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Iñaki Inza, Jose Antonio Fernandes, Jose Luis Flores, Josu Galdiano, Juan
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Summary

With the increasing amount of stored information, the use of data mining
techniques to extract useful knowledge from them has become a key issue in
many domains. Classifier induction algorithms are useful tools for this purpose
as they allow us to summarise the information contained in the datasets into
classification functions that can be used to make predictions on new data.

One of the applications of classifier induction algorithms is the information
retrieval, this can be defined as the recovery of objects of a particular class
(those that we are interested in, normally known as ‘positive’) from a big set
of unlabelled objects (i.e., we do not know whether they are positive or not).
The classical approaches to this problem require the use of positive examples
(objects of the kind we want to recover) and negative examples (examples
different to the kind of objects we want to retrieve), but negative examples
are not always available. Therefore, for the last ten years people have been
developing algorithms that are able to learn binary classifiers in absence of
negative examples.

The positive unlabelled learning problem is the topic of this dissertation.
The contributions presented in this work cover model induction, model aver-
aging and feature subset selection algorithms and the evaluation of classifiers
in absence of negative examples. In the applied part of the work presented
in this dissertation some of the proposed algorithms are used to solve two
computational biology problems, the identification of genes associated with
hereditary diseases and with cancer.

Resumen

Con el aumento de la cantidad de información almacenada, el uso de técnicas
de mineŕıa de datos (data mining) se han convertido en una pieza clave en mu-
chos campos. Los algoritmos de inducción de clasificadores son herramientas
muy útiles ya que permiten condensar la información contenida en las bases de
datos en clasificadores que pueden luego ser usados para realizar predicciones
sobre nuevos datos.

Una de las aplicaciones de los algoritmos de inducción de clasificadores es
la recuperación de información, que puede ser definida como la recuperación de
los objetos de un tipo determinado (aquellos en los cuales estamos interesados,
normalmente llamados ‘positivos’) de grandes conjuntos de objetos no etique-
tados (es decir, objetos que no sabemos a que clase pertenecen). Las aproxima-
ciones clásicas implican tener ejemplos positivos (ejemplos del tipo de objetos
que queremos recuperar) y ejemplos negativos (ejemplos de objetos diferentes
a los que queremos recuperar), pero no siempre hay disponibles ejemplos neg-
ativos. Por este motivo, durante los últimos años se han venido desarrollando
algoritmos que permitan aprender clasificadores binarios en ausencia de ejem-
plos negativos.



IX

El tema de esta tésis es el aprendizaje a partir de ejemplos positivos y no
etiquetados. Las contribuciones de esta tésis abarcan la inducción de modelos
de clasificación, el promediado de clasificadores, la selección de variables y la
evaluación de clasificadores. En la parte aplicada, algunos de los algoritmos
propuestos son utilizados para resolver dos problemas del area de la bioloǵıa,
la identificación de genes asociados a enfermedad y genes involucrados en
cancer.

Laburpena

Datu baseetan bildutako informazio kantitatearen gorakadarekin, datu mea-
tzaritza (data mining) teknikak arlo askotan informazio baliagarria lortzeko
oso garrantzitsuak bilakatu dira. Klasifikatzaileak ikasten dituzten algorit-
moak oso tresna erabilgarriak dira, datu baseetan dagoen informazioa laburtzen
dutelako, gero datu berriekin iragarpenak egin ahal izateko.

Aurretik aipatutako algoritmoen aplikaziotariko bat, informazioa berresku-
ratzea da, hau da, mota bereziko objektuak (normalean “positiboak” derit-
zotenak) etiketatu gabeko objektu multzo handietan identifikatzea. Algoritmo
klasikoak bai objektu positiboak, baita negatiboak ere (hau da, positiboak ez
direnak) behar dituzte klasifikatzailea ikasteko. Hala ere, zenbait egoeretan
adibide negatiboak ez daude eskura. Hori dela eta, azken hamar urte hauetan
adibide negatiborik gabe klasifikatzaile binarioak ikasteko gai diren algorit-
moak garatu dira.

Tesi honen gaia klasifikatzaileen ikasketa da, adibide positibo eta etike-
tatu gabeko adibideak erabiliz. Tesiaren ekarpenen artean klasifikatzaile ikas-
keta, konbinaketa eta ebaluaketa eta aldagai aukeraketa aurki daitezke. Ap-
likazioetan, proposatutako algoritmoak biologiako bi arazoetan erabili dira:
herentziazko eritasun eta kantzerrarekin lotuta dauden geneen identifikazioa.
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Introduction

We live in a world where information is everywhere and, due to the great
advances in technology, the storage of this information in big databases is more
and more frequent in many and such diverse domains as biology, economy or
information technology. But most of these large databases are of very reduced
utility if they are not ‘mined’ in search of knowledge.

The machine learning discipline provides the data miner with the tools
required for the data mining process (see Figure 1.1). The first step in the
knowledge extraction workflow is the preprocessing of the raw data gathered
that has to be selected and formated before running the different machine
learning algorithms.

Machine learning algorithms can be applied to the formated data to extract
some of the underlying knowledge. Among the machine learning tools used in
the knowledge extraction step we can find the classification model induction
algorithms that, given a dataset of examples, are able to learn predictive
models that can be used to classify new unseen instances. In other words,
they are able to model the past experience stored in databases.

Depending on the examples available, we can find different classification
problems. Supervised classification term refers to the process of learning clas-
sification models from labelled examples, i.e., we have a set of examples and
we know the class of all of them. When we do not know the class of the exam-
ples we have an unsupervised classification problem, also known as clustering,
where the main goal is to identify the cluster structure of the examples. In-
deed, there is not an explicit class variable, we create it to indicate which
instances belong to which cluster.

Sometimes very few labelled examples are available. In such a situation, the
information provided by the unlabelled instances can be exploited to improve
the model learning process. The term semi-supervised classification is applied
to these problems where both labelled and unlabelled examples are used in
the learning.

A particular situation where machine learning algorithms are useful is the
information retrieval framework. Let us suppose that we have a large database
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Fig. 1.1. Knowledge extraction workflow.

of objects (books, genes, people, etc.) and we have a list of these objects that
are of particular interest to us (books of a particular topic, genes with a given
function, people interested in our product, etc.). Our goal is, given the list
of interesting objects, to retrieve from the database those objects that are
similar to the ones in our list. This can be seen as a binary classification
problem where the objects should be classified as interesting (or positive) and
not-interesting (or negative). From the supervised point of view we would
need labelled examples from both classes (positive and negative). Our list of
interesting objects constitutes a set of positive examples, but we lack negative
examples.

We could hand-label some of the objects in the database as non-interesting,
but this task can be tedious, expensive or even impossible in some cases.
Moreover, we need to get a set of negative examples that represents all the
possible negative instances, which can be an even harder task.

So the question is, is it possible to learn binary classification problems
without negative examples? As we will see later in this dissertation the answer
to this question is yes, provided that we have unlabelled instances. Learning
from positive and unlabelled instances is the topic of this dissertation. It has
been named in the literature as partially supervised classification (Liu et al.,
2002), positive example based learning (Yu et al., 2002) or positive unlabelled
learning (Denis et al., 2002). We will use the latter term as it is the one that
best reflects the problem. Throughout the following chapters we will see how
this problem has been tackled so far and we will present our contributions in
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different aspects such as model induction, feature subset selection or classifier
evaluation.

1.1 Contributions of the dissertation

The contributions of this dissertation are both in the methodology and the
applications of positive unlabelled learning algorithms. The methodological
contributions comprise classifier induction algorithms, feature subset selection
and classifier evaluation.

All the algorithms proposed in this dissertation have been empirically
tested. Due to the nature of the problem, the model validation in real-life
positive unlabelled learning problems is difficult, as the classical performance
measures rely on the confusion matrix and half of this matrix cannot be es-
timated without negative examples (for more details see Section 2.2). This is
one of the reasons why we have tested the algorithms in datasets where the
absence of negative examples has been simulated. We have created these sim-
ulated positive unlabelled learning problems starting from real-life databases
obtained from the UCI repository (Blake and Merz, 1998) and from datasets
sampled from Bayesian network models.

In the applied part of this dissertation some of these methodological de-
velopments have been used to solve two computational biology problems.

1.1.1 Methodological contributions

The methodological developments presented in this dissertation can be divided
into three groups: classifier induction algorithms, feature subset selection and
classifier evaluation.

1.1.1.1 Classifier induction algorithms

The contributions in the induction of classifiers from positive and unlabelled
instances can be divided into two groups. On one hand, we have developed an
algorithm based on a sampling/model averaging process that, given a set of
positive and unlabelled examples, outputs a classification for the unlabelled
instances. On the other hand, we have extended and improved the concept
behind the positive naive Bayes algorithm (PNB) (Denis et al., 2002) in several
ways, proposing five new positive Bayesian network classifiers (PBC)1 .

The first extension proposed is the positive TAN (PTAN), which is the
adaptation of the tree augmented naive Bayes model induction algorithm

1 This is the term we propose for the algorithms that learn Bayesian network models
from positive and unlabelled instances. Although the name positive unlabelled
Bayesian network classifiers would be more accurate we use PBC to be coherent
with the name of the first PBC proposed, the PNB
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(TAN) (Friedman et al., 1997) to the positive unlabelled learning framework.
Both in the PNB and the PTAN algorithms the a priori probability of the
positive class (P (C = 1)) has to be introduced as a parameter. This is a big
problem as normally this probability is unknown and it cannot be estimated
from positive and unlabelled examples. We have proposed a Bayesian approach
where the uncertainty about this parameter is modelled by means of a Beta
distribution. This allows us to consider all the possible values the parameter
can take rather than setting it at a particular value. As a final improvement
we have approached the problem of setting the a priori probability of the
positive class from a wrapper point of view. This last improvement is linked
with the contributions in the evaluation of classifier in absence of negative
examples that, as we will see later, is a non-trivial question.

1.1.1.2 Classifier evaluation

As mentioned in the previous section, the wrapper approach to the a priori
probability of the positive class implies that we need a way to evaluate clas-
sifiers in positive unlabelled learning problems. The main problem with the
evaluation is that the lack of negative examples makes it impossible to obtain
any of the classical performance measures. We have proposed a positive unla-
belled estimator of the F measure and a new metric, the pseudo F measure,
that can be used in the wrapper selection of the a priori probability of the
positive class.

1.1.1.3 Feature subset selection

Besides the contributions in the classifier induction from positive and unla-
belled examples we have also tackled the feature subset selection problem in
the absence of negative examples. To the best of our knowledge, this is the
first time the dimensionality reduction is explicitly considered in the positive
unlabelled learning framework. In this dissertation, we propose an adaptation
of the correlation based feature selection algorithm (CFS) (Hall and Smith,
1997) to the positive unlabelled learning framework.

1.1.2 Applications

Regarding the applications, we have run our algorithms in two computational
biology problems: The identification of disease genes and the prediction of
cancer genes. Since the sequencing of the human genome, a lot of information
about our genes is available. This information can be (and is being) used for
different purposes. One of the applications of this information is the prediction
of which genes may be involved in genetic diseases and which not. The goal of
having such a prediction is to serve as a guide for the researchers that are try-
ing to identify the mechanisms behind a particular disease. Many times these
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researchers face the situation of having reduced the candidate list of genes to
a few hundred. Wet-lab checking all of these genes is a very expensive, time-
consuming task. A tool that ranks these genes according to the probability
of being related with a genetic disease would increase the efficiency of this
search, saving lots of time and resources.

Getting a set of positive examples for the identification of disease genes
is more or less easy as there are databases with genes that are known to be
disease related, but producing a dataset of negative examples is not possible
as we cannot ensure that a given gene is not related with any genetic disease.
Thus, the disease gene identification is a typical positive unlabelled learning
problem. The variables used in the identification of disease genes are properties
such as the gene length or the conservation score obtained from the sequence.

The other problem where our algorithms have been applied is cancer gene
prediction. The problem is very similar to the previous one in the sense that
some genes are known to be cancer related but we cannot obtain a set of
negative examples. The variables are also different because using only sequence
properties is not enough to identify the cancer genes and, thus, other kinds
of features, such as regulatory properties of protein-protein interactions, have
to be introduced.

Previous works have suggested that the features used in the prediction
differ in dominant and recessive genes so we have tackled the identification of
dominant and recessive disease/cancer genes separately.

1.1.3 Overview of the dissertation

The dissertation is organised in four parts:

• Part I - Introduction to the classification problems and the Bayesian
network classifiers.

• Part II - Methodological contributions, including the proposed positive
unlabelled learning classifiers, evaluation measures and feature subset se-
lection algorithms.

• Part III - Applications of the proposed algorithms in computational bio-
logy problems (identification of disease and cancer genes).

• Part IV - Conclusions and future work.





2

Classification problems

Learning classification functions from datasets of examples is one of the main
areas in the machine learning discipline with applications in such different
fields as medical diagnosis, image processing, customer management or text
mining. In this chapter we will try to summarise the different situations one
can face when dealing with a classification problem, placing the topic of this
dissertation (the positive unlabelled learning) in the general framework of
classification problems. In addition to the induction of classifiers, the feature
subset selection problem and the classifier evaluation will be introduced.

2.1 A taxonomy of classification problems

Before starting with the taxonomy of classification problems we need to intro-
duce some of notation that will be used throughout the dissertation and define
what a classification problem is. The starting point in any classification prob-
lem is a dataset D of examples (also referred to as cases or instances). The in-
stances are characterised by a vector of n random variables X = (X1, . . . , Xn)
(also known as attributes or features) that can be either discrete or contin-
uous1 . A discrete random variable Xi can take ri possible values. Random
variables are always represented as capital letters and their values as lower
case letters; vectors are represented in bold font.

In the most general framework, the instances can be classified according
to different criteria. These criteria are represented by a class vector of m class
variables C = (C1, . . . , Cm). All the class variables Ci are discrete (the predic-
tion of continuous variables is known as regression rather than classification)
and can take rci values. The value of both predicting and class variables can
be missing. We will represent the missing values with a question mark. D

1 In this disseration we are focusing on the probabilistic approach of the classifi-
cation problems where the attributes of the instances are represented as random
variables
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denotes a dataset of N examples D = {(x(1), c(1)), . . . , (x(N), c(N))}. In order
to simplify the notation, and when the meaning is clear from the context, a
random variable taking a particular values will be represented by the value
alone. For instance, instead of writing P (Xi = xi|C = c) we will write P (xi|c).
When we need to specify that a variable Xi takes its j-th value, the notation
Xi = xij , abbreviated as xij , will be used.

A classification problem can be defined as the induction, from a dataset D,
of a classification function ψ that, given the attribute vector of an instance,
returns a class vector c.

ψ : ΩX −→ ΩC

x −→ c

The classification problems are typically taxonomised according to the
nature of the examples in D. The first division of the classification problems
can be carried out according to the number of class variables to predict. Most
of the work in classification has been done considering only one class variable
to predict (i.e. m = 1), but it is not infrequent to find classification problems
where there are more than a class variable. If these variables are independent,
then we can consider each prediction as an independent problem, but in some
situations there may be some relationship between the class variables that
can be exploited to improve the learning process. If we tackle the prediction
of each variable independently, we may be losing very valuable information.
A good example of such a situation would be the prediction of the prognosis
of a disease. We may define the prognosis of a disease as a list of possible
consequences that may appear in different degrees. Each of these consequences
can be represented by a class variable that we want to predict. We could
predict each consequence independently but it is very likely that the different
aspects of the disease are related and, thus, we could use this relationship to
predict the prognosis as a whole more accurately. Very few works have focused
on the simultaneous prediction of more than one class variable (van der Gaag
and de Waal, 2006; de Waal and van der Gaag, 2007; Rodŕıguez and Lozano,
2008).

If we focus on problems where m = 1, we can further taxonomise them
based on the sort of examples we have. From now on we will suppose that we
have only one class variable C that can take rc values. There are two kinds of
examples: labelled and unlabelled instances. A labelled instance is an example
where the value of the class variable is known; when the class value is missing
we have an unlabelled instance. Depending on the sort of examples we have,
the following classification problems can be defined:

• Supervised classification - Classification problems where D contains exam-
ples from all the classes and all the instances are labelled.

• Semi-supervised classification - Classification problems where D contains
labelled examples from all the classes and unlabelled examples.
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Fig. 2.1. Scheme of the classification problems when there is only one class variable
to predict (m=1). The horizontal divisions of the picture represent the number of
class values for which we have labelled examples in D (0 when all examples are
unlabelled, rc when we have examples from all the classes and {1, · · · , rc − 1} when
only examples from some classes are available). The vertical division indicates the
number of possible class values (2 for binary classification problems and > 2 for the
rest). The diagonal divisions separate the problems where unlabelled examples are
available from those where only labelled examples are used.

• Unsupervised classification - Classification problems where all the in-
stances are unlabelled.

• Positive unlabelled learning - Classification problems where the class takes
only two values (positive and negative) and D contains only positive and
unlabelled examples.

• One class classification - Classification problems where the class takes only
two values (positive and negative) and D contains only positive examples.

Figure 2.1 shows a summary of the unidimensional (m=1) classification
problems.

2.1.1 Supervised classification

The supervised classification concept (Duda et al., 2001; Bishop, 2006) refers
to the induction of classifiers starting from a set of labelled examples. It can be
seen as an attempt to emulate human learning from experience. Any expert in
a particular topic has a past experience from where his/her brain has created
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a model of the problem. For instance, a computer technician whose job is
to fix hardware problems in the PCs of an office, after checking and fixing
hundreds of computers, he/she creates a model that helps him/her to identify
the problem in new broken PCs just by looking at the ‘symptoms’. Supervised
algorithms try to imitate the human brain and, starting from the ‘experience’
collected in datasets, create a model of the topic under study.

Several paradigms have been proposed to the induction of classifiers from
labelled databases. One of the most obvious approach is the comparison. If
we have a database with labelled examples and we need to predict the label of
a new instance, we can search the database for the most similar example and
assign its label to the new instance. This is the concept behind the nearest
neighbour rule (Fix and Hodges, 1951). The k-nearest neighbour algorithm is
the extension of this idea where, instead of looking at the closest example, we
consider the label of the k closest examples.

Another very intuitive type of model is classification tree (Breiman et al.,
1984; Quinlan, 1993), where the new instances are passed through a tree
of questions (involving the predicting variables) until they reach a leaf that
contains the label we have to assign to the new instance.

The probabilistic classifiers are those that base the prediction on the es-
timation of the posterior probability of the class (i.e., the probability distri-
bution of the class variable given that we know the value of the predicting
variables). One of these algorithms is the logistic regression (Kleinbaum et al.,
1982) that models the a posteriori probability of the class by means of the
logistic function of a linear combination of the predicting variables:

P (C = 1|x) =
1

1 + e−z

where

z = β0 + β1x1 + β2x2 + . . .+ βnxn

The Bayesian network classifiers (Duda and Hart, 1973) model the joint
probability P (X , C) by means of a Bayesian network and then, using the
Bayes rule, estimate for every new instance x the a posteriori probabilities
P (c|x). In order to reduce the number of parameters to estimate, some as-
sumptions about the conditional dependencies between variables are made.
In the naive Bayes model (Minsky, 1961), the most simple Bayesian network
classifier, all the predicting variables are supposed to be conditionally inde-
pendent given the class. More complex Bayesian network classifiers, such as
the tree augmented naive Bayes models (Friedman et al., 1997), allow de-
pendencies between variables with some restrictions. These dependencies are
represented by a directed acyclic graph (DAG) that is used to obtain the fac-
torisation of the conditional probability P (x|c). As most of the contributions
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of this dissertation are related with the Bayesian network classifiers, they will
be explained in more detail in Chapter 3.

The neural network classifiers are based on artificial neural networks (Mc-
Culloch and Pitts, 1943) which are an attempt to model the human brain.
The basic units in neural networks are the nodes or neurons that are organised
in layers. The most simple neural network, known as perceptron (Rosenblatt,
1962) consists of a single neuron that separates the two classes by a linear
discrimination function (given the appropriate activation threshold). More
complex networks are obtained by connecting perceptrons in what is known
as multilayer perceptron.

The support vector machines (Vapnik, 1995) are classifiers based on the
transformation of the feature space into a (normally much) higher dimensional
space where the different classes can be separated by simple hyperplanes.

2.1.2 Semi-supervised classification

In some fields, such as text mining or computer vision, the amount of labelled
examples is reduced while huge amounts of unlabelled examples are readily
available. In such situations the performance of the supervised algorithms can
be very poor due to the low number of labelled instances. The semi-supervised
algorithms are based on the idea that the learning process can be improved
using the information underlying the unlabelled examples.

Although one can think that semi-supervised classification is somehow
between the supervised and the unsupervised classification, conceptually it is
much closer to the supervised learning. The unlabelled instances are just an
aid to improve the supervised learning process. In unsupervised classification
the goal is to group the instances into clusters rather than to learn a classifier
from the data.

During the last decades several algorithms have been developed in order
to include the unlabelled instances in the learning process. In this section we
will only mention a couple of approaches to the problem. More information
about the semi-supervised classification problem can be found in Zhu (2005)
and Chapelle et al. (2006).

The first approach to the problem is the co-training concept (Blum and
Mitchell, 1998). In certain problems, such as text classification, different views
(i.e. different sets of attributes) of the instances can be used to train a classifier.
For instance, if our goal is to classify web pages, we can do it according to the
words contained in the web page itself or according to the words that appear
in the web pages that contain links to the web page we are considering. These
two sets of labels could be used independently to classify the web pages. The
co-training concept is based on the idea of building two (or more) different
classifiers, each based on a view of the dataset, and then use each classifier
to enrich the set of labelled examples used to train the other classifier by
classifying the unlabelled instances.
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The other approach we will mention in this section is the use of the expec-
tation maximisation (EM) algorithm (Dempster et al., 1977). In the unsuper-
vised version of the EM algorithm the probabilistic labels of all the instances
change dynamically during the process according to the posterior probabilities
P (c|x). In the semi-supervised framework the labelled instances are added to
the process fixing their posterior probabilities so as P (c|x) = 1 being c the
label associated to x and P (c′|x) = 0 for the rest of the labels. At each itera-
tion the posterior probabilities of the unlabelled instances are updated using
the model obtained in the previous step but not the posterior probabilities of
the labelled instances.

2.1.3 Unsupervised classification

The unsupervised classification is also known as clustering, as its goal is to
identify the underlying cluster structure of the data. In the unsupervised clas-
sification we have a set of unlabelled instances, but there is not an explicit
class variable as in the supervised or semi-supervised classification problem.
The class variable (whose value is unknown for all of our examples) can be
seen as a hidden variable representing the cluster membership. This poses one
of the main problems in clustering: We do not know how many values the
class variable should take (i.e., how many clusters should we obtain). There
are some approaches to automatically set the number of clusters but this topic
is out of the scope of this introduction.

The aim of the unsupervised classification algorithms is to group the in-
stances such that inside each cluster all the instances are very similar (nor-
mally in terms of a distance or a correlation measure) and the instances in
different clusters are very different. There are several approaches to the clus-
tering problem that can be mainly divided into three categories: Hard clus-
tering, fuzzy clustering and probabilistic clustering. The hard clustering algo-
rithms assume that a given instance can belong to only one cluster. Examples
of this type of method are the k-means (Forgy, 1965) and the hierarchical
clustering (Jardine and Sibson, 1971) algorithms. The fuzzy clustering is a
generalisation where a particular instance can belong to any of the possible
clusters with a degree of membership that ranges from 0 to 1. The best known
example of fuzzy clustering algorithm is the fuzzy c-means (Bezdek, 1981). In
the probabilistic clustering we assume that each cluster has been generated by
a probability distribution and thus the algorithms try to model these proba-
bility distributions in order to obtain the clustering. It is similar to the fuzzy
clustering in the sense that each instance has a degree of membership. The
basic difference with the fuzzy clustering is that the membership is the prob-
ability of belonging to that cluster and, thus, the sum of the probabilities of
belonging to each cluster has to be 1. In the fuzzy clustering the membership
is a weighting factor that is not subject to such restrictions.
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2.1.4 Positive unlabelled learning

The problem of learning binary classification functions starting from positive
and unlabelled examples has been named in the literature as partially su-
pervised classification (Liu et al., 2003), positive example based learning (Yu
et al., 2002) or positive unlabelled learning (Denis et al., 2002). Although this
problem may look very similar to the semi-supervised classification (as we
have labelled and unlabelled examples), the absence of examples from one of
the classes poses some extra challenges. Nevertheless, conceptually the prob-
lem is the same as in supervised and semi-supervised classification as there
is an explicit class variable that we want to predict. The difference lies in
the lack of examples of one of the classes. The difference with the supervised
classification is the sort of data from where we want to learn the classifier.

This kind of problem is quite frequent in the information retrieval frame-
work. We have a big set of (unlabelled) instances and a list of examples of
instances that we are interested in, and what we want is to recover, from the
big unlabelled set, those instances that are similar to the ones in our list. If
we want to model this recovery as a semi-supervised problem, we need some
negative examples, i.e. examples of instances that we are not interested in,
so we should hand-label some uninteresting instances from the unlabelled set.
On one hand, this task can be tedious, expensive, time-consuming or even
impossible in some situations. On the other hand, even if we are able to de-
tect some negative cases, if we want to learn a good classification function we
should produce a set of negative examples that represent all the possible sorts
of uninteresting instances, and this can be an even harder task. Figure 2.2
illustrates the problem of getting a representative set of negative examples.
The other alternative is to learn classifiers without negative examples.

Most of the classifier induction algorithms for positive unlabelled learning
have been developed in the text classification domain, which is a good example
of information retrieval framework. For instance, we could be interested in
retrieving, from a big database of papers, those related to a set of papers
about a particular topic. The same can be done with web pages or any other
type of document.

Not only text classification problems can be modelled in this way. The
identification of potential clients from databases based on the information
about the current clients is another example of information retrieval problem
that could be tackled from the positive unlabelled learning point of view.
Computer vision problems are also a good example of the sort of classification
problems that could be modelled in the same way. For instance, we may want
to identify, from a set of unlabelled satellite images, those corresponding to
a particular kind of terrain. In the applied part of this dissertation we will
introduce two computation biology problems where we have applied learning
algorithms that use only positive and unlabelled examples.

As the algorithms available for supervised and semi-supervised classifica-
tion cannot be directly used to learn models from positive and unlabelled
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Fig. 2.2. Illustration of the problem of not having a representative set of negative
examples. Suppose that we have some examples of red circles and we want to retrieve
all the red circles. From a supervised classification point of view we need examples
that are not red circles. In order to obtain a good classifier to distinguish red circles
from the rest we need examples from all the classes that are not red circles. If we
only have examples from a particular class (let us say blue squares) that are not
red circles, then we would learn a classifier (represented by the boundary labelled
as ‘Cl’) that distinguishes red circles from blue squares, but fails to distinguish red
circles from purple crosses or orange stars.

examples, specific algorithms have been developed to cope with this problem.
Chapter 4 is devoted to the state of the art and there the main algorithms
proposed in the field are reviewed.

In addition to the classifier induction problem, the absence of negative
cases poses challenging problems in other fields such as the evaluation of
classifiers or the feature subset selection (FSS). Regarding the classifier eval-
uation, most of the performance measures are based on the confusion matrix
that summarises the performance of the classifier in four values: true posi-
tives, true negatives, false positives and false negatives. Without actual neg-
ative examples only true positives and false negatives can be estimated so we
cannot obtain the typical performance measures such as the accuracy or the
classification error. In the chapter devoted to the wrapper positive Bayesian
network classifiers (Chapter 8) we will go into detail regarding the problems
of evaluating classifiers in absence of negative examples.

As many FSS algorithms depend on estimations that involve the class
variable, the absence of negative examples implies that they cannot be directly
applied in the positive unlabelled learning context. One of the chapters in this
dissertation (Chapter 9) is dedicated to the FSS problem in positive unlabelled
learning problems.
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2.1.5 One-class classification

The one-class classification concept (Manevitz and Yousef (2001); Tax (2001);
Tax and Duin (2002)) refers to the induction of classifiers when only positive
examples are available. The goal is to obtain, given a set of examples (also
known as target examples), a classification function that distinguishes between
target instances and the rest of possible instances (also known as outliers).
Compared to the positive unlabelled learning, in one-class classification prob-
lems we do not have unlabelled instances.

The lack of unlabelled instances is not the only difference between one-
class classification and positive unlabelled learning. There are also differences
in the concept itself. In one-class classification we have a set of target objects,
and we want to distinguish from all the rest of possible objects, regardless of
how probable these objects are. In positive unlabelled learning the unlabelled
instances give us information about the probability distribution of the objects
in our problem. For example, suppose that we want to learn a model that
classifies any web as conference or non-conference page. From the positive
unlabelled learning point of view, we would focus only on web pages. We
would take some conference web sites as positive examples and a set of pages
from the internet as unlabelled examples and then we would train a classifier.
In one-class classification we would only have a set of conference web pages
(positive or target examples) so the classification function that we obtain tries
to distinguish between a conference web page and any other element (web page
or not).

2.2 Evaluation of classifiers

The goal of a classifier induction algorithm is to build a classification function,
ψ, that predicts the class of new, unseen instances with a certain degree of ac-
curacy. In other words, we want to induce good classification functions. Thus,
it is important to evaluate the goodness of the model we have learnt. First
of all we need to define how the goodness of a classifier can be evaluated.
In Section 2.2.1 the most commonly used performance measures are intro-
duced. Section 2.2.2 is dedicated to the different estimation schemes proposed
to obtain the peformance measures from the dataset.

2.2.1 Classifier performance measures

There is a good amount of metrics that are used to assess the quality of classi-
fication functions. Probably the most commonly used measure is the classifi-
cation error, which is the probability that a classification function incorrectly
classifies a new instance. The classification error of a function ψ is:
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Table 2.1. Confusion matrix in binary classification problems.

ǫψ =
∑

x

P (ψ(x) 6= c)P (x)

being c the actual class of x2 . The complementary measure of the classifica-
tion error is the accuracy, that can be defined as the probability of correctly
classifying a new instance:

Accψ =
∑

x

P (ψ(x) = c)P (x)

The classification error and the accuracy are the most widely used per-
formance measures when the cost of making an error is independent of the
classes involved, but in many real situations the cost of an error depends on
the classes involved. For instance, suppose that we want to obtain a system
to help the doctors in a medically assisted reproduction clinic. We need a
classifier that, given some attributes extracted from embryo images and some
information about the patients, predicts whether the embryo is going to im-
plant (and thus lead to pregnancy) or not. The (emotional) cost of a false
positive (predicting that an embryo is going to implant correctly and not get-
ting pregnancy) is not the same as the cost of a false negative (a viable embryo
discarded). Under this sort of situation the classification error is not the best
option, and the total expected cost is preferred.

In the particular case of binary classification problems, where we have
only two classes (positive and negative, normally represented as 1 and 0 re-
spectively), many other performance measures can be defined based on the
confusion matrix (Table 2.1). The sensitivity, Sn, is the ratio of positive cases
that are correctly classified as positive. It is also known as recall, r, or true
positive rate, TPR, and is calculated as:

Sn = r = TPR =
TP

TP + FN
(2.1)

2 In the general framework any instance can belong to any class with a given
probability. Throughout this dissertation we are considering a particular case
where a given instance only belongs to a class (the actual class) with a probability
of 1 and to the rest with a probability of 0
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The specificity, Sp, is the equivalent of the sensitivity but with the negative
cases, that is, the ratio of actual negative cases that are correctly classified:

Sp =
TN

TN + FP

The false positive rate, FPR, is the ratio of negative cases that have been
classified as positive and can be estimated as:

FPR =
FP

TN + FP
= 1 − Sp

Another interesting measure is the precision, pr, that can be defined as
the probability that an instance classified as positive is actually positive. It
can be computed from the confusion matrix as:

pr =
TP

TP + FP
(2.2)

Given a new instance, x, a probabilistic classifier estimates the probability
of each of the classes given the attribute values of the instance P (c|x). The
‘winner takes all’ consists of assigning the new instance to the class with the
highest a posteriori probability3 :

ψ(x) = argmaxc(P (c|x))

This means that, in binary classification problems, we will say that the
instance x is positive when P (1|x) > 0.5. Nevertheless, 0.5 is not the only
threshold that we can use. Actually, we can set any number between 0 and
1 as the threshold, resulting in different classification functions (even if we
have a single model). The receiver operating characteristic (ROC) curve is
a graphical representation that allows us to evaluate the model considering
all possible thresholds for the conditional probability. It is the graphical rep-
resentation of sensitivity vs. 1-specificity. Figure 2.3 shows some examples
of ROC curves. The ROC curve allows us to graphically compare different
classifiers just looking at the shape of their curves. The area under the ROC
curve (AUC) summarises the curve and gives us an idea of the goodness of
the model. The closer this value is to 1, the better the model we have.

In the information retrieval context we are especially interested in the
positive examples. The goal of a classification function is to recover the positive
cases from the set of unlabelled instances. The two aspects of this recovery,

3 Though there are other kind of classifiers, in this dissertation we will focus on the
probabilistic classifier, i.e., those that base their predictions on the estimation of
the posterior probability of the class variable
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Fig. 2.3. Examples of ROC curves. The curves represent the performance of a
naive Bayes classifier in the classification of breast cancer as benign or malign in a
dataset obtained from the UCI repository (Asuncion and Newman, 2007). The curve
labelled as ‘No noise’ corresponds to the results obtained in the original dataset, and
the other two curves are the results obtained adding different amounts of noise to
the dataset.

the quantity and the quality, are measured by the recall and the precision
respectively. The recall gives us an idea of how many of the actual positive
cases have been identified as positive and the precision tells us how many of
the instances identified as positive are actually positive.

Any of these measures alone is not enough to evaluate a classifier. If we
have a classification function that always outputs ‘positive’ as the predicted
class, it would have a recall of 1, even though the classifier is completely
useless. On the other hand, a classification function that classifies a single
(real) positive case as positive would get a precision of 1. The F measure is a
metric that combines these two measures and, thus, it gives us a global idea
of the performance of the classification function in the information retrieval
task. This measure is the harmonic mean of the precision and the recall, and
its most general definition, Fα(r, pr), is:

1

Fα(r, pr)
=

1

α+ 1

(

α

r
+

1

pr

)

α ∈ (0,+∞)
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The weighting factor α allows us to put more emphasis on the quantity
(the recall) or the quality (the precision) of the recovery. When the weighting
factor α is 1, we have the most commonly used definition of F measure:

1

F (r, pr)
=

1

2

(

1

r
+

1

pr

)

(2.3)

F (r, pr) =
2rpr
r + pr

All the measures and concepts presented up to now in this section are
concerned with the evaluation of classifiers when examples from all the classes
are available. When we are facing a clustering problem all the instances are
unlabelled and, thus, none of these metrics can be computed. The validation
of clustering algorithms is out of the scope of this introduction. A good review
on validation methods for clustering techniques can be found in Halkidi et al.
(2001).

2.2.2 Estimation of the performance measures

In the previous section we have described some of the most important per-
formance measures used in the assessment of the classification function. In
this section we will show how these measures can be estimated from the data.
Throughout this section we will refer to the estimation of the classification
error, but any other performance measure can be estimated using the schemes
described here.

The most simple approach to the estimation consists of learning a classifi-
cation function using all the examples available and then testing the classifier
in the same data. This way of estimating the error is known as resubstitu-
tion error. The problem with the resubstitution error is that, in general, a
classifier tends to make less errors when classifying the examples used in its
training than classifying new, unseen examples. This is because the classifier
is overfitted to the data used in the training and, thus, estimating the error
over the same data used in the training provides optimistically good results.
In other words, the resubstitution error estimation has a negative bias (it is
lower than the actual classification error), and is not a good way to evaluate
the generalisation error of the classifier (the error when classifying unseen
instances).

The key to obtaining a fair estimation of the generalistion error is to test
the model in examples that have not been used in the training. The easiest
way to do this is by dividing the dataset into two subsets, one used for training
the classifier and the other for testing it. This estimation scheme is known as
hold-out error estimation. Using this very simple scheme we can have a fair
estimation of the classification error of our model, but the problem is that
the model has been trained only on a part of the available examples. Given
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(a) 5 fold cross validation (b) Bootstrap

Fig. 2.4. Schemes of k-cv (k = 5) and bootstrap estimation.

that in many situations the examples are expensive, ‘wasting’ some of these
examples to test the model may not be acceptable.

To avoid reducing the training set, some other error estimation schemes
have been proposed. The common feature in all of these schemes is that several
models are trained in part of the dataset and are tested on the rest of the
examples and then the estimations of the error are averaged. The key of these
procedures is that this averaged error is an estimation of the error of a classifier
trained on all the data. One of these estimations schemes is the repeated
hold-out, which consists of repeating the hold-out scheme R times and then
estimating the error as the averaged error obtained in the R repetitions.

One of the most commonly used schemes is the k fold cross validation
(k-cv) (Efron, 1983) (see Figure 2.4-a). It consists of (randomly) dividing the
dataset into k folds. Then, a model is trained on all the folds except one and
the error is estimated on the fold that has been left out. This is repeated k
times, leaving at each step one of the folds, and then the error is estimated
as the average of the k errors. The bias and the variance of the estimation
depends on the k used. The most commonly used values for k are 5 and 10.
A special case of k fold cross validation is the leave-one-out scheme, where
at each step a classifier is trained on all the examples except one, which is
used to test the model (i.e., it is a k-cv with k = N , where N is the number
of instances in the dataset). The estimation obtained using a k fold cross
validation depends on the partitioning of the dataset (except in the leave-one-
out). To overcome this problem a repeated k-cv can be used, consisting of
repeating the k-cv r times. For example, a 5 times 5-cv consists of repeating
5 times a 5-cv, having a different partition of the dataset in each repetition.
The final estimation is the average of the rk individual estimations.
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Another commonly used procedure is the bootstrap error estimation
(Efron and Tibshirani, 1993) (see Figure 2.4-b), where B bootstrap samples
of the original dataset are obtained (i.e., random samples with replacement of
size N). These bootstrap samples are used to train a model that is evaluated
on the examples that have not been included in the sample (as the bootstrap
sample is carried out with replacement, some examples can appear more than
once while others are not included). The final estimation is the average of the
estimations obtained with the B samples. The bootstrap estimation of the
error tends to have a positive bias (the estimated error is higher than the ac-
tual error). A commonly used correction of this bias consists of combining the
bootstrap error estimation (ǫB) with the resubstitution error estimation (ǫr),
which has a negative bias, in the so called bootstrap .632 error estimation:

ǫ.632 = 0.632ǫB + (1 − 0.632)ǫr

2.3 Feature subset selection

In this chapter we have introduced the concept of supervised classification,
where classification functions predict the class of a new instance based on the
values of its attributes. In principle, one can be tempted to think that the
more attributes we have to describe the instance, the better we can predict
its class, but this is only partially true. Indeed, not all the features are equally
useful for the classification purpose.

There may be features that have nothing to do with the class. For instance,
if we are trying to predict the prognosis of a patient, the first name of his/her
grandmother will not be of great help. Thus, we can divide the predicting
variables into relevant, when they have some predictive power, and irrelevant,
when there is no relationship between them and the class.

We may also find two or more variables that give us (more or less) the
same information. For instance, the date of birth and the age are two variables
directly correlated. When two variables are highly correlated we say that they
are redundant.

Non informative and redundant variables can be harmful for some model
induction algorithms, they also lead to models that are too complex and in-
crease the computational time required to obtain the classifier. Thus, produc-
ing a small set of relevant, non-redundant variables is a very important step
in many machine learning applications (Saeys et al., 2007).

Two ways to reduce the dimensionality of the classification problems have
been proposed in the literature: feature extraction (Liu and Motoda, 1998) and
feature subset selection (FSS)(Guyon and Elisseeff, 2003; Liu and Motoda,
2008). The former consists of combining the features to obtain new, better
features. The main problem with this approach is that the meaning of the
original variables is lost in the newly constructed features. The latter consists
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of selecting the best subset of features for the classification purpose. The
feature extraction methods are out of the scope of this dissertation and, thus,
we will focus on the FSS techniques.

There are three main approaches to the FSS problem (Guyon and Elisseeff,
2003; Saeys et al., 2007), namely embedded, wrapper and filter methods. Some
classifier induction algorithms, such as the C4.5 (Quinlan, 1993), discard some
variables in the learning process. This sort of FSS is known in the literature
as embedded FSS.

The wrapper approaches (Kohavi and John, 1997) try to identify the sub-
set of variables that, given a classification paradigm and a dataset, provides
the best classification function. The process consists of a search in the fea-
ture subset space guided by a performance measure (typically the accuracy,
though other measures can be used). Each subset is evaluated by testing the
performance of the chosen paradigm in the dataset, using only the variables in
the subset at evaluation. The estimation of the performance of the classifiers
requires a validation scheme, such as cross validation (Stone, 1974) or boot-
strap estimation (Efron and Tibshirani, 1993)4 . As a result, the evaluation of
each subset involves the training and testing of several classification functions,
increasing the computational time required for the FSS process. Besides, the
search for the best subset is an NP-hard problem (Amaldi and Kann, 1998)
and, thus, an exhaustive search quickly becomes computationally infeasible
and search heuristics have to be used to obtain a good feature subset in a
reasonable computational time (Inza et al., 2000). This is the main drawback
of these methods. Another characteristic of the wrapper methods (that can
be good or bad, depending on the point of view) is that the subset produced
by the algorithm depends on the classification paradigm considered for the
search. This means that the selection obtained with a classification paradigm
cannot be applied to other classification paradigms, as the solution is tuned
for that particular classifier.

The filter approaches search for the best subset of variables, independently
of the classification paradigm, considering the relationship between the pre-
dicting variables and the class and (sometimes) the relationship among the
predicting variables. One of the most simple approaches consists of ranking
the variables according to their usefulness and then selecting only those vari-
ables on the top of the ranking. The usefulness of a variable is measured
univariately by means of different metrics. For instance, information theory
related metrics (Cover and Thomas, 2006) evaluate the usefulness of the fea-
ture by measuring the reduction on the uncertainty of the class variable when
the value of the feature at evaluation is known (Ben-Bassat, 1982). Once the
features are ranked, a threshold must be set to obtain the final subset.

4 It is important to point out that this kind of FSS technique, due to their wrap-
per nature, can lead to overfitting problems that have to be considered in the
estimation of the classifier performance
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The ranking methods are only concerned with the relevancy of the features
considered and, thus, they do not filter out redundant variables. The problem
of searching for relevant, non-redundant features can be solved by a multivari-
ate filter method known as the correlation based filter selection (CFS)(Hall
and Smith, 1997). This method searches for the best feature subset guided by
a metric that measures both the correlation between each variable and the
class and the correlation among the selected variables. The aim is to obtain
a subset of relevant variables (i.e. features strongly correlated with the class)
without redundancies (i.e. features with a small correlation between them).
Filter methods are much faster than wrapper approaches and they are inde-
pendent of the classification paradigm. Therefore, once we have a subset of
features, this subset can be used in the training of any sort of model.
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Bayesian Network Classifiers

Classification functions based on Bayesian networks constitute a classification
paradigm frequently used in supervised, semi-supervised and even unsuper-
vised classification problems. It ranges from very simple (yet effective) classi-
fiers, such as the naive Bayes (Minsky, 1961), to models where the predicting
variables can depend on as many other variables as we want.

Bayesian network classifiers are based on the sound, well-studied theory of
probabilistic graphical models (Pearl, 1988; Whittaker, 1991; Lauritzen, 1996;
Castillo et al., 1997), and in particular on Bayesian networks (Neapolitan,
2003; Korb and Nicholson, 2004; Jensen and Nielsen, 2007) whose applications
include not only the induction of classification functions but also probabilistic
inference (Lauritzen and Spiegelhalter, 1988), optimisation (Mühlenbein and
Mahning, 2001; Larrañaga and Lozano, 2002) or bioinformatics (Friedman
and Pe’er, 2000; Friedman, 2004; Larrañaga et al., 2006).

In the first part of this chapter we will introduce the main concepts of
probabilistic graphical models, focusing on the description of Bayesian net-
work models and how they are induced. In the second part, the most important
Bayesian network classifiers will be described.

3.1 Some concepts from the graph theory

The theory of probabilistic graphical models (PGMs) is partly based on the
graph theory. Therefore, before introducing the PGMs some concepts and
definitions have to be presented.

A graph is a pair G = (X ,L) where X is a finite set of elements
{X1, . . . , Xn}, known as ‘nodes’, and L is a set of ordered pairs of nodes
known as ‘edges’ (Lij = (Xi, Xj)). There are two kinds of edges, directed
and undirected edges. We say that an edge Lij is directed when Lij ∈ L and
Lji /∈ L and it is represented as Xi → Xj. We say that an edge Lij is undi-
rected when Lij ∈ L and Lji ∈ L and it is represented as Xi−Xj. From now
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on the term ‘arc’ will be used to refer to directed edges and the term ‘edge’
will be used only to refer to undirected edges.

A directed graph is defined as a graph G = (X,L) where every Lij ∈ L

is an arc. An undirected graph is defined as a graph G = (X ,L) where every
Lij ∈ L is an edge. A directed acyclic graph (DAG) is a directed graph where
there are not cycles (a path that starts in a node and ends in the same node).

Definition 1. Let G = (X ,L) be a directed graph and Lij ∈ L an arc in G.
We say that Xi is parent of Xj and Xj is child of Xi.

The d-separation criterion is a key concept to understand the mechanism
behind DAG based PGMs. There are several definitions of d-separation, but
here we include the one given by Lauritzen et al. (1990) because, in our opin-
ion, it provides the most intuitive interpretation of the concept. This defi-
nition is based on the concepts of ancestral set of nodes, moral graph and
u-separation criterion in undirected graphs

Definition 2. Let G be a directed graph and Xi and Xj be two variables of
G. Xi is an ancestral node of Xj in G if there is a directed path from Xi to
Xj in G.

