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Abstract

Memory problems of XML Metadata Interchange (XMI) (default persistence
in Eclipse Modelling Framework (EMF)) when operating large models, have
motivated the appearance of alternative mechanisms for persistence of EMF
models. Most recent approaches propose using database back-ends. These
approaches provide support for querying models using EMF-based model query
languages (Plain EMF, Object Constraint Language (OCL), EMF Query, Epsilon
Object Language (EOL), etc.). However, these languages commonly require
loading in-memory all the model elements that are involved in the query. In the
case of queries that traverse models (most commonly used type of queries) they
require to load entire model in-memory. This loading strategy causes memory
problems when operated models are large.

Most database back-ends provide database-speci�c query languages that
leverage capabilities of the database engine (better performance) and without
requiring in-memory load of models for query execution (lower memory footprint).
For example, Structured Query Language (SQL) is a query language for relational
databases and Cypher is for Neo4J databases.

In this dissertation we present MQT-Engine, a framework that supports
execution of model query languages but with the e�ciency (in terms of
memory and performance) of a database-speci�c query language. To achieve
this, MQT-Engine provides a two-step query transformation mechanism: �rst,
queries expressed with a model query language are transformed into a Query
Language Independent Model (QLI Model); and then QLI Model is transformed
into a database-speci�c query that is executed directly over the database.
This mechanism provides extensibility and reusability to the framework, since
it facilitates the inclusion of new query languages at both sides of the
transformation.

A prototype of the framework is provided. It supports transformation of EOL
queries into SQL queries that are executed directly over a relational Connected
Data Objects (CDO) repository. The prototype has been evaluated with two
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experimental evaluations. First evaluation is based on the reverse engineering
domain. It compares time and memory usage required by MQT-Engine and
other query languages (EMF API, OCL and SQL) to execute a set of queries over
models persisted with CDO. Second evaluation is based on the railway domain,
and compares performance results of MQT-Engine and other query languages
(EMF API, OCL, IncQuery, SQL, etc.) for executing a set of queries.

Obtained results show that MQT-Engine is able to execute successfully all the
evaluated experiments. MQT-Engine is one of the evaluated solutions showing
best performance results for �rst execution of model queries. In the case of
query languages executed over CDO repositories, it is the faster solution and
the one requiring less memory. For example, for the largest model in the reverse
engineering case it is up to 162 times faster than a model query language executed
at client-side, and it requires 23 times less memory. Additionally, the query
transformation overload is constant and small (less than 2 seconds).

These results validate the main goal of this dissertation: to provide a
framework that gives to the model engineers the ability for specifying queries
in a model query language, and then execute them with a performance and
memory footprint similar to that of a persistence-speci�c query language.

However, the framework has a set of limitations: the approach should
be optimized when queries are subsequently executed; it only supports non-
modi�cation model traversal queries; and the prototype is speci�c for EOL queries
over CDO repositories with DBStore. Therefore, it is planned to extend the
framework and address these limitations in a future version.
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Resumen

Los problemas de memoria de XMI (mecanismo de persistencia por defecto en
EMF) cuando se trabaja con modelos grandes, han motivado la aparición de
mecanismos de persistencia alternativos para los modelos EMF. Los enfoques
más recientes proponen el uso de bases de datos para la persistencia de los
modelos. La mayoría de estos enfoques soportan la ejecución de operaciones
usando lenguajes de consulta de modelos basados en EMF (EMF API, OCL,
EMF Query, EOL, etc.). Sin embargo, este tipo de lenguajes necesitan almacenar
en memoria al menos todos los elementos implicados en la consulta (todos los
elementos del modelo en las consultas que recorren completamente el modelo
consultado). Esta estrategia de carga de la información para hacer las consultas
provoca problemas de memoria cuando los modelos son de gran tamaño.

La mayoría de las bases de datos tienen lenguajes especí�cos que aprovechan
las capacidades del motor de la base de datos (mayor rapidez) y sin la necesidad
de cargar en memoria los modelos (menor uso de memoria). Por ejemplo, SQL
es el lenguaje especí�co para las bases de datos relacionales y Cypher para las
bases de datos Neo4J.

Este trabajo propone MQT-Engine, un framework que permite ejecutar
lenguajes de consulta para modelos con tiempos de ejecución y uso de memoria
similares al de un lenguaje especí�co de base de datos. MQT-Engine realiza una
transformación en dos pasos de las consultas: primero transforma las consultas
que han sido escritas con un lenguaje de consulta para modelos en un modelo
que es independiente del lenguaje (QLI Model); después, el modelo generado se
transforma en una consulta equivalente, pero escrita con un lenguaje especí�co
de base de datos. La transformación en dos pasos proporciona extensibilidad y
reusabilidad ya que facilita la inclusión de nuevos lenguajes.

Se ha implementado un prototipo de MQT-Engine que transforma consultas
EOL en SQL y las ejecuta directamente sobre un repositorio CDO. El prototipo
se ha evaluado con dos casos de uso. El primero está basado en el dominio de
la ingeniería inversa. Se han comparado los tiempos de ejecución y el uso de
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memoria que necesitan MQT-Engine y otros lenguajes de consulta (EMF API,
OCL y SQL) para ejecutar una serie de consultas sobre modelos persistidos en
CDO. El segundo caso de uso está basado en el dominio de los ferrocarriles y
compara los tiempos de ejecución que necesitan MQT-Engine y otros lenguajes
(EMF API, OCL, IncQuery, etc.) para ejecutar varias consultas.

Los resultados obtenidos muestran que MQT-Engine es capaz de ejecutar
correctamente todos los experimentos y además es una de las soluciones con
mejores tiempos para la primera ejecución de las consultas de modelos. MQT-
Engine es la opción más rápida y que necesita menos memoria entre los lenguajes
ejecutados sobre repositorios CDO. Por ejemplo, en el caso del modelo más
grande de ingeniería inversa, MQT-Engine es 162 veces más rápido y necesita
23 veces menos memoria que los lenguajes de consulta de modelos ejecutados
al lado del cliente. Además, la sobrecarga de la transformación es pequeña y
constante (menos de 2 segundos).

Estos resultados prueban el objetivo principal de esta tesis: proporcionar un
framework que permite a los ingenieros de modelos de�nir las consultas con un
lenguaje de consulta de modelos y además ejecutarlas con una con tiempos de
ejecución y uso de memoria similares a los de un lenguaje especí�co de bases de
datos.

Sin embargo, la solución tiene una serie de limitaciones: solo soporta
consultas que recorren el modelo completamente y sin modi�carlo; el prototipo
es especí�co para consultas en EOL y sobre repositorios CDO (relacionales); y
habría que optimizar la ejecución de las consultas cuando estas se ejecutan más
de una vez. Se ha planeado resolver estas limitaciones en versiones futuras del
trabajo.
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Laburpena

Eredu handien gainean lan egitean XMI formatuak (persistentzia lehenetsia
Eclipse Modelling Frameworkean) eragindako memoria arazoek, EMF ereduak
iraunkor bihurtzeko mekanismo berrieak sortzea motibatu du. Planteamendu
berrienek datu baseen erabilpena proposatzen dute eta EMFn oinarritutako
ereduak kontsultatzeko lengoaiak erabiliz (EMF API, OCL, EMF Query, EOL,
etab.), ereduen gainean lan egitea ahalbidetzen dute. Mota honetako lengoaiek
eskatzen dute kontsultan inplikatuta dauden ereduko elementuak memorian
kargartzea (eredua osorik zeharkatzen duten kontsulten kasuan elementu
guztiak). Kargatzeko estrategia horrek memoria arazoak eragiten ditu ereduak
tamaina handikoak direnean.

Datubase gehienek datubase motorraren gaitasunak aprobetxatzen dituzten
eta ereduak memorian kargatu beharrik ez duten berariazko lengoaiak dituzte.
Adibidez, SQL datubase erlazionalen berariazko lengoaia da eta Cypher Neo4J
datubaseena.

Lan honetan MQT-Engine aurkezten da. Ereduak kontsultatzeko lengoaiak
datubaseentzako berariazko lengoaia baten antzeko exekuzio denbora eta
memoria erabilpenarekin exekutatzea ahalbidetzen du. MQT-Engine bi pausoko
bihurketa bat burutzen du: lehenengo pausoan, ereduak kontsultatzeko lenguaia
batean idatzitako kontsulta lengoaiarekiko independente den eredu bat bihurtzen
du (QLI Model); ondoren, eredua datubasearen berariazko den lengoaia batean
idatzitako kontsulta bihurtzen du. Bi pausoko bihurketak berrerabilpena eta
hedagarritasuna eskaintzen ditu, eta lengoaia berriak sartzea errazten du.

MQT-Engine prototipo bat sortu da. Prototipo horrek EOL kontsultak SQL
kontsulta bihurtzen ditu, eta ondoren CDO biltegi baten gainean exekutatzen
ditu. Prototipoa bi erabilpen kasurekin ebaluatu da. Lehenengoa, alderantzizko
ingeniaritzan dago oinarrituta eta MQT-Enginek eta beste kontsulta lengoaiek
(EMF API, OCL, eta SQL) hainbat kontsulta CDO ereduen gainean exekutatzeko
behar duten denbora eta memoria neurtzen ditu. Bigarren erabilpen kasua,
trenbideen domeinuan dago oinarrituta eta MQT-Enginek eta beste lengoaiek
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(EMF API, OCL, IncQuery, etab.) hainbat kontsulta exekutatzeko behar duten
denbora konparatzeko erabili da.

Jasotako emaitzek erakusten dutenez, MQT-Engine esperimentu guztiak
behar bezala exekutatzeko gai da. Ereduen gainean lehen kontsulta egitean
denboraren aldetik emaitza onenetarikoak erakutsi ditu eta CDO ereduen gainean
exekutatutako lengoaietatik aukera onena da (denboraren eta memoriaren
aldetik). Adibidez, alderantzizko ingeniaritza kasuko eredu handienaren gainean
kontsulta exekutatzean, MQT-Engine bezeroaren-aldean exekutatzen diren
lengoaiak baino 162 aldiz azkarragoa izan daiteke, eta 23 aldiz txikiagoa
den memoria kopurua erabiliz. Gainera, bihurketaren gainkarga txikia eta
etengabekoa da (2 segundu baino gutxiago).

Emaitza hauek tesi honen helburu nagusia frogatzen dute: eredu ingeniariei,
kontsultak, ereduak kontsultatzeko lengoia batekin idazteko, eta persistentziaren
berariazko den lengoaia baten antzeko exekuzio denbora eta erabilitako memoria
balioak erakusten dituen soluzio bat sortzea.

Hala ere, MQT-Enginek hainbat muga ditu: aldaketarik engin gabe,
eredua osorik zeharkatzen duten kontsultak bihurtzeko gai da soilik; prototipoa
EOL kontsultentzako dago diseinatua eta bihurtutako SQL kontsulta CDO
biltegi erlazionalen gainean exekutatzeko dira; kontsulta berdina hainbat aldiz
exekutatzen denean beste soluzio batzuk baino emaitza txarragoak ematen ditu.
Etorkizunean, MQT-Engineren bertsio berrietan muga horiek jorratzeko asmoa
dago.
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1
Introduction

Automatizing and optimizing development processes is crucial to reduce
development e�orts and time to market of industrial projects. Model Driven
Development (MDD) promises improvements in the development process through
an intensive use of abstractions that are speci�ed within models. Using models,
developers are able to focus in the domain-speci�c problems rather than on
problems derived from the technical implementation. Models are considered
�rst class entities during the development process. They are operated using
modelling tools, which perform di�erent types of tasks over them (edition,
validation, simulation, execution, transformation or code generation). Among
all the activities, model queries are intensively used. Therefore, the impact of
query performance on tool performance and user experience is signi�cant [Ber10].

EMF is a modelling framework that is widely used by the Academia.
Moreover, it is one of the leading industrial modelling ecosystems [Ujh15]. EMF
is part of the Eclipse Integrated Development Environment (IDE) and there is
a large collection of EMF-based approaches that provide support for creating
modelling tools to operate and edit EMF models. EMF provides Ecore format,
which is a subset of Uni�ed Modelling Language (UML), and it is used to de�ne
domain-speci�c metamodels where all domain abstractions are speci�ed. Ecore
metamodels are conformed by EMF models where domain-speci�c products are
speci�ed.
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EMF models are natively persisted using XMI format standardised by the
Object Management Group (OMG). One of the main characteristics of this
format is that before operating a model, required information has to be loaded
�rst from the physical XMI �le into the memory. Similarly, if model content is
modi�ed, all the information that has been loaded in-memory (including modi�ed
parts) has to be transferred from the memory into the physical XMI �le. Di�erent
studies have shown that this strategy to load and save operated models when
they are persisted in XMI �les entails memory problems [EP13b,Góm15b].

To overcome memory problems of XMI, recent approaches have proposed
the use of database back-ends for persistence of EMF models. This way, the
persistence mechanism leverage capabilities of the database back-end: partial
load of the information, load on demand, advanced caching mechanisms,
and incremental storage of the information. Each proposed approach uses
a di�erent back-end strategy for persistence of models: Morsa [EP13b],
MongoEMF [Hun14], NeoEMF/Graph [Ben14] and EMF Fragments [Sch13]
provide persistence using NoSQL database back-ends; Teneo [Ten12] persists
models in relational databases using Hibernate; and CDO [Cdo16] provides
support for persisting models in several kinds of databases (in-memory databases,
relational databases and NoSQL databases). Persistence approaches have been
compared in di�erent studies [EP13b,Sch12,Ben14,Góm15b] and results of the
comparison have shown that each persistence approach is more appropriate for
a speci�c modelling scenario.

1.1 Motivation

Among all the activities, model queries are intensively used by modelling tools
and also by model engineers. Consequently, proper operation and performance
of queries is essential. All the database-based persistence approaches for EMF
models support executing queries using EMF-based model query languages (e.g.
EMF Query, OCL, EOL, etc.). Model query languages are focused on interacting
with models using domain-speci�c abstractions. Thus, they are close to the
domain and to the knowledge of model engineers. Moreover, model query
languages are persistence-agnostic, and model engineers do not require to know
how the information is persisted.

Model query languages are commonly executed at client-side and require
loading in-memory at least all the model elements that have to be operated
or queried. In practise, queries that traverse the entire model are the most
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commonly used type of queries [Góm15b]. These queries obtain all the instances
of a speci�c type and require traversing the entire model. Therefore, most of the
model query languages require to load in-memory the entire model to be queried.

In-memory load of the information could be avoided using database-speci�c
query languages, since they leverage database capabilities such as load on-
demand and partial load of the information. Most of the database-back ends
provide database-speci�c languages (e.g. SQL in relational databases, Cypher
in Neo4J) or Application Programming Interfaces (APIs) (e.g. MongoDB Core
API) to operate information persisted within the database. Unlike model query
languages, persistence-speci�c query languages are dependent on the persistence,
and they are commonly executed over the database at server-side. This way, the
query result is obtained directly from the database, and they do not require to
load intermediate results in-memory.

Figure 1.1 illustrates a performed preliminary evaluation where a model query
language (OCL) and a persistence-speci�c query language (SQL) were used to
query models persisted in a relational database and using CDO. As results show,
the persistence-speci�c query language requires less time and memory than the
model query language. The di�erence between results increases as the size of
the queried model increases.

Figure 1.1: Preliminary evaluation of query languages.

However, persistence-speci�c languages require engineers to be aware of the
way the information is persisted and also to learn persistence-speci�c concepts
and languages. These facts increase programming e�ort to get complex queries
correct, and make di�cult for model engineers the adoption of persistence-
speci�c query languages.

Di�erences between model query languages and persistence-speci�c query
languages motivate this dissertation. Thus, the main goal is the development
of a solution that is able to execute queries expressed with a model query
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language, but with the e�ciency (in terms of execution time and memory
usage) of a persistence-speci�c query language. To validate the feasibility of
this goal, a preliminary prototype was implemented [Car15a, Car16a]. This
prototype transforms EOL queries into SQL queries that are executed over an
ad-hoc persistence. Ad-hoc persistence is based on a relational database with a
metamodel-agnostic schema [Car14a].

1.2 Contribution

This dissertation presents MQT-Engine framework, an approach for (a)
transformation of queries from a model query language into a persistence-speci�c
query language; and (b) execution of the generated query over the persistence
and at server-side. This way, MQT-Engine aims to provide performance and
memory usage optimizations when models are operated by engineers using a
model query language.

The framework performs query transformation and execution in three phases.
First phase is the query transformation, and it is executed in two-steps: (1)
the query expressed in a model query language is transformed into a query
language independent model; and (2) the query language independent model
is transformed into a query expressed with a language speci�c of the target
persistence. The generated query is executed directly over the database in the
second phase. Last phase processes results that are obtained from the persistence
and formats them in the data-types expected by the query in the model query
language.

The two-step transformation of queries provided by the framework separates
concepts of model query languages and persistence-speci�c query languages.
This strategy aims to facilitate the inclusion of new query languages in MQT-
Engine framework.

This dissertation provides a prototype of the framework. The prototype
supports transforming queries expressed with EOL into SQL queries that are
executed over a CDO repository with a relational database for persistence of
models.

MQT-Engine prototype is evaluated using two benchmark cases. The �rst
experimental evaluation is based on a reverse engineering benchmark case
[Sot09]. This benchmark case proposes a set of models that specify source
code of Java projects with the aim of comparing execution time and memory
usage metrics required by approaches to execute a complex query over them.
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The complex query extracts all the singleton classes that are speci�ed within the
models. The second experimental evaluation is based on the Train Benchmark
Case [Szá15]. This benchmark case uses models and queries that are close to a
real industrial domain (railway domain).

MQT-Engine results have been compared with the performance results of
executing the queries using other persistences and query languages. Results
show that MQT-Engine is able to execute queries expressed with a model
query language (EOL), but with performance and memory usage similar to a
persistence-speci�c query language (SQL). In most of the experiments MQT-
Engine requires less time and memory than other query languages executed over
the evaluated CDO models. Moreover, experiments show that using MQT-Engine
for querying models, CDO is one of the persistences showing best results.

1.2.1 Technical Contribution

This dissertation provides the following technical contributions:

• Design and implementation of MQT-Engine framework.

• Design and implementation of a query language independent metamodel
used to increase abstraction of queries during query transformation process.

• Implementation of the MQT-Engine Framework prototype for transforming
EOL queries into SQL, and executing them over relational CDO
repositories.

• Experimental evaluation of the prototype using two benchmark cases:
reverse engineering case and train benchmark case.

1.2.2 Publications

The presented dissertation lead to the following publications:

Book Chapters

• Xabier De Carlos, Goiuria Sagardui, Aitor Murguzur, Salvador Trujillo,
and Xabier Mendialdua. Runtime translation of model-level queries to
persistence-level. In Model-Driven Engineering and Software Development
- Third International Conference, MODELSWARD 2015, Angers, France,
February 9-11, 2015, Revised Selected Papers, pp. 97�111. 2015
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International Conferences

• Xabier De Carlos, Goiuria Sagardui, and Salvador Trujillo. Two-
Step Transformation of Model Traversal EOL Queries for Large CDO
Repositories. In Fundamental Approaches to Software Engineering - 19th
International Conference, FASE 2016, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings, pp. 141�157. 2016

• Xabier De Carlos, Goiuria Sagardui, and Salvador Trujillo. CRUD Model
Operations from EOL to SQL. In MODELSWARD 2016 - Proceedings
of the 4th International Conference on Model-Driven Engineering and
Software Development, Rome, Italy, 19-21 February, 2016. 2016

• Xabier De Carlos, Goiuria Sagardui, Aitor Murguzur, Salvador Trujillo,
and Xabier Mendialdua. Model Query Translator - A Model-level Query
Approach for Large-scale Models. In MODELSWARD 2015 - Proceedings
of the 3rd International Conference on Model-Driven Engineering and
Software Development, ESEO, Angers, Loire Valley, France, 9-11 February,
2015., pp. 62�73. 2015

International Workshops

• Xabier De Carlos, Goiuria Sagardui, and Salvador Trujillo. MQT, an
Approach for Run-Time Query Translation: From EOL to SQL. In
Proceedings of the 14th International Workshop on OCL and Textual
Modelling co-located with 17th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2014), Valencia, Spain,
September 30, 2014., pp. 13�22. 2014

• Xabier De Carlos, Goiuria Sagardui, and Salvador Trujillo. Scalable
Model Edition, Query and Version Control Through Embedded Database
Persistence. In Joint Proceedings of MODELS 2014 Poster Session and
the ACM Student Research Competition (SRC) co-located with the 17th
International Conference on Model Driven Engineering Languages and
Systems (MODELS 2014), Valencia, Spain, September 28 - October 3,
2014., pp. 11�15. 2014
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Other Publications

• Alessandra Bagnato, Etienne Brosse, Andrey Sadovykh, Pedro Maló,
Salvador Trujillo, Xabier Mendialdua, and Xabier De Carlos. Flexible and
Scalable Modelling in the MONDO Project: Industrial Case Studies. In
Proceedings of the 3rd Workshop on Extreme Modeling co-located with
ACM/IEEE 17th International Conference on Model Driven Engineering
Languages & Systems, XM@MoDELS 2014, Valencia, Spain, September
29, 2014., pp. 42�51. 2014

• Aitor Murguzur, Xabier De Carlos, Salvador Trujillo, and Goiuria Sagardui.
On the Support of Multi-perspective Process Models Variability for
Smart Environments. In MODELSWARD 2014 - Proceedings of the
2nd International Conference on Model-Driven Engineering and Software
Development, Lisbon, Portugal, 7 - 9 January, 2014, pp. 549�554. 2014

• Aitor Murguzur, Xabier De Carlos, Salvador Trujillo, and Goiuria Sagardui.
Context-Aware Staged Con�guration of Process Variants@Runtime.
In Advanced Information Systems Engineering - 26th International
Conference, CAiSE 2014, Thessaloniki, Greece, June 16-20, 2014.
Proceedings, pp. 241�255. 2014

• Csaba Debreceni, István Ráth, Dániel Varró, Xabier De Carlos, Xabier
Mendialdua, and Salvador Trujillo. Automated model merge by design
space exploration. In Fundamental Approaches to Software Engineering -
19th International Conference, FASE 2016, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, pp. 104�121.
2016

1.2.3 Awards

• Best Poster Award at MoDELS 2014: Xabier De Carlos, Goiuria Sagardui,
and Salvador Trujillo. Scalable Model Edition, Query and Version Control
Through Embedded Database Persistence. In Joint Proceedings of
MODELS 2014 Poster Session and the ACM Student Research Competition
(SRC) co-located with the 17th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2014), Valencia, Spain,
September 28 - October 3, 2014., pp. 11�15. 2014
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1.2.4 Research Visits

A research stay has been made during the �rst year of the PhD program, and
at the Enterprise Systems group of the Department of Computer Science in the
University of York. The visit was supervised by Dr. Dimitris Kolovos. During
this visit, an analysis of the state of the art and a preliminary implementation
was performed.

This stay was completed with a second short-visit in the second year of the
PhD program.

1.3 Support

This thesis has been supported by:

• IK4-Ikerlan

• Research Grant from Fundación Centros Tecnológicos Iñaki Goenaga

1.4 Outline

This dissertation is structured as follows:

Chapter 2 introduces context of this dissertation providing some background
about MDD. First, modelling scenarios and artifacts are described. Then di�erent
mechanisms for persisting models that have been proposed for EMF-based MDD
scenarios are described and compared.

Chapter 3 describes languages that can be used to query EMF models.
Each language is described, classi�ed and compared with the rest of the
languages. This chapter also includes description of approaches for query
language transformation. The chapter ends with a critical analysis of the existing
solutions that motivated the work performed in this dissertation.

Chapter 4 presents the theoretical framework followed by this work, which
includes: hypotheses to be validated by the performed work, goals to be achieved,
operative goals to be implemented by the solution, and case studies to evaluate
the implemented solution.
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Chapter 5 provides description of foundations of the proposed framework. The
framework transforms queries from a model query language into a persistence-
speci�c query language, and then executes it. In this chapter di�erent aspects
of the framework are analysed: involved roles, architecture of the framework and
execution process. It also provides description of a query language independent
metamodel that is used to perform query transformation.

Chapter 6 introduces implementations for the framework that support: (i)
transforming and executing EOL queries into SQL; and (ii) executing generated
queries over relational CDO repositories where models are persisted.

Chapter 7 presents an experimental evaluation of the proposed framework
that is based on a reverse engineering case study. Performance and memory
usage required by the framework for querying models are obtained and compared
with other approaches for querying models.

Chapter 8 presents another experimental evaluation that is based on the Train
Benchmark Case. This benchmark case uses models and queries that are close
to a real industrial domain (railway domain).

Chapter 9 �nalizes this document providing some conclusions about the
performed work. It also provides a set of tasks that could be performed in
future works.
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2
Background and Context

This chapter provides some background about MDD, which helps in the
comprehension of the PhD work. The chapter is structured as follows: �rst,
a general overview of MDD is provided, analysing di�erent artifacts of this
paradigm; next, mechanisms to persisting models in EMF-based MDD scenarios
are described.

2.1 Model Driven Development

MDD is a paradigm that raises abstraction-level of software development
processes. It is a continuation of the software development trend where
developers aim to specify what should be done rather than how should be
done [Atk03]. MDD allows modelling required functionalities and specifying the
system architecture instead of implementing all the details of a system using a
programming language.

MDD is a development process driven by one or several models where software
implementation is automatically generated from models. Developers (modelling
engineers) specify models with concepts that are closer to the target problem
domain rather than to the commonly used programming languages [Sel03].
This paradigm promises a number of bene�ts including: productivity increase,
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development time reduction and increase quality of the software.

2.1.1 Modelling Artifacts

Modelling artifacts are the elements involved in MDD processes: models,
metamodels, transformations, modelling tools and queries. Modelling scenarios
composed by these elements are also referred as meta-modelling ecosystems
[DR12] (see Figure 2.1).

Figure 2.1: Meta-modelling ecosystem.

Models and Metamodels

Models are the way for representing reality using abstractions [Béz05] and
most typical uses include: code generation, design and speci�cation, validation,
simulation, etc. Models are speci�ed using modelling languages of di�erent types
(e.g. textual modelling languages, graphical modelling languages, programming
abstractions, etc.). Modelling languages can be classi�ed into two groups:
General Purpose Modelling Languages (GPMLs) and Domain Speci�c Modelling
Languages (DSMLs). GPMLs provide a generic modelling language that can
be used in any domain (e.g. UML). DSMLs are modelling languages that are
created to resolve needs and problems of a speci�c domain.

Models are the instances of one or various metamodels. Metamodels specify
the domain (elements, relations and constraints) and the modelling language of
the domain. If a model is speci�ed using the modelling language de�ned within a
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Figure 2.2: Sample metamodel and model.

metamodel, the model is an instance of the metamodel. In this case the model
conforms to the metamodel.

Figure 2.2 depicts a sample model where a computer is speci�ed using some
abstractions. These abstractions represent physical parts of a computer like
memory, processor or hard disc. The abstractions are speci�ed in the domain
metamodel conformed by the model.

Transformations

Transformations are used to generate text, code or another models from models.
These are de�ned using transformation de�nitions where transformation rules are
implemented. Transformation rules specify how each element and relation of the
domain must be converted. As transformations use domain abstractions speci�ed
in the metamodel, they are dependent on and related to the domain metamodel.
There are two types of model transformations:

Figure 2.3: Model transformations.

• Model to Model (M2M) transformations transform a model of a
speci�c domain into a model that conforms to other domain. They are
commonly used when the abstractions within a model must be adapted

15



to conform abstractions of a di�erent domain metamodel. Figure 2.3
illustrates a M2M transformation where the Model A that conforms to
Metamodel A is transformed into Model B that conforms to Metamodel
B.

• Model to Text (M2T) transformations generate code or text from the
input models. They are used to perform several types of tasks which include
generation of textual documentation for an speci�c system or project or
generation of source-code that is executed in a system hardware. Figure
2.3 illustrates a M2T transformation where Code is generated from Model
B that conforms to the Metamodel B.

Modelling Tools

Modelling tools are the environment for working with models. As these tools
are adapted to the domain and work with models that conform to a domain
metamodel, they depend on a domain metamodel. Modelling tools allow
stakeholders operating models. For example, validate the system or execute
simulations using the model. Modelling tool types include: graphical editors
that are used to work with models graphically; textual editors, where models
are speci�ed using a textual language; hierarchical editors, where models are
speci�ed in tree view; validation views, where errors and warnings of the models
are shown; and transformation tools, containing transformations and allowing to
perform model transformations.

Model Queries

Operating models encompasses tasks such as model validation, constraint
checking of the speci�ed models, generate code or models, etc. Therefore, these
tasks require executing model queries for getting information from them and also
for modifying them.

2.1.2 Involved Roles

Stakeholders of di�erent roles are involved in MDD:

• Domain Expert is a stakeholder specialized in the domain [Völ09].
Domain expert must know about existing domain elements and relations
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between them, modi�cations performed over the domain, relevant
concepts, etc.

• Model Engineer (a.k.a Domain User) is the stakeholder that is not as
specialized in the domain as the domain expert, but is able to work with
it [Völ09]. Model engineer is responsible to operate models using modelling
tools, transformations and queries.

• Domain Speci�c Modelling Tool Developer is the stakeholder
specialized in MDD. It must have di�erent skills: expert in metamodel
speci�cation and expert in implementing modelling tools.

2.1.3 Eclipse Modelling Framework

Eclipse Modelling Framework (EMF) is a widely used modelling framework that
is part of the Eclipse IDE. It is one of the leading industrial modelling ecosystems
[Ujh15]. Domain metamodels in EMF are commonly speci�ed using the Ecore
format, which is a subset of UML class diagrams. EMF provides support to
generate a domain-speci�c Java API (a.k.a. EMF API) which is able to interact
with EMF models. Each EMF model speci�es a domain-speci�c product and it
conforms to a Ecore metamodel which speci�es the domain.

There is a large collection of technologies that provide support for creating
modelling tools that are EMF-based, and are able to operate EMF models. Table
2.1 illustrates some of the existing technologies. They are grouped by the type
of modelling tool provided by each solution.

Table 2.1: Some of the EMF-Based technologies.

EMF-Based Technologies

Edition Transformation Query Version Control Comparison

GMF ATL OCL ModelCVS EMF Compare
Sirius Mofscript IncQuery AMOR EMF Di�/Merge

Graphiti ETL EMF Query EMFStore DSE Merge
EMF Parsley EGL EMF Query 2 CDO
EMF Forms Acceleo EOL
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2.2 Model Persistence

By default, EMF persists models using the XMI persistence format. One of the
main features of XMI is that before operating or querying a model, it requires
to load in-memory all the information that is involved. Once the information
is in memory, it is operated in di�erent ways: editing models, querying models,
generating code, executing model transformations, etc. If the model has been
modi�ed, information in memory has to be stored again in the XMI �le. Di�erent
studies have shown that XMI entails memory problems for large models [EP13b,
Góm15b].

In order to overcome memory problems of XMI, recent approaches have
proposed alternative persistence mechanisms for EMF models that are based on
databases. This way, the persistence mechanism leverage database capabilities
(caching mechanisms, partial load, load on demand, etc.) when operating and
querying models. Each approach proposes a di�erent back-end strategy for
persistence: noSQL databases in the case of Morsa, MongoDB, NeoEMF/Map,
NeoEMF/Graph and EMF Fragments; relational databases in Teneo; or several
database back-ends in CDO. In addition to the database-based persistence, there
are approaches that have opt for other types of mechanisms for persistence: �le-
based persistence with fragmentation mechanisms (e.g. EMF Splitter, EMF
Fragments) or �le-based binary persistence (e.g. binary persistence provided by
EMF).

2.2.1 Classi�cation Factors for Persistences

Di�erent classi�cation factors have been used to analyse and compare persistence
approaches. They are described in Table 2.2.

2.2.2 Persistence Approaches

Morsa [EP13b,EP13a] provides support for persistence of large models using
MongoDB, a document-based NoSQL database. Morsa follows two main design
goals: provide transparent integration with the existing modelling tools; and
provide scalability when operating models. Morsa uses client/server architecture,
and client-side provides transparent integration with EMF-based modelling tools.
Morsa supports persisting in a MongoDB [Mon16] database both dynamic and
generated EMF models without requiring to generate code.
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Table 2.2: Description of factors used to classify persistences.

Factor Description Value

Persistence type Type of persistence used by the approach: DB if a
database is used to persist the information; or File if
the information is persisted in physical �les.

DB / File

Database type Type of the used database back-end. This factor is only
applicable for approaches that use databases.

Relational / NoSQL

Back-end Name of the concrete back-end that is used by the
approach to persist models.

Back-end name

Requires server The approach requires a server. Check mark

Requires code
generation

The approach requires generating domain-speci�c code
(using metamodel).

Check mark

Persistence Load The approach explicitly provides improved model load
that is persistence-speci�c.

Check mark

Persistence
Caching

The approach explicitly provides improved model caching
that is persistence-speci�c

Check mark

Persistence Save The approach explicitly provides improved storage of
models that is persistence-speci�c.

