificantly outperform®laxPostin all the tasks. It is
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Table 4.1: Features of the corpora used

EUTRANS ALBAYZIN XEROX
Test sentences 2996 1440 875
Running words 35023 13566 8257
Running characters 188707 81246 53337
Training vocabulary 688 1271 10913
Training sentences 10000 9893 53740
Test-set perplexity (3-grams) 4.9 6.6 41

Table 4.2: WSR results on different corpora. A comparison between the
two search algorithm proposed is shown for the three corpuosidered. The
columns undetength modeshow the result of interpolating thegram with

a probabilistic length model under different values for theparameter in
Eq. (4.8). The column unddrength normalizatiorshows the result of ap-
plying a length normalization on this algorithm. The finaluran reports the
results achieved by the greedy approach.

MaxPost Greedy
Length model §) Length norm
Corpus 01 03 05 07 0.9 '
EUTRANS | 57.6 57.6 60.4 62.7 62.J7 62.5 50.9
ALBAYZIN | 625 625 625 625 62.8 60.4 53.6
XEROX 79.6 79.6 79.7 80.0 80.0 77.3 66.3

noticeable, as well, that in simple tasks the system can accurately predi¢talfmf

the overall words in the reference sets. It is also worth mentioning thateafrextest

is the same used in CAST. By comparing both results (a WSR of 18.6 was edhiev
in CAST) we can get a picture about the difference in accuracy betevsénct IPR
application. Additionally, the full-length prediction errors achieved by botthioas
(see section 4.2.3) are reported in Table 4.3.

Table 4.3: Prediction (classification) errors on different corporaclassifica-

tion is considered correct when a full error-free suffix isgicted. Notice that
the number of classification performed is different for eatdporithm since

this figure corresponds to the number of interactions ne¢degnerate the
reference set.

Corpus

Approach| EUTRANS ALBAYZIN XEROX
MaxPost | 19973 (95.8%) 8754 (96.1%) 6567 (97.8 %)
Greedy 17844 (93.0%) 7269 (95.4%) 5485 (94.7 %)
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Once that an initial ITG proposal has been addressed and sevpeimagnts
have been reported, we are going to devote the rest of the chapter yadgffedent
extensions to this ITG core.

4.4 Predicting at character-level

The results shown in the previous section were obtained by considershgusar
interaction as a word correction (WSR). However, an alternative afisesconsider

a character-based approach, that is, a system able to respond tokeysfi@kes
rather than whole words. It is, in principle, clear whether the typing effbould

be measured in terms of word or key strokes. For constrained interiabege the
bottleneck is given by the typing mechanism, computing keystrokes seemsda-be r
sonable, since a significant amount of time is spent in introducing the informatio
instead of thinking about what it is going to be typed.

In this case, as soon as the user types a single character, the systaepeo
continuation without waiting for a full word correction. The process igesally the
same as described for our ITG initial approach but, taking into accouttwian
searching for the suffix, we have to deal with incomplete words (that isfirtaé
characters of the suffix can be a word-prefix and not necessarihyodeword). Un-
der this premise, we firstly have to complete the final characters in the piteitx (
will be, usually, an incomplete word). Formally, la}, be the sequence charac-
tersthat comes after the last blank in the prefix. We have to search for adard
which cy, is a prefix. In the case of amrgram language model, this amounts to the
following optimization equation:

b= argmax P(v|lw; )} ) (4.9)
vEV:icw, € pref(v)
wherepre f(v) denotes the set of all the prefixes of the word

Now we have a way to deal with incomplete words in the prefix and, therefore
we know how to construct a system able to react to single key strokearithing
we need is a new way to measure the system performance in this predictiolitynoda
We can accomplish this goal by means of an adequate extension of the WS® metr
This extension is called Key Stroke Ratio (KSR) and it is defined as the nuofber
key strokes needed to achieve the reference tesx divided by rurtmangoters in this
text. In Figure 4.3 an example of interaction with a character-ITG systenoisrsh
along with an example of KSR computation.

In Table 4.4, the results of this new interaction modality on the corpora desdcrib
in section 4.3.1 are shown.

At this point, it can be interesting to thoroughly discuss the measure (WSR or
KSR) to adopt to better estimate the effort reduction achieved. In a noruatien
where a user generates a whole text document in a desktop computenticiear
which estimation is more reliable. If the system is planned to help a user abeut ho
to write a document (that is, to suggest grammatical constructions, speoifitsw
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Iteration 1
Prediction:
Prefix:
Amendment:
Iteration 2
Prediction:
Prefix:
Amendment:
Iteration 3
Prediction:
Prefix:
Amendment:
Iteration 4
Prediction:

Check the printer before sending jobs
Check the
Check the f

Check the fi nal configuration before continuing
Check the f
Check the fo

Checkthefd | owi ng conditions to ensure an opti mum work
Check the following conditions to ensure an optimum
Check the following conditions to ensure an optimunp

Check the following conditions to ensure an optimum per f or mrance .

RESULT: Check thefollowing conditions to ensure an optimumperformance .

4
= — = U. —
KSR 6% 0.06 — 6%

Figure 4.3: Example of an editing session and the corresponding KSR com-
putation. The system generates an initial prediction. ThHe:user validates

a correct prefix (boldfaced) and introduces an amendmentsiin italics).

The system, taking into account this information, genarateew prediction.
The process is iterated until a correct, full sentence iseaeld. In the final
result, the user only had to type the three characters showtalics. An fi-

nal acceptation keystroke is also assumed. The KSR measol#dined by
dividing the number of user strokes between the overall rarrobcharacters.

Table 4.4:

Results of predicting at character level . These KSR resoltse-

spond to th&sreedyapproach. The WSR results are also added for informative

purposes

etc.), WSR seems quite adequate since words can be considered as the minimum

Corpus KSR | WSR
EUTRANS | 14.1 | 50.9
ALBAYZIN | 13.3 | 53.6
XEROX 19.5 | 66.3

meaningful units in human language and, therefore, the effort showdggressed in

these terms.

On the other hand, if ITG is to be used as an assistance tool in problematic env
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Table 4.5: Features of the SAKESPEAREand EJROPARL corpora

SHAKESPEARE EUROPARL
sentences 4377 133772
Training Set|  running words 103937 3884947
running characters 481088 22414616
vocabulary size 8462 60688
sentences 1211 2195
Test Set running words 26134 62017
perplexity 211 (3-grams)  109.1 (3-grams

Table 4.6: Results at word and character level . These results comespith

the greedy approach and predicting sentences of definetthleFge prediction
length was set as the mean plus the variance of the sentemgt-distribution
in the training set.

Corpus WSR KSR
SHAKESPEARE | 86.9 43.6
EUROPARL 774 28.0

~—

ronments, where the effort needed to merely typing is significant, then K8&ady
the metric to be adopted. The results obtained so fap&sytasks) seem to suggest

that, for the time being, ITG is only of moderate help to solve the first situation. On

the contrary, the KSR results indicate that ITG turns out to be an interesthipta
constrained-typing situation. To corroborate this fact, additional expatgms new
(and considerably) more difficult and realistic tasks will be conducted.
First, we are going to use part of th&/ ROPARL corpus [25], which is composed
of different transcriptions of the European Parliament sessions. 8dwnd task is
based on a corpus obtained from William Shakespeare plays (four wkrgsused
as training material and one play was used as test set). In Table 4.5 thedeattu
both corpora are shown. The results obtained (both WSR and KSRjesenped in

Table 4.6.

We can see how the WSR figures are far from being satisfactory. Onthecy,
promising results are achieved when trying to save key stroke effont ievihese
hard tasks. Next, we are going to discuss additional proposals aimed awvingpr
the KSR results achieved in this section.

4.4.1 Predicting at character level using character LMs

Very often, in NLP applications, word-based language models are osexdveral

reasons. On the one hand, words are the minimal syntactic and semantic units in

the human language. On the other hand, the use of word-based motteds (inan
sub-words units) prevent the system from generating incorrect leeaogponents in

the final result.
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Table 4.7: KSR Results on the different corpora using character LMsir
ferentn-gram order. The missing results in the table are due to thessive
amount of memory required to train the models. The besttrfmueach corpus
is boldfaced. In the final row, as a recordatory, the wordeddm results are

reported.
order EUTRANS ALBAYZIN XEROX SHAKESPEARE EUROPARL
5 18.9 204 30.1 44.7 38.9
6 15.8 17.5 27.0 43.5 34.5
7 14.3 15.8 25.1 43.5 32.1
8 13.9 14.8 23.3 43.6 30.7
9 12.9 14.0 22.0 44.1 29.6
10 13.6 12.4 20.8 50.6 30.5
11 13.5 11.9 19.9 52.6 31.6
12 13.5 111 19.5 54.0 -
13 13.8 10.7 19.3 54.7 -
14 141 10.5 19.2 55.0 -
15 14.4 10.8 19.3 55.2 -
word LM | 13.1 13.3 19.5 43.6 27.7

In the case of character-ITG, the use of units apart from words eandre jus-
tified since the system has to deal with prefixes that can contain incomplets.wor
In the approach described before, the word completion was carriday@electing
all the words in the vocabulary which are “compatible” with the final charadte
the prefix and then choosing the one maximizing the probability of a worddbase
guage model. This, however, poses some problems. For instance, tloé sadable
words in the system vocabulary to perform this completion.

As an alternative, a character-based language model could be empdogled
rectly deal with this situation. Besides, tBeeedyalgorithm can be properly applied
by using this kind of model in a character-level prediction (notice that thadta
in Eq. 4.9 is not exactly a greedy approach when considering indivichaahcters).
The actual algorithm for predicting the suffix in this situation is quite similar to the
one in Figure 3 and, for that reason, it is omited here.

Regarding the:-gram model, it is clear that the order of tmewmodel should
be (considerably) higher than the previous word models. Instead af Biram or
4-gram we will consider-grams with n between 5 and 15. In Table 4.7 the results
of the experiments conducted with these character models are showmelraly¢he
use of character language models outperfoms the previous approasihgélttinis
improvement is quite slight in most cases.
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4.4.2 Predicting at character level using both word and chaacter LMs

Since the character language models have proven to be competitive fat EEBms
reasonable to discuss a possible use of both kind of models to improve thetiore
guality. The most straightforward approach is, perhaps, to perfornearlinterpola-
tion between the two models so that both character and word histories aidereal
for each hypothesis. Nevertheless, the word models are not able ttyditeal with
hypotheses that consist of incomplete words (in this case, these modebiilen
used to complete a partial word hypothesis, as in Eq. (4.9) but ratheroapartial
word hypothesis). On account of this, it is mandatory to somehow allow thedels
to cope with this situation. A possible solution consists in scoring a the woftkgse
(cw,) as:

P(CU|W]’::71L+1) = Z P(U|W1§:}L+1) (4.10)
cw, € pref(v)
wherepre f(v) denotes the set of all the prefixes (from length Ltd of the wordwv.

This way, all the possible whole-word alternatives are considered éacutrent
incomplete word.

Table 4.8: Results (KSR) of predicting with character and word modéike
last column show the best results achieved so far for eaglusor

Interp weight
Corpus 0.1 0.3 0.5] base
EUTRANS 12.8 13.1 15.7 129
ALBAYZIN 105 109 14.6 10.5
XEROX 18.0 18.3 19.8 19.5
SHAKESPEARE | 43.1 425 42.3 43.6
EUROPARL 28.2 27.7 279 28.0

As can be seen in Table 4.8 the combination of character and word language
model achieves the best results for all the task considered. These anpgnts can
be based, in part, on the fact that a character LM can generate semfdetters that
are not real words in the language. The use of a word LM here caemrthis from
happening since these incorrect sequences will be given a low pligbab

4.4.3 Using n-best lists in very constrained scenarios

So far, we have focused on generating text with standard input inésr{ae., basi-
cally typing on a keyboard). Word or character based approachesiesn devised
and discussed. However, in some situations, no real typing can bemedand,
therefore, different alternatives have to be explored in order to busldtable inter-
face to introduce text. In general, human evaluation is crucial in this kindsékta
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Table 4.9: Probability of occurrence of letters in English. From: Elegr Pratt,
Secret and Urgenffhe Story of Codes and Ciphers Blue Ribbon BpthR89,

p. 252.

A 0.08151|J 0.00132] S 0.06101
B 0.0144 | K 0.0042 | T 0.10468
C 0.02758| L 0.03389| U 0.02459
D 0.03788| M 0.02536| V  0.00919
E 0.13105| N 0.07098| W 0.01539
F 0.02924| O 0.07995| X 0.00166
G 0.01994| P 0.01982] Y 0.01982
H 0.05259| Q 0.00121| Z 0.00077
I 0.06345| R 0.06832

since we aim dealing with a very special case [31],[19]. Anyway, sorperaxents
can be conducted in “laboratory” conditions.

Let’'s suppose an extreme situation (but realistic for some disabled people) in
which only a binary input mechanism can be used (for instance a left lur migad
or eye movement). For simplicity, we can consider the input interface corgssitin
two keys. One that allows the user to move within a list of characters andtlesino
one to confirm a selection. Words can be constructed by presentingehea list
containing the alphabet (and, maybe, some punctuation marks) and he oarsh
choose the desired character by using these keys. From this, we coojfulite the
expected number of movements needed to type each character. Thiteexyaae
is given by:

E(movements) = Z Pr(c)- N(c) (4.11)

wherePr(c) is the probability of the character ¢ aid(c) is the number of move-
ments that the user has to perform to achieve the charastehe list. In Table 4.9
the probability of the English letters is shown.

