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Abstract

Flow dynamics in a closed loop thermosyphon is a very complex and interesting phe-

nomenon, as it incorporates several factors such as gravity, thermal conduction, natural

convection and gradients due to a solute, all producing the emergence of complex dy-

namical behaviors inside the loop. The convection inside a closed loop thermosyphon is

propelled and sustained by the buoyancy effect variations in the density or is caused by

the diffusion of solute in dissolution due to temperature gradients. The dynamics becomes

even more complex when the fluid inside the loop is viscoelastic, leading to various types

of behavior such as chaotic, periodic, quasi-periodic and stable behavior.

Although these kinds of systems have been widely studied in the literature for simple

(Newtonian) fluids, the behavior of viscoelastic fluids has not been explored thus far.

These kinds of fluids present elastic-like behaviors and memory effects. Various viscoelastic

coefficients, thermal gradients and solute gradients produce different types of complex

dynamical behaviors on the system.

A theoretical study of the dynamics of Maxwell viscoelastic fluids in a closed loop ther-

mosyphon is presented. For the first time, the mathematical derivations of the motion of

a viscoelastic fluid in the interior of a closed loop thermosyphon under the effects of nat-

ural convection and a given external temperature gradient are derived. The asymptotic

properties of the fluid inside the thermosyphon and the exact equations of motion in the

xxiii
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inertial manifold that characterize the asymptotic behavior are studied. The dynamics of

the system is characterized by observing the time series plots and the phase-diagrams of

acceleration, velocity, temperature and in the case of binary fluids, also solute concentra-

tion of Maxwell viscoelastic fluids. A detailed analysis of the impact of viscoelasticity and

its coexistence with the Soret effect has also been extensively done in this research.

This thesis consists of the study of three related problems, all of them concerning the

dynamics of viscoelastic fluids in a closed loop thermosyphon. The first model is based

on one component viscoelastic fluids with Newton’s linear cooling law. The second model

is based on one component viscoelastic fluids with prescribed heat flux with diffusion.

Finally, the third model is based on binary viscoelastic fluids with the Soret effect. In

each case, we have approached the problem from a theoretical viewpoint followed by

numerical experiments to unveil the behavior of the system in larger detail.

The contribution of this research is the derivation of the novel system of equations to

study the behavior of a viscoelastic material inside a thermosyphon. This model can be

thought as a preliminary simplification of a more complex fully spatially extended system.

The main result is to prove that the original system (which involves both ordinary and

partial different equations) possesses an inertial manifold in which the dynamics can be

accurately described by a low dimensional system of ODEs. By numerical integration of

the reduced equations we have been able to better understand the role of viscoelasticity

(as opposed to a simpler Newtonian fluid) through the parameter ε. This parameter is an

adimensional version of the so-called Maxwellian viscoelastic time which accounts for the
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characteristic timescale (or, alternatively, the typical timescale separating purely elastic

from purely viscous behaviors).
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Resumen

La dinámica del flujo en un termosifón de bucle cerrado es un fenómeno muy complejo

e interesante, ya que incorpora varios factores como la gravedad, la conducción térmica,

la convección natural o los gradientes debidos a un soluto, todos produciendo la aparición

de comportamientos dinámicos complejos dentro del bucle. La convección en el interior

de un termosifón de bucle cerrado es impulsada y sostenida por las variaciones debidas a

la densidad con la temperatura o causados por la difusión de soluto en disolución debido

a gradientes de temperatura. La dinámica se hace aún más compleja cuando el ĺıquido

dentro del bucle es viscoelástico, lo que conduce a diferentes tipos de comportamiento,

tales como caótico, periódico, cuasi-periódico o estable.

Aunque estos tipos de sistemas se han estudiado ampliamente en la literatura para flu-

idos simples (Newtonianos), el comportamiento de los fluidos viscoelásticos no ha sido ex-

plorado hasta la fecha. Estos tipos de fluidos presentan comportamientos de tipo elástico y

también efectos de memoria. El balance de propiedades viscoelásticas, gradientes térmicos

o los gradientes de soluto producen diferentes tipos de comportamientos dinámicos com-

plejos en el sistema.

En este trabajo se presenta, por primera vez, el estudio teórico de la dinámica de fluidos

viscoelásticos de Maxwell en un termosifón de bucle cerrado. Las derivaciones matemáticas

del movimiento de un fluido viscoelástico en el interior de un termosifón de bucle cerrado,

bajo los efectos de la convección natural y de un gradiente de temperatura externa son pre-
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sentados de manera original. Asimismo, se estudian las propiedades asintóticas del ĺıquido

en el interior del termosifón y las ecuaciones exactas del movimiento que caracteriza el

comportamiento asintótico. La dinámica del sistema se caracterizó mediante la obtención

de las series temporales y los diagramas de fase de aceleración, velocidad, temperatura y

en el caso de fluidos binarios, también la concentración de soluto. Un análisis detallado

del impacto de la viscoelasticidad y su convivencia con el efecto Soret también ha sido

exhaustivamente estudiado en este trabajo.

En resumen, esta tesis consiste en el estudio de tres problemas, relacionados todos

ellos, relativos a la dinámica de fluidos viscoelásticos en un termosifón de bucle cerrado.

El primer modelo se basa en fluidos viscoelásticos de un componente con la ley de enfri-

amiento lineal de Newton. El segundo modelo se basa también en fluidos de un componente

con un flujo de calor prescrito y con el efecto simultáneo de la difusión de temperatura.

Finalmente, el tercer modelo considera fluidos viscoelásticos binarios con el efecto Soret.

En cada caso, se ha abordado el problema desde un punto de vista teórico seguido por

experimentos numéricos para poder comprender el comportamiento del sistema en mayor

detalle.

La contribución de esta investigación es la derivación del nuevo sistema de ecuaciones

para estudiar el comportamiento de un material viscoelástico dentro de un termosifón.

Este modelo puede ser pensado como una simplificación preliminar de un sistema más

complejo, espacialmente extendido. El resultado principal es demostrar que el sistema

original (que implica tanto ecuaciones diferenciales en derivadas parciales y ordinarias)
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posee una variedad inercial en la que la dinámica puede ser descrita con precisión por un

sistema de EDOs de baja dimension. Por integración numérica de las ecuaciones reducidas

hemos sido capaces de entender mejor el papel de la viscoelásticidad (a diferencia de

un fluido Newtoniano simple) a través del parámetro ε. Este parámetro es una versión

adimensional del tiempo viscoelástico (denominada tiempo de Maxwell) que representa

la escala de tiempo caracteŕıstica que separa los comportamientos puramente elásticos de

los comportamientos puramente viscosos.
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Chapter 1

Introduction and Objectives

1.1 Dynamics in a closed loop thermosyphon

A thermosyphon is a device composed of a closed loop pipe containing a fluid [35] whose

motion is driven by the action of several forces such as buoyancy induced by differences in

temperature by natural convection (see Fig. 1.1). It is an energy transfer device capable

of transferring heat from a source to a separate sink over a relatively long distance,

without the use of active control instrumentation and any mechanically moving parts

such as pumps what makes thermosyphon a common device used in different engineering

scenarios.

Thermosyphons represent simplified models for the natural convection of fluids.

Physically, the motion is due to the tendency of less dense fluids to move upwards, thus

competing with gravity or rotational motion. The loop system enables enhancement of

1



2 Introduction and Objectives

Figure 1.1: A schematic representation of a closed loop thermosyphon [29]. The section

A-A represents the cross section of the pipe. Due to the incompressibility of the fluid and

the large aspect ratio between the length and the diameter of the pipe, the velocity can

be assumed to be uniform throughout the system, although we allow the other variables

(temperature and solute concentration) to depend on the location inside the loop



Dynamics in a closed loop thermosyphon 3

heat transfer and minimization of flow losses (pressure drops). Thermosyphons can be

categorized [40] based on: the nature of boundaries (open or closed system for mass flow),

the regime of heat transfer (convection, boiling or both), the number of type of phases

present (single or two phase state) and the nature of the body force (gravitational and

rotational).

The common feature of the thermosyphon model used in this dissertation is that

the loop is assumed to be closed and completely full of fluid and the velocity v(t) within

the closed loop is a scalar quantity, depending only on time. This assumption is due to

the incompressibility of the fluid and the large aspect ratio between the length and the

diameter of the pipe. Thus, although we assume that the velocity of the fluid can be

assumed to be uniform throughout the system, we allow other variables (temperature

and solute concentration) to depend on the location inside the loop. The closed loop

thermosyphon may be visualized as a long hollow pipe, bent and the ends joined to form

a continuous loop, filled with working fluid and orientated in a vertical plane (see the

schematic diagram of a thermosyphon in Fig. 1.1). An essentially hydrostatic pressure

difference, as a result of the thermally induced temperature gradient between the hot and

the cold sides, drives the fluids flow around the loop. The buoyancy force, as it is often

termed, driving the fluid is in turn counteracted by an opposing frictional force that tends

to retard the flow.

A number of experimental investigations have been conducted with the aim to

parameterize the dynamics of closed loop thermosyphons. These studies allowed to identify
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the following main variables affecting the thermosyphon performance:

(i) physical variables: quantity of the working fluid (filling ratio) and the physical prop-

erties of the working fluid and tube material,

(ii) geometric variables: length of the loop, diameter and shape of the loop,

(iii) operational variables: open loop or closed loop operation, heating and cooling method-

ology (fixed ambient temperature vs fixed heat flux), orientation of the loop during

the operation and the use of the values,

(iv) Reynolds number and

(v) solute concentration, in the case of binary fluids1.

1.2 Motivation for this thesis

It is evident that there are multiple variables which simultaneously affect the operation

and performance of the loop. This makes it not only more difficult to model mathemati-

cally using conventional techniques, but also represents a challenge for applied mathemati-

cians. Hence, there has been a lot of research carried out in this field by many engineers

and mathematicians such as, J.B. Keller (1966), P. Welander (1967), J.E. Hart (1985), R.

Temam (1988), A. Rodŕıguez-Bernal (1990), K. Storey (2003), A. Jiménez-Casas (2005),

1We will generically refer to binary fluids although in this work we constraint to systems in which a

solute is dissolved in a fluid, thus neglecting phase-separation effects and focusing only on solute diffusion.
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R.T. Dobson (2007) and A. Abbasi (2010) to cite a few throughout the years. However,

the need for further research in the field is on the increase as thermosyphon systems are

extensively used in the day-to-day chores of human life like in the case of solar water

heaters, solar thermal pans, etc.

Thus far, all the works on thermosyphons analyze the behavior of Newtonian fluids

inside the loop and, consequently, neglecting the elastic effects in the system coming from

either the fluid itself or the elastic walls of the loop. However, many interesting fluids are

known to behave slightly different from the common (Newtonian) fluids — in terms of

their response to an applied stress — and are commonly referred to as viscoelastic fluids.

Among them, it is worth emphasizing volcanic lavas, snow avalanches, flowing paint or

biological mucosa. This fact stands as a great inspiration for this thesis in order to obtain

and study different thermosyphon models with viscoelastic fluids inside.

1.3 Literature survey of the physical models

There has been consistent research carried out by many scientists and mathematicians

in the field of thermosyphons. Over the years a relatively large amount of published

literature is available related to thermosyphons. To limit this section, only previous works

undertaken to study the mathematical models of thermosyphons are considered2.

2For a general reference on thermosyphons from a practical perspective, the reader is referred to:

Bhattacharyya, S., Basu, D. N., and Das, P. K. (2012). Two-Phase Natural Circulation Loops: A Review

of the Recent Advances. Heat Transfer Engineering, 33, 4-5, 461-482.
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1. P. Welander [59], in his pioneering work, considered the fluid to be driven by the

pressure difference and a buoyancy force, and is retarded by a frictional force. The fol-

lowing assumptions were made:

• The Boussinesq approximation (namely, temperature enters only through gravity

terms and assuming that other density terms in the equations are constant)

• The tangential friction force on the fluid is proportional to the instantaneous flow

rate.

• The temperature of the fluid is uniform over each cross-sectional area.

• The heat transfer rate between the pipe and the fluid is proportional to the difference

between a prescribed wall temperature and the fluid.

Applying the above assumptions, one-dimensional (in space) equations of change are ob-

tained for a single phase fluid.

2. J.B. Keller [39] observed that periodic oscillations can be found when a certain

parameter exceeds a critical value, a periodic motion of the fluid is found in which the

flow is always in the same direction but in which the speed varies. Inertia is unimportant

for this oscillation, which depends upon the interplay between frictional and buoyancy

forces. This periodic behavior arises when the fluid is heated at the centre of the lower

horizontal segment and cooled at the centre of the upper one.
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3. K. Chen [14] addressed the stability of natural convection flows in single-phase closed

loop thermosyphons. Analytical and numerical solutions were presented for a range of loop

aspect ratios and radii for both laminar and turbulent flows. It was found that the steady-

state results for thermosyphons could be expressed in terms of a single dimensionless

parameter. When the parameter is below a critical value, the flow was stable. Above that

critical point, oscillatory instability exists for a narrow range of a friction parameter.

The calculated neutral stability conditions showed that the flow was least stable when

the aspect ratio of the loop approached unity. The frequency of the convection induced

oscillation is slightly higher than the angular frequency of a fluid particle traveling along

the loop.

4. J.E. Hart [26] addressed the nature of convective motions in a toroidal loop of binary

fluids oriented in the vertical plane and heated from below. The boundaries of the loop

were impermeable, but gradients of the solute could be set up by Soret diffusion in the

direction around the loop. The existence and stability of steady solutions were discussed

over the Rayleigh number-Soret coefficient parameter plane. When the Soret coefficient

was negative, periodic and chaotic oscillations analogous to those of thermohaline convec-

tion were predicted. When the Soret coefficient was positive, relaxation oscillations and

low Rayleigh number chaotic motions were found. Both sets of phenomena were predicted

to occur for realistic thermosyphon parameters.

5. R. Grief et al.[23] provided a descriptive review of a number of single phase and two
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phase thermosyphon loops. The single phase loop theory may be extended for the case

of a two phase loop by specifying suitable equations for the friction factor, the two phase

frictional multiplier, the single and two phase heat transfer coefficients and a suitable

relationship for the void and mass fractions.

6. C.J. Vincent and J.B.W. Kok [58], using only ten ordinary differential equations,

were able to capture the transient performance of a two phase closed loop thermosyphon.

They also emphasized the value of the control volume approach as being a powerful tool to

describe the overall performance of the thermosyphon with a limited number of variables.

7. Lee and Rhi [43] considered methods for computer simulation of two phase loop

thermosyphons. They compared the computer simulation with five different experimental

loops with maximum heat transfer rates ranging from 60 to 105 W. It was concluded

that computer simulation alone could not give any meaningful results unless they are

accompanied with empirical correlations using loop-specific experimental test results, thus

emphasizing the importance of basic mathematical understanding of the solutions.

8. R.T. Dobson and J.C. Ruppersberg [17] demonstrated how a simple explicit finite

difference discretization formulation scheme is able to capture transients and the highly

non-linear behavior of the loop. Dobson had applied the governing equations of mass,

momentum and energy to a simplified loop consisting of a single liquid plug with dis-

solved vapor bubbles. The fundamental equations were applied to the model. He had also

built an experimental setup for the validation of the model. The resulting second order
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differential equations provided a qualitative description of the fluid oscillations inside the

thermosyphon.

1.3.1 Mathematical models with one component fluids

The evolution of the variables like velocity v(t) and temperature T (t, x) (when the

cross sectional area of the loop is kept constant and small), are derived using nonlinear and

nonlocal coupled system of ordinary and partial differential equations. Mathematicians

have studied the well-posedness and the asymptotic behavior of the model when time goes

to infinity. The main works concerning this dissertation (both in terms of the problem

considered as well as the mathematical tools used) are

• Stability analysis of a closed thermosyphon [28],

• On the dynamics of a closed thermosyphon [56],

• Attractor and inertial manifold for the dynamics of a closed thermosyphon [50],

• Complex oscillation in a closed thermosyphon [52],

• Diffusion induced chaos in a closed-loop thermosyphon [53].

1. M.A. Herrero and J.J.L. Velázquez [28], in their work, ‘Stability analysis of a closed

thermosyphon’, studied the motion of a fluid in a closed loop under the effect of nat-

ural convection and a given external heat flux. More precisely, they demonstrated that
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the stationary solutions of a system describing the intermediate asymptotic were struc-

turally and linearly unstable. Those solutions are linearly unstable to arbitrarily small

perturbations in the geometry or the heating applied to the circuit under consideration.

An interesting open question concerns the stability of such solutions in the case where

alternative assumptions are made about the heat flux.

2. J.J.L. Velázquez [56], in his work, ‘On the dynamics of a closed thermosyphon,’

focused on the motion of a fluid due to natural convection in a closed loop. Under some

suitable assumptions on the physical parameters involved, the author studied the nonlocal

evolution system consisting of two coupled equations for the velocity and temperature of

the fluid. After obtaining the existence and uniqueness of solutions for the corresponding

initial value problem, the set of stationary solutions for large Reynolds number was de-

scribed. A stability analysis of those solutions was performed in such asymptotic limit. In

the course of his study, it was shown that for large Reynolds number essential information

about the stationary solutions and their stability was contained in the set of zeros of a

suitable meromorphic function which was analyzed.

3. A. Rodŕıguez Bernal [50], in his work, ‘Attractors and inertial manifold for the

dynamics of a closed thermosyphon’, studied the asymptotic behaviors of velocity and

temperature of the system and obtained the attractors and inertial manifolds for the dy-

namics of a closed thermosyphon. Depending on the geometry of the loop and the ambient

temperature, the author derived the existence of an inertial manifold, not necessarily of
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finite dimension, i.e., an invariant exponentially attracting manifold for the flow defined

by the equations. It is worth noting that the existence of the inertial manifold does not

rely on the existence of big gaps in the spectrum of a linear operator. From that, it follows

(non-trivially) that an explicit set of ordinary differential equations that captures all the

asymptotic behaviors of the system. By properly choosing the geometry of the loop and

the ambient temperature Ta any prescribed odd number of equations of the system can

be obtained.

4. A. Rodŕıguez Bernal and E.S. Van Vleck [52], in their work, ‘Complex oscillations in

a closed thermosyphon’, using an explicit construction, obtained the inertial manifold and

the exact low dimensional models. The behavior of solutions was analyzed for different

ranges of the relevant parameters and, for instance, the Lorenz’s model was obtained for

a specific range of parameter values. This connection with Lorenz’s model is a signature

of thermosyphon models as low dimensional versions of more complex buoyancy driven

spatially extended flows. The relevant variables are the velocity and temperature of the

fluid which are the unknowns of the problem that satisfy a system of differential equations.

5. A. Rodŕıguez Bernal and E.S. Van Vleck [53], in ‘Diffusion induced chaos in a

closed loop thermosyphon’ studied the same model as in [52] with axial diffusion and

with a prescribed heat flux. The well posedness of the model which consisted of a system

of coupled ODEs and PDEs was shown for both the cases with and without temperature

diffusion. Boundedness of solutions, the existence of an attractor, and an inertial manifold



12 Introduction and Objectives

were also proven, and an exact reduction to a low-dimensional model was obtained for

the diffusion case. The reduced systems may have far fewer degrees of freedom than the

reduction to the inertial manifold (leading, in some cases, to simple three mode ODEs).

In addition, interesting numerical results were also presented for five mode models.

1.3.2 Mathematical models with binary fluids

Binary fluids were studied with the convective movements caused by inner solute

fluctuations generated by the temperature gradient, known as the Soret effect. The math-

ematical models developed with Soret effect are considered for the following studies. In the

case of well mixed binary fluids, the system has a new unknown function which describes

the concentration of solute S(t, x)3.

1. A. Jiménez-Casas and A. Rodŕıguez Bernal [34], in their work, ‘Finite-dimensional

asymptotic behavior in a thermosyphon including the Soret effect’ [34], analyzed the

dynamics of a fluid transporting a soluble substance in the interior of a closed loop of

arbitrary geometry and subjected to the action of gravity and natural convection. With a

suitable normalization of dimensionless variables, they obtained a nonlinear and nonlocal

coupled system of ordinary and partial differential equations for the velocity v(t) and the

distributions of the temperature T (t, x) and the salinity of solute concentration S(t, x) of

the fluid into the loop. They considered the convective movements caused by inner solute

3As mentioned above, we neglect phase separation effects and we will use the expression binary fluids

in a broad way to refer to this specific situation.
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fluctuations generated by the Soret effect. In this work they studied the well-posedness

and the asymptotic behaviour of solutions.

2. A. Jiménez-Casas and A.M. Lozano Ovejero [36], in their work, ‘Numerical analysis

of a closed loop thermosyphon including the Soret effect’, studied the behavior of solutions

for different ranges of the relevant parameters for the model given at the previous work

[34] and also considering different heat fluxes. In this work, they obtained the nonlinear

coupled system which governs the evolution of the velocity v(t), the temperature T (t, x)

and the solute concentration S(t, x) of the fluid.

3. A. Jiménez-Casas [12], in her work, ‘Well posedness and asymptotic behavior of a

closed loop thermosyphon’, studied the motion of a fluid containing a soluble substance

in the interior of a closed loop under the effects of natural convection and a given external

heat flux. This motion is governed also by a coupled nonlinear differential system. The

well posedness of the system is showed in a framework generalizing the previous works.
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1.4 Objectives of this thesis

Based on the literature survey summarized in Sec. 1.3, the objectives of this research

are summarized as follows:

• The primary objective of this research is to formulate a system of equations gov-

erning a closed loop thermosyphon model with a viscoelastic fluid, which is a

generalization of the previous models [23, 35, 36, 37, 47, 50, 56, 59]. The details of

the formulation of this new system are described in Chapter 2.

• The second objective is to prove the well-posedness and boundedness of solution in a

suitable framework to study the asymptotic behavior of the system when time goes

to infinity and to prove the existence of a global attractor and the inertial manifold.

Then, describe the dynamics on the inertial manifold to obtain finite dimensional

reduced subsystems. In addition, the other aim is to provide a detailed numerical

analysis of the behavior of acceleration, velocity and temperature which include

a thorough study of the various behaviors of the systems for different values of

the Maxwell viscoelastic time. Regarding the role of temperature, we propose two

alternative models: The first model deals with one component viscoelastic fluids

with Newton’s linear cooling law, as in [36, 37, 50, 59], i.e., h(x, v, T ) = l(v)(Ta−T )

where l(v)(Ta − T ) represents the heat transfer law across the wall of the loop,

with l(v) a positive quantity depending on the velocity and Ta the given ambient

temperature distribution which is dealt in Chapter 3.
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• The third objective is to carry out analogous numerical and theoretical analysis for

a second model in which one component viscoelastic fluid with a prescribed heat

flux [62] is considered, instead of Newton’s linear cooling law. Like the previous

model, the same exercise of the derivation of the well-posedness and boundedness

of solutions, global attractor, inertial manifold, finite dimensional subsystem and

numerical experiments are studied and presented in Chapter 4.

• The fourth and final objective is to extend the previous results of the models with one

component viscoelastic fluids to binary viscoelastic fluids, taking into account the

Soret effect phenomena [26, 34, 35], which is dealt in Chapter 5. This phenomenon

is an important aspect of this research, to study and compare the results obtained

with already proved results, through which more insights could be drawn about

the special nature of viscoelastic fluids. A study of the behavior of the viscoelastic

fluids with different Soret coefficients, ranging from lower to higher Soret coefficients

would further enable the understanding of the memory effects that the viscoelastic

fluids hold. Lyapunov exponents calculation [60] is considered to be a standard

technique to ascertain the nature of the behavior of any system. Using the Lyapunov

exponents, the behaviors of the system for various ranges of parameters are presented

at the end of Chapter 5.
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Chapter 2

Formulation of a novel model of
viscoelastic fluids in a closed loop
thermosyphon

2.1 Introduction

Instabilities and chaos in fluids subject to temperature gradients have been a subject

of intense work for its applications in engineering and in the atmospheric sciences. In this

sort of systems, the fluids display non-trivial behaviors (as turbulence or the formation of

convective rolls) when the fluids are subject to a heat flux that competes with buoyancy

effects. A traditional approach that goes back to the pioneering work by Lorenz consists

of the study of the system under some simplifications. Another approach is to study

the controlled setups that capture the underlying complexity of the full system, being a

thermosyphon one of those simpler cases [15].

In the engineering literature, a thermosyphon is a device composed of a closed

loop pipe containing a fluid whose motion is driven by the action of several forces such

as gravity and natural convection [35]. As mentioned in chapter 1, all the work on ther-

17
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mosyphons analyzes the behavior of a Newtonian fluid inside the loop and, consequently,

neglecting the possible elastic effects in the system coming from either the fluid itself

or the elastic walls of the loop. However, many interesting fluids are known to behave

slightly different from the common (Newtonian) fluids —in terms of their response to an

applied stress— and are commonly referred to as viscoelastic. Among them, it is worth

emphasizing volcanic lavas, snow avalanches, flowing paint and biological mucosas.

In this respect, viscoelasticity is a special property of some materials that have both

viscous and elastic characteristics. Viscous materials, like water, cannot resist shear flow

and deform linearly when a shear stress is applied [4]. Elastic materials, like solids, strain

instantaneously when stretched and, unless the plastic limit is reached, they cannot flow.

Elasticity is the result of bond stretching along crystallographic planes in an ordered solid,

whereas viscosity is the result of the diffusion of atoms or molecules inside an amorphous

material. Depending on the change of strain rate versus stress inside a material, the

viscosity can be categorized as having a linear or non-linear response. When a material

exhibits a linear response it is called, generically, a Newtonian fluid. In this case the stress

is linearly proportional to the strain rate. If the material exhibits a non-linear response

to the strain rate, it is called a non-Newtonian fluid [18].

Besides the linear response to stress, viscoelastic materials possess also elastic

restoring forces similar to that in solids. Thus, viscoelastic materials have elements of

both, viscous as well as elastic properties and, as such, exhibit time dependent strain.

This combined effect of both liquids and solids can be assessed experimentally by means



Conservation laws and the Maxwell constitutive equation 19

of constant stress experiments (creep) or relaxation after stress removal [18].

2.2 Conservation laws and the Maxwell constitutive

equation

In this research, a thermosyphon model is considered in which the confined fluid can

be described as a linear viscoelastic fluid. This has some a-priori interesting peculiarities

that could affect the dynamics with respect to the case of a Newtonian fluid. On the

one hand, the dynamics has memory so its behavior depends to a certain extent on the

whole past history and on the other hand, at small perturbations the fluid behaves like an

elastic solid with a characteristic resonance frequency that could, eventually, be relevant

(for instance, consider the behavior of jelly or toothpaste).

The simplest approach to viscoelasticity comes from the so-called Maxwell consti-

tutive equation [46]. In this model, both Newton’s law of viscosity and Hooke’s law of

elasticity are generalized and complemented through an evolution equation for the stress

tensor, σ.

The stress tensor comes into play in the equation for the conservation of momentum:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ · σ (2.2.1)

For a Maxwellian fluid, the stress tensor takes the form:

µ

E

∂σ

∂t
+ σ = µγ̇ (2.2.2)

where µ is the fluid viscosity, E the Young’s modulus and γ̇ the shear strain rate
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(or rate at which the fluid deforms). Under stationary flow, equation (2.2.2) reduces to

Newton’s law and consequently, equations (2.2.1) reduce to the celebrated Navier-Stokes

equation. On the contrary, for short times where impulsive behavior from rest can be

expected the first term dominates and the stress obeys Hooke’s law of elasticity.

Memory effects can be understood from equation (2.2.2) after performing a sepa-

ration of variables and integrating. Thus, the equation can be rewritten as:

σ(t) =

∫ t

0

eE/µ(t−s)µγ̇(s)ds (2.2.3)

where it is clear that the local state of stress, σ(t) is calculated from the present and past

values of γ̇(t) with a memory time scale of order µ/E, also known as Maxwell time.

In a thermosyphon, the equations of motion can be greatly simplified because of

the quasi-one-dimensional geometry of the loop. Therefore, it is assumed that the section

of the loop is constant and small compared with the dimensions of the physical device, so

that the arc length co-ordinate along the loop (x) gives the position in the circuit. The

velocity of the fluid is assumed to be independent of the position in the circuit, i.e., it is

assumed to be a scalar quantity depending only on time. This approximation comes from

the fact that the fluid is assumed to be incompressible, so

∇ · v = 0, (2.2.4)

besides the quasi-one-dimensional assumption. On the contrary, temperature is assumed

to depend on time and position along the loop.
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The derivation of the thermosyphon equations of motion is similar to that in

[39, 59]. The simplest way to incorporate equation (2.2.2) is by differentiating equation

(2.2.1) with respect to time and replacing the resulting time derivative of σ with equation

(2.2.2). This way to incorporate the constitutive equation allows to reduce the number of

unknowns (we remove σ from the system of equations) at the cost of increasing the order

of the time derivatives to second order.

The resulting second order equation is then averaged along the loop section (as in [39]).

Hence, after adimensionalizing the variables (to reduce the number of free parameters)

we arrive at our main system of equations
ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
Tf, v(0) = v0,

dv
dt

(0) = w0

∂T

∂t
+ v

∂T

∂x
= h(x, v, T ) + ν ∂

2T
∂x2

, T (0, x) = T0(x)

(2.2.5)

The parameter ε in equation (2.2.5) is the adimensional version of µ/E which has di-

mensions of time. Roughly speaking, it gives the (adimensional) time scale in which the

transition from elastic to fluid-like occurs in the fluid.

The model taken into consideration, forms an ODE/PDE system for the velocity

v(t), which is assumed to be uniform along the cross section of the path of the loop,

depending only on time t, the distribution of the temperature T (t, x) of the fluid into

the loop, h(x, v, T ) represents the heat transfer law along the loop, with ν ≥ 0. Besides,∮
=
∫ 1

0
dx denotes integration along the closed path of the circuit. The function f describes

the geometry of the loop and the distribution of gravitational forces [39, 59]. Hereafter,

it is considered that all the functions involved in these models are periodic with respect
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to the spacial variable x. It is noted that
∮
f = 0.

The system of equations (2.2.5) is not a trivial extension of the Newtonian model in

Ref.[52] due to the first term in the differential equation for the velocity. Specifically, the

addition of a term proportional to the second derivative of v is singular, in the sense that

it changes qualitatively the character of the equations. The implications of this singular

perturbation cannot be ascertained using a standard boundary layer analysis (see the

Appendix A.1 for details). So a complementary theoretical and numerical approach is

mandatory.

It is assumed that G(v) which specifies the friction law at the inner wall of the

loop, is positive and bounded away from zero. This function has been usually taken to be

G(v) = G, a positive constant for the linear friction case [39] (Stokes flow), or G(v) = |v|

for the quadratic (highly turbulent) law [28, 44] or even a rather general function given

by G(v) = g̃(Re)|v| where Re is the Reynolds number i.e., Re = ρvL/µ. It is considered

that the general function of the velocity is assumed to be large [53, 56]. The functions G,

f and h incorporate relevant physical constants of the model such as the cross sectional

area D, the length of the loop L, the Prandtl, Rayleigh or Reynolds number, etc., see [56].

2.2.1 One component viscoelastic fluids with Newton’s linear

cooling law model

The first model proposed here consists of one component viscoelastic fluids with

Newton’s linear cooling law. The Newton’s linear cooling law is given by h(x, v, T ) =

l(v)(Ta − T ) where l(v)(Ta − T ) represents the heat transfer law across the wall of the



Conservation laws and the Maxwell constitutive equation 23

loop, with l(v) a positive quantity depending on the velocity and Ta the (given) ambi-

ent temperature distribution, see [23, 36, 56, 59]. This model is given by the following

equations:
ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
Tf, v(0) = v0,

dv
dt

(0) = w0

∂T

∂t
+ v

∂T

∂x
= l(v)(Ta − T ) + ν ∂

2T
∂x2

, T (0, x) = T0(x)

2.2.2 One component viscoelastic fluids with a prescribed heat

flux model

The second model is called the one component viscoelastic fluids with a prescribed

heat flux h(x) model. It is customary to take the prescribed heat flux case, the general

heat flux h = h(x) as given in [28, 44]. As the name suggests, the temperature in this

model depends on a general heat flux law h(x), i.e., the heat flux depending only on the

position in the loop x. And it is given by the equations:
ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
Tf, v(0) = v0,

dv
dt

(0) = w0

∂T

∂t
+ v

∂T

∂x
= h(x) + ν ∂

2T
∂x2

, T (0, x) = T0(x)

2.2.3 Binary viscoelastic fluids with Soret effect model

In binary fluids the interaction between the temperature gradients and the solute

gradients play a critical role in the dynamical behavior of any system.