Check mark

Versioning Support The approach provides model versioning. Check mark

Web Visualization The approach supports web-based visualization of models
and model elements.

Check mark

Multiple Models The approach supports to persist more than one model
in the same �le or database.

Check mark

Persistence
Speci�c Query

Persistence-speci�c query languages supported by the
approach.

Language names

Evaluation There is evidence in the literature that the approach has
been evaluated.

Check mark

Compared With Other approaches compared with the approach. Approach names

Morsa provides di�erent mechanisms for model load: full load, which
completely loads model in-memory before working with it; and load on-demand,
which only loads required model elements and decreases memory footprint. This
approach provides di�erent cache replacement policies that can be selected by
the user, and two mechanisms for storing and modifying models (full store and
incremental store). Morsa supports model queries in di�erent ways: using the
Morsa-speci�c implementation of the EMF Resource, queries can be expressed
using the EMF API; and using MorsaQL [EP14], a Morsa-speci�c query language.

MongoEMF [Hun14] provides a framework for persistence that is based on
MongoDB [Mon16]. The framework is based on Open Services Gateway initiative
(OSGi) services and is extensible and �exible. This approach uses client-server
architecture. Client-side uses a MongoEMF-speci�c implementation of EMF and
it is integrated with EMF-based modelling tools. Server-side uses MongoDB
database back-end for storing physically models.

Models and model elements are loaded using Uniform Resource Identi�ers
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(URIs). Each URI contains information about server hostname, server port,
database name, database collection name and model element id. MongoEMF
provides a set of options for con�guring strategies for model loading and saving
[Hun14]. However, it has not be found any information about MongoEMF-
speci�c caching mechanism. This approach provides two ways for querying
models: with the EMF API, but using MongoEMF URIs for identifying model
elements; and with MongoDB native queries.

NeoEMF/Graph (a.k.a. Neo4EMF) [Ben14, Atl15] provides model
persistence using Neo4J [Neo16] NoSQL database. NeoEMF/Graph supports
mapping between EMF models and graph databases and the database connection
is performed via Blueprints. NeoEMF/Graph uses client/server architecture.
Client-side is integrated with EMF-based modelling tools using an implementation
of the EMF Resource which is able to access models that are persisted in
the server. NeoEMF/Graph provides two ways to obtain EMF Resource
implementation: a metamodel-agnostic implementation that uses a dynamic
API and a metamodel-speci�c generated implementation (the code generator
is provided by NeoEMF/Graph). In both options, Resource communicates with
the server-side where the Neo4J database, which persists models as graphs, is
located. NeoEMF/Graph supports embedded execution of the server.

NeoEMF/Graph provides load on-demand of model elements that reduces
memory footprint, and it is able to load and query large models with limited
memory. If generated Java API is used, NeoEMF/Graph separates the objects
data from the objects and this provides a lightweight �rst-time load of each model
element. NeoEMF/Graph only loads the model elements that are required by the
query or operation. Therefore, before loading a model element, it searches in
the cache, and if it does not exists, the element is obtained directly from the
database. Moreover, the approach provides lightweight persistence of model
changes which only saves modi�ed parts. NeoEMF/Graph supports execution
of queries using the EMF API. Persisted information could be queried with the
Neo4J-speci�c query languages (cypher and Neo4J Core API). However, there
has not been found support for persistence-speci�c queries integrated with the
EMF API.

NeoEMF/Map (a.k.a. Kyanos) [Góm15b] provides model persistence using
MapDB. MapDB [Map16] is an embedded database engine for Java that provides
memory allocators, caches, storages, indexes or serializers. NeoEMF/Map
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provides transparent integration with EMF-based modelling tools through an
speci�c implementation of the EMF Resource. This implementation uses three
di�erent maps to access and persist model information: a property map that
stores all information of model elements; a type map that speci�es type for each
model element; and containment map that stores containment relationships.
Each model element will have a unique identi�er and it is used to obtain the
information from the di�erent maps.

NeoEMF/Map provides a lightweight mechanism to load information on-
demand [Góm15b, p. 9]. Moreover, the approach allows the garbage collector
to deallocate model elements that are not directly referenced by the performed
model operation. It has not be found any description about the mechanisms used
by NeoEMF/Map for storing models. Persisted models can be queried using the
native EMF API, but NeoEMF/Map does not support execution of queries using
a database-speci�c query language.

NeoEMF/HBase [Góm15a] provides EMF models persistence using the
Apache HBase data store. It provides decentralized model persistence, and
consequently, models can be accessed in a distributed and concurrent way. The
client provides a speci�c implementation of the EMF Resource which is integrated
with EMF-based modelling tools. The server-side contains HBase database
(combined with other Apache technologies) where models are persisted.

NeoEMF/HBase provides lightweight on-demand loading. This mechanism
is based on a delegate object that is responsible for tracking model elements and
loading them directly from the persistence back-end when they have not been
previously loaded in-memory and are required. The approach uses a caching
strategy provided by NeoEMF1. Moreover, it provides lightweight on-demand
saving, which also makes use of the delegate objects. All model changes are
automatically re�ected in the underlying storage, making changes visible to any
client [Góm15a, p. 6]. NeoEMF/HBase supports querying models using the
native EMF API.

Teneo [Ten12] provides model persistence using relational databases. It uses
Hibernate and supports mapping between EMF objects and relational databases.
Teneo uses a client-server architecture, where client-side implements the Resource
of EMF and is integrated with EMF-based tools. Client-side communicates with
the server-side that contains a relational database. The interaction is performed

1More details at: http://www.neoemf.com
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via Hibernate that is also responsible for mapping model elements and relational
databases. Teneo supports both metamodel-independent and metamodel-speci�c
schemas to persist model information and provides support for customizing the
database schemas to be used. Customizations are based on annotations added
on the domain metamodel.

Teneo provides a huge quantity of con�guration options that support
specifying behaviour to load models2. Moreover, collections are loaded lazily
only when they are �rst accessed. If the information is too large to be loaded
in-memory, it also provides the extra-lazy functionality provided by Hibernate.
Teneo uses the cache and storage mechanisms provided by Hibernate. Moreover,
the approach provides three di�erent ways for querying models: (1) using the
native EMF API; (2) using Hibernate Query Language (HQL), a Hibernate-
speci�c query language; and (3) using SQL queries over relational databases.

CDO [Cdo16] is an approach that provides transparent persistence of EMF
models using all kind of databases. CDO uses client/server architecture.
Client-side natively supports basic features with dynamic and legacy models.
However, take advantage of all functions of CDO requires to generate CDO-aware
metamodel implementation. Client-side is able to work o�-line over a repository,
cloning the repository in the local machine of the user. Then cloned repositories
are synchronized at background with the repositories at server-side when they are
online. Server-side provides a repository where all the information such as models,
metamodels or history are persisted together. It supports other features such as:
de�nition of authentication options; multi-user access to the models; or model
versioning and branching. CDO supports the embedded execution of the server at
client-side. The server-side supports model persistence in several database kinds:
in-memory databases, relational databases, relational databases with hibernate,
Objectivity/DB, MongoDB and DB4O. Database back-ends are supported by
di�erent IStore implementations of CDO, and DBStore which supports relational
databases is the most mature. DBStore provides support for all the CDO features
and in practice mainly relational back-ends are used with CDO [Ben14].

CDO provides load on-demand mechanisms that support obtaining only the
required information from the database back-end, and it entails a reduction in the
memory usage when operating models. CDO provides caches in three di�erent
places: two are at client-side, and other one at server-side. Additionally, CDO
is able to use the storage mechanisms provided by the database back-end that

2Extended information about con�guration options at https://goo.gl/Hv42bc
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is used in each repository for persistence of models. CDO repositories provide
support for querying models using the native EMF API. However, each store
supports server-side execution of alternative query languages. In the case of
DBStore, it provides server-side execution of OCL and SQL queries.

Binary persistence. EMF provides a persistence mechanism alternative for
XMI that persist models in a binary format. It is supported through an alternative
implementation of the EMF Resource.

The loading mechanism is the same that is used with XMI, the default
persistence in EMF. The main di�erence is that the binary persistence requires
less time to load information since it sacri�ces readability in exchange for
compactness. If the model has to be traversed, entire model is loaded in-memory.
Model caching and storing mechanisms are the same that are used with XMI.
Binary models are queried using the native EMF API. Persistence-speci�c query
languages are not supported.

EMFJson [Hil15] provides persistence of models using the JSON format.
EMFJson format is simple and customizable and preserves the features of XMI. It
provides a speci�c implementation of the EMF resource that supports persisting
models in JSON documents. EMFJSON does not support speci�c loading
mechanisms. However, it is integrated with EMF and native loading mechanisms
of EMF can be used. It does not support speci�c caching mechanism. EMFJSON
does not support speci�c saving mechanisms. However, it is integrated with EMF
and native saving mechanisms of EMF can be used. EMFJson supports querying
models using the native EMF API. Persisted information could be queried also
using JSON-speci�c query languages.

EMFFragments [Sch12, Sch13] is a framework that persists model
information in model fragments instead of at model-element level. The
approach can be used with NoSQL back-ends such as MongoDB, HBase or
also with distributed �le-systems. This approach groups model elements (and
relationships) in di�erent fragments, and then persists the fragments at the
persistence back-end. The fragmentation strategy is speci�ed by the users
at metamodel-level and using annotations that are added over containment
references. Using EMFFragments requires to perform a set of modi�cations
in the EMF metamodel and API generation.
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The fragmentation strategy provides support to load in memory only the
fragments that are required. Hence, is not required to load entire model and the
memory usage is decreased. Loading a fragment implies loading in-memory the
model elements that are speci�ed within it. Loaded fragments know if they are
referenced by other fragments that are loaded in memory. Therefore, when all
the strong references to a fragment content have disappeared, the fragment is
collected by the garbage collector of the Java Virtual Machine (JVM). However,
it has not been found any description about mechanisms for persisting modi�ed
elements. From the description, it can be deduced that EMF Fragments traverses
the entire modi�ed fragment from memory to the persistence back-end. EMF
Fragments provides support for querying persisted models using the native EMF
API.

EMFSplitter [Gar14] is an approach focused on the structured construction
of EMF models that are persisted using XMI. It provides a set of model
annotations (project, package and unit) that are used to specify the modularity
strategy. Models are modularized at runtime, and EMF Splitter also
supports modularization of a previously created and monolithic model instances.
EMFSplitter structures each model instance physically in several XMI �les.

The decomposition of a monolithic model in di�erent physical �les supports
to load only these �les that are related to the performed model operation.
This strategy could decrease execution time and memory usage values. Using
EMFSplitter, it would be su�cient to save only the XMI �les that contain
the modi�ed model elements, requiring less time for performing save operation.
Models that are persisted using this approach can be queried using the native
EMF API (not any supported persistence-speci�c query language).

Other persistence prototypes Additional model persistence prototypes have
been found in the literature. Two NoSQL database-based prototypes are
presented at [Bag14]. One uses Neo4J database back-end for persistence
and the other uses OrientDB. Both prototypes provide a graph-based solution
for persistence, and they use transactions for inserting and modifying model
elements. They support querying models using EMF API and EOL query
language.

In [Sha14] a framework to benchmark NoSQL back-ends for large-model
persistence is presented. This study contains a set of prototypes for model
persistence that are based in the following database back-ends: Neo4J, OrientDB,
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BerkleyDB, Cassandra, MongoDB, Sesame, ArangoDB, PostgreSQL.

2.2.3 Classi�cation and Comparison

Table 2.3 resumes features of the previously described persistences. Most of
the approaches that provide alternative solutions for EMF model persistence
have opted to use databases (8 from total of 11 approaches). Database-based
approaches support persistence of di�erent models at the same repository, and
most of them provide persistence-speci�c mechanisms to load, cache and save
model information. Moreover, to support all features of persistences, most of
the approaches require to generate persistence-speci�c code. In the case of
NeoEMF/HBASE there has not been found explicit evidence about if the code
generation is required.

Only four approaches provide execution of queries using a persistence-speci�c
query language that is integrated with EMF Resource: Morsa provides support
for executing queries in MorsaQL language; MongoEMF using the MongoDB
Core API; and Teneo and CDO using SQL and HQL. From the database-based
approaches 6 provide support for model persistence using NoSQL databases.
NoSQL databases have features that may be bene�cial for model persistence
[EP13b, p. 5]: scale better than relational databases; are schemaless; and provide
mechanisms for accessing the information via HTTP or REST. However, there are
two database-based approaches that provide persistence in relational databases:
Teneo and CDO.

There are only three approaches that provide integrated versioning. All these
approaches are database-based. In the case of Teneo and NeoEMF/HBase,
versioning is supported by the underlying database back-end, but integration
of versioning with EMF-based technologies is limited. In the case of CDO,
versioning is integrated with EMF, and it is supported by the implementation
of EMF Resource. Four of the approaches provide �le-based persistence of
models: Binary, where models are persisted in binary �les; EMFJson, which
persists models in JSON format; EMF fragments, which besides database-based
persistence it also supports to store models in distributed �le systems; and EMF
Splitter which persists model partitions in XMI �les. EMF Fragments and EMF
Splitter require generation of code. From �le-based approaches, EMFJson is
the only one providing support for querying models in a persistence-speci�c way
(using JSON). Only two approaches provide features for web-visualization of
persisted models (CDO and EMFJson). And as table shows, CDO is the approach
which is used more often for comparison with other persistences.
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These persistence approaches are compared with other approaches in di�erent
studies. [EP13b] compares performance and memory usage of Morsa with
XMI and CDO. Previous approaches are also compared together with EMF
Fragment at [Sch12]. [Ben14] includes a comparison between XMI, CDO and
NeoEMF/Graph. NeoEMF/Graph is also compared with NeoEMF/Map and
CDO at [Góm15b]. [Bar12] compares di�erent NoSQL prototypes for model
persistence with XMI, Teneo and CDO.

All these studies compare XMI and CDO with other model persistence
approaches. And results of comparisons show that each persistence approach
is appropriate for an speci�c scenario.

26



Table 2.3: Features of persistence approaches.
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Morsa [EP13b] DB NoSQL MongoDB X X X X X X MorsaQL X XMI, CDO,
EMFFragments

MongoEMF [Hun14] DB NoSQL MongoDB X X X X X MongoDBAPI
NeoEMFGraph [Ben14] DB NoSQL Neo4J X3 X X X X X XMI, CDO,

NeoEMF/Map
NeoEMFMap [Góm15b] DB4 MapDB X3 X X X X NeoEMF/Graph,

CDO
NeoEMFHBase [Góm15a] DB NoSQL Hbase X X X X X X
Teneo [Ten12] DB Relational RDBMS X5 X X X X X X SQL, HQL X XMI, CDO
CDO [Cdo16] DB NoSQL,

Relational
RDBMS,
MongoDB,
...

X5 X3 X X X X X X SQL, HQL X Morsa, Teneo,
NeoEMF/Graph,
NeoEMF/Map,
XMI, EMF
Fragments

Binary File - Binary �le
EMFJson [Hil15] File - JSON �le X JSON
EMF Fragments [Sch13] File,

DB
NoSQL several X X X X X XMI, CDO,

Morsa
EMF Splitter [Gar14] File - XMI �les X

3Generation is required to support all features of the persistence approach.
4MapDB provides a database-engine but not database-based persistence.
5Requires a separated server if the database is not executed in embedded-mode.
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3
Model Queries

Model queries are intensively used by modelling tools and modelling engineers.
Therefore impact of query performance over tools performance and user
experience is signi�cant [Ber10]. In this chapter, �rst languages that can be
used to query EMF models are described, classi�ed and compared. Next, di�erent
approaches for query language transformation are described and classi�ed. This
chapter ends with a critical analysis of existing approaches which motivates the
work done in this dissertation.

3.1 Languages for Querying Models

There are di�erent query languages that provide support for querying EMF
models. Di�erent factors for classifying query languages are described below.

3.1.1 Classi�cation Factors for Query Languages

Query languages have been classi�ed depending on: (C1) where they are
executed; (C2) abstraction-level of the language; (C3) type of the language; and
(C4) modi�cation support. Following each of these characteristics is described
with more detail:
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C1: Execution. It speci�es the location where the query is executed for
processing models and calculating results:

• Memory. Majority of the approaches that provide database back-end
based persistence of models support the execution of EMF-based query
languages. These languages require to load in-memory at least all the
model elements that are involved in the query (as occurs on XMI).

• Persistence. Most of the database-based model persistence approaches
also support execution of queries directly over the persistence. This way,
queries leverage capabilities of the persistence and provide faster queries
or less memory usage.

C2: Abstraction-Level. It speci�es which type of abstractions are handled
by the query language syntax:

• Application Programming Interfaces (API). This group includes
the Application Programming Interfaces (APIs) that support executing
model queries using Java programming language. APIs are appropriate
for engineers that have Java-programming knowledge. Additionally, using
the API requires low-level knowledge of the provided API.

• Model Query Languages (MQL). This group includes query languages
that are focused on interacting with models using abstractions and
independently of the used persistence mechanism. If the model-persistence
mechanism is changed or evolves, queries expressed using a model query
language still remain valid. This type of languages are closer to modelling
engineers.

• Persistence-Speci�c Query Languages (PQL). These query
languages are speci�c and it depends on a particular persistence back-end.
Main advantage of languages of this type is that they leverage capabilities
of the persistence and the persistence-engine could optimise them. By
contrast, they require to expose modelling engineers to the persistence
directly, and this is error prone and requires to learn each used persistence:
which besides learning language syntax it requires also to know things like
how the information is persisted (e.g. learn about the data-schema if a
relational database is used) or best practises of the persistence.
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C3: Type. It speci�es the type of the query language:

• Imperative. These are the query languages where the code describes
exactly how to perform the query. Hence, the program in a imperative
language executes query statements exactly as they have been written.
Imperative queries explicitly describe the steps that will be executed during
query execution to obtain the results.

• Declarative. Queries speci�ed with a declarative language describe the
logic of the query, but they do not specify how the query has to be executed.
In this sense, declarative query languages use higher abstraction in the
speci�cation and they allow the engineer to focus on the domain problem.

C4: Modi�cation Support. It speci�es if the query language supports
modifying models. Thus, possible options of this characteristic are yes or no.

3.1.2 Existing Query Languages

Main features of the identi�ed query languages are resumed below:

EMF API is a pure Java API that is provided by EMF, and it is the simplest
solution for querying EMF models [EP14, p. 12]. EMF API supports querying
EMF models which includes read-only and modi�cation queries. It supports
querying and modifying di�erent models at same time. The used language
is Java, a imperative programming language. EMF API provides a dynamic
implementation that is able to query models, independently of the domain
that they conform to. Additionally, EMF provides generation of a domain-
speci�c implementation of the EMF API. EMF uses the domain metamodel for
generating automatically the source-code that composes the API. Both dynamic
and generated APIs require to load in-memory at least all the model elements
that are involved in the executed operation or query. In the case of a model
query that fully traverses a model, EMF API requires to load in-memory the
entire model.

Object Constraint Language (OCL) [Gro16] is an OMG standarised
declarative model query language for speci�cation of formal expressions within
UML models. OCL queries are executed over models without modifying it and
they are used to specify invariants, pre-conditions, post-conditions guards or
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to obtain information from models. Main limitation of OCL is that it does not
support features like: statement sequencing with variables, accessing concurrently
to di�erent models and modifying models. Although OCL was designed for
UML models, it can be executed over EMF models using solutions such as
OCLinEcore [Wil12]. OCLinEcore is integrated with the EMF API and it can
be used in a transparent way in EMF-based tools. Therefore, OCL queries can
be used in the same scenarios where models are queried using the EMF API.
OCL queries are executed over model elements that have been previously loaded
in-memory. Similar to EMF API, if executed queries fully traverse the model, it
requires to previously load in-memory all model elements.

There are persistence approaches that provide persistence-speci�c execution
of OCL queries. This is the case of CDO, which supports the execution of OCL
queries at server-side, and instead of loading required model elements in the client
memory, they are loaded in the server-side. Therefore, query is not evaluated
directly over the database where models are persisted, and it requires �rst loading
queried elements in the servers' memory. Then, the query is executed at server-
side over the loaded information [EP14] and �nally results are returned to the
client-side.

Epsilon Object Language (EOL) [Kol06] is a OCL-like query language that
is the core of Epsilon [Kol08], a family of tools and languages for models. Epsilon
family languages, and concretely EOL, provide to the model engineers ability to
perform operations over models with concepts that are close to their domain-
speci�c knowledge. EOL provides integration with EMF and it can be used
to query models in the EMF-based tools. EOL is an imperative model query
language based on OCL that combines features of JavaScript: on the one hand,
it provides imperative features of JavaScript such as statement sequencing, the
use of variables and loops (for and while); on the other hand, it provides OCL
features like collections and operations for querying collections (i.e. select or
collect). Therefore, EOL supports a set of features that are not supported
(at-least natively) in other declarative languages for model query such as OCL
[Kol08]: (i) accessing multiple models,(ii) sequence statements, (iii) integrate
simple programming idioms; and (iv) modify models. EOL queries are executed
over model elements and it requires to previously load in-memory at least involved
model artifacts. For queries that fully traverse a model EOL requires to load in-
memory the entire model.
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EMF-IncQuery [Ujh15] is a model query language that focuses on the
incremental execution of queries. The language is declarative and it is based
on graph pattern concepts that allow specifying complex queries in an easy
way. It has been created using XText [E�06], thus it provides a query editor
with features such as validation, code assist or syntax highlighting. IncQuery
is integrated with EMF and EMF API. IncQuery provides incremental graph
pattern matching techniques to increase performance of queries when they are
re-executed. Therefore, the incremental execution of queries does not require
executing already queries that have been evaluated before. The incremental
execution uses a set of indexes and calculations that are initialized in the �rst
execution of the query. Thus, queries are executed in-memory over model
elements that have been previously loaded.

EMF Query [Emf15] is an EMF-based API for querying EMF models. It is
integrated with the EMF API and uses concepts of SQL queries like select, from
or where. However, it has not any relation with SQL databases and executes
queries over model elements which have to be previously loaded in-memory.
While other solutions such as the previously described OCL or EOL provide a
language for specifying queries, this approach provides an API. It is a Java API
and consequently, it has imperative nature. However, as previously described, the
classes provided by the API are based on concepts of SQL, and SQL is declarative.
The query is speci�ed using SQL-like concepts. Thus, it has been classi�ed in
the group of the declarative languages. EMF Query supports speci�cation of
queries that modify the model. However, modi�cation support is similar to the
provided by updates in SQL.

EMF Query 2 [Emf12] is an EMF-based API and an extension of EMF Query
which is focused on scalability of queries. It provides two di�erent syntax for
writing queries: a SQL-based syntax; and an AST-based syntax. The SQL-
based syntax is declarative. The AST-based syntax is an imperative Java API.
However, the query is expressed in a declarative way. Thus, both syntaxes have
been considered as declarative. EMF Query 2 aims to minimize loading of models
by providing an indexing mechanism that avoids loading them wherever needed.
The use of indexes is required and although the loading mechanism is improved,
queries are executed over the information that has been previously loaded in
memory. It has not been found information about query expressions for modifying
models.
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MorsaQL [EP14] is a persistence-speci�c query language that supports
querying models that have been persisted in Morsa repositories. MorsaQL tries
to minimize the amount of data that is transferred between client and server
when queries are executed. This approach allows to take advantages of Morsa
(e.g. load on demand) when querying models, and queries require less memory
to be executed [EP14, p. 618]. Queries are speci�ed in a declarative way using a
syntax that similar to SQL and uses the Select-From-Where schema. There has
not been found information about support model modi�cations.

Structured Query Language (SQL) [Sql16] is a query language that is
speci�c for relational databases. The language is declarative and it is the standard
language that is used to query and operate information that is persisted in
relational databases. The SQL queries are executed directly over the database,
and the database-engine is responsible for optimizing and resolving them. SQL
supports read-only query expressions, and also expressions to modify persisted
information.

Hibernate Query Language (HQL) [RHM04] is a Hibernate-speci�c query
language. This language is declarative and the syntax is similar to SQL. While
SQL operates over tables and columns, HQL is object-oriented and it operates
directly over persistent objects and properties. HQL executes queries at server-
side and using Hibernate. HQL supports both read-only and modi�cation query
expressions.

Cypher [Cyp15] is a graph query language that is speci�c for Neo4J databases.
This language is declarative and its design has been inspired in SQL. Queries are
executed at server-side over a Neo4J database. Cypher supports speci�cation of
queries that modify the information persisted within the database.

Neo4J Core API is a Java API that is used to query with Java code the
information that has been persisted in a Neo4J database. It is executed directly
over the Neo4J database and it provides support for specifying queries that modify
the information persisted in the database.

MongoDB Query Language [Mon15] is the language that is used for
querying the information or documents that are persisted within MongoDB
databases. The language is declarative and queries are executed directly over
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the database. The queries can be read-only or also can perform modi�cations in
the persisted information.

3.1.3 Query Language Classi�cation

Table 3.1 resumes main characteristics of the previously described query
languages:

Table 3.1: Characteristics of di�erent query languages.

Execution Abstraction-
Level

Type Modif. Supported by

EMF API Memory API Imperative Yes EMF-based
OCL [Gro16] Memory MQL Declarative No EMF-based
OCL (server-side) [Cdo16] Persistence MQL Declarative No CDO
EOL [Kol06] Memory MQL Imperative Yes EMF-based
EMF IncQuery [Ujh15] Memory MQL Declarative No EMF-based
EMF Query [Emf15] Memory API Declarative Partial EMF-based
EMF Query 2 [Emf12] Memory MQL/API Declarative No EMF-based
MorsaQL [EP14] Persistence API Declarative Yes Morsa
SQL [Sql16] Persistence PQL Declarative Yes CDO+Hibernate,

CDO+DBStore,
Teneo

HQL [RHM04] Persistence PQL Declarative Yes CDO+Hibernate,
Teneo

Cypher [Cyp15] Persistence PQL Declarative Yes NeoEMF/Graph
Neo4J Core API [Neo16] Persistence API Imperative Yes NeoEMF/Graph
MongoDB QL [Mon15] Persistence PQL Declarative Yes MongoEMF,

CDO+MongoDB

From the identi�ed APIs, EMF API, MorsaQL and Neo4J Core API provide
support for full-modi�cation of the persisted information. In the case of EMF
Query, it partially supports modi�cations, but they are not supported in EMF
Query 2. Type of the language in the APIs is imperative in the case of EMF API
and Neo4J Core API, but EMF Query, EMF Query 2. MorsaQL uses imperative
Java code extended with a SQL-like declarative syntax. EMF Query, EMF Query
2 APIs are executed in-memory, and MorsaQL and Neo4J Core API are executed
at server-side.

All the model query languages support querying EMF models. However, EOL
language also supports to query information that is outside the EMF ecosystem.
From these languages, only EOL provides modi�cation support. All the model
query languages are executed in-memory, with the exception of OCL that can be
executed at server-side using CDO.
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In the case of the persistence-speci�c query languages, all are declarative and
each one is speci�c of a di�erent database.

3.2 Transformation of Query Languages

There are approaches that provide transformation from a query language into a
di�erent query language. This section, �rst provides di�erent factors that have
been used to analyse and classify these approaches. Then, identi�ed approaches
are described and �nally they are classi�ed and compared.

3.2.1 Classi�cation Factors

Di�erent classi�cation factors have been identi�ed for the analysis of approaches
that transform queries expressed with a concrete query language into a di�erent
language. Classi�cation factors are described in Table 3.2.

Table 3.2: Description of factors for classifying persistences.

Factor Description

Model Type Speci�es the modelling technology (e.g. EMF, UML,etc.)
Input Language The query language that is transformed.
Intermediate Results Intermediate artifacts that are produced by the approach during the

transformation process (if they are produced).
Output Format of the transformed query.
Target Speci�es the target where the transformed query is executed.
Supports Mapping Speci�es if the also provides mapping of models between di�erent

persistences.
Incremental Execution Speci�es if the generated queries are executed incrementally.
Lazy Execution Speci�es the ability of the approach for executing generated queries lazily.
Evaluation There is evidence in the literature that the approach has been evaluated.

3.2.2 Query Language Transformation Approaches

Following main features of identi�ed approaches for query language
transformation are resumed:

[Mar99] presents an approach for checking OCL constraints over repositories
for UML models that are based on relational databases. OCL constraints are
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used to check the validity of the UML models, and also maintaining consistency
of the application data.

The approach is able to map the UML metamodel with the database-schema,
and the OCL invariants de�ned at the UML metamodel with SQL queries to be
executed over the database. To generate SQL queries corresponding with OCL
constraints, the approach �rst generates an intermediate graph representation.
This representation contains two kind of nodes: one for specifying the SQL code
generation algorithm and the other for providing information about the queried
UML model and the mapping with the corresponding data-schema.

Query Code Generation Framework [Hei07] provides mapping of UML
models in arbitrary data-schemas, and mapping of OCL queries in the
corresponding declarative query languages. The framework is composed by three
modules: the �rst module is responsible for generating abstract syntax model
from UML/OCL models; the second module (Model Transformation Framework)
is responsible for mapping UML model with the target data-schema; and the
third module (OCL Transformation Framework) is responsible for mapping OCL
constraints to declarative query languages.

The queries that are generated by the OCL Transformation Framework are
speci�c for a target query language. In addition to the OCL query to be
transformed, this framework uses the information about mapping between UML
model to be queried and selected target data-schema. Two di�erent prototypes
that use Query Code Generation Framework are presented at [Hei07]. One for
transforming OCL queries into SQL queries that are executed over a relational
database. And other for transforming OCL into XQuery and execute over models
persisted in XMI �les.

UMLtoCSP [Cab07] is an approach focused on automatically checking
correctness properties over UML/OCL models. UMLtoCSP uses the Constraint
Logic Programming and ECLiPSe constraint solver.

The approach inputs UML class diagram, OCL constraints and property to
be veri�ed. Using the Dresden OCL toolkit, the OCL constraints and properties
to be veri�ed are transformed into a Constraint Satisfaction Problem (CSP) �le.
CSP �le is the input of ECLiPSe which returns if the property holds or not,
and if it does, a model instance that certi�es it is depicted.
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[Win08] presents an approach that translates a subset of OCL constraints into
graph constraints. Supported OCL constraints are these that express equality,
size and attribute operations. The generated graph constraints specify properties
that have to be satis�ed by graphs. This solution extends an approach that
provides a graph grammar for automatically generating instances from a given
UML metamodel [Ehr05]. This way, the approach adds support for checking
constraints during the instance generation process.

The transformation process is performed in two steps. In the �rst step, the
OCL constraints are transformed into graph constraints. Then, in the second
step, graph constraints are transformed into application conditions [Ehr04], and
consequently, constraints are considered during the instance generation process.

OCL2Trigger [AJ08] supports the transformation of OCL constraints
into triggers speci�c for a target Database Management System (DBMS).
Additionally, the approach performs veri�cation of the generated trigger with
the purpose of ensuring its execution.

The tool extends Rational Rose with a three-step transformation of
constraints. The �rst phase consist on the de�nition of OCL constraints, where
some constraints are speci�ed directly using OCL and others are speci�ed at the
graphical model. Constraints of the second type are automatically transformed
into corresponding OCL constraints. In the second phase, �rst OCL constraints
are transformed into standard SQL triggers, and then they are transformed into
DBMS-speci�c triggers. Finally, in the third phase the generated triggers can be
completed by the stakeholders and trigger execution is veri�ed using a sequence
diagram.

Dresden OCL [Dem09] is a tool that provides OCL support for UML and
EMF tool builders. The �rst version of the tool supported syntax and type
checking of OCL constraints speci�ed at UML models and generation of Java
and SQL (OCL2SQL [Dem01]) code corresponding with OCL queries [Dem04].
In a posterior version of the tool, a intermediate model (pivot model) has been
used during the transformation process. Pivot model provides an intermediate
abstraction layer, and it makes the tool independent from speci�c repositories
and meta-models [Brä07].

Dresden OCL architecture is composed by three layers: back-end, base and
tools layers. Back-end layer speci�es the used repository and metamodel. Base-
layer contains: the pivot model; the essential OCL which implements the OCL
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Standard library by extending the pivot model; and model bus which loads,
manages and provides access to metamodel, models and model instances [Dem09,
p. 2]. And tools layer contains the tools used by the second layer to load, verify
and check OCL constraints. The tool is able to check OCL constraints using
both interpretative and generative approaches. [Dem09] includes description of
di�erent interpretative and generative use cases for the Dresden OCL tool.

MySQL4OCL [Ege10] is an approach that generates SQL queries from OCL
expressions. Generated queries are executed over MySQL databases where the
information of UML models is persisted. The approach supports a subset of
OCL queries, and it excludes generation from: OCL operations on sequences and
ordered-sets; operations on collections of collections; operations on types; and
user-de�ned operations.

Generated MySQL code is for a speci�c data-schema provided by the
approach. This data-schema is composed by three di�erent types of tables:
one table per class type, containing attributes of the class type; and one table
per each type of association between classes.

