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”It is the mark of an educated mind to be able to entertain a thought
without accepting it.”

Aristotle, (384 BC - 322 BC).

”Doubt is not a pleasant condition, but certainty is absurd.”

Voltaire, (1694 - 1778).

”Common sense is the collection of prejudices acquired by age eighteen.”

Albert Einstein, (1879 - 1955).

”Modesty is a shining light; it prepares the mind to receive knowledge, and
the heart for truth.”

Madam Guizot
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Matemática Multidisciplinar.

Finally, thanks to my loved country Venezuela and University of Los Andes
(ULA) for their economical support.

ix



x



Abstract

This thesis dissertation deals with the mathematical modeling of childhood
obesity from a social epidemic point of view for the Spanish region of Va-
lencia. Three mathematical models based on systems of nonlinear ordinary
differential equations of first order were constructed. The first one is con-
structed for simulating childhood obesity for the 3−5 years old population.
For this model a nonstandard scheme based on the techniques developed
by Ronald Mickens is constructed. This model is simulated with real data
and the results show an increasing trend of obesity for the next years. The
second model is an age-structured model developed in order to study the
influence of age stages in the obesity population dynamics. This model
considers overweight and obese in the groups 6 − 8 and 9 − 12 years old.
Based on the numerical simulations of different scenarios it is shown that
the prevention of children obesity in early years is of paramount impor-
tance. Therefore public health strategies should be designed as soon as
possible to reduce the worldwide social obesity epidemic. The last model
considers seasonal fluctuations of obesity prevalence using a nonautono-
muos system of nonlinear of ordinary differential equations and we show
that their solutions are periodic using a Jean Mawhin’s Theorem of Co-
incidence. To corroborate the analytical results and perform numerical
simulations, multistage Adomian and differential transformation methods
are implemented. Numerical solutions using these methods are compared
with those produced using Runge-Kutta type schemes. These implemented
methods ensure good approximations using larger step sizes.
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Resumen

Esta memoria esta relacionada con la modelización matemática de la obesi-
dad infantil en la Comunidad Valenciana de España desde un punto de vista
epidemiológico social. Se construyen tres modelos matemáticos basados en
sistemas de ecuaciones diferenciales ordinarias no lineales de primer orden.
El primer modelo es construido para modelizar la obesidad infantil en la
población con edades comprendidas entre 3 y 5 años. Para este modelo
un esquema no-estándar es construido utilizando las técnicas desarrolladas
por Mickens, donde se pueden usar tamaños de paso mayores a los usados
en algunos métodos tradicionales. Las simulaciones numéricas utilizando
datos reales indican un crecimiento de la obesidad en los próximos años.
El segundo modelo es un modelo estructurado por edades para estudiar la
influencia de las edades en los grupos 6-8 y 9-12 años. Basado en las simula-
ciones numéricas se encuentra que la prevención en tempranas edades es de
fundamental importancia para reducir la epidemia mundial de la obesidad.
El último modelo de esta memoria considera fluctuaciones estacionales de
la prevalencia de la obesidad usando un modelo basado en un sistema de
ecuaciones diferenciales ordinarias no lineales de primer orden no-autónomo
y se muestra que sus soluciones son periódicas utilizando el teorema de coin-
cidencia de Jean Mawhin. Para corroborar los resultados teóricos y realizar
simulaciones numéricas se utilizan los métodos de Adomian con múltiple
etapas y la transformada diferencial. Estos resultados son comparados con
los esquemas de tipo Runge-Kutta ofreciendo aśı buenas aproximaciones
con tamaños de paso mas grandes.
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Resum

Esta memòria està relacionada amb la modelització matemàtica de l’obesitat
infantil a la Comunitat Valenciana (Espanya) des de un punt de vista de
epidèmia social. Es contrueixen tres models matemàtics basats en sistemes
d’equacions diferencials ordinàries no linials de primer ordre. El primer
model modelitza la obesitat infantil en una població de xiquets entre 3 i
5 anys. Per a este model es contrueix un esquema numèric no estàndar
utilitzant les tècniques desentrrollades per Mickens, on es poden utilitzar
tamanys de pas majors que els que s’utilitzen en alguns métodes tradi-
cionals. Les simulacions numèriques utilitzant dades reals indiquen un
creiximent de l’obesitat en els pròxims anys.

El segón model és un model estructurat per edats per a estudiar l’influència
de les edats en els grups 6-8 i 9-12 anys. Basat en les simulacions numèriques
es troba que la prevención en edats primerenques é de fonamental im-
portància per a redüır l’epidèmia mundial de l’obesitat.

L’últim model d’esta memòria considera fluctiacions estacionals de la
prevalència de l’obesitat utilitzant un model basat en un sistema d’equacions
diferencials ordinàries no linials de primer ordre no autònom i es mostra
que les seues solucions son periòdiques aplicant el teorema de coincidència
de Jean Mawhin. Per a comprovar els resultats teòrics i realitzar simu-
lacions numèriques s’han utilitzat els métodes numèrics d’Adomian amd
múltiples etapes i transformada integral. Estos resultats s’han comparat
amb esquemes clàssics de Runge-Kutta oferint bones aproximacions amb
tamanys de pas mès grans.
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Basic notation

R Set of real numbers

C Set of real complex

Rn =
{

(x1, ..., xn)
}

xi ∈ R for all i = 1, ..., n

R+ Set of positive real numbers

R− Set of negative real numbers

Rn
+ =

{
(x1, ..., xn)

}
xi ∈ R+ for all i = 1, ..., n

Rn− =
{

(x1, ..., xn)
}

xi ∈ R− for all i = 1, ..., n

B(x0, R) Set
{

x ∈ Rn/ ‖x− x0‖ < R
}

B(x0, R) Set
{

x ∈ Rn/ ‖x− x0‖ ≤ R
}

∂B(x0, R) Set
{

x ∈ Rn/ ‖x− x0‖ = R
}

:= Defined as

]a, b[ Open interval a < t < b in R
[a, b] Closed interval a ≤ t ≤ b in R
Ck(I) Set

{
f : I ⊆ R −→ R/ dif(x)

dxi

exists and are continuous, for i = 0, 1, ..., k
}

Ck(R,Rn) Set
{

f : R −→ Rn/ f(t) = (f1(t), ..., fn(t))

fi(t) ∈ Ck(R) for all i = 0, 1, ..., k
}

fu = sup
t∈[0,∞[

f(t) f : [0,∞[−→ R is a bounded continuous function

f l = inf
t∈[0,∞[

f(t) f : [0,∞[−→ R is a bounded continuous function

f = 1
T

∫ T
0 f(t)dt Where f(t) ∈ C[0, T ], and we call it mean value
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Introduction

Obesity is growing at an important rate in developed and developing coun-
tries and it is becoming a serious disease not only from the individual
health point of view but also from the public socioeconomic one, motivated
by the high cost of the Health Public Care System due to the assistance
expenditure of people with overweight and obesity.

Some related fatal diseases such as diabetes, heart attacks, blindness,
renal failures and nonfatal related diseases such as respiratory difficulties,
arthritis, infertility and psychological disorders are linked to overweight and
obesity, see (CDC, 2007a,b; Ebbeling et al., 2002). One disease of particular
concern is Type 2 diabetes, which has increased dramatically in children
and adolescents (CDC, 2003). In addition the prevalence of gallbladder
diseases in obese populations has been found to range as high as 60–95%
when evaluated by gross and histologic examination after cholecystectomy
(Liew et al., 2007). Obese patients not only have a high frequency of
gallstones, but also a high proportion of abnormal histologic findings in the
gallbladder mucosa (Liew et al., 2007).

Several studies correlate infant and adult obesity at the point that in-
fant obesity is a powerful predictor of adult age obesity (Dietz, 1998; Krebs
and Jacobson, 2003; Whitaker et al., 1997). For instance, according with
(Krebs and Jacobson, 2003), an obese 4 years old child has a 20% increased
probability to become an adult obese. Looking at the long-term conse-
quences, overweight adolescents have a 70% chance of becoming overweight
or obese adults, which increases to 80% if one or both parents are over-
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weight or obese (Torgan, 2007). Additionally, it is important to consider
that Wang (2001)(Wang, 2001) and Wang and Beydoun (2007)(Wang and
Beydoun, 2007) associated obesity to socioeconomic status.

There are many factors that play a role in body weight, and therefore, in
becoming obese. But the main factor is the excess intake of calories, higher
than the daily expenditure of energy, which leads to weight gain and can
eventually lead to obesity. Other factors include individual’s environment,
socioeconomic status, culture, metabolism, genes, etc. Obesity emerges
partially from obesogenic environment. However, defining obesogenic envi-
ronments remains problematic, especially in relation to sociocultural factors
(Ulijaszek, 2007).

In this work, we study the obesity like a disease of social transmission,
from an epidemiological point of view, which means the study of the spread
of the disease, in space and time, with the objective to trace factors that are
responsible for, or contribute to, his occurrence (Diekmann and Heesterbek,
2005). We treat obesity like a disease that spreads by social contact and this
contact depends on the social environment around the people. Of course
this environment consider media, time, accessibility of foods, economical
status and others which have influence over the probability of transmission
of the obesity.

To the best of our knowledge the only antecedent of obesity mathemat-
ical models for population dynamics appears in (Evangelista et al., 2004)
where a fast-food obesity mathematical model for the USA population is
proposed. The infinite-time behavior of the obesity study developed in
(Evangelista et al., 2004) is based on the equilibrium points of the under-
lying system of differential equations. However, the model proposed there
presents several drawbacks such as the invariance of parameters of the sys-
tem in the infinite-time domain which is an unrealistic hypothesis, or the
rough parameter estimation used that could be improved by means of the
use of reliable data coming from local health institutions.

Note that our goal is to model and to predict future behavior of the
childhood obesity, but the model also helps to the understanding of the
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mechanisms of the obesity spread. Mathematical models, simpler than the
reality, allow us to understand the global dynamical behavior of the obesity
in the population and to establish sustainable public health programs for
the prevention of the childhood obesity.

Other studies have been used mathematical tools to investigate differ-
ent type of issues regarding obesity. In (Ergün, 2009) an automated system
to recognize and to follow-up obesity based on two different mathematical
models, such as the traditional statistical method based on logistic regres-
sion and a multi-layer perception (MLP) neural network, was investigated.

Classical models of disease dynamics rely on systems of differential equa-
tions that represent the number of individuals in various categories through
continuous variables, allowing for infinitesimal population densities. The
origin of these models is commonly traced back to the well-known pioneer
work of Kermack and McKendrick (Bailey, 1975; Hethcote, 2000). In their
work, they obtained the epidemic threshold result that the density of sus-
ceptibles must exceed a critical value in order for an epidemic outbreak to
occur (Bailey, 1975; Hethcote, 2000).

Other historical antecedents include the smallpox model formulated and
solved by Daniel Bernoulli in 1760 in order to evaluate the effectiveness of
variolation of healthy people with the smallpox virus, and the discrete time
model proposed in 1906 by Hamer formulated in his attempt to under-
stand the recurrence of measles epidemics, which may have been the first
model to assume that the incidence (number of new cases per unit time)
depends on the product of the densities of the susceptibles and infectives
(Hethcote, 2000). In addition Ross developed differential equation models
for malaria as a host-vector disease in 1911, and he won the second nobel
prize in medicine. For more details readers can see the first edition in 1957
of Bailey’s book which is one important book that helped the developing
of mathematical epidemiology and the review made by Hethcote in 2000
(Hethcote, 2000).

Systems of ordinary differential equations (ODEs) are well-known tools

xxix



that have been used to model different type of diseases (Brauer and Castillo-
Chavez, 2001; Hethcote, 2000; Murray, 2002; Solis et al., 2005). The most
discussed type of infection spread is the SIR-system, in which individuals
are susceptible (S), infective (I) or removed/immune (R). The SIR epidemi-
ology model is based on the flow of the individuals between the compart-
ments S, I and R. In addition, several differential equations models have
been proposed for modeling social behavior, such rumors, social behavior
and ideologies (Brauer and Castillo-Chavez, 2001; Kawachi, 2008; Murray,
2002; Noymer, 2001; Santonja et al., 2008).

Mathematical models and computer simulations are useful experimental
tools for building and testing theories, assessing quantitative conjectures,
determining sensitivities to changes in parameter values, and estimating
key parameters from data. Understanding the transmission characteris-
tics of infectious diseases in communities, regions, and countries can lead
to better approaches to decrease the transmission of these diseases (Het-
hcote, 2000). Mathematical models are used in planning, evaluating and
optimizing various detection, prevention, therapy and control programs.
Epidemiology modeling can contribute to the design and analysis of epi-
demiological surveys, suggest crucial data that should be collected, identify
trends, make general forecasts and estimate the uncertainty in forecasts
(Hethcote, 2000). Many of these models are based upon systems of ordi-
nary differential equations (ODEs). In these models commonly the vari-
ables represent subpopulations of susceptibles (S), infected (I), recovered
(R), latent (E), transmitted diseases vectors, and so forth. Thus, the ODE
system describes the dynamics of the different classes of subpopulations
in the model (Brauer and Castillo-Chavez, 2001; Murray, 2002; Hoppen-
steadt, 1975; Renshaw, 1991). In this way, acronyms for epidemiology
models are often based on the flow patterns between the compartments
such as SI, SIS, SIRS, SEIR, and SEIRS. All these models and most
of the current models ones are extensions of the SIR model elaborated by
W.O. Kermack and A.G. McKendrick in 1927 (Hethcote, 2000). Closed-
form expressions for these functions in the mathematical models only are
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known for the SI epidemic model and closely related variants (Bailey, 1975).
One of the major difficulties of the analytical epidemic approach has been
the rapid growth of the mathematical complexity of these models used to
describe the various aspects of phenomena in sufficient detail and the diffi-
culty in solving them in an analytical form. The main challenges arise from
the presence of the nonlinear term SI which comes from the law of mass
action (Capasso, 2008).

In (Evangelista et al., 2004) and (Christakis and Fowler, 2007) the au-
thors suggest that obesity spreads by social contact (Evangelista et al.,
2004; Christakis and Fowler, 2007). Therefore, in this dissertation, we de-
velop a statistical analysis of obesity influence factors focused in the target
population of children between 3 and 5 years old. This analysis helps us
to the construction of a finite-time childhood obesity mathematical model,
somewhat different to the one considered in (Evangelista et al., 2004) and
based on a more carefully adapted modeling to the real situation and to
solving numerically systems of quadratic type ordinary differential equa-
tions in finite-time intervals. The results and simulations will lead us to
present conclusions about the nearby future evolution of the obesity for a
3− 5 years old infant population. In addition, an age structured model is
developed in order to study the influence of age stages in the obesity popula-
tion dynamics. This proposed model considers the proportion of overweight
and obese children populations in the groups 6 − 8 and 9 − 12 years old.
Based on the numerical simulations of different scenarios we show that the
prevention of children obesity in early years is of paramount importance.
Therefore, public health strategies should be designed as soon as possible
to reduce the worldwide social obesity epidemic. In this work, we modify
the time-invariant parameter obesity model for the 3 − 5 years old pop-
ulation to a nonautonomous model. The modification of the autonomous
model is justified by the fact that the social and physical environment has
fluctuations over the time. This seasonal effect has been studied in sev-
eral works related to overweight and obesity of individuals (Plasqui and
Westerterp, 2004; Westerterp, 2001; Van Staveren et al., 1986; Kobayashi,
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2006; Katzmarzyk and Leonard, 1998; Tobe et al., 1994). In addition in
(González et al., 2008) the dynamics for a 3−5 years old obesity population
under uncertainty in the initial condition and parameters of the model was
investigated.

Generally the first approach to investigate the dynamics of nonlinear
first order ordinary differential equations systems is the study of the eigen-
values of the associated Jacobian of the linearized system about the equi-
librium points. Based in this approach, the local behavior of the solutions
in time can be determined (Hirsch et al., 2004). In addition, in some cases
using Lyapunov’s functions the global stability can investigated (González-
Parra et al., 2009c; Aranda et al., 2008; Zhang and Teng, 2008). On the
other hand, if the system is nonautonomous, the above theory mentioned
can not be applied because the equilibrium points depend on time, but
other mathematical tools and notions such Lozinskii measure and uniform
persistence can be applied (McCluskey, 2005).

The study of global existence of positive periodic solutions of models of
dynamic populations in a periodic environment is an important problem.
Several works have been presented with the assumption that the contact
rate is a general continuous, bounded, positive and periodic function with
period T and the authors have shown the existence of positive periodic so-
lution with the help of a continuation theorem based on coincidence degree
(J.Hui and Zhu, 2005; Arenas et al., 2008a; Xia et al., 2007). In addi-
tion some authors have studied periodic solutions for others population
mathematical models (Huoa et al., 2007; Kouche and Tatar, 2007). Since
the global existence of positive periodic solutions plays a similar role as
a globally stable equilibrium does in the autonomous model. In this the-
sis we show that our obesity seasonal model has periodic solutions using
Jean Mawhin’s continuation theorem which is based on coincidence degree
theory (Gaines and Mawhin, 1977).

The existence of periodic solutions is important in the obesity popu-
lation model since obesity is increasing worldwide and several studies are
now being developed. Therefore, knowing that the behavior of obese and
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overweight populations present periodic oscillations is important in order
to do more accurate studies. In this thesis we show that our obesity sea-
sonal model has periodic solutions using a continuation theorem based on
coincidence degree theory

To corroborate the analytical results and perform numerical simula-
tions regarding the seasonal obesity model, Adomian multistage and dif-
ferential transformation methods are implemented. On the other hand,
the autonomous obesity model is simulated numerically using schemes con-
structed using the nonstandard finite difference techniques developed by
Ronald Mickens (Mickens, 1994, 2000). All these methods are used to solve
numerically the obesity mathematical model with parameters derived from
data of the region of Valencia regarding overweight, obesity and diet. Nu-
merical results are compared with those produced using Runge-Kutta type
schemes. The new numerical methods ensure competitive approximations
using time step sizes larger than those normally used by traditional schemes.

A brief Outline of this Dissertation

This thesis dissertation is as follows:

In Chapter 1 we present a finite-time 3−5 years old childhood obesity model
to study the evolution of the obesity in the next future in the Spanish re-
gion of Valencia. After a statistical study, it can be seen that sociocultural
characteristics determine the nutritional habits and the unhealthy ones as
high frequency of consumption of bakery, fried meals and soft drinks (BFS),
are prevalent factors in childhood obesity. This analysis allows us to con-
sider obesity as a disease of social transmission caused by high frequency
consumption of BFS and to build a mathematical model of epidemiological-
type to study the childhood obesity evolution. The parameters of the model
using data from surveys related to obesity in the Spanish region of Valen-
cia are computed adjusting the model to data from year 1999 and 2002.
Furthermore the simulation shows an increasing trend of childhood obesity
in the coming years.
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In chapter 2 we present an age-structured mathematical model for the
dynamical evolution of childhood obesity at population level with the aim
of study the influence of age stages in the obesity population dynamics.
The proposed model is fitted to real data in order to estimate unknown pa-
rameters and then used to predict the proportion of overweight and obese
children populations in the groups 6−8 and 9−12 years old in the region of
Valencia, Spain for the coming years. Based on the fitting of the model and
numerical simulations of different scenarios it is shown that the prevention
of children obesity in early years is of paramount importance. Therefore
public health strategies should be designed as soon as possible to reduce
the worldwide social obesity epidemic.

In chapter 3, a nonstandard finite difference scheme has been devel-
oped with the aim of solving numerically a mathematical model for obesity
population dynamics. The construction of the proposed discrete scheme is
such that it is dynamically consistent with the original differential equa-
tions model. Since the total population in this mathematical model is
assumed constant, the proposed scheme has been constructed to satisfy
the associated conservation law and positivity condition. Numerical com-
parisons between the competitive nonstandard scheme developed here and
Euler method show the effectiveness of the proposed nonstandard numerical
scheme. Numerical examples show that the nonstandard difference scheme
methodology is a good option to solve numerically different mathematical
models where essential properties of the populations need to be satisfied in
order to simulate the real world.

In chapter 4 we study the periodic behavior of the solutions of a nonau-
tonomous model for a obesity population. The mathematical model repre-
sented by a nonautonomous system of nonlinear ordinary differential equa-
tions is used to model the dynamics of obese populations. Numerical simu-
lations suggest periodic behavior of the subpopulations solutions. Sufficient
conditions which guarantee the existence of a periodic positive solution are
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obtained using a continuation theorem based on coincidence degree theory.

In chapter 5, we apply the multistage Adomian Decomposition Method
MADM to solve the seasonal obesity model that is based on a nonau-
tonomous system of nonlinear differential equations. This seasonal obesity
model has periodic behavior due to the periodic transmission parameter.
Here the concept of the MADM is introduced and then it is employed to ob-
tain a piecewise finite series solution. The MADM is used here as a hybrid
analytical-numerical technique for approximating the solutions of the epi-
demic models. In order to show the efficiency of the method, the obtained
numerical results are compared with the fourth-order Runge-Kutta method
solutions. Numerical comparisons show that the MADM is accurate, easy
to apply and the calculated solutions preserve the periodic behavior of the
continuous models. Moreover, the method has the advantage of giving a
functional form of the solution for any time interval.

Finally, in chapter 6, the main aim is to apply the differential trans-
formation method (DTM) to solve a system of nonautonomous nonlinear
differential equations that describe the seasonal obesity in the population.
The solution of this model exhibit periodic behavior due to the seasonal
transmission rate. The dynamics of this model describe the evolution of
the different classes of the population. Here the concept of DTM is intro-
duced and then it is employed to derive a set of difference equations for
the seasonal obesity social epidemic model. The DTM is used here as an
algorithm for approximating the solutions of the seasonal obesity model in
a sequence of time intervals. In order to show the efficiency of the method,
the obtained numerical results are compared with the fourth-order Runge-
Kutta method solutions. The numerical comparisons show that the DTM

is accurate, easy to apply and the calculated solutions preserve the proper-
ties of the continuous models, such as the periodic behavior. Furthermore,
it is shown that the DTM avoids large computational work and symbolic
computation.
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Chapter 1

Mathematical modeling of

infant obesity population as

a social transmission disease:

the case of the Spanish

region of Valencia †

In this chapter we present a finite-time 3 − 5 years old childhood obesity
model to study the evolution of the obesity in the next years in the Spanish
region of Valencia. After a statistical study, it can be seen that sociocul-
tural characteristics determine the nutritional habits and the unhealthy
ones as high frequency of consumption of bakery products, fried meals and
soft drinks (BFS), are prevalent factors in childhood obesity. This analysis
allows us to consider obesity as a disease of social transmission caused by
high frequency consumption of BFS and to build a mathematical model
of epidemiological-type to study the childhood obesity evolution. The pa-
rameters of the model using data from surveys related to obesity in the

†This chapter is based on (Jódar et al., 2008)
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Spanish region of Valencia are computed adjusting the model to data of
year 1999 and 2002. Furthermore the simulation shows an increasing trend
of childhood obesity in next years.