If the list is alphabetically sorted, the expected value in Eq. (4.11) is 12.74.
Clearly, this can be improved by sorting the list according to the letter probabilitie
obtaining, this way, an expected value of 8.25 for English texts.

The ITG approach can be easily applied here. Initially, we can rely onttae ¢
acter language models described in section 4.4.1 so that we can use thisaitidor
to properly sort the list, trying to find the optimal order to minimize the number of
movements. To summarize, given a contgxthe probabilityPr(c|p) will be com-
puted for each symbol (letter)and the list will be sorted based on this probability.
We can now compute the average number of movements expected in threendiffe
situations.

¢ An alphabetically sorted list.
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Table 4.10: Results based on characters list. The size column refetseto t
number of different characters in each corpora. The reswdtsure the average
of the number of movements needed to type a correct character

Corpus Size Movements/Character

Alphab. order Freq. order ITG order
EUTRANS 33 16.45 6.45 1.29
XEROX 55 19.28 7.16 2.03
SHAKESPEARE | 38 17.38 6.72 3.48

e Alist sorted based on the individual probabilities of the different cttaragn
the alphabet (similar to what it is shown in Table 4.9).

¢ A dynamic sorted list using the information from the character language mod-
els.

These experiments were performed by generating the test sets falsmrpora
according to each one of these three modalities. As can be observedéTab,
the use of context information derived from the language models caniynotgirove
the performance which entails a very significant reduction of the efémtiad to type
text in this special scenario.

4.5 Adaptive learning

As we discussed in Chapter 2, one of the advantages of the IPR plgibset during
the normal system operation mode, new and completely reliable training material is
being produced, which can be used for improving the system perfoemanc

In addition, this new material may not be seen as simple new data but as data
heavily related to the task being currently solved. As an specific ITG example
could develop a system to be used as an e-mail assistant tool and this sgsiem
be trained from e-mail samples from different users. However, weegpact more
benefit if the system is mainly based on the current user emails. Underagn ad
tive learning framework, we have at our disposal all the data that therdurser is
producing. Why do not take advantage of this?

4.5.1 Some strategies for adaptive learning

Within ITG, some alternatives to apply an adaptive learning approach egmds
posed. Before describing them, we have to say that we will use, in thessi-ex
ments, only the BAKESPEAREand EUROPARL corpora since they constitute real,
long texts. The others are mere sequences of isolated sentences dhnat feason,
are not adequate to be test under an adaptive learning paradigm.
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Cache models

Cache models [28] are well-known models used in speech recognitiomalibeale
behind these models is the fact that a word seen in a document is likely toamziar
in a near future. From this, the cache model increases the probabilities wbtlals
seen in a recent past.

In the adaptive learning approach considered here, a cache mode¢ aesseful
since the lasi\/ validated words in the current task will be probably chosen by the
user later on.

Formally, the cache model can be defined as:

M
_ 1
PC“Che(fU|WZ—]1\4) = M Z 6(v’wn7m) (412)
m=1

whereé(v,wy_,) = 1if wy_p, = v andd(wy,_,,,v) = 0 otherwise. To
combine the Cache and thegram models, we will use linear interpolation as in
[49]:

P(S’p) = Pn—gram(s|p) ' (1 - a) + Pcache(s|p) e (413)
In Table 4.11 the results using different interpolation weights are shown.

Table 4.11: KSR Results of applying cache on different corpora. A valfie o
100 has been used for tiié parameter. In the final column the baseline results
are presented

Factor
01 03 05 07 0.9| base
SHAKESPEARE | 42.9 42.8 43.1 44.2 46.7 43.6
EUROPARL 279 279 28.0 28.6 30.1 28.0

Corpus

With this simple model, only a slight improvement is achieved.

Interpolating with a unigram model estimated from the test

The second proposal consists in learning a new model from the test ldeddya
generated.. Because of the small amount of test sentences, we capeuitte have
enough data to properly estimate a complex model. On account of this, a simple
unigram distribution has been chosen to summarize the information coming feom th
test portion already validated.

To combine the new model with the originalgram model, a linear interpolation
is proposed again. Le®,qining be the model off-line estimated from the original
training samples and 16®;c.;_unigram D€ @ unigram model estimated from the test
samples predicted so far. The probabilRys|p) is computed as:
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P(S‘p) = Ptraining(ﬂp) : (1 - Oé) + Ptest,unigram(s) e’ (414)

The modelPiest unigram 1S Updated when a new sentence in the test set has been
completely predicted. In Table 4.12 the results of this adaptation techniquerare s
marized.

Table 4.12: KSR results of interpolating with a unigram estimated frdra t
test. In the final column the baseline results are presented

«
09 07 05 03 0.1| base
SHAKESPEARE | 45.1 43.6 425 42.242.0| 43.6
EUROPARL 324 295 28.6 28.127.8| 28.0

Corpus

In the case of BAKESPEAREmMore than one point and a half of improvement has
been achieved. Forl ROPARL, the results are not really significant.

Feeding the original models with test data

As a final proposal, we are going to consider one of the most direct soduvben
dealing with the problem of adaptive learning. The idea is to completely relyeon th
original models but including into them some information about the domain being
solved. To this end, an incremental versiomejram models can be implemented so
that only the counts (sufficient statistic) are actually stored in the model. dxsa®
new material is validated, these counts are updated and, when a predictesded,

the corresponding probabilities are then computed.

One of the problems arisen in this scenario is caused by the scarce arhdata o
coming from the task being solved in comparison to the initial training data. Becau
of this, the impact of the new material is barely significant. In order to solve this
problem, a learning factor parameter can be used. This parametercaletise test
samples seen so far to increase the final contribution of these sampledléT13
and, due to the fact that no formal methods can be used to determine tkecaling
factors, several values for this parameter have been considered.

Table 4.13: KSR Results retraining the models based on a learning faetor
rameter . In the final column the baseline results are predent

KSR
f=1 If=2 If=5 If=10 If=20 | base
SHAKESPEARE | 42.1 419 420 42.1 42.4 | 43.6
EUROPARL 273 273 271 270 27.1 28.0

Corpus
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This approximation achieves a better result foREPARL Inthe case of BAKE-
SPEARE the results are similar to those obtained in section 4.5.1.

As a conclusion, the improvements achieved by these adaptive learning tech
niques are not as high as expected. Nevertheless, this evaluation methdzk ma
somewhat unfair and even misleading. In any case, we think this topicvdeser
deeper analysis and discussion. Next, these results will be put in canigxte will
try, as well, to discover the real potential of adaptive learning within ITG.

4.5.2 Deeper study of an adaptive learning scenario

In order for the adaptation paradigm to be actually useful, we can (giyjeex-

pect an improvement in the models as the amount of adaptation data growse We a
claiming that we can adapt the models to a specific task and, as a result, the use
should perceive an increase in the system performance as he or she foavard

in the task. In our experimental framework, this is somehow equivalentrisiader

the test data as a set of consecutive blocks of sentences and foousinghparing

the evolution of the model performance (with and without adaptation) as nergie
these blocks. In other words, we are trying to study how the adapted mexddie
when more and more test data is processed. From this, we could acldsveable
conclusions about whether the user will perceive the system as beimrgamoémore
accurate or not.

To draw more general conclusions, a new task will be included in the iexper
ments. As was mentioned before, th&ROX corpus consists on sentences from
printer manuals. However the sentences in the test set are not complé&tedy te
each other. For that reason, a differereROX test (called XXROX HUMAN-EVAL)
will be adopted. This corpus is interesting because it is actually a whole mprinte
manual (and not a mere collection of sentences) and, therefore, ctasstitreal sce-
nario to evaluate the adaptive learning approach. The main features odtpiss are
shown in Table 4.17.

In Table 4.15 the KSR numbers for this corpus are reported. From thikses
we can notice a much better behavior of the adaptation technique in compaiilson w
the other corpora. This can be explained by the fact theEROX HUMAN-EVAL, is a
more constrained task (although completely realistic).

Table 4.14: Features of the KROX HUMAN-EVAL COrpus

XEROX HUMAN-EVAL partition
Training sentences 51577
Test sentences 4380
Train vocabulary 15231
Test running words 117456
Test running characters 641721
Test-set perplexity (3-grams) 60.8
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Table 4.15: Results on theXerox human -evatorpus. The first row shows
the results by computing the KSR using only the off-linerteal model. In
the second row, the results of adapting this trained modél e test material
predicted is reported

KSR
Trained model 25.1
Off-line Trained model + adaptation 17.3

Before presenting the results we have to take into account an importaiit deta
The way of splitting the whole tests set is crucial to allow for a fair comparison
between the two models (the original and the adapted one). The point hbe is
a bad block-division can introduce some noise since choosing blocksferfedt
difficulty can hide the real evolution of the results. As an example, by considering
each block as a single sentence, we could not expect a realistic estimatiom of
evolution of the adapted models since a high variation in the prediction agataac
be expected from one sentence to the next one.

To deal with this situation, we propose the following solution. Every possible
block partition (with some limitations that will be discussed later) will be considered
for each test set. These partitions will be scored with some measure that gfo
expecteddegree of difficultyof each block. Finally, the partition that proves to be
more uniform according to this metric will be chosen. Perplexity is the usugl wa
to measure thdifficulty of an NLP task. Therefore, the uniformity of a partition is
estimated as the variance of the block perplexities. This way, the partition minimizing
this variance will be finally chosen.

In Table 4.16 an empirical study about this variance is shown. It is n@gess
to remark that all the possible partitions have been considered but doimgjrene
block size to be greater than one hundred sentences. Smaller blocks dieseove
to be even considered.

In Figure 4.4 the evolution of the difference between the KSR achieved with
the original trained model and with the adaptation technique proposed inrsectio
4.5.1 is represented. As can be observed, these results clearly shdhetbgstem
performance is constantly increasing as new test data is processed. thisowe
could infer, to some extent, that adaptive learning is really useful to im@ao\&G
performance in the medium and long term.

Learning from scratch

As a final experiment, it could be really interesting to explore a pure adaptbio
proach. Starting from zero, we can build the statistical prediction modeleate i
samples are generated (the procedure is identical to what was explaisection
4.5.1, the only difference is that here we start from an empty model). Notie th
interest of this approximation since neither model nor training samples argaeq

to build a functional ITG application. At first, the system will be really uselass
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Table 4.16: Variance in perplexity based on the number of blocks ferR%x,
SHAKESPEARE EUROPARLand XEROX HUMAN-EVAL corpora. The number
represent the variance of the perplexity in the partitiorthesset is split in
different number of blocks

# blocks in the se Corpus
XEROX | SHAKESPEARE | EUROPARL | XEROX-HE

2 1.54 29.2 1.7 10.2
3 82.2 14.5 1.1 43.4
4 129.9 10.5 2.3 21.7
5 21.9 28.4 1.9 3.1
6 25.9 70.8 51 8.9
7 45.0 80.2 11.4 10.3
8 130.1 62.5 35.3 20.4
9 124.3 160.9 29.0 44.9
10 203.4 | 87.6 30.9 70.8

as the user types more and more text, the accuracy is expected to be sifpifica
improved. In order to check the performance of this technique, #ROX HUMAN-

EVAL task used in section 4.5.2 has been tested with this new methodology. In addi-
tion, the well known Spanish classical novel “Don Quijote de La Manclas’lbeen

used as an example of a large test set suitable to be used in this kind dfrexter

Table 4.17:Features of the DN QUIJOTE corpus

DON QUIJOTE
Sentences 36266
Vocabulary 29227
Running words 431098
Running characters 2163177

In the case of XROX HUMAN-EVAL, as can be seen in Table 4.18, the results
are worse than those achieved by using a previously trained model dpsived
learning but better than those obtained using only the initial trained model. &or th
DON QuIJOoTENnovel, we can say that, despite being a really difficult task, the KSR
figures are very satisfactory. Finally, in Figure 4.5 the evolution of the K&Rhis
last corpus shown (the whole test has been split into 10 blocks of 30@8rees
and the KSR of each block represents a point in the graph). It is wotthimp
how the models can reach a good performance by only processing a smalhtof
sentences.
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Figure 4.4: Evolution of the difference (in KSR) between the adapted ehod
and the original trained model on the four corpora. 2 blockserconsidered
fox XEROX, 4 blocks for $IAKESPEARE according to Table 4.16, 3 blocks
were considered for BROPARL and 5 blocks for XROX HUMAN-EVAL ac-
cording to Table 4.16

Table 4.18: Results of a pure adaptive learning approach. The predictio
model is constructedn-the-flyfrom the sentences already validated

4.6

KSR
XEROX HUMAN EvAaL | 23.8
QUIJOTE 32.9

ITG applications

So far, ITG has been evaluated as a tool to generate documents in fhatgrsge.
However, this is not the only situation that can be derived from ITG. Indégtion,

a couple of different ITG applications will be described.
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Figure 4.5: Evolution of the KSR in the prediction of the novel “Don Qugo
de La Mancha” based on the number of test block processed.