The generation mechanism is recursively de�ned over OCL expressions
structure, and the generated SQL code is di�erent depending on the type of
the OCL expression. MySQL4OCL generates common SQL queries for non-
iterator OCL expressions. By contrast, the approach generates stored procedures
for OCL iterator expressions.

[Ege10] provides a preliminary evaluation of the approach where the time
required for executing OCL expressions using MySQL4OCL and Eye OCL
Software (EOS) [Cla08] are compared. Results show that MySQL4OCL requires
more time for small-medium size scenarios. However, MySQL4OCL shows better
results than EOS in a large scenario.

[Kol13] proposes transformation of a relational dataset into a EMF model.
This way, the information can be queried using OCL-like query languages.
However, the naive way of evaluating OCL-like queries on relational datasets can
dramatically degrade performance [Kol13, p. 4]. Therefore, this work presents a
solution improving performance when executing EOL (OCL-like) queries over a
relational dataset.

Proposed solution has two main features: it uses lazy collections that allow
to load on demand from database only the model elements that are required by
the query; and it performs the query translation at run-time using a multi-step
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mechanism. This mechanism translates one-by-one and at runtime the di�erent
expressions within the query. Hence, at the end of the process the complete SQL
query is obtained and executed over the database.

[Ber14] presents an approach that constructs EMF-IncQuery [Ber10] graph
patterns from a subset of OCL expressions. EMF-IncQuery graph patterns
provide support for incrementally execute queries over EMF models. While OCL
expressions are typed functions, graph patterns evaluate to match sets that are
mathematical relations [Ber14, p. 7]. Thus, the approach identi�es equivalent
OCL expressions and maps them with equivalent graph patterns.

The approach uses structural recursion: �rst, maps each OCL sub-expression
to graph pattern; and then, all the produced patterns are used to generate the
pattern that speci�es whole expression. The approach is evaluated using the
Train Benchmark Case [Ujh15]. The execution of generated queries is compared
with the execution of the query using other languages.

[Ori15] presents an approach that translates OCL constraints into SQL queries
which return database elements that violate the constraint. The approach
is focused on the incremental checking of constraints, and generated SQL
queries are only re-executed when a data update could violate the corresponding
constraint, and the query only queries data related to the update.

The queries are translated at compilation-time and using a two-step
translation mechanism. In the �rst step OCL constraints are translated in
Event Dependency Constraints (EDC). EDC specify events that describe states
of the data that cause violation of a constraint. In the second step, EDCs
are translated into SQL queries. SQL queries are speci�c of a data-schema
that is provided by the approach, and which is able to persist in a relational
database UML classes and associations, structural events being applied, and
aggregated values. Generated SQL queries join structural events, current data
and current aggregated values, and it allows to: (1) only check constraints that
can be violated by the update; (2) focus only in the related data and avoid
checking entire database; and (3) avoid recomputing unnecessary aggregations.
The scalability of the approach is also evaluated in [Ori15], obtaining time metrics
for constraint checking and for updating materialized aggregates.

[Kal16] presents an approach that generates Java meta-programs from OCL
constraints that are de�ned at metamodel-level. Meta-programs allow to check
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speci�ed constraints at run-time.
The approach provides a three-step process for the generation. In the �rst

step, OCL constraints are rewritten in order to make them more accurate and
concrete. This step is not mandatory, and it is performed when the abstractions
in the UML metamodel have not equivalence in Java. Then, in the second step,
the OCL constraint speci�ed over the UML metamodel is migrated to specify the
metamodel using Java. Abstract Syntax Tree (AST) that correspond with the
constraint can be used in the query generation performed at third step. Thus,
the third step generates source-code that corresponds with the OCL constraint.
Generated code can be used to check constraints at run-time.

3.2.3 Classi�cation of Approaches

Table 3.4 summarizes classi�cation factor values for identi�ed approaches. As
table shows, most of the approaches provide transformation of queries that are
executed over UML models (8 from total of 11). Three approaches are valid for
EMF models and only one approach is for models persisted with Rational Rose.

Focusing on the language of the queries to be transformed, most of
approaches input queries expressed with OCL (10 from total of 11). Only one of
the approaches inputs queries expressed in a di�erent language (EOL).

Seven approaches produce intermediate results during the transformation
process. And SQL is the most used query language for generated queries. Thus,
the generated queries are executed in most cases over relational databases.

Three of the approaches provide a mechanism for mapping queried models
into alternative persistences: [Mar99], [Ege10] and [Kol13]. Only two approaches
provide incremental execution of the generated queries and they are [Ber14]
and [Ori15]. And [Kol13] supports lazy execution of the generated queries.

Two of the analysed studies provide also an evaluation of the corresponding
approach ( [Ber14] and [Ori15]).
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Table 3.4: Overview of the identi�ed approaches for model query language transformation.

M
o
d
e
l

T
y
p
e

In
p
u
t

L
a
n
g

In
te
rm

.
R
e
su
lt
s

O
u
tp
u
t

T
a
rg
e
t

S
u
p
p
o
rt
s

m
a
p
p
in
g

In
c
re
m
.

e
x
e
c
.

L
a
z
y

e
x
e
c
.

E
v
a
l.

[Mar99] UML OCL graph SQL RDBMS X

[Hei07] UML OCL -
SQL RDBMS
Xquery XMI

[Cab07] UML OCL - CSP Eclipse

[Win08] UML OCL graph constraints graph app. cond. graph grammar

[AJ08] Rational Rose OCL SQL Triggers RDBMS triggers RDBMS

[Dem09]
UML

OCL Pivot Model
SQL RDBMS

EMF Java Java1

[Ege10] UML OCL - SQL MySQL DB X

[Kol13] EMF EOL - SQL RDBMS X X

[Ber14] EMF OCL part. graph patt. graph pattern EMF-based X X

[Ori15] UML OCL EDC SQL RDBMS X X

[Kal16] UML OCL AST Java Java1

1 instead of executing it, java code is added to the existing source-code
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3.3 Critical Analysis

Di�erent studies have analysed and compared EMF model persistence approaches
[EP13b,Ben14,Bar12], concluding that each persistence approach is appropriate
for an speci�c scenario. For example, XMI is appropriate persistence for small-size
models as do not cause memory problems.

However, modelling scenarios in industry can be really complex [Kär09], with
large models of 100MB and beyond, and with millions of model elements. This
is the case of embedded system domains such as wind-power or railway, where
systems can comprise a large number of elements such as sensors, actuators
and control units [Bag14]. To e�ectively support such domains, alternative
persistence mechanisms for large-scale models are required [EP13b].

Most recent approaches for EMF model persistence that have been identi�ed
use database back-ends for model persistence. These approaches provide
persistence-speci�c implementation of the EMF resource, and consequently, they
can be integrated with the EMF-based modelling tools. Most of these database-
based solutions use NoSQL database back-ends (Morsa, NeoEMF/Graph,
NeoEMF/Map, MongoEMF, EMF Fragments, CDO). However, there are
solutions that use relational databases for model persistence (Teneo and CDO).

Among all the activities, model queries are intensively used in modelling
scenarios. Therefore the impact of query performance on tool performance and
user experience is signi�cant [Ber10]. In practise, queries that traverse entire
model are the most commonly used type of queries [Góm15b].

All the analysed persistence approaches provide support for executing queries
using the EMF API, and consequently, they are also able to execute EMF-based
model query languages (e.g. OCL, EOL or IncQuery) and APIs (e.g. EMF
Query or EMF Query 2). Model query languages are commonly used by model
engineers since they are closer to their knowledge, and are focused on interacting
with models using abstractions. Moreover, they are persistence-agnostic and they
do not imply to know how the information is persisted. Model query languages
are commonly executed in-memory and they entail to load �rst model elements
before executing queries. In the case of model traversal queries, entire models
has to be loaded in-memory.

Some persistences also provide a persistence-speci�c way for executing queries
over persisted models. In these cases, persistence-speci�c query languages (e.g.
SQL, HQL, MorsaQL, etc.) are used to specify queries. These query languages
are executed at persistence-side and they leverage capabilities of persistence. For
example, they are executed directly over the database and they do not require
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to load intermediate results in memory. However, persistence-speci�c languages
require engineers: to be aware of the way the information is persisted; and to
learn persistence-speci�c concepts and languages. This increases programming
e�ort to get complex queries correct.

Using native queries over the underlying persistence back-end provides
signi�cant gain in performance [Góm15b, p. 16]. This fact has been validated
with a preliminary study which compared performance and memory usage for
executing a complex query (GraBaTs case study query2) using OCL (model query
language, executed at client- and server-sides) and SQL (persistence-speci�c
language executed at server-side). Models (Set0-Set4) had been persisted in a
relational CDO repository with the default mapping strategy, and they contain
abstractions that specify Java source-code. Models size increasingly grows from
15MB of Set0 to 1.17GB of Set4. Table 3.5 illustrates the results obtained in
one execution of queries using both languages and over each model. As results
show, queries executed at server-side require less time and memory. Moreover,
time and memory results in SQL are better than OCL as the size of the model
increases.

Table 3.5: Memory and execution time results using OCL and SQL.

OCL (client-side) OCL (server-side) SQL (server-side)

Time(s) Mem(MB) Time(s) Mem(MB) Time(s) Mem(MB)
Set0 21 322 5 73 4 68
Set1 50 758 5 73 4 69
Set2 463 2955 15 343 6 150
Set3 1028 5644 33 525 9 289
Set4 1102 5973 36 584 9 289

Several approaches have proposed solutions for generating persistence-speci�c
query languages from model query languages. However, most of the solutions
provide support for querying UML models. In the case of these approaches, OCL
is the query language to be transformed.

Only three approaches provide support for EMF models. [Dem09] presents
DresdenOCL tool which is able to translate queries into Java or SQL queries.
[Ber14] presents an approach that translates OCL queries into graph patterns.
These two approaches are speci�c for OCL queries. The third approach is
described at [Bar14] and it transforms EOL queries into SQL queries. Generated
queries are speci�c for a speci�c data-schema and persistence.

2Information about the case study and query is extended at Chapter 7
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Current state of the art motivates the challenge of providing an extensible
approach that transforms queries from model query languages into persistence-
query languages. The approach aims to resolve the following research questions:

• Are the database-speci�c query languages more e�cient than model query
languages in terms of performance and memory usage when models are
persisted in databases?

• Which mechanism can be used to provide a solution that transforms queries
from a model query language to a persistence-speci�c query language in
an extensible way?
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Part II

Contribution
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4
Theoretical Framework

This chapter presents theoretical aspects of this dissertation: followed research
methodology, hypotheses, goals and case studies used to validate implemented
solution.

4.1 Methodology

This work has been completed following a previously de�ned research
methodology. Figure 4.1 depicts di�erent stages of the selected methodology
and they are described below:

1. Problem Awareness. Analyse the problem and motivate it by answering
questions such as: Why is important? What solves it? Context of the
problem has been analysed and described (Chapter 2).

2. Methodology. De�ne methodology to be followed: proposed work plan,
identify literature and technical sources, etc.

3. State of The Art. Identify existing approaches and solutions related
to the research problem. This stage has been addressed performing an
analysis of the state of the art (Chapters 2 and 3). Di�erent approaches
for model persistence and query have been identi�ed and compared.
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Figure 4.1: Overview of the followed research methodology .

4. Critical Analysis. Perform a critical analysis of the state of the art and
identify: what is done, existing limitations and weak points, points to
contribute, etc. Critical analysis of the existing work is described at the
end of Chapter 3.

5. Hypothesis and Goals. Formulate the hypothesis of the thesis and set
goals to be performed. These goals will be used to validate or reject the
hypothesis. They are described in Sections 4.2, 4.3 and 4.4 of this chapter.

6. Goal Achievement. Goal achievement implies (for each setted goal): (i)
analysing the goal problem; (ii) implementing a solution; (iii) evaluating
the solution; (iv) submitting results; and (v) re-factorizing solution from
obtained results and feedback. This phase is covered by di�erent chapters
of this dissertation: Chapters 5 and 6 describe the approach that has
been designed and implemented. The approach has been validated with
two experimental evaluations in Chapters 7 and 8. Finally, conclusion and
hypothesis validation is described in Chapter 9.

7. Thesis Dissertation. Write the thesis and perform the thesis defence.
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4.2 Hypothesis

Hypotheses of this research are all related with MDD and more concretely with
persistence and query of models:

• Hypothesis A: if models are persisted using a database, querying them
using a database-speci�c query language is more e�cient (in terms of
performance and memory usage) than using a model query language.

• Hypothesis B: transformation of queries from a model query language to
a persistence-speci�c query language provides model engineers the ability
to query models using a language that is closer to their knowledge, but
with the e�ciency (execution time and memory) of a persistence-speci�c
query language.

4.3 Goal

Goal A. The main goal of this dissertation is to provide an approach that
veri�es (or rejects) the previously formulated hypotheses. This work aims the
implementation of a framework that provides transformation of queries from
model query languages to a persistence-speci�c query language (Goal A). The
framework will perform the following activities:

• Query transformation. Transform the query expressed with an input model
query language into a query expressed with a target persistence-speci�c
query language.

• Query execution. Execute the generated query into the corresponding
persistence and using a native and persistence-speci�c mechanism.

• Process results. Process the results and adapt them to �t with the expected
type.

Goal B. The framework will provide a design that facilitates the inclusion of
new model query languages and persistence-speci�c query languages.

Goal C. Evaluate the framework and compare results with other approaches
for model query.
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4.4 Operative Goals

This work has been focused on design, implementation and evaluation of the
framework that achieves resolution of the previously described goals A,B and C.
The work has been executed following a set of operative goals:

• Operative Goal A. Design of the framework. The framework will perform
transformation and execution of queries, and processing of the obtained
results. The design will facilitate inclusion of query languages.

• Operative Goal B. Implement a prototype. Implement a prototype of the
framework with support for a model query language and for a persistence-
speci�c query language. This prototype will be able to execute queries
expressed with the model query language over models persisted using the
selected persistence.

• Operative Goal C. Perform experimental evaluation of the implemented
prototype. Experimental evaluations will be performed using existing
case studies. Experimental evaluation case studies are introduced in the
following paragraphs.

4.5 Case Studies

Two di�erent case studies have been used to perform the experimental evaluation
of the approach presented at this dissertation. Both case studies are widely used
by approaches that are focused on model persistence and query, for evaluating
their scalability and performance.

Each case study provides a di�erent scenario for the experimental evaluation:

• Reverse Engineering Case Study: An academic case study that was
proposed at Graph-Based Tools 2009 (GraBaTs 2009) [Gra09,Sot09]. The
case study is based on the reverse engineering domain, where models
specify Java source code. Moreover, a complex query is proposed with the
aim of providing a scenario that compares performance and memory usage
metrics of querying models. This query extracts all the singleton classes
existing within the queried models. This case study has been previously
used to evaluate several approaches related to the model persistence and
query [Bar14,EP14,Sha14].
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• Train Benchmark Case Study: A case study that is close to an
industrial domain, railway domain concretely. The train benchmark case
study proposes the use of models that specify railway systems [Szá15].
These models contain abstractions of the railway domain such as routes,
segments, switches, semaphores, etc. Moreover, the case study proposes
a set of queries and transformations that could be used in real scenarios.
With this ecosystem composed by models, queries and transformations,
the Train Benchmark Case aims to provide a scenario that evaluates the
performance of approaches for executing queries. The train benchmark
case has been used to evaluate an approach for incremental model query
[Ujh15].

Both case studies are suitable for the evaluation of approaches that provide
mechanisms for persistence or query of EMF models. They have been selected for
performing two independent experimental evaluations of the approach presented
at this dissertation. Both experimental evaluations are complementary, and each
one provides di�erent scenarios and results that complete the evaluation of the
proposed approach:

• Di�erent domain complexity: the reverse engineering case study uses a
domain metamodel composed by a huge amount of classes (more than 100
di�erent classes). By contrast, the railway metamodel contains around ten
di�erent classes.

• Di�erent nature of models: the reverse engineering models are previously
de�ned and they specify code of selected java project. Train benchmark
case models are generated automatically and they provide mechanisms that
break symmetry and prevent e�ciently storing and caching models [Szá15].

• Di�erent nature of queries: the reverse engineering case proposes one
complex query that combines di�erent types of subquery expressions.
By contrast, train benchmark provides a set of queries with a di�erent
complexity level.

A more detailed description about each case study is provided within Chapters
7 and 8 of this dissertation.
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5
Foundations of MQT-Engine Framework

The MQT-Engine framework inputs model queries expressed with a model query
language, transforms them automatically to a database-speci�c query language
and then executes the generated query. The approach makes possible to query
models using a model query language that is closer to model engineers, but with
the e�ciency (in terms of performance and memory usage) of a persistence-
speci�c query language that is closer to the persistence mechanism.

This chapter is organized as follows: �rst section provides a detailed overview
of the MQT-Engine framework where execution process, involved roles and
architecture of the framework are described; the chapter continues with the
description of the QLI Metamodel that is used during the query transformation;
the chapter �nishes with a lower-level description of the design and execution of
the framework.

5.1 MQT-Engine Overview

MQT-Engine transforms input queries in a model query language into equivalent
queries in a persistence-speci�c query language, and then executes them over the
persistence.

Figure 5.1 depicts the overview of the query transformation and execution
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Figure 5.1: Overview of the query transformation and execution process of MQT-
Engine.

process: it starts with `MQLtoQLIModel' that inputs the query that is expressed
with a model query language (Query) and transforms it into a query language-
agnostic model (QLI Model). This model conforms to a metamodel (QLI
Metamodel) containing abstractions that are independent of the query language.
The generated QLI Model is the input of QLIModeltoPQL which transforms the
QLI Model into a query (Query') that is expressed with a persistence-speci�c
query language. Next, the generated query is modi�ed (Complete Query) for
adding information obtained from the model to be queried (e.g. add version
information) and it is executed (Execute Query) over the persistence. The query
mechanism of the persistence returns raw results that have to be processed for
selecting the results that correspond to the executed query. This processing
task is performed by the PQLDriver. And �nally, results are processed by the
MQLDriver. This second processing is depends on the model query language,
and it formats the obtained results to the data-types provided and required by
the model query language.

5.1.1 Involved Roles

Stakeholders of di�erent types participate in the use of the MQT-Engine
framework. They are depicted in the use-case diagram of Figure 5.2:

Model Engineers. The framework is addressed to model engineers. Model
engineers are the stakeholders that operate models. Therefore, among other
activities (e.g. query de�nition, model edition, etc.), they are responsible for
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Figure 5.2: Use case diagram of MQT-Engine framework.

executing the queries using MQT-Engine. Model engineers are also responsible
for con�guring MQT-Engine before querying.

Domain-Speci�c Modelling Tool Developers are the stakeholders that
handle the development of domain-speci�c modelling tools. Therefore, domain-
speci�c modelling tool developers are responsible for implementing extensions
that add support to the MQT-Engine framework for concrete model query
languages and persistence-speci�c query languages.

5.1.2 Architecture

Figure 5.3 illustrates a package diagram where di�erent parts of the MQT-Engine
architecture are depicted.

Domain package contains domain-speci�c abstractions. It provides support
for interacting with domain-speci�c models and it is used by MQT-Engine-Core.

MQT-Engine-Core.QLIMetamodel implements abstractions used for
specifying model queries in a query-language independent way. This metamodel
is conformed by QLI Models that are used to: (1) specify the model queries with
the query language-agnostic abstractions; and (2) generate persistence-speci�c
queries.
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Figure 5.3: Package diagram specifying architecture.

MQT-Engine-Core package is the core part of the framework which contains
a set of classes that execute the query transformation and execution. This
package contains implementation of the QLI Metamodel. With extensibility in
mind and to facilitate inclusion of new languages and persistences this package
contains a set of abstract classes to be extended by packages that add support
for model query languages (MQT-Engine-MQL) and persistence-speci�c query
languages (MQT-Engine-PQL).

MQT-Engine-MQL provides support for executing queries using di�erent
model query languages. Each implementation provides an extension that is able
to parse a query in a speci�c model query language and transform it into a QLI
Model. Moreover, it also provides support for processing results and adapt them
to the format required by the query. A di�erent MQT-Engine-MQL is provided
for each supported model query language.

MQT-Engine-PQL provides support for executing queries in di�erent
database-based persistence mechanisms. Each implementation of this package
provides an extension for a di�erent persistence mechanism. This package is able
to generate a persistence-speci�c query language from a given QLI Model and
then execute it directly over the persistence. After execution obtained raw results
are processed in order to return adequate results. A di�erentMQT-Engine-PQL is
provided for each supported persistence-speci�c query language. Is important to
note that each implementation is speci�c for a concrete persistence mechanism.
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5.2 QLI Metamodel

The framework uses QLI Metamodel to specify queries using abstractions and
in a language-agnostic way. Following sections provide: description of di�erent
artifacts existing within the metamodel; sample mapping between di�erent model
query languages and artifacts within the QLI Metamodel; and generation of
di�erent persistence-speci�c queries from a QLI Model instance.

A �gure that depicts overview of the QLI Metamodel has been included in
Appendix A.

5.2.1 QLI Metamodel Artifacts

Next, the di�erent artifacts that compose the QLI Metamodel are described
one-by-one. Each artifact is grouped by the type of the speci�ed expressions:

Model-Traversal Query Expressions.

Expressions of this type traverse the entire model and output a collection
containing model elements (see Figure 5.4). ModelTraversalQuery class
implements the Collection interface, since all classes that extend it specify a
collection of model elements. Classes that extend ModelTraversalQuery are
described below:

Figure 5.4: QLI Metamodel fragment related to model-traversal query
expressions.

• TypeInstances. Searches for instances that are of the speci�ed type (type
attribute).
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• KindInstances. Searches for instances that are of the speci�ed kind (type
attribute) and also instances that include the speci�ed kind as a supertype
(subTypes attribute).

Filtering Query Expressions.

Expressions of this type iterate an input value containing model objects and
return a value (that could be a collection, an object or a primitive value) that
is obtained after applying �ltering operations over the input collection (e.g. �nd
objects satisfying a condition, check if some element satis�es a condition, etc.).
Classes that specify this type of query expressions implement the FilteringQuery
class.

Figure 5.5: QLI Metamodel fragment related to �ltering query expressions.

Figure 5.5 illustrates a fragment of the metamodel that is related to the
FilteringQuery instances. All the instances contain a ValueIterator instance
(at iterator reference) that speci�es the element which iterates objects within
collections. ValueIterator contains two attributes (name of the iterator and type
of the iterated values) and source reference pointing to the iterated value.

All classes that extend FilteringQuery should implement the
getParentIterators() method that obtains iterators speci�ed within parent
FilteringQueries.

FilteringQuery class is extended by the following three classes that are used
to specify �ltering query expressions:
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• ConditionalSelection. Speci�es query expressions that return a
collection including model objects that satisfy a set of conditions (condition
reference). This class contains two attributes: oneResult, if value is
true only one value has to be returned; and negativeCondition, true
value indicates that the selected objects should not satisfy the conditions.
ConditionalSelection instances contain a ConditionQuery instance that
speci�es the condition to be evaluated. Each ConditionalSelection speci�es
a collection of values, consequently it is an implementation of the Collection
class.

• ConditionalCheck. Returns a boolean value that speci�es if the
condition has been satis�ed. checkLogic speci�es the logic followed by
the condition for checking elements and possible values are speci�ed
by CheckLogicEnum: leastOne (default value), the condition has to be
satis�ed at least by one of the elements; one, the condition has to be
satis�ed just by one element; all, the condition has to be satis�ed by all
the elements; and none the condition has not to be satis�ed by any element.

ConditionalCheck instances contain a ConditionQuery instance that
speci�es the condition to be evaluated. This class implements the
BooleanValue interface since instances of this type return a boolean value.

• CollectInstances. Speci�es query expressions that return a collection
derived from feature values of the objects within the values contained by the
collectedValues reference. This class implements the Collection interface
since instances of this type specify a collection of values.

Query Expressions Specifying Conditions.

Expressions of this type specify conditions that are evaluated by
ConditionalSelection and ConditionalCheck instances. As Figure 5.6 illustrates,
this type of query expressions extend the ConditionQuery class. Classes that are
used to specify di�erent types of conditions are described below:

• LogicalCondition. Evaluates logically boolean values returned by one
or two query expressions (ConditionQuery instances). Attribute operator
contains a LogicalOperatorEnum value which speci�es the logical operator
(AND, OR, NOT, XOR, IMPLY ). In the case of NOT operator, right
attribute contains the single expression to be evaluated. In other cases,
left and right attributes contain the two expressions to be evaluated.

61



Figure 5.6: QLI Metamodel fragment related to condition query expressions.

• ComparisonCondition. Query expressions that compare values returned
by sub-query expressions. Both values must be of same type and
abstract speci�cation of the evaluated query expressions are contained in
the left and right references of this class. Attribute operator speci�es
comparison operator with a ComparisonOperatorEnum value. This
enumerator contains literals specifying di�erent types of operators that
are used to compare values (EQUAL, NOT_EQUAL, HIGHER, LOWER,
HIGHER_EQUAL, LOWER_EQUAL).

• BooleanCondition. For query expressions that return a boolean value
that indicates if the condition is satis�ed. Boolean value is obtained from
value reference.

Query Expressions returning Values from Collections.

Figure 5.7 illustrates this group that contains classes used to specify query
expressions that return a value from an input collection. Classes within this group
implement the CollectionQuery interface. The queried Collection is contained in
the collection reference.

• Flatten. Speci�es query expressions that return the �attened input
collection. Flatten outputs a collection of values and consequently, it
implements Collection.

• Size. Speci�es expressions that return size value of the input collection.
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Figure 5.7: QLI Metamodel fragment related to query expressions returning
values from collections.

• Contains. Speci�es query expressions that return a boolean value
indicating if the input collection contains one or more input values. The
listValues attribute is only applicable when the input value speci�ed by the
object reference is a list. A true value in the listValues attribute indicates
that the existence of all the elements within the list has to be checked
one-by-one. By contrast, false indicates that the existence of the list (as
an element) has to be checked. A true value in the negative attribute
indicates that the query expression checks if the input values are excluded
within the collection. And false (default value) indicates that the query
expression checks if the input values are included. Contains outputs a
boolean value, and consequently, it implements BooleanValue.

• PositionValue. Speci�es query expressions that return the value of the
input collection that is located on a speci�c position. The position attribute
speci�es position of the element to be returned, and the inverseOrder
boolean attribute indicates if the position has to be calculated starting
from the last element of the collection.

Query Expressions specifying model Objects.

This group contains classes that are used to specify model objects. These classes
implement ModelObject as depicted in Figure 5.8:
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Figure 5.8: QLI Metamodel fragment related to query expressions specifying
model objects.

• ModelObjectInstance. Speci�es an object within the model. The
attribute object contains the speci�ed object.

• IteratedObject. Speci�es a model object iterated by a ValueIterator
instance (iterator reference). Each instance contains attribute and
references attributes specifying features that are navigated by the query
expression within the iterated object. getName operation returns an string
containing the iterator name + navigated features. Depending on the
navigated features, instances of this type return one or more values, and
it implements Collection.

Query Expressions returning Values from Objects or Features.

This group contains classes specifying query expressions that return a value from
an input object. Figure 5.9 illustrates the metamodel fragment that depicts
abstractions of this type. Classes within this group implement ObjectQuery and
the object reference contains the queried Object.

• TypeValue. Speci�es query expressions that return type of a model object.

• De�ned. Speci�es query expressions that check if a model object or a
feature value exists. A true value in negative attribute indicates that the
expression checks that the value does not exist.
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Figure 5.9: QLI Metamodel fragment related to query expressions returning
values from objects or features.

Query Expressions specifying primitive values.

PrimitiveValue (see Figure 5.10) class is used to specify primitive values within
query expressions. Primitive value is contained in the value attribute.

Figure 5.10: QLI Metamodel fragment related to query expressions returning
values from objects or features.

5.2.2 Specifying Model Queries with QLI Models

MQT-Engine framework generates QLI Models for queries speci�ed using a model
query language. In the following paragraphs we provide a sample mapping
between an EOL query and the QLI Model generated by MQT-Engine. Additional
mappings between QLI Models and other model query languages have been
included in Appendix A.

Listing 5.1 shows the EOL query that searches Sensor instances, that are
associated with Switch instances that are part of a Route instance, and Route
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is di�erent of the Route associated with the Sensor instance. This query is a
simpli�cation of the query proposed in the Train Benchmark Case1.

1 Route.all

2 .collect(route |

3 route.follows.collect(swP |

4 swP.`switch `. collect(sw |

5 sw.sensor.select( sensor:Sensor | route.definedBy.

excludes(sensor)

6 )

7 )

8 )

9 );

Listing 5.1: Query expressed with EOL.

Figure 5.11 illustrates the QLI Model that speci�es the EOL query of Listing
5.1. The mapping between EOL expressions and QLI Model artifacts is described
below:

• Line 1 : EOL expression that collects all the Route instances within the
model. It is speci�ed in the model by KI1, a KindInstances instance.
Route type does not have any specialization. Consequently, only the type
attribute of KI1 is setted with Route EClass.

• Line 2 : collects the previously obtained Route values at the route

variable. It is speci�ed by a CI1, a CollectInstances instance. CI1 contains
a ValueIterator (IT1) that speci�es the route variable. This variable
contains Route instances and hence, it will contain the previously generated
KI1.

• Line 3 : swP variable collects the values contained by the follows

reference, and for each route within the route variable. Therefore,
another CollectInstances instance is created (CI2). CI2 contains IT2,
a ValueIterator instance that speci�es the values contained by the swP

variable. IT2 contains IO1, an IteratedObject instance that speci�es the
values of the follows reference for routes speci�ed by IT1.

1For more information refer to Chapter 8
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Figure 5.11: QLI Model that speci�es the EOL query.

• Line 4 : sw variable collects the values contained by the switch reference
in the elements speci�ed by the swP variable. It is speci�ed by CI3,
a CollectInstances instance. CI3 contains a ValueIterator (IT3) for
specifying values within the sw variable. Therefore, IT3 contains IO2
(IteratedObject instance), an abstraction for values of the switch reference
for elements speci�ed by IT2.

• Line 5 : �rst, collects the Sensor instances that are contained by the
sensor reference for each element collected by the sw variable. Then,
selects only the elements that are not included in the definedBy reference
of the routes collected by the route variable. These EOL expressions
are speci�ed by CS1, a ConditionalSelection instance, and oneResult
and negativeCondition attribute values are false in both cases. CS1
contains IT4 (ValueIterator instance), which speci�es the values within
the sensor variable. IT4 contains IO3 (IteratedObject instance) which is
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the abstraction for values of the sensor reference for elements speci�ed by
IT3. Moreover, CS1 contains BC1 (BooleanCondition instance) which
speci�es the select condition. BC1 includes a Contains instance (CO1)
specifying the condition to be checked, and it contains: IO4 IteratedObject
that speci�es values at the definedBy reference of each elements collected
by route variable (IT1); and IO5, that speci�es the elements collected by
sensor variable (IT4). Two attribute values are setted for CO1 : listValues
attribute value is false, since the input element that is checked is an object
(sensor variable at the EOL query); and negative attribute value is true,
since the EOL query searches for elements that exclude the input object.

5.2.3 Generating Persistence-Speci�c Queries from QLI
Models

MQT-Engine framework transforms a QLI Model into a query in a persistence-
speci�c query language. Following paragraphs describe this transformation
through a sample mapping between a QLI Model and a SQL query. The sample
model corresponds with the QLI Model of Figure 5.11. Mappings between QLI
Models and other persistence-speci�c query languages have been included in
Appendix A.

The generated SQL will be executed in CDO repositories using DBStore with
the horizontal mapping strategy. Figure 5.12 illustrates a subset of the data-
schema used to persist queried model in CDO. ROUTE, SWITCHPOSITION,
SWITCH and SENSOR tables persist model artifacts (Route, SwitchPositon,
Switch or Sensor instances). All these tables contain: an identi�er of each
element in the database (CDO_ID), information related to version and branching
(CDO_VERSION, CDO_BRANCH, CDO_CREATED and CDO_REVISED)
and information related to parent elements and resources (CDO_RESOURCE,
CDO_CONTAINER and CDO_FEATURE ). Each table contains also feature
values: attribute values (e.g. ID in ROUTE table), single-value reference values
(e.g. ENTRY or EXIT0 in ROUTE table), and in the case of multi-value
references, quantity of referenced elements (e.g. FOLLOWS and DEFINEDBY
in ROUTE table). The rest of the tables (ROUTE_FOLLOWS_LIST,
ROUTE_DEFINEDBY_LIST and SENSOR_ELEMENTS_LIST ) contain the
elements referenced by multi-value references. Tables of this type contain:
identi�er of the source instance (CDO_SOURCE ), information related to version
and branch (CDO_VERSION and CDO_BRANCH), order of the referenced
value (CDO_IDX ) and the identi�er of the referenced element (CDO_VALUE ).
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Figure 5.12: Database tables related to the generated SQL query.