Introduction

Obesity is growing at an important rate in developed and developing coun-
tries and it is becoming a serious disease not only from the individual
health point of view but also from the public socioeconomic one, motivated
by the high cost of the Health Public Care System due to the assistance
expenditure of people suffering related fatal diseases such as diabetes, heart
attacks, blindness, renal failures and nonfatal related diseases such as res-
piratory difficulties, arthritis, infertility and psychological disorders, see
(CDC, 2007a,b). One disease of particular concern is Type 2 diabetes,
which is linked to overweight and obesity and has increased dramatically
in children and adolescents (CDC, 2003).

Several studies correlate infant and adult obesity at the point that infant
obesity is a powerful predictor of adult age obesity (Dietz, 1998; Krebs and
Jacobson, 2003; Whitaker et al., 1997). For instance, according with (Krebs
and Jacobson, 2003), an obese 4 years old child has a 20% increased prob-
ability to become an adult obese. Looking at the long-term consequences,
overweight adolescents have a 70% chance of becoming overweight or obese
adults, which increases to 80% if one or both parents are overweight or
obese (Torgan, 2007).

Although there are still some differences on criteria around the optimal
measure for children obesity, for obesity measurement, we use here the Body
Mass Index (BMI), which is a number calculated using individual’s height
and weight. Nevertheless, the change of the criterion only will produce
minor changes in the conclusions.

There are many factors that play a role in body weight, and therefore, in
becoming obese. But the main fact is the excess intake of calories, higher
than the daily expenditure of energy, that leads to weight gain and can
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eventually lead to obesity. Other factors include individual’s environment,
socioeconomic status, culture, metabolism, genes, etc.

In this work we study the obesity like a disease of social transmission,
from an epidemiological point of view, which means the study of the spread
of the disease, in space and time, with the objective to trace factors that are
responsible for, or contribute to, his occurrence (Diekmann and Heesterbek,
2005). We treat obesity like a disease that spread by social contact, this
contact depends on the social environment around the people. Of course
this environment consider media, time, accessibility of foods, economical
status and others which have influence over the probability of transmission
of the obesity.

To our knowledge the only antecedent of obesity mathematical mod-
els for populations appears in (Evangelista et al., 2004) where a fast-food
obesity mathematical model for the USA population is proposed. The
infinite-time behavior of the obesity study developed in (Evangelista et al.,
2004) is based on the equilibrium points of the underlying system of differ-
ential equations. However, the model proposed in (Evangelista et al., 2004)
presents several drawbacks, for example, the invariance of parameters of
the system in the infinite-time domain is an unrealistic hypothesis and the
rough parameter estimation used could be improved by means of the use
of reliable data coming from local health institutions.

It is worth here to point out the difficulties to obtain reliable data. For
instance, in the Spanish region of Valencia, a health survey is done every 5
years and data should be prepared, processed and stored in database before
their availability. Moreover, the economic cost of this survey is very high.
Therefore we had to search in several sources such the Health Survey of
the Region of Valencia, survey about alimentary habits developed by the
Nutritional Observatory or a report from Abbot laboratories to complete
the needed data, but data corresponding to children is not easy to find.

In this chapter, we develop a statistical analysis of obesity influence fac-
tors focused in the target population of children between 3 and 5 years old.
This analysis helps us to the construction of a finite-time childhood obesity
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mathematical model, somewhat different to the one considered in (Evan-
gelista et al., 2004), based on a more carefully adapted modeling to the
real situation and solving numerically systems of quadratic type ordinary
differential equations in finite-time intervals. The results and simulations
will lead us to present conclusions about the nearby future evolution of the
obesity for a 3− 5 years old infant population.

Note that our goal is to model and to obtain future behavior of the
childhood obesity, but also the model helps the understanding of the mech-
anisms of the obesity spread. Mathematical models, simpler than the re-
ality, allow to understand the global dynamical behavior of the obesity in
the population and to establish sustainable public health programs for the
prevention of the childhood obesity.

The chapter is organized as follows. In Section 1.1 a statistical analysis
of the data from Encuesta de Salud de la Comunidad Valenciana 2000-2001
(Health Survey of the Region of Valencia 2000-2001) (ConselleriaSanitat,
2007) to identify the prevalent factors of childhood obesity is presented.
Once identified the prevalent factors, we assume that the obesity is mainly
transmitted by the quoted factors. Section 1.2 is addressed to the construc-
tion of the model, estimation of the model parameters, numerical simulation
and sensitivity analysis. Section 1.6 is devoted to a short discussion about
how the model analysis may suggest general health public strategies to
avoid increasing of childhood obesity. Conclusions are presented in Section
1.7.

1.1 Significance analysis of influence factors in child-

hood obesity

The region of Valencia is located in eastern Mediterranean Spain, with an
extension of 23, 255 km2 and a population of 4, 543, 304 inhabitants (2004),
composed by three provinces, Castellón (north) with 527, 345 inhabitants,
Alicante (south) with 1, 657, 040, and Valencia (middle) with 2, 358, 919.

In this section, we study the predictive influence factors in 3− 5 years
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old childhood obesity in the region of Valencia according to the logistic
regression analysis (Hair et al., 1998, Chapter 5), founded on the database
of 1, 187 children belonging to different families from the Health Survey
of the Region of Valencia 2000-2001 (ConselleriaSanitat, 2007), where the
dependent variable is a dummy variable, 0 means normal weight and 1
means existence of overweight or obesity. We consider that a 3 or 4 years
old child is overweight or obese if its Body Mass Index (BMI) is greater
than 1.75 where,

BMI =
Weight (Kg)
Height (m)2

,

and, a 5 years old child is overweight or obese if its BMI is greater than
1.80 (Fullana et al., 2004; Sobradillo et al., 2007).

The considered variables, as possible predictors of obesity in children
between 3− 5 years old, are:

Gender Age Studies level Residence

Male 3 years old Illiterate Alicante

Female 4 years old Primary education Castellón

5 years old Secondary education Valencia

Higher education

The reference category considered for each variable is

Gender Study level Residence

Female Higher education Valencia

The results of the logistic regression (Hair et al., 1998, Chapter 5) are
showed in the Table 1.1 (see (Jódar et al., 2006)). The level of significance
of the p− value is 0.05.

The reading of the p−values column of Table 1.1 reveals us that the
combination of the parents study level and the residence have influence on
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Variable β Wald contrast p−value

Study level × residence 13.71 0.01

Illiterate & Castellón 21.81 0.00 1

Primary & Alicante 0.53 8.81 0.00

Primary & Castellón -0.11 0.11 0.73

Secondary & Alicante 0.62 5.94 0.01

Secondary & Castellón -0.10 0.06 0.80

Age 0.28 0.86

3 years old 0.09 0.26 0.60

4 years old 0.07 0.15 0.69

Gender (male) 0.03 0.06 0.79

Constant -0.73 17.71 0.00

Table 1.1: Results of the logistic regression. The column p−value shows the
variables with influence in obesity. The column β measures the influence of
each independent variable on the dependent variable (childhood overweight
and obesity).
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children obesity, for instance, if a child belongs to a family without higher
studies and lives in Alicante increases the risk to be overweight or obese
because, in this case, the p−value is less than 0.05 and β = 0.53, β = 0.62,

positive values. On the other hand it can be seen that variables as gender
or age have not influence on obesity since the associated p−value is greater
than 0.05. Therefore, the logistic regression statistical study suggests that
the obesity of 3 − 5 years old children in the region of Valencia depends
mainly on sociocultural characteristics where they live and grow. Other
similar studies as (Welsh et al., 2005) support this idea. But, how sociocul-
tural characteristics determine the children nutritional habits? And what
is the type of food underlying of unhealthy nutritional habits? To answer
these questions we carried out the cluster statistical analysis (Hair et al.,
1998, Chapter 9) of Health Survey of the Region of Valencia 2000-2001
showed in Figure 1.1.

Figure 1.1: Correspondence analysis between variables parents study level
and children BFS consumption. The proximity of Primary and High in-
dicates a close relation (Left). Correspondence analysis between variables
parents study level and residence. Analogously, the proximity of Primary
and Alicante indicates a close relation (Right).



8 Chapter 1. Mathematical modeling of infant obesity population as a
social transmission disease: the case of the Spanish region of Valencia

First, in Figure 1.1 (left) we consider the consumption frequency of
bakery, fried meals and soft drinks (BFS). The analysis allows us to define
two groups of people according to their nutritional habits, one composed
by those children consuming a low frequency, less than 2 portions per week
of each product, of bakery, fried meals and soft drinks, and a second group
where the consumption frequency of each of the mentioned products is more
than 3 portions of each type. Furthermore, the correspondence statistical
analysis (Hair et al., 1998, Chapter 10) permits to correlate consumption
frequency of bakery, fried meals and soft drinks, together. The proximity
between the categories Primary and High indicates that the BFS consump-
tion habit is greater in children which parents have only primary studies.
These results are in well accordance with other Spanish studies, for instance
(Bes-Rastrollo et al., 2006).

Second, in Figure 1.1(right) we find a statistical relationship between
the residence and the parent level studies. To be precise, the parents with
primary studies are concentrated mainly in Alicante. The proximity be-
tween the categories Primary and Alicante indicates this fact. Also, in
Table 1.1 with a p−value less than 0.05. Hence we can consider residence
as an additional sociocultural characteristic.

Summarizing, obesity can be considered as a disease of social trans-
mission where the transmission is done by unhealthy nutritional habits,
BFS consumption, that depends on the sociocultural characteristic known
as parents study level. The non-parametric contrast carried out shows
the significative statistic relation between the parents study level and the
child inclusion in a certain group of BFS consumption (p−value less than
0.05).Therefore, in the rest of the chapter we will refer to BFS consumption
as the prevalent factor in childhood obesity, where the BFS consumption
frequency (nutritional habit) is determined by the study level of the parents
(sociocultural characteristic).
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1.2 The mathematical model

In this section, we build a mathematical model of the evolution of infant
obesity, regarded as a social disease transmitted by social environment.
The statistical study of previous section allows the hypothesis of childhood
obesity as a social transmission epidemic disease produced by the BFS
consumption frequency. These facts lead us to propose an epidemiological-
type model.

For model building, childhood population is divided in six sub-populations:
individuals with normal weight (N (t)), latent individuals, that is, people
with habit of BFS consumption but are still normal weight (L (t)), people
with overweight (S (t)), obese individuals (O (t)), people overweighted on
diet (DS (t)) and obese individuals on diet (DO (t)). In addition we consider
the following assumptions:

• Let us assume population homogeneous mixing (Murray, 2002, p. 320
and p. 328).

• From Section 1.1, we can assume that BFS consumption increases
individual weight of children. Hence, the transitions between the
different sub-populations are determined as follows:

– Once a child starts having BFS consumption he/she becomes
BFS addicted, L (t) , and starts a progression to overweight S (t)
due to continuous BFS consumption. We assume that once a
child is in the latent sub-population he/she will progress, after
a period (latency period), to overweight sub-population. If the
child continues having BFS he/she can become an obese indi-
vidual O (t) . Children in both classes can stop having BFS, and
then move to diet classes DS (t) and DO (t) , respectively.

– An individual of class DS (t) becomes a member of class N (t)
if he/she gives up or reduces the BFS consumption in an appro-
priate rate, or return to S (t) otherwise. Analogously, a child of
class DO (t) becomes a member of class DS (t) if he/she gives
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up or reduces the BFS consumption in an appropriate rate, or
return to O (t) otherwise.

• The transits between the sub-populations N, L, S, O, DS , DO, are
governed by terms proportional to the sizes of these sub-populations.
However since the transit from normal to latent occurs through the
transmission of BFS consumption from latent, overweight and obese
sub-populations to normal weight sub-population, which depends on
the meetings between their parents and due to our assumption that
these social encounters between parents of different sub-populations
are proportional to the product of the children’s sub-populations, the
transit is modeled using the term,

βN (t) [L (t) + S (t) + O (t)] .

• For this model, transition time-constant parameters are more suitable
due that our goal is to model the evolution of child obesity over a short
finite time.

• We also assume that the parent’s nutritional habits and lifestyle de-
termine the children’s habits, for instance, a child is on diet if their
parents are on diet (Carter et al., 1993). The values that determine
the transition between sub-populations on diet are estimated using
adult statistic surveys later explained.

• Their proportional sizes and their behavior with the time will deter-
mine the dynamic evolution of infant obesity population.

• The increase in excessive weight gain does not occur during infancy
(Heinzer, 2005), then we also assume that the new 3 years old new
recruited children are of normal weight.

Under the above assumptions, this dynamic obesity model for 3−5 years
old in the Spanish region of Valencia is given by the following nonlinear
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system of ordinary differential equations

N ′ (t) = µ + εDS (t)− µN (t)− βN (t) [L (t) + S (t) + O (t)] ,

L′ (t) = βN (t) [L (t) + S (t) + O (t)]− [µ + γL] L (t) ,

S′ (t) = γLL (t) + ϕDS (t)− [µ + γS + α] S (t) ,

O′ (t) = γSS (t) + δDO (t)− [µ + σ]O (t) , (1.1)

D′
S (t) = γDDO (t) + αS (t)− [µ + ε + ϕ]DS (t) ,

D′
O (t) = σO (t)− [µ + γD + δ] DO (t) .

where the constant parameters of the model are:

• β, transmission rate due to social pressure to BFS consumption (fam-
ily, friends, marketing, TV, ...),

• µ, average stay time in the system of 3− 5 years old children,

• γL, rate at which a latent individual moves to the overweight sub-
population,

• γS , rate at which an overweight individual becomes an obese individ-
ual by continuous consumption of BFS,

• ε, rate at which an overweight individual on diet becomes a normal
weight individual,

• α, rate at which an overweight individual stops or reduces BFS con-
sumption, i.e., the individual is on diet,

• ϕ, rate at which an overweight individual on diet fails, i.e., the indi-
vidual resumes a high BFS consumption,

• σ, rate at which an obese individual stops or reduces BFS consump-
tion,

• δ, rate at which an obese individual on diet fails,
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• γD, rate at which an obese individual on diet becomes an overweight
individual on diet.

Throughout of this chapter, we focus on the dynamics of the model
(1.1) in the following restricted region:

ω = {(N, L, S, O,DS , DO)T ∈ R+/ N + L + S + O + DS + DO = 1},

where the basic results as usual local existence, uniqueness and continuation
of solutions are valid for the Lipschitzian system (1.1). The dynamic of
transits between subpopulations is depicted graphically in Figure 1.2.

Figure 1.2: The diagram for 3− 5 years old children obesity model in the
Spanish region of Valencia as defined in system (1.1). The boxes represent
the sub-populations and the arrows represent the transitions between the
sub-populations, labelled by the parameters of the model.

1.3 Estimation of parameters

The estimation of some of the parameters of the model is intrinsically dif-
ficult due to the strong influence of intangible variables as advertising,
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marketing, public education programs, health programs, etc. Moreover,
the lack of the specific data for 3 − 5 years old children leads us to con-
sider data from adult surveys considering that adults are the parents of
the children and the familiar habits are the same. In spite of these facts,
we obtained all parameters of the model except β and k (k is a parameter
related to γS and γD) using the following sources:

• the Health Survey of the Region of Valencia 2000− 2001 (Conselleri-
aSanitat, 2007),

• a technical report published by the Valencian Health Department
where is described the present situation of infant obesity and data
from 1999 to 2005, in regard to obesity and overweight, are available
(Fullana et al., 2004),

• a survey about alimentary habits developed by the Nutritional Ob-
servatory of the company Nutricia (Nutricia, 2007),

• a report from Abbot laboratories about the success to get normal
weight from overweight and obese people on diet (Abbot, 2007),

• and a survey we prepared with 4 questions about population diet
habits to the members of the Valencian Society of Endocrinology and
Nutrition (González-Parra et al., 2007).

Parameters β and k will be estimated by fitting the model with the
data. The following parameters are computed for time t in weeks as:

• µ = 1
156 weeks−1, the average stay of a child in the system is 3 years,

that is, 156 weeks.

• γL = 0.0089 weeks−1, is estimated using the weekly growth of the av-
erage weight of a child in the region of Valencia (Fullana et al., 2004).
This rate shows how many weeks take a latent child (normal weight)
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to become an overweight individual by continuous consumption of
BFS, that is,

1
γL

=
1

0.0089
= 112.36 weeks.

• γS , we consider this parameter proportional to γL because it is de-
scribing a phenomenon of the same characteristics as γL with an in-
creasing difficulty to become obese based on two main facts; one is
that once the individual is overweight he/she realizes more his/her
overweight problem and takes more care about his nutrition (from
data about overweight and obese people on diet in (ConselleriaSan-
itat, 2007)), and the second fact is that the basal metabolic rate
increases with the weight, therefore the bodies of heavier people con-
sume more calories (de Luis et al., 2006; Ravussin et al., 1982). So,

γS = kγL = k × 0.0089 weeks−1, 0 < k < 1,

where k will be determined by fitting model to the real data.

• ε, an individual with BFS consumption takes 1
γL

weeks to transit
from normal weight to overweight, then if he/she gives up BFS con-
sumption, he/she will take 1

γL
weeks multiplied by the success rate

(González-Parra et al., 2007) to come back to normal weight, that is,

ε = 0.0089× 0.312 = 2.776 8× 10−3 weeks−1.

• α, this parameter is estimated taking into account the average time
that an individual finishes a diet and starts another, 1.56× 52 weeks
(Nutricia, 2007), and the percentage of overweight individuals who
puts on diet (González-Parra et al., 2007), that is,

α =
1

1.56× 52
× 0.33 = 4.068× 10−3 weeks−1.

• ϕ, this parameter is estimated using the average time that people
stay on diet, 5.4 weeks (Abbot, 2007), and the percentage of failure
of overweight individuals on diet (González-Parra et al., 2007),

ϕ = (1− 0.312)× 1
5.4

= 0.12735 weeks−1.
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• σ, this parameter is estimated taking into account the average time
between an individual finishing a diet and starting another, 1.56× 52
weeks (Nutricia, 2007), and the percentage of obese individuals who
are on a diet (González-Parra et al., 2007), that is,

σ =
1

1.56× 52
× 0.36 = 4.4379× 10−3 weeks−1.

• δ, this parameter is estimated using the average time that people
stay on diet, 5.4 weeks (Abbot, 2007), and the percentage of failure
of obese individuals on diet (González-Parra et al., 2007),

δ = (1− 0.137)× 1
5.4

= 0.15974 weeks−1.

• γD, this parameter measures the partial success of an obese individual
in his/her goal of reaching a normal weight, specifically, it measures
the flow from obese individuals on diet to overweight individuals on
diet. γD is estimated using the value of γS and the percentage of
obese individuals on diet who have success (González-Parra et al.,
2007),

γD = γS × 0.146 = k × 1.2994× 10−3 weeks−1.

We summarize the obtained parameters in Table 1.2.

Parameter Value Parameter Value

µ 1
156 γL 0.0089

γS k × 0.0089 ε 2.776 8× 10−3

α 4.068× 10−3 ϕ 0.12735

σ 4.4379× 10−3 δ 0.15974

γD k × 1.2994× 10−3

Table 1.2: Obtained parameters of the model given by the system of dif-
ferential equations (1.1) for the region of Valencia.
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Remark 1.3.1 Each one of the parameters µ, γL, γS , ε, α, ϕ, σ, δ, γD can
be interpreted as the mean of the length of the transit period between two
sub-populations. Length of the transit period for a sub-population is usually
assumed to follow an exponential distribution (Brauer and Castillo-Chavez,
2001, p. 41 and p. 283). Therefore the above numerical values computed for
each parameter should be considered as average length of transition periods
between two sub-populations and does not be regarded as a fixed spent time
after which each individual crosses to a new sub-population.

1.4 Numerical simulations of the mathematical

model

We obtain the initial conditions (year 1999, i.e., t = 0) and final conditions
(year 2002, i.e., t = 156) for the model from (Fullana et al., 2004). We use
this final condition (2002) because is the last data available for the sub-
population proportions.

With the obtained parameters from surveys and data and the initial
and final conditions, we performed several simulations for different values
of β and k in an appropriate range (β, k ∈ (0, 1)) in order to find the value
of β and k that minimize the mean square error of the difference between
the solutions of the model for the proportions of sub-populations of normal
weight (including latent), overweight and obese and the real data in year
2002 (final condition). The obtained values for β and k were

β = 0.02, (1.2)

k = 0.32584.

Then, we use the model with the parameters of Table 1.2 and the just
obtained parameters (1.2) to extrapolate for the following 8 years (until
2010). The result is presented in Figure 1.3.

In Figure 1.3 it can be seen an increasing trend of obese and overweight
3−5 years old children sub-populations until 2010, in well accordance with
the tendency observed in several countries (Wang and Lobstein, 2006).
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Figure 1.3: Evolution of the different sub-populations of 3 − 5 years old
children in the region of Valencia, 1999− 2010. Note a slight but sustained
increasing of the overweight and obese sub-populations. Latent individuals
are included in normal sub-population.

Also, there exists a decreasing in normal weight sub-population and the
percentage of people on diet remain constant and low. In the Table 1.3, we
present some of the numerical values represented in the Figure 1.3.

1.5 Sensitivity analysis of the mathematical model

We performed several simulations varying the parameters of the model in
order to find out what is the influence of the changes on the final solution.
We observed that the most sensitive parameters were β, γL and k.

As we did in Figure 1.3, in the following Figures 1.4, 1.5 and 1.6 latent
individuals are included in normal sub-population.