Definition 3. Let G be a DAG. An ancestral ordering of G is a total ordering
of X where ∀Lij ∈ L, Xi appears before Xj in the order.

Definition 4. Let G be a graph and Y be a set of variables of G. The ances-
tral set of nodes containing Y in G is the set of nodes formed by Y and all
the ancestral nodes of the variables contained in Y .

Definition 5. Let G be a DAG, the moral graph associated to G is the graph
obtained by adding an arc between parents with a common child and then
making all arcs in G undirected.

Definition 6. Let G be an undirected graph and let Y , Z and W be three
disjoint sets of nodes. W u-separates Y and Z in G if every path in G between
a node belonging to Y and a node belonging to Z contains at least one node
belonging to W .

The d-separation criterion based on the u-separation is defined as:

Definition 7. Let G be a DAG and let Y , Z and W be three disjoint sets of
variables. W d-separates Y and Z in G if W u-separates Y and Z in the
moral graph of the smallest ancestral set of nodes which contains Y , Z and
W .

Figure 3.1 shows an example of the procedure to check the d-separation
between subsets of nodes.
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Fig. 3.1. Illustration of the concept of d-separation. We want to check whether W

d-separates Y = {Y1, Y2} and Z = {Z1, Z2} or not. First we have to obtain the
smallest ancestral set of nodes containing Y , Z and W , which is the original graph
except the node X. Then we moralise the resulting graph and check whether W

u-separates Y and Z in the undirected graph or not. As any path between Y1 or
Y2 and Z1 or Z2 contains the node W we can say that W u-separates Z and Y

in the moral graph of the smallest ancestral set and, thus, W d-separates Z and
Y in the original DAG. We can conclude that, in the original DAG, Z and Y are
conditionally independent given W .

3.2 Probabilistic graphical models

PGMs are mathematical tools that allow us to model joint probability dis-
tributions over a set of random variables X = {X1, . . . , Xn}. They are made
of two basic components, a structure G (a graph that represents the depen-
dence relationships between the random variables) and a set of parameters
θ. Different types of graphs, such as DAGs or undirected graphs, are used to
represent the structure of probabilistic graphical models.

DAG based PGMs are based on the concept of conditional independence
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Definition 8. Let Y , Z and W be three disjoint sets of random variables. Y

is conditionally independent of Z given W if and only if

P (y|z,w) = P (y|w)

for any possible configuration y, z and w.

The conditional independence is denoted as CI(Y ,Z|W ), and the inter-
pretation is that, given that we know W , the knowledge about Z does not
give us any extra information about Y . In DAG based PGMs, the conditional
independence is directly related to the d-separation criterion introduced in
the previous section.

Definition 9. Let Y , Z and W be three disjoint sets of random variables. Y

is conditionally independent of Z given W in a probabilistic graphical struc-
ture, G, if W d-separates Y and Z in G.

Given the chain rule we can factorise the joint probability distribution of
X as:

P (x) = P (x1, . . . , xn) =

n
∏

i=1

P (xi|x1, . . . , xi−1)

Without any loss of generality we can assume that the structure of a DAG
based PGM G obeys an ancestral ordering such that each node Xi takes the
i-th place in the ordering. Given this ancestral ordering we have that for every
ancestral node Xj of Xi, j < i.

Taking into account that the set of parents of a node Xi (Pai) d-separates
Xi from any previous node in the ancestral ordering, Xi is conditionally inde-
pendent of any Xj , j < i given its parents. Therefore, given the structure G,
the ancestral ordering and the chain rule, the joint probability distribution
codified by a DAG based PGM can be factorised as:

P (x) =

n
∏

i=1

P (xi|pai)

Thus, the structure of a PGM indicates us how the joint probability can
be factorised (reducing, as we will see later, the amount of parameters needed
to model it). Besides the structure we need a set of parameters θ ∈ Θ in
order to define the joint probability distribution. Thus, the previous equation
should be rewritten as:

P (x|θ) =

n
∏

i=1

P (xi|pai,θ)
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3.2.1 Bayesian network models

Bayesian network models are PGMs based on DAGs where all the random
variables, Xi i = 1, · · · , n, are discrete and can take ri possible values. A
Bayesian network consists of a DAG G and a set of parameters θ. The struc-
ture G gives us the factorisation of the joint probability distribution P (x)
as:

P (x) =
n

∏

i=1

P (xi|pai)

The set of parameters θ consists of all the local probability distributions
P (xik|paij). By θijk we will denote the probability that the i-th component
of X takes its k-th value and its parents Pai their j-th value1 :

θijk = P (xik|paij)

Figure 3.2 and Table 3.1 show an example of a Bayesian network model.
The X vector has four components, three that can take two values and one
that can take three values. Thus, the total number of possible values for X is
24. This means that, in order to define the joint probability distribution, we
need 23 parameters but, given the factorisation defined by the graph, eleven
parameters are enough to model the joint probability.

3.2.1.1 Learning Bayesian network models from data

So far we have seen how Bayesian networks are defined and how they can
be used to model joint probability distributions. Now the question is: Where
do we get these models from? The first approach to obtain Bayesian network
models is to create them based on the knowledge of experts in the particular
topic. For very simple models this may be feasible but, as the size of the
model grows, the creation of the model gets more and more difficult as the
probabilities that have to be set by the expert(s) get more complicated to
understand and estimate.

A better approach consists of inducing the models from datasets of ex-
amples. There are several good reviews of methods to learn Bayesian net-
works, for instance Heckerman (1995), Heckerman et al. (1995) and Neapoli-
tan (2003) provide in-depth tutorials on learning Bayesian networks, Buntine
(1996) presents a literature survey and Jordan (1998) collects several intro-
ductory surveys as well as papers discussing advances on learning Bayesian
networks.

1 Note that the set of parents can be a multidimensional variable and, thus, it can
take qi =

Q

a/Xa∈Pa(xi)
ra different values
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X1 X2

X3

X4

Local probabilities:

θ1 = (θ1−1, θ1−2) P (x11), p(x12)

θ2 = (θ2−1, θ2−2, θ2−3) P (x21), p(x22), p(x23)

θ3 = (θ311, θ321, θ331, P (x31|(x1, x2)1), P (x31|(x1, x2)2), P (x31|(x1, x2)3),

θ341, θ351, θ361, P (x31|(x1, x2)4), P (x31|(x1, x2)5), P (x31|(x1, x2)6),

θ312, θ322, θ332, P (x32|(x1, x2)1), P (x32|(x1, x2)2), P (x32|(x1, x2)3),

θ342, θ352, θ362) P (x32|(x1, x2)4), P (x32|(x1, x2)5), P (x32|(x1, x2)6),

θ4 = (θ411, θ421, θ412, θ422) P (x41|x31), P (x41|x32), P (x42|x31), P (x42|x32)

Factorisation of the joint probability distribution:

P (x1, x2, x3, x4) = P (x1)P (x2)P (x3|x1, x2)P (x4|x3)

Fig. 3.2. Structure, local probabilities and factorisation of the joint probability
distribution for a Bayesian network with four variables, where X1, X3 and X4 can
take two values and X2 three. The θi−k parameters correspond to those variables
whose set of parents is empty.

Xi ri P ai qi

X1 2 ∅ 0
X2 3 ∅ 0
X3 2 (X1, X2) 6
X4 2 X3 2

Table 3.1. Description of the variables and the parent set for each variable of the
Bayesian network model from Figure 3.2. qi denotes the number of possible values
of P ai.

The learning process can be divided into two steps: the structural learning,
where the structure S of conditional (in)dependencies is inferred, and the
parametric learning, where all the local probabilities needed to codify the
joint probability distribution are estimated.

A. Parametric learning

In the parametric learning step all the probabilities defined in θ have to be
estimated from the data. From a Bayesian point of view, all the possible
sets of parameters should be taken into account. In the particular case of
Bayesian network models, under the assumption of parameter independence
(Spiegelhalter and Lauritzen, 1990) and supposing Dirichlet priors for all the
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parameters, the Bayesian approach is equivalent to a single parameter set
θ̆ = {θ̆ijk}:

θ̆ijk =
Nijk + αijk
Nij + αij

where Nijk is the number of data samples in D where Xi takes its k-th value
and Pai takes its j-th configuration, Nij =

∑ri
k=1Nijk for all i,j and k,

(αij1, . . . , αijri) are the hyperparameters of the Dirichlet distribution and
αij =

∑ri
k=1 αijk for all i, j and k.

Other approaches to the parametric learning focus on selecting a particular
set of parameters based on some criterion, being the best known approaches
the maximum likelihood (ML) and the maximum a posteriori (MAP) estima-
tions.

The ML approach selects the set of parameters θ̂ that maximises the prob-
ability of observing the dataset D:

θ̂ = arg max
θ

P (D|S,θ)

where the likelihood function P (D|S,θ) is defined as

P (D|S,θ) =

N
∏

d=1

P (x(d)|S,θ)

The parameters that maximise the likelihood function are:

θ̂ijk =
Nijk
Nij

In the MAP approach we look for the set of parameters that maximises
the posterior probability of the parameters P (θ|S,D). Under the assumptions
mentioned at the beginning of this section, the MAP estimator calculation is
equivalent to the Bayesian approach, though both approaches are essentially
different.

A more detailed derivation of the parameters can be consulted in Hecker-
man (1995), Bernardo and Smith (2000) and MacKay (2003).

B. Structural learning

The structural learning of Bayesian networks is the step where the graph
of conditional (in)dependencies is inferred from D. There are two main ap-
proaches to the problem: Algorithms based on the detection of the conditional
(in)dependencies and algorithms based on a score+search procedure.

(In)dependency detection based algorithms. According to de Campos (1998)
this type of algorithm starts taking as input any of these kinds of information:
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• A database from where the conditional independencies can be tested run-
ning an independence test

• A joint probability distribution where the conditional independencies can
be checked

• A list of conditional independencies

Given this input the algorithms try to represent with the DAG a large per-
centage (or even all if possible) of the relationships. Two examples of learning
algorithms based on detecting conditional (in)dependences are, the PC al-
gorithm (Spirtes et al., 1991), which is probably the best known algorithm
to learn Bayesian network structures by detecting conditional independences,
and the algorithm to learn polytrees presented in Acid and de Campos (1995).

Two good reviews of structure learning algorithms based on detecting con-
ditional (in)dependences are provided by Spirtes et al. (1993) and de Campos
(1998).

Score+search algorithms. The score+search algorithms tackle the problem
of structure induction as an optimisation problem. In order to search for the
best structure we need, first, to define what a good structure is (i.e., we need
to define a score that measures the goodness of a structure).

Regarding the score metrics, there are several functions that can be used
to measure the goodness of a structure. One of these measures is the marginal
likelihood, which is the probability of a dataset D given a structure S. It is
a Bayesian score as it is the averaged probability over all the possible values
of the parameters. Under certain assumptions the marginal likelihood can be
calculated in a closed form (Cooper and Herskovits, 1992). This metric is
known as the K2 score.

Another type of metric used to evaluate the possible structures is the pe-
nalised log-likelihood. For a given structure S we can obtain the maximum
likelihood estimations of the parameters and, thus, we can compute the log-
likelihood of a dataset D given the structure and the parameters. The prob-
lem with this score is that it increases as the S structure gets more complex.
This is solved by adding a penalisation term consisting of the product of the
network dimension (normally measured in terms of the number of parame-
ters) and a penalisation function. The Bayesian information criterion (BIC,
Schwarz (1978)) is an example of penalised log-likelihood criterion where the
penalisation function is 1

2 log(N).
The information theory (Cover and Thomas, 2006) provides a good frame-

work to define metrics that can be used to evaluate the goodness of a given
structure. The minimum description length criterion (MDL) (Rissanen, 1978)
states that the best structure to describe a dataset is the one that minimises
the encoding length of the data and the model. The final equation is the same
as in the BIC metric, although the way to obtain it is completely different.
The literature includes several works where scores based on information the-
ory such as the entropy (Herskovits and Cooper, 1990; Geiger, 1992) or mutual
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information (Chow and Liu, 1968) are used to learn the structure of Bayesian
network models.

The search of the best structure is an NP-hard problem and, thus, heuristic
search methods are required to obtain good enough structures in a reasonable
time. Greedy search (Buntine, 1991; Cooper and Herskovits, 1992), simulated
annealing (Chickering et al., 1995), tabu search (Bouckaert, 1995), genetic
algorithms (Larrañaga et al., 1996; Etxeberria et al., 1997), estimation of dis-
tribution algorithms (Blanco et al., 2003), Markov chain Monte Carlo (Myers
et al., 1999), variable neighbourhood search (de Campos and Puerta, 2001)
or ant colony optimisation (de Campos et al., 2002) are examples of search
methods used to learn the structure of Bayesian networks.

3.3 Bayesian network classifiers

Bayesian network classifiers constitute a family of classification functions
based on Bayesian networks. The number of members of this family is very
high and an exhaustive review of all of them is out of the scope of this intro-
ductory chapter. In this dissertation we will not consider paradigms such as
general Bayesian networks or Bayesian multinets and we will focus on classi-
fiers whose structure is specially designed for the classification task.

In a classification problem we have a special variable (the class, C) that
we want to predict based on a set of predicting variables X = {X1, . . . , Xn}.
We start from the assumption (not always fulfilled) that all the predicting
variables are able to provide us with information about the class. Therefore,
in most of the Bayesian network classifiers we make the initial assumption
that all the predicting variables are conditionally dependent on the class (i.e.,
the class variable is parent of all the predicting variables). Depending on
the restrictions imposed on the rest of the DAG in the model we can have
very simple models, like the naive Bayes (Minsky, 1961), or arbitrarily highly
complex models such as k-dependence Bayesian classifiers (Sahami, 1996).

In this section we will focus on two models that are of special interest for
the development of the dissertation: the naive Bayes and the tree augmented
naive Bayes (Friedman et al., 1997). A brief review on other Bayesian network
classifiers will be also provided.

3.3.1 Naive Bayes models

The naive Bayes model (also known in the literature as idiot Bayes (Ohmann
et al., 1988; Hand and You, 2001), simple Bayesian classifier (Domingos and
Pazzani, 1997; John, 1997) or independent Bayes (Todd and Stamper, 1994;
Crichton et al., 1998)) is the most simple Bayesian network classifier, as it
assumes the conditional independence of all the predicting variables given the
class (see Figure 3.3).
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Fig. 3.3. Example of the structure of a naive Bayes model. All the predicting
variables (from X1 to X6) are conditionally independent given the class variable
(C).

Given its simplicity, the learning process is very fast even when we have
very high dimensional problems. This is, on one hand, because as the structure
of the model is fixed, there is no need for a structural learning step and, on the
other hand, because the number of parameters we need to estimate is reduced
as the predicting variables depend only on the class variable. For instance, in
a binary classification problem with 50 binary predicting variables, without
any assumption of conditional independence we would need to estimate 251−1
parameters to define the joint probability distribution, while in a naive Bayes
model the total number of parameters is reduced to 51. This leads to another
very important question. The more simple the model is, the fewer the number
of parameters we have to estimate and, thus, the more sound the estimations
from the (limited) data are. Probably this is one of the reason why, regardless
the strong assumption of independence, naive Bayes models are competitive
with respect to other, more sophisticated classifiers.

Under the hypothesis of conditional independence, the only parent of all
the predicting variables is the class. Thus, the parameters we have to estimate
from the data are the conditional probabilities, P (xij |c), and the a priori
probabilities of the class, P (c). Typically, maximum likelihood estimators are
used to estimate these probabilities. These estimators are normally smoothed
using the Laplace correction in order to avoid the presence of null parameters
that can lead to problems when the classifier is used to obtain the posterior
probability of the class. The smoothed estimators would be2 :

P (xij |c) =
1 +Nijc
ri +Nc

(3.1)

P (c) =
1 +Nc
rc +N

(3.2)

2 The smoothed estimator can also be seen as a MAP or a Bayesian estimator where
the a priori probability of all the variables is modelled as a Dirichlet distribution
where all the αijk hyperparameters are 1 (see Section 3.2.1.1)
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Fig. 3.4. Example of the structure of a TAN model. The dependences between
predicting variables are represented as a tree structure.

where Nijc is the number of instances of the class c where Xi = xij and Nc
is the number of instances labelled as c. Given the assumption of conditional
independence and the Bayes rule, we have that:

P (c|x) =
P (x|c)P (c)

P (x)
=

∏n
i=1 P (xi|c)P (c)

P (x)

given that (for the prediction) we are interested in obtaining the probability
distribution of the class variable given an instance x, the denominator is the
same for all the class values and, thus, we have that:

P (c|x) ∝
n

∏

i=1

P (xi|c)P (c)

For each c we can obtain
∏n
i=1 P (xi|c)P (c) and then, taking into account

that
∑

c P (c|x) = 1 we can normalise all the products to obtain the actual
values of the posterior probabilities of the class variable.

3.3.2 Tree augmented naive Bayes models

The tree augmented naive Bayes model (TAN) was proposed by Friedman
et al. (1997) as an extension of the naive Bayes model that could overcome the
assumption of conditional independence. The model keeps the class variable as
parent of all the predicting variables but it extends the DAG with conditional
dependences between predicting variables represented as a tree structure (see
Figure 3.4).

The tree structure of dependences is induced in the structural learning step
using the construct-TAN algorithm (see Figure 3.5) which is an adaptation
of the Chow-Liu algorithm (Chow and Liu, 1968) that uses the conditional
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mutual information between predicting variables rather than the mutual in-
formation. The conditional mutual information between two variables Xi and
Xk given the class C is:

I(Xi, Xk|C) =
∑

xi

∑

xj

∑

c

P (xi, xk, c)
P (xi, xk|c)

P (xi|c)P (xk|c)

Compute I(Xi, Xk|C) between each pair of variables with i < k, i, k = 1, . . . , n
Build a complete undirected graph in which the vertices are X1, . . . , Xn
Set the weight of the edge connecting Xi and Xk to I(Xi, Xk|C)
Use the Kruskal algorithm to build a maximum weighted spanning tree from the previous graph
Transform the undirected tree into a directed tree selecting a variable as the root and setting

the direction of the edges
Construct a TAN model by adding a C vertex and an arc from C to each variable Xi

Fig. 3.5. Pseudo code of the algorithm used in the structural learning of TAN
models.

The algorithm starts calculating the conditional mutual information be-
tween every pair of predicting variables. Then, the complete undirected graph
is created and the edges are weighted with the conditional mutual information
between the variables it connects. After that, the Kruskal algorithm is used
to obtain the maximum weighted spanning tree as follows:

1. Add the two edges with the maximum weight to the tree
2. Look at the next edge with the highest weight. If the addition of this edge

leads to a cycle ignore it. If not, add the edge to the tree
3. Repeat step 2 until selecting n− 1 edges

Once the tree is constructed, one of the predicting variables is selected as
the root and the direction of the edges is set. The class variable is included
in the structure and edges from it to the rest of the variables are added.
The result is a DAG where the conditional dependences between predicting
variables are represented by a tree structure.

Given the structure of the model, the parameters can be learnt by means
of maximum likelihood estimators (modified with the Laplace correction):

P (xij |c, pai) =
1 +Nijcpai
ri +Ncpai

P (c) =
1 +Nc
rc +N

where Nijcpai represents the number of instances of the class c where Xi = xij
and Pai = pai and Ncpai the number of instances labelled as c where Pai =
pai.
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(a) Selective naive Bayes structure (b) Seminaive Bayes struc-
ture

(c) Forest augmented network struc-
ture

(d) 2 dependence Bayesian structure

Fig. 3.6. Examples of the structure of different Bayesian network classifiers.

3.3.3 Other Bayesian network classifiers

In some problems not all the domain variables are useful for the classification
purpose, some being even harmful in some situations. The feature subset
selection paradigm tackles this problem, trying to identify the optimal subset
of variables that leads to the best possible classification function. One of the
improvements of the naive Bayes algorithm, the selective naive Bayes (Kohavi
and John, 1997), mixes the variable selection with the naive Bayes algorithm.
As a result we have a naive Bayes model where not all the predicting variables
are present (see Figure 3.6b).

The naive Bayes is limited by its inability to model dependences between
predicting variables. Although it gives very competitive results in many classi-
fication problems, there are problems where its performance is poor (Pazzani,
1997), probably due to the independence assumption. This problem is con-
sidered in the seminaive Bayes algorithm (Kononenko, 1991; Pazzani, 1997).
The idea behind the seminaive Bayes is to consider dependences by creating
new variables as the Cartesian product of some predicting variables. Figure
3.6-a shows an example of a seminaive Bayes structure.

In Kononenko (1991) the predicting variables are joined when they meet a
condition related with the concept of independence and the reliability in the
estimation of the parameters. In Pazzani (1997) the author proposes a greedy
wrapper approach to obtain seminaive Bayes structures by removing irrelevant
variables and joining correlated variables. Two algorithms are proposed in this
work, the forward sequential selection and joining algorithm (FSSJ) and the
backward sequential elimination and joining (BSEJ). The search in both cases
is guided by the accuracy (estimated with a 10-cv) and during the search two
options are considered: joining two variables or add/eliminate (add in the
FSSJ and eliminate in the BSEJ) one of the variables. The option that leads
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to the highest increase in the accuracy is chosen and the process follows until
no improvement is obtained.

The TAN algorithm allows the inclusion of dependences in the structure
of the model, but the restrictions are still quite strong. One of the attempts to
create more flexible models is the forest augmented network algorithm (FAN)
(Lucas, 2004) where the dependences are represented by a ‘forest’ of tree
structures rather than a single tree structure (see Figure 3.6-c).

In both TAN and FAN models the predicting variables are allowed to have
up to one parent (besides the class). The k dependence Bayesian model (k-DB)
(Sahami, 1996) relaxes this restriction, allowing the predicting variables to
have up to k predicting variables as parent. Depending on the k parameter, we
can have structures ranging from a simple naive Bayes (k = 0) to a complete
Bayesian network (k = n−1). Figure 3.6-d represents the structure of a k-DB
model with k = 2.
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State of the Art

The positive unlabelled learning topic is relatively recent, most of the works
in the field being less than ten years old. The development of algorithms able
to learn binary classification functions from positive and unlabelled examples
arises as the answer to the need of inducing classifiers in problems, such as text
classification, where negative examples can be difficult to get while unlabelled
examples are readily available. It is in this field (text classification) where
most of the algorithms have been developed and applied.

In this chapter we will review literature related with the learning from
positive and unlabelled examples. In the first section we will analyse the at-
tempts to answer the question of whether it is possible to learn models from
positive and unlabelled examples or not. Then, in Section 4.2, we will briefly
comment on the most representative algorithms proposed to learn classifica-
tion functions in absence of negative examples. Finally, Section 4.3 is devoted
to the applications of these algorithms.

4.1 Theoretical analysis of the positive unlabelled

learning problem

There are not many works that tackle the problem of modelling the learning
from positive examples. Due to the conclusions derived, Denis (1998) is prob-
ably the most significant work for the positive unlabelled learning field from
it. This work is based on Valiant’s PAC learning model (Valiant, 1984) and
the statistical query model (Kearns, 1993).

Before defining the different concepts of learnability some definitions are
required. Let Bn be the set of all Boolean functions from Xn = {0, 1}n into
{0, 1}, and let X =

⋃

n≥1Xn and B =
⋃

n≥1 Bn. A class concept C over X is
defined as a subset of B, and Cn = C ∩ Bn.

An example of a concept f ∈ Cn is a pair (x, f(x)) where x ∈ Xn. We
say that an example is positive when f(x) = 1 and negative when f(x) = 0;
pos(f) and neg(f) represent, respectively, the set of x such that f(x) = 1 and
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the set of x such that f(x) = 0. Let µ be a probability distribution defined
over Xn and µ(f) = µ(pos(f)). If µ(f) 6= 0, µf denotes the restriction of µ to
the set of positive examples of f , and is defined as:

µf (x) =

{

µ(x)
µ(f) if x ∈ pos(f)

0 otherwise

Given a concept f ∈ C and a hypothesis h ∈ C, the error of the hypothesis
is measured as:

error(h) =
∑

x∈f∆h

µ(x) = µ(f∆h)

where f∆h represents the symmetrical difference of the sets pos(f) and pos(h)
(see Figure 4.1). That is, the error of a hypothesis is the probability that it
disagrees with the concept about an instance x drawn randomly according to
µ.

A representation scheme for a concept class C is a function R : C → 2Σ
∗

where Σ is a finite alphabet and such that:

∀f ∈ C, R(f) 6= ∅

∀f, f ′ ∈ C, R(f) ∩R(f ′) = ∅

We suppose that R is computable in polynomial-time. The size of a concept
f is defined as:

size(f) = min{|c|/c ∈ R(f)}

A statistical query χ over Xn is defined as:

χ : Xn × {0, 1} → {0, 1}

If f ∈ Bn, χf (x, y) = 1 if and only if y = f(x).
We can define the following oracles:

Definition 10. Let C be a concept class over X. Let f ∈ Cn and µ a distri-
bution over Xn

• The oracle EX(f, µ) is a procedure that returns at each call an example
(x, f(x)) drawn randomly according to µ

• The oracle UNL(µ) is a procedure that returns at each call an x drawn
randomly according to µ
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Fig. 4.1. Representation of the instance space, concept and hypothesis in the PAC
learning theory. The hypothesis and the concept lines enclose the positive examples
(pos(h) and pos(f) respectively).

• The oracle STAT (f, µ) is a procedure that, for every statistical query
χ and every τ ∈ (0, 1], with input (χ, τ) returns an approximation of
µ(x|χ(x, f(x)) = 1) with an accuracy at least τ

All the oracles run in the unit time

Now we can define the PAC learnability as:

Definition 11. Let C be a concept class over X. We say that C is PAC

learnable if there exists a learning algorithm L and a polynomial p(·, ·, ·, ·)
such that, for any f ∈ C, any distribution µ on X and any 0 < ǫ, δ < 1,
if L is given access to EX(f, µ) and to inputs δ and ǫ then, with probability
at least 1 − δ, L outputs a hypothesis concept h ∈ C, in time bounded by
p(1
ǫ
, 1
δ
, size(f), n), such that µ(f∆h) ≤ ǫ.

The learnability from statistical queries is defined as:

Definition 12. Let C be a concept class over X. We say that C is learnable

from statistical queries if there exists a learning algorithm L and polyno-
mials p(·, ·, ·), q(·, ·, ·) and r(·, ·, ·) such that, for any f ∈ C, any distribution
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µ over X and any 0 < ǫ < 1, if L is given access to STAT (f, µ) and to input
ǫ, then:

• For every query (χ, τ) made by L, the predicate χ can be evaluated in time
q( 1
n
, n, size(f)), and 1

τ
is bounded by r( 1

n
, n, size(f))

• L halts in time bounded by p( 1
n
, n, size(f))

• L outputs a hypothesis h ∈ C that satisfies µ(f∆h) ≤ ǫ.

In order to apply the PAC learnability concept to the case of positive
learning, we have to face the first problem: How should the error of a hy-
pothesis be measured? If it is measured only on the positive examples then
a hypothesis that contains all the instances would be always the best option.
Thus, it is mandatory to take the negative cases into account but this is also
problematic because there can be two distributions µ and µ′ with the same
restriction on the positive examples of the target but very different on the
negatives. Another problem comes from the fact that we cannot differentiate
a negative instance from a positive one with probability equal to zero.

The conclusion is that it is not possible to learn a concept only from
positive examples, but it is possible as long as we have information about
the underlying distribution. This extra information is given by the oracles
UNL(µ) or STAT (1, µ). Taking the unlabelled examples into account, the
PAC learnability from positive examples is defined as:

Definition 13. Let C be a concept class over X. We say that C is PAC

learnable from positive examples if there exists a learning algorithm L
and a polynomial p(·, ·, ·, ·) such that, for any integer n, any f ∈ Cn, any
distribution µ on Xn and any 0 < ǫ, δ < 1, if L is given access to EX(f, µf ),
UNL(µ) and to inputs δ and ǫ then, with probability at least 1− δ, L outputs
a hypothesis concept h ∈ Cn, in time bounded by p(1

ǫ
, 1
δ
, size(f), n), such that

µ(f∆h) ≤ ǫ.

and the learnability from positive statistical queries is defined as:

Definition 14. Let C be a concept class over X. We say that C is learnable

from positive statistical queries if there exists a learning algorithm L
and polynomials p(·, ·, ·), q(·, ·, ·) and r(·, ·, ·) such that, for any integer n, any
f ∈ Cn, any distribution µ over Xn and any 0 < ǫ < 1, if L is given access to
STAT (f, µf), STAT (1, µ) and to input ǫ, then:

• For every query (χ, τ) made by L, the predicate χ can be evaluated in time
q( 1
n
, n, size(f)), and 1

τ
is bounded by r( 1

n
, n, size(f))

• L halts in time bounded by p( 1
n
, n, size(f))

• L outputs a hypothesis h ∈ Cn that satisfies µ(f∆h) ≤ ǫ.

The conclusion that can be drawn from the work of Denis (1998) is that
learning from positive examples is possible with the aid of unlabelled in-
stances.
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Denis (1998) also analyses the learnability of two particular class concepts,
the k-disjunctive normal forms (k-DNF) and the k-decision lists (k-DL). The
conclusion reached is that both concepts are learnable from positive statistical
queries.

4.2 Classifier induction algorithms in positive unlabelled

learning problems

During the last ten years many algorithms have been developed to tackle the
learning of binary classifiers from positive and unlabelled examples. Most of
these algorithms come from the text classification domain, though recently
other fields are starting to pay more attention to this kind of problems. In
this section we will review some of the most significant works in the induction
of binary classifiers without negative examples.

There are two main approaches to the problem of learning from positive
and unlabelled instances:

• A set of classifier induction algorithms is based on a two step process.
First, a reliable set of negative instances is identified and, then, the known
positive examples and this set of identified negative instances are used to
build the final classifier.

• The second approach is a more direct application of the conclusion pre-
sented in the previous section. In this approach information about the
underlying probability distribution (µ in the PAC learning framework) is
directly inferred from the set of unlabelled instances and is then used in
the learning of the model from the positive examples.

In the first category, the two-step algorithms, we have the spy-EM (Liu et al.,
2002), where the set of reliable negative examples is obtained in a first run of
the expectation-maximisation algorithm (EM) (Dempster et al., 1977). In this
first run of the EM the probabilities of the known positive cases are initialised
as P (C = 1) = 1, P (C = 0) = 0 and those of the unlabelled instances are
initialised as P (C = 1) = 0, P (C = 0) = 1 (i. e., the unlabelled examples are
initialised as negative) 1 . While the probabilities of the unlabelled instances
change iteratively during the process, the probabilities of the positive cases are
kept fixed. The set of reliable negative instances is obtained setting a threshold
estimated using the ‘spy’ cases (positive cases that are introduced in the set
of unlabelled instances before the EM algorithm is run). A second run of
the EM algorithm is carried out, initialising the positive cases as positive,
the reliable negative cases as negative and leaving the rest of the instances
without initialisation (these instances are not used in the training of the first

1 This is a relatively frequent approach in positive unlabelled learning problems.
In many situations the number of negative examples in the set of unlabelled
instances is much higher than the number of positive examples
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model). In this second run the positive cases are kept fixed but the ‘negative’
instances are allowed to evolve. After the second run of the EM algorithm,
instead of taking the last model as the final classifier, the authors propose a
criterion to select the best classifiers among all the models obtained during
the EM.

In Yu et al. (2002) and Yu (2005) the authors introduce the positive ex-
ample based Learning framework (PEBL) for the classification of web pages
without negative examples, and they propose the mapping-convergence algo-
rithm (M-C). This algorithm takes two steps. The first one, called mapping
stage, is based on 1-DNF (which, as Denis demonstrated, is learnable from
positive and unlabelled examples (Denis, 1998)) to identify a reliable set of
negative examples. It basically consists of identifying a list of ‘positive fea-
tures’, i.e., features (words) that are much more frequent in positive cases
than in unlabelled instances. This list of features (which is a 1-DNF) is used
to filter out, from the set of unlabelled instances, those examples that are
likely to be positive. The problem with these negative examples is that they
are very far from the decision boundary and, thus, a SVM learnt with these
examples would be quite inaccurate. The goal of the second step, called con-
vergence stage, is to refine this boundary based on the marginal property of
the SVMs. The experimental evaluation of this classifier shows that it is able
to outperform (linear) SVMs trained on positive and negative examples.

In a later work, Yu (2003) presents the support vector mapping conver-
gence (SVMC) algorithm, which is based on the M-C algorithm, and tackles
the problem of the increase in the computational time when the size of the
set of unlabelled instances increases.

In Yu et al. (2005) the authors propose some improvements on the M-C
algorithm (Yu et al., 2002). On one hand, in the identification of ‘positive
features’ they not only consider the relative frequency of the terms, but also
the frequency in the set of positive cases. Thus, their list of positive features
is much smaller than in the M-C algorithm as the less frequent terms are not
included in the list. This modification leads to a much bigger set of reliable
negatives. On the other hand, in the second step, instead of picking up one of
the classifiers in the iterative process as the final one, they propose a weighted
voting scheme to average all the classifiers. The weighting factors are related to
the capacity of each classifier to predict the positive instances. They compare
their algorithm with M-C (Yu et al., 2002) and one-class SVM (Manevitz and
Yousef, 2001) obtaining similar results as the M-C algorithm and much better
ones than the one-class SVM.

In Duan et al. (2007) the authors propose an algorithm (TRS-SVM) for the
classification of web pages. This algorithm bases the identification of the reli-
able set of negative examples on a relaxation of the rough set theory (Pawlak,
1991) and then, uses the identified negative examples to iteratively build a
classifier using SVMs.

Li and Liu (2003) present an algorithm where the identification of the
reliable negative instances is based on the Rocchio algorithm (Rocchio, 1971).
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The reliable negative examples identified, along with the known positive cases,
are used in the second step of the algorithm to iteratively train SVM classifiers.

In Liu et al. (2003) the authors compare the combination of different tech-
niques for the identification of reliable negative examples with different clas-
sifier induction algorithms. They also proposed two new approaches to both
steps. For the identification of negative instances they propose a naive Bayes
model trained on positive and unlabelled examples (using the latter as neg-
ative examples). For the second step they propose the use of a single SVM,
rather than the iterative process used in other works. They also propose a
new SVM-based algorithm, the biased-SVM.

Li and Liu (2005) presents a new algorithm, the A-EM (augmented EM) to
cope with the positive unlabelled learning problem when the positive examples
and the unlabelled instances come from different probability distributions.

There are some works in the positive unlabelled learning field that tackle
the problem of having small sets of positive examples which, in certain do-
mains, can be quite a common problem. One of these papers is Li et al. (2007a).
In this paper the authors propose the LPLP algorithms (learning from prob-
abilistically labelled positive examples) for the classification of product pages
in commercial web sites. This algorithm first identifies a set of representative
words and considers this list as a ‘representative document’. They get a set
of ‘likely positive’ examples by comparison and then they use these identi-
fied examples, along with the known positive examples, to initialise the EM
algorithm (Dempster et al., 1977).

Regarding the algorithms that directly infer the information about the
underlying probability distribution from the set of unlabelled instances, in
Letouzey et al. (2000) the authors propose an adaptation of the C4.5 algorithm
(Quinlan, 1993), the POSC4.5, that is able to learn decision tree models from
only positive and unlabelled examples.

Another example of this sort of algorithms is the positive naive Bayes
(PNB) (Denis et al., 2002), an adaptation of the naive Bayes induction al-
gorithm (Minsky, 1961) to the positive unlabelled learning context, which is
explained in detail in Section 7.1. In Denis et al. (2003) the authors tackle
the problem of learning from very few positive instances by incorporating the
co-training concept (Blum and Mitchell, 1998) to the PNB algorithm.

Zhang and Lee (2005) present a probabilistic approach to the problem
where the prediction of a class is based on the probability of being in the set
of positive cases and the probability of being in the set of unlabelled instances.

In Lee and Liu (2003) the authors tackle the problem of learning from pos-
itive and unlabelled examples as a problem of learning from noisy examples.
They label all the unlabelled instances as negative and then use a weighted
logistic regression to handle the noise in the set of ‘negative’ examples. In
this work the authors also propose a metric to measure the performance of
the classifiers. This metric, which is proportional to the product of the recall
and the precision, is used to set the regularisation parameters of the logistic
regression.
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4.3 Applications of the positive unlabelled learning

algorithms

Most of the algorithms cited in the previous section are devised to classify
texts (Yu et al., 2002; Li et al., 2007a; Schneider, 2004), and most of them are
tested on different document datasets, but there are some works where these
algorithms are applied to real-life positive unlabelled learning problems from
other fields.

One of these papers is Zhao et al. (2008). In this work the authors propose a
positive unlabelled learning procedure to predict the function of genes. With
the development of high-throughput biotechnologies, huge amounts of data
about genes and proteins have been collected. These big databases can be
used to predict the function of novel discovered genes. Although there are
genes whose function is known, it is difficult to ensure that a given gene has
not some particular function. As a result, positive examples (genes with the
function at study) and unlabelled genes are available, but not negative genes.
The authors propose a method basically consisting of identifying a set of
reliable negative examples. The goal is achieved using a similar procedure as
in Liu et al. (2002) but using SVMs instead of the EM as the base algorithm.
Then an iterative step is carried out training a SVM on the known positives
and the identified negative examples and then using it to generate a new set
of negative instances for the next step in the iteration.

Another application in the computational biology field is the prediction of
non-coding RNA genes (ncRNA) (Wang et al., 2006). The authors develop an
algorithm (positive sample only learning, PSoL) that labels those instances
most distant to the set of positive cases as negative examples and, then,
iteratively increments the set of negative examples using SVM classifiers.

In Liu et al. (2005) the authors develop a new SVM-based method for the
identification of specific land-cover class on remote sensing images. They test
their classifier induction algorithm on satellite images of Victoria Harbor in
Hong Kong.

A somehow different application of the positive unlabelled learning algo-
rithms can be found in Li et al. (2007b). The problem they face in this work
is the identification of unexpected instances in test sets. When a classifier is
induced it learns to distinguish between some predefined classes, but it can be
that some of the test or future instances that the classifier is required to clas-
sify do not belong to any of these classes. This is quite obvious if we think of
classifiers learnt in fast evolving fields such as cancer subtype identification or
computer science text classification. The identification of this sort of ‘outliers’
is very interesting as it can point out new discoveries, such as new subtypes of
cancer. The author propose to model the identification of this sort of exam-
ples as a positive unlabelled learning problem where the instances from the
known classes are the positive examples. The particularity of this problem is
that, contrary to what happens in most of the other applications, the amount
of positive cases in the set of unlabelled instances is very high (it is not very



4.3 Applications of the positive unlabelled learning algorithms 51

likely to find an instance that does not belong to any of the originally de-
fined classes). The authors propose a new algorithm based on the generation
of negative data and the naive Bayes algorithm (Minsky, 1961) to solve the
problem of identifying unexpected instances in test sets.





5

Description of the Datasets

The evaluation of classifiers in positive unlabelled learning problems is not a
straightforward issue. The classical performance measures rely on the confu-
sion matrix but, in binary problems where no negative examples are available,
only half of the matrix can be computed, and, thus, the classical performance
measures can not be estimated from the data. The only exception is the recall
as this measure does not depend on the negative instances. However, this mea-
sure alone is not enough to evaluate the goodness of a classification function
(see Section 2.2).

The experimental evaluation of the algorithms proposed in this dissertation
has been carried out in problems where the absence of negative examples has
been simulated. The datasets of positive and unlabelled instances are obtained
from sets of positive and negative examples. Therefore, we know the class
of the unlabelled instances (though it is not used in the positive unlabelled
learning algorithms) and we can use this information to obtain any desired
performance measure. The reasons why simulated problems have been used
to test the algorithms are the following:

• The absence of a proper statistical way to evaluate classifiers. The super-
vised and semi-supervised approaches to evaluate classification functions
are not directly applicable in positive unlabelled learning problems. Part
of the contributions of this dissertation are in the field of classifier evalu-
ation in absence of negative examples (see Chapter 8). However, this way
of estimating the performance of a classifier suffers from some problems
and, thus, we have decided to use simulated problems as a more robust
way of evaluating the new proposed algorithms.

• Simulating the absence of negative examples allows us to control the num-
ber of positive and negative examples in the set of unlabelled instances.
This is very interesting when we want to test the performance of the al-
gorithms in different situations.
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• The final reason for using simulated problems is that there are lots of su-
pervised databases available in repositories such as UCI (Blake and Merz,
1998) but no positive unlabelled datasets are so readily available.

In the experimentation throughout the dissertation we have used different
types of datasets. Some of them are based on real-life problems where the
absence of negative examples has been simulated and some others have been
generated from known probability distributions with some specific goals. As
some of these datasets have been used in different parts of the dissertation,
we have gathered all the descriptions in this chapter. In the following sections
we will describe all the datasets that have been used to test the different
algorithms and the processes followed to create them. Table 5.1, at the end
of this chapter, summarises the datasets used in the experimental part of the
dissertation.

5.1 Real-life datasets

In this section we will show how simulated positive unlabelled learning prob-
lems can be obtained from completely labelled datasets and we will describe
the real-life based datasets used in the experimental part of the dissertation.

5.1.1 Dataset generation process

Positive unlabelled learning problems have two classes: the instances we are
interested in (the positive class) and the instances we are not interested in (the
negative class). Nevertheless, some of the (supervised) databases available in
different repositories have more than just two classes, so the first step in order
to build positive unlabelled learning problems from labelled databases is the
binarisation of the class. This step consists of selecting one of the classes in the
problem as the positive class1 . Then, all the instances belonging to this class
are labelled as positive and the rest of the instances are labelled as negative.

Once the original labelled database has been binarised, positive unlabelled
learning problems are built creating a set of positive examples (Dp) and a set
of unlabelled instances (Du). The set of positive examples can be obtained by
randomly drawing, from the labelled database, some positive instances. The
set of unlabelled instances is created by mixing (in the desired proportion)
positive and negative instances randomly drawn from the labelled database
and then removing their labels (we ‘remove’ the labels because the algorithms
do not use them, but we actually keep them in order to be able to obtain the
performance measures).

1 An alternative would be mixing more than one class to create the set of positive
examples. We have used the first approach (a single class as positive) because it
is closer to the concept of information retrieval
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There are several parameters that have to be set in the process of simulat-
ing positive unlabelled learning problems. First, we have to select the original
database from where the instances will be drawn. We also have to set the
size of both the set of positive examples and the set of unlabelled instances.
Finally, we can mix positive and negative examples in different proportions in
the set of unlabelled instances so we have to select the ratio of positive cases
hidden in the set of unlabelled instances. Once these four parameters have
been set, we can obtain as many positive unlabelled learning problems as we
want. This is very interesting because we can create a list of similar problems
and then compare the results using statistical tests to assess the significance
of the differences.

In order to simplify the descriptions in the rest of the chapter, we will
define a ‘scheme’ as the set: original database, cardinality of Dp, cardinal-
ity of Du and ratio of positive cases in Du. For instance, a scheme would
be database A, |Dp| =100, |Du| =1,000, ratio=0.2, meaning that the posi-
tive unlabelled learning problems that follow this scheme are obtained from
the database A and that the number of known positive examples is 100 and
the number of unlabelled instances is 1,000 (200 positive examples and 800
negative examples).

The real-life based datasets have been built based on three supervised
databases: ACCDON, Letter Recognition and Nursery.

5.1.2 ACCDON datasets

The ACCDON is a database presented in Castelo and Guigó (2004) for the
problem of splice site prediction. It contains sequences of donor and acceptor
splice sites labelled as true donor/acceptor sites and false donor/acceptor
sites2 . It is a binary problem, but there are two kinds of negative splice
sites, false sites obtained from coding regions and false sites obtained from
non-coding regions.

The predicting variables are the nucleotides at each position around the
splice site. This means that each predicting variable can take four values (a,
c, t and g, the bases that can be found in any DNA sequence). All the splice
sites have a two base pair constant part that has been removed, as it does not
give any information about the class. The total number of predicting variables
(once the constant part has been removed) is 21 for the acceptor sites and
seven for the donor sites.

Starting from the database described in Castelo and Guigó (2004) we have
created six supervised binary databases:

2 In the process of protein expression, the messenger RNA is modified, being one
of these modifications the elimination of parts of the sequence (the introns). The
splice sites are the points in the sequence where the RNA is cut and joined again
to eliminate the introns. See Chapter 10 for more information about this process
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• Accpetor sites coding - Containing true acceptor sites as positive examples
and false acceptor sites obtained from coding regions as negative examples.

• Accpetor sites intron - Containing true acceptor sites as positive exam-
ples and false acceptor sites obtained from non-coding regions as negative
examples.

• Accpetor sites mixed - Containing true acceptor sites as positive examples
and false acceptor sites obtained from both coding and non-coding regions
as negative examples.

• Donor sites coding - Containing true donor sites as positive examples and
false donor sites obtained from coding regions as negative examples.

• Donor sites intron - Containing true donor sites as positive examples and
false donor sites obtained from non-coding regions as negative examples.

• Donor sites mixed - Containing true donor sites as positive examples and
false donor sites obtained from both coding and non-coding regions as
negative examples.

There are two sets of positive unlabelled learning problems obtained from
the ACCDON database, that from now on, will be referred to as ACCDON
datasets v.1 and ACCDON datasets v.2.

5.1.2.1 ACCDON datasets v.1

In the first version of datasets the six original labelled databases described
above are combined with three cardinalities for Dp (100, 200 and 300) and
three cardinalities/ratio of positive cases for Du (2,100/0.048, 2,300/0.13 and
2,500/0.2), resulting in a total of 54 schemes. Using each scheme fifty sets
of positive and unlabelled examples were obtained, making a total of 2,700
unlabelled learning problems.

