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Abstract

When symptoms of cancer are observed, especially in conjunction with genetic predis-
position and/or lifestyle risk factors, a non-invasive exploration of the patient’s body is
required to confirm or refute the presence of a tumor. If there is evidence of a tumor there
must be a formal diagnosis of the stage to which the cancer has progressed.

The systemic analysis of the patients’ biomedical data, which come from different
biological levels, offer greater information for the medical decision process. New biome-
dical technologies can allow the interpretation of the origin of the illnesses, moving to an
evidence-based medicine paradigm.

The recent increase in the complexity of the techniques for acquiring biomedical data
as well as their innovative features, make it difficult for them to be incorporated in the
clinician’s practice. Therefore, it would be convenient to develop automatic data process-
ing and predictive models to objectively assist the experts to interpret the data in the
decision workflow of diagnoses, prognoses, and treatments.

This Thesis focus its attention on the computer-assisted support of cancer diagnosis
for clinical environments. The aim of the study is to produce results with high accuracy
in classification, transparency in relation to the clinical knowledge and capacity to genera-
lize their performance to new samples subsequently obtained in different clinical centers.
The technical aspects covered in this Thesis includes the processing, modeling, feature
extraction and combination of biomedical data; the inference and evaluation of predictive
models for biomedical problems; and the integration of the models into decision support
systems for the clinical environments. In order to focus our studies, two medical problems
are tackled: Soft Tissue Tumor (STT) diagnosis and, Brain Tumor (BT) diagnosis.

In the STT problem, high efficacy in the discrimination of the benign/malignant char-
acter of the tumors was achieved by Pattern Recognition (PR)-based classifiers on Mag-
netic Resonance (MR) Image findings. These classifiers can help radiologists the confir-
mation of the diagnoses of new patients, allow the study of suspicious cases, and aid in the
education of new radiologists’ expertise in tumors of this kind. A new clinical decision-
support system (CDSS) for STT has been designed and implemented, which is based on
classifiers learned from multicenter datasets. The generic distributed architecture designed
for the STT problem has been the basis for posterior developments in the field, such as
those adopted by the distributed CDSS of the HEALTHAGENTS project.

This Thesis provides several contributions to the BT medical problem. A new approach
that combines MR Spectra of different echo times has been proposed. Significant differ-
ences in performance were found when Short TE, Long TE or both spectra combined
were used as input. In addition, a probabilistic mixture model and the E(xpectation)-
M(aximisation)-based estimation for binned and truncated data with univariate mixture
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densities of means relative to a global shift have been proposed for Magnetic Resonance
Spectroscopy (MRS) data characterization. The new version of the mixture model keeps
the biological information in the model and properly fits the MRS. The discrimination of
Brain Tumors based on the parametric space of the probabilistic mixture model is possible
with high accuracies, and the combination of MR Spectra for classification can be per-
formed by means of their parametric spaces of the models. With respect to the evaluation
of the PR-based models, it has been demonstrated that the prediction of in-vivo MRS
cases that are from a later date, from different hospitals, and with different instrumen-
tation, but which are obtained under the same acquisition parameters may be possible
by models inferred by multicenter datasets. Our results consolidate, with experiments on
subsequently acquired datasets, the conclusions of previous studies on automatic brain
tumor classification using MRS. The classification results obtained by the PR-based mod-
els have been useful for the validation and review of cases with abnormal profiles in the
multicenter datasets of the eTUMOUR project. With respect to the classification of BT
by ex-vivo data, a proof of principle was carried out using gene expression profiles to dis-
criminate between glioblastoma and meningioma biopsies. The obtained gene-signatures
are in accordance with the expected biological and pathological differences between these
two kinds of tumors.

The conclusions and developments of this PhD thesis apply directly to the results of the
eTUMOUR (Web accessible MR decision support system for brain tumour diagnosis and
prognosis, incorporating in vivo and ex vivo genomic and metabolomic data, 2004-2009),
and to the results of the HEALTHAGENTS project (Agent-based Distributed Decision
Support System for Brain Tumour Diagnosis and Prognosis, 2006-2008), which are both
European Union projects of the 6th Framework Programme. Hence, based on scientific
contributions studied in the Thesis for BT classification with in-vivo data, two practical
solutions have been developed to integrate the PR engines in the clinical routine workflow.
The first one is a generic interface between the CDSS and the classification module develo-
ped for the eTUMOUR project which allows an on-line update of the available classifiers.
The second one is an agent-based distributed Decision-Support System, which is the basis
for the European HEALTHAGENTS network to assist in brain tumour management.
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Resumen

Una vez descubiertos los síntomas que sugieren la aparición de cáncer, especialmente
cuando existen factores de riesgo genéticos o ambientales, está indicado llevar a cabo la
exploración no-invasiva del cuerpo del paciente para confirmar o rechazar la presencia de
un tumor, y si es positiva, indicar el diagnóstico y estado al cual éste ha progresado.

El análisis sistémico de datos biomédicos procedentes de diferentes niveles biológicos
abre amplias expectativas en el proceso de toma de decisiones médicas. Las nuevas tec-
nologías biomédicas permiten la interpretación del origen de las afecciones que sufren los
pacientes, trasladando el paradigma de decisión hacia la medicina basada en la evidencia.

Este incremento de técnicas innovadoras de adquisición de datos biomédicos, hacen
compleja su accesibilidad al uso clínico. Es comprensible el interés en el desarrollo de
métodos de procesamiento y modelado automático que asistan objetivamente a los exper-
tos a interpretar los datos biomédicos durante el flujo de decisiones adoptadas para los
diagnósticos, pronósticos o tratamientos de nuevos pacientes.

Esta Tesis centra su atención en la ayuda al diagnóstico del cáncer asistida por or-
denador. El objetivo de nuestro estudio es obtener unos resultados de alto acierto en
clasificación, que ofrezcan transparencia en su interpretación mediante conocimiento mé-
dico y capacidad de generalización cuando se aplican a pacientes procedentes de múltiples
centros estudiados con posterioridad. Los aspectos técnicos cubiertos en esta Tesis inclu-
yen el procesamiento, modelado, extracción de características, y combinación de datos
biomédicos; así como la inferencia y evaluación de modelos predictivos de dichos datos y
la integración de los modelos predictivos en sistemas de ayuda a la decisión para entornos
clínicos. Concretamente, estos puntos se abordan para dos problemas médicos: el diagnós-
tico de Tumores de Partes Blandas (TPB) y, especialmente, el diagnóstico de Tumores
Cerebrales (TC).

En los desarrollos realizados para el problema de TPB con hallazgos de imagen se al-
canzó una alta eficacia en la clasificación basada en Reconocimiento de Formas de tumores
según su carácter benigno o maligno. Los clasificadores desarrollados pueden ser útiles pa-
ra los servicios de radiología a la hora de confirmar el diagnóstico de nuevos pacientes,
estudiar casos sospechosos, y asistir a la preparación de radiólogos noveles en este tipo de
tumores. Un sistema de ayuda a la decisión especializado para el problema de TPB fue
diseñado e implementado a partir de los clasificadores aprendidos a partir de una base de
datos multicéntrica.

Las contribuciones de esta Tesis al estudio de Tumores Cerebrales incluyen el análisis
de señales biomédicas in-vivo y ex-vivo del paciente. Ha sido propuesta una nueva apro-
ximación para la combinación de Espectros de Resonancia Magnética (ERM) adquiridos
para un mismo paciente con diferentes tiempos de eco (TE corto y TE largo) ha sido
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propuesta. En nuestros estudios, se encontraron diferencias significativas al usar el TE
corto, el TE largo o la combinación de ambas adquisiciones como entrada de los métodos
predictivos. Paralelamente, ha sido propuesto un modelo probabilístico de mixturas para
la caracterización de ERM de TE corto, así como su estimación basada en el algoritmo EM
para datos pareados y truncados. Esta nueva aproximación utiliza la información conocida
de resonancia de las sustancias químicas mediante un modelo de distribuciones gausianas
univariables de medias conocidas respecto a un desplazamiento global. La discriminación
de TC basada en el espacio paramétrico del modelo probabilístico de mixturas obtuvo
una alta eficacia, y la combinación de los espacios paramétricos de los ERM de diferen-
te tiempos de eco es una alternativa para sacar provecho de ambas adquisiciones en la
ayuda al diagnóstico. Siguiendo con los objetivos propuestos en la Tesis, se ha realizado
una evaluación de los modelos de reconocimiento de formas con el fin de demostrar que
clasificadores entrenados con pacientes explorados con diferentes máquinas de RM situa-
das en diferentes centros médicos siguiendo un mismo protocolo de adquisición, predicen
con una buena eficacia datos adquiridos con posterioridad por parte de múltiples centros
parcialmente diferentes. Estos resultados consolidan las conclusiones de un gran número
de estudios previamente presentados en la literatura, y han resultado de utilidad para la
validación y revisión de casos con patrones anormales de la base de datos del proyecto
europeo eTUMOUR. Con respecto a la clasificación de TC mediante datos ex-vivo, se ha
realizado una prueba de concepto mediante expresión genética para discriminar biopsias
de tumores de los tipos glioblastoma y meningioma. Los resultados obtenidos están en
consonancia con la clara diferenciación que se conoce por la biología y la patología de las
dos estirpes tumorales.

Las conclusiones y desarrollos de esta Tesis Doctoral se han aplicado directamente
a los resultados del proyecto eTUMOUR (Web accessible MR decision support system
for brain tumour diagnosis and prognosis, incorporating in vivo and ex vivo genomic and
metabolomic data, 2004-2009), y a los resultados del proyecto HEALTHAGENTS (Agent-
based Distributed Decision Support System for Brain Tumour Diagnosis and Prognosis,
2006-2008) del 6o Programa Marco de la UE. A partir de las conclusiones científicas en
TC obtenidas en este estudio se han desarrollado dos sistemas de ayuda a la decisión para
rutinas clínicas. Se ha desarrollado e integrado en eTUMOUR un interfaz genérico para
la incorporación de nuevos modelos predictivos al sistema de ayuda a la decisión y, en
el proyecto HEALTHAGENTS, se ha desarrollado una red de ayuda a la decisión de TC
mediante sistemas multiagente.
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Resum

Una vegada descoberts els símptomes que sugereixen risc de càncer, especialment quan
existeixen factor de risc genetics o ambientals, l’exploració no-invasiva del cos del pacient
està indicada per a confirmar la pressènsia d’un tumor, i si es positiva, indicar el diagnòstic
i estat pel qual aquest ha progressat.

L’anàlisi sistèmic de les dades biomédiques dels pacients des de differents nivells bi-
ologics obre amplies expectatives en el procés de la toma de decisions mediques. Les
noves tecnologíes biomèdiques permitixen la interpretació de l’origen de les afeccions que
sufrixen els pacients, traslladant el paradigma de decisió cap a la medicina basada en la
evidència.

Aquest increment de técniques innovadores d’acquisició de dades biomédiques, fa com-
plexa la accesibilitat a l’ús clínic. És comprensible l’interès en el desenvolupament de
mètodes de processament i modelatge automàtic que assistisquen objectivament als ex-
perts a interpretar les dades biomèdiques durant el flux de decisions adoptades per als
diagnòstics, pronòstics o tractaments de nous pacients.

Aquesta Tesi centra la seua atenció en l’ajuda assistida per ordinador al diagnòstic del
càncer. L’objectiu del nostre estudi és obtenir uns resultats d’alt encert en classificació, que
oferisquen transparència en la seua interpretació mitjançant coneixement mèdic i capacitat
de generalització en la seua aplicació en pacient multicéntrics estudiats amb posterioritat.
Els aspectes tècnics coberts en aquesta Tesi inclouen el processament, modelatge, extracció
de característiques, i combinació de dades biomèdiques; així com la inferència i avaluació
de models predictius d’aquestes dades i la integració dels models predictius en sistemes
d’ajuda a la decisió per a entorns clínics. Concretament, aquests punts s’aborden per a
dos problemes mèdics: el diagnòstic de Tumors de Parts Blanes (TPB), i, especialment,
el diagnòstic de Tumors Cerebrals (TC).

En els desenvolupaments realitzats per al problema de TPB es va arribar a una alta
eficàcia en la classificació basada en Reconeixement de Formes de tumors segons el seu
caràcter benigne o maligne. Els classificadors desenvolupats poden ser útils per als serveis
de radiologia a l’hora de confirmar el diagnòstic de nous pacients, estudiar casos sospitosos,
i assistir a la preparació de radiòlegs novells en aquest tipus de tumors. Un sistema d’ajuda
a la decisió especialitzat per al problema de TPB va ser dissenyat i implementat sobre la
base dels classificadors apresos a partir d’una base de dades multicéntrica.

Les contribucions d’aquesta Tesi a l’estudi de Tumors Cerebrals inclouen l’anàlisi de
senyals biomèdics in-viu i ex-viu del pacient. Una nova aproximació per a la combinació
d’Espectres de Ressonància Magnètica (ERM) adquirits per a un mateix pacient amb di-
ferents temps d’eco (ET curt i ET llarg) ha estat proposada. En els nostres estudis, es van
trobar diferències significatives a l’usar l’ET curt, l’ET llarg o la combinació d’ambdues
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adquisicions com entrada dels mètodes predictius. Paral·lelament, un model probabilístic
de mixtures ha estat proposat per a la caracterització de ERM de ET curt, així com la
seua estimació basada en l’algorisme EM per a dades apariats i truncats. Aquesta nova
aproximació utilitza la informació coneguda de ressonància de les substàncies químiques
mitjançant un model de distribucions gausianas univariables de mitjanes conegudes res-
pecte a un desplaçament global. La discriminació de TC basada en l’espai paramètric
del model probabilístic de mixtures va obtenir una alta eficàcia, i la combinació dels es-
pais paramètrics dels ERM de diferent temps d’eco és una alternativa per a traure profit
d’ambdues adquisicions en l’ajuda al diagnòstic. Seguint amb els objectius proposats en la
Tesi, s’ha realitzat una avaluació dels models de reconeixement de formes amb la finalitat
de demostrar que classificadors entrenats amb pacients explorats amb diferents màqui-
nes de RM situades en diferents centres mèdics seguint un mateix protocol d’adquisició,
prediuen amb una bona eficàcia dades adquirides amb posterioritat per part de múlti-
ples centres parcialment diferents. Aquests resultats consoliden les conclusions d’un gran
nombre d’estudis prèviament presentats en la literatura, i han resultat d’utilitat per a la
validació i revisió de casos amb patrons anormals de la base de dades del projecte europeu
eTUMOUR. Pel que fa a la classificació de TC mitjançant dades ex-viu, s’ha realitzat
una prova de concepte mitjançant expressió genètica per a discriminar biòpsies de tumors
dels tipus glioblastoma i meningioma. Els resultats obtinguts estan d’acord amb la clara
diferenciació que es coneix sobre la base de la biologia i la patologia de les dues estirps
tumorales.

Les conclusions i desenvolupaments d’aquesta Tesi Doctoral s’han aplicat directament
als resultats del projecte eTUMOUR (Web accessible MR decision support system for brain
tumour diagnosi and prognosis, incorporating in vivo and ex viu genomic and metabolomic
data, 2004-2009), i als resultats del projecte HEALTHAGENTS (Agent-based Distributed
Decision Support System for Brain Tumour Diagnosi and Prognosis, 2006-2008) del 6e

Programa Marc de la UE. Sobre la base de les conclusions científiques en TC obtinguts en
aquest estudi s’han desenvolupat dos sistemes d’ajuda a la decisió per a rutines clíniques.
Una interfície genèric per a la incorporació de nous models predictius al sistema d’ajuda
a la decisió ha estat desenvolupat i integrat en eTUMOUR i, en el projecte HEALTHA-
GENTS, s’ha desenvolupat una xarxa d’ajuda a la decisió de TC mitjançant sistemes
multiagent.
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Glossary

Mathematical Notation

a scalar a
v vector v

M matrix M

M
T transpose of matrix M

R the set of real numbers
sign(x) sign of x
log(x) natural logarithm of x
exp(x) exponential of x, ex

B Magnetic field B

M Magnetic moment M

Fixed symbols

~ reduced Planck’s constant; 6.626e−34/2πJs
T1 spin-lattice relaxation time constant
T2 spin-spin relaxation time constant
1H Hydrogen-1
γ Gyromagnetic constant

Acronyms and Abbreviations

2D Bi-dimensional

A1 Astrocytoma grade I

A2 Astrocytoma grade II

ACC Accuracy

AGG Aggressive tumor: GBM and MET

Ala Alanine

ANN Artificial Neural Networks

API Application Programming Interface

AS Ability to Separate
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a.u. arbitrary units

AUC Area Under the Curve

BER Balanced Error Rate

BDK Bi-directional Kohonen Networks

BT Brain Tumor

CADS Computer Aided Diagnosis System

cDNA complementary DNA

CDSS Clinical Decision-Support System

CDSSs Clinical Decision-Support Systems

CDVC Clinical Data Validation Committee

Cho Choline

CNS Central Nervous System

CPDF Conditional Probability Density Function

CQCD Committee for Quality Control of Data

Cr Creatine

CS Chemical Shift

CT Computed Tomography

CV Cross Validation

dDSS distributed Decision-Support System

DICOM Digital Imaging and Communication in Medicine

dLDA Linear Discriminant Analysis with diagonal covariance matrix

DNA Deoxyribonucleic acid

dQDA Quadratic Discriminant Analysis with diagonal covariance matrix

DSS Decision-Support System

DSSs Decision-Support Systems

DT Decision Trees

EbSS Evidence-based Search Service

ECC Eddy Current Correction

e.g. exempli gratia (for example)

EM Expectation-Maximization
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EMBTD EM for Binned and Truncated Data

EMBTDr EM for Binned and Truncated Data with related means

ERR Error rate

eTDB eTUMOUR database

eTUMOUR the eTUMOUR EC project

etxxxx Acronym for a generic patient in the eTUMOUR database

F Friedman’s nonparametric two-way analysis of variance test

FE Feature Extraction

FID Free Induction Decay

FLDA Fisher’s LDA

FFT Fast Fourier Transform

FIPA Foundation of Intelligent Physical Agents

FWHM Full Width at Half Maximum

GBM Glioblastoma

GE General Electric

GlioMET Glial (LGG + GBM) + MET

Gly Glycine

Glx Glutamate/Glutamine

GMOR Geometric Mean of Recalls

GUI Graphical User Interface

HEALTHAGENTS the HEALTHAGENTS EC project

HAL HEALTHAGENTS Language

HGG High grade glial

HIV Human Immunodeficiency Virus

HLSVD Hankel-Lanczos Singular Value Decomposition

HR-MAS High-Resolution Magic Angle Spinning

HSVD Hankel Singular Value Decomposition

IBIME Biomedical Informatics group

ICA Independent Component Analysis

ICT Information and Communication Technology
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i.e id est (that is)

i.i.d. independent and identically distributed

INTERPRET the INTERPRET project

IOTA International Ovarian Tumor Analysis

IT Independent Test

ITACA Instituto de Aplicaciones de las Tecnologías de la Información y de las
Comunicaciones Avanzadas

Ixxxx Acronym for a generic patient in the INTERPRET database

JADE Cardoso’s implementation for ICA

jMRUI Java Magnetic Resonance User Interface

kRSTT k-Random Sampling Train-Test

KNN k-Nearest Neighbors

KW Kruskal-Wallis nonparametric one-way analysis of variance

L2-norm Euclidean distance

L1 Lipid resonance at 1.29 ppm

L2 Lipid resonance at 0.92 ppm

Lac Lactate

LCC Lightweight Coordination Calculus

LDA Linear Discriminant Analysis

LOO Leave-One-Out Cross-Validation

LGG Low-Grade Glial

LSSVM Least-Squares Support Vector Machines

MCT Tukey’s honestly significant difference criterion for multiple comparison

MEN Low-grade meningiomas

mMEN Meningothelial Meningioma

MET Metastases

mI myo-Inositol

ML Mobile lipids

MLP Multilayer Perceptron

MM Macromolecules

MiM Mismatch
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MN Multinomial parametric classifier

MR (Nuclear) Magnetic Resonance

MRI Magnetic Resonance Imaging

mRNA messenger Ribonucleic acid

MRS Magnetic Resonance Spectroscopy

MRSI Magnetic Resonance Spectroscopic Imaging

MSE Mean Squared Error

MV Multi-voxel

NAA N-Acetyl Aspartate

NAc N-Acetyl groups

NMR Nuclear Magnetic Resonance

NPV Negative predictive value

OA Oligoastrocytomas

OD Oligodendrogliomas

OWL Web Ontology Language

PR Pattern Recognition

PC principal component or loading

PCs principal components or loadings

PCA Principal Component Analysis

PCA-KNN K-nearest neighbours and local feature reduced by PCA

PI Peak integration

PM Perfect Match

PPV Positive predictive value

PRESS Point-Resolved Spectroscopic Sequence

PPM Peak height of typical resonances

Q1 Low Grade Meningioma vs. Glioblastoma+Metastasis vs. Low Grade Glial

QC Quality Control

QDA Quadratic Discriminant Analysis

QH1 Hierarchical question 1: Meningioma vs. (Glioma and Metastasis)

QH2 Hierarchical question 2: Low grade glial vs. (Glioblastoma and Metastasis)
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RDO Radiological diagnostic orientation

RBF Radial Basis Function

RDF Resource Description Framework

ReliefF ReliefF algorithm for Recursive Elimination of Features

ROC Receiver operating characteristic

RF Radio frequency

SNR Signal-to-Noise Ratio

SNV Standard Normal Variate

STEAM Stimulated Echo Acquisition Mode sequence

SOC Sistema de Orientación Clínica

STT Soft Tissue Tumor

SV Single voxel

SVM Support Vector Machines

SW Stepwise algorithm for feature selection in classification

Ta2 T2∗constant

TAM Technology Acceptance Model

Tau Taurine

TE Echo Time

TR Recycling Time

ULN Unit Length Normalization

VC Validation Committee

WAV Wavelet transform

WHO World Health Organization

XML eXtensible Markup Language

YP Yellow Pages
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Preface

This Dissertation includes some applications of the Pattern Recognition (PR) discipline
for the analysis of biomedical data. The main focus of the Thesis is on the development of
computer-assisted support of cancer diagnosis for clinical environments based on the PR
discipline. The aim of the studies described in the Dissertation is to produce results with
high accuracy in classification, interpretability by means of clinical knowledge and capacity
to generalize the performance to new samples which are subsequently obtained in different
clinical centers. The technical aspects covered in the Thesis include the processing, feature
extraction and modeling of biomedical data; the inference and evaluation of predictive
models; and the integration of the models into decision support systems for the clinical
environments. Specifically, we study the application of PR techniques to Soft Tissue
Tumor (STT) diagnosis and the Brain Tumor (BT) diagnosis. Figure 1 illustrates the
chapters of the Dissertation and establishes the relations between them.

Chapter 1 introduces several concepts from the fields involved in this Dissertation, e.g.
Soft Tissue Tumors and Brain Tumors, Magnetic Resonance, Gene-expression biotechno-
logy, Pattern Recognition and Decision Support Systems. This chapter also summarizes
the goals of the Thesis and outlines by the research contributions.

Chapter 2 introduces the contribution of the Thesis to the classification of STT using
Magnetic Resonance Imaging (MRI) findings from a multicenter European database of pa-
tients. In the experiments reported in this chapter, several pattern recognition techniques
are studied in the classification of benign and malignant tumors. The results obtained
with these classifiers are directly applied to the predictive engines of the Clinical Decision
Support System for tumors of this kind (see Chapter 7 for details).

In the automatic classification of BT by means of Magnetic Resonance Spectroscopy
(MRS), we investigated three major concerns. Chapter 3 studies the influence of com-
bining two echo times in automatic brain tumor classification by MRS. In this work,
we were interested in analyzing whether the combination of single voxel 1H MRS at two
different Echo Time (TE), Short TE (20-32 ms) and Long TE (135-136 ms) improve the
classification with respect to using only one echo time. To do this, a new approach that
combines the two echo times was used to produce a single data vector from which relevant
features were extracted.

Chapter 4 presents the modelling of MRS using mixtures for binned and truncated
data. The main goal was to obtain a parametric representation of the signals. Prior
knowledge of the relative position of the organic compound contributions in the MRS
suggested the development of a probabilistic mixture model and its EM-based Maximum
Likelihood Estimation for binned and truncated data. Experiments on MRS from BT
demonstrated that the new approach extracts relevant information from the spectra for
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characterizing, classifying and combining the (Nuclear) Magnetic Resonance (MR) Spec-
tra.

With regard to the evaluation of the classifiers with subsequently acquired data, Chap-
ter 5 reports the results obtained in a multiproject-multicenter study of automatic BT clas-
sification by MRS. In this study, the robustness of brain tumor classifiers is demonstrated
on subsequently acquired data independently of the manufacturer of the spectrometer,
hospital and preprocessing implementation.

Chapter 6 moves the focus to the automatic classification of Brain Tumors by means of
ex-vivo data. This chapter summarizes the automated brain tumor biopsy classification
using single-labelling complementary DNA (cDNA) microarrays-based gene expression
profiling.

Chapter 7 describes some developments of Decision-Support Systems (DSSs) for clini-
cal environments. Three Clinical Decision-Support Systems (CDSSs) related to the two
medical problems analysed in the Dissertation are introduced. First, the Clinical Decision-
Support System (CDSS) for Soft Tissue Tumor Diagnosis based on a distributed architec-
ture is described. Next, two CDSSs for Brain Tumors diagnosis are introduced. They are
derived from the concepts developed for STT CDSS, however they are more evolved and
scaled for their use in two multicenter projects, the eTUMOUR EC project (eTUMOUR)
and the HEALTHAGENTS EC project (HEALTHAGENTS).

Finally, Chapter 8 summarizes the conclusions of the dissertation. This chapter also
includes recommendations from the experience obtained during the development of the
CDSS for STT diagnosis and BT diagnosis.

xix





Chapter 1

Introduction

The systemic analysis of the patients’ biomedical data, which come from different biological
levels, offer greater information for the medical decision process. New biomedical technolo-
gies can allow the interpretation of the origin of the illnesses, moving to an evidence-based
medicine paradigm. The recent increase in the complexity of the techniques for acquiring
biomedical data as well as their innovative features, make it difficult for them to be incor-
porated in the clinician’s practice. Therefore, it would be convenient to develop automatic
data processing and predictive models to objectively assist the experts to interpret the
data in the decision workflow of diagnoses, prognoses, and treatments.

The scope of the Thesis is the analysis of biomedical signals and data to assist in cancer
diagnosis using Pattern Recognition (PR)-based Decision Support Systems. The people
to whom this Thesis is directed might be interested in the application of PR technologies
to support Health Systems and Clinical Research.

The first part of this chapter (Sections 1.1 and 1.2) describes the basis of the PR
discipline, the data acquisition technologies and clinical problems studied in the Thesis.
Section 1.3 reviews the design of Decision-Support Systems (DSSs) in Biomedicine and
Cancer Research. Finally, the goals of the Thesis are presented in Section 1.4 followed by
an overview of research contributions and partners.

1.1 Pattern Recognition

The PR discipline studies how to recognize an object through regularities that indicate that
it belong to a certain class or category. Typical applications of PR emulates easy tasks
for humans, such as speech recognition, optical character recognition, face recognition;
or other specialized activities, such as language translation, fingerprint identification, or
quality control of industrial manufacturing [1].

The goal of the design of a PR system is to recognize new samples and classify them
into different categories using the observed features. To do this, there are two possibilities:
to implement a set of rules and exceptions based on some heuristic reasoning; or to base
the development on a Machine Learning approach, on which a data set is used to fit an
adaptive model to solve the problem. Machine learning provides the mathematical and
computational mechanisms to infer knowledge in a formal model from specific data of
a given domain [2, 3]. Three major kinds of problems are solved in machine learning:
the so-called pattern-recognition problem, the regression estimation problem, and the

1
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Figure 1.1: Pattern Recognition solution based on the Machine Learning approach.

density estimation problem [4]. The methodology applied in this Thesis solves the Pattern
Recognition problems in cancer reseach using the Machine Learning approach.

The life cycle of a Pattern Recognition problem based on Machine Learning is composed
of two main phases: the Training phase and the Recognition phase (see Figure 1.1). During
the Training phase, a set of signals from the problem domain (the training corpus) is used
to adapt a mathematical function of the output values, e.g diagnosis, treatment, doses
or risk. In this phase, the preprocessing and the features extracted from the signals are
established, then, an adaptive model is fitted, selected and evaluated in order to obtain
the best generalization for solving new cases.

Once the model is ready, it can be incorporated into a Decision-Support System (DSS)
to be used for the recognition of new cases.

1.1.1 The Classification problem

In statistical PR, the optimal decision rule when assigning classes to the test cases is
defined by the minimum global risk over the sample space. The minimum global risk can
be achieved by minimizing the risk for each individual x of a sample.

If the Error rate (ERR) (see section 1.1.4) is defined as the evaluation metric of our
classification models, the risk of classifying a sample x ∈ R

D into class c is the probability
of error (also called the Bayes’ error), i.e. the sum of the posterior probabilities of x
for each class except c, or by the probability of the complementary event, p(error|x) =
1 − maxc p(c|x).

Therefore, the Bayes’ decision rule [5] establishes that the minimization of global risk
is obtained when each case x of the sample is assigned to the class c that maximises the
posterior probability p(c|x)

ĉ = arg max
c

p(c|x),

Bayes’ theorem relates the conditional and marginal probabilities of x and c:

p(c|x) =
p(c)p(x|c)

p(x)
,

where p(x) =
∑

c p(c)p(x|c) is constant for each class.
Hence, the Bayes decision rule can be written as

ĉ = arg max
c

p(c)p(x|c),

2
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Figure 1.2: The left plot shows the linear decision boundary obtained by LDA for a two-
class problem in a 2D space. The right plot shows the quadratic solution obtained by
QDA for a similar problem.

where p(c) is the prior probability of class c, and p(x|c) is the conditional probability
density function that describes how likely it is to observe x in class c.

In practice, the main problem is to approximate the real probability distributions
through the observation of a finite sample of cases. To carry out this estimation, different
methods have been proposed in the literature. Some statistical-based and non-statistical-
based classifiers [6] have been used on the experiments described in this Dissertation. A
brief description of them is presented below.

Gaussian Parametric Models

Discriminant analysis techniques are designed to find boundaries between classes [7].
Gaussian parametric models are based on the max-likelihood estimation of the Gaus-
sian distributions for the classes under the study. The most popular method is Linear
Discriminant Analysis (LDA), which is based on the assumption of a common variance
of the classes (see Figure 1.2-left). In the Quadratic Discriminant Analysis (QDA) the
covariances of the classes are independent, obtaining quadratic decision boundaries (see
Figure 1.2-right).

The Fisher’s LDA (FLDA) is a reduced-rank version of LDA, which projects the varia-
bles into the lower-dimensional subspace that maximizes the rate of the between-variance
and the within-variance on the training corpus (see Figure 1.3).

K-Nearest neighbors (KNN)

The k-Nearest Neighbors (KNN) is a non-parametric classification method on which the
samples are assigned to the classes based on the distances of the test cases to the training

3
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Figure 1.3: C. Bishop ilustrates in [1] the basics of FLDA with this bi-dimensional example.
The left plot shows samples from two classes along with the histograms resulting from
projection onto the line joining the class means. This solution produces a considerable
class overlap in the projected space. The right plot shows the corresponding projection
based on the FLDA, showing the greatly improved class separation.

corpus in the feature space. KNN is a type of instance-based learning where the func-
tion is approximated locally and all computation is deferred until classificatio [5, 8] (see
Figure 1.4).

Multilayer Perceptron (MLP)

The Multilayer Perceptron (MLP) is a connectionist model consisting on a network of
simple units called perceptrons [9]. One perceptron computes an output as a non-linear
function of the inner-product of the feature vector x and the weight vector w. In a MLP for
solving a PR problem, the input signal propagates through the perceptrons layer-by-layer
obtaining an approximation of the probability distribution of each class (see Figure 1.5).
During the Training phase, the output error is propagated to the previous layers to update
the weight vector of the perceptrons.

Support Vector Machines (SVM) and Least Squares SVM (LSSVM)

Support Vector Machines (SVM) are classification, nonlinear function estimation, and den-
sity estimation methodologies that are defined in the context of statistical learning theory
and structural risk minimization [10]. SVM defines the optimal separating hyperplane
between two classes with the maximal margin. This margin is the minimum distance of
patterns of the training set to the hyperplane. Support Vector Machines represent data in
a higher dimensional space where the linear separating hyperplane is built (see Figure 1.6).
The explicit construction of a mapping to a higher dimensional space is avoided by using
the kernel trick [11].

Least-Squares Support Vector Machines (LSSVM) is a reformulation of the SVM re-
sulting in the solution of a linear system [11]. This characteristic makes LSSVM attractive
for solving high dimensionality problems [12].

4
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Figure 1.4: In two dimensions, the nearest-neighbor algorithm leads to a partitioning of
the input space into cells, each labeled by the category of the training point it contains.
From [5].
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Figure 1.5: Network diagram for the 2-layer MLP. Arrows denote the direction of infor-
mation flow through the network during forward propagation.
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Figure 1.6: Decision boundary (bold line), support vectors (circles), margin boundaries
(line defined by the support vectors) for a synthetic dataset from two classes in two
dimensions obtained from a support vector machine having a Gaussian kernel function.

Ensemble Models

Ensemble assumes that if a set of individual classifiers are accurate enough and diverse,
an ensemble of them performs better than a single predictor in the average[13, 14]. This
is based on the reduction of the unbiased variance component of the error [15].

1.1.2 Feature selection and feature extraction

Feature selection and extraction step, the optimal or suboptimal search of features that
represents more accurately the objects for the goal of the task is carried out. The feature
selection and extraction methods used in our experiments were based on multivariate
statistical analysis and signal processing.

Principal Component Analysis (PCA) is a well-known projection method that is com-
monly used for feature extraction in PR [16, 17]. PCA maps the original D-dimensional
data into an orthogonal P -space, where the axes of this new coordinate system lie along
the direction of maximum variance of the original data. The more correlated the original
variables are, the more the data variation is explained by the first principal components
or loadings (PCs) of the analysis. Hence, feature reduction can be carried out discarding
the remaining PCs.

Stepwise algorithm for feature selection in classification (SW) consists on a greedy hill
climbing approach where the subset of features with the highest performance measure will
be selected in each step and modified in the next step by the addition or deletion of one
variable in the model [18].

ReliefF algorithm for Recursive Elimination of Features (ReliefF) is a feature selection

6



1.1. Pattern Recognition

method based on how well features distinguish between instances that are near to each
other [19–21]. In classification problems, the estimation of the quality of each variable is
calculated by the accumulation of the distance between randomly selected instances and
their k-nearest neighbors of a different class minus the distance to the k neighbors of the
same class.

Coming from signal processing, the goal of Independent Component Analysis (ICA) is
to extract source signals when only a linear mixture of these source signals is available. The
most commonly used assumption is that the sources are mutually statistically independent,
as well as independent from the noise components [22].

The Wavelet transform (WAV) consists on carrying out translations and scale trans-
formations of a prototypical wavelet function in order to adjust the shape of a signal and
to successively obtain the linear expansion of it [23].

1.1.3 Evaluation procedures

There is consensus in the literature that resampling techniques have to be applied when
estimating classifier performance in small-sample datasets [24].

