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Singular integrals and rectifiability
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Introduction

The problems addressed in this dissertation live in the intersection between Harmonic Analysis and
Geometric Measure Theory, and so one should say that they belong to the area of Geometric Analysis.
Precisely, we have analyzed relationships between singular integral operators such as the Riesz transform
with respect to general Borel measures in the Euclidean space, and metric or geometric properties of
those measures or their supports.

In the next few pages we summarize the workflow we have followed in the development of this disser-
tation and the results we have obtained, as well as some definitions of the concepts that are needed to
understand these results. The rest of pertinent definitions, auxiliary results and proofs will be found in
the next chapters.

We wish to remark, as well, that the results in Chapter 1 can be found at [G1], the ones in Chapter 2
can be found at [G2] and the ones in Chapter 3 can be found at [GT], which is a collaboration with Tolsa.
This does not mean that Chapter 1 and Chapter 2 have been developed independently by the author of
this dissertation, as all the work presented here has been done under the guidance of Professor Tolsa.

Some definitions

A measurable function k defined in Rd × Rd \ {(x, y) ∈ Rd × Rd : x = y} is an n-dimensional Calderón-
Zygmund kernel if there are constants c > 0 and 0 < δ ≤ 1 such that

|k(x, y)| ≤ c

|x− y|n
if x 6= y

and
|k(x, y)− k(x′, y)|+ |k(y, x)− k(y, x′)| ≤ c |x− x

′|δ

|x− y|n+δ if |x− x′| ≤ |x− y|2 .

Given a signed Radon measure ν in Rd and x ∈ Rd, we define (at least, formally)

Tν(x) =
∫
k(x, y)dν(y), x ∈ Rd \ supp(ν)

and we say that T is a singular integral operator with kernel k. Associated with it, one defines the
truncated operators Tε by

Tεν(x) =
∫
|x−y|>ε

k(x, y)dν(y), x ∈ Rd

for all ε > 0, and the maximal operator T∗ by

T∗ν(x) = sup
ε>0
|Tεν(x)|, x ∈ Rd.

If µ is a fixed positive Radon measure in Rd and f ∈ L1
loc(µ), we set

Tµf = T (fµ), Tµ,εf = Tε(fµ), Tµ,∗f = T∗(fµ),
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although sometimes we will omit the underlying measure µ in the subscript when there is no room for
confusion.

We say that Tµ is bounded in L2(µ) if there is a constant C > 0 such that, for all ε > 0, ||Tµ,εf ||L2(µ) ≤
C||f ||L2(µ) for all f in L2(µ) and, in such a case, we say that T is a Calderón-Zygmund operator. The
norm of Tµ is the infimum of all those constants C.

Some important examples of this class of operators are:

• The Hilbert transform, which is defined for functions f ∈ L2(R) by

Hf(x) = 1
π

p.v.
∫

f(y)
x− y

dy.

• The Beurling transform, which is defined for funcions f ∈ L2(C) by

Bf(z) = − 1
π2 p.v.

∫
f(w)

(w − z)2 dw.

• The n-dimensional Riesz transform, which is defined for signed Radon measures ν in Rd, at least
formally, by

Rν(x) =
∫

x− y
|x− y|n+1 dν(y).

• The Cauchy transform, which is defined for Radon measures ν in C, at least formally, by

Cν(z) =
∫
dν(ζ)
ζ − z

.

Chapter 1: The Cauchy transform along a Lipschitz curve: an
improvement of Cotlar’s inequality and some counterexamples

In the papers [MV], [MOV] and [MOPV], Mateu, Orobitg, Pérez and Verdera showed that for certain
Calderón-Zygmund operators T (in Rn and with respect to Lebesgue measure), the classical Cotlar’s
inequality

T∗f .M(Tf) +Mf

could be improved in such a way that the maximal singular integral T∗f would be controlled only by the
singular integral Tf . Here, M stands for the Hardy-Littlewood maximal operator, which is defined for
f ∈ L1

loc(Rn) and x ∈ Rn by

Mf(x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)

|f(y)|dy.

Precisely, for the Beurling transform, one has

B∗f .M(Bf)

for all f ∈ L2(C), while for the Hilbert transform, one has

H∗f .M2(Hf)

for all f ∈ L2(R). As Verdera points out in [MV], being able to establish this type of control for
other operators (say, for example, Riesz transforms with respect to general measures) could be a useful
tool towards solving David-Semmes conjecture, which states that the boundedness of Riesz transforms
characterizes uniform rectifiability.
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In that direction, the natural first step would be to study whether an inequality like the ones above
is satisfied by the Cauchy transform C along a Lipschitz curve Γ , since it is, modulo conjugation, the
one-dimensional Riesz transform with respect to H1bΓ (which stands for arc-length measure along Γ ) in
the plane and it coincides with a constant multiple of the Hilbert transform when Γ is a straight line.
However, we prove that, in general, this is not the case when Γ is the graph of a Lipschitz function.

Theorem. Consider the Lipschitz function A(x) = |x|, and let C denote the Cauchy transform along Γ ,
the graph of A. Then, there exists f ∈ L2(R) such that for all c > 0 and all n ≥ 1, there exists ε > 0
such that

|Cεf(0)| > cMn(Cf)(0).

An easy generalization of this result states that the inequality C∗f .Mn(Cf) will fail for every n ≥ 1
at all points where Γ has an angle.

Our second result shows that the failure of the inequality C∗f . Mn(Cf) is not only caused by the
non-smoothness of Γ , since, when Γ is the graph of a Lipschitz function of compact support A, it can
only hold true if A ≡ 0, that is, if Γ is a straight line.

Theorem. Let A be a Lipschitz function with compact support, and let C denote the Cauchy transform
along Γ , the graph of A. Suppose A is not identically null, or, equivalently, that Γ is not a straight line.
Then, there exists x ∈ R such that for all c > 0 there exists f ∈ L2(R) with

C∗f(x) > cMn(Cf)(x)

for all n ≥ 1.

Finally, we prove that when Γ is a sufficiently smooth Jordan curve (say, C1+ε), we have C∗f .M2(Cf)
for all f ∈ L2(H1bΓ ).

Chapter 2: Geometric conditions for the L2-boundedness of sin-
gular integral operators with odd kernels with respect to mea-
sures with polynomial growth in Rd

In the paper [T3], Tolsa proved that the L2(µ)-boundedness of the Cauchy transform with respect to
a Radon measure µ in C is a sufficient condition for the L2(µ)-boundedness of all odd and sufficiently
smooth 1-dimensional convolution-type singular integral operators with respect to µ. To do so, he relied
on a suitable corona decomposition for measures with linear growth and finite curvature (in particular,
for those measures µ for which Cµ is bounded in L2(µ)) that could not easily be generalized for higher
dimensions, since curvature is only available in this setting.

Using a new Corona Decomposition introduced by Azzam and Tolsa in [AT], we have proved the
following result:

Theorem. Let µ be a finite Radon measure in Rd with polynomial growth of degree n and such that, for
all balls B ⊂ Rd with radius r(B),∫

B

∫ r(B)

0
βnµ,2(x, r)2θnµ(x, r)dr

r
dµ(x) . µ(B).

Then, all singular integral operators Tµ with kernels in Kn(Rd) are bounded in L2(µ).
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Let us just remark here that θnµ(x, r) stands for the n-dimensional µ-density of the ball B(x, r), i.e.,

θnµ(x, r) = µ(B(x, r)
rn

;

that βnµ,2(x, r) stands for Jones’s β2-coefficient of the ball B(x, r) with respect to µ, i.e.,

βnµ,2(x, r) = inf
L

(
1

r(B)n

∫
B

(
dist(y, L)
r(B)

)2
dµ(y)

) 1
2

,

where the infimum is taken over all n-planes L ⊂ Rd; and that Kn(Rd) is a family of odd and sufficiently
smooth n-dimensional convolution-type Calderón-Zygmund kernels.

Using this result, we obtain an interesting estimate for the Lipschitz harmonic capacity in the spirit
of the comparability between the analytic capacity γ and the capacity γ+ obtained by Tolsa in [T2],
and which could serve as a first step towards characterizing those sets that are removable for Lipschitz
harmonic functions in a metric-geometric way. Recall that the Lipschitz harmonic capacity of a compact
set E ⊂ Rd is the natural higher-dimensional analog of analytic capacity, and is defined by

κ(E) = sup |〈∆ϕ, 1〉|,

where the supremum is taken over all Lipschitz functions ϕ : Rd → R that are harmonic in Rd \ E and
satisfy ||∇ϕ||∞ ≤ 1.

The result we have obtained is the following:

Corollary. Let E be a compact set in Rn+1. Then,

κ(E) & supµ(E),

where the supremum is taken over all positive Borel measures µ supported on E such that

sup
x∈Rn+1,R>0

{
θnµ(x,R) +

∫ ∞
0

βµ,2(x, r)2θnµ(x, r)dr
r

}
≤ 1.

In fact, in order to characterize removable sets for Lipschitz harmonic functions in a metric-geometric
way, one would need to have ≈ instead of & in the inequality above. It is worth remarking that Azzam
and Tolsa have been able to obtain this type of inequality for the analytic capacity γ in [AT].

Chapter 3: The Riesz transform and quantitative rectifiability
for general Radon measures

In the paper [NToV1], Nazarov, Tolsa and Volberg solved David-Semmes conjecture affirmatively in
the codimension 1 case, that is, they proved that given an n-AD-regular measure in Rn+1, the L2(µ)-
boundedness of the n-dimensional Riesz transform implies the uniform n-rectifiability of µ. Using tech-
niques developed in that work and in some others that are closely related, we obtain the following quan-
titative result that is valid for Radon measures in Rn+1 with polynomial growth of degree n. To state it,
denote by R the n-dimensional Riesz transform in Rn+1; for a Radon measure µ in Rn+1, f ∈ L1

loc(µ)
and A ⊂ Rn+1 with µ(A) > 0, set

mµ,A(f) = 1
µ(A)

∫
A

fdµ;

for a ball B ⊂ Rn+1

Pµ(B) =
∞∑
j=0

2−jθµ(2jB),
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and for a hyperplane L in Rn+1

βLµ,1(B) = 1
r(B)n

∫
B

dist(x, L)
r(B) dµ(x).

Theorem. Let µ be a Radon measure on Rn+1 and B ⊂ Rn+1 a ball so that the following conditions
hold:

(a) For some constant C0 > 0, C−1
0 r(B)n ≤ µ(B) ≤ C0 r(B)n.

(b) Pµ(B) ≤ C0, and µ(B(x, r)) ≤ C0 r
n for all x ∈ B and 0 < r ≤ r(B).

(c) There is some n-plane L passing through the centre of B such that for some 0 < δ � 1, βLµ,1(B) ≤ δ.

(d) RµbB is bounded in L2(µbB) with ‖RµbB‖L2(µbB)→L2(µbB) ≤ C1.

(e) For some constant 0 < ε� 1,∫
B

|Rµ(x)−mµ,B(Rµ)|2 dµ(x) ≤ ε µ(B).

Then there exists some constant τ > 0 such that if δ, ε are small enough (depending on C0 and C1), then
there is a uniformly n-rectifiable set Γ ⊂ Rn+1 such that

µ(B ∩ Γ ) ≥ τ µ(B).

Furthermore, the constant τ and the uniform rectifiability constants of Γ depend on all the constants
above.

In particular, this result ensures the existence of some piece of positive µ-measure of B ∩ Γ where µ
and the Hausdorff measure Hn are mutually absolutely continuous. This fact, which at first sight may
appear rather surprising, is one of the main difficulties for its proof.

The main motivation for this result was the quantitative theorem by Léger on Menger curvature, and
in fact one may think that this theorem is its higher-dimensional analog for Riesz transforms. Some
details about this analogy are explained in Chapter 3, although we wish to remark now that the absence
of a tool like Menger curvature makes the proofs be substantially different. Finally, we wish to remark
that this result has turned out to be an essential tool for the solution of an old question on harmonic
measure that will appear in a work by Azzam, Mourgoglou and Tolsa [AMT].

A remark about notation

As it is usual in Harmonic Analysis, a letter c (or C, or any other) will denote an absolute constant
that may change its value at different occurrences. Constants with subscripts will retain their value at
different occurrences, at least inside the same chapter of this dissertation. The notation A . B means
that there is a positive absolute constant C such that A ≤ CB, and A ≈ B is equivalent to A . B . A.

11
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Chapter 1

The Cauchy transform along a
Lipschitz curve: an improvement of
Cotlar’s inequality and some
counterexamples

1.1 Introduction

We say that a measurable function k defined in Rd ×Rd \ {(x, y) ∈ Rd ×Rd : x = y} is an n-dimensional
Calderón-Zygmund kernel if there are constants c > 0 and 0 < δ ≤ 1 such that

|k(x, y)| ≤ c

|x− y|n
if x 6= y

and
|k(x, y)− k(x′, y)|+ |k(y, x)− k(y, x′)| ≤ c |x− x

′|δ

|x− y|n+δ if |x− x′| ≤ |x− y|2 . (1.1)

Given a signed Radon measure ν in Rd and x ∈ Rd, we define

Tν(x) =
∫
k(x, y)dν(y), x ∈ Rd \ supp(ν)

and we say that T is a singular integral operator with kernel k. The integral above need not be convergent
for x ∈ supp(ν), and this is why one introduces the truncated operators associated to T , which are defined,
for every ε > 0, by

Tεν(x) =
∫
|x−y|>ε

k(x, y)dν(y), x ∈ Rd.

Notice that the integral above is absolutely convergent if, for example, |ν|(Rd) <∞.

If µ is a fixed positive Radon measure in Rd and f ∈ L1
loc(µ), we set

Tµf(x) = T (fµ)(x), x ∈ Rd \ supp(µ)

and, for ε > 0,
Tµ,εf(x) = Tε(fµ)(x), x ∈ Rd.

We say that Tµ is bounded in L2(µ) if there is a constant C > 0 such that, for all ε > 0, ||Tµ,εf ||L2(µ) ≤
C||f ||L2(µ) for all f in L2(µ) and, in such a case, we say that T is a Calderón-Zygmund operator. The
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norm of Tµ is the infimum of all those constants C (the same idea is used to define the boundedness of Tµ
in other spaces). Some of the most important examples of this class of operators are the n-dimensional
Riesz transform, given by

Rν(x) =
∫

x− y
|x− y|n+1 dν(y)

and its one-dimensional analog in R2 ≡ C, the Cauchy transform, defined by

Cν(z) =
∫
dν(ζ)
ζ − z

.

Regarding the Cauchy transform, a particularly interesting case is the one that arises when µ is the
arc-length measure (or some measure comparable to this) supported on a Lipschitz graph. To be more
precise, let A : R→ R be a Lipschitz function with Lipschitz constant Λ1 ≥ 0, and let Γ ⊂ R2 ≡ C be its
graph, which we parametrize by

z(x) = x+ iA(x), x ∈ R.

We define a measure µ on Γ by
µ(z(E)) = |E|,

where E is any Borel subset of R. We will normally call Cµ the Cauchy transform along Γ . Recall
that, since A is Lipschitz, it is differentiable almost everywhere and, furthermore, its Lipschitz constant
coincides with ||A′||∞. Moreover, it is easy to check that the measure µ that we are considering is
comparable to the arc-length measure on Γ .

In [C], Calderón proved that Cµ is bounded in L2(µ) when ||A′||∞ is sufficiently small. Later, in
[CMM], Coifman, McIntosh and Meyer proved that Cµ is bounded in L2(µ) for every Lipschitz function
A. It also follows from the work of Calderón that

p.v.Cµf(z) = lim
ε↘0
Cµ,εf(z)

exists for a.e. z ∈ supp(µ) for all f ∈ L2(µ), and, as a result, we can think of Cµ to be defined as a
principal value operator.

All the considerations regarding the Cauchy transform along Γ can be posed in terms of its parametrized
version, which, abusing notation and language, will be again denoted by C and called the Cauchy trans-
form along Γ . It is defined, for f ∈ L2(R) and x ∈ R, by

Cf(x) = p.v.
∫
R

f(y)
z(y)− z(x)dy.

Associated with it, we consider as well the truncated operators

Cεf(x) =
∫
|y−x|>ε

f(y)
z(y)− z(x)dy

and the maximal operator
C∗f(x) = sup

ε>0
|Cεf(x)|.

Notice that the truncated operators Cε are not the exact analogues to the truncated operators Cµ,ε defined
above, which would correspond to

C̃εf(x) =
∫
|z(y)−z(x)|>ε

f(y)
z(y)− z(x)dy.

We will deal with this issue later.

14



From the standard Calderón-Zygmund theory, we obtain that C is bounded in Lp(R) for 1 < p <∞,
it is bounded from L1(R) to L1,∞(R) and from L∞(R) to BMO(R), and it satisfies the classical Cotlar’s
inequality, i.e., for all f ∈ L2(R) and all x ∈ R,

C∗f(x) .M(Cf)(x) + Cf(x),

where M is the Hardy-Littlewood maximal operator.

In the papers [MOPV], [MOV] and [MV], Mateu, Orobitg, Pérez and Verdera study the problem of
controlling a maximal singular integral T∗f in terms of the corresponding singular integral Tf . As it is
stated in those papers, one reason to consider this problem is to gain a better understanding of David-
Semmes conjecture regarding the possibility of characterizing uniform rectifiability by the boundedness
of the Riesz transforms (see [DS1]).

Next we describe some of the results proved in those papers.

Definition 1.1.1. A higher-order Riesz transform is a Calderón-Zygmund operator defined, for f ∈
L2(Rn), by

Tf(x) = p.v.
∫
Rn

P (x− y)
|x− y|n+d f(y)dy,

where P is a harmonic homogeneous polynomial of degree d ≥ 1. We say that T is odd (respectively,
even) if d is odd (respectively, even).

Theorem A. Let T be a higher order Riesz transform, and let T∗ be the associated maximal operator.
Then,

1. If T is even, then for all f ∈ L2(Rn) and all x ∈ Rn,

T∗f(x) .M(Tf)(x).

2. If T is odd, then for all f ∈ L2(Rn) and all x ∈ Rn,

T∗f(x) .M2(Tf)(x).

Notice that, in particular, for the Hilbert transform we have

H∗f(x) .M2(Hf)(x)

for all f ∈ L2(R) and all x ∈ R.

Definition 1.1.2. A smooth homogeneous singular integral operator is a singular integral operator
which is defined, for f ∈ L2(Rn), by

Tf(x) = p.v.
∫
Rn

Ω(x− y)
|x− y|n

f(y)dy,

where Ω : Rn → C is a homogeneous function of degree 0 whose restriction to the unit sphere Sn−1 is of
class C∞ and satisfies the cancellation property∫

Sn−1
Ω(u)dσ(u) = 0.

We will say that the operator is odd (respectively, even) if Ω is odd (respectively, even).

Theorem B. Let T be a smooth homogeneous singular integral operator, and let T∗ be the associated
maximal operator. Then,
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• If T is even, the following assertions are equivalent:

1. T∗f(x) .M(Tf)(x) for all f ∈ L2(Rn) and all x ∈ Rn.
2. ||T∗f ||L2 . ||Tf ||L2 for all f ∈ L2(Rn).

• If T is odd, the following assertions are equivalent:

1. T∗f(x) .M2(Tf)(x) for all f ∈ L2(Rn) and all x ∈ Rn.
2. ||T∗f ||L2 . ||Tf ||L2 for all f ∈ L2(Rn).

The statements in the previous two theorems concerning even operators were proved in [MOV], while
those concerning odd operators were proved in [MOPV]. It is worth mentioning, as well, that Bosch-
Camòs, Mateu and Orobitg extended Theorem B later in the following way in their paper [BMO1]:

Theorem C. Let T be a smooth homogeneous singular integral operator, and let T∗ be the associated
maximal operator. Then, the following assertions are equivalent:

1. ||T∗f ||L2 . ||Tf ||L2 for all f ∈ L2(Rn).

2. If 1 < p <∞ and ω ∈ Ap, then ||T∗f ||Lp(ω) . ||Tf ||Lp(ω) for all f ∈ Lp(ω).

Furthermore, if T is even, the conditions above are equivalent as well to

3. ||T∗f ||L1,∞ . ||Tf ||L1 for all f ∈ H1(Rn).

An interesting result concerning pointwise inequalities like the ones in Theorem A for a slightly
modified version of the maximal Beurling transform and its iterates can be found in [BMO2].

Taking into account the possible relationship of these type of inequalities with the David-Semmes
conjecture, we tried to establish some of them for the Cauchy transform along a Lipschitz curve (in
fact, we only dealt with pointwise inequalities like the ones above, since the norm inequalities are almost
trivial, as we will show later).

Another possible motivation to try to extend the results above for the Cauchy transform along a
Lipschitz graph Γ is that it coincides with a constant multiple of the Hilbert transform when Γ is a
straight line. This is a reason why one could think that the pointwise estimate C∗f .Mn(Cf) could hold
for the Cauchy transform along, at least, some class of graphs Γ , for some n ≥ 1. We will show that one
cannot have a similar inequality for the Cauchy transform unless Γ is a straight line.

Theorem 1.1.1. Consider the Lipschitz function A(x) = |x|, and let C denote the Cauchy transform
along Γ , the graph of A. Then, there exists f ∈ L2(R) such that for all c > 0 and all n ≥ 1, there exists
ε > 0 such that

|Cεf(0)| > cMn(Cf)(0).

This theorem can be easily generalized to Lipschitz graphs Γ with angles, meaning with this points
x where A′ has a jump discontinuity, as we will show later.

After obtaining this result, one might think of establishing the inequality C∗f . Mn(Cf) imposing
some restrictions on the smoothness of A. This is not the case, as the next theorem shows.

Theorem 1.1.2. Let A be a Lipschitz function with compact support, and let C denote the Cauchy
transform along Γ , the graph of A. Suppose A is not identically null, or, equivalently, that Γ is not a
straight line. Then, there exists x ∈ R such that for all c > 0 there exists f ∈ L2(R) with

C∗f(x) > cMn(Cf)(x)

for all n ≥ 1.

We want to remark that the points x mentioned in this last theorem are easy to find. For example,
when A is of class C2, any point x with A′′(x) 6= 0 will do the job.
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1.2 Another version of the Cauchy transform

We define a new operator which, abusing language, will also be called the Cauchy transform along Γ , by

Tf(x) = 1
πi

p.v.
∫
R

f(y)
z(y)− z(x)dz(y),

where dz(y) = z′(y)dy = (1 + iA′(y))dy. As before, associated with it, we will have the truncated
operators Tε and the maximal operator T∗. This operator is very closely related to C. Indeed,

Tf(x) = 1
πi

p.v.
∫
R

f(y)
z(y)− z(x)dz(y)

= 1
πi

p.v.
∫
R

f(y)z′(y)
z(y)− z(x)dy = 1

πi
C(f · z′)(x).

(1.2)

Analogously,

Cf(x) = πiT

(
f

z′

)
(x). (1.3)

It is clear that T satisfies the same boundedness properties that C satisfies (with different multiplicative
constants). Moreover, by equations (1.2) and (1.3), and taking into account that z′ ∈ L∞ and |z′| ≈ 1,
we can limit ourselves to prove Theorems 1.1.1 and 1.1.2 substituting C by T , Cε by Tε and C∗ by T∗.

The main reason for using this version of the Cauchy transform is contained in the following result,
which we learnt from Escauriaza ([E]).

Lemma 1.2.1. If f ∈ Lp(R), 1 < p <∞, then T 2f = f .

Proof. For w ∈ C and α > 0, we define the upper and lower half cones with vertex at w and generatrix
slope α, respectively, by

X+(w,α) = {z ∈ C : |Re z − Re w| < α(Im z − Im w)}

X−(w,α) = {z ∈ C : |Re z − Re w| < α(Im w − Im z)}.

It is immediate that for all w ∈ Γ and all 0 < α < 1
||A′||∞ ,

X+(w,α) ⊂ {x+ iy ∈ C : y > A(x)}

and
X−(w,α) ⊂ {x+ iy ∈ C : y < A(x)}.

Fix 0 < α < 1
||A′||∞ . Let f ∈ Lp(R), and let us define, for x ∈ R,

T+f(x) = lim
w→z(x)

w∈X+(z(x),α)

1
πi

∫
R

f(y)
w − z(x)dz(y),

T−f(x) = lim
w→z(x)

w∈X−(z(x),α)

1
πi

∫
R

f(y)
w − z(x)dz(y).

From Plemelj formulae (see, for example, Chapter 8 of [T6]), we obtain

T+f(x) = Tf(x) + f(x); T−f(x) = Tf(x)− f(x)

for a.e. x ∈ R. In particular, T = T+ − Id. Hence,

T 2 = (T+ − Id)2 = (T+)2 − 2T+ + Id.

A direct application of Cauchy’s integral formula gives (T+)2 = 2T+. As a consequence, T 2 = Id, as
desired.
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As a consequence of this result, one easily gets the Lp-control of the maximal Cauchy transform in
terms of the Cauchy transform, for 1 < p <∞.

Corollary 1.2.1. If f ∈ Lp(R), 1 < p <∞, then ||T∗f ||Lp . ||Tf ||Lp .

Proof. Indeed, taking into account the Lp-boundedness of T∗ and T , and the fact that T 2f = f , we get

||T ∗f ||Lp . ||f ||Lp = ||T 2f ||Lp . ||Tf ||Lp .

The following lemma states that T is antisymmetric with respect to dz, and its proof follows by an
easy application of Fubini’s Theorem.

Lemma 1.2.2. Let 1 < p <∞, p′ the conjugate exponent to p and f ∈ Lp(R), g ∈ Lp′(R). Then,∫
R
Tf(x)g(x)dz(x) = −

∫
R
f(y)Tg(y)dz(y).

1.3 The proofs

We argue here as Mateu, Orobitg, Pérez and Verdera did in [MOPV], where they proved T∗f .M2(Tf),
for T an odd higher order Riesz transform.

Let f ∈ L2(R), x ∈ R and ε > 0. We have

Tεf(x) = 1
πi

∫
|y−x|>ε

f(y)
z(y)− z(x)dz(y).

For x ∈ R and ε > 0, define
Kx,ε(y) = 1

πi

1
z(y)− z(x)χ|y−x|>ε(y),

so that
Tεf(x) =

∫
R
f(y)Kx,ε(y)dz(y).

A straightforward computation yields that Kx,ε ∈ L2(R) ∩ L∞(R) and

||Kx,ε||L2 ≤ 1√
ε
, ||Kx,ε||L∞ ≤

1
ε
.

Now let gx,ε = T (Kx,ε), so that

Tεf(x) =
∫
R
f(y)Kx,ε(y)dz(y) =

∫
R
f(y)T (T (Kx,ε))(y)dz(y)

= −
∫
R
Tf(y)T (Kx,ε)(y)dz(y) = −

∫
R
Tf(y)gx,ε(y)dz(y).

Fix N > 0 to be chosen later, and denote, for a ∈ R and r > 0,

Ia,r = (a− r, a+ r).

Also, for a function h ∈ L1
loc(R) and an interval I ⊂ R, denote

mIh = 1
|I|

∫
I

h(x)dx.
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Then, we have,

−Tεf(x) =
∫
R
Tf(y)gx,ε(y)dz(y)

=
∫
|y−x|<Nε

Tf(y)gx,ε(y)dz(y) +
∫
|y−x|>Nε

Tf(y)gx,ε(y)dz(y)

=
∫
Ix,Nε

Tf(y)[gx,ε(y)−mIx,Nε(gx,ε)]dz(y) +mIx,Nε(gx,ε)
∫
Ix,Nε

Tf(y)dz(y)

+
∫
|y−x|>Nε

Tf(y)gx,ε(y)dz(y) = I + II + III.

Let us check now that |I| . M2(Tf)(x) and |II| . M(Tf)(x). We recall first the following results,
stated in [MOPV], and whose proofs can be found in [W] and [Gr], respectively:

Lemma 1.3.1. Let φ ∈ BMO(Rn), ψ a measurable function in Rn and Q a cube in Rn. Then,

1
|Q|

∫
Q

|φ(x)−mQφ||ψ(x)|dx ≤ c||φ||BMO||ψ||L logL,Q,

where c > 0 only depends on n.

Lemma 1.3.2. There exists a positive constant c = c(n) > 0 such that for every cube Q ⊂ Rn and every
function ψ ∈ L1

loc(Rn) we have
||ψ||L logL,Q ≤ cM2ψ(x),

where M2 = M ◦M and M is the Hardy-Littlewood maximal operator.

Let us estimate |I| and |II| now. We have

|I| =

∣∣∣∣∣
∫
Ix,Nε

Tf(y)[gx,ε(y)−mIx,Nε(gx,ε)]dz(y)

∣∣∣∣∣
.
∫
Ix,Nε

|Tf(y)||gx,ε(y)−mIx,Nε(gx,ε)|dy

. |Ix,Nε|||gx,ε||BMO||Tf ||L(logL),Ix,Nε

. ε||T (Kx,ε)||BMOM
2(Tf)(x)

. ε||Kx,ε||L∞M2(Tf)(x) .M2(Tf)(x).

On the other hand,

|II| =

∣∣∣∣∣mIx,Nε(gx,ε)
∫
Ix,Nε

Tf(y)dz(y)

∣∣∣∣∣
.

1
|Ix,Nε|

∣∣∣∣∣
∫
Ix,Nε

gx,ε(y)dy

∣∣∣∣∣
∫
Ix,Nε

|Tf(y)|dy

=

∣∣∣∣∣
∫
Ix,Nε

T (Kx,ε)(y)dy

∣∣∣∣∣ 1
|Ix,Nε|

∫
Ix,Nε

|Tf(y)|dy

≤ |Ix,Nε|
1
2 ||T (Kx,ε)||L2M(Tf)(x)

. ε
1
2 ||Kx,ε||L2M(Tf)(x) .M(Tf)(x),

as claimed.

Now, since M(Tf) ≤M2(Tf), we get

|I|+ |II| .M2(Tf)(x). (1.4)
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Let us study III now. Recall that

III =
∫
|y−x|>Nε

Tf(y)gx,ε(y)dz(y) =
∫
|y−x|>Nε

Tf(y)T (Kx,ε(y))dz(y). (1.5)

An easy contour integration argument yields the following result:

Lemma 1.3.3. Fix x ∈ R and ε > 0. Then, for almost every y ∈ R with |y − x| > ε, we have

T (Kx,ε)(y) = 1
πi

1
z(y)− z(x) [B(x, ε) +Gx,ε(y)] ,

where
B(x, ε) = log |z(x+ ε)− z(x)|

|z(x− ε)− z(x)| + i
(
π + arg[z(x+ ε)− z(x)]− arg[z(x− ε)− z(x)]

)
and

Gx,ε(y) = log |z(x− ε)− z(y)|
|z(x+ ε)− z(y)| + i

(
arg[z(x− ε)− z(y)]− arg[z(x+ ε)− z(y)]

)
,

where, for a complex number w 6= 0, we consider −π2 ≤ arg(w) < 3π
2 .

Proof. Let x ∈ R, ε > 0 and y ∈ R with |y−x| > ε. We will assume that y > x (the case y < x is treated
analogously) and also that A is differentiable at y. For a set I ⊂ R, denote Γ (I) = {z(t) : t ∈ I}, and for
a complex number w 6= 0, let Log (w) = log |w|+ i arg(w). Then, we have

T (Kx,ε)(y) = 1
πi

p.v.
∫
R

Kx,ε(t)
z(t)− z(y)dz(t)

= lim
R→∞
δ→0

1
πi

∫
Γ ({t : |t−x|>ε,|t−y|>δ,|t|<R})

dw

(w − z(x))(w − z(y))

= 1
πi(z(y)− z(x)) lim

R→∞
δ→0

∫
Γ ({t : |t−x|>ε,|t−y|>δ,|t|<R})

(
1

w − z(y) −
1

w − z(x)

)
dw

= 1
πi(z(y)− z(x)) lim

R→∞
δ→0

(IR,δ + IIR,δ + IIIR,δ),

where, for sufficiently small δ > 0 and sufficiently big R > 0,

IR,δ =
∫
Γ ((−R,x−ε))

(
1

w − z(y) −
1

w − z(x)

)
dw

= Log [z(x− ε)− z(y)]− Log [z(−R)− z(y)]− Log [z(x− ε)− z(x)] + Log [z(−R)− z(x)],

IIR,δ =
∫
Γ ((x+ε,y−δ))

(
1

w − z(y) −
1

w − z(x)

)
dw

= Log [z(y − δ)− z(y)]− Log [z(x+ ε)− z(y)]− Log [z(y − δ)− z(x)] + Log [z(x+ ε)− z(x)]

and

IIIR,δ =
∫
Γ ((y+δ,R))

(
1

w − z(y) −
1

w − z(x)

)
dw

= Log [z(R)− z(y)]− Log [z(y + δ)− z(y)]− Log [z(R)− z(x)] + Log [z(y + δ)− z(x)].

Gathering the previous identities, we obtain

Re (IR,δ + IIR,δ + IIIR,δ) = log |z(x− ε)− z(y)||z(x+ ε)− z(x)|
|z(x+ ε)− z(y)||z(x− ε)− z(x)|

+ log |z(−R)− z(x)||z(R)− z(y)|
|z(−R)− z(y)||z(R)− z(x)|

+ log |z(y − δ)− z(y)||z(y + δ)− z(x)|
|z(y + δ)− z(y)||z(y − δ)− z(x)| .

(1.6)
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On the other hand,

Im (IR,δ + IIR,δ + IIIR,δ) = (arg[z(x− ε)− z(y)]− arg[z(x− ε)− z(x)]

− arg[z(x+ ε)− z(y)] + arg[z(x+ ε)− z(x)])

+ (− arg[z(−R)− z(y)] + arg[z(−R)− z(x)]

+ arg[z(R)− z(y)]− arg[z(R)− z(x)])

+ (arg[z(y − δ)− z(y)]− arg[z(y − δ)− z(x)]

− arg[z(y + δ)− z(y)] + arg[z(y + δ)− z(x)]).

(1.7)

Letting R→∞ and δ → 0 in (1.6) and (1.7), using the fact that A is differentiable at y, and adding
up the results, we obtain

lim
R→∞
δ→0

(IR,δ + IIR,δ + IIIR,δ) = Gx,ε(y) +B(x, ε),

and so the desired conclusion follows.

It is easy to check that the term B(x, ε) satisfies the following:

Lemma 1.3.4. Let x ∈ R and ε > 0. Then, the following assertions are equivalent:

1. B(x, ε) = 0.

2. Im B(x, ε) = 0.

3. The points z(x− ε), z(x) and z(x+ ε) are collinear.

On the other hand, we can prove the following decay at infinity of the term Gx,ε(y).