5.1.2.2 ACCDON datasets v.2

In the second version of the datasets three cardinalities for the set of positive
examples (100, 500 and 1,000) are combined with six ratios of positive cases in
Du (0.01, 0.1, 0.2, 0.3, 0.4 and 0.5), yielding a total of 108 schemes. The total
number of unlabelled instances in all the schemes is 10,000. Following each
scheme 100 datasets were constructed, resulting in a total of 10,800 positive
unlabelled learning problems.

5.1.3 Letter Recognition datasets

The Letter Recognition database (Blake and Merz, 1998) contains a set of
letters from the English alphabet characterised by some measures obtained
from their graphical representation. The sixteen attributes that represent each
letter are the following3 :

3 The predicting variables have been renamed in the positive unlabelled datasets
as V1 to V16
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• x-box: Horizontal position of box
• y-box: Vertical position of box
• width: Width of box
• high: Height of box
• onpix: Total number on pixels
• x-bar: Mean x of on pixels in box
• y-bar: Mean y of on pixels in box
• x2bar: Mean x variance
• y2bar: Mean y variance
• xybar: Mean x y correlation
• x2ybr: Mean of x * x * y
• xy2br: Mean of x * y * y
• x-ege: Mean edge count left to right
• xegvy: Correlation of x-edge with y
• y-ege: Mean edge count bottom to top
• yegvx: Correlation of y-edge with x

All the variables described above are discrete and take values from 0 to 15.
The class variable can take 26 values (all the English alphabet letters, from
A to Z), and the total number of examples from each class ranges from 735
to 813 instances.

In order to binarise the database we have to pick up one of the letters
as the positive class and label the rest of the instances as negative. Three
different databases of positive and negative instances were created in this
way, considering letters ‘D’ (805 instances), ‘P’ (803 instances) and ‘U’ (813
instances) as the positive class. We have named the three original databases
Letter Recognition D, Letter Recognition P and Letter Recognition U.

As in the case of datasets based on the ACCDON database, there are two
sets of positive unlabelled problems that we have labelled as Letter Recogni-
tion datasets v.1 and Letter Recognition datasets v.2.

5.1.3.1 Letter Recognition datasets v.1

In the first version of datasets the three labelled databases described above are
combined with three cardinalities for Dp (100, 200 and 300) and three cardi-
nalities/ratio of positive cases for Du (2,100/0.048, 2,300/0.13 and 2,500/0.2),
resulting in a total of 27 schemes. Using each scheme fifty sets of positive and
unlabelled examples were obtained, totaling 1,350 unlabelled learning prob-
lems.

5.1.3.2 Letter Recognition datasets v.2

In the second version of the datasets three cardinalities for the set of positive
examples (100, 200 and 300) are combined with six ratios of positive cases
in Du (0.01, 0.1, 0.2, 0.3, 0.4 and 0.5), yielding a total of 54 schemes. The
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cardinality of Du was 5,000 in all the schemes. Following each scheme 100
datasets were constructed, resulting in a total of 5,400 positive unlabelled
learning problems.

5.1.4 Nursery datasets

The Nursery database (Blake and Merz, 1998) was obtained from a decision
model used in the eighties in Ljubljana (Slovenia) to rank applications for
nursery schools. It consists of 12,960 instances represented by the following
eight attributes:

• parents: Discrete variable with three possible values (usual, pretentious,
great pret)

• has nurs: Discrete variable with five possible values (proper, less proper,
improper, critical, very crit)

• form: Discrete variable with four possible values (complete, completed,
incomplete, foster)

• children: Discrete variable with four possible values (1, 2, 3, more)
• housing: Discrete variable with three possible values (convenient, less conv,

critical)
• finance: Discrete variable with two possible values (convenient, inconv)
• social: Discrete variable with three possible values (non-prob, slightly prob,

problematic)
• health: Discrete variable with three possible values (recommended, prior-

ity, not recom)

The instances are divided into five classes: not recom, recommended,
very recom, priority and spec prior. The binarisation of this database was
done by selecting the spec prior class (4,044 instances) as positive and la-
belling the rest as negative. Thus, only one binary labelled dataset was used
in the construction of positive unlabelled learning problems from the Nursery
database.

Again, two sets of positive unlabelled learning problems (Nursery datasets
v.1 and Nursery datasets v.2) were obtained from the Nursery database.

5.1.4.1 Nursery datasets v.1

In the first version of datasets three cardinalities for Dp (250, 500 and 1,000)
and three cardinalities/ratio of positive cases for Du (9,016/0.011, 9,960/0.075
and 11,916/0.25) were combined, resulting in a total of nine schemes. Using
each scheme fifty sets of positive and unlabelled examples were obtained,
making a total of 450 unlabelled learning problems.
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5.1.4.2 Nursery datasets v.2

In the second version of the datasets three cardinalities for the set of positive
examples (100, 200 and 300) are combined with six ratios of positive cases
in Du (0.01, 0.1, 0.2, 0.3, 0.4 and 0.5), yielding a total of eighteen schemes.
The cardinality of Du was 5,000 in all the schemes. Following each scheme
100 datasets were constructed, resulting in a total of 1,800 positive unlabelled
learning problems.

5.2 Synthetic datasets

In part of the experimentation it is convenient to have positive unlabelled
learning problems with some specific features. For instance, in the evaluation
of the algorithms that induce TAN models we are interested in ensuring that
there are conditional dependencies between the predicting variables. In the
datasets used to test our proposal of adaptation of the CFS algorithm, we
want to know which features are relevant, which are not and, also, which
attributes are redundant. Finally, in the experimentation regarding the evalu-
ation of clasiffiers in absence of negative examples we need to know the original
distribution that generated the data in order to be able to compute the actual
value of the performance measures.

We have created three sets of synthetic positive unlabelled learning prob-
lems, one for each of the problems mentioned above: TAN based datasets,
FSS datasets and classifier evaluation datasets.

5.2.1 Datasets sampled from TAN models

As part of the contribution of this dissertation we have proposed the exten-
sion of the concept behind PNB to the induction of more complex networks.
In particular, we have proposed two algorithms that are able to learn TAN
models from positive and unlabelled examples. These algorithms learn models
that take into account (to a certain degree) the conditional dependencies that
may be between predicting variables.

In order to experimentally evaluate these algorithms it would be interesting
to have some positive unlabelled learning problems where we know that there
are such conditional dependencies. To ensure this point we have obtained sets
of problems sampled from TAN models created based on the four topologies
shown in Figure 5.1.

In order to increase the variability of the resulting datasets, five differ-
ent sets of (random) parameters were assigned to each topology. Thus, for
each topology we have five TAN models from where the datasets have been
sampled.

The models defined for each topology have been sampled using three dif-
ferent cardinalities of Dp (100, 1,000 and 10,000), three cardinalities of Du
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Fig. 5.1. Dependency structures used to build the TAN models from where synthetic
datasets used in the evaluation of positive Bayesian network classifiers have been
sampled. The class variable has been removed for clarity.

(1,000, 10,000 and 100,000) and six ratios of positive cases in Du (0.01, 0.1,
0.2, 0.3, 0.4 and 0.5). For a given topology, twenty positive unlabelled learn-
ing problems were drawn from each of the five models (sets of parameters),
resulting in a total of 100 sets of positive and unlabelled cases for every com-
bination of topology, cardinality of Dp, cardinality of Du and ratio of positive
cases in Du. Thus, there is a total of 21,600 positive unlabelled learning prob-
lems sampled from TAN models. Figure 5.2 shows a scheme of the sampling
process.

5.2.2 Feature subset selection datasets

In Chapter 9 the adaptation of the CFS algorithm (Hall and Smith, 1997) to
the positive unlabelled learning context is introduced. As the goal of this algo-
rithm is to remove both redundant and irrelevant variables, we need datasets
where we know which features are irrelevant and which are redundant.

The datasets described in this section have been created with this idea in
mind. They have been sampled from Bayesian network models of increasing
complexity (see Figure 5.3). Given that we know the structure of conditional
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Fig. 5.2. Process followed to obtain the positive unlabelled learning problems based
on TAN models.

dependencies between the variables we can label each feature as relevant (con-
ditionally dependent of the class) or irrelevant (conditionally independent of
the class). The redundant variables were added once the datasets were drawn
from the probability distributions defined by the model.

All the structures shown in Figure 5.3 have four kinds of variables:

• The class variable, labelled as C
• Relevant variables, labelled as R followed by a number. These are the

variables in the Markov blanket of C
• Irrelevant variables, labelled as I followed by a number. These are variables

out of the Markov blanket but conditionally dependent on other variables
• Irrelevant independent variables, labelled as II followed by a number.

These are variables conditionally independent of any other variable (in-
cluding C)

The simplest model (see Figure 5.3-a) consists of a naive Bayes model
(Minsky, 1961) and some independent variables. The second model (Figure
5.3-b) has a more complex structure, consisting of a tree augmented naive
Bayes model (TAN) (Friedman et al., 1997)), five independent variables and
a tree structure of five irrelevant features. The third model (Figure 5.3-c)
includes a structure containing the relevant variables where the class variable
is in the middle, five independent variables and a structure of eight irrelevant
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(a) Structure 1 (b) Structure 2

(c) Structure 3 (d) Structure 4

Fig. 5.3. Bayesian network structures used to build the models from which synthetic
data have been generated for the experimental evaluation of positive unlabelled
feature subset selection algorithms.

variables. The fourth structure (Figure 5.3-d), the most complex, includes a
big structure containing the class, relevant variables and irrelevant variables,
a small structure of irrelevant variables and five independent variables.

Redundant variables are added to the final datasets, once the models have
been sampled, by just copying the relevant variables with a certain degree
of noise σ (where σ is the percentage of instances where the variable was
incorrectly copied). The redundant variables are represented by the name
of the variable copied followed by R and the degree of redundancy (100-
σ). For instance, the redundant variable obtained copying R5 with a noise
degree of 20% is denoted as R5R80. Redundant variables of all the relevant
variables with noise degrees of 10%, 20% and 30% were added to all the
positive unlabelled learning problems.
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Fig. 5.4. Structure of the TAN models used to generate the original probability
distributions from where synthetic datasets used in the experimental evaluation of
the performance metric have been sampled.

Each of the models (with the structures shown in Figure 5.3 and random
parameters) were sampled to obtain positive unlabelled learning problems.
From each model, 100 positive sets of cardinalities 10, 25, 50, 100, 250, 500,
750 and 1,000 were drawn. Unlabelled sets of size 1,000 and 10,000 with ratios
of positive cases of 0.01, 0.15, 0.25, 0.35 and 0.75 were also sampled from
the probability distributions (ten from each distribution). As a result, for a
particular scheme we have 1,000 sets of positive and unlabelled instances (the
combination of the 100 positive sets with the ten unlabelled sets). The total
number of positive unlabelled learning problems created for the experimental
evaluation of the feature subset selection algorithms was 320,000.

5.2.3 Classifier evaluation datasets

The evaluation of classifiers in absence of negative examples is tackled in
Chapter 8, which is dedicated to the wrapper positive Bayesian network clas-
sifiers. In this chapter we show how the F measure can be estimated in positive
unlabelled learning problems and propose a metric that can be used to select
the value of the p parameter in PNB (see Section 7.1) that maximises the F
measure. In order to test this metric, we need to obtain the actual value of
the F measure and, thus, we need to know the original probability distribu-
tion that generated the data. As we will see later, the equations presented
in Chapter 8 assume that a particular instance belongs to a single class (in
the most general framework a particular instance belongs to any possible class
with different probabilities). Given this simplification, our original (empirical)
probability distributions are described by a dataset containing all the possible
instances along with their corresponding label.

The databases used in this section to generate the positive unlabelled
learning problems contain instances characterised by fifteen binary variables,
resulting in a total of 32,678 possible instances. All the instances have to be
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labelled in order to create the original distribution. The labels were obtained
using naive Bayes and TAN models. Six different models were used to label
the 32,678 instances, three based on a naive Bayes structure and three based
on a TAN structure (Figure 5.4). As a result we get six complete databases
from where the positive unlabelled learning problems were sampled (in the
same way explained in Section 5.1).

Once the complete datasets are labelled we can estimate the apriori prob-
ability of the positive class. The aprioris in the databases labelled by naive
Bayes models were 0.19, 0.28 and 0.45 and the aprioris in the databases la-
belled by TAN models were 0.15, 0.30 and 0.50. Thus, our original databases
are the complete set of instances labelled by naive Bayes models with p ∈
{0.19, 0.28, 0.45} and by TAN models with p ∈ {0.15, 0.30, 0.50}.

Starting from each original empirical distribution, sets of positive and un-
labelled learning problems were obtained with cardinalities of the positive set
of 0.1%, 0.5%, 1%, 5% and 10% of the total number of instances (i. e., 33, 164,
328, 1,638 and 3,277 respectively). In all the cases the amount of unlabelled
instances was set to 10% of the total number of instances and the ratios of
positive cases in Du were not forced (the unlabelled instances were obtained
by randomly sampling the original distributions, without considering their
class). Using each scheme, 100 different positive unlabelled learning problems
were obtained, resulting in a total of 3,000 sets of positive and unlabelled
instances.
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Set
Num. of

Sizes of Dp
Ratios of Problems Total

variables positive cases per scheme problems

ACCDON v.1 21; 7 100; 200; 300 0.048; 0.13; 0.2 50 2,700

ACCDON v.2 21; 7 100; 500; 1000
0.01; 0.1; 0.2

100 10,800
0.3; 0.4; 0.5

Letter
16 100; 200; 300 0.048; 0.13; 0.2 50 1,350

Recognition v.1

Letter
16 100; 200; 300

0.01;0.1;0.2
100 5,400

Recognition v.2 0.3; 0.4; 0.5

Nursery v.1 8 250; 500; 1,000 0.011; 0.075; 0.25 50 450

Nursery v.2 8 100; 200; 300
0.01;0.1;0.2

100 1,800
0.3; 0.4; 0.5

TAN based
8 100; 1,000; 10,000

0.01; 0.1; 0.2
100 21,600

datasets 0.3; 0.4; 0.5

FSS 40; 50 10; 25; 50; 100; 250 0.01; 0.15; 0.25
1,000 320,000

datasets 53; 64 500; 750; 1,000 0.35; 0.75

C. evaluation
15

33; 164; 328 0.19; 0.28; 0.45
100 3,000

datasets 1,638; 3,277 0.15; 0.30; 0.50

Table 5.1. Summary of the positive unlabelled learning datasets. The first column indicates the set of problems. The second column
represents the cardinalities of the set of positive cases Dp used in the problem sampling. The third column shows the list of ratios
of positive cases hidden in Du. The fourth column indicates the number of positive unlabelled learning problems sampled using each
scheme. The final column represents the total number of problems in the set. Globally, 367,100 sets of positive and unlabelled examples
have been used in the experimental part of the dissertation.
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The Divergence Convergence Division

Algorithm

One of the main applications of positive unlabelled learning algorithms is the
recovery of positive examples from big datasets of unlabelled instances. In
a typical situation, we have a database of objects that belong to different
types (for example, papers related to different topics), and we have a sample
of objects from a particular kind that are interesting for us (papers about,
for instance, positive unlabelled learning). The goal of positive unlabelled
learning algorithms is to obtain a classifier that, given the attributes of an
object, predicts whether it belongs to the class from which we have a sample
or not. In the example of the papers, we want to learn a classifier that, given a
paper from the database, predicts whether it is a positive unlabelled learning
paper or not.

In a scenario such as this it is quite reasonable to assume that, in the
database of unlabelled objects, the number of objects belonging to the class
we are interested in is very low compared to the number of those that do
not belong to that class. This can be clearly seen in the example of papers.
The number of positive unlabelled learning papers in the database is very
low compared to the number of papers on all the other topics. Thus, we can
assume that the ratio of positive cases in the set of unlabelled instances is lower
than 0.5. This assumption is the starting point of the divergence convergence
division algorithm (DCDiv).

6.1 DCDiv algorithm

Let D be a dataset of positive and unlabelled examples. Let Dp denote the
set of positive examples and Du the set of unlabelled examples with D =
Dp∪Du. Suppose we draw v random samples with replacement from Du, N =
{(x(1), ?), . . . , (x(v), ?)}. Given the assumption that the number of positive
cases in the set of unlabelled instances is much lower than the number of
negative examples, this random sample N can be considered as a noisy set of
negative instances. Indeed, the amount of noise in this set (the positive cases
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that we may have picked up from the set of unlabelled instances) is directly
proportional to the ratio of positive cases in the set of unlabelled instances.

If we define the noise ν in a set of negative instances as the probability of
randomly selecting an instance that is not negative, the noise in N is the a
priori probability of the positive class in the empirical probability distribution
defined by the set of unlabelled instances:

ν(N ) = PDu(C = 1)

thus, the higher the ratio of positive cases in Du the more noise we have in
the random sample N .

If we induce a classification modelM using as training set Dp∪N , where all
the examples in N have been assigned to the negative class, we could use this
model to estimate, for every instance x ∈ Du, the probabilities PM (C = 1|x)
and PM (C = 0|x). These estimations will be affected by the noise we have
introduced in the learning process (ν(N )). The former probabilities can be
used to identify whether x is a positive or a negative example. If PM (C =
1|x) > PM (C = 0|x) then we say that x is a positive example. If not, we say
that it is a negative example. The same decision can be made looking at the
odds ratio:

F (x) =
PM (C = 0|x)

PM (C = 1|x)
(6.1)

If this ratio is greater than one we say that x is negative while if it is lower
or equal than one we say that it is positive.

This way of identifying which cases in the set of unlabelled instances are
positive and which are negative is quite unstable, as it depends very much on
the noise in the sample N . One way to cope with the instability of classification
functions is the model averaging. A good example of how the model averaging
can increase the stability of a classification function is the random forest
algorithm (Breiman, 2001). This algorithm is based on the bagging process
(Breiman, 1996) which basically consists of combining classifiers (of the same
type) trained on bootstrap replicates (Efron, 1983) of the training set. When
the bagging concept is applied to decision trees we have the random forest
algorithm.

Suppose that we draw m samples {N1, . . . ,Nm} and, using each of these
samples as a noisy set of negative instances, we build m classification models
{M1, . . . ,Mm}. Each of these models can be used to compute the odds ratio
(Equation (6.1)). In order to combine the predictions of each model we can
take advantage of the fact that this ratio is greater than one for the negative
cases and lower than one for the positive cases. If we compute the product of
these odds ratios, we have:
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Fig. 6.1. Scheme of the process of insertion of spy cases in the set of unlabelled
instances.

πm(x) =

m
∏

s=1

Fs(x) =

m
∏

s=1

PMs
(C = 0|x)

PMs
(C = 1|x)

(6.2)

When x is a negative example, as m tends to infinity the product should
diverge to infinity but, when x is positive, as m tends to infinity the product
should converge to 0.

DCDiv exploits this differential behaviour to separate the positive and the
negative cases based on the product of odds ratios. In order to distinguish
between positive and negative examples, we have to set a threshold t. Those
instances with a product value higher than the threshold are considered as
negative and those with a product value lower or equal to the threshold are
considered as positive.

In order to set the threshold, the concept of ‘spy’ cases is used. This
concept was introduced by Liu et al. (2002) and consists of selecting a set of
known positive cases (the spy cases, S) and introducing them into the set of
unlabelled instances. Thus, after the inclusion of spy cases in Du, new sets of
positive and unlabelled examples are obtained (D

′

p = Dp\S and D
′

u = Du∪S).
Figure 6.1 shows a scheme of this process.

The idea is that these spy cases will behave in the same way the positive
cases hidden in Du do, and, thus, we can use them to estimate the recall
we get setting the threshold at a given value. Given a predefined recall (as a
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parameter of the algorithm) we set the threshold in the smallest value such
that we get the desired recall1 .

The algorithm works in an iterative way. There is an initialisation step
where the spy cases are introduced into the set of unlabelled instances. Then,
at each step of the iteration, a random sample Ns is drawn from D

′

u and is
used as a set of negative examples to learn a model. Using this model, the
odds ratio of each instance in D

′

u \Ns is computed and added to its product2

. At each iteration the threshold is set at the minimum value that ensures the
recall set in the parameters of the algorithm.

The threshold is set based on the products of the odds ratios of the spy
cases. Therefore, as it is the product of a positive case, we expect it to con-
verge to 0. The DCDiv algorithm uses this feature as the stop criterion. The
algorithm halts when the threshold is 03 . As it can happen that the thresh-
old does not converge to 0, a maximum number of iterations has to be set,
halting the algorithm whether when the threshold converges to 0 or when the
maximum number of iterations is reached. Figure 6.2 shows the pseudo code
of the DCDiv algorithm.

As we have said, DCDiv is a model averaging process where bootstrap
samples from the set of unlabelled instances are obtained and the predic-
tions of the models are combined by means of Equation (6.2). If we take the
logarithm of this equation we have that:

ln(πm(x)) =

m
∑

s=1

[ln(PMs
(C = 0|x)) − ln(PMs

(C = 1|x))]

This is the sum of the logit function of P (C = 0|x), used in logistic
regression. This Equation can be rewritten as:

ln(πm(x)) =

m
∑

s=1

ws(x)

ws(x) = ln(PMs
(C = 0|x)) − ln(PMs

(C = 1|x))

We can see this expression as a weighted voting scheme where the weights
depend on the logarithm of the posterior probabilities. This resembles bagging
predictors (Breiman, 1996), but with some differences. In DCDiv, bootstrap
samples are only drawn from the set of unlabelled instances, and the voting

1 We want to classify only the positive instances as positive and, thus, for a given
recall, we have to classify the minimum number of instances as positive, and we
obtain this using the smallest threshold that ensures the desired recall

2 To avoid overfitting problems, the odds ratio of the instances used in the training
of the model at the current iteration is not included in the product. In other
words, if x ∈ Ns then Fs(x) = 1

3 Obviously, the threshold cannot actually reach the mathematical 0. Reaching the
0 is interpreted as reaching a certain value that we consider small enough
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Inputs

Du := set of unlabelled examples
Dp := set of positive examples
r := recall
σ := ratio of cases in Dp used as spies
Limit := maximum number of iterations allowed
Zero := threshold for the convergence. Values lower than Zero are considered to be 0

Initialization

Randomly divide Dp into D
′

p and S, such that the number of cases in S is σ · |Dp|

Create D
′

u by joining S and Du
for each case x in Du

π0(x) := 1
rof

s := 1

Iterations

do

Select randomly with replacement |Dp| cases from D
′

u to construct Ns

Build a model Ms using D
′

p and Ns as positive and negative examples respectively

for each case x ∈ D
′

u \ Ns
πs(x) = πs−1(x) · Fs(x)

rof

Set t at the lowest value such that, for r% of cases in S, πs(x) < t
s = s+ 1

while t > Zero and s ≤ Limit

Labelling

for each case x in Du
if πs(x) > t

x is labelled as negative
else

x is labelled as positive
fi

rof

Fig. 6.2. Pseudo code of the DCDiv algorithm.

is weighted by a function that depends on the logarithm of the posterior
probabilities, rather than bagging’s simple voting. The main difference with
bagging is that, in DCDiv, the threshold is set dynamically at each step,
instead of using a prefixed threshold.

6.1.1 Setting the parameters of the DCDiv algorithm

As can be seen in Figure 6.2, there are four parameters that have to be set.
The ratio of positive cases that are going to be used as spy cases will depend on
the amount of positive cases available. The more spy cases, the more confident
we can be about how the threshold is set (the more confident we are on the
estimation of the recall), but the less positive cases that we will have in the
learning of each classifier.

The recall is probably the most difficult parameter to set. We want to
have the highest possible recall but, if the recall is set at a very high value,
this can lead to the non-convergence of the threshold. For instance, if we set
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the recall at one, this means that the threshold will be set, at each step s, at
the highest value of πs(x) with x ∈ S. If any of the spy cases is very close
to the boundary between the positive and the negative cases, or if any of the
spy cases is actually negative (we can have some noise in the set of known
positive cases), then its product can diverge to infinity and, thus, so will the
threshold. The criterion we have used to set the recall is to use the highest
value that allows the threshold to converge to 0.

The factors that influence in the time the threshold needs to converge are
the nature of the problem, the base classifier and the recall used to set the
threshold. There is a direct relation between the threshold and the recall. If
we increase the recall, the threshold that we will have at each step will also
increase. Thus, setting the recall in high values leads to slower convergences
of the threshold. Actually, using the criterion proposed to set the recall will
lead to the slowest convergence of the threshold. If the estimations of the
posterior probabilities provided by the base classifier are very similar for the
positive and the negative class, then the odds ratio will be close to one and
the convergence of the threshold will be slow. The time the algorithm needs
to finish can be controlled by the zero (the higher the zero the faster the
algorithm will stop). The maximum number of iterations sets an upper bound
to the running time of the algorithm.

The final parameter we have to set is the base classifier. Due to the na-
ture of the algorithm, the posterior probabilities of the positive and negative
class have to be computed. Thus, the only requirement for the classification
paradigm used as base classifier is that it allows to estimate these probabilities.

6.2 Experimental evaluation of the DCDiv algorithm

We have tested the DCDiv in datasets where the absence of negative examples
has been simulated. For this purpose we have used ACCDON datasets v.1,
Letter Recognition datasets v.1 and Nursery datasets v.1 described in Chapter
5.

The results obtained by the DCDiv algorithm have been compared with
the results obtained by PNB setting the p parameter at 0.25, 0.5 and the
actual value (the description of this algorithm can be found in Section 7.1)4 .
The statistical significance of the differences between the results obtained by
the two algorithms has been assessed running Wilcoxon paired tests on the
results obtained in each of the fifty problems created using each scheme.

Each algorithm has been applied to the sets of positive and unlabelled
examples described in Section 5.1. The output of the DCDiv algorithms is a

4 The actual value of the a priori probability of the positive class is unknown in
real-life based problems, but it can be estimated as the ratio of positive cases in
the set of unlabelled instances. Throughout this dissertation, in the context of
the experimental evaluation, the term ‘actual p’ is used to refer to this ratio
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Letter Recognition - F measure

LRd LRp LRu

NDp rat. PNB DCDiv PNB DCDiv PNB DCDiv

p
=

0
.2

5

100 0.05 36.80 53.79 43.42 68.19 45.93 69.71

100 0.13 66.07 64.62 74.01 70.65 72.88 74.40
100 0.20 73.93 66.30 81.67 70.56 78.99 73.71
200 0.05 37.05 67.09 44.98 73.01 47.96 74.83

200 0.13 66.67 69.35 74.86 73.14 75.10 76.66
200 0.20 76.70 71.82 83.47 73.45 81.62 75.33
300 0.05 36.49 70.50 46.11 75.73 49.23 77.79

300 0.13 66.27 73.02 75.92 75.04 76.60 78.01
300 0.20 76.68 74.60 84.04 76.22 82.92 76.61

A
c
tu

a
l
p

100 0.05 58.26 53.79 72.18 68.19 74.45 69.71
100 0.13 69.68 64.62 80.14 70.65 78.39 74.40
100 0.20 74.08 66.30 82.53 70.56 79.54 73.71
200 0.05 62.48 67.09 73.32 73.01 76.59 74.83
200 0.13 72.71 69.35 81.61 73.14 80.78 76.66
200 0.20 77.80 71.82 84.54 73.45 82.41 75.33
300 0.05 61.64 70.50 73.07 75.73 78.31 77.79
300 0.13 72.85 73.02 82.25 75.04 82.12 78.01
300 0.20 77.96 74.60 85.21 76.22 83.61 76.61

Table 6.1. Extract of the results of the comparison between PNB and DCDiv. The
results correspond to the datasets obtained from the Letter Recognition database;
LRd, LRp and LRu stand for Letter Recognition D, P and U respectively. The table
shows the comparison of the F measure obtained with DCDiv and PNB setting the
p parameter at 0.25 (rows labelled as ‘p = 0.25’) and at the actual value (rows
labelled as ‘Actual p’). The column labelled as ‘NDp ’ indicates the cardinality of Dp

and the column labelled as ‘rat.’ denotes the ratio of positive cases in Du. All the
values shown in this table are the average of the results obtained in the fifty datasets
built according to each scheme (dataset, cardinality of Dp and ratio of positive cases
in Du). The bold font indicates the winner in the comparisons where significant
differences at a significance level of 1% were found.

classification of the examples in the set of unlabelled instances. In the case of
the PNB algorithm, the model learnt has been used to obtain the classification
of the instances in the set of unlabelled instances. Once we have the set of
unlabelled instances classified by each algorithm we can obtain the confusion
matrix (as we actually know the labels of the ‘unlabelled’ instances). Using the
confusion matrix the F measure and the accuracy were obtained (see Section
2.2 for the definitions of the performance measures).

This way of estimating the performance measures may look non-honest as
we are using the unlabelled examples in the training and the evaluation of the
classifiers, but it is important to take into account that during the training
the information about the class of these instances is not used at all.

TAN models (Friedman et al., 1997) have been used as base classifier for
the DCDiv algorithm. The ratio of positive examples used as spy cases has
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Nursery - F measure

p = 0.50 p = 0.25 Actual p

NDp rat. PNB DCDiv PNB DCDiv PNB DCDiv

250 0.01 03.94 55.34 20.80 55.34 00.00 55.34

250 0.08 25.45 71.76 69.08 71.76 20.84 71.76

250 0.25 65.85 73.96 74.72 73.96 75.16 73.96
500 0.01 04.12 66.26 21.37 66.26 00.00 66.26

500 0.08 26.76 71.97 70.36 71.97 21.18 71.97

500 0.25 65.33 72.53 75.22 72.53 75.68 72.53
1000 0.01 04.37 65.62 21.90 65.62 00.00 65.62

1000 0.08 27.48 71.10 71.13 71.10 20.92 71.10

1000 0.25 64.36 69.94 75.88 69.94 76.33 69.94

Table 6.2. Extract of the results obtained in the comparison between PNB and
DCDiv. The results correspond to the datasets obtained from the Nursery database.
The table shows the comparison of the F measure obtained with DCDiv and PNB
setting the p parameter at 0.50 (labelled as ‘p = 0.50’), at 0.25 (labelled as ‘p = 0.25’)
and at the actual value (rows labelled as ‘Actual p’). The column labelled as ‘NDp ’
indicates the cardinality of Dp and the column labelled as ‘rat.’ denotes the ratio of
positive cases in Du. All the figures shown in this table are the average of the results
obtained in the fifty datasets built according to each scheme (dataset, cardinality
of Dp and ratio of positive cases in Du). The bold font indicates the winner in the
comparisons where significant differences at a significance level of 1% were found.

been set at 0.1 and the number of iterations limited to 1,000. The threshold
was considered 0 when it reached the computational 0 (10−324 in our case).

Tables 6.1, 6.2 and 6.3 show the results obtained in the comparison of the
two algorithms in terms of the F measure. The complete set of results can be
consulted in Appendix A.

Table 6.1 contains the results of the comparison of the F measure ob-
tained by DCDiv and PNB in problems sampled from the Letter Recognition
database. In most of the problems created using letter D as the positive class,
DCDiv outperforms the PNB when the p parameter is set to 0.25. In some
datasets it even improves or there are no significant differences with PNB
when the actual value of p is used (note that the actual value of p is not
known in a real-life problem). In datasets where P or U was used as the posi-
tive class, PNB (p = 0.25) only outperforms DCDiv when the ratio of positive
cases in Du is 0.20 (this makes sense as we are setting the parameter in the
algorithm very close to its real value). In the comparison with PNB, when p
is set at 0.50 DCDiv clearly outperforms PNB in all the datasets (results not
shown in the table).

Table 6.2 shows the comparison between the results obtained by DCDiv
and PNB in Nursery based datasets. In the first two columns we can see how
DCDiv is clearly better than PNB when p is set at 0.50. When p is set at 0.25
PNB only outperforms DCDiv in two of the nine schemes used to create the
positive unlabelled learning problems. The last two columns correspond to the
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ACCDON - F measure

Coding Intron Mixed

NDp rat. PNB DCDiv PNB DCDiv PNB DCDiv

A
cc

ep
to

r
S
it
es
p

=
0
.2

5

100 0.05 43.30 66.81 38.18 51.47 41.02 56.82

100 0.13 74.70 74.77 66.07 64.97 69.90 67.91
100 0.20 83.95 75.43 75.19 65.37 78.98 70.89
200 0.05 44.65 66.44 38.53 53.95 41.53 58.31

200 0.13 75.69 76.21 67.03 66.91 70.69 69.52
200 0.20 84.93 73.89 76.54 71.21 79.86 70.42
300 0.05 44.36 68.81 38.29 54.55 41.58 59.25

300 0.13 75.59 71.98 66.87 66.05 70.88 68.02
300 0.20 85.26 77.58 77.12 69.31 80.32 69.97

A
c
tu

a
l
p

100 0.05 71.77 66.81 54.67 51.47 59.90 56.82
100 0.13 80.87 74.77 69.31 64.97 73.93 67.91
100 0.20 84.75 75.43 75.46 65.37 79.29 70.89
200 0.05 72.23 66.44 56.37 53.95 60.70 58.31
200 0.13 82.09 76.21 71.36 66.91 75.78 69.52
200 0.20 85.67 73.89 77.02 71.21 80.47 70.42
300 0.05 73.26 68.81 56.43 54.55 61.62 59.25
300 0.13 81.94 71.98 71.45 66.05 75.88 68.02
300 0.20 86.13 77.58 77.64 69.31 80.92 69.97

D
o
n
o
r

S
it
es

p
=

0
.2

5

100 0.05 39.23 67.61 51.33 72.54 45.21 72.40

100 0.13 75.87 74.10 79.37 77.66 73.36 74.63
100 0.20 86.49 75.18 88.91 77.08 87.41 74.05
200 0.05 39.30 67.43 51.96 75.58 45.42 71.84

200 0.13 76.48 75.57 79.85 78.27 73.36 78.28

200 0.20 86.96 72.91 88.83 80.02 88.22 77.67
300 0.05 39.73 70.04 52.10 76.23 45.74 73.30

300 0.13 76.47 72.73 80.18 80.22 73.42 78.00

300 0.20 87.45 74.26 88.65 80.90 88.57 78.53

A
c
tu

a
l
p

100 0.05 67.86 67.61 78.53 72.54 73.01 72.40
100 0.13 81.49 74.10 87.32 77.66 83.78 74.63
100 0.20 85.95 75.18 90.65 77.08 87.63 74.05
200 0.05 69.71 67.43 79.00 75.58 73.48 71.84
200 0.13 81.66 75.57 88.17 78.27 84.15 78.28
200 0.20 86.39 72.91 90.85 80.02 88.51 77.67
300 0.05 69.27 70.04 79.07 76.23 73.99 73.30
300 0.13 81.84 72.73 88.13 80.22 84.40 78.00
300 0.20 86.65 74.26 91.10 80.90 88.49 78.53

Table 6.3. Extract of the results obtained in the comparison between PNB and DC-
Div. The results correspond to the datasets obtained from the ACCDON database.
The table shows the comparison of the F measure obtained with DCDiv and PNB
setting the p parameter at 0.25 (rows labelled as ‘p = 0.25’) and at the actual value
(rows labelled as ‘Actual p’). The column labelled as ‘NDp ’ indicates the cardinality
of Dp and the column labelled as ‘rat.’ denotes the ratio of positive cases in Du.
All the figures shown in this table are the average of the results obtained in the
fifty datasets built according to each scheme (dataset, cardinality of Dp and ratio of
positive cases in Du). The bold font indicates the winner in the comparisons where
significant differences at a significance level of 1% were found.
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comparison when p was set at the actual value. As can be seen in the table,
contrary to what is observed in the rest of the datasets, DCDiv outperforms
PNB in most of the experiments. This is due to the bad performance of the
PNB in these datasets, probably due to setting the p parameter at a very low
value (when it was set at 0.01 none of the unlabelled instances was classified
as positive, leading to a F measure of 0).

Table 6.3 shows the result of the comparison between DCDiv and PNB
in datasets obtained from the ACCDON database. The results obtained in
this comparison are very similar to those obtained in datasets based on Letter
Recognition. When p was set at 0.25 PNB only outperforms DCDiv when the
actual a priori probability is set at 0.20 (except in three sets where it also
wins when the actual probability was 0.13). When the actual value is used
PNB performs better than DCDiv in most of the datasets (in some datasets
there are no significant differences). As in the rest of the experiments, DCDiv
is significantly better than PNB when p was set at 0.50 (results not shown in
the table).

6.3 Conclusions

In this chapter we have presented a new model averaging algorithm (DCDiv)
that can be used in positive unlabelled learning problems to obtain a clas-
sification of the unlabelled instances. We have compared the performance of
DCDiv and PNB, one of the state of the art algorithms in the positive un-
labelled learning context. We have carried out the comparison in simulated
problems based on data of very different nature. From the comparison we can
conclude that DCDiv is a competitive algorithm in terms of performance. It
clearly improves PNB when p is set at 0.50 and, in many of the problems,
when it is set at 0.25. Even when the true value of p is used DCDiv out-
performs PNB or no significant differences are found in some datasets. This
is important because the actual value of p is generally unknown in real-life
problems and, thus, it is not possible to use it in the PNB algorithm.

If we look at the results we can see that DCDiv has a good performance
(compared to the PNB algorithm) specially when the actual value of p is
low. This has to do with the assumption that we made at the beginning
of this chapter. We are supposing that the number of positive cases in Du
is much lower than the number of negative examples. The lower the noise
(which is exactly, as we have defined it, the ratio of positive cases in Du), the
better the individual predictions will be and, thus, the better the algorithm
will separate the positive and negative instances. Conversely, if we set the
p parameter in the PNB algorithm at a very low value the final model will
classify very few instances as positive. This can be clearly seen in Table 6.2 in
those problems where the actual value of p is 0.01. The F measure obtained
with the classifier trained with p = 0.01 is 0 because the classifier classifies
all the instances as negative and, thus, the recall is 0. Thus, if we know that,
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in a particular problem, the ratio of positive cases to recover from the set of
unlabelled instances is very low, the DCDiv algorithm is a good option because
the noise is very low, while PNB will probably perform poorly because it will
recover very few positive examples.

Nevertheless, DCDiv has some problems. The main issue is that it is a
very time-consuming algorithm, as it has to build a model in each iteration. In
any of the presented experiments where the algorithm reached the maximum
number of iterations, 1,000 TAN models were learnt, compared to a single
naive Bayes model in PNB. The other main drawback of the DCDiv algorithm
is that, at the end, we have a classification of the unlabelled instances, and
not a classification function. An interesting line for the future would be how
to modify the algorithm to obtain one single classifier as output.





7

Positive Bayesian Network Classifiers

In previous chapters we have seen what the Bayesian network classifiers are,
and that the most simple of this sort of classifier, the naive Bayes (Minsky,
1961), has already been adapted to the positive unlabelled learning context
(Denis et al., 2002). What the authors propose in this work is a modification of
the classical naive Bayes induction algorithm (see Section 3.3.1) that infers the
model parameters from a set of positive and unlabelled examples. The basic
idea presented in this paper can be used to modify other Bayesian network
classifier induction algorithms to learn models without negative examples.

This chapter is devoted to the positive Bayesian network classifiers (PBC).
In the first part of this chapter we will see the concept introduced in Denis
et al. (2002) and how it can be extended to the induction of more complex
Bayesian network classifiers. As an example, the adaptation of the tree aug-
mented naive Bayes model induction algorithm (Friedman et al., 1997) will be
presented. The second part is devoted to the modellisation of the uncertainty
about the a priori probability of the positive class (as we will see later, setting
this parameter is the key issue in the PBCs). The last part of the chapter
shows the results obtained in the experimental evaluation of the proposed
algorithms.

7.1 Positive naive Bayes

The positive naive Bayes algorithm (PNB) (Denis et al., 2002)) is able to learn
naive Bayes models (Minsky, 1961) from a training dataset D of positive and
unlabelled examples (D = Dp ∪ Du). As we saw in Section 3.3.1, in a naive
Bayes model we assume that all the predicting variables are conditionally
independent given the class variable. Given this assumption, the parameters
we need to estimate are the conditional probabilities P (xij |c) and the a priori
probabilities of the class variable P (c). When the class variable C takes only
two values (0 and 1, negative and positive), the conditional probabilities can
be divided into two groups, P (xij |1) and P (xij |0). In the classical supervised
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induction algorithm, the first group of parameters is estimated by maximum
likelihood estimators from the set of positive examples, while the parameters
in the second group are estimated from the set of negative examples. The
a priori probability of the positive class (P (1), that from now on we will
represent as p for simplicity) is estimated from the whole dataset D.

In the positive unlabelled learning framework we have no negative ex-
amples and, thus, the parameters related to the negative class cannot be
estimated from D. Given that1 :

P (xij) = P (xij |1)p+ P (xij |0)(1 − p)

we have that P (xij |0) can be estimated as:

P (xij |0) =
P (xij) − P (xij |1)p

1 − p
(7.1)

where P (xij) can be estimated from the unlabelled instances as it does not
depend on the class2 . The p parameter (the a priori probability of the positive
class) cannot be estimated without negative examples and, thus, it has to be
introduced by the user. Indeed, this is the main drawback of the PNB, as
if we had the exact value of this a priori probability, the estimation of the
parameters would be exactly the same as in the supervised algorithm.

P (xij) can be estimated from the unlabelled instances as:

P (xij) =
NijDu
NDu

where NDu is the number of unlabelled instances and NijDu the number of
unlabelled instances where Xi = xij . Replacing this probability in Equation
(7.1), we have that:

P (xij |0) =
NijDu − P (xij |1)pNDu

(1 − p)NDu

The problem with this estimator is that it can be negative because, al-
though P (xij) ≥ P (xij |1)p, the bias in the estimation of these probabilities
can lead to situations where the estimation of P (xij |1)p is greater than the
estimation of P (xij), yielding a negative estimation of P (xij |0). To solve this

1 As in positive unlabelled learning problems there are only two classes, from now
on we will assume that the class C is a binary random variable. 0 and 1 will
represent the negative and the positive class respectively

2 We assume that the unlabelled instances are a random sample of the probability
distribution that originated the data where the labels of the instances are lost
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problem, Denis et al. (2002) propose to replace the negative estimations by
zero and then normalise the probabilities so that for each predicting variable
Xi,

∑ri
j=1 P (xij |0) = 1. We can define the normalisation factor Zi for the

predicting variable Xi as:

Zi =

ri
∑

j=1

max

(

0;
NijDu − P (xij |1)pNDu

(1 − p)NDu

)

After the normalisation, the estimator of the probabilities related with the
negative class would be:

P (xij |0) =
max(0;Ri(j))

1
Zi

(1 − p)NDu

Ri(j) = NijDu − P (xij |1)pNDu

Finally, if we take the Laplace correction into account, we have that:

P (xij |0) =
1 +max(0;Ri(j))

1
Zi

ri + (1 − p)NDu

(7.2)

verifying that
∑ri

j=1 P (xij |0) = 1.
To summarise, the PNB algorithm estimates the parameters of a naive

Bayes model as follows:

• P (xij |1) is estimated from the positive examples
• P (xij |0) is estimated using Equation (7.2).
• p is a parameter of the algorithm.

As we have pointed out, setting the p parameter is the main drawback of
this algorithm as, in general, we do not know the a priori probability of the
positive class (though some information can be available).

7.2 Positive tree augmented naive Bayes

In the previous section we have seen how the parameters of a two class naive
Bayes model can be estimated from a set of positive and unlabelled examples.
In this section, as part of the contributions of this dissertation, we will see how
this idea can be extended to the induction of more complex Bayesian network
classifiers. As an example, the extension to the TAN models (Friedman et al.,
1997), that we have named positive tree augmented naive Bayes algorithm
(PTAN), will be presented.

Unlike the naive Bayes model where the structure is fixed, the induction
of TAN models implies a structural learning step where the tree structure of
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conditional dependencies between predicting variables is inferred (see Section
3.3.2). Thus, in order to learn TAN models from positive and unlabelled ex-
amples, we need to adapt not only the parametric learning as in the case of
the PNB algorithm, but also the structural learning of the model.

The generalisation of the parametric learning introduced in this section
can be applied to any Bayesian network classifier, provided that the class
variable is parent of all the predicting variables. Regarding the structural
learning, any other algorithm based on mutual information, such as the k-DB
algorithm (Sahami, 1996), could also be adapted to the positive unlabelled
learning context using the concepts introduced in this section.