4.6.1 ITG as a computer-programming assistance tool

Since high-level programming languages were developed, a lot ofetitferols have
been constructed to facilitate the programmer’s work. Complex environnmardsf
veloping software have been devised in the last years and they havmbeery
popular within the software community. Some of these tools present simple BFG fe
tures. For instance, automatic completion of types, variables or classgsramally
implemented.

The generation of computer programs seems to be a good opportunity taltake a
vantage of the ITG framework. Here, however, automatically generateddgions
could be also useful in learning environments, where the user is not fie@ht with
the language lexicon and syntax. Nevertheless, this claim has to be w®gppyr
experiments with real users which is something out of the scope of this virark.
that reason, we are going to focus only on the effort reduction in KSRsténat can
be achieved. In case that these figures prove a significant predictaneay, these
human-oriented experiments could be justified.

In this environment, ITG will be assessed by using part ofihexKernel source
code, developed in C language. The Linux kernel consists of diffex@urce files
grouped into different directories according to the functionality providem all
these directories, four of themmRCH, KERNEL, FS andMM) have been chosen so
that all their 'C’ files will be used as training/test material. In Table 4.19, the main
features of the INUX corpus are presented.

In the experiments, all the source files in @reh directory were used as train-
ing set and the remaining files were used as test. The KSR results are shown
Table 4.20.

In the first place, we can observe, a worse performance comparedstoomo
the pure natural language tasks. This can be somehow surprising since we could
expect this task to be easier (notice, however, than no preprocessimipiees were
applied here, and the raw files were directly used). On the other hagrdyms could
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Table 4.19: Features of the iNuX corpus

ARCH | KERNEL FS MM
Number of source files 316 123 545 55
Running words 1137470| 420356 | 2385975 | 239233
Running characters | 6625582| 2500552| 14425573| 1385875
Vocabulary 43406 31403 108013 17321
Number of lines 164340 | 61358 326582 | 33640

Table 4.20: Results on the INUX corpus. The first row shows the results by
computing the KSR using only the off-line trained modelifteal fromARCH).

In the second row, the results of adapting this model withitie¢lsematerial val-
idated so far is reported. Finally, results using the a ceteppdaptive learning
approach as described in the previous sections are alsmshow

FS | KERNEL | MM
Trained model 56.2 53.4 | 53.0
Trained model + adaptation40.4| 41.5 43.1
Adaptive learning only | 30.6 31.3 30.7

not be the best models to be considered here. More surprisingly, thezdiom of a
full adaptive learning approach achieves the best results, makingppsgvtrained
models completely useless.

4.6.2 ITG and information retrieval

As a final application of ITG, we will consider an interactive informationiel
scenario. In this case, this is not only the application of ITG to a differeskt taut
also a new way of using a text prediction system.

Information Retrieval (IR) systems have gained a lot of importance in daily life
Querying databases is now a usual task and, therefore, approptatades are
crucial to guarantee a real benefit from the huge amount of datantlyrezailable.

In this sense, interfaces based on natural language have drawnfattgrdion in

the last years since they constitute the most natural way for a user to conateunic

In the case of accessing to a database this is even more important sinceythe wa
in which the information is structured can be so complex that other communication
alternatives are often useless. Nevertheless, these interfacesfeomfaeing perfect

and they present some drawbacks. On the one hand, in spite of allowingehw
natural language, they are usually constrained to a specific vocabulgrgmmatical
structure. When the input is not constructed following these restrictiowsysually

the typical user is not aware of them) the system response is uselesseamskth
normally feels frustrated. On the other hand, typing text can be complicateuiria
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situations (mobile devices, disabled people, etc.) and this fact can weakiearibfit
that a natural language based communication can achieve. This issu@iisitgc
more and more important since nowadays a lot of information is worldwide alaila
and portable devices are becoming the main tool for a significant amouabpfeg

To overcome these two problems, ITG can be really useful. In the firseplac
regarding the second drawback, ITG can significantly reduce the @ffeerms of
interactions (that is key strokes) to generate text in very different thskise second
place, concerning the first question, ITG can boost the correct fuae mterface
based on natural language since ITG can be seen as an interactipigeeto the
IR system. This way, ITG can be employed to lead the user to type the input text
with the kind of constructions expected by the system and therefore to imghev
final results obtained. The point here is that the ITG system could helpstirein
the short term, by providing a quick way to obtain an acceptable resultéayubry
currently carried out and, on the other hand, in the long term by showankjirial of
gueries that the system is more likely to accept. The aim of this section is tolyough
explore the possibilities that this proposal could offer on a simple systenelhasv
to discuss an initial experimental framework for this novel application. Toethis a
database containing information about train routes will be used in the expésime

Integrating ITG into a natural language based information retrieval system

Different approaches can be taken when including an ITG system initaf@ma-
tion retrieval application. Perhaps, the most simple one is based on a completely
decoupled architecture where the ITG is used basically as a tool to coresiuery
hypothesis. In this case, the user interacts with the ITG system as it is shhéug:
ure 4.2, that is, typing text that is simply auto-completed by the ITG enginee (ec
user validates the whole sentence, it is used to query the database.nd séteona-
tive arises when considering a loosely-coupled approach. In this@ma$€G system
is used as in the previous case but, instead of waiting for the user validdtiba o
whole natural language query, the different text predictions will bel tiseetrieve
information from the database. As a consequence, what the user abtadath inter-
action is not merely a text completion but an answer to the query being cotestru
Other (and more complex) alternatives can be also explored. For instasitengly
coupled approach, where the ITG system could be fed with some fdeftbatthe
IR process in order to decide which prediction is more convenient.

4.6.3 Brief description of the AMSABEL system

In order to assess this initial proposal, a simple information retrieval sysadiedc
AMSABEL[45] will be employed. AMSABEL is based on the use of statisticat ma
chine translation (SMT) techniques to translate from a natural language sttac-
tured query language (SQL). Currently, AMSABEL is able to acceptigaéoth

in Spanish and English. The resulting SQL sentences are used to acedssay
database where information about train routes is stored (specificallyr zars®b-
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tain information about departure and arrival cities, starting and enditeg dgtarting
and arrival times, ticket prices, etc.). The translation of the SpanishglidBrinput
into SQL is performed by using phrase-based models[27]. These matédsp the
translation in three steps. Firstly, the input sentence is segmented intop{waseh
are sequences of consecutive words). Then, each segment latiemsto the corre-
sponding segments in the target language and, finally, the target paraggeperly
ordered to achieve the final translation. Formally, in statistical machine ttimmsla
we are given a source senterfceand we try to find the optimal target senteecas:

é = argmaxPr(e|f) = argmaxPr(f|e) - Pr(e) (4.15)

wherePr(e) is the language model probability aid(f|e) is the translation model
probability. In the case of phrase models, this probability is expressedsastdtted
in Eq. 4.16:

Pr(fle) = Pr(f{le])
1

[ ¢(Eiled(a; —bi1) (4.16)

i=1

Q

wheref; is thei-th phrase irf, €; is thei-th phrase ire, ¢(f;|e;) is the probability of
beingf; a translation o&; andd(a; —b;_1) is the distortion model used for reordering
target phrases. The order of a target phfaskepends on a probability distribution
based on its start position) and the end position &f_; (b;_1).

Phrase models are obtained from word to word alignments ([5]). Thelséar
the most likely translation is performed by using thi@sesbeam-search decoder
[26].

A set of semi-automatically generated input queries was in the experimegts (75
English and 748 Spanish sentences were employed) along with the inforriatton
the user expects to obtain for each query (see Table 4.21). We think ¢hase¢hof
this synthetic corpus can be justified in this first evaluation stage, sincedatdaqed
sentences can be, in our opinion, considered as plausible queriassiriateracting
with a natural language based IR system. In Figure 4.6 some examplesetdhes
gueries are shown.

The evaluation procedure was aimed at directly testing the system ussfulnes
from a potential user point of view. Thus, the results of the input natargjuage
gueries were classified based on the outcome obtained (the point here iadorene
the system accuracy according to the correctness of the informatiorveefrieThe
following query categories were established:

Q1 Exact information The system provides the user with the exact information re-
quired.

Q2 More fields The system returns the information required but more fields are also
provided.
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please , | would like to know which destinations are there from Guadalajara.
are the classes of train 1047 ?

what times can you go from Toledo to Alicante the 2011-06-03 ?

which days of the week can you go to Guadalajara from Ciudad Real ?
from which cities can you go to Alicante ?

| want to know which destinations there are from Valencia.

Figure 4.6: Examples of semi-automatically generated test sentences

Q3 More rows The system provides the information required but more rows from
the database tables are also shown.

Q4 Incorrect The query does not include the expected information.

Categories 1 and 2 are completely useful they the user obtain the information
that he or she requested (adding in the case of Q2 type more fields). ©38dpp
be also considered useful since the information requested is providedglitisome
useless additional information is also included in the result (causing, maghe
annoyance). In the case of the Spanish test corpus, about 81%tefrssesults were
classified as type Q1, less than 0.3% as type 2, about 1.3% as type 3 alig, fin
about 17% as type 4 (that is, quite useless).

4.6.4 ITG experiments

Once the IR system has been described, a framework to study the possfllness
of the ITG proposal will be discussed.

Initially, the KSR of a pure ITG approach on the AMSABEL query text emp
was computed and it is shown in the first row of Table 4.22. The idea is to measu
the effort required to generate the exact text queries (without actuadlsang the
database) in the test set. This can be seen, to some extent, as the affarigoé
completely decoupled approach in which the system waits for a completelytealida
text construction and, based on this, a final single access to the datapadermed
for each query.

However, ITG can be incorporated into an IR system in very differeaytsysee
section 4.6.2). In this work, we will focus on a loosely-coupled architectlme
idea is that, each time the ITG system makes a text prediction, this prediction will
become into a query to the database. Once the query has been perfoerasedrtivill
directly validate the database response in the case it is correct or, hetive part
of the text prediction that he or she considers error-free (as it issioiigure 4.7).
Then, a simple correction will be made on this text prediction and the prod#éss w
be repeated until the user considers the information retrieved as satigfdatthe
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experiments performed here, the user was simulated by the test sets shiatnhein
4.21. The effort will be measured in KSR terms.

Table 4.21: Test sets used in ITG for information retrieval

Spanish| English
Number of sentences 748 752
Running words 9413 9763
Vocabulary size 447 484
Perplexity 8-grams) 5.2 4.9

In the first row of Table 4.22 the results of using ITG on the whole AMSABEL
system are shown. These experiments are aimed at measuring the KgRdégu
obtain one of the three useful query types described in section 4.6.3waiiighe
KSR needed to obtain all the queries classified as type Q1 was computee sadih
procedure was used for Q2 and Q3 queries (Q4 queries were ngileoed since
they are useless). As can be observed, the Q1 figures show thattinsaessary to
generate the exact query to get a perfect result and that somecaiifidoe saved with
respect to replicate the input sentence with ITG (as numbers in Table 42&xh
and, what is more important, with a small effort in terms of key strokes, UgSu
gueries can be achieved.

Table 4.22:ITG and information retrieval results on the AMSABEL corpus

Spanish English
Query type KSR | improvement| KSR | improvement
Pure ITG 15.6 - | 147 -
Perfect queries (Q1) 14.2 16% | 13.0 11%
More columns (Q2)| 14.2 16 % | 12.9 12%
More rows (Q3) 10.7 36% | 9.5 35%

4.7 Summary of contributions

In this chapter, a new application of the IPR paradigm have been expléterk,
only the user feedback can be used since there is no input pattern wededoif-
ferent strategies and models have been proposed and evaluated #lorsgweral
interaction modalities.

A thorough comparison between the traditional maximization of the posterior
probability and a new optimal search strategy has been performed. itioaddie
have carried out an analysis of the classification errors producedthyntodalities

in order to show that the interactive scenario can be very different free general
case.
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Iteration 1
Prediction:
SQL:

Data:

Prefix:
Amendment:

Iteration 2
Prediction:
SQL:

Data:
Prefix:
Amendment:

Iteration 3
Prediction:
SQL:

Data:
Prefix:
Amendment:

Iteration 4
Prediction:
SQL:

Data:

3
KSR =— =0.061 — 6.1%

49

which days can you go to Madrid from Toledo

SELECT DISTINCT Dias FROM Tren JOIN Viaje ON
Viaje.Tren=Tren.Ildtren WHERE Destino="madrid’ AND Origen="toledo’
‘Train 1012— Monday, Tuesday, Frida*y

which

which ¢

which classes can you buy for train number 1040 ?
SELECT DISTINCT Clase FROM Tren JOIN Billetes ON
Billetes.Tren = Tren.ldren WHERE Ntren = ‘1040’

| Train 1040— Tourist, First class

which classes can you buy for train number 10

which classes can you buy for train number 1Q

which classes can you buy for train number 108
SELECT DISTINCT Clase FROM Tren JOIN Billetes ON
Billetes.Tren = Tren.ldren WHERE Ntren = ‘1028’

Train 1028— Tourist

which classes can you buy for train number 102

which classes can you buy for train number 109

which classes can you buy for train number 1029 ?
SELECT DISTINCT Clase FROM Tren JOIN Billetes ON
Billetes.Tren = Tren.ldren WHERE Ntren = ‘1029’

Train 1029— Business, First cla#s

Figure 4.7: Example of information retrieval using ITG. In this examptiee
user tries to obtain information about the different ticklesses for train num-

ber 1029.