Lemma 1.3.5. Choose N > 1 + 4(1 + ||A′||∞). Then for |y − x| > Nε,

|Gx,ε(y)| . ε

|y − x|
.

Proof. Let

ux,ε(y) = Re Gx,ε(y) = log |z(x− ε)− z(y)|
|z(x+ ε)− z(y)|

and
vx,ε(y) = Im Gx,ε(y) = arg[z(x− ε)− z(y)]− arg[z(x+ ε)− z(y)].

Recall that, for w ∈ C, |w| < 1
2 ,

|Log (1 + w)| ≤ 2|w|,

where Log is defined as in the previous lemma.

Now, for |y − x| > Nε, we have

z(x− ε)− z(y)
z(x+ ε)− z(y) = 1 + z(x− ε)− z(x+ ε)

z(x+ ε)− z(y) ,

and ∣∣∣∣z(x− ε)− z(x+ ε)
z(x+ ε)− z(y)

∣∣∣∣ ≤ (1 + Λ1)2ε
|y − (x+ ε)| ≤

(1 + Λ1)2ε
N−1
N |y − x|

≤ (1 + Λ1)2ε
N−1
N Nε

= 2(1 + Λ1)
N − 1 ≤ 1

2 ,
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where the last inequality holds precisely because of the choice of N . Then,

|ux,ε(y)| =
∣∣∣∣log |z(x− ε)− z(y)|
|z(x+ ε)− z(y)|

∣∣∣∣ =
∣∣∣∣log

∣∣∣∣1 + z(x− ε)− z(x+ ε)
z(x+ ε)− z(y)

∣∣∣∣∣∣∣∣
≤
∣∣∣∣Log

(
1 + z(x− ε)− z(x+ ε)

z(x+ ε)− z(y)

)∣∣∣∣ ≤ 2
∣∣∣∣z(x− ε)− z(x+ ε)

z(x+ ε)− z(y)

∣∣∣∣
≤ 2 (1 + Λ1)2ε

N−1
N |y − x|

= 4N(1 + Λ1)
N − 1

ε

|y − x|
.

ε

|y − x|
.

On the other hand,

|vx,ε(y)| = |arg[z(x− ε)− z(y)]− arg[z(x+ ε)− z(y)]|

≤ |Log [z(x− ε)− z(y)]− Log [z(x+ ε)− z(y)]|

=

∣∣∣∣∣
∫
Γ ((x−ε,x+ε))

dz

z − z(y)

∣∣∣∣∣ ≤ H1(Γ ((x− ε, x+ ε))) max
|t−x|≤ε

1
|z(t)− z(y)|

≤ 2(1 + Λ1)ε
|y − x|

.
ε

|y − x|
.

Putting all together, the lemma follows.

As a result, going back to (1.5), and applying Lemma 1.3.3, we obtain

III = 1
πi

∫
|y−x|>Nε

Tf(y) 1
z(y)− z(x) [B(x, ε) +Gx,ε(y)] dz(y)

= 1
πi

[
B(x, ε)

∫
|y−x|>Nε

Tf(y) dz(y)
z(y)− z(x) +

∫
|y−x|>Nε

Tf(y)Gx,ε(y)dz(y)
z(y)− z(x)

]
= B(x, ε)TNε(Tf)(x) + IV.

(1.8)

Now, fixing N > 1 + 4(1 + ||A′||∞), and applying Lemma 1.3.5, we obtain

|IV| =

∣∣∣∣∣ 1
πi

∫
|y−x|>Nε

Tf(y)Gx,ε(y)dz(y)
z(y)− z(x)

∣∣∣∣∣
. ε

∫
|y−x|>Nε

|Tf(y)| dy

|y − x|2

= ε

∞∑
k=0

∫
2kNε<|y−x|<2k+1Nε

|Tf(y)| dy

|y − x|2

≤ ε
∞∑
k=0

1
(2kNε)2

∫
2kNε<|y−x|<2k+1Nε

|Tf(y)|dy

≤ ε
∞∑
k=0

1
2k−2Nε

1
2 · 2k+1Nε

∫
|y−x|<2k+1Nε

≤ ε

( ∞∑
k=0

1
2k−2Nε

)
M(Tf)(x) .M(Tf)(x) ≤M2(Tf)(x).

(1.9)

As a result, gathering the estimates in (1.4), (1.8) and (1.9), we have the following:

Lemma 1.3.6. For all f ∈ L2(R), all x ∈ R and all ε > 0,

|Tεf(x) +B(x, ε)TNε(Tf)(x)| .M2(Tf)(x).
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1.3.1 Proof of Theorem 1.1.1

Fix the Lipschitz function A(x) = |x|. In this case,

B(0, ε) = log |z(ε)− z(0)|
|z(−ε)− z(0)| + i

(
π + arg[z(ε)− z(0)]− arg[z(−ε)− z(0)]

)
= πi

2 .

Assume that the inequality
T∗f(x) .Mn(Tf)(x) for all f ∈ L2(R)

were true for some n ≥ 2. Then, applying Lemma 1.3.6, this would yield

|B(x, ε)TNε(Tf)(x)| .Mn(Tf)(x)

for all f ∈ L2(R). Now, taking into account that T 2 = Id, and setting x = 0, the latter implies

|TNεf(0)| .Mnf(0), (1.10)

for all f ∈ L2(R), and this is false for f = χ[0,1]. Indeed, Mnf(0) ≤ 1, while for 0 < Nε < 1,

TNεf(0) = 1
πi

∫
|y|>Nε

χ[0,1](y) dz(y)
z(y)− z(0)

= 1
πi

∫ 1

Nε

1 + i

y + iy
dy

= 1
πi

∫ 1

Nε

dy

y
= − 1

πi
log(Nε),

so
lim
ε→0
|TNεf(0)| =∞,

yielding a contradiction with (1.10).

This counterexample can be generalized in the following way: suppose Γ has an angle at a point z(x),
x ∈ R, meaning with this that A′ has a jump discontinuity at x, i.e.,

lim
h→0+

A(x+ h)−A(x)
h

= A′+(x) 6= A′−(x) = lim
h→0−

A(x+ h)−A(x)
h

.

A straightforward computation shows now that

lim
ε→0

Im B(x, ε) = arctan(A′+(x))− arctan(A′−(x)) 6= 0,

and so B(x, ε) stays away from 0 as ε→ 0. The same argument that was used above, substituting χ[0,1]

by χ[x,x+1], will show that the inequality

T∗f(x) .Mn(Tf)(x)

cannot hold.

1.3.2 Proof of theorem 1.1.2

We will study now the term TNε(Tf)(x) to give more light to this subject. This will lead us to prove
that, when A has compact support, the inequality

T∗f(x) .Mn(Tf)(x)

can only hold when A = 0, i.e., when Γ is a straight line, which is a case already known since T is,
essentially, the Hilbert transform.
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Assume that A has compact support, say supp(A) ⊂ [−L,L], L > 0. Let f ∈ L2(R), and write

g = (Tf)χ[−2L,2L], h = (Tf)χR\[−2L,2L],

so that Tf = g + h and
TNε(Tf)(x) = TNεg(x) + TNεh(x).

Fix x ∈ [−L,L]. Observe that

iπTNεg(x) =
∫
|y−x|>Nε

g(y)
z(y)− z(x)dz(y)

=
∞∑
k=0

∫
2kNε<|y−x|<2k+1Nε

g(y)
z(y)− z(x)dz(y).

Now, taking into account that supp(g) ⊂ [−2L, 2L], one gets that, when 2kNε > 4L,∫
2kNε<|y−x|<2k+1Nε

g(y)
z(y)− z(x)dz(y) = 0.

This yields that only the first ML,ε terms of the sum above do not vanish, where

ML,ε =
⌈

log
( 4L
Nε

)
log 2

⌉

(by dte we denote the smallest integer n such that t ≤ n).

Furthermore, for each k ≥ 0,∣∣∣∣∣
∫

2kNε<|y−x|<2k+1Nε

g(y)
z(y)− z(x)dz(y)

∣∣∣∣∣ .
∫

2kNε<|y−x|<2k+1Nε

|g(y)|
|y − x|

dy

.
1

2kNε

∫
|y−x|<2k+1Nε

|g(y)|dy

.Mg(x).

Putting all together, and taking into account that Mg ≤M(Tf), we obtain

|TNεg(x)| .
(

1 +

∣∣∣∣∣ log
( 4L
Nε

)
log 2

∣∣∣∣∣
)
M(Tf)(x).

On the other hand, since A = 0 on supp(h), we get

iπTNεh(x) =
∫
|y−x|>Nε

h(y)
z(y)− z(x)dz(y) =

∫
|y−x|>Nε

h(y)
y − z(x)dy.

Now, for |y − x| > Nε,

1
y − z(x) = 1

y − x
+
(

1
y − z(x) −

1
y − x

)
:= 1

y − x
+D(x, y),

and so
iπTNεh(x) =

∫
|y−x|>Nε

h(y)
y − x

dy +
∫
|y−x|>Nε

h(y)D(x, y)dy

:= HNεh(x) +
∫
|y−x|>Nε

h(y)D(x, y)dy.
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Observe now that, for x 6= y,

|D(x, y)| =
∣∣∣∣ 1
y − z(x) −

1
y − x

∣∣∣∣ =
∣∣∣∣ iA(x)
(y − x)(y − z(x))

∣∣∣∣ ≤ |A(x)|
|y − x|2

.

Then, taking into account that h = 0 on [−2L, 2L], and recalling that |x| ≤ L, one gets∣∣∣∣∣
∫
|y−x|>Nε

h(y)D(x, y)dy

∣∣∣∣∣ ≤ |A(x)|
∫
|y−x|>L

|h(y)|
|y − x|2

dy.

Splitting the last integral into the regions {2kL < |y − x| ≤ 2k+1L}, and using the fact that M(h) ≤
M(Tf), we get ∣∣∣∣∣

∫
|y−x|>Nε

h(y)D(x, y)dy

∣∣∣∣∣ ≤ 8
L
|A(x)|M(Tf)(x).

The previous discussion shows that

TNε(Tf)(x) = 1
πi
HNεh(x) + V,

where
|V| ≤ c(x, ε,N,L)M(Tf)(x)

and 0 < c(x, ε,N,L) <∞. Recall now that, by Lemma 1.3.6, we have

|Tεf(x) +B(x, ε)TNε(Tf)(x)| .M2(Tf)(x).

Then, it follows that ∣∣∣∣Tεf(x) + 1
πi
B(x, ε)HNεh(x)

∣∣∣∣ ≤ c′(x, ε,N,L)M2(Tf)(x),

where 0 < c′(x, ε,N,L) <∞.

Assume A is not identically null, and suppose that the inequality T∗f(x) . Mn(Tf)(x) holds.
Applying Lemma 1.3.4, we may pick x ∈ [−L,L] and ε > 0 with

−L < x−Nε < x < x+Nε < L

and such that B(x, ε) 6= 0. Then, it follows that

|B(x, ε)||HNε((Tf)χR\[−2L,2L])(x)| ≤ c′′(x, ε,N,L)Mn(Tf)(x),

with 0 < c′′(x, ε,N,L) <∞.

Now, for each k = 3, 4 . . . , pick fk ∈ L2(R) such that Tfk = χ[0,kL], and so (Tfk)χR\[−2L,2L] =
χ(2L,kL]. Applying the previous inequality for each fk, and using the fact that Mn(Tfk) ≤ 1, we obtain

|B(x, ε)||HNε(χ(2L,kL])(x)| ≤ c′′(x, ε,N,L).

Finally, observe that

HNε(χ(2L,kL])(x) =
∫ kL

2L

dy

y − x
= log kL− x2L− x ,

and so
|B(x, ε)| log kL− x2L− x ≤ c

′′(x, ε,N,L),

yielding a contradiction, since the left hand side tends to ∞ as k →∞.
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1.4 Further results

1.4.1 Another version of the truncated operators

Let us consider now another version of the truncated operators. Define, for ε > 0 and x ∈ R,

T̃εf(x) = 1
πi

∫
|z(y)−z(x)|>ε

f(y)
z(y)− z(x)dz(y)

and the associated maximal operator T̃∗f(x) = supε>0 |T̃εf(x)|. This is a truncation over balls of radius
ε, while the one for Tε was a truncation over strips of width 2ε.

We consider now the same problem as before: that of giving an estimate of the form

T̃∗f(x) .Mn(Tf)(x),

and the same arguments employed before will work here. Indeed, if we define l(x, ε) = z(x−), r(x, ε) =
z(x+), where

x− = sup{t < x : |z(t)− z(x)| = ε}

and
x+ = inf{t > x : |z(t)− z(x)| = ε},

then l(x, ε) and r(x, ε) will play the same role that z(x− ε) and z(x+ ε) played before. Precisely, l(x, ε)
is the last point of Γ to the left of z(x) that belongs to the circle centered at z(x) with radius ε, and
r(x, ε) is the analogue of this one at the right.

Since the quantities |y − x| and |z(y) − z(x)| are comparable, one can repeat the arguments used
before to get an analogous of Lemma 1.3.6, which will be stated now as

|T̃εf(x) + B̃(x, ε)T̃Nεf(x)| .M2(Tf)(x),

where
B̃(x, ε) = log |r(x, ε)− z(x)|

|l(x, ε)− z(x)| + i
(
π + arg[r(x, ε)− z(x)]− arg[l(x, ε)− z(x)]

)
.

As in Lemma 1.3.4, B̃(x, ε) = 0 if, and only if, l(x, ε), z(x) and r(x, ε) are collinear.

With this tools at hand, one can prove the following results, which are the analogs to Theorems 1.1.1
and 1.1.2 in this setting.

Theorem 1.4.1. Consider the Lipschitz function A(x) = |x|. Then, there exists f ∈ L2(R) such that
for all c > 0 and all n ≥ 1, there exists ε > 0 such that

|T̃εf(0)| > cMn(Tf)(0).

To prove this, one can mimic the argument in Section 1.3.1, since here we have again B̃(0, ε) = iπ2 .

Theorem 1.4.2. Let A be a Lipschitz function with compact support. Suppose A is not identically null,
or, equivalently, that Γ is not a straight line. Then, there exists x ∈ R such that for all c > 0 there exists
f ∈ L2(R) with

T̃∗f(x) > cT̃n(Tf)(x)

for all n ≥ 1.

Again, the argument in Section 1.3.2 adapts trivially to this case, by just taking into account that,
if A is not identically null, one can find x ∈ R and ε > 0 as small as needed such that l(x, ε), z(x) and
r(x, ε) are not collinear.
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1.4.2 The case of Jordan curves

Let Γ be a Jordan curve in the plane, parametrized by a periodic function γ : R→ C. We will pose, for
the moment, the following assumptions on γ:

• γ is of class C1.

• γ is L-periodic, γ([0, L)) = Γ .

• γ is injective on [0, L).

• |γ′(t)| = 1 for all t.

• ω is the modulus of continuity of γ′ (this means that ω is a non-negative and increasing continuous
function in [0,∞) with ω(0) = 0 and such that |γ′(s)− γ′(t)| ≤ ω(|s− t|) for all s, t ∈ R).

We denote by µ the arc-length measure on Γ . We have, for a Borel set I ⊂ [0, L),

µ(γ(I)) =
∫
I

|γ′(t)|dt = |I|.

For a point z ∈ Γ and r > 0, denote

Γz,r = γ({t : |t− x| < r}),

where z = γ(x), x ∈ R.

The Hardy-Littlewood maximal function of a function f ∈ L1(Γ, µ) is defined, for z ∈ Γ , by

Mf(z) = sup
r>0

1
µ(Γz,r)

∫
Γz,r

|f |dµ = sup
r>0

1
2r

∫
Γz,r

|f |dµ

The Cauchy transform of a function f ∈ L2(Γ, dµ) is defined, for z ∈ Γ , as the principal value integral

Tf(z) = lim
ε→0

Tεf(z),

where
Tεf(z) = 1

πi

∫
Γ\Γz,ε

f(ξ)
ξ − z

dξ.

We consider as well the maximal operator associated with T ,

T∗f(z) = sup
ε>0
|Tεf(z)|.

In this section we will prove that, if γ is regular enough (we will specify later how much regularity is
needed), then

T∗f(z) .M2(Tf)(z) for all f ∈ L2(Γ, µ).

To do so, we will follow, essentially, the same steps we have taken in Section 1.3 for the case of Lipschitz
graphs. Most of the arguments there will be valid in this setting, and so we will not enter into many
details. First of all, we remark that the analogs of Lemmas 1.2.1 and 1.2.2 hold now:

Lemma 1.4.1. If f ∈ L2(Γ, µ), T 2f = f .

Lemma 1.4.2. If f, g ∈ L2(Γ, µ), then∫
Γ

Tf(z)g(z)dz = −
∫
Γ

f(z)Tg(z)dz.
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We argue now as in Section 1.3. Fix f ∈ L2(Γ, µ), z ∈ Γ and ε > 0. Then, we have

Tεf(z) = 1
πi

∫
Γ\Γz,ε

f(ξ)
ξ − z

dξ =
∫
Γ

f(ξ)Kz,ε(ξ)dξ,

where
Kz,ε(ξ) = 1

πi(ξ − z)χΓ\Γz,ε(ξ).

It is easy to check that Kz,ε ∈ L2(Γ, µ) ∩ L∞(Γ, µ), and moreover

||Kz,ε||L2 .
1√
ε
, ||Kz,ε||L∞ .

1
ε
.

Since Kz,ε ∈ L2(Γ, µ), we have Kz,ε = T 2(Kz,ε) = T (gz,ε), for gz,ε = T (Kz,ε). Then, we get

Tεf(z) =
∫
Γ

f(ξ)Kz,ε(ξ)dξ =
∫
Γ

f(ξ)T (gz,ε)(ξ)dξ = −
∫
Γ

Tf(ξ)gz,ε(ξ)dξ,

and, as a consequence,

−Tεf(z) =
∫
Γ

Tf(ξ)gz,ε(ξ)dξ

=
∫
Γz,2ε

Tf(ξ)gz,ε(ξ)dξ +
∫
Γ\Γz,2ε

Tf(ξ)gz,ε(ξ)dξ

=
∫
Γz,2ε

Tf(ξ)[gz,ε(ξ)−mΓz,2ε(gz,ε)]dξ +mΓz,2ε(gz,ε)
∫
Γz,2ε

Tf(ξ)dξ +
∫
Γ\Γz,2ε

Tf(ξ)gz,ε(ξ)dξ

= I + II + III,

where, for a function h ∈ L1(Γ, µ) and a Borel set E ⊂ Γ with µ(E) > 0,

mEh = 1
µ(E)

∫
E

hdµ.

Arguing essentially as in Section 1.3, one can prove that |I| . M2(Tf)(z) and |II| . M(Tf)(z). Let
us study III now.

III =
∫
Γ\Γz,2ε

Tf(ξ)gz,ε(ξ)dξ =
∫
Γ\Γz,2ε

Tf(ξ)T (Kz,ε)(ξ)dξ.

A similar argument to the one used in Lemma 1.3.3 yields the following result.

Lemma 1.4.3. For ξ ∈ Γ \ Γz,2ε,

T (Kz,ε)(ξ) = 1
πi

1
z − ξ

[B(z, ε) +Gz,ε(ξ)],

where
Gz,ε(ξ) .

ε

|z − ξ|

and
|B(z, ε)| . ω(2ε).

Remark: The expressions of Gz,ε(ξ) and B(z, ε) are totally analogous to the ones for Gx,ε(y) and
B(x, ε) in Lemma 1.3.3, for suitably chosen branches of arg(w − z) and arg(w − ξ). The estimate for
Gz,ε is proved as in Lemma 1.3.5, while the estimate for B(z, ε) follows from an application of the Mean
Value Theorem.
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From this, it follows that

III =
∫
Γ\Γz,2ε

Tf(ξ)T (Kz,ε)(ξ)dξ

= B(z, ε) 1
πi

∫
Γ\Γz,2ε

Tf(ξ) 1
z − ξ

dξ + 1
πi

∫
Γ\Γz,2ε

Tf(ξ)Gz,ε(ξ)
z − ξ

dξ

= B(z, ε)T2ε(Tf)(z) + 1
πi

∫
Γ\Γz,2ε

Tf(ξ)Gz,ε(ξ)
z − ξ

dξ

= III1 + III2.

On the one hand,
|III2| ≤

1
π

∫
Γ\Γz,2ε

|Tf(ξ)| |Gz,ε(ξ)|
|z − ξ|

dµ(ξ)

. ε

∫
Γ\Γz,2ε

|Tf(ξ)|
|z − ξ|2

dµ(ξ) .M(Tf)(z)

where the last inequality is shown by splitting the integral over the sets

Γz,2k+1ε \ Γz,2kε, k = 1, 2, 3 . . .

On the other hand

|III1| = |B(z, ε)| 1
π

∫
Γ\Γz,2ε

|Tf(ξ)|
|ξ − z|

dµ(ξ) . ω(2ε)
∫
Γ\Γz,2ε

|Tf(ξ)|
|z − ξ|

dµ(ξ).

To estimate the last integral, we also split it over the sets

Γz,2k+1ε \ Γz,2kε, k = 1, 2, 3 . . .

Notice that, for k big enough, Γz,2kε = Γ , and so Γz,2k+1ε \Γz,2kε = ∅. Precisely, this holds for all k such
that 2kε > 2L, which is equivalent to

k >
log 2L

ε

log 2 .

As a result, if we denote by k0(ε) the smallest integer k that satisfies the previous inequality, we have∫
Γ\Γz,2ε

|Tf(ξ)|
|z − ξ|

dµ(ξ) =
k0(ε)∑
k=1

∫
Γ
z,2k+1ε\Γz,2kε

|Tf(ξ)|
|z − ξ|

dµ(ξ)

.
k0(ε)∑
k=1

1
2kε

∫
Γ
z,2k+1ε\Γz,2kε

|Tf(ξ)|dµ(ξ)

≤ 4
k0(ε)∑
k=1

1
2 · 2kε

∫
Γ
z,2k+1ε

|Tf(ξ)|dµ(ξ)

≤ 4k0(ε)M(Tf)(z).

As a result,

|III1| . ω(2ε)k0(ε)M(Tf)(z) . ω(2ε)
∣∣∣∣log 2L

ε

∣∣∣∣M(Tf)(z).

Gathering the estimates for |I|, |II|, |III1| and |III2|, we have

|Tεf(z)| .M2(Tf)(z) + ω(2ε)
∣∣∣∣log 2L

ε

∣∣∣∣M(Tf)(z).

From this, it follows that, if ω is such that ω(2ε)| log ε| stays bounded as ε→ 0, then we have

|Tεf(z)| .M2(Tf)(z).

Thus, we have proved the following result:
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Theorem 1.4.3. With the notation established in this section, suppose γ′ has a modulus of continuity
ω such that ω(ε)| log ε| stays bounded as ε→ 0 (this happens, for example, if γ ∈ C1+δ for some δ > 0).
Then, there exists a constant c > 0 such that, for all f ∈ L2(Γ, dµ) and all z ∈ Γ ,

T∗f(z) ≤ cM2(Tf)(z).

We want to remark, finally, that a totally analogous result holds if one considers the truncated
operators given by

T̃εf(z) = 1
πi

∫
Γ\B(z,ε)

f(ξ)
ξ − z

dξ.
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Chapter 2

Geometric conditions for the
L2-boundedness of singular integral
operators with odd kernels with
respect to measures with polynomial
growth in Rd

2.1 Introduction

In this chapter, we study L2(µ)-boundedness of singular integral operators with sufficiently smooth
convolution-type kernels. More precisely, we will consider kernels of the form k(x, y) = K(x− y), where
K : Rd \ {0} → R is an odd and C2 function that satisfies

|∇jK(x)| ≤ C(j)
|x|n+j for all x 6= 0 and j ∈ {0, 1, 2}.

It is easy to check that the inequalities above imply that k is a Calderón-Zygmund kernel with δ = 1 in
(1.1). We will denote by Kn(Rd) the class of all these kernels.

In [T3], Tolsa proved the following result1:

Theorem D. Let µ be a Radon measure in C without atoms. If the Cauchy transform Cµ is bounded in
L2(µ), then all 1-dimensional singular integral operators Tµ with kernels in K1(C) are also bounded in
L2(µ).

In order to prove this result, Tolsa relied on a suitable corona decomposition for measures with linear
growth and finite curvature2 and split the operator T into a sum of different operators KR, each of which
are associated to a tree of the corona decomposition. The operators KR are bounded because on each
tree the measure µ can be approximated by arc length on an Ahlfors-David regular curve and, moreover,
the operators KR behave in a quasiorthogonal way.

1Tolsa’s result in [T3] is actually stated for operators with smoother kernels than the ones we consider here. However,
after the publication of [T5], it is obvious that it can be generalized to obtain Theorem D

2We will not enter into details about curvature of measures and its relationship with the boundedness of the Cauchy
transform here, but an interested reader is encouraged to read [T6, Chapters 3 and 7] for further information on this issue.
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However, as that corona construction relied heavily on the relationship between the Cauchy transform
and curvatures of measures, it could not be easily generalized to higher dimensions. Using a new corona
decomposition that involves the β-numbers of Jones, David and Semmes instead of curvature and which
is valid for all dimensions, Azzam and Tolsa [AT] have recently proved the following:

Theorem E. Let µ be a finite Radon measure with compact support in C with linear growth. Then, for
all ε > 0,

||Cεµ||2L2(µ) . ||µ||+
∫∫ ∞

0
βnµ,2(x, r)2θ1

µ(x, r)dr
r
dµ(x).

Some notions need to be defined here: first of all, a Borel measure µ in Rd is said to have polynomial
growth of degree n if there is a constant c0 ≥ 0 such that µ[B(x, r)] ≤ c0r

n for all x ∈ Rd and all r > 0
(when n = 1, µ is said to have linear growth). µ is said to be n-AD-regular (or just AD-regular or
Ahlfors-David-regular) if there is a constant c0 > 0 such that

c−1
0 rn ≤ µ[B(x, r)] ≤ c0r

n for all x ∈ supp(µ) and all 0 < r ≤ diam(supp(µ)).

Secondly, given a ball B(x, r) ⊂ Rd, we define

θnµ [B(x, r)] = θnµ(x, r) = µ(B(x, r))
rn

.

Finally, for 1 ≤ p <∞, the βnµ,p-coefficient of a ball B with radius r(B) is defined by

βnµ,p(B) = inf
L

(
1

r(B)n

∫
B

(
dist(y, L)
r(B)

)p
dµ(y)

) 1
p

,

where the infimum is taken over all n-planes L ⊂ Rd.

To understand the importance of these β-coefficients, recall that a set E ⊂ Rd is called n-rectifiable
if there are Lipschitz maps fi : Rn → Rd, i = 1, 2, . . ., such that

Hn
(
E \

⋃
i

fi(Rn)
)

= 0, (2.1)

where Hn stands for the n-dimensional Hausdorff measure. Also, one says that a Radon measure µ on Rd

is n-rectifiable if µ vanishes out of an n-rectifiable set E ⊂ Rd and moreover µ is absolutely continuous
with respect to HnbE .

With these definitions at hand, we remark now that these βnµ,p-coefficients are a generalization of the
β-numbers introduced by Jones in [J], where he used them to characterize compact subsets of the plane
that are contained in a rectifiable set.

Recall as well that a measure µ in Rd is said to be uniformly n-rectifiable if it is n-AD-regular and
there exist θ,M > 0 such that for all x ∈ supp(µ) and all r > 0 there is a Lipschitz mapping g from the
ball Bn(0, r) in Rn to Rd with Lip(g) ≤M such that

µ(B(x, r) ∩ g(Bn(0, r))) ≥ θrn.

We will refer to the constants M, θ as the UR (uniform rectifiability) constants of µ. In the particular case
when µ = HnbE for some set E ⊂ Rd, we say E is uniformly is n-rectifiable if µ is uniformly n-rectifiable
and we call the UR constants of µ, simply, the UR constants of E.

Another important application of the β-coefficients is, as David and Semmes proved in [DS1], that an
n-AD-regular measure µ is uniformly n-rectifiable if, and only if, there is some constant c > 0 such that,
for every ball B with centre on supp(µ),∫

B

∫ r(B)

0
βnµ,2(x, r)2 dr

r
dµ(x) ≤ cµ(B). (2.2)
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Very recently, Azzam and Tolsa (see [AT] and [T7]) have shown that a positive and finite Borel
measure µ in Rd with

0 < lim sup
r→0

θnµ(x, r) <∞ for µ− a.e. x ∈ Rd

is n-rectifiable if, and only if, ∫ 1

0
βµ,2(x, r)2 dr

r
<∞ (2.3)

for µ-a.e. x ∈ Rd.

Using the corona decomposition from [AT], we prove the following result:

Theorem 2.1.1. Let µ be a finite Radon measure in Rd with polynomial growth of degree n and such
that, for all balls B ⊂ Rd with radius r(B),∫

B

∫ r(B)

0
βnµ,2(x, r)2θnµ(x, r)dr

r
dµ(x) . µ(B). (2.4)

Then, all Calderón-Zygmund operators Tµ with kernels in Kn(Rd) are bounded in L2(µ).

Notice that (2.4) is a quantitative version of (2.3), just like (2.2), with no assumptions on the AD-
regularity of µ. A trivial example of a measure µ that is not n-AD-regular and satisfies (2.4) is the area
measure on a square (with d = 2 and n = 1). Of course, the most interesting examples with regard to
this result will arise from measures that have some n-dimensional nature (e.g., measures supported on
sets with Hausdorff dimension equal to n).

When n = d − 1, the previous result can be applied to get an interesting estimate for the Lipschitz
harmonic capacity. Recall that the Lipschitz harmonic capacity of a compact set E ⊂ Rd is defined by

κ(E) = sup |〈∆ϕ, 1〉|,

where the supremum is taken over all Lipschitz functions ϕ : Rd → R that are harmonic in Rd \ E and
satisfy ||∇ϕ||∞ ≤ 1. Here 〈∆ϕ, 1〉 denotes the action of the compactly supported distributional Laplacian
∆ϕ on the function 1. This notion was introduced by Paramonov [Pa] to study the problem of C1 harmonic
approximation on compact subsets of Rd and, as it was proved by Mattila and Paramonov in [MP], serves
to characterize removable sets for Lipschitz harmonic functions as those sets E with κ(E) = 0. Later,
Volberg [V] proved that

κ(E) ≈ sup{µ(E) : µ ∈ Σn(E), ||Rnµ||L2(µ)→L2(µ) ≤ 1},

where Σn(E) stands for the subset of the positive measures µ supported on E such that µ[B(x, r)] ≤ rn

for all x, r and Rnµ is the n-dimensional Riesz transform with respect to µ. Using this comparability and
Theorem 2.1.1, we obtain the following:

Corollary 2.1.1. Let E be a compact set in Rn+1. Then,

κ(E) & supµ(E), (2.5)

where the supremum is taken over all positive Borel measures µ supported on E such that

sup
x∈Rn+1,R>0

{
θnµ(x,R) +

∫ ∞
0

βµ,2(x, r)2θnµ(x, r)dr
r

}
≤ 1. (2.6)

A very interesting problem would be to show that, in fact, & may be substituted by ≈ in (2.5), as an
analog to the comparabilty between the analytic capacity γ and the capacity γ+ obtained by Tolsa in [T2].
This would serve to characterize removable sets for Lipschitz harmonic functions in a metric-geometric
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way and also to prove the bi-Lipschitz invariance of Lipschitz harmonic capacity, which is still unknown.
Indeed, whenever a measure µ satisfies (2.6), it is clear that it also satisfies (2.4) and then, arguing as in
Section 8 of [T4], one can prove that its image measure σ = ϕ#µ under a bi-Lipschitz map ϕ satisfies

σ(B) ≤ Cϕr(B)n

and ∫
B

∫ r(B)

0
βnσ,2(x, r)2θnσ(x, r)dr

r
dσ(x) . Cϕσ(B),

for all balls B of radius r(B), where Cϕ is a positive constant only depending on the bi-Lipschitz constant
of ϕ. Then, using Chebyshev’s inequality, one can prove that there exists an appropriate restriction τ of
σ with ||τ || ≈ ||σ|| and such that

sup
x∈Rn+1,R>0

{
θnτ (x,R) +

∫ ∞
0

βτ,2(x, r)2θnτ (x, r)dr
r

}
≤ Cϕ.

It is worth remarking that Azzam and Tolsa were able to obtain a comparability like the one we have
described for analytic capacity in [AT]:

Theorem F. Let E ⊂ C be compact. Then,

γ(E) ≈ supµ(E),

where the supremum is taken over all Borel measures µ in C such that

sup
x∈Rn+1,R>0

{
θ1
µ(x,R) +

∫ ∞
0

βµ,2(x, r)2θ1
µ(x, r)dr

r

}
≤ 1.

2.2 Preliminaries

2.2.1 A useful estimate

Let µ be a positive Radon measure in Rd such that µ(B(x, r)) ≤ c0r
n for all x ∈ Rd and all r > 0. Then,

for all x ∈ Rd and all r > 0, ∫
|x−y|>r

dµ(y)
|x− y|n+1 ≤

c0

r
. (2.7)

This estimate, that can be easily proved by splitting the domain of integration into annuli {y ∈ Rd : 2kr <
|y − x| ≤ 2k+1r}, k ≥ 0, is commonly used in Calderón-Zygmund theory, and we will also make use of it
several times in this paper.

2.2.2 Notation

• If B is a ball in Rd, we denote its radius by r(B). Given λ > 0, the ball which is concentric with
B and has radius λr(B) is denoted by λB.

• If µ is a Radon measure in Rd and A ⊂ Rd, the restriction of µ to A is denoted µbA or, simply, µA,
and it is defined by

µbA(E) = µ(E ∩A).
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2.2.3 Suppressed operators

In this section, we recall the definition and most important properties of the so-called suppressed operators,
introduced by Nazarov, Treil and Volberg in [NTV], and that may be thought of as regular truncations
of a singular integral operator. All definitions and results in this section can be found in [V].

Let k be an n-dimensional antisymmetric Calderón-Zygmund kernel in Rd. Given a non-negative and
1-Lipschitz function Φ : Rd → R, we define

kΦ(x, y) = k(x, y) 1
1 + k(x, y)2Φ(x)nΦ(y)n .

Then, kΦ is also an antisymmetric Calderón-Zygmund kernel, whose Calderón-Zygmund constants do
not depend on Φ but only on those of k, such that

1. kΦ(x, y) = k(x, y) if Φ(x)Φ(y) = 0.

