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Resumen

La sociedad y los ecosistemas han evolucionado de forma conjunta a lo largo de la
historia estableciendo una estrecha relación. Mientras que los ecosistemas proveen de
bienes y servicios a la sociedad, esta, mediante sus acciones y decisiones, afecta a la
estructura y funcionamiento de los mismos a distintas escalas espacio-temporales. La
gestión de este complejo sistema de interacciones supone un desafío desde el punto de
vista científico - técnico, ético, político. Por todo ello, se requiere de un enfoque inter-
disciplinar en las políticas de gestión y en los procesos de toma de decisión. El concepto
de Socioecosistema definido como un sistema integrado del hombre en la naturaleza, aporta
un nuevo marco conceptual integrado y unitario.

Dentro de la modelización ecológica, son diversas las técnicas y herramientas estadísti-
cas que tratan de representar y modelizar el Socioecosistema desde diversas perspecti-
vas. Desde la estadística tradicional pasando por algunos métodos basados en técnicas
de Inteligencia Artificial, ecólogos y expertos en Ciencias Ambientales han tratado de
obtener modelos capaces de manejar la complejidad de estos sistemas, así como incluir
en los mismos conceptos como la incertidumbre o la probabilidad.

En esta Tesis se propone la aplicación de las Redes Bayesianas a la modelización am-
biental y ecológica, y en concreto, a la modelización del Socioecosistema. Definidas al
comienzo de la década de los 90, se han aplicado con éxito en áreas como Medicina y
Ciencias de la Vida. Sin embargo, su aplicación en Ecología y Ciencias Ambientales es
escasa y centrada en determinados aspectos, dejando aún sin explorar gran parte de su
potencial.

El principal objetivo de esta Tesis es, por tanto, el estudio de la aplicación de Redes Bayesia-
nas híbridas como una herramienta probabilística en la modelización ecológica, desglosado en
cuatro objetivos secundarios que se corresponden con los cuatro capítulos principales.
A lo largo de esta memoria se describen con detalle los conceptos básicos sobre los que
se apoya esta nueva herramienta, con la finalidad de aportar un marco metodológico
entendible por expertos en ecología y medio ambiente que no estén familiarizados con
este tipo de técnicas.

Si bien el objetivo no es el de realizar una exhaustiva comparación con otras técnicas
estadísticas aplicadas en el mismo campo, las Redes Bayesianas aportan ciertas ven-
tajas frente a metodologías más clásicas. En primer lugar, su estructura visual basada
en la Teoría de Grafos, permite que los modelos aprendidos sean fácilmente interpre-
tados por expertos y actores sociales, permitiendo su aplicación en los procesos de
toma de decisión y gestión de recursos naturales. Además, su naturaleza probabilís-
tica permite obtener los resultados como distribuciones de probabilidad en lugar de un
valor absoluto. A diferencia de otras técnicas, los resultados obtenidos mediante Redes
Bayesianas pueden ser interpretados de una manera más variada y detallada. A partir
de las distribuciones de probabilidad obtenidas, distintos estadísticos como la media o
la varianza pueden ser calculados. Además, es posible calcular la probabilidad de un
determinado valor, o de un rango de valores, lo cual permite, por ejemplo, obtener la
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probabilidad de que un embalse alcance un valor por encima del umbral de seguridad.
Esta ventaja supone un mejor manejo de la incertidumbre asociada al modelo. Una de
las mayores diferencias con respecto a otras técnicas, es la posibilidad de incluir vari-
ables tanto discretas como continuas en el mismo modelo. Mediante el uso del modelo
Mixture of Truncated Exponential, ambos tipos de variables son introducidos de forma
simultánea en el mismo modelo sin necesidad de ningún tipo de modificación en la
estructura del mismo.

Una vez que se estudian las relaciones entre un conjunto de variables de un socio-
ecosistema, a menudo surge la necesidad de determinar su comportamiento ante un
cambio. Mediante el proceso de inferencia probabilística, las Redes Bayesianas son
capaces de analizar las repercusiones de dicho cambio. Si bien esta es una propiedad
común a otras técnicas, las Redes Bayesianas de nuevo aportan una ventaja sobre las
demás al permitir incluir esta nueva información tan solo en aquellas variables que
tengamos evidencia de un cambio, dejando que el resto se actualicen durante el proceso
de inferencia.

Por último señalar que problemas tanto de caracterización, clasificación y regresión
pueden ser abordados por las Redes Bayesianas tanto para el caso de datos estáticos,
como series de datos temporales.

Por todo ello, las Redes Bayesianas híbridas constituyen una herramienta novedosa
y con un gran potencial para su aplicación en la modelización ecológica y ambiental,
haciendo frente a los principales desafíos de la modelización del Socioecosistema.
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Abstract

Society and ecosystems have co-evolved together along history. From the beginning
of human societies, ecosystem support us with natural resources needed for our own
development, and absorb the produced waste. At the same time, societies impact on
ecosystem on loca, regional and global spatial and temporal scales. Managing cause
and effect relationships among nature and society supposes a challenge from technical,
ethical and political point of view. For that reason, an interdisciplinar framework is
needed. The term Socioecosystem is defined as an intregated system of human in the
nature.

Modeling these complexity is still a challenge, but several statistical tools try to repre-
sent and model Socioecosystems from different point of view. From traditional statis-
tical techniques to some Artificial Intelligence based methods, ecologist and environ-
mental sciences experts have tried to obtain methods able to manage the complexity
involved in that social-natural systems, also, probability and uncertainty concepts.

In this Thesis, we propose the use of a new statistical model, Bayesian network, for
Socioecological modeling. Defined at the beginning of the nineties, they have been
successfully applied in Health and Life sciences. However, their application in Ecology
and Environmental Sciences is still scarce and focused just on specific aspect, without
taking advantage of their potentials.

The main objective of this Thesis is the study of the applicability and contribution of hy-
brid Bayesian networks (hBNs) as a statistical tool for ecological and environmental mod-
eling, divided into four secondary goals developed in detail in the four main chap-
ters. Throughout this manuscript, a deep explanation about the basic concept of this
methodology is shown, with the aim of providing a theoretical framework for experts
in ecology and environmental sciences.

Even when the idea is not to compare with other methodologies, hBNs present a set of
advantages over others traditional tools. Firstly, the qualitative part of hBNs based on
the Graph Theory, allow the models to be easily interpreted by experts and stakehold-
ers, and make them appropriate for decision making processes and natural resource
management. Besides, the quantitative part based on probability theory provide re-
sults in terms of probability distributions rather than a value. From these probability
distributions, a set of measurements such as mean or standard deviation can be cal-
culated. Also, the probability of a specific value or a range can be computed, which
allow, for example, to obtain the probability of a dam reaching a value over the secu-
rity threshold. This advantage involves a better uncertainty management. Secondly,
the ability to deal simultaneously with discrete and continuous variables is one of the
most important advantages. Thanks to the use of the Mixture of Truncated Exponential
models both types of variables are included in the same model without any data pre-
processing or changes in the model structure.
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Once the relationship between variables have been modeled, their behaviour when a
change happens need to be studied. Throughout the inference process, hBNs are able to
analyzed that changes. Even when this property is common to other techniques, hBNs
overcome them since information about hte change is included just in a set of variables,
whilst the rest are updated during the inference process.

Finally, hBNs are able to deal with characterization, regression and classification prob-
lems both with static and temporal data.

For that reasons, Bayesian networks are a powerful and novelty tool to be applied
in ecological and environmental modeling, able to overcome the main challenges of
Socioecosystem modeling.
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Motivation, Objectives and
Structure

Motivation

Nowadays, the impact societies have on the biosphere, and the inter-relationships be-
tween different natural and social subsystems is clear. National and International Go-
vernments are aware of about the necessity of including both social and natural aspects
into management plans and politics, which makes interdisciplinary studies indispen-
sable. Besides, the spread of information technologies, and Geographical Information
Systems, takes us to a new era of information in which large amounts of data are availa-
ble.

Bayesian networks have been developed in the last 30 years and successfully applied
in such important areas as Health or Life Sciences. From the theoretical and real life
applications point of view, Bayesian networks have demonstrated their powerfulness
when dealing with different types of data (discrete, continuous and hybrid), sources of
information (empirical data, expert opinion, literature information), problems to face
(classification, regression, future scenario study) and, also, time series data.

In ecology and environmental modeling they started to be applied at the beginning
of the nineties with a few papers per year, and the number of papers increased in the
following years. However, their application in that field is still scarce and partial. Cu-
rrently, just around 50 papers per year can be found in literature and most of them
are applied to specific areas, like water research and ecology. Despite the advantages
of using original continuous data, the majority of papers discretized them and used a
small set of all the available algorithms and softwares. Also, both classification and
regression problems are scarcely solved by Bayesian networks, which are mainly used
for studying scenarios of change or the relationships between the variables involved in
the model.

In this sense, further efforts are needed to encourage experts in ecology and environ-
mental sciences to use this statistical tool, expand its application to other areas (i.e.
biological conservation, land use management or fisheries) and deal with original con-
tinuous or hybrid data. Several reviews and papers about how to use Bayesian net-
works in environmental modeling are available, but their framework are often focused
on discrete data. This Thesis aims to provide experts in ecology and environmental sci-
ence with a set of theoretical framework, applications, recommendations and tools for
a proper application of hybrid Bayesian networks (including discrete and continuous
variables simultaneously).

This Thesis is quite ambitious since it tries to merge two different areas; on the one
hand, Ecology and Environmental Sciences through the concept of socio-ecological
Systems; on the other hand, Mathematics and Computer Science through the use of
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hybrid Bayesian networks. The expected main audience of this Thesis is experts in
ecology and environmental modeling interested in applied BNs, so basic concepts and
theoretical framework of Bayesian networks needs to be explained in detail. This can
make readers from mathematics and computer science areas feel some parts are redun-
dant or unnecessary to be described.

Objectives and Structure

The main objective of this Thesis is the study of the applicability and contribution of hybrid
Bayesian networks (hBNs) as a statistical tool for ecological and environmental modeling. To
achieve this goal, four different secondary goals were proposed:

1. Study of characterization problem through hBNs.

2. Study of regression techniques through hBNs.

3. Study of non-supervised classification techniques based on hBNs.

4. Study of dynamic models based on hBNs.

For each secondary goal, a set of applications has been proposed: the study of Sys-
temic Change in a socio-ecological System, Landscape-Society interaction in a socio-
ecological System, socio-ecological cartography and water reservoir management.

This manuscript is divided into three parts. Part I contains the Introduction divided
into two chapters: Chapter 1 describes the ecological framework on which this Thesis
is based, whilst Chapter 2 deals with the theory behind Bayesian networks: definition,
their adaptation for hybrid domains and an overview about their development and
applications in several areas, mainly in environmental modeling.

Part II corresponds to the main part of this Thesis, where Chapters 3, 4, 5 and 6 each
deals with one of the four secondary goals. They correspond to the main problem in
which hBNs can be applied following the flowchart shown in Figure 1. The first step in
BNs modeling is to decide the objective of the model among three main options: Char-
acterization, Regression and Classification (Figure 1 a)). For all these options, structure
and parameter have to be learnt. It can be carried out following the flowchart shown
in Figure 1 b). A step beyond these static models, is the extension of BNs to deal with
time series according to Figure 1 c) and presented in Chapter 6.

Chapter 3 deals with Characterization problem with hBNs. In this chapter, the theory
behind structural learning through automatic algorithm and expert knowledge is pre-
sented and how the concept of d-separation is appropriate to manage Systemic Change
study. The environmental application is focused on the discovery of relationships be-
tween subsystems (both natural and social) in a socio-ecological System and how a
disturbance can be propagated through the system and have its impact checked in the
rest of the variables. Also, uncertainty in environmental modeling is analyzed.

Chapter 4 presents an application based on a Regression problem. The relation between
society and landscape is modeled through a hBNs regression model. In this case, fixed
structure is applied and their potential is demonstrated against other techniques (tra-
ditional regression methodologies, and discrete BN model). Besides, the relationships
between socioeconomic variables and landscapes are deeply studied and whether they
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are directly proportional or not is established. Finally, two scenarios of social evolution
are included and their impact on the landscape is observed.

Chapter 5 deals with the Classification purpose. In this case, hBNs are applied to iden-
tify the socio-ecological structure of a territory and obtain a map of socio-ecological
sectors in an extended region. The proposed approach divides the problem in such a
way that this complex task can be easily tackled allowing it to be clearly understood by
experts. Also, a scenario of Global Environmental Change is included with the aim of
studying the impact of this global phenomenon in a Mediterranean region.

Chapter 6 is focused on Dynamic or temporal models through hBNs. In this chapter, the
water reservoir system of Andalusia is modeled under a dynamic framework with the
aim of predicting the temporal behavior of the reservoir capacity. Firstly, a comparison
between static and dynamic models is carried out, and later on the chapter deals with
the main approaches for learning and performing inference in Dynamic BNs (DBNs).

Finally, Part III presents Chapter 7 in which the conclusion of this Thesis are drawn.
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a) Aim of the Model

What is
the aim of
the model?

Study relationships
between variables,

and future scenarios

Predict one
goal variable

Is it discrete?No Yes

Regression
(Ch. 4)

Classification
(Ch. 5)

Characterization
(Ch. 3)

b) (Static) Model Learning

Are constrained structure
suitable for the model?

No Yes

Do we include
expert knowledge?No Yes

Optimal struc-
ture learning

(Semi)Manual
structure learning

Constrained struc-
ture learning

c) Dynamic Model Learning (Ch. 6)

Have we got a specific
algorithm for dynamic

model structure learning?
No Yes

Duplicate the static model
and learn the temporal rela-
tionships in a 2-steps process

Learn the dynamic model
directly in a 1-step process

FIGURE 1: Flowchart for BNs modeling process in which each Thesis
goal is pointed out. Ch., Chapter.
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Chapter 1

Ecological Framework:
Socio-Ecological Systems

In this Chapter the ecological framework based on the concept of Socio-
ecological Systems is explained. From their initial motivation and develop-
ment through classical statistical tools until today, this concept has hardly
been studied using models that allow complexity to be taken into account.

Human society and natural systems have co-evolved along history (Norgaard, 1988).
From the beginning of human societies, ecosystems support us with natural resources
needed for our own development, and absorb the produced waste. Before the Indus-
trial Revolution, societies impacted on ecosystem in a slight way, but the development
of new technologies and industrial processes, together with the increase in the human
population, have led to an important degrade of impact on the ecosystems on local,
regional and global scales (Liu et al., 2007). Nowadays, effects of society in ecosystems
are clear and visible, and managing cause and effect relationships among nature and
society supposes a challenge from several points of view: technical, ethical, political
and ecological.

In this sense, several international projects (like the Intergovernmental Panel on Cli-
mate Change (IPCC, 2014), or the Millennium Ecosystem Assessment (M.E.A., 2003))
demand an integrated management of natural systems, and Ecology is applied with the
aim of bringing a scientific background into political discussion and decision-making
(Carpenter & Folke, 2006). Relationships between natural and social systems have been
deeply studied from the ecological perspective, i.e., how human activities affect the
natural processes and the structure of ecosystems. Recently, researchers are commonly
also focused on how changes in ecosystems affect human wellbeing and the generation
of ecosystem services, and try to relate both natural and social systems (Martín-Lopez
et al., 2009). This integration stage a conflict between ecological sustainability versus
economic development and growth (Eliott, 2013) since ecologists have focused on the
ecosystems considering society as external agents; whilst social sciences have treated
ecosystems as an external influence (Barnard & Elliott, 2015). For a successful sus-
tainable development, three dimensions should be considered: economy, society and
the environment (Wang et al., 2011; Dawe & Ryan, 2003; Young, 1997).

From this new integrated point of view, the concept of Socio-Ecological System (Fi-
gure 1.1) can be defined in different ways (Martín-Lopez et al., 2009):

SES definition 1: An integrated system of human in the nature (Anderies et al., 2004)

7
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Socio-ecological Systems

Ecosystems Society

Ecosystem services

Human activities

FIGURE 1.1: Flowchart of the components of Socio-ecological Systems
and their relations.

SES definition 2: An ecological system linked to and affected by the social system (Folke,
2006)

Under this framework, nature and society are considered as a clearly related system
and so any delimitation between them is artificial and arbitrary (Berkes & Folke, 1998).
When all these links between social and ecological systems are identified, the overall
system is really complex. Instead, relationships between them operate at different spa-
tial and temporal scales (Liu et al., 2007; Anderies et al., 2004). This complexity has been
widely studied from the ecological perspective (Cadenasso et al., 2006; Holling, 2001).

SES exhibits a set of properties that do not come from human or natural systems se-
parately, but stemming from the interactions between them (Liu et al., 2007). Some
ecological properties that need to be defined for the SES modeling are vulnerability
and resilience (Young et al., 2006).

Vulnerability: the degree in which an ecosystem changes due to both internal or external
changes.

Resilience: the ability of an ecosystem to maintain similar structure and functions after a
change.

In the case of a SES the term vulnerability needs to be extended to also include distur-
bances in the overall system due to an alteration in relationships, rather than a specific
change in a set of variables (Liu et al., 2007; Walker et al., 2002). When this kind of
disturbance affects an a SES, it may be altered or not depending on its own resilience.
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Modeling these complex and heterogeneous SES is still a challenge (Filatova et al., 2013;
Filatova & Polhill, 2012; Jorgensen, 1999). Even when the term SES is novel, attempts
to model both social and natural systems are not new.

Traditional statistical techniques have extensively been applied (Hong et al., 2016; Atuo
et al., 2015; Van Holle et al., 2014; You et al., 2014). The most extensively used are re-
gression models, including logistic regression. Some examples can be found in litera-
ture. In this sense, Salvati & Carlucci, 2015 study the effect of grazing over agro-forestry
systems including socioeconomic variables as important factors. In the paper of Sterzel
et al., 2014 how socio-ecological vulnerability is related to armed conflict in global dry-
lands on a subnational level is studied. Vu et al., 2014 explores the socioeconomic fac-
tors that determine land degradation in Vietnam. Schmitz et al., 2012 determine the
effect of protected areas over landscapes dynamics and socioeconomic development.
Beverly et al., 2011 include social components in modeling changes in the annual wild-
fire activity in Canada in relation to Northern Hemisphere climate variability. Bellassen
et al., 2010 model the organic carbon sequestration potential from different agricultural
intensification process in Senegal.

Other techniques applied are classification trees and cluster analysis. Staudhammer
et al., 2015 applied classification trees to examine the spatial distribution and Socio-
ecological predictors of invasive plants in different ecosystems. Nair et al., 2016 used
cluster analysis to characterize regional landscapes typologies, whilst Harlan et al., 2013
worked on the prediction of social and environmental factors for heat deaths under a
climate change framework.

As an extension of these classic methodologies, Agent Based Models (ABM) have evol-
ved and been applied into SES modeling. Initially developed as a computer science
paradigm called object-oriented programming, their evolution was feed by several a-
reas (Bousquet & Le Page, 2004; Langton, 1988). Nowadays, an ABM involves the
creation of several virtual objects with autonomous behavior (agents) to represent real
actors and their interactions between one and other. In SES modeling, they are mostly
applied to represent the institutional and governance structures, which is crucial to un-
derstand how policy and organizations provide feedback to agent behavior (Rounsev-
ell et al., 2012). The main advantage of these kinds of models is their ability to include
the behavior of social actors in a more realistic way, also, combining with a dynamic
heterogeneous representation of the spatial environment (Filatova et al., 2013).

Some examples of its application are found in Verhoog et al., 2016 in which a biogas
infrastructure effect is studied in The Netherlands; Mena et al., 2011 simulates how
the dynamic of land use change impacts household farms in the Amazons; Rebaudo
et al., 2011 use ABM as a tool for modeling the interaction between pest invasion and
farmers in an agricultural landscape in the tropical Andes; or Bousquet & Le Page, 2004
that explores the necessity of a new shift in the paradigm toward a clear and explicit
integration of society into these models.

An extended revision of ABM was done by Filatova et al., 2013 pointing out its main
challenges and An, 2012 in which its advantages and disadvantages are highlighted.
One of the most important disadvantages is to compare different agent-based models
due to the high variability of methodologies and frameworks applied. Besides, mo-
deling human behavior and decisions making processes are still considered as a cha-
llenge despite the advances in that field (Smajgl et al., 2011), as well as how to include
biophysical processes (Matthews et al., 2005).
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Models described above were mainly developed and applied from the ecological and
environmental sciences. In contrast, social sciences deal with this coupled human-
nature systems through the use of some Social Theories (Borges et al., 2014; Poppenborg
& Koellner, 2013; Wauters & Mathijs, 2012). The most commonly used is the Theory
of Planned Behavior (Ajzen, 1991) which describes Human Behavior as a result of be-
havioral intention, subjective norms and perceived behavioral controlled attitudes. For
example, in Deng et al., 2016 this theory is used to analyze the factors affecting the
intention of farmers for ecological conservation via payment of ecosystem services.

Under this social perspective Solstrand, 2015 studies several conservation centers and
theoretical framework in Iceland and Norway to check the challenges of current policy
and management actions. Besides, some models are based on purely physical mo-
deling approaches that try to describe the biophysical basis of human societies (Fischer-
Kowalski, 2011; Suh et al., 2010; Miller & Blair, 2009).

In this Thesis, we propose the use of a new statistical model, Bayesian networks, for
SES modeling. There are some attempts to model SES using BNs (Drees & Liehr, 2015;
Naranjo-Madrigal et al., 2015). The next chapter includes an extended overview of
literature.



Chapter 2

Bayesian networks in
Environmental Modeling

In this Chapter, an introduction to Bayesian networks (BNs) is shown which
includes their definitions, types of problems they can deal with, their adap-
tation to hybrid domains and their extension to dynamic models. Their main
concepts are explained in order to provide a general knowledge about this
new tool necessary to understand the rest of the Thesis. Finally, an overview
about their application in literature is included.

2.1 Bayesian networks definition

Bayesian networks were firstly defined by Judea Pearl who designed an algorithm for
efficiently computing probabilities in the mid-1980s (Pearl, 1986) and proposed it as a
novel approach to apply probability Theory for reasoning with uncertainty in knowled-
ge - based systems (Pearl, 1988b). Also called belief networks or Bayesian belief net-
works, their potential usefulness and applications were immediately identified by the
Artificial Intelligent (AI) community but the strong mathematical concepts and struc-
tural limitations in Pearl’s algorithms limited their spread to other areas (Charniak,
1991). When these structural and conceptual limitations were overcome, BNs became
really popular for dealing with uncertainty domains (Andersen et al., 1990; Jensen et
al., 1990b; Shenoy & Shafer, 1990). During the nineties, their potential applications
were dramatically expanded for several reasons; i) machine learning techniques were
developed and allowed BNs to be directly learnt from datasets (Cooper & Herskovits,
1992; Spirtes et al., 1993), ii) they were proposed for pattern recognition or classification
tasks giving robust and accurate results in comparison to others well known classifiers
(Friedman et al., 1997), and iii) the introduction of hybrid domains in which both dis-
crete and continuous variables can be included in the same BNs models (Lauritzen,
1992).

They were defined by Jensen & Nielsen, 2007 as:

Bayesian network: A Bayesian network consists of the following:

• A set of variables and a set of directed edges between variables.

• Each variable has a finite set of mutually exclusive states.

11
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• The variables together with the directed edges form an acyclic directed graph (DAG);
a directed graph is acyclic if there is no directed path A1 → . . .→ An so that A1 =
An.

• To each variable A with parents B1, . . . ,Bn, a conditional probability table P(A|B1,
. . . , Bn) is attached

The DAG configures the qualitative part, whilst the probabilities assignments the quan-
titative part of a BNs. Both qualitative and quantitative components are explained in
detail below.

2.1.1 Qualitative component

The qualitative component represents the structure of the model, which is based on the
well known Graph Theory. A BN structure is defined as a direct acyclic graph (DAG)
in which variables are represented as nodes, and the presence of an edge linking two
variables indicates the existence of a statistical dependence between them.

For a clear understanding about the mathematical concepts involved in BNs modeling,
a toy and simple example about an illegal dumping in a pool is presented. This example
does not focus on the ecological process modeling from an ecological point of view,
since more variables and processes should be included to be modeled appropriately.

Suppose we are hiking in the countryside and plan to picnic close to a pool, but the water has
a bad smell and green color. We want to know if this situation is due to an illegal dumping, or
to natural reasons. We know that an illegal dumping provokes an increase of nutrients in the
water, with a quick development of weed as a consequence, which makes the water turn green.
This implies a change in the ecological conditions of the pool and the water starts to rot. Also,
the dumping could provoke some lather in the water surface. However, a decrease in the river
flow that feeds the pool can also involve the accumulation of nutrients, so the process is natural.

RottenWater

GreenWater LatherInWater

IllegalDumpingRiverFlowDec.

FIGURE 2.1: The qualitative part for the Illegal dumping example.

Figure 2.1 shows the DAG for this example in which each node represents one of the
random variables with two possible states: True or False. This qualitative structure
allows us to see the variables included in the model and their causal relationships and
infer what is going to happen (if there is an illegal dumping, water will be green), or
discover causes from observed effects (if there is lather and a green color, probably the
cause is an illegal dumping). Besides, from this information we can determine what
variables are important for a certain one with no mathematical calculation involved
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(for the variable RottenWater, the variable LatherInWater is not directly related and has
no direct influence over it). This is related to the concepts of d-separation (explained in
detail in Chapter 3) and Markov blanket (Friedman et al., 1997). For a node Xi its Markov
blanket is a set of nodes composed of Xi’s parents, its children and the parents of its
children apart from Xi. For example, for variable GreenWater, the Markov blanket is the
set of variables composed of: RiverFlowDec., IllegalDumping and RottenWater.