Each time the user makes a key stroke, the systesnd@sa text

completion Prediction) which is translated int&QL and the corresponding
information retrieved is showrD@ta). In the first three iterations, the infor-
mation retrieved is not correct and, therefore, the useraats with the ITG
engine correcting the text prediction mistakes. Finaliyteaation 4, the infor-
mation provided is fully correct and the process ends ssfelbs

Some adaptive learning techniques have been also proposed. A detailgd s
of the behavior of adaptive learning within ITG has been also conductedrly
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supporting the application of these techniques in this specific problem.

Finally, two applications of ITG different from generating pure text doeats
have been introduced. The use of ITG as atool to improve the naturaldgadpased
information retrieval seems to be very promising and, to the best of ourlkdge,
a completely new approach to this problem.
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CHAPTERDS

MULTI -MODAL INTERACTIVE
PATTERN RECOGNITION. A
SPEECH INTERFACE FOR
COMPUTER ASSISTED
TRANSLATION

5.1 Multi-modality in IPR systems

As was introduced in chapter 2, the nature of the IPR systems promotesvitle de
opment of multi-modality as an integral part of the system. This is mainly due to
the fact that IPR systems have to deal with two different kind of inputs. @mtie
hand, we have the input patterns to be recognized and, on the otheeettigatk
coming from the user. We can cite the example of CAST, where the input pattern
a sequence of spoken words (audio) and the user feedbackpmdssto a series of
keystrokes and mouse actions. According to this description, multi-modalityssee
to be only accidental but a multi-modal scenario can be really useful sudigal
within an IPR system.

The difference in nature between the input pattern and the user fdedimc
tioned before is only one of the features that boost multi-modality and, indeedt
the most important one. Actually, there is a crucial aspect in IPR is that thepap-
tern and the user feedback are somehow related. As we will argue latex can, to
some extent, anticipate the content of a specific user action and, thus, etipecac-
curacy of the IPR feedback channel with respect to a completely diszbimperface,
where the feedback decoder is implemented just using of the self-componen
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A speech and text interface for a Computer Assisted Translation Bstem

Within the IPR paradigm, one of the most explored tasks is Computer Assisteg-Tr
lation (CAT). Translation is nowadays an important activity in many officiaiins
tions (EU parliament, the Canadian Parliament, UN sessions, Catalan angeBasq
parliaments in Spain, etc.) and private companies (user's manuals, P®ASpELC.).
The idea behind those CAT systems is to use a Machine Translation (MTirsiste
produce portions of the target sentence that can be accepted or ahtbgral@uman
translator. These correct portions are then used by the MT systemdoqaréurther,
hopefully improved suggestions.

In the interactive systems described in this work, the user usually relieg-on tr
ditional input methods (keyboard, mouse, etc.) to send the feedback tgdieens
We present in this chapter an alternative to this idea within the CAT frameviork.
this proposal, the human translator determines acceptable prefixes ofjfessans
made by the system by reading (with possible modifications) parts of thegessug
tions. With respect to using a general purpose ASR, the IPR framewlorksaor
a much lowwer freedom degree. As we will see, the corresponding losvplgxity
would allow for sufficiently high recognition accuracy. Moreover, as ihiglly in-
tegrated within the CAT paradigm, the user can make use of the conventioaat me
(keyboard and/or mouse) to guarantee that the produced text exhibéidegunate
level of quality. Preliminary empirical results, presented in this chaptepstithe
potential usefulness of using speech within the CAT paradigm.

A significant part of the work presented in this chapter can be foundlh [5
where the speech interface for CAT is discussed within the context cécBpge-
Speech machine translation.

5.2 Introduction to machine translation

The statistical framework for MT can be stated as follows: Given a seafefiom
a source language, search for a sentence from a target languagevhich the
posterior probability is maximum, that is:

é = argmaxPr(e | f) . (5.1)

As in the general Pattern Recognition case, it is commonly accepted that a con
venient way to deal with Eq. (5.1) is to transform it by using the Bayes'rdmao

é = argmaxPr(e) - Pr(f | e) . (5.2)

important role in T2TT. On the one hanBy(e) is modeled by danguage model
which gives high probability to well formed target sentences. Smoothgdms [9]
are often used for these language models. On the other hand, modBigffdre)

should give high probability for those sentences from the source lgegwhich
are good translations for a given target sentence. These models Iyenensist
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of stochastic dictionariesalong with adequate models to account faord align-
mentg5, 6, 34] (the concept of word alignment will be described later). Arradte
tive to Eq. (5.2) is to transform Eg. (5.1) as:

é = argmaxPr(f,e) . (5.3)
In this case, the joint probability distribution can be adequately modeled byséan
stochastic finite-state transducers (SF$T)8] among other possible models.

5.3 Computer-Assisted Translation

As in CAST we can take advantage of the IPR framework described int€&hap
to increase the productivity of the whole translation process (MT plus humoak)
by incorporating the human correction activities within the translation pratssds
[29]. The idea is to use a MT system to produce portions of the targetrmentieat
can be accepted or amended by a human translator and these cottieaspare then
used by MT system as additional information to achieve further, hopefullyonegal
suggestions. This approach is followed in the CAT systems presented, ih(124,
13]. Formally, we have the source sentefiand a prefix of the translatios), and
we have to find an optimal suffix according to Eq (5.4)

é, = argmaxPr(e; | f,ep) . (5.4)
Alternatively, we can rely on the joint probability of the source and targetence
which leads to Eq (5.5):

é, = argmaxPr(e,, e, f) . (5.5)

€s

5.3.1 Speech Recognition for Computer-Assisted Translatn

As was commented in section 5.1, IPR systems provide an adequate scemio to
velop multi-modality. In the case of a CAT system, the translation productivitidcou
be further increased if speech is used as part of a multi-modal interfdwe are
several ways to use target-language speech recognition in a CAT sy&tem .free
dictation decoding to a very constrained speech recognition.

Free target language dictation

As it was already explored in [17, 3, 4] and more recently in [22, 23, thé]idea is

that a human translatalictatesthe translation of a given source text. Consequently,
we have a speech decoding process fotdinget languagén which knowledge about

the source text can be used to attempt reducing recognition errors. Igpifrias the

given source text ang is the acoustic sequence corresponding to a target-language
utterance produced by a human translator, the search problem becomes:
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é = argmaxPr(e | f,x) , (5.6)

and, assuming thdtr(x | f,e) does not depend df
é = argmaxr(e|f) Pr(x|e) (5.7)
= argmaxPr(f | e) - Pr(e) - Pr(x | e) . (5.8)
t

In both equationsPr(x | e) can be approached by meangtairget) acoustic models
such as HMMs as in conventional ASR. In addition, to make use of the fjusit®n,
Pr(e | f) can be implemented asspecial (target) language mod#iat takes into
account restrictions derived from the fact tkabas to be a translation df The
second equation, on the other hand, requirgarslation modeto approactPr(f |
e) and aconventional target language modelapproactPr(e).

While this is certainly an interesting framework, perfect recognition do&s no
seem possible, even using the information from the source-languageses(asitis
corroborated in the results presented in [17, 3, 4, 22, 23, 44] anesuits of section
5.4.6 suggest). Therefore a significant human error-correctingt effuld still be
required. Moreover, human translators can also make errors themsgheesally
when the translation is dictated rather than typed.

5.3.2 Speech decoding framework in the CAT paradigm

As an alternative to pure dictated translation we propose a framework théteo
one hand fits well within the CAT paradigm (human correction activities endmbdd
into the process) and, on the other, allows for higher speech recoga@iomacy by
using lower-perplexity models in the speech recognition process.

Under the CAT framework, a user-validated prefix and a system hygisthe
complete this prefix are available at each stage of the human-system integctio
cess. When a certain level of accuracy is achieved, this hypothesisisaaiceptable
or close to it. Therefore, rather than allowing quasi-free dictation (onhgitained
by the source-text), it is expected that the user dictates text which is ajuade
continuation of the preceding prefix and is restricted to be (very) closeetgiten
completion hypothesis. Of course, by sticking to the CAT paradigm, systeoting-
ses should always be human-amendable. An important difference wikbctds the
text-only version of CAT discussed in section 5.3, is that now the human aién b
type and/or speak. The key point is that speech should be encouralyei low-
perplexity recognition is possible, while typing should be preferred whemdhults
of speech recognition are expected to be poor.

As in section 5.3, lef be the source text ang], a validated prefix of the target
sentence. The user is then allowed to utter some woddggnerally related to the
suffix suggested by the system in the previous iteration, aimed at acceptiogect-
ing parts of this suffix and/or adding some text. Moreover, the user maystype
keystrokesk) in order to correct (other) parts of this suffix and/or to add more text.
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ITER-O ) |0
(és) (Haga clic para cerrar el didlogo de impresion)
(x) s
ITER-1 (d) (Haga clic a)
(k) (en ACEPTAR)
(ep) (Haga clic en ACEPTAR)
(és) (para cerrar el dialogo de impresion)
(x) i —
ITER2 (d) (cerrar el cuadro)
(k)
(ep) (Haga clic en ACEPTAR para cerrar el cuadro)
(es) (de dialogo de impresion)
FINAL k) (#)
(ep=e) (Haga clic en ACEPTAR para cerrar el cuadro de dialogo de impresion)

Figure 5.1: Example of typewriter and speech interaction with a CAT etyst
to translate the English senteri€gick OK to close the print dialog”. Each
iteration starts with a target language predixthat has been fixed in the pre-
vious iteration. First, the system suggests a suffiand then, the user speaks
(x) and/or types some key-strokdg (possibly aimed to amer&l, (and maybe
d). A new prefix,e,, is built from the previous prefix, along with (parts of) the

system suggestio,, the decoded speeat,and the typed text ik. The pro-
cess ends when the user types the special keystikeSystem suggestions
are printed in cursive, text decoded from user speech inféwddand typed
text in boldface typewriter font. In the final translatian,text obtained from
speech decoding is marked in boldface, while typed text detmed.

Using these informations, the system has to suggest a new éyfiixa continuation
of the previous prefix, the decoded speech and the typed text. That isfdhlem
would be to finde, givenf, e,, x andk, considering all possible decodingsxofi.e.,
letting the decoding of be a hidden variable).

According to this very general discussion, it might be assumed that thease
type with independence of the result of the speech decoding procesgever, it
can be argued that this generality is not realistically useful in practicaltisifisa
Instead, it is much more natural that the user waits for a system outatrfrerfi the
spoken utterance, prior to start typing amendmek}sd the (remaining part of the
previous) system hypothesis. Furthermore, this allows the user to filbfspeech
recognition errors irl.

In this more realistic and simpler scenario, an alternative problem can efor
lated in two steps, as illustrated in Figure 5.1. The first step is to rely on theesour
textf and the previous target prefé, in order to search for a target suféix:

é, = argmaxPr(e; | f,e,) . (5.9)
This equation exactly corresponds to the CAT scenario discussed inrsBcdio
and it can be approached using the same techniques already mentionédctios
(see, e.g., [39, 12)]).
Onceg; is available, the user can produce some speednd the system has to
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decodex into a target sequence of words,

~

d = argmaxPr(d | f, ey, &,,X) . (5.10)
d

Finally, the user can enter adequate amendment keystkgkésecessary, and
produce a new consolidated prefex, based on the previous, d, k and parts og;.

We focus now on different manners to approach Eq. (5.10). To sitrtwe can
write:

argmaxPr(d | f, e,, &5,x) = argmaxPr(d | f, e,, €;) - Pr(x | f,ep, &,,d) . (5.11)
d d

and, by making the reasonable assumption khax | f, e, &,,d) only depends on
d:

d = argmaxPr(d | f,ep, &) - Pr(x | d) . (5.12)
d

Pr(x | d) can be modeled by the acoustic models of the wordd and Pr(d |

f.e,, &) can be provided by a target language model constrained by the previous
prefixe,, by the source senten€eand by the suffixe,; produced at the beginning of

the current iteration.

As will be discussed in section 5.4.6, Eg. (5.12) does not lend itself for simple
experimentation under laboratory conditions. Therefore, we considesitplifica-
tions that allow for adequate experimentation and are useful in practice too.

First, aless restrictedscenario arises if only the preféy, is available &, is not
used). That is, the previous system prediction is ignored and the usssumsad to
produce free target speech, only constrained to be a translation afitreegext and
a continuation of the given prefix:

d = argmaxPr(d | f,e,) - Pr(x | d) . (5.13)
d

As compared with Eqg. (5.7) of the dictated-translation framework, Eg. (5.13
adds the constraint provided by the target text prefixthereby allowing for higher
speech decoding accuracy. Along with Eq. (5.13), this alternative eaofisidered
as a combination of the text-only CAT systems of [39] or [12] and the targgtiage
dictation systems introduced in [17, 3, 4].

