
Robust Optimization of
Algorithmic Trading Systems

TESIS DOCTORAL

José Manuel Berutich Lindquist

Departamento de Lenguajes y Ciencias de la Computación
Escuela Técnica Superior de Ingeniería Informática

Universidad de Málaga

Mayo 2017

AUTOR: José Manuel Berutich Lindquist

 http://orcid.org/0000-0002-0918-9634

EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-
SinObraDerivada 4.0 Internacional:
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
Cualquier parte de esta obra se puede reproducir sin autorización
pero con el reconocimiento y atribución de los autores.
No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer
obras derivadas.

Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de
Málaga (RIUMA): riuma.uma.es

http://orcid.org/0000-0002-0918-9634
http://orcid.org/0000-0002-0918-9634
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Documento maquetado con TEXiS v.1.0+.

Robust Optimization of
Algorithmic Trading Systems

Memoria que presenta para optar al título de Doctor en Informática
José Manuel Berutich Lindquist

Programa de Doctorado
Ingeniería del Software e Inteligencia Artificial

Dirigida por los Doctores
Francisco Luna Valero

Francico López Valverde

Departamento de Lenguajes y Ciencias de la Computación
Escuela Técnica Superior de Ingeniería Informática

Universidad de Málaga

Mayo 2017

Copyright c© José Manuel Berutich Lindquist

Carta de Aval v

Departamento de Lenguajes y Ciencias de la Computación
Escuela Técnica Superior de Ingeniería Informática

Universidad de Málaga

El Doctor Francisco López Valverde, profesor titular y el Doctor Fran-
cisco Luna Valero, profesor contratado, ambos pertenecientes al Departa-
mento de Lenguajes y Ciencias de la Computación de la Universidad de
Málaga, certifican:

que D. José Manuel Berutich Lindquist, Ingeniero en Informática por
Bentley University (Boston, EE.UU.), ha realizado en el Departamento de
Lenguajes y Ciencias de la Computación de la Universidad de Málaga, bajo
dirección de ambos, el trabajo de investigación correspondiente a su Tesis
Doctoral titulada:

Robust Optimization of Algorithmic Trading Systems

Revisado el presente trabajo, estimamos que puede ser presentado al
tribunal que ha de juzgarlo. Y para que conste a efectos de lo establecido en
la legislación vigente, autorizamos la presentación de la Tesis Doctoral en la
Universidad de Málaga.

En Málaga, 22 de Mayo de 2017

Dr. Francisco López Valverde Dr. Francisco Luna Valero

Abstract

GAs (Genetic Algorithms) and GP (Genetic Programming) are investigated
for finding robust Technical Trading Strategies (TTSs). TTSs evolved with
standard GA/GP techniques tend to suffer from over-fitting as the solutions
evolved are very fragile to small disturbances in the data. The main objec-
tive of this thesis is to explore optimization techniques for GA/GP which
produce robust TTSs that have a similar performance during both optimiza-
tion and evaluation, and are also able to operate in all market conditions
and withstand severe market shocks.

In this thesis, two novel techniques that increase the robustness of TTSs
and reduce over-fitting are described and compared to standard GA/GP op-
timization techniques and the traditional investment strategy Buy & Hold.
The first technique employed is a robust multi-market optimization method-
ology using a GA. Robustness is incorporated via the environmental variables
of the problem, i.e. variablity in the dataset is introduced by conducting the
search for the optimum parameters over several market indices, in the hope
of exposing the GA to differing market conditions. This technique shows
an increase in the robustness of the solutions produced, with results also
showing an improvement in terms of performance when compared to those
offered by conducting the optimization over a single market.

The second technique is a random sampling method we use to discover
robust TTSs using GP. Variability is introduced in the dataset by randomly
sampling segments and evaluating each individual on different random sam-
ples. This technique has shown promising results, substantially beating Buy
& Hold.

Overall, this thesis concludes that Evolutionary Computation techniques
such as GA and GP combined with robust optimization methods are very
suitable for developing trading systems, and that the systems developed
using these techniques can be used to provide significant economic profits in
all market conditions.

vii

Resumen

Cuando las leyes de la matemática se
refieren a la realidad, no son ciertas;

cuando son ciertas, no se refieren a la
realidad.

Albert Einstein

I Introducción

En las dos últimas décadas, el AT (Algorithmic Trading) utilizando EC (Evo-
lutionary Computation) ha atraído mucha atención de investigadores acadé-
micos tanto del ámbito de las finanzas, como del soft-computing (Aguilar-
Rivera et al., 2015; Hu et al., 2015). AT es un término comúnmente usado
para describir programas informáticos que automatizan una o más etapas
del proceso de negociación de activos en los mercados financieros.

En la actualidad, los sistemas de AT manejan aproximadamente del 50%
al 60% de todas las acciones negociadas en los Estados Unidos y la Unión
Europea y es una fuente importante de innovación en computación, espe-
cialmente en aprendizaje computacional y en computación distribuida (Nuti
et al., 2011; Hendershott and Riordan, 2013). Estos sistemas se despliegan
en mercados muy líquidos en clases de activos tales como acciones, futuros,
derivados, bonos y divisas.

Los principales objetivos que esta tesis trata de abordar, son el diseñar
y optimizar TTSs (Technical Trading Strategies) robustas, dos problemas
clásicos en el ámbito del AT. Una TTS consiste en una serie de reglas o
condiciones que determinan si se compra o se vende un determinado instru-
mento financiero. Para abordar ambos problemas utilizamos técnicas de EC
a las que incorporamos métodos de optimización robusta.

La optimización y diseño de una TTS es muy similar a un problema de
aprendizaje computacional, donde estamos tratando de aprender el mejor
conjunto de parámetros de un modelo sobre un conjunto de datos histórico.
Para determinar cómo funcionarían las reglas obtenidas durante la optimi-
zación en el mundo real, necesitamos dividir los datos en dos subconjuntos
uno para entrenamiento y otro evaluación.

ix

x Resumen

Uno de los mayores problemas al aplicar técnicas de EC es que hacen
tan buen trabajo en resolver problemas multimodales que son atraídas a
zonas de fitness alta pero que no son indicativas de soluciones robustas. Esto
genera soluciones que obtienen un rendimiento muy alto durante el proceso
de optimización, pero que cuando son evaluadas en datos nuevos, obtienen
resultados muy pobres.

En este trabajo de tesis doctoral nos planteamos las siguientes hipótesis:

• ¿Podemos usar técnicas optimización robusta para generar estrategias
de trading que obtengan un rendimiento aceptable cuando sean com-
probadas con nuevos datos?

• ¿Incrementa las robustez de las soluciones el incorporar al proceso de
optimización otras series temporales de diferentes instrumentos finan-
cieros?

I.I Contribuciones

La siguiente lista resume las principales aportaciones que se han producido
durante esta tesis doctoral:

• La robustez es incorporada al optimizar los parámetros de una es-
trategia de trading sobre múltiples mercados. Usamos la media y la
desviación típica de la función objetiva original como nuevos objetivos
robustos de un problema de optimización multiobjetivo.

• Emplear múltiples mercados expone al algoritmo de optimización a
ruido y variabilidad, lo que conlleva a soluciones robustas que obtienen
un rendimiento similar al obtenido durante el proceso de optimización
cuando son comprobadas sobre datos nuevos.

• Se demuestra la utilizad de incorporar la “Perdida Máxima” como un
objetivo adicional a minimizar.

• Un mecanismo de muestreo aleatorio para dividir las series temporales
que no requiere la intervención del usuario ni de ningún método de
aprendizaje computacional no supervisado.

• El uso de una función de fitness robusta que calcula el fitness medio
sobre muestras aleatorias del conjunto de entrenamiento y que reduce
el sobre-ajuste de las soluciones.

• El uso de diferentes métricas derivadas del análisis técnico y cuan-
titativo como la media de los retornos, el alpha y beta derivado del
CAPM (Capital Asset Pricing Model), el ratio de Sharpe y la vola-
tilidad calculadas con diferentes duraciones, que son empleadas para
generar TTSs robustas.

Resumen xi

I.II Organización

Esta tesis se organiza de la siguiente manera:

• Capítulo 1 - Introducción
Este capítulo presenta el tema de esta investigación, contribuciones,
alcance y publicaciones que apoyan esta tesis.

• Capítulo 2 - Metaheurísticas
Este capitulo introduce las técnicas metaheurísticas para la optimiza-
ción mono y multiobjetivo y exploramos más detalle las técnicas de
computación evolutiva que serán utilizadas a lo largo de esta tesis.

• Capítulo 3 - Optimización Evolutiva Robusta
Este capítulo presenta la optimización robusta en el contexto de los al-
goritmos evolutivos y cómo los conceptos más significativos extraídos
de la literatura pueden ser incorporados a los problemas de optimiza-
ción de uno o varios objetivos.

• Capítulo 4 - Trading Algorítmico
Este capítulo hace una introducción general del trading algorítmico y
sus diferentes componentes. Se presentan las metodologías de análisis
financiero utilizadas como base para las estrategias de trading desa-
rrolladas en esta tesis. Se analiza en más detalle el análisis técnico y
se muestran los indicadores técnicos junto a algunos otras métricas
derivadas del análisis cuantitativo empleadas.

• Capítulo 5 - Optimización Robusta de Estrategias de Trading
Técnicas
Este capítulo presenta una metodología de optimización robusta de
TTSs sobre múltiples mercados empleando un GA (Genetic Algorithm)
donde la robustez se incorpora a través de las variables ambientales del
problema. La búsqueda de los parámetros óptimos se lleva a cabo en
varios mercados. Los trabajos más significativos son analizados, a con-
tinuación se define formalmente el problema de optimización resuelto,
y se continúa explicando el enfoque algorítmico y la metodología em-
pleada en nuestra experimentación junto con los resultados obtenidos
más relevantes.

• Capítulo 6 - Diseño y Optimización Robusto de Estrategias
de Trading Técnicas
Este capítulo extiende el trabajo del capítulo anterior, pero esta vez
utilizando GP (Genetic Programming) para diseñar y optimizar TTSs
robustas que se utilizan para gestionar una cartera de acciones de la
bolsa española. En primer lugar, introducimos el tema y continuamos
discutiendo los trabajos de investigación más relevantes en el área. A

xii Resumen

continuación, el problema se describe junto con el enfoque algorítmico y
la metodología empleada para la experimentación realizada con objeto
de comprobar nuestras hipótesis de investigación.

• Capítulo 7 - Conclusiones y trabajo futuro
Este capítulo presenta las conclusiones más importantes que se han
extraído durante el trascurso de este trabajo de investigación y las
líneas propuestas de trabajo futuro.

II Conceptos Básicos

En la primera parte de la tesis hacemos una revisión a los conceptos funda-
mentales y el estado del arte de la metaheurística, la optimización robusta
evolutiva y el trading algorítmico

II.I Metaheurísticas

Las metaheurísticas son métodos de búsqueda y optimización que combinan
procedimientos de mejora local con estrategias de alto nivel normalmente
estocásticas para crear un proceso capaz de escapar de óptimos locales y
realizar una búsqueda eficiente en espacios de búsqueda que pueden ser muy
extensos. (Glover, 1986). Las metaheurísticas pueden aplicarse a una gran
variedad de problemas de optimización, ya que son métodos genéricos que
incorporan información específica sobre el problema en cuestión (representa-
ción de las soluciones, operadores, etc.).

Tradicionalmente las metaheurísticas pueden clasificarse en técnicas ba-
sadas en población o basadas en trayectoria. Las técnicas basadas en pobla-
ción mejoran un conjunto de soluciones mientras las basadas en trayectoria
una única solución. Existen otras clasificaciones como las técnicas basadas o
no en la naturaleza, o técnicas que hacen uso o no de memoria.

Esta trabajo de tesis utiliza EC. La EC es una familia de algoritmos
metaheurísticos muy capacitada para resolver problemas en el ámbito de la
ingeniera financiera y el AT (Iba and Aranha, 2012). La EC se basa en los
principios neo-darwinianos de la evolución, donde una población de múlti-
ples soluciones candidatas se evolucionan utilizando procesos biológicamente
inspirados como la reproducción, mutación, recombinación y selección. La
EC no hace ninguna suposición acerca del paisaje de fitness subyacente, esta
generalidad le permite aproximar soluciones a todo tipo de problemas. Las
técnicas de EC que tratamos en esta tesis se describen a continuación.

Genetic Algorithms

Los GAs son técnicas de búsqueda y optimización inspiradas en la evolu-
ción natural y la genética. Los GAs son técnicas muy eficaces para resolver

Resumen xiii

problemas donde el espacio de búsqueda es muy extenso, complejo y multi-
modal. Esta es la motivación de usar este tipo de algoritmo para resolver los
problemas de optimización de uno y de varios objetivos en el capítulo 5.

El funcionamiento general de un algoritmo genético empieza por la re-
presentación de las soluciones del problema. Los cromosomas codifican estas
soluciones en una estructura de datos similar a una cadena, parecida al có-
digo ADN de los organismos vivos. Un GA típicamente comienza con una
población de individuos o cromosomas generada al azar. A continuación, ca-
da individuo es evaluado, y se obtiene una medida de fitness que determina
la calidad de las soluciones codificadas como cromosomas. Los individuos
son seleccionados probabilísticamente para su reproducción. Durante la se-
lección, los individuos con mejor fitness tienen una mayor probabilidad de
reproducirse que otros miembros de la población que pueden tener un valor
de fitness peor. Después se aplica el cruce y la mutación a los individuos se-
leccionados previamente. El operador de cruce mezcla los cromosomas de los
padres para formar nuevos hijos, mientras que la mutación altera parte del
cromosoma del individuo. Este proceso continúa durante varias generaciones
o hasta que se cumple algún criterio de parada.

Genetic Programming

La GP (Koza, 1992) es una técnica de EC para resolver problemas automáti-
camente sin requerir que el usuario especifique o sepa la forma de la solución
de antemano. De un modo abstracto, GP es un método para conseguir que
las computadoras resuelvan problemas automáticamente empezando por una
orden de alto nivel de lo que se debe hacer. La GP es similar a un GA, pe-
ro tiene una diferencia significativa en la forma en que se representan las
soluciones. Mientras que un GA emplea una codificación de cadena de lon-
gitud fija, GP emplea una representación de longitud variable en forma de
árboles de sintaxis. Las variables y constantes del programa se denominan
los terminales y son las hojas del árbol Los funciones son los nodos internos
y normalmente pueden ser funciones aritméticas o lógicas, o cualquier otro
tipo necesaria para resolver el problema en cuestión.

Para resolver los problemas abordados en este trabajo de tesis doctoral,
empleamos los siguientes tipos de algoritmos evolutivos:

• Mono-objetivo:
- Algoritmo Genético
- Programación Genética

• Multi-objetivo:
- Algoritmo Genético basado en NSGA-II

xiv Resumen

II.II Optimización Evolutiva Robusta

El término “robusto” tiene muchas definiciones dependiendo del autor, pero
puede definirse de manera general como la capacidad de un sistema para
preservar su funcionalidad a pesar de las perturbaciones. Las soluciones de
problemas de optimización del mundo real deben ser robustas ya que su
rendimiento no debe verse afectado por pequeños cambios en las variables
de diseño o las condiciones ambientales. Esto no suele considerarse en los
algoritmos de optimización tradicionales que asumen estas variables como
constantes. La robustez y el rendimiento pueden ser objetivos contrapuestos,
por lo que el objetivo de las técnicas de optimización robusta no sólo debe
maximizar el rendimiento sino también garantizar una robustez suficiente.

La robustez se suele medir después de la optimización realizando un aná-
lisis de sensibilidad, que mide la respuesta de las soluciones optimizadas a
pequeñas variaciones de parámetros. Dado que las soluciones optimizadas
considerando sólo el rendimiento y no teniendo en cuenta su variación (ro-
bustez) podrían no incluir los mejores resultados, se debe realizar un análisis
de robustez durante la búsqueda (Beyer and Sendhoff, 2007; Gaspar-Cunha
and Covas, 2008), lo que puede lograrse introduciendo una medida de robus-
tez durante la optimización que reemplace la función objetivo original con
una expresión que mida tanto el rendimiento como la robustez o afrontan-
do el problema con un enfoque multiobjetivo donde se busca optimizar el
rendimiento y robustez.

Los principales conceptos que se pueden extraer de la literatura son que se
puede incorporar robustez abordando el problema como un problema mono-
objetivo, donde se utilizaría el fitness medio calculado en el vecindario de los
parámetros. Alternativamente, el problema se puede abordar con un enfoque
multiobjetivo done la función objetiva original se trasforma en dos, el fitness
medio y la desviación típica (u otra medida de dispersión estadística como
la varianza) medidas en el vecindario de los parámetros

Uno de los objetivos de este trabajo de tesis doctoral es explorar cómo
podemos encontrar estrategias de trading que muestren un rendimiento si-
milar al obtenido en fase de optimización cuando sean evaluadas en nuevos
datos, así como soluciones que puedan resistir cambios abruptos de tendencia
y periodos extremos de volatilidad.

Proponemos extender un enfoque de promediado existente (Branke, 1998;
Chen and Sundararaj, 1999; Branke, 2000; Jin and Sendhoff, 2003; Deb and
Gupta, 2006) para encontrar soluciones robustas en problemas de uno o va-
rios objetivos. En los problemas con un solo objetivo, como en el capítulo
6, utilizamos la idea de la función efectiva media, pero con una diferencia
distintiva: en lugar de usar la vecindad de los parametros de la estrategia,
evaluamos la función de fitness en muestras aleatorias del conjunto de da-
tos de entrenamiento y calculamos un valor robusto de fitness haciendo el
promedio del fitness obtenido en cada muestra aleatoria.

Resumen xv

Nuestro enfoque multiobjetivo en el Capítulo 5 se basará en (Chen and
Sundararaj, 1999) que sugirieron reemplazar el fitness f de la optimización
convencional por dos objetivos, la media µ y la desviación típica σ de f .

II.III Trading Algoritmico

Los sistemas AT intentan capturar anomalías momentáneas en los precios,
aprovechar patrones estadísticos dentro o entre los mercados financieros, eje-
cutar órdenes de forma óptima, ocultar las intenciones de un trader o detectar
y explotar las estrategias de los rivales. La característica distintiva de los sis-
temas de negociación algorítmica es la sofisticación de su análisis y toma de
decisiones (Nuti et al., 2011)

Una de las ventajas más importantes del trading algorítmico es que las
estrategias se pueden probar en datos históricos. Esta capacidad de simular
una estrategia es uno de los mayores beneficios del trading algorítmico. Back-
testing nos dice como se hubiera comportado la estrategia en el pasado. Si
bien el rendimiento comprobado no garantiza resultados futuros, puede ser
muy útil para evaluar estrategias potenciales. Los resultados comprobados
previamente pueden usarse para filtrar estrategias que no se ajustan al estilo
de inversión requerido o que no es probable que cumplan los objetivos de
rendimiento de riesgo / rendimiento.

Las metodologías de análisis financiero que empleamos en esta tesis son
el análisis cuantitativo y técnico. El análisis cuantitativo ha dominado la
industria financiera en las últimas décadas y es la base para la teoría de
cartera moderna, la fijación de precios de derivados y la gestión de riesgos. El
análisis cuantitativo trata los precios de los activos como aleatorios y utiliza
un análisis matemático y estadístico para encontrar un modelo adecuado
para describir esta aleatoriedad (Nuti et al., 2011).

El análisis técnico intenta pronosticar el movimiento futuro de los instru-
mentos financieros analizando los datos históricos de las cotizaciones, como el
precio y el volumen. El análisis técnico se centra en los gráficos de movimien-
to de precios y en diversas herramientas analíticas para evaluar la fortaleza
o debilidad de un activo y prever futuros cambios de precio. El análisis téc-
nico ha sido parte de la práctica financiera durante muchas décadas, pero
esta disciplina no ha recibido el mismo nivel de escrutinio y aceptación aca-
démica que los enfoques más tradicionales, como el análisis cuantitativo y
fundamental. Sin embargo, varios estudios académicos sugieren que, a pesar
de su jerga y métodos, el análisis técnico puede ser un medio eficaz para
extraer información útil de los precios de mercado (Lo et al., 2000).

El análisis técnico se basa en la Teoría Dow, formulada por Charles H.
Dow en una serie de editoriales de Wall Street Journal de 1900 a 1902. Estos
editoriales explicaban las creencias de Dow sobre cómo se comportaba el
mercado de valores. Dow creía que el mercado en su conjunto era una medida

xvi Resumen

confiable de las condiciones generales económicas y que al analizar todo el
mercado, se podían determinar con precisión esas condiciones e identificar la
dirección de las principales tendencias del mercado y las acciones individuales

Los siguientes dos supuestos básicos de la teoría de Dow son la base de
todo el análisis técnico:

1. El mercado descuenta todos los factores que pueden afectar el precio
de un valor.

2. Los movimientos de precios no son puramente aleatorios y se mueven
en pautas y tendencias identificables que se repiten con el tiempo.

La suposición de que los mercados descuentan todos los factores, esen-
cialmente quiere decir que el precio de mercado de un activo en un momento
determinado refleja con exactitud toda la información disponible y por tan-
to, representa el verdadero valor razonable del activo. Esta hipótesis se basa
en la idea de que el precio de mercado siempre refleja la suma total de co-
nocimiento de todos los participantes en el mercado. La segunda hipótesis
básica subyacente al análisis técnico, la noción de que los cambios de precios
no son aleatorios y los precios se mueven en tendencias, tanto a corto como a
largo plazo, que pueden identificarse. Una tendencia una vez se ha formado,
tiende a persistir. Seguir la tendencia es una de las estrategias más típicas
de traders técnicos.

El análisis técnico se usa para pronosticar el movimiento de precios de
prácticamente cualquier instrumento financiero negociable que esté general-
mente sujeto a fuerzas de oferta y demanda, incluyendo acciones, bonos,
futuros y pares de divisas. De hecho, el análisis técnico puede ser visto sim-
plemente como el estudio de las fuerzas de la oferta y la demanda, como se
refleja en los movimientos de los precios de mercado de un valor.

En este trabajo de tesis doctoral hacemos uso del análisis técnico y cuan-
titativo como base de las estrategias que optimizaremos mediante usando un
GA y GP.

III Problemas Abordados

En la segunda parte de la tesis tratamos dos problemas en el ámbito del AT
con objecto de validar nuestras hipótesis de investigación.

III.I Optimización Robusta de TTSs prediseñadas

Las TTSs se definen como reglas de compra y venta derivadas del análisis
técnico que a menudo implican diferentes parámetros que deben determinar-
se, los cuales influyen muchísimo en la calidad de las señales de compra y
venta generadas. Uno de los problemas más comunes al optimizar los pa-
rámetros de una TTS es el sobre-ajuste. Durante la fase de optimización

Resumen xvii

se encuentran muy buenas soluciones para el conjunto de datos de entrena-
miento, pero la mayoría de estas soluciones obtienen un rendimiento malo
cuando se prueban con el conjunto de datos de evaluación. Este problema
surge como consecuencia de seleccionar los parámetros que obtienen mayor
rendimiento sin tener en cuenta su robustez y estabilidad, siendo por tanto
muy frágiles a pequeñas perturbaciones. Las condiciones de los mercados son
dinámicas y evolucionan continuamente, y cuando los parámetros obtenidos
tras realizar la optimización se aplican al conjunto de datos de evaluación,
cualquier pequeña perturbación en los datos produce una gran degradación
del rendimiento.

La robustez se incorpora mediante la búsqueda de los parámetros de
una TTS en múltiples mercados en lugar de un solo mercado. Utilizamos
tanto la media como la desviación típica obtenida como objetivos robustos a
optimizar. Las principales aportaciones pueden ser resumidas de la siguiente
forma:

Adoptamos un enfoque robusto y multiobjetivo que utiliza un GA y que
consiste en optimizar los mismos parámetros sobre múltiples índices bursá-
tiles de diversos mercados, aumentando así las diferentes condiciones donde
la solución propuesta tiene que funcionar. Nuestro método de optimización
es capaz de producir un conjunto único de parámetros robustos que no sólo
funciona bien en los diferentes mercados para los datos de la muestra, sino
que también tiene un nivel similar o mejor de rendimiento cuando se prueban
con datos nuevos. Los mercados tienen peculiaridades específicas, pero tam-
bién comparten muchas características comunes. Aumentar el conjunto de
datos para incluir varios índices, expone los patrones recurrentes presentes
en los diversos mercados y ayuda a guiar al GA hacia ellos. Por otra parte,
la optimización de un solo instrumento financiero dirige inexorablemente al
algoritmo hacia los rasgos singulares de ese único mercado, reduciendo así la
exposición a las diferentes condiciones variables de mercado a la que estaría
expuesto el algoritmo de búsqueda.

Para validar nuestro enfoque, realizamos 4 experimentos diferentes:

1. La optimización del ratio de Sortino en cada mercado independiente-
mente.

2. El anterior experimento es transformado en un problema multi-objetivo
robusto. En vez de optimizar cada índice independientemente, se opti-
miza una TTS capaz de operar en todos. La función objetiva (ratio de
Sortino) se transforma en dos objetivos, la media y la desviación típica
del ratio de Sortino obtenido en todos los índices.

3. Optimización bi-objetivo del ratio de Sortino y la Perdida Máxima en
cada mercado de forma independiente.

4. Volvemos a transformar el anterior experimento en una optimización

xviii Resumen

robusta multi-objetivo. Las dos funciones objetivo anteriores se trans-
forman en 4 usando la media y la desviación típica del ratio de Sortino
y la Perdida Máxima, obtenida en todos los mercados

La mayoría de las soluciones encontradas en todos los experimentos ba-
tieron sustancialmente a la estrategia Buy & Hold durante la evaluación.
Las excepciones son los índices Dow Jones Industrial Average, Nasdaq 100 y
S&P 500. Estos índices tenían mercados alcistas excepcionales donde es muy
difícil de superar Buy & Hold. La interesante excepción fue el índice Nasdaq
Composite, que ofreció resultados excepcionales en el experimento 1 casi du-
plicando el rendimiento de Buy & Hold, mientras que los experimentos 3 y
4 estaban ligeramente por debajo.

Los mejores resultados de evaluación se obtuvieron en el IBEX35 es-
pañol y en el MIBTEL italiano, que se encontraban en mercados bajistas
agudos durante la evaluación. La rentabilidad obtenida casi triplicó Buy &
Hold (−10 %). Los retornos porcentuales son consistentes con los ratios de
Sortino obtenidos. Ratios más altos de Sortino conllevan retornos mas altos
mientras que ratios negativos de Sortino implican un retorno negativo.

Nuestra propuesta de metodología robusta ha mejorado los resultados
durante la evaluación de la mayoría de los índices considerados en este ca-
pítulo, como lo demuestran las correlaciones más altas y el menor “encogi-
miento” de soluciones optimizadas en múltiples mercados. Nuestro trabajo
ofrece evidencia de que la optimización sobre una amplia variedad de ins-
trumentos financieros similares puede ayudar a producir soluciones robustas
cuyo desempeño no se degrada significativamente cuando se prueban fuera
de muestra o las condiciones del mercado cambian. Nuestro método robusto
propuesto ha producido significativamente más soluciones cuyo rendimiento
está cerca de la relación 1 : 1 óptima entre el conjunto de datos de entrena-
miento y de evaluación que las ofrecidas por una optimización de mercado
único. También ofrecemos pruebas de que la incorporación de la “Perdida
Máxima” como un objetivo, conduce a mejores soluciones, ya que el GA
tiene una manera de ver más detalles sobre el comportamiento de una es-
trategia, dando lugar a estrategias que el obtienen mejor rendimiento con
menor riesgo.

III.II Diseño y Optimización Robusta de TTSs

En esta capítulo planeamos explorar cómo desarrollar desde “cero” una TTS
robusta utilizando GP, que se empleará para gestionar una cartera de accio-
nes del mercado español. El método investigado es aplicado para determinar
las condiciones potenciales de compra y venta de las acciones, con el objeti-
vo de producir soluciones robustas capaces de soportar condiciones extremas
de mercado, produciendo al mismo tiempo altos rendimientos con un riesgo
mínimo.

