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grado de Doctor en Ingenieŕıa Informática por la Universidad de La Laguna.

Y para que conste, en cumplimiento de la legislación vigente, y a efectos que hayan

lugar, firmamos la presente, en La Laguna, a 16 de Julio de 2016
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Preface

Since the existence of the first organized societies, optimization issues have been pro-

posed for the use of resources and planning of tasks. Nowadays, these issues are more

difficult to solve as we are in a competitive world where big and small business have

to fight to get a place. In many cases, this fight is based in a good management of

the available resources and a good operation planning. It is in this point where the

mathematical modeling and the combinatorial optimization are useful. Thus, a lot of

algorithms that help to solve diversity of problems in logistic, repositioning, genetics,

etc., have been arising.

This thesis focuses on a kind of problems thoroughly studied in operational research,

in particular in Vehicle Routing Problems. These arise for the first time in 1930 when

a mathematical model for the Travelling Salesman Problem (TSP) was proposed. In

this, it is set a group of cities that have to be visited taking the shortest distance as be

possible, starting and finishing in the same city and going through them exactly once.

This is one of the most famous problems in the combinatorial optimization field, and

although it has a simple proposal, is an NP-hard problem as it is still looking for an

algorithm to solve it polynomially.

The importance of these kind of problems is not due to the computational complexity

only but also the variety of practical applications. In fact, the idea of Operational

Research appears formally in 1938 in the Second World War, in the frame in collaborative

researches between soldiers and scientists about planning of flight military operations.

A part of the most obvious examples in logistic (distribution of commodities, scholar

routes,etc.), there are more examples as operational control of traffic light, those that

can be found in robotic systems that allow to solve production problems, in genetic, etc.

Another kind of practical applications arise due to the growing worry about environment.

This thesis studies the case of the management of bicycle sharing systems. These are

increasingly in demand due to the need of space, the high traffic density and the high

emission of noise and CO2.

Despite there are a lot of studies about vehicle routing problems, the most basic are still

difficult to solve optimally, even for small size and the lacking practical use. Because of

xiii
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that, this thesis develops algorithms to solve a particular problem known as the The split-

demand one-commodity pickup-and-delivery travelling salesman problem (SD1PDTSP).

The research in this PhD thesis has been prepared at the Department of Statistic,

Operational Research and Computer Science of the University of La Laguna, and this

work has been supervised by professor Juan José Salazar González and professor Hipólito

Hernández Pérez.

The dissertation is organized in six chapters. Chapter 1 describes some mathemat-

ical concepts in Operational Research. It also shows some important tools for this

work: Benders decomposition, a branch-and-cut algorithm and some interesting con-

cepts about heuristic techniques. Chapter 2 describes several related problems as the

One-Commodity Pickup-and-Delivery Travelling Salesman Problem (1-PDTSP), or the

Split Delivery Vehicle Routing Problem (SDVRP), as well as the SD1PDTSP. Chapter 3

presents a mathematical model for the SD1PDTSP and theoretical results of the prob-

lem. Chapter 4 describes a branch-and-cut algorithm to solve the SD1PDTSP exactly

and some computational results. Finally chapter 5 presents a heuristic algorithm for the

same problem based on well-known heuristic approaches and a math-based approach.

The main results of this work have been presented in several national and international

conferences. Some of them are enumerated below:

• Seminario de Doctorandos en Matemáticas. San Cristóbal de La Laguna (Spain).

November 10, 2011.

• Combinatorial Optimization, Routing and Location (CORAL2012). Benicassim,

Castellón (Spain). May 2-5, 2012.

• The first meeting of the EURO Working Group on Vehicle Routing and Logistics

Optimization (VEROLOG2012). Bologna (Italy), 18-20 June 2012.

• Cuarto Encuentro de Jóvenes Investigadores en Matemáticas (PEJIM2014). San

Cristóbal de La Laguna (Spain). November 19-22, 2014.

• The fourth meeting of the EURO Working Group on Vehicle Routing and Logistics

Optimization (VEROLOG2014). Vienna (Austria). June 8-10, 2015.

• Encuentro de Jóvenes Investigadores/Doctorandos del IUDR. San Cristóbal de La

Laguna. September 28, 2015

In addition, I have been able to attend to some courses, seminars, etc., described below:

• Winter School on Network Optimization. Estoril (Portugal). January 17-21, 2011.

• Reunión cient́ıfica miembros del MTM2009-140390C06. April 11-12, 2011.
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• Primer Encuentro de Jóvenes Investigadores de La Laguna (PEJIM2011). San

Cristóbal de La Laguna. September 28-30, 2011.

• Summer School: Stochastic Programming: Extensions to Integer Programming.

Barcelona (Spain). June 11-15, 2012.

• Summer School: Course on Distribution Management. Barcelona (Spain). June
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• International Network Optimization Conference (INOC2013). Adeje (Spain). May
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Also, I have been able to work for three months with an excellent research group of

the Management Science, DTU Management Engineering department in the Technical

University of Denmark.

Finally the main results of this thesis have been published in Salazar-González and

Santos-Hernández (2015). With this one I have obtained the II award to the new re-

search’s best paper from IUDR 2016. Also, Hernández-Pérez et al. (2016) has been

submitted to European Journal of Operational Research.





Chapter 1

Basic Concepts, Models and

Approaches

This paper introduces some mathematical concepts in Operational Research, and presents

some closely related problem as the travelling salesman problem, the vehicle routing

problem and the pickup and delivery problem. The Benders’ decomposition and the

branch-and-cut method are also shown as basic tools in order to solve the combinatorial

optimization problems to optimality. Finally, some interesting concepts about heuristic

algorithm are presented.

1.1 Graph Theory

Graph Theory is an important tool used to solve problems in mathematics and com-

putational science. In particular, it is used to model and analyze routing problems. In

this section some elementary concepts and properties on Graph Theory are given. The

reader is encouraged to read textbooks by Berge (1973), Christofides (1975) and Bondy

and Murty (2007) for further information.

A directed graph G is a pair (V,A), where V is a finite set of vertices and A ⊆
{(i, j) : i, j ∈ V, i 6= j}, i.e. A is a set of pairs of ordered elements of V called arcs.

Each arc a ∈ A is represented by a = (i, j), where i denotes the tail and j the head.

When the links between the vertices are not oriented, the graph is called undirected

graph and is denoted by G = (V,E), where E is a set of pairs of non-ordered elements

of V called edges. Each edge e ∈ E is represented by e = [i, j], where i and j denote

the incident vertices of e. Note that e = [i, j] = [j, i]. Moreover, a subgraph of G is a

new graph G′ = (V ′, E′), where V ′ ⊆ V and E′ ⊆ E. A complete graph (directed or

undirected graph) is a graph where all pairs of distinct vertices are connected between

them. If |V | = n, the complete graph is denoted by Kn.

1



2 Chapter 1 Basic Concepts, Models and Approaches

Given S and T subsets of V , the following subsets are associated to the graph G:

δ+(S) = {(i, j) ∈ A : i ∈ S, j /∈ S}

δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S}

A(S) = {(i, j) ∈ A : i ∈ S, j ∈ S}

δ(S) = {[i, j] ∈ E : i ∈ S, j ∈ V \ S}

E(S) = {[i, j] ∈ E : i ∈ S, j ∈ S}

For the sake of simplicity, if S = {i}, it writes δ+(i), δ−(i) and δ(i) instead of δ+({i}),
δ−({i}) and δ({i}).

A set P = {(i1, i2), (i2, i3), . . . (it−1, it)} of a directed graph G = (V,A) is the path

between i1 and it. It is said the path starts in i1 and finishes in it. The length of a path

is the number of their arcs and is denoted by |P |. A path C where the first and the

last vertex are the same is called closed path, and besides, it is a cycle if ik 6= il for all

k, l ∈ {2, . . . , t− 1}, k 6= l. On the one hand, if |C| = |V |, i.e. it is going through every

vertex only once, C is a Hamiltonian cycle. On the other hand, C is called Eulerian

cycle if the cycle includes all the arcs of the graph.

1.2 Mathematical Programming

Mathematical Programming is the area of Operational Research where decision problems

that need optimizing a fixed goal are solved, satisfying some restrictions in the available

resources. Hence, its aim is to solve a kind of problem as the following

min {f(x) : x ∈ S}

where S ⊆ Rn, f : S −→ R, and it seeks to find (if exist) an element x ∈ S in which the

function f reaches its minimum (or maximum) value. Each element x is a solution, thus

S represents the set of feasible solutions, and f is the objective function. Depending

on the kind of variables, constrains and objective function that are described in the

mathematical model of the problems, this area is divided in different parts. When f is a

linear function, and the constrains can be defined by linear inequations, it is called Linear

Programming. Moreover, if the variables have to be integers, it is called Integer Linear

Programming and makes it much difficult to solve in general. Other kind of problems

can be found when f is a non-linear function, and the constrains can be defined by non-

linear inequations. This is called Non-linear Programming. If f is a vectorial function,

it is said Multiobjective Programming. When the parameters that describe the problem

are fixed, it deals with Deterministic Programming, whereas in Stochastic Programming

some parameters are random variables.



Chapter 1 Basic Concepts, Models and Approaches 3

Another part of Mathematical Programming is the Combinatorial Optimization which

seeks the resolution of optimization problems with a finite number of feasible solutions

(although in general very large). Integer Linear Programming problems and Combina-

torial Optimization problems are closely related because the latter can be modelled as

the former. Examples of this kind of problems are given in Section 1.4.

1.3 Polyhedral Theory

Combinatorial Optimization problems can be solved making use of the Polyhedral The-

ory. Thus, some important concepts about it are presented below. However, this area is

studied with more detail in Bachem and Grötschel (1980) and Nemhauser and Wolsey

(1988).

Given x1, . . . , xt ∈ Rn, it is said that a vector x ∈ R is a affine combination of x1, . . . , xt

if there are λ1, . . . , λt ∈ R such that x =
∑t

i=1 λixi and
∑t

i=1 λi = 1. If λi ≥ 0 for

i ∈ {1, . . . , t}, then x is a convex combination. Let S be a subset of Rn, it is said that

S is a cone if and only if for all x1, x2 ∈ S and for all λ1, λ2 ≥ 0, then λ1x1 + λ2x2 ∈ S.

The convex hull of S, denoted by conv(S), is the set of all convex combinations of a

finite number of vectors in S.

Let a set H ⊆ Rn be a hyperplane if there is a vector a ∈ Rn\{0} and a scalar a0 ∈ R such

that H =
{
x : aTx = a0

}
. Besides, a set B ⊆ Rn is a halfspace if B =

{
x : aTx ≤ a0

}
.

It is said that B is the halfspace defined by the inequality aTx ≤ a0, and H is the

hyperplane defined by aTx ≤ a0. An inequality aTx ≤ a0 is said valid for a set S ⊆ Rn

if S ⊂
{
x ∈ Rn : aTx ≤ a0

}
. Moreover, the inequality is said supporting for S if it is

valid and S ∩
{
x ∈ Rn : aTx = a0

}
6= ∅.

A polyhedron P is the intersection of a finite number of halfspaces, i.e. P can be defined

as a set P = {x ∈ Rn : Ax ≤ b} where A is a matrix of m rows and n columns, and

b ∈ Rm. Moreover, if the polyhedron is bounded, it is called polytope. In fact, polytopes

are precisely those sets in Rn which are the convex hulls of finitely many points, i.e. every

polytope P can be written as P = {x ∈ Rn : Ax ≤ b} and as P = conv(S) (S ⊂ Rn). A

set C is a polyhedral cone if and only if there is a finite system of equations Ax = 0 such

that C = {x ∈ Rn : Ax ≤ 0}.

Given S ⊆ Rn, x0 is an extreme point if and only if x0 ∈ S and when x0 = λx1 + (1 −
λ)x2 with x1, x2 ∈ S and λ ∈ (0, 1), then x1 = x2. Let P = {x ∈ Rn : Ax ≤ b} be a

polyhedron, it is said that a point x0 ∈ P is an extreme point of P if and only if x0 is

the intersection of n linearly independent hyperplanes from the set defining P .

Let d ∈ Rn be a direction (ray) of S if and only if there is a point x0 ∈ S such that

x0 +λd ∈ S, for all λ ≥ 0. d is an extreme direction of S if and only if d is a direction of

S, and when d = λ1d1 +λ2d2 with d1, d2 directions of S and λ1, λ2 ≥ 0, then there exits
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µ ∈ R such that d1 = µd2. Thus, a vector d′ is a extreme direction of the polyhedron

P = {x ∈ Rn : Ax ≤ b} if and only if d′ ∈ {d ∈ Rn : Ad ≤ 0}.

A valid inequality aTx ≤ a0 for P defines a subset F of P , called face, if F ={
x ∈ P : aTx = a0

}
. A face F is called proper if F 6= P 6= ∅. If a inequality aTx ≤ a0

defines a face F , and another inequality a
′Tx ≤ a′0 defines a face F ′ such that F ⊂ F ′

and F 6= F ′, then it is said that aTx ≤ a0 is dominated by a
′Tx ≤ a′0.

The dimension, dim(P ) of a polyhedron P is the maximum number of affinely indepen-

dent points in P minus 1.Thus, faces of dimension 0 are called extreme points, faces of

dimension 1 are called edges, and faces of dimension dim(P )1 are called facets.

In particular, a linear programming problem can be modeled as follows

min cTx

subject to:

Ax ≤ b

where vector c ∈ Rn is called the vector of costs, A is a matrix of m rows and n columns,

b ∈ Rm and vector x ∈ Rn is the vector of variables (see Chvátal (1983) and Bazaraa

et al. (2010) for further information). Thus, the set of feasible solutions is a face of the

polyhedron P = {x ∈ Rn : Ax ≤ b}, and if c0 is the optimum value of max
{
cTx : x ∈ P

}
,

then cTx ≤ c0 is a supporting inequality for P , and the set F =
{
x ∈ P : cTx = c0

}
of

the optimal solutions is a face of P . If P is non-empty, then every face contains a vertex

and this implies that every linear program over a polytope has at least one optimum

vertex solution.

1.4 Some Combinatorial Optimization Problems

The polyhedral description of Combinatorial Optimization problems is usually given as

the convex hull of a finite set of points, yet in order to apply Linear Programming tech-

niques, polyhedral description have to be given in the form {x ∈ Rn : Ax ≤ b}. In this

way, it is necessary to explain some concepts which relate Graph Theory to Polyhedral

Theory

Let E be a finite set (e.g. the edge set of the graph G = (V,E)) where each element

e ∈ E has associated a cost ce and a component xe of a vector x ∈ R|E| indexed by e.

Let H be a collection of subsets in E, called collection of feasible solutions. For each

subset F ⊂ E, it is defined its incidence vector xF ∈ R|E| as follows

xFe =

{
1 if e ∈ F
0 if e /∈ F
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Thus, it is possible to associate the collection of subsets H with the polytope PH, which

is the convex hull of all incidence vectors of H, i.e. PH = conv
{
xF ∈ R|E| : F ∈ H

}
.

Now, a combinatorial optimization problem is to find a feasible solution of H with

minimum cost. Clearly, each feasible solution F ∈ H corresponds to a vertex of PH and

vice versa. Therefore, it is possible to solve this computational problem as the following

linear programming problem

min
{
cTx : x ∈ PH

}
In order to use linear programming techniques, it is necessary to know the system

of linear inequalities described for the polyhedron PH. For almost all combinatorial

optimization problems, finding the complete description of PH is a difficult task, but it

can be a great computational help to have a partial description of those inequalities and

add new ones when they are necessary.

1.4.1 The Travelling Salesman Problem

The Travelling Salesman Problem (TSP) arises in 1930, and it is the most extended

combinatorial optimization problem. It is the benchmark problem for new algorithmic

ideas as well as the basis for new problems on this field. The TSP has a very simple

approach, and although it is difficult to solve, there are many exact and heuristic algo-

rithms that helps us to get good solutions. The most popular formulation was presented

by Dantzig et al. (1954) providing a solution for a problem with 49 cities. Besides, many

studies put in place tools to solve large instances.

Let a set of n cities where the travel cost from one city to another is assumed to be

known. The aim of the TSP is to find the route of minimum cost such that, starting

and finishing in the same city, visits every city exactly once. The TSP can be modeled

as a undirected capacitated graph (The symmetric TSP), where each city is a vertex,

and the travel costs are the edge lengths between the vertices. Thus, in graph theory,

the problem is to find a Hamiltonian cycle, called tour. Without loss of generality, it is

supposed that the graph is a complete graph, otherwise it could be replaced the missing

edges with edges of large cost. Although in general, it studies the symmetric case, also,

it is possible to study the asymmetric case, where the travel cost going from a city to

another and the travel cost in the opposite direction are different. This is due to, in real

life problems, there are one-way streets, streets closed because of works, etc., hence the

symmetric problem is insufficient.

Let Kn = (V,E) be a undirected complete graph, where V is the set of cities with

|V | = n, and E is the set of edges between cities with |E| = 1
2n(n − 1). For each edge

e ∈ E, e = [i, j], ∀i, j ∈ V , where i is the origin city and j is the destination city of this

edge. Let T ⊂ E be a tour if it is a cycle of length n in Kn. A cycle of length n1 < n

is called a subtour. As it is seen above, given H a collection of subsets in E, if a tour
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T ∈ H, then it has associated a incidence vector xT and the TSP polytope is the convex

hull of incidence vectors of the all tours in Kn. That is

PH = conv
{
xT ∈ R|E| : T ∈ H

}
A complete description of the polytope PH as a system linear inequalities is not known,

which limits the application of linear programming techniques to solve the TSP. However,

this description is a classical topic of polyhedral combinatorics (see Nemhauser and

Wolsey (1988) for further information) which has been extensively studied. Indeed, in

the last years, many new valid inequalities and facets for PH have been introduced. See

Lawler et al. (1985), Jünger et al. (1995), Naddef and Rinaldi (1993) and Naddef and

Rinaldi (2007) for some references.

The most popular formulation as a system linear inequalities was given by Dantzig et al.

(1954). It was described as a 0 − 1 linear programming model associating each edge e

with a travel cost ce and a binary variable xe as follows

xe =

{
1 if e is in the tour

0 otherwise

The model proposed is the following

min
∑
e∈E

cexe (1.1)

subject to ∑
e∈δ(i)

xe = 2 ∀i ∈ V (1.2)

∑
e∈E(S)

xe ≤ |S| − 1 ∀S ⊂ V (1.3)

0 ≤ xe ≤ 1 ∀e ∈ E (1.4)

xe integer ∀e ∈ E (1.5)

Equations (1.2) are the degree equations, ensuring that each city is visited only once.

Inequalities (1.3) are the subtour elimination constraints, ensuring that the solution

contains no Hamiltonian cycles over less than n cities.

Owing to the constraints (1.2), the following equality holds

2
∑

e∈E(S)

xe +
∑
e∈δ(S)

xe = 2|S| ∀S ⊂ V (1.6)
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Therefore an alternative formulation can be obtained, as it is easy to conclude that sub-

tour elimination constraints (1.3) are equivalent to the following connectivity constraints∑
e∈δ(S)

xe ≥ 2 ∀S ⊂ V (1.7)

Connectivity constraints simply ensure that any set of at least two nodes has to be linked.

In theory, using the constraints (1.7) instend of (1.3) is irrelevant, but the formulation

with (1.7) has been shown stronger than other formulations. Moreover, the constraints

(1.3) (or (1.7)) defined by S are equivalents to the same constraints defined by V \ S.

Therefore, constraints (1.7) can be used to reduce the number of variables.

The family constraints has a cardinality growing exponentially with n, hence it is difficult

to directly solve it. A possible way of avoiding this is to use cutting-plane procedures

which consider a limited subset of constraints, and tries to find violated inequalities to

be introduced as new constraints. The faster and the more efficient the identification of

this inequalities is, the faster the resolution is.

Valid inequalities for the TSP have been widely studied. The trivial inequalities xe ≥ 0

and xe ≤ 1 define facet for n ≥ 5 and n ≥ 4, respectively. These are not important for

the solution procedure, but they are for the complete description of the TSP polytope.

Besides, as it was seen, for every S ⊂ V , the connectivity constraints (1.7) define a facet

for n ≥ 4.

Another family of known facets defining inequalities are the comb inequalities. These

were the first inequalities discovered, in a more restrictive form, by Chvátal (1973) who

derived them from the 2-matching constraints of Edmonds (1965). They were generalized

to the current form and shown to be facet inducing for the TSP by Grötschel and Padberg

(1979). A comb inequality is usually defined by a set H ⊂ V , called handle, and an odd

number t ≥ 3 of vertex subsets T1, T2, . . . , Tt, called teeth, such that

H ∩ Ti 6= ∅ ∀ 1 ≤ i ≤ t

Ti \H 6= ∅ ∀ 1 ≤ i ≤ t

Ti ∩ Tj = ∅ ∀ 1 ≤ i < j ≤ t

The corresponding comb inequality is

∑
e∈δ(H)

xe +
t∑
i=1

∑
e∈δ(Ti)

xe ≥ 3t+ 1 (1.8)

The comb inequalities are generalized to several handles producing well-known valid

inequalities as star inequalities, path inequalities, clique tree inequalities, bipartition in-

equalities, etc.
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1.4.2 The Vehicle Routing Problem

The Vehicle Routing Problems (VRP) are another very extended combinatorial prob-

lems. A vehicle routing problem was presented by Dantzig and Ramser (1959) as a real

application about petrol supply to service stations. A first mathematical formulation

and a resolution algorithm were proposed. The VRP are a natural generalization of the

TSP, where the customers demand of an amount of products that has to be deliver by

a fleet of vehicles. For this reason, the VRP are also a difficult problems to solve, and

there are many studies about exact and heuristic algorithms that help us to get good

solutions. See e.g. Toth and Vigo (2014) for a textbook on VRP.

Although the Capacitated Vehicle Routing Problem (CVRP) has the simplest descrip-

tion, it is the most studied. This consists in finding the minimum cost route that has

to make a fleet of identical vehicles to serve the demand of a set of customers, where

each vehicle has a limited capacity and has to start and end in a single central depot.It

is assumed that the customer demands cannot be split. As in almost all combinatorial

problems, the CVRP can be described through a graph, whose edges represent the road

sections, and whose vertices correspond to the depot and the customer locations. The

graph can be directed or undirected, depending on the features of the real problems to

be applied (for instance, if there are one-way streets, it is used a directed graph). For

the sake of simplicity, it considers the symmetrical case, where the length to go from

one customer to another is the same that in the opposite direction.

Let G = (V,E) be a undirected complete graph, where E is the set of edges between

the customers, and V is the set of customers with |V | = n, being 0 the depot. For each

edge e = [i, j] ∈ E, it is denoted by ce the length going from i to j. Each customer i

is associated with a known nonnegative demand di to be delivered, and the depot has

associated the demand d0 = 0. Besides, given a set S ⊆ V , the total demand of this set

is denoted by d(S) =
∑

i∈S di.

The CVRP has a fleet of k vehicles with capacities Q. To ensure the feasibility, it is

assumed that di ≤ Q for all customers. Each vehicle can carry out at most one route, and

it is assumed that k ≤ kmin, where kmin is the minimum number of necessary vehicles

to serve all the customers. Given S ⊆ V \ {0}, it is denoted by r(S) the minimum

number of necessary vehicles to serve all customers in S. Clearly, if S = V \ {0}, then

r(S) = kmin. This number can be obtained by solving the Bin Packing Problem (BPP),

yet this is an NP-hard problem and kmin is usually defined by the trivial BPP lower

bound

kmin =

⌈
d(S)

Q

⌉
Thus, the aim of the CVRP is to find k simple vehicle routes with minimum cost such

that each vehicle starts and ends at the depot, each customer is visited exactly once by

an only vehicle, and the capacity Q of each vehicle is not exceed.
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Several different formulations have been proposed for the basic version of the VRP in the

literature. The most used is the so-called vehicle flow formulation that uses O(n2) binary

variables to point out if a vehicle traverses an edge in the optimal solution. There are

also formulations based on the so-called commodity flow formulation where additional

integer variables are associated with the edges representing the flow of the commodities

along the paths crossed by the vehicles. Another formulation arises with an exponential

number of binary variables, each one associated with a different feasible circuit. This

is formulated as a Set-Partitioning Problem (SPP) calling for the determination of the

collection of circuits with minimum cost, which serves each customer once and satisfies,

possibly, additional constraints. However, these models generally require to deal with a

very large number of variables.

In the two-index vehicle flow formulation, each edge e ∈ E has associated a variable

defined as follows

xe =

{
1 if e is in the route

0 otherwise

Therefore, the mathematical model is

min
∑
e∈E

cexe (1.9)

subject to ∑
e∈δ(i)

xe = 2 ∀i ∈ V \ {0} (1.10)

∑
e∈δ(0)

xe = 2k (1.11)

∑
e∈E(S)

xe ≤ |S| − r(S) ∀S ⊆ V \ {0} (1.12)

xe ∈ {0, 1} ∀e /∈ δ(0) (1.13)

xe ∈ {0, 1, 2} ∀e ∈ δ(0) (1.14)

The degree equations (1.10) and (1.11) impose that each customer is visited only once

by a single vehicle, and each vehicle moves in and out from the depot exactly once.

Inequalities (1.12) are the subtour elimination constraints, where r(S) could be replaced

by the trivial BPP lower bound. Moreover, these inequalities avoid to exceed the capacity

of the vehicle. Note that, when single-routes are not allowed, the edges incident to the

depot can be traversed at most once, i.e. xe ∈ {0, 1} with e = [i, 0] , ∀i ∈ V \{0}. On the

other hand, when single-customer routes are allowed, the edges incident to the depot

can be traversed at most twice, i.e. xe ∈ {0, 1, 2} with e = [i, 0] , ∀i ∈ V \ {0}. Note that

the above described model is taken allowing single-customer routes.