7.2.1 Structural learning

In the original TAN model induction algorithm (Friedman et al., 1997), the
structural learning step takes as input the dataset D and outputs a tree struc-
ture that represents the conditional dependencies between pairs of predicting
variables. As we saw in Section 3.3.2, the induction of the tree structure is
based on an adaptation of the Chow-Liu algorithm (Chow and Liu, 1968) pro-
posed by Friedman et al. (1997). This algorithm is based on the conditional
mutual information computed for each pair of predicting variables given the
class. The conditional mutual information between two variablesXi, Xk given
the class C, I(Xi, Xk|C), can be computed as:

ri
∑

j=1

rk
∑

l=1

1
∑

c=0

P (xij , xkl, c)
P (xij , xkl|c)

P (xij |c)P (xkl|c)
=

ri
∑

j=1

rk
∑

l=1

P (xij , xkl, 1)
P (xij , xkl|1)

P (xij |1)P (xkl|1)
+

ri
∑

j=1

rk
∑

l=1

P (xij , xkl, 0)
P (xij , xkl|0)

P (xij |0)P (xkl|0)

As we saw in the previous section, the probabilities conditioned to the
positive class can be obtained by maximum likelihood estimators from the set
of positive cases Dp, but neither the probabilities related with the negative
class nor P (xij , xkl, 1) can be estimated from D. On one hand, we have that
P (xij , xkl, 1) can be expressed as a function of the p parameter as:

P (xij , xkl, 1) = P (xij , xkl|1)p

On the other hand, we have that:
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P (xij , xkl) = P (xij , xkl, 0) + P (xij , xkl, 1)

P (xij , xkl, 0) = P (xij , xkl) − P (xij , xkl, 1)

Regarding the probabilities conditioned to the negative class, P (xij |0) and
P (xkl|0) can be estimated by means of Equation (7.2). Equation (7.1) can be
generalised as:

P (xij , xkl|0) =
P (xij , xkl) − P (xij , xkl|1)p

1 − p

P (xij , xkl) =
NijklDu
NDu

where NijklDu is the number of unlabelled instances where Xi = xij and
Xk = xkl. The estimator of P (xij , xkl|0) can be negative so we proceed as
in the previous section replacing the negative estimations by zero and then
normalising. After the normalisation and applying the Laplace correction we
have that P (xij , xkl|0) can be estimated as:

P (xij , xkl|0) =
1 +max(0;Rik(jl))

1
Zik

rirk + (1 − p)NDu

(7.3)

Rik(jl) = NijklDu − P (xij , xkl|1)pNDu

Zik =

ri
∑

j=1

rk
∑

l=1

max(0;Rik(jl))

(1 − p)NDu

With the estimators proposed in this section and the estimator defined in
Equation (7.2) we can compute the conditional mutual information between
pairs of predicting variables given the class without negative examples as
follows:

I(Xi, Xk|C) =

ri
∑

j=1

rk
∑

l=1

P (xij , xkl|1)p
P (xij , xkl|1)

P (xij |1)P (xkl|1)
+

ri
∑

j=1

rk
∑

l=1

(P (xij , xkl) − P (xij , xkl|1)p)
[P (xij , xkl) − P (xij , xkl|1)p](1 − p)

[P (xij) − P (xij |1)p][P (xkl) − P (xkl|1)p]

Once we have the conditional mutual information between every pair of
predicting variables we can apply Friedman et al.’s algorithm to obtain the
structure of the TAN model.

7.2.2 Parametric learning

Once the structure of the model has been induced, the model has to be com-
pleted with the parameters. As we saw in Chapter 3, the parameters of a
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Bayesian network classifier are the a priori probabilities of the class variable
(P (c)) and the conditional probabilities P (xij |pai) ∀i, j,pai, i. e., the proba-
bility that Xi = xij given the variable parents Pa(Xi) = pai. In a Bayesian
network classifier the class variable is parent of all the predicting variables, so
we can decompose the set of parents as:

Pa(Xi) = {C,Pa∗(Xi)}

Pa∗(Xi) = Pa(Xi) \ C

Given the decomposition the parameters of a Bayesian network classifier
can be expressed as P (xij |c,pa∗

i
) and, thus, we can divide them into two

groups, P (xij |1,pa∗

i
) and P (xij |0,pa∗

i
). The former can be estimated from

the positive examples, but the latter cannot be estimated from D because we
lack negative examples. Following the same steps shown in Section 7.1 we can
see that:

P (xij |0,pa∗

i
) =

P (xij |pa∗

i
) − P (xij |1,pa∗

i
)p

1 − p

=
N
ijpa∗

i
Du

− P (xij |1,pa∗

i
)pNpa∗

i
Du

(1 − p)Npa∗

i
Du

where N
ijpa∗

i
Du

is the number of unlabelled instances where Xi = xij and

Pa∗(Xi) = pa∗

i
. As in the case of the PNB, the negative estimations are re-

placed by zero, the probabilities are normalised so as to sum 1 and the Laplace
correction is applied. Therefore, the estimator of the parameters conditioned
to the negative class for the general case of a Bayesian network classifier can
be expressed as:

P (xij |0,pa∗

i
) =

1 +max(0;R∗
i (j))

1
Z∗
i

ri + (1 − p)Npa∗

i
Du

(7.4)

R∗
i (j) = N

ijpa∗

i
Du

− P (xij |1,pa∗

i
)pNpa∗

i
Du

Z∗
i =

ri
∑

j=1

max(0;R∗
i (j))

(1 − p)Npa∗

i
Du

This generalisation of the parametric learning can be used to estimate
the parameters of any Bayesian network classifier. Combining the parametric
learning shown in this section with the structural learning presented in Section
7.2.1 we can induce TAN models from positive and unlabelled examples. We
have named this algorithm positive tree augmented naive Bayes (PTAN).
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Fig. 7.1. Examples of different Beta distribution shapes.

7.3 Bayesian approach to the uncertainty in the p

parameter

In the first part of this chapter we have seen how some binary Bayesian net-
work classifiers can be induced without negative examples. The parameters
related with the negative class can be estimated using the unlabelled instances
and the parameters related with the positive class, but all the proposed equa-
tions depend on the p parameter. Setting this parameter is the main drawback
of these algorithms, as this probability cannot be obtained without negative
examples and is generally unknown. Nevertheless, in some situations, some
information about the a priori probability of the positive class may be avail-
able.

In this section we will present a Bayesian approach to integrate the in-
formation we have about the a priori probability of the positive class in the
model induction process. In this approach the uncertainty about the p param-
eter is modelled by means of a Beta distribution (see Figure 7.1) and then the
estimators defined in Sections 7.1 and 7.2 are averaged over all the possible
values of p weighted according to their probability.



86 7 Positive Bayesian Network Classifiers

Given that C follows a Bernouilli distribution with parameter p, a sample
of size N of the class variable follows a Binomial distribution with parameters
N, p. Therefore, we have modelled the a priori probability of p as a Beta
distribution as this probability distribution is the conjugate to the Binomial
distribution (Bernardo and Smith, 2000).

As an example of the averaging process, we will show how the estimator
defined in Equation (7.2) can be averaged over all the possible values of the p
parameter. The density function of the Beta distribution is defined as follows:

Beta(p;α, β) =
Γ (α+ β)

Γ (α)Γ (β)
pα−1(1 − p)β−1

Γ (x) =

∫ ∞

0

tx−1e−tdt

p ∈ [0, 1];α, β > 0

The estimator in Equation (7.2) depends on p, so we can integrate it over
all the possible values of p as:

P (xij |0) =

∫ 1

0

P (xij) − P (xij |1)p

1 − p
P (p)dp

=

∫ 1

0

P (xij) − P (xij |1) · p

1 − p

Γ (α+ β)

Γ (α)Γ (β)
pα−1(1 − p)β−1dp

we can separate the integral into two terms:

P (xij |0) =

∫ 1

0

P (xij)Γ (α+ β)

Γ (α)Γ (β)
pα−1(1 − p)β−2dp

−

∫ 1

0

P (xij |1)Γ (α+ β)

Γ (α)Γ (β)
pα(1 − p)β−2dp

and thus, we have that:

P (xij |0) =

∫ 1

0

P (xij)Γ (α+ β)Γ (β − 1)

Γ (α+ β − 1)Γ (β)
Beta(p;α, β − 1)dp

−

∫ 1

0

P (xij |1)Γ (β − 1)Γ (α+ 1)

Γ (β)Γ (α)
Beta(p;α+ 1, β − 1)dp

Taking the factors that do not depend on p out of the integrals, we have
the integral over all the possible values of a Beta distribution with parameters
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(α, β− 1) in the first term and (α+1, β− 1) in the second one, both of which
are equal to one. Thus, we have that:

P (xij |0) =
P (xij)Γ (α+ β)Γ (β)

β−1

Γ (α+β)
α+β−1 Γ (β)

−
P (xij |1)Γ (β)

β−1 αΓ (α)

Γ (β)Γ (α)

=
P (xij)(α + β − 1)

β − 1
−
P (xij |1)α

β − 1

Therefore, we can estimate the probabilities related to the negative class
as:

P (xij |0) =
α(P (xij) − P (xij |1)) + (β − 1)P (xij)

β − 1
(7.5)

The problem again is that this estimator can be negative. We can solve
it by replacing the negative estimations by a small number, 1

ri
, and then

normalise so that the probabilities sum 1. We have named averaged PNB
(APNB) to the naive Bayes model induction algorithm that estimates the
parameters related with the negative class from Equation (7.5).

In order to apply this Bayesian approach to the TAN model induction we
need to obtain the averaged version of all the estimators proposed in Section
7.2. Following the steps presented in this section we can conclude that:

P (xij , xkl|0) =
α(P (xij , xkl) − P (xij , xkl|1)) + (β − 1)P (xij , xkl)

β − 1
(7.6)

P (xij |0,pa∗

i
) =

α(P (xij) − P (xij |1,pa∗

i
)) + (β − 1)P (xij)

β − 1
(7.7)

As in the previous estimator, negative estimations are replaced by a small
number ( 1

rirj
in Equation (7.6) and 1

ri
in Equation (7.7)) and then normalised.

The last estimator to average is P (xij , xkl, 1), which we saw that can be
expressed as P (xij , xkl|1)p. Given that P (xij , xkl|1) does not depend on p,
the averaged estimator can be obtained by just replacing p by its expected
value:

P (xij , xkl, 1) = P (xij , xkl|1)
α

α+ β

Given these averaged estimators we can induce, by means of the algorithm
of Friedman et al. (1997), a TAN model from only positive and unlabelled
examples. We have named this algorithm averaged PTAN (APTAN).
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Fig. 7.2. Example of a mixture of Beta distributions. The upper part shows the
components of the mixture and the lower part the desnisty function of the mixture.

7.3.1 Generalisation of the averaged estimators

At the beginning of this section we have seen how the uncertainty about the
p parameter can be modelled by means of a Beta distribution. This gives us
more flexibility to introduce the information we may have about the a priori
probability compared to just setting p at a given value. This flexibility can
be increased by generalising the modellisation of the uncertainty about p to
a mixture of Beta distributions (see Figure 7.2).

The definition of a probability distribution made of a mixture of b Beta
distributions is as follows:
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f(p; α,β,ω) =

b
∑

i=1

ωi
Γ (αi + βi)

Γ (αi)Γ (βi)
pαi−1(1 − p)βi−1

Γ (x) =

∫ ∞

0

tx−1e−tdt

b
∑

i=1

ωi = 1

α = {α1, . . . , αb},β = {β1, . . . , βb}

p ∈ [0, 1]; ∀i, αi, βi, ωi > 0

The generalisation of the averaged estimator defined in Equation 7.1 would
be:

P (xij |0) =

∫ 1

0

P (xij |0)
b

∑

s=1

ωs
Γ (αs + βs)

Γ (αs)Γ (βs)
pαs−1(1 − p)βs−1dp

=

b
∑

s=1

ωs
αs(P (xij) − P (xij |1)) + (βS − 1)P (xij)

βs − 1

and the rest of the estimators would be:

P (xij , xkl|0) =

b
∑

s=1

ωs
αs(P (xij , xkl) − P (xij , xkl|1)) + (βs − 1)P (xij , xkl)

βs − 1

P (xij |0,pa∗

i
) =

b
∑

s=1

ωs
αs(P (xij) − P (xij |1,pa∗

i
)) + (βs − 1)P (xij)

βs − 1

P (xij , xkl, 1) = P (xij , xkl|1)

b
∑

s=1

ωs
αs

αs + βs

In a reallife positive unlabelled learning problem we need some knowledge
about the a priori probability of the positive class. This knowledge has to be
provided by the experts in that particular topic. Modelling the uncertainty
about the p parameter by means of a probability distribution provides us with
a graphical tool that can be used by the experts to represent their knowledge
about this probability (they can draw a density function that represents what
they know about p). Depending on the shape of the density function repre-
sented by the experts, modelling it with a single Beta distribution can be
difficult. It is in such a situation that we can take advantage of the flexibil-
ity provided by a mixture of Beta distributions. For instance, if the available
knowledge about p is that it has to be less than 0.5, but it can take any value
below 0.5 with equal probability (a uniform distribution between 0 and 0.5),
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using a single Beta distribution we cannot properly model the uncertainty
about p, but using a mixture of Beta distributions we can approximate it as
shown in Figure 7.2.

7.4 Experimental evaluation of the PBC

The performance of the four induction algorithms described in this chapter
(PNB and our proposals, PTAN, APNB and APTAN) have been compared
in positive unlabelled learning problems obtained from real-life datasets (see
Section 5.1, version 2) and synthetic datasets sampled from TAN models (see
Section 5.2.1).

The induction algorithms were applied to each positive unlabelled learning
problem and then the accuracy and the F measure were computed given that
we actually know the label of the ‘unlabelled’ instances. In both PNB and
PTAN, p was set at 0.25, while in APNB and APTAN the parameters of
the Beta distribution were set at α = 4.4 and β = 13.17 (resulting in an
expected p of 0.25 and a variance of 0.01, see Figure 7.1). In many positive
unlabelled learning problems the amount of examples to recover from the
set of unlabelled instances (the positive cases) is smaller than the amount
of instances in that set that we are not interested in (negative cases). Thus,
the a priori probability of the positive class, p, should be lower than 0.5.
Without further information (i.e., assuming that any value under 0.5 is equally
probable) the most reasonable value for this parameter is 0.25 (the expected
value in a uniform distribution over [0,0.5]). This is the reason why p was set
at 0.25 in PNB and PTAN algorithms and α and β were set at 4.4 and 13.17
respectively (see Figure 7.1) in APNB and APTAN algorithms.

For each cardinality of Dp and each ratio of positive cases in Du we have
100 different sets of positive and unlabelled examples. The significance of the
differences between the performance of the algorithms was assessed by means
of Wilcoxon paired tests, setting the significance level at 1%.

7.4.1 PNB vs APNB

If we have a look at Equations (7.1) and (7.5) we can see that both are quite
similar. Actually, if we divide the numerator and the denominator in Equation
(7.5) by α+ β − 1, we have:

P (xij |0) =
[(α+ β − 1)P (xij) − αP (xij |1)] 1

α+β−1

(β − 1) 1
α+β−1

=
P (xij) −

α
α+β−1P (xij |1)

1 −
(

α
α+β−1

)



7.4 Experimental evaluation of the PBC 91

ACCDON - F measure
AccCod AccInt AccMix DonCod DonInt DonMix

NDp
rat. PNB APNB PNB APNB PNB APNB PNB APNB PNB APNB PNB APNB

100 0.01 11.49 11.90 10.42 10.01 11.57 10.99 08.80 09.38 10.15 08.97 10.17 08.86
100 0.10 67.21 66.26 58.85 58.04 62.70 61.71 66.79 64.36 64.16 62.55 65.79 63.94
100 0.20 83.86 83.46 75.33 75.16 79.05 78.83 84.32 84.07 80.98 80.85 82.61 82.42
100 0.30 86.94 87.18 79.81 80.09 82.83 83.08 85.74 86.24 83.31 83.80 84.41 84.93

100 0.40 84.38 84.97 78.17 78.77 80.86 81.45 81.21 82.11 79.22 80.03 79.91 80.76

100 0.50 78.55 79.35 72.61 73.46 74.93 75.80 71.66 72.85 70.12 71.22 70.65 71.88

200 0.01 11.39 12.26 10.67 10.26 11.70 11.12 08.02 09.45 10.16 08.80 10.19 08.86
200 0.10 68.59 66.91 59.88 59.01 63.69 62.66 67.77 65.25 64.68 62.95 66.39 64.45
200 0.20 85.22 84.86 77.10 76.85 80.65 80.38 85.37 85.15 82.40 82.26 83.80 83.62
200 0.30 88.88 89.02 82.47 82.64 85.41 85.58 87.08 87.60 84.52 84.99 85.55 86.07

200 0.40 87.49 87.95 82.09 82.56 84.47 84.97 82.83 83.66 81.07 81.78 81.77 82.59

200 0.50 82.64 83.36 77.73 78.46 79.66 80.42 74.33 75.49 73.25 74.36 73.13 74.38

300 0.01 11.37 12.32 10.73 10.30 11.78 11.19 07.97 09.42 10.15 08.82 10.17 08.84
300 0.10 68.77 67.12 59.93 59.12 63.73 62.68 67.80 65.22 64.75 62.96 66.69 64.64
300 0.20 85.34 84.96 77.53 77.27 80.85 80.54 85.59 85.32 82.57 82.43 84.09 83.89
300 0.30 89.05 89.21 82.85 83.02 85.63 85.81 87.16 87.73 84.59 85.14 85.63 86.22

300 0.40 87.79 88.26 82.52 82.98 85.08 85.55 83.05 83.86 81.36 82.10 81.88 82.64

300 0.50 83.13 83.85 78.41 79.16 80.53 81.26 74.80 75.98 73.77 74.81 73.90 75.09

Table 7.1. Extract of the results obtained in the comparison between the PNB
and the APNB algorithms. The results correspond to the F measure obtained on
datasets based on the ACCDON database. The column labelled as ‘NDp ’ indicates
the cardinality of Dp and the column labelled as ‘rat’. denotes the ratio of positive
cases in Du. All the values shown in this table are the average of the results obtained
in the 100 datasets built according to each scheme. Bold font indicates the winner
when differences were significant at a level of 1%.

which is exactly Equation (7.1) when p = α
α+β−1 . Thus, we can conclude that

the APNB is equivalent to a PNB with a p slightly greater than its expected
value according to the Beta distribution (the expected value of a Beta(α, β)
is α

α+β ).
In the case of our experimentation, where α was set to 4.4 and β at 13.17,

the APNB is equivalent to a PNB with p set at 0.266. Given that p was set in
the PNB algorithm to 0.25 we should not expect big differences in the results
obtained by both algorithms. This can be clearly seen in Table 7.1, where the
results of the comparison between PNB and APNB on datasets based on the
ACCDON database are shown. Even if the differences are very small, in most
of the experiments they were significant at a significance level of 1%. Similar
results were obtained on the rest of the datasets used in the experimentation.

Given that the APNB is equivalent to a PNB where p is set at a value
greater than the mean value of the Beta distribution, we should expect the
APNB to outperform the PNB algorithm in those problems where the actual p
is greater that 0.25 (and thus closer to the 0.266 value of the APNB) and vice
versa. This is empirically confirmed in some of the datasets (those based on
ACCDON and Letter Recognition databases), where PNB improves APNB
for datasets where p ≤ 0.2, while APNB outperforms PNB when p ≥ 0.3
(except for some datasets where p = 0.01).
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(a) PNB vs. APNB (b) PNB vs. PTAN

(c) PNB vs. APTAN (d) APNB vs. PTAN

(e) APNB vs. APTAN (f) PTAN vs. APTAN

Fig. 7.3. Comparison between positive Bayesian network classifier induction al-
gorithms. The charts show, for the datasets obtained from each original database
(ACCDON, Letter Recognition, Nursery and Synthetic Data), the ratio of the prob-
lems where each algorithm beats the other (in terms of the F measure) and the ratio
of datasets where no significant differences were found at a significance level of 1%. It
is important to point out that the amount of problems obtained from each database
is not the same (108 for ACCDON, 72 for Letter Recognition, 18 for Nursery and
216 for Synthetic Data).

Having a look at the F measure (Figure 7.3) obtained in datasets based on
the Nursery database (detailed results in Appendix B), we can see something
similar (when p is small PNB gives better results), but the change is not at
0.25 but at a lower value (APNB improves PNB in datasets where p ≥ 0.2).
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Fig. 7.4. Comparison between the results obtained by the PNB and the PTAN
algorithms in some of the datasets sampled from TAN models. The results displayed
correspond to the different datasets sampled from the ‘hierarchical 1’ and the ‘mixed’
structures with size of the unlabelled examples of 10,000.

On the other hand, in datasets obtained from TAN models, PNB outperforms
APNB only in a few datasets where p is set at 0.01. This is reflected in Figure
7.3-a, where we can see that for ACCDON and Letter Recognition PNB beats
APNB in approximately half the datasets, while APNB outperforms PNB in
most of the datasets sampled from TAN models.

Regarding the accuracy, the results are very similar to those obtained for
the F measure, except for the datasets sampled from TAN models, where the
situation is inverted (PNB outperforms APNB in most of the datasets). This
can be explained by the fact that PNB classifies more instances as negative
and, given that most of the cases are negative, it improves APNB in accuracy,
but not in the F measure (note that this measure gives an idea of the recovery
of positive cases). The complete set of results (including the comparisons of
the accuracies) can be consulted in Appendix B.

7.4.2 (A)PNB vs (A)PTAN

The goal of extending the PNB algorithm to the induction of more complex
networks is the need for algorithms that allow us to learn, from positive and
unlabelled examples only, models that are able to capture the dependencies
between variables. Thus, the comparison of these two types of algorithms
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Synthetic datasets - F measure

Lined Hierarchical 1 Hierarchical 2 Mixed

NDp rat. APNB APTAN APNB APTAN APNB APTAN APNB APTAN

100 0.01 0.1046 0.1194 0.0743 0.1182 0.0985 0.1061 0.0866 0.1213

100 0.1 0.3234 0.3876 0.3623 0.4439 0.3169 0.3723 0.3018 0.4397

100 0.2 0.3147 0.4159 0.3221 0.4863 0.3275 0.4074 0.3009 0.4609

100 0.3 0.2497 0.3730 0.2784 0.4962 0.2592 0.4029 0.2528 0.4059

100 0.4 0.2366 0.3786 0.2667 0.4825 0.2399 0.3430 0.2447 0.4198

100 0.5 0.2336 0.3421 0.2498 0.3929 0.2390 0.3313 0.2450 0.3749

1,000 0.01 0.1051 0.1151 0.0750 0.1155 0.0950 0.1066 0.0879 0.1169

1,000 0.1 0.3290 0.3895 0.3592 0.4416 0.3155 0.3732 0.3081 0.4275

1,000 0.2 0.3074 0.4175 0.3130 0.4781 0.3260 0.4045 0.3100 0.4494

1,000 0.3 0.2499 0.3766 0.2743 0.4923 0.2643 0.4014 0.2473 0.4048

1,000 0.4 0.2292 0.3854 0.2699 0.4839 0.2284 0.3423 0.2497 0.4178

1,000 0.5 0.2330 0.3439 0.2490 0.3961 0.2391 0.3305 0.2436 0.3738

10,000 0.01 0.1072 0.1179 0.0747 0.1163 0.0988 0.1059 0.0875 0.1183

10,000 0.1 0.3281 0.3840 0.3590 0.4410 0.3102 0.3738 0.3042 0.4279

10,000 0.2 0.3012 0.4201 0.3156 0.4843 0.3226 0.4083 0.3006 0.4572

10,000 0.3 0.2460 0.3794 0.2723 0.4933 0.2649 0.3980 0.2532 0.4034

10,000 0.4 0.2301 0.3838 0.2705 0.4771 0.2238 0.3443 0.2438 0.4132

10,000 0.5 0.2373 0.3438 0.2537 0.3942 0.2441 0.3296 0.2298 0.3753

Table 7.2. Extract of the results obtained in the comparison between the APNB and
APTAN algorithms. The results correspond to the F measure obtained on datasets
sampled from TAN models. The column labelled as ‘NDp ’ indicates the cardinality of
Dp and the column labelled as ‘rat.’ the ratio of positive cases in Du. In all the rows
the number of unlabelled examples was 1,000. All the results shown in this table
are the average of the results obtained in the 100 datasets built according to each
scheme. The bold font indicates the winner in the comparisons where differences at
a significance level of 1% were found.

should be made in problems where we are sure that there are conditional
dependencies between predicting variables. The datasets described in Section
5.2.1 have been sampled from TAN models to ensure this point and, thus, the
results we are interested in this section are those obtained on the synthetic
datasets. Table 7.2 and Figure 7.4 show an extract of these results.

From the results obtained in the comparison of the classifier induction al-
gorithms in datasets sampled from TAN models, we can conclude that both
PTAN and APTAN clearly outperform PNB and APNB in problems where
there is an underlying tree structure of dependencies between predicting vari-
ables.

Figures 7.3-b to 7.3-e show the summary of the results obtained in the
comparisons. We can clearly see in these four charts that our extensions to
the induction of TAN models outperform the naive Bayes induction algorithms
in most of the synthetic datasets (last column in each chart).

If we have a look at the results obtained in the real-life datasets, (A)PNB
give better results in some datasets and (A)PTAN in others.
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In a real situation it is difficult to know which kind of model (naive Bayes
or TAN) gives better results, but TAN models give us additional information
regarding the relationship between variables while it keeps the number of pa-
rameters at check. If we know that it is very likely that there are (strong)
dependencies between predicting variables in our problem, then TAN induc-
tion algorithms will provide us with more realistic models than naive Bayes
induction algorithms.

7.4.3 PTAN vs APTAN

In Section 7.4.1 we have seen that APNB is equivalent to PNB when p is set
at a value slightly higher than the expected value of the Beta distribution and,
as a consequence, the results obtained in certain datasets are very similar and
show a characteristic pattern. The comparison between PTAN and APTAN is
not that straightforward, as the averaging process includes the estimation of
the conditional mutual information and, thus, the learning of the structure of
the model. This is reflected in the results (see Figure 7.3-f), where no apparent
pattern can be found. PTAN yields better results for certain datasets (those
based on acceptor sites and synthetic data), APTAN improves the results
obtained by PTAN in other datasets (those based on donor sites and Nursery
database), and no significant differences can be found in the rest (those based
on Letter Recognition database).

7.5 Conclusions

In this chapter we have seen that the concept behind the PNB algorithm can
be successfully extended to more sophisticated Bayesian classifiers. We have
shown how to extend it to TAN models, but other induction algorithms could
be adapted to the positive unlabelled learning context following a similar
procedure. The resulting algorithm (PTAN) has been tested in datasets with
an underlying tree structure of conditional dependencies, showing a significant
improvement with respect to PNB.

We have also proposed a new Bayesian approach to handle the p parameter
that models its uncertainty by means of a Beta distribution. In the empirical
comparison between APNB and PNB we have seen that our averaged version
outperforms the original algorithm in most of the datasets. In the case of
PTAN and APTAN, the comparison is not so clear and, depending on the
dataset, PTAN or APTAN yields better results (or no significant differences
are observed).

In real-life problems, where the real value of the a priori probability of the
positive class is not known, it is not possible to decide whether the normal or
the averaged version of the classifiers will build better models. The advantage
of the averaged version is that, thanks to the Beta distribution, it provides
a more flexible way to incorporate the a priori knowledge about the problem
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domain (this flexibility can be increased using a mixture of Beta distributions
in the modellisation of the uncertainty about p).

In future developments of the work presented in this chapter it would be
interesting to extend the family of positive Bayesian network classifiers to
k-DB models (Sahami, 1996).



8

Wrapper positive Bayesian network classifiers

In the previous chapter we have shown how the positive Bayesian network
classifiers can be learnt from positive and unlabelled instances. The main
drawback of these algorithms is that we have to set the a priori probability of
the positive class p as it cannot be estimated from data. We have seen that
the uncertainty about this parameter can be modelled by means of a Beta
probability distribution (or a mixture of them). This provides a more flexible
way to introduce any previous knowledge about this parameter but does not
solve the problem when no knowledge is available.

In this chapter we propose a wrapper approach to the problem of set-
ting the p parameter in positive Bayesian network classifiers. This wrapper
approach requires a way of evaluating or, at least, comparing classifiers in
the positive unlabelled learning context. To the best of our knowledge, the
only work that proposes a way to compare classifiers in absence of negative
instances is Lee and Liu (2003). In this work the authors propose a metric to
compare classifiers which is related with the geometric mean of the precision
and the recall.

In the following section we will show how the actual F measure can be
estimated with positive and unlabelled examples. Unfortunately this estima-
tion depends on the p parameter. We propose a new metric, the pseudo F,
which is proportional to the actual F measure and whose estimator does not
depend so much on p. Thus, we define the wrapper positive Bayesian network
classifiers (wPBC), where the p parameter is set at its optimal value (in terms
of the F measure) estimated using either the metric proposed in Lee and Liu
(2003) or the pseudo F. The classifiers trained using each of these two metrics
are compared in datasets based on real-life problems (see Section 5.1).

8.1 F measure in the positive unlabelled learning context

One of the main problems in the positive unlabelled learning context is the
evaluation of the classifiers. The absence of negative examples makes it im-
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possible to estimate almost any of the classical performance measures (indeed,
the only one we can estimate is the recall, as it is only concerned about the
positive examples). All the performance measures, such as the accuracy, the
classification error or the F measure, are estimated using the information con-
tained in the confusion matrix. In binary classification problems this matrix
summarises the performance of the classifier into four values: True positives
(TP, the number of positive cases correctly classified), true negatives (TN, the
number of negative cases correctly classified), false positive (FP, the number
of misclassified negative cases) and false negative (FN, the number of misclas-
sified positive cases). If no negative examples are available only the TP and
the FN can be computed and, thus, only the recall can be estimated (for the
definition of the performance measures see Section 2.2).

From a probabilistic point of view the recall is the probability that a
positive case is correctly classified as positive by the classification function
and the precision is the probability that an instance that has been classified
as positive is actually positive. Thus, we have that:

r = P (ψ(x) = 1|C = 1)

pr = P (C = 1|ψ(x) = 1)

If we take the Bayes rule into account, we have that:

pr = P (C = 1|ψ(x) = 1) =
P (ψ(x) = 1|C = 1)p

P (ψ(x) = 1)
(8.1)

where P (ψ(x) = 1) is the probability that the classifier classifies an instance
as positive. As we have the classification function this probability can be
obtained by classifying all the possible instances and then obtaining the ratio
of instances classified as positive1 .

In Section 2.2 we saw that the F measure is defined as:

F (r, pr) =
2rpr
r + pr

(8.2)

Mixing Equations (8.2) and (8.1) we have that:

F =
2r rp

P (ψ(x)=1)

r
(

1 + p
P (ψ(x)=1)

) =
2rp

P (ψ(x) = 1) + p
(8.3)

When only positive and unlabelled examples are available, the recall can
be estimated with a k-cv scheme by simply dividing the set of known positive

1 The feasibility of this calculation will depend on the number of possible instances.
When the exact value cannot be obtained other approaches should be used
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Fig. 8.1. Scheme of k-cv estimation of the recall in positive unlabelled learning
problems.

examples into k folds and then building a classifier with the unlabelled cases
and all the folds except one. The fold left out is then classified with the learnt
model and the recall is estimated as the ratio of cases that have been classified
as positive. Figure 8.1 shows the scheme of the k-cv estimation of the recall
from positive and unlabelled examples.

As we have the classification function ψ, P (ψ(x) = 1) can be computed
(or at least estimated). The problem is the p parameter. If we knew the a
priori probability of the positive class, then we could estimate the F measure
in positive unlabelled learning problems.

The problem with the estimator shown in Equation (8.3) is that it depends
on the p parameter. This dependence is mainly contributed by the p in the
numerator that makes the estimation proportional to the a priori probability
of the positive class. To partially solve the problem of the strong dependence
on the p parameter, we propose a new metric, the pseudo F (Fps), that is
proportional to the actual F measure, and is defined as follows:

Fps =
r

P (ψ(x) = 1) + p
(8.4)

This metric is proportional to the actual F measure and, thus, it behaves
in the same way as the F measure, but its estimation is less dependant on the
p parameter than the estimation of the actual F measure. Therefore, we can
use this metric to look for the p value that maximises the actual F measure
(from now on we will refer to this p as the optimal p).
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Lee and Liu (2003) propose a different metric based on the geometric mean
of the precision and the recall. This metric, that we will call the Lee metric
(Lm) is defined as:

Lm =
r · pr
p

Lm is proportional to the square of the geometric mean of the precision
and the recall. As it is, like the F measure, the mean of the precision and
the recall, it is supposed to behave in the same way as the F measure in the
sense that both increase and decrease with the precision and the recall. From
Equation (8.1) we have that:

P (C = 1|ψ(x) = 1)

p
=
P (ψ(x) = 1|C = 1)

P (ψ(x) = 1)
pr
p

=
r

P (ψ(x) = 1)

and thus:

Lm =
r · pr
p

=
r2

P (ψ(x) = 1)
(8.5)

The Lee metric is independent of the p parameter and, thus, it can be
estimated from positive and unlabelled examples. We can use this metric to
search for the p parameter that maximises the F measure, but the problem
is that what we are actually estimating is the p value that maximises the
geometric mean rather than the harmonic mean.

8.2 Wrapper positive Bayesian network classifiers

In the previous section we have seen that the Lee metric and our proposal,
the pseudo F measure, can be used to identify the p value that maximises
the average of the precision and the recall. Therefore, these metrics can be
used in a wrapper version of the positive Bayesian network classifiers (wPBC)
that, given a set of positive and unlabelled examples, build a classifier that
optimises the recovery of the positive cases (in terms of the F measure).

As there is only one parameter (p) to set in a wrapper way there is no
need for a search heuristic. Figure 8.2 shows the pseudo code of the wrapper
version of the PTAN (wPTAN) using the pseudo F measure as guiding metric.
The algorithm for the wPNB is similar, replacing the PTAN algorithm by the
PNB. Both algorithms can be used replacing the pseudo F measure by the
Lee metric.
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Parameters

ι := number of intervals
κ := number of rounds
pmin := minimum value of p
pmax := maximum value of p

Repeat κ times

p1 = pmin and pι = pmax

For all i = 2, · · · , ι− 1, pi = pi−1 +
pι−p1
ι

For all i = 1, · · · , ι build a model Mi using the PTAN algorithm and pi as the p parameter
For all Mi, i = 1, · · · , ι estimate the recall ri and P (ψMi (x) = 1)
For all Mi, i = 1, · · · , ι estimate the pseudo F measure as:

F ips =
ri

P (ψMi
(x)=1)+p

opt = argmaxi{F
i
ps}

If opt 6= 1
p1 = popt−1

If opt 6= ι
pι = popt+1

Output

Mopt is the wPTAN classifier

Fig. 8.2. Pseudo code of the wPTAN algorithm using pseudo F as the guiding
metric.

8.3 Experimental evaluation

We have tested the pseudo F and the Lee metric on synthetic datasets obtained
from known probability distributions. This allows us to compare these metrics
with the actual value of the F measure and compare their evolution as we
change the p parameter in PNB and PTAN.

The wrapper positive Bayesian network classifiers have been tested on
real-life based datasets, comparing their performance with that of PNB and
PTAN when p was set at 0.25 and at the actual value.

8.3.1 Comparison of the pseudo F and the Lee metric in synthetic
datasets

The synthetic datasets used to test the performance metrics are those de-
scribed in Section 5.2.3. These datasets have been obtained from empirical
distributions defined by all the possible instances along with their label. This
label was set according to different naive Bayes and TAN models. As we have
the whole set of possible instances labelled, given a classification function we
can obtain the exact value of the F measure.

We run the PNB and PTAN algorithms on these datasets setting the p
parameter at 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.95. For each
learnt classifier the recall was estimated using a 5 times 5-cv scheme. The
classifiers were used to obtain the prediction for all the possible instances.
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Fig. 8.3. Extract of the results obtained in the comparison between the pseudo F
(labelled as ‘pseudo’), the Lee metric (labelled as ‘Lee’), its square root (labelled as
‘geometric’) and the actual F measure (labelled as ‘actual’) in synthetic datasets.
The plots represent the metrics vs. the p parameter used in the training of the
classifiers.

From this classification P (ψ(x) = 1) was obtained as the ratio of instances
classified as positive. Given that we have the actual label of all these instances,
the confusion matrix was obtained and the actual value of the F measure was
estimated.

The pseudo F, the Lee metric and the square root of the Lee metric (which
is proportional to the geometric mean of the precision and the recall) obtained
with the classifiers learnt with different values of the p parameter have been
plotted and compared with the actual value of the F measure. Figure 8.3
shows some of the results obtained. The rest of the results can be consulted
in Appendix C.



8.3 Experimental evaluation 103

In this figure we can see that the F measure shows a maximum at a p
close to the actual a priori probability of the positive class2 . Indeed, in some
datasets the actual and the optimal p are the same (Figure 8.3-a and 8.3-d).
If we have a look at the results obtained (Appendix C) we can see that the
optimal p is always greater or equal to the actual p.

As can be seen in the figure, the shapes of the actual F measure and the
pseudo F measure, are very similar in all the plots. Indeed, not only have they
a maximum at approximately the same point, but they also have similar slopes
in the increasing and decreasing part of the plot. Regarding the Lee metric,
the first part of the curve (p from 0 to the optimal p) is very similar to the
actual F measure, but in the decreasing part (p from the optimal value to 1) it
has a slope smaller than that of the F measure. When the F measure decreases
quickly with p (after the optimal value) the Lee metric is able to identify the
optimal p, but when the decreasing rate of the actual F measure is smaller,
the Lee metric does not show a maximum in the optimal p. Nevertheless, if
not by means of a maximum, the Lee metric could be also used to identify
the optimal p looking at the elbow of the curve. Similar results were obtained
for the rest of the datasets (see Appendix C).

The pseudo F and the Lee metric allow us to estimate the optimal p.
Though this optimal value is not necessarily the actual a priori probability
of the positive class, it seems to be close. If we take this optimal p as an
estimation of the actual a priori probability we can obtain an estimation of
the actual F measure using Equation (8.3).

We have compared the actual F measure obtained by the classifiers trained
with p set at the optimal value (estimated using the pseudo F measure) with
the estimated F measure (i.e., 2p times the pseudo F measure of the classifier).
The results of the comparison can be seen in Table 8.1. There are several
questions to point out in this table. First of all, we can see that most of the
estimations have a negative bias3 . This makes sense if we take into account
that these estimations are based on the recall, which has been estimated using
a repeated k-cv scheme, which is known to have a negative bias. Nevertheless,
not all the estimations have a negative bias. Interestingly, the estimators with
a positive bias are those where the optimal p was set at 0.7 (and 0.6 in one of
the cases).

When estimating the F measure we have two contributions to the error.
On one hand, we have the bias in the estimation of the recall, that should
lead to estimations with a negative bias of the F measure. On the other hand,
we have the p. We are setting the p at the estimated optimal value, but, even
if we perfectly identify this optimal value, it is not necessarily the actual a
priori probability of the positive class. The bias in the estimation of p also
contributes to the error in the estimation of the F measure. Looking at the

2 Note that the actual p is not necessarily the one that maximises the F measure
3 We will consider the bias as the estimated value minus the actual value. Therefore,

a positive bias means that the estimated value is lower than the actual value
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Estimated vs. actual F measure

PNB PTAN

|Dp| Actual Est. popt Actual Est. popt

n
a
iv

e
B

ay
es

0
.1

9

33 66.71 42.78 0.20 56.74 36.59 0.20
164 74.74 44.19 0.20 73.39 43.91 0.20
328 75.39 45.39 0.20 76.96 46.57 0.20
1638 75.93 45.66 0.20 79.09 47.37 0.20
3277 76.12 45.78 0.20 79.26 47.69 0.20

0
.2

8

33 75.36 50.98 0.30 69.26 56.54 0.40
164 86.14 57.59 0.30 81.63 54.67 0.30
328 88.91 58.36 0.30 86.41 57.39 0.30
1638 92.33 60.82 0.30 92.80 61.75 0.30
3277 92.62 61.20 0.30 93.83 62.57 0.30

0
.4

5

33 66.25 77.28 0.70 62.51 80.86 0.70
164 70.91 78.97 0.70 68.17 69.10 0.60
328 77.88 70.03 0.60 71.36 70.53 0.60
1638 79.33 72.12 0.60 78.44 62.79 0.50
3277 79.38 72.17 0.60 79.37 64.29 0.50

T
A

N
0
.1

5

33 53.20 48.13 0.30 54.00 34.74 0.20
164 53.93 36.38 0.20 74.55 47.49 0.20
328 54.91 37.35 0.20 79.73 51.31 0.20
1638 55.78 37.53 0.20 83.40 54.42 0.20
3277 55.78 37.61 0.20 84.14 54.81 0.20

0
.3

0

33 60.13 65.22 0.50 56.50 39.88 0.30
164 66.44 57.00 0.40 74.60 50.14 0.30
328 67.40 57.62 0.40 79.01 51.84 0.30
1638 68.22 57.82 0.40 83.10 54.87 0.30
3277 68.36 58.28 0.40 83.47 55.17 0.30

0
.5

0

33 71.78 71.08 0.60 69.31 72.56 0.60
164 75.41 63.15 0.50 74.27 52.34 0.40
328 76.90 63.42 0.50 79.06 53.87 0.40
1638 78.12 63.97 0.50 83.90 56.97 0.40
3277 78.29 63.72 0.50 84.76 57.49 0.40

Table 8.1. Comparison between the actual and the estimated F measure in synthetic
datasets. The results shown in this table correspond to the classifiers obtained setting
the p at the optimal value estimated using the pseudo F measure. The column
labelled as |Dp| represents the size of the set of positive examples and the columns
labelled as ‘Actual’, ‘Est.’ and ‘popt’ represent the actual F measure, the estimated
F measure and the estimated optimal p.

results obtained in synthetic datasets (see Appendix C) we can see that the
optimal p is always greater or equal to the actual p. Therefore, the optimal
p can be considered as an estimator of the actual p with a positive bias.
This positive bias in the estimation of p compensates the negative bias in the
estimation of the recall. The final error in the estimation of the F measure is
a trade-off between these two components, which explains why we have some
estimations with negative biases and some estimations with positive biases
(and in between some estimations with almost no bias).
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In order to check the influence of the bias in the estimation of the recall,
we can look at those problems where the optimal p and the actual p are the
same. If we calculate the bias in these problems we can see that it ranges
between 25% and 30% in most of the cases. For the rest of the cases it is, in
general, lower than that, suggesting the contribution of the p in the final bias.

8.3.2 Performance of the wPBC in real-life based datasets

The wPBCs introduced in Section 8.2 have been tested in datasets based
on real-life problems. The datasets used for this experimental evaluation are
those described in sections 5.1.2.2, 5.1.3.2 and 5.1.4.2. The results obtained by
the wPBC (using the pseudo F and the Lee metric to estimate the optimal p)
have been compared with the results obtained when the probability was set at
0.25 and the actual value. In a real-life positive unlabelled learning problem
we do not know the class of the unlabelled instances and, thus, the only way
to have an estimation of the F measure is using Equation (8.3) but, given that
the datasets used in this experimentation have been obtained from completely
labelled databases we actually know which ‘unlabelled’ cases are positive and
which are negative. Thus, we can estimate the F measure directly from the
set of unlabelled instances (as we have done in Chapters 6 and 7). We have
used these estimations in the evaluation of the algorithms because they do
not depend on the p used in the training.

Figure 8.4 and Table 8.2 show some of the results obtained in the experi-
mental evaluation of the wPBCs. The complete set of results can be consulted
in Appendix D. Figure 8.4 represents the value of the pseudo F and the Lee
metric as a function of the p used in the search for the optimal p. The first two
plots are very similar to those obtained in synthetic datasets, showing a max-
imum close to the actual value of the a priori probability of the positive class,
but this behaviour cannot be seen in the lower two plots. In most of the plots
(see Appendix D) a maximum can be identified. As in the results obtained in
synthetic datasets, the estimation of the optimal p using the pseudo F tends
to be lower than the estimation using the Lee metric. Indeed, this can explain
curves such as those shown in Figures 8.4-c and 8.4-d, where it seems that
the maximum of the pseudo F is so close to the 0 that only the descending
part of the curve can be seen. Similarly, in some plots only the ascending part
of the Lee metric curve is observed. This suggests that the estimation of the
optimal p using the pseudo F measure has a negative bias, while using the Lee
metric it has a positive bias. This can also be observed in some of the results
obtained in synthetic datasets (see Appendix C).

Table 8.2 shows the comparison between the F measure obtained by the
wPBCs (using the pseudo F and the Lee metric) with the results obtained
setting p at 0.25 and the actual value. In a situation where we do not know
the actual value of the a priori probability of the positive class but we know
that the number of negative examples is greater than the number of positive
examples, 0.25 is the most reasonable value if we regard any value lower than
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Fig. 8.4. Extract of the results obtained in the comparison between the pseudo F
(labelled as ‘pseudo’) and the Lee metric (labelled as ‘Lee’) in real-life datasets. The
plots represent the metrics vs. the p parameter in the search for the optimal p in
the wPNB algorithm.

0.5 equally likely. It is important to notice that, due to the experimental
design, in some of the positive unlabelled learning problems the actual p is
very close to 0.25 and, thus, setting p at this value yields good (sometimes
the best) results. Regarding the use of the actual probability in the training
process, one can suppose that this is the best possible value and, indeed, it
is the one that gives the best overall results. Nevertheless, the actual p is not
always the one that leads to the best F measure as we have seen in Section
8.3.1. In addition, the actual p is generally unknown in real positive unlabelled
learning problems and, thus, it cannot be used in the training of the classifier.

The significance of the differences was assessed running Wilcoxon paired
tests (setting the significance level at 1%) on the results obtained in the 100
sets of positive and unlabelled examples sampled using each scheme (see Sec-
tion 5.1.2). In Table 8.2 we can see that, though in most of the datasets the
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Nursery F measure

wPNB PNB wPTAN PTAN

|Dp| rat. ps. Lee 0.25 actual Wlx. ps. Lee 0.25 actual Wlx.

