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Chapter 1

Introduction

It is well known that mathematics is permanently involved in our daily life.

We have automated many actions in which we solve different problems in a simple

way, without noticing about it and even without having advanced studies. For

instance, the millennial decimal system is transmitted and elementary operations

are taught in modern societies. Everybody uses this system and, moreover,

everybody actually needs it. In the past, the Roman numeral system was

established in Europe for many centuries since it allows to add and subtract

with relative easiness, while the decimal system was not widespread. However,

experts in mathematics were required to multiply and divide (even computing the

current VAT of a product would not be a simple problem if only Roman numerals

are known). Currently, our global society implicitly implements mathematics in

the day to day as well as scientists discover them.

Nowadays, mathematicians are focused on solving more increasingly

complex problems due to the current needs of the society. Uncountable models for

our day to day are introduced by physicists, chemists, engineers, economists and

so on in their respective areas, and they have to be studied from a mathematical

point of view. For these goals, mathematical classic problems are considered in

different ways by means of proper adaptations and extensions, although they were

originally motivated for a different situations or settings.

The intrinsic transversality of mathematics allows to apply results from one

area into other ones, and then, the theory that was developed in a natural way

1
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may be inherited by the other ones. Therefore, mathematical models that allow

to work in several areas at the same time and to transfer results between them

automatically, are interesting to be studied.

1.1 Scalar equilibrium problems

In 1994, E. Blum and W. Oettli published the work titled From optimization

and variational inequalities to equilibrium problems [28], in which several classic

mathematical problems from different areas were generalized and unified in only

one: equilibrium problems. After that, this concept was popularized in such a way

that work [28] has more than 800 citations according to MathSciNet database,

which is a very considerable figure in the field of mathematics.

The term of equilibrium is defined as a state of rest or balance due to the

equal action of opposing forces, so that is very common in other areas as Physics,

Chemistry, Biology or Economics. In mathematics, the notion of equilibrium

problem is actually a Ky Fan inequality [59], and it was originally proposed to

establish the existence of equilibriums in Game Theory. In [147] and [150], the

equilibrium problem is defined before than in [28], but is not the main topic of

any of these two works.

Let us recall the original framework given in [28]. Consider a real topological

linear space X, a nonempty closed convex subset S ⊂ X and a bifunction

f : S × S → R. The equilibrium problem (EP in short form) is the following

one: Find x̄ ∈ S such that

f(x̄, x) ≥ 0 ∀x ∈ S. (1.1)

A point satisfying this condition is said to be a solution of EP and it is denoted

as x̄ ∈ E(f, S).

Next, we will show some examples of classic mathematical problems that are

particular cases of equilibrium problems (see [28, 57, 122]). Here X∗ denotes the

topological dual space of X. Assume that X∗ is topologized so that the canonical

bilinear form 〈·, ·〉 is continuous on X∗ ×X.
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Problem 1.1. (Optimization problems)

Let g : S → R be a function. Consider the problem of finding x̄ ∈ S such that

g(x̄) ≤ g(x) ∀x ∈ S. (1.2)

We will refer to it as OP, and we will denote its set of solutions as argmin(g, S)

or O(g, S). By taking

f(x, y) := g(y)− g(x),

it is easy to check that x̄ ∈ E(f, S) if and only if x̄ ∈ O(g, S).

Problem 1.2. (Variational inequalities)

Let T : S → X∗ be a mapping. It is requested to find x̄ ∈ S such that

〈T (x̄), x− x̄〉 ≥ 0 ∀x ∈ S. (1.3)

We will refer to it as VIP, and we will denote its set of solutions as V(T, S). By

considering

f(x, y) := 〈T (x), y − x〉,

it is clear that x̄ ∈ E(f, S) if and only if x̄ ∈ V(T, S).

Notice that if g : X → R is convex and Gâteaux differentiable in Problem

1.1, with Gâteaux differential Dg(x) ∈ X∗ at x ∈ X, then we have another way to

deal with convex differentiable optimization problems via variational inequalities.

In fact, it is known from Convex Analysis that x̄ ∈ V(Dg, S) if and only if

x̄ ∈ argmin(g, S).

Problem 1.3. (Saddle point problems)

Suppose that S1 ⊂ X and S2 ⊂ X are nonempty convex closed sets and let

g : S1× S2 → R be a bifunction. A point (x̄1, x̄2) ∈ S1× S2 is said to be a saddle

point of g if

g(x̄1, x2) ≤ g(x1, x̄2) ∀x1 ∈ S1, x2 ∈ S2. (1.4)

By setting S := S1 × S2 and f
(
(x1, x2), (y1, y2)

)
:= g(y1, x2)− g(x1, y2), we have

that (x̄1, x̄2) ∈ E(f, S) if and only if (x̄1, x̄2) is a solution of (1.4).
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Problem 1.4. (Fixed points)

Consider a mapping T : S → S. It is said that x̄ ∈ S is a fixed point of T if

satisfies

T (x̄) = x̄. (1.5)

Consider x̄ ∈ S and set f(x, y) := 〈x − T (x), y − x〉. We have that x̄ ∈ E(f, S)

if and only if x̄ satisfies (1.5). Indeed, if x̄ is a fixed point of T , then f(x̄, x) = 0

for all x ∈ S, so x̄ ∈ E(f, S). Conversely, if x̄ is a solution of EP, we have that

f
(
x̄, T (x̄)

)
= −‖x̄− T (x̄)‖2 ≥ 0, and then T (x̄) = x̄ necessarily.

Problem 1.5. (Nash equilibria in noncooperative games)

Suppose that there are n ∈ N players and each one j has associated a nonempty

convex closed strategy set, Sj. Set S :=
n∏
j=1

Sj, the set of all strategies,

and let fj : S → R be the loss function of the j-th player. Given a play

x = (x1, . . . , xn) ∈ S, the play of all players except i ∈ {1, . . . , n} is denoted

by x−i = (x1, . . . , xi−1, xi+1, . . . , xn). A point x̄ = (x̄1, . . . , x̄n) ∈ S is said to be a

Nash equilibrium if for every player j = 1, . . . , n it is verified that

fj(x̄) ≤ fj(x̄−j, yj) ∀yj ∈ Sj. (1.6)

That is, x̄ is a Nash equilibrium if no player can reduce his loss modifying uniquely

his own strategy. By setting f : S × S → R as

f(x, y) =
n∑
j=1

(
fj(x−j, yj)− fj(x)

)
,

there holds that x̄ ∈ S satisfies (1.6) if and only if x̄ ∈ E(f, S). Indeed, if x̄ is a

Nash equilibrium, then fj(x̄−j, xj)−fj(x̄) ≥ 0 for all j = 1, . . . , n and x ∈ S, and
so f(x̄, x) ≥ 0 for all x ∈ S. Conversely, if x̄ ∈ E(f, S), we choose an arbitrary

player k ∈ {1, . . . , n} and x ∈ S such that x−k = x̄−k. Hence, for each x ∈ S

0 ≤ f(x̄, x) =
n∑
j=1

(
fj(x̄−j, xj)− fj(x̄)

)
= fk(x̄−k, xk)− fk(x̄),

and so fk(x̄−k, xk) ≥ fk(x̄) for all xk ∈ Sk. Since k is an arbitrary player, it

follows that x̄ is a Nash equilibrium.
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Problem 1.6. (Complementarity problems)

This is a special case of Problem 1.2. Let S be a closed convex cone and S◦ :=

{x∗ ∈ X∗ : 〈x∗, x〉 ≥ 0 for all x ∈ S} be its positive polar cone. Consider a

mapping T : S → X∗. The problem is to find x̄ ∈ S such that T (x̄) ∈ S◦,
〈T (x̄), x̄〉 = 0.

(1.7)

Then x̄ is a solution of (1.7) if and only if x̄ ∈ V(T, S). Indeed, if (1.7) holds, then

T (x̄) ∈ S◦ and so 〈T (x̄), x〉 ≥ 0 for all x ∈ S. Moreover, as 〈T (x̄), x̄〉 = 0, we have

that 〈T (x̄), x − x̄〉 ≥ 0 by linearity, so x̄ ∈ V(T, S). Conversely, if x̄ ∈ V(T, S),

by considering x = 2x̄ ∈ S in (1.3), it follows that 〈T (x̄), x̄〉 ≥ 0, and by taking

x = 0 ∈ S in (1.3), we obtain that 〈T (x̄),−x̄〉 ≥ 0. Hence 〈T (x̄), x̄〉 = 0 and

0 ≤ 〈T (x̄), y − x̄〉 = 〈T (x̄), y〉 for all y ∈ S. Therefore x̄ satisfies (1.7).

Problem 1.7. (Variational inequalities with set-valued mappings)

Let T : S ⇒ X∗ be a set-valued mapping with nonempty convex compact values.

It is requested to find x̄ ∈ S and ξ̄ ∈ T (x̄) such that

〈ξ̄, y − x̄〉 ≥ 0 ∀y ∈ S. (1.8)

By setting f(x, y) := max
ξ∈T (x)

〈ξ, y − x〉, it is verified that x̄ ∈ E(f, S) if and only if

x̄ together with some ξ̄ ∈ T (x̄) satisfy (1.8). Indeed, if x̄ ∈ E(f, S), then

f(x̄, x) = max
ξ∈T (x̄)

〈ξ, x− x̄〉 ≥ 0 ∀x ∈ S.

We will show by contradiction that there exists some suitable ξ̄ ∈ T (x̄) such that

x̄ and ε̄ satisfy (1.8). Suppose that for each ξ ∈ T (x̄), there exists xξ ∈ S and

εξ > 0 such that 〈ξ, xξ − x̄〉 < −εξ. Hence, the open sets

S(x, ε) := {ξ ∈ T (x̄) : 〈ξ, x− x̄〉 < −ε} (x ∈ S, ε > 0)

cover the set T (x̄). By compactness, there exists a finite subcover of T (x̄),

{S(xj, εj)}nj=1.

Define ε := min
j=1,...,n

{εj}. Since T (x̄) ⊂
n⋃
j=1

S(xj, εj) ⊂
n⋃
j=1

S(xj, ε), then

min
j=1,...,n

〈ξ, xj − x̄〉 ≤ −ε ∀ξ ∈ T (x̄).
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By applying Gordan’s alternative theorem (see, for instance, [46, Theorem 3.4.2]),

we deduce that there exist nonnegative real numbers λ1, . . . , λn such that
n∑
j=1

λj =

1 and
n∑
j=1

λj〈ξ, xj − x̄〉 ≤ −ε ∀ξ ∈ T (x̄).

Since S is convex, then x̂ :=
n∑
j=1

λjxj ∈ S. Moreover, it is clear that

〈ξ, x̂− x̄〉 ≤ −ε ∀ξ ∈ T (x̄).

Therefore, f(x̄, x̂) < 0, which contradicts that x̄ ∈ E(f, S). Conversely, if x̄ ∈ S
and ξ̄ ∈ T (x̄) satisfy (1.8), then

f(x̄, x) ≥ 〈ξ̄, x− x̄〉 ≥ 0 ∀x ∈ S,

and so x̄ ∈ E(f, S).

Remark 1.8. Let g : S → R be a locally Lipschitz function and denote by ∂◦g(x)

and g◦(x, v) the Clarke generalized gradient of g at x, and the Clarke derivative

of g at x in the direction v ∈ X, respectively (see [44]). Then, if we consider

T = ∂◦g in Problem 1.7, we see that f(x, y) = g◦(x, y − x).

It is clear from the previous examples that equilibrium problems encompass

many different problems. Then, a natural line of research concerns with the

generalization of important results of these particular problems to the general

equilibria framework, so that these results can be applied to the other reunified

problems. For example, some optimality conditions for nonsmooth optimization

problems were extended to equilibrium problems, and so, they were automatically

applied to variational inequalities (see [81]).

In [28] it is assumed on a standard equilibrium problem that f satisfies the

diagonal null property, that is,

f(x, x) = 0 ∀x ∈ S,

and that f is monotone, that is,

f(x, y) + f(y, x) ≤ 0 ∀x, y ∈ S. (1.9)
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Diagonal null property and monotone type assumptions play an important

role in equilibrium problems both in the scalar case, and in the vector-valued

case. Moreover, diagonal null assumption and triangle inequality property (see

(1.12)), have a direct impact in Ekeland Variational Principles for bifunctions, as

we will see further in Chapter 4. However, many authors did not consider these

assumptions in the initial setting of a standard equilibrium problem in order to

deal with a more general problem.

Another natural research line similar to the previous ones deals with

some mathematical classic tools to be applied to equilibrium problems, as

Knaster-Kuratowski-Mazurkiewicz theorems [58, 121], Fan theorems [7, 59] or

Ekeland variational principles [54–56]. For instance, Kalmoun and Riahi [115]

obtained a generalized Knaster-Kuratowski-Mazurkiewicz theorem, which was

applied to equilibrium problems, and after that, existence results for maximal

elements with respect to a preference relation, fixed point and saddle point

theorems were achieved.

The classic Weierstrass theorems allows to show the existence of solutions in

optimization problems. It is based on compactness and continuity assumptions,

but there are many generalizations in which these assumptions have been

weakened by using different semicontinuity notions or some closedness hypotheses

on the sublevel sets, and other weakest statements that may replace the

compactness requirement. In a similar way, in the literature there is a very

wide diversity of existence results for equilibrium problems. The ones obtained

by Blum and Oettli [28] can not be derived by using Weierstrass theorem on a

product space, since different assumptions are required for each coordinate of the

bifunction. However, existence results for optimization problems can be deduced

as particular cases of existence results in equilibrium problems.

Approximate solutions are a basic concept to deal with real world problems

and so they are a requested research topic in several areas from long time

ago. The current models hold much information, which requires to handle

thousands (or millions) of variables and, consequently, its complexity is very

high. Then, from a mathematical point of view, these models are not tackled
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without using computers, since numerical algorithms are designed to solve as

fast as possible complex mathematical problems. In this sense, approximate

solutions are achieved in much less time than exact solutions with a controlled

error. Moreover, in many real models it is not pragmatically possible to obtain an

exact solution, since the computational cost or the runtime may not be assumed,

even being a solvable problem.

Approximate solutions have been comprehensively studied in different

settings: optimization problems, variational inequalities, fixed-point theorems,

Nash equilibrium problems and so forth. Hence it is natural to study approximate

solutions for equilibrium problems (see, for instance, [7, 21, 22, 36, 116]). An

element x̄ ∈ S is said to be an approximate solution of equilibrium problem

EP with error ε ≥ 0 if

f(x̄, x) ≥ −ε ∀x ∈ S. (1.10)

It is denoted by x̄ ∈ E(f, S, ε). In the literature have been defined other concepts

of approximate solutions, so that in the next chapters and for the vector-valued

case we will consider a more general notion.

The notion of strict solution is well known in the area of Optimization. A

point x̄ ∈ S is a strict solution of OP if

g(x̄) < g(x) ∀x ∈ S\{x̄}.

This assertion is more restrictive than (1.2) and guarantees that x̄ is the only

solution of OP. It was also extended to vector optimization problems (see [113,

175]) and set-valued optimization problems (see [8,66]). On the other hand, it has

also been defined for variational inequalities problems and applied to Economics

(see for instance [47, 114]). Hence, it was natural to extend the notion of strict

solution to equilibrium problems (see, for instance, [25]). An element x̄ ∈ S is

said to be a strict solution of EP if

f(x̄, x) > 0 ∀x ∈ S\{x̄}. (1.11)

It is denoted by x̄ ∈ S(f, S). Notice that every strict solution is a solution

whenever f verifies the diagonal null property. Moreover, if f is monotone (see
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(1.9)) and x̄ is a strict solution of f , then x̄ is the unique strict solution. On the

other hand, the notion of strict solution plays an important role in the Ekeland

Variational Principle.

It is known that a lower semicontinuous bounded below function on a

noncompact set may not attain its infimum. Variational principles allow us to

add a perturbation with controllable behavior to this kind of functions so that

a minimum is attained. The most known variational principal is the Ekeland

Variational Principle (briefly, EVP), introduced by Ivar Ekeland [54, 55], which

is a powerful tool with applications in numerous areas as Nonlinear Analysis,

Convex Analysis, Optimization, Differential Geometry, Differential Equations,

Fixed Point Theory, Mathematical Finance and so on. Next, let us recall it.

Theorem 1.9. Let (X, d) be a complete metric space and let f : X → R∪{+∞}
be a lower semicontinuous bounded below function. Suppose that ε > 0 and

x0 ∈ X satisfy that

f(x0) ≤ inf
x∈X

f(x) + ε.

Then, for any δ > 0 there exists x̄ ∈ X such that

(a) f(x̄) +
ε

δ
d(x0, x̄) ≤ f(x0),

(b) d(x0, x̄) ≤ δ,

(c) f(x) +
ε

δ
d(x, x̄) > f(x̄) ∀x ∈ X\{x̄}.

Notice that the perturbation function is
ε

δ
d(·, x̄), and that the perturbed

function f(·) +
ε

δ
d(·, x̄) attains a strict minimum at x̄.

The Ekeland Variational Principle has some equivalent results in the sense

that one proves each other. Some of them in the setting of Banach spaces are the

Bishop-Phelps Theorem [26,27] (in fact, this earlier result was an inspiration for

Ivar Ekeland, see [56]), the Daneš’ Drop Theorem [48], the Penot’s Flower-Petal

Theorem [153] (see also [166]); in complete metric spaces, the Kirk-Caristi’s Fixed

Point Theorem [119] or the Takahashi’s Nonconvex Minimization Theorem [180].

Furthermore, Sullivan [178] proved that the completeness of a metric space is

characterized by the EVP.
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In the literature there are uncountable versions of the EVP (see, for instance,

[117, Chapter 10]). Even before the equilibrium problems become popular with

the work [28], Oettli and Théra [150] studied the equivalence of several results

with an EVP for bifunctions and applied it to obtain an existence result for

EP ([150, Theorem 6]), where the domain of the bifunction is a complete metric

space. By the same approach, Bianchi, Kassay and Pini [21] also obtained several

existence results in an Euclidean space, without any convexity assumption on the

underlying set, whether it is closed or compact, and later they applied it to

study a well-posedness notion for equilibrium problems in [24] (see also [22, 23]

for the vector-valued case). In these works, the triangular inequality property on

a bifunction is required, that is, f : X ×X → R satisfies that

f(x, z) ≤ f(x, y) + f(y, z) ∀x, y, z ∈ X. (1.12)

Approximate variational principles are another interesting research line.

In these results, the perturbed function achieves an approximate strict solution

instead of an exact strict solution under less restrictive assumptions. Combari,

Marcellin and Thibault [45] obtained an approximate EVP in non complete

normed linear spaces and they applied it to achieve graph convergence results

for ε-Fenchel subdifferentials in a non complete setting. In Chapter 4, we will

focus on exact and approximate EVPs for vector-valued bifunctions in a more

general framework than the one considered until now in the literature for this

kind of results, in which further information may be found. New results with

significant improvements are obtained and the roles of some usual assumptions

for this sort of results are clarified.

The reader may find other extensions of the EVP for bi-set-valued mappings

in [12, 82, 117, 161, 183, 198] and references therein. There are more types of

variational principles by depending on the perturbation function properties.

The Stegall Variational Principle [177], given in a Banach space X, attains a

strong minimum on S ⊂ X and the perturbation function is a bounded linear

function, but it needs stronger assumptions on S. Other important results are

the smooth variational principles which are focused on the differentiability of the

perturbed function when the initial function is also differentiable. This is the
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case of Borwein-Preiss Variational Principle [31] (see also [18, 124, 125, 137, 155])

and Deville-Godefroy-Zizler Variational Principle [50, 51], which have important

applications to subdifferentiability, differentiability of convex functions, geometry

of Banach Spaces, Hamilton-Jacobi equations, etc. Moreover, Finet and Quarta

[61] extended the Deville-Godefroy-Zizler variational principle to bifunctions and

applied it to obtain two variational principles (one of Borwein-Preiss type and

the other one of Ekeland type) and also to derive existence results for equilibrium

problems.

1.2 Vector equilibrium problems

In many mathematical areas, it is usual to deal with problems with multiple

objectives due to their own nature. All this information must be borne in mind

and a way to process it is by considering more abstract spaces which allow to

work with several variables at the same time or with functions, matrices, sets and

so forth as abstract elements. Hence, it seems natural to replace the real number

line R by the Euclidean space Rn or, more generally, by a real linear space Y .

Here, Cantor and Hausdorff works (see [33, 103]) must be highlighted since they

developed the mathematical basic structure of the partially ordered linear spaces.

This extension has some technical difficulties since the real number line

has very desirable properties and many mathematical tools that are useful to

solve problems. On an arbitrary real linear space, an important difficulty is

how to introduce a “good” order for its elements. In general, we might lose the

totalness of the usual order on R, that is, it will not be possible to compare all

the elements between them. Moreover, as we are going to deal with multicriteria

problems, there will be different orders to consider by depending on the nature

of the problem.

Recall that a binary relation R on a set L is a nonempty subset R ⊂ L×L
and it is denoted y1Ry2 if (y1, y2) ∈ R. A binary relation on L, �, is said to be

• reflexive if y � y ∀y ∈ L;

• transitive if y1 � y2 and y2 � y3 =⇒ y1 � y3 ∀y1, y2, y3 ∈ L;
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• antisymmetric if y1 � y2 and y2 � y1 =⇒ y1 = y2 ∀y1, y2 ∈ L;

� is called a preorder on L if � is transitive, a quasiorder on L if � is reflexive and

transitive, and a partial order on L if � is reflexive, transitive and antisymmetric.

A partial order �⊂ L × L for which every pair of elements of L are

comparable (that is, y1 � y2 or y2 � y1 for all y1, y2 ∈ L) is said to be a total

order on L.

A binary relation � on Y is said to be compatible on Y if satisfies that

• y1 � y2 and y3 � y4 =⇒ y1 + y3 � y2 + y4 ∀y1, y2, y3, y4 ∈ Y ;

• y1 � y2 =⇒ αy1 � αy2 ∀y1, y2 ∈ Y, α > 0.

Partial orders on real linear spaces are closely connected to convex cones.

A nonempty set D ⊂ Y is said to be convex if verifies that

y1, y2 ∈ D,α ∈ (0, 1)⇒ αy1 + (1− α)y2 ∈ D,

and it is said to be a cone if

y ∈ D,α ≥ 0⇒ αy ∈ D. (1.13)

We notice that some authors consider in this definition α > 0 instead of α ≥ 0

and then do not require that 0 ∈ D to be a cone. A cone D ⊂ Y is nontrivial or

proper if D 6= {0} and D 6= Y , and is pointed if

D ∩ (−D) = {0}.

It is well known that a cone D ⊂ Y is convex if and only if D+D ⊂ D (see [112,

Lemma 1.11]).

Throughout, we denote the binary relation

≤D:= {(y1, y2) ∈ Y × Y : y2 − y1 ∈ D}.

Next we recall an important characterization of partial orders on real linear spaces

(see [117, Theorem 2.1.11]). It shows that these binary relations are defined

through pointed convex cones.
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Theorem 1.10. Let Y be a real linear space.

• Consider a cone D ⊂ Y . Then the binary relation ≤D is reflexive, and it is

compatible on Y provided that D is convex. Moreover, D is convex if and

only if ≤D is transitive, and D is pointed if and only if ≤D is antisymmetric.

• Conversely if �⊂ Y × Y is a reflexive relation that is compatible on Y , then

D := {y ∈ Y : 0 � y}

is a cone and �=≤D.

If D is a solid set (that is, intD 6= ∅, where int denotes the topological

interior), then the following notation is very usual in the literature:

y1 <D y2 ⇔ y2 − y1 ∈ intD.

This notation is extended to arbitrary nonempty sets E ⊂ Y :

y1 ≤E y2 ⇔ y2 − y1 ∈ E,

and if E is solid,

y1 <E y2 ⇔ y2 − y1 ∈ intE.

In the algebraic framework, <E (included the case E = D) is usually defined

through the algebraic interior (see Section 1.4) instead of the topological interior.

To be precise, if E is algebraic solid (that is, coreE 6= ∅),

y1 <D y2 ⇔ y2 − y1 ∈ coreE.

Remark 1.11. Let us observe that the relation ≤E is transitive and compatible

with the sum of Y whenever E + E ⊂ E, i.e., under this condition, if y1 ≤E y2,

y2 ≤E y3 and z1 ≤E z2, then y1 ≤E y3 and y1 + z1 ≤E y2 + z2.

Notice that partial orders on R only can be given by R+ := {y ∈ R : 0 ≤ y},
−R+, and the trivial cone {0}, since there are not more pointed convex cones on

R. Clearly, ≤=≤R+ and is total. However, in general partial orders are not

total orders. For instance, consider in R2 the usual order ≤R2
+

given by the
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convex cone R2
+ := {(y1, y2) ∈ R2 : 0 ≤ y1, 0 ≤ y2}. Then (1, 0) and (0, 1) are

not comparable since (1, 0) 6≤R2
+

(0, 1) and (0, 1) 6≤R2
+

(1, 0). This handicap has

important consequences in vector-valued problems as, for instance, the existence

of several notions of solution that coincide only in the scalar case, or the existence

of infinite optimal values in many problems. Therefore, the decision maker’s

criterion to choose possible solutions has a very important role in vector-valued

problems.

Vector optimization problems appeared at the end of 19th century in

the area of Mathematical Finance, more concretely, in Utility Theory, Welfare

Economics and Game Theory. Roughly speaking, the problem is to find the

maximal utility when there are several customers with different criteria, even

with opposing preferences. Several economists studied this kind of problems and,

in particular, the contributions of Edgeworth [53] and Pareto [151] should be

remarked. Indeed, we are still using the concept of Pareto optimal solution:

Consider a finite dimensional vector optimization problem, VOP,

min{f(x) : x ∈ S},

where S ⊂ Rm is nonempty, f : S → Rn, f = (f1, . . . , fn), and its coordinates

functions are the n objectives to minimize. A point x̄ = (x̄1, x̄2, . . . , x̄m) ∈
S is said to be a Pareto optimal solution of VOP if does not exist x =

(x1, x2, . . . , xm) ∈ S such that

fi(x) ≤ fi(x̄) ∀i = 1, . . . , n, and

fj(x) < fj(x̄) for some j ∈ {1, . . . , n}.

That is, x̄ ∈ S is a Pareto optimal solution if it is not possible to strictly improve

one of the n objectives without worsening at least one of the others.

Yu [193] extended the Pareto’s efficiency concept to vector optimization

problems by using partial orders. In fact, a partial order is defined on Rn by

using the Pareto’s criterion: Given x = (x1, x2 . . . , xn), y = (y1, y2 . . . , yn) ∈ Rn,

x � y ⇔ xi ≤ yi ∀i = 1, . . . , n.
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By Theorem 1.10, the pointed convex cone that defines � is the nonnegative

orthant of Rn,

Rn
+ := {y ∈ Rn : 0 ≤ yi ∀i = 1, . . . , n}. (1.14)

Hence, this cone is also called as Pareto’s cone and � is denoted as ≤Rn+ . Notice

that we may formulate the concept of Pareto optimality with a set equation:

x̄ ∈ S is a Pareto optimal solution if of VOP and only if(
f(S)− f(x̄)

)
∩
(
− Rn

+\{0}
)

= ∅.

Vector optimization problems were reintroduced independently by Borel,

Von Neumann and Morgenstern (see [29, 187, 188]) in the field of Game Theory

in the early 20th century. Later, Koopmans [123] introduced the notion of

efficient point in the Production Theory framework, and Kuhn and Tucker

[126] introduced the current mathematical formulation of the multiobjective

optimization problems and the notion of proper efficient solution. Shortly

afterwards, Hurwicz [111] extended the Kuhn and Tucker results to topological

linear spaces.

Let us recall two notions of solution in vector optimization problems.