In Figure 1.4 we present a simulation of the proposed model where
parameter β = 0.02 has been changed to β = 0.04. This change implies an
increasing of the transmission rate of BFS consumption and, consequently,
more people may become overweight by continued high BFS consumption.
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Year Normal+latent Overweight Obese

1999 0.656 0.2025 0.0515

2000 0.6639 0.227801 0.0987835

2001 0.6524 0.238055 0.0998146

2002 0.6386 0.249237 0.101979

2003 0.6274 0.256948 0.104708

2004 0.6207 0.261257 0.10739

2005 0.6162 0.26327 0.109685

2006 0.6138 0.263993 0.111485

2007 0.6122 0.264087 0.112818

2008 0.6114 0.263929 0.113765

2009 0.6109 0.263705 0.114417

2010 0.6107 0.263494 0.114857

Table 1.3: Evolution of proportion of normal weight (including latents),
overweight and obese sub-populations for different years in the proposed
model. This model predicts that the 61.07%, the 26.34% and the 11.48% of
the 3−5 years old children in the region of Valencia will be normal weight,
overweight and obese, respectively, in 2010.
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Comparing with Figure 1.3, it can be noted an increase in overweight sub-
population and a decrease in normal weight sub-population. Therefore, the
increasing of β implies an increasing of overweight sub-population.
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Figure 1.4: Simulation of the proposed model with β = 0.04. The increasing
of β implies an increasing of overweight sub-population.

In Figure 1.5 the parameter γL = 0.0089 has been changed to γL = 0.02.

This change implies a faster transition to become an overweight individual
by continued BFS consumption. In this case, at the beginning, there is
an increasing of the overweight and obese sub-populations and finally a
stabilization.

In Figure 1.6 the parameter k = 0.32584 has been changed to k = 1.

This change affects to parameters γS and γD and implies a faster transit
from overweight to obese individual and a faster transit from obese on
diet to overweight on diet. Because γS is much greater than γD, in this
case, there is an increasing of the obese population, until to go above the
overweight population.

Due to the sensitivity of the estimated parameter γL, we repeated the
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Figure 1.5: Simulation of the model with γL = 0.02. The increasing of
γL implies an increasing of overweight and obese sub-population at the
beginning and a stabilization of both sub-populations at the end.

model fitting with the real data in year 2002 (final condition) to compute
the parameters β, k and moreover the parameter γL, in order to check the
consistency of its previous estimation. The obtained values were

β = 0.021,

k = 0.30539,

γL = 0.00907.

Note that the new obtained values for these parameters of the model are
very similar to the previous ones. In particular, the parameter γL is almost
equal to our estimation carried out in Section 1.3 using data in (Fullana
et al., 2004).
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Figure 1.6: Simulation of the model with k = 1. The increasing of k implies
a fast transit from overweight to obese and consequently, an increasing of
the obese sub-population, until to go above the overweight sub-population.

1.6 Model application to Health Public System

strategies

Medicine covers the prevention and treatment of illnesses. The proposed
obesity model considers both possibilities. With parameters β, γL and γS

prevention can be controlled whereas treatment parameters are γD, ε, α

and σ.

The simulations carried out suggest that the obesity prevention strate-
gies should lead to the reduction of β, γL and γS , that is, reducing the
pressure to BFS consumption and the amount and the frequency of con-
sumption. Two main strategies may be suggested to achieve this objective.
In long term, from the statistical study carried out in Section 1.1, devel-
oping educative plans in order to increase the study level of families. In
short term, reducing the BFS products advertising spots and designing
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health programs and advertising campaigns to show the population how to
change to healthier nutritional habits.

On the other hand, for overweight and obese individuals, the objective
is to increase the treatment parameters γD, ε, α and σ. It could be done
if the Health System does a monitoring in primary attention to the people
that decides to go to the physicist to put on diet. The monitoring may
prevent the majority of the individuals give up the diet in the first stages
of the process.

1.7 Conclusions

In this chapter we presented a finite-time 3− 5 years old childhood obesity
model to study the evolution of the obesity in the next years in the Spanish
region of Valencia. After a statistical study, high frequency of consumption
of BFS (bakery, fried meals and soft drinks) is detected as prevalent factor
in childhood obesity. This analysis allows us to consider obesity as a disease
of social transmission caused by high frequency consumption of BFS and to
build a mathematical model of epidemiological-type to study the childhood
obesity evolution. Once the mathematical model is built and most of the
parameters were obtained using several surveys of the Spanish region of
Valencia, we find the best estimated values only for the parameters β and
k fitting the model in order to minimize the mean square error between the
model and the real data in year 2002.

The simulations carried out with this model indicated an increasing
trend in the 3 − 5 years old overweight and obese populations in the next
future. The parameters β, γL and k are the most important in the proposed
model, because, from the sensitivity analysis, we find that small changes
in these parameters imply appreciable changes in the final results. Hence,
childhood obesity should be faced up through public health programs in
order to reduce the values of these parameters, to be precise, on the trans-
mission rate due to social pressure to BFS consumption measured by β

(family, friends, marketing, TV), and on the frequency of BFS consump-
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tion measured by γL and γS . Some possible general strategies are suggested.
Finally, as we noted in the introduction, this kind of models work well

for a short time, since as we said it is difficult to believe that parameters
remain constant for a long time periods and it is more suitable variable
parameters that can be modeled through dependent time parameters or
using stochastic white noise.
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Chapter 2

An age-structured model for

childhood obesity in the

Spanish region of Valencia †

Obesity is a complex condition, one with serious social and psychological
dimensions, that affects virtually all age and socioeconomic groups and
threatens to overwhelm both developed and developing countries. Sev-
eral studies have been dedicated to stop obesity epidemic. In this chapter
obesity is considered as a health concern that is spread by social transmis-
sion of unhealthy habits. Here we present an age-structured mathematical
model for the dynamical evolution of childhood obesity at population level
with the aim of study the influence of age stages in the obesity population
dynamics. The proposed model is fitted to real data in order to estimate
unknown parameters and then used to predict the proportion of overweight
and obese children populations in the groups 6− 8 and 9− 12 years old in
the region of Valencia, Spain for the next future. Based on the fitting of the
model and numerical simulations of different scenarios it is shown that the
prevention of children obesity in early years is of paramount importance.
Therefore public health strategies should be designed as soon as possible

†This chapter is based on González-Parra et al. (2009b)
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to reduce the worldwide social obesity epidemic.

2.1 Introduction

Obesity has become a serious health concern, with an increasing cost due to
related diabetes, heart attacks, blindness, renal failures, respiratory difficul-
ties, arthritis, infertility, and psychological disorders (CDC, 2007b; Ebbel-
ing et al., 2002).

Infant and juvenile obesity is a powerful predictor of adult age obesity.
We propose an age-structured model for obesity in the 6 − 8 and 9 − 12
year old classes in the region of Valencia, Spain. We study obesity such as
a health concern of social transmission of unhealthy habits. Jódar et al.
(2008) showed that obesity is associated to eating habits, in particular to
the high consumption of bakery snacks, fried meals, and soda drinks, and
that habits spread by social contact (Evangelista et al., 2004; Christakis
and Fowler, 2007). Wang (2001) and Wang and Beydoun (2007) associated
obesity to socioeconomic status. Jódar et al. (2008) modeled the dynamics
of children between 3 and 5 years old as a group.

We construct an age-structured model, adapted to the real situation and
fitted to real data provided by the Health Institution of the Government of
Valencia. In the region of Valencia, a health survey is done every five years
and data are prepared, processed, and stored in databases. We completed
the data with the same sources of the 3− 5 years old obesity model (1.1).

In Section 2 a data analysis of the Encuesta de Salud de la Comunidad
Valenciana 2000-2001 (Health Survey of the Region of Valencia 2000-2001)
(ConselleriaSanitat, 2007) is used to identify the prevalent factors of obesity
for the 6−12 year old age class. This statistical analysis allows us to divide
the 6−12 year old class into 6−8 and 9−12 year old classes. In Section 3, we
develop a demographic model using data from the Instituto Valenciano de
Estad́ıstica (IVE, 2007). The age-structured model is fitted to the available
data. Numerical simulations illustrate some possible behaviors in the next
few years of overweight and obese subpopulations in order to analyze the
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prophilaxy of obesity.

2.2 Data Analysis

The data set consists of 1, 298 girls and 1, 465 boys between 6 and 12 years
from the Health Survey of the region of Valencia 2000− 2001 (Conselleri-
aSanitat, 2007). A child is considered overweighted if its body mass index
(BMI) is higher than the 85 percentile, and obese if higher than the 97 per-
centile (Sobradillo et al., 2007). Three categories are defined with respect
to BMI; normal weight, overweight, and obese. The possible predictors of
overweight and obesity in children between 6 and 12 years old are shown
in Table 2.1.

Table 2.1: Variables considered as possible predictors of obesity in 6− 12
year old children in the region of Valencia, Spain.
Variables Category 1 Category 2 Category 3 Category 4

Gender Girl Boy

Age 6− 8 year 9− 12 year

Parent´s education Illiterate Primary Secondary Higher

Residence Alicante Castellón Valencia

Snacks and soda Less than 2 portions 3 portions and over

Fruits and vegetables Daily No daily

Physical activity None Occasional Usual Intense

TV daily ≤ 2 hours 2− 3 hours ≥ 4 hours.

The χ2 test shown in Table 2.2 reveal that obesity in children of the
region of Valencia is not significantly independent of age, education of their
parents, consumption of snacks and soda drinks, and their physical activity.
The incidence of obesity differs in the age groups 6 − 8 and 9 − 12 years
old, this is why we model these two groups separately. The results are
in accordance to the statistics obtained in (Christakis and Fowler, 2007;
Evangelista et al., 2004; Jódar et al., 2008), where obesity is considered a
health concern developed by unhealthy eating habits transmitted by social
contact.
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Table 2.2: Non parametric χ2 tests showing lack of independence with
obesity in children between 6 and 12 years old in the region of Valencia,
Spain.
Variable p-value χ2 Degrees of freedom

Gender 0.066 5.44 2

Age (6− 8 year and 9− 12 year) 0.000 65.34 2

Parents education 0.004 19.42 6

Residence 0.025 11.16 4

Snacks and soda drinks 0.009 9.33 2

Fruits and vegetables 0.045 6.22 2

Physical activity 0.007 17.77 6

TV daily 0.113 10.30 6

2.3 The Demography model

We develop an age-structured model in order to take into account the effect
of the age variable on the incidence of obesity. Age-structured models have
been developed for other health issues, see (Brauer and Castillo-Chavez,
2001; Diekmann and Heesterbek, 2005; Hethcote, 2000; Thieme, 2003). The
first part of the model consists of using the balance equation (Thieme, 2003)
for a group G1 of children aged between 6 and 8 years old class, and group
G2 of children aged between 9 and 12 years old. The demographic model
is given by the linear differential system (Hethcote, 2000):

{
P ′

1(t) = πPtotal(t)− c1P1(t)− d1P1(t),

P ′
2(t) = c1P1(t)− c2P2(t)− d2P2(t).

(2.1)

where Ptotal(t) is the total population size in the 6−12 year old class, Pi(t)
is the population size of the group Gi, π is the recruitment rate and di

and ci are respectively the death and transfer rates between the successive
age groups. The real demographic data show that the death rates are
almost zero in these age classes (IVE, 2007), we assume them null. In
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addition, from demographic data we can assume that the inflow population
π is balanced approximately by the outflow of our age group (IVE, 2007).
Thus, we assume that the total number of children is constant (Anderson
and May, 1991; Brauer and Castillo-Chavez, 2001). Eq. (2.1) simplifies to:

{
πPtotal − c1P1 = 0,

c1P1 − c2P2 = 0.
(2.2)

As Ptotal = P1 + P2 and normalizing the total number of children to unity,
one gets

n1 + n2 = 1,

where ni(t) is the proportion of children in the group Gi. Eq. (2.2) simpli-
fies to: {

π − c1n1 = 0,

c1n1 − c2n2 = 0.
(2.3)

Using Ptotal = 1 one gets

1 =
∫ 13

6
ρ(a, t) da,

where ρ(a, t) denotes the density of individuals of age a (measured in years)
at time t. As ρ is taken constant one obtains ρ = 1

7year−1, then the inflow
rate is π = 1

7year−1. Using Eq. (2.3) and

n1 =
∫ 9

6
ρ da =

3
7
, (2.4)

the parameter values of Eq. (2.2) and (2.3) are

c1 = 1
3 , c2 = 1

4 , n1 = 3
7 , n2 = 4

7 . (2.5)

The transfer rate ci is inversely proportional to the length of the age class
Gi, the inflow population rate π is inversely proportional to the length of
the 6− 12 year old class. All these properties come from the assumptions
of constant population and null death rate. From (IVE, 2007), the demo-
graphic data for each age class from 1990 to 2006 is available. The inflow
population is approximately balanced by the outflow in our system.
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2.4 Age-structured Obesity Model

For each age class, the population is divided into the proportion Ni(t) of
children with normal weight, for each age class i; the proportion Li(t) of
children with unhealthy habits but still, normal weight; the proportion Si(t)
of overweighted children; the proportion Oi(t) of obese children, the pro-
portion DSi(t) of overweighted children on diet, and the proportion DOi(t)
of obese children on diet. Ni(t), Li(t), Si(t), Oi(t), DSi(t), and DOi(t),
i = 1, 2, correspond to proportions of normal weight, latent, overweight,
obese, overweight on diet and obese on diet of each age class Gi, i = 1, 2.
By definition,

Ni(t), Li(t), Si(t), Oi(t), DSi(t), DOi(t),∈ [0, 1], i = 1, 2. (2.6)

For the sake of clarity we obviate the explicit dependence on time. The
age-structured model is depicted graphically in Figure 2.1 and analytically
as follows:





N ′
1 = πN0 + ε1DS1 − c1N1 − β1N1(L1 + S1 + O1 + L2 + S2 + O2)

N ′
2 = ε2DS2 + c1N1 − c2N2 − β2N2(L1 + S1 + O1 + L2 + S2 + O2)

L′1 = πL0 + β1N1(L1 + S1 + O1 + L2 + S2 + O2)− (c1 + γL1)L1

L′2 = β2N2(L1 + S1 + O1 + L2 + S2 + O2)− (c2 + γL2)L2 + c1L1

S′1 = πS0 + γL1L1 + ϕDS − (c1 + γS1 + α)S1

S′2 = γL2L2 + ϕDS − (c2 + γS2 + α)S2 + c1S1

O′
1 = πO0 + γS1S1 + δDO1 − (c1 + σ)O1

O′
2 = γS2S2 + δDO2 − (c2 + σ)O2 + c1O1

D′
S1 = πDS0 + γD1DO1 + αS1 − (c1 + ε1 + ϕ)DS1

D′
S2 = γD2DO2 + αS2 − (c2 + ε2 + ϕ)DS2 + c1DS1

D′
O1 = πDO0 + σO1 − (c1 + γD1 + δ)DO1

D′
O2 = σO2 − (c2 + γD2 + δ)DO2 + c1DO1,

(2.7)
where the constant parameters for age class Gi are the transmission rate
βi to unhealthy habits due to social pressure; the children inflow rate π
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for the system inversely proportional to the mean time spent by a child
in the system, from 6 to 12 years old; the transfer rate ci between suc-
cessive age classes; the rate γLi at which latent children become over-
weighted; the rate γSi at which overweighted children become obese by
unhealthy habits; the rate εi at which overweighted children on healthy
habits become normally weighted; the rate α at which overweighted chil-
dren stop or reduce unhealthy habits; the rate ϕ at which overweighted
children relapse to unhealthy habits; the rate σ at which obese children
stop or reduce unhealthy habits; the rate δ at which obese children relapse
to unhealthy habits; the rate γDi at which obese children with healthy
habits become overweighted with healthy habits. The initial distribution
(N0, L0, S0, O0, DS0, DO0) comes from the previous age group (5 year old)
entering into the system and assumed constant. The values of the param-
eters α, σ, ϕ, and δ are related to the diet rates of the parents, and we
assume that these parameters are independent of age. Some of these pa-

Figure 2.1: The diagram for obesity as defined in Eq. (2.7), i = 1, 2.
Long dashed arrows represent flows between subpopulations of class G1

and class G2, point arrows represent outflows from subpopulations of G2

and the small dashed arrows represent inflows to G1.

rameters were estimated in chapter 1. Fitting the model to real data is
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necessary to estimate the other parameters. Each parameter is the mean
of the length of the transit period between two subpopulations. The length
of the transit period for a subpopulation is usually implicitly assumed to
follow an exponential distribution (Brauer and Castillo-Chavez, 2001). The
parameters should be considered as the average lengths of transition pe-
riods between two subpopulations.These estimates are presented in Table
2.3. Parameters βi, γLi, and γSi for i = 1, 2 still need to be estimated by
the model fitting.

2.5 Model Fitting

The model is fitted to data provided by the Health Institution of the Gov-
ernment of Valencia (Fullana et al., 2004), varying parameters βi, γLi, and
γSi (i = 1, 2). An objective function E from R6 to R is minimized.

We solve numerically the system of differential Eq. (2.7) with initial
values of the subpopulations provided by (Fullana et al., 2004) for 1999;
then we compute the mean square error between the values obtained and
the data. We minimize this objective function E using the Nelder-Mead
algorithm (Nelder and Mead, 1964), which needs no computation of any
derivative or gradient. Initial conditions are obtained from data provided
by (Fullana et al., 2004) and data from the Encuesta de Salud de la Co-
munidad Valenciana 2000-2001 (Health Survey of the Region of Valencia
2000-2001) (ConselleriaSanitat, 2007). The estimates of the unknown pa-
rameters values resulting from the minimization process gives β1 = 0.016,
β2 = 0.0008, γL1 = 0.013, γL2 = 0.0011, γS1 = 0.003 and γS2 = 0.0002.
These values give the global minimum of the objective function E.

Though the two age classes G1 and G2 have the same increasing trend,
the estimated transmission parameter value β2 corresponding to age class
G2 is smaller than β1 of age class G1. Similarly with the other parameters.
This fact means that once the children of class G2 are overweighted and
obese it is easier to maintain the same increasing trend of overweight and
obesity of the previous age class G1.



2.6 Simulation of Scenarios 33

2.6 Simulation of Scenarios

Simulations illustrate some possible behaviors in the next few years of over-
weighted and obese subpopulations among the 6−8 and 9−12 years old in
the region of Valencia, Spain. First, a numerical simulation from 1999 to
2010 uses the model with the estimated parameter values shown in Table
2.3 and obtained from the model fitting. As shown in Figure 2.2, obese and
overweighted subpopulations in G1 and G2 present an increasing trend in
accordance with the one observed in other countries (Bes-Rastrollo et al.,
2006; Wang and Lobstein, 2006). The subpopulation of normal weight
decreases and the percentage of children on diets remains very low.

Table 2.3: Parameter values in the model (2.7) for the region of Valencia.
Parameters Symbol Values (weeks−1)

Children inflow rate π 0.0027
Transfer rate from G1 to G2 c1 0.0064
Children outflow rate c2 0.0048
Population flow rate from DSi to Ni εi 0.31× γLi

Population flow rate from Si to DSi α 0.0041
Population flow rate from DSi to Si ϕ 0.1273
Population flow rate from Oi to DOi σ 0.0044
Population flow rate from DOi to Oi δ 0.1597
Population flow rate from DOi to DSi γDi 0.14× γSi

In addition, in order to analyze the prophilaxy of obesity, the param-
eters β1, γL1, and γS1, are reduced of 50%. The simulation of this case is
shown in Figure 2.3, where the population size of normal weight increases
and the population size of obese children decreases. A second case is shown
in Figure 2.4, where the parameters β2, γL2, and γS2 corresponding to G2

are reduced of 50%, in this case the increasing trend of overweight and obe-
sity varies only slightly. From these facts, reducing the parameters β1, γL1,

and γS1 in G1 is more efficient than reducing their counterparts parame-
ters β2, γL2, and γS2 in G2. Moreover, the control parameters of diets αi
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and σi (i = 1, 2) were modified but their effects on overweight and obese
populations are very small. Therefore, it is important to design strategies
to reduce obesity in children´s early years.
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Figure 2.2: Variation of the different subpopulations of G1 and G2 in the
period 1999− 2010.

2.7 Conclusion

Our age-structured model took advantage of a statistical study to include
the fact that obesity among the 6 − 12 year old children of the region of
Valencia, Spain, depends on the age and education of their parents, con-
sumption of snacks and soda drinks, and physical activity. Then incidence
of obesity is different in classes 6− 8 and 9 − 12, therefore the model dis-
tinguishes these two groups.

The model helps to understand the spread of obesity and predict it
for these age classes. The simulations showed an increasing number of
overweighted and obese in the next few years. This tendency ought to be
modified by social educative campaigns. If two consecutive age classes G1

and G2 have the same increasing trend of obesity, children of group G2 can
have healthier habits than those of G1 and maintain the same increasing
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Figure 2.3: Variation of the different subpopulations of G1 and G2 when
β1, γL1 and γS1 related to obesity growth of G1 are reduced of 50%.

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1999                           Weeks                                 2010

P
ro

po
rt

io
ns

Normal weight (G2)

Normal weight (G1)

Overweight (G2)

Overweight (G1)

Obese (G2) Obese (G1)

Figure 2.4: Variation of the different subpopulations of G1 and G2 when
β2, γL2 and γS2 related to obesity growth of G2 are reduced of 50%.
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structural trend. Failing to prevent obesity in children´s early years makes
it more difficult to reverse this trend.



Chapter 3

A nonstandard dynamically

consistent numerical scheme

applied to obesity dynamics
†

In this chapter a nonstandard finite difference scheme has been developed
with the aim to solve numerically a mathematical model for obesity popula-
tion dynamics. This interacting population model represented as a system
of coupled nonlinear ordinary differential equations is used to analyze, un-
derstand and predict the dynamics of obesity populations. The construc-
tion of the proposed discrete scheme is developed such that it is dynamically
consistent with the original differential equations model. Since the total
population in this mathematical model is assumed constant, the proposed
scheme has been constructed to satisfy the associated conservation law and
positivity condition. Numerical comparisons between the competitive non-
standard scheme developed here and Euler method show the effectiveness
of the proposed nonstandard numerical scheme. Numerical examples show

†This chapter is based on (Villanueva et al., 2008)
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that the nonstandard difference scheme methodology is a good option to
solve numerically different mathematical models where essential properties
of the populations need to be satisfied in order to simulate the real world.