Thermodiffusion is a phenomenon of temperature gradient [16], observed in a

mixture of two or more types of moving particles. The Soret effect is a very important

component of the study of any physical experiment that pertains to thermodiffusion. It
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gives rise to interaction between the thermal and solute gradients even when the fluid is at

rest [42]. The term “Soret effect” normally means thermodiffusion in liquids. Thermodif-

fusion is labeled “positive” when particles move from a hot to cold region and “negative”

when the reverse is true [30]. Typically, the heavier or larger species in a mixture exhibits

positive thermophoretic behavior while the lighter or smaller species exhibits negative

behavior.

In this model, it is considered that the distribution equation of solute into the loop

is as in [39]. Here, the conservation of mass for the solute is used. It has been assumed that

the fluid also transports the solute and generates Soret diffusion by molecular diffusion.

Thus, the Soret diffusion or Soret effect is a molecular flux of solute generated by an

internal gradient. It can generate gradients of solute in the fluid even with impermeable

boundaries.

In viscoelastic fluids, because of the temperature gradients, the Soret effect induces

the solute concentration gradients significantly, thus initiating a natural convection inside

the loop. The dynamical behavior induced by the temperature gradients and solute gra-

dients of the viscoelastic fluid by the Soret effect is the main focus of this research. The

study of the spatiotemporal phenomena in viscoelastic fluids emerges from the integrated

observations of velocity, temperature and solute concentration [30].
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

ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
(T − S)f, v(0) = v0,

dv

dt
(0) = w0

∂T

∂t
+ v

∂T

∂x
= l(v)(Ta − T ) + ν

∂2T

∂x2
, T (0, x) = T0(x)

∂S

∂t
+ v

∂S

∂x
= c

∂2S

∂x2
− b∂

2T

∂x2
, S(0, x) = S0(x)

(2.2.6)

where l(v)(Ta − T ) is the Newton’s linear cooling law as in [23, 34, 35, 36, 37, 56, 59],

which represents the heat transfer law across the loop, l(v) a positive quantity depending

on the velocity and Ta the (given) ambient temperature distribution, see [23, 36, 56, 59].

In addition to that, in this model we consider the diffusion of temperature given by the

term ν ∂
2T
∂x2

.

This model becomes more relevant as the physical world has many such complex

models to be studied. This model can be generalized in many different ways, from changing

the constitutive equation (from Maxwellian to other more complex situations) or to include

shear-thinning effects [46] common to many non-Newtonian materials. Shear-thinning is

the manifestation of a shear-rate dependent viscosity. Hence, it is commonly observed

that many fluids reduce their resistance to flow for large enough imposed stresses (in this

case, temperature gradients), for instance tooth paste, paint or lava. Albeit interesting,

those cases fall out of the scope of the present work.

The following chapters provide the proofs of the well-posedness of the solutions,

their asymptotic behaviors, their explicit reduction to finite dimensional systems and the

numerical simulation of the asymptotic equations.



26 Formulation of a novel model of viscoelastic fluids in a closed loop thermosyphon



Chapter 3

One component viscoelastic fluids
with Newton’s linear cooling law

3.1 Introduction

The first model consists of one component viscoelastic fluids with Newton’s linear

cooling law, given by h(x, v, T ) = l(v)(Ta − T ). Here, l(v)(Ta − T ) represents the heat

transfer law across the loop wall, with l(v) a positive quantity depending on the velocity

and Ta the (given) ambient temperature distribution, see [23, 36, 56, 59]. In addition to

that, the diffusion of temperature is given by the term ν ∂
2T
∂x2

, where ν ≥ 0. The parameter

ε in this system of equations is the adimensional version of µ/E which has the dimension

of time. Roughly speaking, it gives the (adimensional) time scale in which the transition

from elastic to fluid-like occurs in the fluid. In summary, the first model is given by the

equations:
ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
Tf, v(0) = v0,

dv
dt

(0) = w0

∂T

∂t
+ v

∂T

∂x
= l(v)(Ta − T ) + ν ∂

2T
∂x2

, T (0, x) = T0(x)

27
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Hence, the model is a system of ODE/PDE for the velocity v(t) and the distribution

of the temperature T (t, x) of the fluid into the loop. In the equation,
∮

=
∫ 1

0
dx denotes

the integration along the closed path of the circuit. The function f describes the geometry

of the loop and the distribution of gravitational forces [39, 59]. Note that
∮
f = 0. This

geometrical condition restricts the functions to periodic functional spaces as we will discuss

in some detail in the following sections.

Here, it is assumed that G(v) which specifies the friction law at the inner wall of the

loop, is positive and bounded away from zero. It is considered that the functions G and

l are continuous functions, such that G(v) ≥ G0 > 0, and l(v) ≥ l0 > 0, for G0 and l0

positive constants.

The objectives of this model are:

• To present an analysis beginning with the well posedness and boundedness of the

solutions. Besides, the existence of an attractor and an inertial manifold is shown

and an explicit reduction to low-dimensional systems is obtained. It is noteworthy

that we are able to obtain an exact finite-dimensional reduction (see equation 3.3.57)

that may have a much lower number of degrees of freedom.

• To provide a detailed numerical analysis of the behavior of acceleration, velocity and

temperature which includes a thorough study of the various behaviors of the system

for different values of viscoelastic fluid and ambient temperature distribution.

• The numerical analysis will show that viscoelasticity induces a chaotic behavior that
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is not captured by a boundary layer analysis (that would predict the same quali-

tative behaviors as in the original model in Ref. [52], see the Appendix for details)

being the new (non-trivial) emergent behaviors induced by the viscoelasticity worth

characterizing.

The structure of this chapter is as follows: The first section provides an introduction

to the system, explaining briefly the dynamics of the functions and the objectives of this

model. In Section 2, the proofs for the existence, uniqueness and boundedness of the

solutions are given. The Section 3 provides a detailed derivation of the dynamics of the

system in the inertial manifold as a reduced dimensionality version of the full system of

equation (2.2.5). The Section 4 presents the numerical integration of the reduced system

of equations valid in the manifold to understand the role of the main parameters of the

physical system.

3.2 Well-posedness and boundedness: global attrac-

tor

3.2.1 Existence and uniqueness of solutions

In this section we prove the existence and uniqueness of solutions of the thermosyphon

model (2.2.5).

First, we observe that for ν ≥ 0, if we integrate the equation for the temperature

along the loop taking into account the periodicity of T , i.e.,
∮

∂T
∂x

=
∮

∂2T
∂x2

= 0, we have
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d
dt

(
∮
T ) = l(v)(

∮
Ta −

∮
T ). Therefore,

∮
T →

∮
Ta exponentially as time goes to infinity

for every
∮
T0.

Moreover, if we consider τ = T −
∮
T then from the second equation of system

(2.2.5), we obtain that τ verifies the equation:

∂τ

∂t
+ v

∂τ

∂x
= ν

∂2τ

∂x2
+ l(v)(τa − τ), τ(0, x) = τ0(x) = T0 −

∮
T0

where τa = Ta −
∮
Ta.

Finally, since
∮
f = 0, we have

∮
Tf =

∮
τf and the equations for v reads

ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
τf, v(0) = v0,

dv

dt
(0) = w0.

Thus, with w = dv
dt

we get (w, v, τ) verifying the system (2.2.5) with τa, τ0 replacing

Ta, T0 respectively and now
∮
τ =

∮
τa =

∮
τ0 =

∮
f = 0. Therefore, hereafter we consider

the system (2.2.5) where all functions have zero average.

Also, if ν > 0 the operator νA = −ν ∂2

∂x2
, together with periodic boundary con-

ditions, is an unbounded, self-adjoint operator with compact resolvent in L2
per(0, 1), that

is positive when restricted to the space of zero average functions L̇2
per(0, 1). Hence, the

equation for the temperature T in (2.2.5) is of parabolic type for ν > 0.
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i) The case with diffusion: ν > 0

We consider the acceleration w = dv
dt

and write the system (2.2.5) as the following

evolution system for the acceleration, velocity and temperature:

dw

dt
+

1

ε
w = −1

ε
G(v)v + 1

ε

∮
Tf, w(0) = w0

dv
dt

= w, v(0) = v0

∂T

∂t
+ v

∂T

∂x
− ν ∂

2T

∂x2
= l(v)(Ta − T ), T (0, x) = T0(x)

(3.2.1)

this is:

d

dt


w

v

T

+


1
ε

0 0

0 0 0

0 0 −ν ∂2

∂x2




w

v

T

 =


F1(w, v, T )

F2(w, v, T )

F3(w, v, T )

 (3.2.2)

with F1(w, v, T ) = −1
ε
G(v)v+ 1

ε

∮
Tf, F2(w, v, T ) = w and F3(w, v, T ) = −v ∂T

∂x
+l(v)(Ta−

T ) and the initial data


w

v

T

 (0) =


w0

v0

T0

.

The operator B =


1
ε

0 0

0 0 0

0 0 −ν ∂2

∂x2

 is a sectorial operator in Y = IR2×Ḣ1
per(0, 1)

with domain D(B) = IR2 × Ḣ3
per(0, 1) and has compact resolvent, where

L̇2
per(0, 1) = {u ∈ L2

loc(IR), u(x+1) = u(x)a.e.,

∮
u = 0}, Ḣm

per(0, 1) = Hm
loc(IR)∩L̇2

per(0, 1).

(3.2.3)
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Using the results and techniques of sectorial operator of [27] we obtain Theorem

3.2.1.

Theorem 3.2.1 We assume that ν > 0, H(r) = rG(r) and l(v) are locally Lipschitz,

f ∈ L̇2
per(0, 1), Ta ∈ Ḣ1

per(0, 1) and l(v) ≥ l0 > 0. Then, given (w0, v0, T0) ∈ Y = IR2 ×

Ḣ1
per(0, 1), there exists a unique solution of (2.2.5) satisfying

(w, v, T ) ∈ C([0,∞), IR2 × Ḣ1
per(0, 1)) ∩ C(0,∞, IR2 × Ḣ3

per(0, 1)),

(ẇ, w,
∂T

∂t
) ∈ C(0,∞, IR2 × Ḣ3−δ

per (0, 1)),

where w = v̇ = dv
dt

and ẇ = d2v
dt2

for every δ > 0. In particular, (2.2.5) defines a nonlinear

semigroup, S(t) in Y = IR2 × Ḣ1
per(0, 1), with S(t)(w0, v0, T0) = (w(t), v(t), T (t)).

Proof. We cover several steps.

Step (i) We prove the local existence and regularity. This follows easily from the variation

of constants formula of [27]. In order to prove this we write the system as (3.2.2) and we

have:

Ut +BU = F (U), with U =


w

v

T

 , B =


1
ε

0 0

0 0 0

0 0 −ν ∂2

∂x2

 and F =


F1

F2

F3


where the operator B is a sectorial operator in Y = IR2× Ḣ1

per(0, 1) with domain D(B) =

IR2 × Ḣ3
per(0, 1) and has compact resolvent. In this context, the operator A = − ∂2

∂x2
must

be understood in the variational sense, i.e., for every T, ϕ ∈ Ḣ1
per(0, 1),

< A(T ), ϕ >=

∮
∂T

∂x

∂ϕ

∂x
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and L̇2
per(0, 1) coincides with the fractional space of exponent 1

2
[27]. Hereafter we denote

by ‖.‖ the norm on the space L̇2
per(0, 1). Now, if we prove that the nonlinearity F : Y =

IR2× Ḣ1
per(0, 1) 7→ Y− 1

2 = IR2× L̇2
per(0, 1) is well defined and is Lipschitz and bounded on

bounded sets, we obtain the local existence for the initial data in Y = IR2 × Ḣ1
per(0, 1).

Using H(v) = G(v)v and l(v) are locally Lipschitz together with f ∈ L̇2
per(0, 1)

and Ta ∈ Ḣ1
per(0, 1), we will prove the nonlinear terms, F1(w, v, T ) = −1

ε
G(v)v + 1

ε

∮
Tf,

F2(w, v, T ) = w and F3(w, v, T ) = −v ∂T
∂x

+ l(v)(Ta− T ) satisfy F1 : IR2× Ḣ1
per(0, 1) 7→ IR,

F2 : IR2 × Ḣ1
per(0, 1) 7→ IR and F3 : IR2 × Ḣ1

per(0, 1) 7→ L̇2
per(0, 1), this is F : Y 7→ Y− 1

2

is well defined, Lipschitz and bounded on bounded sets. It is possible to prove this by

considering Ta ∈ L̇2
per(0, 1). In order to prove these properties of the nonlinearity F , let

Ui = (wi, vi, Ti)
t and we note that

‖F3(U1)− F3(U2)‖ ≤ ‖ − v1
∂T1
∂x

+ l(v1)(Ta − T1) + v2
∂T2
∂x
− l(v2)(Ta − T2)‖ ≤

≤ |l(v1)− l(v2)|‖Ta‖+ (1) + (2)

where

(1) ≡ ‖ − v1
∂T1
∂x

+ v2
∂T2
∂x
‖ and (2) ≡ ‖l(v2)T2 − l(v1)T1‖

and adding ±v1 ∂T2∂x
, ∓v2 ∂T1∂x

and ∓v1 ∂T1∂x
in (1), we have

(1) ≤ (|v1|+ |v2|)‖
∂T2
∂x
− ∂T1

∂x
‖+ |v2 − v1|‖

∂T1
∂x
‖+ |v1|‖

∂T1
∂x
− ∂T2

∂x
‖

and adding ±l(v2)T1 in (2), we get

(2) ≡ ‖l(v2)T2 − l(v1)T1‖ ≤ |l(v1)− l(v2)|‖T1‖+ |l(v2)|‖T2 − T1‖
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and from the above hypothesis on function l(v) there exits M > 0 such that ‖F3(U1) −

F3(U2)‖ ≤M
(
|v1 − v2|+ ‖T1 − T2‖Ḣ1

per(0,1)

)
≤ C‖U1−U2‖IR2×Ḣ1

per
and the rest is obvious.

Therefore, using the techniques of variations of constants formula of [27], we obtain

the unique local solution (w, v, T ) ∈ C([0, τ ],Y) of (3.2.1) which are given by

w(t) = w0e
− 1
ε
t − 1

ε

∫ t

0

e−
1
ε
(t−r)H(r)dr +

1

ε

∫ t

0

e−
1
ε
(t−r)(

∮
T (r)f)dr (3.2.4)

with H(r) = H(v(r)).

v(t) = v0 +

∫ t

0

w(r)dr (3.2.5)

T (t, x) =

e−νAtT0(x)+

∫ t

0

e−νA(t−r)l(v(r))[Ta(r, x)−T (r, x)]dr−
∫ t

0

e−νA(t−r)v(r)
∂T (r, x)

∂x
dr (3.2.6)

and using again the results of [27], we get the regularity of solutions. In fact, from the

smoothing effect of the equations, we have (w, v, T ) ∈ C([0, τ ],Y = IR2 × Ḣ1
per(0, 1)) ∩

C((0, τ), IR2 × Ḣ2
per(0, 1)) and (ẇ, w, ∂T

∂t
) ∈ C((0, τ), IR2 × Ḣ2−δ

per (0, 1)), for some positive

τ and any δ > 0. Now, for ε > 0 we have (w(ε), v(ε), T (ε)) ∈ IR2 × Ḣ2
per(0, 1) and

since F : IR2 × Ḣ2
per(0, 1) 7→ IR2 × Ḣ1

per(0, 1) is well defined, Lipschitz and bounded on

bounded sets, we have (w, v, T ) ∈ C([ε, τ ], IR2 × Ḣ2
per(0, 1)) ∩ C((ε, τ), IR2 × Ḣ3

per(0, 1))

and (ẇ, w, ∂T
∂t

) ∈ C((ε, τ), IR2 × Ḣ3−δ
per (0, 1)). Since ε is arbitrary, we obtain the regularity

of the local solution.

Step (ii) Now, we prove the solutions of (3.2.1) for every time t ≥ 0.

To prove the global existence, we must show that the solutions are bounded in
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Y = IR2 × Ḣ1
per(0, 1) norm on finite time intervals. First, to obtain the norm of T is

bounded in finite time, we note that multiplying the equations for the temperature by T

in L̇2
per(0, 1) and integrating by parts, we have:

1

2

d

dt
‖T‖2 + ν‖∂T

∂x
‖2 =

∮
l(v)(Ta − T )Tdx

since
∮
T ∂T
∂x

= 1
2

∮
∂
∂x

(T 2) = 0.

Using Cauchy-Schwarz and the Young inequality and then the Poincaré inequality,

since
∮
T = 0 together with π2 is the first nonzero eigenvalue of A = − ∂2

∂x2
in L̇2

per(0, 1),

we obtain

1

2

d

dt
‖T‖2 + (νπ2 + l(v))‖T‖2 ≤ l(v)

2
‖Ta‖2 +

l(v)

2
‖T‖2

and using l(v) ≥ l0 > 0 we get

d

dt
‖T‖2 + (2νπ2 + l0)‖T‖2 ≤ l(v)‖Ta‖2 (3.2.7)

and we conclude the norm of T in L̇2
per(0, 1) remains bounded in finite time.

Now, we note that differentiating the second equation of (2.2.5) with respect to x,

we obtain the same equations for ‖∂T
∂x
‖ considering now ‖∂Ta

∂x
‖, we obtain

d

dt

∥∥∥∥∂T∂x
∥∥∥∥2 + (2νπ2 + l0)

∥∥∥∥∂T∂x
∥∥∥∥2 ≤ l(v)

∥∥∥∥∂Ta∂x

∥∥∥∥2 . (3.2.8)

Thus we show that the norm of T in Ḣ1
per(0, 1) remains bounded in finite time.
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Then, using ‖T‖ is bounded for finite time, we prove that |w(t)| and |v(t)| remain bounded

in finite time and we conclude.

ii) The case with no diffusion: ν = 0

The system now reads
ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
Tf, v(0) = v0,

dv
dt

(0) = w0

∂T

∂t
+ v

∂T

∂x
= h(x, v, T ), T (0, x) = T0(x)

(3.2.9)

where h(x, v, T ) = l(v)(Ta − T ) i.e., we consider Newton’s linear cooling law as in Refs.

[34, 35, 36, 37], and it is no longer of a parabolic type system and is also given by:

dw

dt
+

1

ε
w = −1

ε
G(v)v + 1

ε

∮
Tf, w(0) = w0

dv
dt

= w, v(0) = v0

∂T

∂t
+ v

∂T

∂x
= l(v)(Ta − T ), T (0, x) = T0(x)

(3.2.10)

To prove the system is well-posed, we use the techniques from [50] considering the

same transport equation for temperature in different thermosyphon models as [34, 35, 36,

37, 50].

Note that if v(t) is a given continuous function then the equation for the temper-

ature can be integrated along characteristics to obtain

T v(t, x) = T0(x−
∫ t

0

v)e−
∫ t
0 l(v) +

∫ t

0

[l(v(r))e−
∫ t
r l(v)Ta(x−

∫ t

r

v)] (3.2.11)

and plugging this into the nonlocal differential equation for the acceleration and into the

equation for the velocity yields
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wv(t) = w0e
− 1
ε
t − 1

ε

∫ t

0

e−
1
ε
(t−r)G(v(r))v(r)dr +

1

ε

∫ t

0

e−
1
ε
(t−r)(

∮
T v(r)f)dr

v(t) = v0 +

∫ t

0

wv(r)dr.

We note that for T0, Ta ∈ L̇2
per(0, 1) and since in this space the translations are contin-

uous isometries, (3.2.11) defines a continuous function of time with values in this space.

Although we restrict ourselves to L̇2
per(0, 1), many other choices of space are possible for

solving problem (3.2.10). In fact any Banach space of 1-periodic functions of x having

zero mean and in which translations are continuous isometries can be used as an “admis-

sible space”, X, see [50]. In particular Wm,p
per (0, 1), Ck

per(0, 1) are admissible spaces between

others. Then we can prove Lemma 3.2.2.

Lemma 3.2.2 Let τ > 0, fix v ∈ C[0, τ ] and assume that T0, Ta ∈ X where X is an

“admissible space”, see [50], in particular T0, Ta ∈ Ḣ1
per(0, 1). Then the function given in

(3.2.11), T v ∈ C([0, τ ], X) is an integral solution of the PDE which is satisfied only if

T0 and Ta are differentiable. In particular, if T0, Ta ∈ Ḣ1
per(0, 1) then T v is continuous

with values in Ḣ1
per(0, 1) and satisfies the PDE as an equality in L̇2

per(0, 1), a.e. in time.

Moreover, (3.2.11) satisfies the following properties:

(i)

‖T v‖X ≤ max{‖T0‖X , ‖Ta‖X}a.e. in time (3.2.12)

(ii) If there exist positive constants cd, d = a and d = 0 such that T0, Ta satisfy

‖Td(.+ h)− Td(.)‖X ≤ cd|k| for all k, then T v satisfies

‖T v(t+ k)− T v(t)‖X ≤ C|k|, C = C(‖v‖∞, ‖Ta‖X) (3.2.13)
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positive constant independent on time.

(iii) We assume that X ⊂ L̇2
per(0, 1) and there exist positive constants cd, d = a and

d = 0 such that T0, Ta satisfy ‖Td(. + h) − Td(.)‖L̇2
per
≤ cd|k| for all k. If we also assume

vi, i = 1, 2 are continuous in t ∈ [0, τ ], then

supr∈[0,τ ]‖T v1 (r)− T v2 (r)‖ ≤ Kτ‖v1 − v2‖∞, (3.2.14)

K is a positive constant and ‖v1 − v2‖∞ = supr∈[0,τ ] |v1(r)− v2(r)|.

Proof: see [34, 35, 36, 37, 50]. Then, we have Theorem 3.2.3.

Theorem 3.2.3 Assume ν = 0, G(v)v is locally Lipschitz, f ∈ L̇2
per(0, 1), T0, Ta ∈

Ḣ1
per(0, 1) and w0, v0 ∈ IR2. Then there exits a unique solution of (3.2.10) satisfying

(w, v, T ) ∈ C((0,∞), IR2 × Ḣ1
per(0, 1))

and T satisfies the PDE in the sense of (3.2.11).

Moreover (ẇ, v̇, ∂T
∂t

) ∈ C([0,∞), IR2 × L̇2
per(0, 1)).

Proof. As noted above, we need to solve the fixed point problem

v(t) = F(v)(t) = v0 +

∫ t

0

(
w0e

− 1
ε
s − 1

ε

∫ s

0

e−
1
ε
(s−r)G(v(r))v(r)dr

)
ds+

+
1

ε

∫ t

0

(∫ s

0

e−
1
ε
(s−r)(

∮
T v(r)f)dr

)
ds

on a space of continuous functions. More precisely, we take W = {v ∈ C[0, L], v(0) =

v0, |v(t)− v0| ≤M}, endowed with the sup norm, with L and M to be chosen and prove

that F is a contraction on W .
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From (3.2.12) in Lemma 3.2.2 for T v we have ‖T v‖ ≤ max{‖T0‖‖Ta‖} and this,

together with the local Lipschitz property of G(v)v shows that for fixed M , F(M) ⊂M

if L is sufficiently small.

To show that F is a contraction, it is clear that we must prove some Lipschitz

dependence on
∮
T vf with respect to v ∈ W .

First, we note that from T0, Ta ∈ Ḣ1
per(0, 1), then verify (3.2.13) i.e., ‖Td(. + h) −

Td(.)‖L̇2
per
≤ cd|k| for all k with d = 0, a and given vi ∈ W, again from (3.2.14) in Lemma

3.2.2, we have

supr∈[0,τ ]‖T v1 (r)− T v2 (r)‖ ≤ LM‖v1 − v2‖∞.

We find that F is Lipschitz on W with a Lipschitz constant depending on L and M that

tends to zero as L→ 0 and then F is a contraction for small enough L. Therefore, local

well-posedness follows.

To prove the global existence, it is sufficient to prove that (w(t), v(t)) is bounded

on finite time intervals, since from

wv(t1)− wv(t2) =

w0e
− 1
ε
(t1−t2) − 1

ε

∫ t2

t1

e−
1
ε
(t−r)G(v(r))v(r)dr +

1

ε

∫ t2

t1

e−
1
ε
(t−r)(

∮
T v(r)f)dr

v(t1)− v(t2) =

−
∫ t2

t1

(
w0e

− s
ε − 1

ε

∫ s

0

e−
1
ε
(s−r)G(v(r))v(r)dr +

1

ε

∫ s

0

e−
1
ε
(s−r)

∮
T v(r)fdrds

)
we find that (w(t), v(t)) is of Cauchy type as t→ t0 for finite t0. Consequently, the limit

of (w(t), v(t), T (t)) exists in IR2 × L̇2
per(0, 1) and the solution can be prolonged.
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But again from (3.2.12) together with (3.2.4) and (3.2.5) we obtain boundedness

on finite time intervals and global existence follows.

As noted above, if T0, Ta ∈ Ḣ1
per(0, 1) then T satisfies the PDE equation as an

equality in L̇2
per(0, 1) a.e. in time. In particular, we have ∂T

∂t
∈ C((0,∞), L̇2

per(0, 1)).

3.2.2 Boundedness of the solutions and global attractor

In order to obtain asymptotic bounds on the solutions as t → ∞, we consider the

friction function G satisfying the hypotheses from the previous section and we also assume

that there exits a constant h0 ≥ 0 such that:

lim sup
t→∞

|G′(t)|
G(t)

= 0 and lim sup
t→∞

|tG′(t)|
G(t)

≤ h0. (3.2.15)

We make use of the L’Hopital’s lemma proved in [52] to prove several results in this

section.

Lemma 3.2.4 L’Hopital’s lemma: assume f and g are real differentiable functions on

(a, b), b ≤ ∞, g′(x) 6= 0 on (a, b) and limx→bg(x) =∞.

(i)If lim supx→b
f ′(x)
g′(x)

= L, then lim supx→b
f(x)
g(x)
≤ L.

(ii)If lim infx→b
f ′(x)
g′(x)

= L, then lim infx→b
f(x)
g(x)
≥ L.

With this, we have Lemma 3.2.5.

Lemma 3.2.5 If we assume G(r) and H(r) = rG(r) satisfy the hypothesis from Theorem

3.2.1 or Theorem 3.2.3 together with (3.2.15), then:

lim sup
t→∞

∣∣∣H(t)− 1
ε

∫ t
0
e−

1
ε
(t−r)H(r)dr

∣∣∣
G(t)

≤ H0 (3.2.16)
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with H0 = (1 + h0)ε a positive constant such that H0 → 0 if ε→ 0.

Proof. Integrating by parts we have:

H(t)− 1

ε

∫ t

0

e−
1
ε
(t−r)H(r)dr =

∫ t

0

e−
1
ε
(t−r)H ′(r)dr

and using Lemma 3.2.4 we obtain

lim sup
t→∞

∫ t
0
e

1
ε
r|H ′(r)|dr
e

1
ε
tG(t)

≤ ε lim sup
t→∞

|H ′(t)|
G(t) + εG′(t)

≤

≤ ε lim sup
t→∞

|G(t) + tG′(t)|
G(t) + εG′(t)

and from (3.2.15) we conclude.

Remark 3.2.1 We note that the conditions (3.2.15) are satisfied for all friction functions

G considered in this work, i.e., the thermosyphon models where G is constant or linear or

quadratic law. Moreover, the conditions (3.2.15) are also true for G(s) ≈ A|s|n, as s →

∞.

Now, we use the asymptotic bounded for temperature to obtain the asymptotic

bounded for the velocity and the acceleration functions.

Theorem 3.2.6 Under the above notations and hypothesis of Theorem 3.2.1 or Theorem

3.2.3, if we assume also that G satisfies (3.2.16) for some constant H0 ≥ 0, then

Part (i) General case:

(i) lim sup
t→∞

|v(t)| ≤ 1

G0

lim sup
t7→∞

|
∮
T (t, ·)f(·)|+H0 (3.2.17)

In particular: If lim supt7→∞ ‖T‖ ∈ IR then

lim sup
t→∞

|v(t)| ≤ 1

G0

‖f‖ lim sup
t7→∞

‖T‖+H0 ∈ IR. (3.2.18)
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(ii)If lim supt7→∞ ‖T‖ ∈ IR and we denote by G∗0 = lim supt→∞G(v(t)), then

lim sup
t→∞

|w(t)| ≤ G∗0H0 +

(
1 +

G∗0
G0

)
I with I = lim sup

t7→∞
|
∮
T (t, ·)f(·)| and (3.2.19)

lim sup
t→∞

|w(t)| ≤ G∗0H0 +

(
1 +

G∗0
G0

)
‖f‖ lim sup

t7→∞
‖T‖ ∈ IR. (3.2.20)

Part (ii) If ν 6= 0 and assume that there exists L0 a positive constant such that

L0 ≥ l(v) ≥ l0. Then for any solution of (2.2.5) in the space Y = IR2×Ḣ1
per(0, 1) we have:

(i)

lim sup
t→∞

‖T (t)‖ ≤
(

L0

2νπ2 + l0

) 1
2

‖Ta‖ and lim sup
t→∞

∥∥∥∥∂T∂x (t)

∥∥∥∥ ≤ ( L0

2νπ2 + l0

) 1
2
∥∥∥∥∂Ta∂x

∥∥∥∥
(3.2.21)

(ii)

lim sup
t→∞

|v(t)| ≤ 1

G0

(
L0

2νπ2 + l0

) 1
2

‖Ta‖‖f‖+H0 (3.2.22)

(iii) If we denote by G∗0 = lim supt→∞G(v(t))

lim sup
t→∞

|w(t)| ≤ G∗0H0 +G2
‖Ta‖‖f‖√
2νπ2 + l0

with G2 =

(
1 +

G∗0
G0

)√
L0. (3.2.23)

In particular, (2.2.5) has a global compact and connected attractor, A, in Y = IR2 ×

Ḣ1
per(0, 1).

Proof. Part (i) General case.

(i) From (3.2.1) we have that

dw

dt
+

1

ε
w = −1

ε
G(v)v +

1

ε

∮
T · f (3.2.24)

and w(t) = dv
dt

satisfies

dv

ds
= w(0)e−

1
ε
s − 1

ε

∫ s

0

e−
1
ε
(s−r)H(r)dr +

1

ε

∫ s

0

(

∮
T (r) · f)e−

1
ε
(s−r)dr (3.2.25)
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where H(r) = H(v(r)) = v(r)G(v(r)). First, we rewrite (3.2.25) as

dv

ds
+G(s)v = w(0)e−

1
ε
s + I1(s) + I2(s), (3.2.26)

with

I1(s) =
1

ε

∫ s

0

(

∮
T (r) · f)e−

1
ε
(s−r)dr and I2(s) = H(s)− 1

ε

∫ s

0

e−
1
ε
(s−r)H(r). (3.2.27)

Next, for any δ > 0 there exits t0 > 0 such that δ(s) = w(0)e−
1
ε < δ for any s ≥ t0

and integrating with t ≥ t0 we obtain

|v(t)| ≤ |v(t0)|e−
∫ t
t0
G(s)ds

+ e
−

∫ t
t0
G(s)ds

∫ t

t0

e
∫ s
t0
G(r)dr

(δ + |I1(s)|+ |I2(s)|) (3.2.28)

Using L’Hopital’s Lemma 3.2.4 proved in [52], we get

lim sup
t→∞

e
−

∫ t
t0
G(s)ds

∫ t

t0

e
∫ s
t0
G(r)dr

(|I1(s)|+ |I2(s)|+ δ) =

= lim sup
t→∞

∫ t
t0
e
∫ s
t0
G(r)dr

(|I1(s)|+ |I2(s)|+ δ)ds

e
∫ t
t0
G(s)ds

≤ lim sup
t→∞

|I1(t)|+ |I2(t)|+ δ

G(t)
for any δ > 0. (3.2.29)

Moreover, using again the L’Hopital’s Lemma 3.2.4 proved in [52], we get

lim sup
t→∞

|I1(t)| ≤ lim sup
t→∞

∫ t
0
e
r
ε |
∮
T (t) · f |

εe
t
ε

≤ lim sup
t→∞

|
∮
T (t) · f |

and from (3.2.28) together with (3.2.16) we conclude that

lim sup
t→∞

|v(t)| ≤ lim sup
t→∞

lim supt→∞ |
∮
T (t) · f |

G0

+H0 + δ

for any δ.
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(ii) From (3.2.24) together with singular Gronwall lemma, we get

|w(t)| ≤ |w(t0)|e−
1
ε
t +

1

ε

∫ t

t0

e−
1
ε
(t−r)[G(r)|v(r)|+ |

∮
T (r) · f |

]
dr (3.2.30)

where G(r) = G(v(r)). Consequently, for any δ > 0 there exits t0 such that for any t ≥ t0

1

ε

∫ t

t0

e−
1
ε
(t−r)[G(v(r))|v(r)|+ |

∮
T (r) · f |

]
dr ≤

≤
[
δ + lim sup

t→∞

(
G(v(t))|v(t)|+ |

∮
T (t) · f |

)]
(1− e−

1
ε
(t−t0)) (3.2.31)

this is

lim sup
t→∞

|w(t)| ≤ lim sup
t→∞

(G(v(t))|v(t)|+ |
∮
T (t) · f |+ δ), (3.2.32)

for any δ > 0 and using the above results i) we get (3.2.19).

