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Introducción	
	

	

La	historiografía	 y	 la	 filosofía	de	 la	matemática	usualmente	describen	 las	 reformas	educativas	

llevadas	a	cabo	en	Francia	y	los	territorios	germánicos	durante	la	última	década	del	siglo	XVIII	y	

la	 primera	 del	 siglo	 XIX	 de	 la	 siguiente	 manera:	 mientras	 que	 en	 Francia	 tales	 reformas	 se	

realizaron	tras	la	Revolución	Francesa,	particularmente	con	la	creación	de	la	École	polytechnique	

y	 la	 École	 normale	 en	 París	 en	 1794	 y	 1795,	 respectivamente,	 las	 reformas	 germánicas	

comenzaron	alrededor	de	1810	con	la	fundación	de	la	Universität	zu	Berlin.1	Esta	descripción,	si	

bien	acaso	sea	útil	para	resumir	el	periodo	antes	mencionado	cuando	el	interés	radica	en	lo	que	

ocurrió	antes	–por	ejemplo,	el	desarrollo	del	análisis	matemático	en	el	siglo	XVIII–	o	después	–

por	 ejemplo,	 el	 desarrollo	 del	 análisis	 real	 y	 la	 teoría	 de	 conjuntos	 en	 el	 siglo	 XIX–,	 ha	

contribuido	a	una	falta	de	comprensión,	cuando	no	a	una	mala	compresión,	de	lo	que	ocurrió	en	

la	matemática	no	sólo	entre	tales	desarrollos	sino	además	durante	los	propios	siglos	XVIII	y	XIX.	

	

Primero,	mientras	que	a	inicios	del	siglo	XIX	el	territorio	comprendido	por	el	Imperio	Francés	era	

muy	 similar	 a	 la	 Francia	 actual,	 la	 Alemania	 de	 hoy	 tiene	 poco	 que	 ver	 con	 los	 territorios	

germánicos	 de	 aquella	 época;	 esto	 es,	 mientras	 que	 en	 cierto	 sentido	 aquellas	 reformas	

educativas	francesas	tuvieron	un	impacto	en	‘una	nación’,	no	puede	decirse	lo	mismo	acerca	de	

las	 reformas	 germánicas.	 Segundo,	 estrictamente	 hablando	 esas	 reformas	 no	 comenzaron	 en	

Francia	en	1794	ni	en	los	territorios	germánicos	en	1810,	sino	antes	de	esas	fechas.	Por	último,	

así	como	el	enfoque	científico	conceptual	del	siglo	XIX	(que	condujo	al	desarrollo	del	análisis	real	

matemático	y	la	teoría	conjuntista)	suele	ser	vinculado	a	esas	reformas	germánicas,	el	enfoque	

científico	utilitario	(opuesto	al	análisis	matemático	del	siglo	XVIII)	normalmente	es	asociado	con	

aquellas	 reformas	 francesas.	Empero,	como	 lo	evidencian	tanto	 la	 tradición	analítica	Euleriana	

como	 la	 propuesta	 de	 Bernard	 Bolzano,	 tanto	 si	 aquellas	 reformas	 educativas	 elogiaban	 la	

utilidad	 de	 la	 geometría	 (en	 el	 caso	 de	 Francia)	 o	 un	 enfoque	 conceptual	 (en	 el	 caso	 de	 los	

territorios	 germánicos),	 lo	 cierto	 es	 que	 ni	 aquella	 tradición	 había	 conseguido	 librarse	 de	 sus	

raíces	geométricas	a	principios	de	la	última	década	del	siglo	XVIII,	ni	la	propuesta	de	Bolzano	a	

principios	del	siglo	XIX	puede	ser	considerada	como	el	punto	de	partida	del	análisis	real.	

																																																													
1	Así	ocurre,	por	ejemplo,	en	(Struik,	1981:	14-15),	(Jahnke,	1993:	266)	y	(Ferreirós,	2007:	4-6).	
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Dejando	 de	 lado	 lo	 que	 ocurrió	 con	 la	 tradición	 Euleriana,	 en	 lo	 concerniente	 al	 análisis	

matemático	 moderno	 hoy	 en	 día	 dos	 autores	 son	 considerados	 como	 sus	 pioneros,	 a	 saber,	

Cauchy	y	Bolzano.	Desde	cierto	punto	de	vista,	Cauchy	quizás	fue	“la	figura	más	importante	en	

el	 comienzo	 del	 análisis	 riguroso”	 (Grabiner,	 1982:	 2),	 mientras	 que	 las	 contribuciones	 de	

Bolzano	 –“en	 la	 fundamentación	 del	 análisis	 real”–	 acaso	 “no	 solamente	 [bosquejaron]	 los	

contornos	 generales	 de	 las	 nuevas	 matemáticas	 emergentes	 del	 siglo	 XIX,	 sino	 que	 además	

[efectuaron]	el	trabajo	con	considerable	detalle”	(Rusnock,	2000:	18).	Aún	más,	a	partir	de	cierta	

interpretación	de	 la	obra	de	ambos	autores,	 se	podría	 afirmar	que	 “el	 logro	de	Cauchy	 fue	 la	

denominada	‘aritmetización’	del	análisis”	(Grattan-Guinness,	1970:	373),	“el	proyecto	de	colocar	

la	 teoría	 de	 la	 línea	 real	 sobre	 un	 fundamento	 sólido,	 aritmético,	 [que]	 habría	 de	 ser	 llevado	

adelante	a	lo	largo	del	siglo	XIX,	en	gran	medida	ajeno	al	trabajo	de	Bolzano”	(Ewald,	1999:	226).	

	

Sin	 embargo,	 al	 igual	 que	 con	 la	 descripción	 usual	 de	 dichas	 reformas	 educativas	 francesas	 y	

germánicas,	 hay	 algo	 erróneo	 en	 la	 narrativa	 habitual	 sobre	 las	 contribuciones	 de	 Bolzano	 al	

desarrollo	 del	 análisis	moderno:	mientras	 que	 algunos	 autores	 que	mencionan	 o	 estudian	 los	

primeros	trabajos	matemáticos	de	Bolzano	son	cuidadosos	al	vincular	las	propuestas	contenidas	

en	esos	trabajos	con	lo	que	posteriormente	se	llamaría	“la	aritmetización	del	análisis”,	así	como	

al	vincular	sus	resultados	en	esos	trabajos	con	 los	de	autores	posteriores,	en	especial	con	Karl	

Weierstrass	(cf.	Kitcher,	1984:	191	y	263;	Laugwitz,	1989:	205;	Belna,	2000:	55;	Moore,	2000	y	

2008;	Russ,	2004;	Gray,	2015:	240),	muchos	de	aquellos	autores	asumen	ambas	relaciones	o	al	

menos	 la	 segunda	de	ellas.	De	hecho,	 así	 como	 la	 emergencia	de	 ambas	 lecturas	 anacrónicas	

puede	ser	datada,	a	grandes	rasgos,	en	el	 Imperio	Alemán	(Deutsches	Reich)	durante	el	último	

tercio	 del	 siglo	 XIX	 (en	 el	 caso	 de	 quienes	 asumen	 el	 vínculo	 entre	 resultados	 particulares)	 y	

principios	del	siglo	XX	(en	el	caso	de	quienes	asumen	el	vínculo	entre	propuestas	generales),	en	

ambos	 casos	 se	 puede	 señalar	 a	 ciertos	 matemáticos	 germánicos	 como	 figuras	 clave	 en	 la	

promoción	de	una	y	otra	lectura,	a	saber,	respectivamente,	Karl	Weierstrass	y	Felix	Klein.	

	

Respecto	a	aquella	segunda	lectura,	Weierstrass	reconocía	a	Bolzano	como	el	matemático	cuyo	

trabajo	(particularmente	su	Prueba	puramente	analítica,	de	1817)2	fue	la	base	para	el	desarrollo	

del	 llamado	 teorema	de	 Bolzano-Weierstrass,	 teorema	 esencial	 del	 análisis	moderno	 que	 hoy	

																																																													
2	El	 título	 completo	 del	 trabajo	 de	 Bolzano	 es:	Rein	 analytischer	Beweis	 des	 Lehrsatzes,	 dass	 zwischen	 je	 zwey	Werthen,	 die	 ein	
entgegengesetztes	Resultat	gewähren,	wenigstens	eine	reelle	Wurzel	der	Gleichung	liege.	
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día	 sostiene	 que	 un	 conjunto	 infinito	 y	 limitado	 de	 números	 reales	 tiene	 un	 punto	 límite;	

testimonio	de	ello	se	encuentra	en	las	notas	de	clase	de	Weierstrass	tomadas	por	algunos	de	sus	

alumnos	 y	 en	 algunos	 escritos	 de	 estos	 y	 de	 él.	 Sin	 duda,	 el	 reconocimiento	 de	Weierstrass	

contribuyó	a	la	idea	de	que	aquel	teorema	y	su	prueba	–enunciado	y	ofrecida	por	él–	fueron	de	

alguna	manera	anticipados	por	Bolzano	(cf.	Weierstrass,	1868/1986:	79;	1874:	304;	1886:	59-63	

y	 238-239).	 No	 obstante,	 más	 allá	 de	 lo	 engañosa	 que	 pudo	 resultar	 la	 narrativa	 del	 propio	

Weierstrass,	lo	que	sobre	todo	consolidó	y	propagó	esa	idea	fue:	a)	la	importancia	atribuida	por	

los	estudiantes	de	Weierstrass	a	las	referencias	de	éste	a	Bolzano	y	b)	la	lectura	efectuada	por	

esos	estudiantes	de	la	obra	de	este	último.	El	“Anexo	A”	incluido	al	final	de	este	trabajo	ilustra	

este	argumento	sobre	la	propagación,	consolidación	y	pervivencia	de	semejante	lectura.	

	

Ahora	bien,	en	cuanto	a	la	primera	de	aquellas	lecturas,	si	bien	Leopold	Kronecker,	por	ejemplo,	

se	refirió	a	la	“aritmetización”	(arithmetisiren)	del	análisis	y	de	todas	las	disciplinas	matemáticas	

(cf.	 Kronecker,	 1887:	 338-339),3	su	propuesta	no	 fue	exactamente	 la	misma	que	 la	de	aquella	

“importante	tendencia	matemática	que”,	como	dijo	Klein	en	1895,	“[tuvo]	a	Weierstrass	como	

su	máximo	exponente”	(cf.	Klein,	1896:	241):	si	bien	ambas	propuestas	compartían	la	convicción	

en	 el	 desarrollo	 de	 las	matemáticas	 sobre	 la	 base	 de	 la	 aritmética	 de	 los	 números	 naturales,	

Weierstrass	y	otros	pretendieron	desarrollar	una	teoría	de	los	números	irracionales,	algo	que	al	

menos	 en	 algún	 momento	 Kronecker	 rechazó.	 Así,	 a	 partir	 de	 inicios	 del	 siglo	 XX	 fue	 más	

habitual	 identificar	 la	propuesta	de	Weierstrass	y	otros	bajo	 la	designación	de	“aritmetización	

del	análisis”	(concebida	acaso	la	propuesta	de	Kronecker	como	una	versión	restrictiva	de	esta),	

siendo	 incluso	entonces	habitual	encontrar	elogios	hacia	ella	 semejantes	a	 los	de	Poincaré	en	

1900:	“La	matemática”,	dijo,	“ha	sido	aritmetizada.	[...]	Uno	puede	decir	que	actualmente	se	ha	

alcanzado	el	rigor	absoluto”	(Poincaré,	1902:	120	y	122).4	Pero	fue	precisamente	Klein,	si	no	el	

primero	en	identificar	a	Bolzano	con	tal	aritmetización,	al	menos	aquel	cuya	tal	identificación	se	

hizo	eco	entre	matemáticos	e	historiadores	y	 filósofos	de	 las	matemáticas:	“Bolzano”,	escribió	
																																																													
3	Kronecker	 escribió:	 “Y	 yo	 también	 creo	 que	 algún	 día	 se	 logrará	 ‘aritmetizar’	 todo	 el	 contenido	 de	 todas	 estas	 disciplinas	
matemáticas,	es	decir,	sobre	la	sola	base	del	concepto	de	número	considerado	en	el	sentido	más	restringido	[esto	es,	en	el	sentido	
de	 los	 números	 naturales],	 eliminando	 así	 las	 modificaciones	 y	 extensiones	 de	 este	 concepto,	 originadas	 principalmente	 por	
aplicaciones	en	geometría	 y	mecánica”	 (“Und	 ich	glaube	auch,	dass	es	dereinst	gelingen	wird,	den	gesammten	 Inhalt	 aller	dieser	
mathematischen	 Disciplinen	 zu	 ‘arithmetisiren’,	 d.	 h.	 einzig	 und	 allein	 auf	 den	 im	 engsten	 Sinne	 genommenen	 Zahlbegriff	 zu	
gründen,	also	die	Modificationen	und	Erweiterungen	dieses	Begriffs	wieder	abzustreifen,	welche	zumeist	durch	die	Anwendungen	
auf	die	Geometrie	und	Mechanik	veranlasst	worden	sind”.).	
4	Poincaré	escribió:	“Il	ne	reste	plus	aujourd’hui	en	Analyse	que	des	nombres	entiers	ou	des	systèmes	dinis	ou	 infinis	de	nombres	
entiers,	 reliés	 entre	 eux	 par	 un	 réseau	 de	 relations	 d’égalité	 ou	 d’inégalité.	 Les	 Mathématiques,	 comme	 on	 l’a	 dit,	 se	 sont	
arithmétisées.	 [...]	 Or,	 dans	 l’Analyse	 d’aujourd’hui,	 quand	 on	 veut	 se	 donner	 la	 peine	 d’être	 rigoureux,	 il	 n’y	 a	 plus	 que	 des	
syllogismes	 ou	 des	 appels	 à	 cette	 intuition	 du	 nombre	 pur,	 la	 seule	 qui	 ne	 puisse	 nous	 tromper.	On	 peut	 dire	 qu’aujourd’hui	 la	
rigueur	absolue	est	atteinte”.	
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en	 sus	 Lecturas	 sobre	 el	 desarrollo	 de	 las	 matemáticas	 en	 el	 siglo	 XIX	 (Vorlesungen	 über	 die	

Entwicklung	der	Mathematik	im	19.Jahrhundert)	publicadas	póstumamente	en	1926-27,	“es	uno	

de	los	padres	de	la	actual	‘aritmetización’	de	nuestra	ciencia”	(Klein,	1826:	56).5	

	

Como	se	muestra	en	el	“Anexo	B”	de	este	trabajo,	aún	es	común	la	inclusión	de	Bolzano	entre	

los	 matemáticos	 que	 abogaron	 por	 la	 aritmetización	 Weierstrassiana	 del	 análisis,	 dos	 siglos	

después	de	la	publicación	en	Praha	de	su	Prueba	puramente	analítica.	Por	el	contrario,	el	Curso	

de	análisis	(Cours	d’Analyse)	de	Cauchy,	publicado	cuatro	años	después	en	París,	no	sólo	fue	más	

conocido	 durante	 el	 siglo	 XIX,	 sino	 que	 además	 ha	 sido	 más	 ampliamente	 estudiado	 desde	

entonces.	Como	consecuencia,	se	sostiene	aquí,	tanto	la	propuesta	general,	como	los	resultados	

particulares	 contenidos	 en	 los	 primeros	 trabajos	 matemáticos	 de	 Bolzano	 (1804-1817),	

continúan	siendo	malinterpretados:	en	1817	las	nociones	y	prácticas	matemáticas	de	Bolzano,	si	

bien	dejaban	entrever	preocupaciones	y	características	innovadoras,	eran	muy	diferentes	de	las	

nociones	y	prácticas	Weierstrassianas	aritmetizadoras	venideras,	en	la	medida	en	que	la	obra	de	

Bolzano	aún	tenía	rasgos	esenciales	de	una	concepción	semántico-ontológica	del	análisis.	

	

De	hecho,	la	lectura	de	Bolzano	como	un	matemático	de	transición,	esto	es,	uno	cuyos	primeros	

trabajos	de	cierta	manera	se	orientaban	hacia	el	terreno	en	el	cual	 fue	desarrollado	el	análisis	

real	del	siglo	XIX,	pero	que	a	la	vez	tenía	profundas	raíces	en	concepciones	y	prácticas	heredadas	

que	eran	comunes	entre	matemáticos	germánicos	de	c.	1800,	está	estrechamente	vinculada	a	lo	

dicho	 al	 principio	 de	 esta	 introducción	 sobre	 la	 narrativa	 sesgada	 de	 las	 reformas	 educativas	

germánicas	a	principios	del	siglo	XIX.	Tanto	si	se	estudia	cuidadosamente	lo	que	ocurrió	en	las	

matemáticas	 germánicas	medio	 siglo	 después	 de	 1817	 (digamos,	 hasta	 c.	 1872),	 como	medio	

siglo	 antes	 de	 1804	 (digamos,	 desde	 c.	 1750),	 tal	 rol	 de	 Bolzano	 queda	 sustentado.	 Empero,	

dado	que	el	punto	de	llegada	de	esta	tesis	son	los	trabajos	de	Bolzano	de	1804-1817,	la	atención	

se	centrará	en	las	generaciones	de	matemáticos	germánicos	previas	a	Bolzano,	así	como	en	los	

vínculos	y	diferencias	entre	ellos	y	éste.	Más	específicamente,	el	 interés	aquí	radica	en	la	obra	

de	 los	matemáticos	germánicos	de	 la	segunda	mitad	del	siglo	XVIII,	mismos	que	generalmente	

son	pasados	por	alto	por	los	matemáticos	e	historiadores	y	filósofos	de	la	matemática.	

																																																													
5	Klein	 escribió:	 “Diese	 Punkte	wurden	 erst	 1817	 durch	 die	 Schrift	 von	 B.	 Bolzano	 'Rein	 analytischer	 Beweis	 des	 Lehrsatzes,	 dass	
zwischen	je	zwey	Werthen,	die	ein	entgegengesetztes	Resultat	gewähren,	wenigstens	eine	reelle	Wurzel	der	Gleichung	liege'	(Prag,	=	
Ostw.	Klass.	153)	erledigt,	der	damit	auch	über	die	späteren	Entwicklungen	von	Cauchy	hinausgegangen	 ist.	Bolzano	 ist	einer	der	
Väter	der	eigentlichen	'Arithmetisierung'	unserer	Wissenschaft”.	
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Justamente,	más	 allá	 de	 las	 prácticas	 y	 los	 conceptos	matemáticos	 implícitos	 en	 los	 primeros	

trabajos	matemáticos	de	Bolzano,	sus	fuentes	matemáticas	explícitas	refuerzan	dos	principales	

tesis	 –entrelazadas–	 de	 este	 trabajo.	 Así,	mientras	 que	 hasta	 1817	 Bolzano	 cita	 sobre	 todo	 a	

matemáticos	 germánicos	 (una	 vasta	mayoría)	 y	 franceses,	 y	 en	menor	medida	 a	 británicos	 y	

griegos	 antiguos,	 claramente	 se	 puede	 distinguir	 entre	 ellos	 a	 tres	 grupos	 de	 acuerdo	 a	 su	

conexión	 con	 cierta	 tradición	 o	 escuela:	 a)	 la	 tradición	 Newtoniana	 (Newton	 y,	 por	 ejemplo,	

John	Colson,	 Samuel	Horsley,	 Thomas	Simpson,	William	Sewell	 y	 John	 Landen);	b)	 la	 tradición	

francesa	 (Euler	 y,	 por	 ejemplo,	 Simon	 Antoine	 Jean	 L’Huilier,	 Johann	 Castillon,	 Alexis	 Claude	

Clairaut,	 Jean-Baptiste	 le	 Rond	 d’Alembert,	 Jean-Baptiste	 d’Estienne	 du	 Bourguet,	 François	

Daviet	de	Foncenex,	Pierre-Simon	Laplace,	Adrien-Marie	Legendre,	Sylvestre	François	Lacroix	y	

Joseph-Louis	Lagrange);	y	c)	la	denominada	escuela	combinatoria	de	Hindenburg	(Hindenburg	y,	

por	 ejemplo,	 Heinrich	 August	 Rothe,	 Georg	 Simon	 Klügel	 y	 Johann	 Friedrich	 Pfaff).	 Empero,	

mientras	 que	 tales	 referencias	 de	 Bolzano	 a	 los	 autores	 pertenecientes	 a	 los	 dos	 primeros	

grupos	 fueron	 en	 su	 mayoría	 menciones	 aisladas,6	sus	 referencias	 a	 Hindenburg	 y	 Klügel,	 así	

como	 a	 diversos	 matemáticos	 germánicos,7	sobre	 todo	 de	 la	 segunda	 mitad	 del	 siglo	 XVIII	 y	

principios	del	siglo	XIX,	pone	de	manifiesto	la	importancia	de	estos	(especialmente	de	aquellos	

inmediatamente	previos)	en	el	desarrollo	de	su	propuesta	matemática	temprana.	

	

Así,	hay	algo	especialmente	 llamativo	en	 lo	concerniente	a	 las	fuentes	germánicas	de	Bolzano:	

junto	con	Wolff	(uno	de	los	filósofos	y	matemáticos	más	influyentes	del	siglo	XVIII)	y	Kant	(un	de	

los	filósofos	germánicos	más	influyentes	a	principios	del	siglo	XIX),	Bolzano	se	refiere	sobre	todo	

a	matemáticos	que	en	su	mayoría	ni	eran	seguidores	de	aquel	filósofo,	ni	habían	sido	educados	

conforme	a	las	ideas	de	aquel	matemático.	Indudablemente,	esos	autores	germánicos	a	los	que	

Bolzano	 se	 refiere	 con	mayor	 frecuencia	 que	 a	 otros	 no	 fueron	 ajenos	 a	 las	 ideas	 y	 obras	 de	

Wolff	y	Kant,	pero	su	acercamiento	a	las	matemáticas	estuvo	moldeado	por	las	obras	e	ideas	de	

otros	autores.	Algo	que,	si	bien	dependió	de	la	región	y	época	en	que	se	formaron,	tuvo	a	sus	

																																																													
6	De	hecho,	el	grueso	de	ellos	sólo	aparecen	nombrados	ya	sea	en	 la	 lista	que	autores	 incluida	al	 inicio	del	prefacio	de	su	trabajo	
sobre	el	teorema	del	binomio	de	1816	(cf.	Bolzano,	1816:	 III-IV),	o	en	 la	 lista	de	autores	 incluida	al	 inicio	del	prefacio	a	su	primer	
trabajo	de	1817	(cf.	Bolzano,	1817B:	3	y	5).	
7	Los	matemáticos	 germánicos	 cuya	 referencia	 en	 la	 obra	 temprana	de	Bolzano	 va	más	 allá	 de	 una	mera	mención	 son:	 Christian	
Wolff,	Abraham	Kästner,	 Johann	Schultz,	 Immanuel	Kant	 (filósofo),	 Johann	Andreas	Christian	Michelsen,	Georg	Simon	Klügel,	Carl	
Friedrich	Hindenburg,	Karl	Christian	von	Langsdorf,	 Johann	Heinrich	 Lambert,	August	 Leopold	Crelle,	 Johann	Carl	 Friedrich	Gauss,	
Johann	Friedrich	Gensichen,	Ernst	Platner	y	Ernst	Gottfried	Fischer.	Mientras	que	 la	 lista	de	sus	 fuentes	germánicas	 la	completan	
Bendavid,	Karl	Friedrich	August	Grashof,	Franz	Anton	Ritter	von	Spaun,	(Joseph-Louis	Lagrange),	Jakob	Hermann,	Leonhard	Cochius,	
Christian	 Gottlieb	 Selle,	 Franz	 Ulrich	 Theodor	 Aepinus,	 Johann	 Andreas	 von	 Segner,	 Karl	 Scherffer,	 Wenceslaus	 Johann	 Gustav	
Karsten,	Johann	Friedrich	Pfaff,	Heinrich	August	Rothe,	Christian	Lebrecht	Rösling,	Mathias	Metternich,	Friedrich	Gottlieb	von	Busse,	
Christian	Friedrich	Kausler,	János	Pasquich,	Friedrich	Wilhelm	Jungius,	Karl	Christian	Friedrich	Krause	y	Gottlob	Nordmann.	
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figuras	clave	en	Kästner,	Karsten	y	Segner,	 los	profesores	de	matemáticas	en	las	universidades	

de	 Göttingen	 y	 Halle.	 Ellos	 tres	 y	 sus	 respectivos	maestros	 de	matemáticas,	 en	 cambio,	 sí	 se	

formaron	 durante	 el	 apogeo	 de	 la	 influencia	 de	 Wolff,	 si	 bien,	 conforme	 a	 la	 tesis	 aquí	

defendida,	no	deben	ser	considerados	como	meros	propagadores	de	las	ideas	de	este.	

	

Es	verdad	que	entonces	los	trabajos	más	conocidos	de	Kästner,	Karsten	y	Segner	eran	sus	libros	

de	texto,	así	como	en	algunos	casos	sus	traducciones	de	trabajos	de	autores	extranjeros,	por	lo	

que	 su	 influencia	 sobre	 las	 nuevas	 generaciones	 tuvo	 que	 ver	 ante	 todo	 con	 concepciones	 y	

prácticas	matemáticas	generales	y	no	tanto	con	resultados	o	desarrollos	particulares.	Pero,	así	

como	Bolzano	no	repitió	meramente	lo	que	heredó,	esos	tres	autores	tampoco	lo	hicieron.8	Más	

aún,	 así	 como	 los	 trabajos	 de	 esos	 tres	matemáticos	 no	 fueron	 simplemente	 “versiones	más	

populares	 y	 legibles	 [de	 la	 obra	 de	 Wolff]”	 (Bullynck,	 2006:	 4),	 como	 se	 suele	 contar,	 ellos	

paulatinamente	introdujeron	modificaciones	significativas	en	sus	trabajos	que	los	alejaron	cada	

vez	más	de	ideas	de	Wolff	aún	presentes	en	los	trabajos	de	éste	de	la	década	de	1740.	

	

Ese	 último	 punto	 es	 relevante,	 dado	 la	 idea	 generalizada	 sobre	 el	 estancamiento	 de	 las	

matemáticas	germánicas	durante	 la	 segunda	mitad	del	 siglo	XVIII.	Mientras	que	a	 lo	 largo	del	

siglo	 pasado	 se	 pueden	 encontrar	menciones	 aisladas	 sobre	 algunos	 aspectos	 de	 los	 trabajos	

matemáticos	de	esos	tres	autores	(cf.	Cantor,	1904;	Cajori,	1913	y	1923;	Fellmann,	1983;	Clewis,	

2015),	 lo	cierto	es	que	existen	pocos	estudios	enfocados	–al	menos	parcialmente–	en	ellos.	El	

trabajo	de	Gert	Schubring	(2005),	así	como	otros	trabajos	recientes,	entre	ellos	(Kleinert,	2002)	y	

(Bullynck,	 2006	 y	 2013),	 son	 las	 excepciones.	 Debido	 a	 su	 estudio	 detallado	 y	 extenso	 de	 las	

nociones	de	cantidad	y	número	entre	los	matemáticos	franceses	y	germánicos	del	siglo	XVIII,	el	

libro	de	Schubring	ha	de	ser	considerado	la	principal	referencia	en	el	tema.	De	hecho,	muchos	

de	 los	 autores	 cuyo	 trabajo	 es	 abordado	 en	 el	 capítulo	 B	 del	 presente	 trabajo,	 también	 son	

estudiados	 por	 Schubring	 y,	 por	 ende,	 el	 análisis	 ofrecido	 aquí	 de	 dichos	 autores	 ha	 de	 ser	

entendido	como	una	contribución	al	trabajo	de	él	y	a	los	otros	estudios	existentes.	

	

La	 investigación	 de	 Schubring	 aborda	 el	 desarrollo	 del	 análisis	matemático	 en	 los	 siglos	 XVII,	

XVIII	y	XIX,	 sobre	 todo	en	Francia	y	Alemania	y	enfocado	en	el	desarrollo	de	 los	conceptos	de	

																																																													
8	Lo	mismo	puede	decirse	de	Wolff	pero	ello	va	más	allá	de	los	alcances	de	este	trabajo,	por	lo	que	habrá	de	bastar	esta	nota	a	pie	
de	página	para	evitar	que	en	este	punto	se	atribuya	el	mismo	error	que	aquí	se	está	criticando.	Así,	a	 lo	 largo	de	este	trabajo	 las	
ideas	de	Wolff	que	son	mencionadas	son	atribuidas	al	año	específico	de	la	obra	citada.	
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números	negativos	y	cantidades	infinitamente	pequeñas.	Como	aquí,	él	presta	especial	atención	

a	los	libros	de	texto,	dado	que	“ofrecen	buenos	indicadores	respecto	al	horizonte	conceptual	de	

un	cierto	periodo	y	cultura”	(Schubring,	2005:	7).	A	Bullynck,	por	su	parte,	le	interesa	el	estado	

de	 las	matemáticas	 Germánicas	 a	 finales	 del	 siglo	 XVIII	 y	 principios	 del	 XIX	 “en	 la	 educación	

elemental	y	superior”,	así	como	en	“las	formas	de	mediación	y	comunicación	que	acompañaron	

y	prepararon	el	camino	para	las	revistas	especializadas	en	matemáticas”	(Bullynck,	2006	y	2013).	

Esta	 tesis	 comparte	 con	ambos	 trabajos	 tales	 intereses	y	algunas	elecciones	metodológicas,	 si	

bien	aquí	el	interés	radica	en	las	nociones	básicas	de	número	y	cantidad	durante	la	última	parte	

del	siglo	XVIII,	para	así	comprender	mejor	el	surgimiento	de	la	noción	pre-moderna	de	número	

entre	los	matemáticos	germánicos,	en	particular	en	la	obra	matemática	temprana	de	Bolzano.	

	

La	 comprensión	 de	 la	 evolución	 de	 las	 ideas	 matemáticas	 de	 Kästner,	 Karsten	 y	 Segner,	 se	

sostiene	aquí,	contribuye	a	su	vez	a	comprender	el	panorama	matemático	germánico	de	finales	

del	 siglo	 XVIII	 e	 inicios	 del	 XIX.	 Los	 vínculos	 entre	 Kästner,	 el	 matemático	 más	 influyente	 de	

aquellos	tres,	y	la	escuela	combinatoria	de	Hindenburg,	así	como	entre	ésta	y	Lagrange,	no	son	

fortuitos,	si	bien	en	última	instancia	tales	proyectos	eran	diferentes,	como	lo	eran	sus	nociones	

y	 procedimientos	 subyacentes.	 Pero,	 al	 mismo	 tiempo,	 tal	 comprensión	 de	 la	 matemática	

germánica	a	principios	del	siglo	XIX	es	de	suma	importancia	para	analizar	algunos	aspectos	clave	

de	los	trabajos	matemáticos	de	Bolzano	de	1804-1817.	

	

Finalmente,	establecidos	los	momentos	de	llegada	(1817)	y	de	partida	(c.	1750),	el	territorio	(las	

matemáticas	germánicas)	y	la	ruta	a	seguir	(de	Göttingen	y	Halle	a	Praha),	así	como	explicadas	

las	razones	para	tales	elecciones,	¿dónde	comenzar,	en	términos	geográficos,	esta	tesis	sobre	el	

desarrollo	germánico	de	la	noción	pre-moderna	de	número?	El	trabajo	del	agrimensor	consiste	

precisamente	no	sólo	en	delimitar	el	 territorio	y	estudiarlo,	 sino	 también	en	 fijar	un	punto	de	

partida	adecuado	para	la	óptima	consecución	del	trabajo:	“K.	se	detuvo	durante	un	largo	tiempo	

en	el	puente	de	madera	que	conducía	desde	el	camino	hasta	 la	aldea,	mirando	 lo	que	parecía	

ser	un	vacío”	(Kafka,	2009:	5).	Como	consecuencia,	y	dada	la	situación	política	de	los	territorios	

germánicos	durante	ese	periodo,	el	punto	de	partida	estará	a	medio	camino	entre	el	Reino	de	

Prussia	 (Königreich	 Preußen)	 y	 el	 Archiducado	 de	 Austria	 (Erzherzogtum	 Österreich),	 las	 dos	

partes	constituyentes	más	importantes	del	Sacro	Imperio	Romano	en	ese	momento	(mismo	que	

entonces	comprendía	la	mayoría	de	los	territorios	germánicos),	a	saber,	Silesia	(Schlesien).	
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Introduction	
	

	

The	historiography	and	philosophy	of	mathematics	usually	characterize	the	educational	reforms	

undertaken	in	France	and	the	Germanic	territories	during	the	last	decade	of	the	18th	century	and	

the	 first	decade	of	 the	19th	 century	as	 follows:	while	 in	 France	 such	 reforms	were	 carried	out	

after	 the	 French	 Revolution	 and	 in	 particular	with	 the	 creation	 of	 the	École	 polytechnique	 (in	

1794)	and	the	École	normale	(in	1795)	in	Paris,	the	Germanic	reforms	began	around	1810	with	

the	foundation	of	the	Universität	zu	Berlin.9	This	characterization,	although	it	might	be	useful	to	

summarize	the	aforementioned	period	when	the	interest	lies	in	what	happened	before	–e.g.	the	

development	of	mathematical	 analysis	 in	18th	 century–	or	 later	 –e.g.	 the	development	of	 real	

analysis	 and	 set	 theory	 in	 19th	 century–,	 has	 contributed	 to	 a	 lack	 of	 awareness,	 if	 not	 a	

misunderstanding,	of	what	happened	 in	mathematics	not	only	 in	between	such	developments	

but	also	during	the	18th	and	19th	centuries.	

	

To	begin	with,	even	though	at	the	beginning	of	the	19th	century	the	territory	comprised	by	the	

French	Empire	(Empire	Français)	was	very	similar	to	modern-day	France,	21st	century	Germany	

has	little	to	do	with	the	Germanic	territories	of	that	time;	that	is,	while	in	a	sense	it	can	be	said	

that	those	French	educational	reforms	had	an	impact	on	a	‘whole	nation’,	the	same	cannot	be	

said	 about	 the	 Germanic.	 Secondly,	 strictly	 speaking	 those	 reforms	 did	 not	 begin	 in	 1794	 in	

France,	nor	in	1810	in	the	Germanic	territories	but	in	both	cases	before	those	dates.	Finally,	just	

as	the	scientific	conceptual	approach	(that	led	to	the	development	of	real	mathematical	analysis	

and	 set	 theory)	 is	usually	 linked	 to	 those	Germanic	 reforms,	 the	 scientific	utilitarian	approach	

(opposed	 to	 18th	 century	 mathematical	 analysis)	 is	 normally	 associated	 with	 those	 French	

reforms.	However,	as	evidenced	by	both	the	Eulerian	analytical	tradition	and	Bernard	Bolzano’s	

proposal,	whether	those	educational	reforms	praised	highly	the	usefulness	of	geometry	(in	the	

case	of	France)	or	a	more	conceptual	approach	(in	the	case	of	Germanic	territories),	the	fact	is	

that	neither	that	tradition	had	managed	to	rid	of	the	geometrical	roots	of	mathematical	analysis	

by	the	beginning	of	last	decade	of	the	18th	century,	nor	Bolzano’s	proposal	at	the	beginning	of	

the	19th	century	can	be	considered	the	starting	point	of	real	analysis.	

																																																													
9	This	is	the	case	in,	for	example,	(Struik,	1981:	14-15),	(Jahnke,	1993:	266)	and	(Ferreirós,	2007:	4-6).	
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Leaving	aside	what	happened	with	the	Eulerian	tradition,	with	regard	to	modern	mathematical	

analysis	nowadays	 two	authors	are	commonly	considered	as	 its	pioneers,	namely,	Cauchy	and	

Bolzano.	 From	 a	 certain	 perspective,	 Cauchy	 perhaps	 was	 “the	 most	 important	 figure	 in	 the	

initiation	 of	 rigorous	 analysis”	 (Grabiner,	 1982:	 2),	 while	 Bolzano’s	 contributions	 –“in	 the	

foundations	 of	 real	 analysis”–	 might	 have	 “not	 only	 [sketched]	 the	 general	 contours	 of	 the	

emerging	 new	 mathematics	 of	 the	 nineteenth	 century,	 but	 also	 [carried]	 the	 work	 out	 in	

considerable	detail”	(Rusnock,	2000:	18).	Even	more,	from	a	certain	interpretation	of	the	works	

of	 those	 two	 authors	 someone	 could	 state	 that	 “Cauchy’s	 achievement	 was	 the	 so-called	

‘arithmeticisation’	of	analysis”	(Grattan-Guinness,	1970:	373),	“the	project	of	putting	the	theory	

of	the	real	line	on	a	solid,	arithmetical	foundation	[which]	was	to	be	carried	forward,	largely	in	

ignorance	of	Bolzano’s	work,	throughout	the	nineteenth	century”	(Ewald,	1999:	226).	

	

Nevertheless,	 as	with	 the	 common	description	of	 the	 above-mentioned	 French	 and	Germanic	

educational	 reforms,	 there	 is	 something	 fundamentally	 wrong	 in	 the	 usual	 narrative	 on	 the	

contributions	of	Bolzano	to	the	development	of	modern	analysis:	while	some	of	the	authors	that	

mention	 or	 study	 the	 early	mathematical	works	 of	 Bolzano	 are	wary	 of	 linking	 the	 proposals	

contained	in	those	works	to	what	would	later	be	called	the	“arithmetization	of	analysis”,	as	well	

as	 to	 link	 the	 results	 in	 them	 with	 the	 ones	 of	 later	 authors,	 especially	 Karl	 Weierstrass	 (cf.	

Kitcher,	 1984:	 191	 &	 263;	 Laugwitz,	 1989:	 205;	 Belna,	 2000:	 55;	Moore,	 2000	 &	 2008;	 Russ,	

2004;	Gray,	 2015:	 240),	many	of	 those	 authors	 either	 assume	 this	 second	 relation	 or	 both	 of	

them.	Indeed,	the	emergence	of	both	readings	can	be	roughly	dated	during	the	last	third	of	the	

19th	 century	 (for	 those	 who	 assume	 that	 link	 between	 particular	 results)	 and	 the	 early	 20th	

century	 (for	 those	 who	 assume	 that	 link	 between	 general	 proposals),	 and	 in	 both	 cases	 it	 is	

possible	to	point	out	certain	Germanic	mathematicians	as	key	figures	in	the	promotion	of	each	

reading,	scilicet,	Karl	Weierstrass	and	Felix	Klein.	

	

Concerning	the	second	of	those	readings,	it	is	known	that	Weierstrass	acknowledged	Bolzano	as	

the	 mathematician	 whose	 work	 (particularly	 his	 Purely	 Analytic	 Proof,	 from	 1817)10	was	 the	

basis	for	the	development	of	the	so-called	Bolzano-Weierstrass	theorem,	an	essential	theorem	

of	modern	analysis	which	nowadays	states	that	an	infinite	and	bounded	set	of	real	numbers	has	

																																																													
10	The	full	title	of	Bolzano’s	text	is:	Purely	Analytic	Proof	of	the	Theorem,	that	between	any	two	Values	which	give	Results	of	Opposite	
Sign,	there	lies	at	least	one	real	Root	of	the	Equation	(Rein	analytischer	Beweis	des	Lehrsatzes,	dass	zwischen	je	zwey	Werthen,	die	
ein	entgegengesetztes	Resultat	gewähren,	wenigstens	eine	reelle	Wurzel	der	Gleichung	liege).	
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a	 limit	 point;	 evidence	 of	 this	 is	 found	 both	 in	 notes	 of	 Weierstrass’	 lectures	 taken	 by	 his	

students,	 as	 well	 as	 in	 some	 works	 of	 these	 ones	 and	 him.	 Undoubtedly,	 Weierstrass’	 own	

recognition	of	Bolzano	contributed	 to	 the	 idea	 that	 the	 theorem	–enunciated	by	Weierstrass–	

and	its	proof	–provided	by	Weierstrass–	were	somehow	anticipated	by	Bolzano	(cf.	Weierstrass,	

1868/1986:	79;	1874:	304;	1886:	59-63	&	238-239).	However,	beyond	the	fact	that	Weierstrass’	

narrative	was	misleading,	what	mainly	consolidated	and	spread	that	idea	was:	a)	the	importance	

given	by	 the	 students	of	Weierstrass	 to	his	 reference	 to	Bolzano	and	b)	 the	 reading	made	by	

those	 students	 of	 the	 latter’s	work.	 The	 table	 included	 at	 the	 end	 of	 this	work	 as	 “Annex	 A”	

illustrates	this	argument	on	the	propagation,	consolidation	and	prevalence	of	such	a	reading.	

	

As	 to	 the	 first	 of	 those	 readings,	 although	 Leopold	 Kronecker,	 for	 example,	 talked	 about	 the	

“arithmetization”	 (arithmetisiren)	 of	 analysis	 and	 all	 mathematical	 disciplines	 (cf.	 Kronecker,	

1887:	338-339),11	his	proposal	was	not	entirely	the	same	as	that	advocated	by	that	“important	

mathematical	tendency	which”,	as	Klein	said	in	1895,	“[had]	as	its	chief	exponent	Weierstrass”	

(cf.	 Klein,	 1896:	 241):	 while	 both	 proposals	 shared	 the	 conviction	 in	 the	 development	 of	

mathematics	 on	 the	 basis	 of	 the	 arithmetic	 of	 natural	 numbers,	 Weierstrass	 and	 others	

intended	 to	 develop	 a	 theory	 of	 irrational	 numbers,	 something	 that	 at	 least	 at	 some	 point	

Kronecker	rejected.	Thus,	from	the	early	20th	century	onwards	it	became	increasingly	common	

to	identify	the	proposal	of	Weierstrass	and	others	under	the	designation	of	“arithmetization	of	

analysis”	(conceived	in	any	case	Kronecker’s	proposal	as	a	restrictive	version	of	this	one),	and	to	

celebrate	 it	as	Poincaré	did	 in	1900:	“Mathematics”,	he	said,	“has	been	arithmetized.	 [...]	One	

can	say	that	nowadays	absolute	rigor	has	been	achieved”	(Poincaré,	1902:	120	&	122).12	But	 it	

was	Klein,	if	not	the	first	author	to	identify	Bolzano	with	such	arithmetization,	at	least	the	first	

one	 whose	 identification	 of	 this	 mathematician	 with	 that	 project	 was	 echoed	 among	

mathematicians	 and	 historians	 and	 philosophers	 of	 mathematics:	 “Bolzano”,	 he	 wrote	 in	 his	

Lectures	 on	 the	 Development	 of	 Mathematics	 in	 the	 19thcentury	 (Vorlesungen	 über	 die	
																																																													
11	Kronecker	wrote:	“And	I	also	believe	that	someday	it	will	be	achieved	to	‘arithmetize’	the	whole	content	of	all	these	mathematical	
disciplines,	i.	e.	on	the	sole	basis	of	the	concept	of	number	taken	in	the	narrowest	sense	[that	is,	in	the	sense	of	natural	numbers],	so	
to	strip	away	the	modifications	and	extensions	of	this	concept,	which	have	mostly	been	caused	by	the	applications	in	geometry	and	
mechanics”	(“Und	ich	glaube	auch,	dass	es	dereinst	gelingen	wird,	den	gesammten	Inhalt	aller	dieser	mathematischen	Disciplinen	zu	
‘arithmetisiren’,	d.	h.	einzig	und	allein	auf	den	im	engsten	Sinne	genommenen	Zahlbegriff	zu	gründen,	also	die	Modificationen	und	
Erweiterungen	 dieses	 Begriffs	 wieder	 abzustreifen,	 welche	 zumeist	 durch	 die	 Anwendungen	 auf	 die	 Geometrie	 und	 Mechanik	
veranlasst	worden	sind.”).	
12	Poincaré	wrote:	 “Il	ne	 reste	plus	aujourd’hui	en	Analyse	que	des	nombres	entiers	ou	des	 systèmes	dinis	ou	 infinis	de	nombres	
entiers,	 reliés	 entre	 eux	 par	 un	 réseau	 de	 relations	 d’égalité	 ou	 d’inégalité.	 Les	 Mathématiques,	 comme	 on	 l’a	 dit,	 se	 sont	
arithmétisées.	 [...]	 Or,	 dans	 l’Analyse	 d’aujourd’hui,	 quand	 on	 veut	 se	 donner	 la	 peine	 d’être	 rigoureux,	 il	 n’y	 a	 plus	 que	 des	
syllogismes	 ou	 des	 appels	 à	 cette	 intuition	 du	 nombre	 pur,	 la	 seule	 qui	 ne	 puisse	 nous	 tromper.	On	 peut	 dire	 qu’aujourd’hui	 la	
rigueur	absolue	est	atteinte.”	
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Entwicklung	der	Mathematik	im	19.Jahrhundert)	published	posthumously	in	1926-27,	“is	one	of	

the	fathers	of	the	current	‘arithmetization’	of	our	science”	(Klein,	1826:	56).13	

	

As	shown	in	“Annex	B”	table,	 it	 is	still	common	to	 include	Bolzano	among	the	mathematicians	

who	advocated	for	Weierstrass’	arithmetization	of	analysis,	despite	the	fact	that	two	centuries	

have	 passed	 since	 the	 publication	 of	 his	 Purely	 Analytic	 Proof	 in	 Prague.	 On	 the	 contrary,	

Cauchy’s	Course	of	Analysis	(Cours	d’Analyse),	published	four	years	later	in	Paris,	not	only	was	a	

much	 better	 known	work	 during	 the	 19th	 century,	 but	 also	 since	 then	 has	 been	more	widely	

studied.	As	 a	 consequence,	 according	 to	 the	 thesis	 here	defended,	 both	 the	 general	 proposal	

and	 the	 particular	 results	 contained	 in	 Bolzano’s	 early	 works	 (1804-1817)	 continue	 to	 be	

misread:	 by	 1817	 Bolzano’s	 mathematical	 notions	 and	 practices,	 though	 they	 hinted	 some	

ground-breaking	 concerns	 and	 features,	 were	 heavily	 deviant	 from	 later	 Weierstrassian	

arithmetizing	 notions	 and	 practices,	 insofar	 as	 Bolzano’s	 work	 still	 had	 essential	 traits	 of	 a	

semantic-ontological	conception	of	analysis.	

	

In	 fact,	 Bolzano’s	 account	 as	 a	 transitional	mathematician,	 that	 is,	 as	 one	whose	 early	works	

were	 aimed	 in	 some	 way	 towards	 the	 land	 on	 which	 the	 19th	 century	 real	 analysis	 was	

developed,	 yet	 deeply	 rooted	 in	 inherited	 views	 and	 practices	 which	 were	 common	 among	

Germanic	mathematicians	around	1800,	is	a	thesis	closely	linked	to	the	one	stated	at	the	outset	

on	the	biased	narrative	of	Germanic	educational	reforms	of	the	early	19th	century.	Whether	it	is	

carefully	studied	what	happened	in	Germanic	mathematics	around	half	a	century	after	1817	(up	

to	c.	1872),	as	around	half	a	century	before	1804	(since	c.	1750),	Bolzano’s	role	as	a	transitional	

author	 is	 sustained.	 But,	 since	 the	 arrival	 point	 in	 this	 thesis	 is	 precisely	 the	work	 of	 Bolzano	

from	1804-1817,	 the	 focus	 here	 lies	 in	 the	 previous	 generations	 of	Germanic	mathematicians	

and	the	links	and	differences	between	them	and	Bolzano.	More	specifically,	the	interest	rests	on	

the	Germanic	mathematicians	of	the	second	half	of	the	18th	century,	those	who	have	generally	

been	overlooked	by	mathematicians	and	historians	and	philosophers	of	mathematics.	

	

																																																													
13	Klein	 wrote:	 “Diese	 Punkte	wurden	 erst	 1817	 durch	 die	 Schrift	 von	B.	Bolzano	 'Rein	 analytischer	Beweis	 des	 Lehrsatzes,	 dass	
zwischen	je	zwey	Werthen,	die	ein	entgegengesetztes	Resultat	gewähren,	wenigstens	eine	reelle	Wurzel	der	Gleichung	liege'	(Prag,	=	
Ostw.	Klass.	153)	erledigt,	der	damit	auch	über	die	späteren	Entwicklungen	von	Cauchy	hinausgegangen	 ist.	Bolzano	 ist	einer	der	
Väter	der	eigentlichen	'Arithmetisierung'	unserer	Wissenschaft.”	
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Precisely,	 beyond	 the	 mathematical	 concepts	 and	 practices	 implicit	 in	 Bolzano’s	 early	

mathematical	works,	his	explicit	mathematical	sources	reinforce	two	main	–intertwined–	theses	

of	 this	 work.	 That	 way,	 while	 until	 1817	 he	 primarily	 quoted	 Germanic	 (a	 vast	majority)	 and	

French	 mathematicians,	 and	 to	 a	 lesser	 extent	 British	 and	 ancient	 Greek	 ones,	 among	 them	

three	 groups	 can	 be	 clearly	 defined	 according	 to	 their	 connection	 to	 a	 certain	 tradition	 or	

school:	 a)	 the	 Newtonian	 tradition	 (Newton	 and,	 for	 example,	 John	 Colson,	 Samuel	 Horsley,	

Thomas	Simpson,	William	Sewell,	John	Landen);	b)	the	French	tradition	(Euler	and,	for	example,	

Simon	 Antoine	 Jean	 L’Huilier,	 Johann	 Castillon,	 Alexis	 Claude	 Clairaut,	 Jean-Baptiste	 le	 Rond	

d’Alembert,	 Jean-Baptiste	 d’Estienne	 du	 Bourguet,	 François	Daviet	 de	 Foncenex,	 Pierre-Simon	

Laplace,	Adrien-Marie	Legendre,	Sylvestre	François	 Lacroix,	 Joseph-Louis	 Lagrange);	and	c)	 the	

so-called	 Hindenburg’s	 combinatorial	 school	 (Hindenburg	 and,	 for	 example,	 Heinrich	 August	

Rothe,	Georg	Simon	Klügel,	Johann	Friedrich	Pfaff).	However,	while	the	references	by	Bolzano	to	

authors	of	the	first	groups	were	mostly	isolated	ones,14	his	references	to	Hindenburg	and	Klügel,	

as	well	as	to	several	Germanic	mathematicians	(mainly	from	the	second	half	of	the	18th	century	

and	the	early	19th	century),15	highlight	the	importance	of	these	mathematicians	and	especially	of	

those	immediately	prior	to	him	in	the	development	of	his	early	mathematical	proposal.	

	

Furthermore,	there	is	something	outstanding	with	regard	to	Bolzano’s	Germanic	sources:	along	

with	Wolff	 (one	of	 the	most	 influential	 philosophers	 and	mathematicians	 of	 the	 18th	 century)	

and	Kant	(one	of	the	most	influential	Germanic	philosophers	by	the	early	19th	century),	Bolzano	

referred	 mainly	 to	 mathematicians	 who	 for	 the	 most	 part	 were	 not	 followers	 of	 that	

philosopher,	 nor	 strictly	 had	 they	 been	 educated	 under	 the	 ideas	 of	 that	 mathematician.	

Undoubtedly,	 those	Germanic	authors	were	not	 stranger	 to	 the	 ideas	and	works	of	Wolff	and	

Kant.	However,	their	education	was	mediated	by	the	works	of	other	auhors.	This	depended	on	

the	region	and	epoch,	but	the	key	figures	during	that	period	were	Kästner,	Karsten	and	Segner,	

the	math	teachers	at	the	leading	universities	of	Göttingen	and	Halle	who,	along	with	their	math	

																																																													
14	As	a	matter	of	fact,	most	of	them	are	only	named	in	the	list	of	authors	included	at	the	beginning	of	his	1816	work	on	the	binomial	
theorem	(cf.	Bolzano,	1816:	III-IV)	or	in	the	one	included	at	the	beginning	of	his	Purely	Anlytic	Proof	(cf.	Bolzano,	1817B:	3	&	5).	
15	The	Germanic	mathematicians	whose	mention	in	Bolzano’s	early	mathematical	works	is	not	an	isolated	one	are:	Christian	Wolff,	
Abraham	 Kästner,	 Johann	 Schultz,	 Immanuel	 Kant	 (philosopher),	 Johann	 Andreas	 Christian	Michelsen,	 Georg	 Simon	 Klügel,	 Carl	
Friedrich	Hindenburg,	Karl	Christian	von	Langsdorf,	 Johann	Heinrich	 Lambert,	August	 Leopold	Crelle,	 Johann	Carl	 Friedrich	Gauss,	
Johann	Friedrich	Gensichen,	Ernst	Platner	and	Ernst	Gottfried	Fischer.	A	list	(of	his	Germanic	sources)	that	is	completed	by:	Lazarus	
Bendavid,	Karl	Friedrich	August	Grashof,	Franz	Anton	Ritter	von	Spaun,	(Joseph-Louis	Lagrange),	Jakob	Hermann,	Leonhard	Cochius,	
Christian	 Gottlieb	 Selle,	 Franz	 Ulrich	 Theodor	 Aepinus,	 Johann	 Andreas	 von	 Segner,	 Karl	 Scherffer,	 Wenceslaus	 Johann	 Gustav	
Karsten,	Johann	Friedrich	Pfaff,	Heinrich	August	Rothe,	Christian	Lebrecht	Rösling,	Mathias	Metternich,	Friedrich	Gottlieb	von	Busse,	
Christian	Friedrich	Kausler,	János	Pasquich,	Friedrich	Wilhelm	Jungius,	Karl	Christian	Friedrich	Krause	and	Gottlob	Nordmann.	
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teachers,	 did	 grow	 during	 the	 heyday	 of	 Wolff’s	 influence,	 though	 they	 were	 not	 mere	

propagators	of	this	latter’s	ideas.	

	

It	 is	true,	on	the	one	hand,	that	by	then	the	best	known	works	of	Kästner,	Karsten	and	Segner	

were	their	textbooks,	as	well	as	in	some	cases	their	translations	of	the	works	of	foreign	authors,	

and	so	their	influence	on	the	next	generations	had	to	do	primarily	with	general	conceptions	and	

practices	 and	not	 so	much	with	particular	mathematical	 results	 or	 developments.	 But,	 just	 as	

Bolzano	did	not	merely	repeat	what	he	inherited,	those	three	mathematicians	did	not	either.16	

Moreover,	just	as	the	works	of	those	three	mathematicians	were	not	merely	“more	popular	and	

readable	version[s]	[of	Wolff’s	work]”	(Bullynck,	2006:	4),	as	it	is	commonly	told,	they	gradually	

introduced	 significant	modifications	 in	 their	works,	which	 increasingly	 drove	 them	 away	 from	

certain	ideas	of	Wolff	that	were	still	present	in	this	one’s	works	of	the	1740s.	

	

The	 latter	point	 is	 crucial	 to	note,	 given	 the	widespread	 idea	about	 the	 state	of	 stagnation	of	

Germanic	mathematics	during	the	second	half	of	the	18th	century.	While	 isolated	mentions	on	

some	 relevant	 aspects	 of	 the	 mathematical	 works	 of	 those	 three	 authors	 can	 be	 found	 all	

throughout	 the	 last	 century	 (cf.	 Cantor,	 1904;	 Cajori,	 1913	 &	 1923;	 Fellmann,	 1983;	 Clewis,	

2015),	 there	are	 few	studies	 focused	–at	 least	partially–	on	 them.	The	exception	 to	 this	 is	 the	

excellent	work	of	Gert	Schubring	(2005),	as	well	as	some	other	recent	works,	such	as	(Kleinert,	

2002)	and	(Bullynck,	2006	&	2013).	Because	of	its	extensive	and	detailed	study	of	the	notions	of	

quantity	and	number	among	French	and	Germanic	mathematicians	of	the	18th	century,	the	book	

of	Schubring	must	be	considered	the	main	reference	in	the	subject.	Indeed,	many	of	the	authors	

whose	 work	 is	 discussed	 here	 in	 chapter	 B	 are	 studied	 by	 Schubring	 and	 thus	 the	 analysis	

offered	here	of	those	authors	aims	to	contribute	to	his	work	and	the	other	existing	studies.	

	

Schubring’s	investigation	treats	the	development	of	mathematical	analysis	mostly	in	France	and	

Germany,	 with	 special	 focus	 on	 the	 development	 of	 the	 concepts	 of	 negative	 numbers	 and	

infinitely	small	quantities	throughout	the	17th,	18th	and	19th	centuries.	Just	 like	we	do	here,	he	

pays	 special	 attention	 to	 textbooks,	 since	 “they	 yield	 good	 indicators	 as	 to	 the	 intended	

conceptual	horizon	of	a	certain	period	and	culture”	(Schubring,	2005:	7).	Bullynck,	on	the	other	

																																																													
16	The	same	can	be	said	about	Wolff	but	this	goes	beyond	the	scope	of	this	work,	so	this	footnote	shall	suffice	to	avoid	the	mistake	
that	is	being	criticized	here.	Thus,	throughout	this	work	the	ideas	of	Wolff	that	are	mentioned	are	attributed	to	the	specific	year	of	
the	quoted	work.	
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hand,	is	interested	in	the	state	of	Germanic	mathematics	in	the	late	18th	and	early	19th	century,	

"both	 on	 a	 level	 of	 elementary	 and	 higher	 education",	 and	 in	 “the	 forms	 of	 mediation	 and	

communication	that	accompanied	and	prepared	the	way	for	specialised	mathematical	journals”	

(Bullynck,	 2006	 &	 2013).	 This	 dissertation	 shares	 with	 both	 works	 such	 interests	 and	 some	

methodological	 options,	 but	 the	 focus	 here	 is	 placed	 on	 the	 basic	 notions	 of	 numbers	 and	

quantities	during	the	last	part	of	the	18th	century,	in	order	to	better	understand	the	emergence	

of	the	pre-modern	notion	of	number	among	Germanic	mathematicians,	particularly	in	the	early	

work	of	Bolzano.	

	

On	 the	 one	 hand,	 understanding	 the	 evolution	 of	 the	 mathematical	 ideas	 and	 practices	 of	

Kästner,	 Karsten	 and	 Segner	 in	 turn	 contributes	 to	 a	 better	 understanding	 of	 the	 Germanic	

mathematical	panorama	by	the	end	of	 the	18th	century	and	the	beginning	of	 the	19th	century.	

The	 links	 between	 Kästner,	 the	 most	 influential	 of	 those	 mathematicians,	 and	 the	 so-called	

Hindenburg’s	combinatorial	 school,	as	well	as	 the	 links	between	this	 school	and	Lagrange,	are	

not	fortuitous,	although	ultimately	the	project	of	each	of	them	was	different,	as	different	were	

some	of	their	procedures	and	underlying	notions.	Whereas,	on	the	other	hand	but	coupled	with	

that,	understanding	the	state	of	things	in	Germanic	mathematics	 in	the	early	19th	century	is	of	

utmost	 importance	 for	 a	 careful	 examination	 of	 some	 key	 aspects	 of	 Bolzano’s	mathematical	

works	of	1804-1817.	

	

Finally,	 once	 established	 the	 arrival	 (1817)	 and	 departure	 (c.	 1750)	 times,	 the	 territory	 (the	

Germanic	mathematics)	and	the	way	forward	(from	Göttingen	and	Halle	to	Prague),	as	well	as	

explained	the	reasons	for	such	decisions,	last	but	not	least,	where	to	begin	(geographically)	this	

thesis	 on	 the	 Germanic	 development	 of	 the	 pre-modern	 notion	 of	 number?	 The	work	 of	 the	

land	surveyor	is	not	only	to	delimit	the	territory	and	study	it,	but	also	to	set	a	geographical	point	

of	departure	suitable	 for	 the	optimal	completion	of	his	work:	“K.	stood	on	the	wooden	bridge	

leading	 from	the	road	 to	 the	village	 for	a	 long	 time,	 looking	up	at	what	seemed	to	be	a	void”	

(Kafka,	2009:	5).	As	a	consequence,	and	given	the	political	situation	in	the	Germanic	territories	

during	 that	 period,	 starting	 point	 here	 will	 be	 a	 halfway	 territory	 between	 the	 Kingdom	 of	

Prussia	 (Königreich	Preußen)	and	 the	Archduchy	of	Austria	 (Erzherzogtum	Österreich),	 the	 two	

most	important	constituent	parts	of	the	Holy	Roman	Empire	by	that	time	(which	then	comprised	

most	of	the	Germanic	territories),	namely,	Silesia	(Schlesien).	
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A.	 The	 Holy	 Roman	 Empire	 during	 the	 second	 half	 of	 the	 18th	

century	
	

A.1.	The	political	situation	in	the	Empire	from	c.	1740	to	the	late	18th	century	

	

	

Silesia	(Schlesien)	is	a	region	nowadays	located	mostly	in	Polish	territory,	between	Germany,	the	

Czech	Republic	and	Slovakia,	whose	control	was	strongly	disputed	by	the	Kingdom	of	Prussia	–

Königreich	Preußen–	and	 the	Archduchy	of	Austria	–Erzherzogtum	Österreich–	by	 the	mid-18th	

century.	 The	 last	 of	 the	 conflicts	 in	 that	 period	 involving	 the	 region	 has	 different	 names	 in	

historiography,	 depending	 on	 the	 combatants	 on	 which	 focus	 is	 placed,	 even	 though	 it’s	

commonly	known	as	the	Seven	Years’	War.	A	war	that	took	place	in	Europe,	America,	West	and	

Southeast	Africa	and	North,	South	and	Southeast	Asia	and	 lasted	 from	1754	 to	1763.	A	broad	

and	 complex	 conflict	 that	 with	 regard	 to	 Europe	 is	 known	mostly	 as	 the	 Third	 Silesian	War,	

having	been	preceded	by	two	similar	periods	of	war	in	which	Silesia	was	also	at	the	heart	of	the	

dispute:	 the	 first	 from	 1740	 to	 1742	 and	 the	 second	 between	 1744	 and	 1745,	 both	 in	 the	

context	of	the	war	of	the	Austrian	succession.	

	

That	succession	to	the	realms	of	the	House	of	Habsburg	was,	 in	fact,	one	of	the	crucial	events	

that	in	one	way	or	another	would	shape	the	future	of	Europe	during	the	subsequent	decades.	By	

the	mid-18thcentury,	 the	control	 that	 the	House	of	Habsburg	had	had	 for	about	3	centuries	of	

the	throne	of	the	Holy	Roman	Empire	was	threatened	by	the	lack	of	a	male	heir.	Leopold	I	had	

reached	an	agreement	–actum	mutuae	successionis–	in	1703	with	his	two	sons,	Joseph	I	and	Karl	

VI,	according	to	which,	not	having	neither	a	son,	nor	having	another	one	in	the	case	of	Leopold,	

their	daughters	would	be	able	to	 inherit,	precedence	being	given	to	the	daughters	of	the	first.	

But	once	in	the	throne	after	his	brother’s	death,	Karl	issued	a	decree	in	1713	by	which	he	gave	

priority	to	his	own	descendants	(Whaley,	2012	II:	158).	

	

Various	agreements	were	carried	out	during	the	following	decades	to	ensure	compliance	of	that	

decree,	both	with	Estates	of	the	Habsburg	lands	and	Estates	of	the	Reich	lands,	and	with	other	
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Empires,	such	as	Spanish	and	Russian,	as	well	as	with	the	Kingdom	of	Prussia;	agreements,	some	

of	 them,	 that	 the	 House	 of	 Habsburg	 breached	 during	 the	 subsequent	 years.	 So	 while	 new	

agreements	 were	 conducted	 in	 order	 to	 preserve	 the	 dominance	 of	 a	 royal	 house	 whose	

territories	and	interests	went	beyond	those	of	the	Reich,	a)	“legal	and	institutional	mechanisms	

were	designed	to	keep	noble	families	afloat”,	thus	ensuring	their	dependence	(Whaley,	2012	II:	

208);	b)	the	variety	of	institutional	forms	became	increasingly	complex	with	States	containing	up	

to	 “five	 chambers	 with	 clergy,	 upper	 nobility,	 universities,	 knights,	 and	 towns	 represented	

separately”	 (Whaley,	 2012	 II:	 241);	 c)	 peasants'	 security	 of	 tenure	was	 increased	 “despite	 the	

restrictions	on	personal	liberty,	[...]	the	harsh	treatment	suffered	by	many	[...]	and	the	onerous	

fees,	 dues,	 and	 labour	 services	 imposed	 on	 many”	 (Whaley,	 2012	 II:	 253-254);	 and	 d)	 while	

“Catholicism	 successfully	 contained	 popular	 religiosity”,	 its	 conflictive	 coexistence	 with	

Protestantism	gradually	 involved	a	greater	cooperation	between	them	(Whaley,	2012	II:	307	&	

324).			

	

Nevertheless,	Maria	Theresia’s	accession	as	ruler	of	the	domains	of	the	House	of	Habsburg	after	

her	 father’s	 death	 in	 late	 1740	 was	 followed	 by	 the	 invasion	 of	 Silesia	 by	 the	 army	 of	 the	

Kingdom	 of	 Prussia,	 as	 well	 as	 the	 claims	 to	 other	 Habsburg	 territories	 launched	 by	 some	

Electorates	of	the	Hole	Roman	Empire	and	by	other	Kingdoms	(Whaley,	2012	II:	352-355).	The	

conflict	officially	 lasted	 less	than	a	couple	of	years	although	the	signing	of	the	Treaty	of	Berlin	

between	Austria	and	Prussia	by	mid-1742	did	not	 lead	 to	peace	 in	some	of	 the	 fronts	such	as	

Bavaria,	the	Electorate	of	Karl	Albrecht,	son-in-law	of	Joseph	I	and	by	then	Holy	Roman	Emperor	

with	the	support	of	the	French	and	Spanish	Kingdoms	(Bryce,	1901:	354).	

	

Crowned	in	Frankfurt	in	early	1742	and	a	refugee	there	since	then,	Karl	VII	attempts	to	recover	

Bavaria	as	well	 as	 French	 interests	 in	 the	 conflict	 led	 to	 the	 latter’s	 formal	declaration	of	war	

against	Austria	and	Britain	and	eventually	to	the	signing	of	the	“Frankfurt	Union	of	22	May	1744,	

by	 which	 Prussia,	 the	 Palatinate,	 and	 Hessen	 agreed	 to	 support	 the	 beleaguered	 emperor”	

(Whaley,	 2012	 II:	 355).	 This	 new	 conflict	 also	 lasted	 less	 than	 2	 years,	 signed	 the	 Treaty	 of	

Dresden	 in	 December	 1745:	 Austria	 recognized	 the	 Prussian	 possession	 of	 Silesia	 and	 Prussia	

recognized	the	election	of	Francis	Stephen	–Maria	Theresia’s	consort–	as	Francis	I,	Holy	Roman	

Emperor	who	succeeded	Karl	VII	after	his	death	early	that	year	(cf.	Whaley,	2012	II:	356).	
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During	the	following	years	the	war	against	the	French	and	Spanish	kingdoms	continued	in	Italy,	

the	Austrian	Netherlands,	Canada	and	India,	all	of	them	lands	outside	the	Reich.	This	series	of	

conflicts,	 whose	main	 adversaries	were	 France	 –along	with	 Spain,	 the	 Duchy	 of	Modena	 and	

Reggio	 and	 the	 Republic	 of	 Genoa–	 and	 Britain	 –along	 with	 the	 Dutch	 Republic,	 Austria,	 the	

Kingdom	of	Sardinia	and,	passively,	Russia–,	ended	in	1748	with	the	signing	of	the	Treaty	of	Aix-

la-Chapelle;	 a	 peace	 that,	 though	 feeble,	 lasted	 about	 ten	 years,	 until	 the	 beginning	 of	 the	

aforementioned	Seven	Years’	War.	

	

Although	 that	 new	 war	 strictly	 began	 in	 1754,	 with	 clashes	 between	 the	 French	 and	 British	

settlements	 in	 North	 America	 and	 the	 consequent	 reactions	 of	 both	 kingdoms	 from	 1755,	 in	

Europe	the	conflict	was	only	developed	two	years	later	when	Prussia	formally	allied	with	Britain	

and,	 in	 reaction,	 Austria	 and	 France	 reached	 an	 agreement	 known	 as	 the	 first	 Treaty	 of	

Versailles	which	was	amended	twice	during	the	next	couple	of	years	(Whaley,	2012	II:	358-59).	

As	stated	before,	this	broad	and	complex	conflict	lasted	7	years	in	Europe	during	which:	Prussia	

invaded	Saxony;	Russia	joined	the	Austro-French	coalition,	followed	by	the	Kingdom	of	Sweden,	

the	 Kingdom	 of	 Poland	 and	 the	 Grand	 Duchy	 of	 Lithuania;	 Saxony	 joined	 the	 anti-Prussian	

coalition,	followed	by	other	Germanic	states	such	as	the	Palatinate	and	Bavaria,	which	led	to	the	

Reich’s	 involvement	 (Burkhardt,	2012:	117);	 Spain	 intervened	due	 to	 its	Pacte	de	Famille	with	

France	 and	 both	 invaded	 Portugal	 (ally	 of	 Great	 Britain);	 some	 Germanic	 states	 intervened	

against	the	Austro-French	coalition,	such	as	the	Electorate	of	Hanover	(a	Germanic	territory	of	

King	Georg	 II	of	Great	Britain),	 the	Principality	of	Brunswick-Wolfenbüttel,	 the	Landgraviate	of	

Hesse-Kassel,	 the	 County	 of	 Schaumburg-Lippe-Bückeburg	 and	 the	 Duchy	 of	 Saxe-Gotha-

Altenburg	 (Luh,	 2012:	 17);	 “France	 was	 soon	 distracted	 by	 major	 losses	 in	 Canada	 and	

progressively	withdrew	her	support	for	any	action	in	the	Reich”;	“Britain	too	lost	interest	in	the	

war	 after	 her	 victories	 against	 France”	 (Whaley,	 2012	 II:	 360);	 Georg	 II	 died	 (in	 1760),	 in	 the	

middle	of	an	“increasing	public	disquiet	at	 the	continuation	of	 the	war	and	 the	 rising	costs	of	

supporting	Hanover	and	Prussia”,	and	was	succeeded	by	George	III,	his	grandson,	who	focused	

more	on	 the	American	 colonies	 than	on	Hanover	 and	 the	Reich	 (Harding,	 2012:	 316;	Whaley,	

2012	II:	360);	Empress	Elizabeth	of	Russia	died,	in	January	1762,	succeeded	by	her	nephew	Peter	

III,	pro-Prussian	Emperor	who	“renounced	its	treaty	with	Austria	and	agreed	to	vacate	Prussian	

territory”	 under	 the	 Treaty	 of	 Saint	 Petersburg	 in	 March	 that	 year,	 just	 before	 his	 wife’s	 –

Catherine	 II	 or	 Catherine	 the	 Great–	 coup,	 his	 subsequent	 death	 in	 July,	 her	 coronation	 in	
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September	 and	 the	 revocation	 of	 the	 alliance	 between	 Russia	 and	 Prussia	 (Schumann,	 2012:	

512;	Speelman,	2012:	520);	Sweden,	having	considered	to	get	out	of	the	war	since	1758,	signed	

the	peace	with	Prussia	the	same	year	Russia	did	(Åselius,	2012:	162);	and,	finally,	Great	Britain	

and	France,	as	well	as	Austria	and	Prussia,	began	negotiating	a	peace	agreement	in	1762	which	

was	formalized	by	the	Treaty	of	Paris	and	the	Treaty	of	Hubertusburg	in	1763	(Whaley,	2012	II:	

361-62).	

	

By	1763,	therefore,	the	Prussian	possession	of	Silesia	was	confirmed	and	remained	so	until	the	

abdication	of	Wilhelm	II	resulting	in	the	abolition	of	the	Kingdom	of	Prussia	and	the	demise	of	

the	 German	 Empire	 in	 1918.	 To	 some	 extent,	 there	 was	 some	 peace	 in	 Europe	 during	 the	

following	decades	till	 the	 late	18th	century.	As	Whaley	 indicates,	“from	1763,	both	Austria	and	

Prussia,	 and	 the	Reich	 as	 a	whole,	were	 embedded	 in	 an	 international	 constellation	 that	 also	

guaranteed	stability”	(Whaley,	2012	II:	350).	Nonetheless,	as	Schumann	points	out,	“a	variety	of	

strategic	imponderables	affected	military	orders	and	diplomatic	initiatives	far	outside	the	scope	

of	the	peace	negotiations”	(Schumann,	2012:	518).	Among	the	military	conflicts	that	occurred	in	

Europe	and	involved	at	 least	one	of	 its	five	“great	powers”	(i.e.	Austria,	Prussia,	Russia,	France	

and	 Britain),	 prior	 to	 the	 French	 Revolution	 and	 those	 conflicts	 known	 as	 the	 French	

Revolutionary	Wars,	most	of	them	involved	Russia	(with	Circassia;	the	Bar	Confederation	and	as	

a	consequence	Austria,	Prussia	and	France;	the	Ottoman	Empire;	Chechen	forces;	Sweden;	the	

Commonwealth	of	Poland;	and	popular	 revolts	as	 for	example	Pugachev’s	Rebellion)	and	only	

some	of	 them	directly	 involved	 the	Reich,	 such	as	 the	Revolt	of	Horea,	Cloșca	and	Crișan,	 the	

War	of	the	Bavarian	Succession	(from	1778	to	1779),	the	Kettle	War	against	the	Republic	of	the	

Seven	Netherlands	of	1784,	the	Austro-Turkish	War	of	1787	and	the	Saxon	Peasants’	Revolt	of	

1790.	

	

That	way,	such	relative	and	regional	peace,	coupled	with	the	continuity	of	 the	main	European	

leaders	between	1763	and	1792	and	the	development	of	the	Enlightenment,	as	a	matter	of	fact	

in	some	cases	made	possible	the	establishment	of	several	important	reforms,	from	financial	to	

educational.	So,	while	during	that	period	Great	Britain	and	France	(under	the	reigns	of	George	III	

and	 Louis	 XV	 and	 Louis	 XVI,	 respectively)	 experienced	 a	 few	 of	 those	 changes,	 Austria	 –and	

therefore	the	Holy	Roman	Empire–,	Russia	and	Prussia	experienced	a	number	of	them.	
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A.2.	The	Germanic	educational	reforms	from	c.	1760	to	the	late	18th	century	

	

	

In	the	beginning	was	the	torpor.	Not	Napoleon	(Nipperdey,	1983)	nor	the	Reich	(Winkler,	2000)	

or	the	absence	of	a	revolution	(Wehler,	1987),	but	as	Friedrich	Paulsen	wrote	 in	the	early	20th	

century,	 in	 the	 beginning	 of	 the	 19th	 century	 was	 “the	 torpor	 into	 which	 [the	 Austrian	

universities]	 had	 relapsed	 after	 the	 great	 reforms	 of	 the	 eighteenth	 century	 under	 Maria	

Theresia	 and	 Joseph	 II”	 (Paulsen,	 1906:	 51).	 However,	 while	 Paulsen’s	 assertion	 about	 the	

Austrian	universities	is	basically	true,	since	with	Franz	II	(the	last	Holy	Roman	Emperor	and	the	

first	 Austrian	 Emperor	 as	 Franz	 I)	 “many	 of	 [those]	 reforms	 were	 revoked	 and	 the	 spirit	 of	

Enlightenment	almost	vanished,	replaced	by	the	catholic	Restoration”	(Sebestik,	2014:	293),	the	

same	cannot	be	said	of	all	the	Germanic	universities.	Which	means	that	just	as	it	is	not	true	that	

concerning	 education,	 university	 research	 and	 scientific	 development,	 practically	 nothing	

happened	 in	 the	 Germanic	 territories	 before	 the	 foundation	 of	 the	 Universität	 zu	 Berlin	 (or	

Friedrich-Wilhelms-Universität)	 in	 1810,	 neither	 it	 is	 true	 that	 practically	 nothing	 happened	 in	

that	 territories	 after	 King’s	 Leopold	 II	 death	 in	 1792.	 In	 other	 words,	 it	 is	 false	 a)	 that	 the	

Germanic	model	of	modern	university	–developed	during	 the	19th	 century–	was	 founded	with	

Wilhelm	 Von	 Humboldt	 and	 the	Universität	 zu	 Berlin	 (nowadays	 the	Humboldt-Universität	 zu	

Berlin)	and	b)	that	before	them	the	Germanic	universities,	 i.e.	the	Germanic	universities	of	the	

18th	century	and	early	19th,	were	institutions	“generally	ossified	and	decayed”	(Nipperdey,	1983:	

57),	“in	poor	shape”	and	“stagnation”	(Howard,	2006:	80-81).	

	

Regardless	of	all	what	 is	meant	by	“Germanic”,	 such	assertions	are	unsustainable	even	 if	only	

considered	 in	 terms	 of	 language	 and	 territory.	 While	 in	 1815	 the	 German	 Confederation	

(Deutscher	 Bund)	 was	 created	 and	 during	 subsequent	 decades	 there	 was	 a	 certain	 unity	 –at	

least	 economically–	 of	 the	German-speaking	 states,	 the	 situation	was	 quite	 different	 in	 1810.	

When	 founded	 the	University	 of	 Berlin	 by	Prussia,	 the	universities	 in	German-speaking	places	

were	 mainly	 located	 in	 Prussia,	 Austria	 and	 the	 Confederated	 States	 of	 the	 Rhine	 (États	

confédérés	 du	 Rhin),	 a	 confederation	 of	 Germanic	 clients	 of	 the	 French	 Empire	 promoted	 by	

Napoleon	in	1806	that	lasted	until	1813	(Whaley,	2012	II:	637-38).	As	a	result,	in	1810	not	only	

there	was	a	lack	of	union	of	German-speaking	states,	but,	on	the	contrary,	there	was	a	union	of	

some	German-speaking	 states	 that	 for	different	 reasons	 supported	 the	 French	Empire	against	
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the	other	German-speaking	states.	Furthermore,	as	a	result	of	the	French	Revolution	(1789)	and	

especially	since	 the	French	Revolutionary	Wars	 (1792),	 several	universities	 located	 in	German-

speaking	 states	 were	 closed	 and	 although	 some	 of	 them	 were	 reopened,	 no	 university	 was	

inaugurated	in	those	territories	prior	to	the	one	in	Berlin.	

	

Accordingly,	 those	who	defend	 the	 thesis	 that	 the	Germanic	model	 of	modern	university	was	

founded	with	Humboldt	and	the	University	of	Berlin	(hereinafter	in	this	section	“thesis	A”)	may	

either	 refer	 to:	 a)	 the	 universities	 of	 the	 upcoming	 German	 Confederation	 of	 1815	 or	 1820	

(when	the	treaty	to	create	it	was	concluded);17	b)	the	universities	of	Prussia	(under	its	control	or	

in	 its	 territories)	by	1810;18	c)	 the	universities	under	de	 facto	 control	of	 the	existing	Germanic	

states	by	1810;19	d)	or	 the	universities	 located	 in	 territories	of	 the	existing	Germanic	states	by	

1810	 (or	 even	better	 by	 1820);20	e)	 the	German-speaking	universities	 and	 the	ones	 located	 in	

German-speaking	 territories	 by	 1810	or	 1820;21	f)	 the	 universities	 in	 territories	 of	 the	 existing	

Germanic	 states	by	1820	 that	were	part	of	 the	German	Confederation	by	1820	and	were	also	

part	 of	 the	 German	 Empire	 by	 1871; 22 	or	 g)	 merging	 the	 two	 previous	 aternatives,	 the	

universities	located	in	German-speaking	territories	that	were	part	of	the	German	Confederation	

by	1820	and	were	also	part	of	the	German	Empire	by	1871.	

	

																																																													
17	This	 would	 rule	 out	 Königsberg,	 the	 place	 where	 Humboldt	 formulated	 an	 early	 version	 of	 his	 plan	 to	 reform	 the	 Prussian	
educational	system	(cf.	Humboldt,	1809	&	1809-1810),	which	was	not	the	case	in	terms	of	budget	(cf.	Jungnickel	&	McCormmach,	
1990:	226),	constructions	(being	inaugurated	its	botanical	garden	and	observatory	between	1811	and	1813)	and	academic	activity	
(Clark,	2006:	168,	177	&	448ff.),	while	at	the	same	time	would	include	Austrian	universities	despite	the	fact	that	with	Leopold	II	–
and,	as	stated	before,	with	Franz	I–	“censorship	regulations	were	strengthened	after	1789”	(Agnew,	2004:	97).	
18	That	would	 rule	 out	 Paderborn,	Münster,	 Halle	 and	 Bonn	 (a	 university	 that,	 founded	 in	 1818,	was	 a	 project	 of	 King	 Frederick	
William	III	of	Prussia	in	the	same	vein	as	the	universities	of	Berlin	and	Breslau),	as	well	as	all	the	universities	located	in	the	territories	
of	 the	 former	Confederated	States	of	 the	Rhine	and	 some	of	 the	ones	 located	north	of	 future	German	Empire	of	 1871.	 In	other	
words,	that	would	mean	Berlin’s	model	is	considered	the	“Germanic	model	of	modern	university”	on	the	basis	of	its	influence	on	a	
couple	of	Germanic	universities	during	the	19th	century	(considering	that	Duisburg	was	closed	8	years	later).	
19	That	would	 rule	out	 the	universities	 located	 in	 the	 territories	of	 the	 former	Confederated	States	of	 the	Rhine	and	some	of	 the	
universities	 located	 northeast	 of	 future	 German	 Empire	 of	 1871	 (in	 both	 cases	 under	 French	de	 facto	 control),	 but	 not	 Breslau,	
Duisburg,	Königsberg,	Prague,	Cracow,	Vienna,	Olomouc,	Graz,	Pécs,	Budapest,	Košice,	Lviv	and	Eperjes	(under	Prussian	or	Austrian	
or	control).	That	way,	Berlin’s	model	would	be	considered	the	“Germanic	model	of	modern	university”	on	the	basis	of	its	influence	
during	the	19th	century	on	2	Germanic	universities	and	10	universities	in	territories	that	by	1871	were	no	longer	Germanic.	
20	In	 the	 first	 case,	 the	universities	affected	by	 the	new	model	would	have	been	 the	ones	 in	Prussia,	Austria,	Holstein	and	 in	 the	
Confederated	States	of	 the	Rhine	but	not	 the	ones	 in	 some	of	 the	French	north-east	Departments	 (including	Münster,	Bonn	and	
Mainz);	 in	 the	 second	 case,	 the	ones	 in	 Prussia,	Austria,	 Schleswig-Holstein,	 the	 former	Confederated	 States	 of	 the	Rhine	 and	 in	
some	of	the	French	north-east	Departments.	Nonetheless,	the	sole	inclusion	of	the	Austrian	universities	makes	the	thesis	untenable.	
21	This	would	mean	 that	 the	 universities	 affected	 by	 the	 new	model	would	 have	 been	 the	 ones	 located	 in	 the	 territories	 of	 the	
member	states	of	the	German	Confederation,	since	German	was	the	language	of	central	and	local	administrations	in	the	Germanic	
states	at	least	until	the	mid-19th	century	(Taylor,	1948:	23),	but	also	some	others	like	Basel	in	the	Swiss	Confederation	(Zurich	and	
Bern	being	founded	in	1833-1834)	and	Tartu	–Dorpat–	in	the	Russian	Empire	(http://www.ut.ee/en/university/general/history).	
22	Under	 this	 position	 the	 universities	 affected	by	Berlin’s	model	would	 have	 been	 the	 ones	 located	 in	 territories	 of	 the	German	
Confederation,	except	those	of	Austria	and	Luxembourg,	plus	the	eastern	territories	of	Prussia	(including	Königsberg).	
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Leaving	aside	 the	 last	version	of	 thesis	A,	all	other	are	quite	problematic	and	make	untenable	

the	 thesis	A.	However,	 it	 seems	 that	 in	 fact	 version	 “g”	 accounts	 for	 the	 idea	 that	 those	who	

defend	 the	 aforementioned	 thesis	want	 to	 express,	 although	 it	 does	not	 explain	 the	basis	 for	

naming	“Germanic”	the	model	supposedly	devised	by	Humboldt	and	implemented	for	the	first	

time	 in	Berlin.	After	all,	 if	 the	Germanic	model	of	modern	university	was	 inaugurated	 in	Berlin	

(part	of	Prussia)	and	the	universities	affected	by	it	were	those	that	meet	the	conditions	set	by	

version	 “g”	 of	 thesis	 A,	 this	 basically	 means	 that	 model	 would	 have	 affected	 the	 Prussian	

universities	 (around	 12)	 along	 with	 the	 universities	 located	 throughout	 25	 of	 the	 other	 26	

(without	the	Imperial	Territory	of	Alsace-Lorraine)	constituent	territories	(around	11).23	In	other	

words,	 if	 that	 version	 of	 thesis	 A	 correctly	 expresses	 its	 sense,	 it	 means	 that	 the	 modern	

university	model	 called	 “Germanic”	 is	 the	one	 that,	 designed	 in	 Prussia,	 should	have	 affected	

the	 19th	 century	 universities	 of	 Prussia	 and	 the	 other	 German	 constituent	 territories	 of	 the	

German	Empire.	

	

Understood	thesis	A	in	that	way,	why	then	call	“Germanic”	the	model	to	which	it	refers	instead	

of	 calling	 it	 “Prussian”?24	The	 answer	 to	 this	 question	 seems	 related	 to	 the	 response	 to	other	

questions	 such	 as:	 To	 what	 extent	 did	 Prussian	 model	 implemented	 in	 Berlin	 affect	 German	

universities,	 i.e.	 universities	 located	 in	 territories	 that	 were	 both	 part	 of	 the	 German	

Confederation	 and	 Empire,	 during	 the	 19th	 century?	 To	what	 extent	 it	 even	 affected	 Prussian	

universities	 during	 that	 century?	 Did	 the	 essential	 features	 of	 that	 model	 were	 really	

implemented	for	the	very	first	time	in	Berlin?	Was	it	really	Humboldt	who	devised	the	Prussian	

model	 of	 modern	 university?	 All	 of	 them	 important	 questions	 here	 insofar	 as	 they	 lead	 to	

“thesis	B”,	namely,	that	Germanic	universities	of	the	18th	century	and	early	19th	were	institutions	

“generally	ossified	and	decayed”,	“in	poor	shape”	and	“stagnation”.	

	

																																																													
23	In	 Prussia:	 Paderborn	 (which	 became	 a	 seminar	 in	 1819),	 Bamberg	 (a	 Lyceum	 since	 the	 beginning	 of	 19th	 century),	 Duisburg	
(merged	 with	 Bonn	 in	 1818),	 Breslau,	 Halle,	 Bonn,	 Greifswald,	 Königsberg,	 Marburg,	 Göttingen,	Münster	 (renamed	 Academy	 in	
1843),	Kiel	(part	of	Prussia	since	1867),	Hannover	(a	College/Polytechnic	Institute	granted	the	status	of	a	university	by	the	end	of	the	
19th	century),	the	Königlich	Technische	Hochschule	Charlottenburg	(founded	in	1879	in	Berlin	after	the	merger	of	the	Bauakademie	
and	the	Königliche	Gewerbeakademie)	and,	of	course,	Berlin	itself.	In	the	other	25	constituent	territories:	Mainz	(by	the	19th	century	
a	Seminary	and	since	1877	a	College	in	Hesse);	Rostock	(in	Grand	Duchy	of	Mecklenburg-Schwerin);	Giessen	(in	Hesse),	Freiburg	and	
Heidelberg	in	Baden;	Tübingen,	Hohenheim	(founded	in	1818)	and	Stuttgart	(founded	in	1829)	in	Württemberg;	Munich	(since	1826,	
previously	 located	 in	 Ingolstadt	and	Landshut),	Erlangen	and	Würzburg	 in	Bavaria;	 Leipzig	 (in	Saxony);	and	 Jena	 (in	Saxe-Weimar-
Eisenach).	
24	Steven	Turner,	for	example,	does	refer	to	the	“Prussian	model”	in	his	works:	“The	Growth	of	Professorial	Research	in	Prussia,	1818	
to	1848-Causes	and	Context”	(Turner,	1971),	“The	Prussian	professoriate	and	the	research	imperative,	1790-1840”	(Turner,	1981),	
and	“Justus	Liebig	versus	Prussian	Chemistry:	Reflections	on	Early	Institute-Building	in	Germany”	(Turner,	1982).	
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From	 what	 was	 explained	 above	 it	 is	 clear	 that	 from	 1815-1820	 there	 was	 some	 union	 of	

Germanic	states	that	despite	the	vicissitudes	–and	 its	division	 in	1866–,	when	reconstituted	 in	

late	1870	it	included	practically	all	the	Germanic	territories	of	modern	Germany.	However,	it	is	

also	clear	that	during	the	last	decade	of	the	18th	century	and	the	first	decade	of	the	19th	century	

the	 state	 of	 Europe	 was	 quite	 unstable	 and	 just	 as	 territories’	 possession	 or	 control	 was	

constantly	 changing,	 the	 possession	 or	 control	 of	 some	Germanic	 universities	 changed	 during	

that	period	and	not	only	no	Germanic	university	was	inaugurated	but	rather	some	of	them	were	

closed,	while	the	status	of	others	was	modified.	

	

While	 that	 might	 be	 reason	 enough	 to	 consider	 the	 Germanic	 universities	 as	 institutions	 in	

decay	over	those	years,	what	the	general	approach	represented	by	authors	like	Nipperdey	and	

Howard	 means	 is	 somewhat	 different.	 According	 to	 that	 consensus,	 the	 stagnation	 of	 the	

Germanic	 universities	 is	 not	 constrain	 to	 the	 last	 years	 of	 the	 18th	 century,	 as	 it	was	 not	 the	

result	of	that	kind	of	external	factors	but	primarily	of	inherent	factors	to	their	constitution	and	

operation:	as	summarized	by	Howard,	“their	problems	[...]	 included	financial	mismanagement,	

curricular	 stagnation,	 professorial	 pedantry,	 a	 decline	 in	 matriculation	 numbers,	 and	 a	

notoriously	 coarse	 and	 unruly	 student	 subculture	 that	 venerated	 drinking	 and	 duelling”	

(Howard,	2006:	47;	cf.	Nipperdey,	1983:	57).	