In the cross validation evaluation, the data set is divided into k subsets, and a training-
test evaluation is repeated k times. Each time, one of the k subsets is used as the test set
and the other k−1 subsets are put together to form a training set. Then the average error
across all k trials is computed. Every data point gets to be in a test set exactly once, and
gets to be in a training set k − 1 times. The variance of the resulting estimate is reduced
as k is increased. The disadvantage of this method is that the training algorithm has to
be rerun from scratch k times.

k-Random Sampling Train-Test (kRSTT) with stratified test sets with k repetitions
was the evaluation procedure used for some experiments of the Thesis. k partitions were
randomly and independently prepared with the training set composed by 70% of cases of
each class. The evaluation was carried out in a nested-loop that covered the feature and
model selection in order to avoid underestimation of the true error.

1.1.4 Evaluation metrics

The error rate ERR or classification error rate is the ratio of the misclassified cases and
the total number of cases. In a binary classifier A vs. B, ERR is defined by eA+eB

nA+nB
, where

nA is the number of cases of the class A, and eA the number of misclassified cases for this
class and nB is the number of cases of the class B, from which eB cases were misclassified.

Balanced Error Rate (BER) and Geometric Mean of Recalls (GMOR) are used when
the prevalences of the classes are quite different [25]. The BER is defined as 1

2
( eA

nA
+ eB

nB
).

The GMOR is defined as
√

(1 − eA

nA
)2 + (1 − eB

nB
)2.

The Receiver operating characteristic (ROC) curve is a graphical technique for assess-
ing the performance of a binary classifier system [26]. The Area Under the Curve (AUC) of
the ROC curve measures the discrimination capability of the binary classifiers depending
on the sensitivity and specificity when varying the threshold of the latent space obtained
by the models.

7
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Berrar et al. in [27] presented some caveats to estimate the credibility intervals appro-
priately. In this review, (1 − α)%-credibility intervals (equivalent to confidence intervals
in a Bayesian framework) for the true error (τ) are calculated based on Jeffreys’ Beta
distribution as:

τ ≃ ǫ +
2(M − 2m)z

√
0.5

2M(M + 3)
± z

√

ǫ(1 − ǫ)

M + 2.5
,

when 10 ≤ M ≤ 200 and 0 ≤ m ≤ M/2, with M being the test size and m the number of
errors, ǫ is the observed error and z = 1.96 for 95% confidence.

1.2 Cancer Research

In this section, we introduce the basis of the acquisition technologies of the biomedical data
analyzed in the work: the Magnetic Resonance Imaging and Spectroscopy; and the Gene-
expression Microarrays. Afterwards, the two medical problems tackled in this Thesis, the
soft tissue tumor diagnosis and the brain tumor diagnosis, are outlined.

1.2.1 Data acquisition

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) (or MR) is the phenomenon where the nuclei of
certain atoms absorb and emit energy because of the effect of an oscillating magnetic field
when they are immersed in other static magnetic field [28].

Magnetic Resonance Imaging (MRI) is the use of the NMR phenomenon to visualize
the structure and function of a body. It is largely used in medical imaging because of its
contrasts of soft tissues.

Magnetic Resonance Spectroscopy (MRS) is the use of the NMR phenomenon to study
the physical, chemical, (and biological) properties of organic and inorganic molecules in a
non-destructive, non-invasive manner.

The NMR phenomenon observed can be performed with several sensitive nuclei: 31P,
19F, 13C, and 1H.

For the protons 1H, the spin quantum number s associated to the particle angular
moment takes the half-integer value (1/2). For this particles, the secondary spin quantum
number ms takes the values ms = {−1/2, 1/2}. That associates two possible potential
energy levels to the 1H particles (depending on ms) in the presence of a magnetic field
B0, being the energy difference between both states

∆Epot = −γ~|B0|,
where γ is the gyromagnetic constant and ~ is the reduced Planck’s constant.

These particles do not align exactly with the axis of the external magnetic field B0

but precesses around it at a rate given by the Larmor frequency f0,

f0 = γB0/(2π).

In the very first beginning time of the precessing motion around the field, the total
magnetic moment M of material is still near 0. As the elements of the molecule have

8
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Figure 1.7: Left: M motion projected on the XY -plane when recovering the precession
around B0. Right: Signal detected in the received coil when recovering the precession
around B0.

their magnetic momenta, they generate magnetic fields that change with the thermical
motion of the environment, so each spin is precessing around a local and changing magnetic
field instead of the applied B0, so the spins are slowly deviated. The probability of the
low energy orientations are slightly higher than the probability of the high energy levels.
Hence, when the thermical equilibrium is reached there will be more spins parallel to the
B0 than anti-parallel. Consequently, a total magnetic moment M 6= 0 is observed.

If a Radio frequency (RF) pulse is applied to the sample, the spins experiment the
influence of two magnetic fields B0 and B1. The first is a static field, the second is an
oscillating one of which the frequency is the resonant Larmor’s frequency f0. A pulse in
the y-axis produces a progressive decay of the M vector to the XY -plane. When the pulse
is over, the spins return to the precession around the static magnetic field, obtaining, as a
result a macroscopic MXY motion similar to the precession of the spins (see Figure 1.7).
Transversal to the axis coils can acquire the FID signal produced by the MXY motion.

A noteworthy fact is that the magnetic field for each nucleus depends on the static
magnetic field B0, but also on the local environment,

Beff = B0(1 − σ′),

where σ′ is the shielding constant that depends on the electrical environment of the nu-
cleus. This results in different frequencies of resonance (or Chemical Shift (CS)) of the
same nuclei depending on the molecular environment and the main application of MRS
in biochemistry and molecular biology (e.g. see Figure 1.8).

Gene-Expression Microarrays

Another source of biomedical data used in cancer research is the Gene-Expression Mi-
croarray biotechnology.

After the human genome sequentiation, the interest changed to the study of complete
genomes instead of individual genes [30]. Microarrays measure the amount of messenger
Ribonucleic acid (mRNA) transcribed from the genes of cells in a concrete population
(e.g. a tissue). The microarray biotechnology allows the quantitation of the transcription
of several genes simultaneously.

9
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Figure 1.8: Chemical Shift (CS) for OCH3 and CH3CO [29].

A microarray is a matrix of nylon, glass or plastic on which single stranded DNA
(called probes) are deposited in each cell of the matrix (called spots). In an experiment,
the microarray is washed in a solution containing single stranded DNA of the biological
sample of study (called target) labeled with a fluorescent dye or a radioactive element.
The target sequences hybridize with the complementary probe sequences on the array.
The scan of the microarray obtain different intensities in the microarray depending on the
number of complementary probe hybridized with the target of each spot.

In gene expression microarrays, the target is usually obtained from the reverse tran-
scriptase reaction from mRNA of tissue samples. Hence, the intensity of each spot is
related to the amount of mRNA transcribed in the tissue.

The most spread platforms of microarrays are the Spotted microarrays and the Oligonu-
cleotide microarrays (Figure 1.9). The oligonucleotide microarrays contain short sequences
of nucleotides (from 14 to 20) for each gene in the microarray. Each oligonucleotide is se-
lected to represent a given gene and is directly synthesized in the array by photolitography.
Two copies of the oligonucleotide are synthesized in the matrix: the Perfect Match (PM),
with the exact sequence of the fragment of the gene and other, the Mismatch (MiM), with
a mismatch nucleotide in the middle of the fragment. The MiM copies are used afterwards
for the correction of false positive expressed genes.

In spotted microarrays the probes are synthesized prior to the deposition on the array
by a robot. The probes are typically cDNA that correspond to mRNA and they can
be small sequences, complete genes or even arbitrary sequences. cDNA microarrays are
usually configured for comparative analysis of two samples: the experimental samples and
the reference. From each sample, the mRNA is extracted, denaturalized and converted
to cDNA. The samples are labeled with different fluorescent (Red or Cy5 and Green or
Cy3). The microarrays are washed in a dissolution with the mixture of the samples for the
hybridization of the targets and the probes. The scan of the microarrays in the specific
Red and Green channels allows the posterior quantification of the spots based on their
intensities.

10



1.2. Cancer Research

Figure 1.9: A Spotted microarray on the left and a Oligonucleotide microarray on the
right.

1.2.2 Soft Tissue Tumors

Soft Tissue Tumor (STT) is an abnormal new growth that appears in supportive tissues
of organs and other extraskeletal structures [31].

Depending on the aggressivity, the soft tissue tumors are classified as either benign or
malignant. Traditionally, tumors have been classified depending on the histological type
of tissue: chondral, fibrous, fat, lymphoid, mesenquimal, muscular, nervious, sinovial,
vascular, pseudotumor, cyst, and others.

STT is relatively infrequent in the general populationa, e.g. an annual incidence of
18 soft tissue sarcomas per one million masses evaluated. Benign tumor constitutes by
far the most common STT, whereas, malignant tumors represent approximately 33% of
them [32]. A clear discrimination between benign and malignant tumors becomes crucial
in planning the proper diagnostic and surgical procedures.

A mass is the most common symptom of a soft tissue tumor. Most superficial tumors
are diagnosed on clinical exploration, but if the lesion is more deeply located, a MRI
exploration is indicated. Most of these tumors can be characterized with MR imaging
findings because of their main textural and growth pattern. Although MRI protocols have
been defined for staging, grading and characterizing for the soft tissue tumor [33], most
radiologists and clinicians are not familiar with their appearance and differential diagnosis.
Hence, a diagnostic support tool developed to help in making an accurate diagnosis of
tumor aggressiveness would improve the correct management of these patients.

ahttp://seer.cancer.gov
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1.2.3 Brain Tumors

Brain tumor is definedb as the growth of abnormal cells in the tissues of the brain. Brain
tumors can be benign (non-cancerous) or malignant (cancerous).

Different classifications are defined in the brain tumors depending on the factor. A
first classification is based on the type and location of the cells that originate from the
tumor. Primary brain tumors are created by uncontrolled cells in the brain itself (neurons,
glial cells, lymphatic tissue, blood vessels), in the cranial nerves, in the brain envelopes
(meninges), in the skull, pituitary, or pineal gland. Secondary brain tumors are created
by cells spread from cancers primarily located in other organs (metastatic tumors).

Based on the malignancy characteristics the brain tumors are classified in grades.
Grade I: tumors with a low proliferative potential and a possibility of cure following
surgical resection alone. Grade II: generally infiltrating tumors low in mitotic activity,
but with a potential to recur. Grade III: tumors with histological evidence of malignancy.
Grade IV: generally associated with a rapid pre and postoperative evolution of the disease.

The World Health Organization (WHO) classification [34]c of Tumors of the Central
Nervous System (CNS) describes the diagnoses as a taxonomy. Compatible groups were es-
tablished according to the studies elaborated by medical experts during the INTERPRET [35]
and eTUMOUR [36] projects based on the 1993 WHO Classification.

Brain tumors are the second fastest growing cause of cancer death among people older
than 65 years [37], in addition, they are also the second leading cause of cancer death (after
leukemia) in children under fifteen years and young adults up to the age of thirty-four.

The most frequent primary brain tumor types are of glial origin (40%), 30% are derived
from the meninges and 8% are located in cranial and spinal nerves [38]. Lymphomas and
germ cell tumors account for 3% and 1% respectively. Glioblastoma is the most frequent
tumor of glial origin (51%).

The distributions of the tumor types by age are not uniform. In early ages (0-19),
embryonal/primitive/medulloblastoma and pilocytic astrocytoma are the most common
types of tumors. In young adults (20-34), pituitary tumors and meningiomas are the
most prevalent types. In older adults, the meningioma and, also, the malignant tumor
glioblastoma are the most frequent tumors. The most common brain tumor types by age
are summarized in Table 1.1.

There is no specific clinical symptom because the brain does not possess pain recep-
tors. Therefore, a slowly progressive mass effect and intracranial pressure may appear.
The presenting symptoms largely depend on the tumor location. Visual disturbance or
respiratory arrest, as well as epilepsy, or sudden intracranial hypertension may occur.

When the aforementioned symptoms arise, a radiological examination based on Com-
puted Tomography (CT) or MRI is usually performed. Information provided by non-
invasive radiological techniques is highly relevant for evidence-based medicine applied to
the diagnosis, patient management and to surgery [39, 40]. MRI is widely used for de-
termining tumor extension in surgical and radiotherapy planning, with a sensitivity of
14%-100% depending on tumor type and precision of the wording used by radiologist [41].

bDictionary of Cancer Terms. National Cancer Institute. http://www.cancer.gov/dictionary/ (Online;
accessed 10-3-2008

chttp://www.brainlife.org/who/2007_classification.htm
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Table 1.1: Most common brain tumor and CNS types by age (CBTRUS 2005, Statistical
Report [38])
Age (years) Most Common Histology Second Most Common Histology

0-4 Embryonal/primitive/medulloblastoma Pilocytic astrocytoma

5-9 Pilocytic astrocytoma Embryonal/primitive/medulloblastoma
10-14 Pilocytic astrocytoma Embryonal/primitive/medulloblastoma
15-19 Pilocytic astrocytoma Pituitary

20-34 Pituitary Meningioma
35-44 Meningioma Nerve Sheath

45-54 Meningioma Glioblastoma
55-64 Meningioma Glioblastoma
65-74 Meningioma Glioblastoma
75-84 Meningioma Glioblastoma
85+ Meningioma Glioblastoma

Nevertheless, the gold-standard method in the brain tumor diagnosis is the histolo-
gical examination of tumor tissue samples obtained either by means of brain biopsy or
open surgery. Up to date, histopathology provides the main information for deciding the
treatment and the prognosis for each patient.

MRS is slowly becoming an additional accurate non-invasive technique for initial exa-
mination of brain masses [12, 40], due to its capability to provide useful chemical informa-
tion of different metabolites for characterizing brain tumors and its complementary role
to MRI [42].

Besides, high throughput gene expression techniques provide a transcriptomic signa-
ture, which can be used to classify different biological samples or pathological conditions.

1.3 Decision-Support Systems in Cancer Research

The development of new biomedical technologies allows the diagnosis and prognosis of
tumors using non-invasive methods. Nowadays, biomedical techniques such as 1H MRS,
MRI, High-Resolution Magic Angle Spinning (HR-MAS), Deoxyribonucleic acid (DNA)
microarrays, and anatomopathological images offer complementary points of view for the
clinical management of the patients in cancer research. Semi-automatic analyses of these
data based on PR are increasingly being used by clinicians in the research of decision
making relative to the diagnosis and treatment of new patients.

From a multidisciplinary research standpoint, fast and easy access to the most re-
cent Information and Communication Technology (ICT) developments by users is one of
the main requirements to obtain translational results. Currently, the biomedical and In-
formation and Communication Technology (ICT) disciplines have joined their efforts to
integrate the heterogeneous data acquired from different levels of biological data in order
to analyse the behaviour, origin, and discrimination of the different types of tumors under
a systemic paradigm.

A DSS is a computer-based system that aids in the process of decision making [43].
Clinical Decision-Support Systems (CDSSs) are active knowledge systems which use two or
more items of patient data to generate case-specific advice [44]. CDSSs based on Pattern
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Figure 1.10: SV INTERPRET GUI for SV spectra.

Recognition (PR) have been widely accepted in medical applications due to their capability
for optimisation, flexibility, accuracy for predictive inference and interpretability [45].

Clinical Decision-Support Systems facilitate access to high-quality medical practices,
which contributes to better health care [46]. Nowadays, the compilation of scientific doc-
uments, clinical data and biomedical signals acquired with standardized protocols makes
it possible to design the decision support system that are based on them.

Studies on the evaluation of the use of CDSSs indicate a positive effect on clinical
practice [47–49] and quality of primary care [50]. The potential benefits of CDSSs are
summarized by Coiera and Sintchenko in three major items [51, 52]: improved patient
safety, improved quality of care, and improved efficiency in health care delivery.

A good example related to the diagnosis of brain tumors studied in this Thesis is the
SV INTERPRET GUId based on a LDA latent space projection (see Figure 1.10). The
SV INTERPRET GUI provides easy access to a database of spectra, images and clinical
information from 304 validated cases of human brain tumors. It is designed to allow the
display of classification plots which are useful for automating the classification of tumor
spectra [53].

dhttp://azizu.uab.es/INTERPRET/sv_tutorial/index.php
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1.4 Goals, Contributions, Projects and Partners

1.4.1 Goals

The goals of the Thesis are the development and evaluation of PR-based Clinical Decision-
Support Systems with high accuracy in classification, interpretability by means of clinical
knowledge and generalization of the performance for new samples that are subsequently
obtained in different clinical centers. Special attention is given to:

• the processing, extraction and combination of relevant information from the biome-
dical data;

• the inference of predictive models to discriminate among diagnoses;

• the evaluation of the automatic classification by newly collected data; and

• the integration of the predictive models into decision support systems for clinical
environments.

In order to focus our research, two medical problems are tackled: Soft Tissue Tumor
diagnosis and, Brain Tumor diagnosis with in-vivo and ex-vivo data. Each of
these problems has its own specific medical protocol for exploring and confirming the
diagnosis. Hence, the predictive models and decision support systems developed in the
Thesis are focused on the biomedical data used by these medical protocols:

• Findings in Magnetic Resonance Imaging for Soft Tissue Tumors;

• Magnetic Resonance Spectroscopy and Gene Expression Microarrays in Brain Tu-
mors.

1.4.2 Contributions

The scientific results of this Thesis concern the application of Pattern Recognition to
cancer research. The contributions of this Thesis have been published in scientific jour-
nals and proceedings of congresses in the fields of Pattern Recognition, Applied Artificial
Intelligence, Magnetic Resonance, and Molecular Biology.

The research related to the inference of predictive models to discriminate Soft Tissue
Tumors (Chapter 2) was published as a journal paper [54]. Work related to this task
was also presented in [55–58]. A strong collaboration with radiologists Dr. Luis Martí-
Bonmatí and Dr. Joaquín Galant was established in this study for the definition of the
image findings, for the compilation of the datasets, and for the interpretation of the results
under a clinical point of view.

In the Brain Tumor classification task, the study of feature extraction from two MRS
echo times for classification of brain tumor diagnoses (Chapter 3) has been accepted for
publication as journal paper [59]. Work related to this study was also presented in [60, 61].
The team of Prof. Dr. Carles Arús contributed to this study in the definition of the
hypothesis and the discussion of the results from the point of view of biochemistry. In
addition, the development of the model MRS using mixtures for binned and truncated
data (Chapter 4) was published in [62].
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The multiproject-multicenter evaluation of Brain Tumor classifiers by subsequently
acquired MRS has been accepted for publication as journal paper [63]. In this study,
a strong collaboration among the partners of the work package 3 of eTumour was esta-
blished. The teams of Prof. Dr. Sabine Van Huffel and Prof. Dr. Lutgarde Buydens
contributed to this study with the preparation of classifiers based on techniques developed
by their universities: LSSVM and Bi-directional Kohonen Networks (BDK), respectively.
The major contribution of this Thesis to the multiproject-multicenter evaluation was the
definition and co-ordination of the collaboration, the development of PR-based models,
the evaluation of the classifiers, and the analysis and discussion of the results.

Some contributions have also been made about feature extraction methods for MRS
in a journal paper [64] whose main author is Mr. Jan Luts (KULeuven University).

A study about automated brain tumor biopsy prediction using single-labelling cDNA
microarrays-based gene expression profiling has been published as a journal paper in [65].
This Thesis contributed to the brain tumor biopsy prediction with the design of the
protocol to pre-process the single-labelling cDNA microarrays used in the study and with
the development and analysis of the PR experiments for the automatic classification of
tumors by means of the gene-signatures. Work related to this task was also presented
in [61].

The development of a distributed Decision-Support System (dDSS) for Soft Tissue
Tumors was presented in [66, 67], and has also been studied in [58, 68]. Finally, the
development of CDSSs for brain tumors was published in [61].

1.4.3 Research Projects and Partners

Part of this Thesis is from the research developed related to the eTUMOUR project and
the HEALTHAGENTS project, which was done between 2004 and 2008.

• eTUMOUR (2004-2009) Web accessible MR decision-support system for brain tu-
mour diagnosis and prognosis, incorporating in vivo and ex vivo genomic and me-
tabolomic data is a European Union Integrated Project of the 6th Framework Pro-
gramme in the Molecular imaging for early detection of tumours and monitoring of
treatment.

The contributions of work package 3 (Pattern Recognition) of the eTUMOUR project,
which was led by the IBIME-ITACA group at the Universidad Politécnica de Valen-
cia, were focused on two practical outputs. The first output is the development of
PR-based engines that offer an objective solution to specific tumor discrimination
problems using MR in vivo data. The classification engines reported in Section 7.3
are integrated as the predictive core of the Decision Support System developed in
the project. The second output is the contribution to the knowledge of the cancero-
genesis of the brain tumors, e.g. generating hypotheses of putative genes related
to certain metabolic or functional pathways of the tumor types, such as the study
reported in Chapter 6.

• HEALTHAGENTS (2006-2008) Agent-based Distributed Decision Support System
for Brain Tumour Diagnosis and Prognosis is another European Union Specific Tar-
geted Research Project of the 6th Framework Programme in the Information Society
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of Technologies. The objective of this problems is to create a multi-agent DSS to as-
sist in the early diagnosis of brain tumors and to create a distributed Data Warehouse
with the world’s largest network of interconnected databases of clinical, histological,
and molecular phenotype data of brain tumors.

The solution reported in Section 7.4 was adopted as the classification framework for
the HEALTHAGENTS agent-based distributed network. In further developments,
the distributed network of classifiers incorporates a ranking model of the classifiers,
self evaluation and semi-automatic re-training of the classifiers. These systems pro-
vide predictions for incoming cases and refine themselves in a continuous auditing
process. Furthermore, they can also contribute to improvement in quality control of
the biomedical datasets that are included in the distributed networks.

The author of this Thesis performed a research stay at the Dept. of Electrical Engi-
neering (ESAT) of the Katholieke Universiteit Leuven (Belgium), from July 16, 2006 until
February 2, 2007. The research stay was performed under the supervision of Prof. Sabine
Van Huffel of the SCD division at ESAT.

The new multidisciplinary research line Biomedical-Mininge was opened in 2003 by the
IBIMEf group of the research institute ITACA in the Universidad Politécnica de Valencia.
In 2008, this group consisted of five computer engineers, one physicist, and one mathe-
matician who were doing their research in six research projects: two European projects
on Brain Tumor automatic classification [36, 69], a Spanish project on prediction of post-
partum depression [70], a Spanish project on Genotyping and Psychiatric Genetics [71],
a Spanish project on Prostate Cancer Early Detection [72] and a Spanish project on the
Evaluation of Decision-Support Systems [73].

ehttp://http://bmg.webs.upv.es
fhttp://http://www.ibime.upv.es
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Chapter 2

Benign/Malignant Classifier of Soft
Tissue Tumors Using MRI

This study presents a PR approach to the STT benign/malignant character diagnosis using
MRI applied to a large multicentric database. The aim of this work is to develop and test
an automatic classifier to differentiate benign from malignant STT by using classical MR
imaging findings and epidemiological information. A database of 430 patients (62% benign
and 38% malignant) from several European multicentric registers was used. There were 61
different histologies (36 with benign and 25 with malignant nature). Three PR methods
(Artificial Neural Networks, Support Vector Machine, K-Nearest Neighbor) were applied
to learn the discrimination between benignity and malignancy based on a defined MRI
findings protocol. After the system had learned by using training samples (with 302 cases),
the clinical decision support system was tested in the diagnosis of 128 new STT cases. An
88–92% accuracy was obtained in a not-viewed set of tumors using the PR techniques.
The best results were obtained with a back-propagation artificial neural network. Benign
vs. malignant STT discrimination is accurate by using PR methods based on classical
MR image findings. This objective tool will assist radiologists in STT grading.

This chapter has been published as journal paper in [1].

2.1 Introduction

Benign tumor constitutes by far the most common STT. Most of these tumors can be
characterized with MRI because of their main textural and growth pattern. Soft tissue
malignant tumors represent approximately 33% of them [2]. Although, in clinical practice,
most superficial tumors are diagnosed solely on the basis of clinical exploration and no
further studies are required, more deeply located lesions are nowadays studied with MRI.
A clear discrimination between benign and malignant tumors becomes crucial in planning
the proper diagnostic and surgical procedures.

As STTs are infrequent in the general population [3], most radiologists and clini-
cians are not familiar with their appearance and differential diagnosis. Furthermore, their
appearance is sometimes misleading. Well-defined malignant tumors are placed on the
less aggressive side of the spectrum and have an appearance usually similar to benign
lesions, making it difficult on many occasions to distinguish between them. On the other
side, some benign tumors can deviate from their typical homogeneous appearance, com-
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plicating the differentiation. A diagnostic support tool developed to help in making an
accurate diagnosis of tumor aggressiveness would improve the correct management of these
patients.

To create such a diagnostic support tool for STT, a large amount of data is required,
usually larger than those disposable in an isolated center.The solution to the lack of
data has been solved by the merge of several hospital institution cases. The Information
and Communication Technologies allow radiologists to share relevant information about
the problem and special cases. In this way, other groups, like the Belgian Soft Tissue
Neoplasm Registry [4], also recruit MR imaging cases in order to offer support services to
professionals and scientists.

To our knowledge, there is no published report in which automatic classification me-
thods, such as Artificial Neural Networks (ANN), KNN, or SVM, have been applied
successfully to classify the STT tumors with a MR imaging-findings dataset. A recent
article related to soft tissue sarcoma classification using gene expression profile and SVM
has been presented by Segal NH et al [5]. However, all of the aforementioned methods
have been applied in many medical classification systems with good performance. In
tumor classification, KNN has been used in combination with two other classifiers for
melanoma diagnosis [6]; SVM has been successfully used for prediction of malignancy of
ovarian tumors [7], in analyzing microcalcifications in digital mammograms [8], and in
discriminating breast tumors [9–11]; ANN has also been widely and successfully applied
in discriminating breast tumors [12–14], in evaluating different features based on defined
imaging criteria [14–18]; and in cervical cancer screening [19]. An interesting review of
the applications of ANN to the diagnosis, prognosis, and survival analysis in the medical
domains of oncology, critical care, and cardiovascular medicine has been presented by Lis-
boa [20] to assess the evidence of healthcare benefits involving the application of ANN. In
this review, the author presents important recommendations for the design and evaluation
of ANN in medicine.

Our main purpose was to obtain an automatic classifier of STT aggressiveness. The PR
discipline allows the adaptation of models to a specific problem. This adaptation consists
of an inference process in which a mathematical mechanism changes its parameters based
on a set of supervised training examples. PR methods (ANN, KNN, and SVM) have been
applied to design this software because they allow the adaptation of the system to the
problem by the use of knowledge contained in the study samples. The classification tool
will be used by radiologists and other medical professionals in a clinical decision-support
system to aid in the diagnostic report. Our work presents a multidisciplinary study,
grouping MRI expertise radiologists and computer science engineers on PR techniques, to
discriminate between benign/malignant grading of STT.

2.2 Materials and methods

2.2.1 Patients and equipment

Patients with confirmed musculoskeletal STT examined with MRI were retrospectively
selected. Tumors with a biopsy procedure before the imaging studies were excluded.
Patients were consecutively recruited at five different European hospital centres.

All malignant and some benign, other than classical hemangioma and lipomas, had his-
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Figure 2.1: Distribution of STT cases into histological groups.

topathological confirmation of their nature. Characteristic multimodality imaging appea-
rance and follow-up studies were employed to confirm the diagnosis of these benign tumors.
Finally, there were 430 patients, 267 patients (62.1%) with a benign lesion and 163 pa-
tients (37.9%) with a malignant neoplasm. The histological grouping distribution of the
cases is shown in Figure 2.1.

Imaging studies were performed on 0.5 T and 1.5 T Gyroscan NT (Philips Medical Sys-
tem, Eindhoven, Netherlands) and 0.5 T Signal (General Electric Medical System, Milwau-
kee, WI) units. T1-weighted (T1W, TR/TE, 450–650 ms/15–30 ms) and T2-weighted fat-
suppression (T2W-FS, TR/TE, 2,800-3,500 ms/80-120 ms) or STIR (TR/TE/TI, 1,400-
1,600 ms/40 ms/100-120 ms) images were systematically obtained (Figure 2.2).

2.2.2 Database

The following epidemiological and MR image findings [2, 4, 21–23] were obtained from
the clinical records and radiological examinations:

• Age: The age of the patient in years.

• Clinical presentation: Reason for the patient’s consultation (mass, pain, growth,
neurological symptoms, skin alterations, asymptomatic).

• Localization: The anatomic compartment where the STT was located (subcuta-
neous, intramuscular, intermuscular, or intraarticular). Lesions extending to more
than one compartment were classified within the compartment where the largest
part of the tumor was located.
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Figure 2.2: Representative MR images. Homogeneous highly hyperintense hemangioma
in T2 weighted image a with hyperintense tracts in the T1 weighted image b. Serpiginous
appearance of an intramuscular hemangioma (c, fat suppression T2 weighted image). Oval
hyperintense heterogeneous neurinoma with inner areas of fibrosis (d, fat suppression T2
weighted image)
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• Size: The maximum diameter of the lesion, expressed in centimeters (rounded to
the nearest unit).

• Shape: The external morphology of the lesion (rounded, oval, lobulated, serpiginous,
fusiform, strand, or irregular). Serpiginous lesions were those with tubular structures
within them and polylobular external surface (Figure 2.2).

• Signal intensity: Represents the relative signal intensity of the lesions in the images
obtained with different weightings (T1 and T2/STIR). Muscle was selected as the
reference signal intensity tissue, with an intermediate-low signal intensity in most
sequences (T1-weighted, T2-weighted fat suppression, STIR images). There were
four categories in the T1-weighted images (hypointense, isointense, hyperintense,
and very hyperintense) and three in the T2-weighted images (isointense, slightly
hyperintense, and highly hyperintense) (Figure 2.2).

• Margins: The external borders of the lesion. There were three categories: infiltrative
(when most of the margins were blurred or the tumor clearly extended at any point
to the surrounding tissue), mainly well-defined lesions (with a partial sector of the
margin with unclear borders), and noninfiltrative (when the tumor borders were
clearly visible without any peripheral infiltration).

• Homogeneity: Presence of different areas of signal intensity variation within the
lesion in the different image weightings. Taking into consideration the proportion
and signal-intensity differences, there were four categories: very homogeneous (only
one signal intensity constituent), homogeneous (an area not more than 25% of the
lesion with a slight change in its signal intensity compared with the rest of the lesion),
heterogeneous (an area between 25 and 75% with different signal intensities), and
very heterogeneous (lesions with more than a 75% of them with different components
showing large differences in their signal intensity) (Figure 2.2).

• Edema: A peripheral ill-defined area or halo, hypointense in T1-weighted images
but hyperintense in STIR/T2-weighted images with a width larger than 5 mm (no,
yes).

• T1 hyperintense tracts: Linear or reticular areas with a high signal intensity in the
T1-weighted images without fat suppression (no, yes). (Figure 2.2).

• Multiplicity: Whether the patient had previously or currently presented with similar
STT (no, yes).

• Target appearance: Whether the lesion had an inner well-defined centre and con-
centric peripheral rings with different signal intensities (no, yes).

• Muscular atrophy: A decrease in the diameter of the muscle or group of muscles
related to the lesion, with enlargement of the fat planes between the muscular fas-
cicles, and especially if the contralateral extremity was present for comparison (no,
yes).

• Intratumoral hemorrhage: Whether heterogeneous areas with hyperintense and hy-
pointense zones were shown in the T1 and STIR/T2 weighted images (no, yes).
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• Calcification: Very hypointense areas in all the obtained images and weightings,
after excluding vessels and hemosiderin. Phebolits were considered only if a plain
film or a CT examination showed a rounded calcification with an inner radiolucent
centre (no, yes, phebolits).

• Dependence: Whether an anatomic structure was identified with a very close re-
lationship with the lesion and the lesion seems to originate from that anatomic
structure. Special care was taken not to include as dependence a relationship of
displacement (none, nerve, tendon, and vessel).

• Intratumoral fat: When an area of signal intensity equal to that of the subcuta-
neous fat in all the pulse sequences was observed within the lesion. Lesions with fat
were further classified regarding the presence of hyperintense zones in the STIR/T2
weighted images (no, fat without hyperintense zones in T2-STIR, fat with hyperin-
tense zones in T2-STIR).

• Fibrosis: Defined as areas of very low signal intensity within the tumor in all the
images, mainly if the morphology was irregular or ring-like (no, yes) (Figure 2.2).

• Fascial relationship: The relationship of the subcutaneous lesions with the superficial
fascia (no contact, small contact, contact with acute angles between the lesion and
the fascia, larger contact with obtuse angles, fascia penetration, and fascial origin
of the lesion).

• Bone alterations: If there was an alteration of the underlying bone, it was classified
as bone remodeling with periosteal reaction, or bone destruction, including cortical
bone permeation (no, yes with erosion-invasion, yes with reshape or reaction).

• Vessels: Whether large vessels constitute the essential part of the lesion (no, yes).

Two experience radiologists, who were masked to the final histological diagnosis, re-
viewed the studies. Differences were resolved by consensus with a third radiologist.

2.2.3 Methods

A clinical decision support system is a tool to improve the quality in the clinical decision,
being defined as an active knowledge system that generates specific advice to each new
case [24]. It integrates three main features: medical knowledge that solves the disease
cases [25, 26], patient data with specific biomedical information of each patient, and
specific advice for each case based on the medical knowledge and the patient data.

There are different methods to design clinical decision-support systems using the artifi-
cial intelligence approach. In this study, an inductive strategy, more commonly named PR
strategy, was applied. The conclusions made by the clinical decision-support system were
inferred by the knowledge captured from a group of samples representing the problem.

The PR methodology [27] includes the next steps. Preprocessing/filtering includes
data adaptation to a format recognized by the learning procedures; consequently, it incor-
porates database connection, queries to get the required registers, and syntactic analysis
to transform the formats. The filtering step consisted of a transformation from the Access
database format to an ASCII file. Another filter task was the normalization of the data to
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avoid artificial order relationships in qualitative variables with a simple local codification,
and range transformation to weight correctly the continuous variables into [0, 1] [28]. As
an example, variables like dependence, which takes the values none, nerve, tendon and
vessel, that doesn’t have an order relation between the values, was codified as (1 0 0 0),
(0 1 0 0), (0 0 1 0), (0 0 0 1); but variables, such as age or size, that have an important
relation in the order of its values, were normalized into [0, 1].

The database was randomly divided into two different sets, one training set used to
learn the computational models (70%, 302 cases) and the test set (30%, 128 cases), used
to estimate the accuracy of the system. We contemplated the use of the three basic
evaluation methods in the experiment planning: Cross Validation (CV), Leave-One-Out
Cross-Validation (LOO), and Independent Test (IT). We chose an independent training
and test sets because the real independence between both sets will probably give a less
optimistic confidence interval of the efficiency (shown in Table 2.1) than the one obtained
with nonindependent test sets.

The learning process is the most important step in the clinical decision support system
development and its principal goal is to adapt the software system to the requirements
of the problem. An iterative procedure takes the relevant information by studying exam-
ples to inference the model of the problem. When the learning process was completed,
the adaptive system was released and new cases could be studied. The variables of the
unseen new cases were analyzed and the generalization knowledge made from the training
examples got the associated prediction.