Part (ii)

(i) From (3.2.7) together with (3.2.8) we get

‖T‖2 ≤ L0

2νπ2 + l0
‖Ta‖2 +

(
‖T0‖2 −

L0

2νπ2 + l0
‖Ta‖2

)
+

e−(2π
2ν+l0)t and (3.2.33)

∥∥∥∥∂T∂x
∥∥∥∥2 ≤ L0

2νπ2 + l0

∥∥∥∥∂Ta∂x

∥∥∥∥2 +

(
‖T0‖2 −

L0

2νπ2 + l0
‖Ta‖2

)
+

e−(2π
2ν+l0)t (3.2.34)

and by elementary integration we obtain (3.2.21). Using Part I the rest ii) and iii) are

obvious. Since the sectorial operator B defined in the above section 3.2.1 has compact

resolvent, the rest follows from [[24], Theorem 4.2.2 and 3.4.8].

Remark 3.2.2 First, we note that the hypothesis about the function l(v) in the above

Theorem 3.2.6, l(v) ≤ L0 is satisfied when we consider Newton’s linear cooling law h =

k(Ta − T ), where k is a positive quantity i.e., l(v) = k = L0 as [33]. Moreover, this
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condition is also satisfied if we consider h = l(v)(Ta − T ) where l(v) is a positive upper

bounded function.

Second, it is important to note that we prove in the next section the existence of the

global compact and connected attractor and the inertial manifold for the system (3.2.1),

when we consider the general Newton’s linear cooling law without the additional above

hypothesis on l(v); but we assume that the friction function G(v) always satisfies 3.2.15

for every ν ≥ 0.

In order to get this, we consider the Fourier expansions and observing the dynamics

of each coefficient of Fourier expansions to improve the asymptotic bounded of temperature.

In particular, we will prove lim supt→∞ ‖T (t)‖ ≤ ‖Ta‖ for every locally Lipschitz and

positive function l(v) and also for every ν ≥ 0 (see (3.3.40) in Proposition 3.3.1) for

every friction function G(v) always satisfying 3.2.15 for every ν ≥ 0.

3.3 Asymptotic behavior: finite-dimensional systems

We take a close look at the dynamics of (2.2.5) by considering the Fourier expansions

of each function and observing the dynamics of each Fourier mode. Assume that Ta ∈

Ḣ1
per(0, 1) and f ∈ L̇2

per(0, 1) are given by the following Fourier expansions

Ta(x) =
∑
k∈IZ∗

bke
2πkix and f(x) =

∑
k∈IZ∗

cke
2πkix with IZ∗ (3.3.35)

while the initial data T0 ∈ Ḣ1
per(0, 1) is given by T0(x) =

∑
k∈IZ∗ ak0e

2πkix.

Note the Fourier expansion for all g ∈ Ḣm
per(0, 1),m ≥ 0 is given by the expression
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g(x) =
∑

k∈IZ∗ ake
2πkix with IZ∗ = IZ \ {0} and we have

‖g‖Ḣm
per(0,1)

= (2π)m
(∑
k∈IZ∗

k2m|ak|2
) 1

2
. (3.3.36)

Assume that T (t, x) ∈ Ḣ1
per(0, 1) is given by

T (t, x) =
∑
k∈IZ∗

ak(t)e
2πkix. (3.3.37)

Then, we find that the coefficients ak(t) in (3.3.37), is a solution of:

ȧk(t) + (2πkvi+ 4νπ2k2 + l(v))ak(t) = l(v)bk, ak(0) = ak0, k ∈ IZ∗. (3.3.38)

Since all the functions involved are real, we have āk = a−k, b̄k = b−k, and c̄k =

c−k. Therefore, (2.2.5) is equivalent to the infinite system of ODEs consisting of (3.3.38)

coupled with

ε
d2v

dt
+
dv

dt
+G(v)v =

∑
k∈IZ∗

ak(t)c−k.

The system of equations (2.2.5) reflects two of the main features: (i) the coupling

between the modes enter only through the velocity, while diffusion acts as a linear damping

term, (ii) it is important to note in this model, we have also the non linear term given by

Newton’s linear cooling law. In what follows, we will exploit this explicit equation for the

temperature modes to analyze the asymptotic behavior of the system and to obtain the

explicit low-dimensional models.

3.3.1 Inertial manifold

We consider the general case ν > 0 together with the nonlinear Newton’s linear

cooling law introduced by [28, 56], that is l(v)(Ta−T ) with l(v) ≥ l0 > 0 locally Lipschitz
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function and use inertial manifold techniques, in the spirit of nondiffusion case of [50], to

give an explicit low-dimensional system of ODEs that describes the asymptotic dynamics

of (2.2.5). The existence of an inertial manifold does not rely, in this case, on the existence

of large gaps in the spectrum of the elliptic operator but on the invariance of certain sets

of Fourier modes.

A similar explicit construction was given by Bloch and Titi in [6] for a nonlinear

beam equation where the nonlinearity occurs only through the appearance of the L2

norm of the unknown. A related construction was given by Stuart in [54] for a nonlocal

reaction-diffusion equation.

We note that the system (2.2.5) is equivalent to the system (3.2.1) for acceleration,

velocity and temperature. It is equivalent to the following infinite system of ODEs (3.3.39)



dw

dt
+

1

ε
w = −1

ε
G(v)v +

1

ε

∑
k∈IZ∗

ak(t)c−k, w(0) = w0

dv
dt

= w, v(0) = v0

ȧk(t) + (2πkvi+ 4νπ2k2 + l(v))ak(t) = l(v)bk, ak(0) = ak0, k ∈ IZ∗.

(3.3.39)

We first improve the bounds on acceleration, velocity and temperature of the

previous section for all situations, with ν ≥ 0 and with l(v) ≥ l0 > 0 general locally

Lipschitz function and with G(v) under the hypotheses of Lemma 3.2.5 for some H0 ≥ 0.

We will prove in Proposition 3.3.1 that we have always an upper bounded for the

temperature in L̇2(0, 1) independent of the velocity and the function l(v), considered in
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the Newton’s linear cooling law, and also independent of the diffusion coefficient. This is

lim sup
t→∞

‖T (t, .)‖ ≤ ‖Ta‖

Proposition 3.3.1 Under the above notations, for every solution of the system (2.2.5),

(w, v, T ), and for every k ∈ IZ∗ we have

(i) lim sup
t→∞

|ak(t)| ≤ |bk|, in particular lim sup
t→∞

‖T (t, .)‖ ≤ ‖Ta‖ (3.3.40)

(ii) lim sup
t→∞

|v(t)| ≤ I0
G0

+H0, with I0 =
∑
k∈IZ∗
|bk||ck| (3.3.41)

and G0 a positive constant such that G(v) ≥ G0.

(iii) lim sup
t→∞

|w(t)| ≤ G∗0H0 +

(
1 +

G∗0
G0

)
I0, with (3.3.42)

I0 =
∑
k∈IZ∗
|bk||ck| and G∗0 = lim sup

t→∞
G(v(t)).

In particular, we have a global compact and connected attractor A ⊂ [−M,M ] ×

[−N,N ] × C where M,N are the upper bounds for acceleration and velocity as given in

(3.3.42) and (3.3.41) and T0 ∈ C = {R(x) =
∑

k∈IZ∗ rke
2πkix, |rk| ≤ |bk|}.

Proof. From (3.3.38), we have

ak(t) = ak0e
−4νπ2k2te−

∫ t
0 [2πkvi+l(v)] + bk

∫ t

0

e−4νπ
2k2(t−s)l(v(s))e−

∫ t
s [2πkvi+l(v)]ds (3.3.43)

with

|e−
∫ t
0 2πkvi| = |e−

∫ t
s 2πkvi| = 1

e−4νπ
2k2(t−s) ≤ 1∫ t

0

l(v(s))e−
∫ t
s l(v)ds = 1− e−

∫ t
0 l(v). (3.3.44)
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Thus, we obtain:

|ak(t)| ≤ |ak0|e−4νπ
2k2te−

∫ t
0 l(v) + |bk|(1− e−

∫ t
0 l(v)) (3.3.45)

and we get lim supt→∞ |ak(t)| ≤ |bk|.

Using Theorem 3.2.6 together with
∮
Tf =

∑
k∈IZ∗

ak(t)c̄k, we get

lim sup
t→∞

|v(t)| ≤ 1

G0

lim sup
t7→∞

|
∮
T (t, ·)f(·)|+H0

lim sup
t→∞

|w(t)| ≤ G∗0H0 +

(
1 +

G∗0
G0

)
‖f‖ lim sup

t7→∞
‖T‖ ∈ IR.

From this upper bounded for the velocity, we also have L0 the upper bound for the

continuous positive function l(v) and using Part (ii) from Theorem 3.2.6 we conclude.

We note from the above result, we have always the upper bound for ‖T‖ and

from Theorem 3.2.6 for the velocity. Therefore we can consider L0 the upper bound for

the continuous positive function l(v), we note by L0 = lim supt→∞ l(v) and we prove in

Proposition 3.3.2 the bound of solutions to show the influence of diffusion coefficient ν.

Proposition 3.3.2 Under the above notations, for every solution of the system (2.2.5),

(w, v, T ), and for every k ∈ IZ∗ we have

lim sup
t→∞

|ak(t)| ≤ Lkν |bk|, with Lkν =
L0

4νπ2k2 + l0
in particular (3.3.46)

lim sup
t→∞

‖T (t, .)‖ ≤ L0

4νπ2 + l0
‖Ta‖.

Moreover, if ν 6= 0 we have that

‖T‖2
Ḣm+2
per
≤ L0

4νπ2
‖Ta‖2Ḣm

per
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lim sup
t→∞

|v(t)| ≤ I0
G0

+H0, with I0 =
L0

4νπ2 + l0

∑
k∈IZ∗
|bk||ck| (3.3.47)

and G0 positive constant such that G(v) ≥ G0.

lim sup
t→∞

|w(t)| ≤ G∗0H0 + 2I0, with I0 =
L0

4νπ2 + l0

∑
k∈IZ∗
|bk||ck| and G∗0 = lim sup

t→∞
G(v(t)).

(3.3.48)

Proof. Using again

ak(t) = ak0e
−4νπ2k2te−

∫ t
0 [2πkvi+l(v)] + bk

∫ t

0

e−4νπ
2k2(t−s)l(v(s))e−

∫ t
s [2πkvi+l(v)]ds (3.3.49)

if we assume that 0 < l0 ≤ l(v) ≤ L0 then we obtain

|ak(t)| ≤ |ak0|e−(4νπ
2k2+l0)t + |bk|L0

∫ t

0

e−4(νπ
2k2+l0)(t−s)

and we get

|ak(t)| ≤
(
|ak0| −

L0

4νπ2k2 + l0
|bk|
)

+

e−(4νπ
2k2+l0)t +

L0

4νπ2k2 + l0
|bk| (3.3.50)

this is if |ak0| ≤ L0

4νπ2k2+l0
|bk| then |ak(t)| ≤ L0

4νπ2k2+l0
|bk|.

In particular |ak(t)| ≤ L0

4νπ2k2+l0
|bk| ≤ L0

4νπ2+l0
|bk| for every k ∈ IZ∗ and also |ak(t)| ≤

L0

4νπ2k2+l0
|bk| ≤ L0

4νπ2k2
|bk|, i.e., k2|ak(t)| ≤ L0

4νπ2 |bk|.

Then, we also have that

‖T‖2
Ḣm+2
per
≤

∞∑
|k|=1

|k|2m+4|ak(t)| ≤
L0

4νπ2

∞∑
|k|=1

|k|2m|bk| ≤
L0

4νπ2
‖Ta‖2Ḣm

per
.

Finally, we note that if L0 = lim supt→∞ l(v(t)) then given δ > 0 there exits

t0 such that L(v(t)) ≤ L0 + δ for every t ≥ t0 and integrating in t ≥ t0 we obtain
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lim supt→∞ |ak(t)| ≤ L0

4νπ2k2+l0
|bk|+ δ, for any δ > 0 and

‖T‖2
Ḣm
per
≤ ‖T‖2

Ḣm+2
per
≤ L0

4νπ2
‖Ta‖2Ḣm

per
.

Using again Theorem 3.2.6 we conclude.

We note if ν = 0 then |ak| ≤ |bk| ≤ L0

l0
|bk|. If ν > 0 we observe in the numerical

experiments, as ν is bigger, the solution becomes stable or periodic.

As a consequence, we have the following result on the smoothness of the attractor

of (2.2.5).

Corollary 3.3.3 (i) If |ak0| ≤ L0

4νπ2k2+l0
|bk|, then |ak(t)| ≤ L0

4νπ2k2+l0
|bk| for every t ≥ 0.

(ii) If A is the global attractor in the space Y = IR2 × Ḣ1
per(0, 1), then for every

(w0, v0, T0) ∈ A, with T0(x) =
∑

k∈IZ∗ ake
2πkix we get,

|ak| ≤
L0

4νπ2k2 + l0
|bk|, k ∈ IZ∗. (3.3.51)

In particular, if Ta ∈ Ḣm
per(0, 1) with m ≥ 1, the global attractor A ↪→ IR2 × Ḣm+2

per (0, 1)

and is compact in this space.

Proof. (i) From (3.3.50) we have |ak(t)| ≤ L0

4νπ2k2+l0
|bk|+ (|ak0| − L0

4νπ2k2+l0
|bk|)+e−

∫ t
0 l(v)

therefore, if |ak0| ≤ L0

4νπ2k2+l0
|bk| then |ak(t)| ≤ L0

4νπ2k2+l0
|bk| for every t ≥ 0 and k ∈ IZ∗.

(ii) We note from i) if Ta(x) =
∑

k∈IZ∗ bke
2πkix ∈ Ḣm

per, then

∑
k∈IZ∗

k2m|bk|2 <∞

and therefore

T0 ∈ C = {R(x) =
∑
k∈IZ∗

rke
2πkix ∈ Ḣm+2

per , 4νπ2k2|rk| ≤ |bk|}
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This is A ⊂ [−M,M ] × [−N,N ] × C where M,N are the upper bounds for acceleration

and velocity as given in (3.3.48) and (3.3.47). But the set C is compact in Ḣm+2
per since for

any sequence {T n} in C we can extract a subsequence that we still denote {T n} such that

it converges weakly to a function T and such that for any k ∈ IZ∗, the Fourier coefficients

verify ank → ak as n → ∞, where ak is the kth Fourier coefficient of T . Therefore,

4νπ2k2|ak| ≤ |bk| and for every integer E,

‖T n − T‖2m+2 ≤
E∑
|k|=1

|k|2m+4|ank − ak|2 + C0

∞∑
|k|=E+1

|k|2m+4|k|2m|bk|2

where ‖.‖m+2 denote the norm in Ḣm+2
per . Hence the first term goes to zero as n → ∞

and the second term can be made arbitrarily small as E →∞. Consequently, T ∈ C and

T n → T in Ḣm+2
per and the result follows.

Note that this result reveals in particular the asymptotic smoothing of (2.2.5). In

the next result we will prove that the dynamical system induced by (3.2.1) in the phase

space Y = IR2× Ḣm
per(0, 1), m ≥ 1 has an inertial manifold. According to [20] we have the

following definition.

Definition 3.3.1 Let S(t), t ≥ 0, be a nonlinear semigroup in a Banach space in Y that

has a global attractor A. Then a smooth manifold M⊂ Y is called an inertial manifold if

(i)M is positively invariant, i.e., S(t)M⊂M for every t ≥ 0;

(ii)M contains the attractor, i.e., A ⊂M and

(iii)M is exponentially attracting in the sense that there exists a constant δ > 0 such

that for every bounded set B ⊂ Y there exists C = C(B) ≥ 0 such that

dist(S(t)B,M) ≤ Ce−δt (3.3.52)
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for every t ≥ 0.

See, for example, [20] and [47].

Assume the ambient temperature given by

Ta(x) =
∑
k∈K

bke
2πkix ∈ Ḣm

per(0, 1) (3.3.53)

where K ⊂ IZ i.e., with bk 6= 0 for every k ∈ K ⊂ IZ with 0 /∈ K, since
∮
Ta = 0.

Then we denote by Vm the closed linear subspace of Ḣm
per(0, 1) spanned by {e2πkix, k ∈

K} and consider the following spectral decomposition in Ḣm
per(0, 1) : T = T 1 + T 2, where

T 1 denotes the projection of T onto V and T 2 the projection onto the space generated by

{e2πkix, k /∈ K}. Note that (3.2.1) is equivalent to

ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
(T 1 + T 2)f, v(0) = v0,

dv
dt

(0) = w0

∂T 1

∂t
+ v

∂T 1

∂x
= l(v)(Ta − T 1) + ν ∂

2T 1

∂x2
, T 1(0, x) = T 1

0 (x)

∂T 2

∂t
+ v

∂T 2

∂x
= −l(v)T 2 + ν ∂

2T 2

∂x2
, T 2(0, x) = T 2

0 (x).

(3.3.54)

Note that from (3.3.38) if bk = 0 then the kth mode for the temperature is damped

out exponentially and therefore the space V attracts the dynamics for the temperature.

This is precisely stated in the following result.

Theorem 3.3.4 Assume that Ta ∈ Ḣm
per(0, 1) and f ∈ L̇2

per(0, 1). Then the set M =

IR2 × Vm is an inertial manifold for the flow of S(t)(w0, v0, T0) = (w(t), v(t), T (t)) in

the space Y = IR2 × Ḣm
per(0, 1). Moreover, if f ∈ Vm the inertial manifold M has the

exponential tracking property, i.e., for every (w0, v0, T0) ∈ IR2 × Ḣm
per(0, 1) there exits

(w1, v1, T1) ∈M such that if (wi(t), vi(t), Ti(t)), i = 0, 1, are the corresponding solutions of
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(3.2.1), then (w0(t), v0(t), T0(t))−(w1(t), v1(t), T1(t))→ 0 in IR2×Ḣm
per(0, 1). In particular

if K is a finite set, the dimension of M is |K|+ 2, where |K| is the number of elements

in K.

Proof. In order to prove that M is invariant, we note if k /∈ K then bk = 0 and

therefore ak0 = 0, (T 2
0 = 0) from (3.3.45), we get that ak(t) = 0 for every t, i.e., T (t, x) =∑

k∈K ak(t)e
2πkix = T 1. Thus, if (w0, v0, T0) ∈M, then (w(t), v(t), T (t)) ∈M for every t,

i.e., invariant manifold.

We consider the decomposition in Ḣm
per, T = T 1 +T 2, where T 1 is the projection of

T on Vm and T 2 is the projection of T on the subspace generated by {e2πkix, k ∈ IZ∗ \K}

i.e., T 1 =
∑

k∈K ake
2πkix and T 2 =

∑
k∈IZ∗\K ake

2πkix = T − T 1.

From (3.3.50) taking into account that bk = 0 for k ∈ IZ∗ \ K, we have that

|ak(t)| ≤ |ak0|e−(4νπ
2k2+l0)t for every k ∈ IZ∗ implies that there exist positive constants

Ci, such that ‖T 2(t)‖Ḣ2m
per
≤ C1‖T 2(t)‖Ḣm

per
≤ C2‖T 2

0 ‖Ḣm
per
e−(4νπ

2+l0)t i.e., T 2(t) → 0 in

Ḣ2m
per(0, 1) if t→∞.

Therefore, we have in particular that ‖T 2(t)‖Ḣm
per
→ 0 as t → ∞ with exponen-

tial decay rate e−(4νπ
2+l0)t. Thus M also attracts (w(t), v(t), T (t)) with exponential rate

e−4νπ
2t, since

distY((w(t), v(t), T (t)),M) = distḢm
per

(T (t), V ) = ‖T 2(t)‖Ḣm
per
≤ C2‖T 2

0 ‖Ḣm
per
e−(4νπ

2+l0)t.

To prove the exponential tracking property just note that the flow inside M is

given by setting T 2 = 0 this is
∮
T (x) · f =

∑
k∈K ak(t) · c−k i.e.,
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

ẇ +
1

ε
w +

1

ε
G(v)v = 1

ε

∑
k∈K ak(t) · c−k

v̇ = w

ȧk(t) + (2πkvi+ 4νπ2k2 + l(v))ak(t) = l(v)bk, k ∈ K

ak = 0, k /∈ K.

(3.3.55)

Therefore, if f ∈ V, then
∮
Tf =

∮
T1f and given (w0, v0, T0) ∈ Y and (w(t), v(t), T (t))

the solution of (3.3.54), we decompose T0 = T 1
0 +T 2

0 and T (t) = T 1(t)+T 2(t). Then we con-

sider (w(t), v(t), T 1(t)) ∈M and it is still a solution of (3.3.55). Hence (w(t), v(t), T (t))−

(w(t), v(t), T 1(t)) = (0, 0, T 2(t)) and the right-hand side is of order e−(4νπ
2+l0)t. In partic-

ular, if the set K is finite, then the inertial manifoldM is of finite dimension and the flow

inside is equivalent to the finite system of ODEs given by (3.3.55). Thus the theorem is

proved.

3.3.2 The reduced subsystem

Under the hypotheses and notations of Theorem 3.3.4, we suppose that

f(x) =
∑
k∈J

cke
2πkix, (3.3.56)

with ck 6= 0 for every k ∈ J ⊂ IZ. Then
∮

(T · f) =
∑

k∈K∩J ak(t)c−k. So, the evolution

of velocity v and acceleration w depend only on the coefficients of T which belong to the

set K ∩ J . Note that in (3.3.55) the set of equations for ak with k ∈ K ∩ J together with

the equation for v and w, is a subsystem of coupled equations denoted by the reduced

subsystem.
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Thus, we will reduce the asymptotic behavior of the initial system (2.2.5) to the

dynamics of the reduced explicit system (3.3.57) when we consider the relevant modes of

temperature ak, k ∈ K ∩ J.



dw

dt
+

1

ε
w +

1

ε
G(v)v =

1

ε

∑
k∈(k∩J)

ak(t)c−k, w(0) = w0

dv
dt

= w, v(0) = v0

ȧk(t) + (2πkvi+ 4νπ2k2 + l(v))ak(t) = l(v)bk, ak(0) = ak0.

(3.3.57)

where a−k = āk, b−k = b̄k and c−k = c̄k as we consider only the real functions. After

solving this, we must solve the equations for k /∈ K ∩ J which are linear autonomous

equations.

Now, we will show the modes in k ∈ K ∩ J will play an essential role in the

dynamics. With the above notations we further decompose T1 as follows:

T1 = τ + θ,

where τ is the projection onto the space generated by {e2πkix, k ∈ K ∩ J} and θ is the

projection onto the space generated by {e2πkx, k ∈ K \J}. We denote by P the projection

P (w, v, T ) = (w, v, τ) and Q = I − P. With these notations and decomposing Ta as

Ta = τTa + θTa , (3.2.1) and (3.3.54) can be decomposed as a system of the form
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

dw

dt
+

1

ε
w = −1

ε
G(v)v + 1

ε

∮
(τ + T2)f, w(0) = w0

dv
dt

= w, v(0) = v0

∂τ

∂t
+ v

∂τ

∂x
= l(v)(τTa − τ) + ν ∂

2τ
∂x2
, τ(0, x) = (T0)τ (x)

∂θ

∂t
+ v

∂θ

∂x
= l(v)(θTa − θ) + ν ∂

2θ
∂x2
, θ(0, x) = (T0)θ(x)

∂T 2

∂t
+ v

∂T 2

∂x
= −l(v)T 2 + ν ∂

2T 2

∂x2
, T 2(0, x) = T 2

0 (x).

(3.3.58)

Since
∮
θf = 0 and setting T2 = 0, the first four equations give the flow inside the

inertial manifold M, i.e., they are equivalent to (3.3.54) while the first three are the

only nonlinearity coupled equations. Therefore, once this subsystem is solved, the other

unknowns are determined through linear nonhomogeneous equations.

To make this idea more precise in terms of semigroup and attractors, we proceed

as in [53]. We denote by S(t) the semigroup generated by (3.2.1) on Y := IR2 × Ḣ1
per(0, 1)

and by SM(t) its restriction to the inertial manifold M, i.e., the semigroup generated by

(3.3.59).

dw

dt
+

1

ε
w = −1

ε
G(v)v + 1

ε

∮
T 1f, w(0) = w0

dv
dt

= w, v(0) = v0

∂T 1

∂t
+ v

∂T 1

∂x
= l(v)(Ta − T 1) + ν ∂

2T 1

∂x2
, T 1(0, x) = T 1

0 (x)

∂T 2

∂t
+ v

∂T 2

∂x
= −l(v)T 2 + ν ∂

2T 2

∂x2
, T 2(0, x) = T 2

0 (x)

T 2 = 0.

(3.3.59)

We will find a reduced semigroup on the reduced space YR := P (Y), denoted SR(t),

that, in a sense, determines the asymptotic behavior of SM(t) and therefore that of S(t).
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Note that S(t) and SM(t) have the same attractor, while the dimension of the space YR

might be much smaller than that of M. The next result states, in particular, that the

attractor of the full system can be reconstructed from the attractor of the reduced one.

Proposition 3.3.5 With the notation above we have the following conditions.

(i) The system of equations
dw

dt
+

1

ε
w +

1

ε
G(v)v = 1

ε

∮
(τ + T2)f, w(0) = w0

dv
dt

= w, v(0) = v0
∂τ

∂t
+ v

∂τ

∂x
= l(v)(τTa − τ) + ν ∂

2τ
∂x2
, τ(0, x) = (T0)τ (x).

(3.3.60)

defines a nonlinear semigroup, denoted SR(t), on YR := P (Y) that can be identified with

PSM(t)P = PSM(t) restricted to YR.

(ii) If A denotes the maximal attractor of (3.2.1), then AR = P (A) is the maximal

attractor of (3.3.60). Moreover

A = G(AR)

where G : AR 7→ A is continuous.

(iii) If the set K ∩ J is finite, (3.3.60) is equivalent to a system of complex ODEs

of the form (3.3.57). Consequently, the asymptotic behavior of (3.2.1) is described by an

explicit system of ODEs in IRN with N = |K ∩ J | + 2 an even number. In particular, if

K ∩ J = ∅, l(v) = l0 and G(v) = G0 for every (w0, v0, T0) ∈ IR2 × Ḣ1
per(0, 1) we have that

the associated solution verifies v(t)→ 0 and T (t)→ θ∞ in Ḣ1
per(0, 1), where θ∞(x) is the

unique solution in Ḣ2
per(0, 1) of the equation

−ν ∂
2θ∞
∂x2

+ l0θ∞ = l0Ta. (3.3.61)

Moreover, if ν = 0, we get v(t)→ 0 and T (t)→ Ta.
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Proof. (i) Working as above, we prove the semigroups SM(t) and SR(t) are well defined

and prove the existence of attractor AR. Using the techniques of [50] we can work as in

[53] to prove (ii). Then (iii) we note that 0 /∈ K ∩J and since K = −K and J = −J then

the set K ∩ J is a symmetric set and has an even number of elements that we denote by

2n0. Therefore the number of the positive elements of K ∩ J , (K ∩ J)+, is n0.

Note that
∮
T · f =

∑
k∈IZ∗ ak(t)c̄k =

∑
k∈K∩J ak(t).c−k. Thus, the dynamics of the

system depends only on the coefficients in K ∩ J. Moreover the equations for a−k are

conjugates of the equations for ak and therefore we have that

∑
k∈K∩J

ak(t)c−k = 2Re

 ∑
k∈(K∩J)+

ak(t)c−k

 .

Taking real and imaginary parts of ak, k ∈ (K ∩ J)+, i.e., employing real variables,

ak = xk + iyk, we have a system in IRN with N = 2n0 + 2.

If K ∩ J = ∅, then from the equation for the velocity

ε
d2v

dt2
+
dv

dt
+G0v = 0

we have

lim
t→∞

v(t) = 0 (3.3.62)

Moreover from the equation for the temperature in (2.2.5) we have that the function

θ = T − θ∞ satisfies the equation:

∂θ

∂t
+ v

∂θ

∂x
= −v∂θ∞

∂x
+ ν

∂2θ

∂x2
− l0θ. (3.3.63)
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We can multiply by θ in L̇2
per(0, 1) and taking into account that

∮
∂θ
∂x
θ = 1

2

∮ ∂(θ2)
∂x

= 0,

since θ is periodic, we have

1

2

d

dt
‖θ‖2 + ν‖∂θ

∂x
‖2 = −v

∮
∂(θ∞)

∂x
θ −

∮
l0θ

2 (3.3.64)

and using Cauchy-Schwarz and Young inequality with δ, Cδ = 1
4δ

and then Poincaré

inequality, since
∮
θ = 0, together with −l0

∮
θ2 ≤ 0 we have that

1

2

d

dt
‖θ‖2 + (νπ2 + l0)‖θ‖2 ≤ |v|(Cδ‖

∂θ∞
∂x
‖2 + δ‖θ‖2) (3.3.65)

Next, using v(t)→ 0 we prove that θ(t)→ 0 in L̇2
per(0, 1).

Now, we multiply the equation (3.3.63) by − ∂2θ
∂x2

in L̇2
per. Integrating by parts,

applying Young inequality and taking into account again that
∮

∂θ
∂x

∂2θ
∂x2

= 0 since ∂θ
∂x

is

periodic, together with −l0
∮
θ(− ∂2θ

∂x2
) = −l0

∮
( ∂θ
∂x

)2 ≤ 0, we obtain that

1

2

d

dt
‖∂θ
∂x
‖2 + ν‖∂

2θ

∂x2
‖2 ≤ |v|

(
Cδ‖

∂θ∞
∂x
‖2 + δ‖∂

2θ

∂x2
‖2
)

(3.3.66)

for every δ > 0 with Cδ = 1
4δ

. Thus, working as above and taking into account that

|v(t)| → 0 we get ∂θ
∂x

(t)→ 0 in L̇2
per(0, 1), i.e., θ → 0 ∈ Ḣ1

per(0, 1).

Next, we pay attention to the other modes for the temperature ak where k /∈ (K ∩

J). Also, note that these modes are determined as solution of the linear nonhomogeneous

equations

ȧk(t) + (2πkvi+ 4νπ2k2 + l(v))ak(t) = l(v)bk, k /∈ (K ∩ J) (3.3.67)
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with initial data ak(0) ∈ C. Therefore we call these the slave modes.

We will show in the next Proposition 3.3.6 that the dynamics of these modes are

completely determined by the solution of (3.3.57), in the sense that the solution will have

only one asymptotic behavior as time goes to infinity.

Proposition 3.3.6 Assume {(w(t), v(t), ak(t)), k ∈ K ∩ J}, is a solution of (3.3.57).

Then for any k /∈ (K ∩ J) there exists a solution of (3.3.67), denoted a∗k(t), such that

|a∗k(t)| ≤ |bk| for every t ≥ 0 and for any other solution of (3.3.67),

|ak(t)− a∗k(t)| → 0

at an exponential rate independent of k, as t→∞. Moreover, if k /∈ K, i.e., if bk = 0, then

a∗k(t) = 0, i.e., this subset of the slave mode is damped out exponentially. In particular,

if {(w(t), v(t), ak(t)), k ∈ K ∩ J}, is a stationary or periodic (respectively, quasiperiodic,

almost periodic) solution, then a∗k(t) can be chosen such that it is stationary or periodic

with the same period (respectively, quasiperiodic, almost periodic with a set of frequencies

contained in those of v(t)).

Proof. Define |a∗k(t)| as a solution of (3.3.67) with an initial condition satisfying |a∗k(t)| ≤

|bk|. In particular, if k /∈ K, i.e., if bk = 0, then |a∗k(t)| = 0. Then for any other solution

of (3.3.67) zk = ak(t)− a∗k(t) satisfies the homogeneous equation

żk + [2πkiv + 4νπ2k2 + l(v)]zk = 0

and |zk(t)| ≤ |zk(0)|e−
∫ t
0 [2πkiv+4νπ2k2+l(v)] which proves the statement.