Consider a topological linear space X, an arbitrary nonempty subset S ⊂ X and

another real topological linear space Y , which is partially ordered by a pointed

convex cone D. Let the problem VOP be defined by the decision set S and the

objective mapping f : S → Y . A point x̄ ∈ S is said to be an efficient solution

(or a nondominated solution) of VOP if

x ∈ S, f(x) ≤D f(x̄)⇒ f(x) = f(x̄),

or equivalently, (
f(S)− f(x̄)

)
∩
(
−D\{0}

)
= ∅, (1.15)

and it is denoted as x̄ ∈ O(f, S,D) (or simply x̄ ∈ O(f,D) when S = X). In the

case that D is solid, then x̄ ∈ S is said to be a weak efficient solution of VOP if

x ∈ S, f(x) ≤intD∪{0} f(x̄)⇒ f(x) = f(x̄),

or equivalently, (
f(S)− f(x̄)

)
∩
(
− intD

)
= ∅, (1.16)
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and it is denoted as x̄ ∈WO(f, S,D) (or simply x̄ ∈WO(f,D) when S = X). In

general, O(f, S,D) ⊂WO(f, S,D). Notice that when Y = R and D = R+, then

both notions coincide with the solution concept of scalar optimization problems,

OP (Problem 1.1). So that both notions are considered different extensions for

the vectorial case.

Vector variational inequality problems were introduced by F. Giannessi [75]

in finite dimensional spaces (see also [76]). Later, Chen et al. extended them

to infinite dimensional spaces (see [38, 39]), as well as vector complementary

problems (see [42]). Furthermore, they have been intensively studied by Chen

et al. [37,41], Lee et al. [133–136] and many other authors [131,139,174,191,194].

Several existence theorems on vector variational inequality problems have been

achieved and applied to vector optimization problems and vector complementarity

problems (for further details, see [40,84] and references therein).

Let us denote by L(X, Y ) the set of linear mappings from X to Y and

consider a mapping T : S → L(X, Y ). In a vector variational inequality problem,

VVIP, it is requested to find x̄ ∈ S such that

〈T (x̄), x− x̄〉 /∈ −D\{0} ∀x ∈ S. (1.17)

A point x̄ ∈ S satisfying (1.17) is denoted as x̄ ∈ V(T, S,D) (or simply x̄ ∈
V(T,D) when S = X). In the case that D is solid, a weak vector variational

inequality problem, WVVIP, consists in finding x̄ ∈ S such that

〈T (x̄), x− x̄〉 /∈ − intD ∀x ∈ S. (1.18)

A point x̄ ∈ S satisfying (1.18) is denoted as x̄ ∈ WV(T, S,D) (or simply x̄ ∈
WV(T,D) when S = X). In general, V(T, S,D) ⊂WV(T, S,D). It is clear that

VVIP and WVVIP coincide with the scalar case VIP (Problem 1.2).

In 1997, different researchers from the areas of vector optimization and

vector variational inequalities extended the scalar equilibrium problems to the

vector-valued setting in which the image space of the associated bifunction is

a partially ordered linear space. The first vector equilibrium problems were

introduced in the works [10], [20] and [149].
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Let us consider a bifunction f : S × S → Y . A vector equilibrium problem,

VEP, consists in finding a point x̄ ∈ S such that

f(x̄, S) ∩ (−D\{0}) = ∅. (1.19)

Such x̄ is said to be an efficient solution of VEP and it is denoted as x̄ ∈ E(f, S,D)

(or simply x̄ ∈ E(f,D) when S = X). In the case that D is solid, a weak vector

equilibrium problem, WVEP, consists in finding x̄ ∈ S such that

f(x̄, S) ∩ (− intD) = ∅. (1.20)

Such x̄ is said to be a weak efficient solution of VEP and it is denoted as x̄ ∈
WE(f, S,D) (or simply x̄ ∈ WE(f,D) when S = X). Furthermore, when Y is

not endowed with any particular topology, the topological interior ofD is replaced

by its algebraic interior when D is algebraic solid (see Section 1.4), that is,

f(x̄, S) ∩ (− coreD) = ∅.

Since D is convex, both solutions coincide when D is solid.

We notice that f is not assumed to be diagonal null (i.e., f(x, x) = 0 for

all x ∈ S) as an initial condition for a vector equilibrium problem in [10,20,149].

In this way, the considered problem is more general and for existence theorems,

only is required conditions such as f(x, x) ≥D 0 for all x ∈ S.
On the other hand, if S = X, f is diagonal null and for each x ∈ X we

consider the mapping gx : X → Y , gx(z) = f(x, z) for all z ∈ X, then x̄ is an

efficient (resp. weak efficient) solution of VEP if gx̄(x̄) is a nondominated (resp.

weak nondominated) point of the set gx̄(X) with respect to the ordering ≤D.
Then, from this point of view, a vector equilibrium problem whose bifunction is

diagonal null is a vector optimization problem. In chapter 4 we will analyze the

behavior of several usual hypotheses, as the bifunction’s diagonal null property or

the triangular inequality property in Ekeland Variational Principle-type results

for bifunctions.

In a similar way as in the scalar case, vector equilibrium problems reunify

the vector-valued extensions of classical problems as vector optimization problems

and vector variational inequalities.
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Another extension considered in [10, 149] is the following: Find x̄ ∈ S such

that

f(x̄, S) ⊂ D. (1.21)

Such x̄ that satisfy this condition are called ideal efficient solutions of VEP and

will be denoted as x̄ ∈ IE(f, S,D) (or simply x̄ ∈ IE(f,D) when S = X).

Even being another natural vector-valued extension, this kind of solutions is very

restrictive and the literature about efficient solutions and weak efficient solutions

is more extensive. In general, IE(f, S,D) ⊂ E(f, S,D) ⊂WE(f, S,D).

Let us show a simple example in which these three kinds of solutions are

different.

Example 1.12. Consider X = R, S = [0, π] and Y = R2 ordered by D = R2
+.

Let f : [0, π]× [0, π]→ R2 be given by

f(x, y) =
(

sin2 x− sinx sin y, sin(x− y)
)
.

Let us compute the sets WE
(
f, [0, π],R2

+

)
, E
(
f, [0, π],R2

+

)
and IE

(
f, [0, π],R2

+

)
.

If we consider x̄ = 0, then

f(x̄, x) = (0,− sinx) /∈ − intR2
+ ∀x ∈ [0, π],

so 0 ∈WE
(
f, [0, π],R2

+

)
, and it is clear that 0 /∈ E

(
f, [0, π],R2

+

)
.

Let x̄ ∈
(

0,
π

2

)
, then

f(x̄, x) =
(

sin x̄(sin x̄− sinx), sin(x̄− x)
)
,

and by taking x ∈
(
x̄,
π

2

)
we have that f(x̄, x) ∈ − intR2

+, so x̄ /∈
WE

(
f, [0, π],R2

+

)
.

Let x̄ =
π

2
, then

f (x̄, x) = (1− sinx, cosx) /∈ −R2
+\{(0, 0)} ∀x ∈ [0, π],

so
π

2
∈ E

(
f, [0, π],R2

+

)
, and it is clear that

π

2
/∈ IE

(
f, [0, π],R2

+

)
.

If x̄ ∈
(π

2
, π
)
, then

f(x̄, x) =
(

sin x̄(sin x̄− sinx), sin(x̄− x)
)
/∈ −R2

+\{(0, 0)} ∀x ∈ [0, π],
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so x̄ ∈ E
(
f, [0, π],R2

+

)
, and it is clear that x̄ /∈ IE

(
f, [0, π],R2

+

)
.

Finally, if x̄ = π, then

f(x̄, x) = (0, sinx) ∈ R2
+ ∀x ∈ [0, π],

so π ∈ IE
(
f, [0, π],R2

+

)
. Therefore,

IE
(
f, [0, π],R2

+

)
= {π} ( E

(
f, [0, π],R2

+

)
=
[π

2
, π
]

( WE
(
f, [0, π],R2

+

)
= {0} ∪

[π
2
, π
]
.

This example shows that the concepts of efficient, weak efficient and ideal

efficient solution, which coincide in the scalar case, may be different in the

vector-valued case for the same bifunction, even on finite dimensional linear

spaces, so they must be analyzed independently.

In general, solving vector-valued equilibrium problems requires a higher

computational cost and the real line has important properties that makes

easier dealing with scalar equilibrium problems. A recurrent technique is the

scalarization, which consists in studying the solutions of a vector-valued problem

through the solutions of an associated scalar problem.

A functional ϕ : Y → R ∪ {±∞} is considered and the values of f are

transferred to the extended real line by means of the composition ϕ◦f : S×S →
R ∪ {±∞}. The scalar equilibrium problem associated to VEP is the following:

find x̄ ∈ S such that

(ϕ ◦ f)(x̄, x) ≥ 0, ∀x ∈ S, (1.22)

More generally, a point x̄ ∈ S is an approximate solution with error ε ≥ 0 of this

problem if

(ϕ ◦ f)(x̄, x) + ε ≥ 0, ∀x ∈ S.

Different characterizations of solutions of vector-valued problems are

obtained depending on the properties of the selected scalarization functional

ϕ (see, for instance, [40, 84, 112, 117, 172]). In particular, we will work with

linear functionals (i.e., ϕ ∈ Y ′) in Chapter 2 and an algebraic formulation of the

so-called nonconvex separation functional in Chapter 3.
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1.3 Objectives

This thesis project is mainly devoted to study approximate and exact

solutions of vector-valued equilibrium problems on real linear spaces not

necessarily endowed with any particular topology, and some related topics as

vector-valued EVPs for bifunctions.

Efficiency concepts based on coradiant sets and improvement sets were

introduced in vector optimization (see [91, 92, 95]), which generalize the most

important approximate efficiency notions in the literature. They allow to

approach efficient solutions and weak efficient solutions by taking suitable

coradiant or improvement sets (see [94]).

Another interesting point of view of using coradiant or improvement sets to

deal with approximate efficient solutions is that they are not topological concepts.

This key fact allows to work on an algebraic framework, in the sense that the

image space of the bifunction is a real linear space which is not equipped with

any particular topology. The topological interior and the topological closure

of a set may be replaced by algebraic counterparts as the well-known algebraic

interior and the algebraic closure (see [112]) or the vector closure (see [4]). In

our case, we will focus on the vector closure as a counterpart of the topological

closure since it corrects some unsuitable behavior of the algebraic closure with

respect to non-solid sets (both closures coincide for convex sets). Moreover, given

an arbitrary set, its algebraic closure is contained in its vector closure and, on

topological linear spaces, both are contained in its topological closure, so the

vector closure is closer to the topological closure. For example, the algebraic

closure of the set of rational numbers (which has empty interior) coincide with

itself and its vector closure is the set of real numbers, as its topological closure.

Henig proper efficient solutions of vector optimization problems were

generalized to equilibrium problems (see [79]). On the other hand, approximate

Henig proper efficient solutions defined by coradiant sets were introduced in vector

optimization very recently (see [88]). Both solution concepts were characterized

by using linear scalarization techniques and generalized convexity assumptions, as

the cone-convexity or an approximate counterpart of the nearly subconvexlikeness
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notion (see [88, 192]). A natural objective will be to extend these results to

equilibrium problems on an algebraic framework and we deal with it in Chapter

2.

We notice that free-disposal sets (in particular, improvement sets) were

introduced by Debreu [49] in the area of Mathematical Finance in order to

approximate preference relations given by convex cones with other sort of sets.

Then equilibrium problems dealing with improvement sets are a way to transfer

results from Optimization to Economics. The vector closure allows to give an

algebraic counterpart of the generalized nearly subconvexlikeness notion defined

in [88].

Gong [81] characterized the weak efficient solutions and Henig proper

efficient solutions of vector equilibrium problems by means of the so-called

nonlinear scalarization functional (see [72–74, 145, 152, 168]). These results only

can be applied when the ordering cone on the final space of the bifunction

has nonempty topological interior, since this condition is essential to define the

nonlinear scalarization functional. Recently, Qiu and He [163] extended this

functional to real linear spaces ordered by (not necessarily solid) convex cones by

using a kind of vector closure in a given direction.

A second objective will be to extend the nonlinear scalarization functional to

real linear spaces when the ordering set is an arbitrary nonempty set and studying

its main properties: monotonicity, convexity, level sets, etc. Many important

properties might be obtained by using the algebraic interior and the vector

closure in a given direction. This algebraic version of the nonlinear scalarization

functional will be useful to characterize a very wide class of approximate solutions

of vector equilibrium problems defined through free-disposal sets. Additionally,

it might be also applied to achieve some results of particular problems as

vector variational inequality problems and vector optimization problems. As

a consequence, some approximate efficiency results for vector optimization

problems on real linear spaces (see, for instance, [120]) might be improved by

choosing suitable free-disposal sets. We deal with this objective in Chapter 3.

Several authors extended the Ekeland Variational Principle to vector-valued
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bifunctions by using linear scalarization procedures (see [22, 183]), but also was

generalized by using the nonlinear scalarization functional (see, for instance, [9,11,

85,96,163,181]). In particular, an approximate EVP for set-valued mappings was

obtained in [96] by using approximate strict solutions, so that the completeness

of the initial metric space was not necessary.

The third objective will be to introduce the concepts of exact and

approximate strict solution in vector equilibrium problems through free-disposal

sets and studying its properties. Moreover, exact EVPs for bifunctions on

complete metric spaces and approximate EVPs for bifunctions on (not necessarily

complete) metric spaces will be obtained without any particular topology in

the final space and by means of a strict fixed point theorem for set-valued

mappings. The aim is to improve some EVPs of the literature. In our approach,

the usual topological assumptions on the final space of the bifunction are

replaced by algebraic counterparts via the vector closure in a given direction.

Also, scalarization through (non necessarily continuous) linear functions and the

algebraic version of the nonlinear scalarization functional defined by nonempty

arbitrary ordering sets on real linear spaces will be used. As a consequence,

the roles of certain common assumptions as the diagonal null property or the

triangular inequality property on the bifunction will be clarified.

The vector-valued EVP for bifunctions have been applied to obtain existence

results for weak efficient solutions of vector equilibrium problems (see, for

instance, [9,11,22]). Topological assumptions as continuity and boundedness were

required in both coordinates of the bifunction. Moreover, certain assumptions

as the diagonal null property and the triangular inequality property are also

assumed, but their roles have not been clarified.

As a result, the final objective will be to introduce and study “semialgebraic”

semicontinuity notion, in the sense that it works when the initial space is endowed

with a topology and the final space is a real linear space. This concept was

motivated by a topological previous one given by Tammer [181] and considers

sublevel sets and the algebraic interior in order to obtain results with weaker

assumptions. Then, the role of the triangular inequality property is clarified
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and, by means of the algebraic version of the nonlinear scalarization functional

and the semialgebraic semicontinuity, existence results for equilibrium problems

are achieved under weaker assumptions. We will deal with the notions of strict

solution and its approximate counterpart together with the other notions of

approximate solutions and approximate proper solutions at the end of Chapter

2, and with the EVPs and the existence results for vector equilibrium problems

in Chapter 4.

1.4 Preliminaries on real ordered linear spaces

Let Y be a real linear space whose algebraic dual space is denoted by Y ′,

and D ⊂ Y be a proper convex cone. Let A ⊂ Y be a nonempty set. The cone

generated by A is the set

coneA :=
⋃
α≥0

αA.

Some authors consider the generated cone by a set without the vertex 0, just as

they define the conical sets (see (1.13)). A is said to be coradiant if αA ⊂ A for

all α ≥ 1, and the notation shwA stands for the coradiant set generated by A

(see [196]), i.e.,

shwA :=
⋃
α≥1

αA.

A is said to be a free-disposal set with respect to a convex cone K ⊂ Y [49]

if A + K = A and is said to be an improvement set with respect to K [43, 95] if

additionally 0 /∈ A. Let us denote

A+ := {φ ∈ Y ′ : φ(a) ≥ 0, ∀a ∈ A},

A# := {φ ∈ Y ′ : φ(a) > 0, ∀a ∈ A, a 6= 0},

As+ :=
⋃
δ>0

{φ ∈ Y ′ : φ(a) ≥ δ, ∀a ∈ A, a 6= 0} .

A+ is said to be the positive polar cone of A and A# is said to be the quasi-interior

of A+. In general, As+ ⊂ A# ⊂ A+. For a geometrical interpretation of set As+,

see Remark 4.5(ii).
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The notations coA, spanA and L(A) := span(A − A) denotes the convex

hull, the linear hull and the associated linear subspace of A, respectively. In

addition, coreA, icrA and vclA stand for the algebraic interior, the relative

algebraic interior and the vector closure of A (see [4, 112]), i.e.,

coreA := {y ∈ Y : ∀v ∈ Y, ∃λ > 0 s.t. y + [0, λ]v ⊂ A},

icrA := {y ∈ Y : ∀v ∈ L(A),∃λ > 0 s.t. y + [0, λ]v ⊂ A},

vclA := {y ∈ Y : ∃ v ∈ Y s.t. ∀λ > 0 ∃λ′ ∈ [0, λ], y + λ′v ∈ A}.

A is said to be algebraic solid (resp., relatively solid) if coreA 6= ∅ (resp., icrA 6=
∅) and vectorially closed if vclA = A. If 0 ∈ coreA, then A is said to be an

absorbing set. clA will denote the topological closure of A whenever Y is a

topological linear space.

For each q ∈ Y , vclq A denotes the vector closure of A in the direction q

(see [97, 99,159,163,199]), defined as

vclq A := {y ∈ Y : ∀λ > 0 ∃λ′ ∈ [0, λ], y + λ′q ∈ A}.

Also we denote by ovcl+∞q A (see [97,99]) the set of all points from which the ray

with direction q is not asymptotically contained in Y \A, i.e.,

ovcl+∞q A := {y ∈ Y : ∀λ > 0∃λ′ ∈ [λ,+∞) s.t. y + λ′q ∈ A}.

We say that A is vectorially closed by q or q-vectorially closed if vclq A = A. The

set ovcl+∞q A is needed in order to characterize the properness of the nonconvex

separation functional (see Theorem 3.2(a)). It is clear that

A ⊂ vclq A ⊂
⋂
α>0

(A− [0, α)q) ⊂ Rq + A ∀q ∈ Y.

Moreover, for each q ∈ Y we have that

vclq(A+ y) = vclq A+ y ∀y ∈ Y,

vclq(vclq A) = vclq A, (1.23)

− ovcl+∞q A = ovcl+∞−q (−A), (1.24)

vclA =
⋃
q∈Y

vclq A. (1.25)
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Statement (1.23) was stated in [163, Proposition 2.4(iii)] when A is a convex cone.

Observe that vclA is not necessarily vectorially closed (see [4, Example 2]), even

though vclq A is q-vectorially closed, for each q ∈ Y (see (1.23)). On the other

hand, if A is convex, then it is easy to check that vclq A is convex and

αy + (1− α)z ∈ ovcl+∞q A ∀y ∈ ovcl+∞q A, ∀z ∈ Rq + A, ∀α ∈ (0, 1). (1.26)

Roughly speaking, the sets coreA and icrA (resp., vclA and vclq A) are

algebraic counterparts of the topological interior (resp., topological closure) of A.

If Y is a real topological linear space, we have that vclA ⊂ clA. Furthermore, if

Y is endowed with the core convex topology τ (see [117, Section 6.3]) and A is

convex and relatively solid, then vclA = clτ A (see [157, Lemma 3.1]).

The conic extension of A with respect to D (resp. the open conic extension

of A with respect to D whenever D is algebraic solid) is denoted by

ED(A) := A+D (resp. ED0 (A) := A+ coreD).

Let us collect some useful properties about the algebraic interior, the vector

closure and the conic extensions of a set. The proofs of statements (a)-(e) may

be found in [4, 91,112,163].

Lemma 1.13. Consider a nonempty convex set F ⊂ Y and a proper algebraic

solid convex cone K ⊂ Y . Then,

(a) coreF is a convex set and coreF = core(coreF ). If additionally Y is a

topological linear space and intF 6= ∅, then coreF = intF .

(b) If F is coradiant, then F = EconeF (F ).

(c) icrK = coreK = EK0 (coreK) = EK0 (K) and coreK ∪ {0} is a proper convex

cone.

(d) coreK = EK0 (vclqK) = vclqK + (0,+∞)q for all q ∈ coreK.

(e) vclK = vclqK for all q ∈ coreK.

(f ) EK0 (A) = EK0 (vclA), for any subset ∅ 6= A ⊂ Y .
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Proof. In order to prove part (f ), it is enough to show that EK0 (vclA) ⊂ EK0 (A).

Consider two arbitrary points y ∈ vclA and k ∈ coreK. It follows that there

exists v ∈ Y such that ∀λ > 0,∃λ′ ∈ [0, λ] such that y + λ′v ∈ A. Moreover,

by part (a) we have that core(coreK) = coreK, so there exists β > 0 such that

k + [0, β](−v) ⊂ coreK. Take λ = β and λ′ ∈ [0, β] such that y + λ′v ∈ A.

Therefore y + k = y + λ′v + k − λ′v ∈ EK0 (A), and the proof finishes.

Given a proper convex cone K, we have that (see [5, Proposition 2.3])

icrK 6= ∅ ⇔ icrK+ 6= ∅. (1.27)

Moreover, if N and K are relatively solid and vectorially closed proper convex

cones in Y such that N ∩K = {0}, then

(N ∩K)+ = vcl(N+ +K+)

(see [5, Proposition 2.4]). If additionally K is pointed, we obtain that

coreK+ ∩ (−N+) 6= ∅ (1.28)

by applying [5, Theorem 2.3] with K = −N and A = coreK.

For each C ⊂ Y \{0} and ε ≥ 0, let us denote

C(ε) :=

 εC if ε > 0,⋃
ε>0

εC if ε = 0.

Clearly, if C is convex, then C(ε) is convex for all ε > 0. Consider the following

collections of sets:

H := {∅ 6= C ⊂ Y \{0} : C ∩ (−D) = ∅},

Ĥ := {∅ 6= C ⊂ Y \{0} : vcl coneC ∩ (−D\{0}) = ∅},

G := {K ⊂ Y : K is a proper algebraic solid convex cone such that

D\{0} ⊂ coreK},

G(C) := {K ∈ G : C ∩ (− coreK) = ∅},

O(C) := {K ∈ G(C) : coreK = K\{0}}.
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Let us give some properties related to these collections and conic extensions.

The proof is analogous to [88, Lemma 2.2] by using the properties of the algebraic

interior of Lemma 1.13.

Lemma 1.14. Consider a nonempty set C ⊂ Y \{0}, ε ≥ 0 and K ∈ G. Then,

(a) EK0 (D) = EK0 (D\{0}) = coreK.

(b) If K ∈ G(C), then EK0 (C)(ε) = EK0
(
C(ε)

)
.

(c) If C ∈ H, then ED(C)(ε) = ED
(
C(ε)

)
.

It is clear that Ĥ ⊂ H, D\{0} ∈ Ĥ provided that vclD is pointed and

G(D\{0}) = G. For each K ∈ G(C) we have that K ∈ G
(
ED(C)

)
and coreK ∪

{0} ∈ O(C). On the other hand, coreK ∪ {0} = K for all K ∈ O(C). Moreover,

given K ∈ G, let us observe that

K ∈ G(C)⇔ 0 /∈ EK0 (C).

These collections of sets were introduced in [88] in the topological setting

by using the topological closure and the topological interior. For instance, the

following collection was considered instead of Ĥ:

H := {∅ 6= C ⊂ Y \{0} : cl coneC ∩ (−D\{0}) = ∅}.

If coneC is a convex set and int(coneC) 6= ∅, then H = Ĥ (see Lemma 1.13(a)).

In general, H ⊂ Ĥ since vcl coneC ⊂ cl coneC. The next example shows that

this last inclusion may be strict.

Example 1.15. Let Y = R3, D = {0} × (−R+)× R+ and C = {(x, 1, x2) : x ∈
R\{0}}. One may check that

vcl coneC ∩ (−D\{0}) = ∅,

cl coneC ∩ (−D\{0}) = {0} × (R+\{0})× {0},

so that, H ( Ĥ.
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Let us consider the mapping τC : Y ′ → R ∪ {−∞} given by

τC(y′) = inf
y∈C

y′(y) ∀y′ ∈ Y ′.

For any nonempty sets C1, C2 ⊂ Y \{0} and ε1, ε2 ∈ R+ we have that

τC1(ε1)+C2(ε2)(y
′) = ε1τC1(y

′) + ε2τC2(y
′)

for all y′ ∈ C+
1 ∩ C+

2 . Let us define the collection of sets

FD+ := {∅ 6= C ⊂ Y \{0} : (D+ ∩ C+)\{0} 6= ∅},

FD# := {∅ 6= C ⊂ Y \{0} : D# ∩ C+ 6= ∅}.

We can easily check that FD# ⊂ Ĥ ∩FD+ . Moreover, if Y ′ separates elements in

Y (i.e., two different elements in Y may be separated by a hyperplane), C is a

relatively solid convex set, D is pointed, vectorially closed and algebraic solid, it

follows that

C ∈ FD# ⇔ C ∈ Ĥ

by (1.28) and [112, Lemma 1.25] for K = D and N = − vcl coneC. Notice

that − vcl coneC is a vectorially closed cone by applying [4, Proposition 3(iii)]

and [4, Proposition 5(i)] with A = coneC.

In the following, fix a nonempty set E ⊂ Y such that E is algebraic solid.

The following set is considered:

HE := {q ∈ Y \{0} : vclq E + (0,+∞)q = coreE}.

Observe that for each q ∈ Y \{0},

vclq E + (0,+∞)q = coreE ⇐⇒ vclq E + (0,+∞)q ⊂ coreE.

In the next proposition we show that HE is nonempty whenever E is

free-disposal with respect to an algebraic solid convex cone K.

It reduces to Lemma 1.13(c) and (d) by taking E = K. The proof of

statement (a) may be found in [4, Proposition 6]).

Proposition 1.16. Suppose that E is free-disposal with respect to an algebraic

solid convex cone K. Then:
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(a) E + coreK = coreE.

(b) vclq E + coreK = vclq E + (0,+∞)q = coreE for all q ∈ coreK.

Proof. In order to show (b), let us fix an arbitrary q ∈ coreK and prove the

inclusions

coreE ⊂ vclq E + (0,+∞)q ⊂ vclq E + coreK ⊂ coreE.

Observe that the middle one is obvious, since q ∈ coreK and coreK ∪ {0} is a

cone by Lemma 1.13(c).

First, take an arbitrary point e ∈ coreE. Then there exists λ > 0 such that

e− [0, λ]q ⊂ E. In particular, e ∈ λq + E ⊂ (0,+∞)q + vclq E.

Second, fix e ∈ vclq E and d ∈ coreK. Since coreK = core(coreK) by

Lemma 1.13(a), we know that there exist µ > 0 and 0 ≤ λ ≤ µ such that

d− [0, µ]q ⊂ coreK and e+ λq ∈ E. Therefore,

e+ d = e+ λq + d− λq ∈ E + coreK

and e+ d ∈ coreE, since E + coreK = coreE by part (a).

Remark 1.17. As a consequence of this result we deduce that coreE ⊂ HE

whenever E is an algebraic solid convex set and E + coneE ⊂ E. If additionally

0 ∈ E, then it is clear that HE = coreE.

Given a nonempty set X and a mapping g : X → Y , we denote for each

y ∈ Y and a binary relation R on Y , the set

[gRy] := {x ∈ X : g(x)Ry}.

Notice that this notation encompasses the level sets and the sublevel sets of g

with respect to an arbitrary order on Y . A bifunction v : X ×X → Y is said to

satisfy the triangle inequality property with respect to ≤D (≤D-t.i. property for

short) if

v(x1, x3) ≤D v(x1, x2) + v(x2, x3) ∀x1, x2, x3 ∈ X.