ANN, KNN, and SVM were used as PR methods (see Section 1.1) to design the clinical
classifier. These three techniques are nonparametric because they do not require a priori
knowledge of the probability distributions. In the STT benign and malignant classifica-
tion problem, the functionality of a multilayer perceptron can be seen like a nonconnected
boundary to separate the regions between each class. From the 22 image characteristics
defined in Section 2.2.2, 20 discrete variables were translated to local codification and 2
continuous variables were normalized. A total of 70 variables were used as input of the
neural networks. No feature selection or pruning algorithms were applied to keep the
clinical meaning of the input space. The learning process with ANN (see Section 1.1.1)
consisted in the error minimization between the labels of the training samples and the
outputs of the network by means of the back-propagation algorithm with momentum [29].
The topologies studied in the experiment were composed of one or two hidden layers.
Multilayer perceptrons with one layer can implement decision boundaries linear at inter-
vals. Besides, multilayer perceptrons with two layers can implement any boundary based
on hyperplanes [29]. The number of layers and number of units for each hidden layer
were selected empirically using the CV (k=10) re-sampling procedure over the training
dataset. The number of neurons in the hidden layers varied from 10 to 100. In order to
avoid the over-fitting, early stopping was applied. The stop criterium was Mean Squared
Error (MSE) < 0.01, or differential MSE (|MSEi-MSEi−1|) < 0.000001, or the reach of
a number of cycles ≥ 3000. We have used the Stuttgart Neural Networks Simulator to
train the ANN models of the experiments [30].

Besides, in our STT experiments, the KNN classifier (see Section 1.1.1) was tested
varying k between 1 and 15 with three distance metricsa. The best configuration was the
five nearest neighbors with the L1 distance, but its efficiency was worse than that obtained

aL0(x, y) = max1≤i≤D |xi − yi|, where D is the number of variables.
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Table 2.1: Comparison of Artificial Neural Network (ANN), K-Nearest Neighbor (KNN),
and Support Vector Machine (SVM) methods. Efficiency is expressed as value ±95%
confidence interval. PPV, positive predictive value; NPV: negative predictive value.

Method Efficiency (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)
ANN 92 ± 5 86 95 91 93
KNN 88 ± 6 86 90 84 91
SVM 90 ± 5 84 94 89 89

Table 2.2: Best results obtained with artificial neural network (ANN). One case was not
classified by the network. Distribution of cases into histological groups.

Test / final diagnosis Malignant Benign Unknown Total
Malignant 42 (86%) 6 (12%) 1 (2%) 49

Benign 4 (5%) 75 (95%) 0 (0%) 79
Total 46 81 1 128

with the other two methods, as will be commented upon in the Results. With respect to
the configuration of SVM (see Section 1.1.1) in our experiments, polynomial, Gaussian and
radial basis function were tested kernels, and SVM-light was the used implementation [31].

2.3 Results

We created a database with a set of MRI findings of 430 soft tissue tumors (62% benign,
38% malignant) coming from five different European hospital centres, with the purpose
of developing an automatic benign/malignant classifier of STT by using a set of PR
techniques. The original hospitals of the cases were not available, so, no stratification by
hospital was possible in our experiments.

The best results obtained by classifying the test set of 128 stratified samples with
ANN, KNN, and SVM are shown in Tables 2.2, 2.3, 2.4. A comparative table including
the main evaluation metricsb estimated for each technique is in Table 2.1.

With ANN, the best efficiency (92%) was obtained with 30 neurons in the first hidden
layer and 10 in the second layer, trained with the back-propagation algorithm. Despite the
prevalence of benign classes, sensitivity and specificity were quite good (86 and 95%, re-
spectively). The decision thresholds made one malignant case not be classified (Table 2.2).
Best efficiency with KNN (88%) has been obtained using k = 5 neighbors and L1 distance.
The sensitivity was 86% (Table 2.3) and the specificity 90%. Best efficiency with SVM
(90%) was obtained using a polynomial kernel of 7th degree. The sensitivity (84%) was

L1(x, y) =
D
∑

i=1

|xi − yi| L2(x, y) =

√

D
∑

i=1

(xi − yi)2.

bAccuracy, (TP+TN)/N; N, number of samples; TP, number of true positive samples; TN, number of
true negative samples;

Sensitivity, TP/(TP+FN+UN); FN: number of false negative samples; UN, number of unknown an-
swers;

Specificity, TN/(TN+FP+UN); FP: number of false positive samples;
Positive predictive value, PPV=TP/(TP+FP);
Negative predictive value, NPV=TN/(TN+FN)
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Table 2.3: Best results obtained with KNN. The number of neighbors was k = 5.
Test / final diagnosis Malignant Benign Total

Malignant 42 (86%) 7 (14%) 49
Benign 8 (10%) 71 (90%) 79
Total 50 78 128

Table 2.4: Best results obtained with SVM. They were obtained using a polynomial kernel
(degree 7).

Test / final diagnosis Malignant Benign Total
Malignant 41 (84%) 8 (16%) 49

Benign 5 (6%) 74 (94%) 79
Total 46 82 128

worse than that obtained with the other techniques and specificity 94% (Table 2.4).
ANN reached the best results, with more than 90% in accuracy and specificity coeffi-

cients (Table 2.1). Classifier fusion has been considered, but we have studied the concrete
error cases and only one ANN error is correctly classified by KNN and SVM (Table 2.5).
This result indicates that it is not necessary for the classifier fusion, but it must be con-
sidered in future improvements.

2.4 Discussion

Magnetic resonance imaging clearly depicts STT due to its high-contrast tissue resolution
and multiplanar capability. Correct diagnosis includes the detection, characterization,
and staging of these tumors. The MR differentiation between benign and malignant
tumors is complicated by the low prevalence of these lesions, radiologist’s low experience
in nondedicated hospitals, indirect information of the MR signal intensities, high diversity
of histologies, and natural evolution of the lesions. There is much controversy regarding
the MR value in the differentiation of benign and malignant STT. Although a subjective
analysis has a high sensitivity for malignancy (78%) [23], the statistical combination of
individual MR parameters provides both a high sensitivity and specificity, close to 81% (2).
Our approach was to develop an automatic technique to help radiologists to characterize
benign and malignant STT with high accuracy.

The use of automatic techniques to help in the characterization of STT requires the
homogenization of patient databases. A standard MR protocol that incorporates the
relevant information to characterize STT is very important in an automatic classification
task. For this reason, a standard protocol based on MRI T1-weighted and T2/STIR-
weighted images has been used by MR expert radiologists in this study. The automatic
systems can retrieve the relevant information of the cases, and good classification was
reached because of the quality of the variables extracted by the radiologist. We also did
not use the information generated by contrast-enhanced images because of the diversity
of the data within centers. The usefulness of gadolinium-enhanced MR images, although
widely accepted, did not assist in further narrowing the differential diagnosis compared
with plain MR scans in a large series of cases [32]. Moreover, the lack of uniform imaging
sequences and parameters after contrast administration within the different centers made
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Table 2.5: Errors in benign vs. malignant classification with the Artificial Neural Network
(ANN), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) methods.

True
diagnosis

ANN KNN SVM Histology

Benign Benign Malignant Malignant Lymphomatoid
granulomatosis

Benign Malignant Malignant Malignant Granuloma
Benign Benign Malignant Benign Hemangioma
Benign Malignant Malignant Malignant Localized

pigmented
villonodular
synovitis

Benign Benign Malignant Benign Pseudotumor
Benign Malignant Malignant Malignant Myxoma
Benign Malignant Malignant Malignant Morton’s

neuroma
Benign Benign Malignant Benign Desmiod
MalignantBenign Malignant Malignant Malignant

fibrous
histiocytoma

MalignantUnknown Malignant Benign Malignant
fibrous
histiocytoma

MalignantMalignant Malignant Benign Malignant
fibrous
histiocytoma

MalignantBenign Benign Benign Metastases
MalignantBenign Benign Benign Metastases
MalignantMalignant Benign Malignant Malignant

schwannoma
MalignantMalignant Malignant Benign Myxoid

liposarcoma
MalignantMalignant Benign Malignant Liposarcoma
MalignantMalignant Benign Malignant Synovial

sarcoma
MalignantBenign Malignant Benign Synovial

sarcoma
MalignantBenign Benign Benign Fibrosarcoma
MalignantBenign Benign Benign Fibrosarcoma
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standardization difficult.
It has been important to make a multicentric consortium to recruit the STT database.

A large database was needed to properly develop a general classifier. The use of cases
from different places to train and test the decision-support systems makes it useful to
generalize our results. However, although the series of STTs used in our study was large,
with good results in a multicentric database, the incorporation of new STT categories
and presentations to the study will increase the quality of the decision-task process. All
classifiers yielded significant prediction efficiency (88-92%), with great consensus between
them. The best technique was the ANN with 10 errors over 128 cases (92% of hits).

The similar results of efficiency, sensitivity, and specificity obtained with the three
evaluated techniques may prove that some bias may be due to an inherent biological
overlap. One possible source of bias is the fact that radiologists’ readings were used to
train the clinical decision support system. The use of simple MRI variables, as the ones
used in this study, by the STT classifier with the adaptive approach offered by the PR
discipline will minimize the influence of reading errors from different radiologists.

The practical result of the PR experiments should be a clinical decision-support system
in STT discrimination. This tool is useful because it is an objective method to confirm the
benign/malignant characterization, allows the investigation of suspicious cases, and has
the capability to assist the radiologist’s decision in a new case and aids in the education
of new radiologists’ expertise in STT.

The inductive approximation used in this study enables the system to learn the impor-
tant features of the cases to make a classification into two categories (benign vs. malig-
nant) defined by the values of the variable or character. This STT problem is a dichotomy
classification between two exclusive classes. The main difficulty of this problem is the
heterogeneous constitution of the classes. Each class (benign and malignant) is formed
by a group of histologies of very different origin. Consequently, there is not just one big
cluster per class, making the decision boundary easy to discriminate.

The number of cases in which all the techniques failed is 8 (6% of test set) (Table 2.5).
There are various reasons to explain this circumstance: these cases can be very abnormal
and the learning process has not enough information to extract the discriminative pattern
correctly; the cases are really atypical in their appearance; or the registries have incorrectly
filled variables.

The use of the PR approach in medical research is growing more and more because of
the new possibilities opened by the digitalization of biomedical information. The dispo-
sability of biomedical information in electronic repositories [33] enables the data-mining
studies and research by automatic methods to get new and interesting correlations to
improve human health. The PR approach can help the search for biomedical pointers of
important diseases (like tumors or degenerative diseases) and the development of techno-
logical tools applied to clinical and basic medicine research [5, 6, 9, 10, 34, 35].

Our benign/malignant classification is part of a larger study project on STT computer-
aided diagnosis, including visualization of tumor data, and feature selection and classifi-
cation into different histologies [36, 37]. A Web Services layer and a graphical application
are being implemented in order to allow the use of clinical decision-support systems de-
veloped by the group from distributed application around Internet such as a Web Site,
Desktop Application, Clinical Electronic History, or Telemedicine applications.
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Chapter 3

The influence of combining two echo
times in automatic brain tumor
classification by Magnetic Resonance
Spectroscopy

1H MRS is becoming an accurate, non-invasive technique for initial examination of brain
masses. We investigated if the combination of single voxel 1H MRS at 1.5T at two diffe-
rent TE, Short TE (PRESS or STEAM, 20-32 ms) and Long TE (PRESS, 135-136 ms),
improve the classification of brain tumors with respect to using only one echo time. A
clinically validated dataset of 50 Low-grade meningiomas (MEN), 105 Aggressive tumor:
GBM and MET (AGG), and 30 Low-Grade Glial (LGG) was used to fit predictive models
based on the combination of features from Short and Long TE spectra. A new approach
that combines the two echo times consecutively was used to produce a single data vector
from which relevant features of the two TE spectra could be extracted by means of three
algorithms: Stepwise, ReliefF, and Principal Components Analysis. Least Squares Sup-
port Vector Machines and Linear Discriminant Analysis were applied to fit the pairwise
and multiclass classifiers, respectively. Significant differences in performance were found
when Short TE, Long TE or both spectra combined were used as input. In our dataset,
to discriminate MEN, the combination of the two TE acquisitions produced optimal per-
formance. To discriminate AGG from LGG, the use of Short TE acquisition alone was
preferable. The classifier development strategy used here lends itself to automated learn-
ing and test performance processes, which may be of use for future web-based multicentric
classifier development studies.

This chapter has been published as journal paper in [1].

3.1 Introduction

Brain tumors are the second fastest growing cause of cancer deaths among people older
than 65 yearsa. Nowadays, the diagnosis and treatment of brain tumors is based on
clinical observations, radiological appearance, and often a histopathological diagnosis of

aBTS. The Brain Tumor Society Accessed: January 14, 2008. http://www.tbts.org.
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a biopsy. Information provided by non-invasive radiological techniques is highly relevant
for evidence-based medicine applied to diagnosis, patient management, and surgery [2].

MRI is widely used for determining tumor extension in surgical and radiotherapy
planning. MRI provides a neuroradiological classification with a sensitivity of 14%-100%
depending on the tumor type and the precision of the wording used by radiologist [3].
Proton Magnetic Resonance Spectroscopy (1H MRS) is slowly becoming an additional,
accurate, non-invasive technique for initial examination of brain masses [4, 5]. This is
due to its capability to provide useful chemical information about different metabolites to
characterize brain tumors and its complementary role to MRI [4, 6].

At present, TE used in in-vivo 1H MRS by most studies range between 18 and 288 ms.
A spectrum acquired with a TE < 45 ms is usually considered a Short TE spectrum, and
a Long TE spectrum otherwise. Different criteria have been argued in favor and against
every option, while a few studies [7–11] and multicentric projectsb have defined protocols
based on the acquisition of both Short TE and Long TE spectra from the same patient.

Short TE (20-35 ms) 1H MRS allows to observe several metabolites and other com-
pounds considered useful for tumor classification. Macromolecules (MM; 5.4ppm, 2.9ppm,
2.25ppm, 2.05ppm, 1.4ppm and 0.87ppm) are mostly observed in a Short TE spectra [2],
Myo-Inositol (mI) and Mobile Lipids (ML) are better detected in Short TE [7]. Single
voxel (SV) Short TE 1H MRS is fast (typically 5 min) and robust, so it is very useful for
clinical studies [2, 12]. However, Short TE signals show a large number of overlapping
peaks, a strong MM-/ML-originated baseline and a certain sensitivity to artifacts [13].

Long TE (about 135 ms) 1H MRS is less informative than Short TE, because resonances
with short T2 may be lost [14]. However, Long TE signals are easier to analyze than Short
TE signals [13]. Lipid resonances (1.3 and 0.9ppm) and MM will not be the dominating
components at Long TE, making possible the study of the contributions of lactate (Lac,
doublet at 1.33ppm) and alanine (Ala, doublet at 1.47ppm) as inverted peaks [2, 15].

Many applications of pattern recognition (PR) to cancer research have been reported
in the last two decades [16] and, more specifically, in brain tumor research [5, 17, 18].
In [17], Hagberg summarizes classification of brain tumors with MRS based on pattern
recognition and clustering methods. Eight of these studies were applied to brain tumor
discrimination from normal tissue or other Central Nervous System (CNS) diseases. All
of them were based on Linear Discriminant Analysis (LDA) or Artificial Neural Network
(ANN) applied to relative metabolite levels or Principal Components Analysis (PCA)
transformations, and they were all evaluated by Leave-One-Out cross-validation. More
recent publications have also described results for classification of brain tumors based on
the MR data available within the the INTERPRET project (INTERPRET) project [5],
where linear and kernel-based methods on MRS features extracted by automatic proce-
dures were applied [19, 20]. While [13] was focused on the classification using Long TE 1H
MRS, publications such as [5, 19, 21, 22] carried out experiments with Short TE 1H MRS.
Based on Least Squares Support Vector Machines (LS-SVMs) [23], Devos, Lukas et al.
in [13, 22] developed different classifiers for in-vivo Short TE spectra and Magnetic Reso-
nance Spectroscopic Imaging (MRSI) with good performance. Menze et al. [18] published
an extensive benchmark study of quantitation and PR based feature extraction methods
combined with learning strategies to discriminate between recurrent and non-recurrent

bInterpret acquisition protocols 2000. http://azizu.uab.es/INTERPRET/mrsdata/mrsdata.html.
eTUMOUR acquisition protocols 2003. http://www.etumour.net
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brain tumors using Long TE 1H MRS. They reported that the PR methods perform at
least as well as the ones based on manual quantitation (5%-10% higher accuracy).

To date, nobody has combined Short and Long TE spectra in a single classifier for
predictive purposes by means of automatic systems. Therefore, our aim has been to im-
prove the automatic classification of brain tumors combining the complementary views of
the chemical composition of brain tumors offered by the Short and the Long TE spectra.
Majos et al [11] compared the Long TE and Short TE discrimination capacity in clinical
use. Based on Majos’ results, we are interested in measuring and characterizing if an im-
provement in automatic tumor classification could be achieved by combining both spectra
in a PR model. For this purpose, multiclass and binary classifiers were prepared using the
following approaches: Short TE only, Long TE only, and Long TE and Short TE com-
bined. Multiclass and pairwise classifiers for Low-Grade Meningioma (MEN) [3, 5], AGG,
and LGG, were prepared to test the Combined approach, in contrast to the Long TE and
Short TE approaches. All classifiers were PR based models, that attempted to extract the
maximum information of the physiological state of the tissue directly from the pattern of
the combined view of the two echo times, instead of resonance line quantifications followed
by other approaches [24]. Finally, LDA and LS-SVMs classifiers were based on features
extracted from the combined spectra by means of SW, PCA and ReliefF methods (see
Section 1.1).

The results of this study may be of interest in determining which acquisition conditions
and stages should be taken into account in the development of Decision-Support Systems
for in-vivo brain tumor diagnosis.

3.2 Experimental

3.2.1 Data acquisition and pre-processing

Table 3.1: Samples per class used in the study. Short TE and Long TE 1H MRS data
were acquired during INTERPRET according to a consensus protocol

Superclass Class Samples Total (n)
Aggressive (AGG) Glioblastoma Multiforme (GM) 77

Metastasis (MET) 28 105
Low-grade meningioma (MEN) Low-grade meningioma (MEN) 50 50
Low-grade glial Astrocytoma grade II (A2) 20
mixture (LGG) Oligodendroglioma (OD) 5

Oligoastrocytoma (OA) 5 30
TOTAL 185 185

The combination of Short TE and Long TE was evaluated using a dataset provided by
six international centers in the framework of the INTERPRET project. Table 3.1 shows a
summary of the histopathological classification of tumors included in the study and agreed
by a panel of consulting pathologists, based on the histological classification of the CNS
tumors set up by the World Health Organization [25]. The cases were grouped into three
diagnostic superclasses: AGG, composed of Glioblastoma (GBM) and Metastases (MET),
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with 105 patients; MEN, with 50 patients; and LGG, composed of Astrocytomas grade
II (A2), Oligodendrogliomas (OD), and Oligoastrocytomas (OA), with 30 patients. The
GBM cases were in the age range 9-80, and with mean of 65 years, the MET cases were
in the range 29-80, with a mean of 55. With respect the MEN class, all the cases were in
the range 39-78, and with a mean of 55 years. For the LGG samples, the range was 18-61
with a mean of 25 years.

There were 185 cases in the INTERPRET database [26] with both SV 1H MRS at
Short TE and at Long TE. Data were acquiredc with SV 1H MRS at 1.5T , avoiding areas
of cysts or necrosis and with minimum contamination from the surrounding non-tumoral
tissue. Volume of interest size ranged between 1.5 x 1.5 x 1.5 cm3, (3.4 mL) and 2 x 2
x 2 cm3, (8 mL), depending on tumor dimensions. The aim was to obtain an average
spectroscopic representation of the largest possible part of the tumor. In the acquisition
of Long TE spectra, the PRESS sequence was used, with a recycling time (TR) between
1500 and 2020 ms, TE of 135 or 136 ms, spectral width of 1000 or 2500 Hz and 512
or 2048 data points. Short TE were acquired using PRESS or STEAM sequences, with
TR between 1600 and 2020 ms, TE of 20 or 30 ms, spectral width of 1000 or 2500 Hz
and 512 or 2048 data points. Each spectrum used for training and testing had passed a
quality control based on the validation of both Long TE and Short TE spectra by the
INTERPRET Quality Control (QC) committee [27].

Long TE and Short TE raw data were automatically processed following the well-
established 1H MRS data pre-processing protocol [5] and the quality control procedure
developed during the INTERPRET project. Briefly, water-suppressed free induction de-
cays (FIDs) were corrected for Eddy current effects using the Klose algorithm [28]. An
expert spectroscopist reviewed the signal obtained after the Klose algorithm, and, for a
few cases, manual phase correction was applied. Then, the residual water resonance was
removed using the Hankel-Lanczos Singular Value Decomposition (HLSVD) time-domain
selective filtering. The resulting signal was transformed to the frequency domain by a Fast
Fourier Transform (FFT) with zero-filling to the maximum length of the dataset and a
line broadening of 1Hz was applied. The spectra obtained consisted on 512 values from
−2.7ppm to 7.1ppm, for this, linear interpolation was applied to have the same frequency
sampling for all the signals when needed.

The normalization of the spectral data vectors to the L2-norm was performed based on
the data points in the region [−2.7, 4.33]∪ [5.07, 7.1]ppm. The normalization of Short TE
and Long TE spectra of each patient were made separately. This approach converts the
spectrum in a ratio between the value of each ppm and the whole region; the normalization
with respect to the combined spectra was not considered for not translating the influence
of high peaks of lipids in Short TE to Long TE in the aggressive class. Normalization
with respect to the unsuppressed water peak area was also considered, but preliminary
experiments did not show better performance than the results based on L2-norm.

Afterwards, the baseline offset, estimated as the mean value of the region [11, 9] ∪
[−2,−1]ppm , was subtracted from the spectrum. A frequency alignment of the spectrum
was made referencing the ppm-axis to the total creatine (Cr) at 3.03ppm; or the choline
(Cho) containing compounds at 3.21ppm; or the ML at 1.29ppm, in order of priority and
depending on the signal-to-noise ratio (SNR) and the tumor pattern. Finally, the region

cInterpret acquisition protocols, 2000. http://azizu.uab.es/INTERPRET/mrsdata/mrsdata.html.
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of interest was restricted to the region [0.5, 4.1]ppm, obtaining a vector of 190 points for
each spectrum. See [5, 27] or the INTERPRET web-paged for further details.

The combination of the Long TE spectrum with the Short TE spectrum was done
after the full pre-processing of each spectrum as independent signals.

3.2.2 Combination of the Short TE and Long TE spectra

For this study, we were interested in producing a combination of the Short TE and the
Long TE spectra without introducing any a priori restriction or assumption of relationship
between them.

For combining the signals, different approaches might have been taken into account,
such as ratios between the area-based quantification in Short TE and Long TE of each
metabolite, e.g. the calculation of R2 relaxation rates of metabolites used in [29]. For
these approaches, assumptions about the metabolites that appear in the spectra are done
when quantifying, for this reason they restrict the information used for classification to
the well-known metabolites that appear in both echo times.

Nonetheless, a PR approach for the combination of spectra was followed, i.e., the
selection of features is based on their discrimination properties for each classification task.
For this reason, we considered the more direct approach, the better, and the Long TE
and Short TE vectors were combined by placing the vector of Ds points of the Short TE
spectrum after the vector of Dl points of the Long TE spectrum (see Figure 3.1). In
posterior PR steps, this joint vector, that represents each case of the dataset, is treated
as a (Ds + Dl)-dimensional vector-valued observation of the distribution of the diagnosis.
Then, the discrimination functions may choose simultaneously among the features from
both spectra to solve the proposed prediction model.

As a result, the Combined TE dataset of 185 samples with 380 data points was ob-
tained. To compare the combined approach with single approaches, we also generated the
Short TE dataset composed by 185 samples with the 190 values in the region of interest
of the Short TE spectrum, and the Long TE dataset of 185 samples with the 190 values
in the region of interest of the Long TE spectrum.

3.2.3 Multiclass and binary classifiers with both spectra

Multiclass and binary classifiers were applied to characterize the behavior of the Combined
TE (Long TE + Short TE), in comparison to approaches based on the Short TE or Long
TE alone. Two procedures were applied for dimensionality reduction in the multiclass
classifiers: the SW procedure based on LDA and PCA-based feature extraction with a
LDA classifier. Two procedures were also applied to the binary classifiers: the full spectra
used directly in LS-SVM and the ReliefF feature selection procedure with LS-SVM.

Multiclass classifiers

For multiclass classification, the Linear Discriminant Analysis (LDA) technique was chosen
(see Section 1.1.1). This method has demonstrated its usefulness in many biomedical
applications, having been applied to MRS Decision-Support Systems for brain tumor

dINTERPRET Consortium. Interpret web site Accessed: January 14, 2008.
http://azizu.uab.es/INTERPRET.
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Figure 3.1: The top row (x-axis in ppms, y-axis in arbitrary units (a.u.)) shows the Long
TE spectrum (left) and the Short TE spectrum (right) of INTERPRET case I0016 [26]
corresponding to a glioblastoma. The second row shows the combined spectra (x-axis in
relative position of points in the new data vector, y-axis in a.u.).

diagnosis [5, 24]. One of the advantages of the method is the possibility of plotting the
latent space where the variables are projected. When a multiclass task of three classes
is solved, the latent space is bi-dimensional (2D), and it could be used to visualize the
projection of the samples in a 2D plot.

Before applying LDA, the input space should be reduced in a proper way; for this
study we used two methods, the SW algorithm and the PCA for feature selection and
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extraction (see Section 1.1.2).

Binary classifiers

The binary classifiers developed in this study were based on LS-SVMs (see Section 1.1.1).
Their regularized property allowed us to use the full spectral vector in the classifier deve-
lopment, and compare this with the use of sets of features selected by the ReliefF algorithm
(see Section 1.1.2).

In order to compare the Combined TE approach to the Short TE and the Long TE
approach, LS-SVM classifiers using the full vector, 10, 50 or 100 features selected by means
of the ReliefF algorithm were used.

Evaluation procedures

k-Random Sampling Train-Test (kRSTT) (see Section 1.1.3) with stratified test sets with
150 repetitions was the evaluation procedure used for all the reported experiments. The
partitions for repetitions were random and independent among the experiments with the
training set composed by 70% of cases of each class. The evaluation was carried out in a
nested-loop that covered the feature and model selection in order to avoid underestimation
of the true error. Besides, the Accuracy and the AUC of the ROC (see Section 1.1.4) were
the evaluation metrics used in this study. In our experiments, credibility intervals (see
Section 1.1.4) of the accuracy (1 − τ) were reported in percentage; estimated from the
kRSTT evaluation assuming a test size of one repetition.

The significance of differences among the Short TE, the Long TE and the Combined
TE approaches were tested by means of Friedman’s (F) nonparametric two-way analysis
of variance test. The test was applied to the best models of the Combined TE approach
and their equivalent models for Long TE approach and Short TE approach for each binary
classification. The comparison of the best models for each binary classification was done
by means of the Kruskal-Wallis (KW) nonparametric one-way analysis of variance. When
multiple comparisons were carried out, the results were analyzed using Tukey’s (MCT)
honestly significant difference criterion.

3.3 Results

3.3.1 Multiclass classifiers

Multiclass classifiers discriminate among the three aforementioned superclasses (AGG,
MEN, and LGG) simultaneously. Two alternatives, SW+LDA and PCA+LDA, were
applied to compare the Combined approach with Short TE or Long TE based classifiers.

Table 3.2 shows the kRSTT evaluation of the SW+LDA approach of the multiclass
classifiers applied on the Combined TE, the Short TE, and the Long TE datasets. Based
on the predictions achieved by the different classifiers, some of the cases from the datasets
were singled out for critical review by experts. A case was considered as a potential
outlier when most of the classifiers failed the prediction when testing the case during the
evaluation process (e.g. less than 20% of successes by at less one of the three approaches
in our study). 13 cases were considered potential outliers, four of them are discussed in
section 3.4.1.
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Table 3.2: Results for the multiclass classification among AGG, MEN and LGG. kRSTT
evaluation of the SW approach based on the Ability to Separate (AS) of the predictive
Gaussian linear classifier.

Dataset Accuracy (%) [Credibility Interval] (%)
Combined TE 88.7 [83.6,92.7]

Short TE 88.8 [83.7,92.8]
Long TE 82.5 [76.6,87.5]

Figure 3.2 shows the accuracy of the PCA+LDA classifiers applied to the Combined
TE, the Short TE, and Long TE datasets estimated by kRSTT. The x-axis, the accumu-
lated number of PCs varied from 2 to 15 and in y-axis the accuracy of the PCA+LDA
classifiers varied from 0.7 to 1. In general, it was observed that the combined approach
achieved the best performance of all the models, when accumulating 7 or more PCs ex-
tracted from both Short TE and Long TE spectra.

2 4 6 8 10 12 14

0.
70

0.
75

0.
80

0.
85

0.
90

PCs

ac
c

Figure 3.2: The accuracy (acc) of the multiclass approaches using PCA+LDA vs. number
of principal components (PCs). The Combined TE approach (black solid line and empty
circles) follows the Long TE pattern (green dashed line) in the 3-6 PC region. When more
PCs were incorporated, the Combined TE approach improved due to the contributions of
the Short TE (red dotted line) and the Long TE.
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3.3.2 Binary classifiers

Binary classifiers based on LS-SVMs and ReliefF feature selection were applied to the
three pairwise combinations of the superclasses (AGG vs. MEN, AGG vs. LGG, and
LGG vs. MEN).

Table 3.3: kRSTT evaluation of the LS-SVM for pairwise classification of AGG, MEN
and LGG classes. The percentage of Long TE (LTE) features selected by ReliefF with
respect to the total number of features is shown in brackets in the features columns. CI
is the credibility interval of the Accuracy.

Task Dataset Features Accuracy [CI] (%) AUC
AGG vs. MEN Combined TE 380 [LTE:50%] 95.3 [91.2,97.8] 0.992

Short TE 100 92.6 [87.8,96.0] 0.982
Long TE 190 92.2 [87.3,95.7] 0.975

AGG vs. LGG Combined TE 10 [LTE:0%] 92.6 [87.3,96.1] 0.970
Short TE 10 92.1 [86.7,95.7] 0.966
Long TE 10 90.5 [84.8,94.6] 0.95

LGG vs. MEN Combined TE 50 [LTE:42%] 97.5 [92.6,99.3] 0.996
Short TE 50 96.0 [90.3,98.7] 0.993
Long TE 100 94.5 [88.2,98.0] 0.993

Table 3.3 shows in each row the best models obtained for each pairwise classification
task by means of the Combined TE, the Short TE and the Long TE approaches. For
each result, we report the accuracy with its credibility interval and the AUC of the ROC
to compare the behavior in Sensitivity and Specificity of the model. For the best model
of the Combined approach, we report in the Features column the percentage of Long TE
features used by the model with respect to the total number of features.

dAn overview of Table 3.3 indicates that the Combined TE approach is the best model
when discriminating MEN from AGG or LGG. On the other hand, when discriminating
LGG from AGG the Combined TE approach obtains the same performance as the Short
TE approach. This may be because the ReliefF algorithm selected a combination of
10 features originating from the Short TE spectra. Table 3.4 summarizes the results
of a statistical significance test of the difference among the three models, in which the
Friedman test of the Combined TE, the Short TE, and the Long TE approaches reveals
significant differences among them. In the pairwise comparison, the Combined TE and
the Long TE are significantly different (p<0.05, Friedman’s test); the Combined TE and
the Short TE were not significantly different from each other (p>0.05); and the Short
TE and the Long TE models were not significantly different either (p>0.05). When
comparing the best models of the AGG vs. MEN binary classifiers, the Combined TE
approach outperformed the Short TE and Long TE approaches (p<0.05, Kruskal-Wallis
test); however, the differences in performance with respect to the Short TE and the Long
TE approaches were not statistically different (p>0.05).

The Sensitivity, Specificity, Positive Predictive Value (PPV) and Negative Predictive
Value (NPV) have displayed exactly the same behavior than the accuracy and the AUC
for each comparison task. Namely, when discriminating MEN from any other class, there
is an increase of the four performance measurements with the Combined TE approach.
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Table 3.4: Summary of the significance of difference tests among different approaches.
Friedman’s (F) nonparametric two-way analysis of variance test, Kruskal-Wallis (KW)
nonparametric one-way analysis of variance and Tukey’s (MCT) honestly significant diffe-
rence criterion were used.

Three classifiers AGG vs. AGG vs. LGG vs.
MEN LGG MEN

Significance test
(p < 0.05)

Yes (F) Yes (KW) Yes (KW) Yes (KW)

Combined TE vs.
Short TE (MCT)

No Yes No Yes

Combined TE vs.
Long TE (MCT)

Yes Yes Yes Yes

Short TE vs. Long
TE (MCT)

No No Yes Yes

When discriminating AGG from LGG, the Sensitivity, Specificity, PPV and NPV of the
Combined TE approach achieve the same performance as the Short TE approach.

3.4 Discussion

When comparing the multiclass classifiers based on the SW feature selection and LDA,
the behavior of the Combined TE approach and the Short TE approach is similar. This
may be because in the kRSTT repetitions, the most contributing features selected by
the algorithm were mainly from the Short TE spectrum. The accuracy of the Long TE
approach is considerably lower than the accuracy of the other two approaches. Even
though some Long TE features were selected for the Combined TE models, they did not
contribute as much as the Short TE features did.

Figure 3.3 shows the in-vivo Long TE (left) and Short TE (right) average spectra [5]
for AGG (solid line), LGG (dotted line) and MEN (dashed line) diagnosis. The first row
shows in black dashed-dotted line the number of selected points around each ppm in a
0.1ppm window when the SW algorithm is applied to the Combined TE approach. The
second row shows in black dashed-dotted line the number of selected points around each
ppm in a 0.1ppm window when the SW algorithm is applied to the Long TE approach (left)
and the Short TE approach (right). It is clearly shown how ppm with contributions of the
main metabolites and molecules reported in the MRS literature for brain tumor typing
and grading are frequently selected (e.g. Cr, Cho, NAA, Lipids). Both Combined and
Single approaches follow similar behaviour for selecting Short TE and Long TE features.
Namely, ML and Lac at about 1.3ppm, alanine at about 1.5ppm, Glx in the [2, 2.5]ppm
range, total Cr at about 3ppm, Cho containing compounds at about 3.2ppm, taurine at
about 3.4ppm, mI/Gly at about 3.55ppm and Glx/Ala at about 3.76ppm, in agreement
with previous data from extracts [30], biopsies [31] or other in vivo data [2, 32]. Comparing
the frequencies of selection in Long TE ans Short TE, it is seen that the selection in Long
TE is totally focused in the well-known metabolites, but in Short TE the selection is more
sparse, confirming the contributions of mixtures of metabolites and molecules useful for
classification along the region of interest.
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Figure 3.3: In-vivo Long TE (left) and Short TE (right) average spectra [5] for AGG (solid
line), LGG (dashed-dotted line) and MEN (dashed line) diagnosis. The first row shows
in black dashed-dotted line the number of selected points around each ppm in a 0.1ppm
window when the SW algorithm is applied to the Long TE approach (left) and the Short
TE approach (right). The second row shows in black dashed-dotted line the number of
selected points around each ppm in a 0.1ppm window when the SW algorithm is applied
to the Combined TE approach.