Resumen xix

Abordamos de nuevo al problema de sobre-ajuste, quizás incluso agravado
como consecuencia del uso de GP, ya que el tamaño del espacio de búsqueda
aumenta en comparación con el último problema. Para resolverlo, exploramos
un método de muestreo aleatorio que llamamos RSFGP. Nuestro método, en
vez de evaluar el fitness de un individuo en todo el conjunto de datos de
entrenamiento, selecciona n muestras tomadas al azar {s1, s2, . . . , sn} ∈ S
de todo el conjunto de entrenamiento S y promedia el fitness obtenido en
cada muestra. Esto se hace a nivel de individuo, es decir, cada individuo es
evaluado en muestras diferentes durante la optimización.

Para validar nuestro método realizamos tres experimentos:

1. Utilizamos SGP (Standard Genetic Programming) sin ningún mecanis-
mo de robustez para establecer una comparación de base.

2. Utilizamos el VAFGP (Volatility Adjusted Fitness Genetic Program-
ming) propuesto por Yan and Clack (2010) como comparación de mé-
todo robusto.

3. Presentamos nuestro metodo RSFGP que calcula el fitness mediante
muestras aleatorias y lo comparamos con los dos anteriores.

Nuestro método RSFGP muestra mayor robustez y mejor rendimiento
en los resultados sobre el conjunto de datos de evaluación en comparación
con los métodos SGP y VAFGP.

El objetivo es diseñar soluciones que no solo obtengan un resultado si-
milar durante el entrenamiento en la evaluación, sino que también puedan
resistir cambios bruscos de tendencia y períodos extremos de volatilidad.
Nuestro enfoque es sustancialmente diferente a trabajos previos en la litera-
tura y se centra en cómo calcular la función de fitness usando un método de
muestreo aleatorio.

El método propuesto es probado con una cartera de las 21 acciones de
mayor capitalización y liquidez del mercado español utilizando 13 años de
datos de precios diarios y se comparan los resultados obtenidos con el índice
de mercado IBEX35. Los resultados obtenidos superan claramente a Buy &
Hold, SGP y VAFGP. Las soluciones obtenidas demuestran claramente su ro-
bustez en el conjunto de datos de evaluación a las fuertes caídas del mercado,
como se vio durante la crisis de deuda soberana europea experimentada re-
cientemente en España. Las estrategias aprendidas fueron capaces de operar
durante periodos prolongados, lo que demuestra su eficacia y robustez.

En resumen, el método desarrollado en este capítulo es capaz de desarro-
llar TTSs adecuadas para todas las condiciones de mercado con resultados
prometedores, lo que sugiere un gran potencial en las capacidades de gene-
ralización del método propuesto. El uso de métricas financieras adicionales
junto con indicadores técnicos permite que el sistema aumente el rendimien-
to mientras demuestra su resistencia a través del tiempo. El sistema RSFGP

xx Resumen

es capaz de hacer frente a diferentes condiciones de mercado logrando una
rentabilidad de la cartera del 31,81% para el periodo de pruebas 2009 a 2013
en el mercado español, mientras el índice IBEX35 obtuvo un 2,67% durante
el mismo período.

IV Conclusiones

Las conclusiones principales que se pueden extraer de esta tesis es que hay
margen de mejora en los enfoques actuales de optimización y búsqueda de
estrategias de trading aplicando técnicas de optimización robusta evolutiva.
Motivada la aceptación que las técnicas de computación evolutivas combi-
nadas con la optimización robusta son capaces de gestionar la incertidumbre
presente en las series temporales financieras generando estrategias de trading
que baten significativamente al mercado.

En resumen podemos concluir lo siguiente:

• Las técnicas estándares de GA y GP son guiadas hacia picos de fitness
muy alto produciendo estrategias de trading que obtienen rendimien-
tos muy buenos durante el entrenamiento, pero muy pobre cuándo se
comprueban con nuevos datos fuera de muestra.

• Para resolver el problema de sobre-ajuste se necesita un mecanismo de
robustez que dirija al algoritmo hacia zonas del espacio de búsqueda
donde el fitness es más alto de media.

• El problema se puede enfocar como un problema mono-objetivo donde
la función objetivo original se promedia tomando muestras del conjunto
de datos original a nivel del individuo. Es decir, cada individuo es
evaluado en muestras aleatorias diferentes tomadas del conjunto de
datos.

• También se puede enfocar como un problema multi-objetivo. La fun-
ción objetiva original es reemplazada por la media y desviación típica
de la función objetivo original.

• La robustez también se puede incorporar al optimizar conjuntamente
una cesta de índices o acciones. En vez de generar una estrategia dife-
rente para cada instrumento, se genera una estrategia única capaz de
operar en todos ellos, lo que conlleva a soluciones más robustas.

• La robustez se puede medir calculando el “encogimiento” o el cambio
en porcentaje de rendimiento entre el conjunto de entrenamiento y el
de evaluación.

• Las soluciones robustas obtienen rendimientos satisfactorios cuando
se evalúan en nuevos datos. Tienen muy poco “encogimiento” por lo

Resumen xxi

que ofrecen un rendimiento similar entre la fase de entrenamiento y
evaluación.

• Los mecanismos de robustez expuestos son capaces de generar estra-
tegias de trading capaces de operar durante prolongados períodos de
tiempo sin requerir que el sistema se vuelva a optimizar.

• Las estrategias de trading robustas generadas son capaces de lidiar con
situaciones extremas de mercado.

• Incluir la Perdida Máxima como un objetivo adicional de optimización
de un problema multi-objetivo, o como el divisor en el ratio Sterling en
un problema mono-objetivo genera soluciones con un perfil de riesgo
menor que solamente utilizando el ratio de Sharpe o de Sortino.

V Trabajo Futuro

Debido al amplio rango de temas tratados en esta tesis, las futuras investi-
gaciones se podrían concentrar en los siguientes asuntos:

• Por el lado algorítmico, realizar un análisis en profundiadad de los
diferentes tipos de algoritmos podría ser de gran interés.

• Es bien sabido que la optimalidad de Pareto no obtiene buenos resul-
tados con el número de objetivos es mayor de tres. Diferentes enfoques
como el MOEA/D o IBEA se podrían considerar.

• Ese trabajo puede ser extendido con diferentes datos de otros mercados
para poder continuar estudiando los efectos beneficiosos de los métodos
multi-mercado de muestreo aleatorio.

• Extender el enfoque del problema incluyendo una cartera de acciones
donde están permitidas las operaciones a largo y corto y donde las
órdenes de compra como las ventas son coevolucionadas.

• Otras investigaciones podrían incluir una mayor variedad de indicado-
res técnicos y cuantitativos como la correlación de retornos y diferentes
métricas de riesgo como el VaR (Valor en Riesgo) o el CVaR (Valor en
Riesgo Condicional) en vez de la perdida máxima o la volatilidad.

• Los mercados financieros están sujetos a condiciones cambiantes en el
tiempo, por lo que poder optimizar en un entorno dinámico podría
ser muy interesante ya que los cambios pueden afectar a la instancia
del problema, a las funciones objetivas y/o a las restricciones. Las
técnicas de optimización dinámica podrían ser empleadas para seguir
a la estrategia óptima de trading según varia en el tiempo.

Acknowledgements

I would like to thank my family, specially my wife, for her help and encour-
agement throughout these years. Without her help, this Ph.D. thesis would
have not been possible.

I would also like express my gratitude to my thesis advisors Dr. Francisco
Luna Valero and Dr. Francisco López Valverde for their guidance during the
course of this research. This thesis would have not been possible without
their effort. I would also like to give special thanks to Dr. David Quintana
for his comments, suggestions and insightful discussions.

xxiii

A mi familia

Artificial intelligence is
no match for natural stupidity

Albert Einstein

Contents

Abstract vii

Resumen ix

Acknowledgements xxiii

1 Introduction 1
1.1 Summary . 1
1.2 Research problem and hypothesis 2
1.3 Research contribution . 2

1.3.1 Contributions in Chapter 5 2
1.3.2 Contributions in Chapter 6 3

1.4 Publications . 3
1.5 Delimitations of scope . 4
1.6 Document organization . 4

I State of the art 7

2 Metaheuristics 9
2.1 General optimization background 9
2.2 Metaheuristics . 12

2.2.1 Genetic algorithms . 15
2.2.2 Genetic programming 18

2.3 Multi-objective optimization 24
2.3.1 Formal definition . 25
2.3.2 Metaheuristics for multi-objective optimization 26

2.4 Conclusions . 29

3 Robust evolutionary optimization 31
3.1 Introduction . 31
3.2 Types of robustness . 32

xxix

xxx Contents

3.2.1 Genotypic robustness 32
3.2.2 Phenotypic robustness 32

3.3 Definitions . 33
3.3.1 Robustness in single-objective optimization 33
3.3.2 Robustness in multi-objective optimization 35

3.4 Robustness approach employed 36
3.5 Conclusions . 37

4 Algorithmic trading 39
4.1 Introduction . 39
4.2 Financial time series . 40
4.3 Algorithmic trading system components 40
4.4 Pre-trade analysis methodologies 41

4.4.1 Fundamental Analysis 41
4.4.2 Quantitative Analysis 42
4.4.3 Technical Analysis . 43

4.5 Trading strategy performance metrics 48
4.5.1 Total return . 48
4.5.2 Sharpe ratio . 49
4.5.3 Sortino ratio . 49
4.5.4 Sterling ratio . 49
4.5.5 Maximum drawdown 49

4.6 Conclusions . 50

II Problems addressed 51

5 Robust optimization of technical trading strategies 53
5.1 Introduction . 53
5.2 Literature review . 54
5.3 The robust TTS (Technical Trading Strategy) problem 56

5.3.1 Investment vehicle . 56
5.3.2 Technical trading strategies 56
5.3.3 Objective functions to be optimized 59

5.4 Algorithmic approach . 62
5.4.1 Problem encoding . 63
5.4.2 Genetic operators . 64

5.5 Methodology . 64
5.5.1 Dataset used . 65
5.5.2 GA Settings . 66
5.5.3 Computational test environment 66

5.6 Experimental results . 66

Contents xxxi

5.6.1 Experiment 1: Single-Market Optimization of SR . . . 67
5.7 Conclusions . 80

6 Robust technical trading strategy discovery 83
6.1 Introduction . 83
6.2 Literature review . 84
6.3 Problem description . 87

6.3.1 Portfolio simulation 87
6.3.2 Fitness function . 87

6.4 Algorithmic approach . 88
6.4.1 Random Sampling Fitness Genetic Programming . . . 88
6.4.2 Volatility Adjusted Fitness Genetic Programming . . . 89

6.5 Methodology . 89
6.5.1 Dataset used . 89
6.5.2 GP parameter settings 89
6.5.3 Computational environment 90

6.6 Results . 90
6.6.1 Standard GP . 91
6.6.2 Random Sampling Fitness Genetic Programming . . . 93
6.6.3 Volatility Adjusted Fitness Genetic Programming . . . 95
6.6.4 Statistical significance of results 97

6.7 Conclusions . 99

III Conclusions and future work 101

7 Conclusions and future work 103
7.1 Conclusions . 103
7.2 Future work . 104

Bibliografy 107

List of Acronyms 116

List of Figures

1.1 Scope of research conducted. 4

2.1 Global optimization approaches 11
2.2 Metaheuristics classification 13
2.3 GP tree . 19
2.4 GP crossover . 21
2.5 Pareto front . 26

3.1 Global versus robust solutions in single objective optimization 34
3.2 Robust solutions in multi-objective optimization 37

4.1 Chart of Banco Santander. 45

5.1 Chromosome of the decision variables 63
5.2 Crossover operators . 64
5.3 Experiment 1 results . 68
5.4 Experiment 2 results . 70
5.5 Evaluation results obtained for experiments 1 and 2 71
5.6 Training and evaluation relationship for experiments 1 and 2 . 72
5.7 Experiment 3 results . 74
5.8 Comparison between experiments 1 and 3 75
5.9 Reduction in maximum drawdown when including it as an

objective . 76
5.10 Experiment 4 results . 77
5.11 Comparison between experiments 3 and 4 78
5.12 Training and evaluation relationship for experiments 3 and 4 . 79
5.13 Average annual % profit during training and evaluation 80

6.1 Mean results obtained for training and testing datasets. . . . 92
6.2 Mean sterling ratio obtained in all executions. 92
6.3 Mean shrinkage between training and testing datasets. 93

xxxiii

xxxiv Índice de figuras

6.4 Training (top) and out-of-sample testing (bottom) performance
of an over-fitted SGP portfolio. 94

6.5 Mean total return obtained in all executions. 95
6.6 Mean sharpe ratio obtained in all executions. 95
6.7 Training (top) and out-of-sample testing (bottom) performance

of a RSFGP strategy. 96
6.8 Comparison of out-of-sample mean daily portfolio returns and

standard deviation (volatility). 97
6.9 Training (top) and out-of-sample testing (bottom) performance

of a VAFGP strategy. 98

List of Tables

5.1 Stock market indices covered in this chapter 65
5.2 GA parameter settings . 66
5.3 Correlation coefficients between training and evaluation . . . 69
5.4 Mean and standard deviation of shrinkage between training

and evaluation SR. 69

6.1 Stocks used in the experiments of this chapter 90
6.2 Description of features in the terminal set 90
6.3 GP parameter settings . 91
6.4 Shrinkage between training and testing results. 91
6.5 Mean results obtained in the study 93
6.6 Wilcoxon rank-sum test P-values for out-of-sample-testing. . 99

xxxv

Chapter 1

Introduction

In the business world,
the rearview mirror is always clearer

than the windshield.

Warren Buffett

1.1 Summary

Financial markets are one of the hardest environments where to apply Artifi-
cial Intelligence or Soft Computing techniques due to their inherent dynamic
and stochastic nature. Financial time series are non-stationary and noisy and
in most cases highly multi-dimensional rendering naive optimization meth-
ods only able to solve but the simplest problems.

EC (Evolutionary Computation), on the other hand, has shown that it is
a very suitable algorithmic framework for solving financial engineering prob-
lems. EC can attribute its success to its population based search approach,
as well as, its robustness to noisy fitness landscapes. This is reflected on the
growing use of EC techniques by trading houses (Iba and Aranha, 2012).

EC is a family of search and optimization methods which computationally
simulate the natural evolutionary process where survival of the fittest defines
the success an individual and ultimately its ability to reproduce and transmit
its genetic information to the next generation.

One of the greatest challenges of EC is coping with the uncertainty of
financial markets. Trading strategies evolved with EC techniques tend to
suffer from over-fitting. While good results are obtained during the opti-
mization process, when these strategies are tested on new unseen data, they
tend to perform very poorly. This thesis focuses on how we can obtain so-
lutions that perform adequately when tested on new unseen data. We use
a GA in chapter 5 and GP in chapter 6 for solving two classical financial
problems, TTS (Technical Trading Strategy) optimization and TTS discovery

1

2 Chapter 1. Introduction

(Aguilar-Rivera et al., 2015; Hu et al., 2015).
We deal with the problem of over-fitting from a robust optimization point

of view, incorporating robust optimization methods that serve to guide the
algorithms away from peaks of high fitness and towards areas of the search
space where fitness is higher on average.

1.2 Research problem and hypothesis

The main problem this research tries to tackle is that of producting robust
TTSs. Standard EC techniques are so good at tackling multimodal problems
that they are guided towards peaks of high fitness. This produces solutions
that perform well for the in-sample training data, but very poorly when
tested out-of-sample.

Amongst other things, this research will try to answer the following ques-
tions:

• Can we use robust optimization techniques to produce TTS that per-
form well when tested on new unseen data?

• Does incorporating other time series from different financial instru-
ments to the optimization process increase the robustness of solutions?

1.3 Research contribution

The overall goal of this thesis is to investigate robust optimization tech-
niques using GAs (Genetic Algorithms) and GP (Genetic Programming) for
technical trading strategy optimization and discovery. We aim to achieve
this through incorporating robust optimization methods into the canonical
GA and GP framework. Whilst progressing towards this objective, several
research contributions are made.

The following list summarizes the main areas of novelty that this research
makes innovations in, along with where they are first introduced in this
document:

1.3.1 Contributions in Chapter 5

In chapter 5, we introduce a novel robust multi-market optimization ap-
proach and some other novel contributions which are detailed next:

• Robustness is incorporated by searching for the parameters of a TTS
over multiple markets instead of just the single market of interest. We
use both the mean and standard deviation obtained as robust objec-
tives to be optimized.

1.4. Publications 3

• Multiple markets are used to expose the genetic algorithm to noise
and variability in the environmental conditions. This generates robust
solutions that produce similar performance when tested out-of-sample.

• Demonstrated the usefulness of including maximum drawdown as an
additional optimization criteria.

1.3.2 Contributions in Chapter 6

In chapter 6, we introduce a RSFGP (Random Sampling Fitness Genetic
Programming) method. This method finds robust strategies by optimizing
over randomly sampled segments of the original dataset and using the mean
value obtained in the samples as the fitness of the individual. The main
characteristics of this novel contribution are:

• The use of a random sampling mechanism to divide the time series of
a basket of stocks into segments without requiring user intervention,
or any unsupervised machine learning method to groups segments into
the distinct market conditions (bull, bear and sideways markets).

• The use of a robust fitness function that uses all sampled segments
to calculate an overall fitness score across random market conditions
reducing over-fitting of solutions.

• The use of different financial metrics never used together with technical
indicators in previous research such as the returns, the moving average
of returns, the CAPM (Capital Asset Pricing Model) alpha and beta,
the Sharpe ratio and the volatility of the stocks calculated over different
period lengths. (See table 6.2).

1.4 Publications

The following publications have been published during the course of this
Ph.D. thesis:

• Berutich, J. M., Luna, F. and López, F. On the quest for ro-
bust technical trading strategies using multi-objective optimization.
AI Communications, volume 27(4), pages 453–471, 2014.

• Berutich, J. M., López, F., Luna, F. and Quintana, D. Robust
technical trading strategies using GP for algorithmic portfolio selection.
Expert Systems with Applications, volume 46, pages 307–315, 2016.

4 Chapter 1. Introduction

1.5 Delimitations of scope

Limited effort has been made in thesis to examine the consequences of ap-
plying the methods investigated here in the real world. The focus of the
work concentrates more on evolutionary computation and robust optimiza-
tion than the issues relating to the practical implementation of the trading
systems developed.

Figure 1.1 shows the focus of this thesis, which is at the intersection
between algorithmic trading, roubst optimization and evolutionary compu-
tation.

Evolutionary

Computation

Research

Area

Robust

Optimization

Algorithmic

Trading

Figure 1.1: Scope of research conducted.

1.6 Document organization

This thesis is organized in the following manner:

• Chapter 1 - Introduction
This chapter introduces the subject of this research, contributions,
scope and publications supporting this thesis.

• Chapter 2 - Metaheuristics

1.6. Document organization 5

We present the state of the art in metaheuristics for both single and
multi-objective optimization and explore in more detail GA and GP
which will be used throughout this thesis.

• Chapter 3 - Robust evolutionary optimization
This chapter introduces the state of the art in robust optimization in
the context of evolutionary algorithms and how the most significant
concepts extracted from the literature can be incorporated to both
single and multi-objective optimization problems.

• Chapter 4 - Algorithmic trading
This chapter introduces the subject of algorithmic trading, its different
components and the financial analysis methodologies used for the TTSs
developed in this thesis. It analyses in more detail Technical Analysis
and shows the technical indicators and some other calculations derived
from Quantitative Analysis used during the course of this thesis.

• Chapter 5 - Robust optimization of technical trading strate-
gies
This chapter presents a robust multi-market optimization methodol-
ogy for TTS where robustness is incorporated via the environmental
variables of the problem. The search for the optimum parameters is
conducted over several markets (instead of just one). This exposes
the GA to different market conditions and increases the robustness of
the solutions generated. First, we review the most significant previous
works on the subject, then we formally define the optimization problem
solved, and continue by explaining the algorithmic approach employed.
We also discuss the methodology used in our experimentation and the
results obtained analysing the most relevant results, which highlight
the strengths of our proposed methodology.

• Chapter 6 - Robust technical trading strategy discovery
This chapter extends on the work of the previous chapter, but this time
using GP instead to discover robust TTSs that are used to manage a
portfolio of stocks from the Spanish stock market. Firstly we intro-
duce the subject and continue by discussing the most relevant recent
research in the area. Then the problem is described together with the
algorithmic approach used and methodology employed for the experi-
mentation conducted testing our research questions.

• Chapter 7 - Conclusions and Future work
This chapter presents the most important conclusions that have been
extracted during the course of this research work and the proposed
lines of future work could focus on.

Part I

State of the art

Chapter 2

Metaheuristics

God created not species,
but the algorithm for creating species

(Paraphrased)

Charles Babbage

2.1 General optimization background

Optimization can be easily described as the process of finding the best so-
lution to a specified problem, or in more mathematical terms, finding the
maximum or minimum values of a function subject to certain constrains.
Optimization is an area of great importance in computer science, mathe-
matics, engineering and science in general as any type of problem can be
posed as an optimization problem.

In order to develop an understanding of optimization some formal non-
ambiguous definitions are needed:

Definition 1 (Single-objective optimization) A single objective optimiza-
tion problem is defined as minimizing (or maximizing) f(x), subject to gi(x) ≤
0, i = {1, ...,m}, and hj(x) = 0, j = {1, ..., p}, x ∈ Ω. A solution minimizes
(or maximizes) f(x) where x is a n-dimensional decision variable vector
x = (x1, ..., xn) from some universe Ω.

Note that gi(x) ≤ 0 and hj(x) = 0 represent the constraints that must
be met while maximizing or minimizing f(x). Ω contains all possible x that
can be used to satisfy an evaluation of f(x) and its constraints. x can be
a vector of continuous or discrete variables as well as f being continuous or
discrete. The method for finding the global optimum (which may not be
unique) of any function is referred to as Global Optimization. In general,
the global minimum of a single objective problem is presented in Definition
2.

9

10 Chapter 2. Metaheuristics

Definition 2 (Single-Objective Global Minimum) Given a function f :
Ω ⊆ IRn → IR, Ω 6= 0, for x∗ ∈ Ω the value f∗ , f(x∗) ≥ −∞ is called a
global minimum if and only if:

∀x ∈ Ω : f(x∗) ≤ f(x) (2.1)

x∗ is by definition the global minimum solution, f is the objective func-
tion, and the set Ω is the feasible region of x. The goal of determining the
global minimum solution(s) is called the global optimization problem for
a single-objective problem.

The problems defined above are approached with algorithms that try to
find the global optimum. These methods can be classified into two categories:
exact, and heuristic. Exact methods guarantee the optimal solution will be
found for a given optimization problem, and they are the preferred method if
they can solve an optimization problem with an effort that grows polynomi-
ally with the problem size. On the other hand, problems that are NP-hard
(Garey and Johnson, 1979) need exponential effort and even medium-sized
problems often become intractable and can not be solved any more using
this methods. In order to overcome such limitations heuristic methods can
be applied. Heuristics can not guarantee that an optimal solution will be
found, but can provide acceptable approximate (also optimal) solutions in
a reasonable time (Blum and Roli, 2003; Rothlauf, 2011). Among the basic
heuristic methods we can distinguish between constructive and local search
methods. Constructive algorithms generate solutions by adding to an orig-
inally empty partial solution components until a solution is complete. On
the other hand, local search methods start from an initial solution and iter-
atively try to improve it, with a better solution in a defined neighbourhood
of the current solution (Blum and Roli, 2003). Figure 2.1 shows an overview
of the different optimization approaches.

Some examples of exact optimization methods are the Enumerative, Branch
and bound, Depth-first, Breadth-first, A* and Z*. Lastly, calculus-based
methods require continuity in some variable domain for an optimal value to
be found (Cormen et al., 2009; Rothlauf, 2011).

Even though the exact methods mentioned above have all been ap-
plied successfully to solve a wide variety of problems (Cormen et al., 2009),
when problems are high-dimensional, discontinuous, multi-modal and/or
NP-hard, exact methods are ineffective. On the other hand, heuristic search
and optimization methods were developed to address the limitations of ex-
act search and optimization algorithms. Heuristic methods require a func-
tion that measures the quality of solutions, and a mapping mechanism to
encode/decode between the problem and algorithm domains. In general,
they provide effective solutions to a wide variety of optimization problems
which conventional exact search methods find unmanageable (Blum and Roli,

2.1. General optimization background 11

Figure 2.1: Global optimization approaches

2003).
The simplest heuristic search strategy is random search. It simply evalu-

ates a given number of randomly selected solutions. A random walk is very
similar, except that the next solution is randomly selected using the last
evaluated solution as a starting point. Like enumeration, these strategies
are not effective for many problems because they do not incorporate domain
knowledge. Random searches can generally expect to do no better than enu-
merative ones. Monte Carlo methods simulate stochastic events employing
a random search and saving the best solution for comparison purposes.

Methods like Simulated Annealing, Tabu search and Evolutionary Com-
putation (among others), are also known as metaheuristics are discussed
next.

12 Chapter 2. Metaheuristics

2.2 Metaheuristics

“Metaheuristics, in their original definition, are solution methods that or-
chestrate an interaction between local improvement procedures and higher
level strategies to create a process capable of escaping from local optima and
performing a robust search of a solution space” (Glover and Kochenberger,
2003; Gendreau and Potvin, 2010). The term was first introduced by (Glover,
1986) and fuses the greek prefix meta (higher, beyond) with heuristic (from
the Greek heuriskein or euriskein, to discover, to find out).

Metaheuristics can be applied to a large variety of optimization problems,
as very few assumptions about the problem are made (Sörensen and Glover,
2013). Normally they are used in problems when it is not possible to imple-
ment the optimal method or where no other algorithm or heuristic is capable
of producing adequate solutions. Most metaheuristics are non-deterministic
and implement some form of stochastic optimization.

Compared to exact algorithms, metaheuristics do not guarantee that a
globally optimal solution can be found on some classes of problems (Blum
and Roli, 2003), but can provide near optimal solutions for most classes of
problems and do offer some important advantages over exact methods as
metaheuristics do not require that the function may be differentiable or con-
tinuous and incorporate mechanisms for escaping from local optima. Meta-
heuristics can be considered useful approaches for solving complex optimiza-
tion problems as they can often find good solutions with less computational
effort than exact or iterative methods (Blum and Roli, 2003; Bianchi et al.,
2009; Gendreau and Potvin, 2010; Lones, 2014).

The fundamental characteristics of metaheuristics can be summarized in
the following outline:

• Metaheuristics are strategies to guide the search process.

• The objective is to explore the search space efficiently in order to find
(near)-optimal solutions.

• Metaheuristics are problem-independent.

• Metaheuristics are approximate and non-deterministic algorithms.

• Metaheuristics range from simple local-search to complex learning pro-
cesses.

• Metaheuristics incorporate mechanisms to escape from local optima.

Metaheuristics can be classified into many different categories according
to what distinguishing criterion is chosen (see Figure 2.2). According to

2.2. Metaheuristics 13

Figure 2.2: Metaheuristics classification, adopted from (Wikipedia, 2016)

Blum and Roli (2003) the most important ways of classifying metaheuristics
are:

• Trajectory vs. population-based : Trajectory based metaheuristics it-
eratively improve a single solution. Some famous examples are Tabu
Search and Simulated Annealing. On the other hand, population based
metaheuristics improve a set of candidate solutions using a population
based approach. Some examples of population based metaheuristics
are Particle Swarm Optimization, Ant Colony Optimization and Evo-
lutionary Algorithms.

• Nature-inspired vs. non-nature inspired : Some examples of meta-
heuristics based on nature-inspired processes are Evolutionary Algo-
rithms, Ant Colony Optimization, Particle Swarm Optimization, ver-
sus non-nature inspired like Iterated Local Search, GRASP or Tabu
Search.

