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Y para que aśı conste presenta la referida Memoria, firmando el presente
certificado.

Fdo: Eulogio Oset Báguena
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CHAPTER 1

INTRODUCTION

The idea of this Thesis work is to give a contribution to the extensive ef-
forts made to understand the structure of hadronic particles done in the last
decades, one of the most important issues in hadron physics.

During the 50s, the development of particle accelerators and the measure-
ment of scattering cross sections revealed the existence of new particles in the
form of resonances, corresponding to states with an extremely small lifetime
and a considerable width (10 to 200 MeV).

The first resonance was discovered by Anderson, Fermi, Long and Nagle at
the Chicago Cyclotron in 1952 [1] in the πp system with J = 3

2
, and it is now

known as the ∆(1232). Many others followed, like the Σ(1385), discovered at
the Lawrence Radiation Laboratory in 1960 [2] and the observation of the first
mesonic resonances, the K∗(980) [3], the ρ [4] and the ω [5], particles with spin
J = 1. With this proliferation of particles and resonances, a pattern appeared
and an organizing scheme became necessary in order to describe it.

The solution was initially found in the generalization of the concept of
isospin, a quantum number originally introduced to explain the properties of
the nucleons. In the Fermi-Yang model of 1959 [6], the neutron and the proton
appear as fundamental objects and the other particles as their combinations,
considering for example the pion as a bound state of a nucleon and an anti-
nucleon, n̄p → π+ [7]. Later, Sakata proposed to extend the model from
SU(2) to SU(3) including the Λ as one of the building blocks, in order to
accommodate mesons and baryons with strangeness [8].

However, the real turning point arrived in 1961 when Gell-Mann [9] and,
independently, Ne’maan [10] proposed that each isospin, or SU(3), multiplet
had to be composed of particles sharing the same values of spin and parity.
While in the Sakata model the baryons p, n and Λ formed a triplet of SU(3)
and the pseudoscalars were in an octet, in the Gell-Mann-Ne’eman model the
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baryons constitute an octect, including the Σ isotriplet and the Ξ isodoublet
in addition to the nucleons and the Λ. Thus, all the particles are grouped
in octets, which are the basic entity of the model, or in multiplets deriving
from the combination of octects following rules analogous to the ones for the
addition of angular momenta. By means of the “eightfold way”, the name Gell-
Mann gave to the theory, it was possible to arrange already observed states,
but also to predict new ones, later discovered with appropriate properties, in
order to fill the multiplets. For example, the known pseudoscalars at that time
were only the π+, π0, π−, K+, K0, K̄0 and the K−, implying the existence of
another one yet to be found, now known as the η, observed not long afterwards
[11]. The SU(3) symmetry is not exact, and its slight violation not only
contributes to the mass difference between the proton and the neutron, but also
to break the mass degeneracy in the multiplets. The model had great success
and all the hadrons known could be arranged. The three octets of J = 1

2

baryons, pseudoscalars mesons and vector mesons are shown in Figure 1.1
and Figure 1.2. The baryonic resonances could also be organized in the
decuplet with J = 3/2, shown in Figure 1.3. The three figures are taken
from Ref. [12]. Some sort of periodic table of the hadrons had been invented,
and physicist had complete faith in considering SU(3) as the correct symmetry
to represent physical reality.

Figure 1.1: Octet of the baryons with J = 1
2 [12].

The idea of the existence of three basic constituents, called quarks, building
all the hadrons and able to explain the classification in multiplets of SU(3), was
proposed independently by Gell-Mann [13] and Zweig [14] in 1964. They are
now known as “up”, “down” and “strange” quark. In this scheme, baryons re-
sult as made up of three quarks (qqq) while mesons as quark-antiquark systems
(qq̄). However, at the time, hadrons where still considered as “soft” objects,
with a diffuse internal structure. Although the simplicity and effectiveness
of the scheme, the scientific community was sceptical about the possibility of
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Figure 1.2: Octet and singlet of pseudoscalars (left panel) and vectors (right panel)
mesons [12].

Figure 1.3: Decuplet of the baryons with J = 3
2 [12].
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an internal structure for the nucleons and kept considering quarks only as a
convenient mathematical construction.

Their existence was intensely debated, also due to the impossibility to
isolate them as free particles regardless the energy supplied to the nucleon.
Thanks to a series of experiments of deep inelastic scattering (DIS) on an hy-
drogen target, carried out at the Stanford linear accelerator (SLAC) at the
end of the 60s, it was possible to reveal the internal structure of the nucleon.
The structure functions in the cross section for the scattering on nucleons
present a phenomenon called scaling, first anticipated theoretically by Bjorken
in 1967, proving the pointlike nature of these constituents. By 1973, differ-
ent kinds of high energy scattering experiments (electron-nucleon, neutrino-
nucleon, electron-positron, proton-proton), had already provided enough ev-
idence for the nucleon constituents and for the expected quantum numbers,
though they had never been observed yet as isolated entities.

Motivated by the big success obtained by gauge theories in unifying elec-
tromagnetic and weak interactions, theorists decided to apply the same frame-
work to the strong force and demonstrated that in certain gauge theories the
quark-quark interaction can become really weak at short distances, explaining
the behaviour of the DIS cross sections. This phenomenon, called asymptotic
freedom [15, 16], is one of the very peculiar features of the new theory that
emerged, called Quantum Chromodynamics (QCD). In this scheme, the in-
teractions among quarks are described by means of the exchange of massless
vector particles, called gluons, the gauge bosons of the theory. The underly-
ing symmetry group is SU(3), such that each quark appears in three different
versions, “red”, “blue” and “green”. This new quantum number, “color”, is
the equivalent of the electric charge in the case of strong interactions. The
concept of color is supported by direct tests, like the prediction of the ratio of
the total hadronic cross section to the muon pair production cross section in
e+e− annihilation and the decay width of the pion to γγ.

Now we know that quarks exist in three flavours more than initially ex-
pected, “charm”, “bottom” and “top”, and their existence has been confirmed
experimentally by detailed analysis of jets of hadrons emerged from high en-
ergy e-p collisions. While the SU(3) flavor symmetry is only approximately
realized, SU(3) color is an exact symmetry. More specifically, QCD is an un-
broken non-Abelian gauge theory, and this characteristic has two significant
consequences. We already mentioned the first one, which is asymptotic free-
dom, making the strength of the interaction weaker and weaker as we go to
shorter distances, that is inside the hadron itself. The other one is comple-
mentary and makes the interaction stronger at larger distances, implying that
it is impossible to separate the quarks composing the hadrons and to observe
them as free particles. Only objects not carrying color charge can be seen as
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free, which are the hadrons. This phenomenon is called confinement.
These two features have strong practical implications when trying to exploit

the theory to solve strong interaction problems. Indeed, in the high energy
regime, where perturbation theory can be applied due to asymptotic freedom,
the theory proved successful in describing a variety of phenomena with large
momentum transfer. On the other hand, at low energies, due to confinement,
perturbative methods fail making the analysis of QCD phenomena in terms of
quark as fundamental degrees of freedom very difficult.

Furthermore, while in principle QCD was supposed to provide all the an-
swers about the nature of hadrons, it soon became clear that the classification
of mesons and baryons in terms of qq̄ and qqq systems was insufficient to de-
scribe the hadronic spectrum, that was becoming richer and richer as new
resonances were discovered at different facilities and added to the Particle
Data Group [17]. In fact, some new particles seemed to have properties that
cannot fit into the constituent quark description. One of the most popular
example is the case of the Λ(1405), whose mass is anomalously light compared
with the ones of other negative parity baryons, while the lightest scalar mesons
(f0(500) = σ, K∗0 = κ, f0(980), and a0(980)) exhibit inverted spectrum from
what is expected with a qq̄ description. In the last forty years, the amount
of experimental proofs of the inadequacy of the constituent quark model kept
growing. Among others, for example, the discovery of XY Z hadrons, char-
moniumlike or bottomoniumlike states that are seen decaying to final states
containing a heavy quark and a heavy anti-quark, either a c or a b, but that
cannot be accommodated in an unassigned QQ̄ level. Figure 1.4 and Fig-
ure 1.5, taken from Ref. [18], show the state of charmonium and charmoni-
umlike below 4500 MeV, and bottomonium and bottomoniumlike respectively.

Due to the lack of understanding of the long-distance regime of QCD and
the rapidly increasing number of resonances in the hadronic spectrum, many
alternative models based on color symmetry have been formulated. For exam-
ple, just like it is possible to combine the triplet of q = u, d, s light quarks with
the anti-triplet to form multiplets of mesons, one can combine two triplets of
quarks and build multiplets of “diquarks”. Even though diquarks are not color
singlets and cannot exist as free particles, they can combine with other colored
objects to form structures much more complex than qq̄ and qqq and which are
color neutral. These multiquark states are called “exotic” and include pen-
taquark baryons, six-quark H-dibaryons, tetraquark mesons, glueballs (mesons
made only of gluons) and hybrids (a q, q̄ and gluon combination) [19, 20]. An-
other possibility consists in hadronic molecules, deuteron-like bound states of
two (or more) constituent common hadrons kept together by strong interac-
tion. The K̄N quasi-bound picture of the Λ(1405) is one of the examples
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Figure 1.4: Spectrum of charmonium and charmoniumlike states [18].
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Figure 1.5: Spectrum of bottomonium and bottomoniumlike states [18].
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[21–23]. All of them are illustrated in Figure 1.6 (see Ref. [18] for a more
thorough review).

Figure 1.6: Representation of exotic multiquark states [18].

In recent years, chiral perturbation theory (χPT ) [24, 25] has been re-
markably successful in describing hadron structures. This effective approach
to QCD at low energy makes use of Chiral Lagrangians, in which the ground
states of mesons and baryons appear as fundamental degrees of freedom [25–
28]. With these Lagrangians one can make predictions for meson-meson in-
teraction and meson-baryon interaction at lowest order and obtain very good
results in a systematic and technically simple way. Unfortunately, due to its
limited range of convergence, this methods proved to be insufficient to describe
the hadron spectrum in the region of resonances.

The method was improved combining unitarity constraints in coupled chan-
nels of mesons and baryons with the use of chiral Lagrangians in order to
widen the range of applicability. The first attempt to combine unitarity and
χPT was done in Ref. [21], where πN and K̄N scattering were studied in
the region of the N∗(1525) and Λ(1405). The theory resulting from this ex-
tension is usually referred to as chiral unitary approach [21, 22, 29–39] and
it allows to explain many mesons and baryons in terms of the meson-meson
and meson-baryon interactions provided by chiral Lagrangians, interpreting
them as composite states of hadrons. This kind of resonances are commonly
known as “dynamically generated”. In Ref. [30], the author could reproduce
meson-meson scattering in s-wave up to 1.2 GeV, while in Ref. [22] the study
of the meson-baryon interaction with S = −1 led to a good reproduction of
the K̄N scattering properties and to generate dynamically the Λ(1405). In
Refs. [40, 41], the authors could dynamically generate all the resonances up
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to 1.2 GeV, σ(500), f0(980), a0(980), κ(900), ρ and K∗ (although the last two
are consequence of the use of higher order Lagrangians and do not correspond
to molecular states). Many more states followed extrapolating the method at
higher energies, like the Λ(1670) [42], the Ξ(1620) [43], the N∗(1535) [29, 44],
the two Λ(1405) [33–35, 38, 45, 46] and the Λ(1520) [47, 48]. Moreover, also
the interaction of pseudoscalar mesons with vector mesons can be approached
by means of chiral largrangians [49] in a unitary scheme. This led to the dy-
namical generation of the low lying axial vectors mesons h1(1170), h1(1380),
f1(1285), b1(1235), a1(1260), K1(1270) [50–54].

The extrapolation of these ideas to the charm sector led to the prediction
of many new states [55–58]. In Ref. [59], for example, the scalar resonances
D∗s0(2317) and D∗0(2400) are interpreted as a DK bound state and a Dπ res-
onance respectively, while in Ref. [56] a richer scenario is found for axial
resonances, some of them identified with observed states like the controversial
X(3872), the Ds1(2460) and the D1(2430).

A deeper understanding of the properties of the resonances that, in the
last years, seemed to fit into the the dynamically generated scheme and have
been classified as good candidates to be composite hadron-hadron states, is
the motivation of my research work and the purpose of this Thesis. Exploiting
the techniques of chiral unitary approach, better analysed in Chapter 2,
together with other useful theoretical tools, we could address a large variety
of problems.

In Chapter 3 we try to develop a general method to quantify the weight
of the composite character of a given resonance or bound state with respect to
other components (genuine or “exotic”) that can coexist in the wave function.
The procedure, that takes advantage of a very convenient sum rule, will be
applied to concrete cases of meson resonances commonly considered as gen-
uine and, for the first time, to baryons. We will see how, unlike the case of
bound states, the nature of resonances itself makes really hard to give an in-
terpretation of the different terms of the sum rule. We try to give our own in
Chapter 4.

The multiplet of light scalar mesons, among them the f0(980) and the
a0(980), is still a very poorly understood sector of the hadronic spectrum.
The intense debate of the last years did not lead to any inference about their
structure and many different models have been suggested, like tetraquarks
and glueballs. In Chapter 5, we investigate different decays which involve
the a0(980) and f0(980) as intermediate states. The assumption of a molec-
ular pseudoscalar-pseudoscalar nature for these resonances allows us to use a
specific decay mechanism leading to results that seem to corroborate it.

Two chapters of this Thesis are devoted to the study of some of the XY Z
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states we mentioned above. In 2013, BESIII observed a peak in the reaction
e+e− → π+π−J/ψ in the πJ/ψ invariant mass with energy around 3900 MeV.
Right after, Belle and CLEO also measured enhancements with slightly differ-
ent energies and widths, bringing up the question: are they the same state? In
Chapter 6 we try to find an answer and to describe the Zc(3900) in terms of
a molecular DD̄∗ state of I = 1. In the invariant (D∗D̄∗)∓ distribution for the
reaction e+e− → π±(D∗D̄∗)∓, BESIII reports of a peak around 4025 MeV that
we try to interpret as a D∗D̄∗ molecule. We also consider the possibility of a
molecular nature for the Zb(10610) and Zb(10650) keeping into account many
different possible sources of interaction between the two hadrons in I = 1.
On the other hand, Chapter 7 is devoted to the X(3872). We study three
possible decays of this resonance in the dynamically generated picture of Ref.
[56] in order to give support to this assumption. In the last chapter we will
make a summary of the results obtained and draw some conclusions.
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CHAPTER 2

THEORETICAL TOOLS

2.1 Introduction
The aim of this Chapter is to introduce the tools we will need throughout
this Thesis work as they chronologically appeared since the first attempts at
describing strong interactions and the hadronic spectrum.

We will start, in Section 2.2, briefly discussing Quantum Chromodynamics
(QCD), the gauge field theory of strong interaction, which describes the color
interaction of quarks and gluons. This theory is one of the fundamental blocks
of the Standard Model (SM) of Particle Physics being the SU(3) component
of the SU(3)×SU(2)×U(1) gauge theory of the SM, where the SU(2)×U(1)
gauge group describes the electroweak interactions.

This theory is very well understood and it has been shown to be reliable by
experimental tests at high energies, where, thanks to its asymptotically-free
character, perturbation theory can be safely applied. Unfortunately, this per-
turbation theory is not suitable to describe low energy interactions. In fact,
in this domain, the growing of the running coupling constant and the conse-
quent confinement of quarks and gluons into hadrons make the application of
perturbative methods fail.

This is when effective field theories come into play, taking into account
only the degrees of freedom which are relevant at low energy. The effective
field theory of QCD, called Chiral Perturbation Theory (χPT ) [24, 25], is
built on one of its fundamental symmetries, chiral symmetry, and provides
the interactions between the ground states of mesons and baryons. Following
essentially Ref. [60], and with some further help from Refs. [61] and [62], we
address the most important characteristic of χPT in Section 2.3.

Due to its limitations in terms of predictive power and range of conver-
gence, χPT had to be improved by implementing unitarity constraints in the
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2.2 The QCD Lagrangian

formalism. A new technique, called Chiral Unitary Approach [21, 22, 29–39],
followed, and Section 2.4 is dedicated to this.

The last section is devoted to the Hidden Gauge Symmetry formalism, one
of the possible methods to implement spin 1 particles in the theory. The inter-
action of pseudoscalar mesons with vector mesons can be, in principle, dealt
with using chiral Lagrangians [49]. These chiral Lagrangians are also obtained
through the local hidden gauge approach [63–66], exchanging vector mesons
between the vectors and the pseudoscalars in the limit of small momentum
transfers. Interesting developments using these Lagrangians within a unitary
scheme in coupled channels led, for example, to the generation of the low lying
axial vectors from the interaction of these mesons [50–54].

2.2 The QCD Lagrangian
The gauge theory describing the strong interactions among quarks and glu-
ons is called Quantum Chromodynamics. Its underlying gauge group is color
SU(3) (SU(3)C), introduced for the first time into the quark model in order
to account for the Pauli exclusion principle in the wave functions of baryons.
The matter fields of this theory are called quarks, spin 1/2 fermions existing in
three different flavours in addition to the three possible colors. We will denote
these fields as qf , consisting, for every flavour f , in a color triplet

qf =

qf,rqf,g
qf,b

 , (2.1)

with r=“red”, g=“green” and b=“blue”.
The free Lagrangian for these fields, can be written as

L0 =
∑
f

q̄f (iγ
µ∂µ −mf )qf , (2.2)

where γµ are the Dirac matrices, and it is invariant under arbitrary global
SU(3)C transformation in color space,

qαf → (qαf )′ = Uα
β q

β
f , (2.3)

with UU † = U †U = 1 and detU = 1. The matrix U can be written as

U = exp

(
−igλ

a

2
θa

)
, (2.4)
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where θa are arbitrary parameters. The λa (a = 1, ..., 8) matrices are the
generators of the fundamental representation of the SU(3)C algebra, which
are traceless and satisfy the commutation relations

[λa, λb] = 2ifabcλ
c , (2.5)

with fabc the SU(3)C structure constants.
According to the gauge principle, the gauge invariance must hold locally,

so we require the Lagrangian to be invariant under local transformation of
SU(3)C , θa = θa(x), leading to the introduction of a covariant derivative,

Dµqf =

(
∂µ − igs

λa

2
Aaµ
)
qf , (2.6)

which contains the eight different gauge fields needed, Aaµ, the so called gluons.
The quantity gs is the strong coupling constant.

The covariant derivative must transform exactly as the quark fields, that
is

Dµ → (Dµ)′ = UDµU † , (2.7)

and it fixes the transformation of the gauge fields

Aµ → (Aµ)′ = UAµU † − i

gs
(∂µU)U † . (2.8)

In the last equation we defined (Aµ)αβ ≡
(
λa

2

)
αβ
Aaµ. The covariant derivative

acts on color and Dirac indices but it is independent of flavour. The behaviour
of the fields under infinitesimal transformations of SU(3)C reads

qαf → (qαf )′ = qαf − igs
(
λa

2

)
αβ

δθaq
β
f , (2.9)

Aaµ → (Aaµ)′ = Aaµ − ∂µ(δθa) + gsfabcδθ
bAcµ . (2.10)

In order to build a gauge-invariant kinetic term for the gluon fields, we
must introduce the field strength tensor,

Gµν ≡
λa

2
Gaµν

Gaµν = ∂µAaν − ∂µAaµ + gsfabcAbµAcν , (2.11)

whose transformation under SU(3)C is given by

Gµν → (Gµν)′ = UGµνU † . (2.12)

13



2.2 The QCD Lagrangian

At this point we have all the ingredients to write the SU(3)C invariant
QCD Lagrangian, that reads

LQCD =
∑
f

q̄f (i /D −mf )qf −
1

4
Ga
µνG

aµν , (2.13)

The second term in Eq. (2.13) gives rise to gauge fields self-interactions in-
volving vertices with three and four gauge fields, characteristic of non-Abelian
theories.

2.2.1 Running Coupling and Confinement
We define a Quantum Field Theory renormalizable when it is possible to re-
absorb all the ultraviolet divergences through a redefinition of the original
fields and couplings. This redefinition is meaningful only if self-consistent, in
the sense that all the ultraviolet divergent contributions to all the possible
scattering processes must be eliminated through the same redefinition of the
coupling. Gauge theories such as QED or QCD have an underlying gauge
symmetry that guarantees the renormalizability of the theory.

The redefinition introduces a dependence on an arbitrary energy scale µ,
depending on the chosen renormalization scheme, such that for the renormal-
ized coupling we have αR = g2

s/4π = αs(µ
2), that we call running coupling

constant. For a given process, the scale µ can be identified with the momentum
transfer Q2 = −q2, such that αs(µ

2) = αs(Q
2).

The scale dependence is regulated by the so called β-function by means of
the following equations:

µ
dαs
dµ
≡ αsβ(αs) , β(αs) = β1αs + β2α

2
s + ... . (2.14)

At the one loop level the β-function reduces to the first coefficient β1 and,
from the calculation of the relevant diagrams one gets [15, 16]

β1 =
Nf − 11Nc

6
. (2.15)

The positive contribution proportional to Nf is generated by the qq̄-loops and,
up to a constant, it is the same that one finds in the case of QED. The negative
contribution proportional to Nc is the novelty of QCD and it is introduced by
the self-interactions among gluons, due to the non-Abelian character of the
theory. This contribution is responsible for the completely different behaviour
of QCD with respect to QED. In fact, for Nf ≤ 16, β1 < 0 such that, for the
corresponding QCD running coupling

αs(Q
2) =

αs(Q
2
0)

1− β1
αs(Q2

0)

2π
ln(Q2/Q2

0)
, (2.16)
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one finds
lim
Q2→∞

αs(Q
2) = 0 . (2.17)

This last equation is the formalization of asymptotic freedom, one of the fea-
tures of QCD, discovered independently by Gross and Wilczek [15] and by
Politzer [16]. This phenomenon implies that at very small distances the quarks
behave as free particles. The important consequence is that, at least at high
energies, the use of perturbative methods to evaluate diagrams is allowed and
successful.

Apart from the introduction of a dependence on the energy, we need a
reference scale to decide whether a given Q2 can be considered large or not.
Solving the differential equation (2.14) at one loop, one gets

lnµ+
π

β1αs(µ2)
= lnΛ , (2.18)

where lnΛ is an integration constant. It follows

αs(µ
2) =

2π

−β1ln(µ2/Λ2)
. (2.19)

When µ >> Λ, αs(µ
2)→ 0, and asymptotic freedom is recovered. On the other

hand, at lower energies the running coupling gets bigger and we have that for
µ → Λ, αs(µ

2) → ∞, such that perturbation theory is no longer applicable
and Λ provides the scale when the coupling of QCD blows up. Although this
is not a proof, since perturbation theory is no longer valid at µ→ Λ, this last
argument tells us that the phenomenon of confinement is plausible in QCD.

Gluons are massless particles, like photons. Yet, the range of strong in-
teractions is extremely small. Almost certainly, this apparent contradiction is
tied to the behaviour of the coupling constants αs. Let us consider the colour
force between a quark and an antiquark bound in a meson. If αs really in-
creases with increasing distance, whatever finite amount of energy we supply
to the system, the quark and the antiquark will not become free particles.
Increasing the separation, the colour force will become even stronger, and this
is caused by the gluon self-coupling. Through the coupling of gluons to one
another the colour fields line of force between the quark and the antiquark are
obliged to form a tube as if there where actractive forces between the field
lines. As the qq̄ distance r increases, the potential energy of the system in-
creases in proportion to r and the quarks and the gluons cannot be freed. This
gives rise to the total confinement of quarks and gluons inside hadrons, which
are color neutral, or singlets and that are the only observable states [67].

This is why, in order to do quantitative calculation in this energy regime
we need other methods like, for example, Effective Field Theories [24], where
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Flavor Mass

Light Sector
u (1.8− 3.0) MeV
d (4.5− 5.3) MeV
s (95± 5) MeV

Heavy Sector
c (1.275± 0.025) GeV
b (4.1− 4.7) GeV
t ' 174 GeV

Table 2.1: Masses of the six different quarks [17].

one uses the the most general Lagrangian involving the relevant degrees of
freedom at the energy scale of interest that is consistent with the underlying
symmetries. This will be the subject of the next section.

2.3 Hints of Chiral Perturbation Theory
Chiral Perturbation Theory (χPT ) is the effective theory of QCD in the low
energy regime and it is based on the chiral symmetry properties of QCD.
Effective field theories are the appropriate theoretical tool to study low-energy
physics since the basic idea is to take explicitly into account only the relevant
degrees of freedom, i.e. the lighter particles with mass m � Λ, where Λ is
the energy scale of the problem. Thus, the dynamics are described by effective
Lagrangians containing only the interactions among the light states, organized
as an expansion in powers of E/Λ. The information about the heavier degrees
of freedom is contained in the couplings of the low-energy Lagrangian, which
also incorporate all the symmetries of the underlying fundamental theory.

We know that quarks exist in six different flavors that can be divided into
the three light ones (u, d, s) and the three heavy flavors (c, b, t), whose
masses are listed in Table 2.1. Due to the pronounced separation between the
light and the scalar sector, it seems reasonable to start the discussion from
a Lagrangian, that we will call L0

QCD, containing only the fields of the light
quarks in the limit mu,md,ms → 0, which is known as chiral limit.

2.3.1 Chiral Symmetry
The QCD Lagrangian, in the limit of massless u, d and s quarks, can be written
as

L0
QCD = −1

4
Ga
µνG

aµν + iq̄LγµD
µqL + iq̄RγµD

µqR , (2.20)
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where qR,L = 1
2
(1± γ5)q. This lagrangian exhibits a global symmetry

SU(3)L × SU(3)R × U(1)V × U(1)A . (2.21)

The question arises whether or not the hadron spectrum is, at least approxi-
mately, in accordance with these symmetries.

At the hadronic level, U(1)V is realized as the baryon number conserva-
tion and trivially realized in the meson sector, while the axial U(1)A is not a
symmetry at the quantum level (Abelian anomaly [68–70]). Under the chiral
group G ≡ SU(3)L × SU(3)R, the left- and right-handed fields transform as

qL
G−→ gLqL , qR

G−→ gRqR gL,R ∈ SU(3)L,R . (2.22)

The Noether currents of the chiral group G are

JaµR,L = q̄R,Lγ
µλ

a

2
qR,L , (a = 1, ..., 8) , (2.23)

with the corresponding charges given by

QR,L =

∫
d3xJa 0

R,L(x) (2.24)

and satisfying the commutation relations [Qa
A, Q

b
B] = iδABfabcQ

c
A, where A =

R,L and B = R,L.
However, chiral symmetry is not even approximately realized in the hadronic

spectrum. Yet, from the 16 generators of the chiral group G in Eq. (2.24), it
is possible to construct the linear combinations

Qa
V = Qa

R +Qa
L , Qa

A = Qa
R −Qa

L , (a = 1, ..., 8) , (2.25)

which represent the vectorial and axial charges respectively. The generators
Qa
V form a Lie algebra corresponding to the subgroup H = SU(3)V of the

chiral group G.
In Ref. [71] it was shown that, in the chiral limit, the ground state is

necessarily invariant under the group H, which means that the generators
annihilate the ground state, i.e.

Qa
V |0〉 = 0 . (2.26)

In a very famous paper of 1966, Coleman showed that the symmetry of the
energy spectrum is determined by the symmetry of the ground state [72],
and we then expect the symmetry pattern of the hadron spectrum to follow
SU(3)V symmetry. This is actually the situation at the experimental level,
since hadrons are organized in multiplets of SU(3)V . On the other hand, no

17



2.3 Hints of Chiral Perturbation Theory

degeneration between the JP = 0+ and JP = 0− is observed, indicating that
the axial generators Qa

A do not annihilate the ground state. This means that
the ground state is not invariant under the full symmetry group, which is
spontaneously broken to SU(3)V .

According to the Goldstone theorem [73, 74], to each generator that com-
mutes with the Hamiltonian and does not annihilate the ground state corre-
sponds a massless Goldstone boson, whose properties are strictly related to
the ones of the generator. The generators Qa

A have negative parity, baryon
number zero and transform as an octet under the subgroup SU(3)V . Hence,
one expects the Goldstone bosons to have the same properties. Although not
exactly massless, the octet of the light pseudoscalar mesons (π,K, η) is iden-
tified with the Goldstone bosons, and the finite masses of the physical states
are interpreted as a consequence of the explicit symmetry breaking due to the
finite masses of the u, d and s quarks [75].

Due to the mass gap separating the pseudoscalars from the rest of the
hadronic spectrum, the most natural thing to do is to construct an Effective
Field Theory containing only these degrees of freedom, whose interactions are
strongly constrained by their Goldstone nature. In the following subsection we
will derive the most general theory describing the dynamics of the Goldstone
bosons associated with the spontaneous breaking of chiral symmetry.

2.3.2 The lowest-order effective Lagrangian
We want our Lagrangian to contain exactly eight pseudoscalar degrees of free-
dom transforming as an octet under the subgroup H = SU(3)V . These eight
variables can be collected in the 3× 3 unitary matrix transforming, under the
chiral group G, as

U(φ)
G−→ gR U(φ) g−1

L , (gL, gR) ∈ G . (2.27)

There exist different parametrizations for U(φ) but the most convenient is the
exponential one which, for Nf = 3, reads

U(φ) = u(φ)2 = exp

(
i

√
2φ

f

)
, (2.28)

with

φ(x) =
λa√

2
φa =


η8√

6
+ π0
√

2
π+ K+

π− η8√
6
− π0
√

2
K0

K− K̄0 −2η8√
6

 . (2.29)

The constant f in Eq. (2.28) turns out to be the pion decay constant in the
chiral limit, f = 93 MeV.

18



Theoretical Tools

In order to get the low-energy effective Lagrangian, we must write the most
general Lagrangian we can write containing the matrix U(φ) and respecting
chiral symmetry. This Lagrangian can be organized in terms of increasing
powers of momentum, which is equivalent to say increasing number of deriva-
tives. Due to parity conservation, the number of derivatives must be even,
such that

Leff =
∑
n

L2n , (2.30)

with n the order of the expansion. Since the U matrix is unitary, we need at
least two derivatives to have a non-trivial interaction. Thus, at lowest-order,
the effective chiral Lagrangian is given by one single term:

L2 =
f 2

4
〈∂µU †∂µU〉 , (2.31)

where 〈 〉 stands for the trace and the constant f 2/4 in Eq. (2.31) is fixed to
properly normalize the kinetic terms.

Expanding the exponential in U(φ) in powers of φ we can explicitly write
the kinetic term plus the interactions involving an always increasing number
of pseudoscalar mesons:

L2 =
1

2
〈∂µ φ ∂µ φ〉+

1

12f 2
〈(φ

↔
∂µ φ)(φ

↔
∂µ φ)〉+O(φ6/f 4) . (2.32)

It is important to stress that all the interactions among the Goldstone bosons
are fixed by the single coupling f .

2.3.3 Coupling to external sources
It is necessary to distinguish between dynamical and external fields, needed to
incorporate electromagnetic and leptonic interactions. The idea is to extend
the chiral invariant QCD Lagrangian of Eq. (2.13) by coupling the quarks to
external hermitian matrix fields, vµ, aµ, s and p such that ([25, 76])

L = L0
QCD + q̄γµ(vµ + γ5aµ)q − q̄γµ(s− iγ5p)q . (2.33)

The external photons and W boson fields are among the gauge fields vµ
and aµ:

rµ ≡ vµ + aµ = eQAextµ + ... ,

lµ ≡ vµ − aµ = eQAextµ +
e√

2 sinθW
(W †

µT+ + h.c.) + ... ,
(2.34)

with

Q =
1

3
diag(2,−1,−1) (2.35)
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the quark charge matrix and

T+ =

 0 Vud Vus
0 0 0
0 0 0

 , (2.36)

where Vij are the Kobayashi-Maskawa mixing matrix elements.
The Lagrangian in Eq. (2.33) is invariant under the following local SU(3)L×

SU(3)R transformations

qL → gL qL ,

qR → gR qR ,

s+ ip→ gR (s+ ip) g†L ,

lµ → gL lµ g
†
L + igL ∂µ g

†
L ,

rµ → gR rµ g
†
R + igR ∂µ g

†
R .

(2.37)

It is then possible to build the generalized effective Lagrangian for the
Goldstone bosons in presence of external sources as

L2 =
f 2

4
〈DµU

†DµU + U †χ+ χ†U〉 , (2.38)

where now the covariant derivative Dµ will contain the gauge fields vµ and aµ
in order to respect local invariance,

DµU = ∂µU − irµ U + iU lµ ,

DµU
† = ∂µU

† + iU † rµ − ilµ U † .
(2.39)

The matrix χ in Eq. (2.38) is defined as

χ = 2B0(s+ ip) , (2.40)

with B0 a constant which, like f , is not fixed by the symmetry.
One can incorporate the explicit breaking of chiral symmetry by means of

the quark masses fixing the scalar term

s =M = diag(mu,md,ms) (2.41)

and p = 0. Hence, the χ term in Eq. (2.38) will give rise, apart from other
interactions proportional to the quark masses, to a quadratic pseudoscalar
mass term from where it is possible to derive, in the isospin limit (mu =
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md = m̂), the following relations between the quark masses and the ones of
the Goldstone bosons:

m2
π = 2m̂B0 ,

m2
K = (m̂+ms)B0 ,

m2
η8

=
2

3
(m̂+ 2ms)B0 ,

(2.42)

with m̂ = (mu +md)/2. Using Eqs. (2.42) we can write the mass matrix χ as

χ =

 m2
π 0 0

0 m2
π 0

0 0 2m2
K −m2

π

 . (2.43)

If we limit the expansion to the Lagrangian of Eq. (2.38), we are taking
into account only tree-level diagrams. This can be easily seen remembering
that, for a general connected diagram with Nd vertices of O(pd), d = 2, 4, ...
and L loops, the chiral dimension is given by the formula [24]

D = 2L+ 2 +
∑
d

Nd(d− 2) . (2.44)

From this last equation it is clear that when D = 2, that is at lowest order, one
must have L = 0 and d = 2, which means that only tree-level contributions
can come from L2. In order to include corrections we need to go to higher
orders. For instance, at O(p4) there are contributions at tree-level from L4

(for L = 0, d = 4 and N4 = 1) and also one-loop diagrams coming from L2

(with L = 1, d = 2). In the next section we shortly introduce the structure of
the L4 Lagrangian.

2.3.4 Chiral Lagrangian at O(p4)

The most general Lagrangian invariant under the local chiral transformations
of Eqs. (2.37), parity, charge conjugation and Lorentz transformations is given
by [76]

L4 = L1〈DµU
†DµU〉2 + L2〈DµU

†DνU〉〈DµU †DνU〉
+ L3〈DµU

†DµUDνU
†DνU〉+ L4〈DµU

†DµU〉〈U †χ+ χ†U〉
+ L5〈DµU

†DµU(U †χ+ χ†U)〉+ L6〈U †χ+ χ†U〉2

+ L7〈U †χ− χ†U〉2 + L8〈χ†Uχ†U + U †χU †χ〉
− iL9〈F µν

R DµUDνU
† + F µν

L DµU
†DνU〉+ L10〈U †F µν

R UFLµν〉
+H1〈F µν

R FRµν + F µν
L FLµν〉+H2〈χ†χ〉 ,

(2.45)
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where

F µν
L = ∂µlν − ∂νlµ − i[lµ, lν ] ,
F µν
R = ∂µrν − ∂νrµ − i[rµ, rν ] (2.46)

are the strength tensors for the lµ and rµ fields. The terms proportional to H1

and H2 do not contain the pseudoscalar fields. This means that they are not
directly measurable.

Thus, at O(p4) we have ten additional couplings, Li, called low energy
constants (LEC). These constants are not fixed by chiral symmetry. Analo-
gously to the couplings f and B0, they contain information on the underlying
QCD dynamics. In principle, it should be possible to calculate all the LEC
as functions of the QCD scale ΛQCD and of the quark masses, but, at present
time, the information about these couplings comes mainly from low-energy
phenomenology.

From a practical point of view, these coefficients are also required for renor-
malization purposes. Indeed, the Goldstone loops are divergent and need to be
renormalized. If one uses a regularization method preserving the symmetries
of the theory, such as dimensional regularization, the counter-terms needed to
renormalize the theory are symmetric. Since we built an effective Lagrangian
containing all the possible terms allowed by symmetry, the divergences can be
reabsorbed in the renormalization of the coupling constants contained in the
Lagrangian. The one-loops diagrams calculated using vertices of L2 generate
infinities that are of O(p4) and cannot be reabsorbed by a renormalization
of the couplings f and B0 and must be necessarily reabsorbed in the LEC
contained in Eq. (2.45). The renormalized coupling Lri will depend on an
arbitrary scale of dimensional regularization µ.

Though the number of constants is quite big at O(p4), a given observable
only takes contributions from a few of them. For example, in absence of
external sources, Eq. (2.45) only contains the first three terms, implying that
elastic ππ and πK scattering is only sensitive to the values of L1, L2 and L3,
while L4 and L5 generate mass corrections to the meson decay constants and
so on. The present status of the phenomenological determination of the LEC
is reported in Table 2.2. The values listed refer to a renormalization scale
µ = Mρ.

χPT is an expansion in terms of momenta over some typical hadronic scale
Λχ, which is called scale of Spontaneous Chiral Symmetry Breaking (SCSB)
and considered ΛχPT ' 1 GeV, that is the energy region where resonances
start to appear. One can make an estimate of the expected size of the LEC
Li in terms of the SCSB scale comparing the Lagrangians L2 and L4,

Li ∼
f 2/4

Λ2
χPT

∼ 10−3 , (2.47)
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i Lri (Mρ)× 103

1 0.4± 0.3
2 1.4± 0.3
3 −3.5± 1.1
4 −0.3± 0.5
5 1.4± 0.5
6 −0.2± 0.3
7 −0.4± 0.2
8 0.9± 0.3
9 6.9± 0.7
10 −5.5± 0.7

Table 2.2: Phenomenological values of the renormalized couplings Lri (Mρ).

in agreement with what reported in Table 2.2. This means that below the
resonance region, p < Mρ, we have a good convergence of the expansion.

Hence, we saw that ten additional coupling appear in the Lagrangian at
O(p4). The first attempt to construct the most general Lagragian in SU(3)
at O(p6) was made in Ref. [77]. Although it was found in there that the
original list of terms contained redundant structures, even the final number of
94 parameters is very large and it seems unlikely that all of them can be fixed
through comparison with experimental data as in the case of L4. Such a rapid
increase in the number of couplings needed to describe the theory at higher
orders, implies a fast loss of predictive power.

2.4 Non-perturbative methods
We saw that, although χPT is a very powerful tool in the low energy region,
its Lagrangian consists of an expansion in the powers of the external momenta
of the Goldstone bosons over some typical scale Λχ, which is smaller than
the masses of the heavier particles. In QCD, resonances typically appear for√
s ≥ 0.8 GeV, so that ΛχPT ≤ 1 GeV, and when this happens, there is no way

to reproduce them from a perturbative expansion, since they are associated
to poles in the scattering amplitude. If one includes higher orders corrections,
χPT results valid up to energies around 500 MeV with ΛχPT ' 1 GeV.

As mentioned at the end of the previous section, another drawback of this
effective theory is the fact that its predictive power is rapidly lost when trying
to increase the energy region of applicability going to higher orders. While at
O(p2) the χPT Lagrangian without baryons contains only the masses of pions,
kaons and etas and fπ, at O(p4) there are 12 free parameters, that become
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more than 100 at O(p6). For these two reasons, the development of non-
perturbative methods capable of extending the validity of the theory without
losing predictive power, became necessary.

Different independent non-perturbative approaches have been used rather
successfully to reproduce important features of meson-meson interactions in-
cluding resonances, and they are the inverse amplitude method (IAM), the
Bethe-Salpeter (BS) equation method and the N/D method. Although for-
mally different, these three methods share an important feature consisting in
the imposition of unitarity.

The IAM was first suggested in Refs. [78, 79] and makes use of the lowest
order chiral Lagrangian as well as the next to leading order (O(p4)). The
method, although rather successfull in generating the ρ, K∗ and σ resonances,
had strong limitations due to the imposition of only elastic unitarity, that
does not allow a coupled channel treatment necessary to obtain the poles of
the a0(980) and the f0(980). The formalism based on the N/D method [80],
on the other hand, was developed in Ref. [41] in order to provide the most
general structure for an arbitrary partial wave amplitude when the unphysical
cuts are neglected or, changing the perspective, treated perturbatively, so that
the method can be considered as the zero order of a most general approach.
The main conclusion of Ref. [41] is that it is possible to obtain an accurate
description of the scalar sector compared to experiment. Moreover, contrary
to what happens for the vector sector, for the scalar sector the unitarization
of the O(p2) χPT amplitude is sufficient to produce meson-meson states like
the σ(500), a0(980), κ(900) and a strong contribution to the f0(980).

However, the method we will use throughout this thesis work is the LS
Equation method, first developed in Ref. [30] to investigate the J = 0 sector
alone. In the next section we will make a brief summary of the idea behind
this approach.

2.4.1 The Bethe-Salpeter equation method
The starting point of the method is the standard chiral Lagrangian of χPT
at lowest order, L2, since it contains the most general interactions among
the mesons of the pseudoscalar octet. The amplitudes derived from this La-
grangian are the potentials that will be used in the coupled channels scattering
equation. The basic assumption in the method is that the lowest order Hamil-
tonian provides the potential Vij (where i is the initial and j the final channel)
that must be iterated in the Lippmann-Schwinger (or Bether-Salpeter if we
use relativistic propagators) in coupled channels. For example, in the case of
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only two coupled channels, the coupled channels equations read

T11 = V11 + V11G11T11 + V12G22T21 ,

T21 = V21 + V21G11T11 + V22G22T21 ,

T22 = V22 + V21G11T12 + V22G22T22 ,

(2.48)

with

Gii = i
1

q2 −m2
1i + iε

1

(P − q)2 −m2
2i + iε

, (2.49)

where P is the total four-momentum of the meson-meson system. The term
V GT in Eqs. (2.48) stands for

V GT =

∫
dq4

(2π)4
V (k, p, q)G(P, q)T (q, k′, p′) . (2.50)

At the diagrammatic level, Eq. (2.50) implies the series in Figure 2.1. In this
approach, the loop in Eq. (2.50) is regularized using a cutoff qmax. This param-
eter, is the only degree of freedom in the model and it is fixed by experimental
data.

In principle, V and T in Eq. (2.50) should be taken off-shell but it is
shown in Ref. [30] that only the on-shell informations are needed. Following
Ref. [30], we will summarize the argument in the case of one loop and one
channel, for simplicity.

The on-shell amplitudes can be obtained simply taking p2
i = m2

i , where pi
is the four-momentum of the particle. This means that we can separate the
off-shell and the on-shell part of the tree-level potentials V as

V = Von + β
∑
i

(p2
i −m2

i ) , (2.51)

leading to

V 2 = V 2
on + 2 β Von

∑
i

(p2
i −m2

i ) + β2
∑
ij

(p2
i −m2

i )(p
2
j −m2

j) . (2.52)

Let us assume that in the second term of Eq. (2.52) we have (P − q)2 −m2
2.

the term will cancel the second propagator of Eq. (2.49) and the remaining
integration gives

2 β Von i

∫
d4q

(2π)4

1

q2 −m2
1

=
2 β Von
(2π)3

∫
d3q

2ω1

= β
Von
2π2

∫
dω1 q . (2.53)

For the second pole the procedure is identical. The last expression, for a
large energy scale Λ compared to the masses, goes as VonΛ2 and has, in the
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dynamical variables, the same structure as the tree-level diagrams. The term
proportional to β2 in Eq. (2.53) gives rise, for the pole q0 = ω1(q), to a term

β2

(2π)3

∫
d3q

2ω1

[(P 0−ω1)2−ω2
2] =

β2

(2π)3

∫
d3q

2ω1

[P 02−2ω1P
0+(m2

1−m2
2)] , (2.54)

while in the case of the second pole, q0 = P 0 + ω2(q), we get

β2

(2π)3

∫
d3q

2ω2

[P 02 + 2ω2P
0 + (m2

2 −m2
1)] . (2.55)

The terms linear in P 0 in the last two equations cancel exactly, while the
term proportional to [P 02− 2ω1P

0 + (m2
1−m2

2)] leads to a contribution of the
type [P 02 + (m2

1−m2
2)]Λ2, and an analogous structure, [P 02 + (m2

2−m2
1)]Λ2, is

generated by the quadratic term in Eq. (2.55). These terms, together with the
VonΛ2 one, combine with the tree level contributions, generating an amplitude
with the same structure of the tree-level one but with renormalized parameters,
f and masses. Once physical values are taken for these parameters, these
terms can be simply omitted. Thus, V and T can be taken on-shell and
factorized outside the integral. The integration in dq0 can be done analytically
by choosing the contour in the lower half of the complex plane, such that the
factorized on-shell coupled-channels equations read

Tij = Vij + VilGll Tlj , (2.56)

with

Gll =

∫ qmax

0

dq

(2π)2

q2 (ω1 + ω2)

ω1 ω2 (s− (ω1 + ω2)2 + iε)
. (2.57)

In Eqs. (2.56) and (2.57), s = P 02 is the center of mass energy of the meson-
meson system, ωi =

√
q2 +m2

i and the subindex i = 1, 2 stands for the two
intermediate particles in the l channel. In matrix form, Eqs. (2.56) can be
written as

T = V + V GT , (2.58)

or equivalently as
T = [1− V G]−1 V . (2.59)

This is the matrix form of the Bethe-Salpeter equation, that we will use to eval-
uate scattering amplitudes in coupled channels throughout this Thesis work.

At this point, the coupled channels equations of Eqs. (2.48) reduce to a
set of algebraic equations:

AT = V , (2.60)

with
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T =

T11

T21

T22

 , V =

V11

V21

V22

 , (2.61)

A =

1− V11G11 −V12G22 0
−V21G11 1− V22G22 0

0 −V21G11 1− V22G22

 . (2.62)

The loop function G of Eq. (2.57) can also be expressed, in dimensional
regularization [41], as

Gll =
1

16π2
(αj(µ) + log

m2
1

µ2
+
m2

2 −m2
1 + s

2s
log

m2
2

m2
1

+
p√
s

(log
s−m2

2 +m2
1 + 2p

√
s

−s+m2
2 −m2

1 + 2p
√
s

+ log
s+m2

2 −m2
1 + 2p

√
s

−s−m2
2 +m2

1 + 2p
√
s

)) . (2.63)

The equivalence between the two prescriptions has been shown in Ref. [33].
In Eq. (2.63), p is the three-momentum of the mesons in the centre of mass

p =

√
(s− (m1 +m2)2)(s− (m1 −m2)2)

2
√
s

=
λ1/2(s,m2

1,m
2
2)

2
√
s

, (2.64)

and µ is the arbitrary scale of the regularization and λ is the Källén function.
Changes in the scale are reabsorbed by the subtraction constant α(µ), such
that the result is independent of the scale. From a comparison between Eqs.
(2.57) and (2.63) it is possible to determine the subtraction constant for every
intermediate state of the scattering problem.

2.4.2 Equivalence between IAM and the Bethe-Salpeter
equation method

In Ref. [32] the equivalence between the IAM method and the use of the
Bethe-Salpeter equation is shown. The IAM consists in a resummation of
χPT based on the expansion of T−1. Unitarity is implemented in coupled
channels by means of the formula

ImTif = Tin σnn T
∗
nf , (2.65)

where σ is the diagonal matrix whose elements account for the phase-space of
the two mesonic intermediate states n which are physically accessible, defined
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in our normalization as

σnn(s) = − p

8π
√
s
θ(s− (m1 −m2)2) . (2.66)

Using the informations contained in χPT up to O(p4) to approximate the
amplitude T , one arrives to write it as

T = T2 [T2 − T4]−1 T2 . (2.67)

Eq. (2.67) is the generalization to multiple coupled channels of the IAM of
Refs. [78, 81], which makes the method more general allowing for transition
cross sections and inelasticities.

However, Eq. (2.67) requires the complete evaluation of T4, which can
be complicated when dealing with many channels, and a technically simpler
but still accurate approximation could be useful. The loop function G of Eq.
(2.57) has the property

ImGnn(s) = σnn . (2.68)

As we already said, the real part of G is divergent and needs to be regularized.
We assume that by means of a suitable choice of the cutoff qmax we can write
the approximation

ReT4 ' T2 ReGT2 . (2.69)

Using Eq. (2.69), it is straightforward to show that the IAM amplitude
leads to the one of the Bethe-Salpeter Equation method. In fact, from Eq.
(2.67),

T = T2 [T2 − ReT4 − ImT4]−1 T2

= T2 [T2 − T2ReGT2 − ImT4]−1 T2 ,
(2.70)

and recalling that, above threshold,

ImT4 = T2 σ T2 = T2 ImGT2 , (2.71)

it follows
T = [1− T2G]−1 T2 , (2.72)

that is exactly Eq. (2.59).

2.5 Poles and couplings
The identification of resonances proceeds by means of their association to the
poles of the scattering matrix. According to the scattering theory, when we
have a pole for Im(p) > 0 and Re(p) = 0, corresponding to the real s axis below
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the lowest threshold, we found a bound state. On the other hand, resonances
appear for Im(p) < 0 and Re(s) above the lowest threshold, which is called
the second Riemann sheet of the function T (s). If these poles are not too far
from the real axis, their imaginary part can be identified with half the width
of the state, such that

√
sP = (mR ± iΓ

2
). However, what is really physically

meaningful is the amplitude evaluated for real values of
√
s, corresponding to

the reflection of the pole on the real axis.
We will denote the amplitude in the second Riemann sheet by

T II = [1− V GII ]−1 V , (2.73)

and in order to evaluate it, we need the loop function Gjj extrapolated to
the second Riemann sheet, GII

jj . As explained in Refs. [30, 51], GII
jj can be

evaluated by means of the Schwartz reflection theorem: if a function f(z) is
analytic in a region of the complex plane including a portion of the real axis
in which f is real, then

[f(z∗)]∗ = f(z) . (2.74)

The conditions above are satisfied by the G function and consequently, for
Re
√
s > m1 +m2,

Gjj(
√
s− iε) = [Gjj(

√
s+ iε)]∗ = Gjj(

√
s+ iε)− i 2 ImGjj(

√
s+ iε) . (2.75)

The equation above, since the beginning of the second Riemann sheet coincides
with the end of the first one, can be rewritten as

GII
jj (
√
s+ iε) = GI

jj(
√
s− iε) = GII

jj (
√
s+ iε)− i 2 ImGI

jj(
√
s+ iε) , (2.76)

with
ImGI

jj = − p

8π
√
s
, (2.77)

and GI
jj(
√
s) is given by Eq. (2.63). Eqs. (2.76) and (2.77) should hold only

very close to the real axis, but since the analytic continuation to the rest of
the complex plane is unique, in general one can write

GII
jj (
√
s) = GI

jj(
√
s) + i

p

4π
√
s
, Im(p) > 0 . (2.78)

This last equation allows the evaluation of the scattering amplitude and,
therefore, to systematically look for resonances searching for its poles. Through-
out this work, we will consider as dynamically generated all those resonance
appearing as poles in the second Riemann sheet of the scattering amplitude
evaluated by means of Eq. (2.59), that is from the coupled-channels Bethe-
Salpeter equation where the hadron-hadron tree-level potentials coming from
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the chiral Lagrangians at O(p2) are used as the kernel. In Eq. (2.59), we will
use GII

jj when the j channel is open, that is when Re
√
s > m1 +m2, and GI

jj for
Re
√
s < m1 + m2. This also allows, when we are below the lowest threshold,

to obtain poles corresponding to pure bound states.
At this point, it is also possible to evaluate the couplings gi of the state

to the different hadron-hadron channels remembering that, close to the pole
of the resonance, the amplitude in the complex plane for a diagonal transition
can be written as

Tii(s) '
g2
i

s− sR
, (2.79)

where sR is the position of the resonance. Hence, the coupling can be evaluated
as the residue at the pole of Tii(s), using the formula∫ 2π

0

Tii(z(θ)) i r eiθdθ = 2πiRes(Tii) = 2πi g2
i , (2.80)

with z = z0 + r eiθ and z0 = mR + iΓ/2.

2.6 Hidden Gauge Formalism
Among all the method that could be used to implement spin 1 particles in the
effective theory (see Ref. [49] for a review), one is the formalism of hidden
gauge for vector mesons [63, 64], an internally consistent scheme naturally im-
plementing chiral symmetry. As reported in Ref. [82], in this formalism the
vector mesons are gauge bosons of a hidden local symmetry transforming inho-
mogeneously. After taking the unitary gauge, the vector meson fields transform
exactly as in the nonlinear realization of chiral symmetry [26]. This method
is ideal since it provides a way to deal simultaneously with vector mesons and
pseudoscalars and it leads to the same lowest order chiral Lagrangian of Ref.
[76].

Another important feature of the approach is that, although much simpler,
it has been proven in Refs. [83] to be equivalent to using the tensor formalism
for vector mesons [84], where the vectors transform inhomogeneously under a
non linear realization of chiral symmetry, with the use of couplings implied in
the vector meson dominance formalism. Moreover, besides the interaction of
vector mesons with pseudoscalars, the formalisms of hidden gauge also contain
the interaction of vector mesons with themselves, for which there were no
Lagrangians available in the formalism of Ref. [84].

In Refs. [64, 65, 85] the axial vector mesons are introduced as elementary
particles in the hidden gauge symmetry Lagrangian, but in Ref. [82] they
are treated as generated by the interaction of mesons and this allows the
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inclusion of photons in the theory. When axial resonances are considered as
composite particles of vector and pseudoscalars, the coupling to the photon is
made through its component, and proceeds through loop diagrams involving
the corresponding vector and pseudoscalar mesons of each channel.