2. |kΦ(x, y)| ≤ c(n) min
{

1
Φ(x)n ,

1
Φ(y)n

}
.

We denote by TΦ the integral operator associated to the kernel kΦ, that is, if ν is a signed Borel
measure in Rd and x ∈ Rd,

TΦν(x) =
∫
kΦ(x, y)dν(y)

whenever the integral makes sense. Naturally, we can also define the associated truncated operators

TΦ,εν(x) =
∫
|x−y|>ε

kΦ(x, y)dν(y)

and the maximal operator
TΦ,∗ν(x) = sup

ε>0
|TΦ,εν(x)|.

We also introduce the Hardy-Littlewood-like maximal operator associated to Φ

Mr
Φν(x) = sup

r≥Φ(x)

|ν|[B(x, r)]
rn

.

As usual, if σ is any fixed positive Borel measure in Rd, we can make these operators act on measures
of the form fσ. To simplify notation, we denote, in such a case,

Tσ,Φf = TΦ(fσ), Tσ,Φ,εf = TΦ,ε(fσ), Mr
σ,Φf = Mr

Φ(fσ).

Lemma A. Let ν be a signed and finite Borel measure in Rd and x ∈ Rd.

1. If ε > Φ(x),
|TΦ,εν(x)− Tεν(x)| .Mr

Φν(x).

2. If ε ≤ Φ(x),
|TΦ,εν(x)− TΦ,Φ(x)ν(x)| .Mr

Φν(x).

Finally, we state a Cotlar-type inequality that will be especially useful when dealing with suppressed
operators TΦ. To do so, we introduce a couple more of maximal operators associated to any positive
Radon measure σ in Rd: for f ∈ L1

loc(σ) and x ∈ Rd,

M̃σf(x) = sup
r>0

1
σ[B(x, 3r)]

∫
B(x,r)

|f |dσ, M̃σ, 3
2
f(x) = sup

r>0

(
1

σ[B(x, 3r)]

∫
B(x,r)

|f | 32dσ
) 2

3

.
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Theorem G. Let σ be a positive Radon measure in Rd, and let, for x ∈ Rd,

R(x) = sup{r > 0: σ[B(x, r)] > C0r
n},

where C0 > 0 is some fixed constant. Let S be a singular integral operator with Calderón-Zygmund kernel
s, with

|s(x, y)| . min
{

1
R(x)n ,

1
R(y)n

}
.

and such that Sσ is bounded in L2(σ). Then, for all f ∈ L1
loc(σ) and all x ∈ Rd,

S∗(fσ)(x) . M̃σ(S(fσ))(x) + M̃σ, 3
2
f(x).

2.3 The dyadic lattice of cells with small boundaries

We will use the dyadic lattice of cells with small boundaries constructed by David and Mattila in [DM,
Theorem 3.2]. The properties of this dyadic lattice are summarized in the next lemma.

Lemma B (David, Mattila). Let µ be a Radon measure on Rd, E = supp(µ), and consider two constants
K0 > 1 and A0 > 5000K0. Then, there exists a sequence {Dk}∞k=0 of families of Borel subsets of E with
the following properties:

• For each integer k ≥ 0, Dk is a partition of E, that is, the sets Q ∈ Dk are pairwise disjoint and⋃
Q∈Dk

Q = E.

• If k, l are integers, 0 ≤ k < l, Q ∈ Dk and R ∈ Dl, then either R ⊂ Q or Q ∩R = ∅.

• The general position of the cells Q can be described as follows: for each k ≥ 0 and each cell Q ∈ Dk,
there is a ball B(Q) = B(zQ, r(Q)) such that

zQ ∈ E, A−k0 ≤ r(Q) ≤ K0 A
−k
0 , E ∩B(Q) ⊂ Q ⊂ E ∩ 28B(Q),

where the balls 5B(Q), Q ∈ Dk, are pairwise disjoint.

• The cells Q ∈ Dk have small boundaries, that is, for each Q ∈ Dk and each integer l ≥ 0, set

Next
l (Q) = {x ∈ E \Q : dist(x,Q) < A−k−l0 },

N int
l (Q) = {x ∈ Q : dist(x,E \Q) < A−k−l0 },

and
Nl(Q) = Next

l (Q) ∪N int
l (Q).

Then
µ(Nl(Q)) ≤ (C−1K−3d−1

0 A0)−l µ(90B(Q)). (2.8)

• Denote by Ddbk the family of cells Q ∈ Dk for which

µ(100B(Q)) ≤ K0 µ(B(Q)). (2.9)

Then, for all Q ∈ Dk \ Ddbk , we have that r(Q) = A−k0 and µ[100B(Q)] ≤ K−l0 µ[100l+1B(Q)] for
all l ≥ 1 such that 100l ≤ K0.
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We use the notation D =
⋃
k≥0Dk. For Q ∈ D, we set D(Q) = {P ∈ D : P ⊂ Q}.

Remark 1. Any two disjoint cells Q,Q′ ∈ D satisfy 1
2B(Q)∩ 1

2B(Q′) = ∅. This holds with 1
2 replaced by

5 in the statements in the lemma above in case that Q,Q′ belong to the same generation Dk. If Q ∈ Dj
and Q′ ∈ Dk with j 6= k, this follows easily too. Indeed, assume j < k, and suppose 1

2B(Q)∩ 1
2B(Q′) 6= ∅.

Since r(Q) << r(Q′) (by choosing A0 to be big enough in terms of K0), this implies that B(Q′) ⊂ B(Q),
and so

B(Q′) ∩ E ⊂ B(Q) ∩ E ⊂ Q,

which implies that Q′ ∩Q 6= ∅ and gives a contradiction.

Given Q ∈ Dk, we denote J(Q) = k. We set `(Q) = 56K0 A
−k
0 = `k and we call it the side length of

Q. Note that
1
28 K

−1
0 `(Q) ≤ diam(Q) ≤ `(Q).

Observe that r(Q) ≈ diam(Q) ≈ `(Q). In addition, we call zQ the center of Q, and we call the cell
Q′ ∈ Dk−1 such that Q′ ⊃ Q the parent of Q. We set BQ = 28B(Q), so that

E ∩ 1
28BQ ⊂ Q ⊂ BQ.

We assume A0 to be big enough so that the constant C−1K−3d−1
0 A0 in (2.8) satisfies

C−1K−3d−1
0 A0 > A

1/2
0 > 10.

Then we infer that, for all 0 < λ ≤ 1,

µ
(
{x ∈ Q : dist(x,E \Q) ≤ λ `(Q)}

)
+µ
({
x ∈ 4BQ \Q : dist(x,Q) ≤ λ `(Q)}

)
≤ c λ1/2 µ(3.5BQ). (2.10)

We denote Ddb =
⋃
k≥0Ddbk and Ddb(Q) = Ddb∩D(Q). Note that, in particular, from (2.9) we obtain

µ(100B(Q)) ≤ K0 µ(Q) if Q ∈ Ddb.

For this reason we will call the cells from Ddb doubling.

As it is shown in [DM, Lemma 5.28], any cell R ∈ D can be covered µ-a.e. by a family of doubling
cells:

Lemma C. Let R ∈ D. Suppose that the constants A0 and K0 in Lemma B are chosen appropriately.
Then there exists a family of doubling cells {Qi}i∈I ⊂ Ddb, with Qi ⊂ R for all i, such that their union
covers µ-almost all R.

The following result is proved in [DM, Lemma 5.31].

Lemma D. Let R ∈ D and let Q ⊂ R be a cell such that all the intermediate cells S, Q ( S ( R are
non-doubling (i.e. belong to D \ Ddb). Then

µ(100B(Q)) ≤ A−10n(J(Q)−J(R)−1)
0 µ(100B(R)). (2.11)

From the preceding lemma we infer:

Lemma E. Let Q,R ∈ D be as in Lemma D. Then

θµ(100B(Q)) ≤ K0 A
−9n(J(Q)−J(R)−1)
0 θµ(100B(R))

and ∑
S∈D:Q⊂S⊂R

θµ(100B(S)) ≤ c θµ(100B(R)),

with c depending on K0 and A0.

37



Proof. By 2.11,

θµ(100B(Q)) ≤ A−10n(J(Q)−J(R)−1)
0

µ(100B(R))
r(100B(Q))n

= A
−10n(J(Q)−J(R)−1)
0 θµ(100B(R)) r(B(R))n

r(B(Q))n .

The first inequality in the lemma follows from this estimate and the fact that

r(B(R)) ≤ K0 A
(J(Q)−J(R))
0 r(B(Q)).

The second inequality in the lemma is an immediate consequence of the first one.

From now on we will assume that K0 and A0 are some big fixed constants so that the results stated
in the lemmas of this section hold.

2.4 The corona decomposition

Let µ be any measure satisfying the same hypotheses as the one in Theorem 2.1.1 (e.g., the restriction
of the measure µ presented there to any ball B) and construct the dyadic lattice D of cells with small
boundaries associated to µ that is given by Lemma B. Let R0 ∈ D be such that supp(µ) ⊂ R0 and
diam(supp(µ)) ≤ `(R0) (we can assume, without loss of generality, that D0 = {R0}), and let Top be a
family of doubling cells contained in R0 and such that R0 ∈ Top that we will fix below.

For every R ∈ Top, denote by Stop(R) the family of maximal cells Q ∈ Top that are contained in R,
and by Tree(R) the family of cells Q ∈ D that are contained in R and not contained in any Q′ ∈ Stop(Q).
Then, we define

Good(R) = R \
⋃

Q∈Stop(R)

Q

and, for Q ⊂ R,

δµ(Q,R) =
∫

2BR\Q

dµ(y)
|y − zQ|n

.

The arguments of Azzam and Tolsa [AT, Lemma 7.2] can be easily adapted to prove the following:

Lemma F. There exists a family Top ⊂ Ddb as above such that, for all R ∈ Top, there exists a bi-
Lipschitz injection gR : Rn → Rd with the bi-Lipschitz constant bounded above by some absolute constant
and with image ΓR = g(Rn) such that

1. µ-almost all Good(R) is contained in ΓR.

2. For all Q ∈ Stop(R) there exists another cell Q̃ ∈ D(R) with Q ⊂ Q̃ such that δµ(Q, Q̃) ≤ c θµ(BR)
and BQ̃ ∩ ΓR 6= ∅.

3. For all Q ∈ Tree(R), θµ(1.1BQ) ≤ c θµ(BR).

Furthermore, the cells R ∈ Top satisfy the following packing condition:

∑
R∈Top

θµ(BR)2µ(R) . θµ(BR0)2µ(R0) +
∫∫ `(R0)

0
βnµ,2(x, r)2θnµ(x, r)dr

r
dµ(x).
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2.5 The main lemma

For technical reasons, we will assume that the kernel k of T is not only in Kn(Rd), but that it is also
a bounded function, so that the definition of Tµ(x) makes perfect sense for all x ∈ Rd if µ is a finite
and compactly supported Borel measure in Rd, which is the case we are considering. However, as all of
our estimates will be independent of the L∞-norm of k, our result can be easily extended for general
Calderón-Zygmund kernels k ∈ Kn(Rd) by a standard smoothing procedure (see, for example, equation
(44) in [T1]).

The following sections will be devoted to proving this result:

Main Lemma 2.5.1. Let µ be a positive Radon measure in Rd with compact support and polynomial
growth of degree n. Then,

||Tµ||2L2(µ) . ||µ||+
∫∫

βnµ,2(x, r)2θnµ(x, r)dr
r
dµ(x).

Theorem 2.1.1 follows from the non-homogeneous T (1) theorem [T1, Theorem 1.1 and Lemma 7.3]
and the previous lemma, as it enables us to estimate ||T (χBµ)||L2(χBµ) for all balls B ⊂ Rd. Indeed, if
µ is the measure from Theorem 2.1.1, B is a ball in Rd and r(B) is its radius, applying Lemma 2.5.1 to
the measure χBµ, we obtain

||T (χBµ)||2L2(µ) . µ(B) +
∫∫

βnχBµ,2(x, r)2θnχBµ(x, r)dr
r
dµ(x) . µ(B),

where the last inequality follows directly from the hypotheses of Theorem 2.1.1. Therefore, the non-
homogeneous T (1) theorem applies, and we obtain that Tµ is bounded in L2(µ).

To prove the Main Lemma, we will closely follow the ideas by Tolsa in [T3], but we will use the
dyadic lattice D associated to µ, which is introduced in Section 2.3, instead of the usual dyadic lattice of
true cubes in Rd. We apply Lemma F to obtain a Corona Decomposition for µ, and we decompose Tµ
in terms of that Corona Decomposition, since the terms that arise from it will be tractable. The main
difference between our proof and Tolsa’s one will be found in Section 2.8, since the fact that the cells
in D have thin boundaries helps us to avoid going through the process of averaging over random dyadic
lattices to get the estimate that is proved there.

2.6 Decomposition of Tµ with respect to the corona decompo-
sition

To estimate ||Tµ||2L2(µ) we will decompose Tµ with respect to the corona decomposition from Lemma F.
To do so, let ψ be a non-negative and radial C∞ function such that

χB(0,0.001) ≤ ψ ≤ χB(0,0.01) and ||∇ψ|| . 1.

For each k ∈ Z, define ψk(z) = ψ(Ak0z) and ϕk = ψk −ψk+1, so that each function ϕk is non-negative
and supported on B(0, 0.01A−k0 ) \B(0, 0.001A−k−1

0 ) and, furthermore,∑
k∈Z

ϕk(z) = 1

for all x ∈ Rd \ {0}.
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Now observe that, for x ∈ supp(µ) we have

Tµ(x) =
∫
k(x, y)dµ(y) =

∫ (∑
k∈Z

ϕk(x− y)
)
k(x, y)dµ(y)

=
∑
k∈Z

∫
ϕk(x− y)k(x, y)dµ(y).

Therefore, if we define

Tkµ(x) =
∫
ϕk(x− y)k(x, y)dµ(y)

we have
Tµ(x) =

∑
k∈Z

Tkµ(x).

Now set Dk = {R0} whenever k < 0 and TQµ = χQTJ(Q)µ for all Q ∈ D. Then,

Tµ =
∑
k∈Z

Tkµ =
∑
k∈Z

 ∑
Q∈Dk

χQTkµ


=
∑
k∈Z

∑
Q∈Dk

χQTJ(Q)µ =
∑
Q∈D

TQµ

=
∑
Q∈F

TQµ+
∑
R∈Top

 ∑
Q∈Tree(R)

TQµ


=
∑
Q∈F

TQµ+
∑
R∈Top

KRµ,

where, for R ∈ Top,
KRµ =

∑
Q∈Tree(R)

TQµ

and F is a finite family of cells Q ∈ D with `(Q) ≈ diam(supp(µ)).

Notice that for Q ∈ F , the estimate

||TQµ||2L2(µ) . ||µ||

holds trivially. Therefore,

||Tµ||2L2(µ) . ||µ||+

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
R∈Top

KRµ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

L2(µ)

=
∑
R∈Top

||KRµ||2L2(µ) +
∑

R,R′∈Top : R 6=R′
〈KRµ,KR′µ〉µ,

where 〈·, ·〉µ denotes the usual pairing in L2(µ), i.e.,

〈f, g〉µ =
∫
fgdµ

The diagonal sum
∑
R∈Top ||KRµ||2L2(µ) will be estimated in Section 2.7 using the fact that, on each

Tree(R), µ can be approximated by a measure of the form ηHnΓR , where η is a bounded function, and THn
ΓR

is bounded in L2(HnΓR) because ΓR is a bi-Lipschitz image of Rn, and thus uniformly n-rectifiable (see
[T5], or the more classical reference [DS2] for the case where K is assumed to be C∞ away from the ori-
gin). To deal with the non-diagonal sum

∑
R,R′∈Top : R 6=R′〈KRµ,KR′µ〉µ, we will use quasi-orthogonality

arguments. Here, the fact that the cells from D have thin boundaries will be crucial.
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2.7 The estimate of ∑R∈Top ||KRµ||2L2(µ)

The goal of this section is to prove the following:

Lemma 2.7.1. ∑
R∈Top

||KRµ||2L2(µ) .
∑
R∈Top

θµ(BR)2µ(R).

2.7.1 Regularization of the stopping squares

Pick R ∈ Top and define
dR(x) = inf

Q∈Tree(R)
{|x− zQ|+ `(Q)} .

Notice that dR is a 1-Lipschitz function because it is defined as the infimum of a family of 1-Lipschitz
functions.

Now, we denote
B0(R) = B(zR, 29A−J(R)

0 ), WR = {x ∈ Rd : dR(x) = 0} (2.12)

and, for all x ∈ B0(R) \WR, we denote by Qx the largest cell Qx ∈ D containing x and such that

`(Qx) ≤ 1
60 inf

y∈Qx
dR(y).

We define Reg(R) as the family of the cells {Qx}x∈B0(R)\WR
, which are pairwise disjoint. Note that

B0(R) \
⋃

Q∈Reg(R)

Q = WR ⊂ Good(R).

Lemma 2.7.2. Properties of the regularized stopping cells:

1. If Q ∈ Reg(R) and x ∈ B(zQ, 50`(Q)), then dR(x) ≈ `(Q).

2. If Q,Q′ ∈ Reg(R) are such that B(zQ, 50`(Q)) ∩B(zQ′ , 50`(Q′)) 6= ∅, then `(Q) ≈ `(Q′).

3. If Q ∈ Reg(R) ∩ D(R), there exists Q′ ∈ Stop(R) such that Q ⊂ Q′.

4. If Q ∈ Reg(R), x ∈ Q and r > `(Q), then

µ[B(x, r) ∩BR] . θµ(BR)rn.

Proof. 1. First, observe that by definition of Reg(R),

Q ∈ Reg(R)⇒ `(Q) ≤ 1
60 inf

y∈Q
dR(y) ≤ 1

60dR(zQ),

that is, dR(zQ) ≥ 60`(Q). Therefore, since dR is 1-Lipschitz and |x− zQ| ≤ 50`(Q),

dR(x) ≥ dR(zQ)− |x− zQ| ≥ 60`(Q)− 50`(Q) = 10`(Q).

On the other hand, again by definition of Reg(R), we have

`(Q̂) > 1
60 inf

y∈Q̂
dR(y),

where Q̂ is the parent of Q. Then, there exists ŷ ∈ Q̂ such that

dR(ŷ) < 60`(Q̂) = 60A0`(Q).
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Now, since x, ŷ ∈ Q̂ and diam(Q̂) ≤ `(Q̂) = A0`(Q), and taking into account once again that dR is
1-Lipschitz, we get

dR(x) ≤ dR(ŷ) + |x− ŷ| ≤ 60A0`(Q) +A0`(Q) = 61A0`(Q), (2.13)

as desired.

2. This follows directly from (1).

3. If such a Q′ ∈ Stop(R) does not exist, we get that Q ∈ Tree(R). Then, for all x ∈ Q,

dR(x) ≤ inf
Q′∈Tree(R)

[|x− zQ′ |+ `(Q′)] ≤ |x− zQ|+ `(Q) ≤ 2`(Q).

However, since Q ∈ Reg(R), we get

`(Q) ≤ 1
60 inf

x∈Q
dR(x),

so dR(x) ≥ 60`(Q) for all x ∈ Q. This is a contradiction.

4. Since x ∈ Q and Q ∈ Reg(R), by (2.13) we have dR(x) < 62A0`(Q). Now, since

dR(x) = inf
Q′∈Tree(R)

[|x− zQ′ |+ `(Q′)]

we obtain that there exists Q′ ∈ Tree(R) such that

|x− zQ′ |+ `(Q′) < 62A0`(Q).

From this, we get
|x− zQ′ | < 62A0r and r >

1
62A0`(Q′)

and, therefore, we have two possibilities:

(a) There exists Q′′ ∈ Tree(R) with Q′ ⊂ Q′′ and `(Q′′) . r such that B(x, r) ⊂ 1.1BQ′′ . In such
a case, since Q′′ ∈ Tree(R), we have θµ(1.1BQ′′) . θµ(BR), and therefore

µ[B(x, r) ∩BR] ≤ µ[B(x, r)] ≤ µ(1.1BQ′′) = θµ(1.1BQ′′)r(BQ′′)n

. θµ(1.1BQ′′)rn . θµ(BR)rn.

(b) B(x, r) ⊃ BR. In this case,

µ[B(x, r) ∩BR] = µ(BR) = θµ(BR)r(BR)n ≤ θµ(BR)rn.

2.7.2 The suppressed operators TΦR

Fix R ∈ Top and define
ΦR(x) = 1

20A2
0
dR(x).

Lemma 2.7.3. Properties of the suppressing function ΦR:

1. If x ∈ Q for some Q ∈ Stop(R), ΦR(x) ≤ 1
10A0

`(Q).
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2. If x ∈ Good(R), ΦR(x) = 0.

3. If x ∈ Q for some Q ∈ Reg(R), then ΦR(x) & `(Q).

4. For all x ∈ BR and all r ≥ ΦR(x),

µ[B(x, r) ∩BR] ≤ C1 θµ(BR)rn. (2.14)

Proof. 1. Let Q ∈ Stop(R) and x ∈ Q. We have

dR(x) = inf
Q′∈Tree(R)

[|x− zQ′ |+ `(Q′)] ≤ |x− zQ̂|+ `(Q̂),

where Q̂ is the parent of Q. Then,

ΦR(x) = 1
20A2

0
dR(x) ≤ 1

20A2
0

2`(Q̂) = 1
10A2

0
A0`(Q) = 1

10A0
`(Q).

2. If x ∈ Good(R), there exist arbitrarily small cells Q ∈ Tree(R) that contain x. Therefore,

ΦR(x) = 1
20A2

0
inf

Q∈Tree(R)
[|x− zQ|+ `(Q)] = 0.

3. This follows directly from (1) in Lemma 2.7.2.

4. First, observe that if x ∈ R \
⋃
Q∈Reg(R) Q, then (2.14) holds for all r > 0, and this can be proved

arguing as in (4) in Lemma 2.7.2 and taking into account that dR(x) = 0. Otherwise, if x ∈ Q for
some Q ∈ Reg(R), by (1) in Lemma 2.7.2 we have that r & `(Q), and so (4) in Lemma 2.7.2 applies.

Lemma 2.7.4. For x ∈ R,

|KRµ(x)| ≤ TΦR,∗(χB0(R)µ)(x) + cθµ(BR),

where B0(R) = B(zR, 29A−J(R)
0 ), which is defined in (2.12), satisfies θµ(B0(R)) ≈ θµ(BR).

Proof. The fact that θµ(B0(R)) ≈ θµ(BR) follows immediately from R ∈ Ddb.

Recall that
KRµ =

∑
Q∈Tree(R)

TQµ =
∑

Q∈Tree(R)

χQTJ(Q)µ.

Now, for x ∈ R, we have two possibilities: either x ∈ Q for some Q ∈ Stop(R) or x ∈ Good(R).

1. Suppose x ∈ Q for some Q ∈ Stop(R). Then,

|KRµ(x)| =

∣∣∣∣∣∣
J(Q)−1∑
j=J(R)

Tjµ(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ J(Q)−1∑

j=J(R)

ϕj(x− y)

 k(x, y)dµ(y)

∣∣∣∣∣∣
=
∣∣∣∣∫ [ψJ(R)(x− y)− ψJ(Q)(x− y)]k(x, y)dµ(y)

∣∣∣∣
=

∣∣∣∣∣
∫
|y−x|≥0.001A−J(Q)−1

0

[ψJ(R)(x− y)− ψJ(Q)(x− y)]k(x, y)χB0(R)(y)dµ(y)

∣∣∣∣∣
≤ |T2A−1

0 `(Q)(χB0(R)µ)(x)|+ cθµ(BR)

≤ |TΦR,2A−1
0 `(Q)(χB0(R)µ)(x)|+ |T2A−1

0 `(Q)(χB0(R)µ)(x)− TΦR,2A−1
0 `(Q)(χB0(R)µ)(x)|+ cθµ(BR)

≤ TΦR,∗(χB0(R)µ)(x) +Mr
ΦR(χB0(R)µ)(x) + cθµ(BR)

≤ TΦR,∗(χB0(R)µ)(x) + cθµ(BR),
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where the penultimate inequality follows from the fact that ΦR(x) ≤ 2A−1
0 `(Q) and the last one

from Lemma A.

2. If x ∈ Good(R), we have

|KRµ(x)| = lim
N→∞

∣∣∣∣∫ [ψJ(R)(x− y)− ψN (x− y)]k(x, y)dµ(y)
∣∣∣∣ .

Then, for N > J(R) we obtain, arguing as above, that∣∣∣∣∫ [ψJ(R)(x− y)− ψN (x− y)]k(x, y)dµ(y)
∣∣∣∣ ≤ |T2`N+1(χB0(R)µ)(x)|+ cθµ(BR)

≤ |T2`N+1(χB0(R)µ)(x)− TΦR,2`N+1(χB0(R)µ)(x)|

+ |TΦR,2`N+1(χB0(R)µ)(x)|+ cθµ(BR)

≤Mr
ΦR(χB0(R)µ)(x) + TΦR,∗(χB0(R)µ)(x) + cθµ(BR)

≤ TΦR,∗(χB0(R)µ)(x) + cθµ(BR)

where in the penultimate inequality we used the fact that ΦR(x) = 0 ≤ 2`N+1. Then, letting
N →∞, we obtain

|KRµ(x)| ≤ TΦR,∗(χB0(R)µ)(x) + cθµ(BR),

as desired.

2.7.3 A Cotlar-type inequality

Lemma 2.7.5. Let R ∈ Top. Then, for all 0 < s ≤ 1,

TΦR,∗(fHnbΓR)(x) ≤ Cs
[
Mr
ΦR((T∗(fHnbΓR)s)HnbΓR)(x) 1

s +Mr
ΦR(fHnbΓR)(x)

]
(2.15)

for all x ∈ B0(R).

Proof. Denote ν = fHnbΓR . We will prove that for all x ∈ B0(R) and all ε > 0,

TΦR,εν(x) ≤ Cs
[
Mr
ΦR((T∗ν)sHnbΓR)(x) 1

s +Mr
ΦRν(x)

]
By (2) in Lemma A, we can limit ourselves to the case ε ≥ ΦR(x). Furthermore, we can assume
ε > ε0 := 0.9 dist(x, ΓR) since otherwise TΦR,εν(x) = TΦR,ε0ν(x). Therefore, from now on we will assume
ε ≥ max{ΦR(x), 0.9 dist(x, ΓR)}. Notice that, in such a case, Hn(B(x, 2ε) ∩ ΓR) & εn. We claim now
that, for all x′ ∈ B(x, 2ε) ∩ ΓR)

|TΦR,εν(x)| ≤ |Tεν(x′)|+ CMr
ΦRν(x). (2.16)

From this, the desired result follows easily. Indeed, this implies that for all 0 < s ≤ 1,

|TΦR,εν(x)|s ≤ T∗ν(x′)s + CMr
ΦRν(x)s,

and so, taking the HnbΓR -average for with respect to x′ ∈ B(x, 2ε), we get

|TΦR,εν(x)|s ≤ 1
Hn[B(x, 2ε) ∩ ΓR]

∫
B(x,2ε)

T∗ν(x′)sdHnbΓR(x′) + CMr
ΦRν(x)s

.
1
εn

∫
B(x,2ε)

T∗ν(x′)sdHnbΓR(x′) +Mr
ΦRν(x)s

.Mr
ΦR((T∗ν)sHnbΓR)(x) +Mr

ΦRν(x)s
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and, exponentiating by 1
s , (2.15) follows.

Let us prove now (2.16). We have

|TΦR,εν(x)| ≤ |TΦR,εν(x)− Tεν(x)|+ |Tεν(x)| . |Tεν(x)|+Mr
ΦRν(x)

by Lemma A, since ε > ΦR(x). Now, for all x′ ∈ B(x, 2ε)

|Tεν(x)| ≤ |Tεν(x)− T4εν(x)|+ |T4εν(x)|

= |Tεν(x)− T4εν(x)|+ |T (χRd\B(x,4ε)ν)(x)|

≤ |Tεν(x)− T4εν(x)|+ |T (χRd\B(x,4ε)ν)(x)− T (χRd\B(x,4ε)ν)(x′)|+ |T (χRd\B(x,4ε)ν)(x′)|

≤ |Tεν(x)− T4εν(x)|+ |T (χRd\B(x,4ε)ν)(x)− T (χRd\B(x,4ε)ν)(x′)|

+ |T (χRd\B(x,4ε)ν)(x′)− Tεν(x′)|+ |Tεν(x′)|.

Now

|Tεν(x)− T4εν(x)| =

∣∣∣∣∣
∫
ε≤|x−y|<4ε

k(x, y)dν(y)

∣∣∣∣∣ .
∫
ε<|x−y|≤4ε

d|ν|(y)
|x− y|n

.
|ν|[B(x, 4ε)]

(4ε)n ≤Mr
ΦRν(x).

In addition

|T (χRd\B(x,4ε)ν)(x)− T (χRd\B(x,4ε)ν)(x′)| =

∣∣∣∣∣
∫
|x−y|>4ε

[k(x, y)− k(x′, y)]dν(y)

∣∣∣∣∣
.
∫
|x−y|>4ε

|x− x′|
|x− y|n+1 d|ν|(y) ≤Mr

ΦRν(x),

where the last inequality is obtained by taking into account that |x− x′| ≤ ε and splitting the domain of
integration into annuli {2kε < |x− y| ≤ 2k+1ε}, k = 2, 3, . . . Finally,

|T (χRd\B(x,4ε)ν)(x′)− Tεν(x′)| =

∣∣∣∣∣
∫
|y−x|>4ε

k(x′, y)dν(y)−
∫
|y−x′|>ε

k(x′, y)dν(y)

∣∣∣∣∣
=

∣∣∣∣∣
(∫
|y−x|>4ε,|y−x′|≤ε

k(x′, y)dν(y) +
∫
|y−x|>4ε,|y−x′|>ε

k(x′, y)dν(y)
)

−

(∫
|y−x′|>ε,|y−x|>4ε

k(x′, y)dν(y) +
∫
|y−x′|>ε,|y−x|≤4ε

k(x′, y)dν(y)
)∣∣∣∣∣

=

∣∣∣∣∣
∫
|y−x|>4ε,|y−x′|≤ε

k(x′, y)dν(y)−
∫
|y−x′|>ε,|y−x|≤4ε

k(x′, y)dν(y)

∣∣∣∣∣
Here, the first integral vanishes, since |x−x′| < 2ε and |y−x| ≤ ε imply that |y−x| < 3ε. Therefore,

|T (χRd\B(x,4ε)ν)(x′)− Tεν(x′)| ≤

∣∣∣∣∣
∫
|y−x′|>ε,|y−x|≤4ε

k(x′, y)dν(y)

∣∣∣∣∣
.
∫
|y−x′|>ε,|y−x|≤4ε

d|ν|(y)
|x′ − y|n

≤ |ν|[B(x, 4ε)]
εn

.Mr
ΦRν(x).

This completes the proof of (2.16) and, hence, of the lemma.
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2.7.4 L2-boundedness of Tµ,ΦR

Lemma 2.7.6. Let R ∈ Top and consider the measure σR = θµ(BR)HnbΓR . Then, for 1 < p < ∞,
TσR,ΦR is bounded from Lp(σR) to Lp(χB0(R)µ), with norm bounded by Cpθµ(BR). Furthermore, TσR,ΦR
is bounded from L1(σR) to L1,∞(χB0(R)µ), with norm bounded by Cθµ(BR).

Proof. First of all, we observe that the maximal operatorMr
σR,ΦR

is bounded from L∞(σR) to L∞(χB0(R)µ)
with norm bounded by Cθµ(BR). Indeed, if f ∈ L∞(σR), and x ∈ B0(R)

Mr
σR,ΦRf(x) = sup

r≥ΦR(x)

1
rn

∫
B(x,r)∩B0(R)

|f |dµ ≤ ||f ||L∞(σR) sup
r≥ΦR(x)

µ[B(x, r) ∩B0(R)]
rn

. θµ(BR)||f ||L∞(σR),

by (4) in Lemma 2.7.3. Therefore,

||Mr
σR,ΦRf ||L∞(χB0(R)µ) . θµ(BR)||f ||L∞(σR),

as claimed.

Now, let us check that Mr
σR,ΦR

is bounded from L1(σR) to L1,∞(χB0(R)µ) with norm bounded by
Cθµ(BR). In fact, we will prove a slightly stronger result, as we will deal with a non-centered version of
Mr
σR,ΦR

, which will be useful for technical reasons. Define, for f ∈ L1(σR) and x ∈ Rd,

Nr
σR,ΦRf(x) = sup 1

r(B)n

∫
B

|f |dσR,

where the supremum is taken over all balls B with x ∈ B and such that µ(5B) ≤ C1θµ(BR)(5r(B))n,
where C1 is the same constant that appears in (4) of Lemma 2.7.3. Clearly,

Mr
σR,ΦRf(x) ≤ Nr

σR,ΦRf(x),

so the weak (1, 1) inequality for Mr
σR,ΦR

will follow from that for Nr
σR,ΦR

.

Let f ∈ L1(σR), λ > 0, and consider

Ωλ = {x ∈ B0(R) : Nr
σR,ΦRf(x) > λ}

By definition ofNr
σR,ΦR

, for every x ∈ Ωλ, there exists a ballBx containing x with µ(5Bx) ≤ C1θµ(BR)(5r(B))n

and such that
1

r(Bx)n

∫
Bx

|f |dσR > λ,

which is equivalent to
r(Bx)n < 1

λ

∫
Bx

|f |dσR. (2.17)

Now, applying the 5r-covering theorem, we may extract a countable and disjoint subfamily {Bi} of
{Bx}x∈Ωλ such that the balls {5Bi} cover Ωλ. Then, we have

µ(Ωλ) ≤
∑
i

µ(5Bi) ≤
∑
i

C1θµ(BR)(5r(Bi))n . θµ(BR)
∑
i

r(Bi)n

≤ θµ(BR)
∑
i

1
λ

∫
Bi

|f |dσR ≤
θµ(BR)

λ

∫
Ωλ

|f |dσR ≤
θµ(BR)

λ
||f ||L1(σR),

(2.18)

which proves that Nr
σR,ΦR

(and also Mr
σR,ΦR

) is bounded from L1(σR) to L1,∞(χB0(R)µ) with norm
bounded by Cθµ(BR). Then, Marcinkiewicz’s Interpolation Theorem applies and so, for 1 < p < ∞
Mr
σR,ΦR

is bounded from Lp(σR) to Lp(χB0(R)µ) with norm bounded by Cpθµ(BR)
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Notice that (2.15) in Lemma 2.7.5 can be restated as

TσR,ΦR,∗f(x) ≤ Cs[Mr
σR,ΦR((THnbΓR f)s)(x) 1

s +Mr
σR,ΦRf(x)]. (2.19)

Then, taking s = 1 and using the Lp(σR) → Lp(χB0(R)µ)-boundedness of Mr
σR,ΦR

, we obtain that
TσR,ΦR,∗ is bounded from Lp(σR) to Lp(χB0(R)µ) with norm bounded by Cpθµ(BR).