14 Chapter 2. Metaheuristics

• Dynamic vs. static objective function: While some metaheuristics keep
the objective function static during the optimization process, others
like Guided Local Search modify the objective function by incorporat-
ing information collected during the search process, the idea behind
this approach is to escape from local optima by modifying the search
landscape. Variable Neighborhood Search uses a set of neighborhood
structures which gives the possibility to diversify the search by swap-
ping between different fitness landscapes.

• Memory usage vs. memory-less methods: Another very important way
of classifying metaheuristics according to whether they use the search
history or not. The use of memory nowadays is recognized as one of
the fundamental elements of a powerful metaheuristic. Some examples
of memory-less methods are Simulated Annealing and Guided Local
Search.

This thesis deals specifically with EAs (Evolutionary Algorithms) . An
EA is based upon Darwinian principles of evolution, where a population of
multiple candidate solutions is evolved using biologically inspired processes
such as reproduction, mutation, recombination and selection.

Algorithm 1 Template of an EA
1: P (0)← GenerateInitialPopulation()
2: t← 0
3: Evaluate(P (0))
4: while not StoppingCriterion() do
5: P ′(t) ← Selection(P (t))
6: P ′′(t) ← Reproduction(P ′(t))
7: Evaluate(P ′′(t))
8: P (t+ 1) ← Replacement(P (t), P ′′(t))
9: t← t+ 1

10: end while

A typical EA follows the pseudo-code included in Algorithm 1. In EAs,
candidate solutions are called individuals. Groups of individuals are referred
to as populations. As in real life, some individuals from a population mate
(i.e., are selected) for reproduction, generating new children or offspring
which, according to the natural selection process, may replace other members
of the population.

Whenever a new solution is created, it is evaluated to be assigned a
fitness, which is an indicator of the quality of the solution in the context of
the problem being solved. When the current population is replaced by a new
one, a generation has taken place. The process of iterating through successive
generations is called evolution, and ends when a termination condition is
fulfilled.

2.2. Metaheuristics 15

EAs make no assumption about the underlying fitness landscape, this
generality makes them capable of approximating solutions to all types of
problems. EAs have demonstrated its success in fields as diverse as biol-
ogy, economics, engineering, finance, logistics, machine learning, operations
research, physics, robotics and social sciences (among others) (Haupt and
Haupt, 2004; O’Reilly et al., 2005; Chen et al., 2007; Poli and Langdon,
2007; Jaimes and Coello, 2008; Maulik et al., 2011; Iba and Aranha, 2012;
Brabazon et al., 2012; Khouadjia et al., 2013; Mutingi and Mbohwa, 2017).

Some popular EAs are GA (Genetic Algorithm), GP (Genetic Program-
ming), ES (Evolution Strategy) and EP (Evolutionary Programming). This
thesis deals specifically with two types of evolutionary algorithms, GA and
GP, which will be presented next in sections 2.2.1, and 2.2.2 respectively.

2.2.1 Genetic algorithms

Genetic algorithms were pioneered by (Holland, 1975) and were popularized
by his former Ph.D. student (Goldberg, 1989). GAs are robust search and
optimization techniques inspired by natural evolution and genetics. GAs are
very effective in problems were the search space is very large, complex and
multimodal. Chromosomes encode solutions on a string-like data structure,
resembling the DNA code of living organisms.

A GA typically starts with a randomly generated population of individu-
als or chromosomes. Each individual is then evaluated, and a fitness measure
is obtained which determines the quality of the solutions encoded as chro-
mosomes. Individuals are then probabilistically selected for reproduction.
During selection, individuals with higher fitness are given a better chance to
reproduce than others members of the population which may have a worse
fitness value. Crossover and mutation are then applied on the selected in-
dividuals. The crossover operator mixes the chromosomes of the parent
individuals to form new offspring, whereas mutation alters some part of the
individual’s chromosome. This process goes on for a number of generations
or until some stopping criterion is met.

2.2.1.1 Characteristics

Genetic Algorithms differ from most traditional optimization techniques in
several ways. GAs encode the decision variables of the problem in the
chromosome (genotype) where the genetic material gets manipulated dur-
ing crossover and mutation, and not directly on the variables themselves
(phenotype).

GAs are regarded as blind search techniques that explore via sampling
using only pay-off information and employ stochastic operators to guide the
search and be able to escape from local optima. GAs are inherently parallel
as they can evaluate simultaneously a set of encoded solutions or individuals.

16 Chapter 2. Metaheuristics

Another important capability of GAs is their ability to successfully explore
search spaces which may not be continuous nor differentiable.

Normally GAs perform best when solutions can be represented or en-
coded in a manner which exposes important components of possible solu-
tions, and operators to mutate and hybridize these components are avail-
able. On the other hand, GAs are hindered when the selected encoding does
not fully describe the main characteristics of potential solutions, or when
operators are not able to generate interesting new candidate solutions. The
following list provides a summary of the main characteristics of GAs:

• The decision variables are represented as fixed length strings (chromo-
somes).

• Inherently parallel population based approach. Multiple individuals
are evolved at the same time.

• The fitness function determines the quality of potential solutions.

• Biologically inspired operators are used for selection/reproduction and
mutation.

• Genetic operators are applied probabilistically to a fraction of the pop-
ulation.

• Evolution continues until some stopping criterion is met.

2.2.1.2 Solution encoding and initialization

The first thing that needs to be addressed in order to solve an optimization
problem using GAs, is the encoding of the decision variables into chromo-
somes. As explained earlier, chromosomes are represented as a fixed length
string over an alphabet of fixed length (Holland, 1975; Goldberg, 1989). A
commonly used principle for encoding is known as the principle of minimum
alphabet (Holland, 1975). The principle states that for efficient encoding,
the smallest alphabet set that permits a natural expression of the problem
should be chosen. The most simple and common representation is a binary
string. A binary string of length l can encode 2l solutions.

For example the string [1 0 1 0 1 0 1 0] of length 8 can encode a maximum
of 256 (28) solutions, this is what is defined as the genotype. On the other
hand, the phenotype is the manifestation of the genotype, (i.e. the actual
observed properties) and represents the solution to our problem. Going back
to our 8-bit string example, the 8-bit string could represent 8 different items
we wish to include in a box in a packing problem where we need to maximize
the sum of the weight of the items without reaching a specified maximum
weight.

2.2. Metaheuristics 17

There is a mapping needed from the genotype to the phenotype. In
this simple example each position or gene in the chromosome represents a
predefined item in our problem. The allele is the value that the gene can
take. In our example problem it can have two values, 1 means in the box or
0 not in the box.

The binary alphabet offers the maximum number of schemata per bit of
information of any encoding (Holland, 1975; Goldberg, 1989) and is one of
the most commonly used strategies. Other types of encoding such as integer
and real value encoding are also widely employed. Ultimately the encoding
depends on the nature of the problem being optimized and the data type
of the decision variables. It is also common practice to mix both integer
and real values in the chromosome, as some of the decision variables of the
problem might be either integer or real, as is the case with our trading system
optimization problem of chapter 5.

The set of all chromosomes or individuals is defined as the population,
the size of which may be fixed or may vary on every generation. It is general
practice to choose the initial population randomly. However, one can gener-
ate the chromosomes of the initial population using some domain knowledge
about the problem. For example a regularly used technique is to “seed” or
introduce some good known solutions in the initial population.

2.2.1.3 Fitness evaluation

The next step is to evaluate the fitness of the encoded solutions. The fitness
function is problem-dependent and measures the quality of a solution. The
fitness function should be selected in such a way that a chromosome that
is nearer to the optimal solution in the search space receives a higher (or
lower in case of minimization) fitness value. The fitness function (also called
the payoff information or utility function) is the only information that GAs
require to explore the search space.

In single-objective optimization only one fitness value is used for opti-
mization, whereas in multi-objective optimization, a different fitness value
is calculated for each of the objective functions optimized. We will discuss
this in more detail in section 2.3.2.

2.2.1.4 Selection

The selection operator simulates the process of natural selection. The suc-
cess of an individual is determined by “survival of the fittest” concept of
Darwinian evolution theory. The selection procedure consists in generating
an intermediate population, called mating pool, by copying the chromosomes
from the parent population. Several widely used techniques for selection are
tournament selection and roulette wheel. In tournament selection, two (or
more) chromosomes are taken at random, and the best chromosome is put

18 Chapter 2. Metaheuristics

into the mating pool. The process is repeated until the mating pool becomes
full. Tournament selection may be implemented with and without replace-
ment of the competing individuals. The tournament size also can be varied.
It should be noted that in tournament selection, the worst chromosome will
never be selected in the mating pool.

2.2.1.5 Crossover

Crossover is a genetic operator that combines two parent individuals to pro-
duce new offspring and is based on the idea of sexual reproduction where
offspring may be better than both parents if they inherit their best char-
acteristics. Crossover is normally applied during evolution according to a
user-defined probability. Most crossover operators are designed “ad-hoc”
customizing them to the problem being solved. Some popular crossover op-
erators are single-point, two-point, n-point and uniform crossover. Crossover
operators are designed depending on the specific problem at hand. For
example combinatorial optimization problems like the Travelling Salesman
Problem may use specific permutation operators such as ordered crossover,
partially mapped crossover or edge recombination crossover.

2.2.1.6 Mutation

The mutation operator modifies one or more genes in a chromosome with the
goal of preventing the population from stagnation at local optima. Mutation
is applied during evolution according to a user-specified probability which is
normally set quite low (somewhere between 1% and 10% is a good starting
point). A very high probability of applying mutation can turn the search into
a random search. Another important application of the mutation operator
is repairing solutions which may violate some constrains.

2.2.1.7 Elitism

Elitism guarantees that the best chromosome found so far is not lost due
to randomized operators during the search. In elitist models, the best chro-
mosome seen up to the current generation is retained either within the pop-
ulation itself or in an outside location. Sometimes elitism is performed by
replacing the worst individual of the current generation by the best of the
previous generation (only if it has better fitness).

2.2.2 Genetic programming

First introduced by (Koza, 1992), “GP (Genetic Programming) is an EC
(Evolutionary Computation) technique for automatically solving problems
without requiring the user to know or specify the form of the solution in

2.2. Metaheuristics 19

advance. At the most abstract level GP is a systematic, domain-independent
method for getting computers to solve problems automatically starting from
a high-level statement of what needs to be done (Poli and Langdon, 2007)”.
Since its inception twenty five years ago, GP has been succesfully employed
to solve a wide variety of practical problems, producing a number of human-
competitive results and patentable new inventions (Poli and Langdon, 2007;
Riolo et al., 2010, 2016).

2.2.2.1 Representation

GP is similar to a GA but has significant differences in the way solutions
are represented. Whereas a GA employs a fixed-length string encoding, GP
employs a variable length representation in the form of syntax trees. Figure
2.3 shows the tree representation of a TTS (Technical Trading Strategy) and
(EMA20 > EMA50,RSI14 < 30). The variables and constants in the program,
the terminals, (EMA20, EMA50, RSI14 and 30) are leaves of the tree. The opera-
tors (<,>,and) are internal nodes called functions. Functions and terminals
form the primitive set.

AND

>

EMA EMA

<

30RSI
20 50 14

Figure 2.3: GP syntax tree representing the Technical Trading Strategy and
(EMA20 > EMA50,RSI14 < 30)

However, it is common in most GP applications for functions to have
a fixed number of arguments, hence trees can be effectively represented as
simple lists or linear sequences. From the name of the function the arity

20 Chapter 2. Metaheuristics

is determined and the brackets can be inferred. For example the previous
expression in prefix-notation (and (> EMA20 EMA50) (< RSI14 30)) could
be written unambiguously as the sequence and > EMA20 EMA50 < RSI14 30.
The choice of using either an explicit tree representation or a linear sequence
is typically dictated by convenience, efficiency, the genetic operators used
and the data that needs to be collected during the optimization run (Poli
and Langdon, 2007).

2.2.2.2 Population initialization

As in other EA (Evolutionary Algorithms)s, in GP the individuals in the
initial population are randomly generated. We will describe next two of
the simplest approaches for initializing the population, the full and grow
methods together with a widely used combination of both known as ramped
half-and-half (Koza, 1992).

In both full and grow methods, the initial population is generated with-
out exceeding a user specified maximum depth. The depth of a node is
determined by the number of edges that need to be traversed in order to
arrive to it, and the depth of the tree is the depth of its deepest leave. The
root node is assummed at depth 0. The full method produces trees where
all leaves are at the same depth, this does not mean that the trees will have
an identical shape or size (the number of nodes in the tree). In fact, this
only happens when all the functions in the primitive set have the same arity.
Anyhow, even with mixed-arity primitive sets, the range of program sizes
and shapes produced by the full method tends to be very limited. On the
other hand, the grow method produces trees with a greater diversity of sizes
and shapes. The grow method selects both functions and terminals from
the primitive set until the maximum depth is reached. Once the maximum
depth is reached only terminals are selected. The grow method is very sen-
sitive to the sizes of the function and terminal sets. For example, if there
are significantly more terminals than functions, the grow method will almost
always produce very short tress irrespective of the depth limit. Similarly, if
the number of functions is considerably greater than the terminals, then the
grow method will behave much like the full method (Poli and Langdon,
2007).

Because both the full and grow methods are unable to produce a wide
variety of sizes and shapes by themselves, Koza (1992) proposed a combina-
tion of both called ramped half-and-half. In ramped half-and-half, half
of the population is generated using the full method while the remaining
other half is created with the grow method. This is performed using a range
of depth limits (“ramped”) to guarantee that the population has a diversity
of different sizes and shapes.

The initialization procedure need not be always random. As in other EAs
domain knowledge can be incorporated by initializing the population with

2.2. Metaheuristics 21

likely properties of desired solutions or previously known good solutions.

2.2.2.3 Selection

In GP selection is performed in very much the same way as in GAs. The
selection operators described in Section 2.2.1.4 are also some typical selection
approaches applied in GP.

2.2.2.4 Crossover

GP significantly differs from other EAs in how it implements the crossover.
The most common crossover is the subtree crossover or single-point crossover.
Given two parents, the single-point crossover randomly and independently
chooses a node as crossover point in each of the parents. It then creates the
offspring by replacing the subtree rooted at the crossover point of the first
parent by the subtree at the crossover point of the second parent. Figure
2.4 shows this operator. This is also the crossover operator employed in the
experiments of Chapter 6. Note that is possible to return two offspring but
this is not common. (Poli and Langdon, 2007).

and

>

EMA EMA

<

30

Crossover point or

>

EMA EMA

and

>

EMA EMA

Crossover point

Parent 1 Parent 2

 Offspring

and

<

30

and

>

EMA EMA

20 50
RSI

14 30 60

10 30

>

SMA SMA5 10

>

SMA SMA10 30 5 10

RSI
14

Figure 2.4: GP subtree or single-point crossover

22 Chapter 2. Metaheuristics

“Often crossover points are not selected with uniform probability. Typ-
ical GP primitive sets lead to trees with an average branching factor (the
number of children of each node) of at least two, so the majority of the nodes
will be leaves. Consequently the uniform selection of crossover points leads
to crossover operations frequently exchanging only very small amounts of
genetic material (i.e., small subtrees); many crossovers may in fact reduce
to simply swapping two leaves. To counter this, (Koza, 1992) suggested the
widely used approach of choosing functions 90% of the time and leaves 10%
of the time” (Poli and Langdon, 2007).

2.2.2.5 Mutation

The implementation of the mutation operator is also quite different from
other EAs. The most common form of mutation in GP is the uniform mu-
tation or subtree mutation, where a point in the tree is randomly chosen
and the subtree rooted there is exchanged for another randomly generated
subtree. This is the type of mutation that we will use in Chapter 6.

Another common mutation operator is point mutation, which is similar
to GAs bit-flip mutation. In point mutation a random point is chosen and
the primitive stored there is replaced with a random primitive of the same
arity. If no other primitives with the same arity exist, no mutation is applied
to that node (but other nodes might still be mutated).

Operators are applied probabilistically and in GP they are normally ap-
plied in a mutually exclusive way, unlike other EAs where offspring are gen-
erated often applying a combination of crossover and mutation. Typically
crossover is applied with the highest probability often at 90% or higher. Mu-
tation is applied with a much lower probability usually in the region of 1%
to 10%. When crossover or mutation do not get applied to an individual,
the individual simply gets copied to the next generation.

2.2.2.6 Primitive set

GP can be seen as a technique that can evolve programs, not in the Turing-
complete languages typically used for software development, but in a more
constrained, domain-specific language specified by the Primitive set. Primi-
tives can be either functions or terminals and are explained next.

2.2.2.7 Terminal set

The terminals are the leafs of the tree and consist of:

• The program’s external inputs (i.e. the named variables of the problem
EMA, RSI, . . . ,).

2.2. Metaheuristics 23

• Functions with no arguments like the function random() which returns
a random number or the function altitude() which returns the dis-
tance to the ground of a drone GP is flying.

• Constants which can be pre-specified or randomly generated when cre-
ating the tree.

Using a terminal such as the function random() will cause the behavior
of the individual program to vary every time it is executed, even when it is
called with the same inputs. This might be desirable in some applications,
however in most cases we need a set of fixed random constants that are
generated during the population initialization. This can be accomplished by
including an ephemeral random constant. Every time this type of terminal
is chosen during population initialization or during sub-tree mutation a dif-
ferent random value is generated which is used in that specific terminal and
remains fixed for the rest of the run.

2.2.2.8 Function set

The function set is normally dictated by the nature of the problem being
solved. For example in simple symbolic regression problems the functions
may consist of the arithmetic functions (+, -, *, /) and may be extended
with boolean function (AND, OR, NOT), mathematical functions (log, exp,
cos, . . .).

All sorts of other functions and constructs found in computer programs
can be employed. Most times, the primitive set includes specialized func-
tions and terminals designed to solve problems in a specific domain. For
example if we are programming a drone to fly we might include such actions
as take-off, turn, forward and land.

2.2.2.9 Closure

“For GP to work effectively, most function sets are required to have an im-
portant property known as closure (Koza, 1992), which can in turn be broken
down into the properties of type consistency and evaluation safety.” (Poli
and Langdon, 2007)

Type consistency requires that all functions return values of the same type
and that their arguments also have the same type, as crossover operations
can mix and join nodes arbitrarily. This limitation can be worked-around by
using strongly-typed GP. In strongly-typed GP the functions and terminals
are defined specifying its arguments and return data types. Special crossover
and mutation operators explicitly use this information so that the offspring
they produce do not contain illegal type mismatches.

Evaluation safety is required because many commonly used functions
can fail at run time. For example an expression might divide by 0. This is

24 Chapter 2. Metaheuristics

typically dealt with by using protected versions that first test for potential
problems with its inputs before execution. If a problem is detected some
default value is returned. For example protected division checks if the sec-
ond argument is 0 and if so returns the first arguments if that is the case,
otherwise it performs the division.

2.2.2.10 Sufficiency

Primitive sets must be sufficient for GP to produce satisfactory results. “Suf-
ficiency means it is possible to express a solution to the problem at hand
using the elements of the primitive set. Unfortunately, sufficiency can be
guaranteed only for those problems where theory, or experience with other
methods, tells us that a solution can be obtained by combining the elements
of the primitive set” (Poli and Langdon, 2007).

If a primitive set is insufficient, GP is only able to generate programs that
approximate the desired one. However, such an approximation can be very
near and good enough for the decision maker. Adding a few unnecessary
primitives in order to ensure sufficiency does not tend to slow down GP
much, although there are cases where it can bias the systems in unexpected
ways (Poli and Langdon, 2007).

2.2.2.11 Fitness function

The primitive set defines the search space GP will explore, however we still
are not able to determine which elements or regions of the search space
constitute good solutions that can solve or approximately solve the problem
at hand. As discussed earlier, the fitness function measures the quality of
individuals. The main difference of the fitness function in GP compared to
other EAs is that in GP programs need to be interpreted to be executed.
Interpreting a program tree means executing the nodes in an order that
guarantees that no nodes are executed before the value of their arguments.
This is usually accomplished by traversing the tree recursively starting from
the root node and delaying the evaluation of each node until the values of its
arguments are known. Other orders like traversing the tree from leaves to
the root is also possible if there are no functions which produce side effects.

2.3 Multi-objective optimization

There are many real-word problems that have opposing objectives which
need to be optimized simultaneously (as is our case in the problem pre-
sented in Chapter 5). This can be tackled using multiobjective optimization
algorithms, which present a set of solutions representing trade-offs between
the different objectives.

2.3. Multi-objective optimization 25

2.3.1 Formal definition

A general MOP (Multiobjective Optimization Problem) can be formally de-
fined as follows (we assume minimization without loss of generality).

Definition 3 (MOP) Find a vector ~x∗ = (x∗1, x
∗
2, . . . , x

∗
n) which satisfies

the m inequality constraints gi (~x) ≥ 0, i = 1, 2, . . . ,m, the p equality
constraints hi (~x) = 0, i = 1, 2, . . . , p, and minimizes the vector function
~f (~x) = (f1(~x), f2(~x), . . . , fk(~x)), where ~x = (x1, x2, . . . , xn) is the vector of
decision variables.

The set of all values satisfying the constraints defines the feasible region
Ω and any point ~x ∈ Ω is a feasible solution.

We seek for the Pareto Optimal Set. Before its definition some concepts
must be introduced.

Definition 4 (Pareto Optimality) A point ~x∗ ∈ Ω is Pareto optimal if
for every ~x ∈ Ω and I = {1, 2, . . . , k} either ∀i∈Ifi (~x) = fi(~x

∗) or there is
at least one i ∈ I such that fi (~x) > fi (~x∗).

This definition states that ~x∗ is Pareto optimal if no feasible vector ~x
exists which would improve some criterion without causing a simultaneous
worsening in at least another criterion. Other important definitions associ-
ated with Pareto optimality are the following:

Definition 5 (Pareto Dominance) A vector ~u = (u1, . . . , uk) is said to
dominate ~v= (v1, . . . , vk) (denoted by ~u 4 ~v) if and only if ~u is partially
smaller than ~v, i.e., ∀i ∈ I, ui ≤ vi ∧ ∃i ∈ I : ui < vi.

Definition 6 (Pareto Optimal Set) For a given MOP ~f(~x), the Pareto
optimal set is defined as P∗ = {~x ∈ Ω|¬∃~x′ ∈ Ω, ~f(~x′) 4 ~f(~x)}.

Definition 7 (Pareto Front) For a given MOP ~f(~x) and its Pareto opti-
mal set P∗, the Pareto front is defined as PF∗ = {~f(~x)|~x ∈ P∗}.

Obtaining the Pareto front of a MOP is the main goal of multi-objective
optimization. However, given that a Pareto front can contain a large number
of points, a good solution can only include a limited number of them, which
should be as close as possible to the true Pareto front (convergence), as well as
being uniformly spread (diversity); otherwise, they would not be very useful
to the decision maker. Closeness to the Pareto front, or convergence, ensures
that we are dealing with (almost) optimal solutions, while a uniform spread
of the solutions, or diversity, means that we have made a good exploration
of the search space and no regions are left unexplored.

26 Chapter 2. Metaheuristics

Figure 2.5: An example of a problem with two objective functions: risk
(minimization) and return (maximization). The Pareto front or trade-off
surface is delineated by a curved line.

The normal procedure to approximate the Pareto front is to generate
as many points as possible in Ω, and then filter them out to keep those
that are non-domintated. As MOPs usually have a possible uncountable set
of solutions in their Pareto front, the approximation has to sample them
properly to maintain a good distribution so as to cover all the regions, i.e.,
the different trade-off between the problem objectives (Coello et al., 2007).
A sample Pareto front is shown in Figure 2.5 depicting dominated and non-
dominated solutions.

2.3.2 Metaheuristics for multi-objective optimization

Traditional metaheuristics are single-objective by nature as they optimize a
single criterion during the search process. Hence, a single solution is pro-
duced which corresponds to the best value for the chosen optimization crite-
rion. However, most practical engineering optimization problems are multi-
objective as they must consider simultaneously various performance criteria
which are often conflicting. This can be handled in using a priori, interactive
or a posteriori methods.

2.3.2.1 A priori techniques

This group of techniques assume that the decision maker is able to specify
the desired goals or a certain pre-ordering of the objectives prior to carrying
out the search. This is usually accomplished by aggregating the objectives

2.3. Multi-objective optimization 27

in a weighted manner. Essentially, the preferences of the decision maker are
modeled so that solutions may be compared to them.

According to Coello et al. (2007), the most significant A priori ap-
proaches can be summarized as follows :

• Lexicographic ordering: The objectives are ranked by importance
as defined by the decision maker and the optimum solution is obtained
by minimizing the various objective functions sequentially in order of
importance starting from the most important objective. Typically the
objectives not being optimized are handled as constrains to the prob-
lem.

It may also be possible to assign randomly the importance of the ob-
jectives when they are unknown. This might be similar to a weighted
combination of the objectives where each weight is defined in terms of
the probability of each objective being selected. The main weakness
of this approach is that it tends to favour certain objectives while rel-
egating others when many are present due to the randomness involved
in the process. This technique seems suitable for problems where the
importance of each objective in comparison to others is well known
beforehand. This technique has not found much acceptance among
multi-objective researches due to the fact that it explores the search
space unevenly, as priority is given to solutions performing well in one
objective but not in the others.

• Linear aggregating functions: This approach aggregates the func-
tions in a weighted manner typically in the form:

fitness =
k∑
i=1

wifi(x) (2.2)

where wi ≥ 0 and i = 1, . . . , k are the weight coefficients representing
the relative importance of the objectives as specified by the decision
maker.

• Nonlinear aggregating functions: Multiplicative approaches, where
the objective functions are multiplied, are not very popular in the liter-
ature, since the definition of a good nonlinear aggregating function may
result harder than defining a linear aggregating function. On the other
hand, target-vector approaches, which require the definition of goals
by the decision maker are more popular, specially in the case when
the decision maker is able to specify a vector with the desired goals
for each objective. Target-vector functions typically take the following

28 Chapter 2. Metaheuristics

form:

fitness =
k∑
i=1

(
f0i − fi(x)

f0i

)p
(2.3)

where f0 is the vector of desired goals specified by the decision maker,
and i = 1, . . . , k are the k objective functions in the MOP.

2.3.2.2 Interactive techniques

Interactive techniques integrate search and decision making. These methods
typically work in three phases:

1. Find a non-dominated solution.

2. Receive feedback on the solution from the decision maker. Modify the
preferences of the objectives accordingly.

3. Repeat previous steps until the decision maker is satisfied or no further
improvement is possible.

Some well known interactive algorithms are the Probabilistic Trade-Off
Development method, the STEP method and the Sequential Multiobjective
Problem Solving method (Coello et al., 2007).

2.3.2.3 A posteriori techniques

A posteriori techniques do not require the input of the decision maker to
conduct the search. The decision maker is only needed after the optimiza-
tion process is finished to select the most appropriate solution that fulfills
satisfactorily all the objectives of the problem. A posteriori techniques can
be further classified into (Mashwani et al., 2016):

• Pareto-based: Pareto-based techniques make use of the concept of
Pareto Dominance to establish preference between solutions. The aim
is to obtain a set of non-dominated solutions representing a good ap-
proximation to the Pareto optimal front. While Pareto-based methods
perform satisfactorily on MOPs with a limited number of objectives,
for many-objective problems, Pareto dominance becomes a weak cri-
teria for selecting solutions, as the number of feasible solutions that
when compared are non-dominated becomes too large. This causes
the algorithm to not have enough convergence pressure. Another limi-
tation of Pareto-based methods is the number of solutions required to
accurately approximate Pareto fronts, as it grows exponentially with

2.4. Conclusions 29

the number of objectives (Aguirre, 2013). To cope with these limita-
tions for many-objective problems, decomposition and indicator based
approaches have been proposed showing very good results (Li et al.,
2013). Some of the most representative Pareto-based algorithms are:
NSGA-II, SPEA2, PAES, PESA, PESA-II. This algorithms stand out
because they incorporate known MOEA (Multiobjective Evolutionary
Algorithm) theory (Coello et al., 2007).