Observe that (1.12) corresponds with the ≤R+-t.i. property. On the other hand,

v is said to be diagonal null if v(x, x) = 0 for all x ∈ X.
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In the next lemma we collect several properties of free-disposal sets, some

of them in connection with the vector closure in a given direction, the binary

relations ≤E and ≤D and also with the sublevel sets of bifunctions satisfying

the ≤D-t.i. property. Let us observe that the set E can be algebraic nonsolid

(compare parts (b) and (c) with Lemma 1.13(d) and Proposition 1.16(b), where

K is assumed to be algebraic solid).

Lemma 1.18. Assume that E ⊂ Y is free-disposal with respect toD and consider

a bifunction f : X ×X → Y . Then the following statements are true:

(a) vclq E and εE are free-disposal sets with respect to D for all q ∈ Y and ε > 0.

(b) (0,+∞)q + vclq E ⊂ E for all q ∈ D.

(c) [0,+∞)q + vclq E = vclq E for all q ∈ D.

(d) D ⊂
⋂
q∈E

vclq coneE.

(e)
⋂
δ>0

(−δq + vclq E) ⊂ vclq E for all q ∈ Y .

(f ) Let y1, y2, y3 ∈ Y such that y1 ≤E y2, y2 ≤D y3 and z1 ≤D z2. Then, y1 ≤E y3

and y1 + z1 ≤E y2 + z2.

(g) Suppose that f satisfies the≤D-t.i. property and consider two arbitrary points

a, b ∈ Y . Then, for each x ∈ X, we have ⋃
z∈[f(x,·)≤Da]

[f(z, ·) ≤E b]

 ⊂ [f(x, ·) ≤E a+ b].

Proof. Let us prove parts (d) and (g), since parts (a), (b), (c), (e) and (f ) follow

easily from the definitions.

(d) Consider two arbitrary points d ∈ D and q ∈ E. As E is free-disposal

with respect toD we have that q+nd ∈ E for all n ∈ N. Then, d+(1/n)q ∈ coneE

for all n ∈ N, and it follows that d ∈ vclq coneE.

(g) Consider x ∈ X, z ∈ [f(x, ·) ≤D a] and y ∈ Y such that f(z, y) ≤E b.

By part (f ) and since f satisfies the ≤D-t.i. property we see that

f(x, y) ≤D f(x, z) + f(z, y) ≤E a+ b,
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and as E is free-disposal w.r.t. D, we obtain that f(x, y) ≤E a+ b, which finishes

the proof.

Remark 1.19. As a consequence of Lemma 1.18(d) we have that E+ ⊂ D+.

Indeed, let φ ∈ E+, d ∈ D and an arbitrary point e ∈ E. Then there exists a

sequence (tn) ⊂ R+, tn → 0, such that d+ tne ∈ coneE for all n. As φ ∈ E+ we

deduce that φ(d) + tnφ(e) ≥ 0 for all n, and taking the limit when n → +∞ it

follows that φ(d) ≥ 0. Therefore, φ ∈ D+.

By dealing with an extended-real valued function, ϕ : Y → R ∪ {±∞}, we
denote

domϕ := {y ∈ Y : ϕ(y) < +∞},

epiϕ := {(y, t) ∈ Y × R : ϕ(y) ≤ t},

and we say that ϕ is proper if [ϕ = −∞] = ∅ and domϕ 6= ∅.
Moreover, ϕ is said to be positively homogeneous (resp. subadditive,

convex) if ϕ(λy) = λϕ(y) for all y ∈ Y and λ > 0 (resp. ϕ(y1+y2) ≤ ϕ(y1)+ϕ(y2),

ϕ(αy1 + (1− α)y2) ≤ αϕ(y1) + (1− α)ϕ(y2) for all y1, y2 ∈ Y and α ∈ (0, 1)). In

the previous definitions we assume the conventions +∞−∞ = −∞+∞ = +∞.

On the other hand, given a nonempty set C ⊂ Y , we say that ϕ is

C-nondecreasing (resp. C-increasing) if

y1, y2 ∈ Y, y1 6= y2, y1 − y2 ∈ −C ⇒ ϕ(y1) ≤ ϕ(y2) (resp. ϕ(y1) < ϕ(y2)).

When C is a proper convex cone, ϕ is said to be nondecreasing with respect

to the relation ≤C if ϕ is C-nondecreasing and, if C is algebraic solid, ϕ is said

to be increasing with respect to the relation <C if ϕ is coreC-increasing.

In Proposition 1.20(b) we give a sufficient condition for the emptyness of

the set ovcl+∞q F . For another sufficient condition see Proposition 1.21.

Proposition 1.20.(a) Let y, z, q ∈ Y and ∅ 6= F ⊂ Y . If y ∈ ovcl+∞q (F+z) then

q ∈ vcly−z coneF . Reciprocally, if q ∈ vcly F\F , then y ∈ ovcl+∞q (coneF ).

(b) If q /∈ vcl coneF , then ovcl+∞q F = ∅.
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Proof. (a) Suppose that y ∈ ovcl+∞q (F + z). Then, for each λ > 0 there exists

λ′ ∈ [1/λ,+∞) such that y + λ′q ∈ F + z and so, by defining β := 1/λ′ ∈ (0, λ],

we have

q + β(y − z) ∈ βF ⊂ coneF.

As λ > 0 is arbitrary, we conclude that q ∈ vcly−z coneF .

Reciprocally, if q ∈ vcly F\F , then for each λ > 0 there exists λ′ ∈ [0, 1/λ]

such that q + λ′y ∈ F . As q /∈ F we deduce that λ′ > 0 and so y + βq ∈ coneF ,

where β := 1/λ′ ∈ [λ,+∞). Therefore, y ∈ ovcl+∞q (coneF ) and part (a) is

proved.

(b) This part is a direct consequence of the previous one and the proof is

complete.

The reciprocal result of Proposition 1.20(b) is false (see Remark 1.22).

Next, we state a sufficient condition for the emptyness of the set ovcl+∞q F via

scalarization.

Proposition 1.21. Consider q ∈ Y \{0} and ∅ 6= F ⊂ Y . Let ϕ : Y → R∪{+∞}
be a proper subadditive positively homogeneous functional such that ϕ(q) < 0.

If inf
z∈F

ϕ(z) > −∞, then domϕ ∩ ovcl+∞q F = ∅.

Proof. Assume by contradiction that there exists y ∈ domϕ ∩ ovcl+∞q F . Then

there exists a sequence of positive real numbers (tn) such that tn → +∞ and

y + tnq ∈ F for all n. By the properties of ϕ we see that

−∞ < inf
z∈F

ϕ(z) ≤ ϕ(y + tnq) ≤ ϕ(y) + tnϕ(q), ∀n,

which is a contradiction since y ∈ domϕ and tnϕ(q) → −∞. This finishes the

proof.

Remark 1.22. The reciprocal result of Proposition 1.21 is false. Indeed, consider

Y = R2, q = (−1, 0), ϕ(y1, y2) = y1 for all (y1, y2) ∈ R2, and

F = {(y1, y2) ∈ R2 : y1 ≤ 0, 0 < y2 ≤ ey1}.

Then ovcl+∞q F = ∅, q ∈ vcl coneF and inf
z∈F

ϕ(z) = −∞.
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Assume that X is a real linear space. g : X → Y is said to be D-convex on

a nonempty set S ⊂ X if S is convex and

g(λx1 + (1− λ)x2) ∈ λg(x1) + (1− λ)g(x2)−D,

for every x1, x2 ∈ S, λ ∈ [0, 1]. g is said to be D-convexlike on S if g(S) + D is

convex. Obviously, if g is D-convex on S, then g is D-convexlike on S. In the

literature, many notions concerning with generalized convexity have been defined

in the algebraic framework (see, for instance, [4, 156, 202]). Next, we follow this

approach and we introduce an algebraic approximate nearly subconvexlikeness

concept.

In [90, Definition 2.3], a generalized convexity notion for mappings called

nearly (C, ε)-subconvexlikeness was introduced on the framework of real locally

convex spaces. It is an approximate counterpart of the so-called nearly

subconvexlikeness notion [192, Definition 2.2], and has proven to be useful to

obtain necessary conditions for different kinds of approximate proper efficient

solutions of vector optimization problems via linear scalarization. Then, we will

deal with an algebraic counterpart through the vector closure that will allow us to

obtain necessary conditions for approximate proper efficient solutions of problem

VEP by linear scalarization on an algebraic framework.

Definition 1.23. Consider ε ≥ 0, g : X → Y , ∅ 6= S ⊂ X and ∅ 6= C ⊂
Y \{0}. The mapping g is said to be v-nearly (C, ε)-subconvexlike (or v-nearly

C-subconvexlike when ε = 1) on S if vcl cone
(
g(S) + C(ε)

)
is convex.

If Y is a topological linear space and g is v-nearly (C, ε)-subconvexlike on S,

then is nearly (C, ε)-subconvexlike on S (that is, cl cone
(
g(S)+C(ε)

)
is convex).

Indeed, given ∅ 6= F ⊂ Y such that vclF is convex, we know that cl(vclF ) is

convex. Then

clF ⊂ cl(vclF ) ⊂ cl(clF ) = clF,

so that clF = cl(vclF ) is convex and the implication follows by taking F :=

cone
(
g(S) +C(ε)

)
. In the next result we give sufficient conditions for a function

g to be v-nearly (C, ε)-subconvexlike on S.
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Theorem 1.24. Consider ε ≥ 0, g : X → Y and two nonempty sets S ⊂ X,

C ⊂ Y \{0}. It follows that:

(a) If C is convex and there exists a cone P such that g is P -convexlike on S

and EP (C) = C (i.e., C is free-disposal with respect to P ), then g is v-nearly

(C, ε)-subconvexlike on S.

(b) If C is convex and coradiant, g is (coneC)-convexlike on S, then g is v-nearly

(C, ε)-subconvexlike on S.

Proof. (a) Consider ε > 0. We know that EP
(
g(S)

)
and C(ε) are convex sets, so

that EP
(
g(S)

)
+ C(ε) = g(S) + EP

(
C(ε)

)
is also a convex set. Since

EP
(
C(ε)

)
= εEP (C) = C(ε),

then g(S) +C(ε) is convex, which implies that g is v-nearly (C, ε)-subconvexlike

on S by [4, Proposition 5(iv)].

Consider ε = 0 and set C ′ := C(0). We know that C ′ is convex and it is easy

to check that EP (C ′) = C ′. By applying the previous case with C := C ′ and ε′ =

1, we know that g is v-nearly C ′-subconvexlike on S, i.e., vcl cone
(
g(S) + C(0)

)
is convex, so that g is v-nearly (C, 0)-subconvexlike on S.

(b) By Lemma 1.13(b), we have that EconeC(C) = C. Then the result is a

consequence of part (a).

Finally, let us introduce two concepts of semicontinuity for vector-valued

functions that work when the final space is not endowed with any topology –in

this sense it could be considered “semialgebraic” semicontinuity notions–. They

are inspired by a well-known notion of lower semicontinuity due to Tammer (see

[181]).

Definition 1.25. Let X be a topological space, q ∈ Y \{0} and ∅ 6= H ⊂ Y . A

function g : X → Y is said to be lower semicontinuous with respect to q and H

–denoted (q,H)-lsc in short form– if the sublevel sets [g ≤vclq H rq] are closed for

all r ∈ R. IfH is algebraic solid, g is said to be upper semicontinuous with respect

to q and H – denoted (q,H)-usc in short form– if the sublevel sets [g <H rq] are

open for all r ∈ R.
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Analogously, g is said to be lower semicontinuous with respect to the relation

≤vclq H –denoted lsc w.r.t. ≤vclq H in short form– if the sublevel sets [g ≤vclq H y]

are closed for all y ∈ Y .

Remark 1.26. (i) Let α ∈ R and the set Hαq := αq + D. The (q,Hαq)-lsc

coincides with the (q,D)-lsc, since vclqHαq = αq + vclqD and so

[g ≤vclq Hαq rq] = [g ≤vclq D (r − α)q] ∀r ∈ R.

On the other hand, if Y is a topological linear space and D is closed, then

vclqD = D and it follows that the lsc w.r.t. ≤vclq D coincides with its topological

counterpart lsc notion.

(ii) The (q,D)-usc concept is weaker than the usual cone usc notion

whenever the ordering cone D has nonempty topological interior. Recall that

if Y is a real topological linear space, then g : X → Y is said to be D-upper

semicontinuous if for each x ∈ X and for each neighborhood V of g(x) there

exists a neighborhood U of x such that g(z) ∈ V − D for all z ∈ U (see, for

instance, [154]). Observe that the superlevel sets [g ≥D y] are closed for all y ∈ Y
whenever g is D-upper semicontinuous and D is closed.

Consider X = R, Y = R2, D = R2
+ and g : X → Y defined as

g(t) =

 (0, 0) if t < 0(
1,− 1

t+1

)
if t ≥ 0.

g is not D-upper semicontinuous at t = 0. Indeed, if V is a (small enough)

neighborhood of g(0) = (1,−1), we may consider a point z < 0 in any

neighborhood of 0, and hence g(z) = (0, 0) /∈ V −D.

Moreover, take q = (1, 1), then

[g <D rq] =


∅ if r ≤ 0

(−∞, 0) if 0 < r ≤ 1

R if r > 1.

Then g is (q,D)-usc.

(iii) In [9, Definition 2.1(iii)] the author introduced the following upper

semicontinuity concept for vector-valued functions in the spirit of Tammer’s lower



Chapter 1. Introduction 36

semicontinuity: suppose that Y is a locally convex Hausdorff topological linear

space and q ∈ intD. Then g : X → Y is said to be (q,D)-superlevel closed if

the set [g ≥D rq] is closed for all r ∈ R (in [9] is also named as (q,D)-upper

semicontinuous). This notion was used in [9, Theorem 4.1] to prove the existence

of weak efficient solutions of vector equilibrium problems (see Remark 4.19).



Chapter 2

Algebraic notions of solution

2.1 Introduction

In the literature, there are many works that deal with optimization problems

from an algebraic point of view, that is, the problems are defined on real linear

spaces not endowed with any particular topology (see, for instance, books [13,14,

110,112], papers [1–6,106,107,120,130,156,157,163,199,202–206], and references

therein). This research line provides an alternative way to study classic problems

since topological tools are not used. Some hypotheses of well-known results are

reformulated or even weakened by using algebraic counterparts and, as a result,

many topological components are shown to be unessential. Of course, the new

achieved algebraic results remain valid on topological linear spaces, so they may

generalize the previous ones.

Every real linear space may be equipped with the strongest locally convex

topology, called the core convex topology (see [117, Section 6.3]) and some

algebraic notions coincide with topological concepts in this topology. However,

the algebraic counterparts only are equivalent to the topological ones under

additional conditions. For example, the algebraic interior and the vector closure

require convexity assumptions to coincide with the topological interior and the

topological closure, respectively (see [117, Proposition 6.3.1(iii)] and [157, Lemma

3.1]). Thus, the optimality notions defined through algebraic tools are different,

and their respective results may extend the previous topological ones.

37
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On the other hand, it is interesting to consider equilibrium problems from

an algebraic point of view since they encompass several important problems and

we may state new results in this general setting. For example, existence theorems

for saddle point problems –which are a particular case of an equilibrium problem

(see Section 1.1, Problem 1.3)– have already been obtained in [6,206] in real linear

spaces apart from optimization problems.

This chapter is structured as follows. In section 2.2 we focus on minimal

solutions of vector equilibrium problems with respect to arbitrary ordering

sets. In particular, we highlight the notion of (C, ε)-efficient solution, which

was introduced by Gutiérrez, Jiménez and Novo [91, 92], and the notion of

E-optimality, which was defined by Chicco, Mignanego, Pusillo and Tijs [43]

in finite dimensional vector optimization problems and extended by Gutiérrez,

Jiménez and Novo [95] to real locally convex spaces. We generalize these notions

to equilibrium problems on real linear spaces and we study their main properties.

E-weak efficient solutions for vector equilibrium problems are characterized by

using a linear scalarization procedure and generalized convexity assumptions.

Section 2.3 is devoted to approximate proper efficient solutions. Henig and

Benson (C, ε)-proper efficient solutions were introduced in [88, 90], respectively,

for vector optimization problems in real locally convex spaces. In this section, we

study them for vector equilibrium problems on real linear spaces. We establish

an inclusion between them and characterize the Henig (C, ε)-proper efficient

solutions by linear scaralarization under generalized convexity assumptions.

In section 2.4 we extend the notion of strict solution from vector

optimization problems (see [113, 175]) to vector equilibrium problems on real

linear spaces, and we introduce and study an approximate version of this concept

by means of free-disposal sets. This extension is essential for the exact and

approximate EVP-type results for vector-valued bifunctions obtained in Chapter

4. Some basic properties of this kind of solutions are stated.
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2.2 Minimal solutions and arbitrary ordering sets

In Chapter 1, we saw that the study of approximate solutions is a relevant

research line in different scalar problems and so, it is worthy to focus them from

the point of view of equilibrium problems.

Gutiérrez, Jiménez and Novo introduced a new concept of approximate

solution for vector optimization problems based on coradiant sets in order to

unify and generalize several ε-efficiency notions of the literature (see [91, 92]),

since they noticed that many of them are actually concepts of nondominated

solutions with respect to certain ordering sets. Next, we will introduce it for

vector equilibrium problems. Let S be an arbitrary nonempty decision set, Y be

a real linear space ordered by a proper convex cone D and f : S × S → Y be a

bifunction.

Definition 2.1. Let ε ≥ 0 and C ∈ H. A point x̄ ∈ S is a (C, ε)-efficient solution

of problem VEP and it is denoted by x̄ ∈ E(f, S, C, ε) if

f(x̄, S) ∩
(
− C(ε)

)
= ∅.

Remark 2.2. (i) Clearly, if coneC = D, then E(f, S, C, 0) = E(f, S,D).

(ii) C ∈ H is assumed in order to obtain a consistent set of approximate

solutions of problem VEP. Indeed, if a nonempty set C ⊂ Y \{0} is such that

C /∈ H, then C(ε) ∩ (−D) 6= ∅ for all ε ≥ 0, and if x̄ ∈ S is a (C, ε)-efficient

solution of problem VEP, we have that

f(x̄, S) ∩
((
− C(ε)

)
∩D

)
= ∅. (2.1)

Hence, we are removing any feasible point x̂ ∈ S that does not satisfy (2.1) as

possible (C, ε)-efficient solution. This fact may lead to a senseless procedure in

order to deal with a suitable approximate efficient set as it was shown for vector

optimization problems (and so, for equilibrium problems) in [88, Example 2.5],

where the set of efficient solutions is infinite and the sets of approximate efficient

solutions are empty.

(C, ε)-efficiency encompasses some of the most celebrated notions of
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approximate efficiency given in the literature. Assume that Y is a real topological

linear space, D is a proper pointed convex cone and consider g : S → Y .

• Set f(x, y) := g(y)− g(x) in order to deal with vector optimization problems.

Then it is known that (C, ε)-efficiency encompasses the ε-efficiency notions

given by Kutateladze [127], Németh [148], White [189], Helbig [104], Valyi

[185,186] or Tanaka [184].

• Similar approaches to Kutateladze’s ε-efficiency were introduced for vector

equilibrium problems, such as the ε-equilibrium point given by Bianchi,

Kassay and Pini [22], and the λ-equilibrium point given by Ansari [9]. Both

extensions are clearly encompassed by the (C, ε)-efficiency notion.

On the other hand, Chicco, Mignanego, Pusillo and Tijs [43] introduced

the concept of E-optimality in finite-dimensional vector optimization problems

ordered by components. The idea behind this concept is similar to the

(C, ε)-efficiency since the authors considered nondominated points with respect

to an ordering set E that is assumed to be an improvement set with respect to the

Pareto cone (see (1.14)). Gutiérrez, Jiménez and Novo [95] extended this notion

to the infinite-dimensional framework by using improvement sets with respect to

an arbitrary ordering convex cone. This extended E-optimality notion also unifies

and generalizes several approximate ε-efficiency concepts of vector optimization

problems.

Later, Lalitha and Chatterjee [132] characterized E-optimal solutions by

scalarization and established stability results for these solutions. Xia, Zhang and

Zhao [190] studied conic extensions of improvement sets via the quasi interior

and applied the obtained result to characterize by scalarization weak efficient

solutions of vector optimization problems with set-valued mappings. Recently,

Gutiérrez, Huerga, Jiménez and Novo [89] obtained E-optimality results in vector

optimization problems on real linear spaces.

Other more general approaches for vector optimization problems have been

provided in this line by considering the usual notion of nondominated point and

assuming very mild conditions on the ordering set E (see, for instance, [17,65]).
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We will consider a very general equilibrium problem given by the data f , S

and E, where E ⊂ Y is a algebraic solid set and 0 /∈ coreE.

Definition 2.3. A point x̄ ∈ S is said to be a E-weak efficient solution (or simply,

a weak efficient solution) of VEP if satisfies

f(x̄, S) ∩ (− coreE) = ∅. (2.2)

The set of all weak efficient solutions of problem VEP is denoted by WE(f, S, E).

Observe that the exact case of weak efficient solutions of a vector equilibrium

problem is included in the previous definition by taking E = D, whenever D is

algebraic solid.

From now on, assume that E is free-disposal with respect to a proper convex

algebraic solid cone D. Next, we give a sufficient condition for E-weak efficient

solutions.

Theorem 2.4. For every µ ∈ E+\{0}, it follows that

E
(
µ ◦ f, S, τE(µ)

)
⊂WE

(
f, S, E

)
.

Proof. Take x̄ ∈ E
(
µ ◦ f, S, τE(µ)

)
and suppose by contradiction that x̄ /∈

WE(f, S, E). Then, by Proposition 1.16(a) we have that

f(x̄, S) ∩
(
− E − coreD

)
6= ∅,

so there exist ȳ ∈ S, e ∈ E and d ∈ coreD such that f(x̄, ȳ) = −e− d. It is clear
that µ(d) > 0, since µ ∈ D+\{0} (see Remark 1.19) and d ∈ coreD. Hence,

µ ◦ f(x̄, ȳ) + τE(µ) = −µ(e)− µ(d) + τE(µ) < 0,

which is a contradiction to x̄ ∈ E
(
µ ◦ f, S, τE(µ)

)
(see (1.22)).

The next result provides us a necessary condition for E-weak efficient

solutions under a generalized convexity assumption on the bifunction.

Theorem 2.5. Consider x̄ ∈ S. Assume that f(x̄, ·) is v-nearly E-subconvexlike

on S, and that one of the following assumptions is satisfied
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(i) 0 ∈ f(x̄, S);

(ii) E is coradiant.

If x̄ ∈WE(f, S, E), then there exists µ ∈ E+\{0} such that x̄ ∈ E
(
µ◦f, S, τE(µ)

)
.

Proof. Since x̄ ∈WE(f, S, E), by Proposition 1.16(a) we have that

f(x̄, S) ∩
(
− coreE) = ∅.

By Proposition 1.16(a) it follows that(
f(x̄, S) + E

)
∩ (− coreD) = ∅,

and then

vcl cone
(
f(x̄, S) + E

)
∩ (− coreD) = ∅.

Since f(x̄, ·) is v-nearly E-subconvexlike on S, we know that the set

vcl cone
(
f(x̄, S) + E

)
is convex. By the basic version of the separation theorem

(see [112, Theorem 3.14]), there exists µ ∈ Y ′\{0} and α ∈ R such that

µ(y) ≥ α ≥ µ(−d) ∀y ∈ vcl cone
(
f(x̄, S) + E

)
, ∀d ∈ D,

α > µ(−d) ∀d ∈ coreD.

It is easy to check that α = 0. If (i) is satisfied, then 0 ∈ f(x̄, S) and it follows

that µ(e) ≥ 0 for all e ∈ E, so that µ ∈ E+. If (ii) is satisfied, then fix an

arbitrary point ȳ ∈ f(x̄, S). We have that

1

λ
µ(ȳ) + µ(e) =

1

λ
µ(ȳ + λe) ≥ 0 ∀e ∈ E,∀λ ≥ 1.

By taking the limit λ → +∞, it follows that µ(e) ≥ 0. Then it is clear that

µ ∈ E+. Hence, in both cases,

µ ∈ E+\{0}.

It follows that

µ
(
f(x̄, x)

)
+ µ(e) ≥ 0 ∀x ∈ S, ∀e ∈ E,

and then

µ
(
f(x̄, x)

)
+ τE(µ) ≥ 0 ∀x ∈ S.

Therefore x̄ ∈ E
(
µ ◦ f, S, τE(µ)

)
.
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The next characterization of E-weak efficient solutions follows from

Theorems 2.4 and 2.5.

Corollary 2.6. For each x ∈ S, assume that f(x, ·) is v-nearly E-subconvexlike

on S, and one of the following assumptions is satisfied

(i) 0 ∈ f(x, S);

(ii) E is coradiant.

Then

WE(f, S, E) =
⋃

µ∈E+\{0}

E
(
µ ◦ f, S, τE(µ)

)
.

2.3 Approximate proper solutions

The set of efficient points of an ordered set is usually very large, so that

in problems with ordered spaces it is often difficult to choose the most suitable

decision. Proper efficiency was introduced in vector optimization in order to select

those efficient solutions that satisfy some desirable properties as, for instance,

stability, relationships with solutions of associated scalar optimization problems,

etc. In this way, many authors defined and studied different proper efficiency

notions as for instance, [19,30,32,71,102,105,111] (for more detailed information,

see [86, 117]). To the best of our knowledge, the first concepts of approximate

proper efficient solution of vector optimization problems were introduced at the

end of the nineties (see [138, 141, 167]) and since the early 21st century they

have also been studied on real linear spaces with algebraic tools (see [5, 107,

120, 202–206]) and have been extended to vector equilibrium problems (see, for

instance, [34, 35,77,79–81,83,169,170]).

Recently, several “proper” versions concerning with the concept of

(C, ε)-efficiency has been studied (see [69, 70, 87, 88, 90, 173, 200]). In particular,

we stand out the Henig (C, ε)-proper efficient solutions for vector optimization

problems, whose properties have been studied in real locally convex spaces

and have been characterized by means of linear scalarization under generalized

convexity assumptions.



Chapter 2. Algebraic notions of solution 44

In this section, we study the Henig (C, ε)-proper efficiency for vector

equilibrium problems in the framework of real linear spaces not endowed with

any particular topology. By means of the vector closure, we define a generalized

convexity assumption which allows us to characterize this kind of approximate

proper efficient solutions by linear scalarization.

From now on in this section suppose that vclD ∩ (−D) = {0}. This

condition is clearly satisfied when D is pointed and vectorially closed. Next, we

will give two concepts of proper efficiency for equilibrium problems on real linear

spaces. The first one is based on a well-known notion introduced by Henig for

vector optimization problems which was extended by Gong for vector equilibrium

problems in Hausdorff locally convex spaces (named also as global efficiency or

global proper efficiency, see [79,105]).

Definition 2.7. A point x̄ ∈ S is said to be a Henig (vectorial) proper efficient

solution for problem VEP if there exists K ∈ G such that x̄ ∈ E(f, S,K). It is

denoted by x̄ ∈ HeV(f, S,D).

Notice that it is not required the pointedness of K in the same way as

Henig’s definition [105] for vector optimization problems. In fact, for each K ∈ G,
we may set a pointed cone K ′ :=

(
K\(−K)

)
∪ {0} ⊂ K and it is easy to check

that K ′ ∈ G. It follows that E(f, S,K) ⊂ E(f, S,K ′), so that the pointedness

assumption on K is not necessary. Hence, the algebraic notion of Henig proper

efficiency coincides with the topological one [79, Definition 1.1] introduced by

Gong in locally convex spaces which considers pointed cones.

Adán and Novo [5] defined an algebraic notion of Benson proper efficiency

[19], and later Gong [79] extended it for equilibrium problems (in a topological

setting). Next, we generalize the algebraic notion of Adán and Novo [5] to

equilibrium problems.