To deal with the weak (1, 1) case, we will need to work a little harder. Going back to (2.19), with
s = 1

2 , we get that for f ∈ L1(σR),

TσR,ΦR,∗f(x) ≤ C[Mr
σR,ΦR((THnbΓR f) 1

2 )(x)2 +Mr
σR,ΦRf(x)]

and so, for λ > 0,

µ({x ∈ B0(R) : TσR,ΦR,∗f(x) > λ}) ≤ µ
({

x ∈ B0(R) : Mr
σR,ΦR((THnbΓR f) 1

2 )(x)2 >
λ

2C

})
+ µ

({
x ∈ B0(R) : Mr

σR,ΦRf(x) > λ

2C

})
≤ µ

({
x ∈ B0(R) : Mr

σR,ΦR((TσRf) 1
2 )(x) >

(
λ

2C

) 1
2

θµ(BR) 1
2

})

+ µ

({
x ∈ B0(R) : Mr

σR,ΦRf(x) > λ

2C

})
Here, the second term is bounded by C

θµ(BR)
λ ||f ||L1(σR) because of the weak (1, 1)-inequality for

Mr
σR,ΦR

. To deal with the first term, we will use the weak (1, 1)-inequality (2.18) for Nr
σR,ΦR

. Denote

Ω =
{
x ∈ B0(R) : Nr

σR,ΦR((TσRf) 1
2 )(x) >

(
λ

2C

) 1
2

θµ(BR) 1
2

}
so that

µ

({
x ∈ B0(R) : Mr

σR,ΦR((TσRf) 1
2 )(x) >

(
λ

2C

) 1
2

θµ(BR) 1
2

})
≤ µ(Ω) . θµ(BR)

λ
1
2 θµ(BR) 1

2

∫
Ω

|TσRf |
1
2 dµ

.
θµ(BR) 1

2

λ
1
2

µ(Ω) 1
2 ||TσRf ||

1
2
L1,∞(µ)

= µ(Ω) 1
2

1
λ

1
2
||TσRf ||

1
2
L1,∞(σR),

which implies that µ(Ω) . 1
λ ||TσRf ||L1,∞(σR), and therefore

µ

({
x ∈ B0(R) : Mr

σR,ΦR((TσRf) 1
2 )(x) > λ

1
2

√
2C

θµ(BR)
})

.
1
λ
||TσRf ||L1,∞(σR) .

θµ(BR)
λ

||f ||L1(σR),

where we used the fact that TσR is bounded from L1(σR) to L1,∞(σR) with norm bounded by Cθµ(BR).
This completes the proof of the lemma.

We recall here a lemma that is also used at [T3] that will be useful. Its proof is based on the combined
use of both Marcinkiewicz’s and Riesz-Thorin’s Interpolation Theorems.

Lemma 2.7.7. Let τ be a Radon measure in Rd and let T be a linear operator that is bounded in L2(τ)
with norm N2. Suppose further that both T and its adjoint T ∗ are bounded from L1(τ) to L1,∞(τ) with
norm bounded by N1. Then N2 ≤ cN1, where c is an absolute constant.

Lemma 2.7.8. Tµ,ΦR is bounded on L2(χB0(R)µ) with norm bounded by Cθµ(BR).
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Proof. Since Tµ,ΦR is antisymmetric, by the previous lemma, we can limit ourselves to prove that it is
bounded from L1(χB0(R)µ) to L1,∞(χB0(R)µ) with norm bounded by Cθµ(BR).

Let f ∈ L1(χB0(R)) and denote Reg(R) = {Qi}∞i=1, where we assume that the side-lengths `(Qi) are
non-increasing. Arguing as in (4) of Lemma 2.7.2, it is easy to check that every cell Qi is contained in a
cell Q′i such that θµ(Q′i) . θµ(BR), δµ(Qi, Q′i) . θµ(BR), Q′i ∩ ΓR 6= ∅ and Hn(Q′i ∩ ΓR) ≈ `(Q′i)n.

Set
g = fχB0(R)\

⋃
i
Qi
, b =

∑
i

fχQi

so that f = g + b. Since B0(R) \
⋃
iQi ⊂ Good(R) and this is contained in ΓR (up to a set of µ-measure

zero), by the Radon-Nikodym theorem we obtain that

µbB0(R)\
⋃
i
Qi

= ηHnΓR ,

where η is some function with 0 ≤ η ≤ Cθµ[B0(R)] . θµ(BR). Then, by Lemma 2.7.6, we have that, for
λ > 0,

µ({x ∈ B0(R) : |Tµ,ΦRg(x)| > λ}) = µ({x ∈ B0(R) : |THn
ΓR
,ΦR(gη)(x)| > λ})

= µ ({x ∈ B0(R) : |TσR,ΦR(gη)(x)| > θµ(BR)λ})

.
1
λ
||gη||L1(σR) = θµ(BR)

λ
||gη||L1(HnbΓR ) = θµ(BR)

λ
||f ||L1(µ)

(2.20)

Now, to deal with Tµ,ΦRb, we define, for every i ≥ 1

γi(x) =
(

1
Hn(BQ′

i
∩ ΓR)

∫
Qi

fdµ

)
χBQ′

i
∩ΓR(x), νi = (fχQi)µ− γiHnΓR ,

so that νi is supported on BQ′
i

and satisfies
∫
dνi = 0 , and we write

bµ =
∑
i

νi +
∑
i

γiHnΓR

so that

Tµ,ΦRb = TΦR(bµ) = TΦR

(∑
i

νi

)
+ TΦR

(∑
i

γiHnΓR

)
.

Now, again by Lemma 2.7.6, we get

µ

({
x ∈ B0(R) :

∣∣∣∣∣TΦR
(∑

i

γiHnΓR

)
(x)

∣∣∣∣∣ > λ

})
= µ

({
x ∈ B0(R) :

∣∣∣∣∣TΦR,σR
(∑

i

γi

)
(x)

∣∣∣∣∣ > θµ(BR)λ
})

.
1
λ

∣∣∣∣∣
∣∣∣∣∣∑
i

γi

∣∣∣∣∣
∣∣∣∣∣
L1(σR)

≤ θµ(BR)
λ

∑
i

∫
|γi|dHnΓR

≤ θµ(BR)
λ

||f ||L1(µ).

(2.21)

Finally, to deal with the term TΦR

(∑
i

νi

)
, we apply Chebyshev’s inequality to get

µ

({
x ∈ B0(R) :

∣∣∣∣∣TΦR
(∑

i

νi

)
(x)

∣∣∣∣∣ > λ

})
≤ 1
λ

∫
B0(R)

∣∣∣∣∣TΦR
(∑

i

νi

)∣∣∣∣∣ dµ
= 1
λ

∑
i

∫
2BQ′

i

|TΦRνi|dµ+
∫
B0(R)\2BQ′

i

|TΦRνi|dµ


(2.22)
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Now, since
∫
dνi = 0, for x 6∈ 2BQ′

i
we have

|TΦRνi(x)| =

∣∣∣∣∣∣
∫
BQ′

i

kΦR(x, y)dνi(y)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
BQ′

i

[kΦR(x, y)− kΦR(x, zQ′
i
)]dνi(y)

∣∣∣∣∣∣
.
∫
BQ′

i

|y − zQ′
i
|

|x− zQ′
i
|n+1 d|νi|(y) . `(Q′i)||νi||

|x− zQ′
i
|n+1

and so ∫
Rd\2BQ′

i

|TΦRνi|dµ .
∫
B0(R)\2BQ′

i

`(Q′i)||νi||
|x− zQ′

i
|n+1 dµ . θµ(BR)||νi|| . θµ(BR)

∫
Qi

|f |dµ. (2.23)

On the other hand,∫
2BQ′

i

|TΦRνi|dµ ≤
∫

2BQ′
i

|TΦR((fχQi)µ)|dµ+
∫

2BQ′
i

|TΦR(γiHnΓR)|dµ

≤
∫
Qi

|TΦR((fχQi)µ)|dµ+
∫

2BQ′
i
\Qi
|TΦR((fχQi)µ)|dµ+

∫
2BQ′

i

|TΦR(γiHnΓR)|dµ

= I1 + I2 + I3.

Now, to bound I1 we use the fact that for all x ∈ Qi, ΦR(x) ≥ `(Qi), by (3) in Lemma 2.7.3, and so
|kΦR(x, y)| . `(Qi) for all x, y ∈ Qi. Hence,

|TΦR((fχQi)µ)(x)| . 1
`(Qi)n

∫
Qi

|f |dµ

and so
I1 .

µ(Qi)
`(Qi)n

∫
Qi

|f |dµ . θµ(BR)
∫
Qi

|f |dµ,

by (4) in Lemma 2.7.3.

To bound I2, we observe that for x ∈ 2BQ′
i
\Qi,

|TΦR((χQif)µ)(x)| =
∣∣∣∣∫
Qi

kΦR(x, y)f(y)dµ(y)
∣∣∣∣ . 1
|x− zQi |n

∫
Qi

|f |dµ

and so
I2 =

∫
2BQ′

i
\Qi
|TΦR((fχQi)µ)|dµ .

∫
Qi

|f |dµ
∫

2BQ′
i
\Qi

1
|x− zQi |n

dµ(x)

= δµ(Qi, Q′i)
∫
Qi

|f |dµ . θµ(BR)
∫
Qi

|f |dµ.

Finally, by Lemma 2.7.6

I3 =
∫

2BQ′
i

|TΦR(γiHnΓR)|dµ ≤ µ(2BQ′
i
) 1

2

∫
2BQ′

i

|TΦR(γiHnΓR)|2dµ

 1
2

≤ 1
θµ(BR)µ(2BQ′

i
) 1

2

(∫
|TΦR(γiσR)|2dµ

) 1
2

. µ(2BQ′
i
) 1

2 ||γi||L2(σR)

≤ µ(Q′i)
1
2 θµ(BR) 1

2
1

Hn(Q′i ∩ ΓR)

∫
Qi

|f |dµ . θµ(BR)
∫
Qi

|f |dµ.

Gathering the estimates for I1, I2 and I3, we obtain∫
2BQ′

i

|TΦRνi|dµ . θµ(BR)
∫
Qi

|f |dµ,
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and so, going back to (2.22) and also taking into account (2.23), we obtain

µ

({
x ∈ B0(R) :

∣∣∣∣∣TΦR
(∑

i

νi

)
(x)

∣∣∣∣∣ > λ

})
.

1
λ

∫
|f |dµ

This, together with (2.20) and (2.21), imply the weak (1, 1) inequality

µ ({x ∈ B0(R) : |Tµ,ΦRf(x)| > λ}) . θµ(BR)
λ

||f ||L1(µ)

that we were looking for.

2.7.5 L2-boundedness of TΦR,µ,∗

Lemma 2.7.9. For R ∈ Top, TΦR,µ,∗ is bounded in L2(χB0(R)µ) with norm bounded by cθµ(BR).

Proof. This is a direct consecuence of Theorem G and Lemma 2.7.8, taking S = TΦR , σ = χB0(R)µ and
C0 ≈ θµ(BR).

With all these tools at hand, we can prove Lemma 2.7.1. Indeed, given R ∈ Top, by Lemmas 2.7.4
and 2.7.9 we have

||KRµ||L2(µ) ≤ ||TΦR,∗(χB0(R)µ)||L2(χRµ) + cθµ(BR)µ(R) 1
2 . θµ(BR)µ(R) 1

2 ,

and the desired conclusion follows after squaring both sides and summing over R ∈ Top.

2.8 The estimate of ∑R,R′∈Top,R 6=R′〈KRµ,KR′µ〉µ
Given R,R′ ∈ Top, R 6= R′, 〈KRµ,KR′µ〉µ = 0 unless R ∩R′ 6= ∅. Then,

∑
R,R′∈Top,R 6=R′

〈KRµ,KR′µ〉µ = 2
∑

Q,R∈Top,Q(R
〈KQµ,KRµ〉µ

Arguing as in [T3], we can guess that bounding this sum would be relatively easy if∫
Q

KQµ = 0,

but this is, in general, not the case. Indeed,

KQµ =
∑

M∈Tree(R)

TMµ =
∑

M∈Tree(R)

χMTJ(M)µ,

and while it is true that for all M ∈ Tree(R)∫
M

TJ(M)(χMµ)dµ = 0

by antisimmetry, this does not imply that ∫
M

TJ(M)µ = 0

and so ∫
Q

KQµdµ = 0

will not be true in general. Still, the fact that∫
M

Ti(χMµ)dµ = 0
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for all i ≥ 0 and all M ∈ D will be useful, as we will see in the proof of Lemma 2.8.1.

We have ∑
Q,R∈Top,Q(R

〈KQµ,KRµ〉µ =
∑
R∈Top

∑
P∈Stop(R)

∑
Q∈Top,Q⊂P

〈KQµ,KRµ〉µ

=
∑
R∈Top

∑
P∈Stop(R)

∑
Q∈Top,Q⊂P

∑
Q′∈Tree(Q)

〈TQ′µ,KRµ〉µ

=
∑
R∈Top

∑
P∈Stop(R)

∑
Q∈D(P )

〈TQµ,KRµ〉µ

=
∑
R∈Top

∑
P∈Stop(R)

∞∑
i=J(P )

∑
Q∈Di(P )

〈χQTiµ,KRµ〉µ

=
∑
R∈Top

∑
P∈Stop(R)

∞∑
i=J(P )

〈χPTiµ,KRµ〉µ

Now, fixed R ∈ Top, P ∈ Stop(R) and i ≥ J(P ), we define m(J(P ), i) as some intermediate number
between J(P ) and i (for example, the integer part of the arithmetic mean of J(P ) and i), and we
decompose

P =
⋃

S∈Dm(J(P ),i) : S⊂P
S

so that∑
Q,R∈Top,Q(R

〈KQµ,KRµ〉µ =
∑
R∈Top

∑
P∈Stop(R)

∞∑
i=J(P )

〈χPTiµ,KRµ〉µ

=
∑
R∈Top

∑
P∈Stop(R)

∞∑
i=J(P )

∑
S∈Dm(J(P ),i)

〈χSTiµ,KRµ〉µ

=
∑
R∈Top

∑
P∈Stop(R)

∞∑
i=J(P )

∑
S∈Dm(J(P ),i)

〈χSTi(χSµ),KRµ〉µ

+
∑
R∈Top

∑
P∈Stop(R)

∞∑
i=J(P )

∑
S∈Dm(J(P ),i)

〈χSTi(χRd\Sµ),KRµ〉µ := ND1 + ND2

2.8.1 The estimate of ND1

Lemma 2.8.1.
ND1 .

∑
R∈Top

θµ(BR)2µ(R)

Proof. Recall that

ND1 =
∑
R∈Top

∑
P∈Stop(R)

∞∑
i=J(P )

∑
S∈Dm(J(P ),i)

〈χSTi(χSµ),KRµ〉µ

Fix R ∈ Top, P ∈ Stop(R), i ≥ J(P ) and S ∈ Dm(J(P ), i). Since∫
S

Ti(χSµ)dµ = 0,

we have
〈χSTi(χSµ),KRµ〉µ =

∫
S

Ti(χSµ)KRµdµ =
∫
S

Ti(XSµ)[KRµ−KRµ(zS)]dµ.

Now, given x ∈ S, since S ⊂ P and P ∈ Stop(R), we have that the cells from Tree(R) that contain x

are the chain in D that starts in the parent of P and ends in R. Therefore,
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KRµ(x) =
∑

Q∈Tree(R) : x∈Q

TQµ(x)

=
J(P )−1∑
j∈J(R)

Tjµ(x)

=
∫ J(P )−1∑

j∈J(R)

ϕj(x− y)

 k(x, y)dµ(y)

=
∫ [

ψJ(R)(x− y)− ψJ(P )(x− y)
]
k(x, y)dµ(y)

If we denote

ζR,P (x, y) =
[
ψJ(R)(x− y)− ψJ(P )(x− y)

]
k(x, y)

it is easy to check that for x, x′ ∈ S we have

|ζR,P (x, y)− ζR,P (x′, y)| . |x− x′|
(`(P ) + |x− y|)n+1 .

Therefore, for x ∈ S,

|KRµ(x)−KRµ(zS)| .
∫

dist(y,P )≤0.01A−J(R)
0

|x− zS |
(`(P ) + |x− y|)n+1 dµ(y)

.
`(S)
`(P )θµ(BR),

where the last inequality follows from (2.7), and so

|〈χSTi(χSµ),KRµ〉µ| .
`(S)
`(P )θµ(BR)

∫
S

|Ti(χSµ)|dµ

=
`m(J(P ),i)

`J(P )
θµ(BR)

∫
S

|Ti(χSµ)|dµ

≈ A
J(P )−i

2
0 θµ(BR)

∫
S

|Ti(χSµ)|dµ.

Now, for x ∈ S,

|Ti(χSµ)(x)| =
∣∣∣∣∫
y∈S

ϕi(x− y)k(x, y)dµ(y)
∣∣∣∣

=

∣∣∣∣∣
∫
y∈S, 0.001A−i−1

0 <|x−y|<0.01A−i0

ϕi(x− y)k(x, y)dµ(y)

∣∣∣∣∣
.
∫
y∈S, 0.001A−i−1

0 <|x−y|<0.01A−i0

dµ(y)
|x− y|n

.
µ[B(x, 0.01A−i0 )]

A−ni0
:= θµ,i(x)

and so

|〈χSTi(χSµ),KRµ〉µ| . A
J(P )−i

2
0 θµ(BR)

∫
S

θµ,i(x)dµ(x).
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Therefore,

ND1 ≤
∑
R∈Top

∑
P∈Stop(R)

∞∑
i=J(P )

∑
S∈Dm(J(P ),i)

|〈χSTi(χSµ),KRµ〉µ|

.
∑
R∈Top

∑
P∈Stop(R)

∞∑
i=J(P )

∑
S∈Dm(J(P ),i)

A
J(P )−i

2
0 θµ(BR)

∫
S

θµ,i(x)dµ(x)

.
∑
R∈Top

θµ(BR)
∑

P∈Stop(R)

A
J(P )

2
0

∞∑
i=J(P )

A
− i

2
0

∫
P

θµ,i(x)dµ(x)

=
∑
R∈Top

θµ(BR)
∑

P∈Stop(R)

A
J(P )

2
0

∞∑
i=J(P )

A
− i

2
0

∑
P ′∈Di : P ′⊂P

∫
P ′
θµ,i(x)dµ(x)

.
∑
R∈Top

θµ(BR)
∑

P∈Stop(R)

A
J(P )

2
0

∑
P ′∈D(P )

A
− J(P ′)

2
0 θµ[1.01BP ′ ]µ(P ′),

We reorganize the previous sum, to obtain

ND1 .
∑
R∈Top

θµ(BR)
∑

P∈Stop(R)

A
J(P )

2
0

∑
P ′′∈Top : P ′′⊂P

∑
P ′∈Tree(P ′′)

A
− J(P ′)

2
0 θµ[1.01BP ′ ]µ(P ′) (2.24)

and from the fact that P ′ ∈ Tree(P ′′), we obtain that θµ(1.01BP ′) . θµ(BP ′′), so

ND1 .
∑
R∈Top

θµ(BR)
∑

P∈Stop(R)

A
J(P )

2
0

∑
P ′′∈Top : P ′′⊂P

θµ(BP ′′)
∑

P ′∈Tree(P ′′)

A
− J(P ′)

2
0 µ(P ′)

.
∑
R∈Top

θµ(BR)
∑

P∈Stop(R)

A
J(P )

2
0

∑
P ′′∈Top : P ′′⊂P

θµ(BP ′′)A
− J(P ′′)

2
0 µ(P ′′)

=
∑
R∈Top

θµ(BR)
∑

P ′′∈Top : P ′′(R
A
J(R

P ′′ )−J(P ′′)
2

0 θµ(BP ′′)µ(P ′′)

(2.25)

where, given R,P ′′ ∈ Top with P ′′ ( R, RP ′′ is the cell from Stop(R) that contains P ′′. To deal with
this sum, we need to organize it in trees. To do so, define Stop1(R) = Stop(R) and, for k > 1,

Stopk(R) = {Q ∈ D(R) : there exists Q′ ∈ Stopk−1(R) with Q ∈ Stop(Q′)}

so that

{P ∈ Top : P ( R} =
∞⋃
k=1

Stopk(R).

This way, renaming P ′′ as P in (2.25), we have

ND1 .
∑
R∈Top

θµ(BR)
∑

P∈Top : P(R
A
J(RP )−J(P )

2
0 θµ(BP )µ(P )

=
∑
R∈Top

θµ(BR)
∞∑
k=1

∑
P∈Stopk(R)

A
J(RP )−J(P )

2
0 θµ(BP )µ(P )

.
∑
R∈Top

θµ(BR)
∞∑
k=1

A
− k2
0

∑
P∈Stopk(R)

θµ(BP )µ(P ) 1
2µ(P ) 1

2 ,
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because P ∈ Stopk(R)⇒ J(P )− J(RP ) ≥ k− 1. Then, using Cauchy-Schwarz’s inequality twice, we get

ND1 .
∑
R∈Top

θµ(BR)
∞∑
k=1

A
− k2
0

 ∑
P∈Stopk(R)

θµ(BP )2µ(P )

 1
2
 ∑
P∈Stopk(R)

µ(P )

 1
2

=
∞∑
k=1

A
− k2
0

∑
R∈Top

θµ(BR)µ(R) 1
2

 ∑
Q∈Stopk(R)

θµ(BP )2µ(P )

 1
2

≤
∞∑
k=1

A
− k2
0

 ∑
R∈Top

θµ(BR)2µ(R)

 1
2
 ∑
R∈Top

∑
P∈Stopk(R)

θµ(BP )2µ(P )

 1
2

.
∑
R∈Top

θµ(BR)2µ(R),

as desired.

2.8.2 The estimate of ND2

Lemma 2.8.2.
ND2 .

∑
R∈Top

θµ(BR)2µ(R).

Proof. Recall that

ND2 =
∑
R∈Top

∑
P∈Stop(R)

∞∑
i=J(P )

∑
S∈Dm(J(P ),i)

〈χSTi(χRd\Sµ),KRµ〉µ.

Fix R ∈ Top, P ∈ Stop(R), i ≥ J(P ) and S ∈ Dm(J(P ),i). We have

〈χSTi(χRd\Sµ),KRµ〉µ =
∫
S

Ti(χRd\Sµ)KRµdµ.

Now, if x ∈ S,

Ti(χRd\Sµ)(x) =
∫
Rd\S

ϕi(x− y)k(x, y)dµ(y) =
∫
y 6∈S, 0.001A−i−1

0 <|x−y|<0.01Ai0
ϕi(x− y)k(x, y)dµ(y),

so Ti(χRd\Sµ)(x) = 0 unless dist(x,E \ S) < 0.01A−i0 (where, as we stated earlier, E = supp(µ)). Thus,
if we denote

∂iS = {x ∈ S : dist(x,E \ S) ≤ 0.01A−i0 }

we have that
supp(χSTi(χRd\Sµ)) ⊂ ∂iS.

Then,

〈χSTi(χRd\Sµ),KRµ〉µ =
∫
∂iS

Ti(χRd\Sµ)KRµdµ =
∑

M∈Di : M⊂S

∫
∂iS∩M

Ti(χRd\Sµ)KRµdµ.

Now, for M ∈ Di with M ⊂ S and x ∈ ∂iS ∩M , we have

|Ti(χRd\Sµ)(x)| =

∣∣∣∣∣
∫
y 6∈S, 0.001A−i−1

0 <|x−y|<0.01Ai0
ϕi(x− y)k(x, y)dµ(y)

∣∣∣∣∣
.
∫

0.001A−i−1
0 <|x−y|<0.01Ai0

dµ(y)
|x− y|n

≤ µ[B(x, 0.01A−i0 )]
A−ni0

. θµ[1.01BM ].
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Therefore,

|〈χSTi(χRd\Sµ),KRµ〉µ| ≤
∑

M∈Di : M⊂S

∣∣∣∣∫
∂iS∩M

Ti(χRd\Sµ)KRµdµ

∣∣∣∣
.

∑
M∈Di : M⊂S

θµ[1.01BM ]
∫
∂iS∩M

|KRµ|dµ.

Then, if we denote

∂iDm(J(P ),i) =
⋃

S∈Dm(J(P ),i)

∂iS

we have∣∣∣∣∣∣
∞∑

i=J(P )

∑
S∈Dm(J(P ),i)

〈χSTi(χRd\Sµ),KRµ〉µ

∣∣∣∣∣∣ .
∞∑

i=J(P )

∑
S∈Dm(J(P ),i)

∑
M∈Di : M⊂S

θµ[1.01BM ]
∫
∂iS∩M

|KRµ|dµ

.
∞∑

i=J(P )

∑
M∈Di : M⊂P

θµ[1.01BM ]
∫
∂J(M)Dm(J(P ),J(M))∩M

|KRµ|dµ

=
∑

P ′∈Top : P ′⊂P

∑
M∈Tree(P ′)

θµ[1.01BM ]
∫
∂J(M)Dm(J(P ),J(M))∩M

|KRµ|dµ.

Here we have that θµ[1.01BM ] . θµ(BP ′) for M ∈ Tree(P ′), and therefore

∣∣∣∣∣∣
∞∑

i=J(P )

∑
S∈Dm(J(P ),i)

〈χSTi(χRd\Sµ),KRµ〉µ

∣∣∣∣∣∣ .
∑

P ′∈Top : P ′⊂P
θµ(BP ′)

∑
M∈Tree(P ′)

∫
∂J(M)Dm(J(P ),J(M))∩M

|KRµ|dµ

.
∑

P ′∈Top : P ′⊂P
θµ(BP ′)

∞∑
i=J(P ′)

∫
∂iDm(J(P ),i)∩P ′

|KRµ|dµ.

Here we use Cauchy-Schwarz’s inequality to get

∣∣∣∣∣∣
∞∑

i=J(P )

∑
S∈Dm(J(P ),i)

〈χSTi(χRd\Sµ),KRµ〉µ

∣∣∣∣∣∣ .
∑

P ′∈Top : P ′⊂P
θµ(BP ′)

∞∑
i=J(P ′)

||KRµ||L2(χP ′µ)µ[(∂iDm(J(P ),i))∩P ′]
1
2

Now, given R,P ′ ∈ Top with P ′ ( R, we set

µR,P ′ =

 ∞∑
i=J(P ′)

µ[(∂iDm(J(RP ′ ),i)) ∩ P
′] 1

2

2

so that

ND2 .
∑
R∈Top

∑
P ′∈Top : P ′(R

θµ(BP ′)||KRµ||L2(χP ′µ)µ
1
2
R,P ′

=
∞∑
k=1

∑
R∈Top

∑
Q∈Stopk(R)

θµ(BQ)||KRµ||L2(χQµ)µ
1
2
R,Q,
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and here, we use Cauchy-Schwarz’s inequality twice again to get

ND2 .
∞∑
k=1

∑
R∈Top

 ∑
Q∈Stopk(R)

||KRµ||2L2(χQµ)

 1
2
 ∑
Q∈Stopk(R)

θµ(BQ)2µR,Q

 1
2

≤
∞∑
k=1

∑
R∈Top

||KRµ||L2(µ)

 ∑
Q∈Stopk(R)

θµ(BQ)2µR,Q

 1
2

≤
∞∑
k=1

 ∑
R∈Top

||KRµ||2L2(µ)

 1
2
 ∑
R∈Top

∑
Q∈Stopk(R)

θµ(BQ)2µR,Q

 1
2

.

 ∑
R∈Top

θµ(BR)2µ(R)

 1
2 ∞∑
k=1

 ∑
R∈Top

∑
Q∈Stopk(R)

θµ(BQ)2µR,Q

 1
2

,

where the last inequality follows from Lemma 2.7.1. Therefore, if we prove that

∞∑
k=1

 ∑
R∈Top

∑
Q∈Stopk(R)

θµ(BQ)2µR,Q

 1
2

.

 ∑
R∈Top

θµ(BR)2µ(BR)

 1
2

,

we will reach the desired conclusion. To do so, recall that for fixed k ≥ 1, R ∈ Top and Q ∈ Stopk(R)

µR,Q =

 ∞∑
i=J(Q)

µ[(∂iDm(J(RQ),i)) ∩Q] 1
2

2

.

Now, recalling that `s = 56C0A
−s
0 = `(S) whenever S ∈ Ds, we have, for all i ≥ J(Q),

µ[(∂iDm(J(RQ),i)) ∩Q] =
∑

S∈Dm(J(RQ),i) : S⊂Q
µ(∂iS)

=
∑

S∈Dm(J(RQ),i) : S⊂Q
µ

({
x ∈ S : dist(x,Rd \ S) < 0.01A−i0

`(S) `(S)
})

.
∑

S∈Dm(J(RQ),i) : S⊂Q

(
`i
`m

) 1
2

µ(3.5BS)

. A
J(RQ)−i

2
0 µ(BQ),

where the penultimate inequality follows from (2.10). Therefore,

µR,Q .

 ∞∑
i=J(Q)

(
A
J(RQ)−i

2
0 µ(BQ)

) 1
2

2

= µ(BQ)

 ∞∑
i=J(Q)

A
J(RQ)−i

4
0

2

. µ(BQ)A
J(RQ)−J(Q)

2
0
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and so

∞∑
k=1

 ∑
R∈Top

∑
Q∈Stopk(R)

θµ(BQ)2µR,Q

 1
2

.
∞∑
k=1

 ∑
R∈Top

∑
Q∈Stopk(R)

θµ(BQ)2µ(BQ)A
J(RQ)−J(Q)

2
0

 1
2

.
∞∑
k=1

A
− k4
0

 ∑
R∈Top

∑
Q∈Stopk(R)

θµ(BQ)2µ(BQ)

 1
2

.

 ∑
R∈Top

θµ(BR)2µ(BR)

 1
2

.

 ∑
R∈Top

θµ(BR)2µ(R)

 1
2

,

as desired.

2.9 The proof of the main lemma 2.5.1

This is a straightforward consequence of Lemmas 2.7.1, 2.8.1, 2.8.2 and F. Indeed, going back to Section
2.6,

||Tµ||2L2(µ) =
∑
R∈Top

||KRµ||2L2(µ) +
∑

R,R′∈Top
〈KRµ,KR′µ〉µ.

Now, by Lemma 2.7.1, ∑
R∈Top

||KRµ||2L2(µ) .
∑
R∈Top

θµ(BR)2µ(R),

and by Lemmas 2.8.1 and 2.8.2∣∣∣∣∣∣
∑

R,R′∈Top
〈KRµ,KR′µ〉µ

∣∣∣∣∣∣ .
∑
R∈Top

θµ(BR)2µ(R),

so
||Tµ||2L2(µ) .

∑
R∈Top

θµ(BR)2µ(R) . ||µ||+
∫∫ 1

0
βµ,2(x, r)θµ[B(x, r)]dr

r
dµ(x),

as desired.

2.10 The proof of Corollary 2.1.1

The key idea behind the proof is to use Volberg’s characterization of Lipschitz harmonic capacity [V,
Lemma 5.15], which states that

κ(E) ≈ supµ(E),

where the supremum is taken over all positive Borel measures µ supported on E such that µ[B(x, r)] ≤ rn

for all x ∈ Rn+1 and all r > 0 and such that the n-dimensional Riesz transform R with respect to µ is
bounded in L2(µ) with norm ≤ 1.

Then, to prove Corollary 2.1.1, let µ be a positive Borel measure supported on E satisfying (2.6).
Then, clearly µ[B(x, r)] ≤ rn for all x ∈ Rn+1 and all r > 0, and furthermore, applying Theorem 2.1.1,
we get that Rµ is bounded in L2(µ) and its norm is bounded by some absolute constant. Therefore,
for an appropriate multiple ν of µ we have that ν[B(x, r)] ≤ rn and ||Rν ||L2(ν)→L2(ν) ≤ 1, and so
µ(E) . ν(E) . κ(E), as desired.
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Chapter 3

The Riesz transform and
quantitative rectifiability for general
Radon measures

3.1 Introduction

In the work [NToV1] it was shown that, given an n-AD-regular measure µ in Rn+1, the L2(µ)-boundedness
of the n-dimensional Riesz transform implies the uniform n-rectifiability of µ. In the codimension 1 case,
this result solved a long standing problem raised by David and Semmes [DS1]. In the present chapter we
obtain a related quantitative result which is valid for general Radon measures in Rn+1 with polynomial
growth of order n. Our result turns out to be an essential tool for the solution of an old question on
harmonic measure which has appeared in a work by Azzam, Mourgoglou and Tolsa [AMT].

To state our main theorem in detail we need to introduce some notation and terminology. Let µ be
a Radon measure in Rn+1. For f ∈ L1

loc(µ) and A ⊂ Rn+1 with µ(A) > 0, we consider the µ-mean of f
over A

mµ,A(f) = −
∫
A

f dµ = 1
µ(A)

∫
A

f dµ.

Also, given a ball B ⊂ Rn+1 and an n-plane L in Rn+1, we denote

βLµ,1(B) = 1
r(B)n

∫
B

dist(x, L)
r(B) dµ(x),

where r(B) stands for the radius of B. In a sense, this coefficient measures how close the points from
supp(µ) are to the n-plane L in the ball B. We also set

Pµ(B) =
∑
j≥0

2−j θµ(2jB),

so Pµ(B) is some kind of smoothened version of the usual n-dimensional density of µ on B. Finally,
denote by K the n-dimensional Riesz kernel in Rn+1, that is,

K(x, y) = K(x− y) = x− y
|x− y|n+1

and by R the associated Riesz transform.

Our main theorem is the following:
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Theorem 3.1.1. Let µ be a Radon measure on Rn+1 and B ⊂ Rn+1 a ball so that the following conditions
hold:

(a) For some constant C0 > 0, C−1
0 r(B)n ≤ µ(B) ≤ C0 r(B)n.

(b) Pµ(B) ≤ C0, and µ(B(x, r)) ≤ C0 r
n for all x ∈ B and 0 < r ≤ r(B).