	

The	problem	with	thesis	B	is	that	it	does	not	match	–or	only	partially	matches–	certain	relevant	

facts,	nor	with	the	historiography	of	late	19th	century	and	early	20th	century,	whereas	it	entirely	

coincides	with	 the	predominant	historiography	during	 the	20th	 century	which	 itself	has	widely	

spread	 “thesis	 A”.	 As	 some	 authors	 have	 pointed	 out	 over	 the	 last	 couple	 of	 decades,	 both	

thesis	seem	to	date	back	to	the	beginning	of	the	20th	century:	vom	Bruch	has	pointed	out	the	

participation	 of	 other	 authors	 rather	 than	 Humboldt	 in	 the	 conception	 of	 Prussian	 model	 of	

modern	 university	 (vom	 Bruch,	 2001);	Walter	 Rüegg	 has	 drawn	 attention	 to	 the	 central	 role	

played	 by	 Schleiermacher	 in	 that	 model’s	 development	 (Rüegg,	 2004);	 Sylvia	 Paletschek	 has	

shown	 that	 during	 the	 19th	 century	 Humboldt	 was	 not	 known	 as	 a	 university	 reformer,	

remaining	virtually	unknown	–or	unpublished–	his	programmatic	 texts	 (Paletschek,	2001);	and	

Mitchell	G.	Ash	has	highlighted	some	difficulties	of	those	thesis	concerning	both	the	association	

of	Humboldt	to	the	model	as	well	as	some	of	its	essential	features	(Ash,	2006).	
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As	a	matter	of	fact,	some	of	the	characteristics	of	the	Prussian	model	of	modern	university	were	

not	implemented	for	the	very	first	time	at	Berlin’s	university	and	neither	they	were	devised	by	

Humboldt;	 some	 of	 them,	 contrary	 to	 thesis	 B,	 were	 initially	 implemented	 during	 the	 18th	

century.	However,	account	should	be	taken	that	those	characteristics	were	not	the	exclusive	or	

even	direct	result	of	reforms	undertaken	in	the	18th	century	by	Austria,	Russia	and	Prussia	but	

the	result	of	a	reform	process	that	involved	other	kind	of	actors,	such	as	“German	ministers	of	

state	 and	 avatars	 of	 the	 market”	 (Clark,	 2006:	 3).	 Undoubtedly	 that	 process	 was	 favored	 by	

some	 of	 those	 reforms,	 but	 above	 all	 what	made	 it	 possible	 were	 other	 factors	 as	 the	 ones	

previously	mentioned,	videlicet	the	development	of	the	Enlightenment,	the	relative	and	regional	

peace	and	the	continuity	of	the	main	European	leaders	from	1763	to	1792.	

	

Under	 the	 reigns	 of	 Friedrich	 II	 (1740-86)	 and	 Friedrich	 Wilhelm	 II	 (1786-97),	 for	 example,	

Prussia	 experienced	 some	 significant	 improvements	 in	 education	mainly	 due	 to	 the	Königlich	

Preußische	Generallandschulreglement	 (the	General	School	Regulations	of	1763	and	1765)	and	

the	Oberschulkollegium	 (a	 Supreme	 School	 Council	 set	 in	 1787),	 which	 in	 a	 way	 shaped	 the	

Kingdom’s	educational	development	over	the	last	decades	of	18th	century	second	half.	Both	that	

new	 ministry	 and	 those	 regulations,	 nevertheless,	 were	 instruments	 capable	 of	 doing	 that	

because	 of	 social,	 political	 and	 economic	 conditions	 as	 the	 ones	 aforementioned,	 but	 also	

because	of	 the	 several	 reforms	 instituted	during	 those	 years,	 including	 the	 Landratsreform	 of	

1766	 (Landratsinstruktion,	 that	 is,	 the	 instruction	 concerning	 the	 District	 Administrators,	 “the	

lowest	 tier	 of	 the	 Prussian	 bureaucracy	 in	 the	 countryside”	 (Melton,	 2002:	 157)),	 the	

administrative	 reforms	 of	 the	 1770s	 (which	 included	 the	 requirement	 to	 pass	 a	 state	

examination	 for	 civil	 service	 posts	 administered	 by	 a	 special	 commission	 (cf.	 Mueller,	 1974:	

191ff.;	Mueller,	1981:	187;	Schulze,	1999:	66))	and,	last	but	not	least,	the	Allgemeines	Landrecht	

für	die	Preußischen	Staaten	(the	General	State	Laws	for	the	Prussian	States	commissioned	since	

1780	and	promulgated	in	1794)	(cf.	Fulbrook,	2004:	94).	

	

Thus,	 on	 the	 one	 hand,	 the	 Prussian	General	 School	 Regulations	 of	 the	 1760s	 urged	 parents,	

legal	 guardians	 and	 rulers	 or	 authorities	 responsible	 for	 the	 education	 of	 the	 youth,	 to	 send	

children	 to	 school	 at	 the	 age	 of	 five	 at	 the	 latest	 and	 to	 keep	 them	 there	 until	 age	 13-14	

(Königlich-Preußisches,	 1763:	 §1).	 However,	 despite	 being	 reinforced	 in	 1765	 by	 provisions	

concerning	the	structure	and	operation	of	the	schools,	as	well	as	the	studies	content	(Königlich-
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Preußisches,	 1765),	 those	 state	 regulations	 implied	 financial	 subsidy	 for	 public	 school	 but	

delegated	the	education	delivery.	That	way,	both	regulations	were	not	entirely	effective	during	

the	 1760s	 and	 1770s,	 partly	 due	 to	 the	 latter,	 in	 part	 because	 of	 the	 non-compulsory	 school	

attendance	until	1794,	the	incipient	instruction	of	bureaucracy	and	examination	of	civil	servants,	

the	initial	lack	of	certain	instruments	gradually	implemented	throughout	the	following	years,	but	

also	 to	 some	extent	due	 to	 the	 introduction	of	 a	new	 curriculum	 for	Gymnasiums	 (secondary	

schools)	 until	 1781,	 which	 “to	 the	 usual	 staple	 studies	 of	 Latin,	 Greek	 and	 religion,	 added	

instruction	in	the	vernacular,	French,	history,	geography,	mathematics	and	drawing”	(Adamson,	

1919:	237).	

	

On	 the	 other	 hand,	 the	 creation	 of	 the	 Supreme	 School	 Council	 in	 1787	 as	 an	 instrument	

responsible	 for	 the	 supervision	 of	 Gymnasiums	 and	 universities	 education	 was	 a	 first	 step	

towards	their	control	by	the	State.	Even	more,	its	supervision	of	the	“appointment	of	all	school	

teachers	 and	 all	 university	 instructors	 and	 professors	 in	 Prussia”	 (Clark,	 2006:	 441),	 further	

enhanced	by	mechanisms	that	guarantee	the	education	of	new	generations	(both	at	secondary	

level	 and	 university	 level),	 represented	 the	 first	 steps	 towards	 the	modern	 university	model.	

Thereby,	 among	 the	 factors	 that	 not	 only	 preceded	but	made	possible	 the	 Prussian	model	 of	

modern	university	can	be	mentioned:	the	university	entrance	examination	set	up	in	1788	(Clark,	

2006:	124ff.);	 the	 increasing	development	of	pedagogical	seminars	 for	the	training	of	teachers	

(Melton,	2002:	49ff.;	Howard,	2006:	98-99),	whose	roots	date	back	to	mid-16th	century	 (Clark,	

2006:	159);	 the	gradual	 transformation	of	philology	seminars	 into	 research	seminars	since	 the	

1760s	 (Kruse,	 2006:	 337-340;	 cf.	 Clark,	 2006:	 172ff.);	 the	 general	 establishment	 of	 a	 written	

examination	 or	 doctoral	 dissertation	 as	 a	 requirement	 for	 graduating	 from	 university	 and	 its	

constitution	as	a	research	work	(cf.	Clark,	2006:	211ff.),	linked	to	a	regulation	of	1749	according	

to	 which	 at	 least	 2	 disputation-dissertations	 were	 required	 to	 be	 a	 lecturer	 and	 some	more	

publications	 to	 be	 an	 extraordinary	 and	 ordinary	 professor	 (Clark,	 2006:	 259-260);	 the	

development	of	other	 instruments	such	as	publications,	 laboratories,	societies	and	Academies,	

the	slow	academic	acceptance	of	“minorities”	(such	as	women	and	Jews	(Clark,	2006:	200))	and	

the	 fact	 that,	 in	 a	 sense,	 “by	 the	 mid-eighteenth	 century,	 a	 degree	 candidate	 had	 been	

effectively	dematerialized,	disembodied,	 and	 spiritualized	as	pure	 intellectual	 capacity”	 (Clark,	

2006:	237).	A	model,	it	must	be	said,	in	which	the	philosophical	system	of	Christian	Wolff	(who,	

recommended	 to	 the	ministry	 by	 Leibniz,	 went	 to	 Halle	 to	 teach	mathematics	 from	 1706	 to	
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1723,	when	he	was	ousted	(cf.	Clark,	2006:	269-272;	Howard,	2006:	95-96))	played	a	crucial	role	

after	its	“royal	legitimation”	in	1740	(Howard,	2006:	98),	when	he	was	restored	by	Friedrich	II:	it	

indicated	the	beginning	of	the	end	of	scholastic	philosophy,	whose	place	was	to	be	taken	by	a	

modern	philosophy	that	not	only	denied	philosophy’s	dependence	upon	theology,	but	above	all	

was	based	on	reason	as	all	–rigorous–	scientific	knowledge	(Paulsen,	1906:	45;	cf.	Clark,	2006:	

283-286;	Howard,	2006:	97-98).	

	

Simultaneously,	 Austria	 and	 Russia	 also	 experienced	 significant	 improvements	 in	 education.	

Under	the	reign	of	Maria	Theresia	(1740-80)	–and	Joseph	II	(1764-90)–,	the	former,	as	noted	by	

Taylor,	translated	the	legal	unit	of	the	Habsburg	lands	achieved	by	Karl	VI	into	practice	(Taylor,	

1948:	 16),	 for	 which	 the	 Böhmisch-Osterreichische	 Hofkanzley	 (Bohemian-Austrian	 Court	

Chancellery)	and	the	Staatsrat	(State	Council)	were	set	in	1760	(Levy,	1988:	149).	That	way,	the	

educational	 reforms	 introduced	 during	 the	 previous	 years,	 from	 the	 secularization	 and	

expansion	of	the	university	of	Vienna	in	1749	(Gnant,	2015:	87),	to	the	establishment	of	some	

institutions	“to	prepare	officials	 for	 the	 future	state	bureaucracy”	 in	 the	 late	1740s	and	1750s	

(Beller,	2006:	91),	were	followed	by	new	ones	that	were	mainly	the	result	of	recommendations	

issued	 by	 the	 Studien	 und	 Bücher-Zensur	 Hofkommission	 (Commission	 for	 study	 and	 books-

censorship)	also	established	 in	1760:	 in	1770-71	 it	was	proposed	to	 replace	 Jesuit	 teachers	by	

“state-funded	lay	teachers”	(Armour,	2012:	47;	cf.	Melton,	2002:	207),	which	was	done		in	1773	

–with	 “the	 active	 co-operation	 of	 the	 clergy	 and	 some	 orders”	 (Holborn,	 1982:	 224)–	 after	

pope’s	suppression	of	the	Society	of	Jesus;	a	year	after	the	state	assumed	control	of	schools,	the	

Allgemeine	 Schulordnung	 (General	 School	 Ordinance)	 was	 issued,	 making	 school	 attendance	

compulsory	for	all	children	between	6	and	12	years	old	(Melton,	2002:	47)	and	transforming	the	

curriculum	of	schools	and	Gymnasia,	which	“began	to	emphasize	such	subjects	as	mathematics,	

history,	geography,	and	German”	(Holborn,	1982:	224);	three	types	of	schools	were	established	

including	normal	school	as	state	certification	body	of	tutors	and	school	teachers	(Melton,	2002:	

213)	 whose	 examination	 was	 “probably	 modeled	 [...]	 on	 the	 French	 concours”	 (Clark,	 2006:	

245);	a	General	School	Ordinance	(Ratio	educationis)	for	the	Kingdom	of	Hungary	was	created	in	

1777	 (Melton,	 2002:	 226);	 “orthodox	Aristotelian-Thomistic	 philosophy	 [...]	was	 replaced	with	

Wolff’s	and	Leibniz’s	‘popular’	philosophy,	which	was	to	dominate	universities	in	the	Habsburg	

Empire	 for	 some	 decades”	 (Wilfing,	 2015:	 27);	 publications	 and	 dissertations	 emerged	 in	

different	 languages	(Evans,	2006:	136);	universities	were	open,	reopened	or	transformed;	and,	
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finally,	in	1784	the	German	was	decreed	as	“the	language	of	state	and	administration”	(with	the	

exception	 of	 Belgian,	 Italian	 and	Galician	 officials)	 but	 also	 the	 language	 of	 instruction	 “in	 all	

educational	institutions	above	elementary	level”	instead	of	Latin	(Armour,	2012:	53).25	

	

Meanwhile	in	Russia,	under	the	reign	of	Empress	Elizabeth	(1741-62)	the	University	of	Moscow	

was	established	in	1755	and	a	decree	was	issued	in	1758	“insisting	that	potential	tutors	should	

first	be	examined	by	the	Academy	of	Sciences	in	St.	Petersburg	and	the	University	of	Moscow	to	

pronounce	on	their	fitness	to	teach”	(De	Madariaga,	1979:	373).	In	a	sense,	therefore,	Elizabeth	

continued	the	course	started	by	her	father	[Peter	III]”	(Fedotova	&	Chigisheva,	2010:	83)	and	it	

was	 only	 until	 the	 reign	 of	 Catherine	 II	 (1762-96)	 when	 more	 significant	 reforms	 were	

implemented:	 in	1763	 she	appointed	 I.	 I.	 Betskoy	as	her	main	adviser	on	educational	matters	

and	then	formed	a	Commission	to	study	the	previous	Russian	reforms,	which	“submitted	its	own	

recommendations	 for	 the	 establishment	 of	 a	 general	 system	 of	 education	 for	 all	 Russian	

orthodox	 subjects	 from	 the	 age	 five-six	 to	 eighteen”	 (De	 Madariaga,	 1979:	 373-74);	 in	 1767	

“Russian	 began	 to	 be	 used	 in	 the	 university”	 (Riasanovsky,	 2000:	 352);	 in	 1768	 a	 Sub-

Commission	began	to	work	concerning	primary,	secondary	and	higher	education	(De	Madariaga,	

1979:	375-76);	in	1775	was	decreed	the	Statute	on	Local	Government	and	with	it	“the	obligation	

to	 establish	 schools	 at	 [provincial]	 level	 was	 laid	 on	 the	 Boards	 of	 Social	 Welfare”	 (De	

Madariaga,	1979:	380);	a	new	Commission	“was	set	up	[...]	in	1782	to	study	the	various	models	

of	 educational	 systems”,	 the	 Austrian	 three-tier	 model	 being	 recommended	 by	 Aepinus	 (De	

Madariaga,	1979:	383);	the	same	year,	a	Commission	of	National	Schools	was	set	up	to	organize	

“a	national	 school	network,	 [train]	 the	 teachers	and	 	 [provide]	 the	 textbooks”	 (De	Madariaga,	

1979:	 383-84);	 in	 1783	 a	 school	 for	 training	 teachers	was	 opened	 and	during	 the	 subsequent	

years	foreign	textbooks	were	translated,	“the	Commission	extended	its	control	over	all	existing	

private	 schools”	 and	 private	 and	 boarding	 schools’	 teachers	 were	 examined	 (De	 Madariaga,	

1979:	384);	measures	were	taken	“to	provide	Russia	with	a	scientific	and	research	base	outside	

as	well	as	 inside	 the	Academy”,	 such	as	 the	 issue	of	an	edict	 in	1783	 that	granted	 the	private	

right	to	print	(until	1796,	 in	the	light	of	French	Revolution	(De	Madariaga,	1998:	270))	and	the	

																																																													
25	Nonetheless,	the	Germanic	model	of	Göttingen	was	rejected	both	in	1773	and	1785:	“A	university	commission	rejected	a	proposal	
of	13	February	1773	to	send	Austrian	students	to	study	at	Göttingen	and	return	as	future	lecturers	and	professors.	The	commission	
rejected,	 in	 fact,	 the	 Göttingen	 academic	model.	 Later,	 in	 1785,	 an	 important	 Austrian,	 namely	 Swieten,	 received	 a	work	 called	
Vorschlag	 eines	 Unbekannten	 über	 Verbesserung	 des	 Universitäts-Wesen	 from	 the	 emperor,	 who	 asked	 for	 Swieten’s	 view.	
Concerning	 the	 suggestion	 again	 of	 imitating	 Göttingen,	 the	 minister	 responded	 that	 that	 university	 did	 not	 work	 for	 ‘national	
education’”	(Clark,	2006:	378).	
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establishment	 in	 1765	 of	 the	 Free	 Economic	 Society	 (Hosking,	 2001:	 117-18);	 and,	 finally,	 in	

1786	 “the	 Russian	 Statute	 of	 National	 Education	 was	 promulgated”,	 which	 regulated	 the	

subjects	 to	 be	 taught	 (including	 geometry,	 mechanics	 and	 physics	 for	 high	 school)	 (De	

Madariaga,	1979:	385).26	

	

The	case	of	Russia	 in	turn	accounts	for	the	emergent	conception	of	education	as	a	system	(De	

Madariaga,	1979:	382,	fn.	47)	and	highlights	the	educational	systems	considered	at	the	time	as	

role	 models	 in	 Europe,	 namely	 the	 Prussian	 and	 Austrian.	 It	 is	 true	 that	 while	 the	 Sub-

Commission	of	1768	 studied	 the	 system	of	Prussia	 and	 the	models	of	 English	universities	 and	

Irish	schools	(De	Madariaga,	1979:	376),	the	Russian	Statute	“may	have	also	been	influenced	by	

the	Polish	Commission	of	National	Education,	set	up	in	1773”	(De	Madariaga,	1979:	382,	fn.	48).	

But,	in	the	end,	it	was	the	Austrian	system	the	one	that	the	Commission	of	1782	used	as	a	model	

and	it	was	Joseph	II	to	whom	Catherine	II	requested	an	adviser	who,	as	soon	as	he	arrived,	acted	

as	 a	member	 of	 the	 newly	 established	 Commission	 of	National	 Schools	 (De	Madariaga,	 1979:	

383).	

	

Furthermore,	 that	 the	 Prussian	 and	 Austrian	 educational	 systems	 were	 the	 role	 models	 in	

Europe	by	the	second	half	of	the	18th	century	and	not	others,	such	as	the	French	or	British,	can	

be	 considered	 conclusively	 proved	 by	 Diderot’s	 own	 testimony	 in	 his	 Essai	 sur	 les	 études	 en	

Russie,	which	he	sent	to	Catherine	 II	 in	1773	and	which	seems	to	have	been	succeeded	by	his	

Plan	d’une	université	pour	le	gouvernement	de	Russie	ou	d’une	éducation	publique	dans	toutes	

les	sciences,	sent	to	her	three	years	later	(Diderot,	2013:	413;	cf.	De	Madariaga,	1979:	380,	fn.	

40).	There,	Diderot	prepends	the	Germanic	reflection	on	education	and	the	status	of	this	latter	

to	 those	 in	 France,	 prepending	 also	 what	 was	 done	 about	 it	 by	 Protestants	 rather	 than	 by	

Catholics	(Diderot,	2013:	415-428;	cf.	De	Madariaga,	1979:	380).	After	all,	significant	reforms	in	

educational	matters	were	just	about	to	be	carried	out	in	France	in	the	late	18th	century,	as	well	

as	 in	 Prussia	 the	 educational	 reforms	 were	 about	 to	 begin	 to	 consolidate,	 coupled	 with	 the	

consolidation	of	Kingdom	of	Prussia	itself	throughout	the	19th	century.	

	

To	conclude	this	section,	however,	 it	 is	worth	saying	something	about	British	education	during	

the	 second	 half	 of	 the	 18th	 century,	 not	 because	 of	 its	 consideration	 by	 the	 Russian	 Sub-

																																																													
26	For	an	analysis	of	the	limited	effectiveness	of	Catherine’s	II	reforms,	cf.	(De	Madariaga,	1979:	393-395).	
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Commission	of	1768,	but	due	 to	 the	Germanic	 territories	 linked	 to	 it.	 Indeed,	while	no	British	

educational	 system	was	developed	during	 that	period	and	most	of	 elementary	education	was	

run	 by	 religious	 institutions	 –and	 therefore	 emphasis	 was	made	 on	 religious	 instruction–	 (cf.	

Jewell,	1998:	96-97),	the	situation	of	British	universities	and	Societies	was	quite	different.	Thus,	

in	 addition	 to	 Great	 Britain’s	 universities	 and	 Societies	 (Oxford,	 Cambridge,	 St.	 Andrews,	

Glasgow,	Aberdeen,	King’s	College,	 Edinburgh,	Marischal	College,	 the	Royal	 Society	of	 London	

and	 the	 Royal	 Society	 of	 Edinburgh),27	the	 Irish	 university	 and	 Society	 (Dublin	 and	 Dublin	

Society)	and	especially	the	university	of	Hanover,	namely	Göttingen	(founded	in	1734	as	Georg-

August-Universität	Göttingen),	must	be	considered,	since	George	III,	King	of	Great	Britain	(1760-

1820),	 was	 as	 well	 King	 of	 Ireland	 and	 Duke	 and	 prince-elector	 of	 Brunswick-Lüneburg	

(Hanover).	

	

Beyond	 the	 structural	 differences	 between	 British	 –and	 Scottish	 and	 Irish–	 and	 Germanic	

universities,	 being	 the	 first	 collegiate	 and	 the	 second	 professorial	 ones	 (Clark,	 2006:	 16),	 the	

difference	 between	 the	 university	 of	 Göttingen	 and	 all	 the	 other	 universities	 in	 European	

territories	 controlled	 by	 the	 King	 of	 Great	 Britain	 was	 primarily	 qualitative.	 There	 were	

undoubtedly	 certain	 qualitative	 distinctions	 among	 European	 non-continental	 British	

universities	during	the	second	half	of	 the	18th	century:	 for	example,	 in	Cambridge	priority	was	

given	 to	 mathematics	 on	 “traditional	 topics	 of	 philosophy,	 classics,	 and	 religion”,	 a	 written	

examination	 (in	 English	 and	 no	 longer	 in	 Latin	 by	 1772	 and	 later	 extended	 in	 duration	 and	

number	of	moderators)	“and	the	fetish	of	marking	and	ranking”	emerged	(Clark,	2006:	115),	in	

spite	 of	which	 Scottish	 universities	 enjoyed	 a	 better	 reputation	 (Hammerstein,	 1996:	 140;	 cf.	

Kerr,	1910).	

	

Nonetheless,	taken	those	differences	for	granted,	the	fact	is	that	Göttingen	a)	belonged	to	the	

Electorate	of	Brunswick-Lüneburg	which	 in	 turn	belonged	to	 the	Holy	Roman	Empire	and	b)	 it	

was	ruled	by	George	III,	whose	position	about	“that	horrid	Electorate	which	has	always	lived	on	

the	 very	 vitals	 of	 this	 poor	 country”	 was	 clear	 even	 before	 his	 famous	 accession	 speech	 to	

Parliament	 in	 which	 he	 declared:	 “Born	 and	 educated	 in	 this	 country,	 I	 glory	 in	 the	 name	 of	

Britain”	(Thomas,	2002:	33).	Unlike	his	predecessor	(George	II,	founder	of	the	university	and	the	

																																																													
27	The	Kingdom	of	Scotland	united	the	Kingdom	of	England	in	1707.	The	Scottish	University	of	Strathclyde	is	not	listed	above	since	it	
was	founded	in	1796.	
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Königliche	Gesellschaft	der	Wissenschaften	(Göttingen	Academy	of	Sciences)),	therefore,	George	

III	 had	 little	 or	 nothing	 to	 do	 with	 the	 development	 of	 that	 university	 which,	 according	 to	

Paulsen,	 was	 one	 of	 the	 two	 that	 “opened	 the	 doors	 of	 the	 German	 university	 to	 modern	

philosophy	 and	 science,	 as	 well	 as	 to	 modern	 enlightenment	 and	 culture”,	 “ultimately	

[surpassing	Halle]”	 (Paulsen,	1906:	44	&	47).	Put	another	way,	during	 that	period	and	being	–

exclusively–	 in	 charge	 of	 the	 Privy	 Council	 of	 the	 Electorate,	 Göttingen	 not	 only	 stood	 out	

amongst	British	universities	 but	 also	 among	 the	 rest	 of	 the	Germanic	 universities,	 being	 even	

the	 model	 for	 many	 of	 the	 Catholic	 non-Austrian	 universities	 that	 “after	 the	 temporary	

suppression	 of	 the	 Jesuits	 in	 1773	 [...]	 began,	 as	 they	 put	 it,	 to	 enlighten	 themselves”	 (Clark,	

2006:	63).	

	

Precisely,	it	was	under	the	guidance	of	Gerlach	Adolph	Baron	of	Münchhausen,	who	had	worked	

on	the	project	of	Göttingen’s	foundation	since	1731	and	was	Minister	of	the	Privy	Council	from	

1727	 to	1770	 (first	as	 responsible	of	educational	and	 religious	matters,	 then	as	 responsible	of	

finance	and,	from	1765,	as	head	Minister	of	 it)	(Brosius,	1997:	523-24;	cf.	Howard,	2006:	105),	

that	Georg-August-Universität	Göttingen	 became	 the	model	 of	modern	Germanic	university;28	

modernity	that,	as	pointed	out	by	Howard,	“is	attributable	to	the	circumstances	of	its	founding,	

its	statutes,	and	the	progressive	scholarly	views	of	its	professors,	many	of	whom	had	previously	

studied	at	Halle”	(Howard,	2006:	104).	Münchhausen,	in	fact,	regarded	Halle	as	a	model	but	at	

the	same	time	sought	to	avoid	this	latter’s	pietistic	orientation	(Brosius,	1997:	523-24),	so	that,	

on	 the	one	hand,	 relevant	administrative	and	material	 improvements	were	made	and,	on	 the	

other	hand,	important	academic	innovations	were	carried	out.	

	

Concerning	the	first	kind	of	those	improvements,	scientific	research	was	considered	only	subject	

to	 censorship	 by	 the	 Privy	 Council	 –and	 not	 the	 church–	 (ibid.;	 Howard,	 2006:	 109-110);	 the	

library,	opened	in	1737	and	“the	most	modern	among	the	modern”	with	three	main	catalogues,	

was	constantly	enhanced	(as	well	as	equipped),	while	open	to	the	students	(Clark,	2006:	247	&	

316ff.);	in	1751	the	first	university	Observatory	was	founded	(cf.	Forbes,	1974);	since	1756,	the	

university	 lecture	 catalogue	 was	 structured	 “by	 subjects	 and	 disciplines”,	 apparently	 “to	

																																																													
28	Johann	Lorenz	von	Mosheim,	adviser	of	Münchhausen,	played	a	key	role	in	the	development	of	the	project:	“Two	years	before	the	
inauguration	of	the	university	and	the	formal	codification	of	the	statutes,	Mosheim	produced	for	Münchhausen	several	memoranda	
on	the	soon-to-be-established	university.	[...]	These	proposals	from	Mosheim	and	the	lively	correspondence	between	the	two	men	
make	up	an	unofficial	intellectual	charter	of	the	new	university.	While	many	of	Mosheim’s	points	did	not	make	their	way,	verbatim,	
into	the	final	statutes,	their	spirit	thoroughly	permeated	the	new	institution”	(Howard,	2006:	107-108).	
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facilitate	 ministerial	 paperwork”	 (Clark,	 2006:	 54-55);	 collaboration	 with	 the	 Academy	 of	

Sciences	was	established	(cf.	Howard,	2006:	112);	free	meals	and	scholarships	were	offered	by	

the	Göttingen	seminar	(Clark,	2006:	167);	the	university	acquired	the	ethnographic	collections	of	

James	Cook	 (gathered	on	his	 journeys	 to	 the	Southern	Pacific)	 and	Georg	Forster	 (who,	along	

with	 his	 father,	 took	 part	 on	 Cook’s	 second	 circumnavigation	 of	 the	world),	 and	 received	 the	

donation	 of	 Baron	 Georg	 Thomas	 von	 Asch	 “unique	 ethnographica	 from	 Siberia	 and	 the	

Northern	Pacific”	(Böhme);	academic	acts	began	to	be	organized	in	dossiers	(Clark,	2006:	248);	

nomination	 and	 appointment	 of	 the	 Faculty	 members	 became	 competence	 of	 the	 state,	

becoming	the	professor	“privy	councilor	to	the	king”	(Howard,	2006:	107);	new	professorships	

were	created,	such	as	Lichtenberg’s	professorship	on	experimental	physics;	and,	finally,	around	

1763	the	Council	gave	autonomy	to	the	director	of	the	seminar	(by	then	Heyne)	“to	modify	the	

seminar’s	 structure	 to	 his	 own	 liking	 [and]	 granted	 him	 the	 further	 power	 to	 select	 the	

candidates	for	admission”	(Clark,	2006:	166).29	

	

As	for	the	second	class	of	innovations,	renowned	professors	were	systematically	hired	since,	as	

Münchhausen	wrote	 in	a	memorandum	prior	 to	 the	university	 foundation,	“it	 [was]	necessary	

that	if	the	new	academy	should	excel,	its	chairs	must	be	entrusted	only	to	the	most	famous	and	

qualified	men”	(Howard,	2006:	107);	professors	wrote	textbooks	for	their	lectures	(Clark,	2006,	

85);	 the	 seminar	 for	 classical	 philology	 founded	 in	 1738	 gradually	 became	 the	 first	 Germanic	

institutional	research	seminar	(cf.	Clark,	2006:	142,	159	&	172);30	Göttingen’s	review	journal,	the	

Göttingische	 Zeitung	 (later	Göttinger	 gelehrten	 Anzeigen)	 first	 published	 in	 1739,	 became	 an	

essential	instrument	for	the	growth	and	improvement	of	the	university	library	and	for	the	work	

at	the	university	itself,	first	under	the	direction	of	Haller	since	1747	and,	from	1770,	with	Heyne	

as	editor	(cf.	Clark,	2006:	323-26);	and,	finally,	the	theology	faculty	importance	and	power	was	

attenuated	 in	 behalf	 of	 the	 law	 and	 philosophy	 faculties	 (Howard,	 2006:	 106-110).	 As	

summarized	by	Paulsen,	throughout	the	second	half	of	the	18th	century	Göttingen	erected	itself	

as	the	best	and	most	modern	Germanic	university:		

	

																																																													
29	Despite	the	1736	university	statutes	already	contemplated	the	“proclamation	of	the	doctors	of	philosophy”,	the	degree	by	then	
was	still	called	the	“master’s	degree,	[...]	the	highest	degree	in	philosophy”,	being	only	until	many	decades	later	when	the	new	grade	
was	consolidated	(Clark,	2006:	194ff.).	
30	In	 fact,	 “in	1776/77	 the	director,	Heyne,	 tried	prevent	 the	young	 student	F.	A.	Wolf—later	 founding	director	of	 the	 seminar	 in	
Halle—from	registering	in	the	philosophy	faculty	as	philologiae	studiosus.	Heyne	entreated	him	instead,	in	his	own	best	interests,	to	
matriculate	in	the	theology	faculty.	Wolf,	however,	thought	otherwise”	(Clark,	2006:	169).	
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[...]	here	the	German	counts	and	barons	of	 the	Holy	Roman	Empire	studied	politics	and	 law	under	Schlözer	

and	 Pütter.	 Here	Mosheim	 taught	 church	 history	 and	 the	 elegancies	 of	 pulpit	 diction,	 and	 J.	 D.	Michaelis	

oriental	 languages.	 Here	 labored	 Albrecht	 von	Haller	 and	 his	 successor	 Blumenbach,	 in	 their	 day	 the	 chief	

representatives	of	the	science	of	man,	or	physical	anthropology;	as	well	as	the	celebrated	astronomer	Tobias	

Mayer,	the	brilliant	physicist	Lichtenberg,	and	the	able	mathematician	Kästner.	Finally,	the	newly	awakened	

study	of	antiquity	 found	 its	 first	nursery	at	 this	university;	 the	philologists,	 J.	M.	Gesner	and	J.	G.	Heyne,	 to	

whom	is	due	the	reintroduction	of	Greek	into	the	university,	found	a	new	point	of	view	for	the	treatment	of	

the	classical	authors:	the	study	of	the	classics	was	no	longer	to	be	a	useless	erudition,	nor	yet	an	imitation	of	

Greek	and	Latin	models,	but	a	living,	cultural	intercourse	with	the	classical	authors	as	the	highest	patterns	of	

art	and	taste.	This	was	the	viewpoint	of	the	new	humanism	through	which	the	study	of	antiquity	once	more	

acquired	a	reasonable	and	human	purpose:	the	cultivation	of	a	sense	and	taste	for	the	beautiful	and	sublime	

in	literature.	The	new	humanism	did	not	stand	in	opposition	to,	but	came	into	living	reciprocal	relation	with	

contemporaneous	German	 poetry,	which	was	 also	 centered	 at	 Göttingen.	 It	 is	 enough	 to	mention	Haller’s	

poems,	Gesner’s	German	Society,	and	the	Hainbund.	(Paulsen,	1906:	47)	
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B.	 The	 focal	 points	 in	 the	 configuration	 of	 the	 Germanic	

mathematics	 during	 the	 second	 half	 of	 the	 18th	 century:	

Göttingen	and	Halle	
	

	

Considering	that	Göttingen	and	Halle	were	the	leading	Germanic	universities	during	the	second	

half	of	the	18th	century,	as	well	as	Münchhausen’s	appointment	criterion,	a	legitimate	question	

to	ask	is	whether	mathematics	teachers	of	both	universities	were	also	–or	at	least	were	among–	

the	 leading	 math	 teachers	 during	 that	 period.	 Which,	 as	 a	 consequence,	 entails	 inquiring	 to	

what	 extent	 were	 influential	 three	 professors	 among	 the	 Germanic	 mathematicians	 during	

those	 decades,	 namely:	 Johann	 Andreas	 von	 Segner	 (1704-77),	 the	 first	 math	 professor	 of	

Göttingen’s	university	who,	after	the	decease	of	Wolff	in	1754	and	with	the	assistance	of	Euler,	

became	 Wolff’s	 successor	 at	 the	 university	 of	 Halle	 in	 1755	 (cf.	 Kleinert,	 2002);	 Abraham	

Gotthelf	 Kästner	 (1719-1800),	 who	 arrived	 to	 Göttingen	 from	 Leipzig,	 where	 he	 had	 been	

teaching	 first	 as	 pivatdozent	 and	 since	 1746	 as	 extraordinary	 professor	 of	 mathematics	 (cf.	

Cantor,	1882);	and,	finally,	Wenceslaus	Johann	Gustav	Karsten	(1732-87),	who	in	1778	occupied	

the	 position	 left	 vacant	 on	 Segner’s	 death	 after	 teaching	 at	 the	 universities	 of	 Rostock	 and	

Bützow	(cf.	Günther,	1882).	

	

In	 order	 to	 elucidate	 the	 importance	 and	 influence	 of	 those	 three	mathematicians,	 however,	

something	 will	 be	 said	 about	 the	 authors	 who	 one	 might	 assume	 that	 exerted	 a	 greater	

influence	on	 them	 in	 their	 student	days,	 that	 is,	 their	own	math	 teachers.	What	 role	did	 their	

teachers	play	in	the	development	of	their	conception	of	mathematics,	which	in	turn	might	have	

shaped	 to	 a	 greater	 or	 lesser	 extent	 the	 next	 generations’	 conception?	 Clearly,	 there	 are	

differences	between	the	university	backgrounds	of	each	of	them	since	Segner	studied	at	Jena	in	

the	early	1730s	(by	then	part	of	the	HRE’s	Duchy	of	Saxe-Eisenach),	Kästner	at	Leipzig	in	the	late	

1730s	(by	then	part	of	the	HRE’s	Electorate	of	Saxony)	and	Karsten	at	Rostock	(by	then	part	of	

the	HRE’s	Duchy	of	Mecklenburg-Schwerin,	predecessor	of	the	homonymous	Grand	Duchy)	and	

Jena	 in	 the	early	1750s.	That	 is	 to	say,	 they	studied	 in	different	years,	at	different	universities	

located	in	different	States	and	under	the	supervision	of	different	teachers.	But,	as	will	be	shown,	

there	 are	 also	 some	 significant	 similarities	 concerning	 the	 concepts	 and	 procedures	 they	
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employed,	as	well	as	the	referential	authors	they	quoted	beyond	Wolff;	authors	who,	it	must	be	

said,	in	fact	differed	and	even	opposed	Wolff’s	conception	of	mathematics	in	certain	aspects	as	

Segner,	Kästner	and	Karsten	themselves	would	eventually	do.	

	

	

B.1.	 Highlights	 on	 the	 mathematical	 educational	 background	 of	 the	 math	

teachers	at	Göttingen	and	Halle	

	

	

To	 begin	 with,	 Segner’s	 advisor	 was	 Georg	 Erhard	 Hamberger	 (1697-1755),	 a	 medical	 doctor	

who	at	the	time	taught	physics	and	mathematics	at	Jena	and	who	was	linked	to	Wolff	not	only	

as	the	son	of	this	latter’s	teacher,	Georg	Albrecht	Hamberger	(1662-1716),	but	also	as	a	follower	

of	some	of	his	ideas.	Erhard	Hamberger,	for	example,	shared	Wolff’s	belief	in	the	usefulness	of	

mathematics’	 method	 to	 expand	 the	 human	 knowledge	 in	 various	 areas,	 including	 the	

phenomena	of	life;	an	iatrophysical	–mathematical–	conception31	that	can	be	found	in	his	work	

on	respiratory	mechanism	explained	from	the	mere	contraction	of	the	rib	muscles	(Hamberger,	

1749;	 cf.	 Hamberger,	 1726;	 Uschmann,	 1966:	 579-580).	 Nonetheless,	 his	 Elements	 of	 Physics	

(Elementa	 Physices),	 which	 along	 with	 Wolff’s	 All	 kinds	 of	 useful	 experiments	 (Allerhand	

Nützliche	Versuche)	was	one	of	the	most	popular	physics	texts	(where	mechanics’	 foundations	

followed	 Leibnizian	 form)	 in	 the	 Germanic	 countries	 during	 the	 first	 half	 of	 the	 18th	 century,	

provides	 some	 significant	 differences	 from	Wolff,	 such	 as	 the	 importance	 given	 to	 chemistry	

among	 the	 parts	 of	 Physics	 and	 the	 emission	 conception	 of	 the	 nature	 of	 light	 (Hamberger,	

1735).32	

	

On	the	other	hand,	Kästner’s	advisor	was	Christian	August	Hausen	(1693-1743),	a	mathematics	

professor	 mainly	 interested	 in	 the	 connections	 between	 mathematics	 and	 natural	 sciences	

whose	 textbook	Mathematics	 Elements	 (Elementa	Matheseos)	 was	 important	 throughout	 the	

second	half	of	the	18th	century.	There,	as	Schubring	has	pointed	out	(cf.	Schubring,	2005:	97-99),	
																																																													
31	Iatrophysics	and	iatrochemistry	were	two	“old	medical	systems	based	on	mechanical	principles	(iatromathematics	or	iatrophysics)	
or	 chemistry	 (iatrochemistry”	 (Bynum,	 1994:	 93),	 “systems	 of	 medical	 explanation	 and	 practice	 that	 arose	 in	 the	 seventeenth	
century	and	that	contested	Galenic	physiology”	(Lindemann,	1999:	79).	
32	In	 contrast	 to	Wolff,	who	defended	 a	 –corpuscular–	medium	 conception	of	 light	 (that	 light	was	 an	 action	propagated	 through	
matter),	 Hamberger	 defended	 a	 –corpuscular–	 emission	 conception	 (light	 was	 propagated	matter)	 (cf.	 Hakfoort,	 1995:	 122-126;	
Dijksterhuis,	2005:	230).	
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Hausen	 introduced	 several	 innovative	elements	 regarding	Wolff’s	proposal:	 a)	while	he	began	

his	 Arithmetic	 Elements	 with	 the	 definition	 of	 quantity	 as	 what	 is	 capable	 of	 increase	 and	

decrease,	just	as	Wolff	defined	it	in	his	Mathematisches	Lexicon	according	to	the	usual	notion	at	

that	time	(Wolff,	1716:	1143),	his	definition	of	number	was	not	the	one	of	the	latter	(a	collection	

of	units	or	aggregate	of	many	things	of	one	kind	 (Wolff,	1710:	34;	1716:	944;	cf.	Euclid,	1908:	

277,	VII.2))	but	that	of	“a	certain	quantity	!,	expressed	by	the	ratio	which	it	has	to	another	!”	
(considering	!	the	unity	(cf.	Newton,	1707:	2;	Wolff,	1713:	21-22;	1716:	945;	1742:	24)),	on	the	

basis	of	his	previous	definitions	of	ratio	as	“the	quantity	of	the	relation	of	!	with	respect	to	!”	
and	of	proportion	as	“the	identity	of	the	ratio”	(Hausen,	1734:	1-2);	b)	his	definitions	of	addition	

(the	variation	of	numbers	by	which	they	increase	assuming	other	numbers),	multiplication	(the	

variation	by	which	a	number	!	turns	into	!,	which	is	in	the	same	ratio	to	!	as	the	other	number	

!	is	 to	 the	 unity	!),	 subtraction	 (the	 variation	 in	 which	 a	 given	!	is	 taken	 to	 another	!)	 and	
division	(by	which	a	given	!	is	decreased	to	another	!,	given	any	!	that	is	relative	to	the	unit	as	
!	is	 relative	 to	!)	 (Hausen,	1734:	3-4),	not	only	allowed	him	to	consider	a	negative	difference	

for	! − ! 	(given	! > !)	 that	 expresses	 a	 negative	 quantity	 (quantitas	 negativa)	 under	 the	
condition	of	 the	determination	of	 its	oppositeness	 to	another	quantity	of	 the	 same	genus	but	

regarded	 in	 this	 case	 as	 positive	 (Hausen,	 1734:	 13-16),	 but	 also	 allowed	 him	 to	 perform	

multiplications	and	divisions	with	negative	numbers	(Hausen,	1734:	19-22);	and	c)	he	introduced	

in	his	Geometry	Elements	 the	notion	of	 continuity	 (a	quantity	whose	parts	are	neighboring	or	

connected,	having	them	the	same	boundaries)	as	a	fundamental	one,	just	after	the	definition	of	

boundary	but	before	the	one	of	extension	(the	continuity	of	space	and	bodies	filling	part	of	the	

space),	to	which	the	idea	of	homogeneity	of	the	parts	underlies	(Hausen,	1734:	87).	

	

Finally,	among	Karsten’s	 teachers	were	Franz	Ulrich	Theodor	Aepinus	 (1724-1802),	at	Rostock,	

and	Joachim	Georg	Darjes	(1714-91),	at	Jena.	Aepinus	was	the	same	mathematician	who	years	

later	would	recommend	to	Catherine	II	the	adoption	of	the	Austrian	educational	model.	He	was	

also	the	author	of	the	1759	work	Tentamen	theoriae	electricitatis	et	magnetismi	(Attempt	at	a	

theory	 of	 electricity	 and	magnetism),	 in	 which,	 investigating	 the	 polarization	 change	 of	 some	

crystals	by	changing	temperature,	“he	conceived	the	idea	that	magnetization	resulted	from	the	

redistribution	within	a	piece	of	iron	of	a	subtle	magnetic	fluid,	different	from	but	analogous	to	

Franklin’s	 electric	 fluid,	 the	 poles	 of	 a	 magnet	 being	 regions	 of	 ‘plus’	 and	 ‘minus’	 magnetic	

charge”	 (Home,	 2005:	 5-6;	 cf.	 Aepinus,	 1759).	 Even	 though	 this	 work	 postdates	 his	 stay	 at	
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Rostock,	his	mathematical	treatment	of	electricity	and	magnetism	in	terms	of	equations	was,	on	

the	 one	 hand,	 highly	 innovative	 and	 “constituted	 a	 dramatic	 advance	 toward	 a	 fully	

mathematized	physics”	 (Home,	 2005:	 6),	 and,	 on	 the	other	 hand,	 it	was	 a	 combination	of	 his	

previous	interests	in	those	topics	as	well	as	in	algebraic	equations.	

	

Precisely,	while	teaching	at	Rostock,	Aepinus	wrote	4	mathematical	works	that	are	relevant	for	

this	 section’s	 purposes:	 Commentatio	 mathematica	 de	 augmento	 sortis	 per	 anatocismum	

(1747),	 Demonstrationes	 primariarum	 quarundam	 aequationibus	 algebraicis	 competentium	

proprietatum	(1752),	Commentatio	de	notione	quantitatis	negativae	(1754)	and	De	integratione	

et	 separatione	 variabilium	 in	 aequationibus	 differentialibus,	 duas	 variabiles	 continentibus,	

commentatio	(1755).	In	the	preliminary	comment	of	the	first	one,	two	sources	are	quoted	with	

regard	to	the	mathematical	method	of	the	signs	employed	there,	namely	Wolff	(in	particular	the	

chapter	 on	 analysis	 in	 his	Elementa	matheseos	 universae,	 “Elementa	 analyseos	mathematicae	

tam	 finitorum	quam	 infinitorum”)	and,	with	a	 special	mention,	 Leibniz	 (Aepinus,	1747:	4).33	In	

the	 second	one,	however,	 the	authors	mentioned	at	 the	beginning	of	his	work	as	 sources	 for	

those	 demonstrations	 of	 algebraic	 equations	 were	 Palmquist,	 Newton	 and	 Thomas	 Harriot	

(whose	 lack	 of	 demonstrations	 for	 negative	 roots	 of	 equations	 he	 pointed	 out),34	while	 he	

mentioned	Euler	(his	Mechanica)	in	the	Corollaries.	Which	is	not	only	significant	because	of	his	

acquaintance	of	leading	contemporary	authors	on	the	subject,	but	also	due	to	what	he	stated	in	

those	corollaries:	a)	several	paradoxes	arise	from	the	mathematics	of	the	infinite	(e.g.	from	the	

“variable	 quantities”	 and	 the	 “infinitely	 small	 or	 large	 quantities”),	 which	 makes	 them	

objectionable;	 b)	 just	 as	 the	 objects	 of	 geometry	 (point,	 line,	 surface,	 solid)	 are	 real	 beings,	

existing	in	act	(“entia	realia,	actu	existentia”),	negative	quantities	are	true	and	actual	quantities	

(“vera	&	realis”);	c)	the	geometer	does	not	consider	the	extension	body	but	the	space	in	which	

the	bodies	are	coextended,	which	does	not	correspond	with	 the	old	and	 tempo-mathematical	

notion	of	continuity	but	in	any	case	with	the	notion	of	contiguity	(Aepinus,	1752:	14-15).35	In	his	

third	work,	the	one	on	negative	numbers	whose	concept	he	based	on	the	one	of	oppositeness	

																																																													
33	Aepinus’s	tutor	at	Rostock,	L.	F.	Weiss,	“was	one	of	those	mainly	resposible	for	introducing	Wolff’s	doctrines	into	Rostock”,	while	
at	Jena	Aepinus	“spent	most	of	his	time	following	the	lectures	on	mathematics,	physics,	and	the	various	medical	sciences	of	the	well-
known	teacher	G.	E.	Hamberger”	(Home,	1979:	8-9).	
34	At	least	partially,	this	was	due	to	the	fact	that	Thomas	Harriot’s	algebra	book,	his	Artis	Analyticae	Praxis	posthumously	published,	
was	“substantially	rearranged”	by	its	editor,	who	omitted	some	sections	(cf.	Seltman	&	Goulding,	2007).	
35	In	 his	 Physics,	 Aristotle	 distinguished	 between	 a	 “contiguous”	 (echómenon)	 and	 a	 “continuous”	 (synechés)	 thing:	 the	 former	
involved	 contact	 and	 succession,	while	 the	 latter	 implied	 a	 unity	 by	 contact	 (a	 thing	was	 continuous	with	 another	 if	 the	 contact	
between	their	limits	made	them	one	and	the	same)	(cf.	Phys.	227a	8-227a	18).	
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(Aepinus,	 1754:	 11),36	Aepinus	 in	 fact	 criticized	 the	 foundations	 of	 Leibniz’s	 calculus	 whose	

conceptual	difficulties,	he	suggested,	could	be	overcome	by	conciliating	the	analysis	of	infinites	

with	“the	Archimedean	method	of	quadratures	and	the	method	of	exhaustion	built	upon	this	by	

Gregory	of	St.	Vincent”	(Aepinus,	1754:	4).	While,	in	his	fourth	work,	he	criticized	some	methods	

of	the	analysis	infinitorum	(Aepinus,	1755:	VII),	in	both	cases	resorting	to	contemporary	sources	

such	as	Euler,	Clairaut,	Maupertuis	 and	Craig,	 in	 the	 latter	 (cf.	Aepinus,	 1755),	 and	Descartes,	

Wallis,	L’Hospital,	Varignon,	Grandi,	Newton	and	Fontenelle,	in	the	former	(cf.	Aepinus,	1754).	

	

As	to	Darjes,	of	whom	Segner	was	one	of	his	teachers	while	he	studied	at	Jena,	by	the	1750s	his	

initial	enthusiasm	for	Wolff’s	philosophy,	if	had	not	disappeared,	at	least	had	been	attenuated.	

Thus,	his	Wolffian	work	 from	1743-44,	Elements	of	Metaphyscs	 (Elementa	metaphysices),	was	

succeeded	 a	 few	 years	 later	 by	 his	Remarks	 on	 some	of	 the	 teachings	 of	Wolff’s	Metaphysics	

(Anmerkungen	 über	 einige	 Lehrsätze	 der	Wolfischen	Metaphysic,	 1748),	 where,	 among	 other	

things,	he	expressed	himself	directly	even	against	Wolff’s	 restricted	version	–to	 the	body-soul	

relationship–	of	Leibniz’s	principle	of	sufficient	reason	(Darjes,	1748:	6ff.).	

	

Darjes’s	mathematical	works	of	that	period,	nevertheless,	only	show	a	certain	detachment	from	

Wolff’s	 ideas,	 remaining	 close	 to	 some	 of	 his	 concepts	 and	 methods.	 That	 way,	 his	 1742	

Introduction	 to	 the	 art	 of	 discovery	 or	 theoretico-practical	 logic,	 as	 analysis	 and	 dialectics	 are	

proposed	(Introductio	in	artem	inveniendi	seu	logicam	theoretico-practicam,	qua	analytica	atque	

dialectica	proponuntur)37	intended	to	show	the	correct	and	natural	way	of	learning,	i.e.	the	way	

to	truth,	following	the	mathematical	method	of	exposition	that	begins	with	definitions	towards	

demonstrations	which	he	praised	in	Wolff’s	work	(Darjes,	1742:	Praefatio);	a	method,	however,	

which	 along	with	 his	 distinction	 between	 analytical	 logic	 (or	 doctrine	 of	 truth)	 and	 dialectical	

logic	 (or	 doctrine	 of	 probability),	 following	 a	 common	division	 among	 the	Aristotelians	 of	 the	

16th	 and	 17th	 centuries,	 also	 accounts	 for	 his	 scholastic	 background	 present	 in	 his	 Elementa’s	

mathematical	 structure	 (cf.	 Darjes,	 1743	 &	 1744;	 Basso,	 2016:	 162).	 Moreover,	 in	 this	 work	

Darjes	 a)	 adopted	Wolff’s	 designation	 of	 “privative	 thing”	 (rem	 privativam)	 for	 the	 “negative	

thing”	−! 	(rem	 negativam),	 which	 regarding	 “positive	 thing”	+! 	was	 “heterogeneous”	 (res	

																																																													
36 	I	 am	 grateful	 to	 the	 Digitale	 Universitätsbibliothek	 of	 Rostock,	 in	 particular	 to	 Robert	 Stephan,	 for	 having	 prioritized	 the	
digitisation	process	of	Aepinus’s	text,	which	is	now	available	in	its	institutional	repository.	
37	First	published	 in	1737	as	Die	 lehrende	Vernunft-kunst	aus	der	Natur	des	Seele	 in	mathematischer	Lehrart,	 then	expanded	 in	 its	
Latin	version	of	1742	and	finally	abridged	in	his	1755	Via	ad	veritatem.	Commoda	auditoribus	methodo	demonstrata.	
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heterogeneas),	 and	 b)	 considered	 impossible	 the	 combination	 of	 one	 and	 the	 other	 (Ex	

combinatione	 rerum	heterogenearum	oritur	 impossibilitas)	 (Darjes,	 1742:	 15-16),	 just	 as	Wolff	

himself	did	in	his	Elementa	Analyseos,	where	he	considered	ratios	of	heterogeneous	quantities	

were	impossible	(Wolff,	1713:	247-248;	1742:	299-300).	

	

By	 contrast,	 in	 his	 1747	 First	 grounds	 of	 the	whole	mathematics	 (Erste	 Gründe	 der	 gesamten	

Mathematik), 38 	Darjes	 on	 the	 one	 hand	 disassociated	 himself	 from	 Wolff’s	 general	 –and	

traditional–	 conception	 of	 mathematics	 as	 the	 “science	 of	 quantity,	 that	 is,	 all	 those	 things	

which	 can	 be	 magnified	 or	 diminished”	 (Wolff,	 1716:	 863),	 instead	 of	 which	 he	 defined	

mathematics	as	the	“science	of	 finding	the	quantities”	 (Darjes,	1747:	8),39	in	accordance	to	his	

scholastic	background	(cf.	Darjes,	1743-44).	Not	being	a	minor	modification,	Darjes	explained	in	

a	note	 that	determining	 the	number	of	units	 in	 the	quantity	belonged	 to	mathematics	but	 to	

examine	 the	 nature	 of	 the	 quantity,	 its	 being	 (the	 ens,	 he	 would	 say	 in	 his	 Elementa),	

corresponded	to	metaphysics	(Darjes,	1747:	8).40	

	

In	 that	 way,	 on	 the	 other	 hand,	 Darjes’s	 division	 of	mathematics,	 placing	 as	 the	 first	 part	 of	

theoretical	mathematics	 “the	 art	 of	 reckoning”	 (Rechen-Kunst),	 allowed	 him	 to	 consider	 from	

the	very	beginning	the	“negative	quantities”	(negative	Grösse	and	not,	as	in	his	1742	work,	the	

rem	negativam)	and	operations	(addition,	subtraction,	multiplication	and	division)	among	them	

(Darjes,	1747:	86-111),	as	well	as	to	consider	that	the	introduction	of	 infinitely	small	and	large	

quantities	could	only	be	done	by	means	of	ratios	of	finite	quantities41:	first,	and	unlike	Wolff	in	

1750,42	he	considered	that	not	only	the	objects	of	study	of	algebra	and	trigonometry	belonged	

to	general	mathematics,	to	particular	parts	of	theoretical	mathematics	and	sometimes	even	to	a	

particular	part	of	practical	mathematics,	but	also	that	“the	manner	in	which	the	quantities	are	

found	 in	 those	 sciences	 [algebra	 and	 trigonometry]	 is	 that	 which	 is	 used	 in	 Rechen-Kunst”	

																																																													
38	The	full	title	is:	Erste	Gründe	der	gesamten	Mathematik	darinnen	die	Haupt-Theile	sowohl	der	theoretischen	als	auch	praktischen	
Mathematik	in	ihrer	natürlichen	Verknüpfung	auf	Verlangen	und	zum	Gebrauch	seiner	Zuhörer	entworfen.	
39	Darjes	wrote:	 “Diejenige	Wissenschaft,	 in	welcher	man	 erkläret,	wie	 der	 Grössen	 der	 Dinge	 zu	 erfinden,	wird	 die	Mathematik	
genennet.	Diese	ist	demnach	eine	Wissenschaft	von	Erfindung	der	Grössen.”	(Darjes,	1747:	8)	
40 	Darjes	 wrote:	 “Einmahl,	 wenn	 wir	 das	 Wesen	 der	 Grösse	 und	 diejenige	 Eigenschaften,	 welche	 daher	 folgen,	 untersuchen:	
Zweytens,	wenn	wir	uns	bemühen,	die	Anzahl	der	Einheiten	in	der	Grösse	zu	bestimmen.	Und	dass	die	erste	Abhandelung	von	der	
Grösse	nicht	zur	Mathematik	sondern	zur	Metaphysik	gehöret.”	(ibid.)	
41	Darjes	wrote:	“Unendlich	Grössen	können	wir	nicht	anders	als	bey	nahe	erfinden.	Wenn	wir	demnach	Grössen	erfinden	wollen,	
welche	 unendlich	 gross	 oder	 unendlich	 klein,	 so	 müssen	 wir	 Verhältnisse	 endlicher	 Grössen	 suchen,	 welche	 jene	 bey	 nahe	
bestimmen.”	(Darjes,	1747:	64)	
42	Wolff	 considered	 “negative	quantities”	not	 in	his	Anfangs-Gründe	der	Rechen-Kunst,	 but	 in	his	Anfangs-Gründen	der	 gemeinen	
Algebra,	 the	 fourth	part	of	 the	 improved	edition	of	his	Der	Anfangs-Gründe	Aller	Mathematischen	Wissenschaften	Letzter	 (Wolff,	
1750:	1557ff.).	
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(Darjes,	 1747:	 12); 43 	second,	 the	 introduction	 of	 negative	 quantities	 did	 not	 involve	 an	

ontological	commitment,	from	his	point	of	view,	but	the	mere	calculation	with	them;	and,	third,	

his	work	reflects	how	by	the	mid-18th	century	the	method	of	ratios	was	preferred	among	some	

mathematicians	 when	 introducing	 infinitely	 small	 and	 large	 quantities	 due	 to	 what	 they	

considered	 at	 best	 a	 “lack	 of	 clearness”	 when	 introducing	 such	 quantities	 de	 facto,	 i.e.	

infinitesimals,	into	geometry.	

	

	

B.2.	 The	 mathematical	 conceptions	 and	 practices	 of	 Segner,	 Kästner	 and	

Karsten	

	

B.2.1.	The	context	at	the	beginning	of	their	careers	as	mathematicians	

	

	

One	year	after	the	publication	of	Darje’s	First	grounds	of	the	whole	mathematics,	in	1748,	Euler	

published	 his	 Introductio	 in	 analysin	 infinitorum,	 and	 later	 in	 1755	 his	 Institutiones	 calculi	

differentialis,	 and	 things	 slowly	 began	 to	 change	 in	 the	 Germanic	 territories	 throughout	 the	

second	half	of	the	18th	century.	The	works	of	Segner,	Kästner	and	Karsten	precisely	reflect	that	

transition,	 albeit	 in	 different	ways	 and	 to	 a	 different	 extent.	 At	 least	 initially	 and	 explicitly	 or	

implicitly,	 both	 Segner	 and	 Kästner	 considered	 mathematics	 and	 quantity	 almost	 exactly	 as	

Wolff	considered	them	in	the	corresponding	dictionary	entry,	while	Karsten	adopted	a	different	

position	from	that	of	the	latter	but	a	similar	one	to	that	of	Darjes.	

	

All	three,	as	it	was	mentioned	before,	pertained	to	different	generations	and	studied	and	began	

to	work	as	math	professors	not	only	at	different	times	but	also	in	different	places:	Segner,	born	

in	 1704,	 presented	 his	 mathematical	 dissertation	Attempt	 on	 Archimedes	 mirror	 (De	 speculis	

Archimedeis	 tentamen)	 at	 Jena,	 in	 1732;	 Kästner,	 born	 in	 1719,	 presented	 his	 dissertation	

Theory	of	equations	 roots	 (Theoria	 radicum	 in	aequationibus)	at	 Leipzig,	 in	1739;	and	Karsten,	

																																																													
43	At	the	end	of	the	“First	Grounds	of	General	Mathematics”,	however,	he	stated:	“Ich	könnte	hieraus	die	Natur	der	Differential-	und	
Integral-Grössen	 erklären,	 weil	 aber	 befürchte,	 dass	 solches	 Anfängern	 zu	 schwer,	 so	 will	 diese	 Untersuchung	 bis	 zur	 Algebra	
versparen.”	(Darjes,	1747:	68)	Which	means	he	did	consider	those	as	parts	of	mathematics	but	simply	not	as	parts	suitable	for	that	
work’s	aims.	



	 46	

born	in	1732,	presented	his	dissertation	Inquires	about	the	notion	of	Algebra	and	its	difference	

from	Arithmetic	(Inquirens	in	notionem	algebrae	eiusque	differentia	ab	arithmetica)	at	Rostock,	

in	1755.	While	the	dissertation’s	date	of	the	latter	makes	patent	the	generational	gap	between	

him	and	Kästner	and	Segner,	the	dates	of	the	dissertations	of	these	give	account	of	a	reduction	

of	the	generational	gap	between	them	because	Segner,	who	first	qualified	as	a	medical	doctor,	

only	began	his	career	as	a	mathematician	in	the	1730s,44	first	at	Jena,	where	he	taught	for	a	few	

years,	and	then	at	Göttingen,	where	he	became	the	first	professor	of	mathematics	in	1735.	

	

The	 difference	 concerning	 their	 educational	 provenance,	 on	 the	 other	 hand,	 is	 at	 least	 as	

significant	as	the	temporal	difference	to	understand	the	roots	of	their	respective	mathematical	

approaches.	While	 towards	 the	mid-18th	 century	 the	university	of	Rostock	was	 important	 in	 a	

regional	 context,	 the	universities	of	 Jena	 and	 Leipzig	were,	 along	with	Halle,	 among	 the	most	

important	 universities	 in	 the	 Germanic	 territories;	 the	 transfers	 of	 Darjes	 and	 Karsten	 to	 the	

university	of	Jena	in	1731	and	1752,	respectively,	bear	witness	to	this.	In	fact,	from	1730	to	1739	

Jena	had	the	best	annual	average	of	student	enrollment,	with	652,	ahead	of	Halle,	with	625,	and	

Leipzig,	with	378,	while	Rostock	had	an	average	of	82	students	per	year	for	the	same	period	and	

Göttingen	an	average	of	185	students	during	its	first	decade,	from	1734	to	1743	(cf.	Eulenburg,	

1904:	294-295	&	297).	

	

However,	while	during	the	years	of	the	1730s	that	Segner	was	in	Jena,	the	city	and	the	university	

did	not	experience	major	problems,	during	Kästner’s	period	as	student	and	professor	at	Leipzig	

and	 during	 Karsten’s	 period	 as	 student	 and	 professor	 at	 Rostock	 and	 Bützow,	 those	 three	

universities	and	cities	went	through	some	internal	and	external	problems.	Thus,	the	city	of	Jena,	

which	from	1741	became	part	of	the	duchy	of	Saxe-Weimar,	was	still	part	of	the	also	Ernestine	

duchy	 of	 Saxe-Eisenach	 by	 the	 time	 Segner	 studied	 and	 worked	 there.	 The	 Duke	 of	 Saxe-

Eisenach,	Wilhelm	Heinrich,	was	 in	 fact	 one	of	 the	 rulers	who	during	 that	period	 forbade	 the	

university’s	professors	in	his	territory	to	accept	offers	from	Münchhausen	to	teach	at	Göttingen	

(cf.	Whaley,	2012	II:	442).	And	it	was	Jena	where	in	1730	it	was	founded	a	Deutsche	Gesellschaft	

“on	the	model	of	 [Johann	Christoph]	Gottsched’s	 ‘Deutsche	Gesellschaft’	 in	Leipzig”,	which,	as	

seven	other	 similar	Deutsche	Gesellschaften	 that	were	 founded	between	1730	 and	 1762,	 had	

																																																													
44	It	must	 be	 said,	 however,	 that	 among	 the	works	 that	 Segner	wrote	 before	 the	 1730s	 he,	 for	 example,	 devoted	 one	 to	 prove	
equations	with	only	real	roots,	a	subject	on	which	Kästner	himself	wrote	a	work	in	the	1740s.	
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“an	anti-court	animus	[in]	their	criticism	of	the	adoption	of	French	language	and	culture,	and	of	

the	princes	and	nobles	responsible	for	it”	(Whaley,	2012	II:	181	&	341).	

	

In	 the	 case	 of	 Rostock	 and	 Bützow,	 Prussia’s	 occupation	 and	 plunder	 of	 the	 Duchy	 of	

Mecklenburg-Schwerin	in	the	Seven	Years’	War	led	to	the	impoverishment	of	this	Duchy,	which	

happened	shortly	after:	a)	the	Duchy’s	constitution	was	settled	(1755),	b)	Christian	Ludwig	II	was	

succeeded	by	his	son	Friedrich	II	as	its	ruler	(1756)	and	c)	this	latter	decided	to	back	Austria	in	

that	conflict	(cf.	Whaley,	2012	II:	534).	However,	neither	that	circumstances	nor	the	low	annual	

average	of	65	students	from	1749	to	1758	(cf.	Eulenburg,	1904:	296)	prevented	Friedrich	II	from	

splitting	 the	university	of	Rostock,	 a	 scholastic	 Lutheran	 institution	of	Aristotelian	orientation,	

into	two	parts	 from	1758	until	his	death	 in	1785.45	As	a	consequence,	one	part	was	 located	 in	

Rostock	 and	 the	 other	 in	 Bützow,	 after	 Friedrich	 II,	 a	 Pietist	 supporter,	 appointed	 a	 Pietist	

professor	of	 theology	whom	the	university	and	 the	city	 itself	opposed;	Karsten,	precisely,	was	

one	of	the	professors	transferred	to	the	new	and	small	University	of	Bützow,	of	which	he	was	

rector	a	couple	of	times	during	the	second	half	of	the	1760s	(cf.	Günther,	1882).	

	

Meanwhile,	the	city	of	Leipzig	belonged	to	the	key	Electorate	of	Saxony,	which	got	involved	in	all	

the	three	Silesian	Wars,	supporting	Prussia	in	the	first	one	and	the	Habsburgs	in	the	other	two.	

So	while	among	the	main	motives	of	Frederick	Augustus	II	(Elector	of	Saxony,	King	of	Poland	and	

Grand	Duke	of	Lithuania	from	1733	to	1763)	for	such	alliances	was	not	his	personal	union	with	

Maria	Josepha	of	Austria	(the	elder	daughter	of	HRE’s	Emperor	Joseph	I	and,	as	a	consequence,	

the	 legitimate	heiress	to	the	realms	of	the	House	of	Habsburg	before	the	decree	 issued	by	his	

uncle	in	1713)	but	obtaining	a	territorial	bridge	to	the	Polish-Lithuanian	Commonwealth,	at	the	

same	 time	 that	 obtaining	 the	 protection	 of	 one	 of	 the	 European	 great	 powers	 closest	 to	 his	

Electorate	(due	to	its	vulnerability,	given	its	geographical	location),	the	central	motive	for	both	

the	Brandenburg	and	Austria	was	precisely	its	strategic	location	for	their	better	positioning	with	

respect	to	each	other	(cf.	Whaley,	2012	II:	358).	

	

In	 spite	 of	 all	 that,	 it	 was	 Leipzig	 where:	 a)	 between	 1732	 and	 1754	 Zedler’s	 encyclopedia	

(Großes	 vollständiges	 Universal-Lexikon	 aller	 Wissenschaften	 und	 Künste)	 was	 published;	 b)	

Gottsched,	 professor	 at	 the	 university	 that	 by	 then	was	 an	 enthusiastic	Wolffian,	 founded	 in	

																																																													
45	It	was	in	fact	Friedrich’s	successor,	his	nephew	Frederick	Francis	I,	who	merged	back	both	universities	in	1789.	
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1731	the	Societas	Conferentium	to	which	it	would	later	be	linked	the	pro-Wolff	Gesellschaft	der	

Alethophilen,	established	in	Berlin	(cf.	Whaley,	2012	II:	339);	c)	Gottsched	himself,	after	Vienna’s	

rejection	to	his	proposal	to	found	a	German	academy	of	arts,	founded	a	Society	of	Liberal	Arts	in	

1752	“modelled	on	the	Académie	Française	and	the	Académie	des	Inscriptions	et	des	Médailles”,	

foundered	a	few	years	later	lacking	Frederick	Augustus’	II	patronage	(Whaley,	2012	II:	182-183);	

and	 d)	 the	 university	 had	 the	 second	 best	 annual	 average	 of	 students	 among	 the	 Germanic	

universities	from	1746	to	1755	(with	347),	just	below	Halle	(with	540)	but	above	Göttingen	(with	

278)	(cf.	Eulenburg,	1904:	297).	

	

As	 the	 latter	data	show,	Segner	 studied	and	began	his	 career	as	math	 teacher	at	a	 traditional	

Lutheran	 institution	whose	modernization	 process	would	 begin	 during	 the	 second	 half	 of	 the	

18th	 century,	 after	 c.	 1750	 it	 had	 gone	 from	 having	 the	 best	 annual	 average	 of	 student	

enrollment	 among	 the	Germanic	universities	 to	not	even	being	among	 the	 first	 three.	On	 the	

contrary,	 Kästner	 studied	 and	 taught	 at	 a	 Lutheran	 institution	 whose	 modernization	 process	

began	earlier,	as	a	consequence	of	which	c.	1750	it	was	still	among	the	three	most	popular	and	

even	above	the	new	university	of	Göttingen,	which	would	eventually	become	the	best	and	most	

modern	one.	

	

	

B.2.2.	Their	works	from	the	early	1740s	to	the	late	1760s	

	

	

Segner	taught	at	Göttingen	for	almost	20	years,	throughout	which	he	published	two	works	that	

are	especially	 relevant	 to	 the	objectives	pursued	here,	videlicet	his	Sample	of	 logic	universally	

demonstrated	 (Specimen	 logicae	 universaliter	 demonstratae),	 from	 1740,	 and	 his	 Clear	 and	

complete	lectures	on	arithmetic	and	geometry	(Deutliche	und	vollständige	Vorlesungen	über	die	

Rechenkunst	und	Geometrie),	from	1747.	“The	idea	or	the	notion”,	he	wrote	at	the	beginning	of	

his	 1740	 work,	 “is	 that	 by	 which	 a	 thing	 is	 represented	 in	 the	 mind”	 (Segner,	 1740:	 1).46	

Therefore,	 ideas	could	be	considered	according	to	several	criteria:	simple	or	composed	(as	the	

idea	of	a	triangle),	opposite	or	concordant	(as	the	ideas	of	figure	and	triangle),	identical	(as	the	

																																																													
46	Segner	wrote:	“Idea	sive	notio	est	id,	per	quod	res	in	mente	repraesentatur.”	
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ideas	of	quadrilateral	and	quadrangle	figures)	or	different	(as	the	ideas	of	figure	and	triangular	

figure),	and	so	on	(cf.	Segner,	1740:	2-10).	

	

Among	those	criteria,	however,	there	were	some	particularly	interesting	here.	For	Segner,	given	

two	 ideas	!	and	!,	!	is	 said	 to	be	wrapped	or	 contained	 (involvitur	 siue	 continetur)	 in	!	if	 the	
first	belongs	to	the	ideas	that	compose	the	latter	as,	for	example,	the	ideas	of	“extension”	and	

“trilateral”	 belong	 to	 the	 one	 of	 triangle	 (cf.	 Segner,	 1740:	 3).	 This	 initially	 allowed	 Segner	 to	

compare	different	ideas	on	the	basis	of	“containment”,	considering	some	ideas	to	be	superior	to	

others,	 and	 subsequently,	 when	 talking	 about	 propositions,	 allowed	 him	 to	 express	 those	

comparisons	as	in	calculus	the	comparison	of	magnitudes	was	expressed:	two	ideas	!	and	!	are	
identical	when	they	contain	each	other	so	that	the	relation	between	both	is	expressed	! =  !,	
but	if	!	is	superior	it	is	expressed	! >  !	and,	vice	versa,	if	!	is	superior	it	is	expressed	B	>	A	(cf.	
Segner,	 1740:	 5	 &	 71-72).	 Even	 more,	 that	 allowed	 him	 to	 consider	 the	 relation	 of	

“coordination”	 between	 ideas	 “! × !”	 (for	 example,	 every	 triangle,	!,	 is	 a	 figure,	!,	 but	 only	
some	figures	are	triangle)	(cf.	Segner,	1740:	83-84)	and,	having	previously	defined	an	infinite	–

and	 negative–	 idea	 (as	 the	 idea	 of	 “not-triangle”,	 which	 denied	 the	 finite	 one	 of	 “triangle”	

without	establishing	any	determination)	(cf.	Segner,	1740:	8),	allowed	him	to	consider	relations	

involving	 infinite	 negative	 ideas,	 such	 as	 “–! = –!”	 (not	 triangle	 =	 not	 trilateral),	 “! × –!”	
(figure	and	not	triangle)	and	even	“–! > –!”	(the	notion	not-triangle	is	superior	to	the	notion	
not-figure)	(cf.	Segner,	1740:	86-91).	

	

It	 is	significant	 that	 throughout	Segner’s	calculus	of	 ideas	the	only	mathematical	 ideas	that	he	

mentioned	were	geometric.	After	 all,	 if	 for	him	both	geometry	 and	arithmetic	 considered	 the	

quantity	of	 things,	although	one	 in	 terms	of	extension	and	 the	other	 in	 terms	of	numbers	 (cf.	

Segner,	1747:	1	&	186),	why	not	employing	also	examples	from	the	latter?	Why	even	choosing	

between	restricted	notions	of	quantities	 for	a	calculus	 for	which	a	more	general	notion	might	

have	been	more	adequate?	For	example,	should	not	he	have	introduced	the	more	basic	idea	or	

notion	of	negative	quantity,	–!,	prior	to	the	negative	version	of	a	composed	idea	such	as	“not-

triangle”?	As	his	1747	 lectures	on	arithmetic	and	geometry	show,	the	question	 is	not	whether	

he	should	have	done	so,	but	whether	he	could	have	done	so,	and	he	could	not.	
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That	something	is	expressed	by	a	number	means	that	it	is	counted	(cf.	Segner,	1747:	1),47	Segner	

wrote	 at	 the	beginning	of	 his	 1747	work.	Number	was	 thus,	 for	 him,	 “a	 notion	of	 the	way	 in	

which	[things]	arise	from	their	unity”	(Segner,	1747:	2),48	a	definition	that,	unlike	that	of	Hausen,	

does	recall	that	of	Wolff	as	“a	collection	of	units	or	aggregate	of	many	things	of	one	kind”:	since	

numbers	 arise	 from	 unit,	 strictly	 speaking	 there	 could	 only	 be	 two	 types	 of	 change	 with	

numbers,	 namely	 becoming	 bigger	when	 units	were	 augmented	 and	 smaller	when	 they	were	

reduced	 (cf.	 Segner,	 1747:	 5).49	Which	 also	 explains	why	 for	 him	 the	 numbers	 par	 excellence	

(schlechthin)	 were	 the	 whole	 numbers	 (1, 2, 3,…),	 from	 which	 broken	 numbers	 or	 fractions	

could	be	formed	to	express	parts	or	portions	of	a	thing	that	in	turn	arise	from	a	unit	(cf.	Segner,	

1747:	3).	“To	make	all	 this	 [last	step]	even	clearer”,	Segner	said,	“imagine	the	straight	 line	!"	
which	 should	 be	 printed	 [or	 represented]	 by	 a	 number”,50	so	 that	 another	 straight	 line	!"	
accepted	at	will	as	unit	(“if	one	does	not	wish	to	employ	one	which	has	already	been	accepted	in	

common	life,	such	as	shoes,	inches,	or	something	like	that”),51	to	which	the	parts	into	which	!"	
is	divided	are	equal,	can	be	aggregated	to	express	by	a	broken	number	a	portion	of	the	straight	

line	!"	such	as	!!	(cf.	Segner,	1747:	4).	

	

Together	with	 the	previous	ones,	however,	 there	was	also	 for	Segner	a	 third	kind	of	numbers	

that	 could	 not	 be	 expressed	 by	 means	 of	 whole	 numbers,	 called	 “irrational”	 or	 even	

“inexpressible”	numbers	(Irrationalzahlen	or	unausprechliche	Zahlen):	 the	square	root	of	3,	 for	
example,	 could	 never	 be	 accurately	 expressed	 due	 to	 the	 endless	 process	 that	 its	 expression	

involved.	This	led	to	a	different	notion	of	“number”	(einem	andern	Begrif),	wrote	Segner,	since	

they	 could	 be	 regarded	 as	 a	 special	 type	 of	 fractions	whose	 denominator	was	 infinitely	 great	

(unendlich	 gross),	 i.e.	 enlarged	without	 end	 (ohne	 Ende	 vergrössern),	 and	whose	 represented	

(darstellen)	 quantities	 could	 also	 be	 expressed	 (ausgedrückt)	 as	 magnitudes	 in	 geometry	

(Segner,	1747:	162-163).	In	this	way,	while	the	use	of	geometry	was	a	tool	to	make	clearer	the	

																																																													
47	Segner	wrote:	“Wenn	etwas	gezehlet,	oder	durch	eine	Zahl	ausgedrückt	werde.”	
48	Segner	wrote:	 “Wenn	wir	 genau	 reden,	 so	 verstehen	wir	 unter	 diesem	Worte	 Zahl,	 nicht	 so	wohl	 die	Dinge	 selbst,	welche	wir	
zehlen,	als	vielmehr	einen	Begrif	von	der	Art	und	Weise,	wie	dieselbe	aus	ihrer	Einheit	entstehen.”	
49	Segner	 wrote:	 “Eine	 Zahl	 wird	 grösser,	 wenn	 die	 Einheiten	 vermehret	 werden,	 welche	 sie	 ausmachen,	 un	 kleiner,	 wenn	 ihrer	
weniger	 werden.	 Und	 ausser	 dieser	 Vermehrung	 und	 Verminderung	 kan	 man	 mit	 den	 Zahlen	 keine	 andere	 Veränderung	
vornehmen.”	
50 	Segner	 wrote:	 “Alles	 dieses	 noch	 deutlicher	 einzusehen,	 stelle	 man	 sich	 die	 gerade	 Linie	!" 	vor,	 welche	 durch	 eine	 Zahl	
ausgedruckt	werden	sol.”	
51	Segner	wrote:	“wenn	man	sich	nicht	einer	solchen	bedienen	will,	welche	bereits	im	gemeinen	Leben	dazu	angenommen	worden	
ist,	 dergleichen	 die	 Schuhe,	 Zolle,	 oder	 etwas	 dergleichen	 sind.”	 For	 a	 detailed	 study	 of	 the	 different	 measures	 and	 units	 still	
accepted	in	common	life	in	France,	but	also	in	the	Germanic	countries,	during	the	18th	century,	cf.	Heilbron’s	work	“The	Measure	of	
Enlightenment”	(Heilbron,	1990).	
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formation	of	rational	numbers	and	their	discrete	variation,	implicit	in	the	ideas	of	augmentation	

and	 reduction	 (vermehrung	 and	verminderung),	 for	 irrational	numbers	 it	was	not	 a	 tool	but	 a	

more	accurate	means	to	express	the	different	variation	they	involved,	implicit	in	the	actions	of	

enlarge	and	shorten	(vergrössern	and	verkleinern).	

	

At	first	glance	such	remarks	might	not	seem	as	 important	as	they	actually	are.	But,	 just	as	the	

endless	 enlargement	 of	 irrational	 numbers	 showed	 Segner’s	 impossibility	 to	 consider	 them	

“numbers”	in	the	strict	sense	of	the	idea	“number”,	being	closer	to	the	geometric	magnitudes,	

the	paragraphs	of	his	work	on	“the	designation	of	quantities	which	augment	and	reduce	each	

other”	 (Bezeichnung	 der	 Grössen	 die	 einander	 vermehren	 oder	 vermindern)	 show	 that	 at	 the	

time	he	did	not	consider	“negative	quantities”	within	the	arithmetic	framework	(cf.	Schubring,	

2005:	132).	This	only	happened	in	the	second	“improved	edition”	(verbesserte	Auflage)	of	that	

work,	in	which	he	added	a	paragraph	where	he	introduced	the	notion	of	oppositeness	and	with	

it	the	designations	of	“positive”	and	“negative	or	privative”	quantities	and	numbers	within	that	

framework.	

	

By	1747,	Segner	considered	that	the	signs	+	and	–	designated	the	augmentation	and	reduction	

of	 numbers	 and	quantities	within	 the	 framework	of	 arithmetic,	 but	 nothing	more	 (cf.	 Segner,	

1747:	26-27).	As	Darjes,	Segner	(Darjes’	teacher	at	Jena)	only	introduced	the	negative	numbers	

within	a	different	framework	from	arithmetic,	namely	within	the	framework	of	an	application	of	

numbers	 for	 the	 resolution	 of	 geometric	 problems,	 a	 sort	 of	 unnamed	 analytical	 geometry	

contained	 in	 the	 section	 “Grounds	 for	 the	 calculation	 with	 extended	 quantities”	 (Gründe	 der	

Berechnung	 ausgedehnter	 Grössen)	 (cf.	 Segner,	 1747:	 628-629;	 Schubring,	 2005:	 132).	 There,	

Segner	 explained	 the	 use	 of	 signs	 in	 “algebra”	 or	 the	 “calculation	 with	 letters”	 (Buchstaben	

Rechnung)	 or	 characters	 to	 which	 numbers	 could	 be	 ascribed,	 and	 stated	 that	 quantities	

denoted	by	either	 the	 sign	+	or	–	were	 “not	of	 a	different	 kind”	 “but	 contrary	 in	 such	a	way”	
that	together	were =  0	or	nothing	(Segner,	1747:	646).52	In	other	words,	what	changed	was	the	
criterion	of	denotation	of	the	quantities	and	not	these	ones.	Even	further,	for	Segner	it	was	from	

the	gradual	destruction	of	 the	unit	1	(indem	die	Einheit	nach	und	nach	vernichtet	wird,	bis	 sie	

																																																													
52	Segner	wrote:	“Es	bedeuten	+!,	– !	de	Grössen	von	einerley	Art,	die	einander	zwar	gleich,	aber	dergestalt	zuwider	sind,	dass	+!	
mit	– ! 	zusammen	 nicht	2! 	giebt,	 wie	 geschehen	 würde,	 wenn	 sie	 einander	 nicht	 zuwider	 wären;	 sondern	 es	 ist	+! 	mit	– !	
eigentlich	 gar	 nichts.	 [...]	 Denn	 es	 ist	 das	 gezeigte	 richtig,	 von	was	 Art	 auch	 im	 übrigen	 die	 Grössen	 seyn	mögen,	wenn	 nur	 die	
Grössen,	deren	eine	mit	+	bezeichnet	ist,	nicht	von	einer	andern	Art	sind,	als	diejenigen,	vor	deren	Zeichen	–	stehet.”	
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gar	 nichts	 wird)	 that	 the	 quantity	 – ! 	arose	 (as	 happened	 with	 debts	 and	 with	 walking	
backwards);	a	quantity	which,	once	established,	allowed	him	to	show	the	possibility	of	the	basic	

ratio	1: – ! (Segner,	1747:	651),53	as	well	as	to	produce	extended	versions	of	the	arithmetic	and	

geometric	(proportion)	series:	

	

By	 a	 series	 of	 numbers	 one	means	 a	 group	 [Menge]	 of	 numbers	 that,	 according	 to	 a	 certain	 law	 assumed	

arbitrarily,	follow	each	other	in	an	unvaried	order.	There	are	many	of	such	laws	and	one	can	conceive	several	

of	them.	Thus	there	are	also	infinite	types	of	series	of	numbers.	We	will	be	satisfied	with	ourselves	to	consider	

the	 two	of	 them	among	which	 the	 latter	 in	particular	will	 be	of	 an	 indescribable	usefulness.	 These	are	 the	

arithmetic	and	the	geometric	series.	(Segner,	1747:	656)54	

	

That	 way,	 once	 quantities	 like	– !	were	 accepted,	 Segner	 was	 able	 to	 produce	 not	 only	 the	
arithmetic	 series	 of	 quantities	 whose	 numbers	 were	1, 2, 3, 4, 5,…,	 but	 also	 the	 other	 one	

−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5,…,	made	up	of	quantities	whose	numbers	on	the	one	side	of	0	
were	marked	with	the	sign	–	and	on	the	other	with	the	sign	+	(cf.	Segner,	1747:	656-657).	Or,	as	
he	 wrote	 20	 years	 later	 concerning	 the	 second	 of	 those	 series,	 a	 series	 of	 quantities	 whose	

numbers	designated	by	the	character	+	were	called	“positive”	(Positiv),	regarded	as	those	that	
“actually	 place	 something”,	 and	 whose	 numbers	 designated	 by	 the	 character	–	were	 called	
“negative	 or	 privative”	 (Negativ	 oder	 Privativ),	 regarded	 as	 those	 that	 always	 destroy	

(vernichten)	something	from	the	positive	ones	(Segner,	1767:	27).55	A	clarification,	this	latter,	on	

the	 names	 of	 positive	 and	 negative	 quantities	 and	 numbers	which,	must	 be	 stressed,	 Segner	

only	added	to	the	arithmetic	section	 in	the	second	edition	of	his	 lectures	after	developing	the	

idea	of	such	arithmetic	series	within	the	framework	of	his	sort	of	analytical	geometry,	since	at	

that	 time	 he	 –just	 as	 Darjes–	 only	 considered	 negative	 numbers	 as	 adscriptions	 of	 algebraic	

negative	quantities.	

	

																																																													
53	Segner	wrote:	 “Und	es	entstehet	also	allezeit	– !	aus	der	1,	 indem	die	Einheit	nach	und	nach	vernichtet	wird,	bis	 sie	gar	nichts	
wird,	und	indem	diejenige	Grösse,	welche	die	Einheit	vernichtet	hat,	so	dann	noch	weiter	wächst.”	
54	Segner	wrote:	“Man	nennet	aber	eine	Zahlreihe,		eine	Menge	von	Zahlen,	welche	nach	einem	gewissen	beliebig	angenommenen	
Gesetz	 in	 unveränderter	 Ordnung	 auf	 einander	 folgen.	 Es	 sind	 dergleichen	 Gesetze	 viele,	 und	man	 kan	 sich	 deren	 immer	 noch	
mehrere	 vorstellen.	 Also	 giebt	 es	 auch	 unendliche	 Arten	 von	 Zahlreihen.	 Wir	 werden	 uns	 begnügen	 lassen,	 deren	 zwey	 zu	
betrachten,	unter	welchen	insonderheit	die	letztere	von	unbeschreiblichem	Nutzen	seyn	wird.	Diese	sind,	die	Arithmetische,	und	die	
Geometrische	Reihe.”	
55	Segner	wrote:	“Bey	dem	Gebrauch	diesen	Zeichen	+	und	–,	werden	die	Grössen,	deren	Zahlen	mit	+	bezeichnet	sind,	als	solche	
angesehen,	die	etwas	würklich	setzen,	und	man	nennet	sie	aus	diese	Ursache	auch	Positiv.	Im	Gegentheil	betrachtet	man	diejenigen,	
deren	Zahlen	das	Zeichen	–	vor	sich	haben,	in	Ausehung	jener,	als	Negattiv	oder	Privativ,	weil	sie	immer	von	denen,	die	als	positiv	
betrachtet	werden,	so	vieles	vernichten	als	sie	selbst	betragen.”	
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In	the	meantime,	Kästner	summited	his	aforementioned	1739	dissertation	Theory	of	equations	

roots	 (Theoria	radicum	in	aequationibus)	and	published	several	mathematical	writings,	such	as	

Aeqvationvm	 speciosarvm	 resolutio	 Newtoniana	 per	 series,	 from	 1743,	 Demonstratio	

Theorematis	 Binomialis	 and	 Demonstratio	 Theorematis	 Harriot,	 both	 from	 1745.	 Their	 mere	

titles	 and	 the	 references	 to	 Colson,	 Stirling,	 Harriot,	 Euler,	 Fontenelle,	 Hausen,	 Segner	 and	

Stübner,	 in	 addition	 to	 Newton,	 Leibniz,	 Bernoulli	 and	 Wolff,	 makes	 evident	 Kästner’s	

knowledge	 about	 some	 of	 the	 most	 recent	 developments	 of	 his	 time,	 while	 their	 content	

provides	 some	 glimpses	 about	 his	 conception	 of	 mathematics,	 quantities	 and	 numbers:	 he	

considered	 that	 the	 analytical	method	 had	 advantages	 over	 the	 traditional	 synthetic	method	

(Kästner,	1745A:	*3);56	for	him	positive	and	negative	quantities	were	homogeneous,	contrary	to	

Wolff	 (Wolff,	 1742:	 26	 &	 300),	 and	 therefore	 could	 relate	 to	 each	 other	 (cf.	 Kästner,	 1739:	

theses);	he	considered	negative	and	imaginary	quantities	and	numbers,	as	well	as	 indefinite	or	

infinite	 series,	 within	 an	 algebraic	 framework,	 as	 in	 the	 cases	 of	 his	 study	 of	 negative	 and	

complex	roots	of	equations,	Newton's	parallelogram,	the	binomial	theorem	and	the	number	of	

true	 and	 false	 roots	 in	 equations	 (cf.	 Kästner,	 1739,	 1743,	 1745A	&	 1745B);	 and,	within	 such	

framework,	 he	 employed	 new	 symbols,	 e.g.	∞	(Kästner,	 1745A:	 3),	 and	 new	 concepts,	 as	 the	

notion	of	“limit”	(limes)	(Kästner,	1739:	31;	Kästner,	1745B:	3;	cf.	Cajori,	1923:	226).	

	

It	was,	nonetheless,	in	his	Foundations	of	Mathematics	(Mathematische	Anfangsgründe),	whose	

first	edition’s	volumes	were	published	 from	1758	to	1769,	where	Kästner	provided	more	 than	

suggestions	 about	his	 conception	of	mathematics	 and	what	he	 considered	 the	 valid	methods,	

procedures	and	core	notions	of	that	science.	By	that	time,	Segner,	who	Kästner	had	succeeded	

at	Göttingen	a	couple	of	years	earlier,	was	publishing	the	second	of	the	five	volumes	that	would	

comprise	 his	Mathematical	 courses	 (Cursis	 Mathematici),	 published	 from	 1756	 to	 1768,	 and	

Karsten,	Segner’s	future	successor	at	Halle,	had	already	published	several	relevant	mathematical	

works	besides	his	1755	dissertation.	Most	 remarkable,	by	1758	 the	works	of	both	Segner	and	

Karsten	had	begun	to	show,	to	a	lesser	or	greater	extent,	a	transition	towards	some	of	the	latest	

mathematical	developments	of	the	time	which,	in	the	case	of	the	latter,	was	intertwined	with	a	

gradual	 detachment	 from	his	 early	 referential	 author	 (Darjes)	 and	 an	 increasing	 acquaintance	

																																																													
56	Fourteen	 years	 later,	 Kästner	 would	 insist	 in	 the	 Considerations	 to	 a	 textbook	 of	 analytic	 geometry	 on	 those	 advantages	 (cf.	
Kästner,	1759B:	Betrachtungen	[6-7	&	13]).	
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about	 some	 of	 the	 most	 influential	 conceptions	 of	 mathematics	 among	 his	 European	

contemporaries.	

	

Thus,	 in	 his	 1755	 dissertation	 and	 one	 year	 later	 in	 his	 Elements	 of	 Universal	 Mathematics	

(Elementa	matheseos	universalis),	Karsten	adopted	a	position	different	 from	that	of	Wolff	but	

similar	to	that	of	Darjes.	“To	find	is”,	he	said	following	his	teacher,	“to	show	that	from	a	given	

known	some	other	unknown	somehow	becomes	known”,	so	that	mathematics	“is	the	science	of	

finding	quantities”,	i.e.	the	science	of	finding	that	“in	which	various	homogeneous	things	can	be	

distinguished	from	each	other”	(Karsten,	1756:	16,	17	&	11).57	Even	more,	 just	as	Darjes	did	 in	

his	 Introductio,58	Karsten	 distinguished	 in	 logic,	 as	 the	 doctrine	 of	 truth	 (Karsten,	 1755:	 4),	

between	 the	 ars	 heuristica	 combinatoria	 and	 the	 ars	 inveniendi,	 considering	 then	 that	 pure	

mathematics	comprised	the	finding	of	quantities	by	“logical	analysis”	and	elementary	or	sublime	

“calculation”,	 which	 would	 respectively	 correspond	 to	 the	 mathesis	 universalis	 and	 the	

arithmetic	 or	 algebra	 –or	 mathematical	 analysis–	 (Karsten,	 1756:	 17).	 That	 is	 to	 say,	 the	

difference	between	arithmetic	and	algebra	was	for	him	of	degree:	“Arithmetic	and	Algebra	are	

strictly	heterogeneous	cospecies	of	broadly	understood	Arithmetic”	(Karsten,	1755:	6).	

