Publication:
Contributions to time series factor modeling: model averaging and bias correction

Loading...
Thumbnail Image
Identifiers
Publication date
2017-03
Defense date
2017-05-12
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
Given the increasing availability of data and the evolution of computation, there is a growing body of theory and applications taking advantage of multivariate datasets. By including many variables in the analysis (even hundreds), we can exploit more complete information as well as improve the robustness of the estimators obtained (Stock and Watson, 2006). In this dissertation, we work with multivariate time series. With the aim of forecasting vectors of time series, well known approaches in time series literature are AutoRegressive Integrated Moving Average (ARIMA, working with each variable independently) and Vector AutoRegressive Integrated Moving Average (VARIMA, working with a few variables at a time) models. However, when there are many interrelated series, these approaches either fail to include interconnections, or rapidly present methodological constraints when more than few series are considered simultaneously. ARIMA models fail to account for the variables’ mutual influence; while VARIMA models can present an overwhelming complexity and possibly unfeasibility when the number of time series is large. As a consequence of these limitations, a large portion of research has focused on dimensionality reduction techniques. These allow to exploit the relation between the series, as well as their dynamic nature, and have the virtue of employing a reduced number of parameters, thus circumventing the “curse of dimensionality” often associated with multivariate data. In particular, in this thesis we focus on Factor Models (FM). The purpose of this dissertation is to improve the forecasts of high-dimensional vectors of time series. Even with the expansion of research in this area, many issues are still open. We explore some of the questions that arise with the use of FM. In particular, we take an alternative approach for decisions regarding the number of underlying common factors and what models these factors follow (Chapter 2). On the other hand, even if the factors are accurately estimated, and their estimation taken as observations in posterior calculations, it is not unusual to deal with bias of the estimates of the parameters for the model of the common factors, especially when the sample size is small. Therefore, in Chapter 3 we work with techniques to correct this bias and deal strictly with the effect of the time dimension, T. Our discussion focuses on statistical and econometrical developments that have been employed to address questions in the context of economics, business, and demographics. For empirical examples we work with electricity prices and industrial production indexes of European countries. The rest of the dissertation is organized as follows. In Chapter 1 we introduce the theory and challenges related to the estimation of factor models. We address the reasons for employing dimensionality reduction, the techniques that may be employed in the estimation of FM, the alternative criteria for selecting the number of unobservable common factors, and what models are usually employed for the common factors. In Chapter 2 we work with the combination of forecasts, motivated by the unsolved issues of selecting a number of common factors and selecting a model for each of them. Instead of applying a particular criterion, we estimate several specifications, with alternative numbers of common factors and Summary 3 .alternative models for them. Afterwards, we evaluate the performance of five easy to apply combination techniques in an application to electricity prices of the Iberian and Italian markets. Even though the improvements that result from the combinations are not big, it must be acknowledged that they are maintained during a long period of time and are statistically significant for some of the combinations considered, according to an Analysis of Variance (ANOVA). In Chapter 3 we propose two alternative techniques to correct the bias in AR models for the estimated common factors, specifically when these are highly persistent and the sample has a small time dimension (T is small). These are the Bootstrap Bias-Correction methodology (Clements and Kim, 2007) and Roy-Fuller’s methodology (Roy and Fuller, 2001). Though not originally intended for factor models, these techniques contribute to reduce the bias of AR coefficients, and by employing Monte Carlo simulations we show that the improvement in the factors’ coefficients produces more accurate forecasts. We obtain forecasting intervals, and present results in terms of coverage and interval length. We apply these extensions to data of the Industrial Production Index (IPI) for a group of European countries. Finally, in Chapter 4 conclusions and further lines of research are summarized
Description
Keywords
Análisis multivariante, Análisis de series temporales, Modelo matemático, Previsión
Bibliographic citation
Collections