In general, three types of relations can be identified in a DAG, enough to explain how
information flows through the network (Figure 2.2):

1. Serial connections (Figure 2.2 a)). In the example, the variable RiverFlowDec. has a
direct influence on GreenWater, which in turn affects RottenWater. So, information
flows from RiverFlowDec. to RottenWater and viceversa. However, if we see the
water is green (variable GreenWater is true), information about the river flow (if it
has been reduced or not) is not important for our belief about RottenWater.

2. Converging connections (Figure 2.2 b)). Variable GreenWater is directly influenced
by both IllegalDumping and RiverFlowDec. In this case, these last two variables are
irrelevant to each other. If we know nothing about the color of the pool (we
haven’t arrive to check it yet), neither variables have relationships between them.
But, if we have some knowledge about the color, and there is probably no river
flow decrease, then this will affect my belief about IllegalDumping: some village
up in the river is illegally dumping in the river which provokes the change in the
water color, which also reduces the probability of a decrease in the river flow.

3. Diverging connections (Figure 2.2 c)). IllegalDumping directly influences both
LatherInWater and GreenWater. In this case, information flows from LatherInWa-
ter to GreenWater and viceversa. If we see lather in the water surface, then the
probability of variable GreenWater would rise. But, if we know that there is an
illegal dumping (we check the information on the news), any information about
the lather is irrelevant to our belief of the water color and viceversa (maybe the
lather has not appeared yet).

a) Serial Connections

RottenWater

GreenWater LatherInWater

IllegalDumpingRiverFlowDec

b) Converging Connections

RottenWater

GreenWater LatherInWater

IllegalDumpingRiverFlowDec

c) Diverging Connections

RottenWater

GreenWater LatherInWater

IllegalDumpingRiverFlowDec

FIGURE 2.2: Types of connections in a DAG structure: serial (a), con-
verging (b) and diverging (c).
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One of the main advantages of BNs is their associated DAG structure, which deter-
mines the (in)dependence relationships between the variables. Also, it makes this
model easy to interpret and understand by experts and stakeholders who play an im-
portan role in real life problems modeling (Voinov & Bousquet, 2010).

2.1.2 Quantitative component

However, the causal relationships shown in the DAG structure are not absolute, some-
times even when there has been an illegal dumping, the lather does not immediately
appear, or the water needs some days to suffer a color change in a significant way. So,
for example, what is the probability of finding lather in water after an illegal dumping?
To solve this question, the Probability Theory is included. Associated with the qualita-
tive structure, there are a set of numerical functions representing the strength of these
relationships between the variables.

In a network we can differentiate between two types of nodes: a root nodes are those
that have no predecessors (RiverFlowDec. and illegalDumping), and child nodes are
those which have predecessors or parent nodes (RiverFlowDec. is the parent of the child
node GreenWater). Firstly, the probability distributions of all the root nodes is included,
and for the rest of the nodes, the probability is expressed as a conditional probabil-
ity giving all possible combinations of their parents. Taking into account the structure
given by the DAG structure and using the rule of the probability, we can express the
probability of a variable as

p(x1, . . . , xn) =

n
∏

i=1

p(xi | pa(xi)) (2.1)

This is what allows complex models to be expressed in an adequate way. In the Illegal
Dumping example it means that the probability of any child can be easily calculated
from the probability of its parents. In Figure 2.3 some examples are shown: the pro-
bability of the river flow decrease is 0.1 (10% that we previosly calculated from the
data), and 0.2 for an illegal dumping. So, for the variable GreenWater the probability of
being true when there is no decrease in the river flow (Rfd = F) but an illegal dumping
(Id = T) is equal to 0.7 (the same explanation for the rest of the values). These probabil-
ity values can be estimated from the data or even elicited by expert knowledge. This is
explained later in this Thesis.

The definition provided by Jensen & Nielsen, 2007 focused on discrete BN in which
the quantitative part is expressed as a conditional probability table since the variables
have a finite number of states. In the case of continuous variables, relationships are
quantified as density functions.

2.2 Bayesian networks learning

The definition of the aim of the model is a key point (Chen & Pollino, 2012). Figure 1
shows the decision making process for BNs modeling in which we can see BNs are
a versatile tool which can be adapted to different kinds of problems: Characterization,
Regression and Classification. These three types of models are extensively explained in



Chapter 2. Bayesian networks in Environmental Modeling 15

RottenWater

GreenWater LatherInWater

illegalDumpingRiverFlowDecreaseP(Rfd=T)=.1 P(Id=T)=.2

P(Gw=T/ Rfd=F, Id =T)=.7

P(Liw=T/Id =T)=.9

P(RW=T/Gw=F)=.85

FIGURE 2.3: Some examples of the quantitaive part for the Illegal Dump-
ing? example. Adapted from Charniak, 1991. T, True; F, False; Rfd,
RiverFlowDec.; Id, illegal Dumping; Wi, GreenWater; Liw, LatherInWa-

ter; RW, RottenWater.

Chapters 3, 4 and 5, respectively. Also, they can be extended to deal with temporal
dataset, configuring a Dynamic BNs (see Chapter 6).

Firstly, the aim of our model needs to be identified, and two options are available:
i) predict one goal variable, which has to be estimated as accurately as possible, and
ii) use the model for studying the relationships between variables and also predicting
some future scenarios. In the first case, we need to distinguish between two possible
cases relevant to the nature of the target variable. If it is discrete, the problem we
are facing is classification and the goal variable is called the class variable, whilst it is a
regression when this variable is continuous. In the second case, we are dealing with a
model for Characterization purpose.

Once the aim of the model is clear, the next step is the decision about the model struc-
ture and learning process. The first question to answer is if the structure should be
constrained or not. Constrained structures are mainly developed for classification and
regression purposes and their main advantages are that they are defined for accurately
predicting the goal variable values, but not the distribution of the rest of the variables,
called features. They usually have fewer links than non constrained structures which
implies a smaller number of parameters to be estimated but yielding appropriate re-
sults. Some examples of constrained structures are the naïve Bayes (NB) (Minsky,
1963), TAN (Friedman et al., 1997), kDB (Sahami, 1996) and AODE (Webb et al., 2005), in
which the possible relationships between variables are restricted. These structures are
automatically learnt from the data and no information from stakeholders or experts
is needed for establishing the relations between variables. But they can be used for
variable selection and other pre-processing steps.

In contrast, if we decide not to use a constrained structure, we need to learn the opti-
mal structure using data or expert information, or both, by automatic or manual ap-
proaches, or a combination of them. This will be deeply explained in Chapter 3.

Static BNs have demonstrated their ability to provide robust and accurate results, but,
if temporal series data are available and we want to take advantage of their temporal
behavior, a step beyond is the use of dynamic BNs. In such case, we need to face the
following question: Have we got a specific algorithm for dynamic model learning? In
case we have it, we execute the model structure and parameters learning using that
algorithm. However, they can still be difficult to apply for experts in other areas, so
another option is to use static BNs algorithms for dynamic model learning. In this case,
firstly a static model is learnt, and in a second step, it is repeated and linked through a
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set of temporal relationships that represents the transition from one time to the next. In
this way, a complex model is learnt with some sub-networks, each one for a different
time. Both cases are deeply explained in Chapter 6.

2.3 Bayesian networks inference.

Once the model is learnt, BNs allow new information to be included in the variables
as new values or evidence, and update the probability values of the rest of the variables
by what is called inference or probability propagation. If we denote the set of evidences as
E, and its values as e, then the inference process consists of calculating the posterior
distribution, p(xi/e), for each variable of interest Xi /∈ E.

In this way, BNs can compute the effects given the causes (What is the probability of
having rotten water given a high probability of a weed increase?), and even the causes
given their effects (If we know there is a weed increase, what is the probability of being
provoked by illegal dumping?) (Malekmohammadi et al., 2009; Uusitalo, 2007; Getoor
et al., 2004).

Several algorithms have been defined and proposed for efficiently computing these
pro-bability values both exact or approximately (Madsen & Jensen, 1999; Shenoy &
Shafer, 1990). On the one hand, exact inference algorithms obtain the posterior proba-
bility distribution in an exact way, usually based on the idea of performing the compu-
tations locally. Some examples are the fusion algorithm (Pearl, 1988b), variable elimina-
tion method (Zhang & Poole, 1996) or the junction tree algorithm (Jensen et al., 1990a).

However, obtaining exact values of probabilities is difficult and computationally costly,
mainly when the network is so complex (Cooper, 1990). Thus, approximate algorithms
are also proposed. They can be divided into two main groups:

• Methods based on simulation. These methods are based on the Monte Carlo
methodology to simulate a sample of the variables in the network and estimate
the probability distributions from it (Salmerón et al., 2000).

• Deterministic methods. In this group several ideas have been proposed such as
the Penniless algorithm based on the Kullback-Leibler cross entropy as a measure
of the error of approximation (Cano et al., 2002; Cano et al., 2000), replace the low-
est probability values with zeros to reduce the information complexity (Jensen
& Andersen, 1990), simplify the network structure avoiding weak relationships
(Kjærulff, 1994), or focus on the most probable configurations (Santos & Shimony,
1994).

2.4 Bayesian networks for hybrid domains.

BNs were initially developed to deal with discrete variables in which the results are
expressed as Conditional Probability Table (CPT). Thus, a wide range of algorithms,
software and applications are easily found in literature (Aguilera et al., 2011; Marcot
et al., 2006). However, applications in ecology and environmental sciences involve the
use of continuous variables, or even, a mix between discrete and continuous variables
in the same dataset. In these cases, the available algorithms require conti-nuous data to
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be transformed into categorical or discrete variables. This data discretization often im-
plies a loss of information and accuracy (Uusitalo, 2007), and supposes a challenge in
environmental modeling through BNs. Some attempts to solve this task using several
methodologies can be found in literature - entropy minimization, equal width, equal
frequency, deterministic equations, k-means, ChiMerge, among others- that try to ob-
tain the most suitable thresholds for each variable (Christofides et al., 1999; Kozlov &
Koller, 1997; Dougherty et al., 1995). Other techniques try to incorporate ecological
knowledge to offer an objective approach for the discretization process (Lucena-Moya
et al., 2015).

In spite of these improvements in the classical discretization methods, dealing with
continuous or hybrid data is usually the best solution. Estimation of the BN‘s para-
meters directly from the original data returns a model which can report more specific
and accurate solutions for the proposed objectives (Ropero et al., 2016). Following this
idea, some models were proposed to represent probability distributions in hybrid BNs.

The first proposal was the The Conditional Gaussian (CG) model (Lauritzen, 1992) in
which both continuous and discrete variables can be incorporated with no prior trans-
formation. This model requires the joint distribution of the continuous variables, for
each configuration of the discrete ones, follows a multivariate Gaussian, which is not
always true in the case of environmental data. Also, CG model imposes some restric-
tions to the DAG structure, where a discrete variable can not have continuous parents.

These restrictions have induced the development of other alternatives. The first alter-
native was the Mixture of Truncated Exponentials (MTE) model (Rumí, 2003; Moral et al.,
2001) which does not impose any restrictions on the network structure. They were de-
fined by Moral et al., 2001 and deeply developed by Rumí, 2003. This model overcomes
the main limitation when dealing with hybrid BN, since it provides us with a com-
mon structure to represent both discrete and continuous variables in such a way that
all the computations needed to perform probability propagation in the model can be
done using the same structure. Also, this model is implemented in the software Elvira
(Elvira-Consortium, 2002) including algorithms for characterization, regression and clas-
sification in the same package.

In contrast discretization, in which the domain of the variable is divided into several
intervals and approximated by a constant function, when other functions with better
properties are used, the accuracy of the model is improved (Rumí, 2003). This is the
idea behind the MTE models, in which exponential functions are used due to their
great fitting power. A step beyond this was the proposal of the Mixture of Polynomials
model (Shenoy & West, 2011; Shenoy & West, 2009) and the Mixture of Truncated Basis
Functions model (Langseth et al., 2012) in which both used other functions were used.

One of the objectives of this Thesis is to encourage ecologists to apply BNs to real pro-
blems. Even when MoP and MoTBFs models have been proposed as promising solu-
tions, they: i) are still under development, what implies that ii) algorithms are not to-
tally developed for regression, classification and inference and also, iii) they are spread
in different software packages which makes it difficult for ecologists to apply. These
limitations are not present in MTE, that is the reason why they are used to represent
pro-bability distributions all through this Thesis.
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2.4.1 Mixture of Truncated Exponential Models

With the aim of performing inference in BN, the probability distributions need to be re-
stricted, marginalized and combined, which can be easily done in MTE models. So,
during this process, where the posterior distributions of the variables are obtained
given some evidence, the intermediate functions are not necessarily density functions.
Therefore a general function called MTE potential needs to be defined (Moral et al.,
2001):

MTE potential Let X be a mixed n-dimensional random vector. Let Z = (Z1, . . . , Zd)
T and

Y = (Y1, . . . , Yc)
T be the discrete and continuous parts of X, respectively, with c+ d =

n. We say that a function f : ΩX 7→ R
+
0 is a Mixture of Truncated Exponentials

potential (MTE potential) if one of the next conditions holds:

i. Z = ∅ and f can be written as

f(x) = f(y) = a0 +
m
∑

i=1

aie
{bTi y} (2.2)

for all y ∈ ΩY, where ai ∈ R and bi ∈ R
c, i = 1, . . . ,m.

ii. Z = ∅ and there is a partition D1, . . . ,Dk of ΩY into hypercubes such that f is
defined as

f(x) = f(y) = fi(y) if y ∈ Di,

where each fi, i = 1, . . . , k can be written in the form of Equation (2.2).

iii. Z 6= ∅ and for each fixed value z ∈ ΩZ , fz(y) = f(z, y) can be defined as in ii.

MTE density An MTE potential f is an MTE density if

∑

z∈ΩZ

∫

ΩY

f(z, y)dy = 1.

A conditional MTE density can be specified by dividing the domain of the conditioning
variables and specifying a MTE density for the conditioned variable for each configu-
ration of splits of the conditioning variables. We can see this in the following example.

Example Consider two continuous variables Y1 and Y2. A possible conditional MTE
density for Y1 given Y2 is the following:

f(y1 | y2) =























0.28 + 0.01e1.03y1 + 0.02e0.01y1 if 0 ≤ y1 < 1, 1 ≤ y2 < 3,

0.02 + 0.02e1.01y1 + 0.12e0.09y1 if 1 ≤ y1 < 3, 1 ≤ y2 < 3,

0.49 − 0.12e0.59y1 − 0.24e−0.08y1 if 0 ≤ y1 < 1, 3 ≤ y2 < 4,

0.07 − 0.02e−0.23y1 + 0.62e−0.23y1 if 1 ≤ y1 < 3, 3 ≤ y2 < 4.

In the same way as in discretization, the more intervals used to divide the domain of
the continuous variables, the better the MTE models accuracy will be, but the complex-
ity increases. Furthermore, in the case of MTE, using more exponential terms within
each interval substantially improves the suitability to the real model, but again more
complexity is assumed (Morales et al., 2006). There are different approximation tech-
niques that can be applied to obtain the result as MTE densities. In this Thesis, we have
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followed the scheme presented in Moral et al., 2003 and Rumí et al., 2006, which pro-
duces MTE functions with high fitting power and low computational complexity. From
these results, we are able to get approximations that are accurate, yet simple enough to
allow the use of an exact inference algorithm (Rumí & Salmerón, 2007).

Model learning and inference are both addressed through this Thesis using Elvira soft-
ware (Elvira-Consortium, 2002) and following the approach of Rumí et al., 2006 to es-
timate the corresponding conditional distributions. Let Xi and Y be two random vari-
ables, and consider the conditional density f(xi | y). The idea is to split the domain
of Y by using the equal frequency method with three intervals. Then, the domain
of Xi is also split using the properties of the exponential function, which is concave,
and increases over its whole domain. Accordingly, the partition consists of a series of
intervals whose limits correspond to the points where the empirical density changes
between concavity and convexity or decrease and increase.

At this point, a 5-parameter MTE is fitted for each split of the support of X, which
means that in each split there will be 5 parameters to be estimated from data:

f(x) = a0 + a1e
a2x + a3e

a4x, α < x < β , (2.3)

where α and β define the interval in which the density is estimated.

The reason for using the 5-parameter MTE lies in its ability to fit the most common
distributions accurately, while the model complexity and the number of parameters to
estimate is low (Cobb et al., 2006). The estimation procedure is based on least squares
(Romero et al., 2006; Rumí et al., 2006). In the case of models with more than one condi-
tioning variable see Moral et al., 2003 for more details.

2.5 Overview

A keyword search in ISI Web of Knowledge was carried out to illustrate the evolution
of BN development and applications. The terms Bayesian network and belief network
were used in the search from January 1990 to today (the last search done on 29th June,
2016) resulting in 10301 papers. Figure 2.4 shows the distribution of these papers in
different research areas according to the ISI Web of Knowledge. Two research areas
stand out from the others, Mathematic and Computer Sciences and Engineering, which
can be considered mainly as areas in which the theoretical background, algorithms
and software are developed (Lim et al., 2016; Butz et al., 2016; Boudali & Dugan, 2005;
Ratnapinda & Druzdzel, 2015; Cheng et al., 2002; Heckerman, 1997; Zhang & Poole,
1996; Heckerman et al., 1995).

The rest of the research areas draw together several scientific fields in which BNs are
directly applied to real life problems: Health Sciences, Ecology and Environmental Sciences,
Life Sciences, Social Sciences and Others (that combine the field of Music, Business and
Economy fields). Figure 2.5 shows the evolution over time of these research areas from
1990. Again, both Mathematic and Computer Sciences and Engineering show a quick and
remarkable evolution against the rest of the areas.

The first applied areas were Health science and Life Sciences (van der Gaag, 1996) in
which BNs have been successfully applied (Chai et al., 2014; Mumford & Ramsey, 2014;
Lee & Abbott, 2003). A skimming of papers included in these areas reveals that BNs
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FIGURE 2.4: Number of paper in Research Areas of ISI Web of Knowl-
edge from 1990 to nowadays. M&C, Mathematical and Computer Sci-

ences; E&E, Ecology and Environmental Sciences; Eng., Engineering.

are much more advancely applied than in other scientific fields. For example, dealing
with temporal data through the extension of BN, called Dynamic BN (explain in detail
in Chapter 6), is still a challenge in Ecology and Environmental Science (Molina et al.,
2013), whilst an extensively applied tool in health and life sciences (Baur & Bozdag,
2015; Marini et al., 2015; van Gerven et al., 2008; Zou & Conzen, 2005).

Applied papers in Ecology and Environmental Sciences began in 1990 with one or two
papers per year, but it was not until the beginning of 2000 when they started to be more
frequently applied. In Aguilera et al., 2011’ s paper a thorough study was carried out
taking more than 120 papers of this research area and analyzing their modeling goal,
model structure, learning and validation process and softwares used. In this section,
this study is updated with around 260 papers published during the period of time
1990-2016.

Firstly, papers are classified into several topics according to the ISI Web of Knowl-
edge information and the content of each paper. Figure 2.6 shows the results of this
classification in which Water research topic is prominent with respect to the rest. This
is explained by the advantages that BNs provide as a tool for Decision Support Sys-
tem which encouraged scientifsic to apply them under the Integrated Water Resource
Ma-nagement context (Castelletti & Soncini-Sessa, 2007b; Henriksen et al., 2007). This
has led to the application of BNs in some European projects such as the FP5-MERIT
(Bromley et al., 2005) or the NeWater (Henriksen & Barlebo, 2008). Ecology and Envi-
ronmental Science topic is also remarkable, probably due to its more general and open
contents where papers about general ecology or even socio-ecological systems are in-
cluded (Young et al., 2011; Milns et al., 2010; Ticehurst et al., 2007; Pollino et al., 2007).
Biodiversity and Conservation is the third topic in number of papers mainly for the use
of BNs in species distribution and habitat suitability models (Boets et al., 2015; Roberts
et al., 2013; Laws & Kesler, 2012). There are several topics with no more than 10 papers,
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search Area of ISI Web of Knowledge.

Agriculture, Forestry, Fisheries, Marine and Freshwater Biology, Geology and Meteorologi-
cal and Atmospheric Sciences, where BNs have been scarcely applied nor tested. Special
mention for the case of Land Use topic where despite the scarce number of papers, they
are applying BNs with Geographic Information Systems improving predictive mod-
els about land use changes (Celio et al., 2014; Aitkenhead & Aalders, 2009; Kocabas &
Dragicevic, 2009; Grêt-Regamey & Straub, 2006). Finally, General topic refers to those
papers that do not build any BN model but discuss their ability, potential applications
in certain environmental problems, or even about how to learn and validate it, or mea-
sure uncertainty from BNs (Tiller et al., 2013; Chen & Pollino, 2012; Marcot, 2012; Smith
et al., 2011; Lynam et al., 2007; Pollino et al., 2007; Uusitalo, 2007; Marcot et al., 2006;
Ricci et al., 2003; Varis & Kuikka, 1999).

A thorough study of these papers reveals that BNs are partially used in Environmental
Science and Ecology, where this powerful tool is mainly applied for characterization
purpose (Figure 2.7), using discrete or discretized data (Figure 2.8). With respect to the
modeling learning process, this review shows that a high percentage of paper using
experts (alone or mixed with data) for learning the structure and parameters of the
BNs (Figure 2.9), also, encouraged by several papers (Caley et al., 2013; Castelletti &
Soncini-Sessa, 2007a; Walton & Meidinger, 2006).

This tendency can be explained because there is a high percentage of papers used soft-
ware with the need that data be discrete, and have an intuitive learning toolbox. In this
way the author may not provide more information about the model learning scheme
the software act as a black box. Besides, BNs have been used as a tool, not the objective
of the paper, so the focus is on the environmental problem, not the details about the
structure and parameters of the model. However, this lack of information about the
model itself implies the non-reproductibility of the models presented.
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In general, further efforts are needed to expand the application of BNs in environ-
mental sciences. Whilst in other areas this model is widely applied, the application
in eco-logy is scarce and focused on a particular aim, without taking advantage of its
strength. One potential of BNs hardly explored in ecology is their extension to deal
with time series called Dynamic BNs. Fewer than 3% of the papers reviewed use this
dynamic version of BNs, and those that applied it do not include continuous variables.

As a summary, most papers that applied BNs in ecology and environmental modeling
use discrete or discretized data with the aim of learning models for characterization.
Besides, experts and stakeholders are included in the model learning process more of-
ten than structural learning algorithms. The small percentage of papers that deal with
hybrid domains (Figure 2.8) and dynamic datasets, encourage the aim of this Thesis.
Trough this dissertation, BNs are based on hybrid datasets and, even when experts
are included, model learning has been carried out with different algorithms that ob-
tain the structure from the data, or even, fixed and constrained structures have been
applied. Finally, not only characterization purpose was solved, but also, classification
and regression problems.



Part II

Hybrid Bayesian networks in SES
modeling
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Chapter 3

Characterization: Modeling
Uncertainty in Social-Natural
Interactions

Characterization is the most usual problem in which BNs are applied in. In
this Chapter, an Andalusian watershed is modeled as a SES and the inte-
ractions between social and natural subsystems (land use and water flow
components) are studied using a hybrid BNs. The aim is to provide a new
methodology to model systemic change in a socio-ecological context. Two
endogenous changes, agricultural intensification and the maintenance of tra-
ditional cropland, are proposed. Besides, a methodology for scenarios com-
parison using the probability of the tails is presented. As a conclussion, in-
tensification of the agricultural practices leads to a rise in the rate of immi-
gration to the area, as well as to greater water losses through evaporation;
whilst maintenance of traditional cropland hardly changes the social struc-
ture, while increasing evapotranspiration rates and improving the control
over runoff water.

3.1 Introduction: Bayesian networks for characterization

In the mathematical field Characterization is the process of identifying the collection of
properties that distinguish one object from the others. In our context, BNs for Charac-
terization purpose aims to explore the behavior of the system modeled, and the nature
and strength of the relationships between the variables. Besides, through the inference
process, this model is able to study the behavior of the (socio)ecosystem modeled un-
der different scenarios (Dyer et al., 2014; Keshtkar et al., 2013; Vilizzi et al., 2013). BNs
for Characterization purpose is the most applied model objective. As Figure 3.1 shows,
they have been widely used in Water Research, Ecology and Environmental Science and
Biodiversity & Conservation topics. In this sense, they were used for modeling scenarios
of Climatic and Global change in different ecosystems and watershed (Dyer et al., 2014;
Mantyka-Pringle et al., 2014; Webster & McLaughlin, 2014), changes in management
plans of groundwater systems or species conservation (Shenton et al., 2014; Tiller et al.,
2013), or environmental features that impact on species distribution patterns (Meineri
et al., 2015).

27
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To model this kind of problems, first step is to learn the network structure, and two
approaches are available: automatic and manual (or a mix of the two).