When the PCA+LDA methodology was applied, the expected accuracy using the
combined spectra was, in general, higher than the accuracy observed when using only
the Short TE or the Long TE datasets. It is clearly shown (Figure 3.2) that the combined
approach achieved the best performance when accumulating 7 or more PCs extracted
from both Short TE and Long TE spectra. In a more detailed analysis of Figure 3.2,
we can distinguish three regions in the accuracy curve of the Combined TE approach: 1)
when the two first PCs were used, its accuracy was lower than the one achieved by the
Short TE approach; 2) when 3 to 6 PCs were cumulatively added in to the model, its
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behavior followed the Long TE model, but it had better accuracy due to the contribution
of Short TE; 3) when 7 to 15 PCs contributions were cumulatively added, the Combined
TE performance increased significantly, immediately after the increase obtained in the
Short TE approach at 6 PCs. The Combined TE approach achieved the best accuracy
already with 8 PCs. In summary, the main discriminative contribution of the Long TE
was accumulated by the PCA in the first PCs of the Combined TE model, while the main
discriminative contribution of the Short TE was accumulated in posterior PCs. The good
behavior of the Combined TE approach highlights the fact that the simultaneous use of
features of the two spectra may improve the predictive capacity of automatic brain tumor
classification.

With respect to the binary classifiers, in the AGG vs. MEN classifiers, the Combined
TE approach outperformed both the Short TE and Long TE approaches with a significant
difference. Both Short TE only and Long TE only models produced good results indivi-
dually. Hence, the results obtained by the combination classifier were to be expected. In
the AGG vs. LGG classifiers, the best Combined TE model used 10 features, from which
any of them were Long TE features in any of the 150 repetitions. This may be due to a bet-
ter individual discriminatory power of the Short TE features, since the ReliefF algorithm
selected Short TE features before Long TE features. In the LGG vs. MEN classifiers, the
Combined TE approach outperformed the Short TE approach and the Long TE approach
with significant difference. Significant differences were also obtained when comparing the
Short TE and the Long TE approaches. All the models for distinguishing LGG vs. MEN
produced similar good behavior. A large percentage of the Long TE features were used
in the 50- and 100-feature models, where improvements were obtained with respect to the
Short TE and Long TE models. Both Short TE only and Long TE only models produced
good results individually. Hence, the results obtained by the combination classifier were
expected.

Our results show that the combination of both Short and Long TE obtains the best
results when discriminating between MEN and the other two superclasses (AGG, LGG).
On the other hand, the acquisition of Short TE is sufficient to distinguish between AGG
and LGG. Besides, Sensitivity, Specificity, PPV and NPV of the models follow exactly
the same behaviour than the discussed accuracy and AUC. These results are consistent
with those described in Majos et al. [11] who evaluated the possible improvement of using
two echo times spectra for clinical classification of brain tumors. In their study, tumor
classification was slightly better using Short TE than Long TE, but they obtained the best
results when the classification obtained at the two TEs agreed. Also, a preliminary study
carried out by Tortajada et al [33] on the INTERPRET database showed an improved
accuracy using the Combined TE approach after using LDA and SW feature selection
methods for descriptive purposes.

3.4.1 Discovery of outliers by the automatic classifiers

Further analysis of some misclassified cases showed abnormal profiles, although they were
validated as usable during INTERPRET. Here we discuss four interesting cases detected
as potential outliers by the SW-based multiclass classifiers.

There was one MEN case (I0009, see Figure 3.4, top-left) that showed an abnormal
profile for a low-grade meningioma with a clear pattern of lipids at 1.3ppm and 0.9ppm.
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Figure 3.4: Four potential outliers detected by the multiclass classifiers are shown here.
The I0009 (Top-left) was validated as MEN [26], the I1390 (top-right) was validated as
glioblastoma. The I0063 (bottom-left) was validated as a glioblastoma, and the I0450
(bottom-right) was validated as an oligoastrocytoma. The Short TE is represented by
solid lines and the Long TE is represented by dashed lines.

53



Chapter 3. The combination of two TE in BT by MRS

This case was a secretory meningioma in which the representative MRI with the voxel
location showed that the possibility of a contamination by subcutaneous fat could not be
ruled out (see Figure 3.5, left).

There was also a glioblastoma that was misclassified (I1390, see Figure 3.4, top-right),
where normal tissue contribution could potentially contaminate the profile (see Figure 3.5,
right). Moreover, phasing of the Short TE was suboptimal at about 1.3ppm while the Long
TE showed an atypical profile for a glioblastoma (see Figure 3.4 and [5]), with a Cho/Cr
ratio close to 1 and some visible NAA, which might be expected from compromised brain
parenchyma but not from a high grade glial tumor.

There was another glioblastoma (I0063, see Figure 3.4, bottom-left) that did not show
the typical necrotic pattern with clear lipid signals at 0.9 and 1.3ppm that is normally
found in most of these tumors. It showed a distinctive mI peak at 3.55ppm instead,
which constitutes the strongest signal at Short TE. At Long TE, the signal at 3.55ppm
disappeared, confirming the contribution of mI to this resonance [7]. The spectral pattern
of this case closely resembled the average pattern of LGG tumors. Although it has also
been pointed out [34] that this pattern could correspond to the less common subtype
of secondary Glioblastomas, there are not enough representative data of this subtype
available in the database for its proper distinction.

Finally, there was also an oligoastrocytoma (I0450, see Figure 3.4, bottom-right) that
shows a clear signal from ML at Short TE which disappears at Long TE. Note that the
intensity of the 0.9ppm peak was equal to the intensity of 1.3ppm peak, which is fairly
unusual. The Mobile lipids (ML) profile observed at Short TE disappeared at Long TE.
The reason for this case appearing as a misclassified outlier would be that the Short TE
and the Combined TE models were deceived by its atypical, pseudo-necrotic, ML profile.
This profile is characterized by a pattern in which the most intense peaks are those of
methyl (0.9 ppm) and methylene (1.3 ppm), being of the same amplitude and height, or
even with a methyl of higher intensity. On the other hand, Long TE classifiers had much
better success (89.4%) in correctly classifying this case. This reinforces the complementary
nature of the Short and the Long TE information. It also points to the fact that, in certain
instances, such as artifacts or uncommon spectral patterns, it may be necessary to resort
to the single TE based prediction results.

3.4.2 Possible use of the combined approach in a Decision Sup-
port System

The incorporation of the optimal classifier in a DSS may be of interest to clinicians to
reinforce their confidence in the diagnosis of common cases, as well as in cases where
the diagnosis is non-typical. An interesting 2D visualization of the "cases universe" [5] for
descriptive purposes can be obtained from the latent space provided by the LDA multiclass
classifier. Figures 3.6, 3.7, 3.8 show the LDA latent space for the best classifiers obtained
by each of the approaches in the kRSTT procedure. Every misclassification of Long TE
(cases #8-12 in the figure) is correctly projected on the Combined TE plot. Besides,
only two misclassification of Short TE (cases #3,#7) are misclassified in the combination
of both TE. Therefore, the projection of the best model obtained from the Combined
TE approach provides a visually better discrimination of the training set cases than the
best Short TE or Long TE best models. If a new case maps close to typical neighbors,
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I0009, Meningioma

I1390, Glioblastoma

Figure 3.5: MRI scans and voxel localization of potential outliers I0009 (Top, T2-weighted
scan) and I1390 (Bottom, T1-weighted post-contrast scan). I0009 case was validated as
meningioma and the superior limit of the voxel was close to the calotte, a situation in which
contamination by subcutaneous fat is likely to occur. I1390 was validated as glioblastoma
and the voxel included an important percentage of non-enhancing parenquima, apparently
normal, which could produce a mixed tumoral/non-tumoral MRS profile.
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confidence in the diagnosis will be reinforced. If a new case maps close to non-typical
neighbors, new doubts may arise leading to a better diagnosis.

3.4.3 Final considerations

There are still many remaining challenges in brain tumor classification by 1H MRS. One
of the most important ones is the limited number of available spectra per tumor type [3].
This is due to the specific epidemiological distribution of tumors, with classes that have
extremely low prevalence [35], and the increasing recognition of brain tumor molecular
subtypes [36, 37]. For example, the inclusion of more Low-Grade Glial tumors in the
training set might make possible to carry out studies to discriminate among astrocy-
tomas, oligodendrogliomas, and oligoastrocytomas. Moreover, the presence of noise and
artifacts in the spectra, even after the elimination of the dominating water peak, affects
the "quality" of the information available. The Glioblastoma vs. Metastasis discrimi-
nation by means of the MRS is difficult with the use of SV spectroscopy. Approaches,
such as MV spectroscopy or acquisition of an additional adjacent voxel to the brain mass
should provide convenient information for distinguishing between these two types of tu-
mors [38, 39]. In further works, we will study the predictive capacity of automatic brain
tumor classification taking into account the quality of the training and the test samples,
in order to characterize the robustness of the classifiers against the appearance of ab-
normalities in real environments. Two multicentric European projects, eTUMOUR and
HEALTHAGENTS [40], are trying to improve the results obtained in the INTERPRET
project. These projects include the compilation of an extended collection of 1H MRS data
from brain tumors, with ex-vivo data which may further increase the number of molecu-
lar tumor subtypes. Additionally, the ability to automatically train and mathematically
validate tumor type classifiers that has been demonstrated in this work may facilitate the
compilation of data from centers around the world, as targeted in the HEALTHAGENTS
project. This should enable researchers to produce classifiers for tumor molecular subtypes
that are currently beyond the reach of traditional databases.

3.5 Conclusions

This study focused on the use of Short TE and Long TE 1H MRS to improve automatic
brain tumor diagnosis of the most prevalent brain tumors in humans [3]. The LDA classifier
for the three classes based on features extracted from both TE provided a new latent space
representation useful for its incorporation into Decision Support Systems. Additionally,
LS-SVM obtained high performance in every binary classification problem. Also, the
regularization property of LS-SVM allowed the increase of the number of features in the
combination of both TE. The most important finding of this study is that significant
differences in the performance of automated classifiers generated with SV 1H MRS data
have been found. Complementary information was obtained by combining the two spectra,
which can be used to improve the automatic classification of brain tumors following a PR
approach. The Combination of Short TE and Long TE in a single classifier performed
better in several instances than the use of one TE 1H MRS only.
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Figure 3.6: Projection of the SW+LDA latent space (or "universe of cases") for the best
model obtained in the kRSTT procedure by the Short TE approach for the multiclass
classification. A symbol represents a tumor sample projected in the latent space. In the
projection, the space is divided into three different regions by the decision boundary and
the black triangle labels the class centroid. These regions correspond to each brain tumor
class: MEN (blue stars), AGG (red inverted triangles) and LGG (green circles). Any
misclassified sample at Short TE is labeled with a black square (numbered #1-7).
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Figure 3.7: Projection of the SW+LDA latent space (or "universe of cases") for the best
model obtained in the kRSTT procedure by the Long TE approach for the multiclass
classification. Symbols are the same as in Figure 3.6. Any misclassified sample at Long
TE is labeled with a black circle (numbered #8-12).
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Figure 3.8: Projection of the SW+LDA latent space (or "universe of cases") for the best
model obtained in the kRSTT procedure by the Combined TE approach for the multiclass
classification. Symbols are the same as in Figure 3.6. Any misclassified sample at the
Combined TE is labeled with a double black square(#3,#7). Every misclassification of
Long TE (#8-12) (Figure 3.7) is correctly projected on the Combined TE plot. Besides,
only two misclassifications at Short TE (#3,#7) (Figure 3.6) are misclassified in the
Combination of both TE. Therefore, the projection of the best model obtained by the
Combined TE approach provides a better visual discrimination than the best Short TE
or the best Long TE models.
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Chapter 4

Modelling of Magnetic Resonance
Spectra using mixtures for binned and
truncated data

MRS provides the biochemical composition of a tissue under study. This information is
useful for the in-vivo diagnosis of brain tumors. Prior knowledge of the relative position
of the organic compound contributions in the MRS suggests the development of a proba-
bilistic mixture model and its EM-based Maximum Likelihood Estimation for binned and
truncated data. Experiments for characterizing and classifying Short TE spectra from
brain tumors are reported.

The core of this chapter has been published as a chapter of proceedings in [1]. Sec-
tion 4.4.2 was included in this chapter to classify brain tumors by means of the parametric
spaces of the introduced mixture models for the Short TE, the Long TE, and the com-
bination of both TE. The evaluation procedure carried out here is similar to the one in
Chapter 3.

4.1 Introduction

MRS exploits the magnetic properties of 1H nuclei to provide information about the
concentration of the compounds of materials. This makes MRS useful as non-invasive
technique for brain tumor diagnosis. The MRS signals are typically interpreted in the
frequency domain by visual or automatic procedures to characterize the contribution of
the biological compound in the tissue. The amplitude of a compound is proportional to
its concentration. This motivates the fitting of MRS spectra by mixture density models.

MRS spectra are typically analyzed by two different approaches. The first approach
estimates the underlying model composed by mixtures of components to quantify the
concentration of the metabolites. Frequency-domain [2] or time-domain [3] fitting methods
based on signal processing are applied to the signals. The second approach extracts
features from the spectra using univariate-, multivariate-statistics or PR methods [4] based
on their usefulness on discrimination or regression.

This work proposes the definition and estimation of a probabilistic model based on
binned and truncated data to fit 1H magnetic resonance spectra using prior knowledge
about the relative position of the components of the organic compounds observed in the
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tumoral masses of the brain. The estimated parameters for each spectrum summarize the
information from the biological compounds and they are used as features in classification
problems of brain tumor diagnosis.

Mixture modelling has been applied in some applications where data are available only
in bins and may not be provided along the whole range [5–7]. In [5], red blood cells were
collected as volume distributions from a Coulter counter to study the disease status of
animals exposed to Anaplasma marginale. The problem in MRS is similar to the previous
problems in the sense that contributions of a mixture of biological compounds are assumed
to be observed as counts of bins in a range of the ppm-axis. We present an adaptation
of the Expectation-Maximization (EM) for fitting MR spectra, qualitative results in the
characterization of spectra and quantitative results in the classification of brain tumors
by the use of the estimated parameters.

The rest of the chapter is organized as follows. In sections 4.2 and 4.3, the probabilistic
model and its EM-based Maximum Likelihood Estimation are presented. Then, results
using MRS spectra of brain tumors are reported in section 4.4.2.

4.2 Probabilistic model

Let X be a sample space partitioned into B bins, X1, . . . ,XB, of which only the counts on
the first B′ bins can be recorded, while the counts on the last B−B′ can not. For instance,
in the univariate case, the first B′ bins may be delimited by B′ + 1 points, p0, p1, . . . , pB′ ,
such that p0 < p1 < · · · < pB′ and Xb = (pb−1, pb], b = 1, . . . , B′. N independent samples
(draws) from X are made, but our measuring instrument reports only the number of
samples falling in each of these first, observable B′ bins, but fails to report similar counts
for samples out of them, in the B − B′ truncated regions (e.g. (−∞, p0] and (pB′ ,∞)).

Let N
′ = (N1, . . . , NB′) be the vector of observed counts and let N ′ =

∑B′

b=1 Nb.
Clearly, the probability of N

′ can be computed by marginalisation of the joint probability
of both, observed and truncated counts,

p(N ′) =
∑

NB′+1,...,NB

p(N) (4.1)

where N = (N1, . . . , NB′ , NB′+1, . . . , NB) is the complete vector of counts. We do not
know the truncated counts, nor even the total number of samples N , but we know that
N has a multinomial distribution defined by N samples from B categories,

p(N) =
N !

∏B
b=1 Nb!

B
∏

b=1

p(b)Nb (4.2)

where p(b) is the probability for a sample to fall in bin Xb, b = 1, . . . , B.
We assume that (4.2) can also be computed by marginalisation of the joint density for

counts and (missing) samples,

p(N) =

∫

dX p(N , X) (4.3)
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where X = (X1, . . . , XB) is the whole collection of N independent samples, Xb =
(xb1, . . . , xbNb

) is the collection of those Nb from bin Xb (b = 1, . . . , B), and

p(N , X) =
N !

∏B
b=1 Nb!

B
∏

b=1

Nb
∏

n=1

p(xbn) (4.4)

where p(xbn) is the (unknown) probability density for a sample from bin Xb.
At this point, we assume that samples come from a common probability density func-

tion, irrespective of their originating bins. This density function is a parametric, C-
component mixture,

pΘ(x) =
C

∑

c=1

πc pΘ′(x | c) (4.5)

where Θ = (π,Θ′) is the parameter vector of the mixture; π = (π1, . . . , πC) is the vector
of mixture coefficients, subject to

∑

c πc = 1, and Θ
′ includes the parameters required to

define each mixture component pΘ′(x | c), c = 1, . . . , C. As usual with finite mixtures, we
may think of x as an incomplete component-labelled sample which may be completed by
addition of an indicator variable (component label) z ∈ {0, 1}C with 1 in the position of
the indicated component and zeros elsewhere. Therefore, we can rewrite (4.5) as

pΘ(x) =
∑

z

pΘ(x, z) (4.6)

with

pΘ(x, z) =
C

∏

c=1

(πc pΘ′(x | c))zc (4.7)

By substitution of (4.7) in (4.6), (4.6) in (4.4) and some straightforward manipulations,
we can rewrite (4.4) as

pΘ(N , X) =
∑

Z

pΘ(N , X, Z) (4.8)

where Z is the collection of component labels for X , that is, Z = (Z1, . . . , ZB), with
Zb = (zb1, . . . , zbNb

) and zbn ∈ {0, 1}C (b = 1, . . . , B; n = 1, . . . , Nb); and

pΘ(N , X, Z) =
N !

∏B
b=1 Nb!

B
∏

b=1

Nb
∏

n=1

C
∏

c=1

(πc pΘ′(xbn | c))zbnc (4.9)

Note that we have added the parameter vector Θ as a subscript to the joint densities
pΘ(N , X) and pΘ(N , X, Z) to emphasize their dependence on the parameters governing
the hidden mixture (4.5).

Now, by substitution of (4.8) in (4.3), and (4.3) in (4.1), we can write our probabilistic
model as

pΘ(N ′) =
∑

NB′+1,...,NB

∫

dX

∑

Z

pΘ(N , X, Z) (4.10)

Note that pΘ(N ′) can be seen as an incomplete model which results from marginalisation
(many-to-one mapping) of the complete model pΘ(N , X, Z).

67



Chapter 4. MRS mixture modelling by binned and truncated data

Obviously, model (4.10) still needs adoption of a particular parametric form for the
mixture components. Taking into account the specific application considered in this work,
we will assume that samples are drawn from a C-component mixture of univariate normal
densities, of means known up to a global shift µ0, and independent variances σ2

1, . . . , σ
2
C ;

that is, for all c = 1, . . . , C,

pΘ′(x | c) ∼ N(µ0 + δc, σ
2
c ) (4.11)

where δc is the known displacement from µ0 of the cth component mean. Thus, the vector
of parameters governing the mixture components is Θ

′ = (µ0, σ
2
1, . . . , σ

2
C).

4.3 EM-based maximum likelihood estimation

Maximum likelihood estimation of Θ using the EM algorithm has been previously consi-
dered in [5] and [6] for the univariate and multivariate normal cases, respectively.

Let consider X = {x1, . . . , xN} to be a sample of N cases randomly drawn from
p(x;Θ). The log-likelihood of Θ w.r.t. the sample would be

L(Θ; X) = log p(X;Θ) =

N
∑

n=1

log p(xn;Θ).

For some interesting forms of p(x;Θ) (as mixture models), the finding of the estimation
Θ̂ that maximizes 4.3 by taking its derivates may be complicated, and is on these cases
where the EM algorithm can help. The EM algorithm [8] considers the sample X to be
incomplete data which can be completed by addition of missing data, e.g. Y, Z.

Equation 4.3 is the marginalization over the domain of the hidden continuous variable
Y and discrete variable Z that results in the many-to-one mapping from the complete
model to the incomplete model.

p(X;Θ) =

∫

Y

dy
∑

Z

p(X, Y, Z,Θ).

The EM algorithm estimates the Θ̂ in a two-steps iterative process till convergence.
The E-step computes the expected value of the logarithm of p(X, Y, Z;Θ) with respect ot
the observed variables and the (k) estimation of Θ,

Q(Θ|Θ(k)) = E(log p(X, Y, Z;Θ)|X,Θ(k))

The M-step maximizes Equation 4.3 to obtain a new estimation of Θ,

Θ
k+1 = arg max

Θ
Q(Θ|Θ(k)).

Our case is similar to, but slightly different from the general, parameter-independent
univariate case. More precisely, the general univariate model assumes that component
means are independent, while in our model all of them are known up to a global shift.
This makes our estimation problem simpler, but the EM algorithm is almost identical.
In what follows, we briefly review the EM algorithm for the general model and then we
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provide the necessary modifications for our modelling variation. The reader is referred
to [5] for more details.

The log-likelihood function of Θ w.r.t. a given N
′ is

L(Θ; N ′) = log
∑

NB′+1,...,NB

∫

dX

∑

Z

pΘ(N , X, Z) (4.12)

which is exactly the logarithm of pΘ(N ′) as defined in (4.10), but interpreted as a function
of Θ only, and assuming that mixture components are univariate normals. The EM
algorithm maximises (4.12) iteratively, through the application of two basic steps in each
iteration: the E(xpectation) step and the M(aximisation) step. On the one hand, the E
step computes a lower bound of (4.12) for all Θ; the so-called Q function,

Q(Θ | Θ(k)) = E[log pΘ(N , X, Z) | N
′,Θ(k)] (4.13)

that is, the expectation of the logarithm of the complete model, conditional to the incom-
plete data, N

′, and a current estimation of the model parameters, Θ
(k). On the other

hand, the M step obtains a new estimate for Θ, Θ(k+1), by maximisation of the Q function,

Θ
(k+1) = arg max

Θ
Q(Θ | Θ(k)) s.t.

∑

c

πc = 1 (4.14)

Given an initial value of the parameters, Θ
(0), these two steps are repeated until conver-

gence to a local maximum of the likelihood function.
Ignoring an additive term not involving Θ, the Q function can be written as

Q(Θ | Θ(k)) =
C

∑

c=1

B
∑

b=1

N
(k)
b Eb[z

(k)
c (xb)(log πc + log pΘ′(xb | c)) | N

′,Θ(k)] (4.15)

where N
(k)
b is the expected number of samples drawn from bin Xb,

N
(k)
b =











Nb if b ≤ B′

N ′ p(b)(k)

∑B′

b′=1 p(b′)(k)
otherwise

(4.16)

with p(b)(k) being the probability for a sample to fall in bin Xb,

p(b)(k) =

∫

Xb

dx pΘ(k)(x) (4.17)

The expectation in (4.15) is with respect to a sample xb from bin Xb; i.e., with respect to
the truncated density of the bin Xb

ptrunc

Θ(k) (xb) =
pΘ(k)(xb)

p(b)(k)
(4.18)

and involves the posterior probability for xb to belong to component c of the mixture,
given a current parameter estimate Θ

(k),

z(k)
c (xb) =

π
(k)
c pΘ′(k)(xb | c)

pΘ(k)(xb)
(4.19)
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Maximisation of (4.15), as indicated in (4.14), leads to the following re-estimates for each
component c (c = 1, . . . , C)

π(k+1)
c =

∑B
b=1 N

(k)
b Eb[z

(k)
c (xb) | N

′,Θ(k)]
∑B

b=1 N
(k)
b

(4.20)

µ(k+1)
c =

∑B
b=1 N

(k)
b Eb[xb z

(k)
c (xb) | N

′,Θ(k)]
∑B

b=1 N
(k)
b E[z

(k)
c (xb) | N

′,Θ(k)]
(4.21)

σ2(k+1)
c =

∑B
b=1 N

(k)
b Eb[(xb − µ

(k+1)
c )2 z

(k)
c (xb) | N

′,Θ(k)]
∑B

b=1 N
(k)
b E[z

(k)
c (xb) | N

′,Θ(k)]
(4.22)

where, as in (4.15), all expectations are with respect to the truncated density (4.18). Their
derivations were shown by McLachlan and Jones in [5, 9].

Equations (4.20), (4.21) and (4.22) are the basic equations of an EM iteration in
the general, parameter-independent univariate case, EM for Binned and Truncated Data
(EMBTD). In our case, EM for Binned and Truncated Data with related means (EMBTDr),
with means known up to shift µ0, the basic equations are (4.20), (4.22) and µ

(k+1)
c =

µ
(k+1)
0 + δc, c = 1, . . . , C, where

µ
(k+1)
0 =

∑C
c=1

∑B
b=1 N

(k)
b Eb[(xb − δc) z

(k)
c (xb) | N

′,Θ(k)]
∑C

c=1

∑B
b=1 N

(k)
b Eb[z

(k)
c (xb) | N

′,Θ(k)]
, (4.23)

4.4 Experimental Results

The mixture models presented in the previous sections were applied to the INTERPRET
dataset [10] used in the experiments of the Chapter 3.

The a priori information from biochemical knowledge used in the experiments was
the CS (in ppm units) of the metabolites Lipid resonance at 0.92 ppm (L2) (0.92),
Glutamate/Glutamine (Glx) (2.04), Lipid resonance at 1.29 ppm (L1) (1.29), Glx(2)
(2.46), Lactate (Lac) (1.31), Glx(3) (3.76), Alanine (Ala) (1.48, 1.46), myo-Inositol (mI)
(3.26), N-Acetyl groups (NAc) (2.02, 2.00), mI(2) (3.53), Creatine (Cr) (3.03), mI(3)
(3.61), Cr(2) (3.92), Taurine (Tau) (3.25), Choline (Cho) (3.19), Tau2 (3.42), Glycine
(Gly) (3.55), Ala(2) (3.78).

The initialization of the EMBTD and EMBTDr, in the experiments below, were esta-
blished in a similar way to make comparable the results between them and with the results
obtained in Chapter 3. The initial means of the components for the EMBTD were the
typical CS of the metabolites described above. In EMBTDr, global shift µ0 was set to 0
and the displacements of the metabolites were set to their typical CS. For both algorithms,
the prior probabilities and variances were equally established for every metabolite.

As a descriptive summary, Figures 4.1, 4.2, 4.3 show the main behaviour of the EMBTD
and EMBTDr estimates. In the Figure 4.1, the parameters estimated by both EMBTD
and EMBTDr are quite similar, hence the spectrum is fitted in a similar way. In the
Figure 4.2, the related means restriction incorporated in the EMBTDr model keeps the
position of the compounds better than the EMBTD model according to the underlying
biological mixture. In the Figure 4.3, the EMBTD model fits a lipid contribution at
2.75ppm not specified in the prior knowledge, but the meaning of the initial components
based on biological knowledge is lost.
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0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

X (ppm)

Figure 4.1: Spectrum (1/3) showing the behaviour of the EMBTD and EMBTDr models.
Real spectra are drawn in solid red lines, EMBTD models in dashed black lines and
EMBTDr in double-dashed green lines. µc are marked with dotted gray vertical lines, µ̂c

of each model are marked with a small green vertical line for EMBTD and two black dots
for EMBTDr.
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0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

X (ppm)

Figure 4.2: Spectrum (2/3) showing the behaviour of the EMBTD and EMBTDr models.
Symbols are the same as in Figure 4.1.
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Figure 4.3: Spectrum (3/3) showing the behaviour of the EMBTD and EMBTDr models.
Symbols are the same as in Figure 4.1.
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Table 4.1: Mean of the difference between the estimated shifting of the components by
the EM algorithms with respect to the typical CS

EMBTD EMBTDr
µc − µ̂c 0.0079 0.0022

Table 4.2: Results for the multiclass EMBTD-parametric-based classification among AGG,
MEN and LGG. kRSTT evaluation of the SW approach based on the Ability to Separate
(AS) of the predictive Gaussian linear classifier.

Dataset Accuracy (%) [Credibility Interval] (%)
Combined TE (EMBTD) 84.5 [83.7,85.3]
Combined TE (EMBTDr) 83.2 [82.4,84.0]

Short TE (EMBTD) 85.1 [84.4,85.9]
Short TE (EMBTDr) 83.1 [82.3,83.9]
Long TE (EMBTD) 68.7 [67.7,69.6]
Long TE (EMBTDr) 62.5 [61.5,63.6]

4.4.1 Fitting of the model to the resonances of the metabolite

In the first experiment, we measured the mean of the differences between the estimated
shifting (µ̂c) of the components with respect to the typical CS (µc). None or small shift-
ing is assumed in the spectra of the database. Therefore, the smaller the difference, the
closer the estimated component is to the organic compound. Table 4.1 shows the results
obtained by EMBTD and EMBTDr on the MRS database. The differences obtained by
both models are small, considering that the range is 3.6ppm and the frequency resolution
0.02ppm. However, the difference obtained on average by EMBTD is 3.6 times the diffe-
rence obtained by EMBTDr. Hence, EMBTDr keeps better the position of the biological
compound in the estimated model.

4.4.2 Brain Tumor classification based on the EMBTD and EM-

BTDr parametric-spaces

In the second study, the (π̂) parameters estimated by the EMBTD and EMBTDr were
the inputs of the classifiers of the multiclass and binary problems studied in Chapter 3.
Hence, the combination of Short TE and Long TE spectra by means of the combination
of their EMBTD and EMBTDr parametric-spaces were compared with the Short TE and
Long TE parametric-spaces alone. The multiclass classifier was based on LDA. Besides,
the binary classifiers were based on LSSVM to make comparables these new results with
the ones obtained in Chapter 3.

Table 4.2 shows the results for the multiclass parametric-based classifications among
AGG, MEN and LGG. The evaluation of the models was kRSTT, similar to the one used
in Chapter 3. Generally speaking, the EMBTD-based and EMBTDr-based multiclass
classifiers did not outperform the SW-LDA classifiers obtained in Chapter 3. As in the
SW-LDA model for the multiclass problem, the Combined TE models follow the Short TE
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Table 4.3: kRSTT evaluation of the LS-SVM for the binary classifiers.

Task Spectra Features Accuracy [CI] (%) AUC
AGG vs. MEN Combined TE EMBTD 90.0 0.952

Combined TE EMBTDr 87.0 0.939
Short TE EMBTD 91.1 0.953
Short TE EMBTDr 87.0 0.938
Long TE EMBTD 77.4 0.841
Long TE EMBTDr 69.9 0.741

AGG vs. LGG Combined TE EMBTD 91.9 0.956
Combined TE EMBTDr 90.0 0.958

Short TE EMBTD 92.5 0.962
Short TE EMBTDr 90.9 0.951
Long TE EMBTD 82.6 0.853
Long TE EMBTDr 80.0 0.853

MEN vs. LGG Combined TE EMBTD 84.1 0.929
Combined TE EMBTDr 92.0 0.967

Short TE EMBTD 86.8 0.932
Short TE EMBTDr 88.0 0.943
Long TE EMBTD 75.4 0.820
Long TE EMBTDr 65.8 0.686

model behaviour. Furthermore, the Combined TE and Short TE models outperformed
the Long TE models.

Table 4.3 shows the results for the pairwise classifiers of AGG, LGG and MEN. The
Combined TE parametric-space outperformed the Short TE parametric-space only for the
MEN vs. LGG classification problem. For this case, the EMBTDr model obtained the
best results. For the AGG vs. MEN and the AGG vs. LGG problems, the EMBTD
for Short TE was the best approach. In general, The LSSVM classifiers obtained by
means of the ReliefF feature selection algorithm outperforms the results obtained by the
EMBTD and EMBTDr models. By the contrary, the feature obtained by the EMBTD
and, specially, EMBTDr keep the meaning of the resonances of the metabolites and their
use in classification achieves good results.

4.5 Conclusions and further work

A probabilistic mixture model for binned and truncated data with univariate mixture
densities of means known up to a global shift has been proposed for Magnetic Resonance
Spectroscopy data characterization. The model can be efficiently estimated by means
of the E(xpectation)-M(aximisation) algorithm. The new version of the algorithm keeps
the biological information in the model and fits properly Short TE MR Spectra. The
incorporation of the classifier in a CDSS could be of interest for clinicians to decide the
diagnosis of routine or special patients. In further work, more applications of the proposed
mixture model will be considered in MRS analysis.
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Chapter 5

Multiproject-multicentric evaluation of
automatic brain tumor classification by
Magnetic Resonance Spectroscopy

Automatic brain tumor classification by MRS has been under development for more than
a decade. Nonetheless, to our knowledge, there are no published evaluations of predictive
models with unseen cases that are subsequently acquired in different centers. The mul-
ticenter eTUMOUR project (2004-2009), which builds upon previous expertise from the
INTERPRET project (2000-2002) has allowed such an evaluation to take place.

253 pairwise classifiers for Glioblastoma, Meningioma, Metastasis, and Low-Grade
Glial diagnosis were inferred based on 211 SV Short TE INTERPRET MR spectra ob-
tained at 1.5T (PRESS or STEAM, 20 − 32ms) and automatically pre-processed. After-
wards, the classifiers were tested with 97 spectra, which were subsequently compiled during
eTUMOUR. In our results based on subsequently acquired spectra, accuracies of around
90% were achieved for most of the pairwise discrimination problems. The exception was
for the Glioblastoma versus Metastasis discrimination, which was below 78%. A more
clear definition of metastases may be obtained by other approaches, such as MRSI+MRI.

Therefore, the prediction of the tumor type of in-vivo MRS is possible using classifiers
developed from previously acquired data, in different hospitals with different instrumen-
tation under the same acquisition protocols. This methodology may find application for
assisting in the diagnosis of new brain tumor cases and for the quality control of multi-
center MRS databases.

The core of this chapter has been published as journal paper in [1]. Section 5.4 includes
the multiproject-multicenter evaluation of the EMBTD and EMBTDr-based classifiers in-
troduced in Chapter 4.

5.1 Introduction

MRS is slowly becoming an accurate non-invasive complement to MRI for initial diagnosis
exam of brain masses [2], since it provides useful chemical information about metabolites
for characterizing brain tumors [3]. To achieve this status, clinical and PR-based classifi-
cation of brain tumors using MRS data has been thoroughly investigated for more than
fifteen years [2, 4–14].
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The CDSSs based on PR should be developed in such a way so as to obtain high
accuracy in classification, interpretability by means of clinical knowledge and the gene-
ralization of the performance to new samples obtained subsequently in different clinical
centers [15–18]. Standardization of acquisition conditions and protocols should make data
from different hospitals compatible and allow the development and evaluation of joint
CDSSs. This standardization prevents possible bias from single-center or single-machine
studies and, additionally, increases the number of available cases for classifier development
and test purposes.

During INTERPRET [9, 19], a protocol was defined to guarantee the compatibility of
the signals acquired at different hospitals [20, 21]. As a result, studies on automated brain
tumor classification were carried out using these data. Hence, in previous studies [8,
9, 11, 22], the ability of automatic classifiers based on Short TE MRS to discriminate
among different brain tumor diagnoses was demonstrated. In addition, in [12, 14, 22], the
automated classification by means of Long TE MRS was also studied and demonstrated.
Other studies evaluated the extension of the classifiers towards 1H MRSI [13, 22–25].
Every study reported above was developed and evaluated using data acquired during the
same period of time. Besides, other automated classification studies, such as [3, 14, 26–29],
have been reported on single-center MRS datasets of brain masses.

