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Introduction

The problems addressed in this dissertation live in the intersection between Harmonic Analysis and
Geometric Measure Theory, and so one should say that they belong to the area of Geometric Analysis.
Precisely, we have analyzed relationships between singular integral operators such as the Riesz transform
with respect to general Borel measures in the Euclidean space, and metric or geometric properties of

those measures or their supports.

In the next few pages we summarize the workflow we have followed in the development of this disser-
tation and the results we have obtained, as well as some definitions of the concepts that are needed to
understand these results. The rest of pertinent definitions, auxiliary results and proofs will be found in

the next chapters.

We wish to remark, as well, that the results in Chapter 1 can be found at [G1], the ones in Chapter 2
can be found at [G2] and the ones in Chapter 3 can be found at [GT], which is a collaboration with Tolsa.
This does not mean that Chapter 1 and Chapter 2 have been developed independently by the author of

this dissertation, as all the work presented here has been done under the guidance of Professor Tolsa.

Some definitions

A measurable function k defined in R? x R?\ {(z,y) € R? x R%: x = y} is an n-dimensional Calderén-
Zygmund kernel if there are constants ¢ > 0 and 0 < § < 1 such that

k(z,y)| < ——— if 2y
|z —y|"
and o — 2/]? e ]
r—x . r—y
|k(z,y) — k(2" y)| + [k(y, 2) — k(y,2")| < “Te— gt if o —2'| < =5

Given a signed Radon measure v in R? and z € R?, we define (at least, formally)

Tv(s) = [ bep)dv(y), o € B\ supp(v)

and we say that T is a singular integral operator with kernel k. Associated with it, one defines the

truncated operators T, by
T.v(z) = / k(x,y)dv(y), z € R?
|z—y|>e

for all € > 0, and the maximal operator T, by

T.v(z) = sup |Tov(z)|, = € RY.
e>0

If 11 is a fixed positive Radon measure in R? and f € L, (u), we set

Tuf =T(fn), Tyef =Te(fu), Tpsf =Te(fp),
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although sometimes we will omit the underlying measure g in the subscript when there is no room for

confusion.

We say that T}, is bounded in L? () if there is a constant C' > 0 such that, for alle > 0, ||, - f||2(u) <
CI|fllp2(uy for all f in L*(u) and, in such a case, we say that T is a Calderén-Zygmund operator. The
norm of 7}, is the infimum of all those constants C'

Some important examples of this class of operators are:
e The Hilbert transform, which is defined for functions f € L?(R) by

Hf(z)= %p.v. a{(—y?yd

e The Beurling transform, which is defined for funcions f € L?(C) by

Bf(z) = ;p.v./(qf(})jydw.

e The n-dimensional Riesz transform, which is defined for signed Radon measures v in R%, at least

y
d
/Ix—y”+1 V)

e The Cauchy transform, which is defined for Radon measures v in C, at least formally, by

w(©)
(=

formally, by

Cv(z) =

Chapter 1: The Cauchy transform along a Lipschitz curve: an

improvement of Cotlar’s inequality and some counterexamples

In the papers [MV], [MOV] and [MOPV], Mateu, Orobitg, Pérez and Verdera showed that for certain
Calderén-Zygmund operators T (in R™ and with respect to Lebesgue measure), the classical Cotlar’s
inequality

T.f S M(Tf)+ Mf

could be improved in such a way that the maximal singular integral T f would be controlled only by the
singular integral T'f. Here, M stands for the Hardy-Littlewood maximal operator, which is defined for
f €L} (R") and z € R" by

M f(x) = sup .

—— fy)|dy.
P B )] Jnger Y

Precisely, for the Beurling transform, one has
B.f S M(Bf)
for all f € L?(C), while for the Hilbert transform, one has
H.f S M*(H)

for all f € L?(R). As Verdera points out in [MV], being able to establish this type of control for
other operators (say, for example, Riesz transforms with respect to general measures) could be a useful
tool towards solving David-Semmes conjecture, which states that the boundedness of Riesz transforms

characterizes uniform rectifiability.



In that direction, the natural first step would be to study whether an inequality like the ones above
is satisfied by the Cauchy transform C along a Lipschitz curve I'; since it is, modulo conjugation, the
one-dimensional Riesz transform with respect to H!|r (which stands for arc-length measure along I') in
the plane and it coincides with a constant multiple of the Hilbert transform when I' is a straight line.
However, we prove that, in general, this is not the case when I is the graph of a Lipschitz function.

Theorem. Consider the Lipschitz function A(x) = |z|, and let C denote the Cauchy transform along I,
the graph of A. Then, there exists f € L?>(R) such that for all ¢ > 0 and all n > 1, there exists ¢ > 0
such that

IC<f(0)] > eM™(Cf)(0).
An easy generalization of this result states that the inequality C. f < M™(Cf) will fail for every n > 1
at all points where I" has an angle.

Our second result shows that the failure of the inequality C.f < M™(Cf) is not only caused by the
non-smoothness of I', since, when I is the graph of a Lipschitz function of compact support A, it can
only hold true if A =0, that is, if I" is a straight line.

Theorem. Let A be a Lipschitz function with compact support, and let C denote the Cauchy transform
along I', the graph of A. Suppose A is not identically null, or, equivalently, that I' is not a straight line.
Then, there exists © € R such that for all ¢ > 0 there exists f € L*(R) with

Cof(z) > cM™(Cf)(x)
for alln > 1.

Finally, we prove that when I is a sufficiently smooth Jordan curve (say, C1*¢), we have C. f < M?(Cf)
for all f € L2(H'|r).

Chapter 2: Geometric conditions for the L?-boundedness of sin-
gular integral operators with odd kernels with respect to mea-

sures with polynomial growth in R?

In the paper [T3], Tolsa proved that the L?(u)-boundedness of the Cauchy transform with respect to
a Radon measure p in C is a sufficient condition for the L?(u)-boundedness of all odd and sufficiently
smooth 1-dimensional convolution-type singular integral operators with respect to pu. To do so, he relied
on a suitable corona decomposition for measures with linear growth and finite curvature (in particular,
for those measures p for which C,, is bounded in L?(y)) that could not easily be generalized for higher
dimensions, since curvature is only available in this setting.

Using a new Corona Decomposition introduced by Azzam and Tolsa in [AT], we have proved the
following result:

Theorem. Let i be a finite Radon measure in R? with polynomial growth of degree n and such that, for
all balls B C R* with radius r(B),

") 2 dr
/ / b2 (2, 7)20) (0, r)—dp(w) < p(B).
BJo r
Then, all singular integral operators T}, with kernels in K™(R?) are bounded in L?(p).
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Let us just remark here that ¢} (z,r) stands for the n-dimensional p-density of the ball B(xz,r), i.e.,

p(B(x,r).

92(95, r)= o

that 8 5(x,r) stands for Jones’s Ba-coefficient of the ball B(z,r) with respect to p, i.e.,

Fialer) =iyf (7‘(113)" J, (dij(g)m)?d“(y))é |

where the infimum is taken over all n-planes L C R%; and that K" (R?) is a family of odd and sufficiently

smooth n-dimensional convolution-type Calderén-Zygmund kernels.

Using this result, we obtain an interesting estimate for the Lipschitz harmonic capacity in the spirit
of the comparability between the analytic capacity v and the capacity vy obtained by Tolsa in [T2],
and which could serve as a first step towards characterizing those sets that are removable for Lipschitz
harmonic functions in a metric-geometric way. Recall that the Lipschitz harmonic capacity of a compact

set £ C R? is the natural higher-dimensional analog of analytic capacity, and is defined by
K(E) = sup [(Ap, 1),

where the supremum is taken over all Lipschitz functions ¢: R — R that are harmonic in R? \ E and
satisfy ||Vlleo < 1.

The result we have obtained is the following:

Corollary. Let E be a compact set in R*T1. Then,
K(E) Z sup p(E),

where the supremum is taken over all positive Borel measures p supported on E such that

0 dr
sup {Hﬁ(x,R) +/O Bmg(aj,r)zt?z(m,r)r} <1

zERP1, R>0

In fact, in order to characterize removable sets for Lipschitz harmonic functions in a metric-geometric
way, one would need to have = instead of 2 in the inequality above. It is worth remarking that Azzam

and Tolsa have been able to obtain this type of inequality for the analytic capacity ~ in [AT].

Chapter 3: The Riesz transform and quantitative rectifiability

for general Radon measures

In the paper [NToV1], Nazarov, Tolsa and Volberg solved David-Semmes conjecture affirmatively in
the codimension 1 case, that is, they proved that given an n-AD-regular measure in R"*1, the L?(u)-
boundedness of the n-dimensional Riesz transform implies the uniform n-rectifiability of p. Using tech-
niques developed in that work and in some others that are closely related, we obtain the following quan-
titative result that is valid for Radon measures in R®*! with polynomial growth of degree n. To state it,

denote by R the n-dimensional Riesz transform in R"*!; for a Radon measure p in R**! f € L1 (p)

loc
and A C R"™! with pu(A) > 0, set
1 /
m = — du;
M7A(f) ,UI(A) A f ,U

for a ball B ¢ R*t!
P.(B) =) 2776,(2B),
=0

10



and for a hyperplane L in R*t!

£iB) = o [ o)

Theorem. Let ji be a Radon measure on R and B C R™™! a ball so that the following conditions
hold:

(a) For some constant Co > 0, Cy *r(B)"* < u(B) < Cor(B)™.

(b) P,(B) < Co, and p(B(z,r)) < Cor™ for allz € B and 0 < r < r(B).

(c) There is some n-plane L passing through the centre of B such that for some 0 < § < 1, 55,1(3) <9.
(d) Ry, is bounded in L*(p| g) with ||R, pll2(um)—12(uls) < Ci-

(e) For some constant 0 < & < 1,
[ 1Ru(@) =m0, Ry du(a) < < ().

Then there exists some constant T > 0 such that if §, e are small enough (depending on Cy and C1), then
there is a uniformly n-rectifiable set I' C R" ™1 such that

pBNOTI) =7 u(B).

Furthermore, the constant T and the uniform rectifiability constants of I' depend on all the constants

above.

In particular, this result ensures the existence of some piece of positive p-measure of B N I" where
and the Hausdorff measure H" are mutually absolutely continuous. This fact, which at first sight may

appear rather surprising, is one of the main difficulties for its proof.

The main motivation for this result was the quantitative theorem by Léger on Menger curvature, and
in fact one may think that this theorem is its higher-dimensional analog for Riesz transforms. Some
details about this analogy are explained in Chapter 3, although we wish to remark now that the absence
of a tool like Menger curvature makes the proofs be substantially different. Finally, we wish to remark
that this result has turned out to be an essential tool for the solution of an old question on harmonic

measure that will appear in a work by Azzam, Mourgoglou and Tolsa [AMT].

A remark about notation

As it is usual in Harmonic Analysis, a letter ¢ (or C, or any other) will denote an absolute constant
that may change its value at different occurrences. Constants with subscripts will retain their value at
different occurrences, at least inside the same chapter of this dissertation. The notation A < B means
that there is a positive absolute constant C' such that A < CB, and A =~ B is equivalent to A < B < A.

11
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Chapter 1

The Cauchy transform along a
Lipschitz curve: an improvement of
Cotlar’s inequality and some

counterexamples

1.1 Introduction

We say that a measurable function k defined in R x R4\ {(x,y) € R? x R?: z = y} is an n-dimensional
Calderén-Zygmund kernel if there are constants ¢ > 0 and 0 < § < 1 such that

k(z,y)| < —— if z#y
[z —yl|?
and s
T— i T—y
e3) = )] + () = k()] < e it o o) < 52, (1)

Given a signed Radon measure v in R? and x € R?, we define

Tv(x) = /k‘(x,y)du(y), z € R\ supp(v)

and we say that T' is a singular integral operator with kernel k. The integral above need not be convergent
for = € supp(v), and this is why one introduces the truncated operators associated to 7', which are defined,

for every € > 0, by
o) = [ hlo)dny). @ <R
lo—y|>e

Notice that the integral above is absolutely convergent if, for example, |v|(R?) < oc.

1
loc

If u is a fixed positive Radon measure in R? and f € L} (1), we set

T, f(x) = T(fu) (@), = € R\ supp(n)

and, for € > 0,

Tpef(x) = To(fu)(x), = € R
We say that 7T}, is bounded in L?(y) if there is a constant C' > 0 such that, for all & > 0, |[T, . f||2(4) <
C|f|lL2(uy for all f in L?(u) and, in such a case, we say that T is a Calderén-Zygmund operator. The

13



norm of T}, is the infimum of all those constants C' (the same idea is used to define the boundedness of T},

in other spaces). Some of the most important examples of this class of operators are the n-dimensional

/ |z — ylz“dl]( )

and its one-dimensional analog in R?2 = C, the Cauchy transform, defined by

dv(¢)
(-2

Riesz transform, given by

Cv(z) =

Regarding the Cauchy transform, a particularly interesting case is the one that arises when p is the
arc-length measure (or some measure comparable to this) supported on a Lipschitz graph. To be more
precise, let A: R — R be a Lipschitz function with Lipschitz constant A; > 0, and let I" ¢ RZ = C be its
graph, which we parametrize by

z(x) =z +iA(zx), xR

We define a measure p on I" by
n(z(E)) = |El,

where E is any Borel subset of R. We will normally call C,, the Cauchy transform along I'. Recall
that, since A is Lipschitz, it is differentiable almost everywhere and, furthermore, its Lipschitz constant
coincides with ||A'||cc. Moreover, it is easy to check that the measure p that we are considering is

comparable to the arc-length measure on I'.

In [C], Calderén proved that C,, is bounded in L?(u) when ||A||w is sufficiently small. Later, in
[CMM], Coifman, McIntosh and Meyer proved that C, is bounded in L?(u) for every Lipschitz function
A. Tt also follows from the work of Calderén that

pv-Cuf(2) = lim e f(2)

exists for a.e. z € supp(u) for all f € L?(u), and, as a result, we can think of C,, to be defined as a
principal value operator.

All the considerations regarding the Cauchy transform along I" can be posed in terms of its parametrized
version, which, abusing notation and language, will be again denoted by C and called the Cauchy trans-
form along I'. It is defined, for f € L*(R) and z € R, by

- fy)
Cie) = | i 2y

Associated with it, we consider as well the truncated operators

_ _ Iy
Cile) = /| W)@

and the maximal operator

Cof(x) = sup|Ce f()|.

e>0
Notice that the truncated operators C. are not the exact analogues to the truncated operators C, . defined

above, which would correspond to

5 ) = f(y)
Cefle) = /|z(y)z(w)>5 z(y) — 2(z)

We will deal with this issue later.

14



From the standard Calder6n-Zygmund theory, we obtain that C is bounded in LP(R) for 1 < p < oo,
it is bounded from L(R) to L1*(R) and from L>(R) to BMO(R), and it satisfies the classical Cotlar’s
inequality, i.e., for all f € L?(R) and all = € R,

Cof(x) S M(CF)(x) +Cf(x),
where M is the Hardy-Littlewood maximal operator.

In the papers [MOPV], [MOV] and [MV], Mateu, Orobitg, Pérez and Verdera study the problem of
controlling a maximal singular integral T f in terms of the corresponding singular integral Tf. As it is
stated in those papers, one reason to consider this problem is to gain a better understanding of David-
Semmes conjecture regarding the possibility of characterizing uniform rectifiability by the boundedness
of the Riesz transforms (see [DS1]).

Next we describe some of the results proved in those papers.

Definition 1.1.1. A higher-order Riesz transform is a Calderdn-Zygmund operator defined, for f €
L2(R"), by

Pz —vy)

7f(a) = po. | ) Fy)dy,

re [T —y|”
where P is a harmonic homogeneous polynomial of degree d > 1. We say that T is odd (respectively,
even) if d is odd (respectively, even).

Theorem A. Let T be a higher order Riesz transform, and let T, be the associated mazimal operator.
Then,

1. If T is even, then for all f € L*(R") and all x € R,
Tof(x) S M(Tf)(x).
2. If T is odd, then for all f € L*(R") and all v € R™,
T.f(x) S M*(Tf)(=).
Notice that, in particular, for the Hilbert transform we have
H. f(z) S M?(Hf)(x)
for all f € L%(R) and all z € R.

Definition 1.1.2. A smooth homogeneous singular integral operator is a singular integral operator
which is defined, for f € L*(R™), by

Tf(z) = p.v./ Az =)

fy)dy,
e Jo g 1@

where 2: R® — C is a homogeneous function of degree 0 whose restriction to the unit sphere S*~! is of
class C*° and satisfies the cancellation property

/ Qu)do(u) = 0.
S§n—1
We will say that the operator is odd (respectively, even) if £2 is odd (respectively, even).

Theorem B. Let T be a smooth homogeneous singular integral operator, and let T, be the associated
mazximal operator. Then,

15



o IfT is even, the following assertions are equivalent:

1. Tof(x) S M(Tf)(x) for all f € L*>(R™) and all x € R™.
2. [Tfllze ST fllz2 for all f € L*(R™).

o IfT is odd, the following assertions are equivalent:

1. Tof(z) S MA(Tf)(z) for all f € L*>(R™) and all z € R™.
2. [T fllee ST fllp2 for all f € L*(R™).

The statements in the previous two theorems concerning even operators were proved in [MOV], while
those concerning odd operators were proved in [MOPV]. It is worth mentioning, as well, that Bosch-
Camos, Mateu and Orobitg extended Theorem [Bflater in the following way in their paper [BMOI]:

Theorem C. Let T be a smooth homogeneous singular integral operator, and let T, be the associated

mazimal operator. Then, the following assertions are equivalent:

LT fll2 S T flle for all f € L*(R™).

2. If1<p<ooandw € Ay, then [|Ts fl|Lrw) S 1T fllorw) for all f € LP(w).
Furthermore, if T is even, the conditions above are equivalent as well to

3. | Tl ST fllpr for all f € HY(R™).

An interesting result concerning pointwise inequalities like the ones in Theorem [A] for a slightly
modified version of the maximal Beurling transform and its iterates can be found in [BMOZ2].

Taking into account the possible relationship of these type of inequalities with the David-Semmes
conjecture, we tried to establish some of them for the Cauchy transform along a Lipschitz curve (in
fact, we only dealt with pointwise inequalities like the ones above, since the norm inequalities are almost

trivial, as we will show later).

Another possible motivation to try to extend the results above for the Cauchy transform along a
Lipschitz graph I' is that it coincides with a constant multiple of the Hilbert transform when I is a
straight line. This is a reason why one could think that the pointwise estimate C, f < M™(Cf) could hold
for the Cauchy transform along, at least, some class of graphs I', for some n > 1. We will show that one

cannot have a similar inequality for the Cauchy transform unless I" is a straight line.

Theorem 1.1.1. Consider the Lipschitz function A(x) = |z|, and let C denote the Cauchy transform
along I', the graph of A. Then, there exists f € L?>(R) such that for all ¢ >0 and all n > 1, there exists
€ > 0 such that

IC<f(0)] > eM™(C£)(0).

This theorem can be easily generalized to Lipschitz graphs I'" with angles, meaning with this points
x where A’ has a jump discontinuity, as we will show later.

After obtaining this result, one might think of establishing the inequality C.f < M™(Cf) imposing
some restrictions on the smoothness of A. This is not the case, as the next theorem shows.

Theorem 1.1.2. Let A be a Lipschitz function with compact support, and let C denote the Cauchy
transform along I', the graph of A. Suppose A is not identically null, or, equivalently, that I" is not a
straight line. Then, there exists © € R such that for all ¢ > 0 there exists f € L*(R) with

Cuf(z) > cM™(Cf)(x)
for allm > 1.

We want to remark that the points z mentioned in this last theorem are easy to find. For example,
when A is of class C?, any point o with A”(x) # 0 will do the job.
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1.2 Another version of the Cauchy transform

We define a new operator which, abusing language, will also be called the Cauchy transform along I", by
1 f(y)
Tf(x :—,p.v./ —————dz(y),
D= 2PV [ o) -
where dz(y) = 2/(y)dy = (1 + iA’(y))dy. As before, associated with it, we will have the truncated
operators T, and the maximal operator 7). This operator is very closely related to C. Indeed,

Tf(x)= l,p.v./RZ(yf(y)dz(y)

i) ) — z(x)
(1.2)
I B () ) B Y SV
Comi ]Rz(y)—z(x)dy m’c(f )(@)-

Analogously,

Cf(z) = mil (f) (). (1.3)

It is clear that 7" satisfies the same boundedness properties that C satisfies (with different multiplicative
constants). Moreover, by equations (1.2)) and (1.3]), and taking into account that z’ € L™ and |2/| =~ 1,
we can limit ourselves to prove Theorems and substituting C by T, C. by T. and C, by T.

The main reason for using this version of the Cauchy transform is contained in the following result,
which we learnt from Escauriaza ([E]).

Lemma 1.2.1. If f € L?(R), 1 < p < oo, then T?f = f.

Proof. For w € C and a > 0, we define the upper and lower half cones with vertex at w and generatrix

slope «, respectively, by
X (w,a) ={2 € C: |Re z — Re w| < a(Im z — Im w)}
X (w,a) ={z € C:|Re z — Re w| < a(Im w — Im 2)}.
It is immediate that for all w € I" and all 0 < o < m,
XT(w,a) C{z+iy e C:y > A(x)}

and
X (wya) C{x+iyeC:y< Ax)}.

Fix 0 < a < i—. Let f € LP(R), and let us define, for z € R,

A oo
_ . 1 fy)
T, f(z) = wll)g%w) e mdz(y)a
w€X+(z(:E),a)
T_f(x) = lim 1 &dz(y)

woz(z) T Jp w— z(x)
weX ™ (z(z),q)

From Plemelj formulae (see, for example, Chapter 8 of [T6]), we obtain
Ty f(z) = Tf(x) + f(z); T-f(x) =Tf(z)— f(z)
for a.e. x € R. In particular, T =T — Id. Hence,
T? = (T, — Id)? = (T)* — 2T + Id.

A direct application of Cauchy’s integral formula gives (Ty)? = 2T,. As a consequence, T? = Id, as
desired. O
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As a consequence of this result, one easily gets the LP-control of the maximal Cauchy transform in

terms of the Cauchy transform, for 1 < p < oco.

Corollary 1.2.1. If f € LP(R), 1 < p < oo, then ||Tuf|le ST f]lLe-

Proof. Indeed, taking into account the LP-boundedness of T, and T, and the fact that T2f = f, we get
1T fllze S fllze = 1T fllze ST f]Lo-

O

The following lemma states that 7' is antisymmetric with respect to dz, and its proof follows by an

easy application of Fubini’s Theorem.

Lemma 1.2.2. Let 1 < p < oo, p’ the conjugate exponent to p and f € LP(R), g € e (R). Then,

/ Tf(x)g(x)dz(x) = — / F () Tg(y)dz(y).
R R

1.3 The proofs

We argue here as Mateu, Orobitg, Pérez and Verdera did in [MOPV], where they proved T, f < M?(Tf),

for T an odd higher order Riesz transform.

Let f € L?>(R), € R and € > 0. We have

For x € R and £ > 0, define
1 1
Keely) = = Xjy—« Y),
( ) (y)fz(x) |y \>€( )

so that
T.f(x) = / @) Ko e (0)d2(y).

A straightforward computation yields that K, . € L?(R) N L>(R) and

1

HKI,EHL? < ||Kx,s”L°° < g

1
%7
Now let g, = T(Ky.c), so that
T.50) = | FO)Kecw)dety) = [ F@TEE ) W)
R R
— - [ THOTE D 0)dew) =~ [ TH W)
R R
Fix N > 0 to be chosen later, and denote, for a« € R and r > 0,
I,=(a—r,a+r).

Also, for a function h € L} (R) and an interval I C R, denote

loc
h= 2 /h( )d
mih = — x)ax.
1] Jr
18



Then, we have,
() = / TF(y)gs - (4)d=(y)
- / T (y)g.e (v)d2(y) + / T F ()90 (4)d(y)
ly—z|<Ne

ly—xz|>Ne

- / TF () goe () — mi. . (G0.)d2() + mi. . (gm) / T (y)dz(y)

I Ne I Ne

H[ T =1+
|y—x|>Ne

Let us check now that |I| < M?(Tf)(x) and [ll| < M(Tf)(z). We recall first the following results,
stated in [MOPYV], and whose proofs can be found in [W] and [Gi], respectively:

Lemma 1.3.1. Let ¢ € BMO(R"™), ¢ a measurable function in R™ and Q a cube in R™. Then,

ﬁ /Q [9(e) = qubl'w(x)'dx < CH¢||BMO||wHL10gL,Q7

where ¢ > 0 only depends on n.

Lemma 1.3.2. There exists a positive constant ¢ = c¢(n) > 0 such that for every cube QQ C R™ and every
function v € L} _(R™) we have

loc

]| 10g L. < cMP3(x),

where M? = M o M and M is the Hardy-Littlewood maximal operator.

Let us estimate || and |II| now. We have

/, TF(4) e () — i, 5. (02.c)]d2(y)

< / ITF 0)]192.2(4) — M, n (g.2)ldy
I:L',NE

S W, Nelllgzell Bao | T fllLiiogLy 1, e
S el|T(Ky o)l BpoM*(Tf)(x)
S el| Ky ellpe M*(Tf)(z) S M*(Tf)(x).

On the other hand,
I = |mfw,N5<gm,a> / T (y)dz(y)

/ oy / sy

1
/1 T / sy

< Lo ne ||| T (K )l 22 M (T f) ()
S e || Ky ol |2 M(Tf)(x) S M(Tf) (),

< 1
‘Iz,Ns|

as claimed.

