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Chapter 1

Motivation and objectives

1.1 Aims of the work

The work is organized in two autocontained parts. In the first part, the
manuscript is oriented to the development of stochastic modeling in order
to introduce new measures for risk management. We present an approach
for stochastic modeling of different immunization strategies in fixed-income
security portfolios under some sources of uncertainty, such as two-stage
mean-risk (MR) immunization, two-stage and multistage Value-at-Risk (VaR)
strategy, two-stage and multistage first order stochastic dominance constraints
(SDC) strategy. These strategies are named averse ones as opposite to the risk
neutral strategy whose aim is optimizing the objective function expected value
alone, without taken care of the volatility of the function for some scenarios.
Another risk averse measure for stochastic mixed 0-1 optimization is proposed
as an alternative to the risk neutral one. The new measure is a mixture of the
multistage VaR and stochastic dominance constraints strategies.

In this sense, Chapter 2 proposes several immunization strategies imple-
mented in a pilot case of stochastic models for selecting financial portfolios in
a market in which there are transaction costs and bonds with different credit
ratings. There are two parameters whose random behavior must be taken into
account, namely, trends in interest rates and the probabilities of default of
the various institutions which issue the bonds. The validity of the proposed
strategies is performed by using a case study, and the results that have been
obtained seem to be reasonable.

3



4 CHAPTER 1. MOTIVATION AND OBJECTIVES

In any case, the proposed model can become computationally difficult
for real markets with many possible future scenarios in case of plain use of
optimization engines. We may even have difficulties in solving it by using
decomposition methods, in the case of a big cardinality of the set of profiles
unless we expand some of the existing methods, see [39, 40] to exploit the
modelling objects of the recent risk averse strategies being this a subject of
our future research.

For these situations we are also alternatively considering to replace the
strategy VaR&SDC with the strategy named MR&SDC that stands for Mean-
Risk & Stochastic Dominance Constraints since it is a mixture of both. It
consists of maximizing the VaR minus the sum of the weighted failure’s
probabilities of not reaching the set of thresholds imposed by the modeler. The
model which implements the new strategy does not include scenario linking
constraints, what is a good characteristic from a computational point of view.
The validation of this other strategy will be the object of our future research.

Anyway, all these strategies append 0-1 variables which can make the
model very difficult to solve in the multistage scheme. For that reason, we are
also considering to extend the second order Stochastic Dominance Constrains
strategy into the multistage. This strategy does not include 0-1 variables,
which makes it very attractive from a computational point of view. The
validation of this strategy is also a subject for our future research.

The second part of the memory is devoted to the development of solution
schemes. Chapters 3 and 4 study methodologies and software technologies for
the solution of large scale stochastic linear two-stage and multistage problems
via scenario analysis by using decomposition techniques.

Chapter 3 presents an efficient scenario cluster decomposition approach
for identifying tight feasibility cuts in Benders decomposition for solving
medium-large and large scale two-stage stochastic problems where only
continuous variables appear. In particular we extend the traditional two-
stage Benders decomposition, and by using a cluster partitioning of the
scenario tree, we propose a new algorithm named scenario Cluster Benders
Decomposition (CBD) for dealing with the feasibility cut identification
in the Benders method for solving large-scale two-stage stochastic linear
problems. Some computational experience is presented, where we observe the
favorable performance of the proposed Cluster Benders Decomposition (CBD)
approach versus the performance of the Traditional single scenario Benders
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Decomposition (TBD) approach.

Chapter 4 extends the proposed Cluster Benders Decompostion approach
to the multistage linear case. An information structuring for scenario cluster
partitioning of scenario trees is also presented, given the general model
formulation of a multistage stochastic linear problem. The basic idea consists
of explicitly rewriting the nonanticipativity constraints (NAC) of the variables
in the stages with common information. As a result an assignment of
the constraint matrix blocks into independent scenario cluster submodels is
performed. This partitioning allows us to generate a new information structure
to express the NAC which link the related clusters, such that the implicit
NAC linking the submodels together is performed by a compact representation
until a given break stage, and by a compact representation into each cluster
submodel from that break stage until the end. Then, multistage problems
can be represented as two blocks of stages models, and the proposed Cluster
Benders Decomposition (CBD) can be used as an efficient tool for its solution.
The validation via computational experimentation of this new algorithmic
scheme will be also a subject for our future research.

1.2 Background and State-Of-The-Art

Mathematical optimization is actually one of the most reliable tools for
decision-making. It has many real world applications and a wide range of
problems in different areas such as distribution, finance, planning, power
generation, air traffic, logistics, natural gas, oil and petrochemical designing
and utilization, etc.

Two of its disciplines, deterministic linear and mixed integer optimizations
have made this kind of optimization of linear and 0-1 mixed models much
easier, at least for moderate dimension problems. However, since the 50’s, it is
well known that traditional deterministic optimization is not appropriate for
capturing the uncertain behavior present in most real world applications.

Moreover, it was not until the 80’s when Stochastic Optimization (SO) was
broadly applied in real-world applications. Uncertainty is the key ingredient in
many decision problems. There are several ways in which uncertainty can be
formalized and over the past thirty years different approaches to optimization
under uncertainty have been developed by using the risk neutral approach
as opposed to the traditional deterministic approach where the uncertain
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parameters are replaced by their expected values. Although the risk neutral
strategy is been currently replaced with the risk averse strategies for better
risk management, the original SO developments were a real scientific break
through.

The field of SO appears as a response to the need of incorporating
uncertainty in mathematical models. Basically, it deals with mathematical
models in which some parameters are random variables and, then, they
are not controlled by the modeler. The need to incorporate uncertainty in
mathematical programming models resulted in the field of SO, since it allows
the management of the risk inherent to decision making due to uncertainty
today in the main parameters of the problem. Early work started in 1955 with
Beale [10] and Dantzig [24]. Although the first linear SO research approaches
appear very early, only recently the advance in computer technology has made
possible the solution of big size models, thus increasing the interest in SO and
so producing an advance in mathematical theory. New problem formulations
and algorithmic developments jointly with the inherent theoretical innovations
appear almost every year and this variety is one of the strengths of the field.

Very frequently, mainly in problems with a given time horizon to exploit,
some coefficients in the objective function and the right hand side (rhs) vector
and in the constraint matrix are not known with certainty when the decisions
are to be made, but some information is available. This circumstance allows
us to use SO for solving multistage programs under uncertainty.

Stochastic programs have the reputation of being computationally difficult
to solve. Many people faced with real-world problems are naturally inclined
to solve simpler versions, for example to solve the deterministic program
mentioned above that results from replacing all random variables with their
expected values or to solve several deterministic programs, each corresponding
to one particular scenario, and then to combine these different solutions
by some heuristic rule. Computational experimentations through out the
last decade have proved that in many cases these approaches can be totally
inaccurate without guaranteing the solution optimality and, very frecuently,
even providing infeasible solutions for many scenarios potentially to occur.

Computation in stochastic optimization has mainly focused on two-stage
linear problems with a finite number of realizations. The general model is
to choose some initial decision that optimizes the current objective function
value plus the expected value of future recourse actions. With a finite number
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of second-stage realizations and all linear functions, we can always form the
so-named Deterministic Equivalent Model (DEM) or extensive form, see the
early work [90]. With many realizations, this form of the problem becomes
quite large. So, methods that ignore the special structure of stochastic linear
programs become quite inefficient. Taking advantage of structure is especially
beneficial in stochastic programs and is the focus of much of the algorithmic
work in this area.

Once the problem has been formulated by the corresponding DEM it can
be solved by using Benders Decomposition (BD) (see [5, 11, 18, 21, 64]).

Other alternative to solve the DEM is Lagrangean Decomposition, see
[20, 33, 51, 54, 73, 80, 81, 82] and, recently, [41, 43]. lagrangean procedures can
also be applied to stochastic integer problems, in particular stochastic mixed
0-1 problems.

The simplest form of two-stage stochastic integer programs contains first-
stage pure 0-1 variables and second stage continuous variables. Laporte
and Louveaux [64] apply a branch-and-cut procedure for such problems,
based on the Benders decomposition (BD) method. Alonso-Ayuso, Escudero
and Ortuño [4] provide an efficient branch-and-fix coordination (BFC)
methodology for solving a mixed 0-1 problems for two-stage environments.
This methodology was used for solving a model in production planning
applications. See also Alonso-Ayuso et al [2, 3], where a production plant
dimensioning problem and a supply chain problem are solved. Carøe and Tind
[21] generalize the BD to deal with stochastic programs having 0–1 mixed-
integer recourse variables and either pure continuous or pure first-stage 0–1
variables.

When the first stage contains pure 0–1 variables, finite termination is
readily justified by adopting search procedures that branch over the 0–1 first-
stage variables. Sen and Sherali [83] propose decomposition algorithms based
on a branch-and-cut approach for solving two-stage stochastic programs having
first-stage pure 0–1 variables and 0–1 mixed-integer recourse variables, where a
modified BD method is developed. Carøe and Schultz [20] and Hemmecke and
Schultz [54] design a branch-and-bound algorithm for problem solving having
mixed-integer variables in both stages. Escudero, Garín, Merino and Pérez,
have developed a general algorithm to solve two-stage stochastic mixed 0-1
problems in their more general formulations, see [35, 36, 39].
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Many operational and planning problems involve sequences of decisions
over time. The decisions can respond to realizations of outcomes that are
not known a priori. The resulting model for optimal decision making is a
multistage stochastic program. In the general formulation of a multistage
stochastic optimization, decisions on each stage have to be made stage-wise.
At each stage, there are variables which correspond to decisions that have to be
made without anticipation of some of future problem data, i.e., they take the
same value under each scenario, i.e., the so-called nonanticipativity constraints
must be satisfied, whose principle was stated by Wets [90] and restated in [76],
see also [18] and many others.

In general, the methods for two-stage problems are generalized to the
multistage case but include additional difficult modelling objects. The
multistage stochastic linear problem with a finite number of possible future
scenarios still has a deterministic equivalent linear program. However, the
structure of this problem is somewhat more complex than that of the two-
stage problem. The extensive form does not appear readily accesible to
manipulations. This is one area of work to which this memory is oriented.

The methods that appear most promising are again based on decomposi-
tions, some form of Lagrangean decomposition, or Branch-and-Fix Coordina-
tion (BFC), see the series of works [34, 35, 37, 36, 38, 39, 40]. These approaches
have in common the explotation of the submodels separability.

There are some efficient approaches to address multistage problems with
all 0–1 and continuous variables, and where uncertainty appears only in the
objective function coefficients and in the rhs (see [2, 3]). Moreover, there have
been few attempts to solve up to optimality large-scale general mixed 0–1
multistage models, where both types of variables appear at any stage of the
time horizon, and where uncertainty can appear anywhere in the problem. See
[37, 38, 39, 40] for this extension and see also [33]. Concepts like Twin Node
Family (TNF), common variables, candidates TNF or TNF integer sets are
introduced in these BFC papers.

The use of the Lagrangean Substitution (LS) was introduced by Guignard
[51] for bounding purposes in the branching candidate TNFs, and the
utilization of the Augmented Lagrangean Decomposition (ALD) scheme
([68, 77]) for obtaining the continuous optimal solution for the so-named TNF
integer sets.
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Computational experimentation on different Lagrange multipliers updating
schemes as the Subgradient method [53], the Volume Algorithm [9], the
Progressive Hedging Algorithm [76], and the Dynamic Constrained cutting
plane scheme [59] to be used in the LS and ALD approaches has been reported
by Escudero, Garín, Pérez and Unzueta [41].

Most of the approaches deal with the optimization of the objective function
expected value alone, as we have introduced above, the risk neutral strategy.
However, as we have opposited it, the coherent (see in [8] the related
features) risk averse strategies, scenario immunization [18, 32], semi-deviations
[1, 69], excess probabilities [81], Value-at-Risk [45, 46], Conditional Value-at-
Risk [74, 82] and first- and second-order stochastic dominance constraints
[28, 29, 48, 49], and other approaches as well, allow to strong reduction of
the risk of wrong decision making. See also [42, 43, 65, 79, 86], among others.
Finally, another contribution to the previous line of research constitutes the
study realized in the Chapter 2 of the present memory.





Part I

Models
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Chapter 2

Stochastic models for

immunization strategies

In this chapter we present a set of approaches for stochastic optimizing
of immunization strategies based on risk averse measures as alternatives to
the optimization of the objective function expected value, i.e., in the so-
called risk neutral environment. The risk averse measures to consider, whose
validity is analyzed in this work are as follows: min-max regret, mean-risk
immunization, two-stage and multistage Value-at-Risk strategy, two-stage
Conditional Value-at-Risk strategy, two-stage first and second order stochastic
dominance, multistage first order stochastic dominance, and the new measure
as a mixture of the multistage VaR & stochastic dominance at all stages.
Most of these measures require from the modeler a threshold for the objective
function value related to each scenario (the recent ones even allow a set of
objective function so-called profiles) and a failure probability for not reaching
the threshold. Uncertainty is represented by a scenario tree and is dealt with by
both two-stage and multi-stage stochastic linear and mixed integer models with
complete recourse. We will test the different risk averse strategies presented
in the chapter by using, as a pilot case, the optimization of the immunization
strategies in fixed-income security portfolios under some sources of uncertainty.
The main difference in the bond portfolio strategies that are proposed in the
work and the models that have been encountered in the literature is that we
consider an investor who wishes to invest in a market with coupon bonds with
a different level of risk of default.

13
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2.1 Introduction

Stochastic programming models have been proposed and studied extensively
since the 1950s, see the seminal papers by Beale [10], Dantzig [24], Charnes
and Cooper [22], Van Slyke and Wets [87], Wets [89, 90], Dempster [27], Kall
and Wallace [60], Birge and Louveaux [18], Wets and Ziemba [91], and Shapiro,
Dentcheva and Ruszczynski [84], among some others. A stochastic vision is
proposed for the financial models dealt with-in this work, rather than the
traditional deterministic vision, such that uncertain parameters that are not
controlled by the modeler are considered as random variables whose known or
estimated probability distributions are independent of the decision variables.

The majority of the financial models proposed until the last decade are
static and single-period. However, in cases where uncertainty prevails in
all the stages of the planning horizon, then stochastic optimization models
become more appropriate. Such models are not very common at present
in practical financial applications due to their complexity and the complex
requirement for input data. Nevertheless, some very interesting models have
appeared in the literature in recent years. There are many ALM (Asset
and Liability Management) stochastic optimization models, see [88, 93, 95],
among others that are generally preferred by pension, insurance companies,
wealthy individuals and hedge funds; see also [37, 94] among many others.
One advantage of these scenario based models is that the parameters are not
assumed to be known but are scenario dependent, hence they are uncertain.
Bradley and Crane [19] present a multistage decision tree model for bond
portfolio management. A novel feature was its ability to trace the bond
movements from interest rate changes over time. This model is based on
dynamic programming rather than stochastic optimization; hence its size grows
faster than the latter with more periods and scenarios. Kusy and Ziemba [62]
compare their stochastic optimization model for the Vancouver Savings Credit
Union with that of Bradley and Crane, and argue in favour of the stochastic
optimization model on computational and performance grounds. Both of
these models are now easily solved with current optimization technology, see
[88], for example. The Bradley and Crane model ushered in bond portfolio
management and the management of fixed income securities in the literature;
see, for example, [27, 50, 92]. See also [13, 23] for the current state of the
literature on this subject. Since the early papers, computation methods have
advanced spectacularly, so that large-scale linear optimization problems with
continuous variables can, at least, now be solved efficiently. These advances
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have enabled to apply stochastic optimization increasingly more to real-life
financial problems. Some of these financial applications are collected in
[23, 78, 88, 93, 95, 96]. See also recent results in [12, 47], among others.

A significant contribution to the above line of research has been made
possible thanks to the flexibility of stochastic optimization models to integrate
through scenarios diverse multi-dimensional risk factors for risk management.
However, the optimization models still become intractable when a large number
of variables must be combined, particularly if they are 0-1 variables, with
exponential increases in scenarios. In this case procedures are needed to break
down the problem and reduce the number of scenarios, see [30, 31, 52, 56, 71],
among others.

Most financial optimization models can be classified in-to two broad classes
according to their primary objective, namely risk management and financial
engineering. Risk management based models are used to select portfolios
with specified exposure to different risks, such that it is concerned, firstly,
with selecting which risk one is to be exposed to and which risk is to be
immunized against. Secondly, it is concerned with assessing the risks of
different securities, and, thirdly, with the construction and maintenance of
portfolios with the specified risk-return characteristics. The focus of the
optimization models is primarily on the third activity, but all of them are
integrated and interdependent.

In this chapter we present an approach for stochastic modeling of different
immunization strategies in fixed-income security portfolios under some sources
of uncertainty, such as min-max regret, mean-risk immunization, two-stage
and multistage Value-at-Risk strategy, two-stage Conditional Value-at-Risk
strategy, two-stage and multistage stochastic dominance strategy and, in
addition, the new two-stage and multistage mixture of VaR & stochastic
dominance. We introduce different models that allow to consider transaction
costs. Uncertainty is represented by a scenario tree and is dealt with by
both two-stage and multistage stochastic linear and mixed integer models with
complete recourse. The main difference between the bond portfolio strategies
that are proposed and the models that have been encountered in the literature
is that we consider an investor who wishes to invest in a market with coupon
bonds with different level of risk of default. Then, there are two sources of
uncertainty, or two risks, associated with the model, namely, interest rate risk
and credit risk or risk of default. The latter is concerned with the solvency of
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their issuers and, therefore, the bonds themselves.

The remainder of the chapter is organized as follows. Section 2.2
introduces the classical deterministic linear model to fix notation and to set
up the prototype to be improved by introducing uncertainty in the main
parameters, namely, interest rate path and credit rating ranking (see Section
2.3). The traditional two-stage stochastic optimization approach is presented
in Section 2.4. Section 2.5 is devoted to presenting the main two-stage
risk averse strategies, whose validity is tested in this work, namely mean-
risk immunization, value-at-risk (VaR) strategy , conditional Value-at-Risk
(CVaR) strategy , stochastic dominance strategy and an extended VaR &
stochastic dominance strategy . Section 2.6 presents our two-stage approach
for fixed-income security portfolio immunization. Section 2.7 presents the
approach as in Section 2.6 but considering a mixture of mean-risk and VaR
measures. Section 2.8 presents our multistage stochastic scheme for portfolio
optimization in a risk adverse environment by using the strategies based on
maxmin and stochastic dominance as well as the new multistage strategy
as the mixture of the VaR & stochastic dominance strategies. Section 2.9
introduces an illustrative example to show the performance of the different
immunization strategies that have been presented in this work. Finally, Section
2.10 concludes.

2.2 The deterministic linear optimization

model

In this section we introduce a deterministic optimization model used in risk
management. In the following sections we introduce potential or actual
extensions of this basic model. We now present the basic components and
common notation of the mathematical prototype.

Let us consider a partition of the planning horizon (PH) into k subintervals
of equal length [t0, t1], [t1, t2],..., [tk−1, tk], being t0 the starting and tk the end
of the PH. We also assume that portfolio rebalancing is only allowed at the
beginning of each subinterval. |T | = k+1 is the number of time periods, and tk
is the final period. So, set T is defined as the discretization or splitting of the
time horizon, i.e., T = {t0, t1, ..., tk}. For the sake of simplicity, and without
loss of generality (wlog), we assume that there are |I| different coupon bonds
available at t0, each of them maturing at ti, such that ti ∈ {t1, ...., tk}, but not
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necessarily for all the bonds, since there might be some bond i∗ with period
of maturity, ti∗, later than the final period of planning, i.e., ti∗ > tk . Then,
coupon payments are also due at rebalancing points, where ti is the maturity
period of bond i ∈ I, and I denotes the set of securities to be included in the
portfolio.

Let I0 denote the initial budget to be invested in the portfolio. As decision
variables, x+

it denotes the volume of security i ∈ I purchased in period t, and
x−
it denotes the volume of security i sold in period t. Variable zit denotes

the volume of security i to be held in the portfolio following the transactions
conducted in period t. And variable Vt is defined as the final value of the
portfolio in period t, for t0 ≤ t ≤ tk. Let β be a parameter that denotes
a fraction of the volume negotiated, which represents the transaction costs
affecting each readjustment. Let us also assume that the nominal figure and
the coupon payments do not generate transaction costs. Pi0 denotes the unit
price on the market of security i at the start of the planning horizon, i.e., initial
period t0, for i ∈ I. Additionally, ci is the annual coupon for security i, and
Cit denotes the payment stream generated by one unit of security i ∈ I in
period t, t ∈ T − {t0}. This stream is expressed as follows,

Cit =







ci · h, t0 < t < ti,
Fi + ci · h, t = ti,
0, t > ti,

(2.1)

where h is the constant length of each sub-interval (fraction of a year) and Fi
is the nominal value of security i, in this case, Fi = Pi,0, ∀i ∈ I.

Finally, Pit denotes the unit price of security i at time period t if r is the
interest rate at that period. If we consider the transaction costs as a fraction
β then P−

it , which denotes the unit selling price of security i at period t, is
computed as P−

it = (1 − β)Pit; and P+
it is the unit purchase price of security i

at period t, so that P+
it = (1 + β)Pit.

The optimization model is a linear problem to maximize the final value of
the portfolio,

(LO) max Vtk (2.2)
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s.t.

x+
i0 = zi0 ∀i ∈ I (2.3)

∑

i∈I

P+
i0x

+
i0 = I0 (2.4)

zi,t−1 + x+
it − x−

it = zit, ∀i ∈ I, t = t1, . . . , tk−1 (2.5)

x−
i:ti=t,t = zi:ti=t,t−1, ∀i ∈ I, t = t1, . . . , tk (2.6)

x−
itk

= zi,tk−1
, ∀i ∈ I : tk < ti (2.7)

∑

i∈I:t<ti

P+
it x

+
it −

∑

i∈I:t<ti

P+
it x

−
it =

∑

i∈I:t≤ti

Citzi,t−1, ∀t = t1, . . . , tk−1(2.8)

∑

i∈I:tk<ti

P−
itk
x−
itk

+
∑

i∈I:tk≤ti

Citzitk−1
= Vtk (2.9)

0 ≤ zi0, x
+
i0, ∀i ∈ I (2.10)

0 ≤ x+
it , ∀i ∈ I, t = t1, . . . , tk−1 (2.11)

0 ≤ zit, x
−
it , ∀i ∈ I, t = t1, . . . , tk (2.12)

0 ≤ Vtk . (2.13)

Equations (2.3)-(2.4) are the first period constraints representing the
structural ones. In general these constraints establish that the portfolio must
be formed at the initial period, t0. The initial budget constraint assigns values
to the initial investment in each security. In particular, equation (2.3) forces
the portfolio to be built at the initial period. Equation (2.4) establishes
the initial investment of the portfolio holder. Constraints (2.5)-(2.7) are
balance equations that link the volume of securities purchased and sold in
each period with the volume of securities in the portfolio. Equations (2.8) are
the constraints that ensure that the portfolio is self-financing, i.e., the funds to
purchase a new security at each period must be obtained by selling securities
and from the yield from coupons on the bonds in the portfolio. Moreover,
equation (2.9) forces the portfolio to be dismantled at the end of the process,
so the final value is the sum of the cash obtained from selling securities and
the yield obtained by the coupons paid on bonds.

Solution considerations: Given the state of the art in linear optimization
solving, model (2.2)-(2.13) should not present major difficulties for problem
solving, even for large scale instances. However, the optimal solution may not
be suitable, given the uncertainty of the main parameters, namely the interest
rate path and credit rating ranking.
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2.3 Two sources of uncertainty: interest rate

and credit risk

Uncertainty will be represented below in terms of random experiments with
outcomes (i.e., scenarios) denoted by ω. The relevant set of outcomes is clearly
problem-dependent. Also, it is not usually very important to be able to define
those outcomes accurately because the focus is mainly on their impact on some
(random) variables. The set of all outcomes is represented by Ω, that can be
visualized as a set of scenarios to be structured in a tree below, and it can
be dealt with by using stochastic optimization approaches. Each node in the
scenario tree depicts a juncture for rendering decisions. A scenario is defined
as a complete path from the root node to a leaf, and defines a single realization
of all the uncertain parameters.

Throughout the chapter we will define a set of strategies from two
independent sources of uncertainty, namely interest rates and ratings of the
issuers of each bond. This is an innovative way to face the problem since we
are going to deal with two completely different sources of uncertainty at the
same time.

For the sake of simplicity and wlog we assume that there are n different
coupon bonds available at t0, each of them maturing at t1, t2, ..., tn respectively,
that is, coupon payments are also due at rebalancing points. For each coupon
bond in a given class j, i ∈ Ij with maturity period ti, we will consider a
replica i′ ∈ Ij′ in a different class j′, with the same maturity period ti = ti

′
,

but with a different level of risk of default. Then J is the set of classes of
securities under consideration, where the securities in each class have the same
maturity period but different credit risk. The risk in this case concerns the
solvency of their issuers and therefore, the bonds themselves.

Interest rate risk

The price of a bond is directly related to the interest rate level all over the
PH. The interest rate is a fraction of the par value or nominal (the money you
invest) that you will recieve as payment when holding a bond. The interest
rate depends on the maturity of the bond (when it will pay the par value) and
it does not change in a linear way. In fact, the Term Structure of Interest Rates
(for short, TSIR) changes much more in the short term and is more stable in the
long term. In this way, interest rates may change independently for different
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bond maturities. As this is really difficult to modelize and following one of
the assumptions of Khang’s immunization theory, see [61], we will consider
flat changes in interest rate structure. This means that every interest rate will
change in a common way, whatever its maturity. So, if the annual interest rate
is r, the corresponding interest rate for the maturity ∆t (r∆t) can be expressed,

r∆t = ∆t · r,

where ∆t is the time in years. We will assume that, at the time when the
investment is made, i.e., initial period t0, the interest rate is at a certain
level rt0 . In the next period it might change into any of the scenarios under
consideration, see for example Figure 2.1.

rt0

r1
t1

r1
t2

...

r2
t1

r2
t2

...

...

r
|Ω|
t1

r
|Ω|
t2

...

Figure 2.1: Two-stage scenario tree for the interest rate uncertainty

For simplicity, the tree assumes that change can only happen after the
portfolio has been built.

Ths interest rate risk is related to the risk of this variable to change from
one decision period to another. These changes may happen almost instantly
and affect the whole market in the same way.

Credit risk

Anyway, the price of a bond depends not only on the risk free interest rate in
force in the market, but also on the quality of the issuing company. That way,
depending on the solvency of the bond issuer, its price will be higher or lower.

Moreover, the following definitions are provided to facilitate notation. 1

1The definitions are taken from [57] and all the illustrative examples that will be used
with the definitions are taken from[72].
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Definition 1 Credit rating means the rating given to an individual or a
company to indicate their solvency as debtors in the issuing of short- or long-
term securities. Rating agencies examine companies that issue bonds, as well
as the situation of the bonds issued at regular intervals, and may upgrade or
downgrade their ratings whenever they see fit.

Table 2.1: S&P ranking definition

Rating Bond Quality
AAA Prime rating
AA High grade rating
A Upper medium grade rating

BBB Lower medium grade rating
BB Speculative
B Highly speculative

CCC Very highly speculative
CC Extremely speculative
C Very extremely speculative
D Likely to default on capital, interest

Taking the S&P ranking as a reference point, bonds can be rated as shown
in Table 2.1. The rating agency would examine the quality of the companies
every year, so, their rating might change. As an example, Table 2.2 shows the
global corporate average transition rates (1981-2009) in percentage.

Table 2.2: Examples of rate transition probabilities

AAA AA A BBB BB B CCC Default
AAA 88.21 7.73 0.52 0.06 0.08 0.03 0.06 0
AA 0.56 86.6 8.10 0.55 0.06 0.09 0.02 0.02
A 0.04 1.95 87.05 5.47 0.40 0.16 0.02 0.08

BBB 0.01 0.14 3.76 84.16 4.13 0.70 0.16 0.26
BB 0.02 0.05 0.18 5.17 75.52 7.48 0.79 0.97
B 0.00 0.04 0.15 0.24 5.43 72.73 4.61 4.93

CCC 0.00 0.00 0.21 0.31 0.88 11.28 44.98 27.98

Definition 2 Default means failure to pay back a loan on maturity, or when
the terms of an agreement are fulfilled.
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The likelihood risk of default is closely linked to the credit rating of an
organization at a given instant in time. By way of example, consider Table
2.3 which represents the risks of default, qi, calculated as cumulative mean
probabilities in percentage according to the S&P report.

Note that the higher the probability of default, the cheaper the bond will
be. Somehow the bond is going to be penalized for its risk.

Table 2.3: Examples of risks of default

Credit Years since emission
Rating 1 2 3 4 5 7 10
AAA 0.00 0.03 0.14 0.26 0.39 0.58 0.82
AA 0.02 0.07 0.14 0.24 0.33 0.52 0.74
A 0.08 0.21 0.35 0.53 0.72 1.22 1.97

BBB 0.26 0.72 1.23 1.86 2.53 3.80 5.60
BB 0.97 2.94 5.27 7.49 9.51 13.19 17.45
B 4.93 10.76 15.65 19.46 22.30 26.47 30.82

CCC 27.98 36.95 42.40 45.57 48.05 50.26 53.41

Definition 3 Recovery rate, zi, is the proportion of the money owed that the
issuer undertakes to pay to the purchaser in the case of default.

Table 2.4: Examples of recovery rates

Type of instrument Recovery rate (%)
Term Loans 69.4
Revolving credit 78
All loans 73.8
Senior secured bonds 57.2
Senior unsecured bonds 43
Senior subordinated bond 28.3
All other subordinated bond 19.4
All bonds 37.4

For example, S&P gives the figures shown in Table 2.4 for the period 1987-
2009 and for the discounted recovery rates by instrument type.



2.4. TRADITIONAL TWO-STAGE STOCHASTIC OPTIMIZATION 23

Note that the lower the recovery rate is, the cheaper a bond would become.

According to these two concepts, we will define in the next sections the
real interest rate as the interest rate that a company would pay in order to
compensate its risk of default.

2.4 Traditional two-stage stochastic

optimization approach

The stochastic version of the problem provides a general purpose-modeling
framework, which embraces many real-world features, such as turnover
constraints, transaction costs, limits on groups of assets, risk aversion,
immunization constraints and other considerations. In particular, two-stage
stochastic linear problems provide a suitable framework for modeling decision
problems under uncertainty arising in several financial applications. The
flexibility of these models is related to their dynamic nature, i.e., besides the
first stage variables representing decisions made in face of uncertainty, the
model includes second-stage decisions, i.e., recourse actions, which may be
taken once a specific realization of the random parameters is observed.

The model for portfolio selection described below seeks to obtain the
optimal readjustment, independently of changes in interest rates. This
model enables transaction costs to be factored in, and takes into account
different credit ratings for bonds. Thus, decision-makers can benefit the
optimal portfolio taking into account the risk associated with the likelihood of
bankruptcy or default on the part of the issuer of each bond and the weight
that they themselves attribute to that risk.

Let the following notation for sets, parameters and variables which define
the Deterministic Equivalent Model (DEM) for the stochastic scheme in the
case of bonds portfolio optimization.

Sets:

I, set of securities i to be included in the portfolio. |I| is the number of
securities in set I.

J , set of classes of fixed-income security considered j, i.e., the set of different
credit ratings considered.
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Ij, set of securities i that belong to class j, Ij ⊂ I, such that I = ∪j∈J Ij,
and Ij ∩ Ig = ∅, j, g ∈ J : j 6= g. |Ij| is the number of securities in set
Ij, j ∈ J .

T , set of periods in PH plus the initial period t0, such that it is the
discretization or splitting of the time horizon, i.e., T = {t0, t1, ..., tk}.

Ω, set of scenarios ω under consideration, t0 show the different joint situations
for interest rates and default. |Ω| denotes the number of scenarios.

Parameters:

I0, initial investment budget.

Fi, nominal value of security i, for i ∈ I.

ti, maturity period of security i, for i ∈ I, such that ti ∈ {t1, ..., tk, ..., tn}.

β, fraction of the volume negotiated which represents the transaction costs
affecting each readjustment. It is also considered that the nominal figure
and the coupon payments do not generate transaction costs.

Pi0, unit price on the market of security i at the starting of PH, period t0, for
i ∈ I.

wω, likelihood of scenario ω, given by the modeler.

rωt , risk-free interest rate in period t under scenario ω. At period t = t0,
r = rωt0 = rω

′

t0
, for ω 6= ω′, ω, ω′ ∈ Ω.

qωjt, measure of risk calculated at period t as the probability of default of the
securities of class j under scenario ω. At period t = t0, qj = qωjt0 = rω

′

jt0
,

for ω 6= ω′, ω, ω′ ∈ Ω.

zi, recovery rate (as a fraction of one) for security i, for i ∈ Ij, j ∈ J .

