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Chapter

Introduction

1.1 Hadrons and Quantum Chromodynam-
ics

The theory that studies the strong interactions is Quantum Chromo-
dynamics. The fundamental force of the strong interaction describes
the interaction between quarks and gluons which are the building
blocks of Hadrons. These are divided into two groups: Mesons and
baryons. The most basics mesons and baryons are made of ¢ and ¢qq
respectively. The best known of the baryons is the proton (7 > 102
years) and for mesons these are the pion and the kaon, discovered
in the cosmic ray experiments in the 1940s. QCD emerged as a
development of the Gell-Mann-Zweig model for hadrons, which was
postulated to classify the hadrons in a SU(6) scheme with the spin
SU(2) and flavor SU(3) symmetries. Successful as it was, it appeared,
however, to have some difficulties reconciling the Fermi Statistics for
quarks with the most natural assumption that all the relative angu-
lar momenta among constituent quarks in the lowest-lying hadronic
states vanishes (s-wave states). Thus, baryon wave-functions should
be antisymmetric in spin and flavour degrees of freedom. However,

15



16 Hadrons and Quantum Chromodynamics

this is not the case in the original quark model as can be immediaely
seen from the A**(%Jr) wave-function which must be v T v 7 u T,
where the arrow denotes S, = 1/2 for each quark and u is the quark
with electric charge @) = 2/3.

The difficulty can be resolved by postulating a new internal quan-
tum number for quarks which has been called colour. If a quark
of each flavour has three, otherwise indistinguishable, colour states,
Fermi statistics is saved by using a totally antisymmetric colour wave-
function eqpetiq T up T ue T. Assuming furthermore that (i) the strong
interactions are invariant under global SU(3).on transformations
(the states may then be classified by their SU(3)coiour representa-
tion) and (ii) physical hadrons are colourless, i.e. they are singlets
under SU(3)colour (quark confinement), we can understand why only
qqq and qq states, and not qq or gqqq etc., exist in nature: the singlet
representation appears only in the 3 x 3 x 3 and 3 x 3 products.

The concept of colour is also supported by at least two other
strong arguments. The one we explain here is based on the parton
model approach (Feynman 1972) to the reaction ee~ — hadrons.
The ratio,
o(ete” — hadrons)

R= (1.1)

olete — ptp)

is predicted to be

ey Q2 4 1 4 1 1
- =177 _ 2 _ e T e M
R=—= Zq:Qq 3x(g+gtgtgtygt)
11 : .
= 3 (including quarksup tob) (1.2)

The experimental value of R is in good agreement with this prediction
and in poor agreement with the colourless prediction %. The other
one is based on the 7% — 2+ decay.

The concept of colour certainly underlies what we believe to be the
true theory of strong interactions, namely QCD. However, the the-

ory also has several other basic features which are partly suggested



Introduction 17

by experimental observations and partly required by theoretical con-
sistency. Firstly, it is assumed that strong interactions act on the
colour quantum numbers and only on them. Experimentally, there is
no evidence for any flavour dependence of strong forces; all flavour-
dependent effects can be explained by quark mass differences and the
origin of the quark masses, though not satisfactorily understood yet,
is expected to be outside of QCD. In addition, only colour symme-
try can be assumed to be an exact symmetry (flavour symmetry is
evidently broken) and this, combined with the assumption that it is
a gauge symmetry has profound implications: asymptotic freedom
and presumably, though not proven, confinement of quarks. Both
are welcome features. Asymptotic freedom means that the forces be-
come negligible at short distances and consequently the interaction
between quarks by the exchange of non-abelian gauge fields (gluons)
is consistent with the succesful, as the first approximation, descrip-
tion of the parton model. It has been shown that only non-abelian
gauge theories are asymptotically free (Coleman and Gross 1973).
Confinement of the colour quantum numbers, i.e. of quarks and glu-
ons, has not been yet proved to follow from QCD but it is likely to be
true, reflecting strongly singular structure of the non-abelian gauge
theory in the IR region. Once we assume colourful quarks as elemen-
tary objects in hadrons, confinement of colour is desirable in view of
the so far unsuccessful experimental detection of free quarks and to
avoid a proliferation of unwanted states.

These features of QCD make direct application of the QCD La-
grangian hardly feasible in order to solve strong interaction problems.
Perturbative calculations can be done just at high energies where the
strong coupling constant gets small, but for low energies, because
of the running of this coupling, direct use of the QCD Lagrangian
can be done just via lattice calculations which are extremely time
and computer resources consuming, but still give insights into the
connections between hadrons and the underlying QCD dynamics.
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Exotic mesons

Apart from the ordinary ¢q and qqq hadrons, there are many more
exotic possibilities to construct color singlets. The constituent quark
model describes the observed meson spectrum as bound ¢g states
grouped into SU(N) flavor multiplets. However, the self-coupling
of gluons in QCD suggests that additional mesons made of bound
gluons (glueballs), or gg-pairs with an excited gluon (hybrids), may
exist. Multiquark color singlet states such as qqqq (tetraquark and
"molecular" bound states of two mesons) or ¢qqdqq (six-quark and
"baryonium" bound states of two baryons) have also been predicted.
Here we briefly summarize these kinds of exotic mesons.

1. Glueballs. Lattice calculations, QCD sum rules, flux tube, and
constituent glue models agree that the lightest glueballs have
quantum numbers J¢ = 07+ and 2**. Lattice calculations
predict for the ground state, a 0™ glueball, a mass around
1650 MeV with an uncertainty of about 100 MeV, whereas the
first excited state (2*7) has a mass of about 2300 MeV. Thus,
the low-mass glueballs lie in the same mass region as ordinary
isoscalar ¢g states. The 0~ state and exotic glueballs (with
non-¢g quantum numbers such as 0~ —, 07—, 17, 27~ etc.) are
expected above 2 GeV. The lattice calculations assume that the
quark masses are infinite, and therefore neglect ¢¢ loops. One
meson very hard to accommodate as a qq state and most likely
to be a glueball is the fy(1500). Others mesons like the f;(1710)
are candidates to be mixture of gg with glueball.

2. Tetraquark candidates and molecular bound states. An
early quark model prediction was the existence of multiquark
states, specifically bound meson-antimeson molecular states [1,
2]. In the light quark sector the f,(980) and ao(980) are con-
sidered to be strong candidates for K K molecules. However,
in general, it is challenging to identify unequivocously a light
multiquark state in an environment of many broad and often
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overlapping conventional states. The charmonium spectrum is
better defined so that new types of states can potentially be
more easily delineated from conventional charmonium states.

Two generic types of multiquark states have been described in
the literature. The first, a molecular state, is comprised of two
mesons bound together to form a molecule. These states are by
nature loosely bound. In principle, molecular states can bind
through two mechanisms: quark/colour exchange interactions
at short distances and pion exchange at large distance [3, 4, 5]
(see Fig. 1.1) although pion exchange is expected to dominate
[3]. Because the mesons inside the molecule are weakly bound,
they tend to decay as if they are free. Details are reviewed by
Swanson in Ref. [3]. In addition, the p exchange plays a crucial
role in some kind of molecules as will be shown in this thesis.

The second type is a tightly bound four-quark state, dubbed a
tetraquark, that is predicted to have properties that are distinct
from those of a molecular state. In the model of Maiani et al [6],
the tetraquark is described as a diquark-diantiquark structure
in which the quarks group into colour-triplet scalar and vector
clusters and the interactions are dominated by a simple spin-
spin interaction (see Fig. 1.1).

A prediction that distinguishes multiquark states containing a
cc pair from conventional charmonia is the possible existence
of multiplets that include members with non-zero charge (e.g.

[cucd)), strangeness (e.g. [cdcs]), or both (e.g. [cucs]) [7].

The observation of the X (3872), a strong candidate to be a
DD* molecule and the first of the XY Z particles observed,
brought forward the hope that one can definitively state that
multiquark states has been observed.

3. Baryonia. Bound states of baryon - antibaryon have been
predicted, but have remained elusive. The f5(1565) which is
only observed in pp annihilation is a good candidate for a 2*+
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diquark-diantiquark

. qq-gluon“hybrid”
D° - D “molecule”

Figure 1.1: Cartoon representations of molecular states, diquark-
diantiquark tetraquark mesons and quark-antiquark-gluon hybrids.

pp bound state.

4. Hybrid mesons. Hybrids may be viewed as q¢ mesons with
a vibrating gluon flux tube. In contrast to glueballs, they can
have isospin 0 and 1. The ground state hybrids with quantum
numbers (0~F, 17", 17—, and 27T) are expected around 1.7
to 1.9 GeV. Lattice calculations predict that the hybrid with
exotic quantum numbers 1™ lies at a mass of 1.9 4+ 0.2 GeV.
We now have at least two 177 exotics, m1(1400) and 7 (1600),
while the flux tube model and the lattice concur to predict a
mass of about 1.9 GeV. The 7(1800) is in line with expectations
for a 0~* hybrid meson. This meson is also rather narrow if
interpreted as the second radial excitation of the pion.
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1.2 Heavy quark symmetries and charmed
meson spectroscopy

When the mass of a quark, m¢g >> Agcp, this is called heavy quark.
The energy scale of the strong interaction, Agcp ~ 0.2 GeV, deter-
mines the typical size of the hadrons Rp.q ~ 1/Agep ~ 1 fm and
separates the two regions of large and small coupling constant,

_ 9ex(Q%) 127

CT T ar T (33— 2n)In(Q%/Adep (13)