As it was seen in the previous section 1.4.1, it is possible to take an alternative for-

mulation by transforming the constraints (1.12), using the dregree equations (1.10) and
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(1.11), into this other version ∑
e∈δ(S)

xe ≥ 2r(S) ∀S ⊂ V (1.15)

These, so-called capacity constraints, impose the connectivity of the solution as well as

the vehicle requirements. Besides, the constraints (1.12) and (1.15) defined by S are

equivalents if it is used V \ S instead of S. Likewise these constraints for the CVRP

polytope play, in some sense, the same role as the subtour elimination constraints (1.3)

for the TSP polytope, as there is an exponential number of them, and all are necessary

to define the integer liner programming model. However, while all subtour elimination

constraints define facets of the TSP polytope, the same does not always hold for the

CVRP polytope.

There is a hierarchy of capacity inequalities for the capacity constraints, all sharing the

same left-hand side but with a different right-hand side. The higher the right-hand side

value is, the stronger the inequalities are, but its separation procedure is much more

difficult. As it was seen above, the right-hand side value can be defined as follows

2
d(S)

Q
(1.16)

Therefore, the family of inequalities resultant is called the fractional capacity constraints,

and it is the weakest family. The separation procedure is easy, and it is solvable in

polynomial time. However, they are almost never supported for the CVRP polytope. On

the other hand, its linear programming relaxation, obtained by dropping the integrability

requirement, yields a bound that can be computed in polynomial time. A rounded

capacity constraint is obtained by rounding (1.16) to the nearest larger integer. The

resulting inequality is ∑
e∈δ(S)

xe ≥ 2

⌈
d(S)

Q

⌉
The separation procedure is much difficult than the one of the (1.16), but it is still

computationally accessible. As it was seen above, a better lower bound on the left-

hand side of the inequality is given by twice the solution of the BPP needed to pack

the demands of customers in S. This is called the weak capacity inequality. Since

computing this lower bound is an NP-hard problem, the separation problem is difficult.

However, these constraints cannot support the CVRP polytope because it does not take

into account the demands outside the set S. A capacity constraint is the one taking

the right-had side of (1.15) for a set S and is the tightest constraint. Let P the set of

all possible k-partition of V \ {0}. For any set S ⊆ V \ {0} and for any k-partition

P = {S1, . . . , Sk}, r(S) can be defined by

r(S) = min
P∈P

β(P, S)
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where β(P, S) is the number of nonempty intersection of S, and Si, for all i = 1, . . . , k.

In fact, it is the number of vehicles needed to satisfy the demands of all customers in

S in the k-partition P . This inequality supports the CVRP polytope (by definition),

but whether it defines a facet still depends on the demands of the customers di, on the

number of the vehicles k, and on the capacity of the vehicles Q. Since weak capacity

inequalities are a special case of the capacity inequalities, the separation for the last

ones is also difficult.

All the families of constraints have a cardinality growing exponentially, and hence it is

practically impossible to solve the CVRP directly. A possible way of avoiding this is to

use an appropriate separate procedure (e.g. cuting-plane procedures), considering only

a limited set of these constraints and adding the remaining ones if needed.

The CVRP is known to be NP-hard and generalizes the well-known TSP, calling for the

determination of a minimum-cost simple tour visiting all the customers and arising when

Q > d(V ) and k = 1. A k-route and a Hamiltonian cycle have very close structures:

they are both connected subgraphs of G, where all nodes have degree 2 except for node

0, whose degree is different in both subgraphs. Indeed, a k-route is a special case of a

tour. Of course, any inequality valid for all tours of G is also valid for all its k-routes.

Therefore, all the inequalities proposed for the TSP are valid for the CVRP. A good

example is the well-known family of comb inequalities (1.8), however they can be rather

weak for the CVRP polytope. Naddef and Rinaldi (2001) describe them by taking

into account whether the depot is in a tooth or not. Given a handle H ⊂ V and an

odd number t ≥ 3 of teeth T1, T2, . . . , Tr, Tr+1, . . . , Tt with Ti ⊂ V for all i = 1, . . . , t

satisfying

Ti \H 6= ∅ ∀ 1 ≤ i ≤ t

Ti ∩H 6= ∅ ∀ 1 ≤ i ≤ t

Ti ∩ Tj = ∅ ∀ 1 ≤ i < j ≤ r

Ti ∩ Tj = {0} ∀ r + 1 ≤ i < j ≤ t

where r may be any value between 0 (all teeth intersect) and t (no teeth intersect nor

contain the depot). The teeth from Tr+1 to Tt intersect in the depot. Moreover, it is

assumed that r(V \ Ti) = k, for all i = r + 1, . . . , t. Then the following comb inequality

is valid ∑
e∈δ(H)

xe +

t∑
i=1

∑
e∈δ(Ti)

xe ≥ t+ 1 + 2r + 2k(t− r)

Not only do valid inequalities for the TSP are valid for the CVRP, but also there are more

valid inequalities taking from other problem. The path-bin inequalities are one example

that combines structures from the BPP and the TSP by taking into account the demands

and the capacity inequalities. The clique cluster inequalities are other examples derived

from the Stable Set Problem (or Set Packing Problem). First presented by Augerat
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(1995) , are defined by W1, . . . ,Ww subset of V \ {0} such that

Wi ∩Wj = {v} ∀ 1 ≤ i < j ≤ w∑
l∈Wi

dl ≤ Q ∀ 1 ≤ i ≤ w

∑
l∈Wi∪Wj

dl > Q ∀ 1 ≤ i < j ≤ w

Thus, it can be built a graph for the stable set problem with a vertex, for each subset

of customers and with an edge, for each incompatible subsets of customers. Then, the

following inequality is valid
w∑
i=1

∑
e∈δ(Wi)

xe ≥ 4w − 2

More well-known inequalities are the odd hole inequality, which says that at most t nodes

of a chordless cycle of lenght 2t+ 1 can belong to a stable set; the multistar inequalities,

studied for example by Fisher (1994), Gouveia (1995) and Letchford et al. (2002); and

some variants called homogeneous multistar inequalities (see Letchford et al. (2002) for

further information)

1.4.3 The General Pickup and Delivery Problem

The General Pickup and Delivery Problems are an important class of routing problems

where a set of products (or customers) have to be transported from an origin to a

destination by a fleet of capacitated vehicles. Each vehicle has a start location and an

end location. Each product has to be transported by one vehicle from its origin to its

destination without any transshipment at other location. Savelsbergh and Sol (1995)

presented a survey on pickup and delivery problems until 1995. Berbeglia et al. (2007),

Parragh et al. (2008a) and Parragh et al. (2008b) extend this study by presenting general

frameworks to model it as well as a classification schemes for these problems.

Three well-known routing problems are cases of the GPDP. The first is the Pickup

and Delivery Problem (PDP) where each product has only a pickup location and only a

delivery location, and all vehicles start and finish in a central depot. The second problem

is the Dial-a-Ride Problem (DARP) where the quantity transported of each product is

one unit (typically the different products are peoples). The last problem is the vehicle

routing problem (seen in Section 1.4.2) where all origins or all destinations are located

at the depot.

Most existing pickup and delivery problem can be defined within the following general

framework. Let G = (V,A) be a directed complete graph, where A is the set of arcs

between the locations, and V is the set of locations with |V | = n, being 0 the depot.

For each arc a = (i, j) ∈ A it is denoted by ca the length going from i to j satisfying the
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triangle inequality. Let H be the set of p products. Each vertex, including the depot,

can either need or supply a non-negative amount of each product. Let D = (dih) denote

a product matrix where a positive dih is the quantity of h supplied by vertex i, and −dih
is the quantity of h required by vertex i if dih < 0. It is assumed that

∑
i∈V dih = 0 for

each product h ∈ H. That is, for each product the total supply and the total demand

are balanced. Let H+
h and H−h be the set of all origins and destinations of the product h,

respectively. Then, it defines dh =
∑

i∈H+
h ,dih>0 dih = −

∑
i∈H−h ,dih<0 dih. Moreover, H+

and H− define the set of all origins and all destinations, respectively, and V = H+∪H−.

Let M be the set of m vehicles where each vehicle k has a capacity Qk, a start location

k+, and an end location k−. Let W be the set of start and end locations of the vehicles.

A vehicle can either pick up or deliver the entire amount of a product. A route is a

circuit over some vertices, starting and finishing at the depot. The general pickup and

delivery problem consist of building at most m vehicle routes such that

• all pickup and delivery requests are satisfied;

• all origins of a product are visited before their destinations.

• no transshipments of commodities are made;

• the load of a vehicle never exceeds its capacity;

• the sum of route costs is minimized.

For all h ∈ H, taking |W | = 1 and |H+
h | = |H−h | = 1, it has the pickup and delivery

problem. In this case it defines h+ as the unique element of H+
h , and h− as the unique

element of H−h . The dial-a-ride problem is addressed when |W | = 1, |H+
h | = |H−h | = 1

and dh = 1, for all h ∈ H. Finally, the VRP is the case when |W | = 1, |H+
h | = |H

−
h | = 1,

for all h ∈ H, and N+ = W or N− = W .

Different objective functions have been referenced in the literature such as minimize du-

ration, completion time, travel time, route length, customer inconvenience, the number

of vehicles and/or maximize profit.

1.5 Benders’ Decomposition

The Benders’ Decomposition is a popular approach in solving large linear programming

problems. Since computational difficulty of these problems that increases exponentially

with the number of variables and constraints, instead of considering all of them, Benders’

decomposition divides the problem into several smaller problems. This can be more

efficient than solving a single large problem.

In Benders’ decomposition, iteratively, a master problem is solved for a subset of vari-

ables, and using the values obtained, a subproblem with the remaining variables is solved.
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Then, one or more constraints are generated and added to the master problem, which

is then re-solved.

Given the following linear problem

min cTx+ fT y

s.t. Ax+By ≥ b

y ∈ Y

x ≥ 0

(1.17)

such that x and y are vectors, Y is a polyhedron, A and B are matrices, and b, c and f

are vectors having appropriate dimensions. Supposing that variables y are ‘complicated

variables’ in the sense that the problem becomes significantly easier to solve, if these are

fixed, then the problem can be written in term of variable y

min fT y + q(y)

s.t. y ∈ Y
(1.18)

where q(y) is defined to be the optimal value of

min cTx

s.t. Ax ≥ b−By

x ≥ 0

(1.19)

Note that if (1.19) is unbounded for some y, then (1.18) is also unbounded, as well as

the original problem (1.17). Therefore, if this does not happen, it is possible to use its

dual problem to solve it. Thus, (1.19) can be written as follows

max αT (b−By)

s.t. ATα ≤ c

α unrestricted

(1.20)

Note that the feasible region of the dual model does not depend on y. Thus, if this

region is empty, either the primal problem is unbounded for some y ∈ Y and then, the

original problem (1.17) is unbounded, or the primal problem is also empty for all y ∈ Y
and then, (1.17) is infeasible. Considering then that feasible region is not empty, it can

be taken all extreme points (δ1, . . . , δp) and all extreme rays (λ1, . . . , λq), where p and q

are the number of extreme points and extreme rays, respectively. Because of the Farkas’

Lemma, for a given vector y, the dual problem (1.20) can be solved by checking whether

(λj)T (b−By) ≥ 0. As the dual problem is assumed bounded, this is equivalent to solve

the following problem

max
i=1,...,p

(δi)T (b−By)
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that can be reformulated as follows

min u

s.t. (δi)T (b−By) ≤ u ∀i = 1, . . . , p

(λj)T (b−By) ≤ 0 ∀j = 1, . . . , q

u unrestricted

Now this can replace q(y) in (1.18), obtaining a reformulation of the original problem

(1.17) called the Master Problem

min fT y + u

s.t. (δi)T (b−By) ≤ u ∀i = 1, . . . , p

(λj)T (b−By) ≤ 0 ∀j = 1, . . . , q

y ∈ Y , u unrestricted

(1.21)

The advantage of this reformulation is that the variables x have been changed by only

one u, but the number of constraints have greatly increased. However, using a lin-

ear programing method only useful constraints may be considered. Thus, Benders’

decomposition starts with a subset of these constraints and solves a relaxed master prob-

lem. Without loss of generality, the problem can be assumed bounded by introducing

a dummy constraint with a large enough right-hand side. If the optimal solution de-

pend on the dummy constraints, then (1.18) is unbounded. If it is not feasible, then

(1.21) (and also (1.17)) is not feasible. Otherwise, it yields a candidate optimal solution

(y∗, u∗). Now the dual problem (1.20) solves to obtain q(y∗):

• If it is unbounded, there is a extreme ray λj such that (λj)T (b−By∗) > 0. Hence,

this corresponding constraints associated with λj is added to the relaxed master

problem, which is then re-solved.

• If it is not feasible, then (1.18) is not feasible or unbounded.

• If there is an optimal solution q∗(u∗) such that

– q(u∗) > u∗, there is a extreme point δi such that (δi)T (b − By) > u. Hence,

this corresponding constraints associated with δi is added to the relaxed mas-

ter problem.

– q(u∗) ≤ u∗ then the optimal solution of (1.18) has been found and the algo-

rithm stops.

As p and q are finite, and new feasibility or optimality cuts are generated in each

iteration, this method converges to an optimal solution in a finite number of iterations.
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1.6 The branch-and-cut method

The branch-and-cut algorithm is the most popular approach to solve Integer Linear

Programming problems. In fact, it is a branch-and-bound method based on the resolution

of a linear relaxation, appropriately strengthened with cutting-planes. Use of facets

defining cutting-planes and the automatic generation of these, in conjunction with the

branch-and-bound method, were formulated and successfully applied for the first time

by Grötschel et al. (1984) for the Linear Ordering Problem. The term branch-and-cut

was introduced by Padberg and Rinaldi (1991) as an algorithm for the TSP. This was

defined to add only facet from the polytope, although in most cases this is not required.

The algorithm starts using a linear relaxation (denoted by LP) of an integer linear

program (denoted by ILP) in which the condition that all variables have to be integers

has been eliminated. For example, in the TSP model (1.1)-(1.5), the constraints (1.5)

are removed. If zILP is the optimal solution of the integer linear program, and zLP is

the optimal solution of its linear relaxation (in the minimization case), then it holds

zLP ≤ zILP , i.e. zLP is the lower bound of the optimal solution zILP .

The cutting-plane algorithm works as follows. For each iteration h (h ≥ 0), let LP (h)

be the relaxation problem. Solving LP (h) yields a solution x∗LP (h). If it is integral,

it corresponds to a feasible solution representing an optimal solution; otherwise, it is

run a so-called separation algorithm that seeks a violated valid inequality by x∗LP (h)

to be added in LP (h). Then, if one violated inequality is found, it is added to the

LP (h) and solved a new relaxation problem LP (h+ 1). Thus, the separation algorithm

stops when all the violated valid inequalities are found, and ends up with an optimal

solution. Note that, if zLP (h) is the optimal value of LP (h), it holds zLP (h) ≤ zLP (h+1) ≤
zLP (∞) ≤ zILP , where LP (∞) is the strengthened relaxation problem with additional

valid inequalities. Therefore, if zLP (∞) is integral, then it is an optimal solution of the

ILP, i.e. zPL(∞) = zILP ; otherwise the branch starts, i.e. the problem is decomposed

into two new problems, for example, by adding upper and lower bounds to a variable

whose current value is fractional.

The branching process is done as in a branch-and-bound method. That is, it is chosen

a variable xe with fractional value x∗e in the relaxed linear problem to build two new

problems (the integer variables are indexed by a set E where e ∈ E). Thus, both prob-

lems are solved by adding the constraints xe ≥ dx∗ee and xe ≤ bx∗ec. Now, the algorithm

builds a tree structure in which each node corresponds with a new linear programming

problem. The branching process finishes when a integer solution (improving the current

optimal integer solution) is found or if the value of the optimal solution is greater than

the current upper bound.

Note that the branch-and-bound algorithm and the cutting-plane method produce bene-

fits. Branch-and-bound is a divide and conquer approach to solve a problem by dividing
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into smaller problems. The local solution of a subproblem gives a lower bound of the

solution for the original problem, thus the highest such a local solution obtained so far

is a global lower bound for the original problem, and it is used to avoid parts of the tree

that cannot produce the optimal value. On the other hand, a pure branch-and-bound

approach can be sped up considerably by using a cutting-plane method, because this

carries to a considerable reduction in the size of the tree.

1.7 Background on Heuristic Methods

Heuristic algorithms for the TSP can be divided into two clasees: construction proce-

dures, which build a tour by successively adding a new node at each step; and improve-

ment procedures, which start from an initial tour and seek a better one by iteratively

moving from one solution to another, according to a given neighbourhood structure.

Combined, such approaches yield composite procedures that attempt to obtain better

solutions by applying an improvement procedure to a solution given by a construction

procedure. Often, the success of these algorithms depends heavily on the quality of

the initial solution, and a powerful design of neighbourhood structures. See Rego and

Glover (2007) for further information.

1.7.1 The k-exchange Neighbourhood

Fundamental neighbourhood structures for the TSP (and for several other classes of

graph-based permutation problems) are based on edges-exchanges procedures. A clas-

sical procedure of this type is the k-exchange. This terminology derives from methods

initially proposed by Lin (1965) to find so-called k-opt TSP tours.

The 2-exchange (2-opt) procedure is the simplest method and frequently used in com-

binatorial problems that seek to obtain optimal circuits (or cycles) in graphs. This

includes the TSP and its extensions to the wider classes of assignment, routing and

scheduling problems. This procedure is a local search improvement method thus, a

initial feasible solution is required to initiate the approach. It consists of removing

two arcs (vi, vi+1) and (vj , vj+1) from the tour and reconnecting the two paths cre-

ated by adding (vi, vj) and (vi+1, vj+1). In order to keep a consistent orientation

of the tour, one of the two subpaths remaining after dropping the first two edges

must be reversed. The cost difference produced by a 2-opt move is defined as ∆ij =

d(vi, vj) + d(vi+1, vj+1) − d(vi, vi+1) − d(vj , vj+1). Finally, a 2-opt solution is obtained

by iteratively applying 2-opt moves until any possible movement yields a negative value

of the difference ∆.

Another movement typically used is the 3-opt. By direct analogy to the 2-opt move,

this consists of removing three arcs from the solution and reconnecting the paths by
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adding three arcs in the best possible way. As in 2-opt move, the cost difference of a

3-opt move can be computed as the sum of the costs of the added edges minus the sum

of the costs of the deleted edges, where a negative difference is an improvement move.

However, unlike 2-opt move, there are several ways to reconnect the three subpaths.

The 2-opt and 3-opt moves can be generalized to perform k-opt moves that drop some

k edges in a tour and add k new edges. For small values of k, with respecto to n, the

verification of k-optimality yields an O(nk) time complexity, and therefore k-opt moves

for k > 4 is not used, except some cases.

1.7.2 The Nearest Neighbourhood Heuristic

The Nearest Neighbourhood Heuristic is the most simple constructive method to build

a tour and consists of successively adding a new node at each step. Given a set of n

nodes, the algorithm stars selecting randomly a node x1. Inductively, suppose i < n and

Ti = (x1, x2, . . . , xi−1) being the current partial tour. Now it is chosen, from all nodes

not selected yet, the next node xi to be the nearest node to xi−1. If i = n then it adds

the edge (xn, x1), and the algorithm stops; otherwise, it adds the edge (xi−1, xi) and

looks for the next node xi+1.

1.8 The Variable Neighbourhood Search

The Variable Neighbourhood Search(VNS) (see Mladenović and Hansen (1997)) is a local

search-based metaheuristic which exploits many different neighbourhoods to escape from

bad local optima. Contrary to most other local search methods, VNS does not follow

a trajectory, but explores increasingly distant neighbourhoods of the current incumbent

solution, and jumps from them to a new one if and only if an improvement was made.

Moreover, a local search routine is applied repeatedly to get from these neighbourhoods

a local optima.

Let Nk be a finite set of pre-selected neighbourhood structures for k = 1, . . . , kmax and

with Nk(x) being the set of solutions in the kth neighbourhood of x. The scheme of the

basic VNS algorithm is:

• Step 1 : Select the set of neighbourhood structures (often nested) Nk, for k =

1, . . . , kmax, that will be used in the search

• Step 2 : Select a initial solution x as input data.

• Step 3 : Set k = 1

• Step 4 : Choose a random solution x′ from Nk(x).
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• Step 5 : Apply some local search method with x′ as a initial solution; denote with

x′′ the obtained local optimum.

– If x′′ is better than x, the new incumbent has been obtained. Then set x = x′′

and go to step 4.

– Otherwise, set k = k + 1. If k = kmax the algorithm stops; otherwise, go to

step 4.

Other stopping condition that it can be applied in the algorithm are e.g. maximum

number of iterations, maximum CPU time allowed, or maximum number of iterations

between two improvements. Different neighbourhood structures can be exploited in both

deterministic and stochastic ways. In order to avoid cycling, stochastic approach is used

in the step 4 where the point x′ is generated at random. A deterministic approach can

be used in the local search. In general, the neighbourhood structures used for this local

search are independent of the neighbourhood structures Nk, for k = 1, . . . , kmax, that is,

it does not necessarily belong to them. In addition, an extended version of VNS could

contain more than one neighbourhood in the local search. Note that each local search

could use first improvement (a move made when an improvement in the neighbourhood

is found) or best improvement (a move to the best solution in the neighbourhood). The

latter is also known as steepest descent.

The Variable Neighbourhood Descent (VND) is a well-known variant of the basic VNS.

The difference with respect to the basic VNS is that the VND takes the best solution

x′ from Nk(x) instead of a random one in the step 4. Another variant is the Reduce

Variable Neighbourhood Search (RVNS) where random points are selected from Nk(x),

no local search is applied, and the values of these new points are compared with that of

the incumbent and an update takes place in case of improvement. RVNS is useful for

very large instances for which local search is costly.

Unlike many other metaheuristics, the basic schemes of VNS and its extensions are

simple, and they require few, and sometimes no parameters. Therefore, in addition to

providing very good solutions, often in simpler ways than other methods, VNS can lead

to more efficient and sophisticated implementations as well as be applied to a variety of

problems.





Chapter 2

Related Problems

This chapter focuses on the Split-Demand One-Commodity Pickup-and-Delivery Trav-

elling Salesman Problem (SD1PDTSP) and some related problem. This problem is a

combination of three well-known vehicle routing problems of the literature. The CVRP

(described in Section 1.4.2), aiming at designing the routes for a vehicle to deliver a

commodity from the depot to a set of customers. The Split Delivery Vehicle Routing

Problem (SDVRP), presented in Section 2.3, which allows a customer to be visited more

than once if convenient. And the One-Commodity Pickup-and-Delivery Travelling Sales-

man Problem (1-PDTSP), described in Section 2.2, which allows more than one pickup

location although it still moves one commodity. Thus, using elements of these three

known problems, the SD1PDTSP is defined in Section 2.1. Besides, Section 2.4 presents

other related problems.

2.1 The Split-Demand One-Commodity Pickup-and-Delivery

TSP

The SD1PDTSP is an original problem in which a finite set of locations is given, and the

travel distance (or cost) from one location to another location is assumed to be known.

One specific location is considered to be a depot, and the other locations are identified as

customers. The latter are divided into two types of customers depending on what kind

of service is required. Pickup customers are those provide a given demand of a single

commodity (the product), and delivery customers are those require a given demand of the

product. Thus, a product unit collected from a pickup location can be supplied to any

delivery location. It assumes that there is one vehicle with a given capacity, originally

at the depot, that must visit each location through a route to move the commodity, and

satisfy all the customers demands. A route consists of paths, starting from and ending

at the depot. Each path is called here trip. Hence, a route is a set of trips that cover

each customer at least once. While following the route, the vehicle can either deliver or
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collect product in each location. All the visits to a customer must end up with exactly its

required demand. Although it may be convenient to serve a customer with several visits,

it is also reasonable to limit the maximum number of allowed visits with a parameter.

When this parameter is one for all customer, it talks about the split-forbidden variant.

As any customer, the depot, in the problem definition, is allowed to be visited several

times by the vehicle through the route. The number of visits to the depot is the number

of trips in the route and it is limited to at most a given parameter. The SD1PDTSP

is the problem of finding a minimum cost route for the capacitated vehicle such that

it satisfies the demand of all customers. Note that such a route may not exist, and in

general, checking whether a feasible solution exists is an NP-complete problem due to

the limitation in the number of visits to each location and the vehicle capacity.

This thesis deals with the single-vehicle case, although the results could be adapted to

the multi-vehicle case. Moreover, the initial load of the vehicle when leaving the depot

is a decision that must be computed within the optimization problem. The depot is

also treated as a dummy customer, providing (or absorbing) the sum of the customers’

demands so the balance of the commodity in the system is zero. As it is discussed in

Section 3.2, the model and algorithm proposed in this dissertation for the SD1PDTSP

can easily be adapted to several variants, including the one where the vehicle is required

to leave the depot with full (or empty) load, the one where customers with zero demand

may be not visited, and the one where not all customers must be visited and the demand

of the depot is a decision variable.

Although it could make sense to require that product collected in a trip must be delivered

in the same trip, it does not impose this requirement in the SD1PDTSP. Therefore all

trips are considered to be performed by a single vehicle sequentially. The problem name

contains the words “Travelling Salesman Problem” (TSP) to emphasize this assumption.