Rω
it, real interest rate (as a fraction of one) for security i of class j at time

period t under scenario ω, for i ∈ Ij, j ∈ J , t ∈ T and ω ∈ Ω. Following
[57], we calculate it as follows,

Rω
it = rωt +

(1 + rωt )(1 − zi)qωjt
1 − (1 − zi)qωjt

.
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At period t = t0, Ri = Rω
i0 = Rω′

i0 , for ω 6= ω′, ω, ω′ ∈ Ω. Moreover,
Rω
it = rωt , for i ∈ Ij, such that qωjt = 0.

ci, annual coupon for security i. This coupon is calculated as Ri ·Fi, where Ri

is the real interest rate at initial period t0, and Fi is the nominal value
of security i, for i ∈ I.

Cω
it, payment generated by one unit of security i in period t under scenario

ω, for i ∈ Ij,j ∈ J , t ∈ T − {t0}, ω ∈ Ω. The stream is calculated as
follows,

Cω
it =







ci · h, t0 < t < ti, i ∈ Ij : qωjt < 1
Fi + ci · h, t = ti, i ∈ Ij : qωjt < 1
zi · Fi t0 < t ≤ ti, i ∈ Ij : qωj,t−1 < 1 and qωjt = 1
0, otherwise,

(2.14)

where h is the constant length of each sub-interval (fraction of a year)
and qωjt is the default probability for class j at period t under scenario ω.
Notice that if there is a period t and a scenario ω such that qωjt = 1, it
means that the class j of securities is in default, and then, Cω

it = zi · Fi,
and Cω

iτ = 0, ∀τ = t + 1, · · · , tk, for i ∈ Ij. In another case, what
happens is that for each period t and each scenario ω, qωjt < 1, i.e., the
class of securities j is not in default, and the payment stream for all the
securities in that class coincides with that defined in expression (2.1).

P ω
it , unit price of security i at time period t under scenario ω, if Rω

it is the real
interest for security i at period t under scenario ω, for i ∈ Ij, j ∈ J ,
t ∈ T − {t0}, ω ∈ Ω. It is obtained as follows,

P ω
it =

∑

t<τ≤ti

Cω
iτER

ω
i (t, τ),

where ERω
i (t, τ) = (1 +Rω

it · h)−(τ−t+1).

P+ω
it , unit purchase price of security i at period t under scenario ω when the

transaction cost β is considered.

P+ω
it = (1 + β)P ω

it (2.15)

P−ω
it , unit selling price of security i at period t under scenario ω.

P−ω
it = (1 − β)P ω

it (2.16)
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Variables:

x+ω
it , volume of security i purchased in period t under scenario ω, for i ∈ I,

t ∈ T , ω ∈ Ω.

x−ω
it , volume of security i sold in period t under scenario ω, for i ∈ I,

t ∈ T − {t0}, ω ∈ Ω.

zωit, volume of security i to be held in the portfolio following the transactions
conducted in period t under scenario ω, for i ∈ I, t ∈ T , ω ∈ Ω.

V ω
t , final value of the portfolio in period t under scenario ω, for t ∈ T , ω ∈ Ω.

The two-stage stochastic approach for maximizing the expected final value
of the portfolio over the set of scenarios (i.e., in a risk neutral environment) is
as follows,

(DEM1) max
∑

ω∈Ω

wωV ω
tk

(2.17)

s.t.

x+
i0 = zi0, ∀i ∈ I, (2.18)

∑

i∈I

P+
i0x

+
i0 = I0 (2.19)

zωi,t−1 + x+ω
it − x−ω

it = zωit,∀i ∈ I, t = t1, . . . , tk−1, ω ∈ Ω (2.20)

x−ω
i:ti=t,t = zωi:ti=t,t−1, ∀i ∈ I, t = t1, ..., tk,

ω ∈ Ω (2.21)

x−ω
i,tk

= zωi,tk−1
, ∀i ∈ I : tk < ti, ω ∈ Ω (2.22)

∑

i∈I:t<ti

P+ω
it x+ω

it −
∑

i∈I:t<ti

P+ω
it x−ω

it =
∑

i∈I:t≤ti

Cω
itz

ω
i,t−1,∀t = t1, ..., tk−1,

ω ∈ Ω (2.23)
∑

i∈I:tk<ti

P−ω
itk
x−ω
itk

+
∑

i∈I:tk≤ti

Cω
itz

ω
i,tk−1

= V ω
tk
, ∀ω ∈ Ω (2.24)

0 ≤ zi0, x
+
i0, ∀i ∈ I, (2.25)

0 ≤ x+ω
it , ∀i ∈ I, t = t1, . . . , tk−1, ω ∈ Ω (2.26)

0 ≤ zωit, x
−ω
it , ∀i ∈ I, t = t1, . . . , tk, ω ∈ Ω (2.27)

0 ≤ V ω
tk
, ∀ω ∈ Ω. (2.28)
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Solution considerations: It is well known that for a large set of scenarios,
this kinds of problems become quite considerable. Methods that ignore the
special structure of stochastic linear programs become quite inefficient. Taking
benefit from the model’s structure is specially required in stochastic programs.
For large dimensions, perhaps the method most frequently used is based on
building an outer linearization of the recourse cost function and a solution
of the first stage problem (the primal problem) plus its linearization. This
decomposition, given by Benders [11], has been widely extended in stochastic
optimization to take care of feasibility questions, see its specialization given
by Van Slyke and Wets [87], the well known L-shaped method; see also
[18, 55, 60], among many others. However, generating feasibility cuts by the
mere application of the scenario related feasibility, see the second part of this
memory, maybe very inefficient for problem solving in some cases. Instead,
we have proposed a cluster scenario decomposition approach for dealing with
the feasibility problem, which generates tighter feasibility cuts to add to the
master problem and, then, it improves the performance of the Traditional
Benders Decomposition (TBD), see [6].

2.5 Risk averse models

Unfortunately, the real world is not a risk neutral environment in any case,
and in order to introduce in the models the risk averseness inherent to any
decision maker, several risk averse models have been studied in the literature;
all of them in the two-stage scheme. In this section, we analyze some of the
most important ones as well as introducing a new approach as a mixture of
Value-at-Risk and stochastic dominance strategies.

Mean-risk immunization strategy

Let us consider the general two-stage stochastic linear problem for the
maximization of the objective function expected value,

QE = max cx+ Eξ[minwω(qωTyω)]
s.t.

b1 ≤ Ax ≤ b2

hω1 ≤ T ωx+W ωyω ≤ hω2 ∀ω ∈ Ω
x, yω ≥ 0 ∀ω ∈ Ω,

(2.29)

where c is a known vector of the objective function coefficients for the x
variables in the first stage, b1 and b2 are the left and right hand side vectors
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for the first stage constraints, respectively, and A is the known matrix for the
first stage constraints; wω is the likelihood attributed to scenario ω, hω1 and
hω2 are the left and right hand side vectors for the second stage constraints,
respectively, and qω is the vector of the objective function coefficients for the
y variables, while T ω and W ω are the technology matrices under scenario ω,
for ω ∈ Ω.

Putting together the stochastic components of the problem, we have the
vector ξω = (qω, hω1 , h

ω
2 , T

ω,W ω). Finally, Eξ represents the mathematical
expectation with respect to ξ over the set of scenarios Ω.

The main criticism that can be made against this very popular mean
strategy is that it ignores the variance on the objective function value over
the scenarios and, in particular, the “left” queue of the non-wanted scenarios.
However, there are some other approaches that in addition deal with new
risk measures (in a risk averse environment) by also considering, e.g., semi-
deviations [69, 32], excess probabilities [81], Value-at-Risk [45, 46], conditional
Value-at-Risk [8, 75, 82] and first- and second-order stochastic dominance
constrains [29, 28, 49, 48]. Those approaches are more amenable than the
classical mean-variance, see [66, 67], mainly in the presence of 0-1 variables.

In this work, we can use the excess probability approach, such that,

QP = P (ω ∈ Ω : cx+ qωyω > φ), (2.30)

where φ is a prescribed threshold for the excess probability QP . So,
alternatively to maximize QE, where

QE = cx+
∑

ω∈Ω

wωqωyω (2.31)

the mean-risk function to maximize is

QE + ψQP (2.32)

where ψ is a positive weighting parameter. A more amenable expression of
(2.32) for computational purposes, at least, can be as follows, see [81],

(Mean−Risk) max QE + ψ
∑

ω∈Ω w
ω(1 − νω)

s.t.
cx+ qωyω +Mνω ≥ φ ∀ω ∈ Ω
b1 ≤ Ax ≤ b2

hω1 ≤ T ωx+W ωyω ≤ hω2 ∀ω ∈ Ω
x, yω ≥ 0, ∀ω ∈ Ω
νω ∈ {0, 1}, ∀ω ∈ Ω

(2.33)
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where νω is a 0-1 variable such that its value is 1 if the objective function value
cx+ qωyω for scenario ω is below threshold φ and otherwise, is 0; and M is the
given smallest parameter that still allows any feasible solution to the original
problem.

Following this formulation, we introduce a mean-risk model by changing
the objective function, and appending a constraint and the 0-1 variable per
each scenario ω in model (DEM1) (2.17)-(2.28). So, νω will take value 1 if the
final wealth under scenario ω is below threshold φ and 0 otherwise, then,

νω =

{

1 for V ω
tk
< φ

0 otherwise.

Then, the new mean-risk model becomes a parametric model defined as
follows,

(DEM −MR) max
∑

ω∈Ω

wωV ω
tk

+ ψ
∑

ω∈Ω

wω(1 − νω) (2.34)

s.t. constraints (2.18) − (2.28) and

V ω
tk

+Mνω ≥ φ ∀ω ∈ Ω, (2.35)

νω ∈ {0, 1} ∀ω ∈ Ω. (2.36)

Notice that the parameters ψ, φ and M must be adequately chosen to
calibrate the model at the first two, and M for reducing the computational
effort.

Value-at-Risk (VaR) strategy

Recent theoretical research on risk management suggests that the measures
based on quantiles are good functions to measure the risk. Between them, the
Value-at-Risk (VaR) has become a reference for many financial applications,
see e.g. [45, 46] among others.

The VaR approach is very attractive since it is easy to interpret: it measures
up in monetary units and can be used to carry out an estimation of the
necessary volume of own funds to cover the market risk in business activities
developed by the financial institutions. A very useful approximation in the
context of stochastic optimization is, precisely, the VaR optimization in the
model.
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(V aR) max V aR
s.t.

cx+ qωyω +Mνω ≥ V aR ∀ω ∈ Ω
b1 ≤ Ax ≤ b2

hω1 ≤ T ωx+W ωyω ≤ hω2 ∀ω ∈ Ω
∑

ω∈Ω

wωνω ≤ α

x, yω ≥ 0 ∀ω ∈ Ω
V aR ≥ 0
νω ∈ {0, 1} ∀ω ∈ Ω,

(2.37)

where νω is a 0-1 variable such that its value is 1 if the objective function
value cx+ qωyω for scenario ω is below VaR and otherwise, is 0 and M is the
given parameter presented above. Notice that the optimization is realized over
(1 − α)% of the scenario, α being the accepted probability of the scenarios to
occur whose function value cx+ qωyω is smaller than VaR.

The advantage of the VaR strategy over the traditional maxmin strategy,
see model (2.42), is that this requires that the objective function value should
be not smaller than VaR for all the scenarios, no matter how representative
and how many they are. So, its value may not be too high given that very
restrictive constraint.

Conditional Value-at-Risk (CVaR) strategy

The advantage of the VaR approach over the maxmin strategy and the expected
value strategy (2.29) is obvious, as it takes into account the probability of bad
scenarios. However, it does not consider how bad accepted scenarios can be.
The so-named CVaR strategy takes into account the conditional expectation
of the objective function value cx+ qωyω above VaR. Let us consider model,

(CV aR) max V aR + B
∑

ω∈Ω w
ω(cx+ qωyω − V aR)+

s.t.
cx+ qωyω +Mνω ≥ V aR ∀ω ∈ Ω
b1 ≤ Ax ≤ b2

hω1 ≤ T ωx+W ωyω ≤ hω2 ∀ω ∈ Ω
∑

ω∈Ω

wωνω ≤ α

x, yω ≥ 0, ∀ω ∈ Ω
V aR ≥ 0
νω ∈ {0, 1} ∀ω ∈ Ω,

(2.38)
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where νω is a 0-1 variable with the same meaning as above, i.e., its value is 1
if the function value cx+ qωyω for scenario ω is below VaR and otherwise, is 0,
and M and B are given parameters. In the objective function, (z)+ gives the
positive value of the variable z.

As it can be seen in [82, 75] the traditional CVaR that has numerous
applications, where the VaR is maximized in [75] and the objective function
expected value and the weighted VaR are maximized in [82]. And, in both of
them, the conditional expectation of the objective function value below VaR
is minimized in a composite weighted way.

First order Stochastic Dominance strategy

"The concept of Stochastic Dominance Constraints (SDC) aims to identify
acceptable solutions for the problem under uncertainty and optimizing over
them. The random variable X is said to be stochastically smaller in first order
(respectively in second order) than a random variable Y , i.e., X �1 Y (resp.
X �2 Y ) iff Eh(X) ≤ Eh(Y ) for all nondecreasing (respectively nondecreasing
convex) functions h for which both expectations exist", see [49] (respectively,
[48]).

Let us consider the following model whose aim is to maximize an objective
function, whose vector of coefficients could be given by a general function
g(x, y) that, in our case, has been defined as the objective function expected
value over the set of scenarios, such that the function value cx + qωyω is not
below the threshold, say φp for a finite number of thresholds, say |P|, and a
probability of failure, say αp given for threshold φp, for p ∈ P, where P is the
so-named set of profiles. So, the first order stochastic dominance constraint
strategy (1SDC) can be implemented as follows,

(1SDC) max cx+
∑

ω∈Ω w
ωqωyω

s.t.
cx+ qωyω +Mνωp ≥ φp ∀ω ∈ Ω, p ∈ P
b1 ≤ Ax ≤ b2

hω1 ≤ T ωx+W ωyω ≤ hω2 ∀ω ∈ Ω
∑

ω∈Ω

wωνωp ≤ αp ∀p ∈ P

x, yω ≥ 0, ∀ω ∈ Ω
νωp ∈ {0, 1} ∀ω ∈ Ω, p ∈ P,

(2.39)

where the 0-1 variable νωp is defined as the above 0-1 variables, i.e., it takes the
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value 1 provided that the function value cx+qωyω does not reach the threshold
φp for the pth profile under scenario ω, for ω ∈ Ω, p ∈ P.

Second order Stochastic Dominance strategy

The second order stochastic dominance is very similar to the first order in terms
of the leading strategy, although there is a very important difference, namely,
second order stochastic dominance does not append 0-1 variables, which makes
it computationally more attractive.

The second-order stochastic dominance constraints strategy (2SDC) re-
quires a set of profiles given by the pairs (φp, ep) ∀p ∈ P, where ep is the
upper bound of the expected deficit of the objective value over the scenarios
on reaching the threshold φp. It can be implemented as follows,

(2SDC) max cx+
∑

ω∈Ω w
ωqωyω

s.t.
φp −

(

cx+ qωyω
)

≤ vωp ∀ω ∈ Ω, p ∈ P

b1 ≤ Ax ≤ b2

hω1 ≤ T ωx+W ωyω ≤ hω2 ∀ω ∈ Ω
∑

ω∈Ω

wωvωp ≤ ep ∀p ∈ P

x, yω ≥ 0, ∀ω ∈ Ω
vωp ≥ 0, ∀ω ∈ Ω, p ∈ P,

(2.40)

such that vωp is a non-negative variable equal to the difference (if it is positive)
between the threshold φp and the objective value for scenario ω, so named
objective value deficit on reaching threshold φp.

Notice that both stochastic dominance strategies, 1SDC and 2SDC,
i.e., models (2.39) and (2.40), have the advantage over the other strategies
presented above, in that they force the function cx + qωyω not to be smaller
than given thresholds all over the potential values of the function for given
probabilities of failure.

As an innovation in the two-stage environment, we present a combination
of the strategies VaR & SDC.
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Value-at-Risk & Stochastic Dominance strategy

Let us now consider the following model whose aim is to maximize the weighted
sum of the potential values-at-risk, for the given profiles, such that the function
value cx + qωyω is not below each of them for given probability of failure, αp

such that the value-at-risk for profile p is lower bounded by profile φp, for
p ∈ P.

(E − V aR) max
∑

p∈P γ
pV p

s.t.
cx+ qωyω +Mνωp ≥ V p ∀ω ∈ Ω, p ∈ P
b1 ≤ Ax ≤ b2

hω1 ≤ T ωx+W ωyω ≤ hω2 ∀ω ∈ Ω
∑

ω∈Ω

wωνωp ≤ αp ∀p ∈ P

x, yω ≥ 0 ∀ω ∈ Ω
V p ≥ φp p ∈ P
νωp ∈ {0, 1} ∀ω ∈ Ω, p ∈ P,

(2.41)

where γp is the weight attributed to profile p in the objective function to
maximize, and the 0-1 variable νωp takes the value 1 provided that the function
value cx+qωyω does not reach the minimum value V p, such that V p ≥ φp under
scenario ω, for ω ∈ Ω, p ∈ P. Notice that for |P| = 1, (E−V aR) model (2.41)
coincides with (VaR) model (2.37).

Solution considerations: We must point out that the models (2.37), (2.38),
(2.39) and (2.41) have the computational disadvantage (being stronger for
models (2.39) and (2.41) for |P| > 1 than for models (2.37) and (2.38)) that
model (2.33) has not, since they have constraints linking 0-1 variables from
different scenarios. In any case, a decomposition approach must be used for
problem solving in large-scale instances. So, we propose to use a Branch-
and-Fix Coordination approach that has proved to provide good results, see
[36, 38].

In order to test the different risk averse strategies, that we have taken
into consideration, we consider the portfolio optimization problem presented
in Section 2.4 in order to build a portfolio immunization model that will deal
with two sources of uncertainty.
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2.6 Two stage fixed-income security portfolio

immunization

Traditional immunization is a portfolio strategy based on the maxmin approach
to be used to match interest-rate risk of an asset portfolio against future
streams of liabilities, in order to achieve net zero market exposure. There is a
considerable amount of literature on portfolio immunization, see for instance
[14, 15], among many others. A bond portfolio is said to be immunized
under parallel interest-rate shifts when the market value of the portfolio is,
at least, as great as the present value (V ) of the liabilities to be satisfied and
the portfolio duration is matched with the liability duration. Bierwag and
Khang [15] prove that immunization can be seen as a maximization strategy
throughout all states of the art in which the objective of investors is to achieve
a guaranteed minimum return over the PH. According to Dantzig [25], this
maximum solution can be found by solving an equivalent linear problem that
depends on the TSIR hypothesis.

With this terminology, immunization is the maxmin strategy obtained as
the optimal solution of the following deterministic linear model,

max V

s.t.
n∑

i=1

vωi xi ≥ V ∀ω ∈ Ω (2.42)

n∑

i=1

xi = I0

V, xi ≥ 0 ∀i = 1, ..., n,

where the variable xi indicates the percentage of investment I0 that has to be
assigned to buy asset i, vωi denotes the portfolio value at the end of the PH
if an amount of I budget is invested at the starting of the PH in asset i and,
shortly afterwards, the interest rate becomes rω remaining unchanged until the
end of the PH; and, finally, V is the minimum portfolio value guaranteed at
the end of the PH.

In any case, it must be pointed out that the solution given by the DEM
model (2.42) is not exactly an immunized portfolio but an approximation to
it. This is due to the fact that only a finite number of scenarios (i.e., interest
rate shifts) is considered. One way to obtain a more accurate result is to
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include not only the biggest interest rate fluctuations but also, sufficiently
small shifts in interest rates. One of the most important factors for the
development of portfolio strategies to combat interest rate risk is the so-named
Dynamic Global Portfolio Immunization Theorem put forward by Khang [61],
under which the optimum strategy for ensuring the final value of a portfolio
at the end of a time period, regardless of changes in interest rates, is that
which matches Macaulay’s term planning horizon2 for that portfolio at all
times. Given the nature of the term of a portfolio, this strategy would imply
continuous readjustment. In any event, the optimality of the strategy is based
on the following assumptions, among others:

a. The interest rate structure has parallel changes, i.e., if the structure changes
from g(t) to g∗(t, β), then

g∗(t, β) = g(t) + β.

b. There are no transaction costs. This assumption is extremely important,
since if there are transaction costs and those costs are high, then the
continuous readjustment of the portfolio would not be viable.

c. The yield on bonds depends only on the current interest rate, with no need
to take into account any risk of default.

The first of these assumptions avoids the risk of underestimating the
performance of the structure, known as the Risk of Immunization, see [44].
The assumption of no transaction costs is crucial in a dynamic context, since
the strategy of continuous readjustment may not be optimum if transaction
costs are considered, given the high costs that it would entail. Furthermore,
given the third assumption, there is no analysis in the context of bonds with
different credit ratings and therefore, with a positive associated risk of default.
We are going to break these last two assumptions to check whether they are
crucial to its validity.

2The Macaulay duration is the weighted-average term to maturity of the cash flows from
a bond, where the weights are the present value of the cash flow divided by the price, such
that

di =

∑i

s=1
(ts − t0)Coupon · Discount
∑i

s=1
Coupon · Discount

In a zero-coupon bond the Macaulay duration is equal to the bonds maturity.
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A two-stage stochastic extension of the immunization model is presented
in model (DEM2), but, previously, the following notation is introduced:

vωi0, final value of an investment of Pi0 monetary units in security i made
at the initial period, t0, if the instantaneous spot interest rate changes,
shortly afterwards from Rit0 to Rω

it1
and no additional unexpected interest

rate change takes place until the end of the PH under scenario ω. It is
calculated as follows,

vωi0 =
∑tk
τ=t1 C

ω
iτER

ω
i (t0, τ)

ERω
i (t0, tk)

, (2.43)

where i ∈ I, ω ∈ Ω, and ERω
i (t0, τ) =

∏τ
s=t0

(1 +Rω
is · h)−1 .

Then, the immunization at period t0 is formulated by the constraints
∑

i∈I

vωi0zi0 ≥ V0 ∀ω ∈ Ω,

such that it is the big substantive difference with the two-stage stochastic
model introduced in Section 4.

So, the two-stage maxmin DEM is as follows,

(DEM2) max V0 +
∑

ω∈Ω

wωV ω
tk

(2.44)

s.t. constraints (2.18) − (2.28) and
∑

i∈I

vωi0zi0 ≥ V0 ∀ω ∈ Ω (2.45)

V0 ≥ 0, (2.46)

where the objective function (2.44) to maximize gives the investment value at
the end of the initial period t0 and the expected final value of the portfolio
over the set of scenarios. Additionally, constraints (2.45) are the key to the
immunization strategy at the initial period, since they ensure a minimum
wealth under all the future uncertainties.

2.7 A new approach for mean-risk

immunization

As a new two-stage approach in the risk adverse environment, we will
introduce a hybrid mean-risk and Value-at-Risk (VaR) model for optimizing



2.7. A NEW APPROACH FOR MEAN-RISK IMMUNIZATION 37

immunization strategies over the scenarios, such that the portfolio’s value at
the end of the initial period is not smaller than VaR with a given probability
of failure α, over the scenarios. For this purpose, we will change the objective
function (2.44) and constraints (2.45). Firstly, we consider a 0-1 variable per
scenario, νω, such that, as before, it will take value 1 if the value of the portfolio
at the end of the initial period under scenario ω,

∑

i∈I v
ω
i0zi0, is smaller than

V0, and 0, otherwise. We point out that we introduce these 0-1 variables in
order to control by some means the strict behavior of constraints (2.45). The
new set of constraints that replace (2.45) and since now they are second stage
constraints, they can be expressed as follows,

∑

i∈I

zi,0v
ω
i,0 +Mνω ≥ V0 ∀ω ∈ Ω,

where M is a parameter to calibrate the model. We have experimented with
the choice of M as the maximum value between V0 and V ω

tk
, ω ∈ Ω, and the

results are satisfactory.

We optimize the model subject to the immunization constraints over the
scenarios, such that the sum of their failure probabilities is less than α which
depends on the risk averseness of the investor. To ensure this, the constraint
to introduce can be expressed,

∑

ω∈Ω

wωνω ≤ α.

Then, the new DEM is as follows,

(DEM3) max V0 +
∑

ω∈Ω

wωV ω
tk

(2.47)

s.t. constraints (2.18) − (2.28) and
∑

i∈I

vωi0zi0 +Mνω ≥ V0 ∀ω ∈ Ω (2.48)

∑

ω∈Ω

wωνω ≤ α (2.49)

V0 ≥ 0 (2.50)

νω ∈ {0, 1} ∀ω ∈ Ω. (2.51)

Note: The parameters M and α must be adequately chosen to calibrate
the model.
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Solution considerations: Model (DEM3) is a two-stage stochastic mixed
0-1 optimization and then, a further computational effort must be made, since
plain use of even state-of-the-art optimization engines cannot be affordable
given the large-scale nature of the problem. Alternatively, we propose some
types of decomposition approaches based on Benders decomposition, Branch-
and-Fix Coordination and others that have been proved to provide good results
in the field, see [35, 36, 38].

The following section constitutes one of the main contributions of this
memory.

2.8 A more accurate solution: a multistage

stochastic scheme

Multistage maxmin immunization strategy

In the previous sections we have presented two-stage models where the
immunization condition is imposed on precisely at the initial period, t0.
However, the immunization strategy should prevail through out all the periods
of the PH, given the uncertainty of the main parameters all over the horizon.
So, furthermore, some corrective action should be implemented between
periods t and t+1, then multistage stochastic models become more appropriate.

In the general formulation of a multistage model, decisions on each
stage have to be made stage-wise. For example, first stage variables are
selected before observing the realization of uncertain parameters, through
the occurrence of the scenarios. After having decided on first stage and
having observed each realization of uncertain parameters, the second stage (or
recourse) decision has to be made. After having decided on a second stage and
having observed each realization of uncertain parameters, the next (third) stage
decision has to be made, and so on. At each stage, there are variables which
correspond to decisions that have to be made without anticipation of some of
future problem data, i.e., they take the same value under each scenario that
belong to the same group for each stage (i.e., the so-named nonanticipativity
constraints must be satisfied).

Each node, say g, in Figure 2.2 represents a point in time where a decision
can be made. Once a decision is made, some contingencies may occur, and
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t0 = 0

0

x0, z0, V 0

t1 = 1

1

x1, z1, V 1

2

x2, z2, V 2

t2 = 2

6

x6, z6, V 6

5

x5, z5, V 5

4

x4, z4, V 4

3

x3, z3, V 3

t3 = 3

14 x14, z14, V 14 ω=8

13 x13, z13, V 13 ω=7

12 x12, z12, V 12 ω=6

11 x11, z11, V 11 ω=5

10 x10, z10, V 10 ω=4

9 x9, z9, V 9 ω=3

8 x8, z8, V 8 ω=2

7 x7, z7, V 7 ω=1

Scenarios

Figure 2.2: Multistage scenario tree

information related to these contingencies is available at the beginning of each
stage. In this context, a stage is a point in time where a decision is made and,
in some cases, can be included by a subset of consecutive time periods. In this
example, there are |T | = 4 stages, and T = {t0 = 0, · · · , tk = 3}. At each
stage, there are some types of vectors of decision variables, namely, x, z and
V . Let also G denote the set of scenario groups, and Gt the subset of scenario
groups that belong to stage t, such that G = ∪t∈T Gt. The structure of this
information is visualized as a tree where each root-to-leaf path represents one
specific scenario, and corresponds to one realization of the whole set of the
uncertain parameters. In this example, we have |Ω| = 8 scenarios and |G| = 15
scenario groups.

Notice that the scenario group concept corresponds to the node concept
in the underlying scenario tree. However, it can sometimes be useful to work
with scenario groups instead of nodes if, for example, we want to split the set
of scenarios into different subsets. Two scenarios belong to the same group in
a given stage provided that they have the same realizations of the uncertain
parameters up to the stage. Ωg denotes the set of scenarios that belong to
group g, for g ∈ G.

With this notation, for example, scenario group g = 5 corresponds to the
scenario set Ω5 = {5, 6}. Notice also that there is an identity between the
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scenario groups of the last stage and the scenarios, then scenario group g = 7
corresponds to the first scenario, Ω7 = {1}, and scenario group g = 14 is
exactly the last scenario, Ω14 = {8}.

We will use the boldface letter to denote the corresponding group and
distinguish it from the scenarios. t(g) denotes the stage of scenario group g,
such that, g ∈ Gt(g). π(g) indicates the immediate ancestor group of group g,
such that π(g) ∈ Gt(g)−1, for g ∈ G − {G0}. And, finally, Sg, denotes the set of
successor groups of group g, where, s(g) ∈ Sg ⊆ Gt(g)+1.

The following additional notation is used in the model.

Parameters

wg, likelihood of scenario group g, for g ∈ Gt, t ∈ T , computed as
∑

ω∈Ωg
wω.

rg, risk-free interest rate under scenario group g, for g ∈ Gt, t ∈ T .

qg
j , measure of risk calculated as the probability of default of the securities of

class j under scenario group g, for g ∈ Gt, t ∈ T , j ∈ J .

Rg
i , real interest rate (as a fraction of one) for security i of class j under

scenario group g, for g ∈ Gt, t ∈ T , i ∈ Ij, j ∈ J . It is calculated as
follows,

Rg
i = rg +

(1 + rg)(1 − zi)q
g
j

1 − (1 − zi)q
g
j

.

Cg
i , payment stream generated by one unit of security i under scenario group

g, for g ∈ Gt, t ∈ T − {t0}, i ∈ Ij, j ∈ J . It is calculated as follows,

Cg
i =







ci · h, t(g) < t < ti, i ∈ Ij : qg
j < 1

Fi + ci · h, t = ti, i ∈ Ij : qg
j < 1

zi · Fi t = t(g), i ∈ Ij : qπ(g)
j < 1 and qg

j = 1
0, otherwise,

(2.52)

where h is the constant length of each sub-interval (fraction of a year) and
qg
j is the default probability for class j under scenario group g. Notice

that qg
j = 1 means that in stage t(g), the class of securities j is in

default, and then Cg
i = ziFi, at period t = t(g), and Cg

iτ = 0, for
τ = t(g) + 1, . . . , tk, for all the securities i ∈ Ij.
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P g
i , unit price of security i under scenario group g, for g ∈ Gt, t ∈ T − {t0},

i ∈ Ij, j ∈ J . It is calculated as follows,

P g
i =

∑

t(g)<τ≤ti

Cg
iτER

g
i (t(g), τ),

where t(g) is the period to which scenario group g belongs to, i.e.,
g ∈ Gt(g), and τ, denotes the corresponding element in the payment
stream Cg

i . Finally, ERg
i (t(g), τ) = (1 +Rg

i )
−(τ−t(g)+1).

P+g
i , unit purchase price of security i under scenario group g, for i ∈ Ij, j ∈ J ,

g ∈ Gt, t ∈ T − {tk}, where P+g
i = (1 + β)P g

i .

P+g
i , unit selling price of security i under scenario group g, for i ∈ Ij, j ∈ J ,

g ∈ Gt, t ∈ T − {t0}, where P−g
i = (1 − β)P g

i .

vωi,t(g), final value under scenario group g of an investment of P g
i monetary

units in security i made at period t(g), if the instantaneous real interest
rate changes, just afterwards, from Rg

i until Rω
i at the end of the PH, for

i ∈ I, g ∈ Gt(g), ω ∈ Ωg. It is calculated as follows,

vωi,t(g) =

∑tk
τ=t(g)+1 C

g
i,τER

ω
i (t(g), τ)

ERω
i (t(g), tk)

, (2.53)

where ERω
i (t(g), τ) =

∏τ
s=t(g)(1 +Rω

i,s · h)−1, ω ∈ Ωg.

Variables:

x+g
i , volume of security i purchased under scenario group g, for g ∈ Gt, t ∈ T ,

i ∈ I.

x−g
i , volume of security i sold under scenario group g, for g ∈ Gt, t ∈ T −{t0},

i ∈ I.

zg
i , volume of security i to be held in the portfolio following the transactions

conducted under scenario group g, for g ∈ Gt, t ∈ T , i ∈ I.