Now, since M(Tf) < M?(Tf), we get
1]+ 1] < M*(Tf) (). (1.4)
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Let us study |l now. Recall that

W=/ T = [ TR, (15)
ly—x|>Ne |ly—z|>Ne

An easy contour integration argument yields the following result:

Lemma 1.3.3. Fizx € R and ¢ > 0. Then, for almost every y € R with |y — x| > ¢, we have

T(Kw,ﬁ)(y) - Ez(y) — Z(I) [B(‘T>E) + Gw,S(y)] ’
e (e +2) ~ 2(2)
B(z,e) =log 2@ =) —2(0), —|—i(7r +arg[z(z +¢) — z(x)] — arglz(x — &) — z(x)})
and

o 2E =) ==
Gae(y) =1 |z(z +¢) — 2(y)|

where, for a complex number w # 0, we consider —5 < arg(w) <

+i(arglz(z — ¢) - 2(y)] - anglz(w + ) - 2()] )

3

5

Proof. Let x € R, ¢ > 0 and y € R with |y —z| > e. We will assume that y > x (the case y < x is treated

analogously) and also that A is differentiable at y. For a set I C R, denote I'(I) = {z(t): t € I}, and for

a complex number w # 0, let Log (w) = log |w| 4+ ¢ arg(w). Then, we have

1

T(K, )(y) = —pwv. | —27
(.0 = oo [ e Tsaz)
. / dw
= lim —
Booo M Jp({t: [t—x|>¢,|t—y|>5,|t|<R}) (w—z(z))(w — 2(y))
1 . ( 1 1 )
=————— lim - dw
mi(z(y) — 2(x)) Boaoo Jr({t: |t—a|>e,|t—y|>6,|t|<R}) \W 2(y)  w—z()
1

= —————— lim (Igs+llgs+lgs),
mi(2(y) — 2(z)) Booe

where, for sufficiently small § > 0 and sufficiently big R > 0,

1 1
'R = /p((_m_s» (w —2(y)  w-— z(m)) o
— Log [2(x — ) — 2(y)] — Log [2(=R) — 2(y)] — Log [2(x — ) — 2(«)] + Log [2(~R) — 2(=)),

1 1
R = /F((az—i-a,y—é)) (w —2(y) w-— ZW) w
= Log [2(y — ¢) — 2(y)] — Log [2(z + &) — 2(y)] — Log [2(y — 9) — z(x)] + Log [z(z +¢) — 2(z)]

and

1 1
Wrs = /1"((y+6,R)) (w —2(y)  w-— Z@)) dw
= Log [2(R) — 2(y)] — Log [2(y + &) — 2(y)] — Log [2(R) — 2(z)] + Log [2(y + 9) — 2(x)].

Gathering the previous identities, we obtain

L Jele—e) — )lla(e + €) — (@)
Re (s +1lrs + W) = log | e —o) — (@)
2(R) — 2(2)||=(R) — 2(y)
T8 TR W) 2(R) — (o) (16)
|2y — ) — 2=y + 6) — =(z)|
T8 1 8) 2wy —9) — ()|



On the other hand,

Im (Igs +lgs +gs) = (arglz(z — ) — 2(y)] — arg[z(x — &) — 2(x)]
—arg[z(z +¢) — 2(y)] +arg[z(z + ¢) — 2(z)])
+ (—arg[z(—R) — z(y)] + arg[z(—R) — z(z)]
+ arg[z(R) — z(y)] — arg[z(R) — z(x)])
+ (arg[z(y — 0) — 2(y)] — arg[2(y — 6) — 2(x)]
—arg[z(y 4 6) — 2(y)] + arg[z(y + 6) — z(2)]).

(1.7)

Letting R — oo and § — 0 in (|1.6) and (1.7), using the fact that A is differentiable at y, and adding

up the results, we obtain

Jm (s + s + M) = Goc(y) + B(w.).
§—0

and so the desired conclusion follows. O

It is easy to check that the term B(x,¢) satisfies the following:

Lemma 1.3.4. Let © € R and € > 0. Then, the following assertions are equivalent:
1. B(z,e) =0.
2. Im B(x,e) =0.

3. The points z(x — ¢€), z(x) and z(z + €) are collinear.

On the other hand, we can prove the following decay at infinity of the term G, (y).

Lemma 1.3.5. Choose N > 14 4(1+ ||A||so). Then for |y — x| > Ne,

€
Gre(y)| S .
Gacl)| S [
Proof. Let
2(x —€) — 2(y)|
ug (y) = Re G, -(y) = lo
and

Ve (y) =Im Gy (y) = arglz(x —€) — 2(y)] — arg[z(z + ¢) — 2(y)].

Recall that, for w € C, |w| < 3,
[Log (14 w)| < 2[wl,

where Log is defined as in the previous lemma.

Now, for |y — x| > Ne, we have

z(x —e) — 2(y) z2(x —e)—z(xz +¢)
@t 2y T et -2l
and
z2(x —e) —z(x +¢) < (14 Ay)2e < (14 Aq)2e
zte)—zy) |7 ly—(z+e)l = Mty —af
< (1+A1)2e  2(1+4 Ay) -1
- NZAye O N-1 T2
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where the last inequality holds precisely because of the choice of N. Then,

_ g FlE =) 2| _ | |, 4 2z —e) —z(zte)
)] = o T EO g1 4 29 S
z2(x—e) —z(x+e) z(x—e) — z(x +¢)
=|tos <1+ 2z +¢) — 2(y) >’§2 z2(x+¢e)— 2(y)
<2(1+A1)2€ :4N(1+A1) [ < g
Ty -« N-1 |y—z~|y—a|

On the other hand,

[vz.£(y)]| = |arg[z(z — &) — 2(y)] — arg[z(z +¢) — 2(y)]
< |Log [z(z — &) — 2(y)] — Log [z(z + &) — 2(y)]

/ dz
I'((z—e,xte)) # z(y)

2(1+A1)€< €
ly—z| ~ly—a|

<SH'(D((x =2 x+2))) max m

Putting all together, the lemma follows. O

As a result, going back to (1.5, and applying Lemma we obtain

1 1
I = i ly—z|>Ne Tf(y)m [Bl,e) + Gm,s(y)] W)
. _dsy) Gec(y)dz(y) (19)
i B(z.e) /y—z|>Ns Tf(y)z(l/) — z(x) i /Iy—z>Ns 1w 2(y) — (@)

= B(z,e)Tn(Tf)(x) + IV.

Now, fixing N > 1+ 4(1 + ||4'||e), and applying Lemma we obtain

1 Goc(y)dz(y)
dy
<Se /|N 1)

oo

:52/2 \Tf(y)diyx

|
h—0 v 2F Ne<|y—z|<2k+1Ne ‘y_ |2

V] =

oo

1
<) @Nay

k=0

/ TFw)ldy
2k Ne<|y—z|<2F+1Ne

> 1 1 /
<e
];) 2k_2NE 2- 2k+1N€ ly—z|<2k+1Ne

<e (Z 21N) M(Tf)(x) $ M(TP)(x) < MX(Tf) (@),

k=0
As a result, gathering the estimates in (1.4)), (1.8) and ([1.9), we have the following;:
Lemma 1.3.6. For all f € L*(R), allz € R and all ¢ > 0,
T2 f () + B(z,e)Tne (T f) ()| S M*(Tf)(2).
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1.3.1 Proof of Theorem [1.1.1]

Fix the Lipschitz function A(z) = |z|. In this case,

B(0,e) =log M +i(7r + arg[z(e) — 2(0)] — arg[z(—¢) — z(O)]) =—.

Assume that the inequality
T.f(x) S M™(Tf)(xz) forall f e L*(R)

were true for some n > 2. Then, applying Lemma [I.3.6] this would yield
|B(x,e)Tne(Tf) ()] S M™(Tf)(x)
for all f € L?(R). Now, taking into account that 7% = Id, and setting x = 0, the latter implies
Tnef(0)] S M™f(0),

for all f € L2(R), and this is false for f = X0,1)- Indeed, M" f(0) < 1, while for 0 < Ne <1,

1 dz(y)
Tnef(0) = —./ Xj0,11(¥) "=
SO=55 Jyow Y @
1 (' 144
= — +.Z dy
T JNe Y+ Y
1 [t d 1
= — %= —— log(Ne),
T e Y Uy

SO
lim |Tn: f(0)| = oo,
e—0

yielding a contradiction with (1.10)).

(1.10)

This counterexample can be generalized in the following way: suppose I" has an angle at a point z(x),

z € R, meaning with this that A’ has a jump discontinuity at z, i.e.,

. Al +h)—Ax) / o
i, A < o # A = g

Az + h) — A(x) -

A straightforward computation shows now that

lim Im B(z,e) = arctan(A’, (z)) — arctan(A4’_(x)) # 0,

e—0

and so B(x,¢) stays away from 0 as € — 0. The same argument that was used above, substituting x(o,1]

by X[z,z+1], Will show that the inequality
T.f(z) S M™(Tf)(x)

cannot hold.

1.3.2 Proof of theorem [1.1.2]

We will study now the term Tw.(Tf)(x) to give more light to this subject. This will lead us to prove

that, when A has compact support, the inequality

T.f(x) < M™(T[)(x)

can only hold when A = 0, i.e., when I is a straight line, which is a case already known since T is,

essentially, the Hilbert transform.
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Assume that A has compact support, say supp(A) C [—-L,L], L > 0. Let f € L?>(R), and write

9= (Tf)X[—2L,2L]7 h= (Tf)X]R\[f2L,2L]7
so that Tf = g+ h and
Tne(Tf)(x) = Tneg(x) + Tnh(x).

Fix z € [-L, L]. Observe that

. B _ 9y
itTNeg(T) = /|y—37|>N5 2(y) — Z(x)d W

b0V 2F Ne<|y—z|<2k+1Ne Z(y) - Z(J?)

Now, taking into account that supp(g) C [~2L,2L], one gets that, when 2 Ne > 4L,

/2’“N5<y—;v|<2’“+1N8 2(y) — z(z)

This yields that only the first My, . terms of the sum above do not vanish, where

’ log 2
(by [t] we denote the smallest integer n such that ¢t < n).

Furthermore, for each k& > 0,

/ 9(y) dx(y) §/ l9(y)| dy
2k Ne<|y—z|<2k+1Neg Z(y) - Z(l‘) 2k Ne<|y—z|<2k+1Neg |y - x‘
1
< d
SN e, O
< Mg(z).

Putting all together, and taking into account that Mg < M (T f), we obtain

log (32)

T < |1

)M(Tf)(l’)~

On the other hand, since A = 0 on supp(h), we get

| _ M) = M)
’L’]TTNgh({E) = /ly_$|>N5 z(y) — Z(Z‘)d (y) /y—a;|>N5 Yy — Z($) dy.

Now, for |y — x| > Ne,

1 1 n ( 1 1 ) 1 —|—D( )
— — = x, )
y—z(x) y-—z \y—z2@) y-—=z y—x Y
and so
. 7 h(y)
inTnh(x) = ——dy + h(y)D(z,y)dy
ly—z|>Ne Y — T |ly—z|>Ne
:= Hy.h(z) +/ h(y)D(z,y)dy.
ly—x|>Ne
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Observe now that, for x # y,

Dl =[5

| < )

Then, taking into account that h =0 on [-2L,2L], and recalling that || < L, one gets

Ty -2

|h(y)|

< [A(z)] :
ly—a|>L ‘y - I|2

’/_lNh@Dmm@

Splitting the last integral into the regions {2FL < |y — x| < 2¥*1L}, and using the fact that M(h) <
M(Tf), we get

8
< Z|A(@) [ M(Tf)(z).

|/’ h(y) D, y)dy
|ly—x|>Ne
The previous discussion shows that

TNE(Tf)(;E) = %HNEh‘(:Z") + V7

where
V| < e(z,e, N, L)M(T f)()

and 0 < ¢(z,e, N, L) < oco. Recall now that, by Lemma we have
T f(x) + Bla,e)Tne (Tf) ()] S M*(Tf)(x).
Then, it follows that
T.f(z) + %B(x,z—:)HNsh(x) < d(x,e, N, L)M*(Tf)(x),

where 0 < ¢/(x,¢, N, L) < cc.

Assume A is not identically null, and suppose that the inequality Ty f(z) < M™(Tf)(z) holds.
Applying Lemma we may pick « € [-L, L] and € > 0 with

—L<x—Ne<z<z+Ne<lL
and such that B(z,e) # 0. Then, it follows that
‘B(x’5)‘|HN6((Tf)XR\[72L,2L])(-T)| < CN(%&M LYM™(Tf)(x),

with 0 < ¢’(z,e,N, L) < oc.

Now, for each k = 3,4..., pick fr € L?*(R) such that Tf, = Xj0,kz]> and so (T fr)Xr\[-2L,21] =
X(2L,kz]- Applying the previous inequality for each fy, and using the fact that M™ (T f) < 1, we obtain

‘B(‘%€>HHN€(X(2LJ€L])($)| < C”(:L‘7E, N, L)'

Finally, observe that

kL
dy kL —x
H = =1
~e(X(2r,k0))(2) /2L y—7= 0g oL — 2’
and so KL
-
B 1 <c’ N, L
|Bw,2)|log 57— < (w,e, N, L),

yielding a contradiction, since the left hand side tends to co as k — oo.
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1.4 Further results
1.4.1 Another version of the truncated operators

Let us consider now another version of the truncated operators. Define, for ¢ > 0 and x € R,

7 1 f(y)
T.f(r) = — —dz
/@) T J|a(y)—2(a)|>e 2(y) — 2(2) )

and the associated maximal operator T, f(x) = sup,~o |- f(x)|. This is a truncation over balls of radius

e, while the one for T, was a truncation over strips of width 2e.

We consider now the same problem as before: that of giving an estimate of the form
T.f(z) S M™Tf)(x),

and the same arguments employed before will work here. Indeed, if we define I(x,¢) = z(z_), r(x,¢) =
z(x4), where
z_ =sup{t < z:|z(t) — z(x)| = ¢}

and
xy =inf{t > z: |2(t) — z(x)| = €},

then I(z,¢) and r(z, ) will play the same role that z(x —¢) and z(x + €) played before. Precisely, I(x,¢€)
is the last point of I" to the left of z(x) that belongs to the circle centered at z(z) with radius e, and

r(x,¢€) is the analogue of this one at the right.

Since the quantities |y — x| and |z(y) — z(z)| are comparable, one can repeat the arguments used

before to get an analogous of Lemma [I.3.6] which will be stated now as
o f () + B(x,€)Tn:f ()| S MP(Tf)(x),

where
s (e~ 2(a)
Blw.e) =g 1 o 2]

As in Lemmam B(z,e) = 0 if, and only if, [(z,¢), z(z) and r(z, &) are collinear.

+ i(ﬂ' + arg[r(z,e) — z(x)] — arg[i(z, &) — z(m)])

With this tools at hand, one can prove the following results, which are the analogs to Theorems
and in this setting.

Theorem 1.4.1. Consider the Lipschitz function A(z) = |z|. Then, there exists f € L*(R) such that
for all ¢ > 0 and all n > 1, there exists € > 0 such that
- £(0)] > eM™(Tf)(0).
To prove this, one can mimic the argument in Section since here we have again B(O, ) =i%.

Theorem 1.4.2. Let A be a Lipschitz function with compact support. Suppose A is not identically null,
or, equivalently, that I' is not a straight line. Then, there exists x € R such that for all ¢ > 0 there exists
f € L*(R) with

T.f(z) > I™(Tf)(x)
for allmn > 1.

Again, the argument in Section [[.3:2] adapts trivially to this case, by just taking into account that,
if A is not identically null, one can find € R and € > 0 as small as needed such that [(x,¢), z(x) and

r(z,e) are not collinear.
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1.4.2 The case of Jordan curves

Let I" be a Jordan curve in the plane, parametrized by a periodic function v: R — C. We will pose, for
the moment, the following assumptions on ~:

e v is of class C'.
e v is L-periodic, v([0, L)) =T

e v is injective on [0, L).

|[v/(t)] = 1 for all ¢t.

w is the modulus of continuity of ' (this means that w is a non-negative and increasing continuous
function in [0, 00) with w(0) = 0 and such that |y/(s) —+/(t)] < w(|s — t|) for all s,¢ € R).

We denote by p the arc-length measure on I'. We have, for a Borel set I C [0, L),

w (1)) = / Iy (8)]dt = |1,

For a point z € I" and r > 0, denote
Ip=~y{t: |t —z| <r}),

where z = v(x), z € R.

The Hardy-Littlewood maximal function of a function f € L!(I', ) is defined, for z € I", by

1 1
M{f(z) =su 7/ dyp = su —/ d
f(z) SUD T lefl p=sup o lefl I

The Cauchy transform of a function f € L?(I',du) is defined, for z € I', as the principal value integral

Tf(z) = lim T¢ f(z),

e—0

where

T.f(z) = i 1) d€.

.. E—z

We consider as well the maximal operator associated with 7',

T, f(2) = sup [T f(z)]-
e>0

In this section we will prove that, if «y is regular enough (we will specify later how much regularity is
needed), then
T.f(2) S M*(Tf)(z) for all f e L*(T,p).

To do so, we will follow, essentially, the same steps we have taken in Section for the case of Lipschitz
graphs. Most of the arguments there will be valid in this setting, and so we will not enter into many
details. First of all, we remark that the analogs of Lemmas [[.2.] and [I.2:2] hold now:

Lemma 1.4.1. If f € L*(I,p), T?f = f.

Lemma 1.4.2. If f,g € L?>(I', ), then

/F TF()g(2)dz = - /F f(2)Tg(2)d=.
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We argue now as in Section Fix f € L?(I', 1), z € I" and ¢ > 0. Then, we have

1 16 .
T.f(z) =~ /F e /F FOK...(€)de,

i E—=z

where )
K. (§) = mXﬁ\m,Jf)-

It is easy to check that K, . € L*(I',u) N L° (I, u), and moreover

||Kz,s||L2 f,

1
||Kz,s||L°° 5 -
e

1
ﬁ7
Since K, . € L*(I',n), we have K, . = T*(K,.) = T(g..), for g. . = T(K. ). Then, we get

T.f(z) = /F FO)K o (€)de = /F FEOT(g..0)(€)de = — /F TF(€)g. . (€)de,

and, as a consequence,

L) = /F TF(€)g. - (€)de
- / TF()g..(€)de + / T(€)g. - (€)de
I, 2

F\Fz,2a

- / TFE)[g22(€) — mr. . (g2 2)JdE + mr. . (g2.0) /
I'; 2c

I 2

TH(€)de + / TF(E)g..0(€)de

I\I 2

=141+,

where, for a function h € L'(I', 1) and a Borel set E C I" with u(E) > 0,

1
mgh = —/ hdpu.
M(E) E

Arguing essentially as in Section one can prove that [I| < M?(Tf)(z) and |Il| < M(Tf)(2). Let
us study Il now.

1 :/ Tf(€)g..c(€)dE = Tf(E)T(K.)(§)dE.
I'\TI; 2

I\TI'; 2c

A similar argument to the one used in Lemma [[.3.3] yields the following result.

Lemma 1.4.3. For{ € I'\ I, 2.,

T(K.)(€) = = —glB(z2) + G (O]
where
3
GZ,!:‘(f) ~y |Z _ §|
and

|B(z,¢)| < w(2e).

Remark: The expressions of G, .(§) and B(z,¢) are totally analogous to the ones for G, .(y) and
B(z,¢) in Lemma for suitably chosen branches of arg(w — z) and arg(w — €). The estimate for
G ¢ is proved as in Lemma while the estimate for B(z, ) follows from an application of the Mean
Value Theorem.
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From this, it follows that

= /F o THOTUC. D)

_ 1 RS G2 (8)
= B(s,0)— /F G R A (CR T
_ 1 G..(6)
=BT TNE) 4 [ T e
=l + 5.
On the one hand,
1 G (6)]
11 — — =2l d
(Y N GG

<e /F TION 1(6) < mTr)(2)

\I: 2e |z — &2

where the last inequality is shown by splitting the integral over the sets
FZ,2k+1E \ Fz,?’“a’ :ZC = 17 2, 3 PPN

On the other hand

ok [0, 75 (6)
=182 [ e see [ e

To estimate the last integral, we also split it over the sets

FZ72I¢+15 \ FZ?Qk}E’ k - 172,3. ..

Notice that, for k big enough, I', or. = I', and so I, gr+1. \ I, or. = (). Precisely, this holds for all k such
that 2¥¢ > 2L, which is equivalent to

log 2L
k £,
- log 2
As a result, if we denote by ko(g) the smallest integer k that satisfies the previous inequality, we have
ko(e)
Tf(€ Tf(€
= EES IO
I\I% 2. |z — ¢ b1 YT ok 1 AT, ok, |z —¢]
ko(e) 1
<> o f TF(©ldn(€)
k=1 < E T phin \T. o,
ko(e) 1
<1y oo [ 1TH@InE
kZ:l 2-2ke Fz,2k+1s
< dko(e)M(T f)(2).
As a result,
2L
M| S w(2e)ko(e) M(T'f)(2) S w(2e) |log 5‘ M(Tf)(2).
Gathering the estimates for [I|, [ll|, |[Ill;| and |lll5], we have

IT-f(2)| S M*(TF)(2) + w(2e)

2L
log 5‘ M(Tf)(z).
From this, it follows that, if w is such that w(2¢)|loge| stays bounded as e — 0, then we have

T f(2)] S M*(Tf)(2).

Thus, we have proved the following result:
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Theorem 1.4.3. With the notation established in this section, suppose 7' has a modulus of continuity
w such that w(e)|loge| stays bounded as € — 0 (this happens, for example, if v € C*T0 for some § > 0).
Then, there exists a constant ¢ > 0 such that, for all f € L*(I',du) and all z € T,

T.f(z) < eM*(Tf)(z).

We want to remark, finally, that a totally analogous result holds if one considers the truncated

Tf(z) = — / JE) ge

T J\B(ze) § — 2

operators given by
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Chapter 2

Geometric conditions for the
L*-boundedness of singular integral
operators with odd kernels with
respect to measures with polynomial

growth in R4

2.1 Introduction

In this chapter, we study L?(u)-boundedness of singular integral operators with sufficiently smooth
convolution-type kernels. More precisely, we will consider kernels of the form k(z,y) = K(z — y), where
K:R%\ {0} — R is an odd and C? function that satisfies

IVIK (2)] < |Cf;7+)j for all z # 0 and j € {0,1,2}.
zln
It is easy to check that the inequalities above imply that k is a Calderén-Zygmund kernel with § = 1 in
(1.1)). We will denote by K™(R9) the class of all these kernels.

In [T3], Tolsa proved the following resulf}

Theorem D. Let p be a Radon measure in C without atoms. If the Cauchy transform C,, is bounded in
L?(p), then all 1-dimensional singular integral operators T,, with kernels in K'(C) are also bounded in
L2 ().

In order to prove this result, Tolsa relied on a suitable corona decomposition for measures with linear
growth and finite curvatureE] and split the operator T into a sum of different operators Kg, each of which
are associated to a tree of the corona decomposition. The operators K are bounded because on each
tree the measure p can be approximated by arc length on an Ahlfors-David regular curve and, moreover,

the operators K behave in a quasiorthogonal way.

ITolsa’s result in [T3] is actually stated for operators with smoother kernels than the ones we consider here. However,

after the publication of [T5], it is obvious that it can be generalized to obtain Theorem
2We will not enter into details about curvature of measures and its relationship with the boundedness of the Cauchy

transform here, but an interested reader is encouraged to read [T6, Chapters 3 and 7] for further information on this issue.
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However, as that corona construction relied heavily on the relationship between the Cauchy transform
and curvatures of measures, it could not be easily generalized to higher dimensions. Using a new corona
decomposition that involves the S-numbers of Jones, David and Semmes instead of curvature and which
is valid for all dimensions, Azzam and Tolsa [AT] have recently proved the following:

Theorem E. Let pu be a finite Radon measure with compact support in C with linear growth. Then, for
all e > 0,

< dr
Celitag < Nl + [ Brateroh@n) T duto)

Some notions need to be defined here: first of all, a Borel measure x in R? is said to have polynomial
growth of degree n if there is a constant ¢y > 0 such that u[B(z,7)] < cor™ for all x € R? and all r > 0
(when n = 1, p is said to have linear growth). p is said to be n-AD-regular (or just AD-regular or

Ahlfors-David-regular) if there is a constant ¢ > 0 such that
cg ™ < p[B(z,r)] < cor™ for all x € supp(u) and all 0 < r < diam(supp(p)).

Secondly, given a ball B(x,r) C R? we define
w(B(z,r))

rn
Finally, for 1 < p < oo, the 3 -coefficient of a ball B with radius r(B) is defined by

i) =1 (s f, (“567) du(y)); ,

where the infimum is taken over all n-planes L C R

92[3(95,7“)] = HZ(x,r) =

To understand the importance of these 8-coefficients, recall that a set E C R? is called n-rectifiable
if there are Lipschitz maps f; : R* — R?, i =1,2,..., such that

H™ (E \ U fi(]R")) =0, (2.1)

where H™ stands for the n-dimensional Hausdorff measure. Also, one says that a Radon measure z on R?
is n-rectifiable if ;¢ vanishes out of an n-rectifiable set £ C R? and moreover y is absolutely continuous
with respect to H" | g.

With these definitions at hand, we remark now that these 3] -coeflicients are a generalization of the
B-numbers introduced by Jones in [J], where he used them to characterize compact subsets of the plane

that are contained in a rectifiable set.

Recall as well that a measure p in R? is said to be uniformly n-rectifiable if it is n-AD-regular and
there exist 8, M > 0 such that for all z € supp(u) and all » > 0 there is a Lipschitz mapping g from the
ball B,,(0,7) in R" to R? with Lip(g) < M such that

w(B(z,r) N g(Bn(0,7))) = 0r".

We will refer to the constants M, 6 as the UR (uniform rectifiability) constants of . In the particular case
when p = H"| g for some set E C R?, we say E is uniformly is n-rectifiable if y is uniformly n-rectifiable
and we call the UR constants of u, simply, the UR constants of E.

Another important application of the S-coefficients is, as David and Semmes proved in [DSI], that an
n-AD-regular measure p is uniformly n-rectifiable if, and only if, there is some constant ¢ > 0 such that,

for every ball B with centre on supp(u),

n(B) dr
L[ st T dute) < eutp. (22)
B JO
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Very recently, Azzam and Tolsa (see [AT] and [T'7]) have shown that a positive and finite Borel
measure 4 in R¢ with

0 < limsup 0} (x,7) < oo for p —a.e. z € R?
r—0

is n-rectifiable if, and only if,
1
d
/ Bua(z,r)? T < oo (2.3)
0 T
for p-a.e. x € R%

Using the corona decomposition from [AT], we prove the following result:

Theorem 2.1.1. Let i be a finite Radon measure in RY with polynomial growth of degree n and such
that, for all balls B C RY with radius r(B),

r(B) dr
L st rropen Faua) < um), (24)

Then, all Calderén-Zygmund operators T), with kernels in K™(R?) are bounded in L*(p).