When the depot is the only pickup location, as on VRP instances, or when the vehicle is

forced to leave the depot with full load, then the trips may be executed in parallel when

a fleet of identical vehicles are available. In general, however, product collected from

a customer may go through the depot before being delivered in another customer and

therefore, the trips cannot be performed in parallel by different vehicles. It is discussed

in Section 3.2.4 how to adapt the mathematical model to ensure that products collected

in a trip are also delivered in the same trip.

In the SD1PDTSP each location is assumed to have a known inventory of the prod-

uct before starting the vehicle service. Also, each location is associated with a desired

inventory that it must have after the last vehicle service. The difference between the

inventories is the demand of the location. Inventories in a location can be reduced or

increased during intermediate visits of the vehicle with the only constraint of considering

a given capacity associated with the location. In other words, it is allowed preemption

in the SD1PDTSP, i.e. product units collected in a location can be unloaded (fully or

partially) at any intermediate location to be picked up later and delivered in another
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location. In Section 3.2.2 it will be observed how to adapt the model and the algorithm

described in this dissertation for the non-preemptive variant. It does not consider inven-

tory holding cost in the SD1PDTSP. See e.g. Coelho et al. (2014) for a recent survey

on the Inventory-Routing Problem.

A practical application of SD1PDTSP arises in the context of a self-service bike-sharing

system, where every night a capacitated vehicle has to reallocate the bicycles between

the stations in the district of a city. The logistic problem aims at finding a route for the

vehicle with a minimum travel cost to restore the initial configuration of the system (see

e.g. Chemla et al. (2013), Raviv et al. (2013) and Dell’Amico et al. (2014) for further in-

formation). Another application occurs in the context of inventory repositioning, where

a set of retailers is geographically dispersed in a region. Often, due to the random na-

ture of the demand, some retailers have an excess on inventory of a product while others

need additional stock. In many cases, the company may decide to transfer inventory

from retailers with low sales to those with high sales. Determining the cheapest way to

transfer a given stock with a single vehicle is the SD1PDTSP.

As far as it is known no research has been conducted previously on the SD1PDTSP,

however in the literature there are other problems very closely related to it. Further down

some of them are shown, starting with the closely related problem involving the split-

demand forbidden, then the problem with split-demand, an only one pickup location

(the depot) and several vehicles, and finally related problems involving uncapacitated

vehicle, several commodities, preemption, etc.

An example

In order to visualize the effect of allowing or not split demand and preemption, three

problems are taken based on a benchmark instance introduced in Mosheiov (1994). This

instance has 25 customers and demands between −7 and 7. Note that the definition of

the SD1PDTSP does not require the vehicle to leave (or enter) the depot with a pre-

specified load (e.g. empty or full initial load). In fact, it assumes that the depot can

supply the vehicle with any extra initial load, which is unknown value in the problem (see

Section 3.2.1 for details). Figures 2.1, 2.2 and 2.3 show optimal routes for these three

problems. Each circle represents a customer and is located using given coordinates. The

travel cost between two customers is defined as the Euclidean distance. The demand

of a customer is the value near the circle representing that customer. Positive values

are associated with pickup customers and negative values with delivery customers. The

vehicle capacity is assumed to be 7. This is the smallest value for the capacity where

it can be obtained an optimal solution without split-demand or preemption. The load

of the vehicle when leaving customer 1 (depot) is 6. Figures 2.1 and 2.3 correspond to

the SD1PDTSP where the maximum number of visits allowed to serve a customer is

1 and 2, respectively. Figure 2.2 corresponds to the SD1PDTSP where the maximum
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Figure 2.1: SD1PDTSP solutions when the vehicle capacity is 7 and split-demand is
forbidden. The cost is 5741.

number of visits allowed to serve a customer is 2, and with the additional constraint

that preemption of the product in a customer is not allowed. These figures show that

the three problems on the same data may have different optimal objective values, thus

the travel cost may be reduced by allowing split-demand and preemption.

2.2 The One-Commodity Pickup-and-Delivery Travelling

Salesman Problem

The SD1PDTSP is an immediate generalization of the so-called One-Commodity Pickup-

and-Delivery Travelling Salesman Problem (1-PDTSP) considered in e.g. Hernández-

Pérez and Salazar-González (2004b), and where each location must be visited exactly
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(b) Optimal route when split-demand is allowed and preemption is forbidden. The cost is 5338.

Figure 2.2: SD1PDTSP solutions when the vehicle capacity is 7, split-demand is
allowed and preemption is forbidden. The cost is 5338.

once. It is worth mentioning that, when assuming an unlimited number of trips, finding

a feasible VRP solution is trivial (e.g. trips consist of single customers). However, for

the 1-PDTSP, even checking whether a feasible solution exists is a strongly NP-complete

problem (see Hernández-Pérez and Salazar-González (2004b)). Therefore, allowing split-

demand on the 1-PDTSP (and so, a location is allowed to be visited several times) has

not only the advantage of reducing the travel cost of the route, but it may also help to

find routes with respect to the split-forbidden variant.

Hernández-Pérez and Salazar-González (2004a) introduce the problem as a 0−1 integer

linear programming model, both for the asymmetrical and symmetrical case. It is also

described a branch-and-cut algorithm for finding an optimal solution, where an initial

heuristic based on the TSP nearest insertion is implemented and capacity constraints
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(c) Optimal route when split-demand and preemption are allowed. The cost is 5337.

Figure 2.3: SD1PDTSP solutions when the vehicle capacity is 7, split-demand and
preemption are allowed. The cost is 5337.

are introduced using a cutting-plane procedure. Later, Hernández-Pérez and Salazar-

González (2007) improve this algorithm adapting some valid inequalities from CVRP as

comb inequalities, multi-star inequalities, clique cluster inequalities, and the so-called

rounded Benders’ cut, obtained from the inequalities capacity constraints and the degree

constraints.

Several heuristic approaches have been also studied for the 1-PDTSP. Hernández-Pérez

and Salazar-González (2004b) propose two heuristic approaches. One is based on a

greedy algorithm where it is defined an infeasiblility function that it allows to extend

different TSP greedy procedures to (possibly) build an initial 1-PDTSP solution, and it

is improved with a k-optimality criterion. The other one is based on a simple local search

procedure developed to provide an initial upper bound for the branch-and-cut algorithm.
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Other heuristic algorithms for the 1-PDTSP are in Hernández-Pérez et al. (2009) and

Zhao et al. (2009). The first article proposes a hybrid algorithm that combines the

GRASP and variable neighbourhood descent metaheuristics. The second article presents

a genetic algorithm which uses several local searches and a pheromone-based crossover

operator. More recently, Mladenović et al. (2012) describe a general variable neighbour-

hood search which combines extended neighbourhood structures from the TSP such as

k-opt, double bridge and insertion operators, and a binary indexed tree data structure.

This procedure is currently the best approach for large-sized 1-PDTSP instances, both

in computational time and solution quality.

2.3 The Split Delivery Vehicle Routing Problem

The SD1PDTSP assumes that the demand at a location can be split (i.e. served by

different visits of the vehicle). The new aspect makes the problem harder as the demand

served by the vehicle in each visit is now unknown. This has been addressed on the

SDVRP by several authors (see e.g. Archetti and Speranza (2012)). The SDVRP is

the particular case of the SD1PDTSP where the depot is the pickup location only, the

customers are delivery locations, and the parameter limiting the number of visits to a

location is unlimited. An interesting difference of the SDVRP with respect to the VRP

is that there exists always a SDVRP route with a number of trips equal to the total

demand divided by the vehicle capacity, rounded up to the nearest integer. The problem

was introduced by Dror and Trudeau (1990) showing that when the number of trips is

unlimited and the travel cost satisfies the triangular inequality, there exists an optimal

SDVRP solution where two trips share at most one customer. Moreover, they show

empirically that allowing split deliveries can lead to substantial cost savings, while in

Archetti et al. (2008a) this saving depends on the characteristic of the instance. Archetti

et al. (2006a) show that there exists an optimal SDVRP solution where the sum of the

number of splits over all customers is less than the number of trips, and Archetti and

Speranza (2008) show that the optimal value of the VRP may be twice the optimal value

of the SDVRP. There are many articles in the SDVRP literature, especially on heuristic

techniques.

Regarding exact methods, Dror et al. (1994) present an integer formulation and different

classes of valid inequalities, and they develop a branch-and-cut algorithm. Belenguer

et al. (2000) and Moreno et al. (2010) describe lower bound procedures where the cus-

tomers’ demand is lower than the capacity of the vehicle, and the quantity delivered by a

vehicle when visiting a customer is an integer. Lee et al. (2006) develop a dynamic pro-

gramming approach, Jin et al. (2007) propose an iterative procedure where a sequence

of TSPs are solved, and Archetti et al. (2011) describe a column generation technique.

More recently, Archetti et al. (2014) describe a branch-and-cut algorithm.
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With respect to heuristic techniques, Archetti et al. (2006b) and Aleman and Hill (2010)

propose tabu search heuristics, whereas Aleman et al. (2009) and Aleman et al. (2010)

put forth constructive and local search procedures. Boudia et al. (2007) combine a

genetic algorithm with a local search procedure for intensification and a distance measure

to control population diversity. Chen et al. (2007) and Archetti et al. (2008b) develop

different kinds of hybrid algorithms. More recently, Wilck IV and Cavalier (2012a)

describe a two-phase constructive procedure, and also a genetic algorithm in Wilck IV

and Cavalier (2012b) and Silva et al. (2015) implement a multi-star iterative local search.

See Archetti and Speranza (2008) and Archetti and Speranza (2012) for a survey on

SDVRP and related problems.

The literature is also quite extensive on related problems. The SDVRP with time win-

dows which for example, a branch-and-price algorithm is designed in Gendreau et al.

(2006), a branch-and-price-and-cut algorithm in Desaulniers (2010), and more recently

McNabb et al. (2015) implement a max-min ant system constructive heuristic along with

Or-opt or 2-opt operators.

In practice, visiting a customer is costly to both the transportation company and the

customer. As observed in Gulczynski et al. (2010), it takes time, involves paperwork

and data processing, and often distracts the customer from primary activities. It is

especially undesirable for the customer to be interrupted and distracted too many times.

As a result both parties may impose a maximum number m of visits to a location. In

addition, other conditions can be required. For example, as analyzed in Gulczynski et al.

(2010), only SDVRP solutions with a minimum delivery amount in each visit could be

accepted.

Although the SD1PDTSP algorithm is not intended to compete with specific exact SD-

VRP methods on benchmark SDVRP instances, Section 4.4 shows that the SD1PDTSP

implementation found optimal solutions to benchmark instances that the recent tech-

nique in Archetti et al. (2011) was not able to solve.

2.4 Other related problems

When the number of visits to a location is unbounded, Naddef and Rinaldi (1993)

study the uncapacitated variant of the SD1PDTSP. This problem is called the Graphical

Travelling Salesman Problem (GTSP), where the aim is to find a min-cost route visiting

each location at least once. The study of the Graphical TSP has been initiated by

Cornuéjols et al. (1985) and Fleischmann (1985). The term graphical may not be the

most suitable, but at the time it was defined, the idea was to reflect the fact that this

version of the TSP has an optimal solution as long as the graph is connected. Later

on, Naddef and Rinaldi (1993) suggested to view the GTSP not only as an optimization

problem in its own right, but also as a relaxation of the symmetric TSP which can
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actually be used to solve the symmetric TSP. Thus, they develop a method to deal with

the polyhedral combinatorics of symmetric TSP by studying Graphical TSP. Some other

references on this problem are Fonlupt and Naddef (1992), Naddef and Rinaldi (2007),

Naddef and Rinaldi (1991), Oswald et al. (2006) and more recently Theis (2010) and

Theis (2014).

If the nodes are partitioned into clusters, and the problem calls for a minimum cost

cycle visiting at least one node for each cluster, the problem is the Generalized TSP.

This calls for a minimum cost cycle visiting at least one node for each cluster. Another

version, called E-Generalized TSP (where E stands for Equality), arises when imposing

the additional constraint that exactly one node of each cluster must be visited. The

Generalized TSP was first simultaneously mentioned by Henry-Labordere (1969) and

Srivastava et al. (1969) who addressed the asymmetrical and the symmetrical version

of the problem, respectively. They proposed a dynamic programming approach for its

solution. Later, Laporte and Nobert (1983) and Laporte et al. (1987) also study the

symmetrical and the asymmetrical case, formulating the problem as an integer program,

and developing a branch and bound algorithm for its solution. Fischetti et al. (1995)

study the facial structure of the corresponding polytopes. ALso Fischetti et al. (1997)

present a particular case in which the number of visits to a location is bounded and the

vehicle capacity is unlimited. In this, each location is represented by a cluster of nodes

(visits to a customer) in a graph. When the maximum number of visits to a location is

one, the uncapacitated variant is the TSP. Not only exact approaches have been studied,

but also heuristic methods have been introduced by e.g. Renaud and Boctor (1998) and

more recently by e.g. Karapetyan and Gutin (2011), Pintea et al. (2013) and Silberholz

and Golden (2007).

There are few publications on optimization problems including vehicle routing, split

demands and pickup-and-deliveries. Anily and Bramel (1999) address the SD1PDTSP

when the demand of each customer is plus-minus one unit. They propose two heuristic

algorithms and analyze their worst-case performance. Nowack et al. (2008) consider

a related problem where several commodities must be transported. Each commodity

goes from one origin to one destination, a location may simultaneously serve as both

an origin and a destination, and split demands are allowed. The authors show that the

maximum travel-cost reduction of the split-allowed problem versus the split-forbidden

problem is obtained when all the customer demands are just above one half of vehicle

capacity. They also made the conjecture that this reduction is at most 50%, and they

describe a heuristic approach to solve the split-allowed problem starting from a feasible

split-forbidden solution. Hernández-Pérez and Salazar-González (2009) and Gouveia

and Ruthmair (2015) address the split-forbidden problem. Kerivin et al. (2008) and

Kerivin et al. (2012) extend the problem by allowing preemption, i.e. a commodity

collected in a location can be unloaded (fully or partially) at any intermediate location

to be picked up later by the same or another vehicle. This unloading/picking-up process
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can be repeated several times for a demand until its destination is reached. There is

no restriction on the number of times that a location may be visited, and the vehicle

capacity is not on each vehicle routing an arc but on all vehicles traversing the same arc.

Nowack et al. (2012) extends the problem with the additional constraint that, on each

trip, all pickup customers must be visited before any delivery customer, and describes

a dynamic programming algorithm that exploits the precedence constraints between

origins and destinations.
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The SD1PDTSP: Mathematical

Model

This chapter presents a mathematical model and properties for the SD1PDTSP. Section

3.1 introduces two mixed integer linear programming formulation for both the asymmet-

ric and symmetric SD1PDTSP. Section 3.2 discusses several minor modifications to also

model other related problem. Section 3.3 shows valid inequalities for the model of the

asymmetric SD1PDTSP such as fractional capacity inequalities, 2-matching inequalities,

etc.

3.1 Mathematical Model

This section presents an integer linear programming formulation for the asymmetric and

symmetric SD1PDTSP. First, it will begin setting up the notation. Let n be the number

of locations (i.e. a depot and customers), and I = {1, . . . , n} be the set of locations being

1 the depot. Let mi be the maximum number of visits allowed to serve customer i, and

the maximum number of visits allowed to the depot is denoted by k. For simplicity of

the exposition, given a constant m it assumes that mi = m ∀i ∈ I and k = m, although

in some applications the values mi and k could be desired to be different than m. Let

Vi be a set of m nodes representing potential visits to location i. Vi is an ordered set,

so (e.g.) i1 and im represent the first and the last visit, respectively, by the vehicle to

location i. The set V = ∪i∈IVi is the node-set of a graph G = (V,A), where A contains

the arcs connecting nodes associated with different locations. Given a node v ∈ V , the

location associated with this node is denoted by i(v). For a given subset S of nodes, it

writes δ+(S) = {(v, w) ∈ A : v ∈ S,w 6∈ S} and δ−(S) = {(v, w) ∈ A : v 6∈ S,w ∈ S}.

Given an arc a = (v, w) the travel cost from v to w is denoted by ca. For each location

i ∈ I, let pi be the units of product in i before starting the service, and p′i the desired

31
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units of product in i after the end of the service. Let di = p′i − pi be the demand

of location i. When di > 0 the location i is a pickup customer, which means that it

provides product from the system. When di < 0 the location i is a delivery customer,

which means that it needs product to the system. In case of a customer with demand

zero, it assumes that is a pickup customer. It also assumes that
∑

i∈I di = 0, so the

number of product units in the system remains equal before and after performing the

vehicle service. Moreover it supposes that all locations must be served by the vehicle,

including those customers with zero demand. In addition, a capacity qi associated with

location i is given, meaning that this location can store between 0 and qi units of the

commodity. The capacity of the vehicle is Q and is also assumed to be known.

In the bike-sharing application, I represents the stations, pi and p′i are the initial and

final (respectively) numbers of bikes at station i, qi is the number of slots for bikes at

station i, and Q is the maximum number of bikes that the vehicle can transport.

To present a mathematical formulation, for each arc a ∈ A, a binary variable

xa =

{
1 if a is routed

0 otherwise

and a continuous variable fa being the number of units of product in the vehicle when

going through arc a are introduced. For each node v ∈ V , a binary variable

yv =

{
1 if the visit v is performed by the vehicle

0 otherwise

and a continuous variable gv being the number of units collected (if positive) or delivered

(if negative) when performing the visit v are also defined. Note that, given a solution,

the final number of units of product at customer i is given by pi+
∑

v∈Vi gv, which must

be equal to p′i.

Then a mathematical formulation of the asymmetric SD1PDTSP is given by

min
∑
a∈A

caxa (3.1)
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subject to

yi1 = 1 ∀i ∈ I (3.2)

yil ≥ yil+1
∀i ∈ I, ∀l = 1, . . . ,m− 1 (3.3)∑

a∈δ+(v)

xa =
∑

a∈δ−(v)

xa = yv ∀v ∈ V (3.4)

∑
a∈δ+(S)

xa ≥ yv + yw − 1 ∀S ⊆ V,∀v ∈ S, ∀w ∈ V \ S (3.5)

∑
a∈δ+(v)

fa −
∑

a∈δ−(v)

fa = gv ∀v ∈ V (3.6)

0 ≤ fa ≤ Qxa ∀a ∈ A (3.7)
m∑
l=1

gil = di ∀i ∈ I (3.8)

0 ≤ pi +
∑

1≤k≤l
gik ≤ qi ∀i ∈ I, ∀l = 1, . . . ,m− 1 (3.9)

−qiyil ≤ gil ≤ qiyil ∀i ∈ I, ∀l = 2, . . . ,m (3.10)

yv, xa ∈ {0, 1} ∀v ∈ V,∀a ∈ A. (3.11)

Equations (3.2) force to visit once each location. Inequalities (3.3) impose an order to

use the nodes of a location. These constraints avoid symmetrical solutions representing

the same route. Equations (3.4) are the degree equations, ensuring that the vehicle

enters and leaves each node v with yv = 1. Inequalities (3.5) are the subtour elimination

constraints. Constraints (3.6)–(3.8) ensure that the load of the vehicle is able to satisfy

the demand of each location. Constraints (3.9) guarantee that the storage of product in

a location is always between 0 and its capacity. Note that case l = m is useless because

(3.8) is in the model, 0 ≤ p′i ≤ qi and 0 ≤ pi ≤ qi is assumed. Inequalities (3.10) impose

that product can be delivered to or collected from a location in each visit. Note that

case l = 1 is useless because (3.2) and (3.9).

Trivially, for a given S, inequality (3.5) is dominated by∑
a∈δ+(S)

xa ≥ 1 (3.12)

when there are locations i and j such that i1 ∈ S and j1 ∈ V \ S. Otherwise, it is

dominated by ∑
a∈δ+(S)

xa ≥ yv (3.13)

for all v ∈ V \ S when i1 ∈ S for each i ∈ I, or for all v ∈ S when i1 ∈ V \ S for each

i ∈ I.

Given a feasible SD1PDTSP solution x1, then there is a vector x2 that defines a feasible

SD1PDTSP solution in the opposite direction. For all a = (v, w) ∈ A with v, w ∈ V it
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holds

x2(v,w) =

{
1 if x1(w,v) = 1

0 otherwise

Indeed, its load is defined by

f2(v,w) = Q− f1(w,v) ∀(v, w) ∈ A

Hence, if c(v,w) = c(w,v) ∀v, w ∈ V , a symmetric model can be considered. In fact, if

there is an oriented cycle x′ ∈ R|A|, and a continuous variable f ′ ∈ R|A| satisfying the

restrictions in the asymmetric model, then there also is an unoriented cycle x′′ ∈ R|E|,
and a continuous variable s′′ ∈ R|A| satisfying the restrictions in the symmetric model

and vice versa. Thus, if it is defined

f ′(v,w) = s′′(v,w) + (
Q

2
− s′′(w,v))

for each arc (v, w) in the oriented tour, the solution of the symmetric model is defined

by

x′′[v,w] = x′(v,w) + x′(w,v) ∀[v, w] ∈ E

and

s′′(v,w) =


f ′(v,w)/2 if x′(v,w) = 1

(Q− f ′(w,v))/2 if x′(w,v) = 1 ∀(v, w) ∈ A
0 otherwise

Therefore, for each e ∈ E it is considered the new variable

xe =

{
1 if and only if e is routed

0 otherwise

and a continuous variable sa for each a ∈ A such that it does not represent the load

of the vehicle going through arc a, as happen with the variable fa in the asymmetric

model, but this guarantees the existence of a feasible SD1PDTSP solution. Then, the

symmetric SD1PDTSP formulation is as follows

min
∑
e∈E

cexe (3.14)
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subject to

yi1 = 1 ∀i ∈ I (3.15)

yil ≥ yil+1
∀i ∈ I, ∀l = 1, . . . ,m− 1 (3.16)∑

e∈δ(v)

xe = 2yv ∀v ∈ V (3.17)

∑
e∈δ(S)

xe ≥ 2(yv + yw − 1) ∀S ⊆ V,∀v ∈ S, ∀w ∈ V \ S (3.18)

∑
a∈δ+(v)

sa −
∑

a∈δ−(v)

sa = gv ∀v ∈ V (3.19)

0 ≤ s(u,v) ≤
Q

2
x[u,v] ∀u, v ∈ V (3.20)

m∑
l=1

gil = di ∀i ∈ I (3.21)

0 ≤ pi +
∑

1≤k≤l
gik ≤ qi ∀i ∈ I, ∀l = 1, . . . ,m− 1 (3.22)

−qiyil ≤ gil ≤ qiyil ∀i ∈ I, ∀l = 2, . . . ,m (3.23)

yv, xe ∈ {0, 1} ∀v ∈ V,∀e ∈ E. (3.24)

Without the above observation, it would be a mistake thinking that it is possible to use

variables fa instead of sa and replace the constraints (3.19)–(3.20) by∑
a∈δ+(v)

fa −
∑

a∈δ−(v)

fa = gv ∀v ∈ V

0 ≤ f(v,w) ≤ Qx[v,w] ∀a ∈ A
(3.25)

Considering a instance with a depot and two customers with demands d2 = +5 and

d3 = −2 and m = 2. If the vehicle capacity is Q = 2, then the SD1PDTSP is not

feasible, but the mathematical model taking (3.25) instead of (3.19)–(3.20) has the

integer solution x[11,21] = x[21,31] = x[22,31] = x[22,32] = x[11,32] = 1 and 0 otherwise with

f(11,21) = f(32,22) = f(31,21) = 0, f(11,32) = f(22,31) = 1, f(21,31) = f(31,22) = f(22,32) =

f(32,11) = f(21,11) = 2, and g11 = −3, g21 = +4, g22 = +1, g31 = −1, g32 = −1. Therefore

this model is not valid.

3.2 SD1PDTSP Variants

As pointed out in Chapter 2, model (3.1)–(3.11) is also valid for special cases of the

SD1PDTSP like the VRP and the SDVRP. In these problems, the depot is the only

pickup location that can be visited at most k times, while the customers are delivery

locations. On the VRP the number of visits to a delivery location is limited to 1,

while on the SDVRP it is limited to m. Chapter 4 proposes a technique to solve the
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SD1PDTSP to optimality based on the formulation (3.1)–(3.11), and therefore this is a

valid approach to solve VRP and SDVRP. As it was seen in Chapter 2, there are a lot of

problems closely related to the SD1PDTSP. In fact, they can be regarded as variants of

the SD1PDTSP, and easily modeled by slightly modifying the formulation (3.1)–(3.11).

3.2.1 Load vehicle fixed

In the definition of the SD1PDTSP, the vehicle is not required to leave the depot with

full or empty load. In fact, it assumes that the depot can supply the vehicle with any

extra initial load, which is an unknown value in the problem. However one can be

interested in fixing this load. For example, if j represents the depot, adding fa = Qxa

for all a ∈ δ+(Vj) forces the vehicle to leave the depot with full load. These equations

are useful to solve VRP and SDVRP instances with the model and the exact algorithm

described in this thesis.

3.2.2 Avoid preemption

By replacing (3.10) with

0 ≤ gil ≤ diyil ∀i ∈ I : di ≥ 0 ∀l = 1, . . . ,m

diyil ≤ gil ≤ 0 ∀i ∈ I : di < 0 ∀l = 1, . . . ,m

one can force that a vehicle never stores a unit of product in an intermediate location

between it was collected and it will be delivered. In other words, these inequalities avoid

preemption during the route which may be considered as disturbing the customer in

some applications. Note that, when preemption is forbidden, the inequalities (3.9) are

redundant, and the notation in the problem description can be simplified (e.g. the model

uses di but not pi, p
′
i, qi).