V g, final value of the portfolio under scenario group g for g ∈ Gt, t ∈ T .

The multistage DEM that includes the immunization constraints under
each scenario group to maximize the investment value at the end of the initial
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period t0 and the expected final value portfolio over the set of scenarios in a
multistage approach and risk adverse environment with the maxmin strategy,
is given as follows,

(DEM4) max V 0 +
tk∑

t=t1

∑

g∈Gt

wgV g (2.54)

s.t.

x0
i = z0

i ∀i ∈ I (2.55)
∑

i∈I

P+0
i x+0

i = I0 (2.56)

∑

i∈I

vωi0z
0
i ≥ V 0 ∀ω ∈ Ω0 = Ω (2.57)

z
π(g)
i + x+g

i − x−g
i = zg

i ∀i ∈ I g ∈ Gt, t = t1, . . . , tk−1 (2.58)

x−g

i:ti=t = z
π(g)
i:ti=t ∀i ∈ I, g ∈ Gt, t = t1 . . . , tk (2.59)

x−g
i = z

π(g)
i ∀i ∈ I : tk < ti, g ∈ Gtk (2.60)

∑

i∈I:t<ti

vωi,t(g)z
g
i ≥ V g ∀ω ∈ Ωg, g ∈ Gt, t = t1, . . . , tk−1 (2.61)

∑

i∈I:t<ti

P+g
i x+g

i −
∑

i∈I:t<ti

P+g
i x−g

i =
∑

i∈I:t≤ti

Cg
i z

π(g)
i ∀g ∈ Gt, t = t1, . . . , tk−1 (2.62)

∑

i∈I:tk<ti

P−g
i x−g

i +
∑

i∈I:tk≤ti

Cg
i z

π(g)
i = V g ∀g ∈ Gtk (2.63)

0 ≤ x+g
i ∀i ∈ I, g ∈ Gt, t = t0, . . . , tk−1 (2.64)

0 ≤ zg
i , x

−g
i ∀i ∈ I, g ∈ Gt, t = t0, . . . , tk (2.65)

0 ≤ V g ∀g ∈ Gt, t = t0, . . . , tk. (2.66)

Equations (2.55)-(2.55) are the same as (2.3)-(2.4) in model (DEM1),
but for the multistage invironment. Constraints (2.57) are the key to the
immunization strategy at initial period, i.e., they ensure a minimum wealth
under all the future uncertainties. Constraints (2.58)-(2.60) are balance
equations for each scenario group that link the volume of securities purchased
and sold in each period with the volume of securities in the portfolio.
Constraints (2.61) are the key to the immunization strategy at each scenario
group of each decision period, that ensure a minimum value under all the future
scenarios. Equations (2.62)-(2.63) are also the same as in model (DEM1), but
also for the multistage environment.
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Notice that model (DEM4) is an extension of the two-stage maxmin
strategy given by model (DEM2) to the multistage scheme, where α = 0,
i.e., over the 100% of the scenarios. In following sections we introduce a
more flexible scheme that allows an optimization of the VaR strategy given
a selected class of potential (and variable) thresholds defined under different
scenario groups and given probabilities of failure.

Multistage Stochastic Dominance Constraints (SDC)
strategy

The extension of the two-stage first order stochastic dominance strategy to a
multistage scheme is based on the choice of a threshold p from profile class P
to satisfy given probabilities of failure, αp, p ∈ P. Moreover a 0 − 1 variable
νωp for each pair of threshold and scenario (notice that the scenario groups of
last stage are the scenarios) is introduced in order to optimize the stochastic
dominance strategy. It is defined as follows,

νωp =

{

1 for V ω
tk
< φp

0 otherwise,

for ω ∈ Ω, p ∈ P. The DEM to maximize the expected final value portfolio
over the set of scenarios in a multistage environment is as follows,

(DEM5) max
∑

g∈Gtk

wgV g =
∑

ω∈Ω

wωV ω
tk

(2.67)

s.t. (2.68)

constraints (2.55), (2.56), (2.58) − (2.60), (2.62) − (2.66) and

V g +Mνgp ≥ φp ∀g ∈ Gtk , p ∈ P (2.69)
∑

g∈Gtk

wgνgp ≤ αp ∀p ∈ P (2.70)

V g ≥ 0 ∀g ∈ Gtk (2.71)

νgp ∈ {0, 1} ∀g ∈ Gtk , p ∈ P. (2.72)

Notice that model (DEM5) does not consider the maxmin strategy related
constraints (2.57) and (2.61) from model (DEM4), since instead it considers
the stochastic dominance constraints (2.69)-(2.70).
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Multistage VaR & SDC

Following the risk averse two-stage models introduced in Section 2.5, now we
introduce an extension of the multistage hybrid VaR strategy. Notice that
the multistage maxmin model (DEM4) provides a 0% VaR strategy (i.e., over
all the scenarios), by introducing an immunization set of constraints for each
scenario group at each decision period.

Let us consider the class of threshold profiles P as the set of minimum
threshold profiles φp to be satisfied. In the most ambitious situation of
modeling, we could choose this set as potential minimum thresholds to satisfy
under each scenario group at each decision stage, i.e., P = {φg,g ∈ Gt, t =
t0, · · · , tk−1}. So, in this case, |P| = |Gt0 | + |Gt1 | + · · · + |Gtk−1

| and, then, the
minimum threshold, φg, is reached by V p with probability of failure αp. Then,
the set of immunization constraints defined for each p ∈ P are as follows,
∑

i∈I:t<ti

vωi,t(p)z
p
i +Mνωp ≥ V p ∀ω ∈ Ωg, p = g, g ∈ Gt, t = t0, . . . , tk−1,

where the 0 − 1 variable νωp is defined as follows,

νωp =

{

1 for
∑

i∈I:t<ti v
ω
i,t(p)z

p
i < V p ∀ω ∈ Ωg p = g, g ∈ Gt, t = t0, . . . , tk−1

0 otherwise.

Moreover, the constraint
∑

ω∈Ωp

wωνωp ≤ αp ∀p ∈ P

forces the optimization with a given probability of failure, αp. The new DEM
is defined as follows,

(DEM6) max
∑

p∈P

γpV p +
∑

g∈Gtk

wgV g (2.73)

s.t. constraints (2.55), (2.56), (2.58) − (2.60), (2.62) − (2.66) and
∑

i∈I:t<ti

vωi,t(p)z
p
i +Mνωp ≥ V p∀ω ∈ Ωgp = g,g ∈ Gt, t = t0, . . . , tk−1 (2.74)

∑

ω∈Ωp

wωνωp ≤ αp ∀p ∈ P (2.75)

νωp ∈ {0, 1} ∀ω ∈ Ωg p = g, g ∈ Gt, t = t0, . . . , tk−1 (2.76)

V p ≥ φp ∀p ∈ P. (2.77)
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With this choice of class P , there are |Ω| · (|T | − 1) 0 − 1 variables
and immunization constraints (2.74), and |P| constraints (2.75) to force
the optimization for the different probabilities of failure. Notice that the
cardinality of class P may be reduced and then, the computational effort for
the solution of (DEM6), by selecting a subset of scenario groups in a number
which is not as ambitious as that given above. We consider that this reduction
can be model dependent.

In the particular case of φp = 0 and the probable vωi,t(p)z
p
i ≥ 0, ∀p ∈ P (or

for |P| = 0), then model (DEM6) (2.73)-(2.77) is as model (DEM4) (2.54)-
(2.66), i.e, the multistage maxmin strategy. Alternatively, model (DEM6) for
|P| = 1 is the so-named multistage VaR strategy.

Solution considerations: It is also well known that for a large set of scenarios
and a large set of securities the kind of models as (DEM5) and (DEM6)
become large-scale multistage mixed 0-1 linear problems. In this case, we
have to consider alternative decomposition methods to the traditional plain
using of the state-of-the-art optimization engine of choice. We propose to use
an adaptation of our Cluster-based Benders Decomposition to the multistage
environment and to integrate it in our Branch-and-Fix Coordination approach
for solving large scale multi-stage stochastic mixed 0-1 linear models, that
has been proved to produce good results in reasonable computing time, see
[6, 36, 39, 40].

2.9 Case study

We proceed to illustrate the main strategies (see a summary in Tables 2.25 and
2.26) introduced in the previous sections by applying them to an illustrative
case, assuming that the planning horizon (18 months) is divided into three
periods of equal length (6 months), and the portfolio rebalancing is only
allowed at the beginning of each sub-interval, i.e., T = {t0 = 0, t1 = 0.5, t2 =
1, t3 = 1.5} and k = 3. We assume that at the beginning of the PH the current
interest rate is 1.5% (compounded semiannually) and the interest rates may
move upwards and downwards by 100 basic points, see Figure 2.3. Also, the
expected interest rate outstanding at the beginning of each sub-interval is the
current interest rate. The initial budget is 1 million of monetary units.

We will assume that the transaction costs incurred at each portfolio
rearrangement are a percentage β of the volume trade at each period. Principal
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r=1.5%

r=0.5% probability = 0.25

r=1.5% probability = 0.35

r=2.5% probability = 0.4

Figure 2.3: Outcomes for the interest rate variation

and coupon repayments do not generate any transaction cost although other
assumptions could easily be implemented. We will suppose that there are
proportional transaction costs (β) of 0.15%.

We set up a market comprising eight different bond clases, four with a high
credit rating (AAA) -government bonds, for instance- and the other four from
a financial institution with a high credit risk (for example, BB, B or CCC).
We consider eight possible classes of assets, seven of them are shown in Tables
2.1, 2.2 and 2.3 plus the class of Default (D), the last one is shown in Table
2.1, now denoted by I8.

Table 2.5: Case study data

Class Credit Default Recovery Annual
j rating Prob: q Rate: z Coupon: c
1 AAA 0.0000 0.694 1.5%
5 BB 0.0097 0.374 2.11857%
6 B 0.0493 0.374 4.77999%
7 CCC 0.2798 0.374 23.3719%

In order to analyze what an investor would do in different situations and
different markets, we will consider three instances in the case study. In Instance
1, we consider bonds i for i ∈ I1 = {1, 2, 3, 4}, i.e., they are bonds in the first
class (high credit rating, AAA), and bonds i for i ∈ I7 = {1′, 2′, 3′, 4′}, i.e.,
bonds in the class CCC (very high credit risk). In Instance 2, instead, we
consider bonds i in the first class (high credit rating, AAA), i.e., i ∈ I1 =
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{1, 2, 3, 4}, and bonds i for i ∈ I6 = {1′, 2′, 3′, 4′}, i.e., bonds in the class B
(quite high credit risk). In Instance 3 we consider bonds in the first class and
bonds i for i ∈ I5 = {1′, 2′, 3′, 4′}, i.e., bonds in the class BB (some credit
risk).

We also assume that the market interest rate in force is 1.5% and each bond
will have half-yearly (h = 0.5) coupon payments according to its real interest
rate level. Some of the characteristics of these two classes of assets are taken
from Tables 2.3 and 2.4, and are shown in Table 2.5.

Table 2.6: Market to consider in the case study

Asset Maturity Instance 1 Instance 2 Instance 3
i ∈ Ij time: ti class: j class: j class: j

1 0.5 1 1 1
1’ 0.5 7 6 5
2 1 1 1 1
2’ 1 7 6 5
3 1.5 1 1 1
3’ 1.5 7 6 5
4 2 1 1 1
4’ 2 7 6 5

Deterministic linear model

Table 2.7 shows the optimal solution of the deterministic model (LO) (2.2)-
(2.13), where the aim is to maximize the final value of the portfolio with bonds
AAA and CCC in Instance 1 and bonds AAA and B in Instance 2.

Table 2.7: Deterministic optimal solution of (LO) model

Instance s ts z1ts
z1′ts

z2ts
z2′ts

z3ts
z3′ts

z4ts
z4′ts

0 0 0 0 0 0 0 9985.02 0 0
1 1 0.5 - - 0 0 0 11134.2 0 0

2 1 - - - - 0 12415.7 0 0
s ts z1ts

z1′ts
z2ts

z2′ts
z3ts

z3′ts
z4ts

z4′ts

0 0 0 0 0 0 0 9985.02 0 0
2 1 0.5 - - 0 0 0 10220.9 0 0

2 1 - - - - 0 10462.4 0 0
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In both instances, the future posibilities are not taken into account, so,
none of the risks actually affect the optimal solution, since it is a deterministic
strategy. It consists of investing, in the initial period t0 = 0, all in the risky
bond that matures on the PH, i = 3′. And then, reinvesting all the coupon
payments in the same bond throughout all the decision stages t1 = 1 and
t2 = 1.5. In this way we can receive all the coupon payments but avoiding
transaction costs. In any case, it must be stressed that all the securities in
which this strategy proposes to invest, in both instances, are risky securities.
Remind that the normal numbering for the securities denotes government
bonds and the prime numbering denotes bonds issued by financial institutions.
This is not a surprise given that risky securities offer higher returns, and the
objective function does not penalize risk.

Two-stage scheme

Let us consider a two-stage scheme which assumes that changes may happen
at the beginning of the second decision stage, and will stay in that way until
the end of the PH. It has its advantages and disadvantages. On the one hand,
one might think that it is better to behave in this way (as in finance the new
information is so important) and build another two-stage model at the second
stage in a rolling horizon approach. But, on the other hand, this scheme
can produce very myopic decisions, since it makes decisions while taking into
account very little, the future possibilities.

We assume that default probabilities may change over time and can be
different depending on the scenario. Recovery rates, however will be constant
for each class in our case study, i.e, zj = zi = zl, ∀i, l ∈ Ij. The recovery
rate values for the government bonds, AAA, is taken from Table 2.5 being
z1 = 0.694. For the second classes in both instances, i.e., the financial bonds,
the values are also taken from Table 2.5, they are z5 = 0.374, z6 = 0.374 and
z7 = 0.374, respectively. Table 2.6 shows the market to consider in this section
in both cases.

In order to structure the possibilities in the second source of uncertainty,
we know that it may change in different ways. Each one of these changes
has a transition probability, which is the conditional probability, p(S2|S1), of
transiting to state S2, given the state S1. We will assume that each of the
asset classes will have several possibilities for the next maturity period.

The AAA rated bonds may have the two possibilities depicted in Figure
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AAA

AAA AAA probability = 0.9194

AA AA probability = 0.0806

Figure 2.4: Rating variation for AAA bonds in the case study

2.4. This means that a AAA rated bond (class j = 1) is much more likely
to stay in the same rating than changing. But in unusual circumstances it
would change, and would go down to another quite safe stage. In particular,
p(AAA/AAA) = 0.9194, and p(AA/AAA) = 0.0806. Moreover, as shown in
Table 2.3, the probabilities of default in these classes are q1,t = 0.00, and
q2,t = 0.02, ∀t = t1, ..., t

i, i ∈ Ij, j = 1, 2.

B

BB BB probability = 0.06535

B B probability = 0.8753

D D probability = 0.0593

Figure 2.5: Rating variation for B bonds in the case study

The B rated bonds (class j = 6) may have the possibilities in the
future depicted in Figure 2.5. In particular, the transition probabilities are
p(BB/B) = 0.06535, p(B/B) = 0.8753 and p(D/B) = 0.0593. As shown
in Table 2.3, the probabilities of default in these classes are q5,t = 0.0097,
q6,t = 0.0493 and q8,t = 1, ∀t = t1, ..., t

i, i ∈ Ij, j = 5, 6, 8.

CCC

B B probability = 0.1339

CCC CCC probability = 0.53395

D D probability = 0.33215

Figure 2.6: Rating variation for CCC bonds in the case study
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The CCC rated bonds (class j = 7) may have also the possibilities in the
future depicted in Figure 2.6. In particular, the transition probabilities are
p(B/CCC) = 0.1339, p(CCC/CCC) = 0.53395 and p(D/CCC) = 0.33215.
Notice that a CCC rated bond is much more likely to change into default,
D than the B rated bonds (p(D/B) = 0.0593). Moreover, as shown in Table
2.3, the probabilities of default in these classes are q5,t = 0.097, q6,t = 0.0493,
q7,t = 0.2798 and q8,t = 1, ∀t = t1, ..., t

i, i ∈ Ij, j = 6, 7, 8.

Table 2.8: Generic state description.

Instance S1 S2

1 CCC B

2 B BB

We consider two different instances with similar shape. We have a safe
asset and a risky one. In order to describe all the instances in one go, we will
define the generic states S1 and S2 that will be S1 = CCC and S2 = B for
Instance 1, and S1 = B and S2 = BB for Instance 2 as it is shown in Table
2.8.

Figure 2.7 depicts the 18 scenarios considered in the two stage models,
where the classes of bonds are AAA (j = 1) and S1. In order to build
the scenario tree we have considered three aspects in which the outcomes
might change, namely, J1 = {1, 2} (the possible rating of the first asset
class), J j = {j − 1, j, 8} (the possible rating of the second asset class), and
r = {0.5%, 1.5%, 2.5%} (the risk free interest rate level). So we define the set of
scenarios as the cartesian product of those three outcomes, (Ω = J1 × J j × r),
that for simplicity we assume independent risk. Then, the probability wω

of scenario ω is computed as the product of the probabilities of the three
independent outcomes.
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AAA,S1,1.5%

AAA,S2,0.5% AAA,S2,0.5% AAA,S2,0.5% w1 = 0.22985 × p(S2/S1)

AAA,S2,1.5% AAA,S2,1.5% AAA,S2,1.5% w1 = 0.32179 × p(S2/S1)

AAA,S2,2.5% AAA,S2,2.5% AAA,S2,2.5% w1 = 0.36776 × p(S2/S1)

AA,S2,0.5% AA,S2,0.5% AA,S2,0.5% w1 = 0.02015 × p(S2/S1)

AA,S2,1.5% AA,S2,1.5% AA,S2,1.5% w1 = 0.02821 × p(S2/S1)

AA,S2,2.5% AA,S2,2.5% AA,S2,2.5% w1 = 0.03224 × p(S2/S1)

AAA,S1,0.5% AAA,S1,0.5% AAA,S1,0.5% w1 = 0.22985 × p(S1/S1)

AAA,S1,1.5% AAA,S1,1.5% AAA,S1,1.5% w1 = 0.32179 × p(S1/S1)

AAA,S1,2.5% AAA,S1,2.5% AAA,S1,2.5% w1 = 0.36776 × p(S1/S1)

AA,S1,0.5% AA,S1,0.5% AA,S1,0.5% w1 = 0.02015 × p(S1/S1)

AA,S1,1.5% AA,S1,1.5% AA,S1,1.5% w1 = 0.02821 × p(S1/S1)

AA,S1,2.5% AA,S1,2.5% AA,S1,2.5% w1 = 0.03224 × p(S1/S1)

AAA,D,0.5% AAA,D,0.5% AAA,D,0.5% w1 = 0.22985 × p(D/S1)

AAA,D,1.5% AAA,D,1.5% AAA,D,1.5% w1 = 0.32179 × p(D/S1)

AAA,D,2.5% AAA,D,2.5% AAA,D,2.5% w1 = 0.36776 × p(D/S1)

AA,D,0.5% AA,D,0.5% AA,D,0.5% w1 = 0.02015 × p(D/S1)

AA,D,1.5% AA,D,1.5% AA,D,1.5% w1 = 0.02821 × p(D/S1)

AA,D,2.5% AA,D,2.5% AA,D,2.5% w1 = 0.03224 × p(D/S1)

Figure 2.7: Two-stage scenario tree for the rating and interest rate variation.
Instances 1 and 2

Two-stage stochastic model (DEM1)

Table 2.9 shows the stochastic optimal solution of the two stage model (DEM1)
(2.17)-(2.28) for optimizing strategies under the two sources of uncertainty and
considering the two-stage scenario tree information given in Figure 2.7, with
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AAA and CCC bonds, i.e., the Instance 1 of the case study. The aim of model
(DEM1) is to maximize the expected final value of the portfolio, so, in a risk
neutral environment.

Table 2.9: Stochastic optimal solution for model (DEM1). Instance 1

ω s ts zω
1ts

zω
1′ts

zω
2ts

zω
2′ts

zω
3ts

zω
3′ts

zω
4ts

zω
4′ts

0 0 9985.02 0 0 0 0 0 0 0
1, 4 1 0.5 - - 0 0 0 8453.20 0 0

2 1 - - - - 0 9341.70 0 0
2, 5 1 0.5 - - 0 0 0 8534.94 0 0

2 1 - - - - 0 9436.58 0 0
3, 6 1 0.5 - - 0 0 0 8617.03 0 0

2 1 - - - - 0 9531.93 0 0
7, 10 1 0.5 - - 0 0 0 9941.53 0 0

2 1 - - - - 0 11079.50 0 0
8, 11 1 0.5 - - 0 0 0 10044.80 0 0

2 1 - - - - 0 11200.90 0 0
9, 12 1 0.5 - - 0 0 0 10148.60 0 0

2 1 - - - - 0 11323.00 0 0
13 1 0.5 - - 0 0 9945.76 0 0 0

2 1 - - - - 10019.90 0 0 0
14 1 0.5 - - 0 0 10044.80 0 0 0

2 1 - - - - 10120.10 0 0 0
15 1 0.5 - - 0 0 10144.40 0 0 0

2 1 - - - - 10220.80 0 0 0
16 1 0.5 - - 0 0 10007.00 0 0 0

2 1 - - - - 10081.80 0 0 0
17 1 0.5 - - 0 0 10107.00 0 0 0

2 1 - - - - 10182.90 0 0 0
18 1 0.5 - - 0 0 10207.50 0 0 0

2 1 - - - - 10284.60 0 0 0

In this case, the optimal strategy at least deals with the risk of default at
the initial period. As it is possible to have a defaulted bond in t1, the optimal
solution ensures a minimum wealth at the beginning (by investing everything
in the sure asset i = 1 that matures in the next period t1 = 1, thus avoiding
all the transaction costs). After that, the strategy invests in the sure or the
risky asset depending on the probability of default of the asset classes in the
corresponding scenario. In those scenarios in which any of the bonds in the
market may default, it invests everything in the sure bond that matures on the
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PH, i = 3. In the other case, this strategy invests everything in the risky asset
that also matures at the PH, i = 3′. Notice also that the optimal solution
proposes the same strategy under different pairs of scenarios, ω = 1, 4; 2, 5;
3, 6; 7, 10; 8, 11 or 9, 12.

The optimal solution of model (DEM1) for Instance 2 (i.e., by considering
the two-stage scenario tree with S1 = B and S2 = BB), shows a similar
behaviour. In this case, the optimal solution is also to invest safe and short at
the beginning and reinvest long in the next periods, investing in safe or risky
depending on the risk of default of the classes in the corresponding scenario.
The difference between both strategies comes from the fact that the risky
asset pays different coupons. Notice, in any case, that the reinvestment of
those payments is exactly the same.

Mean-risk immunization model (DEM-MR)

The results obtained by implementing the approach given in model (DEM-
MR) (2.34)-(2.36) are the same as those obtained in the optimization of the
two-stage stochastic model (DEM1).

The 0-1 variables reach their optimum value depending on the parameter
φ. If φ is bigger than approximately the V -s involved, they all take value 0.
In the other case, their optimum value is 1. This result is due to the aim of
this approach, that is to ensure the minimum wealth that we would get in
the model to immunize the portfolio. As in our specific case study we have
modelized the default as a particular scenario, we are already dealing in a
certain way with the risk of default and avoiding those decisions that do not
exceed minimum wealth.

In any case, independently of the value of parameter φ, the optimal strategy
consists of investing safe and short at the beginning and reinvesting long in
the next periods, investing in safe or risky depending on the risk of default of
the classes in the corresponding scenario.

Two-stage immunization model (DEM2)

Table 2.10 shows the optimal solution to the two-stage stochastic model
(DEM2) (2.44)-(2.46) for optimizing immunization strategies under the two
sources of uncertainty at the initial period t0 = 0, for Instance 1 (i.e., the
two-stage scenario tree information given in Figure 2.7 with S1 = CCC and
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Table 2.10: Stochastic optimal solution for model (DEM2). Instance 1

ω s ts zω
1ts

zω
1′ts

zω
2ts

zω
2′ts

zω
3ts

zω
3′ts

zω
4ts

zω
4′ts

0 0 0 0 0 0 9758.12 0 226.91 0
1 1 0.5 - - 0 0 0 8525.02 0 0

2 1 - - - - 0 9421.08 0 0
2 1 0.5 - - 0 0 0 8522.23 0 0

2 1 - - - - 0 9422.53 0 0
3 1 0.5 - - 0 0 0 8519.44 0 0

2 1 - - - - 0 9423.98 0 0
4 1 0.5 - - 0 0 0 8472.64 0 0

2 1 - - - - 0 9363.18 0 0
5 1 0.5 - - 0 0 0 8469.61 0 0

2 1 - - - - 0 9364.35 0 0
6 1 0.5 - - 0 0 0 8466.60 0 0

2 1 - - - - 0 9365.52 0 0
7 1 0.5 - - 0 0 0 10026.00 0 0

2 1 - - - - 0 11173.70 0 0
8 1 0.5 - - 0 0 0 10029.90 0 0

2 1 - - - - 0 11184.30 0 0
9 1 0.5 - - 0 0 0 10033.70 0 0

2 1 - - - - 0 11194.80 0 0
10 1 0.5 - - 0 0 0 9964.39 0 0

2 1 - - - - 0 11105.00 0 0
11 1 0.5 - - 0 0 0 9967.96 0 0

2 1 - - - - 0 1115.20 0 0
12 1 0.5 - - 0 0 0 9971.45 0 0

2 1 - - - - 0 11125.30 0 0
13 1 0.5 - - 0 0 9832.15 0 226.91 0

2 1 - - - - 9907.11 0 226.91 0
14 1 0.5 - - 0 0 9832.89 0 226.91 0

2 1 - - - - 9908.23 0 226.91 0
15 1 0.5 - - 0 0 9833.63 0 226.91 0

2 1 - - - - 9909.35 0 226.91 0
16 1 0.5 - - 0 0 9832.61 0 226.91 0

2 1 - - - - 9907.80 0 226.91 0
17 1 0.5 - - 0 0 9833.35 0 226.91 0

2 1 - - - - 9908.93 0 226.91 0
18 1 0.5 - - 0 0 9834.10 0 226.91 0

2 1 - - - - 9910.06 0 226.91 0

S2 = B). The strategy for the first period is observed to be very close to that
proposed by Khang [61]. Notice that, as it is an immunization strategy, the
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aim is to ensure a minimal value, so it advises to invest in t0 = 0 in the sure
assets in any of the possible scenarios. In addition, it invests in those sure
assets that fit their duration as was proposed by Khang in his immunization
theorem. But once it simply immunizes the initial period, the optimal strategy
for the other periods is very similar to the strategy that we obtained in the
two-stage optimization model (DEM1), i.e., to invest in the bond that matures
at the PH, which will or not be risky depending on the scenario.

Table 2.11: Stochastic optimal solution for model (DEM2). Instance 2

ω s ts zω
1ts

zω
1′ts

zω
2ts

zω
2′ts

zω
3ts

zω
3′ts

zω
4ts

zω
4′ts

0 0 3234.58 0 0 0 0 0 6750.45 0

Table 2.11 shows the optimal solution in the initial period t0 for the two
stage model (DEM2) (2.44)-(2.46) for optimizing immunization strategies by
considering the two-stage scenario tree information given in Figure 2.7 with
S1 = B and S2 = BB (i.e. Instance 2). The solution in this case is quite similar
to that obtained for Instance 1, see Table 2.10. It also immunizes at period
t0 = 0 by equalling the maturity of the portfolio with its duration. Anyway,
instead of taking two long term bonds, it invests something in the short term
and adjusts the duration by investing more in the longest term. After that the
strategy is quite similar to the previous one.

It is worth noting that when immunizing we only take into account non
risky bonds. This is due to the fact that we are maximizing the expected value
of the minimum wealth the portfolio would obtain under any future realization
of the uncertain variables, no matter whether they are very likely to happen
or not. We would like to improve the performance of this model by adjusting
it so as to maximize the expected value of the minimum wealth the portfolio
would obtain under as many as the most probable scenarios.

Two-stage VaR model (DEM3)

When considering the two-stage scenario tree information given in Figure
2.7, with AAA and CCC bonds (i.e., Instance 1), the "bad" scenarios are
so probable that for any probability α ∈ (0%, 10%) we would obtain the same
solutions optimizing model (DEM2) over the 100% and over the 90% of the
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scenarios, respectively. Notice that model (DEM2) always has to take into
account at least one of the "bad" scenarios when immunizing.

Moreover, when considering the scenario tree information given in Figure
2.7, with AAA and B bonds (i.e., Instance 2) with probability α = 5%, the
optimal strategy is also exactly the same as we had in model (DEM2). In
this case, as the probabilities of the "bad" scenarios are higher than 5%, it is
absolutely necessary to take into account one of them, at least, and as a result
the decision is not to invest in risky bonds from the beginning.

Table 2.12: Stochastic optimal solution for model (DEM3). Instance 2.
α = 6%

ω s ts zω
1ts

zω
1′ts

zω
2ts

zω
2′ts

zω
3ts

zω
3′ts

zω
4ts

zω
4′ts

0 00 0 0 0 0 0 9252.99 0 732.03
1,4 1 0.5 - - 0 0 0 9480.72 0 732.03

2 1 - - - - 0 9717.74 0 732.03
2,5 1 0.5 - - 0 0 0 9482.98 0 732.03

2 1 - - - - 0 9721.24 0 732.03
3,6 1 0.5 - - 0 0 0 9485.25 0 732.03

2 1 - - - - 0 9724.75 0 732.03
7,10 1 0.5 - - 0 0 0 9486.55 0 732.03

2 1 - - - - 0 9726.76 0 732.03
8,11 1 0.5 - - 0 0 0 9488.9 0 732.03

2 1 - - - - 0 9730.37 0 732.03
9,12 1 0.5 - - 0 0 0 9491.25 0 732.03

2 1 - - - - 0 9734 0 732.03
13 1 0.5 - - 0 0 3692.02 0 0 0

2 1 - - - - 3719.53 0 0 0
14 1 0.5 - - 0 0 3728.81 0 0 0

2 1 - - - - 3756.73 0 0 0
15 1 0.5 - - 0 0 3765.77 0 0 0

2 1 - - - - 3794.11 0 0 0
16 1 0.5 - - 0 0 3714.76 0 0 0

2 1 - - - - 3742.53 0 0 0
17 1 0.5 - - 0 0 3751.89 0 0 0

2 1 - - - - 3780.07 0 0 0
18 1 0.5 - - 0 0 3789.19 0 0 0

2 1 - - - - 3817.8 0 0 0

Table 2.12 gives the optimal strategy obtained by solving model (DEM3)
(2.47)-(2.51), with α = 6% and the two-stage scenario tree information given
in Figure 2.7 (i.e., Instance 2). In this case, the strategy changes completely in
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comparison with the solution that has been obtained in model (DEM2). This
is due to the fact that those scenarios in which default may happen are not
sufficiently probable for the decision maker. So, the optimal strategy consists of
investing everything in risky bonds that match the maturity and the duration
of the portfolio. After the initial period t0 = 0, the optimal solution depends
on the scenario. In those "good" scenarios (in which there are no defaulted
bonds) the portfolio is built up with risky bonds. It is worth pointing out that
it is not exactly the strategy it followed that has been scenarios ω =4, 5 and
6. The reason is that as they have such a small probability, they do not have
a high weight in the objective function and then, they simply do whatever
is easiest. So, the optimal strategy is to invest in risky bonds for the "good"
scenarios. The optimal solution for the "bad" scenarios, however, is to invest
everything in safe assets.

Multistage scheme

Firstly, we introduce the main aspects for the construction of the multi-stage
scenario tree adapted to our illustrative example, with market conditions
similar to those in the two-stage environment. In the case of the interest
rate changes, we consider the same outcomes but with different probabilities,
see Figure 2.8.

r=1.5%

r=0.5% probability = 0.3

r=1.5% probability = 0.4

r=2.5% probability = 0.3

Figure 2.8: Outcomes for the interest rate variation

Given the number of decision periods in the case study, the scenario
tree has been designed as a three-stage one, still considering Instances 1
and 2, but a third instance is created by considering a new class of bonds,
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the speculative class j = 5, BB. The BB rated bonds may have the
outlooks depicted in Figure 2.9. In particular, the transition probabilities
are p(BBB/BB) = 0.0633, p(BB/BB) = 0.9248 and p(D/BB) = 0.0119.
Moreover, as is shown in Table 2.3, the probabilities of default in these classes
are q4,t = 0.0026, q5,t = 0.0097 and q8,t = 1, ∀t = t1, ..., ti, i ∈ Ij, j = 4, 5, 8.