If the solution of (3.3.57) is stationary, i.e., independent of time, then we choose

a∗k(t) to be the solution of (2πkvi+ 4νπ2k2 + l(v))ak(t) = l(v)bk and the result follows.
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If {(w(t), v(t), ak(t)), k ∈ K ∩ J} is a periodic solution of (3.3.57), then since the

a∗k(t) are the solutions of linear scalar differential equations of the form ẋ(t) +A(t)x(t) =

f(t), with A(t) and f(t) period of the same period and the homogeneous equation is

stable, the result follows from Fredholm’s alternative. For the quasiperiodic or almost

periodic case, the result follows from Theorem 6.6 in [19].

Remark 3.3.1 Taking real and imaginary parts of ak, bk and ck as

ak(t) = ak1(t) + iak2(t), bk = bk1 + ibk2, ck = ck1 + ick2,

the asymptotic behavior of the system (2.2.5) is given by a reduced explicit system in IRN ,

where N = 2n0 + 2, given by



dw

dt
+

1

ε
w +

1

ε
G(v)v(t) = 1

ε
2
∑

k∈(k∩J)+ [ak2(t)ck2 − ak1(t)ck1]

dv
dt

= w

ȧk1(t) + [l(v) + 4π2k2νak1(t)− 2πkv(t)ak2(t)] = l(v)bk1, k ∈ (K ∩ J)+

ȧk2(t) + [l(v) + 2πkv(t)ak1(t) + 4π2k2νak2(t)] = l(v)bk2, k ∈ (K ∩ J)+

(3.3.68)

where a−k = āk, b−k = b̄k and c−k = c̄k.

Observe that from the analysis above, it is possible to design the geometry of circuit

and/or the external heating by properly choosing the functions f and/or the heat flux l

and the ambient temperature Ta so that the resulting system has an arbitrary number of

equations of the form N = 2n+ 2.

Note that the set K ∩ J can be much smaller than the set K and therefore the

reduced subsystem may possess far fewer degrees of freedom than the system on the inertial

manifold. Also note that it may be the case that K and J are infinite sets, but their
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intersection is finite. Also, for a circular circuit we have f(x) ∼ asin(x) + bcos(x), i.e.,

J = {±1} and then K∩J is either {±1} or the empty set. Also, if in the original variables

for (2.2.5) Ta is constant, we get K ∩ J = ∅ for any choice of f .

The physical and mathematical implications of the resulting system of ODEs which

describe the dynamics at the inertial manifold need to be analyzed numerically. The role

of the parameter ε which contains the viscoelastic information of the fluid deserves special

attention and will be the aim of the next section.

3.4 Numerical experiments

In this section we describe the results of the numerical experiments obtained using

the MATHEMATICA package [61] for the resolution of the differential equations, using a

fourth-order explicit Runge-Kutta method for stiff equations following the method used

in previous works [23, 27]. We will solve a system of ordinary differential equations which

are the projection of the partial differential equations (2.2.5) on the inertial manifold

derived in the preceding sections. All the variables and equations that we deal with are

adimensional. As the systems is multidimensional, we present the results in temporal

graphs (a given variable vs time) and phase-space graphs (two physical variables plot

against each other).

Specifically, we are integrating the system of equations (3.3.57) where we consider

only the coefficients of temperature ak(t) with k ∈ K ∩ J (relevant modes). Then,
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dw
dt

+ w
ε

+ G(v)v(t)
ε

= 2
ε
Real

(∑
k∈K∩J ak(t)c−k

)
dv
dt

= w

ȧk(t) + ak(t)(2πkiv + ν4π2k2 + l(v)) = l(v)bk

where a−k = āk, b−k = b̄k and c−k = c̄k since all the physical observable are real

functions. In particular, we will consider a thermosyphon with a circular geometry, so

J = {±1} and K ∩ J = {±1}. Consequently, we take k = 1 and omit the equation for

k = −1. Hence,



dw
dt

= 2a1c−1

ε
− w

ε
− G(v)v(t)

ε
,

dv
dt

= w,

ȧ1(t) + a1(t)(2πiv + ν4π2 + l(v)) = l(v)b1

where the unknowns are w(t) (the acceleration of the fluid), v(t) (velocity of the fluid)

and a1(t) (the Fourier mode of the temperature). More complex geometries will result in

higher dimensional dynamics on the inertial manifold.

In order to reduce the number of parameters we make the change of variables

a1c−1 → a1 and then we define the real and imaginary parts of the equations in the

following way:

a1(t) = a1(t) + ia2(t), (3.4.69)

b1 = A+ iB (3.4.70)

with A ∈ IR,B ∈ IR. Therefore, our central results correspond to the system of equations



Numerical experiments 65



dw
dt

= 2a1

ε
− w

ε
− G(v)v(t)

ε
,

v̇ = w,

ȧ1 = l(v)A− l(v)a1(t)− ν4π2a1 + v2πa2,

ȧ2 = l(v)B − l(v)a2(t)− ν4π2a2 − v2πa1

(3.4.71)

Note that it is a system of four equations with four unknowns where we need to

make explicit choices for the constitutive laws for both the fluid-mechanical and thermal

properties. Thus, for the friction law G(v) and l(v) the function associated to heat flux,

we will take the ones used in the references [23, 27]. For the numerical experiments, which

are of a similar model of thermosyphon for a fluid with one component, they use the

functions G(v) = (|v| + 10−4) and l(v) = (10−2|v| + 1). The function G(v) has a clear

physical meaning; it interpolates between a low Reynolds number friction law (in which

the overall friction G(v)v is linear (Stokes friction law) and high Reynolds number (in

which the friction is a quadratic law).

Besides, A and B refer in this model to the position-dependant (x) ambient tem-

perature inside the loop and will be used as tuning parameters. Without loss of generality,

we will assume A = 0 in order to simplify in analogy with the Lorenz’s model as it is

shown in references [23, 27] (changing A and B simultaneously only results in a change

in the phase of initial temperature profile).

We have carried out two different sets of numerical experiments with regard to heat

diffusion. The first numerical experiments are carried out keeping the heat diffusion to
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zero as it was done in [52]. And the second numerical experiments are performed with

heat diffusion. The initial conditions are fixed as w(0) = 0, v(0) = 0, a1(0) = 1, a2(0) = 1.

This split would appear naive as diffusion tends to smooth the solution, however, as the

order of the equations changes in the presence of diffusion (from first to second order due

to the Laplazian) it is worth studying both cases separately.

Numerical analysis has been carried out keeping ε the viscoelastic coefficient as the

tuning parameter ranging from 10−4 to 102 and B associated to the ambient temperature

also as a tuning parameter ranging from 1 to 104. The impact of ε on the system has been

keenly observed for various intervals of time t, as short as 50 time units and as long as 5000

time units. We will show that in analogy with the classical Lorenz system, as ε varies, the

dynamics of the model undergoes various transformations including steady asymptotic

behavior, meta-stable chaos, i.e., transient irregular behavior followed by convergence to

equilibria, periodic behaviors and chaotic progressions.
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Figure 3.1: The chaotic progress of the acceleration for ε = 10, B = 50, ν = 0
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Figure 3.2: The inconsistent behavior of velocity for ε = 10, B = 50, ν = 0

3.4.1 Dynamics of the thermosyphon without diffusion (ν = 0)

In this section we summarize some of the outcomes of the model equations. As we have

mentioned above, this behavior is highly sensitive to the choice of parameters. Thus, we

present those results in different subsections accounting for the most relevant signature

for each set of numerical experiments.

Chaotic behavior of the model (ν = 0) for large values of ε

The simulations of the numerical experiments done for large values of ε, for instance ε

ranging from 2 to 1000, show that the system exhibits chaotic behavior. For all the values

of heat flux B, starting from 1 to 104, this chaotic behavior is observed (see Table 3.2).

In Fig. 3.1 we show a time graph of the acceleration for a large value of the

viscoelastic parameter, ε = 10. The acceleration ranges from -3.5 to 3.5. Since the very
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Figure 3.3: A chaotic global attractor of real and complex temperature for ε = 10, B =

50, ν = 0

beginning, it displays a chaotic behavior. The curve is not very erratic although it does

not show any sort of periodicity. As velocity is the time integral of acceleration, in Fig.

3.2, the curve does not present abrupt changes close to some maxima and minima, but

the non-periodic features are also captured by this observable.

In Fig. 3.3 we show a phase-diagram plot for the real and imaginary parts of the

temperature. As expected, it also exhibits a non-periodic pattern in which the trajectory

in this phase-plane moves inwards and outwards the graph. This graph illustrates the

complex underlying dynamics of the attractor (of which Fig. 3.3 is a two-dimensional

projection).

This sort of behavior remains similar for other values of B as long as the viscoelastic
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parameter takes values larger than unity values as summarized in Table 3.2. In other

words, the elastic effects introduce a memory effect in the dynamics which avoids the

system to fully stabilize but, rather, viscoelasticity sustains the chaotic pattern. This

memory effect can be understood from equation (2.2.3).

To sum up this section, large values of the viscoelastic parameter, ε = 10, result on

sustained chaotic behaviors. The dynamics becomes more complex, characterized in all

the cases by periods of chaos and of violent oscillations, giving an idea of the complexity of

the solutions of the system under these variables. In the detailed analysis of the evolution

of the acceleration, velocity and temperature, we say that the chaotic behavior of the

system reveals the chaotic nature of the viscoelastic fluids.

10 20 30 40 50
time

-0.0005
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Figure 3.4: The stabilizing progress of the acceleration for ε = 0.1, B = 100, ν = 0
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Figure 3.5: Velocity stabilizes at 3.19981 for ε = 0.1, B = 100, ν = 0

Transient irregular behavior followed by stable behavior for ε = 0.1 to 1

For values of ε ranging from 0.1 to 1 the system tends towards a stable fixed point,

although it is still chaotic in the initial stages. This transient irregular behavior followed

by equilibrium is shown in Figs. 3.4-3.6.

The general behavior of the acceleration is that it has a chaotic outburst in the initial

stages but, as time progresses, it tends to stabilize, attaining equilibria. The velocity too,

in the initial stages, when the time period is less than 20 units, is very inconsistent and at

times unpredictable. But as the time progresses, velocity converges to a stable fixed point.

Interestingly, this fixed point for the velocity is not trivial (v 6= 0) but, on the contrary, it

depends strongly on the choice of the parameters. Specifically, in Table 3.1 we summarize

this asymptotic value. Physically, this means that the fluid inside the thermosyphon moves

at a sustained velocity and in the same direction over time. This stage could be identified

by the existence of convective rolls in a fully spatially extended system.
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B ε = 1 ε = 0.1

1 0.6718 0.6718

10 1.4723 1.4723

20 1.8601 1.8601

30 2.1325 2.1325

40 2.3495 2.3495

50 2.5329 2.5329

100 3.1998 3.1998

1000 6.9800 6.9800

10000 15.430 15.430

Table 3.1: Equilibrium values of velocity for different values of ambient temperature B, ν =

0

It is worth noting in Table 3.1 that both columns have the same value for the

asymptotic velocity. This is a signature that viscoelastic effects do not play any role in

this case (so memory effects are damped out after the early chaotic transient).

A comment regarding Table 3.1 concerns the role of the parameter B. Roughly,

B accounts for the scale of temperature gradients inside the thermosyphon. These re-

sults suggest that higher temperature gradients produce higher values of the sustained

stationary velocity. Actually, as shown in Fig. 3.6, the equilibrium velocity scales with B

non-trivially (as a power law with exponent 1/3 approximately).

To sum up this section, we conclude that although the system has a chaotic initial

transient, it tends to stabilize at longer times reaching a temperature gradient dependent
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Figure 3.6: Equilibrium velocity scale for the ambient temperature B, ν = 0

equilibrium velocity. Notwithstanding, this asymptotic velocity depends non-trivially on

temperature as a power law, being this a signature of the underlying non-linearity of the

equations.
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Figure 3.7: The periodic progress of the acceleration for ε = 0.001, B = 40, ν = 0



Numerical experiments 73

10 20 30 40 50
time

-3

-2

-1

1

2

3

velocity
VELOCITY

Figure 3.8: The periodic progress of velocity for ε = 0.001, B = 30, ν = 0

Transition to periodic pattern of behaviors for small values of ε

When the viscoelastic effects are gradually less important (values of ε between 0.01−

0.0001), the system exhibits different behaviors as a function of the temperature gradient

(see Table 3.2 at the end of this section). For lower values of B, the system behaves in a

similar fashion as for higher values of ε. On the contrary, for larger values of B, the system

displays a periodic pattern (see Fig. 3.7). As in the previous case, both long-term behaviors

may be preceded by an initial chaotic transient (probably caused by viscoelasticity).

To illustrate this, in Fig. 3.8 we show a periodic (non trivial) behavior for ε = 0.001.

In some cases, the initial transient cannot be distinguished from the periodic one and we

refer it simply to periodic type in Table 3.2.

In Fig. 3.9 we show the phase-space of the complex components of the temperature.

Although at first sight it resembles a typical chaotic attractor motif, after the mentioned
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Figure 3.9: The chaotic but periodic plot of real and complex temperature for ε =

0.0001, B = 40, ν = 0

initial transient, the trajectories are overlapped for longer times.

Thus, in order to summarize the information covered in the last three subsections,

we collect all the outcomes of the model in Table 3.2.

3.4.2 Dynamics of the thermosyphon with diffusion (ν 6= 0)

In this case, to avoid unnecessary repetitions in the text, we focus on the main differ-

ences between this case and that of the previous case.

Thus, in this second set of numerical experiments we introduce a non-zero value

for the thermal diffusivity, ν. The role of diffusion is to reduce temperature gradients.
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B/ε 10−4 10−3 10−2 10−1 100 101 102

1 CS CS CS CS CS C C

10 CS CS CS CS CS C C

20 CS CS CS CS CS C C

30 CP CP CP CS CS C C

40 CP CP CP CS CS C C

50 CP CP CP CS CS C C

100 P P CP CS CS C C

1000 CP CP CP CS CS C C

10000 CP CP CP CS CS C C

Table 3.2: Behavior of the solutions without diffusion (ν = 0) for different values of the

viscoelastic characteristic time, ε (rows) and the ambient temperature, B (columns). We

introduce the following notation to account for the obtained numerical results: ‘C’ denotes

a fully chaotic behavior, ‘CS’ a transition from chaotic outburst to stable equilibria, ‘P’

a stable periodic orbit and ‘CP’ a transitional behavior from chaotic to periodic.

This can be seen in a hand-waving way by realizing that

∂2xT ≡ −∂xJ,

namely, the Laplacian can be understood as the flux of temperature created by a temper-

ature current, J = −∇T . This current is larger in those regions where the temperature

variations are also larger. Thus, the system tends to reduce those differences. As shown

in Table 3.3, the variety of the behaviors is clearly less rich than in the case when ν = 0.

So, here we will only illustrate the most interesting behaviors with two examples:
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Figure 3.10: The stabilizing process of the acceleration for ν = 1, ε = 5, B = 1000

The first one takes the values of heat diffusion ν = 1 with ε = 5 and B = 1000. As shown in

Fig. 3.10 the acceleration performs a series of damped oscillations that eventually stabilize.

Similarly, the second example (Fig. 3.11) takes the values ν = 2, ε = 5 and

B = 1000. The behavior is qualitatively equal but the period of the oscillations is enlarged.

In table 3.3, we summarize the interaction between the tuning parameters.

To sum up this section, we have found that greater values of the heat diffusion, ν,

smoothen the dynamics of the system which, invariably, tends to stabilize, either reaching

an equilibrium steady state or stable periodic orbits. These two behaviors are governed

by the value of the temperature gradient which in a similar fashion as in the previous

case, tends to produce richer behaviors for large values.
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Figure 3.11: The fast stabilization of the acceleration for ν = 2, ε = 5, B = 1000

3.5 Conclusions

In this model a novel system of equations to study the behavior of a viscoelastic ma-

terial inside a thermosyphon is derived. This model serves as a preliminary simplification

of a more complex fully spatially extend system. This model has served to find the pres-

ence/absence of complex chaotic behaviors and also to relate them with the underlying

viscoelastic (memory effects).

The main result is that we are able to prove that the original system (which involves

both ordinary and partial different equations) possesses an inertial manifold in which the

dynamics can be accurately described by a system of ODEs. By numerical integration of

the reduced equations we have been able to better understand the role of viscoelasticity

(as opposed to a simpler Newtonian fluid) through the parameter ε. This parameter is an

adimension version of the so-called Maxwellian viscoelastic time [46] which accounts for
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B/ε 10−4 10−3 10−2 10−1 100 101 102

1 CS CS CS CS CS CS CS

10 CS CS CS CS CS CS CS

20 CS CS CS CS CS CS CS

30 CS CS CS CS CS CS CS

40 P P P CS CS CS CS

50 P P P CS CS CS CS

100 P P P CS CS CS CS

1000 P P P CS CS CS CS

10000 P P P CS CS CS CS

Table 3.3: Behavior of the solutions with diffusion (ν 6= 0) for different values of the

viscoelastic characteristic time, ε (rows) and the ambient temperature, B (columns). We

introduce the following notation to account for the obtained numerical results: ‘C’ denotes

a fully chaotic behavior, ‘CS’ a transition from chaotic outburst to stable equilibria and

‘P’ a periodic orbit.

memory effects.

The results suggest that when the value of ε = 10 (is large) it drives the dynamics to

chaotic behaviors for all the physical observable (acceleration, velocity and temperature).

As the value of ε gradually decreases, the system is no longer chaotic but stable or periodic.

Notably, these results cannot be understood in terms of a boundary layer theory (see the

appendix) as the attractor of the dynamics changes dramatically when the second order

derivative term εd2v/dt2 is introduced in equations 2.2.5.
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Physically, this induction of chaotic behaviors is related to the memory effects

inherent to viscoelastic models. Thus, in the same way as delayed equations are known

to produce chaos, even in the simplest situations, viscoelasticity produces the same kind

of transition (see, for instance [41]).

The other interesting results are related to the effect of heat diffusion. It is found

that as the heat diffusion increases, the system tends to stabilize either to a fixed equilib-

rium point or to a (ν-dependent periodicity) periodic orbit.
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Chapter 4

One component viscoelastic fluids
with a prescribed heat flux

4.1 Introduction

As a reminder of Chapter 2, the derivation of the equations of motion of this model

is similar to that in [39, 56, 59]. The simplest way to incorporate equation (2.2.2) into

equation (2.2.1) is by differentiating equation (2.2.1) with respect to time and replacing

the resulting time derivative of σ with equation (2.2.2). This way to incorporate the

constitutive equation allows to reduce the number of unknowns (remove σ from the system

of equations) at the cost of increasing the order of the time derivatives to second order.

The resulting second order equation is then averaged along the loop section as in [39].

Finally, after adimensionalizing the variables (to reduce the number of free parameters)

arrive at the ODE/PDE system (see section 2.2)
ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
Tf, v(0) = v0,

dv
dt

(0) = w0

∂T

∂t
+ v

∂T

∂x
= h(x) + ν ∂

2T
∂x2

, T (0, x) = T0(x)

(4.1.1)

81
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where v(t) is the velocity, T (t, x) is the distribution of the temperature of the viscoelastic

fluid in the loop, ν is the temperature diffusion coefficient, G(v) is the friction law at the

inner wall of the loop, the function f is the geometry of the loop and the distribution of

gravitational forces, h(x) is the prescribed heat flux and ε is the viscoelastic parameter,

which is the dimensionless version of the viscoelastic time, tV = µ/E. Roughly speaking,

it gives the time scale in which the transition from elastic to fluid-like occurs in the

fluid. Consider G and h are given continuous functions, such that G(v) ≥ G0 > 0 and

h(x) ≥ h0 > 0. Finally, for physical consistency, it is important to note that all the

functions considered must be 1-periodic with respect to the spatial variable.

The structure of this chapter is as follows: the first section provides an introduction

to the system explaining briefly the dynamics of the functions. In Section 2, the proofs for

the well posedness, boundedness of the solution and the existence of a global attractor are

given. The Section 3 provides the details of the derivation of an explicit reduction to finite

dimensional subsystems of the behavior of viscoelastic fluids, extending the results in [53]

for this kind of viscoelastic fluid, in order to get the similar results like [63] when a given

heat flux is considered instead of Newton’s linear cooling law. The Section 4 presents the

results of the numerical experiments.
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4.2 Well-posedness and boundedness: global attrac-

tor

4.2.1 Existence and uniqueness of solutions

First, we integrate the equation for the temperature along the loop, i.e.,
∮
T (t) =∮

T0 + t
∮
h. Therefore,

∮
T (t) is unbounded, as t 7→ ∞, unless

∮
h = 0. However, taking

θ = T −
∮
T and h∗ = h−

∮
h reduces to the case

∮
T (t) =

∮
T0 =

∮
h = 0, since θ would

satisfy

∂θ

∂t
+ v

∂θ

∂x
= h(x) + ν

∂2θ

∂x2

and
∮
Tf =

∮
θf, since

∮
f = 0. Therefore, hereafter we consider the system (4.1.1) where

all functions have zero average. Also, the operator νA = −ν ∂2

∂x2
, together with periodic

boundary conditions, is an unbounded, self-adjoint operator with compact resolvent in

L2
per(0, 1), that is positive when restricted to the space of zero average functions L̇2

per(0, 1).

Hence, the equation for the temperature T in (4.1.1) is of parabolic type for ν > 0.

Hereafter we denote by w = dv
dt

and we write the system (4.1.1) as the following

evolution system for the acceleration, velocity and temperature:



dw

dt
+

1

ε
w = −1

ε
G(v)v + 1

ε

∮
Tf, w(0) = w0

dv
dt

= w, v(0) = v0

∂T

∂t
+ v

∂T

∂x
− ν ∂

2T

∂x2
= h(x), T (0, x) = T0(x)

(4.2.2)
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this is:

d

dt


w

v

T

+


1
ε

0 0

0 0 0

0 0 −ν ∂2

∂x2




w

v

T

 =


F1(w, v, T )

F2(w, v, T )

F3(w, v, T )

 (4.2.3)

with

F1(w, v, T ) = −1

ε
G(v)v +

1

ε

∮
Tf, F2(w, v, T ) = w and F3(w, v, T ) = −v∂T

∂x
+ h(x).

(4.2.4)

The operator B =


1
ε

0 0

0 0 0

0 0 −ν ∂2

∂x2

 is a sectorial operator in Y = IR2 × L̇2
per(0, 1)

with domain D(B) = IR2 × Ḣ2
per(0, 1) and has compact resolvent, where

L̇2
per(0, 1) = {u ∈ L2

loc(IR), u(x+ 1) = u(x)a.e.,

∮
u = 0} and

Ḣm
per(0, 1) = Hm

loc(IR) ∩ L̇2
per(0, 1).

Thus, using the result and techniques about sectorial operator of [27] we obtain the

following Theorem 4.2.1

Theorem 4.2.1 We suppose that H(r) = rG(r) is locally Lipschitz, f, h ∈ L̇2
per(0, 1).

Then, given (w0, v0, T0) ∈ Y = R2 × L̇2
per(0, 1), there exists a unique solution of (4.1.1)

satisfying (w, v, T ) ∈ C([0,∞),R2 × L̇2
per(0, 1)) ∩ C(0,∞), IR2 × Ḣ2

per(0, 1)), (ẇ, w, ∂T
∂t

) ∈

C(0,∞), IR2 × Ḣ2−δ
per (0, 1)), where w = v̇ = dv

dt
and ẇ = d2v

dt2
for every δ > 0. In particular,

(4.1.1) defines a nonlinear semigroup, S(t) in Y = IR2× L̇2
per(0, 1), with S(t)(w0, v0, T0) =

(w(t), v(t), T (t)).



Well-posedness and boundedness: global attractor 85

Proof. Step (i) First, we prove the local existence and regularity. This follows easily

from the variation of constants formula of [27]. In order to prove this we write the system

as (4.2.3) and we have:

Ut +BU = F (U), with U =


w

v

T

 , B =


1
ε

0 0

0 0 0

0 0 −ν ∂2

∂x2

 and F =


F1

F2

F3


where the operator B is a sectorial operator in Y = IR2× Ḣ−1per(0, 1) with domain D(B) =

IR2×Ḣ1
per(0, 1) and has compact resolvent. Note that in this context the operator A = − ∂2

∂x2

must be understood in the variational sense, i.e., for every T, ϕ ∈ Ḣ1
per(0, 1), < A(T ), ϕ >=∮

∂T
∂x

∂ϕ
∂x

and L̇2
per(0, 1) coincides with the fractional space of exponent 1

2
[27]. Hereafter we

denote by ‖.‖ the norm on the space L̇2
per(0, 1).

Under the above notations, using that H(v) = G(v)v is locally Lipschitz together

with f, h ∈ L̇2
per(0, 1), we obtain that the nonlinearity (4.2.4) F : Y = IR2 × L̇2

per(0, 1) 7→

Y− 1
2 = IR2 × Ḣ−1per(0, 1) is well defined and is Lipschitz and bounded on bounded sets.

Therefore, using the techniques of variations of constants formula [27], we get the

unique local solution (w, v, T ) ∈ C([0, τ ],Y = IR2 × L̇2
per(0, 1)) of (4.2.2) which are given

by

w(t) = w0e
− 1
ε
t − 1

ε

∫ t

0

e−
1
ε
(t−r)H(r)dr +

1

ε

∫ t

0

e−
1
ε
(t−r)(

∮
T (r)f)dr (4.2.5)

with H(r) = G(v(r))v(r).

v(t) = v0 +

∫ t

0

w(r)dr (4.2.6)
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T (t, x) = e−νAtT0(x) +

∫ t

0

e−νA(t−r)h(x)dr −
∫ t

0

e−νA(t−r)v(r)
∂T (r, x)

∂x
dr (4.2.7)

where (w, v, T ) ∈ C([0, τ ], Y ) and using again the results of [27] (smoothing effect of the

equations together with bootstrapping method), we get the above regularity of solutions.

Step (ii) Now, we prove that the solutions of (4.2.2) are defined for every time t ≥ 0.

To prove the global existence, we must show that the solutions are bounded in Y =

IR2 × L̇2
per(0, 1) norm on finite time intervals.

First, to obtain the norm of T is bounded in finite time, we note that multiplying

the equations for the temperature by T in L̇2
per(0, 1) and integrating by parts, we have

that:

1

2

d

dt
‖T‖2 + ν‖∂T

∂x
‖2 =

∮
hT

since
∮
T ∂T
∂x

= 0. Using Cauchy-Schwarz and Young inequality and then Poincaré in-

equality for functions with zero average, since
∮
T = 0, we obtain 1

2
d
dt
‖T‖2 + νπ2‖T‖2 ≤

Cδ‖h‖2 + δ‖T‖2 for every δ > 0 with Cδ = 1
4δ
, since π2 is the first nonzero eigenvalue of

A in L̇2
per(0, 1). Thus, taking δ = νπ2

2
, Cδ = 1

2νπ2 we obtain

d

dt
‖T‖2 + νπ2‖T‖2 ≤ ‖h‖

2

νπ2
. (4.2.8)

Now, by integrating we get ‖T‖ is bounded for finite time, and so are |v(t)| and

|w(t)|, hence we have a global solution and nonlinear semigroup in Y = IR2× L̇2
per(0, 1).
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4.2.2 Asymptotic bounds on the solutions: global attractor

In this section we use the results and techniques from [63] to prove the existence of

the global attractor for the semigroup defined by (4.1.1) in the space Y = IR2× L̇2
per(0, 1).

In order to obtain the asymptotic bounds on the solutions as t→∞, we consider

the friction function G as in [63] i.e., satisfying the hypotheses from the previous section

and we also assume that there exits a constant g0 ≥ 0 such that:

lim sup
t→∞

|G′(t)|
G(t)

= 0 and lim sup
t→∞

|tG′(t)|
G(t)

≤ g0. (4.2.9)

Now, using the l’Hopital’s lemma proved in [53] we have the following Lemma proved

in [63].

Lemma 4.2.2 If we assume G(r) and H(r) = rG(r) satisfy the hypothesis from Theorem

4.2.1 together with (4.2.9), then:

lim sup
t→∞

∣∣∣H(t)− 1
ε

∫ t
0
e−

1
ε
(t−r)H(r)dr

∣∣∣
G(t)

≤ H0 (4.2.10)

with H0 = (1 + g0)ε a positive constant such that H0 → 0 if ε→ 0.

Remark 4.2.1 We note that the conditions (4.2.9) are satisfied for all friction functions

G considered in the previous works, i.e., the thermosyphon models where G is constant

or linear or quadratic law. Moreover, its conditions (4.2.9) are also true for G(s) ≈

A|s|n, as s→∞.

Finally, in order to obtain the asymptotic bounds on the solutions we obtain the

asymptotic bounds for the temperature in this diffusion case and we will use the following
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result from [63] [Theorem 2.3 Part I] to get the asymptotic bounds for the velocity and

the acceleration functions.

Lemma 4.2.3 Under the above notations and hypothesis from Theorem 4.2.1, if we as-

sume also that G satisfies (4.2.10) for some constant H0 ≥ 0 and

ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
Tf, v(0) = v0,

dv

dt
(0) = w0, then

i) lim sup
t→∞

|v(t)| ≤ 1

G0

lim sup
t7→∞

|
∮
T (t, ·)f(·)|+H0 (4.2.11)

In particular: If lim supt7→∞ ‖T‖ ∈ IR then

lim sup
t→∞

|v(t)| ≤ 1

G0

‖f‖ lim sup
t7→∞

‖T‖+H0 ∈ IR. (4.2.12)

ii)If lim supt7→∞ ‖T‖ ∈ IR and we denote now by G∗0 = lim supt→∞G(v(t)), with w(t) = dv
dt

,

then

lim sup
t→∞

|w(t)| ≤ G∗0H0 +

(
1 +

G∗0
G0

)
I with I = lim sup

t7→∞
|
∮
T (t, ·)f(·)| and (4.2.13)

lim sup
t→∞

|w(t)| ≤ G∗0H0 +

(
1 +

G∗0
G0

)
‖f‖ lim sup

t7→∞
‖T‖ ∈ IR. (4.2.14)

Proof. First we obtain dv
ds

+G(s)v = w(0)e−
1
ε
s + 1

ε

∫ s
0

(
∮
T (r) · f)e−

1
ε
(s−r)dr+ I(s), with

I(s) = H(s) − 1
ε

∫ s
0
e−

1
ε
(s−r)H(r), and then from Lemma 4.2.2 together with l’Hopital’s

lemma we conclude (see [63] [Theorem 2.3 Part I]).

Proposition 4.2.4 If f, h ∈ L̇2
per(0, 1) and H(r) = rG(r) is locally Lipschitz with G(v) ≥

G0 > 0 and satisfies (4.2.10) for some constant H0 ≥ 0. Then for any solution of (4.1.1)

in the space Y = IR2 × L̇2
per(0, 1) we have:
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i)

lim sup
t→∞

‖T (t)‖ ≤ ‖h‖
νπ2

and lim sup
t→∞

|v(t)| ≤ ‖f‖‖h‖
νπ2G0

+H0 (4.2.15)

ii) If we denote now by G∗0 = lim supt→∞G(v(t)) we get

lim sup
t→∞

|w(t)| ≤ G∗0H0 +G2
‖h‖‖f‖
νπ2

with G2 =

(
1 +

G∗0
G0

)
. (4.2.16)

Therefore, (4.1.1) has a global compact and connected attractor, A, in Y = IR2 ×

L̇2
per(0, 1).

Proof. i) From (4.2.8) we get

‖T‖2 ≤ ‖h‖
2

ν2π4
+

(
‖T0‖2 −

‖h‖2

ν2π4

)
+

e−π
2νt (4.2.17)

and thus we obtain the asymptotic bounded of ‖T (t)‖. Next, from Lemma 4.2.3 we get

(4.2.15) and (4.2.16). Since the sectorial operator B, defined in the above section 2.1.1.,

has compact resolvent; the existence of global compact and connected attractor A, follows

from [[24], Theorem 4.2.2 and 3.4.8].

4.3 Asymptotic behavior: finite-dimensional systems

We take a close look at the dynamics of (4.1.1) by considering the Fourier expansions

of each function and observing the dynamics of each Fourier mode.