	

Accordingly,	 on	 the	 one	 hand,	 for	 Karsten,	 as	 for	 Darjes,	 the	 investigation	 of	 the	 essences	 of	

things	(essentias	rerum)	corresponded	to	philosophy	–metaphysics–	(Karsten,	1755:	3-4).	On	the	

other	hand,	for	him	algebra	or	mathematical	analysis	was	the	“general	art	of	reckoning”,	which	

meant	 that	while	 arithmetic	was	 the	 science	 of	 finding	 unknown	 numbers	 form	 given	 known	

numbers	 by	 calculation	 (because	 signs	 in	 arithmetic	 were	 especially	 suited	 to	 be	 denoted	 by	

numbers),	in	algebra	the	signs	were	in	fact	considered	as	universal	(Karsten,	1760:	194	&	263).59	

That	 way,	 he	 was	 able	 to	 consider	 “negative	 quantities”	 (quantitas	 negativa)	 within	 the	

framework	of	mathematical	analysis	(Karsten,	1760:	271)	but	not	“negative	numbers”	within	the	

initial	 framework	 of	 elementary	 arithmetic,	 just	 as	 his	 teacher	 had	 previously	 done.	 In	 other	
																																																													
57	Karsten	wrote:	“Res,	in	qua	varia	homogenea	a	se	invicem	distingui	possunt,	dicitur	quantitas”;	“Invenire	est	efficere,	ut	ex	dato	
quodam	 cognito	 aliud	 quoddam,	 quod	 incognitum	 sumitur	 fiat,	 cogitum”;	 and	 “Mathesis	 est	 scientia	 inveniendi	 quantitates”,	
repeting	what	he	had	already	written	 in	his	1755	dissertation:	 “Mathematicus	 itaque	 regulas	 inveniendi	universales	per	naturam	
quantitatum	ut	magis	determinet,	necesse	est,	et	huc	in	finem	sibi	format	scientiam	inveniendi	quantitates,	quae	dicitur	Mathesis”	
(Karsten,	 1755:	 5).	Darjes	wrote,	 concerning	 “to	 find”:	 “Ex	 cogitationibus	datis	 alias	 incognitas	 colligere	dicitur	 invenire.”	 (Darjes,	
1742:	109)	
58	Karsten	even	quoted	constantly	the	1742	work	of	Darjes	in	his	1755	dissertation	(Karsten,	1755),	where	he	exposed	for	the	first	
time	his	conception	of	logic	and	mathematics.	
59	Karsten	wrote:	 “Sublimior	vero	arithmetica,	algebra	etiam	seu	analysis	mathematica	vocata	 signis	utatur	adeo	universalibus;	ut	
cujuscunque	 generis	 magnitudines	 possint	 denotare”;	 and	 “Arithmetica	 est	 scientia	 ex	 datis	 numeris	 cognitis	 inveniendi	 alios	
incognitos	 signorum	 ope	 certaque	 eorundem	 combinatione	 et	 substitutione”,	 “quod	 signa	 in	 Arithmetica	 sint	 determinata	 	 et	
praecipue	tantum	numeris	denotandis	accommodata.”	
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words,	 being	 “quantity”	 a	 more	 general	 concept	 than	 “number”,	 which	 for	 him	 was	 the	

denotation	of	a	“complex	of	several	homogeneous”	(Karsten,	1756:	14),	he	was	able	to	consider	

negative	quantities	in	the	framework	of	general	arithmetic	and	only	then	and	there,	“conceived	

as	 being	 born	 from	 the	 positive	 unity”,	 he	 was	 able	 to	 consider	 negative	 numbers	 (numeri	

negativi):	“in	Analysis	all	the	numbers	either	are	positive	or	negative”	(Karsten,	1760:	272).60	

	

To	make	it	even	clearer,	consider	the	example	offered	by	Karsten	himself:	given	two	–straight–	

lines	!"	and	!",	with	a	relation	of	equality	!" =  !"	but	being	!	and	!	different,	lines	!"	and	
!"	will	 be	 in	opposite	direction	 from	each	other,	 being	one	 indicated	by	 the	 sign	+!	and	 the	
other	with	the	sign	– !.	However,	if	the	quantity	of	one	of	the	lines	!"	and	!"	is	expressed	by	
numbers,	for	example	!",	and	assuming	any	part	of	it	!"	to	be	the	unity	=  +1	and	therefore	
!"	to	be	the	unit	increasing	up	to	+7,	one	can	likewise	consider	the	decrease	of	the	unity,	with	
!" =  !"	being	!	and	!	different	 and,	 as	 a	 consequence,	 with	!"	being	 the	 negative	 unity	
= – 1	and	!" = – 7	(cf.	Karsten,	1760:	272).	
	

As	 that	 example	 also	makes	 clear,	 for	 Karsten	 the	 essence	 of	 the	 quantity	 as	 such	 lay	 in	 the	

“unity”,	 since	 quantity	 precisely	 consisted	 of	 a	 conceivable	 multitude	 of	 unities	 (cf.	 Karsten,	

1755:	10;	Karsten,	1756:	12).	That	way,	within	the	arithmetic	framework,	an	aggregate	(Menge)	

of	whole	units	would	be	 called	an	 integer	number	and	an	aggregate	of	equal	parts	of	 a	unity	

would	be	called	broken	number	or	fraction,	“a	distinction	that	is	not	found	in	the	nature	of	the	

numbers	 themselves”	 (Karsten,	 1767:	 3).61	This	 seems	 to	be	 the	 reason	of	 the	 clarification	on	

negative	quantities	contained	in	his	1768	work:	the	one	of	two	quantities	which	is	indicated	by	

the	negation	of	 the	other,	he	wrote,	usually	called	negative	 (negative)	or	negated	 (verneinte),	

should	properly	be	called	“a	denyingly	expressed	quantity”	(eine	verneint	ausgedrücke	Grösse)	

(Karsten,	 1768B:	 67;	 cf.	 Schubring,	 2005:	 136).	 In	 algebra,	 therefore,	 positively	 and	 denyingly	

expressed	 quantities,	 considered	 in	 themselves,	 were	 for	 him	 different	 but	 of	 the	 same	 kind	

(von	 einerley	 Art)	 considered	 under	 a	 common	main	 concept	 of	 quantity	 (gemeinschaftlichen	

Hauptbegriff)	(Karsten,	1768B:	65).	

																																																													
60	Karsten	 wrote:	 “In	 universa	 autem	 Analysis	 omnes	 numeri	 sive	 positivi	 sunt,	 sive	 negative,	 ex	 unitate	 positiva	 orti	 esse	 sunt	
concipiendi.”	
61	Karsten	wrote:	“Dieser	Unterscheid	ist	in	der	Natur	der	Zahlen	selbst	eigentlich	nicht	gegründet.”	That	this	conception	of	Karsten	
recalls	 that	of	Aristotle	 is	 not	 strange,	 taking	 into	account	his	background.	 For	Aristotle,	 the	number	was	necessarily	 counted	by	
addition	 (Met.	 1081b	 14)	 so	 that,	 in	 absolute	 sense,	 the	 first	 number	was	 the	2	(Phys.	 220a	 27)	 since	 number	was	 a	measured	
plurality	and	1,	as	the	unity,	was	the	beginning	(Met.	1088a	4).	
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Nevertheless,	 Karsten’s	 denomination	 of	 negative	 quantities	 as	 “denyingly	 expressed”	

(verneint),	 an	 opposed	 terminology	 to	 “affirmatively	 expressed”	 or	 “affirmed”	 quantities	

(bejahte),	or	as	“opposite	quantities”	(entgegengesetzte)	(Karsten,	1768B:	64),	makes	patent	the	

prevalence	of	a	geometrical	–and	kinetic–	conception	of	quantity	–and	hence	of	mathematics–	

by	the	first	decades	of	the	second	half	of	the	18th	century.	The	title	of	his	1768	treatise	on	the	

possibility	 of	 logarithms	 of	 negated	 quantities	 (Abhandlung	 von	 den	 Logarithmen	 verneinter	

Größen)	 reaffirms	 this,	 despite	 the	 fact	 that	 throughout	 the	 work	 he	 also	 refers	 to	 negated	

quantities	 as	 “negative	 quantities”	 (negativer	 Grössen)	 and	 even	 as	 “negative	 numbers”	

(negativen	Zahl)	(cf.	Karsten,	1768A:	6ff.,	90,	103,	etc.).	After	all,	according	to	his	1760	work,	it	

was	entirely	possible	within	the	framework	of	mathematical	analysis	to	employ	such	alternative	

designations:	 “The	one	of	 two	quantities	opposed	against	each	other	which	 is	 represented	by	

the	negation	of	the	other”,	he	said,	“is	called	a	negative	quantity”,	even	though,	he	insisted,	one	

“should	say	more	correctly:	a	negatively	expressed	quantity”	(Karsten,	1768A:	8).62	

	

Furthermore,	 not	 only	 the	 terminology,	 but	 the	 very	 notion	 of	 “oppositeness”	 on	 which	 the	

concept	 of	 “negative	 quantities”	 rested	 makes	 explicit	 that	 prevalence	 of	 a	 geometrical	

conception	of	quantity	and	mathematics.	This	was	true	 for	Karsten,	at	 least	until	1768:	“For	 if	

the	!"	is	conceived	to	decrease	continuously,	the	point	!	flowing	toward	!,	finally	!"	becomes	

=  0;	if	the	point	!	now	flows	further	toward	!,	it	gives	rise	to	a	number	which	is	the	opposite	

of	the	unity	!",	[...]	which	is	positive,	and	point	!	coincides	with	!,	becoming	=  +7”	(Karsten,	
1760:	272),63	he	said	when	explaining	the	above-mentioned	example.	Quantities	were	for	him,	

in	short,	inherently	variable.	

	

So,	 while	 despite	 Karsten’s	 starting	 point	 and	 initial	 reference	 author	 differed	 from	 those	 of	

Segner,	 the	 terminology,	 notions	 and	methods	 that	 the	 former	 used	 did	 not	 differ	 too	much	

from	the	ones	used	by	the	latter.	On	the	other	hand,	precisely	all	that	content	reflects	Karsten’s	

above-mentioned	transition	towards	contemporary	conceptions	and	recent	developments.	This,	

in	fact,	is	reinforced:	firstly,	by	the	mention	of	the	authors	that	he	praised	as	references	on	the	

																																																													
62	Karsten	wrote:	 “Diejenige	 von	 zweyten	einander	 entgegen	gesetzten	Grössen,	welche	man	durch	Verneinung	der	 ihr	 entgegen	
gesetzten	anseiget,	heisst	eine	negative	Grösse.	Man	solte	richtiger	sagen:	eine	negative	ausgedruckte	Grösse.”	
63	Karsten	wrote:	“Quodsi	enim	!"	continuo	decrescere	concipiatur,	puncto	!	versus	!	fluente,	tandem	!"	evadet	=  0,	si	punctum	
!	jam	ulterius	versus	!	fluat,	oritur	numerus,	qui	oppositum	ipsius	unitatis	!",	vel	partis	cujusdam	ipsius	aliquotae	in	se	aliquoties	
continet,	qui	est	positivus,	et	puncto	!	cum	!	coincidente,	evadit	=  +7.”	
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subject	of	negative	numbers	(Aepinus,	Hausen,	Segner	and	Kästner),	as	well	as	by	his	references	

to	particular	developments	of	Euler,	d’Alembert	and	Foncenex	made	in	the	same	1768	work	(cf.	

Karsten,	1768A);	 secondly,	by	his	own	testimony	contained	 in	his	curriculum	vitae	of	1766,	by	

which	it	is	known	that	it	was	under	under	the	guidance	of	Aepinus	that	he	began	such	transition	

in	 the	mid-1750s	 and	 that	 it	 was	 actually	 in	 1756	 when	 he	 read	 Euler’s	 work	 on	 differential	

calculus,	although	 it	was	Newton’s	method	of	 ratios	 the	one	 that	he	 finally	 found	satisfactory	

(Schubring,	2005:	247-248);	and,	 thirdly,	precisely	by	earlier	examples	of	his	work,	 such	as	his	

Theory	about	the	projections	of	the	sphere	for	astronomical	and	geographical	use	 (Theorie	von	

den	 Projectionen	 der	 Kugel	 zum	 astronomischen	 und	 geographischen	 Gebrauch),	 from	 1766,	

where	he	quoted	 some	of	 Lambert’s	 procedures,	 and	especially	 his	 1758	work	on	differential	

and	integral	calculus.	

	

To	 begin	with,	 the	 very	 title	 of	 that	 last	work	 of	 Karsten	 shows,	 like	 others	 of	 his	works,	 the	

prevalence	of	a	geometrical	conception	of	quantity	and	mathematics:	An	attempt	to	explain	the	

principles	of	differential	and	integral	calculus	in	such	a	way	that	even	in	this	part	of	theoretical	

mathematics	the	old	geometrical	evidence	can	be	found.64	As	Karsten	stated	at	the	beginning	of	

that	work,	 for	him	 the	 foundations	 (Grundsätze)	 of	differential	 and	 integral	 calculus	were	not	

clearly	established	and	all	their	results	should	therefore	be	obtained	without	the	use	of	infinitely	

small	 quantities	 (cf.	 Karsten,	 1758:	 5	 &	 13-14),	 an	 expression	 for	 variable	 quantities	 which,	

following	 Euler,	 were	=  0	(cf.	 Karsten,	 1758:	 15-16).	 “If	 the	 word	 quantity	 is	 to	 be	 taken	
rigorously”,	wrote	Karsten,	“then	not	only	none	of	the	given	amounts	can	be	=  0,	but	the	result	
must	also	be	a	quantity	and	therefore	not	=  0”,	with	0	as	“a	sign	of	the	absence	of	a	quantity”	
(Karsten,	 1758:	 21).65	Even	more,	 “how	 can	 an	 infinite	0	be	 smaller	 than	 other?”,	 he	 asked	 in	

reference	 to	 Euler’s	 differential	 calculus,	 if	 all	 zeros	 were	 equal	 either	 in	 arithmetic	 or	 in	

geometric	ratio	(Karsten,	1758:	45).	

	

As	 a	 consequence,	 instead	 of	 infinite	 small	 quantities,	 Karsten	 proposed	 the	 consideration	 of	

quantities	 by	 proportional	 rules	 in	 geometric	 terms,	 which	 meant	 the	 consideration	 of	 line	

segments	 and	 segments	of	 figures	–which	 could	be	 interpreted	numerically–	according	 to	 the	

																																																													
64	The	German	title	is:	Ein	Versuch,	wie	man	die	Grundsätze	der	Differential	und	Integralrechnung	so	vortragen	könne,	dass	auch	in	
diesem	Theil	der	theoretischen	Mathematik	die	alte	geometrische	Evidenz	hersche.	
65	Karsten	wrote:	“die	0	aber	keine	Grösse	ist,	sondern	ein	Zeichen	von	der	Abwesenheit	einer	Grösse	[...].	Soll	hier	das	Wort	Grösse	
nach	aller	Strenge	genommen	werden,	so	wird	nicht	nur	keine	von	den	gegebenen	Grössen	=  0	seyn	können,	sondern	es	muss	auch	
das	Resultat	eine	Grösse	und	also	nicht	=  0	seyn.”	
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calculus	 of	 extended	 quantities	 (cf.	 Karsten,	 1758:	 11,	 22,	 39).	 So,	 for	 example,	 for	 a	 given	

triangle	!"#	(cf.	 Annex	 C),	 and	 established	 the	 functions	 for	 each	 of	 its	 straight	 lines,	 he:	 1)	
considered	the	smaller	inserted	triangle	!"#	and	its	corresponding	function;	2)	considered	the	

“difference	 functions”	 for	 the	 triangle	!"#	originated	 by	 the	 extensions	 of	!	and	!,	!"	and	
!"	respectively;	3)	established	equalities	between	the	proportions	of	 the	values	of	 the	 initial	

straight	 lines	!! 	and	!" 	and	 the	 differences	!" 	and	!" 	for	!" 	and	!" ;	 4)	 considered	 the	

reduction	of	 the	differences	 for	 the	 reduction	of	 triangle	!"#	towards	!"#	without	merging,	

that	 is	 without	 turning	 the	 lines	!"	and	!"	=  0;	 5)	 reversed	 the	 tasks	 and	 took	 as	 starting	
point	 the	 sum	 of	 a	 given	 difference	 of	 a	 function	 or	 “integral	!”	 to	 find	 the	 function;	 6)	
considered,	 for	 any	 function,	 the	 general	 form	!"! + !"! + !"! + !"#.	(where	!	is	 variable,	
!,!,!, !"#.	are	constant	quantities	and	the	exponents	can	signal	any	number),	in	order	to	look	

for	the	difference	between	each	term	and	then	sum	all	the	differences	to	obtain	the	function;	7)	

pointed	out	the	importance	of	finding	the	difference	for	!!	or,	in	terms	of	the	binomial	formula,	

(! + !")!,	whose	terms	in	the	series	could	extend	indefinitely;	8)	considered	!",	the	difference	
of	the	function	y,	=	!"! + !"! + !"! + !"#.,	its	expansion	in	series	and	the	grouping	of	terms	

of	 these	 according	 to	 the	 increase	 of	 the	 powers	 of	!",	 having	!" = !"# +  !"#! + !"#! +
!"#.;	9)	concluded	that	such	formula	showed	how,	if	the	exponent	of	!	was	a	negative	(negative	
Zahl)	or	fractional	number,	!"	was	equal	to	an	infinite	series,	while	if	 it	was	a	positive	number	

the	series	would	not	be	infinite	but	only,	maybe,	very	large	(Karsten,	1758:	22-27).	

	

“The	 resolution	 of	 a	 big	 amount	 of	 mathematical	 problems	 requires	 that	!" = 0”,	 noted,	
however,	Karsten,	as	 required	by	 the	 fundamental	 formulas	 (Grund	Formul)	of	 the	differential	

and	integral	calculus	(Karsten,	1758:	27).	The	point	was,	for	him,	that	while	some	could	believe	

no	arithmetic	operations	could	be	performed	with	the	0,	it	could	not	be	assumed,	as	Euler,	that	

2 ∶ 1 = 0 ∶ 0,66	although	!×0 = 0	(cf.	 Karsten,	 1758:	 35-36).	 But,	 as	 he	 admitted,	 contrary	 to	

what	 he	 had	 previously	 defended	 in	 his	 Elements,	 scilicet	 that	0 	could	 be	 assumed	 as	 an	

infinitely	small	quantity,67	an	infinitely	small	quantity	was	not	a	real	one	(würkliche	Grösse),	as	it	

																																																													
66	Euler	wrote	 in	his	 Institutiones	calculi	differentialis:	 “ratio	quidem	arithmetica	 inter	binas	quasque	cyphras	est	aequalitatis,	non	
vero	ratio	geometrica.	Facillime	hoc	perspicietur	ex	hac	proportione	geometrica	2 ∶  1 =  0 ∶  0,	 in	qua	terminus	quartus	est	=  0,	
uti	tertius.	Ex	natura	autem	proportionis,	cum	terminus	primus	duplo	sit	maior	quam	secundus,	necesse	est,	ut	&	tertius	duplo	maior	
sit	quam	quartus”	(Euler,	1755:	78).	
67	Karsten	wrote:	“Ich	hielte	die	unendlich	kleinen	Grössen	für	würkliche	Grössen,	und	sodann	schienen	mir	alle	Schwierigkeiten	zu	
verschwinden.”	
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was	 real	 an	 infinitely	 large	 (ein	 wahrer	 und	 richtiger	 Begrif),	 formed	 from	 operations	 with	

infinite	numbers	expressed	by	the	sign	∞	(cf.	Karsten,	1758:	39-41).	

	

In	 the	 preamble	 of	 that	 work,	 Karsten	 actually	 quoted	 two	 authors	 relevant	 to	 him	 on	 the	

subject,	namely	Hausen	and	Segner:	

	

I	know	very	well	that	Herr	Hausen,	as	well	as	Herr	von	Segner,	have	clearly	show	how	any	quantity	could	be	

regarded	as	a	number,	although	with	the	assumption	that	one	could	imagine	that	every	constant	quantity	is	

composed	of	infinitely	many	infinitely	small	equal	parts.	I	know	that	they	are	entitled,	under	these	conditions,	

to	assume	about	quantities	 in	general	 that	which	 flows	 from	the	concept	of	numbers.	But	 I	also	know	that	

Herr	von	Segner	himself	does	not	absolutely	subscribe	this	presupposition.	(Karsten,	1758:	10)68	

	

Certainly	Segner,	 in	 the	VI	 section	of	his	1747	Deutliche	und	vollständige	Vorlesungen,	 “About	

proportions	 and	 their	 equality”	 (Von	 den	 Verhältnissen,	 und	 deren	 Gleichheit),	 not	 only	

introduced	the	notion	of	“infinitely	small	particles”	(unendlich	kleine	Theilchen),	quantities	that	

were	smaller	than	any	other	that	could	be	given	or	named,	but	he	also	expressed	his	reluctance	

towards	 such	 concept	 (cf.	 Segner,	 1747:	 333-334).	 “Despite	 these	 concepts	 are	 correct	 in	

themselves,	 it	must	 be	 confessed	 that	 they	 cannot	 be	 approved”,	 he	wrote,	 adding	 that	 they	

lacked	“the	clarity	which	must	prevail	everywhere	 in	geometry”	 (Segner,	1747:	334).69	As	 later	

for	Karsten,	for	Segner	the	problem	was	to	consider	those	quantities	as	something	really	close	

to	 nothing	 that	 could	 therefore	 be	 expressed	=  0	but	 still	 be	 something	 in	 itself.	 Instead,	 he	

expressed	 his	 adherence	 to	 the	 “easier	 and	 clearer”	 (leichter	 und	 deutlicher)	 notions	 of	 the	

ancient	 geometers	 for	 the	 comparison	 of	 quantities	 from	 lines	 and	 segments	 of	 them	 (cf.	

Segner,	 1747:	 335-336).	 Which	 in	 turn	 explains	 Karsten’s	 adherence	 to	 Segner’s	 principle	

according	 to	 which	 two	 bodies	 of	 the	 same	 height	 and	 bases	 are	 equal,	 if	 from	 the	 same	

distance	from	their	bases	equal	cuts	are	made	in	them	(cf.	Karsten,	1758:	10-12;	Segner,	1747:	

384ff.):	 instead	 of	 postulating	 infinitely	 small	 quantities	=  0	without	 any	 possible	 geometric	

reference,	 the	 consideration	 of	 segments	 of	 figures,	 and	 the	 proportions	 between	 their	

																																																													
68	Karsten	wrote:	“Ich	weiss	es	gar	wohl,	dass	so	wohl	Herr	Hausen,	als	auch	der	Herr	von	Segner	deutlich	gezeiget	haben,	wie	jede	
Grösse	als	eine	Zahl	betrachtet	werden	könne,	aber	bey	Voraussetzung	dessen,	dass	man	sich	vorstellen	könne,	es	 sey	eine	 jede	
stetige	 Grösse	 aus	 unendlich	 vielen	 unendlich	 kleinen	 gleichen	 Theilen	 zusammengesetzt.	 Ich	 weis,	 dass	 sie	 bey	 diesen	
Voraussetzungen	berechtigt	sind,	was	aus	den	Begriffen	der	Zahlen	fliesst,	von	den	Grössen	überhaupt	anzunehmen.	Ich	weis	aber	
auch,	dass	der	Herr	von	Segner	selbst	diese	Vorausetzung	nicht	so	schlechterdings	billiget.”	
69	Segner	wrote:	“So	richtig	aber	diese	Begriffe	an	sich	sind,	so	muss	man	doch	gestehen,	dass	sie	nicht	bey	allen	Beyfall	finden.	[...]	
Und	man	kan	nicht	in	abrede	seyn,	dass	sie	sich	von	der	Deutlichkeit,	welche	in	der	Geometrie	überall	herrschen	soll.”	
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decreasing	 differences	 and	 the	 values	 of	 initial	 figure’s	 lines,	 allowed	 to	 explain	 those	

differences	mathematically	without	the	presupposition	of	the	concept	of	infinite.	

	

Almost	 10	 years	 later,	 in	 1756,	 Segner	 published	 the	 first	 part	 of	 his	Mathematical	 courses	

(Cursus	Mathematici),	“Elements	of	arithmetic,	geometry	and	geometric	calculation”,	which	was	

followed	by	 another	 four	 parts	 dedicated	 to	 the	 elements	 of	analysis	 finitorum	 or	 analysis	 of	

finite	quantities	 (part	 II),	differential	 calculus	 (parts	 III-IV)	and	 integral	 calculus	 (part	V).	A	 first	

part	that	coincided	in	its	very	structure	and	in	its	content	with	his	1747	work:	the	presentation	

of	 arithmetic,	 geometry	 and	 the	 geometric	 calculation,	 as	well	 as	 the	 definitions	 of	 quantity,	

number,	 proportions,	 ratios,	measures,	 universal	mathematics	 –and	operations–	 and	negative	

quantities	and	numbers	were	practically	the	same	as	in	his	previous	work	(cf.	Segner,	1756).	

	

However,	 the	 mere	 subjects	 that	 nominate	 the	 other	 volumes	 that	 compose	 his	 courses	

constituted	a	novelty	with	respect	to	his	previous	work,	reflecting	a	more	detailed	acquaintance	

with	 the	 mathematical	 developments	 of	 his	 contemporaries,	 e.g.	 Euler,	 Wolff,	 Hausen	 and	

Clairaut	(Segner,	1758:	praefatio	[a6]).	Although	Segner	did	once	again	express	his	reluctance	to	

the	identification	of	infinite	small	quantities	with	0	in	the	preface	of	the	second	volume	(Segner,	

1758:	praefatio	[b4]),	he	used	hereinafter	both	negative	and	infinite	quantities	–and	numbers–	

without	 further	 discussion	 not	 only	 in	 that	 volume,	which	 dealt	with	 literal	 algebra	 itself,	 but	

also	in	the	volumes	dedicated	to	the	analysis	of	infinite	quantities	(both	differential	and	integral	

calculus),	 where	 literal	 algebra	 was	 combined	 with	 special	 symbols	 for	 ‘new’	 objects	 or	

processes,	 such	 as	∞,Δ	and	∫ (cf.	 Segner,	 1758,	 1761	 &	 1768).	 After	 all,	 for	 him:	 first,	 once	

introduced	the	negative	and	infinite	quantities	in	terms	of	line	segments	and	proportions,	they	

could	 legitimately	 be	 used	 in	 all	 those	 other	mathematical	 arts	 encompassed	 under	 the	 term	

analysis;	second,	the	very	beginning	of	an	algebra-letter	course	was	the	proper	place	to	express	

such	disagreement	before	explaining	all	 the	mathematical	developments	on	 finite	and	 infinite	

quantities	related	to	it;	third,	the	binomial	theorem	should	be	introduced	within	the	framework	

of	 analysis	 of	 finite	 quantities,	 since	 initially	 it	 purely	 involved	 finite	 quantities	 denoted	 by	

letters	and	numbers	(cf.	Segner,	1758:	147ff.;	cf.	 infra	B.3.2	&	C.2.2);	and,	fourth,	the	rejection	

of	 that	 assumption	 on	 the	 equality	 between	 infinitesimals	 and	0	was	 the	 proper	 thing	 to	 do	
since	 he	 still	 considered	 negative	 and	 infinite	 –big	 or	 small–	 quantities	 within	 a	 geometrical	

framework	closely	linked	to	curve	construction	problems.	
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During	 roughly	 the	 same	 period	 that	 Segner	 published	 his	Mathematical	 courses,	 it	 was	 said	

before,	 the	 first	 edition	 of	 Kästner’s	 Foundations	 of	 Mathematics	 was	 published:	 the	

foundations	 of	 arithmetic,	 geometry,	 trigonometry	 and	 perspective	 (part	 I),	 in	 1758;	 the	

foundations	of	applied	mathematics	 (part	 II),	 in	1759;	 the	 foundations	of	 the	analysis	of	 finite	

and	 infinite	 quantities	 (part	 III,	 2	 volumes),	 in	 1760	 &	 1761;	 and	 the	 foundations	 of	 higher	

mechanics	and	hydrodynamics	(part	 IV,	2	volumes),	 in	1766	&	1769.	There,	a)	Kästner	defined	

mathematics	as	“the	knowledge	of	the	quantity”,	that	is,	the	knowledge	of	“what	is	capable	of	

augmentation	 or	 reduction”	 (Kästner,	 1758:	 3	 &	 1,	 respectively),	 following	 the	 traditional	

conceptions	 along	 the	 same	 lines	 as	 Wolff,70	and	 b)	 he	 identified	 the	 mathematical	 method	

(whose	study	would	correspond	to	logic)	with	the	Euclidean	or	geometrical	one	and	stated	that	

it	was	in	fact	from	the	developments	carried	out	by	the	ancient	geometers	that	the	new	analysis	

was	developed	(cf.	Kästner,	1758:	16,	12-13	&	4,	respectively).71	

	

In	spite	of	what	such	general	 ideas	might	suggest,	the	content	of	Kästner’s	work	reveals	some	

significant	differences	with	respect	to	the	usual	notions	and	procedures	of	his	time.	So,	while	for	

Kästner,	 as	 for	 Segner	 and	 Karsten,	 the	whole	 numbers	were	made	 from	 units	 that	 could	 be	

divided	in	equal	parts	and,	taken	some	of	these,	could	be	considered	broken	(cf.	Kästner,	1758:	

21-22	 &	 44),	 he	 explicitly	 considered	 the	 arithmetic	 corresponding	 to	 these	 numbers	 and	 its	

parts	 as	 “natural”	 (natürliche	 Arithmetik)	 (Kästner,	 1758:	 58).	 Mathematical	 truths,	 such	 as	

whole	and	broken	numbers,	as	well	as	basic	operations	among	them,	he	said,	could	initially	be	

developed	naturally,	without	instruction,	being	possible	later	to	extend	their	arithmetic	laws	to	

comparable	 quantities	 (cf.	 Kästner,	 1758:	 10	&	 59).	 That	way,	while	within	 the	 framework	 of	

natural	 arithmetic	 a	 bigger	 whole	 number	 could	 not	 be	 subtracted	 from	 a	 smaller	 whole	

number,	once	quantities	of	the	same	kind	were	considered	as	numbers	they	could	diminish	each	

																																																													
70	Kästner	wrote:	 “Was	 einer	 Vermehrung	 oder	 Verminderung	 fähig	 ist,	 heitzt	 eine	Grösse”	 and	 “die	 Erkenntnitz	 der	Grösse;	 die	
mathematische	Erkenntnitz	liesse	sich	also	in	eine	gemeine	und	gelehrte	abtheilen”.	Wolff		wrote:	Grösse	[“Quantitas”]	is	“alles,	was	
sich	vermehren	und	vermindern	lässet”	and	mathematics	is	“eine	Wissenschaft	der	Grössen,	das	heisset,	aller	derjenigen	Dinge,	die	
sich	vergrössern	oder	verkleinern	lassen.”	(Wolff,	1716:	1143	&	863)	
71	I	am	grateful	to	Steve	Russ	for	sending	to	me	a	copy	of	Johan	Blok’s	thesis,	Bolzano’s	Early	Quest	for	A	Priori	Synthetic	Principles.	
Mereological	 Aspects	 of	 the	 Analytic-Synthetic	 Distinction	 in	 Kant	 and	 the	 Early	 Bolzano,	 which	 I	 received	 once	 I	 had	 already	
concluded	my	thesis.	Though	it	might	not	be	the	case,	a	partial	reading	of	Blok’s	work	suggests	that,	throughout	his	work,	he	focuses	
on	Kästner’s	mathematical	method	and	philosophy	to	consider	him	as	a	follower	of	Wolff,	without	any	further	clarification	as	to	the	
relevant	differences	between	their	mathematical	notions	and	practices:	“These	textbooks	stand	in	the	tradition	of	the	widely	used	
textbooks	by	Wolff,	especially	insofar	as	the	methodology	and	philosophy	of	mathematics	are	concerned”	(Blok,	2016:	156-157;	in	a	
footnote	he	mentions	Baasner’s	 remark	about	Kästner’s	acquaintance	of	 the	mathematical	developments	of	his	contemporaries).	
The	present	work	precisely	argues	that	such	a	traditional	reading	of	Kästner	–and	Segner	and	Karsten–	shows	only	part	of	the	whole	
picture.	
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other	 regardless	 their	 size	 (as	 assets	 and	 debts	 or	walking	 forward	 and	 backwards);	 in	which	

case,	 those	quantities	would	be	considered	“opposite”	 (entgegengesetzte	Grössen),	one	being	

called	 “positive	 or	 affirmative”	 (positiv	 oder	 bejahend)	 and	 the	 other	 “negative	 or	 denied”	

(negativ	oder	verneinend)	(Kästner,	1758:	59;	cf.	Schubring,	2005:	134).	

	

This	means,	 first,	 that	 for	Kästner,	 as	 for	 Segner,	 Karsten	and	others,	 the	 concept	of	negative	

quantities	 rested	on	that	of	“oppositeness”	–of	 things–	and,	 therefore,	as	other	aspects	of	his	

work	 will	 show,	 his	 conception	 of	 quantity	 and	 mathematics	 was	 also	 geometrical.	 Which,	

secondly,	 implies	that	he	considered	that	positive	and	negative	quantities	were	homogeneous,	

as	he	had	already	stated	in	his	1739	dissertation:	for	him,	negative	and	positive	quantities	were	

quantities	 of	 the	 same	 type	 whose	 denomination	 or	 expression	 (positive	 or	 negative)	 would	

depend	 on	 their	 relation	 to	 the	 others	 (negative	 or	 positive),	 so	 that,	 for	 example,	 a	 positive	

quantity	could	be	considered	as	the	negation	of	a	negative	one	(cf.	Kästner,	1758:	60).	

	

All	this	in	turn	explains,	on	the	one	hand,	his	denomination	of	a	negative	quantity	as	a	“real”	one	

(wirkliche	Grösse)	and,	on	the	other	hand,	his	distinction	between	“absolute	nothing”	(nihilum	

absolutum)	 and	 “relative	 nothing”	 (nihilum	 relativum)	 (Kästner,	 1758:	 60-61). 72 	Using	 an	

appellation	with	Cartesian	roots,	Kästner	referred	to	negative	–and	positive–	quantities	as	“real”	

inasmuch	as	in	fact	they	quantify	and,	therefore,	truly	exist,	being	possible	to	locate	them	in	the	

horizontal	axis	as	 line	segments	and,	ultimately,	 in	the	Cartesian	plane	as	extension	segments.	

As	a	consequence,	Kästner	wrote,	there	is	a	difference	between	considering	“nothing”	in	itself,	

without	any	relation,	and	considering	 it	with	respect	to	a	quantity,	as	when	a	former	negative	

quantity,	 for	example	a	settled	debt,	 is	 said	 it	was	a	quantity	“less	 than	nothing”	 (weniger	als	

Nichts)	or	less	than	the	present	nothingness	that	it	is.	

	

Even	 more,	 the	 fact	 that	 in	 1758	 Kästner	 did	 not	 state	 from	 the	 very	 beginning	 of	 his	

Foundations	of	arithmetic	 that	the	–inherently	positive–	whole	numbers	or	that	the	quantities	

represented	 by	 positive	 whole	 numbers	 could	 –and	 should–	 be	 considered	 to	 constitute	 a	

specific	class	of	numbers	and	quantities,	seems	to	be	closely	related	to	both	the	absence	of	the	

denomination	of	 such	numbers	as	 ‘natural’	and	 the	presence	of	 the	denomination	of	 “natural	

																																																													
72	Kästner	wrote:	“Diese	Negative,	das	übrig	bleibt,	ist	eine	wirkliche	Grösse,	nur	der	die	als	positiv	betrachtet	wird,	entgegengesetzt.	
[...]	An	sich	selbst	aber	ist	jede	verneinende	Grösse	mehr	als	Nichts,	weil	sie	eine	wirkliche	Grösse	ist.”	
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arithmetic”	for	the	operations	with	them.	It	is	not	that	during	Kästner’s	time	the	denomination	

of	 “natural	 numbers”	 was	 totally	 unusual	 or,	 so	 to	 speak,	 exotic,	 but	 rather	 that	 it	 was	 not	

entirely	 usual	 even	 though,	 on	 the	 contrary,	 the	underlying	 idea	of	 the	 ‘naturalness’	 of	 those	

numbers	was	usual.	And	it	is	not	that	Kästner	himself	did	not	employ	such	denomination	within	

the	 arithmetic	 framework	 throughout	 his	 work,	 because	 he	 did	 refer	 once	 to	 “the	 series	 of	

natural	numbers”	(Kästner,	1758:	144).73	

	

The	 point	 is	 that:	 a)	 just	 as	 the	 initial	 exclusion	 and	 the	 unique	 use	 of	 the	 name	 ‘natural	

numbers’	in	Kästner’s	1758	work	reflect	the	lack	of	consensus	at	the	time	on	that	denomination,	

a	 sort	 of	 historical	 note	 added	 to	 the	 fourth	 edition	of	 that	work	 (in	which	he	 traces	 back	 to	

Aristotle	the	idea	of	“the	numbers	of	the	fingers”	as	the	“most	natural”	numbers	and	quotes	a	

text	from	the	early	17th	century	as	a	reference	on	the	subject	(Kästner,	1786:	27))74	testifies,	 if	

not	 a	 growing	 consensus,	 at	 least	 an	 increasing	use	of	 that	 denomination	by	 the	1780s;	 b)	 in	

addition	 to	 this,	 the	absence	of	a	 specific	name	 for	 the	positive	whole	numbers	 to	distinguish	

them	 from	 the	 negative	 whole	 numbers,	 other	 than	 that,	 highlights	 the	 existing	 reluctance	

towards	the	very	notion	of	“negative	numbers”,	i.e.	towards	their	status	of	‘numbers’:	numbers,	

in	 the	 strict	 sense	 of	 the	 idea,	 were	 for	 him	 (as	 for	 Segner,	 Karsten	 and	many	 others)	 the	 –

positive–	whole	numbers,	 from	which	proper	 (eigentlicher)	or	 rational	–fractions	of–	numbers	

could	be	 formed,	while	 improper	 (uneigentlicher)	or	 irrational	numbers	were	 those	 that	could	

not	be	properly	expressed	by	whole	units	or	aliquote	parts	of	the	unit	(cf.	Kästner,	1758:	76	&	

102);	c)	 the	need	to	explicitly	call	 those	numbers	as	 ‘positive’	only	arose	once	quantities	were	

numerically	 treated,	 giving	 rise	 to	 opposite	 quantities	 that	 either	were	 ‘positive’	 or	 ‘negative’	

and	 that,	 although	 Kästner	 in	 his	 1758	 work	 did	 not	 make	 it	 explicit	 and	 only	 called	 them	

“negative	 quantities”,	 could	 be	 called	 “negative	 numbers”	 instead	 of	 “numerically	 negative	

quantities”	 or,	 as	 Karsten	 would	 say,	 “negatively	 expressed	 quantities”;	 and	 d)	 the	 negative	

quantities	were	real	(as	real	as	the	positive	ones)	but	they	were	not	‘natural’	and	therefore	their	

																																																													
73	Kästner	wrote	in	the	last	section	of	the	part	of	his	work	dedicated	to	“the	art	of	reckoning”:	“Wenn	unter	die	geometrische	Reihe	
N;	die	Reihe	der	natürlichen	Zahlen	so	untergeschrieben	wird,	wie	L	so	heisst	jede	Zahl	in	L	der	Logarithme	der	über	ihr	stehenden	in	
N.”	He	also	referred	to	the	“natürlichen	Zahlen”,	for	example,	in	his	Foundations’	volume	on	the	analysis	of	finite	quantites	(Kästner,	
1760:	59-60).	
74	Kästner	wrote:	“Nach	mehr	spitzfündigen	Ursachen	giebt	er	erst	die	natürlichste,	die	Zahl	der	Finger.”	Similarly,	Wolff	wrote	in	his	
Die	Anfangs-Gründe	aller	mathematischen	Wissenschaften:	“Die	Einheiten	der	Zahlen	stellet	man	sich	anfangs	durch	die	Finger	vor	
und	verrichtet	das	zum	addiren	nöthige	zehlen	so	lange	surch	sie	Finger”	(Wolff,	1717:	39).	It	must	be	said	that	the	text	quoted	by	
Kästner	was	already	mentioned	in	his	Foundations’	volume	on	the	analysis	of	the	infinite	quantities	(cf.	1761:	Vorrede	[15]).	
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arithmetic	 could	 not	 be	 considered	 natural	 but	 an	 extension	 of	 this	 one,	 which	 explains	 the	

specific	appellative	to	refer	to	the	arithmetic	of	numbers	in	the	strict	sense.	

	

Kästner,	as	a	matter	of	fact,	introduced	a	specific	section	for	the	arithmetic	or	calculations	with	

opposite	 quantities,	 explaining	 the	 particularities	 of	 their	 addition,	 subtraction,	multiplication	

and	 division	 (cf.	 Kästner,	 1758:	 62ff.).	 That	 way,	 despite	 having	 defined	 numbers,	 as	 –

sometimes–	Wolff	and	others	did,	as	an	aggregate	of	units	or	 things	of	one	kind75	and	not,	as	

Hausen	–and	even	at	 some	point	 as	Wolff–,	by	 ratios,	he	not	only	did	not	 share	 the	 former’s	

rejection	of	negative	quantities,	but	even,	in	the	preface	to	his	1758	work,	criticized	that	Wolff	

had	founded,	“against	the	method”	(a	sort	of	genetic	method),	“the	doctrine	of	the	fractions	on	

that	of	the	ratios”	(Kästner,	1758:	Vorrede	[6];	cf.	Schubring,	2005:	134,	fn.	76).76	

	

Thus,	although	Kästner	 recognized	 the	 importance	of	Wolff’s	work	 (cf.	Kästner,	1758:	Vorrede	

[3-4]),	 he	was	 critical	 too.	Kästner’s	work	 cannot	 therefore	be	 considered	as	 a	 “more	popular	

and	readable	version”	(Bullynck,	2006:	4)	of	Wolff’s	work,	not	even	in	the	late	1750s	and	much	

less,	as	will	be	shown,	towards	the	last	decades	of	the	18th	century.	A	year	later,	for	example,	in	

the	 “Considerations”	 (Betrachtungen	 über	 die	 Beschaffenheit	 und	 den	 Gebrauch	 des	

analytischen	 Vortrages)	 that	 Kästner	 wrote	 at	 the	 beginning	 of	 a	 textbook	 on	 analytical	

geometry	authored	by	 Johann	Michael	Hube	 (one	of	Kästner’s	students),	he	quoted	Descartes	

and	 Wolff	 as	 examples	 of	 important	 philosophers	 who,	 misled	 by	 the	 expression	 “less	 than	

nothing”,	 “[declared]	 the	 negated	 quantities	 as	 false”:	 them,	 as	 other	 “geometers”	 or	

mathematicians,	he	concluded,	did	not	“distinguish	between	signs	and	things”	(Kästner,	1759B:	

Betrachtungen	[16-17];	cf.	Schubring,	2005:	135,	fn.	77).77	A	similar	distinction	to	that	made	by	

Darjes	 and	 Karsten	 between	 mathematical	 and	 ontological	 commitment	 that	 Kästner	

emphasized	at	the	beginning	of	the	geometry	section	in	his	1758	work,	when	writing	about	the	

mathematical	 study	 of	 extension:	 “It	 is	 not	 necessary	 to	 enter	 here	 into	 metaphysical	
																																																													
75	Kästner	wrote:	“A	collection	of	things	of	one	kind	is	called	a	whole	number”	(“Eine	Menge	von	Dingen	einer	Art,	heisst	eine	ganze	
Zahl”)	(Kästner,	1758:	21).	
76	Kästner	wrote:	“Dass	der	Freyh.	v.	Wolf	die	Lehre	von	den	Brüchen	auf	die	von	den	Verhältnissen	gründet,	ist	ein	grosser	Fehler	
wieder	die	Methode,	weil	die	grösste	Menge	der	Verhältnisse,	Brüche	zu	Exponenten	hat.”	Wolff,	in	fact,	did	found	the	doctrine	of	
fractions	in	that	of	ratios	(cf.	Wolff,	1717:	66ff.),	after	which	he	wrote:	“Wenn	man	ein	ganzes	in	gleiche	Theile	genau	eintheilet	und	
nimmet	einen	oder	etliche	Theile	derselben	/	so	nennet	man	es	einen	Bruch”	(Wolff,	1717:	71).	
77	Kästner	wrote:	“Ist	es	nicht	eine	Demüthigung	für	den	menschlichen	Verstand	dass	Philosophen	wie	Cartes	und	Wolf,	sich	durch	
diesen	 Ausdruck,	 durch	 ein	Wortspiel,	 haben	 verführen	 lassen,	 die	 verneinten	 Grössen	 für	 falsche	 zu	 erklären,	 sie	 aus	 der	 Zahl	
wahrer	Grössen	zu	stossen,	und	wenn	sie	als	Wurzeln	von	Gleichungen	vorkommen,	nicht	in	Betrachtung	zu	ziehen.	[...]	Man	wird	
hier	auf	wunderbare	Sätze	verfallen,	wenn	man	Zeichen	und	Sachen	nicht	unterscheidet,	und	 jene	weiter	statt	dieser	setzt,	als	es	
erlaubt	ist.”	As	will	be	shown	in	the	following	section,	Karsten	made	a	similar	criticism	of	Wolff	towards	the	end	of	his	days,	in	his	
1786	work.	
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investigations	 about	 the	 space	 and	 the	 continuity.	 The	 concept	 of	 geometric	 extension	 is	 an	

abstract	concept	which	remains	true”,	he	wrote,	“regardless	of	how	one	presents	those	things”	

(Kästner,	1758:	157;	cf.	Schubring,	2005:	242).78	

	

Precisely,	 when	 Kästner	 discussed	 the	 “law	 of	 continuity”	 (Gesetz	 der	 Stetigkeit)	 in	 his	

Foundations’	 volume	 on	 higher	 mechanics,	 he	 expressed	 his	 reluctance	 towards	 its	 proof	 by	

induction	 from	 the	 empirical:	 “Whether	 one	 is	 justified	 to	 extend	 [the	 apparent	 empirical	

evidence	 of	 the	 law	 of	 continuity]	 to	 everything	which	 does	 not	 fall	 under	 our	 experience	 as	

well,	 I	want	to	 leave	 it	 to	everyone’s	own	 judgment”	 (Kästner,	1766:	353;	cf.	Schubring,	2005:	

183).79	By	 contrast,	 Kästner	 considered	 that	 in	 abstract	 mathematics	 ambit,	 specifically	 in	

geometry,	 continuity	 should	 be	 defined	 in	 non-empirical	 terms	 and	 correctly	 deduced	 from	

concepts.	So,	concerning	the	first	of	these	requirements,	a	continuous	quantity	was,	for	him	as	

for	Hausen,	“one	whose	parts	are	all	connected	in	such	a	way	that	where	one	finishes,	the	other	

immediately	begins,	and	there	 is	nothing	between	the	one’s	ending	and	the	other’s	beginning	

not	belonging	to	this	quantity”	(Kästner,	1758:	157;	cf.	Hausen,	1734:	87).80	That	meant,	as	he	

went	to	explain	in	his	book	on	higher	mechanics,	that	the	law	of	continuity	both	prohibited	the	

altered	 thing	 to	 forthwith	 change	 from	 one	 state	 to	 another	 and	 required	 that	 each	 of	 the	

innumerable	 many	 intermediate	 states	 differed	 infinitely	 little	 from	 what	 Kästner	 somehow	

considered	 its	 next	 state	 (jedem	 von	 seinen	 nächsten	 unendlich	wenig	 unterschieden	 vor)	 (cf.	

Kästner,	1766:	354-355).81	

	

Which,	the	latter,	in	turn	explains,	on	the	one	hand,	Kästner’s	assumption	of	the	mathematical	–

or	 geometrical–	 curves	 as	 inherently	 continuous	 and,	 on	 the	 other	 hand,	 his	 conception	 of	

infinitely	 small	 quantities.	 For	 him,	 while	 in	 geometry	 the	 law	 of	 continuity	 was	 always	

respected	in	the	case	of	curved	lines,	it	could	not	be	respected	in	lines	of	rectilinear	figures	since	
																																																													
78	Kästner	wrote:	 “Es	 ist	nicht	nöthig,	 sich	hier	 in	metaphysische	Untersuchungen	der	Raumes	und	der	Stetigkeit	einzulassen.	Der	
Begriff	 der	 geometrischen	 Ausdehnung	 is	 ein	 abstracter	 Begriff,	 welcher	 richtig	 bleibt,	 wie	 man	 auch	 sonst	 diese	 Dinge	 sich	
vorstellen	will.”	
79	Kästner	wrote:	 “Ob	man	 dieserwegen	 berechtiget	 sey,	 es	 auf	 alles	 zu	 erstrecken,	was	 auch	 nicht	 unter	 unsere	 Erfahrung	 fällt,	
davon	will	ich	jedem	sein	Urtheil	überlassen.”	Indeed,	in	his	autobiography,	Kästner	criticized	Hausen’s	satisfaction	with	inductions,	
while	,	he	wrote,	“I	was	never	satisfied	myself	before	I	had	shown	the	general	correctness	of	the	same”	(Schubring,	2005:	242).	
80	Kästner	wrote:	“Eine	stetige	Grösse	(continuum)	heisst,	deren	Theile	alle	so	zusammenhängen,	dass,	wo	einer	aufhöret,	gleich	der	
andere	anfängt,	und	zwischen	des	einen	Ende	und	des	andern	Anfange	nichts	ist,	das	nicht	zu	dieser	Grösse	gehörte.”	Hausen	wrote:	
“Continuum	est,	cujus	partes	quaevis	vel	conterminae	sunt,	vel	interjectas	habent	ipsis	&	inter	se	conterminas.”	
81	Kästner	wrote:	“Nun	verbietet	das	Setzes	der	Stetigkeit	der	Sache,	die	verändert	wird,	sogleich	aus	jenem	in	diesem	überzugehen.	
Sie	muss	durch	einen	mittlern	Zustand	durchgehn,	der	vom	vorhergehenden	nicht	soviel	unterschieden	ist,	als	der	folgende.	[...]	So	
lange	 die	 Menge	 dieser	 Zwischenzustände	 sich	 angeben	 lässt,	 so	 lange	 lässt	 sich	 auch	 jedes	 Unterschied	 von	 seinem	 nächsten	
angeben:	Also	muss	ihre	Menge	grösser,	als	jede	gegebene	Menge	werden,	wenn	diese	Unterschiede	verschwinden	sollen,	und	so	
stellt	man	sich	unzählich	viel	Zustände,	jedem	von	seinen	nächsten	unendlich	wenig	unterschieden	vor.”	
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“no	point	[could]	circulate	the	circumference	of	a	quadrangle	or	triangle”	(Kästner,	1766:	353-

354;	 cf.	 Schubring,	 2005:	185).82	In	other	words,	while	 any	point	on	a	 curved	 line	was	able	 to	

move	through	 it	or	any	of	 its	segments	without	experiencing	a	sudden	change	 in	 its	trajectory	

but	 experiencing	 a	 continuous	 one,	 the	 path	 described	by	 the	 lines	 composing	 the	 rectilinear	

figures	entailed	those	sudden	changes	and,	as	a	consequence,	made	such	continuous	variability	

impossible.	

	

At	the	same	time,	nonetheless,	considered	only	a	segment	of	a	curved	line	or	a	segment	of	one	

of	the	lines	of	a	rectilinear	figure,	that	is,	considered	a	straight	or	curve	line,	its	extremes	could	

be	taken	as	the	limits	of	its	continuous	variability	and,	once	numerically	quantified,	one	of	those	

extremes	could	be	identified	with	the	limit	of	decreasing	segments	closer	and	closer	to	nothing	

or	0.	Thus,	just	as	irrational	numbers	could	be	expressed	as	the	product	of	a	bigger	and	bigger	

whole	 number	 and	 a	 smaller	 and	 smaller	 fraction	 of	 1,	 as	 for	 example	 3! = 17 ∙ !!" = 173 ∙
!
!"" = 1732 ∙ !

!"""	and	so	on	(a	number	which	could	be	narrowed	as	much	as	desired,	considered	

the	closest	rational	numbers	to	it,	as	1.7320508	and	1.7320509	for	 3! )	(cf.	Kästner,	1758:	121-

122),	 infinitely	 small	 quantities	 could	 be	 expressed	 as	 quantities	 of	 different	 orders	 that	

infinitely	 decrease,	 meaning	 infinitely	 small	 terms	 that	 gradually	 vanish	 (verschwinder)	 (cf.	

Kästner,	1761:	2ff.).83	For	example,	he	said,	given	the	proportion	
!
!! ∶

!
!!!!,	with	!	infinite,	 the	

quotient	 of	 the	 second	 ratio	 vanishes	 in	 comparison	 to	 the	 quotient	 of	 the	 first,	 each	

constituting	 a	 different	 order	 (cf.	 Kästner,	 1761:	 5).	Which,	 translated	 to	 differential	 calculus,	

referred	 to	 each	 term	 of	 a	 given	 series	 ! ∙ !!!! + !∙ !!!
! ∙ ! ! ∙ !!!! + !∙ !!! ∙ !!!

! ∙ ! ∙ ! !! ∙

!!!! +⋯,	in	a	similar	way	as	Euler	did	(Kästner,	1761:	10;	cf.	Euler,	1755:	15).	

	

All	 these	 considerations	 reaffirm	 that	 while	 it	 is	 true	 that	 during	 the	 18th	 century	 a	 sort	 of	

degeometrization	 process	 of	 analysis	 took	 place	 in	 Europe,	 it	 is	 also	 true	 that	 the	 works	 of	

																																																													
82	Kästner	wrote:	“das	Gesetz	der	Stetigkeit	in	der	Geometrie,	wird	bey	krummen	Linien	unverbrüchlich	in	Acht	genommen	[...].	Ist	es	
schlechterdings	unmöglich,	 dass	 ein	Punct	 seinen	Weg	plötzlich	 ändert,	 so	 kann	kein	Punct	 in	dem	Umfange	eines	Vierecks	oder	
Dreyecks	herumgehen.”	
83	Concerning	a	 couple	of	 reflections	made	by	Kästner	on	an	 infinitely	 small	 chord	and	 infinitely	 small	 quantities	 in	 general,	Gert	
Schubring	wrote:	“These	reflections,	first	published	in	1758,	are	remarkable	not	only	for	their	operationalization	of	the	concept	of	
continuity	within	mathematics,	but	also	for	their	clear	definition	of	infinitely	small	quantities	as	variables	having	the	limit	null.	We	
have	not	found	a	comparable	explicitness	in	the	contemporary	reflections	in	France”	(Schubring,	2005:	244).	However,	while	those	
reflections	do	correspond	to	Kästner’s	volume	on	arithmetic	and	geometry,	they	do	not	correspond	to	the	1758	edition,	nor	to	the	
one	 of	 1764,	 and	 only	 appeared	 for	 the	 first	 time	 in	 later	 editions	 (cf.	 Kästner,	 1786:	 279-280),	 as	will	 be	 discussed	 in	 the	 next	
section.	
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Aepinus,	 Darjes,	 Segner,	 Karsten	 and	 even	 Kästner	 show	 that,	 at	 least	 with	 regard	 to	 the	

Germanic	states,	strictly	speaking	it	cannot	be	said	that	“curve	construction	problems	belonged	

to	a	field	of	mathematical	activity,	flourishing	from	c.	1635	to	c.	1750”	(Bos,	2001:	10).	Curves,	

quadratures,	 tangents	 were	 still	 at	 the	 core	 of	 those	 Germanic	 authors’	 works	 on	 infinite	

quantities	analysis	by	c.	1770,	whereby	a)	20	years	 is	a	period	that	should	not	be	neglected	 in	

the	history	of	mathematics	because	of	an	approximation,	as	b)	it	should	not	be	overlooked	the	

relevance	 of	 the	 work	 of	 those	 authors,	 since	 they	 were	 teaching	 then	 a	 geometrically	

dependent	 infinite	 analysis	 not	 only	 at	 regionally	 important	 universities	 such	 as	 Rostock	 and	

Bützow,	but	also	at	Göttingen	and	Halle,	the	two	main	Germanic	universities	by	that	time.	The	

whole	content	(terminology,	concepts,	procedures)	of	their	works	makes	patent	the	prevalence	

of	 a	 semantic-ontological	 notion	 of	 quantity	 eminently	 variable	 and,	 for	 them,	 interpretable	

primarily	in	geometric	terms.	

	

	

B.2.3.	Their	works	from	the	early	1770s	to	the	late	18th	century	

	

	

Before	his	death,	 in	1777,	Segner	published	an	enhanced	and	 improved	German	translation	of	

the	first	volume	of	his	Mathematical	courses84	in	which,	unlike	his	previous	German	works	from	

1747	 and	 1767,	 he	 solely	 used	 the	 denomination	 of	 negative	 (Negativ)	 quantities	 –and	

numbers–	and	not	 anymore	 the	one	of	 “privative”	 (cf.	 Segner,	 1773:	24ff.).	 This	modification,	

despite	being	a	minor	one	and	regardless	of	whether	for	Segner	involved	a	modification	of	the	

underlying	 idea	 or	 notion,	 draws	 attention	 to	 the	 fact	 that	 just	 as	 there	 is	 no	 necessary	

correlation	between	one	and	the	other	change,	neither	is	there	between	their	absence.	

	

In	 the	 case	 of	 Segner,	 the	 rest	 of	 the	 content	 of	 that	 work	 makes	 clear	 that	 such	 omission,	

although	 perhaps	 was	 a	 simplification	motivated	 by	 the	 increasing	 use	 of	 the	 designation	 of	

“negative	quantities”,	did	not	 imply	anything	more.	Thus,	 the	aforementioned	transition	 in	his	

mathematical	 works	 remained	 constrained	 to	 the	 adoption	 of	 particular	 new	 developments	

within	 the	 framework	 outlined	 by	 his	 general	 conceptions	 of	 mathematics,	 quantities	 and	

																																																													
84	Foundations	of	arithmetic,	geometry	and	geometric	calculations	(Anfangsgründe	der	Arithmetic,	Geometrie	und	der	geometrischen	
Berechnungen),	from	1773.	
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numbers.	 On	 the	 contrary,	 inasmuch	 as	 at	 the	 time	 the	 mathematical	 works	 of	 Karsten	 and	

Kästner	 also	 reflected	 a	 certain	 acquaintance	 about	 new	 developments	 and	 they	 lived	 a	 few	

decades	 longer	 than	 Segner,	 it	 is	 worth	 asking	 if	 their	 works	 from	 c.	 1770	 onwards	 showed,	

albeit	slight,	a	change	in	their	stance	on	quantities	and	numbers.	

	

Karsten,	for	example,	published	a	second	edition	of	his	volumes	on	the	conceptual	framework	of	

mathematics	 (Lehrbegrif	 der	 gesamten	 Mathematik),	 an	 expanded	 and	 improved	 version	 of	

these	 under	 the	 title	 Foundations	 of	 mathematical	 sciences	 (Anfangsgründe	 der	

mathematischen	Wissenschaften),	 an	 excerpt	of	 both	works	 (Auszug	aus	den	Anfangsgründen	

und	 dem	 Lehrbegriffe	 der	Mathematischen	Wissenschaften)	 and	 some	mathematical	 treatises	

on	some	of	the	most	recent	developments	of	the	time	(Mathematische	Abhandlungen),	such	as	

the	infinitely	small	and		the	negative	quantities.	

	

As	it	turns	out	from	that	brief	description,	among	those	works	the	only	one	that	can	strictly	be	

considered	“original”	is	the	last	one,	of	the	year	prior	to	his	death,	while	among	the	rest	of	them	

the	 ones	 of	 which	 it	 could	 be	 expected	 some	 novelty	 are	 his	 Foundations	 of	 mathematical	

science	 and,	 as	 a	 consequence,	 its	 –at	 least	 partially–	 excerpt.	 In	 this	 last	 work,	 however,	

Karsten’s	previously	discussed	general	framework	was	not	modified:	a)	mathematics,	arithmetic	

and	geometry	were	understood	as	in	his	previous	works	(cf.	Karsten,	1780	I:	2,	3	&	348;	Karsten,	

1781:	1);	b)	the	first	fundamental	concepts	of	quantity	and	number	were	defined	as	before	(cf.	

Karsten,	 1780	 I:	 2);85	c)	 –positive–	 whole	 numbers,	 which	 could	 be	 considered	 abstractly	 or	

concretely,	were	 still	 understood	 as	 the	 numbers	 par	 excellence	 from	which	 broken	numbers	

were	 formed	 (cf.	 Karsten,	 1780	 I:	 5);	 d)	 zero	 remained	defined	 as	 the	 sign	of	 an	 empty	place	

(leeren	Stelle)	(cf.	Karsten,	1780	I:	19;	Karsten,	1781:	9);	e)	the	introduction	of	incommensurable	

quantities	 and	 irrational	 numbers	 corresponded	 to	 the	 section	 on	 geometrical	 ratios,	

proportions	 and	 progressions	 (cf.	 Karsten,	 1780	 I:	 185-189);	 f)	 the	 definition	 of	 continuous	

quantity	was	only	introduced	within	the	geometric	framework	(cf.	Karsten,	1780	I:	351);	g)	in	the	

absence	of	a	specific	part	dedicated	to	analysis,	negative	quantities	were	introduced	within	the	

geometric	framework	and	once	again	defined	as	“a	denyingly	expressed	quantities”	(cf.	Karsten,	

1780	 I:	 372-378;	 Karsten,	 1781:	 189);	 and	 h)	 infinite	 quantities	 were	 introduced	 within	 the	

																																																													
85	Karsten	wrote:	“Der	Begrif	von	dem,	was	eine	Zahl	sey,	und	der	noch	allgemeinere	Begrif	von	einer	Grösse	überhaupt,	gehören	zu	
den	ersten	Grundbegriffen	der	Mathematik.”	
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framework	of	general	arithmetic	as	broken	numbers	with	a	determined	number	by	numerator	

and	a	vanishing	denominator	(cf.	Karsten,	1781:	195).86	

	

Nevertheless,	 some	 aspects	 of	 Karsten’s	mathematical	 works	 since	 c.	 1770	 deserve	 a	 careful	

attention	due	to	their	link	with	his	latest	work’s	content.	To	begin	with,	it	must	be	noticed	that	

the	notion	of	continuity	employed	by	Karsten	to	define	the	transition	from	a	positive	quantity	to	

a	 negative	 one	 was	 defined	 as	 Hausen	 and	 Kästner	 did:	 when	 the	 parts	 of	 a	 quantity	 are	

connected	in	such	a	way	that	where	one	ceases	at	the	same	time	the	next	one	begins	without	

something	 between	 them	which	 does	 not	 belong	 to	 that	 quantity,	 Karsten	 said,	 it	 is	 called	 a	

continuous	 quantity	 (cf.	 Karsten,	 1767:	 209;	 1780	 I:	 351).87	But,	 unlike	 those	 two	 authors,	

Karsten	did	not	explicitly	place	the	notion	of	continuity	among	the	fundamental	geometric	ones	

in	his	works	of	1767	and	1780,	and	he	even	dispensed	with	it	in	his	abstract	of	1781,	although	he	

considered	 it	 essential	 in	 theoretical	mathematics	 (theoretischen	Mathematik).	 As	 he	made	 it	

clear	 both	 in	 his	 Lehrbegriff’s	 volume	 on	 further	 implementations	 of	 the	 art	 of	 reckoning	 (cf.	

Karsten,	1768B:	95)88	and	in	the	one	on	the	mechanic	of	solid	bodies	(cf.	Karsten,	1769B:	223;	cf.	

Schubring,	2005:	249),89	the	inherent	variability	of	abstract	quantities	depended	on	the	so-called	

“law	 of	 continuity”	 (Gesetz	 der	 stetigkeit),	 according	 to	 which	 the	 variations	 of	 a	 quantity	

occurred	bit	by	bit	(nach	und	nach),	gradually,	without	a	sudden	or	abrupt	(plötzlich)	change.	

	

Precisely,	 the	 explicit	 absence	 of	 that	 concept	 among	 the	 fundamental	 ones	 in	 those	 works	

contrasts	 with	 its	 inclusion	 among	 the	 very	 first	 mathematical	 notions	 in	 his	 Elements	 of	

Universal	Mathematics	from	1756:	“That	beyond	which	nothing	more	in	a	thing	is	conceived	to	

belong	 to	 the	 same	 is	 called	 the	 boundary,	 end,	 limit.	 Parts	 of	 a	 quantity	 either	 are	 joined	

together	by	a	 common	 term,	or	not.	 If	 the	 former,	quantity	 is	 called	 continuous;	 if	 the	 latter,	

discrete”	 (Karsten,	1756:	12-13).90	Which	 in	 turn	makes	explicit	 the	 relevance	of	 the	notion	of	

continuity	for	the	development	of	new	concepts	and	procedures,	as	he	explained	in	one	of	the	

																																																													
86	Karsten	wrote:	“Ein	Bruch	wird	unendlich	gross,	wenn	sein	Zähler	eine	bestimmte	Grösse	hat,	sein	Nenner	aber	verschwinder.”	
87	Karsten	wrote:	“Wenn	die	Theile	einer	Grösse	so	mit	einander	zusammenhängen,	dass	da,	wo	der	eine	aufhört,	zugleich	der	andre	
anfängt,	und	zwischen	beyden	nichts	vorhanden	ist,	das	zu	dieser	Grösse	nicht	gehört:	so	heist	sie	eine	stetige	Grösse.”	
88	Karsten	wrote:	“Wenn	eine	Gröze,	z.	E.	Eine	Linie	!"	als	eine	veränderliche	Grösse	betrachtet	wird,	und	man	setzt,	sie	habe	sich	
um	 ein	 gewisses	 stück,	 z.	 E.	!"	geändert:	 so	 nimt	 man	 in	 der	 allgemeinen	 Rechenkunst	 als	 eine	 Vorausetzung	 an,	 dass	 diese	
Veränderung	nicht	plötzlich	geschehe.”	
89	Karsten	wrote:	“Man	stellet	sich	nemlich	in	der	theoretischen	Mathematik	(41	§.	A.	R.)	alle	Veränderungen,	die	mit	einer	Grösse,	
indem	sie	wächst,	oder	abnimmt,	vorgehen,	als	solche	vor,	die	nicht	plötzlich	geschehen.	[...]	Man	nennt	diese	Regel:	das	Gesetz	der	
Stetigkeit.”	
90	Karsten	wrote:	“Ultra	quod	nil	amplius	in	re	concipere	licet	ad	eandem	pertinens	dicitur	terminus,	finis,	 limes.	Partes	quanti	aut	
communi	termino	copulantur,	aut	non;	si	prius,	quantum	vocatur	continuum,	si	posterius,	discretum.”	
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paragraphs	on	negative	quantities	 in	his	1780	work.	There,	Karsten	pointed	out	that	while	the	

ancient	geometers	did	not	use	the	concept	of	opposite	quantities	(entgegengesetzten	Grössen)	

and	 because	 of	 this	 they	 had	 no	 reason	 to	 use	 the	 addition	 and	 subtraction	 procedures	 in	 a	

general	sense,	the	new	geometers	were	able	to	apply	the	later	developed	higher	arithmetic	to	

geometry,	constituting	a	general	mathematical	practice	called	analysis	(cf.	Karsten,	1780	I:	377-

378).91	Put	another	way,	the	notion	of	quantity	could	be	extended	to	include	negative	ones,	to	

which	 in	 turn	 arithmetical	 procedures,	 adapted,	 could	 be	 applied,	 being	 even	 possible	 to	

consider	them	numerically.	

	

Not	 only	 that,	 but	 without	 the	 notions	 of	 a	 variable	 quantity	 and	 its	 limit,	 the	 concept	 of	

infinitely	small	quantities	would	not	make	sense.	As	Karsten	wrote	 in	1768,	 in	his	Lehrbegriff’s	

section	on	the	expressions	of	the	 infinite	(Von	den	Ausdrücken	des	Unendlichen),	considered	a	

constantly	 decreasing	 quantity	 (beständig	 abnehmende	 Grösse),	 or	 a	 decreasing	 geometrical	

progression	 (cf.	 Karsten,	 1780	 I:	 210),	 the	 last	 of	 all	 the	 terms	or	members	 (ein	Glied	 vor	das	

unter	allen	das	letzte)	to	which	it	will	perpetually	approach	until	it	ceases	to	be	a	quantity	(wenn	

sie	 aufhört	 eine	 Grösse	 zu	 seyn)	 will	 be	 the	 limit	 (Grenze)	0,	 being	 called	 that	 quantity	 an	
infinitely	 small	 (eine	 unendlich	 kleine	 Grösse)	 (Karsten,	 1768B:	 88).	 A	 vanishing	 fraction	

(verschwindender	Bruch)	or	an	infinitely	small,	he	added,	would	be	for	example	
!
!,	which	would	

agree	with	his	previous	stance	on	such	quantities:	inasmuch	as	infinitely	small	quantities	always	

quantify	something,	they	could	not	be	identified	with	0.	What	does	not	seem	to	agree	with	this	

is	 his	 later	 statement	 that	 “a	 fraction	 is	 infinitely	 large	 when	 its	 numerator	 is	 finite,	 but	 its	

denominator	is	infinitely	small,	or	=  0”,	despite	his	explanation	that	once	reached	the	limit	0	by	

the	 denominator	! ,	 the	 fraction	!! 	must	 reach	 the	 limit	= ∞,	 “over	 which	 it	 cannot	 grow”	

(Karsten,	1768B:	89-90):	how	else	could	the	fraction	
!
!	reach	the	limit	= ∞	but	identifying	!	with	

0	as	an	infinitely	small	quantity?	

	

																																																													
91	Karsten	wrote:	“Die	alten	Geometer	haben	die	Begriffe	von	den	entgegen	gesetzten	Grössen	 in	 ihren	Schriften	nicht	gebraucht:	
eben	 deswegen	 hatten	 sie	 keine	 Veranlassung,	 die	 Begriffe	 von	 dem,	 was	 addiren	 und	 subtrahiren	 heisst,	 in	 einem	 so	 sehr	
allgemeinen	 Sinn	 zu	 nehmen,	wie	 hier	 die	 Sache	 ist	 vorstellig	 gemacht	worden.	 Es	 sind	 dies	 Vorstellungsarten,	wozu	 die	 neuern	
Geometer	 vornemlich	 seit	der	Zeit	 sind	veranlasset	worden,	da	man	angefangen	hat,	die	höhere	Rechenkunst	auf	die	Geometrie	
anzuwenden,	ja	beyde	Wissenschaften	gewissermassen	auf	eine	solche	Art	mit	einander	zu	verbinden,	dass	daraus	eine	allgemeine	
mathematische	Erfindungskunst	geworden	ist,	die	in	den	folgenden	Theilen	dieses	Lehrbuchs	unter	dem	Nahmen	der	allgemeinen	
Mathematischen	Analysis	wird	vorgetragen	werden.”	
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In	 fact,	 in	his	work	of	1758	on	differential	 and	 integral	 calculus	he	had	already	addressed	 the	

issue,	explaining	back	then	that	while	the	concept	of	an	infinitely	large	quantity	as	the	quotient	

arose	from	the	division	of	any	number	by	0	(that	 is	!! = ∞)	was	true	and	correct,	 the	so-called	

infinitely	small	numbers	or	
!
! = 0	were	not	quantities	at	all	(es	ist	würklich	gar	keine	Grösse)	(cf.	

Karsten,	1758:	40	&	42).	 For,	he	wrote,	 if	 one	divides	!	by	0	and,	 according	 to	 the	 concept	of	
division	 which	 sets	! = !

! = !×1 	or	! = ! ∶ 1 = !×1 	(cf.	 Karsten,	 1767:	 41ff.), 92 	one	 sets	

0 ∶ 1 = ! ∶ !!	to	obtain	the	latter	terms	(1	and	
!
!)	from	the	former	(0	and	!,	respectively),	just	as	

1	cannot	be	obtained	from	0,	neither	!!	can	be	obtained	from	!.	 In	other	words,	he	said,	given	

that	however	 large	it	 is	considered	to	be	!,	!!	will	never	be	obtained	from	it,	
!
!	cannot	be	other	

than	an	infinite	number	(keine	andre,	als	eine	unendliche	Zahl	seyn),	namely	an	infinitely	large.	

That	way,	assigned	the	sign	∞	to	express	an	infinite	number,	it	was	obtained,	firstly,	
!
! = ∞	and,	

secondly,	
!
! = 0,	 by	 which,	 once	 again	 according	 to	 the	 concept	 of	 division,	 one	 could	 set	

1 ∶ ∞ = !
! ∶ !	to	obtain	the	latter	terms	(∞	and	!)	from	the	former	(1	and	

!
!,	respectively).	But,	

as	in	the	first	case,	just	as	an	infinite	number	could	not	be	obtained	from	1,	neither	!	could	be	
obtained	 from	

!
!,	 being	necessarily	

!
! = 0	unless,	 he	 added,	 that	 for	!!	it	was	 set	 an	 arbitrarily	

small	 number	 (“a	 number	 as	 small	 as	 one	would	 like”,	eine	 Zahl	 so	 klein	 als	man	will)93	from	

which,	 on	 the	 contrary,	 it	 would	 be	 possible	 to	 obtain	!.	 Therefore,	 he	 concluded,	 while	 by	
resemblance	 to	 an	 infinitely	 large	number	

!
!,	

!
!	could	be	 called	an	 “infinitely	 small	 number”,	 it	

should	not	be	believed	that	the	latter	is	a	quantity	when	it	is	not	(cf.	Karsten,	1758:	40-42).	

	

To	 make	 it	 clear,	 Karsten,	 as	 previously	 commented,	 rejected	 infinitely	 small	 quantities	

considered	=  0	or,	 in	 other	 terms,	 considered	 as	
!
! = 0,	 since	 for	 him,	 conceived	 in	 this	way,	

they	did	not	express	any	quantity	as	they	would	express	if	on	the	contrary	they	were	identified	

with	an	arbitrarily	 small	 quantity,	 in	which	 case	 it	would	be	necessary,	 to	put	 it	 somehow,	 to	

place	
!
! = (arbitrarily	increasing	small	quantity),	with	! =	a	finite	quantity	and	∞ =	an	infinitely	

large	quantity.	Precisely,	Karsten’s	procedure	based	on	the	decrease	of	numerically	interpreted	

line	 segments	 and	 segments	 of	 figures	 constituted	 his	 attempt	 to	 legitimately	 express	 those	
																																																													
92	Here	Karsten	designates	division	by	“:”,	a	notation	that	was	still	common	then	and	that	goes	back	at	 least	to	Leibniz	(cf.	Leibniz	
GM	III,	p.	526;	Euler,	1748:	37).	That	way,	3×2 ∶ 2 = 3.	On	the	history	of	the	various	notations	for	division,	cf.	(Cajori,	1993).		
93	Karsten	wrote:	 “Denn	man	 setze	 für	

!
!	eine	 Zahl	 so	 klein	 als	man	will,	 so	 bleibt	 es	 noch	 immer	möglich,	 dass	!	aus	 derselben	

entstehen	kan,	welches	bey	der	0	nur	unmöglich	ist.”	
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increasingly	 small	 quantities	once	 correctly	 conceptualized.	Which,	however,	 does	not	 explain	

why	 for	him	an	 infinitely	 large	quantity,	 considered	as	
!
! = ∞,	was	a	 true	and	correct	 concept	

since	 the	 only	way	 that	 the	 sign	∞	could	mean	 an	 infinitely	 large	 quantity,	 given	! =	(a	 finite	
quantity),	would	be	identifying	0	with	an	infinitely	small	quantity	(cf.	Euler,	1755:	83),	that	is,	to	

admit	and	use	just	what	he	intended	to	avoid.	

	

His	 treatise	 on	 the	 mathematical	 infinite,	 published	 in	 his	 1786	 work,	 not	 only	 reflects	 that	

tension	between	the	mere	incorporation	or	in	some	cases	the	adaptation	of	new	concepts	and	

procedures,	 and	 the	 criticism	 or	 even	 the	 rejection	 of	 some	 of	 them,	 but	 also	 constitutes	

Karsten’s	own	testimony	about	 it.	Thus,	on	the	one	hand,	when	explaining	Euler’s	proposal	on	

infinitesimals,	 Karsten	 pointed	 out	 that	 although	 by	 1758	 he	 had	 already	 thought	 about	

infinitely	 small	 quantities	 as	 he	 did	 at	 the	 time	 (namely	 in	 a	 way	 that	 could	 be	 properly	

explained	and	traced	back	to	the	method	of	exhaustion	of	the	ancients),	and	furthermore,	even	

though	 by	 then	 he	 already	 knew	 Newton’s	 method	 of	 limits	 of	 ratios	 and	 thought	 on	 the	

possibility	 of	 considering	 limits	 of	 variable	 ratios	 based	on	 Euler’s	 differential	 ratios,	 his	 great	

respect	for	this	latter	and	his	little	self-confidence	led	him	to	merely	show	how	the	defenders	of	

the	 infinitesimals	could	 justify	 them	(Karsten,	1786:	93-94).	The	content	of	his	previous	works	

corroborates	 both	 his	 acquaintance	 of	 those	 authors’	 proposals	 and	 the	 development	 of	 his	

own,	 while	 his	 aforementioned	 curriculum	 vitae	 of	 1766	 not	 only	 corroborates	 his	 early	

dissatisfaction	with	Euler’s	infinitesimals	and	his	preference	for	Newton’s	method	of	ratios,	but	

also	traces	back	to	Aepinus	both	his	reluctance	towards	infinitesimals	and	his	conviction	that	the	

results	 involving	 them	 could	 always	 be	 obtained	 by	 means	 of	 the	 method	 of	 Archimedes	

(Schubring,	2005:	247;	cf.	Karsten,	1786:	48).	

	

On	 the	 other	 hand,	 in	 his	 1786	 work	 Karsten	 elaborated	 more	 both	 on	 the	 acceptance	 of	

infinitely	 large	 quantities	 and	 on	 the	 rejection	 of	 infinitely	 small	 ones.	 Firstly,	 he	 said,	 while	

certainly	dividing	!	into	0	equal	parts	seemed	to	be	incomprehensible,	the	division	by	fractions	

would	somehow	make	 it	viable	 to	divide	by	0:	 for	example,	 considered	 for	
!
!	the	values	of	 the	

progression	 of	 ratios	
!
! ,

!
! ,

!
!,	and	 so	 on,	 the	 larger	!	is	 assumed,	 the	 closer	

!
!	will	 be	 to	0	and,	

assumed	!	a	quantity	!	beyond	which	one	 cannot	 count,	 that	 is,	 a	quantity	 so	 large	 that	one	

may	never	attain	to	enumerate	but	only	to	represent	by	the	sign	∞,	
!
!	will	reach	the	limit	0	(cf.	
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Karsten,	 1786:	 11-14).	 Secondly,	 given	!,	 the	 conditional	 clause	 (Bedingungssatz)	 “if	 !! = 0,	

then	
!
! = ∞”	 will	 be	 true,	 considered	

!
!	as	 the	 last	 of	 all	 constantly	 decreasing	 fractions	 (den	

letzten	 unter	 allen	 beständig	 abnehmenden	 Brüchen),	 whose	 numerator	 is	 1 	and	 whose	
denominator	must	 be	 the	 last	 of	 all	 the	whole	 numbers	 (die	 letzte	 unter	 allen	 ganzen	 Zahlen	

seyn	muss)	 (cf.	 Karsten,	 1786:	 13-14).	 Thirdly,	 just	 as	 one	 can	 accept	 the	 idea	of	 a	 line	which	

cannot	be	measured	because	it	has	no	end	point,	the	idea	of	an	infinitely	large	quantity	
!
! = ∞	

must	 be	 accepted	 (cf.	 Karsten,	 1786:	 15-18).	 However,	 fourthly,	 the	 introduction	 of	 infinitely	

small	 quantities	= 0	should	 not	 be	 accepted,	 at	 least	 not	 as	 it	 is	 presented	 by	 some	 authors	

who,	for	example,	applying	differential	calculus	to	the	geometry,	set	! + !" = !	and	! + !" =
!:	while	one	is	entitled	to	employ	infinitely	large	quantities	= ∞,	if	for	infinitely	small	quantities	

!
! = 0,	 these	 quantities	 cannot	 be	 means	 between	 nothing	 and	 something	 (kein	 Mittelding	

zwischen	 Nichts	 und	 Etwas	 seyn)	 and,	 therefore,	!"	and	!"	cannot	 be	 anything	 other	 than	0	
(nichts	 anders	 als	 0	 sey),	 whereby	 the	 use	 of	 exponents	 to	 distinguish	 a	0	from	 another	 one	

(0, 0!, 0! ,…)	is	absurd	(cf.	Karsten,	1786:	23-24,	29-30	&	33-34).	
	

Thereafter,	Karsten’s	work	 continued	with	his	own	proposal,	 followed	by	a	 couple	of	 sections	

devoted	 to	 Newton’s	 and	 Euler’s	 proposals	 from	 which,	 as	 it	 was	 said	 before,	 he	 actually	

adapted	some	procedures	and	concepts	for	the	development	of	his.	This,	 in	fact,	could	explain	

why,	firstly,	he	rejected	infinitely	small	quantities	as	quantities	= 0	in	strict	accordance	with	his	
conception	 of	 numbers,	 quantities	 and	 mathematics.	 But,	 secondly,	 it	 could	 explain	 why	 he	

accepted	
!
! = ∞	not	being	0	an	infinitely	small	quantity,	even	understood	in	his	own	way,	and	at	

the	same	time	not	being	0	strictly	0	but	“the	last	of	all	the	whole	numbers”,	so	that	
!
!	was	a	valid	

fraction,	indeed	“the	last	of	all	constantly	decreasing	fractions”.	

	

Similarly,	 in	 his	 treatise	 on	 negative	 numbers	 published	 in	 1786,	 Karsten	 elaborated	more	 on	

this	notion	although	in	a	different	sense,	more	focused	on	the	recent	historical	development	of	

it.	So,	on	the	one	hand,	he	insisted	on:	a)	the	notion	oppositeness	as	that	on	which	the	concept	

of	 negative	quantities	 rested	 (cf.	 Karsten,	 1786:	 209);	 and	b)	 the	 fact	 that	 the	 correct	way	 to	

refer	to	such	quantities	should	be	as	“negatively	expressed	quantities”	(cf.	Karsten,	1786:	211)	

since	c)	strictly	speaking	the	name	 ‘negative’	was	related	to	the	assigned	sign	and	“not	 to	 the	
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thing	itself”	(nicht	auf	die	Sache	selbst)	(cf.	Karsten,	1786:	207).	Even	more,	he	pointed	out,	the	

mathematical	 concepts	 of	 “affirmed”	 and	 “negated”	 (bejahte	 und	 verneinte)	 “have	 gradually	

originated	by	abstraction”	(Karsten,	1786:	205;	cf.	Schubring,	2005:	138),94	an	observation	that	

must	be	framed	in	the	historical	tenor	of	his	work.	

	

Precisely,	 on	 the	 other	 hand,	 his	 1786	 treatise	 differs	 from	 the	 previous	 ones	 in	 its	 historical	

remarks.	 “The	 manner	 in	 which	 older	 algebraists	 explain	 the	 real	 nature	 of	 the	 numbers	

denoted	 by	 (–)	 is	 certainly	 not	 entirely	 clear	 as	we	 now	 require	 from	 a	writer	who	wants	 to	

explain	the	groundings	of	a	mathematical	science”	(Karsten,	1786:	209),95	he	wrote.	After	which,	

he	reviewed	the	conceptions	of	some	authors	of	the	16th,	17th	and	18th	centuries,	such	as	Styfel,	

Viète,	 Descartes,	 Frans	 van	 Schooten,	Wallis,	 Newton,	 Claude	 Rabuel,	 Guillaume	 de	 l'Hôpital,	

María	Gaetana	Agnesi,	Wolff,	Euler,	Maclaurin,	Hausen,	Segner	and	Aepinus	(cf.	Karsten,	1786:	

229-249).	Most	of	the	expressions	used	by	these	mathematicians	to	refer	to	negative	quantities,	

he	 said,	 should	 be	 understood	 as	 coinages	 (Kunstwort)	 for	 such	 new	 mathematical	

developments	and,	 thus,	should	not	be	 interpreted	strictly	 (cf.	Karsten,	1786:	234,	239,	241	&	

246-247),	while	 it	was	 true	 that	others,	 as	Wolff,	 had	mistakenly	 assumed	 those	designations	

referred	to	the	actual	nature	of	the	things	(cf.	Karsten,	1786:	241).	Due	to	the	authors	with	the	

correct	sense	of	things,	he	even	wrote,	it	had	been	possible	to	achieve	the	current	state	of	the	

doctrine	 of	 negated	 quantities	 in	 the	 second	 half	 of	 the	 18th	 century,	 in	 spite	 of	which	 some	

mathematicians,	especially	the	French,	still	lacked	the	necessary	rigor	observed	by	the	Germanic	

when	bringing	forward	the	elements	of	the	new	developments	(cf.	Karsten,	1786:	249-250;	cf.	

Schubring,	2005:	138).	

	

Those	 last	 remarks	 of	 Karsten	 as	 a	 matter	 of	 fact	 resemble	 when,	 at	 the	 beginning	 of	 his	

Foundations’	 volume	 on	 arithmetic,	 geometry,	 trigonometry	 and	 perspective,	 Kästner	 wrote	

that	 the	 “newer	 teachers	 of	 geometry	 [were]	 often	 very	 deviated	 from	 the	 corresponding	

correctness	in	proofs”,	as	could	be	said	“especially	[of]	the	French”	(Kästner,	1758:	17).	Which,	

in	 turn,	 in	 the	 general	 ambit	 of	 Germanic	 mathematicians,	 highlights	 an	 increasing	 critical	

																																																													
94	Karsten	wrote:	 “Die	Begriffe	davon,	was	man	bejahte	und	verneinte,	oder	positive	und	negative	Grössen	nennt,	 sind	nach	und	
nach,	wie	die	meisten	wissenschaftlichen	Begriffe	besonders	inder	Mathematik,	durch	Abstraction	entstanden.”	
95	Karsten	wrote:	“Die	Art,	wie	sich	die	ältern	Algebraisten	über	die	eigentliche	Natur	der	mit	‘(−)’	bezeichneten	Zahlen	erklären,	ist	
freylich	 nicht	 so	 völlig	 einleuchtend,	 als	 wir	 es	 jetzt	 von	 einem	 Schrifsteller	 verlangen,	 der	 die	 Gründe	 einer	 mathematischen	
Wissenschaft	erklären	wil.”	



	 75	

differentiation	 from	 their	 –correct–	 way	 of	 proceeding	 and,	 in	 particular,	 implicitly	 reaffirms	

Kästner’s	extensive	knowledge	of	the	works	of	contemporary	authors	by	the	1760s.	

	

Concerning	 the	 first	 issue,	 the	 postulated	 contrast	 between	 the	 Germanic	 and	 ‘foreign’	

mathematical	 procedures	 (mainly	 French,	 but	 also	 English,	 as	will	 be	 discussed	 later	 (cf.	 infra	

B.3))	 rested	 on	 a	 specific	 understanding	 of	 mathematical	 method:	 for	 those	 Germanics,	 as	

Kästner	 summed	 it	 up,	 “[it	 had	been]	 described	by	 the	method	of	 Euclid	 and	 therefore	 [was]	

called	 geometric	 or	 Euclidean”	 (Kästner,	 1758:	 16),96	although	 strictly	 speaking	 it	 was	 only	

inspired	by	Euclid	but	detached	 from	his	proposal.	An	 idea	 that	a)	was	already	present	 in	 the	

work	 of	 Wolff,	 who	 stated	 at	 the	 very	 beginning	 of	 his	 Anfangs-Gründe’s	 first	 section	 that	

mathematical	method	starts	with	definitions	and	proceeds	with	proofs	relying	on	them	(Wolff,	

1717:	 5;	 cf.	 B.3.2), 97 	and	 b)	 underlies	 the	 rejection	 by	 several	 Germanic	 mathematicians	

(including	 Segner,	 Karsten	 and	 Kästner)	 of	 some	 both	 procedural	 and	 conceptual	 new	

developments	 mainly	 defended	 by	 foreign	 authors,	 such	 as	 infinite	 small	 quantities,	 for	 not	

being	–according	to	that	conception–	clearly	defined	or	explained,	nor	rigorously	proven.	

	

As	 for	 the	 second	 issue,	 Kästner	 showed	 from	his	 early	works	 an	 extensive	 knowledge	of	 the	

works	 of	 contemporary	 authors	 that	 was	 further	 increased	 over	 the	 years.	 So,	 while	 Karsten	

only	began	to	discuss	the	work	of	some	of	the	above-mentioned	authors	and	some	others	like	

Hindenburg	 and	 Klügel	 in	 his	 last	works	 (cf.	 Karsten,	 1786	 I),	 Kästner	 had	 already	 referred	 to	

several	of	those	authors	in	the	first	edition	of	his	Foundations,	adding	new	references	to	them	

and	 others	 throughout	 the	 subsequent	 editions	 of	 that	 work,	 as	 he	 explicitly	 stated	 in	 the	

preface	to	the	fifth	and	sixth	editions	(cf.	Kästner,	1800:	Vorrede	der	4.	5.	u.	6.	Auflage),	as	well	

as	 in	his	History	of	Mathematics	 (Geschichte	der	Mathematik),98	first	published	between	1796	

and	 1800.	 Which,	 however,	 did	 not	 change	 the	 fact	 that	 he,	 as	 Karsten,	 only	 incorporated	

particular	concepts	or	procedures	of	the	new	developments	of	the	time,	as,	for	example,	various	

notions	 of	 functions	 or,	 with	 restraints,	 the	 one	 of	 infinite	 small	 quantities,	 without	 even	

adopting	partially	the	general	conceptions	of	which	these	were	part,	such	as	Euler’s	program.	