At large Q%, or short distances, the strong interaction becomes
weak or «, decreases. On the other hand, the coupling o, becomes
strong at large distances or small Q2. This lead to nonperturbative
phenomena like the confinement of quark and gluons on length scales
Ryaa ~ 1/Agep ~ 1 fm. For heavy quarks, o,(mg) is weak and this
implies that at length scales Ay ~ 1/m( the strong interactions are
perturbative and much like the electromagnetic interactions. In fact,
the quarkonium systems QQ), with a size around Ag/s << Ryad
behave very similar to hydrogen atoms. However ()§ systems are
more complicated because the typical momenta exchanged between
these two constituents is of the order of Agcp. The heavy quark
is surrounded by a very complicated strongly interacting cloud of
light quarks, antiquarks and gluons. Nevertheless, it is the fact that
mq >> Agep or A\g << Rpaq which leads to considerable simplifica-
tions. In such systems, the heavy quark moves nearly with the same
velocity of the hadron and it is on-shell in the heavy quark limit. The
off-shell part of its momentum due to its interaction with the light
degrees of freedom is of the order of Agcp << mg and as mg — oo,
the change in the velocity of the heavy quark goes to zero. The the-
ory that describes the interactions of a heavy quark with gluons at
low energies is HQET. The lagrangian in this theory shows two sym-
metries: heavy quark flavor and spin symmetries. Heavy quark flavor
symmetry means that the dynamics is unchanged under the exchange
of heavy quark flavors, i.e. the mass of the heavy quark is completely
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irrelevant in the limit mg — oo. There are 1/m¢ corrections and
lead to heavy quark flavor symmetry breaking effects proportional
to (1/mq, — 1/mg,), with @;, Q; any two heavy flavours. On the
other hand, as there are not quark-quark interactions in the QCD
lagrangian, the only strong interaction of a heavy quark is with glu-
ons, but the spin dependent part of this interaction goes like 1/my,
what means that, in the heavy quark limit, the static heavy quark
can only interact with gluons via its chromoelectric charge, which
leads to heavy quark symmetry: the dynamics is unchanged under
arbitrary transformations on the spin of the heavy quark. The heavy
quark SU(2) spin symmetry and U(N},) flavour symmetries (for Ny)
heavy flavours) are embedded into a U(2N,,) spin-flavour symmetry
in the mg — oo limit. In this limit the spin of the heavy quark,
§Q, is preserved, and as the total angular momentum of the hadron
J is a conserved operator, the spin of the light degrees of freedom,
S;, are also preserved. Thus, heavy mesons come into doublets with
j+ = 8 £ 1/2 degenerated in mass in the heavy quark limit, (D,
D*) or well (1., J/v) in the hidden charm sector. Here we briefly
summarize the Q7 and the QQ spectrums.

1. The )¢ spectrum. In the ground state of g, for | = 0,
s; = 1/2, we have a doublet of mesons with JX = 07,1".
For @) = ¢, the doublet is formed for the mesons D(1865)
and D*(2007), while for ) = b, the mesons are B(5279) and
B*(5325) which have been observed. The predictions of HQET
at the lowest order that these doublets are degenerated in mass
is fullfilled to a good approximation. For /[ = 1 we have two mul-
tiplets for each s; = 1/2 or 3/2, with quantum numbers 0%, 1"
and 17,2%. The doublet with 17,2% can be identified in this
model with the experimentally confirmed mesons D;(2420) and
D3(2460). For Q = b and ¢ = u, d we have the states B;(5721)
and Bj(5747) experimentally oberved where mjj —m$, = 19+6
MeV consistent with the predictions of HQET. In the HQET,
the two J© = 1T states are mixtures of the j = 1/2 and 3/2
states and they decay via s or D wave. The j = 1/2 states with
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L = 1 decay through an s-wave and are expected to be wide
while the j = 3/2 states decay through a D wave and are ex-
pected to be narrow. This is in fact the experimental situation,
['(Dy) =18.9+4 MeV, I'(D3) = 23+ 5, I'(D§) = 261 £ 50 and
['(D}) = 284713, although the theoretical masses are around
30 — 60 MeV above the experimental values. The situation for
the D, spectrum is rather more complicated. The doublet with
JP = 17 2% has been observed, the D7 (2536) and DZ,(2573)
with widths I' < 2.3 MeV and I' = 20 + 5 MeV are compati-
ble with their theoretical predictions, however the doublet with
JP =07, 1" has masses that lie around 100 MeV over the exper-
imental states, the D%;(2317) and D;;(2460), and these states
are very narrow, which is in disagreement with the theoretical
widths ~ 200 — 300 MeV. The key to understand the disagree-
ment would be the strong s-wave coupling to DK and D*K,
with the consideration of meson loop effects close to threshold
[8, 9, 10] being very important.

2. The QQ spectrum. The proper theory to study the QQ sys-
tem is NRQCD (the kinetic energy is needed to stabilize the
QQ meson). The properties of quarkonia are usually predicted
as a power series in v/c, being v the relative QQ velocity and
c the speed of light. The appropriate limit of QCD to exam-
ine is ¢ — oo. Quarkonium states are described by a potential
dominated by single gluon exchange at short distances and it is
Coulombic. At large distances a linear confining potential dom-
inates. The spins of the quark and antiquark couple to give the
total spin S = 0 (singlet) or S = 1 (triplet), then, the angular
momentum between the quark and antiquark L couple to give
the full angular momentum of the state, J. Quarkonium states
are generally denoted by 2°*'L;. For L = 0, we have the 15,
and 39, states with J©¢ = 0=+, 17—, whereas for L = 1 we
have the states 1P, and Py ;o with JP¢ = 177 0t 1"+ and
27+, The interactions are spin independent up to order (v/c)>.
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Figure 1.2: The charmonium level diagram. The commonly used
names for the mesons associated with assigned states are indicated.

This is consistent with the experiment that finds mass splittings
for each doublet small. The spin dependent interactions give
rise to splittings within multiplets. The current status of this
approach is shown in Fig. 1.2, where the charmonium levels
are shown. All the charmonium states below the DD threshold
have been observed and identified in the cc¢ spectrum. However,
this effective theory is not consistent for states close to the open
meson thresholds. This is the case of the X(3872) that has par-
ticular characteristics due to its proximity to D**D° threshold,
and the new particles XYZ around the D*D* threshold.

The concept of heavy quark symmetry in HQET can be extended
to heavy meson molecules. In [11], the authors show that the bind-
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ing energies of the D*,(2317), being like a DK molecule, have the
same value than for the D, (2460) interpreted like a D*K bound
state which is a natural consequence from the fact that the leading
interactions of light mesons with D and D* mesons are independents
of the heavy quark spin and the light meson-D* meson Green func-
tions are approximately independent close to threshold. Therefore,
hadronic molecules also fall in spin multiplets and the splitting in one
multiplet is the same as the splitting between heavy mesons. In [11]
the authors predict in this way a new 7.f;(980) bound state as the
spin-doublet partner of the Y (4660) (proposed as a 9 f,(980) bound
state in [12]).



26 Heavy quark symmetries and charmed meson spectroscopy



|
Chapter

Formalism

2.1 Inclusion of spin-1 fields

In order to include vector fields in effective Lagrangians there are
mainly three different considerations that can be taken into account
regarding the kinds of field used, the transformation properties under
chiral symmetry and the consideration of the gauge origin (see the
summary in Table 2.1 and [13, 14, 15]):

1. Firstly, there are two different kind of fields that can be assigned
to the vector mesons:

1.1 Assign a vector field V, (the most widely used)
1.2 Assign an antisymmetric tensor field V,, =V, [14, 16]

These two choices can be done since what one needs is a field
with only three degrees of freedom. The antisymmetric tensor
field apparently has six degrees of freedom, but can be reduced
to three with a suitable choice of the equation of motion (see
Appendix A of [14]). We will comment later on the advantages,
in some cases, of using the antisymmetric tensor field.

27
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Inclusion of spin-1 fields

2. Second, there is the difference in how the fields are transformed
under a realization of chiral symmetry: linear or non-linear,
and in the latter case the transformation can be homogeneous
or not.

2.1

2.2

Linear means that under a transformation of the chiral
group G = SU(3), ® SU(3)r the fields transform linearly
in the group elements g: V — gVgf

Non-linear means that the transformation is not directly
done with g but with a function h(g). Within this kind of
transformation, there are two different ways to do it:

- homogeneously: V,, — hV,h'

- non-homogeneously: V,, — hV,h! + cte hd,h!

3. Finally there is also the classification due to the consideration
of the gauge origin of the vector mesons:

3.1
3.2

Not gauge bosons

Gauge bosons of a certain symmetry:

- Yang-Mills: usual gauge bosons in the Yang-Mills theory
- Hidden symmetry: the Goldstone bosons matrix U(x)
is decomposed in two factors, U(z) = &;(z)¢h (). This
factorization introduces an "artificial" symmetry under
SU(3) rotations and then the vector mesons appear, in
the covariant derivatives, as gauge bosons of this "hidden"
symmetry.

The majority of these approaches are motivated by the phenomeno-
logically successful ideas of vector-meson dominance and universal
coupling [17, 18] which lead to kinetic terms and couplings for the
spin-1 mesons that have the same forms as in a gauge theory, re-
flecting the assumed universal coupling of these mesons to conserved
currents. Some of them are the "massive Yang-Mills" [13, 19, 20| and
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Yang-Mills | Hidden symmetry | WCCWZ | EGPdR
field vector tensor
formalism
origin gauge boson not gauge boson
chiral linear non-linear and homogeneus
realization

Table 2.1: Essential features of different models to account for vector
meson fields

"hidden-gauge" theories [21]. In these approaches, low energy theo-
rems of chiral symmetry place important constraints on the gauge-
type coupling of the p meson to two pions, being essential that such
Lagrangians respect chiral symmetry or otherwise they can lead to
unrealistic results.

Let us explain in some more detail the two different not gauge
bosons models. The WCCWZ [15, 22, 23, 24| (from Weinberg, Callan,
Coleman, Wess and Zumino) and the EGPdR [14] (from Ecker, Gasser,
Pich and de Rafael). In both models the philosophy is the same but
they differ in that in WCCWZ the formalism for the fields is vectorial
while in EGPdR the antisymmetric tensor field is used. They both
use non-linear and homogeneous transformation under chiral sym-
metry. The philosophy is, as used in the construction of the meson
chiral Lagrangian, to build all the possible objects chirally invari-
ant up to a certain order, containing the fields of the theory (note
that since the vector-mesons in these two approaches are not gauge
bosons, they cannot be included explicitly in covariant derivatives).
One of the advantages of using the antisymmetric tensor formalism is
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that there are less possible ways to contract Lorentz indices an then
the number of allowed pieces in the Lagrangian is smaller. Therefore,
the appearance of the Lagrangian is much more compact. The dif-
ference essentially comes in the form of the vector-meson propagator
in the presence of certain local terms in the vector field formalism.
By introducing local terms and with basic assumptions of vector me-
son dominance, the two formalisms were shown to be equivalent up
to O(p*) [25] and with only one vector field. Further work on the
equivalence of the two formalisms, up to local terms, for general La-
grangians, based on dual transformations of gauge theories, using
path integral techniques, was done in [26]. The same kind of equiv-
alence exploring the baryon sector was seen in [27]. In contrast to
the gauge-type theories, these formalisms have prm couplings that
involve higher powers of momentum and are not directly constrained
by chiral symmetry.