Note the Fourier expansion for all g ∈ Ḣm
per(0, 1),m ≥ 0 is given by the expression

g(x) =
∑

k∈IZ∗ ake
2πkix with IZ∗ = IZ \ {0} and we have

‖g‖Ḣm
per(0,1)

= (2π)m
(∑
k∈IZ∗

k2m|ak|2
) 1

2
. (4.3.18)
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We assume that h, f, T0 ∈ L̇2
per(0, 1) are given by the following Fourier expansions

h(x) =
∑
k∈Z∗

bke
2πkix, f(x) =

∑
k∈Z∗

cke
2πkix, T0(x) =

∑
k∈Z∗

ak0e
2πkix (4.3.19)

with Z∗ = Z \ {0}. Assume that T (t, x) ∈ L̇2
per(0, 1) is given by

T (t, x) =
∑
k∈Z∗

ak(t)e
2πkix. (4.3.20)

Then, the coefficients ak(t) in (4.3.20), verify the equations:

ȧk(t) + (2πkvi+ 4νπ2k2)ak(t) = bk, ak(0) = ak0, k ∈ Z∗ (4.3.21)

Therefore, (4.1.1) is equivalent to the infinite system of ODEs consisting of (4.3.21) cou-

pled with

ε
d2v

dt
+
dv

dt
+G(v)v =

∑
k∈Z∗

ak(t)c̄k.

The two equations reflect two of the main features of (4.1.1): the coupling between modes

enter only through the velocity, while diffusion acts as a linear damping term. In what

follows, we will exploit this explicit equation for the temperature modes to analyze the

asymptotic behavior of the system and to obtain the explicit low-dimensional models.

A similar explicit construction was given by Bloch and Titi in [6] for a nonlinear

beam equation where the nonlinearity occurs only through the appearance of the L2

norm of the unknown. A related construction was given by Stuart in [54] for a nonlocal

reaction-diffusion equation.

We note that the system (4.1.1) is equivalent to the system (4.2.2) for the acceler-

ation, velocity and temperature and this is equivalent now to the following infinite system
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of ODEs (4.3.22)

dw

dt
+

1

ε
w = −1

ε
G(v)v +

1

ε

∑
k∈IZ∗

ak(t)c̄k, = w(0) = w0

dv
dt

= w, v(0) = v0

ȧk(t) + (2πkvi+ 4νπ2k2)ak(t) = bk, ak(0) = ak0, k ∈ IZ∗.

(4.3.22)

Next, we obtain the boundedness of these coefficients that improve the boundedness of

temperature of the previous section and in particular, allow as to prove the existence of

the inertial manifold for the system (4.1.1).

4.3.1 Inertial manifold

Proposition 4.3.1 For every solution of the system (4.1.1), (w, v, T ), and for every k ∈

Z∗ we have

lim sup
t→∞

|ak(t)| ≤
|bk|

4νπ2k2
, in particular lim sup

t→∞
‖T (t, .)‖ ≤ 1

4νπ2
‖h‖ (4.3.23)

lim sup
t→∞

|v(t)| ≤ I0
G0

+H0, with I0 =
∑
k∈Z∗

|bk||ck|
4νπ2k2

(4.3.24)

and G0 positive constant such that G(v) ≥ G0.

lim sup
t→∞

|w(t)| ≤ G∗0H0 + (1 +
G∗0
G0

)I0, with G∗0 = lim sup
t→∞

G(v(t)). (4.3.25)

Proof. From (4.3.21), we have that

ak(t) = ak0e
−4νπ2k2te−2πki

∫ t
0 v + e−4νπ

2k2tbk

∫ t

0

e4νπ
2k2se−2πki

∫ t
s vds

and taking into account that |e−2πki
∫ t
0 v| = |e−2πki

∫ t
s v| = 1 we obtain:

|ak(t)| ≤ |ak0|e−4νπ
2k2t +

|bk|
4νπ2k2

(1− e−4νπ2k2t) (4.3.26)
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and we get lim supt→∞ |ak(t)| ≤
|bk|

4νπ2k2
. Using Lemma 4.2.3 together with

∮
Tf =

∑
k∈IZ∗

ak(t)c̄k,

the rest is obvious.

Corollary 4.3.2 i) If |ak0| ≤ |bk|
4νπ2k2

then |ak(t)| ≤ |bk|
4νπ2k2

for every t ≥ 0.

ii) If A is the global attractor in the space Y = IR2 × L̇2
per(0, 1), then for every

(w0, v0, T0) ∈ A, with T0(x) =
∑

k∈Z∗ ake
2πkix we get,

|ak| ≤
|bk|

4νπ2k2
, k ∈ Z∗. (4.3.27)

In particular, if h ∈ Ḣm
per with m ≥ 1, the global attractor A ↪→ IR2× Ḣm+2

per and is compact

in this space.

Proof. i) From (4.3.26) we have |ak(t)| ≤ |bk|
4νπ2k2

+ (|ak0| − |bk|
4νπ2k2

)+e
−4νπ2k2t. If |ak0| ≤

|bk|
4νπ2k2

then |ak(t)| ≤ |bk|
4νπ2k2

for every t ≥ 0 and k ∈ Z∗.

ii) We take into account that from i), if h(x) =
∑
k∈Z∗

bke
2πkix ∈ Ḣm

per, then
∑
k∈Z∗

k2m|bk|2 <

∞, and therefore T0 ∈ C = {R(x) =
∑
k∈Z∗

rke
2πkix ∈ Ḣm+2

per , k2|rk| ≤ 1
4π2ν
|bk|}.

In the next result we will prove that there exists an inertial manifold M for the

semigroup S(t) in the phase space Y = IR2 × Ḣm
per, m ≥ 1 according to [20], i.e., a

submanifold of Y such that i) S(t)M ⊂M for every t ≥ 0, ii) there exists δ > 0 verifying

that for every bounded set B ⊂ Y, there exists C(B) ≥ 0 such that dist(S(t),M) ≤

C(B)e−δt, t ≥ 0 see, for example, [20]. Assume that h ∈ Ḣm
per with

h(x) =
∑
k∈K

bke
2πkix

with bk 6= 0 for every k ∈ K ⊂ Z∗ with 0 /∈ K, since
∮
h = 0. We denote by Vm the closure

of the subspace of Ḣm
per generated by {e2πkix, k ∈ K}.
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Theorem 4.3.3 Assume that h ∈ Ḣm
per and f ∈ L̇2

per. Then the set M = IR2 × Vm is

an inertial manifold for the flow of S(t)(w0, v0, T0) = (w(t), v(t), T (t)) in the space Y =

IR2 × Ḣm
per. Moreover if K is a finite set, then the dimension of M is |K| + 2, where |K|

is the number of elements in K.

Proof. Step (i) First, we show that M is invariant. Note that if k /∈ K, then bk = 0,

and therefore if ak0 = 0, from (4.3.26), we get that ak(t) = 0 for every t, i.e., T (t, x) =∑
k∈K

ak(t)e
2πkix. Therefore, if (w0, v0, T0) ∈M, then (w(t), v(t), T (t)) ∈M for every t, i.e.,

is invariant.

Step (ii) From previous assertions,
∮
T (t) ·f =

∑
k∈K

ak(t) · c̄k and the flow on M is given

by

ẇ +
1

ε
w +

1

ε
G(v)v =

1

ε

∑
k∈K

ak(t) · c̄k

v̇ = w

ȧk(t) + (2πkvi+ 4cπ2k2)ak(t) = bk, k ∈ K (4.3.28)

ak = 0, k /∈ K.

Now, we consider the following decomposition in Ḣm
per, T = T 1 + T 2, where T 1 is the

projection of T on Vm and T 2 is the projection of T on the subspace generated by

{e2πkix, k ∈ Z∗ \K} i.e., T 1 =
∑
k∈K

ake
2πkix and T 2 =

∑
k∈Z∗\K

ake
2πkix = T − T 1.

Then, given (w0, v0, T0) ∈ Y we decompose T0 = T 1
0 +T 2

0 , and T (t) = T 1(t)+T 2(t)

and we consider (w(t), v(t), T 1(t)) ∈M and then

(w(t), v(t), T (t))− (w(t), v(t), T 1(t)) = (0, 0, T 2(t)).
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From (4.3.26) taking into account that bk = 0 for k ∈ Z∗ \ K, we have that

|ak(t)| ≤ |ak0|e−νπ
2k2t and this together with νπ2k2t ≥ νπ2t for every k ∈ Z∗ implies that

‖T 2(t)‖Ḣm
per
≤ ‖T 2

0 ‖Ḣm
per
e−νπ

2t i.e., T 2(t)→ 0 in Ḣm
per if t→∞.

Therefore, we have that ‖T 2(t)‖Ḣm
per
→ 0 as t → ∞ with exponential decay rate

e−νπ
2t. Thus M attracts (w(t), v(t), T (t)) with exponential rate e−νπ

2t.

4.3.2 The reduced subsystem

Under the hypotheses and notations of Theorem 4.3.3, we suppose that

f(x) =
∑
k∈J

cke
2πkix,

with ck 6= 0 for every k ∈ J ⊂ Z. Note that since all the functions involved are real,

we have āk = a−k, b̄k = b−k and c̄k = c−k. Then, on the inertial manifold
∮
T (t) · f =∑

k∈K

ak(t)c̄k =
∑

k∈K∩J

ak(t).c−k. So, the evolution of the velocity v and the acceleration w

depend only on the coefficients of T which belong to the set K ∩ J . Note that in (4.3.28)

the set of equations for ak with k ∈ K ∩ J , together with the equation for v and w,

are a subsystem of coupled equations. After solving this, we must solve the equations for

k /∈ K ∩ J which are linear autonomous equations. We note that 0 /∈ K ∩ J and since

K = −K and J = −J then the set K∩J has an even number of elements, that we denote

by 2n0.

Corollary 4.3.4 Under the notations and hypotheses of the Theorem 4.3.3, we suppose

that the set K ∩ J is finite and then |K ∩ J | = 2n0. Then the asymptotic behavior of the
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system (4.1.1), is described by a system of N = 2n0 + 2 coupled equations in IRN , which

determine (w, v, ak), k ∈ K ∩ J, and a family of |K \ (K ∩ J)| linear non-autonomous

equations. In particular, if K ∩ J = ∅, and G(v) = G0 then for every (w0, v0, T0) ∈

IR2 × L̇2
per(0, 1) we have that the associated solution verifies that v(t) → 0, w(t) → 0 and

T (t)→ θ∞ in L̇2
per(0, 1), i.e., the global attractor is given by A = {(0, 0, θ∞)}, where θ∞(x)

is the unique solution in Ḣ2
per(0, 1) of the equation −ν ∂2θ∞

∂x2
= h(x).

Proof. Note that on the inertial manifold

∮
T · f =

∑
k∈K

ak(t)c̄k =
∑

k∈K∩J

ak(t).c−k.

Thus, the dynamics of the system depends only on the coefficients in K ∩ J. Moreover

the equations for a−k are conjugated of the equations for ak and therefore we have that∑
k∈K∩J

ak(t)c−k = 2Re

 ∑
k∈(K∩J)+

ak(t)c−k

 . From this, and taking real and imaginary

parts of ak, (a
k
1, a

k
2), k ∈ (K ∩ J)+ in (4.3.22) where n0 = |(K ∩ J)+|, we conclude.

If K∩J = ∅, and G(v) = G0 then on the inertial manifold we get a homogeneous linear

equation for the velocity with positive coefficients, and by this lim supt→∞ |v(t)| = 0, and

therefore the equation for w on the inertial manifold is dw
dt

+ 1
ε
w = −1

ε
G0v = δ(t). Next,

using δ(t)→ 0 we get w(t)→ 0 as t→∞.

Moreover from the equation for the temperature in (4.1.1) we have that the function

θ = T − θ∞ satisfies the equation: ∂θ
∂t

+ v ∂θ
∂x

= −v ∂θ∞
∂x

+ ν ∂
2θ
∂x2
.

We can multiply by θ in L̇2
per and taking into account that

∮
∂θ
∂x
θ = 1

2

∮ ∂(θ2)
∂x

= 0

since θ is periodic, we obtain 1
2
d
dt
‖θ‖2 + ν‖ ∂θ

∂x
‖2 = −v

∮ ∂(θ∞)
∂x

θ, and using Cauchy-Schwarz

and the Young inequality with δ = νπ2

2
, Cδ = 1

4δ
and then the Poincaré inequality, since∮

θ = 0, we have that d
dt
‖θ‖2 + νπ2‖θ‖2 ≤ |v|2 1

2νπ2‖∂θ∞∂x ‖
2. Next, from singular Gronwall
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lemma we get limt→∞ ‖θ‖2 ≤ limt→∞ |v|2 1
2ν2π4‖∂θ∞∂x ‖

2 and using v(t) → 0 we prove that

θ(t)→ 0 in L̇2
per(0, 1).

Remark 4.3.1 Taking real and imaginary parts of coefficients ak(t) (temperature), bk

(heat flux at the wall of the loop) and ck (geometry of circuit)

ak(t) = ak1(t) + iak2(t), bk = bk1 + ibk2 and ck = ck1 + ick2,

the asymptotic behavior of the system (4.1.1) is given by a reduced system in IRN , where

N = 2n0 + 2 (w(t), v(t), ak1(t), ak2(t), k ∈ (K ∩ J)+) and n0 = |(K ∩ J)+|.

Observe that from the above analysis, it is possible to design the geometry of circuit

and/or the external heating, by properly choosing the functions f and/or the heat flux, h,

so that the resulting system has an arbitrary number of equations of the form N = 2n0+2.

Note that it may be the case that K and J are infinite sets, but their intersection

is finite. Also, for a circular circuit we have f(x) ∼ asin(x)+bcos(x), i.e., J = {±1} and

then K ∩ J is either {±1} or the empty set. Also, if in the original variables of (4.1.1),

h is constant we get K ∩ J = ∅ for any choice of f . Using these results, the physical and

mathematical implications of the resulting system of ODEs which describes the dynamics

at the inertial manifold has been analyzed numerically in the following section.

4.4 Numerical experiments

In this section, the results of the numerical experiments obtained using the MATHE-

MATICA package [61] for the resolution of the differential equations is presented, using

a fourth-order explicit Runge-Kutta method for stiffness equations, following the method

used in previous works [23, 27]. We solve a system of ordinary differential equations which
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are the projection of the partial differential equations (4.1.1) on the inertial manifold de-

rived in the preceding sections. All the variables and equations that we deal with are

adimensional. As the system is multidimensional, the results are presented in temporal

graphs (a given variable vs time) and phase-space graphs (two physical variables plot

against each other).

Specifically, we integrate the system of equations (4.3.22), where we consider only

the coefficients of temperature ak(t) with k ∈ K ∩ J (relevant modes). Then,

dw
dt

+ w
ε

+ G(v)v(t)
ε

= 2
ε
Real

(∑
k∈K∩J ak(t)c−k

)
dv
dt

= w

ȧk(t) + ak(t)(2πkiv + ν4π2k2) = bk

where a−k = āk, b−k = b̄k and c−k = c̄k since all the physical observable are real

functions. In particular, we will consider a thermosyphon with a circular geometry, so

J = {±1} and K ∩ J = {±1}. Consequently, we can take k = 1 and omit the equation

for k = −1. Hence,

dw
dt

= 2a1c−1

ε
− w

ε
− G(v)v(t)

ε
,

dv
dt

= w,

ȧ1(t) + a1(t)(2πiv + ν4π2) = b1

where the unknowns are w(t) (the acceleration of the fluid), v(t) (velocity of the fluid)

and a1(t) (the Fourier mode of the temperature). More complex geometries will result in

higher dimensional dynamics on the inertial manifold.

In order to reduce the number of parameters we make the change of variables
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a1c−1 → a1 and we then define the real and imaginary parts of the equations in the

following way:

a1(t) = a1(t) + ia2(t), (4.4.29)

b1 = A+ iB (4.4.30)

with A ∈ IR,B ∈ IR. Hence, our central results correspond to the system of equations



dw
dt

= 2a1

ε
− w

ε
− G(v)v(t)

ε
,

v̇ = w,

ȧ1 = A− ν4π2a1 + v2πa2,

ȧ2 = B − ν4π2a2 − v2πa1

(4.4.31)

Note that it is a system of four equations with four unknowns where we need to

make explicit choices for the constitutive laws for both the fluid-mechanical and thermal

properties. For the friction law G(v) and heat flux h(x) we will take the one used in

the references [23, 27]. For the numerical experiments which are of a similar model of

thermosyphon for a fluid with one component, they use the function G(v) = (|v|+ 10−4).

The function G(v) has a clear physical meaning; it interpolates between a low Reynolds

number friction law (in which the overall friction G(v)v is non-linear (Stokes friction law)

and high Reynolds number (in which the friction is a quadratic law).

Besides, A and B, which refer in this model to the position-dependant (x) heat

flux inside the loop will be used as tuning parameters. Without loss of generality, we will

assume A = 0 in order to simplify, in analogy with the Lorenz’s model, as it is shown
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in references [23, 27] (changing A and B simultaneously only results in a change in the

phase of initial temperature profile).

We have carried out two different sets of numerical experiments with regard to

heat diffusion. The first set of numerical experiments are carried out keeping the heat

diffusion to zero as it was done in [52]. And the second set of numerical experiments

are performed with heat diffusion. The initial conditions are fixed as w(0) = 0, v(0) =

0, a1(0) = 1, a2(0) = 1. This split would appear naive as diffusion tends to smooth the

solution, however, as the order of the equations changes in the presence of diffusion (from

first to second order, due to the Laplazian) it is worth studying both cases separately.

Numerical analysis has been carried out keeping ε the viscoelastic coefficient as the

tuning parameter ranging from 100 to 0.0001 and B the heat flux also as another tuning

parameter ranging from 1 to 10000. The impact of ε on the system has been keenly

observed for various intervals of time t, as short as 50 time units and as long as 5000 time

units. We will show that in analogy with the classical Lorenz’s system, as ε varies, the

dynamics of the model undergoes various transformations including steady asymptotic

behavior, meta-stable chaos, i.e., transient irregular behavior followed by convergence to

equilibria, periodic behaviors and chaotic progressions.
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Figure 4.1: Acceleration for ε = 100, B = 10, ν = 0
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Figure 4.2: Temperature phase plot for ε = 100, B = 10, ν = 0 (chaotic in concentric

circles)
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Figure 4.3: Acceleration for ε = 10, B = 100, ν = 0

4.4.1 The behavior of the model for different values of ε, ν = 0

ε = 100, ν = 0

For ε = 100 a relatively large value, the acceleration ranges from -45 to 45 as the

maximum deviation. Throughout the time duration it exhibits a cyclic pattern of behavior

(see Fig. 4.1). The velocity ranges from -60 to 60. The real-temperature and the complex

temperature range from -10000 to 10000. Throughout the time duration it exhibits a cyclic

pattern of behavior of divergence and convergence (see Fig. 4.2). The real-temperature and

complex-temperature together form a structure that is very chaotic. For all the values of

B this chaotic cyclic behavior is observed. For large values of ε the system behaves chaotic

in concentric circles.
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Figure 4.4: Temperature phase plot for ε = 10, B = 100, ν = 0 (chaotic in concentric

circles)



Numerical experiments 103

10 20 30 40 50
time

-1.0

-0.5

0.5

1.0
acceleration

ACCELERATION

Figure 4.5: Acceleration for ε = 1, B = 1, ν = 0

ε = 10, ν = 0

For ε = 10, the acceleration ranges from -180 to 180, as the maximum deviation.

Throughout the time duration it exhibits a chaotic pattern of progression (see Fig. 4.3).

The velocity ranges from -80 to 80. The real-temperature and the complex temperature

range from -6000 to 6000. Throughout the time duration it exhibits chaotic behavior

of divergence and convergence. The real-temperature and complex-temperature together

form a structure that is very chaotic. For all the values of B this chaotic behavior is

observed. For ε = 10 the system behaves chaotic in concentric circles (see Fig. 4.4).

ε = 1

For ε = 1, the acceleration ranges from -50 to 50 as the maximum deviation. In the

initial period, when the time period is less than 10 units, the plot is very inconsistent and
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Figure 4.6: Temperature phase plot for ε = 1, B = 1, ν = 0

chaotic. But as the time progresses, acceleration exhibits an oscillatory decay to a fixed

stable point (see Fig. 4.5). The velocity ranges from 10 to 20. The velocity too converges

to a point as the time goes further. The real-temperature and the complex temperature

range from -3000 to 3000. Like acceleration and velocity, the temperature plot too shows

the same convergence pattern of behavior as time moves. This is the case for all the values

of B, which is a clear indication that when ε = 1 the system behaves chaotic in the initial

times and as time moves it converges to a point, giving the system a steady state (see

Fig. 4.6).
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Figure 4.7: Temperature phase plot for ε = 0.1, B = 100, ν = 0

ε = 0.1

Given the value of viscoelastic component ε is relatively less (ε = 0.1) the system tends

towards a stable progression though it is chaotic in the initial stages. The acceleration

ranges from -800 to 800. The maximum deviation is reached in the initial stages, when

the time period is less than 10 units. The velocity ranges from 0 to 8.36 when ε is 0.1. In

the initial stages, when the time period is less than 10 units, the plot is very inconsistent

and at times unpredictable. But as the time progresses, velocity continues to progress

constantly. The progress of velocity is noted to be constant as time moves. As the time

increases further velocity attains constancy. The real-temperature ranges from -4000 to

4000 when ε is 0.1. In the initial stages, when the time period is less than 10 units, it
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Figure 4.8: Temperature phase plot for ε = 0.01, B = 50, ν = 0

has a chaotic behavior. But as the time progresses, the temperature continues to converge

constantly. The progress of temperature is noted to be constant, as time moves further the

deviation is found to be constant. The complex-temperature too exhibits the same pattern

of behavior. The real-temperature and complex-temperature together form a structure

that is chaotic and circle. It could be noted that at the origin the plot is found to be

steady with rings. But as it moves away from the center it is getting chaotic (see Fig.

4.7). From the above readings we can conclude that the system tends to stabilize itself

when the value of viscoelastic component is 0.1.
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ε = 0.01

When the value of ε is 0.01, that is relatively less than the previous experiments, the

system attains a stable progression as time moves. The acceleration ranges from -10000

to 10000 when ε is 0.01. It is a steady and constant progression for acceleration as time

increases. The velocity ranges from 70 to 90. It is a chaotic progression for velocity as time

increases. The real-temperature and the complex-temperature together form a circle for

greater values of B. For smaller values of B, the system exhibits a transitional behavior

that is not clearly chaotic nor periodic. Therefore from observing the nature of the data

we can conclude that when the value of ε is less, the system behaves chaotic and tries to

form a periodic pattern (see Fig. 4.8).

ε = 0.001

As the value of ε is further lessened the system behaves in a more steady state. The

acceleration ranges from -1000 to 1000 when ε is 0.001. It is a steady and constant pro-

gression for acceleration as time increases. The velocity ranges from -20 to 20 when is

0.001. It is a steady and constant progression for velocity too as time increases. Through-

out the progression it is consistently chaotic in nature. The real-temperature and the

complex-temperature together form a periodic structure that is chaotic.
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Figure 4.9: Temperature phase plot for ε = 0.0001, B = 50, ν = 0

ε = 0.0001

As the value of ε is further decreased to 0.0001, the system behaves the same manner

as in the previous cases. The acceleration ranges from -800 to 800 when ε is 0.0001. It is

a steady and constant chaotic progression for acceleration as time increases. The velocity

ranges from -20 to 20. Throughout the progression it is a constant chaotic progression. The

real-temperature and the complex-temperature together form a chaotic periodic structure.

From these observations we can conclude that as the value of viscoelastic coefficient lessens

the system attains a steady and periodic behavior (see Fig. 4.9).
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Figure 4.10: The time evolution of the acceleration, w(t) (left), and the velocity, v(t)

(right), with ε = 1, A = 0, B = 50, ν = 0.002 and G(v) = (|v|+ 10−4)

4.4.2 The chaotic behavior of this model for B = 50

The impact of ε on the system has been keenly observed for various parameters,

keeping the prescribed heat flex B = 50 especially to compare this case with the previous

case. In general, as the viscoelastic component ε increases, the chaotic behavior of the

system also increases. In Fig. 4.10 we show the time evolution of the acceleration, w(t),

and the velocity, v(t), for the viscoelastic parameter ε = 1. The acceleration w(t) ranges

from -15 to 15. The plot is chaotic, although this is more apparent in the acceleration plot

than in the velocity one. This is reasonable as velocity is the time integral of acceleration,

namely, the velocity curve looks smoother than that of the acceleration (therefore the

chaotic behavior is not so apparent).

In Fig. 4.11 we show the phase-diagram for the real a1(t) and imaginary a2(t)

parts of the Fourier transform of the temperature. As expected, the trajectory in this

phase-plane moves inwards and outwards. This plot illustrates the underlying complex
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Figure 4.11: Left: Phase-plane of the real and imaginary parts of Fourier transform of the

temperature for ε = 1, A = 0, B = 50, ν = 0.002 and G(v) = (|v| + 10−4). Right: Same

parameters as in the left panel but with ε = 10.

dynamics of the attractor as a two dimensional projection.

In the second set of numerical experiments we increase the value of viscoelastic

component to ε = 3. As the value of viscoelastic component ε is relatively higher than the

previous experiment i.e., (ε = 3) the system tends to be more chaotic than the previous

experiment. The acceleration w(t) ranges from -10 to 10. The deviation in the progress

of acceleration is maintained till the end of the progress. Apparently, the behavior is also

chaotic but this chaos seems to be embedded in larger timescale oscillations. Interestingly,

the number of oscillations is reduced from 15 to 9. Fig. 4.12 shows less number of peaks

than the first case. This is a reflection of the memory effects associated to the viscoelastic

nature of the fluid. Thus, as ε plays the role of a time scale, the larger the value the
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Figure 4.12: The time evolution of the acceleration, w(t) (left), and the velocity, v(t)

(right), with ε = 3, A = 0, B = 50, ν = 0.002 and G(v) = (|v|+ 10−4)

longer is the memory effect (in our case exposed through the period of the underlying

oscillations).

For ε = 10 (Fig. 4.13), the system still exhibits a chaotic progression, with the

acceleration ranging from -4 to 4 and with even an underlying longer-period oscillations

compared to the previous experiments.

Finally, in Fig. 4.11 (right panel) we show the phase-diagram for a1(t) and a2(t).

Again, as expected, the trajectory in this phase-plane moves inwards and outwards. This

plot illustrates the underlying complex dynamics of the attractor of a two dimensional

projection.

In summary, larger values of the viscoelastic parameters ε, result in sustained

chaotic behaviors overlapped with (almost) periodic behavior whose period scales with

the numerical value of ε. The dynamics becomes more complex and is characterized in all

the cases by periods of chaos and of violent oscillations, giving an idea of the complexity
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Figure 4.13: The time evolution of the acceleration, w(t) (left), and the velocity, v(t)

(right), with ε = 10, A = 0, B = 50, ν = 0.002 and G(v) = (|v|+ 10−4)

of the solutions of the system under these variables due to memory effects.

4.5 Conclusions

The physical and mathematical implications of the resulting system of ODEs which

describe the dynamics at the inertial manifold is analyzed numerically. The role of the

parameter ε which contains the viscoelastic information of the fluid was treated with

special attention. We studied the asymptotic behavior of the system for different values of

ε the coefficient of viscoelasticity. We can conclude that for larger values of ε the system

behaves more chaotic, in the same fashion as in model one, as presented in Chapter 3.

Physically, this induction of chaotic behaviors is related to the memory effects inherent

to viscoelastic fluids. Thus, in the same way as delayed equations are known to produce

chaos, even in the simplest situations, viscoelasticity produces the same kind of transition.



Chapter 5

Binary viscoelastic fluids with Soret
effect

5.1 Introduction

In this chapter, the dynamics of binary viscoelastic fluids confined in a closed loop

thermosyphon and subject to the Soret effect is investigated. Various thermal gradients,

viscoelastic coefficients and solute gradients produce different types of complex dynam-

ical behaviors on the system. A study of the dynamics of the system and the competi-

tion/cooperation of these mechanisms is conducted to provide different outcomes, from

chaotic to stable behavior by means of inertial manifold techniques and numerical integra-

tion of the reduced dynamics in the manifold. In particular, a study of the memory effects

of viscoelastic materials through the Maxwell viscoelastic constitutive law is carried out

in this model. A detailed analysis of the impact of viscoelasticity and its coexistence with

the Soret effect has been exhaustively analysed in this chapter.

The Soret effect is a very important component of the study of any physical experi-

ment that pertains to thermodiffusion. It gives rise to interaction between the thermal and

113
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solute gradients even when the fluid is at rest [42]. Thermodiffusion is a phenomenon of

temperature gradient [16] observed in a mixture of two or more types of moving particles.

The term “Soret effect” normally means thermodiffusion in liquids. Thermodiffusion is

labeled “positive” when particles move from a hot to cold region and “negative” when the

reverse is true [30]. Typically the heavier or larger species in a mixture exhibits positive

thermophoretic behavior while the lighter or smaller species exhibits negative behavior.



ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
(T − S)f, v(0) = v0,

dv

dt
(0) = w0

∂T

∂t
+ v

∂T

∂x
= l(v)(Ta − T ) + ν

∂2T

∂x2
, T (0, x) = T0(x)

∂S

∂t
+ v

∂S

∂x
= c

∂2S

∂x2
− b∂

2T

∂x2
, S(0, x) = S0(x)

(5.1.1)

where l(v)(Ta−T ) is the Newton’s linear cooling law as in [23, 34, 35, 36, 37, 56, 59], which

represents the heat transfer law across the loop, l(v) a positive quantity depending on the

velocity, Ta the (given) ambient temperature distribution, see [23, 36, 56, 59] and S(t, x)

the solute concentration. In addition to that, in this model, the diffusion of temperature

given by the term ν ∂
2T
∂x2

is considered (see Chapter 2).

This model can be generalized in many different ways, from changing the consti-

tutive equation (from Maxwellian to other more complex situations) or to include shear-

thinning effects [46] common to many non-Newtonian materials. Shear-thinning is the

manifestation of a shear-rate dependent viscosity. Thus, it is commonly observed that

many fluids reduce their resistance to flow for large enough imposed stresses (in this case,

temperature gradients), for instance tooth paste, paint or lava.
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The contributions in this chapter are:

• To obtain a system of equations (2.2.6) governing a closed loop thermosyphon model

of a viscoelastic fluid with Soret effect which, although it is a generalization of the

previous models [26, 28, 34, 35, 36, 37, 50, 52, 56, 63], increasing the order of the

time derivatives in velocity giving rise to routes to chaos.

• To provide a detailed numerical analysis of the behavior of acceleration, velocity,

temperature and solute concentration which includes a thorough study of the various

behaviors of the system for different values of viscoelastic fluid and Soret coefficient.

• To assess the impact of the viscoelastic gradient with Soret effect on the system.

5.2 Well-posedness and boundedness: global attrac-

tor

5.2.1 Existence and uniqueness of solutions

In this section, the existence and uniqueness of solutions of the thermosyphon model

(5.1.1) is proved with f ∈ L̇2
per(0, 1), Ta, T0 ∈ Ḣ1

per(0, 1) and S0 ∈ L̇2
per(0, 1), see (5.2.4).

To choose the framework for ν > 0, integrate the equation for the temperature along the

loop, taking into account the periodicity of T , i.e.,
∮

∂T
∂x

=
∮

∂2T
∂x2

= 0, and d
dt

(
∮
T ) =

l(v)(
∮
Ta −

∮
T ). Therefore,

∮
T →

∮
Ta exponentially as time goes to infinity for every∮

T0.

Consider τ = T −
∮
T. Then from the second equation of the system (5.1.1), τ
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verifies the equation:

∂τ

∂t
+ v

∂τ

∂x
= l(v)(τa − τ) + ν

∂2τ

∂x2
, τ(0, x) = τ0(x) = T0 −

∮
T0

where τa = Ta −
∮
Ta.

Integrate the equation for the solute concentration along the loop, taking into

account the periodicity of S, i.e.,
∮

∂S
∂x

=
∮

∂2S
∂x2

= 0 and d
dt

(
∮
S) = 0. As

∮
S is constant,

it implies that the solute
∮
S =

∮
S0 for all t.

Consider σ = S −
∮
S0. Then from the third equation of the system (5.1.1), σ

verifies the equation:

∂σ

∂t
+ v

∂σ

∂x
= c

∂2σ

∂x2
− b∂

2τ

∂x2
, σ(0, x) = σ0(x).

Since
∮
f = 0, we have

∮
(T − S)f =

∮
(τ − σ)f and the equations for v is

ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
(τ − σ)f, v(0) = v0,

dv

dt
(0) = w0.

Therefore, we get (v, τ, σ) verifying the system (2.2.5) with τa, τ0, σ0 replacing

Ta, T0, S0 respectively and
∮
f =

∮
τ0 =

∮
τa =

∮
σ0 = 0 and

∮
T (t) =

∮
S(t) = 0 for all

t ≥ 0. Hereafter it is considered that all the functions of the system (5.1.1) to have zero

average.