Listing 5.2 illustrates the generated SQL query that corresponds with QLI
Model of Figure 5.11:

• Line 1 : IT4 speci�es the elements collected by sensor variable, and
sensors are the output of the query. Name attribute value of IT4 is used
to complete the select expression of the generated SQL query: SELECT

sensor.CDO_ID.

• Line 2 : The FROM expression starts collecting all the route instances at line
2. This line is generated using IT1 and KI1 instances contained by CI1 :
KI1 is used to generate the SQL that obtains all route instances (SELECT
* FROM Route WHERE ...); and IT1 is used to add the route alias to the
previous expression (AS route).

• Line 3 : CI2 is used to generate the SQL fragment of line 3. CI2 includes
IO1 and IT2 and they are used for generating the SQL expression that
obtains SwitchPosition values contained by the follows reference for each
route element obtained at line 2 of the SQL query. The follows feature
is a multi-value reference and the Route_follows_LIST table is used to
obtain the information. Values from this table are joined with the values
of the SwitchPosition table. The SQL is completed with an alias that
corresponds with swP, the value of the name attribute in IT2. An INNER

JOIN expression is used to join this SQL with the expression of line 2.
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1 SELECT sensor.CDO_ID

2 FROM (SELECT * FROM Route WHERE CDO_VERSION >0 AND (CDO_BRANCH = 0 AND

CDO_REVISED =0)) AS route

3 INNER JOIN (SELECT Route_follows_LIST.CDO_SOURCE AS PARENT_ID ,

Route_follows_LIST.CDO_VERSION AS PARENT_VERSION , Route_follows_LIST.

CDO_BRANCH AS PARENT_BRANCH , route_follows .* FROM Route_follows_LIST

INNER JOIN (SELECT * FROM SwitchPosition WHERE CDO_VERSION >0 AND (

CDO_BRANCH = 0 AND CDO_REVISED =0)) AS route_follows ON

Route_follows_LIST.CDO_VALUE = route_follows.CDO_ID AND route_follows.

CDO_REVISED = 0 AND route_follows.CDO_BRANCH = 0) AS swP ON swP.

PARENT_ID = route.CDO_ID AND swP.PARENT_VERSION = route.CDO_VERSION AND

swP.PARENT_BRANCH = route.CDO_BRANCH

4 INNER JOIN (SELECT * FROM Switch WHERE CDO_VERSION >0 AND (CDO_BRANCH = 0

AND CDO_REVISED =0)) AS sw ON swP.switch=sw.CDO_ID

5 INNER JOIN (SELECT Sensor_elements_LIST.CDO_VALUE , sw_sensor .* FROM (SELECT

* FROM Sensor WHERE CDO_VERSION >0 AND (CDO_BRANCH = 0 AND CDO_REVISED

=0) ) AS sw_sensor INNER JOIN Sensor_elements_LIST ON sw_sensor.CDO_ID =

Sensor_elements_LIST.CDO_SOURCE AND sw_sensor.CDO_BRANCH =

Sensor_elements_LIST.CDO_BRANCH AND sw_sensor.CDO_VERSION =

Sensor_elements_LIST.CDO_VERSION ) AS sensor ON sw.CDO_ID=sensor.

CDO_VALUE

6 WHERE NOT EXISTS (SELECT route_definedBy.CDO_ID FROM Route_definedBy_LIST

INNER JOIN (SELECT * FROM Sensor WHERE CDO_VERSION >0 AND (CDO_BRANCH = 0

AND CDO_REVISED =0)) AS route_definedBy ON Route_definedBy_LIST.

CDO_VALUE = route_definedBy.CDO_ID AND Route_definedBy_LIST.CDO_SOURCE=

route.CDO_ID AND Route_definedBy_LIST.CDO_BRANCH=route.CDO_BRANCH AND

Route_definedBy_LIST.CDO_VERSION=route.CDO_VERSION AND route_definedBy.

CDO_ID=sensor.CDO_ID)

Listing 5.2: SQL query for models persisted with CDO+DBStore.

• Line 4 : CI3 is used similarly for generating the SQL expressions depicted
in line 4. IO2 and IT3 instances contained by CI3 are used to generate the
SQL expression. It obtains Switch instances contained by switch reference
for values collected by swP at line 3. The switch feature is a single-value
reference and this expression joins Switch table values with the switch
column values of swP alias (swP.switch).

• Line 5 : it is generated from the CS1 instance. Line 5 corresponds with
the iterated values, and IT4 and IO3 are used to generate it. IO3 speci�es
values of the sensor reference for elements collected by sw query alias at
line 4. These values are obtained in a SQL expression that joins Sensor
and Sensor_elements_List tables. The SQL expression is completed
with the sensor alias (using IT4) and it is joined with line 4.

• Line 6 : it is generated from the CS1 instance, and concretely from
the CO1 instance contained by it. CO1 speci�es the condition of
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CS1 and consequently, this expression completes the WHERE statement
of the SQL query. CO1 contains IO4 and IO5 instances. First,
IO4 is used to generate a SQL expression that joins values of
Route_definedBy_LIST and Sensor tables. Then the expression
is completed with route_definedBy_LIST.CDO_ID = sensor.CDO_ID,
checking if the sensor speci�ed by IO5 is contained. The previously
generated SQL expression is contained within by a NOT EXISTS()

expression, since the CO1 has the negative attribute with true value.

5.3 MQT-Engine Design

MQT-Engine Framework is divided into three main packages: MQT-Engine-
Core is the query language independent part that orchestrates the query
transformation. It also provides a set of abstract classes to be extended
by the other parts that are speci�c of the query languages and persistences;
MQT-Engine-MQL package provides implementations for model query languages;
andMQT-Engine-PQL package provides implementations for persistence-speci�c
query languages.

This design facilitates the inclusion of new query languages in MQT-Engine.
Figure 5.13 depicts a class diagram where di�erent parts and artifacts of the
framework are illustrated.

MQT-Engine-Core package

MQT-Engine-Core is the language-agnostic package of the framework. It
contains Engine-Core, the main class which orchestrates the query transformation
and execution. This package also includes classes that implement the QLI
Metamodel and abstract classes to be extended by the query language-speci�c
parts.

Engine-Core class is the main class of the framework. Each Engine-
Core instance contains one MQLDriver implementation (mqlDriver feature)
that supports executing queries of an speci�c model query language.
Similarly, pqlDriver feature contains a PQLDriver implementation that supports
transforming and executing queries for a speci�c persistence. Engine-Core
instances reference DomainEPackage instances (domainMetamodels feature).
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Figure 5.13: MQT-Engine framework class diagram.
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DomainEPackage is part of the Domain package that contains a set of classes
that implement a domain-speci�c metamodel.

Engine-Core implements setCon�guration method. This method con�gures
Engine-Core instances specifying: name of the model query language that
will be used (mql); name of the persistence-speci�c query language that
will be used (pql); a list of EPackage implementations where the domain
metamodels conformed by queried models are implemented (metamodels).
It calls setMQLDriver, setPQLDriver and addDomain methods that are also
implemented by Engine-Core: setMQLDriver initializes mqlDriver with the
con�gured model query language; setPQLDriver intializes pqlDriver with the
con�gured persistence-speci�c query language; and addDomain adds a domain
metamodel in the domainMetamodels feature.

The query transformation and execution is orchestrated within the execute
method that is implemented by Engine-Core. This method performs di�erent
steps:

• calls the model query language driver for transforming the query expressed
with a model query language into a QLIModel instance.

• obtains the generated model, and calls the persistence-speci�c driver for
the execution of the following tasks: transform the QLIModel into a
persistence-speci�c query; complete the generated query; execute it over
the database; and process obtained raw results;

• the result is obtained, and it calls again model query language driver for
processing it.

Engine-Core class implements a set of methods that provide domain-speci�c
information using the domain metamodels referenced at domainMetamodels
feature (getEClassi�er, getEnumerationLiteralValue and getSubtypes). These
methods are used during the transformation process by the MQLDriver
and PQLDriver implementations: getEClassi�er inputs a name and
searches for the corresponding EClassi�er instance within the metamodels;
getEnumerationLiteralValue inputs an enumeration name and a literal name and
searches the corresponding enumeration literal value within the metamodels; and
getSubtypes operation inputs an EClass instance and returns a list containing
all the EClass instances that extend it (sub-types).
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Driver interface. This interface is implemented by MQLDriver and
PQLDriver classes. It contains the getName abstract method to be implemented
by the classes that extend MQLDriver or PQLDriver. This method should
return name of the model query language (for MQLDriver implementations)
or persistence (for PQLDriver implementations).

MQLDriver abstract class. This class is extended by classes that add
support for model query languages. Each MQLDriver instance is responsible
for parsing and transforming queries from a speci�c model query language into a
QLI Model instance. This task is performed by the generateQLIModel method.
The generateQLIModel implementation must include the parsing of the query
speci�ed in the model query language and the transformation of each query to
a QLI Model.

Each model query language has its own data-types. In the cases where
queries return or expect results in a data-type that is speci�c of a model query
language, the MQLDriver instances are responsible for processing the results
obtained from the persistence and format them into the expected data type.
This task is performed by the processResults method. This method is abstract
and it has to be implemented by model query language speci�c specialization of
the MQLDriver.

PQLDriver abstract class. This abstract class is extended by classes
that add support for persistences and persistence-speci�c queries. PQLDriver
implements the getResult method. It inputs a QLI Model (qlim) and a model
to be queried (model), and outputs the result of the query.

Listing 5.3 illustrates the implementation, and as the code shows
generateQuery, completeQuery, executeQuery and processResult

methods are called. These methods are abstract and they are implemented by
each PQLDriver specialization.

MQT-Engine-Core.QLIMetamodel package. This package contains
classes that implement the QLI Metamodel conformed by QLI Models that are
used by MQLDriver and PQLDriver specializations for query transformation.
QLIMetamodelEPackage class is one of the main classes of the package and it
is used to load, navigate and edit QLI Models. This class is used by MQLDriver
instances during the QLI Model generation and by the PQLDriver instances for
parsing the QLI Model. QLIMetamodelFactory is the class that is used by the
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1 public Object getResult(QLIModel qliModel , Resource model){

2 Object generatedQuery = this.generateQuery(qliModel ,model);

3 Object completedQuery = this.completeQuery(model ,

generatedQuery);

4 Object result = this.executeQuery(completedQuery , model);

5 Object processedResult = this.processResult(result , model);

6 return processedResult;

7 }

Listing 5.3: Implementation of getResult method.

MQLDriver for creating new QLI Model artifacts. This package is composed by
other sub-packages that contain the implementation of the di�erent QLI Model
artifacts that have been previously described in Section 5.2.

MQT-Engine-MQL package

This package contains specializations of the MQLDriver class. For example:
EOLDriver for EOL queries; OCLDriver for OCL queries; IncQueryDriver for
queries that have been written using IncQuery ; or AdHocQueryLanguageDriver
for queries in an ad-hoc query language.

Each specialization implements the abstract methods of the MQLDriver :
generateQLIM and processResult. The implementation of these methods is
speci�c for the model query language supported by each specialization. In the
case of the implementation of generateQuery, it must support interaction with
the model query language engine. Next, the method uses the parsed query
for generating a QLI Model that speci�es the query with language-independent
abstractions. In the case of the processResult, if the query expects a data-type
that is speci�c of the model query language, the method implementation provides
the feature of re-factoring the input result into an output result that fully matches
with the data-type expected by the query.

MQT-Engine-PQL package

This package contains the specializations of PQLDriver. For example:
CDO_DBStore_SQLDriver, for persistence based on CDO with
DBStore; NeoEMFGraph_CypherDriver for NeoEMFGraph persistence; or
AdhocDB_SQLDriver, for an ad-hoc persistence.
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Each specialization is speci�c for: (i) a persistence mechanism; and (ii) a
persistence-speci�c query language supported by the persistence. For example:
CDO_DBStore_SQLDriver supports generation and execution of SQL queries
over relational databases that are generated using the default con�guration of
the DBStore store2; NeoEMFGraph_CypherDriver supports querying models
persisted with NeoEMFGraph (which uses a Neo4J database) using Cypher, a
Neo4J speci�c query language; and AdhocDB_SQLDriver supports transforming
queries to SQL and execute them in an ad-hoc persistence that uses relational
databases with metamodel-agnostic data-schemas.

Therefore, each specialization provides a persistence-speci�c and persistence-
query language speci�c implementation of the generateQuery, completeQuery,
executeQuery and processResult methods. The generateQuery method
implementation supports transformation from a QLI Model into a persistence-
speci�c query language supported by the persistence. The completeQuery
method implementation provides support for completing the generated query
with additional information that is obtained from the model that will be queried
(e.g. information about the version of the model). The completed information is
di�erent depending on the supported persistence and persistence-speci�c query
language. The implemented executeQuery method supports the execution of the
generated query using a querying mechanism that is provided by the persistence
approach. Then, obtained results are processed by the processResult method.
It processes raw results obtained directly from the persistence and returns only
results that are required by the query.

5.4 MQT-Engine Execution

Figure 5.14 illustrates a sequence diagram that depicts the execution of MQT-
Engine. First part illustrates the con�guration process, where model engineer
executes setCon�guration. Then, Engine-Core instance invokes setMQLDriver
which creates an instance of the MQLDriver specialization corresponding with
the input model query language. The instance is stored in the mqlDriver variable
of Engine-Core. Similarly the setPQLDriver is invoked and it returns a PQLDriver
instance that corresponds with the selected persistence-speci�c query language
(and persistence). It is stored in the pqlDriver variable of the Engine-Core.
Con�guration process ends with the addDomain method execution, where the

2for more information about CDO and DBStore please go to Chapter 2.
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Figure 5.14: Sequence diagram of the query transformation and execution.

EPackages speci�ed by the model engineer are stored in the Engine-Cores'
domainMetamodels variable.

MQT-Engine is ready to execute queries when the con�guration step is
completed. The query execution is started by the model engineer when it calls
the execute method of the Engine-Core instance. At this point, �rst, the Engine-
Core instance executes generateQLIModel method of the MQLDriver instance.
In this method, �rst the input query expressed with a model query language is
parsed and then transformed into a QLI Model. The QLI Model is returned
to the Engine-Core instance and then it executes the getResult method of the
PQLDriver instance.

getResult executes a set of methods that obtain the result directly from the
corresponding persistence: (1) generateQuery generates a query expressed with
the persistence-speci�c query language and from the previously generated QLI
Model; (2) the generated query is completed by the completeQuery method
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adding information that is obtained from the queried resource; (3) executeQuery
method executes query directly over the persistence and using a query mechanism
provided by the corresponding persistence; (4) the obtained raw results are
processed by processResult of the PQLDriver instance; and (5) results are
returned to the Engine-Core instance.

Finally, the Engine-Core instance executes the processResult method of
the MQLDriver to adapt the query results to the data-types supported by the
model query language.
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6
Implementation of MQT-Engine

Framework

MQT-Engine Framework has been implemented in a prototype that supports
executing EOL queries over models that are persisted with CDO repositories.
The CDO repositories are con�gured with the DBStore store. This prototype
uses the horizontal mapping strategy, default model-database mapping strategy
provided by DBStore.

The MQT-Engine implementation inputs model traversal queries that are
expressed using EOL and automatically transforms them into SQL. Generated
SQL queries are speci�c for the tables of the data-schema generated by the
DBStore, and they are executed at server-side over CDO repositories .

The prototype implements the EOLDriver to support queries expressed
with EOL. The EOLDriver is a specialization of the MQLDriver abstract
class provided by MQT-Engine Framework. The CDO_DBStore_SQLDriver

is implemented to support querying at server-side with SQL models
that are persisted into CDO Repositories formed by relational databases.
CDO_DBStore_SQLDriver is a specialization of PQLDriver provided by MQT-
Engine Framework.

79



6.1 Support for EOL Model Query Language

EOLDriver adds support for executing queries expressed with EOL in the MQT-
Engine framework. EOLDriver is responsible for: parsing and transforming EOL
queries into a QLI Model instances; and processing results obtained from the
persistence, adapting them to the data-types supported by EOL. Figure 6.1
illustrates the classes related to the EOLDriver.

Figure 6.1: EOLDriver class diagram.

EOLDriver is able to interact with the EOL queries through the EOLModule.
EOLModule provides a set of methods: getContext returns an EOLContext that
is useful for setting and getting variables that are used in the EOL query;
parse method is responsible for parsing a String that contains EOL query;
getParseProblems indicates if any problem has been appeared during the query
parsing; and getMain returns the AST node that corresponds with the root EOL
expression of the query. These methods are used by the EOLDriver during the
query transformation process.

EOLDriver is a specialization, of the MQLDriver class and it implements the
getName, generateQLIModel and processResult: getName method is used to
identify the model query language supported by the MQLDriver specialization,
which in this case returns the `EOL' string value; generateQLIModel is responsible
for generating the QLI Model from EOL queries; and processResult method is
responsible for adapting the obtained results to data-types supported by EOL.
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Two additional private methods are implemented by the EOLDriver :
generateQLIElement and generateCondition. The �rst one, generateQLIElement,
is used by generateQLIModel for the creation of the corresponding QLI
Model artifacts. Regarding generateCondition method, it is used by the
generateQLIElement for the creation of QLI Model artifacts that specify
conditions.

The previously presented generateQLIModel and processResult methods
are key artifacts in the query transformation and execution process, and following
paragraphs provide a lower-level description about the implementation and
execution process of these methods:

6.1.1 EOL to QLI Model Transformation:
generateQLIModel

generateQLIModel implementation of the EOLDriver transforms an input EOL
query into a language-agnostic QLI Model. Figure 6.2 depicts the activity
diagram that illustrates the execution process, and it is described below:

Figure 6.2: Activity diagram of generateQLIModel.

• Instantiate QLIModel. The �rst step is the instantiation of a new QLI
Model. This QLIModel will contain the root artifact (Value instance) that
speci�es the EOL query.
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• Parse EOL Query. Next, the input EOL query is parsed: an EOL
Module instance is created, and then parse, getParseProblems and getMain
methods are used to parse the query.

• Show Error. If the parsing process produces any error the execution is
stopped and an error is shown to the model engineer.

• Get main EOL AST. If the parsing is correct, an AST node that corresponds
with the root expression of the EOL query is obtained.

• Generate QLI Element. The AST node is the input of the
generateQLIElement method which is responsible for creating QLIModel
artifacts that correspond with the input query. The generateQLIElement
method is called recursively until all nodes are visited.

• Set QLIModel root. The root QLI Model artifact returned by
generateQLIElement is setted as the root of the generated QLI Model,
and the model is returned to the Engine-Core instance, which orchestrates
the query transformation and execution.

The transformation algorithm that orchestrates mapping between EOL and
QLI Metamodel is implemented within the generateQLIElementmethod. Table
6.1 resumes mapping between QLI Metamodel and the EOL query expressions
supported by the EOLDriver implementation, and they are described below:

• EOL model traversal queries:

� type.allOfType(): returns a collection containing all the model
elements that are instances of the type. Each expression of this type
is transformed into a TypeInstances. This instance will contain the
EClass instance corresponding with the type in the type attribute.

� type.allOfKind(),type.allInstances(), type.all(): returns a collection
containing all the model elements that are instances either of the
type itself or of one of its subtypes. All these expressions generate a
KindInstances instance within the QLI Model. Each instance will
contain EClass instance corresponding with the type in the type

attribute, and superTypes attribute contains EClasses that specify
all the types that extend the input type. DomainUtil provides an
operation that returns all supertypes for a given type and it is used
by the EOLDriver for this purpose.
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Table 6.1: Generated QLI Elements for EOL expressions.

EOL Expression QLI Metamodel Element

EOL model traversal queries

allOfKind(), allInstances(), all() KindInstances

allOfType() TypeInstances

EOL Filtering queries

select(), selectOne(), reject() ConditionalSelection

one(), exists(), forAll() ConditionalCheck

collect() CollectInstances

EOL Expressions returning Values from Collections

at(), �rst(), last() PositionValue

size() Size

includes(), excludes(), includesAll(), excludesAll() Contains

�atten() Flatten

EOL Expressions returning Values from Objects

.reference, .attribute IteratedObject

type() TypeValue

isDe�ned(), isUnde�ned() De�ned

• EOL �ltering queries:

� collection.select(iterator:Type | condition): returns all the elements
of the input collection that satisfy the condition. A
ConditionalSelection instance is created per each EOL expression
of this type. The expression returns all the elements that satisfy
the condition. Consequently, oneResult and negativeCondition

attributes are false. condition reference will contain a
ConditionQuery instance that corresponds with the condition of
the select expression.

� collection.selectOne(iterator:Type | condition): returns �rst element
of the input collection that satis�es the condition. The
algorithm creates one ConditionalSelection instance per each
EOL expression of this type. oneResult attribute is true and
negativeCondition is false. condition reference contains a
ConditionQuery instance that corresponds with the condition.

83



� collection.reject(iterator:Type | condition): returns all the elements of
the input collection that do not satisfy the condition. EOL expressions
of this type are transformed into ConditionalSelection instances.
oneResult attribute value is false, negativeCondition is true

(only elements that do not satisfy the condition will be selected) and
a ConditionQuery instance that corresponds with the condition is
contained by the condition reference.

� collection.one(iterator:Type | condition): returns a boolean value
that indicates if the collection contains just one value satisfying the
condition. The algorithm generates one ConditionalCheck instance
per each EOL expression of this type. In this case, the checkLogic

attribute value is one.

� collection.exists(iterator:Type | condition): returns a boolean value
that indicates if at least one element within the collection satis�es the
condition. The algorithm generates one ConditionalCheck instance
per each EOL expression of this type. Value for checkLogic is the
default one (leastOne).

� collection.forAll(iterator:Type | condition): returns a boolean value
that indicates if all the elements within the collection satisfy the
condition. EOL expressions of this type are transformed into
ConditionalCheck instances with the checkLogic attribute setted
with all.

� collection.collect(iterator:Type | expression): returns a collection
containing values of the speci�ed expression for each element of
the input collection. Expressions of this type are transformed into
a CollectInstances instance which contains a Value instance that
corresponds with the collect expression.

• EOL expressions returning values from Collections:

� collection.at(position): returns the element of the input collection
that is located at a speci�c position. Expressions of this type are
speci�ed through PositionValue instances. Value of position

attribute is the speci�ed position and inverseOrder false.

� collection.�rst(): returns the �rst element of the input collection.
Expressions of this type are speci�ed through PositionValue

instances. Value of position attribute is 1 and inverseOrder false.
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� collection.last(): returns the last element of the input collection.
Expressions of this type are speci�ed through PositionValue

instances. Value of position attribute is 1 and inverseOrder true.

� collection.size(): returns how many elements are contained in the
collection. One Size instance will be instantiated per each expression
of this type, and it contains the input collection (collection
reference).

� collection.includes(object): returns a boolean value that indicates if
the object is included in the input collection. Contains instance
is used to specify expressions of this type. The listValues and
negative attribute values are false in both cases.

� collection.excludes(object): returns a boolean value that indicates if
the object is not included in the input collection. These expressions
are speci�ed by a Contains instance which has listValues attribute
with false value and negative attribute with true value.

� collection.includesAll(objectList): returns a boolean value that
indicates if all the objects are included in the input collection.
These expressions are speci�ed by a Contains instance which has
listValues attribute with true value and negative attribute with
false value.

� collection.excludesAll(objectList): returns a boolean value that
indicates if all the objects are not included in the input collection.
Contains instance is used to specify expressions of this type. The
listValues and negative attribute values are true in both cases.

� collection.�atten(): returns a �attened collection that contains values
of the input collection. This type of expressions are speci�ed through
the Flatten instance. Each instance will contain the input collection
in the collection reference.

• EOL expressions returning values from Objects:

� object.reference. Returns the value of the speci�ed reference of
the input element. The input object of the expression is previously
speci�ed by an IteratedObject instance. Expressions of this type
add an EReference instance that corresponds with the reference
within the references attribute of the IteratedObject instance.
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� object.attribute. Returns the value of the speci�ed attribute of the
input element. Similar to the previous one, but it adds a EAtribute

instance in the attribute reference.

� object.type(). Returns type of the input object. The algorithm
generates a TypeValue instance that contains the input object
(ModelObject instance).

� object.isDe�ned. Returns a boolean value that indicates if the input
object or feature is de�ned. This type of expressions are speci�ed
through a Defined instance which has the negative attribute with
false value.

� object.isUnDe�ned. Returns a boolean value that indicates if the
input object or feature is not de�ned. This type of expressions
are speci�ed through a Defined instance which has the negative

attribute with true value.

• Primitive values existing within EOL queries are speci�ed with
PrimitiveValue instances. Each instance of this type will contain the
primitive value within the value attribute.

Figure 6.3 illustrates activity diagram of the algorithm followed by the
generateQLIElement. Execution starts checking if the AST node speci�es an
EOL traversal expression. If it is, and the expression searches only types,
TypeInstances is instantiated and returned. If it also searches sub-types a
KindInstances is created and returned.

For not EOL traversal expression, the algorithm checks if the AST contains
childs (EOL subqueries). If there is not any children a set of checks are performed
over the AST node: if it speci�es a primitive value or a enumerator value,
a PrimitiveValue instance is created; if it speci�es a model object, a new
IteratedObject instance is generated; and if the previous conditions are not
satis�ed a exception is thrown.

If the AST node has at least one child, the process continues getting the
�rst child AST node (which corresponds with left EOL subquery). Child node is
the input of a recursive execution of the generateQLIElement method, and the
transformation algorithm is re-executed again for it, getting as output the QLI
Model artifact that corresponds with the EOL subquery. Next, the second child
(right EOL subquery) is obtained, and checked:
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Figure 6.3: Activity diagram of the QLI Model artifact generation.
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(a) If the second child speci�es an EOL �ltering expression, �rst a
ValueIterator instance is created, and then, the algorithm performs
di�erent actions depending on the speci�ed �ltering expression:

• select, selectOne or reject. A ConditionalSelection instance
is created and the AST node corresponding with the EOL
condition is obtained. Condition AST node is the input of
the generateCondition method, which outputs a ConditionQuery

(abstraction for the EOL condition). Next, ConditionQuery

instance is setted in the condition feature of the previously created
ConditionalSelection instance.

• one, exists or forall. A ConditionalSelection instance is
created, and the generateCondition method is executed, obtaining
the ConditionQuery instance.

• collect. A CollectInstances is created and returned.

• If the �ltering expression does not correspond with any of the previous
types, the execution is �nished and an exception is thrown.

(b) If the second child speci�es an EOL operation over a collection, the
algorithm performs di�erent actions depending on the speci�ed expression:

• at, �rst, second, last: A PositionValue instance is created.

• size: A Size instance is created.

• includes, excludes, includesAll or excludesAll : A Contains instance is
created.

• �atten: A Flatten instance is returned.

• If the �ltering expression does not correspond with any of the previous
types, the execution is �nished and an error is shown.

(c) If the second child speci�es an EOL expression that operates a model
object, the algorithm checks the type:

• if the EOL expression is a feature call: �rst the IteratedObject

instance is obtained; and then the instance is completed with the
feature to be navigated.

• if is a type expression, a TypeValue instance is created.
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• if it is an isDe�ned or isUnde�ned EOL expression, a Defined

instance is created.

• If the query does not correspond with any of the previous types, the
execution is �nished and an exception is thrown.

Some of the previous steps require the execution of the generateCondition
method for transforming EOL expressions which specify conditions. Figure 6.4
illustrates the activity diagram of this method.

Figure 6.4: Activity diagram of the QLI Model artifact generation.

As the diagram shows, generateCondition inputs an AST node that speci�es
the root element of the condition, and checks if it contains an operator. If there
is not any operator speci�ed, a BooleanCondition instance is created, and then
the genQLIElement method is called. This method outputs a QLI Model artifact
(Value instance) and it is setted as the value of the BooleanCondition.

By contrast, if the root element contains an operator, �rst the operator type
is checked. Di�erent actions are performed depending on the operator type:

• If the operator is logical (e.g. `and', `or', `not'), �rst, a LogicalCondition
instance is created. Next, the �rst element to be evaluated logically is
obtained (�rst child of the node), and it is the input of genQLIElement
method which is executed. This method outputs a Value instance that
corresponds with the left value to be evaluated by the LogicalCondition,
and it is setted as the left condition in the LogicalCondition instance.
Following step checks if the operator is an EOL `not', and if it is the case,
the execution is �nished returning the LogicalCondition instance. If the
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logical operator is di�erent of `not', the second child is obtained and the
genQLIElement is executed again, obtaining the QLI Model artifact that
corresponds with the second condition. It is added in the right condition
of the LogicalCondition, and this latter is returned.

• If the operator is not logical, a ComparisonCondition instance is created.
Next, genQLIElement method is executed, obtaining the Value instance
that corresponds with the �rst child. It is added at the left feature of
the ComparisonCondition instance. The process is repeated for the second
child, and the Value instance is added at the right value. Finally the
ComparisonCondition is returned.

Listing 6.1 completes this description showing code fragment of the
generateQLIElement implementation. The shown code fragment is related to
the creation of a ConditionalSelection type instance1 and it is executed
when visiting a node that speci�es an EOL select expression.

public Value generateQLIElement(AST n) throws Exception{

...

else if (n.getType () == EolParser.POINT){

AST left = n.getFirstChild ();

Value source = genQLIElem(left);

AST right = n.getSecondChild ();

if(isFilteringExpression(right)){

if(right.getText ().equals("select")){

// SELECT EXPRESSION

ConditionalSelection select = createConditionalSelection(

right , source);

return select;

else ...

Listing 6.1: Fragment of the genQLIElem method.

6.1.2 Processing results: processResults

Data-type of the result expected by queries expressed with EOL could be speci�c
of EOL. In these cases, the results obtained from the persistence should be
adapted to match with the expected data type. This task is performed by the

1For more information about QLI Metamodel classes please return to Section 5.2
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processResult method, which is implemented by the EOLDriver. The data-
type is speci�ed by the returnType feature value of the QLIModel instance (root
model of the generated QLI Model). The type value in returnType, and the
results obtained from the persistence are the input parameters of processResults
method. Then, the method re-factors results, adapting them to the expected
data-type.

6.2 Support for SQL Queries over Relational
CDO Repositories

The MQT-Engine Framework prototype provides the implementation of the
CDO_DBStore_SQLDriver that supports querying with the framework models
persisted with relational CDO repositories. CDO_DBStore_SQLDriver is a
specialization of the PQLDriver abstract class provided by the MQT-Engine
framework. CDO_DBStore_SQLDriver provides support for transforming QLI
Models into SQL queries that are executed over a CDO repository that uses
DBStore.

DBStore provides a common-schema that is used within the relational
databases. This data-schema contains domain-agnostic and dedicated tables
that store the information related with the change history, branches, commits
or user access. DBStore generates automatically one data-schema for models of
each di�erent domain. The strategy for the generation of the domain-speci�c
data-schemas can be customized by the stakeholders, and the default mechanism
for generation used by the DBStore is the horizontal mapping.

SQL is a mature and widely used declarative query language for relational
databases. The generated SQL queries are for data-schemas that are generated
using the horizontal mapping strategy (default mapping strategy used by
DBStore). In the horizontal mapping strategy two di�erent types of tables could
be distinguished:

• Object Tables: these tables contain information about all instances of
an speci�c type. The name of each table corresponds with name of the
type.

• Many-Value Reference Tables: these tables contain objects referenced
by a many-value reference of an speci�c type. The name of the table
follows this format: ObjectTypeName_FeatureName_List .
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Figure 6.5: CDO_DBStore_SQLDriver class diagram.

SQL queries generated by CDO_DBStore_SQLDriver use the previously
described Object Tables and Many-Value Reference Tables.

Figure 6.5 illustrates the class diagram of CDO_DBStore_SQLDriver. As it
is depicted in the �gure, it uses the CDOQuery, CDOView and CDOResource
classes of CDO for interacting with models. CDOResource is the class used by
CDO for representing EMF models. This is the class that instantiates the model
to be queried. The CDOResource contains the cdoView method and it is called
by the CDO_DBStore_SQLDriver. CDOView is able to create a CDOQuery
class, which provides support for executing SQL queries at server-side.

CDO_DBStore_SQLDriver implements the abstract methods of the
PQLDriver class. The getName method returns the string value
`CDO_DBStore_SQL' which identi�es the PQLDriver specialization. The rest
of the implemented methods deal with the di�erent tasks for query generation
and execution that are performed by PQLDriver specializations:

• generateQuery method that is responsible for transforming QLI Model into
a SQL query.

• completeQuery, which completes the SQL query with information about
the version and branch of the model that will be queried.

• executeQuery, responsible for executing the SQL query over a CDO
Repository using the CDOQuery natively provided by CDO.
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Figure 6.6: CDO_DBStore_SQLDriver sequence diagram.

• processResult, post-processes results of the query obtained from the CDO
Repository, and returns only the results that are related to the queried
model (or resource).