Automatic approach involves using training algorithms which calculate the optimal
structure from the data, which can be tackled by different ways. On one hand, PC
algorithm (Spirtes et al., 1993) is based on conditional independence tests for disco-
vering the (in)dependence relationships between the variables. By contrast, K2 method
(Cooper & Herskovits, 1992) and its adaptation to MTEs (Romero et al., 2006) propose
looking for the optimal structure of a BN is an optimization problem in which the best
solution is a set of all BNs, and select what best represent the dataset. In order to
check if one is better than another, these methods used several measurements like the
Bayesian Information Criterion (Schwarz, 1978). Once the structure is learnt, the pa-
rameters of the model are estimated from the data.

Manual approach means the use of experts for both structural learning and parameter
estimation. One of the most important advantages of BNs is their ability to include this
kind of information, what makes it a more commonly applied approach (Figure 3.2)
than the automatic one. Using experts provides with several advantages from the na-
tural resource management point of view (Voinov & Bousquet, 2010): stakeholders are
included into management plans, and also encourage them to feel a part of the process,
which provides a common language for interaction and finally, leads to more consensus
and easier management decision. However, if the problem includes a wide number of
variables, this approach can be so complex. In general, manual approach has been
only used with discrete data (Figure 3.3), and several methodologies have been deve-
loped for modeling through experts. Some examples of them are the Participatory and
Integrated Planning methodology, proposed by Castelletti & Soncini-Sessa, 2007a, or
the Public Participation process, by Henriksen et al., 2007. In these models, the process
starts with an initial phase of problem discovering knowledge in which variables, and
even their states, are identified. Next step consists on a set of phases more or less
complex of surveys or participatory methodologies among the different stakeholders
involve in the problem. Finally, model is presented to the participant (to the same that
learn it, or new participant) and discussed.

Finally, a mix between both approaches are also used. In that case, the structure is u-
sually learnt using expert knowledge but the parameters are estimated from the data,
or also, some relations are estimate using expert (for discrete variables). Besides, ex-
perts are used to evaluate and improve the network obtained by the automatic ap-
proach.

3.2 Modeling uncertainty in social-natural interactions

SES is a complex system of interactions among nature and society operating at different
spatial and temporal scales (Cadenasso et al., 2006; Folke, 2006; Anderies et al., 2004).
Both natural and social systems contain several subsystems that interact between them
and, also, have interactive subsystems. Such complexity supposes a challenge in the
field of ecological modeling (Filatova et al., 2013; Filatova & Polhill, 2012). Besides, SES
is not a static system and two types of disturbances can be identified:
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FIGURE 3.3: Percentage of papers that applied BNs for Characterization
for each type of data

• External disturbance: a hazard event or shock (such as floods or earthquakes) or
an extreme change in an input variable (i.e an extreme increase in the tempera-
ture) that provokes a rapid change in the system properties.

• Internal disturbance: a gradual change in the system’s components that provokes
a reorganization of the natural and social systems.

If these disturbances involve a fundamental change in the interactions within a system
which leads to a shift in the state of the systems to another with new properties, we are
dealing with a Systemic Change (SC) (Kinzig et al., 2006; Filatova & Polhill, 2012).

In the context of SES and SC modeling, two main challenges can be identified (Fila-
tova & Polhill, 2012): (i) accommodate the study of SC while taking uncertainty into
account (Clark, 2002), and (ii) represent the new state of the system after SC has been
propagated (Filatova & Polhill, 2012). The concept of uncertainty is widely used in
ecology and environmental science but, the definition is sometimes not clear and also
associated with the terms of error, risk or ignorance (Refsgaard et al., 2007). Spite their
importance, mainly when the model will be used to support decision making, there is
a lack of understanding about its definition and characteristics (Walker et al., 2003).

Under this perspective, several methodologies have been developed and defined to
deal with uncertainty (Filatova et al., 2013; Warmink et al., 2010; Ricci et al., 2003). In
this Chapter our objective is focus on dealing with uncertainty in SES and SC modeling.

Graphically the SES can be represented as a network of nodes (social and natural com-
ponents), with a number of links between them. When a hazard event occurs or a com-
ponent undergoes a gradual change, the change can be propagated through the entire
system by means of cause-effect interactions between the components of the SES. These
types of interactions are subject to the uncertainty inherent in the system (Clark, 2002;
Refsgaard et al., 2007) which can be modelled using probability theory (Ricci et al., 2003;
Walker et al., 2003; Refsgaard et al., 2007; Warmink et al., 2010).

Since BNs are modelled by means of probability distributions, uncertainty can be esti-
mated more accurately than by using models which only consider mean values (Uusi-
talo, 2007). They allow a system to be represented both in its current state (a priori), and
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a posteriori, once the change has been propagated through the system, using the proba-
bility distribution functions of the variables and the inference process. Their main pur-
pose is to provide a framework for efficient reasoning about the system they represent,
in terms of updating information about unobserved variables, when new information
(changes to a single or several observed variables) is incorporated to the system.

However, not every change included into a component of the system (one or more
variables) will lead to SC because some components may be conditionally independent.
BNs are able to represent the independencies in the graph in a natural way, which
makes them a highly appropriate tool to study SC. One of the main features of SC is that
every change introduced into the system affects all the components (set of variables)
involved in the system, rather than just some of them. This feature is difficult to model
using more classical statistical tools; in contrast, the type of connections in the BN graph
implicitly encodes this kind of situations. Not all inputs to the model would lead to a
SC. Using the d-separation concept (Pearl, 1988a) it is possible to select the variables
that connect different parts of the graph, allowing the SC to propagate all through
the network. In the context of SC study and evaluation, the concept of d-separation is
crucial, for that reason it is again in this chapter.

X Z

Y

FIGURE 3.4: Example of two variables X and Z d-separated by Y

Figure 3.4 shows a simple example of the d-separation concept. In this situation, va-
riables X and Z are d-separated by Y i.e., X and Z are independent, if we do not know
the exact value of Y , so an input in the model only for variable X will not affect variable
Z (and viceversa) and so that input will not promote a systemic change. Figure 3.4
represents a very simple BN but the concept of d-separation is the same for larger BNs:
given several parents for X and Z and children for Y forming different components,
then as long as Y and its descendant are unknown, X and Z are independent, i.e., any
change in X or its parents is not propagated to Y or its parents (For more information
see Pearl, 1988a and Jensen & Nielsen, 2007 Section 2.2.)

In this chapter, the aim is to demonstrate the ability of hybrid BNs to model SC con-
sidering a Spanish catchment as a SES. To identify SC a new methodology is proposed,
which considers the tails of the probability distribution functions, and statistical tests
were carried out to differentiate between different states of the system. By this means,
this methodology provides the expert with a set of tools to help assess SC taking into
account uncertainty.

3.2.1 Methodology

Figure 3.5 outlines the methodology followed in this chapter divided into four different
steps: i) data collection, ii) model learning, iii) evidence propagation, and iv) analysis
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of results. Elvira1 software (Elvira-Consortium, 2002) was used to obtained the para-
meters of the model from the data and to carry out the evidence propagation.

Study area

The study area comprises the catchment of the river Adra in south-eastern Spain (Fig-
ure 3.6). It is bounded to the north by the Sierra Nevada, to the south by the Mediter-
ranean Sea, to the west by the Sierra de Gádor, and to the east by the Sierra Filabres.
It occupies 74.400 Ha, and supports an estimated population of 124.000 people dis-
tributed over fourteen municipalities.

Figure 3.6 shows the main land uses of the watershed. In the North, the landscape of
the Sierra Nevada mountain range is characterized by dense woodland, mainly oaks
and conifers species, mixed with Mediterranean scrubland. This configuration is the
results of several episodes of deforestation during the 19th century (García-Latorre &
Sánchez-Picón, 2001), when Adra watershed supported an important mining activity.
In this upper reaches, the relief of the mountains allows several patches of Mediter-
raneam woodland to be kept. Also, it provokes that socioeconomy in this upper area
was characterized by small municipalities accommodating an ageing population with
a high rate of migration. Moving down to the south, landscape is replaced by mixed
- in which several small patches of rainfed, irrigated and scrub coexist - and irrigated
croplands, and the population is also slightly younger, but still with a high movement.
In the foothills the landscape also presents traditional croplands which configure an
heterogeneous landscape of olive, almond and groves with small patches of woodland
and scrub.

At the west of the area, we found the foothills of Sierra de Gádor where the landscape
is totally different. Here, land use is mainly comprise by rainfed and mixed croplands
whilst the socioeconomy is characterised by depopulation and an older population.

In the east of the study area, the landscape is composed by scrubs and some patches
of woodland whose configuration was determined by historical trends in the 19th cen-
tury (mining and the deforestation of natural forest) (García-Latorre & Sánchez-Picón,
2001). Finally, in the middle and the south of the catchment, landscape is mainly com-
posed by scrubland and human infrastructures and the most important and biggest
municipalities. Also, some intensive agriculture with greenhouses are located around
the municipalities. In this area, population is younger than in the upper reaches, and
also the economic systems is richer. Immigration rate is significant given the incoming
of a new workforce to the greenhouses.

Data collection

Table 3.1 shows the main statistics of the continuous socioeconomic and water flow
variables in the data set. Taking into account socio-economic characteristics of the
study area (Camarero et al., 2009), three representative variables (ageing, emigration
and immigration rates) were selected. Data on these variables were obtained for each
municipality from the Andalusian Multiterritorial Information System 2 (Figure 3.5 i)).

1This is a free software based on JAVA. It can be found in http://leo.ugr.es/elvira
2http://www.juntadeandalucia.es/institutodeestadisticaycartografia/sima/index2-en.htm
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i) Data Collection

Andalusian Regional Government BalanceMEDStatis. Inst. Env.Inf.Net.

Socioeconomic
Vars. Land use Vars. Water Flow Vars.

ii) Model Learning

Structural Learning:
Model definition:
Moral et al., 2001

Parameter estima-
tion Rumí et al., 2006

iii) Evidence Propagation

iv) Analysis of Results

Does Land Use change cause a Systemic change?

FIGURE 3.5: Outline of the methodology. Statis.Inst., Statistical In-
stitute; Env.Inf.Net., Environmental Information Network; Vars., Vari-
ables; Sub., Subsystem; Sig.Diff., significant difference in statistical test;
Syst.Change., Systemic Change; Emig, emigration rates; Immig, immi-

gration rates
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FIGURE 3.6: Study Area

The ageing component was expressed as the percentage of people older than 65 years
old, while emigration and immigration rates were calculated as percentages of the total
population.

The BalanceMED model (Willaarts, 2009; Willaarts et al., 2012) was applied to calculate
the water flows. This is a semi-deterministic model developed to quantify hydrological
functioning in Mediterranean catchments using long time series of monthly rainfall
and potential evapotranspiration data. It is based on the concepts of blue and green
water (Falkenmark, 1997; Falkenmark & Folke, 2002):

Blue water: is the amount of rainfall that exceeds the soil’s storage capacity and feeds rivers,
lakes and aquifers.

Green water: it refers to the rainfall that infiltrates into the root zone of the soil to support the
primary productivity of natural and agricultural systems through evapotranspiration.

The model assumes that a fraction from the total precipitation is intercepted by vegeta-
tion or soil and evaporates directly as a Non Productive Green Water (NPGW). Another
fraction from the total precipitation can be intercepted on impermeable surfaces and is
returned to the atmosphere as Consumptive Blue Water (CBW). The remaining preci-
pitation reaches the soil and is taken up by plants and transpired, this portion is termed
Productive Green Water flow (PGW). When the infiltrated water exceeds the soil sto-
rage capacity, it can either percolate or drain as Runoff Blue Water (RBW). In the specific
case of greenhouse crops, we consider that the concept of PGW is not applicable since
the crops are irrigated from groundwater flows rather than from direct precipitation.
Moreover, evaporative flows are difficult to evaluate under a greenhouses cover. For
that reason, in this specific case, we focus on CBW when considering greenhouse crops
as the land use.
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TABLE 3.1: Summary statistics of the continuous variables in the data
set. SD, standard deviation.

Variable Minimum Maximum Mean SD

Ageing (%) 11.84 32.00 23.14 6.12
Emigration rates (%) 1.47 3.59 2.62 0.57

Immigration rates (%) 0 4.27 2.03 1.23
PGW (mm) 0 459.90 216.40 77.60

NPGW (mm) 0 346.70 62.10 55.91
CBW (mm) 0 765.5 58.48 176.51
RBW (mm) 0 1032 257.10 129.97

TABLE 3.2: Land uses selected and total percentage of each one in the
study area.

Land use Description % Surface

Scrub Land devoid of trees and with more than 20% 40.00
of scrub

Mixed crops Mixture of crops (irrigated and rainfall-fed) 14.69
with patches of natural vegetation

Rain-fed crops Herbaceous and woody crops fed by rainfall 10.93
Dense Forest land with more than 50% of tree cover 9.14

woodland (conifers and oak)
Dense scrub Land with a tree cover of between 5 and 50%, 7.15
woodland and more than 50% of scrub

Greenhouses Intensive greenhouse crops under plastic cover 6.71
Disperse scrub Land with a treecover of between 5 and 50%, 5.73

woodland with 20 to 50% of scrub
Traditional Mixture of patchwork of olive, almond groves, 3.57

crops grapevines, subsistence croplands, and forest
(conifers and oak)

Irrigated crops Herbaceous and woody crops with 2.08
permanent irrigation infrastructure

Nine land uses representative of the study area landscape were selected (Table 3.2).
These data were obtained from the Land Use and Land Cover shape file 2007, from
Andalusian Regional Environmental Information Network using ArcGis v.9.3.1 (ESRI,
2006) (Figure 3.5 i)). They are expressed as a discrete variable which represents the
presence of each land uses as a percentage.

Model learning

In this example, the structure of BNs was learnt taking into account expert knowledge
and literature. Adra catchment is considered as a SES with a social and a natural sys-
tems divided into two main components: Land use and water flows. In literature it is
widely recognized that global socio-economic changes affect regional and local socio-
economic structures (Lambin et al., 2001; Foley et al., 2005) and lead to changes in the
landscape (Schmitz et al., 2005; Caillault et al., 2013) and in the structure and functiona-
lity of natural ecosystems (Matson et al., 1997; Foley et al., 2005; Rudel et al., 2009). One
of the main effects of these changes relates to the behaviour of water flows (Scanlon
et al., 2005; Maes et al., 2009; Toda et al., 2010; Park et al., 2014).
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The concepts of green and blue water flows were defined to introduce the whole wa-
ter cycle into water management plans (Falkenmark, 1997; Rockstroem, 2000). Green
and blue water flow through natural subsystems across the landscape, participating in
several ecological processes; as a result, there is a clear interaction between land use
and green and blue water flows (Willaarts et al., 2012). The characteristics of soil and
the type and cover of vegetation determine the amount of water that evaporates back
to the atmosphere, infiltrates into the soil or flows away as runoff (Falkenmark, 2003;
Willaarts et al., 2012).

In the model learning step, the structure of the BN is defined taking into account this
theoretical background (Figure 3.5 ii)) and shown in Figure 3.7. Natural and social
subsystems are connected through causal interactions where land use is influenced by
the social subsystem and affected to water flows. Elvira software (Elvira-Consortium,
2002) was used to learn the parameters of the model from the data.

Ageing Emig.Immig.

LandUse

PGWNPGW RBW CBW

FIGURE 3.7: Qualitative part of Hybrid BN. By their nature every vari-
able except one (Land Use) were continuous. Emig, emigration rates;

Immig, immigration rates.

Evidence propagation and analysis of results

After model learning, next step is evidence propagation or inference (Figure 3.5 iii)).
Since the network learnt is not so complex, an exact inference algorithm is applied, in
this case Shenoy-Shafer algorithm (Shenoy & Shafer, 1990) which is able to deal with
hybrid model and is specifically adapted to the MTE model (Rumí & Salmerón, 2007).

The evidence (new information) represents the change in one component of the SES
which is propagated through the system and evaluated if it causes the SC (Figure 3.5 iii)).
In this example, the influence of a gradual change in the Land Use component on si-
multaneously the social subsystem and the water flow component is studied.

The current state of the system, “a priori”, reflects the probability in the case where no
new information is added to the system. Once the “a priori” situation is studied, the
evidence is introduced as the presence of one of the states of the land use variable.
Two different endogenous changes are selected: presence of traditional cropland and
presence of greenhouses, which address both the land use trends that are observed in
the study area.

Once the change is introduced into the model as evidence, we can take advantage of
the versatility of BNs to obtain detailed results. The change alters the interactions in the
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model, leading to changes in the distribution of each variable. The mathematical rela-
tionships that govern the interactions are expressed in a BN by means of conditional
probability distributions, which are difficult to interpret. In contrast, the behaviour
of the variables, both a priori and a posteriori is expressed through univariate proba-
bility distributions, which are much easier to interpret, especially for environmental
systems. For this reason, changes are commonly quantified in terms of the mean value
of the variable, which sometimes is not the most appropriate statistic to represent a
probability distribution because it does not allow the overall behaviour of the variable
to be tracked.

For a more comprehensive study of the results, how the proposed changes are pro-
pagated to the water flow component and to the social subsystem can be measured
looking at the tail values of the probability distribution of each variable. In any pro-
bability distribution, the tails are highly relevant because they show the probability of
the extreme values of the variable - in this case, the very high or very low water flows,
and the very high or very low emigration and immigration rates and ageing. Firstly, the
threshold values of the tails need to be defined since there are no references in literature
to identify what constitutes an extreme value. For this purpose, a k-means clustering
(Anderberg, 1973; Jain et al., 1999) with 3 clusters was performed dividing the original
data in three groups, according to their similarity. The first group was considered as
the left tail, the second group as the centre of the distribution, and the third group
as the right tail. Accordingly, the upper and lower thresholds were determined as
the points that separated the first and the third cluster from the second. Once the
thresholds were obtained, we computed the cumulative probability of both the left
(lower) and right (upper) tails of all the water flow and social variables. As an example,
Figure 3.8 shows the computation of these cumulative probabilities and the degree of
change for a variable X in the a priori and a posteriori scenarios. Using the k-means
clustering method, the left tail threshold was determined as X < 37, and the right tail
threshold was determined as X > 59. Then the cumulative probability of the tails were
computed, and we can see for example that P (X > 59) = 0.34 a priori, but it decreases
to 0.13 a posteriori.

Validation of the model

Validation of BNs depends on the aim of the model (Aguilera et al., 2011). In the case of
Characterization, experts or comparison with models that try to solve the same problem
are appropriate validation techniques. In this example, there are no other models rela-
ting socioeconomy-land use and green and blue water flows under a SES framework.
Therefore, validation by experts is considered to be an appropriate option.

However, as a way of validating the conclusions drawn from the results obtained, se-
veral goodness-of-fit tests were performed. To determine whether there were signi-
ficant differences between the variables a priori and a posteriori (that is, between the
different states of the system) a sample of size 1000 from each of the a priori and a pos-
teriori probability distribution functions were simulated and a two-sided Kolmogorov-
Smirnov test at a 0.05 level of significance was carried out. If significant differences are
found between the system state a priori and a posteriori in both social and natural sub-
systems, the change introduced in the model can be considered as a SC (Figure 3.5 iv)).
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FIGURE 3.8: An example of the probabilities of the left (P(X < 37)) tail,
and the right (P(X > 59)) tail in variable X a priori, in black, and a poste-
riori, in red, and its mean values between brackets. As we can see, mean
value decreases which indicates the shift of the distribution function to
the left. Probabilities in the tails show us that the change of the function

is much more intensive in the right tail than in the left.

3.2.2 Results and Discussion

Table 3.3 shows the mean and standard deviation values of the variables both in the
current situation (a priori), and after the two land use changes were simulated (a pos-
teriori). Tables 3.4 and 3.5, show the probability in the tails and the p-values of the
two-sided Kolmogorov-Smirnov tests respectively. Figures 3.9, 3.10, and 3.11 show the
probability distributions of social and water flow variables in the current situation, and
under both land use change scenarios.

A priori

A priori shows the current situation without any change introduced in the system. The
ageing variable has a mean value of 21.65%, while emigration and immigration rates
are 2.56% and 1.87%, respectively (Table 3.3). Social variables are more probable in the
left tail (Table 3.4, Figure 3.9).

Likewise, the probability of green water, (both productive and non productive), are
more probable in upper values (Table 3.4, Figure 3.10), with mean values of 223.17 mm
for PWG, and 123.04 mm for NPGW (Table 3.3). RBW has the same behaviour, with a
mean value equal to 454.74 mm (Table 3.3), and increased probabilities of falling into
the right tail, 0.53 (Table 3.4, Figure 3.11). By contrast, CBW probabilities increase in
the left tail, with 0.64 of probability (Table 3.4, Figure 3.11), and 209.32 mm mean value
(Table 3.3).
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TABLE 3.3: Mean and standard deviation (SD) values of water flow and
social variables obtained from the a priori and a posteriori probability dis-

tribution.

A posteriori

Variable Statistics A priori Greenhouses Traditional

Ageing (%) Mean 21.65 17.94 21.88
SD 5.82 3.53 5.85

Emigration (%) Mean 2.56 2.57 2.51
SD 0.58 0.58 0.56

Immigration (%) Mean 1.87 1.92 1.68
SD 1.16 1.16 1.30

PGW (mm) Mean 223.17 - 284.39
SD 95.19 - 76.25

NPGW (mm) Mean 123.04 173.97 151.85
SD 95.58 87.32 74.85

CBW (mm) Mean 209.32 559.09 124.48
SD 216.89 200.33 207.91

RBW (mm) Mean 454.74 537.35 260.75
SD 235.43 336.78 209.91

TABLE 3.4: Threshold of left and right tails, and probability values in the
tails of water flow, and social variables for the current situation (a priori)
and both land use changes (a posteriori). As an example, in the ageing
variable, 0.39 a priori is the probability of having fewer than 19.08% of
people older than 65 years old, while 0.17 is the probability of having
more than 28.44% of people older than 65 years old. The thresholds in
social variables are expressed as a percentage of the population; thres-
holds for water flows are in mm. PGW under greenhouse is not calcu-

lated since evaporative flow is considered as CBW.

Probability

Variable Threshold A priori Greenhouses Traditional

Ageing Left tail 19.08 % 0.39 0.62 0.38
Right tail 28.44 % 0.17 0.004 0.18

Emigration Left tail 2.58 % 0.52 0.52 0.56
Right tail 3.06 % 0.25 0.25 0.21

Immigration Left tail 1.18 % 0.33 0.31 0.39
Right tail 2.91 % 0.21 0.22 0.17

PGW Left tail 138.53 mm 0.17 - 0.049
Right tail 251.61mm 0.24 - 0.70

NPGW Left tail 46.41 mm 0.36 0.09 0.04
Right tail 115.73 mm 0.45 0.72 0.62

CBW Left tail 140.9 mm 0.64 0.049 0.80
Right tail 506.53 mm 0.21 0.67 0.11

RBW Left tail 216.37 mm 0.15 0.26 0.50
Right tail 400.83 mm 0.53 0.59 0.20
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TABLE 3.5: P-values of Kolmogorov-Smirnov test among simulated va-
lues from a priori and a posteriori distribution functions. *The distribution

functions are significantly different at a 0.05 level of significance.

Variable Greenhouses Traditional

Ageing 2.2e−16 * 0.2634

Emigration 0.8593 0.001227 *
Immigration 0.00060* 0.1205

PGW - 2.2e−16 *
NPGW 2.2e−16 * 2.2e−16 *
CBW 2.2e−16 * 2.2e−16 *
RBW 7.05e−16 * 2.2e−16 *
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FIGURE 3.9: Probability distribution of social variables a priori and after
both land use changes (a posteriori). The vertical black lines represent
the threshold values of the tails of the variables. Note that probability

functions are defined as a piecewise function using MTEs.
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FIGURE 3.10: Probability distribution of green water flow variables a pri-
ori and after both land use changes (a posteriori). PGW under greenhouse
is not calculated since evaporative flow is considered as CBW. The verti-
cal black lines represent the threshold values of the tails of the variables.
Note that probability functions are defined as a piecewise function using

MTEs.

In this state of the system, the population is ageing, and both emigration and immigra-
tion rates are low. The structure of the landscape determines that RBW and PGW are
the main water flows.

Scenario: Intensive agriculture with greenhouses

Intensive agriculture with greenhouses is one of the most important economic activities
in the south-east of Spain, and it can impact both social and natural subsystems (IEC,
2004). In the study area, greenhouses are mainly located in the lower reaches, where
population is characterized by a significant immigration rate.

Under the first scenario of an increase in intensive agriculture, ageing mean value de-
creases from 21.65% to 17.94% (Table 3.3). A look at probability values in the tail shows
the change more clearly than the mean value. The decreasing trend in this variable
is more noticeable when the tails of the distribution are studied. This indicates that
there is little probability of a population with greater than 28% over 65 (in the left tail,
probability decreased from 0.17 to close to zero (Table 3.4, Figure 4.8)). On the other
hand, immigration mean value increases from 1.87% to 1.92% (Table 3.3). In this case,
the probability values of the tails are also small (Table 3.4, Figure 3.9). Furthermore,
both variables show significant differences between the a priori and the new scenario
(Table 3.5). By contrast, as Figure 3.9 shows, emigration rates hardly changes (Table 3.3,
and 3.4) which is confirmed by the two-sided Kolmogorov-Smirnov test (Table 3.5).