BB

BBB BBB probability = 0.0633

BB BB probability = 0.9248

D D probability = 0.0119

Figure 2.9: Rating variation for BB bonds in the case study

We now consider three different instances with similar shape. We have a
safe asset and a risky one. In order to describe all the instances at the same
time, we define the generic states S1 and S2, such that S1 = CCC and S2 = B
(Instance 1), S1 = B and S2 = BB (Instance 2), and S1 = BB and S2 = BBB
(Instance 3).

Figure 2.10 depicts the 27 scenarios considered for the three-stage and the
three instances.

For Instance 1 the classes of bonds AAA (j = 1) and CCC (j = 7) are
considered. In order to build a simple but representative three-stage scenario
tree we have considered different aspects at the different stages. In stage
t1 = 0.5, the outcomes result from J7 × r, where J7 = {6, 7, 8} (the possible
rating of the second asset class) and r = {0.5%, 1.5%, 2.5%} (the risk free
interest rate level). So, a set of nine scenarios is defined as the cartesian
product of those two sets of outcomes. In the next stage t2 = 1, the scenarios
are defined as the cartesian product given by (Ω = J7 × r × J1), since for
simplicity they are assumed as independent risks, and where J1 = {1, 2} (the
possible rating of the first asset class). Then, the probability wω of scenario
ω is computed as the product of the probabilities of the three independent
outcomes.
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AAA,S1,1.5%

AAA,S2,0.5%

AAA,S2,0.5% AAA,S2,0.5% w1 =0.0298935

AAA,S2,1.5% AAA,S2,1.5% w2 =0.012051

AAA,S2,2.5% AAA,S2,2.5% w3 = 0.016068

AAA,S2,1.5%

AAA,S2,0.5% AAA,S2,0.5% w4 =0.012051

AAA,S2,1.5% AAA,S2,1.5% w5 =0.016068

AAA,S2,2.5% AAA,S2,2.5% w6 =0.021424

AAA,S2,2.5%

AAA,S2,0.5% AAA,S2,0.5% w7 = 0.016068

AAA,S2,1.5% AAA,S2,1.5% w8 = 0.012051

AAA,S2,2.5% AAA,S2,2.5% w9 = 0.016068

AAA,S1,0.5%

AAA,S1,0.5% AAA,S1,0.5% w10 = 0.012051

AAA,S1,1.5% AAA,S1,1.5% w11 = 0.0480555

AAA,S1,2.5% AAA,S1,2.5% w12 = 0.064074

AAA,S1,1.5%

AAA,S1,0.5% AAA,S1,0.5% w13 = 0.0480555

AAA,S1,1.5% AAA,S1,1.5% w14 = 0.064074

AAA,S1,2.5% AAA,S1,2.5% w15 = 0.085432

AAA,S1,2.5%

AAA,S1,0.5% AAA,S1,0.5% w16 = 0.064074

AAA,S1,1.5% AAA,S1,1.5% w17 = 0.0480555

AAA,S1,2.5% AAA,S1,2.5% w18 = 0.064074

AAA,D,0.5%

AAA,D,0.5% AAA,D,0.5% w19 = 0.0480555

AAA,D,1.5% AAA,D,1.5% w20 = 0.0298935

AAA,D,2.5% AAA,D,2.5% w21 = 0.039858

AAA,D,1.5%

AAA,D,0.5% AAA,D,0.5% w22 = 0.0298935

AAA,D,1.5% AAA,D,1.5% w23 = 0.039858

AAA,D,2.5% AAA,D,2.5% w24 = 0.053144

AAA,D,2.5%

AAA,D,0.5% AAA,D,0.5% w25 = 0.039858

AAA,D,1.5% AAA,D,1.5% w26 = 0.039858

AAA,D,2.5% AAA,D,2.5% w27 = 0.0298935

Figure 2.10: Three-stage scenario tree for rating and interest rate variation.
Instances 1,2,3



60 CHAPTER 2. STOCHASTIC MODELS F. IMMUNIZATION STRAT.

For Instance 2 the classes of bonds AAA (j = 1) and B (j = 6) are
considered. In stage t1 = 0.5, the outcomes result from J6 × r, where J6 =
{5, 6, 8} (the possible rating of asset class j = 6), and r = {0.5%, 1.5%, 2.5%}
(the risk free interest rate level). So, a set of nine scenarios is defined as the
cartesian product of those two set of outcomes. In the next stage t2 = 1, the
scenarios are defined as the cartesian product given by (Ω = J6 × r×J1), that
for simplicity are assumed as independent risks, and where J1 = {1, 2} (the
possible rating of asset class j = 1). Additionally, wω represents the probability
of scenario ω.

For Instance 3 the classes of bonds AAA (j = 1) and BB (j = 5) are
considered. Similarly as the above instances, in stage t1 = 0.5, the outcomes
result from J5 ×r, where J5 = {4, 5, 8} (the possible rating of asset class j = 5)
and r = {0.5%, 1.5%, 2.5%} (the risk free interest rate level). So, a set of nine
scenarios is defined as the cartesian product of those two set of outcomes. In
the next stage t2 = 1, the scenarios are defined as the cartesian product given
by (Ω = J5 × r × J1), since for simplicity they are assumed as independent
risks, and where J1 = {1, 2} (the possible rating of asset class j = 1).

Multi-stage maxmin immunization model (DEM4)

Table 2.13: Optimal solution at period t0 for model (DEM4)

Instance 1 g z
g

1
z

g

1′ z
g

2
z

g

2′ z
g

3
z

g

3′ z
g

4
z

g

4′

0 0 0 4886.05 0 0 0 5098.97 0
Instance 2 g z

g

1
z

g

1′ z
g

2
z

g

2′ z
g

3
z

g

3′ z
g

4
z

g

4′

0 0 0 4886.05 0 0 0 5098.97 0
Instance 3 g z

g

1
z

g

1′ z
g

2
z

g

2′ z
g

3
z

g

3′ z
g

4
z

g

4′

0 0 0 4886.05 0 0 0 5098.97 0

The optimal solutions to the multi-stage model (DEM4) (2.54)-(2.66) for
Instances 1, 2 and 3, at the initial period t0 are shown in Table 2.13. All
of them are equal and consist of the same strategy, i.e., investing part of the
portfolio in the safe asset that matures before the end of PH and the rest of the
portfolio on the safe asset with the longest maturity. As the portfolio is made
up almost half and half, it matches the duration with the PH, so it is following
in some way the strategy proposed by Khang [61]. It is also important to note
that it invests in safe assets, thus, avoiding the risk of default. So it is dealing
with both risks.
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Table 2.14: Optimal solution at period t1 for model (DEM4). Instance 1

g Ωg z
g

2
z

g

2′ z
g

3
z

g

3′ z
g

4
z

g

4′

1 {1, 2, 3} 0 9320.31 0 0 0 0
2 {4, 5, 6} 0 0 0 7714.91 0 862.44
3 {7, 8, 9} 0 0 0 0 0 8115.14
4 {10, 11, 12} 0 10075.40 0 0 0 0
5 {13, 14, 15} 0 10030.70 0 0 0 0
6 {16, 17, 18} 0 9987.34 0 0 0 0
7 {19, 20, 21} 10094.50 0 0 0 0 0
8 {22, 23, 24} 4960.57 0 0 0 5098.97 0
9 {25, 26, 27} 0 0 0 0 10092.00 0

The optimal strategies at each scenario group in stage t1, g ∈ Gt1 , are shown
in Tables 2.14 and 2.15 for Instances 1 and 2, respectively. The strategy to
follow for Instance 3 is exactly the same as for Instance 2. In all the cases, the
strategies to follow depend on the scenario groups in period t1, in any case, they
are very similar. In any of the scenarios in which default may not occur, the
optimal solution consists of changing all the investments in risky bonds (since
it does not consider the possibility of default in the next periods). However,
if there is a probability of default, it invests in safe assets, reorganizing the
portfolio depending on the interest rate.

Table 2.15: Optimal solution at period t1 for model (DEM4). Instance 2

g ω z
g

2
z

g

2′ z
g

3
z

g

3′ z
g

4
z

g

4′

1 Ω1 = 1, 2, 3 0 9953.04 0 0 0 0
2 Ω2 = 4, 5, 6 0 0 0 9551.31 0 227.76
3 Ω3 = 7, 8, 9 0 0 0 0 0 9705.83
4 Ω4 = 10, 11, 12 0 10079.10 0 0 0 0
5 Ω5 = 13, 14, 15 0 0 0 9785.87 0 239.46
6 Ω6 = 16, 17, 18 0 0 0 0 0 10059.00
7 Ω7 = 19, 20, 21 10094.5 0 0 0 0 0
8 Ω8 = 22, 23, 24 4960.57 0 0 0 5098.97 0
9 Ω9 = 25, 26, 27 0 0 0 0 10092.00 0

In those scenarios for which the risky asset improves or maintains its
level, the strategy is very similar to that in the case of default, investing in
risky assets instead of investing in those safe ones. This strategy is different
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depending on the current interest rate. If interest rates have fallen (they are
in 0.5), it considers that they can maintain their level or change into 1.5 or 2.5,
so, they would be bigger in any case and thus, the optimal solution consists of
investing everything short. If the interest rates maintain their level (1.5), they
can go down or up and, thus, the optimal solution consists of matching the
duration with the PH. Finally, if interest rates go up to 2.5, the possibilities
considered in the scenario tree are to stay or to fall and, thus, the optimal
strategy is to invest long.

Table 2.16: Optimal solution at period t2 for model (DEM4). Instance 1

g Ωg z
g

3
z

g

3′ z
g

4
z

g

4′

10 1 0 9476.65 0 0
11 2 0 9524.64 0 0
12 3 0 9572.64 0 0
13 4 0 8556.32 0 862.44
14 5 0 8560.58 0 862.44
15 6 0 8564.84 0 862.44
16 7 0 796.068 0 8115.14
17 8 0 800.099 0 8115.14
18 9 0 804.131 0 8115.14
19 10 0 11074.00 0 0
20 11 0 11134.60 0 0
21 12 0 11194.70 0 0
22 13 0 11025.30 0 0
23 14 0 11085.20 0 0
24 15 0 11145.00 0 0
25 16 0 10977.60 0 0
26 17 0 11037.20 0 0
27 18 0 11096.90 0 0
28 19 10104.60 0 0 0
29 20 10155.00 0 0 0
30 21 10205.40 0 0 0
31 22 5003.78 0 5098.97 0
32 23 5028.74 0 5098.97 0
33 24 5053.69 0 5098.97 0
34 25 75.20 0 10092.00 0
35 26 75.57 0 10092.00 0
36 27 75.95 0 10092.00 0

The main difference between the strategies to follow in Instances 1 and 2
depends on the risky asset maintaining its rating.
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So, for Instance 2, the optimal solution is also to invest short if the interest
rate can only rise, matching the duration with the HP if the interest rate is
still 1.5, and investing long if the interest rate can just fall.

For Instance 1, the optimal strategy is always to invest short in those
scenarios where the risky asset is still CCC. Notice that we can invest in risky
asset and, as their reinvestments would give such big returns (real interest
rates are around 20−22%), the different strategies barely affect the optimality
of the solution, so, anything that might be done is profitable.

Table 2.16 shows the optimal strategies at period t2 for Instance 1. We
should point out that the strategy does not change for the other instances. As
in the three-stage scenario tree considered, see Figure 2.10, there is no change
after period t2, so, the optimal solution is to invest everything in the asset that
matures in the PH but, sometimes it can leave something remaining for the
other assets, thereby, avoiding transaction costs.

Anyway, in those scenarios with no default it invests in risky assets, and
invests in safe assets for the "bad" scenarios.

Multi-stage stochastic dominance model (DEM5)

Let us summarize some of the results obtained by solving the three-stage
extension to the first order stochastic dominance strategy, model (DEM5)
(2.67)-(2.72). We have considered two different situations: one in which we
ask for a minimum wealth -always the same- that is higher than that obtained
with the recovery rate; and another in which we ask for two minimum values:
one higher than we get with safe assets and another higher than the recovery
rate. In both of these, the probability has been taken as α = 0.06.

After solving several situations, we can conclude that these strategies are
very dependent on the values of the potential profiles, φp, p ∈ P. It is very
important to choose them in order to have the best results or those that best
match the needs of the investor. This may not be so easy a priori, since the
decision maker does not necessarily need to know what could be obtained in
different situations at the beginning of the study.
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Case 1: |P| = 1, φ1 = 5 · 105, α1 = 0.06

Let us summarize the optimal strategy corresponding to Instance 1. For
Instances 2 and 3, the results are very similar.

Table 2.17: Optimal solution at t0 for model (DEM5). Instance 1. Case 1.

g z
g

1
z

g

1′ z
g

2
z

g

2′ z
g

3
z

g

3′ z
g

4
z

g

4′

0 9985.02 0 0 0 0 0 0 0

Table 2.17 shows the optimal strategy at period t0. It consists of investing
all the portfolio in the asset with the smallest maturity. So, it invests
everything in the short term. It is also important to note that it invests in
safe assets, thus avoiding the risk of default. But it is not immunizing against
interest rate changes, due to the fact that it is not matching the duration of
the portfolio with the PH.

Table 2.18: Optimal solution at t1 for model (DEM5). Instance 1. Case 1.

g ω z
g

2
z

g

2′ z
g

3
z

g

3′ z
g

4
z

g

4′

1 Ω1 = 1, 2, 3 0 9241.81 0 0 0 0
2 Ω2 = 4, 5, 6 0 0 0 8648.04 0 0
3 Ω3 = 7, 8, 9 0 0 0 0 0 8205.94
4 Ω4 = 10, 11, 12 0 9990.59 0 0 0 0
5 Ω5 = 13, 14, 15 0 10044.80 0 0 0 0
6 Ω6 = 16, 17, 18 0 10099.10 0 0 0 0
7 Ω7 = 19, 20, 21 9994.99 0 0 0 0 0
8 Ω8 = 22, 23, 24 0 0 10044.30 0 0 0
9 Ω9 = 25, 26, 27 0 0 0 0 10189.40 0

Table 2.18 shows the optimal strategy for each scenario group that belongs
to period t1. In the scenarios where default may not occur, the optimal solution
consists of changing all the investments in risky bonds (as they do not consider
the possibility of default in the next periods). In the case of default, it would
keep the safe assets instead, reorganizing them depending on the interest rate.

As the three-stage scenario tree does not consider any changes after period
t2, the optimal solution in this case is to invest everything in the asset that
matures in the PH but, sometimes, in order to avoid not paying transaction
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costs, it can leave something remaining for other assets. Anyway, in those
scenarios with no default it invests in risky assets and it invests in safe assets
for the "bad" scenarios.

Case 2: |P| = 2, φ1 = 5 · 105, φ2 = 1.05 · 106, α1 = α2 = 0.06

Let us summarize the optimal strategy corresponding to Instance 2. For
Instances 1 and 3, the results are very similar.

Table 2.19: Optimal solution at t0 for model (DEM5). Instance 2. Case 2.

g z
g

1
z

g

1′ z
g

2
z

g

2′ z
g

3
z

g

3′ z
g

4
z

g

4′

0 3205.13 0 0 0 0 0 1895.68 4884.22

Table 2.19 shows the optimal solution at period t0. It consists of investing
part of the portfolio in assets that mature before the end of PH and the rest in
the assets with the longest maturity. The investment strategy shares between
risky and safe assets in order to ensure, on the one hand, returns that are
at least φ1 in the most probable cases but on the other hand, it ensures a
minimum wealth (φ2) in situation of default. As the portfolio is made up
almost half and half, it matches the duration with the PH, so it is following in
some way the strategy proposed by Khang [61]. It is also important to notice
that it invests in risky assets since the failure scenarios are not considered
sufficiently probable.

Table 2.20: Optimal solution at t1 for model (DEM5). Instance 2. Case 2.

g ω z
g

2
z

g

2′ z
g

3
z

g

3′ z
g

4
z

g

4′

1 Ω1 = 1, 2, 3 0 10217.9 0 0 0 0
2 Ω2 = 4, 5, 6 0 0 0 5113.17 0 4884.22
3 Ω3 = 7, 8, 9 0 0 0 0 0 9980.67
4 Ω4 = 10, 11, 12 0 10166.5 0 0 0 0
5 Ω5 = 13, 14, 15 0 0 0 5240.53 0 4884.22
6 Ω6 = 16, 17, 18 0 0 0 0 0 10166.1
7 Ω7 = 19, 20, 21 6946.08 0 0 0 0 0
8 Ω8 = 22, 23, 24 0 0 5062.21 0 1895.68 0
9 Ω9 = 25, 26, 27 0 0 0 0 7031.04 0

Table 2.20 shows the optimal strategy for each scenario group in period t1.
The strategy to follow is very similar no matter if the risky asset changes its
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rating or not. The only difference is that in defaulted scenarios the optimal
solution would be to invest safe, and risky in other cases.

In any case the strategy is different depending on the current interest rate.
If interest rates have fallen (they are in the 0.5), it considers that they can
maintain their level or change into 1.5 or 2.5, so they would be bigger in any
case and, thus, the optimal solution consists of investing everything short. If
the interest rates maintain their level (1.5), they can go down or up and, thus,
the optimal solution consists of matching the duration with the PH. Both risks
are treated. Finally, if interest rates go up to 2.5, the possibilities considered
in the scenario tree are to stay or to fall and, thus, the optimal strategy is to
invest long.

It is worth pointing out that the three-stage scenario tree does not consider
any changes after period t2, so, the optimal solution in this case is to invest
everything in the asset that matures in the PH but, sometimes, in order to
avoid paying transaction costs, it can leave something remaining for the other
assets. Anyway, in those scenarios with no default invests in risky assets. On
the other hand, it invests in safe assets for the "bad" scenarios.

Multi-stage VaR & stochastic dominance constraint
model (DEM6)

Finally, we summarize the results of the optimization of model (DEM6) (2.73)-
(2.77).

Case 1: P = {g ∈ Gt : t = t0, · · · , tk−1} and φp = 0 for all p ∈ P

Let us summarize the optimal solutions for the different stages in Instance 3
with α = 0.05.

Table 2.21: Optimal solution at t0 for model (DEM6). Instance 3. Case 1

g z
g

1
z

g

1′ z
g

2
z

g

2′ z
g

3
z

g

3′ z
g

4
z

g

4′

0 0 0 0 4858.33 0 0 5126.69 0

Table 2.21 shows the optimal solution at period t0. It consists of matching
the duration with the HP in order to avoid immunization risk, but investing in
risky assets. It seems that default has such a small probability that the model
does not take them into account when optimizing.
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Table 2.22: Optimal solution at t1 for model (DEM6). Instance 3. Case 1

g ω z
g

2
z

g

2′ z
g

3
z

g

3′ z
g

4
z

g

4′

1 Ω1 = 1, 2, 3 0 10147.90 0 0 0 0
2 Ω2 = 4, 5, 6 0 4963.71 0 0 0 5126.69
3 Ω3 = 7, 8, 9 0 0 0 0 0 10100.30
4 Ω4 = 10, 11, 12 0 10125.70 0 0 0 0
5 Ω5 = 13, 14, 15 0 4940.94 0 23.01 0 5126.69
6 Ω6 = 16, 17, 18 0 0 0 0 0 10121.80
7 Ω7 = 19, 20, 21 3710.30 4858.33 0 0 0 5126.69
8 Ω8 = 22, 23, 24 0 4858.33 3700.56 0 28.03 5126.69
9 Ω9 = 25, 26, 27 0 4858.33 0 0 3782.48 5126.69

Table 2.22 gives the optimal solution at period t1. It is clear that this is a
much riskier strategy since in those failure scenarios we would get very little
return. But, in terms of expected return, this is the best strategy due to the
fact that failure has a such small probability.

When implementing this model in Instance 1 with α ∈ (0, 0.10), the
optimal strategies are exactly those obtained with model (DEM4). This is
because default is so probable that it is important to take it into account
when optimizing.

The same happens with Instance 2 if α ≤ 0.5. Even for Instance 2 with
α = 0.6 the optimal solution does not change. It is worth pointing out that,
since the default scenarios in period t0 do not reach in probability the value of
α, the improvement that would achieve in V0 is compensated by what it would
lose in Vg for g ∈ Gt, t = t1, · · · , tk.

Case 2: P = {g ∈ Gt : t = t0, · · · , tk−1} and φp = 500000 for all p ∈ P

In order to ensure minimum wealth for even those failure scenarios, let us
consider a threshold of 500000 monetary units for all potential profiles, P . The
optimal solution obtained for Instances 1 and 2, is the same as that obtained
in Case 1. This happens since the expected wealth is higher than φp, p ∈ P.
For high values of this potential profiles, for example 1.200.000, the problem
becomes infeasible.

Finally, let us summarize the optimal solution for the different stages in
Instance 3 with α = 0.05
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Table 2.23: Optimal solution at t0 for model (DEM6). Instance 3. Case 2

g z
g

1
z

g

1′ z
g

2
z

g

2′ z
g

3
z

g

3′ z
g

4
z

g

4′

0 0 0 922.25 3932.18 0 0 1028.56 4102.04

Table 2.23 presents the optimal solution at period t0. It consists of investing
part of the portfolio in assets that mature before the PH and the rest in the
assets with the longest maturity. The investment strategy shares between risky
and safe assets in order to ensure, on the one hand, as high as possible the
minimum return over all the periods but, in the other hand, to ensure minimum
wealth (φp) in situation of default. As the portfolio is made up almost half and
half, it matches the duration with the PH, so it is following in some way the
strategy proposed by Khang [61]. It is also important to note that it invests in
risky assets since the failure scenarios are not considered sufficiently probable.

The optimal solution at period t1 is shown in Table 2.24. It consists of
investing short if the interest rates are going to rise, long if they are going
to fall, and following the strategy proposed by Khang when both possibilities
exist. In any case, it invests in risky assets in no failure scenarios, and it invests
in safe assets in scenarios of default.

Table 2.24: Optimal solution at t1 for model (DEM6). Instance 3. Case 2

g ω z
g

2
z

g

2′ z
g

3
z

g

3′ z
g

4
z

g

4′

1 Ω1 = 1, 2, 3 922.25 9212.82 0 0 0 0
2 Ω2 = 4, 5, 6 922.25 3932.18 0 217.24 909.58 4102.04
3 Ω3 = 7, 8, 9 0 0 0 0 1028.56 9063.62
4 Ω4 = 10, 11, 12 0 10116.90 0 0 0 0
5 Ω5 = 13, 14, 15 0 3932.18 0 2044.50 0 4102.04
6 Ω6 = 16, 17, 18 0 0 0 0 0 10112.30
7 Ω7 = 19, 20, 21 4957.83 0 0 0 0 0
8 Ω8 = 22, 23, 24 978.62 0 2958.37 0 1028.56 0
9 Ω9 = 25, 26, 27 0 0 0 0 5014.98 0

It is important to note that, we are maximizing over all the periods of
time with this strategy, but we will only get the final value if we maintain the
strategy until the end of the PH.
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Models comparison

By considering the advantages and disadvantages of the different models
tested in the case study, see Tables 2.25 and 2.26, we can observe that the
models that offer better immunization strategies are the models (DEM4)
(100% multistage VaR strategy), (DEM5) (multistage stochastic dominance
constraints strategy), and (DEM6) (VaR & multistage stochastic dominance
constraints strategy) for good choices of the potential profiles. Each of them
has advantages and disadvantages, and the decision maker should choose
among the three strategies depending on its preferences.

Table 2.25: Comparing the different two-stage models as tested in the case
study

Stg Model Strategy Pros Cons

LP · Invest everything in the risky · Easy · Myopic
asset that matures at the PH · No risks
· t0: safe & short · Risk of def. · Myopic

DEM1 · t > t0: "Good" scen.: risky mat. PH treated · Interest Rate
"Bad" scen.: safe mat. PH risk not treated

· t0: safe & short · Risk of def. · Myopic
DEM- · t > t0: "Good" scen.: risky mat. PH treated · Interest Rate

Two -MR "Bad" scen.: safe mat. PH risk not treated
· t0: safe & D=PH · Both risks · Myopic

DEM2 · t > t0: "Good" scen.: risky mat. PH treated · Risk averse-
"Bad" scen.: safe mat. PH -ness not treat.

(too risk adv.)
· t0: safe & D=PH (Instance 1) · Both risks · Myopic

DEM3 risky & D=PH (Instance 2) treated · May big lose
· t > t0: "Good" scen.: risky mat. PH · Risk averse in worst cases

"Bad" scen.: safe mat. PH model
Notation: D=PH means the strategy that matches the duration with the PH.

Model (DEM5) would be better for those investors who are only interested
in the final value of the portfolio and they also know a priori which possible
thresholds can be more interesting for their purposes.

On the contrary, model (DEM6) would be better for those investors with no
initial expectations and are also interested in optimizing the portfolio all over
the PH. It could be very interesting, for example, for those decision makers who
would like to dissolve the portfolio at any time in order to use new information
in the market. Model (DEM4), instead, could be very interesting for a very
risk adverse investor.
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Table 2.26: Comparing the different multistage models as tested in the case
study

Stg Model Strategy Pros Cons

· t0: safe & D=PH · Not myopic · Risk av.
· t > t0: risky in "good" ω & safe else · Both risks not treated

DEM4 r will rise: short treated (too risk av.)
r will fall: long
r can fall or rise: D=PH

|P| = 1 well chosen · Interest Rate

· t0: safe & short · Not myopic risk not treated
· t > t0: risky in "good" ω & safe else ·Risk averse ·φ dependent

short, long or D=PH depending on r model · CNT

Multi DEM5 |P| = 2 well chosen

· t0: safe & short (Instance 1) · Not myopic ·φ dependent
share (safe-risky); D=PH (Inst. 2, 3) · Both risks · CNT

· t > t0: risky in "good" ω & safe else · Risk averse
short, long or D=PH dep. on r · Bad sit. cov.

φ = 0 · May big lose

· t0: safe & short (Inst. 1, 2) · Not myopic in worst cases
risky & short (Inst. 3) · Both risks · Max. ∀ Vt,

· t > t0: risky in "good" ω & safe else · Risk averse get just Vtk

DEM6 short, long or D=PH dep. on r · Not φ dep. · CNT

φ 6= 0 · Not myopic · Max. ∀ Vt,

· t0: safe & short (Inst. 1, 2) · Both risks get just Vtk

share (safe-risky); D=PH (Inst. 3) · Risk averse · CNT
· t > t0: risky in "good" ω & safe else · Not so φ dep.

short, long or D=PH dep. on r · Bad sit. cov.
Notation: D=PH means the strategy that matches the duration with the PH.

CNT means that it can become Computationally Not Treatable or very hard to solve.

In any case, models (DEM5) and (DEM6) can become computationally
non treatable for real markets with many possible future scenarios, in case
of using plain state-of-the-art optimization engines instead of using proven
decomposition approaches, meanwhile (DEM4) can easily be solved.

2.10 Conclusions

This chapter proposes several stochastic models for selecting portfolios in a
market in which there are transaction costs and bonds with different credit
ratings. In particular, new concepts and modelings have been introduced and
tested. We have also extended some of them from the two-stage formulation to
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the general multistage case. The intention is to check whether the assumptions
made in the dynamic immunization theorem put forward by Khang [61] are
crucial to its validity. Another aim is to check wether the theoretical models
proposed in the literature and developed in this chapter are suitable to optimize
immunization strategies in fixed-income security portfolios under both sources
of uncertainty.

The inclusion of transaction costs is observed to affect the optimality of the
strategy proposed by Khang, since the continual readjustment of the portfolio
that these costs entail results in additional costs which are too high. This
means that the immune strategy ceases to be optimal.

Uncertainty is introduced into the model through a scenario analysis
scheme. In this case there are two parameters whose random behavior must be
taken into account, namely, the trends in interest rates and the probabilities
of default of the various institutions which issue the bonds.

Different immunization strategies are considered. The validity of the
proposed strategies is performed by using an illustrative case study. No
definitive conclusions can be drawn from the case study (the aim of the chapter
has merely been to present the immunization strategies of choice), but the
results that have been obtained seem to be reasonable. Based on them we
favor the multistage immunization strategies given by the models (DEM4)
(multistage 100% VaR strategy), (DEM5) (stochastic dominance constraints
strategy alone) and (DEM6) (mixture of the VaR strategy and the stochastic
dominance constraints strategy).

As a future work we are planning an extensive computational experience
with large scale cases in fixed-income security portfolios, scenarios and profiles
to test the validity of our BFC decomposition algorithm for dealing with risk
averse measures, see [7] in stochastic mixed integer optimization in this type
of financial application. See also in [7] the extension of the CVaR and second
stage SDC into the multistage scheme.





Part II

Algorithms: Cluster Benders
Decomposition

73





Chapter 3

Two-stage scheme

The optimization of stochastic linear problems, via scenario analysis, based
on Benders decomposition requires appending feasibility and/or optimality
cuts to the master problem until the iterative procedure reaches the optimal
solution. The cuts are identified by solving the auxiliary submodels attached
to the scenarios. In this chapter, we propose the algorithm so-named scenario
Cluster Benders Decomposition (CBD) for dealing with the feasibility cut
identification in the Benders method for solving large-scale two-stage stochastic
linear problems. The scenario tree is decomposed into a set of scenario clusters
and tighter feasibility cuts are obtained by solving the auxiliary submodel for
each cluster instead of each individual scenario. Then, the scenario cluster
based scheme allows us to identify tighter feasibility cuts that yield feasible
second stage decisions in reasonable computing time. Some computational
experience is reported by using CPLEX as the solver of choice for the auxiliary
linear optimization submodels at each iteration of the algorithm CBD. The
results that are reported show the favorable performance of the new approach
over the traditional single scenario based Benders decomposition (TBD); it
also outperforms the plain use of CPLEX for medium-large and large size
instances.

3.1 Introduction

Two-stage stochastic linear problems provide a suitable framework for
modeling decision problems under uncertainty arising in several applications.
The flexibility of these models is related to their dynamic nature, i.e., besides

75
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the first stage variables that represent decisions made in the face of uncertainty,
the model considers second stage decisions, i.e., recourse actions, which can
be taken once a specific realization of the random parameters is observed.
For an introduction to two-stage stochastic programming models and solution
procedures based on scenario analysis, see [18, 60, 89]. Moreover, many
applications require an excessive number of scenarios and then, this kind of
problems become quite large. So, methods that ignore the special structure of
stochastic linear programs become quite inefficient. However, taking advantage
of this structure is especially beneficial in stochastic programs. Perhaps, the
method that is most frequently used is based on building an outer linear
relaxation of the recourse cost function around a solution of the first stage
problem. One of the alternative decomposition procedures is known as the
Dantzig-Wolfe approach [26] that solves the dual of the problem. Another
decomposition, known as Benders method [11] solves the primal problem. This
latter method has been widely used in stochastic programming approaches to
take care of the feasibility cut generation, see [87]. As is well known, when the
number of scenarios is finite, the Benders decomposition method converges to
an optimal solution in a finite number of iterations when it exists, or proves
the infeasibility of problem (3.1). Moreover, the structure of the stochastic
programs clearly allows us to modify the phase of cuts generation. As in the
multicut version, see [16, 17, 63], one cut per realization in the second stage is
placed. However, in the feasibility phase, the submodel can be integrated by a
set of realizations i.e., a scenario cluster, and a tighter cut could be generated
and appended to the master problem and it is basically, the proposal of this
chapter.

Let a scenario cluster be defined as a subset of scenarios where the
nonanticipativity constraints, see its definition and introduction in [90] are
considered while solving the related two-stage stochastic submodel. So,
the main contribution of this chapter consists of proposing a scenario
cluster decomposition approach for dealing with the feasibility problem
in the Benders method for solving large-scale two-stage stochastic linear
problems. We computationally compare the performance of the new approach,
named scenario Cluster Benders Decomposition (for short, CBD) versus the
Traditional Benders Decomposition (TBD) for different choices of the number
of scenario clusters and the contents of each cluster. Given the scenario
cluster partitioning, the saving in computation time is remarkable in the
large-scale cases with which we have experimented. Additionally, when
comparing decomposition based procedures with the plain use of a state-of-the-
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art optimization engine (open source codes or commercial ones) we can verify
that for stochastic problems with only continuous variables, the decomposition
approaches, in particular the algorithm CBD, bet the plain use of the solver
CPLEX usually for small number of clusters. The successful results that
we have obtained with the CBD approach may open up the possibility of
tightening the lower bound of the solution value at the Twin Node Family
submodels in the exact Branch-and-Fix Coordination (BFC) scheme for solving
two-stage stochastic mixed 0-1 problems [35, 36, 38]. The combination of that
strategy with our CBD approach would be a subject to future research.