Also, if ν, c > 0 the operators νA = −ν ∂2

∂x2
and cA = −c ∂2

∂x2
, together with periodic

boundary conditions, are unbounded, self-adjoint operators with compact resolvent in

L2
per(0, 1), that are positive when restricted to the space of zero average functions in
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L̇2
per(0, 1). Hence, the equation for the temperature T and the equation for the solute

concentration S in (5.1.1) are of parabolic type for ν, c > 0.

Write the system (5.1.1) as the following evolution system for acceleration, velocity,

temperature and solute concentration:



dw

dt
+

1

ε
w = −1

ε
G(v)v + 1

ε

∮
(T − S)f, w(0) = w0

dv
dt

= w, v(0) = v0

∂T

∂t
+ v

∂T

∂x
− ν ∂

2T

∂x2
= l(v)(Ta − T ), T (0, x) = T0(x)

∂S

∂t
+ v

∂S

∂x
= c∂

2S
∂x2
− b∂2T

∂x2
, S(0, x) = S0(x).

(5.2.2)

That is:

d

dt



w

v

T

S


+



1
ε

0 0 0

0 0 0 0

0 0 −ν ∂2

∂x2
0

0 0 0 −c ∂2
∂x2





w

v

T

S


=



F1(w, v, T, S)

F2(w, v, T, S)

F3(w, v, T, S)

F4(w, v, T, S)


(5.2.3)

with F1(w, v, T, S) = −1
ε
G(v)v+ 1

ε

∮
(T−S)f, F2(w, v, T, S) = w, F3(w, v, T, S) = −v ∂T

∂x
+

l(v)(Ta − T ) and F4(w, v, T, S) = −v ∂S
∂x
− b∂2T

∂x2
and initial data



w

v

T

S


(0) =



w0

v0

T0

S0


.
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The operator B =



1
ε

0 0 0

0 0 0 0

0 0 −ν ∂2

∂x2
0

0 0 0 −c ∂2
∂x2


is a sectorial operator in Y = IR2 ×

Ḣ1
per(0, 1)× L̇2

per(0, 1) with domain D(B) = IR2× Ḣ3
per(0, 1)× Ḣ3

per(0, 1) and has compact

resolvent, where

L̇2
per(0, 1) = {u ∈ L2

loc(IR), u(x+1) = u(x)a.e.,

∮
u = 0}, Ḣm

per(0, 1) = Hm
loc(IR)∩L̇2

per(0, 1).

(5.2.4)

Using the result and techniques about sectorial operator of [27] to prove the exis-

tence of solutions of the system, we have the Theorem 5.2.1.

Theorem 5.2.1 Assume that H(r) = rG(r) and l(r) are locally Lipschitz, f ∈ L̇2
per(0, 1),

Ta ∈ Ḣ1
per(0, 1), G(v) ≥ G0 > 0 and l(v) ≥ l0 > 0. Then, (w0, v0, T0, S0) ∈ Y = IR2 ×

Ḣ1
per(0, 1)× L̇2

per(0, 1), then there exists a unique solution of (2.2.6) satisfying

(w, v, T, S) ∈ C([0,∞),Y) ∩ C(0,∞, IR2 × Ḣ3
per(0, 1)× Ḣ2

per(0, 1)),

(
dw

dt
,
dv

dt
,
∂T

∂t
,
∂S

∂t
) ∈ C(0,∞, IR2 × Ḣ3−δ

per (0, 1)× Ḣ2−δ
per (0, 1)),

for every δ > 0. In particular, (5.2.2) defines a nonlinear semigroup, S∗(t) in Y = IR2 ×
Ḣ1
per(0, 1)× L̇2

per(0, 1), with S∗(t)(w0, v0, T0, S0) = (w(t), v(t), T (t, x), S(t, x)).

Proof. Step (i) The first step is to prove the local existence and regularity. This follows

easily from the variation of constants formula of [27]. In order to prove this, write the
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system as (5.2.3), and we have:

Ut +BU = F (U), with U =



w

v

T

S


, B =



1
ε

0 0 0

0 0 0 0

0 0 −ν ∂2

∂x2
0

0 0 0 −c ∂2
∂x2


, F =



F1

F2

F3

F4


where the operator B is a sectorial operator in Y = IR2 × Ḣ1

per(0, 1) × L̇2
per(0, 1) with

domain D(B) = IR2 × Ḣ3
per(0, 1)× Ḣ2

per(0, 1) and has compact resolvent. In this context,

the operator A = − ∂2

∂x2
must be understood in the variational sense, i.e., for every T, ϕ ∈

Ḣ1
per(0, 1),

< A(T ), ϕ >=

∮
∂T

∂x

∂ϕ

∂x

and L̇2
per(0, 1) coincides with the fractional space of exponent 1

2
as in [27]. We denote

Ḣ−1per(0, 1) as the dual space and ‖.‖ the norm on the space L̇2
per(0, 1). If we prove that the

nonlinearity F : Y = IR2 × Ḣ1
per(0, 1) × L̇2

per(0, 1) 7→ Y− 1
2 = IR2 × L̇2

per(0, 1) × Ḣ−1per(0, 1)

is well defined, Lipschitz and bounded on bounded sets, we obtain the local existence for

the initial data in Y = IR2 × Ḣ1
per(0, 1)× L̇2

per(0, 1).

Using H(v) = G(v)v and l(v) are locally Lipschitz together with f ∈ L̇2
per(0, 1) and

Ta ∈ Ḣ1
per(0, 1), we will prove the nonlinear terms, F1(w, v, T, S) = −1

ε
G(v)v+ 1

ε

∮
(T−S)f,

F2(w, v, T, S) = w, F3(w, v, T, S) = −v ∂T
∂x

+ l(v)(Ta−T ) and F4(w, v, T, S) = −v ∂S
∂x
−b∂2T

∂x2

satisfy F1 : IR2 × L̇2
per(0, 1)× L̇2

per(0, 1) 7→ IR, F2 : IR2 × Ḣ1
per(0, 1)× L̇2

per(0, 1) 7→ IR, F3 :

IR2×Ḣ1
per(0, 1)× L̇2

per(0, 1) 7→ L̇2
per(0, 1) and F4 : IR2×Ḣ1

per(0, 1)× L̇2
per(0, 1) 7→ Ḣ−1per(0, 1),

that is F : Y 7→ Y− 1
2 is well defined, Lipschitz and bounded on bounded sets.
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Using the techniques of variation of constants formula of [27], we obtain the unique

local solution (w, v, T, S) ∈ C([0, τ ],Y) of (5.2.2), which are given by

w(t) = w0e
− 1
ε
t − 1

ε

∫ t

0

e−
1
ε
(t−r)H(r)dr +

1

ε

∫ t

0

e−
1
ε
(t−r)

∮
(T − S)f(r)dr (5.2.5)

with H(r) = G(v(r))v(r).

v(t) = v0 +

∫ t

0

w(r)dr (5.2.6)

T (t, x) = e−νAtT0(x)+

∫ t

0

e−νA(t−r)l(v(r))[Ta(r, x)−T (r, x)]dr−
∫ t

0

e−νA(t−r)v(r)
∂T (r, x)

∂x
dr,

(5.2.7)

S(t, x) = e−cAtS0(x) +

∫ t

0

e−cA(t−r)[−v(r)
∂S

∂x
(r)− b∂

2T

∂x2
(r)]dr. (5.2.8)

where (w, v, T, S) ∈ C([0, τ ],Y = IR2 × Ḣ1
per(0, 1) × L̇2

per(0, 1)) and using again the

results of [27], (smoothing effect of the equations together with bootstrapping method),

we get the regularity of solutions.

Step (ii) To prove the global existence, we must show that the solutions are bounded in

Y = IR2 × Ḣ1
per(0, 1)× L̇2

per(0, 1) for finite time intervals and using the nonlinearity of F,

maps bounded on bounded sets, we conclude.

To obtain the norm of T is bounded in finite time, we multiply the equation for

the temperature by T in L̇2
per(0, 1). Then integrating by parts, we have:

1

2

d

dt
‖T‖2 + ν‖∂T

∂x
‖2 =

∮
l(v)(Ta − T )Tdx
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since
∮
T ∂T
∂x

= 1
2

∮
∂
∂x

(T 2) = 0.

Using Cauchy-Schwarz and Young inequality and then Poincaré inequality for

functions of zero average, since
∮
T = 0, together with π2 is the first nonzero eigenvalue

of A = − ∂2

∂x2
in L̇2

per(0, 1), we obtain

1

2

d

dt
‖T‖2 + (νπ2 + l(v))‖T‖2 ≤ l(v)

2
‖Ta‖2 +

l(v)

2
‖T‖2,

and using l(v) ≥ l0 > 0 we get

d

dt
‖T‖2 + (2νπ2 + l0)‖T‖2 ≤ l(v)‖Ta‖2. (5.2.9)

and we conclude that the norm of T in L̇2
per(0, 1) remains bounded in finite time.

By differentiating the third equation of (5.2.2) with respect to x, we obtain the

same equation for ‖∂T
∂x
‖ considering ‖∂Ta

∂x
‖, so we obtain

d

dt

∥∥∥∥∂T∂x
∥∥∥∥2 + (2νπ2 + l0)

∥∥∥∥∂T∂x
∥∥∥∥2 ≤ l(v)

∥∥∥∥∂Ta∂x

∥∥∥∥2 (5.2.10)

Thus we show that the norm of T in Ḣ1
per(0, 1) remains bounded in finite time.

Then, we show that the norm of S in L̇2
per(0, 1) does not blow-up in finite time.

Multiplying the fourth equation of (5.2.2) by S, integrating by parts, applying the Young

inequality and again taking into account that
∮
S ∂S
∂x

= 1
2

∮
∂S2

∂x
= 0, since S is periodic,

we get

1

2

d

dt
‖S‖2 + (c− ε)‖∂S

∂x
‖2 ≤ b2Cε‖

∂T

∂x
‖2 (5.2.11)

for every ε > 0 with Cε = 1
4ε

. Thus, taking ε = c
2
, and taking into account (5.2.10) together
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with the Poincaré inequality for functions with zero average, we obtain

d

dt
‖S‖2 + cπ2‖S‖2 ≤ b2

c
‖∂T
∂x
‖2 ≤ k1 (5.2.12)

with k1 > 0. Therefore ‖S(t)‖ remains bounded in finite time. Since ‖T‖ and ‖S‖ are

bounded in finite time, imply that |w(t)|, |v(t)| remain also bounded in finite time. Hence

we have a global solution in the nonlinear semigroup in Y = IR2×Ḣ1
per(0, 1)×L̇2

per(0, 1).

5.2.2 Boundedness of the solutions and global attractor

In this section, we use the results and techniques of [34, 36, 53] for a fluid with

one component, to prove the existence of the global attractor for a binary fluid for the

semigroup defined in the space Y = IR2 × Ḣ1
per(0, 1)× L̇2

per(0, 1).

To obtain the asymptotic bounds on the solutions as t → ∞, we consider the

friction function G as in [34, 36, 53] satisfying the hypotheses of the previous section and

there exits a constant h0 ≥ 0 such that:

lim sup
t→∞

|G′(t)|
G(t)

= 0 and lim sup
t→∞

|tG′(t)|
G(t)

≤ h0. (5.2.13)

Using the l’Hopital’s lemma proved in [52] we have the following lemma proved in [63].

Lemma 5.2.2 If we assume G(r) and H(r) = rG(r) satisfy the hypothesis of Theorem
5.2.1, together with (5.2.13), then:

lim sup
t→∞

∣∣∣H(t)− 1
ε

∫ t
0
e−

1
ε
(t−r)H(r)dr

∣∣∣
G(t)

≤ H0 (5.2.14)

with H0 = (1 + h0)ε a positive constant such that H0 → 0 if ε→ 0.

Remark 5.2.1 Note that the conditions (5.2.13) are satisfied for all the friction func-
tions G considered in the previous works, i.e., the thermosyphon models where G is con-
stant or linear or quadratic law. Moreover, the conditions (5.2.13) are true for G(s) ≈
A|s|n, as s→∞.
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Theorem 5.2.3 Under the above notations and hypothesis of Theorem 5.2.1, assume that
G satisfies (5.2.14) for some constant H0 ≥ 0 then

Part (i)

(i) lim sup
t→∞

|v(t)| ≤ 1

G0

lim sup
t7→∞

|
∮

(T − S)f |+H0 (5.2.15)

In particular: If lim supt7→∞ ‖(T − S)‖ ∈ IR then

lim sup
t→∞

|v(t)| ≤ 1

G0

‖f‖ lim sup
t7→∞

‖(T − S)‖+H0 ∈ IR. (5.2.16)

(ii)If lim supt7→∞ ‖(T − S)‖ ∈ IR and G∗0 = lim supt→∞G(v(t)) with w(t) = dv
dt

, then

lim sup
t→∞

|w(t)| ≤ G∗0H0 +

(
1 +

G∗0
G0

)
I with I = lim sup

t7→∞
|
∮

(T −S)(t, ·)f(·)| and (5.2.17)

lim sup
t→∞

|w(t)| ≤ G∗0H0 +

(
1 +

G∗0
G0

)
‖f‖ lim sup

t7→∞
‖(T − S)‖ ∈ IR. (5.2.18)

Part (ii) If ν 6= 0 and there exists L0 a positive constant such that L0 ≥ l(v) ≥ l0,
then for any solution of (5.1.1) in the space Y = IR2 × Ḣ1

per(0, 1)× L̇2
per(0, 1) we have:

(i)

lim sup
t→∞

‖T (t)‖ ≤
(

L0

2νπ2 + l0

) 1
2

‖Ta‖ and lim sup
t→∞

∥∥∥∥∂T∂x
∥∥∥∥ ≤ ( L0

2νπ2 + l0

) 1
2
∥∥∥∥∂Ta∂x

∥∥∥∥
(5.2.19)

(ii)

lim sup
t→∞

‖S(t)‖ ≤ 1

π

(
Bl

c

) 1
2

‖∂Ta
∂x
‖ where Bl =

b2

c

(
L0

2νπ2 + l0

)
> 0. (5.2.20)

(iii)

lim sup
t→∞

|v(t)| ≤ ‖f‖
G0

[( L0

2νπ2 + l0

) 1
2

‖Ta‖+
1

π

(
Bl

c

) 1
2

‖∂Ta
∂x
‖
]

+H0 (5.2.21)

(iv)

lim sup
t→∞

|w(t)| ≤ G∗0H0 +

(
1 +

G∗0
G0

)
‖f‖

[(
L0

2νπ2 + l0

) 1
2

‖Ta‖+
1

π

(
Bl

c

) 1
2

‖∂Ta
∂x
‖

]
.

(5.2.22)
In particular, we have a global compact and connected attractor A in Y = IR2×Ḣ1

per(0, 1)×
L̇2
per(0, 1).
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Proof. Part (i) (i) From (5.2.2) we have

dw

dt
+

1

ε
w = −1

ε
G(v)v +

1

ε

∮
(T − S)f (5.2.23)

and w(t) = dv
dt

satisfies

dv

ds
= w(0)e−

1
ε
s − 1

ε

∫ s

0

e−
1
ε
(s−r)H(r)dr +

1

ε

∫ s

0

[ ∮
(T − S)(r) · f

]
e−

1
ε
(s−r)dr (5.2.24)

where H(r) = H(v(r)) = v(r)G(v(r)). We rewrite (5.2.24) as

dv

ds
+G(s)v = w(0)e−

1
ε
s + I1(s) + I2(s), (5.2.25)

with

I1(s) =
1

ε

∫ s

0

[ ∮
(T − S)(r) · f

]
e−

1
ε
(s−r)dr and I2(s) = H(s)− 1

ε

∫ s

0

e−
1
ε
(s−r)H(r).

(5.2.26)

For any δ > 0 there exits t0 > 0 such that δ(s) = w(0)e−
1
ε < δ for any s ≥ t0 and

integrating (5.2.25) with t ≥ t0 we obtain

|v(t)| ≤ |v(t0)|e−
∫ t
t0
G(s)ds

+ e
−

∫ t
t0
G(s)ds

∫ t

t0

e
∫ s
t0
G(r)dr

(δ + |I1(s)|+ |I2(s)|) (5.2.27)

Using L’Hopital’s lemma proved in [52], we get

lim sup
t→∞

e
−

∫ t
t0
G(s)ds

∫ t

t0

e
∫ s
t0
G(r)dr

(|I1(s)|+ |I2(s)|+ δ) =

= lim sup
t→∞

∫ t
t0
e
∫ s
t0
G(r)dr

(|I1(s)|+ |I2(s)|+ δ)ds

e
∫ t
t0
G(s)ds

≤

≤ lim sup
t→∞

|I1(t)|+ |I2(t)|+ δ

G(t)
for any δ > 0.
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Using again the L’Hopital’s lemma proved in [52], we get

lim sup
t→∞

|I1(t)| ≤ lim sup
t→∞

∫ t
0
e
r
ε |
∮

(T − S)(t) · f |
εe

t
ε

≤ lim sup
t→∞

|
∮

(T − S)(t) · f |

and from (5.2.27) together with (5.2.14) we conclude for any δ,

lim sup
t→∞

|v(t)| ≤ lim sup
t→∞

lim supt→∞ |
∮

(T − S)(t) · f |
G0

+H0 + δ.

(ii) From (5.2.23) together with singular Gronwall lemma, we get

|w(t)| ≤ |w(t0)|e−
1
ε
t +

1

ε

∫ t

t0

e−
1
ε
(t−r)

[
G(r)|v(r)|+ |

∮
(T − S)(r) · f |

]
dr (5.2.28)

where G(r) = G(v(r)). Consequently, for any δ > 0 there exits t0 such that for any t ≥ t0

1

ε

∫ t

t0

e−
1
ε
(t−r)

[
G(v(r))|v(r)|+ |

∮
(T − S)(r) · f |

]
dr ≤

≤ δ + lim sup
t→∞

[
G(v(t))|v(t)|+ |

∮
(T − S)(t) · f |

]
(1− e−

1
ε
(t−t0)) (5.2.29)

this is

lim sup
t→∞

|w(t)| ≤ lim sup
t→∞

[
G(v(t))|v(t)|+ |

∮
(T − S)(t) · f |+ δ

]
, (5.2.30)

for any δ > 0, and using the result (i) we get (5.2.18).

Part (ii) (i) From (5.2.9) together with (5.2.10) we get

‖T‖2 ≤ L0

2νπ2 + l0
‖Ta‖2 +

(
‖T0‖2 −

L0

2νπ2 + l0
‖Ta‖2

)
+

e−(2π
2ν+l0)t and (5.2.31)

∥∥∥∥∂T∂x
∥∥∥∥2 ≤ L0

2νπ2 + l0

∥∥∥∥∂Ta∂x

∥∥∥∥2 +

(
‖T0‖2 −

L0

2νπ2 + l0
‖Ta‖2

)
+

e−(2π
2ν+l0)t (5.2.32)

then we obtain (5.2.19).
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(ii) From (5.2.12) together with (5.2.32) we get

d

dt
‖S‖2 + cπ2‖S‖2 ≤ b2

c

(
L0

2νπ2 + l0

)∥∥∥∥∂Ta∂x

∥∥∥∥2 +Ne−(2π
2ν+l0)t (5.2.33)

where N =
(
‖T0‖2 − L0

2νπ2+l0
‖Ta‖2

)
+
. Given δ > 0, there exists t0 > 0 such that

d

dt
‖S‖2 + cπ2‖S‖2 ≤ b2

c

(
L0

2νπ2 + l0

)∥∥∥∥∂Ta∂x

∥∥∥∥2 + δ,∀t ≥ t0 (5.2.34)

and from the Gronwall lemma, for every δ > 0, we get

lim sup
t→∞

‖S‖2 ≤ Bl

cπ2

∥∥∥∥∂Ta∂x

∥∥∥∥2 + δ, ∀δ > 0, where Bl =
b2

c

(
L0

2νπ2 + l0

)
> 0 (5.2.35)

and thus we obtain (5.2.20). Using Part I, the rest (iii) and (iv) are obvious. Finally,

since the sectorial operator B, as defined in Theorem 5.2.1, has compact resolvent, the

rest follows from [24] [Theorem 4.2.2 and 3.4.8].

Remark 5.2.2 First, we note that the hypothesis about the function l(v) in the above
Theorem 5.2.3, l(v) ≤ L0 is satisfied when we consider the Newton’s linear cooling law
l(v) = k(Ta−T ), where k is a positive quantity i.e., l(v) = k = L0 as [33]. Moreover, this
condition is also satisfied if we consider l = l(v)(Ta − T ) where l(v) is a positive upper
bounded function.

Second, it is important to note that we prove in the next section the existence of the
global compact and connected attractor and the inertial manifold for the system (5.1.1),
when we consider the general Newton’s linear cooling law, without the additional above
hypothesis; and for every ν ≥ 0.

In order to get this, we consider the Fourier expansions and observe the dynamics of
each coefficient of Fourier expansions to improve, in some sense, the asymptotic bounded
of temperature. In particular we will prove lim supt→∞ ‖T (t)‖ ≤ ‖Ta‖ and ‖S(t)‖ ≤ b

c
‖Ta‖

for every locally Lipschitz and positive function l(v) and for every ν ≥ 0.

5.3 Asymptotic behavior: finite-dimensional systems

In this section, the asymptotic behavior of the system (5.2.2) is deduced to study the

other finite dimensional systems in some cases. Take a close look at the dynamics of (5.2.2)
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by considering the Fourier expansions of all the functions of the system (temperature and

solute concentration). First, consider the Fourier expansion for the function associated to

the geometry of the loop f, and the ambient temperature Ta, whose coefficients are very

important to study the asymptotic behavior of the system. Then, prove the asymptotic

behavior of the system (5.2.2), described by suitable Fourier coefficients associated to f

and Ta.

Note the Fourier expansion for all g ∈ Ḣm
per(0, 1),m ≥ 0 is given by the expression

g(x) =
∑

k∈IZ∗ ake
2πkix with IZ∗ = IZ \ {0} and we have

‖g‖Ḣm
per(0,1)

= (2π)m
(∑
k∈IZ∗

k2m|ak|2
) 1

2
. (5.3.36)

Assume that Ta, T ∈ Ḣ1
per(0, 1) and f, S ∈ L̇2

per(0, 1) are given by the following

Fourier series expansions:

Ta(x) =
∑
k∈IZ∗

bke
2πkix and f(x) =

∑
k∈IZ∗

cke
2πkix with IZ∗ = IZ \ {0} (5.3.37)

T (t, x) =
∑
k∈IZ∗

ak(t)e
2πkix and S(t, x) =

∑
k∈IZ∗

dk(t)e
2πkix (5.3.38)

with the initial data T0 ∈ Ḣ1
per(0, 1) is given by T0(x) =

∑
k∈IZ∗ ak0e

2πkix and S0 ∈

L̇2
per(0, 1) is given by S0(x) =

∑
k∈IZ∗ dk0e

2πkix.

Proposition 5.3.1 Under the above notations and hypothesis of Theorem 5.2.1, consider
Ta ∈ Ḣ1

per(0, 1) and f ∈ L̇2
per(0, 1) given by (5.3.37) and the initial data T0 ∈ Ḣ1

per(0, 1)

given by T0(x) =
∑

k∈IZ∗ ak0e
2πkix and S0 ∈ L̇2

per(0, 1) given by S0(x) =
∑

k∈IZ∗ dk0e
2πkix.

Let (w, v, T, S) be the solution of the system (5.1.1) given by Theorem 5.2.1; then we have:
(i) The coefficients ak(t) and dk(t) in (5.3.38), verify the equations ȧk(t) +

(
2kπvi+ 4νk2π2 + l(v)

)
ak(t) = l(v)bk(t), ak(0) = ak0, k ∈ IZ∗

ḋk(t) +
(

2kπvi+ 4ck2π2
)
dk(t) = 4bπ2k2ak(t), dk(0) = dk0, k ∈ IZ∗.

(5.3.39)
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(ii) The equation for the velocity is

ε
d2v

dt
+
dv

dt
+G(v)v =

∑
k∈IZ∗

ak(t)c̄k −
∑
k∈IZ∗

dk(t)c̄k.

Proof. It is sufficient to note that

∮
(T − S)f =

∑
k∈IZ∗

ak(t)c̄k −
∑
k∈IZ∗

dk(t)c̄k. (5.3.40)

Since all the functions involved are real and periodic, we have for all k ∈ IZ∗ = IZ \ {0},

āk = a−k, b̄k = b−k, c̄k = c−kand d̄k = d−k. Therefore, the equation for the velocity in

(5.1.1) is:

ε
d2v

dt
+
dv

dt
+G(v)v =

∑
k∈IZ∗

ak(t)c−k −
∑
k∈IZ∗

dk(t)c−k, v(0) = v0,
dv

dt
(0) = w0.

Remark 5.3.1 Note that the system (5.1.1) is equivalent to the system (5.2.2) for accel-
eration, velocity, temperature and solute concentration and from the above proposition, it
is equivalent to the following infinite system of ODEs (5.3.41)

dw

dt
+

1

ε
w = −1

ε
G(v)v +

1

ε

∑
k∈IZ∗

ak(t)c−k −
1

ε

∑
k∈IZ∗

dk(t)c−k, w(0) = w0

dv
dt

= w, v(0) = v0

ȧk(t) +
(

2kπvi+ 4νk2π2 + l(v)
)
ak(t) = l(v)bk, ak(0) = ak0, k ∈ IZ∗

ḋk(t) +
(

2kπvi+ 4ck2π2
)
dk(t) = 4bk2π2ak(t), dk(0) = dk0, k ∈ IZ∗.

(5.3.41)
The system of equations (5.3.41) reflects two of the main features: (i) the coupling

between the modes enter through the velocity, while the diffusion acts as a linear damping
term, (ii) it is important to note that the non linear term, given by the Newton’s cooling
law in the temperature influences the solute concentration of this model.

In what follows, we will exploit this explicit equation for the temperature and solute

concentration modes to analyze the asymptotic behavior of the system and to obtain the



Asymptotic behavior: finite-dimensional systems 129

explicit low-dimensional models. A similar explicit construction was given by Bloch and

Titi in [6] for a nonlinear beam equation where the nonlinearity occurs only through the

appearance of the L2 norm of the unknown. A related construction was given by Stuart

in [54] for a nonlocal reaction-diffusion equation.

In the following section, we obtain the boundedness of these coefficients which

improve, in some sense, the boundedness of temperature and solute concentration, in

order to prove the existence of the inertial manifold for the system (5.2.2).

5.3.1 Inertial manifold

Consider the general case ν > 0 together with the nonlinear Newton’s cooling law

introduced by [28, 56], that is l(v)(Ta − T ) with l(v) ≥ l0 > 0 locally Lipschitz function

and use inertial manifold techniques, in the spirit of nondiffusion case of [50], to give

an explicit low-dimensional system of ODEs that describes the asymptotic dynamics of

(5.2.2). The existence of an inertial manifold does not rely, in this case, on the existence

of large gaps in the spectrum of the elliptic operator but on the invariance of certain sets

of Fourier modes.

Proposition 5.3.2 Under the above notations and hypothesis of Theorem 5.2.3, for every
solution of the system (5.2.2), (w, v, T, S), and for every k ∈ IZ∗ we have

(i)

lim sup
t→∞

|ak(t)| ≤ |bk|, (5.3.42)

lim sup
t→∞

|dk(t)| ≤
b|bk|
c
, (5.3.43)

lim sup
t→∞

|v(t)| ≤ I0
G0

(
1 +

b

c

)
+H0, with I0 =

∑
k∈IZ∗
|bk||ck| (5.3.44)
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and G0 a positive constant such that G(v) ≥ G0,

lim sup
t→∞

|w(t)| ≤ G∗0H0 +

(
1 +

G∗0
G0

)(
1 +

b

c

)
I0, with G∗0 = lim sup

t→∞
G(v(t)). (5.3.45)

(ii)
lim sup
t→∞

‖T (t)‖ ≤ ‖Ta‖ (5.3.46)

lim sup
t→∞

‖S(t)‖ ≤ b

c
‖Ta‖ (5.3.47)

lim sup
t→∞

|v(t)| ≤ ‖f‖‖Ta‖
G0

(
1 +

b

c

)
+H0 (5.3.48)

lim sup
t→∞

|w(t)| ≤ G∗0H0 +

(
1 +

G∗0
G0

)(
1 +

b

c

)
‖f‖‖Ta‖. (5.3.49)

In particular, we have a global compact and connected attractor A ⊂ [−M,M ] ×
[−N,N ]×C×C where M,N are the upper bounds for acceleration and velocity as given in
(5.3.49) and (5.3.48) respectively and T0, S0 ∈ C = {R(x) =

∑
k∈IZ∗ rke

2πkix, |rk| ≤ d|bk|},
where d = max{1, b

c
}.

Proof. (i) From (5.3.39), we have

ak(t) = ak0e
−4νπ2k2te−

∫ t
0 [2πkvi+l(v)] + bk

∫ t

0

e−4νπ
2k2(t−s)l(v(s))e−

∫ t
s [2πkvi+l(v)]ds (5.3.50)

and taking into account that

|e−
∫ t
0 2πkvi| = |e−

∫ t
s 2πkvi| = 1, e−4νπ

2k2(t−s) ≤ 1, and

∫ t

0

l(v(s))e−
∫ t
s l(v)ds = 1− e−

∫ t
0 l(v)

(5.3.51)

we obtain:

|ak(t)| ≤ |ak0|e−4νπ
2k2te−

∫ t
0 l(v) + |bk|(1− e−

∫ t
0 l(v)) (5.3.52)

and we get (5.3.42) i.e., lim supt→∞ |ak(t)| ≤ |bk|.

From (5.3.39), we have

dk(t) = dk0e
−4cπ2k2te−

∫ t
0 2πkvi + 4bπ2k2

∫ t

0

ak(s)e
−4cπ2k2(t−s)e−

∫ t
s 2πkvids. (5.3.53)
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Then substituting (5.3.50) in (5.3.53), we have

|dk(t)| ≤ |dk0|e−4cπ
2k2t + 4bπ2k2(|I1(t)|+ |I2(t)|) (5.3.54)

where

I1(t) =

∫ t

0

ak0e
−

∫ s
0 [2πkvi+l(v)]e−4cπ

2k2(t−s)e−
∫ t
s 2πkvie−4νπ

2k2sds

and

I2(t) = bk

∫ t

0

[
e−4cπ

2k2(t−s)e−
∫ t
s 2πkvi

( ∫ s

0

l(v(r))e−
∫ s
r [2πkvi+l(v)]dre−4νπ

2k2(s−r)dr
)]
ds.

Then, using (5.3.51) and l(v) ≥ l0 in I1(t), we get,

|I1(t)| ≤ |ak0|e−4cπ
2k2t

∫ t

0

e(4cπ
2k2−4νπ2k2−l0)sds

and since e−l0s ≤ 1, we have

|I1(t)| ≤
|ak0|

4π2k2|c− ν|
|e−4π2k2νt − e−4cπ2k2t|. (5.3.55)

Then, working with I2(t), using again |e−
∫ t
0 2πkvi| = |e−

∫ t
s 2πkvi| = 1, we have

|I2(t)| ≤ |bk|
∫ t

0

e−4cπ
2k2(t−s)

(∫ s

0

l(v(r))e−
∫ s
r l(v)e−4νπ

2k2(s−r)dr
)
ds

|I2(t)| ≤ |bk|
∫ t

0

e−4cπ
2k2(t−s)

(∫ s

0

l(v(r))e−
∫ s
r l(v)dr

)
ds

and using

e−4νπ
2k2(s−r) ≤ 1,

∫ s

0

l(v(r))e−
∫ s
r l(v)dr = 1− e−

∫ s
0 l(v) ≤ 1
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we get

|I2(t)| ≤
|bk|

4cπ2k2
(1− e−4cπ2k2t). (5.3.56)

Then from (5.3.54) together with (5.3.55) and (5.3.56), we have

|dk(t)| ≤ |dk0|e−4cπ
2k2t +

b|ak0|
|c− ν|

|e−4π2k2νt − e−4cπ2k2t|+ b|bk|
c

(1− e−4cπ2k2t)

that is

|dk(t)| ≤
b|bk|
c

+
(
|dk0| −

b|bk|
c

)
e−4cπ

2k2t +
b|ak0|
|c− ν|

|e−4π2k2νt − e−4cπ2k2t| (5.3.57)

and we get (5.3.43) i.e., lim supt→∞ |dk(t)| ≤
b|bk|
c

.