Following Ref. [82] we can write the Lagrangian involving pseudoscalars,
vector mesons and photons as

L = L2 + LIII , (2.81)

where L2 is the chiral Lagrangian at O(p2) of Eq. (2.33) while

LIII = −1

4
〈VµνV µν〉+

1

2
M2

V 〈
(
Vµ −

i

g
Γµ

)2

〉 , (2.82)

with 〈 〉 is the SU(3) trace. The Vµ matrix is the SU(3) matrix containing the
vector mesons,

Vµ =

 ω√
2

+ ρ0
√

2
ρ+ K∗+

ρ− ω√
2
− ρ0
√

2
K∗0

K∗− K̄∗0 φ


µ

, (2.83)

while the matrix of the pseudoscalars φ is the one of Eq. (2.29).
Expanding the matrix U (Eq. (2.28)) up to terms containing four fields φ,

one gets

L̃2 =
1

12f 2
〈[φ, ∂µφ]2 +Mφ4〉 , (2.84)

with M = diag(m2
π,m

2
π, 2m

2
K −m2

π). Recalling Eqs. (2.34) and (2.39), we can
write the part of the covariant derivative in L̃2 containing the photon as

DµU = ∂µU − ieQAµU + ieUQAµ , (2.85)

where Q = diag(2,−1,−1)/3, e = −|e| is the electron charge and Aµ is the
photon field. Hence, the Lagrangian of Eq. (2.84) provides the coupling
between the pseudoscalars (P) and one photon (γ), given by

LγPP = −ieAµ〈Q[φ, ∂µφ]〉 . (2.86)

The tensor Vµν in LIII is defined as

Vµν = ∂µVν − ∂νVµ − ig[Vµ, Vν ] , (2.87)

while

Γµ =
1

2
[u†(∂µ − ieQAµ)u+ u(∂µ − ieQAµ)u†] . (2.88)
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The hidden gauge coupling g is related to the constant f and to the vector
meson mass MV by the formula

g =
MV

2f
. (2.89)

Expanding the term with (Vµ− i igΓµ)2 up to two meson fields, it is possible
to obtain the interactions among pseudoscalars, photons and vector mesons:

LV γ = −M2
V

e

g
Aµ〈V µQ〉 , (2.90)

LV γPP = e
M2

V

4gf 2
Aµ〈V µ(Qφ2 + φ2Q− 2φQφ)〉 , (2.91)

LV PP = −ig 〈V µ[φ, ∂µφ]〉 , (2.92)

LγPP = ie Aµ〈Q[φ, ∂µφ]〉 , (2.93)

LPPPP = − 1

8f 2
〈[φ, ∂µφ]2〉 . (2.94)

The term in Eq. (2.93) is exactly cancelled by the term coming from L̃2

of Eq. (2.86), such that in the end the photon couples to the pseudoscalar
mesons via vector meson exchange, which is the basic feature of vector meson
dominance [86]. The term in Eq. (2.94) has the same derivative structure we

can find in Eq. (2.84) and, added to L̃(2)
2 , it would break chiral symmetry.

However, this term is cancelled by the exchange of vector mesons between
pseudoscalars resulting from the vertices described by LV PP of Eq. (2.92) in
the limit q2/M2

V → 0, where q is the momentum carried by the vector meson
in the exchange. This result was already reported in Ref. [26].

From the term −1
4
〈VµνV µν〉 in LIII , two different types of interaction can

be derived: a contact interaction, coming from the [Vµ, Vν ] term,

L(c) =
g2

2
〈VµVνV µV ν − VνVµV µV ν〉 , (2.95)

and the three-vector vertex

L(3V ) = ig〈(∂µVν − ∂νVµ)V µV ν〉 . (2.96)

The Lagrangian L(3V ) produces the V V → V V interaction by means of the
exchange of one vector meson.

As reported in Ref. [82], beside the vertices listed above, processes could
get relevant contributions also from diagrams involving the V V P vertex. This
interaction is anomalous, accounts for processes not conserving intrinsic parity
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and can be obtained from the gauged Wess-Zumino term [66, 87]. Although
expected to give small contributions due to their higher order nature, these
diagrams have shown to be relevant in some cases like in radiative decays of
scalar mesons [84, 88, 89] and in kaon photoproduction [90]. The Lagrangian
describing the V V P vertex is given by

LV V P =
G√

2
εµναβ〈∂µVν∂αVβP 〉 , (2.97)

where G = 3M2
V /16π2f 3 and εµναβ is the completely antisymmetric tensor.

Eqs. (2.90), (2.92), (2.95), (2.96) and (2.97) will be used in the next chapter
for the evaluation of diagrams involving vector mesons.
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CHAPTER 3

COMPOSITENESS OF HADRON STATES:
MESON RESONANCES

3.1 Introduction
One of the challenges in hadron spectroscopy is to find a way to determine,
simply from experimental data, the nature of the states and whether they are
composed of other stable particles or something different. An early attempt
to answer this question was made by Weinberg in his work of 1965 [91], in
which he determined that the deuteron was a bound state of a proton and
a neutron. However, his approach was only suitable for s-waves and small
binding energies. Later, more work on this issue has been done in Refs. [92, 93].
A generalization of Weinberg’s work to more heavily bound systems and using
many coupled channels was made in Ref. [94] and, with a different derivation,
also in Ref. [95]. Finally, in Ref. [96] also resonances are considered, but still
all the work was limited to the case of s-waves.

In this chapter we generalize the theorem to higher partial waves. We
start with the case of bound states in Section 3.2, considering first a single
channel and then including many coupled scattering channels. We follow the
approach of Ref. [94], which was, however, limited to bound states in the case
of interactions in s-wave. We first make a thorough study of the relationship
between scattering amplitudes and wave functions, deriving the expression of
the wave function in momentum space. The normalization condition for the
wave function is then used to obtain a different formulation of the compos-
iteness condition of Weinberg. We then move to the coordinate space and,
after analysing the asymptotic behaviour of the wave function, we establish
the relation between the coupling of the bound state to the two interacting
hadrons and the wave function at the origin.
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In Section 3.3 we extend the formalism to the case of open channels.
We will see that, even though the compositeness condition cannot be derived
from the normalization of the wave function, which is not finite in the case of
resonances, it still holds at the pole.

The sum rule derived in Section 3.3 can be applied to concrete cases to
find out whether a resonance is created by the interaction of two particles or
not. In Section 3.4 we quantify the composite nature of two meson reso-
nances, the ρ and the K∗. The content of this Chapter can be found in Refs.
[97] and [98].

3.2 The case of bound states
We want to study the non-relativistic dynamics of a bound state generated by
the interaction of two particles of masses m1 and m2 in a generic l-wave.

The system is described by the Hamiltonian H = H0 + V , with H0 the
free Hamiltonian and V the interaction potential. In order to illustrate the
results, we need to choose a potential V . As done in Refs. [94, 96], we use
a separable function in momentum space with the modulating factor being a
step function Θ. However, the basic results hold unaltered using other types
of potentials, as in the case of Ref. [94]. Our potential, projected in a generic
l-wave (instead of s-wave), is given by

〈~p ′|V |~p 〉 = V (~p, ~p ′) = v(2l + 1)Θ(Λ− p)Θ(Λ− p′)Pl(cos θ)|~p |l |~p ′|l , (3.1)

where Λ is a cutoff in the momentum space.
The non-relativistic Lippmann-Schwinger equation describing the scatter-

ing process can be written as

T = V + V
1

E −H0

T (3.2)

and also as

T = V + V
1

E −HV . (3.3)

Considering Eq. (3.2) and substituting the expression of the potential inside
the second term, we can write

〈~p |T (2)|~p ′〉 = 〈~p|(2l + 1)vΘ(Λ− p)
∫
p′′<Λ

d3p′′Pl(p̂, p̂
′′)

|~p |l|~p ′′|l
E −m1 −m2 − ~p ′′2

2µ

× (2l + 1)vΘ(Λ− p′)Pl(p̂′′, p̂′)|~p ′′|l|~p ′|l|~p ′〉 ,
(3.4)
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where µ is the reduced mass of the two interacting particles of masses m1 and
m2. The states are normalized such that

|~p 〉〈~p | ≡
∫
d3p ,

〈~p |~p ′〉 = δ(3)(~p− ~p ′) .
(3.5)

Using the expression of the Legendre functions in terms of the spherical har-
monics,

Pl(p̂, p̂
′′) =

4π

2l + 1

∑
m

Ylm(p̂)Y ∗lm(p̂′′) , (3.6)

and their normalization condition,∫
dΩY ∗lm(p̂)Yl′m′(p̂) = δll′δmm′ , (3.7)

Eq. (3.4) becomes

T (2) = (2l + 1)vΘ(Λ− p)vΘ(Λ− p′)Pl(p̂, p̂′)|~p |l|~p ′|l

×
∫
p′′<Λ

d3p′′
|~p ′′|2l

E −m1 −m2 − ~p ′′2

2µ

.
(3.8)

The procedure can be repeated for all the other terms in the Lippmann-
Schwinger equation, leading to the expression of the scattering amplitude

T = (2l + 1)Pl(p̂, p̂
′)Θ(Λ− p)Θ(Λ− p′)|~p |l|~p ′|lt , (3.9)

with

t = v + v G t , t =
v

(1− vG)
=

1

v−1 −G , (3.10)

where

G =

∫
p′′<Λ

d3p′′
|~p ′′|2l

E −m1 −m2 − ~p ′′2

2µ

. (3.11)

We can see that the factor 2l + 1 does not appear in the equation for t.
It is important to highlight that v in Eq. (3.10) does not contain |~p |l, which

is now absorbed into the definition of the loop function G of Eq. (3.11). This
is unusual, since other approaches for p-waves, like the one of Refs. [99] and
[100], factorize on shell |~p |l and associate it to the potential. In those cases, G
does not have the factor |~p ′′|2l that we find in Eq. (3.11). The procedure leads
to the same imaginary part of the amplitude T but can induce differences in
the real part. Later on we will show that the option chosen here, which stems
from the form of the potential in Eq. (3.1), allows one to generalize the sum
rule for the couplings found in Ref. [94], which is lost if one uses the on shell
factorized form.
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3.2.1 Wave function in momentum space
We now want to derive the expression of the wave function in momentum
space. From the Schrödinger equation it follows

|Ψ〉 =
V

E −H0

|Ψ〉 , (3.12)

which has the solution

〈~p |Ψ〉 =

∫
d3k

∫
d3k′〈~p | 1

E −H0

|~k〉〈~k|V |~k′〉〈~k′|Ψ〉 . (3.13)

Substituting the potential of Eq. (3.1) in this last equation and using the fact
that

〈~p | 1

E −H0

|~k〉 = δ(3)(~p− ~k)
1

E −m1 −m2 − ~p 2

2µ

, (3.14)

we obtain

〈~p |Ψ〉 =

∫
k′<Λ

d3k′(2l + 1)vΘ(Λ− p) 1

E −m1 −m2 − ~p 2

2µ

|~p |l|~k′|lPl(p̂, k̂′)〈~k′|Ψ〉

= 4π
∑
m

Θ(Λ− p)|~p |lv
E −m1 −m2 − ~p 2

2µ

Ylm(p̂)

∫
k<Λ

d3kY ∗lm(k̂)|~k|l〈~k|Ψ〉 ,

(3.15)

which gives us the expression of the wave function in momentum space.
Defining 〈~k|Ψ̃〉 as

〈~k|Ψ〉 ∼= (4π)1/2
∑
m′

am′Ylm′(k̂)〈~k|Ψ̃〉 , (3.16)

and normalizing the coefficients am′ as∑
m′

|am′|2 = 1 , (3.17)

we can write Eq. (3.15) as

〈~p |Ψ〉 = (4π)1/2
∑
m

amYlm(p̂)〈~p |Ψ̃〉

= (4π)1/2
∑
m

Θ(Λ− p)|~p |lv
E −m1 −m2 − ~p 2

2µ

amYlm(p̂)

∫
k<Λ

d3k|~k|l〈~k|Ψ̃〉 ,
(3.18)

that leads to

〈~p |Ψ̃〉 =
Θ(Λ− p)|~p |lv

E −m1 −m2 − ~p 2

2µ

∫
k<Λ

d3k|~k|l〈~k|Ψ̃〉 . (3.19)
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Integrating in d3p and multiplying both sides by |~p |l, Eq. (3.19) becomes∫
d3p|~p |l〈~p |Ψ̃〉 =

∫
p<Λ

d3p
|~p |2lv

E −m1 −m2 − ~p2

2µ

∫
k<Λ

d3k〈~k|Ψ̃〉|~k|l

= G v

∫
k<Λ

d3k〈~k|Ψ̃〉|~k|l .
(3.20)

This last expression gives us the condition for a pole in the t-matrix corre-
sponding to a bound state,

1−G(E) v = 0 , (3.21)

which will occur for some value of the energy below the scattering threshold.
Let now Eα < m1 +m2 be the solution of Eq. (3.21). Since we are dealing

with a bound state, its wave function will satisfy the normalization condition∫
d3p|〈~p |Ψ〉|2 = 1 . (3.22)

We can now substitute the expression of the wave function of Eq. (3.18) in
the above equation,∫
d3p|〈~p |Ψ〉|2 =

∫
d3p(4π)1/2

∑
m

Θ(Λ− p)|~p |lv
E −m1 −m2 − ~p 2

2µ

a∗mY
∗
lm(p̂)

∫
k<Λ

d3k〈Ψ̃|~k〉|~k|l

× (4π)1/2
∑
m′

Θ(Λ− p)|~p |lv
E −m1 −m2 − ~p 2

2µ

am′Ylm′(p̂)

∫
k′<Λ

d3k′〈~k′|Ψ̃〉|~k′|l

=

∫
p<Λ

d3p

(
|~p |lv

E −m1 −m2 − ~p 2

2µ

)2∑
m

|am|2
∣∣∣∣∫
k<Λ

d3k|~k|l〈~k|Ψ̃〉
∣∣∣∣2 .

(3.23)

Taking into account the normalization in Eq. (3.17) and Eq. (3.11), we obtain

− dG

dE
v2

∣∣∣∣∫
k<Λ

d3k|~k|l〈~k|Ψ̃〉
∣∣∣∣2 = 1 . (3.24)

3.2.2 The compositeness condition
Eq. (3.24) is relevant for our purposes. By construction, the left-hand side
is the probability that the bound state found couples to the hadron-hadron
component under consideration. We shall see in the following sections that,
when we have several interacting hadron-hadron pairs, it is replaced by a sum
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over the different coupled channels and each one of the terms indicates the
probability to find the hadron-hadron pair in the wave function. Yet, it could
be that a physical state couples not only to hadron-hadron pairs, but also
to a different component of non-molecular type, say qq̄ for mesons or qqq for
baryons. One example of this can be found in studies with the chiral bag
model [101] where the ∆ has a big qqq component and a smaller πN one. In
this case the normalization would be given by

− dG

dE
v2

∣∣∣∣∫
k<Λ

d3k|~k|l〈~k|Ψ̃〉
∣∣∣∣2 + |〈β|Ψ〉|2 = 1 , (3.25)

that we can rewrite as

− dG

dE
v2

∣∣∣∣∫
k<Λ

d3k|~k|l〈~k|Ψ̃〉
∣∣∣∣2 = 1− Z ; Z = |〈β|Ψ〉|2 , (3.26)

where |β〉 is the genuine component of the state (the qqq in the bag model of
Ref. [101], for instance).

This is the statement of the compositeness condition of Weinberg, although
derived and formulated in a different way. The idea is that the first term in
Eq. (3.24) represents the probability to find the hadron-hadron component in
the wave function, and its diversion from unity is the probability to find some
other components which could have not been taken into account if one has
neglected important channels of the more general coupled channels problem.

Yet, the theorem can be stated in a more practical way resorting to the
coupling of the state to the channel considered. To do that, we need to use
the other form of the Lippmann-Schwinger equation, Eq. (3.3). We have

〈~p |T |~p ′〉 = 〈~p |V |~p ′〉+
∑
nn′

〈~p |V |n〉〈n| 1

E −H |n
′〉〈n′|V |~p ′〉 , (3.27)

where |n〉 and |n′〉 are complete sets of eigenstates of the full Hamiltonian H.
In the vicinity of the pole, where E = Eα, we can take into account only

the dominant contribution coming from the eigenstate |α〉. Then,

〈~p |T |~p ′〉 ∼ 〈~p |V |~p ′〉+

∫
d3k

∫
d3k′〈~p |V |~k〉〈~k|α〉 1

E − Eα
〈α|~k′〉〈~k′|V |~p ′〉 ,

(3.28)
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and we can write Eq. (3.28) explicitly

〈~p |T |~p ′〉 = 4πΘ(Λ− p)Θ(Λ− p′)t|~p |l|~p ′|l
∑
m

Ylm(p̂)Y ∗lm(p̂′)

= 4πΘ(Λ− p)Θ(Λ− p′)v|~p |l|~p ′|l
∑
m

Ylm(p̂)Y ∗lm(p̂′)

+

∫
k<Λ

d3k

∫
k′<Λ

d3k′4πΘ(Λ− p)v|~p |l|~k|l
∑
m′

Ylm′(p̂)Y
∗
lm′(k̂)

× 〈~k|α〉 1

E − Eα
〈α|~k′〉4πΘ(Λ− p′)v|~k′|l|~p ′|l

∑
m′′

Ylm′′(k̂
′)Y ∗lm′′(p̂

′) .

(3.29)

We can write

〈~k|α〉 = (4π)1/2
∑
m′

am′Ylm′(~k)〈~k|α̃〉 ,

〈α|~k ′〉 = (4π)1/2
∑
m′′

a∗m′′Y
∗
lm′′(

~k ′)〈α̃|~k ′〉 .
(3.30)

Taking into account that

|α̃〉 1

E − Eα
〈α̃| → |α̃〉 1

E − Eα
〈α̃|δm′m′′ , (3.31)

since |α̃〉 states with same third component of angular momentum have the
same energy (a sum over α is intended in Eq. (3.29)), we can write

〈~k|α〉 1

E − Eα
〈α|~k′〉 → 4π

1

E − Eα
〈~k|α̃〉〈α̃|~k′〉

∑
m′

Ylm′(k̂)Y ∗lm′(k̂
′) , (3.32)

and using this relation in Eq. (3.29) we can easily find

t = v + v2 1

E − Eα

∣∣∣∣∫
k<Λ

d3k〈~k|α̃〉|~k|l
∣∣∣∣2 . (3.33)

Now, remembering that close to the pole the coupling g is defined such that
the amplitude can be written as

t =
g2

E − Eα
, (3.34)

we get

g2 = lim
E→Eα

(E − Eα) t = v2

∣∣∣∣∫
k<Λ

d3k〈~k|α̃〉|~k|l
∣∣∣∣2 . (3.35)
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3.2 The case of bound states

Eq. (3.35) allows us to write v2
∣∣∣∫k<Λ

d3k〈~k|α̃〉|~k|l
∣∣∣2 in terms of the couplings,

which can be determined experimentally. This means that Eq. (3.24) can be
stated, for a composite state, as

− g2dG

dE
= 1 (3.36)

and, in the general case we have coupling to a genuine component, as

− g2dG

dE
= 1− Z , (3.37)

with Z the probability to find this component in the wave function. Since
g can be determined experimentally, one can simply evaluate Eq. (3.37) to
determine the nature of the states, as has been made manifest in Refs. [91]
and [92].

In this Section we have been assuming implicitly that v is energy inde-
pendent. Indeed, Eq. (3.36) can be obtained from Eq. (3.10) using l’Hôpital
rule

g2 = lim
E→Eα

(E − Eα)t = lim
E→Eα

E − Eα
v−1 −G =

1

−dG
dE

, (3.38)

where, in the last step, the assumption is used. Now it is clear the convenience
of avoiding the incorporation of the vertex |~p |2l in v, that is the on shell
factorization. In that case the new v would be necessarily energy dependent
and Eq. (3.38) could not be obtained so straightforwardly.

Actually, as seen in Refs. [91] and [92], Z means the probability of having
the genuine component of the state. When dealing with a physical system
in which Z 6= 0, one can accommodate it in the present formalism by taking
an energy independent potential v, which accounts for the couplings to the
hadron-hadron component, and a CDD pole term [102] of the type a/(E−ER),
which accounts for the coupling to the genuine component. As shown in Ref.
[41], this is a good tool for the analysis of data that returns Z ≤ 1 as it should
be, with Z related to the strength of the CDD pole, a.

3.2.3 Wave function in coordinate space
We can also evaluate the wave function in coordinate space as

〈~x|Ψ〉 =

∫
d3p〈~x|~p 〉〈~p |Ψ〉 =

∫
d3p

(2π)3/2
ei~p ~x〈~p |Ψ〉

=

∫
p<Λ

d3p

(2π)3/2
ei~p ~x

|~p |l
E −m1 −m2 − ~p 2

2µ

g(4π)1/2
∑
m

amYlm(p̂) ,
(3.39)
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Compositeness of hadron states: meson resonances

where we have used Eqs. (3.18) and (3.36) in the expression of the wave
function in momentum space.

Recalling the expansion of a plane wave in terms of spherical harmonics
and Bessel functions

ei~p ~x = 4π
∑
lm

iljl(pr)Y
∗
lm(p̂)Ylm(r̂) , (3.40)

Eq. (3.39) becomes

〈~x|Ψ〉 = g

∫
p<Λ

d3p

(2π)3/2
iljl(pr)

|~p |l
E −m1 −m2 − ~p 2

2µ

(4π)1/2
∑
m

amYlm(r̂) ,

(3.41)

that gives us the expression of the wave function in coordinate space.
The Bessel functions satisfy the condition

jl(z)
z→∞−→ 1

z
cos

[
z − l + 1

2
π

]
. (3.42)

Substituting this expression in the wave function in coordinate space of Eq.
(3.41), taking into account that

cos

[
z − l + 1

2
π

]
=

1

2

[
(−i)l+1eiz + il+1e−iz

]
(3.43)

and the symmetries of the integrand, we can write

〈~x|Ψ〉 pr→∞−→ g

∫ Λ

−Λ

4π dp

(2π)3/2

il

r

|~p |l
E −m1 −m2 − ~p 2

2µ

1

2

eipr

il+1
(4π)1/2

∑
m

amYlm(r̂)

= −g 2µ

∫ Λ

−Λ

4π dp

(2π)3/2

il

r

|~p |l
(p− iγ)(p+ iγ)

1

2

eipr

il+1
(4π)1/2

∑
m

amYlm(r̂) ,

(3.44)

where in the last step we defined γ =
√

2µ|EB|, with EB the binding energy,
EB = E − m1 − m2 < 0. Integrating Eq. (3.44) by means of the Cauchy
theorem, the asymptotic behaviour of the wave function is easily found

〈~x|Ψ〉 r→∞−→ −g 2µ
√

2π

(
1 +O

(
1

Λ

))∑
m

amYlm(r̂)(iγ)l
e−γr

r
. (3.45)

Now we want to establish the relation between the coupling and the wave
function at the origin of coordinate space. From the behaviour of the Bessel
functions for small values of the argument,

jl(pr) −→
|~p |l|~r |l

(2l + 1)!!
|~p ||~r | → 0 , (3.46)
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3.2 The case of bound states

follows the expression of the wave function at the origin

Ψ(~x→ 0) = 〈~x→ 0|Ψ〉 = g G
il|~r |l

(2π)3/2(2l + 1)!!
(4π)1/2

∑
m

amYlm(r̂) . (3.47)

Eq. (3.47) leads to the relation between the coupling and the wave function

g = G−1 Ψ̂ , (3.48)

where we have defined

Ψ̂ =
(2π)3/2(2l + 1)!!

il|~r |l(4π)1/2
∑

m amYlm(r̂)
Ψ(~x→ 0) . (3.49)

For l = 0 this equation leads to

(2π)3/2Ψ(0) = gG , (3.50)

which is the same result obtained in Ref. [94].

3.2.4 Generalization to coupled channels
In the case of multiple two body scattering channels, we can use the same
expression for the interaction potential,

〈~p |V |~p ′〉 ≡ (2l + 1) v Θ(Λ− p)Θ(Λ− p)|~p |l|~p ′|lPl(cos θ) , (3.51)

but now v is aN×N matrix, withN the number of the different hadron-hadron
channels.

All the expressions obtained in the previous section can be generalized to
many channels. We can write the t matrix as

t = [1− vG]−1v , (3.52)

where G is the diagonal matrix
G1

G2

. . .

GN

 (3.53)

with Gi given by Eq. (3.11) for each channel. This can also be rewritten as

t =
Av

det(1− vG)
, (3.54)
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Compositeness of hadron states: meson resonances

where A is defined as

A = [det(1 − vG)](1 − vG)−1 (3.55)

and introduced to single out the source of the pole in coupled channels, given
by the condition

det(1− vG) = 0 . (3.56)

Now we have for the couplings

gigj = lim
E→Eα

(E − Eα) tij =

[
(Av)ij

d
dE

det(1− vG)

]
E=Eα

, (3.57)

which, hence, implies
gj
gi

=

[
(Av)ij
(Av)ii

]
E=Eα

. (3.58)

Eq. (3.18) is generalized as follows

〈~p |Ψi〉 =
|~p |lΘ(Λ− p)(2l + 1)

E −Mi − ~p 2

2µi

∑
j

vij

∫
k<Λ

d3k|~k|lPl(k̂, p̂)〈~k|Ψj〉 , (3.59)

and using Eq. (3.16) we find

〈~p |Ψ̃i〉 =
|~p |lΘ(Λ− p)
E −Mi − ~p 2

2µi

∑
j

vij

∫
k<Λ

d3k|~k|l〈~k|Ψ̃j〉 , (3.60)

where Mi = m1i +m2i.
Integrating in d3p and multiplying by |~p |l both sides, we obtain the follow-

ing equation, written in matrix form∫
d3p|~p |l〈~p |Ψ̃〉 = G v

∫
k<Λ

d3k|~k|l〈~k|Ψ̃〉 . (3.61)

From Eq. (3.61) follows again the condition to find the pole

det(1−Gv) = 0 . (3.62)

This last equation can be rewritten as∑
j

vij

∫
d3p|~p |l〈~p |Ψ̃j〉 = [Gα

i ]−1

∫
d3p|~p |l〈~p |Ψ̃i〉 , (3.63)

which, substituted in Eq. (3.60), gives

〈~p |Ψ̃i〉 =
|~p |lΘ(Λ− p)
E −Mi − ~p 2

2µi

[Gα
i ]−1

∫
k<Λ

d3k|~k|l〈~k|Ψ̃i〉 . (3.64)
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3.2 The case of bound states

We can now define the partial probability

Pi =

∫
d3p|〈~p |Ψi〉|2 (3.65)

and write the normalization condition for the wave functions as∑
i

Pi = 1 . (3.66)

Substituting Eq. (3.59) in the last equation we find the generalization to many
channels of Eq. (3.24)

Pi =

[
−dGi

dE

]
E=Eα

1

[Gα
i ]2

∣∣∣∣∫
k<Λ

d3k|~k|l〈~k|Ψ̃i〉
∣∣∣∣2 . (3.67)

We now move to the coordinate space, where we have

〈~x|Ψi〉 =

∫
d3p

(2π)3/2
ei~p ~x〈~p |Ψi〉 =

∫
p<Λ

d3p

(2π)3/2
ei~p ~x(4π)1/2

×
∑
m

amYlm(p̂)
|~p |l

E −Mi − ~p 2

2µi

1

Gα
i

∫
k<Λ

d3k|~k|l〈~k|Ψ̃i〉 ,
(3.68)

which, expanding the plane wave by means of Eq. (3.40), becomes

Ψi(~x) = 〈~x|Ψi〉 =

∫
p<Λ

d3p

(2π)3/2
(4π)1/2

∑
m

amYlm(r̂) il jl(pr)

× |~p |l
E −Mi − ~p 2

2µi

1

Gα
i

∫
k<Λ

d3k|~k|l〈~k|Ψ̃i〉 .
(3.69)

As in the case of only one channel, we obtain the expression of the wave
function at the origin in coordinate space using Eq. (3.46):

Ψi(~x ≡ 0) =
(4π)1/2

∑
m amYlm(r̂)il|~r |l

(2π)3/2(2l + 1)!!

∫
k<Λ

d3k|~k|l〈~k|Ψ̃i〉 . (3.70)

Now we go back to Eq. (3.61). Defining as in the previous section

Ψ̂i ≡ Ψi(~x→ 0)

[
(4π)1/2

∑
m amYlm(r̂)il|~r |l

(2π)3/2(2l + 1)!!

]−1

=

∫
k<Λ

d3k|~k|l〈~k|Ψ̃〉 , (3.71)

we are allowed to rewrite Eq. (3.61) as

Ψ̂ = G v Ψ̂ . (3.72)
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Compositeness of hadron states: meson resonances

Eq. (3.72) requires for its solution

det(1− vG) = 0 , (3.73)

which is guaranteed for a bound eigenstate of energy Eα. So, this equation
can be rewritten as

[Gα]−1 Ψ̂ = vΨ̂ , (3.74)

which allows us to write the expression of the wave function in momentum
space in terms of the wave function at the origin of coordinate space, as

〈~p |Ψi〉 = (4π)1/2
∑
m

amYlm(p̂)
Θ(Λ− p)|~p |l
E −Mi − ~p 2

2µi

[Gα
i ]−1 Ψ̂i . (3.75)

From the normalization condition in Eq. (3.66) it follows again∑
i

〈Ψi|Ψi〉 =

∫
d3p
∑
i

|〈~p |Ψi〉|2

= −
∑
i

[
dGi

dE

]
E=Eα

1

[Gα
i ]2

Ψ̂i
2

= 1 .

(3.76)

To define the couplings in terms of Ψ̂i we use once again the version of Eq.
(3.3) for the Lippmann-Schwinger equation. Recalling that close to the pole
of the eigenfunction of the Hamiltonian associated to the Eα, only this state
|α〉 contributes in the sum over the eigenstates, we find

tij = vij +
∑
mn

vimΨ̂m
1

E − Eα
Ψ̂nvnj . (3.77)

When we look for the couplings as the residues in the pole of the t-matrix,
we obtain

gigj = lim
E→Eα

(E − Eα)tij =
∑
mn

vimΨ̂mvnjΨ̂n

=
[
G−1
i Ψ̂iG

−1
j Ψ̂j

]
E=Eα

,

(3.78)

which leads to the expression of the couplings in terms of the wave function
at the origin of coordinate space,

gi = [Gα
i ]−1 Ψ̂i . (3.79)

Eq. (3.76) can then be rewritten as∑
i

g2
i

[
dGi

dE

]
E=Eα

= −1 , (3.80)

in complete analogy with the case of only one channel. Each one of the terms in
Eq. (3.80) (with opposite sign) gives the probability to find a certain channel
in the wave function of the bound states.
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3.3 Generalization to open channels

3.3 Generalization to open channels
Now we want to adapt the formalism to the case of open channels. We work
directly in coupled channels where at least one is open. We take again

〈~p |V |~p ′〉 ≡ (2l + 1)vΘ(Λ− p)Θ(Λ− p′)|~p |l|~p ′|lPl(cos θ) . (3.81)

In order to create a resonance from the interaction of many channels at a
certain energy, we must take a channel which is open at this energy and make
the two particles collide, starting from an infinite separation at t = −∞. We
call this channel, which is asymptotically the scattering state, channel 1.

The equations we have to solve are

|Ψ〉 = |Φ〉+
1

E −H0

V |Ψ〉 , (3.82)

where

|Ψ〉 =


|Ψ1〉
|Ψ2〉

...
|ΨN〉

 , |Φ〉 =


|Φ1〉

0
...
0

 , (3.83)

and |Φ〉 = |~p ′〉. Once again µi is the reduced mass of the system of total mass
Mi = m1i +m2i.

3.3.1 Wave functions and couplings
We can proceed analogously to the bound states case and write the wave
functions in momentum space as

〈~p |Ψ1〉 − 〈~p |Φ1〉 = (4π)1/2
∑
m

amYlm(p̂)
|~p |lΘ(Λ− p)

E −M1 − ~p 2

2µ1
+ iε

∑
j

v1j

∫
k<Λ

d3k|~k|l〈~k|Ψ̃j〉 ,

〈~p |Ψi〉 = (4π)1/2
∑
m

amYlm(p̂)
|~p |lΘ(Λ− p)

E −Mi − ~p 2

2µi
+ iε

∑
j

vij

∫
k<Λ

d3k|~k|l〈~k|Ψ̃j〉 , i 6= 1 .

(3.84)

In the bound state case we had E < Mi and, consequently, E −Mi − ~p 2/2µ
could not be zero for any value of E. We only had discrete eigenstates for some
energies. Now, we are dealing with open channels and, since any value of E is
allowed and we can have singularities when E = Mi + ~p 2/2µi, we need to put
+iε in order to guarantee a solution to the Lippmann-Schwinger equations.
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Compositeness of hadron states: meson resonances

In order to make the problem technically easy we shall prepare the state
|Φ1〉 such that it contains only the l-wave:

|Φ1〉 =

∫
d3p′a(~p ′)|~p ′〉 . (3.85)

We can choose a(~p ′) such that

a(~p ′) = (4π)1/2Ylm(p̂ ′)a(p′) , (3.86)

where a(p′) is, for instance, a Gaussian around p1 and m is fixed. Thus, we
find that

〈~p |Φ1〉 =

∫
d3p′(4π)1/2Ylm(p̂ ′)a(p′)〈~p |~p ′〉

=

∫
d3p′(4π)1/2Ylm(p̂ ′)δ(3)(~p− ~p ′)a(p′)

= (4π)1/2Ylm(p̂)a(p) ,

(3.87)

with a(p) normalized such that
∫
d3p a(p)|~p |l = 1.

Now all the terms in |Ψi〉 have the same angular dependence and we can
write

〈~p |Ψ̃1〉 = a(p) +
Θ(Λ− p)|~p |l

E −M1 − ~p 2

2µ1
+ iε

∑
j

v1j

∫
k<Λ

d3k|~k|l〈~k|Ψ̃j〉 ,

〈~p |Ψ̃i〉 =
Θ(Λ− p)|~p |l

E −Mi − ~p 2

2µi
+ iε

∑
j

vij

∫
k<Λ

d3k|~k|l〈~k|Ψ̃j〉 , i 6= 1 .

(3.88)

Now we integrate again in d3p and multiply by |~p |l, and since∫
d3p|~p |l〈~p |Φ̃1〉 = 1 , (3.89)

we find∫
d3p|~p |l〈~p |Ψ̃1〉 = 1 +G1

∑
j

v1j

∫
k<Λ

d3k|~k|l〈~k|Ψ̃j〉 ,∫
d3p|~p |l〈~p |Ψ̃i〉 = Gi

∑
j

vij

∫
k<Λ

d3k|~k|l〈~k|Ψ̃j〉 , i 6= 1 ,

(3.90)

with Gi defined as

Gi =

∫
p<Λ

d3p
|~p |2l

E −Mi − ~p2

2µi
+ iε

. (3.91)
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As in the previous case we can define

Ψ̂i =

∫
p<Λ

d3p|~p |l〈~p |Ψ̃i〉 , (3.92)

which allows us to rewrite Eqs. (3.90) as

Ψ̂1 = 1 +G1

∑
j

v1jΨ̂j ,

Ψ̂i = Gi

∑
j

vijΨ̂j , i 6= 1 .
(3.93)

In matrix form, we have

(1−Gv)Ψ̂ =


1
0
...
0

 (3.94)

and hence we can write Eqs. (3.93) as

Ψ̂i = (1−Gv)−1
i1 . (3.95)

The N ×N scattering matrix is still given by

t = (1− vG)−1v = (v−1 −G)−1 , (3.96)

and by means of Eq. (3.95) we can write

vijΨ̂j = vij(1−Gv)−1
j1

= (v−1 −G)−1
i1 = ti1 .

(3.97)

Going back to Eq. (3.88), it follows

〈~p |Ψ1〉 = (4π)1/2Ylm(p̂)

(
a(p) +

Θ(Λ− p)|~p |l
E −M1 − ~p 2

2µ1
+ iε

t11

)
,

〈~p |Ψi〉 = (4π)1/2Ylm(p̂)
Θ(Λ− p)|~p |l

E −Mi − ~p 2

2µi
+ iε

ti1 , i 6= 1 .

(3.98)

In coordinate space, the wave functions can be written as

〈~x|Ψ1〉 = (4π)1/2 il Ylm(r̂)

∫
d3p

(2π)3/2
jl(pr)

(
a(p) +

Θ(Λ− p)|~p |l
E −M1 − ~p 2

2µ1
+ iε

t11

)
,

〈~x|Ψi〉 = (4π)1/2 il Ylm(r̂)

∫
d3p

(2π)3/2
jl(pr)

Θ(Λ− p)|~p |l
E −Mi − ~p 2

2µi
+ iε

ti1 i 6= 1 .

(3.99)
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We take again the limit of small argument for the Bessel’s functions (Eq.
(3.46)) obtaining

〈~x→ 0|Ψ1〉 =
(4π)1/2Ylm(r̂)il|~r |l
(2π)3/2(2l + 1)!!

[1 +G1t11]

=
(4π)1/2Ylm(r̂)il|~r |l
(2π)3/2(2l + 1)!!

[
1 +G1

∑
j

vijΨ̂j

]

=
(4π)1/2Ylm(r̂)il|~r |l
(2π)3/2(2l + 1)!!

Ψ̂1 ,

(3.100)

and, similarly

〈~x→ 0|Ψi〉 =
(4π)1/2Ylm(r̂)il|~r |l
(2π)3/2(2l + 1)!!

Ψ̂i , i 6= 1 . (3.101)

In the vicinity of a resonance the scattering amplitude can be written as

tij '
gigj

E − ER + iΓ
2

. (3.102)

Hence
ti1
t11

=
gi
g1

=
Ψ̂iG

−1
i

Ψ̂1G
−1
1

. (3.103)

We can also use Eq. (3.3) for the Lippmann-Schwinger equation, repeat
the steps of section (3.35) and find, analogously, that

gi = Ψ̂iG
−1
i . (3.104)

3.3.2 The compositeness condition
In the case of resonances we cannot directly derive the sum rule in Eq. (3.80),
since it follows from the normalization condition of the wave function in coor-
dinate space, which is not finite any more. However, it still holds at the pole
in the complex plane (see Ref. [95] for a different derivation), where again we
have ∑

i

g2
i

[
dGi

dE

]
E=EP

= −1 , (3.105)

with EP the position of the complex pole and gi is the coupling to the channel
i defined as

gigj = lim
E→EP

(E − EP )tij . (3.106)
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Note that this definition leads to complex couplings and the sum rule that we
derive is obtained in terms of them.

In Chapter 4 we shall rewrite Eq. (3.105) for complex energies and dis-
cuss the meaning of each term. We anticipate here that each term represents
the integral of the wave function squared (not the modulus squared) of each
component, but this occurs only in a certain phase convention for the wave
function that we shall then discuss. The terms of Eq. (3.105) are complex,
which means that the imaginary parts cancel and then one has∑

i

Re

(
g2
i

[
dGi

dE

]
E=ER

)
= −1 . (3.107)

Knowing the meaning of these terms, we can consider each one of them as a
measure of the relevance or weight of a given channel in the wave function of
the state, but not a probability, which for open channels is not a useful concept
since it will diverge.

As we already briefly mentioned in Section 3.2.2, sometimes, our knowl-
edge of all needed coupled channels will be incomplete and we shall only have
information on hadron-hadron scattering. There can be a genuine component
different to the hadron-hadron one that we study. In order to take into account
the weight of this genuine component, Eq. (3.105) can be rewritten as

−
∑
i

Re

(
g2
i

[
dGi

dE

]
E=EP

)
= 1−Z , Z = Re

∫
d3p (Ψβ(p))2 , (3.108)

where Ψβ(p) is the genuine component in the wave function of the state, when
it is omitted from the coupled channels.

Note that the fixing of a phase in the wave function of one channel will
determine the phase of the other wave functions in a coupled set of Lippman-
Schwinger equations (see Eqs. (3.82) and (3.83)).

The left-hand side of Eq. (3.108) is the measure of this weight of hadron-
hadron component, while its diversion from unity measures the weight of some-
thing different in the wave function. The interpretation of Z as a probability
for the non meson-baryon component is rigorous for bound states. For poles in
the complex plane we have to reinterpret these numbers, as we have mentioned
here, and this will be thoroughly discussed in Chapter 4.

3.4 Application to meson resonances: the ρand
the K∗

The formalism developed is now used to investigate the nature of resonant
states. In Refs. [97] and [98], we use this tool to analyse two meson resonances,
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the ρ and the K∗. It is known that the ρ is not dynamically generated by the
p-waves interaction of two π mesons, but it is generally considered as a genuine
resonance [103]. Thus, we expect the sumrule of Eq. (3.105) not to be satisfied.
On the other hand, the K∗ particle shows up as a resonance in πK scattering,
also in p-waves.

In order to quantify the compositeness of these two particles and identify
their nature, we perform two tests: the first one, in Section 3.4.1, relying on
a model based on chiral unitary theory, suitable for the description of the two
states; in Section 3.4.2 we propose a second one, purely phenomenological,
where only scattering data are used.

3.4.1 The chiral unitary model
The first ingredient we need in order to apply the sum rule we found to specific
cases is an appropriate potential describing the hadron-hadron interaction, v.
As we saw in the previous sections, the formalism developed requires this
potential to be independent of the momentum, since the factor |~p |2l (with
l = 1) which takes into account the p-wave character of the processes, is now
absorbed in the loop function.

We use the tree level potentials of Refs. [99] and [41], where the ππ and πK
interactions in p-waves are respectively studied. These potentials are slightly
modified in order to remove the dependence on the momentum and they read

vρ = − 2

3f 2

(
1 +

2G2
V

f 2

s

M2
ρ − s

)
,

vK∗ = − 1

2f 2

(
1 +

2G2
V

f 2

s

M2
K∗ − s

)
,

(3.109)

where Mρ and MK∗ are the bare ρ and K∗ masses, f is the π decay constant
and GV the coupling to ππ in the formalism of Ref. [25], where GV ' f/

√
2.

In Ref. [104] this model for the ρ meson, still including the momentum
dependence, was fitted to ππ data for the phase-shift in I = 1 and the values
f = 87.4 MeV, GV = 53 MeV and Mρ = 837.3 MeV were obtained (very
similar to those used in Ref. [99]). Now we must use a different potential and,
as explained in the discussion after Eq. (3.11), the |~p |2l factor is included in
the loop function. This means we have to redo the fit to the data using

t =
1

v−1 −G , (3.110)

with our new loop function

G(s) =

∫
d3q

(2π)3

q2

s− (ω1 + ω2)2 + iε

(
ω1 + ω2

2ω1ω2

)
, (3.111)
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f [MeV] GV [MeV] M [MeV] qmax [MeV]

ρ 93 53 855.36 661.52
K∗ 86 54 995.76 724.70

Table 3.1: Values obtained from the best fit to the data for the parameters f , GV ,
M and qmax for both ππ and πK scattering.

where ωi =
√
m2
i + q2 and a relativistic reformulation is assumed [30]. In

the case of the ρ, m1 = m2 = mπ, while for the K∗ we have m1 = mπ and
m2 = mK . The loop function of Eq. (3.111) is regularized by means of the
cutoff θ(Λ − |~q |) contained in the potential (see Eq. (3.51)). Hence Λ plays
the role of qmax in the integral of Eq. (3.111).

The p-wave phase shift is given by (see [99, 104])

T = p2t =
−8π
√
s

p cot δ(p)− ip , (3.112)

with p the three-momentum of the particles in the center of mass reference
frame. The best fit to the data produces, for the four parameters f , Gv, M and
qmax, the values listed in Table 3.1. The results can be seen in Figure 3.1.
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Figure 3.1: In the left panel, the solid curve represents the best fit to the phase
shift data for ππ scattering in p-wave obtained with the new approach. The data are
taken from Ref. [105], obtained using the Roy equations. In the right panel, we show
the same for the case of πK scattering, with data taken from Refs. [41, 106, 107].

In order to apply the sum rule to the case of a resonance, we need to
extrapolate the amplitude to the complex plane and look for the complex pole
s0 in the second Riemann sheet. This is done by changing G to GII in Eq.
(3.110) to obtain tII .

GII(s) is the analytic continuation to the complex plane of the loop function
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in p-wave for the two pions,

GII(s) = GI(s) + i
p3

4π
√
s
, Im(p) > 0 , (3.113)

GI and GII are the loop functions in the first and second Riemann sheet and
GI is given by Eq. (3.111).

We are now able to determine the coupling to the hadron-hadron state, g̃R,
with R = ρ,K∗, as the residue at the pole of the amplitude,

g̃2
R = lim

s→s0
(s− s0)tII . (3.114)

For the best fit to the data, we find the pole in√
sρ0 = (761.7 + i 71.4) MeV , (3.115)

in the case of ππ scattering, in good agreement with what was obtained in
Ref. [104], and in √

sK
∗

0 = (891.0 + i 31.3) MeV , (3.116)

in the case of πK scattering, in good agreement with the results of Refs.
[108, 109]. For the couplings we get

g̃ρ = (6.86 + i 0.41) (3.117)

and
g̃K∗ = (7.19 + i 0.67) . (3.118)

As anticipated in Section 3.3, we get complex values for the couplings when
dealing with resonances and their complex energies.

We can use the sum rule of Eq. (3.108) for one single channel in order to
evaluate its contribution to the production of the resonance,

−Re
(
g̃2
R

[
dGII(s)

ds

]
s=s0

)
= 1− Z , (3.119)

where Z represents the probability that the resonance considered is not a
molecular state but something else.

We find that in the case of the ρ meson

1− Z = 0.004 , (3.120)

while, for the K∗,
1− Z = 0.122 . (3.121)

These two last results indicate that the amount of ππ in the wave function of
the ρ and the amount of πK in the wave function of the K∗ are both small.
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3.4.2 The phenomenological approach
The exercise done before requires a theoretical model. Now we want to ver-
ify if it is possible to reach similar conclusions using only data with a pure
phenomenological analysis.

The value of the coupling g can be obtained experimentally but in order
to apply the sum rule we also need the derivative of the loop function. In the
case of s-wave this is straightforward since dG

dE
is a convergent magnitude, even

when qmax → ∞. This is, however, not the case for a p-wave resonance, such
that extra work is required.

The ρ and K∗ amplitudes in a relativistic form can be written as

tR =
g2
R

s−m2
R + imRΓR

(
p
pon

)3 , (3.122)

where
pon = p(

√
s = mR) . (3.123)

On the other hand, the coupling is related to the width through the equation

g2
R =

8πm2
RΓon
p3
on

, (3.124)

with values of the mass mR and the width Γon of the ρ and K∗ given by
experiment.

We obtain tR in the second Riemann sheet from Eq. (3.122) by taking s
as complex, s = a + i b, and p→ −p in the width term. Then we proceed as
in the former subsection to get the pole and the coupling. We obtain√

sρ0 = (751.1 + i 68.4) MeV ,

gρ = (6.58 + i 1.01) ,
(3.125)

in the case of the ρ, while for the K∗ we find√
sK
∗

0 = (892.0 + i 22.4) MeV ,

gK∗ = (6.08 + i 0.50) .
(3.126)

In both cases the values are very similar to those obtained in the previous
section with chiral unitary approach.

However, when doing the 1 − Z test one does not know which value of
the cutoff qmax should be used to regularize the G function. Hence, the best
one can do is to use natural values of the cutoff and hope that the results are
stable for a certain range of qmax, since dG

ds
is only logarithmically divergent.
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qmax [GeV ] 1− Z

ρ

0.7 0.07
0.8 0.09
0.9 0.12
1.0 0.13
1.1 0.15
1.2 0.16

K∗

0.7 0.08
0.8 0.09
0.9 0.11
1.0 0.12
1.1 0.14
1.2 0.15

Table 3.2: Values of 1− Z for different cutoffs qmax and for the ρ and K∗ cases.

The values of the strenght 1 − Z obtained changing the cutoff qmax are
shown in Table 3.2 for both the ρ and the K∗. As we can see, the results are
rather stable and similar to those obtained in the former subsection with the
same conclusion.

Note that since 1−Z is a small number, even relatively large uncertainties
in this quantity are small errors on Z, which measures the amount by which
the ρ and the K∗ are not a ππ and a πK composite state.

3.5 Results and Conclusions
In this Chapter, we have made an analytical study of the scattering matrix
and wave function for the case of the interaction of a pair of hadrons. For this
purpose we have followed closely the formalism developed in the framework
of chiral unitary theory but using quantum mechanics and making detailed
derivations of the relations of interest. The novelty of the work is the extension
of this formalism to the case of any partial waves.

We started with the case of bound states, for both single channel and cou-
pled channels production, and then we repeated the analysis for open channels.
We found interesting relations between the couplings of bound states and res-
onances to the hadron-hadron channels and the wave functions at the origin.
Of particular value are the sum rules obtained.

In the case of bound states, the sum rule has an unambiguous interpretation
that follows directly from the normalization of the wave function. It allows to
determine the probability to find a certain hadron-hadron component in the
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wave function. In particular, when the sum of these probabilities is unity, we
can say that this state is a composite hadron-hadron state. When the sum is
different from unity, this difference gives us a measure of the probability to find
a genuine component in the wave function of non hadron-hadron molecular
nature. In this sense we say that we extended the compositeness condition
derived by Weinberg in the case of bound states and limited to s-waves to any
partial waves. The case of open channels is more controversial, since the sum
rule cannot be simply derived from the normalization of the wave function as
in the previous case. However, it still holds at the pole.

As anticipated in Section 3.3.2 a more complete analysis of the meaning
of the sum rule in the case of open channels will be given in Chapter 4. We
will see how, due to the complex character of the quantities involved, it is the
real part of each term of the sum what can, in the end, be associated to the
weight of the hadron-hadron component in the wave function.

The sum rule can be used to extract important information on the na-
ture of resonances using experimental data. In particular, we applied it to
two concrete cases, the ρ and the K∗ meson, to check the amount of ππ and
Kπ character in their wave functions, respectively. We first calculated their
couplings to the hadron-hadron component using the tree level chiral poten-
tials. The poles corresponding to the position of the resonances in the complex
plane have been obtained fitting our model to the data for the phase shifts
and, together with the couplings, they are used to evaluate the amount of
compositeness in the wave function of the states, which turned out to be very
small in both cases. We also applied a phenomenological method to corrobo-
rate these results, relying only on the relation between the couplings and the
mass and width of the particles. We obtained for the couplings and for the
pole in the scattering matrix values consistent with the former ones and also
in this case, the amount of hadron-hadron character in the resonance turned
out to be very small, in agreement with the commonly accepted idea that the
ρ and the K∗ are genuine resonances and not dynamically generated by the
interaction of two mesons.
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CHAPTER 4

APPLICATION TO BARYONS AND
INTERPRETATION

4.1 Introduction
In the previous chapter we have shown how the sum rule of Eq. (3.108) has
been successfully used to investigate the nature of two meson resonances, the
ρ and K∗. This Chapter is devoted to the analysis of some relevant baryonic
states.

Thus, in complete analogy with the previous chapter, in Section 4.2 and
Section 4.3, the extended compositeness condition is used to determine the
weight of the meson-baryon component in the ∆(1232) resonance and in the

other members of the JP = 3
2

+
baryon decuplet respectively. The results pre-

sented here, have already been published in Ref. [110] and they represent the
first attempt to describe the nature of baryons by means of the compositeness
condition. Follow-ups of this idea can be found in Refs. [111, 112].

Section 4.4 is dedicated to the interpretation of the sum rule when dealing
with resonances, which implies the appearance of complex values of energies
and couplings, while in Section 4.5 we analyse the effect of having an energy
dependent potential in a single channel problem and how this is tied to the
possibility of having something different from the hadron-hadron component
in the wave function of the state under study.

Later, in Section 4.6.1, also the nature of the Λ(1520) is investigated.

The Λ(1520) belongs to the JP = 3
2

−
resonances that in the last few years

have been interpreted as being dynamically generated from the interaction of
the octet of the pseudoscalar mesons with the decuplet of the baryons [113,
114]. It has been studied theoretically in Refs. [113, 114] and it is considered
to be generated from the interaction of the coupled channels πΣ(1385) and
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4.2 πN scattering and the ∆(1232) resonance

KΞ(1530) in s-wave. In this picture, it couples mostly to the first channel,
qualifying as a quasibound state of πΣ∗, with a nominal mass of a few MeV
below the πΣ∗ threshold. However, the large branching ratios to K̄N and πΣ
indicate that these two channels must play a remarkable role in the building
up of the resonance in spite of the fact that they couple in d-wave.

In Ref. [115] a coupled channels analysis of the Λ(1520) data using πΣ∗,
KΞ∗, K̄N and πΣ has been performed. In this work, the πΣ∗ channel is still
the one with the largest coupling, but its strength is reduced with respect to
the quasibound πΣ∗ picture. At the same time, the couplings to K̄N and
πΣ are remarkable, making these two channels relevant for the interpreta-
tion of different reactions involving the Λ(1520). The model provided in Ref.
[115] has been tested in Ref. [116] through the study of the two reactions
pp → pK+K−p and pp → pK+π0π0Λ close to the Λ(1520) threshold, giving
important information about the couplings of the Λ(1520) to K̄N and πΣ∗.
Here we make an estimate of the relevance of the different channels in the
wave function of the Λ(1520), starting from the coupled channel study of Refs.
[115] and [116]. This section relates to Ref. [117].

4.2 πN scattering and the ∆(1232) resonance
In this section we investigate the amount of πN in the wave function of the
∆(1232). We follow the same steps of Section 3.4, performing a first test
based on chiral unitary theory and then a phenomenological one.

4.2.1 The chiral unitary model
The tree level potential we use is of the type

v = −α
(

1 +
β

M2 − s

)
, (4.1)

where M is the bare mass of the ∆ resonance and α and β are two constant
factors. It is important to notice that, in order to accommodate a possible
genuine component of the ∆(1232) in its wave function, we are putting explic-
itly a CDD pole in v [102]. As already stressed in the previous chapter, we
also need to account for the p-wave character of the process and this means
that the potential v must be independent of the momenta of the particles.