																																																													
96	Kästner	wrote:	“Man	hat	die	mathematische	Methode	besonders	nach	dem	Verfahren	des	Eucklides	abgeschildert,	und	sie	daher	
die	geometrische	oder	euklidische	genannt.	Schwerlich	wird	man	sie	auch	recht	kennen	lernen;	wenn	man	nicht	diesen	Schriftsteller,	
und	solche,	die	ihm	getreu	folgen,	liest.”	
97	Wolff	wrote:	“Die	Lehr-Art	der	Mathematicorum,	das	ist,	die	Ordnung,	deren	sie	sich	in	ihrem	Vortrage	bedienen,	fängt	an	von	den	
Erklärungen,	gehet	fort	zu	den	Grund-Sätzen	und	hiervon	weiter	zu	den	Lehr-Sätzen	und	Aufgaben.”	
98	The	whole	 title	 is	Geschichte	 der	Mathematik	 seit	 der	Wiederherstellung	 der	Wissenschaften	 bis	 an	 das	 Ende	 der	 achtzehnten	
Jahrhunderts.	
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That	way,	at	least	from	an	alternate	edition	of	his	Foundations’	first	volume	published	in	Vienna	

in	1783,99	as	later	in	that	work’s	fourth	edition,	Kästner	modified	and	extended	the	paragraphs	

devoted	 to	 the	 theorem	that	originally	 stated	 that,	 in	a	given	circle,	half	of	a	 circular	arc	of	 it	

would	 not	 differ	 from	 its	 corresponding	 chord	 as	 much	 as	 it	 would	 the	 arc	 itself	 from	 its	

corresponding	chord	(cf.	Kästner,	1758:	246;	cf.	Annex	D).	Thus,	by	1783	the	theorem	had	been	

replaced	by	 several	 propositions	 expressing	 the	 content	 of	 that	 one,	 focusing	 in	 particular	 on	

the	decreasing	difference	between	the	arc	and	the	chord	drawn	from	one	to	another	of	its	ends	

when	 decreasing	 both	 arc	 and	 chord	 (cf.	 Kästner,	 1783:	 308;	 cf.	 Kästner,	 1786:	 268-288)	 and	

making,	 for	 the	purposes	of	 this	work,	 two	extremely	 significant	additions:	1)	one	could	call	a	

chord	“infinitely	small”	when	it	continually	approached	to	its	arc	without	reaching	it,	that	is,	as	

long	 as	 it	 still	 had	 a	 certain	 quantity	 (so	 lange	 sie	 eine	 bestimmte	 Grösse	 hat);100	2)	 infinitely	

small	quantities	would	be	precisely	those	that	could	be	decreased	through	all	the	definite	values	

and	 beyond	 any	 given	 quantity	 until	 reduced	 to	 nothing	 (bis	 auf	 nichts	 abnehmen)	 (Kästner,	

1786:	 279-280;	 cf.	 Schubring,	 2005:	 243-244). 101 	This	 implies	 that,	 by	 the	 1780s,	 Kästner	

considered	 infinitely	 small	 quantities	 as	 variables	 and	 inasmuch	 as	 they	 quantified	 and,	

therefore,	as	other	Germanic	authors	including	Segner	and	Karsten,	he	was	reluctant	to	identify	

them	with	0,	considered	this	one	the	limit	of	those.	

	

Such	additions,	moreover,	are	not	only	significant	for	their	content	and	time,	but	also	for	their	

location,	namely	the	Foundations’	section	on	geometry	in	an	alternate	edition.	So,	with	respect	

to	 the	 section,	 while	 it	 is	 true	 that	 even	 in	 the	 first	 edition	 of	 the	 work	 the	 content	 of	 the	

theorem	of	 §41	 suggested	 the	 consideration	of	 the	decreasing	difference	between	 chord	 and	

arc	 as	 an	 infinitely	 small	 quantity	 (cf.	 Kästner,	 1758:	 250-251),	 the	 fact	 is	 that	 Kästner	 just	

elaborated	 on	 that	 notion	 within	 the	 geometric	 framework	 some	 decades	 later,	 when	 those	

terms	were	more	 common	 and	 accepted.	 Infinitely	 small	 quantities,	 it	 has	 been	 pointed	 out,	

																																																													
99	While	 the	 second	 edition	 of	 1764	 does	 not	 contain	 the	mentioned	modification,	 as	 it	 does	 the	 fourth	 from	 1786,	 it	 is	 highly	
probable	that	the	third	edition	from	1774	already	contained	it	since	a)	the	alternate	edition	published	in	Wien	in	1783	does	and	b)	
some	fragments	of	the	Nachricht	for	the	third	edition	mention	specific	changes	following	Euler.	However,	having	not	been	able	to	
obtain	a	copy	of	the	third	edition,	it	shall	suffice	with	the	mention	of	such	possibility	in	this	footnote.	
100	Kästner	wrote:	“In	dieser	Bedeutung	sagt	man:	eine	unendlich	kleine	Sehne,	sey	ihrem	Bogen	gleich,	verliere	sich	in	demselben,	
und	sey	um	den	Halbmesser	vom	Mittelpuncte	entfernt.	Man	nennt	hie	unendlich	klein	einen	Zustand	dem	sich	nach	(II)	die	Sehne	
beständig	nähert,	ihn	noch	nicht	erreicht	hat,	so	lange	sie	eine	bestimmte	Grösse	hat,	aber	ihm	so	nahe	kommen	kann	als	man	will,	
weil	sie	von	einer	bestimmten	Grösse,	durch	alle	kleinere,	bis	auf	nichts	abnehmen	kann.”	
101	Kästner	wrote:	“Dieses	Unendlichkleine	bedeutet	also	dass	eine	Grösse,	durch	alle	bestimmte	Werthe	bis	auf	nichts	abnehmen,	
und	folglich	kleiner	werden	kann,	als		jede	Grösse	so	klein	sie	auch	angegeben	wird.”	
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pertained	 to	a	different	 framework	whose	study	was	 to	be	carried	out	 in	 the	 third	part	of	his	

work,	precisely	devoted	to	the	foundations	of	the	analysis	of	finite	and	infinite	quantities.	

	

Additionally,	Vienna’s	edition	of	Kästner’s	Foundations	 highlights	 the	 implementation	of	 some	

structural	changes	 in	his	work	from	the	1780s	by	 including	a	brief	additional	section,	between	

that	of	arithmetic	and	that	of	geometry,	included	in	the	index	under	the	name	of	“algebra”	and	

which	 dealt	 with	 the	 arithmetic	 and	 geometric	 progressions	 (cf.	 Kästner,	 1783:	 198-204).	

Consequently,	 those	 topics	 were	 included	 in	 the	 volume	 on	 the	 basic	 parts	 of	 mathematics	

instead	 of	 being	 included	 in	 a	 volume	 on	 the	 analysis	 of	 finite	 quantities,	 to	 which	 they	

pertained	(cf.	Kästner,	1760),	and	they	were	brought	together	as	an	intermediate	or	transitional	

section	between	arithmetic	and	algebra.	

	

The	 reverse	 structural	 change,	 scilicet	 not	 a	 merger	 but	 an	 expansion,	 was	 mentioned	 by	

Kästner	 himself	 in	 the	 prefaces	 to	 the	 fourth	 and	 fifth	 edition	 of	 the	 first	 volume	 of	 his	

Foundations.	 In	the	first	one,	he	pointed	out	that	the	title	of	that	new	edition	indicated	it	was	

the	first	division	of	the	first	part	of	the	foundations	of	mathematics	because	of	a	new	work	on	

the	 art	 of	 reckoning	 (cf.	 Kästner,	 1786	 I:	Vorrede	 der	 vierten	 Auflage).	 In	 the	 second	 one,	 he	

mentioned	 the	 inclusion	 of	 references	 to	 his	 recently	 published	 geometrical	 treatises	 (cf.	

Kästner,	1792:	Vorrede	der	4.	u.	5.	Auflage).	That	way,	the	first	additional	volume	was	a	sequel	

of	 the	 section	 on	 arithmetic	 devoted	 to	 its	 applications	 and	 the	 two	 subsequent	 volumes	 of	

1790-91	were	the	corresponding	sequels	of	the	geometric	section.	

	

Beyond	 what	 those	 works	 structurally	 entailed,	 however,	 their	 content	 provides	 evidence	 of	

those	other	 aforementioned	 changes	 he	 implemented	over	 the	 years,	 both	on	 the	notions	 of	

quantity	and	number,	as	well	as	concerning	his	reference	to	authors	and	developments	of	the	

last	decades	of	 the	18th	century.	To	 illustrate	this,	 in	his	volumes	on	applications	of	geometry,	

for	example,	Kästner	quoted	Legendre,	criticizing	his	procedure	for	calculating	the	surplus	!	in	
the	angular	sum	of	a	spherical	triangle	by	means	of	infinitely	small	twisted	triangles	(unendlich	

wenig	krumme	Dreyecke)	between	that	and	the	corresponding	plane	triangle	(cf.	Kästner,	1791:	

453ff.);	 and	 he	 criticized	 Johann	 Andreas	 Christian	 Michelsen,	 due	 to	 his	 reflections	 on	 the	

positivity	or	negativity	of	a	circle’s	arcs’	secants	given	the	usual	notions	of	positive	and	negative	

lines	 (die	 gewöhnlichen	 Begriffe	 von	 positiven	 und	 negativen	 Linien	 beybehalten)	 (cf.	 Kästner,	
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1790:	 459-460).	 But,	 additionally	 to	 his	 references	 to	 those	 and	 other	 contemporary	

developments,	he	used	 the	appellation	“natural	numbers”	at	 the	beginning	of	 the	 first	one	 to	

refer	to	the	–positive–	whole	numbers	when	defining	trigonal	numbers	(cf.	Kästner,	1790:	5).	

	

Kästner’s	 increasing	use	of	the	denomination	of	natural	numbers,	as	a	matter	of	fact,	 is	amply	

evidenced	 in	his	volume	on	applications	of	the	art	of	reckoning.	There,	 for	example,	he	stated	

that	the	simplest	example	of	arithmetic	series	was	the	one	of	“whole	natural	affirmed	numbers	

whose	first	member	= 1	[and	whose]	difference	also	= 1”,	adding	a	few	lines	below	that	Wolff’s	

general	explanation	of	 logarithms	 seemed	 to	him	unnecessary,	being	only	necessary	 for	 them	

the	 series	 of	 natural	 numbers	 (die	 Reihe	 der	 natürlichen	 Zahlen)	 (Kästner,	 1786	 II:	 41).102	This	

was	a	clear	–though	intuitive–	presentation	of	the	notion	of	natural	numbers	(cf.	Kästner,	1786	

II:	 83,	 98),	 although	 he	 still	 replaced	most	 of	 the	 time	 that	 denomination	 by	 that	 of	 “whole	

affirmed	 numbers”	 or	 even	 simply	 “whole	 numbers”,	 depending	 on	 the	 context.	 So,	 while	 in	

that	 work	 he	 explicitly	 defined	 the	 emerging	 notion	 of	 natural	 number	 and,	 in	 doing	 so,	 he	

implicitly	acknowledged	the	modifications	in	both	the	notions	of	number	and	quantity	(since	the	

positivity	 of	 numbers	 only	 arose	 once	 considered	 the	 numerical	 correlate	 of	 negative	

quantities),	 he	 only	 implicitly	 suggested	 his	 conception	 on	 the	mathematical	 infinite	 was	 the	

same	as	in	his	previous	works:	! = !
!	is	called	infinite,	he	wrote	at	one	point,	writing	elsewhere	

that	a	sum	of	an	infinite	series	of	fractions	was	the	quantity	which	this	series,	when	continued	to	

infinity,	would	approach	as	much	as	one	wanted	so	that	no	difference	could	be	made	between	it	

and	 the	 sum	 itself,	 as	 for	 example	
!
! +

!
! +

!
! +⋯ = 1 	(cf.	 Kästner,	 1786	 II:	 512	 &	 59,	

respectively).103	After	all,	the	proper	place	to	study	such	quantities	was	his	work	on	analysis.	

	

His	second	1786	work,	nevertheless,	was	not	only	a	continuation	of	his	previous	stances	but,	as	

his	 geometrical	 treatises,	 it	 also	 incorporated	 new	 developments,	 among	 which	 it	 must	 be	

mentioned	 here	 Hindenburg’s	 “completely	 new	 method	 [...]	 to	 find	 numbers”,	 whose	

presentation	of	1776,	he	 said,	 contained	“a	 lot	of	new	and	 instructional	 [things]”	 (cf.	Kästner,	

1786	 II:	 567;	 cf.	 Hindenburg,	 1776).	 His	 reference	 to	 Hindenburg’s	 proposal,	 though	 vague,	

																																																													
102	Kästner	 wrote:	 “Das	 einfachste	 Beyspiel	 ist	 die	 Reihe	 der	 ganzen	 natürlichen	 bejahten	 Zahlen,	 deren	 erstes	 Glied	=  1	der	
Unterschied	auch	=  1	ist.”	
103	Kästner	wrote:	 “Ich	habe	an	diesem	Exempel	 zeigen	wollen,	was	man	Summe	einer	unendlichen	Reihe	von	Brüchen	nennt.	Es	
heisst	 eine	 Grösse,	 der	 diese	 Reihe,	 ins	 Unendliche	 fortgesetzt,	 so	 nahe	 kommen	 kann,	 als	 man	 will,	 dergestalt,	 dass	 sich	 kein	
Unterschied	zwischen	dieser	Grösse	und	der	Summe	der	Reihe	angeben	lässt.”	
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mentioned	both	Hindenburg’s	work	of	1776	and	that	of	1778,	as	well	as	the	board	included	in	

the	 first	 by	means	 of	 which	 numbers	 could	 be	 displayed	 in	 a	 far-reaching	 order	 (cf.	 Kästner,	

1786	II:	567-568;	cf.	Hindenburg,	1776:	[Beilagen]).104	

	

One	of	the	improvements	that	Kästner	carried	out	in	the	third	edition	(1794)	of	his	Foundations’	

volume	 on	 the	 analysis	 of	 infinite	 quantities	 was	 precisely	 related	 to	 the	 section	 on	

combinations	 included	 since	 the	 first	 edition.	 There,	 he	 defined	 combinations	 as	 connections	

established	between	the	components	of	a	given	amount	or	set	of	 things	 (Menge	von	Dingen).	

For	example,	given	the	set	of	the	first	five	letters	of	the	alphabet,	its	combinations’	table	would	

be:	

	

	 I	 II	 III	 IV	 V	

1	 a	 0;	 0;	 0;	 0;	

2	 b	 ab;	 0;	 0;	 0;	

3	 c	 ac;	bc;	 abc;	 0;	 0;	

4	 d	 ad;	bd;	cd;	 abd;	acd;	bcd;	 abcd;	 0;	

5	 e	 ae;	be;	ce;	de;	 abe;	ace;	bce;	ade;	bde;	 abce;	abde;	acde;	bcde;	 abcde.	

(cf.	Kästner,	1760:	397-398)	

	

But,	 after	 proceeding	 to	 explain	 the	 formulas	 to	 calculate	 the	 possible	 combinations	 for	 each	

column	(pairs,	triads,	etc.),	as	for	example	
! ∙ (!!!)
! ∙ ! 	for	those	letters’	pairs,	Kästner	expanded	the	

paragraph	on	their	applicability	for	the	calculation	of	probabilities	in	games	(§745)	and	added	a	

new	one	on	 the	 relation	between	 the	binomial	 theorem	and	combinations	 (§748).	 In	 the	 first	

case,	 he	 went	 on	 to	 explain	 how	 the	 nature	 of	 each	 game	 determined	 all	 possible	 cases	 of	

combinations	in	it,	adding	to	the	initial	references	in	the	subject	(Jacob	Bernoulli	and	de	Moivre)	

new	 ones	 to	 Robert	 Gaeta	 and	 Gregorio	 Fontana,	 Carl	 Chassot	 de	 Florencourt,	 Johannes	

Nikolaus	 Tetens,	 Charles	 François	 de	 Bicquilley,	 Christian	 Michelsen	 and	 Georg	 Christoph	

Lichtenberg	(cf.	Kästner,	1794:	528-532).	

																																																													
104	The	board,	a	sort	of	table,	consisted	of	a	series	of	panels	deployed	in	horizontal	lines	vertically	ordered,	so	that	when	introducing	
in	the	board	a	sheet	that	contained	a	table	of	–prearrenged–	numbers,	the	panels	showed	the	factors	of	a	given	number	(cf.	Annex	
E).	 In	 fact,	 the	 full	 title	of	Hindenburg's	work	 is:	Beschreibung	einer	ganz	neuen	Art,	nach	einem	bekannten	Gesetze	 fortgehende	
Zahlen,	 durch	 Abzählen	 oder	 Abmessen	 bequem	 und	 sicher	 zu	 finden,	 nebst	 Anwendung	 der	 Methode	 auf	 verschiedene	 Zahlen,	
besonders	 auf	 eine	 darnach	 zu	 fertigende	 Factorentafel,	 mit	 eingestreuten,	 die	 Zahlenberechnung	 überhaupt	 betreffenden	
Anmerkungen.	
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In	 the	second	case,	Kästner	pointed	out	 that,	 concerning	 the	binomial	 theorem,	combinations	

involved	 its	coefficients	 in	the	case	of	both	equations	and	series,	although	as	one	advanced	 in	

the	series	its	composition	became	very	large	and	the	calculation	of	its	coefficients	very	laborious	

(cf.	 Kästner,	 1794:	 535). 105 	Precisely,	 he	 added,	 Hindenburg	 “[provided]	 great	 benefits	 to	

Analysis	by	applying	combinations	and	skillful	designations”,	as	his	works	(1778,	1779	&	1781)	

and	 the	 ones	 of	 Hieronymus	 Christoph	 Wilhelm	 Eschenbach	 (1789),	 Ernst	 Gottfried	 Fischer	

(1792),	Heinrich	August	Töpfer	(1793)	and	Heinrich	August	Rothe	(1793)	would	show	(Kästner,	

1794:	 535-536).	 While	 not	 as	 vague	 as	 his	 mention	 from	 1786,	 but	 still	 brief	 due	 to	 “the	

arrangement	and	 limits	of	his	book”	 (Kästner,	1794:	535),	 this	new	description	of	 such	 recent	

investigations	 highlights	 the	 importance	 of	 combinatorial	 analysis	 among	 Germanic	

mathematicians	of	the	late	18th	century.	

	

Additionally,	as	Kästner	himself	noted	in	the	reminder	–historical–	lines	of	that	third	edition	of	

his	 Foundations	 of	 the	 analysis	 of	 finite	 quantities,106	not	 only	 individual	 researches	 had	 been	

added	 in	 that	 work,	 but	 also	 various	 applications,	 references	 and	 even	 structural	 changes	

differentiated	it	from	the	two	previous	editions	(1760	&	1767).	Among	them	all,	however,	and	

given	the	objectives	of	this	work,	the	modifications	that	stand	out	are	the	ones	Kästner	made	to	

the	section	on	the	expressions	of	 functions	by	 infinite	series,	 since	 they	sum	up	quite	well	his	

increasing	acquaintance	with	new	developments	in	the	subject:	

	

Ausdrückungen	der	Functionen	durch	unendliche	Reihen	

1794	 1767	 1760	

• After	 explaining	 that	 the	 “equation	 P”	 or	 simply	 “(P)”,	0 = ! +
!" + !!! + !!! +⋯,	 whose	 exponents	 for	 the	 powers	 of	!	are	
“affirmed	whole”	numbers,	may	end	or	continue	without	end,	he	

Yes	

(cf.	313)	

No	

(cf.	305)	

																																																													
105	Kästner	wrote:	“Da	wird	immer	der	folgende	aus	den	vorhergehenden	bestimmt,	wenn	man	in	der	Reihe	weit	fortgeht,	wird	die	
Zusammensetzung	 sehr	 gross,	 ihr	 Gesetz	 schwer	 zu	 übersehn,	 und	 des	 Coefficienten	 Berechnung	 sehr	 mühsam.	 Besonders	
empfindet	man	diese	Schwürigkeit	in	der	Rechnung	des	Unendlichen,	wo	Reihen	häusig	gebraucht	werden.”	
106	Kästner’s	lines	on	the	history	of	the	name	of	algebra	go	from	the	Arabic	origin	of	the	first	syllable	to	Viète’s	and	Descartes’	steps	
towards	modern	algebra,	explaining	in	between,	for	example,	how	the	Spanish	use	of	the	term	“Algebrista”	during	the	17th	century	
as	“a	person	who	heals	leg	fractures	and	disclocations”	(ein	Mann	der	Beinbrüche	und	Verrenkungen	heilt)	referred	to	other	meaning	
of	"al-jabr",	namely	restoration	or	reduction,	as	a	fragment	of	Don	Quixote	shows:	“Als	Don	Quixote	den	Spiegelritter	vom	Pferde	
stiess,	blieben	des	Gefallenen	Rippen	nicht	völlig	in	ihrer	Ordnung,	und	er	musste	sich	an	einem	Orte	aufhalten,	wo	ein	solcher	Arzt	
ihn	 wiederum	 zurechte	 brachte...	 llegaron	 à	 un	 puèblo,	 donde	 fuè	 ventùra	 hallàr	 à	 un	 Algebrista	 con	 quièn	 se	 curò	 el	 Sanson	
desgraciàdo”	(Kästner,	1794:	XIII).	Similar	lines	can	be	found	in	the	first	volume	of	his	Geschichte	der	Mathematik	(cf.	Kästner,	1796:	
56ff.).	
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clarified	that	this	was	not	the	more	general	expression	as	 it	was	

0 = ! + !!! + !!!! +⋯,	for	an	affirmed	whole	!,	with	!! = !	

for	a	 fractional	number	and	
!
! = !,	0 = ! + !!! + !!! +⋯,	 for	

a	negated	! = −!	(cf.	408).	
• When	he	explained	obtaining	of	 square	 root	of	1 + !	by	 infinite	
series,	 he	 introduced	 a	 few	 lines	 on	 the	 process	 to	 show	 how,	

after	 obtaining	 the	 largest	 square	 number	 contained	 in	 it,	 the	

smaller	!	is,	 the	more	accurate	the	value	of	 the	square	root	will	

be,	 adding	 that	 “this	 approximation	 will	 always	 be	 more	

convenient	than	the	work	of	ordinary	arithmetic”	(cf.	410).	

No	

(cf.	314)	

No	

(cf.	306)	

• The	 paragraph	 corresponding	 to	 the	 “Addition	 627”,	 which	

originally	 stated	 that	when	 the	 coefficients	 in	 a	 series	 decrease	

very	 little,	 the	 series	 will	 consequently	 [converge]	 slowly,	 was	

entirely	 modified	 in	 the	 edition	 of	 1767	 and	 later	 improved	 in	

1794.	 First,	 given	 a	 broken	 number	! = !
! ,	 with	!	and	!	whole	

numbers	 and	 the	 series	 ! + !
!
! = !! + ! ∙ ! ∙ !!!! +

! ∙ !! ∙ !!!! +⋯ ,	 according	 to	 the	 binomial	 theorem	 ! +
! ! = !! + ! ∙ ! ∙ !!!! ! + ! ∙ !! + ! ∙ ! ∙ !!!! !!! ∙ !"! ∙
!!!!… 	(cf.	 411-412).	 Second,	 after	 considering	 the	 case	 for	

negative	 exponent,	 1 + ! !! 	for	 which	 !
!!! = ! 	or	 !

!!! = ! ,	

having	 1 + ! = !
!!! 	and	 1 + ! !! = 1 − ! = !1 − !!!!!… ,	

he	mentioned	the	works	of	Colson,	Walz	and	Euler	on	the	subject	

and	 insisted	 on	 the	 importance	 of	 the	 connection	 between	 the	

series	and	the	binomial	 theorem	since,	he	said,	 it	should	not	be	

forgotten	that	an	infinite	series	underlies	the	“finite”	expressions	

used	to	obtain	the	quantity	sought	(cf.	412-416).	

Partially	

(cf.	315-

320)	

No	

(cf.	307)	

	

Therefore	Kästner,	though	he	did	not	even	partially	reorganize	analysis	according	to	new	trends	

that	 by	 the	 late	 18th	 century	 were	 no	 longer	 only	 moderately	 known	 among	 Germanic	

mathematicians	as	 in	the	middle	of	the	century,	he	did	gradually	 incorporate	improvements	in	

the	contents	on	the	subject.	As	the	comparative	table	suggests,	this	was	clearer	with	regard	to	
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the	infinite	quantities,	whose	study	strictly	corresponded	to	his	Foundations’	second	volume	on	

analysis.	

	

Thus,	in	the	third	edition	of	that	work,	Kästner	not	only	added	–with	respect	to	the	previous	two	

editions	(1761	&	1770)–	two	sections	on	the	theory,	applications	and	history	of	the	calculus	of	

variations,	 but	 also	 some	 significant	 modifications.	 For	 example,	 the	 original	 definition	 of	

infinitely	small	quantity	as	that	which	can	be	smaller	than	any	other	given	quantity,	decreasing	

infinitely	or	 vanishing	 towards	a	 certain	 limit,	was	 reformulated	and	expanded:	emphasis	was	

made	on	0	as	the	only	limit	to	which	an	infinitely	small	quantity	could	come	as	close	as	desired,	

until	no	quantity	existed	anymore,	since	“beyond	nothing	it	would	be	negated	[and]	would	again	

be	a	quantity,	only	that	opposed	to	the	former,	and	this	quantity	would	always	grow”;	and	he	

introduced	 the	 example	 of	 an	 arc	 growing	 from	 nothing	 to	 the	 quadrant	 cosine,	 as	 well	 as	

references	to	his	previous	works	(Kästner,	1799:	2-3;	cf.	Kästner,	1761:	2;	Kästner,	1770:	2).107	

	

Similar	 clarifications	 and	 additions	 can	 be	 found	 throughout	 the	 entire	 work,	 of	 which,	

nonetheless,	solely	three	more	will	be	mentioned	here.	First,	and	following	the	aforementioned	

definition,	Kästner’s	original	explanation	of	the	exercise	of	finding	the	limit	!	to	which	a	quantity	
!	that	grows	 infinitely	approaches,	with	!" + ! = !,	was	modified	since	 the	second	edition	of	

1770:	 instead	of	addressing	the	exercise	 from	placing	! = !
!	and	! =

!!!"
! ,	with	!	as	a	quantity	

that	 could	 decrease	 infinitely	 (something	 that,	 it	 must	 be	 remembered,	 he	 later	 pointed	 out	

could	 lead	 to	 mistakenly	 assume	
!
! = 0),	 he	 considered	 the	 process	 towards	1,	 given	!"!!!" =

1 + !
!",	with	

!
!"	decreasing	infinitely	and	1 +

!
!"	approaching	infinitely	to	1	but	still	distinguished	

from	it	by	a	quantity	!	(Kästner,	1770:	3-4;	Kästner,	1799:	4-5;	cf.	Kästner,	1761:	3).	
	

Second,	 when	 addressing	 the	 “general	 proof	 of	 the	 binomial	 theorem	 by	 the	 differential	

calculus”,	he	modified	the	note	in	which	he	not	only	mentioned	Johann	Bernoulli’s	attribution	to	

Pascal	as	originator	of	 the	 theorem,	but	also	 Jakob	Bernoulli’s	 statement	about	 its	connection	

with	the	doctrine	of	combinations,	as	well	as	the	works	of	Clairaut,	Segner	and	Newton	on	the	

subject	(cf.	Kästner,	1761:	32-33;	Kästner,	1770:	35-36).	In	contrast,	in	that	work’s	third	edition,	
																																																													
107	Kästner	wrote:	“Gränze	des	Abnehmens	lässt	sich	hie	keine	andre	denken	als:	Nichts.	Eine	Grösse	die	unendlich	klein	wird	kann	
also	 der	0	so	 nahe	 kommen	 als	 man	 will.	 [...]	 Man	 betrachtet	 hie	 das	 Abnehmen	 nur	 bis	 auf	 Nichts,	 bis	 die	 Grösse	 nicht	 mehr	
vorhanden	 ist,	 nicht	 über	 Nichts	 hinaus	 dass	 sie	 verneint	 würde	 denn	 da	 hätte	 man	 wiederum	 Grösse,	 nur	 der	 vorigen	
entgegengesetzt,	und	diese	Grösse	wüchse	immer.”	
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Kästner	mentioned	 those	 authors,	 as	 well	 as	 previous	 (scilicet	Michael	 Stifel	 and	 Christopher	

Clavius)	and	later	(such	as	Simon	Antoine	Jean	L'Huilier,	H.	A.	Rothe	and	Hindenburg)	ones	(cf.	

Kästner,	1799:	63-65).	This,	coupled	with	the	final	section’s	note	on	Hindenburg’s	works	and	the	

extensions	gained	by	 the	analysis	due	 to	 the	 combinatorial	 analysis	developed	by	 that	 author	

and	others,	 as	Tetens,	Klügel	 and	Pfaff	 (cf.	Kästner,	1799:	79),	 reinforces	 the	 thesis	 about	 the	

importance	of	this	proposal	among	Germanic	mathematicians	of	the	time.	

	

Finally,	 last	but	not	least,	Kästner	modified	the	section	on	the	ratio	of	the	ordinate	to	the	sub-

tangent,	!" ∶ !",	concretely	the	paragraph	that	previously	stated	that	the	sub-tangent	and	the	
beginning	 of	 the	 abscissae	 laid	 on	 the	 same	 or	 different	 side	 of	 the	 ordinate	 depending	 on	

whether	 sub-tangent	 and	 ordinate	 had	 the	 same	 or	 different	 signs	 (cf.	 Kästner,	 1761:	 52;	

Kästner,	 1770:	 56).	 As	 the	 previous	 paragraphs,	 this	 one	 sought	 to	 cope	with	 the	 underlying	

problem	to	the	traditional	formula	of	the	sub-tangent	of	a	curve,	! = ! !"
!",	which	was	assumed	

positive	 as	 neither	!	nor	!	were	 considered	 as	 independent	 variables:	 although	 that	 formula	

was	 correct	 in	 general,	 that	 is,	 considering	 the	 line’s	 position	 and	 the	 quantities	 involved	 in	

general	 terms,	 certain	 cases,	 as	 those	 referred	 in	 the	 aforementioned	 paragraphs,	 required	

some	clarifications	to	account	for	the	negativity	arising	within	a	relational	framework.	 In	other	

words,	 since	 that	 formula,	 though	 general,	was	 not	 entirely	 correct,	 clarifications	were	made	

here	and	 there	 to	overcome	 its	difficulties.	 That	way,	Kästner	modified	§83	 to	point	out	 that,	

while	a)	given	an	increasing	abscissae	and	a	curved	line	distant	from	it,	both	the	former	and	the	

sub-tangent	would	lay	on	one	side	of	the	ordinate,	b)	when	the	curved	line	approached	to	the	

abscissa	 line,	 this	 latter	 and	 the	 sub-tangent	 would	 lay	 on	 opposite	 sides.	 But	 he	 also	

emphasized	that	in	calculating	the	value	of	! ∙ !"!"	regardless	of	whether	it	is	affirmed	or	denied	

(bejaht	oder	verneint),	the	only	remark	to	be	made	was	on	the	sub-tangent’s	position,	indicated	

by	its	affirmed	or	denied	value	(Kästner,	1799:	87).108	

	

As	 a	 matter	 of	 fact,	 Hindenburg	 published	 in	 the	 Archiv	 der	 reinen	 und	 angewandten	

Mathematik	 (of	which	he	was	editor)	a	 letter	 from	Klügel	on	 the	 subject	and	some	additional	

lines	that	he,	the	former,	wrote	about	it.	Leaving	aside	the	details	of	both	writings,	which	will	be	

																																																													
108	Kästner	wrote:	“Wenn	man	also	nur	den	Werth	von	! ∙ !"!"	berechnet,	ohne	darauf	zu	sehn	ob	dieser	Werth	bejaht	oder	verneint	

ist,	 so	 giebt	nur	beygebrachte	Bemerkung,	die	 Lage	der	 Subtangente,	welche	 Lage	auch	dadurch	angedeutet	wird,	ob	der	Werth	
bejaht	oder	verneint	ist.”	
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discussed	in	the	last	section	of	this	chapter	(cf.	infra	B.3.2),	the	reason	for	Klügel’s	letter	was	the	

criticism	made	by	Friedrich	Gottlieb	von	Busse	in	his	Sub-tangent	and	sub-normal,	tangent	and	

normal	line's	formulas,	amended	and	more	carefully	explained	than	usual,109	a	work	published	in	

Leipzig	in	1798.	There,	von	Busse	mentioned	Klügel	(cf.	Busse,	1798:	34)	among	the	authors	who	

continued	using	the	incorrect	formula	! = ! ∙ !"!"	instead	of	the	correct	one,	namely	! = −! ∙ !"!",	

which	would	allow	to	consider	not	only	the	position	of	the	line	but	also	its	direction	and	avoid	

false	results	for	curves	as	the	other	one	did	not	(cf.	Busse,	1798:	6-7;	Schubring,	2005:	490-491).	

Hindenburg,	however,	supported	Busse	and	 in	a	note	mentioned	that	Kästner	himself	wrote	a	

review	 of	 that	 work	 in	 the	 Göttingische	 Anzeigen	 von	 gelehrten	 Sachen,	 recognizing	 Busse´s	

attainment	(cf.	Kästner,	1798:	2013-2014).	Even	more,	Hindenburg	wrote,	von	Busse’s	work	was	

precisely	 the	reason	why	Kästner	made	the	above	mentioned	change	to	§83,	although	 limited	

and	still	wrong	for	some	cases	(Hindenburg,	1800:	344).	

	

What	 this	 last	 example	 makes	 manifest,	 however,	 not	 only	 has	 to	 do	 with	 the	 particular	

development	of	the	sub-tangent	formula	but	with	the	very	evolution	of	Kästner’s	mathematical	

ideas.	 It	was	not	only	that,	despite	accepting	that	until	then	he	and	so	many	others	had	made	

the	corresponding	calculations	aided	by	an	 incorrect	 formula,	he	was	 still	 reluctant	 to	employ	

the	correct	formula	or	incapable	to	carry	out	all	the	necessary	corrections	in	his	1799	work.	The	

point	 is	 that	 Busse’s	 formula	 entailed	 a	 further	 step	 in	 analytical	 geometry	 and	 ultimately	 a	

deeper	 change	 in	 analysis,	 one	 that,	 in	 fact,	 would	 have	 significantly	 modified	 his	 analytical	

framework:	 to	 consider	! = −! ∙ !"!" ,	 instead	 of	 considering	! = ! ∙ !"!" 	plus	 its	 amendments,	

would	have	meant	to	consider	algebra	detached	from	geometry	 in	a	way	that	 for	Kästner	and	

many	 of	 his	 Germanic	 contemporaries	 was	 not	 detached.	 For	 these	 authors,	 the	 notion	 of	

‘function’,	and	the	one	of	 ‘variable	quantity’	 that	 it	 involved,	 strictly	speaking	were	not	at	 the	

core	of	algebraic	analysis	or	the	analysis	of	finite	quantities,	as	differential	and	integral	calculus	

did	 not	 constitute	 themselves	 the	 framework	 of	 analysis	 of	 the	 infinite	 but	 were	 developed	

within	a	more	general	framework	of	calculus	outlined	by	the	infinite	large	and	small	quantities.	

After	 all,	 for	 them	 the	 –continuous–	 variability	 of	 a	 quantity	 was	 interpretable	 primarily	 in	

geometric	terms,	as	it	was	its	limit,	and	so	geometrical	methods	still	determined	analysis,	while	

Busse’s	 step	 required	 treating	 geometry	 in	 an	 algebraic	 way	 foreign	 to	 those	 authors.	

																																																													
109	The	original	title	 is	Formulae	linearum	Subtangentium	ac	Subnormalium,	Tangentium	ac	Normalium,	et	castigatae	et	diligentius	
quam	fieri	solet	explicatae.	
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Ultimately,	even	though	 in	a	sense	the	modifications	carried	out	by	those	authors	were	 in	the	

right	 direction,	 so	 to	 speak,	 that	 step	 required	 a	 notion	 of	 quantity	 that	 rather	 than	 being	

inherently	geometric,	at	least	attempted	to	be	inherently	analytical.	

	

Furthermore,	what	the	passages	on	the	combinatorial	analysis	and	the	sub-tangent	formula	also	

highlight	is	the	emergence	of	new	generations	in	the	Germanic	mathematical	scene	in	the	late	

18th	and	early	19th	centuries.	Authors	that	were	in	some	cases	sympathetic	to	the	combinatorial	

analysis	or	even	 involved	 in	 its	development,	as	 the	mention	of	Rothe,	Klügel	and	Pfaff,	along	

with	Hindenburg,	shows.	But	also	authors	that	were	more	or	 less	attached	or	detached	to	the	

previous	generation’s	notions	and	procedures,	as	the	dispute	between	Busse	and	Klügel	shows,	

among	 which	 Kästner	 additionally	 quoted	 Ludolf	 Hermann	 Tobiesen,	 Bernhard	 Thibaut,	 Carl	

Schulze,	 Karl	 Friedrich	 Hauber,	 (Kästner,	 1799:	 59,	 156,	 215,	 239,	 754,	 respectively),	 Johann	

Andreas	 Christian	 Michelsen,	 Ernst	 Gottfried	 Fischer,	 Hieronymus	 Christoph	 Wilhelm	

Eschenbach,	 Heinrich	 August	 Töpfer,	 Johann	 Tobias	 Mayer	 (Kästner,	 1794:	 530,	 536,	 557,	

respectively),	 Johann	Carl	 Schulze,	Mathias	Metternich	and	 Johann	Ephraim	Scheibel	 (Kästner,	

1800:	343,	490,	336,	respectively).	

	

In	 fact,	while	not	all	of	 those	authors	but	 several	of	 them	studied	with	Kästner,	 they	all	were	

more	 or	 less	 acquainted	 with	 his	 work,	 mainly	 his	 Foundations’	 volumes,	 which	 were	 widely	

read	during	the	second	half	of	the	18th	century	(as	reflected	in	its	many	editions).	Such	demand	

for	 these	 books,	 in	 contrast	 to	 the	 demand	 for	 the	 ones	 of	 any	 of	 his	 contemporaries,	 was	

related	 both	 to	 their	 content	 and	 external	 factors,	 such	 as	 his	 position	 as	 professor	 of	

mathematics	 at	 Göttingen	 for	 almost	 the	 entire	 second	 half	 of	 that	 century	 and	 the	 role	 he	

played	 in	Germanic	publications	and	Academies	of	 the	time.	 In	order	to	clarify	how	 influential	

was	 Kästner	 among	 those	 new	 generations	 of	 mathematicians,	 the	 last	 section	 of	 this	 work	

attempts	to	give	a	glimpse	on	the	evolution	of	the	Germanic	mathematics	during	the	last	third	

of	 the	 18th	 century	 and	 the	 first	 years	 of	 the	 19th	 century,	 when	 Bolzano	 published	 his	 first	

mathematical	work.	
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B.3.	The	impact	of	Kästner’s	mathematical	ideas	on	subsequent	generations	of	

Germanic	mathematicians	

	

	

In	1771,	the	Royal	Academy	of	Sciences	of	Göttingen	 (Societas	Regia	Scientiarum	Gottingensis)	

published	the	first	volume	of	its	new	scientific	journal,	Novi	Commentari.	This	comprised	works	

from	 1769	 and	 1770,	 including	 one	 by	 Kästner	 on	 d’Alembert’s	 (an	 “adversarius	 minor”	 of	

Bernoulli)	objections	to	Johann	Bernoulli’s	Nouvelle	Hydraulique	(cf.	Kästner,	1771:	45-89).	That	

same	year,	in	a	letter	to	d’Alembert	dated	on	December	16,	Lagrange	explained	to	him	that	the	

reason	 for	 sending	 him	 that	 volume	was	 not	 only	 that	 it	 contained	 some	 geometry	Mémoirs,	

which	 would	 give	 him	 an	 idea	 of	 this	 science’s	 state	 in	 the	 Germanic	 states,	 but	 specially	

because	 it	 included	 the	 aforementioned	defense	written	by	Kästner,	 “who”,	 he	wrote,	 “has	 a	

high	 reputation	 in	Germany	as	a	geometer	and	as	a	writer”,	adding:	 “you	will	 judge	how	well	

this	double	reputation	is	founded	by	the	mere	reading	of	the	book	of	which	I	speak	to	you;	you	

will	 see	 that	 the	 author	 pretends	 to	 dazzle	 by	 the	 intellect	 and	 the	 pleasantry,	 and	 you	 will	

double	up	with	laughter”	(Lagrange,	1882:	222).110	

	

That	such	animosity	was	towards	Germanic	mathematics	and	not	exclusively	towards	Kästner	is	

evidenced	 by	 both	 the	 subsequent	 lines	 of	 Lagrange,	 promising	 to	 send	 d’Alembert	 the	

following	 volumes	 of	 that	 journal	 if	 only	 to	 enlarge	 his	 library,	 as	 well	 as	 by	 d’Alembert’s	

response,	 criticizing	 the	 “very	 weak”	 geometric	 content	 of	 the	 whole	 volume	 and	 Kästner’s	

shallow	 (for	 its	 content)	 and	 ridiculous	 (for	 its	 form)	 work	 (Lagrange,	 1882:	 225). 111 	An	

animadversion	 between	 French	 and	 Germanic	 mathematicians	 that,	 it	 was	 said	 before,	 was	

reciprocal	at	 least	during	much	of	 the	second	half	of	 the	18th	century.	Broadly	speaking,	while	

for	 the	 first	 the	 procedures	 and	 notions	 of	 –most	 of–	 the	 Germanic	 mathematicians	 were	

retrograde	and	even	mediocre,	 for	 these	ones	 those	of	–most	of–	 the	French	mathematicians	

were	not	rigorous,	incorrect	and	even	useless.	

	

																																																													
110	Lagrange	wrote:	“vous	jugerez	combien	cette	double	réputation	est	fondée	par	la	simple	lecture	du	Mémoire	dont	je	vous	parle;	
vous	verrez	que	l'auteur	y	prétend	aussi	briller	du	côté	de	l'esprit	et	de	la	plaisanterie,	et	vous	vous	tiendrez	les	côtes	de	rire.”	
111	D’Alembert	wrote:	“Ce	Volume	me	paraît	bien	faible	de	Géométrie,	comme	à	vous.	La	pièce	de	Kaestner	contre	moi	est,	ce	me	
semble,	bien	mince	pour	le	fond	et	surtout	bien	ridicule	pour	la	forme.	Je	ne	sais	si	elle	vaut	la	peine	que	j’y	réponde.”	
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Leaving	aside	‘the	form’	of	the	dispute,	while	continuing	to	address	its	‘content’	throughout	this	

work,	 the	quoted	 lines	 from	Lagrange	highlight	other	 things	besides	 the	qualitative	difference	

established	between	the	French	and	Germanic	mathematics.	It	was	still	comon,	for	example,	the	

use	of	the	French	appellation	“géometre”	to	refer	to	a	mathematician	(cf.	Klügel,	1808:	624),	a	

synonymy	which	 is	 not	 a	minor	 detail	 considered	 that	 it	 emphasizes	 (though	 not	 necessarily	

intentionally)	the	attachment	of	mathematics	to	geometry	which	 in	general	endured	for	a	few	

more	decades	and	was	stressed	at	the	beginning	of	the	19th	century,	among	others,	by	Bolzano.	

In	 addition	 to	 which,	 Lagrange’s	 letter	 provides	 the	 testimony	 of	 a	 foreigner	 about	 the	

importance	 attributed	 to	 Kästner	 in	 the	 Germanic	 territories	 in	 the	 early	 1770s.	 The	 latter,	

nevertheless,	must	be	 substantiated	both	 temporally	 and	 spatially,	 as	well	 as	both	 inside	 and	

outside	Göttingen:	was	Kästner	as	 influential	as	Lagrange’s	 testimony	suggests	until	1770	and,	

even	more,	how	influential	was	he	during	the	subsequent	decades?	

	

	

B.3.1.	Scope	and	variety	of	Kästner’s	influence	through	his	published	works	

	

	

By	1800	the	Electorate	of	Brunswick-Lüneburg	(Hanover),	officially	confirmed	in	1708	and	ruled	

in	 personal	 union	 with	 Great	 Britain	 since	 1714,	 had	 acquired	 the	 surrounding	 territories	 of	

Saxe-Lauenburg	and	Bremen-Verden	and	had	won	Land	Hadeln.	As	a	result,	just	over	a	century	

after	 its	creation,	Hanover	had	unified	several	of	the	territories	that	previously	conformed	the	

Duchy	 of	 Brunswick-Lüneburg,	with	 the	 significant	 exception	 of	 the	 Principality	 of	 Brunswick-

Wolfenbüttel,	 which	 divided	 the	 Principality	 of	 Göttingen	 from	 the	 rest	 of	 the	 Electorate	 (cf.	

Whaley,	 2012	 II:	 49).	 So,	 while	 the	 university	 of	 Göttingen,	 as	 said	 before,	 belonged	 to	 the	

British-Germanic	 Electorate	 of	 Brunswick-Lüneburg	 despite	 its	 geographical	 division,	 the	

university	 of	 Helmstedt	 (Protestant)	 belonged	 to	 the	 Germanic	 Principality	 of	 Brunswick-

Wolfenbüttel,	closely	related	to	Prussia.	

	

There,	precisely,	at	Helmstedt,	two	Göttingen	alumni	taught	mathematics	and	history	the	same	

year	that	Kästner	died,	namely	Johann	Friedrich	Pfaff	and	Julius	August	Remer	(cf.	Zimmermann,	

1889:	198),	respectively.	But,	while	the	former	was	a	student	of	Kästner,	which	is	reflected	in	his	

work,	the	latter	was	not	and	in	his	Textbook	of	general	history	for	academies	and	gymnasiums	
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(Lehrbuch	der	algemeinen	Geschichte	für	Akademien	und	Gymnasien),	in	the	section	devoted	to	

the	 development	 of	 mathematics	 from	 1740	 to	 1800,	 he	 only	 mentioned	 Kästner	 for	 his	

promotion	of	the	study	of	hydrodynamics,	hydraulics,	and	hydrostatics	through	his	textbooks,	as	

well	as	for	his	analytical	treatment	of	perspective	in	these	ones	(Remer,	1800:	657).	By	contrast,	

just	as	Remer	 listed	Newton,	Leibniz	and	Bernoulli	as	the	most	outstanding	mathematicians	of	

the	 previous	 period	 (1660-1740)	 (Remer,	 1800:	 574),	 when	 summarizing	 the	 development	 of	

mathematics	during	the	second	half	of	the	18th	century	he	began	commenting	on	the	extension	

of	 analysis	 by	 “new	 methods”,	 such	 as	 the	 ones	 of	 Lagrange	 (calculus	 of	 variations)	 and	

Hindenburg	 (combinatorial	 analysis),	 quoting	 then	 d’Alembert,	 Clairaut,	 Laplace,	 Condorcet,	

Frist,	 Fontana,	 Karsten,	 Klügel	 and	 Pfaff	 among	 the	 most	 remarkable	 analysts	 of	 the	 time	

(Remer,	1800:	657).	

	

Remer’s	 brief	 description	 of	mathematics	 during	 the	 second	 half	 of	 the	 18th	 century	 is	 highly	

significant	 because,	 in	 spite	 of	 not	 coming	 from	 a	 mathematician,	 it	 shows	 an	 accurate	

acquaintance	of	the	overall	development	of	that	science.	His	reference	to	Germanic	and	French	

mathematicians	 of	 that	 period,	 most	 of	 them	 from	 subsequent	 generations	 to	 Kästner	 and	

Karsten,	 and	 his	 mention	 of	 both	 the	 calculus	 of	 variations	 and	 the	 combinatorial	 analysis	

reflects	no	animosity	towards	‘foreign’	mathematical	developments	and	also	the	importance	of	

Hindenburg’s	proposal	among	Germanic	mathematicians	by	 the	end	of	 the	century.	While,	on	

the	other	hand,	his	omission	of	Kästner	among	the	relevant	mathematicians	of	his	time	(and	his	

sole	 mention	 due	 to	 his	 textbooks)	 provides	 evidence	 of	 the	 decline	 of	 his	 influence	 among	

Germanic	mathematicians	towards	the	end	of	the	18th	century,	at	least	with	regard	to	the	core	

area	in	mathematics.	

	

Additionally,	 Remer’s	 lines	 on	 the	 history	 of	mathematics	 are	 not	 only	 important	 because	 of	

who	he	was,	a	professor	of	history	who	spent	some	time	at	Göttingen,	what	he	said	and	when	

he	 wrote	 them,	 but	 also	 by	 their	 publication	 context:	 Helmstedt,	 a	 Germanic	 territory	 that,	

unlike	Göttingen,	was	a	pro-Prussian	one.	Was	Kästner	influential	in	the	Germanic	territories	in	

general,	 regardless	 of	 their	 location	 or	 political	 and	 religious	 affiliation?	 Even	 more,	 was	 his	

influence	 constrained	 to	 particular	 issues	 and	 was	 he	 perceived	 more	 as	 an	 author	 of	

mathematical	textbooks	than	as	a	mathematician?	
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To	the	northeast,	at	 the	university	of	Königsberg	 (Protestant),	a	 territory	recovered	by	Prussia	

after	 the	Seven	Years’	War,	 two	professors	 taught	mathematics	during	 the	 second	half	of	 the	

18th	 century,	 scilicet	 Friedrich	 Johann	Buck	 and	 Johann	 Friedrich	 Schultz.	While	both,	 as	 Kant,	

apparently	used	Wolff’s	 texts	 for	 their	public	 lectures	and	 courses	on	mathematics,	 the	 latter	

also	used	Euler’s	texts	(cf.	Klemme	&	Kuehn,	2016:	107	&	701,	respectively).	However,	the	works	

of	 Schultz	 reveal	 as	 well	 the	 influence	 of	 contemporary	 Germanic	 authors	 and	 an	 interest	 in	

foundational	 issues	 not	 entirely	 common	 among	 Germanic	 mathematicians.	 Regarding	 the	

latter,	 in	 1790	 his	 book	 on	 the	 Foundations	 of	 Pure	 Mathesis	 (Anfangsgründe	 der	 reinen	

Mathesis)	 was	 published,	 whose	 “Prolegomena”	 were	 devoted	 to	 the	 definition,	 object,	

classification,	use	and	method	of	mathematics,	focusing	on	this	last	section	in	the	correctness	of	

mathematical	methodology,	i.e.	the	correctness	of	its	concepts	and	proofs	(cf.	Schultz,	1790:	16-

26).	Concerning	the	former,	his	1788	work	on	infinity,	written	for	the	1786	Berlin	Academy	prize	

for	an	essay	on	the	subject,	constantly	resorted	to	the	considerations	of	Karsten	and	Kästner	on	

the	infinite	large	and	small	quantities	(cf.	Schultz,	1788).	

	

On	the	side	of	cons,	to	the	southeast,	in	the	Germanic	territories	of	Buda	and	Pest,	parts	of	the	

former	 Kingdom	 of	 Hungary	 that	 by	 the	 end	 of	 the	 18th	 century	 were	 under	 Habsburg	

administration	 but	 were	 not	 part	 of	 the	 Holy	 Roman	 Empire,	 Ivan	 Paskvić,	 professor	 of	

mathematics	 at	 the	 university	 Eötvös	 Loránd,	 published	 in	 1799	 a	work	 on	 Static-mechanical	

principles	 built	 upon	 the	 analysis	 of	 infinite	 quantities	 (Opuscula	 Statico-Mechanica	 Principiis	

Analyseos	Finitorum	Superstructa)	and	in	1812-13	a	couple	of	volumes	on	the	Foundations	of	the	

whole	 theoretical	mathematics	 (Anfangsgründe	der	gesammten	theoretischen	Mathematik).	 In	

both	cases,	Paskvić	opted	for	the	proposal	of	Euler	–and	the	authors	akin	to	it–	on	integral	and	

differential	 calculus.	 Thus,	 in	 his	 work	 of	 1799	 he	 quoted	 the	 works	 of	 Newton,	 Leibniz	 and	

Euler,	but	also	the	ones	of	Michelsen,	Lagrange,	Lacroix	and	l’Huilier	(cf.	Paskvić,	1799:	IX-XXVI),	

followed	 the	 structure	 of	 Euler’s	 work	 (beginning	 by	 the	 definitions	 of	 constant	 and	 variable	

quantities	and	function)	and	only	mentioned	Kästner	and	Karsten	as	additional	references	in	the	

subject	(cf.	Paskvić,	1799:	3ff.	&	XXIV-XXV,	respectively).	While,	in	his	volumes	of	1812-13,	both	

in	the	section	on	“the	basic	principles	of	the	theory	of	analytical	functions”	(cf.	Paskvić,	1812:	II	

Theil,	85ff.)	and	 in	 the	sections	on	“the	 first	elements	of	 integral	and	differential	calculus”	 (cf.	

Paskvić,	1813:	111ff.)	he	clearly	 followed	Euler’s	proposal;	while,	 in	the	section	on	elementary	
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mathematics,	 despite	 some	 modifications,	 he	 followed	 the	 usual	 Germanic	 presentation	 (cf.	

Paskvić,	1812).	

	

Something	similar	happened	in	two	other	Germanic	territories	ruled	by	the	Habsburg	Monarchy,	

namely	Praha	and	Vienna.	 Firstly,	 at	 the	university	of	 Praha	 the	math	 teachers	of	 elementary	

and	 higher	 mathematics,	 Stanislav	 Vydra	 and	 Franz	 Joseph	 Ritter	 von	 Gerstner,	 respectively,	

employed	 for	 their	 courses,	 according	 to	Alena	Šolcová,	 the	works	of	 Euler,	 the	 latter,	 and	of	

Kästner,	the	former	(Šolcová,	2010:	3	&	10).	Vydra,	as	a	matter	of	fact,	acknowledged	his	debt	to	

Kästner’s	 Anfangsgründe	 der	 angewandten	 Mathematik	 at	 the	 beginning	 of	 his	 Propositions	

from	Mechanics	 (Sätze	aus	der	Mechanik),	although	he	also	recognized	his	use	of	the	books	of	

Wolff,	 Claude-François	 Milliet	 de	 Chales,	 Nicolas	 Louis	 de	 La	 Caille,	 Sturm,	 Karsten,	 Jakob	

Bernoulli,	Eberhard,	Walcher	and	Sprengel	(Vydra,	1795:	3-4);	concerning	calculus,	he	relied	on	

the	 lessons	 of	 Johann	 Bernoulli	 (cf.	 Vydra,	 1783).	 Secondly,	 at	 the	 university	 of	 Vienna	 the	

professor	 of	 higher	 mathematics	 was	 the	 Jesuit	 Karl	 Scherffer,	 whose	 Analytic	 Instructions	

(Institutionum	 Analyticarum),	 even	 more	 than	 his	 Treatise	 on	 Series	 (Abhandlung	 von	 Serien	

oder	Reihen,	1782),	make	clear	such	duality:	the	parts	devoted	to	arithmetic	and	the	analysis	of	

finite	 quantities	 follow	 the	 common	Germanic	 presentation	 of	 those	 subjects,	 as	 for	 example	

the	 algebraic-geometrical	 conception	 of	 negative	 quantities	 (cf.	 Scherffer,	 1770),	 while	 his	

presentation	 of	 infinitesimal	 calculus	 explicitly	 follows	 Euler’s	 proposal	 (cf.	 Scherffer,	 1771	 &	

1772).	

	

Kästner’s	works	might	have	been	highly	influential	among	Germanic	mathematicians	during	the	

first	decades	of	the	second	half	of	the	18th	century,	including	not	only	the	first	and	fourth	part	of	

his	Foundations	of	mathematics	(on	elementary	mathematics	and	mechanics,	respectively),	but	

also	 its	 third	 part	 on	 the	 foundations	 of	 the	 analysis	 of	 finite	 and	 infinite	 quantities	 which,	

Conrad	 Heinrich	Müller	 states,	 “were	 immediately	 used	 at	 the	 lectures	 in	 other	 universities”	

after	their	publication	(Müller,	1904:	65).	However,	as	those	‘peripheral’	examples	suggest	and	

as	further	ones	throughout	the	Holy	Roman	Empire	reaffirm,	by	the	end	of	the	18th	century	the	

influence	of	Kästner	among	new	Germanic	mathematicians	was	not	a	matter	of	the	political	or	

religious	circumscription	of	the	authors	who	referred	to	him,	nor	 it	was	entirely	related	to	the	

content	 of	 his	 works	 quoted	 by	 them,	 but	 in	 many	 cases	 it	 was	 a	 matter	 of	 whether	 those	

authors	had	studied	with	Kästner	or	with	someone	who	in	turn	had	studied	with	him.	
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Exceptions	to	this	are,	for	example,	Johann	Sigismund	Gottfried	Huth,	professor	of	mathematics	

at	the	university	of	Frankfurt	(Oder)	and	later	at	the	Russian-Germanic	university	of	Dorpat,	and	

Johann	Andreas	Christian	Michelsen,	a	former	student	at	Halle	and	professor	of	mathematics	at	

the	Berlinischen	und	Cöllnischen	Gymnasium.	Huth,	Karsten’s	student	at	Halle,	recognized	in	the	

preface	 to	 his	 Foundations	 of	 applied	 mathematics	 (Anfangsgründe	 der	 angewandten	

Mathematik)	 the	 value	 of	 the	 textbooks	 of	 Kästner	 and	 Karsten	 (his	 “most	 distinguished”	

teachers),	which,	he	said,	at	the	time	he	still	used	in	his	courses	along	with	the	works	of	Klügel,	

Lorenz,	Eberhard	and	Scheibel	 (Huth,	1789:	Vorrede	 [10-11]).	Michelsen,	German	translator	of	

Euler’s	works,	although	he	relied	on	Euler	in	his	works	on	analysis	(cf.	Michelsen,	1790	I	&	II),	he	

constantly	stated	the	relevance	of	Kästner’s	and	Karsten’s	works	especially	but	not	exclusively	

regarding	elementary	mathematical	issues	(Michelsen,	1786:	XVI-XVII;	Michelsen,	1789:	10ff.).	

	

On	 the	 other	 hand,	 Andreas	 Boehm,	 at	 the	 university	 of	 Giessen	 (located	 in	 the	 HRE’s	

Landgraviate	 of	 Hesse-Darmstadt),	 Christian	 Gottlieb	 Zimmermann	 in	 Berlin,	 Johann	 Friedrich	

Raupach	at	the	Prussian-Silesian	Liegnitzer	Ritterakademie,	and	Christian	Gottfried	Ewerbeck	at	

Halle	 and	 later	 at	 the	Akademische	 Gymnasium	 Danzig,	 did	 not	 include	 Kästner	 among	 their	

main	 references.	Boehm	taught	metaphysics,	 logic	and	mathematics	and,	as	he	made	clear	at	

the	beginning	of	his	Logic	(Logica	in	usum	auditorii	sui	Ordine	Scientifico),	he	was	a	supporter	of	

Wolff’s	 logical-mathematical	 ideas	 (Boehm,	 1762:	 4;	 cf.	 Klemme	 &	 Kuehn,	 2016:	 86-87).	

Zimmermann,	professor	of	mathematics	at	the	Friedrichswerdersche	Gymnasium,112	quoted	the	

presentations	 of	 opposite	 quantities	 of	 Karsten	 and	 Klügel	 as	 the	 more	 appropriate	 and	

highlighted	the	inclusion	of	Hindenburg’s	combinatorial	analysis	in	his	Development	of	analytical	

principles	 for	 the	 initial	 lessons	 in	mathematics	 (cf.	 Zimmermann,	 1805:	 XX-XXI	&	 XXII-XIV);113	

Raupach,	professor	of	mathematics,	in	his	Elements	of	algebra	and	analysis	and	their	application	

to	geometry	(Die	Elemente	der	Algebra	und	Analysis,	nebst	ihrer	Anwendung	auf	die	Geometrie)	

followed	 the	 usual	 Germanic	 presentation	 in	 the	 sections	 on	 common	 arithmetic,	 while	 the	

sections	 on	 algebra	 and	 analysis	 were	 closer	 to	 ‘foreign’	 presentations	 such	 as	 Euler’s	 (cf.	

Raupach,	 1815:	 IX,	 63	 &	 121);	 and	 Ewerbeck,	 professor	 of	 mathematics,	 in	 his	 book	 on	 The	

																																																													
112	Zimmermann	was	 a	mathematician	 that	 attended	 the	university	of	Königsberg,	 where,	 according	 to	 the	Allgemeine	 Deutsche	
Biographie	entry,	he	became	close	to	Schultz	and	Kant	(Cantor,	1900:	251).	
113	The	whole	 title	 is	Entwickelung	 analytischer	Grundsätze	 für	 den	 ersten	Unterricht	 in	 der	Mathematik	 besonders	 für	 diejenigen	
welche	sich	ohne	mündliche	Anweisung	darüber	belehren	wollen.	
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Similarity	 between	 pure	 mathematics	 and	 logical	 philosophy	 (De	 Similitudine	 inter	 Mathesin	

puram	atque	Philosophiam	logicam),	quoted	Segner’s	Anfangsgründe	as	his	main	mathematical	

reference	 and	 considered	 as	 references	 in	 the	 topic	 Lambert,	 Kant,	 Eberhard	 and	Michelsen,	

among	others	(cf.	Ewerback,	1789:	8	&	21-23).	

	

As	for	other	important	Germanic	cities,	universities	and	professors	of	mathematics,	Kästner	was	

among	 the	main	 references,	but	as	 in	 the	 case	of	Pfaff,	most	of	 those	professors	had	 studied	

with	 him.	 Such	 are	 the	 cases	 of	 Klügel,	 Hindenburg,	 Metternich,	 Johann	 Tobias	 Mayer,	

Langsdorf,	 Brandes,	 Thibaut	 and	 even	 Lichtenberg	 and	 Tralles.	 The	 following	 section	 will	 be	

specifically	 devoted	 to	 highlight	 the	 extent	 of	 Kästner’s	 influence	 among	 some	 of	 those	 new	

Germanic	mathematicians.	

	

	

B.3.2.	 Kästner’s	 students	 and	 the	 changes	 in	 Germanic	 mathematical	 conceptions	 and	

practices	toward	the	late	18th	and	early	19th	centuries	

	

	

Georg	 Simon	 Klügel,	 since	 1767	 professor	 of	mathematics	 at	 the	 university	 of	 Helmstedt	 and	

successor	of	Karsten	at	Halle	 in	1788,	 is	perhaps	the	best-known	pupil	of	Kästner,	both	for	his	

dissertation	on	the	theory	of	parallel	lines,	Recension	of	the	main	endeavors	to	demonstrate	the	

theory	of	parallel	lines	(Conatuum	praecipuorum	theoriam	parallelarum	demonstrandi	recensio)	

(cf.	 Klügel,	 1763),	 and	 for	 his	 Mathematical	 dictionary	 (Mathematisches	 Wörterbuch	 oder	

Erklärung	der	Begriffe,	Lehrsätze,	Aufgaben	und	Methoden	der	Mathematik),	 this	 latter	one	of	

the	 best	 Germanic	 sources	 –if	 not	 the	 best–	 on	 the	 terminology	 used	 in	mathematics	 by	 the	

beginning	of	the	19th	century.	There,	Klügel	defined	mathematics	as	“the	science	of	the	forms	of	

quantities,	that	is,	all	the	ways	in	which	a	quantity	is	composed	from	others”	or,	in	other	words,	

the	science	that	developed	the	connections	among	quantities,	 found	the	forms	under	which	a	

quantity	could	be	represented	and	taught	how	to	find	unknown	quantities	from	known	ones	to	

which	 those	 were	 connected	 (cf.	 Klügel,	 1808:	 602-603). 114 	That	 way,	 he	 said,	 in	 pure	

mathematics	what	was	always	sought	were	the	forms	of	quantities	(cf.	Klügel,	1805:	269).115	

																																																													
114	Klügel	wrote:	 “Mathematik	 ist	 die	Wissenschaft	 von	den	 Formen	der	Grössen,	 das	 ist	 aller	Arten,	wie	eine	Grösse	 aus	 andern	
zusammengesetzt	wird.	Jede	Grösse	hängt	con	andern,	wenigern	oder	mehrern,	Grössen	ab,	bald	auf	eine	einfeche,	bald	aus	eine	
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Such	 definition	 of	mathematics,	 alternative	 to	 the	 traditional	 one,	was	 not	 uncommon	 in	 the	

early	 19th	 century	 among	 Germanic	 mathematicians.	 For	 example,	 firstly,	 Bernhard	 Friedrich	

Thibaut	 (professor	 at	 Göttingen	 since	 1797,	 first	 as	 lecturer,	 then	 as	 associate	 professor	 of	

philosophy	 and	 finally	 as	 professor	 of	mathematics	 (cf.	 Cantor,	 1894))	 implicitly	 adopted	 that	

definition	 both	 in	 his	 Outline	 of	 pure	 mathematics	 (Grundriss	 der	 reinen	 Mathematik	 zum	

Gebrauch	bey	academischen	Vorlesungen	abgefasst)	and	in	his	Outline	of	general	arithmetic	or	

analysis	 (Grundriss	 der	 allgemeinen	Arithmetik	 oder	Analysis	 zum	Gebrauch	 bei	 academischen	

Vorlesungen	 entworfen):	 in	 the	 former	 he	 defended	 that	 the	 basic	 concepts	 and	 rules	 of	 the	

combinatorial	 theory	 were	 “essential	 parts	 of	 the	 first	 principles”	 of	 pure	 mathematics	 (cf.	

Thibaut,	1809B:	III;	cf.	Thibaut	1809A:	10-35),	while	in	the	latter	he	wrote	that	arithmetic	dealt	

with	numbers	and	laws	(Gesetzen)	of	the	several	connections	among	them	(cf.	Thibaut,	1809A:	

1).	 Secondly,	 an	 anonymous	 reviewer	 of	 Gerhard	 Ulrich	 Vieth’s	 Foundations	 of	 Mathematics	

(Anfangsgründe	der	Mathematik)	in	the	Neue	Leipziger	Literaturzeitung	defined	mathematics	as	

“a	 general	 theory	 of	 forms”,	 the	 quantity	 being	 the	 “most	 general	 form”	 and,	 consequently,	

arithmetic	being	the	pure	theory	of	quantities	and	mathematics	being	partly	but	not	exclusively	

the	theory	of	quantities	([Anonymous],	1808:	1291).116	

	

Moreover,	Heinrich	Wilhelm	Brandes,	since	1811	professor	of	mathematics	at	the	university	of	

Breslau	and	professor	of	physics	at	Leipzig	from	1826	thereafter	(cf.	Bruhns,	1876),	contributed	

to	 Gehler’s	 Physics	 dictionary	 (Physikalisches	 Wörterbuch)	 with	 the	 entry	 of	 “Mathematik”,	

where	he	defined	this	one	as	“the	science	which	compares	quantities,	determining	from	given	

quantities	 other	 ones	 according	 to	 certain	 given	 conditions”	 (Brandes,	 1836:	 1473). 117 	A	

definition	 that,	although	at	 first	glance	may	not	seem	entirely	similar	 to	 those	of	others,	does	

																																																																																																																																																																																					
verwickelte,	nicht	selten	sehr	verwickelte	Art	ab.	Die	Mathematik	entwickelt	den	Zusammenhang	der	Grössen,	die	auf	irgend	eine	
Art	mit	einander	verknüpft	sind;	sie	findet	die	verschiedenen	Formen,	unter	welchen	eine	und	dieselbe	Grosse	dargestellt	werden	
kann;	sie	lehrt,	wie	aus	gewissen	bekannten	Grössen	die	unbekannten,	welche	mit	ihnen	in	Verbindung	stehen,	gefunden	werden,	es	
sey	ganz	vollständig,	oder	näherungsweise.”	
115	This	definition	can	already	be	found	in	his	work	of	1792,	the	second	edition	of	his	Anfangsgründe	der	Arithmetik,	Geometrie	und	
Trigonometrie,	where	Klügel	wrote:	“Die	Mathematik	enthält	alle	Arten	von	Untersuchungen	über	die	Grössen.	Sie	entwickelt	den	
Zusammenhang	 der	 Grössen,	 die	 auf	 irgend	 eine	 Art	 mit	 einander	 verknüpft	 sind;	 sie	 findet	 die	 verschiedenen	 Formen,	 unter	
welchen	 eine	 und	 dieselbe	 Grösse	 dargestellt	 werden	 kann,	 und	 lehrt,	 wie	 aus	 gewissen	 bekannten	 Grössen	 die	 unbekannten,	
welche	mit	ihnen	in	Verbindung	stehen,	gefunden	werden”	(Klügel,	1792:	5;	cf.	Klügel,	1794:	48).	
116 	The	 reviewer	 wrote:	 “Die	 Mathematik	 is	 allerdings	 auch	 Grössenlehre,	 aber	 nicht	 allein	 Grössenlehre;	 denn	 die	 reine	
Grössenlehre	ist	die	Arithmetik.	Die	Grösse	ist	nur	darum	Gegenstand	der	Mathematik,	weil	sie	die	allgemeinste	Form	ist,	endlich	zu	
seyn,	die	Mathematik	aber	ihrer	Natur	nach	eine	allgemeine	Formenlehre	ist”.	As	a	matter	of	fact,	Bolzano	quoted	this	definition	as	
source	of	inspiration	for	his	own	definition	in	his	1810	work.	
117	Brandes	 wrote:	 “Mathematik	 ist	 die	Wissenschaft,	 welche	 Grössen	 vergleichen,	 aus	 gegebnen	 Grössen	 andre	 nach	 gegebnen	
Bedingungen	bestimmen	lehrt.”	
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resemble	 Klügel’s	 definition,	 as	well	 as	 the	 implicit	mathematical	 conception	 of	 Lagrange,	 for	

whom:	

	

In	arithmetic,	one	seeks	numbers	according	to	given	conditions	between	these	and	other	numbers,	and	the	

numbers	 found	 that	 satisfy	 these	 conditions	 without	 preserving	 any	 trace	 of	 the	 operations	 used	 to	 form	

them.	[While	in]	algebra,	instead,	the	quantities	that	one	seeks	must	be	functions	of	given	quantities,	that	is	

to	say,	expressions	that	represent	the	different	operations	that	have	to	be	carried	out	on	these	quantities	to	

obtain	the	values	of	the	quantities	sought.	(Lagrange,	1799:	235)118	

	

Precisely,	Brandes’	later	definition	of	mathematics	and	Lagrange’s	notion	of	‘function’	highlight	

the	 link	 between	 two	 intertwined	 ways	 of	 thinking	 mathematical	 study	 of	 quantities	 among	

Germanic	 mathematicians	 by	 the	 beginning	 of	 the	 19th	 century:	 on	 the	 one	 hand,	 a	 study	

focused	on	 the	 forms	of	quantities,	 that	 is,	 the	ways	 in	which	a	quantity	was	 composed	 from	

others	(cf.	Klügel,	1805:	269);	on	the	other	hand,	a	study	focused	on	the	functions	of	quantities,	

i.e.	 expressions	 that	 represented	 operations	 performed	on	 quantities	 (cf.	 Lagrange,	 1801:	 10-

11).	

	

Lagrange’s	algebraic	analysis,	as	a	matter	of	fact,	can	be	interpreted	as	the	part	of	mathematics	

concerned	with	the	forms	of	quantities	in	general	or	abstract,	quite	similarly	to	the	way	Klügel	

defined	 ‘analysis’	 in	 his	 dictionary:	 analysis,	 Klügel	 said,	 was	 concerned	 with	 “the	 general	

presentation	 and	 development	 of	 the	 ways	 of	 composition	 of	 quantities	 by	 calculation”	 and	

provided	general	theorems	and	solutions,	which	in	turn	required	the	general	type	of	designation	

of	quantities	and	“their	 forms	of	composition”	taught	 in	 the	calculus	of	 letters	or	algebra	that	

also	 contained	 the	 most	 simple	 and	 common	 forms	 of	 reckoning	 or	 transformations	 (Klügel,	

1803:	 77-78).119	However,	 while	 Lagrange’s	 project	 was	 related	 to	 Euler’s	 analytical	 program,	

which	 intended	 to	 place	 analysis	 as	 the	 core	 around	 which	 all	 mathematics	 should	 be	

reorganized,	the	project	to	which	that	other	Germanic	conception	of	mathematics	 in	the	early	

																																																													
118	Lagrange	 wrote:	 “Dans	 l’arithmétique,	 on	 cherche	 des	 nombres	 par	 des	 conditions	 données	 entre	 ces	 nombres	 et	 d’autres	
nombres;	et	 les	nombres	qu’on	 trouve	 satisfont	à	 ces	 conditions	 sans	 conserver	aucune	 trace	des	opérations	 qui	 ont	 servi	à	 les	
former.	Dans	l’algèbre,	au	contraire,	les	quantités	qu’on	cherche	doivent	être	des	fonctions	des	quantités	données,	c’est-à-dire,	des	
expressions	 qui	 représentent	 les	 différentes	 opérations	 qu’il	 faut	 faire	 sur	 ces	 quantités	 pour	 obtenir	 les	 valeurs	 des	 quantités	
cherchées.”	
119	Klügel	wrote:	“Da	die	analytische	Behandlung	der	Verbindungen	der	Grössen	allgemeine	Lehrsätze	und	Auflösungen	liefert,	so	ist	
ihr	 eine	 allgemeine	 Bezeichnungsart	 der	 Grössen	 und	 ihrer	 Formen	 (Arten	 der	 Zusammensetzung)	 notwendig.	 Diese	wird	 in	 der	
Buchstabenrechnung	 gelehrt,	 welche	 zugleich	 die	 leichtesten	 und	 gemeinsten	 Rechnungsarten	 oder	 Umwandlungen	 der	 Formen	
enthält.”	
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19th	 century	 was	 linked	 was	 the	 placement	 of	 the	 theory	 of	 combinations	 –or	 combinatorial	

analysis–	as	one	of	the	core	parts	of	mathematics.	

	

Inasmuch	 as	 both	 projects	 were	 intertwined,	 they	 shared	 some	 crucial	 aspects	 as	 well	 as	

differed	in	some	others.	To	begin	with,	Germanic	mathematicians	of	subsequent	generations	to	

Segner,	 Kästner	 and	 Karsten	 were	 not	 as	 reluctant	 as	 these	 ones	 to	 ‘foreign’	 analytical	

developments,	such	as	those	carried	out	by	Euler	and	several	French	mathematicians.	So,	while	

on	 the	 one	 hand	 some	 fragments	 written	 by	 Georg	 Christoph	 Lichtenberg,	 professor	 of	

experimental	physics	at	Göttingen,	show	an	agreement	that	was	unusual	among	new	Germanic	

generations	with	Kästner	and	previous	Germanic	mathematicians	both	 terminologically	 (when	

referring	 to	 negative	 numbers	 as	 verneinte)	 and	 conceptually	 (when	 talking	 about	 foreign	

mystisch	algebraischen	Beschwörungen,	“mystical	algebraic	incantations”)	(cf.	Lichtenberg,	1994	

I	&	 II:	 505	&	144,	 respectively),	on	 the	other	hand	 the	works	of	other	authors	 such	as	Klügel,	

Metternich,	 Langsdorf,	 Pfaff,	 Hindenburg	 and	 Johann	 Tobias	 Mayer	 show	 quite	 clearly	 the	

tension	 between	 the	 conception	 they	 inherited	 and	 new	mathematical	 trends	 to	 which	 such	

conception	was	opposed.	

	

The	case	that	in	a	sense	more	explicitly	reflects	such	a	tension	is	that	of	Johann	Tobias	Mayer,	

student	of	both	Kästner	and	Lichtenberg	and	this	latter’s	successor	at	Göttingen	in	1799.	Among	

his	works,	Mayer	published	in	1818	one	on	higher	analysis	(Vollständiger	Lehrbegriff	der	höhern	

Analysis)	 whose	 opening	 lines	 criticized	 the	 “deficiency”	 (Mangel)	 in	 the	 usual	 Germanic	

presentation	of	higher	analysis	which	he	intended	to	improve	(cf.	Mayer,	1818:	III-IV).120	At	the	

same	time,	however,	as	he	himself	pointed	out	in	the	preface,	he	followed	the	usual	Germanic	

presentation	 of	 the	 fundamental	 concepts	 of	 differential	 calculus.	 That	way,	 his	 presentation	

was	not	longer	the	one	of	Kästner	and	many	of	the	mid-18th	century	Germanic	mathematicians	

starting	with	what	they	considered	to	be	the	groundings	of	the	 infinite,	namely	the	notions	of	

infinitely	 small	 and	 large	 quantities:	 he	 started	 with	 the	 notions	 of	 function,	 variable	 and	

constant	quantities	and	the	classification	of	 functions	(cf.	Mayer,	1818:	1ff.),	as	 in	the	work	of	

																																																													
120	Mayer	wrote:	“Gegenwärtige	Anleitung	zur	höhern	Analysis,	 in	so	weit	sie	die	Differenzial-und	Integralrechnung	umfasset,	wird	
hoffentlich	denen	nicht	unangenehm	seyn,	welche	sich	von	den	mancherley	Kunstgriffen,	womit	insbesondere	die	Integralrechnung	
bereichert	worden	ist,	vollständiger	zu	unterrichten	wünschen,	als	es	aus	den	bisher	in	Deutschland	erschienenen	Lehrbüchern	jener	
Wissenschaft	geschehen	kann.”	
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Euler	and	many	of	the	French	mathematicians	of	the	second	half	of	the	18th	century,	in	spite	of	

which	his	presentation	still	shared	the	Germanic	reluctance	towards	infinitely	small	quantities.	

	

Firstly,	Mayer	said,	just	as	the	concept	of	infinitely	large	rested	on	the	possibility	of	a	number	or	

quantity	 to	 always	 grow	 “beyond	 any	 supposed	 limit”,	 without	 ever	 being	 conceived	 as	

complete	 or	 perfectly	 defined,	 a	 quantity	 or	 a	 number	 could	 always	 be	 considered	 smaller	

without	reaching	an	end,	that	is,	he	emphasized,	could	always	be	considered	in	a	state	of	infinite	

decrease	or	becoming	infinitely	small	without	actually	being	infinitely	small	(cf.	Mayer,	1818:	31	

&	42-43).121	Secondly,	 since	no	number	could	 represent	an	 infinite	quantity,	an	 infinitely	 large	

quantity	 was	 correctly	 represented	 by	 a	 symbol	 (∞),	 he	 wrote,	 although	 an	 infinitely	 small	

quantity	was	wrongly	considered	= 0,	not	being	zero	a	quantity	but	the	absence	of	quantity	(cf.	
Mayer,	1818:	44).	That	way,	on	the	one	hand,	the	value	of	an	infinite	large	quantity	would	not	

be	 changed	with	 the	 removement	 or	 placement	 of	 a	 finite	 one,	with	∞ ± ! = ∞,	 though	 the	

aggregate	of	infinitely	large	quantities	would	give	rise	to	an	infinitely	large	quantity	of	different	

order,	 as	 in	∞ ∙∞ = ∞!	(cf.	Mayer,	 1818:	 38-39).	While,	 on	 the	 other	 hand,	 the	 value	 of	 an	

infinitely	small	should	not	be	reduced	by	subtraction	so	that	it	becomes	zero	“and	even	changes	

over	 to	 negative	 status”	 (und	 gar	 in	 den	 negativen	 Zustand	 übergehen	 lassen	 könnte),	 but	

reduced	 in	 a	 way	 that	 it	 never	 reaches	0,	 as	 in	 the	 expression	!!	for	 an	 infinitesimaly	 part	 of	

quantity	!,	which	 in	 turn	made	 it	possible	 to	distinguish	between	different	orders	of	 infinitely	

small	quantities	(
!
! ,

!
!! ,

!
!! ,…)	(cf.	Mayer,	1818:	44-45	&	47).122	

	

Because	 of	 all	 that,	 Mayer	 criticized	 both	 the	 “greatest	 absurdities”	 (grössten	 Absurditäten)	

arising	 from	 the	 calculus	 of	 “zeros	 or	 nothings”,	 which	 considered	 these	 ones	 as	 “real	

quantities”	 (würkliche	Grössen),	overruling	 their	principles	and	 leading	 to	 “inconsistencies	and	

difficulties”	 (Ungereimtheiten	 und	 Schwürigkeiten)	 (cf.	Mayer,	 1818:	 44),	 as	 well	 as	 the	 futile	

attempts	to	avoid	using	the	term	‘infinite’	to	refer	to	such	perpetual	 increase	or	decrease	and	

																																																													
121	Mayer	 wrote:	 “Gedenkt	 man	 sich	 eine	 Grösse	 in	 einem	 solchen	 Zustande	 der	 unendlichen	 Abnahme,	 so	 sagt	 man	 dass	 sie	
unendlich	klein	werde,	aber	nie	kann	man	sagen	dass	sie	unendlich	klein	sey,	weil	dies	so	viel	hiesse,	als	eine	Gränze	setzen,	über	die	
sie	 nicht	 noch	 kleiner	 werden	 könnte.”	 This	 definition	 of	 infinitely	 small	 quantities	 recalls,	 for	 example,	 that	 of	 Lazare	 Carnot:	
“J’appelle	 quantité	 infiniment	 petite,	 toute	 quantité	 qui	 est	 considérée	 comme	 continuellement	 décroissante,	 tellement	 qu’elle	
puisse	être	 rendue	aussi	petite	qu’on	 le	veut,	 sans	qu’on	soit	obligé	pour	cela,	de	 faire	varier	 celles	dont	on	cherche	 la	 relation”	
(Carnot,	1797/1813:	19).	
122	Mayer	wrote:	“Soll	eine	Grösse	unendlich	klein	werden,	so	darf	man	sie	nicht	dergestalt	abnehmen	lassen,	dass	sie	endlich	Null	
wird	 (also	 durch	 Subtraction),	 weil	 man	 sie	 ja	 nach	 dieser	 Weise	 noch	 weiter	 vermindern,	 und	 gar	 in	 den	 negativen	 Zustand	
übergehen	lassen	könnte,	sondern	die	Verminderung	muss	so	beschaffen	seyn,	dass	die	Grösse	wenn	sie	auch	immerfort	abnimmt,	
doch	nie	den	völligen	Nullzustand	erreicht.”	
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the	 “pedantic	 fearfulness”	 (pedantische	 Aengstlichkeit)	 with	 which	 some	 authors	 sought	 to	

avoid	 such	decrease	 (cf.	Mayer,	 1818:	 32	&	VI-VII,	 respectively).	A	 criticism	 that	 apparently	 is	

also	 found	 in	 an	 unpublished	 manuscript	 on	 the	 foundations	 of	 higher	 analysis	 written	 by	

Johann	Georg	 Tralles	 in	 1808	 (former	 professor	 of	mathematics	 at	 the	 Academy	 of	 Bern	 and	

professor	at	the	university	of	Berlin	at	the	time	of	his	death,	 in	1822),	 in	which	he	would	have	

try	to	avoid	the	notions	of	infinitely	large	and	small	quantities	“or	other	arrangements	of	these	

words”	due	to	the	incongruences	to	which	they	led	(Schubring,	2005:	535-536).	

	

Undoubtedly,	 just	 as	 there	 were	 students	 of	 Kästner	 who	 did	 not	 dedicate	 themselves	 to	

mathematics,	 as	 Johann	 Christian	 Polycarp	 Erxleben,	 or	 strictly	 to	 them,	 as	 Brandes	 himself,	

there	were	some	others	who,	devoted	to	mathematics,	did	opt	to	employ	such	developments	by	

Euler	 and	 other	 non-Germanic	mathematicians,	 e.g.	 Johann	 Friedrich	 Pfaff,	 who	 was	 Klügel’s	

successor	at	Helmstedt	and,	after	this	one	was	closed	in	1810	(being	part	of	the	Germanic	but	

Napoleonic	Kingdom	of	Westphalia),	was	professor	of	mathematics	at	Halle	 (cf.	Cantor,	1887).	

Pfaff’s	inaugural	dissertation	at	Helmstedt	clearly	asserted	that,	in	a	way,	it	was	“permissible	to	

equal	to	0	the	differentials	of	variable	quantities”	(Pfaff,	1788:	5),123	and	his	subsequent	work	on	
integral	calculus	and	combinatorial	analysis,	while	containing	some	references	to	Kästner,	were	

more	in	line	with	Euler	and	Hindenburg’s	analytical	proposals	though	not	entirely	constrained	to	

these	ones	(cf.	Pfaff,	1797	&	1796,	respectively;	cf.	Dhombres,	1995).	

	

Nonetheless,	 the	 work	 of	 several	 of	 Kästner’s	 students	 that	 did	 dedicate	 themselves	 to	

mathematics	reflects	over	the	years	the	aforementioned	tension.	For	example,	among	the	early	

mathematical	 works	 of	 Karl	 Christian	 von	 Langsdorf,	 professor	 at	 Erlangen	 (by	 then	 part	 of	

Prussia)	 since	 1798	 and	 later	 at	 Vilniaus	 and	 Heidelberg,	 there	 were	 some	 annotations	 on	

Kästner’s	analysis	of	finite	and	infinite	quantities	(cf.	Langsdorf,	1777	&	1778);	but	in	1802,	in	his	

Foundations	 of	 pure	 elementary	 and	 higher	 mathematics,	 although	 he	 basically	 followed	 the	

common	Germanic	presentation	of	the	second	half	of	the	18th	century,	defining	mathematics	as	

“the	science	of	the	quantities	only	in	relation	to	its	quantity”	and	introducing	negative	quantities	

as	negated	ones	(Langsdorf,	1802:	1	&	60-62),124	he	did	criticize	the	usual	Germanic	division	into	

																																																													
123	Pfaff	 wrote:	 “Ita,	 quod	 paradoxi	 speciem	mentitur,	 differentialia	 quantitatum	 variabilium	 nihilo	 aequare,	 contra	 quantitatum	
certo	respectu	constantium	differentialia	pro	realibus	accipere	licet.”	
124	Langsdorf	wrote:	 “Die	Mathematik	 ist	 die	Wissenschaft	 von	 den	Grössen	 bloss	 in	 Bezug	 auf	 ihre	Grösse,	 und	 heisst	 daher	 im	
Teutschen	auch	die	Grössenlehre.”	
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analysis	of	finite	and	infinite	quantities	as	“unnecessary	and	not	even	quite	correct”	(entbehrlich	

und	 nicht	 einmal	 ganz	 richtig),	 considering	 more	 appropriate	 the	 division	 of	 mathematical	

analysis	 into	 arithmetic	 and	 geometric	 (Langsdorf,	 1802:	 300).	 That	 way,	 in	 his	 1807	 work	

entitled	New	and	more	rigorous	presentation	of	the	principles	of	differential	calculus	(Neue	und	

gründlichere	Darstellung	der	Principien	der	Differentialrechnung),	he	followed	the	presentation	

of	Euler	and	many	French	mathematicians	of	the	second	half	of	the	18th	century,	beginning	by	

the	notions	of	function	and	variable	and	constant	quantities	and	not	anymore	by	the	notions	of	

infinitely	 small	 and	 large,	 even	 considering	 differentials	 such	 as	! − ! 	as	 infinitely	 small	

quantities	(cf.	Langsdorf,	1807:	1	&	42).	

	

Another	case	similar	to	that	of	Langsdorf,	insofar	as	over	the	years	his	work	shows	a	detachment	

from	 the	 Germanic	 mathematics	 of	 the	 mid-18th	 century,	 was	 that	 of	 Matthias	 Metternich,	

professor	of	mathematics	at	the	former	catholic	university	of	Mainz	from	1784	to	1809,	when	

Mainz	and	all	the	other	French	lyceums	were	reorganized	and	he	was	not	rehired	(cf.	Schubring,	

2005:	 506).	Metternich’s	work	 of	 1783,	 for	 example,	A	 thorough	 instruction	 on	 arithmetic	 for	

beginners	 in	public	 schools	 (Gründlige	Anweisung	zur	Rechenkunst	 für	Anfänger	 in	öffentlichen	

Schulen),	was	 indeed	not	only	 in	 line	with	Wolff’s	work	but	 very	 similar	 to	 this	one,	 from	 the	

very	definition	of	the	“art	of	reckoning”	to	the	omission	of	negative	quantities	(cf.	Metternich,	

1783:	13ff.;	Wolff,	1717:	35ff.),	whose	inadequacy	he	recognized	at	the	beginning	of	the	preface	

to	 his	 Foundations	 of	 geometry	 and	 trigonometry	 (Anfangsgründe	 der	 Geometrie	 und	

Trigonometrie	 zum	 Gebrauche	 für	 Anfänger	 bei	 dem	 Unterrichte)	 (cf.	 Metternich,	 1789:	 I).	

Precisely,	his	1789	book	on	geometry	and	 trigonometry	was	already	 in	 line	with	 the	works	of	

Kästner	and	Karsten,	even	introducing	“continuity”	as	the	very	first	geometric	principle	or	axiom	

(Grundsätze)	 and	 considering	 therefore	 that	 a	 geometric	 body	 could	 be	 divided	 infinitely	 (cf.	

Metternich,	1789:	II	&	1-2).	

	

Later,	 in	 1808,	Metternich	 published	 a	work	 on	 the	 art	 of	 reckoning	 of	 decimal	 fractions	 and	

other	 numbers	 for	 the	 use	 “with	 [the]	 new	masses	 and	 weights”,	 which	 had	 been	 set	 in	 an	

international	 meeting	 that	 took	 place	 in	 Paris	 at	 the	 end	 of	 1798;	 a	 meeting	 which	 Tralles	

attended	as	Swiss’	delegate	and	whose	results,	the	prototype	standards	of	measurements,	were	

presented	 in	mid-1799	 (cf.	Heilbron,	 1990:	 234-235;	 Schubring,	 2005:	 535;	Metternich,	 1808).	

Ten	years	later,	he	published	a	work	on	theory	of	numbers	in	which,	beyond	beginning	with	an	
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epigraph	of	Kästner	as	 in	his	1821	work	on	 the	divisions	of	 triangles,	he	not	only	did	consider	

opposite	 numbers	 (cf.	Metternich,	 1818:	 152ff.),	 but	 he	 also	 stressed	both	 the	 importance	of	

theory	of	numbers	and	theory	of	combinations:	while	the	former,	he	wrote,	could	be	regarded	

either	 as	 a	 particular	 instruction	 in	 arithmetic	 or	 as	 a	 part	 “or	 first	 foundation	 of	 the	 whole	

theory	of	quantities	(mathematics)”,	combinations	and	permutations	constituted	also	core	parts	

of	mathematics	and	so	he	devoted	to	such	subjects	an	appendix	(cf.	Metternich,	1818:	XIII,	XXIX-

XXXI	&	535ff.).125	

	

It	was	 in	his	translation	of	Lacroix’s	Foundations	of	algebra,	however,	first	 in	1811	and	later	 in	

1820,	where	Metternich	properly	introduced	combinations	and	permutations	and	he	positioned	

himself	against	the	former’s	conception	of	negative	quantities.	As	Schubring	pointed	out,	by	the	

beginning	of	the	19th	century	the	official	French	textbook	on	algebra	was	the	one	of	Lacroix,	who	

although	 initially	 followed	 the	 works	 of	 Clairaut	 and	 Bézout,	 since	 1803	 turned	 to	 Carnot’s	

proposal	 and	 hence	 rejected	 negative	 quantities	 (cf.	 Schubring,	 2005:	 411-413	 &	 507).	