From (5.2.15) in Theorem 5.2.3 together with
∮

(T−S)f =
∑
k∈IZ∗

ak(t)c−k−
∑
k∈IZ∗

dk(t)c−k

and using (5.3.42) and (5.3.43), we get

lim sup
t→∞

|
∮

(T − S)f | ≤
(

1 +
b

c

)
I0 where I0 =

∑
k∈IZ∗
|bk(t)||ck(t)|. (5.3.58)

From this we obtain (5.3.44) i.e.,

lim sup
t→∞

|v(t)| ≤ I0
G0

(
1 +

b

c

)
+H0

and using (5.2.17), we obtain (5.3.45) i.e.,

lim sup
t→∞

|w(t)| ≤ G∗0H0 +

(
1 +

G∗0
G0

)(
1 +

b

c

)
I0, with G∗0 = lim sup

t→∞
G(v(t)).

(ii) Using again Theorem 5.2.3 and taking into account of (5.3.36) together with

I0 =
∑

k∈IZ∗ |bk(t)||ck(t)| ≤ ‖Ta‖‖f‖, we obtain (5.3.46), (5.3.47), (5.3.48) and (5.3.49).

The rest follows from [24] [Theorem 4.2.2 and 3.4.8].
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In the following result we will prove that there exists an inertial manifold M for

the semigroup S∗(t) in the phase space Y = IR2×Ḣ1
per(0, 1)× L̇2

per(0, 1), i.e., a submanifold

of Y such that

(i)S∗(t)M⊂M for every t ≥ 0,

(ii) there exists δ > 0 verifying that for every bounded set B ⊂ Y , there exists

C(B) ≥ 0 such that dist(S(t),M) ≤ C(B)e−δt, t ≥ 0 see, for example, [20] and [47].

Assume that Ta ∈ Ḣ1
per(0, 1) with

Ta =
∑
k∈K

bke
2πkix

with bk 6= 0 for every k ∈ K ⊂ IZ∗ with 0 /∈ K, since
∮
Ta = 0. We denote by V1

and V0 the closure of the subspaces of Ḣ1
per(0, 1) and L̇2

per(0, 1) respectively generated by

{e2πkix, k ∈ K}.

Theorem 5.3.3 Assume that Ta ∈ Ḣ1
per(0, 1) and f ∈ L̇2

per(0, 1). Then the set M = IR2×
V1×V0 is an inertial manifold for the flow of S∗(t)(w0, v0, T0, S0) = (w(t), v(t), T (t), S(t))
in the space Y = IR2× Ḣ1

per(0, 1)× L̇2
per(0, 1). Moreover if K is a finite set, the dimension

of M is 2|K|+ 2, where |K| is the number of elements in K.

Proof. Step (i) First, we show that M is invariant. Note that if k /∈ K, then bk =

0, and therefore if ak0 = 0, from (5.3.50), we get that ak(t) = 0 for every t, i.e.,

T (t, x) =
∑
k∈K

ak(t)e
2πkix and if dk0 = 0, using ak(t) = 0, from (5.3.53) we get dk(t) =

0 for every t, i.e., S(t, x) =
∑
k∈K

dk(t)e
2πkix. Therefore, if (w0, v0, T0, S0) ∈ M, then

(w(t), v(t), T (t), S(t)) ∈M for every t, i.e., M is invariant.

Step (ii) From previous assertions,
∮

(T − S) · f =
∑
k∈K

ak(t) · c−k −
∑
k∈K

dk(t) · c−k and

the flow on M is given by
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

ẇ + 1
ε
w + 1

ε
G(v)v = 1

ε

∑
k∈K ak(t) · c−k −

1
ε

∑
k∈K dk(t) · c−k

v̇ = w

ȧk(t) +
[
2πkvi+ 4νπ2k2 + l(v)

]
ak(t) = l(v)bk, k ∈ K

ḋk(t) +
[
2πkvi+ 4cπ2k2

]
dk(t) = 4bπ2k2ak(t), k ∈ K

ak = dk = 0, k /∈ K

(5.3.59)

Now, we consider the following decomposition in Ḣ1
per(0, 1), T = T 1 + T 2, where T 1

is the projection of T on V1 and T 2 is the projection of T on the subspace generated by

{e2πkix, k ∈ IZ∗ \K} i.e., T 1 =
∑
k∈K

ake
2πkix and T 2 =

∑
k∈IZ∗\K

ake
2πkix = T − T 1.

Analogously, we consider the decomposition S = S1 + S2 in L̇2
per(0, 1) where S1

is the projection of S on V0, i.e., S1 =
∑

k∈K dke
2πkix and S2 = S − S1. Then, given

(w0, v0, T0, S0) ∈ Y we decompose T0 = T 1
0 + T 2

0 , S0 = S1
0 + S2

0 , and T (t) = T 1(t) +

T 2(t), S(t) = S1(t) + S2(t) and we consider (w(t), v(t), T 1(t), S1(t)) ∈M and then

(w(t), v(t), T (t), S(t))− (w(t), v(t), T 1(t), S1(t)) = (0, 0, T 2(t), S2(t)).

From (5.3.52) taking into account that bk = 0 for k ∈ IZ∗, we have |ak(t)| ≤

|ak0|e−4νπ
2k2t and together with 4νπ2k2t ≥ 4νπ2t for every k ∈ IZ∗ with (5.3.36), implies

that ‖T 2(t)‖Ḣ1
per
≤ ‖T 2

0 ‖Ḣ1
per
e−4νπ

2t i.e., T 2(t)→ 0 in Ḣ1
per(0, 1) if t→∞.

Moreover, we have S2(t) =
∑

k∈IZ∗\K dk(t)e
2πkix, therefore

‖S2(t)‖2
L̇2
per(0,1)

=
∑

k∈IZ∗\K

|dk(t)|2.



Asymptotic behavior: finite-dimensional systems 135

Since bk = 0 for k ∈ IZ∗ \K, from (5.3.57) we have

|dk(t)|2 ≤
(
|dk0|e−4cπ

2k2t +
b|ak0|
|c− ν|

|e−4π2k2νt − e−4cπ2k2t|
)2

Then, using (α+ β + γ)2 ≤ 4(α2 + β2 + γ2), together with π2k2δt ≥ π2δt for every k ∈ IZ∗

and δ = min{ν, c}, we get

|dk(t)|2 ≤ 4e−8π
2δt

(
|dk0|2 + 2

b2|ak0|2

|c− ν|2

)

From this, we obtain

‖S2(t)‖2
L̇2
per
≤ 4e−8π

2δt
(
‖S20‖2L̇2

per
+

2b2

|c− ν|2
‖T20‖2L̇2

per

)
. (5.3.60)

Therefore, ‖T 2(t)‖Ḣ1
per

and ‖S2(t)‖L̇2
per
→ 0 as t→∞ with exponential decay rate e−4π

2δt.

Thus,M attracts (w(t), v(t), T (t), S(t)) with exponential rate e−4π
2δt in IR2× Ḣ1

per(0, 1)×

L̇1
per(0, 1).

Remark 5.3.2 If T0, S0 ∈ Ḣm
per(0, 1), from |ak(t)| ≤ |ak0|e−4δπ

2t and taking into account

of (5.3.36), we get ‖T 2(t)‖Ḣm
per(0,1)

≤ e−4δπ
2t‖T 2

0 ‖Ḣm
per(0,1)

; and we note from

|dk(t)|2 ≤ 4e−8δπ
2t

(
|dk0|2 + 2

b2|ak0|2

|c− ν|2

)
,

we have

‖S2(t)‖2
Ḣm
per(0,1)

≤ 4e−8δπ
2t
(
‖S20‖2Ḣm

per(0,1)
+

2b2

|c− ν|2
‖T20‖2Ḣm

per(0,1)

)
and the invariant M, attracts the solutions (w(t), v(t), T (t), S(t)) in IR2× Ḣm

per(0, 1)×
Ḣm
per(0, 1) with exponential rate e−4π

2δt.
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5.3.2 The reduced subsystem

Under the hypotheses and notations of Theorem 5.3.3, we suppose that

f(x) =
∑
k∈J

cke
2πkix, (5.3.61)

with ck 6= 0 for every k ∈ J ⊂ IZ and ck = 0 if k /∈ J. Since all functions involved are real

and periodic, we have āk = a−k, b̄k = b−k, c̄k = c−k and d̄k = d−k, as we consider only the

real functions. On the inertial manifold∮
(T − S) · f =

∑
k∈K

ak(t) · c−k −
∑
k∈K

dk(t) · c−k =
∑
K∩J

(ak(t)− dk(t))c−k.

So, the evolution of velocity v and acceleration w depend on the coefficients of T

and S which belong to the set K ∩ J . After solving this, we must solve the equations for

k /∈ K ∩ J which are linear autonomous equations. We note that 0 /∈ K ∩ J and since

K = −K and J = −J then the set K∩J has an even number of elements, that we denote

by 2n0. Therefore, the number of positive elements of K ∩ J , (K ∩ J)+, is n0.

Corollary 5.3.4 Under the notations and hypotheses of the Theorem 5.3.3, we suppose
that the set K ∩ J is finite and then |K ∩ J | = 2n0. Then the asymptotic behavior of
the system (5.2.2), is described by a system of N = 4n0 + 2 coupled equations in IRN ,
which determines (w, v, ak, dk), k ∈ K ∩ J, and a family of |K \ (K ∩ J)| linear non-
autonomous equations. In particular, if K ∩ J = ∅, l(v) = l0 and G(v) = G0 then for
every (w0, v0, T0, S0) ∈ IR2 × Ḣ1

per(0, 1) × L̇2
per(0, 1) we have that the associated solution

verifies that v(t) → 0 and T (t) → θ∞ in Ḣ1
per(0, 1) and S(t) → b

c
θ∞ in L̇2

per(0, 1) where

θ∞(x) is the unique solution in Ḣ2
per(0, 1) of the equation

−ν ∂
2θ∞
∂x2

+ l0θ∞ = l0Ta(x). (5.3.62)

Proof. On the inertial manifold
∮

(T−S)f =
∑

k∈K(ak−dk)(t)c−k =
∑

k∈K∩J ak(t)c−k−∑
k∈K∩J dk(t).c−k. Therefore, the dynamics of the system depends on the coefficients in
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K ∩J. Moreover the equations for a−k and d−k are conjugates of the equations for ak and

dk, and therefore we have
∑

k∈K∩J

ak(t)c−k = 2Re

 ∑
k∈(K∩J)+

ak(t)c−k

 and
∑

k∈K∩J

dk(t)c−k =

2Re

 ∑
k∈(K∩J)+

dk(t)c−k

. From this, taking real and imaginary parts of ak, (a
k
1, a

k
2) and

dk, (d
k
1, d

k
2), k ∈ (K ∩ J)+ in (5.3.41) with n0 = |(K ∩ J)+|, we conclude.

Finally, if K ∩ J = ∅, l(v) = l0 and G(v) = G0 then on the inertial manifold we

get a homogeneous linear equation for the velocity with positive coefficients, that is:

ε
d2v

dt2
+
dv

dt
+G0v = 0

and therefore we have v(t)→ 0 when t→∞.

Moreover from the equation for the temperature in (5.2.2) we have that the function

θ = T − θ∞ satisfies the equation:

∂θ

∂t
+ v

∂θ

∂x
= −v∂θ∞

∂x
+ ν

∂2θ

∂x2
− l0θ. (5.3.63)

We can multiply by θ in L̇2
per(0, 1) and taking into account that

∮
∂θ
∂x
θ = 1

2

∮ ∂(θ2)
∂x

=

0, since θ is periodic, we have

1

2

d

dt
‖θ‖2 + ν‖∂θ

∂x
‖2 = −v

∮
∂(θ∞)

∂x
θ −

∮
l0θ

2 (5.3.64)

and using Cauchy-Schwarz and Young inequality with δ, Cδ = 1
4δ

and then the Poincaré

inequality, since
∮
θ = 0, we have

1

2

d

dt
‖θ‖2 + (νπ2 + l0)‖θ‖2 ≤ |v|(Cδ‖

∂θ∞
∂x
‖2 + δ‖θ‖2). (5.3.65)

Using v(t)→ 0, together with Gronwall lemma, we prove that θ(t)→ 0 in L̇2
per(0, 1).
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We note that S − b
c
θ∞ verifies the equation

∂(S − b
c
θ∞)

∂t
− c

∂2(S − b
c
θ∞)

∂x2
= −v∂S

∂x
− b∂

2(θ)

∂x2
(5.3.66)

multiplying this equation by S − b
c
θ integrating by parts and taking into account, the

periodicity of S, we obtain
∮

∂S
∂x
S = 0, and applying the Young and Poincaré inequality,

we get the inequality u̇ + c∗u ≤ ε
2

for every t ≥ t0, large enough, with u = ‖S − b
c
θ∞‖2,

and c∗ > 0. Finally, from singular Gronwall lemma we have

u(t) ≤ u(t0)e
−c∗(t−t0) +

ε

2
(1− e−c∗(t−t0))

and thus lim supt7→∞ u(t) ≤ ε
2

for every ε > 0.

Remark 5.3.3 Taking real and imaginary parts of the coefficients of temperature ak(t),
heat flux at the wall of the loop bk, geometry of the circuit ck and solute concentration
dk(t), k ∈ (K ∩ J)+, in

ak(t) = ak1(t) + iak2(t), bk = bk1 + ibk2, ck = ck1 + ick2, dk(t) = dk1(t) + idk2(t)

the asymptotic behavior of the system (5.2.2) is given by a reduced explicit system in IRN ,
where N = 4n0 + 2, given by



dw

dt
+

1

ε
w +

1

ε
G(v)v(t) =

1

ε
2
∑

k∈(k∩J)+

[ak2(t)ck2 − ak1(t)ck1]− 1

ε
2
∑

k∈(k∩J)+

[dk2(t)ck2 − dk1(t)ck1]

dv
dt

= w
ȧk1(t) + [l(v) + 4π2k2νak1(t)− 2πkv(t)ak2(t)] = l(v)bk1, k ∈ (K ∩ J)+
ȧk2(t) + [l(v) + 2πkv(t)ak1(t) + 4π2k2νak2(t)] = l(v)bk2, k ∈ (K ∩ J)+
ḋk1(t) + [4cπ2k2dk1(t)− 2πkv(t)dk2(t)] = 4bπ2k2ak1(t), k ∈ (K ∩ J)+
ḋk2(t) + [4cπ2k2dk2(t) + 2πkv(t)dk1(t)] = 4bπ2k2ak2(t), k ∈ (K ∩ J)+

(5.3.67)

Thus, we reduce the asymptotic behavior of the initial system (5.2.2) to the dy-

namics of the reduced explicit system (5.3.67). We observe that from the above analysis,
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it is possible to design the geometry of circuit and/or the external heating, by properly

choosing the functions f and/or the ambient temperature, Ta, so that the resulting system

has an arbitrary number of equations of the form N = 4n+ 2.

Note that K and J may be infinite sets, but their intersection is finite. Also, for a

circular circuit we have f(x) ∼ asin(x) + bcos(x), i.e., J = {±1} and then K ∩J is either

{±1} or the empty set.

5.4 Numerical experiments

In this section, the process of numerical approximation is described for the results of

the numerical experiments obtained using the MATHEMATICA package [61] for the res-

olution of the differential equations, using the fourth-order explicit Runge-Kutta method

for stiffness equations [23, 27]. Solve the system of ordinary differential equations which

are the projection of the partial differential equations (5.2.2) on the inertial manifold.

Numerical approximations are done for the resolution of the nonlinear system of differen-

tial equations (5.3.59) which includes acceleration, velocity, temperature and the solute

concentration. To study the asymptotic behavior of the system of equations, we consider

the coefficients of temperature ak(t) and the coefficients of solute concentration dk(t) with

k ∈ K ∩ J, the relevant modes. Then, we have the finite system of differential equations:



140 Binary viscoelastic fluids with Soret effect



.
w =

2Re(
∑

k∈(K∩J)+ ak(t)c−k)

ε
−

2Re(
∑

k∈(K∩J)+ dk(t)c−k)

ε
− G(v)v

ε
− w

ε
,

.
v = w,

.
ak(t) = l(v)bk − l(v)ak(t)− 4νπ2k2ak(t)− 2πkvak(t)i,

.

dk(t) = −4cπ2k2dk(t) + 4bπ2ak(t)− 2πkvdk(t)i.

(5.4.68)

Since we deal with the circular geometry, we have J = {±1} and K ∩ J = {±1}.

Also we take k = 1 and omit the equation for −k, the conjugate of k. Therefore, we have

the following transformed set of equations:

.
w =

2Re(a1(t)c−1)

ε
− 2Re(d1(t)c−1)

ε
− G(v)v

ε
− w

ε
,

.
v = w,

.
a1(t) = l(v)b1 − l(v)a1(t)− 4νπ2a1(t)− 2πva1(t)i,

.

d1(t) = −4cπ2d1(t) + 4bπ2a1(t)− 2πvd1(t)i

(5.4.69)

where the unknowns are w(t), the acceleration of the fluid, v(t), the velocity of the fluid,

a1(t), the Fourier mode of the temperature and d1(t), the Fourier mode that determines

the solute concentration.

To reduce the number of free parameters, we make the following change of variables

a1c−1 → a1 and d1c−1 → d1 and we define the real and imaginary parts of the equations

in the following way:

a1(t) = a1(t) + ia2(t),

d1(t) = d1(t) + id2(t)
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b1 = A+ iB

with A ∈ IR,B ∈ IR. We obtain the following system of equations to solve for this model:

.
w =

2a1 − 2d1 −G(v)v − w
ε

,

.
v = w,

.

a1 = l(v)A− l(v)a1 − 4νπ2a1 + 2vπa2

.

a2 = l(v)B − l(v)a2 − 4νπ2a2 − 2vπa1

.

d1 = −4cπ2d1 + 4bπ2a1 + 2vπd2

.

d2 = −4cπ2d2 + 4bπ2a2 − 2vπd1

(5.4.70)

This forms a system of six differential equations with six unknowns where we need

to make explicit choices for the constitutive laws of both the fluid-mechanical and thermal

properties. The function G(v) has a clear physical meaning; it interpolates between a low

Reynolds number friction law (in which the overall friction, G(v)v is non-linear (Stokes

friction law) and high Reynolds number (in which the friction is a quadratic law). For

the friction law G(v) and heat flux h(x, v, T ) = l(v)(Ta − T ), we will take the ones used

in the references [23, 27]. For the numerical experiments, which are of a similar model of

thermosyphon for a fluid with one component, they use the functions G(v) = (|v|+ 10−4)

and l(v) = (10−2|v|+ 1).

Numerical analysis has been carried out keeping ε the viscoelastic coefficient as

the tuning parameter ranging from 10−5 (almost Newtonian) to 101 a highly viscoelastic

value. The impact of ε on the system has been keenly observed for the intervals of time t,

as short as 100 time units and as long as 1000 time units. All the variables and equations



142 Binary viscoelastic fluids with Soret effect

that we deal with are non-dimensional.

For the Soret effect diffusion coefficients (b and c), we will assume the values

calculated by Hart in [26] that consider a thermosyphon of circular geometry of radius R0

(for the loop) and Rp (for the pipe). Hart takes the values for a mixture of alcohol and

water, borrowed from Hurle and Jakeman [26]. This reference settles down that c = Ds
V R0

is the number of Lewis, where Ds is the diffusivity of the solute that has a value for such

a mixture of 10−5cm2s−1 and V is the scale of velocity, with a value of 0.01cms−1 for

a circular thermosyphon whose loop to pipe radius ratio is 10. Therefore we will take

c = 0.001. Also, as Hart indicates in [26], b (Soret diffusion coefficient) is a multisigned

parameter that determines the qualitative behaviour of the variables. Therefore, in the

numerical experiments we treat the value of b the Soret coefficient as another tuning

parameter ranging from 10−5 to 101.

We plot the relevant modes of temperature and solute concentration as they are the

ones to have influence on the acceleration w(t) and velocity v(t). The real and imaginary

parts of the temperature and solute concentration give two plots each, one corresponding

to the real part and the other corresponding to the imaginary part. As the system is multi-

dimensional, we present the results in temporal graphs (a given variable versus time) and

phase-space graphs (two physical variables plot against each other). We will show that,

in analogy with the classical Lorenz system, as ε varies, the dynamics of the model un-

dergoes various transformations including steady asymptotic behavior, meta-stable chaos,

i.e., transient irregular behavior followed by convergence to equilibria, periodic behaviors
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and chaotic progressions.

We analyze and discuss the behavior of the system for various parameters of the

viscoelastic coefficients with various Soret coefficients. At the outset, we define and fix

the various parameters that are employed in this model. A and B refer to the position-

dependant (x) given ambient temperature inside the loop. Without loss of generality, we

will assume A = 0, while B is fixed to be 30, in order to simplify in analogy with Lorenz’s

model, as it is shown in references [23, 27] (changing A and B simultaneously only results

in a change in the phase of initial temperature profile). The heat diffusion coefficient

is fixed to ν = 0.002, namely, temperature diffusion is present but not dominant. The

initial conditions are fixed as w(0) = 0, v(0) = 0, a1(0) = 1, a2(0) = 1, d1(0) = 0.01, and

d2(0) = 1.
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Figure 5.1: The chaotic behavior of acceleration and velocity for ε=0.00001, A=0, B=30,
b=0.00001, ν = 0.002, G(v) = (|v|+ 10−4) and l(v) = (10−2|v|+ 1).
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Figure 5.2: The chaotic behavior of the real and imaginary parts of temperature for
ε=0.00001, A=0, B=30, b=0.00001, ν = 0.002, G(v) = (|v|+ 10−4) and l(v) = (10−2|v|+
1).

5.4.1 Experiment I: Soret coefficient b = 0.00001

In this very first numerical experiment, keeping the Soret coefficient b as low as 0.00001,

we observe the impact of ε the viscoelastic coefficient on the system. Numerical experi-

ments were carried out for different viscoelastic coefficients ε ranging from 0.00001 to 10

as tuning parameters. In Figs. 5.1, 5.2 and 5.3 we show the behavior of the system for a

particular case of numerical experiments for the values of ε=0.00001 and Soret gradient

0.00001, plotting acceleration, velocity, temperature and the solute concentration versus

time.

Clearly, the chaotic behavior of the system is observed for these range of parameters.

The plots in Fig. 5.1 of acceleration and velocity portray the chaotic nature of the behavior

of the system. The acceleration ranges from -20 to 20 while the velocity ranges from -3 to

3. As velocity is the time derivative of acceleration, the deviation in the time series plot of

velocity is reduced to -3 to 3. But both the plots exhibit chaotic progresses for the entire
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Figure 5.3: The chaotic behavior of the real and imaginary parts of solute concentration
for ε=0.00001, A=0, B=30, b=0.00001, ν = 0.002, G(v) = (|v| + 10−4) and l(v) =
(10−2|v|+ 1).

range of 1000 time units. When the viscoelastic coefficient as well as the Soret coefficient

is small enough (∼ 0.00001) the system has, apparently, chaotic behaviors.

The real and imaginary parts of the temperature are plotted in Fig. 5.2, giving two

time series plots for 1000 time units, the first part corresponding to the real part of the

temperature and the second part corresponding to the imaginary part of the temperature.

Both the plots exhibit complex and chaotic progress till the end of the entire 1000 time

units, though the imaginary part of the temperature plot looking apparently more chaotic

than the real part of the temperature. As in the case of acceleration and velocity, the tem-

perature too has chaotic progress, when both the viscoelastic and Soret effect coefficients

are as low as 0.00001, reaffirming the chaotic onset. This is a consequence of the coupling

between the variables.

The real and imaginary parts of solute concentration are given in Fig. 5.3 for 1000

time units, the first part corresponding to the real part of the solute concentration and
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the second part corresponding to the imaginary part of the solute concentration. Both

the plots have a similar pattern of chaotic behavior. Unlike the deviation of acceleration,

velocity and temperature, the deviation in solute concentration is very minimum, varying

from -3 to 3. Comparing the plots of temperature with solute concentration, we find that

the deviation in temperature is very well distributed throughout the progression, whereas

the deviation in the solute concentration is found to be more concentrated at the centre.

To sum up this first numerical experiment, we find that when the value of vis-

coelastic component and Soret coefficient are both 0.00001, the system is chaotic. Similar

type of chaotic behaviors are found for all the values of the viscoelastic components ε

ranging from 0.00001 to 10, when the value of Soret coefficient is 0.00001. From the above

observations, we can qualitatively state that when the Soret coefficient b is 0.00001, the

system has chaotic behaviors. In Sec. 5.4.4 we will extend these results quantitatively by

means of standard Lyapunov exponent analysis.
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Figure 5.4: The chaotic transition of the fluid acceleration and velocity for ε=0.1, A=0,
B=30, b=0.001, ν = 0.002, G(v) = (|v|+ 10−4) and l(v) = (10−2|v|+ 1).
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5.4.2 Experiment II: Soret coefficient b = 0.001

In the second numerical experiment, keeping the Soret coefficient b to be 0.001, we

determine the impact of ε the viscoelastic coefficient on the system. Numerical experiments

were carried out for different viscoelastic coefficients ranging from 0.00001 to 10 as tuning

parameters and setting the Soret coefficient b to 0.001. We show three cases of different

kinds of behaviors for different parameters of the viscoelastic coefficient.

200 400 600 800 1000
time

-3. ´ 10-6

-2. ´ 10-6

-1. ´ 10-6

1. ´ 10-6

2. ´ 10-6

3. ´ 10-6

acceleration
ACCELERATION

200 400 600 800 1000
time

2.13154

2.13154

2.13154

2.13154

velocity
VELOCITY

Figure 5.5: The transition from chaotic to quasi-periodic behavior of the fluid acceleration
and velocity for ε=1, A=0, B=30, b=0.001, ν = 0.002, G(v) = (|v| + 10−4), l(v) =
(10−2|v|+ 1).

Case I: Transition from chaotic behavior for ε=0.1

Numerical experiments were carried out for the viscoelastic coefficients 0.00001, 0.0001,

0.001, 0.01, and 0.1, keeping the Soret coefficient b fixed to be 0.001. Until the value of

ε=0.1, the system has chaotic behavior. But at ε=0.1, the system begins to change from

fully chaotic behavior to periodic or stable behavior. To avoid redundancy, we will show

hereafter, only the plots for the acceleration and velocity.
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The time series plots of acceleration and velocity in Fig. 5.4, portray the transition

that takes place in the nature of the behavior of the system, though it still is chaotic

apparently. The plot exhibits a chaotic progress up to the range of 400 time units. But

after reaching 400 time units, the system begins to change its behavior to conserve. This

change of behavior is present also in the time series plots of temperature and solute

concentration which help us to make note of the changing phenomena for these particular

parameters.

Case II: The quasi-periodic behavior for ε=1

Continuing from the previous numerical experiment, when ε is increased to 1, a rela-

tively greater value from the previous experiment, we find a significant change from chaotic

behavior to quasi-periodic behavior taking place in the system. The time series plots of

acceleration and velocity in Fig. 5.5 has a very chaotic beginning but as time progressed

it begins to have quasi-periodic behaviors after the time unit 400. Once crossing the 400

time unit all the plots have quasi-periodic behaviors till the end of 1000 time units. This

gives us a broad understanding that when the viscoelastic coefficient is changed from 0.1

to 1, a transition takes place from chaotic to quasi-periodic behavior. A transition from

chaotic to quasi-periodic behaviors of the system are observed also in the time series plots

of the real and imaginary parts of the temperature and solute concentration as in the case

of acceleration and velocity plots in Fig. 5.5.

To sum up, we have found that when the viscoelastic coefficient is 1 and the Soret
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coefficient is 0.001, the system has the transition from chaotic behavior to a quasi-periodic

behavior. It also shows that the system is slowly transforming towards a state of stable

behavior.
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Figure 5.6: The transition from chaotic to stable behavior of the fluid acceleration and
velocity for ε=10, A=0, B=30, b=0.001, ν = 0.002, G(v) = (|v|+ 10−4), l(v) = (10−2|v|+
1).

Case III: The stable behavior for ε=10

Numerical experiments were carried out for the viscoelastic coefficient ε=10, keeping

the Soret coefficient fixed to be 0.001. For ε=10, a relatively large value, the time series

plots of acceleration and velocity in Fig. 5.6 show a chaotic beginning but as time pro-

gressed they begin to stabilize around the time unit 400. Once crossing the 400 time mark

the plots have stable progresses till the end of 1000 time units. A transition from chaotic

to stable behaviors of the system are observed also in the time series plots of the real

and imaginary parts of the temperature and solute concentration as in the case of the

acceleration and velocity plot in Fig. 5.6. The velocity is stable around 2.13. The real part



150 Binary viscoelastic fluids with Soret effect

of the temperature is stable at 2.27, while the complex part of the temperature is stable

at 0.186. The real part of the solute concentration is stable at 0.0005 while the imaginary

part of the solute concentration is stable at -0.0066. This gives us a broad understanding

that when the viscoelastic coefficient is high i.e., ε=10, the system tends to stabilize as

the time progresses. To sum up, we find that when the value of viscoelastic component

is 10 and the Soret coefficient is 0.001, the system has a transformation from chaos to

stability. From the above observation, we can state that when the value of viscoelastic

component is 10, the system has stabilizing effects.

To sum up the numerical experiment II, we find that when the Soret coefficient

is 0.001, the system has different kinds of behaviors depending on the range of ε the

viscoelastic coefficient. When ε is relatively small, i.e., ε=0.00001, 0.0001, 0.001, 0.01 and

0.1 the system has chaotic effect. But when ε=1, the system has quasi-periodic effect

and at ε=10, it begins to stabilize. From these results, we can state that when the Soret

coefficient is 0.001, the system has different kinds of behaviors depending on the values

of ε the viscoelastic coefficient.

5.4.3 Experiment III: Soret coefficient b = 1

In the third experiment, numerical analysis were carried out, keeping the Soret co-

efficient b fixed to be 1, while the viscoelastic coefficient ε ranging from 0.00001 to 10

as tuning parameter. A significant change in the behavior of the system is observed for

the viscoelastic coefficient ε=1. That is, when the viscoelastic coefficient and the Soret
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Figure 5.7: Stable progress of the fluid acceleration and velocity for ε=1, A=0, B=30,
b=1, ν = 0.002, G(v) = (|v|+ 10−4), l(v) = (10−2|v|+ 1).

coefficient are equal to 1, the system has a stable behavior.

The time series plots of acceleration and velocity in Fig. 5.7 show that for the

given parameter of viscoelastic coefficient ε=1 and Soret coefficient b = 1, the system has

a stable progress. The acceleration, velocity, temperature and the solute concentration all

attain a stable and steady flow all through the 1000 time units. The velocity is stable

around 2.13. The real part of the temperature is stable at 2.13, while the complex part

of the temperature is stable at 0.187. The real part of the solute concentration is stable

at 0.0022 while the imaginary part of the solute concentration is stable at -0.0053. And

same type of stable behavior is obtained for ε=0.1. In all the other cases, the usual chaotic

behavior is observed.

To sum up, we find that when the Soret coefficient value is 1, the system attains

stable behavior for the values of ε=1 and 0.1 while all the other values of ε induce chaos

on the system.
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ε/b 10−5 10−4 10−3 10−2 10−1 100 101

101 C C S S S S S
100 C C QP S S S S
10−1 C C C S S S S
10−2 C C C C C C C
10−3 C C C C C C C
10−4 C C C C C C C
10−5 C C C C C C C

Table 5.1: Qualitative summary of the overall behavior of the system for different values
of the viscoelastic characteristic time, ε (columns) and the Soret coefficient b (rows).
We introduce the following notation to account for the obtained numerical results: ‘S’
a stable behavior,‘C’ denotes a fully chaotic behavior, and ‘QP’ a transitional behavior
from chaotic to quasi-periodic.

Concluding all the three numerical experiments, we want to emphasize that the

overall impact of the viscoelastic coefficient on the system for the entire range of pa-

rameters ranging from 10−5 to 101 for both viscoelastic and Soret gradients. We observe

that when the viscoelastic coefficient is small, i.e., ε=0.00001, 0.0001, 0.001 and 0.01 the

system has chaotic behaviors irrespective of the Soret gradient. But when ε=0.1, 1 and

10 the system has three different kinds of behaviors depending on the Soret gradients. At

first, when the Soret coefficient is 0.00001 and 0.0001, the system has chaotic behavior

for all the values of viscoelastic coefficients. In the second place, when the Soret gradient

is 0.001, the system has chaotic, quasi-periodic and stable behavior when ε=0.1, 1 and

10 respectively. And in the third place, when the values of viscoelastic coefficient and

the Soret gradient are 0.1, 1 and 10, the system has stable behavior. The table 5.1 gives

the qualitative details of the behavior of the system for various parameters, where we

have introduced the following notation to account for the obtained numerical results: ‘S’
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a stable behavior,‘C’ denoting a fully chaotic behavior, and ‘QP’ a transitional behavior

from chaotic to quasi-periodic behavior.