Definition 2.8. A point x̄ ∈ S is said to be a Benson (vectorial) proper efficient

solution for problem VEP if

vcl cone(f(x̄, S) +D) ∩ (−D\{0}) = ∅.
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The set of all Benson proper efficient solutions of problem VEP it is denoted by

BeV(f, S,D).

Remark 2.9. (i) By Lemma 1.13(a) and (c), it is easy to check that x̄ ∈ S is

a proper efficient solution in the sense of Henig for problem VEP if there exists

K ∈ G such that x̄ ∈WE(f, S,K).

(ii) In general,

HeV(f, S,D) ⊂ BeV(f, S,D) ⊂ E(f, S,D). (2.3)

Indeed, given x̄ ∈ HeV(f, S,D), there exists K ∈ G such that f(x̄, S) ∩
(− coreK) = ∅. Hence, by Lemma 1.13(c),

(f(x̄, S) +K) ∩ (− coreK) = ∅

and, since coreK∪{0} is a cone, we have that cone(f(x̄, S)+K)∩(− coreK) = ∅.
Then it is clear that

vcl cone (f(x̄, S) +K) ∩ (− coreK) = ∅,

and since D\{0} ⊂ coreK, it follows that x̄ ∈ BeV(f, S,D). The other inclusion

is obvious.

Next, we introduce concepts of Henig and Benson (C, ε)-proper efficient

solution for vector equilibrium problems on real linear spaces by means of

algebraic tools.

Definition 2.10. Let ε ≥ 0 and C ∈ Ĥ. A point x̄ ∈ S is a Henig

(vectorial) (C, ε)-proper efficient solution of problem VEP, and it is denoted by

x̄ ∈ HeV(f, S, C, ε), if there exists K ∈ G(C) such that x̄ ∈ E
(
f, S, EK0 (C), ε

)
.

Remark 2.11. (i) The previous concept encompasses the concept of exact

Henig’s proper efficiency by taking C = D\{0} and an arbitrary ε ≥ 0. Indeed,

we have that G(D\{0}) = G. Moreover, given K ∈ G, it is clear by Lemma

1.14(a) that WE(f, S,K) = E
(
f, S, EK0 (D\{0}), ε

)
for all ε ≥ 0, and by Remark

2.9(i), we have that

HeV(f, S,D) = HeV(f, S,D\{0}, ε) ∀ε ≥ 0.
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(ii) Suppose thatK ∈ G. We have thatK ∈ G(C) if and only if C∩(− coreK) = ∅
and, by Lemma 1.14(a) we know that EK0 (D) = coreK. Then K ∈ G(C) if and

only if EK0 (C) ∩ (−D) = ∅, or equivalently,

K ∈ G(C)⇔ EK0 (C) ∈ H.

Thus, the condition K ∈ G(C) implies that EK0 (C) is an appropiate set to deal

with approximate efficient solutions of problem VEP according to Remark 2.2(ii).

Moreover, condition K ∈ G(C) implies that vcl coneC∩(− coreK) = ∅, and since

D\{0} ⊂ coreK, it follows that

vcl coneC ∩ (−D\{0}) = ∅.

Therefore it is natural to require the condition C ∈ Ĥ in Definition 2.10 for

consistency. (iii) It follows by definition that

HeV(f, S, C, ε) =
⋃

K∈G(C)

E
(
f, S, EK0 (C), ε

)
(2.4)

⊂ E
(
f, S, C +D\{0}, ε

)
∀C ∈ Ĥ, ∀ε ≥ 0.

Definition 2.12. Let ε ≥ 0 and C ∈ Ĥ. A point x̄ ∈ S is a Benson (vectorial)

(C, ε)-proper efficient solution of problem VEP if

vcl cone
(
f(x̄, S) + C(ε)

)
∩ (−D) = {0}.

It is denoted by x̄ ∈ BeV(f, S, C, ε).

Remark 2.13. Notice that BeV(f, S, C, 0) = BeV(f, S,D) whenever coneC =

D. Indeed, it is enough to show that vcl cone(A + D\{0}) ⊃ vcl cone(A + D),

where A ⊂ Y is nonempty. First, it is clear that

cone(A+D) ⊂ vcl cone(A+D\{0}). (2.5)

Indeed, let y ∈ cone(A+D). Then there exist α ≥ 0, a ∈ A and d ∈ D such that

y = α(a + d). If α = 0 or d 6= 0, then it is obvious that y ∈ cone(A + D\{0}).
Otherwise, y = αa, where α > 0, and taking an arbitrary point d ∈ D\{0} it is
clear that

y +
1

n
d = α

(
a+

1

αn
d

)
∈ cone(A+D\{0}).
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Hence y ∈ vcl cone(A+D\{0}) and statement (2.5) holds.

Let us prove that vcl cone(A+D) ⊂ vcl cone(A+D\{0}). Consider an

arbitrary point y ∈ vcl cone(A+D). Then there exist v ∈ Y and a sequence

(λn) ⊂ R+ such that λn → 0 and y+λnv ∈ cone(A+D) for all n. We can assume

that λn > 0 for all n (otherwise y ∈ vcl cone(A+D\{0}) by (2.5)).

If there exists a subsequence (λnk) such that y + λnkv ∈ cone(A+D\{0}),
then y ∈ vcl cone(A+D\{0}) and the proof finishes. Otherwise, there exists

n0 ∈ N and sequences (αn)n≥n0 ⊂ R+\{0}, (an)n≥n0 ⊂ A such that

y + λnv = αnan ∀n ≥ n0.

Let d ∈ D\{0} be arbitrary. We have that

y + λn(v + d) = αn

(
an +

λn
αn
d

)
∈ cone(A+D\{0}) ∀n ≥ n0,

and so y ∈ vcl cone(A+D\{0}), which finishes the proof.

Let us give some equivalent formulations for Henig (C, ε)-proper efficient

solutions of problem VEP. This result is an algebraic version of [88, Theorem 3.3]

for equilibrium problems and it can be proved in a similar way.

Theorem 2.14. Let ε ≥ 0, C ∈ Ĥ and x̄ ∈ S. The following statements are

equivalent:

(a) x̄ ∈ HeV(f, S, C, ε).

(b) There exists K ∈ O(C) such that x̄ ∈ E
(
f, S, EK0 (C), ε

)
.

(c) There exists K ∈ O(C) such that

vcl cone
(
f(x̄, S) + C(ε)

)
∩ (− coreK) = ∅.

(d) There exists K ∈ O(C) such that

(
f(x̄, S) + C(ε)

)
∩ (− coreK) = ∅.

(e) ED(C) ∈ Ĥ and x̄ ∈ HeV(f, S, ED(C), ε).
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Remark 2.15. Consequently, for each C ∈ Ĥ, ε ≥ 0 such that HeV(f, S, C, ε) 6=
∅,

HeV(f, S, C, ε) = HeV(f, S, ED(C), ε).

Hence, in Definition 2.10 we can assume without loss of generality that C is an

improvement set with respect to D. Moreover, taking C = D\{0} and ε = 1

in Theorem 2.14, we characterize the exact Henig proper efficient solutions of

problem VEP by Remark 2.11(i).

As a corollary we obtain that every Henig (C, ε)-proper efficient solution

for problem VEP is also a Benson (C, ε)-proper efficient solution. This result

generalizes statement (2.3) to the approximate setting.

Corollary 2.16. Let ε ≥ 0 and C ∈ Ĥ. It follows that

HeV(f, S, C, ε) ⊂ BeV(f, S, C, ε).

Proof. Let x̄ ∈ HeV(f, S, C, ε). By Theorem 2.14(c) there exists K ∈ O(C) such

that

vcl cone
(
f(x̄, S) + C(ε)

)
∩ (− coreK) = ∅.

Since D\{0} ⊂ coreK, it follows that

vcl cone
(
f(x̄, S) + C(ε)

)
∩ (−D\{0}) = ∅,

and so x̄ ∈ BeV(f, S, C, ε).

The next result shows several properties of the set of Henig (C, ε)-proper

efficient solutions of problem VEP.

Theorem 2.17. Fix ε ≥ 0 and C ∈ Ĥ. The following properties hold:

(a) If vclC ∈ Ĥ, then G(vclC) = G(C) and HeV(f, S, vclC, ε) = HeV(f, S, C, ε).

(b) HeV(f, S, C ′, δ) ⊂ HeV(f, S, C, ε) for all C ′ ∈ Ĥ and δ ≥ 0 such that C(ε) ⊂
vclC ′(δ).

(c) If ED(C) is coradiant, then HeV(f, S, C, δ) ⊂ HeV(f, S, C, ε) for all 0 < δ ≤ ε.
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(d) HeV(f, S, C + C ′, ε) = HeV(f, S, vclC + C ′, ε) for all nonempty set C ′ ⊂ Y

such that vclC + C ′ ∈ Ĥ.

(e) If C is convex and coradiant, then HeV(f, S, C, ε) = HeV(f, S, C + C(0), ε).

(f ) If C ⊂ D\{0}, then HeV(f, S,D) ⊂ HeV(f, S, C, ε).

(g) If C ⊂ D ⊂ vclC(0), then HeV(f, S, C, 0) = HeV(f, S,D).

Proof. (a) Obviously, G(vclC) ⊂ G(C). For the converse inclusion, consider

K ∈ G(C). Hence C ∩ (− coreK) = ∅ and so

vclC ∩ (− coreK) = ∅.

Thus K ∈ G(vclC) and this proves that G(vclC) = G(C). On the other hand,

we know that EK0 (vclC) = EK0 (C) by Lemma 1.13(f). Therefore

E
(
f, S, EK0 (vclC), ε

)
= E

(
f, S, EK0 (C), ε

)
,

and so HeV(f, S, vclC, ε) = HeV(f, S, C, ε).

(b) It is easy to check that O(C ′) ⊂ O(C). Choose x̄ ∈ HeV(f, S, C ′, δ).

By Theorem 2.14(c) there exists K ∈ O(C) such that

vcl cone
(
f(x̄, S) + C ′(δ)

)
∩ (− coreK) = ∅,

and by [4, Proposition 5(i)],

cone vcl
(
f(x̄, S) + C ′(δ)

)
∩ (− coreK) = ∅.

Since A+ vclB ⊂ vcl(A+B) for every nonempty sets A,B ⊂ Y , it follows that

cone
(
f(x̄, S) + vclC ′(δ)

)
∩ (− coreK) = ∅.

We know that C(ε) ⊂ vclC ′(δ), then

(
f(x̄, S) + C(ε)

)
∩ (− coreK) = ∅,

and by Theorem 2.14(d) it follows that x̄ ∈ HeV(f, S, C, ε).
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(c) Let 0 < δ ≤ ε. Since ED(C) is coradiant, it follows that (ε/δ)ED(C) ⊂
ED(C) and so

C(ε) ⊂ ED(C)(ε) ⊂ ED(C)(δ).

Suppose that HeV(f, S, C, δ) 6= ∅ (otherwise the result is obvious). Hence

ED(C) ∈ Ĥ by Theorem 2.14(e), and applying part (b) with C ′ = ED(C) and

Remark 2.15 we obtain that

HeV(f, S, C, δ) = HeV(f, S, ED(C), δ) ⊂ HeV(f, S, C, ε).

(d) We have that O(C+C ′) = O(vclC+C ′). Indeed, given K ∈ O(C+C ′),

it follows that

C ′ ∩ (−C − coreK) = ∅.

By applying Lemma 1.13(f),

C ′ ∩ (− vclC − coreK) = ∅,

so that (vclC + C ′) ∩ (− coreK) = ∅ and it follows that K ∈ O(vclC + C ′).

Moreover, for every K ∈ O(C + C ′) we have that

EK0 (vclC + C ′) = EK0 (vclC) + C ′ = EK0 (C) + C ′ = EK0 (C + C ′).

Then it follows that E
(
f, S, EK0 (vclC + C ′), ε

)
= E

(
f, S, EK0 (C + C ′), ε

)
for all

K ∈ O(C+C ′), which implies that HeV(f, S, C+C ′, ε) = HeV(f, S, vclC+C ′, ε)

by Theorem 2.14(b).

(e) We have that C ⊂ C + vclC(0) ⊂ vcl
(
C + C(0)

)
and by [91, Lemma

3.1(v)], it follows that

C + C(0) ⊂ C ⊂ vcl
(
C + C(0)

)
. (2.6)

Since C ∈ Ĥ, it follows that C +C(0) ∈ Ĥ and G(C) = G
(
C +C(0)

)
. Moreover,

by Lemma 1.13(f) and (2.6), we know that

EK0
(
C + C(0)

)
= EK0 (C)

for all K ∈ G(C). Therefore

E
(
f, S, EK0 (C), ε

)
= E

(
f, S, EK0

(
C + C(0)

)
, ε
)
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for all K ∈ G(C), and so HeV(f, S, C, ε) = HeV(f, S, C + C(0), ε).

(f ) By Remark 2.11(i) and by applying part (b) with C ′ = D\{0} and

δ = 1, we obtain that

HeV(f, S,D) = HeV(f, S,D\{0}, 1) ⊂ HeV(f, S, C, ε).

(g) Applying part (f) with ε = 0, we have that

HeV(f, S,D) ⊂ HeV(f, S, C, 0).

Conversely, as (D\{0})(1) ⊂ vclC(0), by Remark 2.11(i) and part (b), it follows

that

HeV(f, S, C, 0) ⊂ HeV(f, S,D\{0}, 1) = HeV(f, S,D)

and the proof is complete.

Some properties established in [88, Theorem 3.6] are proved in Theorem

2.17 for Henig vectorial (C, ε)-proper efficient solutions of problem VEP. However,

in [88, Theorem 3.6(a)] one has that

C ∈ H, 0 /∈ clC =⇒ clC ∈ H

and this property is not true for the vector closure and C ∈ Ĥ. Consider Y =

R3, D = {0} × (−R+) × R+ and C = {(x, y, z) ∈ R3 : 0 < x, y = 1, 0 <

z ≤ x2}. Hence C ∈ Ĥ, (0, 0, 0) /∈ vclC, but vcl cone(vclC) ∩ (−D\{0}) =

{0} ×
(
R+\{0}

)
× {0}, so that vclC /∈ Ĥ. Therefore it is necessary to require

that vclC ∈ Ĥ in (a).

For the rest of this section, fix C ∈ Ĥ and ε ≥ 0. From statement (2.4) we

know that Henig (vectorial) (C, ε)-proper efficient solutions of problem VEP are

(EK0 (C), ε)-efficient solutions for some K ∈ G(C). Observe that the set EK0 (C)(ε)

is free-disposal with respect to K ∈ G(C) by Lemma 1.13(c) and Lemma 1.14(b).

Next, we provide sufficient and necessary conditions for Henig (vectorial)

(C, ε)-proper efficient solutions of problem VEP through linear scalarization

under a generalized convexity assumption by using Theorems 2.4 and 2.5. The

proofs of these results are omitted since they may be proved in a similar way to

their counterparts in vector optimization problems (see [88, Theorems 4.4, 4.5]).
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Theorem 2.18. For every µ ∈ D# ∩ C+ we have that

E
(
µ ◦ f, S, ετC(µ)

)
⊂ HeV(f, S, C, ε).

Theorem 2.19. Consider x̄ ∈ S. Assume that f(x̄, ·) is v-nearly

(C, ε)-subconvexlike on S, and that one of the following assumptions is satisfied:

(i) 0 ∈ f(x̄, S);

(ii) C(ε) is coradiant.

If x̄ ∈ HeV(f, S, C, ε), then C ∈ FD# and there exists µ ∈ D# ∩ C+ such that

x̄ ∈ E
(
µ ◦ f, S, ετC(µ)

)
.

The next corollary follows from Theorems 2.18, 2.19 and Corollary 2.16. It

provides us a characterization of Henig (vectorial) (C, ε)-proper efficient solutions

by linear scalarization under a generalized convexity assumption.

Corollary 2.20. It follows that⋃
µ∈D#∩C+

E
(
µ ◦ f, S, ετC(µ)

)
⊂ HeV(f, S, C, ε) ⊂ BeV(f, S, C, ε).

Moreover, for each x ∈ S suppose that f(x, ·) is v-nearly (C, ε)-subconvexlike on

S, and one of the following assumptions is satisfied

(i) 0 ∈ f(x, S);

(ii) C(ε) is coradiant.

Then, it follows that

HeV(f, S, C, ε) =
⋃

µ∈D#∩C+

E
(
µ ◦ f, S, ετC(µ)

)
.

By Remark 2.11(i) and by applying Corollary 2.20 with C = D\{0}, since
τD\{0}(µ) = 0 for all µ ∈ D#, we obtain that

HeV(f, S,D) =
⋃

µ∈D#

E(µ ◦ f, S)
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whenever f(x, ·) is v-nearly
(
D\{0}, 0

)
-subconvexlike on S for all x ∈ S,

i.e., whenever vcl cone
(
f(x, S) + D

)
is convex for all x ∈ S (see Remark

2.13). Notice that this characterization improves [79, Theorem 2.1(i)] since the

v-nearly
(
D\{0}, 0

)
-subconvexlike assumption is weaker than the D-convexlike

assumption (see Theorem 1.24).

Let us provide some properties of the set of Henig (vectorial) (C, ε)-proper

efficient solutions of problem VEP with respect to the coradiant hull and the cone

generated by C.

Proposition 2.21. Consider x̄ ∈ S. Suppose that f(x̄, ·) is v-nearly

(C, ε)-subconvexlike on S, and that one of the following assumptions is satisfied:

(i) 0 ∈ f(x̄, S);

(ii) C(ε) is coradiant.

It follows that

x̄ ∈ HeV(f, S, C, ε)⇐⇒ x̄ ∈ HeV(f, S, shwC, ε).

If additionally coC ∈ Ĥ, then

x̄ ∈ HeV(f, S, C, ε)⇐⇒ x̄ ∈ HeV(f, S, coC, ε).

Proof. Let us prove the first equivalence, since the second one can be obtained

in a similar way. Since cone(shwC) = coneC, it is clear that shwC ∈ Ĥ. If

x̄ ∈ HeV(f, S, shwC, ε), by Theorem 2.17(b) we have that x̄ ∈ HeV(f, S, C, ε).

For the converse implication, if x̄ ∈ HeV(f, S, C, ε), by Theorem 2.19 there

exists µ ∈ D# ∩ C+ such that x̄ ∈ E
(
µ ◦ f, S, ετC(µ)

)
. It is easy to check that

τC(µ) = τshwC(µ). Therefore µ ∈ (shwC)+ and by Theorem 2.18 we have that

x̄ ∈ HeV(f, S, shwC, ε), which finishes the proof.

2.4 Strict solutions

The concept of strict efficient solution was studied for vector optimization

problems in finite dimensional spaces by Smale [175, p. 220]. It was extended
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by Jiménez to the framework of normed spaces (see [113, Definition 3.2]) and an

approximate counterpart based on coradiant sets was introduced in [96]. In the

following, we introduce a version of this concept for vector equilibrium problems

by using free-disposal sets and, in Chapter 4, we will use it to obtain EVPs

for vector-valued bifunctions whose space is not endowed with any particular

topology.

Definition 2.22. A point x̄ ∈ S is a strict efficient solution of VEP, denoted

x̄ ∈ S(f, S,D) (and x̄ ∈ S(f,D) if S = X), if

f(x̄, x) /∈ −D ∀x ∈ S\{x̄}.

This concept reduces to the notion of strict solution of a scalar equilibrium

problem (see [24]) by considering Y = R and D = R+. Moreover, it is clear that

S(f, S,D) ⊂ E(f, S,D) whenever f is diagonal null, and this inclusion may be

strict. For example, consider X = Y = R, S = [−1, 1], D = R+ and f : [−1, 1]×
[−1, 1]→ R such that

f(x, y) =


max

{
−x, 1

2

}
, if x ≤ 0 and x 6= y,

0, if x = y or x ∈
(

1
2
, 3

4

)
,

−1, otherwise.

Then S(f, S,D) = [−1, 0] ( E(f, S,D) = [−1, 0] ∪
(

1
2
, 3

4

)
.

On the other hand, if we consider f(x, y) = g(y)−g(x), where g : S → Y is a

vector-valued mapping, we have that x̄ ∈ S is a strict solution of VEP if and only

if g(x̄) is a nondominated point of the image set g(S) (i.e., g(x) /∈ g(x̄)−D\{0}
for all x ∈ S) and

x ∈ S, g(x) = g(x̄)⇒ x = x̄,

so that x̄ is a strict solution of problem VOP with objective function g.

Conversely, if f is diagonal null and for each x ∈ X we consider the mapping

gx : X → Y , gx(z) = f(x, z) for all z ∈ X, then it is clear that x̄ is a strict

efficient solution of VEP if it is a strict efficient solution of VOP with objective

function gx̄. Then, from this point of view, the strict efficient solutions of a

vector equilibrium problem whose bifunction is diagonal null coincide with the

strict efficient solutions of a vector optimization problem.
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In the rest of the section, it is assumed that f : S × S → Y and E is a

fixed free-disposal set with respect to D. Now let us introduce a concept of

approximate strict solution for equilibrium problems based on free-disposal sets.

Definition 2.23. A point x̄ ∈ S is an E-strict efficient solution of VEP, denoted

x̄ ∈ S(f, S, E) (and x̄ ∈ S(f, E) if S = X), if

f(x̄, x) /∈ −E ∀x ∈ S\{x̄}.

Equivalently, x̄ ∈ S(f, S, E) if and only if [f(x̄, ·) ≤E 0] ⊂ {x̄}. Thus, if f

is diagonal null, then x̄ ∈ S(f, S, E) if and only if

[f(x̄, ·) ≤E 0] =

 {x̄} if 0 ∈ E,
∅ otherwise.

(2.7)

In particular, if E is an improvement set and f is diagonal null, then x̄ is an

E-strict efficient solution of VEP if it is an approximate nondominated solution

of VOP with objective function gx̄ (see [95]). Then, the E-strict efficient solutions

of a vector equilibrium problem whose bifunction is diagonal null and E is

an improvement set coincide with approximate efficient solutions of a vector

optimization problem.

Next we show some basic properties of the sets of E-strict efficient solutions

of problem VEP.

Proposition 2.24.(a) If E ⊂ D, then S(f, S,D) ⊂
⋂
ε≥0

S(f, S, εE). On the other

hand, if E is coradiant, then S(f, S, ε1E) ⊂ S(f, S, ε2E) for all ε1, ε2 ∈ R+,

0 < ε1 < ε2.

(b) Assume that coneE is vectorially closed by q ∈ E. Then it follows that⋂
ε≥0

S(f, S, εE) ⊂ S(f, S,D). If additionally we have that f(x, y) = 0 only if

x = y, then
⋂
ε>0

S(f, S, εE) ⊂ S(f, S,D).

(c) Assume that E is an improvement set and f is diagonal null and satisfies the

≤D-t.i. property. Then ⋃
x̄∈S(f,S,E)

[f(x̄, ·) ≤D 0]

 ⊂ S(f, S, E).
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Proof. (a) The first part is obvious. Let ε1, ε2 ∈ R+, 0 < ε1 < ε2. Since E is

coradiant, we have that (ε2/ε1)E ⊂ E. Then ε2E ⊂ ε1E and the result follows

immediately.

(b) Let us prove the first part, since the second one is similar. Take x̄ ∈⋂
ε≥0

S(f, S, εE). Then, for each ε ≥ 0, we have that

f(x̄, x) /∈ −εE ∀x ∈ S\{x̄}. (2.8)

By contradiction, suppose that there exists y ∈ S\{x̄} such that f(x̄, y) ∈ −D.

By Lemma 1.18(d) we know that

f(x̄, y) ∈ −
⋂
e∈E

vcle coneE ⊂ − vclq coneE = − coneE.

Hence, there exists α ≥ 0 such that f(x̄, y) ∈ −αE, which is a contradiction to

(2.8). Therefore, x̄ ∈ S(f, S,D) and the proof of part (b) is completed.

(c) Consider x̄ ∈ S(f, S, E) and y ∈ Y such that f(x̄, y) ≤D 0. By Lemma

1.18(g) and statement (2.7) we deduce that

[f(y, ·) ≤E 0] ⊂ [f(x̄, ·) ≤E 0] = ∅

and the result follows.

The next example illustrates Proposition 2.24.

Example 2.25. Let X = R, S = R+, Y = R2, D = R2
+ and f : R+ × R+ → R2

such that

f(x, y) = (1− ex−y, y2 − x2).

Observe that f(x, y) = (0, 0) if and only if x = y.

We have that f(x̄, x) ∈ −D if and only if x ≤ x̄. Thus, S(f, S,D) = {0}.
On the other hand, consider E = {(x, y) ∈ R2

+ : x + y ≥ 1}. We have

that f(x̄, x) ∈ −E if and only if x ≤ x̄ and x2 − x̄2 − ex̄−x ≤ −2. Define

g : R+ × R+ → R such that g(x, y) = x2 − y2 − ey−x. Since g(·, x̄) is a strictly

increasing real function, then g(0, x̄) = −x̄2 − ex̄ is the minimum value of g(·, x̄)

for each x̄ ∈ R+. Let x1 ∈ R+ be such that x2
1 + ex1 = 2 (x1 ≈ 0.537274). Since

g(0, ·) is a strictly decreasing real function, we obtain that S(f, S, E) = [0, x1).
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Moreover, for ε > 0 we have that f(x̄, x) ∈ −εE if and only if x ≤ x̄ and

x2 − x̄2 − ex̄−x ≤ −(1 + ε). Set xε > 0 such that x2
ε + exε = 1 + ε. Hence

S(f, S, εE) = [0, xε).

It is easy to check that 0 < xε1 < xε2 for 0 < ε1 < ε2 and that xε → 0

when ε → 0. Thus, we may verify that
⋂
ε>0 S(f, S, εE) = {0} = S(f, S,D). In

addition, we may also check this fact by using parts (a) and (b) of Proposition

2.24, since coneE is topologically closed (and so it is vectorially closed by q for

all q ∈ R2\{(0, 0)}) and E ⊂ D.





Chapter 3

Nonconvex separation functional in

linear spaces

3.1 Introduction

In Section 2.1 we cited many works of the literature dealing with vector

optimization problems where the image space is not endowed with any particular

topology. Except [163, 199], all those papers focus on convex problems, in

the sense that their results are obtained by assuming generalized convexity

assumptions on the data of the problem. In consequence, their main mathematical

tools are generalized convexity concepts, convex separation theorems, alternative

theorems and algebraic counterparts of some usual topological concepts, as the

vector closure, the algebraic interior and the relative algebraic interior.

In this way, several important concepts and results of vector optimization

have been extended to this algebraic setting. Let us underline several

algebraic reformulations of solution concepts and their characterization by linear

scalarization (see [4,5,106,107,157,202–204]), Lagrangian optimality conditions,

saddle point theorems and duality assertions (see [4–6, 106, 107, 204–206]), and

several relations and properties on cone convexity and cone quasiconvexity

concepts of vector-valued and set-valued mappings (see [4, 129,130,156,202]).

However, to the best of our knowledge, in the literature only a few

papers focus on nonconvex vector optimization problems whose image space

59
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has not any particular topology (see [120, 159, 163]). On the other hand,

recently La Torre, Popovici and Rocca (see [128–130]) suggested to deal with

the well-known nonconvex separation functional –in these papers it is called

Gerstewitz’s scalarization function and also smallest strictly monotonic function–

in the framework of a real linear space not necessarily endowed with a topology.

The main objective of this chapter is to study fundamental properties of

this functional when it takes values just in a real linear space, and to use them to

characterize via scalarization several kinds of weak solution of vector equilibrium

problems whose image space is not equipped with any particular topology. Some

preliminary results in this line have been obtained in [120, 128, 159, 163] for

set-valued mappings and vector optimization problems.

In Section 3.2, the main properties of the nonconvex separation functional

are extended from the topological framework to the linear setting via suitable

algebraic counterparts. The obtained results are compared with the previous

ones in the literature and the main improvements are shown.