The incoming young population has the effect of reducing the extreme values of the
ageing variable (i.e. the proportion of people over 65 falls). By contrast, emigration
hardly changes (i.e., the departure of people looking for a job elsewhere is virtually un-
changed). However, the behavior of the socioeconomic subsystems changes as a result
of the intensification (García-Álvarez-Coque, 2002). These results concord with nu-
merous studies made by different Spanish economic entities (CCA, (Colección Comu-
nidades Autónomas), 2007; IEC, 2004; García-Álvarez-Coque, 2002); which show that
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FIGURE 3.11: Probability distribution of blue water flow variables a pri-
ori and after both land use changes (a posteriori). The vertical black lines
represent the threshold values of the tails of the variables. Note that

probability functions are defined as a piecewise function using MTEs

the agricultural intensification in the south-east of Andalusia has led to an increased
influx of foreigners, mainly young people, to work in the greenhouses. This has re-
versed the trend of an increasingly ageing population, and has also led to an increase
in the birth rate so changing the social structure of the area.

In the case of water flow, PGW is not calculated since evaporative flows from a green-
house surface is difficult to evaluate and separate from CBW. For that reason, from
greenhouse surface evaporative flow is considered as CBW. The means of the rest of
water flow variables increase (Table 3.3), and there are significant differences in the
distribution functions between a priori and under this scenario (Table 3.5). If only mean
values were taken into account, the behavior of blue and green water flows can be con-
sidered similar. However, there is a marked difference if the probabilities in the tails are
considered. In the case of NPGW, the right tail probability increases from 0.45 to 0.72
(Table 3.4, Figure 3.10) which only emphasizes the a priori behavior, i.e. higher water
flows are more likely than lower ones. But in CBW, a marked change in the trend is
predicted. The probability of the left tail (extremely low flows) decreases from 0.64 to
0.049; while probability of right tail values (extremely high flows) increases from 0.21
to 0.67. Vegetation cover around the greenhouses is often eliminated (to avoid inva-
sion of pests into the greenhouses), so evaporation rates from the bare soil and plastic
surfaces (greenhouses cover)-, described as NPGW and CBW, respectively- increase.
As agriculture intensifies, NPGW becomes more important. However, while CBW in
the a priori situation was low, the increase in greenhouse cover increases CBW quite
significantly.

Similarly, the mean RBW value increases from which one might expect an increase in
the right tail probability, and a decrease in the left tail. However, the probability in
both tails increases (Table 3.4 and Figure 3.11). This shows a peculiar behaviour in the
variable, which means that both high and low extremes values of runoff become more
probable than a priori, whilst the moderate values are less probable.
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Scenario: Traditional agriculture

In our study area, traditional croplands comprise a mixture of woody rain-fed crops
of olive, almond groves and grapevines with patches of herbaceous subsistence crops
and natural vegetation managed in a traditional way. This heterogeneous pattern of
traditional land use has been promoted as an alternative management system, which
can bring economic and environmental benefits (Schmitz et al., 2005; Anderson et al.,
2009). Such croplands are found mainly in the Sierra de Gádor foothills, which is a
landscape characterized by an ageing population and depopulated municipalities.

The land use change introduced into the SES is expressed as the greater presence of this
traditional croplands. Mean ageing and immigration hardly change, nor does their
probability distributions with respect to the a priori situation (Tables 3.3 and 3.5, Fi-
gure 3.9). By contrast, the emigration variable shows a significant difference between
the a priori and the new scenario, with slightly higher probabilities in the left tail (Ta-
ble 3.4 and 3.5, Figure 3.9). The presence of traditional croplands does not imply a
new incoming population, nor the emigration of young people and so neither ageing
nor immigration change significantly from their a priori values. Although emigration
changes (Table 3.5), it does not imply an alteration of the global behavior of the socio-
economic subsystem (CCA, (Colección Comunidades Autónomas), 2007).

For the four water flow variables, there are significant differences between the a priori
situation and this scenario (Table 3.5). Both PGW and NPGW mean values increase,
from 223.17 mm to 284.39 mm, and from 123.04 mm to 151.85 mm respectively (Ta-
ble 3.3). Again, the study of the tails provides additional information about whether
the extremes of the distribution become more or less pronounced. As we can see in
Table 3.4, the probability of high PGW in the right tail shifts from 0.24 to 0.70 while the
mean shows a more moderate increase. This means that, under this second scenario,
extremely high PGW flows are 46% more probable than a priori. Given that traditional
croplands are a mixture of woody and herbaceous crops and scrub, with areas of forest,
the PGW is higher (Willaarts, 2009) because the evaporative demand of woody vegeta-
tion is higher than for herbaceous. Patches of scrubland and woodland, as well as the
olive and almonds groves increased, and imply an increase in the PGW flow.

In the same way, the NPGW left tail (the probability of extremely low NPGW) de-
creases from 0.36 to 0.04. However, the shift in the mean is proportionally less, from
123.04 mm to 151.85 mm. These traditional systems are characterized by an absence of
bare solid, and a presence of herbaceous crops, which explain the increases in NPGW
(Rockstroem, 2000). At the same time, it involves a markedly decreases in CBW from
209.32 mm to 124.48 mm, with a shift in the left tail from 0.64 to 0.80 (Table 3.4).

In contrast, the RBW left tail probability increases from 0.15 to 0.50, giving more infor-
mation about the extent of the change in this variable (Table 3.4, Figure 3.11). In this
case, the evidence introduced in the model implies the change in the tendency from
an a priori situation where runoff was quite probable in higher values (probability of
the right tail decrease from 0.53 to 0.20), to a situation in which lower values are more
pro-bable. Agriculture heterogeneity involves a tighter control over RBW since the
structure of this Mediterranean multifunctional rural landscape with its patchwork of
different types of land use, together with the presence of mature ecosystems next to ex-
ploited plots, favours this control of runoff (De-Lucio-Fernández et al., 2003; Anderson
et al., 2009).
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3.3 Conclusion

In this Chapter, the aim is to show the applicability of BNs to model SES in general
and SC, in particular. Using BNs for a Characterization purpose, the relationships bet-
ween different components of a SES can be modeled and easily interpreted through the
qualitative part of the network. Besides, modifications in the interactions between the
different components of a SES can be assesed through the study of the variables since
they are affected by any change in the interactions and also, are easier to interpret.

The versatility of BNs allows several statistics to be calculated from the results of the
variables. In this case, mean values and the probability of the tails were calculated.
Although mean values provide clear information about the behavior of the variables,
the tails allow the extent of the changes to be assessed.

BNs are able to deal with probability propagation, since new information can be in-
troduced into one or more components of the natural or social subsystems and the
effects over the rest of the SES can be inferred. Therefore, the current situation and
the new system state can be easily compared because the model results can be dis-
played together in a single graph showing changes in probability distribution (see Fig-
ures 3.9, 3.10, and 3.11). In summary, the probabilities are updated when new informa-
tion is incorporated into the model and they can be analyzed to evaluate the systemic
change in SESs.

The results demonstrate how water flows are modified when soil and natural vege-
tation cover are lost due to the intensive agriculture activity. The increase in evapo-
rative losses reduces the water available for human and agricultural supply (thus, in
semiarid regions such as this, efforts need to focus on optimizing water use and mi-
nimizing water losses). Moreover, increase in runoff flows can alter soil structure due
to increased erosion. Agricultural intensification leads to greater homogeneity in the
landscape, and a loss of connectivity (the capability of the landscape to facilitate bio-
physical flows), (Taylor et al., 1993), which implies poorer control of the nutrient and
water cycle (De-Lucio-Fernández et al., 2003). Agricultural intensification is a gradual
trend that significantly modifies both natural and social subsystems, creating a new
state in the system. Thus, it can be considered as a SC from the expert’s point of view.

By contrast, in terms of whether an increase in traditional croplands can be described
as a systemic change or not, we can say that SC can be defined as a fundamental change
which involves a shift in the system state to another with new properties (Kinzig et al.,
2006; Filatova & Polhill, 2012). The model indicates that this does not happen under
this second scenario and so increasing traditional agriculture cannot be considered as
a SC from this point of view.



Chapter 4

Regression: Modeling Landscape -
Socioeconomy Relationships

Regression through BNs is not often applied in environmental sciences. The
aim is to give a prediction of a response variable given the value of some
feature variables. Multiple linear regression models are more generally used.
However, they have a number of limitations: (1) all feature variables must
be instantiated to obtain a prediction, and (2) the inclusion of categorical
variables usually yields more complicated models. Hybrid BNs are an ap-
propriate approach to solve regression problems without such limitations,
and they also provide additional advantages. In this Chapter, landscape -
socioeconomy relationships are modeled by BNs for different types of data
(continuous, discrete or hybrid), and is compared with Multi-Linear Regres-
sion. Three models relating socioeconomy and landscape are proposed, and
two scenarios of socioeconomic change are introduced in each one to obtain
a prediction.

4.1 Introduction: Bayesian networks for regression

In the study of environmental systems, it is common to find problems in which the goal
is to predict the value of a continuous variable of interest depending on the values of
some other features, facing with a regression problem (Hastie et al., 2009):

Regression: Let have a set of variables Y,X1, . . . ,Xn, regression analysis consists on find-
ing a model g that explains the response variable Y in terms of the feature variables
X1, . . . ,Xn, so that given a full observation of the features x1, . . . , xn, a prediction about
Y can be obtained as ŷ = g(x1, . . . , xn).

BNs have been proposed for regression purposes adding some advantages in compar-
ison with traditional methodologies, since it is not necessary to have a full observation
of the features to give a prediction for the response variable, and the model is usually
richer from a semantic point of view.

However, there are just few attempts in literature to solve regression problems by BNs
in environmental science, and these are focused on discrete feature variables or Gaus-
sian distributions unable to handle discrete and continuous variables simultaneously
without constraints on the structure (Malekmohammadi et al., 2009; Pérez-Miñana et

45
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al., 2012). In real life problems, features can be either continuous or discrete, what
adds a challenge to the traditional methodologies. For that reason, regression model
based on BNs with the approximation of the joint distribution by an MTE was pro-
posed (Morales et al., 2007). Just only two papers deal with regression using MTE
models in environmental modeling (Maldonado et al., 2016; Maldonado et al., 2015).

A BN can be used as a regression model for prediction purposes if it contains a con-
tinuous response variable Y and a set of discrete and/or continuous feature variables
X1, . . . ,Xn. Thus, in order to predict the value for Y from k observed features, with
k ≤ n, the conditional density

f(y | x1, . . . , xn), (4.1)

is computed, and a numerical prediction for Y is given1 using the expected value as
follows:

ŷ = g(x1, . . . , xn) = E[Y | x1, . . . , xn] =

∫

ΩY

yf(y | x1, . . . , xn)dy, (4.2)

where ΩY represents the domain of Y .

Note that f(y | x1, . . . , xn) is proportional to f(y) × f(x1, . . . , xn | y), and therefore,
solving the regression problem would require a distribution to be specified over the
n variables given Y . The associated computational cost can be very high. However,
using the factorisation determined by the network, the cost is reduced.

Although the ideal would be to build a network without restrictions on the structure,
for regression (and Classification) purposes, constrained structures were defined. Their
objective is to accurately estimate the distribution of the response variable rather than
the joint probability distribution of all features. NB was slightly explained in the In-
troduction (Chapter 2), but it is thoroughly described below since it is needed in this
application.

The extreme case of constrained structures, is the so-called NB structure (Friedman
et al., 1997; Duda et al., 2001). It consists of a BN with a single root node and a set of
features having only the response variable as a parent (Figure 4.1). Its name comes from
the naive assumption that the features are considered independent given the response
variable Y . This strong independence assumption is somehow compensated by the
reduction in the number of parameters to be estimated from data, since in this case, it
holds that

f(y | x1, . . . , xn) ∝ f(y)

n
∏

i=1

f(xi | y), (4.3)

which means that, instead of one n-dimensional conditional distribution, n one - di-
mensional conditional distributions are estimated. Despite this extreme independence
assumption, the results are competitive with respect to other models (Friedman et al.,
1997).

1Note that in the BN framework, a prediction of Y can be obtained even when some of the variables
are not observed.
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FIGURE 4.1: Structure of a naïve Bayes model.

However, if some variables are highly correlated, the error in the regression would
decrease if any dependence between them could be included in the network (i.e., links
between features). There are several structures in which each feature is permitted to
have more parents beside Y , for instance, TAN (Friedman et al., 1997), FAN (Lucas,
2002), kDB (Sahami, 1996) or AODE (Webb et al., 2005). These models are richer but
an increase of complexity is assumed instead, both in the structure and the probability
learning.

In general, including more variables does not necessarily increase the model accuracy
since some variables are not informative for the prediction task, and therefore includ-
ing them in the model provides noise to the predictor. Thus, a priori selection of the
features would increase the model accuracy, and also decrease its complexity (less vari-
ables implies less parameters to be estimated). There are different approaches to the
feature selection problem:

• The filter approach (Ben-Bassat, 1982), which in its simplest formulation, consists
in establishing a ranking of the variables according to some measure of relevance
with respect to the class variable, usually called filter measure. Then, a threshold
for the ranking is selected and those variables below that threshold are discarded.

• The wrapper approach (Kohavi & John, 1997) proceeds by constructing several
models with different sets of feature variables, and selecting the model that gives
the highest accuracy.

• The filter-wrapper approach (Ruiz et al., 2006) is a mixture of the above two op-
tions. First of all, the variables are sorted using a filter measure and then, using
that order, they are included only if they increase the accuracy of the current
model.

4.2 Modeling landscape - socioeconomy relationships

Under the SES framework, landscape and socioeconomic structures maintain a con-
stant and reciprocal interaction configuring a “co-evolving system" (Schmitz03; Nor-
gaard, 1984; Turner et al., 1988; Lacitignola et al., 2007). Thus, socioeconomic processes,
as drivers of change (Burgi et al., 2004), are the main cause of changes in land uses,
i.e., it determines the structure, function and dynamics of landscapes (Bicik et al., 2001;
Wu & Hobbs, 2002). In Mediterranean areas, this co-evolution is easy to observe in
the landscape patterns where human-nature interaction has determined the so-called
“agro-silvo-pastoral" systems (Sánchez-Picón et al., 2011; Schmitz et al., 2003; García-
Latorre & Sánchez-Picón, 2001). These systems integrate the agricultural and livestock



48 Chapter 4. Regression: Modeling Landscape - Socioeconomy Relationships

infrastructures within the natural system in a traditional way. This systems support
and important biodiversity rates (Pineda & Montalvo, 1995).

However, European agricultural landscapes have been undergoing significant changes
associated with intense and rapid socio-economic changes (Nikodemus et al., 2005; Stri-
jker, 2005). In Europe, and particularly in Spain, socioeconomic development has led
to a notable migration of the rural population to the city, and the depopulation of the
countryside which supposes the increase of the scrubland surface. In some occasions
this economic change also involves the substitution of the culture heritage from exten-
sive traditional systems to more intensive agricultural systems. These tendencies imply
a reduction in biodiversity rates, a loss in the ecological connectivity and less control of
the physic-chemical flows into ecosystems.

Modeling environment-human relationships are becoming increasingly important and
it has been applied in decision-making processes (Wang & Zhang, 2001; Serra et al.,
2008; Milne et al., 2009; Celio et al., 2014). More specifically, the relationships between
landscape structure and socioeconomy have been formalized through Multiple Linear
Regression (MLR) (Schmitz03; Schmitz et al., 2005). This procedure provides a depen-
dence model with a limited number of socioeconomic variables, which themselves can
account for much of the variation in the landscape structure.

The objective of this Chapter is to develop a regression model based on a hybrid BN
that can be applied to study landscape - socioeconomy relationships. In literature there
are no studies about this relationship based on hybrid BNs. In this case, we are facing
with an internal disturbance in the SES; social system follows a gradual change that
shift the system from one point to another with different characteristics. In particular,
this Chapter is focused on the relations between socioeconomic change and the struc-
ture of the landscape, but the methodology explained can be extrapolated to any other
problem into the SES modeling framework. Also, continuous, hybrid and discrete BNs
approaches are compared among them in terms or error rate and with a MLR method-
ology. The idea is just to overview that the BN-based solution is coherent, but not to
provide an exhaustive comparison of the two approaches. Finally, two scenarios of
socioeconomic changes were evaluated.

4.2.1 Methodology

Figure 4.2 outlines the methodology followed in this chapter divided into five different
steps: i) Data collection, ii) Model learning, iii) Model validation, iv) Relations between
features and response variable and v) Scenarios of socioeconomic change. Elvira soft-
ware was used in the learning and validation processes, and for the evidence propa-
gation during the study of the scenarios of change and the nature of the relationships
between each feature and the response variable.

Study area

The study area is located in southeastern Spain, straddling parts of Almería and Granada
provinces (Figure 4.3).

It covers around 500,000 Ha and lies in the Baetic System foothills with an irregular
relief from high mountains peaks (more than 2,000 meters a.s.l.) to the sea level. This
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FIGURE 4.2: Outline of the methodology.
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relief has determine a spatially and temporally irregular rain pattern. Spatially, rainfall
ranges from 300 mm in the South, to 700 mm in the highland area, increasing to 850
mm in wet years. This rain patterns, added to the irregular relief, have configured a
particular cultural landscape (García-Latorre & Sánchez-Picón, 2001).

The lowland part of the study area, named “Campo de Dalías" (marked in red color in
Figure 4.3) has an extension of more than 18,000 ha covered by greenhouses. Intensive
agriculture support an important economic activity that have an impact on the rest of
the province, since both primary and secondary productive sector are, in certain way,
related with it.

In contrast, the middle to high altitude landscape is configured as an heterogeneous
territorial pattern. In Figure 4.3 different agricultural land uses are marked in purple
and pink tones. They are mainly located around the river bed through all the study
area. This agricultural landscape is determined by a picture a patchwork of olive and
almond groves, grapevines, subsistence croplands, mix with scrubs and small patches
of woodlands.

Natural landscape is mainly defined by the presence of scrubs both dense and disperse,
pointed in dark and light green respectively. These land uses came from the aban-
donment of traditional agriculture areas, and from the historical deforestation process
during the 19th century (Sánchez-Picón et al., 2011) when most of forest patches of the
study area were eliminated by the mining activities. Finally, in the upper areas and
those with a difficult access due to the irregular relief, original woodland with oaks
remains (marked in dark brown) and patches of reforested areas with conifers (in light
brown).

From the socioeconomic point of view, the study area contains 90 municipalities, but
only the most important ones are pointed in the map (Figure 4.3). Municipalities from
“Campo de Dalías" area are quite densely populated with a high degree of migra-
tion. Socioeconomic activities are linked to primary (intensive agriculture with green-
houses), secondary (adjacent industry that manufactures the product) and tertiary sec-
tor, which is related to the development of intensive agriculture (e.g. large numbers of
banks and shopping centers).

By contrast, there is a tendency of becoming less populous and more prone to depop-
ulation through emigration as we are climbing in altitude. In that area, there is less
primary sector activity and, in some cases, rural tourism is becoming and emergent
economic activity, more pronounced than in the lowland area.

Data collection

Table 4.1 shows the selected socioeconomic variables which are representative of the
socioeconomic structure of the territory (Schmitz et al., 2005; Aranzabal et al., 2008).
Data were obtained per municipality in 2007 from the Andalusian Multiterritorial In-
formation System 2. Some variables needs to be defined:

Using the landscape typologies described by Schmitz et al., 2005, and taking into ac-
count the characterisitic of the study area (described above) three types of landscape
were selected: scrubland (dense and sparse scrubland), agricultural Mediterranean

2http://www.juntadeandalucia.es/institutodeestadisticaycartografia/sima/index2-en.htm
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FIGURE 4.3: Study area.

TABLE 4.1: Socioeconomic variables express per municipality.

Socioeconomic variables Unit

Total population No. people
Ageing * % of people
Natural increase** Value of Natural increase
Male index *** No. males / No. females
Primary sector

No. employeesSecondary sector
Tertiary sector
Unemployed No. unemployees
National emigration****

% of people
Foreign emigration****
National immigration ****
Foreign immigration****
Illiterate

% of people
Primary studies
Secondary studies
Higher studies
* Percentage of the population *** It is included since in the last decades in Spain,
older than 65 rural areas presented more male population

than female (Camarero et al., 2009).
** The difference between the **** National refers to people who
number of births and deaths emigrate/immigrate to/from

other places in Spain, while foreign
refers to emigrants/immigrants to/from

other countries



52 Chapter 4. Regression: Modeling Landscape - Socioeconomy Relationships

landscape (heterogeneous traditional croplands with olive trees and grapevine), and
native forest (oak trees). Corresponding landscape data (percentages per municipal-
ities) were obtained from the Andalusian Regional Environmental Information Net-
work using the Land Use and Land Cover shape file 2007 using ArcGis v.9.3.1 (ESRI,
2006).

The final matrix has a total of 19 variables (16 socioeconomic and 3 land uses variables)
over 90 observations (one per municipality).

Model learning

A constrained NB structure is selected with a priori feature selection. Three models
were learnt, one per each landscape variable: Agricultural Mediterranean landscape
(AML), Scrubland and Native Forest. The problem of selecting the features to be in-
cluded in the MTE model was addressed by Morales et al., 2007 following a filter-
wrapper approach. The accuracy of the model is measured using the root mean squared
error (rmse) (Witten & Frank, 2005) between the actual values of the response vari-
able, y1, . . . , yn, and those predicted by the model, ŷ1, . . . , ŷn, for the records in a test
database (the original dataset is randomly divided into two sets, one for learning the
model, and the other for testing it). Thus, the rmse is obtained as

rmse =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2. (4.4)

where n is the sample size, yi is the real value whilst ŷi is the predicted value.

The mutual information between two random variables X and Y is defined as

I(X,Y ) =

∫ ∞

−∞

∫ ∞

−∞
fXY (x, y) log2

fXY (x, y)

fX(x)fY (y)
dxdy, (4.5)

where fXY is the joint density for X and Y , fX is the marginal density for X and fY is
the marginal for Y .

The mutual information has been successfully applied as a filter measure in classifica-
tion problems with continuous features (Pérez et al., 2006). For MTEs, the computation
of Equation (4.5) cannot be obtained in closed form. We will therefore use the estima-
tion procedure proposed by Morales et al., 2007, which is based on the estimator

Î(X,Y ) =
1

m

m
∑

i=1

(

log2 fX|Y (Xi | Yi)− log2 fX(Xi)
)

, (4.6)

for a sample of size m, (X1, Y1), . . . , (Xm, Ym), drawn from fXY .

The steps for NB construction using a filter-wrapper feature selection is graphically
shown with an example in Figure 4.4. The main idea is to start with a model con-
taining the class variable and one feature variable, which is the node with the highest
mutual information with respect to the response variable (Y and X2). Afterwards, the
remaining variables are included in the model in sequence, according to their mutual
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FIGURE 4.4: Example of feature selection in a NB regression model.
First, features are sorted in a decreasing order using its mutual infor-
mation with respect to Y . Then, their inclusion is checked step by step.
Note that only the inclusion of X2 and X3 reduces the error. Finally, the
procedure selects two out of four variables to be part of the final model.

information with respect to Y . In each step, if the included variable reduces the error
defined in Equation (4.4), it is kept. Otherwise, it is discarded.

However, performing feature selection is influenced by two issues. Firstly, mutual in-
formation cannot be analytically computed, but it must be estimated from a simulated
sample instead. If this sample size small, the selected features can vary between differ-
ent executions (Fernández et al., 2007). Secondly, the scarcity of data (only 90 instances)
implies that the selected features strongly depends on the random test selected from
the original dataset.

To solve both problems, the methodology was run twenty times and the variables ap-
pearing at least 75% of the time were chosen. Accordingly, three continuous regression
models were learned, one for each landscape (Figures 4.5, 4.7 and 4.9).

In order to compare the performance of the continuous model (presented above), against
other alternatives, a hybrid and a discrete model were learned with the same set of vari-
ables selected for the continuous case. In this way, the comparison is more reliable as
the model structure remains fixed, and it makes more sense from an environmental
point of view.

In the hybrid approach, half of the variables were discretised (see Table 4.2). Note
that, he CG model cannot be applied in this situation, since there are some discrete
feature variables with a continuous parent (the response variable). Several discretisa-
tion methods (equal frequency, equal width and k-means) were tested to obtaining the
hybrid and the fully discrete model (including the response variable). Finally, the k-
means algorithm with three intervals was used as it reported the best results in terms
of rmse.

It should be remembered that a fully discrete model is mainly oriented towards clas-
sification and not to regression. Consequently, in order to compare this model with



54 Chapter 4. Regression: Modeling Landscape - Socioeconomy Relationships

TABLE 4.2: Intervals of socioeconomic and land use variables included
in the discrete model. * refers to those variables discretised in the hybrid

model. k-means method is used to discretise the variables.