Figure 6.6 depicts a sequence diagram where the query transformation
and execution performed by the CDO_DBStore_SQLDriver is resumed. The
diagram shows the execution order of the di�erent implemented methods that
have been introduced in previous paragraphs, and it is described below: after
generating a QLI Model that speci�es a query, the Enginer-Core instance calls
the CDO_DBStore_SQLDriver through the getResult method. This method
inputs the QLI Model and the queried model. In this case models are persisted
in CDO repositories and consequently the model is speci�ed by a CDOResource
class.
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From QLI Model to SQL: generateQuery

The �rst task performed by the getResult method is the generation of the
SQL query from the input QLI Model. This is done by the generateQuery

method. This implementation for CDO supports querying CDO Repositories that
could contain di�erent branches and versions of a same model. The generated
SQL queries contains checks and parameters related to branching and versioning.
The parameters are setted later in the execution of the completeQuery method.
Di�erent parts of the generated SQL queries that contain checks and parameters
of versioning and branching are:

• WHERE statements that obtain information from an Object-
Table. Listing 6.2 illustrates the parameters that are included in the where
SQL statement when an object table is queried: (1) commit, speci�es
the timestamp of the commit corresponding with the model version; (2)
branchID, speci�es the identi�er of the branch that is being queried; (3)
hasBase, boolean value that speci�es if the branch is based in another
branch; (4) baseID, speci�es the identi�er of the base branch; and (5)
baseTime, speci�es the timestamp of the corresponding version of the
base branch.

1 CDO_VERSION >0

2 AND (

3 (CDO_BRANCH =: branchID AND CDO_CREATED <= :commit AND (

CDO_REVISED =0 OR CDO_REVISED >: commit))

4 OR (: hasBase AND CDO_BRANCH =: baseID AND CDO_CREATED <=:

basetime AND (CDO_REVISED =0 OR CDO_REVISED >: basetime))

5 )

Listing 6.2: Branching and versioning parameters in object tables.

• INNER JOIN statements that join an object table with a many-
value reference table. Listing 6.3 illustrates the SQL expressions
checking that the versions and branches of objects and references
correspond.

Table 6.2 describes SQL queries that are generated from each QLI Model

element. Therefore, a SQL string that corresponds with the QLI Model is
obtained within the generateQuery. However, this string is not the output
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Table 6.2: SQL queries generated for each QLI model element.

QLI Element Generated SQL

KindInstances (SELECT KindFeatures.* FROM KindTable WHERE ...)
UNION ALL (SELECT KindFeatures.* FROM SuperType1Table WHERE ...)
UNION ALL (SELECT KindFeatures.* FROM SuperType2Table WHERE ...) ...

TypeInstances SELECT * FROM TypeTable WHERE ...

LogicalCondition (rightStatementSQL (AND | OR | ...) leftStatementSQL)

ArithmeticalCondition (rightStatementSQL ( = | < | ...) leftStatementSQL)

ValueCondition valueSQL

PrimitiveValue strings: 'value '; other types: value

ConditionalSelection method-speci�c SQL. Ex.: oneResult=false, negativeCondition=false
if is contained by another �ltering query
INNER JOIN (VariableIteratorSQL) AS iteratorName
ON ... AND condSQL
else
SELECT iteratorName.*
FROM (VariableIteratorSQL) AS iteratorName
WHERE ... AND condSQL

ConditionalCheck method-speci�c SQL. Ex.: checkLogic = leastOne
if is contained by another �ltering query
EXISTS (SELECT iteratorName.*
FROM (VariableIteratorSQL) AS iteratorName
WHERE condSQL)
else
SELECT COUNT(iteratorName.*)>0
FROM (VariableIteratorSQL) AS iteratorName
WHERE condSQL)
LIMIT 1

CollectInstances if is contained by another �ltering query
SELECT collectedValue.CDO_ID
FROM ...
INNER JOIN (VariableIteratorSQL) AS iteratorName ON ...
else
SELECT collectedValue.CDO_ID
FROM (VariableIteratorSQL) AS iteratorName

PositionValue if inverseOrder=false
SELECT * FROM collectionSQL LIMIT 1 OFFSET position-1
if inverseOrder=true
SELECT * FROM collectionSQL
ORDER BY ROWNUM DESC LIMIT 1 OFFSET position-1

Size SELECT COUNT (*)
FROM collectionSQL

De�ned method-speci�c SQL. Ex.: negative=false
EXISTS (collectionSQL)

Contains method-speci�c SQL. Ex.: listValues=false, negative=false
EXISTS (collectionSQL AND collectionAlias.CDO_ID=containedObject.CDO_ID)

IteratedObject speci�c SQL. dependening on contained features:
EX. no features:
iteratorName.CDO_ID
EX. with attribute and without references:
iteratorName.attributeName
EX. with single-value reference:
iteratorName.referenceName
EX. with many-value reference:
SELECT FeatureType.CDO_ID FROM FeatureType INNER JOIN ParentType_Feature_List ON ...
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1 objectTable.CDO_VERSION = referenceTable.CDO_VERSION

2 AND objectTable.CDO_BRANCH = referenceTable.CDO_BRANCH}

Listing 6.3: Branching and versioning parameters in object tables.

of the method. generateQuery method creates a CDOQuery class instance
that contains the SQL query string. CDOQuery is a class provided by CDO and
it is able to execute queries using SQL and over the database. The method
execution ends when the CDOQuery is returned.

SQL query completion: completeQuery

The SQL query speci�ed within the CDOQuery returned by generateQuery

contains a set of parameters to be speci�ed before executing it. These parameters
are setted by the completeQuery method.

Listing 6.4 illustrates the code of completeQuery method. It inputs the
queried model and a generated query, and it �rst checks that the queried model
corresponds with a CDOResource instance (lines 2-4) and that the query is
speci�ed by a CDOQuery instance (lines 5-7). CDOQuery contains the SQL query
generated in the previous steps. Parameter values are obtained from the queried
model (lines 8-20), and next, the obtained values are setted to the generated
SQL through the CDOQuery instance (lines 21-25). completeQuery �nishes the
execution returning the CDOQuery instance that contains the completed query
(line 26).

SQL query execution: executeQuery

After setting parameters, CDO_DBStore_SQLDriver proceeds with the SQL

query execution through the executeQuery method. This method uses the
CDOQuery and it is able to execute query directly against the CDO Repository

and at server-side. The SQL query is executed against the entire repository.
Listing 6.5 depicts the code of the execute query method.

SQL Query Result processing: processQuery

SQL query results obtained from the database correspond to all models
(CDOResource) of the repository. However, target of queries expressed with
model query languages commonly is a single-model. To provide query results for
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1 public CDOQuery completeQuery(Object query , Resource model){

2 if (!( query instanceof CDOQuery))

3 throw new UnsupportedOperationException("query is not

instance of CDOQuery");

4 CDOQuery cdoQuery = (CDOQuery) query;

5 if (!( model instanceof CDOResource))

6 throw new UnsupportedOperationException("model is not

instance of CDOResource");

7 CDOResource cdoModel = (CDOResource) model;

8 CDOView view = model.getView ();

9 long commitID = view.getTimeStamp ();

10 if(commitID == 0){

11 commitID = view.getLastUpdateTime ();

12 }

13 long branchID = view.getBranch ().getID ();

14 long parentBranchID =-1;

15 boolean existsBase = false;

16 if(view.getBranch ().getBase ().getBranch () != null){

17 parentBranchID = view.getBranch ().getBase ().getBranch ().

getID ();

18 existsBase = true;

19 }

20 long basetime = view.getBranch ().getBase ().getTimeStamp ();

21 cdoQuery.setParameter("commitID", Long.toString(commitID));

22 cdoQuery.setParameter("branchID", Long.toString(branchID));

23 cdoQuery.setParameter("parentBranchID",Long.toString(

parentBranchID));

24 cdoQuery.setParameter("existsBase", existsBase);

25 cdoQuery.setParameter("basetime",Long.toString(basetime));

26 return cdoQuery;

27 }

Listing 6.4: Implementation of the completeQuery method.

1 protected Object executeQuery(Object query , Resource model) {

2 if (!( query instanceof CDOQuery))

3 throw new UnsupportedOperationException("query is not

instance of CDOQuery");

4 return (( CDOQuery)query).getResult ();

5 }

Listing 6.5: Implementation of the executeQuery method.
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a speci�c model only, the CDO_DBStore_SQLDriver processes them using the
processResult method.

The processResult method �lters and analyses the SQL results returned
by the query executed at server-side, and only returns results that are part or
are related to the queried model. It has been decided to do this post-process,
because including it in the transformation would require complex SQL queries
that could have impact in performance.

The performed result processing is di�erent depending on the results
expected by the query: if the query expects a collection of model objects,
this method �lters them and selects only those that are part of the model.
Model objects are speci�ed in CDO using CDOObject instances, and these
instances provide cdoResource method which returns the parent CDOResource
of the model object. This way, the processResult method compares
that the parent resource of the model object is equal to the queried model
(CDOResource instance). By contrast, if the query expects a boolean
value (e.g. check if a certain element type exists within the model), the
boolean value to be returned by the query is chosen in the processResult

method: to check if a result exists in a model, obtained results are
analysed (e.g. while(res.hasNext()){ if (res.getNext().cdoResource

== resource) return true;} return false;).
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Part III

Validation
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7
Experimental Evaluation: Reverse

Engineering Case

This chapter describes an experimental evaluation based on the academic reverse
engineering case study proposed at Graph-Based Tools 2009 (a.k.a. GraBaTs'09)
[Gra09,Sot09]. This case study identi�es a set of models that specify source code
of Java projects, with the aim of comparing execution time and memory usage
metrics to execute a complex query over them. Proposed query extracts all the
singleton classes that are speci�ed within the models.

This experimental evaluation addresses the following questions:

• Question 1: Which is the performance and memory usage of MQT-Engine
for querying models persisted in a CDO repository and using a model query
language (concretely EOL)?

• Question 2: Obtained results are better or worse (in terms of memory
usage and execution time) than using other approaches (Plain EMF, MDT
OCL, CDO_OCL, SQL) for querying CDO models?

This chapter is structured as follows: �rst, the experiment scenario is
presented describing the context, the execution environment and metrics, the
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queried models and the executed queries. Then, obtained results are shown and
analysed.

7.1 Experiment Scenario

This section describes the scenario used to perform this experimental evaluation,
and it provides: overview of the case study, explanation of the execution
environment and obtained metrics, queried models, and executed queries.

7.1.1 Context

The Graph-Based Tools 2009 (a.k.a. GraBaTs'09) Reverse Engineering Case
Study proposes a set of tasks for the benchmark of model queries and
transformations [Gra09, Sot09]. The �rst task of the case study focuses on the
scalability of approaches in terms of performance and memory usage.

This case study has been used in a large amount of works: to evaluate
persistence of models in graph databases [Bar14]; to evaluate persistence
of models using Morsa [EP11]; at works that are focused on model query:
Hawk [Bar13] or MorsaQL [EP14]; and to evaluate a framework to benchmark
scalability of NoSQL data-stores [Sha14]. Although the used metamodel
is di�erent, GraBaTs'09 query has been also used in the evaluation of
NeoEMF/Graph [Ben14] and NeoEMF/Map [Góm15b].

Reverse Engineering Case Study models conform to the JDTAST domain
metamodel. This metamodel contains abstractions of the Java source code.
The case study provides the implementation of JDTAST metamodel in the
org.amma.dsl.jdt project. The metamodel is composed by three packages
(EPackage instances): Core package, which contains abstractions related to the
creation, edition and build of java programs; DOM package, which contains
abstractions for specifying java source code as a structured document; and
PrimitiveTypes package, containing abstractions for primitive types existing in
the domain (String, Boolean and Integer).

Figure 7.1 depicts a simpli�ed fragment of the metamodel extracted from
[Esp13, p. 61]. As the �gure shows, models that conform to the metamodel
have a IJavaModel root instance. This instance contains one IJavaProject
instance for each existing Java project, and IJavaProject instances contain
IPackageFragmentRoot instance that specify root package fragments. The
IPackageFragmentRoot class extends the IPackageFragment class which contains
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a set of ICompilationUnit instances. All these classes are contained by the Core
package.

Figure 7.1: Simpli�ed version of the JDTAST metamodel.

extracted from [Esp13, p. 61]

Each ICompilationUnit instance contains a CompilationUnit class instance,
which speci�es the source code of the corresponding compilation unit.
Compilation units could be of di�erent types, and it is speci�ed by the types
feature which contains an AbstractTypeDeclaration instance. This class contains
a Name instance which will specify the fully quali�ed name of the type.
AbstractTypeDeclaration class is extended by di�erent classes, one for each
existing compilation unit type. Existing types include:

• TypeDeclaration. This class speci�es types declared within the source code.

• BodyDeclaration. BodyDeclaration instances contain modi�ers
(ExtendedModi�er instances). Modi�ers can be of di�erent types,
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and they are speci�ed by classes that extend the ExtendedModi�er class.
Modi�er instances are one of these specializations, and they contain
two attributes with boolean values that indicate if the declaration is
static (static feature) and if the declaration is public (public feature).
BodyDeclaration class has di�erent specializations which includes a
specialization for declaration of methods (MethodDeclaration) or a
specialization for declaration of �elds (FieldDeclaration). In the case of
MethodDeclaration instances, the reference returnType contains a Type
instance that speci�es the type of the returned object. Type instance is
extended by di�erent classes, and SimpleType is one of them.

7.1.2 Execution Environment and Metrics

All the experiments of this experimental evaluation have been executed as a
standalone application over a Microsoft Azure1 virtual machine con�gured with
a 4 Core processor, 14GB of RAM, 200GB SSD, and running 64-Bit Windows
Server 2012 and Java SE v1.8.0. We have used Eclipse Mars with CDO 4.4.
CDO repositories have been executed in embedded mode2 to measure total
memory usage and avoid the uncertainty of connections in the execution time.
Repositories run on top of H2 v1.3.168, using the DBStore with its default
mapping, caching and pre-fetching values, and supporting audits and branches.

Evaluated queries have been expressed using di�erent query languages:

• Plain EMF. CDO provides support for executing queries using the Plain
EMF API. These queries are executed at client-side and they require to
load the entire model in-memory.

• OCL. CDO supports executing OCL queries at both client- and server-
sides. The client-side execution of OCL (a.k.a. MDT OCL) is similar to
Plain EMF and requires to load the entire model in-memory. By contrast,
CDO also supports the server-side execution of the OCL queries (a.k.a.
CDO-OCL) using the OCLQueryHandler.

• SQL. CDO con�gured with DBStore provides support for the server-side
execution of the SQL queries. SQL queries are directly executed over the
database and they do not require to load models in advance.

1Azure: https://azure.microsoft.com/en-us/services/virtual-machines/
2Read more about CDO Embedded at https://wiki.eclipse.org/CDO/Embedded
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• EOL. The MQT-Engine prototype presented at this dissertation provides
support to execute EOL queries over relational CDO repositories
(con�gured with DBStore). MQT-Engine transforms queries into SQL
and executes them in the server-side, and over the database. Hence, query
does not require to load models in advance.

In order to get reliable numbers, each query has been executed 5 times for
each evaluation case and Java Virtual Machine has been restarted for each
execution. Correctness of query-results has been ensured by automatically
comparing the results of each query using di�erent languages.

Results have been evaluated against the following quantitative metrics:

• M1: Query Result Size. M1 speci�es the number of results returned by
each query.

• M2: Average Execution Time (in seconds). The average time is calculated
from the �ve executions of the same query over same model and using same
query language.

• M3: Maximum Memory Usage (in MB). M3 includes memory used by
the CDO Client and Server. The maximum time is calculated from the
�ve executions of the same query over same model and using same query
language.

An in-house Java pro�ler has been used to collect performance and memory
usage results that correspond with M2 and M3 metrics.

7.1.3 Models

The GraBaTs'09 Reverse Engineering Case Study provides �ve di�erent models
that conform to the JDTAST domain metamodel. The size of models ranges
from 8.8MB, containing 14 java classes and more than 70k model elements, to
646MB, containing almost 6k java classes and 5M model elements.

The case study models are natively persisted using the XMI persistence. All
the experiments of this evaluation execute queries over models persisted in CDO
repositories and CDO persistence is not natively supported by the case study.
Consequently a CDO-speci�c implementation of the domain metamodel has been
provided using the CDO Model Migrator3. Therefore, XMI models have been

3More information at https://wiki.eclipse.org/CDO/Preparing_EMF_Models
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migrated to conform the CDO-speci�c implementation of the metamodel, and
then they have been persisted in CDO repositories. The migration mechanism
is based on a migration utility implemented to evaluate NeoEMF/Graph and
NeoEMF/Map [Góm15b].

Table 7.1 depicts details of the models used in this evaluation. Models Set0 to
Set4 are provided by the case study4, and each model is persisted in a separated
CDO repository. By contrast, Set5 to Set9 are CDO repositories that contain
several copies of the migrated Set4 model. The number of copies persisted in
each repository is described in `Number of models' column of the table.

Table 7.1: Main characteristics of queried models.

XMI CDO Repo. Numb. of Model Numb. of
size size models Elem. Java Classes

Set0 8,8 15.3MB 1 70,447 14
Set1 27 43.8MB 1 198,466 40
Set2 271 307MB 1 2,082,841 1,605
Set3 598 784MB 1 4,852,855 5,314
Set4 646 1.17GB 1 4,961,779 5,984

Set5 n/a 2.01GB 2 9,923,558 11,968
Set6 n/a 2.88GB 3 14,885,337 17,952
Set7 n/a 3.67GB 4 19,847,116 23,936
Set8 n/a 4.45GB 5 24,808,895 29,920
Set9 n/a 5GB 6 29,770,674 35,904

The experiments have been grouped by two di�erent con�guration factors
(F) that may impact:

• F1, Size of the model: This factor measures how the increasing size
of the model may in�uence on the performance and memory usage for
the query execution. The size measure is the number of model elements
that contains each model (see Table 7.1). Experiments grouped by this
factor use models that have been persisted in independent CDO repositories
(models from Set0 to Set4).

4More details described at http://web.emn.fr/x-info/atlanmod/index.php?title=
GraBaTs_2009_Case_Study
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• F2, Size of the repository: CDO is able to store many models in the
same repository. The experiments that are part of F2 measure how the
increasing size of the repository in�uences the performance and memory
usage. The size of the repository speci�es the number of models and
elements within the repository. For this factor, di�erent model copies have
been persisted in the same CDO repository (models from Set4 to Set9).

7.1.4 Queries

Three di�erent queries are executed over models in this experimental evaluation.
All the selected queries traverse the entire model but with increasing complexity.
They are described following:

• Q1: Number of classes (TypeDeclaration instances) that exist within the
model. Listing 7.1 illustrates the query expressed with EOL.

1 TypeDeclaration.all;

Listing 7.1: Q1 query expressed with EOL.

• Q2: Number of private methods (MethodDeclaration instances) that exist
within the model. Listing 7.2 illustrates the query expressed with EOL. As
the code shows, this query �rst obtains all theMethodDeclaration instances
(line 1), and then selects only those that contain aModi�er with the private
feature valued as true (line 2).

1 MethodDeclaration.all

2 .select(md | md.modifiers.exists(mod: Modifier|mod.

private=true));

Listing 7.2: Q2 query expressed with EOL.

• Q3: Number of singleton classes (TypeDeclaration instances) that exist
within the model. Listing 7.3 illustrates the query expressed with EOL. As
the code shows, �rst all the TypeDeclaration instances are collected (line 1).
Then, it selects all the instances that contain aMethodDeclaration instance
(line 2) which satis�es following conditions: (1) contains a modi�er with
the public feature value as true (line 3); (2) contains a modi�er with the
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static feature value as true (line 4); (3) the returnType is a SimpleType
instance (line 5); and (4) the returnType is the class itself (line 6).

1 TypeDeclaration.all

2 .select(td | td.bodyDeclarations.exists(md:

MethodDeclaration |

3 md.modifiers.exists(mod: Modifier|mod.public=true)

4 and md.modifiers.exists(mod: Modifier|mod.static=true)

5 and md.returnType.isTypeOf(SimpleType)

6 and md.returnType.name.fullyQualifiedName = td.name.

fullyQualifiedName));

Listing 7.3: Q3 query expressed with EOL.

Q3 is the complex query that is proposed by the GraBaTs 2009 Case Study.
The evaluation has been extended with two queries that have a lower complexity
level (Q1 and Q2). Table 7.2 shows the result size returned by queries when they
are executed over each model.

Table 7.2: Result size of queries for each model.

Set0 Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8 Set9

Q1 14 40 1,605 5,314 5,984 5,984 5,984 5,984 5,984 5,984
Q2 4 38 1,793 9,275 10,086 10,086 10,086 10,086 10,086 10,086
Q3 1 2 41 155 164 164 164 164 164 164

7.2 Results

This section shows and describes results obtained in the experiments. Results
are grouped by the two previously described con�guration factors (F1 and F2).

7.2.1 F1: Size of the Model

Figures 7.2 to 7.7 illustrate execution time and memory usage results required
by the queries using the di�erent query languages. Additionally, a table with the
results is included in Appendix B.

As the results show, size of the queried model has a great impact over the
time and memory required in Plain EMF and MDT OCL, and three queries show
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Figure 7.2: Execution time
results for Q1 in F1.

Figure 7.3: Memory usage
results for Q1 in F1.

Figure 7.4: Execution time
results for Q2 in F1.

Figure 7.5: Memory usage
results for Q2 in F1.

Figure 7.6: Execution time
results for Q3 in F1.

Figure 7.7: Memory usage
results for Q3 in F1.
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similar values (entire model is always loaded in memory). In Set4, these client-
side solutions require more than 6000% of time of Set0 and more than 1100% of
memory. Plain EMF requires 17-18 s and 396-513 MB for querying the smallest
model (Set0) and 1140-1166 s and 6-6.1GB for the largest (Set4). Model size
impact is slightly lower for MDT OCL as it requires 17-18s and 322-342MB for
Set0 and 1090-1101 s and 6-6.1 GB for Set4.

The impact of the model size is lower if queries are executed at server-side.
In Set4, these solutions require up to 2400% of time of Set0 and up to 800% of
memory. However, increase values are much lower than on client-side solutions.

CDO-OCL is more than 17 times faster than Plain EMF and MDT OCL, and
it only requires 1 s to execute queries in Set0. Memory usage is also reduced to
123 MB (Q1-Q2) and 67 MB (Q3). Regarding other sets, results vary depending
on the query: Q1 requires less time than Q2 and Q3, and Q2 less than Q3. For
example, in Set4 Q1 requires 8 s, Q2 22 s and Q3 28 s. However, Q3 is more
than 38 times faster than any query in Plain EMF or MDT OCL. In terms of
memory, Q1 requires less than Q2 and Q3: in Set4 Q1 needs 235 MB, Q2 636
MB and Q3 590MB. Worst memory value (636 MB) is more than 9 times lower
than the best memory usage result of the client-side solutions. SQL shows better
results: queries require less than a second and 118 MB in Set0; and less than 12
s and 375 MB in Set4. Q1 requires less time and memory than Q2 and results
are similar to CDO-OCL. In the case of Q2 it is 2 times faster than CDO-OCL
and memory usage is reduced by 40% for Set4. Q3 time and memory results
are lower than Q1 and Q2, and it is more than 4 times faster than CDO-OCL
requiring less than 50% of memory.

Performance and memory results of MQT-Engine for executing queries using
EOL are similar to SQL. Execution time results show that MQT-Engine requires
between 1 and 2 s more than SQL to be executed. The generated SQL query is
the same that is used in the SQL experiments, and it indicates that the extra-time
corresponds with the EOL to SQL transformation. MQT-Engine requires 1s and
less than 130 MB for executing queries in Set0, and less than 8 s and 315 MB
in Set4. As occurs in SQL, Q3 requires less time and memory than Q1 and Q2,
and Q1 less than Q2. For example in Set4: Q1 requires 8 s and 263 MB, Q2 12
s and 315 MB, and Q3 7 s and 263 MB. MQT-Engine results are signi�cantly
better than using the other server-side solution (CDO-OCL), and much better
than using a client-side solution (Plain EMF or MDT-OCL).

110



7.2.2 F2: Size of the Repository

Figures 7.8 to 7.13 illustrate execution time and memory usage results required
by the queries using the di�erent query languages in the experiments that are
part of the F2 factor. Additionally, a table with the results has been included in
Appendix B.

As the results show, time and memory results obtained querying F2 models
(set4-set9) indicate that the size of the repository has not in�uence in queries
executed in the client-side: in the case of Plain EMF execution time value for
executing queries is between 1140-1174 s and requires around 6 GB of memory;
in the case of MDT OCL the execution time is slightly lower (between 1081-1113
s) and also requires around 6 GB of memory.

This scenario changes in the case of the server-side solutions, where the size
of the repository has in�uence. CDO-OCL results show a constant increase of
the query execution time from one repository to the subsequent one (e.g. from
Set5 to Set6). The increase changes according to query: between 20-28 s for
Q1, 31-41 s for Q2, and 35-42 s for Q3. Memory usage increases: from 235 MB
to 695 MB in Q1; from 636 MB to 1860 MB in Q2; and from 590 MB to 2171
MB of Q3. The in�uence of the repository size is greater in Q3, which requires
more time and memory. In Set4, CDO-OCL requires around 1100% of time of
Set0 and around 330% of memory. The trend is similar in SQL, but the time
increase between repositories is lower: 4-6 s for Q1, 7-8 s for Q2, and 4-5 s for
Q3. Memory values increase from 285 MB to 849 MB for Q1; from 375 MB to
1249 MB for Q2; and from 289 MB to 968 MB for Q3. In the case of SQL,
repository-size in�uence is greater in Q2. Q3 is resolved faster and Q1 requires
less memory than others. In Set4, SQL requires around 430% of time of Set0
and around 300% of memory. While increase is similar to CDO-OCL in the case
of the memory, increment of the execution time is lower.

MQT-Engine results agree with those obtained in SQL and execution time
and memory is also in�uenced by repository size. However, in�uence is lower
than in CDO-OCL. Execution time di�erence between SQL and MQT-Engine
is only of 1-2 s (transformation time overhead). In terms of memory, MQT-
Engine uses less memory than others (including SQL): from 263 MB to 761 MB
for Q1, from 315 MB to 1136 MB for Q2, and from 264 MB to 579 MB for
Q3. The �ltering mechanism provided by MQT-Engine could be the reason of
memory usage di�erence between SQL and MQT-Engine. Results show that
the execution time and memory usage of MQT-Engine is much lower than the
required by the client-side solutions (Plain EMF and MDT OCL). Moreover,
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Figure 7.8: Execution time
results for Q1 in F2.

Figure 7.9: Memory usage
results for Q1 in F2.

Figure 7.10: Execution time
results for Q2 in F2.

Figure 7.11: Memory usage
results for Q2 in F2.

Figure 7.12: Execution time
results for Q3 in F2.

Figure 7.13: Memory usage
results for Q3 in F2.
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MQT-Engine also resolves queries faster than the natively provided server-side
version of OCL (CDO-OCL).

7.2.3 Threads to Validity

Models used within these experiments have been generated for test-case purpose.
Using industrial models and real model operations would be more realistic.

The experiments have been executed using an in-house framework. This
framework provides an in-house Java pro�ler, and it has been used to obtain
performance and memory usage metrics.

7.2.4 Conclusions

The experiments have compared the performance and memory usage results of
executing di�erent model query languages (Plain EMF, OCL at executed client-
and server-side, SQL and EOL using MQT-Engine) over models persisted in CDO
repositories.

Results of F1 show how the increasing size of the model impacts over the
performance and memory usage when executing queries using MQT-Engine, Plain
EMF, OCL (executed at client- and server-side) and SQL. The impact has great
impact over Plain EMF and client-side OCL. By contrast, impact is lower in
solutions executed at server-side, and especially in MQT-Engine and SQL which
show best performance and memory usage results.

F2 experiments show the impact of increasing size of the model repository
when executing queries. Results have shown great impact over server-side
solutions (server-side OCL, MQT-Engine and SQL). In the case of client-side
solutions (Plain EMF and client-side OCL) performance and memory results have
been similar for all model sizes. However, server-side solutions have shown much
better performance and memory usage results, and specially SQL and MQT-
Engine.

Some of the obtained results address the previously described Question 1
of this experimentation case, and shows the memory usage and execution time
required by the MQT-Engine framework for transforming EOL queries into SQL,
and executing them over the CDO repository.

Moreover, the results are compared with the results of other approaches. This
comparison addresses Question 2 of the experimentation case. Obtained results
show that MQT-Engine is a promising alternative for making queries from EOL
to CDO repositories. Results indicate that MQT-Engine is much faster and use
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less memory than model query languages executed in the client-side of CDO
(Plain EMF and OCL). Moreover, obtained results are better than the natively
supported server-side execution of the OCL queries.
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8
Experimental Evaluation: Train

Benchmark Case

This chapter describes an experimental evaluation based on the Train Benchmark
Case [Szá15]. This benchmark case uses models and queries that are close to a
real industrial domain: railway domain.

This experimentation case obtains performance metrics for executing the
proposed queries over models that are persisted using di�erent approaches (XMI,
MySQL, Neo4J and CDO). Moreover, the queries are expressed using di�erent
languages (e.g. Plain EMF, OCL, cypher, EOL). These experiments include the
evaluation of the MQT-Engine prototype con�gured to query with EOL, models
persisted in CDO repositories.

This experimental evaluation addresses the following questions:

• Question 1: Which is the performance of MQT-Engine for executing
the queries of the Train Benchmark Case over models persisted in CDO
repositories and using EOL, a model query language?

• Question 2: How are the results compared to execution time required by
other query languages (Plain EMF, OCL at client-side and OCL at server-
side) for querying models in CDO repositories?
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• Question 3: How are the results compared to performance results of
querying models persisted with other approaches (XMI, MySQL database
or Neo4J database)?

This chapter is structured as follows: �rst, the Train Benchmark Case
is explained, describing used domain metamodel, models, queries and model
modi�cations; next, the experimentation scenario is described, including
evaluated approaches and used con�gurations; and �nally, obtained results are
analysed.

8.1 Experimental Scenario

8.1.1 Context

The Train Benchmark Case has been designed for evaluating the performance
of batch and incremental queries, and it has been used in several scenarios: as
a challenge in the 8th Transformation Tool Contest held in 2015 [Szá15]; for
evaluating approaches for model query and transformations, concretely EMF-
IncQuery [Ujh15]; and as a case study of the MONDO1 project supported by the
European Commission.

The Train Benchmark Case uses models of the railway domain.
The implementation of the domain metamodel conformed by these
models (railway metamodel) is provided by the case study in the
hu.bme.mit.trainbenchmark.emf.model project.

Figure 8.1 illustrates the artifacts of the metamodel and their relationships
(hierarchy and containment). As the �gure shows, each model will contain a
RailwayContainer instance that is the root element of the model. This root
instance will contain semaphores (speci�ed by Semaphore instances) and routes
(speci�ed by Route instances). Semaphores have a signal feature with three
possible values that are speci�ed within the Signal enumeration. Routes have
an entry and exit semaphore, and they are de�ned by two or more sensors
(Sensor instances). Sensors are the artifacts that track route segments (Segment
instances) and railway switches (Switch instances). Segment instances have a
length attribute containing an integer value (EInt) that indicates the length
of the segment. Switch instances have a attribute that speci�es the current
position of the switch, and the possible values are de�ned at the Position

1Find more about MONDO project at http://www.mondo-project.org/
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enumeration: FAILURE, LEFT, RIGHT and STRAIGHT. Switches are referenced
by SwitchPosition instances that indicate the position (values from the Position
enumeration) that have the switches within each route.

Figure 8.1: Containment and hierarchy relationships in the railway metamodel

extracted from [Szá15, p. 3]

Figure 8.2 provides a di�erent viewpoint of the metamodel that focuses
on the generalization and specialization relationships of the artifacts existing
within the metamodel. As the �gure shows, Semaphore, Route, TrackElement,
SwitchPosition and Sensor classes are a specialization of the RailwayElement
class. This latter contains an attribute that identi�es each artifact (id feature).
Segment and Switch classes are a specialization of the TrackElement class.

Train Benchmark Case provides an evaluation framework for assessing
scalability of validating and re-validating well-formedness constraints over models
that conform to the previously described domain. This benchmark presents a set
of experiments composed by the typical constraints that are used on the railway
domain. Each experiment contains a set of phases, and each phase is detailed
below:

• Read Phase. In those experiments where queries are executed in-memory
(e.g. using XMI), read phase encompasses process where information
required by the corresponding persistence is loaded from the physical-
support to the memory. In cases where databases are used (e.g. using
CDO), read phase encompasses process for connecting to the database.
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Figure 8.2: Super-type relationships within the railway metamodel

extracted from [Szá15, p. 3]

• Check Phase. It encompasses query-processing, execution and also
returning the results.

• Manipulation Phase. The model is automatically changed within
this phase for simulating model modi�cations. These modi�cations are
performed on a subset of elements returned by the previous phase.
Manipulation phase uses one of the following two strategies: �xed, a
constant number of invalid model elements is modi�ed, testing in this way
e�ciency for handling small change sets; and proportional, a percentage
of the invalid model elements is modi�ed, testing in this way e�ciency for
handling large change sets.