Now, we fit the πN data for the phase shifts using Eq. (3.110) for the
scattering amplitude. Since the pion is relativistic in the decay of the ∆(1232),
we generalize the equations as already done for the case of ρ → ππ in Ref.
[97]. We take only the positive energy part of the relativistic generalization
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M [MeV] qmax [MeV] α [MeV] β [MeV]

1313.8 452.6 698.0 · 103 112.5

Table 4.1: Values obtained from the best fit to the phase shift data for the param-
eters M , qmax, α and β for the πN scattering.

of the loop function, modified to contain the |~q |2 factor, that in the case of
meson-baryon intermediate states reads

G(s) =

∫
d3q

(2π)3

1

2ω(q)

MN

EN(q)

q2

√
s− ω(q)− EN(q) + iε

, (4.2)

withMN the mass of the nucleon, mπ the mass of the pion, EN(q) =
√
~q2 +M2

N

and ω(q) =
√
~q2 +m2

π the energies of the two particles respectively. Once
again, the loop function in Eq. (4.2) is regularized by means of a cutoff com-
ing from the potential, which we call qmax.

To be more in agreement with a propagator having a denominator linear
in the energy, we slightly modify Eq. (4.1) as

v = − α

M4
∆

(
1 +

β

M −√s

)
, (4.3)

where the factor 1/M4
∆ is introduced in order to have both parameters, α and

β, in units of MeV.
The πN phase shift is given by the formula [118]

T = p2t =
−4π
√
s

MN

1

p cot δ(p)− ip , (4.4)

with p the momentum of the particles in the center of mass reference frame.
From the best fit to the πN data we obtain, for the four parameters M ,

qmax, α and β, the values reported in Table 4.1. The results of the fit are
shown in Figure 4.1.

Now we want to apply the sum rule of Eq. (3.108) to our case. Like in
Chapter 3, we need to extrapolate the amplitude to the complex plane. In
order to look for the complex pole

√
s0 in the second Riemann sheet, we change

again G to GII in Eq. (3.110), to obtain tII . In the case of baryons, GII reads

GII(s) = GI +
i

2π

MN√
s
p3 , Im(p) > 0 , (4.5)

with GI and GII the loop functions in the first and second Riemann sheet,
and GI given by Eq. (4.2).
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Figure 4.1: The solid curve represents the πN scattering p-wave phase shifts
obtained with the new approach. The data are taken from [119].

We are now able to obtain the coupling g̃∆ as the residue at the pole of
the amplitude and to apply the sum rule of Eq. (3.108) to evaluate the πN
contribution to the ∆ resonance as

−Re
[
g̃2

∆

[
dGII(s)

d
√
s

]
√
s=
√
s0

]
= 1− Z , (4.6)

with Z the weight of something different from a πN state in the ∆.
The value of the pole that we get for the best fit is

√
s0 = (1204.6 + i 44.4) MeV , (4.7)

while for the coupling we find

g̃∆ = (8.53 + i 1.85) · 10−3 MeV −1 . (4.8)

From these values we finally obtain

− g̃2
∆

[
dGII(s)

d
√
s

]
√
s=
√
s0

= (0.62− i 0.41) , (4.9)

and
1− Z = 0.62 , (4.10)

which indicates a sizeable weight of πN in the resonance.
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qmax [GeV ] −g2 dGII

d
√
s

1− Z

0.4 0.47− i0.38 0.47
0.5 0.57− i0.29 0.57
0.6 0.65− i0.22 0.65

Table 4.2: Values of −g2 dGII

d
√
s

and 1− Z for different cutoffs qmax.

4.2.2 The phenomenological approach
Now we repeat the phenomenological analysis of Section 3.4.2 to test the
sum rule by means only of experimental data.

The ∆ amplitude in a relativistic form is given by

t∆ =
g2

∆

√
s−M∆ + iΓon

2

(
p
pon

)3 , (4.11)

where

g2
∆ =

2πM∆Γon
p3
onMN

. (4.12)

The values of M∆ and Γon are known from the experiment.
Defining

√
s = a + ib and making the substitution p → −p in the width

term, we obtain the amplitude t∆ in the second Riemann sheet. Then, we
proceed as before to get the pole and the coupling.

The values we obtain,
√
s0 = (1208.0 + i 40.9) MeV ,

g∆ = (7.78 + i 1.86) · 10−3 MeV −1 ,
(4.13)

are very similar to those obtained with the procedure of the former subsection.
In this case we do not know the size of the cutoff qmax needed to regularize

the loop function, but the derivative of GII in Eq. (4.6) is logarithmically
divergent in the case of p-waves. Then, using natural values for the cutoff, as
done in the previous chapter for the ρ and K∗ mesons, we can establish if the
results are stable in a certain range of qmax.

The values of 1−Z for three different values of qmax are shown in Table 4.2.
They are rather stable and consistent with the result obtained in the previous
section.

4.3 Application to the otherJP = 3
2

+ resonances
Now we extend the study of the hadron-hadron content of resonances to the
whole JP = 3

2

+
baryons decuplet, applying the phenomenological test of Sec-
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2

+ resonances

tion 4.2.2 to the Σ(1385), Ξ(1530) and Ω−.
We first investigate the πΛ and πΣ content of the Σ(1385) wave function.

It is known from the PDG [17] that the Σ(1385) couples to these two channels
with different branching ratios: 87% and 11.7%, respectively. In order to
evaluate the couplings of the resonance to the single channel, the branching
ratios must be taken into account, modifying Eq. (4.12) as follows:

g2
Σ∗,i =

2πMΣ∗Γon
p3

(i)onMi

·BR(i) , (4.14)

where BR(i) is the branching ratio to the channel i, with i = πΛ, πΣ and

p(i)
on = p(i)(

√
s = MΣ∗) , (4.15)

where

p(i) =
λ1/2(s,M2

i ,m
2
π)

2
√
s

. (4.16)

The case of the Ξ(1530) is completely analogous to the one of the ∆(1232),
since, according to the PDG [17] it couples to the πΞ channel with a branching
ratio of 100%. Hence, the coupling gΞ∗,πΞ is simply given by Eq. (4.12), doing
the substitutions M∆ →MΞ∗ and MN →MΞ .

On the other hand, the case of the Ω− is different since this resonance is
stable to strong decays. This means that the on shell amplitude Γon is zero
and this prevents us from evaluating the coupling of the resonance to the K̄Ξ
channel using Eq. (4.12). However, from SU(3) symmetry considerations we
can relate the gΩ−,K̄Ξ coupling to g∆,πN , since their ratios are simply ratios of
Clebsch-Gordan coefficients. We find that

g2
Ω−,K̄Ξ0 = 2g2

∆,πN . (4.17)

The amplitude in relativistic form is again given by Eq. (4.11) and, in the
case of the Σ(1385) and Ξ(1530), it is extrapolated to the second Riemann
sheet in order to evaluate the pole and the new couplings. Since, as already
said, the Ω− does not decay through the strong interaction, the pole of the
amplitude is found on the real axis, with no need to go to the second Riemann
sheet. It is then possible to apply the sum rule, evaluating the derivative of
the G function in the position of the pole. To do it we use a cutoff of the
same order of magnitude as the one found doing the best fit for the ∆(1232),
qmax ' 450 MeV. The results obtained for the three resonances are shown
in Table 4.3. We also show the cutoff dependence of 1 − Z, analogously
to Table 4.2, in Table 4.4. We can see that the amount of meson-baryon
component is smaller than for the case of the ∆(1230).
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Channel
√
s0 [MeV ] g [MeV ]−1 1− Z

Σ(1385)
πΛ
πΣ

1380.4 + i17.3
1377.4 + i16.0

(5.11 + i0.60) · 10−3

(3.63 + i0.81) · 10−3

0.16
0.10

Ξ(1530) πΞ 1532.9 + i4.7 (4.36 + i0.23) · 10−3 0.11

Ω− K̄Ξ 1672.4 (1.56 + i0.37) · 10−2 0.26

Table 4.3: Values of poles, couplings and 1−Z for the three baryons of the decuplet
JP = 3

2

+
, Σ(1385), Ξ(1530) and Ω−, for a cutoff qmax = 450 MeV .

Channel qmax [GeV] 1− Z

Σ(1385) πΛ
0.4
0.5
0.6

0.13
0.19
0.24

Σ(1385) πΣ
0.4
0.5
0.6

0.09
0.10
0.12

Ξ(1530) πΞ
0.4
0.5
0.6

0.09
0.12
0.15

Ω− K̄Ξ
0.4
0.5
0.6

0.18
0.34
0.53

Table 4.4: Values of 1 − Z for different cutoffs qmax for the three baryons of the
decuplet JP = 3

2

+
, Σ(1385), Ξ(1530) and Ω−.
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4.4 Interpretation of the sum rule for resonances

4.4 Interpretation of the sum rule for resonances
In the previous sections we have obtained values of −g2 dGII

d
√
s

which are complex
and, thus, the probabilistic interpretation of the different terms of the sum rule
in Eq. (3.107) presents some difficulties. The aim of this section is to clarify
the meaning of these terms.

Before we give a general formulation of the sum rule for complex energies
based on the results of Refs. [94, 96, 97], let us visualize it in a particular
case with two channels, one of them closed and the other one open. Let us
also assume, for simplicity, that the interaction in the closed channel is strong
and attractive and let us neglect the diagonal interaction in the open channel.
Thus, we have a potential like the one of Eq. (3.81) but now

v =

(
v11 v12

v12 0

)
. (4.18)

The results that we get are general and the inclusion of v22 is straightfor-
ward though it does not add any important information to the discussion. We
shall also assume for simplicity that |v12| � |v11| only to relate, later on in
this section, the imaginary part of the pole position to the width.

The t matrix is given by Eq. (3.110), that for the simple case of two
channels means

t =

(
v11 + v2

12G2 v12

v12 v2
12G1

)
· 1

1− v11G1 − v2
12G1G2

. (4.19)

Let us now assume that we have a pole in the bound region of channel 1
and open region of channel 2. Then, the denominator of t in Eq. (4.19) will
be zero,

1− v11G1 − v2
12G1G2 = 0 , (4.20)

but G2 is complex in the first Riemann sheet and, in particular, for p-waves,

ImGI
2 = −i4π2µ2 k

3
2 (4.21)

in the non-relativistic formulation and

ImGI
2 = −i 1

4π

MN√
s
k3

2 (4.22)

in the relativistic one of Section 4.2, with ki =
√

2µi(E −m1i −m2i) or
ki = λ1/2(s,m2

1i,m
2
2i)/2
√
s respectively, for i = 2.
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Application to baryons and interpretation

Let us assume that the attractive v11 interaction is strong enough to pro-
duce a bound state in channel 1 with energy E1, when only this channel is
considered. Then, we would have

1− v11G1(E1) = 0 . (4.23)

The addition of the interaction v12 will change this energy and Eq. (4.20) can
be rewritten, taking Eq. (4.23) into account and remembering that vij is taken
independent of the energy, as

− v11
∂G1

∂E
(ER − E1)− v2

12G1G2 = 0 , (4.24)

where ER will be the new energy of the system.
Since v11 < 0 and ∂G1

∂E
< 0 in the bound region, we have

ER − E1 = −α v2
12G1G2 , α > 0 , G1 < 0 (4.25)

where α =
(
v11

∂G1

∂E

)−1
.

The complex value of G2, see Eqs. (4.21) and (4.22), was obtained for an
energy E + iε. We gradually continue along the complex plane making the iε
finite, iΓ

2
, and Eq. (4.25) gives

ẼR + i
Γ

2
= −α v2

12G1G2 , (4.26)

Γ

2
' −α v2

12G1ImG2 , (4.27)

which is impossible to fulfill in the first Riemann sheet since G1 < 0, α > 0 and
ImGI

2, given by Eqs. (4.21) and (4.22), is negative. This gives us a perspective
of why one has to go to the second Riemann sheet, where k2 → −k2 in G2, in
which case one finds a solution, with ẼR = E1 −m1i −m2i (i = 2) and

Γ = 2
v2

12G1

−v11
∂G1

∂E

ImGII
2 . (4.28)

Next, let us calculate the couplings gi, where gigj is the residue of the tij
matrix element at the pole. Applying l’Hôpital rule, we have

g2
1 = lim(E − ER)t11 =

v11 + v2
12G2

−v11
∂G1

∂E
− v2

12
∂G1

∂E
G2 − v2

12
∂G2

∂E
G1

,

g2
2 = lim(E − ER)t22 =

v2
12G1

−v11
∂G1

∂E
− v2

12
∂G1

∂E
G2 − v2

12
∂G2

∂E
G1

.

(4.29)
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4.4 Interpretation of the sum rule for resonances

Let us now see that the sum rule of Eq. (3.107) is exactly fulfilled, since
we have

g2
1

∂G1

∂E
+ g2

2

∂G2

∂E
=

(v11 + v2
12G2)∂G1

∂E
+ v2

12G1
∂G2

∂E

−v11
∂G1

∂E
− v2

12
∂G1

∂E
G2 − v2

12
∂G2

∂E
G1

= −1 . (4.30)

However, this occurs only at the complex pole ẼR + iΓ
2

using GII
2 , since we

have made use of the fact that the denominator in g2
1 and g2

2 of Eqs. (4.29)
vanishes for E = ẼR + iΓ

2
to apply l’Hôpital rule, which only occurs in the

second Riemann sheet.
Note that the sum rule has appeared with the definition of the couplings

of Eq. (3.106). The explicit form obtained for the couplings in Eqs. (4.29)
shows clearly that they are complex, since both G1 and G2 are now complex.

Now that we have obtained the couplings, let us rewrite Γ of Eq. (4.28),
derived assuming |v12| � |v11| and neglecting again v12 versus v11, as

g2
2 '

v2
12G1

−v11
∂G1

∂E

, (4.31)

from which follows

Γ = 2g2
2

M

4π
√
s
p3 , (4.32)

where we have used the relativistic formula for ImG2 of Eq. (4.22) and Eq.
(4.5). As we can see, we reproduce the formula for the width given by Eq.
(4.12).

Now we want to interpret the meaning of the sum rule. Eq. (4.30) is
a generalization to complex energies of the sum rule obtained in Eq. (119)
of Ref. [94] and Eq. (3.105) for real energies. There it was interpreted as
a consequence of the sum of probabilities of each channel to be unity. For
complex values of the energies this interpretation is not possible and this is
related to the fact that the eigenstates of a complex Hamiltonian are not
generally orthogonal1.

Formally the problem is solved using, in this case, a biorthogonal basis.
Indeed, let λn be a complex eigenvalue of H and |λn〉 the corresponding eigen-
vector. It satisfies

det(H − λnI) = 0 . (4.33)

Then
det(H† − λ∗nI) = 0 , (4.34)

1Although our Hamiltonian was given in terms of vij in coupled channels, only for for-
mal purposes one could think of a complex Hamiltonian whose eigenvalues would be these
complex energies.

68



Application to baryons and interpretation

which means that λ∗n is an eigenvalue of H†. Let now |λ̄n〉 be the eigenvector
of H† associated to λ∗n. The eigenvectors |λn〉 and |λ̄n〉 are not equal, but we
can see that

〈λ̄n|H|λm〉 = λm〈λ̄n|λm〉 = λn〈λ̄n|λm〉 , (4.35)

where to get the last term we have applied H as H† to the bra state. Thus

(λn − λm)〈λ̄n|λm〉 = 0 , (4.36)

which means that |λm〉 and |λ̄n〉 are orthogonal for n 6= m. For the case of
n = m, 〈λ̄n|λn〉 6= 0 and we can choose a normalization and a phase for |λ̄n〉
and |λn〉 such that 〈λ̄n|λn〉 = 1.

The resolution of the identity is now given by
∑

n |λn〉〈λ̄n|. Furthermore,
if we have a symmetric but not hermitian Hamiltonian, as it is our case, then
it is trivial to see that |λ̄n〉 = |λ∗n〉 for its wave function.

Then, the relationship

〈Ψi|Ψi〉 =
∑
i

∫
d3p|Ψi(p)|2 = 1 (4.37)

used to derive the sum rule in Ref. [94] and in Chapter 3, must be substituted
by

〈Ψ̄i|Ψi〉 =
∑
i

∫
d3p (Ψ̄i(p))

∗Ψi(p) =

∫
d3pΨ2

i (p) = 1 . (4.38)

Hence, for complex values, the modulus squared of the wave function has
to be substituted by its square. The integral of Eq. (4.38) depends on the
prescription used for the phase of Ψi. Below we show that, with the standard
phase convention used in Chapter 3, Eq. (4.38) is fulfilled.

The wave function for us is given by Eq. (3.84). However we can assume
that in our formalism (exactly as in the formalism of Ref. [96], see Eqs. (46)
and (47)) the asymptotic scattering state used to create the resonance couples
extremely weakly to it, such that, for the sum rule, one only has to worry
about the bound state and the relevant decaying states. Thus, omitting the
spherical harmonics for simplicity, the wave function for a decaying channel of
the resonance (that means that it does not contain the |Φ〉 term in the wave
function in Eq. (3.84)) is given by

Ψi(p) = gi
Θ(Λ− |~p |)p

E −m1i −m2i − p2/2µi
, (4.39)

where we have used Eq. (3.98) and (3.103). Thus, we can write∫
d3p (Ψi(p))

2 = g2
i

∫
|~p |<Λ

d3p
p2

(E −m1i −m2i − p2/2µi)2
= −g2

i

∂GII
i

∂E
,

(4.40)
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4.4 Interpretation of the sum rule for resonances

but we saw in Eq. (4.30) that

∑
i

g2
i

∂GII
i

∂E
= −1 , (4.41)

and, hence, we can conclude that∑
i

∫
d3pΨ2

i (p) = 1 , (4.42)

with the phase and normalization chosen for the wave function in Eq. (4.39).
Note that for the case of bound states we can use the same formulation and

the prescription taken for the phase is the one where the wave function is real.
In general gi can be complex and Ψi(p) will be complex, but the prescription
for the interpretation given is to take the phase convention with the wave
function in momentum space given by Eq. (4.39).

This clarifies the meaning of the sum rule. It is the demanded extrapolation
to complex energies of the sum of probabilities equal unity for real energies.
The modulus square of the wave function is substituted by the square of the
wave function with a given prescription for the phase, which in the case of
bound states would be having the wave function real. Thus we should interpret

−g2
i
∂GIIi
∂E

as the extrapolation of a probability into the complex plane, but it is
not a probability. Yet, once we have interpreted it as the integrated strength
of the wave function squared, we still can think of it as a magnitude providing
the weight, or relevance, of one given channel in the wave function of a state.

As we can see, the integral
∫
d3p (Ψ(p))2, given in terms of the coupling gi

and
∂GIIi
∂E

, is a finite but complex quantity.
Since the two terms in Eq. (4.30) will now be complex, the sum of the

imaginary parts will vanish and the sum of real parts will be equal to −1.
Thus we have

Re(g2
1

∂GII
1

∂E
) + Re(g2

2

∂GII
2

∂E
) = −1 (4.43)

and the sum rule is fulfilled for the real part of the squares of the wave func-
tions.

The evaluation of the integral of (Ψi(p))
2 is most easily done in momentum

space and concretely in terms of GII . Yet, one would like to have a feeling of
what happens in terms of wave functions in coordinate space, even if the
integration of (Ψi(r))

2 in coordinate space requires extra work and is not
convenient. We calculate the wave function in coordinate space in Appendix A
and we recall only the basic results that we use here for qualitative purposes.
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Application to baryons and interpretation

For r →∞ one obtains for the open channel, in the non relativistic formu-
lation of Section 3.3 and in the first Riemann sheet

Ψ2(r) ∼ eikr

r
, k =

√
2µ2(ẼR + i

Γ

2
) . (4.44)

Defining kR =

√
2µ2ẼR and kI =

√
2µ2ẼR

Γ
4ẼR

, we can write

Ψ2(r) ∼ 1

r
eikRre−kIr . (4.45)

In the second Riemann sheet, we would substitute k by −k and then

ΨII
2 (r) ∼ 1

r
e−ikRrekIr . (4.46)

Hence the wave function in coordinate space in the second Riemann sheet
would even blow up and we would find an infinite probability. This is actually
also the case even if kI = 0. Thus the concept of probability is not useful once
we have open channels.

Yet,

(ΨII
2 (r))2 ∼ 1

r2
e−2ikRre2kIr , (4.47)

and it has an oscillatory behaviour that makes the integral for large values of
r vanish in the sense of a distribution, like

∫
d3r ei~p~r for p 6= 0. Of course, the

finiteness of the integral is better seen integrating in the space of momenta, as
we have seen.

4.5 Interpretation of the sum rule for energy de-
pendent potentials

The sum rule of Eq. (3.105) holds for states that are generated in coupled
channels with potentials which are independent of the energy and, in the case
of bound states, we saw that −g2 ∂G

∂E
can be interpreted as the probability

of having a certain state. Yet, we have been using a potential containing a
CDD pole (Eq. (4.3)) to take into account the possible genuine component
and, even in the presence of this energy dependent potential, we would still
associate −g2 ∂G

∂E
to the possibility of finding channel 1 in a certain state, for

bound states. This requires a justification. One can in principle go back to the
work done in Ref. [94] and re-derive the formulas with an energy dependent
potential. However, this meets with serious problems, because the eigenstates
of the Hamiltonian are now not orthogonal and

∑ |α〉〈α| is not the resolution
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4.5 Interpretation of the sum rule for energy dependent potentials

of the identity. These problems and possible solutions are studied in Refs.
[120, 121].

A suggestion to interpret the results of the sum rule in the case of an
energy dependent potential is given in Section 4.2 of Ref. [122]. There it
was found that, for a state generated with an energy dependent potential in
coupled channels, the sum rule has the form

−
∑
i,j

gigj

[
∂GII

i (E)

∂E
δij +GII

i (E)
∂Vij(E)

∂E
GII
j (E)

]
E→ER

= 1 , (4.48)

with Vij(E) the interaction kernel, and then the compositeness (the probability
of the state to be in either of the channels considered, for the case of bound
states) is defined as

X = −
∑
i

g2
i

[
∂GII

i (E)

∂E

]
E→ER

, (4.49)

while the elementariness (the part of the state that does not belong to the
considered channels) is then

Z = −
∑
ij

[
giG

II
i (E)

∂Vij(E)

∂E
GII
j (E)gj

]
E→ER

. (4.50)

A different derivation of Eq. (4.48) can be found in Ref. [112].
We take advantage here to justify this in the case that we have discussed

above with two channels, and we study the problem with a single channel and
an effective energy dependent single channel potential. The effective potential
method is also discussed in Ref. [122] in Section 3.2, using the Feshbach
projection method [123]. Here we follow a different approach.

The idea is the following: we start with a two channel case with an energy
independent potential that generates a certain bound state, and evaluate Tij.
Then we use just channel 1 with an effective potential, such that T11 is the
same in both approaches. As a consequence, and for bound states, −g2

1
∂G1

∂E
,

which is the same in both approaches, gives the probability to find channel
1 in the state that we study, which is smaller than one. The difference from
unity of this quantity, in our approach, is Z, which gives the probability that
the state that we find is not in channel 1. This latter probability is related to
∂Veff
∂E

as we see below.
Indeed, using the simplified case of Eq. (4.18) in two channels we have

T11 =
v11 + v2

12G2

1− (v11 + v2
12G2)G1

, (4.51)

72



Application to baryons and interpretation

while in one channel with Veff , we will have

Teff =
Veff

1− VeffG1

. (4.52)

It is clear that taking
Veff = v11 + v2

12G2 (4.53)

the two amplitudes T11 and Teff are identical and the residue at the pole, g2
1,

will also be the same as g2
eff .

On the other hand, we have from Eq. (3.106)

g2
eff = lim

E→E0

(E − E0)Veff
1− VeffG1

=
Veff

−∂Veff
∂E

G1 − Veff ∂G1

∂E

, (4.54)

which, using the pole condition 1− VeffG1 = 0, can be rewritten as

g2
eff =

1

−G2
1
∂Veff
∂E
− ∂G1

∂E

. (4.55)

Hence,

− g2
effG

2
1

∂Veff
∂E

− g2
eff

∂G1

∂E
= 1 . (4.56)

Since

X ≡ −g2
eff

∂G1

∂E
= −g2

1

∂G1

∂E
(4.57)

is the probability to find the state in channel 1 (for bound states), then

− g2
effG

2
1

∂Veff
∂E

≡ Z (4.58)

gives the probability to find the state somewhere else (originally channel 2).
This is the result of Ref. [122] which we wrote in Eq. (4.50).

Note that to study the possibility to have a genuine (non πN) state in
the resonance that we study, we have used a CDD pole term in the potential.
We can use this also to account for missing channels. Coming back to our
example, if we have (we change a bit the notation for convenience)

Veff = a+
b

E − ER
(4.59)

we should equate it to the potential of Eq. (4.53), which is not possible in all
the range of energies. But the minimum requirement is that they are the same
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4.6 Composite nature of the Λ(1520)

at the pole and give the same residue, for which it suffices to equate the two
values of Veff and

∂Veff
∂E

. Thus,

a+
b

E0 − ER
= v11 + v2

12G2(E0) ,

− b

(E0 − ER)2
= v2

12

[
∂G2

∂E

]
E=E0

.
(4.60)

This is always possible and shall leave us still one parameter to make a fit
for an optimal agreement of the two expressions in a certain range of energies
around the pole.

Finally, we want to make a small remark in the sense that the use of the
CDD pole is, to all purposes, a suited way to take into account the genuine
states in a problem. If we take only the CDD pole term in Veff with a small
coupling b to channel 1, then we should expect to get Z ' 1. This is just the
case and indeed we find

Teff =
1

E−ER
b
−G1

,

g2
eff =

1
1
b
− ∂G1

∂E

,
(4.61)

and when b→ 0 then g2
eff ' b. Hence

X = −g2
eff

∂G1

∂E
→ 0 ,

Z = −g2
effG

2
1

∂Veff
∂E

→ −bG2
1(E0)

−b
(E0 − ER)2

=

(
b

E0 − ER
G1

)2

= 1 ,

(4.62)

the last equation holding because of the pole in the denominator of Teff , Eq.
(4.61).

4.6 Composite nature of the Λ(1520)

As anticipated in the introduction to the chapter, our starting point for the
investigation of the Λ(1520)’s nature is the analysis of Ref. [115]. The Λ(1520)
is studied in the framework of a coupled channels formalism including the
channels πΣ(1385) and KΞ(1530) in s-waves and K̄N and πΣ in d-waves.
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4.6.1 The chiral unitary model
The matrix containing the tree-level amplitudes can be written as

V =


C11(k0

1 + k0
1) C12(k0

1 + k0
2) γ13 q

2
3 γ14 q

2
4

C21(k0
1 + k0

2) C22(k0
2 + k0

2) 0 0
γ13 q

2
3 0 γ33 q

4
3 γ34 q

2
3 q

2
4

γ14 q
2
4 0 γ34 q

2
3 q

2
4 γ44 q

4
4

 , (4.63)

where qi =
√

(s− (mi −Mi)2)(s− (mi +Mi)2)/2
√
s and k0

i = (s − M2
i +

m2
i )/2
√
s, with mi and Mi the masses of the meson and baryon in channel i

(i = 1, 4), respectively.
The s- and d-waves character of the transitions is taken into account by

means of the dependence of the potentials on the incoming and outgoing
squared momenta. The s-wave transition elements are obtained from the
lowest order chiral Lagrangian involving the interaction of the decuplet of
baryons and the octet of pseudoscalar mesons, which gives C11 = −1/f 2,
C12 = C21 = −

√
6/4f 2 and C22 = −3/4f 2, with f = 1.15 fπ and fπ = 93

MeV. The factor 1.15 in f represents the average between fπ and fK [22].
Since we need a momenta independent potential, we define a new potential

as

V ′ =


C11(k0

1 + k0
1) C12(k0

1 + k0
2) γ13 γ14

C21(k0
1 + k0

2) C22(k0
2 + k0

2) 0 0
γ13 0 γ33 γ34

γ14 0 γ34 γ44

 (4.64)

independent of the q2 factors coming from the d-waves and, according to
Chapter 3, we include this dependence in the new loop functions, that will
now have the form

G
(s)
i = 2Mi

∫
d3p

(2π)3

ωi(p) + Ei(p)

2ωi(p)Ei(p)

1

P 02 − (ωi(p) + Ei(p))2 + iε
, (4.65)

G
(d)
i = 2Mi

∫
d3p

(2π)3

ωi(p) + Ei(p)

2ωi(p)Ei(p)

p4

P 02 − (ωi(p) + Ei(p))2 + iε
, (4.66)

where ωi(p) =
√
p2 +m2

i and Ei(p) =
√
p2 +M2

i are the energies of the
meson and the baryon involved in the loop, respectively. This modification
concerns only the loop function for the d-wave channels, G

(d)
i (i = 3, 4), which

now contains the factor p2l = p4. Note that we are taking the relativistic
propagator [30].

Note that the s-wave elements of the V ′ matrix (V ′11, V ′12, V ′21 and V ′22) still
contain an energy dependence through the k0

i factors. However this depen-
dence is very smooth and it will play a role in the diversion from unity in the
sum rule of Eq. (3.108), as will be further explained.
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4.6 Composite nature of the Λ(1520)

The loop functions in Eqs. (4.65) and (4.66) are regularized by means of

two different cutoffs in momentum space, p
(s)
max and p

(d)
max for the s- and d-

waves channels respectively. These two cutoffs, together with the coefficients
γ13, γ14, γ44, γ44 and γ34 of Eq. (4.64), constitute the set of free parameters in
the theory.

However, this procedure presents a problem due to the different dimensions
of the magnitudes involved. The elements of V ′ in Eq. (4.64) concerning the
transitions involving the d-waves channels, after removing the dependence on
the momenta, will have different dimension with respect to the other ones.
The same happens to the loop functions, that now have different dimensions
in the cases of s- or d-waves.

In order to render the dimensions homogeneous and evaluate the scatter-
ing amplitudes by means of the Bethe-Salpeter equation, which is a matrix
equation, we define

Ṽ =


C11(k0

1 + k0
1) C12(k0

1 + k0
2) γ13 q

∗2
3 γ14 q

∗2
4

C21(k0
1 + k0

2) C22(k0
2 + k0

2) 0 0
γ13 q

∗2
3 0 γ33 q

∗4
3 γ34 q

∗2
3 q∗24

γ14 q
∗2
4 0 γ34 q

∗2
3 q∗24 γ44 q

∗4
4

 , (4.67)

with q∗i = qi(mΛ∗) =
√

(m2
Λ∗ − (mi −Mi)2)(m2

Λ∗ − (mi +Mi)2)/2mΛ∗ , where
we choose for mΛ∗ the Λ(1520) mass. Nevertheless, this specific choice is
obviously irrelevant for the final results. The dimensions of γij are chosen
such that all the elements of the matrix Ṽ have the same dimensions.

Now, we can write

G̃
(d)
i = 2Mi

∫
d3p

(2π)3

ωi(p) + Ei(p)

2ωi(p)Ei(p)

p4/q4
i (mΛ∗)

P 02 − (ωi(p) + Ei(p))2 + iε
. (4.68)

This new loop function for the d-waves cases has the same dimension as G
(s)
i ,

and now the Bethe-Salpeter equation reads

T̃ =
1

Ṽ −1 − G̃
, (4.69)

with

G̃ =


G

(s)
1 0 0 0

0 G
(s)
2 0 0

0 0 G̃
(d)
3 0

0 0 0 G̃
(d)
4

 . (4.70)

Since the qi momentum in Eq. (4.67) is relatively small, the G̃
(d)
i of Eq.

(4.68) can be large with respect to G
(s)
i due to the p4/q4

i factor in the integrand.
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Set p
(s)
max [MeV] p

(d)
max [MeV]

1) 1797.960 868.265
2) 1427.119 865.693
3) 1324.125 904.062
4) 1438.782 897.246
5) 1747.956 911.004

Table 4.5: Values of the parameters p
(s)
max and p

(d)
max resulting from a sample of five

best fits to the scattering data for the K̄N and πΣ amplitudes.

Obviously, this depends on the cutoff for the d-wave loops, which is taken to
be different from the s-wave one in the fit to the data. Whether G̃

(d)
i will be

large or not in the end compared to G
(s)
i depends on this cutoff, but this is

determined by the data.

4.6.2 Results and discussion
The scattering amplitudes derived using Eq. (4.69) contain, as we already

mentioned, seven free parameters: p
(s)
max, p

(d)
max, γ13, γ14, γ44, γ44 and γ34. In

order to obtain their values, we fit the model to the experimental scattering
amplitudes for K̄N and πΣ in d-wave and for I = 0 [124, 125]. The relation
between the experimental and the theoretical amplitudes is given by

T expij (
√
s) = −

√
Miqi
4π
√
s

√
Mjqj
4π
√
s
Tij(
√
s) , (4.71)

with i and j the channels involved in the transition.
We obtain several equivalent best fits to the experimental data and the

values of the parameters obtained from a sample of five sets are listed in Ta-
ble 4.5 and Table 4.6. In Figure 4.2 we show the results of the fit for the
first set of Table 4.5 and Table 4.6, but, in any case, the results are consis-
tent for all the sets. The fact that we get approximately the same solutions
with different sets of parameters indicates that there are strong correlations
between them. The final results are also very similar independently of the set
of parameters chosen (see Table 4.8).

At this point, we apply the sum rule extrapolating the amplitudes to the
complex plane and changing G

(s)
i and G

(d)
i to G

II(s)
i and G

II(d)
i in Eqs. (4.65)
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4.6 Composite nature of the Λ(1520)

Set γ13 [MeV−3] γ14 [MeV−3] γ33 [MeV−5] γ44 [MeV−5] γ34 [MeV−5]

1) −0.875 · 10−7 1.169 · 10−7 −0.030 · 10−11 −0.055 · 10−11 0.003 · 10−11

2) 3.938 · 10−7 −5.028 · 10−7 −0.748 · 10−11 −1.345 · 10−11 0.966 · 10−11

3) −0.695 · 10−7 0.840 · 10−7 −0.025 · 10−11 −0.033 · 10−11 −0.002 · 10−11

4) 2.799 · 10−7 −3.502 · 10−7 −0.037 · 10−11 0.048 · 10−11 −0.028 · 10−11

5) 2.248 · 10−7 −2.873 · 10−7 0.126 · 10−11 0.162 · 10−11 −0.174 · 10−11

Table 4.6: Values of the parameters γ13, γ14, γ33, γ44 and γ34 resulting from a
sample of five best fits to the scattering data for the K̄N and πΣ amplitudes.
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Figure 4.2: Fit to experimental amplitudes for K̄N → K̄N and K̄N → πΣ.
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Set
√
s0 [MeV] gπΣ∗ gKΞ∗ gK̄N gπΣ

1) 1518.7− i6.4 0.70− i0.01 −0.40 + i0.05 0.54− i0.06 0.43− i0.05
2) 1519.1− i6.7 0.78− i0.07 −0.35 + i0.07 −0.56 + i0.05 −0.45 + i0.03
3) 1518.3− i6.5 0.73 + i0.01 −0.31 + i0.03 0.53− i0.06 0.44− i0.06
4) 1519.9− i6.5 0.74 + i0.00 −0.34 + i0.04 0.53− i0.07 0.44− i0.04
5) 1518.5− i6.4 0.63 + i0.02 −0.35 + i0.03 −0.53 + i0.07 −0.43 + i0.05

Table 4.7: Pole positions and values of the couplings of the Λ(1520) to the four
different channels of the model.

and (4.68), in the channels which are open:

G
II(s)
i (

√
s) = G

I(s)
i +

i

2π

Mi√
s
qi ,

G
II(d)
i (

√
s) = G

I(d)
i +

i

2π

Mi√
s

q5
i

q4
i (mΛ∗)

, Im(qi) > 0 ,

(4.72)

where G
I(s)
i and G

I(d)
i are the loop functions in the first Riemann sheet given

by Eqs. (4.65) and (4.68).
The values of the poles that we get from the five sets are listed in the first

column of Table 4.7.
Now we can evaluate the couplings of the resonance to the different channels

as the residues at the pole of the amplitudes and apply the sum rule to evaluate
the contribution of a single channel to the Λ(1520):

(1− Z)i = −Re
[
g2
i

[
dGII

i (s)

d
√
s

]
√
s=
√
s0

]
. (4.73)

The couplings that we find are shown in Table 4.7. Note that there is an
ambiguity in the sign of gK̄N and gπΣ among the different sets but the product
gK̄NgπΣ has the same sign. This is because we fit the transition K̄N → πΣ
which determines the relative sign but not the overall one referred to the πΣ∗

channel.
From these values we can obtain the relevance of the different channels in

the wave function of the Λ(1520) resonance, using Eq. (4.73). The values of
the different weights are shown in Table 4.8.

We can now estimate the composite character of the Λ(1520) resonance
since, according to Eq. (3.108)∑

i

(1− Z)i = 1− Z , (4.74)
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4.6 Composite nature of the Λ(1520)

Set (1− Z)πΣ∗ (1− Z)KΞ∗ (1− Z)K̄N (1− Z)πΣ 1− Z
1) 0.084 0.002 0.494 0.214 0.79
2) 0.089 0.001 0.526 0.225 0.84
3) 0.093 0.001 0.541 0.239 0.99
4) 0.093 0.001 0.518 0.237 0.87
5) 0.072 0.002 0.531 0.237 0.84

Table 4.8: Values of the weights Xi of the different channels in the wave function
of the Λ(1520) and the total 1− Z =

∑
i(1− Z)i.

and Z is a measure of the presence in the state of something different from the
meson-baryon components considered (genuine components). We obtain for
1− Z the values shown in the last column of Table 4.8. Taking the average
of the last column we have 1−Z = 0.87±0.10, which indicates an appreciable
weight of meson-baryon character in the resonance with less than 15% weight
for other genuine components.

It is worth noting that numerically, according to Eq. (4.50) [122], the value
of Z corresponds to

Z = −
∑
ij

[
giG

II
i (
√
s)
∂Vij(

√
s)

∂
√
s

GII
j (
√
s)gj

]
√
s=
√
s0

. (4.75)

Therefore, the diversion from unity of the compositeness
∑

iXi is due to the
smooth energy dependence of the s-wave elements of the potential (see Eq.
(4.67)). In Section 4.5 we have shown that in cases where there is an explicit
CDD pole in the potential accounting for a genuine state, which has a specific
energy dependence, or when one channel has been eliminated introducing an
equivalent effective potential, Eq. (4.75) indeed accounts for the probability,
or weight, of the missing channels. On the other hand, it is not clear if the
small magnitude obtained from the smooth energy dependence of the Weinberg
Tomozawa interaction can be attributed to missing channels, and one could
think of this amount simply as an uncertainty in the method used to determine
Z. Specifically in the present case, we also see that it is of the same order of
magnitude as the statistical uncertainties. Anyway, the fact that we get a
good fit without needing to include a CDD pole is an indication of the low
weight of genuine components in the building up of the Λ(1520) resonance.

However, we can see in Table 4.7 that the coupling of the resonance to
the πΣ∗ channel is the largest one. Yet, in terms of weight (or, if it was
a bound state, probability of the state) it represents only about 10%. This
small probability can be deceiving, because the relevance of each channel is
usually tied to the values of the wave function at the origin, more than to the

80



Application to baryons and interpretation

probability. This is why in each particular process one has to find out the
relevance of each channel. For instance, from the study of the radiative decays
Λ(1520)→ γΛ, γΣ0 emerged that the πΣ, πΣ∗ channels did not contribute to
the γΛ decay but these d-wave component gave the largest contribution to the
decay width in the case of the γΣ0 decay channel [48] .

We should then stress that one must be careful asserting the relevance of
the channels from the weight obtained. Indeed, for the open channels πΣ and
K̄N , the value of Xi corresponds to the integral of the wave function squared,
which goes as e−iqr/r for large r. While the integral of the modulus squared of
the wave function diverges, this is not the case for the wave function squared,
where the oscillations of the e−2iqr factor lead to large cancellations at large
r. Yet, it is clear that for the open channels one is getting contributions to Xi

from larger values of r than in the bound channels πΣ∗ and KΞ∗. However,
the wave function at large values of r will not have relevance in most processes
involving short distances. In this sense, the couplings in the normalization
that we have, or the relative values of Xi in the s-waves or d-waves channels,
are the magnitudes that more fairly indicate the relevance of the different
channels, but ultimately it is the specific dynamics of a given process that will
determine the relevance of the channels, as seen in Ref. [48].

One example that helps put in perspective the former discussion is the case
of the X(3872) resonance, which from the molecular point of view corresponds
to a DD̄∗ molecule. In this case the D0D̄∗0 component is bound by barely
0.2 MeV while the charged component D+D∗− is bound by about 7 MeV. It
was found in Refs. [126, 127], and it will be shown in detail in Chapter 7,
that the Xi is about 0.86 and 0.124 for the D0D̄∗0 and the D+D∗− compo-
nents, respectively. Thus, to the neutral component corresponds a very large
probability, about seven times larger than for the charged one, a ratio even
bigger than the ratio found here for XK̄N and XπΣ∗ . Yet, this big difference
does not mean that the neutral component is the most important in physical
reactions, since in processes involving short distances it is the wave function
at the origin what matters (giGi for s-waves) [94] and this magnitude has
about the same strength in the neutral and charged channels [126]. In view
of this, one might get tempted to compare wave functions at the origin in the
present case. However this is not possible, because we are dealing with s-wave
and d-wave components simultaneously and the d-wave function is zero at the
origin.

This discussion serves us as a warning not to interpret the Xi values ob-
tained as the relevance of each channel in physical reactions. The large proba-
bility in the D0D̄∗0 case in the X(3872) state came because the wave function
in this channel extended to large distances, and in the case of an open channel,
as K̄N , πΣ in the Λ(1520), the distances to where the K̄N , πΣ can extend
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4.7 Summary and Conclusions

are even larger.
Anyway, one can state that the sum rule is nearly saturated with the

channels that we have considered, indicating that there is no much room for
other channels. However, the relevance of each channel in particular reactions
can only be asserted when explicit evaluations are done.

We should also note that the d-waves have not been included as a mean
to obtain the Λ(1520) resonance, parametrize short range physics or mimic
possible genuine components. The d-waves are included because the Λ(1520)
is clearly visible in the K̄N → K̄N and K̄N → πΣ d-wave amplitudes, as
shown in Figure 4.2. This is a clear proof that the resonance couples to
these components and they should be taken into account for a more accurate
description of the resonance properties.

In early papers [113, 114] the Λ(1520) was claimed to come from the πΣ∗

and KΞ∗ channels in s-wave. However, in Ref. [115] the importance of the d-
wave channels πΣ, K̄N was established in order to obtain the K̄N → K̄N and
K̄N → πΣ amplitudes around the Λ(1520) resonance. In this perspective we
have performed the following exercises: we first eliminated the d-wave channels
and, with the same parameters, we were able to obtain a πΣ∗ bound state at√
s = 1508 MeV. This means that the πΣ∗ interaction has sufficient strength

to bind a system by itself. This is in line with the findings of Refs. [113, 114],
where, however, other cutoffs were used leading to an energy displacement
with respect to the 1508 MeV that we find in the present work. Then, we
turned-off the s-wave channels, keeping only the πΣ, K̄N channels. With
the same parameters, we find again a resonance at

√
s = (1615 − i 36) MeV.

When all channels are considered together, a pole at
√
s = (1519− i7) MeV is

found and our interpretation is that the consideration of the d-wave channels
on top of the s-wave ones only shifts the pole by about 10 MeV, while the
inclusion of s-wave channels on top of the d-wave ones reduces the energy of
the pole by about 100 MeV. This seems to suggest a large relative importance
of the s-wave channels but, as discussed above, the study of different physical
processes is what allows one to claim the importance of a given channel with
respect to another one.

4.7 Summary and Conclusions
In this Chapter we have applied the generalized compositeness condition, pre-
viously derived, to the decuplet of the ∆(1232) in order to quantify the weight
of the meson-baryon cloud and genuine (presumably three quark) components.
It is interesting to see that, with both the tests we use, we find the pole position
for the ∆(1232) in very good agreement with the PDG [17] values and we ob-
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tain a sizeable composite character, around 60%, as reported in Eq. (4.10) and
in Table 4.2. Then, we extended the compositeness test to the other members
of the decuplet and, as shown in Table 4.3, we found a decreasing size of the
meson-baryon components when we go to the Σ(1385) and Ξ(1530), indicating
that the higher energy members of the decuplet are better represented by a
genuine (in principle three quark) component. For the Σ(1385) and Ξ(1530)
there are also bound components of K̄N and K̄Λ, K̄Σ, respectively, which we
estimate small compared to the open ones in the limited space allowed due
to the decay into the open channels. In the case of the Ω−, where only the
bound component K̄Ξ is present, we estimate the weight of meson-baryon to
be small, of the order of 25 %.

We also clarified the meaning of the extension of the Weinberg sum rule to
the case of resonances, formulating an interpretation for the case of complex
energies. We saw how −g2 ∂GII

∂E
measures

∫
d3p 〈~p |Ψ〉2 and not

∫
d3p |〈~p |Ψ〉|2

as for bound states. So, the concept of probability is changed to the square
of the wave function. Taking the integral of its real part we obtain a natural
quantity to provide a measurement of the relevance of an open channel in the
wave function, since the integral of the modulus squared diverges (even more
in the second Riemann sheet). On the other hand,

∫
d3p 〈~p |Ψ〉2 is finite and

the sum of these quantities for the different coupled channels is unity, within
a certain phase convention, as shown by the generalization of the Weinberg
sum rule.

The values we found for the weight of the πN component in the ∆(1232)
wave function are relatively high, of the order of 60 %. This number could
sound a bit large when one thinks of the ∆(1232) as just a spin flip on the
quark spins of the nucleon. Yet, the result seems reasonable when one recalls
that from Drell-Yan and deep inelastic scattering one induces a probability
of about 34 % for the πN component in the nucleon [128, 129]. Once this is
realized, it also looks less surprising that, unlike the case of the ρ where the
analysis in terms of just the ππ component requires large counterterms beyond
the lowest order contribution from the chiral Lagrangians [32, 99], in the case
of the πN scattering in the ∆(1232) region a description was possible with
moderate size of the counterterms [130, 131].

The large pion nucleon cloud in the ∆(1232) indicates that realistic cal-
culations of its properties should take this cloud into account. Even before
the present test was done to estimate the weight of πN component in the
∆(1232) wave function, the importance of the meson cloud has been often
advocated and one example of it can be seen in the early works on the cloudy
bag model [101] or chiral quark model [132]. The work presented here offers a
new perspective on this interesting subject and the possibility to become more
quantitative than in early works.
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We have also given an interpretation of the terms of the sum rule for the
case of an energy dependent potential. In the case that we have a complete set
of coupled channels that generates a certain bound state, we can truncate the
space and define an energy dependent potential in a space of lower dimension.
The sum rule is now rewritten and a physical interpretation is given to the
different terms. The probability Z that the state overlaps with the eliminated
part of the space is related to the derivative of the potential with respect to
the energy.

We have also tried to quantify the weight of the meson-baryon components
(s-waves πΣ∗, KΞ∗ and d-waves K̄N , πΣ) into the Λ(1520) wave function.
The meson-baryon scattering amplitudes are obtained implementing the tech-
niques of the chiral unitary approach where some unknown parameters (five
d-wave coefficients and two cutoffs) are fitted to K̄N and πΣ experimental
scattering data. The momentum dependence coming from the d-wave chan-
nels is incorporated into the loop function, leaving a smooth energy dependent
potential for which we can apply our techniques. The adding terms in the sum
rule of Eq. (4.73), which are a measure of the weight of the different channels
into the Λ(1520) wave function, and the total sum rule itself can be evaluated.

While the largest coupling obtained is to πΣ∗ (see Table 4.7), the largest
weight Xi is for K̄N (see Table 4.8). This is not contradictory since they rep-
resent different concepts. The coupling (actually the product of the coupling
times the loop function, giGi) accounts for the wave function at the origin, as
we saw in Chapter 3 for s-waves while, as already explained, Xi = −gi ∂Gi∂E

is
a measure of the probability to find that channel.

We also explained that the large weight obtained for the open channels was
a consequence of the contribution to the integral of the wave function squared
from larger values of r than for the bound channels, and not a measure of the
contribution of the channel in different processes, most of which are sensible to
short distances. The values of the couplings and the specific dynamics of those
processes are what finally determines the relevance of each single channel.
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CHAPTER 5

TRIANGULAR KK̄ LOOPS AND ISOSPIN
BREAKING

5.1 Introduction
The a0(980) and f0(980) resonances classify among those states whose nature
has opened an intense debate in the past years. After their discovery [133,
134] many attempts were made to characterize their nature: a qq̄ picture
[135–140], although no quark model proved capable to describe both states
simultaneously [141], multiquark states [142, 143] or KK̄ molecules [144–147].

In Refs. [30–32, 148–151] they appear as composite hadron states, dynami-
cally generated by the interaction of mesons provided by the chiral Lagrangians
[25, 26]. The basic building blocks are ππ and KK̄ for the f0(980) and πη
and KK̄ for the a0(980) [30–32, 148–151]. These resonances do not couple
directly to external sources but it is the constituent meson pairs what couples
directly to them. Then, upon unitarization (multiple scattering of mesons),
the resonances are formed.

According to this idea, a series of reactions involving the f0(980) and
a0(980) were studied and, with no extra parameters than those needed in
the study of meson-meson scattering, predictions were made for cross sections
or other observables, supporting the dynamically generated picture. Exam-
ples of it are the reactions φ → π0π0γ, π0ηγ [152], J/ψ → φ(ω)f0 [153–156],
J/ψ → pp̄ππ [157] and the photoproduction of f0(980) on nucleons [158].

Since, due to the different masses of charged and neutral kaons, isospin
symmetry is broken in meson rescattering, the a0(980) and f0(980) can mix
and quantifying this mixing can help understanding the nature of these two
resonances, as early discussed in Ref. [159]. More recently, the subject was
thoroughly studied in Refs. [160, 161], where the reaction J/ψ → φπ0η was
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suggested as a test. The same reaction was also theoretically studied in Ref.
[162] using chiral unitary approach, as in Ref. [161], showing that not only
the shape of the experiment, but also the absolute rate can be reproduced. In
Ref. [163] the reaction χc1 → π0πη was also proposed as a test to measure the
amount of a0(980)-f0(980) mixing.

The reaction J/ψ → φπ0η was then experimentally studied by the BES
collaboration [164] and a narrow signal was found, with width of the order
of the difference of the kaon masses and in agreement with the predictions of
Refs. [160, 161]. The signal showed an intensity of half percent of the one
of J/ψ → φπ+π− in the region of the f0(980) peak in the ππ distribution.
Following the suggestion of Wu and Zou [163], the same experimental work
of Ref. [164] also reports on the χc1 → π0ππ in the region of the f0(980)
peak of the ππ mass distribution. Once again one finds a narrow signal, with
an intensity with respect to χc1 → π0π0η in the a0(980) region of the π0η
mass distribution also of the order of half per cent. These numbers are within
expected values for isospin violation. The narrowness of the isospin forbidden
signal reflects the fact that the isospin violation is tied to the difference of the
loop functions of intermediate kaons in the rescattering of mesons that leads to
the f0(980) and a0(980) resonances. This provides support [161] to the chiral
dynamical picture of these resonances.

However, a recent work by the BES team on the η(1405) → π0f0(980)
and η(1405) → π0a0(980) reactions [165] has brought a surprise. Since the
η(1405) is an I = 0 object, it can naturally decay to π0a0(980), while the
decay into π0f0(980) violates isospin. The signal for the isospin violating
channel η(1405)→ π0f0(980) is also very narrow, in agreement with previous
findings in analogous reactions, but the reported ratio of the partial decay
widths of the two channels is abnormally large, 18% for η(1405) → π0π+π−

to η(1405) → π0a0(980) or, summing the π0π0 channel to the π+π−, 27% for
the ratio of rates of η(1405) → π0f0(980) to η(1405) → π0a0(980). Such a
large rate is difficult to explain in a theoretical description, unless the same
η(1405) state already contains a large mixture of I = 0 and I = 1. However,
if this were the case, the production of the f0(980) would proceed unhindered,
showing its natural width of about 50 MeV instead of the 9 MeV observed in
the BES experiment [165].

In order to provide an explanation to this experimental result, Wu et al.
proposed a particular mechanism in Ref. [166], consisting in the η(1405) decay
into K∗K̄, the following K∗ decay into π0K and the rescattering of the KK̄
to produce either the f0(980) and the a0(980) resonances. This leads to a
triangular loop diagram that has two cuts (singularities in the integrand),
which make it different from the standard G loop function from KK̄, that
only has the KK̄ on shell singularity. The final loop function that appeared
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in the calculation of Ref. [166] containing the three propagators was divergent
and needed to be regularized. The authors used an unknown cutoff or form
factor to implement convergence, but then the decay rates were dependent on
this undetermined parameter. We will see in Section 5.2.3 that the problem
is automatically solved in the framework of chiral unitary approach, and that
the triangular loop can be regularized with the same cutoff used in the meson-
meson interaction problem, which is a parameter fitted to the scattering data
that naturally appears in the calculation. This made possible to evaluate the
ratio of the decay rates for η(1405)→ π0π0η and η(1405)→ π0π+π− and the
shapes of the invariant mass distributions, which are in good agreement with
experiment.

In Section 5.2, we make first a thorough discussion of the issue assuming
a contact (or contact like) η(1405) → π0KK̄ vertex. Under this assumption
one can make a quite model independent study, and the conclusion is that
the results obtained are in line with those of other reactions, like the J/ψ →
φπ0η(ππ). A second part is devoted to the explicit study of the triangular
mechanism of Ref. [166]. Using the chiral unitary approach we shall see that
we are able to evaluate the ratio for isospin violation, beyond the reach of the
method of Ref. [166], where the ratio of widths for η(1405) → π0π+π− and
η(1405)→ π0π0η was dependent on an unknown cutoff.