In massive Yang-Mills theories [13, 19], the vector and axial fields
transform under a linear realization of chiral symmetry. Three- and
four-point couplings among these fields are included and, together
with the kinetic terms, form a Yang-Mills Lagrangian with a local
chiral symmetry. The full theory does not possess this gauge sym-
metry since it includes mass terms which have only global symmetry.
By changing variables to spin-1 fields that transform under the non-
linear realisation of chiral symmetry, any massive Yang-Mills theory
can be converted into an equivalent WCCWZ one and its relations
to other theories, such as hidden-gauge ones, can be explored. The
use of a linear realisation of chiral symmetry means that both the
p meson and its chiral partner, the a; must be treated on the same
footing. One cannot simply omit the al from a massive Yang-Mills
theory without violating chiral symmetry. Nonetheless it is possible
to write down Lagrangians with a Yang-Mills form for the p meson
alone, provided that one takes care to include additional terms that
ensure satisfaction of the chiral low energy theorems [28]. As de-
scribed here a convenient way to generate these terms is to take a
hidden-gauge theory and make a change of variables that brings it
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into a Yang-Mills-like form.

Despite the rather different forms of their Lagrangians, and the
different types of coupling contained in them, all of these approaches
are in principle equivalent. Each corresponds to a different choice
of fields for the spin-1 mesons. This is illustrated rather well in
extended Nambu-Jona-Lasinio models [29, 30|, where there is con-
siderable freedom in the choice of auxiliary fields in the vector and
axial channels. To some extent the choice of scheme must be based
on the simplicity of the resulting Lagrangian. In making comparisons
between the approaches it is important not to confuse features that
arise from the choice of field with those that arise from requiring,
for instance, universal coupling of the vector mesons. The former
are not physical, controlling merely the off-shell behaviour of scat-
tering amplitudes. The latter do have physical consequences, such
as relations between on-shell amplitudes for different processes. In
the hidden-gauge approach [21] an artificial local symmetry is intro-
duced into the nonlinear sigma model by the choice of field variables.
The p meson is then introduced as a gauge boson for this symme-
try. As stressed by Georgi [31], the additional local symmetry has
no physics associated with it, and it can be removed by fixing the
gauge. In the unitary gauge the symmetry reduces to a nonlinear
realization of chiral symmetry, under which the vector fields trans-
form inhomogeneously, in contrast to those of WCCWZ. However,
with a further change of variable any vector-meson Lagrangian of the
hidden-gauge form can be converted into an equivalent WCCWZ one
[31]. The rules for transforming a Lagrangian from hidden-gauge to
WCCWZ form have also been noted by Ecker et al. [25]. By chang-
ing variables from the hidden-gauge to WCCWZ scheme, the gauge
coupling constant of the former is really a parameter in the choice of
vector field. This coupling constant does not appear in the equiva-
lent WCCWZ Lagrangian and so hidden gauge theories with different
gauge couplings, together with different higher-order couplings, can
be equivalent. The conventional choice is shown to be one that elim-
inates any O(p®) pr coupling from the hidden-gauge Lagrangian, so
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that the leading corrections to the O(p) coupling are of order p°. If
the ~vp mixing strengths satisfy a particular relation [25], then this
choice of field also eliminates the leading momentum-dependent cor-
rections, of order p2, to the mixing. This reduction of the momentum
dependence of the couplings thus allows the hidden-gauge approach
to embody the empirical observation that the KSFR relation [32, 33]
is well satisfied by the prm and ~p couplings determined from the
decay of on-shell p mesons.

2.1.1 The Hidden Gauge formalism

The HGS formalism to deal with vector mesons [21, 34] is a useful and
internally consistent scheme which preserves chiral symmetry. In this
formalism the vector meson fields are gauge bosons of a hidden local
symmetry transforming inhomogeneously. After taking the unitary
gauge, the vector meson fields transform exactly in the manner as
in the non linear realization of chiral symmetry [22]. In [25] this
formalism is found equivalent to the use of the tensor formalism of
[14], where the vectors transform homogeneously under a non-linear
realization of chiral symmetry, with the use of couplings implied in
the vector meson dominance formalism (VMD) of [17|. (For a review
on the different ways to implement vector mesons into effective chiral
Lagrangians see [15]).

Following [25] the Lagrangian involving pseudoscalar mesons, pho-
tons and vector mesons can be written as

L=L%+ Lo (2.1)
with
1
£® = 1 fADUDMUT + XU + XTU) (2.2)
1 1 1
L = —Z<ijij> + §M‘2/<[VH — EF“P)’ (23)

where (...) represents a trace over SU(3) matrices. The covariant
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derivative is defined by
DU =0,U —ieQA,U +ieUQA,, (2.4)

with @ = diag(2,—1,—1)/3, e = —|e| the electron charge, and A,
the photon field. The chiral matrix U is given by

U = eV2rlt (2.5)

with f the pion decay constant (f = 93 MeV). The P and V|, matrices
are the usual SU(3) matrices containing the pseudoscalar mesons and
vector mesons respectively

%ﬂ'o + %7]8 Tt KT
P = T — g+ ns K° ,
K~ K —%778
%po + %w pt K*t
V, = - —%p? + 5w K : (2.6)
K*— K*O ¢ .

The terms with y in £® provide the mass term for the pseudoscalars.
For four pseudoscalar meson fields the £(?) Lagrangian provides the
well known chiral Lagrangian at lowest order

~ 1
L3 = P,0,P)* + MP* 2.7
o2 (P 0,P1 + MPY) 27)
with M = diag(m?, m2,2m?3 — m?2). For the coupling between two
pseudoscalars and one photon the Lagrangian £ provides

,C,ypp = —ieA“(Q[P, 8MP]>, (28)

which in this formalism will get canceled with an extra term com-
ing from L;;;, such that ultimately the photon couples to the pseu-
doscalars via vector meson exchange, the basic feature of VMD.
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In Liyr, V, is defined as
Vi =0,V, —0,V, —ig[V,, V] (2.9)

and
1
r, = i[uT(au —ieQA,)u + u(9, — ieQA,)ul] (2.10)
with u? = U. The hidden gauge coupling constant ¢ is related to f
and the vector meson mass (My ) through

My
2f
which is one of the forms of the KSFR relation [33]. Other properties

of g inherent to the VMD formalism, relating to the tensor formalism
of [25] are

o1 Gy 1

= — = F, =V2f, Gy =

My - Vag My - 23 v f v 2
2.12

Upon expansion of [V, — éfu]Q up to two pseudoscalar fields, we
find

g= (2.11)

9~

11 1
[VH - —F ( ;2—f2p€QAMP + _4—f2P26QA“
1 il 2
4 7 —eQA,P* - S [P,d P]) (2.13)

from where we obtain the following interaction Lagrangians among
pseudoscalars (P), photons () and vector mesons (V):

Ly = —Mp A(V'Q) (2.14)
Ly.pp = egA,(VHQP*+ P?Q — 2PQP)) (2.15)
Lypp = —ig(V*[P,0,P]) (2.16)
Lopp = ieA A{Q[P,0,P]) (2.17)
Lpppp = ([P,8,P)?). (2.18)

8f2
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The term in Eq. (2.17) cancels exactly the term in Eq. (2.8), as
mentioned above. On the other hand, the term of Eq. (2.18) has
the same structure as the derivative term of Eq. (2.7) and it is a
most unpleasant term, since added to £® of Eq. (2.7) would break
the chiral symmetry of the chiral Lagrangian. However, this term is
canceled by the exchange of vector mesons between the pseudoscalars
that result from the Lagrangian of Eq. (2.16), Ly pp, in the limit of
¢?/M% — 0, where ¢ is the momentum carried by the exchanged
vector meson. This was already noticed in [22].

2.2 Unitary extension of yPT

Because of the difficulties presented by QCD, hadron problems can
be tackled by different approaches, namely effective theories. The
underlying idea is to use QCD Lagrangian‘s symmetries to construct
Lagrangians for the interaction of hadrons (color singlets) instead of
quarks. In this direction, one of the most successful theories is chiral
perturbation theory (xPT'), which is based on the approximate chiral
symmetry of QCD. In this approach, the pseudoscalar mesons are
Goldstone bosons coming from the spontaneous breakdown of the
chiral symmetry and one constructs Lagrangians for the interaction
of pseudoscalar mesons expanded in a power series of the boson‘s
momenta [16, 35]. This theory has overwhelming success in describing
scattering of hadrons at low energies [14, 25, 36, 37, 38| or hadron
production [39] and unitarization in coupled channels has extended
the energy region of its applicability [40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50].

Chiral perturbation theory, as its name says, is a perturbation
theory, where the amplitudes are expanded in power series of the
particle’s momenta. It is possible to improve the results by going to
higher orders in the momentum expansion but one has to pay the
price of a huge number of free parameters appearing in the higher or-
der Lagrangians. Therefore y PT has many limitations since the the-
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ory eventually breaks down, once the energy is sufficiently large. The
absolute limit of applicability in meson-meson interaction is where
the first singularity of the T-matrix appears which happens for the o
meson, this means around 450 MeV for 77 interactions.

Unitarization in coupled channels allows one to study inelastic-
ity among channels and the decays of resonances. It uses the chiral
amplitudes as a kernel to solve a scattering equation respecting the
analytical properties of the scattering matrix (S-matrix), in partic-
ular that it should be unitary. This is a non-perturbative method
and hence has a wider energy range of applicability. It allows also
the study of the formation of resonances which is a non-perturbative
phenomenon.

The resonances that appear within this method are called dy-
namically generated resonances, since they appear from the dynami-
cal interaction of the particles included explicitly as building blocks.
One example is the study of the interaction of the light pseudoscalar
mesons in s-wave or the interaction of pseudoscalars with vector
mesons, one obtains the low lying scalar and axial vector particles as
dynamically generated resonances [51, 52, 53, 54, 55]. In these works,
one includes pseudoscalar and vector mesons as degrees of freedom
in the Lagrangians and the unitary S-matrix has poles that can be
associated with the axial and scalar mesons. In addition, nucleon
resonances can be studied in this framework [41, 42, 43, 44, 56, 57].