3.1 Introduction

Systems of nonlinear ordinary differential equations are used to model dif-
ferent kind of diseases in mathematical epidemiology (see (Brauer and
Castillo-Chavez, 2001)). In these models the variables commonly repre-
sent populations of susceptibles, infected, recovered, transmitted disease
vectors, and so forth. Since the system describes the evolution of different
classes of populations a solution over time is required. The ideal scenario
is to obtain analytical solutions, but in most of the cases this is not pos-
sible. Therefore it is necessary to turn to numerical methods to obtain
approximate solutions.

Traditional schemes like forward Euler, Runge-Kutta and other numer-
ical methods used to solve nonlinear initial value problems, sometimes fail
by generating oscillations, bifurcations, chaos and steady states not present
in the exact solutions (Lambert, 1973). Methods that use adaptive step
size, may also fail (Moghadas et al., 2003). One approach to avoid this
class of numerical instabilities is the construction of nonstandard finite dif-
ference schemes. This technique, developed by Mickens (1994, 2000) has
brought a lot of applications where the nonstandard methods have been
applied to various problems in science and engineering in which the numer-
ical solutions preserve properties of the solution of the continuous model
and additionally, in some cases, it is possible to use large time step sizes
(Moghadas et al., 2004; Anguelov and Lubuma, 2003b,a; Piyawong et al.,
2003; Gumel et al., 2003; Dimitrov and Kojouharov, 2005; Jansen and Twiz-
ell, 2002; Patidar, 2005; Chen et al., 1996). Furthermore, it has been shown
that the nonstandard finite difference schemes, generated using the rules
created by Mickens (1994), generally provide accurate numerical solutions
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to differential equations.

The aim of this chapter is to develop a nonstandard finite difference
(NSFD) scheme free of numerical instabilities in order to obtain the nu-
merical solution of a mathematical model of infant obesity with constant
population size presented in chapter 1. This interacting population model
represented as a system of coupled nonlinear ordinary differential equations
exhibits two steady states; a trivial steady state called obesity free equi-
librium (OFE) and a non-trivial steady state called obesity endemic equi-
librium (OEE). The general philosophy for constructing NSFD schemes is
to obtain numerical solutions dynamically consistent with the underlying
continuous model. This means that all of the critical, qualitative proper-
ties of the solutions to the system of differential equations should also be
satisfied by the solutions of the discrete scheme (Mickens, 2005).

The design of a nonstandard scheme is not a straightforward task, in
fact many schemes may be developed for one model and several can fail to
converge. Therefore the innovative part in this work is the construction of
the NSFD scheme. All the numerical simulations with different parameter
values suggest that the NSFD scheme developed here preserves numerical
stability in larger regions in comparison to the smaller regions of other
standard numerical methods. However, theoretical justification of this fact
is not possible due to unmanageable analytic expression of the eigenvalues
of the Jacobian matrix corresponding to the linearization at the equilibrium
points. It is important to remark that most of the previous applications
of nonstandard methods to ODE’s have been done to one, two and three
equations, where theoretical analysis is easier.

Since subpopulations must never take on negative values, the proposed
NSFD scheme is designed to satisfy the positivity condition. Furthermore,
due to the fact that in the mathematical model the population is assumed
constant, the NSFD scheme has been developed in order to always exactly
satisfy the associated conservation law (Mickens, 2007).

The organization of this chapter is as follows. In Section 2 the mathe-
matical model for the evolution of overweight and obesity population is
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presented. The construction of the proposed NSFD numerical scheme is
carried out in Section 3. In Section 4 a basic analysis of the stability of
the mathematical model is developed using data of the region of Valencia,
Spain. Additionally, numerical analysis of the NSFD numerical scheme is
done. Numerical simulations for the NSFD scheme are reported also in
this section in order to show its computational advantages. Discussion and
conclusions are presented in Section 5.

3.2 Mathematical model

In chapter 1 a dynamic obesity model for the evolution of infant overweight
and obesity population was introduced. This continuous model is based on
the partition of the infant population into six subpopulations. The model is
represented by the nonlinear system of ordinary differential equations (1.1),
where the parameters are time-invariant. In this model since the constant
population is normalized to unity one gets for all time t,

N(t) + L(t) + S(t) + O(t) + DS(t) + DO(t) = 1. (3.1)

We define equation (3.1) as the conservation law associated with the system
(1.1) and this equation must be satisfied by the NSFD numerical scheme
for any time t.

3.3 Nonstandard finite difference discretization

In order to avoid dynamic inconsistencies such as oscillations and numerical
instabilities in this section a NSFD scheme for solving numerically system
(1.1) is constructed. A numerical scheme is called NSFD if at least one of
the following conditions is satisfied (Anguelov and Lubuma, 2003a; Lubuma
and Patidar, 2003):

1. Nonlocal approximation is used (Mickens, 1994, 2000; Anguelov and
Lubuma, 2003b).
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2. Discretization of derivative is not traditional and a nonnegative func-
tion,

ψ(h) = h +O(h2), (3.2)

called a denominator function is used (Mickens, 2006).

The discretization is based on the approximations of the temporal deriva-
tives by a first order generalized forward scheme. If f(t) ∈ C1(R), we define
an equivalent derivative as

df(t)
dt

=
f(t + h)− f(t)

ψ(h)
+O(ψ(h)) as h −→ 0. (3.3)

where ψ(h) is a nonnegative real valued function defined in (3.2). Note
that the above definition is consistent with the traditional definition of the
derivative. Indeed

df(t)
dt

= lim
h−→0

{
f(t + h)− f(t)

ψ(h)
+O(ϕ(h))

}

= lim
h−→0

f(t + h)− f(t)
h

lim
h−→0

h

ψ(h)
+ lim

h−→0
O(ψ(h))

= ḟ(t).

An example of a function ψ(h) that satisfies the above conditions is ψ(h) =
1− e−h, see (Mickens, 1994, 2006).

3.3.1 Construction of the NSFD scheme

In this subsection the main goal is to construct a dynamically consistent
numerical discrete scheme for solving system (1.1). Notice that all the
model variables (subpopulations) and parameters are positive. Therefore,
in order to obtain a dynamically consistent discrete scheme, we must ensure
that the resulting discrete solutions are all positive which is necessary to
avoid scheme dependent instabilities. Furthermore, since the population is
assumed constant, the NSFD scheme should satisfy the associated conser-
vation law (Mickens, 2007). These aspects will be taken into account in the
construction of the numerical scheme below.
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Let us denote by Nn, Ln, Sn, On, Dn
S and Dn

O the approximations
of N(nh), L(nh), S(nh), O(nh), DS(nh) and DO(nh), respectively, for
n = 0, 1, 2..., and by h the time step size of the scheme. Using (3.3), the
first order numerical scheme used to obtain solutions N , L, S, O, DS and
DO of the model (1.1) is given by the following semi-implicit scheme

Dn+1
O −Dn

O

ψ(h)
= σOn − (δ + µ + γD)Dn+1

O ,

Dn+1
S −Dn

S

ψ(h)
= −(µ + ε + ϕ)Dn+1

S + αSn + γDDn+1
O ,

Nn+1 −Nn

ψ(h)
= µ− βNn+1(Sn + On + Ln) + εDn+1

S − µNn+1,

Ln+1 − Ln

ψ(h)
= βNn+1(Sn + On + Ln)− (γL + µ)Ln+1, (3.4)

Sn+1 − Sn

ψ(h)
= γLLn+1 + ϕDn+1

S − αSn − (γS + µ)Sn+1,

On+1 −On

ψ(h)
= γSSn+1 − σOn − µOn+1 + δDn+1

O ,

and after rearranging, we obtain the following explicit form

Dn+1
O =

Dn
O + ψ(h)σOn

1 + ψ(h)(δ + µ + γD)
, (3.5)

Dn+1
S =

Dn
S + ψ(h)(αSn + γDDn+1

O )
1 + ψ(h)(ε + µ + ϕ)

, (3.6)

Nn+1 =
Nn + ψ(h)(µ + εDn+1

S )
1 + ψ(h)(µ + β(Sn + On + Ln))

, (3.7)

Ln+1 =
Ln + ψ(h)βNn+1(Sn + On + Ln)

1 + ψ(h)(γL + µ)
, (3.8)

Sn+1 =
Sn(1− ψ(h)α) + ψ(h)(γLLn+1 + ϕDn+1

S )
1 + ψ(h)(γS + µ)

, (3.9)
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On+1 =
On(1− ψ(h)σ) + ψ(h)(γSSn+1 + δDn+1

O )
1 + ψ(h)µ

, (3.10)

where the denominator function is chosen as:

ψ(h) =
1− e−hM

M
,

with M ≥ max{α, σ} in order to guarantee the positivity condition. How-
ever, positivity can also be guaranteed taking the traditional ψ(h) = h

if hM ≤ 1. Therefore, throughout this chapter when hM ≤ 1 we use
ψ(h) = h.
Remark 1 Notice that the populations must be calculated in a particular
order. This sequential form of calculation is a generic feature of NSFD
methods (Mickens, 1994, 2005, 2006).
Remark 2 The incorporation of equation (3.1) to system (1.1) introduces
more complexity in order to satisfy that, if the same term occurs in more
than one differential equation, then it must be modeled discretely the same
way in all of the equations (Mickens, 1994, 2007).

3.3.2 Properties and computation in the NSFD scheme

It can be seen from system (3.5-3.10) that we have constructed a NSFD

scheme for the model (1.1) having the following properties:
1. Positivity. If Dn

O > 0, Dn
S > 0, Nn > 0, Ln > 0, Sn > 0, On > 0 then

Dn+1
O > 0, Dn+1

S > 0, Nn+1 > 0, Ln+1 > 0, Sn+1 > 0, On+1 > 0, for all
n = 0, 1, 2, ..., since that 1− ψ(h)M > 0,

2. Satisfy conservation law i.e. constant population. From system (3.4)
one gets that

Dn+1
O + Dn+1

S + Nn+1 + Ln+1 + Sn+1 + On+1 =
Dn

O + Dn
S + Nn + Ln

1 + µψ(h)

+
Sn + On + µψ(h)

1 + µψ(h)
.

It follows by induction that if Dn
O + Dn

S + Nn + Ln + Sn + On = 1, then

Dn+1
O + Dn+1

S + Nn+1 + Ln+1 + Sn+1 + On+1 = 1, for all n = 0, 1, ....
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Now, observe that the subpopulations must be calculated from scheme (3.5-
3.10) in the following order:

1. Select values Dn
O > 0, Dn

S > 0, Nn > 0, Ln > 0, Sn > 0, On > 0, such
that Dn

O + Dn
S + Nn + Ln + Sn + On = 1.

2. Determine Dn+1
O from (3.5) using Dn

O and On.

3. Calculate Dn+1
S from (3.6) with Dn+1

O , Dn
S and On.

4. Obtain Nn+1 from (3.7) using Dn+1
S , Nn, Sn, On and Ln.

5. Found Ln+1 from (3.8) of knowledge Nn+1, Sn, On and Ln.

6. Get Sn+1 from (3.9) using Sn, Ln+1 and Dn+1
S .

7. Compute On+1 from (3.10) with the values of On, Sn+1 and Dn+1
O .

Note that the sequential form of calculation is a generic feature of NSFD

schemes (Mickens, 2007). In addition, it can be seen that the main part
of the local truncation error associated with system (3.5-3.10) is of order
O(h2), confirming that the constructed NSFD scheme is first order accurate.

3.4 Numerical results and dynamic consistency

In this section, some theoretical properties of the mathematical model of
overweight and obesity population dynamics described by the nonlinear
system of ordinary differential equations (1.1) for a particular set of values
of the parameters are studied. These theoretical properties allow us know
a priori the correct behavior that need to come out from the numerical
solution corresponding to the NSFD numerical scheme (3.4). Furthermore,
this section is devoted to show numerically the dynamic consistency and
numerical advantages of the developed NSFD scheme and some comparisons
with other well known numerical methods. The chosen values for the set
of parameters of model (1.1), are the ones used in chapter 1 and are shown
in Table 1.2 in a week scale.
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Numerical stability of the mathematical model

A linear stability analysis of system (1.1) for a particular set of values
of the parameters is developed here in order to check numerically dynamic
consistency between the continuous model and the NSFD discrete scheme.
A more general stability analysis has not been performed since general pa-
rameters gives unmanageable analytic expressions. Nevertheless, several
set of values of the parameters are used to suggest numerically the afore-
mentioned dynamic consistency.

It is well known that an equilibrium point is an asymptotically stable
node if and only if the real part of the eigenvalues of the Jacobian associated
system evaluated at the equilibrium points are negative.

The system (1.1) has two steady states; a trivial steady state called
obesity free equilibrium (OFE) and a non-trivial steady state called obe-
sity endemic equilibrium (OEE). For the particular set of values of the
parameters presented in Table 1.2 for system (1.1), the following equilib-
rium points are obtained:

OFE = (1, 0, 0, 0, 0, 0),OEE ≈ (0.294, 0.297, 0.271, 0.126, 0.008, 0.003).

The eigenvalues of the Jacobian evaluated at the OFE point and at
the positive OEE point are shown in Table 3.1. The OFE point is unsta-
ble, since the eigenvalue λ4 is positive. On the other hand the OEE point
is locally asymptotically stable, due to the fact that all real parts of the
eigenvalues of the Jacobian of system (1.1) evaluated at the OEE point are
negative. Therefore, a dynamic consistent numerical scheme should repro-
duce this numerical behavior of the continuous model. In next subsection
this fact will be checked.

3.5 Numerical simulations

This subsection is devoted to show numerically the dynamic consistency
and numerical advantages of the developed NSFD scheme. One basic prop-
erty that should satisfy the NSFD numerical scheme (3.5-3.10) in order
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Eigenvalue At OFE point At the OEE point

λ1 -0.170976 -0.170977

λ2 -0.140644 -0.140622

λ3 -0.0151898 -0.0143034 + 0.00134272i

λ4 0.0134083 -0.0143034-0.00134272i

λ5 -0.00921949 -0.00909934

λ6 -0.00641026 -0.00641026

Table 3.1: The eigenvalues of the Jacobian of system (1.1) evaluated at the
OFE point and at the OEE point.

to be dynamically consistent is that their fixed points should be the same
equilibrium points as the continuous model (1.1). The equilibrium points
of the NSFD numerical scheme (3.4) are obtained by setting to zero the
left-hand sides of system (3.4). It is easy to prove that the NSFD numerical
scheme (3.4) have the same OFE point that the continuous model for any
set of parameter values.

Numerical simulation for different set of values of the parameters were
performed to investigate the dynamic consistency of the developed NSFD
numerical scheme (3.4). In Figure 3.1 it can be seen that the NSFD scheme
(3.4) converges to the same OEE point of the continuous model using the
particular set of values of the parameters shown in Table 1.2.

Additionally in Figure 3.2 it is observed that despite the initial condi-
tion is close to the OFE point, the numerical solution move further away
from this equilibrium point, suggesting numerically the instability of the
OFE point and the consistency of the NSFD numerical scheme with the
continuous model (1.1).

Numerical comparisons of the NSFD scheme

In order to study the effect of the time step size in the NSFD numerical
scheme and dynamic consistency related to local stability, the spectral ra-
dius ρ of the Jacobian corresponding to the linearization of NSFD scheme
and Euler schemes are computed for different time steps for system (1.1).
Using general parameters values one gets a general Jacobian. However, the
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Figure 3.1: Profiles of subpopulations N(t), L(t), S(t), O(t), DS(t) and
DO(t). Numerical solution is obtained by the proposed NSFD scheme with
ψ(h) = h, where h = 0.2 and initial conditions are N(0) = 0.462, L(0) =
0.194, S(0) = 0.2176, O(0) = 0.09, DS(0) = 0.0249 and DO(0) = 0.0115.



48 Chapter 3. Nonstandard consistent numerical scheme applied to
obesity

0 10 20
0

0.5

1

Time

N
(t

)

0 10 20
0

0.2

0.4

Time

L(
t)

0 10 20
0

0.2

0.4

Time

S
(t

)

0 10 20
0

0.1

0.2

Time

O
(t

)

0 10 20
0

0.005

0.01

Time

D
s(

t)

0 10 20
0

2

4
x 10

−3

Time

D
o(

t)

Figure 3.2: Profiles of subpopulations N(t), L(t), S(t), O(t), DS(t) and
DO(t) obtained with the NSFD scheme with ψ(h) = h, h = 0.2 and initial
conditions are N(0) = 0.999, L(0) = 0.001, S(0) = 0, O(0) = 0, DS(0) = 0,

and DO(0) = 0.
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functional relationship between the spectral radius ρ and the time step size
h gives an unmanageable complex analytic expression. Therefore, in order
to investigate numerically the dynamic consistency of the NSFD scheme,
the particular set of values of the parameters presented in Table 1.2 (but
in year scale) is used for numerical results. However, other sets of values of
the parameters have been used to confirm the previous numerical results.

It is well known that a necessary and sufficient condition for the con-
vergence of a fixed point scheme is that the spectral radius of the Jacobian
satisfies ρ < 1. In Table 3.2 the spectral radius ρ of the Jacobian at the
OEE point of the NSFD and Euler schemes for different time steps h are
presented. Table 3.2 compares the convergence properties of the Euler
scheme with that of NSFD scheme when used to integrate the system (1.1)
subject to the same initial conditions and parameter values. It is clear from
Table 3.2 that the NSFD scheme is more competitive in terms of numerical
stability. In all of these simulations, the NSFD scheme is seen to be mono-
tonically convergent to the correct endemic equilibrium point. However,
Euler fails to converge for a time step size of h = 0.25. The Runge-Kutta
fourth order scheme improves the result obtained by Euler scheme, but
fails to converge for time step sizes h > 0.33 when the particular set of
values of the parameters presented in Table 1.2 is used. As expected in
other numerical simulations with several different values of the parame-
ters the Runge-Kutta fourth order method outperform Euler scheme, since
convergence is achieved for larger time step sizes.

Table 3.2 compares the convergence properties of the Euler scheme with
that of the NSFD scheme for a specific set of values of the parameters
obtained from a real world application. However, several different values of
the parameters have been used and numerical results suggest that the NSFD
scheme developed here preserves numerical stability in larger regions in
comparison to the smaller regions of the Euler numerical scheme. However,
theoretical justification of this fact is not possible due to unmanageable
analytic expression of the eigenvalues of the Jacobian matrix corresponding
to the linearization at the equilibrium points. It is important to remark
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that most of the previous applications of nonstandard methods to ODE’s
have been done to one, two and three equations, where theoretical analysis
is easier. In Figure 3.3 it can be seen that the NSFD scheme converges and

Time step h ρ(Euler) Euler ρ(NSFD) NSFD(ψ(h) = h)

0.01 0.996667 Convergence 0.996678 Convergence

0.1 0.9935 Convergence 0.967742 Convergence

0.2 0.933333 Convergence 0.9375 Convergence

0.25 1.22302 Divergence 0.923077 Convergence

0.5 3.44604 Divergence 0.857143 Convergence

1 7.89207 Divergence 0.75 Convergence

10 87.920 Divergence 0.230769 Convergence

Table 3.2: Spectral radius for different time step sizes h of the Euler and
NSFD numerical schemes.

the Euler scheme oscillates incorrectly but converges to the OEE point for
a time step size h = 0.2. In Figure 3.4 it is depicted that the NSFD scheme
converges to the correct OEE point for a time step size h = 0.25, but in this
case Euler fails to converge. Finally Figure 3.5 shows that the NSFD scheme
converges to the OEE point taking only positive values. Nevertheless, it
can be observed that the several routines from Matlab package produce
incorrect negative values.

3.6 Discussion and conclusions

In this chapter we applied the NSFD methodology to develop a scheme to
solve numerically a mathematical model for obesity population dynamics.
This interacting population model represented as a system of coupled non-
linear ordinary differential equations can be used to analyze, understand,
and predict the dynamics of overweight and obese populations.

The advantages of the NSFD scheme developed here are that they pre-
serve numerical stability in larger regions for the time step size in com-
parison to the smaller regions of numerical stability of the approximations
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Figure 3.3: From top to right, profiles of subpopulations N(t), L(t), S(t),
O(t), DS(t) and DO(t). Solutions are obtained by Euler(dashed) and the
proposed NSFD scheme(line) with ψ(h) = h and h = 0.2 for system (1.1).

obtained by the other standard numerical methods. Furthermore, the pro-
posed scheme satisfies the positivity condition and the conservation law that
any good scheme for mathematical models of population dynamics must ful-
fill. The construction of these nonstandard schemes is not a straightforward
task, in fact many schemes may be developed for one model and several
can fail to converge. Nevertheless, the principle of dynamic consistency can
be used with great efficiency to place restrictions on the design of NSFD
schemes in order to obtain efficient schemes, as has been shown in this
work.

The NSFD scheme proposed here was analyzed and tested in several
numerical simulations. All the numerical simulations performed in this
work show that the NSFD scheme converges to the OEE point for any time
step size and satisfies a condition of positivity required for populations.
Finally, it is important to remark that the developed NSFD scheme is easy
to use and convergence is achieved for larger time step sizes than those
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Figure 3.4: From top to right, profiles of subpopulations N(t), L(t), S(t),
O(t), DS(t) and DO(t). Solutions are obtained by Euler scheme (dashed)
and developed NSFD scheme(line) with ψ(h) = h and h = 0.25 for system
(1.1).
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Figure 3.5: Solutions for subpopulation DO obtained by NSFD scheme and
routines ode45, ode23s, ode113 and ode23 from Matlab package(dashed),
using σ = 0.0044379× 10−5.
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for the Euler or the Runge-Kutta fourth order schemes. The NSFD scheme
also outperforms Matlab package routines, since sometimes negatives values
for populations are obtained with these routines. Therefore, for real world
applications in nature and society, where numerical values are required it
is important to be cautious about which numerical scheme is more suitable
to solve the mathematical model, since unrealistic results can be obtained.