In Section 5.3, we apply the same mechanism of Refs. [166] to the reac-
tions f1(1285) → π0π0η and f1(1285) → π0π+π−. We evaluate the branching
ratio for the decay of the f1(1285) to a0π, excluding the a0(980) decay to KK̄,
in order to compare our result with the value of about 36% reported in the
PDG, with the aim to give further support to the basic idea about the nature
of the f1(1285), a0(980) and f0(980) resonances.

Indeed, the f1(1285) is one of the cleanest example of these dynamically
generated resonances and, with quantum numbers IG(JP ) = 0+(1++), it ap-
pears in Ref. [51] from the single channel K∗K̄− cc. An extension of the work
of Ref. [51], including higher order terms in the Lagrangian, has shown that
the effect of the higher order terms is negligible [167]. Using these theoretical
tools, predictions for lattice simulations in finite volume have been done in
Ref. [168]. The width of the f1(1285) is 24 MeV, much smaller than what
expected for resonances of its mass. However, it is naturally explained within
the molecular picture, since it cannot decay into two pseudoscalar mesons (in
principle KK̄ in this case) for parity and angular momentum conservation
reasons.

There is another large channel, apart from the a0π, which is the KK̄π,
accounting for about 9% of the width of the f1(1285). This decay mode is tied
to the KK̄∗ − cc nature of the state and we study it in Section 5.4. The
channel KK̄∗ is bound for the energy of the f1(1285) by about 100 MeV, hence
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5.2 The η(1405)→ π0f0(980) decay

this decay is not observed experimentally [17]. However, the decay of the K∗

off shell can produce the Kπ pair leading to KK̄π in the final decay channel.
Definitely, this decay channel is related to the coupling of the f1(1285) to the
KK̄∗ − cc, and consequently to the nature of this state. Our aim is to study
quantitatively this process from this perspective.

In doing so we also have to face the final state interaction (FSI) of the
KK̄ and the πK, which we do using the chiral unitary approach [30, 32, 59].
The FSIs lead to triangular loops analogous to the ones of Section 5.2 and
Section 5.3. We follow the same approach to complement the tree level
contribution with the FSI of two mesons.

Here we present an unusual picture for the f1(1285), which in the Literature
is mostly considered as a simple qq̄ state [19, 169–173]. In Ref. [169] the
quark pair creation model is used to account for decays of this resonance in
two mesons and the πa0(980) decay is addressed from this perspective. In
Refs. [19, 170] the f1(1285) is assumed to belong to a nonet of qq̄ mesons. In
Ref. [174] the B0 and B0

s decays into J/ψ and f1(1285) are investigated and the
results are interpreted in terms of a qq̄ state, mostly made of u and d quarks.
Yet, in none of the works quoted, or others, have we found an evaluation of the
decay of this resonance into KK̄π. We show that we obtain results compatible
with experiment, hence supporting the molecular picture of the f1(1285).

The results we show make reference to three published works, [175–177].

5.2 The η(1405)→ π0f0(980) decay
As we mentioned in the introduction, the starting point in the following dis-
cussion is the acceptance that the f0(980) and a0(980) qualify as composite
meson-meson states which are dynamically generated by the meson-meson in-
teraction provided by the chiral Lagrangians.

5.2.1 Standard formalism assuming local primary η(1405)→
π0PP vertices

We consider the vertex η(1405) → π0PP (where P stands for pseudoscalar)
well described by a contact (or contact like) interaction and we also accept
that the η(1405) is an isospin zero state. Then, the mechanism for production
of either π+π− or π0η in the final state, together with an extra π0, is given by
Figure 5.1.

Implicit in the picture of Figure 5.1 is the fact that the π0 of the upper
line, when the f0(980) or a0(980) are produced by the other pair of mesons,
has an energy which does not match with the energy of the other mesons to
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η(1405)

π0

π0, K+, K0

η,K−, K̄0

η(1405)

π0

η(1405)

π0

η(1405)

π0

π+ (π0)

π− (η)

+

+ + ...

Figure 5.1: Diagrammatic representation of the π0π+π−, π0π0η production in the
η(1405) decay.

generate the f0(980) or the a0(980) in the case of π0η production. In the case
of π+π− production, the π0 would not generate either the f0(980), that has
zero charge, nor the a0(980) which does not couple to two pions. But even if
it had, it would not play a role in the reaction as we shall discuss below.

If we invoke exact I = 0 for the η(1405), the pair of interacting mesons
in Figure 5.1 must have I = 1. Then the KK̄ pair appears in the I = 1
combination

1√
2

(K+K− −K0K̄0) , (5.1)

where we take the convention that |K−〉 ≡ −|1/2,−1/2〉. If charged and
neutral kaons had the same masses, the loop functions in the figure would be
the same in the two cases. The relative minus sign in Eq. (5.1) guarantees
the exact cancellation of the K+K− and K0K̄0 contributions, preventing the
production of the π+π− pair in the final state (the π0η → π+π− would also
not proceed). However, when the physical masses are considered, the exact
cancellation turns into a partial cancellation, leading to an isospin breaking
effect that we study in detail below.

So far we have only advocated isospin conservation in the η → π0PP
vertex. Now we can go one step further and put some constraints on the π0η
primary production using arguments of SU(3).

The η and η′ are members of a nonet, with the η largely an octet and the
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5.2 The η(1405)→ π0f0(980) decay

η′ basically a singlet with a small mixing [178–180]. By analogy, we can also
assume that in the next pair of η states, the η(1235) is largely an octet and
the η(1405) is mostly a singlet (later on this constraint will be released to
quantify uncertainties). This means that if we want a singlet to be produced
with the octet of the spectator π0, we have to place the interacting meson
pair into an octet. Then, up to an undetermined reduced matrix element, the
weight of K+K−, K0K̄0 and π0η is determined by the SU(3) Clebsch-Gordan
coefficients of the 8⊗ 8→ 1 decomposition. We have up to a global factor,

MK+K− =

√
3

5
, MK0K̄0 = −

√
3

5
, Mπ0η =

√
4

5
. (5.2)

Then, the scattering matrix for the production of the final state is given
by

Tf = Mf +
3∑
i=1

MiGi tif , (5.3)

where tif is the 5×5 scattering matrix for the channels K+K− (1), K0K̄0 (2),
π0η (3), π+π− (4), π0π0 (5) and Mi in the same basis is given by

Mi = A

(√
3

5
,−
√

3

5
,

√
4

5
, 0, 0

)
, (5.4)

with A a reduced matrix element.
The t matrix is obtained using the Bethe-Salpeter equation in the five

coupled channels with V taken from Ref. [30] (care is taken to multiply by
1/
√

2 the matrix elements in the case of π0π0 states, thus implementing the
unitary normalization which is suited for the sum over intermediate states of
identical particles).

The G function is the diagonal loop matrix for the propagators of the
intermediate particles of Eq. (2.57). By using a cutoff qmax = 900 MeV we
obtain a good description of the f0(980) and a0(980) resonances, as in Ref.
[30]. As explained in Chapter 2, in a certain range of energy one could use
equivalently a dimensionally regularized G function. In the present case we
deliberately use the cutoff method because the knowledge of this cutoff will
serve to regularize the loop function we find in the next sections.

Note that in Eq. (5.3) we have two sources of isospin violation: the one due
to the Gi functions, which now are different for K+K− and K0K̄0, and the
tif matrix elements, which are evaluated using the Bethe-Salpeter equation in
the charge basis of the states and that also break isospin symmetry since the
Gi functions are different for different members of the same isospin multiplets.

Now we would like to release the assumption of the η(1405) being an SU(3)
singlet. Let us accept that it could be a mixture of an octet and a singlet. In
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the case of a pure octet for the η(1405), the interacting pair can belong to the
8, 10 and 27 representations. Defining

R =
M(π0η)

M(K+K−)
, (5.5)

we find that the values of this quantity are R =
√

4/3 for the octet, R = 0

for the decuplet and R = −
√

3 for the 27. If the η(1405) were a pure octet,
the interacting pair would only couple to the 27 representation. However, this
possibility is quite unlikely. This leads us to values of R preferably positive.
Note that with negative values of R (we have seen that this can happen for
values around R ' −1.5) there is a destructive interference between π0η and
KK̄ induced a0(980) production such that the π0a0(980) production would
disappear in the η(1405) decay, which is not the case experimentally [181].
The order of magnitude for R is determined with these simple arguments, but
we can get help from experiment since from Refs. [181] and [182] we know the
ratio

RΓ =
Γ(ππη)

Γ(πKK̄)
= 1.09± 0.48 . (5.6)

Assuming the ratio to hold for the rates to π0π0η and π0(K+K− +K0K̄0) we
get

RΓ =
1

2
R2 PS(π0π0η)

PS(π0KK̄)
, (5.7)

where PS stands for the phase space of each final state, which is obtained
integrating dΓ

dmf
of Eq. (5.9) over mf (taking β = |Tf | = 1). By doing this we

obtain
|R| = 0.75± 0.17 . (5.8)

This result with positive sign would be in agreement with the prediction based
on the assumption of the η(1405) being an SU(3) singlet, R =

√
4/3 = 1.15.

Yet, in the next Section we will explore the results within the range R ∈
[−1, 1.2].

5.2.2 Results with the local vertices
We need to evaluate dΓ

dmf
, where mf is the invariant mass of the final interacting

pair (π+π− or π0η ), to compare it with the experimental results. Since the
meson-meson interaction that leads to the f0(980) and a0(980) resonances is
s-wave, there is no angular dependence in the Tf matrix and, since we are only
interested in the region around mf = 980 MeV, the magnitude A in Eq. (5.4)

91



5.2 The η(1405)→ π0f0(980) decay

can be considered as a constant. In this case we have [183]

dΓ

dmf

= β p1 p̃2 |Tf |2 , (5.9)

with β a constant factor and where

p1 =
λ1/2(m2

η′ ,m
2
π0 ,m2

f )

2mη

(5.10)

is the momentum of the spectator π0 in the η(1405) rest frame and

p̃2 =
λ1/2(m2

f ,m
2
2,m

2
3)

2mf

(5.11)

the momentum of the interacting pair in the rest frame of the pair. In Eqs.
(5.10) and (5.11), m2, m3 are the masses of the mesons of the interacting pair.

In Figure 5.2 and Figure 5.3, we plot dΓ
dmf

for f equal to π+π− and π0η,

taking A in Eq. (5.4) equal to 1. We can rightly say that the unitarization
from the meson-meson pairs should be implemented in other pairs too. Think
for instance of the case of primary production of π0KK̄ and then the successive
π0K interaction, producing an effective η(1405)KK̄π0 vertex that will depend
on mπ0K . After this, the KK̄ will interact again to finally produce the f0

or a0. The isospin or SU(3) argument used before should also hold, but the
coefficient A would now be dependent on mπ0K , which also introduces an
angular dependence on this coefficient. However, upon projection over s-wave,
needed to generate the f0 or a0 resonances, and the selection of a narrow
window formKK̄ around 980 MeV, the coefficientA turns again into a constant.
Similar arguments can be used with respect to the symmetrization of the two
pions in the π0π0η channel.

What we can see in Figure 5.2 and Figure 5.3 is that in the case of the
π+π− production we obtain a very narrow peak around 980 MeV, like observed
in the experiment [165]. The width of this peak is about 10 MeV, also in
agreement with experimental observations. As we discussed above, the peak
appears in the f0(980) region, between the thresholds of K+K− and K0K̄0,
because now the quantity GK+K− − GK0K̄0 is different from zero. However,
this difference, which is due to the different kaon masses, is only significant in
a region of energies around the KK̄ thresholds, where ∆(

√
s) is of the order

of mK+ − mK0 , as it can be clearly seen in Figure 5.4. Far away from the
thresholds the difference of the two G functions, due to the mass difference,
becomes gradually smaller and this leads to the peculiar narrow shape of the
f0(980) excitation in the π+π− channel, already anticipated in Refs. [159–161].
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Figure 5.2: dΓ
dmf

for η′ → π0π+π− decay in the f0(980) region.
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Figure 5.3: dΓ
dmf

for η′ → π0π0η decay in the a0(980) region.

One should stress here that the shape of Figure 5.2 is not the standard
one of the f0(980) seen in isospin allowed reactions and the width is tied to the
mass difference mK+ −mK0 . This comment is very relevant in view of what
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Figure 5.4: Real and imaginary part of GK+K− and GK0K̄0 as functions of the
energy.

quoted in Ref. [165]: “The measured width of the f0(980) is much narrower
than the world average”. It is clear that the shape of π+π− production here
is not the usual shape of the f0(980).

In Figure 5.3 we see the signal for the a0(980) excitation, which is isospin
allowed. The width is much larger, and also is the strength at the peak. If we
compare the strength of the peak for π+π− of f0 and π0η of a0 production, we
find that the ratio is of the order of 3%.
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as a function of mf .
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However, if we integrate the strength over mf in the region of the peaks
for the two cases, we find a smaller ratio

Γ(π0, π+π−)

Γ(π0, π0η)
= 0.015 , (5.12)

of the order of 1.5%, which is along the lines of the 0.6% observed in the two
reactions J/ψ → φπ0η(π+π−) or χc1 → π0(π+π−)(π0η) [164]. In Figure 5.5,
we show the ratio dΓ(π+π−)/dΓ(π0η) as a function of the energy. We observe
a peculiar structure, where the K+K−, K0K̄0 thresholds show up as cusps, as
predicted in Refs. [160, 161] and also shown in Ref. [162].

We come now to the analysis of the uncertainties due to the diversion from
the SU(3) hypothesis assumed. We allow R of Eq. (5.5) to vary between −1
and 1.2, as anticipated in the previous section. In Figure 5.6 we can see that
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Figure 5.6: Ratio of strengths at the peak as a function of R.

the ratio of strengths at the peak of each resonance changes within a factor two
in such a large range. In terms of the mf integrated over the peak, removing
background, the range is

Γ(π0, π+π−)

Γ(π0, π0η)
∈ [0.01− 0.04] . (5.13)

The results are shown in Figure 5.7. At the extreme negative value of R,
not preferred by the theory, the ratio reaches the value of 0.042. In the range
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from R = 0 (the value implicitly taken in Ref. [166]) to R = 1.2 (R = 1.15
corresponds to the SU(3) singlet for the η(1405)) the value of the ratio of
Γ’s ranges from 1% to 1.5%. This means that, even with this theoretical
uncertainty, it is clear that we cannot obtain a ratio as big as the 18% reported
in the experiment of Ablikim et al. [165].
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Figure 5.7: Ratio Γ(π0,π+π−)
Γ(π0,π0η)

as a function of R.

However, so far we have always assumed the η(1405) to be a pure I = 0
state. Let us now assume that we have a mixture of I = 0 and I = 1 in that
state (the same conclusions would hold if we say instead that there is isospin
violation in the production of mesons of the first step, something that is very
unusual in chiral theories [161]). In the case of I = 1 for the η(1405), the
interacting meson pair can have I = 0, which we assume in the SU(3) octet to
magnify the f0(980) production. Then the channels involved are ππ and KK̄,
but the ππ channel is weak in this process and for the exercise that we do can
be safely ignored in the production vertices, but not in the tif matrix of Eq.
(5.3). The KK̄ I = 0 combination is

1√
2

(K+K− +K0K̄0) . (5.14)

Taking into account the isospin mixture and a different reduced matrix
element for I = 0 pair production, and putting the product in a coefficient α,
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we have now Mi → M̃i, with M̃i given by

M̃i = A

(
(1 + α)

√
3

5
, (α− 1)

√
3

5
,

√
4

5
, 0, 0

)
. (5.15)

We vary the parameter α until we find a ratio Γ(π0, π+π−)/Γ(π0, π0η) = 0.18.
Such a ratio corresponds to a value of 0.54 for the parameter α, which implies a
massive isospin violation in a physical state. This would be difficult to accept
in physical terms, but there is one stronger reason to reject this solution.
Indeed, as seen in Figure 5.8, once we have an I = 0 pair to begin with,
the f0(980) production can proceed unhindered and, then, with its natural
width. The combination of Eq. (5.15) leads to an effective width of about 20
MeV, much bigger than the experimentally observed 9 MeV of Ref. [165]. In
Figure 5.9 we can see that the a0(980) resonance is also produced in this case
with a shape like the ordinary one.
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Figure 5.8: dΓ
dmf

for η → π0π+π− decay in the f0(980) region, for α = 0.54.

5.2.3 The primary production vertex with theK∗K̄ singu-
larity

In the former section we have proved that it is not possible to get such a large
isospin violation as found in Ref. [165] assuming a local vertex production.
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Figure 5.9: dΓ
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for η → π0π0η decay in the a0(980) region, for α = 0.54.

In the work of Ref. [166] it was shown that using the η(1405) decay mode to
K∗K̄ and the successive decay of the K∗ into Kπ one obtains a mechanism for
KK̄π production at tree level leading to a good agreement with experimental
data on this channel. This production mechanism is depicted in Figure 5.10

π0

η(1405)

K∗

K̄

K

Figure 5.10: Singular mechanism for π0KK̄ production.

After rescattering of the KK̄ pair, as shown in Figure 5.11, the f0 and a0

resonances will be produced in our approach. The novelty now is that the first
loop depicted in Figure 5.11 is rather different than the one of the ordinary G
function for KK̄ propagation shown in the second diagram of Figure 5.1. The
difference is substantial because the structure of the loop function (through
dispersion relations) is determined by the singularities (pairs of intermediate
particles that can be simultaneously placed on shell in the loop integration).
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π0

η(1405)

K∗

K̄

K

Figure 5.11: Rescattering mechanism for the production of the f0 and a0.

The loop in Figure 5.11 has two singularity cuts, indicated by the dashed
lines, one for the K∗K̄ on shell and the other one for the KK̄ on shell. The
kinematics of the two cuts are not too far away, which magnifies the difference
in the loop functions in the charged and neutral cases due to the different
masses amongst the kaons and the K∗.

Note that the situation is completely different for the J/ψ → φf0 reaction.
Indeed, even if the highly suppressed J/ψ → K∗K̄ decay were followed by the
K∗ → φK vertex, this latter process is kinematically forbidden, which means
that the K∗ is produced highly off shell. So, this mechanism for J/ψ → φKK̄
qualifies as a contact term for φKK̄ production. Thus, the approach followed
in the former section is the most appropriate for this case and it is in essence
the one followed in Refs. [161, 162]. The experimental ratio for the J/ψ decay
widths in this reaction are in line with the results obtained in the former
section.

On the other hand, the mechanism depicted in Figure 5.10 reminds one
of the φ → π0π0γ decay which has the same structure with φ → KK̄, the K
(or K̄) radiating a photon and the resulting KK̄ pair interacting to give π0π0

or π0η (same diagram as Figure 5.11 substituting the π0 by γ and the K∗

by K). One has there two cuts for KK̄ before and after the radiation of the
photon. The mechanism outlined above revealed very successful [152, 184–186]
reproducing the experimental data for φ→ π0π0γ, π0ηγ.

Let us now proceed to the explicit evaluation of the amplitude for the
mechanism of Figure 5.11. The loop function is evaluated using the momenta
assignment shown in Figure 5.12. For convenience we make the evaluation
in the frame where ~P = 0 and thus ~pη′ = ~pπ, with the symbol η′ is adopted in
the formulas for simplicity and stands for η(1405).
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pπ

pπ + q

P − q

P − q − k

P

Figure 5.12: Loop for the function G̃.

Given the structure of the V → PP vertices, εµ(p1 − p2)µ, we obtain

G̃(P, pπ,mK ,mK∗) = i

∫
d4q

(2π)4
εµ(P + pπ + P − q)µ εν(pπ − q)ν

× 1

(pπ + q)2 −m2
K∗ + iε

1

q2 −m2
K + iε

1

(P − q)2 −m2
K + iε

.

(5.16)

By summing over the polarizations,∑
εµεν → −gµν +

(pπ + q)µ(pπ + q)ν
m2
K∗

, (5.17)

we get

G̃(P, pπ,mK ,mK∗) = i

∫
d4q

(2π)4

Fnum
(pπ + q)2 −m2

K∗ + iε

1

q2 −m2
K + iε

× 1

(P − q)2 −m2
K + iε

,

(5.18)

where

Fnum = −(2P (pπ − q) +m2
π + q2 − 2pπq) +

(m2
π − q2)

m2
K∗

[2P (pπ + q) +m2
π − q2]

= 2pη′(pπ − q) +
(m2

π − q2)

m2
K∗

[2P (pπ + q) +m2
π +m2

K∗ − q2] .

(5.19)

The integral in Eq. (5.18) led the authors of Ref. [166] to face a technical
problem, consisting in the fact that, since it is highly superficially divergent
(d4q/q2), some form factor or cutoff had to be used to implement convergence.
However, we shall see below that the integral is only logarithmically divergent.
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When performing the evaluation of the η(1405)→ π0π+π− amplitude one has
the difference of G̃ for the charged K−K+ and the neutral ones and the results
are convergent, but the ratio to the η(1405)→ π0π0η is still tied to an unknown
form factor.

Our approach solves naturally the former problem. To see this recall that,
in the Bethe-Salpeter equation for the scattering, the G function is also for-
mally divergent and is regularized by means of a cutoff, fitted to the experi-
mental meson-meson scattering data. The natural choice is to use this same
cutoff in the new loop, but this becomes a necessity if one recalls that the
results of the chiral unitary approach with the G function implementing a
cutoff θ(qmax − |~q|) in the integration are obtained, in a Quantum Mechanical
formulation, with a potential (for s-waves)

V (~q, ~q ′) = v θ(qmax − |~q |) θ(qmax − |~q ′|) , (5.20)

which leads to an amplitude

t(~q, ~q ′) = t θ(qmax − |~q|) θ(qmax − |~q ′|) . (5.21)

Then in Figure 5.11 the cutoff θ(qmax− |~q|) appears automatically in the
loop function from the first KK̄ → PP potential in the sum of the diagrams
implicit in the figure. Observe that the cutoff is in three-momentum. The q0

integration must be done analytically and it is convergent.
The expressions are simplified and equally accurate if we just take the

positive energy part of the relativistic K∗ propagator

1

2ωK∗(~pπ + ~q )

1

p0
π + q0 − ωK∗(~pπ + ~q ) + iε

, (5.22)

where ωK∗(~p) =
√
~p 2 +m2

K∗ . Using Cauchy’s theorem for the q0 integration,
we obtain then

G̃(P, pπ,mK ,mK∗) =

∫
|~q|<qmax

d3q

(2π)3

1

2ω

1

P 0

1

2ωK∗

[ F ′num
P 0 + 2ω

1

p0
π − ω − ωK∗

+
F ′′num

P 0 − 2ω + iε

1

P 0 + p0
π − ω − ωK∗ + iε

]
,

(5.23)

where F ′num = Fnum(q0 = −ω), F ′′num = Fnum(q0 = P 0 − ω), ω =
√
~q 2 +m2

K

and ωK∗ =
√
~q 2 +m2

K∗ . Eq. (5.23) shows explicitly in the second term the
two singularities corresponding to the cuts depicted in Figure 5.11. One can
show from Eq. (5.23) that G̃ is only logarithmically divergent. The apparent
two extra powers of q introduced by the K∗ polarization sum of Eq. (5.17)
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5.2 The η(1405)→ π0f0(980) decay

result fictitious once the value of q0 at the poles is substituted in Eq. (5.19)
in the Wick rotation leading to Eq. (5.23).

Taking into account that the η(1405) is an I = 0 object and that the
K+K− and K0K̄0 vertices appear with different sign, the amplitude of Eq.
(5.3) is substituted now by

Tf = G̃(P, pπ,mK+ ,mK∗+) tK+K−,f − G̃(P, pπ,mK0 ,mK∗0) tK0K̄0,f , (5.24)

where f stands for π+π− or π0η, as before.

5.2.4 Results with the triangular diagram
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Figure 5.13: dΓ
dmf

for η′ → π0π+π− decay in the f0(980) region.

In Figure 5.13 we show the result for dΓ/dmf for η(1405)→ π0π+π− and
in Figure 5.14 for η(1405) → π0πoη. The shapes are very similar to those
in Figure 5.2 and Figure 5.3 but we can already observe that the ratio,
depicted in Figure 5.15, is much bigger than what we had in Figure 5.5 for
the contact vertex, and about a factor nine bigger. From these spectra we find
that the ratio of integrated decay widths is now

Γ(π0, π+π−)

Γ(π0, π0η)
' 0.13 . (5.25)
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Figure 5.14: dΓ
dmf

for η′ → π0π0η decay in the a0(980) region.

This 13% is much closer to the experimental value of (17.9± 4.2)%, which
has a lower limit of 13.7%. Assuming similar theoretical uncertainties the
results are compatible.

We have made some estimates of the errors by changing the cutoff qmax by
±20 MeV, which moves the f0(980) and a0(980) peaks in ππ and πη scattering
by about 8 MeV. We find that this change induces a variation in the ratio of
Eq. (5.25) of 0.01. However, an uncertainty of 0.02 is more indicated to
account also for the uncertainties in the background subtraction. So we would
be obtaining (0.13 ± 0.02) for the fraction of decay rates. This increase by
about one order of magnitude with respect to the standard calculation is a
consequence of the two neighbouring singularities in the triangle diagram.

We can now estimate the effect of having also π0π0η in the primary pro-
duction process. A triangular diagram of the type used for π0KK̄ production
is not possible now. Indeed, one would have to substitute the K∗ by a ρ,
but this is dynamically forbidden (no ρπ0η coupling). Then we must rely
upon a contact term. By recalling the exercise done in Section 5.2.1 (Eqs.
(5.6)-(5.8)) and the conclusion that positive values of R (with respect to an
equivalent local π0KK̄ production mechanism) were preferred, the inspection
of Figure 5.7 can give us a qualitative estimate of what adding this new
primary π0π0η production vertex can do to the widths, which is a moderate
increase of the ratio Γ(π0, π+π−)/Γ(π0, π0η) by about 26%. This would pro-
vide a ratio around 16.4% with an uncertainty of 2.5% or, rounding errors, a
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ratio of (0.16± 0.03), in good agreement with the experimental values.
Now we come back to the BES experiment [166]. In this experiment the

authors cannot distinguish whether they have the η(1405) or the η(1475) res-
onance, so we must assume that they have a mixture of both. In order to
account for this possibility, we have evaluated the same ratio of rates as before
assuming that we have now the η(1475) resonance. The result that we obtain
is

Γ(π0, π+π−)

Γ(π0, π0η)

∣∣∣∣∣
η(1475)

' 0.16 . (5.26)

This coincides with the centroid of our result of (0.16± 0.03). We might also
think about the possibility of having a contribution from the original ππη
channel. However, the same collaboration team reports for the mixture of
the resonances in the J/ψ → γπ+π−η, J/ψ → γKK̄η a large dominance of
the second process by nearly one order of magnitude [187, 188], which means
we can neglect the primary ππη channel in this case. Hence, assuming the
same uncertainties as before, our final results for the η(1405), the η(1475), or
a mixture of both, are given by

Γ(π0, π+π−)

Γ(π0, π0η)
= 0.16± 0.03 . (5.27)

We discuss here also the case of the η(1295). Little is known about the
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coupling of this resonance to different channels. One might intuitively think
that, by complementarity and orthogonality, if the η(1405) couples strongly to
K∗K̄ it indicates that it has a large ss̄ component, in which case the η(1295)
would mostly account for uū (dd̄). In this case the coupling to K∗K̄ would be
highly suppressed.

We have evaluated the ratio Γ(π0, π+π−)/Γ(π0, π0η) at the peak of the f0,
a0 for the two situations as before: (a) contact primary vertex, (b) triangular
mechanism via K+K̄ production. In case (a) we found

Γ(π0, π+π−)

Γ(π0, π0η)
= 0.017 , (5.28)

while in the case (b) we found

Γ(π0, π+π−)

Γ(π0, π0η)
= 0.12 . (5.29)

In this latter case the channel η(1295)→ K∗K̄ is not open, but close by, such
that its near singularity still has an effect on the ratio similar to the one of
Eq. (5.25). In the former case, Eq. (5.28), the results are also similar to all
other cases where we have assumed dominance by primary contact production
vertices.

Given the argumentation above, where we expect the η(1295) to have small
ss̄ component, and hence small couplings to K∗K̄, we would expect rates of
the order of 0.017 for Γ(π0, π+π−)/Γ(π0, π0η). Should the experiment find a
large value of this ratio, comparable with the one of the η(1405), we would
face an unexpected situation that could bring new light into the quest for
the nature of the η(1295) and η(1405) resonances, which has stimulated much
work [189–192].

5.3 The f1(1285) → a0(980)π0, f0(980)π0 de-
cays

Now we want to study the decay of the f1(1285) to a0π, excluding the a0(980)
decay to KK̄. According to the PDG [17], it makes up for a sizeable fraction of
the total f1(1285) decay width, (36±7)%. In addition, we will simultaneously
study the reactions f1(1285)→ a0(980)π0 and f1(1285)→ f0(980)π0 to make
an estimate of the amount of a0(980)− f0(980) mixing.

Once the dynamically generated picture for the f1(1285), a0(980) and
f0(980) is assumed, the process can be described resorting to the triangular
mechanism already used in Section 5.2.3, and it consists in the four diagrams
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depicted in Figure 5.16: we have the f1(1285) decaying to K∗K̄, the decay of
the K∗ into Kπ and the rescattering of the KK̄ pair leading to π0η or π+π−

in the final state, which will proceed via the a0(980) or f0(980) resonances
accounted for by the KK̄ → π0η and KK̄ → π+π− amplitudes, respectively.
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K−
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η
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C) D)

Figure 5.16: Diagrams representing the process f1(1285)→ π0η.

5.3.1 The structure of the vertices
In order to evaluate the amplitudes of the diagrams in Figure 5.16, we need
the structure of the two vertices involved plus the KK̄ → π−π+(π0η) ampli-
tude, shown in Figure 5.17.

As mentioned before the f1(1285) results as dynamically generated from
the interaction of K∗K̄ − cc in Ref. [51]. We can write the vertex 1) of
Figure 5.17 as

− it1 = −i gf1 C1ε
µε′µ , (5.30)

where ε is the polarization vector of the f1 and ε′ is the polarization vector of
the K∗ (K̄∗).

The coupling gf1 of the f1 to the K∗K̄ channel is evaluated as the residue
at the pole of the scattering amplitude for K∗K̄ − cc in I = 0. The scattering
amplitude is obtained using the Bethe-Salpeter equation (Eq. (2.59)) with the
potential V taken from Ref. [51]. The loop function G is given by Eq. (2.57),
with ωi =

√
~q 2 +m2

i . We obtain a good description of the f1(1285) using a
cutoff of about 1 Gev, as in Ref. [51]. We get gf1 = 7555 MeV and we will
use this value in the present calculation. This result is a bit bigger than the
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f1

K∗(K̄∗)

K̄ (K)
1)

π0

K∗(K̄∗)

K̄ (K)
2)

K (K̄)

K̄ (K)

π0 (π+)

η (π−)
3)

Figure 5.17: Vertices involved in the decay of the f1(1285) to π0η or π+π−, the
f1(1285)→ K∗K̄ 1) and the V PP vertex 2), and amplitude for a0(980) and f0(980)
production 3).

value of 7230 MeV found in Ref. [51], where a global fit to the axial vectors
was conducted.

The factors C1 in Eq. (5.30) are due to the fact that the f1(1285) couples
to the I = 0, C = +, G = + combination of K∗K̄ mesons, which is represented
by the state

1√
2

(K∗K̄ − K̄∗K) = −1

2
(K∗+K− +K∗0K̄0 −K∗−K+ − K̄∗0K0) , (5.31)

where the convention CK∗ = −K∗ is taken, consistently with the standard chi-
ral Lagrangians. The different values of C1 for each diagram of Figure 5.16,
corresponding to the weights of the charged and neutral components in the
wave function of Eq. (5.31), are listed in the second column of Table 5.1.

The structure of the vertices of type 2) can be derived using the hidden
gauge symmetry Lagrangian describing the V PP interaction of Eq. (2.92).
Thus, the amplitude of the vertex can be written as

− it2 = i g C2 (2k − P + q)µε
′µ , (5.32)

where the factors C2 for each diagram in Figure 5.16 are shown in the third
column of Table 5.1. The momenta in Eq. (5.32) are assigned as shown in
Figure 5.18.

The KK̄ → π0η(π+π−) amplitude in Figure 5.17 corresponds to the
mechanism for the production of either π0η or π+ π− in the final state after
the rescattering of theKK̄ pair that dynamically generates in coupled channels
the a0(980) and f0(980) resonances [30], as in Section 5.2.3. However, we
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Diagram C1 C2 C

A) −1
2

1√
2

− 1
2
√

2

B) −1
2

− 1√
2

1
2
√

2

C) 1
2

− 1√
2

− 1
2
√

2

D) 1
2

1√
2

1
2
√

2

Table 5.1: Factors C1 and C2 for the vertices 1) and 2) in Figure 5.17 and for the
four diagrams in Figure 5.16 in the second and third column, respectively. The
values of their product, C, for the four different diagrams are listed in the fourth
column.

k

P

P − q

q

P − q − k

mf

Figure 5.18: Momenta assignment for the f1(1285) → a0(980)π0, f0(980)π0 de-
cays.

must keep in mind that the f1(1285) is an I = 0 object. If isospin symmetry
were an exact symmetry (or if the kaons had the same mass), the process would
only go via a0 production, which is I = 1, and this would prevent finding the
π+π− pair in the final state in s-wave (the ρ0 in p-wave is forbidden by C-
parity conservation). Again, analogously to the case of the η(1405), when the
physical masses of the kaons are considered, we have an isospin breaking effect
that leads to the production of the f0 and then of the π+π− pair.

We will write, for simplicity, this vertex as

− it3 = −itif , (5.33)

where tif is the if element of the same scattering matrix t appearing in Eq.
(5.3). We have i = 1 for the diagrams A) and C) and i = 2 for the diagrams B)
and D) of Figure 5.16, while the index f stands for channel 3 or 4 depending
on the meson pair in the final state. The loop function G in the Bethe-
Salpeter equation is given by Eq. (2.57) and it is regularized again using a
cutoff around 900 MeV, which well reproduces the a0 and f0. This parameter
enters the evaluation of the loop integral in the diagrams of Figure 5.16, as
in the decay of the η(1405).
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5.3.2 The triangular loop
Putting together Eqs. (5.30), (5.32) and (5.33), we can explicitly write the
total amplitude for each one of the diagrams in Figure 5.16 as

−it = −i C1 gf1 i C2 g

∫
d4q

(2π)4
(2k − P + q)µε

′µ εαε
′α i

q2 −m2
K + iε

× i

(P − k − q)2 −m2
K + iε

1

2ω∗(q)

i

P 0 − q0 − ω∗(q) + iε
(−itif ) ,

(5.34)

where ω∗(q) =
√
~q 2 +m2

K∗ is the K∗ energy. Again, in Eq. (5.34) only the
positive energy part of the K∗ propagator i[(P 0 − q0 − ω∗)2ω∗]−1 is taken,
which is a good approximation given the large mass of the K∗.

We assume we are dealing with small three-momenta compared to the
masses of the particles involved. This means that only the spatial components
of the polarization vector of the K∗ are non vanishing,

ε′0 =
|~P − ~q |
mK∗

=
|~q |
mK∗

∼ 0 , (5.35)

and that the completeness relation of Eq. (5.17) can now be written as∑
pol

ε′µε
′
α '

∑
pol

ε′iε
′
j = δij ; µ = i, α = j; i, j = 1, 2, 3 . (5.36)

Using Eq. (5.36), the amplitude reduces to

t = −i C1C2 gf1 g

∫
d4q

(2π)4
(2~k + ~q) · ~ε 1

q2 −m2
K + iε

× 1

(P − k − q)2 −m2
K + iε

1

2ω∗(q)

1

P 0 − q0 − ω∗(q) + iε
tif .

. (5.37)

We can further simplify Eq. (5.37) writing it as

t = C gf1 g~ε · ~k (2I1 + I2) tif = t̃~ε · ~k tif , (5.38)

where I1 and I2 are defined as

I1 = −i
∫

d4q

(2π)4

1

q2 −m2
K + iε

1

(P − k − q)2 −m2
K + iε

1

2ω∗(q)

1

P 0 − q0 − ω∗(q) + iε
,

I2 = −i
∫

d4q

(2π)4

1

q2 −m2
K + iε

~k · ~q/|~k |2
(P − k − q)2 −m2

K + iε

1

2ω∗(q)

1

P 0 − q0 − ω∗(q) + iε
.

(5.39)
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The constant C is the product of C1 and C2 and its value depends on the
diagram that we are considering, as shown in the last column of Table 5.1.

After analytically integrating Eqs. (5.39) in dq0 using Cauchy’s theorem,
we obtain

I1 = −
∫

d3q

(2π)3

1

8ω(q)ω′(q)ω∗(q)

1

k0 − ω′(q)− ω∗(q) + iε

1

P 0 − ω∗(q)− ω(q) + iε

× 2P 0ω(q) + 2k0ω′(q)− 2(ω(q) + ω′(q))(ω(q) + ω′(q) + ω∗(q))

(P 0 − ω(q)− ω′(q)− k0 + iε)(P 0 + ω(q) + ω′(q)− k0 − iε) ,

(5.40)

I2 = −
∫

d3q

(2π)3

~k · ~q/|~k |2
8ω(q)ω′(q)ω∗(q)

1

k0 − ω′(q)− ω∗(q) + iε

1

P 0 − ω∗(q)− ω(q) + iε

× 2P 0ω(q) + 2k0ω′(q)− 2(ω(q) + ω′(q))(ω(q) + ω′(q) + ω∗(q))

(P 0 − ω(q)− ω′(q)− k0 + iε)(P 0 + ω(q) + ω′(q)− k0 − iε) ,

(5.41)

where ω(q) =
√
~q 2 +m2

K and ω′(q) =

√
(~q + ~k)2 +m2

K are the energies of the

K (K̄) and K̄ (K) in the loop respectively.
Exactly as in the case of the loop integral of Eq. (5.18), when performing

numerically the integrations in d3q of Eqs. (5.40) and (5.41), we have to
consider that the upper limit is naturally provided by chiral unitary approach.
This means that the cutoff qmax = 900 MeV appears automatically as the
upper limit of the integrals of Eqs. (5.40) and (5.41) thanks to the KK̄ →
PP potential used to dynamically generate the a0 and f0. Note, however,
that the integrals in Eqs. (5.40) and (5.41) are already convergent without
implementing qmax. The loop also should implement the cutoff used in the
evaluation of the f1(1285), which was qmax = 1000 MeV. Hence, the use of
qmax = 900 MeV accounts for both cutoffs.

Proceeding with the evaluation of the total amplitude of the reactions
f1(1285)→ π0π0η and f1(1285)→ π0π+π−, we have to take into account that
the neutral and charged kaons have different physical masses. Thus, we define
t̃(+) and t̃(0), corresponding to the quantity t̃ of Eq. (5.38) evaluated for the
masses of K+, K−, K∗+, K∗− (summing A and C of Figure 5.16) and K0,
K̄0, K∗0, K̄∗0 (summing B and D of Figure 5.16) respectively. This allows
us to write the total amplitudes of the processes as

Tπ0η = (2t̃(+) tK+K−,π0η + 2t̃(0) tK0K̄0,π0η)~ε · ~k ,
Tπ+π− = (2t̃(+) tK+K−,π+π− + 2t̃(0) tK0K̄0,π+π−)~ε · ~k .

(5.42)

From these last two equations, the role of the mass difference between
neutral and charged kaons in the isospin symmetry breaking can be clearly
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understood. When equal masses for the kaons are taken, due to the fact that
the global factor C in t̃ has opposite sign in the charged and in the neutral
case (see Table 5.1), we have that t̃(0) = −t̃(+). Moreover, from Ref. [30] we
know that

tK+K−→π0η = −tK0K̄0,π0η ,

tK+K−→π+π− = tK0K̄0,π+π− .
(5.43)

This means that if the masses of the neutral and charged kaons were equal,
the amplitude Tπ+π− would vanish, preventing the production of the f0(980)
as intermediate state, which indeed is isospin forbidden. Since the isospin
symmetry is not an exact symmetry, due to the mass difference, the decay can
go via both a0 and f0 production, leading to the π0η and π+π− pairs in the
final state.

Given the structure of Eq. (5.42) we define Tπ0η and Tπ+π− as

Tπ0η = T̃π0η ~ε · ~k ,
Tπ+π− = T̃π+π− ~ε · ~k .

(5.44)

5.3.3 Results
The invariant mass distribution is given by the formula [193]

dΓ

dmf

=
1

(2π)3

pπ |~k |
4M2

f1

1

2

∫ 1

−1

d cos θ Σ|T |2 , (5.45)

where the symbol Σ stands for the average over the polarizations of the
f1(1285), θ is the angle between ~k and ~ε and mf is the invariant mass of
the final interacting pair (see Figure 5.18). The momenta in Eq. (5.45) are
defined as

pπ =
λ1/2(m2

f ,m
2
π0 ,m2

η)

2mf

(5.46)

in the case of π0η in the final state (π0 momentum un the π0η rest frame) and

pπ =
λ1/2(m2

f ,m
2
π+ ,m2

π−)

2mf

(5.47)

in the case of π+π− (π+ momentum un the π+π− rest frame), while

|~k | =
λ1/2(M2

f1
,m2

π0 ,m2
f )

2Mf1

(5.48)
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is the momentum of the spectator π0 in the reference frame in which the
f1(1285) is at rest.

Eq. (5.45) can be rewritten, after performing the integration in d cos θ, as

dΓ

dmf

=
1

(2π)3

pπ |~k |3
4M2

f1

1

3
| T̃ |2 . (5.49)
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Figure 5.19: dΓ/dmf for f1(1285)→ π0π0η decay in the a0(980) region.

The result for dΓ/dmf for the f1(1285) → π0π0η case is shown in Fig-
ure 5.19 while in Figure 5.20 we have the same plot for f1(1285)→ π0π+π−.
For the same reason as in the case of the η(1405), we do not symmetrize the
two π0 in the π0π0η final state, since the a0 resonance is relatively narrow and
the two π0 have very distinct kinematics.

For π+π− in the final state we obtain, as in the previous section, an unusu-
ally narrow peak around 980 MeV, with a width around 10 MeV, in agreement
with what was found experimentally in other reactions like the one studied by
BES collaboration [165]. The peak shows up again in the f0(980) region be-
tween the two thresholds of K+K− and K0K̄0 and its peculiar features can
be attributed to the difference in the physical masses of neutral and charged
kaons. Analogously to Figure 5.4, we plot in Figure 5.21 the two loop inte-
grals t̃(0) and t̃(+): once again, their difference is significant only in the region
of energies around the two KK̄ thresholds, leading to the narrow shape of
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Figure 5.20: dΓ/dmf for f1(1285)→ π0π+π− decay in the f0(980) region.

the invariant mass distribution for the f0(980), already observed in the case of
the reaction η(1405)→ π0f0(980). The shape of the peak that we predict has
been later confirmed by the BES collaboration and the results they obtained
are published in Ref. [194]. As expected, the signal is much wider in the
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Figure 5.21: Im[t̃(0)], Im[t̃(+)], Re[t̃(0)], Re[t̃(+)] as functions of mf .

case of the π0η channel, Figure 5.19. The a0 is produced with its normal
width, since the reaction is isospin allowed, and with a bigger strength at the
peak. In Figure 5.22 we show the ratio ( dΓ

dmf
)π+π−/(

dΓ
dmf

)π0η as a function of
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5.3 The f1(1285)→ a0(980)π0, f0(980)π0 decays

the invariant mass and we can see that the ratio of strength at the peak is
of the order of 6%, ten times smaller than for the decay of the η(1405). We
find another different value for isospin mixing, indicating that there is not an
absolute value for this magnitude. It depends on the particular reaction but
provides extra information about the nature of the resonances and the reaction
mechanism.
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Figure 5.22: Ratio ( dΓ
dmf

)π+π−/(
dΓ
dmf

)π0η as a function of mf .

Now we proceed to the evaluation of the partial width for the decay mode of
the f1(1285) to a0(980)π. We want to compare our result with the experimental
one reported in the PDG [17]

BR(f1 → a0π)|exp = (36 ± 7)% , (5.50)

ignoring the a0(989)→ KK̄ decay.
In order to do it, we need to take into account all the three possible final

states, a+
0 π
−, a0

0π
0, a−0 π

+. However, the state of I = 0 coming from the
interaction of two I = 1 particles is given by

|I = 0, I3 = 0〉 =
1√
3
|1, 1〉 − 1√

3
|1, 0〉+

1√
3
|1,−1〉 , (5.51)

which means that the three final states appear with the same weight. Thus, we
can restrict the calculation to the diagrams in Figure 5.16 and then multiply
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the result by a factor three to take into account the three charges. We find

Γa0π = 3

∫
dmf

( dΓ

dmf

)
π0η

= 4.5 MeV , (5.52)

with
(

dΓ
dmf

)
π0η

given by Eq. (5.49), which corresponds to a branching ratio

BR(f1 → a0π)|th ' 19% , (5.53)

in good agreement with the experimental value.
We have made an estimate of the error on this result considering two pos-

sible sources of uncertainties. The first one is the cutoff in the meson-meson
loop function used in the Bethe-Salpeter equation to generate the f1(1285),
that we have taken around 1000 MeV. The value of the coupling gf1 used in
the decay amplitude of Eq. (5.38) depends slightly on this cutoff. Changing
its value by ±50 MeV, the resonance is still well reproduced and its position
moved by only 20 MeV. This changes the value of the coupling gf1 by 1%,
leading to the same uncertainty on the final result for Γa0π. The other source
of uncertainty is the cutoff qmax used as upper limit in the loop integral of the
decay. We make again a variation of ±50 MeV, which moves the a0(980) and
f0(980) peak in the scattering amplitude of 10 MeV. This induces a change
in the value of Γa0π, which gives, summed to the uncertainty coming from the
other source, 

Γtha0π
= (4.5± 0.3) MeV ,

BR(f1 → a0π)|th = (18.7± 1.5)% .

(5.54)

The ratio of integrated strengths over the invariant mass in the region of
the a0(980) and f0(980) for the reactions f1(1285) → π0π0η and f1(1285) →
π0π+π− gives

Γ(π0π+π−)

Γ(π0π0η)
= 0.82× 10−2 , (5.55)

Γ(π0f0(980))

Γ(π0a0(980))
= 1.28× 10−2 , (5.56)

where we have taken into account that the rate of f1(1285)→ π0π+π− is twice
the amount of f1(1285)→ π0π0π0.

This is much smaller than what was found for the η(1405) decay, as we saw

in Section 5.2.3, and twice as big as found for the J/ψ decay, Γ(J/ψ→φf0(980))
Γ(J/ψ→φa0(980))

=

0.6 × 10−2 [164]. However, the result we obtain for the amount of isospin
breaking (Eq. (5.55)) is compatible with the value reported by BES in Ref.
[194], (3.6± 1.4)%.
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5.4 The f1(1285)→ KK̄π decay
In this Section we want to study the decay f1(1285)→ πKK̄ resorting again to
the assumption that the f1(1285) is dynamically generated from the K∗K̄−cc
interaction. Thus, the decay proceeds via f1(1285) → K∗K̄ − cc followed by
K∗ → Kπ and the tree level diagrams are shown in Figure 5.23.

5.4.1 Decay amplitude at tree level
In order to evaluate the partial decay width of f1(1285)→ πKK̄, we need the
decay amplitudes of the tree level diagrams shown in Figure 5.23.

The vertices we need to evaluate them are 1) and 2) in Figure 5.17. In
particular, the f1(1285)K∗K̄ vertex is given by Eq. (5.30) and we take again
gf1 = 7555 MeV as in Section 5.3. Later, we will account for the difference
with the value found in another work to measure the theoretical uncertainties.
The factors C1 that account for the weight of each K∗K̄ (K̄∗K) component
in the I = 0 and C = + combination of K∗K̄ mesons Eq. (5.31), are listed in
the first column of Table 5.1 and reported here for convenience:

CA,B
1 = −1

2
; CC,D

1 = −1

2
; CE,F

1 =
1

2
; CG,H

1 =
1

2
. (5.57)

The vertex of K∗Kπ can be written as

−it2 = igC2(k − p)µε′µ . (5.58)

We use here a different momenta assignment with respect to Section 5.3.1.
Now k and p are the momenta of the π and K mesons respectively. From
Eq. (2.92) and from the explicit expressions of the P and V matrices (Eqs.
(2.29) and (2.83)), the factors C2 for each diagram shown in Fig. (5.23) can
be obtained,

CA,H
2 =

1√
2

; CB,C
2 = 1; CD,E

2 = − 1√
2

; CF,G
2 = −1. (5.59)

We can now sum the amplitudes of the diagrams that have same final state.
By means of Eqs. (5.30) and (5.58) and taking into account the values of C1

and C2, the decay amplitude is obtained straightforwardly:

MA+E
tree = MD+H

tree = Mtree ,

MB+G
tree = MC+F

tree =
√

2Mtree ,
(5.60)
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Figure 5.23: Tree level diagrams for the process f1(1285)→ πKK̄.
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with

Mtree =
ggf1

2
√

2

(
[−(k − p)µ +

m2
π −m2

K

m2
K∗

(k + p)µ]D1

+ [−(k − p′)µ +
m2
π −m2

K

m2
K∗

(k + p′)µ]D2

)
εµ

=
ggf1

2
√

2

(
[(~k − ~p )− m2

π −m2
K

m2
K∗

(~k + ~p )]D1

+ [(~k − ~p ′ ) +
m2
π −m2

K

m2
K∗

(~k + ~p ′ )]D2

)
· ~ε , (5.61)

where

D1 =
1

(k + p)2 −m2
K∗ + imK∗ΓK∗

, (5.62)

D2 =
1

(k + p′)2 −m2
K∗ + imK∗ΓK∗

(5.63)

are the propagators of the K∗ (K̄∗). Taking diagrams A) and E) for reference
to calculate Mtree, the variables p, p′ and k refer to the K+, K− and π0, and
ΓK∗ is the total decay width of the K∗ meson.

Since the dominant decay channel of K∗ is Kπ, we can take

ΓK∗ = Γon

(
qon

qoff

)3

(5.64)

in the K∗ propagators D1 and D2, with Γon = 49.1 MeV and

qon =
λ1/2(M2

K∗ ,m
2
K ,m

2
π)

2MK∗
,

qoff =
λ1/2(M2

inv,m
2
K ,m

2
π)

2Minv

θ(Minv−mK−mπ) ,

(5.65)

In Eqs. (5.65), Minv is the invariant mass of the πK system, which is
√

(k + p)2

for the D1 propagator and
√

(k + p′)2 for D2.

5.4.2 Decay amplitude for the triangular loop
In addition to the tree level diagrams, we also study the contributions of the
KK̄ and πK final state interactions (FSIs). We use again the triangular
mechanism of the previous decays, which allows us to describe the process by
means of the diagrams shown in Figure 5.24, consisting in the rescattering
of the KK̄ and πK pairs.
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Figure 5.24: Triangular loop contributions to the f1(1285)→ πKK̄ decay.

119



5.4 The f1(1285)→ KK̄π decay

Since the f1(1285) has I = 0, considering only isospin conserving terms,
the KK̄ will be in I = 1 and the πK in I = 1/2. The rescattering of the KK̄
and πK pairs with this isospin dynamically generates in coupled channels
the a0(980) and κ(800) resonances respectively. We write for simplicity the
KK̄ → KK̄ and πK → πK rescattering amplitudes as,

tKK̄FSI (MKK̄) = tI=1
KK̄→KK̄(MKK̄) , (5.66)

tπKFSI(MπK) = t
I=1/2
πK→πK(MπK) , (5.67)

where MKK̄ and MπK are the invariant masses for the KK̄ and πK systems.

The quantities tI=1
KK̄→KK̄ and t

I=1/2
πK→πK stand for the scattering amplitudes of

KK̄ → KK̄ in I = 1 and πK → πK in I = 1/2, and they can be obtained
using the Bethe-Salpeter equation with the potential V taken from Ref. [30].
The Bethe-Salpeter equation will contain the loop function for the propagators
of the intermediate particles. We take the KK̄ and πη channels for the case
of KK̄ FSI, while for πK FSI, we take πK and ηK. For a good description of
the a0(980) and κ(800) we take again a cutoff qmax = 900 MeV, for both KK̄
and πK FSIs.

With the ingredients given above, we can explicitly write the decay am-
plitude for the diagrams in Figure 5.24. As for the tree level case, we sum
the diagrams with the same final state. In Figure 5.24 A), we show the four
possible final states for the KK̄ FSI. The amplitude corresponding to the first
diagram, that is the π0K+K− final state which we take as reference, is then
given by

MKK̄
FSI = − ggf1

2
√

2
(2I1 + I2)2tI=1

KK̄→KK̄(MKK̄)~ε · ~k , (5.68)

with MKK̄ =
√

(p+ p′ )2. Here we have summed explicitly the contributions of
four diagrams corresponding to the intermediate states K∗KK̄: K∗+K−K+,
K∗0K̄0K0, K∗−K+K− and K̄∗0K0K̄0, easily done taking into account the C1

and C2 coefficients and the fact that

tI=1
KK̄→KK̄ = tK+K−→K+K− − tK+K−→K0K̄0

= tK0K̄0→K0K̄0 − tK+K−→K0K̄0 , (5.69)

with the phase convention |K−〉 = −|1/2,−1/2〉. The quantities I1 and I2 for
the case of MKK̄

FSI are given by Eqs. (5.40) and (5.41). It is worth mentioning
that after performing the integrations, the I1 and I2 integrals in the above
equations depend only on the modulus of the momentum of the π0, which
can be easily related to the invariant mass of the KK̄ system via M2

KK̄
=

M2
f1

+ m2
π − 2Mf1

√
|~k|2 +m2

π. The d3q integrations are done with a cutoff
qmax = 900 MeV.
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In the group B) of diagrams in Figure 5.24, we show the possible final
states corresponding to the πK FSI. Each one of the diagrams has two possible
πK̄ or πK final states. In addition, each one of the diagrams has two possible
K∗K̄ or K̄∗K intermediate states: in the first diagram we can have K∗+K−

or K∗0K̄0 and this leads, after considering the C1 and C2 coefficients, to the
combination tπ0K−→π0K− +

√
2tπ−K0→π0K− , proportional to t

I=1/2
πK→πK . The sum

of the first and third diagram with π0K+K− in the final state is then easily
done and can be cast as

MπK
FSI =

ggf1

2
√

2
(2I ′1 + I ′2)t

I=1/2
πK→πK(M

(1)
πK)~ε · ~p

+
ggf1

2
√

2
(2I ′′1 + I ′′2 )t

I=1/2
πK→πK(M

(2)
πK)~ε · ~p ′ ,

(5.70)

where I ′1, I ′2 are evaluated again with Eqs. (5.40) and (5.41) but replacing one
kaon propagator by a pion, putting ω′(q) =

√
(~q + ~p )2 +m2

π and substituting
k0 by p0. Similarly I ′′1 and I ′′2 are also evaluated with the same equations
putting ω′(q) =

√
(~q + ~p ′ )2 +m2

π and substituting k0 by p′0. The integrals I ′1,
I ′2 are functions of |~p | and I ′′1 , I ′′2 of |~p ′ |, which can be written in terms of

the invariant masses M
(1)
πK =

√
(k + p′ )2 and M

(2)
πK =

√
(k + p)2 respectively,

similarly to what done before for the KK̄ interaction terms.
The relative minus sign between Eqs. (5.68) and (5.70) is easily traced

back to the sign of the K∗ → Kπ when we have either the K or the π in the
loop.