Concerning	 the	 first	 issue,	 in	 the	 section	 in	 which	 Lacroix	 dealt	 with	 the	 general	 values	 of	

unknowns	 in	 first-degree	 equations	 (cf.	 Lacroix,	 1804:	 132),	 Metternich	 introduced	 some	

subsections	 on	 “the	 possible	 combinations	 and	 permutations	 of	 a	 given	 set	! 	of	 things”	

(Metternich,	 1811:	 173-237),	 and	 defined	 forms	 as	 the	 various	 conformations	 of	 things	

according	to	connections	or	 juxtapositions	between	them	(cf.	Metternich,	1811:	183-184).126	A	

notion,	this	latter,	which	evokes	the	one	that	for	several	Germanic	mathematicians	of	the	time	

encompassed	the	general	sense	of	mathematics	as	the	science	of	the	forms	of	quantities.	

	

Similarly,	 Brandes,	 who	 nevertheless	 praised	 the	 advantages	 of	 the	 analysis	 arrangement	 of	

Euler	and	other	French	mathematicians	(cf.	Brandes,	1820:	VII),	included	in	his	Preparations	for	

higher	 analysis	 (Vorbereitungen	 zur	 höhern	 Analysis),	 that	 is,	 in	 the	 volume	 he	 set	 as	 a	

preparation	 for	 differential	 and	 integral	 calculus	 (quoting	 the	works	 of	 Kramp	 and	 Thibaut	 as	

references	in	the	subject),	a	couple	of	sections	on	permutations	and	combinations	(cf.	Brandes,	

1820:	V	&	31-46,	respectively).	But,	while	Metternich’s	definition	of	‘forms’	referred	to	things	in	

																																																													
125	Metternich	wrote:	“Die	Zahlenlehre	kann	entweder	als	vereinzelter	Unterricht	im	Rechnen,	oder	als	Kapitel	und	erste	Grundlage	
zu	der	gesammten	Grössenlehre	(Mathematik)	betrachtet	werden.”	
126	Metternich	wrote:	“Weil	bey	 jeder	veränderten	Nebeneinanderstellung	dieser	!	Dinge	eine	andere	Gestalt	 in	 ihrer	Verbindung	
erscheint,	so	heisse	man	diese	verschiedenen	Gestalten:	formen,	und	so	kann	die	Aufgabe	so	heissen:	Eine	Regel	zu	finden,	wornach	
man	die	mögliche	Menge	der	formen	angeben	könne,	die	!	Dinge,	immer	anders	versetzt,	hervorbringen	können.”	It	is	curious	that	
Metternich	 quoted	 the	 work	 of	 Rothe	 on	 combinatorial	 analysis	 because,	 he	 wrote,	 “[he	 had]	 not	 read	 Hindenburg’s	 method”	
(Metternich,	1811:	VII).	
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general,	the	conception	outlined	by	Brandes	of	those	two	fundamental	parts	of	analysis	referred	

to	ways	of	conformation	in	terms	of	quantities	and	numbers.	

	

As	 for	 the	 second	 issue,	 Metternich	 did	 not	 suppress	 Lacroix’s	 paragraphs	 devoted	 to	 the	

elucidation	of	 the	difficulty	posed	by	equation	370 − 4! = 350,	with	−4! = −20,	 in	order	 to	
eliminate	or	rectify	the	quantity	with	the	−	sign	and	thus	avoid	an	“absurdity”	(cf.	Lacroix,	1804:	
83,	86	&	88),	but	instead	he	added	a	couple	of	subsections	on	the	subject	in	which	he	criticized	

the	 position	 of	 the	 French	 mathematician	 (cf.	 Metternich,	 1811:	 111-117).	 So,	 despite	

recognizing	 in	 the	 preface	 the	 functionality	 or	 practicality	 of	 Lacroix’s	 textbook,	 Metternich	

stated	from	the	very	beginning	that,	in	his	opinion,	Lacroix’s	presentation	of	negative	numbers	

was	incorrect	(cf.	Metternich,	1811:	X	&	V,	respectively).	Lacroix’s	explanations,	he	said,	at	most	

could	afford	insight	in	individual	results,	all	of	which,	on	the	contrary,	should	be	comprised	by	an	

appropriate	 theory	 of	 signs	 (cf.	 Metternich,	 1811:	 111).	 That	 way,	 Metternich	 began	 by	

distinguishing	between	the	absolute	and	the	relative	meaning	of	signs	and	then	differentiated	

between	the	signs	+	and	–	standing	before	quantities	as	expressions	of	either	an	addition	or	a	
subtraction	 to	 be	 performed	with	 those	 quantities,	 and	 the	 signs	+	and	–	as	 “algebraic	 signs”	
(algebraischen	Zeichen)	(cf.	Metternich,	1811:	111-113	&	128-129;	Schubring,	2005:	509).	

	

The	 reluctance	 of	 Metternich	 towards	 Lacroix’s	 conception	 of	 negative	 numbers	 additionally	

highlights,	 on	 the	 one	 hand,	 the	 debate	 around	 synthetic	 and	 analytical	 methods	 in	

mathematics	 and,	 on	 the	 other	 hand,	 the	 growing	 concern	 among	 Germanic	mathematicians	

regarding	a	different	idea	of	“correctness”	of	mathematical	theories.	Metternich’s	own	version	

of	the	text	of	Lacroix	was	intended	not	only	to	correct	those	parts	in	which	the	latter	was	vague	

or	 wrong,	 but	 also	 to	 supplement	 those	 parts	 where	 he	 found	 gaps	 in	 the	 demonstrations	

(Metternich,	1811:	IV).127	

	

However,	some	other	authors	went	even	further,	as	Euler	and	Schultz	(praised	by	Bolzano)	did.	

Thibaut	 criticized	 the	 foundation	 of	 arithmetical	 theories	 on	 geometrical	 considerations	

(Thibaut,	 1805:	 168)	 and	 the	 use	 of	 “extraneous	 principles”	 that	 contravened	 the	 purity	 of	

																																																													
127	Metternich	wrote:	“Die	vielen	Anmerkungen,	die	ich	an	schicklichen	Stellen	beygefügt	habe,	sollen	das	Vorgetragene	ergänzen;	
damit	nirgend	eine	Lücke	in	den	Beweisen	bleibe.”	
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analysis	 (Thibaut,	 1809A:	 IV),128	while	 Lagrange,	must	 be	 remembered,	 intended	 to	 provide	 a	

non-infinitesimalist	 theory	 of	 analytical	 functions	 in	 order	 to	 avoid	 external	 considerations	 to	

the	algebraic	analysis	of	finite	quantities	(Lagrange,	1797).129	The	insistence	of	Tobias	Mayer	on	

the	abstract	nature	of	the	correct	concept	of	infinite	“that	[constituted]	the	object	of	study	of	a	

whole	 science”	 (Mayer,	1818:	31),	and	Metternich’s	 statement	about	 the	correct	order	of	 the	

two	 parts	 of	 algebra,	 pure	 and	 applied	 (Metternich,	 1818:	 XXIV),	 can	 also	 be	 mentioned	 as	

attempts	 in	 the	aforementioned	direction.	Furthermore,	Zimmermann	modified	 the	usual	way	

of	explaining	the	whole	and	the	opposite	quantities	(with	Pestalozzi	as	a	reference	and	praising	

the	 works	 of	 Karsten	 and	 Klügel)	 in	 his	 work	 on	 the	 development	 of	 analytical	 principles	

(Zimmermann,	1805:	VIIff.).	While	Michelsen	quoted	Kant’s	idea	of	the	construction	of	concepts	

to	 account	 for	 the	 innovations	 that	 he	 carried	out	 for	 the	 sake	of	 firmly	 established	 and	well	

explained	concepts,	as	those	of	quantity	and	variation	(Michelsen,	1789,	p.	VIIff.).	

	

Such	emergence	of	pedagogical	concerns	and	new	methodological	and	foundational	reflections	

among	 Germanic	 mathematicians	 do	 not	 entail	 that	 similar	 issues	 did	 not	 matter	 before.	

Inspired	by	Euclid	but	strictly	detached	from	him,	Wolff	wrote	 in	his	Mathematical	vocabulary	

(Mathematisches	 Lexicon):	 “Mathematical	 or	 geometrical	 method	 [...]	 means	 the	 way	

mathematicians,	mainly	geometers,	arrange	their	thoughts	from	the	things	they	want	to	express	

to	others	or	with	which	they	themselves	deal,	successively	organize	and	connect	them”	(Wolff,	

1816:	889-890).	A	method	that,	for	him	and	many	Germanic	mathematicians	of	the	18th	century,	

started	 with	 definitions	 (of	 words	 or	 nominal	 and	 of	 things	 or	 real)130	and	 proceed,	 going	

through	fundamental	propositions	or	axioms	that	“flowed	from	those	definitions”	(cf.	Kästner,	

1758:	 14),131	to	 doctrine	 propositions	 or	 theorems	 and	 their	 proofs	 (cf.	Wolff,	 1717:	 5-6).	 As	

Kästner	 emphasized,	 –geometric–	 mathematical	 method	 was	 “the	 only	 one	 that	 led	 to	

certainty”	and	that	consequently	guaranteed	being	safe	from	errors	(cf.	Kästner,	1758:	11).	
																																																													
128	Thibaut	wrote:	 “Ueberhaupt	 ist	 die	Gründung	arithmetischer	 Lehren	auf	 geometrische	Betrachtungen,	welche	auch	 zu	diesem	
Missverstande	Anlass	gegeben,	als	völlig	unwissenschaftlich	zu	verwerfen.Wir	sollen	und	dürfen	nicht	erst,	um	zu	erfahren,	was	für	
ein	 Zeichen	 das	 Product	 zweyer	 Zahlen,	 bekommen	 muss,	 zur	 Construction	 von	 Quadraten	 und	 Rechtecken	 unsere	 Zuflucht	
nehmen.”	And:	“In	so	fern	hofft	er	die	Form	seiner	Darstellung,	welche	 in	vielen	Stücken	von	der	gewöhnlichen	abweichend	seyn	
mag,	 in	 gewissem	 	 Sinne	 als	 gerechtfertigt	 annehmen	 zu	 dürfen.	 Dass	 es	 ihm	 angelegen	 gewesen	 sey,	 die	 Analysis	 von	 allen	
fremdartigen	Principien	zu	reinigen.”	
129	The	whole	 title	 of	 Lagrange’s	 1797	work	was	 Théorie	 des	 fonctions	 analytiques,	 contenant	 les	 principes	du	 calcul	différentiel,	
dégagés	de	 toute	considération	d’infiniment	petits,	d’evanouissans,	de	 limites	et	de	 fluxions,	et	 réduite	à	 l’analyse	algébrique	des	
quantités	finies.	
130	In	Wolff’s	proposal	real	definitions	are	weighted	over	the	nominal	ones.	For	a	careful	study	of	this	issue,	cf.	(Blok,	2016:	23-28).	
131	Kästner	wrote:	“Aus	den	Erklärungen	fliessen	Grundsätze	(axiomata)	deren	Wahrheit	man	einsieht,	sobald	man	sie	versteht.”	This	
feature	highlights	a	significant	difference	with	respect	to	Euclid’s	method,	in	which	axioms	were	not	subordinated	to	definitions	and	
central	definitions	were	not	the	real	ones	but	the	nominal	ones.	There	were,	nonetheless,	mathematicians	as	Darjes	whose	more	
scholastic	education	led	to	a	different	and	richer	(with	more	elements	and	more	complex)	approach	from	that	of	Wolff.	
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However,	while	in	general	for	Germanic	mathematicians	of	the	mid-18th	century	the	goal	was	to	

develop	mathematics	according	to	geometrical	method,	and	thus	developments	without	some	

kind	 of	 geometric	 basis	were	 considered	 as	wrong	 and	 discarded	 (as	 the	 ones	 carried	 out	 by	

Euler	and	several	French	mathematicians),	one	of	the	goals	of	subsequent	Germanic	generations	

was	to	avoid	external	considerations	to	the	mathematical	science	in	question,	as	in	the	case	of	

geometric	considerations	in	analysis.	Surely	this	was	not	the	case	for	all	those	mathematicians,	

as	for	example	Johann	Martin	Christian	Bartels	(former	professor	of	mathematics	at	Jena,	since	

1808	at	the	university	of	Kazan	and	from	1821	onwards	at	Dorpat),	who	in	his	investigations	of	

analytical	functions	intended	to	“[follow]	the	methods	of	the	Ancients”	and	use	“the	Euclidean	

definition	of	proportionality”	(Lumiste,	1997:	53;	cf.	Bartels,	1822:	35-36).132	But	it	was	the	case	

of	 authors	 like	 Euler	 and	 Thibaut	 who	 despite	 their	 intentions	 and	 beyond	 lacking	 entirely	

adequate	concepts	–and	 terminology–,	 they	continued	 to	base	certain	mathematical	 sciences’	

proofs	on	alien	notions:	Euler,	who	at	 the	end	of	 the	preface	 to	his	1755	work	on	differential	

calculus	 identified	the	correct	presentation	of	pure	analysis	with	 the	unnecessity	of	geometric	

figures	 (cf.	 Euler,	 1755:	 XX),133	not	 only	 presented	 in	 1767	 a	 geometric	 problem	 to	 justify	 the	

introduction	 of	 his	 “discontinuous”	 analytical	 functions	 (cf.	 Euler,	 1767:	 23),	 but	 also,	 as	

Giovanni	Ferraro	pointed	out,	when	analytically	characterizing	the	exponential	 function	!!,	“in	
order	to	satisfy	[a]	geometric	 intuition,	Euler	excluded	values	of	!	which	made	 jumps	 in	!!”	 in	
his	1748	work	(Ferraro,	2000:	120-121;	cf.	Euler,	1748:	70-72);	and	Thibaut,	who	introduced	the	

concept	of	opposition	as	a	relational	one	through	which	it	was	possible	to	go	from	the	idea	of	a	

quantity	!	to	the	idea	of	its	opposite	quantity	– !,	still	posed	that	transition	in	terms	of	a	mutual	

annihilation	 (gegenseitig	 vernichten)	 which,	 he	 said,	 could	 be	 illustrated	 by	 the	 examples	 of	

opposite	forces	and	opposite	paths	(Thibaut,	1809B:	58).	

	

This	 persistence	 of	 what,	 from	 that	 new	 approach,	 constituted	 procedural	 deficiencies	 in	

mathematics,	 linked	 in	 those	cases	 to	 the	geometric	 roots	of	some	of	 the	concepts	and	terms	

used,	as	a	matter	of	fact	underlies	the	tension	around	the	negative	quantities	and	numbers	that	

																																																													
132	In	a	letter	from	Bartels	to	Nikolaus	Fuss,	quoted	by	Ülo	Lumiste,	Bartels	wrote:	“According	to	my	plan,	this	booklet	had	to	contain	
all	 those	parts	 of	 higher	 analysis	which	 can	be	 treated	without	 the	differential	 and	 integral	 calculus	 and,	 in	 a	 sense,	 serve	 as	 an	
introduction	 to	 them.	 The	 first	 part	 perhaps	 deserves	 some	 attention	 because	 I	 followed	 therein,	 I	 think,	 the	 methods	 of	 the	
Ancients	 (in	 the	 strict	 sense	 of	 the	word).	 [...]	 I	 think	 that	 by	 using	 the	 Euclidean	 definition	 of	 proportionality,	 I	 have	 given	 the	
general	proposition	about	functions	in	a	clearer	and	more	elegant	way.”	
133	Euler	wrote:	“Hic	autem	omnia	ita	intra	Analyseos	purae	limites	continentur,	ut	ne	ulla	quidem	figura	opus	fuerit,	ad	omnia	huius	
calculi	praecepta	explicanda.”	
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is	 clearly	present,	 precisely,	 in	 the	works	of	 Thibaut	 and	Klügel.	 In	 the	 case	of	 the	 former,	 he	

introduced	 negative	 numbers	 within	 arithmetic	 framework,	 in	 a	 section	 on	 “conflicting	

numbers”	 (Von	 den	 widerstreitenden	 Zahlen),	 and	 explained	 the	 “derivation”	 of	 their	

corresponding	art	of	reckoning	(cf.	Thibaut,	1809B:	57-64);	although,	as	he	emphatically	pointed	

out	a	decade	earlier	in	his	1797	dissertation	on	logarithms	of	negative	and	impossible	numbers,	

he	rejected	real	negative	logarithms	(Thibaut,	1797:	21;	cf.	Thibaut,	1809B:	131-144).134	

	

In	 the	 case	 of	 Klügel,	 just	 as	 in	 his	 1767	 dissertation	 for	 his	 appointment	 as	 professor	 at	

Helmstedt	he	used	the	formula	! = ! !"
!"	for	the	subtangent	(cf.	Klügel,	1767:	VIII),	at	the	end	of	

the	18th	 century,	as	previously	 stated,	he	 rejected	 the	 formula	proposed	by	Busse,	! = −! !"
!",	

because,	he	said,	while	the	specific	cases	required	the	consideration	of	the	negative	value,	“in	

all	 analytical	 representations	 of	 a	 combination	 of	 quantities	 [...],	 quantities	must	 be	 regarded	

absolutely	 and	 only	 by	 their	 quantity”,	 that	 is,	 “as	 positive”	 (Klügel,	 1800:	 341;	 cf.	 Schubring,	

2005:	 490-491). 135 	Busse’s	 statement	 on	 the	 importance	 of	 discriminating	 positions	 and	

directions	 and	 his	 proposed	 formula	 to	 account	 for	 this,	 however,	 as	 both	 Kästner	 and	

Hindenburg	themselves	acknowledged,	was	correct	(cf.	Hindenburg,	1800:	343-348;	cf.	Kästner,	

1798:	 2013-2014).	 But	 in	 the	 entry	 “opposite	 quantities”	 of	 the	 1805	 volume	 of	 his	

mathematical	dictionary,	apropos	of	the	formula	for	the	tangent,	Klügel	actually	insisted	that	“in	

the	 combination	 of	 quantities	 which	 are	 the	 basis	 for	 all	 other	 related	 combinations,	 all	

quantities	 must	 be	 regarded	 as	 positive”	 (Klügel,	 1805:	 108). 136 	While,	 in	 the	 entry	

“subtangente”	of	the	–posthumous–	1823	volume,	no	mention	is	made	of	the	correction	of	the	

formula	or	the	importance	of	directions	for	obtaining	correct	results	(cf.	Klügel,	1823:	552).	

	

Furthermore,	his	reluctance	towards	negative	quantities	is	reflected	in	several	other	passages	of	

his	work.	To	begin	with,	in	his	Foundations	of	Arithmetic	(Anfangsgründe	der	Arithmetik)	Klügel,	

similarly	 to	 the	way	Wolff	did	 it,	only	devoted	a	couple	of	paragraphs	 to	 the	“negated	 terms”	

																																																													
134	Thibaut	wrote:	“Inter	nostrates:	non	dari	reales	negativorum	logarithmos	ex	rationum	conceptu	derivavit	Ill.	Kaestnerus;	refutare	
D'Alembertium,	 et	 eximere	 dubiis	 demonstrationes	 Eulerianas	 studuit	 C.	 Karsten;	 quibus	 e	 contrario	 evertendis,	 et	 exstruendae	
recentissimis	temporibus	operam	navavit	C.	Michelsen.”	As	this	passage	suggests	and	as	Cajori	pointed	out	in	the	early	20th	century,	
such	rejection	was	usual	in	the	Germanic	context	of	the	late	18th	century	(cf.	Cajori,	1913:	115).	
135	Klügel	 wrote:	 “Man	muss	 bey	 allen	 analytischen	 Darstellungen	 einer	 Verbindung	 von	 Grössen,	 sie	mögen	 geometrische	 oder	
arithmetische	seyn,	in	demjenigen	Falle,	der	für	alle	übrigen	perwandten	Verbindungen	zum	Grunde	der	Rechnung	gelegt	wird,	alle	
Grössen	als	positiv	ansehen,	das	heisst,	sie	absolut	bloss	nach	ihrer	Quantität	betrachten.”	
136	Klügel	wrote:	 “In	derjenigen	Verbindung	von	Grössen,	die	 zum	Grunde	 für	alle	übrigen	verwandten	Verbindungen	gelegt	wird,	
müssen	alle	Grössen	als	positiv	betrachtet	werden,	das	heisst,	ihre	Symbole	bezeichnen	bloss	die	Quantität.”	
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(verneinte	Glieder)	in	the	section	on	arithmetic	and	geometric	progressions:	if	arithmetic	series	

is	 considered	 backwards,	 he	 wrote,	 negated	 terms,	 indicating	 a	 defect,	 could	 be	 obtained	

(Klügel,	1792:	50-51).137	This	was	consistent	with	his	distinction	between	absolute	and	relative	

cases,	which	not	only	underlay	his	rejection	of	Busse’s	formula,	but	also	his	particular	rejection	

of	certain	logarithms	of	negative	numbers:	

	

The	 logarithm	 of	 a	 negated	 number	 is	 regarded	 as	 the	 same	 as	 the	 logarithm	 of	 the	 same	 [number]	

considered	 as	 positive;	 the	 negation	 merely	 refers	 to	 the	 case	 laid	 down	 in	 the	 calculation,	 which	 is	

transformed	 by	 changing	 the	 sign	 into	 another	 one.	 If	 this	 other	 relative	 case	 is	 considered,	 the	 negated	

quantity	 becomes	 positive.	 This	 has	 no	 difficulty	 if	 the	 logarithm	 is	 only	 an	 auxiliary	 mean	 for	 numerical	

calculation.	If,	however,	the	logarithm	itself	is	a	quantity,	which	occurs	in	a	connection	with	some	others,	the	

possibility	 itself	 would	 depend	 on	 the	 possibility	 of	 the	 number	 whose	 relation	 to	 the	 unity	 is	 given.	 The	

log−!!	[−!!]	 is	 impossible,	 but	 the	log−!	is	 possible,	 [since]	 it	would	 have	 to	 be	 shown	 that	 any	 certain	
condition	does	not	allow	!	to	be	negative.	(Klügel,	1795B:	481;	cf.	Klügel,	1792:	59)138	

	

Which	 is	 not	 strange,	 if	 one	 considers	 what	 he	 wrote	 on	 the	 previous	 pages	 about	 how	 the	

concept	of	opposite	quantities	was	unnecessary	for	the	rules	of	algebra’s	common	operations,	

which	 could	 be	 developed	 solely	 considering	 “absolute	 quantities”	 (cf.	 Klügel,	 1795B:	 479),139	

but	it	nonetheless	is	curious,	having	he	previously	disqualified	the	English	for	their	rejection	of	

negative	 quantities.	 For	 Klügel,	 the	 rejection	 of	 any	 case	 of	 negative	 quantities	 (negative	

Grössen)	by	English	mathematicians	exemplified	the	problems	to	which	the	inherent	constrains	

to	 the	 synthetic	method	 led,	while	 analytic	method	 considered	 several	 cases	 in	 a	 formula	 (cf.	

Klügel,	1795A:	316	&	312-313;	cf.	Schubring,	2005:	139).140	

	

																																																													
137	Klügel	wrote:	“Die	Reihe	ist	eine	steigende,	wenn	die	Glieder,	so	wie	sie	auf	einander	folgen,	zunehmen;	eine	fallende,	wenn	sie	
abnehmen.	Jede	steigende	ist	eine	fallende,	oder	diese	jene,	wenn	man	sie	rückwärts	lieset.	Jede	Reihe	besteht	ihrer	Natur	nach	aus	
unzählig	vielen	Gliedern,	wovon	man	oft	nur	eine	Anzahl	herausnimmt.	Wenn	man	die	angeführte	arithmetische	rückwärts	lieset,	so	
kommt	man	nach	der	1	auf	verneinte	Glieder,	wie	man	es	zu	nennen	pflegt,	d.	i.	solche,	die	einen	Defect	anzeigen.”	
138	Klügel	wrote:	“Der	Logarithme	einer	verneinten	Zahl	 ist	einerley	mit	dem	Logarithmen	derselben	als	positiv	betrachtet;	den	die	
Verneinung	bezieht	sich	bloss	auf	den	bey	der	Rechnung	zum	Grunde	gelegten	Fall,	der	durch	Veränderung	der	Vorzeichen	in	einen	
andern	ähnlichen	verwandelt	wird.	Wenn	dieser	andere	verwandte	Fall	der	Rechnung	untergelegt	wird,	so	wird	die	verneinte	Grösse	
positiv.	 Die	 Sache	 hat	 gar	 keine	 Schwierigkeit,	 wenn	 der	 Logarithme	 nur	 Hülfsmittel	 der	 numerischen	 Rechnung	 ist.	 Ist	 der	
Logarithme	aber	 selbst	eine	Grösse,	die	 in	einer	Verbindung	mit	andern	vorkommt,	 so	möchte	die	Möglichkeit	desselben	auf	der	
Möglichkeit	der	Zahl,	deren	Verhältniss	zur	Einheit	er	angiebt,	ankommen.	Der	log−!!	ist	unmöglich;	der	log−!	aber	möglich,	es	
müsste	denn	gezeigt	werden,	dass	irgend	eine	Bedingung	nicht	erlaubte,	!	negativ	zu	nehmen.”	
139	Klügel	wrote:	“Die	Vorschriften	für	die	gemeinen	Operationen	der	Buchstabenrechnung	gehören	zwar	zu	den	allerersten	Lehren	
der	 Analysis;	 es	mag	 aber	 doch	 nicht	 überflüssig	 seyn,	 zu	 zeigen,	 dass	 sie	 der	 Begriffe	 von	 entgegengesetzten	 Grössen	 gar	 nich	
bedürfen.	Die	Buchstabenzeichen	bedeuten	in	dem	Folgenden	bloss	die	absolute	Quantität.”	
140	Klügel	wrote:	“Man	hat	hier	bloss	additive	und	subtractive	Grössen,	nicht	positive	und	negative.	Es	verhält	sich	hier	gerade	so,	wie	
in	der	Geometrie	der	Alten	und	der	ihnen	nachahmenden	Engländer,	nach	welcher	in	keinem	Satze	negative	Grössen	vorkommen,	
weil	 in	 jedem	Falle	bestimmt	 ist,	was	eine	 Summe	vorkommen,	weil	 in	 jedem	Falle	bestimmt	 ist,	was	eine	 Summe	oder	was	ein	
Unterschied	ist,	und	bey	einem	Unterschiede	nie	das	Ganze	von	dem	Theile	abzuziehen	gefordert	werden	kann.”	
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Precisely,	 what	 makes	 Klügel’s	 disqualification	 of	 the	 English	 rejection	 of	 negative	 quantities	

curious	is	not	that	he	himself	rejected	negative	quantities	since,	according	to	him,	unlike	them	

he	 did	 not	 reject	 in	 general	 those	 quantities	 but	 only	 confined	 their	 use	 to	 relative	 cases	

(postulating	a	different	sort	of	rejection).141	It	is	his	argument	against	those	mathematicians,	and	

ancient	geometers,	which	rests	on	the	superiority	of	analytic	method	over	the	synthetic,	what	

makes	 his	 disqualification	 curious;	 a	 superiority	 that	 he	 had	 already	 put	 forward	 in	 his	 1767	

dissertation	(cf.	Klügel,	1767:	XV-XVI).	After	all,	if	what	he	praised	of	the	analytical	method	was	

its	generality	in	expressing	the	connections	of	quantities	(cf.	Klügel	1767:	XV;	cf.	Klügel,	1795A:	

313),	 then	 no	 solid	 argument	 could	 be	 made	 against	 the	 logarithms	 of	 negative	 numbers	 in	

general	 or	 Busse’s	 negative	 formula	 for	 the	 subtangent,	 unless,	 of	 course,	 others	 were	 the	

motives	for	doing	so,	as	indeed	they	were;	motives,	all	of	them,	which	can	be	traced	back	to	the	

contravention	of	the	prevailing	geometric	notion	of	quantity.	

	

As	Klügel	himself	acknowledged	 in	 the	entry	 for	 “quantity”	 in	his	dictionary,	while	multiplicity	

was	 a	 concept	 of	 arithmetic	 origin,	 quantity	was	 an	 inherently	 geometric	 concept	 (cf.	 Klügel,	

1805:	 650).142	“Quantity”,	 he	wrote,	 “[is]	what	 is	 composed	of	 homogeneous	parts”,	 and	 thus	

mathematics	 could	 be	 regarded	 as	 the	 science	 of	 the	 form	 of	 everything	 that	 had	 such	

composition	 or	 nature	 in	 reality	 or	 in	 imagination,	 both	 continuous	 and	 discrete	 (cf.	 Klügel,	

1805:	 649-650).	 But,	 while	 coupled	 with	 that	 concept	 the	 ancient	 mathematicians	 did	 not	

develop	 the	one	of	opposite	quantities,	 he	 said,	modern	ones	did	 so	on	 the	basis	of	quantity	

connections	that	entailed	the	consideration	of	all	quantities	as	positive	since	their	symbols	only	

denoted	their	quantity	(cf.	Klügel,	1795A:	311	&	316).143	That	way,	for	Klügel	“quantities”	in	the	

strict	 sense	 were	 the	 positive	 ones,	 from	 which,	 once	 considered	 their	 opposition,	 opposed	

quantities	and	therefore	positive	and	negative	quantities	arose	(cf.	Klügel,	1805:	104).	

	

Numbers,	 on	 the	 other	 hand,	were	 for	 Klügel	 “representation[s]	 of	 the	 form	 of	 a	 plurality	 of	

homogeneous	 things”	 (Klügel,	 1792:	 7)	 and,	 as	 consequence,	 the	 introduction	 of	 negative	

numbers	was	justified	inasmuch	as	they	were	considered	representations	of	negative	quantities.	

																																																													
141	Schubring	 suggests	 that	 this	 shows	a	contradiction	 in	Klügel’s	work,	who	 firstly,	he	 says,	defends	negative	quantities	and	 then	
suggests	a	way	to	avoid	them	(cf.	Schübring,	2005:	139).	Though	there	might	be	a	certain	contradiction	in	Klügel’s	approach,	both	
attitudes	emphasized	by	Schübring	could	be	considered	consistent.	
142	Klügel	wrote:	“Vielheit	des	Gleichartigen	 ist	mit	Grösse	gleichbedeutend.	Doch	bleibt	der	Unterschied,	dass	der	Begriff,	Grösse,	
geometrischen,	und	Vielheit	arithmetischen	Ursprungs	ist.”	
143	Klügel	wrote:	 “In	derjenigen	Verbindung	von	Grössen,	die	 zum	Grunde	 für	alle	übrigen	verwandten	Verbindungen	gelegt	wird,	
müssen	alle	Grössen	als	positiv	betrachtet	werden,	das	heisst,	ihre	Symbole	bezeichnen	bloss	die	Quantität.”	
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However,	while	 for	 him	 geometrical	 quantities	 (such	 as	 lines,	 surfaces	 and	 bodies)	 should	 be	

listed	among	the	continuous	ones,	on	the	contrary	all	countable	things	and	numbers	in	general	

should	be	listed	among	discrete	quantities	(Klügel,	1805:	650).144	Which	in	turn	reveals	as	well,	

through	 the	 notion	 of	 number	 and	 its	 limitations,	 the	 geometric	 roots	 of	mathematics	 at	 the	

time:	 continuity	was	 included	 as	 an	 essential	 notion	 in	 geometry	 (cf.	 Klügel,	 1792:	 67)	 and	 a	

continuous	quantity	was	defined	as	one	whose	“parts	[were]	all	connected	that	where	the	one	

[ceased]	 the	 other	 [began]”	 (Klügel,	 1803:	 553-554); 145 	convergence	 or	 “to	 approximate”	

(annähernd)	was	 firstly	defined	as	 the	property	of	 two	straight	 lines	around	 their	 intersection	

point	and	secondly	as	the	property	of	a	series	whose	terms	successively	became	smaller	(Klügel,	

1803:	555);	and,	finally,	the	limit	of	a	quantity	was	defined	as	the	“[constant]	quantity	to	which	

that	[other]	quantity	can	always	approach	more	and	more	as	a	variable	one”	(Klügel,	1805:	646).	

	

The	rejection	at	the	end	of	the	18th	century	and	beginning	of	the	19th	century,	on	the	one	hand,	

of	 Carnot,	 Lacroix	 and	 other	 French	mathematicians	 of	 negative	 numbers,	 as	 well	 as,	 on	 the	

other	hand,	 the	 rejection	of	 Lagrange	 (an	 Italian	mathematician	who,	 supported	by	Euler	 and	

d’Alembert,	succeeded	the	first	one	at	the	Prussian	Academy	of	Sciences	 in	Berlin	 in	1766	and	

later,	in	1787,	moved	to	Paris	as	a	member	of	the	French	Academy	of	Sciences)	and	some	other	

‘French’	 mathematicians	 of	 infinitely	 small	 quantities,	 illustrate	 how	 the	 tension	 around	 the	

notions	 of	 quantity	 and	 numbers	 was	 not	 something	 happening	 exclusively	 in	 the	 Germanic	

realm.	Germanic	mathematicians	of	 subsequent	 generations	 to	Kästner	 and	Karsten	were	not	

able	to	get	entirely	rid	of	the	geometric	ties	that	were	even	more	present	in	the	works	of	their	

teachers,	although,	as	these	latter	with	regard	to	Wolff	and	their	other	predecessors,	those	new	

Germanic	mathematicians	 gradually	 detached	more	 from	 them,	 increasingly	 questioning	 such	

ties.	 In	 that	mathematical	 context	 of	 the	 convergence	 of	 those	 two	mathematical	 traditions,	

Germanic	and	French,	but	in	a	peculiar	Germanic	social	context,	that	of	the	Kingdom	of	Bohemia	

in	 the	 transition	 from	 the	 18th	 century	 to	 the	 19th	 century,	 was	 that	 Bolzano,	 the	 author	 to	

whom	the	last	chapter	of	this	work	is	devoted,	developed	his	first	mathematical	works.	

	

																																																													
144	Klügel	wrote:	“Man	unterscheider	zusammenhangende,	und	nicht	zusammenhangende	Grössen	(Quantitas	continua	et	discreta).	
Unter	 jenen	 versteht	 man	 die	 geometrischen	 Grössen,	 Linien,	 Flächen	 und	 Körper;	 unter	 diesen	 alles,	 was	 aus	 unverbundenen	
Theilen	besteht,	als	alle	zählbaren	Dinge,	Zahlen	im	Allgemeinen,	und	jede	Grösse,	die	als	Zahl	für	eine	Einheit	betrachtet	wird,	wenn	
gleich	die	Einheit	und	die	Menge	der	Einheiten	unbestimmt	gelassen	wird.”	
145	Klügel	wrote:	 “Eine	 Grösse	 heisst	 eine	 stetige,	 ein	 Continuum,	wenn	 ihre	 Theile	 alle	 so	 zusammenhängen,	 dass	wo	 der	 einer	
aufhört,	gleich	der	andre	anfängt.”	
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C.	The	pre-modern	notion	of	number	 in	the	early	mathematical	

works	of	Bernard	Bolzano	
	

	

“The	founders	of	sects	are	always	harmed	

by	the	exaggerated	veneration	of	their	sectarians.”	

(Kästner	to	Bendavid,	26.04.1794)146	

	

	

C.1.	Bolzano’s	mathematical	works	of	1804	and	1810	

	

C.1.1.	 Bohemia	 and	 the	Austro-Germanic	 context	 in	 the	 late	 18th	 century	 and	 the	 early	 19th	

century	

	

	

Most	of	the	Germanic	mathematicians	of	the	second	half	of	the	18th	century	studied	so	far,	that	

is,	 Germanic	mathematicians	 of	 subsequent	 generations	 to	 Segner,	 Kästner	 and	 Karsten	 that	

were	 born	 between	 c.	 1750	 and	 c.	 1770,	 grew	 up	 in	 a	 context	 of	 relative	 regional	 peace	 in	

Central	Europe,	as	noted	in	the	first	chapter.	However,	for	those	Germanic	mathematicians	who	

were	born	a	decade	later,	the	situation	was	very	different,	both	because	of	the	various	effects	of	

the	French	Revolution	and	the	French	Revolutionary	Wars	in	the	Germanic	territories,	as,	later,	

because	 of	 the	 direct	 incidence	 on	 these	 territories	 of	 the	 series	 of	 conflicts	 known	 as	 the	

Napoleonic	Wars.	Moreover,	those	effects	varied	from	one	place	to	another,	depending	mainly	

on	the	geographical	location,	the	specific	moment	and	the	ascription	of	the	place	in	question:	it	

was	very	different	to	be	born	or	grow	up	in	the	Germanic	Mainz	before	1792	(that	is,	before	the	

French	intervention),	than	between	that	year	and	1798	(in	dispute),	between	this	last	year	and	

1814	 (under	 French	 control)	 or	 from	mid-1814's	 onwards	 (after	 the	 French	withdrawal);	 as	 it	

was	not	the	same	to	be	in	the	Prussian	Jena	or	Berlin	in	1796,	than	at	the	end	of	1806	(after	the	

victories	of	Napoleon).	

																																																													
146	Apropos	 of	 Kant	 and	his	 followers,	 Kästner	wrote:	 “Den	 Sectenstiftern	 hat	 allemahl	 die	 übertriebene	Verehrung	 ihrer	 Sectirer	
geschadet”	(Bendavid,	1794:	[2]).	
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In	the	case	of	–Germanic–	Austrian	territories,	something	similar	can	be	said,	 for	example	and	

depending	on	 the	moment	between	c.	 1800	and	1815,	 about	 its	western	 territories	 (as	Tyrol,	

Brixen	and	Trent),	its	strictly	speaking	Austrian	territories	(those	belonging	to	the	Archduchy	of	

Austria)	and	its	northern	or	eastern	territories	(in	the	first	case,	those	territories	usually	grouped	

as	Lands	of	the	Bohemian	Crown;	in	the	second	case,	the	Kingdom	of	Hungary	among	them).	But	

even	before	c.	1800,	significant	differences	can	be	established	between	what	happened	in	the	

Austrian	 territories	 following	 the	 outbreak	 of	 ‘internal’	 French	 conflicts	 and	 what	 happened	

before,	in	contrast	to	what	happened	in	other	Germanic	territories	during	the	same	periods.	

	

As	mentioned	before,	Maria	Theresia	ruled	the	territories	controlled	by	the	House	of	Habsburg	

and	was	Empress	of	 the	Holy	Roman	Empire	until	her	death,	 in	1780,	when	her	 son	 Joseph	 II	

succeeded	 her	 de	 facto,	 after	 being	 co-regent	 of	 the	 Austrian	 dominions	 and	 Holy	 Roman	

Emperor	since	his	father’s	death	in	1765.	“In	a	word,	he	is	a	prince	of	whom	one	can	expect	only	

great	 things”,	 said	 Friedrich	 II	 (King	of	 Prussia)	 about	 Joseph	 II	 at	 the	beginning	of	 the	1770s,	

“and	who	will	get	 the	world	 to	 talk	about	him,	as	soon	as	he	has	his	elbows	 free”	 (Baumgart,	

1990:	261).147	

	

Bernard	 Bolzano	was	 born	 in	 Prague	 on	October	 5,	 1781,	 one	 year	 after	Maria	 Theresia	 died	

and,	 therefore,	one	year	after	 Joseph	“had	his	elbows	 free”	and	began	 to	 implement	 reforms	

ranging	 from	 educational	 to	 agrarian	 and	 religious	 issues.	 Thus,	 for	 example,	 a	 week	 after	

Bolzano’s	 birth,	 Joseph	 II	 “promulgated	 [...]	 a	 patent	 granting	 toleration	 to	 Lutherans	 and	

Calvinists,	as	well	as	regulating	the	status	of	Orthodox	Christians”	and	reducing	restrictions	on	

Jews	during	the	next	couple	of	years	(Agnew,	2004:	91;	Scott,	1990:	169-170);	and,	a	few	weeks	

later,	Joseph	II	 issued	a	couple	of	patents,	one	to	abolish	serfdom	and	another	to	increase	the	

security	 of	 the	 serfs	 and	 peasants	 on	 their	 lands	 (cf.	 Wright,	 1966:	 74-77).	 In	 other	 words,	

Bolzano	 was	 born	 in	 a	 context	 of	 constant	 reforms,	 some	 of	 them	 with	 deeper	 effects	 than	

others.	 A	 context	 in	 which,	 despite	 the	 aforementioned	 decree	 of	 1784	 of	 German	 as	 the	

language	 of	 instruction,	 administration	 and	 state	 (cf.	 supra	 A.2),	 teaching	 and	 use	 of	 other	

languages	 (as	 Czech)	 in	 certain	 publications	were	 allowed	 (cf.	 Evans,	 2006:	 136),	 as	 the	 state	

																																																													
147	Following	Baumgart,	Friedrich	II	said:	“Mit	einem	Wort,	es	ist	ein	Fürst,	von	dem	man	nur	Grosses	erwarten	darf	und	der	in	der	
Welt	von	sich	reden	machen	wird,	sobald	er	die	Ellenbogen	frei	hat.”	
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spending	 in	 education	 increased	 to	 the	 extent	 that,	 for	 example,	 “by	 1790,	 as	many	 as	 two-

thirds	of	children	in	the	Bohemian	Lands	were	attending	primary	schools”	(Scott,	1990:	176).	

	

Towards	 the	 end	 of	 the	 1780s,	 nonetheless,	 resistance	 to	 Joseph’s	 II	 reforms	 and	 actions	

increased	 throughout	 the	 Reich	 and	 the	Habsburg	 domains	 outside	 it.	 For	 example,	when	 he	

intended	 to	 confiscate	 properties	 of	 some	 of	 the	 bishoprics	whose	 incumbents	 had	 died	 and	

that	were	located	inside	the	Holy	Roman	Empire,	as	he	had	done	with	regard	to	some	bishoprics	

outside	it	but	within	the	dominions	of	Austria,	he	met	with	their	frontal	opposition,	as	happened	

with	 Salzburg,	 Regensburg	 and	 Freising	 around	 1785	 (cf.	 Whaley,	 2012	 II:	 421).	 Something	

similar	 can	be	 said	 concerning	his	 second	attempt	 to	acquire	Bavaria	 in	 the	mid-1780s,	which	

precipitated	the	formation	in	1785	of	an	important	but	to	some	extent	ephemeral	Fürstenbund,	

a	 league	 of	 catholic	 and	 protestant	 princes	 led	 by	 Prussia,	 given	 “the	 [growing	 grounded]	

perception	of	the	need	to	defend	the	Reich	against	the	emperor	himself”	(Whaley,	2012	II:	424).	

Even	 some	 of	 his	 latest	 reform	 projects,	 such	 as	 those	 intended	 to	modify	 the	 tax	 burden	 in	

favor	of	the	peasants	and	the	state,	met	with	strong	resistance	not	only	of	the	lords,	as	many	of	

his	reforms,	but	also	of	peasants	themselves	(cf.	Agnew,	2004:	92).	

	

In	Bohemia	in	particular,	the	resistance	to	the	last	reforms	mentioned	above	originated	largely	

due	to	the	particular	implementation	of	the	previous	agrarian	reforms	by	the	high	commissioner	

designated	by	Joseph	II	to	carry	them	out,	Johann	Paul	von	Hoyer.	While	in	Moravia	(in	charge	

of	a	different	high	commissioner,	namely	Freiherr	von	Kaschnitz)	prevailed	the	peasants’	secure	

tenure	of	the	lands	by	means	of	the	“purchase	[of]	hereditary	leaseholds	and	life	tenures,	or,	at	

least,	 to	 lease	 the	 land	 for	 periods	 of	 twelve	 to	 fifteen	 years”,	 in	 Bohemia	 von	 Hoyer	

“[encouraged]	leases	of	land	for	periods	of	from	three	to	six	years”,	“he	did	not	let	buildings	to	

the	 serfs”	and	he	did	not	 strictly	 subscribe	 the	abolition	of	 serfdom	 (Wright,	1966:	96-98).	As	

Wright	pointed	out,	although	the	new	reforms	proposed	for	1789	could	have	been	profitable	to	

peasants,	at	the	same	time	that	the	French	revolution	began	and	Joseph	II	attempted	to	rescue	

his	sister	Queen	Marie	Antoinette	and	King	Louis	XVI	of	France,	“the	inauguration	of	[that]	new	

law	was	marked”,	as	happened	with	the	similar	previous	reforms,	“by	rural	riots	and	rebellions”,	

in	response	to	which	Joseph	II	postponed	its	implementation	until	1790	(Wright,	1966:	147).	
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At	the	beginning	of	1790,	four	years	after	the	death	of	Friedrich	II,	Joseph	II	died	and,	despite	all	

the	 debate	 surrounding	 the	 government	 of	 the	 Empire	 and	 the	 perpetuation	 of	 the	 Empire	

itself,	he	was	succeeded	by	his	brother	Leopold	II	(until	then	Grand	Duke	of	Tuscany),	who	was	

crowned	 by	 the	 end	 of	 the	 year.	 “I	 believe	 that	 the	 sovereign,	 even	 the	 hereditary	 ruler,	 is	

merely	 the	 delegate	 of	 the	 people,	 for	whose	 sake	 he	 exists	 [...].	 I	 believe	 that	 the	 executive	

power	belongs	to	the	sovereign	but	that	the	 legislative	power	belongs	to	the	people	and	their	

representatives”	(Whaley,	2012	II:	427),	he	wrote	to	his	sister	Marie	Christine	the	month	prior	to	

their	 brother	 Joseph’s	 II	 death.	 But,	 since	 the	 situation	 that	 he	 inherited	 involved	 a	 series	 of	

internal	conflicts	to	the	Holy	Roman	Empire	in	general	and	to	Austria	in	particular,	as	well	as	the	

need	to	position	both	Austria	and	the	Reich	with	respect	to	the	French	internal	conflict,	his	most	

immediate	policies	sought	to	tackle	these	issues.	

	

To	 begin	 with,	 Leopold	 II	 withdrew	 his	 brother’s	 reforms	 of	 1789	 and	 showed	 interest	 in	

requests	and	complaints	from	the	states	within	his	domains,	making	some	concessions	to	them.	

For	example,	“several	long-empty	traditional	offices	[were	filled],	[and	he]	agreed	to	renew	the	

land	committees	for	Bohemia	and	Moravia,	give	them	control	of	the	domestic	fund,	and	consult	

the	Estates	diet	in	all	customary	matters”	(Agnew,	2004:	93;	cf.	Scott,	1990:	185).	So,	while	he	

“staged	a	festive	coronation	as	king	of	Bohemia	on	September	6,	1791”	(Agnew,	2004:	93),	he	

also	reverted	some	of	the	restrictions	imposed	on	landlords	and	aristocrats	by	his	brother.	

	

On	the	other	hand,	regarding	foreign	policy,	Leopold	II	ended	the	participation	of	Austria	in	the	

conflict	declared	in	1788	between	Turkey	and	Russia,	while	he	met	with	Friedrich	Wilhelm	II	to	

begin	 cooperation	 between	 them.	 As	 a	 result	 of	 the	 latter,	 eventually	 the	 Pillnitz	 Conference	

was	held	and	a	Declaration	was	issued	to	support	King	Louis	XVI	of	France,	which	was	followed,	

firstly,	by	Leopold’s	demand	for	“the	withdrawal	of	the	French	army	from	the	western	frontier	

of	 the	 Reich	 [and]	 the	 return	 of	 all	 confiscated	 property”,	 secondly,	 by	 a	 treaty	 of	 alliance	

between	Prussia	and	Austria	and,	finally,	by	the	French	declaration	of	war	on	Austria	on	April	20,	

1792		(Whaley,	2012	II:	429-430;	cf.	Scott,	1990:	27;	Agnew,	2004:	93-95).	

	

By	the	end	of	April,	however,	Leopold	II	had	already	died	(on	March	1),	being	succeeded	by	his	

eldest	 son	 Franz	 as	Holy	Roman	Emperor	only	until	 early	 July.	 The	 French	declaration	of	war,	

therefore,	was	not	on	the	Holy	Roman	Empire	(then	strictly	without	Emperor),	but	on	the	ruler	
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of	Austria	and	King	of	Bohemia	and	Hungary.	A	ruler,	 it	must	be	said,	who	had	the	support	of	

Prussia,	but	practically	did	not	count	on	the	initial	support	of	the	rest	of	the	Germanic	states.	For	

example,	 while	 “both	 Bavaria	 and	 Hanover	 [...]	 argued	 for	 strict	 neutrality	 [...],	 Mainz	 and	

Hessen-Kassel	 sent	 small	 contingents”	 (Whaley,	 2012	 II:	 569).	 That	way,	 even	 though	 initially	

Austria	and	Prussia	assumed	the	defense	of	the	Germanic	territories	threatened	by	the	French	

forces,	due	 to	 the	clear	 threat	of	French	expansionism	and	after	 the	execution	of	Louis	XVI	 in	

early	1793,	the	Holy	Roman	Empire	eventually	recognized	itself	as	a	party	to	the	conflict,	though	

“[the]	mobilization	of	both	men	and	resources	was,	however,	slow	and	hesitant”	(Whaley,	2012	

II:	574).	

	

After	 the	Peace	of	Basle	 (Basel),	 signed	between	 the	République	 française	 and	Prussia	 in	April	

1795,	 and	 its	 subsequent	 extensions	 to	 include	 Spain	 and	 the	 Landgraviate	 of	 Hesse-Kassel,	

most	of	the	Germanic	territories	of	the	north	remained	outside	the	conflict	for	over	a	decade,	

while	those	of	the	south	continued	facing	France	until	basically	1798.	As	a	consequence,	Franz	II	

went	much	further	than	his	father	in	the	process	of	counter-reforms	and	to	the	“new	framework	

of	censorship	legislation	designed	to	inhibit	the	spread	of	‘democratic	principles’”,	agreed	at	the	

end	 of	 1791,	 two	 bans	 were	 issued	 during	 the	 first	 half	 of	 1793:	 first	 “against	 revolutionary	

agitators	and	‘Jacobins’”	and,	second,	against	“secret	student	societies	and	powers	to	rusticate	

radical	students”	(Whaley,	2012	II:	584;	cf.	Krueger,	2009:	59).	These	and	other	internal	policies	

adopted	throughout	the	1790s,	coupled	with	the	socio-political	particularities	of	the	Germanic	

territories	 that	 formed	 the	 Holy	 Roman	 Empire,	 effectively	 ensured	 the	 infeasibility	 of	 a	

Germanic	 replica	 of	 the	 French	 revolutionary	movement.	 In	 spite	 of	which,	 nonetheless,	 over	

the	 years	 internal	 conflicts	 continued,	 there	were	 some	 attempts	 of	 uprisings	 that	 sought	 to	

emulate	 the	 French	 and	 there	were	 even	 a	 few	 cases	 in	which	Germanic	 territories	 declared	

themselves	republics	(cf.	Whaley,	2012	II:	585-590).	

	

The	 Kingdom	 of	 Bohemia,	 as	 a	 matter	 of	 fact,	 was	 not	 exempt	 from	 such	 internal	 disputes.	

Nevertheless,	 as	 in	 other	 parts	 of	 the	 Empire,	 just	 as	 in	 everyday	 life	 German	 was	 not	 the	

primary	language	and	publications	likely	to	be	banned148	were	not	always	so	difficult	to	obtain,	

in	 the	 scientific	 and	 intellectual	 spheres	 inside	 and	 outside	 the	 Universitatis	 Carolinae	

																																																													
148	Among	them	were	the	books	of	Kant.	These	were	part	of	the	Germanic	philosophy	mainstream	by	the	end	of	the	18th	and	their	
study	in	philosophy	curricula	was	interdicted	because	of	the	threat	they	could	pose	“to	civic	stability	within	the	Empire”	(Lapointe,	
2011:	13;	cf.	Lapointe	and	Tolley,	2014:	5;	Whaley,	2012	II:	595-596;	Howard,	2006:	121-129).	
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Ferdinandeae	 both	Czech	 and	 those	publications	were	present.149	Indeed,	 at	 the	 end	of	 1791,	

Leopold	 II	 created	 a	 Czech	 language	 and	 literature	 chair,	 appointed	 to	 František	Martin	 Pelcl,	

while	the	Bohemian	Society	of	Sciences,	approved	by	Joseph	II	in	1784	and	turned	into	a	Royal	

Society	 with	 the	 support	 of	 Leopold	 II	 in	 1791,	 not	 only	 remained	 well	 aware	 of	 those	

objectionable	publications,	but	also	remained	in	contact	with	scholars	and	scientists	abroad	(cf.	

Krueger,	2009:	42,	60,	104-106	&	112).	Furthermore,	during	that	period,	and	in	spite	of	the	fact	

that	Franz	II	aimed	to	vanish	“the	spirit	of	Enlightenment”	(cf.	Sebestik,	2014),	Czech	culture	was	

not	 suppressed	or	 isolated	by	 the	 linguistic	Germanization	 and	 the	Habsburg	policies,	 nor	did	

the	flow	of	foreign	and	forbidden	texts	stop.	Evidence	of	this	are:	a)	Pelcl’s	publications	in	Czech	

and	in	some	cases	on	Czech	during	that	decade;	b)	the	foundation	of	the	Society	for	the	Patriotic	

Friends	 of	 the	 Arts	 in	 1796;	 c)	 the	 activities	 and	 publications	 of	 the	 aforementioned	 Royal	

Society	and	even	of	the	Patriotic-Economic	Society	(PES);	as	well	as	d)	the	fact	that	Karel	Jindřich	

Seibt,	 an	 important	 figure	 in	 “the	 importation	 of	 works	 of	 the	 Aufklärung	 from	 Protestant	

Germany”	(Krueger,	2009:	60,	128-129,	95-103;	cf.	Evans,	2006:	67,	138	&	143),	was	one	of	the	

most	relevant	figures	at	the	University	of	Prague	throughout	the	last	decade	of	the	18th	century,	

when	he	was	not	only	professor	but	 also	dean	of	 the	 Faculty	of	Philosophy	and	 rector	of	 the	

university.	In	any	case,	the	effect	of	counter-reforms	was	gradual	and	not	immediate.	

	

Bolzano	himself	is	evidence	of	that	process,	both	as	a	student	who	grew	up	in	that	context	and	

as	 a	 professor	 who	 at	 the	 beginning	 of	 his	 career	 was	 called	 to	 be	 an	 active	 part	 of	 it.	 He	

attended	 a	 Piarist	 gymnasium	 from	 1791	 to	 1796,	 after	 which	 he	 entered	 the	 Faculty	 of	

Philosophy	at	the	University	of	Praha.	Over	the	next	four	years	(since	to	the	regular	three	years	

of	classes	an	additional	year	was	granted	to	him	to	“deepen	his	knowledge	of	mathematics	and	

to	 think	 more	 about	 his	 future”	 (Sebestik,	 2014:	 292))	 he	 took	 classes	 with	 Seibt,	 Vydra	

(professor	of	elementary	mathematics	and	author	of	the	first	Czech	algebra	textbook),	Vincenc	

Blaha,	 František	 Schmidt,	Gerstner	 (professor	of	higher	mathematics	 and	member	of	 the	PES)	

and	František	 Leonard	Herget	 (professor	of	practical	mathematics).	However,	 in	1800	Bolzano	

																																																													
149	It	 is	 worth	 quoting	 here	 a	 broad	 excerpt	 from	Whaley’s	 text:	 “The	 flow	 of	 publications	 continued	 unabated.	 In	 addition	 to	
newspapers	and	journals,	a	mass	of	translations	of	French	pamphlets	and	commentaries	kept	the	German	public	up	to	date.	Over	
2,000	works	were	 translated	 between	 1789	 and	 1799;	 some	 1,100	 texts	were	 distributed	 from	 Leipzig	 between	 1794	 and	 1798.	
Some	70	per	 cent	 of	what	was	 translated	 represented	 the	moderate	 or	Girondin	 position,	which	was	 the	most	 congenial	 to	 the	
German	reformist	mentality.	The	subject	matter	changed	as	the	reverses	of	1794	created	new	perspectives.	Direct	commentaries	on	
French	politics	were	replaced	by	analyses	of	the	implications	of	the	‘failures’	of	the	years	1792–4	and	by	historical	analyses	of	the	
whole	process	since	1789.	Then,	the	literature	devoted	to	the	theme	of	peace	between	1795	and	1802	once	more	polarized	opinion	
between	moderate	republican,	radical	democratic,	and	conservative	writers,	and	changed	the	framework	of	discussion.”	(Whaley,	
2012	II:	598)	
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chose	 to	 study	 theology,	 studies	 that	 lasted	 until	 1804,	 and,	 although	 that	 same	 year	 he	

obtained	 his	 doctoral	 degree	 in	 philosophy,	 he	 also	 was	 ordained	 priest	 and,	 after	 he	 both	

entered	competition	for	a	position	as	professor	of	elementary	mathematics	and	as	professor	of	

the	 science	 of	 religion	 at	 Praha,	 he	 was	 nominated	 for	 the	 second	 one,	 while	 Josef	 Ladislav	

Jandera	got	the	first	chair.150	

	

In	 1805,	 however,	 Bolzano’s	 context,	 as	 the	 European	 context	 in	 general	 and	 the	 context	 of	

central	 Europe	 in	 particular,	 was	 changing	 drastically.	 While	 in	 1797	 France	 and	 Austria	 had	

signed	 first	 an	 armistice	 at	 Leoben	 and	 by	 the	 end	 of	 the	 year	 the	 peace	 Treaty	 of	 Campo	

Formio,	 France	 and	 the	 Reich	 did	 not	 achieve	 peace	 and	 in	 March	 1799	 France	 once	 again	

declared	war	on	Austria,	which	along	with	Great	Britain,	Russia	 and	 the	Ottoman	Empire	had	

reorganized	 a	 coalition	 against	 the	 former.	 After	 some	 initial	 victories	 of	 the	 coalition:	 a)	 in	

October	 1799	 Russia	 withdrew	 from	 the	 coalition	 after	 their	 defeat	 in	 the	 Second	 Battle	 of	

Zürich;	 b)	 in	 November	 of	 that	 same	 year	 a	 coup	 d'état	 usually	 known	 as	 the	 coup	 of	 18	

Brumaire	 led	 to	 the	 appointment	 of	Napoleon	 as	 First	 Consul	 of	 France;	 c)	 the	 1st	 of	 January	

1801	the	merging	of	the	Kingdoms	of	Great	Britain	and	Ireland	established	the	United	Kingdom	

of	Great	Britain	and	Ireland;	d)	in	February	of	that	year	the	Holy	Roman	Empire	and	the	French	

Republic	 signed	 the	 Treaty	of	 Lunéville,	 recognizing	 French	 control	 over	 the	west	 bank	of	 the	

Rhine,	and	just	over	a	year	later	the	Treaty	of	Amiens	was	signed	between	the	United	Kingdom	

and	France,	ending	hostilities	between	both	parts;	e)	in	May	1803,	after	both	Great	Britain	and	

France	did	not	completely	implement	the	agreements	contained	in	the	latter	Treaty,	the	former	

resumed	 war	 against	 the	 latter,	 assembling	 a	 new	 coalition	 from	 1804	 with	 the	 Kingdom	 of	

Sweden	(Swedish	Pomerania),	the	Holy	Roman	Empire,	Russia	and	the	Kingdoms	of	Naples	and	

Sicily;	f)	 in	May	1804	Napoleon	was	given	the	title	of	Emperor	of	France	and	in	August	Franz	II	

was	crowned	as	Franz	I,	Emperor	of	Austria,	after	the	proclamation	of	the	–First–	French	Empire	

and	the	Imperial	Recess	of	1803	(Reichsdeputationshauptschluss);	g)	at	the	end	of	1805	France	

and	Austria	signed	the	Treaty	of	Pressburg	and	during	the	following	year	a	brief	new	coalition	

against	 France	 that	 involved	 Prussia	 and	 Saxony	 was	 formed;	 and	 h)	 in	 July	 1806	 the	 États	

confédérés	du	Rhin	was	created	and	a	few	weeks	later	Franz	II	dissolved	the	Holy	Roman	Empire.	

	

																																																													
150	I	am	grateful	to	Davide	Crippa	for	sharing	with	me	a	digitalized	copy	of	Bolzano’s	examination	as	well	as	his	transcript	of	it.	
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Precisely,	 the	 chair	 of	 philosophy	 of	 religion	 to	which	 Bolzano	was	 appointed	was	 one	 of	 the	

many	set	up	by	Franz	II	in	a	decree	of	early	1804,	according	to	which	those	chairs	were	intended	

to	 improve	 religious	 instruction	 and,	 as	 a	 consequence,	 as	 summarized	 by	 Sebestik,	 “educate	

obedient	citizens	of	the	State	and	to	eradicate	the	ideas	of	the	French	Lumières	and	the	ideals	of	

the	French	revolution”	(Sebestik,	2014:	293).	Bolzano	obtained	the	confirmation	of	his	position	

in	1807	and	during	the	remaining	years	of	the	first	decade	of	the	19th	century	he	only	published	

a	 single	 mathematical	 work,	 scilicet	 the	 first	 issue	 of	 his	 Contributions	 to	 a	 Better-Grounded	

Presentation	of	Mathematics	(Beyträge	zu	einer	begründeteren	Darstellung	der	Mathematik),	in	

addition	 to	 his	 1804	 work,	 Considerations	 on	 some	 Objects	 of	 Elementary	 Geometry	

(Betrachtungen	über	einige	Gegenstände	 der	Elementargeometrie).	 The	 following	 section	 shall	

precisely	deal	with	both	these	works.	

	

	

C.1.2.	Bolzano’s	general	conception	of	mathematics	outlined	in	his	works	of	1804-1810	

	

	

Beyond	the	grouping	of	Bolzano’s	works	of	1804	y	1810	due	to	their	publication	during	the	first	

decade	 of	 the	 19th	 century	 and	 for	 a	 little	 more	 than	 the	 first	 five	 years	 since	 obtaining	 his	

doctoral	degree,	 there	 is	 a	 reason	of	 content	 to	do	 so.	His	Considerations	on	 some	Objects	of	

Elementary	Geometry,	as	he	pointed	out	in	the	preface,	concerned	not	merely	some	objects	of	

elementary	 geometry	 but	 “the	 very	 first	 propositions	 of	 pure	 geometry”	 and,	 that	 way,	

constituted	“a	small	sample	of	[his]	changes”	to	the	foundations	and	method	of	mathematics,	as	

he	wrote	in	the	preface	to	his	Contributions	to	a	Better-Grounded	Presentation	of	Mathematics	

(Bolzano,	1804:	VIII;	Bolzano,	1810:	XIV).151	

	

To	 begin	with,	 for	 Bolzano	mathematics	was	 not	 the	 science	 of	 quantities,	 nor	mathematical	

method	should	began	with	definitions.	A	definition,	he	said,	inasmuch	as	it	was	a	“statement	of	

the	most	proximate	components	(two	or	more)”	from	which	a	concept	was	formed,	could	only	

be	 of	 composite	 concepts	 and,	 therefore,	 could	 not	 be	 the	 starting	 point	 in	 a	 scientific	

																																																													
151	Bolzano	wrote:	“welche	Probe	doch	nur	die	aller-ersten	Sätze	der	reinen	Geometrie	betrifft”	and	“Zwar	gab	ich	schon	im	J.	1804	
eine	kleine	Probe	meiner	Veränderungen”,	 respectively.	Given	 the	 frequency	with	which	 from	now	on	 fragments	of	 the	works	of	
Bolzano	 will	 be	 quoted,	 only	 in	 those	 cases	 in	 which	 the	 translation	 proposed	 here	 differs	 significantly	 from	 the	 English	 one	
published	by	Steve	Russ	(Russ,	2004),	which	is	used	as	a	basis,	this	will	be	mentioned.	
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exposition	 (cf.	 Bolzano,	 1810:	 42	 &	 53).152	Instead,	 and	 in	 order	 to	 be	 able	 to	 fabricate	 a	

definition,	he	considered	necessary,	on	the	one	hand,	to	have	simple	concepts,	that	is,	concepts	

that	could	no	longer	be	decomposed,	and,	on	the	other	hand,	to	have	“an	insight”	(eingesehen)	

on	 the	possible	and	 fruitful	 combination	of	 some	of	 them	to	produce	a	new	one	 (cf.	Bolzano,	

1810:	44	&	53).	For	example,	just	as	a	straight	line	could	be	defined	as	an	object	containing	“all	

those	and	only	those	points	which	 lie	between	the	two	points	!	and	!”	 (Bolzano,	1804:	57),153	
requiring	 further	knowledge	on	what	an	object	and	a	point	were,	mathematics	defined	as	 the	

science	of	quantities	required	further	knowledge	on	the	concepts	of	science	and	quantity:	in	the	

first	 case,	 a	 point	 not	 only	 was	 indeed	 a	 simple	 concept	 but,	 considered	 “as	 a	 mere	

characteristic	of	space	which	 itself	 is	not	a	part	of	 [it]”,	could	not	actually	be	distinguishable	–

from	what?–	and	thus	could	not	constitute	an	object	of	geometrical	consideration,	being	“the	

simplest	 object	 of	 geometrical	 consideration	 [...]	 a	 system	of	 two	 points”	 (Bolzano,	 1804:	 47-

48);154	in	the	second	case,	a	quantity,	defined	as	a	“(multiplicity)	of	things	which	are	equal	to	the	

unity	(or	the	measure)”,	could	not	be	regarded	as	a	simple	but	a	composite	concept	(cf.	Bolzano,	

1804:	3-4).155	

	

As	a	consequence,	for	Bolzano	a	correct	scientific	exposition	should	begin	with	simple	concepts,	

whose	 understanding,	 he	 said,	 could	 be	 communicated	 through	 a	 certain	 kind	 of	 “arbitrary	

propositions”	 (willkürliche	 Sätze)	 called	 “circumscriptions”	 (Umschreibungen),	 as	 well	 as	 with	

those	other	arbitrary	propositions	by	means	of	which	a	symbol	was	assigned	to	a	concept,	such	

as	 “the	 sign	 for	 addition	 is	+”	 (cf.	 Bolzano,	 1810:	 50).156	Concerning	 the	 latter,	 he	 stated	 that	
“semiotics	[prescribed]	certain	rules”	according	to	which	the	assignation	of	a	sign	to	a	concept	!	
would	 not	 be	 entirely	 arbitrary:	 “the	 sign	 must	 be	 easily	 recognized,	 possess	 the	 greatest	

possible	similarity	to	the	concept	designated,	be	convenient	to	the	representation,	and	what	is	

most	 important,	 it	 must	 not	 be	 in	 contradiction	 with	 any	 signs	 already	 chosen	 or	 cause	 any	

																																																													
152	Bolzano	wrote:	 “Die	 Logiker	 verstehen	 unter	 einer	 Erklärung	 (definitio)	 in	 dieses	Wortes	 eigentlichstem	 Sinne	 die	Angabe	 der	
nächsten	(zwey	oder	mehreren)	Bestandtheile,	aus	welchen	ein	gegebener	Begriff	zusammen	gesetzt	ist”	and	“Sie	können	offenbar	
nicht	das	Erste,	womit	man	anfängt,	seyn”,	respectively.	
153	Bolzano	wrote:	“Ein	Ding,	welches	alle	jene,	und	nur	jene	Punkte	enthält,	die	zwischen	den	zwey	Punkten	!	und	!	liegen,	heisst	
eine	gerade	Linie	zwischen	!	und	!.”	
154	Bolzano	 wrote:	 “als	 eines	 blossen	 Merkmals	 eines	 Raumes	 (semeion),	 das	 selbst	 kein	 Theil	 des	 Raumes	 ist”	 and	 “so	 ist	 der	
einfachste	Gegenstand	der	geometrischen	Betrachtung	ein	System	zweyer	Punkte.”	
155	Bolzano	wrote:	“Grösse	heisst	ein	Ding,	insofern	es	angesehen	wird	als	bestehend	aus	einer	Anzahl	(Vielheit)	von	Dingen,	die	der	
Einheit	(oder	dem	Masse)	gleich	sind.”	
156 	Given	 the	 sense	 attributed	 by	 Bolzano	 to	 the	 word	 Umschreibungen,	 it	 seems	 more	 appropriate	 to	 translate	 it	 by	
“circumscriptions”,	as	Rusnock	(Rusnock,	2000),	than	by	“descriptions”,	as	Russ	(Russ,	2004:	104).	
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ambiguity”	(Bolzano,	1810:	51).157	On	the	other	hand,	with	regard	to	simple	concepts,	since	they	

could	not	be	properly	defined	insofar	as	definitions	only	concerned	composite	concepts,	he	said,	

they	 could	 only	 be	 explained	 through	 indications	 or	 propositions	 to	 delimit	 or	 circumscribe	

them:	 the	 concept	 of	 mathematical	 point,	 for	 example,	 could	 be	 explained	 from	 several	

propositions,	such	as	“the	point	is	the	simple	[object]	in	space,	it	is	the	boundary	of	the	line	and	

itself	no	part	of	the	line,	it	has	neither	an	extension	in	length,	nor	in	breadth	or	in	depth,	etc.”	

(Bolzano,	1810:	55).158	

	

However,	additionally	to	the	establishment	of	conventions	and	definitions	as	the	very	first	parts	

or	 elements	 of	 a	 proper	 scientific	 exposition,	 and	 postulates,	 axioms,159	theorems	 and	 other	

elements	 as	 the	 subsequent	ones,	 Bolzano	 stressed	 the	 importance	of	 classifications	 to	order	

such	exposition	and	thus	truly	be	a	proper	scientific	one.	To	rectify	the	lack	of	“a	true,	natural	

order”	 in	 mathematical	 disciplines,	 he	 wrote,	 required	 “[to	 be]	 clear	 about	 all	 the	 simple	

concepts	and	axioms	of	 these	disciplines”	and	 to	know	exactly	which	elements	are	needed	 to	

obtain	 “logically	 correct	 proof[s]”	 (Bolzano,	 1810:	 58).160	Precisely,	 on	 the	 one	 hand,	 his	 1810	

work	intended	to	clarify	the	concept	of	mathematics	and	its	classification.	That	is,	he	intended	

to	 define	 that	 science	 and	 in	 doing	 so	 to	 offer	 some	 general	 guidelines	 on	 its	 order	 and	 to	

designate	 its	 object	 of	 study,	 even	 though	 at	 the	 same	 time	 he	made	 some	 remarks	 on	 the	

mathematical	 method	 in	 spite	 of	 not	 pertaining	 to	 math,	 being	 “basically	 nothing	 else	 than	

																																																													
157 	Bolzano	 wrote:	 “Die	 Semiotik	 schreibt	 hier	 bestimmte	 Regeln	 vor.	 Das	 Zeichen	 muss	 leicht	 in	 die	 Augen	 fallen,	 mit	 dem	
bezeichneten	Begriffe	 die	möglichst	 grösste	Aehnlichkeit	 besitzen,	 bequem	 zur	Darstellung	 seyn,	 und	was	 das	Wichtigste	 ist,	mit	
anden	 bereits	 gewählten	 Zeichen	 in	 keinem	 Widerspruche	 stehen	 und	 keine	 Zweydeutigkeit	 veranlassen.”	 Here	 Zeichen	 was	
translated	 by	 “sign”	 and	 not	 “symbol”	 as	 Russ	 did	 since	 elsewhere	 Bolzano	 explicitly	 used	 the	 term	 “symbolische”	 to	 refer	 to	 a	
certain	kind	of	expressions	(Bolzano,	1810:	30-31),	while	in	this	case	he	used	Zeichen	to	refer	to	an	operational	element.	
158	Bolzano	wrote:	“der	Punct	ist	das	Einfache	im	Raume,	er	ist	die	Grenze	der	Linie,	und	selbst	kein	Theil	der	Linie,	er	hat	weder	eine	
Ausdehnung	in	die	Länge,	noch	in	die	Breite,	noch	in	die	Tiefe,	u.s.w.”	
159	For	Bolzano,	an	axiom,	in	an	“objective	sense”,	was	“a	truth	which	we	not	only	do	not	know	how	to	prove	but	which	in	itself	is	
unprovable”	 (so	 müssen	 wir	 darunter	 eine	 Wahrheit	 verstehn,	 die	 wir	 nicht	 nur	 nicht	 zu	 erweisen	 wissen,	 sondern	 die	 an	 sich	
unerweislich	 ist)	 (Bolzano,	 1810:	 63).	 That	 way,	 and	 considering	 the	 preeminence	 given	 by	 him	 to	 the	 definitions,	 his	 notion	
resembles	that	of	Wolff,	according	to	which	“since	the	axioms	are	drawn	directly	from	the	definitions,	they	have	no	need	of	proof	
but	rather	their	 truth	 flows	as	soon	as	one	 look	at	 those	definitions”	 (Weil	nun	die	Grundsätze	unmittelbahr	aus	den	Erklärungen	
gezogen	werden,	haben	sie	keines	Beweises	nöthig,	sondern	ihre	Warheit	erhellet,	so	bald	man	die	Erklärungen	ansiehet,	daraus	sie	
fliessen)	(Wolff,	1717:	17;	cf.	Wolff,	1747:	625-626).	However,	in	spite	of	this,	one	must	be	careful	to	link	the	mathematical	method	
proposed	by	Bolzano	with	Wolff’s	proposal,	at	least	with	regard	to	that	issue.	While	for	Wolff	certain	principles	or	axioms	were	self-
evident	and	therefore	did	not	require	demonstration,	as	Bolzano	pointed	out	in	his	1804	work	(cf.	Bolzano,	1804:	33),	for	Bolzano	
not	only	a)	every	proposition	should	be	proved	despite	its	obviousness	(cf.	Bolzano,	1804:	II-V),	but	also	b)	where	simple	concepts	
ended	and	definitions	began,	axioms	also	ended	and	theorems	began	(cf.	Bolzano,	1810:	96).	This	 is	because,	for	Bolzano,	axioms	
were	unprovable	propositions	 (through	–Barbara–	 syllogisms,	which	 for	him	was	 the	only	valid	kind	of	 inference	 for	propositions	
with	simple	concepts)	of	the	kind	of	judgements	“in	which	both	subject	and	predicate	[were]	entirely	simple	concepts”	(in	welchen	
beydes,	Subject	und	Prädicat,	ganz	einfache	Begriffe	sind)	(Bolzano,	1810:	88-91).	For	a	more	detailed	analysis	of	some	similarities	
and	differences	between	the	Wolff’s	proposal	and	later	works	of	Bolzano,	cf.	(Lapointe,	2011).	
160	Bolzano	wrote:	“In	der	That	 ist	aber	nichts	schwerer,	als	diese	Unordnung	zu	heben,	und	eine	-nicht	bloss	scheinbare,	sondern	
wahre,	naturgemätze	Ordnung	einzuführen.	Hiezu	gehöret	nämlich,	dass	man	zuvor	mit	allen	einfachen	Begriffen	und	Grundsätzen	
dieser	Disciplinen	 im	Reinen	 sey,	 und	 bereits	 genau	wisse,	welcher	 Vordersätze	 ein	 jeder	Grundsatz	 zu	 seinem	 logisch-	 richtigen	
Beweise	bedürfe	oder	nicht	bedürfe.”	
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logic”	 (Bolzano,	 1810:	 39).161	While,	 on	 the	 other	 hand,	 his	 1804	 work	 was	 meant	 to	 be	 an	

attempt	 to	 apply	 his	 early	 ideas	 on	 those	 issues	 in	 a	 particular	 discipline,	 namely	 geometry.	

However,	 lacking	 of	 a	 proper	 theory	 of	 the	 straight	 line,	 in	 1804	 he	 worked	 on	 the	 first	

propositions	of	the	theory	of	triangles	and	parallels	and	only	presented	some	thoughts	to	sketch	

out	how	the	former	could	possibly	be	founded	and	proved.	

	

What	was	then	mathematics	to	Bolzano,	 if	not	the	science	of	quantities?	Throughout	much	of	

the	first	part	of	his	1810	work	he	not	only	exposed	his	own	conception	of	mathematics	and	the	

various	 parts	 and	 disciplines	 that	 he	 thought	 comprised	 it,	 but	 at	 the	 same	 time	he	 analyzed	

some	 contemporary	 conceptions.	 If	 by	 math	 is	 meant	 “the	 science	 of	 quantities”,	 he	 said,	

“everything	[will	depend]	on	what	one	understands	by	the	word	‘quantity’”	(Bolzano,	1810:	2),	

so	that	if	it	was	defined	traditionally,	in	the	sense	mentioned	above,	it	would	rule	out	part	of	the	

general	 math.	 On	 the	 contrary,	 if	 defined	 quantity	 as	 “something	 that	 exists	 and	 can	 be	

perceived	by	some	sense”	(as	Franz	Anton	Ritter	von	Spaun),162	it	would	either	discard	essential	

parts	of	mathematics,	considered	quantities	as	“only	sensible	objects”,	or	it	would	group	all	the	

sciences,	 considered	 quantity	 as	 “every	 conceivable	 thing	without	 exception”	 (Bolzano,	 1810:	

3).163	

	

Even	more,	conceived	 in	the	wide	sense,	mathematics	would	be	the	science	of	all	sciences,	 to	

put	 it	 some	 way,	 and	 therefore	 it	 would	 deal	 with	 things	 “as	 the	 freedom	 of	 God	 and	 the	

immortality	 of	 the	 soul”	 (Bolzano,	 1810:	 13),164	which	 was	 not	 the	 case.	 On	 the	 other	 hand,	

conceived	 in	 the	 traditional	 sense,	he	argued,	 it	would	be	“certainly	defective	and	 indeed	 too	

																																																													
161	Bolzano	wrote:	 “Unter	 dieser	 Voraussetzung	wäre	 nun	 eine	 Abhandlung	 über	 die	mathematische	Methode	 im	 Grunde	 nichts	
anders,	als	-Logic,	und	so	zur	Mathematik	selbst	gar	nicht	gehörig.”	
162 	Bolzano	 quoted	 “the	 anonymous	 author	 of	 the	 book	 Versuch,	 das	 Studium	 der	 Mathematik	 durch	 Erläuterung	 einiger	
Grundbegriffe	und	durch	 zweckmässigere	Methoden	 zu	erleichtern.	Bamberg	and	Würzburg,	 1805”	 (Bolzano,	 1810:	 2),	 an	 author	
which,	as	I	explained	in	my	contribution	presented	at	the	International	Symposium	Bolzano	in	Prague	2014	(jointly	organised	by	the	
Academy	of	Sciences	of	the	Czech	Republic	(Institute	of	Philosophy),	the	International	Bernard	Bolzano	Society	and	the	University	of	
Amsterdam),	was	Franz	Anton	Ritter	von	Spaun,	an	Austrian	Germanic	mathematician,	as	reflected	in	a	copy	of	the	book	preserved	
by	 the	 Library	 of	 the	 University	 of	 Michigan	 and	 at	 the	 entry	 devoted	 to	 him	 in	 the	 Allgemeine	 Deutsche	 Biographie	 in	 1893.	
Previously,	Paula	Cantù,	in	a	paper	first	presented	at	the	2010	International	Conference	on	Bolzano	Philosophy	and	Mathematics	in	
the	Work	of	Bernard	Bolzano,	“suggest[ed]	that	the	author,	not	identified	until	now,	could	well	be	Franz	Ritter	von	Spaun,	who	after	
having	 worked	 for	 several	 years	 in	 the	 Austrian	 administration,	 was	 condamned	 for	 a	 writing	 that	 was	 considered	 politically	
dangerous,	and	from	1788	onwards,	expecially	during	the	ten	years	he	passed	in	prison,	devoted	himself	to	mathematics”	(Cantù,	
2014:	298).	Indeed,	Franz	Anton	Ritter	von	Spaun	left	prision	in	1798	and,	given	his	political	ideas	and	the	conditions	of	his	release,	it	
is	not	strange	that	he	opted	for	anonimity	in	many	of	his	early	19th	century	works	(cf.	S.,	1893:	69-70;	Eisenmann,	1831).	
163	Bolzano	wrote:	“Begreiflich	kömmt	hiebey	alles	darauf	an,	was	jemand	unter	dem	Worte	Grösse	verstehe.”	“Im	ersten	Falle	wäre	
Grösse,	jedes	gedenkbare	Ding	ohne	Ausnahme;	und	wenn	wir	dann	die	Mathematik	als	die	Wissenschaft	der	Grössen	erklärten,	so	
würden	 wir	 im	 Grunde	 alle	 Wissenschaften	 in	 das	 Gebiet	 dieser	 Einen	 ziehen.	 Im	 zweyten	 Falle	 dagegen	 wären	 nur	 sinnliche	
Gegenstände	 Grössen.”	 Although	 sinnliche	 Gegenstand	 could	 be	 translated	 by	 “sensuous”,	 here	 is	 preferred	 to	 translate	 it	 by	
“sensible”,	as	Russ	did	(Russ,	2004:	91),	so	as	not	to	complicate	the	undertanding	of	Bolzano’s	argument.	
164	Bolzano	wrote:	“als	etwa	der	Freyheit,	Gottes	und	der	Unsterblichkeit	der	Seele.”	
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narrow”,	since	“the	concept	of	quantity	or	of	number	[did]	not	appear	in	many	problems	of	the	

theory	of	combinations	(this	so	 important	part	of	the	general	mathesis)”	(Bolzano,	1810:	4).165	

That	 way,	 just	 as	 he	 highlighted	 the	 importance	 of	 the	 awareness	 on	 the	 crucial	 role	 of	

combinations	to	form	both	composite	concepts	and	the	various	gears	of	a	scientific	theory,	and	

thus	 the	 theory	 itself,	 Bolzano	 stressed	 the	 relevance	 of	 combinations	 for	 the	 study	 of	 the	

elements	of	mathematical	consideration.	

	

It	is	true	that	Bolzano	also	drew	attention	to	the	fact	that	the	objects	of	study	of	some	particular	

mathematical	 disciplines	 were	 others	 than	 quantities	 and	 in	 fact	 were	 objects	 to	 which	 the	

concept	of	quantity	was	applied,	as	 space	and	 time	 (cf.	Bolzano,	1810:	5).	But,	as	a	matter	of	

fact,	precisely	this	second	argument	against	the	usual	employment	of	the	notion	of	quantity	in	

the	 definition	 of	mathematics	 reinforced	 the	 first	 one:	while	 space	 and	 time	were	 objects	 of	

mathematical	study	that,	although	different	from	quantities,	were	quantifiable	as	combinations	

could	also	be,	these	latter	were	constitutive	of	the	core	part	of	the	mathematical	framework	as	

those	were	not.	In	other	words,	although	Bolzano	said	that	in	mathematics	not	everything	were	

quantities,	 as	 combinations,	 space	 and	 time	 would	 exemplify,	 the	 key	 point	 was	 not	 the	

existence	of	 particular	 objects	 of	mathematical	 study	 as	 space	 and	 time,	 but	 the	 existence	of	

essential	 objects	 of	 study	 other	 than	 the	 quantities.	 Just	 as	 composite	 concepts	 could	 not	 be	

produced	without	possible	and	fruitful	–finite–	combinations	of	simple	concepts,	a	point	could	

not	 be	 mathematically	 considered	 unless	 a	 second	 point	 was	 also	 considered	 and	 quantities	

could	 not	 be	 considered	 mathematically	 without	 combinations	 (finite	 indeed,	 as	 will	 be	

discussed	in	the	last	section	(cf.	infra	C.2.2)).	

	

Because	of	 all	 this,	 Bolzano	not	 only	 rejected	 the	definition	of	mathematics	 as	 the	 science	of	

quantity	but	also	the	interpretation	of	such	definition	as	meaning	“a	science	of	those	objects	to	

which	the	concept	of	quantity	is	especially	applicable”	(Bolzano,	1810:	6).166	If	this	latter	was	the	

case,	he	wrote,	sciences	as	that	whose	object	of	study	were	the	syllogisms	or	that	other	whose	

object	of	study	were	the	categories	“would	in	fact	have	to	count	as	mathematics”,	unless	a	non-

scientific	 criterion	 regarding	 the	 frequency	of	 the	 applicability	 of	 the	 concept	 of	 quantity	was	

																																																													
165	Bolzano	wrote:	 “Diese	 Bedeutung	 des	Wortes	 Grösse	 vorausgesetzt,	 ist	 die	 gewöhnliche	 Erklärung	 der	Mathematik,	 als	 einer	
Wissenschaft	der	Grössen,	freylich	mangelhaft,	und	zwar	zu	enge.	[...]	So	kömmt	in	vielen	Aufgaben	der	Combinationslehre	(dieses	
so	wichtigen	Theiles	der	allgemeinen	Mathesis)	der	Begriff	der	Grösse	oder	einer	Zahl	nicht	einmahl	vor.”	
166 	Bolzano	 wrote:	 “Dieses	 könnte	 vielleicht	 auf	 den	 Gedanken	 führen,	 die	 Mathematik	 als	 eine	 Wissenschaft	 von	 solchen	
Gegenständen	zu	erklären,	auf	welche	der	Begriff	der	Grösse	besonders	anwendbar	ist.”	
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taken	into	account	(Bolzano,	1810:	7).167	Instead,	Bolzano	proposed	a	definition	of	mathematics	

appropriate	 to	 the	 relevance	 he	 attributed	 to	 combinations:	 “mathematics	 could	 best	 be	

defined	as	a	science	which	deals	with	the	general	 laws	(forms)	according	to	which	things	must	

be	regulated	in	their	existence”	(Bolzano,	1810:	11).168	A	definition,	it	must	be	stressed,	similar	

to	that	proposed	by	all	those	Germanic	mathematicians	of	the	time	with	certain	propensity	for	

the	approach	of	the	so-called	Combinatorial	School	led	by	Hindenburg.	

	

By	 that	 definition,	 Bolzano	 intended	 to	 combine	 what	 seemed	 to	 him	 the	 best	 of	 other	

definitions.	 On	 the	 one	 hand,	 his	 definition,	 as	 the	 aforementioned	 interpretation	 of	 the	

traditional	one,	allowed	him	to	consider	both	objects	with	an	“objective	existence	independent	

of	our	consciousness”	(von	unserem	Bewusstseyn	unabhängiges	Daseyn	besitzen)	and	objects	of	

thought.	 On	 the	 other	 hand,	 it	 provided	 him	 a	 broad	 enough	 definition	 to	 not	 constrict	 the	

object	of	mathematical	study	to	quantities,	but	include	also	combinations,	at	the	same	time	that	

sufficiently	restrictive	to	differentiate	its	object	of	study	from	that	of	philosophy	or	metaphysics.	

In	 that	 sense,	 he	 wrote,	 definitions	 such	 as	 that	 of	 an	 anonymous	 reviewer,	 who	 defined	

mathematics	 as	 “a	 general	 theory	 of	 forms”	 (allgemeine	 Formenlehre),169	or	 that	 of	 Kant	 “of	

pure	 natural	 science	 [...]	 as	 a	 science	 of	 the	 laws	 under	 which	 the	 existence	 of	 things	 (of	

phenomena)	 is	 ruled”	 (als	eine	Wissenschaft	von	den	Gesetzen,	unter	welchen	das	Daseyn	der	

Dinge	 (der	Phänomena)	 stehet),	 could	be	 reinterpreted	according	 to	his	proposal	 (cf.	Bolzano,	

1810:	 10-11	 &	 15).	 While,	 on	 the	 other	 hand,	 metaphysics	 would	 be	 distinguished	 from	

mathematics	 inasmuch	 as	 this	 one	would	 deal	 “with	 the	 general	 conditions	 under	which	 the	

existence	 of	 things	 is	 possible”,	 and	 the	 former	 would	 deal	 with	 the	 “absolute	 necessity”	 of	

certain	things	“such	as	the	freedom	of	God	and	the	immortality	of	the	soul”	(cf.	Bolzano,	1810:	

11-14).170	

	

Such	 a	 distinction	between	mathematics	 and	philosophy	was	 in	 fact	 fundamental	 for	 Bolzano	

and	can	be	found	in	his	writings	both	before	and	after	1810.	In	his	autobiography,	published	in	

																																																													
167	Bolzano	wrote:	“so	würde	man	in	der	That	alle	Wissenschaften	zur	Mathematik	zählen	müssen.”	
168	Bolzano	 wrote:	 “Ich	 denke	 also,	 dass	 man	 die	 Mathematik	 am	 besten	 als	 eine	 Wissenschaft	 erklären	 könnte,	 die	 von	 den	
allgemeinen	Gesetzen	(Formen)	handelt,	nach	welchen	sich	die	Dinge	in	ihrem	Daseyn	richten	müssen.”	
169	Paola	Cantù	wrote	that	“It	would	be	 interesting	to	verify	whether	the	author	could	not	be	Bolzano	himself”	(Cantù,	2014:	298,	
fn.),	although	I	agree	with	Johan	Blok	that	this	seems	implausible	(cf.	Blok,	2016:	171,	fn.	80).	
170	Bolzano	wrote:	“Mathematik	und	Metaphysik,	die	beyden	Hauptbestandtheile	unserer	apriorischen	Erkenntnisse,	wären	einander	
nach	dieser	Erklärung	dergestalt	entgegen	gesetzt,	dass	erstere	die	allgemeinen	Bedingungen	abhandelte,	unter	welchen	das	Daseyn	
der	Dinge	möglich	wird.”	
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1836,	for	example,	he	declared	that	since	his	early	years	as	student	his	pleasure	in	mathematics	

was	 based	 on	 its	 “purely	 speculative	 part”,	 that	 is,	 he	 said,	 “what	 is	 at	 the	 same	 time	

philosophy”	(Bolzano,	1836:	19),171	while	in	his	mathematical	notebooks	he	wrote	in	1802:	“The	

definition	of	magnitude	does	not	belong	 to	mathematics;	mathematics	 cannot	achieve	 it.	 The	

definition	 of	 this	 concept	 belongs	 to	 the	 transcendental	 philosophy”	 (Sebestik,	 2014:	 293).172	

This	 last	 passage	 is	 indeed	 curious,	 considering:	 firstly,	 his	 criticism	 of	 Kant	 and	 the	 critical	

philosophy	contained	in	his	work	of	1810,	especially	in	the	Appendix	dedicated	to	“the	Kantian	

theory	 of	 the	 construction	 of	 concepts	 through	 intuitions”;	 and,	 secondly,	 his	 own	

methodological	proposal,	exposed	 in	extenso	 in	that	work	but	previously	envisaged	in	his	1804	

work.	 After	 all,	 if	 from	 his	 point	 of	 view	 the	 Kantian	 construction	 of	 concepts	 was	 not	

appropriate	 and,	 among	 other	 things,	 a	 strict	 scientific	 proof	 should	 not	 make	 use	 of	 alien	

concepts	 to	 the	theory	 in	which	the	thesis	 is	 to	be	proven,	how	could	Bolzano	simultaneously	

defend	that	the	definition	of	the	concept	of	quantity	belonged	to	transcendental	philosophy	and	

not	to	mathematics?	

	

In	 fact,	 his	 1804	 work	 began	 stating	 that	 mathematics	 was	 not	 only	 useful	 because	 of	 “its	

application	to	practical	life”,	but	also	because	of	its	“beneficial	promotion	of	a	thorough	way	of	

thinking”	 (durch	 die	 wohlthätige	 Beförderung	 einer	 gründlichen	 Denkart	 liefern	 könne),	 after	

which	he	proposed	a	couple	of	methodological	rules	whose	application,	he	said,	would	improve	

speculative	mathematics	(Bolzano,	1804:	I).	The	first	one	was	that	every	proposition	should	be	

proved	despite	its	obviousness	and	the	second	one	that	no	proof	should	make	use	of	concepts	

alien	 to	 it,	 just	 as	 no	 science	 should	make	 use	 of	 concepts	 of	 a	 less	 fundamental	 science	 (cf.	