Chapter 4

Periodic solutions of

nonautonomous differential

systems modeling obesity

population

†

In this chapter we study the periodic behavior of the solutions of a
nonautonomous model for obesity population. The mathematical model
represented by a nonautonomous system of nonlinear ordinary differential
equations is used to model the dynamics of obese populations. Numerical
simulations suggest periodic behavior of subpopulations solutions. Suffi-
cient conditions which guarantee the existence of a periodic positive solu-
tion are obtained using a continuation theorem based on coincidence degree
theory.

†This chapter is based on Arenas et al. (2009b)
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4.1 Introduction

Obesity is growing at an important rate in developed and developing coun-
tries and it is becoming a serious disease not only from the individual health
point of view but also from the public socioeconomic one, motivated by the
high cost of the Health Public Care System due to the expense of treat-
ing people suffering related fatal diseases such as diabetes, heart attacks,
blindness, renal failures and nonfatal related diseases such as respiratory
difficulties, arthritis, infertility and psychological disorders CDC (2007b).

Mathematical models have been revealed as a powerful tool to ana-
lyze the epidemiology of the infectious illness, to understand its behavior,
to predict its social impact and to find out how external factors change
the impact. A classical technique to model the behavior of communicable
diseases in the population is by means of systems of ordinary differential
equations, where the variables represent different subpopulations such in-
fected, susceptible, vaccinated and others. Once the model is constructed,
it is fitted to clinical data related to infected individuals in order to find
the values of the unknown parameters.

In chapter 1 an autonomous mathematical model of obesity with con-
stant size population was presented for study the dynamical evolution of
obesity in the childhood population. However the same model can be ex-
tended to a whole population modifying the parameters values to adapt
them to the studied population. This mathematical model is structured
with a set of six ordinary differential equations (ODE) giving rise to an
autonomous system of ODE.

In this chapter we modify the time-invariant parameter obesity model
introduced in chapter 1, to a nonautonomous model. The modification of
the previous autonomous model is justified by the fact that it is more realis-
tic to assume that the social and physical environment has fluctuations over
the time. This seasonal effect has been studied in several works related to
overweight and obesity of individuals Plasqui and Westerterp (2004); West-
erterp (2001); Van Staveren et al. (1986); Kobayashi (2006); Katzmarzyk
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and Leonard (1998); Tobe et al. (1994). For instance in Plasqui and West-
erterp (2004) a seasonal variation in the physical activity level in Dutch
young adults is found. Additionally, in Westerterp (2001) it is concluded
that body weight shows a clear seasonal variation triggered by ambient tem-
perature. Furthermore, in Van Staveren et al. (1986) longitudinal surveys
shows that mean bodyweight in populations consuming self-selected diets
consistently show an increase of about 0.5 kg around Christmas time, and
a decrease to a minimum value in July, although there is no corresponding
change in reported energy intake, and little change in mean bodyweight
from one year to the next. The aforementioned fluctuation can be mod-
eled using the assumption of periodicity for the parameter β(t), which is a
standard way to incorporate the seasonality of the spread of communicable
diseases in the environment Keeling et al. (2001).

The study of global existence of positive periodic solutions of models of
dynamic populations in a periodic environment is an important problem.
Several works have presented the assumption that the contact rate is a
general continuous, bounded, positive and periodic function with period
T and the authors have shown the existence of positive periodic solution
with the help of the continuation theorem based on coincidence degree
J.Hui and Zhu (2005); Arenas et al. (2008a); Xia et al. (2007). In addition
some authors have been studied periodic solutions for other population
mathematical models, see Huoa et al. (2007); Kouche and Tatar (2007).

Since the global existence of positive periodic solutions plays a similar
role as a globally stable equilibrium does in the autonomous model, in this
work we seek conditions for the existence of periodic solutions for the time
variant mathematical model introduced here. In particular this study is
done using the continuation theorem based on coincidence degree theory
Gaines and Mawhin (1977).

The existence of periodic solutions is important in this obesity pop-
ulation dynamic model since obesity is increasing worldwide and several
studies are now being developed. Therefore, knowing that the behavior of
obese and overweight populations present periodic oscillations is important
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in order to do more accurate studies.
The chapter is organized as follows. Mathematical preliminaries regard-

ing continuous and differentiable functions, Brouwer degree, definitions of
Fredholm mappings, coincidence degree theory and Jean Mawhin’s Contin-
uation Theorem are presented in Section 2. In Section 3, the mathematical
model is presented. In Section 4, numerical simulations of the mathemat-
ical model are presented and the periodic behavior of the subpopulations
are observed. Finally in Section 5, using Mawhin’s Continuation Theorem,
it is proved that the nonautonomous model introduced in this chapter has
at least one positive periodic solution.

4.2 Preliminaries

In this section we provide a brief introduction to continuous and differ-
entiable functions, Brouwer degree, definitions of Fredholm mappings, co-
incidence degree theory and Jean Mawhin’s Continuation Theorem. The
aim of this section is to provide the reader an adequate framework for the
understanding of this section. More information can be found in O

′
Regan

et al. (2006), Gaines and Mawhin (1977), Dieudonne (1969), Ward (2008).

4.2.1 Normed spaces

In this section we give some definitions on normed space.

Definition 4.2.1 A (real) complex normed space is a (real) complex vector

space X together with a map : X −→ R, called the norm and denoted ‖ · ‖,
such that

1. ‖x‖ ≥ 0, for all x ∈ X, and ‖x‖ = 0 if and only if x = 0.

2. ‖αx‖ = |α|‖x‖, for all x ∈ X and all α ∈ C (or R).

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖, for all x, y ∈ X.

Remark 4.2.2 If in (1) we only require that ‖x‖ ≥ 0, for all x ∈ X, then

‖ · ‖ is called a seminorm.
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Remark 4.2.3 If X is a normed space with norm ‖·‖, it is readily checked

that the formula d(x, y) = ‖x − y‖, for x, y ∈ X, defines a metric d on

X. Thus a normed space is naturally a metric space and all metric space

concepts are meaningful. For example, convergence of sequences in X means

convergence with respect to the above metric.

Definition 4.2.4 A complete normed space is called a Banach space.

Thus, a normed space X is a Banach space if every Cauchy sequence
in X converges (where X is given the metric space structure as outlined
above). One may consider real or complex Banach spaces depending, of
course, on whether X is a real or complex linear space.

Definition 4.2.5 Two norms ‖ · ‖a and ‖ · ‖b are equivalent if only if there

are positive constants µ, µ′ such that

µ‖x‖a ≤ ‖x‖b ≤ µ′‖x‖a

for all x ∈ X.

As a consequence of the above definition, we have the following result

Proposition 4.2.6 Let X a normed space of finite dimension. Then all

norms are equivalent.

4.2.2 Continuous and Differentiable Functions

Here, we introduce some basic concepts of continuous and differentiable
functions.

Definition 4.2.7 Let Ω ⊂ Rn be an open subset and f a function f :
Ω −→ R. We say that f has a local maximum at a point x0 ∈ Ω if there

exists δ > 0 such that f(x) ≤ f(x0) for all x ∈ Ω with ‖x− x0‖ < δ. Local

minima are defined likewise.
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Definition 4.2.8 Let Ω ⊂ Rn be an open subset. We recall that a function

f : Ω −→ Rn is differentiable at x0 ∈ Ω if there is a matrix f ′(x0) such that

f(x0 + h) = f(x0) + f ′(x0)h + o(h), where x0 + h ∈ Ω and ‖o(h)‖
‖h‖ tends to

zero as ‖h‖ −→ 0.

Definition 4.2.9 If f is differentiable at x0 ∈ Ω, we call Jf (x0) = detf ′(x0)
the Jacobian of f at x0. If Jf (x0) = 0, then x0 is said to be a critical point

of f and we use Sf (Ω) =
{

x ∈ Ω : Jf (x) = 0
}

to denote the set of critical

points of f , in Ω. If f−1(y)∩Sf (Ω) = ∅, then y is said to be a regular value

of f . Otherwise, y is said to be a singular value of f .

4.2.3 Some properties of the Riemann integral

Some properties of the Riemann integral used in this work are taken from
Rudin (1976) and Wade (2000). Let f be a real function on interval I ⊆ R.
If f is Riemann Integrable on I, then

∫
I f(x)dx < ∞, and we write f ∈ RI .

Proposition 4.2.10 If f is a continuous function on I = [a, b], then f ∈
RI .

Next, let f1, f2 be two functions on I = [a, b]. If f1, f2 ∈ RI , then the
following properties it holds

1.
∫
I

(
c1f1(x) + c2f2(x)

)
dx = c1

∫
I f1(x)dx + c2

∫
I f2(x)dx,

2. If f1(x) ≤ f2(x) on I, then
∫
I f1(x)dx ≤ ∫

I f2(x)dx,

3.
∫
I f1(x)f2(x)dx =

∫
I f1(x)dx

∫
I f2(x)dx.

As a consequence of the above it is easy to prove the following statements:

Theorem 4.2.11 [Mean value theorem for integrals]Suppose that f, g ∈
RI where I = [a, b] with g(x) ≥ 0 for all x ∈ I. If

m = inf
x∈I

f(x) and M = sup
x∈I

f(x),
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then there is c ∈ [m, M ] such that

∫

I
f(x)g(x)dx = c

∫

I
g(x)dx.

In particular, if f ∈ C(I), then there is x0 ∈ I which satisfies

∫

I
f(x)g(x)dx = f(x0)

∫

I
g(x)dx.

Proposition 4.2.12 Suppose f ≥ 0, f ∈ C(I), and
∫
I f(x)dx = 0, then

f(x) = 0 for all x ∈ I.

4.2.4 Construction of Brouwer Degree

Now, we give the necessary elements for the construction of Brouwer degree.

Definition 4.2.13 Let Ω ⊂ Rn be an open subset and f ∈ C1(Ω). If

p /∈ f(∂Ω) and Jf (p) 6= 0, then we define

deg(f, Ω, p) =
∑

x∈f−1(p)

sgnJf (x),

with the agreement that the above sum is zero if f−1(y) = ∅.

Definition 4.2.14 Let Ω ⊂ Rn be an open subset and f ∈ C2(Ω). If

p /∈ f(∂Ω) and Jf (p) 6= 0, then we define

deg(f, Ω, p) = deg(f,Ω, p′),

where p′ is any regular value of f such that ‖p′ − p‖ < d(p, ∂Ω).

Finally, we are ready to introduce the following definition:

Definition 4.2.15 Let Ω ⊂ Rn be an open subset and f ∈ C1(Ω). If

p /∈ f(∂Ω) and Jf (p) 6= 0, then we define

deg(f,Ω, p) = deg(g, Ω, p′),

where g ∈ C2(Ω) and f is such that ‖f − g‖ < d(p, ∂Ω).
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Now, one may check the following properties by a reduction to the
regular case.

Theorem 4.2.16 Let Ω ⊂ Rn be an open subset and f : Ω −→ Rn be a

continuous mapping. If p /∈ f(∂Ω), then there exists an integer deg(f, Ω, p)
satisfying the following properties:

1. (Normality) deg(I,Ω, p) = 1 if and only if p ∈ Ω, where I denotes the

identity mapping,

2. (Solvability) If deg(f,Ω, p) = 1, then f(x) = p has a solution in Ω,

3. (Homotopy) If ft(x) : [0, 1] × Ω −→ Rn is continuous and p /∈⋃
t∈[0,1]

ft(∂Ω), then deg(ft, Ω, p) does not depend on t ∈ [0, 1],

4. (Additivity) Suppose that Ω1, Ω2 are two disjoint open subsets of

Ω and p /∈ f(∂Ω − Ω1 ∪ Ω2). Then deg(f, Ω, p) = deg(f, Ω1, p) +
deg(f,Ω2, p),

5. deg(f,Ω, p) is a constant on any connected component of Rn−f(∂Ω).

4.2.5 Coincidence degree theory

In the 1970s, Jean Mawhin systematically studied a class of mappings of
the form L + T , where L is a Fredholm mapping of index zero and T is a
nonlinear mapping, which he called a L-compact mapping. Based on the
Lyapunov-Schmidt method, he was able to construct a degree theory for
such mapping. Here, we introduce Mawhin’s degree theory for L-compact
mappings. In addition some introductory material on Fredholm mappings
is presented.

4.2.6 Fredholm Mappings

Next, we define the concepts of linear mapping in normed spaces.

Definition 4.2.17 Let X and Y be normed spaces. A linear mapping

L : D(L) ⊂ X −→ Y is a mapping such that
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1. L(x1 + x2) = L(x1) + L(x2), for all x1, x2 ∈ D(L),

2. L(αx1) = αL(x1), for all α scalar,

where D(L) = Dom(L) =
{

x ∈ X : L(x) = y, for some y ∈ Y
}

.

Definition 4.2.18 Let X and Y be normed spaces and a linear mapping

L : D(L) ⊂ X −→ Y , it defines

1. Ker(L) =
{

x ∈ D(L) : L(x) = 0
}

,

2. Im(L) =
{

y ∈ Y : L(x) = y, for x ∈ D(L)
}

.

Definition 4.2.19 Let X and Y be normed spaces. A linear mapping

L : D(L) ⊂ X −→ Y is called a Fredholm mapping if

1. Ker(L) has finite dimension,

2. Im(L) is closed and has finite codimension.

Definition 4.2.20 If W is a linear subspace of a finite-dimensional vector

space V , then the codimension of W in V is the difference between the

dimensions:

codim(W ) = dim(V )− dim(W ).

Definition 4.2.21 It is the complement of the dimension of W , in that,

with the dimension of W , it adds up to the dimension of the ambient space

V :

dim(W ) + codim(W ) = dim(V ).

Similarly, if N is a submanifold or subvariety in M , then the codimension

of N in M is

codim(N) = dim(M)− dim(N).

Just as the dimension of a manifold is the dimension of the tangent bundle

(the number of dimensions that you can move on the submanifold), the
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codimension is the dimension of the normal bundle (the number of dimen-

sions you can move off the submanifold). More generally, if W is a linear

subspace of a (possibly infinite dimensional) vector space V then the codi-

mension of W in V is the dimension (possibly infinite) of the quotient space

V/W , which is more abstractly known as the cokernel of the inclusion. For

finite-dimensional vector spaces, this agrees with the previous definition

codim(W ) = dim(V/W ) = dim coker(W → V ) = dim(V )− dim(W ),

and is dual to the relative dimension as the dimension of the kernel.

Definition 4.2.22 Let X and Y be normed spaces. A linear mapping

L : D(L) ⊂ X −→ Y is said to be bounded if there is some k > 0 such that

‖Lx‖ ≤ k‖x‖

for all x ∈ D(L). If L is bounded, we define ‖L‖ to be

‖L‖ = inf
{

k : ‖Lx‖ ≤ k‖x‖, x ∈ D(L)
}

.

Proposition 4.2.23 Let X be a Banach space and T : X −→ X be a

linear bounded mapping. Then dim(Ker(T )) < ∞ and Im(T ) is closed

if and only if, for xn ∈ B(0, 1) such that Txn −→ y, thus {xn}∞n=1 has a

convergent subsequence.

Proposition 4.2.24 Let X be a Banach space, T : X −→ X be a linear

bounded Fredholm operator and K : X −→ X be a linear continuous

compact mapping. Then T + K is a Fredholm mapping.

4.2.7 Jean Mawhin’s Continuation Theorem

Definition 4.2.25 Let X and Y be normed vector spaces, let L : DomL ⊂
X −→ Y be a linear mapping, and N : X −→ Y be a continuous mapping.

The mapping L is called a Fredholm mapping of index zero if IndexL =
dimKerL− codimImL = 0 and ImL is closed in Y.
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Definition 4.2.26 If L is a Fredholm mapping of index zero, there exist

continuous projectors P : X −→ X and Q : Y −→ Y such that ImP =
KerL, KerQ = ImL = Im(I −Q) and X = KerL ⊕KerP , Y = ImL ⊕
ImQ. It follows that L |DomL

⋂
KerP : (I − P )X −→ ImL is invertible. We

denote the inverse of that map by KP .

Definition 4.2.27 If Ω is an open bounded subset of X, the mapping N

is called L-compact on Ω if QN(Ω) is bounded and KP (I−Q)N : Ω −→ X

is compact. Since ImQ is isomorphic to KerL there exists an isomorphism

J : ImQ −→ KerL.

Let us recall the Continuation Theorem that will help us to prove the
existence of positive periodic solutions.

Theorem 4.2.28 (Gaines and Mawhin, 1977, p.40)Let Ω ⊂ X be an

open bounded set. Let L be a Fredholm mapping of index zero and N be

L-compact on X. Assume that:

1. for each λ ∈]0, 1[, x ∈ ∂Ω ∩DomL, Lx 6= λNx,

2. for each x ∈ ∂Ω ∩KerL, QNx 6= 0,

3. deg
{

JQN,Ω ∩KerL, 0
}
6= 0.

Then the equation Lx = Nx has at least one solution in DomL ∩ Ω.

4.3 The seasonal obesity mathematical model

In this section, the seasonal obesity mathematical model for obesity pop-
ulation dynamics is introduced. In the model the periodicity is included
using the parameter β(t), which is a continuous periodic function such that

0 < βl := min
t∈R

β(t) ≤ β(t) ≤ βu := max
t∈R

β(t).

Assumptions considered in this model are the same of model (1.1) addressed
in Section 1.
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The mathematical model with constant population size is given analyt-
ically by the following nonlinear system of ordinary differential equations,

N ′(t) = µ + εDS(t)− µN(t)− β(t)N(t) [L(t) + S(t) + O(t)] ,

L′(t) = β(t)N(t) [L(t) + S(t) + O(t)]− [µ + γL] L(t),

S′(t) = γLL(t) + ϕDS(t)− [µ + γS + α]S(t),

O′(t) = γSS(t) + δDO(t)− [µ + σ]O(t), (4.1)

D′
S(t) = γDDO(t) + αS(t)− [µ + ε + ϕ]DS(t),

D′
O(t) = σO(t)− [µ + γD + δ] DO(t).

As in the previous model (1.1) the whole population is without loss of
generality normalized to unity, i.e., N(t) + L(t) + S(t) + O(t) + DS(t) +
DO(t) = 1.

4.4 Existence of Positive Periodic Solutions

The objective of this section is to derive sufficient condition for the existence
of positive periodic solutions to system (4.1) by using Mawhin’s Continu-
ation Theorem (Gaines and Mawhin, 1977, p.40). To this end and for the
sake of clarity in the presentation we shall use the following notation:

• For simplicity let x1(t) = N(t), x2(t) = L(t), x3(t) = S(t), x4(t) =
O(t), x5(t) = DS(t) and x6(t) = DO(t).

• Let β satisfy the mean value property.

• The dynamical behavior of the solutions of this model will be analyzed
on the set D ⊂ R6

+ where

D =

{
(x1, x2, x3, x4, x5, x6) ∈ R6

+ ;
6∑

i=1

xi = 1

}

and the set D is invariant for system (4.1), i.e.,∀t ≥ 0,
∑6

i=1 xi(t) = 1.

Moreover, we suppose that the following conditions for the system (4.1) are
satisfied:
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(H1) The parameters (µ, γL, γS , ε, α, ϕ, σ, δ, γD) are positive and bounded.

(H2) β(t) is a continuous T -periodic function such that

0 < βl := min
t∈R

β(t) ≤ β(t) ≤ βu := max
t∈R

β(t).

We are now in a position to prove our main result on the existence of
periodic solutions of system (4.1).

Theorem 4.4.1 Assume that the conditions H1 and H2 are satisfied, then
the system (4.1) has at least one positive T-periodic solution.

Proof. In order to prove the existence of positive periodic solutions of
system (4.1), first we consider the following change of variables:

xi(t) = eui(t). (4.2)

Thus system (4.1) can be written in the form

u̇1(t) = µe−u1(t) + εeu5(t)−u1(t) − µ− β(t)
[
eu2(t) + eu3(t) + eu4(t)

]
,

u̇2(t) = β(t)eu1(t)−u2(t)
[
eu2(t) + eu3(t) + eu4(t)

]
− (µ + γL),

u̇3(t) = γLeu2(t)−u3(t) + ϕeu5(t)−u3(t) − [µ + γS + α] ,

u̇4(t) = γSeu3(t)−u4(t) + δeu6(t)−u4(t) − [µ + σ] , (4.3)

u̇5(t) = γDeu6(t)−u5(t) + αeu3(t)−u5(t) − [µ + ε + ϕ] ,

u̇6(t) = σeu4(t)−u6(t) − [µ + γD + δ] ,

and since that xi(t) ≤ 1, for all t ≥ 0, then one gets ui(t) ≤ 0, for all t ≥ 0.
It is easy to see from (4.2), that if system (4.3) has one T-periodic solu-

tion (u∗1(t), u
∗
2(t), u

∗
3(t), u

∗
4(t), u

∗
5(t), u

∗
6(t))

T , then (x∗1(t), x
∗
2(t), x

∗
3(t), x

∗
4(t),

x∗5(t), x
∗
6(t))

T is a positive T-periodic solution of the system (4.3), and con-
sequently the system (4.1) has at least one positive T-periodic solution.
Therefore, to complete the proof, it suffices to show that the system (4.3)
has at least one T-periodic solution.
Let us introduce the space

X = Y =
{
u(t) =(u1(t), u2(t), u3(t), u4(t), u5(t), u6(t))T ∈ C(R,R6

−) :

u(T + t) = u(t), T > 0
}
,
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and the following norm

||u|| = ||(u1(t), u2(t), u3(t), u4(t), u5(t), u6(t))T || =
6∑

i=1

max
t∈[0,T ]

|ui(t)|,

for any u ∈ X, where | · | is the Euclidean norm. Then X and Y are both
Banach spaces with the norm || · ||. Let u ∈ X, and define

δ1(u(t), t) = µe−u1(t) + εeu5(t)−u1(t) − µ− β(t)
[
eu2(t) + eu3(t) + eu4(t)

]
,

δ2(u(t), t) = β(t)eu1(t)−u2(t)
[
eu2(t) + eu3(t) + eu4(t)

]
− (µ + γL),

δ3(u(t), t) = γLeu2(t)−u3(t) + ϕeu5(t)−u3(t) − [µ + γS + α] ,

δ4(u(t), t) = γSeu3(t)−u4(t) + δeu6(t)−u4(t) − [µ + σ] ,

δ5(u(t), t) = γDeu6(t)−u5(t) + αeu3(t)−u5(t) − [µ + ε + ϕ] ,

δ6(u(t), t) = σeu4(t)−u6(t) − [µ + γD + δ] .