(c) There is some n-plane L passing through the centre of B such that for some 0 < δ � 1, it holds
βLµ,1(B) ≤ δ.

(d) RµbB is bounded in L2(µbB) with ‖RµbB‖L2(µbB)→L2(µbB) ≤ C1.

(e) For some constant 0 < ε� 1,∫
B

|Rµ(x)−mµ,B(Rµ)|2 dµ(x) ≤ ε µ(B).

Then there exists some constant τ > 0 such that if δ, ε are small enough (depending on C0 and C1), then
there is a uniformly n-rectifiable set Γ ⊂ Rn+1 such that

µ(B ∩ Γ ) ≥ τ µ(B).

The constant τ and the UR constants of Γ depend on all the constants above.

We remark that it is immediate to check that the condition (b) above holds, for example, if µ has
polynomial growth of order n (with constant C0). The statement in (b) which involves Pµ(B) is a little
more general and it is more convenient for applications. Finally, we warn the reader that in the case
that µ is not a finite measure, the statement (e) should be understood in the BMO sense: the fact that
Pµ(B) <∞ guarantees that Rµ(x)−mµ,B(Rµ) is correctly defined.

Note that, in particular, the theorem above ensures the existence of some piece of positive µ-measure
of B ∩ Γ where µ and the Hausdorff measure Hn are mutually absolutely continuous. This fact, which
at first sight may appear rather surprising, is one of the main difficulties for the proof of this result.

It is worth comparing Theorem 3.1.1 to Léger’s theorem on Menger curvature. Given three points
x, y, z ∈ R2, their Menger curvature is

c(x, y, z) = 1
R(x, y, z) ,

where R(x, y, z) is the radius of the circumference passing through x, y, z if they are pairwise different,
and c(x, y, z) = 0 otherwise. The curvature of µ is defined by

c2(µ) =
∫∫∫

c(x, y, z)2 dµ(x) dµ(y) dµ(z).

This notion was first introduced by Melnikov [M] when studying analytic capacity and, modulo an
“error term”, is comparable to the squared L2(µ)-norm of the Cauchy transform of µ (see [MeV]). One
of the main ingredients of the proof of Vitushkin’s conjecture for removable singularities for bounded
analytic functions by David [D2] is Léger’s theorem [L] (sometimes called also David-Léger theorem).
The quantitative version of this theorem asserts that if µ is a Radon measure in R2 with linear growth
and B is a ball such that µ(B) ≈ r(B) and furthermore c2(µbB) ≤ ε µ(B) for some small enough ε > 0,
then there exists some (possibly rotated) Lipschitz graph Γ ⊂ R2 such that µ(B ∩ Γ ) ≥ 9

10µ(B). In
particular, as in Theorem 3.1.1, it follows that a big piece of µbB is mutually absolutely continuous with
respect to H1 on some subset of Γ .
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In a sense, one can think that Theorem 3.1.1 is an analog for Riesz transforms of the quantitative
Léger theorem for Menger curvature. Indeed, the role of the assumption (e) in Theorem 3.1.1 is played
by the condition c2(µbB) ≤ ε µ(B). Furthermore, it is not difficult to check that this condition implies
that there exists some line L such that βLµ,1(B) ≤ δ µ(B), with δ = δ(ε) → 0 as ε → 0, as an analog to
the assumption (c) of Theorem 3.1.1.

On the other hand, from the theorem of Léger described above, it follows easily that ifH1(E) <∞ and
c2(H1bE) <∞, then E is 1-rectifiable. The analogous result in the codimension 1 case in Rn+1 (proved in
[NToV2]) asserts if E ⊂ Rn+1, Hn(E) <∞, HnbE has growth of order n, and ‖R(HnbE)‖L2(HnbE) <∞,
then E is n-rectifiable. However, as far as we know, this cannot be proved easily using Theorem 3.1.1.

The proof of Theorem 3.1.1 is substantially different from the one of Léger’s theorem: when estimating
the L2(µ)-norm of Rµ we are dealing with a singular integral and there may be cancellations among
different scales. Therefore, the situation is more delicate than in the case of the curvature c2(µ), which
is defined by a non-negative integrand (namely, the squared Menger curvature of three points).

To prove Theorem 3.1.1 we will apply some of the techniques developed in [ENV] and [NToV1].
In particular, by using a variational argument, we will estimate from below the L2(µ)-norm of the
Riesz transform of a suitable periodization of a smoothened version of the measure µ restricted to some
appropriate cube Q0. The assumption that βLµ,1(B) ≤ δ in (c) is necessary for technical reasons, and we
do not know if the theorem holds without this condition.

Finally, we are going to describe the aforementioned result on harmonic measure from [AMT] whose
proof uses Theorem 3.1.1 as an essential tool. For simplicity, we will only state it for domains Ω1, Ω2 ⊂
Rn+1 satisfying the condition

Hs∞((Rn+1 \Ωi) ∩B(x, r)) ≈ rs for all x ∈ ∂Ωi and 0 < r ≤ r0, (3.1)

for some fixed s ∈ (n− 1, n+ 1] and r0 > 0, where Hs∞ stands for the s-dimensional Hausdorff content.
For example, the so-called NTA domains introduced by Jerison and Kenig [JK] satisfy this condition,
and also the simply connected domains in the plane.

Theorem 3.1.2 (Azzam, Mourgoglou, Tolsa). Let Ω1, Ω2 ⊆ Rn+1, n ≥ 2, be two disjoint connected
domains with ∂Ω1 = ∂Ω2 so that (3.1) holds. For i = 1, 2, let ωi = ωxiΩi be the respective harmonic
measures with poles at xi ∈ Ωi, and let E ⊂ ∂Ω1 be a Borel set. If ω1 � ω2 � ω1 on E, then E contains
an n-rectifiable subset F with ω1(E \ F ) = ω2(E \ F ) = 0 where ω1 and ω2 are mutually absolutely
continuous with respect to Hn.

Up to now, this result was known only in the case when Ω1, Ω2 are planar domains, by results of
Bishop, Carleson, Garnett and Jones [BCGJ] and Bishop [B1], and it was an open problem to extend it
to higher dimensions (see Conjecture 8 in [B2]). For a partial result in the higher dimensional case, see
the nice work [KPT] by Kenig, Preiss, and Toro.

3.2 The Main Lemma

3.2.1 Preliminaries and statement of the Main Lemma

Given two Radon measures µ and σ and a cube Q ⊂ Rn+1, we set

dQ(µ, σ) = sup
f

∫
f d(µ− σ),
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where the supremum is taken over all 1-Lipschitz functions supported on Q. Given an n-plane L in Rn+1,
we denote

αLµ(Q) = 1
`(Q)n+1 inf

c≥0
dQ(µ, cHnbL).

We say that Q has t-thin boundary with respect to µ if, for some constant t > 0,

µ ({x ∈ 2Q : dist(x, ∂Q) ≤ λ `(Q)}) ≤ t λ µ(2Q) for all λ > 0.

It is well known that for any given cube Q0 ⊂ Rn+1 and any constant a > 1, there exists another cube
Q with t-thin boundary such that Q0 ⊂ Q ⊂ aQ0, with t depending just on n and a. For the proof, we
refer the reader to Lemma 9.43 of [T6], for example.

Main Lemma 3.2.1. Let n ≥ 1 and let C0, C1 > 0 be two arbitrary constants. Then, there exist
constants A = A(C0, C1, n) > 10 big enough and ε = ε(C0, C1, n) > 0 small enough such that if δ =
δ(A,C0, C1, n) > 0 is small enough, the following holds: let µ be a Radon measure in Rn+1 and Q0 ⊂ Rn+1

a cube centered at the origin satisfying the following properties:

(a) µ(Q0) = `(Q0)n.

(b) Pµ(AQ0) ≤ C0.

(c) For all x ∈ 2Q0 and 0 < r ≤ `(Q0), θµ(B(x, r)) ≤ C0.

(d) Q0 has C0-thin boundary.

(e) αHµ (3AQ0) ≤ δ, where H = {x ∈ Rn+1 : xn+1 = 0}.

(f) Rµb2Q0
is bounded in L2(µb2Q0) with ‖Rµb2Q0

‖L2(µb2Q0 )→L2(µb2Q0 ) ≤ C1.

(g)
∫
Q0

|Rµ(x)−mµ,Q0(Rµ)|2 dµ(x) ≤ ε µ(Q0).

Then, there exists some constant τ > 0 and a uniformly n-rectifiable set Γ ⊂ Rn+1 such that

µ(Q0 ∩ Γ ) ≥ τ µ(Q0).

Furthermore, the constant τ and the UR constants of Γ depend on all the constants above.

Note that condition (c) in the Main Lemma implies that µ(2Q0) . C0 µ(Q0).

3.2.2 Reduction of Theorem 3.1.1 to the Main Lemma

Assume that the Main Lemma is proved. Then, in order to prove Theorem 3.1.1 it is enough to show the
following:

Lemma 3.2.2. Let µ and B ⊂ Rn+1 satisfy the assumptions of Theorem 3.1.1 with constants C0, C1, δ,
and ε. For all A′ ≥ 10 and all δ′, ε′ > 0, if δ and ε are small enough, there exists a cube Q0 satisfying:

(a) A′Q0 ⊂ B and dist(A′Q0, ∂B) ≥ C ′−1
0 r(B), with C ′0 depending only on C0 and n.

(b) For some constant γ = γ(δ′) > 0, γ r(B) ≤ `(Q0) ≤ A′−1 r(B).

(c) µ(Q0) ≥ C ′−1
0 `(Q0)n.

(d) Q0 has C ′0-thin boundary.
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(e) αLµ(3A′Q0) ≤ δ′, where L is some n-plane that passes through the centre of Q0 and is parallel to
one of its faces.

(f)
∫
Q0

|Rµ(x)−mµ,Q0(Rµ)|2 dµ(x) ≤ ε′ µ(Q0).

Before proving this lemma, we show how it is used to reduce Theorem 3.1.1 to the Main Lemma 3.2.1.

Proof of Theorem 3.1.1 using Lemma 3.2.2 and the Main Lemma 3.2.1. Let B ⊂ Rn+1 be a
ball satisfying the assumptions of Theorem 3.1.1 with constants C0, C1, δ, and ε. Let Q0 be the cube
given by Lemma 3.2.2, for some constants A′ ≥ 10 and δ′, ε′ > 0 to be fixed below. We just have to check
that the assumptions (a)-(g) of the Main Lemma are satisfied by the measure

µ̃ = `(Q0)n

µ(Q0) µ

if A′ is big enough and δ′, ε′ are small enough.

Obviously, the assumption (a) from the Main Lemma is satisfied by µ̃. To show that (b) holds (with
a constant that may differ from C0), note first that

`(Q0)n

µ(Q0) ≈ 1, (3.2)

with the implicit constant depending on C0 and C ′0. Indeed, from the assumption (c) in Theorem 3.1.1,
µ(Q0) . C0`(Q0)n, and by (c) in Lemma 3.2.2, µ(Q0) ≥ C ′−1

0 `(Q0)n. Then, we have

P
µ̃
(A′Q0) . Pµ(A′Q0) =

∑
j≥0:2jA′Q0⊂B:

2−jθµ(2jA′Q0) +
∑

j≥0:2jA′Q0 6⊂B:

2−jθµ(2jA′Q0).

The first sum on the right hand side does not exceed C C ′0 because θµ(2jA′Q0) . C0 for all cubes 2jA′Q0

contained in B. Also, one can check that the last sum is bounded by C Pµ(B) because `(2A′jQ0) & r(B)
for all j’s in this sum, taking into account that dist(A′Q0, ∂B) ≥ C ′−1

0 r(B).

The assumptions (d)-(e) in the Main Lemma are obviously satisfied too because of (3.2) and the
analogous conditions in Lemma 3.2.2, with some different constants C ′′0 , δ′′, ε′′ replacing C0, δ, ε.

3.2.3 The proof of Lemma 3.2.2

We identify Rn with the horizontal n-plane H = {x ∈ Rn+1 : xn+1 = 0} below. Then, given a measure
σ in Rn and a cube Q ∈ Rn, we denote

αRn
σ (Q) = 1

`(Q)n+1 inf
c≥0

dQ(σ, cHn|Rn), (3.3)

where the infimum is taken over all constants c > 0. Note that

αRn
σ (Q) ≈ αHσ (Q̂),

where Q̂ = Q × [−`(Q)/2, `(Q)/2]. This follows easily from the fact that any 1-Lipschitz function in Q

can be extended to a C-Lipschitz function on Q̂, with C . 1.

We need a couple of auxiliary results. The first one is the following:

Lemma 3.2.3. Suppose that σ is some finite measure supported on Rn such that dσ(x) = ρ(x) dx, with
‖ρ‖∞ <∞. Then, for every R ∈ D(Rn) we have∑

Q∈D(Rn):Q⊂R

αRn
σ (3Q)2`(Q)n . ‖ρ‖2

∞`(R)n,

where D(Rn) stands for the family of the usual dyadic cubes in Rn.
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This lemma can be proved by arguments that are similar to the ones used in [T5] to show that the
analogous estimate holds for Lipschitz graphs. Alternatively, it can be thought of as a corollary of that
result for the case where the Lipschitz graph is just a horizontal n-plane, using the auxiliary AD-regular
measure σ̃ = 2‖ρ‖∞Hn|Rn + σ and taking into account that αRn

σ (Q) = αRn
σ̃

(Q) for any cube Q ⊂ Rn.

The second auxiliary result we need is the next one:

Lemma 3.2.4. Let σ be some finite measure in Rn and R ∈ D(Rn) such that

σ(Q) ≤ C2`(Q)n

for all cubes Q ∈ D(Rn) with `(Q) ≥ `0. Then, for every R ∈ D(Rn) we have∑
Q∈D(Rn):Q⊂R

`(Q)≥`0

αRn
σ (3Q)2`(Q)n . C2

2`(R)n.

Proof. Let ϕ(x) = m(B(0, `0))−1 χB(0,`0)(x). Consider the function ρ = ϕ∗σ and the measure dν = ρ dx.
We have ‖ρ‖∞ . C2, since for all x ∈ Rn

ρ(x) = 1
m(B(0, `0))

∫
ϕ(x− y) dσ(y) = σ(B(x, `0))

m(B(x, `0)) . C2.

Let us check that

dist3Q(ν, σ) . C2`0`(Q)n for any cube Q with `(Q) ≥ `0. (3.4)

For any 1-Lipschitz function f supported on 3Q, we have∣∣∣∣∫ f dν −
∫
f dσ

∣∣∣∣ =
∣∣∣∣∫ f (ϕ ∗ σ) dx−

∫
f dσ

∣∣∣∣ =
∣∣∣∣∫ f ∗ ϕdσ −

∫
f dσ

∣∣∣∣.
Since f is 1-Lipschitz we have

|f(x)− f ∗ ϕ(x)| =
∣∣∣∣∫
y∈B(x,`0)

(
f(x)− f(y)

)
ϕ(x− y) dy

∣∣∣∣ ≤ ∫ `0 ϕ(x− y) dy = `0.

Thus, ∣∣∣∣∫ f dν −
∫
f dσ

∣∣∣∣ . `0σ(6Q) . C2`0`(Q)n,

since supp(f) ∪ supp(f ∗ ϕ) ⊂ 6Q, and so (3.4) holds.

From (3.4) we infer that

αRn
σ (3Q) . αR

n

ν (Q) + C2
`0

`(Q) ,

and by Lemma 3.2.3,

∑
Q∈D(Rn):Q⊂R

`(Q)≥`0

αRn
σ (3Q)2`(Q)n .

∑
Q∈D(Rn):Q⊂R

`(Q)≥`0

(
αRn
ν (3Q)2 + C2

2
`2

0
`(Q)2

)
`(Q)n . C2

2 `(R)n.
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Proof of Lemma 3.2.2. Let µ and B be as in Theorem 3.1.1. By a suitable translation and rotation
we may assume that the n-plane L from Theorem 3.1.1 coincides with the horizontal n-plane H = {x ∈
Rn+1 : xn+1 = 0} and that B = B(0, r0). Our first objective consists in finding an auxiliary cube R0

contained in B, centered in H, and far from ∂B, so that µ(R0) ≈ µ(B). The cube Q0, to be chosen later,
will be an appropriate cube contained in R0.

To find R0, for some constant 0 < d < 1/10 to be fixed below, we consider a grid Q of n-dimensional
cubes with side length 2d r0 in H, so that they cover H and have disjoint interiors. We also consider the
family of (n+ 1)-dimensional cubes

Q̂ = {Q× [−d r0, d r0] : Q ∈ Q},

so that the union of the cubes from Q̂ conforms the strip

V = {x ∈ Rn+1 : dist(x,H) ≤ d r0}.

For any constant 0 < a < 1 we have

µ
(
B \ (aB ∩ V )

)
≤

∑
P∈Q̂:

P∩(B\aB)6=∅

µ(P ∩B) + µ

(
B \

⋃
P∈Q̂

P

)
:= S1 + S2.

To bound S1 we use the growth condition of order n of µbB :

S1 .C0

∑
P∈Q̂:

P∩(B\aB)6=∅

`(P )n . Hn
(
H ∩A

(
0, (a− n1/22d)r0, (1 + n1/22d)r0

))
.C0 (d+ 1− a)rn0 .

To estimate S2 we use the fact that the distance from the points x ∈ B \
⋃
P∈Q̂ P to H is larger than dr0

and apply Chebyshev’s inequality:

S2 ≤
∫
B

dist(x,H)
d r0

dµ(x) = 1
d
βHµ,1(B) rn0 .

Then, we obtain

µ
(
B \ (aB ∩ V )

)
≤ C(C0)

(
(d+ 1− a) + 1

d
βHµ,1(B)

)
µ(B).

We take now d and a so that

10(n+ 1)1/2d = (1− a) = 1
10C(C0) ,

and we assume
βHµ,1(B) ≤ δ ≤ d

10C(C0) = 1
10(n+ 1)1/2(10C(C0))2 ,

so that µ
(
B \ (aB ∩V )

)
≤ 3

10 µ(B). Now we choose R0 to be a cube from Q̂ which intersects aB ∩V and
has maximal µ-measure. Obviously,

µ(R0) ≈C0 µ(aB ∩ V ) ≈C0 µ(B),

and since diam(R0) = 2(n+ 1)1/2d r0 = 1−a
5 r0, it follows that

dist(2R0, ∂B) ≈C0 (1− a)r0 ≈C0 r0.
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The cube Q0 we are looking for will be an appropriate cube contained in R0. To find it, first we
consider the thin strip

Vδ =
{
x ∈ Rn+1 : dist(x,H) ≤ δ1/2r0

}
.

Observe that
µ(B \ Vδ) ≤

∫
B

dist(x,H)
δ1/2r0

dµ(x) =
βHµ,1(B)
δ1/2 rn0 .C0 δ

1/2 µ(B). (3.5)

Denote by Π the orthogonal projection on H and consider the measure σ = Π#(µ|Vδ). Since Vδ has
width 2δ1/2, from the growth condition (b) in Theorem 3.1.1, it follows that σ(Q) .C0 `(Q)n for any
cube Q centered on H with `(Q) ≥ δ1/2 r0.

Assume without loss of generality that R0 is a dyadic cube. Then, by Lemma 3.2.4,∑
Q∈D(Rn,R0)
`(Q)≥δ1/2r0

αRn
σ (3Q)2`(Q)n .C0 `(R0)n,

where D(Rn, R0) stands for the family of dyadic cubes in Rn contained in R0. From this inequality, it
easily follows that, for any constant A′ > 10,∑

Q∈D(Rn,R0):`(A′Q)≤`(R0)
`(Q)≥δ1/(4n+1)r0

αRn
σ (4A′Q)2`(Q)n .C0,A′ `(R0)n.

Note that we have used the fact that δ1/(4n+1) > δ1/2.

Since the number of dyadic generations between the largest cubes Q ∈ D(Rn) with `(A′Q) ≤ `(R0)
and the smallest ones with side length `(Q) ≥ δ1/(4n+1)r0 is comparable to

log2
C(A′)`(R0)
δ1/(4n+1)r0

≈ log2
C(A′, C0)
δ1/(4n+1) ,

we infer that there exists some intermediate generation j such that∑
Q∈Dj(Rn,R0):`(A′Q)≤`(R0)

αRn
σ (4A′Q)2`(Q)n .C0,A′

1
log2

C(A′,C0)
δ1/(4n+1)

`(R0)n.

Thus, for any δ′ > 0, if δ is small enough, we derive∑
Q∈Dj(Rn,R0):
`(A′Q)≤`(R0)

αRn
σ (4A′Q)2 σ(Q) ≤ C(C0)

∑
Q∈Dj(Rn,R0):
`(A′Q)≤`(R0)

αRn
σ (4A′Q)2`(Q)n ≤ δ′2

50 σ(R0).

Denote by G the subfamily of cubes from Dj(Rn, R0) such that θσ(Q) ≥ 1
2 θσ(R0). Observe that∑

Q∈Dj(Rn,R0)\G

σ(Q) ≤ 1
2 θσ(R0)

∑
Q∈Dj(Rn,R0)\G

`(Q)n ≤ 1
2 θσ(R0) `(R0)n = 1

2 σ(R0).

Hence,
∑
Q∈G σ(Q) ≥ 1

2 σ(R0), and so∑
Q∈G

αRn
σ (4A′Q)2 σ(Q) ≤ δ′2

50 σ(R0) ≤ δ′2

25 σ
( ⋃
Q∈G

Q

)
.

Therefore, we obtain that there exists some cube Q ∈ G such that αRn
σ (4A′Q) ≤ δ′

5 .

Denote Q̂ = Q× [−`(Q)/2, `(Q)/2]. Now we wish to bound αHµ (4A′Q̂) in terms of αRn
σ (4A′Q). Let cH

be the constant that minimizes the infimum in the definition of αRn
σ (4A′Q) in (3.3). Given any 1-Lipschitz

function f supported on 4A′Q̂ we have∣∣∣∣∫ f d(µ− cH Hn|H)
∣∣∣∣ ≤ ∫

4A′Q̂\Vδ
|f | dµ+

∣∣∣∣∫ f d(µ|Vδ − σ)
∣∣∣∣+
∣∣∣∣∫ f d(σ − cH Hn|H)

∣∣∣∣ =: I1 + I2 + I3.
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By (3.5), and using also the fact that `(Q) ≥ δ1/(4n+4)r0, we have

I1 ≤ ‖f‖∞ µ(B \ Vδ) .C0 δ
1/2 `(4A′Q)µ(B) .C0,A′ δ

1/2 `(Q) rn0 .C0,A′ δ
1/4 `(Q)n+1.

We deal with I2 now: by the definition of σ and the Lipschitz condition on f , we get

I2 =
∣∣∣∣∫

4A′Q̂
f(x)− f(Π(x)) dµ|Vδ(x)

∣∣∣∣
≤
∫

4A′Q̂
dist(x,H) dµ|Vδ(x) ≤ βµ,1(B) rn+1

0 ≤ δ rn+1
0 ≤ δ3/4 `(Q)n+1.

Finally, concerning I3, we have

I3 ≤ αRn
σ (4A′Q) `(4A′Q)n+1 ≤ δ′

5 `(4A′Q)n+1.

Gathering the estimates obtained for I1, I2, I3 and choosing δ small enough we obtain∣∣∣∣∫ f d(µ− cH Hn|H)
∣∣∣∣ ≤ δ′

2 `(4A′Q)n+1,

and thus αHµ (4A′Q̂) ≤ δ′

2 .

Finally, we choose Q0 to be a cube with thin boundary such that Q̂ ⊂ Q0 ⊂ 1.1Q̂. Since 3A′Q0 ⊂ 4A′Q̂
and `(3A′Q0) ≈ `(4A′Q̂), we get that αHµ (3A′Q0) . αHµ (4A′Q̂) . δ′. Then, it is easy to check that Q0

satisfies all the properties (a)-(e) by construction, while regarding (f), we have∫
Q0

|Rµ(x)−mµ,Q0(Rµ)|2 dµ(x) ≤ 2
∫
Q0

|Rµ(x)−mµ,B(Rµ)|2 dµ(x)

≤ 2 ε µ(B) ≈C0,δ ε µ(Q0).

Thus, if ε is small enough, (f) holds.

3.3 The Localization Lemma

We assume that the hypotheses of the Main Lemma 3.2.1 hold. Below we allow all the constants denoted
by C and all the implicit constants in the relations . and ≈ to depend on the constants C0 and C1 in
the Main Lemma (but not on A, δ or ε).

Recall that we denote by H the horizontal hyperplane {x ∈ Rn+1 : xn+1 = 0}. Also we let cH be
some constant that minimizes the infimum in the definition of αHµ (3AQ0) and we denote LH = cH HnbH .

Lemma 3.3.1. If δ is small enough (depending on A), then we have cH ≈ 1 and µ(AQ0) . Anµ(Q0).

Proof. Let ϕ be a non-negative C1 function supported on 2Q0 which equals 1 on Q0 and satisfies ‖∇ϕ‖∞ .

1/`(Q0). Then, we have∣∣∣∣∫ ϕd(µ− LH)
∣∣∣∣ ≤ ‖∇ϕ‖∞ `(3AQ0)n+1 αHµ (3AQ0) . An+1 δ `(Q0)n. (3.6)

Note that the left hand side above equals∣∣∣∣∫ ϕdµ− cH
∫
H

ϕdHn
∣∣∣∣ = |c1 − cH |

∫
H

ϕdHn,
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with
c1 =

∫
ϕdµ∫

H
ϕdHn

≈ 1,

since
µ(Q0) ≤

∫
ϕdµ ≤ µ(2Q0) . C0 `(2Q0)n . C0 µ(Q0),

and trivially ∫
H

ϕdHn ≈ `(Q0)n.

Then, from (3.6) we obtain that

|c1 − cH | . An+1 δ
`(Q0)n∫
H
ϕdHn

. An+1 δ.

The right hand side is � 1 ≈ c1 if δ is small enough (depending on A), and so we infer that

cH ≈ c1 ≈ 1.

In order to estimate µ(AQ0), we take another auxiliary non-negative C1 function ϕ̃ supported on
3AQ0 which equals 1 on AQ0 and satisfies ‖∇ϕ̃‖∞ . 1/`(AQ0). Then, we have

µ(AQ0) ≤
∫
ϕ̃ dµ

≤
∣∣∣∣∫ ϕ̃ d(µ− LH)

∣∣∣∣+
∫
ϕ̃ dLH

. ‖∇ϕ̃‖∞ `(3AQ0)n+1 αHµ (3AQ0) + cH`(3AQ0)n

. An δ `(Q0)n + `(3AQ0)n . An `(Q0)n.

Lemma 3.3.2 (Localization Lemma). If δ is small enough (depending on A), then we have∫
Q0

|RµχAQ0 |2 dµ .

(
ε+ 1

A2 +A2n+1δ1/(8n+8)
)
µ(Q0).

Proof. Note first that, by standard estimates, for x, y ∈ Q0, we have∣∣Rµχ(AQ0)c(x)−Rµχ(AQ0)c(y)
∣∣ . ∫

(AQ0)c

|x− y|
|x− z|n+1 dµ(z)

.
|x− y|
`(AQ0) Pµ(AQ0) . 1

A
Pµ(AQ0) . 1

A
,

taking into account the assumption (b) of the Main Lemma 3.2.1 for the last inequality. As a consequence,∣∣Rµχ(AQ0)c(x)−mµ,Q0(Rµχ(AQ0)c)
∣∣ . 1

A
,

and so ∫
Q0

∣∣Rµχ(AQ0)c(x)−mµ,Q0(Rµχ(AQ0)c)
∣∣2dµ(x) . 1

A2 µ(Q0).

Together with the assumption (g) in the Main Lemma 3.2.1, this gives∫
Q0

|RµχAQ0 −mµ,Q0(RµχAQ0)|2 dµ ≤ 2
∫
Q0

∣∣Rµ−mµ,Q0(Rµ)
∣∣2dµ

+ 2
∫
Q0

∣∣Rµχ(AQ0)c −mµ,Q0(Rµχ(AQ0)c)
∣∣2dµ

. ε µ(Q0) + 1
A2 µ(Q0).
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Hence, to conclude the proof of the lemma it suffices to show that∣∣mµ,Q0(RµχAQ0)
∣∣ . C(A)δ1/4(n+1)2

,

which is equivalent to ∣∣mµ,Q0(RµχAQ0\Q0)
∣∣ ≤ C(A)δ1/4(n+1)2

. (3.7)

since, by the antisymmetry of the Riesz kernel, we have mµ,Q0(RµχQ0) = 0.

To prove (3.7), we take first some small constant 0 < κ < 1/10 to be fixed below. We let ϕ be some
C1 function which equals 1 on (1− κ)AQ0 \ (1 + κ)Q0 and vanishes out of AQ0 \ (1 + κ

2 )Q0, so that ϕ is
even and, furthermore ‖∇ϕ‖∞ . (κ `(Q0))−1. Then we split∣∣∣∣∫

Q0

RµχAQ0\Q0 dµ

∣∣∣∣ ≤ ∫
Q0

∣∣Rµ(χAQ0\Q0 − ϕ)
∣∣ dµ+

∣∣∣∣∫
Q0

Rµϕdµ
∣∣∣∣ . (3.8)

To bound the first integral on the right hand side note that χAQ0\Q0 − ϕ = ψ1 + ψ2, with

|ψ1| ≤ χAQ0\(1−κ)AQ0 and |ψ2| ≤ χ(1+κ)Q0\Q0 .

Then, we have∫
Q0

∣∣Rµ(χAQ0\Q0 − ϕ)
∣∣ dµ ≤ ∫

Q0

∣∣Rµψ1
∣∣ dµ+

∫
Q0

∣∣Rµψ2
∣∣ dµ

≤ ‖Rµψ1‖L∞(µbQ0 ) µ(Q0) + ‖Rµψ2‖L2(µbQ0 ) µ(Q0)1/2.

Since dist(supp(ψ1), Q0) ≈ A`(Q0), we have

‖Rµψ1‖L∞(µbQ0 ) .
1

(A`(Q0))n ‖ψ1‖L1(µ) ≤
1

(A`(Q0))n µ(AQ0 \ (1− κ)AQ0).

On the other hand, since Rµ is bounded in L2(µb(1+κ)Q0), by the assumption (d) in the Main Lemma
3.2.1, and by the thin boundary property of Q0 (in combination with the fact that µ(2Q0) ≈ µ(Q0)), we
get

‖Rµψ2‖L2(µbQ0 ) ≤ C1‖ψ2‖L2(µ) ≤ C1 µ((1 + κ)Q0 \Q0)1/2 ≤ C(C0, C1)κ1/2 µ(Q0)1/2.

Therefore, ∫
Q0

∣∣Rµ(χAQ0\Q0 − ϕ)
∣∣ dµ .

1
An

µ(AQ0 \ (1− κ)AQ0) + κ1/2µ(Q0). (3.9)

In order to estimate µ(AQ0 \ (1− κ)AQ0) we will use the fact that αHµ (3AQ0) ≤ δ. To this end, first
consider a function ϕ̃ supported on A(1 + κ)Q0 \ (1− 2κ)AQ0 which equals 1 on AQ0 \ (1− κ)AQ0, with
‖∇ϕ̃‖∞ . 1/(Aκ`(Q0)). Then, we have

µ(AQ0 \ (1− κ)AQ0) ≤
∫
ϕ̃ dµ (3.10)

≤
∣∣∣∣∫ ϕ̃ d(µ− LH)

∣∣∣∣+
∫
ϕ̃ dLH

≤ ‖∇ϕ̃‖∞ `(3AQ0)n+1 αHµ (3AQ0) + LH
(
(1 + κ)AQ0 \ (1− 2κ)AQ0

)
.

(
An

κ
δ + κAn

)
`(Q0)n,

where we used the estimate for cH in Lemma 3.3.1 for the last inequality. Hence, plugging this estimate
into (3.9) we obtain∫

Q0

∣∣Rµ(χAQ0\Q0 − ϕ)
∣∣ dµ .

(
1
κ
δ + κ+ κ1/2

)
µ(Q0) .

(
δ

κ
+ κ1/2

)
µ(Q0). (3.11)
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It remains to estimate the last summand in the inequality (3.8). To this end, we write∣∣∣∣∫
Q0

Rµϕdµ
∣∣∣∣ ≤ ∣∣∣∣∫

Q0

Rµϕd(µ− LH)
∣∣∣∣+
∣∣∣∣∫
Q0

R(ϕµ− ϕLH) dLH
∣∣∣∣ (3.12)

+
∣∣∣∣∫
Q0

R(ϕLH) dLH
∣∣∣∣

= T1 + T2 + T3.

Since ϕ is even, by the antisymmetry of the Riesz kernel it easily follows that T3 = 0. To deal with
T1, consider another auxiliary function ϕ̂ supported on Q0 which equals 1 on (1− κ̂)Q0, for some small
constant 0 < κ̃ < κ, so that ‖∇ϕ̂‖∞ . 1/(κ̂`(Q0)). Then, we write

T1 ≤
∣∣∣∣∫ ϕ̂Rµϕd(µ− LH)

∣∣∣∣+
∣∣∣∣∫ (χQ0 − ϕ̂)Rµϕd(µ− LH)

∣∣∣∣ = T1,a + T1,b.

To estimate T1,a we set

T1,a ≤ ‖∇(ϕ̂Rµϕ)‖∞`(3AQ0)n+1 αHµ (3AQ0).

We write
‖∇(ϕ̂Rµϕ)‖∞ ≤ ‖∇(Rµϕ)‖∞,Q0 + ‖∇ϕ̂‖∞ ‖Rµϕ)‖∞,Q0 .

Since dist(suppϕ,Q0) ≥ κ
4 `(Q0) and µ(AQ0) . `(AQ0)n (by Lemma 3.3.1), we have

‖Rµϕ‖∞,Q0 .
µ(AQ0)

(κ`(Q0))n .
An

κn
,

and, analogously,

‖∇(Rµϕ)‖∞,Q0 .
µ(AQ0)

(κ`(Q0))n+1 .
An

κn+1`(Q0) .

Hence,
‖∇(ϕ̂Rµϕ)‖∞ .

An

κn+1`(Q0) + An

κ̂κn`(Q0) .
An

κ̂ κn`(Q0) ,

and so, we have

T1,a .
A2n+1

κ̂ κn
δ µ(Q0).

We consider now the term T1,b. We write

T1,b ≤ ‖χQ0 − ϕ̂‖L1(µ+LH) ‖Rµϕ‖∞,Q0 .