Socioeconomic variables Intervals

Total population* [98, 9519) [9519, 47510) [ 47510, 186651]
Ageing* [ 6.76, 19.13) [ 19.13, 29.77 ) [ 29.77, 48.44 ]
Natural increase* [ -29, 46 ) [ 46, 528) [ 528, 982 ]
Male index [ 0.49, 0.72 ) [ 0.72, 0.88 ) [ 0.88, 1.04]
Tertiary sector* [ 0.0, 2095.5 ) [ 2095.5, 8041.5 ) [ 8041.5, 11819.0 ]
Unemployed* [ 2.0, 975.5 ) [ 975.5, 7936.5 ) [ 7036.5, 12645.0 ]
National emigration* [ 0.78, 5.38) [ 5.38, 9.61 ) [ 9.61, 19.35 ]
Foreign emigration [ 0.0, 0.24) [ 0.24, 1.58 ) [ 1.58, 3.87 ]
National immigration [ 0.0, 5.38 ) [ 5.38, 16.63 ) [ 16.63, 28.21 ]
Foreign immigration [ 0.0, 1.18 ) [1.18, 3.14 ) [ 3.14, 6.70 ]
Primary studies [ 4.03, 16.85 ) [ 16.85, 28.96 ) [ 28.96, 43.0 ]
Secondary studies* [ 14.87, 25.04) [ 25.04, 32.21) [ 32.21, 45.07 ]
AML [ 4.45, 23.39 ) [ 23.39, 44.49 ) [44.49, 80.93 ]
Scrubland [ 0.0, 5.20 ) [ 5.20, 15.94 ) [ 15.94, 29.75 ]
Native forest [ 0.0, 18.11 ) [ 18.11, 36.71 ) [ 36.71, 67.35 ]

the hybrid and continuous cases, the rmse specified in Equation (4.4) needs to be re-
computed for the discrete version as:

rmse =

√

√

√

√

1

n

n
∑

i=1

(yi − ca(ĉi))2 , (4.7)

where ca(ĉi) is the class average for the predicted category after propagating the records
in the discrete case, and yi is the actual continuous value for the response variable. Note
that, once the data are discretised, the original continuous values are still necessary to
compute this version of the rmse.

Direct (marked in red color) and inverse (marked in green color) relationships between
each feature and the response variable were analysed. Two variables, X and Y , are
considered to have a direct relationship if an increase (or decrease) in the value of X
implies an increase (or decrease) in the expected value of the posterior distribution of
Y . In contrast, an inverse relationship means that when the value of X increases (or
decreases), the expected value of Y decreases (or increases). In order to check the sign
of the relationships, for each feature, 10 equidistant values from its domain (including
the minimum and maximum) were used as evidences for carrying out different propa-
gations on the model. Thus, 10 expected values (means) of each posterior distribution
for the response variable gave us information about the type of relationship (direct or
inverse).

Validation of the model

The model was tested using k-fold cross-validation (Stone, 1974). It is a widely used
technique in AI to validate models. The aim is to check how predictive a model is
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when confronted with data that have not been previously used for learning the model.
It is based on the holdout method in which the data set is separated into two comple-
mentary sets, one for learning (Dl) and another for testing (Dt). In this way, we can
estimate the error of a model built from Dl according to set Dt, using the formula in
Equation (4.4).

To reduce variability, the data set is initially divided into k subsets, and the holdout
method is repeated k times. Each time, one of the k subsets is used as Dt and the other
k − 1 subsets are put together to form Dl. Then the average error across all k trials is
computed. For the case study presented in this chapter, we set the value of k to 10.

Finally, the validation was conducted by comparing the BN-based proposals (contin-
uous, hybrid, and discrete models), with a MLR implemented in R software (R De-
velopment Core Team, 2012), since it is the most common regression solution used in
environmental sciences.

The MLR model can also be applied in the presence of categorical variables, usually by
transforming them into dummy variables. In particular, each categorical variable with
k states has to be converted into k − 1 binary variables, one for each category of the
variable. However, the interpretation of the regression coefficients for the categorical
variables is different from the continuous ones. Another disadvantage of this hybrid
MLR approach is that the manual construction of dummy variables can be laborious
and even error prone, especially in the case of many categories. On the other hand,
Bayesian networks naturally include categorical and continuous variables in the same
model using the MTE distributions without the need of creating new variables.

Scenarios of socioeconomic change definition

Two scenarios of socioeconomic change that represent general tendencies in the socioe-
conomic structure (Aranzabal et al., 2008; Schmitz et al., 2005) were proposed (Table 4.3).
The first scenario shows a positive socioeconomic development which involves an in-
crease in the variables related to population, migration movement, study level (mainly
in secondary and higher studies), and primary and tertiary economic sector. The sec-
ond scenario shows a negative socioeconomic change. It involves a decrease in study
level and primary and tertiary sector while an increase in emigration rates and unem-
ployment.

As each regression model has a different subgroup of socioeconomic variables selected
during the pre-processing step, the evidence is only introduced in those variables in-
cluded in the corresponding model.

4.2.2 Results and Discussion

Model validation results

Table 4.4 shows the results in terms of the rmse when comparing the four approaches
(continuous, hybrid, discrete BNs and MLR) for the three variables of interest (AML,
Scrubland and Native Forest). As expected, the errors for the proposed continuous
method are smaller than the other approaches. It is well-known that discretising data
implies loss of information as demonstrated in the errors obtained for the hybrid and
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TABLE 4.3: Scenarios of socioeconomic change. Minimum and maxi-
mum values refer to the minimum and maximum value found in the
data set. Percentage changes are taken from Schmitz et al., 2005 and

Aranzabal et al., 2008.

Scenario Variables involved % Change

Positive socioeconomic change

Foreign immigration Maximum value
National emigration +50%

Tertiary sector +60%
Primary sector +80%
Higher studies +15%

Secondary studies +30%
Natural increase +70%

Ageing Minimum value

Negative socioeconomic change

National emigration Maximum value
Higher studies -70%

Natural increase Minimum value
Primary sector -20%
Tertiary sector -80%

Total population -50%
Ageing +80%

Secondary studies -40%
Unemployment Maximum value

TABLE 4.4: Root mean squared error for the four BN-based regression
models and the MLR. 10 fold-cross-validation is used to reduce variabil-

ity.

Model Native forest AML Scrubland

Continuous BN 6.47 14.73 18.60

Hybrid BN 6.74 14.89 19.13

Discrete BN 6.98 16.07 26.72

MLR 8.81 19.92 29.47

discrete approaches. Finally, MLR obtains a significantly larger error than the BN-based
approaches.

In any case, the goal of this chapter is not only to compare the models above, but
to present different ways to solve a regression problem in environmental modeling
that carry fewer limitations, and which depend on the nature of the available data
(continuous, hybrid and discrete). For a detailed comparison of BN-based regression
models see Morales et al., 2007.

Scenario results

The results of the comparison among the three BNs approaches suggests the continu-
ous approach to be the most appropriate one for modeling this problem as it has the
lowest rmse. For this reason, only results from the continuous models are presented
here.
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Results are presented according to three different settings: a priori and a posteriori (two
scenarios). Figures 4.5, 4.7, 4.9 show the qualitative part of the BNs developed and the
direct and inverse relationships with the selected socioeconomic variables. Figures 4.6,
4.8 and 4.10 shows the probability distributions a priori without introducing any sce-
nario (black line), and the posterior probability distributions (blue and red line) of the
variables after introducing the two socioeconomic scenarios according to Table 4.3. Fi-
nally, Table 4.5 shows some statistics for each variable in the three different settings
specified above.

Agricultural mediterranean landscape

A priori, AML (Figure 4.5) is related to a socioeconomic structure characterized by a
sparse total population with a low male index, but a positive natural increase. Ed-
ucative level is medium with a high unemployment rate. National immigration is low.
Variable Foreign immigration has a peculiar behaviour, since its middle and low values
are related to agriculture workforce (mainly coming from northern Africa), and have
a direct relationship with AML. On the other hand, its high values are more related to
retired population coming mostly from northern Europe, who have a second home in
the area, and this has a inverse relationship with AML.

A negative scenario means a decrease in total population, natural increase and study
level variables (as specified in Table 4.3). In Figure 4.6, red line shows the probability
distribution function of the AML under this negative scenario. From a value of 20-25
the probability distribution is higher than a priori distribution. It means that, due to
the rural abandonment in which elder and non-qualified population remains in the
area and keep these heterogeneous agricultural systems in a large extension (AML is
expressed as the surface in the municipality). Also, it involves an increase in the mean
of the posterior probability distribution of AML (Table 4.5).

On the other hand, a positive scenario supposes larger values in natural increase, for-
eign immigration and study level (as specified in Table 4.3). In Figure 4.6 it is repre-
sented by the blue line. In general, under this positive scenario the mean of the pos-
terior probability distribution of AML decrease, but the probability distribution shows
that, even when it is under the a priori distribution, in the range between 10 to 22, the
distribution of this scenario is higher. Even when the economic development implies
an interest in other economic sectors rather than the agriculture, some small patches
are still remain. However, there is not enough to maintain the traditional cultural land-
scape.

Scrubland

A priori, Scrubland (Figure 4.7) is related to a socioeconomic structure characterized
by an ageing population with low study levels. Unemployment is considerable and
national emigration prevails over international. In this context, tertiary sector is the
main economic activity.

A negative scenario means an increase in ageing, national emigration and unemploy-
ment; and a decrease in secondary studies and tertiary sector (Table 4.3). This situation
provokes a rural abandonment which brings the increase of the scrubland surface. As
Figure 4.8 shows, the probability distribution under this negative scenario (red line) is
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AML

M.I Sec.st.

T.Pop.

Unemp.

F.emi.

F.immi.

Nat.immi.

Nat.Inc.

FIGURE 4.5: Regression model for variable Agricultural Mediterranean
Landscape (AML) after the feature selection. Direct and inverse relation-
ships between each feature and the variable AML are labelled with red
and blue color, respectively, on the corresponding arc. Foreign immi-
gration is labelled with a green color as it has a peculiar behaviour,
low and middle values in its domain present a direct relationship with
AML, however high values have a inverse relationship. M.I., Male In-
dex; Sec.st., Secondary Studies; T.Pop., Total Population; Unemp., Un-
employment; F.emi.; Foreing Emigration; F.immi, Foreign Immigration;

Nat.immi. National Immigration; Nat.Inc., Natural Increase.
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FIGURE 4.6: Probability distributions of the AML. Three density func-
tions are displayed: a priori (without introducing any scenario to the
model), and a posteriori (introducing both positive and negative scenar-
ios according to Table 4.3). Note that density functions are defined as a

piecewise function using MTEs.
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higher than the a priori for the higher values of the scrubland variable. It means that
municipalities landscape presents a high percentage of surface occupied by scrubs. It
is also emphasized by the mean of the posterior probability distribution (Table 4.5).

On the other hand, a positive scenario entails a decrease in variable Ageing to its mini-
mum and an increase in secondary studies, national emigration and tertiary sector (as
specified in Table 4.3). Population growth and a increase in secondary study levels
cause a higher interest in other economic activities replacing scrubland with other land
uses. It, therefore, involves a decrease in the mean of the posterior probability distribu-
tion of Scrubland. It is also shown in the probability distribution (Figure 4.8) in which
the probability of lowest values os Scrubland are higher than a priori.

Scrubland

T.sec.

Nat.emi.

Prim.st.

Sec.st.

F.emi.

Unemp.

Aging

FIGURE 4.7: Regression model for variable Scrubland after the feature
selection. Red and blue color have the same meaning as in Figure 4.5.
T.sec., Tertiary Sector; Nat.emi., National Emigration; Prim.st., Primary
Studies; Sec.st., Secondary Studies; F.emi., Foreing Emigration; Unemp.,

Unemployment.

Native forest

A priori, Native forest (with oak trees) (Figure 4.9) is related to a socioeconomic structure
characterized by low population with primary studies, but a positive value in natural
increase variable. Moreover, the tertiary sector is well-developed and there is a national
migration (immigration and emigration).

A negative scenario entails a drop in the value of natural increase variable, total pop-
ulation and tertiary sector (rural tourism), whilst there is an increase in national emi-
gration. Rural abandonment and low tourism levels entail less interest in maintaining
native forest. It involves a slight decrease in the mean of the posterior probability distri-
bution, whilst an increase in the probability of lower values of Native forest (Figure 4.10)

On the other hand, a positive scenario means an increase in the tertiary sector, national
emigration and natural increase variables. Population growth and greater touristic
activities lead to an improvement in infrastructure not only for tourism, but also for
residents. It entails the replacement of native forest with land uses related to those
improvements. It involves a decrease in the mean of the posterior probability distribu-
tion of Native forest and an increase in the lowest values of the probability distribution
function (Figure 4.8).
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FIGURE 4.8: Probability distributions of the Scrubland. The same expli-
cation as in Figure 4.6.
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FIGURE 4.9: Regression model for variable Native forest after the fea-
ture selection. Red and blue color have the same meaning as in Fig-
ure 4.5. Nat.emi., National Emigration; Nat.immi., National Immigra-
tion; Nat.Inc., Natural Increase; T.Pop., Total Population; T.sec., Tertiary

Sector; Prim.sec., Primary Sector.

TABLE 4.5: Mean and standard deviation values a priori and in each
scenario of socioeconomic changes. AML refers to Agricultural Mediter-

ranean Landscape. Sc., Scenario

A priori Negative Sc. Positive Sc.

Mean Sd Mean Sd Mean Sd
AML 21.50 15.16 29.65 16.18 15.62 5.17
Native forest 7.66 6.71 6.32 5.79 3.81 3.48
Scrubland 39.62 18.73 49.98 16.22 26.96 18.52
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FIGURE 4.10: Probability distributions of the Native Forest. The same
explication as in Figure 4.6.

4.3 Conclusion

This chapter presents MTE-based BNs as a tool for solving regression problems in SES
modeling, using the modeling of landscape - socioeconomy relationship in southern
Spain as our study case. Two gradual socioeconomic changes impact over the three
main landscapes are studied. A global understanding of the change in the SES can be
obtained.

Both socioeconomic changes represent a general tendency of mediterranean landscape
to a richer and improved socioeconomy structure, and to a rural abandonment process.
In the case of the positive scenario, defined as a development in the socioeconomic
structure, traditional landscape (AML) is reduced. This tendency would imply an in-
crease in the scrub surface in order to substitute these areas, however, both Scrubland
and Native forest are also reduced in a great extension. As some previous studies reveals
(Schmitz et al., 2005), this gradual change to a richer socioeconomic structure involves
the promotion of other landscapes typologies more related with intensive agriculture
or tourist interests. In this case, the SES tends to change into a more intensive and
homogeneous system with less presence of traditional cultural landscapes and native
forest.

On the other hand, a negative scenario describes a similar situation to a rural aban-
donment. In such conditions, both AML and Scrubland tend to increase, while Native
forest undergoes a slight reduction. Agricultural Mediterranean landscape, as a het-
erogeneous landscape, only in rural areas is kept, where elderly people cultivate small
patches of traditional croplands (Schmitz et al., 2003). A lower level of education and
fewer job opportunities mean a restriction in the number of economic activities, so that
several patches are abandoned promoting the increase of Scrubland (Geri et al., 2010;
Camarero et al., 2009). In that situation, traditional activities related to the maintenance
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of native forest are somehow forgotten, so the surface area of native forest is slightly re-
duced (Jiménez-Herrero et al., 2011). Under this second scenario, it is demonstrated the
impact and the close relationships between social and natural systems, where an ab-
sence of population that keeps traditional agriculture and forest maintenance, provoke
that natural heterogeneous system (measure as the number of patches from different
land uses) changes to a landscape more homogeneous (land use change from a mix-
ture of different patches to a bigger patch of scrubs); scrublands tend to substitute both
native forest and agricultural systems.



Chapter 5

Classification through Bayesian
networks: Socio-Ecological
Cartography

Territorial planning and management requires that the spatial structure of
the socio-ecological sectors is adequately understood. In this chapter, a hi-
erarchical hybrid BN classifier is applied to identify the different socio-
ecological sectors in Andalusia, a region in southern Spain. Besides, a Global
Environmental Change scenario is included into the model. Results show
that a priori, the socio-ecological structure is highly heterogeneous, with
an altitude gradient from the river basin to the mountain peaks. However,
under a scenario of global environmental change this heterogeneity is lost,
making the territory more vulnerable to any alteration or disturbance. The
methodology applied allows dealing with complex problems, containing a
large number of variables, by splitting them into several sub-problems that
can be easily solved. In the case of territorial planning, each component of
the territory is modeled independently before combining them into a general
classifier model.

5.1 Introduction: Bayesian networks for classification

In the previous Chapter, the aim of the model was to predict the behavior of a contin-
uos variable as accurate as possible solving a regression problem. But, if this variable is
discrete it is called class variable and we are facing with a Classification. In environmen-
tal modeling is common that no information about this class variable is given, so the
problem becomes an unsupervised classification or clustering problem.

Clustering or unsupervised classification: It is understood as a partition of a data set into
groups in such a way that the individuals in one group are similar to each other but as
different as possible from the individuals in other groups.

Hybrid BNs based on MTE models have been successfully applied in supervised classi-
fication problems in environmental sciences (Aguilera et al., 2010), for that reason this
Chapter is focused on unsupervised classification problems instead.

63
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BNs can be used to solve both supervised and unsupervised classification tasks (Aguilera
et al., 2013; Anderberg, 1973; Fernández et al., 2014; Gieder et al., 2014) if they contain a
set of feature variables X1, . . . ,Xn, and a class variable (in the case of supervised clas-
sification), where an individual with observed features x1, . . . , xn will be classified as
belonging to a class c. Unsupervised classification is performed taking into account that
no information about class variable C is given. Therefore, a hidden variable H whose
values are initially missing is included in the dataset to represent the membership of
each case to the different clusters.

As BNs express the results by means of probability distribution functions, each obser-
vation in the dataset is classified according to the class label with the highest probability
value. In that case, the interest is on what state of the class variable is the most probable
one, rather than the probability of it. Again, the behavior of the system can be mod-
eled under a scenario of change using probabilistic propagation (Aguilera et al., 2011;
Liedloff & Smith, 2010).

In this Chapter the methodology applied is based on the probabilistic clustering method-
ology using hBNs proposed by Fernández et al., 2014, and implemented in the Elvira
software (Elvira-Consortium, 2002). Figure 5.1 shows an outline of this methodology
which is divided into two steps:

1. Estimation of the optimal number of states. Initially, no information about the class
variable is given, so we consider it as a hidden variable H , whose values are
missing (Figure 5.1 i)). Firstly, we consider only two states for variable H that are
uniformly distributed (Figure 5.1 ii)). Now, the model is estimated based on the
data augmentation method (Tanner & Wong, 1987), an iterative procedure similar
to the Expectation Maximization algorithm (Lauritzen, 1995) as follows: a) the
values of H are simulated for each data sample according to the probability dis-
tribution of H , updated specifically for the corresponding data sample, and b) the
parameters of the probability distribution are re-estimated according to the new
simulated data. In each iteration, the BIC score of the model is computed, and
the process is repeated until there is no improvement. In this way, the optimal
parameters of the probability distribution function of the model with two states
and its likelihood value are obtained (Figure 5.1 iii)). The following step consists
of a new iterative process in which a new state is included in variable H by split-
ting one of the existing states (Figure 5.1 iv)). The model is again re-estimated
(by repeating the data augmentation method) and the BIC score is compared with
the previous run. The process is repeated until there is no improvement in the
BIC score, so achieving the final model containing the optimal number of states
(Figure 5.1 v)).

2. Computation of the probability of each observation belonging to each state. Once we
have obtained the final model (with the optimal number of class variable states),
the next step consists of inference process. In this step, all the available information
for each data sample is introduced into the model as an evidence, and propagated
through the network, updating the probability distribution of the class variable.
Finally, from this new distribution the most probable state of the variable H for
each data sample is achieved.

BNs for classification is the second most applied aim in environmental modeling (Fig-
ure 2.7) with more than 20% of the paper reviewed. As it was pointed out in Figure 1
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FIGURE 5.1: Outline of the HBNs probabilistic clustering methodology
to construct both sub-models and the classifier. Dotted lines represent
the relationships between the variables when the parameters of the prob-
ability distribution functions have not been yet estimated. B, BIC score.
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BNs can be learnt using an optimal or fixed structures. For both regression and classifica-
tion problems, fixed and constrained structures are the most usually applied and more
recommended. However, in environmental and ecological modeling just a 12.5% of the
paper reviewer that applied BNs for Classification used them (Aguilera et al., 2010; Bres-
san et al., 2009; Park & Stenstrom, 2008; Park & Stenstrom, 2006; Porwal et al., 2006),
whilst the remainder 87.5% learns an optimal structure even when their focus is on
only one discrete variable (Grech & Coles, 2010; Walton & Meidinger, 2006; Stow et al.,
2003; Raphael et al., 2001).

With respect to the data, mostly of the paper discretized the features and deal with a
discrete classification model (Figure 5.2), following the general tendency in environ-
mental and ecological modeling (Boets et al., 2015; Fletcher et al., 2014). What is inter-
esting is that model learning based on the data (automatic leaning) is found in the 35%
of the papers (Keshavarz & Karami, 2013; Palmsten et al., 2013), the same percentage of
papers used both data and experts (semi-automatic approach) (Figure 5.3) (Boets et al.,
2015). By contrast, the percentage of papers that use only experts is 22% (Fletcher et al.,
2014).

Figure 5.4 shows the distribution of papers in each research topic. Ecology and areas
that are not so representative (Figure 2.7), Biodiversity & Conservation, Marine & Fresh-
water Biology and Forestry; are the most usually applied areas of BNs for classification.
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FIGURE 5.2: Percentage of papers that applied BNs for Classification for
each type of data.

5.2 Analysis of the socio-ecological structure and dynamics of

the territory

Under the SES framework, the process of planning and management requires that the
spatial structure of the territory is adequately understood, particularly given the cur-
rent context of Global Environmental Change (GEC) (Basurto et al., 2013; Clark & Dick-
son, 2003; Hufnagl-Eichiner et al., 2011; Kotova et al., 2000; Turner et al., 2003). Spatial
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FIGURE 5.4: Percentage of papers that applied BNs for Classification for
each topic. M&A, Meteorological and Atmospheric sciences; M&F, Ma-
rine and Freshwater Biology; E&E, Ecology and Environmental sciences;

B&C, Biodiversity and Conservation; WR, Water research
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analysis allows the territory to be divided into a number of different units (Schmitz
et al., 2005), which can reflect the spatial patterns caused by interactions between social
and ecological systems and between the elements of the territory.

Despite that human’s role in nature is being recognized, most of papers are focused on
determining the ecological sectors and their interactions excluding the social compo-
nent (Jackson et al., 2012). To obtain these ecological sectors, a variety of methodologies
have been applied including both subjective methods - based on expert knowledge-
and objective ones, based on the data available (Chuman & Romportl, 2010; Schmitz
et al., 2005; Trincsi et al., 2014; Vezeanu et al., 2010). One of the most important method-
ologies is classification, with recent advances promoted by the development of new
technologies, such as GIS techniques and software. The most common classification
methodologies are based on spatial overlapping of thematic maps and other GIS tech-
niques (Villamagna et al., 2014), the study of satellite images (Rapinel et al., 2014) and
various statistical methods, such as hard-clustering or geospatial analysis (Giménez-
Casalduero et al., 2011; Liu et al., 2014; Ruiz-Labourdette et al., 2011; Trincsi et al., 2014;
Vezeanu et al., 2010) to perform data analysis and ecological mapping (Lahr & Kooistra,
2010).

Even though the methodologies mentioned above provide robust and appropriate re-
sults, they have certain limitations, which basically relate to the amount of informa-
tion the models can cope with and the rigidity of the boundaries between the different
sectors identified (Niederscheider et al., 2014; Smith & Brennan, 2012). Moreover, new
tools are required that can include socioeconomic components in the same way as other
components of natural systems, under the current SES framework (Challies et al., 2014;
Dearing et al., 2014; Strand, 2011).

In this Chapter, the objective is to develop a new methodological approach based on a
hBN hierarchical classifier and apply it to characterize the socio-ecological structure of
a territory, and study its dynamic under different drivers of GEC, in the Spanish region
of Andalusia. This mathematical approach is considered hierarchical, since the model
is divided into two levels of classification; in the first, both natural and socioeconomic
components are modeled using independent hBN sub-models, with the aim of classi-
fying the territory into several groups. In the second, the sub-models are joined into
a classifier model that divides the territory into several socio-ecological sectors. Using
the final classifier model obtained, we can predict how the socio-ecological structure
of the territory might change as a consequence of various GEC drivers through the
inference or probability propagation process.

5.2.1 Methodology

Figures 5.5 and 5.6 outline the methodology followed in this chapter. Firstly, Figure 5.5
shows the methodology for model learning divided in three main steps: i) Data collec-
tion, ii) Submodels learning, and iii) Classifier learning. Figure 5.6 shows the inference
process followed to predict the behavior of the SES modeled under a Global Change
scenario. Elvira software was used for both learning and inference processes.
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FIGURE 5.5: Methodological diagram of the hierarchical classifier model
divided into three steps: i) Data collection, ii) Submodels learning and
iii) Meta-classifier learning. White nodes refer to original variables (ei-
ther discrete or continuous), grey nodes refer to artificial discrete class
variables, which represent the membership of each observation to sub-
models groups (i.e. Land uses groups) and classifier sectors respectively.
SIMA, Andalusian Multiterritorial Information System; Vars., Variables;

Geomor., Geomorphology
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FIGURE 5.6: Methodological diagram of the Inference process. A priori
the information about the current situation is introduced into the model
and propagated to obtain the probability of each grid cell (Gc) belong-
ing to socio-ecological sectors. A posteriori, information about drivers of
GEC is collected and included - as new values or evidences - into several
variables of the classifier model, and the probability values are updated.
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FIGURE 5.7: Study area.

Study area

Andalusia (Figure 5.7) is located in the South of Spain and configures the second largest
Autonomous Region, and the most-densely populated. It covers a surface area1 of
87.600 km2, which represents 17.3% of the national territory. Bounded by the Mediter-
ranean Sea (at the East) and Atlantic Ocean (at the West), Andalusia lies on the frontier
between Europe and Africa and contains a mixture of landscapes and cultural heritage
from both continents.