Notice that is a quantitative version of (2.3)), just like (2.2)), with no assumptions on the AD-
regularity of pu. A trivial example of a measure p that is not n-AD-regular and satisfies is the area
measure on a square (with d = 2 and n = 1). Of course, the most interesting examples with regard to
this result will arise from measures that have some n-dimensional nature (e.g., measures supported on

sets with Hausdorff dimension equal to n).
When n = d — 1, the previous result can be applied to get an interesting estimate for the Lipschitz
harmonic capacity. Recall that the Lipschitz harmonic capacity of a compact set £ C R? is defined by

K(E) = sup [(Ap, 1)],

where the supremum is taken over all Lipschitz functions ¢: R? — R that are harmonic in R? \ E and
satisty ||[V¢|leo < 1. Here (Agp, 1) denotes the action of the compactly supported distributional Laplacian
A on the function 1. This notion was introduced by Paramonov [Pa] to study the problem of C! harmonic
approximation on compact subsets of R? and, as it was proved by Mattila and Paramonov in [MP], serves
to characterize removable sets for Lipschitz harmonic functions as those sets E with x(E) = 0. Later,
Volberg [V] proved that

K(E) ~ sup{M(E): n e En(E)7 HRZHLZ(#)HLQ(/L) < 1},

where X, (E) stands for the subset of the positive measures u supported on E such that u[B(z,r)] < r™
for all z, and Rj; is the n-dimensional Riesz transform with respect to p. Using this comparability and
Theorem [2.1.1] we obtain the following:

Corollary 2.1.1. Let E be a compact set in R*L. Then,
w(E) 2 sup u(E), (2.5)

where the supremum is taken over all positive Borel measures p supported on E such that

sup {93(3:,3) + /OO 6N’2(q;,r)293(a:,r)cﬁ} <1 (2.6)
0

zER" T R>0

A very interesting problem would be to show that, in fact, 2 may be substituted by ~ in ([2.5)), as an
analog to the comparabilty between the analytic capacity v and the capacity v obtained by Tolsa in [T2].

This would serve to characterize removable sets for Lipschitz harmonic functions in a metric-geometric
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way and also to prove the bi-Lipschitz invariance of Lipschitz harmonic capacity, which is still unknown.
Indeed, whenever a measure u satisfies ([2.6)), it is clear that it also satisfies (2.4)) and then, arguing as in
Section 8 of [T4], one can prove that its image measure o = ¢4 u under a bi-Lipschitz map ¢ satisfies

o(B) < Cor(B)"
and
(B) dr
/ / n @20 (@) L do(z) < Cuo(B),
BJo ’ r

for all balls B of radius r(B), where C,, is a positive constant only depending on the bi-Lipschitz constant
of ¢. Then, using Chebyshev’s inequality, one can prove that there exists an appropriate restriction 7 of
o with ||7|| = ||o|| and such that

s Ao r s [ areent | <c,
0

zeR"+1 R>0

It is worth remarking that Azzam and Tolsa were able to obtain a comparability like the one we have
described for analytic capacity in [AT]:

Theorem F. Let E C C be compact. Then,

Y(E) = sup u(E),

where the supremum is taken over all Borel measures u in C such that

sup {Gi(x,R) —l—/ ﬁmg(x,r)Qﬁi(a:,r)cfﬂr} <1
0

z€R"t1 R>0

2.2 Preliminaries

2.2.1 A useful estimate

Let 41 be a positive Radon measure in R? such that u(B(x,r)) < cor™ for all z € R? and all » > 0. Then,

for all z € R% and all > 0,
du(y) co
/ o=yt < (2.7)

T—y|>r |l‘ - r

This estimate, that can be easily proved by splitting the domain of integration into annuli {y € R?: 2%y <
ly — x| < 2F+1r} k>0, is commonly used in Calderén-Zygmund theory, and we will also make use of it
several times in this paper.

2.2.2 Notation

e If B is a ball in R%, we denote its radius by r(B). Given A > 0, the ball which is concentric with
B and has radius Ar(B) is denoted by AB.

e If ;1 is a Radon measure in R? and A C R?, the restriction of i to A is denoted u| 4 or, simply, 4,
and it is defined by

pla(B) = (BN A).
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2.2.3 Suppressed operators

In this section, we recall the definition and most important properties of the so-called suppressed operators,
introduced by Nazarov, Treil and Volberg in [NTV], and that may be thought of as regular truncations
of a singular integral operator. All definitions and results in this section can be found in [V].

Let k be an n-dimensional antisymmetric Calderén-Zygmund kernel in R?. Given a non-negative and
1-Lipschitz function @: R — R, we define

1
L+ k(z,y)2®(x)"d(y)"

k@(xa y) = k(l’,y)

Then, kg is also an antisymmetric Calderén-Zygmund kernel, whose Calderén-Zygmund constants do

not depend on @ but only on those of k, such that

1. ke(x,y) = k(x,y) if @(x)P(y) =0.

2. [k (2, y)| < ¢(n) min {q')(lm)" g15(1?;)"}

We denote by Tg the integral operator associated to the kernel kg, that is, if v is a signed Borel

measure in R¢ and = € R?,
Tov(a) = [ kale,p)dv(y)

whenever the integral makes sense. Naturally, we can also define the associated truncated operators
Toaa)= [ Faeg)ivly)
lz—y|>e

and the maximal operator

Tp.v(z) = sup |Tpv(x)].
e>0

We also introduce the Hardy-Littlewood-like maximal operator associated to @

B
M) = s B, )

As usual, if ¢ is any fixed positive Borel measure in R%, we can make these operators act on measures

of the form fo. To simplify notation, we denote, in such a case,

To,tﬁf = T¢(f0)7 T(r,@,ef = T@’E(f0)7 M;,qu = M;B(fa)
Lemma A. Let v be a signed and finite Borel measure in R? and x € R?.

1. If e > P(x),
Ty v(z) — Tev(z)| S Mpv(z).

2. If e < P(x),
T v (x) — Top o)) S Mgr(x).

Finally, we state a Cotlar-type inequality that will be especially useful when dealing with suppressed
operators Tg. To do so, we introduce a couple more of maximal operators associated to any positive

Radon measure o in R%: for f € L} (o) and z € R4,

2
3

. B 1 YIDUTRe 1 S40
1o 0) = S T o V19 V) i‘i%(dB(m:%r)] Jyon )
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Theorem G. Let o be a positive Radon measure in R?, and let, for x € RY,
R(z) = sup{r > 0: o[B(xz,r)] > Cor"},

where Cy > 0 is some fized constant. Let S be a singular integral operator with Calderdn-Zygmund kernel
s, with

1 1
s(z,y)| S mi {,}
Sl S R Ry
and such that S, is bounded in L?(c). Then, for all f € L}, (o) and all z € RY,

loc

Su(fo)(x) € My (S(fo))(x) + M, s f(2).

2.3 The dyadic lattice of cells with small boundaries

We will use the dyadic lattice of cells with small boundaries constructed by David and Mattila in [DM]
Theorem 3.2]. The properties of this dyadic lattice are summarized in the next lemma.

Lemma B (David, Mattila). Let u be a Radon measure on R?, E = supp(p), and consider two constants
Ko > 1 and Ay > 5000 K. Then, there exists a sequence {Dy}32, of families of Borel subsets of E with
the following properties:

o For each integer k > 0, Dy, is a partition of E, that is, the sets @ € Dy are pairwise disjoint and

U e=E

QEDy

e Ifk,l are integers, 0 < k <1, Q € Dy and R € Dy, then either R C Q or QN R = .

o The general position of the cells Q can be described as follows: for each k > 0 and each cell Q € Dy,
there is a ball B(Q) = B(zg,r(Q)) such that

2o € E, AP <r(Q) < Ko Ag”, ENB(Q)CcQc EN28B(Q),

where the balls 5B(Q), Q € Dy, are pairwise disjoint.

o The cells Q € Dy have small boundaries, that is, for each QQ € Dy, and each integer I > 0, set
NEPH Q) = {z € E\ Q: dist(x,Q) < Ay ™Y,

N/™(Q) ={z € Q: dist(z, E\ Q) < Ag"7'},
and
Ni(Q) = Nf™(Q) U N/™(Q).
Then
PNI(Q)) < (C7HEG 1 Ag) ™ u(90B(Q)). (2.8)

e Denote by D,‘Zb the family of cells Q € Dy, for which

1(100B(Q)) < Ko u(B(Q))- (2.9)

Then, for all Q € Dy, \ D , we have that 7(Q) = Ag"™ and p[100B(Q)] < Ky ' u[100F1B(Q)] for
all 1 > 1 such that 100" < K.
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We use the notation D = ;5o Dx. For Q € D, we set D(Q) ={P €D: P C Q}.

Remark 1. Any two disjoint cells Q, Q' € D satisfy 3 B(Q)N$B(Q') = 0. This holds with § replaced by
5 in the statements in the lemma above in case that Q, Q" belong to the same generation Dy. If Q € D;
and Q' € Dy, with j # k, this follows easily too. Indeed, assume j < k, and suppose %B(Q) N %B(Q’) # 0.
Since 1(Q) << r(Q’) (by choosing Ay to be big enough in terms of Ky ), this implies that B(Q') C B(Q),
and so

B@)NECBQNECQ,

which implies that Q' N Q # O and gives a contradiction.

Given Q € Dy, we denote J(Q) = k. We set £(Q) = 56 Ko Ay* = ¢}, and we call it the side length of

Q. Note that
1

o5 K0 Q) < diam(Q) < ¢(Q).

Observe that r(Q) ~ diam(Q) =~ £(Q). In addition, we call zg the center of @, and we call the cell
Q' € D1 such that Q' D @ the parent of Q. We set Bg = 28 B(Q), so that

EH%BQCQCBQ.

We assume Ay to be big enough so that the constant C 'Ky 3d=1 4y in satisfies
CTUK; 40 > AP > 10.
Then we infer that, for all 0 < X <1,
p({z € Q : dist(z, E\Q) < M(Q)}) +u({z € 4B\ Q : dist(z,Q) < A(Q)}) < eAY2 u(3.5Bg). (2.10)
We denote D% = Urso D and D?(Q) = D ND(Q). Note that, in particular, from 1} we obtain

w(100B(Q)) < Kou(Q)  if Q € D®.

For this reason we will call the cells from D% doubling.

As it is shown in [DM] Lemma 5.28], any cell R € D can be covered p-a.e. by a family of doubling
cells:

Lemma C. Let R € D. Suppose that the constants Ay and Kq in Lemma[B are chosen appropriately.
Then there exists a family of doubling cells {Q;}ie; C D, with Q; C R for all i, such that their union
covers pi-almost all R.

The following result is proved in [DM} Lemma 5.31].

Lemma D. Let R € D and let Q C R be a cell such that all the intermediate cells S, Q@ TS C R are
non-doubling (i.e. belong to D\ D). Then

p(100B(Q)) < Ay " @ =II=D (100 B(R)). (2.11)

From the preceding lemma we infer:

Lemma E. Let Q,R € D be as in Lemma[D, Then
0,(100B(Q)) < Ko Ay "V @~/ =g (100B(R))

and

Z 0,,(100B(S)) < ¢0,(100B(R)),
SeD:QCSCR

with ¢ depending on Ky and Ag.
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Proof. By 211}

p(100B(R))
r(100B(Q))"

— A== (100B(R)) :Egg;;:

The first inequality in the lemma follows from this estimate and the fact that

0,(100B(Q)) < Ay '/ (@=7(=1)

r(B(R)) < Ko AY Q77 1(B(Q)).

The second inequality in the lemma is an immediate consequence of the first one. O

From now on we will assume that Ky and Ag are some big fixed constants so that the results stated
in the lemmas of this section hold.

2.4 The corona decomposition

Let p be any measure satisfying the same hypotheses as the one in Theorem m (e.g., the restriction
of the measure p presented there to any ball B) and construct the dyadic lattice D of cells with small
boundaries associated to p that is given by Lemma Let Ry € D be such that supp(u) C Ry and
diam(supp(p)) < €(Rp) (we can assume, without loss of generality, that Dy = {Ry}), and let Top be a
family of doubling cells contained in Ry and such that Ry € Top that we will fix below.

For every R € Top, denote by Stop(R) the family of maximal cells ) € Top that are contained in R,
and by Tree(R) the family of cells @ € D that are contained in R and not contained in any Q' € Stop(Q).
Then, we define

Good(R) =R\ |J @

QEStop(R)

and, for Q C R,
d
5IL(Q7R) = / ‘u(y)

2Bm0 Y — 2"
The arguments of Azzam and Tolsa [AT], Lemma 7.2] can be easily adapted to prove the following:

Lemma F. There exists a family Top C D as above such that, for all R € Top, there exists a bi-
Lipschitz injection gr: R™ — R% with the bi-Lipschitz constant bounded above by some absolute constant
and with image I'r = g(R™) such that

1. p-almost all Good(R) is contained in I'g.

2. For all Q € Stop(R) there exists another cell Q € D(R) with Q C Q such that 6,(Q,Q) < c,(Br)
and B N I'g #0.

3. For all @ € Tree(R), 6,(1.1Bg) < c6,.(Br).

Furthermore, the cells R € Top satisfy the following packing condition:

£(Ro) r
> Ou(BrluR) S 0,BrulR) + [ Bra(wr 1) Fauta).

ReTop
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2.5 The main lemma

For technical reasons, we will assume that the kernel k of T is not only in K™(R?), but that it is also
a bounded function, so that the definition of Tu(x) makes perfect sense for all x € R if 4 is a finite
and compactly supported Borel measure in R%, which is the case we are considering. However, as all of
our estimates will be independent of the L*>-norm of k, our result can be easily extended for general
Calderén-Zygmund kernels k& € K™(R?) by a standard smoothing procedure (see, for example, equation
(44) in [T1]).

The following sections will be devoted to proving this result:

Main Lemma 2.5.1. Let i be a positive Radon measure in R% with compact support and polynomial

growth of degree n. Then,

" " dr
1Th o S lill+ [ [ Sate 0. T duto)

Theorem follows from the non-homogeneous T'(1) theorem [T1, Theorem 1.1 and Lemma 7.3]
and the previous lemma, as it enables us to estimate ||T(xpu)||12(xpu) for all balls B C R?. Indeed, if
1t is the measure from Theorem B is a ball in R? and r(B) is its radius, applying Lemma m to
the measure ypu, we obtain

dr
IO B S 0B) + [ [ a6 (00) i) S (),
where the last inequality follows directly from the hypotheses of Theorem [2.1.1] Therefore, the non-

homogeneous T(1) theorem applies, and we obtain that 7}, is bounded in L?(p).

To prove the Main Lemma, we will closely follow the ideas by Tolsa in [T3], but we will use the
dyadic lattice D associated to u, which is introduced in Section [2:3] instead of the usual dyadic lattice of
true cubes in R?. We apply Lemma [F| to obtain a Corona Decomposition for x, and we decompose Ty
in terms of that Corona Decomposition, since the terms that arise from it will be tractable. The main
difference between our proof and Tolsa’s one will be found in Section [2.8] since the fact that the cells
in D have thin boundaries helps us to avoid going through the process of averaging over random dyadic
lattices to get the estimate that is proved there.

2.6 Decomposition of T with respect to the corona decompo-
sition

To estimate ||T | |2L2( u) we will decompose Ty with respect to the corona decomposition from Lemma

To do so, let ¥ be a non-negative and radial C* function such that

XB(0,0.001) < ¥ < XB,0.01y and [[V]| ST

For each k € Z, define ¥ (2) = ¥(Ak2) and @y = ¥y — Yr11, so that each function ¢y, is non-negative
and supported on B(0,0.014;%) \ B(0,0.00145%"") and, furthermore,

den(z) =1

kEZ
for all x € R\ {0}.
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Now observe that, for z € supp(u) we have

Tmm=/%@wmmw=/<§)%u—m>Mn@@@)

kEZ

=Y [orta ke y)duty).

kez
Therefore, if we define

Tp(z) = /sok(x —y)k(z,y)du(y)

we have

Tu(x) =Y Trp(x).

keZ

Now set Dy, = {Ro} whenever k < 0 and Tou = xQTs(o)p for all Q € D. Then,

Tp= ZTk,U = Z Z XQTkp

kEZ keZ \QeDy
= > xeTuanr=)_ Ton
k€EZ QEDy, QeD
=D Tou+ D> | Y, Ton
QEF ReTop \ Q€eTree(R)
QEF ReTop

where, for R € Top,

Kpp= Y Topu
QETree(R)

and F is a finite family of cells Q € D with ¢(Q) ~ diam(supp(u)).

Notice that for @ € F, the estimate

1ToullL2 () < llnll

holds trivially. Therefore,

2

NTull720 S lull + Z Krp = Z K rpl 2, + Z (Krtt, Kpe ) s
R€eTop R€eTop R,R'€Top: R#R’
L2(p)

where (-, -),, denotes the usual pairing in L%(u), i.e.,
{(f:9)n= /fgdu

The diagonal sum 3 pcto, ||KRN||2L2(#) will be estimated in Section using the fact that, on each
Tree(R), p can be approximated by a measure of the form nH7,,, where 7 is a bounded function, and TH?“R
is bounded in L? (H},) because I'g is a bi-Lipschitz image of R", and thus uniformly n-rectifiable (see
[T5], or the more classical reference [DS2] for the case where K is assumed to be C* away from the ori-
gin). To deal with the non-diagonal sum ZR,R’ETop: RAR' (Kpp, Kp i), we will use quasi-orthogonality
arguments. Here, the fact that the cells from D have thin boundaries will be crucial.
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2.7 The estimate of Y pcop HKRILLH%Q(M)

The goal of this section is to prove the following;:

Lemma 2.7.1.

Y IEralliegn S D 0u(Br)*u(R).

R€eTop ReTop

2.7.1 Regularization of the stopping squares
Pick R € Top and define

dr(e) = _inf (I~ 2| + (@)}

Notice that dg is a 1-Lipschitz function because it is defined as the infimum of a family of 1-Lipschitz

functions.

Now, we denote
Bo(R) = B(zg, 2945 "), Wi = {z € R%: dp(z) = 0} (2.12)

and, for all x € Bo(R) \ Wg, we denote by @, the largest cell @, € D containing x and such that

(@) < o5 inf dnly).

YEQ

We define Reg(R) as the family of the cells {Q.},eB,(r)\wy, Which are pairwise disjoint. Note that

Bo(R)\ |J Q=W C Good(R).
QEReg(R)

Lemma 2.7.2. Properties of the reqularized stopping cells:
1. If Q € Reg(R) and = € B(zq,50¢(Q)), then dr(z) ~ ¢(Q).
2. If Q,Q' € Reg(R) are such that B(zo,500(Q)) N B(zgr,506(Q")) # 0, then €(Q) ~ £(Q').
3. If Q € Reg(R) N D(R), there exists Q' € Stop(R) such that Q C Q’.
4. If Q@ € Reg(R), x € Q and r > £(Q), then

p[B(z,7) N Br| < 0,(Br)r".

1
inf dr(y) < —dr(2q),

Q € Reg(R) = (Q) < g5 Inf di(y) < 55

Proof. 1. First, observe that by definition of Reg(R),
1

6
that is, dr(zq) > 60¢(Q). Therefore, since dg is 1-Lipschitz and |z — zg| < 504(Q),

dr(r) > dr(z0) — |z — 20| > 606(Q) — 506(Q) = 106(Q).

On the other hand, again by definition of Reg(R), we have

. 1.
6(Q) > — inf dgr(y),
60 ye0

where Q is the parent of (). Then, there exists § € Q such that
dr(7) < 606(Q) = 6040£(Q).
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Now, since z,9 € Q and diam(Q) < Z(Q) = Apl(Q), and taking into account once again that dp is
1-Lipschitz, we get

dr(x) < dr(9) + |z — g| < 6040(Q) + Aol(Q) = 614:/(Q), (2.13)

as desired.
. This follows directly from (1).

. If such a Q' € Stop(R) does not exist, we get that @ € Tree(R). Then, for all x € Q,

dp(v) < of [l =z + Q)] < |o — 20| + £(Q) < 26(Q).

However, since ) € Reg(R), we get

1
1.
0(Q) < 0 ;g(g dr(z),

so dr(z) > 604(Q) for all x € Q). This is a contradiction.

. Since z € Q and Q € Reg(R), by (2.13) we have dr(z) < 62404(Q). Now, since

dp(z) =  inf — 20| + Q'
r(z) Q,elTrrlee(R)H:v 2| + Q)]

we obtain that there exists Q' € Tree(R) such that
|£L' — ZQ/| + K(Q/) < 62A0€(Q)

From this, we get
1

-z 24 d —
|z — zg/| < 62A0r an r>62A0€(Q’)

and, therefore, we have two possibilities:

(a) There exists Q" € Tree(R) with Q' C Q" and ¢(Q") < r such that B(z,r) C 1.1Bg~. In such
a case, since Q" € Tree(R), we have 6,(1.1Bg~) < 0,(Br), and therefore

u[B(z,r) N Bg] < u[B(z,r)] < u(1.1Bgr) = 6,(1.1Bgr)r(Bgr)"
,S eu(l.lBQ//)Tn ,S QM(BR)TTL.
(b) B(z,r) D Bg. In this case,

uB(z,7) N Br| = (Br) = 0,(Br)r(Br)" < 0,(Br)r".

2.7.2 The suppressed operators 75,

Fix R € Top and define

1

Pel) = 5043
0

dR(.’E)

Lemma 2.7.3. Properties of the suppressing function ®g:

1. If x € Q for some @Q € Stop(R), Pr(z) < ﬁé(@).
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2. If x € Good(R), Pr(x) =0.
3. If x € Q for some Q € Reg(R), then Pr(x) 2 £(Q).
4. For all x € Br and all r > $p(x),
w[B(z,r) N Bg] < C10,(Bgr)r™. (2.14)
Proof. 1. Let @Q € Stop(R) and = € Q. We have

dr(e) = nf [l = ]+ €Q)] < [ = 7g] + Q).

where Q is the parent of Q. Then,

1 1 A 1 1
Prle) = 55 n() < 552 = 155 A4UQ) = 150UQ)

2. If x € Good(R), there exist arbitrarily small cells @ € Tree(R) that contain x. Therefore,

1

bp(r) = m QE_}_&E(R) [l — zg| +4(Q)] = 0.

3. This follows directly from (1) in Lemma [2.7.2

4. First, observe that if x € R\ UQEReg(R) @, then 1' holds for all » > 0, and this can be proved
arguing as in (4) in Lemma and taking into account that dr(z) = 0. Otherwise, if z € @ for

some @ € Reg(R), by (1) in Lemma we have that r 2 ¢(Q), and so (4) in Lemma applies.
O

Lemma 2.7.4. Forxz € R,

K pp(@)| < Top o« (XBo(r)H) () + cO,(Br),
where Bo(R) = B(zr,294, J(R)), which is defined in , satisfies 0,,(Bo(R)) ~ 0,(Br).
Proof. The fact that 6,,(By(R)) ~ 0,,(Bg) follows immediately from R € D%.

Recall that

Kpp= Y Top= > xoTxok-
QETree(R) QETree(R)

Now, for € R, we have two possibilities: either x € @ for some @ € Stop(R) or x € Good(R).

1. Suppose z € @ for some @ € Stop(R). Then,

J(Q)—-1 J(Q) 1
Ken@) =] Y Tin( / o3z — 1) | Kz, y)du(y)

j=J(R) j=J(R)

- / s (& — 9) — Y@@ — )]k, y)du(y)

- / o Wam (@ =) = Y (@ = )@, Y) X B (r) (V) di(y)
|y—z|>0.001A, J(Q)—1

IA

|T2A;15(Q)(XBO(R)M)($)\ + b, (Br)

< |Tg 2452 000) XBo (M) (@) + Ty p =140y (XBo(RY) () = T, 2410(0) (X Bo(r) 1) ()] + €0, (Br)
< Top w(XBo(R)H)(T) + Mg, (X B, (R)1)(T) + 0, (Br)

< Top o« (XBo(R)I) () + €0,(BR),
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where the penultimate inequality follows from the fact that ®p(x) < 245 (Q) and the last one

from Lemma [A]

2. If z € Good(R), we have

Kae)] = i | [ a0 = 9) = (o = )Gt

Then, for N > J(R) we obtain, arguing as above, that

\ oo )~ vt - vk, y)du(y)' < ot (X)) + B (Br)

S T2ty (XBo(RYM)(2) = T 20511 (X Bo(R) 1) ()]
H1Tan 2001 (XBo(R)M) ()| + 0, (BRr)
< Mg, (XBo ()W) (@) + T s (XBo(R) 1) (%) + 0, (Br)
< Tops(XBo(myp) () + b (Br)
where in the penultimate inequality we used the fact that ®r(z) = 0 < 2¢x41. Then, letting

N — 00, we obtain
[Krp(x)] < Top s (XBo(r)1) (@) + cOu(Br),

as desired.
O
2.7.3 A Cotlar-type inequality
Lemma 2.7.5. Let R € Top. Then, for all0 < s <1,
T+ (fH" [ rs) () < Cs {MQR((T*(fH" L) VM L) (%) + Mg (fH" 1) () (2.15)

for all x € By(R).
Proof. Denote v = fH"|,. We will prove that for all x € By(R) and all € > 0,
T ev(2) < Cy [ My, (Tv) H" L) (@)* + My 0(x)

By (2) in Lemma we can limit ourselves to the case ¢ > ®p(z). Furthermore, we can assume
€ > gg := 0.9dist(x, I'g) since otherwise Ty, -v(x) = Tp, o, v(z). Therefore, from now on we will assume
e > max{Pg(z),0.9dist(x, ['r)}. Notice that, in such a case, H"(B(x,2¢) N I'g) 2 €". We claim now
that, for all ' € B(z,2¢) N I'g)

T .cv(x)] < |Tev(z')| + CMg v(x). (2.16)

From this, the desired result follows easily. Indeed, this implies that for all 0 < s < 1,

|Tgp.cv(x)]® < Tow(z')® + CMg v(x)®,

and so, taking the H"| ,-average for with respect to ' € B(x, 2¢), we get

1
<
= Hn[B(x,26) N [g]

T ev(z)]® / To(a! ) dH" |y (a') + CM, 1(2)°
B(z,2¢)

1
S o Tov (@) dH" [ e (2') + Mg, v(2)*
€" JB(x,2¢)

S Mg, (Tov)* H" [ ) (2) + Mg v(2)°
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and, exponentiating by %, follows.
Let us prove now . We have
Top.cv(@)| < |Topev(z) — Tev(z)| + | Tev(z)| S [Tev ()| + Mg, v(x)
by Lemma [A] since e > @ r(z). Now, for all 2’ € B(x, 2¢)

[Tev(a)| < [Tev(z) — Tacv(x)
= |Tev(2) = Taev ()| + |T (Xra\ B(2,40)V) (7)]

< |Tev(z) — Tyev(w)| + |T(X]Rd\B(x 4e) v)(z) — T(XRd\B(x 4e)V )(ml)‘ + |T<XRd\B(z 1)V v)(z /)|

< |Tev(e) = Taev(x)] + |T(XRd\B(z 16)V)(@) = T(Xra\B(z,a0)V) ()]

) = Tev(a)| + [ Tev(a')].