• Re-Check Phase. In this phase, the query is re-executed over the
modi�ed model.

The Train Benchmark Case presents three di�erent scenarios for the
experiments: Batch validation scenario, fault-injection scenario and automated
model-repair scenario. Fault-injection scenario has been omitted from the
evaluation due to problems to execute it correctly when models are persisted
in CDO. Therefore, the experiments that compose this experimental evaluation
are related to the batch validation scenario or to the automated model-repair
scenario. Both scenarios are described below:

• Batch validation scenario (a.k.a. batch scenario). A set of queries
are executed over models to check di�erent constraints. Each experiment
using this scenario is composed by one execution of the read phase and
one execution of the check phase.
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• Automated model-repair scenario (a.k.a. repair scenario). This
scenario is similar to the fault-injection scenario. In this case, in the
manipulation phase a set of model elements that break the constraint are
modi�ed, decreasing the number of broken constraints. Each experiment
of this scenario executes once the read and check phases and then executes
ten successive executions of the manipulation and re-check phases.

8.1.2 Execution Environment and Metrics

All the experiments have been executed on a Kernel-based Virtual Machine
(KVM)2 con�gured with a dual-core Xeon processor, 16GB of RAM, 120GB
of storage, and running 64-Bit Ubuntu 14.04 LTS. Oracle Java SE 1.8.0_66 and
Eclipse Mars.1 Release (4.5.1) had been used. Timeout value for each experiment
is 25,000 seconds.

Di�erent persistences and query languages have been used in experiments of
this experimental evaluation:

• XMI: Natively supported by the Train Benchmark Case. XMI models are
queried using the following query languages: Plain EMF, IncQuery (two
con�gurations: local and incremental) and OCL.

• MySQL: MySQL based persistence of models is also supported by the
Train Benchmark Case, and these models are queried using SQL.

• Neo4J: Neo4J (noSQL database-engine) is also supported. These models
are queried using the Core API of Neo4J, and using Cypher (Neo4J-
speci�c graph query language).

• CDO repositories: CDO repositories are not natively supported by the
Train Benchmark Case framework. CDO-speci�c implementation has been
provided extending the classes and interfaces of the framework. Models
are persisted in CDO repositories that use DBStore with the default
con�guration and mapping strategy. CDO models are queried using Plain
EMF, OCL (executed at client-side and at server-side) and with EOL
(executed using MQT-Engine).

XMI, MySQL and Neo4J persistences use the railway metamodel natively
provided by the Train Benchmark Case. However, a CDO-speci�c implementation

2More about KVM at http://www.linux-kvm.org/
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of the metamodel has to be provided in order to support CDO repositories in the
Train Benchmark Case Study framework. The implementation has been provided
using the CDO Model Migrator3.

In order to get reliable numbers, each experiment has been repeated 5 times
for each case and for each model. A new instance of the Java virtual machine is
created for each experiment, setting the maximum heap memory value to 10GB.
Correctness of query-results has been ensured by automatically comparing the
results of each query using di�erent languages.

Obtained results have been evaluated against the following quantitative
metrics:

• M1: Reading time. M1 speci�es the average time (in seconds) required
for performing the read phase.

• M2: Checking execution time. It speci�es the average time (in seconds)
required for executing the query over the model and returning the results.

• M3: Checking result size. M3 speci�es the number of results returned by
the query on the check phase.

• M4: Rechecking execution time. It speci�es the average time (in seconds)
required for executing the query over the model and returning the results.

• M5: Rechecking result size. M5 speci�es the number of results returned
by the query in the re-check phase.

The Train Benchmark Framework natively provides an utility that is able to
collect execution time results that correspond with M1,M2 and M4 metrics.

While the read and check phases are executed in the experiments of all the
scenarios, manipulation and re-check phases are only executed at the experiments
that are part of the repair scenario. Therefore, M1, M2 and M3 metrics are
obtained in the experiments of both scenarios. By contrast, M4 and M5 are
obtained only on the experiments that are part of the repair scenario.

8.1.3 Models

Model instances are automatically generated by the Train Benchmark Case
framework. The generation mechanisms takes care for breaking symmetry during

3More information at https://wiki.eclipse.org/CDO/Preparing_EMF_Models
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generation, and it makes possible to get instances that are closer to real-world
models and also to prevent to query tools e�ciently storing and caching models
[Szá15]. Models are generated using a generation factor that increases with a
geometric progression of 2. The minimum value of the generation factor is 1
and the maximum 4096. As the generation factor increases, generated models
contain more elements and the size grows.

The Train Benchmark Case provides a utility for generating automatically
models that are persisted with XMI, MySQL and Neo4J. By contrast, generation
of CDO models is not natively supported. Therefore, an implementation for
generation of models persisted in CDO repositories has been provided. This
project extends the classes for model generation provided by the Train Benchmark
Case. Generated models are di�erent depending on the scenario where they are
executed:

• batch models: these are the models that are used in experiments of the
batch scenario. These models do not break any well-formedness constraint
and consequently, the queries that are executed against them do not return
any value. Table 8.1 describes details of these models.

Table 8.1: Batch scenario models.

Gen. Factor XMI Size (MB) CDO Repo (MB) # of objects4

batch-1 1 0.2 0.8 1,249
batch-2 2 0.3 1.0 2,137
batch-4 4 0.4 1.8 5,587
batch-8 8 1.4 3.0 11,131
batch-16 16 3.0 6.1 24,285
batch-32 32 6.4 14.0 52,105
batch-64 64 12.6 28.1 101,633
batch-128 128 24.2 59.2 194,717
batch-256 256 49.8 103.0 399,045
batch-512 512 96.9 217.3 773,125
batch-1024 1024 194.5 446.9 1,544,029
batch-2048 2048 393.6 941.2 3,112,065
batch-4096 4096 795.7 2,000.0 6,258,711

• repair models: these are the models that are used on the experiments
of the repair scenario. They contain a set of artifacts that violate the
constraints, and consequently, the queries return a collection that contains
elements where the constraints are violated. On each experiment, repair

4Data obtained by measuring the number of objects in the corresponding CDO repository.
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models are manipulated and re-checked at ten successive iterations. Table
8.2 describes models of the experiments for the repair scenario.

Table 8.2: Repair scenario models.

Gen. Factor XMI Size (MB) CDO Repo (MB) # of objects 5

repair-1 1 0.2 0.8 1,333
repair-2 2 0.3 1.1 2,512
repair-4 4 0.7 1.7 5,398
repair-8 8 1.5 3.2 12,111
repair-16 16 2.9 5.8 23,291
repair-32 32 6.4 13.2 52,102
repair-64 64 12.5 33.9 101,502
repair-128 128 25.4 62.0 204,814
repair-256 256 51.8 107.1 415,985
repair-512 512 100.5 223.2 803,264
repair-1024 1024 200.2 457.9 1,591,524
repair-2048 2048 397.0 950.1 3,144,511
repair-4096 4096 804.5 2,000.0 6,341,453

8.1.4 Queries and Manipulations

The �ve evaluated queries are proposed by the Train Benchmark Case [Ujh15].
Each query has a di�erent complexity level and they are described following:

• Q1: PosLength. Returns all the Segment instances that have zero
or negative length value. This is one of the simplest queries within the
benchmark case and it only performs an attribute check.

• Q2: RouteSensor. Searches for Sensor instances that are associated with
a Switch, the Switch belongs to a Route, and the Sensor is associated
with a di�erent Route. This is one of the type of queries that are commonly
used in real case validations for searching broken cycles.

• Q3: SemaphoreNeighbor. The query searches Route instances that
have (i) a exit Semaphore; (ii) a Sensor connected to another Sensor by
two di�erent TrackElement instances; and (iii) there is not other Route
that connects the same Semaphore and the other Sensor. This is the most
complex query within the benchmark case.

5Data obtained by measuring the number of objects in the corresponding CDO repository.
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• Q4: SwitchSensor. Returns Switch instances that have not any
associated Sensor instance. This is another simple-query that checks for
missing associations of an object.

• Q5: SwitchSet. It searches for Route instances that reference a
Semaphore with GO signal value, and additionally the Route contains a
Switch instance with a position value that is di�erent of the value speci�ed
by the SwitchPosition instance that refers to the Switch.

Appendix B includes description of these queries using EOL language.

Besides queries, the benchmark case proposes a set of model modi�cations
that are executed in the repair scenario (manipulation phase). These
modi�cations select candidates to be modi�ed from the result of the previously
executed query. Each modi�cation repairs an artifact, and the number of
elements that violate the constraint decrease. The manipulation phase of the
repair scenario uses the �xed transformation strategy with 10 value constant.
Thus, each execution of the manipulation phase repairs 10 artifacts, and the
result size is decreased in 10 values. Modi�cations for each query are detailed in
Appendix B.

The Train Benchmark Case provides the project that performs such
modi�cations if models are persisted with XMI, MySQL or Neo4J. However,
modi�cations for CDO repositories are not supported. Therefore, projects for
performing CDO modi�cations have been implemented. Modi�cations are almost
the same of the other persistences, and the di�erence is that as using CDO the
model is not loaded in advance, after performing each modi�cation is required to
store changes for persisting them. This strategy requires the generation of the
model on each independent experiment, and to avoid this action, a temporary
model copy is used. The temporary model is a copy of the generated model, and
it is automatically created before executing each experiment.

8.2 Results

This sections shows and describes the obtained results, and they have been
grouped by the scenario:
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8.2.1 Batch Scenario

Three di�erent metrics have been obtained in the experiments that are part of
the batch scenario: read time (M1), check time (M2) and result size (M3).

Result size (M3)

M3 metric results are zero for all the experiments, since the constraints speci�ed
by the queries (Q1-5) are not violated, and consequently, the queries do not
return any result.

Query execution (M1+M2)

Execution time average results for M1 and M2 phases have been included in
the Appendix B. Focusing in read phase (M1) results, they indicate that in
the case of XMI+EMF and XMI+OCL, the time required is similar for all
the experiments that are executed over same model, and independently of the
executed query. Similarly, results show that the query has not in�uence on the
time required for executing the read phase in MySQL+SQL, Neo4J+Core API
and Neo4J+Cypher experiments. Read phase requires a similar time for all the
experiments over models of the same size. This behaviour changes in the case of
both con�gurations of XMI+IncQuery (local and incremental), where the read
phase execution time is di�erent depending on the executed query. SwitchSet
is the query where the read phase is executed faster, and SemaphoreNeighbor
results are the slowest. XMI+IncQuery experiments are not able to execute the
SemaphoreNeighbor query over the largest model (batch-4096).

In the case of CDO repositories, the time required by the read phase to be
executed is similar for models of the same size and independently of the executed
query and query language. For example, read phase is executed in 3-8 seconds
for all the CDO experiments over the largest model (batch-4096). This result is
more than four times lower than the best result of the experiments in the rest of
persistences (37 seconds in RouteSensor with MySQL+SQL).

Figure 8.3 illustrates the execution time average required by each query
for di�erent query languages and persistences. Illustrated values include the
execution time of read phase (M1) and check phase (M2)6.

6Refer to Appendix B for M1 and M2 execution time results
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Figure 8.3: Execution time results for queries in the batch scenario.
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Q1:Poslength. MySQL+SQL is the fastest approach from batch-2 to batch-
128. By contrast, from batch-256 to batch-4096 MQT-Engine is the fastest
option. Di�erence between MQT-Engine results and the rest of the options
increases as the size of the queried model increases. For example, MQT-Engine
requires 7.5 seconds on batch-4096, and MySQL+SQL (the second best option)
requires 38 seconds. These options are followed by query languages that are
executed over XMI models. Results are similar for XMI+EMF and XMI+OCL
(53-56 seconds for batch-4096). XMI+IncQuery requires in most of the cases
one third more of time than XMI+OCL. These options are followed by server-side
CDO+OCL which requires 225 seconds for the largest model.

The slowest options are CDO+EMF and client-side CDO+OCL. Results for
the largest model increase to 1874 seconds in CDO+EMF, and to 2193 seconds
in client-side CDO+OCL. Neo4J+CoreAPI and Neo4J+Cypher is not able to
execute Q1 from batch-1024 to batch-4096 (memory out of bound exception).
Results for the rest of the model sizes, are better than CDO+EMF and client-side
CDO+OCL, but worse than the rest of the options.

Q2:RouteSensor. Obtained results are similar for RouteSensor query.
MySQL+SQL is the fastest option from batch-1 to batch-256 and the second
best option from batch-512 to batch-4096. Execution time increases from 0.1
seconds of the smallest model to 38.2 seconds of the largest one. MQT-Engine
is the second best option from batch-1 to batch-256, and the �rst one for
larger sizes. Execution time in MQT-Engine increases from 1 second (batch-
1) to 9.5 seconds (batch-4096). These options are followed by XMI+EMF
and XMI+OCL, and in both cases results are similar: they require around 44
seconds for the largest model. Execution time is higher for local and incremental
executions of XMI+IncQuery, and in most of the cases they require more than
double of the time of XMI+EMF. In the case of server-side CDO+OCL, results
are better than XMI+IncQuery, but worse than XMI+EMF or XMI+OCL.

CDO+EMF and client-side CDO+OCL are the options that require more
execution time. For the largest model, CDO+EMF requires 1438 seconds and
client-side CDO+OCL 2048 seconds. Neo4J experiments fail for models larger
than batch-512 (memory problems). For smaller sizes, results are better than
CDO+EMF or client-side CDO+OCL, but worse than other options.

Q3:SemaphoreNeighbor. The obtained results are di�erent for
SemaphoreNeighbor query. XMI+EMF is the best option for all model
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sizes, requiring 49 seconds for the largest model. The trend is not the same for
XMI+OCL where execution time greatly increases as the model size increases.
It requires more than 2500 seconds for batch-256, and the execution fails for
larger sizes (timeout exception). XMI+IncQuery results are similar in both
con�gurations (local and incremental), and they are not able to execute query
over largest model(timeout exception). MySQL+SQL is able to execute query
only over models smaller than batch-128. In these cases, results are worse than
previous queries (almost 1900 seconds for batch-64). Neo4J experiments are
only executed from batch-1 to batch-512, and they require 54-60 seconds for
batch-512.

In CDO options, only CDO+EMF and MQT-Engine are able to execute
experiments for all sizes. Results in MQT-Engine are much better, and it is the
second best option after XMI+EMF for batch-128 and larger models. In the
largest model, SemaphoreNeighbor requires 166 seconds in MQT-Engine and
1859 seconds in CDO+EMF. Both CDO+OCL options only execute experiments
from batch-1 to batch-128. For executed model sizes, results are better for
server-side CDO+OCL: it requires 1690 seconds for batch-128, while client-side
CDO+OCL requires 2523 seconds.

Q4:SwitchSensor. MySQL+SQL shows the best results from batch-1 to
batch-128. For larger models, it is also one of the three best options.
SwitchSensor requires 42 seconds for the largest model in MySQL+SQL.
MQT-Engine results for models larger than batch-128 show best performance.
XMI+EMF, XMI+OCL and server-side CDO+OCL results are similar to
MySQL+SQL. If we compare these four options for largest models, server-
side CDO+OCL shows best results. For example, for batch-4096, server-
side CDO+OCL requires 28 seconds, MySQL+SQL 42 seconds, XMI+OCL
49 seconds and XMI+EMF 50 seconds . Execution times are higher in
XMI+IncQuery, where local con�guration shows better performance results than
the incremental con�guration. For the largest model, local con�guration resolves
the query in 91 seconds, and incremental con�guration in 112 seconds.

Worst results are shown by CDO+EMF and client-side CDO+OCL. Results
are similar and they require more than 1420 seconds for executing Q4 over batch-
4096. Neo4J+Core API and Neo4J+Cypher experiments are not able to execute
the query over batch-1024 and larger models. Both approaches show similar
results (around 50 seconds for largest model) that are better than CDO+EMF
or client-side CDO+OCL, but worse than other approaches.
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Q5:SwitchSet . MySQL+SQL is the fastest option from batch-1 to batch-
128. MQT-Engine shows best performance results for larger sizes, and it requires
only 6.4 seconds in batch-4096. Server-side CDO+OCL is the second best option
for largest models, and it requires 29 seconds for batch-4096. It is followed
by MySQL+SQL which requires 43 seconds for querying the largest model.
XMI+EMF and XMI+OCL results are close to MySQL+SQL. Both approaches
show similar results and they require around 47 seconds for querying batch-4096.
Performance results are higher in the case of XMI+IncQuery experiments. Both
local and incremental con�guration results are similar, and they require around
75 seconds for batch-4096.

CDO+EMF and client-side execution of CDO+OCL are the slowest options,
and CDO+EMF results are better than CDO+OCL. For example, largest model
is queried in 1448 seconds with CDO+EMF and in 1732 seconds in the client-side
CDO+OCL. As occurs on previous queries, Neo4J experiments are not executed
for batch-1024 and larger models. Both con�gurations (Neo4J+Core API and
Neo4J+Cypher) show a similar trend, and they require around 50 seconds for
executing the query over batch-512.

8.2.2 Repair Scenario

Five di�erent metrics have been obtained in the experiments that are part of
the batch scenario: read time (M1), check time (M2), check result size (M3),
recheck time (M4), and recheck-result size (M5).

Check and Recheck result size (M3 and M5)

M3 returns the number of artifacts that violate the constraint that is speci�ed
by the executed query. Table 8.3 illustrates the size of the results returned by
each query for each model of the repair scenario.

M5 returns the number of results returned by the re-execution of the query
after performing a set of modi�cations. The size of the result obtained after
each recheck execution corresponds with previous_value - 10. Hence, as each
experiment executes the recheck phase ten times, the last result size value is the
�rst result size (speci�ed in Table 8.3) minus 100.
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Table 8.3: Results obtained for each query at check phase in the repair scenario.

model Q1 Q2 Q3 Q4 Q5

repair-1 92 7 1 3 2
repair-2 196 9 1 4 4
repair-4 411 26 0 5 11
repair-8 914 44 5 12 24
repair-16 1,769 70 8 24 52
repair-32 4,068 149 13 57 144
repair-64 7,853 311 20 126 287
repair-128 15,914 638 38 259 590
repair-256 32,168 1,248 72 516 1,217
repair-512 62,217 2,398 147 987 2,321
repair-1024 123,682 4,683 307 1,915 4,544
repair-2048 244,750 9,311 578 3,826 8,923
repair-4096 493,877 18,779 1,175 7,707 17,934

Query execution (M1+M2)

The time required by the experiments for executing the read phase (M1)
over CDO models of the same size is similar in the di�erent query languages.
The execution time values are low (around 4 seconds for the largest model).
Main reason for low results is that in the read phase in CDO approaches only
encompasses the connection with the repository, and it is not required to load
models in-memory.

Read phase execution times are higher in the XMI approaches, since they load
in-memory the queried model. Results show that the query has impact in the
read phase in local and incremental XMI+IncQuery. For example, in the case of
local XMI+IncQuery over largest model, read phase requires around 68 seconds
in PosLength, and 449 seconds in RouteSensor.

Figure 8.4 illustrates the execution time results that corresponds with the
sum of the time obtained in read (M1) and check (M2) phases. Each chart of
the �gure shows the results for a di�erent query (Q1-Q5). Additional tables that
show average results for each experiment are included in Appendix B.

Q1:PosLength. XMI+EMF, XMI+OCL and MySQL+SQL are the options
that show best results for Q1. Although results are similar for three approaches,
MySQL+SQL is the best for repair-512 and smaller models, and XMI+EMF
for models larger than repair-512. In repair-4096, XMI+EMF requires less than
45 seconds, MySQL+SQL 45 seconds and XMI+OCL 49 seconds. The next
fastest options are local and incremental con�gurations of XMI+IncQuery and
MQTEngine, which show slightly higher results. MQT-Engine is faster than
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Figure 8.4: Query execution time (M1+M2) in the repair scenario.
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XMI+IncQuery for the two largest models. For example, in repair-4096 MQT-
Engine requires 59 seconds, local XMI+IncQuery 68 seconds and incremental
XMI+IncQuery 72 seconds.

Client-side CDO+OCL is the option that shows worst results, and it is not able
to execute query over largest model (timeout exception). In the case of repair-
2048 it requires 747 seconds. Although they are somewhat better, CDO+EMF
results are also high. CDO+EMF does not execute Q1 over the largest model,
and it requires 579 seconds for repair-2048. Server-side CDO+OCL, Neo4J+Core
API and Neo4J+Cypher results are lower than in CDO+EMF. Three approaches
show similar results for repair-512 and smaller models. Both Neo4J options
are not able to execute the query over models larger than repair-512 (memory
exception). Server-side CDO+OCL is able to execute the query for all sizes, and
it requires 394 seconds for the largest one.

Q2:RouteSensor. MySQL+SQL shows best results from repair-1 to repair-
128, and results are similar for XMI+EMF and XMI+OCL. However, MQT-
Engine is the best option for larger models. In the case of repair-4096,
MQT-Engine requires 16 seconds, XMI+OCL 42 seconds, and XMI+EMF and
MySQL+SQL 43 seconds. Obtained results are higher at the incremental
XMI+IncQuery (e.g. almost 300 seconds for repair-4096). Although similar,
local XMI+IncQuery shows higher result for most sizes (e.g. 450 seconds for
repair-4096). In most of the cases, server-side CDO+OCL shows results slightly
higher than XMI+IncQuery options, however for largest models results are much
better (109 seconds).

CDO+EMF and CDO+OCL are the options that show worst results. They
are not able to execute Q2 over the largest model , and they require around 650
seconds for repair-2048. Both Neo4J options show similar results, and they are
not the worst for repair-512 and smaller models. However, Neo4J experiments
are not executed over repair-1024 and larger models.

Q3:SemaphoreNeighbor. XMI+EMF is the best option, and it requires 44
seconds in the largest model. Local and incremental XMI+IncQuery are the
next best options from repair-1 to repair-1024. However, IncQuery experiments
are not able to execute Q3 over repair-2048 and repair-4096. XMI+EMF and
MQT-Engine are the only options able to execute query over all sizes. MQT-
Engine is the second option for the two largest models, requiring 136 seconds
for the largest model. CDO+EMF executes query over all model sizes, with the
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exception of the largest one. CDO+EMF executes Q3 query in 1024 seconds
over repair-2048. Neo4J+Core API and Neo4J+Cypher are not able to execute
the query from repair-1024 to repair-4096 (memory exception). Both approaches
show similar results, and for repair-512, Neo4J+Cypher requires 60 seconds and
Neo4J+Core API 63 seconds.

MySQL+SQL and Client-side CDO+OCL shows worst results: the query is
successfully executed from repair-1 to repair-32. For querying repair-32, client-
side CDO+OCL requires 156 seconds and MySQL+SQL 323 seconds. Results
are slightly better in server-side CDO+OCL, and it is able to execute query over
repair-64 in 439 seconds. XMI+OCL is only able to execute the query over
repair-128 (requiring 323 seconds) or smaller models;

Q4:SwitchSensor. MySQL+SQL is the fastest option from repair-1 to repair-
128 andMQT-Engine is the fastest from repair-256 to repair-4096. MQT-Engine
resolves Q4 over the largest model in 8 seconds. Results for the largest models in
MySQL+SQL are similar to the results obtained with XMI+EMF and XMI+OCL,
and they require around 44 seconds for repair-4096. Although execution time
results are slightly higher from repair-1 to repair-1024, server-side CDO+OCL
shows better results for repair-2048 (19 seconds) and repair-4096 (40 seconds).
XMI+IncQuery results are higher and both con�gurations (local and incremental)
show similar results: local XMI+IncQuery requires almost 79 seconds over largest
model; and incremental XMI+IncQuery 88 seconds.

CDO+EMF and client-side CDO+OCL are the worst options, and they are
not able to execute query over the largest model. CDO+EMF resolves the query
in almost 653 seconds over repair-2048 and client-side CDO+OCL in almost
672 seconds. From repair-1 to repair-512 Neo4J+Core API and Neo4J+Cypher
results are better than CDO+EMF or client-side CDO+OCL. However, Neo4J
options are not able to execute the query over repair-1024 and larger models.

Q5:SwitchSet. MySQL+SQL is the fastest option from repair-1 to repair-
128. However, MQT-Engine is the fastest solution for larger models. MQT-
Engine resolves the query in less than 14 seconds over repair-4096, and
MySQL+SQL requires almost 44 seconds. XMI+EMF and XMI+OCL results
are few milliseconds higher than MySQL+SQL results for repair-512 and smaller
models. However, query is resolved faster in larger models using XMI+EMF
or XMI+OCL: around 42 seconds for repair-4096. Server-side execution of
CDO+OCL is the following faster one, and it requires 43 seconds for repair-
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4096. XMI+IncQuery results are higher than in the previously described options.
Both local and incremental con�gurations show similar results, and they require
around 68 seconds for the largest model.

CDO+EMF and client-side CDO+OCL show similar results, and they are
the slowest options. They are not able to execute query over the largest model,
and CDO+EMF requires 668 seconds for repair-2048 and client-side CDO+OCL
687 seconds. Results in Neo4J options are better than CDO+EMF or client-side
CDO+OCL for repair-512 (around 50 seconds) and smaller models. However,
they are not able to execute Q5 over repair-1024 and larger models.

Query re-execution (M4)

The experiments that are part of the repair scenario also obtain metrics that
describe the execution time for re-executing a query after performing a model
manipulation (re-check phase). Figure 8.5 illustrates the execution time required
by the experiments for executing re-check phase (M4). Each chart of the �gure
shows the results for a di�erent query (Q1-Q5). Additionally, tables that show
average results for each experiment are included in Appendix B.

Q1:PosLength. XMI+IncQuery (incremental) only requires 1 millisecond for
rechecking all model sizes. It is followed by XMI+IncQuery (local) which requires
up to 100 milliseconds for the largest model. MySQL+SQL executes the re-check
in less than a second for all sizes. Neo4J options require less than a second in the
executed model sizes. However, Neo4J experiments are not executed for repair-
256 and larger models. Re-execution results increase in the case of XMI+EMF
or XMI+OCL. XMI+EMF performs it over the largest model in 2 seconds and
XMI+OCL in almost 4 seconds. All the CDO-related options require more time
for executing the re-check. MQT-Engine is the fastest option for re-executing
the query over CDO models, and it requires 6 seconds in the largest one. Next
options are client-side CDO+OCL and CDO+EMF, however execution for repair-
4096 is not performed successfully. Server-side CDO+OCL shows higher results,
but it is able to execute query over all sizes (44 seconds in the largest model).

Q2:RouteSensor. The result scenario is similar to the scenario described at
Q1. XMI+IncQuery options, MySQL+SQL and Neo4J options require less than
a second for re-checking query over all model sizes. However, in Neo4J options,
experiments for repair-256 and larger models are not executed. Re-execution
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Figure 8.5: Query re-execution time (M4) in the repair scenario.
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results increase in the case of XMI+EMF or XMI+OCL. XMI+EMF requires 2
seconds for the largest model, and XMI+OCL requires less than 2 seconds. CDO-
related options require more time for executing the re-check, and MQT-Engine
is the fastest option over CDO models (less than 5 seconds for largest model).
CDO+EMF and server-side CDO+OCL are the next option. CDO+EMF does
not execute experiments for largest model, and server-side CDO+OCL requires
less than 10 seconds. Client-side CDO+OCL shows slower results and it does
not execute re-check over the largest model.

Q3:SemaphoreNeighbor. The recheck is executed in less than a few seconds
in XMI+EMF, XMI+OCL, XMI+IncQuery (local and incremental) and Neo4J
(Core API and Cypher). From those options, only XMI+EMF executes the re-
check phase for all model sizes. In the case of MySQL+SQL, model size has
great impact and it requires more than 40 seconds for executing the query over
repair-32. The re-check is not executed for larger models in MySQL+SQL. In
CDO-related options, CDO+EMF is the option that shows better results (15
seconds for repair-2048). However, re-check is not executed for largest model
in CDO+EMF. MQT-Engine is able to execute the recheck over all models and
it requires 130 seconds in repair-4096. Model size has greater impact over both
CDO+OCL options, and they requires more time for executing re-check. In the
case of repair-32 they require more than 115 seconds.

Q4:SwitchSensor. XMI+OCL, XMI+IncQuery (local and incremental) and
MySQL+SQL require less than a second for executing the re-check over all model
sizes. Neo4J+Core API and Neo4J+Cypher executed experiments show results
that are lower than a second. However, they do not execute the re-check from
repair-1024 to repair-4096 (memory exception in a previous phase). Required
time is increased in XMI+EMF, however it only requires around 2 seconds for
executing the re-check over repair-4096. CDO options require more time than
the rest of the options. Server-side execution of CDO+OCL is the fastest option
(almost 2 seconds for repair-4096) and it is followed by MQT-Engine (less than
3 seconds). CDO+EMF and client-side CDO+OCL show similar results, and
both options execute the recheck phase for all models except for repair-4096.
Repair-2048 requires less than 6 seconds in CDO+EMF and less than 7 seconds
in client-side CDO+OCL.
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Q5:SwitchSet . The recheck phase is resolved in less than a second for
XMI+OCL, XMI+IncQuery (local and incremental) and MySQL+SQL in all
model sizes. Neo4J experiments are not executed from repair-1024 to repair-
4096. The experiments executed over smaller model sizes show results that are
lower than a second. Obtained results are increased in XMI+EMF, however it
only requires around 2 seconds for executing the recheck over repair-4096. In the
case of the CDO options, they require more time than the previously described
options. Re-check is resolved faster by MQT-Engine (around 2 seconds for repair-
4096), and it is followed by the server-side execution of CDO+OCL (3 seconds
for repair-4096). CDO+EMF and client-side CDO+OCL are higher, and both
options show similar results and execute the recheck phase for all models except
for repair-4096.

8.2.3 Threads to Validity

The evaluation framework provides results in terms of matches (number of
solutions produced by each query) and in terms of performance (execution time).
However, the memory usage metrics have not been obtained. Reasons for this
omission is that the memory metrics obtained with the Train Benchmark Case
framework where not accurate.

Moreover, the results of these experiments correspond with the batch and
repair scenarios proposed at the case benchmark. By contrast, experiments
related to the inject scenario are not included due to problems for executing
modi�cations over CDO repositories.

8.2.4 Conclusions

Focusing on the experiments that are part of the batch scenario, can be concluded
thatMQT-Engine is the option that shows better execution results for most of the
queries (PosLength, RouteSensor, SwitchSensor and SwitchSet) over the models
that are larger than batch-128. In the case of smaller models, MySQL+SQL is
the fastest option. Regarding SemaphoreNeighbor, XMI+EMF is the fastest one
for all the model sizes. In the largest models, XMI+EMF is followed by MQT-
Engine. Is important to note that only three approaches are able to execute
SemaphoreNeighbor over all model sizes: XMI+EMF, XMI+OCL, and MQT-
Engine. In the case of Neo4J query languages, they fail for memory reasons over
models larger than batch-512.
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In the case of the repair scenario experiments, XMI+EMF is the fastest option
to execute read+check phases in PosLength and SemaphoreNeighbor queries. By
contrast, RouteSensor, SwitchSensor and SwitchSet are performed faster using
MQT-Engine. Comparing these results with the results obtained in the batch
scenario, it can be concluded that the query result size has impact over the
execution time in the PosLength query. This query returns a quantity of results
much higher than other queries. Moreover, results show that CDO approaches
require much less time for the read phase, since they do not require to load in-
memory models. The trend for Neo4J options in the repair scenario is the same
of the batch scenario: both options fail for memory reasons for models that are
larger than repair-512.

Focusing in the recheck phase, the times are much lower for the options that
query models persisted with XMI. The reason for this is that the information
is already loaded in memory. The best results for the recheck phase are shown
by XMI+IncQuery options. IncQuery is focused on the incremental changes
of models, and consequently, it is able to resolve queries faster than other
approaches. In the case of CDO options, the results show a faster re-execution
of the query for CDO+EMF and both executions of CDO+OCL. The reason is
that the information required by the query has been loaded in the check phase
execution. However, this does not occur with MQT-Engine, and it has to re-
execute the query again over the database. In this case, the execution times are
decreased with respect to the �rst execution of the check phase. Is important
to note, that the recheck phase is not executed by some options for the largest
model sizes (Neo4J options, CDO+EMF and CDO+OCL in the client-side), and
the reason for this is that these options had not been able to execute the previous
phases correctly for the corresponding model size.

Obtained results address the previously described questions:

• Question 1: Which is the performance of MQT-Engine for executing Train
Benchmark Case queries over CDO repositories and using EOL? Results
show thatMQT-Engine is able to successfully execute EOL queries in batch
and repair scenarios, and for all the evaluated model sizes.

• Question 2: How are the results in comparison to the execution time
required by other query languages over CDO repositories? Experiments
show that MQT-Engine performs better than CDO+EMF and CDO+OCL
(executed in the client- and server-side) for the �rst execution of the query.
Results that correspond with the re-execution of the query in MQT-Engine
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are also better than CDO+EMF and CDO+OCL, with the exception of
SemaphoreNeighbor where CDO+EMF performs the re-execution faster.
However, MQT-Engine is the only CDO-based approach that is able to
execute the queries over all the evaluated model sizes.