There are different ways to implement the ideas of unitarity and
analyticity of the 7" matrix: the Inverse Amplitude Method (IAM)
[63, 58|, the N/D method [52] and the Bethe- Salpeter equation
[51, 59, 61|, although very similar results are obtained between these
approaches. All these methods, which are now known as unitarized
chiral perturbation theory (UxPT), give rise basically to the same
results and reproduce very well the data on meson-meson scattering
up to 1.2 GeV, leading to poles in the 7" matrix for many of the
different resonances appearing up to that energy. Among these res-
onances, the low-lying scalar ones (0(500), x, fo(980) and ay(980)
[51, 52, 53, 62, 63]) are generated dynamically, meaning that the use
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of the strong interaction provided by the lowest order meson chiral
Lagrangian, together with the unitarity constraints which generate
multiple scattering of the mesons, leads automatically to these reso-
nances without the need to introduce them explicitly in the formal-
ism. As an example, in the rest of this section I will sketch the essen-
tial ideas using the N/D method, (which are taken from [43, 52, 60]).
It is well known that probability conservation implies necessarily the
scattering amplitude (S = 1 — iaT) to be unitary (o containing
normalization factors of the fields). We can define the transition 7;-
matrix between the ¢ and j channels which couple to certain quantum
numbers. Unitarity in coupled channels can be written, using Mandl
and Shaw normalization of states and 7" matrix, as

where p; = (2M,q;)/(87W) for meson-baryon interaction and p; =
q;/(8wW') for meson-meson interaction, with ¢; the modulus of the
c.m. three-momentum, W the c.m. energy, M; the baryon mass and
the subscripts ¢ and j refer to the physical channels. This equation
is most efficiently written in terms of the inverse amplitude as

T~ (W)i; = —p(W)id (2.20)

From Eq. (2.19) or (2.20) we see that the amplitude is real for W
below the lowest threshold and complex above it. This implies the
existence of a cut in the T-matrix of partial wave amplitudes from
energies above the lowest threshold to infinity, which is usually called
the unitarity or right-hand cut. Hence one can write down a disper-
sion relation for 71(WW)

T W)y = —0y{ai(so) + : _7r80 /OO ds,(s’ —/;;?2’2— 30)}

+TH W), (2.21)

where s; is the value of the s(1W?) variable at the threshold of chan-
nel ¢ and 7 !(W),; indicates other contributions coming from local
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and pole terms, as well as crossed channel dynamics but without
right-hand cut. These extra terms are taken directly from y P71 after
requiring the matching of the general result to the y P71 expressions.
Notice also that

g(s)s = ai(so) + > ;30 / OO ds’ ( pLs): (2.22)

s —s)(s" — s0)

is the familiar scalar loop integral, which for the meson-meson case
is given by

( ) / d4q 1
S); — - -
g (2m)" (@ — MZ +ie) (P — q)> — m? + ie)
1 m2 M2 —m?+s M?
N Logo—i 4 7i 4% T2y i
167T2 {a’ (:u) + Og IUQ + 25 Og mZQ

Gi Logm? + M? — s —2\/sq;

where M; and m; are, respectively, the meson masses in the state
i. In order to calculate g(s); one uses the physical masses both for
mesons and baryons and, hence, Eq. (2.20) holds. In the case of
meson-baryon ¢(s); has the same expression multiplying it by 2M;,
where M; is the baryon mass and m,; the meson mass. One can further
simplify the notation by employing a matrix formalism. Introducing
the matrices g(s) = diag(g(s);), T and 7T, the latter defined in terms
of the matrix elements 7;; and 7;;, the T-matrix can be written as:

+

} (2.23)

T(W)=[I-TW)g(s)™ - T(W) (2.24)
which can be recast in a more familiar form as
TW)=TW)+T(W)g(s)T(W) (2.25)

Now suppose one is taking the lowest order chiral amplitude for the
kernel as done in [43]. Then the former equation is nothing but
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the Bethe-Salpeter equation with the kernel, 7 (W), taken from the
lowest order Lagrangian and factorized on shell, the same approach
followed in [44] where different arguments were used to justify the on
shell factorization of the kernel. Furthermore in [43| a simple rela-
tionship is found between the cut off used in [44| and the subtraction
constants used in [43]

/ 2
ms
a;(p) = —2Log | 14+ /1 + u—; + ..., (2.26)

where p plays the role of the cutoff. Then taking values of 1 around
650 MeV to 1 GeV one would find subtraction constants of the or-
der of —2, which we call of natural size. The unitary extensions
of chiral perturbation theory, Uy PT, have brought new light in the
study of the meson-meson and meson-baryon interaction and have
shown that some well known resonances qualify as dynamically gener-
ated, or in simpler words, they are quasibound states of meson-meson
or meson-baryon. Another case of successful application of these
chiral unitary techniques is the interaction of mesons with baryons
|42, 43, 44, 59, 64, 65] showing that the A(1405) and the N*(1535)
were dynamically generated resonances. A more systematic study of
these latter interaction has shown that there are two octets and one
singlet of resonances from the interaction of the octet of pseudoscalar
mesons with the octet of stable baryons [46, 50]. Work along these
lines has continued by studying the interaction of the octet of pseu-
doscalar mesons with the decuplet of baryons [66, 67] which has also
led to the generation of many known resonances, like the N*(1520)
and the A(1520). Of course, from these successful studies one can-
not extrapolate the idea that the rest of mesons and baryons are
also dynamically generated. In fact, some of these studies of the
meson-meson and meson-baryon interaction have also shown that
some mesons or baryons are not dynamically generated, i.e., they
are not consequence of the interaction between the meson or baryon
components and they qualify better as genuine, or preexistent states,
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a word that can be substantiated starting that they would remain
in the limit of large N, limit where the loops of intermediate states
vanish. This is the case of the vector mesons of the p octet [52, 68].
The N, behavior of the scalar and vector resonances studied within
unitary techniques has been discussed in [69].
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The pp interaction and its
extension to SU(3)

We apply the methods explained in the previous pages that describe
the interaction between vectors mesons within the Hidden Gauge For-
malism to the system of two p’s. Then this study will be extended to
SU(3). We will find that the use of the set of Lagrangians of the hid-
den gauge formalism together with unitary technics for the scattering
amplitudes lead to the generation of resonances in the complex plane
that can be described as vector-vector molecular states. Particularly,
the pp bound states found will be identified with the f,(1270) and
f0(1370). In addition, the decay of these to two or four pseudoscalars
will be studied.

3.1 Introduction

The f5(1270) and f,(1370) are intriguinly close to the pp threshold. In
[70], the f5(1270) is assumed to be predominantly a ¢g state. Within
the formalism of the IAM, the f»(1270) is obtained starting from the
7 interaction [71]. However, this does not mean the f»(1270) is

41
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a resonance built up from 77. In fact, the addition of some coun-
terterms was needed to produce this resonance. This also happened
before in the familiar case of the p meson, obtained in a similar way
within the IAM from the 77 interaction. Indeed, a careful study of
the large N, behaviour of the p meson shows that the state remains
as V. goes to infinity, as corresponds to genuine ¢q states, unlike the
dynamically generated scalar mesons that fade away in that limit.
Some counterterms are needed in the IAM to produce this state and
the information on the f5(1270) nature is buried in these terms.

The nature of the f,(1370) has been also controversial and there
are many alternative explanations from ¢g to glueball. In [72] the
f0(1370) is assumed to be dominantly a ¢gG state, unlike the lighter
scalars that are assumed to be largely four quark states. In [73]
the fy(1370) is studied within the improved ladder approximation
of QCD and it is assumed to be mostly qg, however, the meson-
meson or four quark components are supposed to be important. In
addition, mixtures of ¢qg and four quarks [74], ¢qq with glueballs [75]
or q7 with quarks of nonstrange nature [76] are also considered for
this resonance.

In the following we explain that by means of the lagrangians of the
Hidden Gauge Formalism for the vector-vector interaction one gener-
ates the f5(1270) and f,(1370) states as bound states with practically
no freedom.

3.2 Vector - Vector scattering

The Hidden Gauge Lagrangian is given by

1
L= —Z<VWVW> ; (3.1)

where the symbol () stands for the trace in the SU(3) space and V,,,
is given by
Vi =0,V, — 0, V, —iglV,,, V.| , (3.2)
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with g given by
My

== 3.3
9= (33)
We can extract the four- and three-vector contact terms,
2
Ly = %(VMVVWV” AN LN (3.4)
and
L =ig{(0.V, — BV, VHVY) (3.5)
where V), is given by
0 w .
ats oo KT
V= ;s K| (3.6)
K*~ K*0 o

"
Eq. (3.4) gives rise to the diagram of Fig. 3.1 a), and the three-vector
term of Eq. (3.5) is needed in the vector-exchange diagram of Fig. 3.1
b) and c). In addition, we have the diagrams involving pseudoscalar
mesons, as it is shown in Fig. 3.1 d). The diagrams a)-d) in Fig.
3.1 are the mechanisms that contribute to the s-wave potential of
the vector-vector scattering and the input (V') of the Bethe-Salpeter
equation. As we will show, the diagrams a) and b) are the strong
part of the potential and produce bound states by themselves. The
diagram of Fig. 3.1 d) gives essentially the imaginary part of the
potential and thus, the decay width of the states. The diagram 3.1
¢) is p-wave repulsive for equal particles and very weakly attractive
potential in s-wave for different ones.

The vector-pseudoscalar-pseudoscalar vertex involved in the box
diagram of Fig. 3.1 d) is provided by the same formalism given by
the Lagrangian of Eq. (2.3) and is given by Eq. (2.16).

3.3 Spin and Isospin projection

In the way that we unitarize amplitudes, a resumation of loops is
called for. This is implicit in the Bethe-Salpeter equation, Eq. (3.22).
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Figure 3.1: The mechanisms contributing to the tree-level vertex of
vector-vector scattering, which appears as V' in the Bethe-Salpeter
equation, Eq. (3.22).

The problem that is treated here is the factorization of the spin struc-
ture in the loop series.