Figure 5.8: The chaotic behavior of the system determined by the Lyapunov exponents
for ε=0.00001, A=0, B=30, b=0.00001, ν = 0.002, G(v) = (|v| + 10−4) and l(v) =
(10−2|v|+ 1).

5.4.4 Analysis of the behavior of the system using Lyapunov
exponents

The behavior of physical systems has been a matter of primary importance to scien-

tists, engineers and mathematicians in order to determine and characterize the dynamical

behavior of the system. In this aspect, the behavior of the system that we are working

with has to be ascertained as it has non-linear dynamics with many variables. To ascer-

tain the dynamical behavior of any system, Russian mathematician Alexandr Lyapunov
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ε/b 10−5 10−4 10−3 10−2 10−1 100 101

101 0.39 0.39 -0.03 -0.39 -0.52 -0.52 -0.52
100 0.45 0.45 0.07 -0.39 -0.49 -1.10 -1.11
10−1 0.42 0.42 0.40 -0.01 -0.24 -0.46 -0.46
10−2 2.61 2.61 1.25 1.36 1.36 1.36 0.87
10−3 2.22 2.22 2.22 2.22 2.22 2.22 2.22
10−4 2.24 2.24 2.24 2.24 2.24 2.24 2.24
10−5 2.29 2.29 2.34 2.29 2.29 2.29 2.29

Table 5.2: The maximum Lyapunov exponent of the system for different values of the
viscoelastic characteristic time, ε (columns) and the Soret coefficient b (rows). We can
assume that maximum Lyapunov exponents close to 0± 0.1 correspond to quasi-periodic
behavior (as simple inspection of the time series plots confirm).

gave the definition and criteria for chaotic, periodic, quasi-periodic and stable behavior

by introducing the linearization of the equations of motion to determine the behavior of

any system, known as Lyapunov exponents. The signs and the values of the Lyapunov

exponents allow us to determine the qualitative and quantitative patterns of behavior of

any system [60].

The Lyapunov exponents have been proved useful for determining and distinguish-

ing the various types of orbits and behaviors of our system. In the first case, when the

viscoelastic coefficients ε are 0.00001, 0.0001, 0.001, and 0.01, relatively lesser gradients,

the system has positive Lyapunov exponents, which is a clear indicator for chaotic or

strange behavior of the system. In the second case, when the viscoelastic coefficients ε are

0.1, 1 and 10, relatively higher gradients, the system has positive, negative and around

the zero point Lyapunov exponents which imply different kinds of behaviors. In this case,

depending on the value of Soret gradients the system exhibits chaotic, quasi-periodic,

periodic and stable behaviors. As the viscoelastic and Soret gradients increased, the sys-
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Figure 5.9: The overall behavior of the system for different values of viscoelastic and Soret
coefficients (the dark area indicates chaos, shaded area indicates the stable behavior and
the white area indicates the quasi-periodic behavior).

tem has more negative Lyapunov exponents which confirm to greater stable behaviors.

In a particular case, when the viscoelastic gradient is 1 and the Soret gradient is 0.001,

the system has the Lyapunov exponent in and around zero, which is an indication for

a quasi-periodic behavior. Along with the Lyapunov exponent values, an example of the

plot for the Lyapunov exponents is given in Fig. 5.8 with positive Lyapunov exponents

for the chaotic behavior of the system.

The table 5.2 gives the summary of the overall pattern of behavior of the system

for the different values of viscoelastic coefficients and Soret coefficients. It gives a broad

outlook of the behavior of the entire system. As the table 5.2 shows, we can observe
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that for a major part of the experiment, chaos is the common feature of the behavior of

the system, apart from a few stable and quasi-periodic behavior of the system where the

viscoelastic as well as the Soret gradients are high. The Fig. 5.9 gives the overall behavior

of the system, where the dark area indicates the chaos, the shaded area indicates the

stable behavior and the white area indicates the quasi-periodic behavior of the system.

5.5 Conclusions

In this chapter we have derived the system of equations that governs the motion of

a viscoelastic material with Soret effect inside a closed-loop thermosyphon. Our results

suggest that when the value of the viscoelastic coefficient ε is less, it drives the dynamics

to a chaotic behavior for all the physical observable (acceleration, velocity, temperature

and solute concentration). As the value of ε gradually increases, the system has a tran-

sition from chaotic to quasi-periodic or stable behavior depending on the Soret gradient.

From these numerical experiments, we observe that the viscoelastic material with Soret

gradients drives the system chaotically when the viscoelastic coefficient ε is small and

stabilizes the system when the viscoelastic coefficient ε is higher.

Physically, this means that when the viscoelastic effects are large (namely, the time

scale ε−1 is comparable with the characteristic time scale of variation due to thermodif-

fusion and Soret effect, the memory smoothening arising from equation (2.2.3) drives the

system towards a stable fixed point. This might explain why chaotic behaviors are more

commonly observed in fluids than in solids in which (sustained) elastic oscillations are
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periodic or damped out with time due to dissipation.
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Chapter 6

Conclusions and future works

6.1 Summary of conclusions

In this work, we have studied the evolution of linear viscoelastic fluids confined in a closed

loop thermosyphon subject to different external (temperature gradients) or internal drives

(due to the Soret effect).

From the results of this research, the following conclusions can be drawn:

1. In the first model, where we considered one component viscoelastic fluids with New-

ton’s linear cooling law (Chapter 3), the results suggest that, when the value of

ε = 10 is large, it drives the dynamics of the system to chaotic behaviors for all the

physical observable (acceleration, velocity and temperature). As the value of ε grad-

ually decreases, the system is no longer chaotic but stable or periodic. Physically,

this induction of chaotic behaviors might be related to the memory effects inherent

to viscoelastic models. Thus, in the same way as delayed equations are known to

produce chaos, even in the simplest situations, viscoelasticity produces the same

kind of transition (see, for instance [41]). Other interesting results are related to the
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effect of heat diffusion. It is found that as the heat diffusion increases, the system

tends to stabilize either to a fixed equilibrium point or to a (ν-dependent period-

icity) periodic orbit. Naturally, in a generic case, the balance between destabilizing

viscoelastic effects and stabilizing thermal diffusion rules the overall behavior of the

fluid.

2. In the second model where we considered one component viscoelastic fluids with a

prescribed heat flux (Chapter 4), it is observed that when the value of ε is large the

system has also chaotic effects. As the value of ε decreases the system becomes stable

and periodic. The interpretation of the role of viscoelasticity remains the same. But

one special observation in this case is that the ranges of parameters where periodic

behavior arises are broader.

3. In the third model, where we considered binary viscoelastic fluids (Chapter 5), the

system of equations that governs the motion of a binary viscoelastic material with

Soret effect inside a closed-loop thermosyphon is derived. Our results suggest that

when the value of the viscoelastic coefficient ε = 0.00001 (very small), viscoelasticity

drives the dynamics to chaotic behaviors for all the physical observables (acceler-

ation, velocity, temperature and solute concentration). As the value of ε gradually

increases, the system has a transition from chaotic to quasi-periodic or stable behav-

ior depending on the Soret gradient. From the numerical experiments, it is observed

that the viscoelastic fluid with Soret gradients sets the system in chaos when the
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viscoelastic coefficient ε is small and stabilizes the system when the viscoelastic

coefficient ε is higher. This result is unexpected as the role of ε is the opposite

as in the case without the Soret effect. In this case, memory effects, presumably,

smoothen out rapid variations inside the fluid. Physically, this means that when the

viscoelastic effects are large (namely, the time scale ε−1 is comparable with the char-

acteristic time scale of variation due to thermodiffusion), the memory smoothening

arising from the equation (2.2.3) drives the system towards a stable fixed point.

This might explain why chaotic behaviors are more commonly observed in fluids

than in solids in which (sustained) elastic oscillations are periodic or damped out

with time due to dissipation. However, a simple clear-cut explanation of the role of

viscoelasticity cannot be presented. This emphasizes the need for detailed mathe-

matical calculations of the model equations (as the ones presented in this work) to

avoid misinterpretations or simple hand-waving expectations of the model outcome.

6.2 Future works

In this work we have worked with a specific Maxwell constitutive equation for the

viscoelastic fluid. Although this could be too restricted, Maxwell model of viscoelasticity

has been proved accurate in many physical systems. However, this assumption can be re-

laxed in many different ways from changing the constitutive equation (from Maxwellian to

other more complex situations) or to include shear-thinning effects [46] common to many

non-Newtonian materials. Shear-thinning is the manifestation of a shear-rate dependent
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viscosity. Thus, it is commonly observed that many fluids reduce their resistance to flow

for large enough imposed stresses (in our case, temperature gradients), for instance tooth

paste, paint or lava.

Heat diffusion is a major factor that has great impact on the behavior of viscoelastic

fluids in a thermosyphon. Another interesting feature of this research could be to study

the effect of heat diffusion on this system which could be one of the many possible future

researches. As shown in Ref. [53], diffusion can also damp out chaotic oscillations so the

system could undergo reentrant transitions from states dominated by either Soret effects,

viscoelasticity or thermal diffusion.

Finally, and more importantly, all the work presented here concerns linear vis-

coelasticity. Although this approximation has been proved valid in many contexts, there

are some interesting systems in which this assumption cannot be stressed consistently (one

case is blood). In those cases, more sophisticated descriptions are mandatory in order to

provide physically relevant answers to specific problems.



Chapter 7

Conclusiones y trabajos futuros

7.1 Resumen de las conclusiones

En esta tesis se ha estudiado la evolución de un fluido viscoelástico lineal confinado en

un termosifón de bucle cerrado sujeto a diferentes fuerzas externas (gradientes de tem-

peratura, gravedad) o internas (debido al efecto Soret).

De los resultados de esta investigación, las conclusiones que pueden extraerse son las

siguientes:

1. En el primer modelo, en el que se considera un ĺıquido de un componente vis-

coelástico con la ley de enfriamiento lineal de Newton (captulo 3), los resultados

sugieren que, cuando el valor de ε es grande, la dinámica es caótica para todos

los observables f́ısicos (aceleración, velocidad y temperatura). Cuando el valor de

ε disminuye gradualmente, el sistema ya no es caótico sino estable o periódico.

F́ısicamente, esta inducción de comportamientos caóticos podŕıa estar relacionado

con los efectos de memoria inherentes a los modelos viscoelásticos. Aśı, de la misma
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forma que las ecuaciones con retraso son conocidas por producir caos (véase, por

ejemplo [41]), incluso en las situaciones más sencillas, la viscoelasticidad podŕıa in-

ducir el mismo tipo de transición. Otros resultados interesantes están relacionados

con el efecto de la difusión del calor. Se ha encontrado que, a medida que aumenta la

difusión del calor, el sistema tiende a estabilizarse ya sea a un punto de equilibrio fijo

o a una órbita periódica. Naturalmente, en un caso genérico, el equilibrio entre los

efectos desestabilizadores viscoelásticos y la difusión gobernarán el comportamiento

global del fluido.

2. En el segundo modelo, donde se considera un fluido mono-componente viscoelástico

con un flujo térmico prescrito (caṕıtulo 4) se observa que, cuando el valor de ε es

grande, tiene un efecto caótico en el sistema. A medida que el valor de ε dismin-

uye el sistema se vuelve estable o periódico en función de otros parámetros. La

interpretación de la función de viscoelasticidad sigue siendo la misma, pero, en este

caso, los rangos de parámetros donde surge un comportamiento periódico son más

amplios.

3. En el tercer modelo, donde se considera un sistema binario de fluido viscoelástico con

solutos —con lo que aparece el efecto Soret—, (caṕıtulo 5), el sistema de ecuaciones

que rigen el movimiento de un material viscoelástico binario en el interior de un

termosifón de bucle cerrado es derivado expĺıcitamente. Nuestros resultados sugieren

que, cuando el valor del coeficiente de viscoelástico ε es pequeño, la dinámica es
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caótica para todos los observables f́ısicos (aceleración, velocidad, temperatura y

concentración de soluto). A medida que el valor de ε aumenta poco a poco, el

sistema tiene una transición de comportamiento caótico a quasi-periódico o estable

en función del coeficiente de gradiente Soret. Este resultado es inesperado, pues el

papel de ε es el contrario que en el caso sin efecto Soret. En este caso, los efectos de

memoria, presumiblemente, suavizan las variaciones rápidas en el interior del fluido.

F́ısicamente, esto significa que, cuando los efectos viscoelásticos son grandes (es

decir, la escala de tiempo ε−1 es comparable con la escala de tiempo caracteŕıstica

de variación debido a termodifusión), la memoria suaviza las soluciónes y el sistema

converge hacia un punto fijo estable. Esto podŕıa explicar por qué comportamientos

caóticos son mı́s comúnmente observados en los fluidos que en los sólidos en los

que las oscilaciones elásticas son periódicas o amortiguadas con el tiempo debido a

la disipación. Sin embargo, un simple explicación de la función de viscoelasticidad

no puede ser presentada a la luz de nuestros resultados. Esto pone de relieve la

necesidad de detallados cálculos matemáticos de las ecuaciones del modelo (como las

que se presentan en este trabajo), para evitar interpretaciones erróneas o demasiado

simplistas.
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7.2 Trabajos futuros

En esta tesis se ha trabajado con una ecuación constitutiva espećıfica para el fluido

viscoelástico. Aunque esto pudiera parecer demasiado restringido, el modelo de Maxwell

se ha demostrado preciso en muchos sistemas f́ısicos. Sin embargo, esta suposición puede

relajarse en muchas formas diferentes, desde cambiar la ecuación constitutiva (de Maxwell

a otras situaciones más complejas) o incluyendo los efectos de shear-thinning [46] común a

muchos materiales no newtonianos. El efecto de shear-thinning es la manifestación de una

viscosidad dependiente de los esfuerzos cortantes aplicados sobre el fluido. Aśı, se observa

comúnmente que muchos fluidos reducen su resistencia al flujo para grandes tensiones (en

nuestro caso, los gradientes de temperatura) como, por ejemplo, la pasta de dientes,la

pintura o la lava.

La difusión de calor es un factor importante que tiene gran impacto en el compor-

tamiento de los fluidos viscoelásticos en un termosifón. Otra caracteŕıstica interesante para

generalizar esta investigación podŕıa ser estudiar en mayor detalle el efecto de la difusión

del calor en este sistema. Como se muestra en Ref. [53], la difusión también puede amor-

tiguar las oscilaciones caóticas por lo que el sistema puede experimentar transiciones de

estados reentrantes dominados por el efecto Soret, la viscoelasticidad o la propia difusión

térmica.

Por último, y lo más importante, todo el trabajo que aqúı se presenta se refiere

viscoelasticidad lineal. Aunque esta aproximación se ha demostrado válida en muchos
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contextos, hay algunos sistemas interesantes en los que este supuesto no se puede asumir en

general (el caso de la sangre). En esos casos, descripciones más sofisticadas son obligatorios

para poder dar respuestas pertinentes a problemas f́ısicos espećıficos.
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Appendix

A.1 Boundary layer theory

The system of equations (2.2.5) can be seen as a singular perturbation problem pro-

vided that when ε = 0, the order of the differential equation reduces to one. In order to

provide some insight about the solutions of those equations a standard boundary layer

theory is customary (see, for instance, Ref. [57]).

In particular, one splits the problem into two parts: the inner problem and the

outer problem. The inner problem is defined as the dynamics of the system for times up

to 1/ε in which the term εd2v/dt2 is dominant. This regime is strongly dominated by

transient impulsive changes in the physical variables. Following Ref. [57], we define a new

time scale τ = t/ε. So, the first equation in (2.2.5), up to order ε, is given by

d2v

dτ 2
+
dv

dτ
= O(ε), (1.1.1)

whose solution is

v(τ) = v(0) + β(e−τ − 1), (1.1.2)
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with β a constant that can be determined by matching with the outer solution. For

instance, if one assumes the velocity has initial condition v(0) and the matching time is

τ = O(1) ' 1, then it is straightforward to see that the velocity at a matching time

τ = 1, converges exponentially to vmatching = v(0) + β(e−1 − 1).

Besides, the outer problem is defined as the naive approximation ε→ 0. Thus, the

system of equations (2.2.5) reduces to that in Ref. [52] with an effective initial condition

given by vmatching. So one would expect the same qualitative behaviors as in that work.

For instance, if the parameter B = 10, the model in Ref. [52] predicts a stable

behavior. However, as shown in Table 2 (second row), increasing the value of ε induces

a chaotic behavior. Naturally, different values of the parameters (including B) would

provide different values of ε for which the trivial case ε → 0 cannot account for the

observed dynamics (even for small enough values of ε).

This simple analysis shows the intrinsic complexity of the physical problem when

viscoelasticity is considered and more importantly, the need to study every parameter set

in detail to provide an accurate description of the type of dynamics in which the system

evolves.

A.2 Sectorial Operators

A.2.1 Definition of sectorial operator

We call a linear operator A in a Banach space X a Sectorial operator if it has a

densely closed operator such that for some φ in (0, π
2
), for some constant M ≥ 1 and a
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real number a, such that the sector

Sa,φ = {λ ∈ C, φ ≤ |arg(λ− a)| ≤ π, λ 6= a}

is contained in the resolvent of A and it has

‖(λ− A)−1‖ ≤ M

|λ− a|
for all λ ∈ Sa,φ.[27]

A.2.2 The interpolation scale of spaces

Let us look at the definition of the potential fractional powers of the sectorial operator

and the spaces of interpolation associated to the sectorial operator as in [27].

Definition A.2.1 Suppose A is a sectorial operator in a Banach space X with Reσ(A) >
0, then for any α > 0 we define

A−α =
1

Γ(α)

∫ ∞
0

tα−1e−Atdt.

Aα = (A−α)−1 is the inverse operator of A−α, with D(Aα) = R(A−α), A0 ≡ the identity
in X.

Definition A.2.2 Suppose A is a sectorial operator in a Banach space X with Reσ(A) >
0, then for any α ≥ 0, we define Xα = D(Aαa ) with the property of the norm, then

‖x‖α = ‖Aαax‖, x ∈ Xα, where Aa = A+ aI with a ≥ 0 such that σ(Aa) > 0. (1.2.3)

The family {Xα}α≥0 denotes the chain of spaces of the potential fractional powers of the
sectorial operator A.

Proposition A.2.1 Suppose A is a sectorial operator in a Banach space X, then it has:
i) For every α ≥ 0, the norm as defined in (1.2.3) is independent of the choice of a.

Moreover Xα is a Banach space with the said norm.
ii) The space X0 = X, for α ≥ β ≥ 0, Xα is a dense subspace of Xβ with continued

inclusion. Moreover, if α, β ∈ IR+ and θ ∈ [0, 1], then for all x ∈ Xγ with γ = max{α, β},
there exists a constant C > 0 that depends on α, β and θ, the denominate constant of
interpolation, such that:

‖x‖θα+(1−θ)β ≤ C‖x‖θα‖x‖1−θβ .

iii) If A has a compact resolvent, the inclusion Xα ⊂ Xβ is always compact for α >
β ≥ 0.

iv) The operator A is a sectorial operator in Xα for all α ≥ 0.
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Lemma A.2.2 Suppose A is a sectorial operator in a Banach space X with Re(σ(A)) >
δ > 0, then for any α ≥ 0, there exists cα > 0 such that:

‖Aαe−At‖ ≤ cαt
−αe−δt for all t > 0.

If, 0 < α ≤ 1 and w ∈ D(Aα), then

‖(e−At − I)w‖ ≤ 1

α
c1−αt

α‖Aαw‖

Moreover cα is bounded if α moves in the compact interval of (0,∞), beside ever
closed if α 7→ 0+, where e−At represents the analytic semigroup whose infinitesimal gen-
erator is A [2, 3, 27, 49].

The proofs of the above proposition and lemma are given in [27]. The next result

is based on the interpolation inequality types of Gagliardo-Nirenberg [45].

Lemma A.2.3 Given k a positive number, p ≥ 1, r ≤ ∞ and j = 0, .., k. We define

1

q
=
j

k
(
1

p
− 1

r
) +

1

r
.

Let Ω ⊂ IRN be an open bounded and regular domain, if u ∈ W k,p(Ω) ∩ Lr(Ω), then for
all multi-index σ, such that |σ| = j, Dσu ∈ Lq(Ω), and

‖Dσu‖Lq ≤ C
∑
|µ|=k

‖Dµu‖
j
k
Lp‖u‖

1− j
k

Lr ,

with C > 0 independent of u.

We have some results about the potential spaces associated to the sectorial operator

−∆P , where the subindex P of Laplacian represents the periodic boundary condition.

Proposition A.2.4 If 1 ≤ p < ∞, the operator −∆P in X0 = Lpper with domain X1 =
W 2,p
per is a compact resolvent sectorial operator. Moreover, if we consider µ > 0 such that

σ(−∆P +µI) > 0, the fractional potential spaces Xα
P = W 2α,p

per = D[(−∆P +µI)α], provided
with the norm of the graph that we shall denote by ‖ · ‖W 2α,p

per
, (or simply ‖ · ‖α), for α > 0

and ‖ · ‖Lpper (or ‖ · ‖), are well defined and verify that

W 2α,p
per ⊂ W 2α,p(Ω) (1.2.4)

with continued inclusion for all α ∈ [0, 1], where W 2α,p is a Sobolev space [2].
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Remark A.2.1 In this work, we denote Lpper = Lpper(Ω) and consider Ω = (0, 1). More-
over, we consider that all the functions are with zero average. That is:

L̇pper(Ω) = L̇pper(0, 1) = {u ∈ Lploc(IR), u(x+ 1) = u(x)a.e.,

∮
u = 0}.

By this reason, −∆P is positive.

Remark A.2.2 For the particular case p = 2, we have that −∆P is a sectorial operator
about L2

per that is a Hilbert space and as a consequence, we have a spectral representation
of the form:

‖x‖α = (
∞∑
n=1

|λn|2α|xn|2)
1
2 = ‖(−∆P + I)αx‖0

define a Hilbertian norm in Xα being a spectral decomposition of x:

x =
∞∑
n=1

xnen,

with en a normalized Hilbertian base of L2
per formed by proper functions of −∆P . Therefore

we have the operator

−∆α
P : D(−∆α

P ) = Hα
per 7−→ L2

per

defined by:

−∆α
Px =

∞∑
n=1

λαnxnen.

In this form, we have the scale of the extended interpolation space for all α ∈ IR,
and the Proposition A.2.1 follows for all α ∈ IR with constant interpolation C = 1 in
the division. Moreover, the negative exponents of the spaces obtained by the duality of the
form that if p = 2 we shall denote by H−2αper = (H2α

per)
′, α ≥ 0, to the dual space H2α,p

per , and
we have the following result.

Proposition A.2.5 We suppose p = 2, then we have: Hm
per(Ω),m ∈ IN, H−1per = (H1

per(Ω))′,
H−2per = (H2

per(Ω))′ and W−2α,p
per = (W 2α,p

per (Ω))′, 0 ≤ α ≤ 1 where 1 < p <∞ and p′ = p
p−1 .

Remark A.2.3 Hm
per(Ω) is the dual space of W 2α,p′

per with respect to the duality product of

Lp
′
(Ω)× Lp(Ω). In particular W−1,p

per = (W 1,p′
per (Ω)). In this case all the results are true on

Ẇ 2α,p′
per or Ḣm

per if p = 2.
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A.3 Semilinear equations: existence and uniqueness

We have some results for the existence and uniqueness of solutions of the evolution
of equations that describe a sectorial operator. In the first place, we enunciate a few
lemmas whose proofs are given in [49, 51] which we shall use frequently in this work.

Lemma A.3.1 Given the equation:{
dw
dt

+ Aw = f(t), t ≥ t0
w(t0) = w0 ∈ Xβ.

(1.3.5)

where A is a sectorial operator in the Banach space X and Xα = D(Aαa ) with Aa =
A + aI, α ≥ 0, the spaces of the fractional powers associated to the operator A and f :
[t0, T ) 7→ Xβ.

i) Suppose that f ∈ L1(0, T ;Xβ), then there exists a solution of (1.3.5), a weak de-
nominated solution that comes from ‘the formula of variation of constants’. That is:

w(t) = e−A(t−t0)w0 +

∫ t

t0

e−A(t−s)f(s)ds (1.3.6)

verifying such that w ∈ C([0, T );Xα) for all γ < β + 1.
ii) Suppose that f is locally Hölder continuous in t of exponent θ and there exists ρ > 0

such that
∫ ρ
0
‖f(t)‖Xβdt <∞, then the solution given by the formula of variation of con-

stants verifies the equation (1.3.5), as an equality of the space Xβ and almost everywhere
wt ∈ Xβ, w(t) ∈ Xβ+1, t ∈ (0, T ), verifying:

w ∈ C([0, T );Xβ) ∩ w ∈ C1((0, T );Xβ) and w ∈ C([0, T );Xβ+θ). (1.3.7)

Next, we show some results about the existence, uniqueness and regularity of a semi-
linear equation whose proofs are given in [27, 49].

Theorem A.3.2 We consider the non-linear equation{
dw
dt

+ Aw = f(t, w), t ≥ t0
w(t0) = w0, w0 ∈ Xα.

(1.3.8)

where A is a sectorial operator in the Banach space X and Xα = D(Aαa ) with Aa =
A + aI, α ≥ 0, the spaces of the fractional powers associated to the operator A. We
suppose that f has an open set U in IR×Xα in Xβ, for some 0 ≤ α− β < 1, of the form
f that is locally Hölder continuous in t and locally Lipschitz in w.

Then for all (t0, w0) ∈ U , there exists t1 = t1(t0, w0) > 0 of the form of Cauchy
problem given in (1.3.8), that has a unique solution w in (t0, t1) that comes from the
formula of variation of constants. That is:

w(t) = e−A(t−t0)w0 +

∫ t

t0

e−A(t−s)f(s, w(s))ds (1.3.9)
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such that w : [t0, t1) 7→ X is a continuous function with w(t0) = w0, w(t) ∈ D(A), there
exists dw

dt
, and the function t 7→ f(t, w(t)) is locally Hölder continuous with values in Xβ.

Moreover, it verifies that

w ∈ C((t0, t1);X
α) ∩ C((t0 − t1);Xβ+θ). (1.3.10)

and it has wt : (t0, t1) 7→ Xβ which is a Hölder continuous function.

Theorem A.3.3 Under the hypothesis and the notations of the previous Theorem A.3.2,
if f : U ∈ IR×Xα 7→ X with 0 ≤ α < 1 is locally Lipschitz, then if γ < 1, the application
t 7→ dw

dt
∈ Xγ is a locally Hölder continuous function for t0 ≤ t ≤ t1, with

‖dw
dt
‖γ ≤ C(t− t0)α−γ−1. (1.3.11)

Proposition A.3.4 Under the hypothesis and the notations of the previous Theorem
A.3.2, if we suppose that f maps bounded sets of U in to bounded sets of X such that
U ⊂ IR × Xα 7→ X. Then if (t0, t1) is the maximal interval in w given by the previous
theorem, then it has that t1 = ∞, is to say that the solution is global or the norm of
the solution that explodes in finite time, i.e., to say that there exists a succession of time
tn 7→ t1, such that ‖w(tn)‖α 7→ ∞ [27, 49].

A.4 Dissipative semigroups

We have some definitions of dissipative semigroups from [24]:

1. Given S∗(t), t ≥ 0 a semigroup in the Banach space X. We say that a set A ⊂ X
is a maximal or global attractor for the semigroup S∗(t), if it is the maximal
compact set and invariant S∗(t)(A) = A, t ≥ 0, that attracts to the bounded set
X i.e., dist(S∗(t)B,A) 7→ 0 if t 7→ ∞ for all B bounded in X, where we have:

dist(x,A) = inf{d(x,A), a ∈ A} with x ∈ X,A ⊂ X.

dist(A,B) = sup{dist(a,B), a ∈ A} with A,B ⊂ X.

2. Given S∗(t), t ≥ 0 a semigroup in the Banach space X with maximal attractor A.
We say that M is an inertial manifold of class Ck and dimension N for S∗(t), if
M is a topological manifold of dimension N and class k, submanifold for X (i.e.,
the topology of M is induced by X) such that:

i) S∗(t)M⊂M for all t ≥ 0.

ii) M contains the maximal attractor A of S∗(t).
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iii) There exists δ > 0 verifying that for all B ⊂ X bounded, there exists C(B) ≥ 0
such that:

dist(S∗(t),M) ≤ C(B)e−δt, t ≥ 0.

We observe that ifM is closed in X, then the third condition implies the second con-
dition. This definition, together with some more properties of the inertial manifold
can be seen in [47, 48].

The theorem 4.2.2. of [24] states that:

Theorem A.4.1 If A and f satisfy the following conditions: 1) u̇ + Au = f(u), t >
0, u(0) = u0, 2) A is a sectorial operator on X and there is an α ∈ [0, 1) such that
f : Xα 7→ X is locally Lipschitz continuous, i.e., f is continuous and for any bounded set
U in Xα there is a constant kU such that |f(u)− f(v)| ≤ kU |u− v|α for u, v ∈ U and in
addition, the resolvent of A is compact and S∗(t) takes bounded sets into bounded sets for
each t > 0, then S∗(t) is compact on Xα for t > 0.

The proof of this theorem is given in [24] on page 73.

The Theorem 3.4.8. of [24] states that:

Theorem A.4.2 If there is a t1 ≥ 0 such that the Cr
− semigroup S∗(t) : X 7→ X, t ≥ 0

is completely continuous for t ≥ t1 and point dissipative, then there is a global attractor
A. If X is a Banach space, then A is connected and, if t1 = 0, there is an equilibrium
point of S∗(t). If, in addition, S∗(t) is one-to-one on A, then S∗(t)|A is a Cr

− group.

The proof of this theorem is given in [24] on page 40.

A.5 L’Hopital rule

The generalization of L’Hopital rule for limit superior whose proof is given in [52].

Lemma A.5.1 Let F1 and F2 be real and differential functions in (a, b), b ≤ ∞, such that
F ′2(t) 6= 0 in (a, b) and limsupt7→bF2(t) =∞ (respectively liminft7→bF2(t) =∞). Then, if

limsupt7→b
F ′1(t)

F ′2(t)
= L, we have limsupt7→b

F1(t)

F2(t)
≤ L.

and respectively, if

liminft7→b
F ′1(t)

F ′2(t)
= L, we have liminft7→b

F1(t)

F2(t)
≤ L.
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A.6 Inequalities

A.6.1 Young Inequality

If a and b are non-negative real numbers and p and q are positive real numbers such that
1
p

+ 1
q

= 1, then

ab ≤ ap

p
+
bq

q
.

A.6.2 Hölder’s Inequality

Suppose that f and g are two non negative real valued functions defined on a measure space
(X,Ω). For 1 < p, q <∞ and f ∈ Lp(Ω), g ∈ Lq(Ω) and 1

p
+ 1

q
= 1, then fg ∈ L1(Ω) and

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq . Hölder’s inequality becomes an equality if and only if ‖f‖p and ‖g‖q
are linearly dependent in L1(Ω). The numbers p and q are said to be Hölder conjugates of
each other. The special case p = q = 2 gives a form of Cauchy-Schwarz inequality.

A.7 Singular Gronwall lemma

Let a, b ≥ 0, 0 ≤ α, β < 1 and u : [0, T ] 7→ IR an integrable function such that for t ∈ [0, T ],

0 ≤ u(t) ≤ at−α + b

∫ t

0

(t− s)−βu(s)ds

Then there exists K = K(b, β, T ) such that

u(t) ≤ K

1− α
at−α, t ∈ [0, T ]

A.8 Lyapunov exponent

The Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system
is a quantity that characterizes the behavior of the system. The signs of the Lyapunov
exponents provide the qualitative behaviors of the dynamics of the system. Any system
containing at least one positive Lyapunov exponent is defined to be chaotic [60], if all the
Lyapunov exponents are negative then the system is said to be stable and around the values
of zero, it is said to be periodic.

The Lyapunov exponent is defined in [60] as:

λi = lim
t→∞

1

t
log

pi(t)

pi(0)

where λi is the Lyapunov exponent and pi(t) is the length of the ellipsoidal principal axis.
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[36] A. Jiménez-Casas and A.M-L. Ovejero, “Numerical analysis of a closed-loop ther-
mosyphon including the Soret effect”, Applied Math. Comput., 124, 289-318, (2001).
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