5.5 Results
With the decay amplitudes obtained above, we can easily get the total decay
width of f1(1285)→ πKK̄ which is

Γ = 6
1

64π3Mf1

∫ ∫
dωK+dωK−

∑
|M |2

× θ(1− cos2θKK̄)θ(Mf1 − ωK+ − ωK− −mπ) ,

(5.71)

where M is the full amplitude of the process f1(1285) → π0K+K− including
the FSIs,

M = Mtree +MKK̄
FSI +MπK

FSI , (5.72)

with ωK+ =
√
m2
K + ~p 2 and ωK− =

√
m2
K + ~p′

2
the energies of the K+ and

K− mesons. The symbol
∑

stands for the average over the polarizations of the
initial f1(1285) state. The factor 6 in the formula of Γ accounts for the different
final charges for πKK̄: π0K+K−, π+K0K−, π−K+K̄0, and π0K0K̄0, having
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weights 1, 2, 2, and 1, respectively, easily obtained using simple Clebsch-
Gordan coefficients. Besides, the cosθKK̄ is defined by energy conservation
as

cosθKK̄ =
1

2|~p ||~p ′| [M
2
f1

+ 2m2
K − 2Mf1(ωK+ + ωK−)

+2ωK+ωK− −m2
π] . (5.73)

With the full amplitude of Eq. (5.72), the numerical result for the partial
decay width is, using gf1 = 7555 MeV, Γ = 1.9 MeV, which corresponds to a
branching ratio

B.R.[f1(1285)→ πKK̄] = 7.8% , (5.74)

If we use the coupling of Ref. [51], gf1 = 7230 MeV, then we get Γ = 1.74
MeV, corresponding to a branching ratio

B.R.[f1(1285)→ πKK̄] = 7.2% , (5.75)

This gives a band of theoretical results of

B.R.[f1(1285)→ πKK̄] = (7.2− 7.8)% , (5.76)

which is in agreement with the experimental value (9.0± 0.4)% [17, 195, 196].
The result would be 9%, with the higher value for the gf1 coupling, if we
considered only the tree level diagrams. This indicates that the contribution
from the FSIs is small. This occurs because of the relative minus sign in Eqs.
(5.68) and (5.70), which makes the effects of the FSIs for KK̄ and πK go in
opposite directions bringing a partial cancelation in Γ.

As done for the previous decay, we can see the variation of our results by
changing the values of the two cutoffs in a range such that the masses of the
f1(1285) and a0(980) do not significantly differ from the experimental values.
As already mentioned in Section 5.3, changes of qmax from 950 MeV to 1050
MeV bring changes in the coupling gf1 of only 1%. These changes are smaller
than the range of couplings accepted in Eq. (5.76). Similarly, changes in
qmax for a0(980) from 860 MeV to 940 MeV change the mass of the a0(980) in
about 10 MeV. Re-evaluating the branching ratios with values of qmax within
the range (850− 950) MeV, we obtain for the branching ratio

B.R.[f1(1285)→ πKK̄] = (7.2− 8.3)%, (5.77)

with the upper limit a little closer to the experimental value.
Next, we study the invariant mass distribution of the f1(1285)→ π0K+K−

decay to see the effect of the K∗ propagator in the tree level and of the KK̄
and πK FSIs.
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The invariant mass distributions are given by the formulas

dΓ

dMK+K−
=

MK+K−

64π3M2
f1

∫
dωK+

∑
|M |2θ(1− cos2θKK̄)×

θ(Mf1 − ωK+ − ωK− −mπ)θ(ωK− −mK) , (5.78)

dΓ

dMπ0K+

=
Mπ0K+

64π3M2
f1

∫
dωK+

∑
|M |2θ(1− cos2θKK̄)×

θ(Mf1 − ωK+ − ωK− −mπ)θ(ωK− −mK) , (5.79)

where

ωK− =
1

2Mf1

(M2
K+K− +M2

f1
−m2

π)− ωK+ , (5.80)

for dΓ
dMK+K−

, while

ωK− =
1

2Mf1

(M2
f1

+m2
K −M2

π0K+) , (5.81)

for dΓ
dMπ0K+

.

The results for dΓ
dMK+K−

and dΓ
dMπ0K+

are shown in Figure 5.25 and Fig-

ure 5.26, respectively and it is very interesting to compare the different curves.
We show there the results assuming just a phase space distribution (

∑|M |2
in Eqs. (5.78) and (5.79) is set to a constant), and with the tree level or tree
level plus final state interaction of KK̄ and πK. For the sake of comparison,
the curves are normalized to the same Γ. In Figure 5.25 we see that the
tree level alone shows a distinct shape, very different from phase space, with a
peak at low MK+K− . This must be attributed to the effect of the K∗ off shell
propagator. The implementation of FSI, particularly the KK̄ in this case,
is responsible for a further shift of the mass distribution to lower invariant
masses, closer to the KK̄ threshold, where the a0(980) resonance appears.

In Figure 5.26, where the πK invariant mass distribution is plotted, we
see a similar behaviour. The tree level alone already produces a shape quite
different from phase space, with a peak at high values of MπK , to be attributed
once again to the off shell K∗ propagator. The implementation of FSI, partic-
ularly the πK in this case, pushes the peak of the mass distributions to higher
MπK , closer to the region where the κ(800) resonance appears.

The two figures show how the most drastic change in the shape of the two
mass distributions is already caused by the tree level alone and, as mentioned
before, this is tied to the K∗ propagators, which appear at tree level because
of the K̄∗K − cc nature of the f1(1285) state that we have assumed. These
mass distributions have not been measured yet and it is clear from the present
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Figure 5.25: The mass distribution dΓ
dMK+K−

as a function of the invariant mass

of K+K− system.
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Figure 5.26: The mass distribution dΓ
dMπ0K+

as a function of the invariant mass of

π0K+ system.

study that their observation would be very important to determine the nature
of this resonance.
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So far we have assumed that the f1(1285) resonance is fully made from
KK̄∗. There are hints that the resonance could have also other components.
Indeed, in the study of this resonance in finite volume [168] it was shown
that applying the compositeness sum rule [95, 122, 197] to this case with the
chiral potential, the KK̄∗ molecular component accounts for about 50% of the
probability of the wave function, but there could still be a sizeable fraction
for other non KK̄∗ components. The size of these components is uncertain
because it relies on the energy dependence contained in the chiral potential but,
though it is unclear if this accounts for missing channels (see Chapter 4), it
really hints at the possibility of having some non negligible non KK̄∗ molecular
component in the f1(1285) wave function. This might seem to be in conflict
with our claim of a basically molecular state for this resonance and requires
some explanation. Different parts of the wave function revert in different ways
to certain observables. The easiest such case is the nucleon form factor, which
at low momentum transfer is dominated by the meson-baryon components of
the nucleon, while at high momentum transfers it is the core of quarks that is
responsible for it [28, 198].

In this sense, it is logical that the decay of the f1(1285) into KK̄π and
related channels is mostly due to the KK̄∗ molecular component of the wave
function, and other components would show up in other reactions. In this
sense it is interesting to note that in Ref. [174] the B0 and B0

s decays into
J/ψ and f1(1285) are investigated and the interpretation in terms of a qq̄ state
leads to an f1(1285) state mostly made of u and d quarks. In our case we have
four quarks to start with and a sizeable fraction of strange quarks in our KK̄∗

molecular component, so the models seem to be contradictory. Yet, one must
recall that in this latter case we have the production of the resonance in B
decays and the resonance must be formed starting from a qq̄ component. The
investigation done in Refs. [199, 200] of the B decays, together with the ratio
of the rates of B̄0 → J/ψf0(500) [201] and B̄0 → J/ψρ [17], show that the
hadronization of the primary qq̄ component to give two mesons has a penalty
factor that reverts into a factor of 0.37 decrease in the partial decay width.
In this sense, the decays of heavy mesons leading to light ones might reveal
themselves into a source of information on the non molecular components of
states like the present one. Further research considering both the molecular
and qq̄ components for this resonance in the B decays would be most welcome
after the discussion made here.
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5.6 Summary and Conclusions
In this chapter we have carried out a calculation of the decay rates of the
η(1405) → π0f0(980)(π+π−) and η(1405) → π0a0(980)(π0η) reactions. The
aim was an investigation of the isospin violation in the first reaction, which
is tied to the f0(980)-a0(980) mixing, using the terminology of other works.
We have abstained from talking about a measure of the mixing since in our
formalism there is no transition of one resonance to the other. We have,
instead, a simultaneous production of both once the problem is tackled with
meson states in charge basis with different masses, and then a small violation
of isospin is immediately obtained.

Since the two resonances are produced from the interaction of meson pairs,
the process proceeds via a first step in which a π0 and a pair of mesons are
produced and a second step in which the pair of mesons interacts. Isospin
violation has then two sources, the first loop after the production and the
scattering matrices of meson-meson interaction. In both cases, the violation
is tied to the difference of masses between charged and neutral kaons. The
consequence is that the shape of the peak obtained for the π+π− production in
the first reaction has a very narrow width, of the size of this mass difference,
of the order of 9 MeV. This comes naturally in the approach and is in perfect
agreement with the observation in the experiment.

In the first part of Section 5.2, we avoided making an explicit model for
the reaction, but we assumed the primary production of π0PP to be given
by a contact term. We could see that, invoking general principles and admit-
ting large uncertainties in the input, we obtain a rather small rate of π+π−

production versus π0η production, of the order of one percent. This result
is in good agreement with the f0(980) and a0(980) mixing of the two BES
experiments on J/ψ → φπη and χc1 → π0ππ, with respect to the isospin al-
lowed counterparts [164] and also with the rates obtained in theoretical papers
[161, 162]. However, it is very small compared to the experimental result [165],
for η(1405) → π0f0(980)(π+π−), about one order of magnitude smaller. We
tried to understand the situation by admitting a large admixture of I = 1 in
the η(1405) wave function, but it required a very large I=1 component, not
easily acceptable and, worse, it gave a signal for the f0(980) production with
a width of the order of 20 MeV, much larger than the experimental one.

In the second part we followed the approach of Ref. [166] using the
dominant primary production mechanism given by η′ → K∗K̄ followed by
K∗ → Kπ. The first loop now was quite different than for the contact in-
teractions, since the new singularity associated to η′ → K∗K̄ played a very
important role in the reaction. We found that with this new mechanism of
production, the ratio of Γ(π0, π+π−)/Γ(π0, π0η) was increased by about one

126



Triangular KK̄ loops and isospin breaking

order of magnitude, providing results very close to those in the experiment.
These results confirm the claims of Ref. [166] where, however, a precise de-
termination of that ratio could not be given, due to unknown form factors
needed to regularize the divergent loops. The use of the chiral unitary ap-
proach in the present work solved this problem, since one could associate the
regularizing cutoff in the new loops to the one used in meson-meson scattering
to generate the f0(980) and a0(980) resonances dynamically. This allowed us
to make quantitative predictions for the Γ(π0, π+π−)/Γ(π0, π0η) ratio, with a
value (0.16±0.03), in basic agreement with experimental one, of (0.179±0.04).
We also showed that the results obtained for that ratio were the same if we
had the η(1475) resonance instead of the η(1405), or a mixture of the two, as
seems to be the case in the BES experiment.

Later, we have evaluated the decay width of the f1(1285)→ π0π0η, which
shows a prominent peak in the a0(980) resonance region. We use the picture
in which the f1(1285) is dynamically generated from the vector-pseudoscalar
interaction in the KK̄∗−cc channel. We take advantage of the same triangular
decay mechanism used in the case of the η(1405) and we found a branching
fraction for the f1(1285) decay of about 20%, in qualitative agreement with
experiment. At the same time, we evaluated the f1(1285) → π0π+π− decay
rate through the same mechanism, but with the KK̄ scattering to produce
π+π−. This last process is isospin forbidden and gives zero in our approach if
we consider equal masses for the charged and neutral kaons. When physical
masses are used, then isospin is slightly violated and we find a prominent peak,
albeit with small intensity, in the f0(980) region. Once again, the width of this
peak is found narrow, like in the η(1405)→ ππη decay. These predictions have
been confirmed in a recent BESIII experiment [194] and, as in the previous
decay, the mass distribution for the π0π+π− final state does not reflect the
natural width of the f0(980) resonance but simply the region where the mass
difference of the charged and neutral kaons is appreciable compared to the
value of their masses. Also the shape obtained is similar to the one found
in the η(1405) → π0π+π− and J/ψ → φπ0η reactions, but the amount of
isospin breaking is quite different to either processes. However, we obtain an
isospin violation of about 1%, a value compatible with that reported by the
BES collaboration in Ref. [194].

In view of this discussion, we consider the concept of f0(980)-a0(980) mixing
not appropriate: the apparent mixing is so different in different reactions that
we prefer talking in terms of isospin violation, magnified due to the proximity of
the f0(980) and a0(980) resonances, but which is very much tied to the nature
of each one of the reactions considered. The ability of the chiral unitary
approach to provide a fair description of all these processes certainly gives
support to this method and to the underlying consequence, in this case, that
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the f0(980), a0(980) and the f1(1285) resonances are basically molecular states
of meson-meson, mostly KK̄ in the first two cases and K∗K̄ − cc in the last
one.

The last section of the chapter was dedicated to the evaluation of the
partial decay width of the f1(1285) → πKK̄. The tree level diagrams, that
proceed via f1(1285) → K∗K̄ − cc → πKK̄, were first considered but, at a
later stage, we also took into account the final state interactions of KK̄ → KK̄
and πK → πK, in which the triangular loop plays again a fundamental role.
The result that we obtained for the decay width is compatible with experiment
within errors.

The contributions to the partial decay width from the FSIs, compared
to the tree level diagrams, are very small but we saw that they change the
mass distributions of the f1(1285) → πKK̄ decay. These mass distributions
possess a relevant feature: their shape is, indeed, very different from the one
of the phase space alone and, since the tree level is dominant, only in small
proportion due to the FSIs. This change in the shape must be attributed to
the off shell K∗ propagator appearing in the process under the assumption
that the f1(1285) is a K∗K̄ − cc molecule. Their experimental observation
would then provide very valuable information on the nature of this resonance.
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CHAPTER 6

HIDDEN CHARM AND HIDDEN BOTTOM
STATES

6.1 Introduction
In 2003 the Belle collaboration observed the first new charmoniumlike state
called X(3872) in the B+ → X(3872)K+ → J/ψ π+π−K+ process [202], which
was later confirmed by BaBar, CDF and D0 collaborations [203–205]. After
its discovery, many other new states have been experimentally found, with
masses placed in the charmonium mass region. Most of them are above the
meson-meson threshold and, if they were conventional charmonium states,
they would decay into a pair of open charm mesons. However, this is not
seen in the experiment and what it is observed, instead, is their decay into
J/ψ plus pions, an unusual property for a simple cc̄ state. Furthermore, the
predictions from potential models for masses and decay channels do not fit
with the experimental results. For all these reasons, a strong experimental and
theoretical effort has been made in order to understand the quark configuration
of these new states as well as their production mechanisms, decay widths,
masses and spin-parity assignments. In Refs. [206–211] a detailed discussion
about the current status of those states, commonly called X, Y and Z, can be
found.

Their masses are relatively simple to reproduce using the models mentioned
above. This is the reason why it is fundamental to evaluate other properties,
like widths and partial decay widths of possible decay channels. Since the
discovery of the X, Y and Z states, an enormous bulk of work has been
done in an attempt to accommodate them in an exotic picture, like hybrid,
tetraquark, hadrocharmonium and meson molecule. The exotic state idea is
not new but before the recent discovery of Z+

c (3900) by BESIII and Belle
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collaborations no exotic structure had been conclusively identified.
One of the last surprises has been the finding of Z states with isospin

I = 1. In the hidden charm sector a state around 4020 MeV and a width
of about 8 MeV, called Zc(4020), has been observed in the e+e− → π+π−hc
reaction, looking at the invariant mass of the π±hc system [212]. Another BES
experiment [213] has found a peak in the (D∗D̄∗)± spectrum close to threshold,
which was interpreted in terms of a new resonance with mass around 4025 MeV
and width of about 25 MeV. It is unclear whether these two states can be the
same, and the quantum numbers are, in any case, not well determined. The
peak seen in the (D∗D̄∗)± spectrum is appealing since in Ref. [214] the study
of the D∗D̄∗ interaction gave rise to a state with I = 1 in spin J = 2. The
state appeared around 3920 MeV with uncertainties. Actually, we will claim
here that it should be much less bound but that, most probably, it is related
to the peak seen in the (D∗D̄∗)± distribution in Ref. [213]. The threshold for
(D∗D̄∗)± is 4017 MeV, so a bound state of D∗D̄∗ should have a smaller energy,
while the energy of the state is claimed, in Ref. [213], to be at 4025 MeV.
Yet, the interpretation of peaks around threshold is always problematic and a
source of confusion. Indeed, most often, an enhancement of the invariant mass
at threshold is an indication of a bound state or resonance below threshold.

There are multiple examples of it. In a similar reaction, e+e− → J/ψDD̄
the Belle collaboration reported a bump close to the threshold in the DD̄
invariant mass distribution [215], which was tentatively interpreted as a new
resonance. However, this peak was considered in Ref. [216] in terms of a
bound DD̄ molecular state, called X(3700), which had been already predicted
in Ref. [59] and, later on, also reported in other works [217–222]. In a similar
way, in Ref. [223], a peak seen in the φω threshold in the J/ψ → γφω reaction
[224] was better interpreted as a manifestation below the φω threshold of
the f0(1710) resonance, which couples strongly to φω [225]. More recently a
bump close to threshold in the K0K̄0 invariant mass distribution, seen in the
J/ψ → ηK0K̄0 decay in Ref. [226], is interpreted in Ref. [227] as a signal
of the formation of an h1 resonance, predicted in Ref. [225], which couples
mostly to the K∗K̄∗.

In the same direction as in the previous works, in Ref. [228] the exper-
iment of [213] was reanalyzed and the enhancement in the D∗D̄∗ invariant
mass distribution was found compatible with a state with J = 2, mass around
3990 MeV and width around 160 MeV, although fits with other solutions were
also found acceptable. Yet, resonances with mass bigger than the D∗D̄∗ mass
were discouraged based on the difficulty to have single channel resonances
with energy above threshold. Indeed, it was shown in Ref. [96] that an energy
independent potential, smooth in momentum space, could not generate a res-
onance above the mass of the interacting particles. In this sense, any energy
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below threshold is preferred, and the J = 2 solution with mass around 3990
was proposed as a good candidate to explain the experimental peak. Another
reason in favour of this interpretation was that if the state were a JP = 1+

produced in s-wave, as assumed in the experimental work [213], it would easily
decay into πJ/ψ. This decay channel is the same of the Zc(3900) [229]. How-
ever, while a peak is clearly visible in the πJ/ψ invariant mass distribution for
the Zc(3900), no peak is seen around 4025 MeV (see Fig. 4 of Ref. [229]).

Stimulated by the large impact that the X(3872) state [204] had in this field
[56, 206, 230–238], the DD̄∗ systems have been the most studied. Much at the
origin, this state was assumed to be a D0D̄∗0 [239, 240]. However, subsequent
works have stressed the relevance of the charged component D+D̄∗−, thus
forming a quite good I = 0 state [94, 126, 231]. More recently, the radiative
decay of the X(3872) into γJ/ψ has shown that the charged components are
essential to obtain the right rates [241, 242]. We will go back to this subject
in Chapter 7, where some relevant decays of the X(3872) will be widely
discussed.

Once again, it was surprising to find DD̄∗ I = 1 states, since the interaction
in this channel is weaker than for I = 0. Yet, experimental work has been
conducted and the BESIII collaboration reported a state Zc(3900) found in the
invariant mass distribution of πJ/ψ in the e+e− → π+π−J/ψ reaction [229],
with a width of 46 ± 10 ± 20 MeV. The Belle Collaboration has reconfirmed
the finding and, using different energies for the electron beam, a peak is also
seen in πJ/ψ around 3894 MeV and a width of about 63± 24± 26 MeV [243].
CLEO has followed with more precision and reported a peak at 3886 MeV and
a width of 37± 4± 8 MeV [244]. The state observed has I = 1 and JP = 1+.

Theoretical work has followed: in Ref. [245] a discussion is done on possible
structures of this state and suggestions of new experiments are made to get
a further insight on its nature. A DD̄∗ molecular structure is suggested in
Refs. [246–249]. Work has also been done using QCD sum rules, suggesting a
tetraquark structure. In particular, the authors of Ref. [250] use a tetraquark
interpolating current in order to estimate the decay width of the Zc(3900),
while in Ref. [251] the same tetraquark current is used to estimate the mass.

The same challenges also concern the bottomoniumlike states and in this
Chapter we will focus in particular on the Zb(10650) and Zb(10610). They
were observed by the Belle collaboration in π± hb(nP ) and π±Υ(mS), with
n = 1, 2 and m = 1, 2, 3, invariant mass distribution of the Υ(5S) decay
channel [252]. As a result of the measurements, Belle reported: MZb(10610) =
(10608.4 ± 2.0) MeV, ΓZb(10610) = (15.6 ± 2.5) MeV and, for the Zb(10650),
MZb(10650) = (10653.2 ± 1.5) MeV and ΓZb(10650) = (14.4 ± 3.2) MeV. The
quantum numbers are reported as JP = 1+ and positive G-parity. The neutral
partner has also been observed in the Υ(5S) → Υ(nS)ππ decay by the Belle
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Colaboration [253].
In an attempt to understand the Zb(10610) and Zb(10650) configuration,

some interpretations were considered. We will try to summarize here the huge
amount of work that has been done.

The authors of Ref. [254] treated the Zb(10610) and Zb(10650) as molecular
states of BB̄∗ and B∗B̄∗ using heavy quark spin symmetry (HQSS), but the
strength of the interaction was unknown. The proximity of the masses of these
states to the BB̄∗ and B∗B̄∗ thresholds prompted the authors of Ref. [255] to
suggest that these peaks could be a consequence of cusps originated at these
thresholds. This idea has been made more quantitative in a recent paper [256].
Again from the molecular perspective, in Refs. [230, 257] the authors consider
the states driven by the one pion exchange interaction, while in Ref. [258]
the Υ(5S) → Υ(nS)π+π− decays are analysed. In Ref. [259], several decay
channels are investigated in order to give support for the molecular picture
and in Ref. [260], using phenomenological Lagrangians, the Z → Υ(nS)π
transition rates are evaluated. A molecular interpretation was used once again
in Ref. [261], extending the work of Refs. [230, 257], in order to explain the
states as B∗B̄ and B∗B̄∗ assuming a s- and d-waves mixture. In Ref. [262]
the molecular option is also supported by sum rules, but with un uncertainty
in the mass of about 220 MeV.

In Ref. [263] the dynamics of hadro-quarkonium system was formulated,
based on the channel coupling of a light hadron (h) and heavy quarkonium
(QQ̄) to intermediate open-flavor heavy-light mesons (Qq, Qq).

In Ref. [264] the authors used QCD sum rules assuming tetraquarks or
molecules, and in all cases they could obtain good results, though the errors
in the masses were of the order of 200 to 300 MeV. In the same line, in Ref.
[265] the states are also assumed to be tetraquarks, as in Refs. [266, 267],
where the authors, using the framework of QCD sum rules, calculated the
Zb’s mass. However, the masses obtained were lower than those of the Zb
states. Also in Refs. [268] and [269] a tetraquark nature is invoked. Pion
exchange is considered in Ref. [270] and limits for the strength to produce
binding are discussed. In Ref. [271] a tetraquark is preferred, since meson
exchange binds in I = 0 but not in I = 1. In Ref. [272] the BB̄∗ and
B∗B̄∗ systems (in s-wave) are investigated in the framework of chiral quark
models using the Gaussian expansion method. The bound states of BB̄∗ and
B∗B̄∗ with quantum numbers I(JP ) = 1(1+), which are good candidates for
the Zb(10610) and Zb(10650), are obtained. Another BB̄∗ bound state with
I(JPC) = 0(1++), and other two B∗B̄∗ with I(JPC) = 1(0++), I(JPC) =
0(2++) are predicted in that work. In Ref. [265] IG = 1+ tetraquarks are
invoked again and possible JPC = 1++ , 2++ states from charge conjugation
are investigated.
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In Ref. [273] HQSS is used, analysing the power counting of the loops,
and concluding that the molecular nature of the states can account for the
observed features. In Ref. [274] the authors mention that using HQSS and the
molecular picture, states with IG = 1− should exist in addition to the reported
states with 1+. In [275] the authors make arguments of HQSS starting from
the X(3872) extrapolated to the beauty sector, and find a plausible molecular
interpretation for the Zb(10610) state. In Ref. [276] once again the molecular
structure is supported within HQSS. A different interpretation is given in Ref.
[277], where the initial pion emission mechanism is invoked to reproduce the
Υ(5S) → Υ(nS)ππ, with the second pion and the resonance produced from
the loop diagram involving three B∗ states. By using HQSS and assuming
the states to be molecular, different modes of production are evaluated in Ref.
[278]. In Ref. [279] the authors use HQSS to relate these states, which are
assumed to be molecular, to the X(3872). Finally, using the chiral quark
models, the authors of Ref. [280] interpret the states as loosely bound states
of BB̄∗, B∗B̄∗.

In this chapter we do a thorough investigation of DD̄∗, DD̄∗, BB̄∗ and
B∗B̄∗ taking into account the possible sources of interaction, in order to com-
pare them and identify the most relevant processes. We start analysing the
contribution coming from the exchange of vector mesons. Then, we proceed to
the evaluation of the interaction coming from the single light pseudoscalar (π,
η or η′) exchange, followed by the two pseudoscalars exchange. We also treat
the case of the crossed-two-pion exchange and two interacting pions, leading
to a ”σ” exchange.

6.2 Formalism
We want to study the states of I = 1 generated by the DD̄∗, D∗D̄∗, BB̄∗ and
B∗B̄∗ interactions. The starting point is the observation that the interactions
proceeding via the exchange of one light meson are not allowed by the Okubo-
Zweig-Iizuka (OZI) rule.

In Figure 6.1 we show as an example a diagram illustrating the D∗+D̄∗0

case: in order for the process to occur, a dd̄ state must be converted in a uū
state, which means that the reaction is OZI forbidden. In terms of physical
mesons, this implies that the contributions coming from the ρ and ω meson
exchange cancel when equal masses are taken (as it is indeed the case in the
hidden gauge approach [214]). The same argument holds for the exchange
of pseudoscalars and an exact cancellation of the π, η and η′ exchange is
found in the limit of equal masses. When considering different masses for
the pseudoscalar mesons, the cancellation is only partial at low momenta,
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becoming quite drastic for momentum transfers of the order of the mass of the
η′. We shall show this in detail in Section 6.2.5.

c̄

c

d̄

u u

d̄

D̄∗0

D∗+ D∗+

D̄∗0

Figure 6.1: Feynman diagram depicting the exchange of a light qq̄ pair in the
D∗D̄∗ interaction. A dd̄ from the upper vertex is forced to convert into a uū pair in
the lower one, evidencing an OZI forbidden mechanism.

Due to these cancellations, we shall consider also processes in which the
OZI restriction no longer holds, starting, in this same section, from the ex-
change of one heavy vector meson. We study the V V → V ′V ′ and PV → P ′V ′

interactions via vector exchange in the framework of the hidden gauge formal-
ism but using its extension to the heavy quark sector [214]. This means that
we are going to use the Langrangians describing the V PP and V V V vertices
given by Eqs. (2.92) and (2.96), with the matrices P and V in Eqs. (2.29) and
(2.83) substituted by their SU(4) extensions. We have, for the charm sector

P =


η√
3

+ η′√
6

+ π0
√

2
π+ K+ D̄0

π− η√
3

+ η′√
6
− π0
√

2
K0 D−

K− K̄0 − η√
3

+
√

2
3
η′ D−s

D0 D+ D+
s ηc

 (6.1)

and

Vµ =


ω√
2

+ ρ0
√

2
ρ+ K∗+ D̄∗0

ρ− ω√
2
− ρ0
√

2
K∗0 D∗−

K∗− K̄∗0 φ D∗−s
D∗0 D∗+ D∗+s J/ψ


µ

, (6.2)
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while, for the bottom sector,

P =


η√
3

+ η′√
6

+ π0
√

2
π+ K+ B+

π− η√
3

+ η′√
6
− π0
√

2
K0 B0

K− K̄0 − η√
3

+
√

2
3
η′ B0

s

B− B̄0 B̄0
s ηb

 (6.3)

and

Vµ =


ω√
2

+ ρ0
√

2
ρ+ K∗+ B∗+

ρ− ω√
2
− ρ0
√

2
K∗0 B∗0

K∗− K̄∗0 φ B∗0s
B∗− B̄∗0 B̄∗0s Υ


µ

. (6.4)

We are interested in channels with quantum numbers I = 1, strangeness S = 0
and C = 0 in the case of DD̄∗ and D∗D̄∗, and I = 1, S = 0 and B = 0 for
BB̄∗ and B∗B̄∗. We will treat the four interactions separately.

6.2.1 The DD̄∗ vector exchange interaction
In the sector with I = 1, S = 0 and C = 0 it is possible to distinguish chan-
nels with positive or negative G-parity combinations. In the case of positive
G-parity [IG(JPC) = 1+(1+−)] there are six possible channels that can con-
tribute to the process: πω, ηρ, (K̄K∗ + c.c.)/

√
2, (D̄D∗ + c.c.)/

√
2, ηcρ and

πJ/Ψ [56]1. However, we will only take into account the last three. Since we
are investigating the energy region around 3900 MeV, the πω and ηρ channels,
whose thresholds are at much smaller energies, will only slightly affect the re-
sults. Analogously, for negative G-parity [IG(JPC) = 1−(1++)] we will only in-
clude in the formalism the (D̄D∗−c.c.)/

√
2 channel since the (K̄K∗−c.c.)/

√
2

and πρ are too far from the energy values we are interested in.
We already mentioned that the tree level amplitudes of the interaction can

be evaluated by means of the Lagrangians in Eqs. (2.92) and (2.96). However,
they would result identical to those obtained with the chiral Lagrangian of
Ref. [281] and, in Refs. [51, 56], they are explicitly evaluated and projected
in s-wave, with the result

Vij(s) = −~ε ~ε
′

8f 2
Cij[3s− (M2 +m2 +M ′2 +m′2)

− 1

s
(M2 −m2)(M ′2 −m′2)] .

(6.5)

1Note that we have Cρ0 = −ρ0, Cρ+ = −ρ−, Cρ− = −ρ+.
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The masses M (M ′) and m (m′) in Eq. (6.5) correspond to the initial (final)
vector meson and pseudoscalar meson, respectively, while the indices i and j
represent the initial and final V P channels.

In the case of positive G-parity, we will have a 3× 3 matrix for the coeffi-
cients Cij, that we take from Ref. [56],

Cij =


−ψ 2

√
2
3
γ 2

√
2
3
γ

2
√

2
3
γ 0 0

2
√

2
3
γ 0 0

 , (6.6)

with γ =
(
mL
mH

)2

and ψ = −1
3

+ 4
3

(
mL
m′H

)2

. The parameters mL, mH and

m′H are chosen of the order of magnitude of a light vector meson mass, of a
charmed vector mass and of the J/ψ mass. We take mL = 800, mH = 2050
MeV, and m′H = 3000 MeV as done in Ref. [56]. The factors γ and ψ are
defined in this way in order to take into account the suppression due to the
exchange of a heavy vector meson.

In the case of negative G-parity only one channel is present, whose corre-
sponding coefficient in Eq. (6.5) is C = −ψ. In the language of vector meson
exchange this means that a J/ψ is exchanged.

The potential of Eq. (6.5) is derived by the combination of momenta (p1 +
p′1)(p2 + p′2), with pi and p′i the momenta of the initial and final particles (i =
1, 2), and which we can approximate with (p 0

1 +p′ 0
1 )(p 0

2 +p′ 0
2 ), since we assume

that the three-momenta of the external particles are small. In Ref. [282] it
was shown that this Weinberg-Tomozawa interaction should accommodate a
factor (p0

1/mK∗)(p
0
2/mK∗) multiplying the SU(3) value, that stems from the

implementation of the heavy quark spin symmetry (HQSS). In this work,
the authors relate the D∗Dπ vertex to its analogous in the strange sector,
K∗Kπ. The same exercise is repeated for the Weinberg-Tomozawa term that
we consider now based on vector exchange, and they show how the rules of
HQSS [283–285] can be obtained from the impulse approximation at the quark
level assuming the s and c quarks as spectators. The conclusion is that the
interaction used automatically incorporates this factor, so that no changes are
needed with respect to what was done in Ref. [56], and we can safely use Eq.
(6.5).

Eq. (6.5) provides the potential V that must be used to solve the Bethe-
Salpeter equation in coupled channels (Eq. (2.59)) removing the ~ε ~ε ′ factor
that can also be factorized in T . These transition potentials Vij are shown
in Figure 6.2 while the elements of the diagonal loop function matrix G are
given by Eq. (2.57).
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Figure 6.2: Potentials VDD̄∗→DD̄∗ (a), VDD̄∗→ηCρ (b) and VDD̄∗→πJ/ψ (c) as func-

tions of the center of mass energy
√
s.
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6.2.2 The D∗D̄∗ vector exchange interaction
In this case, the channels with I = 1, charm C = 0 and strangeness S = 0 are
D∗D̄∗, K∗K̄∗, ρρ, ρω, ρJ/ψ, ρφ. The transition amplitudes that will be used
as the kernel for the Bethe-Salpeter equation have already been evaluated by
means of the Lagrangians of Eqs. (2.95) (giving the contact term) and (2.96)
(giving the vector-exchange term) in Ref. [214], where all the details of the
derivation can be found.

In Ref. [214], the ρρ, ρω, ρφ light vector channels were included in the
calculation. However, their thresholds are situated at energies much smaller
than the mass of the state we are looking for, such that the results would be
only slightly affected by their inclusion. Moreover, we will only consider the
case with J = 2 since this is the only spin channel where the interaction gives
an attractive potential for D∗D̄∗ → D∗D̄∗.

The expressions of the potentials for the channels we are going to consider
are reported in the following equations, including both the contact and the
vector-exchange term:

tI=1,J=2

D∗D̄∗→D∗D̄∗ = −g2
D + g2

D

(2m2
ωm

2
ρ +m2

J/ψ(−m2
ω +m2

ρ))(4m
2
D∗ − 3s)

4m2
J/ψm

2
ωm

2
ρ

, (6.7)

tI=1,J=2

D∗D̄∗→ρJ/ψ = −2ggD + ggD
2m2

D∗ +m2
J/ψ +m2

ρ − 3s

m2
D∗

, (6.8)

where mρ, mω and mJ/ψ are the masses of the ρ, ω and J/ψ mesons re-
spectively. The constant gD = mD∗/(2fD), which was used in Ref. [214], is
analogous to the coupling g for light mesons, with fD = 206/

√
2 = 145.66

MeV, and it is the strong coupling of the D∗ meson to Dπ, which in SU(3) is
equal to 4.16.

However, we can use again constrains of HQSS to provide a more accurate
coupling. The D∗D̄∗ → D∗D̄∗ interaction is now mediated by J/ψ exchange
(cc̄) in analogy to the φ exchange in K∗K̄∗ → K∗K̄∗. As mentioned before,
these constraints are deduced in the impulse approximation at the quark level
assuming the s and c quarks as spectators. Then, given the (2ω)−1/2 nor-
malization factors of the fields at the meson level, there is a factor ωD∗/ωK∗
between the D∗D∗J/ψ and the K∗K∗φ vertices. Since the K∗K∗φ vertex is
proportional to ωK∗ , the D∗D∗J/ψ will have the same proportionality coef-
ficient multiplied by ωD∗ , which is what the straight application of SU(4)
provides in this case. Note that the vector exchange term in Eq. (6.7) at

the D∗D̄∗ threshold, for simplicity, gives g2
D
m2
D∗

m2
J/ψ

with mω = mρ. There we

see explicitly the energy of the mD∗ from the two vertices and m2
J/ψ from the

J/ψ propagator but, according with the previous argument, we should get
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Figure 6.3: Potentials VD∗D̄∗→D∗D̄∗ (a) and VD∗D̄∗→ρJ/ψ (b) as functions of the

center of mass energy
√
s.

g2 m
2
D∗

m2
J/ψ

. Therefore, we use here the normal g coupling which is in agreement

with HQSS. For consistency, we also take g2 in the contact term, which is
smaller than the J/ψ exchange one, and in the transition potential of Eq.
(6.8). The use of the new coupling will have as a consequence the reduction
of the binding of the I = 1 state with respect to the one found in Ref. [214].

The two potentials, which are the elements of the 2 × 2 matrix poten-
tial V in the Bethe-Salpeter equation, with V11 = VD∗D̄∗→D∗D̄∗ , V12 = V21 =
VD∗D̄∗→ρJ/ψ, and V22 = 0, are plotted in Figure 6.3 as functions of the centre
of mass energy

√
s. As it is clear from the figure, the ρJ/ψ channel plays an im-

portant role in this problem. Indeed, the transition potential of D∗D̄∗ → ρJ/ψ
has a strength almost four times bigger than the D∗D̄∗ → D∗D̄∗ transition.

6.2.3 The BB̄∗ vector exchange interaction
As in the case of DD̄∗ interaction, the evaluation of the tree level scattering
amplitudes leads to Eq. (6.5). This result can be obtained from the chiral
Lagrangian of Ref. [281] and we show the derivation in Appendix B. In this
case, the indices i and j represent the initial and final channels (BB̄∗+cc)/

√
2,

ηb ρ and πΥ.
The Cij coefficients are the elements of a 3×3 matrix, which for the positive

G-parity of the BB̄∗ combination, is given by

Cij =

 −ψ
√

2γ
√

2γ√
2γ 0 0√
2γ 0 0

 . (6.9)

The factors γ and ψ, as in the DD̄∗ case, take into account the suppression
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Figure 6.4: Potentials VBB̄∗→BB̄∗ (a), VBB̄∗→ηbρ (b) and VBB̄∗→πΥ (c) as functions
of the center of mass energy

√
s.

due to the exchange of a heavy vector meson. The values of the parameters
mL, mH and mH′ are chosen in order to have the same order of magnitude of
the light and heavy vector meson masses: mL = 800, mH = 5000 MeV and
mH′ = 9000 MeV. These masses stand for the ρ or ω, B∗ and Υ respectively.
We shall see how the results change by making some variation in the values of
these parameters. The three potentials are shown in Figure 6.4 as functions
of the center of mass energy.

6.2.4 The B∗B̄∗ vector exchange interaction
In this case, the channels contributing in the S = 0, B = 0 and I = 1 sector
are B∗B̄∗ and ρΥ. The tree level transition amplitudes are evaluated following
the same steps as in Ref. [214] and the calculation for the exchange terms has
been reproduced in detail, for this specific case, in Appendix C.

Putting together the exchange and the contact terms, already evaluated in
Ref. [214], we get, for the case J = 2, which is the one that gives an attractive

140



Hidden charm and hidden bottom states

10000 10200 10400 10600 10800

- 10.0

- 9.5

- 9.0

- 8.5

- 8.0

s [MeV]

V
1
1

(a)

10200 10400 10600 10800

- 160

- 150

- 140

- 130

s [MeV]

V
1
2

(b)

Figure 6.5: Potentials VB∗B̄∗→B∗B̄∗ (a) and VB∗B̄∗→ρΥ (b) as functions of the center
of mass energy

√
s for J = 2.

interaction for the B∗B̄∗ → B∗B̄∗ transition,

tI=1,J=2

B∗B̄∗→B∗B̄∗ = −g2 + g2

[
2M2

ρM
2
ω +M2

Υ(−M2
ω +M2

ρ )

4M2
ΥM

2
ωM

2
ρ

]
(4M2

B∗ − 3s) ,

tI=1,J=2

B∗B̄∗→ρΥ
= −2g2 + g2

[
2M2

B∗ +M2
Υ +M2

ρ − 3s

M2
B∗

]
,

(6.10)

where s is the square of the center of mass energy of the B∗B̄∗ system. Again,
as for the D∗D̄∗ interaction, we can use the normal coupling g without entering
into contradiction with the HQSS formalism.

In the case of the B∗B̄∗ → B∗B̄∗ transition, the exchange term is the same
for every value of the spin J = 0, 1, 2 while, for the contact terms, one finds
2g2 and 3g2 for J = 0 and J = 1 respectively, as reported in in Ref. [214].
In the case of the non-diagonal transition, both the exchange and the contact
terms vanish for J = 1. For J = 0 the contact terms 4g2 and the exchange
one is the same as for J = 2.

Eqs. (6.10) will be used as a kernel of the Bethe-Salpeter equation. The
two potentials are plotted in Figure 6.5 as functions of the centre of mass
energy

√
s for J = 2.

6.2.5 Light pseudoscalar exchange
In this section we proceed with the evaluation of the amplitude for the ex-
change of a single light pseudoscalar mesons (π, η, η′). The diagrams describ-
ing the process are shown in Figure 6.6 for the four cases under study: DD̄∗

(a), D∗D̄∗ (b), BB̄∗ (c) and B∗B̄∗ (d).
First we will take into consideration the cases of DD̄∗ and BB̄∗, since they
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present identical formalism. Then, we will treat the case of the interaction
between two vectors.

D̄∗0 D+

D∗+D̄0

π, η, η′

p3 p4

p1 p2

q

D̄∗0 D∗+

D∗+D̄∗0

π, η, η′

p3 p4

p1 p2

q

B̄∗0 B+

B∗+B̄0

π, η, η′

p3 p4

p1 p2

q

B̄∗0 B∗+

B∗+B̄∗0

π, η, η′

p3 p4

p1 p2

q

(a) (b)

(c) (d)

Figure 6.6: Diagrammatic representation of the DD̄∗ (a), D∗D̄∗ (b), BB̄∗ (c) and
B∗B̄∗ (d) interaction via light pseudoscalar exchange.

THE DD̄∗ AND BB̄∗ CASES

In order to evaluate the amplitude of the diagrams in Figure 6.6 (a) and
(c) we need the Lagrangian for the PPV vertex of Eq.(2.92) but using the
constant gD, the strong coupling of the D∗ meson to Dπ, which in SU(3) is
equal to 4.16. However this is in contradiction with the empirical value of
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g ' 9 needed to get the D∗ → Dπ width. This apparent contradiction is
settled by looking at the D∗ → Dπ decay using the impulse approximation
at the quark level, assuming the heavy quarks as spectators. Once again,
the standard normalization used for the meson fields at the macroscopic level
(mesons, not quarks) demands that the g ~ε · ~q operator that one has for the
D∗0 decay at rest is normalized by an extra mD∗/mK∗ factor. This gives an
effective g constant for D, D∗ mesons, g̃D ' 9.40. With this coupling we get a
width of 71 KeV for the D∗+ → D0π+ decay, which is in agreement with the
more recent result of (65± 15) KeV of [286]. The same argument holds in the
case of the B and B∗ meson, and the coupling is given by g̃B = mB∗/mK∗g.

In isospin equal to 1, we have the states ψ1, corresponding to

|ψ1〉 =
1√
2

(
|D+D̄∗0〉+ |D̄0D∗+〉

)
, (6.11)

and

|ψ1〉 =
1√
2

(
|B+B̄∗0〉+ |B̄0B∗+〉

)
. (6.12)

We can see that the pseudoscalar meson exchange with the interaction of Eq.
(2.92) mixes the first component of Eqs. (6.11) and (6.12) for the initial state
with the second component of the same equation for the final state and vice-
versa.

Using Eq. (2.92) to write explicitly the PD̄∗0D̄0 (PB̄∗0B̄0) and PD∗+D+

(PB∗+B+) vertices, with P the exchanged light pseudoscalar, we find for both
cases

tψ1→ψ1 = −4g̃2
V

(
− 1

2

1

q2 −m2
π + iε

+
1

6

1

q2 −m2
η + iε

+
1

3

1

q2 −m2
η′ + iε

)
(ε1 · p3)(ε4 · p2)F 2(~q ) ,

(6.13)

where mπ, mη, mη′ are the masses of the π, η and η′ respectvely, ε1 and ε4
are the polarization vectors for the D̄∗0 (B̄∗0) and D∗+ (B∗+) vector mesons
respectively and F (~q ) is a form factor of the type

F (~q ) =
Λ2

Λ2 + ~q 2 , (6.14)

with Λ = 1 GeV, which will be also used later for the other interactions, and
~q the three-momentum transferred in the process. We called the coupling,
generically, g̃V , with V = D,B.

Considering that the masses of the vectors are heavy compared to the
external momenta, the following approximations occur: ε1 · p3 = −~ε1 · ~p3 and
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Figure 6.7: DD̄∗ (a) and BB̄∗ (b) one pseudoscalar exchange potential for the
exchange of one pion (dashed line), π plus η (dotted line) and π plus η plus η′ (thick
line) as functions of the transferred momentum q.

ε4 · p2 = −~ε4 · ~p2. Moreover, we can use for simplicity the Breit frame where

p1 ≡ (p0
1, ~q/2) ,

p2 ≡ (p0
2,−~q/2) ,

p3 ≡ (p0
3,−~q/2) ,

p4 ≡ (p0
4, ~q/2) .

(6.15)

Since we are doing an estimate, we have chosen q0 ≡ 0. We are dealing with
s-waves and this allows us to use qiqj → 1

3
~q 2δij and, then, to rewrite the

amplitude of Eq. (6.13) as

tψ1→ψ1 =
g̃2
V

3
~q 2
(
− 1

2

1

~q 2 +m2
π + iε

+
1

6

1

~q 2 +m2
η + iε

+
1

3

1

~q 2 +m2
η′ + iε

)
F 2(~q ) .

(6.16)

In Figures 6.7(a) and 6.7(b) we show the contributions coming from Eq.
(6.16) for the exchange of one pion (dashed line), π plus η (dotted line) and π
plus η plus η′ (thick line) as functions of the transferred momentum q for the
DD̄∗ and BB̄∗ case respectively. We can see, in both cases, a partial cancel-
lation between the three contributions, which becomes very effective at large
momenta and exact in the limit of equal masses for the light pseudoscalars.

It is interesting to compare the contributions of Figures 6.7(a) and 6.7(b)
with the ones due to vector exchange, which we plot in Figures 6.8(a) and
6.8(b). Recall that the use of the vector exchange potential as V in the Bethe-
Salpeter equation (Eq. (2.59)), together with a G function regularized with a
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Figure 6.8: In Fig. (a): vector exchange potentials VDD̄∗→DD̄∗ (thick line),
VDD̄∗→ηCρ (dotted line) and VDD̄∗→πJ/ψ (dashed line) as functions of the trans-
ferred momentum q. In Fig. (b): vector exchange potentials VBB̄∗→BB̄∗ (thick line),
VBB̄∗→ηbρ (dashed line) and VBB̄∗→πΥ (dotted line) as functions of the transferred
momentum q.

cutoff qmax, is equivalent to using a potential of the type [94]

V (~p, ~p ′) = V θ(qmax − ~p )θ(qmax − ~p ′) , (6.17)

Assuming ~p ' 0, ~p ′ takes the place of ~q , and this allows a proper comparison
keeping in mind that qmax, to be used later, is of the order of 770 MeV in
the DD̄∗ case and 700 MeV in the BB̄∗. While in the case of D mesons the
exchange of one pseudoscalar is very small compared to the vector exchange
and can be safely neglected, this is not the case for the B mesons. We will
see later that this contribution can be included in the theoretical uncertainties
considered.

THE D∗D̄∗ AND B∗B̄∗ CASE

The light pseudoscalar exchange between vector mesons, shown in Figure 6.6
(b) and (d), proceeds via the anomalous vector-vector-pseudoscalar (PV V )
coupling. Using the Lagrangian of Eq. (2.97) for the vertices involved, its
contribution can be easily evaluated and, close to threshold, it reads

t ' −G
2

2
m2
V ~q · (~ε1 × ~ε3) ~q · (~ε2 × ~ε4)

(
− 1

2

1

q2 −m2
π

+
1

3

1

q2 −m2
η

+
1

6

1

q2 −m2
η′

)
,

(6.18)

where ~ε1 and ~ε2 stand for the initial polarizations of the vector mesons, ~ε1 and
~ε3 for the final ones and q is the momentum transfer. The symbol mV stands
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for the mass of the heavy vector, D∗ or B∗. Once again, to derive Eq. (6.18)
we used the approximation of small three-momenta of the vectors.

Note that t in Eq. (6.18) is already proportional to ω2
V (m2

V at thresh-
old) and the factor proportional to ωV in each vertex demanded by HQSS is
automatically included in Eq. (6.18) as it was also the case in the Weinberg-
Tomozawa terms.

Since we are concerned in s-waves, we can take again ~qi~qj → 1
3
~q 2δij, which

leads to the spin structure

(~ε1 × ~ε3)(~ε2 × ~ε4) = εiεiεjεj − εiεjεjεi , (6.19)

where the order of the polarization vectors in the right-hand side of Eq. (6.19)
is 1, 2, 3 and 4. By recalling the form of the spin projector operators in Eqs.
(C.5) of Appendix C, we see that

(~ε1 × ~ε3)(~ε2 × ~ε4) = 2P(0) + P(1) − P(2) . (6.20)

Thus we have

t ' −A G2

2
m2
V ~q 2

(1

2

1

~q 2 +m2
π

− 1

3

1

~q 2 +m2
η

− 1

6

1

~q 2 +m2
η′

)
F 2(~q ) , (6.21)

with A = 2, 1,−1 when J = 0, 1, 2. In Eq. (6.21) we have taken into account
that q0 = 0 and we have introduced again the convergence form factor F (~q ) =

Λ2

Λ2+~q 2 , with Λ = 1000 MeV [287].

In Eq. (6.21) we observe the cancellation of the exchange of π, η, η′ in the
limit of equal masses. In Figures 6.9(a) and 6.9(b) we plot t as a function
of ~q for D∗D̄∗ and B∗B̄∗ respectively and for J = 2, and this cancellation
can be seen explicitly. We compare the amplitude with the vector exchange
potentials, exactly as we did in the previous section, shown in Figures 6.10(a)
and 6.10(b).

Again, for the charm sector the strength of the vector exchange interaction
is bigger, but this is not the case of the bottom sector.

6.2.6 Iterated two meson exchange
In this section we discuss the case of the exchange of two light pseudoscalar
mesons. The transition needs a box diagram to accommodate the two in-
termediate pseudoscalar states and it is shown in Figure 6.11 for the four
cases under consideration. As we did in Section 6.2.5, we will first treat
the PV → PV cases (Figure 6.11 (a) and Figure 6.11 (c)) and then the
V V → V V ones (Figure 6.11 (b) and Figure 6.11 (d)).
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Figure 6.9: D∗D̄∗ (a) and B∗B̄∗ (b) one pseudoscalar exchange potential for the
exchange of one pion (dashed line), π plus η (dotted line) and π plus η plus η′ (thick
line) as functions of the transferred momentum q and for J = 2.

0 200 400 600 800 1000
-200

-150

-100

-50

0

q[MeV]

V
ii

(a)

0 200 400 600 800 1000
-200

-150

-100

-50

0

q[MeV]

V
ii

(b)

Figure 6.10: In Fig. (a): vector exchange potentials VD∗D̄∗→D∗D̄∗ (thick line) and
VD∗D̄∗→ρJ/ψ (dotted line) as functions of the transferred momentum q. In Fig. (b):
vector exchange potentials VB∗B̄∗→B∗B̄∗ (thick line) and VB∗B̄∗→ρΥ (dotted line) as
functions of the transferred momentum q.
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Figure 6.11: Diagrammatic representation of the DD̄∗ (a), D∗D̄∗ (b), BB̄∗ (c)
and B∗B̄∗ (d) interaction via iterated two pseudoscalar exchange.
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THE DD̄∗ AND BB̄∗ CASES

In this case, in order to evaluate the transition amplitude we only need the
four V PP vertices, derived using Eq. (2.92), with the couplings constants
imposed by HQSS, g̃D and g̃B. We use the DD̄∗ case as an example. The
amplitude for the BB̄∗ interaction can be obtained following exactly the same
steps. We get the expression

t = ig̃4
D

1

3
~ε · ~ε ′

∫
d4p

(2π)4
~p 4
(
− 1

2

1

p2 −m2
π + iε

+
1

3

1

p2 −m2
η + iε

+
1

6

1

p2 −m2
η′ + iε

)2 1

ED(~p )

1

ED∗(~p )

1

mD − q0 − ED∗(~p ) + iε

× 1

mD∗ + q0 − ED(~p ) + iε
,

(6.22)

where ~ε and ~ε ′ are the polarization vectors of the two external vector mesons,
ED∗ =

√
~p 2 +m2

D∗ is the energy of the intermediate heavy vector meson and

ED =
√
~p 2 +m2

D the energy of the intermediate D meson. We have taken
only the positive part of the D and D∗ propagators, [(p0 − ED)2ED]−1 and
[(p0 − ED∗)2ED∗ ]

−1, which is a good approximation given the large masses
of the particles. To derive Eq. (6.22) we have used, as in the previous sec-
tion, the approximation of small external three-momenta and the fact that, by
symmetry, pipj → 1

3
~p 2δij.