Through this functional, in Section 3.3 we characterize by scalarization weak

efficient solutions of vector equilibrium problems. These characterizations are

stated via a general class of algebraic solid ordering sets, in such a way that the

obtained results generalize several others of the recent literature.

Finally, we apply the obtained characterizations to scalarize weak efficient

solutions of both vector variational inequalities and vector optimization problems.

Recall that both problems are particular cases of a vector equilibrium problem.

3.2 Algebraic formulation of the nonconvex

separation functional

Throughout this chapter, a nonempty set K ⊂ Y is said to be a cone if

αK ⊂ K for all α > 0. In other words, we consider that a cone that may not

contain the vertex 0.

Let q ∈ Y \{0} and ∅ 6= E ⊂ Y . The so-called nonconvex separation
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functional ϕqE : Y → R ∪ {±∞} is defined as follows:

ϕqE(y) :=

 +∞ if y /∈ Rq − E,
inf{t ∈ R : y ∈ tq − E} otherwise.

(3.1)

It was independently introduced in [73, 145, 152, 168] and it is called by

different names: Gerstewitz’s function, nonlinear scalarization function, smallest

strictly monotonic function [145], shortage function [146] and so on. For its main

properties, see [40,63,64,74,84,95,117,163,182] and the references therein.

In [120, 128, 159, 163] some preliminary properties of this functional were

proved in the setting of a real linear space. To be precise, it was proved

(see [128, Remark 2.3]) that ϕqE is finite whenever E is a vectorially closed and

algebraic solid proper convex cone and q ∈ coreE. Moreover, by assuming these

hypotheses, in [120, Proposition 4.9] the following dual reformulation was stated:

ϕqE(y) = sup{ξ(y) : ξ ∈ E+, ξ(q) = 1} ∀y ∈ Y.

On the other hand, the following properties were obtained in [163, Section 2]

by assuming that E is a convex cone containing 0 and q ∈ E\(−E): ϕqE is

subbaditive, positively homogeneous and E-nondecreasing and satisfies

[ϕqE = −∞] = ∅ ⇐⇒ q /∈ − vclE, (3.2)

ϕqE(y + rq) = ϕqE(y) + r ∀y ∈ Y, r ∈ R,

[ϕqE ≤ 0] = − vclq E, (3.3)

[ϕqE < 0] = (−∞, 0)q − E. (3.4)

Next, additional fundamental properties of the nonconvex separation

functional ϕqE are generalized to a real linear space via algebraic concepts. Let

us observe that E is an arbitrary nonempty set and q is an arbitrary direction,

so that we are not assuming any hypothesis on E and q.

Lemma 3.1. Let q ∈ Y \{0}, ∅ 6= E ⊂ Y and y ∈ Y .

(a) If y ∈ tq − vclq E for some t ∈ R, then ϕqE(y) ≤ t.

(b) Suppose that ϕqE(y) ∈ R. Then y ∈ ϕqE(y)q − vclq E.
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(c) ϕqE = ϕqvclqE
.

Proof. (a) Assume that y ∈ tq − vclq E for some t ∈ R. Then

∀λ > 0,∃λ′ ∈ [0, λ] s.t. (t+ λ′)q − y ∈ E.

Thus,

ϕqE(y) ≤ t+ λ′ ≤ t+ λ ∀λ > 0,

and we obtain the result by taking λ→ 0.

(b) Suppose that ϕqE(y) ∈ R. Then, for all λ > 0 there exists λ′ ∈ [0, λ)

such that y ∈ (ϕqE(y) + λ′)q −E, or equivalently, (ϕqE(y)q − y) + λ′q ∈ E. Hence

ϕqE(y)q − y ∈ vclq E, and the result follows.

(c) Since E ⊂ vclq E, we have that ϕqE(y) ≥ ϕqvclqE
(y) for all y ∈ Y . In

order to prove the reciprocal inequality we distinguish two cases, since in the case

of ϕqvclqE
(y) = +∞, there is nothing to prove.

If ϕqvclqE
(y) ∈ R, then by applying part (b) for the set vclq E and (1.23), we

have that

y ∈ ϕqvclqE
(y)q − vclq(vclq E) = ϕqvclqE

(y)q − vclq E,

and this implies by part (a) that ϕqE(y) ≤ ϕqvclqE
(y).

Otherwise, if ϕqvclqE
(y) = −∞, then for each t ∈ R there exists a real number

t′ < t such that y ∈ t′q − vclq E and, by part (a), ϕqE(y) ≤ t′. Taking t → −∞
we obtain ϕqE(y) = −∞ and the proof finishes.

Theorem 3.2. Consider q ∈ Y \{0} and ∅ 6= E ⊂ Y . We have the following

properties:

(a) domϕqE = Rq − E and [ϕqE = −∞] = ovcl+∞q (−E).

(b) ϕqE is proper if and only if ovcl+∞q (−E) = ∅. ϕqE is finite if and only if

ovcl+∞q (−E) = ∅ and Y = Rq − E.

(c) ϕqE(y + rq) = ϕqE(y) + r for all y ∈ Y and for all r ∈ R.

(d) [ϕqERr] = [ϕqER0] + rq for all R ∈ {≤, <,=,≥, >} and for all r ∈ R.

(e) [ϕqE ≤ 0] = (−∞, 0]q − vclq E.
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(f ) [ϕqE < 0] = (−∞, 0)q − vclq E.

(g) [ϕqE = 0] = (− vclq E)\((−∞, 0)q − vclq E).

(h) [ϕqE ≥ 0] = Y \((−∞, 0)q − vclq E).

Proof. (a) Let us prove [ϕqE = −∞] = ovcl+∞q (−E), since the first part is obvious.

Then, a point y ∈ [ϕqE = −∞] if and only if

∀t < 0,∃t′ ∈ (−∞, t) such that y ∈ t′q − E,

or equivalently,

∀s > 0, ∃s′ ∈ (s,+∞) such that y + s′q ∈ −E,

i.e., y ∈ ovcl+∞q (−E).

(b) This part is an obvious consequence of part (a).

(c) Fix y ∈ Y and r ∈ R. It is clear that y ∈ Rq − E if and only if

y + rq ∈ Rq − E, and so ϕqE(y) + r = +∞ if and only if ϕqE(y + rq) = +∞.

Otherwise,

ϕqE(y) + r = inf{t+ r : t ∈ R, y ∈ tq − E}

= inf{s ∈ R : y ∈ (s− r)q − E}

= ϕqE(y + rq)

and part (c) is proved.

(d) This part follows directly from part (c).

(e) By definition, y ∈ [ϕqE ≤ 0] if and only if ϕqE(y) ∈ [−∞, 0]. If ϕqE(y) ∈
(−∞, 0], by Lemma 3.1(b), we deduce that

y ∈ ϕqE(y)q − vclq E ⊂ (−∞, 0]q − vclq E.

On the other hand, it is obvious that

ovcl+∞q (−E) ⊂ (−∞, t]q − vclq E ∀ t < 0,

and then, by part (a) we see that y ∈ (−∞, 0]q − vclq E whenever ϕqE(y) = −∞.
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Conversely, if y ∈ (−∞, 0]q − vclq E, then ϕqvclqE
(y) ≤ 0 and by Lemma

3.1(c) it follows that ϕqE(y) ∈ [−∞, 0], and the proof of part (e) is complete.

(f ) The proof of this part is analogous to the proof of part (e).

(g) Take an arbitrary y ∈ [ϕqE = 0]. By Lemma 3.1(b), y ∈ 0q − vclq E =

− vclq E, and by part (f ) it is clear that y /∈ (−∞, 0)q − vclq E.

Reciprocally, consider an arbitrary y ∈ (− vclq E)\((−∞, 0)q − vclq E). By

part (f ) we obtain ϕqE(y) ≥ 0 and since y ∈ − vclq E, by Lemma 3.1(c) it is clear

that ϕqE(y) = ϕqvclqE
(y) ≤ 0. Thus, ϕqE(y) = 0.

(h) This part is a direct consequence of part (f ) and the proof finishes.

In order to apply parts (a) and (b), let us observe that Rq−E = Rq−vclq E.

Remark 3.3. By combining Theorem 3.2, Proposition 1.16(b) and Lemma

1.18(c) one obtains more tractable statements on the sublevel sets of the mapping

ϕqE whenever certain conditions are fulfilled. For example, if E is free-disposal

with respect to an algebraic solid convex cone K, then

[ϕqE < 0] = − coreE ∀q ∈ coreK,

[ϕqE ≤ 0] = − vclq E ∀q ∈ K.

In the following example we illustrate part (a) of Theorem 3.2.

Example 3.4. Let Y = R2, q = (1, 1) and

E = {(y1, y2) ∈ R2 : y1 = y2 ≤ 0} ∪ {(y1, y2) ∈ R2 : y1 ≥ 0, y2 = 0}.

It is easy to check that

ϕqE(y1, y2) =


+∞ if y1 > y2,

y2 if y1 < y2,

−∞ if y1 = y2.

Then by Theorem 3.2(a) we see that

Rq − E = {(y1, y2) ∈ R2 : y1 ≤ y2},

ovcl+∞q (−E) = {(y1, y2) ∈ R2 : y1 = y2}.
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The next example illustrates part (g) of Theorem 3.2. Observe that E is

free-disposal with respect to K = [0,+∞)q, but vclq E + (0,+∞)q is strictly

contained in vclq E.

Example 3.5. Consider Y = R, E = (−∞, 1), q = −1 and p = 1. We have that

vclq E = (−∞, 1] and vclpE = E.

Since (−∞, 0)q − vclq E = (−1,+∞) and (−∞, 0)p − vclpE = R, by

Theorem 3.2(g), we know that [ϕqE = 0] = {−1} and [ϕpE = 0] = ∅. These

results are easily checked since ϕqE(y) = −(1 + y) and ϕpE(y) = −∞ for all y ∈ R.

Remark 3.6. Lemma 3.1 and Theorem 3.2 state well-known properties of the

nonconvex separation functional ϕqE without assuming any assumption. As a

consequence, they generalize several recent results of the literature, where these

properties are obtained under certain hypotheses (see [60,63,64,117,128,163,176]).

Let us show some examples.

(a) In [163, Lemma 2.6] (see also (3.2)) it was proved that

[ϕqK = −∞] 6= ∅ ⇐⇒ q ∈ − vclK (3.5)

whenever K is a convex cone containing 0 and q ∈ K\(−K). This result is a

particular case of Proposition 1.20(a) and Theorem 3.2(a). Indeed, by Theorem

3.2(a) with E = K we see that [ϕqK = −∞] 6= ∅ if and only if ovcl+∞q (−K) 6= ∅,
and by Proposition 1.20(a) and statements (1.24) and (1.25) we obtain that

ovcl+∞q (−K) 6= ∅ ⇐⇒ q ∈ − vclK.

Let us observe that the convexity of the cone K is not needed.

On the other hand, if K is an algebraic solid vectorially closed convex cone

and q ∈ coreK, then it was stated in [128, Lemma 2.2] that [ϕqK = −∞] = ∅
whenever K 6= Y . This result is a particular case of part (a) of Theorem 3.2.

Indeed, reasoning by contradiction, if [ϕqK = −∞] 6= ∅ then by (3.5) we obtain

that q ∈ −K, since K is vectorially closed. Then 0 = q−q ∈ coreK+K = coreK

by Lemma 1.13(c), and so K = Y since K is a cone, which is a contradiction.

(b) It is not hard to check that for each q ∈ Y and K ⊂ Y we have that

(0,+∞)q +K = (0,+∞)q + vclqK.
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Moreover, if K is a convex cone and q ∈ K, then

[0,+∞)q + vclqK = vclqK.

Thus, Lemma 2.9 and Lemma 2.10 of [163] are particular cases of Theorem 3.2

(see also (3.3) and (3.4)).

(c) Consider Y = R2, q = (1, 1) and

E = {(y1, y2) ∈ R2 : y1 ∈ Q ∩ (0,+∞), y2 = y1}.

It is obvious that

vclq E = {(y1, y2) ∈ R2 : y1 ≥ 0, y2 = y1},

[0,+∞)q + vclq E = vclq E,

(0,+∞)q + vclq E = vclq E\{(0, 0)}

and then, by Lemma 3.1 and Theorem 3.2 we obtain that

ϕqE(y1, y2) = ϕqvclqE
(y1, y2) =

 +∞ if y1 6= y2

y1 otherwise,

[ϕqE ≤ 0] = {(y1, y2) ∈ R2 : y1 ≤ 0, y2 = y1}, (3.6)

[ϕqE < 0] = {(y1, y2) ∈ R2 : y1 < 0, y2 = y1},

[ϕqE = 0] = {(0, 0)}. (3.7)

Formulas (3.6) and (3.7) cannot be obtained through [63, Proposition 4.1], and

parts (ii) and (iii) of [60, Proposition 2.1], parts (a) and (c) of [63, Corollary 4.1],

parts (b) and (c) of [64, Proposition 3.2], [64, Corollaries 3.3(a) and 3.4(a)], [176,

Theorem 3.3] and statements (5.6) and (5.12) of [117] cannot be applied. Let

us observe that, in this particular example, vclq E coincides with the topological

closure of E, and so the conclusion of [63, Corollary 4.1(a)] is satisfied.

In the next two results, we characterize when ϕqE is C-nondecreasing and

C-increasing.

Theorem 3.7. Let C and E be nonempty subsets of Y and q ∈ Y \{0}. The

following statements are equivalent:
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(a) ϕqE is C-nondecreasing.

(b) vclq E + C ⊂ [0,+∞)q + vclq E.

(c) E + C ⊂ [0,+∞)q + vclq E.

Proof. First we prove (a) ⇒ (b). Suppose that ϕqE is C-nondecreasing and fix

e ∈ vclq E and c ∈ C. Since −c = −c − e − (−e) ∈ −C, by Lemma 3.1(c) we

have that

ϕqE(−c− e) ≤ ϕqE(−e) = ϕqvclqE
(−e) ≤ 0.

Hence, by Theorem 3.2(e) we see that

−c− e ∈ [ϕqE ≤ 0] = (−∞, 0]q − vclq E

and the implication is proved.

It is obvious that (b) ⇒ (c). Then let us prove (c) ⇒ (a). Suppose that

E +C ⊂ [0,+∞)q+ vclq E and take y1, y2 ∈ Y , y1 6= y2, such that y1− y2 ∈ −C.

It is clear that ϕqE(y1) ≤ ϕqE(y2) whenever ϕqE(y2) = +∞. Thus suppose that

ϕqE(y2) < +∞ and consider an arbitrary t ∈ R such that y2 ∈ tq − E. Then,

y1 ∈ y2 − C ⊂ tq − E − C ⊂ tq + (−∞, 0]q − vclq E

and by Lemma 3.1(c) it follows that

ϕqE(y1) = ϕqvclqE
(y1) ≤ t.

Then ϕqE(y1) ≤ ϕqE(y2) and the proof finishes.

Let us observe that if the nonconvex separation functional ϕqE is

C-nondecreasing, then

[ϕqE = −∞]− C\{0} ⊂ [ϕqE = −∞],

[ϕqE = +∞] + C\{0} ⊂ [ϕqE = +∞].

Thus, if ϕqE is not finite, then it cannot be C-increasing.

Theorem 3.8. Let C and E be nonempty subsets of Y and q ∈ Y \{0}. Suppose
that ϕqE is finite. Then the following statements are equivalent:
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(a) ϕqE is C-increasing.

(b) vclq E + C\{0} ⊂ (0,+∞)q + vclq E.

Proof. Let us only prove (b) ⇒ (a), since the reciprocal implication follows the

same proof as in Theorem 3.7. Assume that statement (b) is fulfilled and consider

y1, y2 ∈ Y such that y1 ∈ y2−C\{0}. We have that ϕqE(y2) ∈ R since ϕqE is finite.

Then we can apply Lemma 3.1(b) and we deduce that y2 ∈ ϕqE(y2)q−vclq E, and

so

y1 ∈ ϕqE(y2)q − vclq E − C\{0} ⊂ ϕqE(y2)q − (0,+∞)q − vclq E.

Hence, by Lemma 3.1(c) we obtain

ϕqE(y1) = ϕqvclqE
(y1) < ϕqE(y2)

and the proof is completed.

By Proposition 1.16(b) and Theorems 3.7 and 3.8, if E is free-disposal with

respect to an algebraic solid convex cone K, q ∈ coreK and ϕqE > −∞, then we

have that ϕqE is nondecreasing w.r.t. ≤K , and it is also increasing w.r.t. <K .

Remark 3.9. The previous theorems generalize some similar results in the

literature obtained in the topological setting. Let us show some examples.

(a) It is obvious that statement (c) of Theorem 3.7 is fulfilled whenever E

is a convex cone and C = E. Then the sufficient condition stated in [163, Lemma

2.11] to guaranty that ϕqE is E-nondecreasing is a particular case of Theorem 3.7.

(b) In [117, Theorem 5.2.3(d)] (see also [117, Remark 5.2.2]), under the

assumptions E + [0,∞)q = E and E topologically closed, it is obtained that

ϕqE is C-nondecreasing if and only if E + C ⊂ E. Then, this last condition is

equivalent to statement (c) of Theorem 3.7. Indeed, as E is topologically closed

we have that E = vclq E. Thus, if E + C ⊂ E, we have that

E + C ⊂ E ⊂ [0,+∞)q + vclq E.

Reciprocally, if statement (c) of Theorem 3.7 is true, then

E + C ⊂ [0,+∞)q + vclq E = [0,+∞)q + E = E.
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As a consequence, it is clear that Theorem 3.7 improves [117, Theorem 5.2.3(d)],

since Theorem 3.7 does not assume any hypothesis. The same conclusion is

derived by comparing Theorem 3.7 with part 1 of [176, Theorem 3.8], where

stronger hypotheses than [117, Theorem 5.2.3(d)] are assumed.

(c) In [117, Theorem 5.2.6(g)] (see also [117, Remark 5.2.2]), by assuming

that E is closed, solid and such that E+(0,+∞)q = intE, it is proved that ϕqE is

C-increasing if and only if E+C\{0} ⊂ intE, i.e., if and only if vclq E+C\{0} ⊂
(0,+∞)q+ vclq E, that coincides with the equivalent condition stated in part (b)

of Theorem 3.8.

Thus, Theorem 3.8 improves [117, Theorem 5.2.6(g)], since it does not

assume any hypothesis. The same conclusion is derived by comparing Theorem

3.8 with part 4 of [176, Theorem 3.8] (in this result it is also imposed that zero

belongs to the topological boundary of the set E).

(d) The characterizations proved in Theorem 3.7 and Theorem 3.8 extend

parts (a) and (b) of [64, Lemma 3.7]. For it, consider E = B − A and C = B,

C = intB, respectively. On the other hand, let us observe that [64, Lemma

3.7(b)] is not always true if the nonconvex separation functional is not finite. For

example, if Y = R2, A = {(0, 0)}, q = (−1, 0) and

B = {(y1, y2) ∈ R2 : y1 ≥ 0},

then it is clear that ϕqB(0, 0) = ϕqB(−1, 0) = −∞ and (−1, 0) ∈ (0, 0)− intB.

Example 3.10. Let Y = R2, q = (1, 1), C1 = R2
+ and

E = C2 = {(y1, y2) ∈ Y : y1 > 0, y2 > 0}.

It is clear that vclq E = C1. Then,

E + C1 = C2,

E + C2 = C2,

[0,+∞)q + vclq E = C1,

vclq E + C1\{0} = C1\{0},

vclq E + C2\{0} = C2,

(0,+∞)q + vclq E = C2,
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and by Theorem 3.7 and Theorem 3.8 we deduce that ϕqE is C1-nondecreasing

and C2-increasing. However, it is not C1-increasing. Observe that E +C1\{0} ⊂
(0,+∞)q + vclq E, and so this condition is not sufficient to guaranty that ϕqE is

C1-increasing.

In the last result of this section, Theorem 3.13, we characterize when ϕqE is

convex or positively homogeneous. For this aim, the following two lemmas are

needed. The first one is an algebraic reformulation of some properties considered

in the proof of [84, Theorem 2.3.1(a)]. The second one shows that the (possibly

non proper) functional ϕqE is convex (resp. positively homogeneous) if and only

if epiϕqE is convex (resp. a cone).

Lemma 3.11. Let E ⊂ Y be a nonempty set, q ∈ Y \{0} be a direction such

that

vclq E + (0,+∞)q ⊂ vclq E

and the linear functional T : Y × R → Y defined by T (y, t) = tq − y for all

(y, t) ∈ Y × R. Then T−1(vclq E) = epiϕqE and vclq E = T (epiϕqE).

Proof. Clearly, T is surjective and

T−1(vclq E) = {(y, t) ∈ Y × R : y ∈ tq − vclq E}. (3.8)

Let us prove that T−1(vclq E) = epiϕqE. Indeed, if (y, t) ∈ T−1(vclq E), then by

(3.8) and Lemma 3.1(a) we have that ϕqE(y) ≤ t and (y, t) ∈ epiϕqE.

Reciprocally, take an arbitrary (y, t) ∈ epiϕqE. If ϕqE(y) ∈ R, then y ∈
ϕqE(y)q − vclq E by Lemma 3.1(b), and so

y ∈ tq − vclq E −
(
t− ϕqE(y)

)
q ⊂ tq − vclq E.

Analogously, if ϕqE(y) = −∞, then there exists t′ ∈ (−∞, t] such that y ∈ t′q −
vclq E. Hence, y ∈ tq − vclq E − (t − t′)q ⊂ tq − vclq E, and in both cases, by

(3.8), we deduce that (y, t) ∈ T−1(vclq E).

Thus, we have that epiϕqE = T−1(vclq E), and since T is surjective, we

conclude that T (epiϕqE) = vclq E, and the proof finishes.
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Let us observe that

E + (0,+∞)q ⊂ vclq E ⇐⇒ vclq E + (0,+∞)q ⊂ vclq E (3.9)

⇐⇒ vclq E + [0,+∞)q = vclq E (3.10)

⇐⇒ [ϕqE ≤ 0] = − vclq E. (3.11)

Lemma 3.12. Let E ⊂ Y be a nonempty set and q ∈ Y \{0}. The following

statements are true:

(a) ϕqE is positively homogeneous if and only if epiϕqE is a cone.

(b) ϕqE is convex if and only if epiϕqE is convex.

Proof. Both necessary conditions are well known for an arbitrary proper

functional ϕ : Y → R ∪ {+∞}, and they are easy to check in a similar way

for any (possibly no proper) functional ϕ : Y → R ∪ {±∞}, ϕ 6≡ +∞. Then we

prove the sufficient condition of part (b), since the proof of the sufficient condition

of part (a) is similar.

Consider y1, y2 ∈ Y and α ∈ (0, 1). The inequality

ϕqE(αy1 + (1− α)y2) ≤ αϕqE(y1) + (1− α)ϕqE(y2) (3.12)

is obvious if y1 /∈ domϕqE or y2 /∈ domϕqE due to the conventions −∞ +∞ =

+∞ − ∞ = +∞. Then suppose that y1, y2 ∈ domϕqE. If ϕqE(y1) = −∞ or

ϕqE(y2) = −∞, then ϕqE(αy1 + (1− α)y2) = −∞ and statement (3.12) is fulfilled.

Indeed, assume that ϕqE(y1) = −∞ (the reasoning in the case ϕqE(y2) = −∞ is

equivalent). Then (y1, t) ∈ epiϕqE for all t ∈ R, and since y2 ∈ domϕqE, there

exists s ∈ R such that (y2, s) ∈ epiϕqE. As epiϕqE is convex, we deduce that

(αy1 + (1− α)y2, αt+ (1− α)s) ∈ epiϕqE for all t ∈ R, i.e.,

ϕqE(αy1 + (1− α)y2) ≤ αt+ (1− α)s ∀t ∈ R,

and so we have ϕqE(αy1 + (1− α)y2) = −∞.

Finally, if ϕqE(y1) ∈ R and ϕqE(y2) ∈ R, then

(y1, ϕ
q
E(y1)), (y2, ϕ

q
E(y2)) ∈ epiϕqE

and (3.12) holds since epiϕqE is convex, which finishes the proof.
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Observe from Lemma 3.12(b) that the set [ϕqE = −∞] is convex whenever

epiϕqE is convex.

Theorem 3.13. Let E ⊂ Y be a nonempty set and consider q ∈ Y \{0}. Then,

(a) If vclq E is a cone, then ϕqE is positively homogeneous.

(b) If vclq E is convex, then ϕqE is convex.

If additionally we have that

vclq E + (0,+∞)q ⊂ vclq E, (3.13)

then the following characterizations are true:

(c) ϕqE is positively homogeneous if and only if vclq E is a cone.

(d) ϕqE is convex if and only if vclq E is convex.

Proof. (a) Let y ∈ Y and α > 0. If y ∈ domϕqE and t ∈ R satisfies y ∈ tq−vclq E,

then αy ∈ αtq − vclq E, since vclq E is a cone, and by Lemma 3.1(a) we see that

ϕqE(αy) ≤ αt. Then,

ϕqE(αy) ≤ αϕqE(y).

Obviously this inequality is also true whenever y /∈ domϕqE, and by applying it

to (1/α) and αy instead of α and y we obtain

ϕqE(y) = ϕqE((1/α)(αy)) ≤ (1/α)ϕqE(αy)

and the proof of part (a) finishes.

(b) Observe by (1.26), Lemma 3.1(c) and Theorem 3.2(a) that for each

α ∈ (0, 1),

αy1 + (1− α)y2 ∈ [ϕqE = −∞] ∀ y1 ∈ [ϕqE = −∞], ∀ y2 ∈ domϕqE. (3.14)

Thus, the proof of part (b) is complete if inequality (3.12) is stated for y1, y2 ∈ Y
such that ϕqE(y1) ∈ R and ϕqE(y2) ∈ R. Let us check this case. By Lemma 3.1(b)

we have that yi ∈ ϕqE(yi)q− vclq E, i = 1, 2, and since vclq E is convex we obtain

αy1 + (1−α)y2 ∈ (αϕqE(y1) + (1−α)ϕqE(y2))q− vclq E. Hence, by Lemma 3.1(a)
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we deduce that ϕqE(αy1 + (1−α)y2) ≤ αϕqE(y1) + (1−α)ϕqE(y2) and the proof of

part (b) is complete.

Finally, by Lemma 3.11 it is clear that vclq E is convex (resp. a cone) if and

only if epiϕqE is convex (resp. a cone). Then parts (c) and (d) follow by applying

Lemma 3.12.

Notice that hypothesis (3.13) has different equivalent formulations (see

(3.9)-(3.11)). The necessary conditions of parts (c) and (d) of Theorem 3.13

are not true without this hypothesis, as is shown in the following example.

Example 3.14. Let Y = R, E = [0, 1] ∪ [2,+∞) and q = 1. For each y ∈ Y we

have that

{t ∈ R : y ∈ tq − E} = [y, y + 1] ∪ [y + 2,+∞)

and so ϕqE(y) = y for all y ∈ R. Therefore, ϕqE is positively homogeneous and

convex, but vclq E is neither a cone nor a convex set. Notice that hypothesis

(3.13) is not fulfilled.

If E is convex (resp. a cone), then it is easy to prove that vclq E is also

convex (resp. a cone). Thus, if E is a convex cone, then assumption (3.13) is

fulfilled whenever q ∈ E and [163, Lemma 2.8] is a particular case of the sufficient

conditions stated in Theorem 3.13.

Notice that if E is a topologically closed set, then condition (3.13) reduces to

E+[0,+∞)q = E, since vclq E = E. Thus, Theorem 3.13 extends [117, Theorem

5.2.3(a)] to a not necessarily topologically closed set E. Analogously, Theorem

3.13 generalizes [176, Theorems 3.5 and 3.7], where E is (topologically) closed

and solid, zero belongs to the topological boundary of the set E and a stronger

condition than (3.13) is required, and also [64, Corollary 3.4(b)], where only the

sufficient condition is stated under the following assumption: clE + (0,+∞)q ⊂
E. Notice that this assumption implies that clE = vclq E and so it is stronger

than (3.13).