The structure of spin of the amplitude for V'V — V'V is a combi-
nation of the three possible contractions of the polarization vectors,
€l €2, €5 €0, € €5€ 3€s, and €]'€s €€y, As all possible states have defi-
nite spin, we need to project the amplitudes into spin. To do so, one
builds tensors of spin = 0, 1,2. These are

v 1 (0% v
7’(;}:0) = —\/56 Eag/»l
v 1 v v
152, 5((—:“(—: — e’et)
124 1 W v VI 1 l uv
15, = 5(6 €’ +e"e') — zacg" (3.7)

Under the approximation of neglecting the momentum of the ex-
ternal particles compared to the mass of the vector meson, i. e.
|q|/M ~ 0 we can neglect the €® component, ¢® ~ 0 and work with
spatial components. With this approximation, the squared of these
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Figure 3.2: Loop function for two mesons.

spin tensors behave like projectors of spin = 0, 1,2 that can be fac-
torized in the loop series implicit in the Bethe Salpeter equation. In
order to show this, let us take the loop diagram of Fig. 3.2 and treat
the possible structures of contractions between polarization vectors.
First, we have the combination

/ ’
6?6256%5456?/ 62/5/6?[ €vp (38)

which can be simplified in our approximation since the indices «, 3,
o, 3" are spatial and that makes all the indices are spatial. Thus, we
have the factor

4q;

qi 4y
713 7‘[‘2/

M2 ) . (3.9)
In a renormalization scheme where the loop function can be expressed
as a function of ¢, f(¢), multiplied by the two meson propagators,
we can divide f(q) into two terms, f(Gon—shen) and f(q) — f(Gon—shen)-
Obviously, the last term vanishes for ¢ = gon_snen, and it cancels the
singularity by tadpoles or otherwise renormalize the pp potential.
This implies that we can take only f(gon_shen) neglecting %.
Another different contribution to the diagram of Fig. 3.2 is

o 16} o B8
€7 €20,€5 €43€Y €€ Exr 3 (3.10)

The argument to manipulate it is slightly different. We can distin-
guish three cases
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i) f =1,a’ = j space like. The same argument done above leads
to take only 8;;/0;; and neglect O(g?/M3Z).

ii) 8 = 0, o’ = i or vice versa. The remaining terms, ¢°(P —
q)°q%/ M, are of the order of ¢?/MZ and therefore can be
neglected.

iii) 5 =0,a’ =0. The factor

(P —q)o(P —q)o
M

qoqo
(—g00 + W)(_goo +
v

), (3.11)

vanishes on shell up to terms of ¢2/M?2 which we also neglect.

From the above discussion, it follows that these structures in the se-
ries implicit in the Bethe Salpeter equation, result into three subseries
where the following projectors factorize,

1
0) _ 1) _(2) (3) _(4)
PO = gei € €€

1 1
P = L gL o)

1 1
73(2) _ {5(651)652)+6§1)€§2))—561(1)61(2)51“}

1 1
X{§(€§3)€§4) + 65-3)62(-4)) — gef’l)e%)&j} . (3.12)

They correspond to spin projectors over spin = 0, 1,2. Indeed, one
can take states with a certain third component of the spin, write them
in terms of spherical vectors i%(el +i€ey) and €3 and see that these
structures project over the three different states of spin spin = 0, 1, 2.
It is convenient to write these projectors in covariant form although
we keep in mind that we are dealing with spatial components. These
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are:
1
PO = geue”eye”
1
pL — i(e“ey(—:“e” — € €€ €e!)
1 1
P@ = {i(eufueuey + eueee) — geo‘eaeﬁeﬁ} : (3.13)

For the isospin projection we use the unitary normalization [51]. This
implies that we add an extra factor % for each isospin state when

identical particles are involved. Thus the isospin states for isospin =
0,1,2 are:

pp.T=0) = —%m*(hel)p-(bez) o (kren)p* (aeo)
+0° (k1€e1)p° (kae2))
lpp, I =1,13=0) = —%|P+(k161)p_(k‘262)—P_(k161)0+(/€262)>
oI =21, =0) = —%|L6(P+(/€161)P_(k262) o (kren)p* (aea)
—\/gpo(klel)f)o(@@» : (3.14)

Where we have have taken the normal phase convention |[p*) =
_|17 1>

3.4 S-wave scattering amplitudes

In this section we will evaluate the amplitudes of the diagrams of Fig.
3.1 a), b) and ¢) and project them into s-wave, spin and isospin. For
the vector exchange diagram depicted in Fig. 3.1 b), particularly for
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the pTp~ — pTp~ reaction shown in Fig. 3.3 we get

—itl = —V2g{(i(k1 — k3) e — i(ks — k3),e)eDre”
—i—(—ik‘lue(ul) + iklyef}))e(?’)“e(o)”
i
(k1 — k3)? — M2 + ie
< (—V2)g{(=i(ks — ka)wel) + ik — k) el ) (@
+(ik4ulel(j) — ik4yfei4/))e(2)“/e(0)”/ + (ik:zu/el(,z/)
+ik2V/€L2,))E(O)MIE(4)V,} : (3.15)

+ ik, eld — il{:gye}(f’))e(o)”e(l)”} X

where the form of the three-vector term is shown explicitly, —it®V) =
—v/2¢{...}. In our approximation, the three momentum of the exter-
nal particles is small and neglected, and we keep only spatial compo-
nents of the polarization vectors for external legs. This means that
all the terms involving kme’; , being 7, j the indices for the particles
1,7 = 1-4 are neglected and those terms involving the polarization
vector of the internal meson kwe(o)“ remain (note that these approxi-
mations are the same that one would do for the interaction of a vector
with a pseudoscalar meson and lead to the local chiral Lagrangians
of [15, 54, 55| used to generate the axial vector mesons in [54, 55]).
As a consequence, our amplitude gets much more simplified and we
obtain

2ig?
—it(e®) = z_g2(k1 +k3) - (ko + ky)e e e’ (3.16)
M;
or, in terms of Lorentz invariant variables,
2ig?
—ite®) = %(s — u)e € ele” . (3.17)
p

In order to project the amplitude into s-wave, we shall do a partial
wave expansion of the amplitude

T =Y (2+1)fi(s)P(x) , (3.18)
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pt (k1) P (ks3)
PP (k1 — k3)
p~(ka) p~ (ki)

Figure 3.3: Vector exchange diagram for p™p~ — ptp~.

where x = cosfl, being 6 the center of mass scattering angle, and
P, the Legendre polynomials. Hence, the s-wave projection of the
scattering amplitude is

fimo(s) = % /_ T ) uw ) Po@)d . (319

The [ = 0 partial wave is what we will call potential V;;. The kine-
matical variable v in Eq. (3.17) can be expressed as u = 2(ml2) —
E\Ey + |ky||k4|x) with # = cosf. When performing the integral, the
term proportional to z vanishes, and F; = E; = /s/2. Altogether,
the three-level on-shell an s-wave amplitude is

4qg% 3 9

(=5 —m))e e e . (3.20)

Vij(s) = 1 p

mg
Once we have calculated the potential, one proceeds to calculate
its projection in isospin and spin following the explanations given
in the previous section. These spin-isospin projected amplitudes are
listed in Table 3.1.
For the cases (1,5) = (0,1),(1,0),(1,2) and (2,1), not listed in
the table, the potential is zero, which is consistent with the rule
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I J Contact Exchange ~ Total[I¢(JF%)]
11 69> —4g*(mz —1)  —20°[17(177)]
0 0 8¢° —8¢*(mz —1)  —8¢g*[07(07F)]
0 2  —dg® =8P (Hp -1  —20g207(27)
2 0 -4 4¢(zp D 4g?[0*(277)]
2 2 2g? 492(4322 - 1) 10g%[0T(271)]

Table 3.1: V for the different spin isospin channels. The approximate
total is calculated at threshold.

for identical particles L + S + I = even. From the table we ob-
serve that there is attraction for the cases (1,5) = (1,1);(0,0); and
(0,2), whereas for (I,5) = (2,0) and (2,2) the potential is repul-
sive. We observe that the attraction obtained in the (I,5) = (1,1)
is much smaller than for (7,.S) = (0,0) and (0,2). This case is spe-
cial because the quantum numbers of a possible resonance obtained
here, 1¢(JP¢) = 17(177), are exactly the quantum numbers of the
b1(1235). This state is generated dynamically from the interaction of
vector mesons with pseudoscalar ones, being the K K* channel the
dominant channel. The fact that the pp attraction for these quantum
numbers is small tell us that this channel would have a small effect
in the dynamics of the b;(1235) resonance, dominated by the K K*
interaction. Nevertheless, this weak attraction can lead to a broad
resonance at higher energies as we will see at the end of this Chapter
when we extend this study to the nonet of vector mesons.

It is interesting to see that we cannot generate I = 2 low lying
states since the pp interaction is repulsive there. On the contrary,
we find a large attraction for (I,S5) = (0,2) and a smaller one for
(I1,S) = (0,0), which anticipates that a possible bound pp state from
this interaction will be much deeper bound for (7, S) = (0, 2) than for
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(1,S) = (0,0). The same trend is actually followed by the f;(1370)
and f»(1270) resonances. It is also worth mentioning that the ex-
change diagrams are mostly responsible of the final attraction found
but due to the contact term these states are not degenerate in mass.

Regarding the influence of the wp or ww channels in the calcula-
tions, it is easy to see that there is no w — p mixing in this picture.
This is the fact that three-vector vertices mixing w and p like pww
and ppw violate isospin and G — parity respectively, and as a con-
sequaence, there are no three-vector contact term involving the w
meson. Besides that, the four-vector contact term with w is also
zZero.

We can also build s-channel p-exchange diagrams like in Fig. 3.4.
We obtain an amplitude for (7,5) = (1,0) of the type

1
(5) — 2442 ks 21
\% g (k1+k2)2—Mgk1 ks (3.21)

However, this is a p-wave amplitude and repulsive which is also con-
sistent with the rule L + S 4+ I = even.

The results obtained for the pp potential (contact + exchange
terms, see Table 3.1) provide the kernel (V') of the Bethe-Salpeter
equation, that in its on-shell factorized form becomes [43, 52, 77|

T=V+VGT=[1-VG|'V, (3.22)

where G is the two-p loop function:

dmax 2
G :/ ¢ da T — (3.23)
0 (27)? wyws[(P)? — (w1 + wa)? + ie]

where ¢,,q, stands for the cutoff, w; = (72 + m?)"/? and the center-
of-mass energy (PO)2 = s. In the present case of the pp interaction
we use the formula Eq. (3.23) with two different values of the cutoff,
875 and 1000 MeV /c but in Section 3.10 the formula of Eq. (3.45)
will be used instead of this.
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p* (k1) P (k)
\ P k1+k2 /
p~(k2) p~(ks)

Figure 3.4: S-channel p exchange diagram.

The positions of the poles found when we implement the potential
V' of Table 3.1 as input of Eq. (3.22) are shown in Table 3.2. We
want to stress that only one parameter, the cutoff of the integral,
(max, Which is around 1 GeV, was needed to get these states. We
find two pp bound states with masses 1255 and 1512 and zero width.
Thus, as the strength of the potential for spin = 2 is bigger than for
spin = 0, the state with spin = 2 is more bound. Additionally, we
observe that the binding of the tensor state is more sensitive to the
cutoff than the scalar state. Yet, reasonable changes of ¢, around
1 GeV revert into changes of about 50 MeV in the binding for the
tensor state and 20 MeV for the scalar one.