Once we perform analytically the integration in p0 in Eq. (6.22), we obtain

t =
1

4
t boxππ +

1

9
t boxηη +

1

36
t boxη′η′ −

1

3
t boxπη −

1

6
t boxπη′ +

1

9
t boxηη′ , (6.23)

where

t boxij = g̃4
D

1

3
~ε · ~ε′

∫
d3p

(2π)3
~p 4 F (~p )2 1

ED∗(~p )

1

ED(~p )

1

ED∗(~p ) + ω1 − ED(~p )± iε
× 1

ED∗(~p ) + ω1 − ED(~p )± iε
1

ED∗(~p ) + ω2 − ED(~p )± iε
( 1

2ω1ω2

× 1

ω1 + ω2

1

ED(~p )− ω1 − ED∗(~p ) + iε

Num

ED(~p )− ω2 − ED∗(~p ) + iε

+
1

ED(~p ) + ω1 − ED∗(~p )− iε
1

ED(~p ) + ω2 − ED∗(~p )− iε
× 1

MD − ED(~p ) +MD∗ − ED∗(~p ) + iε

)
, (6.24)

with i, j = π, η, η′. The numerator Num in Eq. (6.23) is given by

Num = −(ω2
1 + ω2

2 + ω1ω2) + (ω1 + ω2)(MD + ED −MD∗ − ED∗)
× (MD − ED∗)(MD∗ − ED) ,

(6.25)
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Figure 6.12: DD̄∗ (a) and BB̄∗ (b) two pseudoscalar exchange potential. The
thick line accounts for π plus η plus η′ exchange, the dashed line only for pion

exchange ( t
box
ππ
4 ) and the dotted line for π plus η exchange ( t

box
ππ
4 +

t boxηη

9 −
t boxπη

6 ).

where ω1 and ω2 are the energies of the two mesons exchanged. In the case of
the BB̄∗ interaction the calculation leads exactly to the same result with the
substitutions D → B, D∗ → B∗.

The calculation is done at threshold but the dependence on the momentum
transfer ~q can be easily obtained using again the Breit reference frame, that
corresponds to taking for the initial (1, 2) and final (3, 4) four-momenta the
values of Eqs. (6.15). In Figures 6.12(a) and 6.12(b) the amplitude of Eq.
(6.23) is plotted as a function of the transferred momentum ~q for the DD̄∗ and
BB̄∗ case respectively (thick line), and it is compared with the pion exchange
t boxππ

4
(dashed line) and with the exchange of π plus η, given by t boxππ

4
+

t boxηη

9
− t boxπη

6

(dotted line). Analogously to the case of one light pseudoscalar exchange of
Section 6.2.5, we can notice a partial cancellation between π, η and η′, which
becomes exact in the limit of equal masses.

THE D∗D̄∗ AND B∗B̄∗ CASE

The amplitude for the processes depicted in Figure 6.11 (b) and (d) can be
derived in a very similar way, leading, in the case of D∗D̄∗, to the expression

t = ig̃4
D

∫
d4p

(2π)4
2~p · ~ε1 2~p · ~ε2 2~p · ~ε3 2~p · ~ε4

(
− 1

2

1

p2 −m2
π + iε

+
1

3

1

p2 −m2
η + iε

+
1

6

1

p2 −m2
η′ + iε

)2 1

(2ED(~p ))2

× 1

mD∗ − p0 − ED(~p ) + iε

1

mD∗ − p0 − ED(~p ) + iε
,

(6.26)
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where ED(~p ) =
√
~p 2 +m2

D is the energy of the intermediate D meson.
By symmetry reasons we can substitute

pipjpkpm →
1

15
(δijδkm + δikδjm + δimδjk) ~p

4 , (6.27)

which renders the spin combination into

1

15
(ε1iε2iε3mε4m + ε1iε2jε3iε4i + ε1iε2jε3jε4i) . (6.28)

Taking into account the spin projections of Eqs. (C.5), the combination of
spin that we have in Eq. (6.28) is

1

15
(5P(0) + 2P(2)) . (6.29)

Then, performing analytically the p0 integration in Eq. (6.26), we obtain

t =
1

4
t̃ boxππ +

1

9
t̃ boxηη +

1

36
t̃ boxη′η′ −

1

3
t̃ boxπη −

1

6
t̃ boxπη′ +

1

9
t̃ boxηη′ , (6.30)

where

t̃ boxij = g̃4
DSJ

∫
d3p

(2π)3
~p 4F (~p )4 1

mD∗ + ω1 − ED(~p )± iε
1

mD∗ + ω2 − ED(~p )± iε

× 1

(ED(~p ))2

( 1

2ω1ω2

1

ω1 + ω2

Num′

mD∗ − ω1 − ED(~p ) + iε

1

mD∗ − ω2 − ED(~p ) + iε

+
1

ED(~p )−mD∗ + ω1 + iε

1

ED(~p )−mD∗ + ω2 + iε

1

2mD∗ − 2ED(~p ) + iε

)
.

(6.31)

In this last equation, the subscript ij stands for the two light mesons ex-
changed, ω1 and ω2 are their energies,

SJ =


4
3

J = 0 ,

8
15

J = 2 ,

(6.32)

and
Num′ = −(ω2

1 + ω2
2 + ω1ω2) + (mD∗ − ED(~p ))2 . (6.33)

The discussion still holds in the case of B∗B̄∗ with the substitutions mD∗ →
mB∗ , mD → mB and g̃D → g̃B.

Introducing the dependence on the transferred momentum ~q like done in
the previous section, we can plot the amplitude of Eq. (6.23) for both D∗D̄∗

and B∗B̄∗ interactions, Figures Figure 6.13 (a) and (b) respectively, and
for both angular momenta, J = 0 (thick line) and J = 2 (dashed line). For
both interactions this process is negligible when compared to the heavy vector
exchange of Figures 6.10(a) and 6.10(b).
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Figure 6.13: D∗D̄∗ (a) and B∗B̄∗ (b) two pseudoscalar exchange potential. The
thick line is for the J = 0 case while the dashed line for the J = 2.

6.2.7 The σ exchange
The nucleon-nucleon interaction calls for an intermediate range attraction
which was traditionally taken into account by means of “σ” exchange. With
ups and downs the σ resonance is now listed in the PDG [17] as the f0(500).
This resonance appears unavoidably in a study of the ππ interaction with
a unitary approach using as input the kernel from the chiral Lagrangians
[30, 31, 150]. The analysis of ππ data with Roy equations allows one to es-
tablish the mass and width of this resonance with some precision [288, 289],
compatible with the predictions of chiral unitary approach, of a mass around
460 MeV and half width of about 280 MeV. A recent thorough review on the
σ properties and nature is given in Ref.[290]. From this point of view it was
interesting to provide a microscopic picture for σ exchange, based on the na-
ture of the σ resonance stemming from the interaction of two pions. This job
was done in Ref. [287] considering the exchange of two correlated (interact-
ing) pions for the NN interaction. In this section we extend these ideas to the
interaction of DD̄∗, D∗D̄∗, BB̄∗ and B∗B̄∗.

DD̄∗ AND BB̄∗ CASES

The diagrams contributing are four for each interaction and they are shown in
Figure 6.14. As it can be seen, each diagram has four V PP vertices involving
a heavy vector meson, a pion and a heavy pseudoscalar meson. The grey circle
in the crossing of the pion lines indicates that we have there the ππ scattering
amplitude.We make the calculation for the DD̄∗ case. The BB̄∗ amplitude
can be evaluated analogously. Using the Lagrangian of Eq. (2.92) we find
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Figure 6.14: Lowest order ππ interaction in the I = 1 channel for DD̄∗ → DD̄∗

and BB̄∗ → BB̄∗.
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vertices of the form

− itV PP = −ig C(pD + pπ)µε
µ
V , (6.34)

where pD and pπ are the four-momenta of the D meson and of the pion re-
spectively, and εV is the polarization vector of the D∗ meson in the vertex.

The amplitude of the process can be written as

− itσ = −i VA VB (
1

4
tπ0π0→π0π0 +

1

2
tπ0π0→π+π− +

1

2
tπ+π−→π0π0 + tπ+π−→π+π−) ,

(6.35)
where the factors VA and VB represent the contributions of the two triangular
loops to the diagram, which we show in Figure 6.15 and shall evaluate later.
Note that, in order to write the amplitude, we must assume two initial pions
and two final pions all pointing to the right in the diagrams of Figure 6.14,
hence providing the amplitude of Eq. (6.35).

p′1

p

p1

p− p′1

p− p1

p′1

p

p1

p− p′1

p− p1

A) B)

Figure 6.15: Two pion exchange triangle vertices, VA in Fig. A) and VB in Fig.
B).

Considering the unitary normalization of the ππ states [30],

|ππ, I = 0〉 = − 1√
6
|π0π0 + π+π− + π−π+〉 , (6.36)

and writing explicitly the isoscalar amplitude

tI=0
ππ→ππ =

1

6
(tπ0π0→π0π0 + 2tπ0π0→π+π− + 2tπ+π−→π0π0 + 4tπ+π−→π+π−) , (6.37)

we can rewrite Eq. (6.35) as

− itσ = −i VA VB
3

2
tI=0
ππ→ππ . (6.38)
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Since the pions in the diagrams in Figure 6.14 are off shell, we need to use
the off shell t-matrix obtained from the lowest order meson-meson Lagrangian
[30]

tI=0
ππ→ππ = − 1

9f 2

(
9s+

15m2
π

2
− 3

∑
i

p2
i

)
, (6.39)

with s the Mandelstam variable and mπ and pi the mass and momenta of the
pions. As done in Ref. [287], we can obtain the on shell amplitude simply
putting p2

i = m2
π and this allows us to rewrite Eq. (6.39) as

tI=0
ππ→ππ = tI=0,OS

ππ→ππ +
1

3f 2

∑
i

(p2
i −m2

π) , (6.40)

where

tI=0,OS
ππ→ππ = − 1

f 2
(s− m2

π

2
) . (6.41)

+ + + ...

Figure 6.16: DD̄∗ or BB̄∗ interaction when the ππ scattering matrix is summed
up to all orders in chiral unitary approach.

Following the approach of Ref. [287], it can be shown that the off shell part
cancels exactly with other diagrams at the same order in the chiral counting.
Thus, at lowest order, we can write

tσ = VA VB
3

2

1

f 2
(s− m2

π

2
) . (6.42)

In order to apply the unitary Bethe-Salpeter approach to the scalar mesons
amplitude, we need to sum the set of diagrams in Figure 6.16. This is easily
done substituting the on shell meson-meson amplitude of Eq. (6.41) by [30]

tI=0
ππ→ππ = − 1

f 2

s− m2
π

2

1 + 1
f2 (s− m2

π

2
)G(s)

, (6.43)
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where G(s) is the two pions loop function, conveniently regularized [287].
In order to evaluate the two factors VA and VB we use again, for simplicity,

the Breit reference frame which, with the specific momenta assignment of
Figure 6.15, means

p1 ≡ (p0
1, ~q/2) ,

p′1 ≡ (p′ 0
1 ,−~q/2) ,

p ≡ (p0, ~p ) .

(6.44)

Since there is no energy exchange, s = −~q 2. It is also useful to define the
variable q ≡ (0, ~q ). Thus, by means of Eq. (6.34) and keeping in mind that we
already factorized outside VA the coefficients C, we can write the expression
of VA as

VA = ig̃2
D

∫
d4p

(2π)4
εµ(2p− p1)µε′ν(2p− p′1)ν

1

p2 −m2
D + iε

× 1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

,

(6.45)

with mD the mass of the D meson. Note that, as in Section 6.2.6, we are
using the coupling g̃D that accounts for the factor mD∗/mK∗ of HQSS.

The integral in Eq. (6.45) is logarithmically divergent. As in Ref. [287], the
regularization is accomplished by means of a cutoff in the space of intermediate
states (pmax = 2 GeV) and a form factor. In order to keep the integration in
p0 simple, we use the product of static form factors

F = F1(~p+
~q

2
)F2(~p− ~q

2
) =

Λ2

Λ2 + (~p+ ~q
2
)2

Λ2

Λ2 + (~p− ~q
2
)2
, (6.46)

with Λ = 1 GeV.
Since εµ p

µ
1 = 0 and ε′ν p

′ν
1 = 0, Eq. (6.45) can be rewritten as

VA = 4ig̃2
D

∫
d4p

(2π)4
εµ p

µε′ν p
ν 1

p2 −m2
D + iε

1

(p− p1)2 −m2
π + iε

× F

(p− p′1)2 −m2
π + iε

.

(6.47)

The integral in Eq. (6.47) is symmetric with respect to p1 and p′1 and this
allows us to derive the structure of the result of the integration, which will be
of the type

VA = εµε
′
ν(ag

µν + b(pµ1p
ν
1 + p′µ1 p

′ν
1 ) + c(pµ1p

′ν
1 + p′µ1 p

ν
1)) . (6.48)

156



Hidden charm and hidden bottom states

In the last expression, due to the Lorentz condition, only the terms agµν and
cp′µ1 p

ν
1 survive but we need the entire structure to evaluate them. This is done

taking the trace of Eq. (6.47) and multiplying the equation by (p1µp1ν+p′1µp
′
1ν)

and (p1µp
′
1ν + p′1µp1ν), in order to obtain a system of three equations. Solving

the system, we find the expressions of the three coefficients in Eq. (6.48) but,
as we already said, we are only interested in

a =
−Y m2

D∗ + Z(p1p
′
1) +X(m4

D∗ − (p1p
′
1)2)

2(m4
D∗ − (p1p′1)2)

,

c =
−3Y m2

D∗(p1p
′
1) +X(m4

D∗ − (p1p
′
1)2) + Z(m4

D∗ + 2(p1p
′
1)2)

2(m4
D∗ − (p1p′1)2)2

,

(6.49)

where

X = 4g2
DI1 + 4g̃D

2m2
DI2 ,

Y = 8g2
Dp

0 2
1 I1 + 8g̃D

2I3 ,

Z = 8g2
Dp

0 2
1 I1 + 8g̃D

2I4 .

(6.50)

The four integrals I1, I2, I3 and I4 in the equations above, have the following
expressions:

I1 =

∫
d4p

(2π)4

1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

F ,

I2 =

∫
d4p

(2π)4

1

p2 −m2
D + iε

1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

F ,

I3 =

∫
d4p

(2π)4

(~p 2 +m2
D)p0 2

1 + (~p ~q
2
)2

p2 −m2
D + iε

1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

F ,

I4 =

∫
d4p

(2π)4

(~p 2 +m2
D)p0 2

1 − (~p ~q
2
)2

p2 −m2
D + iε

1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

F .

(6.51)

After performing the integration in dp0, which can be done analytically
using Cauchy’s theorem, we obtain

I1 =

∫
d3p

(2π)3

ω1 + ω2

2ω1ω2

1

−~q 2 − (ω1 + ω2)2
F ,

I2 =

∫
d3p

(2π)3

1

2ED

1

2ω1

1

ω2

1

ω1 + ω2

ω1 + ω2 + ED −mD∗

ED + ω1 −mD∗ − iε
1

ED + ω2 −mD∗ − iε
F ,

I3 =

∫
d3p

(2π)3

1

2ED

1

2ω1

1

ω2

1

ω1 + ω2

ω1 + ω2 + ED −mD∗

ED + ω1 −mD∗ − iε
(~p 2 +m2

D)p0 2
1 + (~p ~q

2
)2

ED + ω2 −mD∗ − iε
F ,

I4 =

∫
d3p

(2π)3

1

2ED

1

2ω1

1

ω2

1

ω1 + ω2

ω1 + ω2 + ED −mD∗

ED + ω1 −mD∗ − iε
(~p 2 +m2

D)p0 2
1 − (~p ~q

2
)2

ED + ω2 −mD∗ − iε
F ,

(6.52)
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where ω1 =
√

(~p+ ~q/2)2 +m2
π, ω2 =

√
(~p− ~q/2)2 +m2

π and ED =
√
~p 2 +m2

D

are the energies of the two pions and of the D meson involved in the loop,
respectively, and mD∗ is the mass of the D̄∗ meson. Since the mass of the
D meson is so large, we have taken the positive energy component of the
propagator [(p0 − ED)2ED]−1, which simplifies the integration.

In the case of VB, after some simple algebra, we obtain

VB = g̃2
DI1 + g̃2

D

[
2(m2

D −m2
π)− 4p1p

′
1 −

(m2
D −m2

π)2

m2
D∗

+m2
D∗

]
I5

− 2g̃2
D

[
1 +

m2
D −m2

π

m2
D∗

]
I6 + g̃2

D

1

m2
D∗
I7 ,

(6.53)

where

I5 =

∫
d3p

(2π)3

1

2EV

1

2ω1

1

ω2

1

ω1 + ω2

ω1 + ω2 + EV −mD

EV + ω1 −mD

F

EV + ω2 −mD

,

I6 =

∫
d3p

(2π)3

1

2EV

F

ω1

ω1 + EV
p0 2

1 − (ω1 + EV )2
,

I7 =

∫
d3p

(2π)3

F

2EV
,

(6.54)

and EV =
√
~p 2 +m2

D∗ . Once again the non relativistic propagator for the
intermediate D∗ has been taken to get the former equations.

We can now go back to the DD̄∗ potential in momentum space, whose final
expression, according to Eqs. (6.35) and (6.43), is given by

tσ(~q ) = VA VB
3

2

1

f 2

~q 2 + m2
π

2

1−G(−~q 2) 1
f2 (~q 2 + m2

π

2
)
, (6.55)

with
VA = εµε

′
ν(ag

µν + cp′µ1 p
ν
1) , (6.56)

a and c derived using Eqs. (6.49), (6.50) and (6.52), and VB given by Eq.
(6.53). Again, with the substitutions g̃D → g̃B, mD → mB and mD∗ → mB∗

we get the amplitude for the BB̄∗ case.
The potential tσ is shown in Figures 6.17(a) and 6.17(b) as a function

of the momentum transfer ~q for both the DD̄∗ and BB̄∗ cases, respectively.
In the case of the BB̄∗ interaction the contribution is remarkable, while in the
case of DD̄∗ the vector meson exchange is still the more relevant process.
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Figure 6.17: Potential tσ for DD̄∗ (a) and BB̄∗ (b) as a function of the momentum
transfer ~q.
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Figure 6.18: Lowest order ππ interaction in the I = 1 channel for D∗D̄∗ → D∗D̄∗

and B∗B̄∗ → B∗B̄∗.
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Figure 6.19: Potential tσ for D∗D̄∗ (a) and B∗B̄∗ (b) as a function of the momen-
tum transfer ~q.

D∗D̄∗ AND B∗B̄∗ CASES

The diagrams representing the process under study are shown in Figure 6.18.
In this case, we only need the triangular vertex VA in Figure 6.15 (a) to
evaluate the amplitude. We proceed in complete analogy to the previous
section finding the expression

tσ(~q ) = V 2
A

3

2

1

f 2

~q 2 + m2
π

2

1−G(−~q 2) 1
f2 (~q 2 + m2

π

2
)
, (6.57)

with VA given by Eq. (6.56).
Since we assume small initial momenta ~p1 and ~p1

′ of the vectors compared
to the vector mass, we can take ε0 ≡ 0 and only the aεε′ combination re-
mains. The other vertex will provide a similar structure. Hence, we have the
combination

ε
(1)
i ε

(2)
j ε

(3)
i ε

(4)
j , (6.58)

with 1 + 2 → 3 + 4 that, resorting to the expressions of the spin projector
operators of Eqs. (C.5), becomes

ε
(1)
i ε

(2)
j ε

(3)
i ε

(4)
j ≡ P(0) + P(1) + P(2) . (6.59)

The strength of tσ(~q ), removing gµνεµεν , gives already the strength of the two
pion exchange potential in J = 0, 1, 2 since, according to Eq. (6.59) the three
spins have the same weight. The potential tσ as a function of the transferred
momentum ~q is plotted in Figures 6.19(a) and 6.19(b) for D∗D̄∗ and B∗B̄∗,
respectively. In both cases the relevance of this process is rather small.
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6.2.8 Uncorrelated crossed two pion exchange
Now we study the case of the exchange of two non interacting pions. For both
the PV → PV and V V → V V interaction, only the crossed diagrams a),
d) (for DD̄∗ and D∗D̄∗) and e) and h) (for BB̄∗ and B∗B̄∗) in Figure 6.14
and Figure 6.18, respectively, contribute to the process. In both cases, for
the evaluation of the amplitude we will use the momenta assignment shown in
Figure 6.20. Note that we take only the crossed diagrams. The iterated one
π exchange (together with η and η′), which we saw was OZI suppressed, was
already evaluated in Section 6.2.6 and we do not consider it here.

p1

p′1

p

p− p′1

p− p1

p′2

p2

p− p′1 − p2

Figure 6.20: Momenta assignment for two pion exchange.

DD̄∗ AND BB̄∗ CASES

Using the vertices provided by the hidden gauge lagrangians, it is very easy to
evaluate the amplitude that, for the charm sector, reads

tππ =
5

4
ig̃4
D

∫
d4p

(2π)4
εµ(2p1 − p)µεν(2p′1 − p)νε′α(2p− 2p′1 + p2)αε′′β

× (2p− p′1 − p1 + p2)β
F 2

p2 −m2
D∗ + iε

1

(p− p′1 + p2)2 −m2
D + iε

× 1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

,

(6.60)

where ε is the polarization four-vector corresponding to the vector meson in the
triangular loop, while ε′ and ε′′ correspond to the vector mesons in the external
legs of the diagram. Since only two of the diagrams depicted in Figure 6.14
are contributing, the isospin factor given by the different vertices involved will
be 5

4
. Also the ππ amplitude (see Eq. (6.40)) is missing since now the pions

do not interact.

161



6.2 Formalism

We assume again small three-momenta for the external vectors, hence ε0 ≡
0, and also that 4~p 2 � ~q 2/4. Thus, applying the completeness condition
for the polarization vectors, that under our assumption becomes

∑
pol ε

′
µε
′
α '∑

pol ε
′
iε
′
j = δij, with i, j = 1, 2, 3, we can rewrite Eq. (6.60) as

tππ =
5

4
ig̃4 1

2
~ε ′ ~ε ′′

∫
d4p

(2π)4
(~p 2 − ~q 2)

[
(4~p 2 − ~q 2

4
)− 1

~q 2

[
(2~p ~q )2 − ~q 4

4

]]
× F 2 1

p2 −m2
D∗ + iε

1

(p− p′1 + p2)2 −m2
D + iε

1

(p− p1)2 −m2
π + iε

× 1

(p− p′1)2 −m2
π + iε

.

(6.61)

Performing the analytical integration in dp0, we obtain

tππ = −5

4
g̃4
D

1

2
~ε ′ ~ε ′′

∫
d3p

(2π)3
(~p 2 − ~q 2)

[
(4~p 2 − ~q 2

4
)− 1

~q 2

[
(2~p ~q )2 − ~q 4

4

]]
× F 2

ω1 + ω2

1

2ω1ω2

1

2ED

1

2EV
[ω2

1 + ω2
2 + ω1ω2 − (ω1 + ω2)(2p0

1 − EV − ED)

+ (p0
1 − EV )(p0

1 − ED)]
1

p0
1 − ω1 − EV + iε

1

p0
1 − ω1 − ED + iε

1

p0
1 − ω2 − EV + iε

× 1

p0
1 − ω2 − ED + iε

.

(6.62)

As before, the potential of Eq. (6.62) also holds in the case of BB̄∗ with
substitutions. We plot it as a function of the transferred momentum ~q for both
cases in Figures 6.21(a) and 6.21(b). These contributions are rather small
with respect to the heavy vector exchange of Figures 6.8(a) and 6.8(b).

D∗D̄∗ AND B∗B̄∗ CASES

Proceeding as in the previous case, with suitable substitution of the momenta
involved and of the propagators, since now we have two intermediate pseu-
doscalars D or B, we can write the amplitude as

tππ =
5

4
ig̃4
D

∫
d4p

(2π)4
εµ(2p− p1)µεν(2p− p′1)νεα(2p− 2p′1 + p2)αεβ

× (2p− p′1 − p1 + p2)β F 2 1

p2 −m2
D + iε

1

(p− p′1 + p2)2 −m2
D + iε

× 1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

.

(6.63)
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Figure 6.21: Potential tππ for DD̄∗ (left panel) and BB̄∗ (right panel) as a function
of the momentum transfer ~q.

We use again the non-relativistic approximation rewriting Eq. (6.63) as

tππ =
5

4
ig̃4
D

∫
d4p

(2π)4
εi(2p− p1)iεj(2p− p′1)jεl(2p− 2p′1 + p2)lεm

× (2p− p′1 − p1 + p2)m F
2 1

p2 −m2
D + iε

1

(p− p′1 + p2)2 −m2
D + iε

× 1

(p− p1)2 +m2
π + iε

1

(p− p′1)2 +m2
π + iε

.

(6.64)

Once we assume that 4~p 2 � ~q 2/4, the dominant term in Eq. (6.64) is the
one with the form pipjplpm. This means that the amplitude in Eq. (6.63) will
have the same structure as in the case of Section 6.2.6:

1

15
(δijδlm + δilδjm + δimδjl) . (6.65)

Thus, we can write

tππ =
5

4
ig̃4
D

1

15

∫
d4p

(2π)4
(4~p 2 − ~q 2

4
)2 (εiεlεiεl + εiεiεlεl + εiεlεlεi)F

2 1

p2 −m2
D + iε

× 1

(p− p′1 + p2)2 −m2
D + iε

1

(p− p1)2 +m2
π + iε

1

(p− p′1)2 +m2
π + iε

,

(6.66)
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that, performing the analytical integration in dp0, becomes

tππ =
5

4
g̃4
D

1

15

∫
d3p

(2π)3
(4~p 2 − ~q 2

4
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2 1
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2ω1ω2
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+
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1

p0
1 − ω2 − ED + iε

)
× 1

p0
1 − ω1 − ED + iε

1

p0
1 − ω2 − ED + iε

.

(6.67)

The combination of polarization vectors appearing in Eq. (6.67) can be
rewritten in terms of the spin projector operators of Eqs. (C.5) [214] as

εiεlεiεl + εiεiεlεl + εiεlεlεi = 5P(0) + 2P(2) . (6.68)

Thus, the final expression of the amplitude reads

tππ =
5

4
g̃4
D

A

15

∫
d3p

(2π)3
(4~p 2 − ~q 2

4
)2 F 2 1

ω1 + ω2

1

2ω1ω2

1

4E2
D

1

p0
1 − ω1 − ED + iε

× 1

p0
1 − ω2 − ED + iε

(
1 +

ED + ω1 + ω2 − p0
1

p0
1 − ω1 − ED + iε

+
ED + ω1 + ω2 − p0

1

p0
1 − ω2 − ED + iε

)
,

(6.69)

where A = 5 for the J = 0 case and A = 2 for the J = 2 case.
In the case of B∗B̄∗ the potential has exactly the same form and can be

obtained with the substitution D → B. The expression in Eq. (6.69) is plotted
as a function of the transferred momentum ~q for both interactions in Figures
6.22(a) and 6.22(a) and for both valus of the spin, J = 0 (thick line) and
J = 1 (dashed line). Also in this case the strength of the process is smaller
than the one of the vector meson exchange of Figures 6.10(a) and 6.10(b).

6.3 Determination of theDD̄∗ invariant mass dis-
tribution for the process e+e− → π±(DD̄∗)∓

In Ref. [291] the e+e− → π±(DD̄∗)∓ reaction is studied for a center of mass
energy

√
s = 4.26 GeV and the DD̄∗ invariant mass associated with this

reaction is obtained, showing a signal around 3885 MeV with a width close
to 30 MeV and which is interpreted as a JP = 1+ resonant state. Following
Ref. [228], we can calculate the DD̄∗ invariant mass spectrum for the reaction
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Figure 6.22: Potential tππ for D∗D̄∗ (a) and B∗B̄∗ (b) as a function of the mo-
mentum transfer ~q for J = 0 (thick line) and J = 2 (dashed line).

studied in Ref. [291] as

dσ

dMD∗D̄∗
∝ pq̃

s
√
s
|T |2 FL , (6.70)

where
√
s is fixed to the value 4.26 GeV, p is the pion three-momentum in the

e+e− center of mass frame, and q̃ is the center of mass momentum in the DD̄∗

system:

p =
λ1/2(s,m2

π,M
2
DD̄∗

)

2
√
s

, (6.71)

q̃ =
λ1/2(M2

DD̄∗
,m2

D,m
2
D̄∗

)

2MDD̄∗
. (6.72)

The factor FL = p2L in Eq. (6.70) is needed to account for the relative partial
wave between the pion and the DD̄∗ system produced in the reaction. In this
case, we are going to consider the formation of a JP = 1+ state near threshold,
thus the DD̄∗ system is preferably produced in s-wave (L = 0). If a state with
mass MR and width ΓR is formed in the DD̄∗ system, the amplitude T of Eq.
(6.70) can be parametrized as

T =
A

M2
DD̄∗
−M2

R + iMRΓR
, A ≡ constant . (6.73)

In general, the DD̄∗ invariant mass distribution can have contributions
from a non resonant background. Following Ref. [291] we consider a back-
ground of the form

B = α(MDD̄∗ −Mmin
DD̄∗)

β(Mmax
DD̄∗ −MDD̄∗)

η , (6.74)
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where Mmin
DD̄∗

and Mmax
DD̄∗

represent the minimum and maximum values of the
DD̄∗ invariant mass and α, β and η are unknown constants.

In this way, the DD̄∗ invariant mass spectrum can be obtained as

dσ

dMDD̄∗
=

1

s
√
s
pq̃
(
|T |2 FL +B

)
. (6.75)

As can be seen from Eqs. (6.73) and (6.74), we have six unknown param-
eters to determine the DD̄∗ spectrum (same number as in Ref. [291]): the
magnitude of the resonant amplitude A, the mass and width of the state (MR

and ΓR, respectively), the magnitude of the background amplitude, α, and
the exponents β and η. To constrain these parameters we perform a fit to the
data minimizing the χ2 and consider a value of the χ2 per degrees of freedom
(d.o.f) around 1 as the criteria to establish the goodness of the fit. This is
the same criteria as the one adopted by the authors in Ref. [291], in which a
value of χ2/d.o.f of 1 is found for the D0D̄∗− mass spectrum and of 1.1 for the
D+D̄∗0 case.

6.4 Results
Once all the contributions to the interactions are computed as functions of the
momentum transfer ~q, they can be compared looking at the plots. It is also
possible to make a rough estimate of the strength of the different potentials
evaluating the integral

∫
V (q)d3q.

The study of the four interactions we are considering in this Chapter has
been done in three different works. There, two different simple strategies have
been used to deal with all the processes. The first one, that we used in Refs.
[292, 293] for the case of DD̄∗ and D∗D̄∗, consists in simply neglecting the
contributions coming from the exchange of light pseudoscalars, their strengths
being much smaller than the one of the heavy vector exchange, that is domi-
nant in both cases. However, the neglected processes are kept in mind when
evaluating uncertainties.

On the other hand, in Ref. [294], where the cases of the BB∗ and B∗B̄∗ are
studied, we adopted another method, due to the fact that the vector exchange
is not the dominant process in the bottom sector. After the strengths of the
potentials for the exchange of light mesons are evaluated, we use them to
obtain an effective potential Veff . We will get the strengths

∫
d3q Vi (q) for all

the potentials exchanging light mesons and sum them. Then we convert the
sum into an effective potential of the type of the vector exchange,

Veff θ(qmax − |~q |)θ(qmax − |~q ′|) . (6.76)
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In Eq. (6.76), qmax is the maximum momentum used in the loop functions,
such that

∫
q<qmax

d3q Veff is equal to the sum of
∫
d3q Vi (q). While solving the

Bethe-Salpeter equation with an ~r dependent potential is feasible, as done for
instance in Ref. [261] for the Schrödinger equation, the former separable form
of the potential renders the Bethe-Salpeter equation an algebraic equation.
The stability of the results with relative large changes in the value of Veff
makes the more elaborate procedure of solving it in the ~r space unnecessary.
Then, we take as potential this effective potential plus the one coming from
vector exchange. Both are of the type of Eq. (6.17) and can then be used in
the Bethe-Salpeter equation, with the same G function regularized with the
cutoff qmax.

In the following sections we study the shape of |T |2 for the four DD̄∗ and
D∗D̄∗, BB̄∗ and B∗B̄∗ interactions . As we will discuss in detail, the four
amplitudes show a clear peak and the large uncertainties on the potentials
that we will consider do not affect drastically their positions.

6.4.1 Results for DD̄∗

It can be seen, by looking at the plots of Figures 6.7(a), 6.8(a), 6.12(a),
6.17(a) and 6.21(a), that the dominant contribution comes, as mentioned
above, from the heavy vector exchange.

In particular, summing the contributions given by one meson exchange
and two pion exchange, with and without interaction, we obtain a strength∫
V (q)d3q ' −112 GeV3. In the case of vector exchange, the strength is∫
V (q)d3q ' −433 GeV3. We can then safely neglect the light pseudoscalar

exchange contributions, but we will keep them in mind when evaluating un-
certainties. This means that, for the moment, we study the T matrix coming
from vector exchange for values of

√
s around 3900 MeV, in particular the

shape of |T11|2.
Although no bound state showed up in the 1−(1++) case in the region

under study, we found interesting results in the case with positive G-parity.
In Figure 6.23, |T11|2 (where the subscript 11 means that we are considering
the DD̄∗ → DD̄∗ transition) for the case 1+(1+−) is shown as a function of the
centre of mass energy. We used the dimensional regularization expression of
Eq. (2.63) for the G function, using for the subtraction constants of the three
different coupled channels αDD̄∗ = −1.28, αηc ρ = −1.57 and απ J/ψ = −1.86
and choosing µ = 1500 MeV, as suggested in Ref. [56]. This choice of the
parameters is equivalent to using a cutoff qmax = 770 MeV. A clear peak,
corresponding to

√
s = 3872 MeV and with a width of approximately Γ ' 40

MeV, is visible in Figure 6.23.
In Figure 6.24 we show the dependence of the position of the peak on
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Figure 6.23: |T11|2 as a function of
√
s for the DD̄∗ interaction.

qmax [MeV]
√
s [MeV]

700 3875
750 3873
770 3872
800 3869
850 3867

Table 6.1: Position of the peak of |T |2 corresponding to different values of qmax
for the DD̄∗ interaction.

the cutoff. The quantity |T11|2 is plotted as a function of
√
s for values of the

subtraction constants αi corresponding to a cutoff equal to 700, 750, 770, 800
and 850 MeV. The corresponding values of the peak are shown in Table 6.1:
going to higher values of the cutoff, the binding energy of the state increases.
The width varies within 40 − 50 MeV. These changes can serve to quantify
our uncertainties from the neglected pseudoscalar exchanges or other possible
sources. We have also changed the parameter Λ in the form factor of Eq.
(6.46) in the range 700 − 1200 MeV. We have checked that multiplying our
potential by a factor within the range of 0.6 − 1.4 gives us similar results as
with these changes of Λ the cutoff. The calculations are done using average
values of the masses of the D and D̄∗. If we use the actual masses in the
experiments quoted, the changes in the binding energy are of the order of 1
MeV.

It is interesting to note that the energies obtained all stick around threshold
(3076 MeV). Next we discuss if there are poles associated to the peaks observed
in Figure 6.24.
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Figure 6.24: |T11|2 for DD̄∗ → DD̄∗ as a function of
√
s for values of the cutoff

qmax equal to 850, 800, 770, 750 and 700 MeV. The peak moves to the left as the
cutoff increases.

We move to the complex plane, extrapolating the amplitude to complex
values of the energy. To do this, for the channels which are open, we need
the expression of the loop function in the second Riemann sheet (Eq. (2.78)).
In Figure 6.25 |T11|2 is plotted in the second Riemann sheet for the value
of qmax = 770 MeV. A pole, corresponding to a state with (

√
s + iΓ/2) =

(3878 + i23) MeV is perfectly visible.
If we lower the cutoff, one still gets poles in the complex plane for a while,

but for values of qmax < 700 MeV, the poles in
√
s fade away although one still

has a pronounced cusp effect of the amplitude, with experimental consequences
in cross sections. This situation is usually referred as having a virtual pole.

Note that in all cases our states produce peaks around the DD̄∗ threshold
of 3876 MeV.

THE DD̄∗ INVARIANT MASS DISTRIBUTION

As we have seen in the previous section, the dynamics involved in the DD̄∗

system gives rise to the generation of a state with I = 1, quantum numbers
JP = 1+, mass 3867 − 3875 MeV and width around 40 MeV. The question
which arises now is if a state below the DD̄∗ threshold can be responsible for
the signal reported in the DD̄∗ spectrum when studying the reaction e+e− →
π±(DD̄∗)∓ [291].

Using Eq. (6.75) and the procedure explained in Section 6.3, we show in
Figure 6.26 the results found for the D0D∗− (left panel) and D+D̄∗0 spectra
(right panel) respectively, determined considering the formation of a state as
the one obtained in our study of the DD̄∗ system. As can be seen, the data
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Figure 6.25: |T11|2 in the second Riemann sheet for the transition DD̄∗ → DD̄∗

for the IG(JPC) = 1+(1+−) sector.

can be perfectly explained with a state with a mass close to 3870 MeV and
with a width around 30 MeV.

We have studied the range of masses that the fit can accommodate. We
can have higher masses than 3870 MeV with still good values of the χ2, but
they gradually increase as the mass increases. We put the limit at 3884 MeV
where the χ2 values are no longer good. This gives a range 3862− 3884 MeV,
by means of which we can give an acceptable fit to the data. The theory band
of 3867 − 3875 MeV given in the previous section is within the band allowed
by the fit to the data.

6.4.2 Results for D∗D̄∗

We proceed as in Section 6.4.1 to compare the different contributions to the
D∗D̄∗ → D∗D̄∗ interaction. We find that

∫
V (q)d3q ' −70 GeV3 for the sum

of the potentials involving the exchange of pseudoscalars, while for the heavy
vector exchange we get

∫
V (q)d3q ' −690 GeV3, implying that once again it

is the dominant process in the interaction. However, we will change the value
of the vector exchange potential by about 10% in order to take into account
the contributions from the other terms in the evaluation of the uncertainties.

We want to study the T matrix for the two channels for values of
√
s around

4000 MeV. Figure 6.27 shows |T11|2, where the subscript 11 stands for the
transition from the channel D∗D̄∗ to itself, as a function of the centre of mass
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Figure 6.26: Invariant mass distribution for the D0D∗− (left panel) and D+D̄∗0

(right panel) systems. The abscissa axis represents the corresponding DD̄∗ invariant
mass in units of GeV and the ordinate axis the spectrum in arbitrary units. The
dashed line represents the bound state contribution: MR = 3874.15 MeV, width
ΓR = 27 MeV (left panel) and MR = 3875.62 MeV, width ΓR = 30 MeV (right
panel). The dotted line corresponds to the background and the solid line is the final
result from the fit: χ2/d.o.f = 1.3 (left panel) and χ2/d.o.f = 1.1 (right panel).

energy. We use the dimensional regularization for the G function, as before,
choosing as the subtraction constants αD∗D̄∗ = −2.3 and αJ/ψ ρ = −2.6, while
µ = 1000 MeV. This is equivalent to using a cutoff qmax = 960 MeV. With this
choice of the parameters we obtain a clear peak around

√
s = 3998 MeV, with

a width Γ ' 90 MeV. This is about 19 MeV below the D∗D̄∗ threshold. The
binding is smaller than found in Ref. [214] because we use g for the coupling
instead of gD, which we justified from the findings of Ref. [282].
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Figure 6.27: |T11|2 as a function of
√
s for the D∗D̄∗ interaction.

This result is very interesting. Indeed, as mentioned in the Introduction,
the BESIII collaboration observed a peak in the (D∗D̄∗0)± invariant mass
spectrum close to the (D∗D̄∗0)± threshold [213], which they interpreted as a
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signal of a J = 0 resonance at 4025 MeV. However in Ref. [228] it was found
that the spectrum could be equally reproduced assuming a J = 2 resonance
below threshold, with a mass around 3990 MeV and a width of 160 MeV. A fit
with about 8 MeV less binding and smaller width is also acceptable by looking
at the different options discussed in Ref. [228]. Our choice of the parameters
is motivated to get a binding similar to that suggested in this last work, but
we discuss below our uncertainties. The finding of the present paper would
give support to the interpretation of the results given by BESIII in Ref. [213]
as a consequence of an I = 1 resonance coming from the D∗D̄∗ interaction,
with the option suggested in Ref. [228] of a bound D∗D̄∗ state with relatively
large width.

We have also evaluated the uncertainties in the results due to the possible
contribution of the exchange of pseudoscalars. As we already mentioned in
the beginning of this section, this contribution is small and attractive at small
~q. In order to take it into account, we increase the magnitude of the vector
exchange potential for D∗D̄∗ → D∗D̄∗ of Eq. (6.7) and see how the position
of the peak changes. We find that, with an increase in the magnitude of the
potential of 50%, the energy of the peak decreases by about 5 MeV. Then we
did the same thing, but adjusting the cutoff used in the loop function G in
order to maintain fixed at 3998 MeV the position of the peak. The results
obtained are shown in Figure 6.28. Increasing the magnitude of tD∗D̄∗→D∗D̄∗ ,
the peak in |T11|2 is maintained in the same position using a lower cutoff.
In the case of an increase of 20% (the dotted line in Figure 6.28), we need
a cutoff of qmax ' 940 MeV, while in the case of 50% (the dashed line in
Figure 6.28), qmax ' 930 MeV. The shape of |T11|2 is slightly changed when
going to higher magnitudes, giving a narrower peak and a higher strength.

We have taken natural values for αi, or the cutoff, guided by the results
of the analysis of Ref. [228]. Yet, it is interesting to see what happens if
we reduce the cutoff. In Figure 6.29 we show |T11|2 for different values of
the cutoff. We can see that as qmax decreases, the peak of |T11|2 is moving
closer to the threshold and its strength decreases. At qmax = 700 MeV we
already have a clear cusp and, for lower values of qmax, the cusp remains but
the strength of |T11|2 at the peak becomes very weak and we are no longer
able to produce an enhancement of the D∗D̄∗ invariant mass distribution as
seen in the experiment of Ref. [213]. It is also interesting to see that even for
values of qmax ' 800 MeV, as in [295–297], we still find a state bound by a
few MeV. On the other hand, bigger values of qmax would produce a too large
binding that would contradict the results of the analysis of Ref. [228]. Hence,
considering uncertainties in our model, we can say that we are obtaining a
bound D∗D̄∗ state or barely bound or even a virtual state (decaying to J/ψρ)
within 3990 − 4000 MeV, with a width of about 100 MeV. Note that, even
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Figure 6.28: |T11|2 for the D∗D̄∗ → D∗D̄∗ transition as a function of
√
s for the

vector exchange potentials of Eq. (6.7) and (6.8) (thick line), for an increase of 20%
in the vector exchange potential (dotted line) and for an increase of 50% (dashed
line), for a peak at 3998 MeV.

when the pole in the bound region gets close to threshold and disappears, it
can get converted into a virtual state with a clearly visible cusp that can be
translated into a peak close to threshold in an experimental analysis.

As already mentioned in Section 6.2.2, in Ref. [214] also the ρρ, ρω,
ρφ light vector channels were considered and the ρω and ρφ also give some
contribution to the width. A slight increase in the value of Γ ' 100 MeV,
would be in agreement with the analysis of Ref. [228] where Γ = 160 MeV.

6.4.3 Results for BB̄∗

In this case, we are interested in studying the transition matrix T for the
channels BB̄∗, ηb ρ and πΥ and we evaluate it for values of

√
s around 10600

MeV. In order to do this, we use again the dimensional regularization formula
for the loop function G. We take a cutoff qmax = 700 MeV, for which we find
αBB̄∗ = −2.79, αηb ρ = −3.56 and απΥ = −3.78 for the subtraction constants.

In the previous cases we studied the changes in the position of the peak
of |T11|2 due to the variation of qmax. However, the value of the strength of
the different potentials depends on the value of the upper limit of the integral∫
d3q V (q). For this reason, in the case of the BB̄∗, we decided to calculate

the effective potential Veff using values of this limit for the light meson ex-
change potentials varying from 700 to 1100 MeV. Changing the upper limit
in
∫
d3q Vi (q) introduces large uncertainties in the approach concerning the

final potential. In this case, the strength of the final potential, summing Veff
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Figure 6.29: |T11|2 for the D∗D̄∗ → D∗D̄∗ transition as a function
of
√
s, for different values of the cutoff qmax. From up down, qmax =

960, 900, 850, 800, 750, 700, 650, 600, 550, 500 MeV.

and the vector exchange, is a factor between 30 and 64 the vector exchange
alone. This means that the changes due to the variations of qmax are much
smaller than the ones due to the variations of the upper limit of the integral∫
d3q V (q) used to estimate Veff .

In Figure 6.30 the shape of |T11|2, the component of the T matrix that
describes the transition BB̄∗ → BB̄∗, for different values of the integration
limit, is depicted. As can be seen, even choosing values of the limit between
700 and 1100 MeV, the effect on the binding and the width is small. As a
result, we find that the position of the peak moves slightly to higher energies for
decreasing values of the upper limit and it is seen in the range of 10587−10601
MeV. These values are very close to what was found by the Belle collaboration,
MZb(10610) = (10608.4± 2.0) MeV.

We have also studied the stability of the results with respect to variations
of the mH , mH′ parameters (and related ψ and γ) in Eq. (6.9). We change
mH in the range (4000 − 6000) MeV and mH′ in the range (8000 − 10000)
MeV. The value of the binding energy from one extreme (4000, 8000) to the
other (6000, 10000) changes in 1.2 MeV, which is a smaller change than those
seen before.

It is worth noting that both the ηb ρ and πΥ channels are open for decays,
and this gives a width between 1.6 and 3 MeV, with bigger widths correspond-
ing to lower values of the integration limit. The experimental value reported by
Belle collaboration is ΓZb(10610) = (15.6±2.5) MeV. This difference might seem
large to make claims of reproduction of this state. However, one should note
that we do not include channels of V P type with two light mesons. These
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Figure 6.30: |T11|2 as a function of the
√
s center of mass energy for the case of

BB̄∗. Each curve is associated with a value of the integration limit: 700 MeV, 800
MeV, 900 MeV, 1000 MeV, 1100 MeV. The peak moves from right to left as the
integration limit increases.

light channels could be reached in our approach including them as coupled
channels, but the large difference in the masses, together with the weak tran-
sition to these states, which requires the exchange of heavy vectors, makes
them inoperative concerning the mass of the state found. However, even with
very small couplings of the resonance to these channels, the large phase space
available for the decay can produce a contribution to the width larger than
the one estimated by us with the ηbρ and πΥ channels. Examples of this can
be seen in the study of hidden charm baryons in Ref. [295] and hidden beauty
baryons in Ref. [297].

6.4.4 Results for B∗B̄∗

For this case we have two channels B∗B̄∗ and ρΥ and we use µ = 1500 MeV
and the subtraction constants αB∗B̄∗ = −2.79 and αρΥ = −3.56, corresponding
to a cutoff value equal to qmax = 700 MeV.

Figure 6.31 shows the shape of |T11|2, which means the component of the
T matrix that describes the transition from B∗B̄∗ to itself, for different values
of the integration limit plotted as a function of the center of mass energy,

√
s,

of the system. This peak corresponds to spin J = 0. In Figure 6.32, we
show the shape of |T11|2 for the J = 2 case, again for different values of the
integration limit. It is important to emphasize that, according to the second
one of Eqs. (6.10), there is no contribution in the transition matrix T from
B∗B̄∗ to ρΥ channel for spin J = 1. In this case, B∗B̄∗ stands as a single
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Figure 6.31: |T11|2 as a function of the
√
s center of mass energy for the case of

B∗B̄∗ for J = 0. Each curve is associated with a value of the integration limit: 700
MeV, 800 MeV, 900 MeV, 1000 MeV, 1100 MeV. The peak moves from bottom to
top as the integration limit increases.
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Figure 6.32: |T11|2 as a function of the
√
s center of mass energy for the case of

B∗B̄∗ for J = 2. Each curve is associated with a value of the integration limit: 700
MeV, 800 MeV, 900 MeV, 1000 MeV, 1100 MeV. The peak moves sligthtly from
bottom to top as the integration limit increases.
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channel.
From these figures we can see that the variations of the integration limit

cause no effect to the peak position, as we already noted in the BB̄∗ case. It
is interesting to note that, even with the large uncertainties in the potential
admitted, we always find a structure for the peak of |T11|2 which corresponds
clearly to a cusp. Whether to call this a resonant state or not it is a question
of criterion. We should however note that the a0(980) appears in the exper-
iments (or in the theories) [32, 298] as a cusp and is universally accepted as
a resonance. Our findings, a cusp for the |T11|2 amplitude in this case, would
come to support the claims of the former works [255, 256].

For the sake of completeness, we repeat the calculation considering the spin
J = 1 case. Here we have a single channel problem,

T11 =
t̃B∗B̄∗→B∗B̄∗

1− t̃B∗B̄∗→B∗B̄∗ GB∗B̄∗
, (6.77)

where GB∗B̄∗ is the loop function for the B∗B̄∗ channel, while tB∗B̄∗→B∗B̄∗ is the
B∗B̄∗ → B∗B̄∗ vector exchange potential already defined in the first of Eqs.
(6.10), plus the contribution from Veff due to the exchange of two interacting
pion exchange. We saw in Section 6.2.8 that, in this case, the noninteract-
ing pion exchange vanishes, and the interacting two pion exchange was also
small, smaller than the vector exchange in all range (see Figures 6.19(b)
and 6.10(b)). This is why, in this case, in order to play with uncertainties
we follow the strategy used in the case of the DD̄∗ and D∗D̄∗ interaction and
we change the range of the vector exchange potential, by changing the cutoff
qmax to values from 700 to 1100 MeV.

In Figure 6.33 we show the plot for |T11|2 as a function of the center
of mass energy of the system. Note that in this case, we also have a peak
corresponding o about 10650 MeV, which is just the threshold mass of the
B∗B̄∗ channel. Again, we see essentially a cusp in the amplitude which does
not correspond to a bound state. The situation is similar if we increase the
value of tB∗B̄∗→B∗B̄∗ of a factor 1.5 to account for possible uncertainties. The
value of |T11|2 grows accordingly, but the cusp remains and its shape is like in
Figure 6.33.

6.5 Summary and conclusions
In this Chapter we studied the DD̄∗, D∗D̄∗, BB̄∗ and B∗B̄∗ interactions in
I = 1 using the extension of the local hidden gauge approach to the heavy
sector.

We started with a combined study of a Zc state of I = 1 around 3900
MeV, which has been claimed in several experiments. On the one hand, we
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Figure 6.33: |T11|2 as a function of the
√
s center of mass energy when only the

B∗B̄∗ channel is considered (J = 1 case). Each curve is related to the cutoff values
qmax equal to 700, 800, 900, 1000 and 1100 MeV. The peak moves from bottom to
top as the cutoff increases.

used the hidden gauge approach to investigate the DD̄∗ and D̄D∗ interactions,
together with coupled channels with a pseudoscalar and a vector meson. The
constraints of heavy quark spin symmetry show that the terms which are dom-
inant in other processes, like in I = 0, due to the exchange of light mesons, are
now forbidden. Hence, one resorts to sub-dominant terms that come from the
exchange of heavy vectors or two pions. We found that this last contribution
is quite small in comparison with the exchange of heavy vectors and its effect
can be included in the uncertainties of the results. We obtained a state with
a mass in the range 3869− 3875 MeV and a width around 40 MeV with I = 1
and positive G-parity. This state, in our formalism, is an isospin partner of
the X(3872).

Then, a reanalysis of the experiment of Ref. [291] in the e+e− → π±(DD̄∗)∓

reaction was done. The experimentalists extracted a mass of about 3885 MeV
and a width of 25±3±11 MeV from the enhancement of the DD̄∗ distribution
around threshold. We performed a reanalysis of the data and found a solution
close by, with mass of about 3875 MeV and a width of preferably 30 MeV.
Hence, the present study shows that the data of Ref. [291] are compatible
with a slightly lower mass, as we obtained theoretically. This means that the
results reported here offer a natural explanation of the state claimed in Ref.
[291] in terms of a DD̄∗(D̄D∗) weakly bound state, that decays into the ηcρ
and πJ/ψ channels.

The question remains whether that state, here reconfirmed, would be the
same as the Zc(3900) claimed by BESIII in [229], or the Zc(3894) reported by
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Belle [243], or the Zc(3886) reported by CLEO in [244]. Given the uncertainties
in the masses and widths in all these experiments, it is quite likely that they
are seeing the same state, although other options cannot be ruled out at the
present time. In any case, we can say that, given the fact that a single channel
DD̄∗ with an energy independent potential cannot produce a resonance above
the threshold at 3875.87 MeV [96], a state with 3900 MeV could not be easily
interpreted as a DD̄∗(D̄D∗) molecular state, while the one at lower energy
stands naturally for a molecular interpretation, as we have reported here.
Further precise measurements and investigations of other decay channels will
help better understanding the issue and they should be encouraged.