In order to provide the clinical community with robust results of automatic classi-
fication, the extension of the evaluation in time is advisable. Hence, the validation of
classifiers through subsequent cases can consolidate the confidence of clinicians in the
potential applicability of these classifiers. The multicenter eTUMOUR [30] (2004-2009)
has benefited from the data and expertise gathered by INTERPRET. The INTERPRET
acquisition protocols for clinical, radiological, and histopathological data were extended to
ex-vivo transcriptomic (DNA microarrays) and metabolomic (HR-MAS) data acquisition
in eTUMOUR. Furthermore, the raw MRS data acquired during INTERPRET were in-
corporated into the eTUMOUR dataset for classifier development. This provides a unique
opportunity to evaluate INTERPRET-based models by means of cases from a later date
from partly different hospitals with different instrumentation, but obtained using the same
or compatible acquisition protocols. The multiproject-multicenter evaluation proposed in
this study gives a close-up perspective of the conditions that predictive models may face
under different real clinical environments.

In this study, six pairwise classifiers for GBM, MEN, MET, and LGG diagnoses were
developed and tested on Single voxel (SV) Short TE MRS signals. Short TE MRS is
fast (typically 5min) and robust, so it is considered to be appropriate for routine clinical
studies [2]. Most major hospitals currently use this acquisition protocol for the MRS
evaluation of brain tumors. It has been reported that Short TE spectra contain a larger
amount of information than Long TE spectra, e.g. metabolites and other compounds that
are considered useful for classification purposes [2, 9, 12]. Hence, Cr (3.02, 3.92ppm),
Cho (3.21ppm), N-Acetyl Aspartate (NAA) (2.01ppm), mI and Gly (3.55ppm), mI/Tau
(3.26ppm), Glx (2.04, 2.46, 3.78ppm), Lac (1.31ppm), and Ala (1.47ppm) are observed
at Short TE. Furthermore, Macromolecules (MM) (5.4ppm, 2.9ppm, 2.25ppm, 2.05ppm,
1.4ppm and 0.87ppm) and ML are also well detected at Short TE [2, 9]. Comparative
studies on the use of Short TE vs. Long TE have shown the benefit of using Short TE or
the combination of both echo times for automatic classification purposes [31].

Based on previous results from [11, 12, 19, 22], good performance of the PR models
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Table 5.1: Number of Training (INTERPRET) and Test (eTUMOUR) cases per class used
in the study. Short TE 1H MRS data were acquired according to a consensus protocol
during the INTERPRET (2000-2002) and eTUMOUR (2004-2009) projects.

Class INTERPRET eTUMOUR
GBM 84 28
MEN 57 17
MET 37 32
LGG 33 20

211 97

could be expected for most of the classification problems, except for the discrimination
of Glioblastoma and Metastasis [11]. Our performance estimation of models trained with
INTERPRET data and tested over eTUMOUR cases confirmed this behaviour. We ob-
served that pairwise discrimination between Glioblastoma, Meningioma, Metastasis, and
Low-Grade Glial achieved an accuracy of around 90%. The exception was for the dis-
crimination between Glioblastoma and Metastasis that did not perform better than 78%.
This study consolidates the results obtained by previous studies in automatic brain tumor
classification using MRS. These results may also increase the confidence of the clinical
community in the use of CDSSs that incorporate this kind of classifiers for the interpre-
tation of MRS biomedical signals and the diagnosis of brain tumors.

5.2 Materials and Methods

5.2.1 Data acquisition

The training data used for classifier development were SV MRS signals at 1.5T at Short
TE (Point-Resolved Spectroscopic Sequence (PRESS) or Stimulated Echo Acquisition
Mode sequence (STEAM), 20-32ms) that were acquired by international centers in the
framework of INTERPRET [19]. The classes considered for inclusion in this study were
based on the histological classification of the CNS tumors set up by the WHO [32]: GBM,
MEN, MET, and LGG (Astrocytoma gII, Oligoastrocytoma gII, or Oligodendroglioma
gII). The number of cases by class is summarized in Table 5.1.

211 SV 1H MR spectra from the INTERPRET database [20] were included. These
signals were acquired with Siemens, General Electric (GE), and Philips instruments by
six international centers. The acquisition protocols included PRESS or STEAM sequences,
with spectral parameters: Recycling Time (TR) between 1600 and 2020ms, TE of 20 or 30-
32ms, spectral width of 1000− 2500Hz, and 512, 1024, or 2048 data-points, as described
in previous studies [20]. Every training spectrum and diagnosis was validated by the
INTERPRET Clinical Data Validation Committee (CDVC) and expert spectroscopists [9].

The test data were provided by eight international institutions in the framework of
eTUMOUR [30]. The cases with the SV Short TE (STEAM 20 ms, PRESS 30-32 ms)
MRS at 1.5T ) signal validated by the expert spectroscopist of eTUMOUR and with the
original histopathology available before February 28th, 2007) were included. Therefore,
97 cases from eTUMOUR were considered for testing in this study. The test cases used to
evaluate the performance of the classifiers were acquired from partly different hospitals in
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Table 5.2: Breakdown of cases per manufacturer included in the Training (INTERPRET)
and Test (eTUMOUR) datasets.

Manufacturer INTERPRET (%) eTumour (%)
GE 53.1 54.6
Siemens 6.6 12.4
Philips 40.3 33.0

Table 5.3: Percentage of cases per acquisition center included in the Training (INTER-
PRET) and Test (eTUMOUR) datasets. Last row indicates the percentage of training
cases that belong to centers that did not produce eTUMOUR cases, and the percentage
of test cases that belong to centers that did not acquire training data for INTERPRET.

CENTERS Training from Test from
INTERPRET (%) eTUMOUR (%)

UMC NIJMEGEN 2.8 1.0
ST. GEORGE’S HOSPITAL 27.0 18.6
MEDICAL UNIV. OF LODZ 3.8 10.3
FLENI 1.9 6.2
IDI-BELLVITGE 40.3
CENTRE DE DIAG. PEDRALBES 24.2
CENTRE DE DIAG. PEDRALBES + IAT 28.9
IDI-BADALONA 17.5
UNIV. DE VALENCIA 16.5
HOSPITAL SANT JOAN DE DEU 1.0
% OF CASES OF PROJECT
EXCLUSIVE CENTERS 40.3 35.1

later dates than the training cases and using instruments of the three main manufacturers.
Table 5.2 shows that the percentages of cases by manufacturer included in the test data
are similar to the percentages in the training data. Table 5.3 shows the percentage of
cases by center included in the training and test datasets. Forty per cent of training cases
belong to one center that afterwards did not provide test data. Besides, 35% of test cases
belong to three new centers that were not providers of training data.

5.2.2 Pre-processing

Each signal was pre-processed according to the INTERPRET protocol. A fully automatic
pre-processing pipeline was available for the training data. Besides, a semi-automatic
pipeline was defined for some new file formats of the test cases from GE and Siemens
manufacturers. The semi-automatic pipeline was designed to ensure compatibility of its
output with the automatic one.

Automatic pipeline

The steps of the automatic pre-processing pipeline were: 1) Eddy current correction was
applied to the water-suppressed Free Induction Decay (FID) of each case using the Klose
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algorithm [33]. 2) The residual water resonance was removed using the Hankel-Lanczos
Singular Value Decomposition (HLSVD) time-domain selective filtering using 10 singular
values and a water region of [4.33, 5.07]ppm. 3) An apodization with a Lorentzian function
of 1Hz of damping was applied. 4) Before transforming the signal to the frequency
domain using the Fast Fourier Transform (FFT), an interpolation was needed in order to
increase the frequency resolution of the low resolution spectra to the maximum frequency
resolution used in the acquisition protocols (see [9] for details in the acquisition conditions
and resolution). This was carried out with the zero-filling procedure. 5) Afterwards, the
baseline offset, which was estimated as the mean value of the region [11, 9]∪ [−2,−1]ppm ,
was subtracted from the spectrum. 6) The normalization of the spectral data vector to the
L2-norm was performed based on the data-points in the region [−2.7, 4.33]∪[5.07, 7.1]ppm.
7) Depending on the Signal-to-Noise Ratio (SNR) and the tumor pattern, an additional
frequency alignment check of the spectrum was performed by referencing the ppm-axis
to (in order of priority) the total Cr at 3.03ppm or to the Cho containing compounds
at 3.21ppm or the ML at 1.29ppm. 8) Finally, the region of interest was restricted to
[0.5, 4.1]ppm, obtaining a vector of 190 points for each spectrum where, after the pre-
processing filters, the resonances of the main metabolites arise and where the contribution
of the residual water is expected to be minimal. In summary, 211 INTERPRET cases
and 47 cases of the eTUMOUR test dataset (32 from Philips and 15 from GE) were
pre-processed with the automatic pipeline.

Semi-automatic pipeline

Due to limitations of the automatic pre-processing software, 50 test samples were pre-
processed by a semi-automatic pipeline that was partially based on the Java Magnetic
Resonance User Interface (jMRUI) [34]. Some modifications of the semi-automatic pipeline
with respect to the automatic pipeline were in the following steps: 1) The phase of the
water-suppressed FID was mainly corrected with the reference water. Additional manual
zero-order and first-order phase correction was performed when needed. 2) Residual wa-
ter was removed by means of the jMRUI-implementation of the Hankel Singular Value
Decomposition (HSVD) algorithm [35]. The filter was parametrized as in the automatic
pipeline. Steps 3-8 remained equivalent to the automatic pre-processing. As a result, a
pre-processing pipeline based on different software implementations but compatible with
the automatic one was set up, and comparable signals for testing the PR models were
obtained.

5.2.3 Feature extraction

Several feature extraction methods based on PR (see Section 1.1) were applied to the real
part of the spectra prior to any classification approach. These methods included direct
spectral Peak integration (PI) on selected metabolite resonance regions [36], Peak height
of typical resonances (PPM) [37], PCA [38, 39], ICA [40, 41], and WAV [42, 43]. Finally,
some classification approaches were applied to the full region of interest represented by a
data vector of 190 points (190). The selected features for the classifiers were derived from
previous studies [11, 31] or from model validation based on the training dataset. In some
approaches, Standard Normal Variate (SNV) scaling was applied to the obtained features.
The wavelet basis used in the experiments was coiflet 3 with 9 levels [42].
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Table 5.4: Best results obtained for the six pairwise classification problems. The ERR and
BER estimation based on CV over the INTERPRET data and based on the eTUMOUR
IT set are shown. The columns of the table are: Task: classification problem defined by
the classes to discriminate by the classifiers; Features: acronym of the feature extraction
method, Classif: acronym of the classification method, CV: results estimated by means
of a 10-fold CV in the INTERPRET database, IT: results estimated by means of the
independent test, with the INTERPRET database as training and the eTUMOUR dataset
as test, ERR: error rate, and BER: Balanced Error Rate. [,]: interval within every result
falls.

CV IT
Task Features Classif ERR BER ERR BER

GBM vs. MEN 190 MLP 0.06 0.07 0.07 0.09
GBM vs. MET PI LDA 0.33 0.40 0.22 0.21
GBM vs. LGG PI LSSVM 0.12 0.18 0.08 0.09
MEN vs. MET PCA MLP 0.05 0.05 0.06 0.07
MEN vs. LGG ICA LSSVM 0.08 0.09 0.08 0.08
MET vs. LGG PI LDA/FLDA/MLP/LSSVM [0.01,0.04] [0.01,0.04] 0.06 0.07

5.2.4 Classification methods

Ten methods (see Section 1.1) were applied to address the pairwise classifications. These
methods included parametric discriminant analysis [44]: LDA, FLDA [45]), QDA, Linear
Discriminant Analysis with diagonal covariance matrix (dLDA) and Quadratic Discrimi-
nant Analysis with diagonal covariance matrix (dQDA). Kernel-based models (SVM [46]
and LSSVM [47]) were also applied. Additionally, Artificial Neural Networks (MLP [48]
and BDK [28, 49]) and single and ensemble [50] classifiers using K-nearest neighbours and
local feature reduced by PCA (PCA-KNN) [51, 52]) were used.

Bayesian strategies for regularization were also applied in some of the classifiers based
on LSSVM [53] and MLP [54].

5.2.5 A measure to evaluate unbalanced classifiers: the Balanced
Error Rate (BER).

The performance was measured by means of the ERR and the BER (see Section 1.1.4).
BER is useful when one class is underrepresented compared to the other class, e.g. GBM
vs. LGG and GBM vs. MET in the INTERPRET dataset and MEN vs. GBM and MEN
vs. MET in the eTUMOUR dataset.

5.3 Results and discussion

For each task, different combinations of feature extraction and classification methods were
applied in the study. An estimation of the ERR and BER for the INTERPRET dataset
using a 10-fold CV was carried out for each model. Afterwards, the estimation of the ERR
and BER were obtained on the IT dataset of eTUMOUR. Table 5.4 illustrates the results
with the best pairwise classifiers based on the IT estimation.
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Figure 5.1: Box-whisker plots of the performance for each problem in the eTUMOUR
dataset. Performance is measured in BER. The box indicates the region between the
lower (X0.25) and the upper (X0.75) quartiles. The horizontal line inside the box indicates
the median of the distribution, and the vertical lines (the "whiskers") extend to at most
1.5 times the box width. Any outlier of the distribution is displayed with a cross (+).

5.3.1 The classification problems

Most of the discrimination problems among the four classes were solved with high accuracy
in the eTUMOUR dataset. Table 5.4 shows that most of the best classifiers among GBM,
MEN, MET, and LGG achieved an accuracy (1 − ERR) of around 90%. Such decision
support methodologies with these ratios of accuracy may be useful to be incorporated in
integrated CDSSs for clinical purposes. Besides, for GBM vs. MET, the best result was
an accuracy of 78% of the independent test, which is far from the accuracy obtained for
the other discrimination problems. The Glioblastoma vs. Metastasis discrimination by
means of the MRS is difficult with the use of SV spectroscopy alone [8, 9, 55–58]. Other
approaches, such as MRSI coupled with MRI or the acquisition of an additional adjacent
voxel to the brain mass should provide relevant additional information for distinguishing
between these two types of tumors [57–59].

Figure 5.1 shows the box-whisker plot of the performance (BER based on IT) for each
problem. Note the high deviation of the distribution for the GBM vs. MET with respect
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Figure 5.2: Figure 2: Scatter plot of the performance measured in BER estimated by the
IT set consisting of new eTUMOUR cases and the BER estimated by the CV using the
INTERPRET cases. BER(IT ) = BER(CV ) is represented by the solid-blue line and the
trend of the (BER(CV ) < 0.2, BER(IT ) < 0.3) region is indicated by the black-dashed
line.

to the others. In a multiple comparison at a 0.05 α-level based on the Tukey’s honestly
significance difference criterion for Kruskal-Wallis nonparametric one-way analysis of va-
riance [60], each problem had a mean rank that was significantly different from the GBM
vs. MET problem. The distributions of the other five discrimination problems overlapped
among them. Nevertheless, the smallest non-outlier observation of the GBM vs. LGG
problem was higher than the smallest non-outlier observation of the remaining problems.
This may indicate that the GBM vs. LGG discrimination is more difficult to solve by SV
Short TE MRS than the other four discrimination problems.

The different approaches obtained good results for the discrimination of the GBM and
MEN classes. A multilayer perceptron with the full spectra achieved a BER of 0.09. The
mode of the distribution of BER was below 0.20 for the GBM vs. MEN problem.

The difficulty of the GBM vs. MET discrimination was clearly observed in both CV-
and IT-estimations (see Figure 5.2). In the distribution of the IT results for this problem,
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the BER mode was 0.5, and the main distribution of the results ranged from 0.4 to 0.55.
Some methods achieved a BER of 0.2; nevertheless, the main mass of the distribution was
far from this value, which makes it difficult to ensure reproducibility of these performances.
These results agree with those already published in previous studies [9, 11]. This is most
probably due to the similar necrotic profile (high lipid peaks mask the rest of the metabolic
information) of the Metastasis cases and of most of the Glioblastoma cases.

The mode of the BER for the GBM vs. LGG problem was 0.2. Nevertheless, there
was a set of regularized classifiers that obtained a BER of around 0.09. To be more
precise, the best BER corresponded to the Bayesian framework for LS-SVM using PI
values. Devos et al. [11] obtained comparable performances for this problem using LDA
and standard LS-SVMs. In studies [26, 61], significant statistical differences between
GBM and LGG and between GBM and astrocytoma grade-III were also found for different
metabolite ratios with respect to Cr and/or water. In Long TE, Menze et al. [14] observed
a better performance with regularized methods compared with the standard ones when
classifying normal, non-progressive tumors (with radiation injury and stable disease) and
brain tumors.

As expected, our results confirm that MEN can be easily discriminated from MET no
matter what method is used. Most of the BER probability mass of the results was in the
interval from 0.1 to 0.2. The best result achieved a BER of 0.07, which was based on PCA
and a neural network with Bayesian regularization. These results are consistent with [11].

LSSVM and LDA with different feature extraction methods achieved BER of 0.08
and 0.11 for the Meningioma vs. Low-Grade Glial problem. Most of the results for this
problem were in the interval from 0.15 to 0.25, and the mode of the distribution was
under 0.2. The low error in MEN vs. LGG was also predicted by the CV results on the
INTERPRET data. This result is consistent with the performances reported in Tate et
al. in [8] on a three-class discrimination problem: MEN vs. LGG vs. AGG (which is
composed of GBM and MET). In that study, the confusion submatrix of MEN vs. LGG
indicates no missclassifications between them. Identical results were obtained by Tate et
al. in [9] when extending the three-class classifier to MEN vs. LGG vs. AGG.

The distribution of BER for MET vs. LGG had a clear trend towards the lower values
(BER of 0.1), showing good performance for all the methods studied in this problem.
PI combined with LDA, FLDA, MLP, or LSSVM classification methods obtained the
best performance for the IT set. The CV estimation of the errors also indicated good
performance by the classifiers. These results are also consistent with [11].

Statistical comparison of the results by classification problem

The number of classifiers by classification problem is shown in Table 5.5. Figure 5.3 shows
the mean rank of each feature extraction method in a multiple comparison at a 0.05
level based on the Tukey’s honestly significance difference criterion for Kruskal-Wallis
nonparametric one-way analysis of variance [62].

5.3.2 The pre-processing techniques

Eight out of 50 semi-automatically preprocessed test cases were misclassified at least
once by the pairwise BDK classifiers (GBM vs. MET excluded). Also, ten out of 47
of the automatically preprocessed test cases were misclassified at least once by the same
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Table 5.5: Number of classifiers obtained for each classification Problem.
Task Number of classifiers

GBM vs. MEN 41
GBM vs. MET 44
GBM vs. LGG 44
MEN vs. MET 43
MEN vs. LGG 40
LGG vs. MET 41

253

classifiers. Based on these rates, no differences were observed in the classification of
automatic and semi-automatic pre-processed signals. The semi-automatic pre-processing
pipeline applied to the larger part of the test dataset was consistent with the automatic
pipeline applied on the training set. This is an important practical conclusion because it
suggests the compatibility of different pre-processing software tools, either in an automatic
or a semi-automatic fashion for automatic classification in CDSSs.

5.3.3 The Feature Extraction methods

All the feature extraction methods applied in this study were based on PR. Therefore, we
could not make any comparison between PR and metabolite quantification approaches.
Approaches that take advantage of the combination of different TE [26, 27, 31, 63–65] were
not considered in order to ensure that results could be compared with previous analyses of
this type of data [8, 9, 11, 13, 28, 29, 66–68]. Furthermore, although a feature extraction
evaluation is not the aim of the present study and the setup of this study is not designed
specifically for it, some effects of the different feature extraction methods are reported.

Figure 5.4 shows the box-whisker plot of the performance (BER) for each Feature
Extraction (FE) method. GBM vs. MET classifiers are not included because of their
large difference in performance with respect to the other classification problems. The
distributions of the results for all FE methods overlap, and no statistical differences were
observed. Nevertheless, a noteworthy fact is the trend toward low values of the Peak
Integration method compared to other methods. The study of Devos et al. [11] about
the same four classes showed similar performances when comparing full region of interest,
peak regions and PI. In [13], Simonetti et al. compared PCA, ICA, LCModel [68] and PI
for feature extraction on Short TE MRSI data and they also obtained the best results with
PI. In a single-center study, Opstad et al. [29] reported that the LCModel quantification
obtained better results than PCA for two-step LDA classification. In Long TE spectra,
Lukas et al. [12] observed a better performance using the full region of interest rather than
using PI or peak region extraction. Finally, Menze et al. [14] and Luts et al. [69] obtained
an improvement when PR approaches (e.g. ICA, PCA, binned peak region and WAV)
were used in Short or Long TE instead of quantification approaches.

Statistical comparison of the results by Feature Extraction

The number of classifiers by Feature Extraction method is shown in Table 5.6. Figure 5.5
shows the mean rank of each feature extraction method in a multiple comparison at a
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Figure 5.3: Multiple comparison of mean ranks of the classifiers by problem. 5 groups
have mean ranks significantly different from GBM vs. MET.

0.05 level based on the Tukey’s honestly significance difference criterion for Kruskal-Wallis
nonparametric one-way analysis of variance.

5.3.4 The classification methods

The diversity of methods used for classification is broad enough to have a good overview of
the effect that this selection has on the performance of the classifiers. Figure 5.6 shows the
box-whisker plot of the performance (BER) for each classification method. Analogously to
the analysis of FE methods, GBM vs. MET classifiers are not included in the distributions
because of their large differences in performance with respect to the other classification
methods. As observed in Figure 5.6, the distributions overlap, but in general, lower results
of BER were obtained using a BDK. In [28], BDK was used in PI values to discriminate
over tumor grades and other tissues in the INTERPRET multi-voxel dataset. The study
of Devos et al. [11] observed similar performances of their LDA and LSSVM classifiers
based on PI and evaluated by the area under the ROC curves. Tate et al. [8, 9] based
their three-class classifiers on the LDA due to the ability of this method for projecting the
results in a 2-dimensional space for visualization. Note that FLDA shows similar results
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Figure 5.4: Box-whisker plots of the performance for each Feature Extraction method in
the eTUMOUR dataset. Performance is measured in BER and the box-whisker charac-
teristics are the same as in Figure 5.1.

when compared with the other methods in average; however, other methods like LSSVM
and BDK might be preferable for some discrimination problems (e.g. GBM vs. LGG).

Finally, in Figure 5.2, we summarize and compare the BER estimation obtained by the
CV for the INTERPRET training dataset and the IT consisting of the new eTUMOUR
cases. Most of the results are in the (BER(CV ) < 0.2, BER(IT ) < 0.3) region, except
for the GBM vs. MET problem, which had a sparse distribution. The general trend
in this region is indicated by the black-dashed line. This indicates an underestimation
of the BER by the CV evaluation. The underestimation is typically observed in the
PR challenges [70], and it is usually produced by the overfitting of the models on the
training dataset and the estimation of the error with non-fully independent samples [71].
A noteworthy feature of our study is the evaluation of the predictive models using the
new subsequently acquired multicenter test, that ensures the independence of the training
and test sets. With respect to the GBM vs. MET results, they are scattered in regions of
larger error. For this problem, some overestimation of the CV error is also observed. This
may show the difficulty of the problem and the randomness in the results. The results
obtained for the rest of the discrimination problems confirm the expected behaviour of
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Table 5.6: Number of classifiers by feature extraction method. GBM vs. MET classifiers
are excluded.

Feature Extraction method Number of classifiers
190 (Full region of interest) 18

ICA 21
PCA 50
PI 80

PPM 42
WAV 42

40 60 80 100 120 140 160

190

ICA

WAV

PPM

PI

PCA

Figure 5.5: Multiple comparison of mean ranks of the classifiers by Feature Extraction
method. GBM vs MET classifiers are excluded. 2 groups have mean ranks significantly
different from PI.
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Figure 5.6: Box-whisker plots of the performance for each classification method in the
eTUMOUR dataset. Performance is measured in BER and the box-whisker characteristics
are the same as in Figure 5.1.

the predictive models.

Statistical comparison of the results by Classification Method

The number of classifiers by classification method is shown in Table 5.7. Figure 5.7 shows
the mean rank of each classification method in a multiple comparison at a 0.05 level based
on the Tukey’s honestly significance difference criterion for Kruskal-Wallis nonparametric
one-way analysis of variance.

5.3.5 Use of the study for automatic validation of MRS entries in
brain tumour datasets

An intuitive method to compare datasets of signals is the visual inspection of their pro-
totypical patterns. Figure 5.8 shows plots of the unimodal prototypes of the Short TE
spectra for the four tumour groups of the training and test datasets. Each prototype is
represented by the unsmoothed mean function and the mean function ± the standard
deviation function. The view is zoomed in the [0.5, 4.1]ppm region used in our experi-
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Table 5.7: Number of classifiers by classification method. GBM vs. MET classifiers are
excluded.

Classification Method Number of classifiers
BDK 6
FLDA 24
LDA 34

LSSVM 51
MLP 30

PCA+KNN 12
QDA 36
SVM 12
dLDA 24
dQDA 24
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LDA
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Figure 5.7: Multiple comparison of mean ranks of the classifiers by Classification method.
GBM vs MET classifiers are excluded. No groups have mean ranks significantly different
from LDA.
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Training mean pattern:GBM Test mean pattern:GBM

Training mean pattern:MEN Test mean pattern:MEN

Training mean pattern:MET Test mean pattern:MET

1.11.72.22.83.44

Training mean pattern:LGG

1.11.72.22.83.44

Test mean pattern:LGG

Figure 5.8: Unimodal prototypes of the Short TE spectra for the four tumour groups of
the training and test datasets. Each prototype is represented by the unsmoothed mean
function and the mean ± the standard deviation function. The view is zoomed in the
[0.5, 4.1]ppm region used in our experiments.
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ments. The observed resonances correspond to the main compounds reported in page 80
of Section 5.1. In general, the training and test prototype patterns for GBM, MET and
LGG are close to each other, whereas the MEN prototype differs visually more. This may
be because of a higher standard deviation on the test dataset around the 3.21ppm peak
with respect to the training dataset. Besides, the variation around the 2.2ppm is higher
in the test-set mean than in the training one.

A practical result of this study is that cases that are repeatedly misclassified by the
different techniques can be flagged as being susceptible of revision for possible problems
in voxel positioning, acquisition artifact, normal-tissue contamination, or limitation in
the classification methodology (e.g. patterns replicated in non-tumoral diseases, atypical
MRS patterns and underrepresented tumor subtypes). In this way, even in the absence of
biopsy, PR techniques can contribute to the automatic validation of cases, assisting the
specialists on the detection of potential source of errors in the biomedical data acquired
from patients.

Figures 5.9 and 5.10 show some eTUMOUR misclassified cases which may be inte-
resting to review. The eTUMOUR case et2274 was diagnosed by the original pathologist
as oligodendroglioma 9450/3 (grade II, WHO), although a comment was added to the
free text section of the eTUMOUR database (eTDB) making reference to the presence
of areas of anaplastic oligodendroglioma (grade III, WHO). Still, the final diagnosis pro-
posed was grade II oligodendroglioma. The voxel allocation was carried out following
the eTUMOUR acquisition protocol. The ML pattern is uncommon, as the high 0.9 and
1.3ppm resonances show. The disappearance of these resonances at Long TE (136 ms)
discards a significant necrotic contribution (results not shown, but see [31]). This pattern
has been observed before [31], for example in the INTERPRET cases I0450 (oligoastro-
cytoma) and I0179 (oligodendroglioma), which are also misplaced in the Short TE latent
space of the INTERPRET DSS 2.0 (http://azizu.uab.es/INTERPRET). In summary,
et2274 seems to behave as a class outlier and its consistent misclassification in our analy-
sis may be sampling precisely that. The eTUMOUR case et2206 was originally diagnosed
as oligoastrocytoma 9382/3 (grade II, WHO), but there were some discrepancies regarding
the glial subtype on the validation done by the pathological committee. It was misclas-
sified by every MET vs. LGG classifier, and also by some GBM vs. LGG and MEN
vs. LGG classifiers. Its ML pattern at Short TE is also uncommon, having relatively
large 0.9, 1.3 and 2.8ppm peaks that are reduced at Long TE (results not shown), which
suggests, as well, a non-necrotic origin. The eTUMOUR case et2349 is a GBM without
clearly visible ML, which was misclassified in every classification problem. The review
of the experts did not indicate problems in the location of the voxel, being this mainly
positioned in the highly cellular part of the tumour. The eTUMOUR case et2197 is a
MET with possible MRS pattern contribution from normal brain parenchyma, as it could
be deduced by the relative difference of size between the voxel used for acquisition and
the small brain lesion. Its pattern shows similar Cho and Cr peak heights and relatively
high NAA at 2ppm). However, the appearance of high Lac/ML at 1.3ppm at the same
time suggests abnormality. Nonetheless, it is clearly an uncommon spectral pattern for a
MET.
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et2274 (T1-weighted), LGG (OD)

1.11.72.22.83.44 ppm

et2206 (T2-weighted), LGG (OA or OD)

1.11.72.22.83.44 ppm

Figure 5.9: Potential outliers (1/2) detected as a consequence of this study. Case num-
bering corresponds to eTUMOUR database (www.etumour.net) entries). For each case,
the reference image and voxel location is shown on the left, and the region of interest of
the real part of the Short TE spectrum is shown on the right. For an easier visualization
of the spectrum, vertical dashed lines indicates the position of the main resonances: Cho
(3.21ppm), Cr (3.02), NAA (2.01ppm), L1 (1.29ppm), L2 (0.92ppm).
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et2349 (PD-weighted), GBM

1.11.72.22.83.44 ppm

et2197 (T2-weighted), MET

1.11.72.22.83.44 ppm

Figure 5.10: Potential outliers (2/2) detected as a consequence of this study. Figure
characteristics are the same as in Figure 5.9.
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Table 5.8: Results for the six pairwise classification problems based on the EMBTD and
EMBTDr parametric spaces. The Error (ERR) and Balanced Error Rate (BER) estimates
based on the cross-validation (CV) over the INTERPRET data and on the independent
eTumour test set (IT) are shown. Columns in the table are the same as in Table 5.4.

CV IT
id Features Classif ERR BER ERR BER

GBM vs. MEN
49 EMBTD trainb 0.11 0.11 0.13 0.15
50 EMBTDr quadra 0.15 0.15 0.16 0.15

GBM vs. MET
51 EMBTD linear 0.5 0.49 0.47 0.46
52 EMBTDr trainr 0.5 0.51 0.37 0.36

GBM vs. LGG
53 EMBTD trainr 0.21 0.22 0.17 0.16
54 EMBTDr LS-SVM 0.11 0.15 0.21 0.2

MEN vs. MET
55 EMBTD LS-SVM 0.11 0.12 0.2 0.17
56 EMBTDr linear 0.064 0.062 0.2 0.17

MEN vs. LGG
57 EMBTD linear 0.2 0.23 0.16 0.16
58 EMBTDr LS-SVM 0.14 0.17 0.22 0.21

MET vs. LGG
59 EMBTD LS-SVM 0.071 0.072 0.12 0.1
60 EMBTDr LS-SVM 0.086 0.088 0.13 0.14

5.4 Evaluation of the brain tumor classifiers based on

the EMBTD and EMBTDr parametric spaces

The EMBTD and EMBTDr estimates, introduced in Chapter 4, obtain the parameters
that defines the mixture model for a MRS spectrum. As shown in Chapter 4, it is pos-
sible to classify new brain tumor spectra based on the parametric space associated to
the EMBTD and EMBTDr. In our approach, the πc parameters estimated by EMBTD
and EMBTDr are assumed to incorporate the information of the main resonances of the
metabolites that appears in the tumoral tissues.

Here we evaluated the performance of the classifiers based on the EMBTD and the
EMBTDr parametric spaces in new multiproject-multicentric cases. The acquired data
and the evaluation protocol for these classifiers was exactly the same as the one introduced
in Section 5.2. Table 5.8 shows the best results obtained with the EMBTD and the
EMBTDr parametric spaces on different classification methods for the six classification
problems. In general, the best results obtained with the EMBTD and the EMBTDr
parametric spaces are comparable in BER with the best results obtained with the other
feature extraction methods (see Table 5.4).
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5.5 Conclusions

This study describes a multiproject-multicenter evaluation of automated brain tumor clas-
sifiers using single-voxel Short TE MR spectra. To our knowledge, there is no previous
work that evaluates predictive models trained with data acquired from a multicenter
project using a new independent test set subsequently acquired from partly different cen-
ters. Classifiers were trained with cases acquired by six centers during the 2000-2002
period. They were tested with posterior cases acquired by eight institutions during the
2004-2007 period. This strategy provides a view that is close to a real environment where
similar classifiers, integrated in a CDSS, may be used in multiple hospitals to assist in the
diagnosis of new cases.

Our major conclusion is that accurate classification of those new cases is feasible using
data acquired in different hospitals, different instrumentation, but similar acquisition
protocols. Specifically, in our experiments, classifiers developed from the INTERPRET
dataset seem to be robust enough for predictive classification of prospective cases from
eTUMOUR.

The pairwise discrimination between Glioblastoma, Meningioma, Metastasis, and Low-
grade Glial achieved accuracies of around 90%. However, the discrimination of Glioblas-
toma and Metastasis did not achieve a result better than 78% accuracy. Our results
consolidate the conclusions of previous studies on automatic brain tumor classification
using MRS but with multiproject-multicenter data for training and subsequent test.

In general, the results obtained with the EMBTD and the EMBTDr parametric spaces
are comparable in BER with the best results obtained with the other feature extraction
methods.

A well-defined protocol for the acquisition of MRS (e.g. spectral parameters and
voxel localization), and the application of quality control to MRS spectra should allow
the reproducibility of such classification rules and the successful use of DSSs in clinical
environments.

The methodology provided in the present study may also be of use as "automatic
flaggers" to help in the quality control of cases during the eTUMOUR multicenter project
and beyond. The approach used in this work could be of use for pediatric brain tumour
related studies [72] aimed at providing predictive information to pediatric neurosurgeons.

Hence, the conclusions obtained in this study are directly applicable to several of the
tasks associated to a CDSS development for brain tumor diagnosis and prognosis and its
deployment in clinical environments.

Hence, the conclusions obtained in this study are directly applicable to several of the
tasks associated to CDSS development for brain tumor diagnosis and prognosis and its
deployment in clinical environments.
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Chapter 6

Automated brain tumour biopsy
classification using single-labelling
cDNA microarrays-based gene
expression profiling

Gene-signatures obtained from microarray experiments may be of use to improve pre-
diction of brain tumor diagnosis. Nevertheless, automated and objective prediction with
accuracy comparable or better than the gold-standard should be convincingly demons-
trated for possible clinician uptake of the new methodology. Herewith we demonstrate
that primary brain tumor (PBT) types can be discriminated using microarray data in an
automated and objective way.

Postsurgical biopsies from 35 patients (17 GBM and, 18 Meningothelial Meningioma
(mMEN)) were stored in liquid nitrogen, total RNA extracted, cDNA labelled with Cy3
fluorochrome and hybridised onto a cDNA-based microarray containing 11500 cDNA
clones representing 9300 loci. Scanned data was pre-processed, normalised, and used
for predictor development. The predictive functions were fitted to a subset of samples
and their performance evaluated with an independent subset. Expression results were
validated by means of RT-PCR.

Some gene expression-based predictors achieved 100% of accuracy both in training re-
sampling validation and independent testing. One of them composed of GFAP, PTPRZ1,
GPM6B and PRELP produced 100% prediction accuracy for both training and indepen-
dent test dataset. Furthermore, gene-signatures obtained: increased cell detoxification,
motility and intracellular transport in GBM and increased cell adhesion and cytochrome-
family genes in mMEN agree well with expected biological and pathological characteristics
of the studied tumors.