Recall that ‖Rµϕ‖∞,Q0 . An

κn . Also, by the construction of ϕ̂ and the thin boundary property of Q0,

‖χQ0 − ϕ̂‖L1(µ+LH) . µ(Q0 \ (1− κ̂)Q0) + LH(Q0 \ (1− κ̂)Q0) . κ̂ µ(Q0).

Then, we obtain
T1,b ≤

An

κn
κ̂ µ(Q0).

Thus,

T1 .

(
A2n+1

κn κ̂
δ + An

κn
κ̂

)
µ(Q0).

Choosing κ̂ = δ1/2, say, we get

T1 .

(
A2n+1

κn
+ An

κn

)
δ1/2 µ(Q0) ≤ A2n+1

κn
δ1/2 µ(Q0).
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Finally, we turn our attention to T2. By Fubini, we have

T2 =
∣∣∣∣∫ R(χQ0LH)ϕd(µ− LH)

∣∣∣∣ ≤ ‖∇(R(χQ0LH)ϕ
)
‖∞ `(3AQ0)n+1 αHµ (3AQ0).

Observe that

‖∇
(
R(χQ0LH)ϕ

)
‖∞ ≤ ‖∇

(
R(χQ0LH)‖∞,suppϕ + ‖R(χQ0LH)

)
‖∞,suppϕ‖∇ϕ‖∞.

Using the fact that dist(suppϕ,Q0) ≥ κ
2 `(Q0), we derive

‖R(χQ0LH)
)
‖∞,suppϕ .

LH(Q0)
(κ`(Q0))n .

1
κn

and
‖∇
(
R(χQ0LH)‖∞,suppϕ .

LH(Q0)
(κ`(Q0))n+1 .

1
κn+1`(Q0) ,

so we obtain
T2 .

An+1

κn+1 δ µ(Q0).

Gathering the estimates for T1 and T2, by (3.12) we infer∣∣∣∣∫
Q0

Rµϕdµ
∣∣∣∣ . A2n+1

κn
δ1/2 µ(Q0) + An+1

κn+1 δ µ(Q0) . A2n+1

κn+1 δ1/2 µ(Q0).

Plugging this estimate and (3.11) into (3.8), we obtain∣∣∣∣∫
Q0

RµχAQ0\Q0 dµ

∣∣∣∣ . ( δκ + κ1/2
)
µ(Q0) + A2n+1

κn+1 δ1/2 µ(Q0)

.

(
A2n+1

κn+1 δ1/2 + κ1/2
)
µ(Q0),

so if we choose κ = δ1/(4n+4), we get∣∣∣∣∫
Q0

RµχAQ0\Q0 dµ

∣∣∣∣ . (A2n+1 δ1/4 + δ1/(8n+8)
)
µ(Q0) . A2n+1δ1/(8n+8) µ(Q0),

which yields (3.7) and finishes the proof of the lemma.

From now on we will assume that δ is small enough, depending on A, so that the conclusion in the
preceding lemma holds.

3.4 The low density cells and the stopping cells

We consider the measure σ = µbQ0 and the associated dyadic lattice D = Dσ introduced in Section 2.3
(re-scaled appropriately, so that we can assume that Q0 is a cell from Dσ). In what follows, we allow
all the constants denoted by C and all the implicit constants in the relations . and ≈ to depend on the
constants A0 and K0 from the construction of the lattice Dσ.

Let 0 < θ0 < 1 be a very small constant to be fixed later. We denote by LD the family of those cells
Q from Dσ such that θσ(3.5BQ) ≤ θ0 and have maximal side length. The main difficulty for the proof of
the Main Lemma 3.2.1 consists in showing that the following holds.

Key Lemma 3.4.1. There exists some constant ε0 > 0 such that if A is big enough and θ0, δ, ε are
small enough (with δ possibly depending on A), then

µ

( ⋃
Q∈LD

Q

)
≤ (1− ε0)µ(Q0).
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The proof of this result will be carried out along the next sections of this paper. To do so, we will
assume from now on that

µ

( ⋃
Q∈LD

Q

)
> (1− ε0)µ(Q0) (3.13)

and we will get a contradiction for ε0 small enough. To this end, first of all we need to construct another
family of stopping cells which we will denote by Stop. This family is defined as follows: for each Q ∈ LD,
we consider the family of maximal cells contained in Q from Ddbσ (so they are doubling) with side length
at most t `(Q), where 0 < t < 1 is some small parameter which will be fixed below. We denote this family
by Stop(Q). Then, we define

Stop =
⋃
Q∈LD

Stop(Q).

Note that, by Lemma C, it is immediate that, for each Q ∈ LD, the cells from Stop(Q) cover µ-almost
all Q. Therefore, the assumption (3.13) is equivalent to

µ

( ⋃
Q∈Stop

Q

)
> (1− ε0)µ(Q0)

We need the following auxiliary result:

Lemma 3.4.2. If we choose t = θ
1

n+1
0 , then for all Q ∈ Stop

θµ(2BQ) ≤ Pµ(2BQ) . θ
1

n+1
0 .

Proof. Let Q ∈ Stop and R ∈ LD such that Q ⊂ R. The first inequality in the lemma is trivial, so we only
have to prove the second one. Let R′ ∈ Dσ the maximal cell such that Q ⊂ R′ ⊂ R with `(R′) ≤ t `(R),
so that `(R′) ≈ t `(R). Then, we write

Pµ(2BQ) .
∑

P∈Dσ:Q⊂P⊂R′
θµ(2BP ) `(Q)

`(P ) +
∑

P∈Dσ :R′⊂P⊂R
θµ(2BP ) `(Q)

`(P )

+
∑

P∈Dσ :R⊂P⊂Q0

θµ(2BP ) `(Q)
`(P ) +

∑
k≥1

θµ(2kQ0) `(Q)
`(P )

= S1 + S2 + S3 + S4.

To deal with the sums S1 and S2, note that for all P ⊂ R, since 2BP ⊂ 2BR (assuming A0 to be big
enough), we have

θµ(2BP ) = µ(2BP )
r(2BP )n ≤

µ(2BR)
r(2BP )n = θµ(2BR) r(R)n

r(BP )n ≈ θµ(2BR) `(R)n

`(P )n .

Therefore, since θµ(2BR) . θ0 and all the cells P appearing in S2 satisfy `(P ) ≥ t `(R), we infer that all
such cells satisfy θµ(2BP ) . 1

tn θµ(2BR) . θ0
tn , and thus

S2 .
1
tn
θµ(2BR) . θ0

tn
.

Also, since there are no µ-doubling cells between R′ and Q, from Lemma E we obtain that

θµ(2BQ) . θµ(2BR′) .
1
tn
θµ(2BR) . θ0

tn
,

and therefore we also get
S1 .

θ0

tn
.
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For the cells P in the sum S3, we just take into account that θµ(2BP ) . 1, and then we get

S3 .
∑

P∈Dσ :R⊂P⊂Q0

`(Q)
`(P ) .

`(Q)
`(R) . t.

Finally, regarding the sum S4, note that

S4 = `(Q)
`(Q0)

∑
k≥1

θµ(2kQ0) `(Q0)
`(P ) = `(Q)

`(Q0) Pµ(Q0) . `(Q)
`(Q0) . t.

Hence,
Pµ(2BQ) . θ0

tn
+ t ≈ θ

1
n+1
0 ,

recalling that t = θ
1

n+1
0 .

From now on, we will assume that we have chosen t = θ
1

n+1
0 , so that the conclusion of the preceding

lemma holds.

The family Stop may consist of an infinite number of cells. For technical reasons, it is convenient
to consider a finite subfamily of Stop which contains a very big proportion of the µ-measure of Stop.
Therefore, we let Stop0 be a finite subfamily of Stop such that

µ

( ⋃
Q∈Stop0

Q

)
> (1− 2ε0)µ(Q0).

We denote by Bad the family of the cells P ∈ Stop such that 1.1BP ∩ ∂Q0 6= ∅.

Lemma 3.4.3. We have

µ

( ⋃
Q∈Bad

Q

)
. θ

1/(n+1)
0 µ(Q0).

Proof. Let I ⊂ Bad an arbitrary finite family of bad cells. We apply Vitali’s covering theorem of triple
balls to the family {1.15BQ}Q∈I , so that we get a subfamily J ⊂ I satisfying

• 1.15BP ∩ 1.15BQ = ∅ for different cells P,Q ∈ J .

•
⋃
P∈I 1.15BP ⊂

⋃
Q∈J 3.45BQ.

Then, using the fact that
µ(3.45BQ) ≤ µ(3.5BQ) . θ

1/(n+1)
0 r(BQ)n

for each Q ∈ J , we get

µ

(⋃
P∈I

P

)
≤ µ

(⋃
P∈I

BP

)
≤
∑
Q∈J

µ(3.45Q) . θ
1/(n+1)
0

∑
Q∈J

r(BQ)n.

Now, for each Q ∈ J we have 1.1BQ ∩ ∂Q0 6= ∅ and so we obtain that

Hn(1.15BQ ∩ ∂Q0) & r(BQ)n.

Thus, using also the fact that the balls 1.15BQ, Q ∈ J , are pairwise disjoint,

µ

(⋃
P∈I

P

)
. θ

1/(n+1)
0

∑
Q∈J
Hn(1.15BQ ∩ ∂Q0) ≤ θ1/(n+1)

0 Hn(∂Q0) ≈ θ1/(n+1)
0 µ(Q0),

and the lemma follows.
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We will now define an auxiliary measure µ0. First, given a small constant 0 < κ0 � 1 (to be fixed
below) and Q ∈ Dσ, we denote

Iκ0(Q) = {x ∈ Q : dist(x, supp(σ) \Q) ≥ κ0`(Q)}, (3.14)

so Iκ0(Q) is some kind of inner zone of Q. We set

µ0 = µbQc0+
∑

Q∈Stop0\Bad

µbIκ0 (Q).

Observe that, by the thin boundary condition of Q ∈ Stop0 together with the fact that it is doubling,
we have

µ(Q \ Iκ0(Q)) . κ
1/2
0 σ(3.5BQ) . κ

1/2
0 µ(Q).

Combining this estimate with the assumption (3.13) and Lemma 3.4.3, we get

‖µ− µ0‖ = µ(Q0)− µ0(Q0) (3.15)

= µ(Q0)−
∑

Q∈Stop0\Bad

µ(Iκ0(Q))

= µ

(
Q0 \

⋃
Q∈Stop0

Q

)
+
∑
Q∈Bad

µ(Q) +
∑

Q∈Stop0\Bad

µ(Q \ Iκ0(Q))

≤ 2ε0 µ(Q0) + Cθ
1/(n+1)
0 µ(Q0) + Cκ

1/2
0 µ(Q0).

Together with Lemma 3.3.2, this yields the following:

Lemma 3.4.4. If δ is small enough (depending on A), then we have∫
Q0

|R(χAQ0µ0)|2 dµ0 .

(
ε+ 1

A2 + δ1/(8n+8) + ε0 + θ
1/(n+1)
0 + κ

1/2
0

)
µ(Q0).

Proof. We have∫
Q0

|R(χAQ0µ0)|2 dµ0 ≤ 2
∫
Q0

|R(χAQ0µ)|2 dµ+ 2
∫
Q0

|R(χAQ0(µ− µ0))|2 dµ

.

(
ε+ 1

A2 + δ1/(8n+8) + ε0 + θ
1/(n+1)
0 + κ

1/2
0

)
µ(Q0),

by Lemma 3.3.2, the L2(µbQ0)-boundedness of RµbQ0
, and (3.15).

3.5 The periodic measure µ̃

Let M be the lattice of cubes in Rn+1 obtained by translating Q0 in directions parallel to H, so that
H coincides with the union of the n-dimensional cubes from the family {P ∩ H}P∈M and the cubes
have disjoint interiors. For each P ∈ M, denote by zP the center of P and consider the translation
TP : x→ x+ zP , so that P = TP (Q0). Note that {zP : P ∈M} coincides with the set (`(Q0)Zn)× {0}.
We define

µ̃ =
∑
P∈M

(TP )#(µ0bQ0),

that is,
µ̃(E) =

∑
P∈M

µ0(Q0 ∩ T−1
P (E)) =

∑
P∈M

µ0(Q0 ∩ (E − zP )).

It is easy to check that:
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(i) µ̃ is periodic with respect to M, that is, for all P ∈M and all E ⊂ Rn+1, µ̃(E + zP ) = µ̃(E).

(ii) χQ0 µ̃ = µ0.

The latter property holds because µ0(∂Q0) = 0.

For simplicity, from now on we will assume that A is a big enough odd natural number.

Lemma 3.5.1. We have

αH
µ̃

(3AQ0) ≤ C3 A
n+1

(
ε0 + θ

1/(n+1)
0 + κ

1/2
0 + δ1/2

)
.

In fact,

dist3AQ0(µ̃,LH) ≤ C3A
n+1

(
ε0 + θ

1/(n+1)
0 + κ

1/2
0 + δ1/2

)
`(3AQ0)n+1,

where LH is the same minimizing measure as the one for αHµ (3AQ0).

Proof. Let f be a Lipschitz function supported on 3AQ0 with Lipschitz constant at most 1, denote byM0

the family of cubes inM which are contained in 3AQ0, and let κ > 0 be some small parameter to be fixed
below. Consider a C1 function ϕ supported on Q0 which equals 1 on (1−κ)Q0, with ‖∇ϕ‖∞ . 1/(κ`(Q0))
and denote ϕP (x) = ϕ(x− zP ). Then, we write∣∣∣∣∫ f d(µ̃− LH)

∣∣∣∣ ≤ ∑
P∈M0

∣∣∣∣∫
P

f d(µ̃− LH)
∣∣∣∣ (3.16)

≤
∑
P∈M0

∣∣∣∣∫ ϕP f d(µ̃− LH)
∣∣∣∣+

∑
P∈M0

∫ ∣∣(χP − ϕP ) f
∣∣ d(µ̃+ LH).

Let us estimate the first sum on the right hand side. Since µ̃bP= (TP )#µ0bQ0 and LH = (TP )#LH ,
we have ∣∣∣∣∫ ϕP f d(µ̃− LH)

∣∣∣∣ =
∣∣∣∣∫ ϕ(x) f(x+ zP ) d(µ− LH)

∣∣∣∣
≤
∣∣∣∣∫ ϕ(x) f(x+ zP ) d(µ0 − µ)

∣∣∣∣+
∣∣∣∣∫ ϕ(x) f(x+ zP ) d(µ− LH)

∣∣∣∣
= I1 + I2.

To estimate I1 we use (3.15) and the fact that, by the mean value theorem, ‖ϕf(·+zP )‖∞ . `(3AQ0).
Then, we have

I1 ≤
∣∣∣∣∫ ϕ(x) f(x+ zP ) d(µ0 − µ)

∣∣∣∣ . (ε0 + θ
1/(n+1)
0 + κ

1/2
0
)
`(3AQ0)n+1.

Concerning I2, we write

I2 . ‖∇(ϕf(·+ zP ))‖∞`(3AQ0)n+1 αHµ (3AQ).

Note that
‖∇(ϕP f)‖∞ ≤ ‖∇f‖∞ + ‖f‖∞‖∇ϕP )‖∞ . 1 + C A`(Q0) 1

κ `(Q0) .
A

κ
.

Thus,
I2 . A

δ

κ
`(3AQ0)n+1,

and therefore, ∣∣∣∣∫ ϕP f d(µ̃− LH)
∣∣∣∣ . A

(
ε0 + θ

1/(n+1)
0 + κ

1/2
0 + δ

κ

)
`(3AQ0)n+1.
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To deal with the second sum on the right hand side of (3.16) we write∫ ∣∣(χP − ϕP ) f
∣∣ d(µ̃+ LH) ≤ ‖χP − ϕP ‖L1(µ̃+LH) ‖f‖∞

. (µ+ LH)
(
Q0 \ (1− κ)Q0

)
`(3AQ0).

By the thin boundary condition on Q0,

µ
(
Q0 \ (1− κ)Q0

)
. κµ(Q0) = κ `(Q0)n.

Clearly, the same estimate holds replacing µ by LH , and so we obtain∫ ∣∣(χP − ϕP ) f
∣∣ d(µ̃+ LH) . κ `(Q0)n+1.

Taking into account that the number of cubes P ∈M0 is comparable to An, we get∣∣∣∣∫ f d(µ̃− LH)
∣∣∣∣ . An+1

(
ε0 + θ

1/(n+1)
0 + κ

1/2
0 + δ

κ
+ κ

)
`(3AQ0)n+1.

Choosing κ = δ1/2, the lemma follows.

From now on, to simplify notation we will denote

δ̃ = C3 A
n+1

(
ε0 + θ

1/(n+1)
0 + κ

1/2
0 + δ1/2

)
, (3.17)

so the preceding lemma ensures that αH
µ̃

(3AQ0) ≤ δ̃. We assume that the parameters ε0, θ0, κ0, and δ

are small enough so that δ̃ � 1.

Lemma 3.5.2. We have∫
Q0

|R(χAQ0 µ̃)|2 dµ̃ ≤ C4

(
ε+ 1

A2 + δ
1

8n+8 + ε0 + θ
1

n+1
0 + κ

1
2
0 +An+1 δ̃

1
2n+3

)
µ̃(Q0). (3.18)

Proof. Since µ̃bQ0= µ0bQ0 , we have∫
Q0

|R(χAQ0 µ̃)|2 dµ̃ ≤ 2
∫
Q0

|R(χAQ0µ0)|2 dµ0 + 2
∫
Q0

|R(χAQ0(µ̃− µ0)|2 dµ0. (3.19)

The first integral on the right hand side has been estimated in Lemma 3.4.4. Therefore, we only have to
deal with the second one. The arguments that we will use will be similar to some of the ones in Lemma
3.3.2.

First, note that, using again the fact that µ̃bQ0= µ0bQ0 and that µ0bQc0= µbQc0 , we have

R
(
χAQ0(µ̃− µ0)

)
= R

(
χAQ0\Q0(µ̃− µ0)

)
.

Let 0 < κ < 1/10 be some small constant to be fixed below. Let ϕ be a C1 function which equals 1 on
(1−κ)AQ0 \ (1 +κ)Q0 and vanishes out of AQ0 \ (1 + κ

2 )Q0, with ‖∇ϕ‖∞ . (κ `(Q0))−1. Then, we split∫
Q0

|R(χAQ0(µ̃−µ0)|2 dµ0 ≤ 2
∫
Q0

|R
(
(χAQ0\Q0 −ϕ)(µ̃−µ0)

)
|2 dµ0 + 2

∫
Q0

|R
(
ϕ(µ̃−µ0)

)
|2 dµ0. (3.20)

Concerning the first integral on the right hand side note that χAQ0\Q0 − ϕ = ψ1 + ψ2, with

|ψ1| ≤ χAQ0\(1−κ)AQ0 and |ψ2| ≤ χ(1+κ)Q0\Q0 .
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Then, we have∫
Q0

|R
(
(χAQ0 − ϕ)(µ̃− µ0)

)
|2 dµ0 .

∫
Q0

|R
(
ψ1(µ̃− µ)

)
|2 dµ+

∫
Q0

|R
(
ψ2(µ̃− µ)

)
|2 dµ̃

≤ ‖R
(
ψ1(µ̃− µ)

)
‖2
L∞(µbQ0 ) µ(Q0)

+ ‖R
(
ψ2(µ̃− µ)

)
‖2
L4(µ̃bQ0 ) µ(Q0)1/2.

Since dist(supp(ψ1), Q0) ≈ A`(Q0), we get

‖R
(
ψ1(µ̃− µ)

)
‖L∞(µbQ0 ) .

1
(A`(Q0))n ‖ψ1‖L1(µ̃+µ) ≤

1
(A`(Q0))n (µ̃+ µ)(AQ0 \ (1− κ)AQ0).

Recall that in (3.10) it has been shown that

µ(AQ0 \ (1− κ)AQ0) .
(
An

κ
δ + κAn

)
`(Q0)n.

To prove this we used the fact that αHµ (3AQ0) ≤ δ or, more precisely, that dist3AQ0(µ,LH) ≤ δ. The
same inequality holds replacing µ by µ̃ and δ by δ̃, as shown in Lemma 3.5.1. Therefore, by arguments
analogous to the ones in (3.10) it follows that

µ̃(AQ0 \ (1− κ)AQ0) .
(
An

κ
δ̃ + κAn

)
`(Q0)n.

Therefore, we obtain that

‖R
(
ψ1(µ̃− µ)

)
‖L∞(µbQ0 ) .

δ + δ̃

κ
+ κ .

δ̃

κ
+ κ,

taking into account that δ ≤ δ̃ for the last inequality.

Next we will estimate ‖R
(
ψ2(µ̃− µ)

)
‖
L4(µ̃bQ0 ). By the triangle inequality, we have

‖R
(
ψ2(µ̃− µ)

)
‖
L4(µ̃|Q0 ) ≤ ‖Rµψ2‖L4(µ|Q0 ) + ‖R

µ̃
ψ2‖L4(µ̃|Q0 ).

Recall that Rµ is bounded in L2(µb2Q0), and so in L4(µb2Q0), and that suppψ2 ⊂ (1 + κQ0) \Q0 ⊂ 2Q0.
Hence, using also the thin boundary property of Q0, we obtain

‖Rµψ2‖4
L4(µ|Q0 ) . ‖ψ2‖4

L4(µ|2Q0 ) . µ((1 + κQ0) \Q0) . κµ(Q0).

We can apply the same argument to estimate ‖R
µ̃
ψ2‖L4(µ̃bQ0 ). This is due to the fact that R

µ̃
is bounded

in L2(µ̃b2Q0). This is an easy consequence of the fact that, given two measures µ1 and µ2 with growth
of order n such that, for i = 1, 2, Rµi is bounded in L2(µi), then Rµ1+µ2 is bounded in L2(µ1 + µ2).
For the proof, see Proposition 2.25 of [T6], for example. Then, applying this result to a finite number of
translated copies of µbQ0 , we infer that R

µ̃
is bounded in L2(µ̃b2Q0) and so in L4(µ̃b2Q0). Therefore, we

also have
‖R

µ̃
ψ2‖4

L4(µ̃|Q0 ) . κ µ̃(Q0) ≤ κµ(Q0).

Gathering the estimates above, it turns out that the first integral on the right side of (3.20) satisfies the
following:

∫
Q0

|R(χAQ0(µ̃− µ0)|2 dµ0 .

(
δ̃

κ
+ κ

)2

µ(Q0) + κ1/2 µ(Q0) .
(
δ̃

κ
+ κ1/4

)2

µ(Q0). (3.21)
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It remains to estimate the second integral on the right hand side of (3.20). To this end, for any x ∈ Q0

we set

|R
(
ϕ(µ̃− µ0)(x)

)
| =

∣∣∣∣∫ K(x− y)ϕ(y) d(µ̃− µ)(y)
∣∣∣∣

≤
∣∣∣∣∫ K(x− y)ϕ(y) d(µ̃− LH)(y)

∣∣∣∣
+
∣∣∣∣∫ K(x− y)ϕ(y) d(µ− LH)(y)

∣∣∣∣
≤ ‖∇(K(x− ·)ϕ)‖∞

[
dist3AQ0(µ̃,LH) + dist3AQ0(µ,LH)

]
,

where in the first identity we used the fact that µ0 coincides with µ on the support of ϕ. Taking into
account the fact that dist(x, supp(ϕ)) & κ`(Q0), we obtain

‖∇(K(x− ·)ϕ)‖∞ ≤ ‖∇K(x− ·)‖∞,supp(ϕ) + ‖K(x− ·)‖∞,supp(ϕ) ‖∇ϕ‖∞ .
1

(κ `(Q0))n+1 .

By Lemma 3.5.1, dist3AQ0(µ̃,LH) ≤ δ̃ `(3AQ0)n+1 and, by the assumption (e) in the Main Lemma,
dist3AQ0(µ,LH) ≤ δ `(3AQ0)n+1. Therefore,

|R
(
ϕ(µ̃− µ0)(x)

)
| . 1

(κ `(Q0))n+1 (δ + δ̃) `(3AQ0)n+1 .
An+1

κn+1 δ̃,

so the last integral on the right hand side of (3.20) satisfies∫
Q0

|R(χAQ0(µ̃− µ0)|2 dµ̃ .
An+1

κn+1 δ̃ µ(Q0). (3.22)

From (3.20), (3.21) and (3.22) we obtain that∫
Q0

|R(χAQ0(µ̃− µ0)|2 dµ0 .

(
δ̃

κ
+ κ1/4

)2
µ(Q0) + An+1

κn+1 δ̃µ(Q0)

. An+1
(

δ̃

κn+1 + κ1/2
)
µ(Q0).

Choosing κ = δ̃
2

2n+3 , the right hand side above equals CAn+1 δ̃
1

2n+3 µ(Q0). Together with (3.19) and
Lemma 3.5.2, this yields (3.18).

To simplify notation we will write

ε̃ = C4

(
ε+ 1

A2 + δ
1

8n+8 + ε0 + θ
1

n+1
0 + κ

1
2
0 +An+1 δ̃

1
2n+3

)
, (3.23)

so that the preceding lemma guarantees that∫
Q0

|R(χAQ0 µ̃)|2 dµ̃ ≤ ε̃ µ̃(Q0).

We will also need the following auxiliary result below.

Lemma 3.5.3. For all Q ∈ Stop0 \ Bad, we have∫
1.1BQ\Q

∫
Q

1
|x− y|n

dµ̃(x) dµ̃(y) . θ
1

2(n+1)2

0 µ̃(Q).

78



Proof. Since any ball 1.1BQ with Q ∈ Stop0 \Bad is contained in Q0, we have that µ̃ = µ0 in the domain
of integration considered above.

Let 0 < κ < 1 be some small constant to be fixed below. Then we split∫
1.1BQ\Q

∫
Q

1
|x− y|n

dµ̃(y) dµ̃(x) =
∫
x∈1.1BQ\Q

∫
y∈Q:|x−y|>κ`(Q)

1
|x− y|n

dµ̃(y) dµ̃(x) (3.24)

+
∫
x∈1.1BQ\Q

∫
y∈Q:|x−y|≤κ`(Q)

1
|x− y|n

dµ̃(y) dµ̃(x).

First we deal with the first integral on the right hand side:∫
x∈1.1BQ\Q

∫
y∈Q:|x−y|>κ`(Q)

1
|x− y|n

dµ̃(y) dµ̃(x) ≤ 1
κn`(Q)n µ̃(1.1BQ) µ̃(Q)

.
1
κn

Θ
µ̃
(1.1BQ) µ̃(Q) . θ

1
n+1
0
κn

µ(Q),

by Lemma 3.4.2.

Let us turn our attention to the last integral in (3.24). To estimate it, we take into account the fact
that given x ∈ 1.1BQ \Q, if y ∈ Q, then |x− y| ≥ dist(x,Q). Then, by the polynomial growth of order
n of µbQ0 and standard estimates, we get∫

y∈Q:|x−y|≤κ`(Q)

1
|x− y|n

dµ̃(y) . log
(

2 + κ `(Q)
dist(x,Q)

)
for all x ∈ 1.1BQ \Q.

For each j ≥ 0, denote
Uj =

{
x ∈ 1.1BQ \Q : dist(x,Q) ≤ 2−j κ `(Q)

}
.

By the thin boundary property of Q and the fact that Q is doubling,

µ(Uj) . (2−j κ)1/2 µ(3.5BQ) . (2−j κ)1/2 µ(Q).

Then, we obtain∫
x∈1.1BQ\Q

∫
y∈Q:|x−y|≤κ`(Q)

1
|x− y|n

dµ̃(y) dµ̃(x) ≤
∑
j≥0

∫
Uj\Uj+1

log
(

2 + κ `(Q)
dist(x,Q)

)
dµ(x)

.
∑
j≥0

log
(

2 + κ `(Q)
2−j−1κ`(Q)

)
µ(Uj)

.
∑
j≥0

(j + 1)(2−j κ)1/2 µ(Q)

. κ1/2 µ(Q).

Therefore, we have∫
1.1BQ\Q

∫
Q

1
|x− y|n

dµ̃(x) dµ̃(y) .
(
θ

1/(n+1)
0 κ−n + κ1/2)µ(Q).

Choosing κ = θ
1

(n+1)2

0 , the lemma follows.

It is easy to check that

µ̃(B(x, r)) . rn for all x ∈ Rn+1 and all r > 0. (3.25)

This follows easily from the analogous estimate for µbQ0 and the periodicity of µ̃, and is left for the reader.
On the other hand, in general, we cannot guarantee that the estimates for the coefficients Pµ(2BQ) in
Lemma 3.4.2 also hold with µ replaced by µ̃. However, we have following substitute:
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Lemma 3.5.4. The function

p
µ̃
(x) =

∑
Q∈Stop0\Bad : x∈Q

χQ Pµ̃(2BQ)

satisfies ∫
Q0

p2
µ̃
dµ̃ . θ

1
2(n+1)
0 µ̃(Q0).

Proof. Let 0 < κ < 1 be some small constant to be fixed below. We split∫
Q0

p2
µ̃
dµ̃ =

∫
x∈Q0:dist(x,∂Q0)≤κ `(Q0)

p
µ̃
(x)2 dµ̃(x) +

∫
x∈Q0:dist(x,∂Q0)>κ `(Q0)

p
µ̃
(x)2 dµ̃(x). (3.26)

For the first integral on the right hand side we just take into account that p
µ̃
(x) . 1 by (3.25), and thus∫

x∈Q0:dist(x,∂Q0)≤κ `(Q0)
p
µ̃
(x)2 dµ̃(x) . µ

({
x ∈ Q0 : dist(x, ∂Q0) ≤ κ `(Q0)

})
. κµ(Q0) ≈ κ µ̃(Q0).

Let us deal with the the last integral on the right hand side of (3.26). Consider x ∈ Q ∈ Stop0 such
that dist(x, ∂Q0) > κ `(Q0). We assume that κ� t = θ

1
(n+1)
0 . Since `(Q) ≤ t `(Q0),

dist(x, ∂Q0) ≈ dist(2BQ, ∂Q0) & κ `(Q0).

Then, we can write

p
µ̃
(x) . Pµ(2BQ) +

∑
j≥1:2jBQ∩∂Q0 6=∅

2−j θ
µ̃
(2jBQ) . θ

1
(n+1)
0 +

∑
j≥1:2jBQ∩∂Q0 6=∅

2−j ,

by Lemma 3.4.2. For the last sum we have

∑
j≥1:2jBQ∩∂Q0 6=∅

2−j ≈ `(Q)
dist(x, ∂Q0) .

t `(Q0)
κ `(Q0) = θ

1
(n+1)
0
κ

,

and so we obtain

p
µ̃
(x) . θ

1
(n+1)
0 + θ

1
(n+1)
0
κ
≈ θ

1
(n+1)
0
κ

.

Therefore, ∫
x∈Q0:dist(x,∂Q0)≥κ `(Q0)

p
µ̃
(x)2 dµ̃(x) . θ

1
(n+1)
0
κ

µ̃(Q0).

Gathering the estimates above, we obtain

∫
Q0

p2
µ̃
dµ̃ .

(
κ+ θ

1
(n+1)
0
κ

)
µ̃(Q0).

Choosing κ = θ
1

2(n+1)
0 , the lemma follows.

3.6 The approximating measure η

We consider the measure

η0 =
∑

Q∈Stop0\Bad

µ0(Q)
Hn+1b 1

4B(Q)

Hn+1
( 1

4B(Q)
) .
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In a sense, η0 can be considered as an approximation of µ0bQ0 which is absolutely continuous with respect
to Hn+1. Furthermore, since the family Stop0 is finite, the density of η with respect to Hn+1 is bounded.

Recall that, by Remark 1, the balls 1
2B(Q), Q ∈ Dσ, are pairwise disjoint, so the balls 1

4B(Q) in the
sum above satisfy

dist( 1
4B(Q), 1

4B(Q′)) ≥ 1
4
[
r(B(Q)) + r(B(Q′))

]
if Q 6= Q′.

Now we define the following periodic version of η0: letM be the lattice of cubes from Rn+1 introduced
in Section 3.5. Recall that for P ∈ M, zP stands for the center of P , and TP is the translation defined
by TP (x) = x+ zP . We define

η =
∑
P∈M

(TP )#η0,

So η can be considered as a kind of approximation of µ̃.

The following result should be compared to Lemma 3.5.2:

Lemma 3.6.1. We have ∫
Q0

|R(χAQ0η)|2 dη . ε′ η(Q0),

where ε′ = ε̃+An κ−2n−2
0 θ

1
2(n+1)2

0 .

Proof. To simplify notation, we denote S = Stop0 \ Bad. We consider the function

f =
∑
Q∈S

m
µ̃,Q

(R(χAQ0 µ̃))χQ.

It is clear that
‖f‖2

L2(µ̃) ≤ ‖R(χAQ0 µ̃)‖2
L2(µ̃bQ0 ) ≤ ε̃ µ̃(Q0) = ε̃ η(Q0). (3.27)

For all x ∈ 1
4B(Q), Q ∈ S, we write∣∣R(χAQ0η)(x)

∣∣ ≤ ∣∣R(χ 1
4B(Q)

η)(x)
∣∣+
∣∣R(χ

AQ0\
1
4B(Q)

η)(x)−R(χAQ0\Qµ̃))(x)
∣∣ (3.28)

+
∣∣R(χAQ0\Qµ̃)(x)−m

µ̃,Q
(R(χAQ0 µ̃))

∣∣+
∣∣m

µ̃,Q
(R(χAQ0 µ̃))

∣∣
=: T1 + T2 + T3 +

∣∣m
µ̃,Q

(R(χAQ0 µ̃))
∣∣.

Using the fact that

ηb 1
4B(Q)

= µ̃(Q)
Hn+1b 1

4B(Q)

Hn+1
( 1

4B(Q)
) ,

it follows easily that

T1 =
∣∣R(χ 1

4B(Q)
η)(x)

∣∣ . µ̃(Q)
r(B(Q))n . θ

1/(n+1)
0 .

Now we will deal with the term T3 in (3.28). To this end, for x ∈ 1
4B(Q) we set∣∣R(χAQ0\Qµ̃)(x)−m

µ̃,Q
(R(χAQ0 µ̃))

∣∣ (3.29)

≤
∣∣R(χ1.1BQ\Qµ̃)(x)

∣∣+
∣∣R(χAQ0\1.1BQ µ̃)(x)−m

µ̃,Q
(R(χAQ0\1.1BQ µ̃))

∣∣
+
∣∣m

µ̃,Q
(R(χ1.1BQ\Qµ̃))

∣∣,
taking into account he fact that m

µ̃,Q
(R(χQµ̃)) = 0, by the antisymmetry of the Riesz kernel.
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It is immediate to check that∣∣R(χ1.1BQ\Qµ̃)(x)
∣∣ . ∫

1.1BQ\Q

1
|x− y|n

dµ̃(y) . µ̃(1.1BQ)
r(B(Q))n . θ

1/(n+1)
0 ,

recalling the fact that x ∈ 1
4B(Q) and θµ(1.1BQ) . θ

1/(n+1)
0 for the last estimate.