Tyev ()| + |Tuev ()]

/

|T(X]Rd\B(9c 45)’/)(96

Now

Tev(z) — Tyev(a)| = N/ dv|(y) _ [v|[B(x,4e)]

k(z,y)dv(y)| < N < Mg v(z).
/e<a:y|<4s e<|z—y|<4e |J? - y|n (45)'@ on

In addition

IT (Xr\ B(2,6)) () = T(XRa\ B(2,40) V) (&) = ‘/I » (k(z,y) — k(z', y)]dv(y)

& — | .
< /| ) < M, (o),

r—y|>4e |.T -

where the last inequality is obtained by taking into account that |z — 2’| < e and splitting the domain of

integration into annuli {2%¢ < |z — y| < 28*1e}, k= 2,3,... Finally,

Tkt ey) (&) — Tovla')| = ‘ | peat = [ ki)

—x'|>e

‘ ( / k(e y)dv(y) + / k(x',y>dv<y>>
ly—z|>4de,|y—z'|<e ly—z|>4de,ly—z’'|>e
- ( / k(e y)dv(y) + / k(x',y>du<y>>
ly—a’|>e,|ly—z|>4e ly—a’|>e,|ly—z|<de

/ k(e y)dily) — / k(@ y)dv(y)
ly—z|>4e,|y—a'|<e ly—z’|>e,|ly—x|<4e

Here, the first integral vanishes, since |z — 2’| < 2¢ and |y — z| < € imply that |y — 2| < 3c. Therefore,

IT (e ooy (&) — Tov(a!)] < / k(e y)dv(y)
ly—z'|>¢e,|ly—x|<4e

< / dlv|(y)
ly—a'|>e,|ly—x|<4e "T/ - y|n

_ l[B(,4)

< PP < g (o).

This completes the proof of (2.16) and, hence, of the lemma.
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2.7.4 L*-boundedness of T}, 4,

Lemma 2.7.6. Let R € Top and consider the measure ogp = 0,(Br)H"|r,. Then, for 1 < p < oo,
Topap 15 bounded from LP(or) to LP(xp,(r)t), with norm bounded by Cp0,,(Br). Furthermore, Ty o,
is bounded from L'(og) to LY (xp,(r)k), with norm bounded by C0,(Bgr).

Proof. First of all, we observe that the maximal operator M 4 is bounded from L>(cor) to L*°(xp,(r) 1)
with norm bounded by C0,(Bg). Indeed, if f € L>(oR), and x € By(R)

- 1 w|B(z,r) N By(R
roaf@) = s~ i < || flleomy sup BT 0 BolF)
r>®p(x) T B(z,r)NBo(R) r>®g(x) r

S 0u(Br)I| fllL (o)
by (4) in Lemma Therefore,

HMUR,@RfHL‘”(XBo(R)#) (BR>Hf||L°°(aR)7

as claimed.

Now, let us check that M"

O’R¢

is bounded from L'(og) to L (xp,(rypr) with norm bounded by
C6,(Bgr). In fact, we will prove a slightly stronger result, as we will deal with a non-centered version of
M7, &, which will be useful for technical reasons. Define, for f € L'(og) and z € RY,

NGy () = 50D~ / fldor,

where the supremum is taken over all balls B with z € B and such that p(5B) < C16,,(Bgr)(57(B))",
where C is the same constant that appears in (4) of Lemma [2.7.3] Clearly,

MT

or,Pr

f(@) < Ny o f (),

so the weak (1,1) inequality for M[ 5 will follow from that for NJ_ 4 .

Let f € L'(og), A > 0, and consider

2\ ={x € Bo(R): N} o, f(x) > N}

By definition of N 4, for every x € {2y, there exists a ball B, containing z with u(5B;) < C16,(Br)(5r(B))"
and such that )

7“(395)"/31 |fldor > A,
which is equivalent to

r(Bg)" < % . |fldor. (2.17)

Now, applying the 5r-covering theorem, we may extract a countable and disjoint subfamily {B;} of
{By}zen, such that the balls {5B;} cover £2). Then, we have

N < ZM(5Bi> < cheu(BR)(57“(Bi))" S 0u(Br) Y r(Bi)"
’ (2.18)
B 0,(B
NEBMO / lire < B0 [ o < 28 0,

which proves that NJ_ g4 (and also M7 4 ) is bounded from L'(og) to L™ (xp,(r)i) with norm
bounded by C6,(B R). Then, Marcinkiewicz’s Interpolation Theorem applies and so, for 1 < p < oo
M7, g, is bounded from LP(og) to LP(xp,(r)i) with norm bounded by Cy0,,(Br)
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Notice that (2.15) in Lemma can be restated as
Topansf (@) < Cs[Mgy o (Tn i, 1)*) (@)% + Mg g, f(2)). (2.19)

Then, taking s = 1 and using the LP(or) — LP(xp,(r)H)-boundedness of M[ we obtain that

or, PR’

Typ,®r,+ is bounded from LP(og) to LP(x p,(r)p) with norm bounded by C,0,,(Br).

To deal with the weak (1,1) case, we will need to work a little harder. Going back to (2.19), with
s =1, we get that for f € L'(or),

Topitons (1) < CIMG, 0 (Togn ))2)(@)? + M, 0, ()]

and so, for A\ > 0,
p({z € Bo(R): Topap«f(x) > A}) < p ({z € Bo(R): M}, ¢, (Tyn, £)?)()? > })
ny ({x € Bo(R): My, 5, f(x) > 2)(}})
< p ({x € Bo(R): My, 0, (Ton))?) (@) > (;C’) % uw” }>
+p <{x € Bo(R): My, 0, f(2) > 2AC}>

Here, the second term is bounded by C@Hf“ﬂ(m) because of the weak (1,1)-inequality for

M7, 5, To deal with the first term, we will use the weak (1, 1)-inequality (2.18) for N7 &,.. Denote
1
1 A2 1
2= {x € Bo(R): Ny 4 (Tor f)?)(2) > (20> 9M(BR)2}
so that

SIS

u <{x € Bo(R): My, ¢,(Torf)?)(x) > (2)\0) ’ 9#(BR)§}> <p(2) 5 m /Q \Tng|%du

0,(Bg)? . 1
< M?NQQ)Q HTO'RszlvOO(M)
11 1
= M(Q)Q )\?HTURfHLl’OQ(O'R)’

which implies that p(£2) < $||Ts s f]| 115 (o), and therefore

, % 1 0,(B
7 ({ﬂf € Bo(R): My, ¢,(Torf)?)(z) > meu(BR)}> S X||TaRf||L1>°°(oR) N %Hf”m(m),

where we used the fact that T,,,, is bounded from L!(og) to L''*°(og) with norm bounded by C6,(Bg).
This completes the proof of the lemma.
O

We recall here a lemma that is also used at [T3] that will be useful. Its proof is based on the combined

use of both Marcinkiewicz’s and Riesz-Thorin’s Interpolation Theorems.

Lemma 2.7.7. Let 7 be a Radon measure in R? and let T be a linear operator that is bounded in L*(T)
with norm Na. Suppose further that both T and its adjoint T* are bounded from L'(7) to LY*°(7) with
norm bounded by N1. Then No < c¢Np, where ¢ is an absolute constant.

Lemma 2.7.8. T), ¢, is bounded on L*(xp,(ryp) with norm bounded by CO,(Bg).
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Proof. Since T}, ¢, is antisymmetric, by the previous lemma, we can limit ourselves to prove that it is

bounded from Ll(XBO(R),u) to Ll’“(XBO(R),u) with norm bounded by C6,(Bg).

Let f € L*(Xpy(r)) and denote Reg(R) = {Q;}52,, where we assume that the side-lengths £(Q;) are
non-increasing. Arguing as in (4) of Lemmam it is easy to check that every cell @; is contained in a
cell @} such that 0,(Q}) < 0,(Br), 0,(Q:, Q) S 0,(Br), Q;NI'r #0and H™(Q, N Ig)~ Q)"

Set
9= fXBU(R)\Ui Q. b= ZfXQi

so that f = g+ b. Since Bo(R) \ |J; Qi C Good(R) and this is contained in I'r (up to a set of y-measure
zero), by the Radon-Nikodym theorem we obtain that
Lo\, @i= THTn>

where 7 is some function with 0 <7 < C8,[By(R)] S 0,(Br). Then, by Lemma [2.7.6] we have that, for
A >0,

p{z € Bo(R): [Ty ep9(x)| > A}) = p({z € Bo(R): Ty ax(9n)(z)] > A})
=p({z € Bo(R): |Tor,0r(9n) (@) > 0,(Br)A}) (2.20)

0,(Br 0,.(Br)
\ £z ()

1 )
S Sllonlleion) = gnllr@en | ry) =

Now, to deal with T}, ¢, b, we define, for every i > 1
@ = sy AT L (@), v = (Fxo)u —H}
i(@ g (%), vi= DK = YiHT
,y Hn(BQ’ N FR) /’L XBQi NI'r XQz M ’y I'r
so that v; is supported on BQ; and satisfies fdz/lv =0, and we write

:ZVH-Z%‘

so that

Tponb = To,(bp) = Tay, (z u1> + Ty, (Z% ) .

Now, again by Lemma we get
> A}) =pu ({aze By(R)

1 <{z € By(R): |Tg, (Z 'YiH?“R> (z)
Z%

< 8By 7y,

Top.0n (Z 71) > GN(BR))\}>

(Br) ,
< BI85 [ yfan,

L(or)

<1
)\
9

(2.21)

Finally, to deal with the term T, <Z VZ') , we apply Chebyshev’s inequality to get

1
p ({x € Bo(R) A}) = /Bm

Top (Z yi>

T¢R (Z Vi) (ZZ?) >




Now, since [ dv; = 0, for = ¢ 2B, we have

b)) = | [ [hagl9) = o (.20l d)

By
Qi

(T s()] = /B
</ Md|w|(y)<w

1
™ e =z Mt

o]
and so
EQQ v
[ ez | QWAL < g (B il < 0,(Br) [ iflan 2
]Rd\QBQ; BO(R)\2BQ1 |z — ZQ;\ Qi

On the other hand,

/ (T ildps < /

< /Q TP, )l + /

QBQE \ Qi

T ((Fx00)00) s + / Tyl
@

T ((Fxo0)i0) s + / Tyl
@

=l +la+1s.

Now, to bound |; we use the fact that for all x € Q;, Pr(x) > £(Q;), by (3) in Lemma and so
|k¢R(l‘7y)‘ 5 E(Ql) for all T,y € Qt Hencea
| 1fla
Qi
I < 1(Q:)

o /Q 17l S 0u(B) /Q 1l

Tan(Fx@)O) S 155

and so

by (4) in Lemma [2.7.3]

To bound |2, we observe that for z € 2B¢. \ Qi,

i (0 @) = | | oo )t S s [ 1910

~ |‘T - ZQi|n

i

and so
1

lo =/ IquR((fXQi)u)ldMS/ |f|dﬂ/ —————dpu(x)
2B/ \@i Q 2B\ 17— 2Q.]

= 0,(@0@0) [ 1715 0u(B) [ 111

Finally, by Lemma [2.7.6

= /B T (i) < p(2Bg)* / (T (viHE, )| dps
2 Q’ 2

Bin

<

9Bo/)? Ty, (vio zd)2< 2Bo)E 1%l l 1200
0B 250 (/' or(vior)Pdp ) < 1(2Bo)? il L2 (o)
1 1 1

Gathering the estimates for |y, ls and |3, we obtain
| Taldn < 0,(8w) [ |fidn
QBQ{ Q7
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and so, going back to (2.22)) and also taking into account (2.23)), we obtain

1 ({x € Bo(R): |Tg, <¥VZ> (z)] > A}) < %/Lﬂdu

This, together with (2.20) and (2.21]), imply the weak (1, 1) inequality

n({e € Bo(B): [Ty ()] > M) £ 2P,

that we were looking for.

2.7.5 L*-boundedness of Ty, ,, .

Lemma 2.7.9. For R € Top, Tg, .« %5 bounded in L2(XBO(R),M) with norm bounded by c8,,(Br).

Proof. This is a direct consecuence of Theorem [G] and Lemma taking S = Ts,,, o
CO =~ GM(BR)

= XBo(R)M and
O

With all these tools at hand, we can prove Lemma Indeed, given R € Top, by Lemmas

and [2.7.9] we have

Nl=

1Kl z2n) < T (xR )| L2 () + Ou(BR)U(R)? S 0,(Br)p(R)

and the desired conclusion follows after squaring both sides and summing over R € Top.

2.8 The estimate of ZR,R’ETop,R#R’<KRM7 KR’M>M

Given R, R € Top, R# R, (Krp, Kprjt),, = 0 unless RN R’ # (. Then,

Z (Krp, Kprp)y = 2 Z (Kqu, Krp)p
R,R'cTop,R£AR/ Q,R€Top,QCR

Arguing as in [T3], we can guess that bounding this sum would be relatively easy if
/ KQ/‘L = Oa
Q
but this is, in general, not the case. Indeed,

Kop = Tarp = Z XMLy by
MeTree(R) MeTree(R)

and while it is true that for all M € Tree(R)

/ Ty (Xarp)dp =0
M

/ Ty =0
M

/ Koudpu =0
Q

will not be true in general. Still, the fact that

by antisimmetry, this does not imply that

and so

/ Ti(Xnrp)dp =0
M
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for all i > 0 and all M € D will be useful, as we will see in the proof of Lemma 2.8}
We have

> (KowKrpyu= Y, > > (Kow, Kru)y

Q,RETop,QCR ReTop PeStop(R) QETop,QCP

> > > (Tom Krp),

RETop PeStop(R) QETop,QC P Q' ETree(Q)

S OY Y ks

ReTop PeStop(R) QeD(P)

> > Z > (x@Tip, Krp)y

ReTop PeStop(R) i=J(P) QeD;(P)

= > > > (xeTus,Krp),

ReTop PeStop(R) i=J(P)

Now, fixed R € Top, P € Stop(R) and i > J(P), we define m(J(P),7) as some intermediate number
between J(P) and i (for example, the integer part of the arithmetic mean of J(P) and i), and we
decompose

pP= U S
SEDm(s(Py,i): SCP

so that

> (KowKrmyu= Y, Y, Y (xpTip, Kpp),

Q,RE€Top,QCR ReTop PeStop(R) i=J(P)

Z Z Z Z (xsTip, Krpt)

ReTop PeStop(R) i=J(P) SEDm(s(P),4)

o> > > (xsTilxsn). Krp)u

R€Top PeStop(R) i=J(P) SEDm(s(p),4)

+ > Y > (xsTi(xwa\si), Krp)y := NDy + NDy

ReTop PeStop(R) i=J(P) SEDm(s(P),i)

2.8.1 The estimate of ND;

Lemma 2.8.1.

ND1 < > 0.(Br)’u(R)
ReTop

Proof. Recall that

ND; = Z Z Z Z (xsTi(xsm), Krit)

ReTop PeStop(R) i=J(P) SED (s (P),1)
Fix R € Top, P € Stop(R), i > J(P) and S € D,,(J(P),i). Since
AE(Xsu)du =0,

we have

(XSTi(xsi)s K it} = /S T (xst) K ppadp = /S (X ) [K rpt — K pplzs)ldp.

Now, given z € S, since S C P and P € Stop(R), we have that the cells from Tree(R) that contain x
are the chain in D that starts in the parent of P and ends in R. Therefore,
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Kppx)= Y. Tou)
QETree(R): z€Q
J(P)—1

> Tiu()

JEJ(R)

J(P)—1
/( > wj(x—y)) k(z, y)dp(y)

JEJ(R)

— [ [ = 9) = oy 2 = )] bl p)dito)
If we denote
Crop(,y) = [Vur) (@ —y) — Yy (@ —y)] k(z,y)
it is easy to check that for x, 2z’ € S we have

|z — o]
+ |z =yt

|<R,P(x?y) - CR,P(-’I;/,yN 5 (K(P)

Therefore, for z € S,

|z — zg|

Knn(e) ~ Knp(es)| S [
| ) (z)l dist(y,P)<0.01477® ({(P) + [z — y|

(5)

< @%(BR),

e du(y)

where the last inequality follows from (2.7)), and so

~

[T Ocs), Kl < 2200, (B5) [ micsnidn
P) s

= 22000, () [ (sl
J(P) s

~

J(P)—i

~ A0 7 0,(Br) [ T\ (estold

Now, for z € S,

@) = | [ ita- y)k(w)du(y)]

pi(r —y)k(x,y)du(y)

dp(y)
x—yl"

/yGS, 0.0014; "' <|z—y|<0.014, "

</ | |
y€S,0.001A; "~ <|z—y|<0.01A7°

[B(z,0.014,")]

u
< : =0,
~ Aanz 122 (I)

and so

(T Oxsi), Kl S Ag 7 0,(Br) /S 6,4 (x)dp(x).
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Therefore,

NDi < > > > D [(xsTulxsw), Krp)yl

Re€Top PeStop(R) i=J(P) SEDm(s(P),i)

= DD DI SN SR b NC- /S 0,01(2)du(2)

R€Top PeStop(R) i=J(P) SEDwm(s(P),i)

<Y amn Y AT S 4 /ew du(e
ReTop PcStop(R) i=J(P)
S Y 4TS 4 /em ke
ReTop PeStop(R) i=J(P) P’GD P'CP
J(P)
< D 0uBr) ) 4y Z Ay T 0,[1.01Bp]u(P"),

ReTop PeStop(R) P’eD(P)

We reorganize the previous sum, to obtain

N S Y 6Be) Y AT Y S 4T 0L0BP) (o)

ReTop PeStop(R) P’ €Top: P""CP P’cTree(P")

(P

and from the fact that P’ € Tree(P”), we obtain that 6,(1.01Bp/) < 0,(Bp~), so

J(P) J(P')

ND: S D 6u(Br) D> Ay > 60u(Be) Y. Ay = u(P)
ReTop PeStop(R) P'"€Top: P'"CP P’€Tree(P")
J(P) _ I

S D 0uBr) Y 4 Yo 0u(Be)Ay T u(P") (2.25)
ReTop PeStop(R) P’"€Top: P'"CP

J(Rpi)=J(P'")
= 2 uBr) > Ay T Ou(Beu(P”)
RecTop P"€Top: P"CR

where, given R, P” € Top with P’ C R, Rp~ is the cell from Stop(R) that contains P”. To deal with
this sum, we need to organize it in trees. To do so, define Stop*(R) = Stop(R) and, for k > 1,

Stop”(R) = {Q € D(R): there exists Q' € Stop* ' (R) with Q € Stop(Q")}

so that

{P € Top: P ¢ R} = | J Stop*(R).
k=1

This way, renaming P as P in (2.25]), we have

J(Rp)—J(P)
ND: S D 6u(Br) >, Ay *  0u(Bp)u(P)
ReTop PeTop: PCR

J(Rp)—J(P)

D 0uBr)Y, Y. Ay 7 6u(Bp)u(P)

ReTop k=1 PeStop*(R)

S D 0u(Br) ZA > 0u(Bp)u(P)zu(P)

RETop PeStop* (R)
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because P € Stop”(R) = J(P) — J(Rp) > k — 1. Then, using Cauchy-Schwarz’s inequality twice, we get

2 2

NDi S S 0.BR)S A [ S 0u(Be)u(P) S P

ReTop k=1 PeStop®(R) PeStop* (R)

=347 Y 0.(Br)u(R)? > 0u(Bp)*u(P)

k=1 ReTop QeStop* (R)
1
3 3

S 0B u® | [ Y 6.8 uP)

k=1 RETop ReTop PeStop®(R)

as desired. O]

2.8.2 The estimate of ND,

Lemma 2.8.2.

NDy S Y 0.(Br)*u(R).
ReTop

Proof. Recall that

NDa= > > > > xsTilxrast), Krpp.

ReTop PeStop(R) i=J(P) SEDm((P),i)

Fix R € Top, P € Stop(R), i > J(P) and S € Dy, (5(p),;)- We have

(xsTi(xra\st)s Krpt) :/STi(XRd\SM)KRNdM-

Now, if z € S,

T (xaosin) (x) = /

pi(r —y)k(z,y)du(y) = / pi(r — y)k(z, y)du(y),
R4\ S

y€5S,0.001A; " <|z—y[<0.01A}

s0 T;(xra\sp) () = 0 unless dist(z, £\ S) < 0.01A4," (where, as we stated earlier, E = supp(u)). Thus,
if we denote

0;S = {x € S: dist(z, E\ S) < 0.014;"}
we have that
supp(xsTi(xra\sp)) C 0iS.
Then,

(xsTi(xra\sp), K = / Ti(xpa\sit) Kppdp = > / T (xra\si) K ppudye.
85 MeD;: Mcs/oiSNM

Now, for M € D; with M C S and = € 0;S N\ M, we have

xzos)o)| = | [ _ il — )k, y)du(y)
y€5S,0.0014; "7 <|z—y|<0.01A}
d B(z,0.014;°
0.0014; = <[z —y|<0.014] [T = Y|" Ag
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Therefore,
‘<XS’Ti(X]Rd\S,u)7 KR:U’>IJ«‘ < Z
MeD;: MCS

S > oo [ |Knudn
MED;: MCS 9;SNM

/ Ti(X]Rd\S,U)KRMdN’
9; SNM

Then, if we denote

OiDp(s(p),i) = U 0;S
SEDm (J(P),i)

we have

S Y sTibwast), Krmu| S Y., Y > 60,[1.01By] /8 o Eruldy

i=J(P) SEDwm(s(P),i) i=J(P) SEDm((p),i) MED;: MCS
o0
<) > 9#[1.OlBM]/ | K ppuldp
i=J(P) MED;: MCP 95 PPy, (ary) M
= > > 9N[1.OlBM]/ | K rpldp.
P’€Top: P'CP McTree(P') 91 PPy, s (aryNM

Here we have that 6,[1.01By] < 0,,(Bps) for M € Tree(P’), and therefore

> > sTileasi) Krmu| S D 0u(Be) Y / | Krpldp
i=J(P) SE€Dm (s (P) 1) P’eTop: P/CP MeTree(P') ¥ 2100 PPy, s (an) MM
s Y ey | (K il
P’eTop: P'CP i=J(P) Y OiPm(p),)) NP’
Here we use Cauchy-Schwarz’s inequality to get
oo (oo}
1
> (xsTilxravst)s Krmhp| S Y. 0u(Bp) Y IKrullL2(op i #1(0iDrn(a(py.i) NP2
i=J(P) SEDm(J(p),i) P’€Top: P'CP i=J(P")
Now, given R, P’ € Top with P’ C R, we set
2
oo
1
HR,P = Z 1(Oi Do 1(Rp i) N P']2
i=J(P’)

so that

ND; < Z Z Ou(Br) 1K Rl L2 (xpr i) o, pr
ReTop P'cTop: P/CR

— Z Z Z 9u(BQ)|\KRN”LZ(XQM)/‘I%%,Q’

k=1 R€Top Q€Stop*(R)
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and here, we use Cauchy-Schwarz’s inequality twice again to get

[N
ol

ND2 S0 >0 | D KR gm S (B ura

k=1 R€Top \ QeStop*(R) QEStop* (R)
. :
<Y D Kapllzgy | D0 Ou(Bo)mre
k=1 ReTop QeStop* (R)
N . }
<D IKRpl ) Yo Y 0u(Be) ure
k=1 \ ReTop ReTop QeStop* (R)
b :
S 0uBuR) ] D Y. D uBo)rre|
ReTop k=1 \ R€Top Q&Stop* (R)

where the last inequality follows from Lemma [2.7.1] Therefore, if we prove that

1
2 2

YU DS D uBorre| S| DL 0u(Br)u(Br)|

k=1 \ R€Top QeStop*(R) ReTop
we will reach the desired conclusion. To do so, recall that for fixed k > 1, R € Top and @) € Stop’C (R)

oo

1
pro = > #l0iDmu(rg).)) N QI
i=7(Q)

Now, recalling that ¢, = 56Cy Ay * = £(S) whenever S € D, we have, for all i > J(Q),

(%D s(Ro).0)) N Q] = > w(0;:S)

SGDT‘VL(J(RQ),’i): SCcQ

3 B ({x € 5: dist(z, R\ §) < 0'01A°ie(5)})

0s
S€Dm(s(Rg).i): SCQ ( )

1

() tssm9)

A

SE'D,”(J(RQ)J): SCQ

J(RQ)—i
S.; AO ? I’L(BQ)a

where the penultimate inequality follows from (2.10). Therefore,

2 2
0 J(RQ)—i 3 o0 J(Rg)—i J(RQ)-J(Q)
pre S| D (Ao : u(BQ)) =u(Bo) | >, Ay ° Su(Bg)4, *
i=7(Q) i=7(Q)
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and so

Nl=

1
2

oo , oo ) J(Rg)=J(Q)
Z Z Z 0.(BQ) 1R S Z Z Z 0,.(Bq) n(Bg)A, °
k=1 \ RE€Top QeStop*(R) k=1 \ RETop QeStop*(R)

- 3
_k
SO AT DD D 6u(Be) u(Bg)
k=1 ReTop QeStop” (R)
%
S 0,.(Br)*11(Br)
ReTop
1
2
S| DD 0.Br1PuR) |
ReTop
as desired. 0

2.9 The proof of the main lemma [2.5.1

This is a straightforward consequence of Lemmas [2.7.1] 2.8.7] 2:8:2 and [F] Indeed, going back to Section

2.6

ITullFogn = Y IKrpllizgn+ D, (Kap, Kpopi)u-
ReTop R,R’'€Top

Now, by Lemma [2.7.1]
D IKrulZ2) S D 0u(Br) u(R),

ReTop ReTop

and by Lemmas 2.8.1] and 2:8.2]

Y (Keuw Kppm)u| S Y 0u(Br)’u(R),

R,R'c€Top RecTop
SO
9 < 9 < ! dr
ITull200 S 0u(Br)*u(R) < lull + Buu2(,7)8,[B(z, )] —-du(z),
RETop 0
as desired.