• Decomposition-based: Decomposition techniques reduce the prob-
lem into smaller sub-problems and optimize them either sequentially
or in parallel. MOEA/D introduced by Zhang and Li (2007) is per-
haps the most well-known decomposition algorithmic framework. This
framework incorporates a mathematical method to transform a multi-
objective problem into several single-objective problems which are si-
multaneously solved. Normal Boundary Intersection and Chebyshev
are some examples of the mathematical methods that may be incorpo-
rated into the MOEA/D framework.

• Indicator-based: Perhaps the most important trend in modern MOEAs
(after 2002) is the use of a performance measure in the selection opera-
tor. Quality metrics such as the hypervolume that measure the portion
of objective space dominated by a set of solutions, are used to direct the
search in a Pareto-compliant way. The advantage of indicator-based
metaheuristics is that their convergence pressure does not decrease as
the number of objective are increased. The hypervolume is the only
performance indicator that is known to be monotonic with respect to
Pareto dominance. This guarantees that the true Pareto front achieves
the maximum possible hypervolume value, and any other set will pro-
duce a lower value for this indicator. Some representative examples are
IBEA (Indicator-Based Evolutionary Algorithm) proposed by Zitzler
and Künzli (2004) is an algorithmic framework that allows the incor-
poration of any performance indicator in the selection mechanism of a
MOEA. It was originally tested with the hypervolume and the binary
ε indicator. Another important MOEA is SMS-EMOA proposed by
Beume et al. (2007), which uses a steady state selection and the oper-
ators from NSGA-II. The hypervolume is used as a density estimator
which improves the distribution of solutions along the Pareto front.
The solution that is dominated by the largest number of solutions is
removed.

2.4 Conclusions

In this chapter we have formally introduced an optimization problem, and
discussed the state of the art in metaheuristics. We have explored in more de-

30 Chapter 2. Metaheuristics

tail the two techniques (GA and GP) used in this thesis. Lastly, we formally
define a MOP and the concepts of Pareto Optimality, Pareto Dominance,
Pareto Optimal Set and Pareto Front and cover the approaches typically
employed for solving MOPs.

Chapter 3

Robust evolutionary
optimization

Fragility is the quality of things that are
vulnerable to volatility.

Nassim Nicholas Taleb

3.1 Introduction

The term “robust” has many definitions depending on the author, but it
can be broadly defined as the capacity of a system to preserve its func-
tionality despite internal (genotypic robustness) or external perturbations
(phenotypic robustness) (Branke, 1998; Soule, 2003). Real-world solutions
to optimization problems should also be robust as their performance should
be unaffected by small changes to the design variables or the environmen-
tal conditions. This is not usually considered in traditional optimization
algorithms which assume these variables as constant. Robustness and per-
formance can be conflicting and so it is important to know their relation for
each optimization problem, therefore the goal of robust optimization tech-
niques should be to not only maximize performance, but also to guarantee
sufficient robustness (Gaspar-Cunha and Covas, 2008).

Robustness is usually measured after optimization conducting a sensitiv-
ity analysis that measures the response of the optimized solutions to small
parameter variations. Since the solutions generated considering only per-
formance, and not taking into account its variation (robustness), might not
include the best results, a robustness analysis should be performed dur-
ing the search (Beyer and Sendhoff, 2007; Gaspar-Cunha and Covas, 2008),
which can be accomplished by introducing a measure of robustness during
optimization that replaces the original objective function with an expres-
sion measuring both performance and robustness or by measuring expected

31

32 Chapter 3. Robust evolutionary optimization

performance around the vicinity of a solution. It can also be approached
as a multi-objective optimization problem where the trade-off between per-
formance and robustness (usually conflicting objectives) is obtained. (Jin
and Sendhoff, 2003; Deb and Gupta, 2005, 2006) considered the problem of
finding robust solutions in single-objective optimization as a multi-objective
optimization problem where robustness and performance are maximized.

3.2 Types of robustness

In this section we will attempt to classify the types of robustness accord-
ing to whether robustness is internal to the evolutionary process (genotypic
robustness) or external (phenotypic robustness) (Yan and Clack, 2010).

3.2.1 Genotypic robustness

Genotypic robustness aims at achieving insensitivity of fitness to perturba-
tions from genetic operators. In Soule (2003) robustness refers to resistance
to change from variation operators such as crossover and mutation and finds
that the code bloat phenomenon in GP, where an increase of the size of the
trees does not result in fitness improvement, is a redundancy mechanism.
Trees grow introns which safeguard valuable code and protect it against
loss during crossover or mutation. Even though this approach favors broad
plateaus instead of peaks of high fitness, it is of negligible use when the
surface of the search space changes. Their research shows that evolutionary
pressure favoring robust solutions has a significant impact on the evolution-
ary process.

Piszcz and Soule (2006) study again the robustness to genetic operators
in GP in the context of redundancy and replication of the building blocks in
an individual. If growth of the GP solution is allowed, it permits the indi-
vidual to support more disruptive events caused by crossover or mutation.
Robustness decreases the probability that a critical subtree or building block
will affect the overall fitness of the individual.

3.2.2 Phenotypic robustness

Phenotypic robustness deals with resilience to external changes and can be
further categorized into:

• Generalization Robustness: Robustness as the generalization ability of
evolved solutions. From a machine learning standpoint, it is the pre-
dictive accuracy of a learner for new unseen cases. The objective here
is reducing over-fitting and producing solutions whose performance is
similar for both in-sample and out-of-sample datasets (Kushchu, 2002).

3.3. Definitions 33

• Environmental Robustness: Robustness to external environmental per-
turbations. Financial markets suffer abrupt structural changes which
tend to persist in time (Granger and Hyung, 2004). Robust TTSs
should withstand periods of extreme volatility and trend change.

• Robustness to Noise: Robustness to noise inherent in the data or the
readings produced by the system (Kitano, 2004).

• Self Repair: Robustness as the ability to self-repair after severe phe-
notypic damage (Bowers, 2006).

In this thesis we are concerned with the generalization and environmental
robustness of evolved solutions. We explore how we can design solutions that
display similar performance for both in-sample and out-of-sample data, as
well as solutions that can resist abrupt trend changes and extreme volatility
periods.

3.3 Definitions

In the next section we introduce the mathematical formulation to robust
optimization problems.

3.3.1 Robustness in single-objective optimization

Given a single-optimization problem of the following type:

Minimize f(x)

subject to x ∈ S

}
(3.1)

where S is the feasible search space, a robust solution is defined as being
insensitive (to a limit) to the perturbation of the design variables x.

Definition 8 (Single-objective robust solution) In the minimization of
function f(x), a solution x∗ is a robust solution, if it is the global-minimum of
the mean effective function feff (x) defined with respect to a δ-neighborhood
as:

Minimize feff (x) =
1

|Bδ(x)|

∫
y∈Bδ(x)

f(y)dy

subject to x ∈ S

 (3.2)

where Bδ(x) is the δ-neighborhood of solution x and |Bδ(x)| is the hyper-
volume of the neighborhood.

34 Chapter 3. Robust evolutionary optimization

Let us consider Figure 3.1, of two minimum solutions, solution A is con-
sidered robust as its objective function value is not altered significantly by
a small perturbation of the decision variables. On the other hand, solution
B is quite sensitive to the perturbation of the design variables and can not
be recommended even though it has a lower function value than solution A.

A

BOriginal

Robust

0.2 0.4 0.6 0.80

1.2

1.4

1.6

1.8

1.0

x

f(
x
)

Figure 3.1: Global verus robust solutions in single-objective optimization

One of the main ideas that can be extracted from the literature is to use
the mean effective objective function for optimization instead of the objective
function itself. To estimate the expected performance the fitness of a solution
(x) is calculated by averaging several points in its neighborhood as shown
in Equation 3.3 (Tsutsui and Ghosh, 1997; Branke, 1998; Jin and Sendhoff,
2003; Deb and Gupta, 2006; Beyer and Sendhoff, 2007; Gaspar-Cunha and
Covas, 2008).

f̃(x) =

∑N
i=1wif(x+ ∆xi)∑N

i=1wi
(3.3)

where x is the vector of design variables and possibly some environmental
parameters, i = 1, 2, . . . , N is the number of points to be evaluated. ∆xi is a
vector of small numbers that can be generated deterministically or randomly.
wi is the weight for each evaluation. In the simplest case all weights are set

3.3. Definitions 35

equally to 1. If ∆xi are random variables z drawn according to a probability
distribution φ(z), we obtain in the limit N → ∞, the effective evaluation
function feff according to the following equation 3.4 (Tsutsui and Ghosh,
1997; Jin and Sendhoff, 2003).

feff =

∫ ∞
−∞

f(x, z)φ(z)dz (3.4)

Besides averaging methods, it has been shown by Tsutsui and Ghosh
(1997) that the “perturbation” of design variables in each fitness evaluation
leads to the maximization of the effective fitness function of Equation 3.4 un-
der the assumption of linear selection. Schema theorem is used as a basis for
the mathematical proof. Note that the “perturbation” method is equivalent
to the averaging method for N = 1 and a stochastic ∆x (Jin and Sendhoff,
2003).

We extend this concept in Chapter 6 by using randomly sampled subsets
of the dataset in each evaluation of the individual and averaging the fitness
obtained in each evaluation. Equation 3.5 shows this.

f̄(x) =

∑N
i=1 f(x, zi)

N
(3.5)

where i = 1, 2, . . . , N are the random samples to be evaluated. x are the
design variables and zi are random samples of the environmental variables
of the problem (the dataset z). In our case as we will see in the following
chapters, zi are ramdom samples taken from the timeseries of prices of fi-
nancial assets. What this method accomplishes is using randomly selected
segments from the original timeseries as a method to embed robustness dur-
ing single-objective optimization.

3.3.2 Robustness in multi-objective optimization

Given a multi-objective optimization problem withM conflicting objectives:

Minimize (f1(x), f2(x), . . . , fm(x))

subject to x ∈ S

}
(3.6)

where fm are the M objective functions, x is the vector of decision vari-
ables and some environmental parameters and S is the feasible search space.
In contrast to single-objective optimization, where the goal is finding a single
optimum, in multi-objective optimization a finite number of Pareto-optimal
solutions are searched for. The two main differences with respect to single-
objective robust optimization can be enumerated as:

1. The sensitivity of the design variables x now has to be established with
respect to all M objectives. A combined effect of the variations in all

36 Chapter 3. Robust evolutionary optimization

M objectives has to be used as a measure of robustness. Alternatively,
the decision maker may choose which are the preferred objectives that
require insensitivity to variable perturbation.

2. In multi-objective optimization there are numerous solutions that need
to be analyzed for robustness.

Multi-objective robust solutions can be defined as:

Definition 9 (Multi-objective robust solution) A solution x∗ is a multi-
objective robust solution if it is the global-feasible Pareto-optimal solution to
the following multi-objective problem defined with respect to a δ-neighborhood
(Bδ(x)) of a solution x:

Minimize (feff1 (x), feff2 (x), . . . , feffm (x))

subject to x ∈ S

}
(3.7)

where feffj (x) is defined as:

feffj (x) =
1

|Bδ(x)|

∫
y∈Bδ(x)

fj(y)dy (3.8)

Figure 3.2 shows two Pareto-optimal solutions (A and B) which are ana-
lyzed for their sensitivity in the decision variable space. Since the perturba-
tion of point B causes a large degradation in the objective values, solution B
does not qualify as a robust solution. In order to qualify as robust solution,
each Pareto-optimal solution has to be insensitive to small perturbations in
its decision variables. On the other hand, solution A is robust, as its ob-
jective function values show less variance certifying its insensitivity towards
small perturbations in the decision variable space.

Solutions obtained with conventional evolutionary optimization algorithms
will be the most performing, not the most robust. In order to incorporate
robustness, for each objective function, an additional criterion needs to be
introduced, which measures the variation of the original objective function
around the vicinity of the design point considered. Variance measures only
take into account deviations of the function, ignoring the associated per-
formance. Thus, in the case of a single objective function the optimization
algorithm must perform a two-criterion optimization (fm,fR), where fm con-
cerns performance and fR accounts for robustness (Branke, 1998; Chen and
Sundararaj, 1999; Branke, 2000; Gaspar-Cunha and Covas, 2008).

3.4 Robustness approach employed

In this thesis we are concerned with the generalization and environmental
robustness of evolved solutions. We explore how we can design solutions that

3.5. Conclusions 37

B

A

x3

x1

x2

Decision space

f1

f2

Objective

 space

B

A

Figure 3.2: Point A is less sensitive than point B to variable perturbation in
a multi-objective problem

display similar performance for both in-sample and out-of-sample data, as
well as solutions that can resist abrupt trend changes and extreme volatility
periods. We make an effort to extent an existing averaging approach (Branke,
1998; Chen and Sundararaj, 1999; Branke, 2000; Jin and Sendhoff, 2003; Deb
and Gupta, 2006) for finding robust solutions in single-objective and multi-
objective problems. In single-objective problems, as in Chapter 6, we use the
idea of the mean effective function, but with a distinctive difference: instead
of using the vicinity, we evaluate the fitness function on randomly sampled
points from the original dataset and compute a robust fitness by averaging
the fitness obtained on each random sample.

Our multi-objective approach in Chapter 5 will be based on (Chen and
Sundararaj, 1999) who suggested replacing the fitness (f) of conventional
optimization (Definition 1) by two objectives, the mean µ and the standard
deviation σ of f .

3.5 Conclusions

In this chapter we have presented the state of the art in robust evolutionary
optimization. The main concept that can be drawn from the literature is to
use the mean effective fitness calculated in the vicinity of the parameters.
The optimization problem can also be treated as a multi-objective problem,
considering the statistical dispersion of the mean effective fitness as an addi-

38 Chapter 3. Robust evolutionary optimization

tional objective. Using multi-objective optimization would require to double
the number of optimization criteria as each original objective function needs
to be substituted by the mean and standard deviation of the original fitness
function measured in a vicinity of the parameters being optimized.

Chapter 4

Algorithmic trading

Ever wonder why
fund managers can’t beat the S&P 500?

’Cause they’re sheep,
and sheep get slaughtered.

Gordon Gekko (Wall Street 1987)

4.1 Introduction

AT using evolutionary computation has been a hot topic of research in the
recent years for academics from both finance and soft-computing domains
with a large body of published research articles (Ponsich et al., 2013; Hu et
al., 2015; Aguilar-Rivera et al., 2015).

AT is a term commonly used to describe computer programs that au-
tomate one or more stages of the trading process. AT currently handle
approximately 50% to 60% of all stocks traded in the United States and the
European Union and is a major source for computing and analytics innova-
tion, specially machine learning and grid/GPU computing (Nuti et al., 2011;
Hendershott and Riordan, 2013).

AT systems try to seize momentary anomalies in market prices, profit
from statistical patterns within or across financial markets, optimally exe-
cute orders, conceal a trader’s intentions, or detect and exploit rivals’ strate-
gies. Ultimately, profits drive any algorithmic trading system whether in the
form of cost savings, client commissions, or proprietary trading. The distin-
guishing characteristic of algorithmic trading systems is the sophistication
of their analysis and decision making (Nuti et al., 2011).

These systems are deployed in highly liquid markets in assets classes such
as equities, futures, derivatives, bonds, and foreign exchange. Algorithmic
trading is employed for automating any stage of the trading process, therefore
it covers a wide variety of systems. In trade-execution programs, for example,

39

40 Chapter 4. Algorithmic trading

the algorithm might decide aspects such as which market to send the order
to, the timing, price, and even the order’s quantity splits (Nuti et al., 2011).

One of the most important benefits of algorithmic trading is that strate-
gies can be tested on historical data. This ability to simulate a strategy is one
of the biggest benefits of algorithmic trading. Back-testing tells you how well
the strategy would have done in the past. While back-tested performance
does not guarantee future results, it can be very helpful when evaluating
potential strategies. Back-tested results can be used to filter strategies that
either do not suit the required investment style or are not likely to meet
risk/return performance goals.

4.2 Financial time series

Financial time series are built at the most basic level by recording each
(tick) where the price, volume and a time-stamp of each transaction are
recorded asynchronously as it takes place. If we resample the tick data into
periods of equal length, we have what is called OHLCV (Open, High, Low,
Close, Volume) data. Open and Close represent the first and last prices of
the interval, while High and Low prices are the maximum and minimum
prices recorded during the interval. Volume represents the total number
of financial instruments that where exchanged between sellers and buyers
during the interval. We can assume that for any given market the price series
is given by vectors {Open,High, Low,Close, V olume} sampled at interval
τ (minutes, hour, day, etc.).

4.3 Algorithmic trading system components

According to Nuti et al. (2011), the major components of an algorithmic
trading system can be classified according to what stage of the trade’s life
cycle is being automated. The trading process can be split into four distinct
stages: pre-trade analysis, trading signal generation, trade execution, and
post-trade analysis.

• Pre-trade analysis involves analyzing financial data or news with the
goal of forecasting future price movement or volatility and generating
trading signals when an opportunity presents. Some methodologies
used to perform this step are fundamental analysis, technical analysis
and quantitative analysis.

• Trading signal generation and pre-trade analysis generally overlap blur-
ring their differences. Their major distinction is that an actual trading
signal generated by an algorithm will come with an specific price and
quantity, and might also include risk management recommendations

4.4. Pre-trade analysis methodologies 41

such as specific stop-loss values. Normally pre-trade analysis recom-
mendations are intentionally left vague, as they might be augmented
by trading signal generation in more complex systems.

• Trade execution takes care of submitting the order to the trading
venues. If the order is too large, the system breaks down the order
into smaller orders which it submits over a period of time in order to
minimize market impact. Orders might also be submitted to multiple
markets, crossing markets or dark pools that do not publicly reveal the
current order book.

• Post-trade analysis handles the analysis of the all transactions exe-
cuted and measures the performance of the trading activity providing
insights.

In this thesis we have fused both pre-trade analysis and trading signal
generation as in our experiments we simulate a fixed quantity investment
which we buy at the price when the signal is given.

4.4 Pre-trade analysis methodologies

Traditional financial forecasting methodologies can be classified into three
categories, fundamental, quantitative and technical analysis. Next we will
introduce briefly Fundamental analysis, and we will discuss in more depth
Quantitative Analysis and Technical Analysis, specially the indicators used
in this thesis.

4.4.1 Fundamental Analysis

Fundamental analysis studies the basic financial information of a company
in order to forecast its profits, sales, costs, growth potential, management
abilities, and other intrinsic matters affecting the market value of a stock
(Thomsett, 1998). In fundamental analysis, investors estimate the value of
a corporation using various financial valuation models. The data inputs for
these models are derived from various accounting metrics appearing in the
different financial statements and reports of a corporation such as assets,
liabilities, earnings, etc. Investors try to find mispriced stocks trading in the
market at a discount to their valuation models.

In this thesis we do not make use of fundamental analysis. The main
reason is that the basic financial information is released to the public on a
quaterly basis. The trading systems we simulate in our experiments operate
at 30 minute frequency in Chapter 5 and daily frequency in Chapter 6.
Including fundamental analysis into a trading system would make sense only
on systems that trade on very long frequecies, for example in the case where
stocks are held for periods longer than 6 months.

42 Chapter 4. Algorithmic trading

4.4.2 Quantitative Analysis

This type of analysis has dominated the financial industry in recent decades
and is the foundation for modern portfolio theory, derivatives pricing, and
risk management. Quantitative analysis treats asset prices as random and
uses mathematical and statistical analysis to find a suitable model for de-
scribing this randomness (Nuti et al., 2011).

In the following subsections we will describe some basic calculations de-
rived from quantitative analysis used in the following chapters.

4.4.2.1 Asset returns

The n period return of an asset is the percentage change in price and is given
by the following equation:

Rn =
Pt − Pt−n
Pt−n

(4.1)

where Pt is the price of the asset at time t and n the number of periods back.

4.4.2.2 Volatility

Volatility is a statistical measure of dispersion of the returns of an asset.
Volatility is usually measured using the standard deviation of returns. The
variance of the returns might also be used as a measure of volatility. Normally
the more volatilty an asset has, the riskier it is. Volatility can be determined
according to the following equation:

σ =

√√√√ 1

N

N∑
t=1

(Rt − µ)2 (4.2)

where Rt is the return at time t and µ is the mean of the returns.

4.4.2.3 Capital Asset Pricing Model α and β

The CAPM was developed simultaneously but separately by Sharpe (1964);
Lintner (1965); Mossin (1966). CAPM is one of the most widely used tools to
determine the expected rate of return of an asset. The formula for calculating
the expected return of an asset is as follows:

E(r) = Rf + β(E(Rm)−Rf) (4.3)

β =
Cov(R,Rm)

V ar(Rm)
(4.4)

4.4. Pre-trade analysis methodologies 43

where R is the return of the asset, Rf is the risk-free rate, β shown in
Equation 4.4 is the covariance between the returns of the asset and the
market divided by the variance of the market rate of return. E(Rm) is the
expected return of the market.

The CAPM says the expected return of an asset or portfolio equals the
risk-free rate plus a risk premium. If the expected return does not meet or
improve the required return then the investment should not be considered.

Another important measure is the alpha coefficient (α) which measures
an abnormal rate of return in excess of what is be predicted by CAPM.
The alpha coefficient is a parameter of CAPM which can be seen as the
intercept of the regression line, which is a constant in the market model
linear regression.

4.4.3 Technical Analysis

Technical analysis attempts to forecast the future movement of financial in-
struments by analyzing data collected from trading activity, such as price and
volume. Unlike fundamental analysis, whose goal is to determine a security’s
intrinsic value, technical analysis focuses on charts of price movement and
various analytical tools to evaluate a security’s strength or weakness and
forecast future price changes.

“Technical analysis has been a part of financial practice for many decades,
but this discipline has not received the same level of academic scrutiny and
acceptance as more traditional approaches such as quantitative and funda-
mental analysis. However, several academic studies suggest that despite its
jargon and methods, technical analysis may well be an effective means for
extracting useful information from market prices” (Lo et al., 2000).

Technical analysis is based on the Dow Theory, formulated by Charles H.
Dow in a series of Wall Street Journal editorials from 1900 to 1902. These
editorials explained Dow’s beliefs on how the stock market behaved. Dow
believed the stock market as a whole was a reliable measure of the overall
business conditions, and that by analyzing the whole market, one could
accurately determine those conditions and identify the direction of major
market trends and individual stocks

The following two basic assumptions of Dow Theory are the foundation
of all of technical analysis:

1. Market price discounts every factor that may affect a security’s price.

2. Market price movements are not purely random and move in identifi-
able patterns and trends that repeat over time.

The assumption that price discounts everything essentially means the
market price of a security at any given point in time accurately reflects

44 Chapter 4. Algorithmic trading

all available information, and therefore represents the true fair value of the
security. This assumption is based on the idea the market price always
reflects the sum total knowledge of all market participants.

The second basic assumption underlying technical analysis, the notion
that price changes are not random, and prices move in trends, both short
term and long term, which can be identified. A Trend once is formed tends
to persist. Trend following is one of the most typical strategies technical
traders follow.

Technical analysis is used to forecast the price movement of virtually any
tradeable instrument that is generally subject to forces of supply and de-
mand, including stocks, bonds, futures and currency pairs. In fact, technical
analysis can be viewed as simply the study of supply and demand forces as
reflected in the market price movements of a security. It is most commonly
applied to price changes, but some analysts may additionally track numbers
other than just price, such as trading volume or open interest figures.

TA employs many techniques being the main one, the use of price charts
where price patterns and trends can be identified graphically. TA also uses
indicators and oscillators which are mathematical transformations of price
and volume that help determine if there is a trend in place and its probability
of continuation or change of direction (trend reversal).

Over the years, numerous technical indicators have been developed by
analysts in attempts to accurately forecast future price movements. Some
indicators are focused primarily on identifying the current market trend,
including support and resistance areas, while others are focused on deter-
mining the strength of a trend and the likelihood of its continuation. Com-
monly used technical indicators include trend-lines, moving averages and
momentum indicators such as the MACD (Moving Average Convergence Di-
vergence) indicator.

Technical analysts apply technical indicators to charts of various time-
frames Short-term traders may use charts ranging from one-minute time-
frames to hourly or four-hour timeframes, while traders analyzing longer-
term price movement scrutinize daily, weekly or monthly charts.

In figure 4.1 we can observe a chart of daily prices of Banco Santander’s
stock. The graph is subdivided in four subgraphs. The top shows price
information in the form of candles. Candles represent the Open, High, Low
and Close of every period. Open corresponds to the start of the period, while
close is the price at the end of the period. High and low represent the highest
and lowest price at that given period. If the close of the period is higher that
the open the candle has a green color. On the other hand, if the close of the
period is lower than the open, the candle has a red color. Also in the graph
there are two simple moving averages of 50 and 200 periods (blue and red
lines) which show the trend while filtering the noise and smoothing the time
series. The second subgraph shows the volume representing the number of

4.4. Pre-trade analysis methodologies 45

Figure 4.1: Chart of Banco Santander.

shares transacted in each period. The other two subgraphs show the RSI
(Relative Strength Index) and MACD oscillator. The technical oscillators
and indicators used as in this thesis will be discussed next.

For a detailed explanation of technical analysis and trading systems see
(Murphy, 1999; Kaufman, 2005; Tsinaslanidis and Zapranis, 2016). Next we
will describe the techcnical indicators we will use in the following chapters.

4.4.3.1 Moving averages

In statistics a moving average is a type on finite impulse response filter used
to analyze a set of data points by creating a series of averages of different
subsets of the full data set. There are different types of moving averages
depending on how the periods are weighted. An example of a simple (un-
weighted) moving average of the closing prices of n days is detailed in the
following equation:

SMAn =
Pt + Pt−1 + Pt−2 + . . .+ Pt−n−1

n
(4.5)

In this thesis we have also used the EMA (Exponential Moving Average),
which applies weighting factors that decrease exponentially, but never reach-
ing 0. This results in the most recent days having more importance than

46 Chapter 4. Algorithmic trading

older days. The following equation describes its calculation:

EMAn = α×(Pt−1+(1−α)Pt−2+(1−α)2Pt−3+. . .+(1−α)n−1Pt−n) (4.6)

where the coefficient α represents the degree of weighting decrease. A higher
α discounts older observations faster. Alternatively α may be expressed in
terms of n time periods where α = 2/(n+ 1).

4.4.3.2 Moving Average Convergence Divergence

Created by Appel in the 1970s, it is used to spot changes in strength, di-
rection, momentum and duration of a trend in a stock price. The MACD
is computed by calculating the difference between two exponential moving
averages of closing prices. It consists of two lines, but may be graphed also
with a histogram that shows the divergence between the two EMAs, see fig-
ure 4.1. As we can see in the chart, while the price trend was up for the year
2009, we can see that the MACD lines were trending down, signalling that
strength of the trend was decreasing and a peak and trend reversal where
near. The first line, called the MACD line is calculated by subtracting the a
long period (l) exponential moving average from a shorter (s) period expo-
nential moving average. The signal line is the exponential moving average
of g periods of the previous MACD line (Appel, 2005). The equations are:

MACD line = EMAl(Close)− EMAs(Close) (4.7)

Signal line = EMAg(MACD line) (4.8)

4.4.3.3 Relative Strength Index

Developed by Wilder (1978), the RSI (Relative Strength Index) is intended
to capture the current and historical strength or weakness of a stock based
on the closing prices of a recent period of length n. The RSI is a momentum
oscillator, measuring the velocity and magnitude of directional price move-
ments. Momentum is defined as the rate of the rise or fall in price. The
RSI computes momentum as the ratio of higher closes to lower closes: stocks
which have had more or stronger positive changes have a higher RSI than
stocks which have had more or stronger negative changes. The RSI is most
typically used on a 14 day timeframe, measured on a scale from 0 to 100,
with high and low levels marked at 70 and 30, respectively. In figure 4.1
we can see how the RSI in the second half of 2009 was trending down while

4.4. Pre-trade analysis methodologies 47

price was trending up, this is a signal of possible trend reversal as the trend
was loosing momentum. The calculation is the following:

if Closet > Closet−1 ⇒ UPt = Closet − Closet−1 and DOWNt = 0 (4.9)

if Closet < Closet−1 ⇒ DOWNt = Closet−1−Closet and UPt = 0 (4.10)

RSI =
EMAn(UP)

EMAn(UP) + EMAn(DOWN)
× 100 (4.11)

4.4.3.4 Highest High and Lowest Low

HH (Highest High) and LL (Lowest Low) represent the maximum and min-
imum prices n periods ago and are calculated according to the following
equations:

HHn = max(Ht, . . . ,Ht−n) (4.12)

LLn = min(Lt, . . . , Lt−n) (4.13)

where Ht is the High and Lt is the Low at time t in a OHLCV (Open, High,
Low, Close, Volume) price time series.