3.2.3 Minimum amount of product served to a customer

Archetti et al. (2011) assumes that, if a customer is visited, it has also to be served. This

implies that the customers visited in any trip receive or deliver at least a fix amount

of product (say, one unit). Then preemption is forbidden and customers with demand

smaller than this minimum amount do not exist. The variant can be modeled with

1 ≤ gil ≤ diyil ∀i ∈ I : di ≥ 1 ∀l = 1, . . . ,m

diyil ≤ gil ≤ −1 ∀i ∈ I : di ≤ −1 ∀l = 1, . . . ,m
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instead of (3.10) and again inequalities (3.9) are unnecessary. In addition, under some

conditions many variables could be removed from the model for this variant. For exam-

ple, a customer with di < 2 will be visited only once, thus yil = 0 for all l = 2, . . . ,m.

Gulczynski et al. (2010) also impose a minimum amount of product served to a customer

in each visit, but in this case the minimum amount is proportional to the demand of

the customer rather than a fix number of units. Again, a customer is interrupted with

a visit only when the delivery or pickup is substantial in amount or value each time. To

model this variant, (3.10) should be replaced by:

rdiyil ≤ gil ≤ diyil ∀i ∈ I : di ≥ 0 ∀l = 1, . . . ,m

diyil ≤ gil ≤ rdiyil ∀i ∈ I : di < 0 ∀l = 1, . . . ,m

where r is the percentage of the customer demand defining the minimum amount (e.g.

35%). Clearly this parameter has a high impact on the maximum number of visits

(e.g. r = 0.35 implies m = 2). To our knowledge, this is the first mathematical

formulation known for the SDVRP with minimum delivery amounts and the solution

approach described in 4 is the first exact method to solve it.

3.2.4 Other variants

A variant concerns relaxing the constraints that customers with zero-demand must be

visited. This is easily obtained by simply removing equations (3.2) from the formulation.

In this case inequalities (3.12) and (3.13) are valid only under some conditions. For

example, inequalities (3.12) is valid when there are customers i and j with non-zero

demand such that Vi ⊆ S and Vj ⊆ V \ S.

Other variants relax the constraint that all customers must be visited. In addition

to apply the modifications mentioned in the previous variant, equations (3.8) must be

replaced by inequalities, and potentially, a term should be added to the objective function

to consider penalties when customers are partially served or not visited by the vehicle.

On some applications it is desired that any product collected from a customer must

be delivered by the vehicle before returning to the depot. This constraint is important

when the whole route will not be performed by a single vehicle, but by a fleet of vehicles.

If j represents the depot with zero demand, the constraint can be modeled by simply

adding fa = 0 for all a ∈ δ+(Vj) ∪ δ−(Vj).

3.3 Valid inequalities

As for almost all combinatorial optimization problems, the SD1PDTSP can be described

as the polytope formed for the convex hull of all the tours that verify the problem
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requirements, i.e. the convex hull of the feasible solutions (3.1)–(3.11). This is described

by a finite number of inequalities. Nevertheless, unlike the TSP polytope, the dimension

of the SD1PDTSP polytope does not only depend on the number of locations n, but

also depends, in a complex way, on the a large set of variables.

Finding the complete description of the polytope as a system linear inequalities it is

a difficult task. Moreover, given a inequality, it is also difficult to determinate if it

supports the polytope. However, it can be a great computational help to have a partial

description of that inequalities.

3.3.1 Rounded Fractional Capacity Cuts

The large set of variables is the major drawback, but by Benders’ decomposition (see

Section 1.5 for further information), it is possible to project out the variables fa in the

model (3.1)–(3.11). Acording to Farkas’ Lemma, given the polytope described by (3.6)–

(3.7), there is a fixed vector x in the polytope if, and only if, for all extremes directions

(α, β) ∈ R|V |+|A| the inequalities∑
v∈V

αvgv −
∑
a∈A

βaQxa ≤ 0

are valid for the cone
αv − αw − β(v,w) ≤ 0 ∀(v, w) ∈ A

β(v,w) ≥ 0 ∀(v, w) ∈ A
(3.26)

Since the total demand of product in the system is zero, the equations (3.6) can all be

replaced by smaller-or-equal inequalities, and the inequalities (3.7) can be replaced by

greater-or-equal inequalities if di > 0, and by smaller-or-equal inequalities otherwise,

without adding new solutions. Moreover, clearly (3.26) is a 1-dimensional linear space

generated by the vector defined by α̃v = 1, ∀v ∈ V and β̃a = 0, ∀a ∈ A. Therefore, it is

possible to assume αv ≥ 0, ∀v ∈ V in (3.26) in order to simplify the characterization of

the extreme rays, thus (3.26) can be replaced by

αv − αw − β(v,w) ≤ 0 ∀(v, w) ∈ A

β(v,w) ≥ 0 ∀(v, w) ∈ A

αv ≥ 0 ∀v ∈ V

(3.27)

It was seen by , for each S ⊂ V , all extremes directions (α, β) are defined by αv = 1

∀v ∈ S, αv = 0 ∀v ∈ V \ S, βa = 1 ∀a ∈ δ+(S) and βa = 0 ∀a ∈ A \ δ+(S). Indeed, the

linear system defined by (3.6) and (3.7) can be replaced by

∑
a∈δ+(S)

xa ≥
1

Q

∑
v∈S

gv ∀S ⊂ V (3.28)
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These inequalities are similar to the so-called fractional capacity cuts, known in the

vehicle routing literature. The major difference is that the right-hand side is not a

constant for us, and therefore rounding up would create a non-linear inequality. Still

this is not always the case, and now it is presented a particular situation where rounding

up keeps the linearity of the inequality, while at the same time it strengthens the linear

programming relaxation of the formulation.

Consider S defined by the union of a collection of Vi. Let C be a subset of customers,

and it assumes that S = ∪i∈CVi. Then the previous inequality for S is dominated by

the following one ∑
a∈δ+(S)

xa ≥

⌈
1

Q

∣∣∣∣∣∑
i∈C

di

∣∣∣∣∣
⌉

(3.29)

Even if there is an exponential number of linear inequalities in (3.29), today’s state-of-

the-art cutting-plane approaches allow to manage them all in very effective way. These

inequalities can be heuristically separated by first finding the most violated inequality

without the rounded up operation. To this end, one must shrink each set Vi of the graph

G in a single node, and then solve a max-flow problem on a properly defined network

with an artificial node. To be more precise it is discussed in further detail in Section

4.2.2.

In order to simply the model, the inequalities (3.5) and (3.29) can be replaced by the

following inequalities ∑
a∈δ+(S)

xa ≥ r(S) ∀S ⊂ V

where

r(S) = max

{
1,

⌈
1

Q

∣∣∣∣∣∑
i∈C

di

∣∣∣∣∣
⌉}

As happen in other optimization problems, owing to the constraints (3.4), the above

constraints are equivalent to the following∑
a∈A(S)

xa ≥ |S| − r(S) (3.30)

Another improvement of the constraints (3.5) and (3.29) in the SD1PDTSP model can

be got by defining r′(S) as the smallest number of times the vehicle with capacity Q

must go inside S to meet the demand di of the customers in S. Then, the following

inequality is valid ∑
a∈δ+(S)

xa ≥ r′(S) ∀S ⊂ V (3.31)



40 Chapter 3 The SD1PDTSP: Mathematical Model

Note that r′(S) is not the solution of a Bin Packing Problem since di can be a negative

value. Moreover r(S) ≤ r′(S).

Nevertheless, both improvement (3.30) and (3.31) are not considered in the algorithm

described in Chapter 4 because, in the first case the right-hand side is not a constant,

and therefore its use would create a non-linear inequality. And in the second case, the

computation of r′(S), even for a fixed subset S, is an NP-hard problem in the strong

sense.

3.3.2 2-matching inequalities

Further strengthening arises by using valid inequalities for the Generalized TSP poly-

tope. This is the case, for example, of the comb inequality that is defined by a family of

customer subsets T1, . . . , Tt, H such that,

H ∩ Ti 6= ∅ ∀ 1 ≤ i ≤ t

Ti \H 6= ∅ ∀ 1 ≤ i ≤ t

Ti ∩ Tj = ∅ ∀ 1 ≤ i < j ≤ t

Then the comb inequality is as follows (see Section 1.4.1 for an equivalent form of the

comb inequality)

∑
e∈E(H)

xe +
t∑

j=1

∑
e∈E(Tj)

≤ |H|+
t∑

j=1

|Tj | − 1− (t+ 1)/2

This inequality is the base for yielding other inequalities, e.g. when a handle is given,

and the number of teeth is zero, the subtour elimination constraints are obtained. In

particular, it uses the 2-matching inequality. This arises when a handle H ⊂ V and an

number t ≥ 3 of teeth T1, T2, . . . , Tt with Ti ⊂ V , for all i = 1, . . . , t are given, such that

|H ∩ Ti| = 1 ∀ 1 ≤ i ≤ t

|Ti \H| = 1 ∀ 1 ≤ i ≤ t

More concretely, it uses the generalized 2-matching inequality∑
a∈δ+(H)\T

xa ≥
∑
a∈T

xa −
∑
v∈H

yv + 1 (3.32)

for all H ⊂ V and T ⊂ δ+(H) with |T | odd. Although these inequalities can be separated

in polynomial time, it uses the heuristic procedure described in Fischetti et al. (1997)

to incorporate them in the branch-and-cut approach.
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3.3.3 Benders’ Cut

Using Benders’ Decomposition enables to eliminate the gv variables from the model. Let

αv be the dual variable of equation (3.6), βa of the right-hand side inequality in (3.7), γi

of equation (3.8), δ1il of the left-hand side inequality in (3.9), δ2il of the right-hand side

inequality in (3.9), λ1il of the left-hand side inequality in (3.10), and λ2il of the right-hand

side inequality in (3.10). If (x∗, y∗) is the solution from the master problem, the dual

problem maximizes

∑
i∈I

γidi +
∑
a∈A

βaQx
∗
a +

∑
i∈I

m−1∑
l=1

(
δ2il(qi − pi)− δ

1
il
pi
)

+
∑
i∈I

m∑
l=2

(λ2il − λ
1
il

)qiy
∗
il

subject to

αu − αv + β(u,v) ≤ 0 ∀(u, v) ∈ A

−αi1 + γi +

m−1∑
k=1

(δ1ik + δ2ik) = 0 ∀i ∈ I

−αil + γi +

m−1∑
k=l

(δ1ik + δ2ik) + λ1il + λ2il = 0 ∀i ∈ I, ∀l = 2, . . . ,m

βa ≤ 0 ∀a ∈ A

δ1v , λ
1
v ≥ 0 ∀v ∈ V

δ2v , λ
2
v ≤ 0 ∀v ∈ V

αv, γi unsigned ∀v ∈ V,∀i ∈ I

Note that ∀i ∈ I, for all l = 2, . . . ,m

λ1il + λ2il = αil − γi −
m−1∑
k=l

(δ1ik + δ2ik)

is unsigned. Since λ1il ≥ 0 and λ2il ≤ 0 then

λ1il − λ
2
il

= |αil − γi −
m−1∑
k=l

(δ1ik + δ2ik)|

Observe also that

γi = αi1 −
m−1∑
k=1

(δ1ik + δ2ik)

Since the total demand of product in the system is zero, equations (3.6) can all be

replaced by smaller-or-equal inequalities, and equations (3.7) can all be replaced without

adding new solutions by greater-or-equal inequalities if di > 0, and by smaller-or-equal

inequalities otherwise. Then βa must be non-negative for all a, and γi must be non-

negative if di > 0 and non-positive otherwise. Introducing also a new variable β′a to
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replace −βa, the above dual problem can be reformulated as maximizing

∑
i∈I

(
αi1 −

m−1∑
k=1

(δ1ik + δ2ik)
)
di −

∑
a∈A

β′aQx
∗
a+

∑
i∈I

m−1∑
l=1

(
δ2il(qi − pi)− δ

1
il
pi
)
−
∑
i∈I

m∑
l=2

∣∣αil − αi1 +
l−1∑
k=1

(δ1ik + δ2ik)
∣∣qiy∗il

subject to

αu − αv − β′(u,v) ≤ 0 ∀(u, v) ∈ A

αv, δ
1
v ≥ 0 ∀v ∈ V

β′a ≥ 0 ∀a ∈ A

δ2v ≤ 0 ∀v ∈ V

The extreme rays of the polyhedral cone on the (α, β′) space are known. Hernández-

Pérez and Salazar-González (2003) shows that each extreme ray is associated with a set

S ⊂ V and defined by αv = 1 if and only if v ∈ S, and by β′a = 1 if and only if a ∈ δ+(S).

This allows us to avoid the unboundness of the dual problems by strengthening the

master problem with the following set of inequalities for each subset S ⊂ V

Q
∑

a∈δ+(S)

xa+

∑
i∈I

m∑
l=2

∣∣αil − αi1 +
l−1∑
k=1

(δ1ik + δ2ik)
∣∣qiyil

≥
∑
i∈I

(
αi1di −

m−1∑
k=1

(
(δ1ik + δ2ik)di + δ1ikpi − δ

2
ik

(qi − pi)
))

(3.33)

where δ1v ≥ 0 and δ2v ≤ 0 for all v ∈ V , and αv = 1 if and only if v ∈ S. Although

the extreme rays of the cone defined by (δ1, δ2) can be characterized by subsets of

nodes, a simpler expression for these inequalities has not been found, and the separation

procedure still requires solving a linear program. However, the analysis made it suggests

a flow-based procedure to cut off infeasible solutions, which is the separation procedure

described in Section 4.2.4. Inequalities (3.33) are the Benders’ cuts.

3.3.4 Other inequalities

Another interesting family of inequalities is

gux(u,v) ≤ f(u,v) ≤ (Q− gv)x(u,v) ∀(u, v) ∈ A
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They can be linearized as follows

gux(u,v) ≥ gu − qi(u)(1− x(u,v)) ∀(u, v) ∈ A

The system defined by (3.6) and these linear bounds on the continuous variables can be

replaced by

Q
∑

a∈δ+(S)

xa ≥
∑
u∈S

(
gu +

∑
v/∈S

(2gv − qi(u) − qi(v) + qi(u)x(u,v) + qi(v)x(v,u))
)

∀S ⊂ V

(3.34)

Inequalities (3.28) and (3.34) ensure the existence of a load for the vehicle on a route

such that max{0, gu}x(u,v) ≤ f(u,v) ≤ min{Q− gv, Q}x(u,v).





Chapter 4

The SD1PDTSP: The

Branch-and-Cut Algorithm

This chapter describes an exact algorithm for the SD1PDTSP. The branch-and-cut algo-

rithm is based on the theoretical results of Chapter 3. A general scheme of the approach

is given in Section 4.1. In order to introduce in the model the valid inequalities pre-

sented in Section 3.3, it is necessary to implement good separation procedures. These

are described in Section 4.2. Section 4.3 is dedicated to the branching phase of the

branch-and-cut algorithm. Finally, Section 4.4 analyzes computational results obtained

by applying the algorithm to solve SD1PDTSD, SDVRP and VRP instances.

4.1 A Branch-and-Cut Approach

The formulation given in Chapter 3 suggests a branch-and-cut algorithm to solve the

SD1PDTSP. This is a very effective tool for solving some combinatorial optimization

problems as the SD1PDTSP.

Considering that the large set of variables is the major drawback, using Benders’ Decom-

position enables to eliminate the f and g variables from the model, and iteratively, work

with a master model based only on the binary variables (x, y), and with a subproblem

defined by the continuous variables (f, g). Although, the classical Benders’ Decompo-

sition would suggest to keep the integrability condition in the master problem solved

at each iteration, a more efficient approach is to replace such requirement by its linear-

programming relaxation, and apply a branching scheme when the iterative procedure

stops and (x∗, y∗) is not integer.

Thus, as it was seen in Section 1.6 the branch-and-cut algorithm starts with the following

linear relaxation of the SD1PDTSP in which, the continuous variables (f, g) and the

45
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condition that all variables have to be integers have been eliminated.

min
∑
a∈A

caxa (4.1)

subject to

yi1 = 1 ∀i ∈ I (4.2)

yil ≥ yil+1
∀i ∈ I, ∀l = 1, . . . ,m− 1 (4.3)∑

a∈δ+(v)

xa =
∑

a∈δ−(v)

xa = yv ∀v ∈ V (4.4)

0 ≤ yv ≤ 1 ∀v ∈ V (4.5)

0 ≤ xa ≤ 1 ∀a ∈ A. (4.6)

The subproblem defined by the continuous variables (f, g) is constructed by fixing the

binary variables (x, y) to an optimal solution (x∗, y∗) of the master problem. That

subproblem is given below

min 0 (4.7)

∑
a∈δ+(v)

fa −
∑

a∈δ−(v)

fa = gv ∀v ∈ V (4.8)

∑
v∈Vi

gv = di ∀i ∈ I (4.9)

0 ≤ fa ≤ Qx∗a ∀a ∈ A (4.10)

0 ≤ pi −
∑

1≤k≤l
gik ≤ qi ∀i ∈ I, ∀l = 1, . . . ,m− 1 (4.11)

−qi(v)y∗v ≤ gv ≤ qi(v)y∗v ∀v ∈ V (4.12)

At each iteration, the linear relaxation (4.1)–(4.6) is solved. If it is infeasible, then the

original SD1PDTSP is infeasible (m or Q are too small). Otherwise, let (x∗, y∗) be the

optimal solution of the linear relaxation. Then, the subproblem checks the feasibility of

the linear system (4.8)–(4.12) on the variables (f, g). If this system is feasible, then the

linear relaxation includes all the necessary constraints, and (x∗, y∗) defines an optimal

SD1PDTSP route. Otherwise, a separation method works dynamically seeking violated

inequalities by (x∗, y∗). That is, the algorithm looks for a first family of inequalities

adding them if any violated is found, and solves the strengthened linear relaxation

problem until it does not find violated inequalities of this family. Then, the algorithm

searches the next family of inequalities. If any violated is found, it is inserted, it solves

the strengthened relaxation problem until any more is found, and goes back to find first

family of inequalities; otherwise it looks for other family of inequalities. This procedure

continues until any violated inequalities are not found, then the branching starts.

The best performances are obtained when the separation procedures are applied in the
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following order. Firstly, subtour elimination inequalities (3.12) and (3.13), secondly the

rounding fractional capacity inequalities (3.29). Then the generalized 2-matching in-

equalities (3.32). And the last ones are the Benders’ cut (3.33). The strengthened linear

relaxation problem can be considered as the master problem, and the infeasible system

(4.8)–(4.12) can be considered as a primal problem whose dual problem is unbounded.

The ray proving this problem status defines a new Benders’ cut that must be included

in the master problem. Inequalities (3.28) and (3.34) are not included in the master

problem because they involve g variables.

Computing a good upper bound on the optimal objective value would be great for a

successful branch-and-cut approach. A initial constructive heuristic procedure, described

in Section 5.1.3, gives a first upper bound to the branch-and-cut algorithm, and this can

cut off the linear program (subproblems) avoiding unnecessary time consuming. This is

the first step of our branch-and-bound algorithm. However, it also executes when the

linear-programming relaxation gives a solution (x∗, y∗), and no violated cut is found,

i.e. at each node of search. In this case, the solution (x∗, y∗) is used to affect the TSP’s

through the iterative approach. This is done by changing the cost ca of an arc a with

(1− x∗a)ca.

4.2 Separation Procedures

In order to use a class of valid linear inequalities as cutting planes, it is necessary to

solve the so-called separation problem. For a given family of constraints F , and given a

solution (x∗, y∗) of a linear relaxation of the model (3.1)–(3.11), the separation problem

is the decision problem whether all constraints of F are satisfied by (x∗, y∗). In case this

does not happen, it should return a valid constraint in F which is violated by (x∗, y∗).

The aim of this section is to describe efficient procedures to solve the separation problems

associated with the constraints introduced in Section 3.3.

4.2.1 Separation Algorithm for Subtour Elimination Constraints

Given a solution (x∗, y∗) of the linear relaxation of the SD1PDTSP, it builds a capaci-

tated graph G∗ = (V ∗, A∗), where V ∗ = V is the set of vertices, A∗ = {a ∈ A : x∗a > 0}
is the set of arcs, and for each arc a ∈ A, x∗a is its capacity. Given a set S ⊆ V , in

order to find a violated inequality, the algorithm must search a minimum capacity cut

(S, V \ S) in the graph G∗.

For the family of subtour elimination constraints (3.5)∑
a∈δ+(S)

xa ≥ yv + yw − 1 ∀v ∈ S, ∀w ∈ V \ S
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this can be done in O(n3) time, as it is equivalent to find the maximum flow from v to

w (see, e.g. Ahuja et al. (1989)). If the maximum flow is not less than y∗v + y∗w − 1,

then all the inequalities (3.5) are satisfied; otherwise the maximum flow is less than

y∗v +y∗w−1, and a violated inequality (3.5) has been discovered. Trying all possible pairs

(v, w) produces an O(n5) time overall separate algorithm. Actually, a better algorithm

having overall O(n4) time complexity can be obtained, in analogy with the TSP case

(see Padberg and Grötschel (1985)). However, these inequalities are not added in the

model.

For the family of inequalities (3.13) ∑
a∈δ+(S)

xa ≥ yv

where there are locations i such that Vi ⊂ V \S and v ∈ S, as before, the algorithm must

search a minimum capacity cut (S, V \S) in the graph G∗. Hence it can be discovered by

finding the maximum flow from v to t, where t is an additional node connected with each

w ∈ Vi through an edge having very large capacity (t is a node representing the nodes

of Vi). Trying all possible pairs (v, t) yields an O(mn4) time overall separate algorithm.

Clearly, nodes v with y∗v = 0 need not be considered.

Finally for the family of inequalities (3.12)∑
a∈δ+(S)

xa ≥ 1

where there are locations i and j such that Vi ⊂ S and Vj ⊂ V \ S, following the

same scheme, the algorithm have to find the maximum flow from s to t, where s and t

are additional nodes connected with each v ∈ Vi and w ∈ Vj , respectively, through an

edge having very large capacity (s and t are nodes representing the nodes of Vi and Vj ,

respectively). Thus, the overall time complexity in this case is O(m2n3).

According to the above scheme the separation algorithm for the families of inequalities

(3.12) and (3.13) requires O(mn4) in the worst case. However, in the practice, the

computing time required is much smaller as the capacitated graph G∗ is very sparse,

and it has many isolated nodes. Moreover, several max-flow computations can be avoided

because some values of y∗ are small.

4.2.2 Separation Algorithm for Rounded Fractional Capacity Inequal-

ities

The rounded fractional capacity inequalities (3.29) are separated using the same idea

as in Section 4.2.1. Let (x∗, y∗) be a given solution of the linear relaxation of the

SD1PDTSP. In order to check if any of these inequalities are violated, let us write the
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constraints in a different form. Let I be the set of all locations, A′′ the set of arcs

between locations, and C a subset of customers of I. For each S = ∪i∈CVi∑
a∈δ+(S)

x∗a ≥
∑
i∈C

+di
Q

is algebraically equivalent to:

∑
a∈δ+(S)

x∗a +
∑

i∈I\C:di>0

di
Q
−

∑
i∈C:di<0

di
Q
≥

∑
i∈I:di>0

di
Q

The right-hand side of the inequality is the positive constant K/Q where

K = max

 ∑
i∈I:di>0

di,−
∑

i∈I:di<0

di


and the coefficients in the left-hand side are also positives. Therefore, in order to solve

the separation problem of these inequalities, one must shrink each set Vi of the graph in

a single node, and then solve a max-flow problem on a properly defined network.

Hence, it builds a capacitated graph G
′

= (I
′
, A
′
) from the fractional solution (x∗, y∗),

where I ′ = I ∪ {s, t} with two dummy nodes s and t, A′ = A1 ∪ A2 with A1 =

{a ∈ A′′ : x∗a > 0} and capacities x∗a, and A2 is the set of arcs (s, i) ∀i ∈ I such that

di > 0 with capacities di
Q , and (i, t) ∀i ∈ I such that di < 0 with capacities −diQ . Thus,

in order to find a violated inequality, the algorithm must search a minimum capacity

cut (S′, I \ S′) in the graph G′ with s ∈ S′ and t ∈ I ′ \ S′. This is equivalent to find

the maximum flow from s to t. If the maximum flow is greater than K/Q, then all

inequalities are satisfied, otherwise the maximum flow is less than K/Q, and a violated

inequality (3.29) is discovered. Thus, S \ {s} defines the cut to be added in the model.

4.2.3 Separation Algorithm for Generalized 2-matching Inequalities

To incorporate the generalized 2-matching inequalities to the branch-and-cut algorithm

it is used the heuristic procedure described in Fischetti et al. (1997). This derives from

similar procedures proposed for the TSP (see, e.g. Padberg and Grötschel (1985)), and

it is based on the result obtained by Padberg and Rao (1982). Employing a construction

similar to that proposed by them for the b-matching problem, one can transform the

separation problem into a minimum capacity odd cut problem. Hence, the generalized

2-matching inequalities can be separated in polynomial time.

Given a fractional solution (x∗, y∗), it is defined the subgraph G′ = (V ′, A′) where

A′ = {a ∈ A : x∗a > 0}. The handles of violated 2-matching inequalities are considered,

successively, as each connected component H of G′, such that their two-node teeth

correspond to the arcs a ∈ δ+(H) with x∗a = 1 (if the number of these arcs is even, the
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Figure 4.1: Graph representation to check feasibility of a route at location i with
m = 4.

inequality is clearly rejected). The procedure takes O(n + |A′|) time, if it is properly

implemented.