2.10 The proof of Corollary

The key idea behind the proof is to use Volberg’s characterization of Lipschitz harmonic capacity [V,
Lemma 5.15], which states that

K(E) =~ sup u(E),
where the supremum is taken over all positive Borel measures p supported on F such that u[B(z,r)] < r™
for all x € R™*! and all r > 0 and such that the n-dimensional Riesz transform R with respect to u is
bounded in L?(u) with norm < 1.

Then, to prove Corollary let p be a positive Borel measure supported on FE satisfying .
Then, clearly p[B(x,7)] < 7" for all z € R**! and all » > 0, and furthermore, applying Theorem m,
we get that R, is bounded in L?(u) and its norm is bounded by some absolute constant. Therefore,
for an appropriate multiple v of u we have that v[B(z,r)] < r™ and ||R,||r2()—r2) < 1, and so
w(E) Sv(E) < k(E), as desired.
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Chapter 3

The Riesz transform and
quantitative rectifiability for general

Radon measures

3.1 Introduction

In the work [NToV1] it was shown that, given an n-AD-regular measure p in R" ™1, the L?(u)-boundedness
of the n-dimensional Riesz transform implies the uniform n-rectifiability of p. In the codimension 1 case,
this result solved a long standing problem raised by David and Semmes [DST]. In the present chapter we
obtain a related quantitative result which is valid for general Radon measures in R"*! with polynomial
growth of order n. Our result turns out to be an essential tool for the solution of an old question on

harmonic measure which has appeared in a work by Azzam, Mourgoglou and Tolsa [AMT].

To state our main theorem in detail we need to introduce some notation and terminology. Let u be
a Radon measure in R"*1. For f € L} (u) and A C R**! with u(A4) > 0, we consider the y-mean of f

loc

malh) = fau = M(IA)/Afdu-

Also, given a ball B C R"*! and an n-plane L in R"*!, we denote

£8) = o [ R duto)

over A

where r(B) stands for the radius of B. In a sense, this coefficient measures how close the points from

supp(u) are to the n-plane L in the ball B. We also set

PM(B) = Z 277 9#(2j3)7

>0

so P,(B) is some kind of smoothened version of the usual n-dimensional density of 1 on B. Finally,
denote by K the n-dimensional Riesz kernel in R™*!, that is,

rT—-Y
K(%y):K(CU—Z/):W

and by R the associated Riesz transform.

Our main theorem is the following:
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Theorem 3.1.1. Let i be a Radon measure on R" 1 and B C R q ball so that the following conditions
hold:

(a) For some constant Co > 0, Cy 'r(B)"* < u(B) < Cyr(B)™.
(b) P,(B) < Cy, and pu(B(z,r)) < Cor™ for allz € B and 0 < r < r(B).

(¢) There is some n-plane L passing through the centre of B such that for some 0 < § < 1, it holds
L.(B) <é.

wn,1
(d) Ry is bounded in L*(p| g) with | Ry sl 2 ) s)—120u5) < Ch-

(e) For some constant 0 < ¢ < 1,
[ 1Rute) = m p R ) < < ().

Then there exists some constant T > 0 such that if 0, are small enough (depending on Cy and Cy ), then
there is a uniformly n-rectifiable set I' C R™ ™1 such that

wW(BNT) > 71u(B).

The constant T and the UR constants of I' depend on all the constants above.

We remark that it is immediate to check that the condition (b) above holds, for example, if u has
polynomial growth of order n (with constant Cp). The statement in (b) which involves P,(B) is a little
more general and it is more convenient for applications. Finally, we warn the reader that in the case
that p is not a finite measure, the statement (e) should be understood in the BMO sense: the fact that
P,(B) < oo guarantees that Ryu(x) —my,, g(Rpu) is correctly defined.

Note that, in particular, the theorem above ensures the existence of some piece of positive y-measure
of BN I where p and the Hausdorff measure H™ are mutually absolutely continuous. This fact, which

at first sight may appear rather surprising, is one of the main difficulties for the proof of this result.

It is worth comparing Theorem to Léger’s theorem on Menger curvature. Given three points

z,y, z € R2, their Menger curvature is

1

c(x,y,2) = m7

where R(z,y,z) is the radius of the circumference passing through z,y, z if they are pairwise different,

and c¢(z,y, z) = 0 otherwise. The curvature of p is defined by

Ap) = /// c(,y,2)* du(x) du(y) du(z).

This notion was first introduced by Melnikov [M] when studying analytic capacity and, modulo an
“error term”, is comparable to the squared L?(u)-norm of the Cauchy transform of u (see [MeV]). One
of the main ingredients of the proof of Vitushkin’s conjecture for removable singularities for bounded
analytic functions by David [D2] is Léger’s theorem [[] (sometimes called also David-Léger theorem).
The quantitative version of this theorem asserts that if y is a Radon measure in R? with linear growth
and B is a ball such that p(B) ~ r(B) and furthermore ¢?(uu| ) < € u(B) for some small enough & > 0,
then there exists some (possibly rotated) Lipschitz graph I" C R? such that p(BNTI') > Zu(B). In
particular, as in Theorem it follows that a big piece of u| 5 is mutually absolutely continuous with

respect to H' on some subset of I'.
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In a sense, one can think that Theorem [3.1.1] is an analog for Riesz transforms of the quantitative
Léger theorem for Menger curvature. Indeed, the role of the assumption (e) in Theorem is played
by the condition ¢?(u|5) < € u(B). Furthermore, it is not difficult to check that this condition implies
that there exists some line L such that 55,1(3) < du(B), with § = d(e) — 0 as € — 0, as an analog to
the assumption (c) of Theorem

On the other hand, from the theorem of Léger described above, it follows easily that if H!(E) < oo and
c2(H!| g) < oo, then E is 1-rectifiable. The analogous result in the codimension 1 case in R**! (proved in
[NToV2]) asserts if E C R"*!, H™(E) < oo, H"| g has growth of order n, and |R(H" | g)||r2(3»
then E is n-rectifiable. However, as far as we know, this cannot be proved easily using Theorem [3.1.1]

) < 09,

e

The proof of Theorem|3.1.1]is substantially different from the one of Léger’s theorem: when estimating
the L2(u)-norm of Ry we are dealing with a singular integral and there may be cancellations among
different scales. Therefore, the situation is more delicate than in the case of the curvature ¢(yu), which

is defined by a non-negative integrand (namely, the squared Menger curvature of three points).

To prove Theorem we will apply some of the techniques developed in [ENV] and [NToVI].
In particular, by using a variational argument, we will estimate from below the L?(u)-norm of the
Riesz transform of a suitable periodization of a smoothened version of the measure p restricted to some
appropriate cube Qg. The assumption that ﬂ[;l(B) < ¢ in (c) is necessary for technical reasons, and we

do not know if the theorem holds without this condition.

Finally, we are going to describe the aforementioned result on harmonic measure from [AMT] whose
proof uses Theorem [3.1.1] as an essential tool. For simplicity, we will only state it for domains 2y, 25 C
R™*! satisfying the condition

Hf)o((R"H \ )N B(x,r)) =r® forall z € 92, and 0 < r < ry, (3.1)

for some fixed s € (n — 1,n + 1] and 79 > 0, where H3_ stands for the s-dimensional Hausdorff content.
For example, the so-called NTA domains introduced by Jerison and Kenig [JK]| satisfy this condition,

and also the simply connected domains in the plane.

Theorem 3.1.2 (Azzam, Mourgoglou, Tolsa). Let 21,82, C R"* n > 2 be two disjoint connected
domains with 921 = 0f25 so that holds. For i = 1,2, let w® = w?j‘i be the respective harmonic
measures with poles at x; € £2;, and let E C 9821 be a Borel set. If w' < w? < w! on E, then E contains
an n-rectifiable subset F with w'(E \ F) = w?(E \ F) = 0 where w' and w? are mutually absolutely

continuous with respect to H™.

Up to now, this result was known only in the case when (2, {25 are planar domains, by results of
Bishop, Carleson, Garnett and Jones [BCGJ| and Bishop [B1], and it was an open problem to extend it
to higher dimensions (see Conjecture 8 in [B2]). For a partial result in the higher dimensional case, see
the nice work [KPT] by Kenig, Preiss, and Toro.

3.2 The Main Lemma

3.2.1 Preliminaries and statement of the Main Lemma

Given two Radon measures i and o and a cube Q C R"™!, we set
do(p,0) = Sl;p/fd(u —0),
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where the supremum is taken over all 1-Lipschitz functions supported on @. Given an n-plane L in R**+1,

we denote )
L _ . n
Q, (Q) - €(Q)”+1 éng‘ dQ(/.L,CH I_L)

We say that @ has t-thin boundary with respect to p if, for some constant ¢ > 0,
p({z € 2Q : dist(z,0Q) < AUQ)}) < tAp(2Q) for all A > 0.

It is well known that for any given cube Qo C R"*! and any constant a > 1, there exists another cube
Q@ with t-thin boundary such that Qg C Q C aQq, with ¢ depending just on n and a. For the proof, we
refer the reader to Lemma 9.43 of [T6], for example.

Main Lemma 3.2.1. Let n > 1 and let Cy,C7; > 0 be two arbitrary constants. Then, there exist
constants A = A(Cy,Cy,n) > 10 big enough and € = £(Cy,C1,n) > 0 small enough such that if 6 =
§(A, Cy, Cy,n) > 0 is small enough, the following holds: let . be a Radon measure in R"*1 and Qo C R"+!

a cube centered at the origin satisfying the following properties:
(a) 1(Qo) = £(Qo)"-
(b) Pu(AQo) < Cp.
(c) For all x € 2Qo and 0 <1 < £(Qo), 6.(B(z,1)) < Co.
(d) Qo has Co-thin boundary.
(e) ol (3AQ0) <6, where H = {z € R™*! : 2,y = 0}.

(f) Rulag, s bounded in L?(p]2g,) with IR ilsao 12 (11200 = L2 (ul2a) < C1-

(9) g IRu(x) — my,qo (Ru)|? du(z) < e n(Qo).

Then, there exists some constant T > 0 and a uniformly n-rectifiable set I' C R™*! such that

Qo NI =7 p(Qo)

Furthermore, the constant T and the UR constants of I depend on all the constants above.

Note that condition (c) in the Main Lemma implies that 1(2Q0) < Co p(Qo).

3.2.2 Reduction of Theorem [3.1.1] to the Main Lemma

Assume that the Main Lemma is proved. Then, in order to prove Theorem [3.1.1]it is enough to show the
following:

Lemma 3.2.2. Let i and B C R™t! satisfy the assumptions of Theorem with constants Cy, C1, 6,
and . For all A’ > 10 and all ', > 0, if 6 and € are small enough, there exists a cube Qo satisfying:

(a) A'Qo C B and dist(A'Qo,dB) > C\ 1 r(B), with C}) depending only on Cy and n.
(b) For some constant v = v(8') > 0, yr(B) < £(Qo) < A1 r(B).

(¢) Qo) > Cy~H(Qo)™.

(d) Qo has C{-thin boundary.
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(e) aﬁ(SA’QO) < &', where L is some n-plane that passes through the centre of Qo and is parallel to

one of its faces.
0) [ Rnte) ~ (R (o) < ' Qo).

Before proving this lemma, we show how it is used to reduce Theorem to the Main Lemma [3.2.1

Proof of Theorem using Lemma and the Main Lemma Let B C R™! be a
ball satisfying the assumptions of Theorem with constants Cy, C1, d, and €. Let Qg be the cube
given by Lemma for some constants A’ > 10 and ¢’,&’ > 0 to be fixed below. We just have to check

that the assumptions (a)-(g) of the Main Lemma are satisfied by the measure

_ Q)"
-~ 1(Qo) a

i
if A’ is big enough and ¢’, ¢’ are small enough.

Obviously, the assumption (a) from the Main Lemma is satisfied by . To show that (b) holds (with
a constant that may differ from Cjp), note first that

£(Qo)"
1(Qo)
with the implicit constant depending on Cy and C{j. Indeed, from the assumption (c) in Theorem
1(Qo) < Col(Qo)™, and by (c) in Lemma3.2.2} u(Qo) > C5~14(Qo)". Then, we have
PAAQo) S PU(AQ) = Y 270,(7A4Q)+ Y. 2760,(27AQ).
j>0:20 A’QoCB: j>0:20 A’Qo¢ B:

The first sum on the right hand side does not exceed C C{ because 6,,(27 A'Qo) < Cy for all cubes 27 A’Qq
contained in B. Also, one can check that the last sum is bounded by C P,(B) because (24”7 Q) = r(B)
for all 5’s in this sum, taking into account that dist(A’Qq,dB) > Cy ' r(B).

~ 1, (3.2)

The assumptions (d)-(e) in the Main Lemma are obviously satisfied too because of (3.2) and the
analogous conditions in Lemma with some different constants C{/,d"”,&"” replacing Cy, 4, «. O

3.2.3 The proof of Lemma (3.2.2

We identify R™ with the horizontal n-plane H = {z € R"*! : x,,.; = 0} below. Then, given a measure
o in R” and a cube Q € R", we denote

n 1
R _ : L.
a, (Q)= 76(@)”“ igng(a,c”H IRn), (3.3)
where the infimum is taken over all constants ¢ > 0. Note that
o (Q) ~ o (Q),

where Q = Q x [—4(Q)/2,¢(Q)/2]. This follows easily from the fact that any 1-Lipschitz function in @
can be extended to a C-Lipschitz function on @, with C' < 1.

We need a couple of auxiliary results. The first one is the following:

Lemma 3.2.3. Suppose that o is some finite measure supported on R™ such that do(x) = p(x) dx, with
llplloe < 0o. Then, for every R € D(R™) we have

S B BQAQ" Sl R

QEDR™):QCR

where D(R™) stands for the family of the usual dyadic cubes in R™.

63



This lemma can be proved by arguments that are similar to the ones used in [T5] to show that the
analogous estimate holds for Lipschitz graphs. Alternatively, it can be thought of as a corollary of that
result for the case where the Lipschitz graph is just a horizontal n-plane, using the auxiliary AD-regular
measure & = 2||p|loc H"|rn + o and taking into account that a® (Q) = o%‘in (Q) for any cube Q C R™.

The second auxiliary result we need is the next one:

Lemma 3.2.4. Let o be some finite measure in R™ and R € D(R™) such that

o(Q) < C2L(Q)"

for all cubes Q € D(R™) with £(Q) > {y. Then, for every R € D(R™) we have

> dEBRPUQ™ S CRUR)"
QEDR™):QCR
2(Q)>4o

Proof. Let p(x) = m(B(0,40)) " XB(0,¢0)(2). Consider the function p = ¢+ o and the measure dv = pdz.
< (s, since for all x € R™

~

We have ||p]|co

L ey = B )
o) = T / oo —y)da(y) = ZEEI S0

Let us check that

distzq(v,0) S Calol(Q)™ for any cube @ with £(Q) > 4. (3.4)

For any 1-Lipschitz function f supported on 3@, we have

’/fdz/—/fdo— _‘/f(cp*a)dx—/fdo—

Since f is 1-Lipschitz we have

_‘/f*gpdo—/fdo—

|f(z) = f*o(z)| =

[ U@ - fe)ete -y dyj < [toota—v)dy =to
yEB(z,lp)

‘/fdu/fdo

since supp(f) Usupp(f * ¢) C 6Q, and so (3.4]) holds.

From (3.4) we infer that

Thus,
S loo(6Q) S Cbol(Q)"

Lo

0415 3Q) S ol (Q) + Ca @a

and by Lemma [3.2.3

n n ‘62
> aFEMQ"s Y (' BQP+ G s U@ S CRUR)"
QEDR™):QCR QEDR™):QCR
2Q)=4o 2Q)=4o
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Proof of Lemma Let p and B be as in Theorem [3.I.1] By a suitable translation and rotation
we may assume that the n-plane L from Theorem coincides with the horizontal n-plane H = {z €
R ¢ 2,.1 = 0} and that B = B(0,79). Our first objective consists in finding an auxiliary cube Ry
contained in B, centered in H, and far from 9B, so that u(Ry) ~ u(B). The cube Qy, to be chosen later,
will be an appropriate cube contained in Ry.

To find Ry, for some constant 0 < d < 1/10 to be fixed below, we consider a grid Q of n-dimensional
cubes with side length 2dry in H, so that they cover H and have disjoint interiors. We also consider the

family of (n + 1)-dimensional cubes

Q=1{Q x [~dro,dro] : Q € Q},
so that the union of the cubes from @ conforms the strip

V ={x e R"" . dist(z, H) < dro}.

For any constant 0 < a < 1 we have

p(B\(@BnV)) < Y M(PQB)—i—M(B\UP) =51 +S,.
PE@: Pe@
PN(B\aB)#%

To bound S; we use the growth condition of order n of u| 5:

S1Ze, >, AP SHM(HNA, (a—n'*2d)r, (14 n'*2d)ro)) Sc, (d+1 - a)rg.
Peé\:
PN(B\aB)#2

To estimate So we use the fact that the distance from the points z € B'\ UPEQP to H is larger than drg
and apply Chebyshev’s inequality:

dist(x, H) 1 g
< _— = — ’I’L.
Sy < /B 7o dp(x) d Bu,l(B) To

Then, we obtain
u(B\ @B V) < O(Co)((@+1-0) + 3 B(B) ) u(B),

We take now d and a so that

1
1 DYV2d=(1-a) = ———
On +1)!/2d = (1 =) = [,
and we assume
p,,l(B) < 4 < =

10C(Cy) — 10(n + 1)Y/2(10C(Cy))2’

so that u(B\ (aBNV)) < 3 u(B). Now we choose Ry to be a cube from Q which intersects aBNV and

has maximal p-measure. Obviously,

/’L(RO) el /_L(CLB N V) Ry M(B)v
and since diam(Rg) = 2(n + 1)Y/2dry = =2 7y, it follows that

dist(2Rg, 0B) ¢, (1 — a)rg ¢, To-
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The cube @y we are looking for will be an appropriate cube contained in Ry. To find it, first we

consider the thin strip
Vs = {z e R*"*" : dist(z, H) < 51/27‘0}.

Observe that

51/27“0 51/2
Denote by II the orthogonal projection on H and consider the measure o = ITx(uly,). Since Vs has
width 26'/2, from the growth condition (b) in Theorem it follows that o(Q) <, 4(Q)™ for any
cube Q centered on H with £(Q) > §'/2r.

st (2 H
u(\ vy < [ B g ) - P 1B) < 61/2 u(B). (35)

Assume without loss of generality that Ry is a dyadic cube. Then, by Lemma [3:2.4]

> Al (3Q)°UQ)" Sey U(Ro),
QEeD(R™,Ry)
2(Q)>6?rg
where D(R™, Ry) stands for the family of dyadic cubes in R™ contained in Ry. From this inequality, it
easily follows that, for any constant A’ > 10,

> o (AA'QPUQ)™ Scoar L(Ro)™
QED(R",Ro):K(A’Q)SZ(Ro)
E(Q)Zdl/(4"'+1)r0

Note that we have used the fact that §1/(4n+1) > §1/2,

Since the number of dyadic generations between the largest cubes @ € D(R™) with ¢(A’Q) < £(Rp)
and the smallest ones with side length £(Q) > 6*/4*+ D¢y is comparable to

C(A)U(Ro) C(A', Co)

log, S/ GnT 1) 2 51/(n+1)

~ log
we infer that there exists some intermediate generation j such that
n 1
R
Z o, (4A/Q>2€(Q> 500714 ICWE(RO)H
QED; (R™,Ro):£(A' Q) <{(Ro) 082 51/t T1)

Thus, for any ¢’ > 0, if § is small enough, we derive

n n 512
Y. 0 (AP <C(C) Y ar (AAQQ)" < 5o (Ro).
QeD;(R™,Ry): QED;(R™,Ro):
£(A’Q)<L(Ro) L(A'Q)<L(Ro)

Denote by G the subfamily of cubes from D;(R", Ry) such that 6,(Q) > 1 6,(R). Observe that

[y

Y e@=30R) Y HQ" < 50 (Re) R = S o(Ro).

2
QED; (R™, Ro)\G QED; (R™,Ro)\G

Hence, > g 0(Q) > 3 0(Rp), and so

12

o 5
> ¥ (149 (@) < Soth) < 3o U Q).

Qeg Qeg
Therefore, we obtain that there exists some cube Q € G such that a®" (44'Q) < %/.

Denote Q = Q x [—4(Q)/2,¢(Q)/2]. Now we wish to bound a, H(4A'Q) in terms of A" (4A'Q). Let cy
be the constant that minimizes the infimum in the definition of a®" (44’Q) in (3.3)). Given any 1-Lipschitz
function f supported on 4A’ @ we have

[ s eari| < [ idas| [ rau o)
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By (3.5), and using also the fact that £(Q) > §'/(4"+ 45 we have

L < ([ flloo B\ V5) Sy 62 L(AA'Q) t(B) Scp,ar 62 U(Q) 18 S, ar 874 £(Q)™H
We deal with ls now: by the definition of o and the Lipschitz condition on f, we get

lo =

/ f(@) — fT () dplvs ()
4A’

Q

< / dist(x, H) dulv, (x) < Bua(B)rg™™ < drpt™ < 53/4 (@)
44'Q

Finally, concerning |3, we have
R™ ! ' \n+1 o' ' y\n+1
ls < af (44'Q) (AA'Q)" < T £(4A'Q)" .
Gathering the estimates obtained for Iy, I3, I3 and choosing ¢ small enough we obtain
5/
[ fdt w5 saagre,

5 N ol
and thus af(élA’Q) < 3.

Finally, we choose Qg to be a cube with thin boundary such that @ C Qo C 1.1@. Since 3A'Qq C 4A’C§
and ((3A'Qo) ~ ((44'Q), we get that alf(34'Qo) < af(4A’@) < &', Then, it is easy to check that Qg

satisfies all the properties (a)-(e) by construction, while regarding (f), we have

| 1Rate) = o, (R)P () <2 | [Rue) — (Rl )

<2e u(B) ~cy,s € 1(Qo)-

Thus, if ¢ is small enough, (f) holds. O

3.3 The Localization Lemma

We assume that the hypotheses of the Main Lemma [3.2.1] hold. Below we allow all the constants denoted
by C and all the implicit constants in the relations < and = to depend on the constants Cy and Cj in

the Main Lemma (but not on A, J or ¢).

Recall that we denote by H the horizontal hyperplane {x € R"*! : x,,,1 = 0}. Also we let cy be

some constant that minimizes the infimum in the definition of af (3AQ0) and we denote L = cg H™ | .

Lemma 3.3.1. If 6 is small enough (depending on A), then we have cyg ~ 1 and p(AQo) S A™u(Qo).-

Proof. Let ¢ be a non-negative C* function supported on 2Qo which equals 1 on Qg and satisfies | V¢||oo <
1/0(Qo). Then, we have

[t )| < 9l 63AQu)"™ 0l 34Q0) < 4 5" 39

Note that the left hand side above equals

‘/god,ucH/ cpd?—["'—clcm/ pdH",
H H
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with
o = Jedn
Sy o dH™ ’
since

Qo) < / odu < u(2Q0) < Co £(2Q0)™ < Co u(Qo).

and trivially

| win = u@o
H
Then, from (3.6) we obtain that
|C1 _ CH| g An+1 5 E(Qo)n 5 An+1 5.
Sy pdH™

The right hand side is < 1 & ¢; if § is small enough (depending on A), and so we infer that

cyg ~c1 ~1.

In order to estimate u(AQo), we take another auxiliary non-negative C' function @ supported on
3AQo which equals 1 on AQp and satisfies ||V@|oo S 1/€(AQo). Then, we have

~

H(AQo) < / Fdy
< ‘/@dw,cm‘ + [Facn

< IV30 £(3AQ0)™ ™ ol (3AQ0) + crt(3AQ0)"
S A"0UQ0)" + L(3AQ0)" S A" £(Qo)"-

O
Lemma 3.3.2 (Localization Lemma). If § is small enough (depending on A), then we have
1
/ RyXaqol® dp S (6 + o5t A2"+151/(8"+8)> 11(Qo).
Qo A
Proof. Note first that, by standard estimates, for z,y € Qg, we have
[z —yl
Ru(agu- () = Ruxiaau- )| 5 [ e
| nX(AQo) nX(AQo) | (AQ0)* |z — z|”+1
|z —y 1 1
< P,(A S —=Pu(A < =
Ng(AQO) ,lt( QO)N A ,u( QO)N Aa
taking into account the assumption (b) of the Main Lemma for the last inequality. As a consequence,
1
|RMX(AQ0)”(37) = Mu,Qo (RuX(4Qo)e)| S 1

and so 1
2
dp() S —7 1(Qo).

Together with the assumption (g) in the Main Lemma this gives

/Q [ RuX(A0)e () = 11,00 (RpuX(4Q0)<)
0

/ IRuXAQo — Mo (Ruxaq,)? di < 2/

’Rﬂ' = Mu,Qo (RM) |2d,u
Qo Qo

2d,u

+ 2/@ I RuX(A0)e = M@0 (RuX(4Qo)e)
0

S < u(Qu) + 7 #(@o).
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Hence, to conclude the proof of the lemma it suffices to show that
[m1.00 (Ruxaqo)| < C(A)51/4(n+1)27

which is equivalent to
2
|74,00 (RuXaQo\@o)| < C(A)8H/ AL, (3.7)

since, by the antisymmetry of the Riesz kernel, we have m, q,(R.xq,) = 0.

To prove (3.7)), we take first some small constant 0 < k < 1/10 to be fixed below. We let ¢ be some
C! function which equals 1 on (1 — k)AQo \ (1 + £)Qo and vanishes out of AQq \ (14 £)Qo, so that ¢ is
even and, furthermore [|[V¢| s < (54(Qo))~t. Then we split

‘/ RuXAQo\Qo du‘ S/ IRu(XaQo\@o — )| dit + ’/ R du‘- (3.8)
Qo Qo Qo

To bound the first integral on the right hand side note that x 4q,\q, — ¥ = ¥1 + 92, with

[V1] < XaQo\(1-r)4Qo  ad 2] < X(14#)Q0\Qo-

Then, we have

| Rutcaana, = @di< [ [Ryin|ds | [Ryia] d
Qo Qo Qo
<Ryl L (L ay) Qo) + I Ryutball L2 () o) 14(Q0) >

Since dist(supp(¢1), Qo) =~ Al(Qo), we have

1 1
||RI»L1/}1HL°C(:U'LQO) S W Ilellle < W M(AQO \ (1 - “)AQO)-

On the other hand, since R, is bounded in L*(st (1440, ) by the assumption (d) in the Main Lemma
and by the thin boundary property of Qo (in combination with the fact that ©(2Qg) ~ 1(Qo)), we
get

IRu¥2lr2uigy) < Cillzllzge < CLul(1+#)Qo \ Qo) < C(Co, C1) w2 u(Qo)* .