4.4.3.5 Stochastic Oscillator

Developed by Lane in the 1950s, the SO (Stochastic Oscillator) measures
the momentum of the trend. It consists of two lines %K and %D and refers
to the location of the current price in relation to its price range during the
past n periods. The calculation finds the range between the high and low
price during the specified period of time. The price is then expressed as a
percentage of this range with 0% indicating the bottom of the range and
100% indicating the upper limits of the range over the time period covered.
The idea behind the SO is that prices tend to close near the extremes of the
recent range before reversing. The following equations detail its calculation:

%Kn = (Pt − LLn)/(HHn − LLn) (4.14)

%Dn = EMAj(%K) (4.15)

where Pt is the price at time t, LLn is the Lowest Low, HH is the Highest
High and n the number of periods back and EMAj is the exponential moving
average using j periods back (Lane, 1984).

48 Chapter 4. Algorithmic trading

4.4.3.6 Bollinger Bands R©

Invented by Bollinger in the 1980s and trademarked by him in 2011, BB
(Bollinger Bands R©) is a volatility indicator consisting of:

• an n-period SMA (Simple Moving Average)

• an upper band at k times an n-period standard deviation above the
simple moving average (SMA+ kσ)

• a lower band at k times an n-period standard deviation below the
simple moving average (SMA− kσ)

The goal of BB is to provide a relative reference to high and low values.
Prices are high at the upper band and low at the lower band. Some traders
buy when the price touches the lower band and exit when the price touches
the upper band. Others buy when the price breaks above the upper band
and sell when the price falls below the lower band (Bollinger, 2001).

4.4.3.7 Internal Bar Strength

IBS (Internal Bar Strength) is based on the position of the close in relation
to the day’s range: it takes a value of 0 if the closing price is the lowest price
of the day, and 1 if the closing price is the highest price of the day. The
following equation details its calculation:

IBS =
Close− Low
High− Low

(4.16)

4.5 Trading strategy performance metrics

There are a wide variety of metrics for assessing the performance of trading
strategies, being the most widely used the Sharpe ratio, the Sortino ratio,
the Sterling ratio and total return (Iba and Aranha, 2012). Next we will
discuss the most important ones mentioned in this thesis.

4.5.1 Total return

Total return measures the actual rate of return in percentage of an asset or
portfolio over a given period. It is the simplest performance calculation and
does not contain any risk component. Total return is calculated as shown
earlier in Equation 4.1.

4.5. Trading strategy performance metrics 49

4.5.2 Sharpe ratio

The Sharpe ratio (Sharpe, 1966, 1994) provides a risk-adjusted measure of
the performance of an asset or portfolio. The following equation details its
calculation.

Sharpe Ratio =
µ−Rf
σ

√
n (4.17)

where µ is the mean of the asset or portfolio returns, Rf is the risk-free
rate, σ is the volatility or standard deviation of returns and n the number
of observations.

4.5.3 Sortino ratio

The Sortino ratio (Sortino and Price, 1994) is a modification of the Sharpe
Ratio that does not penalize positive outlier returns. The Sortino Ratio only
penalizes negative returns and is calculated as follows:

Sortino Ratio =
µ−Rf
σR<0

√
n (4.18)

where σR<0 is the downside risk measured by the standard deviation of
negative returns.

4.5.4 Sterling ratio

The Sterling ratio is another risk-adjusted performance measure similar to
the Sharpe and Sortio ratios and is calculated as:

Sterling Ratio =
R−Rf

Maximum Drawdown
(4.19)

where R is the total return (Equation 4.1), Rf the risk-free rate and Max-
imum Drawdown is the maximum decline in portfolio value from peak to
nadir measured as percentage return.

4.5.5 Maximum drawdown

The Maximum Drawdown is a metric of risk that measures the maximum
loss from a peak to a trough of a portfolio or asset before a new peak is
attained. Assuming Rt is the total return at time t, (t ≥ 0) the drawdown
at time n, is defined as:

Drawdown = max

{
0, max
t∈(0,n)

Rt −Rn
}

(4.20)

50 Chapter 4. Algorithmic trading

the Maximum Drawdown up to time n is the maximum of the drawdowns
over the history of returns,

Maximum Drawdown = max
τ∈(0,n)

[
max
t∈(0,τ)

Rt −Rτ
]

(4.21)

4.6 Conclusions

In this chapter we have introduced algorithmic trading and explained the dif-
ferent components that form and algorithmic trading system, together with
some basic notions on the three most widely used financial methodologies
used for pre-trade analysis. In the next chapters we employ the technical
and quantitative analysis calculations described as the foundation for the
strategies we will optimize. We have also explained the most common met-
rics for measuring the performance of trading strategies that will be used in
the following chapters.

Part II

Problems addressed

Chapter 5

Robust optimization of
technical trading strategies

All of technology, really, is about
maximizing free options.

Nassim Nicholas Taleb

5.1 Introduction

TTSs (Technical Trading Strategies) are widely used by traders and over
the past two decades attracted a lot of attention from researchers (Aguilar-
Rivera et al., 2015; Hu et al., 2015). TTSs are defined as buy and sell rules
derived from TA (Technical Analysis) which can be very useful (Brock et al.,
1992; Gencay, 1998; Lo et al., 2000) but often involve different parameters,
which need to be determined, that greatly influence the quality of the buy
and sell signals obtained.

TTS optimization is very similar to a machine learning problem, where
we are trying to learn the best parameter set from a historic dataset. In order
to determine how the parameters found during optimization would work in
the real-world when deployed, we need to split the datasets into a training
and evaluation datasets as its typically done in machine learning tasks.

One of the most typical problems practitioners face when optimizing the
parameters of a TTS is over-fitting. Very good solutions are found during the
optimization phase for the training data, but most of these solutions perform
poorly when tested out-of-sample. This problem arises as a consequence of
selecting the best performing parameters without regarding their robustness
and stability, thus being very fragile to small disturbances in the data.

Market conditions are dynamic and continuously evolving, and when the
ex-optimal parameter settings are applied to the out-of-sample period, any
small disturbance in the data results in great performance degradation. In

53

54 Chapter 5. Robust optimization of technical trading strategies

this chapter we try to address the following questions:

• Is it possible to find a robust parameter setting that works well for
both the in-sample and out-of-sample periods?

• How may we accomplish this?

The main contribution of this chapter is a robust multi-objective ap-
proach using a GA that involves optimizing the same parameter settings
over multiple market indices, therefore increasing the different environmen-
tal conditions where the proposed solution has to operate reliably. Our
proposed method of optimization is capable of producing a unique set of ro-
bust parameters that not only works well over the different markets for the
in-sample data, but also has a similar or better level of performance when
tested out-of-sample.

Markets all have different intrinsic peculiarities, but also share many
common characteristics. Increasing the dataset to include several indices,
exposes the profitable recurring patterns present over the various markets
and helps guide the GA towards them. On the other hand, optimizing over
only one financial instrument inexorably directs the algorithm to the singular
traits of that sole market, while reducing the exposure to different variable
market conditions thus over-fitting most solutions.

5.2 Literature review

GAs were fist used in financial applications by Bauer and Liepins (1988);
Bauer (1994) and have become a very popular optimization method due
to their ability to solve a great variety of financial engineering problems
(Chen, 2002; Chen et al., 2007; Brabazon et al., 2012; Iba and Aranha, 2012;
Aguilar-Rivera et al., 2015).

As the main concern of this chapter is robust optimization of TTS, the
scope of this section is limited to the most relevant papers that, in our
opinion, deal specifically with robustness in TTS using diverse methods.

One of the first works is Pictet et al. (1995) where they optimize a TTS
for the FX (Foreign Exchange) markets. Robustness is incorporated into
the fitness function of a GA by using a K-Means clustering algorithm and a
specifically designed fitness sharing scheme between individuals. This opti-
mization methodology is able to produce robust parameters that correspond
to broad regions of the search space where fitness is higher on average.

Ni et al. (2008) optimize TTSs on 32 stocks and 4 indices. They deal
with the issue of robustness in the fitness function taking into consideration
its resilience to parameter disturbance. This is what is known in robust
optimization as a parameter sensitivity analysis. This method is able to

5.2. Literature review 55

evolve robust parameters and solves over-fitting, displaying stable perfor-
mance when tested out-of-sample.

Matsui and Sato (2010) propose a similar robust methodology where the
parameters are evaluated along a neighborhood of values. Sharp peaks of
high fitness are not indicative of good solutions, but rather indicate noise
inherent in financial time series. Evaluating the neighboring points in the
fitness landscape, as well as itself, ensures a reduction of the influence of
singular points during optimization and improves performance during out-
of-sample testing.

Li and Taiwo (2006) employ a different approach borrowed from super-
vised learning for evolving their trading models with multi-objective genetic
programming. The authors propose an optimization methodology for im-
proving generalization whereby the dataset is split in three sections: opti-
mization, validation and evaluation. Both optimization and validation sec-
tions of the dataset are made visible to the algorithm and fitness values are
calculated on each part. The fitness function receives only the worst value
of the two sections, thus limiting over-fitting. When the optimization ends,
the solutions are finally tested out-of-sample in the evaluation section of the
dataset.

Pinto et al. (2015) use a dual-objective genetic algorithm to maximize
the total return on investment (ROI) while minimizing the standard devia-
tion of returns. In their study they introduce the VIX volatility index and
other technical indicators to boost performance of trading strategies for stock
market indices to optimize the parameters of the strategies. This approach
is able to avoid serious market declines, while producing a Pareto front of
non-dominated solutions that can cater from the most conservative types
of investors looking for strategies with minimal risk to the most aggressive
ones, who prefer higher returns at a higher risk. Our proposed method is
similar but has one key advantage as our system optimizes the parameters
of a technical trading strategy in multiple of stock indices, instead of a sin-
gle market index, thus exposing the evolutionary process to more data, and
different market conditions, as some indices can be in a bullish trend while
other are bearish or range bound (sideways), producing solutions that are
robust and able to cope with extreme market conditions.

The above mentioned research deals with robustness considering how
the variability in the parameter values, i.e. the design variables, affects the
performance of the system. Our proposed method, on the other hand, is
based o a non-deterministic approach affecting the environmental variables
of the problem as the search is conducted over many markets. This is similar
to what Pardo (2008) hints when he offers the following tip: “The more
markets that a model can trade, the more useful it is”.

We use a GA to perform a multi-objective optimization of the parameters
of a trading strategy over 12 of the most important European and American

56 Chapter 5. Robust optimization of technical trading strategies

stock market indices. Our results establish evidence about the benefits of
using this method and how it leads to more robust solutions that perform
well out-of-sample.

5.3 The robust TTS problem

This section elaborates on the optimization problem addressed in this chap-
ter. We first provide a brief description of financial time series, followed by
the TTS used, and how it is designed. We then formulate the task of find-
ing the best parametrization of our TTS as an optimization problem, and
finally, we describe how we have endowed this problem with robustness, so
as to devise a TTS being able to profit from any market scenario.

5.3.1 Investment vehicle

In the study conducted in this chapter we chose future contracts on stock
market indices as our financial vehicle due to their implicit diversification,
high liquidity and reduced commissions. Indexes are composed of a basket
of the most liquid and biggest listed companies in terms of capitalization
that are traded in a given market. Trading futures has the key advantage
of allowing taking both long and short positions easily, while being more
cost efficient than a CFD (Contract For Differences) or an ETF (Exchange
Traded Fund) that track an index.

5.3.2 Technical trading strategies

We have based our TTS on previous works by (Subramanian et al., 2006)
and (Briza and Naval, 2011) where a series of technical indicators are used in
a weighted manner. We have chosen five popular technical indicators, EMA,
MACD, RSI, SO and the HH and LL price of n periods ago.

Each technical indicator forms a component rule that yields a trading
signal si ∈ {−1, 0, 1} which can have three values: sell, do nothing and buy
respectively. A position is maintained until there is a change in the signal
value. For example if at time t we have si = 1 and at time t + 1, si = 1
then we would maintain the same long position. If at time t+ 1 , the signal
changes to si = 0, we would close the long position and remain out of the
market, while if the signal changed to si = −1, it would mean closing the
long position and initiating a new short position.

We will now explain each of these component strategies and how we arrive
to a combined decision.

5.3. The robust TTS problem 57

5.3.2.1 Exponential Moving Average

In this component rule, we use the first-order difference or approximate
derivative of the EMA vector, represented as ∆EMA, and calculated as
the difference between its adjacent elements: ∆EMA1 = 0,∆EMAt =
ema(n)t − ema(n)t−1. We use it to measure the speed of the EMA and
detect when it slows down. We generate the signal vector for this compo-
nent rule according to:

s1 =


1 if ∆EMA(n) > k
−1 if ∆EMA(n) < −k

0 otherwise
(5.1)

where k is used as a threshold value. This component rule has two parame-
ters, k and n (the EMA’s number of periods), that need to be optimized.

5.3.2.2 Moving Average Convergence Divergence

The MACD is used to spot changes in strength, direction, momentum and
duration of a trend. This component rule uses three parameters, the periods
for the three different EMAs, that need optimization and is generated as
follows:

s2 =


1 if MACD > Signal
−1 if MACD < Signal

0 otherwise
(5.2)

.

5.3.2.3 Relative Strength Index

We have used a detrendend version (Lorenzo, 2012) of the price series to
calculate the RSI, where a exponential moving average of the closing price
is subtracted from the original price series. The original RSI calculation is
then applied to the detrended price series.

This component rule has three parameters, the number of periods of the
EMA for calculating the detrended series, as well as the number of periods
for the RSI calculation and a threshold value k so we can customize the
default 70/30 high and low levels. This trading signal is generated as:

s3 =


1 if RSI < k
−1 if RSI > 100− k

0 otherwise
(5.3)

58 Chapter 5. Robust optimization of technical trading strategies

5.3.2.4 Stochastic Oscillator

This oscillator measures the momentum of the trend. This rule has three
parameters, the number of periods for the %K and %D lines and the k
threshold, and it is calculated as follows:

s4 =



1 if %K < %D
and %K < k
and ∆%D > 0

−1 if %K > %D
and %K > 100− k
and ∆%D < 0

0 otherwise

(5.4)

5.3.2.5 Highest High and Lowest Low

This rule is very simple. If we have increasing high and low values we have
a buy signal. When both are decreasing, we signal a sell. This component
rule is generated according to:

s5 =


1 if (h ≥ HH) and (l > LL)
−1 if (h < HH) and (l ≤ LL)

0 otherwise
(5.5)

where h and l are the current interval high and low prices respectively. This
component rule uses two parameters, the number of periods for the HH and
LL calculations.

5.3.2.6 Combining the component rules

The five component signals si are combined in a weighted manner and then
compared to a threshold k to form the final decision signal:

S =


1 if

∑
ωi · si > k

−1 if
∑
ωi · si < −k

0 otherwise
(5.6)

where 0 ≤ ωi ≤ 1 and 0 ≤ k ≤ i.

Having a weighted decision scheme permits giving more importance to
the best component signals. The weights ωi and the threshold k together
with the rest of parameters from the previous component rules, 19 in total,
will be optimized.

5.3. The robust TTS problem 59

5.3.2.7 Strategy simulation

To calculate the return we presume that we enter the market at the closing
price when signal S is given. Given a vector ~dC = ∆Close calculated as the
first order difference of the closing price vector; dC1 = 0 , dCt = Closet −
Closet−1 and vector ~dS = ∆S being the first order difference of the signal
vector S; dS1 = 0 , dSt = St − St−1. We calculate the absolute returns of
our strategy as vector ~r at time t as:

rt = St · (dCt · η)− |dSt · γ/2| (5.7)

where r1 = 0 and η is the size of each futures contract. For example one
point of a IBEX35 future contract is equivalent to 10 e; γ is the round-
trip commission and slippage associated with the asset. We trade only one
contract and do not reinvest profits. We assume no leverage and a starting
capital equal to the contract’s full nominal value at the starting period.

5.3.3 Objective functions to be optimized

We have previously explained the decision variables of our optimization prob-
lem. Now we need to determine the evaluation criteria.

The selection of the fitness function is crucial, as it is the means of com-
parison between different parameters, and the deciding factor for selecting
the best combination. If we selected the total profits earned by the strategy
as our criteria, it would result in solutions that ignore risk. If two strategies
are compared, one with a return of 25% and another with 24%, the algo-
rithm would choose the one with the highest value, even though the chosen
solution could have considerably more volatility than the other one, and be
in practice a worse solution.

This is why we have selected a risk adjusted measure as the SR (Sortino
Ratio). The SR is a variation of the Sharpe ratio that has the advantage
of not penalizing positive volatility. We scale the SR in all our calculations
multiplying it by the

√
n where n is the number of observations in the price

series. This is done in order to be able to compare ratios of series that may
have different lengths (Lo, 2003).

Another important factor affecting the usefulness of a TTS is theMDD
(Maximum Drawdown) or loss that can be incurred. Any sane investor would
avoid a TTS with a large maximum drawdown. With these two objective
functions, i.e., maximization of SR and minimization ofMDD, several op-
timization problems have been formulated always targeting the definition of
a robust TTS, though some of them are used just as a comparison basis.

60 Chapter 5. Robust optimization of technical trading strategies

5.3.3.1 Single-market optimization of SR

This first optimization problem is stated to settle a comparison basis. It is
solely based on the optimization of SR separately on each of the n different
markets considered in this chapter, i.e., there are n different instances of this
optimization problem. More formally, let SR be the sortino ratio of a TTS
calculated in a specific marketMi with parameters ~x,

maxF(Mi, ~x) = SR(Mi, ~x), i = 1, 2, ...n . (5.8)

where n is the number of different markets.
A similar problem could have been defined by using MDD as a single

function, but we have obviated this option, as it does not make any sense
to consider a trading strategy without any profit indicator. Optimizing just
MDD would lead to an optimal strategy in which no trading is performed,
and therefore no loss is obtained.

5.3.3.2 Robust multi-objective optimization of SR

In the previous section, a rather standard optimization problem of the TTS’s
parameters over a single market has been proposed. In this section, we take
the first step on the quest for a robust TTS parameterization. The goal of
robust optimization is finding solutions which are immune to production tol-
erances, parameter drifts and model sensitivities (Beyer and Sendhoff, 2007).
Our approach aims at obtaining a TTS with a robust SR by evaluating such
a trading strategy over several markets, i.e. our approach looks for set of
TTS parameters that performs well over many different market scenarios.
As stated in Section 5.1, markets have their own distinctive attributes, but
also share common characteristics. The goal here is that a TTS will be able
to learn these similarities and will not degrade its performance once it is
deployed.

The evaluation of a TTS over different markets leads to a set of SR
values, one value for each market. The usual approach in the specialized
literature (as we have seen in Chapter 3) is to aggregate these values some-
how (Deb and Gupta, 2006), being the mean the most widely used central
tendency measure. However, we are not only interested in obtaining a TTS
which has the best average performance over several markets, but also the
dispersion of these values should be kept as small as possible, thus indicat-
ing that it behaves in a similar way, i.e., it is not very sensible to market
conditions. This is our motivation for using the standard deviation of the
different SR values obtained. This mechanism has been also used in the
literature (Beyer and Sendhoff, 2007). As a consequence, the problem is now
formulated as a bi-objective optimization problem:

5.3. The robust TTS problem 61

maxF1(Mi, ~x) =
n∑
i=1

SR(Mi, ~x)

n

minF2(Mi, ~x) =

√√√√ n∑
i=1

(SR(Mi, ~x)−F1(Mi, ~x))2

n

where ~x are the TTS parameters, n is the number of different markets. Recall
that here we are just defining one single problem instance (that considers all
the available markets), whereas in the previous formulation we have one for
each market.

5.3.3.3 Single-market optimization of both SR and MDD

In this formulation of the problem, the maximum drawdown,MDD, comes
into play. As stated above, it is a TTS performance measure of great rel-
evance for any investor. We proceed here as in Section 5.3.3.1 by defining
an optimization problem that operates on a single market, which will be
extended afterwards in order to look for a more robust TTS. If ~x are the
parameters of the TTS, then the optimization is formally defined as:

maxF1(Mi, ~x) = SR(Mi, ~x)

minF2(Mi, ~x) = MDD(Mi, ~x)

where i = 1, 2, . . . , n points out the particular market where SR andMDD
are optimized. Therefore, n problem instances have to be solved.

5.3.3.4 Robust multi-objective optimization of both SR andMDD

The last optimization problem defined in order to devise a robust trading
strategy, considers both SR andMDD, but averaged over n different mar-
kets. As in Section 5.3.3.2, the goal is to search for a robust TTS parameteri-
zation which is known to perform well over different market conditions. Our
hypothesis is that the resulting TTS will not only avoid over-fitting, but
also degrading its performance when facing new unseen market scenarios.
Having SR and MDD evaluated over n markets leads to a four-objective
problem that considers the mean and standard deviation, as measures of cen-
tral tendency and dispersion, of these two trading performance indicators.
Formally:

62 Chapter 5. Robust optimization of technical trading strategies

maxF1(Mi, ~x) =
n∑
i=1

SR(Mi, ~x)

n

minF2(Mi, ~x) =

√√√√ n∑
i=1

(SR(Mi, ~x)−F1(Mi, ~x))2

n

minF3(Mi, ~x) =

n∑
i=1

MDD(Mi, ~x)

n

minF4(Mi, ~x) =

√√√√ n∑
i=1

(MDD(Mi, ~x)−F3(Mi, ~x))2

n

where x are the TTS parameters, n is the number of different markets. One
single instance of this problem has to be addressed.

5.4 Algorithmic approach

The search for a trading strategy’s optimum parameters is an optimization
problem that is well suited for employing meta-heuristic methods that do
not get trapped in local optima, as the search space can be highly non-
linear and discontinuous. GAs are non-deterministic algorithms that have
great application for solving complex search and optimization problems and
machine learning (Goldberg, 1989).

We have choosen the MATLAB R© Global Optimization Toolbox
(R2012b) implementation under the function gamultiobj, which uses a con-
trolled elitist variant of NSGA-II (Deb et al., 2002). NSGA-II is a multi-
objective GA that is characterized by two features: the use of a Pareto
ranking mechanism to classify solutions, and a density estimator known as
crowding distance. The ranking of solutions classifies a population in ranks
(1, 2, ...) in such a way that the non-dominated solutions are assigned a rank
equal to 1; then, they are removed and the procedure is successively applied
yielding to solutions with ranks 2, 3, and so on. By selecting the solutions
with best ranking, NSGA-II tries to converge towards the true Pareto front.
However, when choosing the best ranked solutions it is possible that only a
subset of solutions of a given rank be needed. In this case, it is necessary to
carefully select the most promising solutions in order to promote diversity,
and the approach taken in NSGA-II is to define a density estimator. The
idea of a density estimator is to assign to a set of non-dominated solutions a
value indicating in some way the degree of proximity (or density) of nearby
solutions in the set. This way, solutions in sparse regions are preferred com-
pared to those in most crowded regions. As indicated before, the density
estimator in NSGA-II is called crowding distance. NSGA-II has become

5.4. Algorithmic approach 63

de de facto multi-objective optimization meta-heuristic. An outline of the
method is displayed in Algorithm 2.

Algorithm 2 Pseudocode of the NSGA-II algorithm.
1: P (0) GenerateInitialPopulation()
2: t← 0
3: Evaluate(P (0))
4: while not StoppingCriterion() do
5: P ′(t) ← BinaryTournament(P (t))
6: P ′′(t) ← Crossover & Mutation(P ′(t))
7: Evaluate(P ′′(t))
8: P (t+ 1) ← Ranking & NonDomintatedSorting (P ′′(t))
9: t← t+ 1

10: end while

We have used the MATLAB R© implementation of NSGA-II for two main
reasons being the first one strategic. On the one hand, we do not want to
focus the attention of the readers on any new algorithmic approach specially
tailored to the problem addressed, but to the method proposed for designing
robust TTS. On the other hand, convenience as MATLAB R© has allowed
us to use both its financial toolbox (to manage market data and enhanced
visualization tools) together with the parallelization capabilities on multiple
cores which results in a reduction of computational time. MATLAB R© is also
quite common across the research community hence results may be easily
reproduced by others.

5.4.1 Problem encoding

We encode the 19 decision variables in a vector of real numbers. Our problem
has some parameters that are integers such as the EMA periods, where
rounding was employed. The parameters that serve as thresholds and weights
are real numbers.

The encoding for the parameters of our TTS mentioned in Section 5.3 is
very straight forward. For example the first two parameters from the EMA
rule s1 correspond to x1 and x2. The next 3 parameters from the MACD
rule s2 correspond to x3, x4 and x5. The parameters for the RSI rule s3
correspond to x6, x7 and x8, and so on.

x1 x2 x3 x4 x5 x6 x7 x8 . . . x19

Figure 5.1: Chromosome of the decision variables

64 Chapter 5. Robust optimization of technical trading strategies

5.4.2 Genetic operators

The operators we use are directly available in the toolbox solver. After some
preliminary experimentation, we selected the ones that suited our problem
best. As each of the parameters in our problem is encoded in a specific gene
position of the chromosome, our choice of operators is limited to those that
can respect its position and constraints.

We chose tournament selection where two individuals are chosen at ran-
dom and the best individual is kept as the first parent (the process is repeated
to select the second parent). For reproduction we use uniform crossover.
This operator creates a random binary vector that is used as a selection
mask for choosing from which parent each gene is coming. For example, to
form the new child the genes where the vector is a 1 would come from the
first parent, and the genes where the vector is a 0 from the second parent.
Figure 5.2 shows its operation.

Uniform crossover

1 0 1 1 0 1 1 0

Parent 2

Offspring

Parent 1

Binary mask

Figure 5.2: Uniform crossover operator

The Adapt feasible mutation operator is used. This mutation operator
takes into account linear and bound constraints while generating new mu-
tated individuals. First it generates random mutation direction vectors and
random initial step sizes. A mutated individual is then generated and moved
along a randomly chosen mutation direction vector with distance equal to
the initial step size. The generated mutated individual is compared to the
linear and bound constraints. In the event the generated mutated indivi-
dual is located in an infeasible region, the operator adjusts the step size to
a smaller value and generates another mutated individual along the chosen
mutation direction vector. The process iterates until the produced indivi-
dual is within the feasible region. The number of available valid mutation
directions increases as the step size decreases.

5.5 Methodology

In this section we explain our robust multi-market optimization testing ap-
proach. To verify its usefulness, we compare the results with those obtained

5.5. Methodology 65

using single-market optimization.

5.5.1 Dataset used

Our dataset consisted of 12 of the most important stock market indices from
the year 2000 until September 2012, using OHLCV sampled at 30 minute
intervals. The dataset is split in two sections. One part of the data (80%)
is used to search for the best solution, the in-sample data. The obtained
solution is then evaluated against new data that wasn’t previously available
during the optimization or search phase, the out-of-sample data (20%). The
training data period is 10.2 years, while evaluation was 2.5 years. Three of
the indices (AEX25, FTSE100 and SMI30) had smaller datasets of 9 years
starting in 2003 resulting in 7.2 years for training and 1.8 years for evaluation.