Moreover, observe that [176, Theorem 3.7] is not correct, since the convexity

of ϕqE does not imply that E is a cone. Indeed, it is easy to check that the data
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Y := R2, q := (1, 1) and

E := {(y1, y2) ∈ R2 : y1 ≥ −1, y2 ≥ −1, y1 + y2 ≥ 0}

satisfy the assumptions of [176, Theorem 3.7], E is not a cone and

ϕqE(y1, y2) = max

{
y1 − 1, y2 − 1,

y1 + y2

2

}
∀(y1, y2) ∈ R2,

which is convex.

Let us show an example to illustrate Theorem 3.2, Theorem 3.7 and

Theorem 3.8.

Example 3.15. Consider Y = R2, q = (1, 1), p = (0, 1) and E = E1 ∪E2, where

E1 = {(y1, y2) ∈ R2 : y1 − 1 < y2 < y1 + 1} and E2 = {(y1, y2) ∈ R2 : −1− y1 <

y2 < 1− y1}. It is easy to obtain that vclq E2 = {(y1, y2) ∈ R2 : −1− y1 ≤ y2 <

1− y1}, vclq E = E1 ∪ vclq E2 and

ϕqE(y1, y2) =


y1 + y2 − 1

2
, if (y1, y2) /∈ E1,

−∞, otherwise.

By applying Theorem 3.2 it follows that:

domϕqE = Rq − E = R2,

[ϕqE = −∞] = ovcl+∞q (−E) = E1,

[ϕqE ≤ 0] = (−∞, 0]q − vclq E = E1 ∪ {(y1, y2) ∈ R2 : y2 ≤ 1− y1},

[ϕqE < 0] = (−∞, 0)q − vclq E = E1 ∪ {(y1, y2) ∈ R2 : y2 < 1− y1},

[ϕqE = 0] = (− vclq E)\((−∞, 0)q − vclq E)

= {(y1, y2) ∈ R2 : y2 = 1− y1, y1 ∈ (−∞, 0] ∪ [1,+∞)}.

Moreover, observe that given an arbitrary vector d ∈ R2 we have

E + d ⊂ [0,+∞)q + vclq E ⇐⇒ d ∈ [0,+∞)q.

Hence, by applying Theorem 3.7 we deduce that ϕqE is C-nondecreasing if and

only if C ⊂ [0,+∞)q.
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On the other hand, it is not hard to check that ϕpE(y1, y2) = −|y1|+ y2 − 1

for all (y1, y2) ∈ R2. Then, by Theorem 3.2 it follows that

(0,+∞)p+ vclpE = −[ϕpE < 0] = {(y1, y2) ∈ R2 : −|y1| − 1 < y2}

and by Theorem 3.8 we obtain that ϕpE is C-increasing if and only if

vclpE + d ⊂ {(y1, y2) ∈ R2 : −|y1| − 1 < y2} ∀d ∈ C\{(0, 0)},

i.e., if and only if |d1| < d2 for all (d1, d2) ∈ C\{(0, 0)}.

3.3 Characterization by scalarization of weak

efficient solutions

For this section, we will consider an algebraic solid set E ⊂ Y such that

0 /∈ coreE, and we will characterize the E-weak efficient solutions of problem

VEP (see Definition 2.3) by means of the just studied algebraic formulation of

the nonconvex separation functional.

Theorem 3.16. It follows that

WE(f, S, E) = E(ϕqE ◦ f, S) ∀q ∈ HE.

Proof. Fix q ∈ HE and x̄ ∈ S. Then x̄ ∈WE(f, S, E) if and only if

f(x̄, S) ∩ (− coreE) = ∅. (3.15)

By the definition of the set HE and Theorem 3.2(h) it follows that (3.15) is

equivalent to ϕqE(f(x̄, x)) ≥ 0 for all x ∈ S, i.e., x̄ ∈ E(ϕqE ◦ f, S), and the proof

is complete.

We recall that weak E-optimality encompasses the so-called approximate

weak efficient solutions of problem VEP with E = εq+K, where q ∈ coreK and

ε ≥ 0 (see [9, 22]). Next we characterize them.

Corollary 3.17. Suppose that K is a proper algebraic solid convex cone. Then,

we have that

WE(f, S, εq +K) = E(ϕqK ◦ f, S, ε) ∀q ∈ coreK, ∀ε ≥ 0.
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Proof. Let us consider q ∈ coreK, ε ≥ 0 and define E := K and the mapping

fεq := f +εq, i.e., fεq(x, z) := f(x, z)+εq for all x, z ∈ S. By Remark 1.17 we see

that q ∈ HE and then, by applying Theorem 3.16 we deduce that WE(fεq, S, E) =

E(ϕqE ◦ fεq, S).

It is obvious that WE(fεq, S, E) = WE(f, S, εq+K). Moreover, by Theorem

3.2(c) it follows that

(ϕqE ◦ fεq)(x, z) = ϕqE(f(x, z) + εq) = (ϕqE ◦ f)(x, z) + ε ∀x, z ∈ S,

and then E(ϕqE ◦ fεq, S) = E(ϕqK ◦ f, S, ε), which finishes the proof.

Corrollary 3.17 extends [165, Theorem 3.1] from the topological setting to

the algebraic setting. Moreover, let us observe that condition f(x, x) = 0 for all

x ∈ S (i.e., f is diagonal null in S) is not needed.

When E is a convex cone, we have the following corollary.

Corollary 3.18. Suppose that K is a proper algebraic solid convex cone. Then,

the following statements are equivalent:

(a) x̄ ∈WE(f, S,K).

(b) x̄ ∈ E(ϕqK ◦ f, S) for all q ∈ coreK.

(c) There exists a function ϕ : Y → R positively homogeneous, subadditive and

coreK-increasing such that x̄ ∈ E(ϕ ◦ f, S).

Proof. By applying Corollary 3.17 with ε = 0 we deduce that part (a) implies

part (b).

Next, let us consider an arbitrary q ∈ coreK. It is easy to check that

vclqK is a convex cone. Then, by Theorem 3.13 we have that ϕqK is positively

homogeneous and subadditive.

On the other hand, it is obvious that Rq−K = Y . Moreover, as coreK 6= ∅,
by [4, Propositions 3(iv) and 5(i)] we see that vclK is a convex cone, and by

Lemma 1.13(d) and (e) we deduce that

vclK + coreK = coreK.
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Therefore, q /∈ − vclK (otherwise, 0 = −q+ q ∈ vclK + coreK = coreK, that is

a contradiction since K is proper) and by Remark 3.6(a) and Theorem 3.2(b) we

deduce that ϕqK is finite. Analogously, by applying Proposition 1.16(b) to E = K

we see that

vclqK + coreK = (0,+∞)q + vclqK ∀q ∈ coreK,

and by Theorem 3.8 we have that ϕqK is coreK-increasing for all q ∈ coreK.

Therefore, since ϕqK is finite, positively homogeneous, subadditive and

coreK-increasing for all q ∈ coreK, then we deduce part (c) from part (b) by

taking ϕ := ϕqK .

Next we prove that part (c) implies part (a), which completes the proof.

Indeed, assume that x̄ ∈ E(ϕ◦f, S), where ϕ : Y → R is positively homogeneous,

subadditive and coreK-increasing, and reasoning by contradiction suppose that

there exists x ∈ S such that f(x̄, x) ∈ − coreK. Then,

ϕ(f(x̄, x)) < ϕ(0) = 0,

which is a contradiction since x̄ ∈ E(ϕ ◦ f, S), and the proof finishes.

Corollary 3.18 encompasses [81, Theorem 3.1] by assuming that Y is a

real locally convex Hausdorff topological linear space and K is the ordering

cone. Indeed, by Lemma 1.13(a) we see that intK = coreK whenever K is

topological solid, and so [81, Theorem 3.1] is a particular case of Corollary 3.18.

Let us observe that the continuity of functional ϕ in [81, Theorem 3.1] cannot be

obtained in the algebraic framework. Moreover, the pointedness assumption on

the ordering cone (i.e., condition K ∩ (−K) = ∅) is not needed. In this sense,

Corollary 3.18 is more general than [81, Theorem 3.1] in the topological setting

too. For example, by considering Y = R2 and the (not pointed) ordering cone

K = {(y1, y2) ∈ R2 : y1 ≥ 0}, it is clear that [81, Theorem 3.1] cannot be applied.

However, the assumptions of Corollary 3.18 are fulfilled.

By Theorem 3.16 we can obtain scalarization results for those problems

that can be reformulated as an equilibrium problem. Let us show this fact with

problems VVIP and VOP (see (1.18) and (1.16)).
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First, we characterize the solutions of an extended formulation of WVVIP in

linear spaces, where the ordering set E is free-disposal with respect to a proper

algebraic solid convex cone K. To be precise, the problem consists in finding

x̄ ∈ S such that

〈T (x̄), x− x̄〉 /∈ − coreE ∀x ∈ S, (3.16)

where T : S → L(X, Y ). We denote the set of all solutions of (3.16) by

WV(T, S,E).

By applying Theorem 3.16 we characterize the solutions of this generalized

vector variational inequality problem via solutions of a scalar equilibrium

problem.

Corollary 3.19. Let E be free-disposal with respect to a proper algebraic solid

convex cone K. For every q ∈ coreK, it follows that

x̄ ∈WV(T, S,E)⇔ ϕqE
(
〈T (x̄), x− x̄〉

)
≥ 0 ∀x ∈ S.

Proof. It is easy to check that WV(T, S,E) = WE(f, S, E), where f : S × S →
Y , f(x1, x2) = 〈T (x1), x2 − x1〉 for all x1, x2 ∈ S. Then the result is a direct

consequence of Proposition 1.16(b) and Theorem 3.16.

Next, we will deal with problem VOP (see page 15), where a vector-valued

mapping g : S → Y is minimized with respect to the preference relation ≤D
defined in Y through a proper algebraic solid convex cone D ⊂ Y . We will

characterize the approximate weak efficient solutions of these problems given by

the well-known concept of ε-efficient solution introduced by Kutateladze [127].

To be precise, consider q ∈ coreD and ε ≥ 0. A point x̄ ∈ S is said to be a weak

εq-efficient solution of the vector optimization problem VOP

MinD{g(x) : x ∈ S},

denoted by x̄ ∈ WO(g, S,D, εq), if there is not a point x ∈ S such that

g(x) ∈ g(x̄) − εq − coreD. Next, these approximate solutions are characterized

by suboptimal solutions of the scalar optimization problem OP

Min{(ϕqD ◦ g)(x) : x ∈ S}.
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Then the following sets are considered:

ε-argmin(ϕqD ◦ g, S) := {x̄ ∈ S : (ϕqD ◦ g)(x̄)− ε ≤ (ϕqD ◦ g)(x) ∀x ∈ S}.

Moreover, for each x ∈ S, we denote the mapping gx : S → Y , gx(z) := g(z)−g(x)

for all z ∈ S.

Corollary 3.20. Suppose that D is a proper algebraic solid convex cone. Then,

for each q ∈ coreD and ε ≥ 0 we have that

x̄ ∈WO(g, S,D, εq) ⇐⇒ x̄ ∈ ε-argmin(ϕqD ◦ gx̄, S), (3.17)

WO(g, S,D, εq) =
⋃
x∈S

ε-argmin(ϕqD ◦ gx, S). (3.18)

Proof. Let f : S × S → Y be the mapping f(x, z) := gx(z) for all x, z ∈ S. Then
statement (3.17) follows by applying Corollary 3.17, since

WO(g, S,D, εq) = WE(f, S, εq +D)

and

x̄ ∈ E(ϕqD ◦ f, S, ε) ⇐⇒ x̄ ∈ ε-argmin(ϕqD ◦ gx̄, S),

since ϕqD(0) = 0. In order to state (3.18), we need to prove the inclusion

ε-argmin(ϕqD ◦ gx, S) ⊂WO(g, S,D, εq) ∀x ∈ S.

Let us prove the following slightly more general relation:

ε-argmin(ϕqD ◦ (g − y), S) ⊂WO(g, S,D, εq) ∀y ∈ Y,

where g − y : S → Y , (g − y)(x) = g(x) − y for all x ∈ S. Indeed, let z ∈
ε-argmin(ϕqD ◦ (g − y), S) and suppose that z /∈ WO(g, S,D, εq). Then there

exists z′ ∈ S such that g(z′) ∈ g(z)− εq − coreD, or equivalently,

g(z′)− y ∈ g(z)− y − εq − coreD. (3.19)

As ϕqD is coreD-increasing (see the proof of Corollary 3.18), from (3.19) and

Theorem 3.2(c) we obtain

ϕqD(g(z′)− y) < ϕqD(g(z)− y − εq) = ϕqD(g(z)− y)− ε,

which is a contradiction, since z ∈ ε-argmin(ϕqD ◦ (g − y), S), and the proof

finishes.
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The above corollary improves Theorem 4.12 of [120], where it is proved that

x̄ ∈WO(g, S,D, εq)⇒ x̄ ∈ ε-argmin(ϕqD ◦ (gx̄ + αq), S) ∀α ∈ R,

by assuming the additional assumptions ε > 0, D pointed and vectorially closed

and also that the set F := cone (f(S)− f(x̄) +D + εq) is convex and algebraic

solid. By characterization (3.17) we see that implication above is also true for

ε = 0 and the additional assumptions on the cones D and F are not needed.

Also, let us observe that parameter α is superfluous, since by Theorem 3.2(c), for

each α ∈ R, we have that

ϕqD ◦ (gx̄ + αq)(x) = (ϕqD ◦ gx̄)(x) + α ∀x ∈ S,

and then to minimize the function ϕqD ◦ (gx̄ + αq) is the same as to minimize the

function ϕqD ◦ gx̄.



Chapter 4

Ekeland variational principles and

existence of solutions

4.1 Introduction

In Chapter 1 we have seen that the Ekeland variational principle is one of

the most important mathematical tools in Nonlinear Analysis and Optimization.

As a consequence, during the last decade it has been extended to different settings

and, in particular, to vector-valued or set-valued functions and bifunctions (see,

for instance, [9, 11,22,61,93,118,140,142,158,160,161,183,198]).

In 1993, Oettli and Théra [150] studied an EVP and several equivalent

results for scalar bifunctions. They obtained a set of implications which included a

new Takahashi’s nonconvex minimization principle. In 2005, Bianchi, Kassay and

Pini [21] also obtained an EVP for scalar bifunctions in order to achieve existence

results for equilibrium problems without convexity assumptions. Shortly after, in

2007-2008, Bianchi, Kassay and Pini [22], Ansari [9], Araya, Kimura and Tanaka

[11], and Finet and Quarta [61] generalized it for vector-valued bifunctions,

obtaining different versions. Recently, Qiu [160] also obtained a new version in a

very general framework. Moreover, it has been extended to set-valued bifunctions

(for instance, by Zeng and Li [198], Tammer and Zălinescu [183], Gong [82] and

Qiu [161]). All these works deal with EVPs whose perturbed function achieves

an exact solution.

81
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A priori, one may think that an EVP whose associated perturbed function

attains an approximate solution requires weaker hypotheses. In fact, in the

context of optimization problems, Combari, Marcellin and Thibault [45] and

Gutiérrez, Jiménez, Novo and Thibault [96] obtained approximate EVPs without

assuming hypotheses concerning semicontinuity on the function. In both results,

the notion of approximate strict solution played a key role. In Section 2.4 we

studied a new concept of strict solution for vector equilibrium problems and an

approximate counterpart through free-disposal sets which will also play a key role

to derive exact and approximate EVPs in the equilibria context.

For this aim, in Section 4.2 we state a strict fixed point-type theorem,

inspired by results of [140] and [159]. Then, in Section 4.3, we will obtain from it

exact and approximate EVPs for vector equilibrium problems without assuming

any topology on the final space of the associated bifunction. Additionally, some

non-topological mathematical tools are needed, as the algebraic formulation of the

so-called nonlinear scalarization functional (see Section 3.2), and a semialgebraic

counterpart of a well-known lower semicontinuity concept due to Tammer [181]

that was introduced in Section 1.4. The improvements of the main obtained

results with respect to corresponding ones of the literature are shown, and the

performance of certain assumptions usually required in proving them is clarified.

On the other hand, the first works on equilibrium problems [10, 20, 28, 149]

(see also [76]) and many subsequent ones provide existence theorems under

convexity assumptions on the bifunction and via topological tools. Moreover,

many of the previously cited EVPs (for instance, [9,11,22]) were applied to obtain

existence results for weak efficient solutions without convexity assumptions but

under (topological) semicontinuity assumptions.

Following this research line, in Section 4.4, we will obtain an existence result

for weak efficient solutions of vector equilibrium problems in the non-topological

setting –in the sense that the image space of the bifunction is not endowed with

any particular topology– without assuming convexity assumptions. For this aim,

the main mathematical tools are the “semialgebraic” upper semicontinuity notion,

which was defined in Section 1.4, and the algebraic formulation of the nonconvex



4.2. A strict fixed point theorem for set-valued mappings 83

separation functional of Section 3.2. As a result, the new existence result requires

weaker hypotheses than the previous ones of the literature obtained via EVPs for

bifunctions. Moreover, the roles of usual assumptions in that kind of results are

analyzed.

4.2 A strict fixed point theorem for set-valued

mappings

The mathematical tool that we are going to obtain in this section is an

existence result for a kind of strict fixed point of a set-valued mapping. It is

inspired by [140, Theorem 3.1] and [159, Theorem 2.1]. Recall that, x̄ ∈ X

is a strict fixed point of a set-valued mapping S : X ⇒ X if it satisfies that

S(x̄) = {x̄}.

Theorem 4.1. Let (X, d) be a metric space. Consider a set-valued mapping

S : X ⇒ X, a function m : X → R ∪ {±∞} and x0 ∈ X such that S : S(x0) ⇒

S(x0), S(x0)\{x0} 6= ∅ and m : S(x0)\{x0} → [0,+∞]. Assume the following

conditions:

(i) If x ∈ S(x0) and y ∈ S(x), then S(y) ⊂ S(x).

(ii) There exists x1 ∈ S(x0)\{x0} such that m(x1) < +∞.

(iii) There exists δ ≥ 0 such that for each x ∈ S(x0), m(x) < +∞, and

y ∈ S(x), y 6= x, then

m(y) + δ < m(x).

Then there exists a point x̄ ∈ S(x0) such that S(x̄) ⊂ {x̄} whenever one of the

following statements is true:

(a) δ > 0, or

(b) δ = 0, (X, d) is complete, the sets S(x) are closed for all x ∈ S(x0),

and there exists α > 0 such that for each x ∈ S(x0) and y ∈ S(x) such that

m(x),m(y) ∈ R, it follows that

αd(x, y) ≤ m(x)−m(y). (4.1)
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Proof. Suppose that S(x1) 6⊂ {x1} (otherwise the result is proved by considering

x̄ := x1). Let x2 ∈ S(x1), x2 6= x1. By hypotheses (i) and (iii) we see that

S(x2) ⊂ S(x1) and

m(x2) + δ < m(x1). (4.2)

If S(x2) ⊂ {x2}, then we define x̄ := x2 and the proof finishes. Otherwise there

exists x3 ∈ S(x2), x3 6= x2, and by hypotheses (i) and (iii) and statement (4.2)

it follows that S(x3) ⊂ S(x2) ⊂ S(x1) and

m(x3) + 2δ < m(x2) + δ < m(x1).

In this way we obtain a sequence (xn)kn=1 ⊂ S(x0), k ∈ N ∪ {+∞} such that

S(xn+1) ⊂ S(xn) and

m(xn+1) + nδ < m(x1), 1 ≤ n ≤ k − 1. (4.3)

Let us show that (m(xn))kn=1 is a sequence of nonnegative real numbers. If xn ∈
S(x0)\{x0} for all 2 ≤ n ≤ k, there is nothing to prove. Otherwise there exists

n ≥ 2 such that xn = x0, and then x0 ∈ S(x0) and δ ≤ m(x0) < +∞. Indeed, by

(4.3) it is clear that m(x0) < +∞. On the other hand, by (ii) m(x1) ≥ 0 and by

applying assumption (iii) with x = x0 and y = x1 we have that

δ ≤ m(x1) + δ < m(x0) = m(xn).

Therefore, (m(xn))kn=1 is a sequence of nonnegative real numbers and

inf{m(x) : x ∈ S(xn)} ≥ 0, 1 ≤ n ≤ k.

Case (a) (δ > 0). Relation (4.3) implies that δ <
1

n
m(x1), for 1 ≤ n ≤ k−1.

Since by (ii) m(x1) < +∞, we conclude that k < +∞. Otherwise, by taking

the limit as n → ∞ in the relation above, we obtain that δ = 0, which is a

contradiction. Therefore, there exists k0 ∈ N, k0 ≥ 1, such that S(xk0) ⊂ {xk0}
and the proof of part (a) is completed by defining x̄ := xk0 .

Case (b) (δ = 0). Let us suppose a point x ∈ S(x0) such that S(x) 6⊂
{x},m(x) ∈ R and infy∈S(x) m(y) > −∞. By condition (iii) we deduce that

there exists yx ∈ S(x), such that

m(yx) ≤ inf
y∈S(x)

m(y) + (1/2)(m(x)− inf
y∈S(x)

m(y)). (4.4)
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Thus, via the same iterative process as the previous one but applying condition

(4.4) to choose a suitable point in each step –observe that these points fulfill

the assumptions required to state (4.4)– we obtain a sequence (xn)kn=0 such that

S(xn+1) ⊂ S(xn) and xn+1 := yxn for all n ∈ N, where k < +∞ and S(xk) ⊂ {xk}
or k = +∞.

The proof finishes in the first case by defining x̄ := xk. Then suppose that

k = +∞. By hypothesis (iii) we see that (m(xn)) is a decreasing sequence. As

m(xn) ≥ 0 for all n, we deduce that there exists c ≥ 0 such that m(xn)→ c. On

the other hand, by condition (4.1) it follows that

αd(xn+j, xn) ≤
n+j∑
i=n+1

αd(xi, xi−1)

≤
n+j∑
i=n+1

(m(xi−1)−m(xi))

= m(xn)−m(xn+j) ∀n, j ∈ N.

Thus, (xn) is a Cauchy sequence and as (X, d) is a complete metric space there

exists x̄ ∈ X such that xn → x̄. For each n ∈ N it is clear that x̄ ∈ S(xn) since

(xn+j)
+∞
j=1 ⊂ S(xn) and the sets S(xn) are closed. Then, by assumption (iii) we

have m(x̄) ≤ m(xn) and taking the limit when n→∞ we see that m(x̄) ≤ c.

Suppose that S(x̄) 6⊂ {x̄}. Then there exists x′ ∈ S(x̄), x′ 6= x̄. By

hypothesis (iii) we have that m(x′) < m(x̄). As xn+1 = yxn and x̄ ∈ S(xn), by

hypothesis (i) it follows that

2m(xn+1)−m(xn) ≤ inf
y∈S(xn)

m(y) ≤ m(x′) ∀n ∈ N.

By taking the limit when n→ +∞ we obtain c ≤ m(x′) and so c < m(x̄), which

is a contradiction. Therefore S(x̄) ⊂ {x̄} and the proof finishes.

Remark 4.2. (i) Theorem 4.1 states the existence of a strict fixed point whenever

the set-valued mapping S satisfies x ∈ S(x) for all x ∈ S(x0). Thus it is a sort of

endpoint (or stationary point) theorem.

(ii) Part (a) of Theorem 4.1 works even though X is not a metric space.
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(iii) It is easy to check that Theorem 4.1 reduces to [96, Theorem 4.1] by

considering the following data (we use the notations of [96]):

S(x) := L(�εC , P (·, x), P (x, x)) ∀x ∈ X,

m(x) := ϕ(P (x, x))− inf{ϕ(P (y, y)) : y ∈ S(x0)\{x0}} ∀x ∈ X,

δ := c/2.

(iv) Ekeland Variational Principle is a direct consequence of Theorem 4.1(b).

Indeed, when the metric space (X, d) is complete and h : X → R∪{+∞} is a lower
bounded and lower semicontinuous function, then for each x0 ∈ X, h(x0) < +∞,

Theorem 4.1(b) can be applied to the following data:

S(x) := {y ∈ X : h(y) + d(y, x) ≤ h(x)} ∀x ∈ X,

m(x) := h(x)− inf{h(y) : y ∈ S(x0)} ∀x ∈ X,

δ := 0.

As a consequence, there exists x̄ ∈ S(x0) such that S(x̄) = {x̄}, i.e.,

h(x̄) + d(x̄, x0) ≤ h(x0),

h(x) + d(x, x̄) > h(x̄) ∀x ∈ X\{x̄},

and so the conclusions of the Ekeland Variational Principle are obtained.

Let us illustrate the usefulness of Theorem 4.1 to derive EVPs. Next result

was stated in [11, Theorem 2.1] for diagonal null bifunctions and generalizes some

similar previous ones.

Theorem 4.3. Consider that (X, d) is a complete metric space, Y is a topological

linear space, D has nonempty topological interior, q ∈ intD and f : X×X → Y .

Suppose that f satisfies the ≤D-t.i. property and for each x ∈ X there exists

y ∈ Y such that f(x,X) ∩ (y − intD) = ∅ and the following set is closed:

{z ∈ X : f(x, z) + d(x, z)q ≤D 0}.

Then, for every x0 ∈ X there exists x̄ ∈ X such that

(a) f(x0, x̄) + d(x0, x̄)q ≤D 0 or x̄ = x0,
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(b) f(x̄, x) + d(x, x̄)q 6≤D 0 for all x ∈ X\{x̄}.

Proof. Since q ∈ intD, it is easy to check that ϕqD is finite, nondecreasing w.r.t.

≤D and [ϕqD < 0] = − intD (see Theorems 3.2 and 3.7 and Lemma 1.13).

Moreover, for each y ∈ Y there exists t ∈ R such that tq ≤D y. So, for an

arbitrary point x0 ∈ X there exists c ∈ R such that f(x0, X) ∩ (cq − intD) = ∅
and then by Theorem 3.2(c) we have that ϕqD(f(x0, z)) ≥ c for all z ∈ X.

Let us define for each x ∈ X the mappings

S(x) := {z ∈ X : f(x, z) + d(x, z)q ≤D 0},

m(x) := ϕqD(f(x0, x))− c.

If S(x0) ⊂ {x0}, then the result follows by considering x̄ = x0.

Suppose that S(x0) 6⊂ {x0}. Assumption (i) of Theorem 4.1 is a direct

consequence of the ≤D-t.i. property of f and assumption (ii) is clear. On the

other hand, if y ∈ S(x), y 6= x, then

f(x0, y) + d(x, y)q ≤D f(x0, x) + f(x, y) + d(x, y)q ≤D f(x0, x).

As ϕqD is nondecreasing w.r.t. ≤D, by Theorem 3.2(c) we have that

m(y) < m(y) + d(x, y)

= ϕqD(f(x0, y) + d(x, y)q)− c

≤ ϕqD(f(x0, x))− c

= m(x).

In particular, d(x, y) ≤ m(x) −m(y) and assumptions (iii) and (b) are fulfilled.

Then the result follows by applying Theorem 4.1.

Let us observe that part (a) of Theorem 4.3 is equivalent to the statement

f(x0, x̄) +d(x0, x̄)q ≤D 0 whenever f(x0, x0) ∈ −D (in particular, if f is diagonal

null).

4.3 Ekeland Variational Principles

It is known that the EVP relies on the completeness hypothesis of the initial

metric space of the function (see [178]). Nevertheless, an approximate version of
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EVP was obtained in [45] for extended real valued functions without using any

completeness hypothesis. The main difference is that the perturbed function

achieves an approximate minimum with an arbitrary error δ > 0 instead of an

exact minimum. In [96], this approach was generalized to set-valued optimization

problems via a sort of approximate strict solutions based on a certain class of

coradiant sets.