On the other hand, in most restrictedscenario for Eq. (5.12), the decoding of
X is constrained to bexactlya prefix of the suffix suggested by the systém, The
idea is that the uttered prefix would help the user determine an acceptesf faat
system suggestion. In this casa,(d | f,e,, &) = Pr(d | &) and Eq. (5.12) can be
written as:

d= argdmaxPr(d | é)-Pr(x|d). (5.14)

As compared with all the previous scenarios involving speech, Pe@ | é;)
can be modeled by a very low perplexity language model, which should allow fo

much higher speech decoding accuracy.
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5.4 Implementing speech decoding in a CAT system

Preliminary versions of CAT systems using target-language speech éamérbple-
mented for the two last scenarios described in section 5.3.1. In additionxtveo e
“baseline”, purespeech recognitioacenarios have been considered, where the infor-
mation provided by the source-language text is ignored. The goal af Hoemarios

is to study how speech decoding performance within CAT can be improvedrby
ducing translation constraints.

5.4.1 DEC scenario

The least constrained setting is referred to as DEC. It involves justeational
speech decoding of utterance$ ¢6f fragmentsof the target sentence:

d = argmaxPr(d) - Pr(x | d) . (5.15)
d

The language model fdPr(d) is implemented as a (smoothea)gram, estimated
from the same target sentences used to estimate the translation models fgcether
narios. Since the-gram is estimated from complete target sentencesx mitypi-
cally an utterance of a sentence fragment, this language model has togbtecaita
properly accept any possible subsequence of words.

DEC is more difficult than the translation dictation setting discussed in sec-
tion 5.3.1, not only because DEC does not take advantage of the inforrpatidded
by the source-language text, but also because it deals with the decédliagments
of the target sentence, rather than whole sentences as in [17, 3, 4].

Regarding the changes needed to implement the DEC scenario, it is mgdessa
remark that am-gram model is intended to score full sentences in a language. In our
case, we have a text prefix and a speech utterance that is a partiabiatiotirto this
prefix (that is, the prefix and the speech utterance does not formla sératence but
a longer prefix of a whole sentence). This fact poses two differestilems to be
solved. The first one is related to the end-of-sentence probabilitiesrdditionalrn-
gram, a special token is used to denote an end-of-sentence everttthe tieaognizer
is typically forced to consider as final hypothesis only those ones comgathia
special event. From a statistical point of view, this entails that those wdadeg
at the end of the training sentences are more likely to be ending words. This is
perfectly reasonable when decoding full sentences but not wherttdrances are
sentence fragments. An easy and effective solution for this problerbeamached
by removing these end-of-sentence events from the training set. Aslg edsthe
words are equally likely to be final words in the hypothesis.

5.4.2 DEC-PREF scenario

The second pure speech-decoding scenario is referred to as REE-Row the
available prefixe, is introduced as an additional constraint; but, again, no information
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about the source text is used. In this case,

d = argmaxPr(d | ep) - Pr(x | d). (5.16)
d

To implement DEC-PREF, the same approach described above for DEEGdav
be followed in order to properly deal with the end-of-sentence problemth®other
hand, we have to address the adaptation of the language model to takéagdvan
of the text prefix. This problem is was already addressed in CAST (€h&).

As a quick reminder, we have to decode a partial sentence that is a coiotnog
this prefix and, therefore, the search should start as if the languagel merk just
observed the prefix.

5.4.3 CAT-PREF scenario

The least constrained CAT scenario is called CAT-PREF. It correlsptma real-
ization of Eq. (5.13), where the source senterfcethe previous prefixe,, and a
human-translator utterance,are available. The goal of the CAT system is to decode
x into an optimald and to produce a suggested suffixas a continuation of this
decoding.

The combination of CAT-PREF and the CAT-SEL scenario described in sec
tion 5.4.4 would allow for pure-speech interactions within a CAT system. CAI;S
as will be described, can be successfully solved by using a specialeamaton-
strained language model.

On the contrary, CAT-PREF is, maybe, the most interesting scenario, tsiace
baseline results (DEC and DEC-PREF) leave sufficient margin to improwsptech
recognition accuracy. Moreover, including the information coming fromsthece
sentence into the speech recognition process constitutes a really chalscigintific
problem.

We can see Eg. (5.13) as a ASR problem, where we have an acoustic model,
Pr(x | d), and a language modePr(d | f,e,). The only difference is that this
language model is conditioned to the prefjxand to the source sententé/WVe have
already described how to cope with the prefix. Regarding the sourtensenwe
can adapt the model probabilities so that the weight of eagram, P(e; | €!”},, )
is multiplied by the largest probability of translatieg from any source word ifi;
i.e.,max;< ;g P(f; | e;), wherelf| is the number of words ifi. This can be seen
as a simple interpretation of the inverted alignments model described in [34]. Th
lexical translation probabilitie®(f; | e,) are obtained from a stochastic dictionary
estimated using a parallel corpus and the GIZA++ toolkit [38].

Since we are dealing with a smoothedram, in order for the resulting re-scored
model to be a real probability distribution we could, initially, act only on the wargr
party to posteriorly normalize the results. Although better alternatives azided
below, we will include this scenario (called UCAT-PREF) in the results fayrimfa-
tive purposes.

As a second alternative, all tegrams in the model can be properly considered
by paying careful attention to the underlying smoothing in#thgram model. This
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smoothing entails discounting some probability mass from eagider distribution
to be transfered to lower order distributions. In order to preserve teewulis coeffi-
cients computed during the-gram training process we will carry out the following
normalization method. Lek;...h, 1 be the history for the:-grams to be cur-
rently rescored. We can then compute the cumulative probability for thhegams
asacum(hy ... hp_1) = Z P(hlhy ... hy,—1) and use this as a normalization factor

h
after re-scoring with a statistical dictionary. As a result, the only effetftiefprocess

is to differently distribute this mass according to a statistical dictionary. An ebeamp
is depicted in Figure 5.2

SOURCE SENTENCE: "The printer is off”

Fragment of ngram modek( ... | la)

impresora /0.3 impresora/0.74

la/1.0 W’O:?’ —_— la/10 Wra/o_os

Rescoring alanca/0.08

palanca /0.3
Al 0.1l A/0.1

acum(la) =0.9
Statistical Dictionary

t(impresorg printer) = 0.9
t(computadord printer) = 0.05
t(computadorais) = 0.1
t(palancg is) = 0.1

rescore (impresorgla =0.3-0.9=0.27 P(impresorg la) = 0.27 / 0.367 = 0.74
rescore (computadofda) =0.3-0.1=0.03 P(computadorala) =0.03/0.367 = 0.08
rescore (palancgla) =0.3-0.1=0.03 P(palancg la) = 0.03/0.367 = 0.08
acum rescore(la) =0.33

norm factor =0.33/0.9 =0.367

Figure 5.2: Example ofn-gram rescoring. A fragment of a smoothed bigram
model is represented as a finite state grammadgnotes the mass probabil-
ity discounted from this bigram). Initially, the cumulagiyprobability for all
the events is computed (0.9). Then each bigram probabgityecomputed
according to the statistical dictionary and the sourceesera (the maximum
probability for each pair source/target word is used). Binthe new probabil-

ity distribution is obtained by normalizing on the previarsl new cumulative
probabilities.

A second alternative arises by rewriting Eq. (5.13) as it is shown in E§7)5
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d = argmaxPr(d|f,e,)-Pr(x|d)
d

= argmaxPr(f | e,,d) - Pr(d|e,) - Pr(x | d). (5.17)
d

As a result we have, on the one hand the previously described acoustal mo
Pr(x | d), a prefix-conditioned language moded(d | e,) and a whole translation
model Pr(f | ep).

Directly approaching the maximization in Eq. (5.17) using the usual dynamic
programming techniques seems to be not feasible. However, word grapHsest
list from speech decoding allows for a straightforward implementation ofE47).

A statistical translation model can be here applied to score a set of ASRheges
This approach to CAT-SEL scenario is called IBMCAT-PREF.

Five different models (called IBM 1,2,3,4 and 5 models) have been desistat
and they are based on the concept of word alignment, which represerapgng
between the words in the source sentence and their correspondirigttcanssin the
target sentence. Models IBM 3, IBM 4 and IBM 5 are considerably morepiex
than 1 and 2 and, therefore, finding an optimal alignment becomes aniNplate
problem [24] where only approximate solutions can be followed. We wgairgy to
rely, in this case, on the IBM model 1, which computes the probability of hatieg
source sentencé given the targeé sentence and a word-to-word alignmerds it
is defined in Eq (5.18):

If]
p(fla,e) = (e[ D ]131 t(fjlea, ) (5.18)

wheret denotes a statistical dictionary aads a vector of sizef| representing the
word alignmentsd,,; represents the word in the target sentence that is aligned with
the j-th word in the source sentence). Finalyepresents the probabilityr(|f| | €)

(that is, a uniform distribution for the source length).

Usually, from all the possible alignments , only the most likely one (calleztbi
alignment) is considered and, hende&;(f|e) is approximated byPr(f|a,e). The
Viterbi alignment can be efficiently computed in Model 1 by aligning each word in
the source sentence to the word in the target sentence that maximizes théoscor
the partial alignment constructed so far (IBM models constrained the aligaraen
that each word in the source sentence can be aligned as most to one e thirget
sentence). In Figure 5.3 an example of the computation of this optimal alignment is
shown.

IBM models, however, are trained to cope with full sentences and, in this sc
nario, we have a full source sentence and a fragment of a targehsents a result,
the model can produce sonagtificial alignments in order to deal with this unex-
pected situation an this could result in the achievement of unreliable s@ifiesent
possibilities arise to address this problem. Initially, we could take advantaite of

90 LRR- DSIC-UPV



5.4. Implementing speech decoding in a CAT system

STEP 1

. . . t(The | La) = 0.40
The printer is dfline {(The | impresora) = 0.02

l t(The — esh) = 0.001

: - t(The — fuera) =0
La impresora e&t fuera de 1hea e ies-o

t(The — de) = 0.0000006

STEP 2

. . . t(printer | La) = 0.001
The prlntel’ is off-line t(printer | impresora) = 0.92

| \ t(printer — esh) =0

) ) t(printer — fuera) =0
La impresora eét fuera de Thea iner—inea=0.0002

t(printer — de) = 0.0000001

STEP 3

. . . t(is | La) = 0.00000001
The pl’lntel’ is off-line t(is | impresora) = 0.0000001

I \ t(is — est) = 0.21
t(is — de) =0

) t(is —fuera) =0
La impresora eét fuera de ihea i jnes-o

STEP 4

. . . t(off-line | La) = 0
The printer Is off-line t(off-line | impresora) = 0.13

| \ SN t(off-line — es&) = 0

. - t(off-line — fuera) = 0.4
La impresora

B t(off-ine — de) = 0

edt fuera de ihea (gfine —iineay=034

Figure 5.3: Example of IBM model 1 alignment computation. Each word
in the source sentenc@&l{e printer is off-ling is aligned to the optimal word
in the target sentencéd impresora esgt fuera de ineg. The boldfaced lines
represent the optimal alignment for the current source whosden at each step
whereas the dotted lines represent the rest of alignmengidmred and finally
discarded.

CAT scenario in which the system is embedded so that the CAT engine cavidgr
the best possible completion for the each utterance hypothesis. Howisveaihbe
clearly prohibitive, since the number of the hypotheses to be completed wilh be
general, too high.

On the other hand, as was mentioned before, the IBM model alignmentsrare co
strained so that a word in the source sentence can be aligned to as mastiordn
in the target sentence. When having a full source sentence and aftaggeént, the
model can try to align every word in the source sentence to a word in theérstg
(even when some source words may not be related to any fragment Wuedgan
see that, here, this alignment structure is working against us. Indeelinthef
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constraints that could help us to overcome this problem are provided by ttiel mo
trained in the opposite direction, that B(e;,d | f). From this model point of view,
each word in the target fragment would be aligned to the best word in theessen-
tence and, consequently, those source words that are not re&tiarsof the words

in the fragment (that is, words not translated yet) can be discardedgunes.4, an
example of this is shown.

IBM model Pr(f|e) IBM inverse model Pr(e|f)
The printer is printing La impresora

NULL La impresora NULL The printer is printing
IBM logprob = -9.5 IBM logprob = -0.99

The printer is printing La imprimiendo

NULL La imprimiendo NULL The printer is printing
IBM logprob = -9.7 IBM logprob = —4.3

Figure 5.4: Example of forced alignment solved by using the inverse rhode
The real utterance was “La impresora”. However, the mdtiéle) forces an
alignment between the words “impresora” and “printing”. &sonsequence
a wrong translation “La imprimiendo” is scored with higheppability than
the correct translation fragment. The use of fA|f) model can contribute
to solve this problem.