It is clear that δi(u(t), t) ∈ C(R,R) for i = 1, ..., 6 and are all T -periodic.
Let

L : DomL ∩X −→ X, such that L(u(t)) = u̇(t) =
du(t)

dt
,

where

DomL =
{
u(t) ∈ C1(R,R6

−);u(T + t) = u(t)
} ⊆ X and N : X −→ X

such that

Nu(t) = (δ1(u(t), t), δ2(u(t), t), δ3(u(t), t), δ4(u(t), t), δ5(u(t), t), δ6(u(t), t))T .

Let P : X −→ X and Q : Y −→ Y are continuous projectors such that

Pu(t) = Qu(t) =
1
T

∫ T

0
u(t)dt.

Then

KerL = R6
−, ImL = KerQ = Im(I −Q) =

{
u ∈ X ;

1
T

∫ T

0
u(t)dt = 0

}
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is closed in X and IndiceL = dimKerL − CodimImL = 0, thus L is a
Fredholm mapping of index zero. Therefore, the mapping

Lp = L|DomL∩KerP : (I − P )X −→ ImL

is invertible. Furthermore, the inverse (to Lp), Kp : ImL −→ DomL ∩
KerP , exists and has the form

Kp(u) =
∫ t

0
u(s)ds− 1

T

∫ T

0

∫ t

0
u(s)dsdt, t ∈ [0, T ].

Thus, QN : X −→ X is QNu(t) = (q1, q2, q3, q4, q5, q6)T where

qi =
1
T

∫ T

0
δi(u(τ), τ)dτ, for i = 1, ..., 6.

Now KP (I −Q)N : X −→ X is given by

(
ϕ1(u(t), t), ϕ2(u(t), t), ϕ3(u(t), t), ϕ4(u(t), t), ϕ5(u(t), t), ϕ6(u(t), t)

)T
,

where

ϕi(u(t), t) =
∫ t

0
δi(u(s), s)ds− 1

T

∫ T

0

∫ t

0
δi(u(s), s)dsdt

−
(

t

T
− 1

2

)∫ T

0
δi(u(s), s)ds, for i = 1, ..., 6.

It is clear that QN and KP (I −Q)N are continuous. By the Arzela-Ascoli
theorem, Dieudonne (1969), it is not difficult to show that KP (I −Q)N(Ω)
is compact for any open bounded set Ω ⊂ X. Moreover, QN(Ω) is bounded.
Thus, N is L−compact under Ω with any open bounded set Ω ⊂ X. The
isomorphism J from ImQ under KerL can be the identity mapping, since
that ImQ = KerL.
In order to apply the theorem 4.2.28, we need to search an appropriate
open bounded subset Ω. In order to do it, we use the operator equation
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Lu = λNu with λ ∈ (0, 1), therefore

u̇1(t) = λ
(
µe−u1(t) + εeu5(t)−u1(t) − µ− β(t)

[
eu2(t) + eu3(t) + eu4(t)

])
,

u̇2(t) = λ
(
β(t)eu1(t)−u2(t)

[
eu2(t) + eu3(t) + eu4(t)

]
− (µ + γL)

)
,

u̇3(t) = λ
(
γLeu2(t)−u3(t) + ϕeu5(t)−u3(t) − [µ + γS + α]

)
, (4.4)

u̇4(t) = λ
(
γSeu3(t)−u4(t) + δeu6(t)−u4(t) − [µ + σ]

)
,

u̇5(t) = λ
(
γDeu6(t)−u5(t) + αeu3(t)−u5(t) − [µ + ε + ϕ]

)
,

u̇6(t) = λ
(
σeu4(t)−u6(t) − [µ + γD + δ]

)
.

Suppose that u(t) = (u1(t), u2(t), u3(t), u4(t), u5(t), u6(t))T ∈ X is any so-
lution of system (4.4) for a certain λ ∈ (0, 1). Next, multiplying the first
equation of system (4.4) by eu1(t), the second equation by eu2(t), the third
equation by eu3(t), the fourth equation by eu4(t) , the fifth equation by eu5(t)

and the sixth equation by eu6(t) we get

u̇1(t)eu1(t) = λ
(
µ + εeu5(t) − µeu1(t) − β(t)eu1(t)

[
eu2(t) + eu3(t) + eu4(t)

])
,

u̇2(t)eu2(t) = λ
(
β(t)eu1(t)

[
eu2(t) + eu3(t) + eu4(t)

]
− (µ + γL)eu2(t)

)
,

u̇3(t)eu3(t) = λ
(
γLeu2(t) + ϕeu5(t) − eu3(t) [µ + γS + α]

)
, (4.5)

u̇4(t)eu4(t) = λ
(
γSeu3(t) + δeu6(t) − eu4(t) [µ + σ]

)
,

u̇5(t)eu5(t) = λ
(
γDeu6(t) + αeu3(t) − eu5(t) [µ + ε + ϕ]

)
,

u̇6(t)eu6(t) = λ
(
σeu4(t) − eu6(t) [µ + γD + δ]

)
.
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Now, integrating (4.5) on both sides from 0 to T with respect to t, one
obtains that

µ

∫ T

0
eu1(t)dt +

∫ T

0
β(t)eu1(t)

(
eu2(t) + eu3(t) + eu4(t)

)
dt = µT

+ ε

∫ T

0
eu5(t)dt,

(µ + γL)
∫ T

0
eu2(t)dt =

∫ T

0
β(t)eu1(t)

(
eu2(t) + eu3(t) + eu4(t)

)
dt,

(µ + γS + α)
∫ T

0
eu3(t)dt = γL

∫ T

0
eu2(t)dt + ϕ

∫ T

0
eu5(t)dt, (4.6)

(µ + σ)
∫ T

0
eu4(t)dt = γS

∫ T

0
eu3(t)dt + δ

∫ T

0
eu6(t)dt,

(µ + ε + ϕ)
∫ T

0
eu5(t)dt = γD

∫ T

0
eu6(t)dt + α

∫ T

0
eu3(t)dt,

(µ + γD + δ)
∫ T

0
eu6(t)dt = σ

∫ T

0
eu4(t)dt.

From (4.6) it is easy to see that

∫ T

0
eu1(t)dt + · · ·+

∫ T

0
eu6(t)dt = T, (4.7)

and hence
∫ T

0
eui(t)dt +

∫ T

0
euj(t)dt < T, i 6= j, i, j = 1, ..., 6. (4.8)

Since we are considering the solution u(t) ∈ X in the interval [0, T ], there
exist ξi, ηi ∈ [0, T ] for i = 1, ..., 6, such that

ui(ξi) = min
t∈[0,T ]

ui(t), ui(ηi) = max
t∈[0,T ]

ui(t).

Therefore, from (4.8) and the mean value theorem for integrals, there are
θj ∈ [0, T ] such that

eui(ξi) < 1− euj(θj) = mi, 0 < mi < 1, i 6= j, i, j = 1, ..., 6. (4.9)
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On the other hand, adding the first and second equation of (4.6), one gets
that

(µ + γL)
∫ T

0
eu2(t)dt + µ

∫ T

0
eu1(t)dt = µT + ε

∫ T

0
eu5(t)dt,

and from (4.7) it follows that

(µ + γL)
∫ T

0
eu2(t)dt > ε

∫ T

0
eu5(t)dt. (4.10)

From (4.10) there exist θ5 ∈ [0, T ] such that

εeu5(θ5) < (µ + γL + εeu5(θ5))eu2(η2),

hence

eu2(η2) >
εeu5(θ5)

(µ + γL + εeu5(θ5))
= M2. (4.11)

In the same way, from the third, fourth, fifth and sixth equations of (4.5)
we have respectively the following inequalities:

eu3(η3) >
γLeu2(θ2)

(
γLeu2(θ2) + µ + γS + α

) = M3, (4.12)

eu4(η4) >
γSeu3(θ3)

(
µ + σ + γSeu3(θ3)

) = M4, (4.13)

eu5(η5) >
γDeu6(θ6)

(
µ + ε + ϕ + γDeu6(θ6)

) = M5, (4.14)

eu6(η6) >
σeu4(θ4)

(
µ + γD + δ + σeu4(θ4)

) = M6. (4.15)

Now, using (4.7) and the first equation of (4.6) one gets that

µT < µTeu1(η1) + βuTeu1(η1),
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thus

eu1(η1) >
µ

µ + βu
= M1. (4.16)

If we integrate (4.4) on both sides from 0 to T with respect to t, one gets

µ

∫ T

0
e−u1(t)dt + ε

∫ T

0
eu5(t)−u1(t)dt = µT +

∫ T

0
β(t)eu2(t)dt

+
∫ T

0
β(t)

(
eu3(t) + eu4(t)

)
dt,

∫ T

0
β(t)eu1(t)−u2(t)

(
eu2(t) + eu3(t) + eu4(t)

)
dt = (µ + γL)T,

γL

∫ T

0
eu2(t)−u3(t)dt + ϕ

∫ T

0
eu5(t)−u3(t)dt = (µ + γS + α) T, (4.17)

γS

∫ T

0
eu3(t)−u4(t)dt + δ

∫ T

0
eu6(t)−u4(t)dt = (µ + σ)T,

γD

∫ T

0
eu6(t)−u5(t)dt + α

∫ T

0
eu3(t)−u5(t)dt = (µ + ε + ϕ)T,

σ

∫ T

0
eu4(t)−u6(t)dt = (µ + γD + δ)T,

and again from (4.4) and using (4.17) together with (4.7), we have the
following bounds

∫ T

0
|u̇1(t)|dt ≤ λ

(
µ

∫ T

0
e−u1(t)dt + ε

∫ T

0
eu5(t)−u1(t)dt + µT

+
∫ T

0
β(t)

(
eu2(t) + eu3(t) + eu4(t)

)
dt

)

< 2 (µ + βu)T = K1, (4.18)

∫ T

0
|u̇2(t)|dt ≤ λ

(∫ T

0
β(t)eu1(t)−u2(t)

(
eu2(t) + eu3(t) + eu4(t)

)
dt

+ (µ + γL)T
)

< 2 (µ + γL)T = K2, (4.19)
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∫ T

0
|u̇3(t)|dt ≤ λ

(
γL

∫ T

0
eu2(t)−u3(t)dt + ϕ

∫ T

0
eu5(t)−u3(t)dt

+ (µ + γS + α)T
)

< 2 (µ + γS + α)T = K3, (4.20)

∫ T

0
|u̇4(t)|dt ≤ λ

(
γS

∫ T

0
eu3(t)−u4(t)dt + δ

∫ T

0
eu6(t)−u4(t)dt

+ (µ + σ)T
)

< 2 (µ + σ)T = K4, (4.21)

∫ T

0
|u̇5(t)|dt ≤ λ

(
γD

∫ T

0
eu6(t)−u5(t)dt + α

∫ T

0
eu3(t)−u5(t)dt

+ [µ + ε + ϕ]T
)

< 2 [µ + ε + ϕ]T = K5, (4.22)

∫ T

0
|u̇6(t)|dt ≤ λ

(
σ

∫ T

0
eu4(t)−u6(t)dt + [µ + γD + δ]T

)

< 2 [µ + γD + δ]T = K6. (4.23)

Then, for t ∈ [0, T ], from (4.9) and (4.18)-(4.23) one gets

ui(t) ≤ ui(ξi) +
∫ T

ξi

|u̇i(t)|dt ≤ ui(ξi)

+
∫ T

0
|u̇i(t)|dt < ln(mi) + Ki, for i = 1, ..., 6. (4.24)

Using the same argument, with (4.11)-(4.16) we obtain

ui(t) ≥ ui(ηi)−
∫ T

0
|u̇i(t)|dt > ln(Mi)−Ki, for i = 1, ..., 6. (4.25)

Thus, from (4.24) and (4.25) leads to

max
t∈[0,T ]

|ui(t)| < max {| ln(mi) + Ki|, | ln(Mi)−Ki|} = Ri, for i = 1, ..., 6.

(4.26)
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Clearly, the Ri (i = 1, ..., 6) are independent of λ. On the other hand, for
µ0 ∈ [0, 1], we consider the following algebraic equations

µe−u1 − βeu3 + µ0

(
εeu5−u1 − µ− β(eu2 + eu4

)
= 0, (4.27i)

βeu1−u2eu3 − (µ + γL) + µ0

(
βeu1−u2(eu2 + eu4)

)
= 0, (4.27ii)

γLeu2−u3 − (µ + γS + α) + µ0ϕeu5−u3 = 0, (4.27iii)

γSeu3−u4 − (µ + σ) + µ0δe
u6−u4 = 0, (4.27iv)

γDeu6−u5 − (µ + ε + ϕ) + µ0αeu3−u5 = 0, (4.27v)

σeu4−u6 − (µ + γD + δ) = 0, (4.27vi)

where (u1, u2, u3, u4, u5, u6)T ∈ R6. From (4.27) we can deduce the follow-
ing inequalities

µ + εeu5 ≥ (µ + γL)eu2 ,

γLeu2 + ϕeu5 ≥ (µ + γS + α) eu3 ,

γSeu3 + δeu6 ≥ (µ + σ) eu4 , (4.28)

γDeu6 + αeu3 ≥ (µ + ε + ϕ) eu5 ,

σeu4 = (µ + γD + δ) eu6 ,

and summing one gets that
6∑

i=2

eui ≤ 1. (4.29)

Therefore, from (4.29) and (4.27i)-(4.27vi) we get respectively that

µ ≤ βeu3eu1 + eu1µ + βeu1(eu2 + eu4
)

< (β + µ + 2γL)eu1 ,

βeu1eu3 ≤ (µ + γL)eu2 ≤ (µ + γL),
γLeu2

µ + γS + α + γL
+ eu2 < eu2 + eu3 ≤ 1,

γSeu3

µ + σ + γS
+ eu3 < eu3 + eu4 ≤ 1,

γDeu6

µ + ε + ϕ + γD
+ eu6 < eu5 + eu6 ≤ 1,

σeu4

µ + γD + δ + σ
+ eu4 < eu6 + eu4 ≤ 1,
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and also

eu1 >
µ

µ + β + 2γL

= c1, (4.30)

eu1eu3 ≤ µ + γL

β
, (4.31)

eu2 <
µ + γS + α + γL

µ + γS + α + γL + γL
= C2, (4.32)

eu3 <
µ + σ + γS

µ + γS + σ + γS
= C3, (4.33)

eu6 <
µ + ε + ϕ + γD

µ + ε + ϕ + γD + γD
= C6, (4.34)

eu4 <
µ + γD + δ + σ

µ + γD + δ + σ + σ
= C4. (4.35)

It is clear that

eu1 <
µ

β + µ + γL

= C1, (4.36)

satisfy (4.31).
Now, we reduce (4.27i)-(4.27ii) to

µ + µ0εe
u5 = µ0µeu1 + (µ + γL)eu2 , it implies that

µ

µ + γL
< eu1 + eu2 . (4.37)

From (4.36) and (4.37) we obtain

µ

µ + γL
< eu1 + eu2 < eu2 +

µ

β + µ + γL

, which implies that

eu2 >
βµ

(µ + γL)(β + µ + γL)
= c2. (4.38)

With (4.27iii)-(4.27vi) we obtain respectively that

γLeu2 < (µ + γS + α + γL) eu3 ,

γSeu3 < (µ + σ + γS) eu4 ,

σeu4 < (µ + γD + δ + σ) eu6 ,

γDeu6 < (µ + ε + ϕ + γ) eu5 ,
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and using (4.38) we conclude that

eu3 >
γLc2

(µ + γS + α + γL)
= c3, (4.39)

eu4 >
γSc3

(µ + σ + γS)
= c4, (4.40)

eu6 >
σc4

(µ + γD + δ + σ)
= c6, (4.41)

eu5 >
γDc6

(µ + ε + ϕ + γ)
= c5. (4.42)

Finally since eu2 + eu5 < 1 and from (4.38) we have that

eu5 <
γLβ + (µ + γL)2

(µ + γL)(β + µ + γL)
= C5. (4.43)

If we select R = max
i∈{1,...,6}

{| ln(Ci)|, | ln(ci)|}, then

|u1|+ |u2|+ |u3|+ |u4|+ |u5|+ |u6| < 6R = R0. (4.44)

Taken RT =
∑6

i=0 Ri, and

Ω =
{
u(t) = (u1(t), u2(t), u3(t), u4(t), u5(t), u6(t))T ∈ X : ‖u‖ < RT

}
,

(4.45)
since, for each λ ∈ (0, 1), u ∈ ∂Ω ∩ DomL, Lu 6= λNu, then Ω verifies
requirement (1) of the Theorem 4.2.28 is satisfied.
When u = (u1, u2, u3, u4, u5, u6)T ∈ ∂Ω∩KerL = ∂Ω∩R6−, u is a constant
vector in R6− with ‖u‖ = RT . If QNu = 0, then (u1, u2, u3, u4, u5, u6)T is a
constant solution of the system

µe−u1 − βeu3 + µ0

(
εeu5−u1 − µ− β(eu2 + eu4

)
= 0,

βeu1−u2eu3 − (µ + γL) + µ0

(
βeu1−u2(eu2 + eu4)

)
= 0,

γLeu2−u3 − (µ + γS + α) + µ0ϕeu5−u3 = 0,

γSeu3−u4 − (µ + σ) + µ0δe
u6−u4 = 0,

γDeu6−u5 − (µ + ε + ϕ) + µ0αeu3−u5 = 0,

σeu4−u6 − (µ + γD + δ) = 0,
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with µ0 = 1. From (4.44) we have that ‖(u1, u2, u3, u4, u5, u6)T ‖ < R0

which is in contradiction to ‖(u1, u2, u3, u4, u5, u6)T ‖ = RT . It follows that
for each u ∈ ∂Ω ∩ KerL, QNu 6= 0. This shows that condition 2 of the
Theorem 4.2.28 is satisfied.
In order to verify the condition 3 of theorem 4.2.28, we define φ : (DomL∩
KerL)× [0, 1] −→ X by

φ(u1, u2, u3, u4, u5, u6, µ0) =




µe−u1 − βeu3

βeu1−u2eu3 − (µ + γL)

γLeu2−u3 − (µ + γS + α)

γSeu3−u4 − (µ + σ)

γDeu6−u5 − (µ + ε + ϕ)

σeu4−u6 − (µ + γD + δ)




+ µ0




εeu5−u1 − µ− β(eu2 + eu4

βeu1−u2(eu2 + eu4)

ϕeu5−u3

δeu6−u4

αeu3−u5

0




,

where µ0 ∈ [0, 1] is a parameter. When u = (u1, u2, u3, u4, u5, u6)T ∈
∂Ω ∩ KerL = ∂Ω ∩ R6−, u is a constant vector in R6

+ with ‖u‖ = RT

and φ(u1, u2, u3, u4, u5, u6, µ0) 6= 0. Thus, due to homotopy invariance of
topology degree Gaines and Mawhin (1977), we have

deg
(
JQN((u1, u2, u3, u4, u5, u6)T ), ∂Ω ∩KerL, (0, 0, 0, 0, 0, 0)T

)

= deg
(
φ(u1, u2, u3, u4, u5, u6, 1),Ω ∩KerL, (0, 0, 0, 0, 0, 0)T

)

= deg
(
φ(u1, u2, u3, u4, u5, u6, 0),Ω ∩KerL, (0, 0, 0, 0, 0, 0)T

)

= deg
{(

µe−u1 − βeu3 , βeu1−u2eu3 − (µ + γL), γLeu2−u3 − (µ + γS + α) ,

γSeu3−u4 − (µ + σ) , γDeu6−u5 − (µ + ε + ϕ) , σeu4−u6 − (µ + γD + δ)
)T

,

Ω ∩KerL, (0, 0, 0, 0, 0, 0)T
}

.
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If the conditions of Theorem 4.4.1 are satisfied, it follows that the system
of algebraic equations

µe−u1 − βeu3 = 0,

βeu1−u2eu3 − (µ + γL) = 0,

γLeu2−u3 − (µ + γS + α) = 0,

γSeu3−u4 − (µ + σ) = 0,

γDeu6−u5 − (µ + ε + ϕ) = 0,

σeu4−u6 − (µ + γD + δ) = 0,

has a unique solution (x1, x2, x3, x4, x5, x6)T =(eu∗1 , eu∗2 , eu∗3 , eu∗4 , eu∗5 , eu∗6)T

which satisfies

eu∗2 = µ
γL+µ > 0, eu∗3 = γLeu∗2

µ+γS+α > 0, eu∗4 = γSeu∗3
µ+σ > 0,

eu∗6 = σeu∗4
µ+δ+γD

> 0, eu∗5 = γDeu∗6
µ+ε+ϕ > 0, eu∗1 = µ

βeu∗3
> 0.

Hence, deg
(
JQN((u1, u2, u3, u4, u5, u6)T ), ∂Ω ∩KerL, (0, 0, 0, 0, 0, 0)T

)
=

sgn

∣∣∣∣∣∣∣∣∣∣∣

−µe−u∗1 0 −βeu∗3 0 0 0

βeu∗1−u∗2 eu∗3 −βeu∗1−u∗2 eu∗3 βeu∗1−u∗2 eu∗3 0 0 0

0 γLeu∗2−u∗3 −γLeu∗2−u∗3 0 0 0

0 0 γSeu∗3−u∗4 −γSeu∗3−u∗4 0 0

0 0 0 0 −γDeu∗6−u∗5 γDeu∗6−u∗5

0 0 0 σeu∗4−u∗6 0 −σeu∗4−u∗6

∣∣∣∣∣∣∣∣∣∣∣

= sgn{β 2
σγLγSγDeu1+2u∗3−u∗5} = 1.