• Question 3: How are MQT-Engine results in comparison to other query
languages and persistences? The results are di�erent depending on the
executed scenario and phase. For example, in the read phase, MQT-Engine
is one of the fastest approaches for largest models since it only connects
to the CDO repository, and does not require to load models in-memory as
occurs on non-CDO options. If we focus in the �rst query execution (which
encompasses read and check phases) in the batch scenario, MQT-Engine
is the �rst option for most of the queries in the largest models, with the
exception of SemaphoreNeighbor where XMI+EMF shows better results.
For small sizes, MySQL+SQL is the best option in most of the experiments
and it is followed by MQT-Engine. Although is not the best for all queries,
MQT-Engine is one of the fastest options for �rst execution of the query in
the experiments of the repair scenario. However, in the re-execution of the
query, queries executed over XMI are resolved faster than in MQT-Engine.
Main reason is that the information is already loaded in memory. In the case
of XMI+IncQuery, incremental execution is provided and XMI+IncQuery
experiments are resolved much faster than the others. The re-execution in
MQT-Engine is not incremental. Therefore, the required time is slightly
lower, but similar to the �rst query execution.
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Part IV

Conclusion
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9
Conclusion

This chapter concludes this dissertation providing conclusions of the performed
work: �rst general conclusions are provided; then, the previously formulated
hypotheses are validated; Next, MQT-Engine limitations are identi�ed. This
chapter continues providing a comparison of the approach with the existing work,
and describing future work. The chapter ends with a list of lessons learned during
the design, implementation and evaluation phases of this dissertation.

9.1 Conclusions

Model query languages are closer to model engineers, and they are more
appropriate than persistence-speci�c query languages for them. Model query
languages are expressed in languages focused on interacting with models,
independently of the persistence mechanism. Persistence-speci�c query
languages show better performance and memory usage results when querying
models persisted in databases. However, in persistence-speci�c query languages,
engineers should be aware of the way information is persisted, and learn database
speci�c concepts and languages. Di�erences between model query languages
and persistence-speci�c query languages motivated the work presented at this
dissertation.
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Preliminary prototypes were presented at [Car15a,Car16a]. These prototypes
support transformation of EOL queries into SQL queries. Then, generated
queries are executed over an ad-hoc persistence. This persistence uses relational
databases with a metamodel-agnostic schema for persisting EMF models.

After validating the feasibility of transforming queries from a model query
language into a persistence-speci�c query language, MQT-Engine framework
was designed and implemented. This framework provides model engineers the
ability to use a model query language with the e�ciency of a persistence-speci�c
query language. MQT-Engine transforms queries expressed with a model query
language into queries expressed with a persistence-speci�c query language, and
then executes them over the persistence and at database-side.

MQT-Engine has been designed with extensibility in mind, and it provides a
set of classes to be extended by components that provide support for alternative
query languages in the framework. The framework provides QLI Metamodel
which is query language-agnostic and separates model query and persistence-
speci�c query languages during transformation. Additionally, it facilitates
inclusion of new languages within the framework.

In this dissertation, a prototype of the framework is provided. It supports
transformation of EOL queries into SQL queries, and then executes them over
a relational CDO repository containing models to be queried. The prototype
has been evaluated using two di�erent use cases: one is based on the reverse
engineering domain, and the other is based on the railway domain.

Results of the evaluation show that MQT-Engine framework is able to
transform queries and execute them over the CDO repository successfully.
Moreover, it is one of the solutions that has shown better results when querying
models persisted with CDO. If we compare MQT-Engine results with results of
other evaluated query languages, they are not always the best, but they are one
of the solutions with better results in the �rst execution of the queries.

9.1.1 Hypothesis Validation

Two hypotheses were formulated for this dissertation, and they have been
validated with the design, implementation and evaluation of MQT-Engine
framework:

Hypothesis A argues that if models are persisted using a database, querying
them using a database-speci�c query language is more e�cient in terms of
performance and memory usage. Both experimental evaluations have provided
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performance results that indicate that, in the CDO case, queries are resolved
faster using SQL, which is a persistence-speci�c query language of relational
databases. Moreover, reverse engineering benchmark case has provided memory
usage results that show that using SQL less memory is required for executing the
evaluated queries.

In the case of the �rst case study, we had distinguished two con�guration
factors: F1 and F2. F1 has evaluated the impact of the increasing size of the
model. Execution time di�erence between SQL (and MQT-Engine) and model
query languages increases with model size, and results indicate that SQL is up
to 162 times faster than a model query language (Q3 using Plain EMF and over
Set4). The same occurs with memory usage: SQL (and MQT-Engine) requires
up to 23 times less memory than model query languages executed at client-side;
and more than 2 times less memory than server-side executed OCL. F2 evaluated
the impact of the increasing size of the repository. Results show that execution
time and memory usage di�erence between SQL (including MQT-Engine) and
model query languages executed at server-side is reduced as the size of the
repository increases. However, for the largest repository, SQL is more than 40
times faster than model query languages executed at client-side, and requires up
to 10 times less memory. SQL-based solutions are up to 8 times faster than OCL
at server-side and requiring up to four times less memory.

In the second case study, MQT-Engine using SQL is one of the evaluated
solutions showing best results for all queries and in largest model sizes. MQT-
Engine shows best results for queries executed over CDO repositories, and it
is the unique CDO solution able to execute all queries over all model sizes.
However, this �rst hypothesis is not always satis�ed when a query is re-executed
consecutive times. Some experiments of the second case study have shown that
in this case, having the information loaded in memory is more e�cient in terms
of re-execution time.

Hypothesis B argues that transformation of queries from a model query
language to a persistence-speci�c query language provides model engineers the
ability to query models using a language that is closer to their knowledge,
but with the e�ciency of a persistence-speci�c query language. The MQT-
Engine prototype validates this second fact, since it provides support for
transforming EOL, a model query language, into SQL, a persistence-speci�c
query language. Generated SQL queries are executed at server-side and over a
relational CDO repository where queried models are persisted. Two experimental
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evaluations have shown that MQT-Engine is able to resolve queries in all the
executed experiments and moreover, they have shown good results in terms of
performance.

Results obtained during the MQT-Engine evaluation using the reverse
engineering case study show that the execution time di�erence between MQT-
Engine and SQL is two seconds or less. By contrast, MQT-Engine has shown
memory usage results that are better than SQL. This di�erence in execution
time and memory usage between SQL and MQT-Engine proves that the query
transformation overload is constant and small.

9.1.2 Limitations

We have developed a framework that transforms and executes model queries.
However, di�erent limitations have been identi�ed in the proposed approach,
and they are discussed below:

Support for other types of queries. MQT-Engine framework is able to
transform queries that fully traverse models. This type of queries start the
computation by obtaining all the instances of a speci�c type that exists within
the queried model, and covers the majority of computational-demanding queries
in domains such as reverse engineering [Góm15b] or railway. However, there
are other types of queries (e.g. non-traversal queries or queries that modify the
model) that are not yet supported by the approach.

Support for other query languages. Although the design of MQT-Engine
facilitates the inclusion of new model query languages and persistence-speci�c
query languages, they have to be manually implemented. This requires the
developer knowing about the query language to be included and about the QLI
Metamodel in order to implement the mapping between them.

Support for other persistences. The evaluated MQT-Engine prototype
supports querying models persisted only in relational CDO repositories using
DBStore.
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9.2 Comparison with other approaches

Model persistence. Several approaches provide model persistence facilities by
leveraging database back-ends. Each approach persists models using a di�erent
back-end: Morsa [EP13b], MongoEMF [Hun14], NeoEMF/Graph [Ben14] and
EMF Fragments [Sch13] use NoSQL database back-ends; Teneo [Ten12] uses
relational databases for persistence; and CDO [Cdo16] supports persistence in
both types (relational and NoSQL) of back-ends. All these approaches are
focused on the persistence of models using databases. On the contrary, this
dissertation is not focused directly on the persistence of models, and it provides a
query transformation and execution mechanism for queries expressed with model
query languages.

Query transformation. Model query transformation has been the focus of
other works, but most of the identi�ed approaches support transformation
of model queries for UML models [Mar99, Hei07, Cab07,Win08, AJ08, Dem09,
Ege10, Ori15, Kal16]. By contrast, MQT-Engine is a solution that supports
transformation of queries for EMF models.

EMF model query transformation is also supported in [Ber14] and [Dem09],
but they focus on transformation of OCL queries. At this stage, MQT-Engine
framework provides implementation that transforms EOL queries. Additionally,
it provides a set of classes with the aim of facilitating inclusion of new model
query languages.

In [Bar14] EOL queries are transformed into SQL queries. Generated queries
are speci�c for a concrete data-schema and persistence. In the case of MQT-
Engine prototype, generated queries are for the data-schema that is automatically
generated by DBStore in CDO. This way, it provides support for transforming
queries of di�erent domains. As occurs with model query languages, the
design of MQT-Engine aims to facilitate the inclusion of new persistences and
persistence-speci�c query languages using other mechanisms and schemas for
storing information.

Query optimization. EMF-IncQuery provides a model query language that
can be executed incrementally. This way, re-execution of queries only implies
to query and operate model parts that have changed [Ujh15]. [Wei15] presents
an approach which improves the e�ciency of model traversal queries expressed
with EOL. These two approaches provide di�erent mechanisms for improving
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query execution but on the user-side. By the contrary, MQT-Engine framework
transforms queries into a persistence-speci�c query language, and generated
queries are directly executed over persistence and at server-side.

9.2.1 MQT-Engine Classi�cation

MQT-Engine is classi�ed as follows, using the factors speci�ed at Chapter 2
and Chapter 3. Table 9.1 shows the values of classi�cation factors for query
languages in EOL and using MQT-Engine prototype. EOL is an imperative
model query language that is supported by EMF-based modelling tools. Main
di�erence between native EOL and EOL with MQT-Engine is that in the latter
one, queries are executed directly over the persistence. However, the presented
prototype of MQT-Engine does not support modi�cation EOL queries.

Table 9.1: Query language classi�cation for EOL+MQT-Engine.

Execution Abstraction-

Level

Type Modif. Supported by

EOL+MQT-Engine Persistence MQL Imperative No EMF-based

Next, MQT-Engine is classi�ed using the classi�cation factors for query
transformation approaches in Chapter 3:

• Model Type: The approach has been designed for EMF models.

• Input Language: MQT-Engine aims to support transformation and
execution of queries expressed with di�erent model query languages. The
prototype of the approach presented at this dissertation takes as inputs
queries expressed with EOL.

• Intermediate Results: MQT-Engine creates a QLI Model during the
query transformation process.

• Output: MQT-Engine targets generation of queries in di�erent
persistence-speci�c query languages for di�erent persistences. But the
prototype presented at this dissertation generates SQL queries.

• Target Persistence: As described in the previous point, the approach
aims to support di�erent persistences for EMF models. This version of the
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approach supports execution of generated queries over CDO repositories
con�gured with DBStore.

• Supports mapping? No. MQT-Engine focuses on query transformation
and execution. However, di�erent components have been implemented in
both evaluation cases in order to obtain models persisted with CDO.

• Incremental execution? No. Generated SQL queries are directly
executed over the persistence on each query execution.

• Lazy Execution? No. MQT-Engine does not provide lazy objects and
collections. However, MQT-Engine avoids loading intermediate results
when querying models, and it only obtains from persistence required results.

• Evaluation? Yes. MQT-Engine has been evaluated with two di�erent
case studies: reverse engineering case and train benchmark case. In the �rst
evaluation case, MQT-Engine has been compared with Plain EMF, OCL
(executed at client- and server-side) and SQL queries executed over CDO
repositories. Second case has compared performance results of di�erent
query languages (Plain EMF, OCL, IncQuery, Neo4J Core API, Cypher,
EOL) over di�erent persistences (XMI, MySQL, Neo4J, CDO).

9.3 Future Work

A set of tasks that could extend and improve MQT-Engine Framework proposed
at this dissertation have been identi�ed:

Re-execution of generated queries. Results obtained in the experimental
evaluation based on the Train Benchmark Case show that the generated SQL
queries require similar time in the �rst and in the posterior execution of the
queries. This is not the case of some of the evaluated client-side solutions,
where the posterior executions require less time. Therefore, a future task is the
optimization of the generated query for reducing time required by queries when
they are executed more several times.

Support other types of queries. Support transformation and execution of
other types of queries: queries that do not traverse models, modi�cation queries,
etc.

147



Support for other model query languages. Provide MQT-Engine
implementations for additional model query languages (e.g. IncQuery or OCL).
Each implementation will support mapping between the corresponding model
query language and QLI Models that conform QLI Metamodel provided by MQT-
Engine. Moreover, the approach will format the results into the data-types
expected by the query in the model query language.

Support generation of SQL queries for other data-schemas. Extend
MQT-Engine Framework with support for generation of SQL queries for relational
databases using a di�erent data-schema.

Support for other persistence-speci�c query languages. Provide MQT-
Engine implementations for generating queries using query languages that are
speci�c for other persistence back-ends. These implementations will encompass
also the execution of the generated query over the corresponding persistence.

Extend evaluation. Experimental evaluation results have shown that the
domain has impact over the performance of queries. Therefore, it would be
interesting to extend MQT-Engine evaluation with other domains, and evaluating
the approach with scenarios having di�erent types of models and queries.

9.4 Lessons Learned

These are the main lessons learned during these years of research:

Importance of querying mechanisms. Most of the identi�ed approaches
that are focused on operating large models provide alternative persistence
mechanisms for models that are database-based. However, experimental
evaluation results of this dissertation show that using the correct mechanism
for querying models is also a key factor that has impact over the performance of
a persistence mechanism.

Relational databases for persistence. Most recent approaches promote the
use of NoSQL databases for storing any type of information, which includes
persistence of models. If we focus in the size of the models, most of the
domains generate models with large size in terms of readability, but not large
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enough in terms of scalability. In these cases, using a well-structured relational
database for model persistence is enough. For example, relational databases are
the most mature and widely used back-end in CDO, which is one of the most
used persistence approach.

Performance of XMI. In the cases where the memory is not limited, using
native XMI persistence could be the solution that provides better results in terms
of performance.

There is not an optimal solution for all cases. Results obtained in this
dissertation, and also results obtained by other studies show that each persistence
and query approach is more appropriate for a di�erent domain and scenario. It
is very complicated to provide one solution that is the best for all domains.
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A
Appendix: QLI Metamodel

A.1 QLI Metamodel Overview

Figure A.1 included in this appendix depicts the overview of the QLI Metamodel.
It illustrates all the speci�ed artifacts and relationships within the metamodel.

A.2 Mapping between Model Query
Languages and QLI Models

This section includes sample QLI Models that correspond with the queries that
are expressed using di�erent model query languages. Queries are simpli�cations
of queries that are used in the Train Benchmark Case (see 8).

A.2.1 QLI Model for an IncQuery query.

Listing A.1 shows a query that has been expressed using IncQuery model query
language. The query obtains all the segment instances from the model having
length attribute value lower or equal than zero. As the �rst line of the query
indicates, the query returns artifacts collected within the segment variable. This
variable speci�es Segment instances within the model, and additionally length
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Figure A.1: QLI Metamodel.
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variable speci�es length attribute value of each segment (line 3). Line 4 of the
query adds a condition that checks if the value from the length attribute is lower
or equal than zero. This statement causes segment variable to contain only
instances satisfying the condition.

1 pattern PosLength(segment)

2 {

3 Segment.length(segment , length);

4 check(length <= 0);

5 }

Listing A.1: Sample IncQuery query.

Figure A.2 depicts the QLI Model that corresponds with the IncQuery query.
As previously described, the query returns Segment instances. Consequently, it
is speci�ed at the returnType attribute of the QLIModel instance. Additionally,
all the Segment instances existing within the models have to be traversed, and
this is speci�ed by the KindInstances instance. This instance is contained
by a ValueIterator instance that is part of the ConditionalSelection that
selects only values from the iterator that satisfy a condition. The condition
expression is de�ned at line 4 of the query (see Listing A.1). This condition is
speci�ed in the model by a ComparisonCondition instance that compares value
of the length attribute (speci�ed by the IteratedObject object) and zero value
(speci�ed by the PrimitiveValue object).

Figure A.2: QLI Model equivalent to the IncQuery query.

A.2.2 QLI Model for an EMF API query.

Listing A.2 shows a query that has been expressed using EMF API. The query
iterates all the Switch instances from the model (lines 2-8) and selects only the
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instances that have not any object referenced at the sensor reference (lines 9-14).

1 public Collection <Switch > switchSensor(Resource model) throws

Exception {

2 Collection <Switch > result = new ArrayList <Switch >();

3 TreeIterator <EObject > contents = model.getAllContents ();

4 while (contents.hasNext ()) {

5 EObject obj = contents.next();

6 if (! RailwayPackage.eINSTANCE.getSwitch ().isInstance(

obj)) {

7 continue;

8 }

9 final Switch sw = (Switch) obj;

10 if (sw.getSensor () == null) {

11 result.add(sw);

12 }

13 }

14 return matches;

15 }

Listing A.2: Sample EMF API query.

Figure A.3 illustrates the QLI Model that corresponds with the previous
query. The query returns a collection of Switches, and it is speci�ed at the
returnType attribute of the root QLIModel instance. This instance contains a
ConditionalSelection instance, abstraction for query expressions that return
only values from the input collection that satisfy a condition. Iterated values
are speci�ed by the ValueIterator instance that contains KindInstances

instance, where all the Switch instances existing within the model are collected
(lines 3-6 of Listing A.2). ConditionalSelection includes a condition that is
speci�ed by the BooleanCondition instance. This instance contains a Defined
instance, an abstraction for the condition speci�ed at lines 9 and 10 of the query
shown in Listing A.2.

A.2.3 QLI Model for an OCL query.

Listing A.3 illustrates a query that has been speci�ed using OCL. This is a
simpli�ed version of the SwitchSet query of the Train Benchmark Case and
it searches for Route instances (line 1-2) that have a Semaphore instance
with GO signal value (lines 3-4) and additionally the Route instance follows
a SwitchPosition that contains a Switch with position value di�erent of
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Figure A.3: QLI Model equivalent to the EMF API query.

the SwitchPosition.currentPosition value (line 5-6). The query returns a
collection containing Switch instances where the previous conditions are satis�ed
(line 5).

1 Route.allInstances ()

2 ->collect( route |

3 route.entry ->select(signal = Signal ::GO)

4 ->collect(semaphore |

5 route.follows ->collect(swP |

6 swP.switch ->select(currentPosition <> swP.position)

7 )

8 )

9 )

Listing A.3: Query expressed with OCL.

Figure A.4 illustrates the QLI Model that speci�es the OCL query. As
�gure shows, �rst line of the query shown in Listing A.3 is speci�ed by a
KindInstances instance. This instance is contained by a CollectInstances

instance with a ValueIterator for iterating values of the KindInstances.
These artifacts specify OCL expressions of line 2. Then, entry reference is
navigated for each iterated Route, selecting only those values that have the
signal attribute with the GO value (line 3). This EOL fragment is speci�ed by
a ConditionalSelection instance which contains a ComparisonCondition

that is the abstraction for the condition to be checked. The OCL query collects
values returned by the select, and navigates follows feature values (lines 4-5).
This is speci�ed by two CollectInstances instances in the QLI Model. For
�nishing, the query navigates the switch feature values of the SwitchPosition
instances and selects only values that satisfy the condition. It is speci�ed by
a ConditionalSelection instance that contains a ComparisonCondition

167



(abstraction used to specify the condition of the select).

Figure A.4: QLI Model equivalent to the SwitchSet query expressed with OCL.

A.3 Mapping between QLI Model and
Persistence-Speci�c Query Languages

This section illustrates queries that are expressed with di�erent persistence-
speci�c query languages. These queries are the output that would be provided
by MQT-Engine from a QLI Model instance. The selected QLI Model instance
is illustrated in Figure A.5 and speci�es a query that returns all the Segment
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instances existing within the queried model that have length attribute value
lower or equal than zero.

Figure A.5: Input QLI Model instance.
.

As �gure shows, the QLIModel instance is the root of the model and
it contains an attribute that speci�es the type returned by the query: a
collection of Segment instances. ConditionalSelection speci�es the query
that iterates an input collection values (ValueIterator instance that inputs all
the Segment instances, speci�ed by KindInstances) and selects only values
that satisfy a condition. In the case of this query the condition is speci�ed by a
ComparisonCondition instance, and it evaluates that the value of the iterated
object (IteratedObject instance) is lower or equal than zero (speci�ed by a
PrimitiveValue instance).

A.3.1 Generated Cypher Query for NeoEMF/Graph

NeoEMF/Graph provides alternative model persistence based on the Neo4J
noSQL graph database. Neo4J database engine supports querying graph
databases with a persistence speci�c graph query language known as Cypher.
Cypher queries are expressed with patterns that search the speci�ed nodes and
relationships. Listing A.4 shows the cypher query that would be generated by
MQT-Engine for the QLI Model of the Figure A.5, and it is described below:

The �rst line of the input query indicates that all the nodes within the
database are evaluated. The query returns all the Segment instances that
satisfy a condition, and it is speci�ed by ConditionalSelection in the QLI
Model. This instance iterates all the elements of the model that are instance of
the Segment type. It is speci�ed by the KindInstances abstraction which
generates line 2 of the cypher query and adds the �rst condition of line 3
(cls.name=`Segment'). The rest of the line 3 corresponds with the condition
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1 START segment=node (*)

2 MATCH (segment) -[: kyanosInstanceOf]-> (cls)

3 WHERE cls.name='Segment ' AND has(segment.length) AND segment.

length <= '0'

4 RETURN segment

Listing A.4: Cypher query for models persisted with NeoEMF/Graph.

speci�ed by the ComparisonCondition instance. As the returnType attribute
of the QLIModel instance indicates, the query returns a collection of segments
and it is speci�ed in the last line of the cypher query (line 4).

A.3.2 Generated SQL Query for an Ad-hoc persistence

Figure A.6 illustrates the data-schema of an ad-hoc persistence for models
[Car15a]. The persistence uses H2 database back-end for persistence of models,
and all the information of models is persisted in the �ve tables of the �gure.
The schema is metamodel-agnostic and persistence of models in the database is
independent of metamodels they conform to. Thus, any model can be persisted
under the same schema, so in case metamodel evolves, no changes are required
in the schema. Tables and relations shown on the schema are described below:

• Object table: A tuple in this table is created for each element of the
model. Model elements are identi�ed by a primary key in the row of the
ObjectID column and the meta-class ID (foreign key) of each element is
stored in the row of the ClassID column.

• Class table: Contains all meta-classes of the model. ClassID (primary key)
and Name of the meta-class are stored for each one.

• Feature table: It stores an ID (FeatureID column, primary key) and the
name (Name column) for each attribute and reference in the metaclasses
of the model.

• AttributeValue table: This table stores attribute values of model
elements. Attribute values are identi�ed by an ObjectID and a FeatureID
(both foreign keys), and the Value column stores the primitive value of
the attribute. In the case of single-�le attributes with empty value, default
value is stored.
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Figure A.6: Data-schema de�ned in the ad-hoc persistence.

• ReferenceValue table: This table stores references of model elements.
References are identi�ed by an ObjectID and a FeatureID (both foreign
keys). The ID of the referenced element (Value column, foreign key) and
meta-class of the referenced element (ClassID column, foreign key) identify
the referenced model element.

Listing A.5 shows the SQL query that would be generated by MQT-Engine
from the QLI Model instance and for the ad-hoc persistence with the previously
described data-schema:

The query returns a collection of Segment instance and consequently, the
SQL query returns the identi�er of each segment that satis�es the condition
(line 1). The KindInstances abstraction of the model indicates that the
ValueIterator iterates all the Segment instances within the model. The output
for these abstractions are lines 2 and 3 of the SQL query where identi�ers of
all the Segment instances within the database are obtained. However, as the
ConditionalSelection instance of the QLI Model indicates, only values that
satisfy the condition are returned by the query (line 4). This line is generated from
the ComparisonCondition instance, and it checks if the length value obtained
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1 SELECT DISTINCT Segment.ObjectID

2 FROM Object AS Segment

3 INNER JOIN Class ON Object.ClassID = Class.ClassID AND Class.

ClassID='Segment '

4 WHERE (SELECT Value FROM AttributeValue INNER JOIN Feature ON

AttributeValue.FeatureID = Feature.FeatureID AND Feature.

Name = 'length ' WHERE AttributeValue.ObjectID=Segment.

ObjectID LIMIT 1) <= (0)

Listing A.5: SQL query for models persisted with an ad-hoc persistence.

from the AttributeValue table is lower or equal than zero.
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B
Experimental Evaluation

This appendix includes extended information about the experimental evaluations
presented in Chapters 7 and 8 of this dissertation.

B.1 Queries and Manipulations

This section illustrates and describes the di�erent queries and manipulations
that are executed over models in the Train Benchmark Case-based experimental
evaluation of Chapter 8.

Q1: PosLength.

Query. Listing B.1 illustrates Q1 using EOL. As code shows, �rst all the
Segment instances are obtained (line 1), selecting then only those that have
the length value equals or lower than zero (line 2). The query returns a list
containing collections, and each collection contains a Segment instance (line 3).

Manipulation. The candidates to be modi�ed at the manipulation phase are
a randomly selected Segment instances. They are returned at the previous
execution of the PosLength query. The value of the length feature for the selected
Segment instances is increased by one.
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1 Segment.all

2 .select(segment | segment.length <= 0)

3 .collect(segment | Collection{segment });

Listing B.1: PosLength query expressed with EOL.

Q2: RouteSensor.

Query. Listing B.2 illustrates Q2 query using EOL. As code shows, �rst
all the Route instances are obtained (line 1). Next, the query collects the
SwitchPosition instance referenced by routes at the follows feature (line 3).
Additionally, Switch instances referenced at the switch feature are also collected
(line 4). Then, the query selects the Sensor instances referenced at the sensor
feature of Switch instances that are not referenced from the Route instances
(line 5). Finally, the query returns a collection containing collections with Route,
Sensor, SwitchPosition and Switch instances that satisfy the query conditions
speci�ed at the previous code lines (line 6).

1 Route.all

2 .collect( route |

3 route.follows.collect( swP |

4 swP.`switch `. collect( sw |

5 sw.sensor.select( sensor:Sensor | route.definedBy.excludes(sensor

))

6 .collect( sensor | Collection{route , sensor , swP , sw})

7 )

8 )

9 );

Listing B.2: RouteSensor query expressed with EOL.

Manipulation. The candidates to be modi�ed are the Route instances that are
returned at the previous execution of the RouteSensor query. The modi�cation
adds a new referenced Sensor in the de�nedBy feature of the route. The Sensor
instance is also obtained from the previous query execution.

Q3: SemaphoreNeighbor.

Query. Listing B.3 illustrates SemaphoreNeighbor in EOL. First, it select all the
route instances (line 1). Then, for each route, the query collects the Semaphore
instance referenced at the entry feature (line 3), the Sensors that de�ne the
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route (line 4), TrackElement instances connected to Sensors (line 5), and
TrackElement instances connected to the previously collected TrackElements
(line 6). Next, the query obtains the sensor of the TrackElements collected at
line 6. Having all these artifacts, the query traverses again all the Route instances
and selects only the routes that satisfy the conditions of the query that have
been described previously (line 8). The query returns a collection composed by
collections that contain Semaphore, Route, Sensor and TrackElement instances
that satisfy the conditions.

1 Route.all

2 .collect( route1 |

3 route1.exit.collect(semaphore |

4 route1.definedBy.collect( sensor1 |

5 sensor1.elements.collect( te1 |

6 te1.connectsTo.collect( te2 |

7 te2.sensor.collect( sensor2 |

8 Route.all.select(route2 | route2.definedBy.includes(sensor2

) and route2.entry <>semaphore and route1 <>route2)

9 .collect(route2 | Collection{semaphore , route1 , route2 ,

sensor1 , sensor2 , te1 , te2})))))));

Listing B.3: SemaphoreNeighbor query expressed with EOL.

Manipulation. The candidates to be modi�ed are a randomly selected
set of Route instances that are returned at the previous execution of the
SemaphoreNeighbor query. The modi�cation changes the entry reference value
(Semaphore instance).

Q4: SwitchSensor.

Query. Listing B.4 illustrates Q4 in EOL. As code shows, �rst all the Switch
instances are obtained (line 1), selecting then only those that do not reference
any Sensor (line 2). The query returns a list containing collections, and each
collection contains a Switch instance (line 3).

1 Switch.all

2 .select(sw | sw.sensor.isUndefined ())

3 .collect(sw | Collection{sw});

Listing B.4: SemaphoreNeighbor query expressed with EOL.

175



Manipulation. The modi�ed artifacts are a subset of the Switch instances
returned by the previous execution of the SwitchSensor query. For each
candidate, the modi�cation creates a new Sensor instance and references it from
the sensor feature of the Switch.

Q5: SwitchSet.

Query. Listing B.5 illustrates the query in EOL. As code shows, it �rst collects
all the Route instances, and then searches Semaphore instances that are
referenced by routes and have GO signal value (lines 3 and 4). Next, the query
checks if the Route instances contain Switch instances with a position value
that is di�erent of the SwitchPosition that refers to the Switch (line 5). The
query returns a collection containing collections that contain Route, Semaphore,
SwitchPosition and Switch instance that satisfy the conditions.

1 Route.all

2 .collect(route | route.entry.select(semaphore |

3 semaphore.signal = Signal#GO)

4 .collect(semaphore | route.follows

5 .collect(swP | swP.`switch `. select(sw | sw.currentPosition <>swP.

position)

6 .collect(sw | Collection{route , semaphore , swP , sw}))));

Listing B.5: SemaphoreNeighbor query expressed with EOL.

Manipulation. The modi�ed artifacts are a subset of the Switch instances
returned by the previous execution of the SwitchSet query. The modi�cation
sets the currentPosition value of the Switch, with the value that has the
SwitchPosition instance also returned by the previous query execution. This way,
positions are equal for the Switch and the SwitchPosition and the constraint is
not violated.

B.2 Results

This section presents the results that have been obtained in the experimental
evaluations of Chapters 7 and 8. Tables B.1 and B.2 correspond with the
results obtained in the experiments that are part of the Reverse Engineering Case
evaluation. Tables B.3, B.4, B.5, B.6, B.7 correspond with the results obtained
in the experiments that are part of the Train Benchmark Case evaluation.
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Table B.1: Performance and memory usage results for F1 in the Reverse
Engineering Case experiments.

F1: Size of the model
Plain EMF MDT OCL CDO OCL SQL MQT-Engine
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em
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)
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(s
)
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em

(M
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)
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em

(M
B
)
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e

(s
)

m
em

(M
B
)

ti
m
e

(s
)

m
em

(M
B
)

Q1

Set0 17 396 17 335 1 123 0 115 1 130
Set1 48 869 45 708 1 67 1 119 1 77
Set2 464 3599 443 3198 5 136 4 146 4 139
Set3 1059 5749 1018 5711 8 246 7 286 8 254
Set4 1166 6016 1090 6076 8 235 8 285 8 263

Q2

Set0 18 513 18 342 1 123 0 118 1 78
Set1 48 1026 45 686 2 67 1 65 1 79
Set2 463 3456 454 3065 10 238 4 152 5 223
Set3 1050 5701 1016 5672 20 558 10 429 12 454
Set4 1155 6095 1090 6081 22 636 11 375 12 315

Q3

Set0 18 400 18 322 1 67 0 65 1 130
Set1 48 1028 46 934 2 67 1 126 1 130
Set2 473 3407 453 3112 11 337 2 154 3 244
Set3 1069 5672 1023 5731 26 525 5 289 7 295
Set4 1140 6133 1101 6110 28 590 6 289 7 264

Table B.2: Performance and memory usage results for F2 in the Reverse
Engineering Case experiments.

F2: Size of the repository
Plain EMF MDT OCL CDO OCL SQL MQT-Engine
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e
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em
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em
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(M
B
)
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e

(s
)
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(M
B
)
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(s
)

m
em

(M
B
)

Q1

Set4 1166 6016 1090 6076 8 235 8 285 8 263
Set5 1167 6016 1092 6013 28 381 12 418 14 434
Set6 1166 6052 1104 6072 49 442 17 575 19 463
Set7 1174 5988 1100 6027 77 533 23 608 24 674
Set8 1170 6071 1102 6082 101 680 28 833 28 718
Set9 1169 6073 1081 6044 131 695 32 849 34 761

Q2

Set4 1155 6095 1090 6081 22 636 11 375 12 315
Set5 1142 6079 1098 6076 51 991 18 545 20 500
Set6 1146 6097 1109 6017 90 1192 26 811 28 685
Set7 1158 6006 1094 6055 128 1395 34 1020 34 1037
Set8 1153 6046 1095 6033 169 1675 41 1273 42 948
Set9 1154 6161 1104 6049 200 1860 48 1249 48 1136

Q3

Set4 1140 6133 1101 6110 28 590 6 289 7 264
Set5 1144 6005 1107 6074 67 1099 10 524 12 396
Set6 1155 5986 1113 6038 102 1224 15 642 17 526
Set7 1170 6043 1093 6092 144 1516 19 978 19 625
Set8 1155 6025 1095 6043 179 1771 23 969 23 620
Set9 1143 6046 1089 6064 217 2171 27 968 27 579
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Table B.3: Execution time (seconds) for read phase (M1) in the Batch scenario.