Now we turn our attention to the second term in the right hand side of (3.29). For x′ ∈ Q ∈ S,∣∣R(χAQ0\1.1BQ µ̃)(x)−R(χAQ0\1.1BQ µ̃)(x′)
∣∣ ≤ ∫

AQ0\1.1BQ

∣∣K(x− y)−K(x′ − y)
∣∣ dµ̃(y)

. P
µ̃
(2BQ).

since the distance both from x and x′ to (1.1BQ)c is larger than c r(BQ). Averaging on x′ ∈ Q with
respect to µ̃ we get ∣∣R(χAQ0\1.1BQ µ̃)(x)−m

µ̃,Q
(R(χAQ0\1.1BQ µ̃))

∣∣ . P
µ̃
(2BQ).

To estimate the last term in (3.29) we just apply Lemma 3.5.3:∣∣m
µ̃,Q

(R(χ1.1BQ\Qµ̃))
∣∣ ≤ 1

µ̃(Q)

∫
1.1BQ\Q

∫
Q

1
|x− y|n

dµ̃(x) dµ̃(y) . θ
1

2(n+1)2

0 .

Then, we obtain

T3 =
∣∣R(χAQ0\Qµ̃)(x)−m

µ̃,Q
(R(χAQ0 µ̃))

∣∣ . θ
1

n+1
0 + P

µ̃
(2BQ) + θ

1
2(n+1)2

0 . θ
1

2(n+1)2

0 + P
µ̃
(2BQ). (3.30)

To deal with the term T2 in (3.28) we need to introduce some additional notation. We set

J =
⋃
P∈M

{
TP (R′) : R′ ∈ Stop0 \ Bad

}
.

For R ∈ J such that R = TP (R′), R′ ∈ Stop0 \Bad, we set B(R) = TP (B(R′)) and BR = TP (BR′). Also,
we denote by JA the family of cells R ∈ J which are contained in AQ0. This way, we have

χAQ0 µ̃ =
∑
R∈JA

µ̃bR, and χAQ0η =
∑
R∈JA

µ̃(R)
Hn+1b 1

4B(R)

Hn+1
( 1

4B(R)
) .

Note that the cells R ∈ J are pairwise disjoint. Furthermore, by the definition of the family Bad, if R ∈ J
is contained in some cube TP (Q0), then the ball 1.1BR is also contained in TP (Q0). This guarantees that
for all R ∈ J ,

µ̃(1.1BR) . C0 µ̃(R).

Now for x ∈ 1
4B(Q) we write

T2 =
∣∣R(χ

AQ0\
1
4B(Q)

η)(x)−R(χAQ0\Qµ̃))(x)
∣∣ (3.31)

≤
∑

R∈JA:R 6=Q

∣∣∣∣∫ K(x− y) d(ηb 1
4B(R)−µ̃bR)

∣∣∣∣
≤

∑
P∈JA:P 6=Q

∫
|K(x− y)−K(x− zR)| d(ηb 1

4B(R)+µ̃bR),

using the fact that η( 1
4B(R)) = µ̃(R) for the last inequality.

We claim that, for x ∈ 1
4B(Q) and y ∈ 1

4B(R) ∪ supp(µ̃bR),

|K(x− y)−K(x− zR)| . `(R)
κn+1

0 D(Q,R)n+1 , (3.32)
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where
D(Q,R) = `(Q) + `(R) + dist(Q,R).

To show (3.32) note first that

x ∈ 1
4B(Q), zR ∈ 1

4B(R) ⇒ |x− zR| & D(Q,R), (3.33)

since 1
2B(Q) ∩ 1

2B(R) = ∅. Analogously, because of the same reason,

x ∈ 1
4B(Q), y ∈ 1

4B(R) ⇒ |x− y| & D(Q,R). (3.34)

Also,
x ∈ 1

4B(Q), y ∈ supp(µ̃bR) ⇒ |x− y| & κ0D(Q,R), (3.35)

To prove this, note that
y ∈ supp(µ̃bR) = Iκ0(R) ⊂ R, (3.36)

which implies that y 6∈ B(Q) and thus |x− y| ≥ 1
2r(B(Q)) ≈ `(Q). In the case r(B(Q)) ≥ 2κ0`(R), this

implies that
|x− y| & `(Q) + κ0`(R).

Otherwise, from the first inclusion in (3.36), since zQ ∈ supp(µ̃) and y ∈ R, by the definition of Iκ0(R),

|zQ − y| ≥ κ0`(R),

and then, as |zQ − x| ≤ 1
4r(B(Q)) ≤ 1

2κ0`(R), we infer that

|x− y| ≥ |zQ − y| − |zQ − x| ≥
κ0

2 `(R).

Therefore, in any case we have |x−y| & κ0(`(Q)+`(R)) and it is easy to obtain (3.35) from this estimate.
We leave the details for the reader.

From (3.33), (3.34), and (3.35), and the fact that K is a standard Calderón-Zygmund kernel, we get
(3.32). Plugging this estimate into (3.31), we obtain

T2 .
1

κn+1
0

∑
R∈JA

`(R) µ̃(R)
D(Q,R)n+1 .

Therefore, from (3.28) and the estimates for the terms T1, T2 and T3, we infer that for all x ∈ 1
4B(Q)

with Q ∈ S

∣∣R(χAQ0η)(x)
∣∣ . ∣∣m

µ̃,Q
(R(χAQ0 µ̃))

∣∣+ θ
1

2(n+1)2

0 + P
µ̃
(2BQ) + 1

κn+1
0

∑
R∈JA

`(R) µ̃(R)
D(Q,R)n+1 . (3.37)

Denote

p̃
µ̃
(x) =

∑
Q∈J

χ 1
4B(Q) Pµ̃(2BQ) and g̃(x) =

∑
Q∈S

∑
R∈JA

`(R)
D(Q,R)n+1 µ̃(R)χ 1

4B(Q)(x).

Squaring and integrating (3.37) with respect to η on Q0, we get∥∥R(χAQ0η)
∥∥2
L2(η) .

∑
Q∈S

∣∣m
µ̃,Q

(R(χAQ0 µ̃))
∣∣2 η( 1

4B(Q)) (3.38)

+ θ
1

(n+1)2

0 η(Q0) + ‖p̃
µ̃
‖2
L2(η) + 1

κ2n+2
0

‖g̃‖2
L2(η),
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Note that, since η( 1
4B(Q)) = µ(Q), the first sum on the right hand side of (3.38) equals ‖f‖2

L2(µ̃)
, which

does not exceed ε̃ η(Q0), by (3.27). By an analogous argument we obtain that ‖p̃
µ̃
‖2
L2(η) = ‖p

µ̃
‖2
L2(µ̃bQ0 )

and ‖g̃‖2
L2(η) = ‖g‖2

L2(µ̃bQ0 )
, where

p
µ̃
(x) =

∑
Q∈J

χQ Pµ̃(2BQ) and g(x) =
∑
Q∈S

∑
R∈JA

`(R)
D(Q,R)n+1 µ̃(R)χQ(x).

We will estimate ‖g‖
L2(µ̃bQ0 ) by duality: for any non-negative function h ∈ L2(µ̃bQ0), we set∫

g h dµ̃ =
∑
Q∈S

∑
R∈JA

`(R)
D(Q,R)n+1 µ̃(R)

∫
Q

h dµ̃ =
∑
R∈JA

µ̃(R)
∑
Q∈S

`(R)
D(Q,R)n+1

∫
Q

h dµ̃. (3.39)

For each z ∈ R ∈ JA we have∑
Q∈S

`(R)
D(Q,R)n+1

∫
Q

h dµ̃ .
∫

`(R)h(y)(
`(R) + |z − y|

)n+1 dµ̃(y)

=
∫
|z−y|≤`(R)

`(R)h(y)(
`(R) + |z − y|

)n+1 dµ̃(y)

+
∑
j≥1

∫
2j−1`(R)<|z−y|≤2j−1`(R)

`(R)h(y)(
`(R) + |z − y|

)n+1 dµ̃(y)

.
∑
j≥0
−
∫
B(z,2j`(R)

h dµ̃
2−j µ̃(B(z, 2j`(R)))(

2j`(R)
)n

.M
µ̃
h(z)P

µ̃

(
B(z, `(R))

)
,

where M
µ̃

stands for the centered maximal Hardy-Littlewood operator with respect to µ̃. Then, by (3.39),∫
g h dµ̃ .

∑
R∈JA

inf
z∈R

[
M
µ̃
h(z)P

µ̃

(
B(z, `(R))

)]
µ̃(R) ≤

∫
AQ0

M
µ̃
h p

µ̃
dµ̃

. ‖M
µ̃
h‖

L2(µ̃) ‖pµ̃‖L2(µ̃) . ‖h‖L2(µ̃) ‖pµ̃‖L2(µ̃bAQ0 ).

Then, by Lemma 3.5.4 and recalling that µ̃ is M-periodic,

‖g‖2
L2(µ̃) . ‖pµ̃‖L2(µ̃|AQ0 ) = An ‖p

µ̃
‖
L2(µ̃|Q0 ) . An θ

1
2(n+1)
0 µ̃(Q0).

Plugging this estimate into (3.38) and using the fact that that ‖g‖L2(η) = ‖g‖
L2(µ̃), we obtain

∥∥R(χAQ0η)
∥∥2
L2(η) .

(
ε̃+ θ

1
(n+1)2

0 + An

κ2n+2
0

θ
1

2(n+1)
0

)
η(Q0) .

(
ε̃+ An

κ2n+2
0

θ
1

(n+1)2

0

)
η(Q0),

as wished.

Note that the Riesz kernel is locally integrable with respect to η (recall that the number of cells from
Stop0 is finite). Then, for any bounded function f with compact support the integral

∫
K(x−y) f(y) dη(y)

is absolutely convergent for all x ∈ Rn+1.

Now we wish to extend the definition of Rηf(x) for M-periodic functions f ∈ L∞(η) in a pointwise
way (not only in a BMO sense, say). We consider a non-negative radial C1 function φ supported on B(0, 2)
which equals 1 on B(0, 1), and we set φr(x) = φ

(
x
r

)
for r > 0. We denote K̃r(x−y) = K(x−y)φr(x−y)

and we define
R̃η,rf(x) = R̃r(fη)(x) =

∫
K̃r(x− y) f(y) dη(y),
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and
p.v.Rηf(x) = p.v.R(fη)(x) = lim

r→∞
R̃η,rf(x), (3.40)

whenever the limit exists. Let us remark that one may also define the principal value in a more typical
way by

lim
r→∞

∫
|x−y|<r

K(x− y) f(y) dη(y). (3.41)

However, the definition (3.40) has some technical advantages and simplifies the exposition. Nevertheless,
one can show that both definitions (3.40) and (3.41) coincide, at least for the M-periodic functions
f ∈ L∞(η) (we will not prove this fact because it will be not needed below).

Lemma 3.6.2. Let f ∈ L∞(η) beM-periodic, that is, f(x+zP ) = f(x) for all x ∈ Rn+1 and all P ∈M.
Then:

• p.v.Rηf(x) exists for all x ∈ Rn+1 and R̃η,rf → Rηf as r → ∞ uniformly in compact subsets of
Rn+1. The convergence is also uniform on supp(η). Furthermore, given any compact set F ⊂ Rn+1,
there is r0 = r0(F ) > 0 such that for s > r ≥ r0,∥∥R̃s(fη)− R̃r(fη)

∥∥
∞,F.

cF
r
‖f‖∞, (3.42)

where cF is some constant depending on F .

• The function p.v.Rηf is M-periodic and continuous in Rn+1, and harmonic in Rn+1 \ supp(fη).

The arguments needed to prove the lemma are standard. However, for the reader’s convenience we
will show the details.

Proof. By the M-periodicity of the measure ν := f η, it is immediate that the functions R̃r(fη)(x),
r > 0, areM-periodic. On the other hand, using the fact that η is absolutely continuous with respect to
Lebesgue measure on a compact set with a uniformly bounded density, it is straightforward to check that
each R̃r(fη) is also continuous and bounded in Rn+1. Then, except for harmonicity, all the statements
in the lemma follow if we show that the family of functions {R̃r(fη)}r>0 satisfies (3.42) for any compact
subset F ⊂ Rn+1. Indeed, this clearly implies the uniform convergence on compact subsets, and since
supp(η) is periodic, also the uniform convergence on supp(η).

Let s > r ≥ r0, and denote K̃r,s(x − y) = K̃s(x − y) − K̃r(x − y). Notice that K̃r,s is a standard
Calderón-Zygmund kernel (with constants independent of r and s). We write

ν =
∑
P∈M

(TP )#(χQ0ν),

so that
R̃s(fη)(x)− R̃r(fη)(x) =

∫
K̃r,s(x− y) d

( ∑
P∈M

(TP )#(χQ0ν)
)

(y).

Since the support of K̃r,s(x−y) is compact, the last sum only has a finite number of non-zero terms, and
so we can change the order of summation and integration:

R̃s(fη)(x)− R̃r(fη)(x) =
∑
P∈M

∫
K̃r,s(x− y) d

[
(TP )#(χQ0ν)

]
(y) (3.43)

=
∑
P∈M

∫
Q0

K̃r,s(x− y − zP ) dν(y).
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Note now that by the antisymmetry of the kernel K̃r,s, from the last equation we derive

R̃s(fη)(x)− R̃r(fη)(x) = −
∑
P∈M

∫
Q0

K̃r,s(zP − (x− y)) dν(y).

Also, by the definition of M, it is clear that P ∈M if and only if −P ∈M. Then, replacing zP by −zP
does not change the last sum in (3.43). Hence, we have

R̃s(fη)(x)− R̃r(fη)(x) =
∑
P∈M

∫
Q0

K̃r,s(zP + (x− y)) dν(y).

Averaging the last two equations we get

R̃s(fη)(x)− R̃r(fη)(x) = 1
2
∑
P∈M

∫
Q0

[
K̃r,s(zP + (x− y))− K̃r,s(zP − (x− y))

]
dν(y). (3.44)

Note that if x belongs to a compact set F ⊂ Rn+1 and y ∈ Q0, then both (x − y) and −(x − y) lie
in a compact set F̃ . Observe also that K̃r,s vanishes in B(0, r). Then, if we assume r0 ≥ 2 diam(F̃ ),
say, then both K̃r,s(zP + (x − y)) and K̃r,s(zP − (x − y)) vanish unless |zP | ≥ r. For such x, y we have
|x− y| ≤ diam(F̃ ) ≤ 1

2 r ≤ |zP |, and so

|zP + (x− y)| ≈ |zP + (x− y)| ≈ |zP | ≥ r.

Then, we obtain

∣∣K̃r,s(zP + (x− y))− K̃r,s(zP − (x− y))
∣∣ . |x− y|
|zP |n+1 .

diam(F̃ )
|zP |n+1 .

Plugging this estimate into (3.44) we get

∣∣R̃s(fη)(x)− R̃r(fη)(x)
∣∣ . ∑

P∈M:|zP |≥r

diam(F̃ )
|zP |n+1 |ν|(Q0) ≤

∑
P∈M:|zP |≥r

diam(F̃ )
|zP |n+1 `(P )n ‖f‖∞.

It is easy to check that ∑
P∈M:|zP |≥r

`(P )n

|zP |n+1 .
1
r
,

so we infer ∥∥R̃s(fη)− R̃r(fη)
∥∥
∞,F.

diam(F̃ )
r

‖f‖∞ → 0 as r →∞,

as wished.

It remains to prove that p.v.Rνf is harmonic in Rn+1 \ supp(fη). Consider again a compact set
F ⊂ Rn+1 and x ∈ F . Then, we have

R(fφrη)(x)− R̃r(fη)(x) =
∫
K(x− y)

(
φr(y)− φr(x− y)

)
f(y) dη(y).

We write
|φr(y)− φr(x− y)| . ‖∇φr‖∞ |x| .

|x|
r
.

For r ≥ 4 diamF , it is easy to check that φr(y)− φr(x− y) = 0 unless |x− y| ≈ |y| ≈ r. Thus

∣∣R(fφrη)(x)− R̃r(fη)(x)
∣∣ . ∫|y|≤Cr

C−1r≤|x−y|≤Cr

1
|x− y|n

|x|
r
|f(y)| dη(y)

.
|x|
rn+1 ‖f‖∞ η(B(0, Cr)) . diamF + dist(0, F )

r
‖f‖∞,
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that is, ∥∥R(fφrη)− R̃r(fη)
∥∥
∞,F .

diamF + dist(0, F )
r

‖f‖∞ → 0 as r →∞.

Since R̃r(fη) converges uniformly to p.v.Rηf in F as r → ∞, it follows that R(fφrη) also converges
uniformly to p.v.Rηf in F .

Note now that, for all r > 0, R(fφrη) is harmonic out of supp(fη), because fφrη has compact
support, and so by their local uniform convergence to p.v.Rηf , we obtain that p.v.Rηf is harmonic out
of supp(fη) too.

From now on, to simplify notation we will denote p.v.Rηf just by Rηf .

Lemma 3.6.3. Let L∞M(η) denote the Banach space of the M-periodic functions which belong to L∞(η)
equipped with the norm ‖ · ‖L∞(η). The map Rη : L∞M(η) → L∞M(η) is bounded. Furthermore, for all
f ∈ L∞M(η) and all sufficiently big r > 0 we have

‖R(fη)− R̃r(fη)‖L∞(η) .
‖f‖L∞(η)

r
. (3.45)

We remark that the bound on the norm of Rη from L∞M(η) to L∞M(η) depends strongly on the
construction of η. It is finite due to the fact that the number of cells from Stop0 is finite, but it may
explode as this number grows. The precise value of the norm will not play any role in the estimates
below, we just need to know that it is finite.

Proof. Since f is M-periodic, from (3.42) we infer that for s > r ≥ r0 = r0(Q0),∥∥R̃s(fη)− R̃r(fη)
∥∥
∞,F.

cF
r
‖f‖∞,

Letting s→∞, R̃s(fη) converges uniformly to Rν and so we get (3.45).

To prove the boundedness of Rη : L∞M(η)→ L∞M(η), note first that K̃r0 is compactly supported and
η is absolutely continuous with respect to Lebesgue measure on a compact set with a uniformly bounded
density. Then, we deduce that R̃η,r0 : L∞M(η) → L∞M(η) is bounded, which together with (3.45) applied
to R̃r0 implies that Rη : L∞M(η)→ L∞M(η) is bounded.

From now on, given x ∈ Rn+1, we denote

xH = (x1, · · · , xn),

so that x = (xH , xn+1). Also, we write

RH = (R1, . . . ,Rn),

where Rj stands for the j-th component of R, so that R = (RH ,Rn+1).

For simplicity, in the arguments below we will assume that the function φ defined slightly above
(3.40) is of the form φ(x) = φ̃(x2), for some C1 function φ̃ which equals 1 on B(0, 1) and vanishes out of
B(0, 21/2).

Lemma 3.6.4. Let f ∈ L1
loc(η) be M-periodic. Then,

(a) Let Ã ≥ 3 be some odd natural number. For all x ∈ 2Q0,∣∣R(χ(ÃQ0)cfη)(x)
∣∣ . 1

Ã `(Q0)n

∫
Q0

|f | dη.
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(b) For all x ∈ Rn+1 such that dist(x,H) ≥ `(Q0),∣∣R(fη)(x)
∣∣ . 1

`(Q0)n

∫
Q0

|f | dη (3.46)

and ∣∣RH(fη)(x)
∣∣ . 1

dist(x,H) `(Q0)n−1

∫
Q0

|f | dη (3.47)

Proof. We denote ν = fη. The arguments to prove the estimate in (a) are quite similar to the ones
used in the proof of Lemma 3.6.2. Since we are assuming that Ã is some odd number, there is a subset
M

Ã
⊂M such that

χ(ÃQ0)cν =
∑

P∈M
Ã

(TP )#(χQ0ν).

Furthermore, the cubes from P ∈M
Ã

satisfy |zP | & Ã`(Q0). Then, for all x ∈ Q0 and all r > 0 we have

R̃r(χ(ÃQ0)cν)(x) =
∫
K̃r(x− y) d

( ∑
P∈M

Ã

(TP )#(χQ0ν)
)

(y).

Since the support of K̃r(x− y) is compact, the last sum only has a finite number of non-zero terms, and
so we can change the order of summation and integration, and thus

R̃r(χ(ÃQ0)cν)(x) =
∑

P∈M
Ã

∫
K̃r(x− y) d

[
(TP )#(χQ0ν)

]
(y) (3.48)

=
∑

P∈M
Ã

∫
Q0

K̃r(x− y − zP ) dν(y).

By the antisymmetry of the kernel K̃r, from the last equation we get

R̃r(χ(ÃQ0)cν)(x) = −
∑

P∈M
Ã

∫
Q0

K̃r(zP − (x− y)) dν(y).

Also, by the definition ofM
Ã

, it follows that P ∈M
Ã

if and only if −P ∈M
Ã

, so replacing zP by −zP
does not change the last sum in (3.48), and then we have

R̃r(χ(ÃQ0)cν)(x) =
∑

P∈M
Ã

∫
Q0

K̃r(zP + (x− y)) dν(y).

Averaging the last two equations we get

R̃r(χ(ÃQ0)cν)(x) = 1
2
∑

P∈M
Ã

∫
Q0

[
K̃r(zP + (x− y))− K̃r(zP − (x− y))

]
dν(y). (3.49)

Note now that x, y ∈ Q0 and, recalling that |zP | & Ã`(Q0) for P ∈M
Ã

, we have

|zP + (x− y)| ≈ |zP − (x− y)| ≈ |zP |.

Thus, ∣∣K̃r(zP + (x− y))− K̃r(zP − (x− y))
∣∣ . |x− y|
|zP |n+1 .

`(Q0)
|zP |n+1 .

Then, from this estimate and (3.49) we obtain that∣∣R̃r(χ(ÃQ0)cν)(x)
∣∣ . ∑

P∈M:|zP |≥C−1Ã`(Q0)

`(Q0)
|zP |n+1 |ν|(Q0) . |ν|(Q0)

Ã `(Q0)n
.
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as wished.

To prove the first estimate in (b), let x ∈ Rn+1 be such that dist(x,H) ≥ `(Q0). Since Rν is
M-periodic, we may assume that xH ∈ Q0 ∩H. As in (3.49), for any r > 0 we have

R̃rν(x) = 1
2
∑
P∈M

∫
Q0

[
K̃r(zP + (x− y))− K̃r(zP − (x− y))

]
dν(y). (3.50)

We claim that for x as above and y ∈ Q0,

∣∣K̃r(zP + (x− y))− K̃r(zP − (x− y))
∣∣ . dist(x,H)(

dist(x,H) + |zP |
)n+1 . (3.51)

Indeed, if |zP | ≥ 2|x− y|, then dist(x,H) + |x− zP | ≈ |x− y|+ |zP | ≈ |zP |, and thus

∣∣K̃r(zP + (x− y))− K̃r(zP − (x− y))
∣∣ . |x− y|
|zP |n+1 ≈

dist(x,H)
|zP |n+1 .

Since |zP | ≥ 2|x− y|, we have |zP | ≈ |zP |+ |x− y| ≈ |zP |+ dist(x,H), and then (3.52) holds in this case.

On the other hand, if |zP | < 2|x− y|, then∣∣K̃r(zP + (x− y))− K̃r(zP − (x− y))
∣∣ . 1∣∣(zP − y) + x|n

+ 1∣∣(zP + y)− x|n
.

It is immediate to check that dist(x, y − zP ) ≈ dist(x, zP + y) & dist(x,H) ≈ |x− y|, and so we obtain∣∣K̃r(zP + (x− y))− K̃r(zP − (x− y))
∣∣ . 1
|x− y|n

.

Furthermore, from the condition |zP | < 2|x− y| we infer that

|x− y| ≈ |x− y|+ |zP | ≈ dist(x,H) + |zP |,

and thus∣∣K̃r(zP + (x− y))− K̃r(zP − (x− y))
∣∣ . |x− y|(

|x− y|+ |zP |
)n+1 ≈

dist(x,H)(
dist(x,H) + |zP |

)n+1 ,

which completes the proof of (3.52).

From (3.50) and (3.52) we obtain

∣∣R̃rν(x)
∣∣ . ∑

P∈M

∫
Q0

dist(x,H)(
dist(x,H) + |zP |

)n+1 d|ν|(y)

= |ν|(Q0) dist(x,H)
`(P )n

∑
P∈M

`(P )n(
dist(x,H) + |zP |

)n+1 .

It is easy to check that ∑
P∈M

`(P )n(
dist(x,H) + |zP |

)n+1 .
1

dist(x,H) ,

and so (3.46) follows.

We turn now our attention to the last estimate from (b). Again let x ∈ Rn+1 be such that dist(x,H) ≥
`(Q0), so that the identity (3.50) is still valid. We claim that for y ∈ Q0 and r big enough,

∣∣K̃H
r (zP + (x− y))− K̃H

r (zP − (x− y))
∣∣ . `(Q0)(

dist(x,H) + |zP |
)n+1 , (3.52)
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where K̃H
r is the kernel of R̃Hr . To prove this, we write

K̃H
r (z) = zH ψr(|z|2), with ψr(t) = φ̃r(t)

t
n+1

2
.

Then, we have∣∣K̃H
r (zP + (x− y))− K̃H

r (zP − (x− y))
∣∣

=
∣∣((zP,H + (xH − yH))ψr

(
|zP + (x− y)|2

)
− (zP,H − (xH − yH))ψr

(
|zP − (x− y)|2

)∣∣
≤ 2

∣∣xH − yH ∣∣ψr(|zP + (x− y)|2
)

+
∣∣zP,H − (xH − yH)

∣∣ ∣∣ψr(|zP − (x− y)|2
)
− ψr

(
|zP + (x− y)|2

)∣∣
=: T1 + T2.

To deal with T1 we write

T1 ≤
2
∣∣xH − yH ∣∣

|zP + (x− y)|n+1 .

Note then that
∣∣xH − yH ∣∣ ≤ `(Q0), while |x− y| ≈ dist(x,H). Furthermore, it is easy to check that

|zP + (x− y)| ≈ |zP − (x− y)| ≈ |zP |+ dist(x,H), (3.53)

which implies that
T1 .

`(Q0)(
dist(x,H) + |zP |

)n+1 .

Now we will estimate T2. To this end we intend to apply the Mean Value Theorem. It is easy to
check that for all t > 0,

|ψ′r(t)| .
1

t
n+3

2
,

and then, by (3.53),

∣∣ψr(|zP − (x− y)|2
)
− ψr

(
|zP + (x− y)|2

)∣∣ . ∣∣|zP − (x− y)|2 − |zP + (x− y)|2
∣∣(

dist(x,H) + |zP |
)n+3 .

Now we have∣∣|zP − (x− y)|2 − |zP + (x− y)|2
∣∣ =

∣∣[(zP,H − (xH − yH))2 + (xn+1 − yn+1)2]
−
[
(zP,H + (xH − yH))2 + (xn+1 − yn+1)2]∣∣

= 2
∣∣zP,H (xH − yH)

∣∣ ≤ 2 |zP | `(Q0).

Therefore, we infer that

T2 .

∣∣zP,H − (xH − yH)
∣∣ |zP | `(Q0)(

dist(x,H) + |zP |
)n+3 .

`(Q0)(
dist(x,H) + |zP |

)n+1 .

Together with the estimate above for T1 ,this yields (3.52), as wished.

From (3.50) and (3.52) we obtain∣∣R̃rν(x)
∣∣ . |ν|(Q0)

∑
P∈M

`(Q0)(
dist(x,H) + |zP |

)n+1 .

It is easy to check that ∑
P∈M

`(Q0)n+1(
dist(x,H) + |zP |

)n+1 .
`(Q0)

dist(x,H) ,

and then (3.47) follows.
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Lemma 3.6.5. We have ∫
Q0

|Rη|2 dη .

(
ε′ + 1

A2

)
η(Q0).

Proof. By Lemma 3.6.1 it is enough to show that∫
Q0

|R(χ(AQ0)cη)|2 dη .
1
A2 η(Q0).

This estimate is an immediate consequence of Lemma 3.6.4 (a).

Remark 2. By taking A big enough and δ, ε small enough in the assumptions of the Main Lemma 3.2.1,
and then choosing the parameters ε0, κ0, θ0 appropriately, it follows that∫

Q0

|Rη|2 dη � η(Q0). (3.54)

Indeed, the preceding lemma asserts that∫
Q0

|Rη|2 dη .

(
ε′ + 1

A2

)
η(Q0),

with ε′ given in Lemma 3.6.1 by
ε′ = ε̃+An κ−2n−2

0 θ
1

2(n+1)2

0 ,

where ε̃ is defined in (3.23) by

ε̃ = C4

(
ε+ 1

A2 + δ
1

8n+8 + ε0 + θ
1

n+1
0 + κ

1
2
0 +An+1 δ̃

1
2n+3

)
,

and δ̃ in (3.17) by

δ̃ = C3 A
n+1

(
ε0 + θ

1/(n+1)
0 + κ

1/2
0 + δ1/2

)
.

Hence, if we take first A big enough and then ε0, κ0, δ, θ0 small enough (depending on A), so that moreover

θ0 � κ0 (to ensure that Anκ−2n−2
0 θ

1
2(n+1)2

0 � 1), then (3.54) follows.

3.7 Proof of the Key Lemma by contradiction

3.7.1 A variational argument and an almost everywhere inequality

Lemma 3.7.1. Suppose that, for some 0 < λ ≤ 1, the inequality∫
Q0

|Rη|2dη ≤ λ η(Q0)

holds. Then, there is a function b ∈ L∞(η) such that

(i) 0 ≤ b ≤ 2,

(ii) b is periodic with respect to M,

(iii)
∫
Q0

b dη = η(Q0),

and such that the measure ν = bη satisfies∫
Q0

|Rν|2dν ≤ λ ν(Q0) (3.55)

and
|Rν(x)|2 + 2R∗((Rν)ν)(x) ≤ 6λ for ν-a.e. x ∈ Rn+1. (3.56)
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Proof. In order to find such a function b, we consider the following class of admissible functions

A =
{
a ∈ L∞(η) : a ≥ 0, a is M-periodic, and

∫
Q0
a dη = η(Q0)

}
(3.57)

and we define a functional J on A by

J(a) = λ‖a‖L∞(η) η(Q0) +
∫
Q0

|R(aη)|2a dη. (3.58)

Observe that 1 ∈ A and

J(1) = λ η(Q0) +
∫
Q0

|Rη|2dη ≤ 2λ η(Q0),

Thus
inf
a∈A

J(a) ≤ 2λ η(Q0).

Since J(a) ≥ λ‖a‖L∞(η) η(Q0), it is clear that

inf
a∈A

J(a) = inf
a∈A:‖a‖L∞(η)≤2

J(a).

Hence, by standard arguments one can prove that J attains a global minimum on A, i.e., there is a
function b ∈ A such that J(b) ≤ J(a) for all a ∈ A. Indeed, by the Banach-Alaoglu theorem there exists
a sequence {ak}k ⊂ L∞(η), with ‖ak‖L∞(η) ≤ 2 which converges weakly-* in L∞(η) to some function
b ∈ L∞(η). It is clear that b satisfies (i), (ii) and (iii). Also, since y 7→ x−y

|x−y|n+1 belongs to L1(η) (recall
that η has bounded density with respect to Lebesgue measure), it follows thatR(akη)→ R(bη) pointwise.
Taking into account that

|R(akη)(x)| ≤ 2
∫ 1
|x− y|n

dη(y) ≤ C(η),

by the dominated convergence theorem, J(ak)→ J(b).

The estimate (3.55) for ν = b η follows from the fact that J(b) ≤ J(1), because the property (iii)
implies that ‖b‖L∞(η) ≥ 1.

In order to prove that (3.56) holds, we perform a blow-up argument taking advantage of the fact that
b is a minimizer for J . Let B be any ball contained in Q0 and centered on supp(ν) ∩Q0. Denote by

PM(B) =
⋃
R∈M

(B + zR) (3.59)

the “periodic extension” of B with respect to M. Now, for every 0 ≤ t < 1, define

bt = (1− tχPM(B))b+ t
ν(B)
ν(Q0) b. (3.60)

It is clear that bt ∈ A for all 0 ≤ t < 1 and b0 = b. Therefore,

J(b) ≤ J(bt) = λ‖bt‖∞η(Q0) +
∫
Q0

|R(btη)|2bt dη

≤ λ
(

1 + t
ν(B)
ν(Q0)

)
‖b‖∞η(Q0) +

∫
Q0

|R(btη)|2bt dη := h(t).
(3.61)

Since h(0) = J(b), we have that h(0) ≤ h(t) for 0 ≤ t < 1 and, thus h′+(0) ≥ 0 (assuming that h′+(0)
exists). Notice that

dbt
dt

∣∣∣
t=0

= −χPM(B)b+ ν(B)
ν(Q0) b,
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Therefore,

0 ≤ h′+(0) = λ
ν(B)
ν(Q0) ‖b‖∞η(Q0) + d

dt

∣∣∣
t=0

∫
Q0

|R(btη)|2btdη

= λ
ν(B)
ν(Q0)‖b‖∞η(Q0) + 2

∫
Q0

R
(
dbt
dt

∣∣∣
t=0

η

)
· Rν b dη +

∫
Q0

|Rν|2 dbt
dt

∣∣∣
t=0

dη

= λ
ν(B)
ν(Q0) ‖b‖∞η(Q0) + 2

∫
Q0

R
((
−χPM(B)b+ ν(B)

ν(Q0)b
)
η

)
· Rν b dη

+
∫
Q0

|Rν|2
(
−χPM(B)b+ ν(B)

ν(Q0)b
)
dη

= λ
ν(B)
ν(Q0)‖b‖∞η(Q0)− 2

∫
Q0

R(χPM(B)ν) · Rν dν + 2 ν(B)
ν(Q0)

∫
Q0

|Rν|2 dν

−
∫
B

|Rν|2 dν + ν(B)
ν(Q0)

∫
Q0

|Rν|2 dν,

where we used the fact that PM(B) ∩ Q0 = B in the last identity. The fact that the derivatives above
commute with the integral sign and with the operator R is guaranteed by the fact that bt is an affine
function of t and then one can expand the integrand |R(btη)|2bt and obtain a polynomial on t. Using
also the fact that λ ≤ 1 and that J(b) ≤ 2λ ν(Q0), we get∫

B

|Rν|2 dν + 2
∫
Q0

R(χPM(B)ν) · Rν dν ≤ ν(B)
ν(Q0)

[
λ‖b‖∞η(Q0) + 3

∫
Q0

|Rν|2 dν
]

(3.62)

≤ 3 J(b) ν(B) ≤ 6λ ν(B).