4.2.4 Flow-based Separation

Unlike other cases, it has not been found a simpler expression for the Benders’ cuts, and

hence the separation procedure still requires solving a linear program. In this manner,

this section describes an alternative procedure to check whether a route defined by a

given (x∗, y∗) is feasible for the SD1PDTSP. Instead of applying a linear programming

solver to find a vector (α, β, γ, δ) that may define a violated Benders’ cut, it transforms

the system (3.6)–(3.10) into a max-flow problem on a specific graph, next described.

Let us consider a graph G∗ where the node set contains two dummy nodes (s and t) and

two nodes (il and il) for each il ∈ V . See figure 4.1, where it is illustrated the graph

associated with a location i ∈ I on an SD1PDTSP instance with m = 4. The node il,

represented by a circle in the figure, controls the product loaded or unloaded from the

vehicle to the customer in the l-th visit. The node il, represented by a box in the figure,

controls the inventory of the customer before and after the l-th visit. The arcs of G∗ join

the nodes il exactly as in A, each one a with capacity Qx∗a. G
∗ also has arcs connecting

il and il for all l = 1, . . . ,m to model whether the service during the l-th visit to i is

a delivery (flow through arc (il, i
l)) or a pickup (flow through arc (il, il)). These arcs

represent the product transferred between the vehicle and the inventory of customer i,

and they both have capacity equal to qiy
∗
il

. In addition, the arc set of G∗ contains the

arcs (s, i1), (im, t) and (il, il+1) for each l = 1, . . . ,m− 1 and each customer i ∈ I. The

capacity of (s, i1) is set to pi, which is the inventory at i before the first service, and

the capacity of (im, t) is set to p′i, which is the inventory at i after the last service. The

capacity of arc (il, il+1) is qi.
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Clearly, an integer solution (x∗, y∗) defines a feasible route for the SD1PDTSP if and

only if it is possible to send
∑

i∈I pi units of product in a flow from s to t through the

capacitated graph G∗. Hence, the first step to check the feasibility of the linear system

(3.6)–(3.10) is to build G∗ and compute the maximum flow from s to t in G∗. If the

capacity of the optimal flow is
∑

i∈I pi then (x∗, y∗) is a feasible SD1PDTSP solution

(thus it satisfies all Benders’ cuts). Otherwise, there exists a valid inequality violated by

(x∗, y∗). It is important to design an efficient procedure to identify such inequality. In

this dissertation now proposes such a procedure which can also be applied when (x∗, y∗)

is not integer, and therefore embedded in a branch-and-cut approach.

A well-known result in graph theory ensures that the flow in G∗ from s to t with maxi-

mum capacity is associated with a cut separating t from s in G∗ with minimum capacity,

and both capacities coincide. The desired inequality can be constructed by imposing

that the capacity of this cut must be at least
∑

i∈I pi on the graph associated with a

generic vector (x, y). Let S and S′ be the nodes of type il and il, respectively, in the

group of s in the cut. The capacity of the cut is given by Q
∑

a∈δ+(S) x
∗
a, plus qiy

∗
il

for

each i ∈ I and l = 1, . . . ,m such that il ∈ S, il /∈ S′ or il /∈ S, il ∈ S′, plus qi for each

i ∈ I and l = 1, . . . ,m−1 such that il ∈ S′, il+1 /∈ S′, plus pi if i1 /∈ S′, plus p′i if im ∈ S′.
Replacing x∗ by x and y∗ by y in the obtained expression, one gets the capacity of the

cut on the graph G∗ of a generic vector (x, y). The inequality is then

Q
∑

a∈δ+(S)

xa +
∑

il∈S,il /∈S′
or

il /∈S,il /∈S′

qiyil ≥
∑
i1 /∈S′

pi −
∑
im∈S′

p′i −
∑

il∈S′,il+1 /∈S′
qi (4.13)

Observe that it is possible to adapt the decomposition approach in Section 3.3.3, and

the graph G∗ in the current subsection to work also with the variants annotated at

Section 3.2. For example, the requirement on the minimum amount of product served

to a customer in each visit can be addressed in G∗ with one arc between il and il, which

is (il, i
l) if di > 0 and (il, il) otherwise, with lower capacity r|di|.

4.3 Branching

When the separation procedures end because no violated inequality has been generated

from a fractional solution (x∗, y∗), and the heuristic procedure has been executed on

this solution, the branching step creates two problems. To this end, it selects a binary

variable yv with fractional value y∗v . When all values y∗v are integer, then it selects a

binary variable xa with fractional value x∗a. In the implementation of the SD1PDTSP,

the branching variable is automatically selected by CPLEX.
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4.4 Computational Experiments

The branch-and-cut approach described in this chapter has been implemented in C++,

using IBM ILOG CPLEX 12.5 as a framework. The code was executed on a computer

with 4 GB of RAM and an Intel Core 2 Duo CPU E8600 @ 3.33 Ghz running Mi-

crosoft Windows 7 (64 bits). To evaluate the performance of our implementation it has

considered five classes of instances.

Class I is based on the benchmark instance introduced in Mosheiov (1994). It has 25

locations, Euclidean distances, and demands di between −7 and +7. It has defined

pi = 7 − di, p
′
i = 7 and qi = 14 for all locations. Different SD1PDTSP instances

have been created by varying Q and m. When m = 1 and Q ≥ 16 then the optimal

SD1PDVRP route is the optimal TSP tour. On these instances max{|di| : i ∈ I} = 7,

thus m > 1 when Q < 7.

Class II is based on the randomly-generated instances described in Hernández-Pérez and

Salazar-González (2004a) for the 1-PDTSP. They use Euclidean distances and demands

di between −10 and +10. For this implementation it has defined pi = 10 − di, p′i = 10

and qi = 20 for each location i and created ten SD1PDTSP instances with n = 30

following their description. Then, for m ∈ {1, 2, 3}, it has considered Q ∈ {10, 12, 15}
to have instances where split may not be necessary, and Q ∈ {5, 6, 7} to have instances

where split is necessary.

Class III is based on benchmark instances from the VRP library Toth and Vigo (2014).

Five instances were selected from ones considered by Belenguer et al. (2000) with less

than 75 customers, used also in Archetti et al. (2011) and in Moreno et al. (2010) and

named eil22, eil23, eil30, eil33 and eil51. They include Euclidean distances and

give customer demands d′i, vehicle capacity Q′ and fleet size k′. To define the SD1PDTSP

instances it has used the given distances. The demands for the customers are the given

VRP demands, but with positive sign on the first half of customers and negative sign

on the second half of customers. More precisely, if d′i is the given VRP demand then it

has used pi = 0, p′i = d′i and qi = 2p′i when i < n/2, and it has used pi = d′i, p
′
i = 0

and qi = 2pi when i ≥ n/2. The depot is considered as a customer such that the total

demand is zero. Each customer (including the depot) is allowed to be visited at most

m times. It has considered different values for Q, being the given VRP capacity Q′ one

of them, and m ∈ {1, 2, 3}.

Class IV is also based on the same five instances from the VRP library as before, but

now the SD1PDTSP instances are defined to have the same optimal routes of the VRP

and SDVRP instances. To this end, it has used the given distances and demands d′i. Let

Q′ and k′ the given vehicle capacity and fleet size, respectively. It has used pi = 0 and

qi = p′i = d′i for each customer i. If j represents the depot, it uses pj = −
∑

i d
′
i, p
′
j = 0

and qj = −2pj . The depot was allowed to have at most k′ visits, and each customer
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was allowed to be visited at most m times. No preemption of the product in a customer

is allowed, so the depot is the only pickup location. Two values for Q have considered,

being Q′ one of them, and m ∈ {1, 2, 3}. Note that in the SDVRP literature, the fleet

size is typically ignored, thus allowing an unlimited number of return trips to the depot.

Instead, it is used the fleet size k′ to impose a maximum number of visits to the depot.

Class V is based on six SDVRP instances with 50 customers from Belenguer et al.

(2000) and nine SDVRP instances with up to 48 customers from Chen et al. (2007).

No preemption of the product in a customer is allowed. According to Belenguer et al.

(2000), the customers in the first six instances (S51D1,. . . ,S51D6) were placed randomly

around a central depot, and each customer demand was generated randomly based on a

high and low threshold, with a vehicle capacity of 160. According to Chen et al. (2007),

the customers in the last nine instances (SD1,. . . ,SD9) were placed on rings surrounding

a central depot, and each customer demand was either 60 or 90, with a vehicle capacity

of 100. The parameters pi, p
′
i and qi have been defined as in Class IV. When adding

the constraint on the minimum delivery amount to the problem, the nine instances

from Chen et al. (2007) tend to be infeasible and Gulczynski et al. (2010) have slightly

modified the customer demands to obtain feasible instances (MD1,. . . ,MD9). In all cases,

the distances have been considered rounded to integer numbers. Similar performances

of the implementation are observed when these numbers are not rounded.

Tables 4.1 and 4.2 refer to Class I, i.e. SD1PDTSP instances, all identical except with

different vehicle capacities. Table 4.1 shows results when Q ≥ 7, i.e. when the vehicle

capacity is enough to serve each customer individually. The table shows the optimal

value LB of the linear programming relaxation before the first branching operation,

the travel cost UB of the optimal SD1PDTSP solution, the computational time rtime

when LB was computed, and the total computational time ttime. Times are in seconds.

The table shows that all instances were solved to optimality in a few seconds, although

the computational time increases with m due to the larger size of the mathematical

formulation. Another observation is that there is benefit of splitting when Q < 10 but

not when m > 2. Some UB values are displayed in bold to remark the instances and

the m values where there is such benefit. Table 4.2 shows results when Q < 7, i.e. when

some customers must be visited more than once. In this situation it has tried several

values of m such that m · Q ≥ 7, as reported in the table. It is worth to observe that

the best routes for these instances were found with m = max{d|di|/Qe : i ∈ I}, as it

happened also when Q ≥ 10.

Tables 4.3 and 4.4 refer to instances in Class II. As it happens with Class I, splitting

helps to reduce the travel cost when the vehicle capacity is slightly over the maximum

customer demand. On these instances the gain is obtained by allowing two visits, while

when m > 2 the mathematical formulation is simply larger, but with no better solu-

tion than m = 2. Indeed, it achieved the time limit (2 hours) on some instances when

m = 3. Some UB values are displayed in bold to remark the instances and the m values
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where there is a travel cost reduction. Table 4.5 allows to measure the benefit of using

the implemented cut-generation approach versus using a model with the flow variables

explicitly. The instances in Table 4.3 have used with m = 2. Since the cut-generation

approach is a Benders’ decomposition algorithm strengthened with additional inequal-

ities, the lower bounds computed during the branch-and-bound process may be larger.

For the two approaches, the table shows the lower bound LB before the first branching

and the number of nodes Nnode explored in the branch-and-bound tree. It also shows

the numbers of inequalities generated before the first branching during the cutting-

generation approach: bend is the number of (4.13), sec is the number of (3.12)–(3.13),

round is the number of (3.29), and 2m is the number of (3.32). Subtour elimination

constraints (3.12)–(3.13) are also necessary in the model with the flow variables. Com-

paring the lower bounds and computational times, there is a clear benefit of using the

cut-generation approach versus using the flow variables explicitly.

Table 4.6 refers to instances in Class III, showing performances of the algorithm similar

to the ones observed on the SD1PDTSP instances in Classes I and II. The empty cells in

the table correspond to instances where m = 1, and the vehicle capacity is smaller than

a customer demand, i.e. infeasible instances. As before, some UB values are in bold to

remark the instances, and the m values where there is a travel cost reduction. Increasing

m implies weakening the lower bound at the root node and increasing the computational

time due to the size of the model. On the instances, the split-demand variant allows to

find a shorter route than the split-forbidden variant only on one instance (eil33 with

Q = 7000) and with m = 2. It is worth mentioning that these results for m = 1 are

similar to the ones in Hernández-Pérez and Salazar-González (2003), and therefore one

could expect to solve to proven optimality instances with a larger number of customers.

However, the scope of this study is oriented to m > 1 and, under this condition, solving

larger instances requires higher computational times.

Table 4.7 shows the performance of the implementation of SD1PDTSP to solve VRP

instances (m = 1) and SDVRP instances (m > 1). Once again, using data from the

VRP library, the split-demand variant found routes with smaller travel costs than the

split-forbidden variant on a few instances, but no advantage was found on allowing a

customer to be visited more than twice. Column #s shows the number of customers

needing more than one visit in the optimal route. It is interesting to note that this

number is small. Column %a shows the minimum percentage of demand served to a

customer in a visit. For example, the demand of customer 21 in eil30 is 1500 units;

when Q = 4500, the optimal route visits this customer twice, serving 1000 units in one

visit and 500 in the other; thus %a shows 33.3. When comparing the performance of the

SD1PDTSP implementation on VRP instances with the performance of a modern VRP

algorithm, the first is far to be competitive. For instance, Pecin et al. (2014) solved to

optimality all instances in the VRP library with up to 199 customers, and also some

larger VRP instances with up to 360 customers. The performance of the implementation
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of SD1PDTSP is competitive with the best approach in the SDVRP literature, which

according to our knowledge is the column-generation algorithm in Archetti et al. (2011).

Observe that this algorithm achieved the time limit of 6 hours in a similar computer

when solving eil22 with Q = 6000, eil23 with Q = 4500, eil30 with Q = 4500 and

eil33 with Q = 8000. The implementation of this dissertation, instead, solved each

of these instances to optimality in 17.9, 3.2, 39.9 and 130.9 seconds, respectively, when

each customer is allowed to be visited at most twice. Investigating the performance of

the SD1PDTSP implementation to solve VRP and SDVRP instances with more than

50 customers is an interesting task but it goes out the main scope of this paper.

Table 4.8 shows the performance of the SD1PDTSP implementation to solve SDVRP

instances from the literature. These instances have been introduced by other authors

to evaluate lower bounds and heuristic approaches. This table shows the number of

customers n − 1, the fleet size k (i.e. maximum number of visits to the depot), and

the vehicle capacity Q given in these instances. Column UB’ shows the value of the

best known solution, taken from Moreno et al. (2010) for the first six instances and

from Archetti et al. (2011) for the other nine instances. For this thesis it performed

experiments with m = 2 and 3, but the table reports the results with m = 2 because (as

it occurred with other instances) no better solution was found with m = 3. Even if the

implementation is intended to solve a more general and complex problem, it succeeded

in finding heuristic solutions with similar quality than the best-known solutions. These

best-known solutions were found by the column-generation algorithm in Archetti et al.

(2011), tested on SDVRP instances with up to 288 customers. As mentioned before,

investigating the performance of the SD1PDTSP implementation on these larger SDVRP

instances is of high interest, but it would deviate the main scope of our paper.

Table 4.9 shows the results when a minimum amount of product must be pickup from or

delivery to the customer in each visit. This amount is measured as a percentage shown

in the Column %r. It does not report the best-known value UB’ because Gulczynski

et al. (2010) consider distances with two decimals, while the distances in this study are

integer numbers. Instance S51D1 does not appear in the table because the optimal route

visits each customer once, thus it serves 100% of the customer demand in each visit.

As expected, the problem becomes more complicated to solve since the gap at the root

node is larger and the objective value increase.
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m = 1 m = 2 m = 3

Q LB UB rtime ttime LB UB rtime ttime LB UB rtime ttime

7 5387.7 5741 4.0 60.7 5198.1 5337 7.3 8.2 5085.5 5337 18.9 274.6
8 5269.9 5355 2.2 9.3 5021.1 5274 6.0 19.5 4976.8 5274 14.8 380.6
9 4993.5 5052 0.6 0.7 4927.0 5044 4.8 18.7 4824.8 5044 12.8 82.4
10 4981.0 4993 0.6 0.7 4799.7 4993 2.1 3.7 4701.9 4993 9.7 26.0
11 4822.1 4828 0.6 0.8 4735.0 4828 4.0 6.3 4729.1 4828 9.4 25.3
12 4828.0 4828 0.6 1.5 4474.5 4828 4.2 36.9 4466.3 4828 11.4 80.5
13 4641.0 4641 0.4 0.5 4444.2 4641 1.0 5.1 4441.0 4641 8.6 20.7
14 4490.0 4490 0.1 0.1 4465.4 4490 1.1 1.3 4462.7 4490 1.0 3.7
15 4490.0 4490 0.0 0.0 4483.6 4490 1.2 1.6 4480.4 4490 2.2 3.6
16 4445.0 4445 0.0 0.0 4423.0 4445 0.1 1.0 4423.0 4445 3.1 7.0

Table 4.1: Class I. SD1PDTSP instances based on data in Mosheiov (1994) with large
Q.

Q m LB UB rtime ttime

1 7 21879 .0 21879 62.6 199.3
2 4 11329.5 12093 92.9 3743.2
3 3 8605.6 9221 10.5 1644.1
4 2 7303.8 7807 7.7 1599.5
4 3 6978.3 7804 25.3 3152.6
5 2 6584.9 6773 3.9 100.7
5 3 6269.5 6773 20.1 596.5
6 2 5719.6 5788 5.7 63.9
6 3 5437.5 5788 19.6 140.1

Table 4.2: Class I. SD1PDTSP instances based on data in Mosheiov (1994) with small
Q.
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m = 1 m = 2 m = 3

Name Q LB UB rtime ttime LB UB rtime ttime LB UB rtime ttime

n30A 10 5724.8 6727 12.6 1253.9 5654.1 6256 12.1 2266.4 5597.4 6256 22.8 4716.4
n30A 12 5583.8 5782 7.0 131.6 5111.6 5782 10.7 281.7 5008.6 5782 18.6 1937.2
n30A 15 5105.2 5595 5.8 91.2 5024.8 5465 7.5 137.6 5007.8 5465 15.1 399.4

n30B 10 6193.2 6603 7.3 165.8 5478.6 6603 6.8 591.1 5304.5 6603 14.8 1527.0
n30B 12 5522.0 6229 6.1 96.3 5003.3 6152 8.3 416.2 4869.7 6152 8.3 619.7
n30B 15 5094.0 5631 3.8 53.5 4632.0 5631 4.2 119.1 4454.7 5631 6.9 407.3

n30C 10 5215.5 6486 14.9 1197.9 5149.3 6348 13.4 2278.5 5005.1 6348 30.8 4289.7
n30C 12 5334.3 5456 5.3 69.1 5245.3 5367 5.3 92.9 5069.6 5367 12.7 293.4
n30C 15 4876.5 5181 1.9 14.2 4788.8 5181 2.7 42.8 4715.2 5181 7.7 176.8

n30D 10 5450.0 6577 22.9 2698.4 5279.2 6380 20.4 3811.8 5125.6 6380 26.9 4900.9
n30D 12 5368.5 6256 8.0 201.9 5095.9 6025 23.7 1907.1 5046.1 6025 23.5 3501.8
n30D 15 5285.5 5577 4.2 33.6 5170.6 5568 8.2 95.2 5029.4 5568 9.4 518.1

n30E 10 5691.2 6070 6.8 588.1 5402.5 6052 8.1 942.6 5253.1 6052 15.5 1433.8
n30E 12 5293.0 5876 1.5 18.3 5213.0 5762 3.9 71.7 5107.8 5762 11.7 234.9
n30E 15 5326.0 5416 1.7 7.8 4905.3 5416 3.1 42.8 4745.6 5416 5.1 97.6

n30F 10 5392.5 5737 11.5 600.4 5225.0 5727 14.7 1008.4 5006.9 5727 22.5 2284.3
n30F 12 5189.6 5260 0.7 3.2 5176.5 5259 4.3 62.1 4901.7 5259 10.9 188.2
n30F 15 4692.0 4893 0.1 1.5 4591.0 4893 2.7 30.8 4349.5 4893 7.1 145.7

n30G 10 8705.8 9305 16.0 2135.1 8641.7 9005 26.9 3994.7 8526.1 9005 28.1 7200.0
n30G 12 7438.0 8497 10.5 692.2 6066.8 8264 24.1 3049.5 5973.5 8264 21.9 6433.7
n30G 15 6530.0 7424 6.3 211.4 6453.3 7226 6.4 691.7 6324.5 7226 27.2 4659.7

n30H 10 5191.5 6433 10.7 457.9 5020.4 6164 30.5 4598.6 4913.7 6164 26.3 6973.4
n30H 12 5481.9 6025 5.3 219.5 5367.5 5947 20.3 1533.5 5239.3 5947 24.7 4217.6
n30H 15 5244.0 5613 7.6 82.7 5143.5 5447 7.0 241.9 4997.5 5447 21.7 1815.3

n30I 10 5156.2 5864 8.1 310.4 4969.5 5596 26.6 4839.8 4705.4 5596 25.1 7200.0
n30I 12 4646.0 5154 5.7 59.7 4572.6 4991 6.8 140.6 4228.6 4991 19.8 1683.1
n30I 15 4671.5 4762 0.9 1.9 4547.9 4762 4.0 11.4 4399.1 4762 3.5 415.1

n30J 10 5865.7 6192 7.3 224.8 5601.4 6090 19.6 1712.5 5389.5 6090 22.9 3556.4
n30J 12 5322.8 5874 4.6 99.7 5241.8 5647 8.1 179.3 5165.8 5647 10.2 654.7
n30J 15 4894.0 5349 3.7 19.2 4476.3 5349 3.7 141.7 4301.6 5349 6.0 362.7

Table 4.3: Class II. SD1PDTSP instances based on Hernández-Pérez and Salazar-
González (2004b) with large Q.
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m = 2 m = 3

Name Q LB UB rtime ttime LB UB rtime ttime

n30A 5 10096.5 10157 21.9 3376.1 9984.2 10157 27.9 6472.6
n30A 6 8841.9 8957 18.2 3203.8 8764.1 8957 24.4 5997.5
n30A 7 7941.5 8048 14.7 2152.7 7793.8 8048 18.9 4734.1

n30B 5 10114.0 10515 25.5 3614.9 10060.7 10515 26.1 6916.3
n30B 6 9155.3 9321 19.5 3004.7 9003.5 9321 22.3 6209.7
n30B 7 8200.7 8358 17.3 2971.3 8150.6 8358 20.8 5004.6

n30C 5 9058.8 9337 18.2 3519.5 8909.9 9337 27.8 6705.2
n30C 6 8125.9 8234 8.3 2386.4 8033.7 8234 25.3 4596.1
n30C 7 7287.8 7487 12.9 1246.9 7164.8 7487 24.6 4120.7

n30D 5 8749.5 8981 18.8 3839.6 8669.1 8981 28.0 7200.0
n30D 6 7904.6 8022 16.1 2477.9 7882.7 8022 27.3 6191.4
n30D 7 7213.4 7332 11.8 329.1 7148.3 7332 22.1 2530.6

n30E 5 9066.2 9273 22.4 4335.7 8994.5 9733 28.6 7200.0
n30E 6 7794.6 7936 19.1 3792.5 7646.5 7936 26.9 7200.0
n30E 7 7800.3 7936 18.7 3309.6 7754.9 7936 24.5 6008.4

n30F 5 8947.1 9121 21.5 4681.8 8788.6 9567 26.1 7200.0
n30F 6 8035.7 8127 10.6 2341.8 7998.2 8127 23.3 6413.5
n30F 7 7262.4 7449 7.7 490.3 7191.8 7449 12.7 1344.8

n30G 5 14893.2 15074 20.4 4375.3 14601.5 15601 29.9 7200.0
n30G 6 12789.2 12978 16.5 3661.9 12661.2 12978 29.0 6628.9
n30G 7 11149.7 11605 12.7 946.6 11063.7 11605 19.1 2671.2

n30H 5 9261.2 9463 26.1 6505.7 9210.6 9506 22.4 7200.0
n30H 6 8292.4 8399 20.9 5016.4 8201.1 8462 20.6 7200.0
n30H 7 7776.3 7813 19.9 3958.3 7619.5 7813 20.1 6193.7

n30I 5 7800.6 7983 23.7 6867.1 7768.1 8012 24.3 7200.0
n30I 6 7107.3 7249 20.6 3816.7 7081.4 7249 23.3 6843.6
n30I 7 6398.5 6510 8.1 1268.6 6322.7 6510 17.5 2997.9

n30J 5 8564.2 8793 11.3 2497.2 8474.8 8793 25.5 6846.1
n30J 6 7896.4 8017 6.9 957.5 7743.9 8017 25.0 5944.8
n30J 7 7268.4 7406 4.5 688.6 7167.8 7406 24.1 5041.9

Table 4.4: Class II. SD1PDTSP instances based on Hernández-Pérez and Salazar-
González (2004b) with small Q.
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without Benders with Benders