We can benefit from the fact that state-of-the-art statistical machinslatam
relies on log-linear models to approach the translation probability. The mainawnotiv
tion is to properly combine different information sources (models), as itda/shn
Eq (5.19):

P(f | e;,d) o eap [Z Nifi(f e, d)] (5.19)

wheref; are the functions to be combined in the model apdre the weights. In our
case, can use two different functions, the origiRaf | e;,d) used in Eq.(5.17) and
the P(e;,d | f) aimed at improving the alignment quality. The weights will be
optimized according to a minimum error rate training criterion on a development se
This approach to CAT-PREF scenario is called IBMLLCAT-PREF.
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5.4.4 CAT-SEL scenario

Finally, the most constrained scenario, called CAT-SEL, corresporalsdalization
of Eq. (5.14). Itis similar to CAT-PREF but here the human translator chnutter
exact prefixes of the suggestion made by the CAT systeph. (These utterances are
aimed atselectingacceptable prefixes of the system suggestions (hence the name,
CAT-SEL). The possible amendments of the remaining parts of the suggestian
only be made by typing (or by applying CAT-PREF). In practice, Eq. (bckh be
implemented as a search fbin the (small) set of possible prefixes of the target suffix
é;; that is,Pr(d | é;) is estimated by a special finite-state language model in which
only thosed that are prefixes o have non-null probability. The acoustic models
for estimatingPr(x | d) in Eq. (5.14) are the same HMMs as in all the previous cases.
The computation oé&; in Eq. (5.9) for CAT-PREF and CAT-SEL is the conven-
tional optimization of text-only CAT, which can be solved by Eq. (5.4) or Bop)X
(see [39, 12]). In CAT-PREF, the preféy, is the concatenation of the oé, andd
(and k if the user typed some text). In CAT-SEL, new text can be typed to be ap-
pended to the previous concatenation before starting a new CAT cyal¢hd-sake
of experimental simplicity, in the experiments described below the CAT optimization
in Eq. (5.9) was simulated, rather than actually computed.

5.4.5 Corpora and evaluation

The ideas and techniques proposed here have been assessel Hummggexperi-
ments in the framework of the TT2 project [47]. One of the tasks considarthis
project is the translation of BrROX technical manuals written in English into Span-
ish, French and German. Only the translation from English into Spanishs&esad
here. Consequently, the target spoken language is Spanish.

Corpus features

We use three data sets in our experiments. The first one is the standdishEng
Spanish XrRox benchmark parallel text used in the TT2 project. The training part of
this corpus is used here mainly to estimate the translation model parameterd neede
MT and CAT. The target (Spanish) part of this training set is furthed usetrain
most of the language models required in the speech decoding and sredibd
CAT experiments.

The second data set is the relatively large speech corpus, contaimngtpally
balanced spoken sentences in Spanish[33]. This corpus was abkegulgyed in
Chapter 3. It is used here only to train the acoustic HMMs needed in all dexkp
related experiments.

The last data set consists of utterances of fragments of target-lan(ijzay@sh)
sentences, extracted from the test part of the original parallel TT@usorThese
utterances are used as a test-set to simulate real interactions of the @&h syith
human translators.
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Table 5.1: Features of the text English-Spanish translatioer&Ex Corpus

(K= x1,000)
English  SpanisH
Training-set  Running words 572K 657K
Vocabulary 26K 30K
Test-set Running words 7.6K 9.4K
Running characters 47K 59K
Perplexity (3-gram) 103 61

All the speech data was acquired using high quality microphones and 16 KHz
sampling frequency. A summary of relevant features of these corpataoisn in
Tables 5.1, 5.2 and 5.3.

Talbl(t)aog.Z: Features of the Spanish speech acoustic training corpuas (K
X 3

Speakers 164
Running words (4 hours)) 42K

Table 5.3: Spanish speech test utterances (from the XEROX-corpus)

Text Number of original complete sentences 128
Number of different sentence fragments uttered 485
Average uttered fragment length and range (words) 2.4 [1,13]
Average prefix length and range (words) 4.5[0,23]
Running words 1,138
Running characters 7,320

Speech Number of speakers 10
Number of utterances 5,796
Running words 13,998

The set of test utterances described in Table 5.3 was obtained as folliogtsa F
subset of 128 sentence pairs was selected from the text partition ofsRextext
corpus. For the target (Spanish) sentence of each of these painglsegmentations
into prefixes and suffixes were randomly performed and, for eacbrgeu suffix,
a set of prefixes was randomly derived. All the prefixes of suffixesegated in
this way constitute the set of sentence fragments uttered by severakbspedk
order to approach real CAT user interactions as much as possible, tiésatjen
process was performed in such a way that the lengths of the generaggdefnts
were similar to the lengths of accepted parts of system suggestions absetert-
only experiments with a real CAT system applied to the original set of 12@isea
pairs (see next section for details). An example of prefixes/suffixegediefrom
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the sentencéadici bn de fuentes a la lista de recursqgsilong with the resulting
fragments produced for speech acquisition, is shown in Table 5.4.

Each of the utterances obtained in this way is the acoustic signal denoted by
in the previous sections. In the experiments described in the next secgargrife-
sponding text fragment will constitute the reference transcription agaimnst the
decoded result, will be compared. On the other hand, for the experiments related
to scenarios DEC-PREF, CAT-PREF and CAT-SEL, the prefix coomdipng to each
fragment will constitute théixed target prefixdenoted by, in the previous sections.
Finally, for the experiments with CAT-SEL the suffix corresponding to deaiment
will be used to simulate the suggestion made by the CAT system, denoéedras
the previous sections.

Table 5.4: Examples of some prefixes, suffixes and prefixes of suffixes ran
domly derived for the sententadicion de fuentes a la lista de recursos”

Prefix  Suffix Prefixes of the suffix
adicion de fuentes alalistaderecursps alalistade
adicion de fuentes a  la lista de recursos la, lalista de
adicion de fuentes a la lista  de recursos de recursos
adicion de fuentes a la listade recursos recursos

Quiality evaluation

Different evaluation measures are needed to assess the quality df sieeeding and
CAT operation. Speech decoding accuracy is assessed in terms ehtional mea-
sures (where bysentencé€ave mean the word sequences described above). Specifi-
cally the Word Error Rate (WER) and Sentence Error Rate (SER) metgegopsly
described have been used.

Before presenting the figures employed to assess CAT performange Haefly
recall the way in which the human translator would interact with this system. When
the system provides its best translation suffix suggestion, the human toansilh
accept a (possibly void) prefix of this suffix. This text fragment is sekbby ade-
guately positioning the cursor by means of mouse (or equivalent keypaetions.
After this point, raw text is typed. Obviously in a laboratory experimentsisee
not available, but the reference target text can be used to simulatepgsation and
to measure the following relevant figures to assess the translation/predietifon-
mance of a CAT system:

e Mouse Action RatigqMAR): Number of mouse (or equivalent keyboard) ac-
tions needed to position the cursor at the end of the acceptable part gkthe s
tem suggestion, divided by the total number of running characters. Aemous
action is assumed to span at least one word (i.e. 5.4 characters onegverag
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e Key Stroke Ratigk SR): Number of key strokes plus the final acceptance key-
stroke needed to type the text necessary to correct the remaining payts of
tem suggestions in order to produce a target text which exactly matches the
reference translation, divided by the number of running charact8ys [1

e Accepted Suggestion Fragment LenfsFL): Average length of number of
words of accepted suggestion fragments.

In addition to these translation error measures, another common (non GA$) tr
lation quality metric is also used:

e Translation Word Error RatéTWER): Minimum number of word substitution,
deletion and insertion operations needed to convert a full target senpenic
vided by a MT system into the corresponding reference translation edivigl
the total number of words in the reference translation [1, 7].

5.4.6 Experimental results

Different experiments have been carried out to assess the feasibilifyotewtial of

the ideas and techniques proposed. Some of the results are text-ontymexys

aimed at providing performance figures relative to the MT models and CA€rsys
in the framework of which the speech-related experiments have beemmped. The

other results are directly devoted to assess the accuracy of speextindeander

increasingly constrained speech-enabled CAT scenarios.

MT and CAT text-only experiments

These experiments were conducted by training MT and CAT systems with the tra
ing part of the English-SpanisheRox corpus (Table 5.1) and testing the perfor-
mance on both ther(LL) test set from Table 5.1 and theMALL) subset of 128
selected complete sentences used to generate the sentence-fragmeetsofeta-
ble 5.3. The MT and CAT systems were based on stochastic finite-state ttansdu
trained with the GIATI approach [12, 10, 14, 13]. Results are summaiizda-
ble 5.5.

Table 5.5: MT and CAT performance on the English-Spanish full test $et o
Table 5.1 and the small complete-sentences subset of Table 5

MT CAT
TWER(%) | KSR(%) MAR(%) ASFL(Words)
FuLL 42.7 17.6 2.0 2.6
SMALL 574 24.6 3.2 2.3

As it can be observed, the (randomly selectedpLL test set turned out to be
a particularly difficult subset of theuLL benchmark test set of the English-Spanish
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XEROX corpus [12]. According to the KSR and MAR figures, this CAT system
could save about 80% of human effort for theLL test set and 72% for themALL

one (the joint contribution of KSR and MAR is a rough estimation of the overall
translation burden). In contrast with the relatively poor accuracy oltdimeMT,
these CAT performance figures are quite adequate. Such an improladidreis
clearly achieved thanks to the information extracted from the user fekdivdbe
interaction process.

The low KSR is consistent with the relatively large lengths of the suggestgd fr
ments accepted as such (ASFL); on average, in each interaction cgclesgthcould
accept 2.3 correct words. This ASFL figure was used in section 5.4 .Gite ghe
generation of target text fragments summarized in Table 5.3, leading to eagave
generated fragment length of 2.4 words.

These laboratory results correlate reasonably well with real tests withrhuma
translators [32], where this CAT system allowed to double human translater p
ductivity in some cases.

Also worth noting in Table 5.5 is the distribution of predicted interaction effort
in terms of KSR and MAR. While KSR predicts raw human typing effort (to amend
inadequate parts of the system suggestions), MAR accounts for qaosibioning
effort, typically using the mouse. For a skilled typist, these positioning actionks te
to be rather “distracting” so that, according to the real human tests, eaitfoping
action tends to be more human-time demanding than raw typing. For instance, in the
real tests described in [32], some human translators spent as muchuad alsec-
onds in many of their cursor-positioning actions (this elapsed time includemgead
the system suggestions and deciding the correct follow-up translaticed¢tion).

As a consequence, unless the suggestions are sufficiently good apdisems
tend to prefer typing by their own than accepting text suggested by thersystes
is exactly the trend we aim to counter with speech-enabled CAT. Usinglspeec
positioning and accepting suggestions, the user would just have to lkadipgehe
suggested text as long as it is acceptable. Clearly, this seems much moat awadiur
less distracting than having to keep switching all the time between raw typing; (men
tally) reading the suggestions and positioning the cursor. Of courseglsiven
actions are only expected to be acceptable by users if a sufficiently fdggmi¢gion
accuracy can be achieved, which lead us to the experiments describes riaxth
subsection.

Speech-enabled CAT experiments

The aim of these experiments is to assess the feasibility of speech-enaled C
systems such as those corresponding to the CAT-PREF and CAT-SEérexsede-
scribed in section 5.4.

In order to provide reasonable baselines for these experiments, tvtoadd
non CAT-related, speech-decoding experiments were performed it wiecsource
text is not taken into account. These experiments correspond to the s&#titg)s
and DEC-PREF described in section 5.4. DEC corresponds to convergeech
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decoding (of sentence fragments), while in DEC-PREF the search ispaoee con-
strained by taking into account the given target sentence prefixesexpiegiments
will be presented following a least-to-most constrained order; that is,, IEC-

PREF, CAT-PREF and CAT-SEL.

Regarding the experiment conditions, they are basically the same as were de
scribed in section 3.4. Monophone HMMs trained from MFCCs coefficidrgi-
cal models represented as finite state automata. Finally, smo®ipenin language
models were used in all the scenarios (except CAT-SEL, which reqaisgecial
language model. See section 5.4).

For the first experiment, DEC, thi&gram was trained on complete sentences
from the (30 Kword vocabulary) Spanish part of therOXx corpus (Table 5.1), using
the SRILM toolkit [48]. Since the test set (Table 5.3) consists of sentieagments,
rather than complete sentences, search was allowed both to start anditoagryd
3-gram state.

In the second experiment, DEC-PREF, the information provided by the prefi
is incorporated by considering as initial states in the language model autoardyon
those which are compatible with this prefix.

In addition to the constraints applied in previous speech-recognition-gpbrie
ments, in the third experiment, CAT-PREF, the speech recognizer is fuetteicted
to generate sentences that contain possible translations of words whidr ap the
source sentence. The required stochastic dictionary was trained usiwolte Xe-
ROX bilingual training corpus (Table 5.1).

The last experiment corresponds to the most constrained scenarieSEIAT
Here the human translator is assumed to jead alouda prefix of the target text
suggested by the system. Therefore, in each interaction, a much moreaswustr
LM is built, which only accounts for all the possible prefixes of the systegyssted
text.

Results are shown in Table 5:6In addition, in Table 5.7, the results correspond-
ing to the different approaches for CAT-PREF scenario (describsddtion 5.4.3)
are also reported.