The ability of gene-signatures to automate prediction of brain tumors through a fully
objective approach has been demonstrated. Comparison of gene expression profiles be-
tween GBM and mMEN may provide additional clues about patterns associated to each
tumor type.

This chapter has been published as journal paper in [1]. The study to predict GBM and
MEN using single-labelling cDNA microarrays data was performed through collaboration
between UAB and its associated clinical centres and UPVLC. The article derived from
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this study and accepted for publication in Diagnostic Molecular Pathology, displays Xavier
Castells and Juan-Miguel García-Gómez, both as first co-authors. To the effect of their
respective PhD thesis, both co-authors agree in that Xavier Castells performed the RNA
isolation of biopsies, hybridization of isolated RNA, scanning and analysis of microarrays,
the RT-PCR experiments and the functional analysis of differentially detected genes. They
also agree in that Juan Miguel García-Gómez performed the statistical analysis of data
including background correction and normalisation, detection of differentially expressed
genes and development of a prediction formula.

6.1 Introduction

Primary Brain Tumors (PBT) are among the most aggressive and intractable tumors [2].
They are the leading cause of death from cancer in children under the age of 15, and
the second one in young people from 15 to 34 [3]. In 2002, the worldwide incidence
of PBT was 189485 cases, and 141650 the estimated mortality [4]. Diagnoses of these
tumors are devastating for the patient, and prognoses are yet difficult to determine [5–
7]. Currently, neurological examination and imaging techniques are commonly used to
approximate in vivo the diagnosis and the prognosis of the PBT, which is usually confirmed
in vitro by histological examination of a biopsy [6]. In spite of the widespread use of
histopathology, the gold standard for diagnosis, its results are not completely accurate [6].
For example, they are limited with respect to predicting the clinical course of the patient
and response to therapy, probably because they cannot fully account for the underlying
molecular mechanisms of tumor progression [8]. Furthermore, classification of tumors
by histopathological examination produces a subjective output that can be controversial,
since a tumor sample can be differently classified depending on the clinician [9, 10].

High throughput gene expression techniques provide a transcriptomic signature, which
can be used to characterize different biological samples or pathological conditions. In
the oncological context, discovering genomic signatures of tumors allows a better under-
standing on the molecular mechanisms of tumorigenesis [11–13]. Currently, several studies
using DNA microarrays have described novel genes involved in brain tumor appearance
and progression [14–17], improving classification of brain tumors [18–21] and revealing
molecular markers that identify a given brain tumor type [22–26]. For such objective,
machine learning tools (MLT) have been adopted as a relevant computer technology in
microarray data analysis to characterise and discriminate among classical WHO types
of human brain tumors or among new molecular subtypes. Microarray literature analy-
sis reveals that unsupervised class discovery problems in PBT often benefit from MLT
use [18, 19]. Similarly, supervised problems (where class labels are used for the training
of the predictors) have also been addressed by MLT [24, 27].

Most work using DNA microarray for PBT typing has focused on distinction between
different grades of a certain histological PBT type. Despite the complete prediction of
distinct histopathological PBT using gene signatures from gene expression microarray
has been rarely addressed, such a proof of principle is essential in order to compare the
outcome of data derived from high throughput technologies with the gold standard, which
still is histopathological examination. Subsequent to the proof of principle, the attempt of
classifying subtypes of a determined histological PBT may be more convincing, although
large dataset analysis are usually needed for molecular sub-type investigations [20, 26, 28,
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29]. Furthermore, histopathological examination is always subjective, while microarray-
based classification lends itself to fully automated operator-bias independent analysis.

Hence, our goal in this work has been to demonstrate the ability of automated methods
based on gene expression profiling to discriminate GBM from mMEN. These tumors are
histological and pathologically highly distinct PBT. GBM display glial cell lineage, they
are the most aggressive and infiltrative PBT, and a poor prognosis is associated with
its diagnosis [6]. In contrast, mMEN display meningothelial cell lineage, they usually
show well defined edges and they remain at the benign stage [30]. Although GBM and
mMEN are usually correctly diagnosed in vivo through imaging techniques by an expert
radiologist and recognized with few exceptions ex-vivo by the pathologist, their in vivo
differential diagnosis is not exempt of problems [31–34]. Therefore, the reported confu-
sion about the in vivo differential diagnosis of some GBM and mMEN makes it relevant
to screen for gene-signatures that could help to better diagnose PBT when detectable as
characteristic patterns by in vivo MRS [35]. For this, proper recognition of the character-
istic differential molecular signatures of the in vivo confusable GBM and mMEN may be
relevant, although beyond our immediate goal for this work. All this taken into account,
our experimental approach was expected to achieve a 100% of prediction success with an
operator-independent approach using microarray-based gene expression profiling.

Single-labelling cDNA microarrays were used in this study. Having overcome the initial
drawback of batch reproducibility [36], this technology has several advantages over both
oligonucleotide and double-labelling cDNA microarray strategies. First, this approach is
economically more accessible for researchers. Second, quantification of gene expression
obtained can be ascribed to a tumor type without the comparison to a common RNA
reference, which may not always be available for posterior experiments. Finally, manu-
facturing these microarrays is a more flexible process than what is available from other
commercial products, allowing custom-redesign of the microarray to characterise only a
subset of potentially more relevant genes.

This study shows a successful automated prediction of PBT tumors based on single-
labelling cDNA microarrays. This work has been developed within the context of two
EU funded projects (eTUMOUR and HealthAgents), which aim to improve diagnosis and
prognosis in vivo of PBT tumors subtypes by combining transcriptomic (microarrays), me-
tabolomic (high resolution magic angle spinning NMR) and in vivo magnetic resonance
spectroscopy (MRS) data.

6.2 Materials and Methods

6.2.1 Collection, storage and histopathology analysis of samples

Collection of 35 biopsies (17 glioblastomas and 18 meningiomas) was carried out at the
IDIBELL-Hospital Universitari de Bellvitge (L’Hospitalet de Llobregat). The study was
approved by the local Ethics Committee and informed consent was obtained from all
patients. Tumor samples were fixed in 4% buffered formalin and embedded in paraffin.
For routine histological examination 4µm thick sections were stained with hematoxylin
and eosin (HE). The WHO 2000 Nervous System Classification criteria were used for
diagnosis [37]. All GBM cases were primary glioblastomas except for two of them which
developed from a lower grade astrocytoma. None of them had extensive small cell compo-
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nent or were of the giant cell, or gliosarcoma histological variants. All meningiomas were
of the meningothelial subtype.

6.2.2 RNA Isolation

Total RNA from frozen biopsies stored in liquid nitrogen was isolated following the pro-
cedure indicated by the manufacturer using the Rneasy midi kit (Qiagen, Duesseldorf,
Germany). RNA was characterised using a NanoDrop spectrophotometer (NanoDrop
Technologies, Wilmington, USA). Absence of protein contamination was monitored by
the 260 nm/280 nm ratio of absorbance, and samples with a ratio ranging between 1.6
and 2.0 were accepted for further processing. Integrity of the RNA was assessed by using
the capillary electrophoretic system 2100 Bioanalyzer (Agilent, Santa Clara, USA). Only
samples producing a 28S/18S ratio higher than 1.1 or an RNA integrity number (RIN)
number higher than 5 were used for further analysis.

6.2.3 Single-Cy3 cDNA Microarray Labelling

cDNA labelling was performed using the Cy3-fluorescent dye and the CyScribe First
Strand labelling kit (Amersham, Buckinghamshire, UK). The starting material was ap-
proximately 14µg of total RNA. Starting RNA was copied into cDNA using a reverse
transcriptase and an oligo(dT) primer incorporating Cy3-dUTP into the growing cDNA
sequence. Alkaline treatment was performed to eliminate the RNA template. Then, the
cDNA labelled product was purified from the reaction mixture using the CyScribeTM
GFXTM purification kit. Labelled cDNA was resuspended in 100µl of the hybridisation
solution, composed of 50% deionised formamide, 5x sodium saline citrate (SSC) and 0.1%
SDS. Two µl human COT1-DNA (1µg/µl), 2 µl polyadenilic acid (6 µg/µl) and 0.4µl
salmon sperm DNA (10µg/µl) were added to avoid unspecific hybridisations. The final
solution was denatured for 2 minutes at 95oC and immediately placed in ice. The so-
lution containing the labelled cDNA was hybridised onto a pre-hybridised human CNIO
oncochip for an overnight period in an incubator ArrayBooster (Advalytix, Munich, Ger-
many). The human CNIO oncochip is a 12K cDNA microarray produced at the Spanish
National Cancer Research Centre (CNIO Genomics Unit, Madrid, Spain, ArrayExpress
acc. no. A-MEXP-261) that contains 11500 cDNA clones representing 9300 loci [38].
After incubation, slides were washed and Cy3-dye fluorescence was measured using a
ScanArray 4000 (Perkin Elmer, Waltham, USA) detection system. Signal was quantified
by the Genepix 6.0 software (Molecular Devices, Sunnyvale, USA).

6.2.4 Data pre-processing

Prior to the development of the computational experiments to obtain the predictor on
our dataset, a pre-processing step to make the expression values comparable among mi-
croarrays was performed. Due to the specific protocol used in this study (single-labelling
cDNA-based microarrays), non-standard pre-processing methods derived from adaptations
of the Affymetrix pre-processing methods [39, 40] were set up and applied to our data.

First, a pre-filtering step, based on a visual inspection of the scan images, discarded
genes having an artefactual signal in at least one microarray experiment. Foreground va-
lues were corrected using the background smoothing procedure defined by Edwards in [41].
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Genes with negative intensity signal (foreground minus background) in more than 20% of
cases of both GBM and mMEN groups were also removed. Data was normalized using the
average reference loess method [42]. Afterwards, a post-filtering step was performed and
genes that were not validated by the microchip manufacturer by PCR evidence (single
band) and sequence verification were removed. Finally, signals corresponding to genes
spotted more than once in the microarray were averaged.

6.2.5 Feature selection and sample classification

Statistical significance was assessed by the non-parametric Mann-Whitney (MW) test on
data from the training dataset (10 GBM and 11 mMEN). Afterwards, p-values of the
MW test were corrected for the false discovery rate (FDR) control obtaining the so called
q-values [43].

Genes with q-value lower than 0.02 were considered to be differentially expressed.
Starting from the set of differentially expressed genes, selection of 3 or 4 genes through a
SW procedure was performed.

Linear models based on Rank Reduced Linear Discriminant Analysis (LDA) were fitted
to our data. Hence, given a set of samples a projection that maximized the separation be-
tween projected values of both classes was searched for. Prediction accuracy was evaluated
by randomly sampling the training dataset 200 times [44]. That is, 15 samples, following
the distribution frequency of the classes in the dataset, were selected to train the predictor
and 6 samples to validate its result. Such a resampling procedure provided an estimation
of the prediction accuracy. The final evaluation of the predictors’ performance was carried
out in a totally independent test dataset (7 GBM and 7 mMEN) with the labels blind
to the testers (J.M. G-G., A.N. and M.R.). The ability to produce a single predictor for
direct use at the bench was demonstrated by generating an LDA-based predictor with
the four most selected genes across the 200 iterations. Such an LDA-based predictor was
developed over the training dataset (10 GBM and 11 mMEN) and its performance tested
over the independent dataset (7 GBM and 7 mMEN).

6.2.6 Functional analysis of gene signatures

Aiming to determine a gene signature that may characterize each tumor type based on the
expression levels, a hierarchical cluster was performed with the 629 genes with the q-value
lower than 0.02. Furthermore, the selected gene subset was submitted to the web-based
Database for Annotation, Visualization and Integrated Discovery tool (DAVID) [45] with
the purpose of detecting statistically significant functional gene groups. In our study, we
chose the highest stringency level among the five stringency levels provided by DAVID for
a set of genes to be called a functional group.

6.2.7 Real Time-PCR (RT-PCR) validation

The expression of 10 selected genes (see Section 6.3) was monitored by RT-PCR. Total
RNA (100ng) was used as starting template RNA for reverse transcription. We used the
validated primers Quantitect Primer Assays (Qiagen) and the one-step Quantitect SYBR
Green RT-PCR kit (Qiagen), on a Smart Cycler (Cepheid) system. The GBM/mMEN
ratio was calculated using the 2−∆Ct method [46].
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6.3 Results

6.3.1 Pre-processing and classification results

The pre-processing methodology described in the data pre-processing section was applied
to both training and test datasets to attenuate the effect of possible variability due to
nonbiological causes. In our experiments, the total number of analysed probes per mi-
croarray was 27648. After pre-filtering, 23652 features remained in the expression matrix.
The next step consisted in discarding a gene from further processing when more than
20% of samples produced negative signals (foreground minus background) in each group,
GBM and mMEN. After background correction and the normalization steps, post-filtering
was performed, yielding 15584 features. Averaging of feature replicates gave rise to a fi-
nal expression matrix of 7218 features for the 35 investigated samples (training and test
dataset).

Starting from this number of genes, those differentially expressed in each tumor type
were investigated. Considering that GBM and mMEN are both histological and patho-
logically highly distinct brain tumor types, simple graphical discrimination of these two
tumor types by plotting values of differentially expressed genes was expected. For this
purpose, the GBM/mMEN ratio for each gene was computed and genes displaying the
highest and lowest GBM/mMEN ratios were used to create a graphical classifier (see Fi-
gure 6.1A and 6.1B). Interestingly, the gene with the highest GBM/mMEN ratio was the
glial fibrilar acidic protein (GFAP) with a value higher than 400. The protein encoded
by this gene is a well known biological marker of glial cells 40. Furthermore, desmoplakin
(DSP) showed the lowest GBM/mMEN ratio, being 250-fold more expressed in mMEN
compared to GBM (GBM/mMEN=0.004, see Table B.1 of the Appendix B).

A predictor based on LDA was developed (see Figure 6.1C). Our aim was two-fold,
in the first place, to benefit from the panoply of genes available to build a better and
potentially more robust predictor than the expression of a single gene product (GFAP or
DSP). Secondly, we were interested in detection of gene signatures providing biological
information about the underlying mechanisms, which may characterise GBM and mMEN
in such a pairwise comparison. The predictor was built by splitting the full dataset
in twenty-one samples (10 GBM and 11 mMEN) for training and validation purposes.
Additionally, fourteen totally independent and blinded samples (7 GBM and 7 mMEN)
for the testers were used for the final evaluation purposes. Statistical significance was
computed by using the Mann-Whitney nonparametric test on the training set and genes
with a corrected q-value less than 0.02 were selected. As a result 629 genes were found
differentially expressed from the initial 7218 genes.

This set of genes was used to generate a prediction model with three or four randomly
selected genes from a SW selection procedure. Two hundred repetitions were performed,
from which two hundred LDA predictors were obtained. As a result, a 95% prediction
accuracy mean was obtained. Concerning our blinded test dataset of fourteen samples,
an observed accuracy of 100% with a [70%, 100%] confidence interval was obtained. A
noteworthy fact is that the confidence intervals of the evaluation measures depend on
the number of test samples; hence, wide intervals are obtained in the evaluation of our
experiments.

In order to demonstrate the ability to produce a predictor that could be used in an
automated way once developed, all training samples (21) were used to fit the final models.
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Figure 6.1: Graphical representation of normalised data and LDA-based predictor. Solid
symbols correspond to GBM samples, while empty symbols denote mMEN samples. A)
and B) show the scatter plots of normalised expression values of genes showing the highest
and lowest GBM/mMEN ratio, GFAP and DSP respectively for all GBM and mMEN cases
(see Table B.1 of the Appendix B for abbreviations meaning). Samples were arbitrarily
distributed along the x axis, while along the y axis fluorescence intensity signals (a.u.)
were plotted. C) shows the discriminant scores obtained from the LDA-based predictor
generated using normalised expression values from GFAP, PTPRZ1, GPM6B and PRELP
genes, those most selected across the 200 iterations, which perfectly separated these two
tumors class members. Both empty and solid circles are training samples, while empty
and solid squares are test samples. Along the y axis discriminant scores at the latent space
are shown.
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Therefore, the final predictor shown in Figure 6.1C was calculated selecting the four most
selected genes across the 200 prediction iterations: GFAP, PTPRZ1, GPM6B and PRELP
(see Table B.1 of the Appendix B). Such a predictor produces an objective and automated
prediction result by simply introducing the pre-processed and normalised gene expression
values into the LDA Formula 6.1.

y = −0.394GFAP − 0.397PTPRZ1− 0.397GPM6B + 0.365PRELP. (6.1)

The cut-off point at 0 enables prediction between the two tumor types, being GBM and
mMEN for negative and positive values, respectively (see appendix). Using this predictor,
a 100% prediction of the independent test set was obtained.

6.3.2 Molecular characterization of expression differences between
GBM and mMEN

Aiming to detect a gene-signature that could differentiate GBMs and mMENs, the subset
of genes with q-value lower than 0.02, was used to perform the hierarchical cluster shown
in Figure 6.2. Genes were initially grouped in sixteen clusters clearly defining a specific
profile for each tumor type. Furthermore, determination of functionally-related groups
of genes was assessed by subjecting the mentioned gene subset to the DAVID tool. A
total of eleven functional groups with p-value lower than 0.05 accounting for eighty genes
were obtained. Interestingly, three out the eleven clusters were exclusively composed
by genes either overexpressed in GBM or in mMEN (see Tables B.2, B.3 and B.4 of the
Appendix B). The functional group 2 contained genes overexpressed in mMEN that belong
to the family of the small leucine rich proteoglycans (SLRPs): FMOD (J), PRELP (G),
OMD (G), BGN (J) and OGN (G). Similarly, the functional group 11 was composed of
five members belonging to the cytochrome family: CYP1B1 (J), CYP4Z1 (B), CYB5 (J),
CYP4B1 (B) and CYP3A5 (B). On the other hand, the functional group 6 was composed
of several isoforms of genes encoding tubulins overexpressed in GBM: TUBA1 (I), TUBA2
(I), TUBA3 (F), TUBB (F), TUBB2 (F), TUBB4 (I), TUBA4A (I) and TUBA8 (I). Also,
detected by the DAVID tool when setting the medium stringency level, a large number
of metallothionein isoforms were highly expressed in GBM (see Figure 6.2): MT1H (K),
MT1F (I), MT1X (K), MT2A (F and I) and MT3 (I).

Concerning the remaining nine functional groups composed of genes overexpressed
in both GBM and mMEN, the cluster with highest and lowest statistical significance
harboured a collection of cadherin and cytochrome isoforms, respectively (see Tables B.2,
B.3 and B.4 of the Appendix B). Curiously, functional groups 7, 8, 9 and 10 were mainly
composed of genes encoding proteins somewhat related to cell signalling: signal receptors
(group 7), G-protein receptors (group 8), Ras proteins (group 9) and tyrosine kinases
(group 10). Groups 3, 4 and 5 were apparently enriched with proteins related to the
extra-cellular matrix and the cell-cell adhesion complexes.

6.3.3 RT-PCR expression results

A subset composed of 6 samples, 3 GBM and 3 mMEN, were subjected to RT-PCR
for validation purposes. Selection of these samples was based on RNA integrity and
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Figure 6.2: Hierarchical cluster of differentially expressed genes from the training set. Gra-
phical illustration of the hierarchical cluster performed across samples and genes computed
using Euclidean distance. Columns are samples and rows are genes. The 629 genes with a
p-value lower than 0.02 were used to generate this cluster with the 35 samples of the full
dataset. At the top of the figure, GBM and mMEN samples are denoted by red and blue
bars respectively. At the right margin, letters (A-K) indicate clusters of genes belonging to
functional families or related to different signalling pathways. Groups or gene-families are
specifically coloured: metallothioneins (pink), tubulins (green), glycolysis-related genes
(yellow), cell membrane and/or the extracellular matrix (blue) and cytochrome-related
genes (grey). GFAP, PTPRZ1, GPM6B and PRELP are also included within the hier-
archical cluster. See Tables B.2, B.3 and B.4 of the Appendix B for gene abbreviations
meaning.
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concentration, as well as absence of protein contamination. Among differentially expressed
genes in our study, a subset to be subjected to RT-PCR was selected based on four criteria:
maximal or minimal GBM/mMEN ratio and minimal FDR corrected p-value, maximal
selection at the re-sampling of the training set and biological meaning. Using such criteria
selected genes were: GFAP, PTPRZ1, GPM6B, MT3, CA2, TUBB, APM2, PRELP, OGN
and DSP. The six first genes were far more expressed in GBM than in mMEN, and the four
last genes showed opposite behaviour. As observed in the Table B.5 of the Appendix B,
RT-PCR confirmed the expression profile of the mentioned genes according to the type of
tumor evaluated.

6.4 Discussion

6.4.1 Development of an automated classifier based on gene sig-

natures of brain tumors

Several studies have demonstrated usefulness of data generated from gene-expression based
microarray to classify brain tumors when they cannot be properly discriminated by using
histological and image-based morphologic examinations alone [19, 21, 24, 47]. These
studies have focused on recognizing tumor molecular subtypes of GBM and classification
of histologically distinct mMEN, but no automated predictor for classical histological
WHO types was developed. This issue was considered highly relevant within the context
of the European project eTUMOUR, as a required proof of principle prior to attempting
automated and objective recognition of tumor types or grades difficult to ascertain by
classical histology (i.e. glioblastoma multiforme molecular subtypes) [6–8]. In our study
we have demonstrated that 100% successful automated prediction between glioblastoma
multiforme and meningothelial meningioma tumors is achievable without subjective data
judgement. Furthermore, such a prediction was performed using singlelabelling cDNA
microarrays. Being a protocol of lower cost and greater design flexibility than other
genomic technologies, it results in an attractive experimental option for routine use.

The particular type of microarray protocol (single-labelling cDNA microarrays) forced
us to develop a novel algorithm for data pre-processing to correct background and nor-
malise experiments. Discrimination of GBM and mMEN was first performed by plotting
only normalised intensity values of genes with highest or lowest GBM/mMEN ratios (Fi-
gure 6.1A and 6.2B). Separation of GBM and mMEN samples is better defined when
plotting GFAP expression values rather than when plotting those from DSP. This fact is
not surprising since GFAP is specifically expressed in astrocytes and astrocytomas, and
it is considered the molecular marker reference of this cellular type in the central nervous
system [48, 49], whereas such well defined cell type specific marker does not exist for
mMEN. Regarding GFAP, variable expression among samples seen in Figure 6.1A could
be justified by a heterogeneous population of glioblastoma in our study concerning both
tumor progression stage and cell stemness characteristics, since expression of GFAP seems
to be modulated depending on these factors in GBM tumors[50, 51].

Nevertheless, a search for a potentially more robust prediction formula by using linear
discriminant analysis (LDA) of the most differentially expressed genes was performed.
Fully successful prediction of the blindly analysed independent test set was achieved. The
obtained result provides evidence of a 100% of sensitivity and specificity by means of a
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completely objective method, in which intervention of operator biases is strongly reduced.
To our knowledge, complete discrimination of two PBT by developing an LDA predictor
based on gene-signatures arisen from microarray data had not been reported until now.

6.4.2 Molecular signature characteristics of GBM and mMEN

Development of an automated-predictor based on microarray experiments was also useful
to study the gene signatures underlying the biology of both GBM and mMEN. For this
purpose, an unsupervised hierarchical cluster for each pre-processing procedure using as
input those genes within a threshold q-value lower than 0.02 was generated (see Figure 6.2).
This computation corroborated the previous LDA-based prediction because all samples
were correctly clustered within its tumor group. In addition, a clear gene-signature was
achieved for both GBM and mMEN tumor types, which was functionally characterized
by subjecting these genes to the DAVID tool. From our results, tubulins seem to play a
needed role in GBM, and SLRPs and cytochrome-related genes in mMEN, since a large
group of these gene-families products were found clearly more expressed in only one of the
two tumor types.

Functional group 2 is a paradigmatic finding of genes belonging to the SLRPs family.
FMOD and PRELP genes are located at the 1q chromosome, OGN and OMD at the 9q
chromosome and BGN at the Xq chromosome. However, a common promoter region has
been described for all members [52]. Noticeably, the described involvement of the SLRPs
family in collagen fibrillogenesis, cellular growth, differentiation and migration revealed
the relevance of this family in extracellular matrix modelling [52]. Concretely, cleavage
of OGN precursors by the bone morphogenetic-1 protein (BMP1) producing the mature
OGN forms, was proposed as a mechanism by which formation of collagen fibrils is con-
trolled [53]. Curiously, we found a set of BMP genes among those of q-value lower than
0.02, although it was not detected by the DAVID tool as a functional significant group. The
gene coding for receptor BMP1R, BMP4 and BMP5 were found overexpressed in mMEN.
Furthermore, OGN has been recently described as one of the main components of the
human amniotic membrane that promotes the development of limbal stem cell niches [54].
Also, interaction of SLRPs members with TGF-β facilitates signal transduction inside
the cell, resulting in an increase of SLRPs gene-expression [52, 55, 56]. In our study, we
found overexpressed in mMENs two genes encoding SLRP proteins involved in the re-
cruitment of TGF-β from the extracellular space to the membrane, FMOD and BGN [55],
a receptor of TGF-β, TGFBR2, and a protein modulating the secretion and activation
of TGF-β, LTBP2 [56]. From these results, an apparent modulation of the extracellular
matrix through SLRPs may characterize tumorigenesis of mMENs. Incidentally, LTBP2 is
downregulated when benign meningiomas progress into atypical or anaplastic stages [47].

Functional group 11 contains a set of genes encoding cytochrome proteins overex-
pressed in meningiomas. Interestingly, there is a consolidated bibliography describing the
involvement of cytochrome P450 in cancer drug metabolism [57], and their crucial role in
sterol and androgen synthesis, as well as in retinoic acid metabolism [57]. Nevertheless,
the cytochrome P450 isoforms found overexpressed in our mMEN samples, had not ap-
parently been associated in the biology of this tumor, although other isoforms implication
had been linked to both meningioma and glioma progression [58–60].

With respect to functional group 6, tubulins are structural components of microtubules,
which take part in cell motility and intracellular transport, which seem involved in malig-
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nant progression of gliomas. Nitration of tubulins is more acute in grade IV than in grade
I gliomas [61]. Specifically, Gene expression of TUBA3 is induced by PI3K in human
glioblastoma cells under stimulation with KCl, a well known differentiation inducer [62].

The functional group with highest statistical significance harbours a set of cadherins,
among which one half are overexpressed in mMENs and the other half overexpressed
in GBMs. Such a result may suggest a cadherin sub-type link with the tumor grade
and/or histological type. Strikingly, E-cadherin was found overexpressed in mMENs,
which corroborates previous findings of E-cadherin detection by histochemistry in menin-
giomas [63, 64]. Furthermore, Ecadherin is normally not expressed in gliomas, since in
gliomas the neuronal isoform, Ncadherin, appears to be more specifically found [63, 65, 66],
in agreement with our results (see Tables B.2, B.3 and B.4 of the Appendix B). Therefore,
we show here a tumor type specific expression of cadherins that in our study may be first
exemplified by the differential expression of E- and N-cadherin, and secondly, by those
isoforms specifically overexpressed in each tumor type. Likewise, the functional group 5
with a set of genes related to cell adhesion would also sustain the important and tumor
specific role of the extracellular matrix in cancer. Being significantly detected by the
DAVID tool when setting the medium stringency level, metallothioneins are involved in
cell detoxification, growth and redox balance, among other cellular roles [67], and were pre-
viously found overexpressed in GBM compared to mMEN by immunohistochemistry [68].
Likewise, genes related to glycolytic metabolism were also overexpressed in GBM (see
Figure 6.2), in agreement with references [69, 70], and also in agreement with the well
known correlation between glycolytic phenotype and malignity [71, 72].

Considering single genes, the finding of the protein tyrosine phosphatase ζ-1 receptor-
type (PTPRZ1) highly expressed in GBM (see Table B.1 of the Appendix B) is also
coherent with studies showing that RNA interference targeting of this receptor has recently
been shown to suppress glioblastoma growth in vitro and in vivo [73]. Moreover, PTPRZ1
has been proposed as a potential target for therapy of GBM based on its inhibition by
specific antibodies [74]. Furthermore, the increased expression of carbonic anhydrase type
II, a cytosolic isoform, which may enhance electrogenic sodium bicarbonate export from
cells [75], may be correlated with the recently described increased presence of CA2 detected
by immunohistochemical analysis in GBM as compared to low or intermediate astrocytic
grade tumors [76]. Concerning mMENs, the high expression of DSP, a “plaque” component
of desmosome associated proteins, is concordant with the histological characteristics of this
tumor type.

6.5 Conclusion

This study establishes the proof of principle about the discrimination of primary brain
tumors by means of gene signatures. That is, glioblastoma and meningioma biopsies can be
predicted in an automated and objective way with 100% sensitivity and specificity by using
a gene expression profile-predictor based on only four genes (GFAP, PTPRZ1, GPM6B
and PRELP). Accordingly, we now feel confident with proceeding with the automation of
microarray-based brain tumors biopsy recognition of more complex predictions, like glial
tumor grading, GBM molecular subtypes, or correlation with survival. For this, a much
larger dataset will be needed and it is presently being accrued within the eTUMOUR
and HEALTHAGENTS EU projects. Future work will also contemplate the validation
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of the discriminant genes detected in this work between the benign and malignant gene
signatures by comparing our results with those from additional datasets obtained using
different analysis strategies and platforms (Affymetrix, Agilent and others).
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Chapter 7

Clinical Decision Support Systems for
Soft Tissue Tumour Diagnosis and
Brain Tumour Diagnosis

The final purpose of the experiments reported in previous chapters is to improve the
clinical management of patients with soft tissue tumours or brain tumours. The design of
Decision-Support Systems (DSSs) is the practical solution for integrating PR developments
in clinical routine workflows.

After a review of previous CDSSs in the literature, the first system for cancer diag-
nosis described in this chapter is the distributed Decision-Support System (dDSS) that
is aimed at helping radiologists in STT. It is based on a generic distributed architecture
for decision support systems. This architecture has been the basis of posterior develop-
ments, such as those carried out in the dDSS of HEALTHAGENTS. Below, we present
developments made in eTUMOUR and in HEALTHAGENTS - and which are based on
a different conceptual approach for obtaining CDSSs for patients with brain tumours.
We introduce the interface and classification modules designed to integrate the classifiers
into the CDSS developed for the eTUMOUR project. We also describe the agent-based
prototype developed in the HEALTHAGENTS context.

Sections of this chapter have appeared as scientific contributions in [1–4].

7.1 Introduction

7.1.1 Pattern recognition and decision support systems in clinical
environments and cancer research

The first CDSSs used in clinical practice were designed in the 1970s. Leaper et at. [5, 6]
developed a CDSS for the diagnosis and surgery of acute abdominal pain based on a naive
Bayesian approach. In the early 80s, Shortliffe et al [7, 8] developed a CDSS for assisting
physicians with the treatment of cancer patients receiving chemotherapy.

Early detection by screening [9] is common in the developed world, and breast cancer
screening is one of the research areas in which many PR-based CDSS are found [10–19].

DSSs in gastrointestinal cancer help in diagnosis by using video endoscopy videos or
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images [20, 21]. CDSSs were also reported for gastric [22, 23], esophageal [23] and oral
cancer [24, 25]. In colon and colorectal cancer, genetic and gene-expression based systems
were developed for prognosis [26–28].

Leukemia and lymphoma have been the main hematologic cancers studied by means
of pattern recognition and decision support systems. The goals for these studies are
focused on patient management [29, 30] and practitioner training [30]; or biomedical data
as morphological recognition of cellular images [31, 32]; flow cytometry analysis [33]; or
gene-expression [27, 34, 35].

Skin cancers are usually studied by means of image processing techniques in combina-
tion with classification algorithms. Melanoma has been studied using techniques based on
textures [36], and other feature extraction methods [37] using ultrasound images [38, 39];
digital epiluminescence microscopy [38, 40]; or multispectral imaging [41]. Classification
systems for melanoma gene-expression profiling [34] and patient management [42] were
also studied.

The main problems in lung cancer are related to the treatment decision [43], and
nodules in radiograms and computed tomography images [44–46]. Epidemiological studies
related to smoking habits [47]; the evaluation of clinical management of cases; and the
evaluation of care services [48–50] were also modelled using PR.

Diagnosis, grading, prognosis, and therapy of bladder cancer using PR methods have
been studied using clinical, pathological, and histological factors in [51–55].

DSSs for prostate cancer are focused on the detection and grading of tumour tissue.
Pattern recognition on prostate patients has been applied to in-vivo MRS [56, 57]; ultra-
sound images [57]; and cytometry images [58].

CDSSs are reported as potential diagnosis tools for ovarian cancer using mass spec-
troscopy [59]; for improving patient satisfaction [60]; gene-expression based classifiers [34,
61]; and ultrasonography-based classification [62]. Recently, Van Holsbeke et al. have re-
ported a prospective validation of models to predict malignancy in adnexal masses using
the International Ovarian Tumor Analysis (IOTA) protocols [63].

A screening-based study of over 100.000 women using PAPNET commercial software
and based on ANN was carried out for cervical cancer [64].

As a general overview, the design of a translational CDSS should be accomplished
with some caveats [65–67]: (1) its accuracy in solving the specific problem should be
demonstrated. An important subsequent step is: (2) the adequate evaluation of the
capability to generalize the performance on new cases in the problem domain [65, 67, 68].
Clearly, (3) the more transparency shown in relation to clinical knowledge, the more
easily the CDSS will be acceptedby the clinical community. Finally, (4) easy access to the
system; and (5) integration with clinical routine workflow are key points in the use of the
system in a clinical environment [66, 69].

7.1.2 Decision Support Systems for Soft Tissue Tumour

Tumours constitute the largest group within soft-tissue masses. Pre-surgical diagnosis of
histological groups, as well as benign and malignant tumours is crucial in planning surgical
procedures. Benign tumour constitutes by far the most common STT. These tumours can
be characterized with MRI because of their main textural and growth pattern. Malignant
tumours in this group represent approximately 33% [70]. Although in clinical practice,
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most superficial tumours are diagnosed solely on the basis of clinical exploration and no
further studies are required. Most deep lesions are studied with MRI.

However, STT are rare in the general population. Most radiologists and clinicians
are unfamiliar with their appearance and differential diagnosis. Furthermore, their ap-
pearances are sometimes misleading. Malignant well-differentiated tumours are on the
less aggressive side of the spectrum and usually appear similar to benign lesions, making
it often difficult to distinguish between them. Some benign tumours can deviate from
a typical homogeneous appearance, and so complicating the task of differentiation. The
incorporation of DSSs in the diagnosis of STT may yield two benefits: assistance for
the radiologist when deciding in a new case; and help in the training of new radiologists
without expertise in STT.

7.1.3 Decision support systems in brain tumour research

The clinical and PR-based classification of brain tumours using MRS data has already
been widely researched since the 1990s. [71]. Initial studies were based on LDA or ANN
and focused on the tumour vs. normal tissue, or other central nervous system diseases.
They were applied to relative metabolites, or PCA transformations, and evaluated using
the LOO method [71].

The INTERPRET project [72] (1999-2002) was the first large-scale effort in the sys-
tematization of MRS multi-centric acquisitions - with the aim of developing a complete
CDSS [72, 73] for brain tumours. The project defined a protocol to guarantee the com-
patibility of MR signals acquired at different hospitals. Furthermore, workflows including
the compilation mechanism, quality control protocols, automatic pre-processing methods,
high-level analysis, and model evaluation were also defined to manage the large volume
of heterogeneous data. As a result, a CDSS for brain tumour classification based on SV
MRS spectra was reported [74], in addition to a large improvement in PR methods for
MRS analysis and brain tumour classification [75–82].