Therefore,
1
/Q IR (Xago\@o — )| d1 S an 1(AQo \ (1 — K)AQo) + K'?1(Qo). (3.9)

In order to estimate u(AQp \ (1 — k) AQ) we will use the fact that aﬁ](?)AQo) < §. To this end, first
consider a function ¢ supported on A(1+ )@ \ (1 — 2k)AQ which equals 1 on AQp \ (1 — k)AQy, with
IV@lloo S 1/(AKL(Qo)). Then, we have

p(AQ0 \ (1= 0)4Q0) < [ G (3.10)
< ‘/@d(u—zm‘ +/<Zd£H
< V@l €3AQ0)™ 0 (34Q0) + L (1 + 1) AQo \ (1 — 26) AQo)
< (f(s +/€A”) 2(Qo)",

where we used the estimate for ¢y in Lemma for the last inequality. Hence, plugging this estimate

into (3.9) we obtain
1 )
| Rutvaana = oldns (54 +n2) w@) 5 (T4n2)u@o. )
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It remains to estimate the last summand in the inequality (3.8). To this end, we write

‘ Ru‘ﬂdﬂ‘ < ’/ Ru‘Pd(M_EH)‘ + ’ Rl —pLy)dLy (3.12)
Qo Qo Qo

Qo
=T+ T2+ Ts.
Since ¢ is even, by the antisymmetry of the Riesz kernel it easily follows that T3 = 0. To deal with

T;, consider another auxiliary function @ supported on @y which equals 1 on (1 — R)Qg, for some small
constant 0 < K < &, so that ||V@|e < 1/(KE(Qo)). Then, we write

T, < ‘/@Rwﬁd(ﬂ - LH)’ + ‘/(XQO —P)Rupdp—Lu)| =Tia+ Tip.

To estimate T; , we set
Tia < [V RLO)cl(3BAQ0)" ! ] (3AQy).
We write
IV@Ro)oo < IV(RuO)0,00 + VPllos IR u#) 00,0
Since dist(suppy, Qo) > F4(Qo) and p(AQo) S €(AQo)" (by Lemma [3.3.1), we have

||R,UILPHOO’QO ~ (KZE(QO))TL ~ Hn,

and, analogously,
WAQy) A
(K€(Qo))" ™ kP H(Qo)

HV(RMQO) Hoo,Qo N

Hence,
An An An
V(R S + = S = ;
IV@ERw) o = i) T 7n(@o) ~ 7anl(Qo)

and so, we have
2n+1

Tl,a 5

6 1(Qo)-

RK"
We consider now the term T, . We write
Tip < lIxqo — @llzr(utem) IRuelloo,qo-

Recall that [|R,¢]l,00 S 4% Also, by the construction of @ and the thin boundary property of Qq,

~ R

IXQo = @llr(utcw) S u(Qo\ (1 =F7)Qo) + Lu(Qo \ (1 —K)Qo) S u(Qo)-

Then, we obtain
n

A"
Tip < ey K 1(Qo)-

A2n+l An R
T1§( o= 5+HH>H(Q0)-
R K

Thus,

R

Choosing & = 6'/2, say, we get

2n+1 n
nE (St

S 51/2 < Azt 61/2
+20) 672 Qo) < 52 Qo).

,Qn
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Finally, we turn our attention to To. By Fubini, we have

Ty = ‘/R(XQU»CH)SDd(,U/ — Lu)| < [V(R(x@oLu) @)oo €(3AQ0)™ " ot (3AQ).
Observe that
IV (ROxu£)#) e < IV (ROxeo a1 losumme + 1RO £10) 1 supm T

Using the fact that dist(suppy, Qo) > 54(Qo), we derive

L (Qo) 1
||IR(XQ()‘CH))||0o,sur>pgc7 < W S e

and
'CH(QO) < 1
(Kl(Qo))™ 1~ kP TL(Qo)’

An+1
T2 < sy 6 11(Qo)-

Gathering the estimates for T1 and Ta, by (3.12)) we infer

||V(R(XQ0£H) ||oo>sumw S

so we obtain

A2n+1 1/2 AnJrl A2n+1 1/2
Rupda] 40 672 Q) + s 51(Q0) S L 672 u(Qo)

‘ Qo
Plugging this estimate and (3.11)) into (3.8)), we obtain

6 1y AP
»L Ruxa@o\Qo | S ( - +£77 ) 1(Qo) + ——5- 07/ u(Qo)
0

AP e e
</<a"+15/ + ! > 1(Qo),

A

so if we choose k = §1/(4"H4) e get

‘ /Q RyXAQo\Q du‘ S (AP 618 4 6B Qo) § AT EE (@),
0
which yields (3.7) and finishes the proof of the lemma. O

From now on we will assume that § is small enough, depending on A, so that the conclusion in the

preceding lemma holds.

3.4 The low density cells and the stopping cells

We consider the measure o = |, and the associated dyadic lattice D = D, introduced in Section
(re-scaled appropriately, so that we can assume that Qg is a cell from D,). In what follows, we allow
all the constants denoted by C' and all the implicit constants in the relations < and = to depend on the

constants Ag and K from the construction of the lattice D,,.

Let 0 < 89 < 1 be a very small constant to be fixed later. We denote by LD the family of those cells
@ from D, such that 0,(3.5B¢g) < 6y and have maximal side length. The main difficulty for the proof of
the Main Lemma [3.2.1] consists in showing that the following holds.

Key Lemma 3.4.1. There exists some constant g > 0 such that if A is big enough and 0y, 9, € are
small enough (with § possibly depending on A), then

M( U Q) < (1 —¢0) u(Qo)-

Qe€LD
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The proof of this result will be carried out along the next sections of this paper. To do so, we will
assume from now on that
( U Q) (1 —e0) u(Qo) (3.13)
€LD
and we will get a contradiction for g small enough. To this end, first of all we need to construct another
family of stopping cells which we will denote by Stop. This family is defined as follows: for each @ € LD,
we consider the family of maximal cells contained in @ from D2 (so they are doubling) with side length
at most ¢ £(Q), where 0 < ¢ < 1 is some small parameter which will be fixed below. We denote this family
by Stop(Q). Then, we define
Stop = U Stop(Q).
QeLD
Note that, by Lemma it is immediate that, for each @ € LD, the cells from Stop(Q) cover p-almost
all Q. Therefore, the assumption is equivalent to

( U Q) (1 —¢0) 1(Qo)

QEStop

We need the following auxiliary result:

o
Lemma 3.4.2. If we choose t = 05", then for all Q € Stop

1

0u(2Bq) < Pu(2Bq) S 65"

Proof. Let @ € Stop and R € LD such that @ C R. The first inequality in the lemma is trivial, so we only
have to prove the second one. Let R’ € D, the maximal cell such that @ C R’ C R with ¢(R') < t{(R),
so that ¢(R’) = t £(R). Then, we write
0Q) (e
P,(2Bg) < 0,(2Bp) — 0,(2Bp) —=
PED,:QCPCR’ PED,:R'CPCR

+ > 0.(2Bp) ﬁgg; +3 0 0,(2"Qo) éQ)

PeD,:RCPCQo k>1

=S1+S3+S3+S,.

~

~—

To deal with the sums S; and So, note that for all P C R, since 2Bp C 2Bp (assuming Ag to be big
enough), we have

W(2Ba) (B (R
r(2Bp)" 6u(2Br) r(Bp)" 6u(2Br)

Therefore, since 6,(2Br) S 6y and all the cells P appearing in So satisfy ¢(P) > t £(R), we infer that all
such cells satisfy 6,(2Bp) < & 0,(2Bg) < %, and thus

~ tn ~ tn

0,.(2Bp) = zl <

(2Bp

0o

: 7 0u(2Br) S -

Se S —

~

Also, since there are no u-doubling cells between R’ and @, from Lemma [E| we obtain that

to

1
0.(2Bq) S 0u(2Br) S 1 04(2Br) <

and therefore we also get



For the cells P in the sum S3, we just take into account that 6,(2Bp) < 1, and then we get

Q) _ Q)
S5 S "

~

~
~

PeD,:RCPCQo

Finally, regarding the sum S, note that

5= iy a0 i = A PQ0 S i S
Hence,
PL(2B) S 00 + 1% 057,
recalling that ¢ = 677" 0

1
From now on, we will assume that we have chosen ¢ = 6)**, so that the conclusion of the preceding

lemma holds.

The family Stop may consist of an infinite number of cells. For technical reasons, it is convenient
to consider a finite subfamily of Stop which contains a very big proportion of the p-measure of Stop.
Therefore, we let Stop, be a finite subfamily of Stop such that

u( U Q>>(12€o)u(Qo)~

QEStop,

We denote by Bad the family of the cells P € Stop such that 1.1Bp N 0Qy # <.

Lemma 3.4.3. We have

u( U Q) < 65" Qo).

Q€EBad

Proof. Let I C Bad an arbitrary finite family of bad cells. We apply Vitali’s covering theorem of triple
balls to the family {1.15B¢g}ger, so that we get a subfamily J C I satisfying

e 1.156Bp N 1.15Bg = @ for different cells P,Q € J.

o Upes 1.15Bp C Uge, 3-45Bg.

Then, using the fact that
n(3.45B) < u(3.5Bq) < 0" r(Bg)"

for each Q € J, we get

u(U P) < u( U Bp) < u(3.45Q) < 0"V ST r(Bg)™

Pel Pel QeJ QeJ
Now, for each @ € J we have 1.1Bg N dQy # & and so we obtain that
H"(1.15Bg N0Qo) 2 r(Bg)".

Thus, using also the fact that the balls 1.15B¢, @ € J, are pairwise disjoint,

M( U p) <0/ ST H (11580 N 0Qo) < 0y TV 1™ (9Qo0) ~ 0y " 1(Qo),
Pel QeJ

and the lemma follows. O
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We will now define an auxiliary measure pg. First, given a small constant 0 < ko < 1 (to be fixed

below) and @) € D,, we denote
I, (Q) = {z € Q : dist(z,supp(o) \ Q) > kol(Q)},
so I, (Q) is some kind of inner zone of Q. We set

po=nplost Y. plig@-
QEStop, \Bad

(3.14)

Observe that, by the thin boundary condition of @) € Stop, together with the fact that it is doubling,

we have
I < 1/2 B < kM2
M(Q\ Ko (Q)) ~ Ko 0<35 Q) ~ Ko /’L(Q)
Combining this estimate with the assumption (3.13) and Lemma [3.4.3] we get

e — poll = 1(Qo) — 1o(Qo)
= :U'(QO) - Z ,U'(Ino (Q))

QEStop, \Bad
=M<Q0\ U Q>+ Souw@+ D w@Q\I,(Q)
QEStop, QeBad QEStop, \Bad

< 20 1(Qo) + COY " 1(Qo) + Crg/? 1(Qo).
Together with Lemma [3:3.2] this yields the following:
Lemma 3.4.4. If§ is small enough (depending on A), then we have
1 n
/Q ‘R(XAQOMO)P duo 5 (E+ ﬁ +51/(8n+8) +eo +Hé/( +1) + Hé/2> M(QO)-
0
Proof. We have
| 1ROcaoum)dio <2 [ [Rixaoum)Pdu+2 | [Rixaq, (e - po)) di

0 Qo 0

1 n
< <€ + ozt S/ BnH8) g 4 ga/ (D) mé/2> 1(Qo),

by Lemma the L (i g, )-boundedness of R, |, , and (3.15).

3.5 The periodic measure [i

(3.15)

Let M be the lattice of cubes in R®*! obtained by translating Qo in directions parallel to H, so that

H coincides with the union of the n-dimensional cubes from the family {P N H}peaq and the cubes

have disjoint interiors. For each P € M, denote by zp the center of P and consider the translation
Tp:x — x+ zp, so that P =Tp(Qo). Note that {zp : P € M} coincides with the set (¢(Qo)Z™) x {0}.

We define
= Z (TP)#(.UO LQO)’

PeM
that is,
AE) =Y wo(QoNTp'(E) = > po(QoN (E—zp)).

PeM PeM

It is easy to check that:
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(i) f is periodic with respect to M, that is, for all P € M and all E C R"*!, [i(E + zp) = u(E).

The latter property holds because 10(9Qg) = 0.

For simplicity, from now on we will assume that A is a big enough odd natural number.

Lemma 3.5.1. We have
o (34Q)) < C5 A" (80 + 0 Y kg% 51/2).

In fact,
distsag, (i, L) < C3A™ (5 Oy D g2 51/2> 0(3AQo)",

where Ly is the same minimizing measure as the one for af(3AQo).

Proof. Let f be a Lipschitz function supported on 3AQy with Lipschitz constant at most 1, denote by M
the family of cubes in M which are contained in 3AQ, and let x > 0 be some small parameter to be fixed
below. Consider a C! function ¢ supported on g which equals 1 on (1—k)Qq, with ||[V¢|le < 1/(k4(Qo))
and denote ¢p(x) = p(x — zp). Then, we write

‘/fdu cﬂ‘_

/fdu L) ‘ (3.16)

Z /| (xp —¢p) fld(i+ Lg).

PeMg

PeM,

‘/@Pfd/i EH’

PeMy

Let us estimate the first sum on the right hand side. Since | p= (Tp)gpolo, and Ly = (Tp)xLu,

we have
[or - | = | [ ota) o+ ) £20)
<| [ ot flat zeratun = | +| [ ota) 1+ 20) i~ 21

=1l +1Is.

To estimate |; we use (3.15)) and the fact that, by the mean value theorem, ||¢ f(-+2p)|lc0 S (3AQ0).

Then, we have

I < '/ o(z) f(z+ 2p) d(po — u)’ S (20 + 05" 4+ ky?) £(34Q0)"™ .

Concerning ly, we write

2 S IV(ef (- + 2p)) Il (3BAQ0)" " oy, (3Aq).

Note that
[V(erflloo < IV Flleo + [ flloclIVer)lloo S 14 CALQo)

1 < é
£ 4(Qo) K
Thus,

b <A % K(Z’)AC;)O)"Jrl7

and therefore,

~ n 6 n
‘/cppfd(,u . ﬁH)‘ <A <50 4oy 2y H) 0(3AQp)" .

0]



To deal with the second sum on the right hand side of (3.16) we write

10w = r) £+ L) < I = 98l gy 111

S+ L) (Qo\ (1—£)Qo) £(3AQy).

By the thin boundary condition on Qy,

1(Qo\ (1 —r)Qo) S K u(Qo) = KL(Qo)™.

Clearly, the same estimate holds replacing i by Lg, and so we obtain
Jloce = er) 7ld@+ L) < me(@Qo)™
Taking into account that the number of cubes P € M is comparable to A", we get
‘/ Fd(i— cH)’ < At (50 + 05" 4 kg% 4 g + /{) U(3AQo)" .
Choosing k = /2, the lemma, follows. O
From now on, to simplify notation we will denote

5= C5 A" (50 + 65D d? 4 51/2), (3.17)

so the preceding lemma ensures that ozill (34Qy) < 5. We assume that the parameters €qg, 0p, kg, and §

are small enough so that b < 1.

Lemma 3.5.2. We have

- . 1 1 1 1 ~ 1\ -
| ROciuiPai< (4 g + 055 4o 6777 4 d 4 475 ) Qo). (3)
0
Proof. Since fi|g,= tolg,, we have
| 1ROcaaumP di <2 /Q ROcaquio) diio +2 [ [R(xagy( - po) din:— (3.19)
0 0] 0

The first integral on the right hand side has been estimated in Lemma Therefore, we only have to
deal with the second one. The arguments that we will use will be similar to some of the ones in Lemma
9.0, 2)

First, note that, using again the fact that 11| g,= polg, and that uo|qs= 1|qs, we have
R(xaQy (i = 110)) = R(x400\@o (7l = 10))-

Let 0 < k < 1/10 be some small constant to be fixed below. Let ¢ be a C* function which equals 1 on
(1-k)AQo \ (1+ K)Qo and vanishes out of AQo \ (1+ %)Qo, with |[V¢| s < (k€(Qo))~". Then, we split

/ IR (XA, (11— p0)]? dpio < 2/ IR((Xa@o\@o — ) (F—10)) | duo+2 | [R(p(Fi—po))|? dpo- (3.20)
Qo Qo Qo

Concerning the first integral on the right hand side note that x 4g,\q@, — ¥ = ¥1 + %2, with
V1] < xXago\(1-maqe  and  [P2] < X(14r)Q0\Qo-
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Then, we have

/\R«M@wwMﬁ—m»PWmi/ mwma-mM%w+/ R (2 — 1)) dfi

0 Qo o

<R (1 (72— ) ||2Lw(HLQO) Qo)
+ 1R (Y2t — ) ”2L4(ELQ0) 1(Qo)/2.

Since dist(supp(1), Qo) = AL(Qp), we get
~ 1 1 ~
IR (U1 (F = i) L= (ulqy) < ALQ)" 11l 1 oy < AHQo)T" (1 + 1) (AQo \ (1 — ©)AQo).

Recall that in (3.10) it has been shown that
An n n
H(AQ0\ (104G S (456 + A" Q0"

To prove this we used the fact that af(SAQO) < § or, more precisely, that distsag, (¢, Lr) < ¢. The
same inequality holds replacing p by 1 and § by d, as shown in Lemma Therefore, by arguments
analogous to the ones in (3.10)) it follows that

-~ An N n n
[(AQo \ (1 — K)AQo) < (E 6 +rA ) £(Qo)".
Therefore, we obtain that

- 5+ 5
IR(1( = )l (ulag) S —— +K S+,

taking into account that ¢ < § for the last inequality.

Next we will estimate ||R(¢2(ﬁ — ,u)) By the triangle inequality, we have

||L4(ZLQ0>'

IR (2B = 1))l Gy < IRuW2llLaquiqy) + IRz s

(1l (lay)”

Recall that R, is bounded in L?(u|2¢,), and so in L*(u]20,), and that suppis C (1+ Qo) \ Qo C 2Qo.

Hence, using also the thin boundary property of 0y, we obtain

||Ru¢2\|i4(u|%) S H%||i4(u\2@0) S (L4 £Qo) \ Qo) < K u(Qo).

We can apply the same argument to estimate HR;Z/JQ HL4(;LQ0)' This is due to the fact that R~ is bounded
in L2(fi|2g,). This is an easy consequence of the fact that, given two measures y; and pus with growth
of order n such that, for i = 1,2, R,, is bounded in L?(y;), then R, 4., is bounded in L?(p1 + po).
For the proof, see Proposition 2.25 of [T6], for example. Then, applying this result to a finite number of
translated copies of u|g,, we infer that R;; is bounded in L%(fi|2¢,) and so in L*(fi|2q,). Therefore, we

also have

||R;¢2Hi4(;|%) S £ (Qo) < K p(Qo).

Gathering the estimates above, it turns out that the first integral on the right side of (3.20)) satisfies the
following:

~ 2 2
/Q IR(xaqo (7 — po)|* dpo S (i + n) 1(Qo) + &2 1(Qo) < (i + m1/4> 1(Qo). (3.21)
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It remains to estimate the second integral on the right hand side of (3.20). To this end, for any € Qq

we set
R ({7 — o) @) = \ [ K=ot - u)(y)‘
< \ [ K=ot d- cH><y>|

" \ [ K@= et di- £H><y>\
< IV (2 =) @)oo [dists aq (7 Lar) + distis gy (s, L),

where in the first identity we used the fact that pg coincides with p on the support of ¢. Taking into
account the fact that dist(z,supp(¢)) = k€(Qo), we obtain

-
(r€(Qo))"+

By Lemma distsag, (i, Lr) < 5 £(3AQ0)"*! and, by the assumption (e) in the Main Lemma,
distsag, (1, L) < 6 6(3AQ0)" . Therefore,

IV(E (2 =) @)lloc <IVE(z = )llocsupp(e) + K (@ =)o supp(e) IVElloo S

5 ntl
W(fu ) 0(3AQ0) ™ < A

~ entl )
so the last integral on the right hand side of (3.20) satisfies

IR (e(fi = po) (@) <

_ . An+1 -
/Q R (Ao — o) ? 4 S = G Qo). (3.22)
0

From (3.20)), (3.21) and (3.22)) we obtain that

_ g 2 An+1 .
[ RO~ ol da < (24570 Qo) + 2 (o)

5
S AT </<;”+1 + Hl/Q)M(QO)-

Choosing k = 57575 | the right hand side above equals C A™*! 57 1(Qo). Together with 1) and
Lemma this yields (3.18]). O

To simplify notation we will write

1 1 1 ~
F=0y (5+AQ+68#+8 Yoo+ 07 + k2 +A”+162n1+3>, (3.23)

so that the preceding lemma guarantees that

/ R(xace) dfi < E7(Qo).

Qo

We will also need the following auxiliary result below.

Lemma 3.5.3. For all Q € Stop, \ Bad, we have

1 ~ ~ 2n11 ~
/ /ﬁdu(w)du(ym@o( T R(Q).
1.1Bo\Q /@ |z — |
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Proof. Since any ball 1.1Bg with @ € Stop, \ Bad is contained in @y, we have that [t = o in the domain
of integration considered above.

Let 0 < k < 1 be some small constant to be fixed below. Then we split

1 . - 1 . -
[ st dit) = [ / g die) (3:20)
1.1Bo\Q JQ lz —yl z€1.1Bo\Q Jy€Q:|z—y|>rA(Q) lz -yl

1 - -
+ / / T dnly) dp(w).
2€1.1Bo\Q JyeQ:|z—y|<rl(Q) |Z‘ - y‘

First we deal with the first integral on the right hand side:

1
T di(y) di(z) < ————i(1.1Bg) It
/xEl.lBQ\Q /yeQ;$_y|>Kg(Q) |z — y|» Aly) dji(z) < K0(Q)™ w( Q) Q)

by Lemma [3.4.2

Let us turn our attention to the last integral in (3.24). To estimate it, we take into account the fact
that given € 1.1Bg \ Q, if y € @, then |z — y| > dist(z, Q). Then, by the polynomial growth of order
n of ulg, and standard estimates, we get

L~ K0(Q)
di(y) < log (2 +——"-) forallz € 1.1By\ Q.
/yEQ:Iw—yS»d(Q) |z =yl dist(z, Q) 9

For each 7 > 0, denote

Uj ={z €11Bg\Q : dist(z,Q) <277k £(Q)}.
By the thin boundary property of @ and the fact that @ is doubling,

wU;) S (279 m)2 u(3.5Bq) < (277 0)'2 p(Q).
Then, we obtain

T KUQ)
T, du(y) dp(z) < / log (2 + ) du(x)
/9561.13Q\Q /yGQ:zy|<nZ(Q) |.Z‘ - y|n ];O Ui\Uj+1 dlSt(Qﬁ, Q)

S Zlog (2 + %)M(Uj)

Jj=0

SO G+DE RV Q)

7=>0
S eV Q).

Therefore, we have

1 ntl) n
/ / ————dfi(x) dfi(y) $ (0" 5T+ 6Y2) Q).
1.1Bo\Q JQ |z —yl

1
Choosing k = 6§"*"", the lemma follows. O

It is easy to check that
a(B(x,r)) Sr™ for all z € R"! and all r > 0. (3.25)

This follows easily from the analogous estimate for ;1| o, and the periodicity of fr, and is left for the reader.
On the other hand, in general, we cannot guarantee that the estimates for the coefficients P,(2Bg) in

Lemma |3.4.2 also hold with u replaced by p. However, we have following substitute:
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Lemma 3.5.4. The function

py(x) = > xq P;(2Bq)
QEStopy\Bad: z€Q

satisfies

1
[ dn S 67T R
0

Proof. Let 0 < k < 1 be some small constant to be fixed below. We split

| wai- [ i) (o) + [ pe@)?dii(a).  (326)
0 z€Qo:dist(z,0Q0) <K £(Qo) T€Qo:dist(x,0Q0) >k £(Qo)

For the first integral on the right hand side we just take into account that p;(aj) <1by li and thus

/ p(x)? dji(z) S p({x € Qo : dist(z,0Q0) < £ £(Qo)})
2€Qo:dist(z,0Q0) <k £(Qo)

S £ 1u(Qo) ~ K i(Qo).
Let us deal with the the last integral on the right hand side of (3.26]). Consider x € @ € Stop, such
1
that dist(z,0Q0) > K £(Qo). We assume that x>t = """ . Since £(Q) < t£(Qo),
dist(z, 9Qo) ~ dist(2Bg, 0Qo) 2 k ¢(Qo)-

Then, we can write

p;(x) S Pu(2Bq) + > 27705(2'Bq) S 05" + > 277,
§>1:29 BondQo#£2 §>1:29 BoNOQo£2

by Lemma |3.4.2} For the last sum we have

(%) tl(Qo) _ 9<§T)
Z 2 dist(z, 0Qo) s K 4(Qo) Ko

§>1:2 BoNOQo#2

and so we obtain ) )
D D
0y N 05

1
n+1
(@) S0 + S~
Therefore,
(=]
| pa(@) diiw) $ 20— fi(Qo).
E€Qo:dist(z,0Q0) >k £(Qo) K

Gathering the estimates above, we obtain
1
- e(gnJrl) ~
/ pdi S (Fo+ )u(Qo)-
0 K

Choosing £ = ;""" the lemma follows. O

3.6 The approximating measure 7

We consider the measure o
n
H LiB(Q)

Mo = Z 1o(Q) W~

QEStop, \Bad
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In a sense, 1o can be considered as an approximation of 19| g, which is absolutely continuous with respect

to H"T1. Furthermore, since the family Stop, is finite, the density of  with respect to " is bounded.

Recall that, by Remark l the balls =B(Q), Q € D,, are pairwise disjoint, so the balls iB(Q) in the

sum above satisfy

dist(1B(Q), 1B(Q") = 7 [F(B(Q) +r(B@)] i#Q#Q".

>~

Now we define the following periodic version of ng: let M be the lattice of cubes from R™*! introduced
in Section [3.5] Recall that for P € M, zp stands for the center of P, and Tp is the translation defined
by Tp(z) = x + zp. We define

n= Z (TP)4m0,

PeM

So 1 can be considered as a kind of approximation of .

The following result should be compared to Lemma [3.5.2}

Lemma 3.6.1. We have
/ IR(aqum) P dn S & n(Qo).