When studying the interaction of D∗D̄∗ in I = 1 from the perspective of
the local hidden gauge approach, we have also taken into account the coupled
channel J/ψρ, which is open for decay and is responsible for a width of the state
of the order of 100 MeV. As in the previous case, we found that the effect of
two pion exchange, with and without interaction, is smaller than the exchange
of heavy vectors. The study conducted here complements the one of Ref.
[228], where the peak seen in the D∗D̄∗ spectrum in the e+e− → (D∗D̄∗)±π±

reaction that led the experimental team to claim a JP = 1+ Zc(4025) was
reinterpreted as a possible 2+ bound state of D∗D̄∗ with I = 1. Both the mass
and width that we obtained are compatible with the results of Ref. [228],
obtained from a fit to the experimental data. This allows us to conclude that
the state that we find in our approach can provide a natural explanation of
the experimental results of Ref. [213]. One could claim a resonance from this
experiment, but with a different energy (3990 − 4000 MeV), width (around
100 MeV) and quantum numbers (IG = 1−, JPC = 2++).

In the case of the BB̄∗ and B∗B̄∗ interactions for isospin I = 1, unlike
the two previous cases, the vector exchange potential is not the main source
of the interactions. In view of this, we consider the vector exchange potential
corrected by a factor that takes into account the contributions of the others
mesons exchange cases. Then, we use it as the kernel of the Bethe-Salpeter
equation in order to solve the transition matrix T . Looking for poles in the
T matrix, we tried to relate them with the Zb(10610) and Zb(10650) states
reported by the Belle collaboration. We found a bound state of BB̄∗ with
mass in the range 10587− 10601 MeV, very close to the experimental mass of
the Zb(10610) at 10608 MeV. In the case of B∗B̄∗ interaction, we found a cusp
at 10650 MeV for the spin J = 0 and J = 2 cases. On the other hand, the
spin J = 1 case is a one channel problem and we do not take into account the
ρΥ channel. In this case, again, a cusp at 10650 MeV appears in the |T11|2 as
it was also pointed out in Refs. [255, 256].
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CHAPTER 7

DECAYS OF THE X(3872) TO J/ψγ, J/ψρ
AND J/ψω

7.1 Introduction
In this chapter we will focus on the X(3872) resonance and, in particular, we
will study in detail its three decays to J/ψγ, J/ψρ and J/ψω.

The first observation of the X(3872) decay into J/ψγ was reported by the
BELLE collaboration in Ref. [299]. Later on this decay mode was confirmed
by the BaBar team [300] and, more recently, again by BELLE in Ref. [301].
Theoretically, it had already some early attention and was studied in Refs.
[239, 302–304], assuming the X(3872) was either a charmonium or a molecular
state.

A thorough discussion of the different models used and results obtained
can be found in Ref. [242], and it has been recently updated in Ref. [305].
While in Ref. [306] the X(3872) is assumed to be a charmonium state and
in Ref. [307] a tetraquark, in Ref. [241] it is considered as a mixture of a
charmonium and a molecular component, and using QCD sum rules a good
rate is obtained for the J/ψγ decay mode versus the J/ψπ+π− one, which is
evaluated in Ref. [234]. In this latter work, as in Refs. [239, 308], the X(3872)
resonance is assumed to be a D0D̄∗0 − cc molecule and, in addition, in Ref.
[242] the authors include the possibility of a cc̄ admixture.

In particular, in Ref. [242] an effective Lagrangian is postulated to provide
the coupling of the X(3872) to the D0D̄∗0 components with an unknown wave
function. The effective coupling needed in the loops for the radiative decay
of the X(3872) is obtained using the Weinberg compositeness condition [91,
92], reformulated in Ref. [94] as g2 = −( ∂

∂s
G)−1 and widely discussed in

Chapter 3, with G the loop function of the D0 and D̄∗0 propagators. In
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other works [231, 309, 310], the procedure has been shown to provide a fair
description of molecular states. The results of Ref. [242] are tied to unknown
constants needed for the regularization of the loop functions, such as the ΛM

parameter, the coupling to the cc̄ component and the binding. Once reasonable
values for the ΛM parameter, between 2 and 3 GeV, are taken, the results
obtained for the X(3872) decay into the J/ψγ channel are of about 125-250
KeV.

In Ref. [305] the authors also include the charged components of D+D∗−−
cc, which are proved necessary to explain the ratio of X(3872) to J/ψρ and
J/ψω in Refs. [56, 94] (further developments in this direction can be in Ref.
[217]). The novelty with respect to the work of Ref. [242] is that the authors
use a smaller ΛM cutoff, of the order of 0.5 GeV, to regularize the loop function,
such that the wave function of the D0D̄∗0−cc is much more extended in space.
The final results of the new evaluations differ quantitatively from the previous
ones and are now in the range of 2-17 KeV. It is then clear that a more
systematic approach to the problem is needed if one wishes to obtain accurate
numbers from a molecular picture of the X(3872). This was the purpose of
the work we did in Ref. [127], to which this Chapter is devoted.

A dynamical picture of the X(3872) in the coupled channels DD̄∗ − cc
was elaborated in Ref. [56] using an extrapolation to SU(4) of the chiral
Lagrangians used in the study of the interaction of pseudoscalar mesons with
vector mesons [51]. This procedure is equivalent to extending to SU(4) the
local hidden gauge approach of Refs. [63–66] with a particular SU(4) breaking.
Given the subtlety of the small binding for the neutral D0D̄∗0− cc component
versus the about 7 MeV binding for the charged D+D∗− − cc components, a
coupled channel approach, considering these explicit channels with their exact
masses and not assuming isospin symmetry, was done in Ref. [126], concluding
that the couplings of the resonance to the neutral and charged components are
very similar. This tells us that in strong processes the X(3872) behaves as a
rather good I = 0 object. The D+

s D
∗−
s − cc components were also included in

Refs. [56, 126] and we include them here too 1.
In the present work we follow the path of Refs. [94, 126] where all the cou-

plings are determined from the unitary coupled channel approach and are tied
to the binding of the X(3872), which, in this picture, is generated dynamically

1We should recall that in any field theory one always selects some channels and ignores
others. The ignorance of some channels can be coped by introducing counterterms in the
theory, then losing predicting power for some processes, but they can serve to study other
processes where the counterterms are negligible. One does not know this a priori but in
principle the explicit consideration of close by channels renders the theory more predictive
than if they were ignored. One example of this can be found in the study of the scattering
of D and D∗ mesons off the X(3872) as done in Ref. [311], where the DD̄∗0 component is
by far dominant.
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as a composite state of DD̄∗. However, we update these couplings considering
the latest results for the masses of the particles involved. The mechanisms for
the radiative decay are then basically the same as in Ref. [305], except that
we also have contributions from the DsD̄

∗
s components and have, although not

much, different couplings of the resonance to the neutral and charged DD̄∗

components.
Our work is also technically different. The use of wave functions with an

arbitrary size parameter is what regularizes the loops in Ref. [305]. Here we
use a different regularization scheme. While most of the terms are shown to
be convergent, some of them are formally divergent, but we can isolate the
divergence into a term proportional to the same loop function G that appears
in the scattering problem. The function G is regularized in the scattering
problem in order to fit the position of the resonance, such that when it comes
to evaluate the radiative decay it is already fixed. Even then, there is still the
possibility that a new vertex of the radiative decay loop function introduces a
cutoff of longer range (a smaller cutoff in the momentum Λ) which introduces
extra uncertainties, but we investigate them and find them small.

Traditionally the X(3872) could be considered as a JP = 1++ or JP = 2−+

state. In a work similar to the one of Ref. [305] it is actually assumed to have
JP = 2−+ quantum numbers [312]. However, here we will continue considering
the resonance as a JP = 1++ state, idea supported by recent analysis of data
in Refs. [313, 314] and, particularly, in the latest LHCB experimental analysis
[315].

The Chapter is structured as follows: in the next section we present the for-
malism and evaluate the amplitudes for the different Feynman diagrams con-
tributing to the decays. In Section 7.3 we present the results for X(3872)→
J/ψγ, J/ψω, J/ψρ and compare them to experiment, discussing the role of
the charged components of the X(3872) wave function. In Section 7.4 we
summarize our results. The whole discussion can be found in [127].

7.2 Formalism
7.2.1 Brief summary of the model used for thes DD̄∗ in-

teraction
In our formalism, the X(3872) resonance is considered as dynamically gener-
ated from the interaction of DD̄∗ having an eigenstate of positive C-parity
with isospin I = 0. It also has some component of DsD̄

∗
s . In fact, the basis of
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positive C-parity and I = 0 for these two channels corresponds to:

1√
2
|(D∗D̄ − D̄∗D), I = 0, I3 = 0〉 =

1

2
|(D∗+D− −D∗−D+ +D∗0D̄0 − D̄∗0D0)〉

1√
2
|(D∗sD̄s − D̄∗sDs), I = 0, I3 = 0〉 =

1√
2
|(D∗+s D−s −D∗−s D+

s )〉 .
(7.1)

In Refs. [56, 126] a contact potential is used, since the works are based on
the exchange of vector mesons from the perspective of the local hidden gauge
formalism, and, due to the large masses of the vector mesons, their propagators
are effectively replaced by constants 2.

Different approaches have been used in the Literature and one of them is
pion exchange [257, 316–323]. The way to treat pion exchange differs from
one work to another and so are the results and the conclusions. A review of
those works can be found in Ref. [324], where a thorough study of the issue
is made considering the coupled channels DD̄∗, D̄D∗ and DD̄π. It is shown
there that a short range DD̄∗ → DD̄∗ contact term is needed to arrive at well
defined equations, with its strength tied to the regulator needed to make the
theory convergent. Because of this ambiguity it was concluded there that no
model-independent statement can be made on the importance of the one pion
exchange in the formation of the X(3872). However, with respect to what
concerns us here, a relevant finding of Ref. [324] is that the X(3872) coupling
to the D0D̄∗0 component is weakly dependent on the kind of pion dynamics
included.

Actually, in a different approach and a similar problem, the interaction
of D∗D̄∗ mesons leading to X, Y , Z molecules, the π exchange is explicitly
taken into account by means of a box diagram that eliminates all possible
ambiguities tied to the possibility of having the pion on shell [214]. There it
was found that the corrections to the amplitudes induced by the π-exchange
driven box diagram were very small using cutoffs or form factors of reasonable
size for the effective theories.

The Weinberg compositeness condition is a very accurate tool to determine
the coupling and, for a binding of the D0D̄∗0 channel below 1 MeV, as it is
the case here, the results with a contact potential or with the dynamical pion
are practically indistinguishable.

With the DD̄∗0 coupling under control, a model is needed to obtain the
coupling to the charged D+D∗− − cc or charmed-strange D+

SD
∗−
S − cc compo-

nents, and for this we use the model of Refs. [56, 126] as mentioned above.

2The formalism also makes approximations setting |~q|/MV to zero, with ~q the on shell
momentum of the vectors. Improvements on this were done in [51] (see Appendix B), which
applied to the present problem lead to negligible corrections.
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Channel |gR→PV | [MeV]

(K−K∗+ − cc)/
√

2 53

(K0K̄∗0 − cc)/
√

2 49

(D−D∗+ − cc)/
√

2 3638

(D0D̄∗0 − cc)/
√

2 3663

(D−s D
∗+
s − cc)/

√
2 3395

Table 7.1: Couplings gR of the pole at (3871.6 − i0.001) MeV to the channels
(αH = −1.27 here).

In Ref. [126] it was found that the couplings of the X(3872) to the charged
and neutral components of DD∗ were very close to each other, implying an
approximate I = 0 character for the state. Since the masses and bindings used
in these previous works have been updated, we have redone the calculation of
Refs. [56, 126] with updated masses, assuming the present binding of 0.2 MeV
of the X(3872) with respect to the D0D̄∗0 − cc component. In Ref. [126] two
subtraction constants, αL and αH (for the light and heavy sector), are used in
the pseudoscalar-vector loop functions and, in view of the minor role played
by the light channel, only the αH parameter was varied to fix the new binding
of the X(3872). We evaluate again the couplings to the channels, obtained
from the residues at the pole of the X(3872) resonance, and their values are
shown in Table 7.1.

From these couplings we can notice that there is some isospin violation,
which is however very small, less than 1%. Intuitively, one might think that
the D0D̄∗0 component is the only one that is relevant, since the binding of the
D0D̄∗0 is very small, of the order of 0.2 MeV, and the wave function extends
much further than for the charged component, which is bound by about 7
MeV. However, as we mentioned, the relevant interactions in most processes
are short ranged and then the wave functions around the origin, proportional to
the couplings in the approach we follow (see Chapter 3), are what matters.
Thus, the wave function of the X(3872) is very close to the isospin I = 0
combination of D0D̄∗0− cc and D+D∗−− cc and has a sizeable fraction of the
D+D∗− − cc of Eq. (7.1). However, in a field theoretical approach, like the
one we follow, one only needs the couplings to calculate observables, without
having to invoke the wave functions explicitly. The dynamics of the process in
a reaction like ours, with propagators and couplings in the loops, determine
the effective range of the process (see also Ref. [325] in this respect).

From Table 7.1 we can also notice that the couplings to the K−K∗+ − cc
and K0K̄∗0− cc channels represent less than the 1% of the contributions from
the other channels (the π−ρ+ − cc has even smaller strength). Therefore, we
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will treat the X(3872) as if it were dynamically generated only from the last
three channels in the Table.

We have mentioned before that the Weinberg compositeness condition es-
sentially provides the couplings of the X(3872) to the D0D̄0∗ component. This
can be seen from a different perspective using the generalization of the Wein-
berg compositeness condition to coupled channels of Eq. (3.80). As shown in
Chapter 3, each one of the terms in Eq. (3.80) stands for the probability
of finding the i channel in the wave function, while gG measures the wave
function at the origin. The numerical values obtained for the terms in Eq.
(3.80) are: 0.86 for D0D̄∗0, 0.124 for D+D∗−, 0.016 for D+

SD
∗−
S . As one can

see, the probability of finding the D0D̄∗0 component is the largest, due to the
small binding energy [326].

7.2.2 The radiative decay X(3872)→ J/ψγ

X(P )

P (q)

Pl(q − p)

V (P − q)

J/Ψ(p)

γ(k)

Vp(k)(1)

X(P )

P (q)

Vl(q − p)

V (P − q)

J/Ψ(p)

γ(k)

Vp(k)(2)

X(P )

P (q)

Pl(q − p)

V (P − q)

(3)

γ(k)

Vp(k)

J/Ψ(p)

X(P )

P (q)

Vl(q − p)

V (P − q)

(4)

J/Ψ(p)

γ(k)

Vp(k)

Figure 7.1: Possible types of Feynman diagrams for the decay of the X(3872) into
J/ψγ.

In the framework described above, the X(3872) decays into J/ψγ through
the diagrams shown in Figure 7.1. All the diagrams contributing contain
an anomalous vertex coupling two vectors and a pseudoscalar (V V P ). Then,
they can contain a V PP or a V V V vertex and the photon leg can be attached
to them or to the anomalous V V P vertex. All this leads to the four types of
diagrams shown in Figure 7.1. Moreover, there are three different channels:
D0D̄∗0, D+D∗− and D+

s D
∗−
s , which lead to 12 Feynman diagrams to evaluate,

plus 12 more for the complex conjugate.
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The formalism used is very similar to the one of Ref. [327], where the
authors study the radiative decay of the dynamically generated resonance
K∗2(1430) [225] into Kγ via diagrams containing anomalous vector-vector-
pseudoscalar vertices. The V PP , V V V and Vγ vertices are evaluated using
the local hidden gauge Lagrangians of Eqs. (2.92), (2.96), (2.97), (2.90) which,
as already mentioned in Chapter 2, automatically incorporate vector meson
dominance, such that the photons can couple to other hadrons converting
themselves into ρ0, ω, φ and J/ψ. As a consequence of this, we are also able
to evaluate the rates of the X(3872) decay into J/ψρ, J/ψω and the ratios of
decay rates, which can be compared to existing data.

We start evaluating the diagram of type (1) of Figure 7.1. Using the
Lagrangians we can write the vertices involved as

tRV P = gX ε(V )µε(X)
µ ,

tVpγ = P M2
Vp

e

g
ε(γ)
µ ε(Vp)µ ,

tPPlJ/ψ = PV g (2q − p)µε(J/ψ)µ ,

tV VpPl = A G′ εαβγδ (P − q)αε(V )
β kγεδ(Vl) ,

(7.2)

where gX = 3638/
√

2, 3663/
√

2, 3395/
√

2 MeV, for D−D∗+, D̄0D∗0, D−s D
∗+
s

and −3638/
√

2, −3663/
√

2,−3395/
√

2 MeV, for D+D∗−, D0D̄∗0, D+
s D

∗−
s re-

spectively and P , PV and A are numerical factors.

The Vp → γ conversion essentially replaces, up to a constant, ε
(Vp)
δ by ε

(γ)
δ .

Therefore, we can write the amplitude of diagram (1) as

−it1 = −B e gX G
′
∫

d4q

(2π)4
ε(V )β′ε

(X)
β′ ε

(J/ψ)µ(2q − p)µεαβγδ(P − q)α

×ε(V )
β kγε

(γ)
δ

1

q2 −m2
P

1

(q − p)2 −m2
Pl

1

(P − q)2 −m2
V

, (7.3)

where B = PAPV (the values of B for each case are shown in Table D.1 of
Appendix D). Summing over the polarizations of the internal vector, we have∑

λ

ε
(V )
β ε

(V )
β′ = −gββ′ +

(P − q)β(P − q)β′
m2
V

. (7.4)

When contracting with the antisymmetric tensor εαβγδ contained in the anoma-
lous vertex, the symmetric term (P − q)β(P − q)β′ disappears. Thus, we are
left with an integral of the form∫

d4q

(2π)4

(2q − p)µ(p+ k − q)α
(q2 −m2

P + iε)((q − p)2 −m2
Pl

+ iε)((p+ k − q)2 −m2
V + iε)

= i(agµα + bkµkα + cpαkµ + dkαpµ + epαpµ)

(7.5)
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because of Lorentz covariance. After contracting with the antisymmetric ten-
sor εαβγδ and applying the Lorentz condition pµε

(J/ψ)µ = 0, only the coefficients
a and c are left to be evaluated. The a coefficient is related to the logarithmi-
cally divergent part of the integral in Eq. (7.5) and, therefore, the evaluation
of this coefficient needs a special treatment as we will see later on. We arrive
to an amplitude of the form

t1 = B eG′gX ε
αβγδ(aε(J/ψ)

α + cpαk · ε(J/ψ))ε
(X)
β kγε

(γ)
δ . (7.6)

Now we want to evaluate the a and c coefficients. We do it using the
Feynman parametrization formula for n = 3,

1

αβγ
= 2

∫ 1

0

dx

∫ x

0

dy
1

[α + (β − α)x+ (γ − β)y]3
. (7.7)

In the integral of Eq. (7.5), we can perform the above parametrization taking

α = (q − p)2 −m2
Pl
,

β = q2 −m2
P ,

γ = (p+ k − q)2 −m2
V . (7.8)

We define a new variable q′ = q + p(x− y − 1)− ky, such that the integral of
Eq. (7.5) can be expressed as

4

∫ 1

0

dx

∫ x

0

dy

∫
d4q′

(2π)4

(q′ + p(1− x+ y) + ky)µ(k − q′ − p(y − x)− ky)α
(q′2 + s1)3

,

(7.9)
with

s1 = −m2
Pl

+ (m2
Pl
−m2

P )x+ (k2 +m2
P −m2

V )y + p2(x− y)(1− x+ y)

+ 2pky(x− y)− k2y2 .

(7.10)

From Eq. (7.9), we must take the iagµα and icpαkµ terms. The c coefficient
can be evaluated very easily, since∫

d4q′

(q′2 + s1)3
=
iπ2

2s1

, (7.11)

which means that we have

c =
1

8π2

∫ 1

0

dx

∫ x

0

dy
y(x− y)

s1

. (7.12)
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On the other hand, the evaluation of the a coefficient is a little bit more
elaborated. We have the identity

iagµα = −4

∫ 1

0

dx

∫ x

0

dy

∫
d4q′

(2π)4

q′µq
′
α

(q′2 + s1 + iε)3
(7.13)

and, after taking the trace,

ia = −
∫ 1

0

dx

∫ x

0

dy

∫
d4q′

(2π)4

q′2

(q′2 + s1 + iε)3
. (7.14)

This part is logarithmically divergent and we will relate it to the two-meson
loop function G(P ), that has the form

G(P = p+ k) = i

∫
d4q

(2π)4

1

q2 −m2
P + iε

1

(p+ k − q)2 −m2
V + iε

, (7.15)

as follows: we multiply the integrand of Eq. (7.15) by the factor ((q − p)2 −
m2
Pl

)/((q−p)2−m2
Pl

) and, using the Feynman parametrization with the change
of variable q′ = q + p(x− y − 1)− ky, we obtain

G(P ) = 2i

∫ 1

0

dx

∫ x

0

dy

∫
d4q′

(2π)4

q′2 + (ky)2 + 2pky(y − x) + p2(x− y)2 −m2
Pl

(q′ + s1)3

(7.16)
and thus

a =
G(P )

2
+

1

32π2

∫ 1

0

dx

∫ x

0

dy
(ky)2 + 2pky(y − x) + p2(x− y)2 −m2

Pl

s1 + iε
.

(7.17)
However, the assumption that the divergent term of Eq. (7.14) in the three
particle loop can be regularized like in the two body loop function appearing in
scattering requires a justification. Certainly, this derivation only makes sense
if there is a common cutoff in the two integrals. Indeed, as it was also the case
in Chapter 5, the use of the same cutoff can be justified writing the potential
of chiral unitary approach as

V (~q, ~q ′, E) = v(E)Θ(qmax − |~q |)Θ(qmax − |~q ′|) , (7.18)

which leads to a T matrix with the same factorization

T (~q, ~q ′, E) = T (E)Θ(qmax − |~q |)Θ(qmax − |~q ′|) . (7.19)

This means that the PV → PV amplitude in the X(3872) pole goes as

T ∼ gX Θ(qmax − |~q |) gX Θ(qmax − |~q ′|)
s−M2

X

, (7.20)
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and hence the cutoff used for the scattering is the same appearing in the
X → DD̄∗ vertex, which is shown in Figure 7.1.

The derivation above assumes that no extra cutoffs come from the other
vertices in the diagrams, as usually assumed in most calculations, or that
they involve bigger cutoffs which become then redundant. In order to test
the accuracy of this procedure we introduce an extra cutoff in the J/ψDD∗

vertex, Θ(Λ′ − |~q |). For this we first evaluate the cutoff corresponding to the
G function in dimensional regularization used in Refs. [56, 126]. We find a
cutoff qmax = 751.7 MeV for the D0D̄∗0 channel and qmax = 733.3 MeV for
the D+D∗− channel. We take qmax = 700 MeV for the D+

SD
∗−
S channel. Any

larger value of the J/ψDD∗ cutoff Λ′ in Θ(Λ′−|~q ′|) will not change anything.
So we choose values of Λ′ smaller than qmax but in a reasonable range.

Another possibility is to take a form factor of the type e q2/Λ′2 . Such a
form factor, with Λ′ = 1.2 MeV, was taken in Ref. [328] in a similar vertex
involving D mesons, the D∗Dπ vertex. Normalized such that it is unity when
we have the intermediate DD̄∗ on shell, the extra factor to be considered in
three dimensional integration of the loop function is e(~q 2

on−~q 2)/Λ′2 .
Thus, we consider the two options, Λ′ ' 600 MeV with a sharp cutoff and

the exponential form factor, and we see how much the results change.
Now, we want to calculate the amplitude for the second diagram in Fig-

ure 7.1. The only difference with the previous case is the presence of the V V V
vertex. The amplitudes corresponding to this vertex and to the anomalous one
are, respectively:

tV VlVp = V3g [(q − p+ k)µε
(Vl)
ν ε(V )µε(Vp)ν

− (p+ 2k − q)νε(V )
µ ε(Vl)νε(Vp)µ

+ (2(p− q) + k)νε
(V )
µ ε(Vl)µε(Vp)ν ]

tVlJ/ψP = AG′ εαβγδ(q − p)αε(Vl)β pγε
(J/ψ)
δ ,

(7.21)

where V3 and A are numerical factors.
Thus, we can write the amplitude of diagram (2) in Figure 7.1 as

−it2 = −eG′gXC

∫
d4q

(2π)4
εαβγδ(q − p)αε(Vl)β pγε

(J/ψ)
δ ε

(X)
ν′ ε

(V )ν′

× {(q − p+ k)µε
(Vl)
ν ε(V )µε(γ)ν − (p+ 2k − q)νε(V )

µ ε(Vl)νε(γ)µ

+ (2(p− q) + k)νε
(V )
µ ε(γ)νε(Vl)µ} 1

q2 −m2
P + iε

1

(q − p)2 −m2
Vl

+ iε

× 1

(p+ k − q)2 −m2
V + iε

,

where C = V3PA (the factors C are listed in Table D.2 of Appendix D). In
this process the D̄∗0 is very close to be on-shell with zero three momentum.
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To be consistent with the approach of Ref. [126], that is neglecting the three-
momentum compared to the mass of the vector meson, |~q |/mV ' 0, ε(V )0 ' 0,
we perform the sum over polarizations as∑

λ

ε(V )µε(V )ν′ ' δ(µν′)spatial = δij . (7.22)

We also can keep the covariant formalism and remember at the end that µ, ν ′

are spatial.
The way to proceed is very similar to that of the previous diagram. The

second term of the V V V vertex proportional to (p + 2k − q)β does not con-
tribute, since we have (q − p)αpγ(p + 2k − q)β = qα(p + 2k)βpγε

αβγδ, which
applying Lorentz covariance in the integral turns into a term like (a′pαkβ +
b′pβkα)pγε

αβγδ = 0. Therefore, we have two kinds of integrals:∫
d4q

(2π)4

qα(q − p+ k)ν′

(q2 −m2
P + iε)((q − p)2 −m2

Vl
+ iε)((p+ k − q)2 −m2

V + iε)

= i(a1gαν′ + b1kαkν′ + c1pαkν′ + d1pν′kα + e1pν′pα) (7.23)

and ∫
d4q

(2π)4

qα2(p− q)ν
(q2 −m2

P + iε)((q − p)2 −m2
Vl

+ iε)((p+ k − q)2 −m2
V + iε)

= i(a2gαν + b2kαkν + c2pαkν + d2kαpν + e2pαpν) . (7.24)

One can see that only the coefficients proportional to a1, b1, d1, a2 and d2 sur-
vive. Thus, we finally get

t2 = −C eG′gX εαβγδ[(a1ε
(X)
α + (b1k

µ + d1p
µ)ε(X)

µ kα)ε
(γ)
β

+ (a2ε
(γ)
α + d2ε

(γ)
µ pµkα)ε

(X)
β ] pγε

(J/ψ)
δ ,

(7.25)

where now

a1 = −G(P )

4
− 1

64π2

∫ 1

0

dx

∫ x

0

dy
(ky)2 + 2pky(y − x) + p2(x− y)2 −m2

Vl

s2 + iε
,

b1 =
1

16π2

∫ 1

0

dx

∫ x

0

dy
y(y + 1)

s2 + iε
,

d1 =
1

16π2

∫ 1

0

dx

∫ x

0

dy
y(y − x)

s2 + iε
,

a2 = −2a1 ,

d2 = −2d1 ,

(7.26)
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with

s2 = −m2
Vl

+ (m2
Vl
−m2

P )x+ (k2 −m2
V +m2

P )y + p2(x− y)(1− x+ y)

+ 2kyp(x− y)− k2y2 .

(7.27)

In order to evaluate diagrams (3) and (4) in Figure 7.1, we only have to
do the substitutions k → p and ε(γ) → ε(J/ψ) in the amplitudes of diagrams
(1) and (2). This means that we get

t3 = B eG′ gcX εαβγδ(aε(γ)
α + dkα(p · ε(γ)))ε

(X)
β pγε

(J/ψ)
δ , (7.28)

with

a =
G(P )

2
+

1

32π2

∫ 1

0

dx

∫ x

0

dy
(py)2 + 2pky(y − x)−m2

Pl

s3 + iε
(7.29)

and

d =
1

8π2

∫ 1

0

dx

∫ x

0

dy
y(x− y)

s3

, (7.30)

where

s3 = −m2
Pl

+ (m2
Pl
−m2

P )x+ (p2 +m2
P −m2

V )y + 2pky(x− y)− p2y2 , (7.31)

for diagram (3), and

s4 = −m2
Vl

+ (m2
Vl
−m2

P )x+ (p2 −m2
V +m2

P )y + 2kyp(x− y)− p2y2

(7.32)

for diagram (4).

7.2.3 The X(3872) decay to J/ψρ and J/ψω
This formalism also allows us to evaluate the amplitudes for the decaysX(3872)
→ J/ψρ) and X(3872) → J/ψω (Figure 7.2). We can proceed in complete
analogy with the radiative decay to determine these amplitudes, simply re-
moving the final photon and leaving the vector meson in the final state, the
ρ0 or the ω. Moreover, we must take into account that the ρ0 and the ω do
not couple to the strange D mesons, so that we have again four different kinds
of diagrams, but only two channels plus their complex conjugate, that is 16
Feynman diagrams to evaluate. Doing this, we can observe that the new am-
plitudes have the same structure of the previous ones and can be obtained, up
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X(P )

P (q)

Vl(q − p)

V (P − q)

(4a)

X(P )

P (q)

Pl(q − p)

V (P − q)

(3a)

X(P )

P (q)

Pl(q − p)

V (P − q)

J/Ψ(p)

ρ, ω(k)

(1a)

X(P )

P (q)

Vl(q − p)

V (P − q)

J/Ψ(p)

ρ, ω(k)

(2a)

ρ, ω(k)

J/Ψ(p) J/Ψ(p)

ρ, ω(k)

Figure 7.2: Possible types of Feynman diagrams for the decay of the X(3872) into
J/ψρ and J/ψω.

to a coefficient, directly with the substitutions e ↔ g and ε(γ) ↔ ε(ρ,ω). For
instance, in the case of the diagram (1a) of Figure 7.2, we have

t1a = B′gG′gXε
αβγδ(aε(J/ψ)

α + cpαk · ε(J/ψ))ε
(X)
β kγε

(ρ,ω)
δ , (7.33)

with a and c the same as before

a =
G(P )

2
+

1

32π2

∫ 1

0

dx

∫ x

0

dy
(ky)2 + 2pky(y − x) + p2(x− y)2 −m2

Pl

s1 + iε
,

c =
1

8π2

∫ 1

0

dx

∫ x

0

dy
y(x− y)

s1

(7.34)

and B′ = PVA of Eqs. (7.2). However, since we are dealing with different ver-
tices, the new numerical coefficients, that we call B′ and C′, are now different
and they are written in Table D.3, Table D.4, Table D.5 and Table D.6
of Appendix D.

7.3 Results
Following the procedure in Section 7.2 we can obtain the total decay ampli-
tude for the radiative decay of the X(3872) and evaluate the correspondent
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decay width for this channel by means of the formula

Γ =
|~k|

8πM2
X

∑̄∑
|t|2 , (7.35)

where we sum over the polarizations of the final states and average over the
X meson polarizations. Applying Eq. (7.35), we obtain

Γ(X → J/ψγ) = 149.5 keV . (7.36)

In order to make an estimation of the theoretical uncertainty on this
quantity, we perform a suitable variation of the parameters used to compute
the total amplitude: the coupling G′ for the V V P vertex, the axial-vector-
pseudoscalar couplings gX for the three channels, and the two subtraction
constants in the loop function, α and αS.

We allow the constant f , contained in G′, to vary, but keeping the rela-
tionship GV = f/

√
2 and replacing MV = Mρ by MD∗ . The couplings gX for

the neutral and strange channels are also varied, independently, by 10%. This
might be extreme for the neutral channel, since it is basically determined by
the Weinberg compositeness condition, but we also have an uncertainty in the
binding which can induce this change. For that reason we perform, later on,
another sort of error’s analysis based on experimental uncertainties. On the
other hand, the variation of the coupling for the charged channel is done in
such a way that the ratio between it and the one for the neutral channel is kept
constant, in order to preserve the isospin of the X(3872). Then, we let the
subtraction constants α and αS vary between −1.60 and −1.27. This range is
motivated by the range chosen for f . Indeed, going to higher values of the con-
stant f causes a decrease of the potential in the Lippman-Schwinger equation
used to evaluate the scattering amplitude which determines the position of the
resonance. One would need to go to more negative values of the subtraction
constants α and αS in the loop function, which appears in the a coefficients,
to keep the pole representing the resonance in the same position. The range
is thus chosen such as to produce an effect in the pole position similar to that
induced by the change in f .

We obtain the result

Γ(X → J/ψγ) = (117± 40) keV . (7.37)

There is another source of error that stems from experimental uncertainties in
the binding of the X(3872) and we also evaluate it. We have then performed
a different exercise changing just αH such that the binding goes from 0.1 to
0.4 MeV, which is indeed within the experimental limits but still keeps the
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X(3872) bound. We recalculate the couplings and evaluate again the rates
and we find

Γ(X → J/ψγ) = (117+48
−35) keV . (7.38)

This gives a new perspective on the uncertainties, showing that errors from
the experimental uncertainties are of the same order of the rough estimate of
the theoretical errors.

We can also evaluate the branching ratios for the decays X(3872)→ J/ψρ
and X(3872)→ J/ψω. These two decays, if we consider the ρ and the ω with
fixed masses, are not allowed because of the phase space, but they can occur
when their mass distributions are taken into account. They are observed in
the decays X(3872) → J/ψππ and X(3872) → J/ψπππ respectively, where
the two and three pions states are produced in the decays of the ρ and the ω.

Thus, the decay widths, convoluted with the spectral functions, are given
by the formula

Γρ/ω =
1

N

∫ (mρ/ω+2Γρ/ω)2

(mρ/ω−2Γρ/ω)2

dm̃2

(
− 1

π

)
Im

[
1

m̃2 −m2
ρ/ω + iΓ̃ρ/ωm̃

]
× ΓX(m̃)θ(mX −mJ/ψ − m̃) ,

(7.39)

where

N =

∫ (mρ/ω+2Γρ/ω)2

(mρ/ω−2Γρ/ω)2

dm̃2

(
− 1

π

)
Im

[
1

m̃2 −m2
ρ/ω + iΓ̃ρ/ωm̃

]
, (7.40)

with ΓX(m̃) given by Eq. (7.35), changing mρ and mω by m̃.
In Eqs. (7.39) and (7.40), mρ = 775.49 MeV and mω = 782.65 MeV are

the masses of the mesons, Γρ = 149.1 MeV and Γω = 8.49 MeV are the on
shell widths and

Γ̃ρ/ω = Γρ/ω

(
q̃

qρ/ω

)3

, (7.41)

where q̃ and qρ/ω are the on shell relative momenta of the mesons in the center
of mass reference frame for the mass m̃ and the physical mass respectively:

q̃ =

√
m̃2 − 4m2

π

2
θ(m̃− 2mπ) ,

qρ/ω =

√
m2
ρ/ω − 4m2

π

2
.

(7.42)

In Eq. (7.39), ΓX is the total decay width of the X into J/ψρ or J/ψω to
simplify the notation and in Eq. (7.42) mπ is the pion mass.
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Using Eq. (7.39) we find

Γρ = 821.9 keV ,

Γω = 1096.6 keV ,
(7.43)

and, when the error analysis that leads to Eq. (7.37) is done, the band of
values becomes

Γρ = (645± 221) keV ,

Γω = (861± 294) keV .
(7.44)

Similarly to the case of Eq. (7.38), we have also errors due to the un-
certainties in the binding. Taking the same range that led to Eq. (7.37) we
find

Γρ = (645+264
−192) keV ,

Γω = (861+353
−257) keV .

(7.45)

With the results of Eq. (7.43) we can evaluate the ratio

R =
B(X → J/ψπππ)

B(X → J/ψππ)
=

Γω
Γρ

= 1.33 . (7.46)

However, the experiment gives the ratio [329]

Rexp =
B(X → J/ψπ+π−π0)

B(X → J/ψπ+π−)
= 0.8± 0.3 (7.47)

and, to compare our result with this, we must take into account that the ω
decays into π+π−π0 with a branching ratio Bω,3π = 0.892.

Hence, our ratio to compare with Rexp is

Rth =
Γω
Γρ
×Bω,3π = 1.19 , (7.48)

well within the experimental error.
The result we obtain for the ratio

Γ(X → J/ψγ)

Γ(X → J/ψππ)
= 0.18 , (7.49)

is also compatible with the two values known from the experiment (0.14±0.05)
[299] and (0.22± 0.06) [300].
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We can also estimate the theoretical errors for the two ratios in Eqs. (7.48)
and (7.49), by evaluating the γ, ρ and ω decays with the same set of parame-
ters, and varying these parameters in the range used to evaluate Γ(X → J/ψγ):

Rth = (0.92± 0.13)

Γ(X → J/ψγ)

Γ(X → J/ψππ)
= (0.17± 0.02) .

(7.50)

We should note that changing the binding as done to get the errors in Eq.
(7.38) barely changes the ratios of Eq. (7.50), since the ratios of the couplings
of the X(3872) to the different channels barely change. This was already found
in Ref. [126].

The uncertainties in the ratios are smaller than for the absolute values and
they are of the order of 15%.

At this point we also take into account uncertainties from the association of
the loop with two propagators to the G function for the scattering, including
extra cutoffs or the form factor discussed above. The values that we find
are shown in Table 7.2, where the errors from the three sources discussed
are added in quadrature. We can see that we have good agreement with
experiment in the two ratios measured.

Finally, we do another exercise removing the D+D∗−−c.c and D+
SD

∗−
S −c.c

and keeping only the D0D̄∗0−c.c contribution. The coupling of the D0D̄∗0−c.c
is reevaluated taking the same binding for the X(3872), such that Eq. (3.80)
is now fulfilled with just this channel. The results that we obtain are

Γγ = 0.53 keV ,

Γρ = 10589 keV ,

Γω = 429 keV ,

Rth = 0.04 ,

Γ(X → J/ψγ)

Γ(X → J/ψππ)
= 5.05 · 10−5 .

(7.51)

As we can see, the two ratios that we have to compare with experiment
largely diverge from the experimental values and Γρ by itself becomes much
bigger than the width of the X(3872) (ΓX < 1.2 MeV).

In Table 7.3 we compare our results with a variety of results available
in the Literature using different models. It would be interesting to test these
models with the new information on the experimental ratios to help discrimi-
nate among them.

The ratio of J/ψγ to J/ψππ is also evaluated in Ref. [305], where the
Weinberg compositeness condition [91] is used to determine the couplings but

197



7.3 Results

st
an

d
ar

d
G

Θ
(Λ
′
−
|~q|

)
e(
~q

2 o
n
−
~q

2
)/

Λ
′2

R
an

ge
[k

eV
]

E
x
p

er
im

en
t

[k
eV

]

Γ
γ

15
0

19
0

18
0

11
7+

7
3

−
5
3

Γ
ρ
(2
π

)
82

1
99

1
90

5
64

5+
3
8
3

−
2
9
3

Γ
ω

(3
π

)
10

97
15

93
13

80
86

1+
5
0
0

−
3
9
0

Γ
ω

Γ
ρ
×
B
ω
,3
π

1.
19

1.
43

1.
36

0.
92

+
0
.2

7
−

0
.1

3
0.

8
±

0.
3

[3
29

]

Γ
γ
/Γ

ρ
(2
π

)
0.

18
0.

19
0.

20
0.

17
+

0
.0

3
−

0
.0

2

(0
.1

4
±

0.
05

)
[2

99
]

(0
.2

2
±

0.
06

)
[3

00
]

T
a
b
le

7
.2
:

V
al

u
es

of
th

e
p

ar
ti

al
d

ec
ay

w
id

th
in

u
n

it
s

of
k
eV

.
F

ir
st

co
lu

m
n

:
u

si
n

g
th

e
st

an
d

ar
d
G

fu
n

ct
io

n
o
f

sc
a
tt

er
in

g
.

S
ec

on
d

co
lu

m
n

:
m

u
lt

ip
ly

in
g

th
e

in
te

gr
an

d
of
G

b
y
θ(

Λ
′ −
|~q|

)
w

it
h

Λ
′
=

60
0

M
eV

.
T

h
ir

d
co

lu
m

n
:

m
u

lt
ip

ly
in

g
th

e
in

te
g
ra

n
d

o
f

G
b
y
e(
~q

2 o
n
−
~q

2
)/

Λ
′2

w
it

h
Λ
′
=

12
00

M
eV

.
F

ou
rt

h
co

lu
m

n
:

ra
n

ge
of

va
lu

es
fo

r
al

l
th

e
ra

te
s

in
cl

u
d

in
g

th
e

th
re

e
so

u
rc

es
o
f

er
ro

rs
,

fr
om

u
n

ce
rt

ai
n
ti

es
in

th
e

co
u

p
li

n
gs

,
b

in
d

in
g

of
th

e
X

an
d

th
e
G

fu
n

ct
io

n
,

su
m

m
ed

in
q
u

ad
ra

tu
re

.
F

if
th

co
lu

m
n

:
ex

p
er

im
en

ta
l

re
su

lt
s.

198



Decays of the X(3872) to J/ψγ, J/ψρ and J/ψω

model Γ [keV]

cc̄ 11 [239]
cc̄ 139 [303]

molecule 8 [303]
molecule 125− 250 [242]

cc̄ 11− 71 [305]
molecule + cc̄ 2− 17 [305]

2−+ 1.7− 2.1 [312]
cc̄ 45− 80 [306]

tetraquark 10− 20 [307]
present work 64− 190

Table 7.3: Results from previous works for the decay width of the X(3872) into
J/ψγ, using different models.

other assumptions are made, and they find a range of values from 0.18 to
1.57 depending on the model they consider, as mentioned in the Introduction.
We should stress that once the X(3872) is obtained in our case and, hence,
the couplings are determined, the uncertainties that we have from theoretical
sources and experimental errors in the masses are much smaller than in Ref.
[305].

We should note that our results are tied to the masses of the particles in
the PDG and there are still large errors. When in the future the binding can
be more accurately determined we can also obtain more accurate values of the
absolute rates. On the other hand, the values of the ratios will be essentially
unaltered.

7.4 Conclusions
In this Chapter we have exploited the picture of the X(3872) as a composite
state of DD̄∗ − cc dynamically generated by the interaction of the D and D∗

states. The couplings of the state to the different DD̄∗ − cc channels have
been calculated before within this model, but we have recalculated them here
to take into account the more precise values of the particle masses tabulated
in the PDG [17]. The coupling for the D0D̄∗0 − c.c is similar to the one
that would be obtained using the compositeness condition of Weinberg, since
the state is barely bound in the D0D̄∗0 component, but the dynamics of the
model produces also couplings for the D+D∗− − c.c and D+

SD
∗−
S − c.c states.

Using an extension to SU(4) with an explicit breaking of this symmetry of the
local hidden gauge approach, already successfully used in the study of related
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7.4 Conclusions

processes, one can determine the widths of the X(3872) to J/ψρ, J/ψω and
J/ψγ and compare with the ratios determined experimentally in recent works.
We find a very good agreement with the experimental results. The absolute
numbers obtained for the different widths are also reasonable and their sum
within errors, (1.6+0.9

−0.7) MeV, is compatible with the recent total X(3872) upper
limit of the width, Γ = 1.2 MeV.

We have also conducted a test neglecting the charged and strange compo-
nents of the wave function and thus keeping only the D0D̄0∗ − cc component.
We obtain ratios in great disagreement with experiment and an absolute value
for the X(3872) partial width into J/ψρ which largely exceeds the experimen-
tal upper bound for the total width of the X(3872). This exercise confirms the
relevance of the charged channels to describe the process that we studied and
the approximate I = 0 character of this resonance. This does not mean that
the use the neutral channel alone is an incorrect way to proceed in general.
It is just incomplete, but in any field theoretical approach the missing chan-
nels can be accounted for by means of counterterms which, however, make the
theory less predictive. For the present case it became clear that the explicit
consideration of the charged DD̄∗ channels renders the theory more predictive
than omitting them.
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CHAPTER 8

CONCLUSIONS

In this Thesis we tackled many different issues concerning the understanding of
the hadronic spectrum, all of them linked by a common thread: the necessity
to describe the structure of resonant states, recently discovered, that have
properties impossible to be accommodated in the standard quark model for
mesons and baryons.

We dealt with those states from the molecular perspective, exploiting pow-
erful techniques developed starting from Chiral Perturbation Theory. The
Chiral Unitary Approach, a non perturbative method able to combine χPT to
unitarity constraints, permits to characterize some resonances as dynamically
generated from the interaction of two fundamental hadrons. The tree level
hadron-hadron potentials provided by chiral Lagrangians are used as the kernel
for the Bethe-Salpeter equation in coupled channels to calculate the scattering
amplitude. Furthermore, with the use of the hidden gauge formalism, vectors
and photons can also be included in the theory. Once the amplitude is evalu-
ated, it is possible to look for already experimentally observed resonances and
also to predict new ones, searching for them as poles of the scattering ampli-
tude extrapolated to the second Riemann sheet of the complex energy plane.
Also the coupling of the state to a given hadron-hadron channel can be easily
evaluated, since it corresponds to the residue at the pole of the amplitude. In
the following, we make a summary of the objectives accomplished throughout
this work by taking advantage of these tools.

1. Generalization of the Weinberg compositeness condition for bound
states to any partial waves.
In Chapter 3 we address the necessity of a general rule to decide if the
structure of a state can be considered as composite of other stable hadrons
or just genuine. We generalize a specific sum rule, derived in previous works
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for s-waves, to higher partial waves. This is done by simply studying the
interaction of a hadron pair using an energy independent potential. This
leads to a redefinition of the loop function for these intermediate states such
that, now, the l-wave character of the interaction is not contained any more
in the potential, but absorbed in the loop. Simply evaluating the deriva-
tive of the G function for the loop, together with the couplings of the state
under study to the relevant channels, the different terms of the sum rule
can be calculated. We know that in the case of bound states these terms
have a very clear meaning: each one of them is the probability to find that
particular channel in the wave function of the state. This happens because
the sum rule is derived directly from the normalization condition of the
wave function. If we are considering all the possible components that can
characterize the structure of our state, then the different terms will sum to
one. The difference from unity of their sum gives the probability of having
something else in the wave function, for example the genuine quark model
component that cannot be accounted for with chiral unitary approach in
coupled channels. We also found out that the relations between couplings
and wave functions still hold in their generalization to higher partial waves
in coupled channels.

2. Generalization of the compositeness condition to the case of res-
onances and interpretation.
Problems arise when extending the formalism to open channels. Dealing
with resonances means dealing with complex values for energies and cou-
plings, such that also the different terms of the sum rule are complex and,
therefore, cannot be interpreted as probabilities. This is related to the
absence of a normalization condition for the wave function. However, the
sum rule still holds at the pole. In Chapter 4 we showed how now the
terms of the sum rule are related to the integral of the square of the wave
function instead of the modulus squared. This is a finite quantity under
the phase convention that we are using, differently from the integral of the
modulus squared, and though it is clearly impossible to consider it as a
probability, we can still think about it as the extrapolation, to the case of
complex energies, of the concept of probability. We can say that it can be
safely interpreted as the weight that a particular hadron-hadron component
will have in the wave function of the resonance, but it does not have to be
confused with the relevance of a certain channel in a given physical process
which is strongly tied to the specific dynamics of the process itself.

3. Application of the sum rule to concrete cases.
The compositeness condition is straightforward to apply and we used it to
study the structure of some well known resonances. In particular:
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• we tried to quantify the importance of the p-wave ππ component in
the ρ and πK component in the K∗ mesons. None of these resonances
qualifies as dynamically generated and we expected the sum rule not
to be satisfied. Indeed, with both tests we performed, one relying
on chiral unitary theory and a phenomenological one, we obtained a
very small amount of compositeness for these states, confirming their
genuine nature.

• we applied the two tests to a baryon for the first time, the ∆(1232),
to measure the weight of the πN component in the wave function.
The amount of composite character we obtained is considerably high,
around 60%, and could seem surprising. However, previous works al-
ready stressed the importance of the meson cloud, even in the nucleon.
Our result suggests that it should be taken into account when dealing
with the ∆(1232). The investigation continued with the study of the

whole JP = 3
2

+
decuplet, that manifested a lower composite character

as we go to higher energies.

• the last resonance we studied is the Λ(1520), dynamically generated in
a four-channel problem. We evaluated the relevance of these different
components and also their sum, which is very close to one, indicating
that we do not have much room left to include other channels in the
approach. This is in line with the dynamically generated nature we
assume for this state.

4. The triangular K∗K̄ loop and the nature of the a0(980), f0(980)
and f1(1285).
We used this mechanism to study different decays and better understand
the nature of the particles involved in the processes. As already stressed in
Chapter 5, the novelty of this approach consists in the possibility of regu-
larizing the loop function with a cutoff provided by chiral unitary approach
once the a0(980) and the f0(980), produced as intermediate states, are as-
sumed as dynamically generated by meson-meson rescattering. Thanks to
that, we could evaluate numerical results without arbitrary cutoffs or form
factors. We could explain quite successfully the impressive isospin viola-
tion measured in the decay of the η(1405) to π0π+π− with respect to π0π0η,
and the good agreement between the results we got with our theoretical
approach and the experiment encouraged us to apply the same mechanism
to the decay of the f1(1288) to π0π0η. In this case, also the f1(1285) is
considered as dynamically generated and the fact that it couples to the
K∗K̄ pair allows us to use the triangular loop. Once again we obtained,
at least qualitatively, an agreement between theory and experiment and
we could simultaneously study also the decay to π0π0η, in order to go fur-
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ther in the investigation of what other works call a0-f0 mixing, but that
we rather call isospin violation. We found that the amount of this mixing
is much smaller than in the case of the η(1405) decay, characterizing this
quantity as strongly dependent on the process considered. However, the
two processes share some peculiar features of the invariant mass spectra.
In fact, when looking at the invariant mass distribution for the two decays
to π0π+π− in the region of the f0(980), what we see is a very narrow peak,
with the f0 produced with a width of about 10 MeV, much smaller than its
natural one. This width simply indicates the region of energies where the
difference between the mass of the charged and neutral kaons, responsible
for the production of the f0 that would be otherwise forbidden, is relevant
in the calculation. In both cases, this shape of the mass distribution has
been confirmed by experiment providing support to the use of this decay
mechanism. The last reaction we studied, the decay of the f1 to πKK̄,
gave also results compatible with experiment concerning the value of the
branching ratio, and we could see how the shapes of the invariant mass
distributions are tied to the idea of a molecular K∗K̄ − cc nature for the
f1(1285). Though an experimental measure of these distributions would be
useful to complete the puzzle, we can safely say that the study of these three
decays corroborates the assumption of a dynamically generated nature for
the f0, a0 and f1(1285).

5. Interaction of mesons with charm and beauty and possible molec-
ular Zc and Zb states.
In Chapter 6, we studied in detail different possible sources of DD̄∗, D∗D̄∗,
BB̄∗ and B∗B̄∗ interaction in isospin I = 1, in an attempt to put some
order among some new Z states observed at different facilities and interpret
them from the molecular point of view. Using the extension of the hidden
gauge symmetry together with constraints of heavy quark spin symmetry
for a more precise evaluation of the couplings, we found interesting results:

• in the DD̄∗ interaction, the dominant process is vector exchange. In
our theoretical approach based on chiral unitary theory, we clearly
found a peak with mass between 3869 − 3875 MeV, a weakly bound
state decaying to ηcρ and πJ/ψ. Moreover, its energy and width
are perfectly compatible with the reanalysis we made of BESIII ex-
perimental data for the DD̄∗ distribution in the e+e− → π±(DD̄∗)∓

reaction, though slightly lower than predicted by the experimental-
ists. However, we cannot infer that this state can be identified with
the others observed at other facilities, like the Zc(3900), Zc(3894) or
Zc(3886), due to the large uncertainties on the masses. However, while
a state with energy below the DD̄∗ threshold can be easily accommo-
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dated into the molecular picture, that would not be the case for a
state with higher mass. Further investigations are needed to unravel
the issue.

• as before, also in the case of D∗D̄∗ the major contribution comes from
vector exchange. We find a peak with a mass between 3990 and 4000
MeV, considering uncertainties, and with quantum numbers JPC =
2++ and IG = 1−, corresponding to a resonance able to explain BESIII
experimental observation from the perspective of the reanalysis of the
data made by Torres et al.

• in the case of the BB̄∗ and B∗B̄∗ interaction, the most important
contribution comes from different sources and the vector exchange
potential needs to be modified to take them into account. We found a
BB∗ bound state with mass in the range 10587− 10601 MeV that we
can identify with the Zb(10610). In the B∗B∗ sector we find a cusp
corresponding to an energy of 10650 MeV, in perfect agreement with
previous theoretical findings.

6. Decays of the X(3872) and relation with its molecular nature.
In Chapter 7 we exploit the molecular DD̄∗ − cc picture of the X(3872),
considering it as a JPC = 1++ state. The novelty with respect to previous
works is that we consider also the coupling to the DsD̄

∗
s component. We

use again the extrapolation of the hidden gauge symmetry to SU(4) to
study in detail its decays to J/ψγ. Once this is done, the evaluation of
the decays to J/ψρ and J/ψω is straightforward, since one only has to
remove the photon leg from the diagrams describing the process. We find
good agreement with experiment for the ratios of the decay widths, and
also a value for their sum compatible with the upper limit for the total
width of the X(3872) reported in the PDG. However, apart from these
results that seem to validate the idea of a molecular state, we went further
in the analysis and tested the relevance of the charged component with
respect to the neutral one, removing it from the calculation. The results
we obtained strongly disagree with experiment, proving that including only
the neutral channel in the study of these specific decays, is an incomplete
way to proceed. This is in line with the discussion in Chapter 4: the
fact that the neutral channel, due to its small binding and according to the
Weinberg sum rule, is the most relevant component, in terms of probability,
in the wave function does not imply that the charged one does not need to
be taken into account when dealing with concrete physical reactions.
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CHAPTER 9

RESUMEN

9.1 Objetivos
El propósito de esta Tesis es contribuir al extenso esfuerzo que se ha hecho, en
las ultimas décadas, a fin de entender la estructura de las part́ıculas hadrónicas,
uno de los temas más importantes en f́ısica hadrónica.