Thus, based on the above computations, we have complete the proof
for the condition (3) of Theorem 4.2.28. Therefore, the system (4.3) has at
least one T-periodic

(
u∗1(t), u

∗
2(t), u

∗
3(t), u

∗
4(t), u

∗
5(t), u

∗
6(t)

)T ∈ DomL ∩ Ω.
Thus the result has been established.
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4.5 Numerical Simulations

In this section some numerical simulations are shown in order to illustrate
the dynamics of the model (4.1). The model includes seasonal effect justi-
fied in several works related to overweight and obesity by Plasqui and West-
erterp (2004); Westerterp (2001); Van Staveren et al. (1986); Kobayashi
(2006); Katzmarzyk and Leonard (1998); Tobe et al. (1994).

The numerical examples are run with the periodic function

β(t) = b

(
1 + a cos

(
πt

26

))
,

where a is the relative amplitude varying between 0 and 1 and b is the
transmission coefficient or baseline. Notice that the periodic function is
chosen with a period of 52 weeks which is approximately one year, since the
one year periodic behavior is expected. Furthermore, numerical simulations
are performed using the time units in weeks.

Periodic behavior of the solution of the model (4.1) with the particular
parameters values used in modeling childhood obesity in the Spanish region
of Valencia (1.1), is illustrated in Figure 4.1. As it can be observed the
time horizon has been selected after the populations have reached a stable
periodic behavior, which plays a similar role as a globally stable equilibrium
does in the autonomous model.

In Figure 4.2 we have a numerical simulation for the obese population
from the start of the numerical simulation, i.e. t = 0. Notice that despite
the fact that the equation related to the obese population in the system
(4.1) does not contain the periodic function β(t), the solution for the obesity
population is periodic. Based on these results we expect that solutions of
model (4.1) are periodic. Therefore, the next section is devoted to show
the conditions for the existence of periodic solutions in system (4.1).
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Figure 4.1: Evolution of different populations using the seasonal obesity
model with β(t) = 0.02 (1 + cos(πt

26)).
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Figure 4.2: Evolution of obese population using the seasonal model (4.1)
with β(t) = 0.02 (1 + 0.9 cos(πt

26)).
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Chapter 5

Piecewise finite series

solutions of the seasonal

obesity model using

multistage Adomian method
†

The aim of this chapter is to apply the multistage Adomian Decomposition
Method MADM to obtain solutions of the seasonal obesity model that is
based on a nonautonomous system of nonlinear differential equations. This
obesity seasonal model has periodic behavior due to the periodic transmis-
sion parameter. Here the concept of the MADM is introduced and then
it is employed to obtain a piecewise finite series solution. The MADM

is used here as a hybrid analytical-numerical technique for approximating
the solutions of the epidemic models. In order to show the efficiency of the
method, the obtained numerical results are compared with the solutions
given by the fourth-order Runge-Kutta method. Numerical comparisons

†This chapter is based on González-Parra et al. (2009a)
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show that the MADM is accurate, easy to apply and the calculated solu-
tions preserve the periodic behavior of the continuous models. Moreover,
the method has the advantage of giving a functional form of the solution
for any time interval. Furthermore, it is shown that if the truncation order
and the time step size are not properly chosen large computational work is
required and inaccurate solutions may be obtained.

5.1 Introduction

Ordinary differential initial value problems appear in biological applica-
tions and commonly in the modeling of infectious diseases. These models
describe the behavior and relationship between the different subpopula-
tions: susceptible, infective and recovered, which together constitute the
total population of a certain region or environment. Generally, the exact
solutions of these models are unavailable being necessary to obtain accu-
rate numerical approximations to the solutions in order to understand the
dynamics of the systems.

Many epidemiological models have been studied using computer simu-
lations to examine the effect of a seasonally varying contact rate on the be-
havior of the disease. Most of these models performed computer simulations
using sinusoidal functions of period 1 year (β(t) = β0 + β1 cos(ωt + φ)) for
the seasonal varying contact rate. Examples of such studies include Dow-
ell (2005); Grossman (2006); Ma and Ma (2006); Moneim and Greenhalgh
(2005); Schwartz (1992); Weber et al. (2001); White et al. (2007).

The Adomian Decomposition Method ADM is a method that is useful
in various fields of mathematics Adomian (1988, 1994); Achouri and Omrani
(2009); Hosseini and Jafari (2009). The ADM decompose the nonlinear
terms in the differential equations into a peculiar series of polynomials∑∞

n=1 An where the An are the so-called Adomian polynomials. In this
way ADM compute the solution using a rapidly convergent infinite series
depending on the Adomian polynomials. In practice the infinite series
is truncated to obtain a practical solution. However, the classical ADM
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has some drawback: the obtained truncated series solution gives a good
approximation to the true solution, only in a small region Ghosh et al.
(2007); Ruan and Lu (2007); Chowdhury et al. (2009).

In Repaci (1990) it is proved that it is hopeless to get solutions glob-
ally in time by using the classical Adomian decomposition. Nevertheless in
Adomian (1994) the author proposes a domain split process with the Ado-
mian method, which later on was applied by pioneers papers Olek (1994);
Guellal et al. (1997); Vadasz and Olek (2000).

In the case of ODEs the time T is partitioned in a sequence of time
subdomains [0, t1), [t1, t2), . . . , [tn−1, T ) such that the result at tp is taken
as an initial condition in the next subdomain [tp, tp+1). The main advan-
tage of the domain split process is that only a few series terms are required
to obtain a good approximation in a small time interval Hi. Therefore, the
system of differential equations can then be solved in each subdomain Ado-
mian (1994); Ruan and Lu (2007); Chowdhury et al. (2009); Shawagfeh and
Kaya (2004). Thus this MADM minimizes the aforementioned drawback.

It is important to remark that the application of ADM is generally
less reliable if the exact solutions is oscillating, since the obtained trun-
cated series solution gives a good approximation in smaller regions than
in general equations Ghosh et al. (2007). For instance in Venkatarangan
and Rajalakshmi (1995) the authors find that ADM solutions of Duffing,
Van der Pol and Rayleigh equations were not periodic. They proposed
an alternative technique, where Laplace transformation and Padé approx-
imant were applied to obtain a better periodic solution. In the context of
integration of equations of motion of nonlinear oscillators, the global ac-
curacy of the ADM needs to be addressed more cautiously Ghosh et al.
(2007). However, recently interesting works investigating the accuracy of
the Adomian method for ordinary differential equations systems capable
of exhibiting chaotic behavior have been developed successfully in Hashim
et al. (2006); Noorani et al. (2007); Abdulaziz et al. (2008); Al-Sawalha
et al. (2008). Here the main aim is to investigate numerically the appli-
cation of MADM to seasonal epidemic models represented by systems of
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nonautonomous nonlinear ordinary differential equations in order to obtain
periodic behaviors.

In order to improve the accuracy of MADM , there are two alternative
approaches, one is computing more terms and the other dividing the time
interval T into smaller subintervals. In Ruan and Lu (2007) an algorithm
is proposed to choose the time step size h based on a preestablished given
threshold value. Despite the fact that numerical solutions are accurate,
the effects of the time step size and truncation order n on the global error
is not studied. However, in Ghosh et al. (2007) the authors apply the
MADM where only collects lower powers of the truncated series on a fixed
time step size and an error estimate of the global error were presented.
However, an important question remains open, how to chose the number
of series terms and the time step size, so that the global error is less than
a prefixed admissible error.

In the MADM there is a local truncation error over a particular time
interval and this introduces an error in the initial condition of the next
subinterval. In Chen et al. (2007) an analysis of this kind of error was per-
formed, when Chebyshev and Frobenius methods are applied to construct
approximate solutions of initial value problems for nonlinear ordinary dif-
ferential equations. The authors developed a procedure to obtain a given
admissible global error using the time step size and truncation degree.

For the MADM a similar approach to the one developed in Chen et al.
(2007) can be applied. Let ti = iT/N for i = 1, 2, ..., N be the nodes of
the divided subintervals and δε be an upper bound of the local error at
t1, t2, ..., tN due to the truncation of terms. Then, based on the ideas of
(Kincaid and Cheney, 2002, p.606), one gets that the global error εG at any
point of the domain [0, T ] is bounded by

εG ≤ δε

N−1∑

i=0

eLih = δε(eLNh − 1)(eLh − 1)−1, (5.1)

where h = T/N and L is the Lipschitz constant. From (5.1), in order to
guarantee that the global error be smaller than a given admissible error εT ,
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it is sufficient to take δε satisfying

δε ≤ εT
(eLh − 1)

(eLNh − 1)
, (5.2)

As it can be seen from (5.2), the clever part is to find an expression of
δε in terms of the time step size h and the number of series terms. This
dependence will not be discussed here furthermore, because it is outside
the aim of this thesis and it is not a straightforward task. But the main
idea is already provided here and the work in Chen et al. (2007) can help
to solve this issue.

The MADM is applied here to obtain numeric-analytic solutions of the
seasonal obesity model (4.1) that is based on a nonautonomous system of
nonlinear differential equations. The seasonality of this model is given by
a periodic forcing term in the transmission rate β(t).

The organization of this chapter is as follows. In Section 2, basic prin-
ciples of the Adomian Decomposition Method are presented. Section 3 is
devoted to present the numerical results of the application of the method
to the obesity seasonal model. Comparisons between the MADM and the
fourth-order Runge-Kutta (RK4) solutions are included In order to illus-
trate the accuracy of the MADM . The MADM is used here in some cases
with arbitrarily large time step sizes, saving computational cost when inte-
grating over long time periods. This fact is important since Euler’s method
and other well-known methods produce bad approximations in the simula-
tion of the numerical solutions for the models using large time step sizes.
Finally in Section 4 conclusions are presented.

5.2 Basic principles of ADM and MADM

We recall the basic principles of the Adomian Decomposition Method for
solving differential equations. Let us consider the equation Fu = g, where
F is a general nonlinear differential operator involving both linear and
nonlinear terms, the linear term is decomposed into L+R, where L is always
invertible and R is the remainder of the linear operator. For convenience,
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L may be taken as the highest order derivative term. Therefore Fu = g

may be written as

Lu + Ru + Nu = g, (5.3)

where Nu are the nonlinear terms. Solving Lu from (5.3), one gets

Lu = g −Ru−Nu.

Since L is invertible, then

L−1Lu = L−1g − L−1Ru− L−1Nu. (5.4)

If L is a first-order operator, then L−1 is a integration operator and L−1Lu =
u− u(0). Thus, the equation (5.4) for u can be written as

u = a + L−1g − L−1Ru− L−1Nu. (5.5)

Therefore, u can be presented as a series

u =
∞∑

n=0

un, (5.6)

with u0 = a + L−1g, and un (n > 0) are to be determined. The nonlinear
term Nu can be decomposed by the infinite series of Adomian polynomials

Nu =
∞∑

n=0

An, (5.7)

where A
′
ns are obtained by writing

ν(λ) =
∞∑

n=0

λnun, (5.8)

N(ν(λ)) =
∞∑

n=0

λnAn. (5.9)
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Here λ is a parameter introduced for convenience. From (5.8) and (5.9),
one gets

An =
1
n!

[
dn

dλn
N(ν(λ))

]

λ=0

, n = 0, 1, ... (5.10)

Now, substituting (5.6) and (5.7) into (5.5), we have

∞∑

n=0

un = u0 − L−1R

∞∑

n=0

un − L−1
∞∑

n=0

An,

and component wise, one gets that

u0 = a + L−1g,

u1 = −L−1Ru0 − L−1A0, (5.11)
...

un+1 = −L−1Run − L−1An.

If n is the truncation order and u0 is known, then it is possible to compute
u1,u2,..., un, using (5.11). Then the n-term partial sum u ∼= ∑n

k=0 uk can
be used as an approximate solution, since the series converges Abbaoui and
Cherruault (1994).

Multistage Adomian Decomposition Method
For practical problems of numerical modeling, the computation interval

[0,H] is not always small, and to accelerate the rate of convergence and
improve the accuracy of the calculations, it is necessary to divide the entire
domain H into n subdomains, as it is shown in Fig. 6.1 in the previous
chapter. The main advantage of domain split process is that only a few
series terms are required to construct a good approximation in a small time
interval Hi, where H =

∑n
i=1 Hi. It is important to remark that, Hi can

be chosen arbitrarily small if necessary. Thus, the system of differential
equations can then be solved in each subdomain (Adomian, 1994; Ruan
and Lu, 2007; Chowdhury et al., 2009). Therefore, in order to apply the
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MADM to solve nonlinear ODEs over a finite time H it is necessary to
choose previously the value of two parameters, the truncation order n and
the time step size h.

Let us consider [0,H] the interval of simulation with H the time horizon
of interest. We take a partition of the interval [0,H] as {0 = t0, t1, ... , tn =
H} such that xi < xi+1 and Hi = ti+1 − ti for i = 0, ... , n − 1. Therefore,
MADM can solve a system of differential equation with initial value of the
form:

ẋ(t) = f
(
x(t), t

)
t ∈ [a, b], with the initial condition x(a) = xa,

where x(t) = (x1(t), x2(t), ..., xj(t), ..., xn(t))T (T transposed) and that are
well-posed. Thus, applying the MADM to a system of differential equa-
tions in the domain of interest, it can be obtained a finite-term series for
each subdomain (i− th).

φi =
∞∑

n=0

φi
n, (5.12)

The ADM is used to obtain an approximate analytic solution φ(1)(t) for
the first subdomain [0, t1). Then, the solution φ(1)(t), valid only in this
first subinterval, can be used to obtain a new initial condition for the next
subinterval [t1, t2). In the second subinterval [t1, t2) another approximated
analytic solution φ(2)(t) is obtained and as before it is used to compute
a new initial condition for the subinterval [t2, t3). This procedure is ap-
plied over n subintervals, thus obtaining an analytic approximated solution
φ(i)(t) over the i-th subinterval [ti−1, ti). Using this domain split process,
the functions φi(t) can be obtained throughout the entire domain, for all i.

It is important to remark that the number of subdomains depends on
the time step size h and the number of terms of each φ(i)(t) depends on
the truncation order value n which eventually could be different for each
subinterval. However in this work the same truncation order n is used for
all subdomains.
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5.3 Application to the seasonal obesity model

In this section, MADM is applied to obtain a numeric-analytic solution of
the seasonal obesity mathematical model (4.1).This model considers sea-
sonal forcing given by a continuous function, positive, nonconstant and
periodic for the transmission rate β(t). Thus, we assume,

β(t) = b0

(
1 + b1 cos

(
2π

T
(t + φ)

))
, (5.13)

where b0 ≥ 0 is the baseline transmission parameter, 0 ≤ b1 ≤ 1 measures
the amplitude of the seasonal variation in the transmission and 0 ≤ ϕ ≤ 1
is the phase angle normalized.

Applying the MADM the functions Ñ j(t), L̃j(t), S̃j(t), Õj(t), D̃S
j
(t)

and D̃O
j
(t) can be obtained throughout the entire domain, for all j, pro-

vided that the solutions holds with:

Ñ j(t) =
n∑

i=0

N j
i (t), L̃j(t) =

n∑

i=0

Lj
i (t), S̃j(t) =

n∑

i=0

Sj
i (t),

Õj(t) =
n∑

i=0

Oj
i (t), D̃S

j
(t) =

n∑

i=0

Dsj
i (t), D̃O

j
(t) =

n∑

i=0

Doj
i (t). (5.14)

5.4 Numerical solution with MADM of the sea-

sonal obesity model

This section is devoted to present the numerical results of the application of
the method to the the obesity seasonal social epidemic model (4.1). Com-
parisons between the MADM and the fourth-order Runge-Kutta (RK4)
solutions are included. The MADM algorithm is coded using mathemati-
cal software package Maple in a computer with 1.6 GHz and 1 GB of RAM.
Moreover the calculations are based upon different values of the truncation
order n and time step size Hi. The time step size of the Runge-Kutta
method is selected in order to obtain an accurate solution for all the time
domain.
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Numerical results shown here illustrate that if the truncation order n

and the time step size Hi are chosen in an appropriate way the numer-
ical solutions given by MADM reproduce the correct periodic behavior,
positivity and boundedness of the different subpopulations for the obesity
seasonal social epidemic model, which are in line with the periodic behavior
of the continuous model shown in Arenas et al. (2009b). Additionally, it is
briefly shown the effect of the time step size Hi and the truncation order
n.

Here we want to show that MADM produces accurate solutions with
a right choice of the time step size Hi and the truncation order n. It is
expected that a decrease in the time step size improves the accuracy of
the solutions as well as increasing the value of the truncation order. The
numerical simulations were made using the parameter values shown in Table
6.1 and using a period T = 1/52 for the seasonal obesity social epidemic
model (4.1).

In Fig. 5.1 it can be seen that the solution given by MADM with a
truncation order value n = 2 and time step size Hi = 10 does not reproduce
the correct solution. In this case the computation time required to obtain
the MADM solution in the time domain [0, 500] was 19 seconds. On the
other hand, in Fig. 5.2 it can be observed that with a time step size
Hi = 5 the numerical results agree with the solution given by the 4-th order
Runge-Kutta method. As it was expected computation time increases to
34 seconds. It is important to remark that a large time step size Hi = 5
has been sufficient in this model to achieve good agreement with the 4-th
order Runge-Kutta method. In regard to computation time, as we stated
above the Runge-Kutta method is faster than the MADM , but a closed
analytical form is not obtained. In addition the accuracy of the MADM

solution can be improved by two different ways that is by decreasing the
time step size and taking more terms in the MADM .
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Figure 5.1: Comparison of the numerical approximations of solutions be-
tween the MADM (Hi = 10, n = 2, line) and Runge-Kutta (h = 0.01,
circles) results for the system (4.1).



94 Chapter 5. Piecewise finite series solution of the seasonal obesity
model

0.3

100

Time

N
or

m
al

 c
la

ss

200

0.35

0 300

0.45

400 500

0.4 0.3

La
te

nt
 c

la
ss

 

500300

0.2

4000

0.325

0.25

Time

0.225

0.275

100 200

(a) N(0) = 0.33410 (b) L(0) = 0.254659

500400

O
ve

rw
ei

gh
t c

la
ss

Time

0.24

0.28

300200

0.22

1000

0.26

100

0.06

0.12

300

Time

400

0.1

O
be

se
 c

la
ss

0 200

0.11

500

0.07

0.08

0.09

(c) S(0) = 0.26968 (d) O(0) = 0.12642

Figure 5.2: Comparison of the numerical approximations of solutions be-
tween the MADM (Hi = 5, n = 2, line) and Runge-Kutta (h = 0.01,
circles) results for the system (4.1).
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5.5 Conclusions

In this chapter the obesity seasonal social epidemic model is solved nu-
merically using the MADM for approximating the solutions. The ADM

decompose the nonlinear terms in the differential equations into a pecu-
liar series of polynomials. In this way ADM compute the solution using
a rapidly convergent infinite series depending on the Adomian polynomi-
als. In practice the infinite series is truncated to obtain an approximated
solution. In order to obtain accurate solutions, the domain region is split-
ted into subintervals and the solutions are obtained in a sequence of time
intervals with the MADM . The main advantage of the domain split pro-
cess is that only a few series terms are required to obtain the solution in a
small time interval. Therefore, an approximated solution of the system of
differential equation is obtained in each subdomain.

In order to illustrate the accuracy of the MADM , the obtained results
were compared with the fourth-order Runge-Kutta method. For the obesity
seasonal social epidemic model studied we found that the 2−term MADM

solutions achieve comparable results with the Runge-Kutta solutions. Here,
it is shown that the MADM is easy to apply and their numerical solutions
preserves the properties of the continuous models, such as periodic be-
havior, positivity and boundedness. Furthermore, the calculated results
demonstrate the reliability and efficiency of the method when is applied to
seasonal epidemiological models. Also the method has the advantage of giv-
ing a functional form of the solution within each time interval. In addition,
the analytical form makes it easier to study the effect that some epidemic
parameters have on the dynamics of the diseases. This is not possible in
purely numerical techniques like the Runge–Kutta method, which provides
solution only at discrete times, provided that the interval is chosen small
enough for convergence.

Based on the numerical results it can be inferred that the MADM is a
mathematical tool which enables to find approximate accurate solutions for
seasonal epidemiological models represented by systems of nonautonomous
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nonlinear ordinary differential equations. In general, by splitting the time
domain, the numerical solutions can be approximated quite well using a
small number of terms and small time interval. MADM is based theoret-
ically on an infinite series, but the numerical results show that in practice
a small number of terms of the series are sufficient to provided an accurate
solution.



Chapter 6

Numerical solutions for the

mathematical seasonal

obesity model using the

differential transformation

method †

The aim of this chapter is to apply the differential transformation method
(DTM) to solve a system of nonautonomous nonlinear differential equa-
tions that describe the seasonal obesity in the population. The solution
of this model exhibits periodic behavior due to the seasonal transmission
rate. The dynamics of this model describe the evolution of the different
classes of the population. Here the concept of DTM is introduced and
then it is employed to derive a set of difference equations for the seasonal
obesity social epidemic model. The DTM is used here as an algorithm for
approximating the solutions of the seasonal obesity model in a sequence
of time intervals. In order to show the efficiency of the method, the ob-

†This chapter is based on (Arenas et al., 2009a)

97
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tained numerical results are compared with the fourth-order Runge-Kutta
method solutions. The numerical comparisons show that the DTM is ac-
curate, easy to apply and the calculated solutions preserve the properties
of the continuous models, such as the periodic behavior. Furthermore, it
is showed that the DTM avoids large computational work and symbolic
computation.

6.1 Introduction

Ordinary differential initial value problems appear in biological applica-
tions and commonly in the modeling of infectious diseases. These models
describe the behavior and relationship between the different subpopula-
tions: susceptible, infective and recovered, which together constitute the
total population of a certain region o environment. Generally, the exact
solutions of these models are unavailable and usually are very complex.
Therefore, it is necessary to obtain accurate numerical approximations to
the solutions to be able to understand the dynamics of the systems.

Many epidemiological models have been studied using computer sim-
ulations to examine the effect of a seasonally varying contact rate on the
behavior of the disease. Most of these models performed computer simula-
tions using sinusoidal functions of period 1 year (β(t) = β0 +β1 cos(ωt+φ))
for the seasonal varying contact rate. Examples of such studies include (Ma
and Ma, 2006; Grossman, 2006; Moneim and Greenhalgh, 2005; Dowell,
2005; Schwartz, 1992; Weber et al., 2001; White et al., 2007).