100 0.01 32.17 3.10 17.40 0.00 19.48 2.97 15.31 15.76
100 0.10 63.27 26.03 70.66 31.94 63.39 24.30 68.41 51.00
100 0.20 68.83 43.30 74.14 62.96 69.10 40.49 76.87 70.64
100 0.30 75.15 54.37 67.92 77.20 c 72.95 51.41 71.56 78.69
100 0.40 77.30 62.58 56.57 83.09 75.86 60.67 57.87 81.71
100 0.50 78.42 71.00 43.09 86.33 75.87 68.59 46.69 82.32
200 0.01 31.10 16.47 18.93 0.00 23.07 18.54 16.09 15.86 b,d
200 0.10 59.40 57.91 72.95 32.22 e 65.85 61.08 69.09 55.82
200 0.20 67.52 71.51 76.81 65.07 e 62.06 75.52 81.62 77.04 d
200 0.30 73.67 78.32 69.87 80.14 d 77.21 76.63 78.13 83.90 a,b,e
200 0.40 76.57 83.55 58.35 86.32 75.88 82.48 65.09 86.86
200 0.50 79.22 83.81 42.15 88.99 72.41 82.97 49.45 87.92
300 0.01 33.22 19.06 19.47 0.00 b 26.57 20.02 16.07 16.85 d
300 0.10 69.89 60.30 74.19 31.47 a 68.11 64.92 69.27 57.74 a
300 0.20 74.78 77.23 77.86 65.76 b,e 76.92 78.54 82.64 79.65 a,d,e
300 0.30 79.38 82.58 70.38 81.17 c,e 77.76 82.58 80.91 85.66
300 0.40 82.44 85.82 58.21 87.58 82.01 85.35 67.97 88.54 e
300 0.50 82.87 86.71 41.97 90.04 82.54 88.22 50.56 89.04 d

Letter Recognition P

wPNB PNB wPTAN PTAN

|Dp| rat. ps. Lee 0.25 actual Wlx. ps. Lee 0.25 actual Wlx.

100 0.01 42.59 2.28 12.89 53.27 28.90 3.62 35.89 33.99 c
100 0.10 69.54 20.73 67.59 78.52 35.35 29.38 60.10 37.08 c
100 0.20 59.33 36.72 82.48 83.23 37.05 47.60 45.27 37.18 b,c
100 0.30 44.98 49.91 84.27 85.13 e 45.43 58.76 26.61 34.03
100 0.40 51.08 60.85 80.75 85.79 e 58.61 66.14 15.40 32.99
100 0.50 60.47 70.02 72.57 85.69 a,e 68.78 69.46 8.88 34.55 e
200 0.01 52.10 38.96 13.67 54.26 54.08 22.32 29.90 54.96 c
200 0.10 74.79 74.16 68.02 80.60 e 60.20 45.05 75.64 67.27
200 0.20 64.90 80.90 83.90 84.85 b 71.25 56.03 72.18 66.91 a
200 0.30 54.06 84.22 87.35 87.51 72.96 64.44 59.81 65.87 d
200 0.40 57.71 81.57 86.52 88.57 75.87 70.40 44.10 64.57
200 0.50 67.68 83.65 82.63 89.69 75.04 75.17 31.21 63.19 e
300 0.01 53.94 53.94 14.25 53.94 c,d,e 61.88 56.56 27.80 63.56 c,e
300 0.10 76.89 77.09 69.42 81.49 e 52.57 54.85 77.73 75.82 e
300 0.20 66.69 71.01 84.60 85.78 61.77 62.83 79.31 76.44 e
300 0.30 44.49 73.40 87.78 87.99 72.93 70.81 72.72 76.20 a,c
300 0.40 48.64 83.79 87.73 89.42 80.11 74.59 63.96 76.83
300 0.50 68.41 83.58 85.19 90.39 b 81.89 77.90 50.62 75.89

Table 8.2. Extract of the comparison between the F measure obtained by wPNB
and wPTAN using the pseudo F (labelled as ‘ps.’) and the Lee metric (labelled
as ‘Lee’) to estimate the optimal p) and by PNB and PTAN when p was set at
0.25 (labelled as ‘0.25’) and the actual value (labelled as ‘actual’). The first column
indicates the cardinality of Dp and the second the ratio of positive cases in Du.
The significance of the differences was assessed running Wilcoxon paired tests on
the results obtained in the 100 problems sampled using each scheme. The column
labelled as ‘Wlx.’ indicates the comparisons where no differences were found at
significance level of 1% (‘a’ for the wrapper based on the pseudo F vs. p = 0.25; ‘b’
for wrapper based on Lee vs. p = 0.25; ‘c’ for wrapper based on pseudo vs. p set at
the actual value; ‘d’ for wrapper based on Lee vs. p set at the actual value and ‘e’
for the two wrapper approaches).

best results are obtained when p is set at the actual value, in other datasets the
wrapper algorithms provide the highest F measure or no significant differences
can be found with the best classifier. In particular, the wPTAN outperforms
the PTAN in many datasets even when p is set at its actual value, specially
in datasets sampled from the Letter Recognition database. Having a look at
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the plots obtained for wPTAN in these problems we can see that in most of
the cases only the ascending part of the curve can be seen. Nevertheless, the
wPTAN obtains the highest F measure. This suggests that in these particu-
lar problems the optimal p for the PTAN algorithm is much higher than the
actual p and, thus, setting p at 0.95 (the biggest value used in the search of
the optimal p) yields better results than setting it at its actual value.

8.4 Conclusions

In this chapter we have shown how the F measure can be estimated when no
negative examples are available. The problem is that this estimation depends
on the p parameter. Regarding this parameter, we have proposed a new metric
based on the F measure, the pseudo F measure, that can be used to estimate
its optimal value in terms of the F measure. We have tested this metric, along
with the metric proposed by Lee and Liu (2003), in synthetic datasets. The
results show that the pseudo F has a behaviour similar to that of the actual F
measure, being both maximum at approximately the same p. The Lee metric
shows a similar behaviour though its tendency to decrease after the optimal p
is not as clear as in the pseudo F. The results also suggest that the estimation
of the optimal p using the pseudo F tends to have a negative bias (it always
gives values lower or equal to the optimal) while the estimation using the Lee
metric tends to have a positive bias.

In principle one may think that setting the p parameter at the actual a
priori probability of the positive class should lead to the best classification
function, but this is not necessarily true. Nevertheless, we have seen in the
experimental evaluation that the optimal p (the one that maximises the F
measure) is very close to the actual p. Interestingly, the optimal p seems to be
always higher than the actual p and, thus, can be considered as an estimator
of the actual p with positive bias.

The estimation of the F measure using positive and unlabelled examples is
based on the estimation of the recall which, using a cross validation scheme,
has a negative bias, and on the estimation of the p by means of the opti-
mal p, which has a positive bias. The result is that the estimation of the F
measure can have a positive or a negative bias, depending on the individual
contribution of the recall and the p. On one hand, this is a drawback because
we cannot be sure when the estimation is optimistic or pessimistic, but, on
the other, hand it is good because the two contributions are compensated,
resulting in a smaller bias in the estimation of the F measure.

We have proposed the wrapper positive Bayesian network classifiers where
p is set at its optimal value (in terms of the F measure) estimated using either
the pseudo F or the Lee metric. We have tested these wrapper approaches in
real-life based datasets. The results show that in many problems the wrapper
Bayesian network classifiers (in particular the wPTAN) obtain results com-
parable to those obtained when p was set at its actual value. Indeed in some
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datasets they clearly improve the classifiers where p was set at the actual
value. This is specially clear in datasets sampled from the Letter Recognition
database where, in some problems, the optimal p seems to be significantly
higher that the actual p.

We have seen that the estimation of the optimal p using the pseudo F
measure has a negative bias while the estimation of using the Lee metric
seems to have a positive bias. Bearing this in mind, it would be advisable
setting p at a value between the two estimations.

The study of the behaviour of the pseudo F and the Lee metric and the
estimation of the actual F measure has been conducted estimating the recall
with a 5 times 5-cv scheme. We have seen that the contribution of the bias
in the recall to the error in the estimation of the F measure is quite big. In
future works it would be interesting to analyse the bias and the variance of
the estimation of the recall using other schemes (such as bootstrap) and its
influence in the estimation of the F measure.

We have proposed a wrapper approach to set the p parameter in PNB and
PTAN algorithms. In future developments it would be interesting to explore
a wrapper approach to set the α and β parameters in APNB and APTAN.
This is a more complex problem as there are two parameters to estimate and
thus we have to search for the maximum in the surface defined by the pseudo
F or the Lee metric in the plane (α, β).

In the next chapter we will present a filter approach to the FSS problem in
positive unlabelled learning problems. In a future work it would be interesting
to study the wrapper approaches to the FSS based on the metrics introduced
in this chapter.





9

Feature Subset Selection from Positive and

Unlabelled Examples

In this chapter we will focus on the problem of feature subset selection (FSS)
in positive unlabelled learning problems. To the best of our knowledge this
problem has never been explicitly treated before1 .

The contributions presented in this chapter are related with the filter ap-
proach to the FSS. In particular, we will introduce an adaptation of the cor-
relation based filter approach (CFS) presented in Hall and Smith (1997). This
is a multivariate filter method that searches for a small subset of relevant,
non-redundant variables.

The chapter is organised as follows. In Section 9.1 the CFS algorithm is
described. Then, in Section 9.2 the adaptation of this algorithm to the positive
unlabelled learning context is introduced. The results of the comparison be-
tween the proposed adaptations and the original CFS algorithm in simulated
problems is shown in Section 9.3. Finally, in Section 9.4 some conclusions are
provided.

9.1 The CFS algorithm

In Hall and Smith (1997) the authors propose an algorithm for filtering out
irrelevant and redundant variables. This algorithm is based on a metric that,
given a candidate subset of predicting variables, measures the goodness of
the set. This goodness is measured in terms of the relevancy and the non-
redundancy of the variables. In a subset, relevancy is measured as the correla-
tion between each variable in the set and the class variable while redundancy
is measured as the correlation among each pair of predicting variables.

The metric proposed by Hall and Smith (1997) to evaluate a given set S
is defined as follows:
1 Some algorithms, such as the decision tree induction algorithm (Quinlan, 1993),

that have already been adapted to the positive unlabelled learning context
(Letouzey et al., 2000) do not include all the predicting variables in the final
model
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GS =
kuci

√

k + k(k − 1)uii′

where k is the number of variables in S, uci is the average correlation between
the features in S and the class, and uii′ is the average correlation among the
features included in S.

The correlation between each pair of variables (attributes and/or the class
variable) is measured in terms of the uncertainty coefficient U(Xk|Xi) (Press,
1988), which is a measure proposed in the information theory framework and
is based on the mutual information I(Xk;Xi) and the entropy H(Xk). When
Xi and Xk are discrete variables, it is defined as:

U(Xk|Xi) =
I(Xk;Xi)

H(Xk)
=
H(Xk) −H(Xk|Xi)

H(Xk)

H(Xk) = −
rk
∑

l=1

P (xkl)log(P (xkl))

H(Xk|Xi) = −
ri

∑

j=1

P (xij)

rk
∑

l=1

P (xkl|xij)log(P (xkl|xij))

Looking at the GS metric we can see that the higher the mean correlation
of the features with the class (i.e., the average relevancy of the features)
the higher the metric and the higher the correlation among the variables
(i.e., the higher the redundancy) the lower the metric. Thus, given a set of
variables, adding redundant variables will decrease the score while adding
relevant features will increase it.

Given a set of variables and this metric, the search for the subset of features
that maximises the metric can be cast as an optimisation problem. The search
in the feature subset space is an NP-hard problem and, thus, as the number
of features increases the exhaustive search quickly becomes computationally
infeasible. This problem is overcome using search heuristics that are able to
find good solutions in a reasonable computational time. In the original work,
Hall and Smith (1997) use greedy hill climbing search procedures (forward
selection and backward elimination), but any other search heuristic could
be used to solve the optimisation problem. The pseudo code of the forward
selection applied to the selection of features can be found in Figure 9.1. The
backward elimination algorithm would be the same but initialising the solution
with all the features and then eliminating at each step the one that leads to
the highest increase in the score until no improvement is reached.
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Initialisation

Set the initial solution as S0 = Xi where Xi is the feature with the highest correlation
with the class variable (measured in terms of the uncertainty coefficient)

i=0
Search

Obtain all the candidate solutions adding to Si each of the features not in Si
(one feature in each candidate solution)

For each candidate solution Lj calculate GLj
If the highest GLj is greater than GSi

Si+1 = argmaxLjGLj
i = i + 1
Keep on searching

Else

return Si as the best subset
Fi

Fig. 9.1. Pseudo code of the greedy hill climbing forward selection in the CFS
algorithm.

9.2 CFS in absence of negative examples

In the supervised classification framework we have a dataset of instances con-
taining examples from all the classes. CFS uses these examples to obtain, for
a candidate feature subset, the correlation between every pair of features and
between each feature and the class variable.

In the positive unlabelled learning context only positive and unlabelled
examples are available. If we try to estimate the correlations required by the
CFS from our set of positive and unlabelled examples, we can see that the
correlation among features can be estimated from the unlabelled cases (as it
is independent of the class variable), but the correlation between each feature
and the class cannot be estimated from the data because we lack negative
examples.

The problem comes when we try to obtain U(Xi|C):

U(Xi|C) =
I(Xi;C)

H(Xi)
=
H(Xi) −H(Xi|C)

H(Xi)

In particular, the problem arises when trying to estimate the conditional
entropyH(Xi|C), as the entropy of the predicting variableXi does not depend
on the class variable and, thus, it can be obtained from the set of unlabelled
instances.

We can overcome this problem by decomposing the estimator of the condi-
tional entropy into two terms, one containing the probabilities related to the
positive class and the other the probabilities related to the negative class:
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H(Xi|C) = − p

ri
∑

j=1

P (xij |1)logP (xij |1)−

(1 − p)

ri
∑

j=1

P (xij |0)logP (xij |0)

where P (xij |1) can be estimated from the positive examples. As it happens
in the learning of Bayesian network classifiers from positive and unlabelled
examples (see Chapter 7), neither p nor P (xij |0) can be obtained directly
from the datasets, but we can express P (xij |0) as:

P (xij |0) =
P (xij) − P (xij |1)p

1 − p

Thus, we can estimate P (xij |0) based on p as:

NijDu − P (xij |1)pNDu

(1 − p)NDu

(9.1)

where NijDu is the amount of unlabelled instances where Xi = xij and NDu

the cardinality of the set of unlabelled examples. The problem with this es-
timator is that it can be negative. As in the case of PBCs, the negative
estimations are replaced by 0, and then all the probabilities are normalised
so as ∀i,

∑ri
j=1 P (xij |0) = 1. After the normalisation and taking the Laplace

correction into account, P (xij |0) can be estimated as:

P (xij |0) =
1 +max(0;Ri(j))

1
Zi

ri + (1 − p)NDu

Ri(j) = NijDu − P (xij |1)pNDu

Zi =

ri
∑

j=1

max

(

0;
Ri(j)

(1 − p)NDu

)

As p cannot be estimated from only positive and unlabelled examples, it
remains as a parameter of the algorithm.

If we take this equation into account, and once the value of p is set, we
can estimate the entropy of any predicting variable conditioned to the class
variable and, thus, obtain the GS score for a given set of features from a
dataset without negative examples. We have named the CFS algorithm where
the GS score is computed in this way positive unlabelled CFS (puCFS).
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9.2.1 Averaging the probability estimations

As we have seen in the previous section, the estimation of GS depends on
the a priori probability of the positive class (p). As this probability cannot be
estimated from the data, the user must set it.

As we did in the averaged positive Bayesian network classifiers we can
model the uncertainty about this parameter by means of a Beta distribution
(see Figure 7.1) and then, average the conditional probability P (xij |0) for all
the possible values of p. The result of this integral is:

P (xij |0) =
α(P (xij) − P (xij |1)) + (β − 1)P (xij)

β − 1

The negative estimations are replaced by 0 and the probabilities are nor-
malised so that they sum 1. In the induction of Bayesian classifiers, if we
replace negative estimation by 0 we can have null parameters that can cause
problems in the prediction because a product is involved (the factorisation of
the joint probability distribution). Due to this reason, in the averaged posi-
tive Bayesian network classifiers the negative probabilities are substituted by
a small value ( 1

ri
). However, as the estimation of the conditional entropy is a

sum, we can replace the negative estimation by 0 without problems. We have
named this algorithm averaged positive unlabelled CFS (apuCFS).

9.3 Experimental evaluation

As we have said in the introduction of this chapter, to the best of our knowl-
edge, no FSS algorithms have been proposed in the positive unlabelled learning
context. In the experimental evaluation of our algorithms we have compared
them with the original CFS algorithm. We can do this because we are working
with simulated problems where we actually know the label of the instances in
the set of unlabelled instances. Therefore, the results of the CFS shown in this
section are obtained applying the algorithm to the ‘unlabelled’ datasets, that
are actually supervised datasets. It should be noticed that we are comparing
our positive unlabelled learning algorithms with a supervised algorithm. The
original CFS has access to much more information than any of the adaptations
to the positive unlabelled learning context. In addition, the size of the sets of
unlabelled instances is relatively big, meaning that the CFS is operating in
a very favourable scenario. Bearing this in mind, the results obtained by the
CFS should be regarded as the goal of puCFS and apuCFS rather than values
to compare with the results of these two algorithms.

In the experimental evaluation we have used two types of datasets. On one
hand, we have tested our proposals in synthetic datasets specially designed to
evaluate the feature subset selection (see Section 5.2.2). These datasets have
been sampled from models where we know which variables are relevant, which



116 9 Feature Subset Selection from Positive and Unlabelled Examples

are not and which are redundant. Thus, we know beforehand which variables
should be selected by the algorithms.

The performance of the algorithms has also been tested in real-life based
datasets. In particular, ACCDON datasets v.2, Letter Recognition datasets
v.2 and Nursery datasets v.2 have been used (see Section 5.1).

Regarding the parameters in our approaches, three different values for the
p parameter were used in puCFS: 0.10, 0.25 and 0.5. For apuCFS, the α and
β parameters were set at 4.4 and 13.17 respectively (resulting in a mean value
of p of 0.25 and a standard deviation of 0.1). The search procedure used to
obtain the subset of features is a greedy hill climbing forward selection in all
the algorithms (including the original CFS described in 9.1).

9.3.1 Results on synthetic datasets

The synthetic datasets have been sampled from known probability distribu-
tions and, thus, we expect the algorithms to select only the relevant variables
(those labelled as R and a number) and filter out both irrelevant (I and II
variables) and redundant variables (variables ending as R and the redundancy
degree). Figure 9.2 shows the results obtained by the three algorithms (CFS,
puCFS with p set at 0.25 and apuCFS) in synthetic datasets. Each subfigure
shows the ratio of datasets where each algorithm selected each of the variables
given the size of the set of known positive examples in (a)puCFS and the ratio
of positive cases in Du in CFS2 . The results of the selection for the (a)puCFS
algorithms shown in this figure are the average of the results obtained for all
the ratios of positive cases in the set of unlabelled instances (from 0.01 to
0.75).

Looking at Figure 9.2 we can see that the CFS (first chart in each subfig-
ure) filters out irrelevant and redundant variables fairly well in all the datasets.
It only has some problems with the irrelevant features (specially those that
are also independent) in datasets sampled from model 2 where the ratio of
positive cases is low. On the other hand we can see that, in some datasets,
CFS does not select all the relevant variables. In datasets based on model 3,
for instance, only half of the features are clearly selected and the other half
are included in the final solution in between 50% and 75% of the experiments.
This is even worse in datasets based on models 2 and 4, where only four or
five variables are clearly selected as relevant.

This is explained by the parameters of the models used to generate the
data. The categorisation of the variables in relevant or irrelevant was done
based on the structure of the models, but the parameters play a very im-
portant role. Actually the structure can tell us, regardless of the parameters,
which variables are independent, but it cannot ensure that two variables are
correlated. Thus, until the parameters are set, we cannot know whether a
variable is redundant or not.

2 With (a)puCFS we mean both puCFS and apuCFS
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Fig. 9.2. Results obtained in the comparison between CFS, puCFS (p = 0.25)
and apuCFS in synthetic datasets. The rows in the charts corresponding to the CFS
algorithms represent the ratio of positive cases in the dataset used in the experiment.
In the charts corresponding to puCFS and apuCFS each row represents the number
of known positive examples, being the charts the average of the results obtained for
the different ratios of positive cases in Du. Each column in the charts represents
a feature. The features are labelled as R (relevant), I (irrelevant), II (irrelevant
and independent) and R90, R80, R70 (redundant with degrees of redundancy of
90%, 80% and 70% respectively). The colour of each square represents the ratio of
datasets where the algorithm selected the variable as part of the final subset. All the
results are the average of the ratios obtained in all the datasets with the particular
cardinality of Dp or ratio of positive cases in Du, shown in the Y axis.
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Feature Info Gain Ratio

R1 1.1 · 10−3
R2 3.4 · 10−2
R3 5.6 · 10−3
R4 3.1 · 10−7
R5 2.7 · 10−2
R6 2.3 · 10−6
R7 6.2 · 10−2
R8 0.0
R9 0.0
R10 1.5 · 10−3

Table 9.1. Information gain ratio calculated for the relevant variables in model 4.
The values shown in this table have been obtained from the distribution defined
by model 4 and not estimated from the data. As we can see in the table, variables
R8 and R9 have a null information gain ratio and variables R4 and R6 have a
very low information gain ratio, meaning that they are poorly correlated or not
correlated at all with the class variable. This is due to the fact that, although they
are graphically related with the class, when the parameters are (randomly) set, these
variables become not (or very poorly) correlated with the class variable.

In order to check the relevancy of the features labelled as relevant, we have
computed the information gain ratio of the class variable given each of these
variables. The info gain ratio of two random variablesX and Y is a measure of
the reduction in the uncertainty about X given that we know the value of Y .
In the case of the class variable and a predicting variable Xi, it is calculated
as:

GainR(C,Xi) =
I(C;Xi)

H(Xi)
=
H(C) −H(C|Xi)

H(Xi)

Taking into account that I(C;Xi) = H(C)−H(C|Xi) = H(Xi)−H(Xi|C)
(Cover and Thomas, 2006), we can see that the information gain ratio and the
uncertainty coefficient introduced in Section 9.1 are equivalent. Thus, this is
the same metric used by the CFS to measure the correlation of the variables
with the class variable. Table 9.1 shows the info gain ratio between each of the
relevant variables in model 4 and the class variable. We can see that variables
R4 and R6 are very poorly correlated with the class while variables R8 and
R9 are not correlated at all. This explains why these four variables are almost
not selected by the algorithms in the different runs.

If we have a look now at the results obtained with puCFS and apuCFS,
we can see that, regarding the selection of relevant variables, they follow the
same pattern as the original CFS except in datasets based on model 2. In
general, those variables that are selected by the CFS in most of the datasets
are also selected in most of the datasets by both puCFS and apuCFS. It is
important to point out here that, due to how the datasets were created (see
Section 5.2.2), the results of the CFS algorithm shown in Figure 9.2 are the
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average of twenty datasets (given a ratio of positive cases we have twenty sets
of unlabelled instances, ten of size 10,000 and ten of size 100,000) while the
results of (a)puCFS are the average of 10,000 (given a size of the positive
cases we have 100 sets of positive instances that are combined with 100 sets
of unlabelled instances, twenty for each of the five ratios of positive cases).
The detailed results obtained for each ratio of positive cases in Du can be
consulted in Appendix E.

Regarding the redundant variables, both puCFS and apuCFS filter them
out correctly when the number of positive examples is high. When it is low
some redundant variables are selected in some datasets (but always less than
in half the datasets).

The main problem with the positive unlabelled versions of the CFS algo-
rithm is the selection of irrelevant variables. In particular, these two algorithms
tend to select variables that are completely independent (II-labelled features,
that neither depend on the class nor on any other variable). This is specially
clear when very few positive examples are available. If we look at the top rows
of each chart, that corresponding to sets of positive cases of 1,000 examples,
we can see that the ratio of datasets where irrelevant independent variables
are included is normally lower than 0.5.

The inclusion of independent variables can be easily explained if we con-
sider how the GS metric is calculated. In the numerator of the score we have
the average correlation with the class variable. It is in this term where the
differences between the original CFS and the positive unlabelled CFS are. The
denominator, the average correlation among the variables in S, is calculated
exactly the same way in the original and the positive unlabelled version of
the CFS. Due to this reason, in (a)puCFS the error we make estimating the
average correlation with the class is higher than the error we make estimating
the mean correlation between predicting variables (because we only lack info
about the class and not the other variables). Because of this higher error rate,
it can be that the inclusion of an irrelevant variable does not decrease too
much (or even increase) the mean correlation with the class while it reduces
the mean correlation among predicting variables, leading to an increase in
the GS score. As we increase the number of positive cases available the error
in the estimation of the correlation with the class diminishes, reducing the
probability of adding irrelevant independent variables.

If we look at the results obtained by puCFS (with p set at 0.25) and
apuCFS, we can see that the results obtained by both algorithms are very
similar. This makes sense if we take into account the result presented in Section
7.4.1, because the apuCFS is equivalent to a puCFS where p is set at a value
slightly greater than its expected value. In our particular case, it is equivalent
to a puCFS where p = 0.266. This little change in the paremeter does not
affect too much the final result of the feature subset selection (the effect of
changing the p parameter in puCFS can be seen in Appendix E).



120 9 Feature Subset Selection from Positive and Unlabelled Examples

Fig. 9.3. Comparison between CFS and (a)puCFS in real-life data based problems.
Each figure shows, for each dataset (each line in the chart) the ratio of variables
selected only by (a)puCFS, only by CFS and by both algorithms. The first three
figures correspond to the results obtained by the puCFS and the last three those
obtained by the apuCFS. The datasets in each chart are ordered according to the
ratio of common features.

9.3.2 Results on real-life datasets

The algorithms have also been compared on positive unlabelled learning prob-
lems based on real-life databases where the absence of negative examples has
been simulated (ACCDON datasets v.2, Letter Recognition datasets v.2 and
Nursery datasets v.2; see Section 5.1 for more details)

In these real-life datasets we do not know which variables are relevant
and which are redundant. Thus, we have compared the features selected by
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puCFS and apuCFS with those selected by the original CFS. Figure 9.3 shows
these results. The figure consists of six subfigures. The upper three correspond
to the results obtained by the puCFS algorithm in datasets from ACCDON,
Letter Recognition and Nursery respectively; the lower three to the results
obtained by the apuCFS algorithm. Each subfigure is made out of bars, each
bar representing a particular dataset (of a given size of positive and unlabelled
instances and a given ratio of positive cases in the set of unlabelled instances),
and it shows the ratio of variables selected by (a)puCFS but not the CFS,
by CFS but not (a)puCFS and by both. The bars (datasets) are ordered so
as the ones with the biggest ratio of common features are placed in the lower
part of the chart and the ones with the lowest ratio of common features are
displayed in the top of the chart.

In Figure 9.3 we can see that in many datasets from ACCDON and Nursery
both CFS and our proposal agree in most of the variables. In some datasets
in ACCDON and Nursery, and in most of the datasets in Letter Recognition
our adaptation selects more variables than the original CFS algorithm. In the
previous section we have already seen this behaviour, as our proposal tends
to select more variables, especially the independent ones.

Comparing the upper and lower part in the figure, we can see that the
results obtained by both puCFS and apuCFS are almost identical, confirming
what we have seen in the previous section.

9.4 Conclusions and future work

In this chapter we have shown how the concept of FSS can be introduced in
the context of learning from positive and unlabelled examples. In particular,
we have adapted the CFS to the positive unlabelled learning framework and
we have tested these adaptations on both synthetic datasets and real-life based
problems.

From the results obtained in these comparisons we can conclude that the
proposed algorithms can be used to filter out the redundant variables. The
irrelevant variables can also be filtered out provided that we have enough
positive instances to obtain a good estimation of the correlation between the
feature and the class variable. When the number of positive examples avail-
able is reduced, it would be advisable to pre-filter irrelevant variables before
applying these algorithms to prevent its inclusion due to a reduction in the
mean correlation among variables in the final subset.

From the results obtained in the comparisons, we can also conclude that
there are no big differences between puCFS and apuCFS.
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Disease Gene Prediction

During the last years the amount of data concerning the molecular basis of life
has grown exponentially. There is a huge amount of information about DNA,
RNA and proteins contained in databases such as Ensembl or Swissprot. This
information can be mined in order to extract useful knowledge to help us
understand some of the complex processes that make life possible and the
molecular origins of some diseases.

The use of computational techniques on these datasets can be of great
help for molecular biologists in their research. In this chapter we will show
how positive unlabelled learning algorithms can be used to help molecular
biologists in their search for the genetic origins of hereditary diseases.

10.1 Biological background

The desoxyribonicleic acid (DNA) is the biomolecule that stores the informa-
tion in the living beings. Whenever a cell is divided, its DNA is duplicated
and a copy is passed to each daughter cell. The DNA contains the informa-
tion to create and control the life machinery, but the molecules that constitute
this machinery are (mainly) proteins. Proteins have many and very different
functions such as catalysation of biochemical reactions, signal transduction or
structural function.

DNA is a molecule made out of a long sequence of basic units, the nu-
cleotides. There are, in a DNA molecule, four types of nucleotides: Adenine
(A), thymine (T), cytosin (C) and guanine (G). Therefore, a DNA molecule
can be seen as a sequence of these four nucleotides, a word in the {A,T,C,G}
alphabet. On the other hand, proteins are made out of different basic units,
the aminoacids (twenty in most proteins) and, thus, can be seen as a sequence
of these aminoacids.

The process through which the information contained in the DNA is used
to produce a protein can be divided into two steps. In a first step an inter-
mediary molecule, the mRNA, is obtained by copying part of the information
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Fig. 10.1. Simplified scheme of the protein synthesis.

stored in the DNA (that corresponding to a coding gene). This molecule is sub-
ject to some modifications before it is translated into a protein. One of these
modifications is the ‘splicing’, where parts of the sequence (the introns) are
removed (see Figure 10.1). After all the modifications have been performed,
we have the mature mRNA which is translated into a protein sequence. The
information in the mRNA is codified, like in the DNA, using four nucleotides
(though not exactly the same as in the DNA).

As we have said, proteins are words in the alphabet of aminoacids. In order
to codify twenty elements, the nucleotides are grouped in codons. Each codon
is made out of three nucleotides and, thus, there are 64 possible codons to
codify the twenty aminoacids (actually there are less than 64 because some
codons are used to signal the beginning and the end of the translation). Due to
this imbalance, most of the aminoacids are codified by more than one codon.
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The function of a protein is very closely related to its 3D structure, and this
structure depends on the sequence of the protein1 . Any change in the sequence
of a protein can lead to changes in its 3D structure, and these modifications
of its structure can affect its function.

The information contained in the DNA not only refers to the sequence of
the proteins but also to the control of the protein synthesis process. There are
sequences (in non-coding regions of the DNA), such as the transcription factor
binding sites, that are involved in the control of when a protein is produced
and at which level it is expressed. In the introns removed during the splicing
there are also sequences involved in the control of the splicing process.

A point mutation is a change in one of the nucleotides of the DNA se-
quence. It can be due to errors when copying the information (there are mech-
anisms to correct these errors, but sometimes they do not work correctly) or
due to external factors such as chemical mutagens or ionising radiation.

The consequences of a point mutation depends on where it occurs. If the
mutation is in a coding region (a fragment of DNA that codifies part of the
sequence of some protein), it can lead to a change in the protein sequence or
not (there are some aminoacids that are codified by different codons and, thus,
it is possible to change one nucleotide in a codon and obtain a new codon that
codifies for the same amino acid). This modification can be due to a change
in the amino acid codified by the mutated codon or, in some cases, due to an
early end of the translation (if the mutation leads to a termination codon).

The mutation can also be in a non-coding region. Many of these mutations
do not have any effect, but it can occur that the mutation is localised in a
sequence involved in the control of the synthesis of a protein. For instance,
if the sequences responsible for the control of the splicing are mutated they
can lead to an incorrect removal of the introns. These not removed introns
will then be translated as part of the protein sequence. Changes in control
sequences can also alter the expression levels of a protein.

There are many pathologies that are known to have a (more or less com-
plex) genetic origin. Huge amounts of time and money are spent trying to
identify (in the wet-lab) and understand the origin of these diseases. A very
common approach is the association studies where the mutated genes are as-
sociated with particular regions of the genome. In many cases, the researchers
looking for the genes liable for the disease reduce the candidate genes to a few
hundred (those in the region associated with the disease). Checking each of
these genes in the lab is a very time-consuming task. This is the reason why
different computational approaches have been proposed to accelerate this pro-
cess. The idea is to provide a tool that, given a set of genes, tells us which of
these genes are more likely to be involved in a hereditary disease. When the

1 There are other important factors, such as post-translational modifications, that
change the structure of the protein, modifying or activating/deactivating its func-
tion, but these modifications are out of the scope of this introduction
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candidate genes have to be checked in lab one by one, this tool can be of use
as a guide.

10.2 Previous work

Different approaches have been proposed to tackle the computational identi-
fication of disease genes. There are some approaches that focus on the pri-
oritisation of candidate genes for a particular disease based on information
about their function, expression, protein-protein interactions or MEDLINE
data (Köhler et al., 2008; Tiffin et al., 2005; van Driel et al., 2005; Silva et al.,
2004; Turner et al., 2003; van Driel et al., 2003; Pérez-Iratxeta et al., 2002).
Other approaches try to identify disease genes based on sequence properties
(Adie et al., 2005; López-Bigas and Ouzounis, 2004). In this chapter we will
focus on the latter approach. Recent studies have shown that the sequence
properties of disease genes depend on whether they are dominant or reces-
sive genes (Furney et al., 2006; López-Bigas et al., 2006). Therefore, we have
tackled the identification of dominant and recessive genes separately.

The genome wide identification of disease genes is an intrinsic positive
unlabelled learning problem as no negative examples are available. There are
databases, such as OMIM (online Mendelian inheritance in man) (Hamosh
et al., 2000), LocusLink (Pruitt et al., 2000) or the Human Gene Mutation
Database (Krawczak et al., 2000) where genes that have already been iden-
tified as disease related are collected. Therefore, getting a set of positive ex-
amples is relatively easy. Regarding the rest of the genes, it is not possible
to ensure that any of these genes is not involved in any possible disease and,
thus, they should be considered as unlabelled rather that negative.

In this chapter we will use the DCDiv algorithm in the identification of
disease genes. In Section 10.3 the datasets used in the prediction will be pre-
sented. Section 10.4 contains the results obtained by the DCDiv algorithm
and Section 10.5 provides some conclusions.

10.3 Datasets

The instances (genes) are characterised by some features extracted from their
sequence that have been proved to be related with the likelihood of being dis-
ease related. The variables used in the prediction were: The conservation score
(CS) (López-Bigas and Ouzounis, 2004) in several eukaryotic genomes (Pan
troglodytes, Mus musculus, Rattus norvegicus, Gallus gallus, Fugu rubripes,
Danio rerio, Drosophila melanogaster, Anopheles gambiae, Caenorhabditis el-
egans and Caenorhabditis briggsae), the conservation of the paralogues, the
protein length, the gene length, the number of introns and the number of low
complexity regions. All the sequence properties were computed for the longest
protein sequence of each gene in the human genome (Birney et al., 2004).
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The CS is a measure of the mutation rate to which the protein has been
subject during the evolution process that is independent of the length of the
protein (López-Bigas and Ouzounis, 2004). It is based on the BlastP score (the
score obtained using the BLAST algorithm (Altschul et al., 1990) against a
protein sequence database) and consists of the BlastP score of the closest
homologue in the genome divided by the BlastP score of the protein against
itself. Therefore, the CS can range between 0 and 1. A previous work (López-
Bigas and Ouzounis, 2004) reported a significantly higher amount of conserved
proteins (in terms of CS) among the genes already identified as disease related
compared to the rest of the genes. This suggests that the genes involved in
genetic diseases tend to be more conserved than the average. This is probably
because if a change in the sequence of a gene leads to a disease phenotype, it
is less likely that these changes will go through the evolution process than if
the mutation has no effect on the phenotype. Thus, the degree of conservation
of a gene (measured by means of the CS) provides us with information about
how likely a mutation in this gene leads to a disease.

Given a gene, there can be other genes (paralogues) in the same genome
with a very similar sequence. This concept is interesting from the point of view
of genetic diseases because a very conserved paralogue can possibly provide the
function of the mutated gene. Thus, mutations in genes with highly conserved
paralogues are less likely to produce a disease phenotype. In López-Bigas and
Ouzounis (2004) the authors analyse the presence of conserved paralogues in
disease genes. They measure the paralogy as the CS of the closest protein in
the human genome (excluding the protein being analysed), and their results
show that disease genes have less conserved paralogues than the rest of the
genes. Therefore, this feature can also be used in the identification of disease
genes.

In López-Bigas et al. (2005) the authors analyse the coding length and the
number of intron in those genes that have already been identified as disease
related. Their study suggests that many disease causing mutations could be
related with changes in splicing patterns of the gene, either by affecting a
splice site or any of the regulatory sequences involved in the control of the
splicing process. Given these results, the number of intron seems to contain
some information about the likelihood of a gene to be disease related (the
more introns the more complex the splicing is and, thus, the more regulatory
sequences the gene will have). The results obtained in this work also show
significant differences in the distribution of gene and protein length between
disease genes and the rest of the genes.

A low complexity region in a protein is a fragment of a sequence with a
non-random distribution of a restricted number of aminoacids. Suppose we
have a protein of l aminoacids and this protein has an f -long fragment F of a
particular amino acid. Given that there are twenty different aminoacids and
assuming that the aminoacids in the different positions are independent of the
rest, the probability of observing such a fragment would be:
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P (F ) =

(
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)n

· 20 · (l − n+ 1) =
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)(n−1)

· (l − n+ 1)

If we consider a protein of 400 aminoacids (l = 400), a region made of a
particular aminoacid with a length n ≥ 5 will be non-random with a signifi-
cance level of 0.5%. This same concept can be extended to subsets of amino
acid, such as those that are hydrophobic or acidic. This complexity regions
have already been reported to be associated with disease (Karlin et al., 2002).

Given that our algorithms work with discrete data, we have discretised all
the variables into ten intervals using equal frequency.

Modelling the prediction of disease genes as a positive unlabelled learning
problem means that we have to create a dataset of known positive examples
and a dataset of unlabelled instances. Given that we will tackle the prediction
of dominant and recessive genes separately, we have obtained a list of dominant
disease genes and a list of recessive disease genes.

The list of known disease genes was obtained from the morbid map table in
the OMIM database. The genes in this list (1,647) were classified according to
the mode of inheritance using text mining techniques on the clinical synopsis
section of the OMIM database and manual curation. As a result, 498 genes
were labelled as dominant and 662 as recessive (the rest, 487, were labelled ei-
ther as X-linked, chromosomal rearrangements, association for complex traits
or unknown mode of inheritance). The set of unlabelled instances was, in each
case, the list of genes not in the set of positive examples (only those genes for
which we could obtain the sequence properties, 19,548, were considered).

10.4 Results

The DCDiv algorithm was run on the datasets described in the previous sec-
tion. The recall was set at 75% and 10% of the positive examples were used as
spy cases. The maximum number of iterations was set at 3,000 and the thresh-
old was considered zero when it reached the computational zero (10−324). TAN
models (Friedman et al., 1997) were used as base classifier.

Given the dataset of positive and unlabelled examples the DCDiv algo-
rithm provides us with a classification for the unlabelled instances, rather
than a probabilistic model. Thus, we do not have a probability that can help
us to rank the genes. To overcome this problem the algorithm was run fifty
times and, for each gene, the ratio of runs where it was labelled as positive was
calculated. As a result, for each gene we have two ratios, one corresponding
to the prediction of dominant disease genes and the other to the prediction of
recessive disease genes (except for the dominant and recessive genes for which
we have only one of the two ratios).

The goal of this work was to create a tool that can be used to, given a
set of genes, rank them according to their probability of being involved in
a disease process. This tool, created by López-Bigas et al., can be found at
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http://genome.imim.es/∼nlopez/DGPv2/. Through this web the predictions
can be queried according to different criteria, such as gene ID, chromosomic
region, etc.

We can also look at the results more generally, considering the number and
the spatial distribution of the genes predicted as causative of genetic disease.
In order to obtain an average classification, we need to set a threshold for the
previously defined ratios. The higher the threshold, the more restrictive the
classification will be and, thus, the fewer identified genes we will have.

If we consider that a gene is disease related when it has been classified as so
in, at least, half the repetitions then the threshold has to be set at 0.5. This is
equivalent to combining the fifty classifications using a simple voting scheme.
Setting the threshold at 0.5, 6,558 genes were identified as associated with
dominant diseases (34.5% of the unlabelled genes) and 4,582 as associated
with recessive genes (24.2% of the unlabelled genes). 1,742 (18.5%) of the
predicted genes have been labelled as causing both dominant and recessive
diseases.

The most restrictive threshold would be 1, which means that we will only
consider a gene as disease related when it has been identified in all the rep-
etitions. Considering this threshold, only 2,415 genes (12.7%) would be iden-
tified as dominant disease-associated and 1,880 (9.9%) as recessive disease-
associated. 288 (7.19%) of the predicted genes would be labelled as causing
both dominant and recessive diseases.

These results are consistent with the starting hypothesis of the DCDiv,
i.e., that the number of disease genes in the set of unlabelled instances is
lower than the number of non-disease genes (see Section 6.1). The ratio of
unlabelled genes that are classified as disease-associated can be seen as an
estimation of the a priori probability of the positive class. As a way to measure
the robustness of the results, we have applied the PNB algorithm using these
estimations as input, and we have compared the results obtained with the two
algorithms. Depending on the dataset and the threshold considered, the two
algorithms assign the same class to between 72% and 86% of the instances
(see Table 10.1).

Focusing on the known disease genes (the positive cases), we can see that
the number of genes related to dominant diseases is lower than the number of
those associated with recessive diseases (498 and 662, respectively). This rela-
tion is inverted in the predicted disease genes, where the number of dominant
genes predicted is greater than the number of recessive genes.

Regarding the genes predicted as both dominant and recessive, 5.15% of
the known disease genes were labelled as dominant and recessive. Our re-
sults show similar ratios in the predictions (specially in the most restrictive
classification, with 7.19% of the genes predicted as dominant and recessive).

In addition to the gene classification, we have also represented the spatial
distribution of the genes predicted to be associated with disease, both for
recessive and dominant mutations. The classification on which this spatial
distribution is based is the one obtained by simple voting (i.e., setting the
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Comparison of DCDiv & PNB predictions

Dominant Recessive

0.5 1 0.5 1

DCDiv 34.67% 12.77% 24.22% 9.94%
PNB 47.69% 25.62% 32.56% 15.71%

Common 73.11% 80.57% 77.83% 86.08%

Table 10.1. Results of the comparison between the predictions made by DCDiv
and PNB. The columns labelled as ‘0.5’ correspond to the results obtained when
a gene is considered as a disease gene when it has been labelled as positive in at
least half the repetitions and the columns labelled as ‘1’ correspond to the results
obtained when only the genes labelled as positive in all the repetitions are considered
as diseases-related. In all the cases the p parameter in the PNB algorithm was set
at the ratio of disease genes identified by the DCDiv algorithm. The rows labelled
as ‘DCDiv’ and ‘PNB’ show the percentage of unlabelled instances identified as
positive by each algorithm. The row labelled as ‘Common’ shows the percentage of
unlabelled instances where both PNB and DCDiv agree in the classification (either
labelling them as disease or non-disease).

threshold at 0.5). For each chromosomic region, we have obtained the ratio
of genes in that region (considering only those genes about which we have
all the predicting variables) that have been predicted as disease genes. The
comparison of the spatial distribution of dominant and recessive genes can be
seen in Figure 10.2.

10.5 Conclusions

In this chapter we have seen that the prediction of disease genes from se-
quence properties can be modeled as a positive unlabelled learning problem.
In these predictions, recent results suggesting that dominant and recessive dis-
ease genes show different sequence properties have been taken into account,
predicting dominant and recessive disease genes separately.

In the prediction only Mendelian disease genes have been considered. This
is a first approach to the problem. Taking into account other multigenic dis-
eases in the prediction poses a more complex problem that will be considered
in future developments of this work.
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Fig. 10.2. Representation of the fraction of genes that are predicted as related to
dominant (D) and recessive (R) disease by chromosome regions. The regions where
there are no genes for which we have the sequence properties have been represented
in white colour. One should take into account that different regions have different
numbers of known genes, and this information is not represented in the figure.
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Cancer Gene Prediction

Cancer is one of the main threats in modern society, and it is being inten-
sively studied by the research community1 . Cancer has been associated with
mutations in certain genes that lead to an uncontrolled growth of the cells.
It is a particular case of genetic disease and, thus, a genome wide search for
genes that, when mutated, lead to some type of cancer can be tackled in a
similar way as we did the identification of disease genes.

11.1 Biological background and previous work

Cancer is a very particular kind of genetic disease. Actually, it is not just
a single disease but a group of diseases with some common features. The
main difference with other genetic diseases is that the origin of the latter is
exclusively in mutations localised in germinal cells that, thus, are transferred
to the offspring while the origin of cancer is mainly associated to mutations
in somatic cells.

The common features of all the diseases categorised as cancer is an un-
controlled growth of some abnormal cells that invade and compete with the
surrounding natural cells. Eventually, these cells can acquire the capacity of
moving and invading other tissues. This is known as metastasis and leads to
the proliferation of new, secondary tumors.

The transformation of a normal somatic cell into an abnormal cancer cell is
a multi-step process (Vogelstein and Kinzler, 1993), consisting of the accumu-
lation of mutation in some particular genes2 . In a normal cell the homeostasis

1 This is reflected in the literature; The journal with the highest impact factor,
63.342, is CA: A cancer journal for clinicians

2 Mutations are not the only mechanism that can turn a normal cell into a cancer
cell. The recent field of epigenetics is concerned about non-mutational chemical
modifications of the DNA that control the expression of proteins. These non-
mutational modifications are also behind the underlying mechanisms that can
lead to cancer
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and the cellular division are tightly controlled processes where many signals
are involved. Changes (mutations) in the genes responsible for these processes
can lead to alterations in the equilibrium of the cell that eventually, transforms
the cell into an abnormal cell growing out of control.