The remainder of the chapter is organized as follows. Section 3.2 briefly
outlines the Benders decomposition method for two-stage stochastic problems.
Section 3.3 deals with an illustrative example. Section 3.4 presents the
innovation of the proposed scenario cluster decomposition scheme. Section 3.5
introduces in detail the CBD approach that is proposed. Section 3.6 reports
some computational results, mainly for large-scale instances that show the
good performance of the new approach. Section 3.7 concludes.

3.2 Benders decomposition for two-stage

stochastic problems

Let us consider the Deterministic Equivalent Model (DEM) to the two-stage
stochastic linear problem in compact representation

(LO) : zLO = min cTx+ Eψ[minwω(qωTyω)]
s.t.

b1 ≤ Ax ≤ b2

hω1 ≤ T ωx+W ωyω ≤ hω2 ∀ω ∈ Ω
x, yω ≥ 0 ∀ω ∈ Ω,

(3.1)

where x is the nx-vector of the first stage variables, yω is the ny-vector of
the second stage variables for scenario ω, for ω ∈ Ω, where Ω is the set of
scenarios to consider, c is a known vector of the objective function coefficients
for the x variables, b1 and b2 are the left and right hand side vectors for the
first stage constraints, respectively, A is the first stage constraint matrix, wω

is the likelihood attributed to scenario ω, hω1 and hω2 are the left and right
hand side vectors for the second stage constraints, respectively, and qω is the
vector of the objective function coefficients for the y variables, while T ω is
the technology matrix and W ω is the recourse matrix under scenario ω, for
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ω ∈ Ω. Putting together the stochastic components of the problem, we have
the vector ψω = (qω, hω1 , h

ω
2 , T

ω,W ω). Finally, Eψ represents the mathematical
expectation with respect to ψ over the set of scenarios Ω.

The structure of the uncertain information in the two-stage stochastic linear
model (3.1) can be visualized as a tree, where each root-to-leaf path represents
one specific scenario, ω, and corresponds to one realization of the whole set of
the uncertain parameters.

In the example depicted in Figure 3.1, there are |Ω| = 10 root-to-leaf
possible paths, i.e., scenarios. Following the nonanticipativity principle stated
in [90] and restated in [76], see [18] among many others, all scenarios should
have the same value for the related first stage variables in the two-stage
problem. The left part of Figure 3.1 implicitly represents the nonanticipativity
constraints (NAC, for short). This is the compact representation shown in
model (3.1). The right part of Figure 3.1 gives the same information as the
compact representation but using a splitting variable scheme. Notice that it
explicitly represents the NAC (i.e., imposing the equality) on the first stage
variables xω for all the scenarios in Ω.

The two-stage linear problem (3.1) can be decomposed and its optimal
solution can be iteratively obtained by identifying extreme points and rays
based cuts from the optimization of the so-named Auxiliary Program (AP). So,
the cuts are appended to the so-named Relaxed Master Program (RMP) that
can be expressed, see [11],

zLO = min cTx+ θ
s.t.
b1 ≤ Ax ≤ b2

0 ≥ νωTj1

[(

hω1
−hω2

)

+ T ωx

]

∀νωj1 ∈ J
ef

θ ≥
∑

ω∈Ω w
ωνωTj2

[(

hω1
−hω2

)

+ T ωx

]

∀νωj2 ∈ J
eo

x ≥ 0, θ ∈ IR,

where J
eo ⊆ J eo and J

ef ⊆ J ef are the subsets of the extreme points and
extreme rays already identified, respectively, see [87].

We first give a presentation of the Traditional Benders Decomposition
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Figure 3.1: Scenario tree

method (TBD) taken from [18].

Primal Scenario procedure

Step 0: Set k := eo := ef := 0, where eo and ef are to count the number
of optimality and feasibility cuts along the iterations of the algorithm,
respectively.

Step 1: Set k := k + 1. Solve the program (RMP) (with θ = 0 if eo = 0).

(RMP ) min cTx+ θ

s.t.

b1 ≤ Ax ≤ b2
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0 ≥ ν̂ωTj1

(

hω1 + T ωx
−hω2 + T ωx

)

∀j1 = 0, ..., ef (3.2)

θ ≥
∑

ω∈Ω

wων̂ωTj2

(

hω1 + T ωx
−hω2 + T ωx

)

∀j2 = 0, ..., eo (3.3)

x ≥ 0, θ ∈ IR,

where ν̂j1 and ν̂j2 are the values of the corresponding dual variables (i.e.,
simplex multipliers) obtained in the feasibility (Step 2) and auxiliary
primal (Step 3) problems, respectively.

Save the optimal solution x̂ and θ̂ of the primal variables x and θ,
respectively.

Step 2: For each scenario ω ∈ Ω, solve the following feasibility problem

(FEAS) zωFEAS = min eTv+ω
1 + eTv−ω

1 + eTv+ω
2 + eTv−ω

2

s.t.
W ωyω − Iu−ω + Iv+ω

1 − Iv−ω
1 = hω1 − T ωx̂

W ωyω + Iu+ω − Iv+ω
2 + Iv−ω

2 = hω2 − T ωx̂
yω, v+ω

1 , v−ω
1 , v+ω

2 , v−ω
2 , u+ω, u−ω ≥ 0.

(3.4)

If there exists a scenario ω, such that zωFEAS 6= 0 (infeasible scenario
problem), set ef := ef + 1, φω = +∞, save the values ν̂ωef

of the dual
variables νω, define the feasibility cut (3.2) and go to Step 1.

If zωFEAS = 0 (feasible) ∀ω ∈ Ω, go to Step 3.

Step 3: For each scenario ω ∈ Ω, solve the auxiliary primal problem

(OPT ) φω = min qωTyω

s.t.
(

W ω

−W ω

)

yω ≥

(

hω1 − T ωx̂
−hω2 + T ωx̂

)

yω ≥ 0.

(3.5)

Save the objective function value, φω and the simplex multipliers
associated with the optimal solution of problem (3.5), ν̂ωeo

, and define
the optimality cut.

Set φ :=
∑

ω∈Ω w
ωφω. If φ ≤ θ̂ then stop, since the optimal solution has

been found in k-th iteration.

In other case, set eo := eo+ 1, add the new cut to the constraint set (3.3)
and return to Step 1.
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As it is well known, when Ω is finite, this method finitely converges to an
optimal solution when it exists or proves the infeasibility of problem (3.1).

However, as we will illustrate with the example shown in the next section,
the generation of feasibility cuts by a mere utilization of the scenario related
feasibility problem to be solved at Step 2 of the procedure, may not be
efficient in large-scale stochastic instances. Indeed, we propose a scenario
cluster decomposition approach for dealing with the feasibility problem, which
generates tighter feasibility cuts to add to the relaxed master problem. This
new scheme provides a more efficient procedure for solving large-scale two-stage
stochastic problems as we report in Section 3.6.

3.3 Illustrative example

As can be seen in the previous section, Step 2 of the TBD method consists of
determining whether a first stage decision, x, is also second stage feasible. This
step can be extremely time-consuming. It requires the solution of up to |Ω|
phase-one problems of the form (3.4). The process may have to be iteratively
repeated to obtain successive candidate first stage decisions.

To illustrate the feasibility cuts generation, consider the following example
taken also from [18]:

min 3x1 + 2x2 −
∑|Ω|
ω=1 w

ω(15yω1 + 12yω2 )
s.t.

0 ≤ x1 − 3yω1 − 2yω2 ∀ω ∈ Ω
0 ≤ x2 − 2yω1 − 5yω2 ∀ω ∈ Ω

0.8 · uω1 ≤ yω1 ≤ uω1 ∀ω ∈ Ω
0.8 · uω2 ≤ yω2 ≤ uω2 ∀ω ∈ Ω
x1 ≥ 0, x2 ≥ 0, yω1 ≥ 0, yω2 ≥ 0 ∀ω ∈ Ω,

(3.6)

where, independently, u1=4 or 6 and u2= 4 or 8 with probability 1
2

each, and
u = (u1, u2)T . Then,

{(uω1 , u
ω
2 ) : (4, 4), (4, 8), (6, 4), (6, 8)}, wω =

1
4
, ω = {1, 2, 3, 4}.

If at the first iteration of Step 1, as in this example, there is no system of
constraints in x, an initial feasible solution is needed. Starting from the initial
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Table 3.1: Feasibility cuts generated for the illustrative example by TBD

Iteration Scenario Feasibility cut
1 1 x1 ≥ 6.4
2 1 x2 ≥ 6.4
3 1 0.272727x1 + 0.090909x2 ≥ 6.4
4 1 0.2x2 ≥ 4.48
5 2 0.2x2 ≥ 7.68
6 1 0.333333x1 ≥ 5.333333
7 2 0.333333x1 ≥ 7.46666
8 4 0.333333x1 ≥ 9.06666
9 4 0.2x2 ≥ 8.32

solution x̂1 = (x1, x2)1 = (0, 0), Table 3.1 shows the feasibility cuts that are
generated.

By appending these nine cuts to the RMP model, the first stage solution
is as follows,

x̂10 = (27.2, 41.6),

which is feasible for the second stage decisions, see Table 3.1.

3.4 Scenario Cluster Benders Decomposition

scheme innovation

In addition to the two formulations presented in Figure 3.1, we propose
a scenario-cluster partitioning to allow for a mixture of compact and
splitting variable representations into and inter the scenario cluster submodels,
respectively. As an illustrative example, let us consider again the scenario tree
depicted in Figure 3.1. Figure 3.2 shows the problem decomposition in p̂ = 5
(left tree) and p̂ = 2 (right tree) scenario clusters into which the set of scenarios
is split. Observe that the NAC for the first stage vectors of variables are given
by x1 = · · · = x5 for the left part of the figure, and they are given by x1 = x2

for the right part of the figure, where xp is the vector x of the first stage
variables for scenario cluster p.
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Let Ωp denote the set of scenarios included in cluster p, for p = 1, ..., p̂. In
the left tree of Figure 3.2, there are five scenario clusters given by Ω1 = {1, 2},
Ω2 = {3, 4}, Ω3 = {5, 6}, Ω4 = {7, 8} and Ω5 = {9, 10}. In the right tree, there
are two scenario clusters, given by Ω1 = {1, 2, 3, 4, 5} and Ω2 = {6, 7, 8, 9, 10}.

t = 1

1
11

10

1
9

8
x1 = x2 = · · · = x5

1
7

6

1
5

4

1
3

2
t = 2 t = 1

11

10

1 9

8

7x1 = x2

6

5

1 4

3

2
t = 2

ω = 10

ω = 9

ω = 8

ω = 7

ω = 6

ω = 5

ω = 4

ω = 3

ω = 2

ω = 1

p̂ = 5 scenario clusters p̂ = 2 scenario clusters

Figure 3.2: Scenario cluster partitioning

The criterion for scenario clustering in the sets, say, Ω1, . . . ,Ωp̂, where
p̂ is the number of clusters to consider, is instance dependent. Given the
scenario cluster partitioning, the initial model (3.1) can be decomposed into p̂
smaller problems. By slightly abusing the notation, the problem to consider
for scenario cluster p can be expressed (in compact representation) as follows,
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(LOp) : zpLO = min cTxp +
∑

ω∈Ωp

wω(qωTyω)

s.t.
b1 ≤ Axp ≤ b2

hω1 ≤ T ωxp +W ωyω ≤ hω2 ∀ω ∈ Ωp

xp, yω ≥ 0 ∀ω ∈ Ωp,

(3.7)

where p = 1, ..., p̂. The p̂ problems (3.7) are linked by the NAC for the first
stage variables,

xpi = xp
′

i (3.8)

for all p 6= p′, p, p′ = 1, ..., p̂ and i = 1, ..., nx. See [38].

For simplicity and without loss of generality, we can select the number
of scenario clusters, p̂, as a divisor of the number of scenarios, |Ω|. In this
case, |Ωp| = |Ω|

p̂
= l, where |Ωp| defines the size of scenario cluster p, i.e., the

number of scenarios that belong to the corresponding cluster, for p = 1, ..., p̂.
This choice forces all the scenario clusters to have the same size, l. Then,
the scenario clusters are defined in terms of blocks of l-consecutive scenarios,
Ω1 = {1, ..., l}, Ω2 = {l + 1, ..., 2 · l},..., Ωp̂ = {(p̂− 1) · l + 1, ..., (p̂− 1) · l + l}.
In a more general case, the number of scenario clusters can be chosen as any
value 1 ≤ p̂ ≤ |Ω|, such that the total number of the scenarios in each cluster
along the set of clusters, must be equal to the total number of scenarios.

A simple look at the feasibility problem (3.4) reveals that its objective
function coefficients do not depend of any specific scenario, so, we can consider
a cluster of scenarios instead of one scenario alone. The objective function in
problem (3.4) depends on the set of artificial variables v+, v−, whose dimension
is the total number of second stage constraints. Then, this feasibility model
can be globally formulated for a set of scenarios as a minimization problem
in the variables v+ω

1 , v−ω
1 and v+ω

2 , v−ω
2 , for ω ∈ Ωp. Then, we can define the

following feasibility scenario cluster model for each iteration,

zpFEASC = min
∑

ω∈Ωp

wω(eTv+ω
1 + eTv−ω

1 + eTv+ω
2 + eTv−ω

2 ) (3.9)

s.t.

W ωyω − Iu−ω + Iv+ω
1 − Iv−ω

1 = hω1 − T ωx̂ ∀ω ∈ Ωp

W ωyω + Iu+ω − Iv+ω
2 + Iv−ω

2 = hω2 − T ωx̂ ∀ω ∈ Ωp

yω, v+ω
1 , v−ω

1 , v+ω
2 , v−ω

2 , u+ω, u−ω ≥ 0 ∀ω ∈ Ωp,
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where the dimension of eT = (1, ..., 1) is the number of constraints for scenario
cluster p, and v+ω

1 , v−ω
1 and v+ω

2 , v−ω
2 are the artificial variables for the left

and right hand side second stage constraints. These variables are introduced
to generate a problem which detects the infeasibility in model (3.1), given
a fixed value, say x̂, of the variable vector x. Additionally, notice that in
the feasibility model (3.9), the slack and excess variables for the second stage
inequality constraints, u+ω and u−ω, respectively, can take any value different
to zero. These variables appear in problems (1) with inequality constraints.
However, to ensure the feasibility of problem (3.1), given a fixed vector x̂,
the solution value of problem (3.9), i.e., variables v+

1 , v
−
1 , v

+
2 and v−

2 for each
scenario cluster must be equal to zero.

Table 3.2: Feasibility cuts generated for the illustrative example by CBD for
a given scenario cluster partition

Iteration Scenario cluster Feasibility cut
1 1 x1 ≥ 8
2 1 x2 ≥ 8
3 1 0.272727x1 + 0.090909x2 ≥ 8
4 1 0.2x2 ≥ 6.08
5 1 0.2x2 ≥ 7.68
6 1 0.333333x1 ≥ 7.46666
7 2 0.333333x1 ≥ 9.06666
8 2 0.2x2 ≥ 8.32

If there is a scenario cluster p, such that zpFEAS 6= 0 (infeasible scenario
cluster problem), there is a new feasibility cut and we must increase the counter,
i.e., efc := efc + 1, save the corresponding values ν̂ωefc

of the dual variables νω,
ω ∈ Ωp, define the cluster feasibility cut (3.10) and go to Step 1.

Let us consider again the example presented in Section 3.3, with p̂ = 2
scenario clusters, where the first cluster is included by the two first scenarios,
Ω1 = {1, 2}, and the second cluster by the last two, Ω2 = {3, 4}. Starting again
from the initial solution x̂1 = (x1, x2)1 = (0, 0), Table 3.2 shows the feasibility
cuts that are generated by the algorithm CBD. In this case, eight cuts are
generated, six cuts to satisfy the feasibility of the second stage constraints in
the first cluster, scenarios 1 an 2, and two cuts to satisfy the feasibility of the
second stage constraints in the second cluster, scenarios 3 and 4.
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Table 3.3: Feasibility cuts generated for the illustrative example by CBD for
all scenario cluster

Iteration Scenario cluster Feasibility cut
1 1 x1 ≥ 8.8
2 1 x2 ≥ 8.8
3 1 0.272727x1 + 0.090909x2 ≥ 8.8
4 1 0.2x2 ≥ 4.48
5 1 0.2x2 ≥ 7.04
6 1 0.878787x1 + 0.181818x2 ≥ 27.7333
7 1 0.272727x1 + 0.290909x2 ≥ 18.8888
8 1 0.333333x1 ≥ 9.06666
9 1 0.2x2 ≥ 8.32

Finally, let us consider, p̂ = 1 scenario cluster, it is included by the four
scenarios, Ω1 = {1, 2, 3, 4}. By using the same initial solution x̂1 = (x̂1, x̂2)1 =
(0, 0), Table 3.3 shows the set of feasibility cuts that are generated. Notice
that Tables 3.1 and 3.2 report different sets of cuts.

3.5 Algorithm CBD

In order to gain computational efficiency, we present our proposed scenario
cluster based scheme to be used in Benders decomposition. Before executing
the proposed algorithm for solving the original two-stage stochastic linear
problem, we are required to fix some data structuring. A decision has to be
made on fixing the number of scenario clusters p̂, for considering the splitting
variable representation and, consequently, the set of scenarios in each of the
clusters, Ωp, ∀p = 1, ..., p̂.

Then, the feasibility model is solved at Step 2 for each scenario cluster, p,
i.e., the set of scenarios in Ωp, such that the new feasibility model is to be
optimized for a given scenario cluster instead of a particular scenario.

Let efc denote the new counter of feasibility cuts generated from the
scenario cluster feasibility models (FEASC). Moreover, once the feasibility
cut has been identified and appended, the algorithm goes back to Step 1 in
order to solve the new relaxed master program. Notice that in this case, the
number of iterations can-not be the same for the distinct partitions into clusters
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of scenarios.

Primal Scenario Cluster procedure

Step 0: Set k := 0, p := 0, eo := 0, efc := 0.

Step 1: Solve the relaxed master program RMP (for θ = 0 if k = 0).
k := k + 1.

min cTx+ θ

s.t.

b1 ≤ Ax ≤ b2

−ν̂ωTj T ωx ≥ ν̂ωTj

(

hω1
−hω2

)

∀ω ∈ Ωp j = 0, ..., efc (3.10)

−
∑

ω∈Ωp

wων̂ωTj2 T
ωx+ θ ≥

∑

ω∈Ωp

wων̂ωTj2

(

hω1
−hω2

)

∀j2 = 0, ..., eo (3.11)

x ≥ 0, θ ∈ IR

Save the values x̂ and θ̂ of the primal variables x and θ.

Step 2: Set p := p+ 1. Solve the feasibility problem for scenario cluster p,

(FEASC) : zpFEASC = min
∑

ω∈Ωp

wω(eTv+ω
1 + eTv−ω

1 + eTv+ω
2 + eTv−ω

2 )

s.t.
W ωyω − Iu−ω + Iv+ω

1 − Iv−ω
1 = hω1 − T ωx̂ ∀ω ∈ Ωp

W ωyω + Iu+ω − Iv+ω
2 + Iv−ω

2 = hω2 − T ωx̂ ∀ω ∈ Ωp

yω, v+ω
1 , v−ω

1 , v+ω
2 , v−ω

2 , u+ω, u−ω ≥ 0 ∀ω ∈ Ωp.

(3.12)

If zpFEASC 6= 0 (infeasible scenario cluster problem): Set efc := efc + 1,
φω = +∞ ∀ω ∈ Ωp, save the values ν̂ωefc

of the dual variables ν̂ω, ω ∈ Ωp

and define the feasibility cut (3.10). Go to Step 1.

If zpFEASC = 0 (feasible scenario cluster problem) and p < p̂, go to Step
2.

Step 3: Solve the auxiliary primal problem for all scenarios ω, ω ∈ Ω,

(OPT ) φω = min qωTyω

s.t.
(

W ω

−W ω

)

yω ≥

(

hω1 − T ωx̂
−hω2 + T ωx̂

)

yω ≥ 0.

(3.13)
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Set eo := eo+1, save φω and the values ν̂ωeo
of the dual variables νω, reset

θ := 0 and define the optimality cut (3.11).

Step 4: Set φ :=
∑

ω∈Ω w
ωφω. If φ ≤ θ then stop, since the optimal solution

has been found in k-th iteration.

Save θ := θ + cx̂ and go to Step 1.

The dimensions of the cluster-based dual vector to be used for identifying
the feasibility cut, problem (FEASC) (3.12), are clearly greater than the
dimensions for one scenario based scheme, problem (3.4). In effect, problem
(3.12) has 2·|Ωp| blocks of constraints for each scenario cluster p while there are
two blocks of constraints for each scenario feasibility problem (3.4). However,
notice that the solution to the feasibility cut identification problem for each
scenario cluster forces the feasibility in more scenarios than by using the scheme
for each individual scenario. Then, the scenario cluster based scheme allows us
to identify tighter feasibility cuts than when using a scenario based procedure.

3.6 Computational experience

Our testbed of instances has a similar structure as the example (3.6) used
in Section 3.3, but we have added some additional variables and constraints
and increased as well the number of scenarios. So, we have generated a set of
medium and large-scale instances that require a big number of feasibility cuts.

Let us use the following notation for the variables and constraints, where
xi denotes a first stage variable, for i = 1, ..., nx and, similarly, yωj represents a
second stage variable under a given scenario, for j = 1, ..., ny and ω ∈ Ω. Now,
our problem can be written as follows,

zLO = min
∑nx

i=1 cixi +
∑

ω∈Ω w
ω∑ny

j=1 q
ω
j y

ω
j

s.t.

0 ≤ T ω







x1
...
xnx







+W ω







yω1
...
yωny







∀ω ∈ Ω

0.8hωj ≤ yωj ≤ hωj ∀j = 1, ..., ny, ω ∈ Ω
0 ≤ xi, ∀i = 1, ..., nx,

where wω will be considered equiprobable, i.e., wω = 1
|Ω|

. The ci coefficient is
integer and uniformly distributed over [3, 12] for i = 1, ..., 1

2
nx, and over [2, 11]
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for i = 1
2
nx + 1, ..., nx. The qωj coefficient was randomly generated with the

expression −(28 + 2ω
|Ω|

· a) for j = 1, ..., 1
2
ny, and the expression −(14 + 4ω

|Ω|
· a)

for j = 1
2
ny + 1, ..., ny, where a is an integer uniformly distributed over [1, 9].

For each scenario ω ∈ Ω, the matrices T ω and W ω have m rows and have
also been randomly generated. The m · nx elements of matrix T ω are integer
and uniformly distributed over [1, 15]. The m ·ny elements of matrix W ω have
been generated with the expression −(21 + ω

|Ω|
· a) for j = 1, ..., 1

2
ny, and the

expression −(16 + ω
|Ω|

· a) for j = 1
2
ny + 1, ..., ny.

The upper bound hω2j for the second stage variable yωj was generated with
the expression (4 + ω

|Ω|
) for j = 1, ..., 1

2
ny, and the expression (6 + ω

10|Ω|
) for

j = 1
2
ny + 1, ..., ny.

We report the results of the computational experience obtained while
optimizing our testbed of randomly generated instances. Our algorithmic
approach has been implemented in a C++ experimental code (Visual C++
2008 Express Edition) by using CPLEX v12.2 [85] as a solver of the linear
optimization relaxed master problem and auxiliary submodels at each iteration
within the open source engine COIN-OR [58, 70]. For comparison purposes,
plain CPLEX is used for solving the original linear full model. The
computations were carried out on a HP Pavillon DV3 computer under Windows
7 operating system with 32 bits, 2.26GHz, 4Gb of RAM and 2 cores. All
the programs have been attached to the memory on a CD and are listed in
Appendix A with a brief description.

Tables 3.4 shows the DEM dimensions in compact representation of the
instances in our testbed. The headings are as follows: nc, number of
constraints, computed as (m + ny)|Ω|; nv, number of variables computed as
nx + ny|Ω|; nx, number of first stage variables; ny, number of second stage
variables per scenario; nel, number of nonzero coefficients in the constraint
matrix; and dens, constraint matrix density. The number of scenarios varies
in the testbed, being {10, 100, 200, 400, 500}.

The headings of Tables 3.5, 3.6 and 3.7 are as follows: p̂, number of clusters
into which the set of scenarios is partitioned; |Ωp|, number of scenarios per
cluster (which is the same for each cluster p in our testbed); #fc, number of
feasibility cuts that have been identified; #it, number of iterations that are
needed to reach the optimal solution; TCBD and TCPLEX , total computation
time (secs.) for obtaining the optimal solution of the original stochastic
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Table 3.4: Model dimensions. Compact representation

Instance nc nv nx ny nel dens |Ω|
P1 1200 660 60 60 72600 0.0916 10
P2 2000 1100 100 100 201000 0.0913 10
P3 320000 4040 40 40 324000 2.5e-04 100
P4 400000 5050 50 50 405000 2.0e-04 100
P5 480000 6060 60 60 486000 1.6e-04 100
P6 640000 8040 40 40 648000 1.25e-04 200
P7 800000 10050 50 50 810000 1.00e-04 200
P8 960000 12060 60 60 972000 8.39e-05 200
P9 1280000 16040 40 40 1296000 6.31e-05 400
P10 1600000 20040 40 40 1602000 4.99e-05 500
P11 2000000 25020 50 50 2025000 4.04e-05 500

problem by using the CBD algorithm for each choice of the number of clusters
that we have been experimented with and by plain use of CPLEX, respectively.

Table 3.5: Performance of CBD scheme for the small instances P1 and P2

P1 |Ω| = 10 TCPLEX : 3.50
p̂ |Ωp| #fc #it TCBD
1 10 114 154 12.22
2 5 162 210 13.40
5 2 289 337 18.42
10 1 307 347 17.15

P2 |Ω| = 10 TCPLEX : 10.19
p̂ |Ωp| #fc #it TCBD
1 10 95 137 33.83
2 5 145 190 33.25
5 2 286 334 46.14
10 1 390 432 50.72

We can observe in Table 3.5 that the performance of the plain use of CPLEX
for the small instances is better than the performance of the CBD approach,
as expected. However, we are interested on testing the required number of
feasibility cut iterations for obtaining the optimal solution by using the CBD
approach when choosing different scenario cluster partitioning. We can also
observe that the optimal choice of the number of clusters, p̂, is the smallest
one. Moreover, when the number of clusters increases, more feasibility cuts
are needed to be appended to the relaxed master problem and then, more
iterations in the CBD algorithm to obtain the optimal solution. Notice that
when the number of clusters is the number of scenarios, p̂ = |Ω|, the CBD
scheme coincides with the TBD scheme.
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Table 3.6: Performance of CBD scheme for the small-medium instances P3, P4
and P5

P3 |Ω| = 100 TCPLEX : 12.63
p̂ |Ωp| #fc #it TCBD
1 100 10 12 7.17
2 50 18 20 6.16
4 25 28 30 6.32
10 10 54 56 8.18
50 2 108 110 11.04
100 1 130 132 7.49

P4 |Ω| = 100 TCPLEX : 20.921
p̂ |Ωp| #fc #it TCBD
1 100 26 28 16.12
2 50 59 61 20.64
4 25 98 100 22.81
10 10 203 205 35.94
50 2 446 448 66.40
100 1 497 499 35.88
P5 |Ω| = 100 TCPLEX : 33.99
p̂ |Ωp| #fc #it TCBD
1 100 20 32 21.12
2 50 34 46 22.39
4 25 54 66 33.76
10 10 103 115 40.93
50 2 218 230 62.50
100 1 265 277 77.22

We can observe in Tables 3.5-3.8 that an appropriate partitioning of the set
of scenarios into clusters produces much tighter feasibility cuts identification
and then, smaller computation time to obtain the optimal solution of the
original stochastic problem. This result is quite remarkable, since we have
obtained computation times smaller in one order of magnitude for the CBD
scheme at least, than the required computation time by using the TBD scheme.
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Table 3.7: Performance of CBD scheme for medium-large instances P6, P7 and
P8

P6 |Ω| = 200 TCPLEX : 31.48
p̂ |Ωp| #fc #it TCBD
1 200 39 41 29.57
2 100 60 62 31.10
4 50 109 111 44.17
10 20 241 243 96.16
50 4 533 535 157.23
100 2 631 633 157.23
200 1 622 624 158.03

P7 |Ω| = 200 TCPLEX : 69.06
p̂ |Ωp| #fc #it TCBD
1 200 44 46 60.51
2 100 65 67 58.56
4 50 117 119 67.16
10 20 296 298 135.71
50 4 647 649 179.35
100 2 695 697 171.94
200 1 701 703 96.56
P8 |Ω| = 200 TCPLEX : 65.65
p̂ |Ωp| #fc #it TCBD
1 200 16 25 37.78
2 100 30 39 38.94
4 50 55 64 46.82
10 20 102 111 77.93
50 4 269 278 131.51
100 2 308 317 142.19
200 1 338 347 160.61

We can also observe in Tables 3.6-3.8 that for the small-medium, medium-
large and large size instances, the optimal choice of the number of clusters,
p̂, is the smallest, since the smaller the number of required feasibility cuts,
the smaller number of iterations in the CBD scheme to obtain the optimal
solution. For all those instances the required computation time by using the
CBD algorithm is smaller than that required by plain use of CPLEX.
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Table 3.8: Performance of CBD scheme for the large instances P9, P10 and
P11

P9 |Ω| = 400 TCPLEX : 113.868
p̂ |Ωp| #fc #it TCBD
1 400 18 21 41.19
2 200 27 35 45.33
8 50 163 171 108.27
20 20 306 309 196.33
50 8 615 618 343.84
100 2 703 711 390.94
400 1 759 768 383.68

P10 |Ω| = 500 TCPLEX : 85.72
p̂ |Ωp| #fc #it TCBD
1 500 12 14 36.29
2 250 30 32 40.94
5 100 71 73 60.09
10 50 122 124 83.23
50 10 439 441 280.93
100 5 544 546 297.38
250 2 646 648 359.31
500 1 715 717 378.30
P11 |Ω| = 500 TCPLEX : 130.99
p̂ |Ωp| #fc #it TCBD
1 500 12 14 47.24
2 250 28 30 54.25
5 100 68 70 74.62
10 50 120 122 183.23
50 10 452 454 332.66
100 5 625 627 415.41
250 2 798 800 494.47
500 1 809 811 511.38

3.7 Conclusions

We have proposed in this chapter an efficient scenario cluster decomposition
approach for identifying tight feasibility cuts in Benders decomposition for
solving medium-large and large scale two-stage stochastic problems where
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only continuous variables appear. Some computational experience is presented,
where we observe the favorable performance of the proposed Cluster Benders
Decomposition (CBD) approach versus the performance of the Traditional
single scenario Benders Decomposition (TBD) approach.

We point out that the state-of-the-art optimization engine CPLEX requires
more computation time to obtain the optimal solution than the CBD approach
does in 9 out of 11 instances (i.e., the largest ones) in our testbed for a small
number of clusters (in particular, p̂ = 1, 2).

So, although more computational experience is required, the new approach
seems to be very promising based on our provisional results. Moreover, for a
big number of clusters (in particular, p̂ = |Ω|, i.e., the singleton cluster TBD
approach), plain use of CPLEX outperforms our CBD approach.



Chapter 4

Multistage scheme

The multistage stochastic linear problem with a finite number of possible future
scenarios still has a Deterministic Equivalent Model. However, the structure
of this problem is somewhat more complex than that of the two-stage problem.
The extensive form does not appear readily accesible to manipulations. The
aim in this chapter is to extend the proposed Cluster Benders Decompostion
approach to the multistage linear case. An information structuring for scenario
cluster partitioning of scenario trees is also presented, given the general model
formulation of the DEM in a multistage stochastic linear problem. The basic
idea consists of explicitly rewriting the nonanticipativity constraints of the
variables in the stages with common information. As a result an assignment
of the constraint matrix blocks into independent scenario cluster submodels
is performed. Then, multistage problems can be represented as two-blocks of
stages models, and the proposed Cluster Benders Decomposition (CBD) can
be used as an efficient tool for its solution.

4.1 Introduction

In this chapter we present a stochastic linear optimization modeling approach
and a Multistage Cluster Benders Decomposition (for short MCBD) algorithm,
for solving general multistage linear optimization problems under uncertainty
via scenario tree analysis. The main feature with respect to the two-stage
scheme is the information structuring for generating, naming and manipulating
the scenario cluster submodels.