Vs [MeV]
I T [Gmae = 875MeV/c]  [Gimae = 1000 MeV /(]
0 0 1512 1491
0 2 1255 1195

Table 3.2: Pole positions for the two different channels
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3.5 Convolution of the two-meson loop func-
tion

We have seen that the use of only the potential of Table 3.1 in Eq.
(3.22) leads to bound states (below threshold) with zero width. How-
ever, the widths of the f;(1370) and f,(1270) quoted in the PDG [78]
are large (around 200 MeV) and they come mainly from decays to
pseudoscalar mesons like two or four pions. Thus, the considera-
tion of pions is crucial to describe adequately the properties of these
states. One of the mechanisms that takes into consideration the de-
cay to pseudoscalars is to convolute the G-function, in this way, one
includes the large width of the p-meson in the calculation. The fact
that the p-meson has a large width, I', = 146.2 MeV, implies that
this meson has a mass distribution, and thus, the states obtained de-
cay in 2p's for the low mass components of the p mass distribution.
To do so, one replaces G by G given by

. 1 [(met2T)? ,, 1 1
G(s) = — dmi(——)Im
( ) N2 (mp—2T,)2 1( 71') ﬁ’z% - mf) + Zrml
(mp+2Tp)2 1 1
></ [ —
(mp—2T,)2 U my —mz +il'my
xG(s,m},m3) , (3.24)
with
(mp+2Tp)> | 1
N = dmi(——)Im , 3.25
(mp—2T,)2 l( 7T) ﬁl% - m% + Zle ( )

where I', = 146.2 MeV and for I' = I'(/m) we take the p width for
the decay into the pions in p-wave

I(m) = r,,(_ii)?’/?e(m — 2my) (3.26)

The use of G in Eq. (3.22) provides some width to the states. In
Fig. 3.5 we show the results for |T'|? obtained by considering the p
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Squared amplitude for S=0 Squared amplitude for S=2
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Figure 3.5: |T|? taking into account the p mass distribution for S = 0
and S = 2.

mass distribution. We show the results for the two cut offs of Table
3.2. As we can see in the figure, the matching of the mass of the
f2(1270) is obtained with a cut off ¢ = 875 MeV/c. Then we
obtain 1532 MeV for the energy of the S = 0 state that we would
like to associate to the f;(1370). Given, large dispersion of masses of
the fo(1370), the results obtained by us would be consistent with the
present experimental observation. We see that |T'|> has a good Breit
Wigner distribution in both cases, with a peak around the masses
shown in Table 3.2, but changed slightly. However, the widths are
relatively small. For the tensor state one finds a width of about
2 —3 MeV and for the scalar state the width is about 50 — 75 MeV/,
depending on the cut off.
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\/\/\/

g S B

I EAN ST

Figure 3.6: Diagrams considered for pp — 7.

3.6 Consideration of the two pion decay
mode

As we will see in the results section, the convolution of the G function
provide some width to the states. Nevertheless, it is still very small
compared to the large width of the f,(1370) and f5(1270). Therefore,
one should consider more different decay mechanisms with pions. For
the pp states that we are concern with, the diagrams of Fig. 3.6
provide such mechanisms and, indeed, the pr7 vertex is provided by
the Lagrangian of Eq. (2.3),

Evpp = —ig(V”[P, 6MP]) . (327)
For the diagram of Fig. 3.7, we have

it = [ (V) a0

><Z'(k:1—q+P—q)u€52'(k3—q—Q)a€§é
x(—i)(q— ks — P+q)se]
X ! !
q* —m2 +ie (ky — q)* — m2 + ie
7 1
.(3.28
X(P—q)z—m3r+i€(/fg—Q)z—m3r+i€( )

Under the approximation of neglecting the momentum respect to the
vector-meson mass, all the polarization vectors are spatial and we



26 Consideration of the two pion decay mode

p+(k‘1) *(ks)
\ 7 (q) /

(k1 — q) | | (ks — q)
/ (P \

p~(ks) "~ (ka)

Figure 3.7: Detail of one of the diagrams of fig. 3.6.

can rewrite the amplitude as

4
it = (V/2¢g)* i €15€2,€31€
t (V2g (2m)1 1i€2;€31€4m
" 1 1
> —m2 +ie (ky —q)? — m2 +ie
1 1
x : (3.29)

(P —q)? —m2+ie (ks —q)> —m2 +ie’

this integral is logarithmically divergent, and in the absence of data
to fit the subtraction constant if using dimensional regularization, we
regularise it with a cutoff in the three momentum, that should be of
the order of the basic scale at the energies that we work in, 1 GeV.
For this purpose, we perform the ¢° integral analytically performing
exactly the divisions by factors with undefined polarity (4ie in the
denominators). By doing some algebraic manipulations, we obtain

T 4
yim = (\/59) (€15€2i€3j€4; + €1,€2€3:€4; + €1,€2;€3;€4;)

S /qmd 00— ot (Y
1572 J, 74 353 \ K9 + 2w
1 1 1

x (735 —)? —
PO+ 2w k) — 2w +ie” PO — 2w +ie

(3.30)
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with w = /¢%2+ m2. This expression shows explicitly the two
sources of imaginary part in the cuts kY — 2w = 0 and P° — 2w = 0,
corresponding to p — 7w and pp — 7m. The double pole of Eq.
(3.30) can be easily removed by taking into account the mass dis-
tribution of the p meson. A simpler approach, and accurate enough
for our purposes is to substitute the double pole, (k) — 2w + ic)?, by
(k) —2w+T/4+i€)(k? — 2w —T'/4+1e). In practice, the results barely
change if we put I'/2 instead of I'/4 or some reasonable number of the
size of the p width. The potential of Eq. (3.30) is easily extended to
other charges of p and m mesons and must be projected in isospin and
spin, and we are only interested in I = 0, for which the pp potential
of the former sections is attractive. Thus, the isospin-spin projected
amplitude of the pp-box diagram is

H2m1=0,5=0) _  ony/(mm)
$(2m1=0,5=2) _ g yr(rm) (3.31)

where V(™) is given by the Eq. (3.30) but removing the polarization
vectors. The diagrams like in Fig. 3.6 do not have spin one. This is
because the p meson is in s-wave and thus the parity of the pp system
is positive, this forces the two pions to be in L = 0, 2, and then, since
the pions have no spin, J = L and only the quantum numbers 0", 2%
are possible.

We will see in the next section that the real part of this potential
is much smaller than the pp potential of Table 3.1 coming from the
contact + exchange terms and can be neglected.

In the computation of Eq. (3.31) for the box diagrams we consider
that the m exchange between two p mesons in the ¢-channel is mostly
off shell and implement empirical form factors for the prm vertex
[79, 80| like , ,
F(q) = %

A? —(k—q)

in each p — 7 vertex with

(3.32)

o V5 k=0, q0:§, (3.33)
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and ¢ the running variable in the integral. We use several values of
A in Eq. (3.32) between 1200 — 1300 MeV [79, 80| and a cutoff of
Gmax = 1.2 GeV in the integral of Eq. (3.30) which does not affect
the imaginary part of the potential, that plays the important role in
our calculation.

3.7 Decays to 47’s and 2w’s

There are also other contributions to the widths of the pp states (but
we anticipate they are smaller) apart from decays into two pions.
One of them is the decay to four pions that can be considered by
means of crossed box diagrams like in Fig. 3.8. The evaluation of the
diagram in Fig. 3.8 can be done similarly to the box diagram with
two pions in the intermediate state discussed in the previous section.
As a result, the amplitude of the diagram in Fig. 3.8 obtained is

t(27r(c),[:0,S:0) 5 ‘7(0, )

$@T(OI=05=2)  _ g ylemm) (3.34)

with

1

1 4 dmazx
09 / dq q° {20w? — (k?)ﬂﬁ
0

f/(c, ) -~J
1572

1\’ 1
% <kz‘f+2w) K4+ L — 2w+ ie
1 1
Xk‘f—g—mﬂ'ek?—zwﬂe'

(3.35)

Furthermore, diagrams with 2w’s in the intermediate state are also
possible and they are depicted in Fig. (3.9). The vertex pwm involved
in these diagrams is anomalous and with the renormalization that we
use [81] is given by

/

EVVP == ﬁe“”aﬁ@uvyﬁa‘/g P> (336)
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p* (k1) t(ks)
7+(q) /
(ki —q) o T (ks —q)
/ ks — Ky \
p~(k2) (k)

Figure 3.8: Crossed-box diagram for the four pion decay mode.
with

I 39,2 g/ _ _GVMp
47T2f’ \/§f2 )

(3.37)

where Gy ~ 55 MeV and f, = 93 MeV. Assuming E” ~ 0 one
obtains:

—itpor = 1G' M, €355 @i €5(w) €x(pT) (3.38)

The final expression of the amplitude of the diagrams in Fig. 3.9 is
given by

t(wa:O,S:O) _ BOV(ww)

HowI=0,5=2)  _ 9y [rlww) (3.39)
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p* (k1) p(ks) p* P~
\ w(q) / \ w /
7 (k1 —q) * + (ks —q) mt * * T
/w(?— QN / 7 \
p(k2) p (ki)  p~ p*
Pt PO (ks/ks)  p° P (ks/ka)
o | oy | a0
P PO(ka/ks)  p° PP (ka/ks)

Figure 3.9: Anomalous-box diagrams for the two omega intermediate
state.
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with
- 1 dmax
V(ww) . M G/4 / dad*
30720 ) 4
X (—w3 + kQQ% — 4w, — dww? — W?)
o 1 1
(k) +wo +w)? (K + L — w, — w +ie)
o 1
(k) — L —wy — w +i€)
1 1 1 1
X — — (3.40)

w2 (PO — 2w, + i€) (P%+2w,) w,

with w, = 1/¢% + m?2. The different contributions, contact + p ex-
change, 77 box, 47- crossed box and ww are shown in Fig. 3.10 for
(isospin = 0;spin = 0) and (isospin = 0, spin = 2). In the evaluation
of the integrals of Eqgs. (3.30), (3.35) and (3.40), we use ¢max = 1200
MeV and we omit the use of the form factors in the pictures for the
sake of simplicity. For spin = 2, we see that the most important con-
tribution comes from the contact + p-exchange terms whereas the real
parts of the mm, 2w, 4m-crossed box and 2w potentials turns out to
be negligible. The case of spin = 0 is slightly more complicated. We
observe that the individual contributions of the mwm-box, 4m-crossed
box and 2w diagrams are comparatively larger than in the case of
spin = 2. Despite of this, we find a good cancellation of the 77 box
plus 47-crossed box and the anomalous 2w box term, and, finally, the
interaction is dominated by the conctact plus p-exchange terms. Al-
though, due to the relatively large contribution of the separate terms
we admit larger uncertainties in the position of the fy(1370) state
than for the f5(1270). Concerning the imaginary parts, we observe
that the imaginary part for the 77 box is considerably larger than for
the 4m-crossed and 2w boxes, and we obtain that the 47-crossed box
only accounts for the 20% of the 77 box, while the anomalous-ww
box does not contribute in the region of interest.
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Figure 3.10: Comparison of the real and imaginary parts of the dif-
ferent potentials for / =0, S=2and I =0, S =0.
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3.8 Results