The selection of the indices we used was conditioned by various factors.
Intra-day market data is not easily available for free, we used VisualChart R©
which offers free intra-day access for only some indices after markets close.
Our selection was limited to those indices freely available, and whose dataset
length was similar. Some Asian and South American markets had only 4 to
5 years of data available, and the data had some errors, so we were forced
to exclude them.

Table 5.1 lists the indices used, contract size (point equivalence in money
terms), round-trip transaction costs (commissions plus slippage), and period
covered by the datasets (MM/YY). For the NASDAQ 100, NASDAQ Com-
posite and SP500 indices, we have used the e-mini contract.

Index Country Size Cost Years Covered
AEX25 NL 200 5e 07/2003 to 09/2012
CAC40 FR 10 5e 01/2000 to 09/2012
DAX DE 25 5e 01/2000 to 07/2012
DJIA US 10 2$ 05/2000 to 09/2012
FTSE100 UK 10 4£ 10/2003 to 09/2012
IBEX35 ES 10 5e 01/2000 to 09/2012
MIBTEL IT 5 5e 05/2000 to 09/2012
NAS100 US 20 2$ 01/2000 to 09/2012
NASCOMP US 20 2$ 08/2000 to 09/2012
SMI30 CH 10 CHF 5 12/2003 to 09/2012
SP500 US 50 2$ 01/2000 to 09/2012
STOXX50 EU 10 5e 01/2000 to 09/2012

Table 5.1: Stock market indices covered in this chapter

66 Chapter 5. Robust optimization of technical trading strategies

5.5.2 GA Settings

The following settings have been applied in all our experiments. Scattered
crossover was performed on 80% of the population, Adapt Feasible mutation
is applied on the remaining individuals not selected for crossover apart from
the elite children. An elite count of 5% of the population is used to preserve
the best individuals. A population size of 100 individuals was used. The
initial population was randomly created on every execution. Lower and
upper bounds were established on the parameter values in order to limit the
search space and to produce valid solutions. The algorithm was executed a
maximum of 50 generations. Table 5.2 shows a summary of the GA settings
used in all the experiments of the chapter.

Parameter Setting
Population size 100
Selection Operator Binary tournament
Crossover Operator Scatter crossover Pc = 0.80
Mutation Operator Adapt feasible mut. Pm = 0.15
Elite Count 0.05
Max generations 50

Table 5.2: GA parameter settings

5.5.3 Computational test environment

Our test machine consisted of a dual Intel Xeon CPU E5-2687W @ 3.10GHz
running Ubuntu 12.04 Linux with 64Gb of RAM. These processors have 8
cores each with hyper-threading giving a total of 32 cores. To fully utilize
this processing power, we used MATLAB R2012b Distributed Computing
Toolbox. This was done to circumvent the limitation of a maximum of 12
workers in the Parallel Computing Toolbox.

Single execution times using 32 MATLAB workers averaged around 4
minutes for the optimizations in a single market, and 35 minutes for multi-
market optimizations.

5.6 Experimental results

In this section, we describe the experiments with our robust multi-market
method and compare the results with those obtained in single-market opti-
mization.

5.6. Experimental results 67

5.6.1 Experiment 1: Single-Market Optimization of SR

This first experiment consisted in optimizing each market independently to
maximize the sortino ratio, F = SR.

Our motivation behind this experiment is showing how solutions gener-
ated with this method suffer from over-fitting. This experiment also serves
as the basis of comparison with Experiments 2 and 3. In Experiment 2, we
introduce our proposed robust methodology and compare the results with
those obtained here. In Experiment 3, we incorporate theMDD into a single
market multi-objective problem and examine the results to verify whether
this additional objective offers any value.

We ran the GA 30 times for every market. The results obtained in this
experiment are summarized in Figure 5.3, showing a box plot comparing
training and evaluation results. We have performed a Kolmogorov-Smirnov
(KS) test, which is a non-parametric test on the results obtained during
training and evaluation, rejecting the null hypothesis that the results follow
a normal distribution at the 95% confidence level. This is our motivation
behind displaying results in box plots, as comparing the means of non-normal
distributions does not give enough information to assert that the performance
from one group is better than the other due to the skewness and kurtosis of
their distributions.

A robust solution could be characterized as a solution whose performance
is similar during both training and evaluation phases. Ideally, the solutions
produced after the optimization phase should be robust, and have a similar
performance when tested out-of-sample. Otherwise, if there is a big differ-
ence between the training and testing performance, the solutions can not be
trusted as they do not have a predictable behaviour. Previous studies by
(Chiam et al., 2009) mention the importance of having a positive correlation
between training and evaluation performance. We measured the correla-
tion between SRs obtained during training and evaluation. As the results
of all the experiments do not follow a normal distribution, Spearman rank
correlation analysis was performed. We provide Table 5.3 where Spearman
correlation coefficient ρ and Pvalues are given; ρ measures the level of cor-
relation between the variables, and it can have values in the range (-1,1),
while Pvalues measures the confidence level for testing the hypothesis of no
correlation against the alternative that there is a non-zero correlation.

In (Mehta and Bhattacharyya, 2004), shrinkage is introduced, as “a more
appropriate measure of over-fit, measured as the percentage change in per-
formance from training data to the test data, thereby revealing the degree of
over-fit to noise in the training”.

We calculated shrinkage and provide a summary in Table 5.4 with mean
and standard deviation for all the different experiments.

The SRs obtained with this procedure were very high for the in-sample

68 Chapter 5. Robust optimization of technical trading strategies

−2 0 2 4 6 8 10 12

AEX25

CAC40

DAX

DJIA

FTSE100

IBEX35

MIBTEL

NAS100

NASCOMP

SMI30

SP500

STOXX50

SORTINO RATIO

TRAINING

−2 0 2 4 6 8 10 12

AEX25

CAC40

DAX

DJIA

FTSE100

IBEX35

MIBTEL

NAS100

NASCOMP

SMI30

SP500

STOXX50

SORTINO RATIO

EVALUATION

Figure 5.3: Experiment 1. Single-Market Optimization of SR. Results for
training and evaluation.

data for most indices, but not so when tested during evaluation. This is a
clear sign of over-fitting, and is visible in Figure 5.3, as most indices scored
high during training, but poorly during evaluation. This is also evident in
Table 5.3 by the negative correlations on 7 of the 12 indices. A negative
correlation implies that as training performance increases, evaluation per-
formance decreases. The rest of the indices had high P-values telling us
the variables are not even correlated. Shrinkage results from Table 5.4 also
imply a high degree of over-fitting from the intense levels of performance
degradation. The worst performing indices during evaluation (DAX, DJIA,
FTSE100, NASDAQ100 and, SMI30) also display the highest shrinkage val-
ues.

Not all markets offered the same performance. Some markets proved
harder than others, specially the FTSE100 index, which had the lowest SR
during both training and evaluation. At the other extreme we have the NAS-
DAQ Composite where the GA found solutions with very high SR whose
performance was also quite high during evaluation. We must note that the
NASDAQ Composite was also the index offering the highest correlation be-
tween training and evaluation. The performance for this index in particular,
worsened significantly for the rest of experiments.

5.6. Experimental results 69

Only a few indices offered good results during evaluation, such as the
IBEX35, MIBTEL, and NASDAQ Composite. These three indices also dis-
play the highest correlation and lowest shrinkage.

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Index ρ P-val ρ P-val ρ P-val ρ P-val
AEX25 -0.0645 0.7395 0.2045 0.0402 0.1839 0.0604 0.2739 0.0016
CAC40 -0.1804 0.3385 0.1803 0.0872 0.3889 0.0003 0.4871 0.0000
DAX -0.2085 0.2678 -0.1476 0.1123 0.1143 0.2240 -0.0951 0.2521
DJIA 0.1453 0.4421 0.0101 0.9150 -0.3600 0.0002 -0.0409 0.6142
FTSE100 -0.2052 0.3361 -0.0832 0.5348 -0.5023 0.0001 0.2292 0.0685
IBEX35 0.1600 0.3969 0.7595 0.0000 0.5592 0.0000 0.7357 0.0000
MIBTEL 0.4024 0.0283 0.7793 0.0000 0.5260 0.0000 0.6500 0.0000
NAS100 -0.1769 0.3483 -0.1186 0.2028 -0.2061 0.0943 0.0490 0.5628
NASCOMP 0.8687 0.0000 0.2260 0.0135 0.8270 0.0000 0.1577 0.0457
SMI30 0.0140 0.9420 0.4274 0.0001 -0.2989 0.0067 0.3773 0.0001
SP500 -0.0968 0.6097 0.1747 0.0596 0.3428 0.0007 0.0292 0.7187
STOXX50 -0.0861 0.6499 0.2055 0.0403 0.0408 0.7592 0.4640 0.0000

Table 5.3: Spearman correlation coefficients between training and evaluation
SR.

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Index µ σ µ σ µ σ µ σ

AEX25 0.9500 0.1490 0.2927 4.6145 0.4423 1.3960 0.2776 7.5724
CAC40 0.6256 0.2534 0.3540 5.5188 0.3674 3.2678 1.2282 8.7353
DAX 0.9774 0.1452 0.7622 2.5724 0.8625 1.0393 4.2722 41.0781
DJIA 1.0291 0.1355 0.7655 9.9762 0.9657 0.9248 -0.0060 19.8992
FTSE100 1.2609 0.7201 1.5734 15.9778 1.4733 1.6365 0.1477 7.5918
IBEX35 0.7352 0.1463 0.2047 2.0259 0.4850 1.1851 -0.0254 3.5151
MIBTEL 0.7113 0.1917 0.6404 2.7808 0.9452 0.4716 0.7319 3.6471
NAS100 1.0312 0.1824 -1.5656 43.0632 1.3380 1.9389 1.0641 2.0806
NASCOMP 0.7036 0.1362 0.8930 1.1509 0.5966 1.6261 1.0746 2.2786
SMI30 1.2947 0.2008 -0.5863 20.3884 1.0922 0.8213 0.8836 11.7050
SP500 0.8882 0.1810 0.7645 3.4464 1.2215 4.3731 1.2312 3.5725
STOXX50 0.9011 0.1896 -18.7088 227.3336 1.3517 15.2554 -1.1811 24.4009

Table 5.4: Mean and standard deviation of shrinkage between training and
evaluation SR.

5.6.1.1 Experiment 2: Robust Multi-Objective Optimization of
SR

In this second experiment, we transform the previous mono-objective op-
timization into a robust multi-objective problem. We evaluate the same
strategy parameters in all 12 indices, and use the mean and standard devi-
ation of the sortino ratio from the individual ratios obtained in each market
as the robust fitness functions to optimize. The motivation behind this ex-
periment is to analyze if our proposed robust method can help in producing
better solutions than the ones provided by the last experiment. A total of
30 executions were performed.

70 Chapter 5. Robust optimization of technical trading strategies

−3 −2 −1 0 1 2 3 4 5 6 7 8

AEX25

CAC40

DAX

DJIA

FTSE100

IBEX35

MIBTEL

NAS100

NASCOMP

SMI30

SP500

STOXX50

SORTINO RATIO

TRAINING

−3 −2 −1 0 1 2 3 4 5 6 7 8

AEX25

CAC40

DAX

DJIA

FTSE100

IBEX35

MIBTEL

NAS100

NASCOMP

SMI30

SP500

STOXX50

SORTINO RATIO

EVALUATION

Figure 5.4: Experiment 2. Robust Multi-Objective Optimization of SR .
Results for training and evaluation.

Looking at Figure 5.4 we can see the results during training were not as
high as in single-market optimization (Figure 5.3). This was expected, as
we are searching for the best average solution across all indices, instead of a
specific solution for just one market.

In Figure 5.5 we show a comparison between results for the evaluation
phase obtained by the single-market optimization of SR (Experiment 1)
in red, and the robust multi-objective optimization of SR in blue (Exper-
iment 2). These are the evaluation results previously shown in Figures 5.3
and 5.4 which have been plotted in the same graph for easy comparison.

The robust solutions when tested in evaluation, offered, on average, si-
milar results on most indices with regards to Experiment 1. We have to
take into consideration that while in the first experiment we consider only
30 solutions which have been optimized to maximize SR, in multi-objective
optimization we have a front of non-dominated solutions showing the com-
promise between objectives, hence we can have solutions with lower mean
SR, but also with lower standard deviation across all markets. We evaluate

5.6. Experimental results 71

−3 −2 −1 0 1 2 3 4 5

AEX25

CAC40

DAX

DJIA

FTSE100

IBEX35

MIBTEL

NAS100

NASCOMP

SMI30

SP500

STOXX50

SORTINO RATIO

Experiment 1 vs. Experiment 2 (Results for Evaluation Period)

Figure 5.5: Single-Market Optimization of SR (Experiment 1) vs. Robust
Multi-Objective Optimization of SR (Experiment 2). Experiment 1 evalua-
tion results are represented in red, while Experiment 2 results are represented
in blue.

all the solutions from the 30 fronts, in total 140 solutions which correspond
to 4.66 solutions on average per front. We also performed a KS test to check
whether the results of this experiment had a normal distribution. We can
reject at the 95% confidence level that they follow a normal distribution.

Considering all the solutions can skew to the downside the results, as
solutions with lower mean SR are considered. This is why comparing average
results can be somewhat deceiving, and we should look at the total area
covered by the solutions in the box plots. If we consider the best solutions
offered by both methods we can see that for some markets (AEX25, DAX,
DJIA, FTSE100, SMI30 and STOXX50) the robust method was able to find
better solutions. The CAC40 index shows a lot of outliers at the positive
extreme.

This results show that the robust method also produced worse solutions
for all indices, which can be caused by including all the solutions from every
Pareto front.

We plotted each of the solutions generated during Experiment 1 and
Experiment 2 in order to see the relationship between the performance of
both training and evaluation phases. Figure 5.6 plots training results on the
x axis and evaluation results on the y axis. This figure visually represents
the performance relationship between training and evaluation phases. A line
has been drawn at x = y representing the ideal optimization results without
shrinkage. This would be a solution that has the same performance during
training and evaluation phases. Ideally, robust solutions should lie as near

72 Chapter 5. Robust optimization of technical trading strategies

as possible to the path drawn by the line.

−4 −2 0 2 4 6 8 10 12 14
−3

−2

−1

0

1

2

3

4

5

6

Training Sortino Ratio

E
v
a
lu

a
ti
o
n
 S

o
rt

in
o
 R

a
ti
o

Single−Market Mono−Objective Optimization (Experiment 1)

AEX25

CAC40

DAX

DJIA

FTSE100

IBEX35

MIBTEL

NAS100

NASCOMP

SMI30

SP500

STOXX50

−4 −2 0 2 4 6 8 10 12 14
−3

−2

−1

0

1

2

3

4

5

6

Training Sortino Ratio

E
v
a
lu

a
ti
o
n
 S

o
rt

in
o
 R

a
ti
o

Robust Multi−Market Optimization (Experiment 2)

AEX25

CAC40

DAX

DJIA

FTSE100

IBEX35

MIBTEL

NAS100

NASCOMP

SMI30

SP500

STOXX50

Figure 5.6: Single-Market Optimization of SR (Experiment 1) vs. Robust
Multi-Objective Optimization of SR (Experiment 2). Training and evalua-
tion results are plotted on each axis to view the relationship.

Looking at Figure 5.6, we can clearly see that the robust solutions are
nearer to the line, showing a more stable performance in both training and
evaluation phases. A smaller shrinking factor is also evident in Table 5.4 for
most indices when compared to Experiment 1. There are two exceptions, the

5.6. Experimental results 73

FTSE100 and NASDAQ Composite indices, which offered higher shrinkage
in Experiment 2, while the NASDAQ 100 and STOXX50 indices had nega-
tive shrinkage, meaning higher performance during evaluation than training.
In Table 5.3 we can also see that the correlation between training and eval-
uation for this experiment is higher for most indices. Some indices (AEX25,
CAC40, SP500 and STOXX50) had negative correlation for Experiment 1,
evidencing over-fitting, that turned to positive correlations in Experiment 2.
The other two remaining negative correlations from Experiment 1, the DAX
and NASDAQ100 indices, also had negative correlation but to a lesser de-
gree. The best performing indices during evaluation for this experiment were
the IBEX35 and MIBTEL. These two indices were also the ones displaying
the highest correlations in Table 5.3.

Overall, the results for this experiment show that even though the per-
formance during evaluation might not be better (on average) to that of Ex-
periment 1, our robust method has produced solutions that are more stable
and robust, as evidenced by the higher correlations and lower shrinkage.

5.6.1.2 Experiment 3: Single-Market Optimization of both SR
and MDD

In this experiment, the fitness functions previously mentioned in Section 3.4,
the sortino ration and maximum drawdown (SR,MDD) are optimized for
each market. The motivation for this experiment is showing how incorporat-
ing the MDD as an additional objective to optimize, leads to better solu-
tions. This experiment also serves as the basis of comparison with the next
experiment, where we transform it into a robust multi-market optimization
with four objectives.

30 executions are conducted for every index. Every execution produced a
unique Pareto front with on average 4.3 solutions, resulting in a total of 131
solutions showing the compromise between SR and MDD. We performed
a KS test on the results obtained with this experiment, which revealed they
do not follow a normal distribution with a 95% confidence level.

Looking at Figure 5.7 we can see that results achieved in terms of training
SR were in line with those obtained in the single-market optimization of SR
(Experiment 1), arriving at solutions with high SR for the in-sample data.

UsingMDD as an additional objective function, has improved the qual-
ity of solutions (regarding this objective), as compared to the first single-
market mono-objective experiment. In the first experiment the solutions
generated only considered SR. Figures 5.8 and 5.9 show a significant reduc-
tion ofMDD in the strategies generated for this experiment, evidencing the
benefits of including this objective.

We will compare these results in more detail in the next section together
with the ones obtained from the next robust experiment.

74 Chapter 5. Robust optimization of technical trading strategies

−2 0 2 4 6 8 10 12

AEX25

CAC40

DAX

DJIA

FTSE100

IBEX35

MIBTEL

NAS100

NASCOMP

SMI30

SP500

STOXX50

SORTINO RATIO

TRAINING

−2 0 2 4 6 8 10 12

AEX25

CAC40

DAX

DJIA

FTSE100

IBEX35

MIBTEL

NAS100

NASCOMP

SMI30

SP500

STOXX50

SORTINO RATIO

EVALUATION

Figure 5.7: Experiment 3. Single-Market Optimization of both SR and
MDD. Results for training and evaluation.

5.6.1.3 Experiment 4: Robust Multi-Objective Optimization of
both SR and MDD

The motivation behind this experiment is showing how our robust method-
ology can be applied in problems where there are more than two objectives.
In the previous experiment we have demonstrated how using MDD as an
additional objective can prove useful. For this experiment, the previous
objectives from Experiment 3, (SR,MDD) are transformed into four ob-
jective functions: (SRµ,SRσ,MDDµ,MDDσ). The optimization is per-
formed across all markets instead of individually for each market. We run
30 independent executions, where we test the same parameter settings over
all the markets. At the end of all runs we have a total of 191 solutions. On
average each of the 30 Pareto fronts had 6.36 solutions. We conducted a KS
test on the results obtained with this experiment, which revealed they do
not follow a normal distribution with a 95% confidence level.

We have provided Figure 5.10 showing a box plot comparing training and
evaluation results for this experiment. We can see that training performance

5.6. Experimental results 75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AEX25

CAC40

DAX

DJIA

FTSE100

IBEX35

MIBTEL

NAS100

NASCOMP

SMI30

SP500

STOXX50

Maximum Drawdown %

Experiment 1 − Evaluation Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AEX25

CAC40

DAX

DJIA

FTSE100

IBEX35

MIBTEL

NAS100

NASCOMP

SMI30

SP500

STOXX50

Maximum Drawdown %

Experiment 3 − Evaluation Results

Figure 5.8: Single-Market Optimization of SR vs. Single-Market Optimiza-
tion of both SR andMDD, (Experiments 1 vs. 3). Benefits of usingMDD
as an objective.

is much less than in Experiment 3, as we are looking for the best average
strategy across several markets. This is consistent to what happened in
Experiments 1 and 2.

In Figure 5.11, we compare the evaluation results offered by this exper-
iment with the previous experiment. This figure is not as conclusive for
asserting the robust method offered better results, but it can be appreciated
that for most of the indices, there have been better solutions generated at
the right end, seen as outliers in the plot (red + sign). Some indices have
shown worse results such as the NASDAQ100 and STOXX50, which yielded
a lot of bad solutions, but if we compare them by the best solutions, we can
see that the robust method was capable of providing better solutions for 8
of the 12 indices.

Looking at SR performance during evaluation tells us only part of the
story. As we noted earlier, erratic behaviour between training a evaluation

76 Chapter 5. Robust optimization of technical trading strategies

Average Maximum Drawdown (Evalua�on)

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

Experiment 1

Experiment 2

Experiment 3

Experiment 4

Figure 5.9: Reduction inMDD obtained by including it as an objective to
be optimized. Experiments 1 and 2 were only optimzed w.r.t. SR.

performance is indicative of poor solutions that have been over-fitted. We are
interested in producing solutions displaying stable performance when tested
out-of-sample. These solutions should have a lower shrinkage and higher
correlations between training and evaluation.

We have plotted the relationship between training and evaluation in Fig-
ure 5.12 and compared the results to the previous Experiment 3. This plot
makes visible the higher correlation and lower shrinkage obtained with this
experiment. We can see how the solutions lie closer to the line. The plot
also shows a lot of solutions that are on the top side of the line. These are
solutions whose performance during evaluation is higher than training. We
must note that even though this would not be desirable under single-market
optimization, in robust multi-market optimization can mean perfectly valid
solutions. If during single-market optimization there is a big deviation be-
tween both training and evaluation, especially when evaluation results are
high after poor training performance, one might doubt the validity of those
results, as during the learning phase the same performance was unattainable.
In robust optimization, the solution has seen more market scenarios, whereas
in single-market optimization it has only seen one. It could perfectly hap-
pen that although the parameters have scored badly for a specific market,
they might have performed better in others, thus we should consider those
solutions, even when there is a big discrepancy with training results.

5.6. Experimental results 77

−3 −2 −1 0 1 2 3 4 5 6

AEX25

CAC40

DAX

DJIA

FTSE100

IBEX35

MIBTEL

NAS100

NASCOMP

SMI30

SP500

STOXX50

SORTINO RATIO

TRAINING

−3 −2 −1 0 1 2 3 4 5 6

AEX25

CAC40

DAX

DJIA

FTSE100

IBEX35

MIBTEL

NAS100

NASCOMP

SMI30

SP500

STOXX50

SORTINO RATIO

EVALUATION

Figure 5.10: Experiment 4. Robust Multi-Objective Optimization of both
SR andMDD. Results for training and evaluation.

In Figures 5.10 and 5.12 can also be seen a lot of negative scores during
training, while in single-market optimization there are not any. This is nor-
mal and expected behaviour as in single-market optimization the GA will
find a good scoring solution for that particular market, while in robust multi-
market, as we are looking for the best average strategy across all markets,
it can happen that some solutions are produced whose performance during
training for a specific market is not good. This negative scores will certainly
skew the results when compared to single-market optimization results, which
did not have negative solutions.

Looking at Table 5.3 we can see that the correlations between train-
ing and evaluation SR are higher for 9 of the 12 indices when compared
to Experiment 3. The remaining 3 indices (DAX, NASDAQ Composite,
and SP500) offered lower correlations for this experiment. Three of indices
that had negative correlations in Experiment 3 (FTSE100, NASDAQ100 and
SMI30) turned positive for Experiment 4. These three indices also offered
the poorest evaluation results w.r.t. SR. Table 5.4 shows shrinkage has been
reduced for 8 of the 12 indices. We can also see three indices with negative

78 Chapter 5. Robust optimization of technical trading strategies

−3 −2 −1 0 1 2 3 4 5

AEX25

CAC40

DAX

DJIA

FTSE100

IBEX35

MIBTEL

NAS100

NASCOMP

SMI30

SP500

STOXX50

SORTINO RATIO

Experiment 3 Vs. Experiment 4 (Results for Evaluation Period)

Figure 5.11: Single-Market Optimization of both SR and MDD (Experi-
ment 3) vs. Robust Multi-Objective Optimization of both SR and MDD
(Experiment 4). Experiment 3 evaluation results are represented in red,
while Experiment 4 are represented in blue.

shrinkage (DJIA, IBEX35 and STOXX50), this is caused by solutions whose
performance in evaluation is greater than training. All this negative shrink-
ing values can be seen as the solutions on top of the line of Figure 5.12. A
side effect of this can be seen as an increase in the standard deviation from
the mean shrinkage.

Once again the robust multi-market optimization results look more stable
and improve the best SR obtained during evaluation for most indices as
compared to single-market optimization results.

If we consider MDD, comparing the results of Figure 5.9 between Ex-
periment 2 and Experiment 4 we can see that there has been a reduction
ofMDD and the benefit of including this objective, as it yielded strategies
with reduced loses. The results show that using this objective has led to im-
proved solutions in terms of reduced risk. We bring to attention that this bar
chart also shows an increase in MDD for this experiment when compared
to previous Experiment 3. We can attribute this increase in MDD to ro-
bust solutions being more general, and this loss of specificity to a particular
market can lead to worse performance in terms ofMDD.

Figure 5.13 provides a comparison of the average profits in percentage
terms obtained by the 30 best solutions (w.r.t. SR) of every experiment.
The reason for filtering results this way is to compare results between the
first experiment (mono-objective SR) with the rest of multi-objective opti-
mizations.

We have annualized the total return dividing by the number of years in

5.6. Experimental results 79

−4 −2 0 2 4 6 8 10 12 14
−3

−2

−1

0

1

2

3

4

5

6

Training Sortino Ratio

E
v
a

lu
a

ti
o

n
 S

o
rt

in
o

 R
a

ti
o

Single−Market Multi−Objective Optimization (Experiment 3)

AEX25

CAC40

DAX

DJIA

FTSE100

IBEX35

MIBTEL

NAS100

NASCOMP

SMI30

SP500

STOXX50

−4 −2 0 2 4 6 8 10 12 14
−3

−2

−1

0

1

2

3

4

5

6

Training Sortino Ratio

E
v
a

lu
a

ti
o

n
 S

o
rt

in
o

 R
a

ti
o

Robust Multi−Market Multi−Objective Optimization (Experiment 4)

AEX25

CAC40

DAX

DJIA

FTSE100

IBEX35

MIBTEL

NAS100

NASCOMP

SMI30

SP500

STOXX50

Figure 5.12: Single-Market Optimization of both SR and MDD vs. Ro-
bust Multi-Objective Optimization of both SR and MDD. Training and
evaluation results are plotted on each axis to view the relationship.

the dataset. This is done in order to properly compare between training and
evaluation, as their period lengths are different. We also provide the profit
obtained by the passive strategy “Buy and Hold”, which is a reflection of the
returns obtained by the market.

As we can see most of the solutions found in all experiments were able
to substantially beat buy and hold during evaluation. The exceptions are
the Dow Jones Industrial Average, Nasdaq 100, and SP500 indices. This
indices had exceptional bull markets where it is very hard to beat buy and

80 Chapter 5. Robust optimization of technical trading strategies

Figure 5.13: Average annual % profit during training and evaluation com-
pared to “Buy & Hold”

hold. The interesting exception was the Nasdaq Composite index which
offered exceptional results in experiment 1 almost doubling buy and hold
performance while experiments 3 and 4 were slightly below.

The best evaluation results were obtained in the Spanish IBEX35 and the
Italian MIBTEL, which happened to experience acute bear markets during
evaluation. The percentage results almost tripled buy and hold (-10%).

The percentage returns are consistent with the sortino ratios obtained.
Higher sortino ratios lead to higher returns while negative sortino ratios have
negative returns.