Two European projects, eTUMOUR [83] and HEALTHAGENTS [3], began research
on the scientific and the technological aspects of CDSS brain tumour management. Both
projects start from the output of INTERPRET eTUMOUR (2004-2009) resulted in a
web accessible MR decision support system for brain tumour diagnosis and prognosis,
incorporating in vivo and ex vivo genomic and metabolomic data which extended the
study of brain tumours to ex-vivo data by means of HR-MAS MRS and gene-expression
microarrays. HEALTHAGENTS (2006-2008) produced an agent-based distributed decision
support system for brain tumour diagnosis and prognosis and which focused on developing
a multi-agent DSS linked to a distributed data warehouse.

7.2 Distributed Decision Support System for Soft Tis-

sue Tumour Diagnosis

The Sistema de Orientación Clínica (SOC) prototype for helping in the diagnosis of STT
was designed. To create such a diagnostic support tool for STT, a large amount of data
is required, usually more than is available in an isolated center. The solution to the lack
of data is merging data from several hospitals. For this reason, a location-independent

131



Chapter 7. Clinical Decision Support Systems for STT and BT

system with the capability of sharing information and resources between professionals or
institutions can solve the main problem in STT. The main objectives of the dDSS for
STT are to make powerful pattern recognition and statistical tools available to experts
and young radiologists, and bring together multidisciplinary experts in pattern recognition
and radiology fields.

The DSSs are based on pattern recognition engines and classify benign/malignant
characteristics and histological groups with good estimated efficiency. This dDSS builds
upon the conclusions obtained in Chapter 2 and published in [1, 84–87] for the 2002-2004
period.

The patients treated in this development were confirmed musculoskeletal STT exa-
mined with MRI. Patient registers used to train the pattern recognition classifiers were
obtained at five different European hospital centers.

Imaging studies were performed on 0.5 T and 1.5 T Gyroscan NT (Philips Medical
System) and 0.5 T Signal (General Electric Medical System) units. T1-weighted (T1W,
TR/TE, 450-650 ms/15-30 ms) and T2-weighted fat-suppression (T2W-FS, TR/TE, 2800-
3500 ms/ 80-120 ms) or STIR (TR/TE/TI, 1400-1600 ms/ 40 ms / 100-120 ms) images
were systematically obtained.

The DSS uses the following MRI findings obtained from the radiological examina-
tion [84]: age, clinical presentation, localization, size, shape, signal intensity, margins,
homogeneity, edema, T1-hyperintense tracts, multiplicity, target appearance, muscular
atrophy, intratumoural hemorrhage, calcification, dependence, intratumoural fat, fibrosis,
fascial relationship, bone alterations, and vessels.

Discrimination between benign and malignant tumours, as well as classification be-
tween different histological groups were carried out to provide the DSS with efficient
computer engines to help the radiologist. Experiments used PR techniques such as ANN,
SVM, Decision Trees (DT), Multinomial parametric classifier (MN), and KNN [88]. Ef-
ficiency and other reliability parameters were measured from the classifiers using unseen
patient registers.

Distributed decision support architecture

The introduced system is based on a distributed architecture with specialized nodes: radi-
ologist visual interface, information system, and decision support web-services. The visual
interface is the radiologist and clinician point of access to local and remote STT regis-
ters, statistical analysis tools, and distributed pattern recognition engines. A location-
independent and multi-platform system has been developed to bring together hospitals
and institutions to research useful tools in clinical and laboratory environments. Node
maintenance and upgrades are automatically controlled by the architecture.

Three independent nodes comprise the STT distributed decision system. The nodes are
specialized in three main groups and there is also web server infrastructure (see Figure 7.1):

• STT radiologist visual interface

Provides the access point to the system for radiologists and clinicians. These experts
can obtain decision support and statistical information regarding the soft tissue
tumours registers.
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Figure 7.1: STT-dDSS architecture.
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Table 7.1: Accuracy (expressed in %) obtained by multinomial (MN), SVM, decision trees
(DT), and nearest neighbours (KNN) to discriminate between vascular (V), cyst (C), fat
(F), nervous (N), sinovial (S) and fibrous (Fi).

Method V-C-F (%) V-C-F-N (%) V-C-F-N-S (%) V-C-F-N-S-Fi (%)
MN 98 92 87 83
SVM 97 94
DT 94 87 82 76

KNN 95 89 84 78

• STT information system

The information system contains patient registers with the variables and diagnosis
already accomplished. Also incorporates the meta-data of the variables that enables
the generic use of the system, and the specific statistical analysis.

• STT decision support web-services

Web services provide classifier engines that have been developed with pattern recog-
nition technology. They can be distributed through the Internet and incorporate
heterogeneous technologies for prediction.

The STT radiologist visual interface can connect to local or distributed registers to
analyze registered patients or incorporate new data. The visual interfaces can show statis-
tical information processed locally, or invoke STT decision support web-services to make
decision support for diagnosis. Connections between nodes are secure and nodes continu-
ously identify themselves. The maintenance and upgrade process of the STT radiologist
visual interface nodes is automatically controlled by the STT-dDSS architecture web-based
system.

Soft tissue tumour classifiers

PR-based engines for classifying benign and malignant tumours were tested with a set of
128 unseen samples. The best results were obtained by ANN, KNN, and SVM, and are
shown in Chapter 2 [84]. Additional engines were developed to classify histological groups.
The histological classification was performed for the six most prevalent groups: Vascular
(V), Cyst (C), Fat (F), Nervous (N), Sinovial (S) and Fibrous (Fi). Multiclass classifiers
of 3, 4, 5, and 6 classes were developed based on Multinomial distributions (MN), SVM,
C4.5 Decision Trees (DT), and KNN [88]. The classifiers were based on the same image
findings and cases defined in Chapter 2. Table 7.1 [89] shows the accuracies obtained for
the four multiclass classifiers using the four techniques.

STT decision support web-services

Engines are invoked by the STT radiologist visual interface using a web-service method to
assist in the diagnostic process. All the PR engines are specified by an eXtensible Markup
Language (XML) file with details of the training process, corpus, evaluation methods,
results, and audit statistics. The visualization detail of the XML information is shown in
Figure 7.2.
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Figure 7.2: Information regarding the KNN-based engine for benign/malignant classifica-
tion shown in the STT-dDSS.
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Visual interface functionalities

Radiologist access to the STT-dDSS is enabled using the STT radiologist visual interface.
This Graphical User Interface (GUI) contains four windows that offer access to the main
system functionalities:

• Access to STT registers

Access to a local or distributed STT information system that contains the features
under study (see Figure 7.3).

• Statistical analysis

Provides a graphical representation and reports on basic statistical and evaluation
information such as probability distributions per class, correlation studies, and ROC
curves (see Figure 7.4).

• Graphical representation of STT registers

It provides graphical representation of the Universe of cases projecting in a three-
dimensional space the original image findings by means of PCA-transformation,
LDA-transformation, or feature selection (see Figure 7.5).

• Automatic classification

Access to STT classifiers over distributed web-services developed with pattern recog-
nition technology.

As a result, the global appearance of the STT radiologist visual interface is shown
in Figure 7.6. A location-independent and multi-platform system has been developed to
provide decision support services for radiologists specialized in soft tissue tumour diagno-
sis. The system architecture handles access from multiple clinical sites to distributed data
servers and classification engine servers. Node maintenance and upgrades are automati-
cally controlled by the architecture.

The most difficult problem in developing decision support systems is collecting enough
patient data to infer good PR models. The distributed architecture of STT-dDSS brings
hospitals and research institutions together in developing useful tools for clinical and
laboratory environments.

Feedback of clinicians

A feedback of the clinicians about the benefits of the DSS for STT was obtained through
a personal interview with Luis Martí-Bonmatí, head of the Radiology Sections of the Dr.
Peset Hospital and the Quirón Hospital in Valencia. For this interview, a questionnaire
based on the Technology Acceptance Model (TAM) methodology [90] was prepared to
predict the attitudes of the user in their willingness to use a DSS for STT. TAM was
designed by Davis to identify the Perceived Usefulness and the Perceived Ease of Use, as
measures of user acceptance in evaluating a software package in comparison with perform-
ing the same task through an alternative approach. In answering these questions the scale
ranges from Very Likely to Very Unlikely. The value 1 is associated with Very Unlikely, a
value of 7 with Very Likely and Neither Case identified with a value of 4.
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Figure 7.3: STT Register window in the STT-dDSS visual interface, a non-real patient
shown.
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Figure 7.4: Visualization of the statistical distributions of the categorical features in the
STT dataset.

Figure 7.5: Visualization of the Universe of cases for the STT-dDSS.
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Figure 7.6: STT radiologist visual interface appearances.

The answer to the questions about the User perspective of the user’s own view on tasks
using the decision support system, indicated that the system improves efficiency, and ease-
of-use of the task (average of 6.5 in a scale range from 1-Very Unlikely to 7-Very Likely).
The clinician agreed that the DSS would improve the quality of the diagnostic decisions and
the productivity (average of 5.3). The clinician believed that their hospital environments
would very likely benefit from the use of the Decision Support System (average of 7).
The user identified the system as being quite wise, quite positive, extremely good, and
extremely beneficial. Finally, the overall reaction to the DSS was quite positive (5.8 on
average in a range of [1..7]).

The ICT company, CSD (http://www.csd.com.es), is developing a DSS for STT based
on the concepts described in this Thesis. The evaluation of the added value of the DSS is
planned to be carried out in two hospitals where the system will be deployed.

7.3 eTUMOUR classification module

The Computer Aided Diagnosis System (CADS) is the CDSS for brain tumour diagnosis
developed in eTUMOUR. It is based on a client-server architecture, and the main design
and implementation of the system is carried out by the research group lead by C. Segebarth
at INSERM (France).

The development of the CADS and the training and testing of the classifiers were
carried out simultaneously during the eTUMOUR project. Furthermore, the dynamism
of the dataset available for training the classifiers made the training of the classifiers an
iterative process, in which new versions of the classifiers can be periodically made.

The interconnection between the CADS and the classifiers for brain tumour diagnosis
was achieved using a generic interface, and a well-defined specification language for pattern
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recognition techniques. The adopted solution separates the main module of the CADS
from the specific implementation of the classifiers. The interconnection module enables the
tumour classification to be performed independently of the rest of the system. An interface
for developing classifiers makes the system scalable because adding a new classifier, or
replacing an existing classifer, is an easy programming task.

The ClassifierToCADS module enables the CADS to obtain the available questions and
perform the classification of new cases with the selected engines. The typical use of the
module is: (1) obtain list of available questions, followed by adjustment for the question
and the available biomedical signals (MR spectra at specific echo times); (2) perform the
classification - the module then receiving the MRS data and the question to solve. This is
followed by classification through the selected classifier. The posterior probabilities and
the assigned class is then returned to the CADS to be interpreted and displayed.

To ensure scalability and provide an easy protocol for integrating new classifiers, an ab-
stract Java class was defined in the ClassifierToCADS. Using polymorphism, this abstract
class is inherited when a new classifier is created for the CADS. The abstract class forces
the implementation of a common entry point for each classifier, so leaving the internal
implementation open.

Nine classifiers based on Short TE, Long TE and Combined TE were developed for
the CADS software. The questions to be solved by the classifiers were selected to reflect
the preferences of the clinicians in an inquiry made during the eTUMOUR project. The
training and test datasets consisted of the MRS data available in the eTUMOUR project
on November, 2007. The data was preprocessed by Dr. Peggy Provent from INSERM
using the CADS pre-processing pipeline to ensure compatibility with the future use of the
system.

The three problems solved for the CADS software:

1. QH1: Is this tumor MEN or Glial (LGG + GBM) + MET (GlioMET)?

2. QH2: Is this GlioMET an AGG tumor or an LGG?

3. Q1: Is this tumor an MEN, an LGG, or an AGG?

Based on the results reported in Chapters 3 and 5, LDA using as inputs peak integrated
values of the 15 main resonances observed in Short TE, and the nine main resonances ob-
served in Long TE, was selected as methodologies for the classifiers. Table 7.2 shows the
evaluation results of the three approaches (Long TE, Short TE, and Combined TE) for
the three discrimination questions - Hierarchical question 1: Meningioma vs. (Glioma
and Metastasis) (QH1); Hierarchical question 2: Low grade glial vs. (Glioblastoma and
Metastasis) (QH2); and Low Grade Meningioma vs. Glioblastoma+Metastasis vs. Low
Grade Glial (Q1). The best results were always obtained using the Combined TE ap-
proach, but the most relevant differences were observed in the QH1 and the Q1 classifiers.
Long TE classifiers achieved significant lower performances than Short TE and Combined
TE. In question QH2, Short TE and Combined TE approaches achieved similar perfor-
mances.

The performances seen in the classifiers were consistent with those reported in previous
studies. For MEN discrimination, our classifiers obtained a better performance when fea-
tures from the two echo times were combined [91], and for LGG and AGG discrimination,
similar behaviour was observed by the Short TE and the combination of signals. The good
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Table 7.2: GMOR for the three approaches in the questions to solve.
Question Long TE Short TE Combined TE
QH1 0.78 0.92 0.94
QH2 0.84 0.92 0.92
Q1 0.75 0.87 0.90

performance of the predictive models evaluated over the combination of datasets from dif-
ferent multicenter projects is also noteworthy. The specific experiments and specifications
of the classifiers are included in the final technical report of the pattern recognition work
package in the eTUMOUR project [92]. The conclusions of the multicentric-multiproject
study (Chapter 5) agreed with the CADS classification module solution - the study used
the same MRS data but with a different preprocessing implementation and aimed at solv-
ing partially different problems.

Finally, the three multiclass classifiers for the Q1 question were selected for the CADS
version for clinical validation. In the final implementation, the Short TE, the Long TE
or the Combined TE classifier is used depending on the available signals. Preference was
given to the Combined TE classifier if both signals were acquired.

7.4 HEALTHAGENTS: Distributed multi-agent DSS

The HEALTHAGENTS scenario is one in which distributed datamarts are being built
by hospital groups in various countries throughout Europe. Individual hospitals do not
typically collect sufficient cases of a particular tumour type to form a training set that is
sufficiently large for developing robust software-based tumour classifiers that can provide
reliable diagnoses when presented with non-invasive imaging and spectroscopic data.

The solution adopted in the dDSS of HEALTHAGENTS is based on software agents.
The use of agent technology and ontologies is not new. Several authors have described
systems in medical and bio-informatics domain and elsewhere [93, 94]. The characteristics
of this technology fit with the needs of dDSS [95]: (1) dynamic reasoning capabilities are
provided by the classification engines; (2) there is a strong interaction among different
types as database agents (classifier agents, preprocessing agents, GUI agents, Evidence-
based Search Service (EbSS), and Yellow Pages (YP) agents); (3) unique identities enable
roaming with the YP agents; (4) agents possess an internal knowledge-based state which
can be dynamically altered by a dynamic evaluation, or ranking of the classifiers.

An ontology of the specific project domain was defined to ensure a correct interoper-
ability between software agents. This ontology structures the knowledge implicit in the
application data, and also provides a platform for reasoning. The languages included
in the HEALTHAGENTS project cover the domain of brain tumours, medical imaging,
biomedical data, clinical and histopathological domains (e.g. based on the WHO taxon-
omy), anatomical location, pattern recognition methods, evaluation strategies, and the
communication language used by agents.

The architecture of the dDSS of the HEALTHAGENTS network is composed of soft-
ware agents with several specific functionalities:

• Database agents to handle input and output of cases to and from hospital datamarts.
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• Preprocessing agents to convert imaging data to canonical form.

• GUI interface agents for handling interaction with medical users at hospital nodes.

• YP agents to keep track of system resources: including the location of case data,
classifiers and their profiles, performance, and reputations.

• Classifier agents to provide tumour class predictors based on case data.

• Petitioner agents to invoke appropriate classifiers, gather new data and rank the
classifiers based on their performance.

• EbSS agents to provide context-sensitive information searching.

The general activity scenario in the distributed HEALTHAGENTS system starts in
the clinical centers, where patients are diagnosed and treated in different units. MRI and
MRS raw data is available from the radiological unit. Decision support, using the dDSS,
for the radiological diagnosis based on the MRS is considered to be the most common use
of the system. After surgery, if an histopathological diagnosis confirmation is available, it
may be possible to share the case with the system for training purposes. In both cases, the
cases are link anonomysed and copied to the hospital’s local HEALTHAGENTS datamart.

To visualize and classify the patient data (especially the MR spectra), the data should
be pre-processed by following the well established protocols (see Section 5.2.2). The GUI
consults nearby YP to establish the availability of preprocessing agents. The communica-
tion between the GUI agent and the preprocessing agent is established and, as a result,
the patient data is transformed into canonical form.

At the request of a medical user, the availability of appropriate classifiers is consulted
on the YP, on the basis of tumour types, and the contextual patient information (age,
gender, tumour location, and geographical location). The classifiers may be located at
classifier nodes anywhere on the HEALTHAGENTS network, in which case the data to
be classified may be sent from the hospital to the remote classifier nodes for classification.
If the hospital does not allow data to leave the local node, classifiers may be run locally.
Results from the different classifiers are gathered, ranked, and returned to the user via the
GUI to support the user’s decision making processes. All potentially suitable classifiers
in HEALTHAGENTS are invoked to classify the current case, and the various factors
influencing classifier choice are used to rank the results. Classifier results are also recorded
in the system so that, when a confirmed diagnosis is available for a case, an estimate of
the performance and reputation of classifiers can be updated.

When a new classifier (or version) is developed, it is deployed in a classification node
of the system and its existence, initial performance, reputation, training profile, and test
data are published in the HEALTHAGENTS YP.

In addition to the above classification processes, the HEALTHAGENTS system pro-
vides an EbSS which seeks, in a context-sensitive way, articles from the medical literature
to assist the medical user in the current task. An automatic search mode, based on the
keywords, may be triggered by the classification processes being undertaken.

Conceived as an open-source platform, the HEALTHAGENTS dDSS is implemented
using the Jade agent development environment (Java, Ant, and D2RQ are supported
under Windows and Linux platforms. The aim is a distribution in four different types
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Figure 7.7: The multi-node HEALTHAGENTS architectural implementation

of computing nodes (GUI node, ebSS node, Classifer node, Pre-processing node) with at
least one active agent, as depicted in Figure 7.7.

Figure 7.8 shows the classification window of the GUI for the radiological units. The
ranked list of appropriate classifiers for the test case is shown at the top of the window.
Each row shows the classification result, the ranks of the classifiers, and the dynamic
evaluation of the classifiers. A pie chart on the right shows the posterior probability of
the case for each class obtained by the classifier. On the left of the window, a visual
inspection of the MR spectra of the test case is shown. Vertical lines indicate the relevant
features used by the selected classifier. It is possible to compare the spectra with the
mean plus/minus standard deviation patterns obtained from the training dataset for each
class. When a classifier with reduced-rank projections (as the FLDA) is selected, the
latent space is shown on the bottom right.

A Prospective Study of the added value of the use of the dDSS for brain tumour diag-
nosis was carried out in the HEALTHAGENTS project. It was performed in the project
led by a team from the University of Birminghama following the TAM methodology [90].
In this study, 26 clinicians were interviewed after using the dDSS for brain tumor diagno-
sis. The average amount of clinical experience was 13 years. All clinicians had a major
part of their practice caring for patients with brain tumours and included radiologists,
oncologists, neurosurgeons and histopathologists.

In their answers, they positively believed that the use of the DSS would improve the
quality of their diagnostic decisions (average of 5.2 in a scale range of [1..7]), and especially
the non-invasive diagnostic accuracy of their patients (average of 5.7). Additionally, they
believe that the HEALTHAGENTS DSS will not provide them the flexibility to do their

aFull study available in Deliverable D27 (A Prospective Study of the added value of the use of the
d-DSS for brain tumour diagnosis) of HEALTHAGENTS. Alex Gibb, 2009. www.healthagents.net
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7.5. Conclusion

task in the way they want (average of 4.5). However, they consider the system easy to use
in their task (average of 7). Finally, the clinicians believed that their hospital environments
would more than likely benefit from the use of the Decision Support System.

The overall response, from the TAM, has been the belief that the system would be
beneficial for the clinicians in performing diagnostic and prognostic evaluations for patients
with brain tumours. Specific comments from the clinicians identified that the practical
application of the system would be more useful for less common types of tumours, as many
common diagnoses can be achieved from MRI. In addition the system would be useful for
brain stem tumours, as these cannot be biopsied, and for following the progression of the
treatment plans. Finally, the identification of a particular tumour type given the choice
of two or more for a particular location was especially appealing.

7.5 Conclusion

The practical results of the pattern recognition experiments and software development
applied in this thesis are three DSSs for the diagnosis of STT and BT.

The dDSS for STT could offer radiologists novel and powerful methods for soft tissue
tumour diagnosis. It provides access to distributed data, statistical analysis, graphical
representation, and pattern recognition classification. This tool will be useful because it
offers an objective methodology to assist the radiologist in evaluating a new case, and can
help train new radiologists without expertise in STT. The introduced architecture enables
experts to audit and upgrade pattern recognition engines and improve the diagnosis deci-
sion task. The main ideas developed for this system were adopted in HEALTHAGENTS
to develop the agent-based dDSS for brain tumour diagnosis.

Two practical solutions for integrating the pattern recognition engines in the clinical
routine workflow were carried out for the eTUMOUR and HEALTHAGENTS decision
support systems in brain tumour diagnosis. For the eTUMOUR project, a set of classifiers
and a generic interface between the CDSS and the classification module was developed
and integrated in the CADS software for clinical validation of the system. Classification
agents are the core of the dDSS of the HEALTHAGENTS European network.

A generic Decision Support System, Curiam [96], featuring an assembled view of pre-
dictive models for clinical and radiological data incorporates automatic classifiers for both
STT and the BT tasks as a desktop software solution (http://bmg.webs.upv.es/).
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Chapter 8

Concluding remarks and
recommendations

8.1 Conclusions

This thesis deals with the application of Pattern Recognition (PR) to biomedical data for
the development of Clinical Decision-Support Systems (CDSSs) for two cancer pathologies:
Brain Tumor (BT) and Soft Tissue Tumor (STT). In the following, the main conclusions
are presented.

• The PR-based classifiers for distinguishing the benign/malignant character of an
STT achieved an accuracy of 90% when evaluated in a multicenter dataset. A
new distributed architecture that incorporates these classifiers has been designed for
a STT CDSS. Some concepts developed in this architecture were useful for posterior
developments in the distributed Decision-Support System (dDSS) for HEALTHAGENTS.

• A new approach that combines MRS echo times has been proposed for BT clas-
sification based on MRS. Significant differences in performance were found when
Short TE, Long TE, or a combination of both spectra were used for classification.
In our dataset, the combination of the Long and Short TE acquisitions yielded op-
timal performance in the discrimination of Low-grade meningiomas (MEN). For
the discrimination of Aggressive tumor: GBM and MET (AGG) from Low-Grade
Glial (LGG), the use of Short TE acquisition alone was preferable.

• A probabilistic mixture model and the e(xpectation)-m(aximisation)-based estima-
tion of parameters for binned and truncated data with univariate mixture densities
of means relative to a global shift has been proposed for Short TE MRS data char-
acterization. The new approach keeps the biological information in the model and
correctly fits the MR spectra. A highly accurate discrimination of brain tumors
based on the parametric space of the probabilistic mixture model is possible.

• It has been demonstrated that reliable prediction of BT types using in-vivo MRS
acquired at later dates, from different hospitals, or using different instrumentation;
but obtained under similar acquisition conditions, may be possible using models in-
ferred by multicenter datasets. Our results consolidate the conclusions of previous
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studies on automatic brain tumor classification using MRS - but using multicenter-
multiproject data and subsequently acquired cases. The classification results ob-
tained by the PR-based models can be useful for the validation and review of cases
with abnormal profiles in the datasets of multicenter projects.

• A proof of principle in brain tumor classification of Glioblastoma (GBM) and Me-
ningothelial Meningioma (mMEN) biopsies using gene expression profile produced
an accuracy of 100% in a blinded independent test dataset. The gene-signatures
obtained is in accordance with the expected biological and pathological differences
in the tumors: glycolytic phenotype, bicarbonate export capability, cell detoxifica-
tion and intracellular transport in GBM; and cell adhesion, and TGF-β signalling
pathways in mMEN.

• Two practical solutions to integrate the PR engines in the clinical routine workflow
were proposed for the eTUMOUR and HEALTHAGENTS CDSSs for BT diagnosis.
The former is a generic interface between the main module of the software and the
classification module that was developed for the eTUMOUR project, and which al-
lows the inclusion of new classifiers at execution time. The latter is the classification
framework for the agent-based dDSS, which is the core of a European network to
assist in BT management and assist in the compilation of specific biomedical data
for cancer research.

8.2 Recommendations

The design of DSSs that are useful for clinical environments and cancer research should be
carried out as a multidisciplinary development. PR provides the practical mathematical
background to obtain inferred models that are fitted to the specific medical problems.

The use of multicentric cases avoids the bias to specific systematic conditions of the
clinical centres. This ensures translational results of the CDSSs to centers that are not
involved in the design process. The evaluation strategy with subsequently acquired data
is a close perspective to the conditions that the predictive models will confront in real
clinical environments.

Cooperation with clinical experts for specific problems should increase confidence in
CDSSs. The comparative analysis of the results obtained by automatic systems with
clinical knowledge is useful for checking the consistency of the databases, detecting possible
outliers, and studying diagnosis patterns.

The design of a distributed Decision-Support System, which is integrated in clinical
routine workflow may be the best strategy to reduce the gap between ICT and the clinical
community. Access to a CDSS that includes the multidisciplinary expertise of clinicians
and biomedical engineers should help convince more clinical institutions to share their
biomedical data related to cancer research. An increased data set would increase the
robustness of the systems and facilitate new discoveries in specific biomedical domains.

Future work in the application of PR for biomedical data in computer-assisted cancer
research could include the following:

• To keep improving BT classification using PR-approaches we propose several rec-
ommendations. The Glioblastoma vs. Metastasis discrimination by means of MRS
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is difficult with the use of SV spectroscopy. Other approaches, such as Multi-
voxel (MV) spectroscopy, or the acquisition of an additional adjacent voxel to the
brain mass, should provide the necessary information for differentiating these two
types of tumours. Additionally, molecular evidence may be used for sub-dividing
glioblastoma tumors into molecular subgroups. Also, the patterns observed in in-
vivo MRS within each diagnosis are usually heterogeneous. Unsupervised methodo-
logies may be interesting for separating these patterns and so enabling analysis of
the cancerous tissues. The extension of the classifiers to the diagnosis of childhood
tumors could be carried out in the following three approaches: (a) evaluation of the
compatibility of the classifiers for adults with the patterns shown in children; (b)
preparation of specific predictive models; and (c) inclusion of the age factor in the
predictive models. Finally, when designing CDSSs for BT based on MRS, it would
be interesting to expand the types of cases that can be predicted. To achieve this,
one-class approaches may be useful [1].

• Functional data analysis approaches, such as that proposed in [2], can be applied to
model MRS and temporal series of MRS. Also, the introduction of 3T MR machines
in clinical centers makes it necessary to test the compatibility of CDSSs based on
1.5T.

Additionally, the use of SV-based classifiers for MRSI data would increase the
amount of data available for evaluating the robustness of nosologic images for brain
tumour probability maps [3].

• The probabilistic mixture model for binned and truncated data, featuring univariate
mixture densities of means that are relative to a global shift, can be extended to a
mixture of patterns that describe each type of tumour.

• The involvement of more international clinics in the collection of multicenter datasets
may increase the number of cases, especially for tumours with low epidemiologi-
cal prevalence (lymphomas, PNET, oligodendrogliomas, oligoastrocytomas, etc). A
practical solution to generate the clinical datasets should follow the recommenda-
tions of standards (such as ISO 13606 or HL7 v3) for the representation and commu-
nication of electronic health records, in order to ensure the semantic interoperability
between datasources and CDSSs.

• Clinical evaluation of the CDSS should be carried out to measure the added value
for STT and BT diagnosis. The characterization of the performance of classifiers
with respect to the quality control levels of the MRS or microarrays could be of
interest to evaluate the influence of the CDSS in clinical environments. Finally, a
dynamic evaluation of predictive models in the continuous use of classifiers could be
useful for auditing CDSS deployed in clinical environments.
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Appendix A

Derivation of the EM steps and
implementation aspects of the Mixture
model for binned and truncated data

A.1 Maximum Likehood Estimation from Binned and

Truncated Data with Independent Univariate Gaus-

sians

The complete log-likelihood function

Lc(Θ; N , X, Z) = log pΘ(N , X, Z) (A.1)

=

B
∑

b=1

Nb
∑

n=1

log

C
∏

c=1

(πcpΘ′(xbn | c))zbnc (A.2)

=
B

∑

b=1

Nb
∑

n=1

C
∑

c=1

(zbnc log πcpΘ′(xbn | c)), (A.3)

(A.4)

allows the application of the EM steps iteratively.

E-Step In the iteration k+1, the so-called function Q(Θ | Θ(k)), calculates the expected
value of the complete log-likelihood A.1, conditional to the parameters Θ

(k) of the previous
iteration and the observed data N

′. The E step computes a lower bound of the incomplete
log-likelihood function 4.12.
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Q(Θ | Θ(k)) = E[

B
∑

b=1

Nb
∑

n=1

C
∑

c=1

zbnc log(πcpΘ′(xbn | zbnc)) | N
′,Θ(k)] (A.5)

= E[
C

∑

c=1

B
∑

b=1

Nb
∑

n=1

zbnc log(πcpΘ′(xbn | zbnc)) | N
′,Θ(k)], (A.6)

(A.7)

from where z
(k)
bnc is the expected value of zbnc in the (k)-iteration

z
(k)
bnc = E[zbnc | xbn;Θ(k)] (A.8)

=
∑

zbnc

zbncpΘ(k)(zbnc | xbn) (A.9)

= pΘ(k)(zbnc = 1 | xbn) (A.10)

=
πcpΘ′(k)(xbn | zbnc = 1)

pΘ(k)(xbn)
(A.11)

=
πcpΘ′(k)(xbn | zbnc = 1)

∑C
c′=1 πc′pΘ′(k)(xbn | zbnc′ = 1)

. (A.12)

The sum of z
(k)
cbn for every n of the bin b can be expressed as

Nb
∑

n=1

z
(k)
bnc =

Nb
∑

n=1

pΘ(k)(zbnc = 1 | xbn) (A.13)

= N
(k)
b Eb[pΘ(k)(zbnc = 1 | xbn) | N

′, Θ(k)] (A.14)

= N
(k)
b Eb[zc(xb)

(k) | N
′, Θ(k)] (A.15)

The expectation in (A.15) is with respect to a sample xb from bin Xb; i.e., with respect
to the truncated density of the bin Xb

ptrunc

Θ(k) (xb) =
pΘ(k)(xb)

p(b)(k)
(A.16)

and involves the posterior probability for xb to belong to component c of the mixture,
given a current parameter estimate Θ

(k) : z
(k)
c (xb).

Q(Θ | Θ(k)) =

C
∑

c=1

B
∑

b=1

N
(k)
b Eb[zc(xb)

(k) log(πcpΘ(k)(xb | c)) | N
′,Θ(k)] (A.17)

where

N
(k)
b =











Nb if b ≤ B′

N ′ p(b)(k)

∑B′

b′=1 p(b′)(k)
otherwise,

(A.18)
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and

p(b)(k) =

∫

Xb

dx pΘ(k)(x) (A.19)

M-Step. In the M-Step, the parameters Θ(k+1) are updated for maximizing Q(Θ | Θ(k)),
s.t.

∑C
c=1 πc = 1.

First, we define the Lagrangia n as

L (Θ, λ) =Q(Θ | Θ(k)) − λ(

C
∑

c=1

πc − 1) (A.20)

=

C
∑

c=1

B
∑

b=1

N
(k)
b Eb[z

(k)
c (xb) log(πcpΘ′(k)(xb | c) | N ′,Θ(k)] (A.21)

−λ(
C

∑

c=1

πc − 1), (A.22)

M-Step. Updates of πc in (k+1). To calculate the updates of π
(k+1)
c in each M-Step,

we derivate the Lagrangian L with respect to πc and λ.
(

∂L (Θ, λ)

∂πc

)

c=(1,...,C)

= 0 y
∂L (Θ, λ)

∂λ
= 0. (A.23)

Hence,

∂L (Θ, λ)

∂πc

=
∂

∂πc

C
∑

c=1

B
∑

b=1

N
(k)
b Eb[z

(k)
c (xb) log πc | N ′,Θ(k)] − λ(

C
∑

c=1

πc − 1) (A.24)

=

B
∑

b=1

N
(k)
b Eb[z

(k)
c (xb)

∂

∂πc
log πc | N ′,Θ(k)] − λ

∂

∂πc
πc (A.25)

=
B

∑

b=1

N
(k)
b Eb[

z
(k)
c (xb)

πc

| N ′,Θ(k)] − λ (A.26)

⇓

λ =

B
∑

b=1

N
(k)
b Eb[

z
(k)
c (xb)

πc
| N ′,Θ(k)] (A.27)

⇓ (A.28)

πc =

∑B
b=1 N

(k)
b Eb[z

(k)
c (xb) | N ′,Θ(k)]

λ
(A.29)

(A.30)

and
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∂L (Θ, λ)

∂λ
=

C
∑

c=1

πc − 1

⇓
C

∑

c=1

πc = 1

and by the substitution of πc by A.29 ⇓
C

∑

c=1

∑B
b=1 N

(k)
b Eb[z

(k)
c (xb) | N ′,Θ(k)]

λ
= 1

⇓
C

∑

c=1

B
∑

b=1

N
(k)
b Eb[z

(k)
c (xb) | N ′,Θ(k)] = λ

and the subtitution of λ in A.29 ⇓

πc =

∑B
b=1 N

(k)
b Eb[z

(k)
c (xb) | N ′,Θ(k)]

∑C
c=1

∑B
b=1 N

(k)
b Eb[z

(k)
c (xb) | N ′,Θ(k)]

,

as
C

∑

c=1

Eb[z
(k)
c (xb) | N ′,Θ(k)] = 1 ⇓

πc =

∑B
b=1 N

(k)
b Eb[z

(k)
c (xb) | N ′,Θ(k)]

∑B
b=1 N

(k)
b

Hence, the update of πc
(k+1) is:

πc
(k+1) =

∑B
b=1 Nb

(k)Eb[z
(k)
c (xb) | N

′,Θ(k)]
∑B

b=1 Nb
(k)

, ∀c : 1, ..., C (A.31)

M-Step. Updates of the rest of the parameters. Generically, in the M-Step, we
maximize the Lagrangian with respect every parameter ξ obtaining the roots of

∂L (Θ, λ)

∂ξ
=

∂
∑C

c=1

∑B
b=1 N

(k)
b Eb[z

(k)
c (xb) log(πcpΘ′(k)(xb | c) | N ′,Θ(k)]

∂ξ

−λ(
∑C

c=1 πc − 1)

∂ξ

M-Step. Mixture of independent univariate gaussian distributions Given a
(multinomial) mixture model of C independent univariate gaussian distributions (N(µc, σc)),
the samples x follow the probability density function:
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p(x) =

C
∑

c=1

πcp(x | c; µc, σc)

where

p(x | c; µc, σc) =
1

(2π)1/2σ
(k)
c

e−
1
2
[
(x−µc)

σc
]2

By substitution of A.1 in A.22.