Bolzano,	 1804:	 II-V).	 So,	 for	 example	 and	 according	 to	 his	 conception	 of	 geometry	 and	 his	

conception	 and	 classification	 of	 the	 mathematical	 sciences,	 as	 will	 be	 shown	 later,	 Bolzano	

defended	 that	 “all	 propositions	 about	 angles	 and	 ratios	 of	 straight	 lines	 to	 one	 another	 (in	

triangles)	 [should	not	be]	proved	by	means	of	 considerations	of	 the	plane”,	as	 the	concept	of	

motion	 should	 not	 be	 “used	 to	 prove	 purely	 geometrical	 truths”	 (Bolzano,	 1804:	 V)173	and	

																																																													
171	Bolzano	 wrote:	 “Mein	 besonderes	 Wohlgefallen	 an	 der	 Mathematik	 beruhte	 also	 eigentlich	 nur	 auf	 ihrem	 rein	 speculativen	
Theile,	oderich	schätzte	an	ihr	nur	dasjenige,	was	zugleich	Philosophie	ist.”	
172	I	quote	here	the	fragment	as	quoted	by	Sebestik,	given	my	impossibility	to	access	the	original	manuscript.	
173 	Bolzano	 wrote:	 “dass	 man	 alle	 Sätze	 von	 Winkeln	 und	 Verhältnissen	 gerader	 Linien	 gegeneinander	 (in	 Dreiecken)	 mittelst	
Betrachtung	der	Ebene	erweiset,	wozu	in	den	thesibus	gar	keine	Veranlassung	enthalten	ist.	Hieher	zähle	ich	auch	den	Begriff	der	
Bewegung,	den	manche	Mathematiker	zu	Beweisen	rein	geometrischen	Wahrheiten	angewandt	haben.”	
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geometrical	concepts	should	not	be	used	to	prove	purely	arithmetical	truths	(cf.	Bolzano,	1810:	

17).	

	

Leaving	aside	 the	possibility	of	an	 incongruity	 in	Bolzano,	of	which	he	was	not	exempt	–as	no	

one	is–,	two	possible	explanations	seem	feasible:	Bolzano	changed	his	mind	from	1802	to	1804	

or	his	opinion	of	1802	somehow	was	consistent	with	what	he	stated	 in	his	works	of	1804	and	

1810.	And	although	the	first	one	should	not	be	discarded,	the	aforementioned	excerpt	from	his	

autobiography	and	some	passages	from	his	1810	work	suggest	a	way	in	which	one	could	argue	

in	 favor	 of	 the	 second	 one.	 If	mathematics	 and	 philosophy	were	 “the	 two	main	 classes	 of	 all	

human	a	priori	knowledge”	(zwischen	den	beyden	Hauptclassen	aller	menschlichen	Erkenntnisse	

a	 priori)	 (Bolzano,	 1810:	 8),	 as	 he	 agreed	 with	 critical	 philosophy	 they	 were,	 and	 if	 –pure–	

general	 mathematics	 (to	 which	 arithmetic,	 the	 theory	 of	 combinations	 and	 other	 parts	

belonged)	 dealt	with	 hypothetical	 necessity,	while	metaphysics	 dealt	with	 absolute	 necessity:	

could	 not	 one	 think	 of	 those	 general	 laws	 as	 a	 sort	 of	 absolutely	 necessary	 objects	 and,	

therefore,	 could	 not	 one	 think	 of	 the	 concept	 of	 quantity	 as	 belonging	 to	 philosophy	 or,	 in	 a	

sense,	to	the	intersection	of	philosophy	(which	would	define	it)	and	mathematics	(which	would	

include	 it	 among	 its	 essential	 concepts)?	 Something	 that	 could	 fit	 with	 his	 position	 on	

mathematical	 method:	 “a	 work	 on	 mathematical	 method”,	 he	 wrote,	 “would	 be	 basically	

nothing	 but	 logic	 and	 thus	 would	 not	 belong	 to	mathematics	 itself”	 (und	 so	 zur	Mathematik	

selbst	gar	nicht	gehörig)	(Bolzano,	1810:	39).	

	

Nevertheless,	 it	must	be	noticed,	on	the	one	hand,	that	Bolzano	did	not	explicitly	address	that	

issue	 in	 his	 works	 of	 1804	 and	 1810.	What	 he	 did	 was	 to	 quote	 the	 traditional	 definition	 of	

quantity	 (cf.	Bolzano,	1804:	3-4;	Bolzano,	1810:	4),	debate	some	alternative	conceptions	 in	his	

1810	work	and	state	 that	 the	concept	of	quantity,	as	 the	one	of	number,	belonged	 to	–pure–	

general	mathesis	 (cf.	 Bolzano,	 1810:	 4	&	17).174	On	 the	other	 hand,	 it	 should	not	 be	obviated	

that	when	Bolzano	writes	about	transcendental	and	critical	philosophy,	as	well	as	about	various	

Kantian	 conceptions,	 he	 does	 so	 from	 his	 particular	 interpretation	 of	 them.	 That	 is	 to	 say,	

Bolzano’s	criticism	of	Kant’s	proposals	might	not	always	be	faithful	to	what	Kant	actually	said	or	

wanted	to	say.	

																																																													
174	It	goes	beyond	the	scope	of	this	work	to	elucidate	how	this	all	 fits	or	does	not	fit	with	Bolzano’s	 later	projects,	particularly	his	
Wissenschaftslehre	and	his	Grössenlehre,	but	even	Příhonský’s	Neuer	Anti-Kant,	where	this	one	wrote	that,	“to	us”,	“mathematics	
[is]	the	doctrine	of	quantity”	(“die	Mathematik	als	eine	Grössenlehre	erklären”)	(Příhonský,	1850:	216).	
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All	 through	 his	 works	 of	 1804	 and	 1810,	 Bolzano	 constantly	 referred	 to	 Kant,	 although	

undoubtedly	 it	 was	 in	 the	 second	 one,	 and	 especially	 in	 its	 Appendix,	 where	 he	 carefully	

explained	 the	 most	 important	 points	 of	 his	 disagreement	 with	 some	 of	 the	 latter’s	 ideas.	 A	

disagreement	that	neither	was	absolute	nor	involved	any	disparagement,	as	he	himself	explicitly	

recognized	in	his	1810	work	(and	implicitly	in	the	one	of	1804),	as	Bolzano’s	later	works	to	1817	

show	 and	 as	 Příhonský	 even	 stated	 in	 the	 preface	 to	 his	 New	 Anti-Kant,	 written	 with	 the	

collaboration	of	Bolzano	(Příhonský,	1850:	XVIff.).	However,	the	relationship	between	Bolzano’s	

proposal	and	that	of	Kant,	as	well	as	the	historical	evolution	of	criticism	from	the	former	to	the	

latter,	not	only	goes	beyond	the	scope	of	this	chapter	but	also	divert	it	from	its	objective,	insofar	

as	only	partially	it	is	related	to	Bolzano’s	mathematical	ideas.	In	other	words,	in	this	section	all	

that	matters	is	Bolzano’s	criticism	of	Kant	until	1810	and	to	the	extent	that	it	can	contribute	to	a	

better	understanding	of	his	own	mathematical	ideas	and	practices	at	the	time.175	

	

That	said,	Bolzano’s	criticism	focused	on	the	Kantian	definition	of	mathematics:	“mathematics”,	

Kant	 wrote,	 “[is	 the	 knowledge	 of	 reason]	 from	 the	 construction	 of	 concepts”	 (Kant,	 1781:	

713).176	For	 Bolzano,	 the	 problem	 with	 the	 conception	 of	 mathematics	 as	 the	 knowledge	 or	

																																																													
175	As	in	the	case	of	Wolff,	the	differences	and	similarities	between	Bolzano’s	proposal	(and	his	critique	of	Kant’s)	and	the	Leibnizian	
tradition	go	beyond	the	scope	of	this	work.	A	detailed	study	of	the	relationship	between	Bolzano’s	later	works	and	Leibniz’s	proposal	
can	 be	 found	 in	 (Lapointe	 and	 Armstrong,	 2014).	With	 regard	 to	 that	 second	 relationship,	 however,	 it	 is	 worth	 quoting	 here	 a	
fragment	of	another	work	by	Lapointe,	inasmuch	as	it	seems	to	connect	with	Bolzano’s	proposal	contained	in	his	earlier	works:	“A	
Leibnizian	propositio,	at	least	as	Bolzano	understood	it,	is	‘something	that	can	be	thought,	i.e.	that	can	constitute	the	content	of	a	
thought’	(cf.	Bolzano,	 1837,	§21,	84,	85).	But	while	Bolzano	was	ready	to	concede	that	the	possibility	of	being	thought	is	a	property	
of	propositions,	he	also	assumed	that	 the	concept	of	a	proposition	did	not	entail	 the	 idea	of	 this	property.	The	concept	of	being	
‘thinkable’	 is	 not	 necessary	 for	 our	 understanding	 of	 the	 concept	 of	 a	 proposition	 and,	 hence,	 does	 not	 belong	 to	 its	 definition,	
assuming	that	it	can	be	defined,	a	point	on	which	Bolzano	remains	unclear	(cf.	Bolzano	1837,	§128,	18)”	(Lapointe,	2011:	167-168).	
176	Kant	wrote:	“Die	philosophische	Erkentniss	ist	die	Vernunfterkentniß	aus	Begriffen,	die	mathematische	aus	der	Construction	der	
Begriffe.”	 On	 the	 other	 hand,	 Bolzano	 paraphrased	 Kant	 and	 wrote	 that,	 for	 critical	 philosophy,	 “philosophische	 Erkenntniss,	
ermangelnd	aller	Anschauung,	mit	blossen	discursiven	Begriffen	sich	begnügen	müsse.	Sonach	werde	das	Wesen	der	Mathematik	
am	 eigenthümlichsten	 durch	 die	 Erklärung	 ausgedrückt:	 dass	 sie	 eine	 Vernunftwissenschaft	 aus	 Construction	 der	 Begriffe	 sey	 (S.	
Kants	Kritik	d.	r.	V.	S.	712)”	(Bolzano,	1810:	8).	Leaving	aside	the	fact	that	Bolzano	quoted	the	page	where	the	section	began	and	not	
the	page	in	which	are	the	lines	to	which	he	referred,	it	must	be	noticed	that	there	is	a	difference	between	what	Bolzano	attributed	
to	Kant	and	what	Kant	wrote,	starting	with	the	concept	of	Vernunftwissenschaft	 instead	of	the	one	of	Vernunfterkentniß.	A	 literal	
translation	of	the	term	used	by	Bolzano	would	be	“science	of	reason”,	which	could	fit	the	only	published	English	translation	of	which	
I	am	aware,	scilicet	the	one	of	Steve	Russ,	who	translated	 it	simply	by	“science”	(Russ,	1996:	182;	Russ,	2004:	93).	By	contrast	to	
Bolzano	in	1810,	Příhonský	in	his	1850	collaborative	work	with	Bolzano	was	faithful	to	Kant’s	words	and	wrote	that,	for	Kant,	“[all]	
knowledge	 of	 reason	 is	 either	 from	 concepts	 or	 from	 the	 construction	 of	 concepts,	 the	 first	 one	 being	 called	 philosophical,	 the	
second	one	mathematical”	(“[alle]	Vernunfterkentniß	ist	entweder	die	aus	Begriffen	oder	aus	Construction	der	Begriffe,	die	erstere	
heisst	philosophisch,	die	zweite	mathematisch”)	 (Příhonský,	1850:	213).	Sandra	Lapointe	and	Clinton	Tolley	translated	Příhonský’s	
lines	 in	a	very	 similar	way	 to	 the	 translation	proposed	here,	although	 instead	of	 “knowledge	of	 reason”	 they	chose	“cognition	of	
reason”	for	Vernunfterkentniß,	a	translation	that	might	even	be	more	appropriate	than	mine,	given	that	Tolley	is	said	to	be	“a	Kant	
scholar”,	which	is	not	a	minor	detail	(cf.	Lapointe	and	Tolley,	2014:	138).	The	point	is	that	there	could	be	an	important	difference	not	
only	between	“the	science	of	the	construction	of	concepts”	and	“the	knowledge	of	reason	from	the	construction	of	concepts”,	but	
also	 between	 “[the	 science]	 content	 with	 purely	 discursive	 concepts”	 (“blossen	 discursiven	 Begriffen	 sich	 begnügen	 müsse”)	
(Bolzano,	1810:	8),	as	Bolzano	said	 that	Kant	defined	philosophy,	and	“the	knowledge	of	 reason	 from	concepts”,	as	Kant	actually	
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science	from	the	construction	of	concepts	was	in	the	claim	that	this	required	the	intervention	of	

pure	 or	 a	 priori	 intuitions	 (“einen	 Anschauung”	 (Kant,	 1781:	 718)),	 a	 concept	 in	 which	 he	

considered	 “there	 [was]	 already	 an	 inner	 contradiction”	 (ein	 innerer	 Widerspruch)	 (Bolzano,	

1810:	 9).	 Because,	 for	 Bolzano,	 intuitions	 were	 necessarily	 empirical	 and,	 as	 a	 consequence,	

intuitions	 or	 “empirical	 ideas”	 could	 only	 be	 involved	 in	 “empirical,	 perceptual	 or	 reality	

judgements”	(cf.	Bolzano,	1810:	140;	cf.	Lapointe,	2011:	32-33).177	That	way,	while	the	particular	

judgement	 “some	 quadrilaterals	 are	 squares”,	 he	 wrote,	 implied	 an	 “empirical	 claim”	

(empirische	 Behauptuug),	 the	 corresponding	 strictly	 or	 proper	 pure	 a	 priori	 (rein	 a	 priorisch)	

claim	would	be	that	“the	concept	quadrilateral	can	contain	the	concept	of	a	figure	with	nothing	

but	equal	sides	and	angles”	(cf.	Bolzano,	1810:	112).178	

	

Additionally,	 but	 related	 thereto,	 Bolzano	 considered	 equally	 problematic	 the	 Kantian	 thesis	

about	the	concept	of	number	as	one	constructed	 in	time	and,	consequently,	 the	 idea	that	the	

intuition	 of	 time	 belonged	 to	 arithmetic	 (cf.	 Bolzano,	 1810:	 9).	 A	 thesis,	 this	 second	 one,	 for	

which	 Bolzano	 gave	 no	 reference,	 but	 can	 be	 found	 in	 Kant’s	 Prolegomena	 to	 any	 future	

Metaphysics	that	will	be	able	to	come	forward	as	Science	(Prolegomena	zu	einer	jeden	künftigen	

Metaphysik,	die	als	Wissenschaft	wird	auftreten	können),	 a	book	 that	we	know	Bolzano	knew	

because,	 among	 other	 things,	 he	 quoted	 it	 in	 his	 work	 of	 1804	 (cf.	 Bolzano,	 1804:	 13):	

“Arithmetic,”	 Kant	wrote,	 “[constructs]	 its	 concepts	 of	 numbers	 by	 successive	 addition	 of	 the	

units	in	time”	(Kant,	1783:	53).179	

	

Bolzano	 agreed	 with	 Kant	 that	 mathematical	 truths,	 though	 not	 analytic	 but	 synthetic	 (cf.	

Bolzano,	1810:	146),	were	a	priori;	mathematics,	 it	must	be	 remembered,	was	 for	him	one	of	

																																																																																																																																																																																					
wrote	in	the	quoted	passage	(while	the	idea	of	“purely	discursive	concepts”	can	be	found	in	subsequent	pages	(cf.	Kant,	1781:	719-
722)).	
177	Bolzano	wrote:	“Ich	bin	mir	nähmlich	bewusst,	Urtheile	von	der	Form:	'ich	nehme	wahr	-	X',	zu	besitzen;	und	diese	Urtheile	nenn'	
ich	empirische,	Wahrnehmungs	-	oder	Wirklichkeitsurtheile,	und	jenes	X	in	ihnen	heisse	ich	eine	Anschauung,	oder,	wenn	man	will,	
eine	empirische	Vorstellung.”	
178	Bolzano	 wrote:	 “Denn	 dass	 einige	 Vierecke	 wirklich	 Quadrate	 sind,	 ist	 so	 ausgedruckt,	 eine	 empirische	 Behauptuung;	 rein	 a	
priorisch	kann	es	nur	heissen:	Der	Begriff	Viereck	kann	den	Begriff	einer	Figur	von	lauter	gleichen	Seiten	und	Winkeln	enthalten.”	
The	emphasis	on	both	“quadrilaterals	are	 squares”	and	“quadrilateral	can	contain”	 is	not	 found	 in	the	original	but	here	has	been	
introduced	to	highlight	the	congruence	between,	on	the	one	hand,	Bolzano’s	distinction	between	those	two	 judgements,	and,	on	
the	other	hand,	his	aforementioned	definition	of	mathematics	as	a	science	conerned	with	the	conditions	of	possibility	of	things	and	
not	with	the	proof	of	their	existence	(cf.	Bolzano,	1810:	12).	
179	Kant	wrote:	“Arithmetik	bringt	selbst	ihre	Zahlbegriffe	durch	successive	Hinzusetzung	der	Einheiten	in	der	Zeit	zu	Stande.”	Given	
the	context	of	 the	paragraph	 from	which	 the	quotation	was	extracted,	here	“bringt	 selbst”,	which	could	be	 translated	by	“brings	
itself”,	“achieves”	or	“attains”,	was	replaced	by	“constructs”.	
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the	 two	main	 classes	 of	 human	a	 priori	 knowledge.180	Therefore,	what	 he	disagreed	with	was	

not	 the	 distinction	 “between	 the	 analytic	 and	 synthetic	 parts	 of	 our	 knowledge	 [...],	 an	

achievement	 [which	Bolzano	claimed	had]	 to	be	attributed	 to	Kant”	 (Bolzano,	1810:	135),	but	

the	introduction	of	the	notion	of	“intuition”	[Anschauung]	as	the	ground	of	synthetic	truths.	

	

I	readily	admit	that	there	has	to	be	a	certain	basis,	which	is	quite	different	from	the	law	of	contradiction,	by	

which	the	understanding	connects	the	predicate	of	a	synthetic	judgement	with	the	concept	of	the	subject.	But	

how	this	basis	can	be,	and	be	called,	intuition	(and	even,	with	a	priori	judgements,	pure	intuition)	I	do	not	find	

evident.	(Bolzano,	1810:	138-139)181	

	

While	 analytic	 truths	 could	 be	 showed	 to	 be	 true	 on	 the	 ground	 of	 that	 law,	 since	 a	 logical	

contradiction	arises	when	its	truth	is	denied,	Bolzano	rejected	both	the	Kantian	conclusion	that	

mathematical	 knowledge	 was	 not	 purely	 conceptual	 and	 that	 synthetic	 truths	 rested	 on	

intuitions.	Concerning	the	former,	Bolzano	opposed	the	classification	of	mathematics	into	pure	

and	applied,	instead	of	which	he	proposed	the	distinction	between	purely	scientific	and	practical	

or	 technical	 mathematical	 exposition.	While	 “mathematics	 is	 not	 concerned	 at	 all	 with	 what	

actually	takes	place	but	with	the	conditions	or	forms	which	something	must	have	if	it	is	to	take	

place”	 (Bolzano,	 1810:	 32-33), 182 	he	 said,	 it	 was	 undeniable	 that	 the	 purpose	 of	 some	

mathematical	expositions	was	not	“the	greatest	possible	perfection	of	scientific	 form”	but	 the	

“immediate	usefulness	for	the	needs	of	life”	(Bolzano,	1810:	35).183	

	

As	for	the	second	of	such	Kantian	conclusions,	Bolzano	wrote	that	 if,	 following	Kant,	 intuitions	

were	“representations	of	an	individual”	(Vorstellungen	von	einem	Individuo),	 in	contrast	to	the	

“representations	 of	 something	 general”	 (Vorstellungen	 von	 etwas	 Allgemeinem)	 or	 concepts,	

and	 if	 a	 “pure	 a	 priori	 intuition”	 was	meant	 to	 be	 “an	 intuition	 which	 is	 combined	 with	 the	

awareness	of	the	necessity	that	it	must	be	so	and	not	otherwise”,	“how	could	judgments	which	

																																																													
180	Bolzano	wrote:	“there	is	no	empirical	judgement	in	the	whole	[mathematical]	exposition,	and	[this]	science	is	therefore	a	priori”	
(Dann	kömmt	im	ganzen	Vortrage	kein	empirisches	Urtheil	vor,	die	Wissenschaft	ist	also	apriorisch)	(Bolzano,	1810:	33).	
181 	Bolzano	 wrote:	 “Ich	 meines	 Theils	 gebe	 gern	 so	 viel	 zu,	 dass	 es	 einen	 gewissen,	 vom	 Satz	 des	 Widerspruches	 ganz	
unterschiedenen,	Grund	geben	müsse,	aus	welchem	der	Verstand	das	prädicat	eines	 synthetischen	Urtheils	mit	dem	Begriffe	des	
Subjects	verknüpfet.	 Allein	wie	dieser	Grund	Anschauung,	und	zwar	bey	apriorischen	Urtheilen	reine	Anschauung	seyn	und	heissen	
könne;	das	finde	ich	nicht	einleuchtend.”	
182 	Bolzano	 wrote:	 “Denn	 die	 Mathematik	 handelt	 ja	 überhaupt	 nicht	 von	 dem,	 was	 wirklich	 Statt	 findet,	 sondern	 von	 den	
Bedingungen	oder	Formen,	die	etwas	haben	muss,	wenn	es	Statt	finden	soll.”	
183	Bolzano	wrote:	“Ein	solcher	Vortrag	unterscheidet	sich	von	dem	rein	wissenschaftlichen	auf	eine	ganz	bestimmte	Art	durch	die	
Verschiedenheit	 des	 Zweckes,	 der	 bey	 dem	 letzteren	 die	 möglichst	 grösste	 Vollkommenheit	 der	 wissenschaftlichen	 Form,	 und	
dadurch	 wieder	 die	 möglichst	 beste	 Uebung	 im	 richtigen	 Denken	 -bey	 jenem	 dagegen	 unmittelbare	 Brauchbarkeit	 für	 die	
Bedürfnisse	des	Lebens	ist.”	
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are	 absolutely	 certain,	 such	 as	 all	 a	 priori	 judgments,	 be	 produced	 by	 the	 connection	 with	

intuitions?”	 (Bolzano,	 1810:	 138	 &	 144).184	Furthermore,	 why	 would	 mathematics,	 a	 purely	

conceptual	knowledge,	require	intuitive	(non-conceptual)	cognitions	to	ground	its	truths?	What	

his	 Contributions	 precisely	 intended	 to	 show	 was:	 a)	 that	 not	 being	 everything	 a	 quantity	 in	

mathematics,	 his	 definition	 –more	 appropriate	 than	 the	 traditional	 one–	 allowed	 to	 classify	

mathematics	 in	 a	 logical	way,	 that	 is,	 from	 the	 pure	 and	more	 general	 part	 to	 the	 individual	

disciplines	with	practical	 exposition	 (cf.	 Bolzano,	1810:	16);	 and	b)	 that	mathematical	method	

also	 required	 some	 improvements	 in	order	 to	achieve	a	 strictly	 rigorous	and	 correct	 scientific	

exposition,	 that	 is,	 in	 order	 to	 present	 the	 “objective	 connection	 of	 judgments”	 (objectiven	

Zusammenhang	der	Urtheile)	(cf.	Bolzano,	1810:	40).	

	

The	classification	proposed	by	Bolzano,	 from	the	general	mathesis	 to	the	theories	of	 time	and	

space,	both	 in	abstracto	 (chronometry	and	geometry,	 respectively)	 and	 in	 concreto	 (theory	of	

cause,	for	unfree	things	in	time,	and	theory	of	motion	or	mechanics,	for	unfree	things	in	space	

and	 time)	 (cf.	 Bolzano,	 1810:	 16-26),	 was	 only,	 therefore,	 a	 part	 of	 his	 argument	 against	 the	

disorder	he	perceived	that	prevailed	at	the	time	in	mathematics.	As	a	framework,	mathematics	

in	 turn	 required	elements	 that	allowed	 its	 theories	 to	be	constructed,	 in	 the	same	way	 that	a	

house	 requires	 bricks	 or	 other	 elements	 to	 conform	 its	 walls,	 and	 those	 elements	 (namely,	

conventions,	definitions,	axioms,	theorems,	etc.)	as	the	theories	required	a	proper	order	so	that	

the	walls	could	stand	firm	and	not	collapse.	This	was	the	other	part	of	Bolzano’s	argument	and	

in	fact	the	one	he	wielded	against	Kant:	mathematical	truths	had	nothing	to	do	with	intuitions	

but	rather	with	an	objective	logical	–or	deductive–	connection	between	them	and	even	between	

the	 concepts	 conforming	 them.	 “As	 a	 consequence	 of	 this”,	 wrote	 Bolzano	 referring	 to	 that	

objective	 connection,	 “some	of	 these	 judgments	 are	 the	 grounds	of	 others	 and	 these	 are	 the	

consequences	of	 those”	 (Bolzano,	1810:	40).185	That	 is	why,	 as	mentioned	before,	 for	him	“all	

propositions	about	angles	and	 ratios	of	 straight	 lines	 to	one	another	 (in	 triangles)	 [should	not	

be]	 proved	 by	means	 of	 considerations	 of	 the	 plane”	 (Bolzano,	 1804:	 V),	 since	 the	 theory	 of	

plane	was	based	on	that	of	triangles	and	this	one	on	the	theory	of	the	straight	line	and	not	vice	

versa	(cf.	Bolzano,	1804:	IX).	

	

																																																													
184	Bolzano	wrote:	“Wie	aber	können	durch	die	Verbindung	mit	Anschauungen	absolut	gewisse	Urtheile	hervor	gehen,	dergleichen	
alle	apriorische	sind?”	
185	Bolzano	wrote:	“zu	Folge	dessen	einige	aus	diesen	Urtheilen	die	Gründe	anderer,	und	diese	die	Folgen	jener	sind.”	
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To	 illustrate	his	 argument	 against	Kant,	Bolzano	even	provided	an	arithmetical	 example:	 “The	

propositions	 of	 arithmetic	 do	 not	 require	 the	 intuition	 of	 time	 in	 any	 manner.	 [...]	 Kant	

introduced	the	proposition	7 + 5 = 12,	instead	of	which	we	shall	assume	the	shorter	7 + 2 = 9	
only	 [to	 have]	 an	 overview	 more	 easily”	 (Bolzano,	 1810:	 147). 186 	If	 assumed	 the	 general	

proposition	! + ! + ! = ! + ! + !,	he	said,	which	excluded	any	consideration	of	time,	and	

given	 the	 necessary	 conventions	 and	 definitions,	 such	 as	1 + 1 = 2,	7 + 1 = 8	and	8 + 1 = 9,	
one	could	prove	the	aforementioned	proposition	as	follows:	

	

7 + 2 = 7 + (1 + 1)	 Replacing	2,	by	definition,	for	(1 + 1)	
7 + 1 + 1 = 7 + 1 + 1	 By	the	general	proposition	! + ! + ! = ! + ! + !	

7 + 1 + 1 = 8 + 1	 Replacing	7 + 1,	by	definition,	for	8	
8 + 1 = 9	 Replacing	8 + 1,	by	definition,	for	9	

(cf.	Bolzano,	1810:	147)	

	

What	Bolzano	attempted	to	make	explicit	through	his	1804	work	was	precisely	the	existence	of	

such	an	objective	 connection	between	geometrical	 truths:	 for	example,	 given	 the	 concepts	of	

‘identity’	and	‘being	different’,	as	well	as	the	notion	of	a	system	of	two	points	(System	zweyer	

Punkte)	and	the	concepts	of	distance	and	direction,	one	could	form:	1)	the	notion	of	angle	(“the	

system	 of	 two	 directions	 outgoing	 from	 one	 point”)	 (Das	 System	 zweyer	 aus	 einem	 Punkte	

ausgehender	Richtungen),	 2)	 then	 the	one	of	 triangle	 (the	 system	of	 three	determined	points	

and	 the	 three	 angles	 of	 the	 directions	 of	 every	 two	 of	 those	 points	 to	 the	 third)	 and	 3)	

eventually	the	one	of	straight	line	(“an	object	which	contains	all	and	only	those	points	which	lie	

between	the	two	points	!	and	!”)	(Ein	Ding,	welches	alle	jene,	und	nur	jene	Punkte	enthält,	die	
zwischen	 den	 zwey	 Punkten	!	und	 	!	liegen)	 (cf.	 Bolzano,	 1804:	 44-57).	 That	 way,	 for	 him,	 it	

could	be	remedied	the	existing	disorder	in	the	geometry	of	Euclid,	where	all	“sorts	of	dissimilar	

objects	[were]	dealt	with	in	the	individual	theorems”:	

	

Firstly	there	are	triangles,	but	in	such	a	way	that	they	are	already	accompanied	by	circles	which	intersect	at	

certain	 points;	 then	 angles,	 adjacent	 and	 vertex	 angles;	 then	 the	 equality	 of	 triangles;	 much	 later	 their	

																																																													
186	Bolzano	wrote:	“Die	Sätze	der	Arithmetik	bedürfen	der	Anschauung	der	Zeit	auf	keine	Weise.	[...]	Kant	führt	den	Satz	7 + 5 = 12	
an;	 statt	 dessen	wir,	 nur	 zu	 einer	 leichteren	 Uibersicht,	 den	 kürzeren	7 + 2 = 9	annehmen	wollen.”	 For	 a	 detailed	 study	 of	 this	
discussion,	cf.	(Blok,	2016:	239ff.).	
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similarity,	which	 is	however	derived	by	an	monstrous	detour,	 firstly	from	the	consideration	of	parallel	 lines,	

and	even	of	the	surface	content	[area]	of	triangles,	etc.!	(Bolzano,	1810:	IX)187	

	

A	disorder	which,	he	said,	was	linked	to	a	faulty	method	(Euclid	“[piled	up]	all	his	definitions	at	

the	 beginning”	 (alle	 Erklärungen	 gleich	 vorne	 aufhäuft)	 (Bolzano,	 1810:	 53)),	 as	well	 as	 to	 an	

erroneous	 consideration	 of	 the	 core	 objects	 of	 mathematical	 consideration	 (in	 this	 case	

geometrical),	which,	 as	 in	 the	 case	of	 the	 straight	 line	 and	 the	plane,	were	properly	 speaking	

“objects	 of	 thought”	 (Gedankendinge)	 (cf.	 Bolzano,	 1804:	 48).	 Thus,	 he	 wrote	 in	 1810,	 the	

argument	 that	 intuitions	 did	 underlie	 at	 least	 geometrical	 truths,	 inasmuch	 as	 geometrical	

objects	produced	an	 image	 in	our	 imagination,	was	a	misleading	one:	 firstly,	because	 such	an	

image	 was	 not	 essential	 to	 the	 truth	 (the	 mental	 image	 of	 a	 triangle,	 for	 example,	 was	 not	

necessary	in	order	to	have	the	concept	of	triangle);	secondly,	because	not	even	all	geometrical	

objects	could	be	constructed	 in	 the	 imagination,	as	could	be	said	about	 the	notion	of	 straight	

line	involved	in	“[the]	proposition	that	every	straight	line	can	be	extended	to	infinity”	(Die	Satz,	

dass	 jede	 gerade	 Linie	 sich	 ins	 Unendliche	 verlängern	 lasse)	 (cf.	 Bolzano,	 1810:	 149).	 Indeed,	

since	Bolzano	argued	that	“objects	of	thought”	and	not	only	objects	with	a	concrete	existence	

were	 objects	 of	 mathematical	 study,	 he	 spoke	 of	 “things”	 in	 general	 in	 his	 definition	 of	

mathematics	 (“a	 science	 which	 deals	 with	 the	 general	 laws	 (forms)	 to	 which	 things	 must	

conform	in	their	existence”),	so	that	with	it	he	could	refer	to	both	“those	[things]	which	possess	

an	 objective	 existence	 independent	 of	 our	 being,	 but	 also	 those	 which	 only	 exist	 in	 our	

imagination,	 [...]	either	as	 individuals	 (i.e.	 intuitions),	or	merely	as	general	concepts”	 (Bolzano,	

1810:	11-12).188	

	

Nonetheless,	 inasmuch	 as	 his	 1810	 work	 intended	 to	 provide	 the	 guidelines	 for	 the	 general	

framework	 in	mathematics	and	not	 to	 focus	on	any	particular	mathematical	discipline,	by	 the	

end	of	the	first	decade	of	the	19th	century	geometry	was	the	only	one	about	which	Bolzano	had	

published	 extensive	 lines.	 Despite	 this,	 he	 did	 offer	 some	 interesting	 brief	 remarks	 on	 other	

																																																													
187	Bolzano	wrote:	“Und	in	der	That,	von	was	für	ungleichartigen	Gegenständen	handeln	nicht	die	einzelnen	Lehrsätze	im	Euklides?	
Erstlich	von	Dreyecken,	doch	so,	dass	hier	schon	Kreise,	die	in	gewissen	Puncten	sich	schneiden,	mitgenommen	werden;	darauf	von	
Winkeln,	 von	 Neben-und	 Scheitelwinkeln;	 dann	 von	 der	 Gleichheit	 der	 Dreyecke;	 viel	 später	 erst	 von	 ihrer	 Aehnlichkeit,	 welche	
jedoch	 durch	 einen	 ungeheuern	 Umweg	 erst	 aus	 Betrachtung	 der	 Parallellinien,	 sogar	 der	 Flächeninhaltes	 der	 Dreyecke,	 u.s.w.	
hergeleitet	wird!”	 Steve	 Russ	 translated	 Scheitelwinkel	 by	 “vertically	 opposed	 angles”,	which	 seems	 to	 illustrate	 quite	well	what	
Bolzano	had	in	mind	(Russ,	2004:	36).	
188	Bolzano	wrote:	“Unter	dem	Worte	Dinge	begreise	 ich	hier	nicht	bloss	solche,	welche	ein	objectives,	von	unserem	Bewutztseyn	
unabhängiges	Daseyn	besitzen,	sondern	auch	solche,	die	bloss	in	unsrer	Vorstellung	existiren,	und	dieses	zwar	wieder	entweder	als	
Individuen	(d.i.	Anschauungen),	oder	als	blosse	allgemeine	Begriffe.”	
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mathematical	disciplines	that	are	worth	mentioning	here.	Firstly,	he	wrote	that	a	general	theory	

of	oppositeness	 should	be	 considered	as	 “a	 special	 appendix	 to	 the	general	mathesis”	 (einem	

besondern	Anhange	zu	der	allgemeinen	Mathesis),	something	that	resembles	the	hitherto	usual	

Germanic	presentation	of	oppositeness	(cf.	Bolzano,	1810:	20).	Secondly,	he	counted	among	the	

still	unclear	mathematical	theories	not	only	the	one	about	opposite	quantities	but	also	the	ones	

on	 irrational	 and	 imaginary	 quantities	 (cf.	 Bolzano,	 1810:	 V).	 Thirdly,	 he	 also	 mentioned	 the	

defective	state	of	“higher	algebra	and	the	differential	and	 integral	calculus”,	 in	which	the	“not	

yet	 [...]	 sufficiently	 explained”	 (noch	nicht	 hinlänglich	 aufgeklärt)	 concept	 of	 infinity	was	used	

(cf.	 Bolzano,	 1810:	 V	 &	 30).	 Finally,	 he	 quoted	 “the	 important	 assertion	 that	 the	 function	

! ! + ! = ! ! + !" + !!! + !!! +⋯	in	general	varies	continuously	with	!”	(stätig	verändere)	
as	 an	 example	 of	 a	mathematical	 truth	which	 traditionally	 and	mistakenly	was	 “derived	 from	

geometrical	consideration,	namely,	from	the	fact	that	a	continuous	curved	line	which	intersects	

the	abscissae-line	has	no	smallest	ordinate”	(cf.	Bolzano,	1810:	117).189	

	

Each	of	those	remarks,	on	the	one	hand,	offers	a	glimpse	on	the	state	of	affairs	in	the	Germanic	

mathematical	 context	 of	 the	 early	 19th	 century:	 negative,	 irrational	 and	 imaginary	 quantities	

were	 not	 yet	 fully	 accepted,	 infinity	 was	 still	 problematic	 and	 analytical	 proofs	 by	 geometric	

means	 were	 more	 and	 more	 repudiated	 as	 non-rigorous.	 Bolzano	 even	 went	 on	 to	 say	 that	

maybe	in	the	future	it	would	“be	decided	that	the	infinite	or	the	differential	[were]	nothing	but	

symbolic	expressions”	 (symbolischer	Ausdruck)	 (Bolzano,	1810:	30).	On	 the	other	hand,	as	will	

be	discussed	(cf.	 infra	C.2.2),	his	remarks	on	infinity	and	continuity	in	mathematics	are	directly	

linked	to	his	subsequent	mathematical	works,	published	in	the	middle	of	the	second	decade	of	

that	century.	

	

	

C.2.	Bolzano’s	mathematical	works	of	1816-1817	

	

																																																													
189	Bolzano	wrote:	 “aus	 einer	 geometrischen	 Betrachtung	 hergeleitet	wird;	 aus	 dieser	 nähmlich,	 das	 es	 bey	 einer	 continuirlichen	
krummen	Linie,	die	ihre	Abscissenlinie	schneidet,	keine	kleinste	Ordinate	gebe.”	He	quoted	the	general	formula	located,	he	said,	“in	
Theorie	 des	 fonctions	 analytiques	 No.	 14”,	 which	 Lagrange	mentioned	 from	 the	 beginning	 of	 his	 work:	 “Considérons	 donc	 une	
fonction	!"	d’une	 variable	 quelconque	!.	 Si	 à	 la	 place	 de	!	on	 met	! + !,	!	étant	 une	 quantité	 quelconque	 indéterminée,	 elle	
deviendra	!(! + !);	et	par	la	théorie	des	séries	in	pourra	la	développer	en	une	suite	de	cette	forme	!" + !" + !!! + !!! + &!.,	dans	
laquelle	les	quantités	!, !, !,&!.,	coèfficiens	des	puissances	de	!,	seront	de	nouvelles	fonctions	de	!,	dérivées	de	la	fonction	primitive	
!",	et	indépendantes	de	la	quantité	!”	(Lagrange,	1797:	2).	
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C.2.1.	The	context	of	Bolzano	from	c.	1810	to	1817	

	

	

After	the	founding	of	the	Confédération	du	Rhin,	the	dissolution	of	the	Holy	Roman	Empire	and	

the	 signing	 of	 the	 two	 peace	 agreements	 known	 as	 the	 Treaties	 of	 Tilsit	 between	 the	 French	

Empire	 and	 Russia	 and	 Prussia,	 all	 between	 July	 1806	 and	 July	 1807,	 Britain	 and	 Sweden	

remained	at	war	against	France	and	so	the	fighting	focused	on	non-Germanic	territories	during	

the	 last	 years	 of	 the	 1800s	 (as	 Sweden,	 Portugal	 and	 Spain).	 The	 Peninsular	 War,	 however,	

triggered	a	new	confrontation	between	Austria	and	France,	which	lasted	for	much	of	1809	and	

ended	with	the	signing	of	the	Treaty	of	Schönbrunn.	

	

The	subsequent	years	the	Peninsular	War	continued	and	in	1812,	in	the	context	of	the	dispute	

between	France	and	Russia	over	controlling	Poland,	the	former	began	its	invasion	of	the	second	

one,	entering	Moscow	on	14	September	and	completely	retreating	three	months	later.	Over	the	

next	 year,	 the	 United	 Kingdom,	 Sweden,	 Prussia	 and	 Austria	 declared	 war	 on	 France,	 which	

mainly	 took	 place,	 in	 addition	 to	 the	 peninsular	 territory,	 in	 Germanic	 territories,	 with	 the	

Peninsular	army	crossing	into	France	by	the	end	of	1813	and	the	Allies	entering	Paris	on	March	

30,	1814.	As	a	consequence,	Napoleon	abdicated,	the	Treaties	of	Fontainebleau	and	Paris	were	

signed	and,	finally,	the	Congress	of	Vienna	was	held	from	late	1814	until	June	1815,	resulting	in	

the	redraw	of	the	map	of	Europe	and	the	creation	of	the	German	Confederation.	

	

While	 all	 that	 was	 happening,	 however,	 two	 important	 events	 took	 place:	 first,	 in	 Austria	

Klemens	 von	 Metternich	 was	 appointed	 Foreign	 Minister	 in	 1809;	 second,	 in	 Prussia	 the	

University	 of	 Berlin	 was	 founded	 in	 1810	 “under	 purely	 national,	 secular	 auspices”	 (Howard,	

2006:	130).	By	1810,	in	fact,	many	of	the	Germanic	universities	that	existed	in	1789	did	not	exist	

anymore,	a	decrease	of	universities	which,	in	the	case	of	Prussia,	was	accentuated	in	1807	when	

the	Treaty	of	Tilsit,	signed	between	France	and	Prussia,	“stripped	[the	latter]	of	all	 its	holdings	

west	of	 the	Elbe	 river	 [...],	 [holdings	 in	which]	were	a	number	of	universities:	Duisburg,	Halle,	

Paderborn,	Erlangen,	Erfurt,	Münster,	and	Göttingen”	(Howard,	2006:	148).	But,	while	by	1809	

the	 Prussian	 project	 of	 the	 University	 in	 Berlin	 was	 about	 to	materialize,	 initially	 and	 largely	

developed	by	Karl	Friedrich	Beyme	and	finally	credited	to	Napoleon’s	protégé	Karl	Freiherr	von	

Stein	and	the	person	that	this	one	recommended	as	head	of	the	newly	created	‘Department	of	
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Ecclesiastical	Affairs	and	Public	Education’,	namely,	Wilhelm	von	Humboldt	 (cf.	Howard,	2006:	

145-153),	on	the	contrary	in	Austria	the	intellectual	and	educational	landscape	was	of	closure.	

	

Indeed,	under	Metternich’s	control	of	the	Habsburg	Monarchy’s	foreign	policy,	“the	police	kept	

a	close	eye	on	all	intellectual	and	scholarly	gatherings	[...],	censorship	was	ramped	up	[...]	[and]	

reading	rooms,	circulating	libraries,	and	literary	reviews	were	all	forbidden”	(Krueger,	2009:	194-

195).	So,	while	in	Prague	in	the	middle	of	the	first	decade	of	the	19th	century,	on	the	one	hand,	

the	Polytechnical	Institute	was	established	(with	Gerstner	among	its	founders)	as	“an	attempt	to	

take	deliberate	steps	to	use	education	to	shift	Bohemia	to	the	forefront	of	industrial	nations	by	

promoting	 the	 knowledge	 of	 industrial	 techniques	 and	 the	 practical	 application	 of	 science”	

(Krueger,	 2009:	115),	on	 the	other	hand	Bolzano	 “was	accused	of	being	a	 ‘Kantian’	 [...]	 a	 few	

months	after	he	took	up	the	chair	of	 ‘Science	of	 the	(Catholic)	Religion’”	 (Lapointe	and	Tolley,	

2014:	5;	cf.	Folta,	1981:	13).	Furthermore,	more	than	a	decade	later	he	was	accused	of	heresy,	

dismissed	by	Emperor	Franz	I	at	the	end	of	1819	and	banned	from	publishing	and	“from	public	

scientific	and	clerical	activities”	(Lapointe,	2011:	4-5;	cf.	Folta,	1981:	13-14).	

	

Before	his	 forced	 retirement,	however,	Bolzano	published	 three	mathematical	works	between	

1816	and	1817,	one	of	which	has	been	historically	praised	for	being	a	pioneering	contribution	to	

the	 development	 of	 modern	 real	 analysis,	 namely,	 his	 1817	 Purely	 Analytic	 Proof	 (Rein	

analytischer	 Beweis	 (cf.	 Grattan-Guinness,	 1970:	 378;	 Dugac,	 1986:	 242;	 Ewald,	 1996:	 226;	

Detlefsen,	2008:	182;	Bloch,	2011:	57).	The	following	section	will	focus	on	this	last	work	and	will	

only	discuss	those	other	two	insofar	as	they	are	related	to	that	one.	

	

	

C.2.2.	Bolzano’s	Rein	analytischer	Beweis	reconsidered	

	

	

In	 1816	 Bolzano	 published	 a	 work	 on	 the	 binomial	 theorem,	 a	 theorem	 that,	 he	 said,	 was	

“usually	quite	rightly	considered	as	one	of	the	most	important	theorems	in	the	whole	analysis”	

and,	even	more,	on	which	it	could	be	“[said]	that	almost	the	whole	of	the	so-called	differential	
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and	integral	calculus	(higher	analysis)	[rested]”	(Bolzano,	1816:	III).190	This	statement,	nowadays	

unusual,	was	not	uncommon	at	the	time	and	in	fact	can	be	found	in	the	work	of	both	Euler	and	

Hindenburg.	That	way,	Euler	called	that	theorem	a	“universal	theorem”	(theoremate	universali)	

in	 his	 Introductio	 (Euler,	 1748:	 55)	 and	 even	 the	 “foundation	 of	 all	 higher	 analysis”	

(fundamentum	 constituit	 universae	 analyseis	 sublimioris)	 in	 a	 later	 work	 (Euler,	 1775:	 103).	

Hindenburg,	 on	 the	other	 hand,	 called	 the	polynomial	 theorem,	which	 could	be	derived	 from	

the	binomial	theorem,	“the	most	important	theorem	of	the	whole	analysis”	(Der	polynomische	

Lehrsatz	das	wichtigste	Theorem	der	ganzen	Analysis)	(Hindenburg	et	al.,	1796).	

	

Both	 the	 Eulerian	 tradition	 and	 Hindenburg’s	 combinatorial	 school,	 therefore,	 agreed	 on	 the	

importance	of	the	binomial	theorem	despite	the	divergence	of	the	procedures	used	by	each	to	

prove	it.	So,	generally	speaking,	while	authors	linked	to	the	French	tradition	advocated	for	the	

use	 of	 differentials	 in	 terms	 of	 limits	 (d’Alembert	 and	 others)	 or	 in	 terms	 of	 infinitesimals	

identified	with	zeros	(Euler	and	others),	Hindenburg’s	combinatorial	proposal,	on	the	contrary,	

intended	 to	manipulate	series	 in	 terms	of	whole	or	actual	–given–	 finite	parts.	As	Hindenburg	

wrote	 in	 1781,	 “combinatorial	 art	 [teaches	 how]	 to	 exhibit	 and	 enumerate	 all	 the	 possible	

modes	according	 to	which	several	 things	can	be	arranged	 together,	 transposed	 [permuted]	or	

thoroughly	mixed	[combined]”	(Hindenburg,	1781:	§I,	IV).191	

	

That	explains	the	utility	that	according	to	Hindenburg’s	school	had	the	combinatorial	method	for	

the	analysis,	conceived	the	“forms	of	the	quantities”	(Formen	der	Grössen)	as	the	object	of	this	

latter	(cf.	Klügel,	1796:	49):	“the	specific	enterprise	of	combinatorial	theory”,	Hindenburg	wrote	

at	 the	 beginning	 of	 his	 1796	 work	 on	 that	 independent	 ground-science	 (selbständige	

Grundwissenschaft),	 is	“the	arrangement	of	given	elements,	which	is	to	be	found	in	general	or	

according	 to	 certain	 considerations	 and	 conditions,	 into	 an	 existing	 totality,	 [that	 is]	 the	

																																																													
190	Bolzano	wrote:	 “Den	 binomischen	 Lehrsatz	 pflegt	man	mit	 Recht	 als	 eines	 der	 wichtigsten	 Theoreme	 der	 ganzen	 Analysis	 zu	
betrachten.	 [...]	 So	 mögte	 es	 denn	 kaum	 übertrieben	 seyn	 zu	 fagen,	 dass	 fast	 die	 ganze	 so	 genannte	 Differential-und	
Integralrechnung	(höhere	Analysis)	auf	diesem	Lehrsatze	ruhet.”	The	whole	title	of	Bolzano’s	1816	work	is:	The	Binomial	Theorem,	
and	as	a	Consequence	from	it	the	Polynomial	Theorem,	and	the	Series	which	serve	for	the	Calculation	of	Logarithmic	and	Exponential	
Quantities,	proved	more	strictly	than	before	(Der	binomische	Lehrsatz,	und	als	Folgerung	aus	ihm	der	polynomische,	und	die	Reihen,	
die	zur	Berechnung	der	Logarithmen	und	Exponentialgrößen	dienen,	genauer	als	bisher	erwiesen).	
191	Hindenburg	 wrote:	 “Ars	 combinatoria	 docet	 exhibere	 atque	 enumerare	 modos	 possibiles	 omnes,	 secundum	 quos	 res	 plures	
propositae	 coniungi,	 transponi	 et	 permisceri	 possunt.”	 Similarly,	 in	 his	Outline	 of	 the	 Combinations	 Theory	 and	 its	 Application	 to	
Analysis	 (Grundriss	der	Combinationslehre	nebst	Anwendung	derselben	auf	die	Analysis),	Conrad	Diedrich	Martin	Stahl	wrote	 that	
“the	 theory	 of	 combinations	 deal[s]	 with	 the	 composition	 of	 given	 things	 [or	 elements]	 into	 several	 totalities”	 (“Die	
Combinationslehre	beschäftigt	sich	mit	der	Zusammensetzung	gegebener	Dinge	zu	mehrern	Ganzen.	Die	gegebenen	Dinge	nennt	sie	
Elemente,	 bezeichnet	 sie	 im	 allgemeinen	mit	 Buchstaben	 und	 zeigt	 das	 Zusammensetzen	 derselben	 durch	 ein	 blosses	 Schreiben	
neben	einander	an”)	(Stahl,	1800:	1).	
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alteration	and	transformation	of	[...]	a	form	into	another	one”	(Hindenburg,	1796B:	153-154).192	

As	he	explained	in	a	footnote	to	Klügel’s	text,	even	though	analysis	was	sometimes	called	“the	

theory	 of	 functions”,	 inasmuch	 as	 it	 was	 chiefly	 concerned	 with	 all	 kinds	 of	 functions,	 the	

conception	of	forms	of	quantities	as	the	basis	of	analysis	was	appropriate	“because,	in	general,	

everything	 that	we	know	of	 the	 functions	and	their	 transformations	can	be	brought	back	 to	 it	

[that	is,	to	the	study	of	those	forms]”	(Klügel,	1796:	49,	fn.	a).193	

	

Nevertheless,	 given	 the	 lack	 of	 rigor	 in	 the	 foundations	 of	 analysis,	 as	 Bolzano	 had	 already	

pointed	out	in	1810	(cf.	Bolzano,	1810:	V),	in	the	late	18th	century	and	early	19th	century	he	and	

Lagrange,	among	others,	attempted	to	remedy	that	situation,	as	the	titles	of	their	works	of	1817	

(1817B)	 and	 1797,	 respectively,	 emphasize. 194 	But,	 while	 Lagrange’s	 proposal	 pursued	 an	

algebraic	analysis	 rooted	 in	Euler’s	program,	what	did	Bolzano	 intend	 to	do?	 Is	 it	 true	 that	as	

early	as	1817,	as	the	usual	 interpretations	defend,	Bolzano	was	working	on	the	foundations	of	

modern	 real	 analysis	 and	 thus	 he	 can	 be	 considered	 as	 “one	 of	 the	 fathers	 of	 the	

[Weierstrassian]	 ‘arithmetization’	of	 [mathematics]”	 (cf.	Klein,	1926:	56)?	That	 is,	was	Bolzano	

really	 an	 isolated	 and	 largely	 ignored	 predecessor	 of	 the	 arithmetizing	 project	 whose	 “chief	

exponent”	 was	 Weierstrass?	 A	 project,	 it	 must	 be	 stressed,	 commonly	 identified	 with	 that	

latter’s	 proposal	 because	 of	 his	 impact	 on	 new	 generations	 (e.g.	 Georg	 Cantor	 and	 Heinrich	

Heine)	and	his	temporal	preeminence	over	other	authors	(e.g.	Dedekind),	with	whom	he	shared	

the	 conviction	 in	 the	development	of	mathematics	 and	a	 theory	of	 irrational	 numbers	on	 the	

basis	of	the	arithmetic	of	natural	numbers.	

	

																																																													
192	Hindenburg	wrote:	 “Die,	 überhaupt	 oder	 nach	bestimmten	Rücksichten	und	Bedingungen,	 zu	 treffende	Anordnung	 gegebener	
Elemente	 zu	 einem	 für	 sich	 bestehenden	 Ganzen,	 die	 Veränderung	 und	 Umstaltung	 einer	 gegebenen	 oder	 bereits	 geschaffenen	
Form	 in	 eine	 andere	 Gestalt,	 durch	 anderweitige	 Zusammensetzung,	 Trennung,	 Versetzung,	 Umtauschung	 der	 einzelnen	 oder	
verbundenen	Elemente	–dies	ist	das	eigenthümliche	Geschäft	der	Combinationslehre.”	While	Klügel	wrote:	“Die	eigentliche	Analysis	
hat	zum	Gegenstande	überhaupt	die	Formen	der	Grössen”	(cf.	Hindenburg,	1796B:	155-158).	
193 	Hindenburg	 wrote:	 “Die	 Analysis	 beschäftiget	 sich	 vorzüglich	 mit	 den	 Functionen	 aller	 Art	 und	 ihren	 nach	 gegebenen	
Bedingungen	 erfolgenden	 Veränderungen;	 daher	man	 sie	 auch	 zuweilen	 die	 Theorie	 der	 Functionen	 genannt	 hat.	 [...]	 Herr	 Prof.	
Klügel	 hat	 hier,	 zum	 eigentlichen	 Gegestande	 der	 Analysis	 überhaupt	 die	 Formen	 der	 Grössen,	 nach	 ihrer	 Entwickelung	 und	
Umwandlung	 in	 verschiedene	 Gestalten,	 angegeben;	 weil	 sich	 im	 Allgemeinen	 Alles,	 was	 wir	 von	 den	 Functionen	 und	 ihren	
Veränderungen	 wissen,	 darauf	 zurückbringen	 lässt.	 Auch	 Herr	 von	 Tempelhoff	 bezieht	 den	 grossen	 Nutzen	 der	 Lehre	 von	 den	
Functionen	vornehmlich	auf	die	Verwandlung	ihrer	Formen.”	
194	The	whole	title	of	Bolzano’s	work,	it	was	said	before,	is	Purely	Analytic	Proof	of	the	Theorem,	that	between	any	two	Values	which	
give	Results	of	Opposite	Sign,	there	lies	at	least	one	real	Root	of	the	Equation.	It	was	in	this	work	where	Bolzano	praised	the	work	of	
Schultz	on	the	groundings	(Begründung)	of	pure	mathematics	(Bolzano,	1810:	8-9),	which	he	had	already	quoted	in	(1804:	[VII-VIII]).	
The	whole	title	of	Lagrange’s	work	was:	Theory	of	analytic	functions,	containing	the	principles	of	differential	calculus,	free	from	all	
considerations	of	infinitely	small,	evanescents,	limits	and	fluxions,	and	reduced	to	the	algebraic	analysis	of	finite	quantities	(Théorie	
des	 fonctions	 analytiques,	 contenant	 les	 principes	 du	 calcul	 différentiel,	 dégagés	 de	 toute	 considération	 d’infiniment	 petits,	
d’evanouissans,	de	limites	et	de	fluxions,	et	réduite	à	l’analyse	algébrique	des	quantités	finies).	Also	cf.	(Lagrange,	1799).	



	 133	

Would	that	have	been	the	case,	it	would	imply	that	by	that	time	he	had	detached	himself	from	

essential	 features	 of	 the	 Germanic	 mathematics	 of	 the	 second	 half	 of	 the	 18th	 century	 that	

prevailed	at	the	beginning	of	the	19th	century.	Indeed,	to	consider	Bolzano’s	early	mathematical	

work	as	a	sort	of	anticipation	of	those	later	notions	and	practices	would	mean	that,	 in	spite	of	

his	conception	of	mathematics	and	the	central	role	that	for	him	had	the	combinatorial	theory,	

he	had	different	notions	of	quantities	and	numbers	than	those	of	his	Germanic	contemporaries,	

as	well	as	different	procedures	for	dealing	with	them.	After	all,	for	example,	the	same	could	be	

argued	 about	 Lagrange,	 who	 recognized	 the	 usefulness	 of	 Hindenburg’s	 proposal	 “for	 the	

history	 and	 progress	 of	 Analysis”	 (Hindenburg,	 1798:	 370)	 and	 defended	 a	 conception	 of	

mathematics	 closer	 to	 that	 of	 the	 Germanic	 mathematicians	 of	 the	 time,	 but	 focused	 his	

proposal	on	“algebraic	quantities”.	

	

Furthermore,	 while	 the	 apparent	 absence	 of	 an	 incompatibility	 between	 those	 two	 traits	 of	

Bolzano’s	 early	 proposal	 and	 the	 groundbreaking	 features	 usually	 attributed	 to	 his	 Purely	

Analytic	Proof	cannot	be	adduced	as	strict	evidence	in	favor	of	such	a	traditional	interpretation,	

two	kinds	of	evidence	are	typically	used	to	sustain	 its	validity.	Firstly,	Bolzano’s	own	claims	on	

the	innovative	nature	of	his	works	of	1816-1817:	he	described	them	as	“sample[s]	of	a	new	way	

of	developing	analysis”	(als	Probe	einer	neuen	Bearbeitung	der	Analysis)	(Bolzano,	1816:	XV;	cf.	

Bolzano,	 1817B:	 20-21;	 Bolzano	 1817A:	 VI-VII)	 and	 he	 stated	 that	 he	 had	 achieved	 a	 purely	

analytic	proof	of	the	intermediate	value	theorem	(Bolzano,	1817B).	In	other	words,	he	regarded	

his	analytical	procedures	as	inherently	different	from	those	that	prevailed,	which	still	employed	

geometric	 notions,	 and	 defended	 that	 his	 procedures	 were	 “purely	 analytic,	 [or]	 purely	

arithmetic,	or	algebraic”	(auch	rein	arithmetische,	oder	algebraische)	(Bolzano,	1817A:	VI).195	

	

Secondly	 and	most	 importantly,	 however,	 the	 evidence	 that	 is	 normally	 used	 in	 favor	 of	 the	

traditional	reading	is,	as	it	should	be,	eminently	mathematical.	As	a	consequence,	four	points	of	

his	Purely	Analytic	Proof	are	identified	as	clear	signs	of	at	least	a	partial	anticipation	of	modern	

real	 analysis	 standpoint,	 namely:	 1)	 his	 definition	 of	 the	 continuity	 of	 a	 function;	 2)	 his	

																																																													
195	Bolzano	wrote:	 “Eine	 rein	analytische	 (auch	 rein	arithmetische,	oder	algebraische)	Verrichtung	heisst	eine	 solche,	 zu	Folge	der	
man	eine	gewisse	Function	aus	einer	oder	etlichen	andern	blos	dadurch	ableitet,	dass	man	min	ihnen	gewisse	Veränderungen	und	
Verbindungen	vornimmt,	welche	durch	eine	von	der	Natur	der	bezeichneten	Grössen	ganz	unabhängige	Regel	ausgesprochen	sind”	
(Bolzano,	1817A:	VI).	
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[convergence]	criterion;	3)	his	theorem	about	the	existence	of	a	[least]	greatest	bound	value;196	

and	4)	his	 formulation	of	 the	 intermediate	 value	 theorem.	 In	 fact,	 from	 that	perspective,	 in	 a	

sense	the	 last	mentioned	result	would	be	the	summit	of	Bolzano’s	modernity,	meaning	that	 it	

would	be	both	the	ultimate	expression	of	his	innovative	analytical	proposal,	as	well	as	the	best	

sample	of	the	limits	of	its	scope.	Thus,	Bolzano	wrote:	

	

If	two	functions	of	!,	!"	and	!",	vary	according	to	the	law	of	continuity	either	for	all	values	of	!	or	at	least	for	
all	 those	 lying	 between	! 	and	! ,	 [and]	 furthermore	 if	!" < !" 	and	!" > !" ,	 then	 there	 is	 every	 time	

[always]	a	certain	value	of	!	lying	between	!	and	!	for	which!" = !".	(Bolzano,	1817B:	51)197	
	

As	 John	 Stillwell	wrote	 about	Bolzano’s	 proof	of	 this	 theorem,	 in	 spite	of	 being	 “ahead	of	 his	

time”,	it	“was	incomplete,	because	a	definition	of	the	continuum	was	completely	lacking	in	his	

time”	(Stillwell,	2010B:	22).	Or,	taking	into	account	what	Johan	van	Benthem	said,	even	though	

Bolzano’s	 proof	 of	 the	 “Intermediate	 Value	 Theorem	 for	 continuous	 functions	 on	ℝ	[stated]	
that,	for	every	three	distinct	real	numbers	!, !, !,	if	! ! < ! < !(!),	then	! = !(!)	for	some	!	
between	!	and	!”	 (van	 Benthem,	 1991:	 109),	 the	 absence	 of	 an	 appropriate	 definition	 of	 the	

real	number	system	resulted	in	a	devious	procedure.	

	

Precisely,	the	consensus	that	from	the	late	19th	century	has	gradually	been	reached	on	that	1817	

work	of	Bolzano	can	be	summarized	in	that	it	is	an	“epoch-making	paper	on	the	foundations	of	

real	analysis,	[...]	the	starting	point	for	the	modern	theory	of	the	continuum”	(Ewald,	1999:	225-

226).	On	the	contrary,	thesis	here	is	that	a	careful	reading	of	Bolzano’s	first	mathematical	works	

(in	particular	 those	of	1816-1817)	 suggests	a	different	 interpretation	of	 these	ones.	That	way,	

accordingly	 to	 this	 alternative	 reading,	 although	 those	 works	 hinted	 some	 groundbreaking	

concerns	and	features,	ultimately	his	mathematical	notions	and	practices	were	deeply	rooted	in	

views	 and	 practices	 that	 he	 inherited	 and	which	were	 heavily	 deviant	 from	 later	 conceptions	

and	practices	of	real	analysis.	

	
																																																													
196	This	 theorem	 is	 usually	 called	 the	 “least	 upper	 bound”	 theorem.	While	 the	 use	 of	 “bound”	 instead	 of	 “boundary”	 (which,	 by	
means	of	the	element	“ary”,	may	indicate	that	it	“pertains	or	is	connected	to”)	is	taken	for	granted	(since,	in	addition,	although	he	
does	not	use	the	term	“Grenze”	in	§12,	he	does	use	it	in	§13),	the	use	of	“greatest”	instead	of	“upper”	is,	to	say	the	least,	unusual.	
However,	as	Bolzano’s	corresponding	fragment	mentioned	here	(the	third)	will	show,	he	refers	to	that	quantity	as	“die	grösste”,	and	
so	translating	it	as	“the	greatest”	seems	to	be	the	most	appropriate	thing	to	do	given	also	the	considerations	set	forth	throughout	
this	section.	
197	Bolzano	wrote:	“Wenn	sich	zwey	Functionen	von	!,	!"	und	!",	entweder	für	alle	Werthe	von	!,	oder	doch	für	alle,	die	zwischen	
! 	und	! 	liegen,	 nach	 dem	 Gesetze	 der	 Stetigkeit	 ändern;	 wenn	 ferner	!" < !" 	und	!" > !" 	ist:	 so	 gibt	 es	 jedesmahl	 einen	
gewissen	zwischen	!	und	!	liegenden	Werth	von	!,	für	welchen	!" = !"	wird.”	
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Consider,	for	example,	the	very	first	pillar	on	which	that	and	the	other	two	mentioned	results	of	

Bolzano	rest,	that	is,	his	definition	of	a	continuous	function	of	–we	would	say	nowadays–	a	one	

real	 variable.	 According	 to	 traditional	 reading,	 although	 Bolzano	 had	 already	 introduced	 a	

similar	definition	in	his	1816	work	(cf.	Bolzano,	1816:	34),	this	was	not	articulated	in	the	highly	

praised	formal	terms	of	his	1817	enunciation.	That	way,	it	was	in	his	Purely	Analytic	Proof	where	

he	provided	“the	first	rigorous	definition	of	continuous	function	[along	with	Cauchy]”	(Grabiner,	

1981:	 87),	 “a	 definition	 of	 the	 continuity	 of	 a	 real-valued	 function	 in	 a	 real	 interval	 (RB	 11f.),	

which	 is	 substantially	 the	 same	 as	 the	 modern	 one”	 (Berg,	 1962:	 15)	 or	 “the	 first	 clear	

presentation	of	the	epsilon-delta	definition	of	continuity”	(Coffa,	1991:	28).	All	of	which,	if	one	

listens	Bolzano’s	words	with	modern	ears,	is	quite	undeniable:	

	

According	to	a	correct	definition,	by	the	expression	that	a	function	!",	 for	all	values	of	!	which	lie	within	or	
outside	certain	limits,	varies	according	to	the	law	of	continuity,	 it	 is	understood,	simply,	that	if	!	is	any	such	
value,	 the	 difference	! ! + ! − !"	can	 be	made	 smaller	 than	 any	 given	 quantity,	 if	 one	 can	 assume	!	as	
small	 as	 one	 always	 wants,	 or	 it	 is	 (according	 to	 the	 designations	 we	 introduced	 in	 §14	 of	 The	 binomial	

theorem	etc.,	Prague,	1816)	! ! + ! = !" + Ω.	(Bolzano,	1817B:	11-12)198	
	

For	Bolzano,	this	was	a	“purely	analytic	procedure”	since,	as	he	explained	in	his	second	work	of	

1817,	that	function	could	be	obtained	from	other	ones	by	means	of	changes	and	combinations,	

“expressed	 by	 a	 rule	 that	 is	 entirely	 independent	 of	 the	 nature	 of	 the	 designated	 quantities”	

(Bolzano,	1817A:	VI).199	This	is	precisely	the	algebraic	approach	that	underlies	his	works	of	that	

time,	as	emphasized	by	the	fact	that	he	regarded	the	intermediate	value	theorem,	to	which	he	

devoted	his	Purely	Analytic	Proof,	as	a	proposition	of	the	“theory	of	equations”	(Lehre	von	den	

Gleichungen)	 (cf.	 Bolzano,	 1817B:	 3).	 As	 Steve	 Russ	wrote,	 “[d]oubtless	 [Bolzano]	would	 have	

regarded	this	theory	of	equations	as	part	of	[...]	the	Analysis	der	endlichen	Größen,	[...]	but	more	

because	it	[was]	algebraic	than	because	of	an	underlying	limit	concept”	(Russ,	2004:	143).	

	

																																																													
198	Bolzano	wrote:	“Nach	einer	richtigen	Erklärung	nähmlich	versteht	man	unter	der	Redensart,	dass	eine	Function!"	für	alle	Werthe	
von	!,	die	 inner-	oder	ausserhalb	gewisser	Grenzen	 liegen,	nach	dem	Gesetze	der	Stetigkeit	 sich	ändre,	nur	 so	viel,	dass,	wenn	!	
irgend	ein	solcher	Werth	ist,	der	Unterschied	! ! + ! − !"	kleiner	als	jede	gegebene	Grösse	gemacht	werden	könne,	wenn	man	!	
so	 klein,	 als	 man	 nur	 immer	 will,	 annehmen	 kann;	 oder	 es	 sey	 (nach	 den	 Bezeichnungen,	 die	 wir	 im	 §.	 14.	 des	 binomischen	
Lehrsatzes	u.	s.	w.	Prag	1816.	eingeführt)	! ! + ! = !" + Ω.”	
199	Bolzano	wrote:	 “Eine	 rein	analytische	 (auch	 rein	arithmetische,	oder	algebraische)	Verrichtung	heisst	eine	 solche,	 zu	Folge	der	
man	eine	gewisse	Function	aus	einer	oder	etlichen	andern	blos	dadurch	ableitet,	dass	man	mit	ihnen	gewisse	Veränderungen	und	
Verbindungen	vornimmt,	welche	ducrh	eine	von	der	Natur	der	bezeichneten	Grössen	ganz	unabhängige	Regel	ausgesprochen	sind.”	
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However,	independently	thereof,	a	question	emerges	as	soon	as	one	reads	Bolzano’s	statement	

on	the	continuity	of	a	function,	namely:	what	does	the	designations	!	and	Ω	stand	for?	To	begin	
with,	considered	!	and	Ω	as	“designations”	(Bezeichnungen),	and	being	faithful	to	what	he	said	
in	his	1810	work,	they	belonged	to	the	class	of	arbitrary	propositions	or	conventions	(Classe	der	

willkürlichen	Sätze)	 for	 concepts	 that	did	not	have	a	proper	definition	 (eigentlichen	Erklärung)	

(Bolzano,	1810:	50	&	56).	Which	in	turn	means	that	what	he	did	in	§14	of	his	1816	work	was	a)	

to	 introduce	 a	 convention	 according	 to	 which	 the	 symbols	! 	and	Ω	designated	 “a	 quantity	
which	can	become	smaller	than	any	given”,200	after	which	b)	he	enunciated	a	theorem	about	the	

“algebraic”	 sum	 or	 difference	 of	 a	 finite	 multitude	 (endliche	 Menge)	 of	 those	 quantities	!,	
which	he	designated	as	Ω	(Bolzano,	1816:	15).201	
	

The	underlying	idea	to	that	notion,	on	the	contrary,	is	not	to	be	found	in	that	paragraph	but	in	

the	preface	to	that	work.	There,	Bolzano	openly	criticized	“the	assumption	of	a	sum	of	infinitely	

many	 quantities”	 (“infinite	 series”)	 “and	 every	 attempt	 to	 calculate	 its	 value”	 (“calculus	

infinitesimalis”)	 (Bolzano,	 1816:	 IV).	 Instead,	 he	 proposed	 to	 use	 “the	 concept	 of	 those	

quantities,	which	can	become	smaller	than	any	given	quantity,	or	([...]	 less	properly)	quantities	

which	 can	 become	 as	 small	 as	 one	may	want”	 (Bolzano,	 1816:	 V).202	This	was	 because,	 as	 he	

explained,	 for	him	the	concept	of	 infinitely	small	quantities	or	 infinitesimals	was	equivalent	to	

the	idea	of	a	quantity	that	de	facto	(in-act)	was	smaller	than	any	conceivable	(gedenkbare)	and	

not	only	any	given	(gegebene)	quantity,	and	thus	was	contradictory	(widersprechend).	While,	by	

contrast,	 the	 concept	 that	he	used	of	 a	 “variable”	 (veränderliche)	quantity	 that	could	 become	

smaller	 than	any	given	 or	actually	 available	 quantity	was	entirely	 correct	 and	did	not	 contain	

anything	 objectionable	 (anstössig)	 (cf.	 Bolzano,	 1816:	 V).	 “[S]uch	 quantities”,	 he	 even	 wrote,	

“are	given	very	often	both	in	space	and	in	time”	(Bolzano,	1816:	V),203	a	remark	that,	as	will	be	

discussed	below,	should	not	be	regarded	as	a	mere	far-fetched	idea.	

																																																													
200	Bolzano	 wrote:	 “Willkürlicher	 Satz.	 Eine	 Grösse	 zu	 bezeichnen,	 die	 kleiner	 als	 jede	 gegebene	 werden	 kann,	 wählen	 wir	 das	
Zeichen	!,Ω,	oder	sonst	ein	ähnliches.”	
201	Here	 “Menge”	 is	 translated	 as	 “multitude”	 and	 not	 as	 “set”	 to	 avoid	 the	 association	 of	 this	 latter	 term	 with	 the	 set	 theory	
devoloped	decades	later,	nor	as	“number”,	as	Steve	Russ	does	(cf.	Russ,	2004:	173),	since	“multitude”,	contrary	to	“number”,	seems	
to	emphasize	the	primitive	sense	of	“Menge”	as	a	bunch	of	something.	It	is	true	that	Bolzano	refers	to	a	endliche	Menge	and	thus	
one	 could	 question	 the	 fact	 that	 the	 quantities	!,!(!),!(!)	would	 be	 better	 described	 as	 a	 “finite	 number”	 than	 as	 a	 “finite	
multitude”,	but	that	Bolzano	refers	to	a	“multitude”	is	shown	by	his	own	example,	namely,	“the	quantities	!,!(!),!(!),… ,!(!).”	
202	Bolzano	 wrote:	 “des	 Begriffes	 solcher	 Grössen	 bediene,	 die	 kleiner	 als	 jede	 gegebene	 werden	 können,	 oder	 (wie	 ich	 sie	 zur	
Vermeidung	 der	 Eintönigkeit	 zuweilen	 gleichfalls	 nenne,	 obwohl	 schon	minder	 eigentlich)	 der	 Grössen,	 welche	 so	 klein	 werden	
können,	als	man	nur	immer	will.”	
203	Bolzano	wrote:	“Muss	nicht	vielmehr	ein	Jeder	einsehen,	dass	es	dergleichen	Grössen	im	Raume	sowohl	als	in	der	Zeit	sehr	häusig	
gebe?”	
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So	 far,	 therefore,	 several	 things	 should	 be	 clear	 about	 Bolzano’s	 concept	 of	! :	 they	 are	

‘quantities’;	 these	 quantities	 are	 said	 not	 to	 be	 infinitesimals;	 unlike	 infinitesimals,	 it	 is	

postulated	 as	 a	 non-contradictory	 concept;	 unlike	 infinitesimals,	 it	 is	 assumed	 that	 it	 can	 be	

calculated	with	them;	its	variability	underlies	Bolzano’s	definition	of	the	continuity	of	a	function;	

and	 Bolzano’s	 formulation	 of	 the	 difference	! ! + ! − !" 	closely	 resembles	 the	 modern	

Weierstrassian.	How	one	interprets	from	this	Bolzano’s	!,	nonetheless,	determines	much	of	the	

general	 interpretation	of	his	early	mathematical	work,	since	it	 is	usually	taken	for	granted	that	

they	 show	 his	 attempt	 to	 work	 with	 our	 modern	 real	 numbers	 (rigorously	 defined	 later	 by	

Weierstrass,	Dedekind	and	Cantor).	Moreover,	the	nature	of	quantities	!	is	traditionally	posed	
in	terms	of	a	dichotomy,	as	if	they	were	either	numbers	(i.e.	Weierstrassian	!)	or	quantities	that	
tend	 to	 zero	 in	 an	 implicitly	 dynamic	 way	 (i.e.	 Cauchy’s	 infinitesimals).	 That	 is	 to	 say,	 it	 is	

traditionally	 assumed	 that	 those	 Bolzanian	 quantities	 anticipated	 in	 a	 strict	 or	 at	 least	 partial	

sense	the	modern	!,	something	that	is	not	surprising	if	one	considers	the	respective	definitions	

of	a	continuous	function	of	Cauchy	and	Weierstrass:	

	

Let	!(!)	be	a	function	of	the	variable	!,	and	suppose	that	for	each	value	of	!	between	two	given	limits,	the	

function	 always	 takes	 a	 unique	 [and]	 finite	 value.	 If,	 beginning	with	 a	 value	 of	!	contained	 between	 these	
limits,	 we	 add	 to	 the	 variable	!	an	 infinitely	 small	 increment	!,	 the	 function	 itself	 is	 incremented	 by	 the	

difference	! ! + ! − !(!),	which	depends	both	on	the	new	variable	!	and	on	the	value	of	!.	Given	this,	the	
function	!(!)	is	 a	 continuous	 function	 of	!	between	 the	 [two]	 assigned	 limits	 [to	 that	 variable]	 if,	 for	 each	

value	of	!	between	these	limits,	the	numerical	value	of	the	difference	! ! + ! − !(!)	decreases	indefinitely	
with	the	numerical	value	of	!.	(Cauchy,	1821:	34)204	
	

If	!(!)	is	a	function	of	!	and	!	is	a	definite	value,	then	the	function	will	change	to	!(! + ℎ)	when	!	changes	
to	! + ℎ ,	 the	 difference	! ! + ℎ − !(!) 	being	 called	 the	 transformation	 [or	 “variation”]	 that	 thereby	

undergoes	the	function	by	changing	the	argument	from	!	to	! + ℎ.	If	it	is	now	possible	to	determine	a	limit	!	
for	ℎ,	so	that	for	all	values	of	ℎ	whose	absolute	value	is	smaller	than	!,	! ! + ℎ − !(!)	will	be	smaller	than	

																																																													
204	Cauchy	wrote:	 “Soit	!(!)	une	 fonction	 de	 la	 variable	!,	 et	 supposons	 que,	 pour	 chaque	 valeur	 de	!	intermédiaire	 entre	 deux	
limites	donées,	cette	fonction	admette	constamment	une	valeur	unique	et	finie.	Si,	en	partant	d’une	valeur	de	!	comprise	entre	ces	
limites,	 on	 attribue	 à	 la	 variable	! 	un	 accroissement	 infiniment	 petit	! ,	 la	 fonction	 elle-même	 recevra	 pour	 acroissement	 la	
différence	! ! + ! − !(!),	qui	dépendra	en	même	temps	de	la	nouvelle	variable	!	et	de	la	valeur	de	!.	Cela	posé,	la	fonction	! ! 	
sera,	entre	les	deux	limites	assignées	à	la	variable	!,	fonction	continue	de	cette	variable,	si,	pour	chaque	valeur	de	!	intermédiaire	
entre	 ces	 limites,	 la	 valeur	 numérique	 de	 la	 différence	! ! + ! − ! ! 	décroit	 indéfiniment	 avec	 celle	 de	!.”	 The	 translation,	
slightly	modified,	is	from	Robert	E.	Bradley	and	C.	Edward	Sandifer	(Bradley	and	Sandifer,	2000:	26).	
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any	 other	 so	 small	 quantity	!,	 then	 one	 says	 that	 infinitely	 small	 changes	 [or	 “variations”]	 of	 the	 function	

correspond	to	infinitely	small	changes	[or	“variations”]	of	the	argument.	(Weierstrass,	1861:	2)205	

	

Undoubtedly,	the	three	definitions	are	very	similar.	But	whether	the	one	of	Bolzano	is	at	 least	

equivalent	to	the	one	of	Cauchy,	or	it	even	anticipated	Weierstrass’,	rests	on	two	assumptions.	

On	the	one	hand,	it	is	considered	that	the	aforementioned	definition	of	Weierstrass,	presented	

during	his	summer	course	of	1861	and	whose	notes	were	taken	by	Hermann	Schwarz,	is	an	early	

presentation	of	the	modern	epsilon-delta	definition	of	continuity,	since	it	contains	clear	hints	of	

it	and	replaces	the	intuitive	idea	of	“tend	towards”	by	inequalities	(cf.	Dugac,	1976:	7).	On	the	

other	hand,	it	is	assumed	that	in	1821	Cauchy	somehow	anticipated	at	least	that	early	definition	

of	Weierstrass.	Which	means,	in	both	cases,	that	the	explicit	and	immanent	differences	between	

the	 three	 definitions,	 as	 well	 as	 the	 differences	 between	 those	 definitions	 contained	 in	 their	

respective	early	works	and	the	ones	contained	in	their	later	works,	tend	to	be	overlooked.	

	

Key	 question	 here	 is	 whether	 or	 not	 Bolzano,	 in	 spite	 of	 his	 terminology	 and	 the	 ideas	

underlying	his	formulation	of	the	continuity	of	a	function,	in	some	way	anticipated	those	other	

two.	Therefore,	insofar	as	this	chapter	is	not	about	the	development	of	the	analytical	approach	

of	 Cauchy	 and	 the	 Weierstrassian	 arithmetizing	 approach,	 for	 the	 sake	 of	 the	 traditional	

argument	those	two	assumptions	should	be	considered	correct,	even	though,	strictly	speaking,	

they	are	untenable.	After	all,	not	only	the	ideas	of	those	two	mathematicians	were	not	always	–

entirely–	the	same,	but	also	both	used	expressions	such	as	“infinitely	small	increment”	(Cauchy)	

and	 “infinitely	 small	 changes”	 (Weierstrass).	 That	 way,	 traditional	 reader’s	 stance	 can	 be	

summed	 up	 in	 the	 words	 of	 Hans	 Freudenthal:	 “Bolzano’s	 and	 Cauchy’s	 definitions	 [of	 the	

continuity	of	a	function]	are	equivalent.	Bolzano’s	is	far	better;	it	is	modern	(though	instead	of	!	
and	!	he	 uses	!	and	Ω);	 the	 succession	 of	 the	 quantifiers	 is	 correct	 and	 clear”	 (Freudenthal,	
1971:	380).	

	

As	a	result	of	that,	supporters	–and	promoters–	of	traditional	interpretation	of	those	definitions	

of	Bolzano	and	Cauchy	argue	that	these	ones	represent	 ! ! + ! − !(!) < !	and	 ! ! + ! −

																																																													
205	Weierstrass	 wrote:	 “Ist	!(!)	eine	 Funktion	 von	!	und	 ist	!	ein	 bestimmer	 Wert,	 so	 wird	 sich	 die	 Funktion,	 wenn	!	in	! + ℎ	
übergeht,	 in	!(! + ℎ)	ändern;	 die	 Differenz	! ! + ℎ − !(!)	nennt	 man	 die	 Veränderung,	 welche	 die	 Funktion	 dadurch	 erfährt,	
dass	 das	 Argument	 von	!	in	! + ℎ	übergeht.	 Ist	 es	 nun	möglich,	 für	ℎ	eine	 Grenze	!	zu	 bestimmen,	 sodase	 für	 alle	 werte	 von	ℎ,	
welche	 ihrem	absoluten	Betrage	nach	kleiner	als	!	sind,	! ! + ℎ − !(!)	kleiner	werde	als	 irgendeine	noch	so	kleine	Grösse	!,	 so	
sagt	man,	es	entsprechen	unendlich	kleine	Aenderungen	des	Arguments	unendlich	kleinen	Aenderungen	der	Funktion.”	
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!(!) < !,	 respectively	 (cf.	 Grabiner,	 1981:	 8-9).	 However,	 either	 those	 infinitesimalist	 old-

fashioned	 expressions	 are	 left	 aside	 as	 manners	 of	 speaking,	 in	 which	 case	 Weierstrassian	

definition	was	not	the	first	one	since	it	was	anticipated	by	the	ones	of	Bolzano	and	Cauchy	(both	

as	 to	 the	 way	 in	 which	 it	 was	 stated	 and	 used),	 or,	 if	 taken	 into	 account	 that	 expression	

(together	with,	for	example,	his	carelessness	on	absolute	values),	it	was	not	the	first	one	and	a	

strict	 modern	 epsilon-delta	 definition	 was	 yet	 to	 come.	 Because,	 it	 must	 be	 stressed,	 the	

possibility	that	Bolzano’s	!	are	neither	Weierstrassian	!	nor	Cauchy’s	!	is	simply	discarded	from	

the	 very	 beginning	 by	 the	 traditional	 reading,	 according	 to	which	 either	 Bolzano’s	 notions	 of	

‘quantity’	and	‘number’	were	pretty	similar	to	the	ones	of	Weierstrass	or,	at	least	(as	the	ones	of	

Cauchy),	they	headed	towards	the	latter	but	still	had	some	essential	kinetic	traits.	

	

Therefore,	it	is	important	to	pay	attention,	in	addition	to	the	terminology	used	by	Bolzano,	to	his	

mathematical	practices	in	order	to	elucidate	his	similarities	and	differences	with	respect	to	later	

proposals.	Given	 the	objectives	of	 this	work,	nonetheless,	 a	distinction	 can	be	made	between	

details	 or	 features	 of	 Bolzano’s	 mathematical	 practices	 that	 are	 not	 so	 relevant	 to	 those	

objectives	and	the	ones	that	are	highly	significant	to	them.	For	example,	regarding	the	first	type,	

a	minor	detail	usual	in	his	works	of	1816-1817	is	the	lack	of	explicit	reference	to	absolute	values	

(cf.	Bolzano,	1816:	VI,	14-15	&	17),	something	that	was	not	uncommon	at	the	time	(cf.	Cauchy,	

1821:	404;	Cajori,	 1929/1993:	 II,	 123-124).	Curiously,	one	of	 the	 few	passages	of	his	works	of	

1816-1817	 in	which	Bolzano	was	explicit	about	 that	 issue	was	at	 the	beginning	of	his	proof	of	

the	 intermediate	value	 theorem,	where	he	stated	 that	“the	values	of	 the	 functions	!"	and	!"	
are	to	be	compared	with	each	other	just	as	absolute	quantities,	that	is	without	regard	to	signs”	

(Bolzano,	1817B:	51;	for	absolute	Werth,	cf.	Bolzano,	1817A:	XX).206	

	

Additionally,	among	such	type	of	details	which	are	not	so	relevant	here,	may	be	mentioned:	a)	

the	differences	between	 the	approaches	of	Cauchy	 (who	 referred	 to	 an	 interval)	 and	Bolzano	

(who	did	not)	to	the	continuity	of	a	function;	b)	the	absence,	in	the	convergence	criteria	of	those	

two	 authors,	 of	 a	 distinction	 between	 pointwise	 and	 uniform	 convergence,	 which	 would	 be	

present	in	later	Weierstrassian	approach	(cf.	Weierstrass,	1876:	202);	c)	mathematical	mistakes,	

as	for	example	Bolzano’s	conclusion	that	“the	binomial	equation	holds	for	no	value	of	!	which	is	
																																																													
206	Bolzano	 wrote:	 “Wir	 müssen	 erinnern,	 dass	 in	 diesem	 Lehrsatze	 die	Werthe	 der	 Functionen	!"	und	!"	bloss	 ihrer	 absoluten	
Grösse	 nach,	 d.	 h.	 ohne	 Rücksicht	 auf	 ein	 Vorzeichen,	 oder	 so,	 als	 ob	 sie	 gar	 keine	 des	 Gegensatzes	 fähige	 Grössen	wären,	mit	
einander	verglichen	werden	sollen.”	
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>	or	even	only	= ±1,	unless	at	the	same	time	!	is	a	whole	positive	number	or	zero”	(Bolzano,	

1816:	 53),207	since	 the	 equation	 does	 hold	 for	 some	 values	 of	!	at	! = ±1	(cf.	 Rusnock,	 2000:	
69);	and	d)	the	terminological	differences	between	Bolzano’s	formulation	of	his	theorem	about	

the	existence	of	a	[least]	greatest	bound	value	and	the	so-called	Bolzano-Weierstrass	theorem.	

	

On	the	contrary,	the	details	that	are	highly	significant	here	not	only	concern	some	of	the	results	

just	mentioned,	as	for	example	his	convergence	criterion	and	his	theorem	about	the	existence	

of	a	[least]	greatest	bound	value,	but	above	all	concern	his	notions	of	‘quantity’	and	‘number’.	

Bolzano,	it	is	widely	recognized	even	among	the	less	moderate	pens	that	second	the	traditional	

reading,	 lacked	 a	 rigorous	 definition	 of	 the	 real	 numbers	 and,	 therefore,	within	 his	 analytical	

framework	there	was	no	set	of	real	numbers,	at	least	not	in	the	modern	sense.	That	is	to	say,	in	

his	 early	 mathematical	 proposal	 there	 was	 no	 such	 purely	 mathematical	 domain	 of	 objects	

(numbers),	 which	within	 subsequent	 frameworks	would	 be	 required	 to	 be	 a	 continuous	 (and	

totally	 ordered	 and	 dense)	 but	 static	 one.	 And	 yet,	 did	 Bolzano	 at	 least	 have	 a	 notion	 of	

‘quantity’	that	somehow	evokes	the	modern	notion	of	number,	as	well	as	a	concept	of	‘number’	

that	 could	 be	 considered	 compatible	 with	 its	 modern	 extension?	 That	 is,	 indeed,	 the	 key	

question	to	ask.	

	

To	 begin	 with,	 within	 the	 Weierstrassian	 analytical	 framework	 a	 variable	 quantity	! 	was	 a	
syntactic	 notion.	 “By	 a	 variable	 quantity”,	 Weierstrass	 wrote	 in	 1886,	 “one	 understands	 a	

quantity	which	is	defined	in	such	a	way	that	there	are	infinitely	many	quantities	corresponding	

to	 the	given	definition”	 (Weierstrass,	1886/1988:	57).208	As	he	went	on	 to	explain,	 that	meant	

that	depending	on	whether	in	the	stated	numerical	domain	(Gebiete)	the	numbers	were	formed	

from	 a	 main	 unit	 or	 consisted	 of	 two	 main	 units,	 they	 would	 be	 real	 variable	 quantities	 or	

complex	 variable	 quantities,	 respectively	 (cf.	 ibid.).209	Therefore,	 a	 variable	 quantity	! 	could	
denote	one	or	another	 type	of	numbers,	depending	on	what	one	established	 in	each	case,	 so	

that:	a)	an	“unlimited	variable	 real	quantity”	 (unbeschränkt	veränderliche	 reelle	Grösse)	was	a	

																																																													
207	Bolzano	wrote:	 “Also	 gilt	 die	Binomial-gleichung	 für	 keinen	Werth	 von	!,	 der	>	oder	 auch	nur	= ±1	ist,	wenn	nicht	 zugleich	!	
eine	ganze	positive	Zahl	oder	Null	ist.”	
208	Weierstrass	wrote:	 “Unter	einer	 veränderlichen	Grösse	 versteht	man	eine	Grösse,	die	 so	definiert	 ist,	dass	es	unendlich	 viele	
Grössen	gibt,	die	der	gegebenen	Definition	entsprechen.”	
209	Weierstrass	wrote:	“So	z.B.	bilden	im	Gebiete	der	aus	einer	Haupteinheit	gebildeten	Zahlen	diejenigen	Zahlen,	welche	Vielfache	
der	Haupteinheit	 sind,	 veränderliche	Grössen.	 Man	 kann	 zwischen	 sog.	 reellen	 und	 komplexen	 veränderlichen	Grössen,	welche	
letzteren	aus	zwei	Haupteinheiten	zusammengesetzt	sind,	unterscheiden;	es	muss	aber	in	jedem	einzelnen	Falle	angegeben	werden,	
ob	man	die	Definition	auf	die	eine	oder	die	andere	Art	von	Grössen	ausdehnen	will.”	
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variable	quantity	that	could	assume	all	real	values	(all	values	between	−∞	and	+∞)	and	whose	

domain	 was	 represented	 by	 all	 the	 points	 of	 a	 line	 (sämmtliche	 Punkte)	 (cf.	 Weierstrass,	

1886/1988:	 83);210	and	 b)	 a	 variable	 quantity	 could	 assume	 infinitely	 small	 values	 (unendlich	

kleine	Werthe)	when	among	the	values	it	was	capable	of,	there	were	quantities	smaller	than	an	

arbitrarily	small	quantity	(cf.	id.:	57).211	

	

From	 the	 arithmetizing	 perspective	 of	 Weierstrass	 and	 later	 mathematicians,	 the	 set	 of	 real	

numbers	 was	 not	 only	 infinite	 in	 the	 sense	 of	 not	 having	 a	 last	 member,	 but	 also	 infinite	

inasmuch	as	its	de	facto	given	members	could	measure	any	given	quantity	and	thus	correspond	

to	 any	ordinary	quantity	 (cf.	Gray,	 2015:	 253).	 The	development	of	 this	 conception,	 however,	

occurred	through	a	process	that	eventually	led	to	the	replacement	of	the	previously	core	notion	

of	 variable	 quantity	 by	 syntactic	 variables	 (i.e.	 a	 character	 that	 represents	 a	 number)	 and	

functions	of	a	real	variable	(i.e.	functions	within	the	real	domain).	But	throughout	that	process,	

while	 the	 acceptance	 of	 some	 emerging	 concepts	 and	 practices	 delayed	 more	 than	 that	 of	

others,	some	remnants	of	the	pre-modern	analytical	framework	lasted	longer	than	others.	That	

way,	 concerning	 the	 remnants,	 Dedekind	 himself	 denounced	 in	 the	 1880s	 the	 prevalence	 of	

“foreign	 ideas”	 (fremdartiger	 Vorstellungen)	 in	 analysis,	 such	 as	 the	 “measurable	 quantities”	

(messbaren	Grössen)	 (Dedekind,	1888:	X;	cf.	Dedekind,	1872:	9)	or,	without	going	any	 further,	

the	 appellative	 “numerical	 quantities”	 (Zahlengrössen)	 used	 by	 Weierstrass	 and	 Cantor	 for	

rational	and	irrational	numbers	(cf.	Cantor,	1872/1932;	Weierstrass,	1878/1988),	which	evoked	

a	previous	understanding	of	mathematics	as	the	science	of	discrete	and	continuous	quantities.	