Name Q LB rtime ttime sec Nnode LB bend sec round 2m Nnode

n30A 10 5422.6 36.1 6794.1 175 4799 5654.1 101 95 75 9 2179
n30A 12 5082.0 14.9 595.3 125 3931 5111.6 84 72 48 5 1871
n30A 15 4989.9 14.9 351.3 95 2865 5024.8 51 31 31 2 1101

n30B 10 5397.3 15.3 1764.4 234 1543 5478.6 110 85 46 21 757
n30B 12 4748.0 15.3 1201.7 193 1147 5003.3 92 49 35 13 406
n30B 15 4534.6 10.5 396.1 104 1002 4632.0 65 51 46 5 299

n30C 10 4953.4 35.7 6009.7 181 7868 5149.3 162 105 84 14 3246
n30C 12 5018.1 12.4 304.9 148 3429 5245.3 98 75 55 10 979
n30C 15 4676.7 12.1 209.5 94 979 4788.8 84 78 31 5 297

n30D 10 5134.8 31.1 6998.3 219 7999 5279.2 116 63 64 16 4543
n30D 12 4828.6 25.9 4741.5 131 5225 5095.9 81 59 48 6 2334
n30D 15 5001.9 16.2 669.3 81 2954 5170.6 54 58 35 2 1272

n30E 10 5390.1 25.4 3050.2 141 1806 5402.5 254 96 69 7 595
n30E 12 5121.5 12.3 322.7 111 1035 5213.0 138 82 45 2 410
n30E 15 4857.5 11.7 211.8 99 752 4905.3 90 79 31 5 100

n30F 10 5035.3 26.6 3551.9 193 6571 5225.0 85 55 43 10 3065
n30F 12 4640.5 9.3 197.1 182 4256 5176.5 96 62 41 7 725
n30F 15 4446.5 9.1 115.1 121 165 4591.0 52 48 25 8 14

n30G 10 8409.7 34.2 6977.5 135 8656 8641.7 171 89 69 20 4659
n30G 12 5918.0 32.7 6032.4 105 6899 6066.8 93 57 60 19 2345
n30G 15 6300.9 22.0 1673.9 96 5119 6453.3 99 66 29 3 1987

n30H 10 4901.5 36.9 7200.0 174 3975 5020.4 156 112 65 13 1663
n30H 12 5148.5 23.8 4147.9 112 2178 5367.5 194 84 61 4 986
n30H 15 5001.4 16.1 809.4 89 1543 5143.5 102 51 36 4 764

n30I 10 4811.2 37.4 7200.0 188 4710 4969.5 69 69 57 8 2003
n30I 12 4435.3 10.3 359.9 123 1387 4572.6 78 48 42 7 712
n30I 15 4336.8 8.9 101.7 91 867 4547.9 63 32 18 9 122

n30J 10 5321.9 28.4 5908.6 146 10589 5601.4 151 91 47 6 5416
n30J 12 5030.5 12.6 595.2 135 9939 5241.8 73 80 35 5 4977
n30J 15 4268.7 7.4 395.6 94 9108 4476.3 110 43 38 5 5101

Table 4.5: Class II. SD1PDTSP instances based on Hernández-Pérez and Salazar-
González (2004b) with large Q and m = 2.
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m = 1 m = 2 m = 3

Name Q LB UB rtime ttime LB UB rtime ttime LB UB rtime ttime

eil22 2500 552.6 574 1.2 3.9 550.9 574 3.3 15.2
eil22 3000 490.5 509 1.1 3.9 487.1 509 3.0 13.6
eil22 3300 466.8 486 0.1 0.1 460.4 486 1.0 3.3 455.8 486 2.7 12.9
eil22 4000 419.3 435 0.0 0.1 409.1 435 0.2 1.8 401.0 435 1.7 9.3
eil22 5000 357.1 374 0.0 0.1 348.7 374 0.2 1.8 343.1 374 1.5 8.4
eil22 6000 336.4 344 0.0 0.0 331.0 344 0.1 0.5 328.2 344 0.4 2.1

eil23 3500 450.9 527 1.1 3.5 435.1 527 4.1 16.6
eil23 4100 461.5 527 0.7 2.9 458.0 527 4.2 14.0
eil23 4200 526.0 527 0.1 0.1 517.3 527 0.9 3.2 499.2 527 4.9 11.3
eil23 4300 505.2 525 0.1 0.1 497.5 525 0.2 2.8 462.6 525 4.7 8.7
eil23 4400 505.2 525 0.1 0.2 497.5 525 0.9 2.9 462.6 525 2.4 8.6
eil23 4500 502.2 506 0.1 0.2 491.2 506 1.0 2.2 473.9 506 1.2 7.1
eil23 4700 493.0 496 0.0 0.1 446.0 496 0.3 2.0 422.8 496 1.8 6.9
eil23 5000 496.0 496 0.0 0.1 446.0 496 0.1 1.9 422.8 496 1.0 3.4

eil30 2900 401.8 417 2.1 43.9 389.1 417 2.0 72.5
eil30 3000 401.8 417 1.5 32.4 389.1 417 1.6 62.9
eil30 3100 402.0 411 0.2 0.7 400.1 411 0.9 11.5 381.6 411 1.4 50.4
eil30 3200 402.0 411 0.2 0.9 400.1 411 1.1 11.0 381.6 411 1.9 53.1
eil30 3300 400.6 403 0.2 0.5 399.4 403 0.7 12.8 380.5 403 1.8 48.3
eil30 3500 398.0 399 0.2 0.3 398.0 399 0.6 13.1 378.1 399 2.1 47.0
eil30 3800 390.6 391 0.1 0.4 390.6 391 0.4 7.2 375.6 391 1.1 39.7
eil30 4100 381.0 381 0.0 0.1 381.0 381 0.3 4.7 372.2 381 0.8 38.9

eil33 4900 550.7 570 3.0 1052.2 545.0 570 7.2 3011.7
eil33 5100 546.3 570 2.7 701.0 539.2 570 6.7 1958.3
eil33 5600 525.8 555 0.1 0.2 522.1 555 2.1 368.8 517.4 555 5.4 1207.1
eil33 6000 530.8 543 0.1 0.2 524.1 543 1.8 92.0 518.6 543 5.3 1099.9
eil33 7000 487.7 497 0.1 0.2 479.7 492 1.2 56.2 471.4 492 5.3 837.6
eil33 8000 469.6 475 0.0 0.1 459.0 475 1.2 53.5 452.6 475 4.5 611.0

eil51 80 424.7 435 0.2 0.5 423.8 435 3.0 3100.7 421.3 435 7.9 4106.7
eil51 100 423.7 432 0.1 0.4 418.9 432 2.6 2641.0 418.1 432 7.4 2997.5
eil51 160 426.0 426 0.1 0.1 422.5 426 0.8 97.3 420.9 426 5.1 548.1

Table 4.6: Class III. SD1PDTSP instances based on data in the VRP library.

m = 1 m = 2 m = 3

Name Q LB UB rtime ttime LB UB rtime ttime #s %a LB UB rtime ttime

eil22 6000 326.2 375 0.3 2.0 318.7 375 1.0 17.9 0 100.0 317.0 375 3.0 56.4
eil22 7000 348.5 370 0.1 1.6 330.8 370 0.5 14.2 0 100.0 298.5 370 2.6 59.7

eil23 4500 567.2 569 0.1 0.7 562.4 569 0.5 3.2 0 100.0 549.7 569 2.3 8.1
eil23 5000 528.6 544 0.0 0.9 475.6 544 1.1 2.7 0 100.0 460.2 544 1.2 7.2

eil30 4500 483.3 534 1.9 31.9 482.8 510 0.8 39.9 1 33.3 389.4 510 1.9 75.9
eil30 9000 379.7 387 0.1 1.3 355.1 387 0.5 5.3 0 100.0 341.1 510 1.7 30.5

eil33 8000 823.8 835 1.1 3.2 814.9 835 2.7 130.9 0 100.0 801.9 835 3.1 604.6
eil33 9000 781.1 805 0.8 2.3 771.3 805 1.6 75.4 0 100.0 757.7 805 2.9 355.9

eil51 160 509.3 521 1.0 7.8 501.9 521 1.9 903.5 0 100.0 492.5 521 7.2 2103.1
eil51 200 480.5 498 0.0 6.4 471.6 498 0.9 711.4 0 100.0 450.8 498 5.4 1788.3

Table 4.7: Class IV. VRP and SDVRP instances from the VRP library.
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Name n− 1 k Q LB UB rtime ttime #s %a UB’

S51D1 50 3 160 453.1 458 0.1 312.4 0 100.0 458
S51D2 50 9 160 649.9 726 2.1 7200.0 2 20.1 726
S51D3 50 15 160 926.0 969 1.5 7200.0 1 25.4 972
S51D4 50 27 160 1522.7 1670 1.3 7200.0 3 29.9 1677
S51D5 50 23 160 1271.5 1440 2.7 7200.0 3 27.6 1440
S51D6 50 41 160 2115.3 2327 0.8 7200.0 1 15.5 2327

SD1 8 6 100 21419.2 22828 0.1 1.0 4 11.1 22828
SD2 16 12 100 70801.9 70828 1.0 46.3 10 11.1 70828
SD3 16 12 100 41084.7 43040 1.1 57.1 8 11.1 43040
SD4 24 18 100 56155.8 63062 2.1 680.0 12 11.1 63062
SD5 32 24 100 133792.3 138994 4.6 7200.0 8 11.1 138994
SD6 32 24 100 78236.0 83086 4.7 4010.6 16 11.1 83086
SD7 40 30 100 363782.9 364000 6.5 7200.0 11 11.1 364000
SD8 48 36 100 496677.6 506828 9.1 4998.1 4 11.1 506828
SD9 48 36 100 203098.0 204293 9.3 7200.0 9 11.1 204288

Table 4.8: Class V. SDVRP instances from Belenguer et al. (2000) and Chen et al.
(2007), with m = 2.

Name %r LB UB rtime ttime #s %a

S51D2 30 632.4 752 1.3 7200.0 1 30.5
S51D3 30 910.7 1008 0.8 7200.0 1 30.4
S51D4 40 1548.5 1755 1.1 7200.0 2 40.7
S51D5 30 1259.0 1473 2.6 7200.0 1 30.5
S51D6 20 2076.7 2369 1.4 7200.0 1 20.6

MD1 40 22828.0 22828 0.0 1.6 4 40.4
MD2 40 70824.0 72000 1.5 59.7 11 40.4
MD3 40 43060.0 43060 0.0 43.2 8 40.4
MD4 40 62907.4 63108 5.6 429.9 12 40.4
MD5 40 131187.9 140244 12.1 3417.5 22 40.4
MD6 40 82457.5 83404 21.4 7200.0 16 40.4
MD7 40 335631.7 358830 22.3 7200.0 21 40.4
MD8 40 503539.2 504000 22.7 7200.0 21 40.4
MD9 40 204850.9 206378 22.9 7200.0 14 40.4

Table 4.9: Class V. SDVRP instances from Belenguer et al. (2000) and Gulczynski
et al. (2010), with m = 2 and minimum delivery amount.





Chapter 5

The SD1PDTSP: The heuristic

approach

The effectiveness of any branch-and-bound algorithm depends not only on the quality

of the lower bound, but also on the procedure to find good upper bounds during the

enumeration scheme. This latter requirement implies generating heuristic solutions for

the SD1PDTSP, which is an NP-hard problem. This is a major difference between

SD1PDTSP and other related problems like SDVRP. For these other problems, heuristic

approaches typically adapt solutions of the split-forbidden variant by using swaps and

insertions to reduce the travel cost. On the SD1PDTSP, instead, there may not exist

any solution to the split-forbidden problem. Therefore, finding a heuristic solution for

SD1PDTSP is a challenging optimization problem in itself. On the other hand, large

instances cannot be solved with the branch-and-cut algorithm described in Chapter 4.

Therefore, it is necessary a good heuristic approach to obtain good solution for large

instances.

Section 5.1 describes a basic heuristic approach for the 1-PDTSP and shows how to

adapt it to the SD1PDTSP. Section 5.2 presents an improvement procedure based on

the branch-and-cut algorithm in Chapter 4 to obtain better results than in the previous

section. Finally, Section 5.3 shows several computational results.

5.1 Basic heuristic approach for the SD1DPTSP

This section exploits the idea that the SD1PDTSP could be solved if it is applied a

1-PDTSP approach on a graph where each customer is replaced by an appropriated

number of nodes, each one associated with a partial demand of the customer served in a

potential visit. Clearly, finding the decomposition of the customer demands and solving

the 1-PDTSP are complex problems. It proposes a heuristic approach for large-sized
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1-PDTSP instances and two strategies for decomposing the customer demands. The

performance of the approach on the two strategies is compared in Section 5.3 with a

third strategy (Strategy 0) which simply forces each customer to be visited once. In

addition, the heuristic approach and the strategies will be later used in an optimization-

based procedure. While the strategies and approach described in this section do not

generate solutions with the preemption characteristic, the optimization-based procedure

(described in Section 5.2) is suitable to produce solutions with preemption if convenient

and desired.

5.1.1 General variable neighbourhood search

In this section, it assumes that each SD1PDTSP customer i has been replaced by a

set of si nodes i1, . . . , isi and that each node il for l = 1, . . . , si is associated with part

of the customer demand dil (where di =
∑si

l=1 dil). Let n′ =
∑

i∈I si be the number

of nodes in the 1-PDTSP instance. This section describes a procedure to construct a

1-PDTSP route among the n′ nodes. Currently the best 1-PDTSP heuristic approach is

a general variable neighbourhood search (GVNS) proposed in Mladenović et al. (2012).

The variable neighbourhood search (VNS) (see Section 1.8) consists of a meta-heuristic

approach that exploits systematically the concept of neighbourhood change within the

local search algorithm. The GVNS is an adaptation of the VNS where the local search

is applied to several neighbourhood structures.

Let Nk be a finite set of pre-selected neighbourhood structures for k = 1, . . . , kmax,

and with Nk(T ) being the set of solutions in the kth neighbourhood of T (where T =

(v1, . . . , vn′) denotes a Hamiltonian cycle of n′ nodes). The explorations of these neigh-

bourhoods are used for diversification purpose (known as shaking step). Hence, the

GVNS works as follows.

• Initialization: Select a initial solution T as input data.

• Shaking step: For each k = 1, . . . , kmax, it is chosen a random solution T ′ from

Nk(T ) by performing a combination of k 3-opt and double-bridge moves. These

are performed so the feasibility is kept.

• Local search: A new local optimal solution T ′′ is got by applying a VND procedure

over T ′ as a initial solution.

– If T ′′ is better than T , the new incumbent has been obtained. Then it sets

T = T ′′ and the search is repeated around it.

– Otherwise, a new random solution T ′ is generated from the neighbourhood

Nk+1(T ).
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If no better solution is found with any neighbourhood Nk, the whole procedure is re-

peated until a number of iterations (or the time limit) is reached.

An important ingredient in a GVNS algorithm are the operators used in a stochastic

way (to escape of a local minimum) and in a deterministic way (within the VND).

Fundamental operators structures for the TSP, based on edge exchanges and node-

insertion moves, are extended to the 1-PDTSP. This operators are 2-opt, 3-opt, insertion

and double-bridge. The 2-opt move is the simplest k-opt edge-exchange method. It

consists of removing two arcs (vi, vi+1) and (vj , vj+1) from the tour and reconnecting

the two paths created by adding (vi, vj) and (vi+1, vj+1). The 3-opt move consists of

removing three arcs from the solution and reconnecting the paths by adding three arcs.

There are various ways to reconnect the three paths. Insertion is a particular case of

a 3-opt move where two of the three removed arcs are consecutive. Then, the effect of

reconnecting the tour is that of moving a vertex forward or backward in a sequence.

Thus, the insertion neighbourhood is split in forward insertion and backward insertion.

Finally, double-bridge is a particular case of 4-opt moves keeping the orientation of the

four paths obtained by removing the four arcs.

The implementation of the GVNS in Mladenović et al. (2012) was set to kmax = 8. The

maximum number of iterations was set to 200 and the time limit (in seconds) was set to

the number of customers of the 1-PDTSP instance. Mladenović et al. (2012) describe

two kinds of VND procedures: a sequential VND and a mixed-nested VND. In the first

one, three operators (2-opt, forward insertion and backward insertions) are explored one

by one in a sequence. In the second one, two operators (2-opt and forward insertion) are

explored in a nested way, and the other operator (backward insertions) is explored in a

sequential way. Both variants of VND use a first improvement approach, which means

that a move is made when an improvement in the neighbourhood is found for the first

time.

A constructive procedure is used to generate an initial solution T . It starts at the depot

(i.e. v1 = 1) and by randomly choosing a first customer v2 to be add in the initial

tour T . Then, the next customer vi is iteratively selected from a structure within of

20 closest customers to the last customer inserted vi−1. From this structure, it is taken

the customer with the greatest demand which has not visited yet and keep the solution

feasible, i.e. the capacity constraint is not violated if that customer is added to tour

T . If such a customer does not exist, for all customers not visited in the partial tour,

the procedure adds the nearest customer with probability 0.9 (or a random customer

with probability 0.1) that makes the route feasible. If it is not possible to insert a

customer that keeps the route feasible, it adds a random customer even if the route is now

infeasible. These steps are repeated until all customers are inserted. This constructive

procedure was first proposed in Zhao et al. (2009) but it allows infeasible solutions in

Mladenović et al. (2012).
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Contrary to the TSP, not all tours are 1-PDTSP solutions because the vehicle capacity

constraint. Then, before making a move in a neighbourhood, it is necessary check the

feasibility. As shown in Hernández-Pérez and Salazar-González (2004b), the check can

be done in O(n′) time. Let T = (v1, . . . , vn′) denote the TSP tour to be checked.

Let li(T ) the load of the vehicle after visiting the i-th node in the tour T . Hence

li(T ) = li−1(T )− dvi . Let l1 = −dv1 . Then T is 1-PDTSP feasible if and only if

max
0≤i≤n′

{li(T )} − min
0≤i≤n′

{li(T )} ≤ Q (5.1)

However, the check can also be implemented in a efficient way using binary indexed tree

(BIT) data structures as proposed in Mladenović et al. (2012). The BIT structure can

be used to calculate the maximum (or minimum) of an array of n′ elements in a time

O(log n′). This allows to reduce the complexity of the feasibility checking in the 2-opt

and insertion operators. In addition, the GVNS restricts the 3-opt and double-bridge

moves to those where the load through the removed arcs are the same than through the

added arcs (so the feasibility of the resultant tour is warranted).

Computational results of two implementations, named sequential VND and mixed-nested

VND, are shown in Mladenović et al. (2012). The solution values given by the mixed-

nested VND are slightly better than those given by the sequential VND, but sequential

VND is slightly faster than mixed-nested VND. Taken into account that in this disserta-

tion it uses the 1-PDTSP algorithm several times inside of the matheuristic algorithm,

it has decided to apply the sequential VND instead of the mixed-nested VND for the

experiments. It has implemented the sequential VND using the description in their

article. However, it did not get exactly the same results with our implementation (see

Section 5.3) and it is thought that this is due to the random nature of the algorithm (and

potentially non-documented details in their implementation). In this implementation,

it found a better performance if it uses the best improvement approach for the VND

instead of first improvement approach.

5.1.2 Strategy 1

This section describes a way of representing each SD1PDTSP customer by a set of

1-PDTSP nodes, each one associated with part of the customer demand. This first

strategy exploits the empirical observation that typically customers are not visited more

than twice, and preemption is unnecessary. Then one can decompose each customer

demand into a small set of non-splitable pieces. Note that, when a customer is visited

twice, at least di/2 units of its demand will be served together in a visit. To be precise,

let |x| denote the absolute value of x, log(x) the logarithm in base 2 of x, bxc the

integer part of real number x and sign(x) be +1 if x ≥ 0 and −1 otherwise. It defines

si = blog(|di|)c+1 if di 6= 0, si = 1 otherwise, dil = sign(di)2
(l−1) for l = 1, . . . , si−1 and

dsi = di −
∑si−1

l=1 dil . The value si represents the number of 1-PDTSP nodes associated
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di si di1 di2 di3
+7 3 +1 +2 +4
+6 3 +1 +2 +3
+5 3 +1 +2 +2
+4 3 +1 +2 +1
+3 2 +1 +2
+2 2 +1 +1
+1 1 +1

0 1 0
−1 1 −1
−2 2 −1 −1
−3 2 −1 −2
−4 3 −1 −2 −1
−5 3 −1 −2 −2
−6 3 −1 −2 −3
−7 3 −1 −2 −4

Figure 5.1: Transforming SD1PDTSP demands into 1PDTSP demands.

with each SD1PDTSP customer i and each term dil represents a non-splitable piece of

the customer demands. Figure 5.1 shows the values of si and dil for each demand di in

[−7, 7].

Consider now a 1-PDTSP instance with a customer il with demand dil for each i ∈ I and

l = 1, . . . , si. The travel cost cikjl between nodes ik and jl if cij is customers i and j are

different, and 0 otherwise. It solves this instance with the approach described in Section

5.1.1. It is worth noting that each solution of the SD1PDTSP instance with at most

two visits per customer and no preemption corresponds to a solution of the constructed

1-PDTSP instance. A customer i visited once in the SD1PDTSP instance corresponds

to visiting the nodes i1, . . . , isi consecutively in the 1-PDTSP instance. Moreover, if a

customer is visited twice in the SD1PDTSP instance, the amount of demand served in

the first visit can be obtained by adding some values dil . Other 1-PDTSP solutions

can yield SD1PDTSP solutions with some customers visited more than twice. Another

observation of practical use is that quantities di for i ∈ I and the vehicle capacity Q can

be divided by a common integer divisor and the optimization problems does not change.

Since the magnitude of di values has a direct impact in the number of customers in the

1-PDTSP instance, it divides the parameters di and Q by the greatest common divisor

in a preprocessing phase.

5.1.3 Strategy 2

Strategy 1 has the disadvantage of splitting most of the SD1PDTSP customers into

several 1-PDTSP nodes, thus creating large 1-PDTSP instances. An alternative way to

reduce the total number of nodes is selecting only a few customers to be split several times
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in the 1-PDTSP and reducing the number of splits of the other customers. Equation

(5.1) allows checking the feasibility of a partial 1-PDTSP route P = (v1, . . . , vt) in lineal

time of its number of nodes. The demand values dvi are a-priori known in the 1-PDTSP.

Instead, the demand served at each visit to a customer i is a-priori unknown in the

SD1PDTSP, hence it is not possible to evaluate the infeasibility on a partial route P . It

proposes the following adaptation to evaluate the infeasibility of these partial routes.

The procedure consists of at most m iterations, where m is the maximum number of

allowed visits to a customer. Iteration 1 searches for a feasible TSP solution on a graph

with |I| nodes using a nearest neighbourhood algorithm. Using this TSP route the

vehicle can serve a demand dik (with k = 1) of the customer i. Iteration l with l ≥ 2

solves again the nearest neighbourhood algorithm on a TSP problem with a node for

each SD1PDTSP customer i such that
∑l−1

k=1 dik 6= di.The iterative approach stops after

iteration l if
∑l

k=1 dik = di for all i ∈ I. In such case, a feasible SD1PDTSP route

has been obtained by merging the tours P 1, . . . , P l in a single route. Tours P l and

P l+1 are combined into a route by selecting a customer i visiting P l and P l+1 with

the largest value |dil + dil+1
|, and then the values dv in the new tour are recomputed

to make the tour feasible. This procedure may conclude with a SD1PDTSP solution

that suggest a reasonable way of splitting the SD1PDTSP customer demands. Still,

based on preliminary experiments, it found more convenient to further replace each of

the resulting node by two nodes, one with demand ddik/2e and the other with demand

dik − ddik/2e. If one of these numbers is zero then the resulting node remains without

between replaced by two. The motivation of this enlargement of the 1-PDTSP size is

because it allows more feasible SD1PDTSP solutions while keep the size of the 1-PDTSP

reasonable for this algorithm. Strategy 2 consists of solving a new 1-PDTSP instance

with the approach in Section 5.1.1. If a better 1PDSTP solution is found, a better

SD1PDTSP has been found. In addition, the initial solution for the GVNS described in

Section 5.1.1 is given by this constructive procedure.

It illustrates here the procedure on a SD1PDTSP instance with 25 customers, demands

between −7 and 7, and Q = 6. This instance is based on benchmark data introduced in

Mosheiov (1994). Figure 5.2 shows the two tours P 1 (solid lines and P 2 (dashed lines)

created in the two iterations of the procedure. Each circle represents a customer and

is located using the given coordinates. The demand of a customer is the value near its

circle. Route P 1 was created starting from customer 1 (the depot). Customers 7, 9, 15,

16 and 18 require additional visits in order to serve their demand completely. Hence,

the iteration 2 solves a new TSP problem and the solution is P 2 in the figure. Since

no customer needs another visit, the algorithm stops at iteration 2. The two routes are

combined as follow. The vehicle starts the tour in the depot with empty load, following

route P 1 until customer 18. Then the vehicle goes through the route P 2 and it returns

to customer 18. Finally, goes through P 1 from customer 18 until the depot. During this

combined tour the served demands at each visit is recomputed to keep the feasibility.
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Figure 5.2: Initial solution by merging P 1 and P 2. The travel cost is 8327.

The travel cost of P 1 and P 2 are 5633 and 2694 respectively. Then, the travel cost of

the combined tour is 8324. This solution suggests a decomposition of the SD1PDTSP

customers into 1-PDTSP nodes. For example, customer 11 (which is visited once in this

solution) is replaced by two nodes with demands 4 and 3; and customer 18 (which is

viited twice, splitting its demands in −4 and −1) is replaced by 3 nodes with demands

−2, −2 and −1. The split demand −4 generates two nodes of demands −2, and split

demand −1 generates only one node with demand −1.

Again the approach in Section 5.1.1 will be applied on the new 1-PDTSP instance and a

better SD1PDTSP solution may be obtained. Figure 5.3 shows the SD1PDTSP solution

obtaines after apply the GVNS with this strategy on this example.
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Figure 5.3: SD1PDTSP solution after GVNS algorithm. The travel cost is 5509.

5.2 Matheuristic algorithm for the SD1PDTSP

A matheuristic approach is an approximation algorithm that makes use of mathematical

programming techniques. It is typically more sophisticated and time consuming than

other classical heuristic approaches, but in some cases they may succeed in generating

better solutions than basic heuristic algorithms. This section describes a matheuristic

approach using a simplified variant of the branch-and-cut algorithm in Chapter 4. The

motivation for using a variant and not the whole procedure is due to the heavy limitations

of the branch-and-cut procedure, that hardly solves instances with more than 30 nodes.