5.7 Conclusions

In this chapter we have presented a robust multi-objective optimization
framework which considers increasing the environmental conditions whereby
the search is conducted over multiple markets with the goal of finding robust
solutions which have not been over-fitted.

Our proposed robust methodology has improved results during evaluation

5.7. Conclusions 81

for the majority of indices considered in this chapter, as shown by the higher
correlations and less shrinkage of solutions that have been optimized over
multiple markets.

Our work offers evidence that the optimization over a wide variety of
similar financial instruments can help in producing robust solutions whose
performance is not significantly degraded when they are tested out-of-sample,
or market conditions change. Our proposed robust method has produced
significantly more solutions whose performance is near the optimal 1 to 1
relationship between training and evaluation, than those offered by a single-
market optimization.

We also offer evidence that incorporating the maximum drawdown as
an objective, leads to better solutions, as the GA has a way of seeing more
details about the performance of a strategy, resulting in strategies that trade
better with less risk.

Chapter 6

Robust technical trading
strategy discovery

I love fools’ experiments.
I am always making them.

Charles Darwin

6.1 Introduction

Last chapter we saw how to optimize robustly the parameters of a TTS. In
this chapter we plan to explore how to develop from “scratch” a robust TTS
using GP (Genetic Programming), that will be used to manage a portfolio
of stocks from the Spanish market. The investigated method is used to
determine potential buy and sell conditions for stocks, aiming to yield robust
solutions able to withstand extreme market conditions, while producing high
returns at a minimal risk.

In this chapter we face again the recurring problem of over-fitting, maybe
even aggravated as a consequence of using GP, as the size of the search space
has increased compared to last chapter. In order to solve it, we explore a
random sampling method we call RSFGP which instead of calculating the
fitness over the whole dataset, calculates it on randomly selected segments.
This method shows improved robustness and out-of-sample results compared
to SGP and a VAFGP.

In this chapter we explore how we can design solutions that display si-
milar performance for both in-sample and out-of-sample data, as well as
solutions that can resist abrupt trend changes and extreme volatility peri-
ods. Our approach is substantially different to previous work and is centered
around how we calculate the fitness function. Our main contribution lies in
evaluating the fitness using a random sampling method which will explain
later in Section 6.4.1.

83

84 Chapter 6. Robust technical trading strategy discovery

Consequently, in this chapter a robust GP evolutionary approach will be
presented to automate buying and selling decisions in order to maximize the
Sterling ratio (total return divided by maximum drawdown). The proposed
method will be tested on a basket of 21 stocks from the Spanish market using
13 years of daily price data and compared to the IBEX35 market index, the
results will be analyzed and some possible conclusions will be discussed.

These strategies are evaluated using 21 of the most liquid stocks of the
Spanish market. The achieved results clearly outperform Buy & Hold , SGP
and VAFGP. Additionally, the solutions obtained with the training data dur-
ing the experiments clearly show during testing robustness to steep market
declines as seen during the European sovereign debt crisis experienced re-
cently in Spain. The solutions learned were able to operate for prolonged
periods, which demonstrated the validity and robustness of the rules learned,
which are able to operate continuously and with minimal human interven-
tion.

To sum up, the method developed in this chapter is able to evolve TTSs
suitable for all market conditions with promising results, which suggests
great potential in the method generalization capabilities. The use of ad-
ditional financial metrics alongside popular technical indicators enables the
system to increase the stock return while proving resilient through time. The
RSFGP system is able to cope with different types of markets achieving a
portfolio return of 31.81% for the testing period 2009 to 2013 in the Spanish
market, having the IBEX35 index returned 2.67% during the same period.

6.2 Literature review

GP was first employed by Allen and Karjalainen (1999) for technical trading
rule discovery. The dataset used in their experiments was the S&P 500
index using daily prices from 1928 to 1995. Their results demonstrated that
although GP could find profitable trading rules, it failed to produce excess-
returns over the passive strategy of Buy & Hold , which consists in buying
on the first evaluation day and selling on the last.

Neely (2003) extends the previous work by Allen and Karjalainen (1999)
using a risk adjustment selection criterion to generate rules with the hope
of improving performance. However, the results show no evidence that the
rules significantly outperform Buy & Hold on a risk-adjusted basis.

Becker and Seshadri (2003) present results of GP-evolved technical trad-
ing rules, which outperform a buy-and-hold strategy on the S&P 500 after
taking into account transaction costs. They introduce several changes to the
original work of Allen and Karjalainen (1999), which include a complexity-
penalizing factor, a fitness function that considers consistency of perfor-
mance, and co-evolution of separate buy and sell rules. Monthly data is
used instead of daily.

6.2. Literature review 85

Lohpetch and Corne (2009) replicate the work of Becker and Seshadri
(2003) and the authors find that the results are sensitive to the data periods
chosen for the experiments. Their results are improved by using a validation
set, used for choosing the best rule found during training.

Mallick and Lee (2008) used GP to find trading rules on the thirty com-
ponent stocks of the Dow Jones Industrial Average index. The authors find
Statistical evidence of outperforming Buy & Hold in falling markets, and
confirm that GP based trading rules generate a positive return under bull
(rising) and bear (falling) markets.

Yan and Clack (2010) use GP for building a symbolic regression expres-
sion that measures the attractiveness of each stock; Each month a portfolio
is constructed with the most attractive stocks according to the GP model.
The portfolio is a market neutral long/short portfolio of Malaysian equities.
The authors propose two approaches for evolving robust trading rules. First
by splitting the training dataset into three extreme environment periods: up,
down and sideways volatile. Secondly instead of using just one solution, a
voting comity is used, formed by the three best solutions trained on each of
the extreme environments. The authors show results that considerably beat
the benchmark index, but the results have a significant caveat, i.e. they used
a small out-of-sample period (July 1997 to December 1998), which is before
the training period (January 1999 to December 2004). Monthly data was
used to simulate portfolio, meaning at the beginning of a month the stocks
which the system recommends are bought, and at the end of the month the
position is reassessed.

Hsu (2011) use a hybrid Self-Organizing Map (SOM) GP system where
the SOM unsupervised neural network is used to cluster the time series into
similar segments. This segments are then used by the GP system to learn
trading rules for each of the market conditions detected by the SOM. During
testing the SOM is used to classify the unseen time series and select the
best GP solution found during training on similar time series. Our method
has some advantages over this method, as it does not require the use of any
unsupervised method to group similar time series segments and thus is less
computationally expensive. Another important advantage of our method
is that it provides a single robust solution that works well in all market
conditions.

Mousavi et al. (2014) use a dynamic GP portfolio trading system based
on technical indicators. The authors extend the classical GP algorithm to
a multi-tree GP forest that is able to extract multiple trading rules, one
for each of the assets considered. Since the traditional GP structure is not
able to cope with this specific problem, the consequent parts of the rules
are designed as a crisp function of the weights of the stocks in the portfolio.
The fitness measure employed in this study is the conditional Sharpe ratio, a
modification of the original Sharpe ratio, using CVAR (Conditional Value at

86 Chapter 6. Robust technical trading strategy discovery

Risk) as the divisor instead of the standard deviation of returns. The system
was trained and tested on 15 stocks from the Iranian Stock Exchange and
15 stocks from the Toronto Stock Exchange with a sliding window approach
using 4.5 years of daily stock prices. Our method has some advantages, firstly
being simpler, as a single rule is evolve to trade all assets in the portfolio, it
is less computationally expensive, and secondly evolving a single trading rule
that can be applied to all the stocks increases the robustness of solutions.
Thirdly our method has been trained on 8 years of data and tested during
the next 5 years, proving its robustness over an extended period of time.

Gypteau et al. (2015) use an intrinsic time scale based on DC (directional
changes) combined with Genetic Programming to find an optimal trading
strategy that forecasts future price moves. A DC event is identified by a
change in the price of a given stock greater than a predefined threshold
value, which was in advance decided by the user. The authors use a total
return as the fitness measure and use two stocks from the UK market and
the NASDAQ and NYSE indices to evolve their solutions over a period of
1000 days for training and 500 days for testing. Their results showed that
the strategies evolved by the GP are more profitable when using multiple
threshold values than using a fixed threshold value, providing evidence that
DC can be used for forecasting and that combining multiple thresholds is
beneficial. In comparison to our proposed method, this method only uses
DC and does not consider other technical or financial metrics. It is tested
on a very limited selection of assets (2 stocks and 2 indices), and does not
compare the results obtained with other traditional strategies such as Buy
& Hold, making the results obtained in the study hard to interpret.

Luengo et al. (2015) manually divide the stock price time series into 3
segments of 4 years which sometimes overlap, and then this previous seg-
ments are again divided into 3 different period, 1 for pre calculating the
technical indices, 2 for GP training and 3 for testing. In comparison our ap-
proach has some advantages as we can use the best evolved rule in all market
conditions proving to be resilient to regime switches in the data. It also has
the advantage of not requiring human intervention in manually dividing the
time series into distinct market regimes and providing a robust solution that
produces good results in all market environments.

In this chapter, we use a similar approach to Yan and Clack (2010), as
we think that which data and how it is presented is crucial for any machine
learning to occur; after all you can only learn what’s on the data. But
our approach substantially differs as we use a random sampling method
at the GP individual level instead of hand-picking different bull, bear and
volatile scenarios for training. Secondly we treat the problem as classification
problem instead of symbolic regression. Our GP expression returns a boolean
value that we interpret as a trading signal.

One of the main advantages of our proposed method over Yan and Clack

6.3. Problem description 87

(2010), is that our random sampling method does not require any user in-
tervention in order to divide the stock price time series. Another important
advantage of randomly sampling the time series is increasing the robust-
ness of the solutions evolved. Lastly, our method uses daily data instead
on monthly data, hence it is quicker to react to abrupt changes in market
conditions. One possible weakness of our method in comparison with the
references previously discussed, is that it is more computationally expensive,
as the fitness has to be calculated over more data than other methods who
only use the whole time series for rule discovery, or methods that divide the
time series into bullish, bearish and sideways trends, as randomly sampling
the time series produces some overlap between segments.

6.3 Problem description

We are interested in exploring how to evolve robust GP solutions and which
techniques we can employ to steer away solutions from being over-fitted.
Ideally solutions should be robust and present similar performance for both
in-sample and out-of-sample datasets.

We approach the problem as a binary classification problem. A GP rule
is evolved using the functions and terminals provided and evaluates to a
boolean that we interpret as a buy or sell signal.

6.3.1 Portfolio simulation

To evaluate the GP evolved rules we simulate a long only portfolio of the 21
largest and most liquid Spanish stocks. We choose the Spanish market as the
testing period from 2009 to 2013 has been particularly volatile, specially in
the summer of 2012 with the outbreak of the sovereign debt crisis in Europe.
We use as the reference benchmark the IBEX35 index.

Portfolio returns are calculated in the following manner; at the initial
evaluation period, the portfolio starts withW0 in cash. At every day the GP
rule is evaluated and the stocks which are classified as True are bought (or
maintained if already in the portfolio), and those classified as False are sold
if owned in the portfolio. The total portfolio value Wt is calculated daily
by valuing the shares at the closing price of each day plus the value of the
cash account. We do not use leverage or reinvest profits and each purchase
is allocated a fixed amount of cash of 10,000.00 e. Transaction costs of 0.3%
are included in the calculations.

6.3.2 Fitness function

We employ a single objective approach to determine the quality of the
evolved solutions. We employ risk-adjusted metric, the Sterling ratio (see

88 Chapter 6. Robust technical trading strategy discovery

Chapter 4.5.4) to measure the fitness of individuals. The Sterling ratio is
used in Dempster and Jones (2001) and Zhang and Ren (2010) as the fitness
measure in their systems and is calculated as the total return divided by
the maximum drawdown. As we saw in last chapter, including the maxi-
mum drawdown is beneficial, even when other metrics, that consider risk
are present. In the problem addressed in this chapter we are interested in
generating a single best solution instead of a Pareto Front of non-dominated
solutions. This is the justification behind using the Sterling ratio instead of
the Sortino ratio for the fitness of individuals.

6.4 Algorithmic approach

We employ an elitist µ + λ evolutionary process where from µ parents we
generate λ offspring and the best individuals from both µ and λ form the
population of the next generation. µ + λ has the advantage of not losing
the best solutions during evolution as they are never replaced by inferior
individuals.

We utilize strongly-typed GP which allows for the declaration of data
types of functions and terminals, and offers the advantage of limiting the
search-space to syntactically valid expressions only.

Figure 2.3 shows an example of a trading rule generated by GP.

6.4.1 Random Sampling Fitness Genetic Programming

We are concerned with endowing generalization and environmental robust-
ness to the solutions evolved by GP. We achieve this by exposing the indi-
viduals to random market situations sampled from the original dataset.

Instead of evaluating the fitness of the individual in the whole
training dataset, our approach consists in selecting n random segments
{s1, s2, . . . , sn} ∈ S from the whole training dataset S and calculating the
fitness on each of the segments. Assuming Ii is an individual in the popula-
tion of solutions, and fsjIi is the fitness of the individual Ii on segment sj The
final fitness F i is calculated as the mean fitness obtained in the n randomly
sampled segments of S. The random sampling is done with replacement
at the individual level, i.e. each individual is always evaluated on different
randomly selected segments of the original dataset.

F i =
1

n

n∑
j=1

f
sj
Ii

(6.1)

We have chosen n = 100 for the number of segments while the length is
set at one trading year or 255 days. If the trading rule does not generate any
buy or sell signals for that section, a penalty is used which sets the fitness

6.5. Methodology 89

value to −9.99. This is done in order to penalize solutions do not trade and
would have a fitness value of 0 and forces evolution to choose poor solutions
with low fitness values (but with some trading activity) over solutions that
did not trade.

6.4.2 Volatility Adjusted Fitness Genetic Programming

Yan and Clack (2010) use a volatility adjusted fitness that is quite similar to
our random sampling method but using the standard deviation of the fitness
as the divisor. See Equations 6.2 and 6.3. In the experimental results of
section 6.6.3 we also study the effects of using a volatility adjusted fitness
and compare it to our proposed random sampling method.

σ =

√√√√ n∑
j=1

(f
sj
Ii
− F i)2

n
(6.2)

Volatility adjusted fitness =
F i
σ

(6.3)

6.5 Methodology

In this section we explain our methodology approach.

6.5.1 Dataset used

Our dataset consisted of 14 years of daily prices (Open, High, Low, Close,
Volume) adjusted for splits and dividends obtained from Reuters. Table 6.1
shows the Reuters symbol and company name of the stocks used. We used
21 of the largest and most liquid stocks for the Spanish Market for which
we had data for the 14 years of our study. The period from January 2000 to
December 2008 is used for searching for the optimal GP rule while the out-
of-sample testing period used for testing starts on January 2009 and ends on
December 2013. We use the IBEX35 index as the reference benchmark.

From the daily prices dataset we compute 264 company specific features,
see Table 6.2. These features are used during the evolution as terminals
in the GP tree. The first 200 days of the year 2000 are used to compute
the initial technical indicators, hence they are not included in the training
results.

6.5.2 GP parameter settings

Table 6.3 shows summary of the GP parameters and operator functions used
in our experimentation. These parameters, which were decided upon after
some preliminary testing, are held constant during all our experiments.

90 Chapter 6. Robust technical trading strategy discovery

Symbol Company Name
ABE.MC Abertis Infraestructuras
ACS.MC Actividades de Construcción y Servicios
ANA.MC Acciona
BBVA.MC Banco Bilbao Vizcaya Argentaria
BKT.MC Bankinter
EBRO.MC Ebro Foods
FCC.MC Fomento de Construcciones y Contratas
GAM.MC Gamesa Corporación Tecnológica
GAS.MC Gas Natural SDG
IBE.MC Iberdrola
IDR.MC Indra Sistemas
JAZ.MC Jazztel
MAP.MC Mapfre
OHL.MC Obrascon Huarte Lain
POP.MC Banco Popular
REE.MC Red Electrica Española
REP.MC Repsol
SAN.MC Banco Santander
SCYR.MC Sacyr
TEF.MC Telefónica
VIS.MC Viscofán

Table 6.1: Stocks used in the experiments of this chapter

1. Return from N periods N = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200
2. Simple moving average of returns (N periods) N = 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200
3. Exponential moving average Close (N periods) N = 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200
4. Bollinger Bands (N periods) N = 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200
5. Internal Bar Strength (N periods) N = 0, 1, 2, 3 . . . , 30
6. Relative Strength Index (N periods) N = 5, 6, 7, . . . , 30
7. Volatility (N periods) N = 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200
8. CAPM α (N periods) N = 10, 11, 12, . . . , 60
9. CAPM β (N periods) N = 10, 11, 12, . . . , 60
10. Sharpe ratio (N periods) N = 10, 13, 16, 19, . . . , 60

Table 6.2: Description of features in the terminal set

6.5.3 Computational environment

Our test machine consisted of a dual Intel Xeon E5-2687W @ 3.10 GHz
workstation running Ubuntu 12.04.04 Linux with 64 Gb of RAM. We im-
plemented our GP system and portfolio simulation using Python 2.7.3 and
Distributed evolutionary algorithms in Python (DEAP) (Fortin et al., 2012).

6.6 Results

We execute 30 independent runs in all of our experiments, and measure the
robustness of solutions using shrinkage (Mehta and Bhattacharyya, 2004;
Berutich et al., 2014). Shrinkage is calculated as the percentage change in

6.6. Results 91

Algorithm type Strongly-typed µ+ λ
Population size 1, 000
Initialization Ramped half and half
Function set +,−, ∗, /,<,>, and, or,

if-then-else, isBetween
Terminal set 264 Company specific features

(See Table 6.2)
Crossover operator Single point crossover
Crossover fraction 80%
Mutation operator Uniform mutation
Mutation fraction 10%
Max. initial tree depth 6
Termination 100 generations

Table 6.3: GP parameter settings

performance between training and testing data. In order to better asses the
performance of the evolved strategies we include together with the sterling
ratio fitness metric, the total return and the Sharpe ratio. Likewise, we
analyse the mean daily returns and volatility of the portfolios generated by
the various methods. Statistical analysis has been conducted on the results
at the 5% significance level.

6.6.1 Standard GP

We use a standard genetic programming (SGP) approach as the basis of
comparison between the random sampling fitness (RSFGP) and the volatility
adjusted fitness methods (VAFGP). In SGP the fitness of the individual is
calculated on the whole training dataset.

As we can see in Figures 6.1 and 6.2, SGP achieves a very high sterling ra-
tio during training, with a mean value of 6.8398, but very poor out-of-sample
results during testing with a mean sterling ratio of 0.2723. Figure 6.3 shows
the shrinkage between training and testing results. SGP has the highest
shrinkage evidencing over-fitting of the solutions. The testing performance
of SGP solutions is degraded between -94.94% and -104.02% on average as
Table 6.4 shows. We also provide a summary of the results in Table 6.5.

Sterling Total Return Sharpe
SGP -94,94% -104,02% -96,07%
RSFGP -28,84% -1,29% 13,03%
VAFGP -56,10% -38,12% -25,69%

Table 6.4: Shrinkage between training and testing results.

SGP tends to over-fit solutions. 8 out of the 30 executions (26.66%) were
so over-fitted that no results were produced during out-of-sample testing as

92 Chapter 6. Robust technical trading strategy discovery

Figure 6.1: Mean results obtained for training and testing datasets.

Figure 6.2: Mean sterling ratio obtained in all executions.

the rules where never triggered. Only 7 solutions out of the 30 executions
(23.33%) had acceptable results when tested out-of-sample.

As an illustration we show in Figure 6.4 one of the solutions generated
by SGP.

We also analyse the returns of the simulated portfolios in Figure 6.8. We
can clearly see that SGP delivers the worst performance in terms of inferior
mean daily returns. There is cluster of SGP portfolios whose standard de-
viation of returns is lower than the rest. This is due to a high percentage

6.6. Results 93

Sterling Ratio Total Return Sharpe Ratio
Train Test Train Test Train Test

SGP 6.8398 0.2723 37.08% 5.79% 2.5877 -0.0175
RSFGP 1.1235 0.6124 38.83% 31.81% 0.7103 0.6933
VAFGP 1.1584 0.3809 35.76% 19.85% 0.7284 0.4154
IBEX35 -0.2708 0.0521 -13.65% 2.67% 0.1223 0.3389

Table 6.5: Mean results obtained in the study

of solutions that traded rarely and had a very low market exposition during
out-of-sample testing. This can also be seen by looking at Figure 6.4 as we
can see a very low volatility of the fund value during testing.

Figure 6.3: Mean shrinkage between training and testing datasets.

6.6.2 Random Sampling Fitness Genetic Programming

Our proposed method RSFGP achieves the highest out-of-sample perfor-
mance in all the metrics as seen in Figures 6.1, 6.2, 6.5 and 6.6 with a mean
sterling ratio of 0.6124, a mean total return of 31.81% and a mean Sharpe
ratio of 0.6933, substantially beating the IBEX35 benchmark portfolio.

RSFGP also delivers the least shrinkage as can be seen in Figure 6.3 and
Table 6.4 with a -28,84 % shrinkage in sterling ratio and -1,29% in total
return. We have to note that the performance measured in Sharpe ratio
did not only experience shrinkage, but quite the opposite, with an average
increase of 13,03% during out-of-sample testing as compared to the training
dataset.

94 Chapter 6. Robust technical trading strategy discovery

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fund Value
Benchmark

Training

jul
20
09

en
e 2

01
0

jul
20
10

en
e 2

01
1

jul
20
11

en
e 2

01
2

jul
20
12

en
e 2

01
3

jul
20
13

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Fund Value
Benchmark

Testing

Figure 6.4: Training (top) and out-of-sample testing (bottom) performance
of an over-fitted SGP portfolio.

Figure 6.7 shows a robust strategy evolved with RFSGP. The out-of-
sample results show higher returns and substantially lower volatility in out-
of-sample testing when compared with the IBEX35 benchmark portfolio.

Figure 6.8 compares the mean daily returns and standard deviation of
returns (volatility) between all the experiments. We can clearly see that a

6.6. Results 95

Figure 6.5: Mean total return obtained in all executions.

Figure 6.6: Mean sharpe ratio obtained in all executions.

significant part of the solutions generated by RSFGP have a higher return
and similar volatility to VAFGP. RSFGP produces portfolios that generate
higher returns but at similar risk as VAFGP.

6.6.3 Volatility Adjusted Fitness Genetic Programming

VAFGP offered the second best out-of-sample testing results after RSFGP
with a mean sterling ratio of 0.3809, only slightly better than SGP which

96 Chapter 6. Robust technical trading strategy discovery

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Fund Value
Benchmark

Training

jul
20
09

en
e 2

01
0

jul
20
10

en
e 2

01
1

jul
20
11

en
e 2

01
2

jul
20
12

en
e 2

01
3

jul
20
13

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Fund Value
Benchmark

Testing

Figure 6.7: Training (top) and out-of-sample testing (bottom) performance
of a RSFGP strategy.

had a mean sterling ratio of 0.2723 while the IBEX35 benchmark portfolio
had a 0.0521 sterling ratio . In terms of mean total return, VAFGP had a
19.85% return compared with 2.67% for the IBEX35.

The mean daily return and volatility scatter plot in Figure 6.8 shows that
VAFGP had a worse mean daily return compared to RSFGP at a similar

6.6. Results 97

−3 −2 −1 0 1 2 3 4 5

x 10
−4

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Mean Return

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

Out−of−sample Performance Comparison

SGP

RSFGP

VAFGP

IBEX35

Figure 6.8: Comparison of out-of-sample mean daily portfolio returns and
standard deviation (volatility).

level of volatility. One of the VAFGP solutions had a terrible out-of-sample
performance as it can be seen in the bottom left quadrant of the graph.
VAFGP solutions have a higher dispersion in performance, whereas RSFGP
solutions are more concentrated in the same area of the plot.

Our results show that including the standard deviation in the fitness
(see Equations 6.2 and 6.3) offers reduced performance and higher shrinkage
compared to RSFGP. This might be due to the same problem the Sharpe
ratio experiences, as introducing a divisor in the fitness distorts it. Figure 6.9
shows the training and testing performance of a VAFGP portfolio.

6.6.4 Statistical significance of results

We analysed the statistical significance of the out-of-sample results by per-
forming a Wilcoxon rank-sum test on the sterling ratios obtained from eval-
uating the solutions out-of-sample. The Wilcoxon rank-sum test is a non-
parametric test of the null hypothesis that two populations are the same
(have the same median) against an alternative hypothesis that one popula-
tion has larger values than the other. This test is very practical as it does
not assume a normal-distribution and has greater efficiency than the t-test
on non-normal distributions.

Table 6.6 shows the P-values obtained in the Wilcoxon rank-sum test.
All tests have a low P-value thus rejecting the null hypothesis that results
between SGP, RSFGP and VAFGP are the same at the 5% significance level.

98 Chapter 6. Robust technical trading strategy discovery

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Fund Value
Benchmark

Training

jul
20
09

en
e 2

01
0

jul
20
10

en
e 2

01
1

jul
20
11

en
e 2

01
2

jul
20
12

en
e 2

01
3

jul
20
13

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Fund Value
Benchmark

Testing

Figure 6.9: Training (top) and out-of-sample testing (bottom) performance
of a VAFGP strategy.

The best results are given by RSFGP, followed by VAFGP and lastly SGP
as can be seen in Figure 6.1.

6.7. Conclusions 99

SGP RSFGP VAFGP
SGP 1,00000 0,00490 0,09730
RSFGP 0,00490 1,00000 0,00047
VAFGP 0,09730 0,00047 1,00000

Table 6.6: Wilcoxon rank-sum test P-values for out-of-sample-testing.

6.7 Conclusions

This chapter presents a novel GP method for learning robust Technical Trad-
ing Strategy using a random sampling method (RSFGP) which improves the
performance of solutions when tested out-of-sample and reduces over-fitting.
RSFGP calculates the fitness across the randomly sampled segments from
the time series and produces solutions that perform in similar fashion during
testing and training and that can be used for a prolonged duration across
different market conditions. In this study we have also included along some
popular technical indicators, common in the literature, some novel finan-
cial metrics never used together previously on other GP studies such as the
returns, the moving average of returns, the Capital Asset Pricing Method
(CAPM) alpha and beta, the Sharpe ratio and the volatility of the stocks
calculated over different period lengths.

The proposed approach is able to cope well with extreme drops in the
market, reducing the possible loses of capital, and was validated using real
and public available market data from 21 of the most liquid stocks from the
Spanish stock market. The results show a return of slightly higher than 30%
for the testing period of 2009 to 2013, having this period experienced the
sovereign debt crisis that affected Spain, which brought the market down
to level to the worst days of the 2008 sub-prime crisis with the collapse
of Lehman Brothers. In the same period our benchmark, Spanish IBEX35
market index gained less than 3%.

We have also studied the effects of including the standard deviation as
a divisor in the fitness as proposed in Yan and Clack (2010) with their
Volatility Adjusted Fitness (VAFGP). The results of this study show worse
performance for VAFGP compared to RSFGP. We demonstrate that for our
dataset, including the standard deviation of the fitness as a divisor degrades
the performance of the GP evolved solutions.

Both VAFGP and RSFGP were able to produce solutions that on aver-
age beat the IBEX35 benchmark portfolio during out-of-sample testing in
terms of risk and return. The RSFGP is the method that offered the best
results with an mean return of 31.81% compared to 2.67% of the IBEX35
reference benchmark. RSFGP is also the method that experienced the least
shrinkage from training to out-of-sample testing, clearly demonstrating that
our method increases the robustness of solutions and reduces over-fitting.

100 Chapter 6. Robust technical trading strategy discovery

The RSFGP method had the least shrinkage when compared to SGP and
VAFGP

Some key advantages of this method are:

• It discovers robust Technical Trading Strategy which can be applied
to managing a portfolio of stocks in an automatic manner without
requiring the help of financial market experts.