Next, we obtain approximate and exact EVPs related to problem VEP

without considering any particular topology on the real linear space Y . In this

section, assume that the decision set is S = X, (X, d) is a metric space and

E ⊂ Y is a free-disposal set with respect to D.

Theorem 4.4. Let x0 ∈ X, q ∈ D\{0} and φ ∈ E+\{0}.
Suppose that one of the following conditions is true:

(i) 0 /∈ E, E + E ⊂ E, φ ∈ Es+ and

c1 := inf{φ(f(x0, x)) + φ(q)d(x0, x) : x ∈ [f(x0, ·) + d(x0, ·)q ≤E f(x0, x0)]}

> −∞. (4.5)

(ii) (X, d) is complete, E = vclqD, φ(q) > 0,

c2 := inf{φ(f(x0, x)) : x ∈ [f(x0, ·) + d(x0, ·)q ≤vclq D f(x0, x0)]} > −∞,

and the sets

[f(x0, ·) + d(x, ·)q ≤vclq D f(x0, x)], x ∈ [f(x0, ·) + d(x0, ·)q ≤vclq D f(x0, x0)],

are closed.

Then there exists x̄ ∈ X such that

(a) f(x0, x̄) + d(x0, x̄)q ≤E f(x0, x0) or x̄ = x0,

(b) f(x0, x) + d(x̄, x)q 6≤E f(x0, x̄) ∀x ∈ X\{x̄}.

Proof. (i) In order to apply Theorem 4.1(a), let us define

S(x) := {y ∈ X : f(x0, y) + d(x, y)q ≤E f(x0, x)} ∀x ∈ X,

m(x) := φ(f(x0, x)) + φ(q)d(x0, x)− c1 ∀x ∈ X.



4.3. Ekeland Variational Principles 89

If S(x0)\{x0} = ∅, then the result follows by defining x̄ := x0. Otherwise,

assumptions (i)-(iii) and (a) of Theorem 4.1 are true. Indeed, consider x ∈ X,

y ∈ S(x) and z ∈ S(y). Then,

f(x0, y) + d(x, y)q ≤E f(x0, x),

f(x0, z) + d(y, z)q ≤E f(x0, y).

As E + E ⊂ E and q ∈ D, by Remark 1.11 we have

f(x0, z) + d(x, z)q ≤D f(x0, z) + (d(x, y) + d(y, z))q ≤E f(x0, x).

As E is free-disposal with respect to D, by Lemma 1.18(f ) we deduce that

f(x0, z) + d(x, z)q ≤E f(x0, x)

and so z ∈ S(x). Thus, S(y) ⊂ S(x) and assumption (i) of Theorem 4.1 holds.

We also see that S : S(x0) ⇒ S(x0).

For each x ∈ S(x0) it is clear that

φ(f(x0, x)) + φ(q)d(x0, x)

≥ inf{φ(f(x0, z)) + φ(q)d(x0, z) : z ∈ S(x0)} = c1

and so m is well defined and assumption (ii) is fulfilled. Finally, consider x ∈
S(x0) and y ∈ S(x), y 6= x. Then, f(x0, y) + d(x, y)q ≤E f(x0, x). As φ ∈ Es+,

there exists t > 0 such that

φ(f(x0, y)) + φ(q)d(x, y) + t ≤ φ(f(x0, x)).

Moreover, by Remark 1.19 we have that φ(q) ≥ 0 and so

m(y) + t = φ(f(x0, y)) + φ(q)d(x0, y)− c1 + t

≤ φ(f(x0, y)) + φ(q)d(x0, x) + φ(q)d(x, y)− c1 + t

≤ φ(f(x0, x)) + φ(q)d(x0, x)− c1

= m(x).

Therefore, by considering δ := t/2 we see that assumption (iii) is true. Then,

by Theorem 4.1(a) we have that there exists x̄ ∈ S(x0) such that S(x̄)\{x̄} = ∅.
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Thus,

f(x0, x̄) + d(x0, x̄)q ≤E f(x0, x0),

f(x0, x) + d(x̄, x)q 6≤E f(x0, x̄) ∀x ∈ X\{x̄},

and the proof of part (i) finishes.

(ii) Consider the same mapping S : X ⇒ X as in part (i) and

m(x) := φ(f(x0, x))− c2 ∀x ∈ X.

If S(x0)\{x0} = ∅, then the result follows by defining x̄ := x0. Otherwise,

assumptions (i)-(iii) and (b) of Theorem 4.1 are fulfilled. Indeed, since vclqD is

a free-disposal –with respect to D, see Lemma 1.18(a)– convex cone, assumptions

(i) and (ii) of Theorem 4.1 can be checked as in the proof of part (i). In particular,

it follows that S : S(x0) ⇒ S(x0) and m is well defined.

On the other hand, consider x ∈ S(x0) and y ∈ S(x), y 6= x. Then,

f(x0, y) + d(x, y)q ≤vclq D f(x0, x). As φ ∈ vclq(D)+ = D+ we have that

φ(f(x0, y)) + φ(q)d(x, y) ≤ φ(f(x0, x)) (4.6)

and so

m(y) = φ(f(x0, y))− c2

< φ(f(x0, y)) + φ(q)d(x, y)− c2

≤ φ(f(x0, x))− c2

= m(x).

Therefore, assumption (iii) is fulfilled with δ = 0. Finally, by (4.6) we see that

φ(q)d(x, y) ≤ (φ(f(x0, x))− c2)− (φ(f(x0, y))− c2) = m(x)−m(y)

and so inequality (4.1) is true. From here the proof finishes as in part (i).

Remark 4.5. (i) A simple condition that implies assumption (4.5) is the

following one:

inf{φ(f(x0, x)) : x ∈ [f(x0, ·) ≤E f(x0, x0)]} > −∞.
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Indeed, if q ∈ D then by Lemma 1.18(f ) it is clear that

[f(x0, ·) + d(x0, ·)q ≤E f(x0, x0)] ⊂ [f(x0, ·) ≤E f(x0, x0)]

and then for each φ ∈ E+ it follows that

c1 ≥ inf{φ(f(x0, x)) : x ∈ [f(x0, ·) + d(x0, ·)q ≤E f(x0, x0)]}

≥ inf{φ(f(x0, x)) : x ∈ [f(x0, ·) ≤E f(x0, x0)]}.

(ii) When E is convex, the existence of linear functionals φ ∈ Es+ is

characterized by [110, Theorem 4C]. To be precise, if E is convex, then Es+ 6= ∅
if and only if there exists a convex absorbing set V ⊂ Y such that V ∩E = ∅. In
particular, observe that E is not a cone whenever Es+ 6= ∅.

On the other hand, we have that Es+ 6= ∅ whenever E is convex, algebraic

solid and 0 /∈ vclE. Indeed, consider v ∈ coreE. Since 0 /∈ vclE, there exists

λ > 0 such that [0, λ]v ∩ E = ∅. The result follows by applying [112, Theorem

3.14] with S = E and T = [0, λ]v.

When Y is a real locally convex Hausdorff topological linear space, then the

existence of a convex absorbing set V ⊂ Y such that V ∩ E = ∅ is equivalent

to the condition 0 /∈ clE (see [110, Theorem 11F]). This condition is natural to

deal with approximate efficient points of sets in Y . Indeed, these points can be

dominated only by others near of them, and a way to state this property is to

consider nondominated points with respect to ordering sets E such that 0 /∈ clE.

(iii) Consider a nonempty set H ⊂ Y . The following easy relationships are

useful to check the assumptions of Theorem 4.4:

• If H is convex, then H +H ⊂ H if and only if H is coradiant.

• If H is convex and coradiant, then H is free-disposal w.r.t. coneH.

• If H is convex, coradiant and D ⊂ coneH, then H is free-disposal w.r.t. D.

• If H is convex, coradiant and coneH is vectorially closed by q, for some q ∈ H,

then H is free-disposal w.r.t. D if and only if D ⊂ coneH.

(iv) In Theorem 4.4 we did not use the symmetric property of d, so that

the result is also valid in quasi-metric spaces.
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Next we show that the lower semicontinuity of f w.r.t. ≤vclq D implies that

the sets

[f(x0, ·) + d(x, ·)q ≤vclq D f(x0, x)] (4.7)

are closed (compare with Proposition 4.13).

Proposition 4.6. Let x0, x ∈ X and q ∈ D\{0}. If f(x0, ·) : X → Y is lsc w.r.t.

≤vclq D, then (4.7) is a closed set.

Proof. Consider z ∈ X and a sequence (xn) ⊂ X such that xn → z and

f(x0, xn) + d(x, xn)q ≤vclq D f(x0, x) ∀n.

Let us fix an arbitrary δ > 0. As d(x, xn)→ d(x, z) there exists n0 ∈ N such that

−d(x, xn)q ∈ −d(x, z)q + δq −D for all n ≥ n0, and by Lemma 1.18(a) we have

that

f(x0, xn) = (f(x0, xn) + d(x, xn)q)− d(x, xn)q

∈ f(x0, x)− d(x, z)q + δq − vclqD.

Since f(x0, ·) is lsc w.r.t. ≤vclq D, we deduce that

f(x0, z) ∈ f(x0, x)− d(x, z)q + δq − vclqD.

Therefore, by Lemma 1.18(e)

f(x0, z) + d(x, z)q − f(x0, x) ∈
⋂
δ>0

(δq − vclqD) ⊂ − vclqD

and the proof is finished.

In the following corollary, we show the roles of the diagonal null and ≤D-t.i.
properties in the EVPs for bifunctions of the literature.

Corollary 4.7. Assume the hypotheses of Theorem 4.4 and, in addition, suppose

that f is diagonal null and satisfies the ≤D-t.i. property. Then there exists x̄ ∈ X
such that

(a) f(x0, x̄) + d(x0, x̄)q ≤E 0 or x̄ = x0,
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(b) f(x̄, x) + d(x̄, x)q 6≤E 0 ∀x ∈ X\{x̄}.

Proof. By applying Theorem 4.4 we see that there exists x̄ ∈ X such that

f(x0, x̄) + d(x0, x̄)q ≤E f(x0, x0) or x̄ = x0,

f(x0, x) + d(x̄, x)q 6≤E f(x0, x̄) ∀x ∈ X\{x̄}, (4.8)

and part (a) is proved since f is diagonal null. In order to state part (b), suppose

by contradiction that there exists z ∈ X\{x̄} such that f(x̄, z) + d(x̄, z)q ≤E 0.

By the ≤D-t.i. property we have that

f(x0, z) + d(x̄, z)q ≤D f(x0, x̄) + f(x̄, z) + d(x̄, z)q ≤E f(x0, x̄)

and by Lemma 1.18(f ) we obtain that f(x0, z) + d(x̄, z)q ≤E f(x0, x̄), which

is a contradiction with (4.8). Therefore, statement (b) follows and the proof

finishes.

Corollary 4.7 reduces to the single-valued version of [96, Theorem 5.1]. Let

us underline that our framework here is more general since Y is a real linear space

and E is not necessarily contained in D. For instance, it can be applied for sets

as Eq = q + K, where q ∈ D\(−K) and K is a convex cone such that D ⊂ K,

D 6= K. In the first statement of [96, Theorem 5.1], the case x̄ = x0 should be

separated since ≤E does not verify the reflexive property.

On the other hand, Corollary 4.7 via the sufficient condition of Proposition

4.6 generalizes several exact EVPs for bifunctions of the literature. Indeed, it

reduces to [22, Theorem 1] and [140, Corollary 4.3] by considering the following

data and additional assumptions (we use the notations of [22, Theorem 1]): Y

is a locally convex topological linear space, D is closed, q := e and φ := e∗. Let

us observe that vclqD = D, since D is closed, and Corollary 4.7 works with the

assumption f(x, x) ≤D 0 of [140, Corollary 4.3] (weaker than the diagonal null

condition).

Analogously it reduces to the single-valued version of [198, Theorem 3.1],

where additionally is assumed thatD has nonempty topological interior and f(·, ·)
is order bounded from below (i.e., there exists y ∈ Y such that y ≤D f(x, z) for

all x, z ∈ X).
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Next, we focus on the particular case Eq = q + D, with q ∈ D\{0}. By

means of Theorem 4.1 and the algebraic version of the Gerstewitz’s separation

functional, we obtain for this case an exact and approximate EVP.

Theorem 4.8. Let q ∈ D\{0}, α > 1 and x0 ∈ X such that f(x0, x0) ∈ −D. If

x0 ∈ S(f, αEq), then there exists x̄ ∈ X such that

(a) f(x0, x̄) + d(x0, x̄)q ≤Eq f(x0, x0) or x̄ = x0,

(b) d(x0, x̄) < α− 1,

(c) f(x0, x) + d(x̄, x)q 6≤Eq f(x0, x̄) for all x ∈ X\{x̄}.

Proof. Let us define S : X ⇒ X and m : X → R ∪ {±∞} as follows:

S(x) := {y ∈ X : f(x0, y) + d(x, y)q ≤Eq f(x0, x)} ∀x ∈ X,

m(x) := ϕqEq(f(x0, x)) + d(x0, x) + α− 1 ∀x ∈ X.

If S(x0)\{x0} = ∅, then the result is proved. Otherwise, the assumptions of

Theorem 4.1(a) are fulfilled. Indeed, assumption (i) can be checked as in the

proof of Theorem 4.4, since Eq is free-disposal with respect toD and Eq+Eq ⊂ Eq.

In particular, we see that S : S(x0) ⇒ S(x0).

On the other hand, for each x ∈ S(x0)\{x0} we have that f(x0, x) 6≤αEq 0,

since x0 ∈ S(f, αEq) (see statement (2.7)). Thus,

f(x0, x) + (α− 1)q 6≤Eq 0 (4.9)

and by Theorem 3.2(c)(f ) and Lemma 1.18(b) we obtain that

m(x) ≥ ϕqEq(f(x0, x)) + α− 1 = ϕqEq(f(x0, x) + (α− 1)q) ≥ 0.

Moreover,

f(x0, x) + d(x0, x)q ≤Eq f(x0, x0) ≤D 0

and by Lemma 1.18(f ) it follows that

f(x0, x) + d(x0, x)q ≤Eq 0. (4.10)
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Therefore,

m(x) = ϕqEq(f(x0, x) + d(x0, x)q) + α− 1 ≤ α− 1

and so m : S(x0)\{x0} → [0,+∞] and assumption (ii) is hold. Observe by (4.9)

and (4.10) that d(x0, x) < α− 1.

Finally, let us check assumption (iii). Consider x ∈ S(x0) and y ∈ S(x).

Then, f(x0, y)+d(x, y)q ≤Eq f(x0, x) and so f(x0, y)+(d(x, y)+1)q ≤D f(x0, x).

Therefore, by Theorem 3.2(c) and Theorem 3.7 we have that

m(y) + 1 = ϕqEq(f(x0, y)) + d(x0, y) + α

≤ ϕqEq(f(x0, y) + (d(x, y) + 1)q) + d(x0, x) + α− 1

≤ ϕqEq(f(x0, x)) + d(x0, x) + α− 1

= m(x),

and assumption (iii) is fulfilled by considering δ = 1/2.

By applying Theorem 4.1(a) we deduce that there exists a point x̄ ∈ S(x0)

such that S(x̄) ⊂ {x̄}, which finishes the proof.

As in Corollary 4.7, the following result shows the role of ≤D-t.i. property

in the main EVPs for bifunctions of the literature.

Corollary 4.9. Let q ∈ D\{0}, α > 1, x0 ∈ X such that f(x0, x0) ∈ −D and

suppose that f satisfies the ≤D-t.i. property. If x0 ∈ S(f, αEq), then there exists

x̄ ∈ X such that

(a) f(x0, x̄) + d(x0, x̄)q ≤Eq f(x0, x0) or x̄ = x0,

(b) d(x0, x̄) < α− 1,

(c) f(x̄, x) + d(x̄, x)q 6≤Eq 0 for all x ∈ X\{x̄}.

By applying Corollary 4.9 to f : X×X → Y such that f(x, y) = g(y)−g(x)

for a mapping g : X → Y , we retrieve the single-valued version of [96, Theorem

5.2] without assuming the solidness of the ordering cone (intD 6= ∅). To be

precise, Corollary 4.9 reduces to the single-valued version of [96, Theorem 5.2]

by assuming that Y is a locally convex Hausdorff topological linear space and
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by considering the following data (we use the notations of [96, Theorem 5.2]):

α = (ε/δ) + 1, δq instead of q and the distance (ε/(λδ))d(·, ·). If additionally

Y = R, D = R+ and q = 1, then Corollary 4.9 reduces to [45, Proposition 2.5]

whenever the approximate solution of the scalar optimization problem is strict.

Next we obtain two exact versions of the EVP for bifunctions. The following

two lemmas are needed.

Lemma 4.10. Consider y1, y2 ∈ Y and s ∈ R such that ϕqE(y1) + s 6≤ ϕqE(y2).

Then, y1 + sq 6≤D y2.

Proof. Suppose reasoning by contradiction that y1+sq ≤D y2. As the mapping ϕqE
is nondecreasing w.r.t. ≤D (see Theorem 3.7) we see that ϕqE(y1 + sq) ≤ ϕqE(y2).

Then, by Theorem 3.2(c) we conclude that ϕqE(y1) + s ≤ ϕqE(y2), which is a

contradiction. Thus, y1 + sq 6≤D y2 and the proof finishes.

Next we denote

F(q, E) := (Rq − vclq E) ∩ (Y \ ovcl+∞q (−E))

and for all x0, x ∈ X such that f(x0, x) ∈ F(q, E),

Hq(x) := {z ∈ X : f(x0, z) + d(x, z)q ≤vclq E ϕ
q
E(f(x0, x))q}.

By Theorem 3.2(b) it follows that ϕqE(y) ∈ R if and only if y ∈ F(q, E).

Lemma 4.11. Suppose that x0 ∈ S(f, E) and q ∈ D\{0}. Then, for each

x ∈ X\{x0} we have ϕqE(f(x0, x)) ≥ 0, and f(x0, x) ∈ F(q, E) if and only if

f(x0, x) ∈ Rq − vclq E. If additionally f(x0, x0) ∈ F(q, E), then f(x0, x) ∈
F(q, E) for all x ∈ Hq(x0).

Proof. As x0 ∈ S(f, E) we have that

f(x0, x) /∈ −E ∀x ∈ X\{x0}, (4.11)

and by Lemma 1.18(b) we deduce that

f(x0, x) /∈ (−∞, 0)q − vclq E ∀x ∈ X\{x0}.
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Then, by Theorem 3.2(f ) it follows that

ϕqE(f(x0, x)) ≥ 0 ∀x ∈ X\{x0}.

From here the first part of the result follows by applying Theorem 3.2(a).

Suppose that f(x0, x0) ∈ F(q, E). By applying Theorem 3.2(c)(e) and

Lemma 1.18(c) it is not hard to check that

Hq(x0) = {x ∈ X : ϕqE(f(x0, x)) + d(x0, x) ≤ ϕqE(f(x0, x0))} (4.12)

and so ϕqE(f(x0, x)) < +∞ for all x ∈ Hq(x0), which finishes the proof.

Theorem 4.12. Assume that (X, d) is complete and consider q ∈ D\{0} and

x0 ∈ X such that f(x0, x0) ∈ F(q, E). If x0 ∈ S(f, E) and Hq(x) is closed for all

x ∈ Hq(x0), then there exists x̄ ∈ X such that

(a) f(x0, x̄) + d(x̄, x0)q ≤vclq E ϕ
q
E(f(x0, x0))q,

(b) d(x̄, x0) ≤ ϕqE(f(x0, x0)) or x̄ = x0,

(c) f(x0, x) + d(x̄, x)q 6≤D f(x0, x̄) for all x ∈ X\{x̄}.

Proof. First, let us observe by Lemma 4.11 and (4.12) that the sets Hq(x)

are well defined for all x ∈ Hq(x0) and x0 ∈ Hq(x0). Thus, f(x0, x0) ≤vclq E

ϕqE(f(x0, x0))q.

Consider the following mappings S : X ⇒ X and m : X → R ∪ {±∞}:
S(x) := Hq(x) for all x ∈ X such that f(x0, x) ∈ F(q, E) and S(x) := X

otherwise, and m(x) = ϕqE(f(x0, x)) for all x ∈ X. By Lemma 4.11 we see that

S(x) = Hq(x) for all x ∈ S(x0), and m : S(x0)\{x0} → [0,+∞].

On the other hand, by using the same reasoning as in the proof of Lemma

4.11 to obtain statement (4.12), we have that

S(x) = {z ∈ X : ϕqE(f(x0, z)) + d(x, z) ≤ ϕqE(f(x0, x))} ∀x ∈ Hq(x0). (4.13)

Observe that x ∈ S(x) and so f(x0, x) ≤vclq E ϕqE(f(x0, x))q for all x ∈ Hq(x0)

(see Lemma 3.1(b)).



Chapter 4. Ekeland variational principles and existence of solutions 98

If S(x0)\{x0} = ∅, then the result follows by defining x̄ = x0 . Indeed, parts

(a) and (b) are clear and part (c) is a consequence of Lemma 4.10. Then, let us

assume that S(x0)\{x0} 6= ∅.
In order to check assumption (i) of Theorem 4.1, let us consider x ∈ S(x0),

y ∈ S(x) and z ∈ S(y). As S(x) = Hq(x) it follows that f(x0, y) ∈ F(q, E) and

then S(y) = Hq(y). Thus, by (4.13) we have that

ϕqE(f(x0, z)) + d(x, z) ≤ ϕqE(f(x0, z)) + d(x, y) + d(y, z)

≤ ϕqE(f(x0, y)) + d(x, y)

≤ ϕqE(f(x0, x)).

Thus, z ∈ S(x) and assumption (i) of Theorem 4.1 holds. In particular, S :

S(x0) ⇒ S(x0).

As f(x0, x0) ∈ F(q, E) it is clear that

m(x) ≤ ϕqE(f(x0, x)) + d(x0, x) ≤ ϕqE(f(x0, x0)) < +∞ ∀x ∈ S(x0)

and then assumption (ii) of Theorem 4.1 is fulfilled.

On the other hand, consider x ∈ S(x0) and y ∈ S(x), y 6= x. Then,

ϕqE(f(x0, y)) ∈ R and so

m(y) < ϕqE(f(x0, y)) + d(x, y) ≤ ϕqE(f(x0, x)) = m(x).

Therefore, assumption (iii) of Theorem 4.1 is fulfilled with δ = 0. Finally, for

each x ∈ S(x0) the set S(x) is supposed to be closed and we have that

d(x, y) ≤ ϕqE(f(x0, x))− ϕqE(f(x0, y)) = m(x)−m(y) ∀y ∈ S(x).

Thus, all assumptions of Theorem 4.1 are fulfilled and so there exists x̄ ∈ S(x0)

such that S(x̄) = {x̄}. Let us check that statements (a)-(c) are true.

Part (a) is obvious and statement (c) is a direct consequence of Lemma

4.10. In order to state part (b) suppose that x̄ 6= x0 and observe by part

(a) and statement (4.11) that f(x0, x̄) /∈ −E and f(x0, x̄) + d(x̄, x0)q ≤vclq E

ϕqE(f(x0, x0))q. If d(x̄, x0) − ϕqE(f(x0, x0)) > 0, then by Lemma 1.18(b) we have

that

f(x0, x̄) ∈ −(d(x̄, x0)− ϕqE(f(x0, x0)))q − vclq E ⊂ −E,

which is a contradiction. Thus, d(x̄, x0) ≤ ϕqE(f(x0, x0) and the proof finishes.
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Next we prove that the closedness of the sets Hq(x) is fulfilled whenever

f(x0, ·) : X → Y is (q, E)-lsc.

Proposition 4.13. Let x0, x ∈ X and q ∈ D\{0} such that ϕqE(f(x0, x)) ∈ R. If

f(x0, ·) : X → Y is (q, E)-lsc, then Hq(x) is closed.

Proof. Consider a sequence (xn) ⊂ Hq(x) and suppose that xn → z. Thus,

d(xn, x)→ d(z, x) and

f(x0, xn) + d(x, xn)q ≤vclq E ϕ
q
E(f(x0, x))q ∀n.

Let us fix an arbitrary δ > 0. Then there exists n0 ∈ N such that −d(x, xn)q ∈
−d(x, z)q + δq −D for all n ≥ n0, and by Lemma 1.18(a) we have that

f(x0, xn) = (f(x0, xn) + d(x, xn)q)− d(x, xn)q

∈ (ϕqE(f(x0, x))− d(x, z) + δ)q − vclq E.

Since f(x0, ·) is (q, E)-lsc, we deduce that

f(x0, z) ∈ (ϕqE(f(x0, x))− d(x, z) + δ)q − vclq E.

Therefore, by Lemma 1.18(e)

f(x0, z) + (d(x, z)− ϕqE(f(x0, x)))q ∈
⋂
δ>0

(δq − vclq E) ⊂ − vclq E

and the proof is finished.

Corollary 4.14. Assume that (X, d) is complete, E is an improvement set and

f is diagonal null and satisfies the ≤D-t.i. property. Let q ∈ D\{0} and suppose

that Rq ∩ vclq E 6= ∅. If x0 ∈ S(f, E) and Hq(x) is closed for all x ∈ Hq(x0), then

there exists x̄ ∈ X such that

(a) f(x0, x̄) + d(x̄, x0)q ≤vclq E ϕ
q
E(0)q,

(b) d(x̄, x0) ≤ ϕqE(0),

(c) f(x̄, x) + d(x, x̄)q 6≤D 0 ∀x ∈ X\{x̄}.
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Proof. Let us check that f(x0, x0) ∈ F(q, E). As f is diagonal null, we have

to prove that ϕqE(0) ∈ R. It is clear that ϕqE(0) < +∞, since Rq ∩ vclq E 6= ∅
(see Theorem 3.2(a)). On the other hand, 0 /∈ E and so by Theorem 3.2(f ) and

Lemma 1.18(b) we deduce that ϕqE(0) ≥ 0.

By applying Theorem 4.12 we deduce that statements (a) and (b) are true

and additionally the following condition is also fulfilled:

f(x0, x) + d(x̄, x)q 6≤D f(x0, x̄) ∀x ∈ X\{x̄}. (4.14)

Let us suppose, reasoning by contradiction, that there exists a point u ∈ X,

u 6= x̄, such that

f(x̄, u) + d(u, x̄)q ≤D 0. (4.15)

Then, by the ≤D-t.i. property and (4.15) we deduce that

f(x0, u) + d(x̄, u)q ≤D f(x0, x̄) + f(x̄, u) + d(u, x̄)q ≤D f(x0, x̄),

which is contrary to (4.14). Therefore, statement (c) is true and the proof finishes.

Corollary 4.14 reduces to the EVP for vector-valued bifunctions given in

[22, Theorem 2] by considering the improvement set E = εe + K, the distance

(ε/λ)d(·, ·) and q = e (we use the notations of [22, Theorem 2]). In particular,

let us observe that ϕqE(0) = ε and vclq E = E –since K is closed– and so, since f

is diagonal null and ≤K-t.i. property is fulfilled, it follows that

f(x0, x̄) + (ε/λ)d(x̄, x0)q ≤vclq E ϕ
q
E(0)q

⇒ f(x0, x̄) + (ε/λ)d(x̄, x0)q ≤K 0

⇒ 0 ≤K −f(x0, x̄) ≤K f(x̄, x0)

⇒ f(x̄, x0) ∈ K.

Moreover, [22, Theorem 2] considers additional and stronger assumptions. To

be precise, it is assumed that Y is a locally convex Hausdorff topological linear

space, the ordering cone D = K is closed, f(z, ·) is quasi lower semicontinuous for

all z ∈ X (i.e., the set [f(z, ·) ≤D b] is closed for all z ∈ X and b ∈ Y ) and there
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exists e ∈ D\(−D) and φ ∈ D+ such that φ(e) = 1 and φ ◦ f(z, ·) is bounded

from below for all z ∈ X.