In Sections 3.4 and 3.5 we obtained the pole positions after including
the potential of Table 3.1 in Eq. (3.22) using G or G respectively
(Egs. (3.23) and (3.24)) for two different cutoffs, ¢n.x = 875 and
1000 MeV. Experimentally, we have I'(f,(1270)) = 184.4757 MeV
and I'(fo(1370)) = 200 — 500 MeV. These widths come 84.7% and
20% respectively from decays into two pions. In what follows we
include the additional mechanisms studied in Section 3.6 which give
rise to the broadening of the theoretical states of Sections 3.4 and 3.5.
We saw that the diagrams of Fig. 3.9 did not account for imaginary
part and the 47-crossed box diagram in Fig. 3.8 turns out to be 20%
of the mm-box diagram and we have some uncertainties due to the
use of the form factor of the pseudoscalar-pseudoscalar-vector vertex
which can reabsorb the small contribution varying the A parameter.
Thus, we show the final |T'|> matrix without including the 47-crossed
and 2w boxes for A’s= 1200 — 1400 MeV in Fig. (3.11). We observe
that as A grows, the widths of the states becomes larger. This give us
an idea of the theretical uncertainties. Yet, both states, the f»(1270)
and the f5(1370) are reproduced with a reasonable agreement with
the experimental data for the width and mass. In Fig. 3.12 we
show the amplitudes for two different values of the cutoff used in Eq.
(3.23), ¢max = 875 and 1000 MeV for the middle option, A = 1300
MeV in Eq. (3.32). In Table 3.3 we summarize the theoretical results
compared to the experiment extracted from Fig. 3.12.

Experimentally, 85% of the f,(1270) width comes from 77 de-
cay, this means I',, = 156 MeV, which is in fair agreement with
our findings. On the other hand, we said that the 4m-crossed box
diagram accounted for the 20% of the 77 box diagram, this gives
[(fo(1370) — 4m)/T'(fo(1370) — 27) = 0.20, which is in good agree-
ment with the interval 0.10 — 0.25 given in the recent reference [82].
Even though the PDG gives the averaged mass around 1370 MeV,
the Belle Collaboration suggest that the peak appears around 1470
MeV [83]. Notice also that this state cannot be associated to the
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Figure 3.11: |T)? taking into account the w7 box for different values
of A = 1200, 1300, 1400 MeV and gyas = 875, 1000 MeV for S = 0

and S =2
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Theory Experiment
(I,J) M[MeV] TI'MeV] M[MeV] ['[MeV]
(0,0) 1532 212 1200 to 1500 200 to 500
(0,2) 1275 100 1275.1+1.2 1851729

Table 3.3: Comparison to the experiment (mass and width measured
from the line "gna.x = 875 MeV" in Fig. 3.12).

f0(1500) since although its width is around 100 MeV, only the 35%
corresponds to wm. The f3(1500) is identified with a glueball in [84].

3.9 Conclusions

We have seen that the study of the pp interaction using the hidden
gauge formalism leads to a strong attraction, enough to bind the
system, in the isospin = 0;spin = 0 and isospin = 0; spin = 2 sectors.
We have also found that in the case of isospin = 0,spin = 2 the
interaction was more attractive, giving rise to a tensor state more
bound than the scalar. The consideration of the p mass distribution
provides little width to the two states (decay into four pseudoscalars),
much smaller for the tensor state due to its large binding. The biggest
source of width comes from the decay into 77 by means of the box
diagrams like in Fig. (3.6) that we have also studied within the
same formalism. The agreement with the mass and width for the
fo(1370) and f5(1270) is good and therefore the assignment to these
states is done. The findings of the paper give a strong support to
the idea that these two resonances are dynamically generated from
the pp interaction, or in other words, that they qualify largely as pp
molecules.

In the following we extend this study to the nonet of vector mesons
and thus, the interaction can provide K*K* or pK* bound states or
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Figure 3.12: |T|? taking into account the 77 box with A = 1300 MeV/,
Gmaz = 875,1000 MeV for S =0 and S = 2.

resonances, as we will see.

3.10 The vector-vector interaction for the
nonet of vector mesons

In this section we extend the study made for two p’s interacting to
the nonet of vector mesons. Thus we treat the interaction not only
between p mesons but also between p and K* mesons, K* and K*
for instance. The use of real masses breaks the chiral symmetry
which is implicit in the Lagrangian for vector mesons. An important
feature of the formalism used is also manifest here: only a few free
parameters (the subtraction constants) are needed, which are fine-
tuned to some well established masses of resonances and once one
adjust them, predictions for others particles are obtained, some of
them find experimental counterpart while others remain for future
experiments. Furthermore, the branching ratios to two pseudoscalars
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have not been adjusted and therefore, they are genuine predictions
of the approach.

The study of the pp interaction was done in Ref. [85]. Its natural
extension to SU(3) which we report in this section was done in Ref.
[86]. The results have been reproduced by myself taking the same
values of the subtraction constants in Eq. (3.45) and are included
in the thesis for completeness. Besides, they are very useful for next
chapters. Thus, we do a brief summary of the procedure and the
results of Ref. [86] and refer the interested reader to Ref. [86].

All the channels according to different (strangeness, isospin, spin)
channels are classified. These are (0,0,0), (0,0,1), (0,0,2), (0,1,0),
(0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1, 3,0), (1,3,1), (1,3,2),
(17 %’ )7 (17 %7 )’ (17 %7 )’ (27 0, 0)’ (27 0, 1)7 (27 0, 2)> (27 L, O)a (27 L, 1)7
and (2,1,2). One should calculate the four contact and vector ex-
change diagrams of Fig. 3.1 following Egs. (3.4) and (3.5). The
amplitudes are given in the Appendix of [86]. We observe that the
general structure of the exchange term in the ¢-channel for the am-

plitude (1+2 — 3+ 4), is

bij(ki + ks) - (k2 + ka)er - €362 - €4 (3.41)

while for the u-channel diagrams, the structure is

cij(k1 + ka) - (k2 + ks)er - €sé - €3 (3.42)

where b;;, ¢;; are the coefficients (constants for the channel ”i” =
(1 +2) — channel "j” = (3 4 4). It is interesting to see that the
structure of spin of Eq. (3.41) has equal components of spin= 0, 1
and 2, while the one of Eq. (3.42) has the same projection for spin= 0
and 2 and it has opposite sign for spin= 1.
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3.11 Unitarization procedure and search
for poles

In the calculations we will always make use of the Bethe-Salpeter
equation as a method to unitarize the T-matrix,

T=[1-VG V. (3.43)

The two meson loop function GG can be written as

d*q 1 1
G =i , . 3.44
/(27r)4q2—m§+ze(P—q)2—mg+ze (344)

which upon using dimensional regularization can be recast as

1 m?  mi—mi+s

G = Log— + 2—1 =
1672 (a—l— Og,u2 * 2s

+£<L0gs—m§+m%+2p\/§

VN T —s +m3 —mi+2py/s

s+m§—m%+2p\/§))

+Lo
g—s—m%+m%+2p\/5

Log

2
Mo
2
1

(3.45)

where P is the total four-momentum of the two mesons, p is the
three-momentum of the mesons in the center of mass frame

p= 2%5 (5 — (ma - m2)?)(5 — (mx — o) 2 (3.46)
and my = mgy = m,, or using a cutoff as Eq. (3.23). The magnitude
1 is a renormalization scale and a is called the subtraction constant.
The poles appear in the first Riemann sheet for real values of /s
below threshold. For resonances, appearing above threshold and must
go to the second Riemann sheet with the procedure discussed below.
If these poles are not very far from the real axis they occur in /s =
(M+£il'/2) = /5, with M and I" the mass and width of the resonance
respectively. Of course the only meaningful physical quantity is the
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value of the amplitude for real /s, i.e., the reflexion of the pole on
the real axis. Therefore, only poles not very far from the real axis
would be easily identified experimentally as a resonance. The effect
of passing s to the second Riemann sheet R2 has consequences only
for the G functions. To evaluate G in R2 we can use the Schwartz
reflexion theorem which states that if a function f(z) is analytic in
a region of the complex plane including a portion of the real axis in
which f is real, then [f(z*)]* = f(2). The loop function G, satisfies
these conditions, therefore, for Re(v/s) > m; + M, we have

Gi(Vs—ie) = [Gi(Vs+ie)]" = Gi(\/s+ie)—i2ImG(y/s+1€) . (3.47)
Since the beginning of R2 is equal to the end of R1 we have
Gl (Vs+ie) = Gi (Vs—ic) = G (Vs+ie)—i2ImG{ (Vs +ie) , (3.48)

where the subindices I and I refer to R1 and R2 respectively. The
imaginary part of the loop function can be very easily evaluated from
Eq. (3.44), for instance with Cutkosky rules, giving ImG? (/s +i¢) =
—87qu/§. In principle Eqgs. (3.47 and 3.48) are true only very close to
the real axis but, since the analytic continuation to general complex
plane is unique we can write for a general \/s

GI(V3) = GI(W5) + iz (3.49)
with Im(q) > 0. In Eq. (3.49) one can use for G} either Eq. (3.45)
or the result of the cutoff method. One could also have gone to R2 by
using Eq. (3.45) but with the solution of ¢; with Im(g;) < 0, but again
one finds the problem of multivaluedness of the In functions. We have
checked, by comparing with the result obtained from Eq. (3.49), that
one can use Eq. (3.45) as it is written with the prescription of the In
explained below Eq. (3.45) and using +/s in the form a + ib, a and b
real. When looking for poles we will use G/ (1/s) for Re(y/s) < my+M,
and G{7(/s) for Re(y/s) > m; + M;. This prescription gives the pole
positions for the real axis and the total width. In this way, when
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being below the lowest threshold, we could also obtain possible pure
bound states. Close to a pole, the amplitude in Eq. (3.22) can be
approximated by
9iJ;
T, = ———, 3.50
P (3.50)
thus, the coupling g;;) to the different i(j) channels are calculated
by means of the residues of the amplitudes.