The numerical solution of seasonal epidemic models has been obtained
in several papers in order to investigate numerically the reliability and ef-
ficiency of the different methods. For instance in (Piyawong et al., 2003),
a nonstandard numerical method was tested numerically using a season-
ally forced epidemic model. Additionally, in (Roberts and Grenfell, 1992)
a Fourier transform method was studied and applied to analyze the pop-
ulation dynamics of nematode infections of ruminants with the effect of
seasonality in the free-living stages. Also, in (Arenas et al., 2008b) a non-
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standard numerical method for the solution of a mathematical model for
the RSV epidemiological transmission is used to investigate the numerical
efficiency of the method.

In this chapter the mathematical seasonal obesity model is solved using
the DTM for approximating the solutions in a sequence of time intervals.
In order to illustrate the accuracy of the DTM , the obtained results are
compared with the fourth-order Runge-Kutta method. It is showed that
the DTM is easy to apply and their numerical solutions preserve the prop-
erties of the continuous models, such as periodic behavior, positivity and
boundedness.

Furthermore, the proposed numerical method is used in some cases with
arbitrarily large time step sizes, saving computational cost when integrat-
ing over long time periods. In fact Euler’s method and other well-known
methods produce bad approximations in the simulation of the numerical
solutions for the models when using large time step sizes. It is important
to remark that this method is applied directly to system of nonlinear or-
dinary differential equations without requiring linearization, discretization
or perturbation.

The DTM is a semi-analytical numerical technique depending on Taylor
series that promises to be useful in various fields of mathematics. The
DTM derives from the differential equation system with initial conditions
a system of recurrence equations that finally leads to a system of algebraic
equations whose solutions are the coefficients of a power series solution.
However, the classical DTM has some drawbacks: the obtained truncated
series solution does not exhibit the periodic behavior which is characteristic
of seasonal disease models and gives a good approximation to the true
solution, only in a small region. Therefore, in order to accelerate the rate
of convergence and improve the accuracy of the calculations, it is necessary
to divide the entire domain H into n subdomains. The main advantage of
domain split process is that only a few series terms are required to get the
solution in a small time interval Hi. Therefore, the system of differential
equations can then be solved in each subdomain (Chen et al., 1996). After
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the system of recurrence equations has been solved, each solution xj(t) can
be obtained by a finite-term Taylor series. Thus this proposed DTM does
not have the above drawbacks.

The differential transformation technique is applied here to solve the
mathematical seasonal obesity model. This model is at the population
level and the forcing seasonality of this model is given by a transmission
rate β(t).

6.2 Basic definitions of differential transformation

method

Pukhov (Pukhov, 1980) proposed the concept of differential transforma-
tion, where the image of a transformed function is computed by differential
operations, which is different from the traditional integral transforms as are
Laplace and Fourier. Thus, this method becomes a numerical-analytic tech-
nique that formalizes the Taylor series in a totally different manner. The
differential transformation is a computational method can be used to solve
linear (or non-linear) ordinary (or partial) differential equations with their
corresponding boundary conditions. A pioneer using this method to solve
initial value problems (Zhou, 1986), who introduced it in a study of elec-
trical circuits. Additionally, differential transformation has been applied
to solve a variety of problems that are modeled with differential equations
(Chen et al., 1996; Yeh et al., 2007; Hassan, 2008; Jang and Chen, 1997).

The method consists of, given a system of differential equations and
related initial conditions, these are transformed into a system of recurrence
equation that finally leads to a system of algebraic equations whose solu-
tions are the coefficients of a power series solution. The numerical solution
of the system of differential equation in the time domain can be obtained in
the form of a finite-term series in terms of a chosen basis system. For this
case, we take {tk}+∞

k=0 as a basis system, therefore the solution is obtained
in the form of the Taylor series. Other bases may be chosen, see (Hwang
et al., 2008). The advantage of this method is that it is not necessary to
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do linearization or perturbations. Furthermore, large computational work
and round-off errors are avoided. It has been used to solve effectively,
easily and accurately a large class of linear and nonlinear problems with
approximations. However, to the best of our knowledge, the differential
transformation has not been applied yet in seasonal epidemic models.

For the sake of clarity in the presentation of the DTM and in order to
help to the reader we summarize the main issues of the method that may
be found in (Zhou, 1986).

Definition 6.2.1 Let x(t) be analytic in the time domain D, then it has

derivatives of all orders with respect to time t. Let

ϕ(t, k) =
dkx(t)

dtk
, ∀t ∈ D. (6.1)

For t = ti, then ϕ(t, k) = ϕ(ti, k), where k belongs to a set of non-negative

integers, denoted as the K domain. Therefore, (6.1) can be rewritten as

X(k) = ϕ(ti, k) =
[
dkx(t)

dtk

]

t=ti

(6.2)

where X(k) is called the spectrum of x(t) at t = ti.

Definition 6.2.2 Suppose that x(t) is analytic in the time domain D, then

it can be represented as

x(t) =
∞∑

k=0

(t− ti)k

k!
X(k). (6.3)

Thus, the equation (6.3) represents the inverse transformation of X(k).

Definition 6.2.3 If X(k) is defined as

X(k) = M(k)
[
dkx(t)

dtk

]

t=ti

(6.4)

where k ∈ Z+ ∪ {0}, then the function x(t) can be described as

x(t) =
1

q(t)

∞∑

k=0

(t− ti)k

k!
X(k)
M(k)

, (6.5)
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where M(k) 6= 0 and q(t) 6= 0. M(k)is the weighting factor and q(t) is

regarded as a kernel corresponding to x(t).

Note, that if M(k) = 1 and q(t) = 1, then Eqs. (6.2) and (6.3) and (6.4)
and (6.5) are equivalent.

Definition 6.2.4 Let [0, H] the interval of simulation with H the time

horizon of interest. We take a partition of the interval [0,H] as {0 =
t0, t1, ... , tn = H} such that ti < ti+1 and Hi = ti+1 − ti for i = 0, ... , n.

Let M(k) = Hk
i

k! , q(t) = 1 and x(t) be a analytic function in [0,H]. It then

defines the differential transformation as

X(k) =
Hk

i

k!

[
dkx(t)

dtk

]

t=ti

where k ∈ Z+ ∪ {0}, (6.6)

and its differential inverse transformation of X(k) is defined as follow

x(t) =
∞∑

k=0

(
t

Hi

)k

X(k), for t ∈ [ti, ti+1]. (6.7)

From the definitions above, we can see that the concept of differential trans-
formation is based upon the Taylor series expansion. Note that, the original
functions are denoted by lowercase and their transformed functions are in-
dicated by uppercase letter. The DTM can solve a system of differential
equation with initial-value of the form:

ẋ(t) = f
(
x(t), t

)
t ∈ [a, b], with the initial condition x(a) = xa,

where x(t) = (x1(t), x2(t), ..., xj(t), ..., xn(t))T (T transposed) and that are
well-posed. Thus, applying the DTM a system of differential equations in
the domain of interest can be transformed to a algebraic equation system
in the K domain and each xj(t) can be obtained by the finite-term Taylor
series plus a remainder, i.e.,

xj(t) =
1

q(t)

n∑

k=0

(t− ti)k

k!
Xj(k)
M(k)

+ Rn+1 =
n∑

k=0

(
t

H

)k

Xj(k) + Rn+1, (6.8)
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where

Rn+1 =
∞∑

k=n+1

(
t

H

)k

Xj(k), and Rn+1 → 0 as n →∞.

For practical problems of simulation, the computation interval [0, H] is
not always small, and to accelerate the rate of convergence and improve
the accuracy of the calculations, it is necessary to divide the entire domain
H into n subdomains, as shown in Fig. 6.1. The main advantage of do-
main split process is that only a few Taylor series terms are required to
construct the solution in a small time interval Hi, where H =

∑n
i=1 Hi. It

is important to remark that, Hi can be chosen arbitrarily small if neces-
sary. Thus, the system of differential equations can then be solved in each
subdomain (Chen et al., 1996). The approach described above is known as
the D spectra method. Considering the function xj(t) in the first subdo-
main (0 ≤ t ≤ t1, t0 = 0), the one dimensional differential transformation
is given by

xj(t) =
n∑

k=0

(
t

H0

)k

Xj
0(k) , where Xj

0(0) = xj
0(0). (6.9)

Therefore, the differential transformation and system dynamic equations
can be solved for the first subdomain and Xj

0 can be solved entirely in the
first subdomain. The end point of function xj(t) in the first subdomain is
xj

1(H0). Thus, xj
1(t) is obtained by the differential transformation method

as

xj
1(H0) = xj(H0) =

n∑

k=0

Xj
0(k). (6.10)

Since that xj
1(H0) represents the initial condition in the second subdomain,

then Xj
1(0) = xj

1(H0). And so the function xj(t) can be expressed in the
second subdomain as

xj
2(H1) = xj(H1) =

n∑

k=0

Xj
1(k). (6.11)
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Figure 6.1: Time step diagram.

In general, the function xj(t) can be expressed in the i− 1 subdomain as

xj
i (Hi) = xj

i−1(Hi−1)+
n∑

k=1

Xj
i−1(k) = Xj

i−1(0)+
n∑

k=1

Xj
i−1(k), i = 1, 2, ..., n.

(6.12)
Using the D spectra method described above, the functions xj(t) can be
obtained throughout the entire domain, for all j.

6.3 The operation properties of the differential

transformation

We consider q(t) = 1, M(k) = Hk
i

k! and x1(t), x2(t), x3(t) three uncorrelated
functions of time t and X1(k), X2(k), X2(k) the transformed functions
corresponding to x1(t), x2(t), x2(t). With D we denote the Differential
Transformation Operator. Thus, the following basic properties hold:

1. Linearity. If X1(k) = D[x1(t)], X2(k) = D[x2(t)] and c1 and c2 are
independent of t and k then

D[c1x
1(t)± c2x

2(t)] = c1X
1(k)± c2X

2(k). (6.13)

Thus, if c is a constant, then D[c] = cδ(k), where δ(k) is the Dirac
delta function.
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2. Convolution. If X1(k) = D[x1(t)], X2(k) = D[x2(t)], then

D[x1(t)x2(t)] = X1(k) ∗X2(k) =
k∑

l=0

X1(l)X2(k − l). Therefore,

D[x1(t)x2(t)x3(t)] = X1(k) ∗ (
X2(k) ∗X3(k)

)

=
k∑

k2=0

k2∑

k1=0

X3(k1)X2(k2 − k1)X3(k − k2).

(6.14)

3. Derivative. If x1(t) ∈ Cn[0,H], then

D
[
dnx1(t)

dtn

]
=

(k + 1)(k + 2) · · · (k + n)
Hn

i

X1(k + n). (6.15)

4. If x1(t) = cos(ωt + α), then

D[x1(t)] =
(Hiω)k

k!
cos

(
πk

2
+ α + 2πiHi

)
, (6.16)

where i denotes the i-th split domain.

The proof of the above properties is deduced from the definition of the
differential transformation.

6.4 Application to the seasonal obesity mathe-

matical model

In this section, the differential transformation technique is applied to solve
the seasonal obesity mathematical model (4.1), which is given by a non-
linear differential equations system. The seasonality of the model is given
by the transmission rate β(t) and biological considerations mean that must
be a continuous function, positive, nonconstant and periodic of period T .
Thus, 0 < βl := mint∈R β(t) ≤ β(t) ≤ βu := maxt∈R β(t). The transmis-
sion rate β(t) is taken as it is shown in (5.13).
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6.4.1 Computation of the differential transformation method

to the seasonal obesity model

From the properties given in Section 6.3, the corresponding spectrum can
be determined for the system (4.1) by

N(k + 1) =
Hi

k + 1

{
µ δ(k) + εDS(k)− µN(k)

−
k∑

k2=0

k2∑

k1=0

B(k1)N(k2 − k1)
(
L(k − k2) + S(k − k2) + O(k − k2)

)}
,

L(k + 1) =
Hi

k + 1

{ k∑

k2=0

k2∑

k1=0

B(k1)N(k2 − k1)
(
L(k − k2) + S(k − k2)

+ O(k − k2)
)
− (µ + γL)L(k)

}
,

S(k + 1) =
Hi

k + 1

{
γL L(k) + ϕDS(k)− (µ + γS + α)S(k)

}
,

O(k + 1) =
Hi

k + 1

{
γS S(k) + δ DO(k)− (µ + σ)O(k)

}
, (6.17)

DS(k + 1) =
Hi

k + 1

{
γD DO(k) + αS(k)− (µ + ε + ϕ)DS(k)

}
,

DO(k + 1) =
Hi

k + 1

{
σ O(k)− (µ + γD + δ)DO(k)

}
,

with N(0) = N(0), S(0) = S(0), L(0) = L(0), O(0) = O(0), DS(0) =
DS(0), DO(0) = DO(0), where B(k1) given as follows:

B(k1) = b0δ(k) + b0b1
(Hiω)k

k!
cos

(
πk

2
+ φ + 2πiHi

)
. (6.18)

Thus, from a process of inverse differential transformation, the solutions of
each sub-domain can be obtained taking n + 1 terms for the power series
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like Eq. (6.9), i.e.,

Ni(t) =
n∑

k=0

(
t

Hi

)k

Ni(k), 0 ≤ t ≤ Hi,

Li(t) =
n∑

k=0

(
t

Hi

)k

Li(k), 0 ≤ t ≤ Hi,

Si(t) =
n∑

k=0

(
t

Hi

)k

Si(k), 0 ≤ t ≤ Hi,

Oi(t) =
n∑

k=0

(
t

Hi

)k

Oi(k), 0 ≤ t ≤ Hi, (6.19)

DSi(t) =
n∑

k=0

(
t

Hi

)k

DSi
(k), 0 ≤ t ≤ Hi,

DOi(t) =
n∑

k=0

(
t

Hi

)k

DSi
(k), 0 ≤ t ≤ Hi,

provided that the solutions holds with:

N(t) =
n∑

i=0

Ni(t), L(t) =
n∑

i=0

Li(t), S(t) =
n∑

i=0

Si(t), O(t) =
n∑

i=0

Oi(t),

DS(t) =
n∑

i=0

DSi(t), and DO(t) =
n∑

i=0

DOi(t). (6.20)

6.4.2 Numerical results

The numerical simulations were made using the parameter values shown in
Table 6.1 and using a period T = 1/52weeks−1. The DTM algorithm is
coded in the computer using Fortran and the variables are in double preci-
sion in all the calculations done in this chapter. Moreover the calculations
are based upon a value of n = 5 in the Taylor series. From Fig. 6.2 it can
be seen that the numerical solutions given by DTM reproduce the correct
periodic behavior, positivity and boundedness of the different subpopula-
tions for the obesity seasonal model, which are in line with the periodic
behavior of the continuous model proved in Arenas et al. (2009b).
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It is clear from Fig. 6.2 that excellent agreement exists between the two
sets of results, i.e., that the numerical solutions obtained are as accurate as
the 4-th order Runge-Kutta method solution, which shows that the results
obtained from the DTM are highly consistent with those obtained from
the Runge-Kutta method.

In Table 6.2 we can see that both methods are consistent between 2 and
4 decimal places for a step size h = 0.5 for DTM and step size h = 0.01 for
the Runge-Kutta method, while with a step size h = 0.01, both methods
are consistent between 4 and 7 decimal places as its can be seen in Table
6.3. In Fig. 6.2 a noteworthy observation is that after a certain period the
subpopulations achieve a correct periodic behavior.

Table 6.1: Parameter values in the seasonal obesity model (4.1) for the
region of Valencia.

µ b0 b1 φ ε σ

0.0064 0.0222949 1 0 0.0028 0.0044

δ γL γS γD ϕ α

0.1597 0.0089 0.0031 4.2269e− 004 0.1273 0.0041

Table 6.2: Differences between the 5-term DTM and RK4 solutions.

∆ = |DTM0.5 −RK40.01|
Time ∆N ∆L ∆S ∆O ∆DS ∆DO

000.00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00

200.00 .1582E-02 .1553E-02 .2676E-04 .1580E-05 .1894E-06 .4253E-07

400.00 .8343E-03 .1033E-02 .1832E-03 .1012E-04 .5112E-05 .1896E-06

600.00 .1078E-02 .9264E-03 .1589E-03 .8747E-05 .1692E-05 .2812E-06

800.00 .2020E-02 .1957E-02 .6069E-04 .2739E-05 .1145E-05 .8977E-07

1000.00 .2271E-02 .2275E-02 .5972E-05 .7829E-05 .1976E-05 .1848E-06

1200.00 .9799E-03 .1141E-02 .1551E-03 .1145E-05 .4481E-05 .4879E-07

1400.00 .4568E-03 .3229E-03 .1326E-03 .3199E-06 .1655E-05 .4538E-07

1600.00 .1748E-02 .1605E-02 .1422E-03 .6270E-06 .1144E-05 .4405E-07

1800.00 .2166E-02 .2188E-02 .1216E-04 .6990E-05 .2853E-05 .1485E-06

2000.00 .1626E-02 .1707E-02 .7852E-04 .4129E-06 .2950E-05 .6469E-07
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Figure 6.2: Comparison of the numerical approximations of solutions be-
tween the differential transformation and Runge-Kutta results with n = 5
to the seasonal obesity model (4.1).
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Table 6.3: Differences between the 10-term DTM and RK4 solutions.

∆ = |DTM0.01 −RK40.01|
Time ∆N ∆L ∆S ∆O ∆DS ∆DO

000.00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00

200.00 .7192E-04 .6690E-04 .4861E-05 .8351E-07 .6939E-07 .9970E-09

400.00 .1768E-04 .4607E-05 .1213E-04 .6243E-06 .3133E-06 .1178E-07

600.00 .1097E-05 .8816E-05 .6382E-05 .1069E-05 .2431E-06 .2569E-07

800.00 .5951E-04 .4743E-04 .1042E-04 .1370E-05 .2545E-06 .3359E-07

1000.00 .3263E-04 .4323E-04 .8437E-05 .1818E-05 .3035E-06 .4533E-07

1200.00 .2777E-04 .2181E-04 .3894E-05 .1876E-05 .1358E-06 .4988E-07

1400.00 .1824E-04 .7425E-05 .8516E-05 .2022E-05 .2194E-06 .5223E-07

1600.00 .3161E-04 .3566E-04 .1768E-05 .2094E-05 .1295E-06 .5605E-07

1800.00 .4776E-04 .4261E-04 .3134E-05 .1912E-05 .5578E-07 .5203E-07

2000.00 .2929E-04 .3573E-04 .4281E-05 .1967E-05 .1476E-06 .5198E-07

6.5 Conclusions

In this chapter, seasonal epidemiological models are solved numerically us-
ing the DTM for approximating the solutions in a sequence of time inter-
vals. In order to obtain very accurate solutions, the domain region has been
splitted into subintervals and the approximating solutions are obtained in
a sequence of time intervals. The DTM produces from the system of dif-
ferential equations with initial conditions a system of recurrence equations
that finally leads to a system of algebraic equations whose solutions are
the coefficients of a power series solution, and applying a process of inverse
transformations it obtain the solutions. Moreover, the DTM does not
evaluate the derivatives symbolically and this give advantages over other
methods such Taylor, power series or Adomian method.

In order to illustrate the accuracy of the DTM , the obtained results
were compared with the fourth-order Runge-Kutta method. For the sea-
sonal epidemiological models studied we found that the 5-term DTM so-
lutions on a larger time step achieved comparable results with the RK4
solutions on a much smaller time step. Here, it is showed that the DTM is
easy to apply and their numerical solutions preserves the properties of the
continuous models, such as periodic behavior, positivity and boundedness,
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which when using Runge-Kutta and other numerical methods, we cannot
guarantee these properties especially with step size h relatively large. Fur-
thermore, the calculated results demonstrate the reliability and efficiency
of the method when is applied to seasonal epidemiological models. It is
important to remark that this method is applied directly to the system
of nonlinear ordinary differential equations without requiring linearization,
discretization or perturbation.

Based on the numerical results it can be concluded that the DTM is
a mathematical tool which enables to find approximate accurate analyt-
ical solutions for seasonal epidemiological models represented by systems
of nonautonomous nonlinear ordinary differential equations. In general, by
splitting the time domain, the numerical solutions can be approximated
quite well using a small number of terms and small time interval Hi. Fur-
thermore, high accuracy can be obtained without using large computer
power and the DTM has the advantage of giving an analytical form of the
solution within each time interval which is not possible in purely numerical
techniques like RK4.

Since the Taylor series is an infinite series, the differential transforma-
tion should theoretically consist of an infinite series, but the numerical
results shown that a small number of terms of the series are sufficient to
provided an accurate solution in practice.
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Conclusions

This thesis dissertation helps one to understand obesity dynamics in a
population. Three mathematical models based on first order systems of
nonlinear ordinary differential equations were constructed. The first deals
with the mathematical modeling of childhood obesity from a social epi-
demic point of view for the Spanish region of Valencia for 3− 5 years old
population. The second model is an age structured model developed in
order to study the influence of age stages in the obesity population dynam-
ics. The proposed model considers the proportion of overweight and obese
children populations in the groups 6−8 and 9−12 years old. Based on the
numerical simulations of different scenarios it is shown that the prevention
of children obesity in early years is of paramount importance. Therefore
public health strategies should be designed as soon as possible to reduce
the worldwide social obesity epidemic.

The third model is a seasonal social epidemic model for obesity which
is based on a nonautonomuos systems of nonlinear of ordinary differential
equations, where it is proved the existence of periodic solutions using Jean
Mawhin’s continuation theorem. This seasonal model is simulated numer-
ically using multistage Adomian method and differential transformation
method. Numerical results show the reliability of these methods when are
applied to this nonautonomous model. In addition numerical simulations

113
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of different scenarios are performed using a developed nonstandard finite
difference scheme based on Ronald Micken’s techniques, that allows to com-
pute numerical solutions with larger step sizes than those normally used by
traditional schemes.
As future work, we will develop new mathematical models for other age
groups. In addition, we are interested in the developing of an innovative
model capable of integrating dynamics of the individual’s body and the
population. This type of models are a new way and challenge to mathemat-
ical modeling of epidemics that need to be addressed. Another interesting
possibility for future research is to consider epidemic mathematical models
under different uncertainty forms in parameter’s model and initial condi-
tions. These considerations are realistic since real world process present
different types of uncertainty.
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122 Bibliography
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