Andalusian terrain covers a wide range of altitude, from the Baetic Depression to the
mountainous ranges of the Sierra Morena and Baetic System, which boast the highest
peaks in Spain, lying above 3000 m. a.s.l. The landscape is quite heterogeneous, with
huge differences between the densely populated and irrigated rich croplands areas of
the river basin and coastlands, to the sparsely populated forested areas of the uplands.
Besides, in the last century it suffers a process of rural depopulation that provokes an
increase in the scrub landscape in the higher relief.

Its climate is similarly heterogeneous. Even though Andalusia is included in the Mediter-
ranean climate zone, there are stark differences between different areas. The climate in
the southeast part is semiarid, with less than 200 mm of annual rainfall in several areas,
whilst the middle and northern parts are under a continental climate influence, with
more than 4000 mm rainfall.

All natural and social conditions make Andalusia a heterogeneous region with deep
differences in terms of social structures, cultural heritage, and territorial structure.

Data collection

In accordance with the environmental and socioeconomic characteristics of the terri-
tory, six groups of variables were selected for the hBN hierarchical classifier model.

Environmental information was collected from Andalusian Regional Environmental
Information Network2 (Figure 5.5 i)) and divided into four different sub-models: land

1Data from the Spanish Statistical Institute
2http://www.juntadeandalucia.es/medioambiente/site/rediam
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use, geomorphology, lithology and climate. ArcGis v10.0 (ESRI, 2006) was used to
retrieve the data, using a grid of 5x5 km. Land use, geomorphology and lithology
variables are expressed as the percentage of the surface area of each grid cell, whilst
climatic variables are expressed as an absolute value per grid cell (see Appendix A for
a detailed explanation).

The Andalusian Multiterritorial Information System 3 was searched to obtain social
and economic information for each municipality to feed to the corresponding sub-
models (Figure 5.5 i)). In order to obtain information that related to uniform spatial
units, ArcGis v10.0 (ESRI, 2006) was used to transform the data into a 5x5 km grid by
overlapping it onto the municipal information shape file. In this way two cases were
found: i) grid cells containing only one municipality, where the information was col-
lected; ii) grid cells that overlap two or more municipalities; in these cases variables
were obtained as a weighted mean of each municipal values. Variables are expressed
in different ways, such as rates, percentage of the municipal population, percentage
surface area of the territory (see Appendix A for a detailed explanation).

Variables were selected by experts and from literature review; they were preprocessed
with the aim of avoiding repeated information. The preprocessing steps included the
elimination of variables providing equivalent information by means of the analysis of
a correlation matrix, and the selection of the appropriate level of detail in the shape file
information in the ArcGIS. In addition, environmental variables comprising more than
70% of data equal to zero were discretized using the equal frequency method into three
different states (0- no presence; 1- low presence; 2- high presence. Thresholds of each
variable are shown in A).

The final data set contained 3630 grid cells and 151 variables, both discrete and contin-
uous.

Sub-model learning

This section describes the steps for constructing the first level of the classifier (Figure 5.5
ii)). Data collected were organized into six different groups Land use, Geomorphology,
Lithology, Climate, Social, and Economy. Taking independently the variables for each
group, six different sub-models were learnt following the method explained in the In-
troduction of this Chapter based on the proposal of Fernández et al., 2014.

For each one, the structure used is a fixed NB in which the features are the variables
collected, whilst the class variable is the hidden variable that represent the membership
of each grid cell to a cluster with common characteristics (Land use, Geomorphology,
Lithology, Climate, Social, and Economy group respectively). Table 5.1 shows the num-
ber of both discrete and continuos variables in each sub-model.

Classifier learning

Once the various sub-models are learned, the next step consists of joining them in the
second level of classification in the classifier model (Figure 5.5 iii)). A new virtual data
set is created where the feature variables are the results of the previous six sub-models

3http://www.juntadeandalucia.es/institutodeestadisticaycartografia/sima/index2-en.htm
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TABLE 5.1: Sub-models characteristics. No., number; Vars., variables.

Sub-model No. Vars. Discrete Vars. Continuous Vars.

Land Use 10 0 10
Geomorphology 50 48 2

Lithology 41 39 2
Climate 7 0 7
Social 18 4 14

Economy 25 15 10
Total 151 106 45

(i.e., the most probable land use, geomorphology, lithology, climate, social and eco-
nomic cluster for each grid cell), whilst the hidden class variable expresses the mem-
bership of each grid cell to the socio-ecological sectors.

Note that, in this level, both feature and class variables are discrete, but the flexibility of
the methodology proposed allows this kind of data to be dealt with in exactly the same
way as in the previous step. The process is repeated, as explained in the Introduction
and Figure 5.1, to obtain the final model with the optimal number of socio-ecological
sectors. Once we know the parameters of the model, the inference process is carried out
and the probability that a particular grid cell belongs to a particular sector is calculated;
then the most probable one is represented.

Global environmental change scenario

Taking the information provided by the Intergovernmental Panel on Climate Change,
both national and regional governments have developed climate change scenarios for
their particular territory. A number of reports and studies have been written about
the impact of these scenarios on the economy, on society, and on land use and land
cover (Gasca, 2014; Méndez-Jiménez, 2012; Nieto & Linares, 2011). In Andalusia, two
scenarios are considered: A2 and B2 (Méndez-Jiménez, 2012).

The A2 scenario describes a heterogeneous world, where self reliance and preservation
of local identity are key. Population increases continuously and economic development
is based on national decisions (regionally oriented), whilst per capita economic growth
and technological change are fragmented and slow (Gasca, 2014; Solomon et al., 2007).
By contrast, the B2 scenario describes a situation in which economic development is
not important and the environmental and socioeconomic problems are solved at local
level. This scenario implies a slow population increase (Gasca, 2014; Solomon et al.,
2007).

In this application the focus is on the A2 scenario - the 2040 horizon scenario for An-
dalusia, since it closer to the current trend of socio-ecological change. Information
to describe the impact of several GEC drivers on different sectors of the natural and
social-economic environments in Andalusia were collected from various sources: the
Assessment of the International Panel on Climate Change (Stocker et al., 2013), national
and regional reports (Gasca, 2014; Méndez-Jiménez, 2012; Nieto & Linares, 2011), and
from the Andalusian Environmental Information Network.
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One advantage of BNs is that it is not necessary to include information for all feature
variables in order to be able to make the prediction. Rather, only new information
is included as evidences in those variables in which we have knowledge about their
change. In our case, evidences are included for the variables of climate, land use and
economic sub-models (Table 5.2). Lithology and Geomorphology are consider stable.
Whilst no reliable information about social changes is available, no evidences have
been introduced into these variables.

1. Climate change. Climate change is one of the most important and commonly
studied natural drivers modeled under different perspectives and methodologies
(Keenan et al., 2011; Rubidge et al., 2011; Quisthoudt et al., 2013). Its interactions
with land use provoke changes in the structure of both natural and socioeconomic
components through different agents (Anderson-Teixeira et al., 2013; Claesson &
Nycander, 2013). In Andalusia, the A2 scenario implies an increase in tempera-
ture (of up to 4 degrees in some locations), and changes in rainfall distribution.
These data were included as evidences in the Climate sub-model variables; An-
nual average rainfall and Annual average temperature (Table 5.2).

2. Land uses change. The pattern of land uses supports ecosystems and societies
due to the fact that any alteration of land use leads to changes in biodiversity,
primary production, alterations in soil productivity and the capacity to provide
ecosystem services to societies (Lambin et al., 2001). In Spain, several reports
based on information from the International Panel on Climate Change have been
written to describe the expected change in land uses. Our study used informa-
tion from the 2040 scenario of land use change (Nieto & Linares, 2011; Méndez-
Jiménez, 2012). The expected changes include several that relate to the distri-
bution of vegetation, both crops and forest species. These new values were in-
cluded into the model as evidences in the following Land use sub-model vari-
ables: Dense woodland, Irrigated cropland, and Rainfed cropland (Table 5.2).

3. Economic change. Due to the alteration of natural conditions, several changes
are expected in the economic and social component of the SES. No reliable in-
formation was found about changes in social variables, but economic changes
were identified. Two economic sectors are important in Andalusia. The first is
the primary sector (livestock and agriculture). Modifications in this sector are
reflected in the Land use sub-model (as changes to the extent of Rainfed crops
and Irrigated crops variables). The second is the Tourism sector, which could be
affected in the future if climate and weather conditions change. Information was
collected from regional reports (Méndez-Jiménez, 2012) and introduced as evi-
dences in the following variables: Business activities tax in primary, secondary
and tertiary sectors, tertiary sector employment, number of rural hotels, winter
and summer water consumption, and farming units cattle and pigs (Table 5.2).

Once the evidences are identified, they are introduced into the corresponding sub-
model and propagated from the sub-models to the classifier, updating the distribution
of the socio-ecological sectors in Andalusia (Figure 5.6 ii)).
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TABLE 5.2: Variables in which new evidences are introduced under the
scenario of GEC.

Sub-model Variables

Climate Annual average rainfall;
Annual average temperature

Land Use Dense woodland; Irrigated cropland;
Rainfed cropland

Economy Business Activities Tax in primary sector;
Business Activities Tax in secondary sector;

Business Activities Tax in tertiary sector;
Tertiary sector employment; Number of
rural hotels; Winter water consumption;

Summer water consumption; Farming units
cattles; Farming units pigs

5.2.2 Results and Discussion

A priori results

Figure 5.9(a) shows the socio-ecological structure of Andalusia in the current situation,
which identifies eight different sectors. Several non-parametric hypothesis test (Chi-
square for discrete variables and Kruskall-Wallis for continuous variables) were carried
out to check if significant differences exist between these sectors. Using a significance
level of 0.05, the tests showed that the differences between sectors are significant.

The sectors are aligned geographically with a southwest to northeast orientation, fol-
lowing a gradient of increasing altitude from the Guadalquivir river basin to the peaks
of Sierra Morena and Sistema Bético mountain ranges Mountain peaks sector. Figure 5.8
shows the box plot of certain variables, as an example of how this gradient is revealed
(i.e. rainfed crops surface increase from the mountain peak to the Guadalquivir river.)

The first sector, called Guadalquivir river covers the river basin area, with its gentle ge-
omorphology of rich sedimentary plains, whose climate enables an important rainfed
agriculture to be practiced. This sector is the one most-affected by human activities,
containing few natural areas and supporting a wealthy population with a high level of
education.

In the foothills of the mountains to the north and south, there are two transitional bands
of mixed cropland with forestland, subject to cooler, wetter weather. From the socioe-
conomic point of view, both areas have significant agricultural activity, but their wealth
and structure are different: there are fewer urban areas, lower level of education, lower
income per capita, and a change from agricultural areas to one with a high proportion
of natural areas (Figure 5.8).

The northern transitional band can be differentiated into two sectors:

• Northern transition, medium socioeconomic sector. Located along the edge of the
river basin plain, it is dedicated to agricultural activity with a slightly less wealthy
population who are educated to a lower level than the Guadalquivir sector. This
area still contains some areas of significant agricultural investment.
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• Northern transition, low socioeconomic sector. Located on the hillslopes of the Sierra
Morena, its landscape is woodland with some patches of rainfed crops. The main
difference with the other northern transitional sector is its socioeconomic struc-
ture, which corresponds to a sparse population of poorer ageing people.

The differences between these two sectors and the river basin area are slight and grad-
ual. By contrast, to the south, the transition band - also represented by two sectors-
shows greater contrast and clearer differences to the river plain:

• Southern transition, contrast sector. This is characterized by a steep, eroded re-
lief, containing contrasting areas and an important livestock activity. Close to
the river Guadalquivir, its socioeconomy comprises a wealthier population with a
high agricultural investment. At higher elevations in this sector, the population
is characterized by higher migration rates and the economic variables are more
depressed than in the previous one.

• Southern transition, heterogeneous sector. Located in the highlands of the Sistema
Bético, this sector presents a heterogeneous landscape with significant forest cover,
as well as areas with degraded natural vegetation. Croplands are fewer common
than in the lower foothills and the population is characterized by ageing and
abandonment areas.

Dotted around within these four zones of the northern and southern transition bands
are seven patches, which belong to the Irrigated cropland sector. These patches have
similar characteristics to the sector within they lie, but they are principally dedicated
to irrigated croplands and reveal industrial, rather than agricultural, investment. They
also contain a significant proportion of urban landscape. Despite this, these patches
have the lowest income per capita and the lowest level of education.

At the top of the mountains are several local patches, which make up the Mountain
peaks sector. In the Sierra Morena this sector appears over 400 m.a.s.l. whilst in the
Sistema Bético, it lies above 500 m.a.s.l., so the weather is colder and rained in the last
one. However, both zones contain more natural landscape (forest and scrubland) with
some olive groves in the northern part. The geography of these areas comprises an
elevated, steep relief, whilst its sparse and ageing population is mainly dedicated to
subsistence agriculture.

Finally, the Mediterranean coast sector lies on the South face of the Sistema Bético foothills,
over a mixture of sedimentary, metamorphic, volcanic and even karst materials. Its
eroded relief is composed of hills, mountains and coastal plains. It is a warm sector, the
driest one of Andalusia, and its heterogeneous landscape includes a high proportion
of scrubland and sparse vegetation. From the socioeconomic point of view, this sector
is mainly dedicated to the primary sector, though contrasts exist between medium in-
come per capita and medium educational level to poorly developed areas. It also has
an important tourism sector.

A posteriori results

Figure 5.9(b) shows the socio-ecological structure of Andalusia under the GEC sce-
nario. The number of sectors have decreased to seven. As in the a priori situation,
Chi-square and Kruskall-Wallis tests were carried out. There are significant differences
between the sectors a posteriori.
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FIGURE 5.8: Extension of some land use (Rainfed crops and Forest ex-
pressed in percentage of the grid cell), climate (Annual average temper-
ature express in Celsius) and economic (Income per capita express as
a rate) variables in a priori sectors. M.peaks, Mountain peaks; S.T.Het,
Southern transition, heterogeneous; S.T.cont., Southern transition, con-
trast; G.river, Guadalquivir river basin; N.T.med., Northern transition,
medium; N.T.low, Northern transition, low; Med.coast, Mediterranean

coast; Irrig., Irrigated cropland.
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Under this scenario of change, the socio-ecological structure of the territory is different
to a priori, which makes some of the new sectors have a different name. This new struc-
ture indicates three main sectors, oriented southwest - northeast. These three sectors
contain patches of the four sectors dotted within them (Figure 5.9(b)). The gradient
corresponding to altitude from the river to the mountain peaks is no longer observed.

The sector called Woodland in the Sierra Morena foothills now covers the Sierra Morena and
part of the Guadalquivir river basin, as well as several patches in southern Andalusia. It
is characterized by woodland and rainfed landscape on the eroded slopes of dry areas.
From the socioeconomic point of view, it is a varied sector with an ageing population
and a low level of education.

The next sector is called Woodland in the Sistema Bético foothills. It is a continuous area
that runs from southwest to northeast through Andalusia, comprising woodland with
patches of rainfed crops. It corresponds to areas that are depressed socioeconomically,
similar to the previous sector.

Among them, some agricultural relic areas are found. They support an agricultural
society with a high level of education, a positive natural increase and tourist activity.
There is now the Rainfed cropland sector, comprising several patches within the river
basin and the Sistema Bético foothills of rainfed agriculture that contains no natural
landscapes. In a similar way, Woodland-croplands sector is composed of a number of
small patches, mostly located in the river basin area, containing both natural and crop
landscapes. The Irrigated croplands sector is composed of several patches dedicated to
irrigated crops.

Lastly, two sectors are found with similar characteristics (and also the same name) as a
priori, namely the Mediterranean coast and the Mountain peaks sectors. The Mediterranean
coast sector covers the same area as before and supports a quite similar socio-ecological
structure. In the same way, the landscapes belonging to theMountain peaks sector are
still located at the top of the mountain ranges, but they occur only in the Sistema Bético
whilst this sector has almost disappeared in the case of Sierra Morena (Figure 5.9(b)).

Comparisons between A priori and A posteriori situations

In order to study the dynamics of the structure of the territory, a confusion matrix was
drawn up to highlight the differences between the a priori and a posteriori situation (Ta-
ble 5.3). This matrix represents the percentage of each sector in the a priori situation that
is included in each of the a posteriori sectors. Also, Figure 5.9 shows both situations, a
priori and a posteriori. From studying this table, it becomes clear that parts of both the
northern and southern transitional areas have been incorporated into the Woodland in
the Sierra Morena foothills and Woodland in the Sistema Bético mountain foothills sectors
(Table 5.3), with corresponding change in landscape to scrubland and degraded veg-
etation. From the socioeconomic point of view, the diversity and heterogeneity of the
transition band between the river basin and the mountain peaks has been minimized
and the variables have become more homogeneous.

Whilst, in the a priori situation, agricultural activity extended over the river basin and
both mountain foothill areas, under this scenario agricultural activity has been reduced
to a number of small patches. Both Rainfed cropland and Woodland-croplands sectors
replace part of the previous Guadalquivir river sector. However, the Irrigated crops sector
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(a) A priori

(b) A posteriori

FIGURE 5.9: socio-ecological sectors of Andalusia, results a priori and a
posteriori.
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TABLE 5.3: Confusion matrix showing the percentage of grid cells in
common between each a priori and a posteriori sectors.

A posteriori

Woodland in Rainfed Mountainous Irrigated Woodland Woodland in Mediterranean
Sierra Morena crops peaks crops & crops Sistema Bético coast

A
p

ri
o

ri

Irrigated 14.6 0 1.5 0.9 0 0.2 2.05
crops

Southern
transition 3.4 42.8 0 0 0.5 43.4 2.4
(contrast)

Mountain 8.57 0 87.7 0 0 0 4.8
peaks

Northern

transition, 26.1 0 1.5 88.2 0 0.2 0.7
medium

Northern

transition, 16.6 0 0 0 0 0 0
low

Guadalquivir 25.6 57.1 1.5 10.7 99.5 21 4.3
river

Southern

transition 1.3 0 0 0 0 34.9 0
(heterogeneity)

Mediterranean 3.6 0 7.7 0 0 0.1 85.6
coast

Total 100 100 100 100 100 100 100

is no longer located in the same areas as a priori; now these occur at higher altitude -
within the Northern transition, medium socioeconomy (Table 5.3).

The Mediterranean coast sector, is a heterogeneous area quite similar to the a priori one.
From the socioeconomic point of view, they have similar characteristics, but the climate
under this A2 scenario is warmer and drier.

Lastly, the Mountain peaks sector covers the same geographical area as a priori, but the
extent of these areas has decreased. Under the A2 scenario of change, the mountain
peaks show greater presence of forest and scrublands. The fall in both temperature
and rainfall occurs because this sector now occurs at higher altitude (in both areas, this
sector is found above 600 m.a.s.l. in the a posteriori, whilst in a priori corresponded to
land above 400-500 m.a.s.l.).

5.3 Conclusion

This chapter presents a new methodological proposal based on hBNs hierarchical clas-
sifier and applied to identify the socio-ecological structure of a territory. The dynamics
of the territory under a scenario of GEC was studied.

Andalusia is a heterogeneous Mediterranean region, where extensive beaches lie only
a short distance from high and wild mountain peaks, and where large extensions of
homogeneous monocrops lie a short distance from heterogeneous subsistence crops.
However, there is a clear difference between the Mediterranean coast and inland An-
dalusia (which are separated by the Baetic System).

Under the current situation, in inland Andalusia there is a clear separation between
socio-ecological sectors. There is a transition from the lowland river basin to the moun-
tain peaks, which is reflected by a gradual change from an agriculturally rich society
to forestland and rural structure, with high emigration rates, illiteracy and abandon-
ment areas. This heterogeneity implies a wide variety of ecosystems which, in turn,
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supports great biodiversity - Andalusia, being a Mediterranean region, is a global bio-
diversity hotspot (Myers et al., 2000). Inland Andalusia supports a strong economic
sector, with opportunities for a huge range of economic activities (tourism, agriculture,
and industry between others). However, its socioeconomy is mainly based on exten-
sive (homogeneous) single crop farms, on which a large percentage of the population
depend for their livelihood. Under the scenario of GEC, this structure is lost and the
diversity and richness of the socioeconomic structure will tend to decrease.

In comparison to the a priori situation, changes in the environmental conditions will
cause a shift in the optimal growing areas for several crop species (including olive,
wheat and barley) (Méndez-Jiménez, 2012). For that reason, the agricultural diver-
sity would be reduced to a number of relict areas and would provoke the irrigated
crops to shift to a higher altitudes in the Guadalquivir river basin area. In turn, this
would provoke changes in the socio-ecological structure of the territory. The loss of
socio-ecological heterogeneity would provoke a decrease in the resilience of Andalu-
sian ecosystems (Virah-Sawmy et al., 2009), making them vulnerable to any disturbance
from either natural disaster or socioeconomic and political decisions.

In contrast, in the case of the Mediterranean coast sector, even though the GEC scenario
implies a decrease in the extent of agricultural activities, the socioeconomic character-
istics would be hardly affected. This area supports an important tourist industry, apart
from agriculture. Due to both increases in temperature and a longer warm season,
tourism might benefit under GEC. Coastal areas would see an increase in the tertiary
sector (Méndez-Jiménez, 2012). Under the A2 scenario of change, the socioeconomic
heterogeneity would help to mitigate the impact on the socio-ecological structure of
the territory and the effects of GEC would be less profound than in inland Andalusia.

As far as the Mountain peaks sector is concerned, our results show an increase in the sur-
face area of forest, but further work is needed to study these areas, since climate change
could provoke the extinction of the species unable to climb in altitude in the search for
colder conditions (Méndez-Jiménez, 2012). On the other hand, the warmer conditions
would allow an increase in population, including tourism, which might provide an
opportunity in these areas to develop a sustainable touristic activity (Méndez-Jiménez,
2012).

Under an A2 scenario of GEC, it is demonstrated how Andalusia would tend to suffer
a loss in its inherent territorial heterogeneity. This might involve important losses in
the socio-ecological diversity, as well as a decrease in resilience that would leave the
territory more vulnerable to impacts arising from political and economic decisions or
natural disasters.





Chapter 6

Dynamic Bayesian network: Water
Reservoir Management

Including time as a component of the models is still a challenge in data min-
ing and decision support systems. Even when several methodologies are
applied in environmental sciences to do so, they are mainly developed for
specific topics, and their strong mathematical context make them hard to
be extended to other fields. In this Chapter, the extension of BNs, the so-
called DBNs, are defined and explained in two parts related with a regres-
sion problem: i) DBNs and BNs are compared in terms of error rate, and ii)
both DBNs learning and inference processes are applied to a water reservoir
dataset and compared in terms of error, structure and complexity. As a sum-
mary, both 1 step and 2 steps learning approach provide similar results, so
the election of one of them would be based more on the software and algo-
rithm available. For the inference process, even when both approaches give
similar results, Window approach seems to be more appropriate.

6.1 Introduction: Dynamic Bayesian networks

Nowadays, it is widely recognized that including time as a component of models is
an important challenge in the field of data mining, reasoning and decision support
systems (Russel & Norvig, 2002; Mihajlovic & Petkovic, 2001). In environmental sci-
ences, time series analysis has a wide range of applications, and some models have
been successfully applied such as autorregresive models (Davidson et al., 2016; Parmar
& Bhardwaj, 2015), hidden Markov models (Lagona et al., 2015; Spezia et al., 2010), or-
der series method (Arya & Zhang, 2015), multi-temporal analysis (Lobo et al., 2015),
autocorrelation functions (Farah et al., 2014), functional depth for outliers (Raña et al.,
2014), and state space models (Bojarova & Sundberg, 2010). However, temporal mod-
els are usually based on specific software or mathematical notation that experts from
other areas are not often familiar with. This makes them hard to apply and also, often
specific literature is difficult to find (von Asmuth et al., 2012).

BNs can be used to a obtain prediction about the change of the system under some
scenarios, but the conclusions obtained cannot be extrapolated to a particular time,
nor time series can be handled. For these reasons, the extension of BNs, the so-called
Dynamic Bayesian networks (DBNs), has begun to be applied to face this new challenge

83
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FIGURE 6.1: Example of a Dynamic Bayesian network following the first-
order Markov assumption with a fixed naïve Bayes structure with two fea-
tures, X and Z , and a class variable, Y composed of 2 time slices. Solid
links represent intra-slice arcs, whilst dotted lines represent inter-slice

arcs.

(Hill, 2013; Molina et al., 2013). The first attempt to deal with time using BNs appeared
in Provan, 1993, which proposed their use for modeling a generic system in each time
step, joining the BNs with links which represent the transition from one time to the
next. They were defined as (Nicholson & Flores, 2011):

Dynamic Bayesian networks: A long-established extension of BNs that can represent the
evolution of variables over time.

The term dynamic means the system is changing over time, not that the network and
the relations between variables change (Murphy, 2002). For simplicity, it is assumed
that a DBN is a time-invariant model composed by a sequence of identical BNs rep-
resenting the system in each time step, and a set of temporal links between variables
in the different time steps representing a temporal probabilistic dependence between
them (Pérez-Ramiréz & Bouwer-Utne, 2015). Thus, the components of a DBN are (Korb
& Nicholson, 2011) (Figure 6.1):

• Time slice: the state of the system at a particular time t, represented by a static
BN identical in each time step.

• Intra-slice arcs: the relationships between variables in a time-slice (i.e. in Fig-
ure 6.1 links between X0 and Y0). They remain constant regardless of the partic-
ular time.