The mutations leading to cancer only take place in certain genes. Clas-
sically these genes are divided into two groups: proto-oncogenes and tumor
suppressor genes. The former are proliferative agents, i.e., they stimulate the
cellular proliferation. When these genes are mutated or their expression is
altered they lead to an uncontrolled growth of the cells3 . They are dominant
because the alteration of one allele is enough to become oncogenic. The tu-
mor suppressor genes are the opposite, anti-proliferative agents that inhibit
the cellular growth. When these genes are mutated they lose their function
as suppressors and the cells start to proliferate out of control. If only one of
the alleles is mutated, the other copy of the gene keeps its function and the
cellular growth is controlled. Thus, this kind of gene is normally phenotypi-
cally recessive, as both alleles have to be mutated to induce the uncontrolled
growth of the cells.

The classical technique to identify cancer genes is the positional cloning
(Futreal et al., 2004), but many other molecular techniques, such as fluo-
rescence in situ hybridisation (FISH) or comparative genome hybridisation
(CGH), are used in the identification of genes related with the cancer process
(Baak et al., 2005). cDNA microarrays have also been used to simultaneously
analyse the expression of thousands of genes, showing that the expression pro-
files are clinically relevant (van ’t Veer et al., 2002; Dave et al., 2004) and can
be used to identify subtypes of cancer that respond differently to the avail-
able therapies (Ramaswamy and Golub, 2002). The mutational profiling and
large-scale exon resequencing of tumors have also been used to identify genes
involved in the cancer process (Benvenuti et al., 2004; Greenman et al., 2007;
Wood et al., 2007).

Recently, more sophisticated methods that combine data obtained from
different techniques are being used in cancer research (Liu et al., 2006). Some
of these works combine data from different microarray experiments (Tomlins
et al., 2006), expression and copy number change data (Carter et al., 2006)
and expression of mRNAs and microRNAs (Lu et al., 2005).

All this experimentation provides lots of candidate cancer genes. Futreal
et al. (2004) published an initial census of cancer genes containing 291 genes,
that was further increased to 350 in 2006. Only genes that fulfilled a number of
criteria were included in this census, leaving out genes for which there was only
evidence of differential expression or aberrant promoter DNA methylation.
Given this increasing number of candidate cancer genes it would be interesting,
as in the case of disease genes, to rank these candidate genes according to their

3 The expression of some of these genes is sometimes inhibited by non-mutational
modifications of the DNA, such as methylation. The loss of this methylation leads
to the expression of these genes and, thus, to cancer onset
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probability of being related with cancer. Such a tool would be then used by
the cancer research community to optimise their work identifying the genes
involved in the different types of cancer.

As we have seen in the previous section, proto-oncogenes and tumor sup-
pressor genes have different mechanisms to promote the oncogenesis. Furney
et al. (2007) showed that these two groups of cancer genes have different se-
quence and regulatory properties. In this chapter we will use these properties
to build a classification function that, given an unlabelled gene, estimates the
probability of being related with cancer.

11.2 Datasets

The list of cancer genes was obtained from the cancer gene census (Futreal
et al., 2004) and contained a total of 338 genes. The instances in this list
were divided into two subsets, dominant cancer genes (the proto-oncogenes)
and recessive cancer genes (tumor suppressor genes) according to the informa-
tion in the cancer gene census. Thus, two sets of positive cases were defined,
cancer dominant (CD, 272 genes) and cancer recessive (CR, 66 genes). The
sequences from where the predicting variables were computed were obtained
from the NCBI LocusLink database (Pruitt and Maglott, 2001) and the En-
sembl database (Hubbard et al., 2002). All the Ensembl genes not included in
the list of cancer genes were regarded as unlabelled.

For validation purpose other sets were created. A set of colon cancer genes
(CC, 113 genes) and a set of breast cancer genes (BC, 117 genes) were obtained
from (Wood et al., 2007). The original work identified 140 genes in each set,
but the genes in the list that were used as known positive examples were
removed from the original sets. A set of genes not identified as associated
with breast cancer or colon cancer (nCB) was also obtained from Wood et al.
(2007). Finally, a set of dominant disease genes (DD) and recessive disease
genes (DR) were obtained from the OMIM database (Hamosh et al., 2000) as
explained in the previous chapter.

11.2.1 Predicting variables

The properties used as predicting variables in the identification of cancer genes
can be divided into five sets: Protein conservation (PC), gene structure (GS),
protein domains (PD), protein interactions (PI) and regulatory data (RD).

The protein conservation was computed using the conservation score de-
scribed in the previous chapter. The genomes used to compute the conser-
vation score were Homo sapiens, Mus musculus, Rattus norvegicus, Canis
familiaris, Bos taurus, Monodelphis domestica, Gallus gallus, Xenopus trop-
icalis, Fugu rubripes, Tetraodon nigroviridis, Danio rerio, Ciona intestinalis,
Anopheles gambiae, Apis mellifera, Drosophila melanogaster, Caenorhabditis
elegans and Saccharomyces cerevisiae. The conservation score corresponding
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to the Homo sapiens genome is the measure of paralogy explained in the
previous chapter.

The gene structure properties were obtained from the Ensembl database
(Hubbard et al., 2002) and consist of the length of the coding sequence, the
gene length, the total length and number of the exons and the total length of
the introns.

The protein domain data consist of Interpro domains (Mulder et al., 2006)
present in 30 or more human proteins (a total number of 244 domains). Only
the domains over-represented in the list of cancer genes were included. The
over-representation was measured obtaining 10,000 random sets of proteins
and calculating the z-score for each domain. Only domains with a z-score
higher than ±2.5 were included in the set of predicting variables.

The set of protein interaction features consisted of the total number of
interactions per protein and the number of interaction with genes in the list
known cancer genes (DC and RC). The data about protein interactions used
to compute these variables were obtained form Jonsson and Bates (2006).

The regulatory data used was promoter conservation, number of promoter
CpG islands, 3’ UTR length and number of putative microRNA targets. All
this information was obtained from a previous study (Furney et al., 2007)
based on human-mouse-rat-dog orthologues alignments.

Some sets of variables, such as protein conservation or gene structure con-
tain some redundant variables (for instance, the CS in rat and in mouse).
To address this problem, the puCFS algorithm (see Chapter 9) was used to
remove the redundant and/or irrelevant variables from these sets. The sub-
set of variables selected by the algorithm was CS in Mus musculus and in
Saccharomyces cerevisiae, the gene length and the total exon length for dom-
inant cancer genes and the coding sequence length, number of exons, CS in
Homo sapiens (i.e., conservation of paralogues) and the total exon length for
recessive cancer genes.

In order to reduce the dimensionality of the set of protein domain variables
the puCFS was applied to obtain a subset of relevant, non-redundant variables
(nine domains in dominant cancer gene prediction and ten in recessive cancer
gene prediction).

For each problem six sets of positive and unlabelled instances were defined,
combining the sets of properties described above. Table 11.1 shows a summary
of these datasets (note that not all the information is available for all the genes
and, thus, the total number of genes in each set is different).

11.3 Results

The four positive Bayesian network classifiers defined in Chapter 7 were ap-
plied to the datasets described in the previous section. There are some studies
that have suggested that about a 10% of the human genes could be involved
in cancer. Given this estimation, the p parameter in PNB and PTAN was
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Summary of datasets

Dataset Var. CD Var. CR CD CR Total

PC.GS 4 4 272 66 22,125
PC.GS.PD 13 14 259 62 16,300
PC.GS.PI 6 6 266 66 14,857
PC.GS.RD 8 8 238 58 13,928
PC.GS.PD.PI.RD 19 20 226 54 11,560

Table 11.1. Summary of the datasets used in the prediction of cancer genes. The
columns labelled as ‘Var. CD’ and ‘Var. CR’ indicate the number of variables in the
sets used for the prediction of dominant and recessive cancer genes respectively. The
column labelled as ‘CD’ indicates the number of known dominant cancer genes, the
column labelled as ‘CR’ indicates the number of known recessive cancer genes and
the column labelled as ‘Total’ indicates the total number of genes (including the
positive and the unlabelled) in each set.

set at 0.1 and the α and β parameters in both APNB and APTAN was set
at 1.7 and 15.3 respectively, resulting in an average p of 0.1. Given that the
results obtained by all of the classifiers were very similar, further analyses
were carried only on the results obtained by the APNB. We selected a naive
Bayes model because it is more simple than a TAN model. As the number of
parameters to estimate in a naive Bayes model is lower than in TAN models
we can be more confident with the estimations.

Due to the absence of negative examples, we cannot estimate performance
measures such as the accuracy or the classification error from the data. As a
way of assessing the results, the mean probability assigned by the classifier to
genes in different sets was checked. These sets are the set of unlabelled genes
(UNL) the known cancer genes (CD and CR), the known disease genes (DD
and DR), the genes identified as related with colon cancer (CC), the genes
identified as related with breast cancer (BC) and the genes that were not
identified as related with colon cancer or breast cancer (non-CB).

When estimating the probabilities assigned by the classifier to the list of
known cancer genes, we have to bear in mind the problem of overfitting. It
is the same problem we have when estimating the performance measures in
supervised classification (see Section 2.2.2). In order to obtain a ‘fair’ estima-
tion of the probabilities assigned by the classifier to the positive examples,
we have used a cross validation scheme. The cross validation is used only to
estimate the probabilities of the positive cases because, given that the algo-
rithms are not provided with information about the class of the unlabelled
instances, there is no risk of overfitting when estimating their probability of
being positive. To avoid the overfitting due to the selection of variables, we
have included it in the cross validation scheme (see Figure 11.1).
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Fig. 11.1. Scheme of a 5-cv process for the estimation of the probabilities assigned
by a classifier to the positive examples. The FSS step is included in the cross vali-
dation process to avoid overfitting due to the selection of features.

The probabilities assigned by the classifier to the known dominant cancer
genes were estimated using a 10-cv scheme. The probabilities assigned to the
known recessive cancer genes were estimated using a 5-cv due to the low
number of instances.

The averaged probability assigned by each classifier to the genes in the
different sets can be consulted in Table 11.2. As we can see in the table all
the classifiers assign an average probability of about 0.5 to the unlabelled
instances while the mean probability for the known cancer genes is between
0.71 and 0.83. The set of variables that best discriminate between cancer genes
and the rest is the one that contains all the variables, with mean probabilities
of 0.75 and 0.83 for dominant and recessive genes respectively. The problem is
that we have the value of all the variables for approximately half of the genes.
The mean probabilities obtained with the PC-GS dataset (that contains all
the genes) is 0.73 and 0.71 for dominant and recessive genes respectively.

Regarding how the classifiers distinguish between cancer and disease genes,
we can see that they assign higher probabilities to cancer genes than to disease
genes, though the average probability of disease genes is higher than that of
the unlabelled instances. This makes sense as the disease genes share some
features with cancer genes. The biggest differences between cancer and disease
genes can be found in the classications obtained using all the variables.

As can be seen in Table 11.2 all the classifiers assign also high probabilities
to the genes identified as associated to colon and breast cancer (CC and BC).
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Dominant cancer genes

Dataset UNL CD CR DD DR BC CC nCB

PC.GS 0.50 0.73 0.71 0.63 0.63 0.78 0.78 0.69
PC.GS.PD 0.50 0.72 0.65 0.57 0.55 0.73 0.73 0.63
PC.GS.PI 0.49 0.73 0.78 0.60 0.55 0.73 0.74 0.63
PC.GS.RD 0.50 0.71 0.58 0.58 0.46 0.69 0.76 0.61
PC.GS.PD.PI.RD 0.49 0.75 0.71 0.59 0.46 0.70 0.74 0.61

Recessive cancer genes

Dataset UNL CD CR DD DR BC CC nCB

PC.GS 0.50 0.61 0.71 0.56 0.62 0.75 0.74 0.64
PC.GS.PD 0.50 0.59 0.76 0.53 0.62 0.76 0.74 0.63
PC.GS.PI 0.50 0.67 0.80 0.58 0.59 0.76 0.75 0.64
PC.GS.RD 0.50 0.59 0.73 0.52 0.58 0.75 0.73 0.62
PC.GS.PD.PI.RD 0.50 0.66 0.83 0.55 0.56 0.73 0.71 0.62

Table 11.2. Average probability assigned by APNB (trained with the sets of vari-
ables indicated in the ‘Dataset‘ column) to the genes in the different sets. UNL
represent the unlabelled instances, CD cancer dominant genes, CR cancer recessive
genes, DD disease dominant genes, DR disease recessive genes and BC and CC rep-
resent the set of genes associated to breast and colon cancer respectively identified
in Wood et al. (2007). nBC represent the genes not identified in Wood et al. (2007)
as cancer genes.

It is important to point out that these genes were not used as positive examples
in the training of the classifiers. Compared to these cancer genes, the genes in
the nCB set show a lower average probability. This probability is higher than
that obtained for the set of unlabelled examples used in the training (UNL),
but this is due to the fact that most of the known cancer genes (CD and CR)
are included in this set, increasing the average probability.

As a final evaluation step we have used the learnt classifiers in a com-
parative oncogenomics study that identified a gene involved in metastasis in
melanoma (Kim et al., 2006). In this study the authors reduced the candidate
list to the genes in the chromosomic region 6p25-24 and, using expression
analysis, the identified Nedd9 as the primary candidate gene. Taking the list
of genes in 6p25-24 (a total of 92 genes), Nedd9 is predicted as one of the top
candidates by all the classifiers.
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11.4 Conclusions

In this chapter we have shown how positive unlabelled learning algorithm can
be used to estimate the probability of a gene being associated with cancer. As
in the disease gene identification (Chapter 10), the prediction is based on some
features related with the sequence of the genes that show significantly different
patterns in cancer genes compared with the rest of the genes. Nevertheless, as
the identification of cancer genes is more specific than the prediction of disease
genes, more variables (such as protein-protein interaction, protein domains
and regulatory properties) have been included in the datasets.

In addition to classifier induction algorithms the FSS algorithms for pos-
itive unlabelled learning problems presented in Chapter 9 (the puCFS algo-
rithm) was used to remove irrelevant and redundant variables in some sets of
properties.

Due to the lack of proper statistical validation procedures the quality of the
predictions has been assessed comparing the average probabilities in different
groups of genes. We have seen that all the classifiers tend to assign higher
probabilities of being positive to the known positive genes compared to the
unlabelled genes (to avoid overfitted estimations, a cross validation scheme has
been used to estimate the probabilities assigned to the positive cases, including
in the process the FSS step). The mean probabilities assigned to the disease
genes are also lower than the mean probabilities assigned to the known cancer
genes but higher than the probabilities assigned to the unlabelled genes. This
makes sense as cancer genes are a particular case of diseases genes.

We have also tested the estimations in sets of genes identified as related
with colon and breast cancer. The classifiers assign to these genes, that were
not included as positive examples, probabilities similar to those assigned to
the genes used as positive examples. As a final validation step, the estimated
probabilities have been used to rank the genes in the 6p25-24 chromosomic
region that, in an independent study, was suggested as associated with the
metastasis in melanoma. In this study Nedd9 was pointed out as the main
candidate to be the gene responsable for the metastasis. This gene was top-
ranked by all of our classifiers.
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Conclusions and Future Work

The topic of this dissertation is the positive unlabelled learning problem.
This is a relatively recent topic in machine learning and, to the best of our
knowledge, many interesting issues have not been covered in the literature
so far. Indeed almost all the efforts have been focused on developing new
algorithms for learning classifiers from positive and unlabelled instances. The
main contributions of this dissertation are also concerned about the model
induction algorithms but other topics such as FSS or classifier evaluation in
absence of negative examples have also been tackled.

Most of the applications of positive unlabelled learning algorithms that can
be found in the literature come from the text mining domain. Nevertheless,
recent papers explore the use of these kinds of algorithms in other domains
such as computational biology or image analysis. In this dissertation we have
applied the proposed algorithms in two biomedical problems.

The rest of the chapter is organised as follows. Section 12.1 summarises
the contributions of this dissertation in the positive unlabelled learning frame-
work. In Section 12.2 the list of publications obtained during the last four years
are provided. Finally, Section 12.3 explores lines of work that this dissertation
has left opened.

12.1 Conclusions

The contributions of this dissertation can be divided into two main categories:
Methodological contributions and applications.

12.1.1 Methodological contributions

This is the main part of the dissertation. The methodological contributions
to the positive unlabelled learning framework include algorithms that cover
three main aspects: Classifier induction algorithms, Feature subset selection
and classifier evaluation.
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12.1.1.1 Classifier induction algorithms

This is the most extensive contribution of this dissertation, with a total of six
algorithms. Five of these algorithms are concerned with the problem of learn-
ing Bayesian network classifiers from positive and unlabelled examples. We
have named this set of algorithms positive Bayesian network classifiers,
PBC (the PNB algorithm developed by Denis et al. (2002) is also included
in this set). The list of PBCs proposed in this dissertation is:

• PTAN - The positive TAN is the extension of the idea proposed in Denis
et al. (2002) to the induction of TAN models (Friedman et al., 1997).

• APNB and APTAN - One of the main problems in both PNB and
PTAN is setting the a priori probability of the positive class p. Averaged
PNB (APNB) and averaged PTAN (APTAN) tackle the problem of the
uncertainty about this parameter in a Bayesian way, modelling the a priori
probability of p by means of a Beta distribution and then integrating all
the estimator in PNB and PTAN for all the possible values of p.

• wPNB and wPTAN - The modellisation of the uncertainty about p
by means of a Beta distribution provides us with a more flexible way
to introduce the previous knowledge about this parameter. However it
does not solve the problem when no previous knowledge is available. The
wrapper versions of PNB and PTAN try to solve this problem looking
for the optimal p in terms of recovery of positive cases. These algorithms
are directly linked with the evaluation of classifiers in absence of negative
examples, a topic that has been poorly studied in the literature. In Section
12.1.1.3 the contributions of this dissertation in the evaluation of classifiers
in absence of negative examples are summarised.

Besides the PBCs, a model averaging algorithm is proposed in this disser-
tation. The DCDiv algorithm takes as input a set of positive and unlabelled
instances and, under the assumption that the number of positive cases in the
set of unlabelled instances is much lower than the number of negative cases,
it trains and averages several classifiers, providing as output a classification
of the unlabelled instances. The main problem with this algorithm compared
with the PBCs is that it is computationally expensive. The advantage is that
when the starting hypothesis holds (i. e., when there are very few positive
examples in the set of unlabelled instances) it provides good results.

12.1.1.2 Feature subset selection

To the best of our knowledge, the dimensionality reduction problem has not
been explicitly tackled in the literature. In this dissertation we propose two
adaptations of the CFS algorithm (Hall and Smith, 1997) to the positive
unlabelled learning framework. The puCFS algorithm uses the same concept
behind PBCs to estimate the correlation between the features and the class
variable, which is the limiting step that makes it impossible to apply the CFS
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algorithm when no negative examples are available. The apuCFS algorithm is
the averaged version of puCFS where the estimators are averaged in the same
way as in APNB and APTAN. Both algorithms have been tested, showing
that they give good results filtering out irrelevant and redundant variables,
provided that we have enough positive examples to make a good estimation
of the correlation between features and the class variable.

12.1.1.3 Classifier evaluation

The lack of negative examples not only affects the learning of classifiers but
also the estimation of performance measures. As far as we know, the only
work where the problem of evaluating classifiers in positive unlabelled learning
problems is considered is Lee and Liu (2003). In this dissertation we have
proposed a positive unlabelled estimator of the F measure. The problem is
that this estimator depends on p, which is generally unknown. Besides this
estimator we have proposed a new metric, the pseudo F, whose behaviour
is similar to that of the F measure but does not depend that much on p. The
pseudo F measure can be used to identify the optimal p (the p that maximises
the F measure). The experimentation in synthetic datasets suggests that this
optimal p can be considered as an estimator of the actual p with a positive
bias and, thus, it can be used to estimate the actual F. The estimator of the
actual F also depends on the estimation of the recall, which has normally a
negative bias. The result is that the biases in the estimations of the recall and
p are somehow compensated in the estimation of the F measure.

12.1.2 Applications

Most of the papers that model the information retrieval as a positive and
unlabelled learning problems come from the text mining domain. Nevertheless,
recent works have shown that many other domains can take advantage of the
positive unlabelled learning algorithms.

In this dissertation we have tackled two computational biology problems
from the positive unlabelled learning point of view. The first problem is the
genome-wide prediction of disease genes. The goal of this application is
to provide the research community with a tool that, given a set of genes, ranks
them according to the probability of being associated to a genetic disease.
There are databases from where one can obtain a list of known disease genes,
but we do not know whether the rest of the genes are disease related or not.
Therefore, the prediction is clearly a positive unlabelled learning problem.

The second problem is the prediction of cancer genes. Conceptually it
is very similar to the identification of disease genes, as we have some genes
that we know are related with cancer but for the rest we cannot say whether
they are cancer genes or not. The main difference is the variables used in
the prediction. In the disease gene identification the prediction is based on
some sequence properties that have been identified as significantly different
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in known disease genes and the rest. These variables alone are not enough to
distinguish between cancer and non-cancer genes and thus new variables such
as regulatory properties or protein-protein interactions have to be introduced.

12.2 Publications

The list of publications obtained during the last four years are:

• I. Inza, B. Calvo, R. Armañanzas, E. Bengoetxea, P. Larrañaga and J.
A. Lozano (to appear in 2009) Machine learning: An indispensable tool in
bioinformatics. Bioinformatics in Clinical OMICs Research (Rune Math-
iessen Ed.), Humana Press.

• B. Calvo, J. A. Lozano and P. Larrañaga (2008) Feature subset selec-
tion from positive and unlabelled examples. Pattern Recognition Letters
Submitted.

• S. J. Furney, B. Calvo, P. Larrañaga, J. A. Lozano and N. López-Bigas
(2008) Prioritization of candidate cancer genes – an aid to oncogenomic
studies. Nucleic Acids Research, doi:10.1093/nar/gkn482.

• R. Armañanzas, B. Calvo, I. Inza, P. Larrañaga, I. Bernales, A. Ful-
laondo and A. M. Zubiaga (2008) Bayesian classifiers with consensus gene
selection: A case study in Systemic Lupus Erythematosus. Progress in In-
dustrial Mathematics at ECMI 2006, 560-565.

• B. Calvo, P. Larrañaga and J. A. Lozano (2007) Learnign Bayesian clas-
sifiers from positive and unlabeled examples. Pattern Recognition Letters
28(16); 2375-2384.

• B. Calvo, N. López-Bigas, S. J. Furney, P. Larrañaga and J. A. Lozano
(2007) A partially supervised classification approach to dominant and re-
cessive human disease gene prediction. Computer Methods and Programs
in Biomedicine 85(3); 229-237.

• P. Larrañaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J.
A. Lozano, R. Armañanzas, G. Santafé, A. Pérez and V. Robles (2006)
Machine learning in Bioinformatics. Briefings in Bioinformatics 7; 86-112.

• B. Calvo, P. Larrañaga and J.A. Lozano (2005) Clasificación binaria en
ausencia de ejemplos negativos. I Workshop sobre Reconocimiento de For-
mas y Análisis de Imágenes. Granada, Spain, 3-12.

• R. Armañanzas, B. Calvo, I. Inza, P. Larrañaga, I. Bernales, A. Fullaondo
and A. M. Zubiaga (2005) Selección de genes asociados a dos enfermedades
autoinmunes a partir de microarrays de ADN. Proceedings of the Sixth
Spanish Symposium on Technology Transfer from Artificial Intelligence,
TTIA’2005. Granada, Spain, 63 - 70.

• R. Armañanzas, B. Calvo, I. Inza, P. Larrañaga, I. Bernales, A. Fullaondo
and A.M. Zubiaga (2005) Clasificadores Bayesianos con selección consen-
suada de genes en la predicción del lupus eritematoso sistémico. Mineŕıa
de Datos: Técnicas y Aplicaciones (José A. Gámez, Ismael Garćıa Varela
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y José Hernández Orallo, eds.), Ediciones Departamento de Informática
de la Universidad de Castilla La Mancha, 107-135.

12.3 Future work

The positive unlabelled learning field is relatively new and there is room for
many new developments. The contributions in this dissertation have left dif-
ferent lines of work opened.

Starting from the PNB, in this dissertation we have proposed five new
algorithms to learn Bayesian network classifiers from positive and unlabelled
examples. A future line of work would be the extension of the family of PBCs.
The work presented in this dissertation can be used to extend this family in
different ways. Firstly, more complex networks can be added to the family
adapting the k-DB algorithm (Sahami, 1996). Secondly, the pseudo F mea-
sure proposed in Chapter 8 can be used in wrapper approaches of algorithms
such as the seminaive Bayes (Kononenko, 1991; Pazzani, 1997) or selective
naive Bayes (Kohavi and John, 1997). Finally, the wrapper PBCs proposed
in this dissertation are based on PNB and PTAN. It would also be interesting
exploring the wrapper versions of APNB and APTAN. In these algorithms we
would need to set in a wrapper way two parameters, α and β. Therefore, we
would need to look for a maximum in a 3D representation of the pseudo F
measure vs. α and β.

Regarding the DCDiv algorithm, there are a number of questions that can
be explored in future works. It would be interesting to analyse the algorithm
from a theoretical point of view. The two main drawbacks of the algorithm are
the computational time and the lack of a model at the end of the algorithm.
Future developments of this algorithm or new model averaging procedures
should cope with these two problems.

The FSS has been tackled in this dissertation from a filter point of view.
Nevertheless, the pseudo F measure used in the wrapper PBCs could also be
used in wrapper feature subset selection algorithms. As we saw in Chapter 9,
the stability of the selection is reduced when few positive examples are avail-
able. Consensus selection techniques are useful in these situations to increase
the robustness of the selection. An interesting line of future work would be
the use of consensus selection with (a)puCFS algorithms when few positive
examples are available.

In this dissertation we have focused on the applications in computational
biology problems, but there are lots of possible applications of these algo-
rithms. Indeed, these algorithms are interesting not only when we lack negative
examples, but also when getting a set of representative negative examples is
not possible, a relatively frequent situation in information retrieval problems.
Another line of future work could be the identification of real-life problems
suitable of being modelled as a positive unlabelled learning problem.
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Experimental evaluation of the DCDiv

algorithm

This appendix contains all the results obtained in the experimental evaluation
of the DCDiv. The tables in the following pages show the results (in terms of
F measure and accuracy) obtained by DCDiv and PNB when the p parameter
was set at 0.50, 0.25 and the actual value (as the actual value is unknown,
we use the ratio of positive cases in Du, which is an estimation of the a priori
probability of the positive class). The column labelled as ‘NDp ’ corresponds
to the size of the set of positive cases and the column labelled as ‘rat.’ is the
ratio of positive cases in Du. The values shown are the average of the results
obtained in the fifty positive unlabelled learning problems sampled using each
scheme. The significance of the differences was assessed by Wilcoxon paired
tests. The bold font indicates the winner when the differences were significant
(at a significance level of 1%).
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UCI datasets - F measure

p = 0.50 p = 0.25 Actual p

NDp rat. PNB DCDiv PNB DCDiv PNB DCDiv

L
et

te
r

R
ec

o
g
n
it
io

n
D

100 0.05 18.56 53.79 36.80 53.79 58.26 53.79
100 0.13 42.98 64.62 66.07 64.62 69.68 64.62
100 0.20 58.42 66.30 73.93 66.30 74.08 66.30
200 0.05 18.98 67.09 37.05 67.09 62.48 67.09

200 0.13 44.08 69.35 66.67 69.35 72.71 69.35
200 0.20 59.64 71.82 76.70 71.82 77.80 71.82
300 0.05 19.28 70.50 36.49 70.50 61.64 70.50

300 0.13 45.00 73.02 66.27 73.02 72.85 73.02
300 0.20 60.18 74.60 76.68 74.60 77.96 74.60

P

100 0.05 21.34 68.19 43.42 68.19 72.18 68.19
100 0.13 48.26 70.65 74.01 70.65 80.14 70.65
100 0.20 62.93 70.56 81.67 70.56 82.53 70.56
200 0.05 21.30 73.01 44.98 73.01 73.32 73.01
200 0.13 48.46 73.14 74.86 73.14 81.61 73.14
200 0.20 64.82 73.45 83.47 73.45 84.54 73.45
300 0.05 21.61 75.73 46.11 75.73 73.07 75.73

300 0.13 49.46 75.04 75.92 75.04 82.25 75.04
300 0.20 65.38 76.22 84.04 76.22 85.21 76.22

U

100 0.05 17.31 69.71 45.93 69.71 74.45 69.71
100 0.13 40.60 74.40 72.88 74.40 78.39 74.40
100 0.20 57.40 73.71 78.99 73.71 79.54 73.71
200 0.05 18.24 74.83 47.96 74.83 76.59 74.83
200 0.13 42.28 76.66 75.10 76.66 80.78 76.66
200 0.20 57.00 75.33 81.62 75.33 82.41 75.33
300 0.05 18.74 77.79 49.23 77.79 78.31 77.79
300 0.13 42.90 78.01 76.60 78.01 82.12 78.01
300 0.20 57.98 76.61 82.92 76.61 83.61 76.61

N
u
rs

er
y

250 0.01 3.94 55.34 20.80 55.34 00.00 55.34

250 0.08 25.45 71.76 69.08 71.76 20.84 71.76

250 0.25 65.85 73.96 74.72 73.96 75.16 73.96
500 0.01 4.12 66.26 21.37 66.26 00.00 66.26

500 0.08 26.76 71.97 70.36 71.97 21.18 71.97

500 0.25 65.33 72.53 75.22 72.53 75.68 72.53
1,000 0.01 4.37 65.62 21.90 65.62 00.00 65.62

1,000 0.08 27.48 71.10 71.13 71.10 20.92 71.10

1,000 0.25 64.36 69.94 75.88 69.94 76.33 69.94

Table A.1. Comparison of the F measure obtained by DCDiv and PNB in datasets
obtained from UCI databases (Letter Recognition and Nursery).
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UCI datasets - Accuracy

p = 0.50 p = 0.25 Actual p

NDp rat. PNB DCDiv PNB DCDiv PNB DCDiv

L
et

te
r

R
ec

o
g
n
it
io

n
D

100 0.05 59.21 94.95 85.73 94.95 96.25 94.95
100 0.13 66.14 91.21 88.77 91.21 92.28 91.21
100 0.20 72.42 88.56 88.99 88.56 89.86 88.56
200 0.05 59.96 97.09 85.10 97.09 96.10 97.09

200 0.13 67.37 93.58 88.40 93.58 92.47 93.58

200 0.20 73.54 90.85 89.66 90.85 90.79 90.85
300 0.05 60.89 97.55 84.70 97.55 95.89 97.55

300 0.13 68.61 94.27 88.14 94.27 92.29 94.27

300 0.20 74.02 91.72 89.41 91.72 90.61 91.72

P

100 0.05 67.04 97.18 88.88 97.18 97.18 97.18
100 0.13 73.77 93.79 92.03 93.79 94.83 93.79
100 0.20 78.09 90.56 92.40 90.56 93.10 90.56
200 0.05 67.01 97.89 89.57 97.89 97.25 97.89

200 0.13 74.03 94.45 92.30 94.45 95.14 94.45
200 0.20 79.69 91.65 93.17 91.65 93.86 91.65
300 0.05 67.59 98.04 89.99 98.04 97.21 98.04

300 0.13 74.96 94.81 92.68 94.81 95.29 94.81
300 0.20 80.20 92.32 93.40 92.32 94.11 92.32

U

100 0.05 57.18 97.42 90.82 97.42 97.18 97.42
100 0.13 64.08 94.53 92.09 94.53 94.83 94.53
100 0.20 72.56 91.52 91.71 91.52 93.10 91.52
200 0.05 59.08 98.04 91.29 98.04 97.25 98.04
200 0.13 66.08 95.08 92.83 95.08 95.14 95.08
200 0.20 71.69 92.17 92.80 92.17 93.86 92.17
300 0.05 60.12 98.27 91.54 98.27 97.21 98.27

300 0.13 66.66 95.32 93.35 95.32 95.29 95.32
300 0.20 72.66 92.47 93.31 92.47 94.11 92.47

N
u
rs

e
ry

250 0.01 45.58 98.71 92.42 98.71 98.89 98.71
250 0.08 54.27 96.28 94.18 96.28 93.14 96.28

250 0.25 73.96 89.26 89.35 89.26 89.48 89.26
500 0.01 48.15 99.35 92.55 99.35 98.89 99.35

500 0.08 57.39 96.57 94.50 96.57 93.16 96.57

500 0.25 73.25 89.11 89.57 89.11 89.70 89.11
1,000 0.01 51.34 99.42 92.78 99.42 98.89 99.42

1,000 0.08 58.96 96.54 94.66 96.54 93.15 96.54

1,000 0.25 72.74 88.56 89.93 88.56 90.07 88.56

Table A.2. Comparsion of the accuracy obtained by DCDiv and PNB in datasets
obtained from UCI databases (Letter Recognition and Nursery).
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ACCDON datasets - F measure
p = 0.50 p = 0.25 Actual p

NDp
rat. PNB DCDiv PNB DCDiv PNB DCDiv

A
cc

p
et

o
r

S
it
es

C
o
d
in

g

100 0.05 12.58 66.81 43.30 66.81 71.77 66.81
100 0.13 34.02 74.77 74.70 74.77 80.87 74.77
100 0.20 51.83 75.43 83.95 75.43 84.75 75.43
200 0.05 12.59 66.44 44.65 66.44 72.23 66.44
200 0.13 33.60 76.21 75.69 76.21 82.09 76.21
200 0.20 52.98 73.89 84.93 73.89 85.67 73.89
300 0.05 12.57 68.81 44.36 68.81 73.26 68.81
300 0.13 33.46 71.98 75.59 71.98 81.94 71.98
300 0.20 53.50 77.58 85.26 77.58 86.13 77.58

I
n
t
r
o
n

100 0.05 15.39 51.47 38.18 51.47 54.67 51.47
100 0.13 40.43 64.97 66.07 64.97 69.31 64.97
100 0.20 58.29 65.37 75.19 65.37 75.46 65.37
200 0.05 15.78 53.95 38.53 53.95 56.37 53.95
200 0.13 41.85 66.91 67.03 66.91 71.36 66.91
200 0.20 59.77 71.21 76.54 71.21 77.02 71.21
300 0.05 15.75 54.55 38.29 54.55 56.43 54.55
300 0.13 42.21 66.05 66.87 66.05 71.45 66.05
300 0.20 59.89 69.31 77.12 69.31 77.64 69.31

M
ix

e
d

100 0.05 13.73 56.82 41.02 56.82 59.90 56.82
100 0.13 37.79 67.91 69.90 67.91 73.93 67.91
100 0.20 57.52 70.89 78.98 70.89 79.29 70.89
200 0.05 13.56 58.31 41.53 58.31 60.70 58.31
200 0.13 39.48 69.52 70.69 69.52 75.78 69.52
200 0.20 58.60 70.42 79.86 70.42 80.47 70.42
300 0.05 13.78 59.25 41.58 59.25 61.62 59.25
300 0.13 40.01 68.02 70.88 68.02 75.88 68.02
300 0.20 59.05 69.97 80.32 69.97 80.92 69.97

D
o
n
o
r

S
it
es

C
o
d
in

g

100 0.05 14.85 67.61 39.23 67.61 67.86 67.61
100 0.13 36.41 74.10 75.87 74.10 81.49 74.10
100 0.20 52.57 75.18 86.49 75.18 85.95 75.18
200 0.05 15.10 67.43 39.30 67.43 69.71 67.43
200 0.13 36.37 75.57 76.48 75.57 81.66 75.57
200 0.20 52.29 72.91 86.96 72.91 86.39 72.91
300 0.05 14.95 70.04 39.73 70.04 69.27 70.04
300 0.13 36.13 72.73 76.47 72.73 81.84 72.73
300 0.20 52.33 74.26 87.45 74.26 86.65 74.26

I
n
t
r
o
n

100 0.05 15.52 72.54 51.33 72.54 78.53 72.54
100 0.13 36.94 77.66 79.37 77.66 87.32 77.66
100 0.20 52.49 77.08 88.91 77.08 90.65 77.08
200 0.05 15.73 75.58 51.96 75.58 79.00 75.58
200 0.13 36.15 78.27 79.85 78.27 88.17 78.27
200 0.20 51.92 80.02 88.83 80.02 90.85 80.02
300 0.05 15.77 76.23 52.10 76.23 79.07 76.23
300 0.13 36.50 80.22 80.18 80.22 88.13 80.22
300 0.20 52.47 80.90 88.65 80.90 91.10 80.90

M
ix

e
d

100 0.05 15.00 72.40 45.21 72.40 73.01 72.40
100 0.13 35.09 74.63 73.36 74.63 83.78 74.63
100 0.20 51.55 74.05 87.41 74.05 87.63 74.05
200 0.05 15.14 71.84 45.42 71.84 73.48 71.84
200 0.13 35.15 78.28 73.36 78.28 84.15 78.28
200 0.20 50.66 77.67 88.22 77.67 88.51 77.67
300 0.05 15.11 73.30 45.74 73.30 73.99 73.30
300 0.13 35.40 78.00 73.42 78.00 84.40 78.00
300 0.20 49.70 78.53 88.57 78.53 88.49 78.53

Table A.3. Comparison of the F measure obtained by DCDiv and PNB in datasets
obtained from ACCDON database.
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ACCDON datasets - Accuracy
p = 0.50 p = 0.25 Actual p

NDp
rat. PNB DCDiv PNB DCDiv PNB DCDiv

A
cc

p
et

o
r

S
it
es

C
o
d
in

g

100 0.05 33.85 97.06 88.09 97.06 97.30 97.06
100 0.13 49.31 94.29 91.84 94.29 94.97 94.29
100 0.20 62.86 91.87 93.16 91.87 93.88 91.87
200 0.05 33.83 97.19 88.63 97.19 97.34 97.19
200 0.13 48.44 94.58 92.17 94.58 95.29 94.58
200 0.20 64.50 91.58 93.54 91.58 94.20 91.58
300 0.05 33.77 97.14 88.52 97.14 97.42 97.14
300 0.13 48.13 94.08 92.13 94.08 95.21 94.08
300 0.20 65.25 92.50 93.68 92.50 94.37 92.50

I
n
t
r
o
n

100 0.05 47.66 94.21 85.79 94.21 95.41 94.21
100 0.13 61.77 91.61 88.24 91.61 91.67 91.61
100 0.20 71.82 88.57 88.94 88.57 89.83 88.57
200 0.05 49.15 95.02 85.83 95.02 95.48 95.02
200 0.13 63.95 92.14 88.47 92.14 92.05 92.14
200 0.20 73.40 89.84 89.37 89.84 90.30 89.84
300 0.05 49.14 95.33 85.83 95.33 95.47 95.33
300 0.13 64.49 92.00 88.39 92.00 92.07 92.00
300 0.20 73.56 89.58 89.65 89.58 90.55 89.58

M
ix

e
d

100 0.05 40.07 95.50 87.13 95.50 95.96 95.50
100 0.13 56.98 92.32 89.83 92.32 92.93 92.32
100 0.20 70.60 90.04 90.70 90.04 91.43 90.04
200 0.05 39.19 95.91 87.29 95.91 95.98 95.91
200 0.13 60.00 92.97 90.04 92.97 93.37 92.97
200 0.20 71.92 90.11 91.06 90.11 91.85 90.11
300 0.05 40.30 95.98 87.29 95.98 96.06 95.98
300 0.13 60.92 92.92 90.10 92.92 93.37 92.92
300 0.20 72.50 90.12 91.26 90.12 92.03 90.12

D
o
n
o
r

S
it
es

C
o
d
in

g

100 0.05 45.31 96.96 85.42 96.96 97.34 96.96
100 0.13 54.33 94.26 92.03 94.26 95.38 94.26
100 0.20 63.84 91.83 94.29 91.83 94.49 91.83
200 0.05 46.38 97.23 85.45 97.23 97.49 97.23
200 0.13 54.29 94.52 92.26 94.52 95.45 94.52
200 0.20 63.32 91.30 94.47 91.30 94.64 91.30
300 0.05 45.87 97.22 85.75 97.22 97.41 97.22
300 0.13 53.80 94.19 92.24 94.19 95.47 94.19
300 0.20 63.52 91.62 94.66 91.62 94.73 91.62

I
n
t
r
o
n

100 0.05 48.09 97.67 91.08 97.67 98.13 97.67
100 0.13 55.26 95.16 93.43 95.16 96.79 95.16
100 0.20 63.68 92.62 95.26 92.62 96.30 92.62
200 0.05 49.00 97.96 91.29 97.96 98.17 97.96
200 0.13 53.87 95.29 93.59 95.29 96.99 95.29
200 0.20 62.91 93.34 95.20 93.34 96.37 93.34
300 0.05 49.14 97.93 91.32 97.93 98.16 97.93
300 0.13 54.61 95.61 93.73 95.61 96.98 95.61
300 0.20 63.73 93.61 95.11 93.61 96.46 93.61

M
ix

e
d

100 0.05 45.98 97.54 88.60 97.54 97.69 97.54
100 0.13 51.67 94.51 90.83 94.51 95.92 94.51
100 0.20 62.29 91.64 94.66 91.64 95.12 91.64
200 0.05 46.68 97.48 88.72 97.48 97.74 97.48
200 0.13 51.89 95.07 90.78 95.07 96.01 95.07
200 0.20 60.96 92.56 95.00 92.56 95.45 92.56
300 0.05 46.48 97.61 88.87 97.61 97.77 97.61
300 0.13 52.39 95.03 90.83 95.03 96.07 95.03
300 0.20 59.49 92.80 95.14 92.80 95.45 92.80

Table A.4. Comparison of the accuracy obtained by DCDiv and PNB in datasets
obtained from ACCDON database.
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Experimental evaluation of the positive

Bayesian network classifiers

This appendix contains the complete set of results obtained by PNB, PTAN,
APNB and APTAN in both real-life based and synthetic datasets. The results
comprise the F measure and the accuracy obtained by each classifier. The sig-
nificance of the differences between every pair of algorithms has been assessed
running Wilcoxon paired tests on the results obtained on the 100 problems
sampled using each scheme (see Chapter 5).

The first column in each table represents the number of known positive
examples and the second column the ratio of positive cases hidden in Du.
The column labelled as ‘Wlx.’ shows the results of the Wilcoxon test (with a
significance level of 1%). The results of the six tests in each row are codified
as follows:

• a - no significant differences between PNB and APNB
• b - no significant differences between PNB and PTAN
• c - no significant differences between PNB and APTAN
• d - no significant differences between APNB and PTAN
• e - no significant differences between APNB and APTAN
• f - no significant differences between PTAN and APTAN
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Acceptor Sites - F measure
NDp

rat. PNB APNB PTAN APTAN Wlx.

C
o
d
in

g

100 0.01 11.49 11.90 11.88 11.58 c,d
100 0.10 67.21 66.26 63.87 63.41 f
100 0.20 83.86 83.46 76.69 76.91 f
100 0.30 86.94 87.18 77.15 77.75 -
100 0.40 84.38 84.97 71.41 72.60 -
100 0.50 78.55 79.35 62.47 64.20 -

500 0.01 11.39 12.26 12.43 12.14 d
500 0.10 68.59 66.91 68.12 66.76 e
500 0.20 85.22 84.86 84.29 83.32 -
500 0.30 88.88 89.02 87.79 87.17 -
500 0.40 87.49 87.95 86.21 85.88 -
500 0.50 82.64 83.36 81.12 81.17 f

1,,000 0.01 11.37 12.32 12.66 12.29 e
1,,000 0.10 68.77 67.12 69.03 67.31 b,e
1,,000 0.20 85.34 84.96 85.25 83.95 b
1,,000 0.30 89.05 89.21 89.08 88.48 b,d
1,,000 0.40 87.79 88.26 88.28 87.85 c,d
1,,000 0.50 83.13 83.85 84.15 83.69 e

In
tr

o
n

100 0.01 10.42 10.01 10.90 10.03 e
100 0.10 58.85 58.04 55.87 54.87 -
100 0.20 75.33 75.16 67.45 67.24 f
100 0.30 79.81 80.09 67.70 68.56 -
100 0.40 78.17 78.77 62.22 63.36 -
100 0.50 72.61 73.46 54.33 55.94 -

500 0.01 10.67 10.26 11.99 10.90 -
500 0.10 59.88 59.01 63.11 60.71 -
500 0.20 77.10 76.85 78.44 76.92 c,e
500 0.30 82.47 82.64 82.09 81.49 b
500 0.40 82.09 82.56 80.43 80.04 -
500 0.50 77.73 78.46 74.81 74.36 -

1,,000 0.01 10.73 10.30 12.24 11.07 -
1,,000 0.10 59.93 59.12 64.06 61.56 -
1,,000 0.20 77.53 77.27 80.11 78.54 -
1,,000 0.30 82.85 83.02 84.39 83.51 -
1,,000 0.40 82.52 82.98 83.52 82.82 e
1,,000 0.50 78.41 79.16 78.82 78.04 d

M
ix

e
d

100 0.01 11.57 10.99 11.76 10.78 -
100 0.10 62.70 61.71 59.39 58.07 -
100 0.20 79.05 78.83 71.41 71.23 f
100 0.30 82.83 83.08 71.06 71.81 -
100 0.40 80.86 81.45 65.55 66.98 -
100 0.50 74.93 75.80 57.28 59.20 -

500 0.01 11.70 11.12 12.61 11.33 -
500 0.10 63.69 62.66 65.21 63.08 -
500 0.20 80.65 80.38 80.67 79.45 b
500 0.30 85.41 85.58 84.52 83.84 -
500 0.40 84.47 84.97 82.90 82.57 -
500 0.50 79.66 80.42 77.04 76.84 f

1,,000 0.01 11.78 11.19 12.86 11.45 -
1,,000 0.10 63.73 62.68 65.77 63.75 c
1,,000 0.20 80.85 80.54 81.79 80.64 e
1,,000 0.30 85.63 85.81 86.24 85.49 c
1,,000 0.40 85.08 85.55 85.89 85.11 c
1,,000 0.50 80.53 81.26 81.22 80.49 c,d

Table B.1. Comparison of the F measure obtained by PNB, PTAN, APNB and
APTAN in datasets sampled from the database of acceptor sites.
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Donor Sites - F measure
NDp

rat. PNB APNB PTAN APTAN Wlx.