95
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As a result, an assigment of the constraint matrix blocks into a two blocks of
stages model formulation in performed. We present a compact representation
with implicit NAC for linking the submodels with common information until a
given break stage; and a compact representation for each cluster submodel, to
treat the implicit NAC related to each of the scenario clusters from the break
stage until the last one.

The remainder of the chapter is organized as follows. Section 4.2 introduces
the multistage DEM both in compact and splitting variable representation.
Section 4.3 proposes a scenario-cluster partitioning to allow a combination
of compact and splitting variable representations in the different stages of the
problem. Section 4.4 deals with an illustrative example. Section 4.5 introduces
the main concepts of scenario cluster submodels. Section 4.6 presents the
innovation of the proposed two blocks of stages decomposition scheme for
any multistage problem. Section 4.7 introduces in detail the multistage CBD
approach that is proposed. Section 4.8 concludes.

4.2 Multistage DEM

Without loss of generality and for the sake of simplicity we will consider, in
particular, the following multistage deterministic linear model

min
∑

t∈T

ctxt

s.t. b11 ≤ A1x1 ≤ b21

b1t ≤ A′
txt−1 + Atxt ≤ b2t ∀t ∈ T − {1}

xt ∈ IR+ ∀t ∈ T ,

(4.1)

where T is the set of stages, ct is the vector of the objective function coefficients,
b1t and b2t are the left and right hand side vectors (for short lhs and rhs,
respectively), and A′

t and At are the constraint matrices, respectively, for stage
t. Finally, xt is the nxt

dimensional vector of continuos variables for stage t,
for t ∈ T .

To extend the deterministic model (4.1) to introduce uncertainty in the
parameters, we will use a scenario analysis approach. In our case, the
uncertainty can appear anywhere in the model, that is in the objective function,
the left or right hand sides and the constraint matrix coefficients. To illustrate
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some additional concepts let us consider the different representations of a
scenario tree given in Figure 4.1.

Let us consider the decision tree in the left part of the figure. It corresponds
to the compact representation of the stochastic version, see DEM (4.2). Each
node, say g, in the figure represents a point in time where a decision can be
made. Once a decision is made, some contingencies may occur (e.g., in this
example the number of contingencies is two for each stage t), and information
related to these contingencies is available at the beginning of each stage. In
this context, a stage is a point in time where a decision is made and, in some
cases, can be included by a subset of consecutive time periods.
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Figure 4.1: Scenario tree. Compact and splitting variable representations.

We will denote by T , the set of stages, and by T = |T |, their number.
In this example, there are T = 4 stages. At each stage, there is a type of
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decision, vector of continuous variables x. Let also G denote the set of scenario
groups, and Gt the subset of scenario groups that belong to stage t, such that
G = ∪t∈T Gt.

The structure of this information is visualized as a tree, where each root-to-
leaf path represents one specific scenario, ω, and corresponds to one realization
of the whole set of the uncertain parameters. In this sense, Ω will denote the
set of scenarios and wω will denote the likelihood or probability assigned by
the modeler to scenario ω, such that

∑

ω∈Ω w
ω = 1. Two scenarios belong to

the same group in a given stage provided that they have the same realizations
of the uncertain parameters up to the stage.

In the example of Figure 4.1, there are |Ω| = 8 root-to-leaf possible paths.
Moreover, each node in the tree can be associated with a scenario group, g,
where G represents the set of scenario groups.

Following the nonanticipativity principle, see [76, 90] and also [18], among
many others, both scenarios should have the same value for the related
variables with the time index up to the given stage. Some of the elements
and concepts introduced in this chapter have been taken from [39, 40].

Let us assume that the vector of the objective function values, c, the lhs
and rhs vectors b1 and b2 respectively and the constraint matrix coefficients,
A, depend on the scenario groups. So the compact representation of the linear
DEM of the stochastic version with complete recourse of multistage problem
(4.1) can be expressed

min
∑

g∈G

wg(cgxg)

s.t. b1
1 ≤ A1x

1 ≤ b1
2

bg1 ≤ A′
gx

π(g) + Agx
g ≤ bg2 ∀g ∈ G − {1}

xg ∈ IR+ ∀g ∈ G,

(4.2)

where wg is the likelihood assigned by the modeler to scenario group g, such
that wg =

∑

ω∈Ωg
wω, and the vectors and matrices of parameters cg, bg1, bg2,

A′
g and Ag depend now on each group g, for g ∈ G, π(g) is the scenario group

related to the immediate ancestor node of node g associated with scenario
group g in the scenario tree, such that π(g) ∈ Gt(g)−1, for g ∈ G − {1}, where
t(g) is the stage to which scenario group g belongs to, such that g ∈ Gt(g),
and xg is the copy of the x vector of variables for scenario group g. Without
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loss of generality, xg will denote the nx dimensional vector of the continuous
variables.

The right part of Figure 4.1 gives the same information as the compact
representation but this time using a splitting variable scheme. At each stage t
we have the presentation of the nonanticipativity constraints (i.e., imposing
the equality) on the variables xωt for the scenarios ω that belong to the
same group Ωg, g ∈ Gt, t ∈ T −. Model (4.4) gives the splitting variable
representation where the constraints explicitly appear in the model. Then, the
nonanticipativity principle can derive the set

{(xωt ) : xωt = xω
′

t ∀ω, ω′ ∈ Ωg, ω 6= ω′, g ∈ Gt, t ≤ T − 1}. (4.3)

Following the nonanticipativity principle, the corresponding equalities must
be satisfied for the stage t.

cg = cωt = cω
′

t , A
′
g = A′ωt = A′ω′

t , Ag = Aωt = Aω
′

t , b
g
1 = bω1t = bω

′

1t , b
g
2 = bω2t = bω

′

2t ,

∀ω, ω′ ∈ Ωg, ω 6= ω′, g ∈ Gt, t ≤ T − 1

Observe that for a given stage t, A′ω
t and Aωt are the technology matrices for

the xt variables, and these variables satisfy the nonanticipativity constraints
(4.3) for each stage t.

Given that Ω1 = Ω, it results that at first stage all the parameters and
variables in the model must take the same value under each scenario. Then,
wlog, we will denote this same value by c1, b11, b21, A1, A′

1 and x1 with
independece of scenario ω.

So, the splitting variable representation of the linear DEM of the stochastic
version with complete recourse of the deterministic multistage problem (4.1)
can be expressed

min c1x1 +
∑

ω∈Ω

∑

t∈T −{1}

wω
(

cωt x
ω
t

)

s.t. b11 ≤ A1x1 ≤ b21

bω1t ≤ A′ω
t x

ω
t−1 + Aωt x

ω
t ≤ bω2t ∀ω ∈ Ω, t ∈ T − {1}

xωt − xω
′

t = 0 ∀ω, ω′ ∈ Ωg : ω 6= ω′, g ∈ Gt, t ≤ T − 1

xωt ∈ IR+ ∀ω ∈ Ω, t ∈ T ,

(4.4)
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where wω is the likelihood assigned to scenario ω, cωt is the row vector of the
objective function coefficients, Aωt and A′ω

t are the constraint matrices, and bω1t
and bω2t are the lhs and rhs vectors respectively, for ω ∈ Ω, t ∈ T .

Notice, xωt is the replica of the nx dimensional vector of continuous variable
x at stage t under scenario ω.

We can see that the relaxation of the nonanticipativity constraints, xωt −
xω

′

t = 0, ∀ω, ω′ ∈ Ωg : ω 6= ω′, g ∈ Gt, t ≤ T − 1 in model (4.4) results in a
set of |Ω| independent mixed 0-1 models, where (4.5) is the model for scenario
ω ∈ Ω.

zω =min c1x1 +
∑

t∈T −{1}

wω
(

cωt x
ω
t

)

s.t. b11 ≤ A1x1 ≤ b21

bω1t ≤ A
′ω
t x

ω
t−1 + Aωt x

ω
t ≤ bω2t ∀t ∈ T − {1}

xωt ∈ IR+ ∀t ∈ T .

(4.5)

In general, the information about up to the stage where the scenario
submodels have common information and then, up to what stage the NAC
must be explicit is saved in the subsets Gt and Ωg, g ∈ Gt, t ∈ T for any
multistage stochastic problem with T stages and |Ω| scenarios.

4.3 Scenario cluster partitioning

In this section we propose a scenario-cluster partitioning to allow for a
combination of compact and splitting variable representations in the different
stages of the problem, depending on the scenario cluster partition of choice.

It is clear that the explicit representation of the nonaticipativity constraints
(4.3) is not desirable for all pairs of scenarios in order to reduce the dimensions
of model. In fact, we can represent implicitly the NAC for some pairs of
scenarios in order to gain computational efficiency. We will decompose the
scenario tree into a subset of scenario clusters subtrees P , each one for a
scenario cluster, p, for p ∈ P. Let q denote the number of scenario clusters
to consider, i.e., q = |P|. Let Ωp denote the set of scenarios that belongs
to a generic cluster p, where p ∈ P and

∑q
p=1 |Ωp| = |Ω|. It is clear that

the criterion for scenario clustering in the sets, say, Ω1, . . . ,Ωq is instance
dependent. Moreover, we favor the approach that shows higher scenario
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clustering for greater number of scenario groups in common. In any case,
notice that Ωp ⋂Ωp′

= ∅, p, p′ = 1, . . . , q : p 6= p′ and Ω = ∪q
p=1Ω

p.

Let also Gp ⊂ G denote the set of scenario groups for cluster p, such that
Ωg ∩ Ωp 6= ∅ means that g ∈ Gp. So, Gp

t = Gt ∩ Gp denote the set of scenario
groups for cluster p ∈ P in stage t ∈ T .

The number of clusters, q, can be selected as a divisor of |Ω|, then we
have that 1 ≤ |Ωp| = |Ω|

q
≤ |Ω|, where Ωp gives the set of scenarios in

cluster p for p = 1, . . . , q. And, then, the scenario clusters are Ω1 = {1, ..., ℓ},
Ω2 = {1 + ℓ, ..., 2 · ℓ},..., Ωq = {1 + (q − 1) · ℓ, . . . , q · ℓ}, where ℓ = |Ω|

q
.

As we will see below, the value q will be associated with the number of
stages with explicit NAC between scenario cluster submodels.

Definition 4 A break stage t∗ is a stage t such that the number of scenario
clusters is q = |Gt∗+1|, where t∗ +1 ∈ T . Observe that, in this case, any cluster
p ∈ P is induced by a group g ∈ Gt∗+1 and contains all scenarios belonging to
that group, i.e., Ωp = Ωg.

Definition 5 The scenario cluster models are those that result from the
relaxation of NAC until some break stage t∗ in model (4.4), called t∗-
decomposition.

Notice that the choice of t∗ = 0 corresponds to the full model and t∗ = T−1
corresponds to the scenario partitioning.

Notice that the LOp submodels (see below submodel (4.6)) are expressed
in compact representation, for each p ∈ {1, 2, . . . , q} and contain |Ωp| = |Ω|

q

scenarios. That is, fixing the q scenario clusters to decompose the problem
implies fixing the stages where the nonanticipativity constraints are to be
explicitly modeled and then, it implies fixing the dimensions of each cluster
that themselves are modeled by a compact representation.

4.4 An illustrative example

In the example depicted in Figure 4.1 we have |Ω| = 23 = 8 scenarios and
|G| = 15 scenario groups. Three cases will be considered for defining the t∗-
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decomposition and generating the q scenario clusters where q can be chosen
from the set of divisors of |Ω| = 8, i.e., q ∈ {2, 4, 8}.

For each selection of t∗, and then of q, problems (4.2)-(4.4) will be
decomposed into the scenario cluster submodels (4.6). They have equal
dimensions if the branching factor of the original scenario tree is constant
at each node. In any case, they are explicitly linked by the nonanticipativity
constraints (4.3).

Figure 4.2 shows the problem decomposition for t∗ = 1 i.e., in q = 2 scenario
clusters (left tree), for t∗ = 2 i.e., in q = 4 scenario clusters (central tree) and
for t∗ = 3 i.e., in q = 8 scenario clusters (right tree).
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Figure 4.2: Scenario cluster partitioning for t∗ = 1, t∗ = 2 and t∗ = 3

Let us analyze its left part, where the break stage is t∗ = 1. In this case
there are two clusters, namely p = 1 where the subset of scenario groups
is G1 = {1, 2, 4, 5, 8, 9, 10, 11} and p = 2 where the corresponding subset
of scenario groups is G2 = {1, 3, 6, 7, 12, 13, 14, 15}. The scenarios in each
set are Ω1 = {1, 2, 3, 4} and Ω2 = {5, 6, 7, 8} and they are linked by the
nonanticipativity constraints related only to stage t = 1, i.e., xp1, p = 1, 2
in constraints (4.3). The corresponding objective function value for cluster p
in model (4.6) given this choice of the break stage is zpt∗ = zp1 , for p = 1, 2.
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The central part of the figure gives the problem decomposition related to
q = 4; i.e., by considering as break stage t∗ = 2. In this case four clusters
are considered, namely, p = 1, defined by the nodes G1 = {1, 2, 4, 8, 9}; p = 2,
defined by G2 = {1, 2, 5, 10, 11}; p = 3, defined by G3 = {1, 3, 6, 12, 13}; and
p = 4, defined by G4 = {1, 3, 7, 14, 15}. The corresponding set of scenarios in
each cluster are, Ω1 = {1, 2}, Ω2 = {3, 4}, Ω3 = {5, 6} and Ω4 = {7, 8}. These
scenario cluster submodels are linked by the nonanticipativity constraints
related to stages t = 1, 2, such that x1

1 = x2
1 = x3

1 = x4
1 = x1 and, explicitly for

stage t = 2, x1
2 = x2

2 and x3
2 = x4

2. The corresponding objective function value
of cluster p in model (4.6) given this choice of the break stage is zpt∗ = zp2 , for
p = 1, 2, 3, 4.

Finally, the right part of the figure gives the problem decomposition for
q = 8 scenario clusters, where each cluster is included by one scenario, being
linked by the nonanticipativity constraints up to stage t∗ = 3. Now, eight
clusters are considered, namely, p = 1, defined by the set G1 = {1, 2, 4, 8};
p = 2, defined by G2 = {1, 2, 4, 9}; p = 3, defined by G3 = {1, 2, 5, 10}; p = 4,
defined by G4 = {1, 2, 5, 11}; p = 5, defined by G5 = {1, 3, 6, 12}; p = 6,
defined by G6 = {1, 3, 6, 13}; p = 7, defined by G7 = {1, 3, 7, 14}; and p = 8,
defined by G8 = {1, 3, 7, 15}. The corresponding sets of scenarios in each
cluster are the singleton scenario set, Ω1 = {1}, Ω2 = {2},..., Ω8 = {8}. These
scenario cluster submodels are linked by the nonanticipativity constraints up
to stage t∗ = 3, such that x1

1 = · · · = x8
1 = x1 and, explicitly for stage t = 2,

x1
2 = x2

2 = x3
2 = x4

2 and x5
2 = x6

2 = x7
2 = x8

2, and stage t = 3, x1
3 = x2

3 and
x3

3 = x4
3. The corresponding objective function value of cluster p in model (4.6)

given this choice of the break stage is zpt∗ = zp3 , for p = 1, · · · , 8.

4.5 Scenario cluster submodels

Let us assume that we have broken down the scenario set into q clusters. Now,
let us formulate the clusters submodels, and next the full mixed 0-1 DEM, first,
via splitting variable representation, so that the submodels are linked by the
explicit NAC in a first step up to stage t∗, and, in a second step, via compact
representation, such that the NAC up to the break stage are implicit.

From the elements in model (4.1), and having taken into account the choice
of the break stage t∗, we can define a new structure of variables and constraints
to express each scenario cluster in compact representation. In order to do this,
let xpt denote the vectors of the continuous variables, for scenario cluster p ∈ P
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and stage t ∈ T . Let also nxpt denote the number of continuous variables for
pair (p, t), respectively.

By using the two following concepts we will define from the splitting
variable representation of the full model, the corresponding linear optimization
submodel for each scenario cluster.

Definition 6 The representative scenario for scenario group g at stage t in
cluster p is the first ordered scenario in the scenario group, ωpg = min{ω ∈
Ωg}, g ∈ Gp

t , p ∈ P, t ∈ T .

Definition 7 The last ordered scenario for scenario group g at stage t in
cluster p is defined as ωpg = max{ω ∈ Ωg}, g ∈ Gp

t , p ∈ P, t ∈ T .

The set of constraints for each scenario cluster can be split into two blocks.
The first block represents the constraints related to the vectors of variables
until stage t∗ + 1, (i.e., stages with explicit NAC in the full model) that must
be linked with their own replicas in all of the other clusters. It includes the
block of first stage constraints. The second block of constrants represents the
constraints related to the vector of variables from stage t∗ + 2, i.e., stages with
implicit NAC in the full model. Accordingly, the linear optimization submodel
for cluster p ∈ P can be formulated as follows,

(LOp) zp =min
T∑

t=1

wp
tc
p
tx

p
t

s.t. bp11 ≤ Ap
1xp1 ≤ bp21,

bp1t ≤ A′p
t xpt−1 + Ap

tx
p
t ≤ bp2t 2 ≤ t ≤ t∗ + 1,

[b1t]p ≤ [At]′px
p
t−1 + [At]px

p
t ≤ [b2t]p t∗ + 1 < t ≤ T

xpt ∈ IR+nxp
t ∀t ∈ T

(4.6)

The first block of constraint matrices (A
′p
t , Ap

t ) is related to the vectors of
variables xpt , whose lhs and rhs are, respectively, bp1t and bp2t, for 2 ≤ t∗ + 1.
We can define the blocks of the matrices by stages. Obviously, the matrices
and vectors for the first block at first stage are as follows: A1 := A1, b11 := b11

and b21 := b21.
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For the stages 2 ≤ t ≤ t∗ + 1, the matrices for the first block are as follows:
A

′p
t := A

′ωp
g

t , Ap
t := A

ωp
g

t , bp1t := b
ωp

g

1t , and bp2t := b
ωp

g

2t

For cluster p and stage t for t ≤ t∗ + 1, the weight wp
t can be expressed as

wp
t =

∑

ω∈Ωg : g∈Gp
t

wω. Similarly, we can define the objective function coefficients

cpt .

The second block represents the constraints for stages from t∗ + 2 until the
last stage T . In all of these stages, the nonanticipativity principle is implicity
taken into account, since the submodel for each cluster is formulated via a
compact representation. The constraint matrices [A′

t]
p and [At]

p can be split
into the |Gp

t−1| and |Gp
t | submatrices related to the scenarios groups in a given

cluster p, respectively. Let the representative scenario ωpgi
, see Definition 6,

define the related block of matrices for scenario group gi ∈ Gp
t , i ∈ {1, . . . , |Gp

t |}
(at stage t) in cluster p.

Notice that the matrices [A′
t]
p have |Gp

t−1| vertical blocks, while the matrices
[At]p have |Gp

t | vertical blocks. It can be observed that if there are explicit
NAC in stage t − 1, then [A′

t]
p would be block diagonal matrices with the

same number of vertical blocks as [At]p that is, |Gp
t |, see (4.7). But, since the

NAC are implicitly considered, then the matrices become grouped matrices
by columns, such that they will have in the same column the matrices A′ω

t

and A′ω′

t for xpt−1, respectively, where xωt−1 = xω
′

t−1 ∀ω, ω′ ∈ Ωg : ω 6= ω′, g ∈
Gp
t , t

∗ + 1 < t ≤ T . Notice that these matrices can easily lose the diagonal
block structure, see below.

[A′
t]
p =













A
′ωp

g1

t 0 . . . 0

0 A
′ωp

g2

t . . . 0
...

...
. . .

...

0 0 . . . A

′ω
g

p

|G
p
t−1

|

t













︸ ︷︷ ︸

|Gp
t−1

| vertical blocks

, (4.7)
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[At]
p =












A
ωp

g1

t 0 0 . . . 0

0 A
ωp

g2

t 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . A
ωp

g |G
p
t

|

t












︸ ︷︷ ︸

|Gp
t | vertical blocks

(4.8)

For cluster p and stage t for t > t∗ + 1, let the vectors

xpt =












x
ωp

g1

t

x
ωp

g2

t
...

x
ωp

g
|G

p
t

|

t












,bp1t =












b
ωp

g1

1t

b
ωp

g2

1t
...

b
ωp

g
|G

p
t

|

1t












,bp2t =












b
ωp

g1

2t

b
ωp

g2

2t
...

b
ωp

g
|G

p
t

|

2t












, (4.9)

Notice that these vectors have the dimension |Gp
t |. So, the weight vector

wp
t is as follows,

wp
t =





ωp
g2

−1
∑

ω=ωp
g1

wω,
ωp

g3
−1
∑

ω=ωp
g2

wω, . . . ,
ω=ωp

t∑

ω=ωp
g

|G
p
t

|

wω


 , (4.10)

where, by slightly abusing the notation, ωpt denotes the last ordered scenario in
cluster p at stage t. Similarly, we can define the objective function coefficients
vector cpt .

The q cluster submodels (4.6) are linked by the NAC, that now can be
formulated as follows,

xpt − xp
′

t = 0, ∀p, p′ ∈ Pg, p 6= p′, g ∈ Gt, t ≤ t∗ (4.11)

where Pg is the set of scenario clusters that share scenario group g, i.e.,
p, p′ ∈ Pg provided that g ∈ Gp ∩ Gp′

.

It is very important to point out that the expression of model (4.6) allows
the so-named nonsymetric scenario trees. This type of trees allows to have a



4.5. SCENARIO CLUSTER SUBMODELS 107

different number of succesor scenario groups for the groups of a given stage and,
then, opening for the possibility that the number of constraints and variables
be different from one scenario group to another for the stages after a break
one, see [40]. This type of scenario trees are very common in practice but they
have been considered up to now, in the open literature, probably due to its
very complex treatment.

Let us consider the example depicted in the central part of Figure 4.2, where
T = 4, |Ω| = 8 and |G| = 15. In this case, t = 2 is the stage t∗-decomposition
and, so, q = 4 clusters, whose scenario groups are given in Table 4.1.

Table 4.1: Scenario groups for q = 4. Illustrative example

Gp
t p = 1 p = 2 p = 3 p = 4

t = 1 {1} {1} {1} {1}
t = 2 {2} {2} {3} {3}
t = 3 {4} {5} {6} {7}
t = 4 {8,9} {10,11} {12,13} {14,15}

The subset of scenario groups for cluster p and stage t, Gp
t can be

determined. In this case, until t∗ + 1 = 3 all of these subsets have a singleton
element and for t∗ + 2 = 4 these subsets have one or more elements.

Before defining the blocks of the matrices by stages, we must determine the
representative scenario wpg , for each of the scenario groups, g ∈ Gp

t in cluster
p ∈ P. This information appears in Table 4.2.

Obviously, the matrices and vectors for the first stage t = 1 and, then, the
q = 4 cluster models are: A1 := A1, b11 := b11 and b21 := b21. For first block
and stages 2 ≤ t ≤ t∗ + 1 = 3, they are as follows:

1. For scenario cluster p = 1: A
′1
t := A

′ω1
g

t , A1
t := A

ω1
g

t , b1
1t := b

ω1
g

1t , and

b1
2t := b

ω1
g

2t for 2 ≤ t ≤ 3, where the representative scenario for t = 2,
g ∈ G1

2 = {2} is ω1
2 = min{ω ∈ Ω2} = 1 and for t = 3, g ∈ G1

3 = {4} is
ω1

4 = min{ω ∈ Ω4} = 1, see Tables 4.1 and 4.2.

2. For scenario cluster p = 2: A
′2
t := A

′ω2
g

t , A2
t := A

ω2
g

t , b2
1t := b

ω2
g

1t , and

b2
2t := b

ω2
g

2t , for 2 ≤ t ≤ 3, where the representative scenario for t = 2,
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Table 4.2: Representative scenario for scenario group g in cluster p. 2-
decomposition

wp
g p = 1 p = 2 p = 3 p = 4

g = 1 min{w ∈ Ω1} ={1} {1} {1} {1}
g = 2 min{w ∈ Ω2} ={1} {1} – –
g = 3 – – min{w ∈ Ω3} ={5} {5}
g = 4 min{w ∈ Ω4} ={1} – – –
g = 5 – min{w ∈ Ω5} ={3} – –
g = 6 – – min{w ∈ Ω6} ={5} –
g = 7 – – – min{w ∈ Ω7} ={7}
g = 8 min{w ∈ Ω8} ={1} – – –
g = 9 min{w ∈ Ω9} ={2} – – –
g = 10 – min{w ∈ Ω10} ={3} – –
g = 11 – min{w ∈ Ω11} ={4} – –
g = 12 – – min{w ∈ Ω12} ={5} –
g = 13 – – min{w ∈ Ω13} ={6} –
g = 14 – – – min{w ∈ Ω14} ={7}
g = 15 – – – min{w ∈ Ω15} ={8}

g ∈ G2
2 = {2} is ω2

2 = min{ω ∈ Ω2} = 1 and for t = 3, g ∈ G2
3 = {5} is

ω2
5 = min{ω ∈ Ω5} = 3, see Tables 4.1 and 4.2.

3. For scenario cluster p = 3: A
′3
t := A

′ω3
g

t , A3
t := A

ω3
g

t , b3
1t := b

ω3
g

1t , and

b3
2t := b

ω3
g

2t , 2 ≤ t ≤ 3, where the representative scenario for t = 2,
g ∈ G3

2 = {3} is ω3
3 = min{ω ∈ Ω3} = 5 and for t = 3, g ∈ G3

3 = {6} is
ω3

6 = min{ω ∈ Ω6} = 5, see Tables 4.1 and 4.2.

4. For scenario cluster p = 4: A
′4
t := A

′ω4
g

t , A4
t := A

ω4
g

t , b4
1t := b

ω4
g

1t , and

b4
2t := b

ω4
g

2t , 2 ≤ t ≤ 3, where the representative scenario for t = 2,
g ∈ G4

2 = {3} is ω4
3 = min{ω ∈ Ω3} = 5 and for t = 3, g ∈ G4

3 = {7} is
ω4

7 = min{ω ∈ Ω7} = 7, see Tables 4.1 and 4.2.

The matrices for the second block and for stage t∗ + 1 = 3 < t ≤ 4, [A′
t]
p

and [At]p are as follows :

1. For scenario cluster p = 1: For scenario group gi ∈ G1
4 = {8, 9},

i ∈ {1, . . . , |G1
4 |} = {1, 2}, the representative scenario ω1

gi
= min {ω ∈

Ωgi
} for group gi is ω1

8 = min {ω ∈ Ω8} = 1 for group g1 = 8 and
ω1

9 = min {ω ∈ Ω9} = 2 for group g2 = 9.
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Due to the NAC in stage t = 3, x1
3 = x2

3 = x1
3, the corresponding

block of coefficients for that stage has only one column and is defined as:

[A′
4]

1 =

(

A
′1
4

A
′2
4

)

. The corresponding vector of the x variables for stage

t = 4 is, x1
4 =

(

x1
4

x2
4

)

and the matrix of coefficients for the corresponding

block is [A4]
1 =

(

A1
4 0

0 A2
4

)

.

2. For scenario cluster p = 2: For each scenario group gi ∈ G2
4 = {10, 11},

i ∈ {1, . . . , |G2
4 |} = {1, 2}, the representative scenarios are ω2

10 =
min {ω ∈ Ω10} = 3 for group g1 = 10, and ω2

11 = min {ω ∈ Ω11} = 4
for group g1 = 11. Then, the corresponding blocks of matrices are,

[A′
4]

2 =

(

A
′3
4

A
′4
4

)

, and [A4]
2 =

(

A3
4 0

0 A4
4

)

. Due to the NAC in stage

t = 3, x3
3 = x4

3 = x2
3, and the corresponding vectors of the x variables are

x2
3 = x3

3, and x2
4 =

(

x3
4

x4
4

)

.

3. For scenario cluster p = 3: For scenario group gi ∈ G3
4 = {12, 13},

i ∈ {1, . . . , |G3
4 |} = {1, 2}, the representative scenarios are ω3

12 =
min {ω ∈ Ω12} = 5 for group g1 = 12, and ω3

13 = min {ω ∈
Ω13} = 6 for group g1 = 13. The corresponding blocks are [A′

4]
3 =

(

A
′5
4

A
′6
4

)

, [A4]
3 =

(

A5
4 0

0 A6
4

)

and the corresponding vectors of the x

variables are x3
3 = x5

3 = x6
3 and x3

4 =

(

x5
4

x6
4

)

.

4. For scenario cluster p = 4: For scenario group gi ∈ G4
4 = {14, 15},

i ∈ {1, . . . , |G1
4 |} = {1, 2}, the representative scenarios are ω4

14 =
min {ω ∈ Ω14} = 7 for group g3 = 14 and ω4

15 = min {ω ∈ Ω15} = 8 for
group g1 = 15.

Due to NAC at stage t = 3, x3
3 = x7

3 = x8
3, and at stage t = 4, x3

4 =
(

x7
4

x8
4

)

. The corresponding blocks of matrices are, [A′
4]

4 =

(

A
′7
4

A
′8
4

)

,

and [A4]
4 =

(

A7
4 0

0 A8
4

)

.
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The constraint matrix structure of the q cluster submodels in the t∗ = 2-
decomposition is given by the system











b11

b1
12

b1
13

b1
14

b2
14











≤











A1

A
′1
2 A1

2

A
′1
3 A1

3

A
′1
4 A1

4

A
′2
4 A2

4











·











x1

x1
2

x1
3

x1
4

x2
4











≤











b21

b1
22

b1
23

b1
24

b2
24











(4.12)











b11

b1
12

b3
13

b3
14

b4
14











≤











A1

A
′1
2 A1

2

A
′3
3 A3

3

A
′3
4 A3

4

A
′4
4 A4

4











·











x1

x1
2

x3
3

x3
4

x4
4











≤











b21

b1
22

b3
23

b3
24

b4
24











(4.13)











b11

b5
12

b5
13

b5
14

b6
14











≤











A1

A
′5
2 A5

2

A
′5
3 A5

3

A
′5
4 A5

4

A
′6
4 A6

4











·











x1

x5
2

x5
3

x5
4

x6
4











≤











b21

b1
22

b1
23

b5
24

b6
24











(4.14)











b11

b5
12

b7
13

b7
14

b8
14











≤











A1

A
′5
2 A5

2

A
′7
3 A7

3

A
′7
4 A7

4

A
′8
4 A8

4











·











x1

x5
2

x7
3

x7
4

x8
4











≤











b21

b5
22

b7
23

b7
24

b8
24











(4.15)

The notation in (4.12) - (4.15) is A
′ω
t , Aωt : scenario matrices, bω1t, b

ω
2t:

scenario lhs and rhs for the corresponding stage and xωt : scenario continuous
variables, respectively.

The t∗-decomposition in scenario clusters of the DEM (4.2) can be given
alternatively by a splitting variable representation, for explicitly satisfying
the NAC between the cluster submodels until stage t∗, or by a compact
representation, when the NAC are implicit, as in case of (4.12) - (4.15).
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4.6 Multistage full model with two blocks of

stages structure

By using the compact representation of the t∗-descompostion in scenario
clusters given in the example (4.12) - (4.15) and reordering some of the rows,
we obtain the following two blocks of stages structure matrix coefficients for
the full model,
















b11

b1
12

b5
12

b1
13

b3
13

b5
13

b7
13
















≤
















A1

A
′1
2 A1

2

A
′5
2 A5

2

A
′1
3 A1

3

A
′3
3 A3

3

A
′5
3 A5

3

A
′7
3 A7

3
















·
















x1

x1
2

x5
2

x1
3

x3
3

x5
3

x7
3
















≤
















b21

b1
22

b5
22

b1
23

b3
23

b5
23

b7
23

































b1
14

b2
14

b3
14

b4
14

b5
14

b6
14

b7
14

b8
14


















≤


















A
′1
4 A1

4

A
′2
4 A2

4

A
′3
4 A3

4

A
′4
4 A4

4

A
′5
4 A5

4

A
′6
4 A6

4

A
′7
4 A7

4

A
′8
4 A8

4


















·




























x1
3

x1
4

x2
4

x3
3

x3
4

x4
4

x5
3

x5
4

x6
4

x7
3

x7
4

x8
4




























≤


















b1
24

b2
24

b3
24

b4
24

b5
24

b6
24

b7
24

b8
24


















Observe in the first block of constraints that we have just considered the
matrices of coefficients for some of the scenario clusters for stages t ≤ t∗ + 1;
clusters p = 1 and 3 in the case of the example. New elements must be defined
in order to generalize the formulation of the multistage DEM in terms of these
two blocks. Notice that P is the set of the q scenario clusters.