This variant adapts the mathematical model and the branch-and-cut procedure to work

on a partial route with fixed initial and final locations, and where the load of the vehicle

when entering the initial location is also fixed. The preemption characteristic may be
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allowed or forbidden within the branch-and-cut procedure as desired. In other words,

this section describes a procedure to find SD1PDTSP solutions where a branch-and-cut

approach is used to optimize some partial routes. It details first the mathematical model

and later the overall approach.

5.2.1 The MILP subproblem

As pointed out in Chapter 3, the mathematical model (3.1)–(3.11) for SD1PDTSP pro-

duces a complete route, and it now adapts to define optimal partial routes. The adapted

model will be used in our matheuristic procedure. Let us consider a subset of locations

J ⊂ I. Let s be the first location, t be the last location, and ls be the load of the

vehicle when entering s in the first visit. It introduces a dummy node z with demand

dz = −
∑

i∈J di and travel cost czs = ctz = 0. Then, this adaptation is based on the

model (3.1)–(3.11) where the set I is replaced by J ∪ {z}, and with the additional

constraints:

yz = 1 (5.2)

xzs1 = 1 (5.3)

fzs1 = ls (5.4)
m∑
l=1

xtlz = 1. (5.5)

Equations (5.2) force z to be visited once. Equation (5.3) forces the arc from z to s1 to

be in the route, and equation (5.4) fixes its load. Equation (5.5) forces the partial route

to end at customer t.

Note that the preemption characteristic can be forbidden by simply replacing equations

(3.10) with:

0 ≤ gil ≤ qiyil ∀i ∈ I : di ≥ 0,∀l = 1, . . . ,mi

−qiyil ≤ gil ≤ 0 ∀i ∈ I : di < 0,∀l = 1, . . . ,mi

5.2.2 Improvement phase

It is now described an improvement phase to potentially generate a better solution from

an initial one. An SD1PDTSP solution is a route through I, and can be seen as a

sequence of locations, some of which may appear several times in the sequence. Let k

be the length of this sequence, and denote by T = (v1, . . . , vk) the sequence itself and by

lj(T ) the load of the vehicle outgoing vj . The matheuristic procedure iteratively analyzes

partial routes and uses three additional parameters (say, p1, p2 and p3). Parameter p1 is

the number of nodes in the current partial route, parameter p2 is the number of nodes to
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skip for the next partial route when the MILP subproblem is not applied, and parameter

p3 is the number of nodes to skip when the MILP subproblem is applied.

The procedure starts selecting the partial route P = (v1, . . . , vp1) and checks if all

locations in that route are not visited in the current route outside P . If so, the MILP

subproblem is applied on P ; otherwise, the partial route is moved forward p2 positions

to get another subsequence, i.e. a new P = (v1+p2 , . . . , vp1+p2) is considered. When the

MILP subproblem gives a new partial route that improves the cost of P , the current

route T is update; otherwise, a new partial route P is selected by moving forward p3

positions from the current P . Note that T is a circuit, thus the algorithm will go on

selecting partial routes until it gets (vk, v1, . . . , vp1−1). When all partial routes have been

checked and the MILP subproblems do not improve the current solution, the algorithm

stops. Each MILP subproblem is solved within a given time limit. After preliminary

computational results, we set parameters p1 = 20, p2 = 1 and p3 = 5. The time limit

for solving each MILP subproblem was set to 10 seconds.

Figure 5.4 shows the initial partial route of the MILP subproblem. It corresponds a

partial path of the solution shown in figure 5.3. The load of the vehicle entering the

partial route through location 17 is five, and the travel cost of this partial route is 4102.

When the MILP subproblem is applied, it returns the partial solution shown in figure

5.5 with travel cost 3930. It can see that all customers in the input path are visited once

while the output path has two customers (customers 5 and 21) visited twice. The final

partial route has a smaller travel cost than the initial one (it is 172 units lower), so the

MILP subproblem was worth to be applied. It can see that the matheuristic algorithm

allows generating a solution with the preemption characteristic. Customer 21 is visited

twice. In the first visit (entering from customer 5), seven units of product are delivered

by the customer to the vehicle. In the second visit (entering from customer 23) one unit

of product is picked up by the customer from the vehicle. Moreover, on this example,

the obtained route is the optimal solution of the SD1PDTSP and its cost is 5337. This

route can be seen by replacing in figure 5.3 the path in figure 5.4 by the path in figure

5.5.

5.2.3 Matheuristic framework

A first SD1PDTSP solution is constructed with the basic approach described in Section

5.1.1, applying one of the three mentioned strategies. The improvement phase described

in Section 5.2.2 is applied on this solution, which means that a sequence of partial routes

are examined. Each time the MILP subproblem improves a partial route, the solution

is replaced and the basic approach is reapplied using the decomposition of the customer

demands. Another iteration is performed using the resulting new SD1PDTSP solution.

The iterative procedure go on until the improvement phase is not able to generate a

better solution. There are random decisions in the constructive phase that uses the
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(a) Before the MILP subproblem. The travel cost is 4102.

Figure 5.4: Partial routes starting at location 17 with load 2.

basic approach, and it uses a math-based approach to solve the improvement phase. For

that reason the whole framework can be classified as a matheuristic technique. Three

implementations are possible depending on the strategy used in the first constructive

step.

5.3 Computational results

The heuristic algorithm described in this chapter has been implemented in C++, and

executed on a personal computer with a Intel Core 2 Duo CPU E8600 3.3 Ghz run-

ning Microsoft Windows 7, using CPLEX 12.5 to solve the MILP subproblems. To

evaluate the performance of our implementation it has created SD1PDTSP instances
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Figure 5.5: Partial routes starting at location 17 with load 2.

based on the benchmark 1-PDTSP instances proposed in Hernández-Pérez and Salazar-

González (2004b). These instances were generated in the following way. The customers

2, . . . , n were randomly located in the square [−500, 500] and have integer demands di

randomly chosen in the interval [−10, 10]. Customer 1 is located in the point (0, 0)

with a demand value d1 such that the sum of all customer demands is zero. The

travel costs are computed as the Euclidean distances, rounded to the closest integer

numbers. The vehicle capacity is Q = 10. The instances are publicly available from

hhperez.webs.ull.es/PDsite/. When necessary, it has defined pi = 10 − di, p′i = 10

and qi = 20 for each customer i. Regarding the size, it has considered three classes: small

instances with n = 30, medium instances with n in {40, 50, 60}, and large instances with

n in {100, 200, 300, 400, 500}. It reports computational results on 10 instances for each

value of n, and for each one it considers the case mi = 1 for all i (i.e. a 1-PDTSP

instance) and the cases mi = 2 for all i with and without the preemption characteristic.
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The algorithm in Hernández-Pérez and Salazar-González (2004a) was able to solve to

optimality the small and medium 1-PDTSP instances, and the algorithm in Salazar-

González and Santos-Hernández (2015) was able to solve to optimality only the small

instances with mi = 2, with and without preemption. In addition, the algorithm was

also applied with Q = 5 on the large instances (i.e., n ∈ {100, 200, 300, 400, 500}). This

forces customers with demands |di| > 5 to be visited more than once.

The results obtained from our computational results are distributed in seven tables with

the following headings:

Name: name of the instance.

Best: travel cost of the best solution after having applied all the methods.

NS: number of customers visited twice in the best solution.

NP: number of customers where preemption is performed in the best solution.

Min: gap between the smallest cost z in 10 executions of a specific method respect to

Best ; it is computed as 100(z −Best)/Best.

Avg: gap between the average cost z′ in 10 executions of a specific method respect to

Best ; it is computed as 100(z′ −Best)/Best.

Time: average computational time in seconds of each execution of the specific method.

When the method is an exact approach, it is executed once instead of 10 times, and

Gap is 100(z∗ − Best)/Best with z∗ being the optimal cost. Tables 5.1–5.3 refer to

the 1-PDTSP (mi = 1) and the SD1PDTSP (mi = 2) without preemption, while Tables

5.4–5.6 refer to the SD1PDTSP with preemption (i.e., when refinement phase is applied).

Table 5.1 shows the results on the small instances. The best solutions on the small

instances were computed solving the case mi = 2 with preemption using the exact ap-

proach in Salazar-González and Santos-Hernández (2015), and no one of these solutions

make use of the preemption characteristic (i.e. NP=0 ). Each line also shows the gap

of the optimal values of the split-forbidden problem, and of the split-allowed problem

without the preemption characteristic. The time to compute them are reported in the

table, making clear that the problem with mi = 2 is much harder to solve than the

problem with mi = 1. The computational time consumed by the basic approach is very

small in both cases. Note that the number of customers visited twice by the vehicle is

small. From the table, Strategy 1 shows the best performances.

Table 5.2 shows the results on the medium instances. Again, the exact algorithm for

1-PDTSP found an optimal solution for each instance in reasonable computing time,

while the exact algorithm in Salazar-González and Santos-Hernández (2015) was not

able to solve the instances with mi = 2. The values Best were obtained in all cases by
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our matheuristic approach, and in some cases also by the basic approach described in

Section 5.1. The basic approach found a very good solution to each 1-PDTSP instance

in about 2 seconds, so again the results confirm the good quality of the GVNS procedure.

The basic approach shows a similar performance also on the instances with mi = 2. The

best routes of the 30 instances with mi = 2 and preemption use the split characteristic

(see NS) while only on 3 over the 30 instances also use the preemption characteristic (see

NP ). The split characteristic allows reducing the cost in about 3%, while the reduction

for the preemption characteristic is negligible. Now, the performances of Strategy 1 and

Strategy 2 are similar.

Table 5.3 shows the results on the large instances, where no optimal solution is known.

Value Best was computed by the best execution of our math-based approach on the

three problem variants for each line in the table. The table shows the results reported

by Mladenović et al. (2012), so their and our GVNS implementations can be compared

in computational time and solution quality. Their computer uses the Intel Core 2 Duo

CPU T5800 2.0 GHz running Linux, which is very similar to our computer. Although

our implementation loss a bit of quality in the solution cost, it is faster than their

implementation. Taking into account the average gap of the ten runs on the ten instances

of each size n, it observes Strategy 2 won twice (n = 100 and n = 300), Strategy 1 won

twice (n = 400 and n = 500) and the Strategy 0 with the implementation reported

by Mladenović et al. (2012) won when n = 200 (but it spent more time). it can also

see that the computational time of Strategy 1 is higher than the computational time

of Strategy 2. It may be because the number of nodes in the 1-PDTSP instance when

using Strategy 1 is greater than the number of nodes when using Strategy 2.

Tables 5.4, 5.5 and 5.6 shows details of three variants of the matheuristic approach on

the SD1PDTSP with the preemption characteristic. For each instance the tables show:

Math St0: The matheuristic algorithm described in Section 5.2 is applied starting from

the 1-PDTSP solution generated by the approach in Section 5.1.1 on Strategy 0;

Math St1: As in Math St0, but Strategy 1 in Section 5.1.2 is used instead of Strategy

0;

Math St2: As in Math St0, but Strategy 2 in Section 5.1.3 is used instead of Strategy

0.

It is interesting to observe that very few of the best routes make use of the preemption

characteristic. It occurs on 3 instances over the 30 median-sized problems, and on 7 in-

stances over the 50 large-sized problems. This explains why the matheuristic approach

showed very similar results when applied to the problem without the preemption char-

acteristic on these instances. The improvement in solution quality of the math-based

approach on the GVNS route is around 1%, and it shows very similar performances when



Chapter 5 The SD1PDTSP: The heuristic approach 77

mi = 1 mi = 2 without preemption
Optimal Strategy 0 Optimal Strategy 1 Strategy 2

Name Best NS NP Gap Time Min Avg Time Gap Time Min Avg Time Min Avg Time

n30q10A 6256 1 0 2.35 1.0 2.35 2.35 0.6 0.00 2266.4 0.00 0.00 1.9 0.00 0.00 1.5
n30q10B 6603 0 0 0.00 0.1 0.00 0.00 0.5 0.00 591.1 0.00 0.00 1.8 0.00 0.00 1.3
n30q10C 6348 3 0 2.17 0.4 2.17 2.42 0.5 0.00 2278.5 0.00 0.00 2.5 0.57 0.57 1.7
n30q10D 6380 5 0 4.26 0.3 4.26 4.26 0.5 0.00 3811.8 0.00 0.14 2.4 0.27 0.28 1.6
n30q10E 6052 4 0 0.30 0.1 0.30 0.30 0.4 0.00 942.6 0.00 0.16 1.6 0.26 0.26 1.0
n30q10F 5727 1 0 0.17 0.1 0.17 0.17 0.4 0.00 1008.4 0.00 0.00 1.5 0.00 0.00 1.0
n30q10G 9005 4 0 4.06 1.3 4.06 4.06 0.8 0.00 3994.7 0.00 0.04 3.6 0.43 0.63 3.0
n30q10H 6164 2 0 4.33 0.2 4.33 4.33 0.5 0.00 4598.6 0.00 0.00 1.8 0.39 0.39 1.1
n30q10I 5596 3 0 4.02 0.4 4.02 4.10 0.5 0.00 4839.8 0.00 0.51 1.9 0.00 0.00 1.3
n30q10J 6090 3 0 1.59 0.5 1.59 1.59 0.4 0.00 1712.5 0.00 0.36 2.3 0.00 0.00 1.4
Average 6422.1 2.6 0 2.33 0.4 2.33 2.36 0.5 0.00 2604.4 0.00 0.12 2.1 0.19 0.21 1.5

Table 5.1: Results of the basic approach on small instances

using each of the three strategies. In other words, the impact of the selected strategy

for the matheuristic approach is not relevant on these instances. The number of MILP

subproblems solved is around 10 and the number of MILP subproblems generating a

better partial route is around 2.

Finally, it performed other experiments by solving the same benchmark instances with

Q = 5 instead of Q = 10. Since the customer demands are in the interval [−10,+10],

the routes for the instances with Q = 5 contain a larger number of customers visited

twice, and Strategy 0 can not be applied. Still the number of customers making use of

the preemption characteristic was negligible. Table 5.7 shows the computational results

and gaps from these experiments. Based on these results, Strategy 2 provides better

results than Strategy 1, specially on the instances with n = 300.



78 Chapter 5 The SD1PDTSP: The heuristic approach

mi = 1 mi = 2 without preemption
Optimal Strategy 0 Strategy 1 Strategy 2

Name Best NS NP Gap Time Min Avg Time Min Avg Time Min Avg Time

n40q10A 7035 3 0 1.96 5.1 1.96 2.00 1.0 0.00 0.86 3.6 0.33 1.31 2.6
n40q10B 6138 2 0 6.83 16.2 6.83 6.92 1.9 0.00 0.04 2.3 0.00 0.00 2.2
n40q10C 7501 1 0 0.36 0.3 0.36 0.36 1.0 0.00 0.00 3.2 0.00 0.00 2.6
n40q10D 7781 3 0 3.57 7.3 3.57 3.57 1.2 0.00 0.00 3.9 0.00 0.21 2.5
n40q10E 6728 3 0 2.97 17.8 2.97 2.97 0.6 0.00 0.14 2.9 0.00 0.10 1.7
n40q10F 7300 3 0 2.82 51.2 2.82 2.97 1.0 0.00 0.11 4.3 0.16 0.35 2.9
n40q10G 7457 3 0 2.24 2.5 2.24 2.36 0.9 0.00 0.01 3.8 0.08 0.09 3.1
n40q10H 6638 3 0 2.30 2.6 2.30 2.30 0.8 0.00 0.15 3.7 0.05 0.93 3.0
n40q10I 7018 3 0 2.81 6.8 2.81 2.81 0.9 0.00 0.19 3.8 0.48 0.48 2.6
n40q10J 6457 3 0 0.85 2.0 0.85 0.85 0.6 0.00 0.14 3.0 0.12 0.20 2.2
Average 7005.3 2.7 0 2.67 11.2 2.67 2.71 1.0 0.00 0.16 3.5 0.12 0.37 2.5

n50q10A 6795 2 1 2.83 2.6 2.83 2.83 1.1 0.04 0.04 3.7 0.04 0.04 2.6
n50q10B 9170 4 0 3.47 26.2 3.47 3.50 1.6 0.00 0.79 6.4 0.34 1.11 4.9
n50q10C 8842 2 0 3.03 99.6 3.03 3.07 1.6 0.00 0.17 7.6 0.78 0.98 4.8
n50q10D 9940 4 0 3.22 21.8 3.22 4.09 2.1 0.11 0.66 6.7 1.23 1.30 5.5
n50q10E 9238 4 1 2.75 9.4 2.75 2.75 2.1 0.08 0.59 6.5 0.10 0.22 5.9
n50q10F 7722 5 0 12.46 119.8 12.46 12.46 1.8 0.00 0.55 5.6 0.09 2.33 4.7
n50q10G 7067 2 0 0.83 1.4 0.83 1.09 1.1 0.01 0.08 4.4 0.07 0.12 3.0
n50q10H 8653 4 0 2.68 67.6 2.72 3.02 2.1 0.00 0.19 6.0 0.00 0.41 4.6
n50q10I 8056 5 0 3.39 32.0 3.39 3.77 1.4 0.24 1.07 6.3 0.07 0.64 4.4
n50q10J 8230 4 0 2.75 6.8 2.75 2.75 1.2 0.00 1.62 5.0 0.30 0.85 4.5
Average 8371.3 3.6 0.2 3.74 38.7 3.74 3.93 1.6 0.05 0.58 5.8 0.30 0.80 4.5

n60q10A 8340 4 0 3.14 882.1 3.14 3.37 1.8 0.00 0.43 5.7 0.35 0.48 5.5
n60q10B 8389 5 0 1.49 23.3 1.49 1.49 1.8 0.00 1.39 4.3 1.11 1.29 4.2
n60q10C 9153 4 0 3.28 119.6 3.28 3.50 2.6 0.00 0.42 7.4 0.02 0.32 5.9
n60q10D 10625 4 1 4.10 287.6 4.10 5.08 3.1 0.08 0.80 8.2 0.17 0.55 6.5
n60q10E 9345 3 0 1.52 23.0 1.52 2.31 1.8 0.00 1.20 6.9 0.00 1.13 6.0
n60q10F 8325 5 0 8.86 227.9 8.97 9.89 2.2 0.00 1.35 4.2 1.15 1.33 4.7
n60q10G 8736 3 0 2.01 32.3 2.01 2.32 1.9 0.00 0.49 8.3 0.48 0.99 6.1
n60q10H 8211 4 0 2.59 28.6 2.59 2.68 1.5 0.00 0.69 5.5 0.00 0.53 4.2
n60q10I 9232 4 0 1.75 251.5 2.53 2.82 2.3 0.05 0.92 5.6 0.05 0.81 6.8
n60q10J 8226 6 0 6.37 228.7 6.37 7.01 1.8 1.30 3.19 3.8 0.71 1.95 4.8
Average 8858.2 4.2 0.1 3.51 210.4 3.60 4.05 2.1 0.14 1.09 6.0 0.40 0.94 5.5

Table 5.2: Results of the basic approach on medium instances
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mi = 1 mi = 2 without preemption
Mladenovic et al. Strategy 0 Strategy 1 Strategy 2

Name Best NS NP Min Avg Time Min Avg Time Min Avg Time Min Avg Time

n100q10A 11458 5 0 1.84 3.42 9.7 2.23 3.07 6.3 0.34 1.88 7.0 0.28 1.96 6.8
n100q10B 12729 7 0 1.64 2.00 25.3 2.39 3.42 8.0 0.00 3.31 12.2 1.54 2.87 9.1
n100q10C 13457 7 0 3.24 3.30 23.4 3.49 4.60 6.9 1.14 2.84 9.9 0.00 1.71 7.1
n100q10D 14156 7 0 0.63 1.01 25.4 0.63 2.43 9.0 0.00 1.86 10.1 0.14 1.42 10.1
n100q10E 11140 7 0 2.36 4.74 7.5 2.43 3.50 4.9 0.20 2.44 8.3 1.26 2.22 5.1
n100q10F 11514 8 0 0.83 0.93 19.7 0.83 1.37 7.6 0.22 1.88 8.3 1.00 1.98 5.9
n100q10G 11321 8 0 4.81 5.88 9.1 5.57 5.99 6.7 1.57 3.28 8.6 0.66 2.78 5.5
n100q10H 12483 8 0 1.31 1.73 30.3 1.39 2.70 7.4 0.95 2.20 10.3 0.63 1.87 6.7
n100q10I 13608 5 0 1.05 1.88 20.3 1.37 2.44 7.3 0.24 1.62 11.2 0.00 2.44 6.8
n100q10J 12936 6 0 1.77 2.99 12.2 2.86 3.78 8.2 0.74 2.20 6.7 0.93 1.74 6.9
Average 12480.2 6.8 0 1.95 2.79 18.3 2.32 3.33 7.2 0.54 2.35 9.3 0.64 2.10 7.0

n200q10A 17005 0 0 0.14 1.95 73.0 0.30 2.45 22.0 1.21 3.01 37.2 1.01 3.07 32.0
n200q10B 17291 7 0 0.86 1.31 79.5 1.89 4.24 11.5 0.35 3.19 50.9 0.91 2.57 27.2
n200q10C 15869 11 0 1.63 2.72 71.8 2.79 3.59 13.2 0.01 1.71 35.8 0.33 2.15 25.5
n200q10D 20769 15 0 0.24 1.25 81.7 1.11 2.39 25.1 0.26 2.02 54.6 0.71 1.73 46.0
n200q10E 18766 6 1 0.47 1.75 70.3 1.74 2.79 29.7 0.04 1.71 58.6 0.26 2.31 32.1
n200q10F 21104 10 0 0.69 1.49 75.0 0.60 1.73 50.3 0.88 1.40 57.4 0.59 1.34 50.6
n200q10G 17004 12 0 0.31 1.44 71.5 1.27 2.83 12.3 0.00 1.52 40.1 0.77 2.06 35.5
n200q10H 20291 0 0 2.11 3.33 73.2 0.00 3.22 33.1 2.34 3.46 56.9 2.66 3.59 40.3
n200q10I 17660 16 1 1.05 1.95 80.9 2.26 3.08 23.6 0.47 2.75 48.4 0.45 1.50 36.0
n200q10J 18556 8 0 0.37 2.56 50.5 2.86 4.20 22.4 0.84 2.62 49.2 2.23 3.17 36.9
Average 18431.5 8.5 0.2 0.79 1.98 72.7 1.48 3.05 24.3 0.64 2.34 48.9 0.99 2.35 36.2

n300q10A 21826 22 0 1.41 3.60 133.3 3.44 4.47 25.3 0.00 2.21 156.7 2.03 2.74 101.3
n300q10B 21966 26 0 0.94 2.00 118.9 1.71 3.31 35.0 0.27 1.77 158.0 0.03 2.15 109.0
n300q10C 20782 9 0 0.66 1.97 118.9 2.77 3.85 20.7 0.46 2.50 127.3 1.02 2.49 85.2
n300q10D 24607 22 0 0.46 2.00 117.8 1.66 2.73 35.6 0.25 1.49 164.3 1.03 1.88 146.6
n300q10E 25682 30 0 1.48 3.62 117.9 3.46 4.41 40.2 0.00 2.85 175.7 0.75 2.26 146.5
n300q10F 23563 15 0 0.71 2.47 125.9 1.93 3.48 27.9 0.00 1.96 196.0 0.20 2.53 114.3
n300q10G 22930 19 0 1.22 2.45 118.9 1.82 3.75 28.3 0.65 1.63 179.4 0.42 2.10 113.2
n300q10H 21152 14 0 0.15 1.27 128.2 1.91 3.43 25.9 1.23 2.77 140.5 1.48 2.11 113.7
n300q10I 23369 15 0 0.57 1.91 119.9 2.62 3.81 32.8 1.44 2.63 174.2 0.99 1.83 125.7
n300q10J 21583 22 0 0.60 2.26 132.0 3.28 4.33 25.4 0.71 2.60 121.7 0.00 1.83 96.6
Average 22746 19.4 0 0.82 2.36 123.2 2.46 3.76 29.7 0.50 2.24 159.4 0.80 2.19 115.2

n400q10A 29374 41 0 1.80 3.06 174.0 3.03 4.22 75.6 0.11 2.04 509.2 0.00 2.31 289.9
n400q10B 23394 25 1 1.13 2.24 162.8 2.05 4.08 48.7 1.69 3.52 359.1 1.08 2.52 222.8
n400q10C 27323 27 1 0.83 2.03 159.5 1.59 2.79 55.6 0.29 1.69 431.3 0.91 1.43 208.1
n400q10D 22697 20 0 2.19 3.21 160.6 3.63 4.91 42.0 1.20 3.01 302.6 1.38 2.44 204.5
n400q10E 23820 22 0 1.67 3.55 180.2 2.97 4.47 44.0 0.46 2.21 352.8 1.41 2.75 203.4
n400q10F 25765 24 0 0.52 1.86 174.1 1.79 3.02 50.3 0.29 1.11 401.8 0.00 1.63 221.7
n400q10G 23034 23 1 0.67 2.41 178.1 1.55 3.42 39.2 0.60 2.05 277.1 1.37 2.05 193.9
n400q10H 24368 38 0 0.10 1.38 161.3 1.42 2.71 47.6 0.94 1.66 311.1 1.29 2.56 231.6
n400q10I 27421 26 0 0.80 2.04 174.8 2.19 3.39 52.8 1.01 1.78 387.8 0.69 2.06 234.8
n400q10J 24530 29 0 0.97 3.05 81.3 2.26 3.55 47.2 0.00 2.09 353.4 0.08 1.98 241.0
Average 25172.6 27.5 0.3 1.07 2.48 160.7 2.25 3.66 50.3 0.66 2.12 368.6 0.82 2.17 225.2

n500q10A 26877 27 1 1.05 2.53 222.2 1.66 3.41 74.4 0.73 1.97 949.5 0.92 2.06 477.9
n500q10B 25397 28 0 0.84 2.22 213.2 0.99 2.72 67.5 0.01 1.74 804.9 0.98 1.87 384.4
n500q10C 29127 0 0 0.13 2.20 134.4 0.00 2.10 102.5 1.03 1.75 960.0 0.63 2.09 480.2
n500q10D 28842 34 0 1.46 2.80 127.2 1.60 3.25 90.7 0.77 2.20 818.4 0.70 2.08 409.4
n500q10E 28770 26 0 1.34 2.63 139.4 2.29 3.19 95.1 0.92 1.92 934.3 0.68 1.90 476.0
n500q10F 27172 23 0 1.25 2.35 215.3 2.23 2.70 104.2 0.17 2.32 908.4 1.03 2.89 372.8
n500q10G 25489 38 0 0.99 1.93 212.6 1.97 3.27 67.1 0.00 1.36 679.4 1.39 2.34 281.7
n500q10H 34776 36 0 0.63 2.33 160.9 0.75 2.78 141.4 0.09 1.49 1046.3 0.95 1.76 605.8
n500q10I 29039 35 1 0.80 3.00 124.9 1.15 2.67 94.3 0.85 2.06 880.9 1.83 2.34 484.9
n500q10J 29122 38 0 1.35 3.16 127.4 2.90 4.13 120.8 0.00 2.29 1011.1 1.68 2.55 499.9
Average 28461.1 28.5 0.2 0.98 2.52 167.8 1.55 3.02 95.8 0.46 1.91 899.3 1.08 2.19 447.3