C
o
d
in

g

100 0.01 8.80 9.38 9.71 9.58 d,e,f
100 0.10 66.79 64.36 64.41 63.02 d
100 0.20 84.32 84.07 78.08 79.27 -
100 0.30 85.74 86.24 77.12 79.78 -
100 0.40 81.21 82.11 67.31 72.06 -
100 0.50 71.66 72.85 52.87 59.07 -

500 0.01 8.02 9.45 8.28 9.31 e
500 0.10 67.77 65.25 60.14 62.65 -
500 0.20 85.37 85.15 80.36 82.31 -
500 0.30 87.08 87.60 84.74 85.16 f
500 0.40 82.83 83.66 76.67 80.90 -
500 0.50 74.33 75.49 64.33 70.91 -

1,000 0.01 7.97 9.42 7.86 9.28 b,e
1,000 0.10 67.80 65.22 58.56 61.80 -
1,000 0.20 85.59 85.32 80.67 82.66 -
1,000 0.30 87.16 87.73 86.01 86.05 f
1,000 0.40 83.05 83.86 78.21 81.99 -
1,000 0.50 74.80 75.98 66.15 72.58 -

In
tr

o
n

100 0.01 10.15 8.97 10.19 9.55 b
100 0.10 64.16 62.55 62.52 61.41 d
100 0.20 80.98 80.85 75.88 77.20 -
100 0.30 83.31 83.80 74.53 77.77 -
100 0.40 79.22 80.03 66.48 70.63 -
100 0.50 70.12 71.22 51.66 57.47 -

500 0.01 10.16 8.80 6.98 9.71 -
500 0.10 64.68 62.95 55.15 61.65 -
500 0.20 82.40 82.26 80.44 80.04 f
500 0.30 84.52 84.99 82.80 83.14 f
500 0.40 81.07 81.78 78.93 79.45 f
500 0.50 73.25 74.36 67.90 70.03 -

1,000 0.01 10.15 8.82 6.71 9.65 -
1,000 0.10 64.75 62.96 53.12 61.76 -
1,000 0.20 82.57 82.43 79.95 80.08 f
1,000 0.30 84.59 85.14 83.84 83.63 f
1,000 0.40 81.36 82.10 81.11 80.65 b
1,000 0.50 73.77 74.81 71.73 71.41 f

M
ix

e
d

100 0.01 10.17 8.86 10.46 9.51 -
100 0.10 65.79 63.94 63.74 62.30 d
100 0.20 82.61 82.42 77.26 78.36 -
100 0.30 84.41 84.93 75.47 78.39 -
100 0.40 79.91 80.76 66.14 70.80 -
100 0.50 70.65 71.88 52.36 58.53 -

500 0.01 10.19 8.86 7.20 9.26 -
500 0.10 66.39 64.45 59.91 61.86 -
500 0.20 83.80 83.62 80.10 81.46 -
500 0.30 85.55 86.07 83.37 84.29 -
500 0.40 81.77 82.59 77.59 79.99 -
500 0.50 73.13 74.38 64.72 70.34 -

1,000 0.01 10.17 8.84 6.67 9.16 -
1,000 0.10 66.69 64.64 56.19 62.29 -
1,000 0.20 84.09 83.89 80.37 81.10 -
1,000 0.30 85.63 86.22 84.92 84.72 f
1,000 0.40 81.88 82.64 80.14 80.67 f
1,000 0.50 73.90 75.09 68.79 72.12 -

Table B.2. Comparison of the F measure obtained by PNB, PTAN, APNB and
APTAN in datasets sampled from the database of donor sites.
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Acceptor Sites - Accuracy
NDp

rat. PNB APNB PTAN APTAN Wlx.

C
o
d
in

g

100 0.01 85.07 85.64 86.18 85.57 e
100 0.10 90.84 90.40 90.10 89.66 d
100 0.20 93.11 92.85 90.34 90.25 f
100 0.30 92.44 92.52 87.46 87.62 f
100 0.40 88.79 89.13 81.08 81.61 -
100 0.50 82.06 82.60 71.65 72.57 -

500 0.01 84.87 86.06 86.37 85.95 e
500 0.10 91.31 90.57 91.18 90.60 b,e
500 0.20 93.65 93.42 93.24 92.71 -
500 0.30 93.47 93.51 92.82 92.40 -
500 0.40 90.81 91.09 89.87 89.59 -
500 0.50 85.01 85.53 83.75 83.76 f

1,000 0.01 84.88 86.17 86.62 86.11 e
1,000 0.10 91.37 90.65 91.48 90.76 b
1,000 0.20 93.70 93.47 93.64 92.95 b
1,000 0.30 93.57 93.62 93.52 93.12 b
1,000 0.40 91.01 91.30 91.24 90.90 c,d
1,000 0.50 85.38 85.90 86.02 85.64 d

In
tr

o
n

100 0.01 84.10 83.26 85.93 84.43 -
100 0.10 87.48 86.95 87.57 86.84 b,e
100 0.20 88.96 88.74 86.55 86.19 -
100 0.30 88.19 88.23 82.75 82.94 f
100 0.40 84.51 84.80 75.94 76.33 -
100 0.50 77.67 78.17 66.83 67.54 -

500 0.01 84.25 83.44 86.19 84.61 -
500 0.10 87.73 87.19 89.28 88.16 -
500 0.20 89.64 89.39 90.45 89.63 c
500 0.30 89.53 89.54 89.44 89.01 a,b,d
500 0.40 86.89 87.13 85.88 85.55 -
500 0.50 81.13 81.61 79.08 78.69 -

1,000 0.01 84.27 83.45 86.40 84.70 -
1,000 0.10 87.75 87.24 89.54 88.41 -
1,000 0.20 89.80 89.56 91.10 90.26 -
1,000 0.30 89.73 89.75 90.63 90.06 a
1,000 0.40 87.15 87.40 87.80 87.28 c,e
1,000 0.50 81.62 82.11 81.85 81.24 d

M
ix

e
d

100 0.01 85.50 84.56 86.65 84.94 -
100 0.10 89.08 88.52 88.76 87.86 -
100 0.20 90.77 90.55 88.16 87.80 -
100 0.30 89.95 90.00 84.38 84.53 f
100 0.40 86.31 86.62 77.74 78.30 -
100 0.50 79.35 79.89 68.53 69.45 -

500 0.01 85.54 84.62 86.80 85.01 -
500 0.10 89.31 88.76 90.04 89.07 -
500 0.20 91.37 91.14 91.44 90.77 b
500 0.30 91.30 91.33 90.80 90.34 -
500 0.40 88.56 88.85 87.49 87.21 -
500 0.50 82.62 83.14 80.65 80.47 f

1,000 0.01 85.62 84.71 87.02 85.12 -
1,000 0.10 89.33 88.78 90.19 89.27 c
1,000 0.20 91.44 91.21 91.87 91.24 e
1,000 0.30 91.41 91.44 91.70 91.21 -
1,000 0.40 88.97 89.24 89.42 88.86 c
1,000 0.50 83.26 83.76 83.63 83.06 c,d

Table B.3. Comparison of the accuracy obtained by PNB, PTAN, APNB and
APTAN in datasets sampled from the database of acceptor sites.
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Donor Sites - Accuracy
NDp

rat. PNB APNB PTAN APTAN Wlx.

C
o
d
in

g

100 0.01 79.22 80.84 81.60 81.39 f
100 0.10 90.50 89.32 89.72 88.94 -
100 0.20 93.33 93.12 90.74 91.01 f
100 0.30 91.90 92.10 87.56 88.73 -
100 0.40 86.99 87.48 79.17 81.58 -
100 0.50 77.69 78.41 66.95 70.20 -

500 0.01 77.20 81.00 77.92 80.66 e
500 0.10 90.83 89.65 87.13 88.40 -
500 0.20 93.75 93.55 91.15 92.10 -
500 0.30 92.61 92.83 91.11 91.32 f
500 0.40 87.96 88.43 84.05 86.59 -
500 0.50 79.40 80.13 73.10 77.11 -

1,000 0.01 77.14 81.04 76.67 80.64 b
1,000 0.10 90.83 89.64 86.19 87.92 -
1,000 0.20 93.84 93.63 91.25 92.23 -
1,000 0.30 92.66 92.90 91.76 91.80 f
1,000 0.40 88.10 88.56 84.91 87.25 -
1,000 0.50 79.70 80.45 74.17 78.14 -

In
tr

o
n

100 0.01 82.55 79.89 82.84 81.39 b
100 0.10 89.45 88.59 89.14 88.31 e
100 0.20 91.77 91.58 89.82 90.11 -
100 0.30 90.47 90.66 86.15 87.60 -
100 0.40 85.62 86.05 78.43 80.61 -
100 0.50 76.57 77.21 66.01 69.07 -

500 0.01 82.54 79.41 73.40 81.57 -
500 0.10 89.55 88.64 84.13 88.00 -
500 0.20 92.35 92.16 91.33 91.03 f
500 0.30 91.12 91.30 90.00 90.14 f
500 0.40 86.73 87.11 84.96 85.53 -
500 0.50 78.55 79.23 74.87 76.38 -

1,000 0.01 82.53 79.51 72.23 81.45 -
1,000 0.10 89.57 88.63 82.64 88.02 -
1,000 0.20 92.42 92.23 90.93 90.97 f
1,000 0.30 91.16 91.38 90.47 90.32 f
1,000 0.40 86.91 87.31 86.20 86.22 f
1,000 0.50 78.89 79.54 77.15 77.24 f

M
ix

e
d

100 0.01 82.66 79.69 83.28 81.38 -
100 0.10 90.12 89.20 89.57 88.66 -
100 0.20 92.55 92.35 90.46 90.69 f
100 0.30 91.15 91.36 86.75 88.01 -
100 0.40 86.13 86.59 78.45 80.87 -
100 0.50 77.00 77.73 66.63 69.85 -

500 0.01 82.63 79.63 73.94 80.51 -
500 0.10 90.30 89.35 87.01 88.03 -
500 0.20 93.03 92.84 91.06 91.72 -
500 0.30 91.74 91.95 90.39 90.83 -
500 0.40 87.25 87.71 84.45 85.95 -
500 0.50 78.56 79.34 73.24 76.67 -

1,000 0.01 82.58 79.57 71.71 80.24 -
1,000 0.10 90.41 89.43 84.65 88.21 -
1,000 0.20 93.15 92.96 91.13 91.45 f
1,000 0.30 91.79 92.04 91.20 91.02 f
1,000 0.40 87.31 87.73 85.82 86.37 -
1,000 0.50 79.05 79.80 75.57 77.78 -

Table B.4. Comparison of the accuracy obtained by PNB, PTAN, APNB and
APTAN in datasets sampled from the database of donor sites.
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Letter Recognition - F measure
NDp

rat. PNB APNB PTAN APTAN Wlx.

L
e
tt

e
r

R
e
c
o
g
n
it

io
n

D

100 0.01 10.70 10.23 26.59 24.70 f
100 0.10 59.75 58.31 52.77 50.24 f
100 0.20 74.12 73.94 38.53 38.03 a,f
100 0.30 75.27 76.42 24.70 23.96 f
100 0.40 70.60 73.15 14.80 14.03 f
100 0.50 61.40 65.11 8.45 8.98 f

200 0.01 10.17 9.83 21.57 19.03 -
200 0.10 58.87 57.40 67.35 65.15 f
200 0.20 76.56 76.00 66.45 64.98 f
200 0.30 81.01 81.27 56.45 54.51 f
200 0.40 80.35 81.37 43.65 40.80 -
200 0.50 75.36 77.43 30.96 28.41 f

300 0.01 10.14 10.01 18.61 16.53 -
300 0.10 59.16 58.33 69.61 68.14 f
300 0.20 76.55 76.27 74.90 74.05 b,d,f
300 0.30 82.08 82.24 70.28 68.40 f
300 0.40 81.87 82.08 60.90 58.53 -
300 0.50 80.02 80.32 49.53 45.47 -

L
e
tt

e
r

R
e
c
o
g
n
it

io
n

P

100 0.01 12.89 13.25 31.52 28.00 -
100 0.10 67.59 65.90 63.51 64.07 e,f
100 0.20 82.48 82.15 50.98 52.00 f
100 0.30 84.27 84.78 33.69 35.81 f
100 0.40 80.75 82.18 21.91 22.71 f
100 0.50 72.57 75.10 13.01 13.53 f

200 0.01 13.67 14.18 28.69 25.27 -
200 0.10 68.02 67.00 75.31 74.07 f
200 0.20 83.90 83.32 73.59 74.17 f
200 0.30 87.35 87.42 63.60 63.00 a,f
200 0.40 86.52 87.01 49.89 49.53 f
200 0.50 82.63 83.76 36.60 34.95 f

300 0.01 14.25 14.99 25.92 23.01 -
300 0.10 69.42 69.05 77.10 75.97 a,f
300 0.20 84.60 84.25 80.67 80.66 f
300 0.30 87.78 87.85 75.42 74.52 a,f
300 0.40 87.73 87.96 65.61 65.04 f
300 0.50 85.19 85.50 53.24 51.14 f

L
e
tt

e
r

R
e
c
o
g
n
it

io
n

U

100 0.01 13.46 12.43 27.81 25.73 f
100 0.10 66.89 65.66 58.87 57.13 f
100 0.20 79.16 79.08 48.27 46.37 a,f
100 0.30 80.23 80.85 33.29 32.41 f
100 0.40 76.48 77.89 21.72 21.33 f
100 0.50 68.66 71.20 13.84 13.89 f

200 0.01 13.54 12.95 26.03 22.44 -
200 0.10 69.56 68.10 71.32 69.81 c,f
200 0.20 81.48 81.17 70.58 68.99 f
200 0.30 83.42 83.63 60.67 58.27 f
200 0.40 82.40 83.04 49.73 46.50 f
200 0.50 79.04 80.28 36.15 33.99 f

300 0.01 13.87 13.71 23.12 20.19 a
300 0.10 70.36 68.85 73.70 72.52 f
300 0.20 81.87 81.65 77.67 77.09 f
300 0.30 84.29 84.33 72.42 71.40 a,f
300 0.40 84.22 84.35 64.61 62.12 -
300 0.50 81.25 81.50 53.29 50.26 f

Table B.5. Comparison of the F measure obtained by PNB, PTAN, APNB and
APTAN in datasets sampled from the database Letter Recognition.
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Letter Recognition - Accuracy
NDp

rat. PNB APNB PTAN APTAN Wlx.

L
e
tt

e
r

R
e
c
o
g
n
it

io
n

D

100 0.01 84.86 83.96 97.00 96.43 -
100 0.10 88.55 87.61 92.87 92.40 -
100 0.20 89.14 88.71 84.33 84.10 f
100 0.30 86.48 86.75 73.86 73.60 f
100 0.40 80.61 81.75 62.89 62.48 f
100 0.50 71.14 73.01 51.84 51.70 f

200 0.01 83.38 82.68 94.25 93.46 -
200 0.10 87.57 86.63 93.66 93.16 -
200 0.20 89.56 89.05 89.26 88.82 b,d,e,f
200 0.30 88.82 88.76 81.41 80.76 a,f
200 0.40 85.85 86.34 70.95 69.97 -
200 0.50 79.54 80.78 58.98 58.10 f

300 0.01 83.59 83.26 92.53 91.28 -
300 0.10 87.43 86.90 93.31 92.79 -
300 0.20 89.41 89.14 91.01 90.69 f
300 0.30 89.29 89.31 85.71 85.00 a,f
300 0.40 86.73 86.82 77.16 76.20 -
300 0.50 82.67 82.87 66.26 64.51 -

L
e
tt

e
r

R
e
c
o
g
n
it

io
n

P

100 0.01 88.10 88.49 97.04 96.29 -
100 0.10 91.55 90.82 93.97 93.77 f
100 0.20 92.87 92.62 86.47 86.50 f
100 0.30 91.18 91.36 75.81 76.07 f
100 0.40 86.60 87.39 64.68 64.74 f
100 0.50 78.08 79.63 53.18 53.15 f

200 0.01 88.61 89.08 95.79 94.93 -
200 0.10 91.63 91.21 95.14 94.71 f
200 0.20 93.43 93.09 91.17 91.23 f
200 0.30 92.78 92.75 83.71 83.48 a,f
200 0.40 90.19 90.46 73.15 72.98 f
200 0.50 84.98 85.78 61.10 60.47 f

300 0.01 89.10 89.75 94.97 94.06 -
300 0.10 92.10 91.97 95.19 94.79 a
300 0.20 93.68 93.48 93.01 92.90 f
300 0.30 93.02 93.02 87.83 87.46 a,f
300 0.40 91.00 91.13 79.36 79.08 f
300 0.50 86.93 87.16 68.06 67.08 f

L
e
tt

e
r

R
e
c
o
g
n
it

io
n

U

100 0.01 89.43 88.26 96.91 96.32 -
100 0.10 92.14 91.58 93.48 93.01 -
100 0.20 91.90 91.73 85.91 85.41 f
100 0.30 89.40 89.56 75.68 75.29 f
100 0.40 84.28 84.97 64.60 64.33 f
100 0.50 75.75 77.19 53.41 53.20 f

200 0.01 88.87 88.25 95.53 94.63 -
200 0.10 92.75 92.10 94.55 94.14 f
200 0.20 92.79 92.53 90.43 89.99 f
200 0.30 90.95 90.96 82.79 82.00 a,f
200 0.40 87.73 88.05 73.06 71.97 -
200 0.50 82.49 83.30 60.91 60.13 f

300 0.01 88.95 88.72 94.50 93.40 a
300 0.10 92.98 92.40 94.68 94.27 f
300 0.20 92.96 92.81 92.17 91.95 f
300 0.30 91.42 91.40 86.71 86.30 a,f
300 0.40 88.85 88.91 78.94 77.87 -
300 0.50 84.07 84.24 68.09 66.71 -

Table B.6. Comparison of the accuracy obtained by PNB, PTAN, APNB and
APTAN in datasets sampled from the database Letter Recognition.
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Nursery - F measure

NDp rat. PNB APNB PTAN APTAN Wlx.

100 0.01 17.40 15.66 13.57 15.66 e
100 0.10 70.66 70.14 63.28 70.14 -
100 0.20 74.14 75.04 72.17 75.04 c,f
100 0.30 67.92 69.35 66.55 69.35 c
100 0.40 56.57 58.41 56.86 58.41 b,e
100 0.50 43.09 45.05 46.24 45.05 -

200 0.01 18.93 16.98 14.92 16.98 e
200 0.10 72.95 72.29 66.26 72.29 e
200 0.20 76.81 77.74 77.31 77.74 b,d
200 0.30 69.87 71.42 72.85 71.42 f
200 0.40 58.35 60.29 62.06 60.29 -
200 0.50 42.15 44.33 48.31 44.33 -

300 0.01 19.47 17.37 15.34 17.37 -
300 0.10 74.19 73.58 67.88 73.58 e
300 0.20 77.86 78.84 79.28 78.84 d
300 0.30 70.38 72.00 75.78 72.00 -
300 0.40 58.22 60.23 64.32 60.23 -
300 0.50 41.97 44.24 48.61 44.24 -

Table B.7. Comparison of the F measure obtained by PNB, PTAN, APNB and
APTAN in datasets sampled from the database Nursery.

Nursery - Accuracy

NDp rat. PNB APNB PTAN APTAN Wlx.

100 0.01 91.62 90.25 88.73 90.53 e
100 0.10 93.55 93.22 90.70 91.95 -
100 0.20 90.85 91.00 89.55 89.85 f
100 0.30 84.86 85.30 83.77 84.03 f
100 0.40 75.40 76.09 74.94 75.34 c
100 0.50 63.53 64.31 64.27 64.80 d

200 0.01 92.24 90.95 89.38 91.32 e
200 0.10 94.06 93.69 91.25 93.02 -
200 0.20 91.76 91.93 91.16 91.78 c,e
200 0.30 85.72 86.24 86.38 86.67 d,f
200 0.40 76.27 77.03 77.40 78.02 -
200 0.50 63.26 64.13 65.44 66.13 -

300 0.01 92.46 91.18 89.58 91.54 e
300 0.10 94.35 94.02 91.58 93.30 -
300 0.20 92.12 92.33 91.82 92.70 b
300 0.30 85.94 86.49 87.71 88.13 f
300 0.40 76.24 77.03 78.52 79.33 -
300 0.50 63.24 64.15 65.73 66.71 -

Table B.8. Comparison of the accuracy obtained by PNB, PTAN, APNB and
APTAN in datasets sampled from the database Nursery.
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Lined - F measure
NDp

NDu
rat. PNB APNB PTAN APTAN Wlx.

100 1,000 0.01 10.55 10.46 15.72 11.94 a
100 1,000 0.10 32.54 32.34 57.36 38.76 a
100 1,000 0.20 30.77 31.47 65.59 41.59 -
100 1,000 0.30 23.89 24.97 53.62 37.30 -
100 1,000 0.40 22.43 23.66 51.38 37.86 -
100 1,000 0.50 22.21 23.36 41.94 34.21 -

100 10,000 0.01 10.57 10.60 11.86 12.15 a,f
100 10,000 0.10 32.81 32.72 55.66 40.44 a
100 10,000 0.20 31.14 31.79 70.44 44.12 -
100 10,000 0.30 23.53 24.54 59.71 40.84 -
100 10,000 0.40 21.98 23.07 56.47 39.54 -
100 10,000 0.50 21.83 22.86 47.29 34.85 -

100 100,000 0.01 10.65 10.70 10.17 12.32 a,b,d
100 100,000 0.10 32.98 32.82 53.94 40.72 a
100 100,000 0.20 31.26 31.91 68.64 46.75 -
100 100,000 0.30 23.61 24.56 59.30 41.39 -
100 100,000 0.40 21.98 23.04 57.15 40.38 -
100 100,000 0.50 21.75 22.73 47.70 35.73 -

1,000 1,000 0.01 10.48 10.51 15.08 11.51 a
1,000 1,000 0.10 32.99 32.90 57.72 38.95 a
1,000 1,000 0.20 29.94 30.74 63.04 41.75 -
1,000 1,000 0.30 23.96 24.99 52.78 37.66 -
1,000 1,000 0.40 21.69 22.92 51.36 38.54 -
1,000 1,000 0.50 22.20 23.30 44.01 34.39 -

1,000 10,000 0.01 10.47 10.58 11.65 11.99 a,f
1,000 10,000 0.10 33.11 32.98 56.59 40.37 a
1,000 10,000 0.20 30.09 30.77 67.89 43.71 -
1,000 10,000 0.30 24.14 25.06 58.42 41.16 -
1,000 10,000 0.40 20.95 22.02 55.47 39.32 -
1,000 10,000 0.50 21.43 22.42 48.68 34.92 -

1,000 100,000 0.01 10.54 10.67 9.96 12.39 a,b,d
1,000 100,000 0.10 33.14 33.01 54.35 40.82 a
1,000 100,000 0.20 30.26 30.92 67.16 45.68 -
1,000 100,000 0.30 24.04 24.98 58.96 41.46 -
1,000 100,000 0.40 20.82 21.90 56.09 39.70 -
1,000 100,000 0.50 21.34 22.31 49.52 36.12 -

10,000 1,000 0.01 10.68 10.72 15.57 11.79 a
10,000 1,000 0.10 32.93 32.81 58.78 38.40 a
10,000 1,000 0.20 29.40 30.12 64.66 42.01 -
10,000 1,000 0.30 23.66 24.60 51.59 37.94 -
10,000 1,000 0.40 21.88 23.01 50.83 38.38 -
10,000 1,000 0.50 22.57 23.73 43.74 34.38 -

10,000 10,000 0.01 10.68 10.72 11.82 12.18 a,f
10,000 10,000 0.10 32.83 32.68 57.31 39.77 a
10,000 10,000 0.20 29.91 30.59 69.18 44.27 -
10,000 10,000 0.30 23.64 24.63 56.62 41.14 -
10,000 10,000 0.40 21.56 22.60 54.85 39.81 -
10,000 10,000 0.50 22.29 23.32 48.81 35.41 -

10,000 100,000 0.01 10.79 10.76 10.12 12.39 a,b,d
10,000 100,000 0.10 32.95 32.78 54.36 40.87 a
10,000 100,000 0.20 29.93 30.61 69.00 46.13 -
10,000 100,000 0.30 23.69 24.68 58.03 41.33 -
10,000 100,000 0.40 21.45 22.50 55.80 40.35 -
10,000 100,000 0.50 22.19 23.19 48.78 36.15 -

Table B.9. Comparison of the F measure obtained by PNB, PTAN, APNB and
APTAN in datasets sampled from TAN models where the structure was ‘Lined’.
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Hierarchical 1 - F measure
NDp

NDu
rat. PNB APNB PTAN APTAN Wlx.

100 1,000 0.01 7.56 7.43 14.18 11.82 a,f
100 1,000 0.10 36.13 36.23 54.14 44.39 a
100 1,000 0.20 31.48 32.21 67.98 48.63 -
100 1,000 0.30 26.88 27.84 61.71 49.62 -
100 1,000 0.40 25.55 26.67 59.93 48.25 -
100 1,000 0.50 23.92 24.98 48.11 39.29 -

100 10,000 0.01 7.42 7.29 9.41 11.73 -
100 10,000 0.10 36.52 36.53 51.98 49.07 a,f
100 10,000 0.20 31.74 32.38 69.62 55.04 -
100 10,000 0.30 27.14 28.04 62.02 53.64 -
100 10,000 0.40 25.41 26.44 62.97 52.89 -
100 10,000 0.50 23.66 24.68 50.80 42.11 -

100 100,000 0.01 7.44 7.31 8.10 11.89 -
100 100,000 0.10 36.42 36.44 48.36 47.46 a,f
100 100,000 0.20 31.80 32.44 68.07 54.28 -
100 100,000 0.30 26.96 27.84 63.16 50.03 -
100 100,000 0.40 25.45 26.45 62.97 49.60 -
100 100,000 0.50 23.66 24.64 50.52 39.76 -

1,000 1,000 0.01 7.75 7.50 14.21 11.55 -
1,000 1,000 0.10 35.73 35.92 55.32 44.16 a
1,000 1,000 0.20 30.52 31.30 70.08 47.81 -
1,000 1,000 0.30 26.30 27.43 61.62 49.23 -
1,000 1,000 0.40 25.92 26.99 60.19 48.39 -
1,000 1,000 0.50 23.86 24.90 47.77 39.61 -

1,000 10,000 0.01 7.49 7.31 9.43 12.14 -
1,000 10,000 0.10 36.71 36.74 51.60 50.11 a,f
1,000 10,000 0.20 31.14 31.83 70.65 54.17 -
1,000 10,000 0.30 26.43 27.32 64.25 53.68 -
1,000 10,000 0.40 25.71 26.70 64.30 52.91 -
1,000 10,000 0.50 23.47 24.42 51.00 42.12 -

1,000 100,000 0.01 7.48 7.36 8.15 12.01 -
1,000 100,000 0.10 36.77 36.83 47.52 47.48 f
1,000 100,000 0.20 31.17 31.85 68.57 53.04 -
1,000 100,000 0.30 26.33 27.22 64.01 49.75 -
1,000 100,000 0.40 25.67 26.67 63.71 49.58 -
1,000 100,000 0.50 23.35 24.30 50.61 39.53 -

10,000 1,000 0.01 7.62 7.47 14.56 11.63 -
10,000 1,000 0.10 35.72 35.90 53.69 44.10 a
10,000 1,000 0.20 30.77 31.56 68.46 48.43 -
10,000 1,000 0.30 26.20 27.23 60.22 49.33 -
10,000 1,000 0.40 25.92 27.05 61.60 47.71 -
10,000 1,000 0.50 24.21 25.37 47.55 39.42 -

10,000 10,000 0.01 7.35 7.25 9.53 11.90 -
10,000 10,000 0.10 36.46 36.46 50.86 48.65 a,f
10,000 10,000 0.20 31.34 31.96 70.59 54.85 -
10,000 10,000 0.30 26.60 27.50 64.42 53.37 -
10,000 10,000 0.40 25.81 26.83 64.13 52.22 -
10,000 10,000 0.50 23.63 24.64 50.81 42.40 -

10,000 100,000 0.01 7.38 7.28 8.24 11.84 -
10,000 100,000 0.10 36.54 36.46 48.16 45.47 a,f
10,000 100,000 0.20 31.25 31.92 68.14 52.80 -
10,000 100,000 0.30 26.59 27.46 63.57 49.40 -
10,000 100,000 0.40 25.88 26.86 62.97 49.33 -
10,000 100,000 0.50 23.56 24.56 50.51 39.81 -

Table B.10. Comparison of the F measure obtained by PNB, PTAN, APNB and
APTAN in datasets sampled from TAN models where the structure was ‘Hierarchical
1’.
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Hierarchical 2 - F measure
NDp

NDu
rat. PNB APNB PTAN APTAN Wlx.

100 1,000 0.01 9.91 9.85 13.74 10.61 a,c,e
100 1,000 0.10 31.47 31.69 55.47 37.23 a
100 1,000 0.20 31.99 32.75 63.24 40.74 -
100 1,000 0.30 25.04 25.92 60.30 40.29 -
100 1,000 0.40 22.94 23.99 51.42 34.30 -
100 1,000 0.50 22.89 23.90 40.00 33.13 -

100 10,000 0.01 9.95 9.77 10.93 11.15 f
100 10,000 0.10 32.10 32.16 54.53 39.52 a
100 10,000 0.20 32.20 32.84 68.45 44.65 -
100 10,000 0.30 25.80 26.67 65.48 43.25 -
100 10,000 0.40 22.43 23.40 56.02 37.07 -
100 10,000 0.50 22.40 23.46 43.94 34.29 -

100 100,000 0.01 9.94 9.75 9.89 11.02 b,d
100 100,000 0.10 31.84 31.94 52.43 40.25 -
100 100,000 0.20 32.31 32.94 66.42 44.50 -
100 100,000 0.30 25.72 26.56 65.11 42.13 -
100 100,000 0.40 22.29 23.24 55.49 35.87 -
100 100,000 0.50 22.43 23.46 44.29 33.74 -

1,000 1,000 0.01 9.99 9.50 14.02 10.66 c
1,000 1,000 0.10 31.46 31.55 57.59 37.32 a
1,000 1,000 0.20 31.97 32.60 65.04 40.45 -
1,000 1,000 0.30 25.52 26.43 60.06 40.14 -
1,000 1,000 0.40 21.69 22.84 50.65 34.23 -
1,000 1,000 0.50 22.75 23.91 40.18 33.05 -

1,000 10,000 0.01 10.08 9.83 11.14 11.17 f
1,000 10,000 0.10 31.99 32.11 55.88 39.18 -
1,000 10,000 0.20 31.96 32.58 69.20 44.87 -
1,000 10,000 0.30 25.76 26.63 65.16 43.29 -
1,000 10,000 0.40 21.54 22.53 55.97 36.35 -
1,000 10,000 0.50 22.51 23.53 43.48 34.32 -

1,000 100,000 0.01 10.06 9.81 9.84 11.28 b,d
1,000 100,000 0.10 31.86 31.96 53.14 39.86 -
1,000 100,000 0.20 32.01 32.64 67.82 44.46 -
1,000 100,000 0.30 25.73 26.58 64.49 42.20 -
1,000 100,000 0.40 21.47 22.43 55.69 35.61 -
1,000 100,000 0.50 22.36 23.38 44.16 33.35 -

10,000 1,000 0.01 10.00 9.88 14.25 10.59 a,c,e
10,000 1,000 0.10 30.81 31.02 56.91 37.38 a
10,000 1,000 0.20 31.49 32.26 63.10 40.83 -
10,000 1,000 0.30 25.66 26.49 59.19 39.80 -
10,000 1,000 0.40 21.30 22.38 51.08 34.43 -
10,000 1,000 0.50 23.21 24.41 40.35 32.96 -

10,000 10,000 0.01 10.07 9.76 11.14 11.24 f
10,000 10,000 0.10 31.90 31.99 56.15 39.37 -
10,000 10,000 0.20 31.75 32.42 67.78 44.31 -
10,000 10,000 0.30 25.95 26.78 64.76 42.91 -
10,000 10,000 0.40 21.12 22.06 56.36 36.91 -
10,000 10,000 0.50 22.63 23.74 44.23 34.74 -

10,000 100,000 0.01 10.06 9.76 9.97 11.14 b,d
10,000 100,000 0.10 31.82 31.91 53.66 40.47 -
10,000 100,000 0.20 31.76 32.38 66.97 43.94 -
10,000 100,000 0.30 25.82 26.62 64.53 42.25 -
10,000 100,000 0.40 21.05 22.01 56.01 35.77 -
10,000 100,000 0.50 22.53 23.57 44.49 33.84 -

Table B.11. Comparison of the F measure obtained by PNB, PTAN, APNB and
APTAN in datasets sampled from TAN models where the structure was ‘Hierarchical
2’.
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Mixed - F measure
NDp

NDu
rat. PNB APNB PTAN APTAN Wlx.

100 1,000 0.01 8.74 8.66 13.88 12.13 a
100 1,000 0.10 30.28 30.18 61.03 43.97 a
100 1,000 0.20 29.53 30.09 68.66 46.09 -
100 1,000 0.30 24.35 25.28 52.70 40.59 -
100 1,000 0.40 23.38 24.47 58.01 41.98 -
100 1,000 0.50 23.38 24.50 46.23 37.49 -

100 10,000 0.01 7.95 8.30 10.29 11.27 -
100 10,000 0.10 31.17 31.36 58.45 44.84 -
100 10,000 0.20 29.96 30.64 72.20 47.98 -
100 10,000 0.30 23.93 24.86 59.16 43.88 -
100 10,000 0.40 23.22 24.22 63.76 43.82 -
100 10,000 0.50 23.37 24.35 51.36 39.54 -

100 100,000 0.01 7.97 8.28 9.10 11.13 -
100 100,000 0.10 31.28 31.41 55.80 46.13 -
100 100,000 0.20 29.89 30.54 69.47 49.05 -
100 100,000 0.30 23.99 24.88 58.98 43.46 -
100 100,000 0.40 23.30 24.28 63.76 44.86 -
100 100,000 0.50 23.22 24.20 51.14 39.21 -

1,000 1,000 0.01 8.60 8.79 13.68 11.69 a
1,000 1,000 0.10 30.77 30.81 61.61 42.75 a
1,000 1,000 0.20 30.25 31.00 68.67 44.94 -
1,000 1,000 0.30 23.64 24.73 53.99 40.48 -
1,000 1,000 0.40 23.93 24.97 56.29 41.78 -
1,000 1,000 0.50 23.22 24.36 46.89 37.38 -

1,000 10,000 0.01 7.95 8.23 10.32 11.19 -
1,000 10,000 0.10 30.97 31.09 59.28 44.37 -
1,000 10,000 0.20 30.67 31.37 72.14 47.92 -
1,000 10,000 0.30 23.95 24.82 60.01 43.70 -
1,000 10,000 0.40 23.21 24.24 61.70 43.87 -
1,000 10,000 0.50 22.58 23.58 51.75 39.30 -

1,000 100,000 0.01 8.02 8.26 9.24 11.11 a
1,000 100,000 0.10 30.92 31.06 55.80 45.74 -
1,000 100,000 0.20 30.68 31.33 70.22 48.88 -
1,000 100,000 0.30 24.09 24.95 59.11 43.61 -
1,000 100,000 0.40 23.16 24.13 61.77 44.64 -
1,000 100,000 0.50 22.57 23.56 51.54 39.21 -

10,000 1,000 0.01 8.74 8.75 14.11 11.83 a
10,000 1,000 0.10 30.28 30.42 61.68 42.79 a
10,000 1,000 0.20 29.24 30.06 68.78 45.72 -
10,000 1,000 0.30 24.25 25.32 55.03 40.34 -
10,000 1,000 0.40 23.24 24.38 58.67 41.32 -
10,000 1,000 0.50 21.79 22.98 47.74 37.53 -

10,000 10,000 0.01 7.97 8.28 10.30 11.15 -
10,000 10,000 0.10 30.37 30.54 59.49 44.22 -
10,000 10,000 0.20 29.87 30.53 72.08 48.01 -
10,000 10,000 0.30 24.15 25.04 61.60 44.14 -
10,000 10,000 0.40 23.27 24.28 63.48 43.80 -
10,000 10,000 0.50 21.66 22.62 52.47 39.46 -

10,000 100,000 0.01 8.01 8.29 9.21 10.99 a
10,000 100,000 0.10 30.59 30.76 56.17 45.89 -
10,000 100,000 0.20 29.95 30.59 69.34 48.54 -
10,000 100,000 0.30 24.09 24.95 60.83 43.93 -
10,000 100,000 0.40 23.25 24.24 63.34 44.30 -
10,000 100,000 0.50 21.58 22.55 52.13 39.22 -

Table B.12. Comparison of the F measure obtained by PNB, PTAN, APNB and
APTAN in datasets sampled from TAN models where the structure was ‘Mixed’.
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Lined - Accuracy
NDp

NDu
rat. PNB APNB PTAN APTAN Wlx.

100 1,000 0.01 85.71 85.88 90.65 88.91 a
100 1,000 0.10 82.37 81.78 89.82 84.10 -
100 1,000 0.20 76.95 76.62 87.79 78.91 -
100 1,000 0.30 68.75 68.57 78.83 71.13 -
100 1,000 0.40 60.84 60.81 72.27 64.88 a
100 1,000 0.50 53.11 53.24 61.57 56.40 -

100 10,000 0.01 85.15 85.73 86.13 87.95 a d
100 10,000 0.10 82.49 82.00 87.89 83.94 -
100 10,000 0.20 77.26 76.99 88.41 79.35 -
100 10,000 0.30 68.64 68.52 80.18 71.97 -
100 10,000 0.40 60.79 60.82 74.05 65.30 a
100 10,000 0.50 53.12 53.26 63.75 56.48 -

100 100,000 0.01 85.15 85.80 83.70 87.89 a
100 100,000 0.10 82.52 82.05 86.62 83.93 -
100 100,000 0.20 77.32 77.06 87.36 80.16 -
100 100,000 0.30 68.65 68.51 79.73 72.20 -
100 100,000 0.40 60.84 60.87 74.17 65.76 a
100 100,000 0.50 53.07 53.19 63.73 57.01 -

1,000 1,000 0.01 85.51 85.88 90.39 88.80 -
1,000 1,000 0.10 82.51 81.95 89.90 84.14 -
1,000 1,000 0.20 76.94 76.62 86.97 78.91 -
1,000 1,000 0.30 68.65 68.48 78.41 71.26 -
1,000 1,000 0.40 60.66 60.66 72.22 65.19 a
1,000 1,000 0.50 53.13 53.24 62.69 56.42 -

1,000 10,000 0.01 84.84 85.69 85.87 87.89 d
1,000 10,000 0.10 82.74 82.23 88.13 83.88 -
1,000 10,000 0.20 77.15 76.87 87.60 79.26 -
1,000 10,000 0.30 68.77 68.65 79.62 72.13 -
1,000 10,000 0.40 60.68 60.70 73.52 65.27 a
1,000 10,000 0.50 53.03 53.15 64.46 56.54 -

1,000 100,000 0.01 84.82 85.74 83.46 87.91 -
1,000 100,000 0.10 82.73 82.25 86.68 83.99 -
1,000 100,000 0.20 77.19 76.93 86.94 79.80 -
1,000 100,000 0.30 68.76 68.63 79.58 72.15 -
1,000 100,000 0.40 60.71 60.75 73.68 65.44 -
1,000 100,000 0.50 53.02 53.13 64.70 57.16 -

10,000 1,000 0.01 85.70 86.02 90.51 88.97 a
10,000 1,000 0.10 82.53 81.93 90.19 83.87 -
10,000 1,000 0.20 76.67 76.36 87.53 78.84 -
10,000 1,000 0.30 68.86 68.63 77.95 71.41 -
10,000 1,000 0.40 60.59 60.55 72.06 65.14 a
10,000 1,000 0.50 53.22 53.35 62.54 56.47 -

10,000 10,000 0.01 85.04 85.69 85.88 87.92 a d
10,000 10,000 0.10 82.62 82.09 88.32 83.79 -
10,000 10,000 0.20 77.12 76.84 88.00 79.40 -
10,000 10,000 0.30 68.90 68.79 78.88 72.13 -
10,000 10,000 0.40 60.62 60.62 73.20 65.51 a
10,000 10,000 0.50 53.35 53.49 64.61 56.85 -

10,000 100,000 0.01 85.01 85.64 83.57 87.90 a
10,000 100,000 0.10 82.63 82.09 86.70 84.06 -
10,000 100,000 0.20 77.10 76.85 87.45 79.96 -
10,000 100,000 0.30 68.92 68.81 79.23 72.16 -
10,000 100,000 0.40 60.69 60.70 73.46 65.75 a
10,000 100,000 0.50 53.32 53.45 64.36 57.26 -

Table B.13. Comparison of the accuracy obtained by PNB, PTAN, APNB and
APTAN in datasets sampled from TAN models where the structure was ‘Lined’.
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Hierarchical 1 - Accuracy
NDp

NDu
rat. PNB APNB PTAN APTAN Wlx.

100 1,000 0.01 82.79 82.60 89.21 87.67 -
100 1,000 0.10 83.00 82.55 88.95 85.55 -
100 1,000 0.20 77.22 76.89 88.45 81.10 -
100 1,000 0.30 69.24 69.08 81.77 76.07 -
100 1,000 0.40 61.78 61.82 76.25 69.89 a
100 1,000 0.50 53.49 53.63 64.86 59.20 -

100 10,000 0.01 82.57 82.41 84.03 86.92 -
100 10,000 0.10 82.96 82.55 86.51 86.31 f
100 10,000 0.20 77.41 77.11 88.03 82.77 -
100 10,000 0.30 69.40 69.29 80.95 77.36 -
100 10,000 0.40 62.10 62.13 77.14 71.92 a
100 10,000 0.50 53.40 53.54 65.39 60.35 -

100 100,000 0.01 82.55 82.37 81.30 87.13 -
100 100,000 0.10 82.94 82.56 84.72 85.74 f
100 100,000 0.20 77.45 77.16 87.01 82.43 -
100 100,000 0.30 69.31 69.19 81.17 75.64 -
100 100,000 0.40 62.12 62.15 76.91 70.17 -
100 100,000 0.50 53.47 53.59 65.02 59.01 -

1,000 1,000 0.01 83.07 82.67 89.25 87.78 -
1,000 1,000 0.10 83.06 82.60 89.38 85.66 -
1,000 1,000 0.20 77.20 76.93 89.27 80.92 -
1,000 1,000 0.30 68.84 68.72 81.72 75.93 -
1,000 1,000 0.40 61.83 61.84 76.37 69.93 a
1,000 1,000 0.50 53.62 53.72 64.71 59.49 -

1,000 10,000 0.01 82.82 82.56 84.06 87.18 -
1,000 10,000 0.10 83.21 82.81 86.49 86.70 f
1,000 10,000 0.20 77.45 77.15 88.43 82.44 -
1,000 10,000 0.30 68.99 68.88 82.00 77.43 -
1,000 10,000 0.40 62.12 62.14 77.79 72.03 a
1,000 10,000 0.50 53.51 53.63 65.55 60.32 -

1,000 100,000 0.01 82.75 82.53 81.24 87.20 -
1,000 100,000 0.10 83.23 82.83 84.62 85.85 -
1,000 100,000 0.20 77.49 77.20 87.22 81.98 -
1,000 100,000 0.30 68.97 68.86 81.60 75.55 -
1,000 100,000 0.40 62.12 62.16 77.28 70.21 -
1,000 100,000 0.50 53.50 53.61 65.06 58.92 -

10,000 1,000 0.01 82.90 82.49 89.41 87.70 -
10,000 1,000 0.10 82.93 82.47 88.85 85.55 -
10,000 1,000 0.20 77.07 76.78 88.62 81.03 -
10,000 1,000 0.30 68.91 68.79 81.21 75.90 -
10,000 1,000 0.40 61.90 61.94 77.04 69.53 a
10,000 1,000 0.50 53.61 53.75 64.55 59.19 -

10,000 10,000 0.01 82.53 82.40 84.20 86.98 -
10,000 10,000 0.10 83.01 82.65 86.23 86.12 f
10,000 10,000 0.20 77.35 77.07 88.37 82.68 -
10,000 10,000 0.30 69.17 69.06 82.10 77.28 -
10,000 10,000 0.40 62.12 62.15 77.73 71.57 -
10,000 10,000 0.50 53.43 53.56 65.38 60.55 -

10,000 100,000 0.01 82.52 82.31 81.39 87.09 -
10,000 100,000 0.10 83.04 82.66 84.82 85.06 f
10,000 100,000 0.20 77.33 77.06 87.02 81.82 -
10,000 100,000 0.30 69.14 69.02 81.43 75.38 -
10,000 100,000 0.40 62.19 62.21 76.90 69.99 a
10,000 100,000 0.50 53.46 53.58 64.97 59.07 -

Table B.14. Comparison of the accuracy obtained by PNB, PTAN, APNB and
APTAN in datasets sampled from TAN models where the structure was ‘Hierarchical
1’.
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Hierarchical 2 - Accuracy
NDp

NDu
rat. PNB APNB PTAN APTAN Wlx.