L (Θ, λ) =

=

C
∑

c=1

B
∑

b=1

N
(k)
b Eb[z

(k)
c (xb) log(πc

1

(2π)1/2σ
(k)
c

e
− 1

2
[
(xb−µ

(k)
c )

σ
(k)
c

]2

) | N
′,Θ(k)]

−λ(
C

∑

c=1

πc − 1)

The roots of the partial derivative of L with respect to µc give the update of µ
(k+1)
c .

∂L (Θ, λ)

∂µc
= 0, c = 1..C;

hence,

∂L (Θ, λ)

∂µc

=
B

∑

b=1

NbEb[z
(k)
c (xb)

∂

∂µc

log(
1

(2π)1/2σc

e−
1
2
[ (x−µc)

σc
]2) | N

′,Θ(k)] (A.32)

=

B
∑

b=1

NbEb[z
(k)
c (xb)

−1

2(σc)2
2(xb − µc)(−1) | N

′,Θ(k)] (A.33)

=
B

∑

b=1

NbEb[z
(k)
c (xb)

1

(σc)2
(xb − µc) | N

′,Θ(k)] (A.34)

=0 (A.35)

(A.36)

⇓

B
∑

b=1

NbEb[z
(k)
c (xb)

1

(σc)2
µc | N

′,Θ(k)] =
B

∑

b=1

NbEb[z
(k)
c (xb)

1

(σc)2
xb | N

′,Θ(k)] (A.37)

µc

B
∑

b=1

NbEb[z
(k)
c (xb) | N

′,Θ(k)] =

B
∑

b=1

NbEb[z
(k)
c (xb)xb | N

′,Θ(k)] (A.38)

µc =

∑B
b=1 NbEb[z

(k)
c (xb)xb | N

′,Θ(k)]
∑B

b=1 NbEb[z
(k)
c (xb) | N

′,Θ(k)]
(A.39)
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hence,

µc
(k+1) =

∑B
b=1 Nb

(k)Eb[z
(k)
c (xb)xb | N

′,Θ(k)]

Cc(Θ
(k))

, ∀c : 1, ..., C; (A.40)

where

C(k)
c (Θ(k)) =

B
∑

b=1

Nb
(k)Eb[z

(k)
c (xb) | N

′,Θ(k)], ∀c : 1, ..., C (A.41)

To calculate the update of (σ
(k+1)
c )2, we will obtain the roots of the derivative of L

with respecto to σc.

L (Θ, λ)

σc
.

Hence,

∂L (Θ, λ)

∂σc
=

B
∑

b=1

NbEb[z
(k)
c (xb)

∂

∂σc
log(

1

(2π)1/2σc
e−

1
2
[
(xb−µc)

σc
]2) | N

′,Θ(k)] (A.42)

=
B

∑

b=1

NbEb[z
(k)
c (xb)

∂

∂σc

[− log(σc) −
1

2
[
xb − µc

σc

]2] | N
′,Θ(k)] (A.43)

=
B

∑

b=1

NbEb[z
(k)
c (xb)[−

1

σc
− 1

2
(−2)

(xb − µc)
2

σ3
c

] | N
′,Θ(k)] (A.44)

=

B
∑

b=1

NbEb[z
(k)
c (xb)[−

1

σc
+

(xb − µc)
2

σ3
c

] | N
′,Θ(k)] (A.45)

= 0 (A.46)

⇓

1

σ3
c

B
∑

b=1

NbEb[z
(k)
c (xb)(xb − µc)

2 | N
′,Θ(k)] =

1

σc

B
∑

b=1

NbEb[z
(k)
c (xb) | N

′,Θ(k)] (A.47)

1

σ2
c

B
∑

b=1

NbEb[z
(k)
c (xb)(xb − µc)

2 | N
′,Θ(k)] =

B
∑

b=1

NbEb[z
(k)
c (xb) | N

′,Θ(k)] (A.48)

(σc)
2 =

∑B
b=1 NbEb[z

(k)
c (xb)(xb − µc)

2 | N
′,Θ(k)]

∑B
b=1 NbEb[z

(k)
c (xb) | N

′,Θ(k)]
(A.49)

hence,

(σc
(k+1))2 =

∑B
b=1 Nb

(k)Eb[z
(k)
c (xb)(xb − µc

(k+1))2 | N
′,Θ(k)]

Cc(Θ
(k))

, ∀c : 1, ..., C (A.50)
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Calculus of the expected values Eb[g(xb) | N
′,Θ(k)]. Let the probability function

of a distribution conditioned to c,

P (x | c) =

∫ x

− inf

p(x | c)dx,

and let the probability function of a distribution conditional to c in an interval from
x b be defined as [pb−1, pb]

P (x b | c) =

∫ pb

pb−1

p(x | c)dx = P (pb | c) − P (pb−1 | c)

The unconditioned probability function of x is obtained by marginalization,

P (x) =
C

∑

c=1

πcP (x | c)dx,

and, in the interval x b ,
p(b) = P (pb) − P (pb−1).

The probability function of x conditioned to belong to the interval x b is

P trunc(xb) = P (x0 ≤ xb | pb−1 < x0 < pb) =

∫ xb

pb−1
p(xb)dxb

p(b)
, (A.51)

and, hence, the probability density function truncated to the interval x b is

ptrunc(xb) =
dP trunc(xb)

dxb

=
1

p(b)
p(xb) (A.52)

The expected value of a function g(x), when the variable x that follows a distribution
with parameters Θ

(k), when x is conditioned to be in the interval X b is defined as:

Eb[g(xb) | N
′,Θ(k)] =

1

pΘ(k)(b)

∫

xb

pΘ(k)(x)g(x)dx

Let define each component of the mixture model as a independent univariate gaussian
with the probability density function A.1. The calculus of the updates in the iteration k
of the parameters πc, µc and σ2

c are performed using the expressions A.31, A.40 and A.50.
For solving these expressions, it is necessary to solve some expected value Eb conditioning
x to be in the interval x b .

For simplicity in the notation, we define

A
(k)
e,cb = Eb[z

(k)
c (xb)x

e
b | N

′,Θ(k)], ∀e = (0, 1)

and

A
(k)
2,cb = Eb[z

(k)
c (xb)(xb − µ(k)

c )2 | N
′,Θ(k)].

A
(k)
0,cb is needed for solving π

(k+1)
c ,
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A
(k)
0,cb =Eb[z

(k)
c (xb) | N

′,Θ(k)] (A.53)

=
1

∫

xb
pΘ(k)(xb)dxb

∫

xb

pΘ(k)(xb)
πcpΘ(k)(xb | c)

pΘ(k)(xb)
dxb (A.54)

=
πc

∫

xb
pΘ(k)(xb | c)dxbs

∫

xb
pΘ(k)(xb)dxbs

(A.55)

=
πc(P

(k)(pb | c) − P (k)(pb−1 | c))

P (k)(pb) − P (k)(pb−1)
(A.56)

(A.57)

A
(k)
1,cb is needed for solving µ

(k+1)
c ,

A
(k)
1,cb =Eb[z

(k)
c (xb)xb | N

′,Θ(k)] (A.58)

=
1

∫

xb
pΘ(k)(xb)dxb

∫

xb

pΘ(k)(xb)
πcpΘ(k)(xb | c)

pΘ(k)(xb)
xbdxb (A.59)

=
πc

∫

xb
pΘ(k)(xb | c)

∫

xb
pΘ(k)(xb | c)dxbxbdxb

∫

xb
pΘ(k)(xb)dxb

(A.60)

=
πc(P

(k)(pb | c) − P (k)(pb−1 | c))
∫

xb
xbpΘ(k)(xb | c)dxb

P (k)(pb) − P (k)(pb−1)
(A.61)

=
πc(P

(k)(pb | c) − P (k)(pb−1 | c))
(A.62)

(µ
(k)
c + (σ

(k)
c )2

(P (k)(pb|c)−P (k)(pb−1|c)
(pΘ(k)(pb | c) − pΘ(k)(pb | c))

P (k)(pb) − P (k)(pb−1)
(A.63)

=
πc(µ

(k)
c (P (k)(pb | c) − P (k)(pb−1 | c)) + (σ

(k)
c )2(pΘ(k)(pb | c) − pΘ(k)(pb−1 | c))

P (k)(pb) − P (k)(pb−1)
(A.64)

(A.65)

A
(k)
2,cb is needed for solving (σ

(k+1)
c )2,

A
(k)
2,cb =Eb[z

(k)
c (xb)(xb − µ(k)

c )2 | N
′,Θ(k)] (A.66)

=
πc((σ

(k)
c )2[H

(k)
0,cb + (2µ

(k+1)
c − µ

(k)
c )H

(k)
1,cb − H

(k)
2,cb] + (µ

(k+1)
c − µ

(k)
c )2H

(k)
0,cb)

P (k)(pb) − P (k)(pb−1)
, (A.67)

(A.68)
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where

H
(k)
0,cb =P (k)(pb | c) − P (k)(pb−1 | c) (A.69)

H
(k)
1,cb =p(k)(pb | c) − p(k)(pb−1 | c) (A.70)

H
(k)
2,cb =pbp

(k)(pb | c) − pb−1p
(k)(pb−1 | c) (A.71)

(A.72)

Summarizing, for each interval x b , ∀b = (1, ..., v),

A
(k)
e,cb =

πc
(k)G

(k)
e,cb

P (k)(pb) − P (k)(pb−1)
, ∀e = (0, ..., 2) (A.73)

where

G
(k)
0,cb =H

(k)
0,cb (A.74)

G
(k)
1,cb =µ(k)

c H
(k)
0,cb − (σ(k)

c )2H
(k)
1,cb (A.75)

G
(k)
2,cb =(σ(k)

c )2[H
(k)
0,cb + (2µ(k+1)

c − µ(k)
c )H

(k)
1,cb − H

(k)
2,cb] + (µ(k+1)

c − µ(k)
c )2H

(k)
0,cb. (A.76)

(A.77)

Efficient implementation of π
(k+1)
c , µ

(k+1)
c y (σ

(k+1)
c )2. Jones and McLachlan publi-

shed in 1990 [1] the Fortran implementation of the algorithm AS 254 for the max-likelihood
estimation by binned and truncated data with univariate finite mixture models. The de-
velopment of π

(k+1)
c , µ

(k+1)
c y (σ

(k+1)
c )2 by means of A.31, A.40 and A.50 and using A.73

for the expected values (A(k)
e,cb) conditioning xb to be in the region x b :

πc
(k+1) =

∑B
b=1 Nb

(k)A
(k)
0,cb

∑B
b=1 Nb

(k)
(A.78)

=

∑B
b=1 N

(k)
b

πc
(k)P (k)(pb|c)−P (k)(pb−1|c)

P (k)(pb)−P (k)(pb−1)
∑B

b=1 Nb
(k)

(A.79)

=πc
(k)

∑B
b=1

N
(k)
b

P (k)(pb|c)−P (k)(pb−1|c)

P (k)(pb)−P (k)(pb−1)
∑B

b=1 Nb
(k)

(A.80)

=πc
(k)

∑B
b=1

N
(k)
b

P (k)(pb)−P (k)(pb−1)
H

(k)
0,cb

∑B
b=1 Nb

(k)
, (A.81)

(A.82)
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µc
(k+1) =

∑B
b=1 Nb

(k)A
(k)
1,cb

∑B
b=1 Nb

(k)A
(k)
0,cb

=

∑B
b=1 N

(k)
b

πc[µ
(k)
c (P (k)(pb|c)−P (k)(pb−1|c))−(σ

(k)
c )2(f(k)(pb|c)−f(k)(pb−1|c))]

P (k)(pb)−P (k)(pb−1)
∑B

b=1 N
(k)
b

πc(P (k)(pb|c)−P (k)(pb−1|c))

P (k)(pb)−P (k)(pb−1)

=µ(k)
c

∑B
b=1 N

(k)
b

P (k)(pb|c)−P (k)(pb−1|c)

P (k)(pb)−P (k)(pb−1)
∑B

b=1 N
(k)
b

P (k)(pb|c)−P (k)(pb−1|c)

P (k)(pb)−P (k)(pb−1)

−(σ(k)
c )2

∑B
b=1 N

(k)
b

f(k)(pb|c)−f(k)(pb−1|c)

P (k)(pb)−P (k)(pb−1)
∑B

b=1 N
(k)
b

P (k)(pb|c)−P (k)(pb−1|c)

P (k)(pb)−P (k)(pb−1)

=µ(k)
c − (σ(k)

c )2

∑B
b=1

N
(k)
b

P (k)(pb)−P (k)(pb−1)
H

(k)
1,cb

∑B
b=1

N
(k)
b

P (k)(pb)−P (k)(pb−1)
H

(k)
0,cb

,

and a similar expression is obtained for (σ
(k)
c )2.

The final expressions are:

π(k+1)
c = π(k)

c R
(k)
0c (A.83)

µ(k+1)
c = µ(k)

c − (σ(k)
c )2R

(k)
1c (A.84)

(σ(k+1)
c )2 = (σ(k)

c )2[1 + (2µ(k+1)
c − µ(k)

c )R
(k)
1c − R

(k)
2c ] + (µ(k+1)

c − µ(k)
c )2 (A.85)

where

R
(k)
0c =

∑B
b=1 tb

(k)H
(k)
0,cb

∑B
b=1 Nb

(k)
(A.86)

R
(k)
1c =

∑B
b=1 tb

(k)H
(k)
1,cb

∑B
b=1 tb

(k)H
(k)
0,cb

(A.87)

R
(k)
2c =

∑B
b=1 tb

(k)H
(k)
2,cb

∑B
b=1 tb

(k)H
(k)
0,cb

(A.88)

t
(k)
b =

N
(k)
b

P (k)(pb) − P (k)(pb−1)
(A.89)
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A.2 Maximum Likehood Estimation from Binned and

Truncated Data with c Univariate Gaussians rela-

tive to a global shift µc = µ0 + ∆µc, ∀c = 1..C

Given a (multinomial) mixture model of C univariate gaussian distributions (N(µ0 +
∆µc, σc)), which means µc are relative to a global mean µ0 with a fixed shiffting of ∆µc,
the samples x follow the probability density function:

p(x) =
C

∑

c=1

πcp(x | c; µ0 + ∆µc, σc)

where

p(x | c; µ0 + ∆µc, σc) =
1

(2π)1/2σ
(k)
c

e
− 1

2
[
(x−(µ

(k)
0

+∆µc)

σ
(k)
c

]2

.

M-Step. Substituting A.2 in A.22 we obtain the Lagrangian for the new model

L 0 (θ, λ) = (A.90)

=
C

∑

c=1

B
∑

b=1

N
(k)
b Eb[z

(k)
c (xb) log(πcbs

1

(2π)1/2σ
(k)
c

e
− 1

2
[
(xb−(µ

(k)
0

+∆µc))

σ
(k)
c

]2

) | N
′,Θ(k)]

(A.91)

−λ(
C

∑

c=1

πc − 1) (A.92)

For this Lagrangian, the expression to maximize πc in the iteration (k + 1) is similar
to the previous case A.31.

In order to calculate the new estimation of µ
(k+1)
0 , we should obtain the maximum of

∂L 0 (θ, λ)

∂µ0
= 0,

hence,

∂L 0 (θ, λ)

∂µ0

=
B

∑

b=1

NbEb[z
(k)
c (xb)

∂

∂µ0

log(
1

(2π)1/2σc

e−
1
2
[
(x−(µ0+∆µc))

σc
]2) | N

′,Θ(k)] (A.93)

=

B
∑

b=1

NbEb[z
(k)
c (xb)

−1

2(σc)2
2(xb − µ0 − ∆µc)(−1) | N

′,Θ(k)] (A.94)

=

B
∑

b=1

NbEb[z
(k)
c (xb)

1

(σc)2
(xb − µ0 − ∆µc) | N

′,Θ(k)] (A.95)

=0 (A.96)

(A.97)
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⇓

C
∑

c=1

B
∑

b=1

NbEb[p(c | xb)
µ0

(σc)2
| N

′,Θ(k)] =

C
∑

c=1

B
∑

b=1

NbEb[p(c | xb)
xb − ∆µc

(σc)2
| N

′,Θ(k)]

(A.98)

µ0

C
∑

c=1

B
∑

b=1

NbEb[p(c | xb) | N
′,Θ(k)] =

C
∑

c=1

B
∑

b=1

NbEb[p(c | xb)(xb − ∆µc) | N
′,Θ(k)]

(A.99)

µ0 =

∑C
c=1

∑B
b=1 NbEb[p(c | xb)(xb − ∆µc) | N

′,Θ(k)]
∑C

c=1

∑B
b=1 NbEb[p(c | xb) | N

′,Θ(k)]
(A.100)

Hence, for iteration k + 1,

µ0
(k+1) =

∑C
c=1

∑B
b=1 Nb

(k)Eb[p(c | xb)(xb − ∆µc) | N
′,Θ(k)]

∑C
c=1

∑B
b=1 Nb

(k)Eb[p(c | xb) | N
′,Θ(k)]

, (A.101)

To obtain the updating expression for (σc
(k+1))2, we use µc = µ0 + ∆µc, ∀c = 1..C in

A.50.

(σc
(k+1))2 =

∑B
b=1 Nb

(k)Eb[p(c | xb)(xb − (µ0
(k+1) + ∆µc))

2 | xb ∈ N
′,Θ(k)]

Cc(Θ
(k))

(A.102)

Expanding the conditioned expected values in A.31, A.101 and A.102, the final expres-
sions for the M-Step implementation are:

π(k+1)
c =π(k)

c R
(k)
0c (A.103)

µ0
(k+1) =

∑C
c=1 πc

(k)(µ
(k)
c − ∆µc)

∑B
b=1 Nb

(k) H
(k)
0,cr

P (k)(pb)−P (k)(pb−1)

∑C
c=1

∑B
b=1 Nb

(k) πc
(k)H

(k)
0,cr

P (k)(pb)−P (k)(pb−1)

(A.104)

−
∑C

c=1 πc
(k)(σ

(k)
c )2

∑B
b=1 Nb

(k) H
(k)
1,cr

P (k)(pb)−P (k)(pb−1)

∑C
c=1

∑B
b=1 Nb

(k) πc
(k)H

(k)
0,cr

P (k)(pb)−P (k)(pb−1)

(A.105)

=

∑C
c=1 πc

(k)((µ
(k)
c − ∆µc)

∑B
b=1 Nb

(k) H
(k)
0,cr

P (k)(pb)−P (k)(pb−1)

∑C
c=1

∑B
b=1 Nb

(k) πc
(k)H

(k)
0,cr

P (k)(pb)−P (k)(pb−1)

(A.106)

−
(σ

(k)
c )2

∑B
b=1 Nb

(k) H
(k)
1,cr

P (k)(pb)−P (k)(pb−1)
)

∑C
c=1

∑B
b=1 Nb

(k) πc
(k)H

(k)
0,cr

P (k)(pb)−P (k)(pb−1)

(A.107)

(σ(k+1)
c )2 =(σ(k)

c )2[1 + (2µ
(k+1)
0 − µ

(k)
0 + ∆µc)R

(k)
1c − R

(k)
2c ] + (µ

(k+1)
0 − µ

(k)
0 )2 (A.108)

(A.109)
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Appendix B. Expression differences between GBM and mMEN

Table B.1: Genes with highest discriminant capacity. We show the fifty most selected
genes across the 200 iterations of the SW resampling approach over the training dataset
to estimate the prediction accuracy. Interestingly, the two genes harbouring the highest
GBM/mMEN gene-expression ratios are the most selected genes in the training.

Gene symbol Accession number Gene description GBM/mMEN ratio Fold selected
GFAP AA069414 Glial fibrillary acidic protein 413 16

PTPRZ1 AA476460
Protein tyrosine phosphatase,
receptor-type, Z polypeptide 1

356 9

GPM6B AA284329 Glycoprotein M6B 133 9

PRELP AA131664
Proline/arginine-rich end leucine-
rich repeat protein

0,042 9

FABP7 W72051 Fatty acid binding protein 7, brain 220 7
EGFL3 AA975413 EGF-like-domain, multiple 3 0,299 7

PDE4B AA453293
Phosphodiesterase 4B, cAMP-
specific (phosphodiesterase E4
dunce homolog, Drosophila)

26 5

OMD N32201 Osteomodulin 0,011 5

LAPTM4A AA398233
Lysosomal-associated protein trans-
membrane 4 alpha

0,346 5

USP25 AA479313 Ubiquitin specific peptidase 25 0,11 5

NFATC3 AA293819
Nuclear factor of activated T-cells,
cytoplasmic, calcineurin-dependent
3

0,399 4

CTGF AA598794 Connective tissue growth factor 0,106 4

PIGT H83225
Phosphatidylinositol glycan, class
T

0,508 4

FLJ39155 R08141 Hypothetical protein FLJ39155 0,019 4
DSP H90899 Desmoplakin 0,004 4
GAS1 AA025819 Growth arrest-specific 1 0,084 4
PLK1 AA629262 Polo-like kinase 1 (Drosophila) 4,3 4

NEK6 AA463188
NIMA (never in mitosis gene a)-
related kinase 6

3,9 4

TNXB T58430
Similar to tenascin XB isoform
1; tenascin XB1; tenascin XB2;
hexabrachion-like [Pan troglodytes]

0,118 4

LHX2 AA018276 LIM homeobox 2 36 4
MGC21621 W52061 MAS-related GPR, member F 0,041 4
PDGFD AI005125 Platelet derived growth factor D 0,034 4
IL27RA AI088984 Interleukin 27 receptor alpha 2,1 4

- AI249137 Transcribed locus 0,205 4
CCND1 R81200 Cyclin D1 0,109 4
NCAM2 AI306467 Neural cell adhesion molecule 2 6,2 4
SH3GL3 AI359676 SH3-domain GRB2-like 3 0,079 4
MT2A BF131311 Metallothionein 2A 11 4

NUDT1 AA443998
Nudix (nucleoside diphosphate
linked moiety X)-type motif 1

2,7 4

RARRES2 AA481944
Retinoic acid receptor responder
(tazarotene induced) 2

0,196 3

SMARCD3 AA035796
SWI/SNF related, matrix associ-
ated, actin dependent regulator of
chromatin, subfamily d, member 3

2,1 3

HYAL1 AA464791 Hyaluronoglucosaminidase 1 0,159 3
CDK2AP1 R78607 CDK2-associated protein 1 2,0 3

CTNND2 H04985
Catenin (cadherin-associated pro-
tein), delta 2 (neural plakophilin-
related arm-repeat protein)

44 3

CYB5 R92281
Cytochrome b5 type A (microso-
mal)

0,333 3

CA2 H23187 Carbonic anhydrase II 16 3

OAT AA446819
Ornithine aminotransferase (gyrate
atrophy)

0,383 3

GPM6A AA448033 Glycoprotein M6A 90 3
HSPC195 R63735 CXXC finger 5 4,2 3
ZMYM6 W81504 Zinc finger, MYM-type 6 0,567 3

PPARGC1A N89673
Peroxisome proliferative activated
receptor, gamma, coactivator 1, al-
pha

0,257 3

TEK H02848
TEK tyrosine kinase, endothelial
(venous malformations, multiple
cutaneous and mucosal)

0,14 3

APM2 AA478298
Chromosome 10 open reading frame
116

0,034 3

FGL2 H56349 Fibrinogen-like 2 0,022 3

CDH2 W49619
Cadherin 2, type 1, N-cadherin
(neuronal)

20 3

CANPL1 H15456 Calpain 1, (mu/I) large subunit 0,532 3
GPR17 R44664 G protein-coupled receptor 17 45 3

LOC119504 AA004832
Chromosome 10 open reading frame
104

0,504 3

- W52340 - 0,355 3

DHRS3 AA171606
Dehydrogenase/reductase (SDR
family) member 3

0,217 3
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Table B.2: Functional analysis of genes with q-value lower than 0.02. The eleven func-
tional clusters arising from the DAVID tool are depicted. The mentioned tool enables a
stringency range for a set of genes to be considered a differentially expressed functional
group. The depicted table was computed using the highest stringency and selecting those
groups with p-value lower than 0.05. (1/3).

Functional Group 1 P-value: 0.000047
Gene symbol Accession number Gene description GBM/mMEN ratio

CDH3 AA425556
CADHERIN 3, TYPE 1, P-
CADHERIN (PLACENTAL)

0,114

DSG2 W37448 DESMOGLEIN 2 0,041
PCDH17 AA669075 PROTOCADHERIN 17 8,365

CDH2 W49619
CADHERIN 2, TYPE 1, N-
CADHERIN (NEURONAL)

19,699

PCDH1 R77512
PROTOCADHERIN 1
(CADHERIN-LIKE 1)

5,324

CDH10 R14164
CADHERIN 10, TYPE 2 (T2-
CADHERIN)

4,273

PCDH9 R38168 PROTOCADHERIN 9 16,891

CDH5 H02884
CADHERIN 5, TYPE 2, VE-
CADHERIN (VASCULAR EP-
ITHELIUM)

0,2

CDH1 AI671174
CADHERIN 1, TYPE 1, E-
CADHERIN (EPITHELIAL)

0,052

CDH11 AA136983
CADHERIN 11, TYPE 2, OB-
CADHERIN (OSTEOBLAST)

0,219

Functional Group 2 P-value: 0.000080
Gene symbol Accession number Gene description GBM/mMEN ratio

FMOD AA486471 FIBROMODULIN 0,135

PRELP AA131664
PROLINE/ARGININE-RICH END
LEUCINE-RICH REPEAT PRO-
TEIN

0,042

OMD N32201 OSTEOMODULIN 0,011
BGN BE262957 BIGLYCAN 0,409

OGN AA045327
OSTEOGLYCIN (OSTEOINDUC-
TIVE FACTOR, MIMECAN)

0,005

Functional Group 3 P-value: 0.000090

Gene symbol Accession number Gene description GBM/mMEN ratio

DSCAM N64532
DOWN SYNDROME CELL AD-
HESION MOLECULE

9,673

GHR AA775738
GROWTH HORMONE RECEP-
TOR

0,34

EST BM674517
INTERLEUKIN 6 SIGNAL
TRANSDUCER (GP130, ON-
COSTATIN M RECEPTOR)

0,517

IFNGR1 BE973918
INTERFERON GAMMA RECEP-
TOR 1

0,212

LEPR H51066 LEPTIN RECEPTOR 0,345
Functional Group 4 P-value: 0.00014

Gene symbol Accession number Gene description GBM/mMEN ratio

AGTRL1 R58969
ANGIOTENSIN II RECEPTOR-
LIKE 1

20,807

GPM6A AA448033 GLYCOPROTEIN M6A 89,864

GPR4 AI492409
G PROTEIN-COUPLED RECEP-
TOR 4

0,152

TM4SF7 AA100696 TETRASPANIN 4 0,127

SDC2 H64346

SYNDECAN 2 (HEPARAN SUL-
FATE PROTEOGLYCAN 1, CELL
SURFACE-ASSOCIATED, FIBRO-
GLYCAN)

0,042

TM4SF13 W86202 TETRASPANIN 13 13,86

Functional Group 5 P-value: 0.00017
Gene symbol Accession number Gene description GBM/mMEN ratio

NCAM2 AI306467
NEURAL CELL ADHESION
MOLECULE 2

6,234

DSCAM N64532
DOWN SYNDROME CELL AD-
HESION MOLECULE

9,673

ALCAM R13558
ACTIVATED LEUKOCYTE CELL
ADHESION MOLECULE

0,092

JAM2 AA410345
JUNCTIONAL ADHESION
MOLECULE 2

0,094

EST H73479
JUNCTIONAL ADHESION
MOLECULE 3

0,065
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Appendix B. Expression differences between GBM and mMEN

Table B.3: Functional analysis of genes with q-value lower than 0.02. (2/3).
Functional Group 6 P-value: 0.00027

Gene symbol Accession number Gene description GBM/mMEN ratio

TUBB4 BX100915

MELANOCORTIN 1 RECEPTOR
(ALPHA MELANOCYTE STIM-
ULATING HORMONE RECEP-
TOR)

7,806

TUBA8 BF195571 TUBULIN, ALPHA 8 5,523

TUBA1 AA180912
TUBULIN, ALPHA 1 (TESTIS
SPECIFIC)

4,26

TUBA2 AA426374 TUBULIN, ALPHA 2 5,2

TUBA2 AA626698
ALPHA-TUBULIN ISOTYPE H2-
ALPHA

4,922

TUBB AI672565 TUBULIN, BETA 2A 14,003
TUBB2 AI000256 TUBULIN, BETA 2C 2,334
TUBA3 AA865469 TUBULIN, ALPHA 3 6,407

Functional Group 7 P-value: 0.00083
Gene symbol Accession number Gene description GBM/mMEN ratio

INSR T47312 INSULIN RECEPTOR 0,174

PDGFRA H23235
PLATELET-DERIVED GROWTH
FACTOR RECEPTOR, ALPHA
POLYPEPTIDE

19,359

BMPR1A AA991180
BONE MORPHOGENETIC PRO-
TEIN RECEPTOR, TYPE IA

0,415

KIT N20798
V-KIT HARDY-ZUCKERMAN
4 FELINE SARCOMA VIRAL
ONCOGENE HOMOLOG

0,231

TEK H02848

TEK TYROSINE KINASE, EN-
DOTHELIAL (VENOUS MAL-
FORMATIONS, MULTIPLE
CUTANEOUS AND MUCOSAL)

0,14

EPHA7 N91461 EPH RECEPTOR A7 0,031

ERBB3 AA664212
V-ERB-B2 ERYTHROBLASTIC
LEUKEMIA VIRAL ONCOGENE
HOMOLOG 3 (AVIAN)

13,96

RAGE N77779 RENAL TUMOR ANTIGEN 0,475

RYK T77810
RYK RECEPTOR-LIKE TYRO-
SINE KINASE

0,272

TYRO3 BM665421
TYRO3 PROTEIN TYROSINE KI-
NASE

4,212

FGFR4 AA446994
FIBROBLAST GROWTH FAC-
TOR RECEPTOR 4

0,178

Functional Group 8 P-value: 0.0026
Gene symbol Accession number Gene description GBM/mMEN ratio

GPR4 AI492409
G PROTEIN-COUPLED RECEP-
TOR 4

0,152

EST R44664
G PROTEIN-COUPLED RECEP-
TOR 17

45,13

P2RY5 R91539
PURINERGIC RECEPTOR P2Y,
G-PROTEIN COUPLED, 5

0,355

FZD4 AA677200
FRIZZLED HOMOLOG 4
(DROSOPHILA)

0,131

CCRL2 AI288845
CHEMOKINE (C-C MOTIF)
RECEPTOR-LIKE 2

7,673

AGTRL1 R58969
ANGIOTENSIN II RECEPTOR-
LIKE 1

20,807

EST H71474
FRIZZLED HOMOLOG 7
(DROSOPHILA)

0,119

GPR153 AA777493
G PROTEIN-COUPLED RECEP-
TOR 153

3,139

MGC21621 W52061
MAS-RELATED GPR, MEMBER
F

0,041

RAMP1 BE262882
RECEPTOR (CALCITONIN) AC-
TIVITY MODIFYING PROTEIN 1

18,624

Functional Group 9 P-value: 0.0044

Gene symbol Accession number Gene description GBM/mMEN ratio

ARL7 N35301
ADP-RIBOSYLATION FACTOR-
LIKE 4C

11,492

ARF4L AA878652
ADP-RIBOSYLATION FACTOR-
LIKE 4D

0,081

EST H98534
RAB9A, MEMBER RAS ONCO-
GENE FAMILY

2,157

RAB31 AA432084
RAB31, MEMBER RAS ONCO-
GENE FAMILY

1,795

RAB33A AI360342
RAB33A, MEMBER RAS ONCO-
GENE FAMILY

5,832

RRAS2 R21415
RELATED RAS VIRAL (R-RAS)
ONCOGENE HOMOLOG 2

0,206

RASD1 BM674708
RAS, DEXAMETHASONE-
INDUCED 1

18,885

ARHN AI027909 RHO FAMILY GTPASE 2 12,461

RALB W15297

V-RAL SIMIAN LEUKEMIA VI-
RAL ONCOGENE HOMOLOG B
(RAS RELATED; GTP BINDING
PROTEIN)

2,324
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Table B.4: Functional analysis of genes with q-value lower than 0.02. (3/3).
Functional Group 10 P-value: 0.011

Gene symbol Accession number Gene description GBM/mMEN ratio

PLK1 AA629262
POLO-LIKE KINASE 1
(DROSOPHILA)

4,297

RIPK1 AA426324
RECEPTOR (TNFRSF)-
INTERACTING SERINE-
THREONINE KINASE 1

0,631

NEK6 AA463188
NIMA (NEVER IN MITOSIS
GENE A)-RELATED KINASE 6

3,883

PRKCN AA417816 PROTEIN KINASE D3 0,373

PRKACB AA459980
PROTEIN KINASE, CAMP-
DEPENDENT, CATALYTIC,
BETA

5,018

RAGE N77779 RENAL TUMOR ANTIGEN 0,475
PRKCM N53380 PROTEIN KINASE D1 5,168
PRKCD AA496360 PROTEIN KINASE C, DELTA 0,386
PRKCH AA128274 PROTEIN KINASE C, ETA 0,187

Functional Group 11 P-value: 0.036
Gene symbol Accession number Gene description GBM/mMEN ratio

CYP1B1 AA448157
CYTOCHROME P450, FAMILY 1,
SUBFAMILY B, POLYPEPTIDE 1

0,093

CYP4Z1 H21977
CYTOCHROME P450, FAMILY 4,
SUBFAMILY Z, POLYPEPTIDE 1

0,223

CYB5 R92281
CYTOCHROME B5 TYPE A (MI-
CROSOMAL)

0,333

CYP4B1 AA291484
CYTOCHROME P450, FAMILY 4,
SUBFAMILY B, POLYPEPTIDE 1

0,028

CYP3A5 BF062953
CYTOCHROME P450, FAMILY 3,
SUBFAMILY A, POLYPEPTIDE 5

0,127

Table B.5: Comparison of gene-expression values between cDNA microarrays and RT-
PCR. This table shows the GBM/mMEN ratios derived from gene-expression values from
cDNA microarrays and RT-PCR. Ratios were obtained from expression values originating
from the three GBM and three mMEN selected samples to be subjected to RT-PCR. For
cDNA microarrays the ratio was obtained by dividing the average of expression values
from the 3 GBM by that from the 3 mMEN. In contrast, for RT-PCR this ratio was
computed as the power of 2 to the negative difference between the Ct average from the 3
GBM and 3 mMEN samples subjected to RT-PCR (2−(Ct(GBM)−Ct(MEN))).

cDNA RT-PCR
Gene Symbol Accession number GBM/MEN ratio GBM/MEN fold-change

GFAP AA069414 813 50419
PTPRZ1 AA476460 378 517
GPM6B AA284329 149 157

MT3 A1362950 27 61
CA2 H23187 17 28

TUBBB A1672565 9 42
PRELP AA131664 0.022 0.04
APM2 AA478298 0.019 0.03
DSP H90899 0.0016 0.0007
OGN AA045327 0.00076 0.0005
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