• Solutions are robust, as they can be used for prolonged periods without
needing the system to be retrained.

• Solutions are able to cope with extreme market environments.

• Solutions provide similar performance during training and out-of-
sample testing.

Some limitations of this research were the consideration of only long
positions for the portfolio, as sometimes market regulators place bans on
short selling, as was the case for bank stocks during the European sovereign
debt crisis, and bank bailouts by the government after the sub-prime crisis.
Another research limitation of this work was the number stocks considered,
this was due to choosing only the most liquid stocks that had trading data
for the years 2000 to 2013, resulting in the 21 stocks of table 6.1.

Part III

Conclusions and future work

Chapter 7

Conclusions and future work

Patterns of price movement are not
random. However, they’re close enough

to random...
Jim Simmons (Renaissance Technologies)

7.1 Conclusions

The main conclusion that can be extracted from this thesis is that there is
room for robust evolutionary optimization techniques to improve the current
approaches in TTS optimization and discovery. It motivates the acceptance
that EA techniques combined with robust optimization approaches are able
to cope with the uncertainty present in financial data, and to produce TTSs
that significantly beat the market with reduced risk.

Overall it can be concluded that:

• Standard GA and GP techniques are guided to peaks of high-fitness
producing TTSs that perform very well for the in-sample data but
poorly when tested out-of-sample.

• In order to solve over-fitting, a robustness mechanism is needed to
guide the algorithm towards areas of the search space where the fitness
is higher on average.

• The problem can be tackled as a single-objective problem where the
original objective function is averaged by sampling the original dataset
at the individual level. Each individual is evaluated on different ram-
dom samples from the original dataset.

• Robustness may also be incorporated by tackling the problem as a
multi-objective problem. The original objective function(s) are re-
placed by the mean and the standard deviation (calculated from a

103

104 Chapter 7. Conclusions and future work

basket of assets and/or sampling the original dataset) of the original
objective function.

• Robustness can also be incorporated by optimizing together a basket
of indices or stocks. Instead of generating a different TTS for each one,
producing a single TTS that is able to operate of an all of them leads
to soltuions with increased robustness.

• Robustness can be measured by calculating shrinkage (the percent re-
duction in performance between testing and training).

• Robust solutions perform satisfactorily when tested out-of-sample.
They offer very little shrinkage implying the performance is very si-
milar to the performance during the training phase.

• The robustness mechanisms exposed lead to robust TTS that can be
used for prolonged periods without requiring the system to be re-
optimized.

• The Robust TTS generated are able to cope with extreme market en-
vironments.

• IncludingMDD as an additional objective function in a multiobjective
problem or by as the divisor in the sterling ratio in a single-optimization
problem produces solutions with lower risk profile that just optimizing
the Sharpe Ratio or Sortino Ratio

7.2 Future work

Due to the wide range of topics covered in this thesis, future research could
be done on several fronts:

• On the algorithmic side, conducting a thorough analysis of different
enhanced solvers for addressing this problem could be of great interest.

• It is well known that Pareto optimality performs badly when the num-
ber of objectives is greater than 3. This is the problem addressed in
Chapter 5, so different approaches such as MOEA/D or IBEA could
be considered.

• This work could be extended to other markets and datasets in order to
continue studying the beneficial effects of the proposed multi-market
and random sampling methods.

• The scope of the problem can be extended where a long/short portfolio
is simulated and the buy and sell rules are co-evolved.

7.2. Future work 105

• Future research could include a greater variety of technical, and quan-
titative analysis derived metrics such as auto-correlation of returns,
and test different risk metrics as VaR (Value at Risk) and CVaR (Con-
ditional Value at Risk) instead of maximum draw-down or volatility.

• Financial markets are subject to changing conditions over time. Being
able to optimize in a dynamic environment could be very interesting,
as changes may affect the problem instance, the objective functions,
and/or the constrains. Dynamic optimization techniques could be used
to track the optimal changing trading strategies over time.

Bibliography

Aguilar-Rivera, R., Valenzuela-Rendón, M. and Rodríguez-
Ortiz, J. Genetic algorithms and Darwinian approaches in financial ap-
plications: A survey. Expert Systems with Applications, volume 42(21),
pages 7684–7697, 2015. ISSN 09574174.

Aguirre, H. Advances on Many-objective Evolutionary Optimization.
In Proceedings of the 15th Annual Conference Companion on Genetic
and Evolutionary Computation, GECCO ’13 Companion, pages 641–666.
ACM, New York, NY, USA, 2013. ISBN 978-1-4503-1964-5.

Allen, F. and Karjalainen, R. Using genetic algorithms to find technical
trading rules. Journal of Financial Economics, volume 51(2), pages 245–
271, 1999.

Appel, G. Technical Analysis: Power Tools for Active Investors. Financial
Times Prentice Hall books. Financial Times/Prentice Hall, 2005. ISBN
9780131479029.

Bauer, R. and Liepins, G. Genetic Algorithms and Computerized Trading
Strategies. Working paper series (University of Western Ontario. School of
Business Administration. Research and Publications Division). Research
and Publications, School of Business Administration, University of West-
ern Ontario, 1988. ISBN 9780771410581.

Bauer, R. J. Genetic Algorithms and Investment Strategies. John Wiley
& Sons, Inc., New York, NY, USA, 1994. ISBN 0471576794.

Becker, L. and Seshadri, M. GP-evolved technical trading rules can out-
perform buy and hold. Proceedings of the Sixth International Conference
on Computational Intelligence and Natural Computing, Embassy Suites
Hotel and Conference Center, Cary, North Carolina USA, September 26-
30 2003 , 2003.

Berutich, J. M., López, F., Luna, F. and Quintana, D. Robust techni-
cal trading strategies using GP for algorithmic portfolio selection. Expert
Systems with Applications, volume 46, pages 307–315, 2016.

107

108 Bibliografy

Berutich, J. M., Luna, F. and López, F. On the quest for robust
technical trading strategies using multi-objective optimization. AI Com-
munications, volume 27(4), pages 453–471, 2014.

Beume, N., Naujoks, B. and Emmerich, M. SMS-EMOA: Multiobjective
selection based on dominated hypervolume. European Journal of Opera-
tional Research, volume 181(3), pages 1653 – 1669, 2007. ISSN 0377-2217.

Beyer, H. and Sendhoff, B. Robust optimization - A comprehensive
survey. Computer Methods in Applied Mechanics and Engineering , volume
196(33-34), pages 3190–3218, 2007. ISSN 00457825.

Bianchi, L., Dorigo, M., Gambardella, L. M. and Gutjahr, W. J.
A survey on metaheuristics for stochastic combinatorial optimization. Na-
tural Computing , volume 8(2), pages 239–287, 2009. ISSN 15677818.

Blum, C. and Roli, A. Metaheuristics in Combinatorial Optimization:
Overview and Conceptual Comparison. ACM Comput. Surv., volume
35(3), pages 268–308, 2003. ISSN 0360-0300.

Bollinger, J. Bollinger on Bollinger Bands. McGraw-Hill Education,
2001. ISBN 9780071373685.

Bowers, C. Simulating evolution with a computational model of embryo-
geny. Doctral Thesis, The University of Birmingham, (November), 2006.

Brabazon, A., O’Neill, M. and Maringer, D. Natural computing in
computational finance. 2012. ISBN 978-3-642-23336-4.

Branke, J. Creating Robust Solutions by Means of Evolutionary Algo-
rithms. In Proceedings of the 5th International Conference on Parallel
Problem Solving from Nature, PPSN V, pages 119–128. Springer-Verlag,
London, UK, UK, 1998. ISBN 3-540-65078-4.

Branke, J. Efficient Evolutionary Algorithms for Searching Robust Solu-
tions, pages 275–285. Springer London, London, 2000. ISBN 978-1-4471-
0519-0.

Briza, A. C. and Naval, P. C., Jr. Stock trading system based on
the multi-objective particle swarm optimization of technical indicators on
end-of-day market data. Applied Soft Computing , volume 11(1), pages
1191–1201, 2011. ISSN 1568-4946.

Brock, W., Lakonishok, J. and LeBaron, B. Simple Technical Trading
Rules and the Stochastic Properties of Stock Returns. Journal of Finance,
volume 47(5), pages 1731–64, 1992.

Chen, S. Genetic Algorithms and Genetic Programming in Computational
Finance. Kluwer Academic Publishers, 2002. ISBN 9780792376019.

Bibliografy 109

Chen, S.-H., Wang, P. P. and Kuo, T.-W. Computational Intelligence in
Economics and Finance: Volume II , volume 2. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007. ISBN 978-3-540-72821-4.

Chen, W. and Sundararaj, G. J. Physical Programming for Robust De-
sign. In 40th Structures, Structural Dynamics and Materials Conference,
St. Louis, USA, volume 1206, pages 17–26. St. Louis, USA, 1999.

Chiam, S. C., Tan, K. C. and Al Mamun, A. Investigating techni-
cal trading strategy via an multi-objective evolutionary platform. Expert
System with Applications, volume 36(7), pages 10408–10423, 2009. ISSN
0957-4174.

Coello, C., Lamont, G. and van Veldhuizen, D. Evolutionary Algo-
rithms for Solving Multi-Objective Problems. Genetic and Evolutionary
Computation. Springer US, 2007. ISBN 9780387367972.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. Intro-
duction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.
ISBN 0262033844, 9780262033848.

Deb, K. and Gupta, H. Searching for Robust Pareto-Optimal Solutions in
Multi-objective Optimization, pages 150–164. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005. ISBN 978-3-540-31880-4.

Deb, K. and Gupta, H. Introducing robustness in multi-objective opti-
mization. Evolutionary computation, volume 14(4), pages 463–94, 2006.
ISSN 1063-6560.

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. A fast and elitist
multiobjective genetic algorithm: NSGA-II. Evolutionary Computation,
IEEE Transactions on, volume 6(2), pages 182–197, 2002. ISSN 1089-
778X.

Dempster, M. and Jones, C. A real-time adaptive trading system using
genetic programming. Quantitative Finance, volume 1(4), pages 397–413,
2001. ISSN 1469-7688.

Fortin, F. A., De Rainville, F. M., Gardner, M. A., Parizeau, M.
and Gagné, C. DEAP: Evolutionary algorithms made easy. Journal of
Machine Learning Research, volume 13, pages 2171–2175, 2012.

Garey, M. R. and Johnson, D. S. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA, 1979. ISBN 0716710447.

Gaspar-Cunha, A. and Covas, J. A. Robustness in multi-objective opti-
mization using evolutionary algorithms. Computational Optimization and
Applications, volume 39(1), pages 75–96, 2008. ISSN 09266003.

110 Bibliografy

Gencay, R. The predictability of security returns with simple technical
trading rules. Journal of Empirical Finance, volume 5(4), pages 347–359,
1998.

Gendreau, M. and Potvin, J.-Y. Handbook of Metaheuristics. Handbook
of Metaheuristics, volume 146, page 648, 2010. ISSN 978-1-4419-1665-5.

Glover, F. Future Paths for Integer Programming and Links to Artificial
Intelligence. Comput. Oper. Res., volume 13(5), pages 533–549, 1986.
ISSN 0305-0548.

Glover, F. and Kochenberger, G. A. Handbook of Metaheuristics,
volume 57. Springer US, 2003. ISBN 978-0-306-48056-0.

Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine
Learning . Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1st edition, 1989. ISBN 0201157675.

Granger, C. W. and Hyung, N. Occasional structural breaks and long
memory with an application to the S&P 500 absolute stock returns. Jour-
nal of Empirical Finance, volume 11(3), pages 399–421, 2004. ISSN
09275398.

Gypteau, J., Otero, F. and Kampouridis, M. Generating Direc-
tional Change Based Trading Strategies with Genetic Programming. In
Applications of Evolutionary Computation (edited by A. M. Mora and
G. Squillero), volume 9028 of Lecture Notes in Computer Science, pages
267–278. Springer International Publishing, 2015. ISBN 978-3-319-16548-
6.

Haupt, R. and Haupt, S. Practical Genetic Algorithms. Wiley InterScience
electronic collection. Wiley, 2004. ISBN 9780471671756.

Hendershott, T. and Riordan, R. Algorithmic Trading and the Market
for Liquidity. Journal of Financial and Quantitative Analysis, volume
48(4), pages 1001–1024, 2013.

Holland, J. H. Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, MI, USA, 1975.

Hsu, C.-M. A hybrid procedure for stock price prediction by integrating
self-organizing map and genetic programming. Expert Systems with Ap-
plications, volume 38(11), pages 14026 – 14036, 2011. ISSN 0957-4174.

Hu, Y., Liu, K., Zhang, X., Su, L., Ngai, E. and Liu, M. Application of
evolutionary computation for rule discovery in stock algorithmic trading:
A literature review. Applied Soft Computing , volume 36, pages 534–551,
2015. ISSN 15684946.

Bibliografy 111

Iba, H. and Aranha, C. C. Practical Applications of Evolutionary Compu-
tation to Financial Engineering: Robust Techniques for Forecasting, Trad-
ing and Hedging . Springer Publishing Company, Incorporated, 2012. ISBN
3642276474, 9783642276477.

Jaimes, A. L. and Coello, C. A. C. An Introduction to Multi-Objective
Evolutionary Algorithms and Some of Their Potential Uses in Biology ,
pages 79–102. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN
978-3-540-78534-7.

Jin, Y. and Sendhoff, B. Trade-Off between Performance and Robustness:
An Evolutionary Multiobjective Approach, pages 237–251. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2003. ISBN 978-3-540-36970-7.

Kaufman, P. New Trading Systems and Methods. Wiley Trading. Wiley,
2005. ISBN 9780471268475.

Khouadjia, M. R., Sarasola, B., Alba, E., Talbi, E.-G. and Jour-
dan, L. Metaheuristics for Dynamic Vehicle Routing , pages 265–289.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-
30665-5.

Kitano, H. Biological robustness. Nature reviews. Genetics, volume 5(11),
pages 826–37, 2004. ISSN 1471-0056.

Koza, J. R. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.
ISBN 0-262-11170-5.

Kushchu, I. Genetic programming and evolutionary generalization. IEEE
Transactions on Evolutionary Computation, volume 6(5), pages 431–442,
2002. ISSN 1089-778X.

Lane, G. M. Lane’s Stochastics. Technical Analysis of Stocks and Com-
modities, (2), pages 87–90, 1984.

Li, J. and Taiwo, S. Enhancing Financial Decision Making Using Multi-
Objective Financial Genetic Programming. In Evolutionary Computation,
2006. CEC 2006. IEEE Congress on, pages 2171 –2178. 2006.

Li, M., Yang, S., Liu, X., Shen, e. R. C., Ruimin", Fleming, P. J.,
Fonseca, C. M., Greco, S. and Shaw, J. A Comparative Study on
Evolutionary Algorithms for Many-Objective Optimization, pages 261–275.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-
37140-0.

Lintner, J. The valuation of risk assets and the selection of risky invest-
ments in stock portfolios and capital budgets. Review of Economics and
Statistics, volume 47(1), pages 13–37, 1965.

112 Bibliografy

Lo, A. The Statistics of Sharpe Ratios. In Social Science Research Network
Working Paper Series. 2003.

Lo, A. W., Mamaysky, H. and Wang, J. Foundations of technical analy-
sis: Computational algorithms, statistical inference, and empirical imple-
mentation. Journal of Finance, volume 40, pages 1705–1765, 2000.

Lohpetch, D. and Corne, D. Discovering effective technical trading
rules with genetic programming: towards robustly outperforming buy-and-
hold. 2009 World Congress on Nature & Biologically Inspired Computing
(NaBIC), pages 439–444, 2009.

Lones, M. A. Metaheuristics in nature-inspired algorithms. Proceedings of
the 2014 conference companion on Genetic and evolutionary computation
companion - GECCO Comp ’14 , pages 1419–1422, 2014.

Lorenzo, R. Rsid (rsi detrended). In How to Make Money by Fast Trading ,
Perspectives in Business Culture, pages 197–200. Springer Milan, 2012.
ISBN 978-88-470-2533-2.

Luengo, S., Winkler, S., Barrero, D. and Castaño, B. Optimization
of trading rules for the spanish stock market by genetic programming.
In Current Approaches in Applied Artificial Intelligence (edited by M. Ali,
Y. S. Kwon, C.-H. Lee, J. Kim and Y. Kim), volume 9101 of Lecture Notes
in Computer Science, pages 623–634. Springer International Publishing,
2015. ISBN 978-3-319-19065-5.

Mallick, D. and Lee, V. C. An empirical study of Genetic Programming
generated trading rules in computerized stock trading service system. 2008
International Conference on Service Systems and Service Management ,
pages 1–6, 2008.

Mashwani, W. K., Salhi, A., Asif jan, M., Sulaiman, M.,
Adeeb Khanum, R. and Algarni, A. Evolutionary Algorithms Based
on Decomposition and Indicator Functions: State-of-the-art Survey. Inter-
national Journal of Advanced Computer Science and Applications, volume
7(2), 2016.

Matsui, K. and Sato, H. Neighborhood evaluation in acquiring stock
trading strategy using genetic algorithms. In Soft Computing and Pattern
Recognition (SoCPaR), 2010 International Conference of , pages 369 –372.
2010.

Maulik, U., Bandyopadhyay, S. and Mukhopadhyay, A. Multiob-
jective Genetic Algorithms for Clustering: Applications in Data Mining
and Bioinformatics. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
ISBN 978-3-642-16615-0.

Bibliografy 113

Mehta, K. and Bhattacharyya, S. Adequacy of training data for evolu-
tionary mining of trading rules. Decission Support Systems, volume 37(4),
pages 461–474, 2004. ISSN 0167-9236.

Mossin, J. Equilibrium in a Capital Asset Market. Econometrica, volume
34(4), pages 768–783, 1966.

Mousavi, S., Esfahanipour, A. and Zarandi, M. H. F. A novel ap-
proach to dynamic portfolio trading system using multitree genetic pro-
gramming. Knowledge-Based Systems, volume 66, pages 68–81, 2014. ISSN
09507051.

Murphy, J. Technical Analysis of the Financial Markets: A Comprehen-
sive Guide to Trading Methods and Applications. New York Institute of
Finance Series. New York Institute of Finance, 1999. ISBN 9780735200661.

Mutingi, M. and Mbohwa, C. Grouping Genetic Algorithms: Advances
and Applications, volume 666 of Studies in Computational Intelligence.
Springer International Publishing, 2017. ISBN 978-3-319-44394-2.

Neely, C. J. Risk-adjusted, ex ante, optimal technical trading rules in
equity markets. International Review of Economics & Finance, volume
12(1), pages 69–87, 2003. ISSN 10590560.

Ni, J., Cao, L. and Zhang, C. Evolutionary Optimization of Trading
Strategies. In Proceedings of the 2008 conference on Applications of Data
Mining in E-Business and Finance, pages 11–24. IOS Press, Amsterdam,
The Netherlands, The Netherlands, 2008. ISBN 978-1-58603-890-8.

Nuti, G., Mirghaemi, M., Treleaven, P. and Yingsaeree, C. Al-
gorithmic Trading. IEEE Computer Society , (November), pages 61–69,
2011.

O’Reilly, U.-M., Yu, T., Riolo, R. and Worzel, B. Genetic Program-
ming Theory and Practice II . Springer US, 2005. ISBN 0792381351.

Pardo, R. The Evaluation and Optimization of Trading Strategies. Wiley
Trading. Wiley, 2008. ISBN 9781118045053.

Pictet, O. V., Dacorogna, M. M., Dave, R. D., Chopard, B.,
Schirru, R. and Tomassini, M. Genetic Algorithms with collective
sharing for Robust Optimization in Financial Applications. Working Pa-
pers 1995-02-06., Olsen and Associates, 1995.

Pinto, J. M., Neves, R. F. and Horta, N. Boosting Trading Strategies
performance using VIX indicator together with a dual-objective Evolu-
tionary Computation optimizer. Expert Systems with Applications, volume
42(19), pages 6699–6716, 2015. ISSN 09574174.

114 Bibliografy

Piszcz, A. and Soule, T. Dynamics of evolutionary robustness. In
GECCO 2006: Proceedings of the 8th annual conference on Genetic and
evolutionary computation (edited by M. Keijzer, M. Cattolico, D. Arnold,
V. Babovic, C. Blum, P. Bosman, M. V. Butz, C. Coello Coello, D. Das-
gupta, S. G. Ficici, J. Foster, A. Hernandez-Aguirre, G. Hornby, H. Lipson,
P. McMinn, J. Moore, G. Raidl, F. Rothlauf, C. Ryan and D. Thierens),
volume 1, pages 871–878. ACM Press, Seattle, Washington, USA, 2006.
ISBN 1-59593-186-4.

Poli, R. and Langdon, W. Genetic programming: An introductory tuto-
rial and a survey of techniques and applications. University of Essex, UK ,
pages 1–112, 2007.

Ponsich, A., Jaimes, A. L. and Coello, C. A. C. A Survey on Multi-
objective Evolutionary Algorithms for the Solution of the Portfolio Opti-
mization Problem and Other Finance and Economics Applications. IEEE
Transactions on Evolutionary Computation, volume 17(3), pages 321–344,
2013. ISSN 1089-778X.

Riolo, R., McConaghy, T. and Vladislavleva, E. Genetic Program-
ming Theory and Practice VIII . Springer-Verlag New York, Inc., New
York, NY, USA, 1st edition, 2010. ISBN 1441977465, 9781441977465.

Riolo, R., Worzel, B., Kotanchek, M. and Kordon, A. Genetic Pro-
gramming Theory and Practice XIII . Springer International Publishing,
1st edition, 2016. ISBN 978-3-319-34223-8, 978-3-319-34221-4.

Rothlauf, F. Optimization Methods, pages 45–102. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2011. ISBN 978-3-540-72962-4.

Sharpe, W. F. Capital asset prices: A theory of market equilibrium under
conditions of risk. Journal of Finance, volume 19(3), pages 425–442, 1964.

Sharpe, W. F. Mutual Fund Performance. Journal of Business, volume
39(S1), pages 119–138, 1966.

Sharpe, W. F. The Sharpe Ratio. The Journal of Portfolio Management ,
volume 21(1), pages 49–58, 1994.

Sörensen, K. and Glover, F. Encyclopedia of Operations Research and
Management Science. Springer-Verlag, Berlin, Heidelberg, 3rd edition,
2013. ISBN 1441911375, 9781441911377.

Sortino, F. A. and Price, L. N. Performance Measurement in a Downside
Risk Framework. The Journal of Investing , volume 3(3), pages 59–64,
1994.

Bibliografy 115

Soule, T. Operator choice and the evolution of robust solutions. Genetic
Programming Theory and Practice, pages 257–269, 2003.

Subramanian, H., Ramamoorthy, S., Stone, P. and Kuipers, B. J.
Designing safe, profitable automated stock trading agents using evolution-
ary algorithms. In Proceedings of the 8th annual conference on Genetic
and evolutionary computation, GECCO ’06, pages 1777–1784. ACM, New
York, NY, USA, 2006. ISBN 1-59593-186-4.

Thomsett, M. Mastering Fundamental Analysis. Kaplan Financial Series.
Dearborn Finanical Pub., 1998. ISBN 9780793128730.

Tsinaslanidis, P. E. and Zapranis, A. D. Technical Analysis for Al-
gorithmic Pattern Recognition. Springer International Publishing, Cham,
2016. ISBN 978-3-319-23636-0.

Tsutsui, S. and Ghosh, A. Genetic algorithms with a robust solution
searching scheme. Trans. Evol. Comp, volume 1(3), pages 201–208, 1997.
ISSN 1089-778X.

Wikipedia. Metaheuristic — Wikipedia, The Free Encyclopedia. 2016.
Online; accessed 30-September-2016.

Wilder, J. New Concepts in Technical Trading Systems. Trend Research,
1978. ISBN 9780894590276.

Yan, W. and Clack, C. D. Evolving robust GP solutions for hedge fund
stock selection in emerging markets. Soft Computing , volume 15(1), pages
37–50, 2010. ISSN 1432-7643.

Zhang, H. and Ren, R. High Frequency Foreign Exchange Trading Strate-
gies Based on Genetic Algorithms. 2010 Second International Conference
on Networks Security, Wireless Communications and Trusted Computing ,
pages 426–429, 2010.

Zhang, Q. and Li, H. MOEA/D: A multiobjective evolutionary algorithm
based on decomposition. IEEE Transactions on evolutionary computation,
volume 11(6), pages 712–731, 2007.

Zitzler, E. and Künzli, S. Indicator-Based Selection in Multiobjective
Search, pages 832–842. Springer Berlin Heidelberg, Berlin, Heidelberg,
2004. ISBN 978-3-540-30217-9.

List of Acronyms

ACO Ant Colony Optimization

AT Algorithmic Trading

BB Bollinger Bands R©

BH Buy & Hold

CAPM Capital Asset Pricing Model

CFD Contract For Differences

EA Evolutionary Algorithms

EC Evolutionary Computation

EMA Exponential Moving Average

EP Evolutionary Programming

ES Evolution Strategy

ETF Exchange Traded Fund

FX Foreign Exchange

GA Genetic Algorithm

GP Genetic Programming

HH Highest High

IBS Internal Bar Strength

LL Lowest Low

MACD Moving Average Convergence Divergence

MDD Maximum Drawdown

MOEA Multiobjective Evolutionary Algorithm

117

118 Bibliografy

MOP Multiobjective Optimization Problem

OHLCV Open, High, Low, Close, Volume

PSO Particle Swarm Optimization

QA Quantitative Analysis

RSFGP Random Sampling Fitness Genetic Programming

RSI Relative Strength Index

SA Simulated Annealing

SGP Standard Genetic Programming

SMA Simple Moving Average

SO Stochastic Oscillator

SR Sortino Ratio

TA Technical Analysis

TTS Technical Trading Strategy

VAFGP Volatility Adjusted Fitness Genetic Programming

	Página de Título
	Abstract
	Resumen
	Acknowledgements
	Dedicatoria
	Índices
	Tabla de contenidos
	Índice de figuras
	Índice de tablas

	Introduction
	Summary
	Research problem and hypothesis
	Research contribution
	Contributions in Chapter 5
	Contributions in Chapter 6

	Publications
	Delimitations of scope
	Document organization

	I State of the art
	Metaheuristics
	General optimization background
	Metaheuristics
	Genetic algorithms
	Genetic programming

	Multi-objective optimization
	Formal definition
	Metaheuristics for multi-objective optimization

	Conclusions

	Robust evolutionary optimization
	Introduction
	Types of robustness
	Genotypic robustness
	Phenotypic robustness

	Definitions
	Robustness in single-objective optimization
	Robustness in multi-objective optimization

	Robustness approach employed
	Conclusions

	Algorithmic trading
	Introduction
	Financial time series
	Algorithmic trading system components
	Pre-trade analysis methodologies
	Fundamental Analysis
	Quantitative Analysis
	Technical Analysis

	Trading strategy performance metrics
	Total return
	Sharpe ratio
	Sortino ratio
	Sterling ratio
	Maximum drawdown

	Conclusions

	II Problems addressed
	Robust optimization of technical trading strategies
	Introduction
	Literature review
	The robust TTS problem
	Investment vehicle
	Technical trading strategies
	Objective functions to be optimized

	Algorithmic approach
	Problem encoding
	Genetic operators

	Methodology
	Dataset used
	GA Settings
	Computational test environment

	Experimental results
	Experiment 1: Single-Market Optimization of SR

	Conclusions

	Robust technical trading strategy discovery
	Introduction
	Literature review
	Problem description
	Portfolio simulation
	Fitness function

	Algorithmic approach
	RSFGP
	VAFGP

	Methodology
	Dataset used
	GP parameter settings
	Computational environment

	Results
	Standard GP
	RSFGP
	VAFGP
	Statistical significance of results

	Conclusions

	III Conclusions and future work
	Conclusions and future work
	Conclusions
	Future work

	Bibliografy
	List of Acronyms

	Fin