100 1,000 0.01 85.94 85.82 90.11 88.38 a
100 1,000 0.10 81.88 81.41 89.51 83.54 -
100 1,000 0.20 76.83 76.51 86.83 78.32 -
100 1,000 0.30 69.29 69.08 81.36 72.27 -
100 1,000 0.40 60.62 60.56 72.42 62.96 a
100 1,000 0.50 52.92 53.02 60.54 55.67 -

100 10,000 0.01 85.84 85.86 85.82 87.80 a b d
100 10,000 0.10 82.01 81.54 87.54 83.58 -
100 10,000 0.20 77.18 76.89 87.60 79.32 -
100 10,000 0.30 69.41 69.28 82.64 73.00 -
100 10,000 0.40 60.68 60.67 73.70 64.04 a
100 10,000 0.50 53.11 53.25 61.77 56.10 -

100 100,000 0.01 85.83 85.90 84.03 87.64 a
100 100,000 0.10 81.93 81.48 86.28 83.79 -
100 100,000 0.20 77.22 76.94 86.49 79.12 -
100 100,000 0.30 69.39 69.26 82.19 72.51 -
100 100,000 0.40 60.56 60.54 73.06 63.36 -
100 100,000 0.50 53.09 53.22 61.68 55.70 -

1,000 1,000 0.01 86.34 86.02 90.26 88.68 -
1,000 1,000 0.10 81.88 81.29 89.86 83.65 -
1,000 1,000 0.20 76.90 76.56 87.40 78.23 -
1,000 1,000 0.30 69.25 69.04 81.26 72.21 -
1,000 1,000 0.40 60.36 60.37 71.99 63.03 a
1,000 1,000 0.50 52.95 53.08 60.60 55.51 -

1,000 10,000 0.01 86.08 86.02 86.02 87.71 b d
1,000 10,000 0.10 82.05 81.56 88.01 83.34 -
1,000 10,000 0.20 77.23 76.94 87.86 79.36 -
1,000 10,000 0.30 69.29 69.17 82.47 72.98 -
1,000 10,000 0.40 60.47 60.44 73.68 63.69 -
1,000 10,000 0.50 53.15 53.27 61.55 56.08 -

1,000 100,000 0.01 86.04 86.02 83.93 87.78 a
1,000 100,000 0.10 81.99 81.48 86.51 83.61 -
1,000 100,000 0.20 77.23 76.95 86.97 79.15 -
1,000 100,000 0.30 69.35 69.22 81.92 72.52 -
1,000 100,000 0.40 60.41 60.38 73.19 63.24 -
1,000 100,000 0.50 53.13 53.26 61.65 55.51 -

10,000 1,000 0.01 86.29 86.20 90.29 88.46 a
10,000 1,000 0.10 81.71 81.17 89.76 83.56 -
10,000 1,000 0.20 76.86 76.57 86.76 78.43 -
10,000 1,000 0.30 68.92 68.73 80.91 71.96 -
10,000 1,000 0.40 60.14 60.14 72.26 63.12 a
10,000 1,000 0.50 53.17 53.34 60.74 55.51 -

10,000 10,000 0.01 86.21 86.01 86.04 87.68 a b d
10,000 10,000 0.10 82.04 81.55 88.04 83.52 -
10,000 10,000 0.20 77.11 76.83 87.37 79.13 -
10,000 10,000 0.30 69.22 69.06 82.28 72.78 -
10,000 10,000 0.40 60.44 60.41 73.86 63.99 -
10,000 10,000 0.50 53.15 53.31 61.95 56.31 -

10,000 100,000 0.01 86.14 86.01 84.18 87.69 a
10,000 100,000 0.10 81.99 81.49 86.65 83.87 -
10,000 100,000 0.20 77.10 76.82 86.69 78.99 -
10,000 100,000 0.30 69.17 69.02 81.91 72.47 -
10,000 100,000 0.40 60.40 60.37 73.34 63.33 -
10,000 100,000 0.50 53.13 53.27 61.83 55.76 -

Table B.15. Comparison of the accuracy obtained by PNB, PTAN, APNB and
APTAN in datasets sampled from TAN models where the structure was ‘Hierarchical
2’.
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Mixed - Accuracy
NDp

NDu
rat. PNB APNB PTAN APTAN Wlx.

100 1,000 0.01 83.74 84.42 89.42 88.69 -
100 1,000 0.10 83.06 82.37 90.94 85.92 -
100 1,000 0.20 76.63 76.24 88.67 80.29 -
100 1,000 0.30 68.66 68.49 78.14 72.35 -
100 1,000 0.40 61.02 61.00 75.26 66.78 a
100 1,000 0.50 53.32 53.46 63.80 58.24 -

100 10,000 0.01 83.16 84.23 84.77 87.62 d
100 10,000 0.10 83.25 82.75 88.64 85.51 -
100 10,000 0.20 76.89 76.61 88.91 80.41 -
100 10,000 0.30 69.00 68.87 79.93 73.33 -
100 10,000 0.40 61.39 61.40 77.49 67.43 a
100 10,000 0.50 53.32 53.43 65.74 59.00 -

100 100,000 0.01 83.16 84.18 82.32 87.40 -
100 100,000 0.10 83.20 82.69 87.19 85.84 -
100 100,000 0.20 76.88 76.58 87.54 80.78 -
100 100,000 0.30 68.88 68.75 79.51 73.09 -
100 100,000 0.40 61.41 61.41 77.24 67.95 a
100 100,000 0.50 53.37 53.48 65.43 58.86 -

1,000 1,000 0.01 83.85 84.50 89.43 88.55 -
1,000 1,000 0.10 82.94 82.29 91.02 85.51 -
1,000 1,000 0.20 76.68 76.33 88.62 79.70 -
1,000 1,000 0.30 68.50 68.31 78.72 72.18 -
1,000 1,000 0.40 61.10 61.09 74.46 66.63 a
1,000 1,000 0.50 53.31 53.42 64.23 58.19 -

1,000 10,000 0.01 83.19 84.20 84.74 87.54 d
1,000 10,000 0.10 82.97 82.43 88.91 85.26 -
1,000 10,000 0.20 77.02 76.74 88.91 80.39 -
1,000 10,000 0.30 68.89 68.73 80.28 73.25 -
1,000 10,000 0.40 61.23 61.23 76.47 67.45 a
1,000 10,000 0.50 53.17 53.28 65.98 58.95 -

1,000 100,000 0.01 83.24 84.18 82.66 87.40 b
1,000 100,000 0.10 82.97 82.42 87.10 85.66 -
1,000 100,000 0.20 77.08 76.79 87.81 80.72 -
1,000 100,000 0.30 68.80 68.66 79.60 73.10 -
1,000 100,000 0.40 61.29 61.28 76.23 67.81 a
1,000 100,000 0.50 53.25 53.37 65.66 58.92 -

10,000 1,000 0.01 83.75 84.31 89.63 88.75 -
10,000 1,000 0.10 82.96 82.35 91.08 85.47 -
10,000 1,000 0.20 76.54 76.21 88.72 80.12 -
10,000 1,000 0.30 68.51 68.37 79.08 72.16 -
10,000 1,000 0.40 61.07 61.08 75.60 66.46 a
10,000 1,000 0.50 52.89 53.02 64.69 58.29 -

10,000 10,000 0.01 83.19 84.18 84.77 87.55 d
10,000 10,000 0.10 82.84 82.36 88.92 85.24 -
10,000 10,000 0.20 76.76 76.45 88.88 80.44 -
10,000 10,000 0.30 68.96 68.81 80.92 73.41 -
10,000 10,000 0.40 61.38 61.39 77.35 67.48 a
10,000 10,000 0.50 52.94 53.03 66.37 59.00 -

10,000 100,000 0.01 83.13 84.09 82.47 87.32 -
10,000 100,000 0.10 82.87 82.39 87.25 85.71 -
10,000 100,000 0.20 76.85 76.54 87.53 80.57 -
10,000 100,000 0.30 68.79 68.66 80.27 73.24 -
10,000 100,000 0.40 61.44 61.44 77.03 67.68 a
10,000 100,000 0.50 52.99 53.09 65.97 58.93 -

Table B.16. Comparison of the accuracy obtained by PNB, PTAN, APNB and
APTAN in datasets sampled from TAN models where the structure was ‘Mixed’.
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Experimental evaluation of pseudo F and Lee

metric in synthetic datasets

This appendix contains all the results obtained in the comparison between
the actual F measure (labelled in the plots as actual), the pseudo F measure
(labelled as pseudo), the Lee metric (labelled as Lee) and the square root of
the Lee metric (labelled as geometric). Each page shows the results obtained
by each classifier (PNB and PTAN) in datasets sampled from each of the six
synthetic databases (naive Bayes 0.19, 0.28 and 0.45 and TAN 0.15, 0.30 and
0.45, see Section 5.2.3). The five plots per page correspond to the five different
sizes of positive cases used to create the positive unlabelled learning problems
(0.1%, 0.5%, 1%, 5% and 10%), and each plot represents the performance
measures vs. the p used to train the classifier. Each point in the plots is the
average result obtained in the 100 datasets built from each original database
and with each size of the set of positive cases.
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Fig. C.1. Comparison between the actual F measure, the pseudo F measure, the
Lee metric and its square root obtained by the PNB in problems sampled from naive
Bayes 0.19
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Fig. C.2. Comparison between the actual F measure, the pseudo F measure, the
Lee metric and its square root obtained by the PTAN in problems sampled from
naive Bayes 0.19.
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Fig. C.3. Comparison between the actual F measure, the pseudo F measure, the
Lee metric and its square root obtained by the PNB in problems sampled from naive
Bayes 0.28.
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Fig. C.4. Comparison between the actual F measure, the pseudo F measure, the
Lee metric and its square root obtained by the PTAN in problems sampled from
naive Bayes 0.28.
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Fig. C.5. Comparison between the actual F measure, the pseudo F measure, the
Lee metric and its square root obtained by the PNB in problems sampled from naive
Bayes 0.45.
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Fig. C.6. Comparison between the actual F measure, the pseudo F measure, the
Lee metric and its square root obtained by the PTAN in problems sampled from
naive Bayes 0.45.
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Fig. C.7. Comparison between the actual F measure, the pseudo F measure, the
Lee metric and its square root obtained by the PNB in problems sampled from TAN
0.15.
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Fig. C.8. Comparison between the actual F measure, the pseudo F measure, the
Lee metric and its square root obtained by the PTAN in problems sampled from
TAN 0.15.
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Fig. C.9. Comparison between the actual F measure, the pseudo F measure, the
Lee metric and its square root obtained by the PNB in problems sampled from TAN
0.30.
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Fig. C.10. Comparison between the actual F measure, the pseudo F measure, the
Lee metric and its square root obtained by the PTAN in problems sampled from
TAN 0.30.
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Fig. C.11. Comparison between the actual F measure, the pseudo F measure, the
Lee metric and its square root obtained by the PNB in problems sampled from TAN
0.50.
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Fig. C.12. Comparison between the actual F measure, the pseudo F measure, the
Lee metric and its square root obtained by the PTAN in problems sampled from
TAN 0.50.





D

Experimental evaluation of wrapper positive

Bayesian network classifiers on real-life

datasets

This appendix contains the complete set of results obtained by wrapper posi-
tive Bayesian network classifiers in real-life based datasets. The results include
the comparison between the F measure obtained by the wrapper approaches
and the classifiers trained with a fixed p (0.25 and the actual value) and the
graphical representation of the pseudo F and the Lee metric as a function of
the p parameter. The significance of the differences between the wrapper ap-
proaches and the positive Bayesian classifiers with a fixed p have been assessed
running Wilcoxon paired tests on the results obtained on the 100 problems
sampled using each scheme (see Chapter 5).

In the tables included in this appendix, the first column represents the
number of known positive examples and the second column the ratio of pos-
itive cases hidden in Du. The column labelled as ‘Wlx.’ shows the results of
the Wilcoxon test (with a significance level of 1%). The results of the six tests
in each row are codified as follows:

• a - no significant differences between the wrapper approach (based on the
pseudo F) and setting the p at 0.25

• b - no significant differences between the wrapper approach (based on the
Lee metric) and setting the p at 0.25

• c - no significant differences between the wrapper approach (based on the
pseudo F) and setting the p at the actual value

• d - no significant differences between the wrapper approach (based on the
Lee metric) and setting the p at the actual value

• e - no significant differences between the two wrapper approaches (based
on the pseudo F and on the Lee metric)

The plots in the figures show, for each scheme, the pseudo F and the
Lee metric obtained training the positive Bayesian network classifiers with
different values of p.
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Acceptor Sites F measure
wPNB PNB wPTAN PTAN

|Dp| rat. ps. Lee 0.25 actual Wlx. ps. Lee 0.25 actual Wlx.

C
o
d
in

g

100 0.01 53.42 2.99 11.49 53.87 c 49.65 2.51 12.97 50.09 c
100 0.10 55.18 24.00 67.21 78.62 - 30.67 21.46 65.39 70.77 -
100 0.20 39.86 41.29 83.86 84.52 e 27.19 37.10 74.98 73.57 e
100 0.30 22.18 52.90 86.94 87.70 - 48.51 49.50 71.94 74.65 e
100 0.40 41.51 63.24 84.38 89.53 - 48.36 59.35 63.81 73.84 -
100 0.50 57.71 71.07 78.55 90.86 - 62.12 68.03 54.06 74.36 e
500 0.01 55.93 19.28 11.39 56.52 c 54.93 20.20 13.00 55.74 c
500 0.10 58.53 70.87 68.59 80.18 - 38.84 67.57 68.49 77.89 b
500 0.20 43.10 82.78 85.22 86.12 - 15.76 77.53 82.19 82.23 -
500 0.30 24.88 86.36 88.88 89.32 - 51.75 79.62 82.26 83.41 -
500 0.40 34.24 89.42 87.49 91.45 - 58.59 79.68 76.56 81.74 -
500 0.50 58.31 91.32 82.64 93.04 - 53.44 79.68 66.79 80.91 d

1,000 0.01 55.83 41.72 11.37 55.83 c 56.42 40.88 12.85 56.42 c
1,000 0.10 58.65 75.38 68.77 80.56 - 39.63 79.15 68.92 79.08 -
1,000 0.20 43.13 84.28 85.34 86.25 - 17.05 78.59 82.92 83.27 -
1,000 0.30 25.17 82.93 89.05 89.50 - 53.65 73.81 83.63 84.53 -
1,000 0.40 22.43 80.23 87.79 91.72 - 51.11 69.77 78.57 81.64 -
1,000 0.50 58.70 82.53 83.13 93.24 b 55.16 67.19 69.00 80.98 -

In
tr

o
n

100 0.01 29.78 2.58 10.42 29.78 c 22.97 2.30 10.60 23.03 c
100 0.10 33.02 22.67 58.85 65.88 - 22.37 20.03 55.37 56.87 -
100 0.20 24.40 38.55 75.33 75.52 - 45.84 35.58 66.46 64.52 -
100 0.30 46.05 50.98 79.81 80.93 e 49.90 48.12 65.32 68.74 e
100 0.40 57.02 61.64 78.17 84.29 - 58.93 58.62 58.43 71.22 b e
100 0.50 59.74 69.54 72.61 86.73 - 67.18 67.55 49.58 73.06 e
500 0.01 31.87 10.12 10.67 32.43 b c 30.50 11.09 11.37 30.98 b c
500 0.10 37.34 54.86 59.88 68.13 - 30.42 54.54 61.23 67.45 -
500 0.20 22.01 70.64 77.10 77.75 - 62.08 71.00 77.11 77.10 e
500 0.30 49.38 78.99 82.47 83.10 - 60.99 79.18 80.91 82.23 -
500 0.40 64.07 84.11 82.09 86.58 - 63.99 82.69 75.61 84.88 -
500 0.50 61.30 87.43 77.73 89.29 - 71.53 83.62 63.76 85.99 -

1,000 0.01 32.52 18.49 10.73 32.52 c 32.15 19.85 11.48 32.15 c
1,000 0.10 37.41 67.26 59.93 68.42 - 31.77 68.33 61.97 68.91 d
1,000 0.20 22.50 76.18 77.52 78.26 - 67.42 75.35 78.76 79.17 -
1,000 0.30 40.18 77.58 82.85 83.38 - 60.57 73.98 83.18 83.94 -
1,000 0.40 63.60 78.41 82.51 86.85 - 64.98 75.35 78.49 86.84 b
1,000 0.50 55.56 80.72 78.41 89.64 - 69.07 71.70 66.27 88.30 a e

M
ix

ed

100 0.01 35.41 2.77 11.57 35.41 c 32.37 2.38 12.61 32.37 c
100 0.10 40.68 22.62 62.70 70.62 - 22.01 20.68 61.41 62.57 e
100 0.20 25.74 40.00 79.05 79.32 - 42.46 36.10 70.81 68.74 e
100 0.30 34.74 52.36 82.83 83.79 - 49.49 48.50 67.86 71.05 e
100 0.40 57.21 62.03 80.86 86.67 - 54.71 58.92 60.68 71.83 a e
100 0.50 57.76 70.23 74.93 88.71 - 65.58 67.78 51.14 73.46 e
500 0.01 36.54 12.73 11.70 36.83 b c 36.30 12.71 12.50 36.39 b c
500 0.10 44.77 59.51 63.69 72.69 - 27.90 57.75 64.76 70.49 -
500 0.20 28.62 72.73 80.65 81.33 - 42.24 70.57 78.29 77.67 -
500 0.30 16.58 81.80 85.41 85.98 - 60.31 76.39 78.96 80.95 -
500 0.40 65.74 86.58 84.47 88.88 - 62.91 79.09 73.82 82.15 -
500 0.50 56.34 88.83 79.66 91.02 - 65.49 80.80 64.43 82.76 a

1,000 0.01 37.41 23.70 11.78 37.41 c 37.17 22.82 12.53 37.17 c
1,000 0.10 44.70 71.75 63.73 72.85 - 28.90 71.10 64.81 71.09 -
1,000 0.20 29.01 79.35 80.85 81.62 - 28.34 74.38 79.10 78.75 -
1,000 0.30 14.75 80.97 85.63 86.15 - 60.21 72.73 80.44 82.05 -
1,000 0.40 66.59 81.41 85.08 89.24 - 64.78 74.93 76.02 83.40 b
1,000 0.50 55.60 82.46 80.53 91.42 - 66.31 68.91 66.95 83.41 a b e

Table D.1. Results of the comparison between the F measure obtained by PNB
and PTAN setting the p at 0.25 and the actual value and setting it using the pseudo
F and the Lee metric in datasets obtained from the database of acceptor sites.
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Donor Sites F measure
wPNB PNB wPTAN PTAN

|Dp| rat. ps. Lee 0.25 actual Wlx. ps. Lee 0.25 actual Wlx.

C
o
d
in

g

100 0.01 28.91 3.38 8.80 28.91 c 26.03 3.07 9.65 26.05 c
100 0.10 42.61 27.60 66.79 75.90 - 71.51 24.80 65.68 68.22 -
100 0.20 75.08 45.06 84.32 83.95 - 66.68 40.21 78.61 76.29 -
100 0.30 66.03 55.89 85.74 87.68 - 73.76 52.10 75.78 79.32 -
100 0.40 75.46 66.15 81.21 90.15 - 75.08 61.91 65.72 79.81 -
100 0.50 77.75 74.34 71.65 91.58 - 75.33 69.88 51.95 80.50 -
500 0.01 30.00 16.73 8.02 30.00 c 29.19 16.55 7.70 29.16 c
500 0.10 26.51 60.74 67.77 77.41 b 77.24 60.88 62.90 75.74 b
500 0.20 77.51 78.20 85.37 84.91 - 70.67 72.65 81.12 83.23 e
500 0.30 66.26 83.86 87.08 89.03 - 74.08 78.37 84.98 83.79 e
500 0.40 75.86 87.12 82.83 91.47 - 78.40 81.73 80.94 82.60 b d
500 0.50 75.66 90.59 74.33 93.13 a 75.70 84.59 71.47 83.57 -

1,000 0.01 30.21 30.08 7.97 30.21 c d e 30.60 30.87 7.28 30.60 c d e
1,000 0.10 19.06 77.65 67.80 77.28 - 78.71 78.43 61.20 76.73 e
1,000 0.20 76.80 79.90 85.59 85.20 - 72.19 75.29 80.41 84.18 -
1,000 0.30 65.66 79.71 87.16 89.19 - 73.26 78.08 86.22 83.34 c d e
1,000 0.40 73.46 83.51 83.05 91.66 b 80.39 80.83 84.05 81.75 -
1,000 0.50 73.23 82.62 74.80 93.35 a 74.75 74.88 75.08 83.97 a b e

In
tr

o
n

100 0.01 24.47 3.39 10.15 24.41 c 20.59 3.09 10.19 18.56 -
100 0.10 57.00 26.30 64.16 70.67 a c 67.25 24.33 62.35 64.88 -
100 0.20 71.41 45.28 80.98 80.41 - 61.43 40.24 75.42 73.46 -
100 0.30 63.67 57.42 83.31 85.30 - 71.82 51.99 74.91 77.76 -
100 0.40 74.05 66.43 79.22 88.42 - 74.47 61.44 67.31 79.35 -
100 0.50 75.11 73.71 70.12 90.19 e 75.43 69.34 51.95 79.98 -
500 0.01 25.42 13.56 10.16 25.48 c 22.00 15.03 7.03 22.00 c
500 0.10 28.01 60.92 64.68 71.93 b 73.31 55.51 54.83 71.52 b
500 0.20 74.23 74.38 82.39 81.60 - 70.65 68.01 79.80 81.86 e
500 0.30 63.97 82.90 84.52 86.67 - 68.15 76.01 83.69 83.86 -
500 0.40 73.93 86.64 81.07 89.78 - 78.20 81.80 79.89 83.44 d
500 0.50 74.88 89.81 73.25 91.89 a 75.18 84.50 71.21 84.69 d

1,000 0.01 25.95 24.44 10.15 25.93 c 23.07 27.27 6.77 23.07 c
1,000 0.10 23.60 72.27 64.75 72.30 - 75.23 74.04 51.54 72.38 -
1,000 0.20 73.70 77.30 82.57 81.67 - 69.74 74.37 78.99 82.69 -
1,000 0.30 63.54 77.57 84.59 86.93 - 63.70 75.70 84.56 83.81 -
1,000 0.40 75.25 81.92 81.36 90.06 b 78.54 80.02 81.57 82.62 -
1,000 0.50 72.42 79.41 73.77 92.22 a 73.79 72.70 73.71 83.86 a b e

M
ix

ed

100 0.01 23.74 3.24 10.17 23.74 c 20.58 3.12 10.72 19.18 -
100 0.10 49.98 26.32 65.79 73.04 a c 68.49 24.79 65.52 64.87 -
100 0.20 72.58 45.30 82.61 82.04 - 66.35 40.33 76.95 74.37 -
100 0.30 63.63 56.66 84.41 86.40 - 71.72 51.79 73.77 77.40 -
100 0.40 73.42 65.89 79.91 89.14 - 75.05 61.04 64.54 78.98 -
100 0.50 76.81 74.57 70.65 90.81 e 74.91 69.28 51.47 79.98 -
500 0.01 24.61 16.02 10.19 24.56 c 22.06 14.90 8.34 21.92 c
500 0.10 34.32 61.34 66.39 74.38 b 75.10 59.64 62.89 72.42 b
500 0.20 75.17 75.49 83.80 82.96 - 69.48 70.59 81.33 81.78 e
500 0.30 63.73 83.60 85.55 87.77 - 70.59 76.95 83.32 83.74 e
500 0.40 76.41 86.56 81.77 90.66 - 77.00 81.48 79.31 83.86 -
500 0.50 75.90 90.41 73.13 92.52 - 77.61 84.36 69.76 84.13 d

1,000 0.01 25.14 27.24 10.17 25.14 c 23.44 30.10 7.72 23.08 c
1,000 0.10 24.50 74.64 66.69 74.64 - 76.48 75.05 62.28 73.50 -
1,000 0.20 74.76 78.02 84.09 82.98 - 68.09 73.59 80.77 82.53 -
1,000 0.30 63.29 79.88 85.63 87.98 - 73.63 77.49 84.39 83.04 e
1,000 0.40 74.72 82.62 81.88 90.81 b 77.14 78.60 81.32 83.55 -
1,000 0.50 72.12 81.84 73.90 92.70 a 75.91 76.05 74.72 83.84 a b e

Table D.2. Results of the comparison between the F measure obtained by PNB
and PTAN setting the p at 0.25 and the actual value and setting it using the pseudo
F and the Lee metric in datasets obtained from the database of donor sites.
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Letter Recognition F measure
wPNB PNB wPTAN PTAN

|Dp| rat. ps. Lee 0.25 actual Wlx. ps. Lee 0.25 actual Wlx.

D

100 0.01 33.70 2.56 10.70 40.72 - 18.79 2.96 30.23 19.52 c
100 0.10 39.99 22.25 59.75 67.89 - 28.05 25.07 49.44 27.13 c d e
100 0.20 37.79 38.55 74.11 73.93 e 40.71 42.23 32.29 25.94 e
100 0.30 50.52 51.37 75.27 77.11 e 52.00 54.39 18.99 25.15 e
100 0.40 61.41 61.57 70.60 79.64 e 60.65 62.45 10.42 25.85 e
100 0.50 66.29 69.99 61.40 80.26 e 64.09 66.14 6.13 28.39 e
200 0.01 42.77 11.63 10.17 46.40 b 36.86 8.95 24.33 40.65 c
200 0.10 51.71 56.29 58.87 69.13 b 55.96 36.43 68.28 56.79 c
200 0.20 42.54 69.60 76.56 77.26 - 66.17 49.98 64.40 58.74 a
200 0.30 45.51 75.84 81.01 81.44 - 69.66 59.22 52.45 59.68 d
200 0.40 65.50 78.46 80.35 84.07 b 71.21 66.76 38.93 59.40 -
200 0.50 74.90 81.29 75.36 86.22 a 73.67 72.51 26.43 59.32 e
300 0.01 45.87 31.16 10.14 45.87 c 48.22 13.53 20.70 46.79 c
300 0.10 54.11 63.83 59.16 70.15 - 52.79 42.33 72.04 68.22 -
300 0.20 35.97 76.08 76.55 77.66 d 72.69 57.77 75.38 71.83 a c
300 0.30 46.40 79.01 82.08 82.35 - 76.53 65.78 68.30 72.94 -
300 0.40 66.94 79.65 81.87 84.58 b 79.12 72.32 57.18 72.40 d
300 0.50 67.76 84.40 80.02 87.76 - 79.87 76.76 45.04 73.64 -

P

100 0.01 42.59 2.28 12.89 53.27 - 28.90 3.62 35.89 33.99 c
100 0.10 69.54 20.73 67.59 78.52 - 35.35 29.38 60.10 37.08 c
100 0.20 59.33 36.72 82.48 83.23 - 37.05 47.60 45.27 37.18 b c
100 0.30 44.98 49.91 84.27 85.13 e 45.43 58.76 26.61 34.03 -
100 0.40 51.08 60.85 80.75 85.79 e 58.61 66.14 15.40 32.99 -
100 0.50 60.47 70.02 72.57 85.69 a e 68.78 69.46 8.88 34.55 e
200 0.01 52.10 38.96 13.67 54.26 - 54.08 22.32 29.90 54.96 c
200 0.10 74.79 74.16 68.02 80.60 e 60.20 45.05 75.64 67.27 -
200 0.20 64.90 80.90 83.90 84.85 b 71.25 56.03 72.18 66.91 a
200 0.30 54.06 84.22 87.35 87.51 - 72.96 64.44 59.81 65.87 d
200 0.40 57.71 81.57 86.52 88.57 - 75.87 70.40 44.10 64.57 -
200 0.50 67.68 83.65 82.63 89.69 - 75.04 75.17 31.21 63.19 e
300 0.01 53.94 53.94 14.25 53.94 c d e 61.88 56.56 27.80 63.56 c e
300 0.10 76.89 77.09 69.42 81.49 e 52.57 54.85 77.73 75.82 e
300 0.20 66.69 71.01 84.60 85.78 - 61.77 62.83 79.31 76.44 e
300 0.30 44.49 73.40 87.78 87.99 - 72.93 70.81 72.72 76.20 a c
300 0.40 48.64 83.79 87.73 89.42 - 80.11 74.59 63.96 76.83 -
300 0.50 68.41 83.58 85.19 90.39 b 81.89 77.90 50.62 75.89 -

U

100 0.01 48.87 2.37 13.46 59.67 - 30.36 3.11 32.87 37.83 a
100 0.10 61.08 20.56 66.89 75.56 - 32.77 26.48 57.09 44.38 -
100 0.20 50.70 36.96 79.16 79.42 - 35.05 44.87 43.01 37.88 a b c
100 0.30 44.52 49.50 80.23 81.27 e 46.67 55.66 29.70 33.75 -
100 0.40 50.91 60.13 76.48 81.91 e 52.82 63.08 18.33 33.08 -
100 0.50 63.77 69.44 68.66 82.27 a b e 65.04 67.47 10.05 33.66 e
200 0.01 62.95 32.09 13.54 65.67 - 61.90 21.69 29.09 61.82 c
200 0.10 69.53 61.84 69.56 78.37 a b 58.74 37.98 73.82 69.22 -
200 0.20 58.61 75.08 81.48 81.74 - 63.26 50.36 70.92 66.99 c
200 0.30 55.94 76.66 83.42 83.80 - 65.83 61.40 61.26 65.96 b c
200 0.40 56.05 77.52 82.40 85.26 - 71.25 67.37 49.54 64.54 -
200 0.50 61.06 81.89 79.04 86.82 - 74.34 73.21 34.83 62.13 -
300 0.01 66.60 66.60 13.87 66.60 c d e 70.02 53.56 26.34 69.51 c
300 0.10 71.33 71.86 70.36 78.89 a e 59.31 48.31 77.51 77.14 -
300 0.20 60.78 67.76 81.87 82.31 - 52.12 56.08 79.07 77.41 e
300 0.30 41.39 74.93 84.29 84.50 - 69.36 65.19 74.21 76.56 -
300 0.40 55.36 79.83 84.22 86.85 - 76.42 72.15 66.89 76.66 c
300 0.50 65.74 81.12 81.25 87.88 b 80.75 76.68 54.47 74.58 -

Table D.3. Results of the comparison between the F measure obtained by PNB
and PTAN setting the p at 0.25 and the actual value and setting it using the pseudo
F and the Lee metric in datasets obtained from the Letter Recognition database.



D Evaluation of wPBCs on real-life datasets 193

Nursery F measure

wPNB PNB wPTAN PTAN

|Dp| rat. ps. Lee 0.25 actual Wlx. ps. Lee 0.25 actual Wlx.

100 0.01 32.17 3.10 17.40 0.00 - 19.48 2.97 15.31 15.76 -
100 0.10 63.27 26.03 70.66 31.94 - 63.39 24.30 68.41 51.00 -
100 0.20 68.83 43.30 74.14 62.96 - 69.10 40.49 76.87 70.64 -
100 0.30 75.15 54.37 67.92 77.20 c 72.95 51.41 71.56 78.69 -
100 0.40 77.30 62.58 56.57 83.09 - 75.86 60.67 57.87 81.71 -
100 0.50 78.42 71.00 43.09 86.33 - 75.87 68.59 46.69 82.32 -
200 0.01 31.10 16.47 18.93 0.00 - 23.07 18.54 16.09 15.86 b d
200 0.10 59.40 57.91 72.95 32.22 e 65.85 61.08 69.09 55.82 -
200 0.20 67.52 71.51 76.81 65.07 e 62.06 75.52 81.62 77.04 d
200 0.30 73.67 78.32 69.87 80.14 d 77.21 76.63 78.13 83.90 a b e
200 0.40 76.57 83.55 58.35 86.32 - 75.88 82.48 65.09 86.86 -
200 0.50 79.22 83.81 42.15 88.99 - 72.41 82.97 49.45 87.92 -
300 0.01 33.22 19.06 19.47 0.00 b 26.57 20.02 16.07 16.85 d
300 0.10 69.89 60.30 74.19 31.47 a 68.11 64.92 69.27 57.74 a
300 0.20 74.78 77.23 77.86 65.76 b e 76.92 78.54 82.64 79.65 a d e
300 0.30 79.38 82.58 70.38 81.17 c e 77.76 82.58 80.91 85.66 -
300 0.40 82.44 85.82 58.21 87.58 - 82.01 85.35 67.97 88.54 e
300 0.50 82.87 86.71 41.97 90.04 - 82.54 88.22 50.56 89.04 d

Table D.4. Results of the comparison between the F measure obtained by PNB
and PTAN setting the p at 0.25 and the actual value and setting it using the pseudo
F and the Lee metric in datasets obtained from the Nursery database.
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Fig. D.1. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PNB algorithm at different p values in Acceptor Sites Coding
datasets where |Dp| = 100.
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Fig. D.2. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PNB algorithm at different p values in Acceptor Sites Coding
datasets where |Dp| = 500.
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Fig. D.3. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PNB algorithm at different p values in Acceptor Sites Coding
datasets where |Dp| = 1, 000.
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Fig. D.4. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Acceptor Sites Coding
datasets where |Dp| = 100.
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Fig. D.5. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Acceptor Sites Coding
datasets where |Dp| = 500.
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Fig. D.6. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Acceptor Sites Coding
datasets where |Dp| = 1, 000.
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Fig. D.7. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PNB algorithm at different p values in Acceptor Sites Intron
datasets where |Dp| = 100.
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Fig. D.8. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PNB algorithm at different p values in Acceptor Sites Intron
datasets where |Dp| = 500.
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Fig. D.9. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PNB algorithm at different p values in Acceptor Sites Intron
datasets where |Dp| = 1, 000.
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Fig. D.10. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Acceptor Sites Intron
datasets where |Dp| = 100.
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Fig. D.11. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Acceptor Sites Intron
datasets where |Dp| = 500.
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Fig. D.12. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Acceptor Sites Intron
datasets where |Dp| = 1, 000.
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Fig. D.13. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Acceptor Sites Mixed
datasets where |Dp| = 100.
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Fig. D.14. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Acceptor Sites Mixed
datasets where |Dp| = 500.
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Fig. D.15. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Acceptor Sites Mixed
datasets where |Dp| = 1, 000.
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Fig. D.16. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Acceptor Sites Mixed
datasets where |Dp| = 100.
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Fig. D.17. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Acceptor Sites Mixed
datasets where |Dp| = 500.
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Fig. D.18. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Acceptor Sites Mixed
datasets where |Dp| = 1, 000.
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Fig. D.19. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Donor Sites Coding
datasets where |Dp| = 100.
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Fig. D.20. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Donor Sites Coding
datasets where |Dp| = 500.
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Fig. D.21. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Donor Sites Coding
datasets where |Dp| = 1, 000.
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Fig. D.22. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PTAN algorithm at different p values in Donor Sites Coding
datasets where |Dp| = 100.
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Fig. D.23. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PTAN algorithm at different p values in Donor Sites Coding
datasets where |Dp| = 500.
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Fig. D.24. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PTAN algorithm at different p values in Donor Sites Coding
datasets where |Dp| = 1, 000.
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Fig. D.25. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Donor Sites Intron
datasets where |Dp| = 100.
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Fig. D.26. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Donor Sites Intron
datasets where |Dp| = 500.
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Fig. D.27. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Donor Sites Intron
datasets where |Dp| = 1, 000.
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Fig. D.28. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PTAN algorithm at different p values in Donor Sites Intron
datasets where |Dp| = 100.
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Fig. D.29. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PTAN algorithm at different p values in Donor Sites Intron
datasets where |Dp| = 500.
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Fig. D.30. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PTAN algorithm at different p values in Donor Sites Intron
datasets where |Dp| = 1, 000.
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Fig. D.31. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Donor Sites Mixed
datasets where |Dp| = 100.
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Fig. D.32. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Donor Sites Mixed
datasets where |Dp| = 500.
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Fig. D.33. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Donor Sites Mixed
datasets where |Dp| = 1, 000.
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Fig. D.34. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PTAN algorithm at different p values in Donor Sites Mixed
datasets where |Dp| = 100.
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Fig. D.35. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PTAN algorithm at different p values in Donor Sites Mixed
datasets where |Dp| = 500.
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Fig. D.36. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PTAN algorithm at different p values in Donor Sites Mixed
datasets where |Dp| = 1, 000.
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Fig. D.37. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Letter Recognition D
datasets where |Dp| = 100.
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Fig. D.38. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Letter Recognition D
datasets where |Dp| = 200.
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Fig. D.39. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Letter Recognition D
datasets where |Dp| = 300.



D Evaluation of wPBCs on real-life datasets 233

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

LR D, 100−0.01, wPTAN

p

pseudo

Lee

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

LR D, 100−0.1, wPTAN

p

pseudo

Lee

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

LR D, 100−0.2, wPTAN

p

pseudo

Lee

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

LR D, 100−0.3, wPTAN

p

pseudo

Lee

(d)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

LR D, 100−0.4, wPTAN

p

pseudo

Lee

(e)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

LR D, 100−0.5, wPTAN

p

pseudo

Lee

(f)

Fig. D.40. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Letter Recognition D
datasets where |Dp| = 100.
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Fig. D.41. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Letter Recognition D
datasets where |Dp| = 200.
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Fig. D.42. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Letter Recognition D
datasets where |Dp| = 300.
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Fig. D.43. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Letter Recognition P
datasets where |Dp| = 100.
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Fig. D.44. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Letter Recognition P
datasets where |Dp| = 200.
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Fig. D.45. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Letter Recognition P
datasets where |Dp| = 300.
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Fig. D.46. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Letter Recognition P
datasets where |Dp| = 100.
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Fig. D.47. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Letter Recognition P
datasets where |Dp| = 200.
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Fig. D.48. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Letter Recognition P
datasets where |Dp| = 300.
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Fig. D.49. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Letter Recognition U
datasets where |Dp| = 100.
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Fig. D.50. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Letter Recognition U
datasets where |Dp| = 200.
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Fig. D.51. Representation of the pseudo F and the Lee metric obtained setting
the p parameter in the PNB algorithm at different p values in Letter Recognition U
datasets where |Dp| = 300.
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Fig. D.52. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Letter Recognition U
datasets where |Dp| = 100.
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Fig. D.53. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Letter Recognition U
datasets where |Dp| = 200.
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Fig. D.54. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Letter Recognition U
datasets where |Dp| = 300.
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Fig. D.55. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PNB algorithm at different p values in Nursery datasets where
|Dp| = 100.
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Fig. D.56. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PNB algorithm at different p values in Nursery datasets where
|Dp| = 200.
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Fig. D.57. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PNB algorithm at different p values in Nursery datasets where
|Dp| = 300.
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Fig. D.58. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Nursery datasets where
|Dp| = 100.



252 D Evaluation of wPBCs on real-life datasets

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

Nursery, 200−0.01, wPTAN

p

pseudo

Lee

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Nursery, 200−0.1, wPTAN

p

pseudo

Lee

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Nursery, 200−0.2, wPTAN

p

pseudo

Lee

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Nursery, 200−0.3, wPTAN

p

pseudo

Lee

(d)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Nursery, 200−0.4, wPTAN

p

pseudo

Lee

(e)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Nursery, 200−0.5, wPTAN

p

pseudo

Lee

(f)

Fig. D.59. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Nursery datasets where
|Dp| = 200.
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Fig. D.60. Representation of the pseudo F and the Lee metric obtained setting the
p parameter in the PTAN algorithm at different p values in Nursery datasets where
|Dp| = 300.





E

Detailed results of the evaluation of puCFS

and apuCFS

This appendix contains the detailed results obtained by puCFS and apuCFS.
The X axis in the charts indicates the variable (identified as R (relevant), I
(irrelevant), II (irrelevant and independent), R70 (redundant with noise degree
of 30%), R80 (redundant with noise degree of 20%) and R90 (redundant with
noise degree of 10%)) and the Y axis indicates the number of known positive
examples. Each square in the charts represents the ratio of problems (with
that amount of positive examples) where the variable was selected.

The first four figures correspond to the results obtained by puCFS (p =
0.10), puCFS (p = 0.25), puCFS (p = 0.50) and apuCFS in problems with
different ratios of positive cases hidden in Du. The last figure shows the com-
parison between the results obtained by puCFS with different values of p (the
charts show the average result obtained in problems with different ratios of
positive cases hidden in Du).
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Fig. E.1. Results obtained by the puCFS algorithm when p was set at 0.1.
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Fig. E.2. Results obtained by the puCFS algorithm when p was set at 0.25.
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Fig. E.3. Results obtained by the puCFS algorithm when p was set at 0.5.
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Fig. E.4. Results obtained by the apuCFS algorithm.
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Fig. E.5. Comparison of the results obtained by the puCFS algorithms when p was
set at 0.1, 0.25 and 0.5.
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2007. Distinct patterns in the regulation and evolution of human cancer
genes. In Silico Biology 8, 4.

Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R.,
Rahman, N., Stratton, M. R., 2004. A census of human cancer genes. Nature
Reviews Cancer 4 (3), 177–183.

Geiger, D., 1992. An entropy-based learning algorithm of Bayesian conditional
trees. In: Proceedings of the Eighth Conference on Uncertainty in Artificial
Intelligence. pp. 92–97.

Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell,
G., Davies, H., Teague, J., Butler, A., Stevens, C., Edkins, S., Omeara,
S., Vastrik, I., Schmidt, E. E., Avis, T., Barthorpe, S., Bhamra, G., Buck,
G., Choudhury, B., Clements, J., Cole, J., Dicks, E., Forbes, S., Gray, K.,
Halliday, K., Harrison, R., Hills, K., Hinton, J., Jenkinson, A., Jones, D.,
Menzies, A., Mironenko, T., Perry, J., Raine, K., Richardson, D., Shepherd,
R., Small, A., Tofts, C., Varian, J., Webb, T., West, S., Widaa, S., Yates,
A., Cahill, D. P., Louis, D. N., Goldstraw, P., Nicholson, A. G., Brasseur,
F., Looijenga, L., Weber, B. L., Chiew, Y.-E., Defazio, A., Greaves, M. F.,
Green, A. R., Campbell, P., Birney, E., Easton, D. F., Chenevix-Trench, G.,
Tan, M.-H., Khoo, S. K., Teh, B. T., Yuen, S. T., Leung, S. Y., Wooster,



References 265

R., Futreal, A. P., R.Stratton, M., 2007. Patterns of somatic mutation in
human cancer genomes. Nature 446 (7132), 2153–158.

Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection.
Journal of Machine Learning Research 3, 1157–1182.

Halkidi, M., Batistakis, Y., Vazirgiannis, M., 2001. On clustering validation
techniques. Journal of Intelligent Information Systems 17 (2-3), 107–145.

Hall, M. A., Smith, L. A., 1997. Feature subset selection: A correlation based
filter approach. In: Springer (Ed.), Proceedings of the International Confer-
ence on Neural Information Processing and Intelligent Information Systems.
pp. 855–858.

Hamosh, A., Scott, A. F., Amberger, J., Valle, D., Mckusick, V. A., 2000.
Online mendelian inheritance in man (omim). Human mutation 15 (1), 57–
61.

Hand, D., You, K., 2001. Idiot’s Bayes -not so stupid after all? International
Statistical Review 69, 385–398.

Heckerman, D., 1995. A tutorial on learning with Bayesian networks. Tech.
rep., Microsoft Research, mSR-TR-95-06.

Heckerman, D., Geiger, D., Chickering, D. M., 1995. Learning Bayesian net-
works: The combination of knowledge and statistical data. Machine Learn-
ing 20, 197–243.

Herskovits, E., Cooper, G., 1990. Kutató: An entropy-driven system for con-
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Inza, I., Larrañaga, P., Etxeberria, R., Sierra, B., 2000. Feature subset selec-
tion by Bayesian networks based optimization. Artificial Intelligence 123 (1-
2), 157–184.

Jardine, N., Sibson, R., 1971. Mathematical Taxonomy. Wiley.
Jensen, F. V., Nielsen, T. D., 2007. Bayesian Networks and Decision Graphs,

2nd Edition. Springer Verlag.
John, G., 1997. Enhancements to the data mining process. Ph.D. thesis, Com-

puters Science Department, School of Engineering, Stanford University.
Jonsson, P. F., Bates, P. A., 2006. Global topological features of cancer pro-

teins in the human interactome. Bioinformatics 22, 2291–2297.
Jordan, M. I. (Ed.), 1998. Learning in Graphical Models. Kluwer.
Karlin, S., Brocchieri, L., Bergman, A., Mrazek, J., Gentles, A., 2002. Amino

acid runs in eukaryotic proteomes and disease associations. Proceedings of
the National Academy of Science USA 99, 333–338.



266 References

Kearns, M., 1993. Efficient noise-tolerant learning from statistical queries. In:
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing. pp. 392–401.

Kim, M., Gans, J. D., Nogueira, C., Wang, A., Paik, J.-H., Feng, B., Brennan,
C., Hahn, W. C., Cordon-Cardo, C., Wagner, S. N., Flotte, T. J., Duncan,
L. M., Granter, S. R., Chin, L., 2006. Comparative oncogenomics identifies
nedd9 as a melanoma metastasis gene. Cell 125, 1269–1281.

Kleinbaum, D. G., Kupper, L. L., Chambless, L. E., 1982. Logistic regres-
sion analysis of epidemiologic data: Theory and practice. Comunications on
Statistics 11 (5), 485–547.

Kohavi, R., John, G. H., 1997. Wrappers for feature subset selection. Artificial
Intelligence 97 (1-2), 273–324.
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Larrañaga, P., Lozano, J. A. (Eds.), 2002. Estimation of Distribution Al-
gorithms: A New Tool for Evolutionary Computation. Kluwer Academic
Publishers.
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López-Bigas, N., Blencowe, B. B., Ouzounis, C. A., 2006. Highly consistent
patterns for inherited human diseases at the molecular level. Bioinformatics
22 (3), 269–277.
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