0
2(n+1)2
where &' = &+ A" kg 22 03" =

Proof. To simplify notation, we denote S = Stop,, \ Bad. We consider the function

f= m;o(R(xaquh) xo-

QeS
It is clear that
17122 < IRCCaQuIZs iz, < EF(@0) = 0(Qo). (3:27)
For all x € iB(Q)7 Q € S, we write
[ROtaum@)] < [ROL D@+ RO 10D (@) = Rlxagne@)]  (325)

+ |R(xago\@i) (@) — 1 o (R(xaqoh))| + M o (R(xaq.m)|
=T+ Ty +T3+ |m;’Q(R(XAQO[~L))|.

Using the fact that

it follows easily that
(Q) < 01/(n+1)

_ [
T, = |R(XiB(Q)77)(x)‘ < r(B(Q)" ~

Now we will deal with the term T3 in 1) To this end, for x € iB(Q) we set

IR(xago\@) (&) — 0 o (R(x o) (3.20)
< [R(X1180\@)(@)] + [R(XAQu\1.18o 1) () — M7 o (R(Xaqo\1.15 1))
+|ms o (R(x1180\QR)):

taking into account he fact that my Q(R(XQﬁ)) = 0, by the antisymmetry of the Riesz kernel.
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It is immediate to check that

B 1 (1.1Bq
|R(X1.18\@M)(2)| 5/113 Q= r(B(Q)"
-1Bq

recalling the fact that = € 1 B(Q) and 6,(1.1Bg) < 9(1)/("“) for the last estimate.

Now we turn our attention to the second term in the right hand side of (3.29). For 2’ € Q € S,
[R(Xago\1.180 ) (%) = R(Xago\1.18, 1) ()] < / |K(z —y) — K(z' —y)| dia(y)
AQo\l.lBQ
< P~
< PM(QBQ).

since the distance both from z and 2’ to (1.1Bq)° is larger than cr(Bg). Averaging on 2’ € @ with
respect to 1 we get

IR(Xa0o\1.1Bo 1) () — mx o (R(Xa@o\118,1)| S P5(2Bq).
To estimate the last term in (3.29) we just apply Lemma m
m~ ~(R(x1.1Bo\Ql))| < Ni/ / — dj(z) dRi(y) <627
| 1Q Q\@ | Q) Ji1sore Jo Iz — gyl 0

Then, we obtain

1 1 1
Ts = [R(xago\oi) () — m= o (R(xagol)| S 057 + P:(2Bq) + 657" <6, + P+(2Bg). (3.30)

To deal with the term Ts in (3.28]) we need to introduce some additional notation. We set

J= U {Tp(R') : R’ € Stop, \ Bad}.
PeM
For R € J such that R = Tp(R’), R’ € Stop, \ Bad, we set B(R) = Tp(B(R')) and Br = Tp(Bpg/). Also,
we denote by J4 the family of cells R € J which are contained in AQg. This way, we have
n+1
H LiB(R)

XAQol = Z Alr,  and  XxaQyn = Z ﬁ(R)m'
1

ReJa ReJa

Note that the cells R € J are pairwise disjoint. Furthermore, by the definition of the family Bad, if R € J
is contained in some cube Tp(Qp), then the ball 1.1Bp is also contained in Tp(Qp). This guarantees that
forall R € J,

fi(1.1Bg) 5 Co p(R).

Now for z € 1 B(Q) we write

T2 = [R0Cy g1y @) — Ragna) @) (331
< Y| Kol
ReJaA:R#Q
< Y K@) - Kozl dly o Lo,
PeJa:P#£Q

using the fact that n(3B(R)) = fi(R) for the last inequality.

We claim that, for z € $B(Q) and y € 1 B(R) Usupp(ii|r),

K — )~ Kz — 2)| S -y )

) 3.32
kg D(Q R) 42
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where

D(Q, R) = {(Q) + {(R) + dist(Q, R).
To show note first that
€ 1B(Q), zr € 1B(R) = |z — 2r| 2 D(Q, R), (3.33)

since $B(Q) N 1+ B(R) = @. Analogously, because of the same reason,

re1BQ), yeiB(R) = |r—y|2 D@ R). (3.34)
Also,
1 -~
v€1BQ), yeswpiln) = |-yl 2 D@ R) (3.:35)
To prove this, note that
y € supp(ilr) = I, (R) C R, (3.36)

which implies that y ¢ B(Q) and thus |z — y| > 1r(B(Q)) ~ £(Q). In the case r(B(Q)) > 2kol(R), this
implies that
lz =yl 2 UQ) + rol(R).

Otherwise, from the first inclusion in , since zg € supp(t) and y € R, by the definition of I, (R),
l2q — yl = rol(R),

and then, as |2g — z| < 1r(B(Q)) < 1kol(R), we infer that

1.

2
Ko

7=yl 2 |z — 9l — |2 — 7l = (R,

Therefore, in any case we have |z —y| 2 ko(¢(Q)+¢(R)) and it is easy to obtain (3.35) from this estimate.
We leave the details for the reader.

From (3.33)), (3.34), and (3.35)), and the fact that K is a standard Calderén-Zygmund kernel, we get
(3.32). Plugging this estimate into (3.31]), we obtain

N n+1::

Ko REJA

Therefore, from 1) and the estimates for the terms Ty, T and T3, we infer that for all x € iB (@)
with Q € S

1
~ ey
[R(xaqom)(@)| S [my; o(R(Xagol))| + 057" + P;(2Bq) + n+1 > D : (3.37)
ReJa
Denote
Pz Z X1p) P;(2Bq) and g(x Z Z Q R A it AR) X1 pg) ()
QeJ QES ReJa

Squaring and integrating (3.37)) with respect to n on Qq, we get

HR(XAQOU)Hiz(n) S Z ’mﬁ7Q(R<XAQ0 ‘ n % (Q)) (3'38)
QES

. - 1
+ 06" 0(Qo) + 1031220y + —rz 18122
0
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Note that, since n($B(Q)) = u(Q), the first sum on the right hand side of (3.38) equals ||f|| , which
does not exceed £1(Qy), by 1} By an analogous argument we obtain that Hp~HL2(n) Hp~H

where

L2 (i)

and 91172, = 911727, )

pi(z) =) x@P;(2Bg) and  g(z) =) Z n+1 i(R) xq(z).

QeJ QES ReJA

We will estimate ||g| ;. Gilo) by duality: for any non-negative function h € L%(fi|g, ), we set
0

/ghdu— > Z n+1 ﬁ(R)/thﬁ_ SRR 00 n+1 /thﬁ. (3.39)

QES REJa ReJy QES
For each z € R € J4 we have

U (R
QEE;;D(Q,R)WH /th/if,/ (K(R)+\zfy|)n+1 du(y)

_ Wk
/|zy|<e<R> R+ 1y W)

512 Ry < |-yl <29 1e(R) (E(R)+|z |)

2 Ti(B(z,2((R)))
% foes ()"

S Moh(2) Pg(B(Zl(R))),

where Mg stands for the centered maximal Hardy-Littlewood operator with respect to . Then, by 1 ,

/ghdﬁ§ > inf. [Mh(2) P5(B(z, £(R))) ] i(R) < M;h pdji
Rega € AQo
rg ||M;hHL2(;) HPEHL?(Z) S Hh”L‘z(ﬁ) ||p;;||L2(;|.AQO)'

Then, by Lemma and recalling that g is M-periodic,

1
Hg‘liz(ﬁ) 5 ||p;||L2(;|AQD) = A" ”p;HL?(mQO) 5 A" 95(n+1) /I(QO)

Plugging this estimate into 1D and using the fact that that ||g|[z2(,) = ||g||L2(;), we obtain

— —L1 An nl . ATL — 1 5
||R XAQo" ||L2(7,) ~ (E + 9( +1) + Ini2 95( +1)> n(QO) < <5 + nt2 96 +1) ) U(QO),
0 0

as wished. O

Note that the Riesz kernel is locally integrable with respect to n (recall that the number of cells from
Stop,, is finite). Then, for any bounded function f with compact support the integral [ K(z—y) f(y) dn(y)

is absolutely convergent for all z € R"*1,

Now we wish to extend the definition of R, f(x) for M-periodic functions f € L*°(n) in a pointwise
way (not only in a BM O sense, say). We consider a non-negative radial C! function ¢ supported on B(0, 2)
which equals 1 on B(0,1), and we set ¢,.(z) = ¢ (£) for r > 0. We denote Ko(z—y) = K(x—y)o,(z—7v)
and we define

Ry f(@) = Ro(f) () = / R, (x — ) f(y) dn(y),



and

v Ry f(z) = p-v.R(fn)(2) = lim R, f(z), (3.40)
whenever the limit exists. Let us remark that one may also define the principal value in a more typical
way by

lim K(z —y) f(y) dn(y). (3.41)
r—00 lz—y|<r

However, the definition (3.40|) has some technical advantages and simplifies the exposition. Nevertheless,
one can show that both definitions (3.40) and (3.41) coincide, at least for the M-periodic functions
f € L*(n) (we will not prove this fact because it will be not needed below).

Lemma 3.6.2. Let f € L®(n) be M-periodic, that is, f(x+zp) = f(z) for all x € R"*! and all P € M.
Then:

o p.u.R,f(x) exists for all x € R™*! and ﬁnﬂ"f — Ry f as r — oo uniformly in compact subsets of
R+, The convergence is also uniform on supp(n). Furthermore, given any compact set F C R"+1
there is ro = ro(F) > 0 such that for s > r > rg,

[Rs(fn) = Re(f)|| oo 5 [l (3.42)
where cp is some constant depending on F.

o The function p.v.R, [ is M-periodic and continuous in R and harmonic in R™ 1\ supp(fn).

The arguments needed to prove the lemma are standard. However, for the reader’s convenience we
will show the details.

Proof. By the M-periodicity of the measure v := f 7, it is immediate that the functions ﬁr(fn)(x),
r > 0, are M-periodic. On the other hand, using the fact that 7 is absolutely continuous with respect to
Lebesgue measure on a compact set with a uniformly bounded density, it is straightforward to check that
each ﬁr( fn) is also continuous and bounded in R"*!. Then, except for harmonicity, all the statements
in the lemma follow if we show that the family of functions {7~€r( ) }rso satisfies for any compact
subset F' C R™*!. Indeed, this clearly implies the uniform convergence on compact subsets, and since

supp(n) is periodic, also the uniform convergence on supp(n).

Let s > r > 79, and denote IN(T’S(:E —y) = IN(s(x —y) — IN(T(x —y). Notice that f(ns is a standard

Calder6n-Zygmund kernel (with constants independent of r and s). We write
v="Y_ (Tr)s(xq.¥),
PeM

so that

Ra(fn)(@) = Ro(f)@) = [ Bl =) d( 3 (To)lxa)) )

PeM

Since the support of I?T,s(:c —y) is compact, the last sum only has a finite number of non-zero terms, and

so we can change the order of summation and integration:

Rs(fn)(z) — R (fn) ()

> /ffr,s(w — ) d[(Tp)%(xqu»)] (v) (3.43)

PeM

3 / Rya(z—y — 2p) duly).

PeM
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Note now that by the antisymmetry of the kernel IN{T,S, from the last equation we derive
Ro(n)() - -5 [ Rt~ -yt
PeM

Also, by the definition of M, it is clear that P € M if and only if —P € M. Then, replacing zp by —zp
does not change the last sum in (3.43). Hence, we have

Ro(fn)(x) - D=3 [ Busler+ @) ).
PeM
Averaging the last two equations we get

Ru(fn)(@) - R, 5 / Roalep+ (@ —1) = Kraler — (w—y)] dv(y).  (3.44)

PEM

Note that if 2 belongs to a compact set F' C R"*! and y € @, then both (z — y) and —(z — y) lie
in a compact set F. Observe also that IN{M vanishes in B(0,7). Then, if we assume ro > 2 diam(F),
say, then both I?T,S(zp + (x —y)) and K»,-’S(ZP — (z — y)) vanish unless |zp| > r. For such z,y we have
|z —y| < diam(ﬁ) < %r < |zp|, and so

lzp + (z —y)l = [zp + (x —y)| = [2p| = 7.
Then, we obtain

- ~ |z —y| _ diam(F)
|KT,S(ZP +(r—y) — Ky s(zp — (z - y))} S |zp [t < lzp|n T

Plugging this estimate into (3.44)) we get

R Rl s > g » BB g,

|zp
PeM:|zp|>r PeM:|zp|>r

It is easy to check that
Z ﬂ < 1,
PeM:|zp|>r [zp" ™ r
so we infer

dlaL()||f||oo—>0 as r — 0o,

[ Rs(fn) — (f??)Hoo S
as wished.

It remains to prove that p.v.R, f is harmonic in R™*! \ supp(fn). Consider again a compact set
F Cc R""! and o € F. Then, we have

R(fé,m)(x) — Ro(f)(x) = / K@ —y) (6:(5) — o (@ — 9)) 1) dn(y):

We write 2]
x
|6r(y) = dr(@ =Y S NIVrllo 2] S -
For r > 4diam F, it is easy to check that ¢,(y) — ¢.(z —y) = 0 unless |z — y| = |y| = r. Thus
L e
[z =yl r

RS - Re(F)@)| S [1cc )] dn(y)

Cr<la—y|<Cr
2|

S o Il m(B(0,C)) £ diam F* + dist(0, F')

[1flloc
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that is,
~ diam F' + dist(0, F
IR 6 = Rotpn)]|_ p 5 S f ot dsHO, F)

Ifllco =0 asr — oo.
”

Since ﬁr(fn) converges uniformly to p.v.R, f in F' as r — oo, it follows that R(f¢,n) also converges
uniformly to p.v.R, f in F.

Note now that, for all » > 0, R(f¢,n) is harmonic out of supp(fn), because f¢,n has compact
support, and so by their local uniform convergence to p.v.R, f, we obtain that p.v.R, f is harmonic out
of supp(fn) too. O

From now on, to simplify notation we will denote p.v.R,, f just by R, f.

Lemma 3.6.3. Let L3 (1) denote the Banach space of the M-periodic functions which belong to L>(n)
equipped with the norm || - ||pe(;y. The map Ry : L3 (n) — L3y (n) is bounded. Furthermore, for all
f € L3 (n) and all sufficiently big r > 0 we have

IR) = R ()l 5 L=, (3.45)

We remark that the bound on the norm of R, from L3 (n) to L3y (n) depends strongly on the
construction of 7. It is finite due to the fact that the number of cells from Stop, is finite, but it may
explode as this number grows. The precise value of the norm will not play any role in the estimates

below, we just need to know that it is finite.

Proof. Since f is M-periodic, from (3.42)) we infer that for s > r > rqg = r0(Qo),
[Rotrm) = Re ) %5 E 1 e

Letting s — 0o, R4(fn) converges uniformly to R and so we get (3.45).

To prove the boundedness of R, : L3 (n) — L5 (n), note first that IZ},O is compactly supported and
7 is absolutely continuous with respect to Lebesgue measure on a compact set with a uniformly bounded
density. Then, we deduce that ﬁn)ro s L (n) = L (n) is bounded, which together with applied
to Ry, implies that Ry« L (n) — L (n) is bounded. O

From now on, given x € R"*!, we denote
TH = (331,' .. ’xn)7
so that © = (zg, Tpt1). Also, we write
RY = (Ry,...,Rn),

where R; stands for the j-th component of R, so that R = (R, R, 11).

For simplicity, in the arguments below we will assume that the function ¢ defined slightly above
1) is of the form ¢(z) = $(x2), for some C! function 5 which equals 1 on B(0, 1) and vanishes out of
B(0,2/2).

Lemma 3.6.4. Let f € L (n) be M-periodic. Then,

loc

(a) Let A>3 be some odd natural number. For all z € 2Qq,
1
R(X 504 IM@)| S =——— /fd.
RO @S o 1910
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(b) For all x € R™*! such that dist(z, H) > €(Qo),

1
ROME S o057 [, 11 (3.46)

and 1
R0 S g m gy, 1 (3.47

Proof. We denote v = fn. The arguments to prove the estimate in (a) are quite similar to the ones
used in the proof of Lemma Since we are assuming that A is some odd number, there is a subset
M5 C M such that

XGg? = 2 (TP)#(xquv)-
PEMZ

Furthermore, the cubes from P € M7 satisfy [2p| 2 Al(Qq). Then, for all z € Qg and all r > 0 we have

Ko@) = [Bele = 3 T)stam) )

PeM~
A

Ry (

Since the support of I?T(x —y) is compact, the last sum only has a finite number of non-zero terms, and
so we can change the order of summation and integration, and thus

R (X oy )@ PEXA;N / K (z = y)d[(Tr)4(xqov)] (v) (3.48)
= > Ko (z—y—zp)dv(y).
PEM~

By the antisymmetry of the kernel f(r, from the last equation we get

R (X gy ?)( p§4~ r(zp = (2 —y)) dv(y).

Also, by the definition of M 7 it follows that P € M7 if and only if —P € M, so replacing zp by —zp
does not change the last sum in (3.48)), and then we have

Re(X g0V ZA:A r(zp + (2 —y)) dv(y).
PeEM~

Averaging the last two equations we get

Reiop )0 =5 X [ [Reert (e =9) = Koler — -] dvly). (3.49)

P€M~

Note now that z,y € Qo and, recalling that |zp| = /~1€(Q0) for P € M, we have
lzp + (z —y)| = |zp — (z —y)| = |2p].

Thus,
[z =yl o Qo)

’KT(ZP"i'(x_y))_KT(ZP_(x_ ’ ~ zp|ntl S |ZP|n+1'

Then, from this estimate and ([3.49) we obtain that

R (x i)V (@] = > z( |n+)1 v1(Qo) 5 2A0)

PEM:|zp|>C—1A0(Q0) A Qo)
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as wished.

To prove the first estimate in (b), let € R™*! be such that dist(x, H) > #(Qo). Since Rv is
M-periodic, we may assume that xp € Qo N H. As in (3.49), for any r > 0 we have

Rovie) =5 3 [ [Reler (@ =) = Kolop = (o = )] dvlo). (3.50)
PeM Y0

We claim that for x as above and y € Qy,
dist(z, H)

(3.51)
(dist(x, H) + |zp|)

Ko (zp + (x = y)) = Ko(zp — (2 = 9))| S T

Indeed, if |zp| > 2|x — y|, then dist(x, H) + | — zp| = | — y| + |zp| = |zp|, and thus

|z —y| _ dist(z,H)
2p |n ~ |ZP‘n+1 :

[Br(zp (0 =) = Koo = (@ = y))| S 4

Since |zp| > 2|z — y|, we have |zp| &~ |zp| + |z — y| = |zp| + dist(x, H), and then (3.52)) holds in this case.
On the other hand, if |zp| < 2|z — y|, then

~ ~ 1 1
|Ko(zp + (= 1)) — Kp(zp — (z = 9))| £ =g el erty

Tt is immediate to check that dist(z,y — zp) & dist(x, zp + y) 2 dist(z, H) = |z — y|, and so we obtain

[Roler+ (@ =) = Blop = =) S oo
Furthermore, from the condition |zp| < 2|z — y| we infer that

|z —yl = |z =yl + |zp| = dist(z, H) + |zp],
and thus

~ ~ |z — y dist(x, H)
K. (2p + (z —y)) = Ko(2p — (2 — y))| S T
| P Y P w) (Jz — y| + |2p]) + (dist(x, H) + |zp|)

n+17

which completes the proof of (3.52).

From and (| we obtain
~ dist(z, H
|RTV Z / ist(x, H) |)n+1 dlv|(y)

Pe (dist(z, H) + |2
dlSt(.T H) QP
= [V|(Qo) — o :
Py P;A (dist(z, H) + |2p])" "
It is easy to check that
LP)™ < 1

Pen (dist(z, H) + \zp|)”+1 ~ dist(z, H)’

and so (3.46|) follows.

We turn now our attention to the last estimate from (b). Again let z € R"*! be such that dist(x, H) >
£(Qo), so that the identity (3.50) is still valid. We claim that for y € Qp and r big enough,

H o)) — KH (sp — (2 — £(Qo)
K (zp + (= y)) = KM (zp — (z —y))| S (@it ) + o) (3.52)
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where I?fl is the kernel of ﬁf . To prove this, we write

RIG) = antn(2P), with () = 228,

Then, we have

|Kf (2p + (x — ) = K[ (2p — (z — 1))
=Gz, + (zir = ym)) e (l2p + (€ = 9)1?) = (zpo — (wa —yu)) e (2P — (z — y)?)|
<2zg —yu| e (lzp + (z —y)?)
+zpa = (er —ym)| [0 (l2p = (2 = 9)1?) = ¥r(lzp + (z = y) )|
=:T;+ T,.

To deal with T; we write
2|ey —yu|
Pt (z—y)ntt
Note then that |2y — yu | < £(Qo), while |z — y| ~ dist(z, H). Furthermore, it is easy to check that

T, <
|z

lzp + (z —y)| = |zp — (z — y)| = |zp| + dist(z, H), (3.53)

which implies that
—I—1 S E(QO)
(dist(z, H) + |zp|)

n+1"

Now we will estimate T,. To this end we intend to apply the Mean Value Theorem. It is easy to

check that for all ¢ > 0,
1

O] S

and then, by (3.53)),
lzp = (& =9)P* = |zp + (= = y)|?|
(dist(z, H) + |zp[)" "

[0 (lzp = (= y)I?) = e (l2p + (z = 9)*)| S
Now we have
llzp = (@ =) = |zp + (= =) *| = [[(zr.rr — (w1 —yu))? + (@41 = Yns1)?]
- [(ZP,H + (g —yu))? + (Tns1 — yn+1)2] |
=2|zpu (xa — yu)| < 2|2p|€(Q0).
Therefore, we infer that

|zp,ur — (xr — ym)| |2p] £(Qo) < £(Qo)

T2 S P R DES
(dist(z, H) + |zp|) (dist(z, H) + |zp])

Together with the estimate above for Ty ,this yields (3.52)), as wished.
From ([3.50) and (3.52) we obtain

N £(Qo)
Rev(z)| < |v e
Rov(a)] ||<Q0>P§A (dist(e, H) + |zp])"" "

It is easy to check that
£(Qo)" - Qo)
Pen (dist(z, H) + \zp|)"+1 ~ dist(z, H)’

and then ((3.47)) follows. O
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Lemma 3.6.5. We have )
/Q [Rn|* dn < (6’+ Ag> 1(Qo)-
0
Proof. By Lemma [3.6.1] it is enough to show that

1
/ [R(x(aqo)mI” dn S —z n(Qo).
Qo

This estimate is an immediate consequence of Lemma m (a). O

Remark 2. By taking A big enough and d,c small enough in the assumptions of the Main Lemma

and then choosing the parameters €g, ko, 0y appropriately, it follows that

/ [Rn|* dn < 1(Qo)- (3.54)

0

Indeed, the preceding lemma asserts that

[ Raans (&4 45 ) nio)

Qo

with &' given in Lemma by

1
~ —2n—2 3t 1)
=4 A" Ky VTR0
where € is defined in by

~ 1 1 1 1 ~ 1
e=0Cy <5+AQ+6M +eo+ 05 +KE +A”+152n+3>,

and § in by

(5~: Cs Antl (50 +9(1)/(n+1) +/<;é/2 +51/2)_

Hence, if we take first A big enough and then ey, ko, 0,09 small enough (depending on A), so that moreover

1
0y < Ko (to ensure that A”f{a%*2 902("“)2 < 1), then (3.54)) follows.

3.7 Proof of the Key Lemma by contradiction

3.7.1 A variational argument and an almost everywhere inequality

Lemma 3.7.1. Suppose that, for some 0 < XA < 1, the inequality

/ Rnl2dn < An(Qo)

Qo

holds. Then, there is a function b € L*(n) such that
(i) 0<b<2,

(it) b is periodic with respect to M,
(iii) | bdn=n(Qo),
Qo
and such that the measure v = bn satisfies
/ |Rv|?dv < Av(Qo) (3.55)
0

and
|Rv(x)]? + 2R*((Rv)v)(x) < 6\ for v-a.e. x € R™H1, (3.56)
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Proof. In order to find such a function b, we consider the following class of admissible functions
A= {a € L>®(n): a >0, ais M-periodic, and fQo adn = U(Qo)} (3.57)

and we define a functional J on A by

J(a) = Nlall () 7(Q0) + / IR(an)|2adi. (3.58)

0

Observe that 1 € A and

J(1) = An(Qo) + / Ral2dn < 221(Qo),

Qo

Thus
inf J(a) <2 Qo).
ale A ( >_ An( 0)

Since J(a) > A|al| Lo () 7(Qo), it is clear that

inf J(a) =

inf J(a).
a€A aGAZHaHLoo(T])§2

Hence, by standard arguments one can prove that J attains a global minimum on A, i.e., there is a
function b € A such that J(b) < J(a) for all a € A. Indeed, by the Banach-Alaoglu theorem there exists
a sequence {ar}r C L*(n), with [[ag|[pe(,; < 2 which converges weakly-* in L>°(n) to some function
b e L*(n). Tt is clear that b satisfies H and . Also, since y +— % belongs to L!(n) (recall
that n has bounded density with respect to Lebesgue measure), it follows that R(axn) — R(bn) pointwise.

Taking into account that
1
Rln) (@) <2 [ = dnty) < Cn).
by the dominated convergence theorem, J(ay) — J(b).

The estimate (3.55) for v = bn follows from the fact that J(b) < J(1), because the property (iii)
implies that |b[| foe(,y > 1.