Table 5.6: Speech decoding results (in %) for different scenarios. aMegage
sentence decoding time is also shown

DEC DEC-PREF NCAT-PREF CAT-SEL
WER 26.8 24.6 20.9 1.8
SER 48.3 39.0 33.9 3.7
Av. Time (s)| 29 25 1.3 0.2

As expected, speech recognition accuracy increases as the LMsideacore
constrained. If only prefix-derived constraints are added to DEGmanovement

#Notice that these results do not directly correspond to those presentgt]ingn the one hand,
the WER results there presented are actually CER (Character ErrorrBstidts. On the other, CAT-
PREF and DEC-PREF scenarios have been re-implemented by usinthgthe-gram models instead
of finite state grammars.
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Table 5.7: Speech decoding results (in %) for different approachesAo C
PREF scenario. As it is described in section 5.4.3, UCAT-PREd NCAT-
PREF are implemented by re-scoring the unigram part and dewhgram
model respectively with a statistical dictionary. IBMCRREF is based on
re-scoring a list of ASRn-best with an IBM 1 translation model. Finally
IBMLLCAT-PREF is similar to IBMCAT-PREF. The only differem is that
a log-linear translation model, including the direct andeise IBM 1 model,
was used here

UCAT-PREF NCAT-PREF IBMCAT-PREF IBMLLCAT-PREF
WER 23.2 20.9 20.1 19.8
SER 34.5 33.9 32.3 31.8

of 2.2 points of WER and 9.3 points of SER is obtained in DEC-PREF. By furthe
including constraints derived from the source text, a new improvementiis\ac

in CAT-PREF: 3.7 points of WER and 5.1 points of SER (or 5.9 points of WER an
14.4 points of SER with respect to the least constrained baseline). In additizese
accuracy improvements, the use of source sentence derived cassteaises a sig-
nificant decreasing in the system response time, making possible the ugekifich

of speech interfaces in real situations. On the other hand, the resulte fdifferent
approaches to CAT-PREF reported in Table 5.7 do not show a signitidéerence

in performance. The simple NCAT-PREF approach turns out to be venpettive
while the use of a whole log-linear translation model (IBMLL-CAT-PREFh$lates
into a modest improvement of one point in WER and two points in SER.

The constraints added in the last scenario, CAT-SEL, are derivadtfre (sim-
ulated) suggestions of the CAT system. In this case, the improvement is vesyimp
tant: 19.1 points of WER and 30.2 points of SER with respect to the last scéoar
25 points of WER and 44.6 points of SER with respect to the baseline).

All these results clearly suggest that using knowledge about the sseitence
is more important than using only user-validated prefixes. Moreover, ifahslation
difficulty of the test-set is taken into account (which according to Table Sgbite
large), the impact of using the translation information is remarkable. Therdfetter
results are expected for CAT-PREF with less problematic texts and/or hettepf)
translation models.

The decoding computational demands of the different systems are aldo wor
mentioning. With respect tmemory requirementshe size (number o3-grams or
edges) of the LMs required by DEC and DEC-PREF are similar, close td.30ts
is about one order of magnitude larger than the size of the LM for CATHP&ttl
more than four orders of magnitude larger than the average CAT-SELizéM Ehis
abrupt complexity drop appears reflected in the accuracy figureswsinovable 5.6.
On the other hand, with respect to ttmmpeting timea notable reduction is observed
from DEC to DEC-PREF and the response time is about twenty times faster from
DEC-PREF to CAT-PREF, allowing the implementation of this interface in a real
application. Finally CAT-SEL only requires very light computing, which woulake
it easy to implement this kind of speech-enabled CAT systems on low-entbgesk
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computers or low-cost dedicated devices. Using the adequate unaxpeasiware,
real-time operation can be easily achieved in both CAT scenarios.

The important performance gap observed from CAT-PREF to CAT-SEle&ly
consistent with the much harder constraints of CAT-SEL. As discussedtiios 5.3.1,
in between these two scenarios, an intermediate setting can be considered, c
sponding to Eq. (5.12), which is expected to lead to performance figulieg fae-
tween those of CAT-PREF and CAT-SEL. However, as this setting resjsmene
speech data (fragments) different from those we have used helguedeft its im-
plementation for future work.

The relative accuracy that can be achieved in the different scerfammbeen
assessed in terms of WER and SER. However, at least for the CAT-8tHhgs
only the SER figure really matters, since it directly estimates the voice-drivsorc
positioning accuracy. The 3.7% SER achieved means that a manual (mduese o
board) correction of cursor position is required every 28 voiceedrsuccessful ac-
tions, on average. We think this figure can be easily improved by using bettastic
modeling for speech decoding.

As a final remark about the experiments reported in this section, we would like
to recall that they can only be considered as simulated scenarios. Thisisiybe-
cause the speech data have not been acquired through real hurii@nt€rActions,
but also because reference target text fragments are used in pleed GAT system
suggestions. As discussed along this work, a real setting would involeéntmnan
translator interactions and this is not considered adequate at thesetagéely. Note
also, however, that the simulation is very close to the real experiment. ladhease,
the user is expected to utter only correct fragments of target text and #xadsly
what we do here. Moreover, in order to better approach the real sitydlie text
fragments to be uttered were generated under the constraint that threigevength
was as close as possible to that observed in the suggestions made byteheigys
our text-only CAT experiments (cf. Tables 5.3 and 5.5). Therefore, v tinat
the obtained results constitute a reasonable starting point in this spedieeGAT
framework to be further developed in the future.

5.5 Adaptive learning

In the different instantiations of IPR addressed in this work, adaptivailea has
been considered in one way or another. Although in this chapter we ecemzerned
about a specific IPR application but about a multi-modal IPR interfacetiivbas/e
an opportunity to benefit from this of learning approaches.

In the CAT-PREF scenario, Eq (5.17) is maximized to decode the inputlspeec
Here, the three models involved in the maximization are different both strilgtura
and from the point of view of the training data. For that reason, the logdlimodel
based approximation, previously described in section 5.4.3 can be folloAmstter
benefit from the models involved. This way, instead of using Eq (5.17ffexeht
score function is actually used:
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d ~ argmaxexp[MlogP(f | ey, d) + \alogP(d|e,) + AslogP(x | d)]
d

= argmax\ilogP(f|e,,d) + A2logP(d |e,) + AszlogP (x| d) (5.20)
d

Going further, we can include the model defined in Eg. 5.19, which, diwpr
to the results, performs better than using the single translation model in Eq {5.17
achieve the expression in Eq. 5.21:

d ~ argmax A;logP(f | e,,d) 4+ XalogP(e,,d | £) +
d
AslogP(d|ep) + AalogP(x | d) (5.21)

Notice that this oprimization does not deal with a true probability distribution,
since the usual normalization factor required in log-linear models is missinig. Th
factor can be really hard to compute (e.g., the sum over all possible spiggpetis
xis required), but it is not actually necessary since we only try to find adieg
with the best value for the score function, which is the same with or without the
normalization factor.

From this, in order to improve the interface accuracy, we can perfornsi@n e
mation of the values of the; parameters based on the sentences already decoded.
Because of the application considered, we can expect that, afterehspeegnition,
the user will correct all the mistakes made by the interface so that the nesdig
tion of the speech input will be available. This information can be used to attempt
an estimation of thesg; parameters for each speaker in the test set (we can expect
different optimal parameters for different speakers).

After decoding a speech utterance, we have an set of hypotheges seith
both speech and translation models. In addition, we can find out whatheg®
was the correct one according to the user reaction to the recognitiolh. r@$us
way, it would be possible to readjust theparameters in order to improve the score
of the correct transcription. The exact procedure consists in firstiypating a set
of possible)\; values to posteriorly keep the one making the reference transcription
occupy the highest position within thebest list. This way, we have the optimal
value for the sentence just recognized (and user validated and/ectsat). Based
on the values obtained from all the previous sentences, we can computevdiees
for the sentence to be decoded as the arithmetic mean of the values alr&idgahb
As can be observed in Table 5.8, this technique achieves an improvememb of
points in SER. Notice here, that the number of sentences available fospaaker
is about 530 and, therefore, a better estimation could be expected inscegalio
where more interactions are performed by a single user.
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Table 5.8: Word and Sentence Error Rate using adaptive learning .

ADAPTIVE IBMLLCAT-PREF [ BASELINE IBMLLCAT-PREF
| WER,SER 19.1,29.9 19.8,31.8

5.6 Improving the accuracy of CAT-PREF by imposing sim-
ple user constraints

According to the results presented, the accuracy of the CAT-PRERsoahould be
improved to be really useful in real tasks. One of the main problems in thissoen
is that we are dealing with sentence fragments and, therefore, the |angoalg! can
not properly model the end of sentence event (every word has thewaimability
of being an end-of-sentence word). If compare the perplexity of th€-PREF
“baseline” scenario (71) with this same task but based on whole sent@t)ese
can see a significant increment in the task difficulty. As a consequesdificant
amount of errors in this scenario are caused by wrong insertions (essmdeletions)
at the end of the partial sentence decoded.

As a possible solution, we can constrain the user inputs, so that the nufmber o
words uttered is known in advance. CAT-PREF scenario is aimed at imiraglu
amendments at some CAT hypotheses. In IPR, we expect simple and stied-c
tions since we are trying to minimize the user effort. Hence, it is realistic to assume
that we can constrain the utterances in this scenario to have exactly onewotds.
Regarding the implementation of this new scenario, a simple solution relies on using
then-best list from the ASR in order to filter all the hypotheses that do not tieve
prefixed length. A better solution is to modify tMerbi search so that all the hy-
potheses exceeding the length considered in each case are remavéufidecoding
search space.

As it can be seen in Table 5.9, the performance can be drastically imprgved b
imposing this kind of constraints (in the case of the 1-word constraint, theiSER
reduced in 50%).

Table 5.9: Word and Sentence Error Rate for two constrained scenahesev
the user is required to utter exactly 1 or 2 words

WER, SER
DEC-PREF| CAT-PREF
1-WORD | 20.6,20.6| 15.1,15.1
2-WORD | 19.5,32.4| 14.9,26.1
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5.7 Summary of contributions

In this chapter, we have introduced multi-modality within an IPR system. Specifi-

cally, a speech interface for a CAT has been discussed.

After formalizing a general case, several interaction scenarios tesrederived.
These scenarios represent different theoretical and practicsibfibies.

In addition, we have proposed different techniques to take advantaige envi-
ronment provided by a CAT system, in order to improve the performanceméach
recognizer. As a result, significant accuracy improvements have bd#emed as
well as a much better recognition response time. Sufficiently good speecHidg
performance has been achieved at least in one scenario, which eigtafisant po-
tential savings of human effort with respect to typing the whole target texding
to use non-speech cursor-positioning actions. Good performante gpeed and
accuracy) is achieved thanks to search constraints derived fronmtm#ource sen-
tence (through a translation model) and the successively consolidafec g the
target text.

A simple adaptive learning procedure has been described in order po théa
speech interface to a specific user without requiring any kind of exéaaifort.

Finally a simple method to constrain the kind of inputs allowed has been proposed

aimed at significantly improving the interface performance.
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CHAPTER®G

CONCLUSIONS

In this final chapter, a summary of the main work developed will be presastect||
as some ideas to continue the different lines proposed.

6.1 Main contributions

The main goal of this work has been to explore the application of the Intezacti
Pattern Recognition (IPR) paradigm to several natural language appica

In the first place, a formalization of IPR has been proposed in ordetdbleh a
general framework not only for the applications being developed botfatthe new
lines of work that can be followed in the future. To this end, the user actiaitybeen
included into the statistical formulation of the pattern recognition approackheln
case of NLP a first order process has been considered to modekthactisns. The
point is that the last user action can reflect the whole history of the mpedsch
can be seen as reasonable taking into account the sequential natueshofntian
language. As a result, a general scenario can be stated for all theagippkcthat can
be derived from this.

In addition, some interesting issues, heavily related to IPR, have beessistu
Multi-modality, on the one hand, as an interesting way to deal with the user action
Multi-modality does not arise in IPR by accident. On the contrary, the IPR@atu
itself intrinsecally entails and promotes the inclusion of multi-modality. On the other
hand, IPR constitutes a good opportunity to apply adaptive learning agpes. The
system is always being supervised during its normal operation mode acahen-
efit from the outcomes produced to improve the models involved in the recagnitio
process. Simple approximations to including adaptive learning have bepased
for the different applications considered and, in all the cases, sigmifiagrove-
ments have been achieved.

The first IPR application proposed (CAST) allows to generate perfestch
transcription by developing an interactive system that cooperates witmarhtran-
scriber. The system is able to provide transcriptions of an input speagmént
and, at the same time, to adapt the results obtained to the user feedbackayhis
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we can reduce the effort required to perform the transcription. Skggperiments

have been presented in order to support the CAST approach. Tiis relstained

show that a significant amount of user effort can be saved followingpttoigosal.
Nevertheless, the initial approximation to CAST proved to be inefficient persgi-

bly useless for the time being), due to the excessive system response tirselva

the problem, an alternative based on the use of word graphs has bhesdered.

At the expense of a minimum performance degradation, this alternativerézenp

to be able to dramatically decrease the system latency, making CAST usable as an
interactive tool.

Taking the IPR approach to an extreme environment, where no input pegtern
really available and only the user feedback is present, a new applicatienadtive
Text Generation, ITG) has been proposed. The point here is to pradgsistance
in situations where typing becomes difficult. In the first place, differepeerents
have been carried out to confirm the optimality of a greedy approach torblis p
lem when compared with the traditional maximization of the posterior probability
by means of a dynamic programming algorithm. Next, a new prediction modality,
based on responding to each user key stroke was addressedemifievdels were
proposed to deal with this situation.