• Inter-slice arcs: also called temporal arcs, they represent the relationships be-
tween variables at successive, or not successive, time slices both (i) the same vari-
able over time (i.e. in Figure 6.1 links between Y0 and Y1) or (ii) between different
variables over time (i.e. in Figure 6.1 links between Z0 and Y1).

In order to reduce the potential number of temporal parents in the network, and also
the computational cost, the Markov assumption is followed (Murphy, 2002). That is
that the state of the world at a particular time depends on only a finite history of previous
states. In the simplest case, the current state of the system depends only on the previous
state, called a first-order Markov process (Figure 6.1). Given these restrictions, a DBN
can be represented with only two consecutive time slices (time 0 and time 1) and the
relationship between both (Figure 6.1). Only if it is necessary, the DBN can be rolled
out and more than two time slices would be represented.
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Nowadays two main approaches to learn DBN are considered (Black et al., 2014):

• In one step: In this case, the temporal structure (both the structure of the time
slice and inter-slice links) is learnt from the data following the time-invariant
property, using a specific software, such as Causal Discovery via Minimum Mes-
sage Length (Korb & Nicholson, 2011; O´ Donnell, 2000).

• In two steps: As it was originally proposed, first, the structure of a static model
is learnt using all the information available. In a second step, this structure is re-
peated and connected through (temporal) links. Parameters can be obtained from
the data, or elicited by expert knowledge. In this way DBNs can be represented
and solved as a kind of "static" model divided into different sub-models (model
for time 0, model for time 1, and so on), which allows the available algorithms
developed for static BNs to be used.

Once the dynamic model is learnt, inference process can be carried out. Several algo-
rithms have been proposed for both exact inference - Forward-Backward algorithm (Baum
et al., 1970) and interface algorithm (Murphy, 2002) - and approximate inference - BK al-
gorithm (Boyen & Koller, 1998) and FF algorithm (Murphy & Weiss, 2001) - in DBN.
However, there is no BN software that implements these algorithms in such a way that
experts from other fields can easily apply them. For that reason, in this Thesis a frame-
work based on the available algorithms and software is proposed for ecologist to use
DBN in a easy way. Since DBNs are represented as a set of identical static BNs con-
nected trough (temporal) links, they can be treated as a kind of static model in which
each time slice is considered a part of the complete model, as an example of an Object
Oriented BN.

By this way, both continuous and discrete data can be included since several models
have been developed to represent this type of data within the BN framework. In liter-
ature, there are several examples of DBN with hybrid data based on CG models (Wu et
al., 2014; Zhang & Dong, 2014). Although, they provide accurate results, the limitation
they impose restrict their expansion to other areas and applications. In this Thesis we
applied MTE models to DBN.

Even when they are still under development, some real applications of DBNs in envi-
ronmental sciences can be found in literature. In the works of Hill et al., 2009 and Hill,
2013, hybrid DBNs are applied to the control of streaming climatic data, in an attempt
to detect anomalies and errors in the data. Zhang et al., 2012 uses discrete DBNs to
integrate data from different times series into a model to accurately estimate the Leaf
Area Index in a region of China. In both cases, the application of DBNs is focused on
the pre-processing step, trying to correctly collect the data, or merge different data sets.
In the paper of Molina et al., 2013, discrete DBNs are learnt as a Decision Support Sys-
tem to predict, for the 2070-2100 period, the effects of Climate Change scenarios in a
groundwater systems in Spain.

In this Chapter, the aim is to explore the applicability of DBNs in environmental sci-
ences following the framework mentioned above. To achieve this goal, firstly a com-
parison between static and dynamic BNs is studied. Secondly, DBN learning (based
both on 1-step and 2-steps approaches) and inference methodologies are explained. In
both cases, data from the Andalusian Water Reservoir Systems is used. This is the
first time that hybrid domains have been included in a DBN based on MTE models for
environmental modeling.
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FIGURE 6.2: Study area and the reservoirs selected.

6.2 Andalusian water reservoir system

In the SES modeling, freshwater is considered the bloodstream of the biosphere and
determines the sustainability of living systems as an indispensable resource for socioe-
conomic development (Ripl, 2003). A correct governance of water requirements with-
out compromising the future needs is one of the major challenges in environmental
sciences (Gordon et al., 2005). Catchment management should be oriented to sustain-
ability and based on ethical principles of human rights, sustaining crucial ecosystem
services, and protected ecosystems resilience (Falkenmark & Folke, 2002).

The main characteristic of the annual water cycle in Spain, mainly in Andalusia, is the
irregularity. Rainfall spatial and temporal patterns move from extremely strong storms
to large drought periods. For that reason, historically, dam construction has been the
main solution to this water scarcity and irregularity with more than 1200 dams cur-
rently working in Spain. Apart from water and agriculture consumption, the current
system of dams has been designed to control and avoid the danger and loss from flood.
Also, they provide natural bed with a minimum water flow during drought periods
that allow biodiversity to be kept.

Figure 6.2 shows the location of the dams used in this chapter. Andalusia can be di-
vided in two different areas: Inland Andalusia and Mediterraneam coastal area sep-
arated by the Baetic Systems mountain ranges. Inland Andalusia is composed by the
Baetic Depression with a similar behavior in terms of rainfall and temperature patterns,
whilst coastal area is a really dry area. Information about Andalusia relief, socio-
economy and landscape was provided in previous chapters.

From the hydrological point of view, the relief determines the division in 6 differ-
ent watersheds with a total of 111 dams. For this Chapter, only those located in the
Guadalquivir and Guadalete-Barbate watershed are selected (Figure 6.2), because they
shared similar rainfall and temperature patterns, quite different from the rest, resulting
in a total of 61.
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6.3 Water reservoir model: Static vs. dynamic models

In the first part of this Chapter, a comparison between static and dynamic BNs is done.
The goal is to accurately estimate the amount of water currently stored in the reservoir
system, and its evolution over time. Both static and dynamic models based on two con-
strained structures were used following the 2-steps approach. By this way, algorithms
for static BNs can be used. As it was explained in Chapter 4, a NB is a fixed structure
consisting of a BN with a single root node and a set of feature variables having only
the root node as a parent, in which all the feature variables are independet given the
class. A step beyond this is to allow each feature to have one more parent besides the
target variable, configuring a Tree Augmented Naive Bayes (TAN) structure (Friedman et
al., 1997). To learn this structure, the first step is to learnt a directed tree structure with
the features variables, using the mutual information with respect to the target variable.
In the second step, the relationships between the target variable and each feature are
included (Chow & Liu, 1968). These relationships between features are not based on an
ecological interpretation but on the amount of information they share with the target
variable.

After model learning, a simulated scenario of change is included and some metrics are
calculated for a better understanding of the results.

The methodology followed is divided into four steps: i) Data collection and pre-processing,
ii) Models learning, iii) Models validation and iv) Scenario of change. Elvira software
(Elvira-Consortium, 2002) was used for both models learning and validation, and sce-
nario of change propagation.

6.3.1 Data collection and pre-processing

Data were collected from the Water Quality Dataset from the Andalusian Regional
Environmental Information Network1 (Andalusian Regional Government) for the 61
reservoirs selected. They consist of 6 continuous and 1 discrete variables collected per
month from October 1999 to September 2008.

Temperature in ◦C (T) and Rainfall in m3/m2 (R) represent the climatic conditions in the
vicinity of the reservoir. Percentage Evaporation (E) is the percentage of the reservoir
capacity that evaporates. Water level (WL) indicates the height of the water column in
m.a.s.l., whilst Percent Fulness (PF) expresses the percentage of the reservoir capacity
that is currently used, from 0 to more than 100% (following a storm event, the reservoir
can exceed the dam capacity). Finally, reservoir management is represented by Amount
Discharge and Amount Transfer in. Amount Discharge in m3 (AD) refers to the amount
of water that is released for ecological, water consumption or regulation purposes. By
contrast, Amount Transfer in (AT, expressed as a discrete variable with three states: No
transfer, less than 0.5m3 and more than 0.5m3) is the amount of water deliberately
added to the reservoir, e.g., pumped in from another reservoir.

With this information two different datasets were created (Figure ?? ii)):

• Static dataset. Once the data are collected, values of variables in different times
are put together to create a new unique variable, in which time is excluded (e.g.

1http://www.juntadeandalucia.es/medioambiente/site/rediam
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Dam T R . . .
1 Toct1999 Roct1999 . . .
2 Toct1999 Roct1999 . . .

. . . Toct1999 Roct1999 . . .
1 Tnov1999 Rnov1999 . . .
2 Tnov1999 Rnov1999 . . .

. . . Tnov1999 Rnov1999 . . .
1 Tdec1999 Rdec1999 . . .
2 Tdec1999 Rdec1999 . . .

. . . Tdec1999 Rdec1999 . . .
(a) Dataset for Static models

Dam T0 R0 . . . T1 R1 . . .
1 Toct1999 Roct1999 . . . Tnov1999 Rnov1999 . . .
1 Tnov1999 Rnov1999 . . . Tdec1999 Rdec1999 . . .

. . . . . . . . . . . . . . . . . . . . .
2 Toct1999 Roct1999 . . . Tnov1999 Rnov1999 . . .
2 Tnov1999 Rnov1999 . . . Tdec1999 Rdec1999 . . .

. . . . . . . . . . . . . . . . . . . . .
(b) Dataset for Dynamic models

FIGURE 6.3: Example of both datasets (for the static (a) and dynamic (b)
models) for the Temperature (T) and Rainfall (R) variables.

in Figure 6.3(a), the variable Temperature is configured by taking the tempera-
ture data for october 1999, november 1999 and so on). This static dataset has 7
variables and 6588 observations and it was used for static BNs learning and vali-
dation.

• Dynamic dataset. For each dam, data are organized into two-time slices, com-
prising every consecutive pair of months (Figure 6.3(b)). This temporal dataset
has 14 variables (temperature at time 0, temperature at time 1, rainfall at time 0,
rainfall at time 1, and so on) and 6527 observations 2. This dataset was used for
dynamic BNs learning and validation.

6.3.2 BN and DBN learning and validation

The specific goal of these models is to predict, as accurately as possible, the behavior
of the continuous variable Percent Fulness, which represents a regression task. Static
BNs consist of a single NB and TAN in which Percent Fulness variable is the root node,
and the features are the rest of the variables. In the case of the DBN, these structures
are repeated and connected through a temporal link between Percent Fulness at time
0 and Percent Fulness at time 1. Elvira software was used for both structure learning
and parameter estimation based on MTE models. Temporal links were learnt from the
dataset.

10-fold Cross Validation was carried out to compute the rmse and validated the model.

6.3.3 Scenario of change

DBNs allow the evolution of variables to be studied. As an example, a simulated sce-
nario is proposed: under the current climatic change framework, the model is used
for predicting the behavior of Percent Fulness variable, assuming that the temperature
will rise by 10% and rainfall decrease by 15% in each time step (these values are quite
drastic in order to see significant differences in the density function in only 2 months).
To carry out the prediction, these new values are included as evidences in variables

2Note that the difference in the sample size in both dataset is due to the different organization of the
data.
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TABLE 6.1: Values for the rmse calculated by means of a 10-fold Cross
Validation for each method. NB, Bayesian networks based on naïve Bayes

structure; TAN, Bayesian networks based on TAN structure.

Model Static models Dynamic models

NB 35.68 25.82
TAN 34.62 33.93

Temperature and Rainfall both at time 0 and 1 at the NB dynamic model. Note that the
rest of the feature values do not need to be evidenced.

From the water management point of view, it is often interesting to compute the prob-
ability that a reservoir reaches a certain level of Percent Fulness, both in the lowest and
highest values. As an example, the probability of values below 25% (left tail) and over
80% (right tail) of Percent Fulness (for a detailed explanation of how to compute the
probability of a range of values, see Chapter 3) were computed.

6.3.4 Results and Discussion

Figure 6.4 and 6.5 show the structure of both static BN and DBN based on NB and TAN
structures. Table 6.1 shows the average rmse value of each model, obtained from the
10-fold Cross Validation. Note that for the static models, rmse values are similar, but not
in the case of the dynamic ones. Friedman’s Test was performed for both static and
dynamic models (Figure 6.6) to detect significant differences, returning that dynamic
NB outperforms the rest of the models. Furthermore, results show that for the static
models no significant differences are found. Comparing static and dynamic TAN even
if the rmse is slightly lower for the dynamic model, the difference is not significant.

Even when static models seems to provide accurate results, dynamic models add an
important advantage related with the inference process. Both static BNs and DBNs
allow results to be deeply studied and compared between the situation a priori and
under the scenario proposed (a posteriori), but only DBNs allow their evolution over
time to be studied. Figure 6.7 and Table 6.2 show the density function and the metrics
obtained from Percent Fulness variable at time 0 and 1, both in the current situation (a
priori), and under this scenario (a posteriori).

A priori, both PF0 and PF1 variables show a similar behavior, with a probability of both
extreme values over 0.5 (in PF0, 0.25 and 0.33; in PF1, 0.06 and 0.50). However, when
the proposed scenario is included, the probability of highest values (right tail) at time 0,
increases from 0.33 to 0.43, and also the mean (from 59.74 to 69.77). By contrast, at time
1 the values tend to be more probable in the middle of the function, with a decrease
in the probability of both right and left tails. This information is also confirmed by
the behavior of the rest of the metrics in which standard deviation is reduced and the
values are more concentrated around the mean.

From the environmental point of view, in the case of a rise in temperature and fall
in rainfall, (which can be interpreted as a drought situation), the reservoir will be ini-
tially distributed from the smaller and secondaries dams to those that can collect a high
amount of water reservoir and satisfied the water demand. Accordingly, at time 0, the
values over 80% of Percent Fulness are more probable. If the scenario proposed per-
sists, this would provoke a fall in the amount of water stored in the reservoir of the
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(a) Static NB

(b) Static TAN

FIGURE 6.4: Static naïve Bayes (a) and TAN (b) structures for the reser-
voir example. Discrete variable is filled in gray. PF, Percent Fulness; T,
Temperature; R, Rainfall; E, Percentage Evaporation; AD, Amount Dis-

charge; AT, Amount Transfer in; WL, Water Level.

(a) Dynamic NB

(b) Dynamic TAN

FIGURE 6.5: Dynamic naïve Bayes (a) and TAN (b) structures for the
reservoir example. Discrete variables are filled in gray. PF, Percent
Fulness; T, Temperature; R, Rainfall; E, Percentage Evaporation; AD,

Amount Discharge; AT, Amount Transfer in; WL, Water Level.
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NBst − NBdyn : 1e−05
TANdyn − NBdyn : 0.01673
TANst − NBdyn : 0.02879
TANdyn − NBst : 0.30694
TANst − NBst : 0.2257
TANst − TANdyn : 0.99815

FIGURE 6.6: Box-plot summarizing the results of the pairwise compari-
son between static (a) and dynamic (b) regression models, p-values are
shown in the legend. The gray-shaded boxes indicate significant differ-

ences between the corresponding models.
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TABLE 6.2: Metrics calculated from the density functions of variables
Percent Fulness at time 0 (PF0) and 1 (PF1) in both a priori and a posteriori

situations. Var., Variable; SD, Standard Deviation.

A priori A posteriori

Var. Mean SD P (x ≤ 25) P (x ≥ 80) Mean SD P (x ≤ 25) P (x ≥ 80)

PF0 59.74 40.18 0.25 0.33 69.77 39.04 0.16 0.43
PF1 61.11 64.70 0.06 0.50 89.45 58.45 0.02 0.41

system being modeled. As it was said above, this values are quite extreme with the
aim of check the ability of DBN to study the evolution of variables, and it is not a real
scenario.

6.4 Water reservoir dynamic model: learning and inference

In this second part of this Chapter, several DBNs learning and inference methodologies
are studied. Learning process is shown in Figure 6.8 divided into: i) Data Collection,
ii) Structural Learning and iii) Parameter Estimation and Model Validation. Since there
is no algorithm for directly DBN learning implemented in Elvira. Even though an op-
timal structure is the best solution, a direct exploration of the causal structure is useful.
The structure of the model needs then to be learnt in three steps: i) Omnigram Explorer 3

(OE) software is used for an interactive exploration of the data from the Water Reser-
voir System to detect important relationships between variables. ii) this knowledge is
included as an input information in CaMML software, in which the causal structure of
both 1step and 2-steps DBNs are learnt and, iv) both structures were included in Elvira
software to estimate the parameters of the models.

A comparison between both approaches is carried on and one of them is selected to
perform the inference process (Figure 6.12). DBN inference can be done by two main
methodologies: Windows and by a Roll-out approach.

6.4.1 Data collection and preprocessing

The data from the Water Quality Dataset is again used. For the 61 reservoirs selected
a total of 9 variables from october 1999 to september 2007 (for the DBN learning) and
from october 2007 to september 2008 (for DBN inference) were collected per month.
These new data set includes the variables mentioned in the previous section (now all
continuous: Temperature, Rainfall, Evaporation, Amount Transfer, Amount Discharge, Water
Level, Percentage Fullness) and two added discrete variables: Reservoir Use (RU) which
represents the main use/s of each reservoir classified by the regional Government of
Andalusia (Hydroelectric; General regulation; Irrigation; Human consumption; Indus-
try; No information; Ecological; Irrigation and other; Irrigation and consumption; Con-
sumption and others); and Time (Ti) which represents the month.

Data were organized in two dataset in the same way that in the previous section:

3For more detail information about the data requirements see the link: http://www.tim-
taylor.com/omnigram/
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FIGURE 6.7: Probability distribution functions of Percent Fulness at time
0 (PF0) and 1 (PF1) variables in dynamic naïve Bayes (NB). Note that
probability functions are defined as a piecewise function using MTEs.
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• Static dataset: for the data exploration with OE software, and the static structure
learning in the 2-steps approach.

• Dynamic dataset: for the dynamic structure learning with CaMML during the 1-
step approach, and later on for both 1-step and 2-steps DBN models parameters
estimation with Elvira software.

6.4.2 DBN learning approaches

The aim is to learn a DBN for modeling the behavior and evolution of the water stor-
age in the reservoir system, representing by the variable Percentage Fullness. But also,
relationships with the rest of variables need to be studied, so fixed and constrained
structures are not suitable for this purpose. Using the software OE, variables and the
relationships between them are explored.

Omnigram Explorer data exploration prior to modeling

OE was designed as a tool for interactive exploration of relations between variables in
an agent-based simulation (Taylor et al., 2015). It draws upon ideas for visualization
in the Attribute Explorer (Spence & Tweedie, 1998), where data is presented in a set of
histograms, one per variable.

To begin, a data file containing a joint data sample are loaded and presented by OE in
a graphical form (Figure 6.9(a)). Each variable is represented by a histogram, showing
its sample distribution, with a maximum of 20 bins. If a bin is empty (e.g., bin 0 in
Rainfall node in Figure 6.9(a)), a thin horizontal line is drawn at the base. A small
circle represents the mean (or, if the user chooses, the median). The range of values is
indicated by the horizontal bar under the histogram. The initial histogram represents
all the values read from the data file in a plain format, but a subset of them can be
highlighted in a linking and brushing process (in dark red color).

The power of this tool lies in its interaction modes, where a variable or subset of vari-
ables can be selected and their relation with the remaining variables explored. The se-
lected variables are the “focus” of attention, which is indicated visually by a red square
indicator in the corner of the node. Having selected a focus, OE has four different
modes of interaction.

• Single Node Brushing (Figure 6.9(b)), in which only one variable can be in the
focus. When a range of values for that node is selected, all of the other vari-
ables are updated to show the corresponding sample values in their distributions
(represented in dark blue). When changing the focal range, you can simultane-
ously watch the changes across the other variables, allowing you to intuitively
discover the strength of dependencies between the variables. In the example of
Figure 6.9(b) the focus is on high levels of rainfall (red), and the distributions
across other variables conditioned on that high level are displayed in blue.

• Multi Node Brushing (Figure 6.9(c)) extends the previous interaction mode, with
more than one variable in focus. When two or more variables are selected, OE
indicates the ranges selected in red and shows the conditional distributions over
other variables in dark blue. Samples which fail to match one of the selected
ranges are shown in light green; those which match all but two of the ranges
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i) Data Collection

Andalusian Regional Government
Environmental

Information
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Water Quality Dataset

ii) Structural Learning

Omnigram Explorer CaMML
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Static Structure

Temporal links

DBN 2 steps
structure
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iii) Parameter Estimation and Model Validation

Elvira Software

DBN 1 step
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DBN 1
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DNB 2
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10-fold Cross Validation

FIGURE 6.8: Outline of the DBN learning methodology.
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(a) (b) (c)

(d) (e)

FIGURE 6.9: Initial histograms for the reservoir example with the focus
in Rainfall variable (a) and modes of interaction in OE for a subset of
variables: Single node (b), Multi node (c), Omnibrushing (d) and Sample

view (e).
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are displayed in light red; white displays all other samples. The color, therefore,
shows how close a sample is to matching the conjunctive condition indicated by
all the specified ranges in the focal variables. As in Single Node Brushing, the
user can interactively change the range of focus nodes and watch the response of
the rest of the variables, performing an interactive sensitivity analysis with the
sample of the model or data which generated it.

• Omnibrushing (Figure 6.9(d)) focuses on a single node. In this case, each focal
bin is represented with a different colour. The remaining variables are updated
to show for each bin what fraction of the data correspond to the focal bins.

• Sample View (Figure 6.9(e)) again uses a single node, and the bins are represented
by different colours. The difference is the way data is visualized. Rather than rep-
resenting a conjunction of corresponding samples, each individual sample is rep-
resented itself as a small colored circle, simultaneously across all variables. The
display iterates through samples, continuously lighting them up in a sequence.
After being lit, a sample will slowly fade as other samples are selected, resulting
in a rotating display of subsamples. How quickly new samples are selected and
old ones fade is under the user’s control.

The static dataset is explored by OE and some initial understanding of how the vari-
ables are related, but also some idea the system’s causal structure is gained.

Firstly, the behavior of the system is explored when Rainfall is altered. Lower values
of Rainfall are associated with higher Temperature values and are also associated with
lower values of Percentage Full. However, the highest values of Rainfall are not particu-
larly correlated with higher values of Percentage Full.

If the lowest Rainfall value is selected and moved through to the highest value in the
Single Node Brushing, a negative relation between Rainfall and Temperature and a clear
positive relation with Percentage Full, Water Level and Amount Transfer in are discovered.
However, the relationships with Percentage Evaporation are more ambiguous. When
Rainfall values are higher, Percentage Evaporation tend to be more prevalent in the second
bin.

Another variable of prime interest is Temperature. A initial view of the variable shows
that medium values are more prevalent in the rest of the variables than both extremes
(bins 1 and 5). When we focus on a subset, bins 1 and 2 (corresponding to temperatures
lower than 15, we find that samples are fairly flat except for lower Percentage Evapora-
tion and slightly higher values of Rainfall. If we move now to the highest bin (temper-
atures above 25, more changes are evident. The sample size is markedly smaller, so
inferences must be less certain, but this smaller sample shows low rainfall and higher
water discharge, presumably to combat drought conditions.

Lastly, the same procedure is followed with Percentage Full. Both Amount Transfer in
and Amount Discharge behave in the same way with respect to Percentage Full and that
the relation between all three is positive. Pearson correlation between Amount Transfer
in and Amount Discharge conditioned on Water Reservoir was computed, which was a
very high 0.95. This suggests some redundancy between the two variables Amount
Transfer in and Amount Discharge; however, we have already observed that they behave
in opposite ways in high temperature conditions.
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As a summary, Rainfall and Temperature are clearly inversely related, whilst Rainfall,
Percentage Full and Water Level are positively related. Percentage Evaporation is also re-
lated with both Rainfall and Temperature, but the relations seem to be more complex. So,
these relations should be included in the model. In both cases, Rainfall and Temperature
seem to act as a posible cause of Percentage Full, Percentage Evaporation and Water Level,
so they should appear in the network as parent of them. Also, given a fixed Percentage
Full, Amount Discharge and Amount Transfer in provide similar information and should
be considered closely related in the model.

2-steps approach

Causal discovery program CaMMLallows the structure of a BN to be learnt from the
available data. It uses a Bayesian metric (MML score) and stochastic search to find the
model, or set of models, with the highest posterior probability given the data (for more
information see Korb & Nicholson, 2011).

It also supports prior information about the structure of the model, such as what vari-
ables should be linked (Priors), or the partial (or total) order of variables (Tiers). The
idea of using priors is to assist the discovery process with common sense background
knowledge or expert opinion, or, in this case, with the information that data exploration
provides. Inspired by OE, the following Tiers and Priors were included:

• Priors: There should be the following links: from Rainfall to Percentage Full, from
Percentage Evaporation to Percentage Full, and from Water Level to Percentage Full.

• Tiers: Variables in the model should follow this structure: in a first level Rainfall
and Temperature as parent of Percentage Evaporation, Amount Discharge and Amount
Transfer in that are positioned in a second level; and, finally, Percentage Full and
Water Level.

Once the static structure is learnt, it is repeated and included into CaMML, to obtain
the temporal links between time slices. By this way, the 2-steps approach is carried out
and the final DBN structure is shown in Figure 6.10. Note that a direct link from Rainfall
and Percentage Fullness is not included, but there is a relation between both variables
through the variable Evaporation.

1-step approach

One advantage of CaMML is that it allows 1-step DBN learning to be performed. How-
ever, both prior and tiers are not allowed, and the causal structure of the DBN is learnt
directly from the data. Figure 6.11 shows the structure obtained.