112 CHAPTER 4. MULTISTAGE SCHEME

Definition 8 A representative scenario cluster, say ptg for scenario group g
at stage t is the first ordered scenario cluster associated with group g, then,
ptg = {min p | g ∈ Gp

t , p ∈ P}

Let us consider the representative cluster set, P t for stage t ∈ T . Each
element in set P t is the representative scenario cluster of the clusters that
belong to any group g at stage t, such that P t = {pt1, p

t
2, . . . p

t
|Gt|}. See also

that P t = P ,∀t > t∗. For stages t ∈ {1, . . . , t∗}, the number of elements
in such set coincides with the number of scenario groups, i.e., |P t| = |Gt|, in
particular, P1 = {1}. Moreover, each set is included in the corresponding set
for the next stage, P1 ⊂ P2 ⊂ . . . ⊂ P t∗ ⊂ P t∗+1 ⊆ . . . ⊆ PT = P .

In the illustrative example depicted in in the central part of Figure 4.2, the
set of representative clusters are: P1 = {1}, P2 = {1, 3} and P3 = P4 = P =
{1, 2, 3, 4}.

Definition 9 The ancestor scenario cluster, say φpt , of cluster p ∈ P for t ∈ T
is the representative cluster in stage t − 1 for the ancestor scenario group of
the group in stage t for which cluster p is the representative scenario cluster.

By using the previous elements and given the break stage t∗, the full
multistage DEM can be formulated in a compact representation, as follows,

(DEM) z =min c1x1 +
t∗∑

t=2

pt

|Pt|
∑

p=pt
1

wp
t (c

p
tx

p
t ) +

T∑

t=t∗+1

q
∑

p=1

wp
t (c

p
tx

p
t )

s.t. b11 ≤ A1x1 ≤ b21,

bp1t ≤ A′p
t x

φp
t
t−1 + Ap

tx
p
t ≤ bp2t ∀p ∈ P t, 2 ≤ t ≤ t∗ + 1,

[b1t]p ≤ [At]′px
p
t−1 + [At]px

p
t ≤ [b2t]p ∀p ∈ P, t∗ + 1 < t ≤ T,

xpt ∈ IR+nxp
t ∀p ∈ P, t ∈ T ,

(4.16)

In order to present the new scheme of the Cluster Benders Decomposition
for multistage problems, we will use a similar notation to the two-stage model
(3.1). The generic first stage matrix coefficients in a two stage problem is
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denoted by A. In the illustrative example with the 2−decompostion we will
consider,

A =
















A1

A
′1
2 A1

2

A
′5
2 A5

2

A
′1
3 A1

3

A
′3
3 A3

3

A
′5
3 A5

3

A
′7
3 A7

3
















=

=

















A1

A
′p=1
2 Ap=1

2

A
′p=3
2 Ap=3

2

A
′p=1
3 Ap=1

3

A
′p=2
3 Ap=2

3

A
′p=3
3 Ap=3

3

A
′p=4
3 Ap=4

3

















corresponding to the vectors of the first block of variables,
















x1

x1
2

x5
2

x1
3

x3
3

x5
3

x7
3
















=
















x1

xp=1
2

xp=3
2

xp=1
3

xp=2
3

xp=3
3

xp=4
3
















The generic second stage technology matrix coefficients in a two stage
problem is denoted by Tp, for p ∈ P. It is the matrix of coefficientes for
constraints of stage t∗ + 2 corresponding to variables of the predecesor stage,
t∗ + 1, where t∗ is the break stage considered.
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Notice that each row in matrix T corresponds to each cluster block p, and
the nonnegative elements of matrix T p are denoted by T ∗p = [At∗+2]

′φp

t∗+2 ,
where p ∈ P, t∗ is the break stage and φpt denotes the ancestor cluster of
cluster p in stage t− 1.

In our example, we consider

T =


















A
′1
4

A
′2
4

A
′3
4

A
′4
4

A
′5
4

A
′6
4

A
′7
4

A
′8
4


















=









[A4]
′p=1

[A4]
′p=2

[A4]
′p=3

[A4]
′p=4









=

=








Tp=1

Tp=2

Tp=3

Tp=4








corresponding to the t∗ + 1 stage variables, where p = 1 = φ1
4 is the ancestor

of cluster 1 in stage 3, p = 2 = φ2
4 is the ancestor of cluster 2 in stage 3,

p = 3 = φ3
4 is the ancestor of cluster 3 in stage 3 and p = 4 = φ4

4 is the
ancestor of cluster 4 in stage 3. In our case,








x1
3

x3
3

x5
3

x7
3








=









xp=1
3

xp=2
3

xp=3
3

xp=4
3









.

And the generic second stage recourse matrix coefficients in a two stage
problem is denoted by Wp, for p ∈ P. It is the matrix of coefficientes
corresponding to the block of variables from stage t∗ + 2 until T , where t∗

is the break stage considered. In our case it is defined by,



4.6. MULTISTAGE MODEL WITH 2 BLOCKS OF STAGES 115

W =


















A1
4

A2
4

A3
4

A4
4

A5
4

A6
4

A7
4

A8
4


















=

=













[A4]p=1

[A4]p=2

[A4]p=3

[A4]p=4













corresponding to the second block variables, in our case,


















x1
4

x2
4

x3
4

x4
4

x5
4

x6
4

x7
4

x8
4


















=









xp=1
4

xp=2
4

xp=3
4

xp=4
4









.

All these matrices can be represented in the multistage tree of the example
as in Figure 4.6.

Given a break stage t∗, the full multistage DEM can always be formulated
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t = 1

1

t∗ = 2

3

2

t∗ + 1 = 3

7

6

5

4

t = 4

15

14

13

12

11

10

9

8

A T ∗4

T ∗3

T ∗2

T ∗1

W 4

W 3

W 2

W 1

Figure 4.3: Illustrative example. Specification of the matrices.

in a compact representation as a two-blocks formulation, given by,

(DEM) z =min ctx + Eψ[wp(qpyp)]

s.t. B1 ≤ Ax ≤ B2,

hp1 ≤ Tpx + Wpyp ≤ hp2 ∀p ∈ P,

x,yp ∈ IR+ ∀p ∈ P,

(4.17)

where x denotes the vector of the first block of variables, defined in this case
by

x =




















x1

xp=1∈P2

2

· · ·

x
p=3=|P2|
2

· · ·

x
p=pt∗+1

1

t∗+1

· · ·

x
p=|Pt∗+1|
t∗+1




















.

c is the corresponding vector of the function coefficients for the x variables,
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such that, ctx =
t∗∑

t=1

pt

|Pt|∑

p=pt
1

wp
t (c

p
tx

p
t ), B1 and B2 are the left and right hand

side vectors for the first block constraints, respectively, A is the first block
constraint matrix and yp, for p ∈ P, denotes the vector of the second block
variables, given in a general t∗-decomposition by,






















xp=1
t∗+1

xp=2
t∗+1

· · ·

x
p=|P|
t∗+1

· · ·
xp=1
T

xp=2
T

· · ·

x
p=|P|
T






















.

Notice that Eψ[wp(qpyp)] =
T∑

t=t∗+1

q∑

p=1
wp
t (c

p
tx

p
t ) is the mathematical

expectation with respect to ψ over the set of scenario clusters P , hp1 and hp2
denote the left and right hand side vectors of the second block of constraints,
respectively, for each scenario cluster p ∈ P, wp is the likelihood attibuted to
scenario cluster p, qp is the vector of objective function coefficients for the y
variables, Tp is the technology matrix and Wp is the recourse matrix under
scenario cluster p ∈ P. Given a generic t∗-decomposition, they are defined as,

Tp =
(

0 . . . 0
︸ ︷︷ ︸

clusters 1 . . . p-1

[At∗+2]
′φp

t∗+2 0 . . . 0
︸ ︷︷ ︸

clusters p+1 . . . |P|

)

Wp =








[At∗+2]p

[At∗+3]
′p [At∗+3]p

· · ·
[AT ]

′p [AT ]p








for each scenario cluster p ∈ P.
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t = 1 t = 2

b

t = 3

b

b

b

· · · t∗

b

b

b

t∗ + 1

b

b

b

b

b

b

b

t∗ + 2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

· · · T

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

A

T ∗1

T ∗p

T ∗|P|

W 1

W p

W |P|

Figure 4.4: Two-blocks decomposition. Specification of the matrices, where
T ∗p is the nozero submatrix of T p.

4.7 Multistage Cluster Benders

Decomposition

Before executing the proposed algorithm for solving the original multistage
stochastic linear problem, it is neccesary to fix the data structuring in order
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to build a two block of stages structure, see Table 4.3.

Table 4.3: Data structuring

Step 0: Define the scenario tree:
T , Ω, G, Gt, ∀t ∈ T , Ωg, ∀g ∈ G and wω, ∀ω ∈ Ω.

Step 1: Decide the break stage t∗ and then,
the number of scenario clusters q = |Gt∗+1|.

Step 2: Define Gp, Gp
t , Ωp, ωpg , P t, φpt and npxt ∀t ∈ T , p ∈ P.

Step 3: Generate the cluster models (4.6)

Step 4: Generate the full model (4.16)

The Multistage Cluster Benders Decomposition (MCBD) algorithm works
over a structure in which we have split the set T of stages into two parts
or blocks, the first one includes the stages t = 1, ..., t∗ + 1, and the second
part includes the other stages in set T , from t∗ + 2 until T . Variables in
stage t∗ + 1 link both blocks, where t∗ is the break stage. Then, the scenario
tree is decomposed into a two-blocks scenario cluster tree, where the NAC
are implicitly satisfied until stage t∗ in the full model, since they are used a
compact representation for these stages, and it is implicitly satisfied into each
scenario cluster model from stage t∗ + 1 until the last stage, T .

Multistage CBD procedure

Step 0: Set k := eo := ef := 0, where eo and ef are for counting the number
of optimality and feasibility cuts along the iterations of the algorithm,
respectively.

Step 1: Set k := k + 1. Solve the program (RMP) (with θ = 0 if eo = 0).
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(RMP ) min cTx + θ

s.t.

B1 ≤ Ax ≤ B2

0 ≥ ν̂pTj1

(

hp1 + Tpx
−hp2 + Tpx

)

∀j1 = 0, ..., ef (4.18)

θ ≥
∑

p∈P

wpν̂pTj2

(

hp1 + Tpx
−hp2 + Tpx

)

∀j2 = 0, ..., eo (4.19)

x ≥ 0, θ ∈ IR,

where ν̂j1 and ν̂j2 are the values of the corresponding dual variables (i.e.,
simplex multipliers) obtained in the feasibility (Step 2) and auxiliary
primal (Step 3) problems, respectively.

Save the optimal solution x̂ and θ̂ of the primal variables x and θ,
respectively.

Step 2: For each scenario cluster p ∈ P, solve the following feasibility problem

(FEAS) zpFEAS = min eTv+p
1 + eTv−p

1 + eTv+p
2 + eTv−p

2

s.t.
Wpyp − Iu−p + Iv+p

1 − Iv−p
1 = hp1 − Tpx̂

Wpyp + Iu+p − Iv+p
2 + Iv−p

2 = hp2 − Tpx̂
yp, v+p

1 , v−p
1 , v+p

2 , v−p
2 , u+p, u−p ≥ 0.

(4.20)

If there is a scenario cluster p, such that zpFEAS 6= 0 (infeasible cluster
problem), set ef := ef + 1, φp = +∞, save the values ν̂pef

of the dual
variables νp, define the feasibility cut (4.18) and go to Step 1.

If zpFEAS = 0 (feasible) ∀p ∈ P, go to Step 3.

Step 3: For each scenario cluster p ∈ P, solve the auxiliary primal problem

(OPT ) φp = min qpTyp

s.t.
(

Wp

−Wp

)

yp ≥

(

hp1 − Tpx̂
−hp2 + Tpx̂

)

yp ≥ 0.

(4.21)

Save the objective function value, φp and the simplex multipliers
associated with the optimal solution of problem (4.21), ν̂peo

, and define
the optimality cut.
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Set φ :=
∑

p∈P(
∑T
t=t∗+1 w

p
t )φp. If φ ≤ θ̂ then stop, since the optimal

solution has been found in k-th iteration.

In other case, set eo := eo + 1, add the new cut to the constraint set
(4.19) and return to Step 1.

4.8 Conclusions

In this chapter a general multistage stochastic modeling approach and an
algorithmic framework, named Multistage Cluster Benders Decomposition,
have been proposed for solving multistage problems with continuous variables
under uncertainty in the parameters, being the uncertainty represented by
(symetric or nonsymetric) scenarios trees. It can appear in any coefficient of
the objective function, constraint matrix and left- and right-hand-sides at any
stage. The approach treats the uncertainty by scenario cluster analysis.

The proposed algorithm works over a structured information in which we
have split the set of stages into two blocks of stages; the first includes the
stages t = 1, ..., t∗ + 1, and the second includes the other stages in set T , since
t∗ + 2 until T . Variables in stage t∗ + 1 link both blocks, where t∗ is the
break stage. Then, the scenario tree is decomposed into a two-blocks scenario
cluster tree, where the NAC are implicitly satisfied until stage t∗, since they
are represented in compact representation in the full model for these stages,
and they are implicitly satisfied into each scenario cluster model from stage
t∗ + 1 until T .

As a future work we are considering a computational comparison
between our purpose and the traditional Nested Benders Decomposition as a
decomposition tool for iteratively solving multistage models. Another subject
for future research derives from the observation of the independent character
of the scenario cluster submodels, such that it paves the way for a parallelized
algorithm.
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Chapter 5

Conclusions, original contributions

and future research

5.1 Conclusions

Chapter 2: Stochastic models for immunization
strategies

This chapter proposes several stochastic models for selecting portfolios in a
market in which there are transaction costs and bonds with different credit
ratings. In particular, new concepts and modelings have been introduced and
tested. We have also extended some of them from the two-stage formulation to
the general multistage case. The intention is to check whether the assumptions
made in the dynamic immunization theorem put forward by Khang are crucial
to its validity and to check wether the theoretical models proposed in the
literature and developed in this chapter are suitable to optimize immunization
strategies in fixed-income security portfolios under both sources of uncertainty.

According to Khang, and his Dynamic Global Portfolio Immunization
Theorem [61], in case of parallel changes in the interest rate structure, ausence
of trasaction costs and no other source of incertainty apart from the interest
rate risk, the immunized portfolio would be the one that matches Macaulay’s
duration with the planning horizon all over the time. The inclusion of
transaction costs, nevertheless, is observed to affect the optimality of the
proposed strategy, since the continual readjustment of the portfolio that these
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costs entail results in additional costs which are too high. This means that the
immune strategy ceases to be optimal.

Furthermore, introducing a second source of uncertainty also affect the
optimality of the theoretical result due to the fact that the problem to be
faced changes in a signifficant way. This is an innovative way to face the
problem since we deal with two completely different sources of uncertainty at
the same time: trends in interest rates and the probabilities of default of the
various institutions which issue the bonds. Uncertainty is introduced into the
model through a scenario analysis scheme.

Different immunization strategies are considered, such as, min-max regret,
mean-risk immunization, two-stage and multistage Value-at-Risk strategy,
two-stage Conditional Value-at-Risk strategy, two-stage first and second
order stochastic dominance and multistage first order stochastic dominance
strategies, and the new measure as a mixture of the multistage VaR &
stochastic dominance at all stages. The validity of the proposed strategies
is performed by using an illustrative case study. No definitive conclusions can
be drawn from the case study (the aim of the chapter has merely been to
present the immunization strategies of choice), but the results that have been
obtained seem to be reasonable.

Based on them we favor the multistage immunization strategies given by the
models (DEM4) (using multistage 100% VaR), (DEM5) (using the stochastic
dominance constraints alone) and (DEM6) (using the mixture of the VaR
strategy and the stochastic dominance constraints).

Each of them has advantages and disadvantages, and the decision maker
should choose between the three depending on its preferences. Model (DEM5)
would be better for those investors who are only interested in the final value
of the portfolio and they also know a priori which possible thresholds can be
more interesting for their purposes. On the contrary, model (DEM6) would be
better for those investors with no initial expectations and are also interested
in optimizing the portfolio all over the PH. It could be very interesting, for
example, for those decision makers who would like to dissolve the portfolio at
any time in order to use the new information in the market. Model (DEM4),
instead, could be very interesting for a very risk averse investor. In any case,
models (DEM5) and (DEM6) can become computationally non treatable for
real markets with many possible future scenarios in case of using plain state-of-
the-art optimization engines instead of using proven decomposition approaches,
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meanwhile (DEM4) can easily be solved.

Chapter 3: Two-stage scheme

We have proposed in this chapter an efficient scenario cluster decomposition
approach for identifying tight feasibility cuts in Benders decomposition for
solving medium-large and large scale two-stage stochastic problems where
only continuous variables appear. Some computational experience is presented,
where we observe the favorable performance of the proposed Cluster Benders
Decomposition (CBD) approach versus the performance of the Traditional
single scenario Benders Decomposition (TBD) approach.

In the Benders decomposition, the two-stage linear problem (3.1) can be
decomposed and its optimal solution can be iteratively obtained by identifying
extreme points and rays based cuts from the optimization of the so-named
Auxiliary Program (AP). So, the cuts are appended to the so-named Relaxed
Master Program (RMP). The TBD solves a feasibility auxiliar problem for
scenario and creates a cut, if needed, each time. The CBD solves a feasibility
auxiliar problem for each cluster of scenarios, so it solves less subproblems and
creates tighter feasibility cuts.

We point out that the state-of-the-art optimization engine CPLEX requires
more computation time to obtain the optimal solution than the CBD approach
does in 9 out of 11 instances (i.e., the largest ones) in our testbed for a small
number of clusters (in particular, p̂ = 1, 2).

So, although more computational experience is required, the new approach
seems to be very promising based on our provisional results. Moreover, for a
big number of clusters (in particular, p̂ = |Ω|, i.e., the singleton cluster TBD
approach), plain use of CPLEX outperforms our CBD approach.

Chapter 4: Multistage scheme

In this chapter a general stochastic multistage modeling approach and an
algorithmic framework, named Multistage Cluster Benders Decomposition
(MCBD), have been proposed for solving multistage problems under uncer-
tainty in the parameters, being the uncertainty represented by scenarios trees.
It can appear in any coefficient of the objective function, constraint matrix and
left- and right-hand-sides at any stage. The approach treats the uncertainty
by scenario cluster analysis.
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The algorithm proposed works over a structure information in which we
have split the set of stages into two blocks of stages, the first one includes the
stages t = 1, ..., t∗ + 1, and the second one includes the other stages in set T ,
since t∗ + 2 until T . Variables in stage t∗ + 1 link both blocks, where t∗ is the
break stage. Then, the scenario tree are decomposed into a two-blocks scenario
cluster tree, where the NAC are implicitly satisfied until stage t∗, since they
are used a compact representation in the full model for these stages, and they
are implicitly satisfied into each scenario cluster model from stage t∗ + 1 until
T .

In this way it is possible to define a Relaxed Master Program in which we
do not deal just with the first stage variables; we deal with the whole first
block of stages variables. Then, we can define an Auxiliary Problem for each
cluster of the second block of stages creating an structure that reminds the
Traditional Benders Decomposition in the two stage environment.

Although computational experience is required, the theoretical develop-
ment of the algorithm seems to be reasonable and promising.

5.2 Contributions visibility

Certain main results of this memory have lead to several publications:

• Working paper series Biltoki. On solving two-stage stochastic linear
problems by using a new approach, Cluster Benders Decomposition. (L.
Aranburu, L. F. Escudero, M.A. Garín and G. Pérez).

http://econpapers.repec.org/paper/ehubiltok/201008.htm

• Journal TOP.A so-called study on our Cluster Benders Decomposition
approach for solviong two stage stochastic linear problems. (L. Aranburu,
L. F. Escudero, M.A. Garín and G. Pérez). Ed. Springer. Submitted for
publication.

• Book titled: Stochastic Programming: Applications to Finance,
Energy Planning and Logistics. Stochastic models for optimizing
immunization strategies in fixed-income security portfolios under some
sources of uncertainty. (L. Aranburu, L. F. Escudero, M.A. Garín and
G. Pérez). Ed. H. Gassmann, S. W. Wallace and Y. Zhao. Submitted
for publication.
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• OR2011 Proceedings Modern multistage risk measures for immunizing
fixed-income portfolios under uncertainty. (L. Aranburu, L. F. Escudero,
M.A. Garín and G. Pérez). Ed. Springer. Submitted for publication.

Furthermore, the main results of this memory have also been presented in
several national and international meetings:

• XII Encuentro de Economía Aplicada. Modelos estocásticos de
selección de carteras de renta fija con costes de transacción y distintas
calificaciones crediticias. (L. Aranburu, M.A. Garín and G. Pérez).
Madrid (Spain). June 2009.

• XXIII European Conference on Operations Research (EURO).
A stochastic model for mixed-income securities portfolio selection with
transaction costs and default probabilities. (L. Aranburu, L. F. Escudero,
M.A. Garín and G. Pérez). Bonn (Germany). July 2009. Invited talk.

• II Jornadas de Investigación de la Facultad de Ciencia y
Tecnología (UPV/EHU). Programación estocástica multietapa 0-1.
Algoritmos y aplicaciones. (L. Aranburu, L. F. Escudero, M.A. Garín,
M. Merino, G. Pérez and A. Unzueta). Leioa (Spain). March 2010.

• IX Workshop on Advances in Continuous Optimization (EU-
ROPT). Risk averse strategies in Stochastic Optimization. (L. Aran-
buru, L. F. Escudero, M.A. Garín and G. Pérez). Ballarat (Australia).
July 2011.

• International Conference on Operational Research (OR2011).
Modern multistage risk measures for immunizing fixed-income portfolios
under uncertainty. (L. Aranburu, L. F. Escudero, M.A. Garín and G.
Pérez). Zürich (Switzerland). August 2011.

• Annual Conference of the Serbian Operations Research Society.
Risk management in optimization under uncertainty: models, algorithms
and applications. (L. F. Escudero. Joint work with L. Aranburu,
M.A. Garín, M. Merino, G. Pérez and A. Unzueta). Zlatibor mountain
(Serbia). October 2011. Keynote talk in the innauguration session.

• Workshop on Optimization Issues in Energy Efficient Dis-
tributes Systems (OPTIM2011). Risk averse strategies in stochastic
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optimization. (L. Aranburu, L. F. Escudero, M.A. Garín, M. Merino, G.
Pérez and A. Unzueta). Bellaterra (Spain). October 2011. Invited talk.

5.3 Future research

The first part of this study, is more related to stochastic modelling. In
this sense we have proposed several risk averse measure to deal with the
immunization of fixed-income securities portfolio problem in different ways.
Some of the proposed models can become computationally difficult for real
markets with many possible future scenarios in case of plain use of optimization
engines. We may even have difficulties for solving them by using decomposition
methods, in some cases, in case of a big cardinality of the set of profiles.

For these situations we are considering different strategies whose validation
will be a piece of future research:

• Model without scenario linking constraints: MR&SDC that stands for
Mean-Risk & Stochastic Dominance Constraints since it is a mixture of
both. It consists of maximizing the multistage VaR minus the sum of
the weighted failure’s probabilities of not reaching the set of thresholds
imposed by the modeler. The model that implements the new strategy
does no include scenario linking constraints, what is a good characteristic
from a computational point of view and it could replace the strategy
VaR&SDC.

• Model without 0-1 variables: Multistage Second order Stochastic
Dominance, which is the extension to the multistage of the strategy
described in Section 2.5 in Chapter 2. This strategy does not include
0-1 variables, which makes it very attractive from a computational point
of view.

The validation of the following variations of our new approach (multistage
VaR&SDC) are also a piece of future research:

• Mixture of multistage VaR and first order SDC

• Mixture of multistage VaR and second order SDC
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• Mixture of multistage CVaR and first order SDC

• Mixture of multistage CVaR and second order SDC

The second part of the manuscript is more related to the algorithmic
approach, more specifically to the development of two-stage and multistage
Cluster Benders Decomposition (CBD). In this sense we are considering the
following extensions:

• The combination of the exact Branch-and-Fix Coordination scheme for
solving two-stage stochastic mixed 0-1 problems [35, 36, 38], with the
CBD approach in order to tighten the lower bound of the solution value
at the Twin Node Family.

• Test the validity of the algorith MCBD by a significant case study.

• A computational comparison between our proposed MCBD and the
traditional Nested Benders Decomposition as a decomposition tool for
iteratively solving multistage models.

• Another point of future research derives from the observation of the
independent character of the scenario cluster submodels, such that it
paves the way for a parallelized algorithm.

As a future work we are also planning an extensive computational
experience with large scale cases in fixed-income security portfolios, scenarios
and profiles to test the validity of, not only CBD and MCBD decomposition
algorithm, but also our stochastic mixed integer optimization algorithm
approaches for problem solving in this type of financial application.

In that sense, we are planning to use different computational algorithms
that would make easier the solution of them:

• CBD described in Chapter 3 to solve the two stage immunization model
(DEM2).

• MCBD described in Chapter 4 to solve the multistage immunization
model (DEM4).
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• Multistage Branch-and-Fix Coordination (BFC-MS) described in [34]
and [39] for multistage mixed 0-1 models.

• Mixture of BFC-MS and Lagrangean Decomposition for multistage mixed
0-1 models with scenario linking constraints, such as, (DEM5) and
(DEM6).

Another objective pursued by future research is to study the validity of
the new risk averse measures and the algorithmic approaches proposed in this
memory for other applications, not necessarily in the field of finance.
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CBD programming codes

A brief description of the programming code corresponding to the implementa-
tion of the CBD and used in the computational experience povided in Section
3.6 in Chapter 3 is described below. It has been implemented in a C++ ex-
perimental code (Visual C++ 2008 Express Edition) by using CPLEX v12.2
[85] as a solver of the linear optimization Relaxed Master Problem (RMP)
and Auxiliary Problems (AP) at each iteration within the open source engine
COIN-OR [58, 70]. The content of this programming code is included in the
attached CD that contains eleven self-executable folders (named from P1 to
P11), with the routines, each with a different two-stage so-named problem
from those listed in Table 3.4. Each program can be executed for any number
of clusters p̂, being p̂ a divisor of the number of scenarios |Ω|. The files are
organized in a friendly way for creating a new example with a different number
of first stage (nx) and second stage (ny) variables, as well as different number
of scenarios (|Ω|).

The main program is as follows,

benders-cplex.cpp, main program that obtains the solution of the DEM
using the Cluster Benders Decomposition algorithm described in Section
3.5 of the Chapter 3. It uses the following external functions:

inicioprimal.cpp, external function of benders.cpp corresponding to
the definition of the initial Relaxed Master Program (RMP) that
generates an objective function and initial values for the first stage
variables (xi).
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auxiliarprimal1.cpp, external function of benders.cpp that generates
the feasibility Auxiliar Subproblem (3.12) for the variables ypi , for
each scenario cluster p ∈ P.

auxiliarprimal2.cpp, external function of benders.cpp that generates
the optimality Auxiliar Subproblem (3.13) for the variables yωi , for
each scenario ω ∈ Ω.

maestroprimal1.cpp, external function of benders.cpp that generates
the feasibility cut to be appended to the Relaxed Master Program
at each iteration.

maestroprimal2.cpp, external function of benders.cpp that generates
the optimality cut to be appended to the Relaxed Master Program
at each iteration.

modelosBL.cpp, external function of benders.cpp that generates each
one of the two-stage problems with the related deterministic
parameters as well as those which are uncertain under each scenario.

nirea.cpp, external function of benders.cpp that generates random
numbers.

The main program also uses the header files described below:

constantesBL.h, header file for imputting profile constant values such
as nx, ny, |Ω|, p̂ and several tolerances for different examples.
Additionally, it calculates some other constant values derived
from the other ones, such as the dimensions number of variables,
constrains and nonzero elements of the full model as well as the
scenario and scenario cluster submodels that will be solved of the
CBD procedure.

pm.h, header file that includes the header files of the open source
engines COIN-OR and CPLEX that are needed for the correct
solution of the main program.
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Resumen

B.1 Introducción

El contenido del trabajo está organizado en dos partes. En una primera parte
(Capítulo 2), el manuscrito está orientado al desarrollo de la modelización
estocástica necesaria para introducir nuevas medidas de gestión de riesgo
en problemas de optimización matemática bajo incertidumbre, partiendo de
modelos de dos etapas y aportando su extensión al caso general de múltiples
etapas. La incertidumbre en los parámetros del problema es tratada vía la
metodología conocida como Análisis de Escenarios.

Se revisan algunas de las medidas de gestión del riesgo conocidas de la
literatura para modelos de dos etapas, entre las que están: la inmunización
media-riesgo (mean-risk immunization), el valor en riesgo en dos etapas (two-
stage value at risk), valor en riesgo condicional en dos etapas (two-stage
conditional value at risk) o las condiciones de dominancia estocástica de primer
y segundo orden también en dos etapas (two-stage first and second order
stochastic dominance).

Se analizan las distintas estrategias aversas al riesgo utilizando como caso
piloto un modelo de optimización de estrategias de inmunización para carteras
de renta fija con dos fuentes de incertidumbre.

Además de generalizar al caso multietapa varias de las estrategias citadas,
se propone una nueva medida de aversión al riesgo, definida como una mixtura
de las estrategias valor en riesgo (VaR) y dominancia estocástica (SDC).
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La segunda parte de esta memoria (Capítulos 3 y 4) está dedicada al
desarrollo de esquemas algorítmicos de solución. Se proponen en particular
innovadoras metodologías y tecnologías computacionales para la resolución de
problemas estocásticos lineales (dos etapas y multietapa) a gran escala, basadas
en técnicas de descomposición.

Tomando como punto de partida la descomposición tradicional de Benders
para modelos estocásticos lineales de dos etapas, se propone en el Capítulo 3 un
nuevo esquema que resuelve en cada iteración un modelo auxiliar de factibilidad
más fuerte, definido a la vez para un cluster o racimo de escenarios, en lugar
del tradicional que es definido uno a uno para cada escenario. Se propone el
procedimiento denominado CBD: Cluster Benders Decomposition. Los cortes
de factibilidad generados con el nuevo esquema son más fuertes, reduciendo
sustancialmente el número de iteraciones necesarias para la obtención del
óptimo del problema. Se aportan los resultados obtenidos en la experiencia
computacional sobre un conjunto de casos generados aleatoriamente como
prueba de la eficiencia del procedimento propuesto.

Los modelos de optimización estocástica multietapa son tradicionalmente
más difíciles de manejar que los de dos etapas. En este sentido, el Capítulo
4 proporciona un esquema de representación de un modelo general de
optimización estocástica multietapa, como un modelo en dos bloques de etapas,
estructura ésta última que recuerda a la tradicional de un modelo de dos etapas.

Una vez generados los elementos necesarios para tal representación, el
modelo resultante, puede ser tratado con el esquema de descomposición de
Benders por clusters o racimos de escenarios. Se propone así el esquema
algorítmico, Multistage CBD.

B.2 Modelización estocástica de estrategias

de inmunización

Los modelos de optimización estocástica han sido ampliamente estudiados
desde los años cincuenta. En la memoria completa se revisa el estado del
arte citando varios de los trabajos más interesantes publicados en la literatura.

La mayoría de los modelos financieros propuestos y utilizados en las últimas
dos decadas han sido estáticos y de un sólo periodo, aunque también son
tratados modelos de dos etapas. Sin embargo, en los casos en los que la
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incertidumbre prevalece en todas las etapas del horizonte de planificación,
los modelos de optimización multietapa se convierten en más apropiados.
En la actualidad, estos modelos no son muy comunes en la práctica en
aplicaciones financieras dada su complejidad y el alto y complejo requerimiento
de introducción y manejo de los datos. Aun así, en los últimos años
han aparecido en la literatura modelos de optimización muy interesantes,
básicamente para gestión de activos.

En la presente memoria se analizan algunas de las estrategias aversas al
riesgo utilizando como caso piloto un modelo de optimización de estrategias
de inmunización para carteras de renta fija con dos fuentes de incertidumbre.
Así, el modelo financiero presentado considera que hay parámetros inciertos
que no son controlados por el modelizador, pero son conocidas o estimadas sus
distribuciones de probabilidad, y tales parámetros pueden ser considerados
como variables aleatorias independientes a las variables de decisión del
problema. Introducimos diferentes modelizaciones que permiten considerar
costes de transacción. La incertidumbre se representa mediante un árbol de
escenarios multietapa.