	

As	 for	 the	emergence	of	practices	and	concepts,	what	 today	 is	 known	as	Bolzano-Weierstrass	

theorem212	as	 a	 matter	 of	 fact	 provides	 a	 good	 example	 of	 that	 process	 and,	 in	 turn,	 of	 the	

mathematical	anticipation	attributed	to	Bolzano,	who	wrote:	“If	a	property	!	does	not	apply	to	

all	 values	 of	 a	 variable	 quantity	!	 but	 does	 apply	 to	 all	 values	 smaller	 than	 a	 certain	!,	 then	
there	 is	always	a	quantity	!	which	 is	the	greatest	of	those	of	which	 it	can	be	asserted	that	all	
																																																													
210 	Weierstrass	 wrote:	 “Eine	 unbeschränkt	 veränderliche	 reelle	 Grösse	 ist	 eine	 solche,	 die	 alle	 Werthe	 zwischen	−∞	und	+∞	
annehmen	kann;	sämmtliche	Punkte	einer	Geraden	repräsentieren	das	Gebiet	einer	solchen	Veränderlichen.”	
211	Weierstrass	 wrote:	 “Wir	 sagen	 von	 einer	 veränderlichen	Grösse	 -sei	 sie	 nun	 unbeschränkt	 oder	 beschränkt	 veränderlich-,	 sie	
könne	unendlich	kleine	Werthe	annehmen	oder	 sie	 sei	 solcher	Werthe	 fähig,	wenn	unter	den	Werthen,	die	 sie	annehmen	kann,	
Grössen	sind	kleiner	als	jede	beliebig	klein	angenommene	Grösse.”	
212	I	 am	 grateful	 to	 Gregory	 H.	 Moore	 for	 sending	 to	 me	 a	 copy	 of	 his	 article	 “Historians	 and	 Philosophers	 of	 Logic:	 Are	 They	
Compatible?	The	Bolzano-Weierstrass	Theorem	as	a	Case	Study”	in	the	fall	of	2015,	which	is	used	here	as	a	basis	of	what	I	explain	in	
the	following	paragraphs	about	what	is	called	the	Bolzano-Weierstrass	theorem.	An	advance	of	this	was	presented	that	same	year	at	
the	Third	International	Meeting	of	the	APMP,	held	in	Paris	at	the	Institut	Henri	Poincaré.	
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smaller	!	possess	the	property	!”	(Bolzano,	1817B:	41).213	From	the	perspective	of	the	authors	

that	 defend	 the	 traditional	 reading	 of	 those	 lines	 of	 Bolzano,	 contained	 in	 his	Purely	 Analytic	

Proof,	that	is	“the	original	form	of	the	Bolzano-Weierstrass	theorem”	(Russ,	1980:	157;	cf.	Russ,	

2004:	146)	or,	in	other	words,	“[a]	theorem	like	[the	Bolzano-Weierstrass	theorem]	first	proved	

by	 Bolzano”	 (Stillwell,	 2010A:	 560).	 Furthermore,	 for	 some	 of	 those	 authors	 that	 lemma	 of	

Bolzano	 not	 only	 “asserted	! 	[as]	 a	 property	 of	 real	 numbers”	 (Edwards,	 1979:	 308)	 or	

“established	 the	 existence	of	 a	 least	 upper	 bound	 for	 a	 bounded	 set	 of	 real	 numbers”	 (Kline,	

1972:	 953),	 but	 along	 with	 its	 proof	 it	 shows	 that	 Bolzano	 actually	 “proved”	 the	 Bolzano-

Weierstrass	 theorem,	 even	 though	 “it	 was	 the	 work	 of	 Weierstrass	 that	 made	 it	 familiar	 to	

mathematicians”	(Boyer,	1968:	605).	And	yet,	was	it	really	so?	

	

Firstly,	 it	must	be	noticed	that	 the	modern	 form	of	what	 is	known	as	 the	Bolzano-Weierstrass	

theorem	 states	 that	 every	 bounded	 infinite	 set	 of	 real	 numbers	 has	 a	 limit	 point.	Which	 is	 a	

pretty	 similar	 statement	 to	 that	 of	 Schoenflies	 of	 1898:	 “For	 a	 set	 [Menge]	!	consisting	 of	
infinitely	 [unbegrenzt]	 many	 points,	 there	 is	 at	 least	 an	 accumulation	 point	 (limit	 point,	

condensation	point)	according	to	a	theorem	of	Bolzano-Weierstrass”	(Schoenflies,	1898:	185;	cf.	

Moore,	 2000:	 178).214	Which	 in	 turn	 is	 practically	 the	 same	 statement	 introduced	 by	 Georg	

Cantor	(student	of	Karl	Weierstrass,	Leopold	Kronecker	and	Eduard	Kummer)	 in	his	1872	work	

on	 trigonometric	 series	 (the	one	 in	which	he	presented	his	construction	of	 the	 real	numbers),	

who,	when	defining	the	concept	of	a	limit	point	of	a	point-set	(Grenzpunkt	einer	Punktmenge),	

wrote	without	naming	Bolzano	or	Weierstrass:	“a	point-set	consisting	of	an	 infinite	number	of	

points	always	has	at	least	one	limit	point”	(Cantor,	1872/1932:	98;	cf.	Moore,	2000:	176).215	

	

It	 is	 beyond	 doubt	 that	 for	 Cantor	 and	 his	 contemporaries	 it	 was	 Weierstrass	 who	 initially	

developed	that	theorem,	which	can	be	found:	a)	 in	the	text	of	his	course	on	analytic	functions	
																																																													
213 	This	 is	 the	 exact	 translation	 in	 (Russ,	 2004:	 269).	 Bolzano	 wrote:	 “Wenn	 eine	 Eigenschaft	! 	nicht	 allen	 Werthen	 einer	
veränderlichen	Grösse	!,	wohl	aber	allen,	die	kleiner	sind,	als	ein	gewisser	!,	zukömmt:	so	gibt	es	allemahl	eine	Grösse	!,	welche	
die	grösste	derjenigen	ist,	von	denen	behauptet	werden	kann,	dass	alle	kleineren	!	die	Eigenschaft	!	besitzen.”	
214	Schoenflies	 wrote:	 ““Für	 eine	 aus	 unbegrenzt	 vielen	 Punkten	 bestehende	Menge	 P	 giebt	 es	 nach	 einem	 Satz	 von	 Bolzano-K.	
Weierstrass	 mindestens	 eine	 Häufungsstelle	 (Grenzpunkt,	 Verdichtungspunkt).”	 Here	 “unbegrenzt”,	 literally	 “without	 limit”	 or	
“without	 bound”,	 has	 been	 translated	 by	 “infinite”,	 which	 might	 be	 problematic	 despite	 “infinite”	 seems	 to	 account	 for	 the	
quantitative	 sense	 of	 the	 expression	 “unbegrenzt	 vielen	 Punkten”	 in	 a	 better	 way	 than	 “unlimited”	 or	 “unbounded”	 does.	
Schoenflies	does	use	the	expression	“unendlich	vielen	Punkten”	in	his	text	referring	to	Cantor’s	work,	and	still	he	could	be	cosidering	
both	 expressions	 equivalent,	 which	 would	 sustain	 the	 use	 of	 “infinite”.	 But	 “infinite”	 could	 betray	 the	 qualitative	 sense	 of	
Schoenflies’	expression	in	case	that,	as	for	example	Cantor	and	Weierstrass	did	sometimes,	he	was	not	requiring	that	the	set	was	
bounded,	 being	 the	 “Grenzpunkt”	 at	 infinity.	 Nevertheless,	 given	 that	 this	 detail,	 perhaps	 important,	 is	 not	 relevant	 for	 the	
objectives	of	this	work,	and	in	particular	of	this	section,	it	is	to	be	hoped	that	its	mention	in	this	footnote	will	suffice.	
215	Cantor	wrote:	“Darnach	ist	es	leicht	zu	beweisen,	dass	eine	aus	einer	unendlichen	Anzahl	von	Punkten	bestehende	Punktmenge	
stets	zum	wenigsten	einen	Grenzpunkt	hat.”	
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held	 during	 the	 summer	 semester	 of	 1886,	 in	 terms	 of	 a	 “limit	 place”	 (Grenzstelle)	 of	 a	

“manifold	 or	 variety”	 (Mannigfaltigkeit)	 that	 did	 not	 belong	 to	 this	 one	 (cf.	 Weierstrass,	

1886/1988:	 60);216	b)	 in	 his	 text	 on	 the	 theory	 of	 single-valued	 analytic	 functions	 of	 1876,	 in	

terms	of	an	“essential	 singular	place”	 (wesentliche	singuläre	Stelle)	of	a	 single-valued	 function	

which	could	be	in	the	interior	or	on	the	limit	(Grenze)	of	a	“bounded	realm”	(grenzten	Bereichs)	

under	 consideration	 (cf.	Weierstrass,	1876/1895:	80);	 c)	 in	 the	notes	of	his	 course	on	analytic	

functions	held	during	the	summer	semester	of	1874,	 in	terms	of	a	“place”	(Stelle)	 in	a	“region	

[domain]	of	a	real	quantity”	(Gebiet	einer	reellen	Grösse)	(cf.	Weierstrass,	1874:	305);217	d)	in	the	

notes	of	his	course	on	analytic	functions	held	during	the	summer	semester	of	1868,	in	terms	of	a	

“point”	 (Punkt)	 in	 a	 “limited	 realm”	 (begrenzten	 Bereiche)	 (cf.	 Weierstrass,	 1868/1986:	 79	 &	

77);218	and	 e)	 in	 the	 notes	 of	 his	 course	 on	 analytic	 functions	 held	 in	 1865-66,	 in	 terms	 of	 a	

“point”	 (Punkt)	 in	 a	 “bounded	part	 of	 a	 plane”	 (begrenzten	 Theileb	 der	 Eben)	which	 could	 be	

inside	that	part	or	on	its	boundary	(grenz)	(cf.	Weierstrass,	1865/66:	16[B]).219	

	

Even	more,	it	is	known	because	of	a	footnote	that	Cantor	included	in	his	second	1870	work	on	

trigonometric	series,	but	also	due	to	the	correspondence	between	Hermann	Schwarz	and	both	

Cantor	 and	 Eduard	 Heine	 prior	 to	 the	 publication	 of	 that	 work,	 that	 by	 1870	 and	 among	

Weierstrass	 students:	 firstly,	a	 “Weierstrass-Bolzano	 theorem”	was	 identified	with	“upper	and	

lower	 limits”	 (Meschkowski	 and	Nilson,	 1991:	 24)220	of	what	 today	would	 be	 called	 “a	 closed	

interval”	 of	 real	 values	 (Zermelo,	 1932:	 82);221 	and,	 secondly,	 it	 was	 recognized	 that	 this	

theorem	had	been	developed	by	Weierstrass	on	the	basis	of	a	principle	related	in	some	way	to	

Bolzano’s	 first	 work	 of	 1817.	 Testimony	 of	 the	 latter	 can	 be	 found,	 for	 example,	 both	 in	 the	

																																																													
216	The	term	“Mannigfaltigkeit”	can	also	be	 found	 in	 the	notes	of	his	winter	course	of	1877-78	taken	by	Salvatore	Pincherle	 (who	
used	 the	 term	 “varietà”	 (cf.	 Pincherle,	 1880:	 60)),	 the	 notes	 of	 his	 course	 of	 1878	 taken	 by	 Adolf	 Hurwitz	 (cf.	 Weierstrass,	
1878/1988)	 and,	 for	 example,	 in	 Cantor’s	 series	 of	 works	 of	 1879-1884,	 the	 one	 to	 which	 his	 Grundlagen	 belong.	 The	 term	
“Grenzstelle”,	on	the	contrary,	 is	rarely	found	throughout	his	work,	though	it	 is	not	as	exceptional	as	the	term	“Grenzpunkt”.	 It	 is	
true	that,	apparently,	Weierstrass	never	used	the	term	“Grenzpunkt”	when	introducing	any	of	his	forms	of	what	nowadays	we	call	
“the	Bolzano-Weierstrass	theorem”,	but	it	is	not	true	that	“[he]	never	used	Cantor’s	term”	(Moore,	2008:	222):	it	can	be	found,	for	
example,	 in	 the	 notes	 by	 Adolf	 Hurwitz	 of	 1878	 (cf.	 Weierstrass,	 1878/1988:	 143)	 and	 in	 the	 text	 of	 his	 course	 of	 1886	 (cf.	
Weierstrass,	 1886/1988:	 72).	 As	 for	 the	 term	 “Grenzstelle”,	 a	 certain	 use	 of	 it	 can	 be	 found	 in	 those	 last	 notes	 by	 Hurwitz	 (cf.	
Weierstrass,	1878/1988:	90,	92	&	144)	and	his	work	of	1876	(cf.	Weierstrass,	1876/1895:	78-79	&	81).	
217	In	these	lecture	notes	by	Georg	Hettner	also	appears	the	term	“Mannigfaltigkeit”	(cf.	Weierstrass,	1874:	313,	315,	316,	319).	
218	I	am	grateful	to	the	Bibliothek	des	Mathematischen	Instituts	of	the	Universität	Münster,	in	particular	to	Gaby	Weckermann	and	
especially	to	Martin	Paul,	for	scaning	the	printed	version	of	1986	of	Weierstrass	text	and	sending	me	the	file.	
219	I	am	grateful	to	the	Universitätsbibliothek	of	Giessen,	 in	particular	to	Olaf	Schneider,	 for	the	digitisation	of	this	notes	taken	by	
Moritz	Pasch	at	Berlin,	available	in	its	institutional	repository.	
220	In	a	 letter	to	Schwarz	dated	March	30,	1870,	Cantor	wrote	“dem	Weierstrass-Bolzanoschen	Satze	von	der	unteren	und	oberen	
Gränze.”	
221	In	the	footnote	above	mentioned,	Cantor	wrote	in	reference	to	a	proof	of	Schwarz:	“Dieser	Beweis	stützt	im	wesentlichen	auf	den	
Vorlesungen	des	Herrn	Weierstrass	häufig	vorkommenden	und	bewiesenen	Satz:	‘Eine	in	einem	Intervalle	(!… !)	(die	Grenzen	inkl.)	
der	reellen	Veränderlichen	!	gegebene,	stetige	Funktion	!(!)	erreicht	das	Maximum	!	der	Werte,	welche	sie	annehmen	kann,	zum	
mindesten	für	einen	Wert	!!	der	Veränderlichen,	so	dass	! !! = !’.”	Cf.	(Schwarz,	1890:	342).	
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notes	of	Weierstrass’	summer	course	of	1874	by	Georg	Hettner,	who	at	the	bottom	of	the	page	

added	a	reference	to	that	work	of	Bolzano	(cf.	Weierstrass,	1874:	304),	and	in	two	letters:	one	

from	Heine	 to	Schwarz	dated	March	8,	1870,	 in	which	 the	 former	 refers	 to	 the	 latter’s	use	of	

“the	Bolzano-Weierstrass	principle”	 (Dauben,	1990:	308);222	and	another	one	 from	Schwarz	 to	

Cantor	 dated	 April	 1,	 1870,	 in	 which	 the	 former	 refers	 to	Weierstrass’	 developments	 on	 the	

basis	 of	 “Bolzano’s	 principles”	 (Meschkowski,	 1967:	 228;	 cf.	 Meschkowski	 and	 Nilson,	 1991:	

24).223	

	

However,	as	all	 this	makes	clear	and	as	Cantor	years	 later	emphasized	(cf.	Cantor,	1884/1932:	

212),224	it	was	Bolzano’s	procedure	of	repeated	bisection	of	the	totality	of	values	of	!	between	
two	terms	to	obtain	the	least	greatest	value	!,	a	procedure	highly	valued	by	Weierstrass,	what	

later	would	be	turn	into	the	nowadays	commonly	known	Bolzano-Weierstrass	principle:	“given	a	

sequence	of	 closed	 intervals,	embedded	on	each	other,	 there	must	be	at	 least	one	point	 that	

belongs	 to	 every	 interval”	 (Ferreirós,	 2007:	 141).	 A	 principle,	 it	must	 be	 said,	 that	 indeed,	 as	

Cantor	 wrote,	 was	 “hardly	 replaceable”	 and	 offered	 a	 satisfactory	 characterization	 of	 the	

continuity	of	the	real	number	system,	alternative	to	the	cut	property	proposed	by	Dedekind	in	

1872.	

	

Leaving	 aside	 Cantor’s	 remark	 on	 that	 principle	 as	 a	 “very	 old”	 one	 whose	 authorship,	 he	

claimed,	should	not	be	attributed	to	Bolzano	and	Weierstrass,	the	fact	is	that	even	if	considered	

the	early	versions	of	the	latter	of	the	theorem	that	bears	the	name	of	them	two,	Bolzano’s	1817	

theorem	can	not	be	considered	equivalent	 to	 this	one,	not	 to	say	as	an	early	version	of	 it	 (cf.	

Moore,	2000).	It	is	true	that	the	early	forms	of	Weierstrass’	theorem	(i.e.	those	of	the	1860s),	as	

Bolzano’s	theorem,	do	not	include	any	explicit	mention	of	“set”,	“real	numbers”	or	“limit	point”,	

and	that	both	use	what	at	first	glance	may	seem	similar	proof	procedures.	But,	on	the	one	hand,	

concerning	 the	 terminological	 issue,	 it	 should	not	be	overlooked	 that	 in	 the	1860s,	 just	as	 set	

																																																													
222	Heine	wrote:	“Dagegen	leugne	ich	nicht,	dass	Ihr	Beweis	des	Hülfssatzes	nach	Bolzano-Weierstr.	Principien,	wie	schön	er	auch	ist,	
mir	nicht	völlig	beweisend	erscheint,	u[nd]	ich	deshalb	nicht	zugeben	kann,	dass	der	Satz	erledigt	sei.”	
223	Schwarz	wrote:	“Auch	ich	bekenne	mich	mit	Dir	zu	der	von	Herrn	Weierstrass	in	seinen	Vorlesungen	verfochtenen	Meinung,	dass	
man	ohne	die	 Schlussweise,	welche	 von	Herrn	W.	 auf	Bolzanoschen	Principien	weiter	 ausgebildet	 ist,	 bei	 vielen	Untersuchungen	
nicht	zum	Ziel	gelangen	könne.”	
224	Cantor	wrote:	“Ich	bemerke,	dass	die	hier	angewandte	Beweismethode,	welche	wohl	schwerlich	durch	eine	wesentlich	andere	
ersetzt	werden	kann,	ihrem	Kerne	nach	sehr	alt	ist;	in	neuerer	Zeit	findet	man	sie	unter	anderem	in	gewissen	zahlentheoretischen	
Untersuchungen	bei	Lagrange,	Legendre	und	Dirichlet,	 in	Cauchy’s	Cours	d’analyse	 (Note	troisième)	und	 in	einigen	Abhandlungen	
von	Weierstrass	und	Bolzano;	es	scheint	mir	daher	nicht	richtig,	sie	vorzugsweise	oder	aussechliesslich	auf	Bolzano	zurückzuführen,	
wie	solches	in	neuerer	Zeit	beliebt	worden	ist.”	
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theory	 was	 just	 about	 to	 begin	 to	 be	 developed,	 there	 was	 no	 consensus	 on	 the	 most	

appropriate	term	for	“set”,	for	which	not	only	the	German	term	Mannigfaltigkeit	was	used	(as	

Weierstrass	did	in	1886),	but	also,	for	example,	Menge	(cf.	Cantor,	1872/1932:	97ff.)	and	System	

(cf.	Dedekind,	1888:	2ff.).	

	

As	 a	 matter	 of	 fact,	 advocates	 of	 traditional	 reading	 take	 for	 granted	 that,	 first,	 the	 terms	

initially	used	by	Weierstrass	in	his	theorem	involve	a	conception	of	an	interval	of	points	as	a	set	

of	 real	 numbers	 and	 that,	 second,	 Bolzano’s	 theorem	was	 “at	worst”	 an	 early	 version	 of	 the	

former	and	therefore	asserted	a	property	of	real	numbers	at	least	similar	to	that	stated	by	the	

one	 of	 Weierstrass.	 Which	 means	 that,	 according	 to	 the	 more	 common	 claim	 among	 those	

authors,	 what	 we	 have	 been	 taught	 as	 “Bolzano-Weierstrass	 theorem”	 deserves	 that	 name	

since:	a)	Bolzano’s	quantity	!	(the	[least]	greatest	quantity	for	which	all	the	values	of	a	variable	
quantity	!	smaller	 than	 it	 posses	 a	 property	!)	 corresponds	 to	Weierstrass’	 “[limit]	 point”	 or	

“limit	place”	!;	b)	Bolzano’s	totality	of	values	of	“variable	quantity	!”	between	a	certain	value	!	
(call	 it	!)	 and	 another	 value	! + !	(being	!	a	 positive	quantity;	 call	 it	!)	 corresponds	 to	what	
Weierstrass	 called	a	 “bounded	part	of	plane”,	 a	 “limited	or	bounded	 realm”	or	a	 “region	of	a	

real	 quantity”,	 which	 in	 turn	 means	 that	 Bolzano	 referred	 to	 an	 interval	 of	 modern	 real	

numbers;	and	c)	Bolzano’s	proof	procedure	of	repeated	bisection	(of	the	totality	of	values	of	!	
between	 two	 terms	 to	 obtain	 a	 least	 greatest	 value	!)	 corresponds	 to	 Weierstrass’	 proof	

procedure	of	subdivision	of	an	interval	(which	he	would	later	call	“variety”,	i.e.	‘set’)	of	points.	

	

In	order	to	sustain	such	an	argument,	two	assumptions	must	be	made.	The	first	one	is	that	there	

is	 no	 essential	 difference	 between	 Bolzano’s	!,	 used	 in	 his	 proof	 of	 that	 theorem,	 and	 the	

Weierstrassian	! ,	 something	 that	 is	 a	 huge	 assumption,	 as	 said	 before	 and	 as	 will	 still	 be	

discussed	 later.	The	second	assumption	has	to	do	with	the	 identification	of	Weierstrass	of	“an	

unbounded	 variable	 magnitude,	 which	 [formed]	 a	 simple	 manifold”,	 with	 its	 geometrical	

representation	by	a	straight	line	(Weierstrass,	1886:	60);225	an	entirely	valid	procedure,	given	his	

satisfactory	theory	of	real	numbers,	with	which	Bolzano	would	have	dissented	in	1817.	Indeed,	

one	of	the	few	places	throughout	his	1816	work	on	the	binomial	theorem	and	his	Purely	Analytic	

Proof	where	he	used	the	term	“point”	as	identified	with,	traditional	reading	would	say,	the	value	

																																																													
225	Weierstrass	wrote:	“Ist	!	eine	unbeschränkt	veränderliche	Grösse,	die	–	wie	man	sagt	–	eine	einfache	Mannigfaltigkeit	bildet	und	
geometrisch	durch	eine	Gerade	rapräsentiert	wird.”	Both	Cantor	and	Dedekind	stressed	their	right	to	do	so	in	their	works	of	1872	
(cf.	Cantor,	1872/1932:	97;	Dedekind,	1872:	18-19).	
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of	a	Weierstrassian	real	quantity,226	was	 in	the	preface	of	that	 latter	work.	There,	he	regarded	

the	type	of	proof	of	the	intermediate	value	theorem	that	depended	on	geometric	continuity	as	

an	 invalid	 mathematical	 procedure	 due	 to	 the	 subordination	 of	 geometry	 to	 analysis	 (cf.	

Bolzano,	 1817B:	 6).227	But,	 even	 if	 it	 is	 assumed	without	 granting	 that	Bolzano	wanted	 to	 talk	

about	 our	 real	 numbers,	 there	 is	 no	 notion	 of	 “[limit]	 point”	 or	 “limit	 place”	 of	 a	 set	 in	 his	

theorem,	 as	 there	 is	 no	 repeated	 subdivision	 of	 an	 interval	 conceived	 as	 a	 set	 of	 points	 (nor	

notion	of	 a	 subinterval	with	 infinitely	many	points	 as	members)	 in	Bolzano’s	 proof,	 as	Moore	

pointed	out	(cf.	Moore,	2000:	172-175).	

	

Curiously,	supporters	of	the	traditional	interpretation	also	claim,	albeit	from	another	dais,	that	

in	another	sense	Bolzano’s	procedure	of	repeated	bisection	is	evidence	of	the	modernity	of	his	

early	 mathematical	 proposal.	 “For	 Bolzano	 as	 for	 Cauchy,”	 Judith	 V.	 Grabiner	 wrote,	 “the	

algebra	 of	 inequalities	 played	 an	 important	 role	 in	 proofs”	 (Grabiner,	 1981:	 10).	 Precisely,	

according	to	this	argument,	the	outstanding	nature	of	the	analytical	proposal	of	those	authors	is	

linked	 to	 some	 extent	 to	 the	 relevance	 given	 by	 both	 to	 that	 procedure,	 as	 shown	 by	 their	

convergence	criteria:	

	

If	a	series	of	quantities	!!!,!!!,!!!,… ,!!!,… ,!!!!!,…	has	the	property	that	the	difference	between	 its	
nth	term	!!!	and	every	later	one	!!!!!,	no	matter	how	far	this	is	from	that	one,	remains	smaller	than	any	

given	quantity	 if	one	has	assumed	n	 large	enough,	then	there	is	every	time	a	certain	constant	quantity,	and	

indeed	only	one,	which	the	terms	of	this	series	always	approach	more	and	to	which	they	can	come	as	close	as	

one	simply	wants	if	one	continues	the	series	far	enough.	(Bolzano,	1817B:	35)228	

	

[For]	series	(1)	[!!,!!,!!,… ,!!,!!!!,&!.…]	to	be	convergent,	it	is	first	of	all	necessary	that	the	general	term	

!!	decrease	 indefinitely	as	!	increases.	But	 this	condition	does	not	suffice,	and	 it	 is	also	necessary	 that,	 for	
increasing	values	of	!,	the	different	sums,	!! + !!!!,!! + !!!! + !!!!,&!.….,	that	is	to	say,	the	sums	of	as	

many	 of	 the	 quantities	!!,!!!!,!!!!,&!.…,	 as	 we	 may	 wish,	 beginning	 with	 the	 first	 one,	 eventually	

																																																													
226	Probably	 the	only	other	place	 in	 those	works	where	such	 identification	can	be	 found	 is	 in	 the	§13	of	his	Purely	Analytic	Proof,	
when	he	exemplified	his	so-called	“least	upper	bound”	theorem	by	means	of	a	rectangular	hyperbola	(cf.	Bolzano,	1817B:	49-50).	
227	Bolzano	wrote:	 “Eine	 jede	 continuirlicheLinie	 von	 einfacher	 Krümmung,	 deren	Ordinaten	 erst	 positiv,	 dann	 negativ	 sind	 (oder	
umgekehrt),	die	Abscissenlinie	nothwendig	irgendwo	in	einem	Puncte,	der	zwischen	jenen	Ordinaten	liegt,	durch	schneiden	müsse.”	
228 	Bolzano	 wrote:	 “Wenn	 eine	 Reihe	 von	 Grössen	!!!,!!!,!!!,… ,!!!,… ,!!!!!,… ,	 von	 der	 Beschaffenheit	 ist,	 dass	 der	
Unterschied	zwischen	ihrem	nten	Gliede	!!!	und	jedem	späteren	!!!!!,	sey	dieses	von	jenem	auch	noch	so	weit	entfernt,	kleiner	
als	 jede	 gegebene	 Grösse	 verbleibt,	 wenn	man	 n	 gross	 genug	 angenommen	 hat:	 so	 gibt	 es	 jedesmahl	 eine	 gewisse	 bestandige	
Grösse,	und	zwar	nur	eine,	der	sich	die	Glieder	dieser	Reihe	immer	mehr	nähern,	und	der	sie	so	nahe	kommen	können,	als	man	nur	
will,	wenn	man	die	Reihe	weit	genug	fortsetzt.”	Bolzano	actually	places	the	superscript	above	the	corresponding	term.	Henceforth,	
whenever	this	is	not	the	kind	of	superscript	employed	by	Bolzano,	it	will	be	indicated.	
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constantly	 assume	 numerical	 values	 less	 than	 any	 assignable	 limit.	 Conversely,	 whenever	 these	 various	

conditions	are	fulfilled,	the	convergence	of	the	series	is	guaranteed.	(Cauchy,	1821:	125-126)229	

	

So,	even	though	Cauchy	introduced	his	criterion	without	any	attempt	to	prove	it,	it	is	normally	

quoted	 as	 evidence	 of	 his	 “inequality-based	 limit	 concept”	 the	 proof	 that	 he	 offered	 of	 the	

theorem	 known	 as	 the	 Root	 Test:	 supposed	 that	! < 1	for	 which	! < ! < 1,	 and	 given	 the	

inequality	 (!!)
!
! < ! 	or	!! < !! ,	 “the	 terms	 of	 the	 series	!!, !!, !!,… , !!!!, !!!!,… 	are	

eventually	 always	 smaller	 than	 the	 corresponding	 terms	 of	 the	 geometric	 progression	

1,!,!!,… ,!!,!!!!,!!!!,…”,	being	the	progression	convergent	(since	! < 1)	and	concluding	
“a	fortiori	 the	convergence	of	series”	!!, !!, !!,… , !!,…	with	all	 terms	positive	(Cauchy,	1821:	

132-133).230	

	

By	 contrast,	 with	 regard	 to	 Bolzano’s	 criterion,	 first,	 it	 is	 usually	 recognized	 as	 a	 clear	

anticipation	 of	 “Cauchy’s	 criterion”.	 That	 way:	 a)	 what	 Bolzano	 called	 a	 “certain	 constant	

quantity”	is	interpreted	as	what	Cauchy	calls	an	“assignable	limit”;	b)	what	the	former	denoted	

by	!!!,!!!!!,!!!!!,… ,!!!!! 	(“the	 sums	 of	 the	 first	!, ! + 1, ! + 2,… , ! + ! 	terms”	 of	 a	

series,	 given	 a	 continuous	 variation)	 is	 identified	with	 the	 sums	 referred	 by	 the	 latter;	 and	 c)	

Bolzano’s	!	are	 considered	 equivalent	 to	 Cauchy’s	!,	 with	!(! + !)	equal	 to	!(! + !).231	But,	
secondly,	Bolzano’s	proof	of	his	criterion	is	frequently	criticized	because,	it	is	said,	he	“[sought]	

to	justify	it	by	a	reasoning	which,	in	the	absence	of	any	arithmetic	definition	of	real	number,	was	

and	could	only	be	a	vicious	circle”	(Bourbaki,	1971/2007:	TG	IV.72;	cf.	Steele,	1950:	29-30;	Flett,	

1980:	57).232	In	other	words,	it	is	commonly	pointed	out	that	the	defect	of	his	proof	is	that	“[he]	

was	forced	to	introduce	a	fresh	assumption	the	existence	of	a	quantity	!	to	which	the	terms	of	
																																																													
229 	Cauchy	 wrote:	 “Donc,	 pour	 que	 la	 série	 (1)	 soit	 convergente,	 il	 est	 d’abord	 nécessaire	 que	 le	 terme	 général	!! 	décroisse	
indéfiniment,	tandis	que	!	augmente;	mais	cette	condition	ne	suffit	pas,	et	il	faut	encore	que,	pour	des	valeurs	croissantes	de	!,	les	
différentes	sommes	!! + !!!!,!! + !!!! + !!!!,&!.…,	 c’est-à-dire,	 les	 sommes	es	quantités	!! ,!!!!,!!!!,&!.…	prises,	à	partir	
de	la	première,	en	tel	nombre	que	l’on	voudra,	finissent	par	obtenir	constamment	des	valeurs	numériques	inférieures	à	toute	limite	
assignable.	Réciproquement,	lorsque	ces	diverses	conditions	sont	remplies,	la	convergence	de	la	série	est	assurée.”	The	translation	is	
from	Robert	E.	Bradley	and	C.	Edward	Sandifer	(Bradley	and	Sandifer,	2000:	86-87).	
230	Cauchy	wrote:	 “Par	 suite,	 il	 sera	 possible	 d’attribuer	 au	 nombre	 entier	!	une	 valeur	 assez	 considérable,	 pour	 que,	!	obtenant	
cette	même	valeur	ou	une	valeur	plus	grande	encore,	on	ait	constamment	(!!)

!
! < !,	!! < !!.	 Il	en	résulte	que	les	termes	de	la	

série	!!,!!,!!,… ,!!!!,!!!!,&!.…	finiront	par	être	 toujours	 inférieurs	aux	 termes	correspondans	de	 la	progression	géométrique	
1,!,!!,… ,!! ,!!!!,!!!!,&!.…;	 et,	 comme	 cette	 progression	 est	 convergente	 (à	 cause	 de	! < 1),	 on	 peut	 de	 la	 remarque	
précédente	 conclure	à	 fortiori	 la	 convergence	 de	 la	 série	 (1).”	 The	 translation	 is	 from	Robert	 E.	 Bradley	 and	 C.	 Edward	 Sandifer	
(Bradley	and	Sandifer,	2000:	91).	
231	Hourya	Benis	Sinaceur,	for	example,	wrote:	“Bolzano	n’explique	pas	Cauchy,	mais	il	peut	certainement	être	considéré	comme	un	
précurseur	de	Weierstrass,	même	si	c’est,	en	fait,	sous	 l’impulsion	 imprimée	par	Cauchy	et	à	partir	de	 l’héritage	qu’il	a	 laissé	que	
Weierstrass	a	développé	sa	propre	manière	de	faire	des	mathématiques”	(cf.	Sinaceur,	1973:	111-112).	For	an	account	of	Bolzano’s	
!	as	pretty	similar	quantities	to	Cauchy’s	!,	cf.	(Rusnock	and	Kerr-Lawson,	2005:	306,	fn.	7).	
232 	Nicolas	 Bourbaki	 wrote:	 “Énonçant	 clairement	 (avant	 Cauchy)	 le	 <	 critère	 de	 Cauchy	 >,	 il	 cherche	 à	 le	 justifier	 par	 un	
raisonnement	qui,	en	l’absence	de	toute	définition	arithmétique	du	nombre	réel,	n’était	et	ne	pouvait	être	qu’un	cercle	vicieux.”	
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the	series	approach	as	close	as	we	please	[...],	but	it	was	precisely	what	he	was	trying	to	prove	in	

the	first	place”	(Stedall,	2008:	496).	

	

Regardless	that,	it	is	true	that	Bolzano	used	inequalities	in	his	proof	of	his	convergence	criterion,	

as	well	as	throughout	his	three	works	of	1816-1817.	Even	more,	they	play	an	essential	role	both	

in	that	proof	and	in	the	one	of	his	theorem	of	the	[least]	greatest	bound	value.	In	the	first	case,	

when	he	 showed	 that	 the	assumption	of	 the	constant	 “real	quantity”	 (reelle	Grösse)	 to	which	

the	 terms	 of	 the	 aforementioned	 [sequence	 of]	 partial	 sums	 could	 converge,	 “contain[ed]	

nothing	impossible”	and	could	be	determined	as	accurately	as	one	would	like,	he	wrote:	

	

But	the	difference	!!! − !!!!!	always	remains	< ±!	[a	given	quantity],	however	large	!	is	taken.	Therefore,	
the	 difference	! − !!! = ! − !!!!! − (!!! − !!!!!)	must	 also	 always	 remain	< ±(! + !).	 But	 since	
for	 the	same	!	this	 is	a	constant	quantity,	while	!	can	be	made	as	small	as	we	please	by	 increasing	!,	 then	
! − !!!	must	be	=	or	< ±!.	For	if	it	were	greater	and	= ±(! + !),	for	example,	it	would	be	impossible	for	

the	relation	! + ! < ! + !,	i.e.	! < !,	to	hold	if	!	is	reduced	further.	(Bolzano,	1817B:	36-37)233	
	

In	the	second	case,	Bolzano’s	repeated	bisection	of	the	totality	of	values	of	!	between	!	and	!,	
to	obtain	!,	precisely	rested	on	inequalities:	given	a	value	!	of	the	variable	quantity	!	for	which	
property	!	applies	to	all	values	smaller	than	 it,	and	considered	a	quantity	! = ! + !	(being	!	
positive)	for	which	that	property	does	not	apply	to	all	values	< !,	he	asked	whether	!	applied	

to	all	values	of	! < ! + !
!!	(with	exponent	0	or	positive	integer)	or	not	and,	if	so,	if	it	applied	to	

all	values	of	! < !
!! +

!
!!!!	(with	exponent	0	or	positive	integer)	and	so	on,	until	either	found	a	

value	 of	! 	of	 the	 form	! + !
!! +

!
!!!! +⋯+ !

!!!!!⋯!! 	(call	 it	 A),	 for	 which	 the	 property	!	

applied	for	all	values	of	!	smaller	than	it,	or	found	!	applied	for	all	values	of	!	smaller	than	the	

value	 of	 the	 latter	 form	 but	 not	 to	 all	< ! + !
!! +

!
!!!! +⋯+ !

!!!!!⋯!!!!	(call	 it	 form	 B)	 (cf.	

Bolzano,	1817B:	41-46).	After	which,	 in	 the	second	case	scenario,	Bolzano	made	the	 following	

remark:	 since	 the	 quantity	 of	 “form	 A”	 had	 the	 property	 that	 the	 change	 in	 value	 always	

remained	 smaller	 than	 a	 certain	 quantity	 (§5),	 such	 a	 quantity	 could	 be	 allowed	 to	 be	!,	 the	
																																																													
233	Bolzano	 wrote:	 “Der	 Unterschied	!!! − !!!!!	bleibt	 aber	 jederzeit,	 so	 gross	 man	 auch	!	nehme,	< ±!.	 Also	 muss	 auch	 der	
Unterschied	! − !!! = ! − !!!!! − (!!! − !!!!!) 	jederzeit	< ±(! + !) 	verbleiben.	 Da	 aber	 derselbe	 bey	 einerley	! 	eine	
beständige	Grösse	 ist,	!	dagegen	durch	die	Vergrösserung	von	!	so	klein	gemacht	werden	kann,	als	man	nur	 immer	will:	 so	muss	
! − !!! =	oder	< ±!	seyn.	Denn	wäre	es	grösser	und	z.	B.	= ±(! + !);	so	könnte	unmöglich	das	Verhältniss	! + ! < ! + !,	d.h.	
! < !	bestehen,	wenn	man	!	immer	mehr	verkleinert.	Der	wahre	Werth	von	!	ist	 also	von	dem	Werthe,	den	das	Glied	!!!	hat,	
höchstens	um	!	verschieden;	und	lässt	sich	daher,	da	man	!	nach	Belieben	klein	annehmen	kann,	so	genau,	als	man	nur	immer	will,	
bestimmen.”	This	is	the	exact	translation	in	(Russ,	2004:	267).	



	 149	

quantity	for	which	property	!	applied	for	all	! < !,	as	he	showed	through	inequalities	involving	
!	(Bolzano,	1817B:	46-48).	
	

Once	 again,	 the	most	widespread	opinion	 among	 the	proponents	of	 the	 traditional	 reading	 is	

that,	in	spite	of	the	absence	of	a	rigorous	definition	of	real	numbers	and	the	flaws	that	it	caused,	

Bolzano’s	early	mathematical	work	unequivocally	 shows	 that	he	–along	with	Cauchy–	was	 the	

“precursor	of	those	who	rigorised	the	calculus	by	means	of	a	sophisticated	limit	concept	and	an	

emphasis	 on	 the	 arithmetic	 character	 of	 the	 key	 definitions”	 (Gray,	 2015:	 240;	 this	 is	 Gray’s	

summary	 of	 that	 tendency).	 Furthermore,	 for	 some	 of	 those	 authors	 it	 shows	 that	 he	 was	

indeed	a	precursor	of	“[t]he	project	of	putting	the	theory	of	the	real	line	on	a	solid,	arithmetical	

foundation”	 (Ewald,	1999:	226).	Because,	 they	stress,	 it	 is	not	only	 that	he	demanded	pure	 (=	

geometric-free)	analytical	procedures	and	that	he	had	a	certain	insight	on	modern	real	numbers,	

but	also	that	as	a	result	he	provided	some	notions	and	procedures	that	anticipated	some	later	

arithmetizing	ones.	

	

And	yet,	the	question	persists	whether,	remaining	faithful	to	Bolzano’s	notions	of	quantity	and	

number,	 as	 well	 as	 to	 his	 conception	 of	 mathematics,	 his	 early	 mathematical	 work	 can	 be	

interpreted	 as	 proto-Weierstrassian	 or	 pre-Weierstrassian;	 a	 denomination,	 the	 latter,	 under	

which	 several	 Germanic	 mathematicians	 from	 the	 first	 half	 of	 the	 19th	 century	 could	 be	

mentioned	 (e.g.	 Gauss,	 Ohm	 and	 Kronecker).	 In	 other	words,	 the	 key	 question	 is	whether	 to	

attribute	 to	Bolzano	 the	 role	of	 a	mathematician	 that	 anticipated	 the	arithmetizing	project	of	

Weierstrass	 and	 others,	 as	 well	 as	 some	 of	 his	 procedures	 and	 notions,	 or	 if	 doing	 so	

misinterprets	 Bolzano’s	 work	 by	 1817	 or,	 even	 worse,	 contravenes	 his	 early	 mathematical	

proposal.	

	

That	said,	in	order	to	finally	elucidate	those	core	notions	within	Bolzano’s	analytical	framework,	

and	 once	 some	 important	 features	 of	 the	main	 results	 contained	 in	 his	Purely	 Analytic	 Proof	

have	 been	 discussed,	 attention	 should	 be	 focused,	 at	 an	 ‘external’	 level,	 on	 the	 connection	

between	his	Purely	Analytic	 Proof	 and	his	 other	 two	works	of	 1816-1817,	 as	well	 as	 between	

those	 three	and	 the	ones	of	 1810	and	1804.	While,	 at	 an	 ‘internal’	 level,	 attention	 should	be	

paid	 to	 some	 crucial	 details	 of	 his	 early	 mathematical	 practices,	 such	 as:	 a)	 his	 distinction	

between	 quantities	 and	 numbers;	 b)	 his	 identification	 between	 ‘real’	 (reellen)	 and	 ‘actual’	
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(wirklichen)	 quantities;	 c)	 his	 use	 of	 irrational	 quantities;	 d)	 his	 work	 with	 series;	 and	 e)	 his	

introduction	of	multitudes	of	infinite	elements.	

	

To	 begin	 with,	 it	 is	 worth	 remembering	 the	 difference	 that	 Bolzano	 established	 between	

mathematics	 and	 philosophy,	 for	 him	 the	 two	main	 parts	 of	 human	 a	 priori	 knowledge:	 the	

former	 dealt	 “with	 the	 general	 conditions	 under	 which	 the	 existence	 of	 things	 becomes	

possible”,	while	the	latter	sought	to	“prove	a	priori	the	reality	[or	‘actuality’]	of	certain	objects”	

(Bolzano,	1810:	13).234	As	a	consequence,	“practical	mathematics”	dealt	with	“how	and	in	what	

way	 I	 produce	 in	 reality	 an	 object	 analogous	 to	 [a]	 concept”	 (cf.	 Bolzano,	 1810:	 131-132),235	

geometry	and	chronometry	dealt	“indirectly	[since	they	study	the	properties	of	space	and	time	

“in	abstracto”]	with	the	conditions	to	which	things	must	conform	 in	their	existence”	 (Bolzano,	

1810:	 23)236	and	 all	 of	 them	were	 subordinated	 to	 what	 he	 called	 “general	mathesis”,	 which	

dealt	with	 the	 laws	 or	 forms	 to	which	 all	 things	 (alle	 Dinge)	must	 conform	 in	 their	 existence	

(Bolzano,	1810:	16-17).	

	

Mathematics	for	Bolzano,	therefore,	dealt	with	things	that	existed	not	only	“independent	of	our	

consciousness”	 (von	 unserem	 Bewutztseyn	 unabhängiges),	 but	 also	 “in	 our	 imagination”	 (in	

unsrer	 Vorstellung);	 or,	 as	 he	 summed	 it	 up,	mathematics	 dealt	 with	 “everything	 that	 can	 in	

general	 become	 an	 object	 of	 our	 capacity	 for	 representation”	 (Bolzano,	 1810:	 11-12). 237	

However,	 in	order	to	mathematically	study	things,	quantities	still	played	a	crucial	role	for	him.	

Hence	his	 remark,	 in	his	work	of	1810,	 that	 the	concept	of	quantity	 (i.e.	a	 concept	of	general	

mathesis)	 could	be	applied	 “to	all	objects,	 even	 to	objects	of	 thought”	 (auf	alle	Gegenstände,	

selbst	 auf	 Gedankendinge)	 (Bolzano,	 1810:	 6).	 That	way,	 for	 example,	 just	 as	 the	 length	 of	 a	

wooden	 beam	 (empirical	 object)	 could	 be	 quantified	 geometrically	 if	 considered	 as	 a	 –finite–	

straight	 line	 (an	object	of	 thought),	 variable	 things	 that	existed	 in	 space	and	 time	 (such	as,	 to	

quote	 some	 prevailing	 examples	 in	 the	 Germanic	 context,	 “gravity,	 force	 directed	 upwards;	

																																																													
234	Bolzano	wrote:	“wären	einander	nach	dieser	Erklärung	dergestalt	entgegen	gesetzt,	dass	erstere	die	allgemeinen	Bedingungen	
abhandelte,	 unter	 welchen	 das	 Daseyn	 der	 Dinge	 möglich	 wird;	 die	 letztere	 dagegen	 versuchte,	 die	 Wirklichkeit	 gewisser	
Gegenstände	[...]	a	priori	zu	beweisen.”	
235	Bolzano	wrote:	“Wie	und	auf	welche	Weise	ich	ein	Gegenstand	analog	diesem	Begriffe	in	der	Wirklichkeit	darstellen	lasse,	gehört	
in	die	präktische	Mathematik.”	
236	Bolzano	wrote:	“Entwickeln	wir	also	die	Eigenschaften	der	Zeit	und	des	Raumes	in	abstracto,	und	ordnen	sie	wissenschaftlich;	so	
werden	auch	diese	Wissenschaften	zur	Mathematik	gezählet	werden	müssen,	indem	auch	sie,	obgleich	nur	mittelbarer	Weise,	von	
den	Bedingungen	handeln,	nach	welchen	sich	die	Dinge	in	ihrem	Daseyn	richten	müssen.”	
237	Bolzano	wrote:	“alles,	was	überhaupt	ein	Gegenstand	unsers	Vorstellungsvermögens	werden	kann.”	In	this	case	it	is	opt	for	Russ’	
translation	of	“Vorstellungsvermögens”	as	“capacity	for	representation”	and	not	as	“capacity	for	imagination”	since	it	seems	entirely	
more	appropriate	than	this	latter	more	literal	translation	(cf.	Russ,	2004:	94).	
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[and]	 water	 flowing	 into	 vessel,	 water	 emanating	 [from	 it]”	 (Segner,	 1758:	 5))238	could	 be	

quantified	analytically.	

	

A	crucial	trait	here	is	that,	for	Bolzano,	the	“objects	of	thought”	were,	as	redundant	as	it	sounds,	

a	sort	of	 things	and,	 thus,	 they	were	“real”	 in	a	certain	way	or,	plainly,	 they	were	“something	

real”	 (etwas	 Wirklichem)	 (cf.	 Bolzano,	 1810:	 142).	 Lines,	 surfaces	 (cf.	 Bolzano,	 1804:	 47-48),	

analytical	quantities,	numbers	and	any	other	object	of	thought	were	therefore	to	be	considered	

as	 real.	That	explains	why	 in	his	Purely	Analytic	Proof,	when	he	talked	about	a	“real	quantity”	

(reellen	Grösse),	he	also	referred	to	it	as	a	quantity	that	“actually”	existed:	“for	anyone	who	has	

a	correct	concept	of	quantity,”	he	said,	“the	idea	of	an	!	which	is	the	greatest	of	those	of	which	
it	 may	 be	 said	 that	 all	 smaller	 ones	 possess	 the	 property	!,	 is	 the	 idea	 of	 a	 real,	 i.e.	 actual	

quantity”	 (Bolzano,	 1817B:	 23).239	As	 a	 passage	 of	 his	 1810	 work	 suggests,	 real	 or	 actual	

quantities	 in	 a	 sense	 were	 opposed	 to	 what	 he	 called	 “symbolic	 expressions”	 (symbolischer	

Ausdruck):	

	

The	best	procedure	might	well	be	 to	count	as	higher	mathesis	only	 that	 in	which	the	concept	of	an	 infinity	

(whether	 infinitely	 big	 or	 small),	 or	 of	 a	 differential,	 appears.	At	 the	present	 time	 this	 concept	has	not	 yet	

been	 sufficiently	 explained.	 If,	 in	 the	 future,	 it	 should	 be	 decided	 that	 the	 infinite	 or	 the	 differential	 are	

nothing	 but	 symbolic	 expressions	 just	 like	 −1	and	 similar	 expressions,	 and	 if	 it	 also	 turns	 out	 that	 the	

method	of	proving	truths	using	purely	symbolic	inventions	is	a	method	of	proof	which	is	indeed	quite	special,	

but	is	always	correct	and	logically	admissible,	then	I	believe	it	would	be	most	appropriate	to	continue	to	refer	

the	 concept	 of	 infinity,	 and	 any	 other	 equally	 symbolic	 concept,	 to	 the	 domain	 of	 higher	 mathematics.	

Elementary	mathesis	would	then	be	that	which	accepts	only	real	concepts	or	expressions	in	its	exposition—

higher	mathesis	that	which	also	accepts	purely	symbolic	ones.	(Bolzano,	1810:	30-31)240	

	

																																																													
238	Segner	 wrote:	 “Caeterum	 infinita	 sunt	 quantitatum	 genera,	 quarum	 altera	 refertur	 ad	 alteram,	 quemadmodum	 progressus	
refertur	ad	regressum,	ascensus	ad	descensum,	vel	motus	quicunque	versus	aliquam	partem,	ad	motum	versus	partem	oppositam.	
Tales	sunt,	possessiones,	debita;	accepta,	expensa;	gravitas,	vis	sursum	directa;	aqua	in	vas	influens,	aqua	effluens,	&	aliae	plurimae,	
quarum	quaedam	in	sequentibus	clare	exponentur.”	
239	Bolzano	wrote:	“für	Jeden,	der	einen	richtigen	Begriff	von	Grösse	hat,	[...]	der	Gedanke	eines	!,	welches	das	grösste	derjenigen	ist,	
von	denen	gesagt	werden	mag,	dass	alle	unter	ihm	stehende	die	Eigenschaft	!	hesitzen,	der	Gedanke	einer	reellen	d.	h.	wirklichen	
Grösse	sey.”	
240	Here	the	translation	of	Russ	 is	slightly	modified	 (cf.	Russ,	2004:	100).	Bolzano	wrote:	“Am	besten	dürfen	wohl	noch	diejenigen	
verfahren,	welche	zur	höheren	Mathesis	bestimmt	nur	das	zählen,	worin	der	Begriff	eines	Unendlichen	(gleichviel	ob	eines	unendlich	
Grossen	oder	Kleinen)	oder	der	 eines	Differenzials	 vorkömmt.	Nur	 ist	 dieser	Begriff	 zur	 Stunde	noch	nicht	hinlänglich	 aufgeklärt.	
Sollte	es	aber	dereinst	entschieden	werden,	dass	das	Unendliche,	oder	das	Differenzial,	nichts	anders	als	ein	symbolischer	Ausdruck	
sey,	gerade	wie	 −1,	dgl.;	und	sollte	es	sich	zugleich	ergeben,	dass	die	Methode,	das	Wahre	durch	bloss	symbolische	Erdichtungen	
zu	beweisen,	eine	zwar	ganz	besondere,	aber	doch	immer	richtige	und	logisch	zulässige	Beweisart	sey:	dann,	glaube	ich,	würde	man	
am	zweckmätzigsten	verfahren,	 in	das	Gebiet	der	höheren	Mathematik	mit	dem	Begriffe	des	Unendlichen,	auch	 jeden	andern	zu	
verweisen,	der	 so	wie	er	 symbolisch	 ist.	Gemeine	Mathesis	wäre	dann	 jene,	welche	nur	 lauter	 reelle	–höhere,	welche	auch	bloss	
symbolische	Begriffe	oder	Ausdrücke	in	ihren	Vortrag	aufnimmt.”	
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On	the	one	hand,	therefore,	it	is	worth	noting	that	Bolzano	not	only	rejected	the	mathematical	

knowledge	of	 the	 so-called	 “infinitely	 small	 quantities”,	 as	 stressed	 in	his	works	of	1816-1817	

(cf.	Bolzano,	1816:	IV-V;	Bolzano,	1817B:	12;	Bolzano,	1817A:	VII-VIII),	but	also	of	the	so-called	

“infinitely	big”	quantities	(cf.	Bolzano,	1817B:	16).	This	shows	a	consistency	absent	in	the	works	

of	 many	 of	 his	 Germanic	 predecessors	 and	 contemporaries.	 From	 his	 stance,	 both	 were	

erroneously	 called	 ‘quantities’	 inasmuch	 as	 they	 could	 not	 be	 determined	 (i.e.	 finitely	

quantified).	Consequently,	while	 for	many	Germanic	mathematicians	of	 the	second	half	of	 the	

18th	century	one	was	entitled	to	use	 infinitely	 large	quantities	as	= ∞,	but	not	 infinitely	small,	

for	Bolzano	the	latter	was	a	“self-contradictory”	(selbst	widersprechenden)	concept	(cf.	Bolzano,	

1816:	XI;	Bolzano,	1817A:	VIII)	and	the	former	stood	for	an	undetermined	value:	a	function	
!

!!!,	

he	wrote,	 “does	not	have	any	determinate	value	 [keinen	bestimmten	Werth]	when	! = !,	but	
becomes	 what	 is	 called	 infinitely	 big”	 (Bolzano,	 1817B:	 15-16).	 Moreover,	 Bolzano	 openly	

criticized	the	introduction	of	infinitesimals	by	means	of	quantities	that	some	authors	“first	used	

as	divisors	[but]	in	the	end	made	to	zero”,	a	procedure	that	could	“never	be	allowed,	since	it	is	

quite	possible	to	divide	by	every	finite	(i.e.	actual)	quantity,	but	never	by	a	zero	(i.e.	by	nothing)”	

(Bolzano,	1816:	XI	&	XIV-XV;	cf.	Bolzano,	1817A:	IX-X).241		

	

Additionally,	it	should	not	be	overlooked	that,	while	Bolzano	said	that	maybe	in	the	future	those	

infinitely	small	and	big	“quantities”	could	be	decided	to	be	“symbolic	expressions”	(or	“tools”,	in	

terms	alien	to	Bolzano),	he	listed	among	these	ones	what	we	call	today	“imaginary	numbers”,	as	

for	 example	 Cauchy	 and	 Jandera	would	 later	 do	 (cf.	 Bolzano,	 1810:	 30;	 Cauchy,	 1821:	 iij-iv	&	

173ff.;	 Jandera,	 1830:	 XXIX).	 In	 fact,	 such	 an	 understanding	 of	 imaginary	 expressions	 can	 be	

found	not	only	at	the	beginning	of	the	preface	to	that	work,	where	he	said	that	the	chapter	on	

irrational	and	imaginary	quantities”	was	an	ambiguous	one	(cf.	Bolzano,	1810:	V),242	but	also	in	

his	work	on	the	binomial	theorem.	In	that	work,	Bolzano	introduced	“imaginary	expressions”	a	

couple	 of	 times,	 namely,	(1 + !)
!!!!
!! 	for	! > −1!	(Bolzano,	 1816:	 47)	 and	(!!)

!!!
! ,	 with	!	of	

the	form	
!!!!
! 	and	!	even	(Bolzano,	1816:	114).	But	above	all,	in	that	work	he	contrasted	a	real	

with	an	imaginary	value	(cf.	Bolzano,	1816:	130)	and,	in	the	final	note,	he	explained	the	reasons	
																																																													
241	Bolzano	 wrote:	 “Sie	 lassen	 Grössen,	 welche	 sie	 erst	 als	 Divisoren	 gebraucht,	 am	 Ende	 Null	 bedeuten;	 welches	 nach	 meiner	
Meinung	niemahls	erlaubt	seyn	kann,	indem	es	wohl	möglich	ist,	mit	jeder	endlichen	(d.	i.	wirklichen)	Grösse,	nie	aber	mit	einer	Null	
(d.	i.	mit	Nichts)	zu	dividiren.”	
242 	Bolzano	 wrote:	 “Noch	 schwankender,	 und	 zum	 Theile	 mit	 wechselseitigen	 Widersprüchen	 erfüllt,	 ist	 das	 Capitel	 von	 den	
irrationalen	 und	 imaginären	Grössen.”	 Steve	Russ	 translated	here	 “Grössen”	 for	 “numbers”	 (Russ,	 2004:	 87),	 a	modification	 that	
according	to	this	thesis	contravenes	Bolzano’s	early	mathematical	proposal.	
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for	 his	 deliberate	 avoidance	 of	 the	 cases	 of	 series	 corresponding	 to	 certain	 expressions	 that	

involved	 concepts	 that,	 he	 said,	 should	 first	 be	 “clearly	 developed	 if	 one	 want[ed]	 to	 decide	

thoroughly”	 on	 those	 questions	 (deutlich	 entwickelt	 haben,	 wenn	 man	 über	 obige	 Fragen	

gründlich	 entscheiden	 will),	 such	 as:	 “imaginary	 expressions”	 (imaginärer	 Ausdrücke),	 “the	

irrationality	 of	 a	 quantity”	 (der	 Irrationalität	 einer	 Grösse),	 “the	 mathematical	 opposites”	

(mathematischen	 Gegensatzes)	 and	 “potentiation	 [raising	 to	 a	 power]	 of	 a	 quantity”	 (der	

Potenzierung	einer	Grösse)	(Bolzano,	1816:	143-144).	

	

Beyond	the	status	of	today’s	 imaginary	numbers	within	Bolzano’s	 framework	(strictly	speaking	

were	not	even	quantities),	the	inclusion	of	negative	and	irrational	quantities	among	the	unclear	

concepts,	though	might	not	be	striking	if	considered	his	mathematical	context,	requires	further	

clarification.	 With	 regard	 to	 negative	 quantities,	 his	 frequent	 use	 of	 the	 expression	 “natural	

numbers”	 (natürlichen	Zahlen)	 in	his	1816	work	 (cf.	Bolzano,	1816:	41,	43,	85	&	96)	 implied	a	

certain	assumption	of	positive	whole	numbers	as	the	most	natural	multitude	of	numbers	and,	as	

a	consequence,	a	certain	recognition	of	the	opposite	and	–not	so	natural–	multitude	of	negative	

numbers.	However,	it	should	be	noticed	that,	while	he	did	work	with	‘negative	numbers’	and	he	

even	used	 their	 corresponding	German	expression	 (cf.	Bolzano,	1816:	68-69	&	76),	 he	usually	

referred	 either	 to	 “negative	 quantities”	 or	 to	 quantities	 to	which	 a	 negative	whole	 numerical	

value	was	assigned	(negativen	ganz	zähligen	Grösse)	(cf.	Bolzano,	1816:	26	&	75).	

	

Concerning	 irrational	 quantities,	 by	 contrast,	 practically	 nowhere	 in	 his	 early	 mathematical	

works	 is	 to	 be	 found	 the	 expression	 ‘irrational	 number’	 (irrationalen	 Zahl).	 He	 only	 used	 that	

expression	in	§73	of	his	1816	work,	when	he	posed	a	problem	in	terms	of	“whole,	fractional	or	

even	 irrational	 number”,	 although	 he	 immediately,	 in	 the	 solution,	 referred	 once	 again	 to	

“irrational	 quantities”	 (irrationaler	Grössen,	 Irrationalgrösse)	 (Bolzano,	 1816:	 137).	 Because	 of	

that,	 it	 seems	 appropriate	 to	 interpret	 that	 sole	 reference	 to	 ‘irrational	 number’	 as	meaning	

“whole	number,	 [and]	also	a	 fractional	 [or]	 irrational	 [...]	quantity”	 (Bolzano,	1816:	2	&	60),	 a	

sort	of	formula	that	he	repeats	throughout	his	work.	For	Bolzano,	it	should	be	clear,	irrationals	

were	not	numbers	 and,	 as	 that	quotation	 suggests,	 neither	were	 the	 fractions,	 at	 least	 in	 the	

strict	sense	of	that	concept,	even	though	these	latter	could	be	determined	numerically.	An	idea,	

the	former,	which	was	not	strange	at	the	time	and	that	still	lasted	a	few	more	decades:	it	can	be	

found	 explicitly	 in	 Kant,	 in	 a	 letter	 of	 1790	 (cf.	 van	Atten,	 2012);	 Klügel	 (1792:	 31;	 1805:	 94);	
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Thibaut	(1809B:	84);	Hermann	Hankel,	a	former	student	of	Weierstrass	(1867:	59);	and	even	in	

Charles	Méray,	who	published	an	arithmetic	theory	of	irrationals	in	1869	(1869:	284).	

	

Furthermore,	 Bolzano’s	 mathematical	 practices	 reveal	 that	 he	 regarded	 the	 irrationality	 of	 a	

quantity	 as	 a	 concept	 that	 still	 required	 to	 be	 developed	 if	 one	 aimed	 to	 introduce	 it	 within	

analytical	 framework.	 As	 a	 consequence,	 in	 his	 early	 works	 irrational	 quantities	 are	 always	

considered	 indeterminate,	 so	 that	 fractions	are	used	as	means	 to	determine	 them.	This	 is	 the	

case	 in	his	Purely	Analytic	Proof	 (§8):	the	 indeterminate	sequence	0.1, 0.11, 0.111, 0.1111,…	is	

said	to	be	determined	if	considered	the	–determined–	fraction	
!
!	to	which	the	terms	approached	

(Bolzano,	1817B:	38).	And	that	 is	also	the	case	 in	his	1816	work,	where	the	 few	times	that	he	

deals	with	 irrational	quantities	he	states	that,	given	such	a	quantity,	 there	 is	always	a	 fraction	

which	can	come	as	close	as	desired	to	it	(cf.	Bolzano,	1816:	23,	76	&	137-138).	

	

Bolzano	 therefore	 required	 that	 the	 objects	 of	mathematical	 study	 (i.e.	 to	 be	mathematically	

known)	 be	 determined,	 and	 thus	 determination	 rested	 on	 notions	 of	 ‘quantity’	 and	 ‘number’	

that,	 in	 a	 sense,	 were	 drawn	 more	 rigorously	 –but	 more	 modernly–	 than	 those	 of	 his	

predecessors.	Strictly	speaking,	numbers	were	only	the	naturals,	but	quantities	could	be	whole	

positive,	 fractions,	 negatives	 and	 irrationals.	 Whereas,	 as	 regards	 to	 the	 variable	 quantities,	

while	their	variability	was	not	in	question,	to	analytically	study	it	not	only	one	could	not	resort	

to	 geometric	 or	 kinetic	 notions	 and	 arguments	 (alien	 to	 analysis	 and	 in	 fact	 belonging	 to	

mathematical	 parts	 subordinated	 to	 it),	 but	 at	 the	 same	 time	 one	 could	 not	 rely	 on	 actually	

infinite	quantities	(i.e.	non-determined),	whose	lack	of	determination	precisely	prevented	their	

strict	knowledge.	For	 that	 reason,	he	only	partially	 incorporated	negative	quantities	within	his	

analytical	 framework,	 he	 regarded	 imaginary	 as	 useful	 symbolic	 expressions	 and	 he	 placed	

irrationals	at	a	sort	of	midpoint	between	those	two	concepts,	not	entirely	banned.	

	

Such	an	attempt	to	avoid	the	mathematical	study	of	the	infinite	is	precisely	what	underlies	his	

work	 with	 determined	 segments	 of	 infinite	 series	 (cf.	 Russ,	 2004:	 144),	 his	 notion	 of	 a	

“multitude	 of	 infinite	 elements”	 and	 his	 definition	 of	 quantities	!.	 A	 reluctance	 towards	 the	
presence	of	actual	infinite	in	mathematics	that,	for	example,	indeed	is	linked	to	his	rejection	of	

the	 contradictory	 notion	 of	 a	 series	 of	 consequences	 without	 a	 first	 ground	 (Das	

Widersprechende	einer	Reihe	 von	 Folgen	ohne	ersten	Grund)	 (Bolzano,	 1810:	 69)	 and	with	his	
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designation	 of	 concepts	 such	 as	 “everything	 which	 is	 not	 A”	 as	 “indefinite	 or	 infinite”	

(unbestimmte	oder	unendliche	Begriffe)	(Bolzano,	1810:	84-85).	

	

In	 the	 first	place,	with	 regard	 to	Bolzano’s	 finite	 treatment	of	 infinite	series,	both	his	work	on	

the	binomial	theorem	and	his	Purely	Analytic	Proof	illustrate	this.	In	his	1816	work,	for	example,	

he	 criticized	 the	 binomial	 formula	
!
!! = (1 + 10)!! = 1 − 10 + 100 − 1000 +⋯ !" !"#. ,	 “a	

claim	 that	 frighten[ed]	 the	 common	 sense!”,	 instead	 of	which	 he	 proposed	 starting	 from	 the	

finite	 binomial	 series	1 − ! + !! − !! + !! −⋯± !! ,	 which	 “could	 only	 be	 equated	 in	 a	
certain	 sense	 [bloss	 dann	 in	 einem	 gewissen	 Sinne	 gleich	 gesetz	 werden	 könne]	 to	 the	 true	

value”	 of	 (1 + 10)!! = !
!!!" = 1 − 10 + 10! − 10! + 10! −⋯± !"!

!!!" ,	 if	 10! − !"!
!!!" 	“can	

become	[werden	kann]	as	small	as	one	may	want”	(Bolzano,	1816:	VIII-IX).243	Something	that,	in	

a	way,	resembles	what	he	said	at	the	beginning	of	his	Purely	Analytic	Proof	about	how	the	value	

of	 a	 series,	 whose	 terms	 could	 be	 arbitrarily	 increased,	 also	 depended	 on	 the	 last	 term	

considered	 for	 the	 representation	 of	 that	 variable	 quantity	 (veränderliche	 Grösse),	 as	 in	

! + !" + !!! +⋯+ !!! = !!! ,	 different	 from	 ! + !" + !!! +⋯+ !!! +⋯+ !!!!! =
!(!!!)!	(cf.	Bolzano,	1817B:	29-30).	244	
	

Coupled	with	such	a	 finite	mathematical	 treatment	of	 the	 infinite,	however,	 it	 is	worth	paying	

attention	to	what	Bolzano	actually	says	in	doing	so.	For	example,	it	does	not	seem	fortuitous	the	

phrase	“real	and	positive”	 (reellen	und	positiven)	 that	he	constantly	uses	 throughout	his	1816	

work	to	refer	to	the	value	of	existing	expressions,	such	as:	a)	(1 + !)
!
!,	to	which	corresponded	

the	–finite–	binomial	series	1 + !
! ! +

!
!

!
!!!
! !! +⋯+ !

!

!
!!!
! …

!
!!!!!

! !!,	with	which	he	showed	

the	 binomial	 equation	 held	 for	 every	 positive	 fractional	 value	 of	 a	 exponent	
!
!	(cf.	 Bolzano,	

1816:	69);	b)	(1 + !)
!
!,	to	which	corresponded	a	–finite–	binomial	series	holding	for	any	kind	of	

positive	 fractional	 value	 of	 the	 exponent	 (Bolzano,	 1816:	 74);	 c)	 (1 + !)!
!
! ,	 to	 which	

																																																													
243	As	noted	above,	Bolzano	went	back	 to	 this	 idea	of	how	a	quantity	could	be	completely	determined	“in	a	certain	 sense”	 in	his	
Purely	Analytic	Proof.	There	he	explained	that	the	series	. 1, .11, .111, .1111,…		approached	to	the	quantity	!!	as	close	as	one	always	
wanted,	which	meant	 that,	 in	a	 certain	way	 (einem	gewissen	Wege),	 such	an	 irrational	quantity	 could	be	completely	determined	
(völlig	bestimmbar),	taken	into	account	a	rational	number	(cf.	Bolzano,	1817B:	38).	
244	Bolzano	 wrote:	 “The	 value	 of	 a	 series	 therefore	 also	 depends,	 in	 addition	 to	 the	 law	 which	 determines	 the	 formation	 of	 its	
individual	terms,	on	their	number”	(Der	Werth	einer	Reihe	ist	daher	nebst	dem	Gesetze,	welches	die	Bildung	ihrer	einzelnen	Glieder	
bestimmt,	auch	noch	von	 ihrer	Anzahl	abhängig).”	Regarding	the	formula,	as	 in	other	parts	of	this	work,	the	superscript	!	for	!!!	
goes	above	!	in	Bolzano’s	notation.	
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corresponded	 a	 –finite–	 binomial	 series	 holding	 for	 all	 fractional	 and	 negative	 values	 of	 the	

exponent	 (Bolzano,	 1816:	 75);	 d)	(1 + !)!,	 to	 which	 corresponded	 a	 –finite–	 binomial	 series	

holding	for	every	irrational	value	of	the	exponent	(Bolzano,	1816:	76-77);	e)	(! + !)!,	to	which	
corresponded	 a	 –finite–	 binomial	 series	 holding	 for	 every	 real	 (reellen)	 (by	which	 he	meant	 a	

positive	 integer	 or	 fractional)	 value	 of	 the	 exponent	!	(Bolzano,	 1816:	 77-79).	 Those	 kind	 of	
aspects	 should	not	be	overlooked	precisely	 because,	 in	 this	 case,	while	Bolzano	also	uses	 the	

phrase	“real	and	negative”	(reell	und	negativ)	to	refer	to	the	value	of	existing	expressions,	such	

as	– (+!)!	(Bolzano,	1816:	128,	cf.	79-81),	what	he	never	does	 is	use	the	word	 ‘real’	either	to	
refer	 to	 what	 nowadays	 are	 called	 ‘real	 numbers’	 or	 to	 refer	 to	 an	 actual	 particular	 infinite	

quantity.	

	

Put	another	way,	 it	 is	not	simply	that	nowhere	in	Bolzano’s	early	mathematical	works	 is	found	

an	expression	equivalent	to	“real	and	infinite	quantity”.	The	point	is	that,	rather	than	that,	what	

is	found	in	those	works	is,	on	the	one	hand,	an	explicit	identification	of	‘real	quantities’	as	‘finite’	

and,	on	 the	other	hand,	an	explicit	 rejection	of	“infinite	quantities”	as	“real”	ones.	 In	 the	 first	

case,	 for	 example,	 he	 wrote	 in	 his	 work	 of	 1816	 that	 the	 series	1 + 1 + !
!∙! +

!
!∙!∙! +⋯+

!
!∙!∙!∙…∙! + Ω	“actually	 express[ed]	 a	 real	 finite	 quantity,	 inasmuch	 as	 its	 value	 not	 only	 always	

remains	finite,	but	it	even	approaches	a	certain	constant	quantity	as	much	as	one	wants	if	one	

continues	it	far	enough”	(Bolzano,	1816:	132);245	that	is,	resuming	what	he	said	in	the	§7	of	his	

Purely	 Analytic	 Proof	 (the	 one	 on	 his	 convergence	 criterion),	 inasmuch	 as	 such	 a	 series	

approached	“a	 real	quantity”	 (eine	 reelle	Grösse)	 (Bolzano,	1817B:	37).	An	 identification,	even	

more,	 that	 could	 be	 related	 to	 his	 lack	 of	 criticism	 to	 an	 anonymous	 reviewer’s	 notion	 of	

quantity	as	“the	most	general	 form,	to	be	finite”	(Bolzano,	1810:	10-11),246	a	notion	presented	

by	 this	 latter	 when	 giving	 the	 definition	 of	 mathematics	 quoted	 by	 Bolzano	 as	 source	 of	

inspiration	for	his	own.	

	

																																																													
245	Bolzano	wrote:	“wirklich	eine	reelle	endliche	Grösse	ausdrückt,	indem	ihr	Werth	nicht	nur	stets	endlich	bleibt,	sondern	sich	auch	
so	sehr,	als	man	nur	will,	einer	gewissen	beständigen	Grösse	nähert,	wenn	man	sie	nur	weit	genug	fortsetzt.”	
246	The	 anonymous	 reviewer	 wrote:	 “Die	 Grösse	 ist	 nur	 darum	 Gegenstand	 der	Mathematik,	 weil	 sie	 die	 allgemeinste	 Form	 ist,	
endlich	 zu	 seyn,	 die	Mathematik	 aber	 ihrer	 Natur	 nach	 eine	 allgemeine	 Formenlehre	 ist;	 und	 zwar	 Arithmetik	 in	 so	 fern	 sie	 die	
Grösse	als	die	allgemeine	Form	endlicher	Dinge,	Geometrie,	in	so	fern	sie	den	Raum	als	die	allgemeine	Form	der	Natur,	Zeitlehre,	in	
so	 fern	 sie	 die	 allgemeine	 Form	der	 Kräfte,	 Bewegungslehre,	 in	 so	 fern	 sie	 die	 allgemeine	 Form	der	 im	Raume	wirkenden	Kräfte	
betrachtet,	und	alle	diese	Formen	in	ihren	innern,	weitern	Beschränkungen,	ausbildet”	([Anonymous],	1808,	St.	LXXXI:	1291).	
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Nonetheless,	it	should	be	clear	that,	just	as	Bolzano	did	not	reject	in	general	infinity	as	an	object	

of	 knowledge,	 and	 so	 metaphysics	 considered	 God	 (Gott)	 as	 an	 “actual	 object”	 (wirklicher	

Gegenstand)	 (Bolzano,	 1810:	 21),	 he	 was	 not	 opposed	 in	 general	 to	 infinity	 in	 mathematics.	

Firstly,	within	 the	geometrical	 framework	 set	 in	his	1804	work,	he	explicitly	 considered	 that	a	

straight	line	contained	an	infinite	number	of	points	and	he	used	infinite	or	“indeterminate”	lines	

in	 his	 proofs	 (for	 theorems)	 (cf.	 Bolzano,	 1804:	 20	 &	 57).	 Secondly,	 within	 the	 geometric-

analytical	framework	set	in	his	second	work	of	1817,	he	explicitly	considered	that	a	surface	and	

a	 spatial	 object	 contained	 infinitely	 many	 points	 and	 he	 used	 in	 his	 solutions	 (for	 problems)	

multitudes	(Menge)	of	infinitely	many	values	(Bolzano,	1817A:	6,	7,	29,	31-32,	55).	Finally,	within	

the	analytical	framework	set	in	his	1816	and	first	1817	works,	he	appealed	somehow	to	infinite	

terms	and	values	through	quantities	!.	
	

Indeed,	his	notion	of	multitudes	of	finite	or	infinite	of	elements,	clearly	explained	in	his	second	

work	of	1817,	is	crucial	to	understand	the	tension	in	Bolzano’s	early	mathematical	proposal.	“A	

quantity	or	even	any	object	at	all”,	he	wrote,	even	if	constituted	by	“infinitely	many	quantities	

or	objects”,	is	not	“indeterminate”	if	given	a	law	or	a	finite	multitude	of	laws	(endliche	Menge)	

by	means	of	which	all	of	 those	are	determined	as	a	multitude	 (cf.	Bolzano,	1817A:	6).	On	 the	

one	hand,	in	a	certain	way	the	importance	of	such	finite	multitudes	of	laws	or	rules	is	linked	to	

the	 relevance	 given	 by	 him	 to	 the	 theory	 of	 combinations,	 since	 finite	 combinations	 were	

essential	to	attain	mathematical	knowledge.	He	emphasized	this,	for	example,	among	his	initial	

remarks	on	mathematical	method,	when	talking	about	the	necessity	for	an	insight	(eingesehen)	

on	the	–finite–	combinations	(Zusammesetzung	or	Verbindung)	of	words	and	the	concepts	that	

these	denoted	to	produce	 (hervor	bringen)	both	a	new	and	real	or	actual	 (wirklichen)	concept	

and	to	produce	judgements	(Bolzano,	1810:	53	&	71).	But	he	also	emphasized	that	in	the	initial	

paragraphs	 of	 his	 1816	 work,	 through	 which	 he	 explained	 the	 combinatorial	 procedures	

underlying	the	binomial	series	(Bolzano,	1816:	4-7);	series	that,	as	shown	and	explained	before,	

were	‘finitely’	treated	(cf.	Russ,	2004:	144).	

	

Bolzano’s	 placement	 of	 the	 theory	 of	 combinations	 at	 the	 core	 of	 mathematics	 was	 not,	

therefore,	 a	 mere	 blind	 faith	 in	 a	 theory	 that	 at	 that	 time	 was	 in	 vogue	 in	 several	 of	 the	

Germanic	 territories.	 For	 him,	 such	 a	 theory	 was	 essential	 to	 mathematics.	 Within	 his	

geometrical	framework,	for	example,	he	insisted	implicitly	and	explicitly,	both	in	his	1804	and	in	
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his	second	1817	work,	on	the	fact	that	while	lines,	surfaces	and	solids	were	“infinite	multitudes”	

of	points	determined	by	a	law	or	a	finite	number	of	laws,	he	worked	with	them	in	“finite”	terms	

or,	 to	be	more	precise,	 in	terms	of	determined	or	determinable	objects:	“A	spatial	object”,	he	

said,	 “is	a	determinate	or	determinable	object	 if	all	points	of	 it,	by	a	 finite	multitude	of	 rules,	

either	 are	 actually	 determined	 or	 are	 determinable	 from	 a	 certain	 number	 of	 given	 points”	

(Bolzano,	1817A:	27-28).247	Thus,	for	example,	the	combination	of	a	finite	number	of	points,	e.g.	

two	(!	and	!),	could	determine	by	certain	rules	an	infinite	multitude	of	them,	namely	a	straight	

line,	 and	 a	 determined	 straight	 line	 could	 be	 considered	 as	 one	 in-act	 determined	 object	

(namely	an	infinite	multitude	of	points)	which,	combined	with	a	finite	number	of	points	outside	

(ausserhalb)	 it,	 could	 form	an	 object	 constituted	by	 infinitely	many	points,	 such	 as	 a	 triangle.	

The	 point	 is	 that,	 even	 in	 the	 case	 of	 a	 line	!"	prolongated	 indeterminately	 (Unbestimmte	

verlängerten)	 in	the	direction	!,	or	 in	the	case	of	an	unbounded	(Unbegränzte)	 line	!"	(that	 is,	
prolongated	 indefinitely	 in	 both	 directions	!	and	!),	 as	 he	 did	 in	 §39	 of	 his	 1804	 work,	 for	
Bolzano	 mathematical	 knowledge	 implied	 working	 directly	 with	 finite	 numbers	 of	 points	 on	

those	lines	(that	is,	points	that	determined	straight	line	segments)	and	their	combinations	with	

other	 finite	 number	 of	 points	 outside	 them,	 forming	 determined	 lines	 and,	 together,	 a	

determined	surface	(cf.	Bolzano,	1804:	19-21	&	24-25;	Bolzano,	1817A:	6,	28-29	&	33-34).	

	

Moreover,	such	a	notion	of	“multitude”	allowed	Bolzano	to	consider	not	only	a	finite	multitude	

of	 functions	!", !!, !!,	but	also	an	“infinite	multitude”	of	 them,	!", !!, !!,…,	as	he	explained	
at	 the	beginning	of	 his	 1817	geometric-analytical	work	 (Bolzano,	 1817A:	 6-7,	 cf.	 11).	And	 yet,	

despite	 that	 notion	 and	his	 definition	of	 continuity,	 the	 fact	 is	 that,	 by	 1817,	Bolzano	did	not	

conceive	 a	 quantity	 as	 an	 actual	 multitude	 of	 infinite	 elements	 (much	 less	 a	 number	 as	

multitude	 of	 infinite	 elements).	 That	would	 have	 entailed	 the	 acceptance	 of	 actual	 particular	

infinite	 quantities,	 irrationals	 among	 them,	 and	 ultimately	 would	 have	 gone	 against	 his	 core	

mathematical	 notions,	 his	 idea	 of	 a	 correct	 mathematical	 procedure	 and	 his	 conception	 of	

mathematics.	

	

The	way	Bolzano	defined	quantities	!	as	 those	 “that	 can	become	 [werden	kann]	 smaller	 than	

any	 given	 quantity”,	 and	Ω	as	 the	 “algebraic	 sum	 or	 difference”	 (algebraische	 Summe	 oder	

																																																													
247	Bolzano	wrote:	 “Ein	 Raumding	 heisst	 ein	 bestimmtes,	 oder	 bestimmbares	Ding,	wenn	 sämmtliche	 Puncte	 desselben	 aus	 einer	
gewissen	 Anzahl	 gegebener	 Puncte	 durch	 eine	 endliche	Menge	 von	 Regeln	 entweder	wirklich	 bestimmt,	 oder	 doch	 bestimmbar	
sind.”	
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Differenz)	 of	 a	 “finite	multitude”	 (“(endliche)	Menge”)	 of	 quantities	!,	 i.e.	! ± !(!) ± !(!) ±
⋯± !(!) 	(Bolzano,	 1816:	 15), 248 	coupled	 with	 the	 finite	 character	 of	 his	 procedures	 and	

notions,	proves	that	those	quantities	were	neither	numbers	nor	quantities	that	tended	to	zero	

in	 a	 strictly	 dynamic	way.	 For	 him,	 the	 distinction	 between	 his	 quantities	!	and	 infinitesimals	

was	 not	 a	 mere	 linguistic	 issue	 but	 one	 could	 say	 that,	 indeed,	 it	 was	 semantic-ontological:	

variable	 quantities	!	were	 quantities	 that	 should	 not	 be	 assumed	 as	 being	 smaller	 than	 any	

conceivable	quantity	(as	the	strictly	dynamic	conception	of	quantities	required),	but	as	capable	

of	becoming	smaller	than	any	given	quantity.	In	a	way,	therefore,	with	those	quantities	Bolzano	

probably	 aimed	 to	 finitely	 treat	 the	 potentially	 infinite	 variability	 of	 those	 quantities	 towards	

zero	 and,	 thus,	 avoid	 opening	 the	 window	 to	 the	 actual	 and	 straightforward	 infinite	 in	

mathematics,	unaware	of	the	fact	that	the	door	was	already	open.	

	

Beyond	 the	 degree	 of	 correctness	 of	 this	 thesis,	 which	 hopefully	 honours	 Bolzano’s	

mathematical	beliefs	and	 ideas,	 it	 is	undeniable	 that	his	work,	 given	 its	 transitional	 character,	

demands	 that	 one	 try	 to	 understand	 it	 from	 inside,	 reading	 not	 only	 between	 lines	 but	 lines	

themselves,	 as	 Detlef	 Laugwitz	 and	 Hans	 Freudenthal	 once	 said	 about	 Cauchy’s	 work	 (cf.	

Laugwitz,	 1987;	 Freudenthal,	 1971).	 Calling	 the	 early	 Bolzano	 a	 pre-Weierstrassian	

mathematician	and	not	a	proto-Weierstrassian	is	not	merely	a	matter	of	elucidating	what	is	the	

most	suitable	expression	to	refer	to	him.	It	is	a	matter	of	letting	go	the	20th	century	Bolzano	and	

at	least	try	to	place	ourselves	on	the	‘neutral	ground’	of	time	to	gradually	better	understand	the	

person	behind	the	inherited	version,	the	myth.	After	all,	as	some	few	authors	have	suggested	in	

various	ways	(cf.	Sinaceur,	1973;	Rusnock,	2000;	Russ,	2004;	Gray,	2015)	and	paraphrasing	what	

Moore	more	vividly	expressed	regarding,	like	those	other	authors,	specific	features	of	Bolzano’s	

Purely	Analytic	Proof,	the	definitive	shift	from	a	kinetic	to	a	static	approach	in	real	analysis	was	

not	a	minor	event	but,	on	the	contrary,	it	“was	a	major	Gestalt	shift”	(Moore,	2000:	174).	

	

	

	

	

	

	

																																																													
248	In	the	original	the	superscript	is	placed	on	each	!.	
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Conclusions	
	

	

The	opening	lines	of	Dedekind’s	work	of	1872,	Continuity	and	Irrational	Numbers	(Stetigkeit	und	

irrationale	Zahlen),	the	one	in	which	he	presented	his	definition	of	real	numbers,	are	devoted	to	

explain	the	origin	of	that	work:	in	preparing	his	lessons	on	differential	calculus	at	the	beginning	

of	his	 career	 as	 a	 teacher	 (1858),	 he	wrote,	 he	had	 to	 rely	 “on	geometrical	 evidence”	 “in	 the	

notion	of	the	approximation	of	a	variable	quantity	to	a	fixed	limit	value”,	something	didactically	

acceptable	but	lacking	in	“scientificity”	(Wissenschaftlichkeit)	(Dedekind,	1872:	9).249	In	addition	

to	which,	 sixteen	years	 later,	 in	 the	preface	 to	What	are	 the	numbers	and	what	are	 they	 for?	

(Was	 sind	 und	 was	 sollen	 die	 Zahlen?),	 he	 pointed	 out	 that,	 as	 he	 had	 already	 shown	 in	 his	

aforementioned	 work,	 the	 “gradual	 extension	 of	 the	 concept	 of	 number”	 (die	 shrittweise	

Erweiterung	der	Zahlbegriffes)	could	be	carried	out	without	using	“foreign	ideas”	(fremdartiger	

Vorstellungen),	such	as	“measurable	quantities”	(messbaren	Grössen)	(Dedekind,	1888:	X).	

	

Dedekind’s	 standpoint	 was	 that	 of	 a	 19th	 century	 Germanic	 mathematician	 who	 proposed	

arithmetization	of	analysis	but	arrived	there	independently	of	Weierstrass,	that	 is,	without	the	

influence	 of	 the	 author	 who	 traditionally	 is	 regarded	 as	 the	 key	 figure	 in	 that	 project.	 As	

mentioned	 in	 the	 introduction,	 even	 though	 Kronecker,	 for	 example,	 also	 proposed	 a	 sort	 of	

arithmetization,	 he	 did	 not	 take	 the	 steps	 given	 by	 Dedekind,	 Weierstrass	 and	 many	 other	

mathematicians,	 including	students	of	 the	 latter	such	as	Cantor	and	Heine.	Precisely,	probably	

due	 to	 the	 impact	 of	 Weierstrass	 on	 new	 generations,	 as	 well	 as	 due	 to	 his	 temporal	

preeminence	 over	 those	 other	 authors,	 the	 traditional	 way	 of	 speaking	 identifies	 the	

arithmetizing	project	with	Weierstrass’	proposal.	But	it	should	not	be	forgotten	that	just	as	the	

usual	 way	 of	 speaking	 of	 ‘arithmetization’	 rules	 out	 some	 proposals	 that	 shared	 some	 key	

features	with	 the	Weierstrassian,	 it	 also	makes	blurry	 the	differences	between	 this	 latter	 and	

some	others.	

	

																																																													
249	Dedekind	wrote:	“Bei	dem	Begriffe	der	Annäherung	einer	veränderlichen	Grösse	an	einen	festen	Grenzwerth	und	namentlich	bei	
dem	Beweise	des	Satzesm	dass	jede	Grösse,	welche	beständig,	aber	nicht	über	alle	Grenzen	wächst,	sich	gewiss	einem	Grenzwerth	
nähern	muss,	nahm	ich	meine	Zuflucht	zu	geometrischen	Evidenzen.”	
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That	 said,	 it	 is	 true	 that	 ‘arithmetization’	 of	 analysis	 entailed	 a	 detachment	 from	 geometric	

foundations	whose	crucial	step	during	the	19th	century	was,	precisely,	the	abandonment	of	such	

a	notion	of	quantity	and	the	embracement	of	a	purely	mathematical	domain	of	objects,	namely,	

numbers.	A	domain,	it	must	be	stressed,	which	was	required	to	be	a	given	continuous	one,	but	

static.	From	this	perspective,	 the	set	of	 real	numbers	was	not	only	 infinite	 in	 the	sense	of	not	

having	a	last	member,	as	for	example	the	set	of	natural	numbers,	but	also	infinite	inasmuch	as	

its	 de	 facto	 given	 members	 could	 measure	 any	 given	 quantity	 and	 thus	 correspond	 to	 any	

ordinary	 quantity.	 That	way,	 the	 core	 notion	 of	 variable	 quantity	was	 eventually	 replaced	 by	

syntactic	 variables	 (i.e.	 a	 character	 that	 represents	a	number)	 and	 functions	of	 a	 real	 variable	

(i.e.	 functions	 within	 the	 real	 domain),	 while	 the	 real	 domain	 was	 conceived	 statically	 and	

characterized	as	totally	ordered,	dense	and	continuous.	

	

Nonetheless,	all	that	was	only	achieved	through	a	long	process	whose	strict	periodization	simply	

cannot	 be	 established.250	As	 denounced	 by	 Dedekind,	 even	 in	 the	 1870s	 there	 were	 still	 in	 –

modern–	 real	 analysis	 some	 remnants	 of	 foreign	 ideas	 to	 it,	 which	 can	 even	 be	 found,	 for	

example,	in	the	works	of	Weierstrass	and	Cantor:	during	that	decade,	both	authors	still	used	the	

appellative	 “numerical	 quantities”	 (Zahlengrössen)	 to	 refer	 to	 rational	 and	 irrational	 numbers	

within	a	pretty	modern	abstract	conception	(cf.	Cantor,	1872/1932:	97;	Weierstrass,	1878/1988:	

7,	8	&	40),	even	 though	 it	evoked	a	previous	understanding	of	mathematics	as	 the	 science	of	

discrete	and	continuous	quantities	which	was	still	present	in	the	mid-19th	century	(cf.	Hoffmann,	

1864:	 144;	 Ferreirós,	 2007:	 42).	 That	 way,	 the	 work	 of	 Weierstrass	 himself,	 the	 author	

historically	regarded	as	the	chief	exponent	of	the	proposal	nowadays	commonly	identified	with	

‘the	arithmetization	of	analysis’,	is	evidence	of	the	aforementioned	process.	