En los años 50, el desarrollo de los aceleradores de part́ıculas reveló la
existencia de una gran cantidad de nuevas resonancias. La proliferación de
part́ıculas, poco después, manifestó un patrón, y un esquema de organización
para describirlo se hizo necesario. Al principio, se encontró una solución gen-
eralizando el concepto de isosṕın con el modelo de Fermi-Yang de 1959 [6], en
el que el protón y el neutrón aparecen como bloques fundamentales y las otras
part́ıculas como sus combinaciones. Más tarde, Sakata extendió el modelo de
SU(2) a SU(3) incluyendo la Λ como componente.

Sin embargo, el momento crucial fue en 1961, cuando Gell-Mann [9] e,
independientemente, Ne’maan [10] propusieron un esquema basado en SU(3),
en el que todas las part́ıculas están agrupadas en octetes, la entidad básica del
modelo conocido como eightfold way.

La idea de la existencia de tres componentes fundamentales, llamados
quarks, que constituyen todos los hadrones y capaces de explicar la clasifi-
cación en multipletes de SU(3), fue propuesta separadamente por Gell-Mann
[13] y Zweig [14] en 1964.

El intenso y largo debate sobre el tema llevó a una nueva teoŕıa, lla-
mada Cromodinámica Cuántica (QCD), la teoŕıa de gauge que describe las
interacciones fuertes de quarks y gluones. Ahora sabemos que en naturaleza
hay seis tipos distintos de quarks (“up”, “down”, “strange”, “charm”, “top”
y “bottom”), y que cada uno existe en tres diferentes colores (rojo, azul y
verde), expresión directa de la simetŕıa de gauge SU(3) de color (SU(3)C). La
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9.2 Metodologı́a

QCD representa uno de los bloques fundamentales de Modelo Estándar (SM)
de la F́ısica de Part́ıculas, siendo la componente SU(3) del grupo de gauge
SU(3)× SU(2)× U(1) del SM.

Pruebas experimentales han demostrado su fiabilidad en el régimen de en-
erǵıas altas, donde, gracias a su carácter asintóticamente libre, la teoŕıa de las
perturbaciones puede ser aplicada de forma segura. Lamentablemente, esto
no es cierto en el dominio de bajas enerǵıas, debido al aumento del valor de la
constante de acoplamiento y al consecuente confinamiento de quarks y gluones
en los hadrones. Es en este momento que entran en juego las teoŕıas efecti-
vas, capaces de tener en cuenta solo los grados de libertad relevantes a bajas
enerǵıas. La teoŕıa efectiva de QCD, llamada Chiral Perturbation Theory
(χPT ), se basa en una de sus simetŕıas fundamentales, la quiral, y propor-
ciona las interacciones entre los estados fundamentales de mesones y bariones.
En la próxima sección, abordaremos las propiedades más importantes de la
χPT y discutiremos las herramientas que utilizamos en este trabajo.

9.2 Metodologı́a
9.2.1 Teoŕıa Quiral Perturbativa
El Lagrangiano de QCD para los tres quarks más ligeros, en el ĺımitemu,md,ms

→ 0 es invariante bajo simetŕıa quiral. No obstante, esta simetŕıa no se mani-
fiesta en el espectro hadrónico, y la simetŕıa quiral está rota espontáneamente
al grupo SU(3)V . Según el teorema de Goldstone, debeŕıamos encontrar un
bosón de Goldstone para cada uno de los ocho generadores quirales. Aunque
no exactamente sin masa, el octete de los mesones pseudoescalares ligeros
(π,K, η) se identifica con los Goldstones, y sus masas f́ısicas se interpretan
como la consecuencia de la ruptura expĺıcita de simetŕıa debida a las masas
finitas de los quarks.

La diferencia de masa que separa los pseudoescalares del resto del espectro
hadrónico, hace que la cosa más natural sea construir una teoŕıa de campo
efectiva, llamada Teoŕıa Quiral Perturbativa, que contenga únicamente estos
grados de libertad.

A orden más bajo, el Lagrangiano más general invariante bajo transforma-
ciones quirales se puede escribir como

L2 =
f 2

4
〈∂µU †∂µU〉 , (9.1)

donde

U(φ) = u(φ)2 = exp

(
i

√
2φ

f

)
, (9.2)
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Resumen

con

φ(x) =
λa√

2
φa =


η8√

6
+ π0
√

2
π+ K+

π− η8√
6
− π0
√

2
K0

K− K̄0 −2η8√
6

 . (9.3)

La constante f en la Eq. (9.2) es la constante de desintegración del pion, f =
93 MeV. Expandiendo U(φ) en potencias de φ, se obtiene un término cinético
más interacciones que involucran un número siempre mayor de mesones pseu-
doescalares,

L2 =
1

2
〈∂µ φ ∂µ φ〉+

1

12f 2
〈(φ

↔
∂µ φ)(φ

↔
∂µ φ)〉+O(φ6/f 4) . (9.4)

Es importante subrayar que todas las interacciones entre los Goldstones están
fijadas por la única constante de acoplamiento, f .

La χPT es una herramienta muy poderosa a enerǵıas bajas. Lamentable-
mente, siendo una expansión perturbativa, no hay manera de reproducir reso-
nancias, ya que están asociadas a polos en la amplitud de scattering. Además,
otra desventaja de la teoŕıa es la pérdida de poder de predicción yendo a or-
denes más altos, debido al rápido aumento de los parámetros libres. Por lo
tanto, fue necesario desarrollar métodos no-perturbativos capaces de extender
el rango de validez de la teoŕıa sin reducir su poder de predicción.

Enfoques distintos e independientes se han usado con éxito para describir la
interacción mesón-mesón incluyendo resonancias, como el Inverse Amplitude
Method (IAM), la ecuación de Bethe-Salpeter (BS) y el método N/D. El de
la ecuación de Bethe-Salpeter es el método que utilizamos en esta Tesis y que
vamos a resumir en la próxima sección.

9.2.2 Métodos no-perturbativos: la ecuación de Bethe-
Salpeter

El punto de partida de la discusión es el Lagrangiano estándar de la χPT a
orden más bajo, L2, ya que contiene las interacciones más generales entre los
mesones del octete pseudoescalar. Las amplitudes que se derivan de este La-
gragiano constituyen los potenciales que se usarán en la ecuación de scattering
en canales acoplados: la ecuación de Lippmann-Schwinger o de Bethe-Salpeter
según se use o no un propagador relativista.

Por ejemplo, en el caso sencillo de sólo dos canales acoplados, las ecuaciones
de scattering tienen la forma

T11 = V11 + V11G11T11 + V12G22T21 ,

T21 = V21 + V21G11T11 + V22G22T21 ,

T22 = V22 + V21G11T12 + V22G22T22 ,

(9.5)
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9.2 Metodologı́a

con

Gii = i
1

q2 −m2
1i + iε

1

(P − q)2 −m2
2i + iε

, (9.6)

donde P es el cuadrimomento total del sistema mesón-mesón. El término V GT
en la Eq. (9.5) representa

V GT =

∫
dq4

(2π)4
V (k, p, q)G(P, q)T (q, k′, p′) . (9.7)

El loop en la Eq. (9.7) está regularizado usando un cutoff qmax. Este parámetro
es el único grado de libertad del modelo y está fijado por los datos experimen-
tales.

En principio, V y T en la Eq. (9.7) se debeŕıan tomar off shell, pero,
como se demuestra en [30], sólo las informaciones on shell son necesarias. Esto
implica que T y V se pueden factorizar fuera de la integral. La integración
en dq0 se puede hacer anaĺıticamente de manera que las ecuaciones en canales
acoplados se puedan ahora escribir como

Tij = Vij + VilGll Tlj , (9.8)

con

Gll =

∫ qmax

0

dq

(2π)2

q2 (ω1 + ω2)

ω1 ω2 (s− (ω1 + ω2)2 + iε)
. (9.9)

En las Eqs. (9.8) y (9.9), s = P 02 es la enerǵıa del centro de masa del
sistema mesón-mesón, ωi =

√
q2 +m2

i y el sub́ındice i = 1, 2 representa las
dos part́ıculas intermedias en el canal l. En forma matricial, la Eqs. (9.8)
viene dada por

T = V + V GT , (9.10)

o, equivalentemente, por

T = [1− V G]−1 V . (9.11)

Esta es la ecuación de Bethe-Salpeter en forma matricial, que utilizamos en
todo este trabajo para calcular las amplitudes de scattering.

La función de loop G en la Eq. (9.9) se puede también expresar, en regu-
larización dimensional [41], como

Gll =
1

16π2
(αj(µ) + log

m2
1

µ2
+
m2

2 −m2
1 + s

2s
log

m2
2

m2
1

+
p√
s

(log
s−m2

2 +m2
1 + 2p

√
s

−s+m2
2 −m2

1 + 2p
√
s

+ log
s+m2

2 −m2
1 + 2p

√
s

−s−m2
2 +m2

1 + 2p
√
s

)) . (9.12)
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La equivalencia entre las dos prescripciones está demostrada en Ref. [33]. En
la Eq. (9.12), p es el trimomento de los mesones en el centro de masa

p =

√
(s− (m1 +m2)2)(s− (m1 −m2)2)

2
√
s

=
λ1/2(s,m2

1,m
2
2)

2
√
s

, (9.13)

µ es la escala arbitraria de regularización y λ es la función de Källén.

9.2.3 Polos y acoplamientos
La identificación de una resonancia procede por medio de su asociación a un
polo de la matriz de scattering. Según la teoŕıa de scattering, los estados
ligados corresponden a polos con Im(p) > 0 y Re(p) = 0, es decir el eje s real
por debajo del menor umbral. Por otra parte, las resonancias aparecen para
Im(p) < 0 y Re(s) encima del umbral más bajo, una zona del plano s complejo
llamada segunda hoja de Riemann de la función T (s). Si estos polos no están
demasiado lejos del eje real, sus partes imaginarias se pueden identificar con
la mitad de la anchura Γ.

Llamamos la amplitud en la segunda hoja de Riemann

T II = [1− V GII ]−1 V , (9.14)

donde GII , la función de loop extrapolada a la segunda hoja de Riemann,
viene dada por la ecuación

GII
jj (
√
s) = GI

jj(
√
s) + i

p

4π
√
s
, Im(p) > 0 , (9.15)

con GI
jj(
√
s) dada por la Eq. (9.12).

Esta ecuación nos permite evaluar las amplitudes de scattering y buscar res-
onancias de manera sistemática. En este trabajo, consideramos dinámicamente
generadas aquellas resonancias que aparecen como polos en la segunda hoja de
Riemann de la amplitud de scattering en la Eq. (9.11), usando GII

jj (
√
s) cuando

un canal está abierto (Re
√
s > m1 +m2) y GI

jj(
√
s) cuando Re

√
s < m1 +m2.

Es también posible calcular los acoplamientos gi del estado a los diferentes
canales hadrón-hadrón recordando que, cerca del polo de la resonancia, la
amplitud en el plano complejo para una transición diagonal se puede escribir
como

Tii(s) '
g2
i

s− sR
, (9.16)

donde sR es la posición de la resonancia. Por lo tanto, los acoplamientos se
pueden evaluar como los residuos en el polo de Tii(s), usando la fórmula∫ 2π

0

Tii(z(θ)) i r eiθdθ = 2πiRes(Tii) = 2πi g2
i , (9.17)
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con z = z0 + r eiθ y z0 = sR, con r tal que el circulo z0 + r eiθ no encierre otros
polos o un umbral.

9.2.4 Formalismo de hidden gauge
El formalismo de hidden gauge es el esquema que utilizamos para implementar
en la teoŕıa efectiva part́ıculas de spin 1 [63, 64]. Este método es ideal ya que
proporciona no solo las interacciones entre vectores y pseudoescalares sino
también la de los vectores entre ellos, y permite incluir los fotones en la teoŕıa.

Las interacciones de pseudoescalares, vectores y fotones se pueden describir
con las siguientes fórmulas:

LV γ = −M2
V

e

g
Aµ〈V µQ〉 , (9.18)

LV PP = −ig 〈V µ[φ, ∂µφ]〉 , (9.19)

LPPPP = − 1

8f 2
〈[φ, ∂µφ]2〉 . (9.20)

LV V P =
G√

2
εµναβ〈∂µVν∂αVβP 〉 . (9.21)

La matriz V es la matriz de SU(3) que contiene los mesones vectoriales

Vµ =

 ω√
2

+ ρ0
√

2
ρ+ K∗+

ρ− ω√
2
− ρ0
√

2
K∗0

K∗− K̄∗0 φ


µ

, (9.22)

mientras Q = diag(2,−1,−1)/3, e = −|e| es la carga del electrón y Aµ es
el campo del fotón. En la Eq. (9.21), G = 3M2

V /16π2f 3 y εµναβ es el tensor
totalmente antisimétrico. Además de estas interacciones hay también el vértice
de cuatro vectores dado por

L(c) =
g2

2
〈VµVνV µV ν − VνVµV µV ν〉 , (9.23)

y el vértice de tres vectores

L(3V ) = ig〈(∂µVν − ∂νVµ)V µV ν〉 . (9.24)

El Lagrangiano L(3V ) produce la interacción V V → V V por medio del inter-
cambio de un mesón vectorial.
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9.3 Resultados y conclusiones
En esta parte vamos a resumir los resultados que obtuvimos por medio del
formalismo descrito en Section 9.2.

9.3.1 “Compositeness” de los estados hadrónicos: reso-
nancias mesónicas

En el Chapter 3, hicimos un estudio anaĺıtico de la matriz de scattering y
de las funciones de onda en el caso de la interacción entre dos hadrones. La
novedad en nuestro análisis es la generalización al caso de cualquier onda par-
cial. Usando el formalismo de la teoŕıa quiral unitarizada junto a la mecánica
cuántica, derivamos detalladamente muchas relaciones de interés.

Empezamos con el caso de estados ligados, inicialmente para un solo canal
y luego extendiendo el procedimiento a muchos canales acoplados y también a
canales abiertos. Encontramos una importante relación entre el acoplamiento
del estado al canal hadron-hadron considerado y la función de onda en el
origen. De especial relevancia es la regla de suma, o Weinberg compositeness
condition, ∑

i

g2
i

[
dGi

dE

]
E=EP

= −1 , (9.25)

con EP la posición del polo complejo y donde gi es el acoplamiento al canal i,
definido como

gigj = lim
E→EP

(E − EP )tij . (9.26)

En el caso de estados ligados, la regla de suma tiene una interpretación
ineqúıvoca, ya que se deduce directamente de la condición de normalización de
la función de onda. Cada término representa la probabilidad de encontrar una
determinada componente hadron-hadron en la función de onda y, cuando la
suma de estas probabilidades es uno, podemos decir que el estado considerado
es un estado compuesto. Su diferencia de uno nos da la probabilidad que
haya algo distinto en la función de onda, como, por ejemplo, una componente
genuina de naturaleza no molecular. Al contrario, el caso de canales abiertos
es más controvertido, dado que no existe una renormalización para la función
de onda. Sin embargo, la regla de suma sigue siendo válida en el polo de la
resonancia.

La compositeness condition se puede utilizar para extraer importantes in-
formaciones sobre la naturaleza de las resonancias utilizando los datos exper-
imentales. En particular, la aplicamos a dos casos concretos: los mesones ρ
y K∗, para hacer una estimación de sus componentes de ππ y πK respecti-
vamente. En primer lugar, calculamos sus acoplamientos a las componentes
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moleculares usando el potencial quiral a nivel árbol. Los polos correspondi-
entes a la posición de la resonancia en el plano complejo se obtuvieron con un
fit del modelo a los datos de phase-shift y, junto a los acoplamientos, fueron
utilizados para evaluar la cantidad de carácter compuesto en el estado, que
resulta ser muy pequeña en ambos casos. Aplicamos también un método
fenomenológico, basado exclusivamente en la relación entre acoplamientos y
masa y anchura de las part́ıculas, para corroborar estos resultados. Los valores
que obtuvimos para polos y acoplamientos son perfectamente consistentes con
los anteriores y, también en este caso, el carácter molecular de las resonancias
es muy pequeño, de acuerdo con la idea comúnmente aceptada que los mesones
ρ y K∗ no son dinámicamente generados por la interacción de dos mesones.

9.3.2 Aplicación de la regla de suma a los bariones y su
interpretación

En el Chapter 4 aplicamos la regla de suma generalizada al decuplete de la
∆(1232) para estimar su carácter mesón-barión. Es interesante notar que, con
ambos métodos utilizados, llegamos a un valor para la posición del polo de
la ∆(1232) en muy buen acuerdo con el PDG [17]. La componente hadron-
hadron que encontramos es considerable, alrededor del 60%. A continuación,
extendimos el procedimiento a todo el decuplete y pudimos constatar que la
componente molecular decrece yendo a estados de enerǵıa más alta, indicando
que la Σ(1385) y la Ξ(1535) se describen mejor con una componente gen-
uina. En el caso de la Ω−, donde solo está presente el canal cerrado K̄Ξ,
estimamos un carácter molecular bastante pequeño, del orden del 25%. Lo
que encontramos nos sugiere que, en el momento de hacer cálculos realistas de
las propiedades de la ∆(1232), se tenga en cuenta la importante nube mesón-
barión en su función de onda.

Sucesivamente, clarificamos el significado de la generalización de la com-
positeness condition en el caso de resonancias, formulando una interpretación
en el caso de enerǵıas complejas. Pudimos ver que −g2 ∂GII

∂E
mide

∫
d3p 〈~p |Ψ〉2,

en vez de
∫
d3p |〈~p |Ψ〉|2 como en el caso de estados ligados. Por lo tanto, el

concepto de probabilidad se sustituye por el cuadrado de la función de onda.
Integrando su parte real, se obtiene una cantidad natural para proporcionar
una medida de la relevancia de un canal abierto en la función de onda, ya que
la integral del módulo cuadrado es divergente. Por otra parte,

∫
d3p 〈~p |Ψ〉2

no diverge, y la suma de estas cantidades para diferentes canales acoplados es
uno, en una determinada convención de fase, como muestra la regla de suma
de Weinberg.

Dimos también una interpretación de los términos de la regla de suma para
un potencial dependiente de la enerǵıa. En el caso de un conjunto completo de
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canales acoplados que genere un determinado estado ligado, podemos truncar
el espacio y definir un potencial dependiente de la enerǵıa en un espacio de
dimensión inferior. Por lo tanto, la probabilidad Z que el estado se solape con
la parte eliminada del espacio está relacionada con la derivada del potencial
con respecto a la enerǵıa.

Extendimos el análisis a la Λ(1520) para cuantificar sus componentes πΣ∗,
KΞ∗ (en onda-d) y K̄N , πΣ (en onda-s). Obtuvimos la amplitud de scat-
tering implementando las técnicas de chiral unitary approach, donde algunos
parámetros desconocidos se fijaron con un fit a los datos de scattering K̄N
and πΣ. La dependencia del momento proveniente de los canales en onda-d
se puede incorporar en la función de loop. Entonces, es posible calcular los
términos de la regla de suma, que proporcionan una medida del peso de los
diferentes canales en la función de onda, y también la misma suma total.

Mientras el acoplamiento más grande es al canal πΣ∗, el peso más grande
en la función de onda pertenece al canal K̄N . Esto podŕıa parecer una con-
tradicción, pero las dos cantidades representan conceptos distintos. En efecto,
el acoplamiento estima la función de onda en el origen en el caso de onda-s,
mientras que el término de la regla de suma, Xi representa la probabilidad de
encontrar ese canal.

Explicamos también que el peso muy relevante obtenido para los canales
abiertos es consecuencia de la contribución de la integral del cuadrado de la
función de onda a distancias más grandes que en el caso de estados ligados, y
no constituye una medida de la contribución del canal en diferentes procesos,
la mayoŕıa de los cuales son sensibles a distancias pequeñas. El valor de los
acoplamientos y la dinámica espećıfica de esos procesos es lo que por último
determina la relevancia de cada canal.

9.3.3 Loops triangulares KK̄ y rotura de la simetŕıa de
isospı́n

En el Chapter 5 calculamos las tasas de desintegración de las reacciones
η(1405) → π0f0(980)(π+π−) y η(1405) → π0a0(980)(π0η), con el objetivo
de analizar la violación de isosṕın en el primer proceso. Este fenómeno está
relacionado con lo que otros autores llaman f0(980)-a0(980) mixing. Nosotros
preferimos no adoptar esta terminoloǵıa, ya que en nuestro formalismo no hay
transiciones de una resonancia a otra. Por otro lado, lo que se verifica es
una producción simultánea de las dos, debida a la violación de isosṕın que se
produce en el momento de utilizar estados mesónicos en la base de la carga.

Siendo ambas resonancias generadas por la interacción de parejas de mesones,
el proceso procede por medio de un primer paso en el que se produce un π0

y una pareja de pseudoescalares y un segundo paso en el que esta pareja de

215



9.3 Resultados y conclusiones

mesones interacciona. Entonces, hay dos fuentes de violación de isosṕın: el
primer loop después de la producción y la matriz de scattering mesón-mesón.
En ambos casos, la violación está relacionada con la diferencia entre las masas
de los kaones neutros y cargados. La consecuencia es que la forma del pico
que se obtiene para la producción de π+π− en la primera reacción tiene una
anchura muy pequeña, del orden de esta diferencia de masas (9 MeV). Esto es
directa consecuencia de nuestro formalismo y está perfectamente de acuerdo
con las observaciones experimentales.

En la primera parte del caṕıtulo, no usamos ningún modelo expĺıcito para
la reacción, sino que asumimos que la producción de π0PP sea dada por un
término de contacto. Con esta asunción, obtuvimos una razón entre la tasa de
producción de π+π− frente a π0η, del orden del 1%. Este resultado está de buen
acuerdo con el mixing de f0(980) y a0(980) obtenido por el experimento BES
en las reacciones J/ψ → φπη y χc1 → π0ππ [164] y también con previsiones
teóricas [161, 162]. Sin embargo, es un orden de magnitud más pequeño que
el resultado experimental [165] para η(1405) → π0f0(980)(π+π−). Tratamos
de entender la situación suponiendo una mezcla importante de I = 1 en la
función de onda de la η(1405), pero una componente tan grande de I = 1 no
es fácilmente aceptable ya que llevaŕıa a una señal para la producción de la
f0(980) con una anchura de aproximadamente 20 MeV, mucho mayor que la
experimental.

En la segunda parte, seguimos el método en Ref. [166] usando el mecan-
ismo de producción dado por η′ → K∗K̄ y seguido por K∗ → Kπ. El primer
loop, ahora, es bastante distinto de lo que vimos en el caso de la interacción
de contacto, ya que la nueva singularidad asociada a η′ → K∗K̄ juega un
papel esencial en la reacción. La consecuencia del uso de este mecanismo es
un aumento de un orden de magnitud de la razón Γ(π0, π+π−)/Γ(π0, π0η), que
lleva a un resultado muy parecido al experimental. Estos resultados confir-
man los argumentos de los autores en Ref. [166], donde, en cambio, no era
posible determinar la razón con precisión, debido a unos factores de forma
desconocidos necesarios para regularizar los loop divergentes. El uso del chiral
unitary approach en nuestro trabajo soluciona el problema de manera nat-
ural, ya que nos permitió asociar el cutoff para regularizar el nuevo loop al
que se utiliza en el scattering de mesón-mesón para generar dinámicamente la
f0(980) y a0(980). Gracias a eso, pudimos hacer previsiones cuantitativas para
Γ(π0, π+π−)/Γ(π0, π0η), con un valor de (0.16 ± 0.03), muy próximo al valor
experimental de (0.179± 0.04).

Después, evaluamos la tasa de desintegración de f1(1285) → π0π0η, que
muestra un pico prominente en la región de la resonancia a0(980). Utilizamos
un esquema en el que la f1(1285) es también generada dinámicamente en la
interacción de un vector con un pseudoescalar en el canal KK̄∗ − cc. Nos

216



Resumen

beneficiamos del mismo mecanismo triangular usado en el caso de la η(1405)
y encontramos una tasa de desintegración de la f1(1285) del orden de 20%,
de acuerdo cualitativo con el resultado experimental. Al mismo tiempo, eval-
uamos la tasa de desintegración de f1(1285) → π0π+π− explotando el mismo
mecanismo. Este último proceso, en principio, estaŕıa prohibido por la con-
servación de isosṕın y daŕıa cero en nuestro esquema si consideráramos masas
iguales para los kaones neutros y cargados. Cuando usamos las masas f́ısicas,
se produce una leve violación de isosṕın y encontramos un pico, aunque de
baja intensidad, en la región de la f0(980). Una vez más, la anchura del pico
es muy estrecha, como en el caso de η(1405)→ ππη. Estas previsiones fueron
confirmadas por un reciente experimento de BESIII [194] y, como en el caso
anterior, la distribución de masa invariante para el estado final π0π+π− no
refleja la anchura natural de la f0(980) sino simplemente la región donde la
diferencia entre las masas f́ısicas de los kaones es más apreciable comparada
con sus masas. También la forma obtenida es parecida a la del caso de las
reacciones η(1405) → π0π+π− y J/ψ → φπ0η, pero la ruptura de simetŕıa
de isosṕın es bastante distinta de la de estos dos procesos. Sin embargo, el
valor de 1% que obtenemos para la violación de isosṕın es compatible con el
resultado reportado en Ref. [194].

Considerado todo esto, podemos concluir que, en nuestro formalismo , el
concepto de f0(980)-a0(980) mixing no es apropiado: esta cantidad es muy
distinta en distintas reacciones y preferimos hablar de violación de isosṕın,
algo estrictamente ligado a la naturaleza de los procesos estudiados. La habil-
idad del chiral unitary approach para describir estos procesos da apoyo a la
idea que las resonancias f0(980), a0(980) y f1(1285) sean básicamente estados
moleculares.

La última parte del caṕıtulo se dedicó al cálculo de la tasa de desintegración
de f1(1285)→ πKK̄. Consideramos antes el nivel árbol y luego incluimos las
interacciones de estado final de KK̄ → KK̄ y πK → πK, en las que el loop
triangular juega un papel fundamental. Los resultados que obtuvimos son
compatibles con el valor experimental dentro de las incertidumbres. Vimos
también que las distribuciones de masa invariante de f1(1285)→ πKK̄ tienen
una forma que está relacionada con la asunción de estado molecular que hici-
mos sobre la f1(1285). Su observación experimental proporcionaŕıa valiosa
información sobre la naturaleza de esta resonancia.

9.3.4 Hidden charm and hidden bottom states
En el Chapter 6 estudiamos las interacciones DD̄∗, D∗D̄∗, BB̄∗ y B∗B̄∗ en
I = 1 usando la extensión al sector pesado del local hidden gauge approach.

Empezamos con un estudio combinado de un estado Zc de I = 1 alrededor
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de 3900 MeV, observado en muchos experimentos. Por otro lado, usamos el
hidden gauge approach para estudiar las interacciones DD̄∗ y D̄D∗ en canales
acoplados. Las restricciones de heavy quark spin symmetry muestran que
los términos dominantes en otros procesos, como en I = 0, debidos al inter-
cambio de mesones ligeros, ahora están prohibidos. Entonces, consideramos
términos subdominantes que vienen del intercambio de vectores pesados o de
dos piones. Encontramos que esta última contribución es bastante pequeña
en comparación con el intercambio de vectores pesados y su efecto se puede
incluir en las incertidumbres de los resultados. Obtuvimos un estado con masa
en el rango 3869− 3875 MeV y anchura alrededor de 40 MeV con I = 1 y G-
paridad positiva. Este estado, en nuestro formalismo, es un partner de isosṕın
de la X(3872).

Luego, hicimos un nuevo análisis del experimento de Ref. [291] en la
reacción e+e− → π±(DD̄∗)∓. El equipo experimental extrajo una masa de
3885 MeV y una anchura de 25 ± 3 ± 11 MeV de un aumento en la masa
invariante de DD̄∗ alrededor del umbral. Nuestro análisis llevó a una solución
bastante parecida, con una masa de 3875 MeV y una anchura de 30 MeV.

Por lo tanto, el presente trabajo muestra que los datos de Ref. [291] son
compatibles con una masa levemente más baja, como obtuvimos a nivel teórico.
Esto implica que los resultados reportados aqúı ofrezcan una explicación nat-
ural del estado anunciado en Ref. [291] en términos de un estado débilmente
ligado de DD̄∗(D̄D∗), que se desintegra en los canales ηcρ y πJ/ψ.

No obstante, todav́ıa no está claro si este estado se puede identificar con
el Zc(3900) de BESIII [229], o Zc(3894) de Belle [243] o Zc(3886) de CLEO
[244]. De todas formas, podemos decir que, debido a la imposibilidad de pro-
ducir una resonancia encima del umbral del solo canal DD̄∗ con un potencial
independiente del enerǵıa [96], un estado de 3900 MeV no se podŕıa fácilmente
interpretar como un estado molecular DD̄∗(D̄D∗). Por otro lado, la inter-
pretación molecular es natural para el estado de enerǵıa inferior. Ulteriores
medidas e investigaciones ayudarán a una mejor comprensión del problema.

En el estudio de la interacción D∗D̄∗ en I = 1 desde el punto de vista del
formalismo de hidden gauge, tuvimos en cuenta también el estado acoplado
J/ψρ, que está abierto para la desintegración y es responsable de la importante
anchura del estado, alrededor de 100 MeV. Como en el caso anterior, pudimos
constatar que el efecto del intercambio de dos piones, con y sin interacción, es
menos relevante que el intercambio de vectores pesados. El estudio llevado a
cabo en esta Tesis completa el de Ref. [228], en el que el pico observado en
el espectro de D∗D̄∗ de la reacción e+e− → (D∗D̄∗)±π±, que llevó el equipo
experimental a anunciar el estado Zc(4025) (JP = 1+), fue interpretado como
un posible estado ligado 2+ de D∗D̄∗ con I = 1. La masa y la anchura que
obtuvimos son ambas compatibles con los resultados de Ref. [228], que fueron
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obtenidos por medio de un fit a los datos experimentales. Todo esto nos per-
mite concluir que el estado que encontramos proporciona una explicación de
los resultados experimentales de Ref. [213]. Es posible identificar la obser-
vación experimental con una resonancia, pero con enerǵıa (3990− 4000 MeV),
anchura (100 MeV) y números cuánticos (IG = 1−, JPC = 2++) diferentes.

En el caso de las interacciones BB̄∗ y B∗B̄∗ en isosṕın I = 1, a diferencia
de los dos casos anteriores, el potencial para el intercambio de vectores pesados
no es la fuente más relevante de la interacción. Por eso, corregimos este poten-
cial por medio de un factor multiplicativo para que se tuvieran en cuenta las
contribuciones de los otros intercambios de mesones. Luego, utilizamos este
potencial eficaz como kernel de la ecuación de Bethe-Salpeter para calcular la
matriz de scattering T . Intentamos relacionar los polos de la matriz T con los
estados Zb(10610) y Zb(10650) observados por Belle. Encontramos un estado
ligado de BB̄∗ con masa en el rango 10587−10601 MeV, muy cerca de la masa
experimental del Zb(10610) de 10608 MeV. En el caso de la interacción B∗B̄∗,
encontramos un cusp alrededor de 10650 MeV para J = 0 y J = 2. En el caso
de spin J = 1, no tuvimos en cuenta el canal ρΥ y el problema se redujo a
un único canal. Una vez más encontramos un cusp de enerǵıa 10650 MeV en
|T11|2, como ya fue señalado en Refs. [255, 256].

9.3.5 Decays of the X(3872) to J/ψγ, J/ψρ and J/ψω
Por último, explotamos la idea de la X(3872) como estado compuesto de
DD̄∗ − cc, generado dinámicamente de la interacción de D y D∗. Volvimos a
calcular los acoplamientos del estado a los diferentes canales DD̄∗ − cc para
tener en cuenta las actualizaciones de los valores de las masas de las part́ıculas
tabuladas en el PDG [17]. El acoplamiento para el canal D0D̄∗0− c.c es pare-
cido al que se obtendŕıa utilizando la compositeness condition de Weinberg,
ya que el estado está apenas ligado en la componente D0D̄∗0, pero la dinámica
del modelo produce también acoplamientos para los canales D+D∗− − c.c y
D+
SD

∗−
S − c.c.

Utilizando una extensión a SU(4) del formalismo de hidden gauge, con
una ruptura expĺıcita de su simetŕıa, ya usado con éxito en el estudio de otros
procesos, fue posible determinar las tasas de desintegración de la X(3872)
yendo a J/ψρ, J/ψω y J/ψγ y compararlas con las razones determinadas
experimentalmente en trabajos recientes. Obtuvimos un muy buen acuerdo
entre nuestros resultados y los resultados experimentales. También los valores
absolutos obtenidos para las distintas tasas de desintegración son razonables,
y su suma, dentro de las incertidumbres, (1.6+0.9

−0.7) MeV, es compatible con el
ĺımite superior para la anchura de la X(3872) recientemente medido de Γ = 1.2
MeV.
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Llevamos a cabo un test para averiguar la importancia de la componente
cargada y extraña de la función de onda, dejando en el cálculo sólo la com-
ponente neutra D0D̄0∗ − cc. Obtuvimos razones en gran desacuerdo con los
valores experimentales y valores absolutos para las tasas de desintegración a
J/ψρ que superan en gran medida el ĺımite superior experimental de la an-
chura total de la X. Este ejercicio es una confirmación de la relevancia de
los canales cargados en la descripción de los procesos que consideramos y del
carácter aproximadamente de I = 0 de esta resonancia. En cambio, esto no
implica que el uso del canal neutro únicamente no sea una manera correcta de
proceder, en general, sino simplemente incompleta. En una teoŕıa de campo,
los canales que faltan se pueden tener en cuenta por medio de contra-términos
que, en cambio, hacen la teoŕıa menos predictiva. En el presente caso, de-
mostramos claramente que la consideración expĺıcita de los canales cargados
hace la teoŕıa más predictiva que su omisión.
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APPENDIX A

WAVE FUNCTIONS IN COORDINATE
SPACE

Remembering that, as we saw in Chapter 3, the wave function in momentum
space is given by

Ψ(~p ) = g
θ(Λ− p) |~p |
E − ~p 2/2µ

Y10(p̂) ≡ Ψ̃(~p )Y10(p̂) , (A.1)

where, for simplicity, we only take the spherical harmonic Y10(p̂), we move to
the coordinate space writing

Ψ(~r ) =

∫
d3p

(2π)3/2
ei~p~rΨ(~p ) . (A.2)

Integrating over the coordinate space we have∫
d3r (Ψ(~r ))2 =

∫
d3r

∫
d3p

(2π)3/2
ei~p~rΨ(~p )

∫
d3p ′

(2π)3/2
ei~p
′~rΨ(~p ′)

=

∫
d3p

∫
d3p ′Ψ(~p )Ψ(~p ′)δ(~p+ ~p ′) .

(A.3)

Then, due to the behaviour of the spherical harmonics under parity transfor-
mations, we have

Ψ(~p ′) = Ψ(−~p ) = (−1)lΨ(~p ) , (A.4)

and, for l = 1, we get∫
d3r (Ψ(~r ))2 = −

∫
d3p (Ψ(~p ))2 . (A.5)
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Now we can define again

Ψ(~r ) = Ψ̃(~r )Y10(r̂ ) , (A.6)

where

Ψ̃(~r ) = g

∫
p<Λ

d3p

(2π)3/2
i j1(pr)

|~p |
E − ~p 2/2µ

. (A.7)

If we remove the factor i in Ψ̃(~r ) and call

Ψ̄(~r ) = g

∫
p<Λ

d3p

(2π)3/2
j1(pr)

|~p |
E − ~p 2/2µ

, (A.8)

then we see that ∫
d3p (Ψ̃(~p ))2 = −

∫
d3p (Ψ̄(~p ))2 . (A.9)

Now we substitute the explicit expression of j1(x) in Eq. (A.9),

j1(x) =
sinx

x2
− cosx

x
, (A.10)

and use the symmetry of the integral, getting

Ψ̄(~r ) =− 2µg
1

2i

4π

(2π)3/2

1

|~r | 2
∫ Λ

−Λ

dp
|~p |

~p 2 − 2µE
eipr

+ 2µg
1

2

4π

(2π)3/2

1

|~r |

∫ Λ

−Λ

dp
|~p |2

~p 2 − 2µE
eipr .

(A.11)

Im p 

. 

. Λ- Λ Re p 

C

2 E 

2 E 

Figure A.1: Integration path in the complex p plane for the wave function.
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Wave functions in coordinate space

We can perform the integration in p by integrating over the circuit in the
complex plane of Figure A.1, and thus∫ Λ

−Λ

dp ... = 2πiRes(p =
√

2µE)−
∫
C
dp ... . (A.12)

The circuit picks up the pole at p =
√

2µE and, for the first Riemann sheet,
we find the result

Ψ̄(~r ) =− µg 4π2

(2π)3/2

1

|~r |2 e
i
√

2µE r + µg
4π2

(2π)3/2

i

|~r |
√

2µE ei
√

2µE r

+ µg
4π

(2π)3/2

1

|~r |2
∫ π

0

dθ
Λ2 e2iθ

Λ2 e2iθ − 2µE
eiΛr cos θe−Λr sin θ

− µg 4π

(2π)3/2

i

|~r |

∫ π

0

dθ
Λ3 e3iθ

Λ2 e2iθ − 2µE
eiΛr cos θe−Λr sin θ .

(A.13)

To go to the second Riemann sheet we must change
√

2µE to −√2µE, getting

Ψ̄II(~r ) =− µg 4π2

(2π)3/2

1

|~r |2 e
−i
√

2µE r − µg 4π2

(2π)3/2

i

|~r |
√

2µE e−i
√

2µE r

+ µg
4π

(2π)3/2

1

|~r |2
∫ π

0

dθ
Λ2 e2iθ

Λ2 e2iθ − 2µE
eiΛr cos θe−Λr sin θ

− µg 4π

(2π)3/2

i

|~r |

∫ π

0

dθ
Λ3 e3iθ

Λ2 e2iθ − 2µE
eiΛr cos θe−Λr sin θ .

(A.14)

As we can see, for large values of r the integrals over the half circle in
Figure A.1 are strongly suppressed by the factor e−Λr sin θ (θ ∈ [0, π]), which
makes these integrals vanish when r →∞.

Then, the dominant term for r →∞ is given by

Ψ̄II(~r ) ' −i1
r

√
2µE e−i

√
2µE r , (A.15)

which has been used in the discussion in Section 4.4.
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APPENDIX B

S-WAVE PV → P ′V ′ TREE LEVEL
AMPLITUDES IN THE BOTTOM SECTOR

The matrix in Eq. (6.9) contains the coefficients Cij for the PV → P ′V ′ tran-
sition amplitudes in the bottom sector. Here we show how they are evaluated
by means of the hidden gauge approach.

We choose as an example the (BB̄∗ + cc)/
√

2 → ηcρ transition. The dia-
grams contributing to the process are shown in Figure B.1. We only consider
the contributions from the t-channel and neglect the ones coming from the
channels s and u due to the presence of anomalous V V P vertices that lead
to suppressions. Moreover, we evaluate in detail only the amplitude of the
first diagram of Figure B.1, being the procedure for the others completely
analogous.

We start from the vertices appearing in the diagram. Using the hidden
gauge Lagrangian of Eq. (2.92) we obtain, for the B0B∗0ηc vertex,

tV PP = −gεµV (k + k′)µ , (B.1)

where εV is the polarization four-vector of the exchanged B∗0 vector meson.
For the B̄∗0B∗0ρ0 vertex we can use Eq. (2.96), leading to

tV V V = − g√
2
εµε′µε

ν
V (p+ p′)ν , (B.2)

with ε and ε′ the polarization four-vectors of the initial and final vector meson,
respectively.

From the two vertices we can derive the amplitude of the diagram,

tB0B̄∗0→ηcρ0 = − g√
2M2

B∗0

~ε · ~ε ′ (k + k′) · (p+ p′) , (B.3)
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B+(k) ηc(k
′)

B∗−(p, ǫ) ρ0(p′, ǫ′)

B∗+

B0(k) ηc(k
′)

B̄∗0(p, ǫ) ρ0(p′, ǫ′)

B∗0

B+(k) ηc(k
′)

B∗−(p, ǫ) ρ0(p′, ǫ′)

B∗+

B0(k) ηc(k
′)

B̄∗0(p, ǫ) ρ0(p′, ǫ′)

B∗0

B−(k) ηc(k
′)

B∗+(p, ǫ) ρ0(p′, ǫ′)

B∗−

B̄0(k) ηc(k
′)

B∗0(p, ǫ) ρ0(p′, ǫ′)

B̄∗0

Figure B.1: Feynman diagrams for the (BB̄∗+cc)/
√

2→ ηcρ interaction via vector
exchange.
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s-wave PV → P ′V ′ tree level amplitudes in the bottom sector

where we have approximated the propagator of the B∗0 with −i
M2
B∗0

and consid-

ered that, in the approximation of low three-momenta of the external vectors
compared to their masses, the zero’th components of the polarization vectors
ε and ε′ are negligible, which implies εµε′µ ' −~ε · ~ε ′.

We are interested in the I = 1 combination of BB̄∗ with positive G-parity,
which corresponds to

|BB̄∗〉I=1,G=+ =
1

2
(|B0B̄∗0〉 − |B+B∗−〉+ |B̄0B∗0〉 − |B−B∗+〉) . (B.4)

Taking it into account, the total amplitude of the process will be given by

tBB̄∗→ηcρ =
1

2
(tB0B̄∗0→ηcρ0 − tB+B∗−→ηcρ0 + tB̄0B∗0→ηcρ0 − tB−B∗+→ηcρ0)

= 2tB0B̄∗0→ηcρ0 = −
√

2
g

M2
B∗0

~ε · ~ε ′ (k + k′) · (p+ p′) ,
(B.5)

where in the last step we used that tB+B∗−→ηcρ0 = −tB0B̄∗0→ηcρ0 , tB̄0B∗0→ηcρ0 =
tB0B̄∗0→ηcρ0 and tB−B∗→ηcρ0 = −tB0B̄∗0→ηcρ0 . Now, recalling that g = MV /2f ,
Eq. (B.5) can be rewritten as

tBB̄∗→ηcρ = −
√

2
MV

M2
B∗0

~ε · ~ε ′
4f 2

(s− u) , (B.6)

with s = (k + p)2 = (p′ + k′)2 and u = (p′ − k)2 = (k′ − p)2.
We want to project the amplitude in s-wave,

fl=0(s) =
1

2

∫ 1

−1

T (s, t(x′), u(x′))Pl=0(x′) dx′ , (B.7)

where Pl=0(x) is the Legendre polynomial for l = 0 and x = cosθ, with θ the
scattering angle in the center of mass reference frame. In order to do that, we
write u as a function of x,

u(x) = m′ 2 +M2 − 2E(k′)E(p)− 2|~k ′||~p |x , (B.8)

where

E(k′) =
1

2
√
s

(s−M ′ 2 +m′ 2),

E(p) =
1

2
√
s

(s+M2 −m2) .
(B.9)

Substituting Eqs. (B.8) and (B.9) in Eq. (B.5) and performing the s-wave
projection we obtain

tBB̄∗→ηcρ = −
√

2
MV

M2
B∗0

~ε · ~ε ′
8f 2

[3s−(M2+m2+M ′ 2+m′ 2)−1

2
(M2−m2)(M ′ 2−m′ 2)] ,

(B.10)
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which is exactly the expression for the potential that we have in Eq. (6.5),
and

C12 =
√

2
M2

V

M2
B∗0
'
√

2γ , (B.11)

like in Eq. (6.9).
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APPENDIX C

V V → V ′V ′ TREE LEVEL AMPLITUDES IN
THE BOTTOM SECTOR

We want to evaluate the tree level V V → V ′V ′ transition amplitudes in the
bottom sector. We start with the reaction B∗B̄∗ → B∗B̄∗. As in Ref. [214],
where the authors treat the D∗D̄∗ case, we also consider that the external
vectors have negligible three-momentum with respect to their masses. The
most important diagrams contributing to the exchange term of the amplitude
are shown in Figure C.1.

As an example, we calculate in detail the amplitude of the first diagram
of Figure C.1 since the evaluation of the other ones is completely analogous.
To this end, we must calculate the three-vector vertices which are given by the
Lagrangian of Eq. (2.96). Figure C.2 (a) and (b) illustrate the two vertices
B∗+B̄∗+ρ0 and B∗−B̄∗−ρ0 with the momenta assignment. The corresponding
vertex functions are

tB∗+B∗+ρ0 =
g√
2
ε1µε

µ
3(k1 + k3)νε

ν
V , (C.1)

tB∗−B∗−ρ0 =
g√
2
ε2µε

µ
4(k2 + k4)νε

ν
V . (C.2)

Once we have determined the vertices, it is possible to calculate the am-
plitude for the first diagram of Figure C.1. Considering all the particles
involved in the exchange, we obtain

tB∗+B∗−→B∗+B∗− = −1

2
g2

[
2

M2
Υ

− 1

M2
ρ

+
1

M2
ω

]
ε1µε2νε

µ
3ε
ν
4

× (k1 + k3) · (k2 + k4) ,

(C.3)

where MΥ, Mρ and Mω are the masses of the Υ, ρ and ω mesons, respectively.
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B∗0(k1, ǫ1) B∗+(k2, ǫ2)

B̄∗0(k2, ǫ2) B∗−(k4, ǫ4)

ρ−(k1 − k3, ǫV )

B∗+(k1, ǫ1) B∗0(k2, ǫ2)

B∗−(k3, ǫ3) B̄∗0(k4, ǫ4)

ρ+(k1 − k3, ǫV )

B∗+(k1, ǫ1) B+(k3, ǫ3)

B∗−(k3, ǫ3) B∗−(k4, ǫ4)

ρ0, ω,Υ(k1 − k3, ǫV )

B∗0(k1, ǫ1) B∗0(k3, ǫ3)

B̄∗0(k2, ǫ2) B̄∗0(k4, ǫ4)

ρ0, ω,Υ(k1 − k3, ǫV )

Figure C.1: Vector exchange diagrams contributing to the process B∗B̄∗ → B∗B̄∗.

B∗+(k3, ǫ3)

B∗+(k1, ǫ1)

ρ0(k1 − k3, ǫV )

B∗−(k2, ǫ2)

B∗−(k4, ǫ4)

ρ0(k1 − k3, ǫV )

(a) (b)

Figure C.2: Three-vector vertices associated with B∗+B∗+ ρ0 (a) and B∗−B̄∗−ρ0

(b).
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V V → V ′V ′ tree level amplitudes in the bottom sector

Since we are interested in the B∗B̄∗ interaction in the I = 1 channel, we
must rewrite Eq. (C.3) in the isospin basis. The isospin states are

|B∗B̄∗〉I=1 = − 1√
2
|B∗+B̄∗−〉+

1√
2
|B∗0B̄∗0〉 ,

|B∗B̄∗〉I=0 =
1√
2
|B∗+B̄∗−〉 − 1√

2
|B∗0B̄∗0〉 .

Once all the four diagrams of Figure C.1 are taken into account, we get

tI=1
B∗B̄∗→B∗B̄∗ = g2

[
2M2

ρM
2
ω +M2

Υ(−M2
ω +M2

ρ )

2M2
ΥM

2
ωM

2
ω

]
ε1µε2νε

µ
3ε
ν
4

× (k1 + k3) · (k2 + k4) ,

(C.4)

which shows explicitly the cancellation of ρ and ω exchange in the limit of
equal masses.

In order to rewrite the amplitude of Eq. (C.4) in terms of spin 0, 1 and 2
states, we use the spin projectors P(0), P(1) and P(2) given by Ref. [214],

P(0) =
1

3
εµεµε

νεν ,

P(1) =
1

2
(εµενε

µεν − εµενενεµ) ,

P(2) =
1

2
(εµενε

µεν + εµενε
νεµ)− 1

3
εµεµε

νεµ ,

(C.5)

where the order of the particles 1, 2, 3 and 4 is implicit. In terms of those pro-
jectors the polarization vector combination ε1µε2νε

µ
3ε
ν
4 appearing in Eq. (C.4)

is equal to
ε1µε2νε

µ
3ε
ν
4 = P(0) + P(1) + P(2). (C.6)

Therefore, substituting Eq. (C.6) into Eq. (C.4) and projecting it in s-
wave, we obtain

tI=1,S=0,1,2

B∗B̄∗→B∗B̄∗ = g2

[
2M2

ρM
2
ω +M2

Υ(−M2
ω +M2

ρ )

4M2
ΥM

2
ωM

2
ρ

]
(4M2

B∗ − 3s) , (C.7)

where s stands for the square of the center of mass energy of the B∗B̄∗ system.
Let us consider now the other channel, B∗B̄∗ → ρΥ. The most relevant

diagrams are depicted in Figure C.3. The procedure to get the amplitude for
this channel is analogous to what we have done earlier. Thus, the amplitude
in isospin I = 1 basis for the spin S = 0, 2 states in s-wave, corresponding to
all diagrams of Figure C.3 is given by

tI=1,S=0,2

B∗B̄∗→ρΥ
= g2

[
2M2

B∗ +M2
Υ +M2

ρ − 3s

M2
B∗

]
. (C.8)
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The interaction in S = 1 vanishes as a consequence of a cancellation of terms
where the ρ0 and Υ are interchanged in the diagrams. The diagonal ρΥ→ ρΥ
transition is again OZI forbidden and null in this approach.

B∗+(k1, ǫ1) ρ0(k3, ǫ3)

B∗−(k3, ǫ3) Υ(k4, ǫ4)

B∗+(k1 − k3, ǫV )

B∗0(k1, ǫ1) ρ0(k3, ǫ3)

B̄∗0(k2, ǫ2) Υ(k4, ǫ4)

B∗0(k1 − k3, ǫV )

Figure C.3: Vector exchange diagrams contributing for the B∗B̄∗ → ρΥ channel.
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APPENDIX D

COEFFICIENTS FOR THE DECAYS OF THE
X(3872) TO J/ψγ, J/ψρ AND J/ψω

Diagram P V Pl B

D0 D̄∗0 D0 4/3
√

2

1 D+ D∗− D+ 1/3
√

2

D+
s D∗−s D+

s 1/3
√

2

D̄0 D∗0 D̄0 −4/3
√

2

1̄ D− D∗+ D− −1/3
√

2

D−s D∗+s D−s −1/3
√

2
D0 D̄∗0 D0 0

3 D+ D∗− D+ 1/
√

2

D+
s D∗−s D+

s −1/
√

2
D̄0 D∗0 D̄0 0

3̄ D− D∗+ D− −1/
√

2

D−s D∗+s D−s −1/
√

2

Table D.1: Coefficients B of the different diagrams in Figure 7.1 for the decay
X(3872)→ J/ψγ.
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Diagram P V Vl C

D0 D̄∗0 D∗0 0

2 D+ D∗− D∗+ −1/
√

2

D+
s D∗−s D∗+s 1/

√
2

D̄0 D∗0 D̄∗0 0

2̄ D− D∗+ D∗− 1/
√

2

D−s D∗+s D∗−s 1/
√

2

D0 D̄∗0 D∗0 −4/3
√

2

4 D+ D∗− D∗+ −1/3
√

2

D+
s D∗−s D∗+s −1/3

√
2

D̄0 D∗0 D̄∗0 4/3
√

2

4̄ D− D∗+ D∗− 1/3
√

2

D−s D∗+s D∗−s 1/3
√

2

Table D.2: Coefficients C of the different diagrams in Figure 7.1 for the decay
X(3872)→ J/ψγ.

Diagram P V Pl B′

1 D0 D̄∗0 D0 1/2
D+ D∗− D+ −1/2

1̄ D̄0 D∗0 D̄0 −1/2
D− D∗+ D− 1/2

3 D0 D̄∗0 D0 −1/2
D+ D∗− D+ 1/2

3̄ D̄0 D∗0 D̄0 1/2
D− D∗+ D− −1/2

Table D.3: Coefficients B′ of the different diagrams in Figure 7.2 for the decay
X(3872)→ J/ψρ.
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Coefficients for the decays of the X(3872) to J/ψγ, J/ψρ and J/ψω

Diagram P V Vl C ′

2 D0 D̄∗0 D∗0 1/2
D+ D∗− D∗+ −1/2

2̄ D̄0 D∗0 D̄∗0 −1/2
D− D∗+ D∗− 1/2

4 D0 D̄∗0 D∗0 1/2
D+ D∗− D∗+ −1/2

4̄ D̄0 D∗0 D̄∗0 −1/2
D− D∗+ D∗− 1/2

Table D.4: Coefficients B′ of the different diagrams in Figure 7.2 for the decay
X(3872)→ J/ψρ.

Diagram P V Pl B′

1 D0 D̄∗0 D0 1/2
D+ D∗− D+ 1/2

1̄ D̄0 D∗0 D̄0 −1/2
D− D∗+ D− −1/2

3 D0 D̄∗0 D0 −1/2
D+ D∗− D+ −1/2

3̄ D̄0 D∗0 D̄0 1/2
D− D∗+ D− 1/2

Table D.5: Coefficients B′ of the different diagrams in Figure 7.2 for the decay
X(3872)→ J/ψω.

Diagram P V Pl C ′

2 D0 D̄∗0 D∗0 1/2
D+ D∗− D∗+ 1/2

2̄ D̄0 D∗0 D̄∗0 −1/2
D− D∗+ D∗− −1/2

4 D0 D̄∗0 D∗0 1/2
D+ D∗− D∗+ 1/2

4̄ D̄0 D∗0 D̄∗0 −1/2
D− D∗+ D∗− −1/2

Table D.6: Coefficients C ′ of the different diagrams in Figure 7.2 for the decay
X(3872)→ J/ψω.
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