Batch M1: read phase execution time average in seconds (s)
XMI MySQL Neo4J CDO

Query Model E
M
F

O
C
L
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l
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e

O
C
L

S
er
ve
r-
S
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e

M
Q
T
-E
n
g
in
e

E
O
L

P
o
sL
en
g
th

batch-1 0.2 0.1 0.2 0.2 0.2 0.8 1.3 1.2 0.8 0.7 0.7
batch-2 0.1 0.2 0.2 0.1 0.1 0.9 0.8 0.9 0.7 0.6 0.6
batch-4 0.2 0.2 0.3 0.3 0.1 1.1 1.1 0.9 0.7 0.8 0.6
batch-8 0.3 0.7 0.5 0.5 0.1 1.5 1.4 0.7 0.7 0.7 0.7
batch-16 0.4 0.7 0.8 0.8 0.2 2.2 2.2 0.7 0.7 0.7 0.7
batch-32 0.5 0.8 1.2 1.2 0.3 3.5 3.4 0.8 0.7 0.7 0.7
batch-64 0.8 1 1.6 1.7 0.5 5.7 5.2 1 1 1 1
batch-128 1.3 1.3 2.5 2.6 0.8 11 10.6 1.2 1.1 1.1 1.1
batch-256 2.3 2.4 4.7 4.8 1.7 22.4 23.6 1 0.9 1 0.8
batch-512 4.6 5.1 8.9 8.4 3.6 50.1 51.4 1.8 1.7 1.7 1.6
batch-1024 10 9.5 17.6 17.8 7.9 2.9 2.8 3.6 2.5
batch-2048 23.3 22.6 36.8 37.6 17.4 3 3.7 4.1 3.2
batch-4096 50.2 44.7 77.6 82.7 38.4 3.8 3.9 3.5 3.8

R
o
u
te
S
en
so
r

batch-1 0.1 0.1 0.1 0.1 0.1 0.8 0.9 0.9 0.8 0.7 0.8
batch-2 0.1 0.1 0.2 0.2 0.1 0.9 0.9 0.8 0.7 0.6 0.8
batch-4 0.2 0.2 0.3 0.4 0.1 1.1 1.1 0.7 0.8 0.7 0.9
batch-8 0.3 0.3 0.6 0.6 0.1 1.5 1.5 0.8 0.7 0.7 0.9
batch-16 0.4 0.3 0.9 0.8 0.2 2.4 2.1 0.7 0.7 0.7 1
batch-32 0.6 0.6 1.2 1.2 0.3 3.5 3.3 0.8 0.8 0.7 1
batch-64 0.9 0.8 1.6 1.8 0.5 6 5.3 1.1 1.1 1 1.1
batch-128 1.5 1.2 2.9 3.2 0.8 10.6 10.3 1.2 1.3 1.1 1.3
batch-256 2.4 2.2 5.9 6 1.8 22.9 22.6 1 1.1 0.8 1
batch-512 4.2 3.9 10.6 11.5 3.6 52.6 51.3 1.8 2.4 1.7 1.6
batch-1024 9.8 9.4 23.8 25.6 7.9 3 2.8 2.6 2.4
batch-2048 23.4 20 54.1 58.6 17.5 3.2 2.8 3 3.1
batch-4096 45.2 42.7 119 122.5 37.8 8.5 3.8 4 4

S
em

a
p
h
o
re
N
ei
g
h
b
o
r

batch-1 0.1 0.1 0.2 0.1 0.1 0.8 0.9 1 0.9 0.7 0.6
batch-2 0.1 0.1 0.2 0.2 0.1 0.9 1 0.7 0.8 0.6 0.6
batch-4 0.2 0.2 0.3 0.4 0.1 1.1 1.1 0.7 0.7 0.7 0.6
batch-8 0.3 0.2 0.5 0.5 0.1 1.5 1.5 0.7 0.7 0.7 0.6
batch-16 0.5 0.3 0.9 0.9 0.2 2.4 2.2 0.7 0.7 0.7 0.6
batch-32 0.6 0.5 1.3 1.3 0.3 3.7 3.6 0.8 0.8 0.7 0.6
batch-64 0.9 0.8 2.5 2.3 0.5 5.1 5.5 1 1 1 0.8
batch-128 1.3 1.3 4.7 5.1 11.6 9.8 1.2 1.2 1.2 1
batch-256 2.6 2.3 10 10.1 24 22.6 0.9 0.8
batch-512 4.5 21.7 23.5 47.7 49.4 1.7 1.5
batch-1024 10.1 47.1 45 2.7 2.5
batch-2048 21.6 122.4 113.1 2.6 3.2
batch-4096 45.3 3.7 4.1

S
w
it
ch
S
en
so
r

batch-1 0.1 0.1 0.1 0.2 0.1 0.8 0.8 0.8 0.8 0.7 0.6
batch-2 0.1 0.1 0.2 0.3 0.2 0.9 0.9 0.7 0.8 0.6 0.6
batch-4 0.2 0.2 0.3 0.4 0.1 1.1 1 0.7 0.8 0.6 0.6
batch-8 0.2 0.3 0.5 0.6 0.2 1.6 1.6 0.7 0.8 0.7 0.6
batch-16 0.4 0.4 0.9 0.9 0.2 2.2 2.2 0.7 0.9 0.7 0.6
batch-32 0.6 0.6 1.1 1.4 0.3 3.4 3.3 0.7 0.8 0.7 0.9
batch-64 0.9 0.9 1.7 2.3 0.5 6.2 5.5 1 1.2 1 1.2
batch-128 1.4 1.3 2.8 3.2 1 10.6 9.7 1.2 1.3 1.2 1.2
batch-256 2.3 2.6 5 5.9 2.1 23.3 22.8 0.9 1.4 1.4 0.8
batch-512 4.3 4.3 8.5 10.1 4.1 52.8 48.7 1.8 1.8 1.9 1.7
batch-1024 10 9.4 20.2 22.5 9 2.6 2.7 2.8 2.6
batch-2048 23.2 22 45.1 52.1 20.2 2.6 2.9 3.6 3.4
batch-4096 47.6 45.8 91.5 111.9 41.9 5.5 4.7 4.1 4

S
w
it
ch
S
et

batch-1 0.1 0.1 0.1 0.1 0.1 0.9 0.8 0.8 0.9 0.7 0.6
batch-2 0.1 0.1 0.2 0.1 0.1 0.9 0.9 0.7 0.7 0.7 0.6
batch-4 0.2 0.2 0.3 0.3 0.1 1.1 1.1 0.7 0.7 0.7 0.6
batch-8 0.3 0.3 0.4 0.4 0.2 1.5 1.5 0.7 0.7 0.7 0.6
batch-16 0.4 0.4 0.6 0.7 0.2 2.3 2.3 0.7 0.7 0.8 0.6
batch-32 0.6 0.6 0.9 0.9 0.3 3.7 3.6 0.7 0.8 0.7 0.6
batch-64 1.2 0.9 1.5 1.3 0.5 6 5.1 1 1 1.1 0.9
batch-128 1.3 1.4 2.7 2.4 1 11.2 10.3 1.2 1.2 1.3 1
batch-256 2.5 2.6 4.4 4.6 2 23.6 24.3 0.9 0.9 1 0.8
batch-512 4.4 4.8 7.6 7.9 4.3 54.1 47.5 1.7 1.7 2 1.6
batch-1024 10 9.6 16.7 15.3 9 2.5 2.7 2.9 2.6
batch-2048 23.5 22.1 34.8 34.9 19.8 3 2.8 3.6 3.3
batch-4096 49.2 45.8 78.3 71.9 43.3 3.7 4.6 3.6 4
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Table B.4: Execution time (seconds) for check phase (M2) in the Batch scenario.

Batch M2: check phase execution time average in seconds (s)
XMI MySQL Neo4J CDO

Query Model E
M
F
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e

E
O
L

P
o
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g
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batch-1 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.3 0.7 0.3 0.1
batch-2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.3 1.0 0.4 0.1
batch-4 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.8 1.9 0.6 0.1
batch-8 0.0 0.1 0.0 0.0 0.0 0.0 0.3 2.7 3.0 1.0 0.1
batch-16 0.0 0.2 0.0 0.0 0.0 0.1 0.4 4.9 5.0 1.7 0.1
batch-32 0.0 0.2 0.0 0.0 0.0 0.1 0.6 8.8 9.3 2.6 0.2
batch-64 0.1 0.2 0.0 0.0 0.0 0.1 0.8 16.2 16.7 3.6 0.2
batch-128 0.1 0.3 0.0 0.0 0.0 0.2 0.5 27.3 32.5 7.3 0.3
batch-256 0.3 0.7 0.0 0.0 0.0 1.7 0.7 56.9 62.2 15.3 0.5
batch-512 0.4 1.3 0.0 0.0 0.0 0.6 3.0 108.2 125.3 27.6 0.7
batch-1024 0.8 2.2 0.0 0.0 0.0 226.9 248.1 45.3 1.0
batch-2048 1.2 5.2 0.0 0.0 0.1 488.6 501.2 97.9 1.9
batch-4096 3.0 11.0 0.0 0.0 0.1 1870.3 2193.3 221.6 3.7

R
o
u
te
S
en
so
r

batch-1 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 0.8 0.2 0.2
batch-2 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0 1.1 0.3 0.2
batch-4 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.8 2.2 0.4 0.3
batch-8 0.0 0.0 0.0 0.0 0.0 0.0 0.4 3.0 3.4 0.5 0.3
batch-16 0.0 0.1 0.0 0.0 0.0 0.1 0.5 5.2 5.9 0.7 0.4
batch-32 0.0 0.1 0.0 0.0 0.0 0.1 0.7 9.7 10.5 1.1 0.4
batch-64 0.1 0.2 0.0 0.0 0.0 0.1 1.0 17.7 18.7 1.5 0.4
batch-128 0.1 0.2 0.0 0.0 0.0 0.2 1.5 31.9 33.8 2.8 0.5
batch-256 0.3 0.5 0.0 0.0 0.0 0.3 0.7 64.8 75.2 5.1 0.8
batch-512 0.5 0.8 0.0 0.0 0.0 0.6 1.0 115.1 140.0 8.3 0.8
batch-1024 0.6 1.8 0.0 0.0 0.1 225.3 249.2 17.4 1.5
batch-2048 1.1 3.2 0.0 0.0 0.2 562.7 497.2 37.1 2.9
batch-4096 4.6 5.5 0.0 0.0 0.4 1430.3 2044.2 69.6 5.5

S
em

a
p
h
o
re
N
ei
g
h
b
o
r

batch-1 0.0 0.1 0.0 0.0 0.0 0.0 0.4 0.8 1.2 0.9 0.3
batch-2 0.0 0.2 0.0 0.0 0.0 0.1 0.5 1.2 1.9 1.4 0.3
batch-4 0.0 0.6 0.0 0.0 0.3 0.1 0.6 2.5 4.9 3.3 0.4
batch-8 0.0 1.7 0.0 0.0 2.6 0.2 0.6 3.7 12.1 8.4 0.5
batch-16 0.0 6.4 0.0 0.0 22.9 0.3 0.9 6.6 45.1 28.6 0.8
batch-32 0.1 26.3 0.0 0.0 223.3 0.4 1.1 13.4 175.7 117.3 1.4
batch-64 0.1 98.9 0.0 0.0 1897.6 1.1 1.9 24.1 673.5 426.2 2.5
batch-128 0.1 429.4 0.0 0.0 1.2 3.7 46.1 2523.0 1689.2 4.2
batch-256 0.3 2505.0 0.0 0.0 2.2 6.2 89.1 8.8
batch-512 0.6 0.0 0.0 6.5 10.6 168.7 18.0
batch-1024 0.8 0.0 0.0 358.4 33.5
batch-2048 2.6 0.0 0.0 668.7 70.3
batch-4096 4.2 1855.4 162.4

S
w
it
ch
S
en
so
r

batch-1 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.6 0.8 0.2 0.1
batch-2 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.9 1.1 0.2 0.1
batch-4 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.7 1.8 0.2 0.1
batch-8 0.0 0.0 0.0 0.0 0.0 0.0 0.4 2.8 2.8 0.3 0.1
batch-16 0.0 0.0 0.0 0.0 0.0 0.0 0.4 5.1 5.9 0.4 0.1
batch-32 0.0 0.1 0.0 0.0 0.0 0.1 0.5 9.3 9.6 0.6 0.2
batch-64 0.1 0.1 0.0 0.0 0.0 0.1 0.8 17.2 18.9 0.9 0.2
batch-128 0.1 0.1 0.0 0.0 0.0 0.1 0.4 30.1 32.0 1.2 0.2
batch-256 0.3 0.2 0.0 0.0 0.0 0.2 0.6 65.1 64.3 2.2 0.4
batch-512 0.4 0.5 0.0 0.0 0.0 0.5 0.9 123.9 117.5 3.8 0.6
batch-1024 0.5 0.9 0.0 0.0 0.0 245.0 240.9 6.5 0.9
batch-2048 1.1 1.6 0.0 0.0 0.1 482.0 475.0 12.2 1.5
batch-4096 2.8 3.6 0.0 0.0 0.1 1422.8 1486.2 24.6 2.8

S
w
it
ch
S
et

batch-1 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 0.8 0.2 0.2
batch-2 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.9 1.0 0.2 0.1
batch-4 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.8 1.9 0.3 0.2
batch-8 0.0 0.0 0.0 0.0 0.0 0.0 0.4 2.7 3.2 0.4 0.2
batch-16 0.0 0.0 0.0 0.0 0.0 0.0 0.5 5.1 4.8 0.5 0.2
batch-32 0.0 0.1 0.0 0.0 0.0 0.1 0.6 9.0 9.5 0.7 0.2
batch-64 0.1 0.1 0.0 0.0 0.0 0.1 0.8 17.5 17.8 1.0 0.2
batch-128 0.1 0.2 0.0 0.0 0.0 0.2 1.2 31.1 30.2 1.3 0.3
batch-256 0.3 0.4 0.0 0.0 0.0 0.3 0.6 60.8 64.0 2.5 0.4
batch-512 0.4 0.6 0.0 0.0 0.0 0.4 1.0 118.9 120.1 3.7 0.5
batch-1024 0.6 1.1 0.0 0.0 0.0 234.1 244.2 6.6 0.8
batch-2048 1.1 1.9 0.0 0.0 0.0 478.0 475.9 13.6 1.5
batch-4096 2.1 6.5 0.0 0.0 0.1 1444.6 1727.6 25.6 2.4
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Table B.5: Execution time (seconds) for read phase (M1) in the Repair scenario.

Repair M1: read phase execution time average in seconds (s)
XMI MySQL Neo4J CDO
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E
O
L

P
o
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g
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repair-1 0.1 0.1 0.1 0.1 0.1 0.7 1.2 0.9 0.9 0.8 0.5
repair-2 0.1 0.1 0.2 0.2 0.1 0.8 0.8 0.8 0.9 0.8 0.6
repair-4 0.2 0.2 0.3 0.2 0.2 1.1 1 0.8 0.8 0.7 0.5
repair-8 0.2 0.2 0.5 0.4 0.2 1.5 1.6 0.8 0.9 0.7 0.6
repair-16 0.3 0.3 0.8 0.7 0.2 2 1.8 0.8 0.8 0.7 0.6
repair-32 0.5 0.5 1 1 0.4 3.4 3.2 0.8 0.8 0.8 0.6
repair-64 0.7 0.7 1.5 1.7 0.6 5.3 4.7 1.3 1.5 1.3 1
repair-128 1.3 1.2 2.4 2.5 1 9.8 8.9 1.4 1.5 1.3 0.9
repair-256 2.4 2.2 4.3 4.5 2.1 21.9 22.6 1.2 1.2 1.1 0.7
repair-512 4.1 3.9 7.4 7.3 4.3 51.4 46.3 2.3 1.9 1.9 1.4
repair-1024 7.8 8 15.3 17.1 9.4 3.2 2.8 3.1 2.4
repair-2048 17 18.8 33.4 33.5 20.1 3 2.8 3.5 3.2
repair-4096 42.1 38.7 68.6 72.3 44.7 4.2 3.8

R
o
u
te
S
en
so
r

repair-1 0.1 0.1 0.1 0.1 0.1 0.8 0.7 0.9 0.9 0.8 0.5
repair-2 0.1 0.1 0.2 0.2 0.1 0.9 0.9 0.8 0.8 0.7 0.6
repair-4 0.2 0.2 0.2 0.2 0.1 1 1 0.8 0.7 0.6 0.5
repair-8 0.2 0.2 0.4 0.5 0.2 1.4 1.4 0.8 0.7 0.7 0.4
repair-16 0.3 0.3 0.8 0.7 0.2 1.9 1.9 0.9 0.8 0.7 0.6
repair-32 0.5 0.5 1.3 1.2 0.3 3.1 3 0.9 0.8 0.5 0.5
repair-64 0.7 0.8 1.7 1.8 0.5 5.1 4.7 1.4 1.4 1.3 0.7
repair-128 1.2 1.2 2.7 2.7 1 10.7 9.3 1.4 1.5 1.2 1
repair-256 2.2 2.3 5 4.9 2.1 23.1 22.3 1.2 1.1 1 0.7
repair-512 4.2 4.4 10.1 11.9 4.3 50.2 45.3 2.2 1.8 2.1 1.3
repair-1024 7.9 7.6 23.2 22.9 9.5 3 3.9 2.9 2.4
repair-2048 17.6 16.5 50.4 51 20.3 3.1 3 3.1 3
repair-4096 40.3 37.2 449.7 297.5 43.3 3.2 3.8

S
em

a
p
h
o
re
N
ei
g
h
b
o
r

repair-1 0.1 0.1 0.1 0.1 0.1 0.7 0.7 0.9 0.9 0.8 0.5
repair-2 0.1 0.1 0.2 0.2 0.1 0.8 0.8 0.9 0.7 0.8 0.5
repair-4 0.2 0.1 0.3 0.3 0.1 1 1 0.8 0.7 0.7 0.4
repair-8 0.2 0.2 0.5 0.5 0.2 1.4 1.3 0.9 0.8 0.8 0.5
repair-16 0.3 0.3 0.7 0.8 0.2 2 1.8 0.8 0.8 0.8 0.6
repair-32 0.5 0.5 1.2 1.3 0.3 3.3 3 0.9 0.8 0.9 0.5
repair-64 0.7 0.8 2.1 2.3 4.7 4.8 1.5 1.4 0.8
repair-128 1.3 1.3 4.1 3.9 9.4 9.4 1.6 0.7
repair-256 2.4 8.5 8.4 22.1 23.5 1.2 0.5
repair-512 4.2 21 21.6 54 47.2 2.1 0.8
repair-1024 8.6 47.6 48.2 3 2.8
repair-2048 18.2 3.3 3.1
repair-4096 40.6 3.7

S
w
it
ch
S
en
so
r

repair-1 0.1 0.1 0.1 0.1 0.1 0.8 0.7 1.1 0.8 0.8 0.5
repair-2 0.1 0.1 0.2 0.2 0.1 0.9 0.8 0.8 0.8 0.8 0.6
repair-4 0.2 0.2 0.2 0.3 0.1 1.1 1 0.9 0.9 0.8 0.6
repair-8 0.3 0.2 0.5 0.4 0.2 1.5 1.3 0.8 0.9 0.8 0.5
repair-16 0.3 0.3 0.7 0.7 0.2 2.1 1.9 0.8 0.9 0.7 0.6
repair-32 0.5 0.5 1.1 1.1 0.3 3.4 3.1 0.8 1 0.8 0.6
repair-64 0.8 0.9 1.6 1.7 0.5 5.3 4.7 1.4 1.9 1.2 1.1
repair-128 1.2 1.3 2.5 2.5 1 10.4 10 1.4 1.3 1.6 0.9
repair-256 2 2.3 4.5 4.5 2 23.5 20.8 1.1 1.1 1 0.7
repair-512 3.9 4.2 8.7 7.9 4.1 46.7 43.9 2.1 1.9 2 1.4
repair-1024 7.5 7.8 18.6 18.3 8.9 2.8 3 3 2.5
repair-2048 18.3 20.7 39.1 40.7 18.9 3.1 3 3.5 3.2
repair-4096 41.1 41 78.9 88.4 44.1 3.7 4.4

S
w
it
ch
S
et

repair-1 0.1 0.1 0.1 0.1 0.1 0.9 0.7 0.9 1 0.8 0.5
repair-2 0.1 0.1 0.1 0.1 0.1 0.9 0.9 1 0.8 0.7 0.5
repair-4 0.2 0.1 0.2 0.2 0.1 1.2 1 0.8 0.8 0.6 0.5
repair-8 0.2 0.2 0.4 0.4 0.2 1.6 1.4 0.8 0.8 0.7 0.4
repair-16 0.3 0.3 0.6 0.6 0.2 2.4 1.9 0.9 0.8 0.7 0.6
repair-32 0.5 0.5 0.8 0.8 0.3 3.7 3.2 0.8 1 0.6 0.5
repair-64 0.7 0.7 1.3 1.2 0.5 6 4.8 1.4 1.4 1.4 1
repair-128 1.3 1.2 2.1 2.2 1 13.4 9.6 1.3 1.4 1.3 0.6
repair-256 2.2 2.4 4 4.1 2 25.5 20.8 1.1 1.1 1 0.7
repair-512 4.1 4.2 6.8 6.9 4.2 54.9 44.7 2.1 1.8 1.8 1.4
repair-1024 7.8 7.1 15.6 16 9.1 3 2.9 2.9 2.4
repair-2048 19 16.4 32.1 32.4 19.9 3.1 3.2 3.2 3.4
repair-4096 38 39.4 67.9 69.3 43.8 3.7 4.1
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Table B.6: Execution time for check (M2, in seconds) in the Repair scenario.

Repair M2: check phase execution time average in seconds (s)
XMI MySQL Neo4J CDO

Query Model E
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e
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E
O
L

P
o
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g
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repair-1 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.1 0.4 0.2
repair-2 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.1 1.5 0.7 0.3
repair-4 0.0 0.0 0.0 0.0 0.0 0.0 0.3 2.0 2.0 0.9 0.3
repair-8 0.0 0.0 0.0 0.0 0.0 0.0 0.3 3.3 4.4 1.5 0.5
repair-16 0.0 0.1 0.0 0.0 0.0 0.0 0.4 5.7 7.5 2.2 0.7
repair-32 0.0 0.1 0.0 0.0 0.0 0.3 0.5 11.3 13.7 4.1 1.0
repair-64 0.1 0.2 0.0 0.0 0.0 0.1 0.7 21.6 24.2 6.6 1.6
repair-128 0.1 0.3 0.0 0.0 0.0 0.2 1.1 39.8 48.8 12.1 2.8
repair-256 0.2 0.6 0.0 0.0 0.0 0.3 0.8 76.7 92.9 24.8 5.0
repair-512 0.3 1.2 0.0 0.0 0.1 0.4 3.0 159.9 167.3 52.2 8.0
repair-1024 0.6 2.2 0.0 0.0 0.1 314.8 350.0 96.9 14.8
repair-2048 1.0 3.6 0.0 0.0 0.2 576.4 744.6 179.1 28.1
repair-4096 2.7 10.3 0.1 0.0 0.3 390.3 55.1

R
o
u
te
S
en
so
r

repair-1 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.8 1.0 0.3 0.2
repair-2 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.4 1.3 0.3 0.3
repair-4 0.0 0.0 0.0 0.0 0.0 0.0 0.3 2.2 2.1 0.4 0.3
repair-8 0.0 0.0 0.0 0.0 0.0 0.0 0.4 3.9 4.0 0.7 0.2
repair-16 0.0 0.0 0.0 0.0 0.0 0.1 0.4 6.1 6.8 0.8 0.4
repair-32 0.0 0.1 0.0 0.0 0.0 0.1 0.5 11.9 12.4 1.3 0.4
repair-64 0.0 0.1 0.0 0.0 0.0 0.1 0.7 21.2 21.5 2.3 0.6
repair-128 0.1 0.2 0.0 0.0 0.0 0.2 0.6 42.4 42.8 4.1 0.9
repair-256 0.2 0.4 0.0 0.0 0.0 0.5 0.6 81.6 87.8 7.1 1.5
repair-512 0.3 0.6 0.0 0.0 0.1 1.2 3.0 159.0 159.5 14.6 2.1
repair-1024 0.6 1.2 0.0 0.0 0.1 319.5 323.1 25.9 3.7
repair-2048 1.3 2.0 0.0 0.0 0.2 648.2 645.7 50.8 6.9
repair-4096 3.0 5.4 0.0 0.0 0.4 106.4 12.7

S
em

a
p
h
o
re
N
ei
g
h
b
o
r

repair-1 0.0 0.1 0.0 0.0 0.0 0.1 0.4 1.0 1.3 0.9 0.3
repair-2 0.0 0.1 0.0 0.0 0.1 0.1 0.5 1.7 2.2 1.6 0.3
repair-4 0.0 0.4 0.0 0.0 0.4 0.1 0.5 2.8 4.5 3.4 0.4
repair-8 0.0 1.3 0.0 0.0 3.1 0.1 0.6 5.3 15.9 10.5 0.6
repair-16 0.0 4.7 0.0 0.0 24.4 0.2 0.7 9.0 34.9 31.8 0.9
repair-32 0.0 21.1 0.0 0.0 224.6 0.2 1.0 18.1 155.2 127.2 1.3
repair-64 0.1 77.8 0.0 0.0 0.6 1.5 34.1 438.5 2.4
repair-128 0.1 321.9 0.0 0.0 1.2 2.7 65.2 4.4
repair-256 0.2 0.0 0.0 4.4 5.6 128.8 8.1
repair-512 0.4 0.0 0.0 9.7 12.9 255.8 15.5
repair-1024 0.9 0.0 0.0 498.8 31.3
repair-2048 1.6 1021.4 64.9
repair-4096 3.6 132.5

S
w
it
ch
S
en
so
r

repair-1 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.9 0.2 0.1
repair-2 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.2 1.3 0.2 0.1
repair-4 0.0 0.0 0.0 0.0 0.0 0.0 0.3 2.3 2.4 0.3 0.2
repair-8 0.0 0.0 0.0 0.0 0.0 0.0 0.3 3.9 4.1 0.3 0.1
repair-16 0.0 0.0 0.0 0.0 0.0 0.0 0.4 7.0 6.5 0.4 0.2
repair-32 0.0 0.0 0.0 0.0 0.0 0.1 0.5 13.0 12.5 0.6 0.2
repair-64 0.0 0.1 0.0 0.0 0.0 0.1 0.7 22.5 22.4 1.0 0.3
repair-128 0.1 0.2 0.0 0.0 0.0 0.1 0.4 43.1 46.7 1.4 0.3
repair-256 0.2 0.2 0.0 0.0 0.0 0.2 0.4 88.9 89.5 2.5 0.5
repair-512 0.4 0.5 0.0 0.0 0.0 0.2 0.5 161.3 182.2 4.3 0.7
repair-1024 0.8 0.9 0.0 0.0 0.0 318.9 347.4 8.2 1.2
repair-2048 1.0 1.4 0.0 0.0 0.1 649.6 668.8 15.7 2.2
repair-4096 2.2 2.5 0.0 0.0 0.2 36.4 4.0

S
w
it
ch
S
et

repair-1 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.9 1.0 0.2 0.2
repair-2 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.4 1.3 0.2 0.2
repair-4 0.0 0.0 0.0 0.0 0.0 0.0 0.4 2.3 2.4 0.3 0.3
repair-8 0.0 0.0 0.0 0.0 0.0 0.0 0.4 3.9 3.9 0.4 0.2
repair-16 0.0 0.0 0.0 0.0 0.0 0.1 0.5 6.1 6.8 0.5 0.3
repair-32 0.0 0.0 0.0 0.0 0.0 0.1 0.5 12.8 13.4 0.8 0.4
repair-64 0.0 0.1 0.0 0.0 0.0 0.1 0.7 22.5 22.8 1.2 0.5
repair-128 0.1 0.2 0.0 0.0 0.0 0.2 0.5 45.3 45.6 2.1 0.7
repair-256 0.2 0.3 0.0 0.0 0.0 0.3 0.6 90.2 91.2 3.2 1.2
repair-512 0.3 0.4 0.0 0.0 0.0 0.3 0.7 165.6 187.3 5.8 1.9
repair-1024 0.8 1.3 0.0 0.0 0.0 337.3 346.7 11.1 2.8
repair-2048 1.2 1.7 0.0 0.0 0.1 664.9 684.6 20.1 4.9
repair-4096 3.9 2.6 0.0 0.0 0.1 39.5 9.5
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Table B.7: Execution time for re-check (M4, in seconds) in the Repair scenario.

Repair M4: re-check phase execution time average in seconds (s)
XMI MySQL Neo4J CDO
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E
O
L

P
o
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repair-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
repair-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
repair-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
repair-8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0
repair-16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.1
repair-32 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.1
repair-64 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.5 0.1
repair-128 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.5 0.7 0.8 0.2
repair-256 0.2 0.2 0.0 0.0 0.0 0.2 0.4 0.9 1.4 1.6 0.5
repair-512 0.3 0.5 0.0 0.0 0.0 0.2 0.5 1.9 2.5 3.0 0.8
repair-1024 0.6 0.9 0.0 0.0 0.1 3.4 5.7 6.5 1.5
repair-2048 1.3 1.9 0.0 0.0 0.2 6.2 11.5 16.4 3.0
repair-4096 2.1 4.0 0.1 0.0 0.3 43.8 6.3

R
o
u
te
S
en
so
r

repair-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
repair-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
repair-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
repair-8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
repair-16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0
repair-32 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.1
repair-64 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.2 0.1
repair-128 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.4 0.8 0.3 0.2
repair-256 0.2 0.1 0.0 0.0 0.0 0.2 0.1 0.8 1.6 0.6 0.4
repair-512 0.3 0.2 0.0 0.0 0.0 0.8 0.2 1.5 2.7 1.2 0.6
repair-1024 0.6 0.4 0.0 0.0 0.1 2.9 5.3 2.4 1.2
repair-2048 1.0 0.8 0.0 0.0 0.2 5.6 10.2 5.2 2.3
repair-4096 2.0 1.5 0.3 0.0 0.4 9.9 4.7

S
em

a
p
h
o
re
N
ei
g
h
b
o
r

repair-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.0
repair-2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.7 0.0
repair-4 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 1.4 2.0 0.0
repair-8 0.0 1.1 0.0 0.0 0.3 0.0 0.1 0.1 7.7 7.5 0.0
repair-16 0.0 4.5 0.0 0.0 2.4 0.0 0.1 0.1 23.7 27.7 0.1
repair-32 0.0 20.5 0.0 0.0 44.9 0.1 0.2 0.3 124.4 115.3 0.1
repair-64 0.1 77.3 0.0 0.0 0.2 0.4 0.5 383.0 0.3
repair-128 0.1 324.7 0.0 0.0 0.5 0.7 1.0 0.9
repair-256 0.2 0.0 0.0 0.5 1.1 1.9 2.4
repair-512 0.4 0.0 0.0 1.0 2.2 4.0 7.4
repair-1024 0.7 0.0 0.0 7.9 30.4
repair-2048 1.3 15.5 64.1
repair-4096 2.6 130.6

S
w
it
ch
S
en
so
r

repair-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
repair-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
repair-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
repair-8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
repair-16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0
repair-32 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0
repair-64 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.1 0.1
repair-128 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.4 0.1 0.1
repair-256 0.2 0.0 0.0 0.0 0.0 0.1 0.1 0.7 0.8 0.2 0.2
repair-512 0.3 0.0 0.0 0.0 0.0 0.1 0.2 1.3 1.4 0.3 0.3
repair-1024 0.5 0.0 0.0 0.0 0.0 2.6 2.7 0.4 0.7
repair-2048 1.2 0.1 0.0 0.0 0.1 5.2 6.0 0.9 1.2
repair-4096 2.1 0.1 0.0 0.0 0.1 1.7 2.5

S
w
it
ch
S
et

repair-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
repair-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
repair-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
repair-8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
repair-16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0
repair-32 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1
repair-64 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.1 0.1
repair-128 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.5 0.1 0.1
repair-256 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.8 0.9 0.2 0.2
repair-512 0.3 0.1 0.0 0.0 0.0 0.1 0.1 1.5 1.6 0.4 0.3
repair-1024 0.5 0.2 0.0 0.0 0.0 2.9 3.1 0.8 0.5
repair-2048 1.1 0.4 0.0 0.0 0.0 5.8 6.8 1.4 0.9
repair-4096 1.9 0.6 0.0 0.0 0.1 2.9 1.9
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