Table 5.3: Results of the basic approach on large instances
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mi = 2 with preemption
Math St0 Math St1 Math St2

Name Best NS NP Min Avg Time Min Avg Time Min Avg Time

n30q10A 6256 1 0 0.00 0.00 212.0 0.00 0.00 184.5 0.00 0.00 128.8
n30q10B 6603 0 0 0.00 0.00 210.2 0.00 0.00 85.4 0.00 0.00 128.7
n30q10C 6348 3 0 0.57 0.57 230.1 0.00 0.00 144.4 0.57 0.57 122.0
n30q10D 6380 5 0 0.00 0.22 229.5 0.00 0.05 115.6 0.00 0.12 107.7
n30q10E 6052 4 0 0.26 0.26 225.7 0.00 0.16 91.3 0.26 0.26 116.4
n30q10F 5727 1 0 0.00 0.00 226.2 0.00 0.00 117.2 0.00 0.00 115.8
n30q10G 9005 4 0 0.27 0.63 225.7 0.00 0.04 143.4 0.27 0.42 115.4
n30q10H 6164 2 0 0.00 0.00 233.9 0.00 0.00 135.6 0.00 0.00 133.3
n30q10I 5596 3 0 0.00 0.00 239.6 0.00 0.00 53.6 0.00 0.00 122.4
n30q10J 6090 3 0 0.00 0.00 211.4 0.00 0.00 35.3 0.00 0.00 111.9
Average 6422.1 2.6 0 0.11 0.17 224.4 0.00 0.03 110.6 0.11 0.14 120.2

Table 5.4: Results of the matheuristic on small instances

mi = 2 with preemption
Math St0 Math St1 Math St2

Name Best NS NP Min Avg Time Min Avg Time Min Avg Time

n40q10A 7035 3 0 0.00 0.97 238.9 0.00 0.86 119.4 0.33 1.23 112.9
n40q10B 6138 2 0 0.00 0.04 238.6 0.00 0.03 94.1 0.00 0.00 120.2
n40q10C 7501 1 0 0.00 0.00 230.4 0.00 0.00 199.3 0.00 0.00 137.0
n40q10D 7781 3 0 0.00 0.26 240.8 0.00 0.00 118.6 0.00 0.17 143.8
n40q10E 6728 3 0 0.00 0.00 228.2 0.00 0.00 143.4 0.00 0.07 125.8
n40q10F 7300 3 0 0.00 0.10 249.5 0.00 0.04 122.9 0.00 0.13 141.3
n40q10G 7457 3 0 0.00 0.01 251.0 0.00 0.01 116.4 0.00 0.00 88.8
n40q10H 6638 3 0 0.00 0.13 233.4 0.00 0.12 74.0 0.05 0.25 99.8
n40q10I 7018 3 0 0.00 0.21 242.4 0.00 0.11 91.0 0.48 0.48 80.3
n40q10J 6457 3 0 0.00 0.07 214.6 0.00 0.04 97.0 0.12 0.13 119.7
Average 7005.3 2.7 0 0.00 0.18 236.8 0.00 0.12 117.6 0.10 0.25 117.0

n50q10A 6795 2 1 0.00 0.03 198.0 0.00 0.03 98.0 0.00 0.04 129.7
n50q10B 9170 4 0 0.00 0.13 284.0 0.00 0.09 169.9 0.00 0.46 160.7
n50q10C 8842 2 0 0.00 0.14 235.2 0.00 0.12 93.6 0.00 0.55 138.3
n50q10D 9940 4 0 0.00 0.30 256.2 0.00 0.19 152.0 0.03 0.39 165.6
n50q10E 9238 4 1 0.00 0.33 233.1 0.00 0.09 163.0 0.00 0.07 172.0
n50q10F 7722 5 0 0.00 0.74 228.7 0.00 0.54 119.8 0.09 0.88 153.0
n50q10G 7067 2 0 0.00 0.04 226.6 0.00 0.05 118.7 0.07 0.11 174.2
n50q10H 8653 4 0 0.00 0.05 253.8 0.00 0.03 181.2 0.00 0.00 152.3
n50q10I 8056 5 0 0.07 0.34 234.1 0.07 0.26 120.8 0.00 0.23 156.7
n50q10J 8230 4 0 0.00 0.13 276.7 0.00 0.00 242.5 0.00 0.58 172.3
Average 8371.3 3.6 0.2 0.01 0.22 242.6 0.01 0.14 145.9 0.02 0.33 157.5

n60q10A 8340 4 0 0.00 0.12 295.7 0.00 0.09 185.3 0.00 0.12 194.5
n60q10B 8389 5 0 0.00 0.96 287.6 0.00 0.96 183.5 0.69 0.92 207.1
n60q10C 9153 4 0 0.00 0.18 303.7 0.00 0.14 256.2 0.00 0.16 247.9
n60q10D 10625 4 1 0.01 0.11 331.8 0.01 0.06 273.6 0.00 0.19 239.4
n60q10E 9345 3 0 0.00 0.29 275.6 0.00 0.39 187.4 0.00 0.41 211.9
n60q10F 8325 5 0 0.00 0.65 233.2 0.00 0.42 154.2 0.37 0.82 186.7
n60q10G 8736 3 0 0.00 0.49 234.3 0.00 0.30 126.3 0.00 0.67 129.0
n60q10H 8211 4 0 0.00 0.27 266.5 0.00 0.19 160.1 0.00 0.25 208.9
n60q10I 9232 4 0 0.24 0.88 261.0 0.00 0.54 190.8 0.05 0.55 221.6
n60q10J 8226 6 0 0.00 1.25 232.9 0.00 1.16 131.4 0.28 0.82 176.8
Average 8858.2 4.2 0.1 0.02 0.52 272.2 0.00 0.43 184.9 0.14 0.49 202.4

Table 5.5: Results of the matheuristic on medium instances
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mi = 2 with preemption
Math St0 Math St1 Math St2

Name Best NS NP Min. Ave. Time Min. Ave. Time Min. Ave. Time

n100q10A 11458 5 0 0.00 1.33 211.9 0.34 1.26 234.6 0.00 1.25 247.8
n100q10B 12729 7 0 0.06 1.64 249.4 0.00 2.03 255.6 0.06 1.65 213.3
n100q10C 13457 7 0 0.61 1.12 202.4 0.66 1.42 229.7 0.00 1.04 227.5
n100q10D 14156 7 0 0.45 0.88 215.0 0.00 0.97 236.1 0.14 0.93 239.2
n100q10E 11140 7 0 0.00 1.31 195.3 0.13 1.35 250.0 0.00 0.94 236.1
n100q10F 11514 8 0 0.42 0.79 199.0 0.00 0.97 251.4 0.42 0.87 261.4
n100q10G 11321 8 0 0.00 1.48 211.3 0.02 1.82 256.7 0.00 1.27 230.7
n100q10H 12483 8 0 0.17 0.72 199.2 0.00 0.68 227.4 0.24 0.92 239.5
n100q10I 13608 5 0 0.79 1.19 240.1 0.24 1.08 256.9 0.00 1.51 268.8
n100q10J 12936 6 0 0.52 1.32 200.0 0.00 0.91 257.8 0.52 1.14 249.0
Average 12480.2 6.8 0 0.30 1.18 212.4 0.14 1.25 245.6 0.14 1.15 241.3

n200q10A 17005 0 0 0.00 1.64 189.4 0.98 2.00 294.1 0.24 1.97 262.8
n200q10B 17291 7 0 0.74 1.44 274.3 0.35 2.09 256.7 0.00 1.54 273.3
n200q10C 15869 11 0 0.00 1.23 324.0 0.01 1.28 268.1 0.00 0.93 251.8
n200q10D 20769 15 0 0.00 1.05 289.9 0.12 1.00 262.3 0.00 1.06 257.1
n200q10E 18766 6 1 0.37 1.27 298.7 0.04 1.13 263.3 0.00 1.36 312.7
n200q10F 21104 10 0 0.50 0.87 263.5 0.00 0.89 265.8 0.50 0.97 323.7
n200q10G 17004 12 0 0.15 1.21 253.3 0.00 1.18 268.1 0.15 1.23 246.6
n200q10H 20291 0 0 0.00 2.58 282.9 2.34 2.68 286.1 2.32 3.26 292.8
n200q10I 17660 16 1 0.45 1.18 287.6 0.00 1.02 273.0 0.45 1.18 256.3
n200q10J 18556 8 0 0.00 1.88 314.7 0.84 1.77 264.6 0.00 1.88 278.6
Average 18431.5 8.5 0.2 0.22 1.44 277.8 0.47 1.50 270.2 0.37 1.54 275.6

n300q10A 21826 22 0 0.00 1.77 325.3 0.00 1.87 425.9 1.31 2.13 391.9
n300q10B 21966 26 0 0.39 1.23 400.8 0.27 1.47 370.0 0.00 1.43 373.7
n300q10C 20782 9 0 1.00 1.70 457.6 0.46 1.65 422.5 0.00 1.53 394.3
n300q10D 24607 22 0 0.93 1.47 384.9 0.00 1.04 428.3 1.02 1.42 340.4
n300q10E 25682 30 0 0.35 1.55 449.0 0.00 2.06 480.6 0.35 1.76 366.0
n300q10F 23563 15 0 0.00 1.48 387.9 0.00 1.70 447.6 0.19 1.71 376.7
n300q10G 22930 19 0 0.56 1.08 388.3 0.00 1.22 413.1 0.42 1.21 405.4
n300q10H 21152 14 0 1.17 1.83 403.6 1.15 1.51 433.0 0.00 1.84 366.2
n300q10I 23369 15 0 0.00 0.96 372.8 0.63 1.60 458.6 0.00 1.18 368.9
n300q10J 21583 22 0 0.00 1.86 375.6 0.26 1.86 406.7 0.00 1.47 411.4
Average 22746 19.4 0 0.44 1.49 394.6 0.28 1.60 428.6 0.33 1.57 379.5

n400q10A 29374 41 0 0.00 1.82 434.1 0.11 1.81 705.9 0.00 1.82 573.3
n400q10B 23394 25 1 0.00 1.75 479.3 1.15 2.18 692.6 0.00 1.78 653.2
n400q10C 27323 27 1 0.06 0.86 486.3 0.10 0.85 771.5 0.00 0.74 629.5
n400q10D 22697 20 0 1.38 2.10 422.0 0.00 1.80 701.8 1.38 2.04 631.5
n400q10E 23820 22 0 0.00 1.61 464.0 0.46 1.50 731.3 0.00 1.61 621.4
n400q10F 25765 24 0 0.00 0.80 463.6 0.23 0.81 793.2 0.00 0.88 685.5
n400q10G 23034 23 1 0.00 1.43 438.9 0.24 1.33 669.4 0.00 1.48 587.7
n400q10H 24368 38 0 0.27 1.00 469.6 0.00 1.14 703.8 0.27 1.05 523.2
n400q10I 27421 26 0 0.58 1.46 502.4 0.00 1.44 726.6 0.38 1.31 633.0
n400q10J 24530 29 0 0.04 1.23 417.2 0.00 1.36 724.9 0.04 1.29 642.1
Average 25172.6 27.5 0.3 0.23 1.41 457.7 0.23 1.42 722.1 0.21 1.40 618.0

n500q10A 26877 27 1 0.00 1.16 525.0 0.00 1.16 1206.0 0.57 1.41 966.8
n500q10B 25397 28 0 0.35 0.71 558.9 0.00 0.73 1072.6 0.35 0.92 879.5
n500q10C 29127 0 0 0.00 1.04 517.8 0.79 1.30 1220.1 0.28 1.52 894.1
n500q10D 28842 34 0 0.00 1.00 491.7 0.52 1.40 1167.8 0.00 1.00 923.0
n500q10E 28770 26 0 0.00 0.93 538.8 0.54 1.30 2004.9 0.00 1.06 966.2
n500q10F 27172 23 0 0.17 1.82 524.0 0.00 1.48 1221.7 1.03 2.53 915.8
n500q10G 25489 38 0 0.20 1.81 536.8 0.00 0.88 1044.6 0.20 1.53 897.3
n500q10H 34776 36 0 0.25 1.40 460.5 0.09 0.86 1410.5 0.00 0.90 900.8
n500q10I 29039 35 1 0.61 1.35 524.3 0.00 0.89 1161.3 0.61 1.47 965.7
n500q10J 29122 38 0 0.54 2.00 553.6 0.00 1.85 1346.1 0.54 1.95 955.2
Average 28461.1 28.5 0.2 0.21 1.32 523.1 0.19 1.19 1285.6 0.36 1.43 926.4

Table 5.6: Results of the matheuristic on large instances
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mi = 2 without preemption mi = 2 with preemption
Strategy 1 Strategy 2 Math St1 Math St2

Name Best NS NP Min Avg Time Min Avg Time Min Avg Time Min Avg Time

n100q5A 17195 39 2 0.79 1.68 15.4 0.85 1.39 25.3 0.00 1.10 218.9 0.58 1.03 258.5
n100q5B 20609 45 0 0.49 1.53 22.1 0.00 1.14 35.6 0.03 0.89 241.5 0.00 0.64 187.9
n100q5C 22069 41 0 0.16 0.84 30.5 0.22 1.37 44.3 0.00 0.55 162.5 0.22 0.76 194.5
n100q5D 23456 51 0 0.28 1.67 27.1 0.00 1.10 48.4 0.28 1.67 216.7 0.00 0.55 181.8
n100q5E 17561 54 0 1.28 3.06 17.5 0.00 2.62 26.2 0.88 2.86 219.1 0.00 0.88 226.9
n100q5F 17641 42 0 0.33 2.39 16.9 0.22 1.48 29.8 0.00 1.45 221.3 0.22 1.02 216.7
n100q5G 17496 41 1 1.22 1.97 18.1 0.95 1.77 24.6 0.00 1.55 232.5 0.00 1.00 263.3
n100q5H 20117 47 1 0.15 2.28 29.1 0.66 1.72 31.6 0.15 1.63 217.0 0.00 1.01 187.8
n100q5I 22120 54 0 0.13 2.07 25.8 0.73 2.65 40.6 0.00 1.35 238.0 0.62 1.63 169.3
n100q5J 21116 41 0 0.00 0.73 27.8 0.18 1.00 51.8 0.00 0.73 215.3 0.18 0.59 193.5
Average 19938 44.9 0.4 0.48 1.82 23.0 0.38 1.62 35.8 0.13 1.38 218.3 0.18 0.91 208.0

n200q5A 27141 94 0 0.28 2.26 79.4 0.38 1.83 120.2 0.00 1.74 274.4 0.00 0.93 310.5
n200q5B 28244 106 0 0.69 2.00 89.1 0.34 1.44 139.9 0.55 1.85 265.7 0.00 0.66 297.6
n200q5C 24324 84 0 0.53 1.80 72.0 0.00 2.00 99.0 0.53 1.65 236.1 0.00 1.47 310.6
n200q5D 34275 102 0 0.46 1.62 114.6 0.00 0.88 184.0 0.40 1.61 296.4 0.00 0.56 300.9
n200q5E 31117 100 0 0.91 2.17 113.7 0.04 2.09 142.3 0.91 2.17 270.5 0.00 1.60 324.5
n200q5F 34539 95 0 0.00 1.56 137.0 0.92 2.02 221.0 0.00 1.25 300.4 0.92 1.65 354.8
n200q5G 27197 91 0 0.61 1.51 85.7 0.00 1.17 117.6 0.61 1.44 270.1 0.00 1.09 313.3
n200q5H 34195 97 0 0.01 1.21 113.4 0.54 1.60 213.4 0.01 1.08 278.3 0.00 0.80 297.5
n200q5I 28325 94 0 0.06 2.44 79.8 0.58 2.01 157.5 0.00 2.20 255.1 0.58 1.44 328.5
n200q5J 30130 100 0 0.97 2.25 97.0 0.70 1.74 131.1 0.97 2.11 249.0 0.00 1.08 286.1
Average 29948.7 95.6 0 0.45 1.88 98.2 0.35 1.68 152.6 0.40 1.71 269.6 0.15 1.13 312.4

n300q5A 35224 147 0 0.02 0.82 253.9 0.00 0.78 255.4 0.02 0.81 378.1 0.00 0.75 378.4
n300q5B 35814 156 0 0.16 1.36 270.6 0.00 1.11 273.6 0.16 1.33 377.4 0.00 1.11 417.6
n300q5C 33831 147 0 0.33 1.39 228.1 0.00 0.66 250.3 0.33 1.39 366.9 0.00 0.65 416.6
n300q5D 40920 140 0 0.10 0.96 287.6 0.00 0.83 336.3 0.10 0.95 364.0 0.00 0.82 417.0
n300q5E 43654 166 1 0.28 0.83 357.1 0.18 0.95 327.4 0.00 0.77 478.5 0.18 0.95 443.0
n300q5F 39098 158 0 0.00 1.53 278.4 0.10 1.18 303.6 0.00 1.49 380.8 0.10 1.18 422.8
n300q5G 37388 142 1 0.63 1.38 271.6 0.00 0.84 263.2 0.63 1.36 374.2 0.00 0.82 404.2
n300q5H 33515 146 0 0.89 2.06 263.5 0.00 1.67 274.6 0.89 2.06 373.3 0.00 1.66 419.6
n300q5I 38464 152 0 0.00 0.97 259.3 0.01 0.70 287.4 0.00 0.96 381.8 0.01 0.70 423.0
n300q5J 34908 149 0 0.00 1.10 218.6 0.02 1.08 226.7 0.00 1.08 340.4 0.02 1.08 364.8
Average 37281.6 150.3 0.2 0.24 1.24 268.9 0.03 0.98 279.9 0.21 1.22 381.5 0.03 0.97 410.7

n400q5A 49087 212 0 0.35 0.90 794.0 0.00 0.72 477.2 0.35 0.90 910.1 0.00 0.72 777.5
n400q5B 37642 188 0 0.00 1.32 539.2 0.46 1.32 498.3 0.00 1.32 819.6 0.46 1.32 771.8
n400q5C 44276 185 1 0.06 1.39 653.6 0.93 2.07 522.2 0.06 1.37 850.7 0.00 1.26 799.3
n400q5D 35213 189 0 0.36 1.56 563.8 0.00 1.28 483.4 0.36 1.55 799.1 0.00 0.74 772.4
n400q5E 37689 201 2 0.73 1.72 621.4 1.13 2.24 450.6 0.73 1.70 801.8 0.00 1.94 778.9
n400q5F 41097 210 1 0.54 1.48 563.6 0.33 1.32 559.5 0.54 1.48 813.0 0.00 0.69 773.6
n400q5G 36240 185 0 0.12 0.70 516.5 0.43 0.75 445.1 0.12 0.70 755.8 0.00 0.65 779.4
n400q5H 38325 204 0 0.52 1.23 607.5 0.00 1.17 646.9 0.52 1.20 794.4 0.00 1.17 865.5
n400q5I 45448 221 0 0.00 1.00 705.1 0.24 0.96 707.5 0.00 1.00 837.7 0.24 0.96 827.9
n400q5J 39238 195 0 0.51 2.12 580.0 0.00 1.54 515.5 0.51 2.12 810.6 0.00 1.53 770.3
Average 40425.5 199 0.4 0.32 1.34 614.5 0.35 1.34 530.6 0.32 1.33 819.3 0.07 1.10 791.7

n500q5A 42359 258 0 0.54 1.90 949.5 0.16 1.59 477.9 0.14 1.17 1166.0 0.00 0.96 966.8
n500q5B 38628 226 0 1.22 2.04 804.9 0.82 1.68 384.4 1.00 1.52 1062.6 0.00 0.97 879.5
n500q5C 46956 245 0 0.15 1.55 910.9 0.49 1.78 474.7 0.01 0.91 1200.7 0.00 0.82 894.1
n500q5D 46505 239 0 0.72 1.45 818.4 0.00 0.89 409.4 0.64 1.16 1167.8 0.00 0.66 923.0
n500q5E 46376 238 0 0.00 1.35 934.3 0.24 1.31 476.0 0.00 0.78 2004.9 0.16 0.91 966.2
n500q5F 43203 242 0 0.75 1.76 908.4 0.03 1.13 372.8 0.00 1.13 1221.7 0.01 0.74 915.8
n500q5G 38906 223 0 0.93 2.36 679.4 1.54 2.82 281.7 0.72 1.77 1044.6 0.00 2.13 1763,5
n500q5H 58123 251 0 0.00 1.46 1046.3 1.30 2.00 605.8 0.00 0.99 1410.5 1.01 1.41 898.8
n500q5I 47007 255 0 0.65 1.72 880.9 0.00 1.26 484.9 0.35 1.47 1161.3 0.00 1.12 965.7
n500q5J 47224 244 0 0.28 1.52 1011.1 0.00 1.00 499.9 0.08 1.03 1346.1 0.00 0.88 955.2
Average 45528.7 242.1 0 0.52 1.71 894.4 0.46 1.55 446.8 0.29 1.19 1278.6 0.12 1.06 1012.9

Table 5.7: Results of the basic approach and the matheuristic approach on large
instances for Q = 5



Chapter 6

Conclusion

The literature on vehicle routing problems has traditionally assumed that customers

can only be visited once. In recent years several research articles have been motivating

and analyzing models and algorithms for problems without this assumption. This thesis

contributes to the literature by introducing a new routing problem in which a capaci-

tated vehicle is used to transport a single commodity from pickup locations to delivery

locations, and multiple visits to the same location are allowed. Several assumptions

have been presented to properly define the problem, but it has also shown how other

variants of this problem can be addressed with the results in this thesis. Some examples

of these assumptions are: the vehicle must visit each customer at least once; the initial

load of the vehicle must be computed; preemption is allowed, i.e. collecting or delivering

temporarily commodity in a customer.

This thesis describes a single-commodity flow formulation, theoretical results, and a

exact and a heuristic approach for the SD1PDTSP. The exact algorithm is based on a

branch-and-cut approach and also a Benders’ decomposition on the flow variables. The

Benders’ cuts have been analyzed, and a separation procedure based on solving a max-

flow problem has been described. It has also described other inequalities to strengthen

the linear programming relaxation. The branch-and-cut approach has been implemented

and evaluated on five classes of benchmark instances. As it occurs in other split-demand

routing problems in the literature, our experiments confirm that splitting the demand

may reduce the travel cost. The approach in this thesis can be applied to solve both the

classical Capacitated Vehicle Routing Problem and also its split-demand variant. While

our implementation is not competitive with the last developments on the first problem,

we have shown that it gives good results on the second.

The heuristic approach is based on a sophisticated technique for the 1-PDTSP which

is adapted to the SD1PDTSP, and a math-based technique based on the branch-and-

cut algorithm. We address two variants depending whether it is allowed or forbidden a

preemption characteristic that consists of collecting or delivering temporarily commodity
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in a customer. It has described a basic approach that first replaces each customer by

a set of nodes, and then applies a meta-heuristic algorithm for the non-split variant on

these nodes. Three strategies are analyzed for the replacement step. Although this basic

approach do not generate routes with the preemption characteristic, another math-based

technique is used later to potentially improve the route. The technique uses a MILP

formulation that is solved within a branch-and-cut approach to optimize a partial route.

The procedures were implemented and analyzed to solve benchmark instances with up

to 500 customers. Our experiments show that, while the split-demand characteristic

helps to find better routes, the preemption characteristic does not help on most of our

instances.

This thesis also opens interesting questions. One concerns a worst-case analysis, trying

to find instances where the travel cost of a SD1PDTSP route is smaller than half of

the travel cost of an optimal 1-PDTSP route, or proves that no one exists under some

conditions (e.g. costs satisfying the triangular inequality). Similar investigations have

been done on related problems by other authors (e.g. Archetti et al. (2006a), Xiong

et al. (2013), Wang et al. (2014)). Another question could be to extend the results to

the multi-commodity case in the line of the splittable pickup and delivery problem with

reloads studied in Kerivin et al. (2008).

Addressing stochastic demands, multicriteria optimization, several vehicles, several de-

pots, and/or time-windows when visiting customers are also other topics that deserve

future investigations.
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