In order to prove that (3.56]) holds, we perform a blow-up argument taking advantage of the fact that
b is a minimizer for J. Let B be any ball contained in Qo and centered on supp(r) N Qg. Denote by

Pu(B)= | J (B+zr) (3.59)
ReM

the “periodic extension” of B with respect to M. Now, for every 0 <t < 1, define

v(B)
v(Qo)

It is clear that b; € A for all 0 <t < 1 and by = b. Therefore,

b. (3.60)

be = (1 —txpuy ()b +1

J(B) < J(be) = Albelloe(Qo) + /Q IR (be) by i
’ (3.61)

V(B) 2 L
<) (1 n tmo)) olen@0) + [ Rt Py = (1)

Since h(0) = J(b), we have that h(0) < h(t) for 0 < ¢ < 1 and, thus A/ (0) > 0 (assuming that A/ _(0)
exists). Notice that
dbt Z/(B)
el —— b b
dt ‘t:O XPu(B)°+ v(Qo)
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Therefore,

0 0) = A F D Wloon(@)+ ], [ RGPy
(B) % . v det
=225 (Qo)+2/QoR<dt t:o”) Rbdn+/Q|R| By
/() BN
=2 W@ +2 [ R ((<wnmb+ ghb)n) - Rubdy

B
+ /O |RV|2 <_XPM(B)b+ VV((QO)) b> d77

. v(B) B N Ry dy 9. YB) 2 dy
= (@) =2 | ROxeuop) - Rodv 2755 | Roftd

/|RV|2du+ ((50))/ |Rv|? dv,

where we used the fact that Py(B) N Qo = B in the last identity. The fact that the derivatives above

commute with the integral sign and with the operator R is guaranteed by the fact that b; is an affine

function of ¢ and then one can expand the integrand |R(bsn)|?b; and obtain a polynomial on t. Using
also the fact that A < 1 and that J(b) < 2Av(Qo), we get

/BRVQdV—i-Q/QO R(Xpp(ByV) Rvdy < :((go)) {A||b||ocn(Qo)+3/o |R1/|2d1/] (3.62)
<3J(b)v(B) < 6Av(B).
We claim now that
/ R(Xpu(B)V) - Rvdv :/ R*((Rv)v) dv. (3.63)
Qo B

Assuming this to be true for the moment, from (3.62)) and (3.63]), dividing by v(B), we obtain

1

— v|2dv 2 * v)v)dy
7 J, IR+ gy [ R (R < o

and so, letting v(B) — 0 and applying Lebesgue’s Differentiation Theorem, we obtain
|Rv(x)]? + 2R*((Rv)v)(x) < 6X  for v-a.e. x € R*F1

as desired.
It remains to prove the claim |D By the uniform convergence of ﬁT(XPM(B)V) and ﬁrl/ to
R(X Py (B)v) and Ry, respectively, we have

R(xpu(ByV) - Rvdy = lim R (XPu(BYV) - R,vdv. (3.64)

QD T—00

Since IN(T(:E — +) has compact support, for all = € Qo,
Ro(ripp)@) = [ Rola- = > [ Rola ) d(Te)aaan) )
P (B) PeM

For the last identity we have used the fact that the sum above runs only over a finite number of P € M
because there is only a finite number of non-zero terms (in fact, we may assume these P € M to be

independent of = € Q). Thus we have

Rr(XPr(B)V) Z /K x—y—zp)dv(y) Z R, (xsv)(x — zp),

PeM PeM
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/QMXMB)V)() Rovdn(@)= 3 [ Rolxnm)(e - 20) - Rovta) iv(e)
-y / Relxsw) (@) - Rovl + 2) d((Tp) 31) ()
pPem/Qo—zp

Since R,v is M-periodic, ﬁrl/(x +zp) = ﬁru(x) and (Tp);lu = v, and then applying also Fubini’s
theorem we get

o Re(Xpro(3)0) (@) - Rov(x) du(z) P;; /Q . R, (xsv)(x) - Rev(z) dv(z) (3.65)

Since R,v converges uniformly to Rv as r — oo and 7%: tends to R* in operator norm in L5 (n) — L35 (n),
we deduce that
lim Ri((Rev)v)(y) dv(y) = / R*((Rv)v) dv

B

r—00

Together with ([3.64) and (3.65) this yields (3.63]). O

3.7.2 A maximum principle

Lemma 3.7.2. Assume that, for some 0 < X\ <1, the inequality

/ Ral? dn < Mn(Qo)

is satisfied, and let b and v be as in Lemma|3.7.1. Let Kg > 0 be a big constant (Kg > 10) and let S be
the horizontal strip
S = {1’ € R |$n+1‘ < KS@(Q())}

Also, set
1
f@)=cszptrent1 =cs(0,...,0,2541), with cg = / w7 dv(y).

(lyr|? + (Kst(Qo))?) ?

Then, we have
1

|Ru(z) — f(x)> + 4R*(Rv)v)(z) S A2 + el forallx € S. (3.66)

s

Furthermore,
1

s S —r.
Ksl(Qo)
Proof. The inequality (3.67)) is very easy. Indeed, we just have to use the fact that v(B(z,r)) < r™ for

all z € R*™! and r > 0, and use standard estimates which we leave for the reader.

To prove , we denote
F(z) = [Ru(z) — f(2)]* + 4R*(Rv)v) ().

(3.67)

It is clear that F' is subharmonic in R"*!\ supp(v) and continuous in the whole space R"™! by Lemma
3.6.2l THen, if we show that the estimate in (3.66) holds for all = € supp(v) U 95, then this will be also
satisfied in the whole S. Indeed, since F' is M-periodic and continuous in S, it is clear that the maximum

of F'in S is attained, and since F' is subharmonic in S \ supp(v), it should be attained in supp(r) U dS.
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First we check that the inequality in (3.66) holds for all € supp(v). To this end, recall that by
Lemma [3.7.1] we have

|Rv(x)]? + 2R*((Rv)v)(x) < 6\ v-almost everywhere in supp(v),
and this inequality extends to the whole supp(v) by continuity. Therefore we have, for all = € supp(v),
F(z) = [Ru(z) — f(z)* + 4R*((Rv)v)(z) < 2|Ru(z )I2 +2|f(2)]* + 4R ((Rv)v)(x)

<120+ 2|f(2))> < 12X\ + (cSE(QO)) <A+ K27

where we took into account that |z, 1| < %E(QO) for z € suppr and we used (3.67).

Our next objective consists in getting an upper bound for F in 5. By applying Lemma [3.6.4] to the
function Rv (which is M-periodic), with R* instead of R (since R is antisymmetric we are allowed to
do this) we obtain

1/2
IR*((R)v)(z)| S é(Qlo)n/Q |Rv|dv < e(Qlo)n (/Q IRv|? du) W(Qo)M? S N2,

It suffices to show now that |[Rv(x)—f(x)| < %S forall z € 9S. We write Rv(z) = (R¥v(z), Rpr1v(z)).

From (3.47) we infer that
1 1
RAv(z)| < —rn—v < —.
| ( )| ~ Kg e(QO)n (QO) ~ Kg
Hence, it only remains to prove that
1
|Rns1v(x) ens1 — f(x)‘ < Ko for all z € 0S. (3.68)

S

To prove this estimate we can assume without loss of generality that x,11 = Kgl(Qo) and that xy €
Qo N H, by the M-periodicity of R,41v. Since f(z) = cs Kg¥l(Qo)en+1 for this point z, (3.68) is
equivalent to

(3.69)

|Rns1v(z) — cs Ks £(Qo)| S %

Note first that

T Ln+1 =~ Yn+1 _f Tn41 — Yn+t1
Rptiv(z) = }E}%/@(l‘ — Z/)W dv(y) = /7@ — g dv(y),

by an easy application of the dominated convergence theorem (using the fact that |zp41 — Ynt1| <
dist(z, H) 4+ £(Qo)). Consider the point xzo = (0, Ksf(Qo)). Since for all y € supp(v),

1
|z — 20| + |y — yu| < £(Qo) < §|$ -yl

and since the (n 4+ 1) component of K (-), which we denote by K, 1(+), is a standard Calderén-Zygmund

kernel,
|z — 2ol + |y — yH| £(Qo)
|Kn+1(x_y) _K’n+1(x0_yH)| |ZI:— |n+l N ‘x_y‘n_;'_l'
Therefore,
|Rns1v(z) — cs Ks 0(Qo)| = ‘/(Knﬂ(ﬂf —y) — Kni1(zo — yu)) ’ /\x — y|"+1 v(y).

Since dist(x,supp(v)) 2 Ks¢(Qo) and v is a measure with polynomial growth of order n, by standard

1
<
/ |ZE |n+1 ( ) ~ KS’
which proves (3.69)) and finishes the proof of the lemma. O

estimates it follows that
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The next result is an immediate consequence of Lemma [3.7.2]

Lemma 3.7.3. Assume that, for some 0 < XA < 1, the inequality

/ Ral? dn < An(Qo)

0

is satisfied, and let b and v be as in Lemma|3.7.1 Then, we have
|Ru(z)]? + AR* (Rv)v)(z) S AY? for all x € R, (3.70)
Proof. This follows by letting Ks — oo in the inequality (3.66[), taking into account that cg — 0, by

B-67). O

3.7.3 The contradiction

Lemma 3.7.4. Suppose that, for some 0 < A < 1, the inequality

/Q [Rn|*dn < An(Qo) (3.71)

is satisfied, and let b and v be as in Lemma|3.7.1. Then, the exists some constant cs > 0 depending OanEI
on n,Cy,C1 such that

A > C3.
Proof. By Lemma we have
[Ru(z)? + 4R*(Rv)v)(z) < A2 (3.72)

for all z € R""!. Now pick a smooth function ¢ with xo, < ¢ < x20, and |[Ve|sw < f(éo)' Set

1 = O3V, so that R*(yH" 1) = . Then, we have

n(Qo) = v(Qo) < /apdz/ = /R*(wH"“)dV

1/2 1/2
:/Ruwdw“ < (/Rﬂmdm“) (/ wdH"“) .

First of all, observe that

1
< n+l < n
[l S gy ond [ W@ < 0@
and so
1/2
n<Q0>5( / |Ru|2|w|cm"“) {Qo)™2. (3.73)

Furthermore, by (3.72) we have

/|Ru|2|w|d7{"+1 < CA1/2/|¢|d’H”+1 +4‘/R*((Ru)u)|wd’l{"+1 (3.74)

< A2(Q)" + | R s Rl e

+ ‘/R* (XgQO(RV)V)‘QZJ‘dHn+1 .

n fact, keeping track of the dependencies, one can check that c3 depends only on n and Cp, and not on C;. However,
this is not necessary for the proof of the Key Lemma.
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To estimate the first integral on the right hand side we apply Lemma m (a) with A=3and f=Rvb
(where b is such that by = v), and then we deduce that for all = € 2Qy,

* 1
|R (X(SQO)C(RV)V)(.T) < Qo) /0 |Rv b| dn

1 1/2 ,
= |Rv|dv < <][ |R1/|2d1/> <A
K(QO)" /Qo Qo

Thus, recalling that 1 is supported in 2Qq,

R (e (R £ X [l £ 32 @)

Concerning the last integral on the right hand side of (3.74)), we have

\ R (o Rl

= ’/ Rv - R(|¢|dH™ ) dv
3Qo

1/2 1/2
2 n+1
< </3Q0 Ry du) </3Q0 R(|0| dH )|du> .

The first integral on the right hand side does not exceed cAv(Qg) (by (3.55) and the periodicity of Rv).

For the second one, using the fact that |¢| < mngo, it follows easily that [|[R(||H" )|e < 1.

Therefore, we get

\ [ R (s (Re) 41| £ 20(Qo).

Then, from (3.74]) and the last estimates we deduce that

/\Ry|2\w\d7-l”“ < A2(Qo).

Thus, by (3.73),
v(Qo) < A *1(Qo),

that is, A 2 1. O

Now, in order to prove the Key Lemma we only have to recall that, by Remark /. o |Rn|? dn <
n(Qo) if A is big enough and §, ¢, kg, 0y are small enough and chosen appropriately, under the assumption
that &o is small enough too. This contradicts Lemma [3.7.4] Hence, (3.13)) cannot hold and thus we are
done.

3.8 Construction of the AD-regular measure ( and the uni-

formly rectifiable set [' in the Main Lemma

Denote

F=Qonsupp(p)\ |J @ (3.75)

QeELD

It is easy to check that 0 < 67(z, u) < 0™*(x, ) < oo for p-a.e. x € F. Since R, is bounded on L?(u| ),
it follows that u|p is n-rectifiable, by the Nazarov-Tolsa-Volberg theorem [NToV2]. However, to get a
big piece of a set contained in a uniformly n-rectifiable set I" as the one required in the Main Lemma
and in Theorem [3.1.1] we have to argue more carefully. To this end, first we will construct an auxiliary
AD-regular measure ¢ such that ((F') 2 p(F'), and then we will apply the Nazarov-Tolsa-Volberg theorem
[INToVT] for AD-regular measures.
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Next we are going to construct the aforementioned auxiliary measure (. The arguments for this
construction can be considered as quantitative version of the ones from [NToV2|, which rely on a covering
theorem of Pajot (see [P]).

Recall the notation o = u|g,. Consider the maximal dyadic operator

Mo, f(z) = sup ﬁ /Q \f|do,

QED,:xeQ O
where D, is the David-Mattila lattice associated o. Let F be as in (3.75) and set

F= {ac €F: Mp, (yre)(z) <1— %"}

We wish to show that
o(F). (3.76)
To this end, note that

F\F = {xeF:MD”(XFC)(x) >1f%°}

and consider a collection of maximal (and thus disjoint) cells {Q;}ic; C D, such that o(Q; \ F) >
(1 —=%)0(Q;). Observe that

F\F=JQinF.

ieJ
Clearly, the cells Q; satisfy o(Q; N F') < L 0(Q;) and so we have
~ €
o(F\F) <Y o(@QNF) <Y T a(Q) < 5 o(Q) <
ieJ ic€J
which proves (3.76|).
For each i € J we consider the family A; of maximal doubling cells from D% which cover Q;, and we
define
A=J A
ieJ
Finally, we denote by A the subfamily of the cells P € A such that o(PNF) > 0. Now, for each Q € Ay
we consider an n-dimensional sphere S(Q) concentric with B(Q) and with radius 1r(B(Q)). We define

(=olz+ Z H" | s(q)-

QEAo

Remark 3. If P € Ay and P C Q; for some i € J, then
E(P) ~00,Co E(Ql)

Indeed, since P is a maximal doubling cell contained in Q;, by Lemma [E] and the fact that 3.5Bp C
100B(P),

0,(3.5Bp) < 0,(100B(P)) < Ay 2" P)=1@D g (100B(Q;)) Sc Ay ) =7(@0),

Since o(PNF) > 0, it turns out that P is not contained in any cell from LD, and so ©,(3.5Bp) > 0.

Then, we have
0o S/Co Aa9n(J(P)—J(Qi))’

which implies that |J(P) — J(Q:)] Seo.cp 1
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A very similar argument shows that if P € D, satisfies PNF # & (and so it is not contained in any
cell from LD), then there exists some Q € DL which contains Q and such that

K(P) Q-'90,(70 E(Q)

The details are left for the reader.

From the two statements above, if follows that for any cell P € D, which is not strictly contained in
any cell from Ay there exists some cell Pe D which is not contained in any cell Q;, i € J, so that
P CPand é(P) ~0,,Co E(Q)

Lemma 3.8.1. The measure ¢ is AD reqular, with the AD-regularity constant depending on Cy, 0y, and
€0-

Proof. First we will show the upper AD-regularity of ¢, that is, we will prove that ((B(z,r)) < C(Cy,00) "
for all z,r. By the upper AD-regularity of o, it is enough to show that the measure

v= H'ls@

QeAo

is also upper AD-regular, so we have to prove that
v(B(z,r)) < C(Co,bo) r™  for all x € Jge 4, S(Q) and all 7 > 0. (3.77)

Take x € S(Q), for some @ € Ag. Clearly, the estimate above holds if the only sphere S(P), P € Ay,
that intersects B(z,7) is just S(Q) itself, so assume that B(x,r) intersects a sphere S(P), P € Ay, with
P # Q. Recall that £ B(Q) N $B(P) = @, by Remark (1} and thus for some constant Cg, P C B(z, Cer).
Hence,

vB@m < Y wdEseys S upe

PecAy:PCB(z,Cesr) PecAy:PCB(z,Cesr)

Note now that by the definition of Ay, o(F N P) > 0, which implies that P ¢ LD and that P is not
contained in any other cell from LD, and thus taking also into account that P € D,

o(P) 2 o(3.5Bp) Z 6y £(P)". (3.78)
Together with the upper AD-regularity of o, this yields

W(Bla,r) £ > oP)S 5 0B Con) Saa

PeAy:PCB(z,Cgr) 0

S|

which concludes the proof of (3.77).

It remains now to show the lower AD-regularity of {. First we will prove that
C(2Bg) Z6y.c0.00 LQ)™ if Q € D is not contained in any cell Q;, i € J. (3.79)
Indeed, note that by the definition of the cells Q;, i € J,
€
o(Q\F) < (1-3)o(Q),
or equivalently,
€
0(QNF) > 0(Q)
Since @ is not contained in any cell from LD (by the definitions of F' and Ag) and is doubling,
o(Q@NF) Ze, 0(3.5Bq) Z.e0 £(Q)" (3.80)
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On the other hand, by the construction of (,

o@QNF)=o(@NE)+ > oPNF)Se, QNE)+ Y H'(S(P)).
PeAyg:PCQ PeAy:PCQ
We may assume that all the cells P C @ satisfy S(P) C 2Bgq, just by choosing the constant Ay in the

construction of the lattice D, big enough. Then we get

7(QNF) <, C(QNF) + > C(S(P)) Sy ¢(2Bg).

PeAy:S(P)C2Bqg
Together with ([3.80)), this gives (3.79).

To prove the lower AD-regularity of ¢, note that by Remark [3| there exists some constant C’(Cy, 6p)
such that if z € S(Q), Q € Ag, and C'(Cp,0) £(Q) < r < diam(Qp), then there exists P € D not
contained in any cell Q;, i € J, such that 2Bp C B(z,r), with {(P) =g, c, r. The same holds for

0 < r < diam(Qo) if 2 € F. From (3.79) we infer that
C(B( )) 2 C(QBP) ~00,20,Co E(P)n ~00,e0,Co T

In the case that r < C"(Co, 0p) £(Q) for x € S(Q), Q € Ao, the lower AD-regularity of H"|5(q) gives the
required lower estimate for (B(z,r)). O

Lemma 3.8.2. The Riesz transform R¢ is bounded in L?(¢), with a bound on the norm depending on
Co, Cl, 90, and €0-

To prove this result we will follow very closely the arguments in the last part of the proof of the Main
Lemma 2.1 of [NToV2]. For completeness, we will show all the details.

For technical reasons, it will be convenient to work with an e-regularized version R, . of the Riesz

transform R,. For a measure v with polynomial growth of order n, we set

Ruef(a /maX T _y| STES f(y) dv(y).

It is easy to check that
|7€,,’Ef(x) —Ruf(x)| <eM,f(x) for all z € R**1,

where c is independent of € and M, is the following maximal operator with respect to v:

1
M, f(x) = sup — |f[ dv.
r>0 T B(z,r)
Since M,, is bounded in L?(v) (because v has growth of order n), it turns out that R, is bounded in
L?(v) if and only if the operators Rl, < are bounded in L?(v) uniformly on & > 0. The advantage of 7'\’,,, c
over R, is that the kernel
~ x
K(t)= ——
() max(|z|,e)"t!

is continuous and satisfies the smoothness condition

(with ¢ independent of €), which implies that I/(\'E(ac —y) is a standard Calderén-Zygmund kernel (with

constants independent of €), unlike the kernel of R, .
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Proof of Lemma[3.8.4 To shorten notation, in the arguments below we will allow all the implicit con-

stants in the relations < and = to depend on Cy, C1, 6y, €.

Denote

v= Z H" | 5Q)

QEAo

so that ( = o|z+v. Since R, is bounded in L*(0), it is enough to show that R, is bounded in L*(v).
Indeed, the boundedness of both operators implies the boundedness of R, 1, in L?(c+v) (see Proposition
2.25 of [T6], for example).

As in (3.14)), given k > 0, for each @) € Aj, we consider the set

I.(Q) = {z € Q : dist(z,suppc \ Q) > kL(Q)}.

By the thin boundary condition of Q, the fact that @ is doubling, and that ¢(Q) 2 6y £(Q)™ (as shown
in (3.78)), we obtain that there exists some x > 0 small enough such that

o(1.(Q)

~—

>

a(Q) 2 00 €(Q)". (3.81)

l\J\»—t

We consider the measure

o= Z CQULIN(Q),

QEA

with cg = H"(S(Q))/o(I:(Q)). By (3.81)), it follows that the constants cg, @ € Ay, have a uniform
bound depending on fp, and thus R is bounded in L?(5) (with a norm possibly depending on ).
Furthermore, v(S(Q)) = o(Q) for each Q € Ay.

It is clear that, in a sense, ¢ can be considered as an approximation of v (and conversely). To prove the
boundedness of R, in L?(v), we will prove that 7%,,,8 is bounded in L?(v) uniformly on £ > 0 by comparing
it to 7@;’5. First we need to introduce some local and non local operators: given z € Uge 4, S(Q), we
denote by S(z) the sphere S(Q),Q € Ao, that contains z. Then we write, for z € Jge 4, S(Q),

RCF(2) = Rue(fxs)(2),  RELF(2) = Rue(fXniiys()(2)-

We define analogously RS f and R f: given z € Uge, @ we denote by Q(z) the cell Q € Ag that
contains z. Then for z € UQGAO Q, we set

RECS(E) =Ry (Prom)e): REFE) =Ry (Favnor)(2)

It is straightforward to check that RL¢ is bounded in L?(v), and that RY¢ is bounded in L*(c), both
uniformly on € (in other words, R¢ is bounded in L?(v) and RY¢ is bounded in L?(c)). Indeed,

IR 720y = D IIxs@Rue(xs@)izon S Y. Ifxs@llizo) = 1£1320,

QEA, QEeAy

by the boundedness of the n-Riesz transforms on S(Q). Using the boundedness of R,, in L?(0), it follows
analogously that R/g"; is bounded in L%(5).

Boundedness of R in L?(v). We must show that R?! is bounded in L?(v). To this end, we will
compare R to RJ Observe first that, since RJ ﬁ; L= Rf;"z, and both ﬁ; _ and Ri}?cs are bounded

in L?(c), it follows that RJ is bounded in L?(& ) (all uniformly on € > 0).

Note also that for two different cells P, Q € Ag, we have
dist(S(P), S(Q)) =~ dist(I.(P), I.(Q)) =~ dist(S(P), I.(Q)) =~ D(P,Q), (3.82)
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where D(P, Q) = ¢(P) + ¢(Q) + dist(P, Q) and the implicit constants may depend on k. The arguments
to prove this are exactly the same as the ones for , and 7 and so we omit them. In
particular, implies that (S(P) U IH(P)) N (S(Q) U IH(Q)) = @, and thus for every z € R**! there
is at most one cell @ € Ay such that z € S(Q) U I.(Q), which we denote by Q(z). Hence we can extend
RyL and 7?{;”6 to L*(G + v) by setting

RpLf(2) = Rue(fxrerns@e))(2), ngfsf(z) =R (fxrer\Q(2)(2)-
We will prove below that, for all f € L?(5) and g € L?(v) satisfying

/ fdo= / gdv for all P € Ay, (3.83)
I.(P) S(P)

we have
— [1R2f = RILG A + ) S IF12a iz + gl (3.84)

uniformly on e. Let us see how the boundedness of R? in L?(v) follows from this estimate. As a
preliminary step, we show that R™ : L2( ) — L*(5) is bounded. To this end, given g € L?(v), we
consider a function f € L?(c) satisfying (3 that is constant on each ball B;. It is straightforward to
check that

”fHLZ(;) < ||g||L2(u)'
Then from the L?(5) boundedness of RJ and 1-) we obtain

IRgl 2y < IRE Fll oy + 1UF. 92 S Ml 2z + lallze) S Nlgllzze,

which proves that R : L?(v) — L?(5) is bounded.

It is straightforward to check that the adjoint of (RpL); : L?(v) — L*(d) (where (RIL); stands
for the j-th component of (R}L);) equals —(R;ils)j : L?(5) — L?(v). So, by duality, we obtain that
Rv L?(5) — L?(v) is also bounded.

To prove now the L?(v)-boundedness of R, we consider an arbitrary function g € L?(v), and we

construct f € L%(5) satisfying (3 which is constant in each ball P. Again, we have Hf||L2(;) <
l9llz2 (1) Using the boundedness of RJ L?(5) — L?(v) together with || we obtain
IR allz0) < IRE Flrawy +1(f,9)> S IF oz + gz S lgllzze,

as wished.

It remains to prove that (3.84) holds for f € L?(7) and g € L?(v) satisfying (3.83). For z € Upc 4, P,

we have

R f(2) ~ RiLg(e)| <

/ Ro(z = y)(F () d& 11y (v) — 9(9) dvlscry (1))

PeAg P;éQ(z)

where K. (z) is the kernel of the e-regularized n-Riesz transform. By standard estimates, using lj
and 1] and the smoothness of I/(\'E, it follows that

‘/ K.z —9)(f(y) d|1.p)(y) — 9(y) dv|s(py (y))‘

(Rl =)~ el = )7 0) 11, 0) — ) s (y»\
/ - U (1 (5) 51,0y (w) + () dvscey ()

\
= l)(Q(Z()P)P)’H'l /(|f(y)|d5\fﬁ(m(y) +1g()| dv]s(p)(y))-
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Recall that Q(z) stands for the cell Q,Q € Ay, such that z € S(Q) U I.(Q).
We consider the operators
) / ~
T~ = _
g(f)(z) Z D(Q(Z),P)n+1 de-|IN(P) )
PEAg:P£Q(2)

and T,,, which is defined in the same way with &;_(p) replaced by v|g(p). Observe that

1(£.9) < eI TS + TllgD 2, 5,
< 2|12, 54, + 21T lg) )2
= 4| T DI, 5, + 2e 1T 19Dz,

L2( U+V)

where, for the last equality, we took into account that both T(|f|) and T, (|g|) are constant on I,;(P) U
S(P) and that o(I.(P)) = v(S(P)) for all P € A,.

To complete the proof of (3.84) it is enough to show that 7% is bounded in L*(5) and T, in L*(v). We
only deal with T, since the arguments for T,, are analogous. We argue by duality again, so we consider

non-negative functlons f,h € L*(5) and we write

/ T5(f) hdo = / > DUJ&% /P fda | hiz)ds(z)

PeAo:P#Q(2)

1 ~
< >oup /fda/n+l\P @, ) 7 (P h(z) d&(z).

PecAp R

From the growth of order n of &, it follows easily that

1
/Rn+1\p (dist(z, P) + £(P))"+T h(z)do(z) S E(P) Mzh(y) forally € P,

where M stands for the (centered) maximal Hardy-Littlewood operator (with respect to ¢). Then we
deduce that

[Tsnaz s 3 [ 50 M) a50) S 151 1] ey

PeAy

by the L?() boundedness of M. Thus, T% is bounded in L?(5). O

Proof of the Main Lemma [3.2.71 By Lemmas 3.8.2] and the Nazarov-Tolsa-Volberg theorem
of [NToV1], ¢ is a uniformly rectifiable measure, so it only remains to note that the set I" := F satisfies

the required properties from the Main Lemma: it is contained in supp(¢), which is uniformly rectifiable

and, by (3.76), u(I') = o(F) > % 11(Qo). O
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