	

More	importantly	for	the	objectives	of	this	thesis,	in	a	sense	Bolzano’s	early	mathematical	work	

is	also	evidence	of	that	process,	though	in	a	different	way	from	that	of	Weierstrass.	This	means	

that,	despite	the	fact	that,	from	c.	1900	onwards,	that	work	of	Bolzano	(in	particular	his	Purely	

Analytic	 Proof)	 has	 been	 interpreted	 as	 an	 isolated	 and	 largely	 ignored	 antecedent	 of	 that	

arithmetizing	 project	 and	 of	 Weierstrassian	 procedures	 and	 notions,	 this	 was	 not	 the	 case.	

Instead,	what	a	careful	reading	of	that	work	seems	to	show	is	the	Germanic	transition	towards	a	

pre-modern	notion	of	number,	that	is,	a	transition	towards	the	Germanic	mathematical	scenario	

																																																													
250	However,	attempts	can	be	made	to	establish	a	certain	periodization,	as	is	done,	for	example,	in	(Ferreirós,	2016:	216ff.).	
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that	without	specifically	anticipating	that	later	project	and	those	later	notions	and	procedures,	

preceded	them.	So,	while	all	 those	proposals	undoubtedly	shared	common	traits,	 this	was	not	

because	the	one	of	Bolzano	was	in	the	line	of	the	later	ones,	but	rather	because	Weierstrass	and	

others	developed	their	proposals	on	the	ground	plowed	by	Bolzano	and	other	mathematicians.	

Which	 is	 not	 just	 a	matter	 of	 drawing	 a	 line	 to	 distinguish	what	 happened	 before	 and	 after:	

Bolzano’s	early	mathematical	work	was	pre-Weierstrassian	and	not	proto-Weierstrassian	since	it	

still	featured	traits	of	mathematical	notions	(of	quantities	and	numbers)	and	practices	that	were	

heavily	deviant	from	the	Weierstrassian	and	later	ones.	

	

Even	more,	those	works	of	Bolzano	represent	a	sort	of	confluence	of	two	core	ideas	that	shaped	

Germanic	mathematics	during	the	second	half	of	the	18th	century	and	the	beginning	of	the	19th	

century:	 strictly	 speaking,	 zero	 and	 infinitesimals	 could	 not	 be	 considered	 quantities	 and	

numbers	were	 only	 the	 –positive–	whole	 ones.	 Bolzano	was	 very	 clear	 about	 this	 in	 his	 1816	

work	 on	 the	 binomial	 theorem:	 he	 talked	 about	 “the	 self-contradictory	 [concept]	 of	 infinitely	

small	quantities”;	he	wrote	that	 it	was	“possible	to	divide	by	every	 finite	 (i.e.	actual)	quantity,	

but	 never	 by	 a	 zero	 (i.e.	 by	 nothing)”;	 and	 he	 referred	 to	 an	 exponent	!	that	 could	 denote	 a	
“whole	number,	[and]	also	a	fractional,	irrational	or	negative	quantity”	(cf.	Bolzano,	1816:	XI	&	

2).	 Or,	 as	 he	 wrote	 in	 his	 Paradoxes	 of	 the	 Infinite	 (Paradoxien	 des	 Unendlichen),	 published	

posthumously	 in	1851:	“[If]	 the	multitude	of	all	numbers	 is	 infinite	 (the	set	of	all	 the	so-called	

natural	or	whole)	[...],	then	so	is	the	multitude	of	quantities	[...]	an	infinite	one.	[For]	not	only	all	

numbers	are	also	quantities,	but	 [...]	 the	 fractions	 [...]	 and	 the	 so-called	 irrational	expressions	

[...]	denote	quantities”	(Bolzano,	1851:	20-21).251	

	

On	the	one	hand,	it	is	true	that	Bolzano’s	standpoint	in	Paradoxes	of	the	Infinite	was	not	exactly	

the	same	as	that	in	his	works	of	1804-1817	but,	on	the	other	hand,	it	is	also	true	that	one	and	

the	other	were	not	exactly	the	same	as	the	views	of	his	Germanic	mathematical	predecessors.	

As	explained	and	shown	in	the	second	chapter	of	this	work,	throughout	the	second	half	of	the	

18th	century	Germanic	mathematicians	were	taught	mathematics	in	a	post-Wolffian	context.	In	

other	words,	those	mathematicians	grew	up	 in	a	context	 in	which,	although	 in	general	Wolff’s	

																																																													
251	Bolzano	wrote:	 “die	Menge	 aller	 Zahlen	 (der	 sogenannten	natürlichen	 oder	 ganzen	 [...])	 unendlich	 sei.	 [...]	 Ist	die	Menge	der	
Zahlen	 (nämlich	 der	 sogenannten	 ganzen	 Zahlen)	 unendlich:	 so	 ist	 um	 so	 gewisser	 die	Menge	 der	 Größen	 (nach	 der	 §	 6	 und	
Wissenschaftslehre	§	87	vorkommenden	Erklärung)	eine	unendliche.	Denn	jener	Erklärung	zufolge	sind	nicht	nur	alle	Zahlen	zugleich	
auch	Größen,	 sondern	 es	 gibt	 noch	weit	mehr	Größen	 als	 Zahlen,	weil	 auch	die	Brüche	!! ,

!
! ,

!
! ,

!
! ,…,	 ingleichen	 die	 sogenannten	

irrationalen	Ausdrücke	 2, 2! ,… ,!, !,…,	Größen	bezeichnen.”	
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philosophy	 and	 mathematical	 method	 did	 not	 undergo	 profound	 modifications,	 some	

mathematical	notions	and	practices	were	increasingly	different	from	those	that	at	least	at	some	

point	–if	not	always–	Wolff	defended.	Thus,	while	at	the	Académie	Royale	des	Sciences	et	Belles	

Lettres	 of	 Berlin	not	only	 French	was	made	 the	official	 language,	 but	 also	 the	works	of	 Euler,	

Johann	III	Bernoulli,	Lambert,	Lagrange	and	other	‘foreign’	mathematicians	were	conceived	and	

published	(in	its	Histoire	and	Mémoires),	in	much	of	the	Germanic	territories	central	notions	and	

practices	of	these	mathematicians	were	rejected.	

	

Precisely,	 because	 of	 the	 relevance	 of	 the	 universities	 of	 Göttingen	 and	 Halle	 in	 shaping	 the	

Germanic	mathematics	of	the	second	half	of	the	18th	century,	rather	than	the	relevance	of	the	

Academies	 of	 Prussia,	 Paris	 and	 St.	 Petersburg,	 the	 second	 chapter	 focused	 on	 the	 works	 of	

Kästner,	Karsten	and	Segner.	Three	authors	for	whom,	firstly,	numbers	were	aggregates	of	units	

and,	 as	 a	 consequence,	 numbers	 par	 excellence	were	 the	 –positive–	whole	 ones,	 from	which	

rationals	 could	 be	 formed,	 although	 those	 that	 could	 be	 called	 irrational	 numbers,	 as	 Segner	

clearly	 stated,	 could	 never	 be	 accurately	 –arithmetically–	 expressed,	 while	 zero	 was	 not	 a	

number	but	a	sign.	The	reluctance	to	consider	negative	numbers	within	arithmetic	 framework	

and	 the	usual	 absence	of	 the	 term	 ‘natural	 numbers’	 (whose	positivity	would	only	 arise	once	

considered	the	negative	numbers)	in	the	works	of	the	Germanic	mathematicians	of	that	period,	

were	both	rooted	in	an	eminently	geometric	and	kinetic	conception	of	mathematics.	

	

Evidence	of	the	above	is	the	fact	that,	while	in	the	entry	‘number’	in	the	English	Cyclopædia	and	

in	 the	 French	Encyclopédie	 it	was	 stated	 that	 –positive–	whole	numbers	 or	 “simply	 numbers”	

were	 “also	 known	 as	 natural	 numbers”	 (Chambers,	 1728:	 641;	 Diderot,	 1765:	 202), 252 	by	

contrast	in	the	entry	“Zahl”	in	Klügel’s	Mathematisches	Wörterbuch	the	alternative	appellation	

of	“natural	numbers”	was	not	employed	(Klügel	et	al.,	1831:	1053ff.).	This	 is	 relevant	not	only	

because	 of	 the	 date,	 but	 also	 because	 the	 division	 of	 the	 “whole	 science	 of	 numbers”	 into	

arithmetic	and	number	theory	accounts	for	a	change	that	occurred	during	those	years	(id.:	1057;	

cf.	Legendre,	1798;	Gauss,	1801),	while	the	notion	of	‘number’	makes	evident	the	prevalence	of	

conflicts	around	 it.	 Just	as	 in	his	book	on	 the	groundings	of	arithmetic,	Klügel	only	 introduced	

the	irrationals	and	negatives	to	say	that	a)	the	quantity	of	the	former	could	only	be	accurately	

																																																													
252	Louis	de	Jaucourt	(D.	J.)	wrote:	“Les	nombres	entiers,	appelés	aussi	nombres	naturels	ou	simplement	nombres,	sont	ceux	que	l'on	
regarde	comme	des	tous,	sans	supposer	qu'ils	soient	parties	d'autres	nombres.”	
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represented	in	geometry	and	b)	the	members	(numbers)	of	the	arithmetic	progression,	 if	read	

backwards,	 would	 lead	 to	 “negated”	members	 (Klügel,	 1792:	 31	 &	 50-51),	 the	 same	 can	 be	

found	in	his	dictionary	(Klügel,	1805:	104ff.	&	949).	

	

Secondly,	for	Kästner,	Karsten,	Segner	and	many	of	the	Germanic	mathematicians	of	the	second	

half	 of	 the	 18th	 century,	 ‘quantity’	 was	 that	 capable	 of	 increase	 and	 decrease,	 as	 –at	 some	

point–	 for	Wolff,	 and	 therefore	 just	 as	 zero	 was	 not	 a	 quantity,	 neither	 were	 quantities	 the	

differentials	 and	 infinitesimals	 associated	 to	 zeros.	 Ultimately,	 one	 could	 mathematically	

consider	the	variability	of	a	quantity	but	one	could	not	ascribe	to	it	a	–finite–	numerical	value.	

As	summarized	by	Segner	when	he	explained	the	variability	 that	 led	 from	positive	 to	negative	

quantities	 and	 vice	 versa,	 there	 were	 “infinitely	 many	 types	 of	 quantities,	 [...]	 such	 as	

possessions,	debts;	accepted,	spent;	gravity,	force	directed	upwards;	water	flowing	into	vessel,	

water	emanating	 [from	 it],	and	very	many	other”	 (Segner,	1758:	5).253	A	variability,	 it	must	be	

stressed,	that	at	that	time	Germanic	mathematicians	primarily	 interpreted	in	geometric	terms;	

hence	the	law	of	continuity	was	introduced	within	the	geometric	framework.	

	

Coupled	 with	 the	 reluctance	 towards	 those	 new	 foreign	 developments,	 however,	 it	 is	 worth	

noting	two	crucial	aspects	of	Germanic	mathematical	practices	of	the	time,	namely,	their	use	of	

irrational	and	infinitely	large	quantities.	On	the	one	hand,	despite	the	differences	between	their	

proposals,	Kästner,	Karsten	and	Segner,	like	many	others,	conceived	irrational	numbers	as	those	

that	 could	 not	 be	 properly	 expressed	 by	 whole	 units	 or	 aliquote	 parts	 of	 the	 unit.	 As	 a	

consequence,	 irrationals	 were	 not	 numbers	 in	 the	 strict	 sense,	 since	 they	 were	 closer	 to	

geometric	magnitudes,	 although	 they	were	 referred	 to	 as	 ‘numbers’.	 On	 the	 other	 hand,	 for	

many	Germanic	mathematicians,	as	insistently	stated	by	Karsten,	infinitely	large	quantities	were	

not	problematic	and	so	one	was	entitled	to	use	them	as	= ∞	in	mathematics.	

	

By	contrast,	in	his	early	mathematical	works	Bolzano:	a)	was	equally	reticent	towards	infinitely	

large	 and	 small	 quantities	 (cf.	 Bolzano,	 1810:	 30);	 b)	 considered	 that	 the	 concept	 of	 the	

irrationality	of	a	quantity	still	had	to	be	clearly	developed	(cf.	Bolzano,	1816:	143-144),	in	spite	

																																																													
253	Segner	 wrote:	 “Caeterum	 infinita	 sunt	 quantitatum	 genera,	 quarum	 altera	 refertur	 ad	 alteram,	 quemadmodum	 progressus	
refertur	ad	regressum,	ascensus	ad	descensum,	vel	motus	quicunque	versus	aliquam	partem,	ad	motum	versus	partem	oppositam.	
Tales	sunt,	possessiones,	debita;	accepta,	expensa;	gravitas,	vis	sursum	directa;	aqua	in	vas	influens,	aqua	effluens,	&	aliae	plurimae,	
quarum	quaedam	in	sequentibus	clare	exponentur.”	
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of	which	he	referred	to	“irrational	quantities”	but	not	to	“irrational	numbers”;254	and	c)	although	

he	did	not	 refer	 to	 the	 “commonly	 called”	natural	numbers,	 as	he	did	 some	years	 later	 in	his	

Paradoxes,	he	did	use	this	expression	(natürlichen	Zahlen)	by	1817	(cf.	Bolzano,	1816:	41,	43,	85	

&	96).	Which	means	that,	while	Bolzano’s	mathematical	terminology	and	practice	show	a	step	

forward	with	regard	to	the	basic	notion	of	natural	numbers,	his	general	notions	of	quantity	and	

number	in	a	sense	were	drawn	more	rigorously	but	at	the	same	time	more	modernly	than	the	

ones	 of	 his	 predecessors.	 The	 assumption	 of	 positive	 whole	 numbers	 as	 the	 most	 natural	

multiplicity	of	numbers	entailed	that	there	was	also	the	–not	so	natural–	multiplicity	of	negative	

numbers,	 to	 which	 he	 usually	 referred	 in	 terms	 of	 quantities	 with	 negative	 whole-numbered	

values	(that	is,	quantities	to	which	could	be	assigned	numerical	values).	But,	at	the	same	time,	

such	a	notion	of	‘numbers’	implied	that	these	ones	were	less	than	the	quantities,	among	which	

were	 the	whole	positive,	but	also	 the	 fractional,	negative	and	 irrational	ones;	 concepts,	 these	

last	two,	that	from	his	perspective	still	required	to	be	clearly	developed.	

	

Furthermore,	 by	1817	Bolzano	was	 reluctant	 towards	 the	 concept	of	 an	 infinite	quantity,	 and	

this	included	both	the	infinitely	big	and	small	quantities.	As	he	wrote	in	1810,	it	was	still	to	be	

decided	 whether	 both	 concepts	 could	 be	 regarded,	 not	 as	 quantities,	 but	 as	 symbolic	

expressions	 (that	 is,	 in	 current	 terms,	 as	 tools),	 as	 they	were,	 for	 example	 −1	(1810)	 or	!, !	
and	 others	 (1851).255	So,	 while	 whole	 negative	 and	 fractional	 quantities	 could	 be	 numerically	

expressed,	 the	 irrationals	 and	 the	 infinitely	 small	 and	 big	 could	 not	 be	 –finitely–	 numerically	

expressed	 or,	 as	 he	 emphasized	 in	 his	 works	 of	 1816-1817,	 infinite	 quantities	 could	 not	 be	

strictly	determined:	for	example,	a)	while	the	magnitude	of	an	infinite	straight	line	could	not	be	

determined	 and	 therefore	 this	 one	 was	 an	 “indeterminate	 line”	 (1804),	 the	 magnitude	 of	 a	

straight	 line	 between	 points	!	and	!	could	 be	 determined	 and	 so	 he	 would	 refer	 to	 it	 as	 a	

“determinable	line”	(1817A);	and	b)	he	said	that	a	function	
!

!!!	“does	not	have	any	determinate	

value	when	! = !,	but	becomes	what	is	called	infinitely	big”	(1817B),	but	spoke	of	a	determined	

multitude	of	 infinite	 functions	!", !!, !!,…	that	 varied	by	 the	 law	of	 continuity	 for	!	(1817A).	

																																																													
254	As	 explained	 in	 the	 last	 chapter	 of	 this	 thesis,	 although	 it	 is	 true	 that	 Bolzano	 referred	 once	 to	 “irrationalen	 Zahl”	 in	 his	
mathematical	works	of	1804-1817	(cf.	Bolzano,	1816:	137),	it	seems	appropriate	to	interpret	his	reference	to	“whole,	fractional	or	
even	 irrational	 number”	 (§73)	 as	 meaning	 what	 he	 wrote	 at	 the	 beginning	 of	 that	 work,	 namely,	 “whole	 number,	 [and]	 also	 a	
fractional,	irrational	or	negative	quantity”	(Bolzano,	1816:	2),	given	that	in	his	solution	to	the	problem	stated	in	§73	he	referred	once	
again	to	“irrational	quantities”	(irrationaler	Grössen	and	Irrationalgrösse).	
255	It	is	worth	stressing	that	the	conception	as	“symbolic	expressions”	of	some	of	what	we	now	consider	numbers	was	not	entirely	
strange	 at	 the	 time:	 as	 it	was	 said	before,	 Bolzano,	 Cauchy	 and	 Jandera,	 for	 example,	 regarded	 imaginary	numbers	 as	 “symbolic	
expressions”	(cf.	Bolzano,	1810:	30;	Cauchy,	1821:	iij-iv	&	173ff.;	Jandera,	1830:	XXIX).	
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His	definition	of	a	continuous	function	and	quantities	!,	definitions	which	closely	resemble	the	

modern	ones	of	a	continuous	function	of	a	real	variable	and	Weierstrassian	!,	and	so	constitute	
two	 of	 the	 pillars	 that	 have	 traditionally	 sustained	 much	 of	 the	 attributed	 modernity	 of	 his	

Purely	Analytic	Proof,	should	be	interpreted	within	that	framework	and	not	within	later	ones	(cf.	

C.2.2).	

	

What	Bolzano	did	in	his	mathematical	works	of	1816-1817	seems,	therefore,	consistent	with	his	

conception	of	mathematics	and	his	notions	of	quantity	and	number.	He	defined	mathematics	as	

the	 science	about	 the	general	 laws	or	 forms	 to	which	 things	must	 conform	 in	 their	existence,	

because	mathematical	 disciplines	were	 not	 only	 purely	 scientific	 but	 also	 useful	 for	 everyday	

needs.	To	mathematically	study	things	(i.e.	objects	of	thought	or	empirical),	however,	quantities	

still	played	a	crucial	role	in	his	system,	but	also	their	modes	of	composition	or	forms.	This	seems	

to	 be	 the	 reason	 why	 combinatorial	 theory	 was	 so	 appealing	 to	 him	 to	 the	 extent	 that	 he	

considered	it	a	core	part	of	mathematics.	Even	more,	if	one	takes	into	account	that	underlying	

Hindenburg’s	 program	 there	 was	 an	 aim	 to	 work	 mathematically	 in	 finite	 terms,	 Germanic	

combinatorial	 theory	 of	 the	 early	 19th	 century	 fitted	 perfectly	with	 Bolzano's	 own	 objectives:	

quantities	 varied	 but	 in	 order	 to	 study	 analytically	 their	 variation	 one	 could	 not	 resort	 to	

geometric	or	kinetic	notions	and	arguments,	since	these	ones	were	alien	to	analysis	and	in	fact	

belonged	to	mathematical	parts	subordinated	to	analysis,	just	as	one	could	not	rely	on	actually	

infinite	quantities,	i.e.	non	determined	quantities,	but	in	any	case	on	infinite	multitudes.	

	

That	way,	when	Bolzano	explained	in	the	preface	to	his	1816	work	the	concept	of	quantities	!,	
he	 said	 that	 there	 was	 nothing	 objectionable	 in	 it	 and	 added	 that	 the	 existence	 of	 such	

quantities	in	space	and	time	could	be	ascertained;	a	remark	that	does	not	fit	with	the	syntactic	

conception	of	variables	within	the	later	analytical	framework	and	indeed	implies	assuming	space	

and	 time	 as	 continuous,	 something	 that	 later	 mathematicians	 would	 consider	 an	 axiom	 (cf.	

Cantor,	1872;	Dedekind	1872).	For	him,	variable	quantities	!	were	not	numbers	 (i.e.	were	not	

Weierstrassian	!),	but	neither	were	they	quantities	that	tended	to	zero	in	a	strictly	dynamic	way	

(i.e.	were	not	Cauchy’s	infinitesimals,	implicitly	dynamic,	nor	Carnot’s	“continuously	decreasing”	

quantities,	explicitly	dynamic).	
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In	other	words,	quantities	!	were	for	Bolzano	variable	quantities	that	should	not	be	assumed	as	

being	 smaller	 than	 any	 conceivable	 possible	 quantity,	 as	 the	 strictly	 dynamic	 conception	 of	

quantities	 required,	 but	 as	 capable	 of	 becoming	 smaller	 than	 any	 given	 quantity.	 Hence	 his	

distinction	between	“variable”	and	“constant”	variable	quantities	(cf.	Bolzano,	1817B:	30-31),	as	

well	 as	 his	 much-criticized	 proof	 procedure	 of	 his	 [convergence]	 criterion,	 where:	 a)	 he	 first	

discarded	to	prove	that	the	quantity	!	(to	which	a	sequence	of	quantities	[converged])	could	be	
assumed	to	be	variable,	an	hypothesis	 that	he	 took	 for	obviously	 true,	 since	 that	way	 it	could	

always	be	assumed	as	close	as	desired	to	the	term	of	the	sequence	with	which	it	was	supposed	

to	be	compared;	and,	secondly,	b)	he	stated	that	the	hypothesis	of	!	as	a	constant	quantity	also	
contained	 nothing	 impossible	 and	 proved	 that	 the	 sequence	 approached	 to	 such	 a	 quantity,	

which	could	be	determined	as	accurately	as	pleased.	

	

It	 is	 not	 only,	 therefore,	 that	 by	 1817	 Bolzano	 named	 ‘quantities’	what	 later	would	 be	 called	

‘real	numbers’.	For	him,	it	must	be	stressed,	irrational	quantities	were	not	numbers	and,	indeed,	

the	 irrationality	of	a	quantity	was	a	concept	 that	 still	 required	 to	be	clarified.	Thus,	 just	as	he	

worked	with	finite	segments	of	infinite	series	(i.e.	determined	segments),	ultimately	he	worked	

with	–indeterminate–	irrational	quantities	by	means	of	determined	fractions	(cf.	Bolzano,	1816:	

23,	76	&	137-138;	Bolzano,	1817B:	38).	Even	his	definition	of	quantities	!	could	be	interpreted	
as	a	sort	of	attempt	to	finitely	treat	the	potentially	infinite	variability	of	those	quantities	towards	

zero.	

	

In	that	way,	though	some	of	his	mathematical	practices	not	only	differ	a	lot	from	the	ones	of	his	

Germanic	 mathematicians	 predecessors	 and	 contemporaries,	 but	 in	 fact	 they	 resemble	 the	

modern	ones,	the	underlying	ideas	to	those	practices	of	Bolzano	reveal	how	heavily	deviant	they	

were	from	later	practices,	strictly	speaking.	Because,	while	within	his	analytical	framework	a)	he	

introduced	 the	 notion	 of	 a	 “multitude	 of	 infinite	 elements”,	 an	 object	 of	mathematical	 study	

inasmuch	 as	 it	 was	 determined	 by	 a	 law	 or	 a	 finite	 number	 of	 laws,	 and,	 moreover,	 b)	 he	

assumed	that	quantities	were	determined	by	the	law	of	continuity,	c)	he	did	not	give	the	step	to	

consider	a	quantity	as	an	actual	multitude	of	infinite	elements.	Would	he	have	done	it,	he	would	

have	considered	actual	infinite	quantities	as	objects	of	analytical	study	and	irrational	quantities	

would	not	have	been	problematic.	Moreover,	would	he	have	done	it,	a	further	step	would	have	

still	been	required	for	Bolzano’s	!	to	be	Weierstrassian	!,	namely,	to	consider	some	‘numbers’	
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as	multitudes	of	infinite	elements.	But	the	one	and	the	other	step	would	have	contravened	not	

only	his	idea	of	a	correct	mathematical	procedure,	but	also	his	notions	of	quantity	and	number.	

	

While	in	1865	Weierstrass	enunciated	what	today	is	known	as	Bolzano-Weierstrass	theorem	in	

terms	of	a	point	in	–or	on	the	boundary	of–	a	bounded	part	of	a	plane	(cf.	Weierstrass,	1865/66:	

16[B])	 and	 later	 in	 his	 formulation	 of	 that	 theorem	 he	 identified	 “an	 unbounded	 variable	

magnitude,	which	[formed]	a	simple	manifold”,	with	its	geometrical	representation	by	a	straight	

line	(Weierstrass,	1886:	60),256	those	could	not	have	been	valid	procedures	for	Bolzano,	at	least	

according	 to	 his	 early	 mathematical	 proposal.	 As	 a	 matter	 of	 fact,	 one	 of	 the	 few	 places	

throughout	 his	 1816	 work	 and	 his	 Purely	 Analytic	 Proof	 where	 he	 used	 the	 term	 “point”	 as	

identified	with,	traditional	reading	would	say,	the	value	of	a	Weierstrassian	real	quantity,257	was	

in	 the	 preface	 of	 that	 latter	work:	 one	 of	 the	 usual	 types	 of	 proof	 of	 the	 intermediate	 value	

theorem,	 he	 wrote,	 depended	 on	 a	 geometric	 truth,	 namely,	 “that	 every	 continuous	 line	 of	

simple	 curvature	 whose	 ordinates	 are	 first	 positive	 [and]	 then	 negative	 (or	 vice	 versa),	 must	

necessarily	 intersect	 the	 abscissa	 line	 somewhere	 at	 a	 point	 lying	 between	 those	 ordinates”	

(Bolzano,	1817B:	6).258	From	Bolzano’s	perspective,	this	was	an	invalid	mathematical	procedure	

due	 to	 the	 subordination	 of	 geometry	 to	 analysis.	 But,	 ultimately,	 this	 also	 highlights	 how	

deviant	 were	 Bolzano’s	 mathematical	 notions	 and	 practices	 from	 later	 Weierstrassian	 and	

arithmetizing	ones.	

	

Last	 but	 not	 least,	 in	 the	 transition	 from	 the	 kinetic	 approach	 of	 the	 18th	 century,	 in	 which	

quantities	 prevailed,	 to	 the	 static	 standpoint	 that	 would	 be	 characteristic	 of	 ‘arithmetized’	

analysis	(e.g.	the	one	of	Weierstrass,	Dedekind,	Cantor	and	others),	one	of	the	crucial	points	was	

the	 realization	 that	 a	 clear	 conceptual	 characterization	 of	 the	 continuity	 of	 the	 real-number	

domain	was	needed.	Success	in	arithmetizing	the	continuity	of	this	domain	was	to	become	a	key	

element	 in	 that	project,	 perhaps	even	 its	 climax,	 as	 expressed	 in	 the	 title	 of	Dedekind’s	 1872	

work,	Continuity	and	irrational	numbers.	By	contrast,	it	was	characteristic	of	pre-Weierstrassian	

proposals,	among	them	the	early	one	of	Bolzano,	to	not	yet	envision	that	project	and	apparently	

																																																													
256	As	 said	 before,	 both	 Cantor	 and	 Dedekind	 stressed	 their	 right	 to	 do	 so	 in	 their	 works	 of	 1872	 (cf.	 Cantor,	 1872/1932:	 97;	
Dedekind,	1872:	18-19).	
257	Other	place	in	those	works	where	such	identification	can	be	found	is	in	the	§13	of	his	Purely	Analytic	Proof,	when	he	exemplified	
his	so-called	“least	upper	bound”	theorem	by	means	of	a	rectangular	hyperbola	(cf.	Bolzano,	1817B:	49-50).	
258	Bolzano	wrote:	 “Eine	 jede	 continuirlicheLinie	 von	 einfacher	 Krümmung,	 deren	Ordinaten	 erst	 positiv,	 dann	 negativ	 sind	 (oder	
umgekehrt),	die	Abscissenlinie	nothwendig	irgendwo	in	einem	Puncte,	der	zwischen	jenen	Ordinaten	liegt,	durch	schneiden	müsse.”	
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had	no	 clear	 notion	of	 a	 “theory	of	 the	 continuum”	 (i.e.	 topological),	 nor	 any	proposal	 about	

how	to	approach	 the	elements	of	 topology	 (cf.	 Ferreirós,	2007:	137ff.),	despite	Bolzano’s	pre-

set-theoretical	 and	 pre-topological	 ideas.	 A	 difference	 that,	 precisely,	 stresses	 the	 distance	

between	Bolzano’s	proposal	in	1817	and,	for	example,	the	one	of	Cantor	(who	used	limit	points	

and	derived	sets)	and	Dedekind	(who	used	his	cut	principle	of	continuity)	in	1872.	

	

And	 yet,	 once	 again,	 at	 the	 same	 time	 Bolzano	 appears	 as	 an	 important	 pre-Weierstrassian	

author	and	a	pioneering	figure,	given,	for	example,	the	method	of	partition	of	intervals	that	he	

used	in	his	Purely	Analytic	Proof	and	that	was	highly	valued	by	Weierstrass.	Once	the	problem	of	

characterizing	 the	continuity	of	ℝ	became	clear,	as	 it	was	not	 in	Bolzano’s	early	mathematical	

work,	 that	 method	 could	 be	 turned	 into	 the	 so-called	 Bolzano-Weierstrass	 principle,	 259	

according	 to	 which	 an	 infinite	 sequence	 of	 nested,	 closed	 intervals,	 always	 has	 nonvoid	

intersection	 (i.e.	 at	 least	one	point	belongs	 to	every	 interval).	As	 it	 increasingly	became	clear,	

that	 principle	 offered	 a	 satisfactory	 characterization	 of	 the	 continuity	 of	 the	 real	 number	

system,	 alternative	 to	 the	 cut	 property	 proposed	 by	 Dedekind	 in	 1872.	 Thus,	 for	 example,	 in	

1884	Cantor	emphasized	the	importance	of	that	“very	old”	principle,	which,	he	said,	“was	hardly	

possible	 to	 replace	 by	 an	 essentially	 different	 one”	 (Cantor,	 1884/1932:	 212).260	By	 that	 time,	

however,	the	Germanic	mathematical	context	was	very	different	from	that	of	Bolzano’s	Purely	

Analytic	Proof,	a	work	that	in	the	end	would	be	as	widely	recognized	as	Bolzano	wanted	his	first	

works	to	be	(cf.	Bolzano,	1817B:	27),	although	often	interpreted	in	a	way	that,	according	to	this	

thesis,	seems	alien	to	what	he	actually	proposed.	

	

	

	

	

	

	

	

																																																													
259	This	expression,	used		in	(Ferreirós,	2007:	139-141),	is	quite	common	in	mathematical	terminology,	even	though	strictly	speaking	
it	is	anachronistic.	
260	Cantor	wrote:	“Ich	bemerke,	dass	die	hier	angewandte	Beweismethode,	welche	wohl	schwerlich	durch	eine	wesentlich	andere	
ersetzt	werden	kann,	ihrem	Kerne	nach	sehr	alt	ist;	in	neuerer	Zeit	findet	man	sie	unter	anderem	in	gewissen	zahlentheoretischen	
Untersuchungen	bei	Lagrange,	Legendre	und	Dirichlet,	 in	Cauchy’s	Cours	d’analyse	 (Note	troisième)	und	 in	einigen	Abhandlungen	
von	Weierstrass	und	Bolzano;	es	scheint	mir	daher	nicht	richtig,	sie	vorzugsweise	oder	aussechliesslich	auf	Bolzano	zurückzuführen,	
wie	solches	in	neuerer	Zeit	beliebt	worden	ist.”	
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Conclusiones	
	

	

Las	 líneas	 iniciales	 del	 trabajo	 de	 Dedekind	 de	 1872,	 Continuidad	 y	 números	 irracionales	

(Stetigkeit	 und	 irrationale	 Zahlen),	 el	mismo	en	 el	 que	 presentó	 su	 definición	 de	 los	 números	

reales,	 están	 dedicadas	 a	 explicar	 el	 origen	 de	 dicho	 trabajo:	 al	 preparar	 sus	 lecciones	 sobre	

cálculo	diferencial	 al	 inicio	de	 su	 carrera	 como	profesor	 (esto	es,	 en	1858),	 escribió,	 tuvo	que	

basarse	en	“evidencia	geométrica”	“en	la	noción	de	aproximación	de	una	cantidad	variable	a	un	

valor	 límite	 establecido”,	 algo	 didácticamente	 aceptable	 pero	 carente	 de	 “cientificidad”	

(Wissenschaftlichkeit)	 (Dedekind,	 1872:	 9).261	Aunado	 a	 lo	 cual,	 dieciséis	 años	 después,	 en	 el	

prefacio	a	¿Qué	son	y	para	qué	sirven	 los	números?	 (Was	sind	und	was	 sollen	die	Zahlen?),	él	

señaló	que,	como	ya	había	mostrado	en	su	trabajo	antes	mencionado,	la	“extensión	gradual	del	

concepto	de	número”	(die	shrittweise	Erweiterung	der	Zahlbegriffes)	se	podía	 llevar	a	cabo	sin	

emplear	 “ideas	 extrañas”	 (fremdartiger	 Vorstellungen),	 como	 por	 ejemplo	 la	 de	 “cantidades	

medibles”	(messbaren	Grössen)	(Dedekind,	1888:	X).	

	

El	punto	de	vista	de	Dedekind	era	el	de	un	matemático	germánico	del	siglo	XIX	quien	propuso	

una	aritmetización	del	análisis	a	la	cual	llegó	independientemente	de	Weierstrass,	esto	es,	sin	la	

influencia	 del	 autor	 que	 tradicionalmente	 es	 considerado	 como	 la	 figura	 clave	 en	 dicho	

proyecto.	Como	se	mencionó	en	 la	 introducción,	pese	a	que	Kronecker,	por	ejemplo,	 también	

propuso	una	especie	de	aritmetización,	él	no	dio	 los	pasos	dados	por	Dedekind,	Weierstrass	y	

otros	matemáticos,	 incluyendo	 a	 Cantor,	 Heine	 y	 otros	 estudiantes	 de	 aquel	 último.	 Por	 ello,	

probablemente	debido	al	impacto	de	Weierstrass	en	las	nuevas	generaciones,	así	como	debido	a	

su	 preeminencia	 temporal	 sobre	 aquellos	 otros	 autores,	 la	 narrativa	 tradicional	 identifica	 el	

proyecto	aritmetizador	con	la	propuesta	de	Weierstrass.	Sin	embargo,	no	se	ha	de	olvidar	que	

así	como	el	modo	habitual	de	referirse	a	la	‘aritmetización’	deja	de	lado	algunas	propuestas	que	

compartían	rasgos	cruciales	con	la	Weierstrassiana,	a	su	vez	hace	borrosas	las	diferencias	entre	

esta	última	y	algunas	otras.	

	

																																																													
261	Dedekind	escribió:	“Bei	dem	Begriffe	der	Annäherung	einer	veränderlichen	Grösse	an	einen	festen	Grenzwerth	und	namentlich	
bei	 dem	 Beweise	 des	 Satzesm	 dass	 jede	 Grösse,	 welche	 beständig,	 aber	 nicht	 über	 alle	 Grenzen	 wächst,	 sich	 gewiss	 einem	
Grenzwerth	nähern	muss,	nahm	ich	meine	Zuflucht	zu	geometrischen	Evidenzen”.	
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Dicho	 lo	 anterior,	 es	 verdad	 que	 la	 ‘aritmetización’	 del	 análisis	 conllevó	 un	 desapego	 de	 los	

fundamentos	geométricos	cuyo	paso	crucial	durante	el	 siglo	XIX	 fue,	 justamente,	el	abandono	

de	 tal	 noción	 de	 cantidad	 y	 la	 adopción	 de	 un	 dominio	 puramente	matemático	 de	 objetos,	 a	

saber,	los	números.	Un	dominio,	ha	de	ser	recalcado,	que	se	requería	que	fuera	continuo	pero	

estático.	 Desde	 esta	 perspectiva,	 el	 conjunto	 de	 los	 números	 reales	 no	 sólo	 era	 infinito	 en	 el	

sentido	de	que	carecía	de	un	último	elemento,	como	por	ejemplo	el	conjunto	de	 los	números	

naturales,	 sino	 también	 era	 infinito	 en	 tanto	 sus	 elementos	 dados	 de	 facto	 podían	 medir	

cualquier	cantidad	dada	y,	por	ende,	ser	identificados	con	cualquiera	cantidad	ordinaria.	De	esta	

manera,	 la	 noción	 central	 de	 ‘cantidad	 variable’	 fue	 eventualmente	 reemplazada	 por	 las	

variables	sintácticas	(esto	es,	caracteres	que	representan	números)	y	funciones	de	una	variable	

real	 (esto	 es,	 funciones	 en	 el	 marco	 del	 dominio	 real),	 mientras	 que	 el	 dominio	 real	 fue	

concebido	estáticamente	y	caracterizado	como	totalmente	ordenado,	denso	y	continuo.	

	

Empero,	 todo	 ello	 sólo	 fue	 logrado	 a	 través	 de	 un	 largo	 proceso	 cuya	 estricta	 periodización	

simplemente	no	puede	ser	establecida.262	Como	denunció	Dedekind,	en	la	década	de	1870	aún	

existían	en	el	análisis	real	–moderno–	algunos	remanentes	de	ideas	ajenas	a	este,	mismas	que	

se	 pueden	 encontrar,	 por	 ejemplo,	 en	 los	 trabajos	 de	 Weierstrass	 y	 Cantor:	 durante	 dicha	

década,	 ambos	 autores	 aún	 empleaban	 la	 denominación	 “cantidades	 numéricas”	

(Zahlengrössen)	para	referirse	a	los	números	racionales	e	irracionales	dentro	de	una	concepción	

abstracta	sumamente	moderna	(cf.	Cantor,	1872/1932:	97;	Weierstrass,	1878/1988:	7,	8	y	40),	

pese	 a	 que	dicha	denominación	 evocaba	una	 comprensión	previa	 de	 la	matemática,	 en	 tanto	

ciencia	 de	 cantidades	 discretas	 y	 continuas,	 aún	 presente	 a	 mediados	 del	 siglo	 XIX	 (cf.	

Hoffmann,	1864:	144;	Ferreirós,	2007:	42).	Así,	el	trabajo	del	propio	Weierstrass,	el	matemático	

que	históricamente	ha	 sido	considerado	como	el	máximo	exponente	de	 la	propuesta	que	hoy	

día	comúnmente	se	identifica	con	la	‘aritmetización	del	análisis’,	es	evidencia	de	aquel	proceso.	

	

Sobre	todo,	para	los	fines	de	esta	tesis,	en	cierto	sentido	los	primeros	trabajos	matemáticos	de	

Bolzano	a	su	vez	son	muestra	de	dicho	proceso,	si	bien	de	una	manera	diferente	a	como	lo	es	la	

obra	de	Weierstrass.	Esto	significa	que,	pese	a	que	a	partir	de	c.	1900	en	adelante,	aquella	obra	

de	 Bolzano	 (en	 particular	 su	 Prueba	 puramente	 analítica)	 ha	 sido	 interpretada	 como	 un	

																																																													
262	Sin	embargo,	se	pueden	hacer	intentos	por	establecer	una	cierta	periodización,	como	se	hace,	por	ejemplo,	en	(Ferreirós,	2016:	
216ss.).	
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antecedente	 aislado	 y	 ampliamente	 ignorado	 de	 ese	 proyecto	 aritmetizador	 y	 de	 nociones	 y	

procedimientos	 Weierstrassianos,	 tal	 lectura	 es	 incorrecta.	 Por	 el	 contrario,	 lo	 que	 parece	

mostrar	una	lectura	cuidadosa	de	esos	trabajos	de	Bolzano	es	la	transición	germánica	hacia	una	

noción	 premoderna	 de	 número,	 esto	 es,	 una	 transición	 hacia	 el	 escenario	 matemático	

germánico	que,	sin	anticipar	aquel	proyecto	y	aquellas	nociones	y	procedimientos	posteriores,	

les	 antecedió.	De	 ese	modo,	mientras	 que	 indudablemente	 todas	 esas	 propuestas	 comparten	

rasgos	comunes,	esto	no	se	debe	a	que	Bolzano	estuviera	en	la	línea	de	las	posteriores	sino,	en	

cambio,	 a	 que	Weierstrass	 y	 otros	 desarrollaron	 sus	 propuestas	 sobre	 la	 tierra	 trabajada	 por	

Bolzano	y	otros	matemáticos.	Lo	cual	no	es	meramente	una	cuestión	de	distinguir	entre	lo	que	

ocurrió	 antes	 y	 después:	 los	 primeros	 trabajos	 matemáticos	 de	 Bolzano	 fueron	 pre-

Weierstrassianos	 y	 no	 proto-Weierstrassianos,	 puesto	 que	 aún	 tenían	 características	 de	

nociones	(de	cantidad	y	número)	y	prácticas	matemáticas	sumamente	distintas	de	la	propuesta	

de	Weierstrass	y	posteriores.	

	

Aún	más,	 aquellos	 trabajos	 de	 Bolzano	 representan	 una	 especie	 de	 confluencia	 de	 dos	 ideas	

medulares	que	moldearon	las	matemáticas	germánicas	durante	la	segunda	mitad	del	siglo	XVIII	

y	 comienzos	 del	 siglo	 XIX:	 estrictamente	 hablando,	 el	 cero	 y	 los	 infinitesimales	 no	 podían	 ser	

considerados	cantidades	y	los	números	sólo	eran	los	enteros	–positivos–.	Bolzano	fue	muy	claro	

respecto	a	esto	en	su	 trabajo	de	1816	sobre	el	 teorema	del	binomio:	 se	 refirió	al	 “[concepto]	

auto-contradictorio	de	cantidades	infinitamente	pequeñas”;	escribió	que	era	“posible	dividir	por	

cualquier	cantidad	finita	(esto	es,	actual),	pero	nunca	por	cero	(esto	es,	nada)”;	y	habló	sobre	un	

exponente	! 	que	 podía	 denotar	 un	 “número	 entero,	 [y]	 también	 una	 cantidad	 racional,	

irracional	o	negativa”	(cf.	Bolzano,	1816:	XI	y	2).	O,	como	escribió	en	Las	paradojas	del	 infinito	

(Paradoxien	des	Unendlichen),	publicado	póstumamente	en	1851:	“[Si]	la	multitud	de	todos	los	

números	es	infinita	(el	conjunto	de	los	llamados	naturales	o	enteros)	[...],	entonces	también	es	

infinita	la	multitud	de	las	cantidades	[...].	[Puesto	que]	no	sólo	todos	los	números	son	también	

cantidades,	 sino	 que	 [también]	 [...]	 denotan	 cantidades	 las	 fracciones	 [...]	 y	 las	 denominadas	

expresiones	irracionales”	(Bolzano,	1851:	20-21).263	

	

																																																													
263	Bolzano	escribió:	“die	Menge	aller	Zahlen	 (der	sogenannten	natürlichen	oder	ganzen	 [...])	unendlich	sei.	 [...]	 Ist	die	Menge	der	
Zahlen	 (nämlich	 der	 sogenannten	 ganzen	 Zahlen)	 unendlich:	 so	 ist	 um	 so	 gewisser	 die	Menge	 der	 Größen	 (nach	 der	 §	 6	 und	
Wissenschaftslehre	§	87	vorkommenden	Erklärung)	eine	unendliche.	Denn	jener	Erklärung	zufolge	sind	nicht	nur	alle	Zahlen	zugleich	
auch	Größen,	 sondern	 es	 gibt	 noch	weit	mehr	Größen	 als	 Zahlen,	weil	 auch	die	Brüche	!! ,

!
! ,

!
! ,

!
! ,…,	 ingleichen	 die	 sogenannten	

irrationalen	Ausdrücke	 2, 2! ,… ,!, !,…,	Größen	bezeichnen”.	
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Ciertamente,	 la	postura	de	Bolzano	en	Las	paradojas	del	 infinito	no	era	exactamente	la	misma	

que	 aquella	 en	 sus	 trabajos	 de	 1804-1817	 pero,	 a	 su	 vez,	 una	 y	 otra	 no	 eran	 exactamente	 la	

misma	que	 la	de	sus	predecesores	matemáticos	germánicos.	Como	se	muestra	y	explica	en	el	

segundo	capítulo	de	este	trabajo,	a	lo	largo	de	la	segunda	mitad	del	siglo	XVIII	a	los	matemáticos	

germánicos	se	les	enseñaron	las	matemáticas	en	un	contexto	post-Wolffiano.	En	otras	palabras,	

tales	matemáticos	crecieron	en	un	contexto	en	el	cual,	si	bien	en	general	la	filosofía	y	el	método	

matemático	 de	 Wolff	 no	 sufrió	 profundas	 modificaciones,	 algunas	 nociones	 y	 prácticas	

matemáticas	fueron	cada	vez	más	diferentes	de	aquellas	que,	si	no	siempre,	al	menos	en	algún	

momento	defendió	Wolff.	Así,	mientras	que	en	la	Académie	Royale	des	Sciences	et	Belles	Lettres	

de	 Berlin	 no	 sólo	 el	 francés	 fue	 establecido	 como	 el	 idioma	 oficial,	 sino	 que	 además	 ahí	 se	

concibieron	 y	 publicaron	 (en	 sus	Histoire	 y	Mémoires)	 trabajos	 de	 Euler,	 Johann	 III	 Bernoulli,	

Lambert,	 Lagrange	 y	 otros	 matemáticos	 ‘extranjeros’,	 en	 gran	 parte	 de	 los	 territorios	

germánicos	se	rechazaban	nociones	y	prácticas	centrales	de	estos	matemáticos.	

	

Precisamente,	dada	la	relevancia	de	las	universidades	de	Göttingen	y	Halle	en	la	conformación	

de	 las	matemáticas	 germánicas	 de	 la	 segunda	mitad	 del	 siglo	 XVIII,	 no	 así	 de	 la	 Academia	 de	

Preußen,	 la	de	Paris	y	 la	de	San	Petersburgo,	el	segundo	capítulo	se	enfocó	en	 los	trabajos	de	

Kästner,	 Karsten	 y	 Segner.	 Tres	 autores	 para	 quienes,	 en	 primer	 lugar,	 los	 números	 eran	

agregados	 de	 unidades	 y,	 como	 consecuencia,	 los	 números	 por	 excelencia	 eran	 los	 enteros	 –

positivos–,	 a	 partir	 de	 los	 cuales	 se	 podían	 formar	 los	 racionales,	 mientras	 que	 los	 llamados	

irracionales,	 como	 claramente	 lo	 señaló	 Segner,	 nunca	 podrían	 ser	 –aritméticamente–	

expresados	con	precisión,	 siendo	además	el	 cero	un	signo	y	no	un	número.	La	 reticencia	para	

considerar	a	 los	números	negativos	en	el	entramado	aritmético,	así	como	 la	ausencia	habitual	

del	 término	 ‘números	 naturales’	 (cuya	 positividad	 sólo	 emergía	 al	 considerar	 a	 los	 números	

negativos)	 en	 los	 trabajos	 de	 los	 matemáticos	 germánicos	 de	 la	 época,	 estaban	 una	 y	 otra	

enraizadas	en	una	concepción	eminentemente	geométrica	y	cinética	de	las	matemáticas.	

	

Evidencia	 de	 lo	 anterior	 es	 el	 hecho	 de	 que,	 mientras	 que	 en	 la	 entrada	 ‘número’	 en	 la	

Cyclopædia	 inglesa	 y	 en	 la	 Encyclopédie	 francesa	 se	 indicaba	 que	 los	 números	 enteros	 –

positivos–	 o	 “simplemente	 números”	 “también	 eran	 conocidos	 como	 números	 naturales	
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(Chambers,	 1728:	 641;	 Diderot,	 1765:	 202),	 264 	en	 cambio	 en	 la	 entrada	 “Zahl”	 en	 el	

Mathematisches	Wörterbuch	de	Klügel	esa	denominación	alternativa	no	era	usada	(Klügel	et	al.,	

1831:	1053ss.).	Esto	es	relevante	no	sólo	debido	a	la	fecha,	sino	también	debido	a	que	la	división	

de	“toda	la	ciencia	de	los	números”	en	aritmética	y	teoría	de	números	da	cuenta	de	un	cambio	

que	tuvo	lugar	durante	esos	años	(id.:	1057;	cf.	Legendre,	1798;	Gauss,	1801),	mientras	que	la	

noción	de	‘número’	muestra	la	prevalecencia	de	conflictos	en	torno	a	ella.	Como	consecuencia,	

así	como	en	su	libro	sobre	los	fundamentos	de	la	aritmética	Klügel	sólo	introdujo	los	irracionales	

y	 los	 negativos	 para	 decir	 que	 a)	 la	 cantidad	 de	 los	 primeros	 sólo	 se	 podía	 representar	 con	

exactitud	en	la	geometría	y	b)	los	miembros	(números)	de	la	progresión	aritmética,	de	ser	leídos	

al	 revés,	 conducirían	 a	 miembros	 “negados”	 (Klügel,	 1792:	 31	 y	 50-51),	 lo	 mismo	 se	 puede	

encontrar	en	su	diccionario	(Klügel,	1805:	104ss.	y	949).	

	

En	segundo	lugar,	para	Kästner,	Karsten,	Segner	y	muchos	otros	matemáticos	germánicos	de	la	

segunda	mitad	del	siglo	XVIII,	‘cantidad’	era	aquello	capaz	de	incremento	y	disminución,	como	–

en	cierta	medida–	lo	era	para	Wolff,	y	como	consecuencia,	así	como	el	cero	no	era	una	cantidad,	

tampoco	 lo	 eran	 las	 cantidades	 que	 los	 diferenciales	 e	 infinitesimales	 asociaban	 a	 ceros.	 En	

última	 instancia,	uno	podía	 considerar	matemáticamente	 la	 variabilidad	de	una	 cantidad	pero	

no	 adscribirle	 a	 ella	 un	 valor	 numérico	 –finito–.	 Como	 de	 alguna	 manera	 lo	 resumió	 Segner	

cuando	explicó	la	variabilidad	que	conducía	de	una	cantidad	positiva	a	una	negativa	y	viceversa,	

había	 “infinitamente	 muchos	 tipos	 de	 cantidades,	 [...]	 como	 por	 ejemplo	 las	 posesiones	 y	

deudas;	lo	recibido	y	lo	gastado;	la	gravedad	y	la	fuerza	dirigida	hacia	arriba;	el	flujo	del	agua	en	

un	 recipiente	y	el	del	agua	emanando	de	este;	 y	muchas	otros	más”	 (Segner,	1758:	5).265	Una	

variabilidad,	 se	 ha	 de	 enfatizar,	 que	 en	 aquellos	 tiempos	 los	 matemáticos	 germánicos	

interpretaban	 sobre	 todo	 en	 términos	 geométricos;	 de	 ahí	 que	 la	 ley	 de	 continuidad	 fuera	

introducida	en	el	entramado	geométrico.	

	

Aunado	a	 la	 reticencia	hacia	dichos	nuevos	desarrollos	 extranjeros,	 sin	 embargo,	 vale	 la	pena	

notar	dos	aspectos	cruciales	de	 las	prácticas	matemáticas	germánicas	de	 la	época,	a	saber,	 su	

																																																													
264	Louis	de	Jaucourt	(D.	J.)	escribió:	“Les	nombres	entiers,	appelés	aussi	nombres	naturels	ou	simplement	nombres,	sont	ceux	que	
l'on	regarde	comme	des	tous,	sans	supposer	qu'ils	soient	parties	d'autres	nombres”.	
265	Segner	 escribió:	 “Caeterum	 infinita	 sunt	 quantitatum	 genera,	 quarum	 altera	 refertur	 ad	 alteram,	 quemadmodum	 progressus	
refertur	ad	regressum,	ascensus	ad	descensum,	vel	motus	quicunque	versus	aliquam	partem,	ad	motum	versus	partem	oppositam.	
Tales	sunt,	possessiones,	debita;	accepta,	expensa;	gravitas,	vis	sursum	directa;	aqua	in	vas	influens,	aqua	effluens,	&	aliae	plurimae,	
quarum	quaedam	in	sequentibus	clare	exponentur”.	
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uso	de	las	cantidades	irracionales	y	de	las	cantidades	infinitamente	grandes.	Por	una	parte,	pese	

a	las	diferencias	entre	sus	propuestas,	Kästner,	Karsten	y	Segner,	como	muchos	otros,	concebían	

a	 los	 números	 irracionales	 como	 aquellos	 que	 no	 podían	 ser	 expresados	 apropiadamente	

mediante	unidades	enteras	o	partes	alícuotas	de	la	unidad.	Debido	a	ello,	en	sentido	estricto	los	

irracionales	 no	 eran	 números,	 puesto	 que	 ellos	 estaban	 más	 próximos	 a	 las	 magnitudes	

geométricas,	 si	 bien	 se	 referían	 a	 ellos	 como	 ‘números’.	 Por	 otra	 parte,	 para	 muchos	

matemáticos	germánicos,	como	Karsten	insistentemente	defendió,		las	cantidades	infinitamente	

grandes	no	eran	problemáticas	y,	por	ende,	uno	estaba	autorizado	a	emplearlas	en	matemáticas	

como	= ∞.	

	

En	 cambio,	 en	 sus	 primeros	 trabajos	 matemáticos,	 Bolzano:	 a)	 era	 reticente	 por	 igual	 a	 las	

cantidades	 infinitamente	 pequeñas	 y	 a	 las	 infinitamente	 grandes	 (cf.	 Bolzano,	 1810:	 30);	 b)	

consideraba	que	el	 concepto	de	 irracionalidad	de	una	 cantidad	aún	debía	de	 ser	desarrollado	

con	 claridad	 (cf.	 Bolzano,	 1816:	 143-144),	 a	 pesar	 de	 lo	 cual	 él	 se	 refería	 a	 “cantidades	

irracionales”,	 aunque	 no	 a	 “números	 irracionales”; 266 	y	 c)	 si	 bien	 él	 no	 se	 refirió	 a	 los	

“comúnmente	llamados”	números	naturales,	como	lo	hiciera	años	más	tarde	en	Las	paradojas,	

hacia	1817	él	sí	usaba	esta	expresión	(natürlichen	Zahlen)	(cf.	Bolzano,	1816:	41,	43,	85	y	96).	Lo	

que	 significa	 que	mientras	 la	 práctica	 y	 la	 terminología	matemática	 de	 Bolzano	muestran	 un	

paso	 adelante	 con	 respecto	 a	 la	 noción	 básica	 de	 números	 naturales,	 de	 cierta	 manera	 sus	

nociones	 generales	 de	 cantidad	 y	 número	 estaban	 trazadas	más	 rigurosamente	 pero	 a	 la	 vez	

más	modernamente	 que	 las	 de	 sus	 predecesores.	 La	 asunción	 de	 números	 enteros	 positivos	

como	 la	 multiplicidad	 más	 natural	 de	 números	 conllevaba	 que	 también	 existía	 la	 –no	 tan	

natural–	multiplicidad	de	números	negativos,	a	los	cuales	él	usualmente	se	refería	en	términos	

de	cantidades	con	valores	numerados	por	enteros	negativos	 (es	decir,	cantidades	a	 las	que	se	

les	podían	asignar	valores	numéricos).	Pero,	al	mismo	tiempo,	semejante	noción	de	 ‘números’	

implicaba	 que	 estos	 eran	 menos	 que	 las	 cantidades,	 entre	 las	 cuales	 estaban	 las	 enteras	

positivas,	 pero	 también	 las	 racionales,	 negativas	 e	 irracionales;	 conceptos,	 estos	 dos	 últimos,	

que	desde	su	perspectiva	aún	necesitaban	ser	desarrollados	con	claridad.	

	

																																																													
266	Como	se	explicó	en	el	último	capítulo	de	esta	tesis,	si	bien	es	cierto	que	Bolzano	se	refirió	en	alguna	ocasión	en	sus	trabajos	de	
1804-1817	 a	 “irrationalen	 Zahl”	 (cf.	 Bolzano,	 1816:	 137),	 parece	 apropiado	 interpretar	 dicha	 referencia	 a	 “números	 enteros,	
racionales	e	incluso	irracionales”	(§73)	más	bien	en	la	línea	de	lo	que	escribió	al	inicio	de	ese	trabajo,	a	saber,	“un	número	entero,	[y]	
también	una	cantidad	racional,	irracional	o	negativa”	(Bolzano,	1816:	2),	dado	que	en	su	solución	al	problema	presentado	en	el	§73	
él	volvió	a	referirse	a	“cantidades	irracionales”	(irrationaler	Grössen	e	Irrationalgrösse).	
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Aún	más,	hacia	1817	Bolzano	era	reticente	respecto	al	concepto	de	una	cantidad	infinita,	lo	que	

incluía	a	 las	cantidades	 infinitamente	grandes	y	pequeñas.	Como	escribió	en	1810,	aún	estaba	

por	ser	decidido	si	ambos	conceptos	podrían	ser	considerados,	no	como	cantidades,	sino	como	

expresiones	simbólicas	 (esto	es,	en	 términos	actuales,	como	herramientas),	 como	 lo	eran,	por	

ejemplo,	 −1	(1810)	o	!, !	y	otras	(1851).267	Así,	mientras	que	las	cantidades	enteras	negativas	

y	racionales	podían	ser	expresadas	numéricamente,	las	irracionales	y	las	infinitamente	pequeñas	

o	 grandes	 no	 podían	 ser	 expresadas	 numérica-finitamente,	 esto	 es,	 como	 enfatizó	 en	 sus	

trabajos	de	1816-1817,	 las	cantidades	 infinitas	no	podían	ser	estrictamente	determinadas:	por	

ejemplo,	a)	mientras	que	la	magnitud	de	una	línea	recta	infinita	no	podía	ser	determinada	y,	por	

ende,	 ésta	 era	 una	 “línea	 indeterminada”	 (1804),	 la	 magnitud	 de	 una	 línea	 recta	 entre	 dos	

puntos	!	y	!	podía	 ser	 determinada	 y,	 por	 lo	 tanto,	 él	 podía	 referirse	 a	 ésta	 como	 una	 “línea	

determinable”	 (1817A);	 y	 b)	 escribió	 que	 una	 función	
!

!!! 	“no	 tiene	 un	 valor	 determinado	

cuando	! = !,	 sino	 que	 se	 torna	 lo	 que	 se	 denomina	 infinitamente	 grande	 (1817B),	 pero	 se	

refirió	 a	 una	 multitud	 infinita	 determinada	 de	 funciones	!", !!, !!,… 	que	 variaba	 para	!	
conforme	 a	 la	 ley	 de	 continuidad	 (1817A).	 Sus	 definiciones	 de	 una	 función	 continua	 y	 de	 las	

cantidades	!,	que	se	asemejan	mucho	a	la	definición	moderna	de	una	función	continua	de	una	

variable	 real	 y	 a	 la	! 	Weierstrassiana,	 y	 que	 por	 ende	 constituyen	 dos	 de	 los	 pilares	 que	

tradicionalmente	 han	 sustentado	mucha	 de	 la	 modernidad	 atribuida	 a	 su	 Prueba	 puramente	

analítica,	 han	 de	 ser	 interpretados	 dentro	 de	 aquel	 entramado	 y	 no	 dentro	 de	 entramados	

posteriores	(cf.	C.2.2).	

	

Lo	que	Bolzano	hizo	en	sus	trabajos	matemáticos	de	1816-1817	parece,	por	lo	tanto,	consistente	

con	 su	 concepción	 de	 las	 matemáticas	 y	 sus	 nociones	 de	 cantidad	 y	 número.	 Él	 definió	 la	

matemática	 como	 la	 ciencia	 sobre	 las	 leyes	 o	 formas	 generales	 a	 las	 que	 las	 cosas	 habían	 de	

ajustarse	en	su	existencia,	ya	que	las	disciplinas	matemáticas	no	sólo	eran	puramente	científicas	

sino	 también	 útiles	 para	 necesidades	 del	 día	 a	 día.	 Para	 estudiar	matemáticamente	 las	 cosas	

(esto	es,	objetos	del	pensamiento	o	empíricos),	sin	embargo,	las	cantidades	aún	jugaban	un	rol	

crucial	en	su	sistema,	como	también	lo	hacían	sus	modos	de	composición	o	formas.	Esta	parece	

ser	la	razón	por	la	que	la	teoría	combinatoria	resultaba	tan	atractiva	para	él,	al	grado	de	que	él	

la	consideraba	una	parte	medular	de	la	matemática.	Todavía	más,	si	uno	toma	en	cuenta	que	al	
																																																													
267	Vale	la	pena	recalcar	que	la	concepción	de	algunos	de	los	que	hoy	día	se	consideran	números	como	“expresiones	simbólicas”	no	
era	enteramente	extraña	en	la	época:	como	se	dijo	antes,	tanto	Bolzano	como	Cauchy	y	Jandera,	por	ejemplo,	consideraban	a	los	
números	imaginarios	como	expresiones	simbólicas	(cf.	Bolzano,	1810:	30;	Cauchy,	1821:	iij-iv	y	173ss.;	Jandera,	1830:	XXIX).	
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programa	de	Hindenburg	subyacía	el	objetivo	de	trabajar	matemáticamente	en	términos	finitos,	

la	 teoría	 combinatoria	 germánica	 de	 principios	 del	 siglo	 XIX	 encajaba	 perfectamente	 con	 los	

objetivos	 de	 Bolzano:	 las	 cantidades	 variaban	 pero	 para	 estudiar	 analíticamente	 su	 variación	

uno	no	podía	recurrir	a	nociones	y	argumentos	geométricos	o	cinéticos,	puesto	que	estos	eran	

ajenos	al	análisis	y	de	hecho	pertenecían	a	partes	de	la	matemática	subordinadas	al	análisis,	así	

como	 uno	 no	 podía	 basarse	 en	 cantidades	 infinitas	 en	 acto,	 es	 decir,	 en	 cantidades	 no	

determinadas,	sino,	en	cualquier	caso,	en	multitudes	infinitas.	

	

Así,	cuando	en	el	prefacio	a	su	trabajo	de	1816	Bolzano	explicó	el	concepto	de	cantidades	!,	él	
dijo	 que	 no	 había	 nada	 objetable	 en	 dicho	 concepto	 y	 añadió	 que	 la	 existencia	 de	 tales	

cantidades	 en	 el	 espacio	 y	 tiempo	 era	 inapelable;	 una	 observación	 que	 no	 encaja	 con	 la	

concepción	sintáctica	de	‘variables’	en	el	entramado	analítico	posterior	y	que,	de	hecho,	implica	

la	 asunción	 del	 espacio	 y	 del	 tiempo	 en	 tanto	 continuos,	 algo	 que	 matemáticos	 posteriores	

habrían	 de	 considerar	 un	 axioma	 (cf.	 Cantor,	 1872;	 Dedekind	 1872).	 Para	 él,	 las	 cantidades	

variables	! 	no	 eran	 números	 (esto	 es,	 no	 eran	 las	! 	Weierstrassianas),	 pero	 tampoco	 eran	

cantidades	 que	 tendían	 a	0 	de	 una	 manera	 estrictamente	 dinámica	 (esto	 es,	 no	 eran	 los	

infinitesimales	 de	 Cauchy,	 implícitamente	 dinámicos,	 ni	 las	 cantidades	 “continuamente	

decrecientes”	de	Carnot,	explícitamente	dinámicas).	

	

En	 otras	 palabras,	 para	Bolzano	 las	 cantidades	!	eran	 cantidades	 variables	 que	no	debían	 ser	
asumidas	siendo	más	pequeñas	que	cualquier	cantidad	posible	concebible,	como	lo	demandaba	

una	concepción	de	las	cantidades	estrictamente	dinámica,	sino	que	debían	ser	asumidas	como	

cantidades	capaces	de	ser	más	pequeñas	que	cualquier	cantidad	dada.	De	ahí	su	distinción	entre	

cantidades	 variables	 “variables”	 y	 “constantes”	 (cf.	 Bolzano,	 1817B:	 30-31),	 así	 como	 su	 tan	

criticado	 procedimiento	 para	 probar	 su	 criterio	 de	 [convergencia],	 en	 la	 cual	 él:	 a)	 primero	

descartó	probar	que	la	cantidad	!	(en	la	cual	[convergía]	una	secuencia	de	cantidades)	podía	ser	
asumida	como	variable,	una	hipótesis	que	daba	por	obviamente	verdadera	puesto	que	de	ese	

modo	siempre	podía	ser	asumida	tan	cerca	como	se	quisiera	al	término	de	la	secuencia	con	el	

cual	 se	 suponía	 que	 era	 comparada;	 y,	 segundo,	 b)	 afirmó	 que	 la	 hipótesis	 de	!	como	 una	

cantidad	constante	tampoco	era	imposible	y	probó	entonces	que	la	secuencia	se	aproximaba	a	

dicha	cantidad,	misma	que	podía	ser	determinada	con	la	precisión	que	se	quisiera.	
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No	 se	 trata	 simplemente,	 por	 ende,	 de	 que	 hacia	 1817	 Bolzano	 denominara	 ‘cantidades’	 a	

aquellas	que	más	tarde	se	llamarían	‘números	reales’.	Para	él,	debe	quedar	claro,	las	cantidades	

irracionales	no	eran	números	y,	de	hecho,	la	irracionalidad	de	una	cantidad	era	un	concepto	que	

aún	necesitaba	ser	clarificado.	Como	consecuencia,	así	como	él	trabajó	con	segmentos	finitos	de	

series	infinitas	(es	decir,	con	segmentos	determinados),	en	última	instancia	también	trabajó	con	

cantidades	irracionales	–indeterminadas–	mediante	fracciones	determinadas	(cf.	Bolzano,	1816:	

23,	 76	 y	 137-138;	 Bolzano,	 1817B:	 38).	 Incluso,	 su	 definición	 de	 cantidades	! 	podría	 ser	

interpretada	 como	 una	 suerte	 de	 intento	 por	 tratar	 de	 modo	 finito	 la	 variabilidad	

potencialmente	infinita	hacia	0	de	aquellas	cantidades.	
	

Así,	pese	a	que	algunas	de	sus	prácticas	matemáticas	no	sólo	diferían	sobremanera	de	las	de	sus	

antecesores	 y	 contemporáneos	matemáticos	germánicos,	 sino	que	de	hecho	 se	asemejaban	a	

prácticas	modernas,	las	ideas	subyacentes	a	aquellas	prácticas	de	Bolzano	revelan	lo	diferentes	

que	estrictamente	hablando	eran	respecto	a	prácticas	posteriores.	Porque,	mientras	que	en	su	

entramado	 analítico	 a)	 él	 introdujo	 la	 noción	 de	 una	 “multitud	 de	 infinitos	 elementos”,	 un	

objeto	de	estudio	matemático	en	tanto	que	estaba	determinado	por	una	ley	o	un	número	finito	

de	 leyes,	 y,	 sobre	 todo,	 b)	 él	 asumió	 que	 las	 cantidades	 estaban	 determinadas	 por	 la	 ley	 de	

continuidad,	c)	él	no	dio	el	paso	a	considerar	una	cantidad	como	una	multitud	actual	de	infinitos	

elementos.	De	haberlo	hecho,	él	habría	considerado	cantidades	infinitas	actuales	como	objetos	

de	 estudio	 analítico	 y	 las	 cantidades	 irracionales	 no	 habrían	 sido	 problemáticas.	 Aún	 más,	

incluso	de	haberlo	hecho,	todavía	se	hubiera	requerido	un	paso	más	para	que	las	cantidades	!	
de	Bolzano	fueran	!	de	Weierstrass,	a	saber,	considerar	algunos	‘números’	como	multitudes	de	

infinitos	elementos.	No	obstante,	 lo	uno	y	 lo	otro	habrían	contravenido	no	sólo	su	 idea	de	un	

procedimiento	matemático	correcto,	sino	también	sus	nociones	de	cantidad	y	número.	

	

Mientras	 que	 Weierstrass	 en	 1865	 enunció	 lo	 que	 hoy	 día	 se	 conoce	 como	 el	 teorema	 de	

Bolzano-Weierstrass	en	términos	de	un	punto	en	–o	en	la	frontera	de–	una	parte	limitada	de	un	

plano	 (cf.	Weierstrass,	 1865/66:	 16[B])	 y,	 posteriormente,	 en	 su	 formulación	 de	 ese	 teorema	

identificó	 “una	 cantidad	 variable	 ilimitada,	 que	 [formaba]	 un	 dominio	 simple”	 con	 su	

representación	 geométrica	de	una	 línea	 recta	 (Weierstrass,	 1886:	 60),268	ellos	 no	habrían	 sido	

																																																													
268	Como	antes	se	dijo,	tanto	Cantor	como	Dedekind	enfatizaron	su	derecho	a	hacer	tal	cosa	en	sus	respectivos	trabajos	de	1872	(cf.	
Cantor,	1872/1932:	97;	Dedekind,	1872:	18-19).	
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procedimientos	válidos	para	Bolzano,	al	menos	de	acuerdo	a	 su	propuesta	matemática	 inicial.	

De	hecho,	uno	de	los	pocos	lugares	en	su	trabajo	de	1816	y	en	su	Prueba	puramente	analítica	en	

el	cual	él	usó	el	término	“punto”	en	tanto	identificado	con,	diría	la	lectura	tradicional,	el	valor	de	

una	cantidad	real	Weierstrassiana,269	fue	en	el	prefacio	a	ese	último	trabajo:	uno	de	los	tipos	de	

pruebas	 más	 comunes	 del	 teorema	 del	 valor	 intermedio,	 dijo,	 dependía	 de	 una	 verdad	

geométrica,	 a	 saber,	 “que	 toda	 línea	 continua	 de	 curvatura	 simple	 cuyas	 ordenadas	 eran	

primero	 positivas	 [y]	 luego	 negativas	 (o	 viceversa),	 necesariamente	 deben	 intersectar	 la	 línea	

abscisa	 en	 algún	 punto	 que	 yace	 entre	 aquellas	 ordenadas”	 (Bolzano,	 1817B:	 6).270	Desde	 la	

perspectiva	 de	 Bolzano,	 este	 era	 un	 procedimiento	 matemático	 inválido	 debido	 a	 la	

subordinación	de	 la	 geometría	 al	 análisis.	No	obstante,	 ultimadamente	esto	 también	pone	de	

manifiesto	 cuán	 diferentes	 eran	 las	 nociones	 y	 prácticas	 matemáticas	 de	 Bolzano	 de	 las	

nociones	y	prácticas	matemáticas	Weierstrassianas	y	aritmetizadoras	posteriores.	

	

Por	último,	pero	no	por	ello	menos	 importante,	en	 la	 transición	del	enfoque	cinético	del	 siglo	

XVIII	 (en	 el	 cual	 las	 cantidades	 prevalecían)	 al	 punto	 de	 vista	 estático	 que	 caracterizaría	 al	

análisis	 ‘aritmetizado’	 (por	 ejemplo,	 el	 de	Weierstrass,	 Dedekind,	 Cantor	 y	 otros),	 uno	 de	 los	

puntos	 cruciales	 fue	 la	 comprensión	 de	 que	 una	 caracterización	 conceptual	 clara	 de	 la	

continuidad	 del	 dominio	 de	 los	 números	 reales	 era	 necesaria.	 El	 éxito	 en	 aritmetizar	 la	

continuidad	de	este	dominio	se	convirtió	en	un	elemento	clave	de	dicho	proyecto,	quizás	incluso	

su	 clímax,	 como	 lo	 expresó	 el	 título	 del	 libro	 de	 Dedekind	 de	 1872,	 Continuidad	 y	 números	

irracionales.	 Por	 el	 contrario,	 era	 característico	 de	 las	 propuestas	 pre-Weierstrassianas,	 entre	

ellas	 la	propuesta	 inicial	de	Bolzano,	no	 contemplar	aún	dicho	proyecto	y	al	parecer	no	 tener	

una	 noción	 clara	 de	 una	 “teoría	 del	 continuo”	 (esto	 es,	 topológica),	 ni	 una	 propuesta	 sobre	

cómo	abordar	 los	elementos	de	 la	 topología	 (cf.	Ferreirós,	2007:	137ss.),	pese	a	 las	 ideas	pre-

conjuntistas	 y	 pre-topológicas	 de	 Bolzano.	 Una	 diferencia	 que,	 precisamente,	 subraya	 la	

distancia	entre	la	propuesta	de	Bolzano	en	1817	y,	por	ejemplo,	la	de	Cantor	(quien	usó	puntos	

límite	 y	 conjuntos	 derivados)	 y	 la	 de	 Dedekind	 (quien	 empleó	 su	 principio	 de	 continuidad	 de	

cortaduras)	en	1872.	

	

																																																													
269	Otro	 lugar	 en	esos	 trabajos	en	el	 que	 tal	 identificación	puede	 ser	 encontrada	es	 en	el	 §13	de	 su	Prueba	puramente	analítica,	
cuando	ejemplificó	su	denominado	teorema	por	medio	de	una	hipérbola	rectangular	(cf.	Bolzano,	1817B:	49-50).	
270	Bolzano	escribió:	“Eine	 jede	continuirlicheLinie	von	einfacher	Krümmung,	deren	Ordinaten	erst	positiv,	dann	negativ	sind	(oder	
umgekehrt),	die	Abscissenlinie	nothwendig	irgendwo	in	einem	Puncte,	der	zwischen	jenen	Ordinaten	liegt,	durch	schneiden	müsse”.	
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Y,	 sin	 embargo,	 una	 vez	 más,	 al	 mismo	 tiempo	 Bolzano	 se	 revela	 como	 un	 autor	 pre-

Weierstrassiano	 importante	y	como	una	figura	pionera,	considerando,	por	ejemplo,	el	método	

de	 partición	 de	 intervalos	 que	 usó	 en	 su	 Prueba	 puramente	 analítica	 y	 que	 fue	 altamente	

valorado	por	Weierstrass.	Una	vez	que	se	tornó	claro	el	problema	de	caracterizar	la	continuidad	

de	ℝ ,	 como	 no	 lo	 estaba	 en	 los	 primeros	 trabajos	 de	 Bolzano,	 aquel	 método	 pudo	 ser	

transformado	 en	 el	 denominado	 principio	 de	 Bolzano-Weierstrass,271	conforme	 al	 cual	 una	

secuencia	 infinita	de	 intervalos	 cerrados	anidados	 siempre	 tiene	una	 intersección	no	vacía	 (es	

decir,	al	menos	un	punto	pertenece	a	todo	intervalo).	Como	paulatinamente	se	volvió	más	claro,	

aquel	 principio	 permitía	 una	 caracterización	 satisfactoria	 de	 la	 continuidad	 del	 sistema	de	 los	

números	 reales,	 alternativa	a	 la	propiedad	de	cortadura	propuesta	por	Dedekind	en	1872.	De	

esa	 manera,	 por	 ejemplo,	 en	 1884	 Cantor	 enfatizó	 la	 importancia	 de	 ese	 principio	

“verdaderamente	 antiguo”	 que,	 dijo,	 “difícilmente	 podía	 ser	 reemplazado	 por	 uno	

esencialmente	diferente”	(Cantor,	1884/1932:	212).272	Para	entonces,	sin	embargo,	el	contexto	

matemático	 germánico	era	 ya	muy	diferente	 al	 de	 la	Prueba	puramente	analítica	 de	Bolzano,	

obra	que	a	la	postre	sería	tan	ampliamente	reconocida	como	Bolzano	quería	que	lo	fueran	sus	

primeros	 trabajos	 (cf.	 Bolzano,	 1817B:	 27),	 si	 bien	muchas	 veces	 interpretada	de	una	manera	

que,	conforme	a	esta	tesis,	parece	ajena	a	lo	que	él	mismo	proponía.	

	

	

	

	

	

	

	

	

	

	

	

																																																													
271	Esta	 expresión,	 usada	 en	 (Ferreirós,	 2007:	 139-141),	 es	 bastante	 común	 en	 la	 terminología	matemática,	 si	 bien	 estrictamente	
hablando	es	anacrónica.	
272	Cantor	escribió:	“Ich	bemerke,	dass	die	hier	angewandte	Beweismethode,	welche	wohl	schwerlich	durch	eine	wesentlich	andere	
ersetzt	werden	kann,	ihrem	Kerne	nach	sehr	alt	ist;	in	neuerer	Zeit	findet	man	sie	unter	anderem	in	gewissen	zahlentheoretischen	
Untersuchungen	bei	Lagrange,	Legendre	und	Dirichlet,	 in	Cauchy’s	Cours	d’analyse	 (Note	troisième)	und	 in	einigen	Abhandlungen	
von	Weierstrass	und	Bolzano;	es	scheint	mir	daher	nicht	richtig,	sie	vorzugsweise	oder	aussechliesslich	auf	Bolzano	zurückzuführen,	
wie	solches	in	neuerer	Zeit	beliebt	worden	ist”.	
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Annex	A	
	

	

Year	 Author	 Reference	

1817	 Bolzano	

“there	 is	 a	 certain	 quantity	!,	 which	 is	 the	 greatest	 of	 those	 for	
which	 it	 can	 be	 true	 that	 all	 smaller	! 	possess	 property	! .”	

(Bolzano,	1817B:	41)	

1865	 Weierstrass	

“If,	in	a	bounded	part	of	the	plane,	there	are	infinitely	many	points	

with	a	given	property,	then	there	is	at	least	one	point	(inside	that	

part	 or	 on	 its	 boundary)	 such	 that	 in	 every	neighborhood	of	 this	

point	there	are	infinitely	many	points	having	the	given	property.”	

(translation	in	(Moore,	2008:	222))	

1870	

Cantor	

“Herr	Kronecker	befindet	 sich	übrigens	ebenfalls	 im	Widerspruch	

mit	 dem	 Weierstrass-Bolzanoschen	 Satze	 von	 der	 unteren	 und	

oberen	 Gränze;	 es	 wird	 mich	 dies	 aber	 nicht	 aufhalten,	 meinen	

Beweis	zu	veröffentlichen,	da	 ich	diesen	Satz	nicht	nur	 für	 richtig	

sondern	 für	 das	 Fundament	 der	 wichtigeren	 mathematischen	

Wahrheiten	halte.”	(Meschkowski	and	Nilson,	1991:	24)	

Schwarz	

“der	 von	 Herrn	 Weierstraß	 in	 seinen	 Vorlesungen	 verfochtenen	

Meinung,	 daß	man	 ohne	 die	 Schlußweise,	 welche	 von	 Herrn	W.	

auf	 Bolzanoschen	 Principien	 weiter	 ausgebildet	 ist	 bei	 vielen	

Untersuchungen	 nicht	 zum	 Ziel	 gelangen	 könne.”	 (Meschkowski,	

1967:	228)	

1872	 Cantor	

“Unter	 einem	 „Grenzpunkt	 einer	 Punktmenge	 P“	 verstehe	 ich	

einen	 Punkt	 der	 Geraden	 von	 solcher	 Lage,	 daß	 in	 jeder	

Umgebung	desselben	unendlich	 viele	Punkte	aus	P	 sich	befinden,	

wobei	es	vorkommen	kann,	daß	er	außerdem	selbst	zu	der	Menge	

gehört.	 Unter	 „Umgebung	 eines	 Punktes“	 sei	 aber	 hier	 ein	 jedes	

Intervall	 verstanden,	 welches	 den	 Punkt	 in	 seinem	 Innern	 hat.	

Darnach	ist	es	leicht	zu	beweisen,	daß	eine	aus	einer	unendlichen	

Anzahl	 von	 Punkten	 bestehende	 [„beschränkte“]	 Punktmenge	
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stets	 zum	wenigsten	einen	Grenzpunkt	hat.”	 (Cantor,	1872/1932:	

98)	

Schwarz	

“mit	 Hülfe	 einer	 von	 Bolzano	 ersonnenen	 und	 von	 Herrn	

Weierstrass	 weiter	 entwickelten	 Schlussweise.”	 (Schwarz,	 1872:	

221,	fn.)	

1876	 Weierstrass	

“Existiren	 nämlich	 für	 irgend	 eine	 eindeutige	 Function	 im	 Innern	

eines	 begrenzten	 Bereichs	 unendlich	 viele	 ausserwesentliche	

singuläre	 Stellen,	 so	 giebt	 es	 im	 Innern	 oder	 an	 der	 Grenze	 des	

Bereichs	wenigstens	eine	stelle,	welche	sich	dadurch	auszeichnet,	

dass	in	jeder	Umgebung	derselben	von	ihr	verschiedene	singuläre	

Stellen	 vorhanden	 sind,	 und	 die	 deshalb	 nothwendig	 eine	

wesentliche	 singuläre	 Stelle	 für	 die	 Function	 ist.”	 (Weierstrass,	

1876/1895:	80)	

1878	 Dini	

“qualunque	 sia	 il	 gruppo	 di	 punti	 G	 che	 si	 considera,	 purchè	

contenga	un	numero	 infinito	di	punti,	 esisterà	 sempre	almeno	un	

punto-limite	che	potrà	essere	o	nò	uno	dei	punti	punti	del	gruppo.”	

(Dini,	1878:	16)	

1880	 Pincherle	

“Teorema.	 Se	 in	 una	 varietà	 ad	 una	 dimensione	 si	 hanno	 infiniti	

posti	soddisfacenti	ad	una	definizione	comune	si	troverà	in	quella	

varietà	per	lo	meno	un	posto	avente	la	proprietà	che	in	qualunque	

suo	 intorno,	 per	 piccolo	 che	 si	 voglia	 prendere,	 esisteranno	

sempre	 infiniti	 posti	 soddisfacenti	 a	 quella	 definizione.	 [...]	 Il	

teorema	del	no.	precedente	si	può	generalizzare	estendendolo	ad	

una	varietà	di	n	dimensioni.”	(Pincherle,	1880:	60,	64)	

1881	 Stolz	

“Hr.	 H.	 Schwarz	 bezeichnet	 ihn	 als	 den	 Urheber	 einer	 von	 Hrn.	

Weierstrass	 weiter	 entwickelten	 Schlussweise	 [...].	 Die	 Grösse	U	

heisst	 nach	 Weierstrass	 die	 obere	 Grenze	 aller	 Werthe	 von	 x,	

denen	die	Eigenschaft	M	zukommt.”	(Stolz,	1881:	55	&	58)	

1898	 Schoenflies	

“Für	 eine	 aus	 unbegrenzt	 vielen	 Punkten	 bestehende	 Menge	 P	

giebt	 es	nach	einem	Satz	 von	Bolzano-K.	Weierstrass	mindestens	

eine	 Häufungsstelle	 (Grenzpunkt,	 Verdichtungspunkt).”	
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(Schoenflies,	1898:	185)	

1914	 Hausdorff	

“(Satz	 von	 Bolzano-Weierstrass).	 Jede	 beschränke	 unendliche	

Menge	 reeller	 Zahlen	 [“eines	 euklidischen	 Raumes”]	 hat	

mindestens	einen	Häufungspunkt.”	(Hausdorff,	1914:	258,	329)	

1968	 Boyer	

“This	 theorem	 [Bolzano-Weierstrass	 theorem]	 was	 proved	 by	

Bolzano	and	apparently	was	known	also	to	Cauchy,	but	it	was	the	

work	 of	 Weierstrass	 that	 made	 it	 familiar	 to	 mathematicians.”	

(Boyer,	1968:	605)	

1996	 Ewald	

“This	 lemma	 (the	 greatest	 lower	 bound	 principle)	 is	 the	 first	

published	 version	 of	 the	 Bolzano-Weierstrass	 theorem.”	 (Ewald,	

1999:	226)	

2004	 Russ	
“the	 main	 result	 in	 RB	 (an	 early	 form	 of	 Bolzano–	 Weierstrass	

theorem).”	(Russ,	2004:	146;	cf.	Russ,	1980:	157)	
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Annex	B	
	

	

Year	 Author	 Reference	

1900	 David	Hilbert	

“The	 most	 suggestive	 and	 notable	 achievements	 of	 the	 last	

century	 in	 this	 field	 are,	 as	 it	 seems	 to	 me,	 the	 arithmetical	

formulation	 of	 the	 concept	 of	 the	 continuum	 in	 the	 works	 of	

Cauchy,	Bolzano	and	Cantor,	and	the	discovery	of	non-euclidean	

geometry.”	(Hilbert,	1902:	445)	

1926	 Felix	Klein	
“Bolzano	is	one	of	the	fathers	of	the	current	‘arithmetization’	of	

our	science.”	(Klein,	1926:	56)	

1956	 Gottfried	Martin	

“Man	 kann	 den	 Unterschied	 zwischen	 Kant	 und	 Bolzano	 dahin	

charakterisieren,	 dass	 für	 Kant	 Kant	 die	 Axiomatisierung,	 und	

dass	 für	 Bolzano	 die	 Arithmetisierung	 das	 eigentliche	 Ziel	

gewesen	ist.	Man	wird	Felix	Klein	recht	geben	müssen,	wenn	er	

sagt:	 ‘Bolzano	 est	 einer	 der	 Väter	 der	 eigentlichen	

‘Arithmetisierung’	unserer	Wissenschaft’.”	(Martin,	1956:	103)	

1968	 Carl	B.	Boyer	

“for	 the	 rapid	 expansion	 of	 the	 theory	 of	 functions	 had	 been	

accompanied	by	the	rigorous	arithmetization	of	the	subject	from	

Bolzano	to	Weierstrass.”	(Boyer,	1968:	643)	

1981	
Hans	Niels	Jahnke	

and	Michael	Otte	

“Within	 the	 tendency	 to	 arithmetize	mathematics,	 Bolzano	 has	

made	 an	 important	 contribution	 in	 his	 works	 concerning	 the	

quantity	concept	and	function	theory.	[...]	A	particularly	striking	

example	 is	his	 [1817]	proof	of	 the	 intermediate	 value	problem,	

as	well	as	his	realization	that	this	is	actually	a	theorem	requiring	

proof.	 The	 necessity	 of	 proving	 this	 theorem	 becomes	 evident	

only	 from	 the	 point	 of	 vantage	 offered	 by	 the	 program	 of	

arithmetizing	mathematics.”	(Jahnke	and	Otte,	1981:	87)	

1986	 Pierre	Dugac	

“Bien	 que	 ce	 mémoire	 fût	 pratiquement	 ignoré	 des	

mathématiciens,	avant	la	redécouverte	de	Bolzano,	il	constitue	le	

premier	 pas	 décisif	 vers	 ce	 qu’on	 appellera	 plus	 tard	
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l’arithmétisation	de	l’analyse.”	(Dugac,	1986:	242)	

1991	 Alberto	Coffa	

“As	a	result	of	Bolzano’s	[1817]	proof,	the	central	notions	of	the	

calculus	 were	 on	 their	 way	 to	 being	 ‘arithmetized.’	 The	

arithmetization	 –or	 ‘rigorization’–	 of	 the	 calculus	 would	 be	

completed	 in	 later	 years	 by	 Cauchy,	 Weierstrass,	 Cantor	 and	

Dedekind.”	(Coffa,	1991:	28)	

1997	 Michel	Bourdeau	

“Non	 content	 d'être	 ainsi	 un	 des	 pionniers	 de	 l'arithmétisation	

de	 l'analyse,	 Bolzano	 figure	 également	 sur	 l'arbre	 généalogique	

de	 chacune	 des	 deux	 écoles	 philosophiques	 qui	 ont	 dominé	 le	

vingtième	siècle.”	(Bourdeau,	1997:	56)	

2000	 Paul	Rusnock	

“For	Bolzano	would	not	only	sketch	the	general	contours	of	the	

emerging	new	mathematics	of	 the	nineteenth	century,	but	also	

carry	 the	 work	 out	 in	 considerable	 detail.	 His	 work	 in	 the	

foundations	of	 real	analysis	attained	 results	which	 still	 stand	as	

models	of	rigor	and	sound	method.”	(Ruscnock,	2000:	18)273	

2006	 Eckehart	Köhler	

“[If]	 Frege-Russell	 Logicism	 is	 rejected	because	of	doubts	about	

Type	 Theory	 (a	 variety	 of	 set	 theory),	 then	 the	 Bolzano-

Weierstrass	 arithmetization	 of	 analysis	 should	 also	 be	 rejected	

for	the	same	doubts.”	(Köhler,	2006:	93)	

2008	 Michael	Detlefsen	

“In	 the	early	 years	of	 the	19th	 century,	Bolzano	also	 articulated	

such	 an	 idea	 and	 applied	 it	 to	 the	 reformation	 of	mathematics	

generally,	 and	 particularly	 to	 analysis.	 It	 comprised,	 indeed,	 a	

prime	 motive	 of	 his	 early	 attempts	 to	 ‘arithmetize’	 analysis.”	

(Detlefsen,	2008:	182)	

2010	 Jan	Sebestik	

“Two	of	the	first	Bolzano’s	publications	have	permanent	interest:	

the	 Rein	 analytischer	 Beweis	 (1817)	 which	 inaugurates	 the	

arithmetization	 of	 analysis,	 and	 the	 Beyträge	 zu	 einer	

begründeteren	 Darstellung	 der	 Mathematik	 (1810).	 While	 the	

first	 one	 was	 noticed	 by	 Weierstrass,	 the	 second	 one,	 going	

against	 the	 spirit	 of	 the	 dominant	 Kantian	 and	 postkantian	

																																																													
273	Nevertheless,	it	must	be	said	that,	as	for	Rusnock’s	second	assertion,	he	could	have	in	mind	Bolzano’s	later	works	when	talking	
about	“his	work	in	the	foundations	of	real	analysis”	(cf.	Rusnock,	2000:	14).		
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philosophy,	was	completely	neglected.”	(Sebestik,	2010)	

2012	
Bedürftig	&	

Murawski	

“Wir	unterstreichen,	dass	Bolzano	in	allen	seinen	Arbeiten	in	der	

Analysis	als	Fürsprecher	der	so	genannten	‘Arithmetisierung’	der	

Analysis	auftrat.”	(Bedürftig	and	Murawski,	2000:	66)	

2016	 Erich	Reck	

“Most	directly,	Dedekind’s	essay	was	tied	to	the	arithmetization	

of	 analysis	 in	 the	 nineteenth	 century	 –pursued	 by	 Cauchy,	

Bolzano,	Weierstrass,	 and	others–	which	 in	 turn	was	a	 reaction	

to	 tensions	 within	 the	 differential	 and	 integral	 calculus,	

introduced	 earlier	 by	 Newton,	 Leibniz,	 and	 their	 followers.”	

(Reck,	2016)	

2016	
Michael	N.	

Vrahatis	

“Its	 first	 proofs	 [“Bolzano’s	 theorem],	 given	 independently	 by	

Bolzano	 in	 1817	 and	 Cauchy	 in	 1821,	 were	 crucial	 in	 the	

procedure	 of	 arithmetization	 of	 analysis	 (which	was	 a	 research	

program	 in	 the	 foundations	 of	mathematics	 during	 the	 second	

half	of	the	19th	century).”	(Vrahatis,	2016:	41)	
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Annex	D	
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