Analogously, Corollary 4.14 reduces to [9, Theorem 3.1] when is applied to

a complete metric space instead of a quasi-metric space, and the perturbation

function is defined by the distance instead of a W -distance. Indeed, this result

supposes that Y is a locally convex Hausdorff topological linear space, the

ordering cone D is solid and the function f(x, ·) : X → Y is order bounded

from below for all x ∈ X (i.e., there exists a point y ∈ Y such that y ≤D f(x, z)

for all z ∈ X). Let us check these assumptions imply for each point x0 ∈ X and

q ∈ intD that there exists ε > 0 such that x0 ∈ S(f, Eεq).

Let q ∈ intD and x0 ∈ X. It is easy to see that for all y ∈ Y there

exists t > 0 such that y ∈ −tq + intD. Then, as f(x0, ·) is order bounded from

below, there exists t0 > 0 such that −t0q <D f(x0, x) for all x ∈ X. From here

it follows that x0 ∈ S(f, Et0q). Otherwise there exists x′ ∈ X\{x0} such that

f(x0, x
′) ∈ (−t0q + intD) ∩ (−t0q −D) and so

0 = f(x0, x
′)− f(x0, x

′) ∈ intD +D = intD,

which is a contradiction since D is proper.

Thus, Corollary 4.14 can be applied for each x0 ∈ X and the set E = Eεq

via Proposition 4.13 and Remark 1.26(i) and so the conclusions of [9, Theorem

3.1] are obtained. Let us observe that in this case the statement

f(x0, x̄) + d(x̄, x0)q ≤vclq Eεq ϕ
q
Eεq

(0)q,

is equivalent to f(x0, x̄) + d(x̄, x0)q ≤D 0, since vclq Eεq = εq + vclqD = εq + D

–in [9, Theorem 3.1] the ordering cone is assumed to be closed– and ϕqEεq(0) = ε.

4.4 Weierstrass Theorem for bifunctions

In the literature, there are many existence results for weak efficient solutions

of problem VEP derived by different EVPs for bifunctions without assuming any

convexity assumption. Some of them require the ≤D-t.i. property. Next we

obtain a new existence result that improves the previous ones since it requires
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weaker assumptions and the image space of the bifunction is a real linear space.

Moreover, the role of the ≤D-t.i. property is clarified.

In the following we assume that X is a topological space, the decision set is

the whole space S = X, and D is algebraic solid. The following lemma is needed.

Lemma 4.15. Let x0, x̄ ∈ X be such that f(x̄, x0) /∈ f(x, x0) − coreD for all

x ∈ X. If f satisfies the ≤D-t.i. property, then x̄ ∈WE(f,D).

Proof. Suppose, reasoning by contradiction, that x̄ /∈ WE(f,D). Then there

exists x ∈ X such that f(x̄, x) ∈ − coreD, i.e., f(x̄, x) <D 0. As f satisfies the

≤D-t.i. property, we see that

f(x̄, x0) ≤D f(x̄, x) + f(x, x0) <D f(x, x0).

Since D+ coreD = coreD we have that f(x̄, x0) <D f(x, x0) and a contradiction

is obtained.

From the previous lemma we see that if f(x̄, x0) is a weak maximal point of

the set f(X, x0) with respect to the relation ≤D (i.e., f(x̄, x0) 6<D f(x, x0) for all

x ∈ X), then f(x̄, x̄) is a weak minimal point of the set f(x̄, X) with respect to

the same relation (i.e., f(x̄, x) 6<D f(x̄, x̄) for all x ∈ X), whenever the bifunction

f satisfies the ≤D-t.i. property and f is diagonal null.

Theorem 4.16. Assume that X is compact, f satisfies the ≤D-t.i. property and

there exist x ∈ X and q ∈ coreD such that ϕqD ◦ f(·, x) : X → R is usc. Then

WE(f,D) 6= ∅.

Proof. Let q ∈ coreD and x ∈ X be such that ϕqD ◦ f(·, x) is usc. By Theorem

3.2(b), we know that ϕqD◦f(·, x) is finite, and by applying the Weierstrass theorem

we deduce that there exists a point x̄ ∈ X such that

ϕqD ◦ f(x̄, x) ≥ ϕqD ◦ f(z, x) ∀z ∈ X. (4.16)

By Theorem 3.8 we know that ϕqD is increasing w.r.t. <D, and so by (4.16) we

obtain f(x̄, x) /∈ f(z, x) − coreD for all z ∈ X. Then, by applying Lemma 4.15

we have that x̄ ∈WE(f,D) and the proof finishes.
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Proposition 4.17. Let x ∈ X and q ∈ coreD. If f(·, x) : X → Y is (q,D)-usc,

then ϕqD ◦ f(·, x) : X → R is usc.

Proof. Consider c ∈ R, z ∈ X and a net (zi) ⊂ X such that zi → z and

ϕqD ◦ f(zi, x) ≥ c for all i. By Remark 3.3 we have that

[ϕqD < 0] = − coreD (4.17)

and so, by Theorem 3.2(c) it follows that zi 6∈ [f(·, x) <D cq] for all i.

Since f(·, x) is (q,D)-usc, it follows that [f(·, x) <D cq] is an open set, and

so z /∈ [f(·, x) <D cq]. Thus, f(z, x) − cq /∈ − coreD, and by Theorem 3.2(c)

and (4.17), we have that ϕqD(f(z, x)) ≥ c. Therefore, the set [ϕqD ◦ f(·, x) ≥ c] is

closed for all c ∈ R, and the result is proved.

The next corollary is a direct consequence of Proposition 4.17 and Theorem

4.16.

Corollary 4.18. Assume that X is compact, f satisfies the ≤D-t.i. property and

there exist x ∈ X and q ∈ coreD such that f(·, x) : X → Y is (q,D)-usc. Then

WE(f,D) 6= ∅.

Remark 4.19. Corollary 4.18 improves several existence results of weak efficient

solutions of vector equilibrium problems stated in the literature, since it considers

weaker assumptions. For example, in [9, Theorem 4.1] the following additional

assumptions are required: Y is a locally convex Hausdorff topological linear space,

D is closed, f is diagonal null, f(z, ·) is (q,D)-lsc for all z ∈ X (i.e., [f(z, ·) ≤D rq]

is closed for all z ∈ X and r ∈ R) and f(z, ·) is order bounded from below for all

z ∈ X (i.e., for each z ∈ X there exists a point y ∈ Y such that y ≤D f(z, u) for

all u ∈ X).

Moreover, the (q,D)-superlevel closedness notion is required (see Remark

1.26(iii)) through the following property (see [9, Lemma 2.2]): if g : X → Y is

(q,D)-superlevel closed, then ϕqD ◦ g : X → R is upper semicontinuous. For

its proof, the author cites [181], where a similar result is given for (q,D)-lower

semicontinuous functions.
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Although the corresponding result [181, Lemma 4.1] is correct, this

extension for (q,D)-superlevel closed functions is not true. Indeed, let X = R,

Y = R2, D = R2
+, q = (1, 1) and g : X → Y defined as

g(t) =

 (t, 1) if t < 0

(t, 0) if t ≥ 0.

Clearly,

[g ≥D rq] =

 [r,+∞) if r ≤ 0

∅ if r > 0.

Then g is (q,D)-superlevel closed. Moreover,

(ϕqD ◦ g)(t) =

 1 if t < 0

t if t ≥ 0.

Thus, [ϕqD ◦ g ≥ 1/2] = (−∞, 0) ∪ [1/2,+∞) and ϕqD ◦ g is not upper

semicontinuous.

It is proved in Proposition 4.17 that ϕqD◦g is upper semicontinuous whenever

g fulfills the (q,D)-usc concept introduced in Definition 1.25.

Analogously, in [22, Theorem 3], the next additional assumptions are

supposed: Y is a locally convex Hausdorff topological linear space, D is closed,

f is diagonal null, f(z, ·) is quasi lower semicontinuous for all z ∈ X (i.e., the set

[f(z, ·) ≤D y] is closed for all z ∈ X and y ∈ Y ) and there exist e ∈ D\(−D) and

a functional φ ∈ D◦ such that φ(e) = 1 and φ ◦ f(z, ·) is bounded from below

for all z ∈ X. Moreover, a stronger upper semicontinuous notion is required (see

Remark 1.26(ii)).

Finally, in the single-valued version of [198, Theorem 4.1], it is assumed

that Y is a locally convex Hausdorff topological linear space, D is closed, f is

diagonal null, f(z, ·) is quasi lower semicontinuous for all z ∈ X, f(·, ·) is order

bounded from below (i.e., there exists a point y ∈ Y such that y ≤D f(z, u) for

all z, u ∈ X). Moreover, the continuity of the function f(·, z) is required for all

z ∈ X.

Let us illustrate Corollary 4.18 with an example in which the weakening of

the assumptions plays a key role.
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Example 4.20. Consider X = [−4, 4], Y = R2, D = R2
+ and g : X → Y defined

as

g(t) =


(−t,−t) if t < 0

(t− 2,−2) if 0 ≤ t < 2

(−2, t) if t ≥ 2.

Fix q = (1, 1) ∈ coreD and x = −1. We define the bifunction f : X ×X → Y as

f(s, t) = g(t)− g(s). Clearly, f satisfies the ≤D-t.i. property. Let us check that

f(·, x) is (q,D)-usc, that is,

[f(·, x) <D rq] = [g >D (1− r, 1− r)] (4.18)

is open for all r ∈ R. Since

[g >D (s, s)] =


[−4, 4] if s < −2

[−4, 0) if − 2 ≤ s ≤ 0

[−4,−s) if 0 < s < 4

∅ if s ≥ 4

,

then the sublevel sets of (4.18) are open in [−4, 4] for all r ∈ R. Hence, by

Corollary 4.18, we have that WE(f,D) 6= ∅ (in fact, one may compute that

WE(f,D) = [0, 4]). In addition, notice that f(·, x) is not (e,D)-superlevel closed,

for any e ∈ intD. Indeed, by taking r = 0 we have

[f(·, x) ≥D re] = [f(·, x) ≥D (0, 0)] = [g ≤D (1, 1)] = [−1, 2)

which is not closed in [−4, 4].

As a result, it follows that f(x, ·) is not (e,D)-lsc for any e ∈ intD, since

[f(x, ·) ≤D (0, 0)] = [f(·, x) ≥D (0, 0)].

Therefore, [9, Theorem 4.1], [22, Theorem 3] and [198, Theorem 4.1] cannot be

applied.





Chapter 5

Conclusions and future lines of

development

In this last chapter, we summarize the most relevant results of this memory,

in order to provide a global vision of the work done for the readers. In addition,

some future lines of development that have emerged during the elaboration of

this memory are exposed.

5.1 Conclusions

The main objective of this doctoral thesis has been to analyze the solutions

of vector equilibrium problems. Just like it was indicated in the introduction, the

most important feature of this kind of problems is the generalization of several

classic mathematical problems, in such a way we may deal with all of them

at once. Following this unifying approach, we generalized well-known concepts

of solution from vector optimization problems to vector equilibrium problems.

Furthermore, we consider an algebraic framework since it often allows to weaken

certain topological assumptions by using certain algebraic counterparts.

Chapter 2 is devoted to introducing and studying certain algebraic notions

of solution of vector equilibria in connection with arbitrary ordering sets. First, in

Section 2.2, the concept of (C, ε)-efficiency introduced by Gutiérrez, Jiménez and

Novo [91,92] in vector optimization problems is generalized to vector equilibrium

107
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problems. In this notion, an arbitrary coradiant set (see Section 1.4) plays

the role of ordering set, so that it encompasses many ε-efficiency notions for

vector optimization problems (for instance, [104, 127, 148, 184–186]) and other

approximate efficiency concepts for vector equilibrium problems, such as the

ε-equilibrium and λ-equilibrium points defined by Bianchi, Kassay and Pini [22]

and Ansari [9], respectively.

Secondly, the notion of E-weak efficient solution, which was introduced

by Chicco, Mignanego, Pusillo and Tijs [43] for vector optimization problems in

finite-dimensional spaces and extended later by Gutiérrez, Jiménez and Novo [95]

to locally convex spaces, is generalized to vector equilibrium problems on real

linear spaces. In this notion, an algebraic solid set E is considered as the ordering

set. We characterize this kind of solutions when E is free disposal with respect to

a proper algebraic solid convex cone D under a generalized convexity assumption

by a linear scalarization procedure.

In Section 2.3 we deal with (C, ε)-proper efficiency notions. Benson [19]

and Henig [105] proposed (exact) proper efficiency notions that nowadays are

well known. Adán and Novo [5] extended the Benson’s one to real linear spaces

by means of the vector closure [4], Gong [78,79] generalized both notions to vector

equilibrium problems, and Zhou and Peng [202] introduced the first approximate

counterparts of both notions in real linear spaces.

Recently, Gutiérrez, Huerga, Jiménez and Novo [88,90] have defined notions

of Henig and Benson (C, ε)-proper efficiency in vector optimization that improve

the previous ones with respect to the limit behaviour of their solutions when

the error ε tends to zero. In this section, both notions are generalized to

vector equilibrium problems on real linear spaces and their main properties and

relationships are studied. Moreover, since Henig (C, ε)-proper efficient solutions

can be formulated as (EK0 (C), ε)-efficient solutions for some K ∈ G(C) and(
EK0 (C)

)
(ε) is free-disposal with respect to K for every ε ≥ 0, we applied the

obtained results in the previous section to characterize the Henig (C, ε)-proper

efficient solutions under a generalized convexity assumption.

On the other hand, the concept of strict solution is well known in
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scalar and vector optimization problems (see [66, 113, 175]), and also in scalar

equilibrium problems (see [25]). Strict solutions for vector equilibrium problems

are introduced in Section 2.4 in order to generalize all of them.

An approximate counterpart based on coradiant sets was defined by

Gutiérrez, Jiménez, Novo and Thibault [96] with the aim of stating approximate

EVPs in set-valued optimization problems. Following this approach, we introduce

the concept of E-strict solution, where E is a free-disposal set w.r.t. a convex

cone, and we studied its main properties in order to obtain approximate EVPs

for vector-valued bifunctions.

Chapter 3 is devoted to the algebraic study of the nonconvex separation

functional ϕqA (see [117, Chapter 5] for detailed information). This research

line has been proposed in the literature by different authors. Indeed, La Torre,

Popovici and Rocca [128–130] suggested studying this functional in the framework

of a real linear space Y not endowed with any particular topology, and Qiu and

He [163] dealt with ϕqD, where D is a convex cone and q ∈ D\(−D) it in this

setting.

In Section 3.2, we study functional ϕqA in the same setting as above for

an arbitrary nonempty set A ⊂ Y and a vector q ∈ Y \{0}. By using algebraic

counterparts of topological concepts such as the vector closure in a given direction

and the algebraic interior, we obtain important properties of ϕqA.

To be precise, in Lemma 3.1 and Theorem 3.2 we characterize its level

sets, its effective domain, and other well-known properties without assuming

any assumption. Furthermore, in Theorems 3.7 and 3.8 we characterize the

monotonicity of ϕqA with respect to an arbitrary ordering set C ⊂ Y . In

Theorem 3.13, we give sufficient conditions for the positive homogeneity and the

convexity of ϕqA, and under condition (3.13), both properties are characterized.

These results generalize and improve several recent ones in the literature (see

[60,63,64,117,128,163,176]).

In Section 3.3, the algebraic formulation of the nonconvex separation

functional is applied to scalarize E-weak efficient solutions of vector equilibrium

problems on real linear spaces (Theorem 3.16). This result encompasses and
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improves many exact and approximate scalarization results of the literature. For

example, [81, Theorem 3.1] is extended via Corollary 3.18 and [165, Theorem 3.1]

is generalized by taking E = εq + K in Corollary 3.17, where q ∈ coreK and

ε ≥ 0. Both results require less and weaker assumptions.

In addition, we applied Theorem 3.16 to characterize by scalarization the

weak solutions of a wide class of vector variational inequality problems (Corollary

3.19) and vector optimization problems (Corollary 3.20). As an illustration of

the power of the obtained results observe for instance that [120, Theorem 4.12]

is improved by Corollary 3.20, since the first one requires additional assumptions

such as pointedness and vectorially closedness on the ordering cone, a convexity

assumption related with the data of the problem, and so on.

Chapter 4 focuses on Ekeland variational principles and the existence of

weak solutions for vector equilibrium problems. In Section 4.2, a powerful tool

to derive EVPs and approximate EVPs (Theorem 4.1) is obtained. It is an

existence result for a kind of strict fixed point of a set-valued mapping inspired

by [140, Theorem 3.1] and [159, Theorem 2.1]. For instance, the original EVP

and [11, Theorem 2.1] may be derived from it (see Remark 4.2(iv) and Theorem

4.3, respectively).

In Section 4.3, we use Theorem 4.1 to derive several EVPs for vector-valued

bifunctions (see Theorems 4.4, 4.8 and 4.12). Let us also highlight the EVP

derived in Corollary 4.7, which shows the roles of the diagonal null and ≤D-t.i.
properties in the main EVPs for bifunctions of the literature, reduces to [22,

Theorem 1] and [140, Corollary 4.3] by considering additional assumptions,

and also encompasses the single-valued versions of [96, Theorem 5.1] and [198,

Theorem 3.1].

Theorem 4.8 focuses on EVPs for the particular case Eq = q + D, with

q ∈ D\{0}. The algebraic formulation of nonconvex separation functional (see

Chapter 3) plays a key role in proving this result. From it, we obtained Corollary

4.9 that shows, as well as Corollary 4.7, the role of ≤D-t.i. property in the main

EVPs for bifunctions of the literature. It reduces to the single-valued version

of [96, Theorem 5.2] without assuming the solidness of the ordering cone, and
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also to [45, Proposition 2.5] whenever the approximate solution of the scalar

optimization problem is strict.

Theorem 4.12 is an exact EVP for vector-valued bifunction that reduces

Corollary 4.14 to the EVPs given in [22, Theorem 2] and [9, Theorem 3.1],

which require additional and stronger assumptions on the ordering cone and the

bifunction.

In Section 4.4, we clarified the role of the ≤D-t.i. property to prove existence

results for weak efficient solutions of vector equilibrium problems. Roughly

speaking, we proved that those points whose values are weak maximal points

with respect to the first variable of the bifunction are also weak minimal points

with respect to the second variable if the bifunction satisfies the ≤D-t.i. property
and is diagonal null. This fact provides a new point of view to obtain existence

results in vector equilibrium problems.

Following this approach, and via the algebraic formulation of the nonconvex

functional (see Chapter 3) we obtained a Weierstrass theorem for weak efficient

solutions of vector equilibrium problems in an algebraic framework (Corollary

4.18), which generalizes and significantly improves some corresponding results

of the literature (see [9, 22, 198]). In particular, some lower semicontinuity

and boundedness assumptions have been removed, and only it is required the

(q,D)-usc at one fixed point in the second variable of the bifunction (see Section

1.4).

As a result of this doctoral thesis, three works [97–99] were published in

two high impact journals from the Journal Citation Reports (JCR). Chapter 3 is

based on [99] and Chapter 4 on [97] (Sections 4.2 and 4.3) and [98] (Section 4.4).

5.2 Future lines of development

In this section, potential future lines of development that have emerged

during the present work are enumerated. On the one hand, specific questions

are proposed with the aim to continue and complete the results of this memory.

On the other hand, other general related questions are posed with the goal to

develop them in a more independent way.
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Line 1. Zhao, Chen and Yang [200, Section 6] suggested to study

nonlinear scalarization results for approximate proper efficient solutions of vector

optimization problems. In fact, we saw in Chapter 2 that the bibliography

about linear scalarization under convexity assumptions of approximate efficiency

and approximate proper efficiency is wide, but the bibliography about nonlinear

scalarization results of approximate proper efficiency in vector equilibria without

assuming any convexity hypothesis is brief.

Gong [81] obtained in the topological framework some characterizations of

several type of solutions of vector equilibrium problems through the nonconvex

separation functional, in particular, for (exact) proper efficient solutions in the

sense of Henig.

The algebraic formulation of the nonconvex separation functional and its

properties presented in Chapter 3 may work very properly to characterize by

scalarization the (C, ε)-Henig proper efficient solutions of equilibrium problems

in the algebraic framework and without supposing any convexity condition.

Observe that Gong required some topological assumptions such as the

solidness of the ordering cone and semicontinuity properties on the scalarizing

functional, and we may replace the ordering cone with a generalized ordering

set such as a coradiant set, which might be algebraic solid. Analogously,

the semicontinuity assumption could be replaced with some semialgebraic

counterpart, as the ones introduced in Section 1.4.

Line 2. Inspired in our paper [99], Qiu [162] has recently defined an

extension of the nonconvex separation functional (see Section 3.2). To be precise,

the next functional is introduced,

ϕQE(y) :=

 +∞ if y /∈ RQ− E,
inf{t ∈ R : y ∈ tQ− E} otherwise,

where the point q ∈ Y \{0} in (3.1) is replaced with a set Q ⊂ Y \{0}.
Qiu has obtained important properties of this functional under certain

assumptions and he has applied them to get EVPs for set-valued functionals,
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where the perturbation consists of a subset of the ordering cone multiplied by

the distance function. Some of these results have been stated with respect to

approximate efficient solutions in the sense of Németh [148] of set-valued vector

optimization problems.

It could be possible to go deeper in the study of functional ϕQE and to

obtain alternative properties or to improve the existing ones. Moreover, it may

be applied to set-valued vector equilibrium problems (such as [10,12,82,161,198])

defined by an arbitrary ordering set in order to characterize by scalarization

their exact and approximate weak efficient solutions and also to obtain EVPs, in

such a way that the results given in Sections 3.2, 3.3 and 4.3 may be extended.

Line 3. Hiriart-Urruty [108, 109] introduced the well-known oriented

distance function (also called signed distance function). This function ∆A : Y →
R ∪ {±∞} is defined by

∆A(y) := d(y, A)− d(y, Y \A) ∀y ∈ Y,

where A is a subset of a normed space Y , d(y, A) := inf{‖a − y‖ : a ∈ A} and
d(y, ∅) = +∞. It is known that ∆A has very good properties such as Lipschitz

continuity, convexity, positive homogeneity or monotonicity by depending on the

properties of A (see [100, 101, 117, 143, 195] for further information). In fact,

Zaffaroni [195] applied this functional to obtain characterizations for several types

of solution of a vector optimization problem by means of a scalarization procedure,

and Ha [100] also applied it to characterize the so-called Q-minimal points, which

encompass many notions of efficiency and proper efficiency of vector optimization

problems. The main advantage of the oriented distance function with respect to

other nonlinear scalarization functions is that its properties do not require the

solidness of the ordering set to be fulfilled.

The oriented distance function has been applied also to deal with

approximate efficient solutions of single-valued and set-valued vector optimization

problems (see [68, 69, 179]), and Zhao et al. [201] obtained some results about

E-optimality in vector optimization problems, being E an improvement set. In

contrast, the literature concerning with the oriented distance function applied
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to vector equilibrium problems in some way is brief to the best of our knowledge

(see, for instance, [52, 171]). In Section 3.3 we characterized E-weak efficient

solutions of vector equilibrium problems by means of the algebraic formulation

of the nonconvex separation functional. Then, a new research line would be to

characterize by means of the oriented distance function E-efficient solutions of

vector equilibrium problems with respect to a possible nonsolid ordering set E.

Line 4. Gong [81] characterized the weak efficient solutions and the

Henig proper efficient solutions of vector equilibrium problems by means of the

nonconvex separation functional. By combining these characterizations with

generalized differential calculus, he obtained necessary and sufficient stationary

point conditions for weak efficient solutions and Henig proper efficient solutions

of nonsmooth vector equilibrium problems. However, these results only may

be applied when the ordering cone has nonempty topological interior, since this

condition is essential to the nonconvex separation functional satisfies suitable

properties.

The algebraic formulation of the nonconvex separation functional and its

properties presented in Section 3.2 allows us to consider nonsolid ordering cones,

so it may be applied to generalize Gong’s results to other kind of solutions of

vector equilibrium problems as Benson proper efficient solutions, whose definition

does not require the solidness of the ordering set.

Line 5. By means of linear scalarization, necessary and sufficient

Lagrangian conditions were obtained for weak efficient solutions, Henig proper

efficient solutions and superefficient solutions of vector equilibrium problems

(see [80, 144,164]). In these papers, the feasible set is given by a cone constraint

and satisfies the so-called Slater’s constraint qualification, and the functions that

define the problem fulfill certain generalized convexity conditions (see Section

1.4). On the other hand, several authors studied this kind of results for vector

optimization problems via algebraic notions (see [4–6,106,107,120,157,204–206]).

It would be interesting to obtain necessary and sufficient Lagrangian
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conditions for approximate proper efficient solutions of vector equilibrium

problems in the algebraic framework (see Section 2.3) by assuming weaker

generalized convexity assumptions and more general constraint qualifications

(see, for instance, [67,89,197]).

Line 6. Ekeland Variational Principle is well known for its multiple

applications. For instance, existence results for vector equilibrium problems and

fixed-point theorems for set-valued mappings have been obtained from EVPs for

bifunctions (see, for instance, [9, 11, 22, 150]). As a result, the EVPs obtained in

Section 4.3 may be applied to generalize or improve that results.

Line 7. Theorem 4.1 is a kind of strict fixed point theorem for set-valued

mappings and it is inspired in two previous results by Lin et al. [140, Theorem

3.1] and Qiu [159, Theorem 2.1]. As a consequence of these two results, the

authors derived EVPs for set-valued optimization problems. Then, Theorem 4.1

may be also applied to obtain EVPs for set-valued bifunctions (see, for instance,

[12,82,117,161,183,198]).

Observe that this line is directly related to Line 2, since EVPs for set-valued

bifunctions may be provided from Theorem 4.1 together with the functional ϕQE.

Line 8. Finet et al. [62], Berdnarczuk and Zagrodny [18], and Kruger et al.

[125] extended the well-known Borwein-Preiss Variational Principle [31,124,137]

to vector-valued functions. On the other hand, Plubtieng and Seangwattana [155]

extended it to a system of equilibrium problems. Furthermore, Finet and Quarta

[61] generalized the Deville-Godefroy-Zizler Variational Principle [50,51] to vector

equilibrium problems, and from this result, they derived an Ekeland Variational

Principle [54,55] and a Borwein-Preiss Variational Principle for vector equilibrium

problems.

In their extension, Finet and Quarta [61] introduced a lower semicontinuity

notion, the coordinate free lower semicontinuity, which is assumed on the

bifunction, as well as other usual assumptions as the diagonal null condition and
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the triangle inequality property (see Section 1.4). Then, it would be interesting

to study if the (q,H)-semicontinuity concept defined in Section 1.4 may replace

the coordinate free lower semicontinuity and also to analyze the roles of both

diagonal null and triangle inequality properties in a similar way as we did in

Section 4.3 with the Ekeland Variational Principle for bifunctions. Furthermore,

an approximate version of Deville-Godefroy-Zizler Variational Principle to vector

equilibrium problems via arbitrary ordering sets such as free-disposal sets have

not been studied yet.

Line 9. Bao and Mordukhovich [15, 16] obtained subdifferential versions

of the Ekeland Variational Principle for approximate minimizers of set-valued

functions defined on Asplund spaces. Moreover, Ha [101] formulated two versions

of the Ekeland Variational Principle for Henig proper minimizers and super

minimizers of set-valued functions involving coderivatives in the sense of Ioffe,

Clarke and Mordukhovich.

On the other hand, in Section 2.3 the concepts of (C, ε)-Henig proper

efficiency and (C, ε)-Benson proper efficiency were extended from vector

optimization problems to vector equilibrium problems. Then, it would be

interesting to derive subdifferential versions of the Ekeland Variational Principle

for set-valued bifunctions and set-valued perturbations based on the previously

mentioned coderivates.
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