La mayor diferencia entre el modelo de gestión de bonos propuesta en este
trabajo y los modelos encontrados en la literatura, es que consideramos un
inversor que quiere invertir en un mercado con bonos con diferentes niveles
de riesgo de impago (default). Por lo tanto, se consideran dos fuentes de
incertidumbre, o dos riesgos, asociados al modelo, denominados riesgo de tipo
de interés y riesgo de impago, respectivamente. Este último está relacionado
con la solvencia del emisor del bono y, por tanto, del mismo bono.

Uno de los resultados más importantes en el campo de la inmunización de
carteras de renta fija, es el llamado Teorema de Inmunización Global Dinámica
enunciada por Khang [61]. Según esta teoría, si la estructura de los tipos de
interés tiene cambios paralelos, no hay costes de transacción en el mercado
y la única fuente de incertidumbre que afecta a los activos de renta fija es el
riesgo de tipo de interés, una cartera inmunizada sería aquella cuya duración de
Macaulay1 igualase al horizonte de planificación en cada momento del tiempo.

1La duración de Macaulay de un activo es una media ponderada de la rentabilidad del
bono en cada instante, donde la ponderación se elige como las desviaciones de cada instante
con respecto al inicial:

dit =

∑i

s=1
(ts − t0)Cupon · Descuento
∑i

s=1
Cupon · Descuento
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Los modelos propuestos en esta memoria permiten incluir costes de
transacción y tienen en cuenta diferentes calificaciones creditícias en los bonos.
De esta forma, se pretende no sólo comparar y elegir entre las distintas medidas
de riesgo, sino también comprobar si los supuestos en los que se basa el Teorema
de Inmunización Global Dinámica de Khang [61] son cruciales para su validez.

En este resumen nos centramos en describir con mayor detalle la
modelización de la nueva medida de riesgo propuesta, definida como una
mixtura de las estrategias VaR (Value-at-Risk) y SDC (Stochastic Dominance
Constraints) multietapa.

Descripción del problema y fuentes de incertidumbre

Consideramos una partición del horizonte de planificación (PH) en k
subintervalos de igual longitud [t0, t1], [t1, t2],..., [tk−1, tk], siendo t0 el inicio
y tk el final del PH. También asumimos que el reajuste de la cartera sólo está
permitido al inicio de cada subintervalo. |T | = k+ 1 es el número de periodos
de tiempo, y tk es el periodo final. Así que, se define el conjunto T como la
discretización del horizonte de planificación, es decir, T = {t0, t1, ..., tk}. Por
simplicidad y sin pérdida de generalidad, asumimos que hay |I| bonos cupon
diferentes disponibles en t0, cada uno de ellos con madurez en ti, tal que
ti ∈ {t1, ...., tk}, pero no necesariamente para todos los bonos, ya que puede
haber algún bono i∗ con madurez, ti∗, posterior al periodo de planificación
final, es decir, ti∗ > tk . Así, los pagos de los cupones se producen el los puntos
de reajuste, donde ti es el periodo de madurez del bono i ∈ I, e I denota el
conjunto de bonos a incluir en la cartera.

Asumimos un presupuesto inicial dado para invertir en la cartera. Las
variables de decisión más importantes son el volumen de cada título a comprar
y vender en cada periodo. Se asumen los costes de transacción que afectan
a cada reajuste. El objetivo del problema consiste en reajustar la cartera
de renta fija a lo largo del horizonte de planificación bajo varias fuentes de
incertidumbre como se describe en la siguiente subsección. La incertidumbre
en los parámetros más importantes es representada por un árbol de escenarios.
Nuestra estrategia de inmunización, que se describe a continuación, está basada
en dos fuentes de incertidumbre independientes, los tipos de interés y las
calificaciones de las compañías emisoras de los bonos, respectivamente. El
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riesgo en éste último caso, concierne a la solvencia del emisor y del propio
bono. Se proporcionan las siguientes definiciones para facilitar la notación.

Credit rating denota la calificación dada a un individuo o a una compañía
para indicar su solvencia como deudores en títulos de corto o largo plazo.
Las agencias calificadoras examinan las compañías emisoras de bonos, al igual
que la situación de los mismos bonos a intervalos regulares y pueden subir o
bajar su calificación cuando quiera que lo vean conveniente. Default o Impago2

denota el incumplimiento a la hora de pagar un préstamo al llegar al periodo de
maduración, o cuando se cumplan los términos del contrato. La probabilidad
riesgo de default o riesgo de impago está muy relacionada con la calificación de
crédito de una entidad en un instante del tiempo dado. La tasa de recuperación,
zi, es la proporción del dinero debido que el deudor se compromete a pagar en
caso de default.

El modelo de selección de carteras descrito a continuación trata de obtener
el reajuste óptimo, independientemente de los cambios en los tipos de interés,
es decir, trata de obtener una cartera inmunizada. Permite incluir costes
de transacción y tiene en cuenta diferentes calificaciones creditícias en los
bonos. Por tanto, la cartera óptima tiene en cuenta el riesgo asociado con
la probabilidad de bancarrota por parte del emisor, y el peso que el inversor
atribuye a este riesgo.

Modelo Determinista Equivalente

En Optimización Estocástica es bien conocido que la optimización del valor
esperado de la función objetivo (en nuestro caso piloto, definida como la riqueza
esperada final a lo largo de los periodos de planificación y bajo todos los
escenarios) proporciona una estrategia neutral al riesgo, dado que no considera
la variabilidad a lo largo de los periodos y bajo cada uno de los escenarios. Por
tanto, asumiendo la ventaja desde el punto de vista del coste computacional,
la literatura está considerando una variedad de medidas aversas al riesgo para
reducir la probabilidad de ocurrencia de los escenarios no deseados. Algunas
de las medidas más interesantes son el VaR (valor en riesgo), CVaR (valor en
riesgo condicionada), media-riesgo, la reciente dominancia estocástica (SDC),
y por último nuestra propuesta en dos etapas, denotada como VaR&SDC como
mezcla de las estrategias VaR y SDC.

2Abusando del lenguage, se utiliza la terminología anglosajona para referirse a un
determinado concepto
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La memoria completa analiza las ventajas y los inconvenientes, tanto
computacionales como de otro tipo, de todas estas estrategias. Además
presenta a modo de ejemplo y haciendo uso de una pequeña aplicación
financiera algunas conclusiones al respecto. En dicho ejemplo se han obtenido
algunos de los mejores resultados con el modelo determinista equivalente
(DEM) implementando la estrategia VaR&SDC descrita a continuación.
Requiere la siguiente notación adicional:

Conjuntos

J, conjunto de clases de activos de renta fija j considerados, es decir, el
conjunto de distintas calificaciones creditícias considerados.

Ij, conjunto de activos i que pertenece a la clase j, Ij ⊂ I.

Parámetros

I0, inversión inicial.

Fi, valor nominal del activo i, para i ∈ I.

ti, periodo de madurez del activo i, tal que ti ∈ {t1, ..., tk, ..., tn}, para i ∈ I.

β, porcentaje del volumen negociado que representa los costes de transacción
que afectan a cada reajuste. También se considera que el pago del valor
nominal no genera costes de transacción.

Pi0, precio unitario de mercado del activo i al inicio del PH, periodo t0, para
i ∈ I.

wω, probabilidad del escenario ω, dado por el modelizador.

wg, probabilidad del grupo de escenarios g, para g ∈ Gt, t ∈ T , calculado
como

∑

ω∈Ωg
wω.

rg, tipo de interés libre de riesgo bajo el grupo de escenarios g, para g ∈ Gt,
t ∈ T .

qgj , medida de riesgo calculado como la probabilidad de default de los activos
de la clase j bajo el grupo de escenarios g, para g ∈ Gt, t ∈ T , j ∈ J .
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Rg
i , tipo de interés real (como fracción de uno) para el activo i de la clase j

bajo el grupo de escenarios g, para g ∈ Gt, t ∈ T , i ∈ Ij, j ∈ J . Su
calculo está basado en rg, el tipo de recuperación zi y qgj .

Cg
i , cadena de pagos generados por una unidad del activo i bajo el grupo de

escenarios g, para g ∈ Gt, t ∈ T − {t0}, i ∈ Ij, j ∈ J . Su cálculo está
basado en Fi,, el tipo de recuperación zi y qgj .

P g
i , precio unitario del activo i bajo el grupo de escenarios g, para g ∈ Gt,

t ∈ T − {t0}, i ∈ Ij, j ∈ J . Su cálculo está basado en Cg
i y Cg

i .

P+g
i , P−g

i precios de compra y venta unitarios del activo i, respectivamente,
bajo el grupo de escenarios g, para i ∈ Ij, j ∈ J , g ∈ Gt, t ∈ T − {tk},
donde P+g

i = (1 + β)P g
i y P−g

i = (1 − β)P g
i .

vωi,t(g), valor final bajo el grupo de escenarios g de una inversión de P g
i unidades

monetarias en el activo i hecha en el periodo, digamos, t(g) a donde
pertenece el grupo g, si el tipo de interés real instantáneo cambia, justo
después, de Rg

i a Rω
i al final del PH, para i ∈ I, g ∈ Gt(g), ω ∈ Ωg. Su

cálculo está basado en Cg
i y Cg

i .

Variables

x+g
i , x−g

i volúmenes del activo i comprados y vendidos, respectivamente, bajo
el grupo de escenarios g, para g ∈ Gt, t ∈ T , i ∈ I.

zgi , volumen del activo i contenido en la cartera bajo el grupo de escenarios g,
para g ∈ Gt, t ∈ T , i ∈ I.

V g, valor final de la cartera bajo el grupo de escenarios g, para g ∈ Gt, t ∈ T .

Consideremos el conjunto de objetivos preestablecidos, digamos, P como
el conjunto de umbrales φg a satisfacer por V g bajo el grupo de escenarios g
(en cada etapa de decisión), es decir, P = {φg, g ∈ Gt, t = t0, · · · , tk−1} para
probabilidades de incumplimiento dados, digamos, αg y pesos, digamos, γg,
para g ∈ P.
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Por tanto, el DEM en representación compacta es el que sigue,

(VAR&DSC) max
∑

g∈P

γgV g +
∑

g∈Gtk

wgV g (B.1)

s.t. x0
i = z0

i ∀i ∈ I (B.2)
∑

i∈I

P+0
i x+0

i = I0 (B.3)

z
π(g)
i + x+g

i − x−g
i = zgi ∀i ∈ I, g ∈ Gt, t = t1, . . . , tk−1 (B.4)

x−g
i:ti=t = z

π(g)
i:ti=t ∀i ∈ I, g ∈ Gt, t = t1 . . . , tk (B.5)

x−g
i = z

π(g)
i ∀i ∈ I : tk < ti, g ∈ Gtk (B.6)

∑

i∈I:t<ti

P+g
i x+g

i −
∑

i∈I:t<ti

P+g
i x−g

i =
∑

i∈I:t≤ti

Cg
i z

π(g)
i ∀g ∈ Gt, t = t1, . . . , tk−1(B.7)

∑

i∈I:tk<ti

P−g
i x−g

i +
∑

i∈I:tk≤ti

Cg
i z

π(g)
i = V g ∀g ∈ Gtk (B.8)

∑

i∈I:t<ti

vωi,t(g)z
g
i +Mνωg ≥ V g ∀ω ∈ Ωg, g ∈ Gt, t = t0, . . . , tk−1 (B.9)

∑

ω∈Ωg

wωνωg ≤ αg ∀g ∈ P (B.10)

V g ≥ φg ∀g ∈ P (B.11)

νωg ∈ {0, 1} ∀ω ∈ Ωg, g ∈ P. (B.12)

La función objetivo (B.1) consiste en la maximización de la mixtura
ponderada de los VaR en cada grupo de escenarios y el valor esperado final.
Las ecuaciones (B.2)-(B.3) son restricciones de primera etapa, representando
las condiciones estructurales. Las restricciones (B.4)-(B.6) son ecuaciones de
balance que unen los activos que se compran y venden en cada periodo con
los activos a mantener en la cartera. Las ecuaciones (B.9) son la llave de
la estrategia de inmunización para asegurar un valor mínimo bajo todos los
escenarios futuros para los grupos de escenarios. Las ecuaciones (B.7) aseguran
que la cartera sea autofinanciada. Las ecuaciones (B.8) fuerzan que la cartera
se deshaga al final del PH. Las restricciones (B.10) fuerzan la optimización con
una probabilidad de incumplimiento dado.

La validez de las estrategias propuestas se lleva a cabo mediante un caso
de estudio ilustrativo del que no se pueden sacar conclusiones definitivas (el
propósito de este capítulo ha sido simplemente presentar las estrategias entre
las que elegir) pero los resultados parecen razonables.
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En cuanto a la validez del Teorema de Inmunización Global Dinámica
propuesta por Khang, podemos decir que los supuestos en los que se basa son
absolutamente necesarios. Por un lado, la inclusión de los costes de transacción
afecta a la optimalidad de la estrategia propuesta, dado que el reajuste continuo
de la cartera que ésta implica, supone costes adicionales demasiado elevados.
Por otro lado, la introducción de la segunda fuente de incertidumbre cambia
totalmente el planteamiento del problema, por lo que la estrategia propuesta
por Khang vuelve a no ser óptima en este contexto.

A la hora de elegir entre los distintos modelos de gestión de riesgos
propuestos en la memoria, se puede decir que cada uno de ellos tiene sus
vetajas y desventajas y, dependiendo del perfil del inversor, se podrían preferir
unas u otras.

En cualquier caso, para un inversor averso al riesgo cuyo objetivo es
mantener una cartera inmunizada frente a los dos riesgos durante el horizonte
de planificación, podríamos decir que la mejor estrategia es la llamada
(VaR&SDC) descrita en las ecuaciones (B.1)-(B.10). Esta estrategia permite
inmunizar la cartera frente a las dos fuentes de incertidumbre en los escenarios
más probables (se consideran más o menos escenarios dependiendo de la
aversión al riesgo del inversor), durante todo el horizonte de planificación. Pero,
además, permite asegurar una ganancia mínima en aquellos escenarios menos
probables.

Aun así, el modelo (VaR&DSC) puede complicarse mucho para mercados
reales con gran número de escenarios futuros, alcanzando una alta complejidad
para la aplicación de solvers estándar de optimización. Incluso podríamos tener
dificultades para resolverlo utilizando técnicas de descomposición, en el caso
de una gran cardinalidad del conjunto de umbrales.

Para estas situaciones estamos considerando reemplazar la estrategia
VaR&DSC por una nueva estrategia llamada MR&DSC como la mixtura de
las estrategias media-riesgo y SDC multietapa. Consiste en maximizar el VaR
menos la suma de las probabilidades ponderadas de no superar los umbrales
propuestos. La ventaja es que este modelo no incluye restricciones que mezclan
escenarios.
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B.3 Modelos lineales dos etapas.

Descomposición de Benders
El procedimiento iterativo de optimización de problemas estocásticos (repre-
sentados mediante análisis de escenarios) de dos etapas lineales, basado en la
descomposición de Benders, requiere tras la definicón del subproblema maestro,
la identificación de cortes de factibilidad y de optimalidad que garanticen la
optimalidad de la solución, y por ende la convergencia del procedimiento. Los
cortes de factibilidad y de optimalidad se generan resolviendo los submodelos
auxiliares correspondientes ligados a cada escenario aislado.

La estructura que presentan en particular los problemas auxiliares de
factibilidad, permiten definirlos para un conjunto de escenarios. En este caso
se prueba la factibilidad de la solución bajo varios escenarios simultáneamente.
El conjunto de escenarios se divide en clusters o racimos de escenarios, y se itera
en este número de clusters en lugar de iterar sobre el número de escenarios. Los
cortes de factibilidad generados son además más fuertes y producen decisiones
de segunda etapa factibles en un tiempo computacional razonable, requiriendo
menos iteraciones del procedimiento para alcanzar el óptimo.

Así, se propone el algoritmo denominado CBD: Descomposición de Benders
por Clusters o racimos de escenarios como un esquema eficiente para la solución
de modelos estocásticos lineales bietapa de grandes dimensiones.

La memoria completa reporta experiencia computacional utilizando
CPLEX como herramienta de software para los submodelos lineares auxiliares
así como para la solución del submodelo maestro, en cada iteración del algo-
ritmo CBD. Los resultados obtenidos, sobre problemas a media y gran escala,
muestran el favorable rendimiento de la nueva estrategia en comparación con
la descomposición tradicional de Benders; mejorando incluso el uso directo de
esta herramienta sobre el modelo completo sin descomponer.

Descomposición de Benders tradicional (TBD)

Consideramos el Modelo Determinista Equivalente (DEM) del problema
estocástico lineal de dos etapas en representación compacta,

(LO) : zLO = min cTx+ Eψ[minwω(qωTyω)]
s.t.

b1 ≤ Ax ≤ b2

hω1 ≤ T ωx+W ωyω ≤ hω2 ∀ω ∈ Ω
x, yω ≥ 0 ∀ω ∈ Ω,

(B.13)
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donde x es el vector de longitud nx de las variables de primera etapa, yω es
el vector de longitud ny de las variables de segunda etapa bajo el escenario
ω, para ω ∈ Ω, donde Ω es el conjunto de escenarios a considerar; c es un
vector de coeficientes conocidos de las variables x en la función objetivo, b1

y b2 son los vectores de cotas inferiores y superiores, respectivemente, de las
restricciones de primera etapa; A es la matriz de coeficientes de las restricciones
de primera etapa; wω es la probabilidad de ocurrrencia del escenario ω; hω1
y hω2 son los vectores de cotas inferiores y superiores, respectivamente, de
las restricciones de segunda etapa bajo el escenario ω y qω es el vector de
coeficientes de la función objetivo para las variables de segunda etapa y bajo
cada escenario; mientras que T ω es la matriz de coeficientes de las variables
x en las restricciones de segunda etapa y W ω es la matriz de coeficientes de
las variables y en las restricciones de segunda etapa para el escenario ω, para
ω ∈ Ω.

El problema lineal de dos etapas (B.13) se puede descomponer y su
solución óptima se puede obtener de forma iterativa, mediante la identificación
de puntos y rayos extremos basada en la generación de cortes creados por
la optimización del llamado Programa auxiliar (AP). Así, estos cortes se
introducen en el llamado Problema maestro relajado (RMP) que se puede
expresar como sigue, ver [11],

zLO = min cTx+ θ
s.t.
b1 ≤ Ax ≤ b2

0 ≥ νωTj1

[(

hω1
−hω2

)

+ T ωx

]

∀νωj1 ∈ J
ef

θ ≥
∑

ω∈Ω w
ωνωTj2

[(

hω1
−hω2

)

+ T ωx

]

∀νωj2 ∈ J
eo

x ≥ 0, θ ∈ IR,

Una vez resuelto en la primera iteración el modelo RMP (Paso 1) para las
variables de primera etapa, se resuelve el siguiente problema de optimalidad
en las variables de segunda etapa (Paso 2), para cada escenario ω ∈ Ω:
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(FEAS) zωFEAS = min eTv+ω
1 + eTv−ω

1 + eTv+ω
2 + eTv−ω

2

s.t.
W ωyω − Iu−ω + Iv+ω

1 − Iv−ω
1 = hω1 − T ωx̂

W ωyω + Iu+ω − Iv+ω
2 + Iv−ω

2 = hω2 − T ωx̂
yω, v+ω

1 , v−ω
1 , v+ω

2 , v−ω
2 , u+ω, u−ω ≥ 0.

(B.14)

Si la solución óptima no es 0 para algún escenario, significa que la solución
no es factible bajo dicho escenario. Se define en este caso un corte de
factibilidad que se añade al RMP y se vuelve al Paso 1. En caso de que
zωFEAS = 0, para todos los escenarios ω ∈ Ω, no hay cortes de factibilidad
para esa solución y podemos pasar a chequear la optimalidad de la solución
mediante el siguiente problema de optimalidad (Paso 3):

(OPT ) φω = min qωTyω

s.t.
(

W ω

−W ω

)

yω ≥

(

hω1 − T ωx̂
−hω2 + T ωx̂

)

yω ≥ 0.

(B.15)

Una vez resuelto el problema auxiliar de optimalidad para cada escenario,
se calcula su valor esperado φ :=

∑

ω∈Ω w
ωφω. Se compara este valor esperado

con θ̂, solución obtenida en la anterior iteración del problema maestro (Paso
1). Si φ ≤ θ̂, el procedimiento para, pues hemos encontrado el óptimo. En
caso contrario, se genera y añade al problema maestro un corte de optimalidad
y se vuelve al Paso 1.

Este método obtiene el óptimo en un número finito de iteraciones o prueba
que el problema inicial es infactible siempre que Ω sea finito.

Innovación: esquema CBD

Se propone a continuación un esquema basado en la descomposición del
conjunto de escenarios en clusters o racimos. La particular estructura del
problema (B.14) muestra que su función objetivo no depende de ningún
escenario en particular, por lo que se podría definir para un cluster o conjunto
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de escenarios en lugar de para uno solo. Así se propone el siguiente método
de descomposición de Benders por clusters de escenarios (CBD),

Paso 0: Fijar k := 0, p := 0, eo := 0, efc := 0.

Paso 1: Resolver el problema maestro relajado RMP (con θ = 0 si k = 0).
k := k + 1.

min cTx+ θ

s.t.

b1 ≤ Ax ≤ b2

−ν̂ωTj T ωx ≥ ν̂ωTj

(

hω1
−hω2

)

∀ω ∈ Ωp j = 0, ..., efc (B.16)

−
∑

ω∈Ωp

wων̂ωTj2 T
ωx+ θ ≥

∑

ω∈Ωp

wων̂ωTj2

(

hω1
−hω2

)

∀j2 = 0, ..., eo (B.17)

x ≥ 0, θ ∈ IR

Guardar los valores x̂ y θ̂ de las variables x y θ.

Paso 2: Fijar p := p + 1. Resolver el problema auxiliar de factibilidad para
el cluster de escenarios p,

(FEASC) : zpFEASC = min
∑

ω∈Ωp

wω(eTv+ω
1 + eTv−ω

1 + eTv+ω
2 + eTv−ω

2 )

s.t.
W ωyω − Iu−ω + Iv+ω

1 − Iv−ω
1 = hω1 − T ωx̂ ∀ω ∈ Ωp

W ωyω + Iu+ω − Iv+ω
2 + Iv−ω

2 = hω2 − T ωx̂ ∀ω ∈ Ωp

yω, v+ω
1 , v−ω

1 , v+ω
2 , v−ω

2 , u+ω, u−ω ≥ 0 ∀ω ∈ Ωp.

(B.18)

Si zpFEASC 6= 0, la solución obtenida en el Paso 1 no es factible en ese
cluster, y hay que definir y añadir el corte de factibilidad (B.16) e ir al
Paso 1.

En caso contrario, volver al Paso 2 hasta llegar al último cluster. En este
caso, la solución obtenida es factible y vamos al Paso 3.
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Paso 3: Resolver el problema auxiliar de optimalidad para cada escenario ω,
con ω ∈ Ω,

(OPT ) φω = min qωTyω

s.t.
(

W ω

−W ω

)

yω ≥

(

hω1 − T ωx̂
−hω2 + T ωx̂

)

yω ≥ 0.

(B.19)

Calcular el valor esperado φ :=
∑

ω∈Ω w
ωφω. Comparar este valor

esperado con θ̂. Si φ ≤ θ̂, entonces parar, pues hemos encontrado el
óptimo. En caso contrario, se genera y añade al problema maestro un
corte de optimalidad (B.17) y se vuelve al Paso 1.

Señalar que con el procedimiento propuesto se resuelven problemas
auxiliares de factibilidad de mayores dimensiones en cada iteración pero a
cambio se obtienen cortes de factibilidad más ajustados lo cual nos puede
llevar a conseguir el óptimo en menos iteraciones.

En la experiencia computacional llevada a cabo se observa el buen
rendimiento de la descomposición de Benders por clusters (CBD) propuesta, en
comparación con el rendimiento de la descomposición de Benders tradicional.
Además, se ha observado que para un número pequeño de clusters, el método
propuesto mejora incluso el tiempo conseguido por una de las más eficientes
herramientas de la actualidad, como es CPLEX. Por tanto, aunque haría falta
más experiencia computacional, los resultados obtenidos por el algoritmo CBD
parecen prometedores.

B.4 Modelos lineales multietapa

Un problema estocástico lineal multietapa con un número finito de escenarios
futuros también tiene un Modelo Determinista Equivalente (DEM). Aun así,
la estructura de este problema es bastante más complicada que la del problema
dos etapas. La formulación extendida o en variables divididas no es en absoluto
fácil de manipular.

El objetivo del Capítulo 4 es extender el método de descomposición de
Benders por clusters al caso multietapa. Para ello, se presenta inicialmente una
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novedosa estructuración de la información, de forma que el modelo multietapa
se puede representar como un modelo con dos bloques de etapas. Finalmente,
sobre esta formulación se puede utilizar una estrategia similar a la CBD
presentada anteriormente.

Etapa de rotura y estructura en dos bloques de etapas

Por simplicidad, vamos a considerar un modelo multietapa en la que las
variables de cada etapa están relacionadas sólo con variables de la misma
etapa o la anterior. De esta forma y siguiendo la representación por grupos
de escenarios (entendiendo por grupo de escenario cada uno de los nodos del
árbol multietapa) podríamos escribir nuestro problema de la siguiente forma.

min
∑

g∈G

wg(cgxg)

s.t. b1
1 ≤ A1x

1 ≤ b1
2

bg1 ≤ A′
gx

π(g) + Agx
g ≤ bg2 ∀g ∈ G − {1}

xg ∈ IR+ ∀g ∈ G,

(B.20)

donde g representa cada nodo del árbol B.1 o grupo de escenarios, π(g)
representa el nodo predecesor de g y el resto de vectores y matrices son los
habituales.

Así, proponemos una partición del conjunto de escenarios en clusters o
racimos de escenarios que identificará de forma única la denominada etapa de
rotura.

Descomponemos el árbol de escenarios en un subconjunto de subárboles
de clusters de escenarios P , cada uno para un cluster de escenarios, p, para
p ∈ P. Sea q el número de clusters a considerar, i.e., q = |P|. Sea Ωp el
conjunto de escenarios que pertenecen a un cluster genérico p donde p ∈ P
y
∑q
p=1 |Ωp| = |Ω|. Sea Gp ⊂ G el conjunto de grupos de escenarios para el

cluster p. Así que, Gp
t = Gt ∩ Gp denota el conjunto de grupos de escenarios

para el cluster p ∈ P en la etapa t ∈ T .

Sin pérdida de generalidad, el número de clusters q se puede elegir como
divisor de |Ω|, en cuyo caso, el número de escenarios en cada cluster es el
mismo y viene dado por, 1 ≤ |Ωp| = |Ω|

q
≤ |Ω|.
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Figure B.1: Árbol de escenarios en formulación compacta y extendida.

Definición 1 La etapa de rotura t∗ es una etapa t tal que el número de clusters
de escenarios es q = |Gt∗+1|, donde t∗ + 1 ∈ T . Observar que en este caso,
cualquier cluster p ∈ P se incluye en algún grupo g ∈ Gt∗+1 y contiene todos
los escenarios que corresponden a ese grupo, i.e., Ωp = Ωg.

Una vez determinada la etapa de rotura, se divide el conjunto de etapas
del problema en dos bloques. El primero hasta la etapa t∗ + 1 y el segundo
de la etapa t∗ + 2 hasta la última. Con esta partición, se puede reformular
el problema, de forma que en el primer bloque de etapas se formula la no-
anticipatividad de forma implícita para el modelo completo, y el segundo
bloque de etapas, se formula de forma implícita para cada cluster de escenarios.

Obtenemos las siguiente representación general de los modelos multietapa
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en dos bloques de etapas,

(DEM) z =min ctx + Eψ[wp(qpyp)]

s.t. B1 ≤ Ax ≤ B2,

hp1 ≤ Tpx + Wpyp ≤ hp2 ∀p ∈ P,

x,yp ∈ IR+ ∀p ∈ P,

(B.21)

donde x es el vector de variables del primer bloque de etapas, i.e., es el vector
de variables formado por todas las variables desde la etapa 1 al t∗ + 1 e yp

denota el vector de variables del segundo bloque de etapas en el cluster p. Las
matrices identifican para el ejemplo detallado en el Capítulo 4 de la memoria
completa en la Figura B.2.

t = 1

1

t∗ = 2

3

2

t∗ + 1 = 3

7

6

5

4

t = 4

15

14

13

12

11

10

9

8

A T ∗4

T ∗3

T ∗2

T ∗1

W 4

W 3

W 2

W 1

Figure B.2: Especificación de las matrices en un ejemplo.

El primer bloque incluye las etapas t = 1, · · · , t∗ + 1 y el segundo incluye
el resto. Las variables de la etapa t∗ + 1 son las variables de enganche entre
ambos bloques, siendo t∗ la etapa de rotura.

Esquema MCBD

El método propuesto y denotado como MCBD trabaja sobre una estructura
en la que hemos dividido el conjunto de etapas en dos partes o bloques.
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Necesitamos por lo tanto de un proceso de estructuración y generación de los
datos del nuevo modelo en dos bloques de etapas. Los pasos más destacados
de este procedimiento preliminar aparecen en la Tabla B.1.

Table B.1: Estructuración de los datos

Paso 0: Definir el árbol de escenarios:
T , Ω, G, Gt, ∀t ∈ T , Ωg, ∀g ∈ G y wω, ∀ω ∈ Ω.

Paso 1: Decidir la etapa de rotura t∗ y, por tanto,
el número de clusters de escenarios q = |Gt∗+1|.

Paso 2: Definir Gp, Gp
t , Ωp, ωpg , P t, φpt y npxt ∀t ∈ T , p ∈ P.

Paso 3: Generar los submodelos por cluster

Paso 4: Generar el modelo completo

De esta forma, el árbol de escenarios se descompone en un árbol de clusters
de escenarios. El algoritmo propuesto trabaja sobre la estructura compacta
de la información del modelo completo para las etapas en el primer bloque, y
también sobre la representación compacta de cada cluster para las etapas del
segundo bloque.

Paso 0: Fijar k := 0, p := 0, eo := 0, efc := 0.

Paso 1: Resolver el problema maestro relajado RMP (con θ = 0 si k = 0).
k := k + 1.

(RMP ) min cTx + θ

s.t.

B1 ≤ Ax ≤ B2

0 ≥ ν̂pTj1

(

hp1 + Tpx
−hp2 + Tpx

)

∀j1 = 0, ..., ef (B.22)
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θ ≥
∑

p∈P

wpν̂pTj2

(

hp1 + Tpx
−hp2 + Tpx

)

∀j2 = 0, ..., eo (B.23)

x ≥ 0, θ ∈ IR,

Guardar los valores x̂ y θ̂ de las variables x y θ.

Paso 2: Resolver el problema auxiliar de factibilidad para cada cluster de
escenarios p,

(FEAS) zpFEAS = min eTv+p
1 + eTv−p

1 + eTv+p
2 + eTv−p

2

s.t.
Wpyp − Iu−p + Iv+p

1 − Iv−p
1 = hp1 − Tpx̂

Wpyp + Iu+p − Iv+p
2 + Iv−p

2 = hp2 − Tpx̂
yp, v+p

1 , v−p
1 , v+p

2 , v−p
2 , u+p, u−p ≥ 0.

(B.24)

Si zpFEASC 6= 0, la solución obtenida en el Paso 1 no es factible en ese
cluster, y hay que definir y añadir el corte de factibilidad (B.22) e ir al
Paso 1.

En caso contrario, volver al Paso 2 hasta llegar al último cluster. En este
caso, la solución obtenida es factible y vamos al Paso 3.

Paso 3: Para cada escenario cluster del segundo bloque de etapas, resolver el
problema auxiliar de optimalidad ω, con ω ∈ Ω,

(OPT ) φp = min qpTyp

s.t.
(

Wp

−Wp

)

yp ≥

(

hp1 − Tpx̂
−hp2 + Tpx̂

)

yp ≥ 0.

(B.25)

Calcular el valor esperado φ :=
∑

ω∈Ω w
ωφω. Comparar este valor

esperado con θ̂. Si φ ≤ θ̂, entonces parar, pues hemos encontrado el
óptimo. En caso contrario, se genera y añade al problema maestro un
corte de optimalidad (B.23) y se vuelve al Paso 1.

Como trabajo futuro más inmediato, se está considerando la imple-
mentación del procedimiento propuesto así como una comparación entre el
modelo propuesto y la tradicional descomposición de Benders anidada como
herramienta de descomposición para la resolución de modelos multietapa.
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