We claim now that ∫
Q0

R(χPM(B)ν) · Rν dν =
∫
B

R∗((Rν)ν) dν. (3.63)

Assuming this to be true for the moment, from (3.62) and (3.63), dividing by ν(B), we obtain

1
ν(B)

∫
B

|Rν|2dν + 2
ν(B)

∫
B

R∗((Rν)ν) dν ≤ 6λ,

and so, letting ν(B)→ 0 and applying Lebesgue’s Differentiation Theorem, we obtain

|Rν(x)|2 + 2R∗((Rν)ν)(x) ≤ 6λ for ν-a.e. x ∈ Rn+1,

as desired.
It remains to prove the claim (3.63). By the uniform convergence of R̃r(χPM(B)ν) and R̃rν to

R(χPM(B)ν) and Rν, respectively, we have∫
Q0

R(χPM(B)ν) · Rν dν = lim
r→∞

∫
Q0

R̃r(χPM(B)ν) · R̃rν dν. (3.64)

Since K̃r(x− ·) has compact support, for all x ∈ Q0,

Rr(χPM(B)ν)(x) =
∫
PM(B)

K̃r(x− y) dν(y) =
∑
P∈M

∫
K̃r(x− y) d((TP )#(χBν)(y).

For the last identity we have used the fact that the sum above runs only over a finite number of P ∈M
because there is only a finite number of non-zero terms (in fact, we may assume these P ∈ M to be
independent of x ∈ Q0). Thus we have

Rr(χPM(B)ν)(x) =
∑
P∈M

∫
B

K̃r(x− y − zP ) dν(y) =
∑
P∈M

R̃r(χBν)(x− zP ),
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and so ∫
Q0

R̃r(χPM(B)ν)(x) · R̃rν dν(x) =
∑
P∈M

∫
Q0

R̃r(χBν)(x− zP ) · R̃rν(x) dν(x)

=
∑
P∈M

∫
Q0−zP

R̃r(χBν)(x) · R̃rν(x+ zP ) d((TP )−1
# ν)(x)

Since R̃rν is M-periodic, R̃rν(x + zP ) = R̃rν(x) and (TP )−1
# ν = ν, and then applying also Fubini’s

theorem we get∫
Q0

R̃r(χPM(B)ν)(x) · R̃rν(x) dν(x) =
∑
P∈M

∫
Q0−zP

R̃r(χBν)(x) · R̃rν(x) dν(x) (3.65)

=
∫
R̃r(χBν)(x) · R̃rν(x) dν(x)

=
∫
B

R̃∗r((R̃rν)ν)(y) dν(y).

Since R̃rν converges uniformly toRν as r →∞ and R̃∗r tends toR∗ in operator norm in L∞M(η)→ L∞M(η),
we deduce that

lim
r→∞

∫
B

R̃∗r((R̃rν)ν)(y) dν(y) =
∫
B

R∗((Rν)ν) dν.

Together with (3.64) and (3.65) this yields (3.63).

3.7.2 A maximum principle

Lemma 3.7.2. Assume that, for some 0 < λ ≤ 1, the inequality∫
Q0

|Rη|2 dη ≤ λη(Q0)

is satisfied, and let b and ν be as in Lemma 3.7.1. Let KS > 0 be a big constant (KS � 10) and let S be
the horizontal strip

S =
{
x ∈ Rn+1 : |xn+1| ≤ KS`(Q0)

}
.

Also, set

f(x) = cS xn+1en+1 = cS(0, . . . , 0, xn+1), with cS =
∫ 1(
|yH |2 + (KS`(Q0))2

)n+1
2
dν(y).

Then, we have
|Rν(x)− f(x)|2 + 4R∗((Rν)ν)(x) . λ1/2 + 1

K2
S

for all x ∈ S. (3.66)

Furthermore,
cS .

1
KS`(Q0) . (3.67)

Proof. The inequality (3.67) is very easy. Indeed, we just have to use the fact that ν(B(x, r)) . rn for
all x ∈ Rn+1 and r > 0, and use standard estimates which we leave for the reader.

To prove (3.66), we denote

F (x) = |Rν(x)− f(x)|2 + 4R∗((Rν)ν)(x).

It is clear that F is subharmonic in Rn+1 \ supp(ν) and continuous in the whole space Rn+1, by Lemma
3.6.2. THen, if we show that the estimate in (3.66) holds for all x ∈ supp(ν) ∪ ∂S, then this will be also
satisfied in the whole S. Indeed, since F isM-periodic and continuous in S, it is clear that the maximum
of F in S is attained, and since F is subharmonic in

◦
S \ supp(ν), it should be attained in supp(ν) ∪ ∂S.
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First we check that the inequality in (3.66) holds for all x ∈ supp(ν). To this end, recall that by
Lemma 3.7.1, we have

|Rν(x)|2 + 2R∗((Rν)ν)(x) ≤ 6λ ν-almost everywhere in supp(ν),

and this inequality extends to the whole supp(ν) by continuity. Therefore we have, for all x ∈ supp(ν),

F (x) = |Rν(x)− f(x)|2 + 4R∗((Rν)ν)(x) ≤ 2|Rν(x)|2 + 2|f(x)|2 + 4R∗((Rν)ν)(x)

≤ 12λ+ 2|f(x)|2 ≤ 12λ+
(
cS`(Q0)

)2
. λ+ 1

K2
S

,

where we took into account that |xn+1| ≤ 1
2`(Q0) for x ∈ suppν and we used (3.67).

Our next objective consists in getting an upper bound for F in ∂S. By applying Lemma 3.6.4 to the
function Rν (which is M-periodic), with R∗ instead of R (since R is antisymmetric we are allowed to
do this) we obtain

∣∣R∗((Rν)ν)(x)
∣∣ . 1

`(Q0)n

∫
Q0

|Rν| dν .
1

`(Q0)n

(∫
Q0

|Rν|2 dν
)1/2

ν(Q0)1/2 . λ1/2.

It suffices to show now that |Rν(x)−f(x)| . 1
KS

for all x ∈ ∂S. We writeRν(x) = (RHν(x),Rn+1ν(x)).
From (3.47) we infer that ∣∣RHν(x)

∣∣ . 1
KS `(Q0)n ν(Q0) . 1

KS
.

Hence, it only remains to prove that∣∣Rn+1ν(x) en+1 − f(x)
∣∣ . 1

KS
for all x ∈ ∂S. (3.68)

To prove this estimate we can assume without loss of generality that xn+1 = KS`(Q0) and that xH ∈
Q0 ∩ H, by the M-periodicity of Rn+1ν. Since f(x) = cS KS `(Q0) en+1 for this point x, (3.68) is
equivalent to ∣∣Rn+1ν(x)− cS KS `(Q0)

∣∣ . 1
KS

. (3.69)

Note first that

Rn+1ν(x) = lim
r→0

∫
φr(x− y)xn+1 − yn+1

|x− y|n+1 dν(y) =
∫
xn+1 − yn+1

|x− y|n+1 dν(y),

by an easy application of the dominated convergence theorem (using the fact that |xn+1 − yn+1| ≤
dist(x,H) + `(Q0)). Consider the point x0 = (0,KS`(Q0)). Since for all y ∈ supp(ν),

|x− x0|+ |y − yH | ≤ `(Q0) ≤ 1
2 |x− y|,

and since the (n+ 1) component of K(·), which we denote by Kn+1(·), is a standard Calderón-Zygmund
kernel, ∣∣Kn+1(x− y)−Kn+1(x0 − yH)

∣∣ . |x− x0|+ |y − yH |
|x− y|n+1 .

`(Q0)
|x− y|n+1 .

Therefore,∣∣Rn+1ν(x)− cS KS `(Q0)
∣∣ =

∣∣∣∣∫ (Kn+1(x− y)−Kn+1(x0 − yH)
)
dν(y)

∣∣∣∣ . ∫ `(Q0)
|x− y|n+1 dν(y).

Since dist(x, supp(ν)) & KS `(Q0) and ν is a measure with polynomial growth of order n, by standard
estimates it follows that ∫

`(Q0)
|x− y|n+1 dν(y) . 1

KS
,

which proves (3.69) and finishes the proof of the lemma.
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The next result is an immediate consequence of Lemma 3.7.2.

Lemma 3.7.3. Assume that, for some 0 < λ ≤ 1, the inequality∫
Q0

|Rη|2 dη ≤ λη(Q0)

is satisfied, and let b and ν be as in Lemma 3.7.1. Then, we have

|Rν(x)|2 + 4R∗((Rν)ν)(x) . λ1/2 for all x ∈ Rn+1. (3.70)

Proof. This follows by letting KS → ∞ in the inequality (3.66), taking into account that cS → 0, by
(3.67).

3.7.3 The contradiction

Lemma 3.7.4. Suppose that, for some 0 < λ ≤ 1, the inequality∫
Q0

|Rη|2dη ≤ λ η(Q0) (3.71)

is satisfied, and let b and ν be as in Lemma 3.7.1. Then, the exists some constant c3 > 0 depending only1

on n,C0, C1 such that
λ ≥ c3.

Proof. By Lemma 3.7.2, we have

|Rν(x)|2 + 4R∗((Rν)ν)(x) . λ1/2 (3.72)

for all x ∈ Rn+1. Now pick a smooth function ϕ with χQ0 ≤ ϕ ≤ χ2Q0 and ‖∇ϕ‖∞ . 1
`(Q0) . Set

ψ = C5∇ϕ, so that R∗(ψHn+1) = ϕ. Then, we have

η(Q0) = ν(Q0) ≤
∫
ϕdν =

∫
R∗(ψHn+1) dν

=
∫
Rν ψdHn+1 ≤

(∫
|Rν|2|ψ| dHn+1

)1/2(∫
|ψ| dHn+1

)1/2
.

First of all, observe that

‖ψ‖∞ .
1

`(Q0) and
∫
|ψ| dHn+1 . `(Q0)n

and so

η(Q0) .
(∫
|Rν|2|ψ|dHn+1

)1/2
`(Q0)n/2. (3.73)

Furthermore, by (3.72) we have∫
|Rν|2|ψ| dHn+1 ≤ C λ1/2

∫
|ψ|dHn+1 + 4

∣∣∣∣∫ R∗((Rν)ν)|ψ| dHn+1
∣∣∣∣ (3.74)

. λ1/2`(Q0)n +
∣∣∣∣∫ R∗(χ(3Q0)c(Rν)ν)|ψ| dHn+1

∣∣∣∣+
∣∣∣∣∫ R∗(χ3Q0(Rν)ν

)
|ψ| dHn+1

∣∣∣∣ .
1In fact, keeping track of the dependencies, one can check that c3 depends only on n and C0, and not on C1. However,

this is not necessary for the proof of the Key Lemma.
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To estimate the first integral on the right hand side we apply Lemma 3.6.4 (a) with Ã = 3 and f = Rν b
(where b is such that bη = ν), and then we deduce that for all x ∈ 2Q0,

∣∣R∗(χ(3Q0)c(Rν)ν
)
(x) . 1

`(Q0)n

∫
Q0

|Rν b| dη

= 1
`(Q0)n

∫
Q0

|Rν| dν .

(
−
∫
Q0

|Rν|2 dν
)1/2

. λ1/2.

Thus, recalling that ψ is supported in 2Q0,∣∣∣∣∫ R∗(χ(3Q0)c(Rν)ν)|ψ| dHn+1
∣∣∣∣ . λ1/2 ‖ψ‖1 . λ1/2 ν(Q0).

Concerning the last integral on the right hand side of (3.74), we have∣∣∣∣∫ R∗(χ3Q0(Rν)ν
)
|ψ| dHn+1

∣∣∣∣ =
∣∣∣∣∫

3Q0

Rν · R(|ψ| dHn+1) dν
∣∣∣∣

≤
(∫

3Q0

|Rν|2 dν
)1/2(∫

3Q0

|R(|ψ| dHn+1)| dν
)1/2

.

The first integral on the right hand side does not exceed cλ ν(Q0) (by (3.55) and the periodicity of Rν).
For the second one, using the fact that |ψ| . 1

`(Q0)χ2Q0 , it follows easily that ‖R(|ψ|Hn+1)‖∞ . 1.
Therefore, we get ∣∣∣∣∫ R∗(χ3Q0(Rν)ν

)
|ψ| dHn+1

∣∣∣∣ . λ1/2ν(Q0).

Then, from (3.74) and the last estimates we deduce that∫
|Rν|2|ψ|dHn+1 . λ1/2ν(Q0).

Thus, by (3.73),
ν(Q0) . λ1/4ν(Q0),

that is, λ & 1.

Now, in order to prove the Key Lemma 3.4.1 we only have to recall that, by Remark 2,
∫
Q0
|Rη|2 dη �

η(Q0) if A is big enough and δ, ε, κ0, θ0 are small enough and chosen appropriately, under the assumption
that ε0 is small enough too. This contradicts Lemma 3.7.4. Hence, (3.13) cannot hold and thus we are
done.

3.8 Construction of the AD-regular measure ζ and the uni-
formly rectifiable set Γ in the Main Lemma

Denote
F = Q0 ∩ supp(µ) \

⋃
Q∈LD

Q. (3.75)

It is easy to check that 0 < θn∗ (x, µ) ≤ θn,∗(x, µ) <∞ for µ-a.e. x ∈ F . Since Rµ is bounded on L2(µbF ),
it follows that µ|F is n-rectifiable, by the Nazarov-Tolsa-Volberg theorem [NToV2]. However, to get a
big piece of a set contained in a uniformly n-rectifiable set Γ as the one required in the Main Lemma
and in Theorem 3.1.1 we have to argue more carefully. To this end, first we will construct an auxiliary
AD-regular measure ζ such that ζ(F ) & µ(F ), and then we will apply the Nazarov-Tolsa-Volberg theorem
[NToV1] for AD-regular measures.
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Next we are going to construct the aforementioned auxiliary measure ζ. The arguments for this
construction can be considered as quantitative version of the ones from [NToV2], which rely on a covering
theorem of Pajot (see [P]).

Recall the notation σ = µbQ0 . Consider the maximal dyadic operator

MDσf(x) = sup
Q∈Dσ:x∈Q

1
σ(Q)

∫
Q

|f | dσ,

where Dσ is the David-Mattila lattice associated σ. Let F be as in (3.75) and set

F̃ =
{
x ∈ F :MDσ (χF c)(x) ≤ 1− ε0

2

}
.

We wish to show that
σ(F̃ ) ≥ 1

2 σ(F ). (3.76)

To this end, note that
F \ F̃ =

{
x ∈ F :MDσ (χF c)(x) > 1− ε0

2

}
and consider a collection of maximal (and thus disjoint) cells {Qi}i∈J ⊂ Dσ such that σ(Qi \ F ) >
(1− ε0

2 )σ(Qi). Observe that
F \ F̃ =

⋃
i∈J

Qi ∩ F.

Clearly, the cells Qi satisfy σ(Qi ∩ F ) ≤ ε0
2 σ(Qi) and so we have

σ(F \ F̃ ) ≤
∑
i∈J

σ(Qi ∩ F ) ≤
∑
i∈J

ε0

2 σ(Qi) ≤
ε0

2 σ(Q0) ≤ 1
2 σ(F ),

which proves (3.76).

For each i ∈ J we consider the family Ai of maximal doubling cells from Ddbσ which cover Qi, and we
define

A =
⋃
i∈J
Ai.

Finally, we denote by A0 the subfamily of the cells P ∈ A such that σ(P ∩F ) > 0. Now, for each Q ∈ A0

we consider an n-dimensional sphere S(Q) concentric with B(Q) and with radius 1
4r(B(Q)). We define

ζ = σb
F̃

+
∑
Q∈A0

HnbS(Q).

Remark 3. If P ∈ A0 and P ⊂ Qi for some i ∈ J , then

`(P ) ≈θ0,C0 `(Qi).

Indeed, since P is a maximal doubling cell contained in Qi, by Lemma E and the fact that 3.5BP ⊂
100B(P ),

θσ(3.5BP ) . θσ(100B(P )) . A
−9n(J(P )−J(Qi))
0 θσ(100B(Qi)) .C0 A

−9n(J(P )−J(Qi))
0 .

Since σ(P ∩ F ) > 0, it turns out that P is not contained in any cell from LD, and so Θσ(3.5BP ) > θ0.
Then, we have

θ0 .C0 A
−9n(J(P )−J(Qi))
0 ,

which implies that |J(P )− J(Qi)| .θ0,C0 1.
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A very similar argument shows that if P ∈ Dσ satisfies P ∩ F 6= ∅ (and so it is not contained in any
cell from LD), then there exists some Q ∈ Ddbσ which contains Q and such that

`(P ) ≈θ0,C0 `(Q).

The details are left for the reader.

From the two statements above, if follows that for any cell P ∈ Dσ which is not strictly contained in
any cell from A0 there exists some cell P̂ ∈ Ddbσ which is not contained in any cell Qi, i ∈ J , so that
P ⊂ P̂ and `(P ) ≈θ0,C0 `(Q).

Lemma 3.8.1. The measure ζ is AD regular, with the AD-regularity constant depending on C0, θ0, and
ε0.

Proof. First we will show the upper AD-regularity of ζ, that is, we will prove that ζ(B(x, r)) ≤ C(C0, θ0) rn

for all x, r. By the upper AD-regularity of σ, it is enough to show that the measure

ν =
∑
Q∈A0

HnbS(Q)

is also upper AD-regular, so we have to prove that

ν(B(x, r)) ≤ C(C0, θ0) rn for all x ∈
⋃
Q∈A0

S(Q) and all r > 0. (3.77)

Take x ∈ S(Q), for some Q ∈ A0. Clearly, the estimate above holds if the only sphere S(P ), P ∈ A0,
that intersects B(x, r) is just S(Q) itself, so assume that B(x, r) intersects a sphere S(P ), P ∈ A0, with
P 6= Q. Recall that 1

2B(Q) ∩ 1
2B(P ) = ∅, by Remark 1, and thus for some constant C6, P ⊂ B(x,C6r).

Hence,
ν(B(x, r)) ≤

∑
P∈A0:P⊂B(x,C6r)

ν( 1
4S(P )) .

∑
P∈A0:P⊂B(x,C6r)

`(P )n.

Note now that by the definition of A0, σ(F ∩ P ) > 0, which implies that P 6∈ LD and that P is not
contained in any other cell from LD, and thus taking also into account that P ∈ Ddb,

σ(P ) & σ(3.5BP ) & θ0 `(P )n. (3.78)

Together with the upper AD-regularity of σ, this yields

ν(B(x, r)) . 1
θ0

∑
P∈A0:P⊂B(x,C6r)

σ(P ) . 1
θ0
σ(B(x,C6r)) .C0,θ0 r

n,

which concludes the proof of (3.77).

It remains now to show the lower AD-regularity of ζ. First we will prove that

ζ(2BQ) &θ0,ε0,C0 `(Q)n if Q ∈ Ddbσ is not contained in any cell Qi, i ∈ J . (3.79)

Indeed, note that by the definition of the cells Qi, i ∈ J ,

σ(Q \ F ) ≤
(

1− ε0

2

)
σ(Q),

or equivalently,
σ(Q ∩ F ) ≥ ε0

2 σ(Q).

Since Q is not contained in any cell from LD (by the definitions of F and A0) and is doubling,

σ(Q ∩ F ) &ε0 σ(3.5BQ) &θ0,ε0 `(Q)n. (3.80)
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On the other hand, by the construction of ζ,

σ(Q ∩ F ) = σ(Q ∩ F̃ ) +
∑

P∈A0:P⊂Q
σ(P ∩ F ) .C0 ζ(Q ∩ F̃ ) +

∑
P∈A0:P⊂Q

Hn(S(P )).

We may assume that all the cells P ⊂ Q satisfy S(P ) ⊂ 2BQ, just by choosing the constant A0 in the
construction of the lattice Dσ big enough. Then we get

σ(Q ∩ F ) .C0 ζ(Q ∩ F̃ ) +
∑

P∈A0:S(P )⊂2BQ

ζ(S(P )) .C0 ζ(2BQ).

Together with (3.80), this gives (3.79).

To prove the lower AD-regularity of ζ, note that by Remark 3 there exists some constant C ′(C0, θ0)
such that if x ∈ S(Q), Q ∈ A0, and C ′(C0, θ0) `(Q) < r ≤ diam(Q0), then there exists P ∈ Ddbσ not
contained in any cell Qi, i ∈ J , such that 2BP ⊂ B(x, r), with `(P ) ≈θ0,C0 r. The same holds for
0 < r ≤ diam(Q0) if x ∈ F̃ . From (3.79) we infer that

ζ(B(x, r)) ≥ ζ(2BP ) &θ0,ε0,C0 `(P )n ≈θ0,ε0,C0 r
n.

In the case that r ≤ C ′(C0, θ0) `(Q) for x ∈ S(Q), Q ∈ A0, the lower AD-regularity of HnbS(Q) gives the
required lower estimate for ζ(B(x, r)).

Lemma 3.8.2. The Riesz transform Rζ is bounded in L2(ζ), with a bound on the norm depending on
C0, C1, θ0, and ε0.

To prove this result we will follow very closely the arguments in the last part of the proof of the Main
Lemma 2.1 of [NToV2]. For completeness, we will show all the details.

For technical reasons, it will be convenient to work with an ε-regularized version R̂ν,ε of the Riesz
transform Rν . For a measure ν with polynomial growth of order n, we set

R̂ν,εf(x) =
∫

x− y
max(|x− y|, ε)n+1 f(y) dν(y).

It is easy to check that

|R̂ν,εf(x)−Rν,εf(x)| ≤ cMnf(x) for all x ∈ Rn+1,

where c is independent of ε and Mn is the following maximal operator with respect to ν:

Mnf(x) = sup
r>0

1
rn

∫
B(x,r)

|f | dν.

Since Mn is bounded in L2(ν) (because ν has growth of order n), it turns out that Rν is bounded in
L2(ν) if and only if the operators R̂ν,ε are bounded in L2(ν) uniformly on ε > 0. The advantage of R̂ν,ε
over Rν,ε is that the kernel

K̂ε(x) = x

max(|x|, ε)n+1

is continuous and satisfies the smoothness condition

|∇K̂ε(x)| ≤ c

|x|n+1 , |x| 6= ε

(with c independent of ε), which implies that K̂ε(x − y) is a standard Calderón-Zygmund kernel (with
constants independent of ε), unlike the kernel of Rν,ε.
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Proof of Lemma 3.8.2. To shorten notation, in the arguments below we will allow all the implicit con-
stants in the relations . and ≈ to depend on C0, C1, θ0, ε0.

Denote
ν =

∑
Q∈A0

HnbS(Q),

so that ζ = σb
F̃

+ν. Since Rσ is bounded in L2(σ), it is enough to show that Rν is bounded in L2(ν).
Indeed, the boundedness of both operators implies the boundedness of Rσ+ν in L2(σ+ν) (see Proposition
2.25 of [T6], for example).

As in (3.14), given κ > 0, for each Q ∈ A0, we consider the set

Iκ(Q) = {x ∈ Q : dist(x, suppσ \Q) ≥ κ`(Q)}.

By the thin boundary condition of Q, the fact that Q is doubling, and that σ(Q) & θ0 `(Q)n (as shown
in (3.78)), we obtain that there exists some κ > 0 small enough such that

σ(Iκ(Q)) ≥ 1
2 σ(Q) & θ0 `(Q)n. (3.81)

We consider the measure
σ̃ =

∑
Q∈A0

cQ σbIκ(Q),

with cQ = Hn(S(Q))/σ(Iκ(Q)). By (3.81), it follows that the constants cQ, Q ∈ A0, have a uniform
bound depending on θ0, and thus R

σ̃
is bounded in L2(σ̃) (with a norm possibly depending on θ0).

Furthermore, ν(S(Q)) = σ̃(Q) for each Q ∈ A0.

It is clear that, in a sense, σ̃ can be considered as an approximation of ν (and conversely). To prove the
boundedness ofRν in L2(ν), we will prove that R̂ν,ε is bounded in L2(ν) uniformly on ε > 0 by comparing
it to R̂

σ̃,ε
. First we need to introduce some local and non local operators: given z ∈

⋃
Q∈A0

S(Q), we
denote by S(z) the sphere S(Q), Q ∈ A0, that contains z. Then we write, for z ∈

⋃
Q∈A0

S(Q),

Rlocν,εf(z) = R̂ν,ε(fχS(z))(z), Rnlν,εf(z) = R̂ν,ε(fχRn+1\S(z))(z).

We define analogously Rlocσ,εf and Rnlσ,εf : given z ∈
⋃
Q∈A0

Q, we denote by Q(z) the cell Q ∈ A0 that
contains z. Then for z ∈

⋃
Q∈A0

Q, we set

Rloc
σ̃,ε
f(z) = R̂

σ̃,ε
(fχQ(z))(z), Rnl

σ̃,ε
f(z) = R̂

σ̃,ε
(fχRn+1\Q(z))(z).

It is straightforward to check that Rlocν,ε is bounded in L2(ν), and that Rlocσ,ε is bounded in L2(σ), both
uniformly on ε (in other words, Rlocν is bounded in L2(ν) and Rlocσ is bounded in L2(σ)). Indeed,

‖Rlocν,εf‖2
L2(ν) =

∑
Q∈A0

‖χS(Q)R̂ν,ε(fχS(Q))‖2
L2(ν) .

∑
Q∈A0

‖fχS(Q)‖2
L2(ν) = ‖f‖2

L2(ν),

by the boundedness of the n-Riesz transforms on S(Q). Using the boundedness of Rσ in L2(σ), it follows
analogously that Rloc

σ̃,ε
is bounded in L2(σ̃).

Boundedness of Rnlν in L2(ν). We must show that Rnlν is bounded in L2(ν). To this end, we will
compare Rnlν to Rnl

σ̃
. Observe first that, since Rnl

σ̃,ε
= R̂

σ̃,ε
−Rloc

σ̃,ε
, and both R̂

σ̃,ε
and Rloc

σ̃,ε
are bounded

in L2(σ̃), it follows that Rnl
σ̃,ε

is bounded in L2(σ̃) (all uniformly on ε > 0).

Note also that for two different cells P,Q ∈ A0, we have

dist(S(P ), S(Q)) ≈ dist(Iκ(P ), Iκ(Q)) ≈ dist(S(P ), Iκ(Q)) ≈ D(P,Q), (3.82)
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where D(P,Q) = `(P ) + `(Q) + dist(P,Q) and the implicit constants may depend on κ. The arguments
to prove this are exactly the same as the ones for (3.33), (3.34) and (3.35), and so we omit them. In
particular, (3.82) implies that

(
S(P ) ∪ Iκ(P )

)
∩
(
S(Q) ∪ Iκ(Q)

)
= ∅, and thus for every z ∈ Rn+1 there

is at most one cell Q ∈ A0 such that z ∈ S(Q) ∪ Iκ(Q), which we denote by Q(z). Hence we can extend
Rnlν,ε and Rnl

σ̃,ε
to L2(σ̃ + ν) by setting

Rnlν,εf(z) = R̂ν,ε(fχRn+1\S(Q(z)))(z), Rnl
σ̃,ε
f(z) = R̂

σ̃,ε
(fχRn+1\Q(z))(z).

We will prove below that, for all f ∈ L2(σ̃) and g ∈ L2(ν) satisfying∫
Iκ(P )

f dσ̃ =
∫
S(P )

g dν for all P ∈ A0, (3.83)

we have
I(f, g) :=

∫
|Rnl

σ̃,ε
f −Rnlν,εg|2 d(σ̃ + ν) . ‖f‖2

L2(σ̃) + ‖g‖2
L2(ν), (3.84)

uniformly on ε. Let us see how the boundedness of Rnlν in L2(ν) follows from this estimate. As a
preliminary step, we show that Rnlν : L2(ν) → L2(σ̃) is bounded. To this end, given g ∈ L2(ν), we
consider a function f ∈ L2(σ̃) satisfying (3.83) that is constant on each ball Bj . It is straightforward to
check that

‖f‖
L2(σ̃) ≤ ‖g‖L2(ν).

Then from the L2(σ̃) boundedness of Rnl
σ̃

and (3.84), we obtain

‖Rnlν,εg‖L2(σ̃) ≤ ‖R
nl

σ̃,ε
f‖

L2(σ̃) + I(f, g)1/2 . ‖f‖
L2(σ̃) + ‖g‖L2(ν) . ‖g‖L2(ν),

which proves that Rnlν : L2(ν)→ L2(σ̃) is bounded.

It is straightforward to check that the adjoint of (Rnlν,ε)j : L2(ν) → L2(σ̃) (where (Rnlν,ε)j stands
for the j-th component of (Rnlν,ε)j) equals −(Rnl

σ̃,ε
)j : L2(σ̃) → L2(ν). So, by duality, we obtain that

Rnl
σ̃

: L2(σ̃)→ L2(ν) is also bounded.

To prove now the L2(ν)-boundedness of Rnlν , we consider an arbitrary function g ∈ L2(ν), and we
construct f ∈ L2(σ̃) satisfying (3.83) which is constant in each ball P . Again, we have ‖f‖

L2(σ̃) ≤
‖g‖L2(ν). Using the boundedness of Rnl

σ̃
: L2(σ̃)→ L2(ν) together with (3.84), we obtain

‖Rnlν,εg‖L2(ν) ≤ ‖Rnlσ̃,εf‖L2(ν) + I(f, g)1/2 . ‖f‖
L2(σ̃) + ‖g‖L2(ν) . ‖g‖L2(ν),

as wished.

It remains to prove that (3.84) holds for f ∈ L2(σ̃) and g ∈ L2(ν) satisfying (3.83). For z ∈
⋃
P∈A0

P ,
we have

|Rnl
σ̃,ε
f(z)−Rnlν,εg(z)| ≤

∑
P∈A0:P 6=Q(z)

∣∣∣∣∫ K̂ε(z − y)(f(y) dσ̃|Iκ(P )(y)− g(y) dν|S(P )(y))
∣∣∣∣ ,

where K̂ε(z) is the kernel of the ε-regularized n-Riesz transform. By standard estimates, using (3.83)
and (3.82), and the smoothness of K̂ε, it follows that∣∣∣∣∫ K̂ε(z − y)(f(y) dσ̃|Iκ(P )(y)− g(y) dν|S(P )(y))

∣∣∣∣
=
∣∣∣∣∫
P

(K̂ε(z − y)−Kε(z − x))(f(y) dσ̃|Iκ(P )(y)− g(y) dν|S(P )(y))
∣∣∣∣

.
∫

|x− y|
|z − y|n+1 (|f(y)| dσ̃|Iκ(P )(y) + |g(y)| dν|S(P )(y))

≈ `(P )
D(Q(z), P )n+1

∫
(|f(y)| dσ̃|Iκ(P )(y) + |g(y)| dν|S(P )(y)).
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Recall that Q(z) stands for the cell Q,Q ∈ A0, such that z ∈ S(Q) ∪ Iκ(Q).

We consider the operators

T
σ̃
(f)(z) =

∑
P∈A0:P 6=Q(z)

`(P )
D(Q(z), P )n+1

∫
f dσ̃|Iκ(P ) ,

and Tν , which is defined in the same way with σ̃Iκ(P ) replaced by ν|S(P ). Observe that

I(f, g) ≤ c ‖T
σ̃
(|f |) + Tν(|g|)‖2

L2(σ̃+ν)

≤ 2c ‖T
σ̃
(|f |)‖2

L2(σ̃+ν) + 2c ‖Tν(|g|)‖2
L2(σ̃+ν)

= 4c ‖T
σ̃
(|f |)‖2

L2(σ̃) + 4c ‖Tν(|g|)‖2
L2(ν),

where, for the last equality, we took into account that both T
σ̃
(|f |) and Tν(|g|) are constant on Iκ(P ) ∪

S(P ) and that σ̃(Iκ(P )) = ν(S(P )) for all P ∈ A0.

To complete the proof of (3.84) it is enough to show that T
σ̃

is bounded in L2(σ̃) and Tν in L2(ν). We
only deal with T

σ̃
, since the arguments for Tν are analogous. We argue by duality again, so we consider

non-negative functions f, h ∈ L2(σ̃) and we write

∫
T
σ̃
(f)h dσ̃ =

∫  ∑
P∈A0:P 6=Q(z)

`(P )
D(P,Q(z))n+1

∫
P

f dσ̃

 h(z) dσ̃(z)

.
∑
P∈A0

`(P )
∫
P

f dσ̃

∫
Rn+1\P

1(
dist(z, P ) + `(P ))n+1 h(z) dσ̃(z).

From the growth of order n of σ̃, it follows easily that∫
Rn+1\P

1
(dist(z, P ) + `(P ))n+1 h(z) dσ̃(z) . 1

`(P ) Mσ̃
h(y) for all y ∈ P ,

where M
σ̃

stands for the (centered) maximal Hardy-Littlewood operator (with respect to σ̃). Then we
deduce that ∫

T
σ̃
(f)h dσ̃ .

∑
P∈A0

∫
P

f(y)M
σ̃
h(y) dσ̃(y) . ‖f‖

L2(σ̃)‖h‖L2(σ̃),

by the L2(σ̃) boundedness of M
σ̃
. Thus, T

σ̃
is bounded in L2(σ̃).

Proof of the Main Lemma 3.2.1. By Lemmas 3.8.1, 3.8.2, and the Nazarov-Tolsa-Volberg theorem
of [NToV1], ζ is a uniformly rectifiable measure, so it only remains to note that the set Γ := F̃ satisfies
the required properties from the Main Lemma: it is contained in supp(ζ), which is uniformly rectifiable
and, by (3.76), µ(Γ ) = σ(F̃ ) ≥ ε0

2 µ(Q0).
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[L] J.C. Léger, Menger curvature and rectifiability, Ann. of Math. 149 (1999), 831–869.

[MP] P. Mattila and P. Paramonov, On geometric properties of harmonic Lip1-capacity, Pacific J. Math.,
v. 171, No. 2 (1995), 469-491.
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