In addition adaptive learning was thoroughly studied for this applicatiomeSo
alternatives were proposed and we also attempted to study the behaviapdiva
learning from the user point of view. Finally, two applications of the ITGrapph,
apart from merely generating text documents were discussed. It ist@thphasize
the possibilities of using ITG in information retrieval and the initial and promising
results achieved.

Finally, multi-modality in IPR was addressed. Specifically, the case of a multi-
modal speech and text interface for Computer Assisted Translation (®a3 dis-
cussed. To this end, a formalization of the inclusion of speech in CAT wasajeed
and different scenarios for this multi-modal interface were considered.

6.2 Selected derived publications

A selection of the publications derived from this work are brieftly commented.

The general IPR framework (Chapter 2) is described in:

Enrique Vidal, Luis Rodguez, Francisco Casacuberta, Ismael @avarea.
Computer Assisted Pattern Recognitiofth Joint Workshop on Multimodal
Interaction and Related Machine Learning Algorithms. Brno (Czech Righpub
LNCS.

Regarding CAST (Chapter 3), the initial proposal along with severam@xgnts
can be found in:
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6.2. Selected derived publications

Luis Rodiiguez, Francisco Casacuberta, Enrique Vid@omputer Assisted
Transcription Of Speechlll Iberian Conference on Pattern Recognition and
Image Analysis. Girona (Spain). LNCS.

A directly derived application of the CAST proposal for Interactivelygeribing
handwritten documents is described in:

Verbnica Romero, Alejandro H. Toselli, Luis Rdduez, Enrique VidalCom-
puter Assisted Transcription for Ancient Text Imagesernational Conference
on Image Analysis and Recognition. Montreal (Canada) LNCS.

Verbnica Romero, Alejandro H. Toselli, Enrique Vidal, Luis Rigalrez.Com-
puter Assisted Transcription of Handwritten Text Imag#sinternational Con-
ference on Document Analysis and Recognition. Curitiba (Brazil)

A description of the application of ITG to information retrieval (Chapter 4) ca
be found in:

Luis Rodiiguez, Alejandro Revuelta, Ismael Gerd/area, Enrique Vidalln-
teractive text generation for information retrievallOth International Work-
shop on Pattern Recognition in Information Systems. Pending to be published

Finally, the inclusion of multi-modality into a CAT system (Chapter 5) is dis-
cussed in the following publications:

Enrique Vidal, Francisco Casacuberta, Luis Rgdez, Jorge Civera, Carlos
Martinez. Computer Assisted Translation Using Speech Recognition. |IEEE
Transactions on Audio, Speech and Language Processing. 200#:9%4-

951.

Luis Rodiiguez, Enrique Vidal, Francisco Casacuberta, Jorge Civera, Carlos
Martinez. On the use of speech recognition in computer assisted translation.
Interspeech 2005. Lisbon (portugal)

In addition, in Chapter 5, the problem of aligning a source sentence aad-a f
ment of a target sentence was posed. To solve this problem, a seriesmithahg
were proposed in:

Luis Rodiguez, Ismael Gara Varea, Jos Antonio Gamez. On the applica-

tion of different evolutionary algorithms to the alignment problem in statistical
machine translation Neurocomputing. Volume 71, Issue 4-6 (January 2008
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6.3 Future work

This work is only a starting point in the exploration of the IPR paradigm and the
applications that can be derived from it. There is a great amount of oglds fo be
explored. We will only give some examples of possible general lines of teobe
followed.

e The IPR framework can be extended and adapted to other kind of pagte-r
nition tasks. For instance, multimedia information recovering seems to be a
really good scenario to develop IPR.

e In the case of CAST, there are two general lines that can be propOsethe
one hand, the inclusion of a multi-modal speech interface, as was destétope
CAT, can be adequate since speech recognition is included into the apjplicatio
itself. On the other hand, the combination of CAST+CAT can be more than
justified in order to address the problem of high quality speech translation.

e Regarding ITG, the use of long-dependency language models shoald-be
dressed to improve the prediction accuracy. Some experiments werefkielo
in this sense, but the modest improvements achieved did not justify the inclu-
sion of such results in this thesis. In addition, the use of ITG as a human learn
ing tool is worth to be mentioned. In the case of the two application proposed
(computer programming and information retrieval) experiments involving real
users are needed to prove the usefulness of this proposal.
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APPENDIXA

APPENDIX. PROTOTYPES

From the IPR applications described in Chapters 3, 4 and 5 a set of resdtvave
been developed. The main goal is to show that the theoretical appraauhtzbora-
tory experiments can become into a real application that allows a user taragper
the different IPR proposals.

A.1 Computer assisted speech transcription prototype

The CAST prototype was developed to strength the CAST approach Isyrooting
a user-testable application that reflects and allows a realistic testing of traiope
mode of this application. In addition, new approaches related to differeran:
tion aspects could be obtained from the feedback coming from the ustng tiee

prototype.

A.1.1 Objectives

The main goals of this prototype can be summarized as:

e Constructing a full functional and user-testable version of a tool implengentin
the CATS approach

e Performing usability test for this tool.

¢ Including some new ideas about functionality that can improve the system us-
ability and performance. This proposals will be obtained from the usability
tests previously mentioned.

e Extending the initial CAST theoretical framework based on the experience
achieved from this prototype
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A.1.2 Functional Requirements

Since the main task to be solved by the prototype is the achievement of high qual-
ity transcription, by means of a cooperation process between a humaantsan
automatic speech transcription system, we can define the following functienal
guirements.

e The system has to be able to provide transcriptions from files containing spo
ken utterances. This can be accomplished by including an automatic speech
recognizer into the prototype.

e The user can interact with the system and this interaction has to be sent to a
speech recognizer in order to use this information for future predictions.

e The user has to be able to define work sessions where parameterssas:tige
transcribed, files already transcribed, configuration parametersiretsaved.

e The prototype must be able to collect different statistics about the CAST pro
cess that will be used to improve the prototype itself as well as the CAST
theoretical proposal.

A.1.3 Architecture

The prototype is composed of three different subsystems:

Prediction Engine

The prediction engine is a general-purpose, speaker-independstitunus speech
recognizer (ATROS). This engine is a stand-alone application capal®eajnizing
speech in real time from a microphone input or from a wavefile.

Given an input utterance, the recognizer initially pre-process the siynpér-
forming a border detection algorithm and a pre-emphasis filter to increaseatira-
tude of the high frecuencies present in the speech signal. Next, adextuaction is
performed to obtain a MFCC (Mel Frequency Cepstral Coefficientdprvéar each
frame in the input signal. Then, the energy along with the first and sea@matives
are added to build the final feature vector for the current frame.

Once the feature extraction has been performed, the recognition piscasried
out. The recognizer uses three-state, left-to-right Hidden Markovel4aas acoustic
models. Finite-state automatons are used as Lexical entries and, finallya¢gng
models are implemented as finite-state networks. The Viterbi algorithm is used to
find the most probable path on the integrated network (acoustic+lexicaltdgeg
models). Finally, the utterance represented by this optimal path is returritbé as
result of the recognition.
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A.2. Interactive text generation prototype

Graphical User Interface

This interface provides all the interaction mechanisms to allow an efficient commu
nication between the user and the prototype. The interface has been impdriren
Java.

Initially, the interface request the user to create a hew transcription prjéc
use a previously created one. A project is a set of input wavefiles t@abscribed.
Along with these files a project stores the transcriptions already obtained.

The main screen shows, on the one hand, the list of files in the currgatipso
that the user can choose the file to be transcribed currently. On the aihey the
waveform of the current file is shown in a graphic panel and a text fieised to show
the current system suggestion along with the different user interactavfarmed as
it is shown in Figure A.2. The user can interact with this text field by using the
mouse (or the keyboard) to select the current prefix. In addition, Wyiekeed is used
to amend the system suggestions.

Communication module

Since the prediction engine and the user interface have been develogiéferent
languages, a communication module is needed to send the user feedmadkdro
interface to the engine and to collect the different predictions.

This module is currently implemented by adding a communication API to the
recognizer. This API is implemented by using the Java Native Interfack (&t
allows a java program to call C/C++ functions. This way, this APl is includedthrdo
recognizer building process so that the interface can make the prdigéncantime.
Three main functions are defined in the API, used for initializing the recegniz
setting a new user prefix and requesting a new prediction from the engine.

A.2 Interactive text generation prototype

The ITG prototype is intended to test the theoretical proposal with reed ase to
explore different possibilities for a collaborative user-computer enuirent in the
generation of different text documents, queries, etc.

A.2.1 Objectives

The main goals of this prototype can be summarized as:

e Constructing a full functional and user-testable version of a tool implengentin
the ITG approach

e Performing usability tests for this tool.

¢ Including some proposals about functionality that can improve the system us
ability and performance. This proposals will be obtained from the usability tes
previously mentioned.
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Figure A.1: CAST prototype

e Explore new scenarios for ITP (constrained interfaces, generaficioau-
ments in a foreign language, etc.)

e Extending the initial ITP theoretical framework based on the experiertevad
from this prototype
A.2.2 Functional requirements

Since the main task to be solved by the prototype is the semi-automatic generation of
text documents, we can define the following functional requirements.

e The system has to be able to provide completions to the user typed text. This
can be accomplished by including an automatic text prediction engine into the
prototype.

e The user can interact with the system and this interaction has to be sent to the
text prediction system in order to include this information for future predistion

e The user has to be able to define work sessions where parameters tastfdes
generated, documents already transcribed, etc. are defined.

e The prototype must be able to collect different statistics about the ITRgs0C
that will be used to improve the prototype itself as well as the ITP theoretical
proposal.

A.3 Architecture

The prototype is composed of three different subsystems:
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A.4. Multi-modal Computer assisted translation prototype
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PREFIX: "La impresora debe "
PREDICTION: "La fmpresora debe operarse con las pormas de”

Figure A.2: ITG Initial prototype

e An automatic text predictor. Based engram language models and imple-
mented in C++. It is able to perform adaptive learning on the test being pro-
cessed.

e A Graphical User Interface. This interface provides all the interactiayine
to allow an efficient communication between the user and the prototype. The
interface has been implemented in Java.

e A communication module between the text predictor and the graphical inter-
face that sends the information derived from the user interaction to tdecpre
tor. This module is implemented by following a server-client approach and it
is based on the use of network sockets.

A.4 Multi-modal Computer assisted translation prototype

A multi-modal Computer assisted translation (CAT) prototype was built to include a
speech and keyboard interface into a CAT application. This prototypd &med at
testing the CAT approach since other prototypes have been developéidgodtbut,
rather, at experimenting with a multi-modal interface.

A.4.1 Objectives

The main goals of this prototype can be summarized as:
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e Constructing a completely user-testable of a multi-modal CAT interface.
e Performing usability tests for this interface

e Extending the initial multi-modal CAT theoretical scenarios proposed from the
results obtained with the use of this prototype

A.4.2 Functional Requirements

The following functional requirements were established for this prototype:

e The system has to be able to provide initial translations for a source sentenc
and interactively complete user validated translation prefixes.

e The user can interact with the system by using two different modalities: mkegkoard
and speech.

e The use of the speech is planned according to the scenarios CAT-RREF a
CAT-SEL proposed in Chapter 5.

A.4.3 Architecture

The prototype is composed of four different subsystems:

Speech recognizer

The prediction engine is the general-purpose, speaker-indepeodeiiuous speech
recognizer (ATROS) already described in section A.1.3.

Translation engine

The translation engine used in the CAT process consisted in a “C” applicztien
to deal with translation models in the form of finite state transducers. The-diffe
ent translation suffixes are obtained by performing an adaytedbi search on the
transducer.

Graphical User Interface

This interface provides all the interaction mechanism between the userapdoth
totype.

Initially, the user can select a list of files containing source sentencestarise
lated. Next the user can proceed by selecting a specific sentence antéthetive
process start. Initially, the system provides an initial full translation for thece
sentence. Then, the user can validate part of the translation propodéumduce
some amendments. Taking into account this user feedback the system wiillgpao
new translation suffix.
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A.4. Multi-modal Computer assisted translation prototype

File Options Help

Current Se

1ce
ICheck that the printer is ready before continuing

Translation

Clear

Figure A.3: Multi-modal CAT prototype

The user feedback can be performed by either keyboard or speetle.case of
the speech, two different scenarios are considered. When a newmsiranslation
suggestion is available, an error-free prefix can be selected by uttedrigal word
(or words) in this prefix. This corresponds to the CAT-SEL scenariaeQhe prefix
has been set, the user can dictate a suitable continuation for this prefixRREF
scenario) and after transcribing the user utterance, the translatioctimedngine
will suggest a new suffix. This way, the whole CAT process can beopedd by
using the voice only. Alternatively, the user can employ the keyboard atit#o
mouse to correct the speech recognition mistakes or to simply interact with the CA
system in the traditional way.

The main interface screen shows, on the one hand, the source sentbraair-
rently translated and, on the other, the CAT interactive process. In atthiéowvave
file resulting of a user utterance is also shown. Finally some additional infrmma
about the prototype is also presented. In Figure A.3 a snapshot of plieadion is
shown.

Communication module

The user interface has been developed in Java and the speechizecagd the trans-
lation engine were both developed in C. As a result, the same communication method
described in section A.1.3 and based on the Java Native Interface was/ethp
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