Parameter estimation and model validation

Once the dynamic structure of both models are learnt, Elvira software is used to esti-
mate the parameters of the relationships from dynamic dataset. Now both models can
be considered as a kind of complex static model divided in two parts: one for time 0,
and the other for time 1. Both 1-step and 2-steps DBNs structures were included and
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FIGURE 6.10: DBNs model learnt with 2 steps approach. Gray nodes
represent discrete variables. Black lines represent the intra-slices links;
red lines represent the inter-slices links. RU, Reservoir Use; Ti, Time; T,
Temperature; R, Rainfall; WL, Water Level; AT, Amount Transfer; AD,

Amount Discharge; E, Evaporation; PF, Percentage Fullness.
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FIGURE 6.11: DBNs model learnt with 1 step approach. Gray nodes
represent discrete variables. Black lines represent the intra-slices links;
red lines represent the inter-slices links.RU, Reservoir Use; Ti, Time; T,
Temperature; R, Rainfall; WL, Water Level; AT, Amount Transfer; AD,

Amount Discharge; E, Evaporation; PF, Percentage Fullness.
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their parameters estimated based on MTE models. For validation purpose, a 10-fold
Cross Validation was carried out and rmse for the variable PF1 was computed.

6.4.3 Results

Figures 6.10 and 6.11 show 2-steps and 1-step DBN models, respectively. Table 6.3
shows the rmse values for PF1 variable and the number of intra and inter slices links.
Both approaches provides similar model structures even when 1-step does not allow
prior knowledge to be included. However, a common pattern is found with a sequence
of levels in which Time is the root node. In a second level climatic variables are related
between them, but differences between both approaches are clearly visible. In 2-step
DBN model, due to the expert knowledge, Rainfall and Temperature are both parents of
Evaporation, whilst in 1-step DBN model is just the contrary. Following down in the net-
work, both variables of reservoir management are found linked between them (Amount
Transfer in and Amount Discharge). Finally, the bottom of the network is represented by
Water Level and Percentage Fulness. Relationships between these last variables and the
rest are different in both approaches.

Besides, the number of relationships are different and 1-step approach provides a sim-
pler network structure (Table 6.3). Despite the differences, both models provide similar
values of rmse. Wilcoxon test was carried out and there is no significative difference be-
tween them.

TABLE 6.3: Values of rmse in PF variable and the number of intra and
inter-slices links in both 1-step and 2-steps DBN models.

Model PF rmse Intra-slices links Inter-slices links Total links

1-step 36.66 15 14 29
2-steps 34.81 33 11 44

6.4.4 Inference in DBN

Once the models are learnt, 1-step DBN is selected for the inference process. It has
less number of links and provides not a high error value. Data from october 2007 to
august 2008 were collected per month for the inference process. These data were not
included in the previous model learning. The goal is to check the predictive accuracy
of DBN and two main methodologies are applied: Window and Roll out. In each time
step, information about both Rainfall and Temperature is included as evidences and the
Penniless algorithm (Cano et al., 2002; Cano et al., 2000) is carried out . Finally, the rmse
of PF variable at each time step are obtained and its evolution over time is studied.

Window approach

Figure 6.12 a) shows the Window approach following an example: a DBN with five vari-
ables in each time step, and one temporal link. We have information about variables
X1 and X2, and want to check the temporal behavior of variable X4.

• Firstly, evidences are included into the model (variables X1 and X2 in time 0,
marked in red color) and propagated. Mean values for the variable X4 in next
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a) Window approach

Time 0 - Time 1 Time 1 - Time 2 . . .

b) Roll-out approach

FIGURE 6.12: Outline of the inference in DBN. Red nodes indicate evi-
denced variables; green nodes indicate the goal variable, blue node in-

dicates a evidenced node obtained from the previous time slice.

time step are obtained and used as an input for the next step (marked in green
color).

• If only two time steps are required, the process is stopped. If not, we need to
"move the window" in that way that now, we can see time 1 and 2. In this step,
evidences are obtained from the prior propagation (values of variables in time 1,
marked in blue color), and propagated to the next time step (time 2). The process
continues as far as we need.

The idea is to use the DBN as simple as possible maintaining only two time-slices. In
the water reservoir model, this process is repeated from time slice 0 to time slice 10,
it means, from october 2007 to august 2008, using the information of both Rainfall and
Temperature variables in each time as evidences.

Roll-out approach

Figure 6.12 b) shows the Roll out approach. In this case, the network is repeated in the
total number of time slices we need. By this way, the new evidences are included si-
multaneously in all variables rather than in consecutive steps as the previous approach.

In our case, the behavior of Percentage Fullness variable want to be studied from oc-
tober 2007 to august 2008, so the network is rolled out to show the eleven time slices.
Information about Rainfall and Temperature is introduced in each time step.
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FIGURE 6.13: Evolution of rmse value in each time step in both Window
and Roll out inference.

6.4.5 Results

Figure 6.13 shows the evolution of the rmse of Percentage Fullness variable in each time
step for both Window and Roll out approaches. Wilcoxon test was carried out to check if
there are differences between both approaches, and there is no significative difference
between them. In general, Roll out provides less error values than Windows approach,
mainly due to that the inference process is done in just one step, rather than repeating
it. However, Window approach reach an estable value of error after 5 time slices, whilst
Roll out error hardly depends on the time step.

6.5 Discussion and Conclusion

In this Chapter, DBN applicability in environmental science is studied using the Water
Reservoir Systems of Andalusia. Firstly, a comparison between both static and dy-
namic BNs was done. DBNs outperform static BNs in terms of error when a temporal
problem is modeled. In literature is possible to find several examples in which sce-
narios of future change are included into static BNs models with the aim of predict
future behavior of the system (Dyer et al., 2014; Lowe et al., 2014; Keshtkar et al., 2013).
However, DBNs are a more realistic approach to deal with this kind of problems.

One of the main advantages of BNs is that they provide not only a numeric prediction
of the class variable but also its probability distribution, which allows several metrics to
be calculated (i.e. mean, median, probability of a certain range of values). This advan-
tage is extended to the DBNs. As Figure 6.7 shows, the target variable Percent Fulness
can be studied in detail, its probability distribution, mean, standard deviation, or even
the probability of extreme (tail) values. This is quite interesting from the management
point of view since it allows, for example, computing the probability of having a low
level of water in the reservoir, or by contrast, an amount exceeding its capacity.
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Once the advantages of DBNs over static ones have been demonstrate, learning ap-
proaches were presented. A comparison between them demonstrated that no signifi-
cant differences are found in terms of error neither in the structure. The only difference
appears in terms of complexity of the network, measured as the number of links. 1
step approach learns the structure, as its name says, in one step and the links between
variables are fewer. By contrast, 2 step approach consists of repeating a static structure,
and the number of intra-slices tends to be higher. Depending of the goal of the model,
both learning methods can be applied and results obtained would be similar.

Lastly, inference process can be also carry out following two methodologies: Window
and Roll out. In that case, even when results in terms of error are not significatively
different, a Window approach seems to be more recomendable for three reasons:

• Moving the window approach allows maintaining not a complex model, and in
each time step only two slices are presented.

• It is not as computational costly as Roll out approach.

• The results are not so influenced by the time slice.

However, if finally Roll out method is applied, its main advantage is that it allows to
see all the evidence propagation just in one step rather than checking the behavior of
the system in several windows.

Nowadays, algorithms for DBNs learning and inference are still under development.
For a successful application in environmental sciences a further effort is needed to en-
courage ecologists to apply them.





Part III

Concluding remarks

105





Chapter 7

Conclusions

BNs were defined at the beginning of the nineties for solving problems in which a rea-
soning process was involved. In ecology and environmental sciences their application
is still scarce and partially focused on some types of data and problems, for example,
discretized data for characterization purpose. All the algorithms and methodological
frameworks presented have been previously developed and published in journals of
Mathematics and Computer Science areas, and this dissertation just demonstrates how
to apply them to real life problems.

In Section 2.5, literature review shows that most applied papers are focused on water
research, ecology and environmental, and biodiversity and conservation areas. Trough
out this dissertation, several case studies have been included about SES modeling.
However, BNs can be applied to any problem and area in environmental science. Also,
just a few sets of all algorithms and software designed for BNs modeling are currently
used in ecology and environmental modeling. In this Thesis, Elvira software and MTE
models were applied. This does not mean that they are the only solution or even the
most suitable one for environmental modeling. MTEs were used since they allow both
continuous and discrete variables to be included in the same model with no restriction
in the structure. Elvira software includes algorithms for characterization, regression
and classification models based on MTE learning.

The main contribution of this Thesis is that it presents a complete explanation of what
hBNs is used for and how they can be applied in ecology and environmental modeling.
To the best of our knowledge, in literature any paper deals with that item. Throughout
this manuscript four main problems have been solved by hBNs.

In Chapter 3, hBNs for Characterization purpose was proposed. According to Figure 1,
this model goal is recommended when the problem requires the study of the relations
between almost all variables included in the model. Due to BN‘s qualitative part these
relationships are easily interpreted, and modifications in the interactions between vari-
ables can be assessed through the application of the d-separation concept. Results of
this Chapter highlight that BNs are powerful tools for representing complexity and are
able to deal with some of the challenges of SES modeling. Firstly, important interac-
tions among components are not omitted, and a balance between model complexity
and computational time is achieved. Furthermore, using hBNs mean that the model
learning stage is carried out with all the statistical information contained in the data.
Thus, the loss of information implied in the discretization process is avoided.

BNs are able to deal with probability propagation, since new information can be in-
troduced into one or more components of the natural or social subsystems and the
effects over the rest of the SES can be inferred. Therefore, the current situation and the
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new system state can be easily compared because the model results can be displayed
together in a single graph showing changes in probability distribution, which allows
systemic change to be evaluated. Besides, several statistics can be calculated from these
results as mean values, the probability of tails and goodness of fit tests. Taken together,
these provide experts with a wide range of tools to aid the decision-making process, re-
garding the uncertainty in the modeling of systemic change under the SES framework.

Thus, expert knowledge and machine learning techniques can be combined in different
ways as an important part in SES modeling. Modeling with the participation of experts
and stakeholders has several advantages from a social, instrumental and methodolog-
ical point of view. Management decisions are usually more effective if all the social
groups take part in the management process, sharing information and opinions, each
being aware of their responsibility and roles.

Otherwise, if our problem needs one continuous variable to be accurately predicted, a
regression problem is faced. In Chapter 4, hBN regression models were compared to
a traditional regression technique (MLR). In the previous chapter, hBNs demonstrated
their ability to provide accurate results, but in this Chapter we go a step further and
compare continuous, discrete, and hybrid approaches with MLR obtaining some ad-
vantages for BNs.

Firstly, BNs are able to deal with different types of data, totally continuous, totally dis-
crete, and hybrid, avoiding the loss of information from the discretization. Validation
reports better results in terms of error for the BN-based solutions vs. MLR, thus, the
continuous model obtain the lowest error. This is explained since MTEs split the prob-
ability densities into pieces to better fit the real density determined from data, whilst
other traditional techniques use only one function. However, the number of parame-
ters to be determined from data is higher for MTEs. Thus, although more complexity
in learning and inference is assumed, the results in terms of error are better. A fur-
ther advantage of using hBN for regression is that several statistics of interest can be
computed from the probability distribution, rather than obtaining just a value as in the
MLR.

In addition, not all features must be instantiated to obtain a prediction, i.e., information
about the response variable can be obtained even if only partial information about the
features is available. It allows scenarios of change to be designed and the behavior of
the response variable to be checked. Also, probabilistic information can be extracted
from other non-evidenced variables which cannot be done with traditional regression
techniques. This means BNs provide a more flexible model, with fewer initial assump-
tions.

If the variable of interest instead of the continuous one is discrete, we are facing a
Classification, not a regression problem. Chapter 5 deals with a complex environmental
problem, in which the heterogeneity inherent in the social-natural systems needs to be
identified. For solving this problem, several traditional clustering techniques have been
applied but some challenges were identified in literature. In this Thesis, we proposed
a methodology based on a hierarchical hBNs model.

Traditional clustering usually has a limit on the number of variables that can be in-
cluded in the model. In contrast, the methodology proposed in this chapter highlights
the ability of hBNs to manage datasets containing a large number of variables and
observations providing robust and easy-to-interpret results due to the proposed struc-
ture. Since it is based on a hierarchical classifier - in which the problem is split into
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sub-problems - the model is able to deal with this really complex task, simplifying the
problem in the manner of divide and conquer.

The majority of the distances used in traditional unsupervised classification method-
ologies can not deal with both continuous and discrete variables in the same hybrid
model. Trough out this dissertation the ability of BNs for dealing with both discrete
and continuous data have been demonstrated.

Finally, when data are of different magnitudes, (for example, land use variables are
expressed as percentage, whilst some social variables such as age are expressed as a
rate or number) some variables could have more impact on the model than the rest,
and need to be standardized. Since BNs are based on probability distribution functions,
they can cope with those differences without data transformation beforehand.

In these three chapters, hBNs were applied to data in which no temporal behavior was
observed. But, problems in ecology and environmental sciences, often present time se-
ries data. Chapter 6 copes with DBNs. In other areas of knowledge, such as Health and
Life Sciences, DBNs are widely applied and several learning and inference algorithms
are used. In environmental sciences, their application is still scarce and further efforts
are required to encourage researchers in that way. Most of the applications of static BNs
in ecology and environmental sciences follow the same pattern: this tool is used as a
model approach for solving a real life problem and a software package is often treated
as a black box, so a high percentage of papers are based on discrete or discretized data
treated with the same methodology, algorithms and software. Besides, a deep study of
these papers reveals that a small percentage of research groups are composed of an in-
terdisciplinary team, with experts from both mathematics, statistics and ecology areas.
For that reason, DBNs are still an unknown tool.

Even when some specific algorithms have been proposed in literature, in order to en-
courage ecologists to use DBNs, a framework in which available static algorithm can be
applied was proposed. Both 1 step and 2-step approaches were applied and two dif-
ferent dynamic structures obtained. A comparison between them demonstrated that
no significant differences are found in terms of error nor in the structure. The only
difference appears in terms of complexity of the network, measured as the number of
links. The 1 step approach learns the structure, as its name implies, in one step and the
links between variables are fewer. In contrast, the 2 step approach consists of repeating
a static structure, and the number of intra-slices tends to be higher. Depending on the
goal of the model, both learning methods can be applied and results obtained would
be similar.

Lastly, inference process can also be carried out following two methodologies: Window
and Roll out. In that case, even when results in terms of error are not significative dif-
ferent, a Window approach seems to be more recomendable for three reasons: i) moving
the window approach allows maintaining not a complex model, and in each time step
only two slices are presented; ii) it is not as computationally costly as the Roll out ap-
proach, and iii) the results are not as influenced by the time slice. However, if finally
the Roll out method is applied, its main advantage is that it allows us to see all the ev-
idence propagation just in one step rather than checking the behavior of the system in
several windows.

As a summary, we can conclude this Thesis achieves its initial objectives:
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• It has been demonstrated that hybrid Bayesian networks are an appropriate tool
in ecology and environmental modeling. The main advantage is their ability to
include both discrete and continuous variables in the same model without any
change in the structure.

• For Characterization problems, hBNs qualitative part allows a visual and easy rep-
resentation of the model complexity, including a combination between expert
knowledge and machine learning techniques. The concept of d-separation helps
to asses changes in the interactions between variables in an intuitive way.

• Regression models based on hBNs provide better results than traditional tech-
niques (MLR) due to MTEs flexibility. Besides, not all features need to be in-
stantiated to get an accurate prediction.

• For Unsupervised Classification problems, hBNs have demonstrated their ability to
manage large datasets, since the hierarchical model proposed simplify the prob-
lem in a divide and conquer way. This involves data to not need to be previously
transform and results obtained are easy to interpret.

• Even when a further effort is needed to apply Dynamic hBNs, results show that
this methodology provides more flexible and visual results.

Some future work can be identified from this dissertation:

• A further development of dynamic BNs that allow an easier application of this
methodology to real life problems.

• Missing values is a reality in environmental datasets, thus their treatment with
BNs should be considered.

• In this Thesis, spatial relations between observations has not been taken into ac-
count. This item should be further researched.

• The study of the strength of the relationships between variables is an important
challenge in ecology and environmental sciences. Even when there are method-
ologies able to deal with this problem, BNs could be used to study it in an intu-
itive way because of their qualitative interpretation.



Part IV

Appendix

111





Appendix A

Variables included in the Classifier
model

In this appendix variables including in each Sub-Model of the Classifier model learnt
in Chapter 5 are shown.
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TABLE A.1: Variables included the Social Sub-Model. P/A, Presence /
Absence

Variable Type of Variable Units Thresholds

Rate of school attendance Continuous Rate -
between 14 and17 years old

Population average age Discrete Year 37.9; 40.9
Number of libraries Discrete Number per population P/A

in each municipality
Number of Cinemas Discrete Number per population P/A

in each municipality
Number of private schools Continuous Number per population -

in each municipality
Number of public schools Continuous Number per population -

in each municipality
Health care centres Continuous Number per population -

in each municipality
Number of pharmacies Continuous Number per population -

in each municipality
Rate of iliteracy Continuous Percentage of the -

municipal population
Primary studies Continuous Percentage of the -

municipal population
Secondary studies Continuous Percentage of the -

municipal population
Tertiary studies Continuous Percentage of the -

municipal population
National Emigration Continuous Percentage of the -

municipal population
Foreign Emigration Continuous Percentage of the -

municipal population
National Immigration Continuous Percentage of the -

municipal population
Foreign Immigration Continuous Percentage of the -

municipal population
Natural increase Continuous Rate -
Total population Discrete Population per 25 Km2 474.1; 1320.4
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TABLE A.2: Variables included the Economic Sub-Model.

Variable Type of Variable Units Thresholds

Employed population Discrete Rate 39.9; 44.3
Internet facilities Discrete Number per head of population 9.2; 12.8

in each municipality
Number of bank branches Discrete Number per head of population 0.07; 0.09

in each municipality
Unemployment rate Continuous Percentage of the -

municipal population
Business Activities Tax Continuous Rate -

in primary sector
Business Activities Tax Discrete Rate 20.0; 24.4

in secondary sector
Business Activities Tax Discrete Rate 71.8; 78.4

in tertiary sector
Primary sector employment Discrete Percentage of the 16.9; 27.3

employed population
Secondary sector employment Continuous Percentage of the -

employed population
Tertiary sector employment Continuous Percentage of the -

employed population
Number of agricultural Continuous Percentage per -

cooperatives municipal territory
Number of home owners Discrete Percentage of the 80.6; 86.5

total flats in the municipality
Number of rented homes Continuous Percentage of the -

total flats in the municipality
Agricultural investment Discrete Percentage per municipal territory 0.44; 22.9

Industrial investment Discrete Percentage per 1.6; 38.5
municipal territory

Investment in tertiary sector activities Discrete Percentage per 0.01; 8.4
municipal territory

Income per capita Continuous Rate -
Number of hotels Discrete Percentage per 0.6; 2.1

municipal territory
Number of campsites Discrete Percentage per 0.001; 0.08

municipal territory
Number of rural hotels Discrete Percentage per 0.027; 0.23

municipal territory
Winter water consumption Continuous Percentage per -

municipal territory
Summer water consumption Continuous Percentage per -

municipal territory
Farming units bovines Continuous Percentage per -

municipal territory
Farming units ovines Continuous Percentage per -

municipal territory
Farming units goats Continuous Percentage per -

municipal territory
Farming units equines Discrete Percentage per 6.9; 19.47

municipal territory
Farming units pigs Discrete Percentage per 23.7; 320.5

municipal territory

TABLE A.3: Variables included the Climate Sub-Model.

Variable Type of Variable Unit

Evapotranspiration rate Continuous mm per year
Annual average temperature Continuous Celsius

Annual average rainfall Continuous mm
Spring number of rainfall days Continuous days
Winter number of rainfall days Continuous days

Summer average rainfall Continuous mm
Winter average rainfall Continuous mm
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TABLE A.4: Variables included the Land Use Sub-Model, expressed as
the percentage of the cell surface area.

Variable Type of Variable

Heterogeneous cropland Continuous
Landscape with scarce vegetation Continuous

Dense Woodland Continuous
Scrubland Continuous

Woodland with scrub Continuous
Woodland with herbaceous vegetation Continuous

Human infrastructure Continuous
Irrigated cropland Continuous
Rainfed cropland Continuous

Water surface Continuous

TABLE A.5: Variables included in the Lithology Sub-Model, expressed
as the percentage of the cell surface area

Variable Type of Variable Thresholds Variable Type of Variable Thresholds

Amphibolite Discrete 0.001; 0.078 Basic volcanic complex Discrete 0.001; 0.069
Clay with red sand Discrete 0.001; 0.23 Clay with marl Discrete 0.001; 0.25
Clay with limestone Discrete 0.001; 0.09 Clay with dolomite Discrete 0.002; 0.17

Sand Discrete 0.001; 0.42 Sand and marl Discrete 0.001; 0.16
Sand and silt Continuous - Silicaceous sandstone Discrete 0.001; 0.41

Sandstone with marl Discrete 0.001; 0.16 Calcarenite Continuous -
Metamorphosized limestone Discrete 0.001; 0.14 Limestone with dolomite Discrete 0.001; 0.22

Greywacke Discrete 0.001; 0.07 Volcanic complex Discrete 0.001; 0.30
Conglomerates in sand Discrete 0.001; 0.22 Conglomerate in lutite Discrete 0.001; 0.10

Quartzite Discrete 0.001; 0.12 Schist and quartzite Discrete 0.001; 0.12
Schists with gneiss Discrete 0.001; 0.24 Phyllite Discrete 0.001; 0.21

Grabo Discrete 0.001; 0.07 Gneiss Discrete 0.001; 0.13
Granite Discrete 0.001; 0.18 Granodiorite Discrete 0.001; 0.37

Silt with clay Discrete 0.001; 0.48 Breccia in marl Discrete 0.001; 0.13
Marl with limestone Discrete 0.001; 0.20 Marl and gypsum Discrete 0.001; 0.19
Marl with sandstone Discrete 0.001; 0.16 Marly limestone Discrete 0.001; 0.10

Metabasite Discrete 0.011; 0.023 Mica schist Discrete 0.001; 0.28
Marble Discrete 0.001; 0.12 Peridotite Discrete 0.001; 0.18

Calcoschist slate Discrete 0.001; 0.19 Quartzite slate Discrete 0.001; 0.37
Schisty slate Discrete 0.001; 0.36 Greywacke slate Discrete 0.001; 0.49

Volcanic complex Discrete 0.001; 0.69
of Cabo de Gata

TABLE A.6: Variables included in the Geomorphology Sub-Model, ex-
pressed as the percentage of the cell surface area.

Variable Type of Variable Thresholds Variable Type of Variable Thresholds

Badland Discrete 0.001; 0.17 Gully Discrete 0.001; 0.09
Scree Discrete 0.001; 0.022 Structural outlier Discrete 0.001; 0.061

Marl outlier Discrete 0.001; 0.087 Metamorphosized outlier Discrete 0.001; 0.077
Gypsum outlier Discrete 0.001; 0.12 Crested hill Discrete 0.001; 0.19

Eroded hills Discrete 0.001; 0.14 Peripheral depression Discrete 0.0012; 0.23
Piedmont hills Discrete 0.001; 0.096 Structural hill Discrete 0.001; 0.15

Conglomerate hills Discrete 0.001; 0.067 Volcanic hill Discrete 0.001; 0.083
Hill of intrusive rock Discrete 0.001; 0.15 Gypsum hill Discrete 0.001; 0.12

Dissected knoll (outlier) Continuous - Alluvial fan Discrete 0.001; 0.036
Crest Discrete 0.001; 0.044 Cuvette Discrete 0.001; 0.035

Conserved glacis Discrete 0.001; 0.061 Dissected glacis Discrete 0.001; 0.085
River bed Discrete 0.001; 0.045 Colluvia Discrete 0.001; 0.037

Floodplain Discrete 0.001; 0.11 Floodplain Discrete 0.001; 0.10
Former mudflat Discrete 0.001; 0.33 Glacis Discrete 0.001; 0.13

Peneplain Discrete 0.0011; 0.37 Piedmont Discrete 0.001; 0.045
Karstified shelf Discrete 0.001; 0.16 Granite pluton Discrete 0.001; 0.51

Shallow erosion surface Discrete 0.001; 0.11 Seasonal watercourse Discrete 0.001; 0.037
Laminated relief Discrete 0.001; 0.38 Tabletop relief Discrete 0.001; 0.059

Appalachian mountain chain Discrete 0.001; 0.48 Intrusive mountain chain DIscrete 0.001; 0.068
Metamorphic mountain chain Discrete 0.001; 0.077 Conglomerate mountain chain Discrete 0.001; 0.14

Marly mountain chain Discrete 0.001; 0.10 Slate mountain chain Continuous -
Volcanic mountain chain Discrete 0.001; 0.13 Scarcely dissected Discrete 0.001; 0.18

erosion relief
Moderately dissected Discrete 0.001; 0.21 Highly dissected Discrete 0.001; 0.20

erosion surface erosion relief
Peneplanization Discrete 0.002; 0.28 Low terrace Discrete 0.001; 0.072

Terrace Discrete 0.001; 0.029 Medium terrace Discrete 0.001; 0.091
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