3.12 Results

To regularize the loop functions, the method used is the following: In
Eq. (3.44) the function loop can be regularized either with a cutoff
A ~ 1 GeV or with a subtraction constant, a ~ —2 for meson-baryon
scattering [43]. Using ¢max ~ 1 GeV in Eq. (3.23) the basic physics
should be reproduced, and thus, we first evaluate the amplitudes in
the real axis using the formula of Eq. (3.23) with guac ~ 1 GeV.
The peaks and bumps obtained should be stable with reasonable
changes of the value of the cutoff A. Once these peaks are identified,
we proceed to search the a in Eq. (3.45) that reproduces the real
part of the function loop. The use of the formula (3.45) is very
useful in the sense that allows to go to the general complex plane,
to reach the second riemann sheet and calculate the residues of the
amplitudes, and thus the coupling constants to the different channels,
Eq. (3.50). Particularly, the a is adjusted to reproduce the real part
of the two-meson loop function at the two p’s threshold. This results
in a = —1.65. Then, a fine tuning of the a’'s for other two-meson
channels is done to reproduce some well established resonances. They
are the f»(1270), the f}(1525) and the K;(1430). This leads to three
different values of the a’s in the different sectors, a,, = —1.636,
apr+ = —1.636, ag«g- = —1.726 and a,x- = —1.85. In the channels
that involve w or ¢ we put a; = a,, = —1.65, for strangeness= —1,
the value a; = a,x- = —1.85 is used, whereas, similarly, we put a; =
K*K* = —1.726 for strangeness = —2. Even though, we notice that
qualitatively the results do not change if one puts either a = —1.65
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or a = —1.85 in all the channels. For instance, using a = —1.85
one gets a mass for the f,(1270) pole of (1206, —i0) MeV (without
including the box diagram) to be compared to (1275, —i1) MeV with
a = —1.636. We only find enough attraction in the potential that
leads to the generation of poles in the sectors: strangeness = 0,
isospin = (; strangeness = 0, isospin = 1 and strangeness = 1,
isospin = 1/2. We find eleven poles or dynamical generated states. In
Tables 3.4, 3.5, 3.6 the couplings to the different channels calculated
by means of Eq. (3.50) are given (we notice that they were calculated
without including the box diagram but since the real part of the box
diagram is small, little effect in these couplings is expected. In Table
3.7 the positions of the poles and widths are shown for two different
values of the A parameter in the form factor, Eq. (3.32), A = 14
and 1.5 GeV and the comparison to the PDG data. Since we have
obtained eleven dynamically generated states and we have fine tuned
three parameters, eight of the eleven resonances are predictions of
the model. The value chosen for A, is close to the one from the study
made for the f5(1270) and f,(1370) in Section 3.8. However, we can
invoke the same fine-tuning strategy discussed for the subtraction
constant. This is, we can adjust A, to get the total width of one of
the resonances, and the widths of the others are predictions. Indeed,
the variations of the width with the A parameter give us an idea
of the uncertainties involved in the computation of the box diagram,
which is the mechanism to decay in two pseudoscalar mesons. We also
noticed that the couplings of the resonances are rather independent
of the A parameter, which was already found in [87].

Let us also mention that in our approach we can also obtain pre-
dictions for the branching ratios to different pairs of pseudoscalars.
Indeed, as the free parameters have not been fine tuned to the branch-
ing ratios, they are genuine predictions of the model. Of the eleven
states obtained, five of them are associated to data in the PDG be-
cause of the proximity of the mass, width and quantum numbers,
while the other six have the quantum numbers of one hq, ag, b1, as
or K*9 however, the association if possible remains with doubts and
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thus more experimental data are demanded to extract some conclu-
sions. In what follows we discuss the experimental data one by one.

(1512, —i26) [spin=0]

KK pp ww we o
(1208, —i419) (7920, —i1071)  (—39,i31) (33, —i43) (12,i24)
(1726, —i14) [spin=0]

K*K* pp ww wo (030
(7124, i96) (—1030, i1086) (—1763, 2'108) (3010, —i210) (—2493, —i204)
(1802, —i39) [spin=1]

K*K* pp ww wg ¢
(3034, —12542) 0 0 0 0
(1275, —i1) [spin=2]

KK pp ww we o
(4733, —i53) (10889, —i99)  (—440,i7) (777, —i13)  (—675,411)
(1525, —i3) [spin—2]

K*K* op ww wo oY)

(10121,¢101)

(—2443,i649) (—2709,48) (5016, —il7) (—4615,i17)

Table 3.4: Pole positions and residues in the strangeness=0 and
isospin=0 channel. All quantities are in units of MeV.

e The fy(1370) and the f5(1270). These states were discussed in
detail in Section 3.8. Yet, the present study allows compare to
measured decay ratios to different pairs of pseudoscalars. In
the PDG, the branching ratios of the f»(1270) are 84.8% for
7, 4.6% for KK and < 1% for nn [78] to be compared with
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(1780, —i66) [spin=0]

K*K* pp pw po
(7525, —i1529) 0 (—4042,i1391) (4998, —i1872)
(1679, —i118) [spin=1]

K*K* pp pw po
(1040, —i1989) (6961, —i4585) 0 0
(1569, —i16) [spin—2]

K*K* pp pw po
(10208, —i337) 0 (—4598,i451) (6052, —i604)

Table 3.5: The same as Table 3.4, but for the strangeness—0 and
isospin=1 channel.

our values, that are ~ 88% for 7m, ~ 10% for KK and < 1%
for nn which is in very good agreement with the experiment.

e The f,(1710) has a mass quoted in the PDG of 1724 £ 7 MeV
and a width of I' = 137 £ 8 MeV. This resonance decay to KK,
nn and 77 (mainly, whereas others like ww has been observed).
The PDG gives the following averages: I'(77)/I'(KK) = 0.417511
and I'(nn) /T(KK) = 0.4840.15 [78]. Our calculated branching
ratios are ~ 55% for KK, ~ 27% for nn < 1% for =m and ~ 18%
for the vector-vector component. The agreement with the mass
and width obtained is very good as we can see in Table 3.7. The
branching ratio I'(nn)/T(K K) is also fulfilled. Some problem
is found for the I'(77)/T'(KK) branching ratio, which we get
much smaller. However, when we look at the different experi-
ments, we see that there is a BES experiment, J/¢ — w KK~
which gives I'(r7) /T (KK) < 11% at the 95% confidence level.
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(1643, —i24) [spin=0]
oK K*w K*¢
(8102, —i959) (1370, —i146) (—1518,i209)
(1737, —i82) [spin=1]
pK* Kw K*¢
(7261, —i3284) (1529, —i1307) (—1388,i1721)
(1431, —i1) [spin=2]
pK* Kw K*¢
(10901, —i71) (2267, —i13)  (—2898,i17)

Table 3.6: The same as Table 3.4, but for the strangeness=1 and
isospin=1/2 channel.

We claim more experimental analysis is needed to clarify this
issue.

e The f}(1525). The mass and width are 152545 and 73*%. And
the PDG gives 88.7% to KK, 10.4% for nn and 0.8% for .
We get mass and width (1525,45) MeV very close the PDG
value. The theoretical state also decays mainly to KK, ~ 66%
and the other ratios are ~ 21% for nn, ~ 1% for =7 and 13%
for the vector-vector component, which is in good agreement
with the experiment.

e The K;(1430). The PDG values for the mass and width of this
resonance are 1429 + 1.4 and 104 + 4 respectively. The K=
mode accounts for (49.9 + 1.2)% and the K*7m (13.4 + 2.2)%.
The mass and width found in the real axis are (1431, 56) MeV.
Therefore, the agreement with the data is reasonable.



I6(JP) Theory PDG data

Pole position Real axis Name Mass Width

Ay =14 GeV Ay =15 GeV
0 (0"T) (1512,51) (1523,257) (1517,396) fo(1370) 1200 ~ 1500 200 ~ 500
0t (0*T) (1726, 28) (1721, 133) (1717,151) fo(1710) 1724+ 7 137 £ 8
0~ (177) (1802, 78) (1802,49) hy
0t (2t (1275,2) (1276,97) (1275,111)  f»(1270) 1275.1+£1.2  185.0729
0t(2*) (1525, 6) (1525, 45) (1525,51) 14(1525) 1525 £5 73t§
17(0t 1) (1780, 133) (1777,148) (1777,172) ag
1T (177) (1679, 235) (1703, 188) b1
17(271) (1569, 32) (1567,47) (1566,51) a9(1700)77
1/2(0T) (1643,47) (1639, 139) (1637,162) K;§
1/2(11) (1737,165) (1743,126) K1(1650)7
1/2(2%) (1431,1) (1431, 56) (1431,63)  K;(1430) 1429 + 14 104 +£4
Table 3.7: The properties, (mass, width) [in units of MeV], of the cleven dynamically generated states and, if existing, of those of their PDG

counterparts. Theoretical masses and widths are obtained from two different ways: "pole position" denotes the numbers obtained from the pole position
on the complex plane, where the mass corresponds to the real part of the pole position and the width corresponds to two times the imaginary part of the
pole position (the box diagrams corresponding to decays into two pseudoscalars are not included); "real axis" denotes the results obtained from real axis
amplitudes squared, where the mass corresponds to the energy at which the amplitude squared has a maximum and the width corresponds to the difference
between the two energies, where the amplitude squared is half of the maximum value. (In this case, the box amplitudes corresponding to decays into two
pseudoscalars are included). The two entries under "real axis" are obtained with different Ay, as explained in the main text.
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Chapter

Testing the nature of the f(1370)
and the fo(1270) through radiative
decays into vy

4.1 Introduction

In the previous Chapter we generated the fy(1370) and the f5(1270)
using a set of hidden gauge lagrangians together with unitarization
technics for the T" matrix. These resonances can be interpreted as
coming from the pp interaction, the state for spin = 2 being more
bound than the spin = 0 state. Although the pp molecular nature of
the fo(1370) was also suggested in [88, 89|, the f2(1270) is, however,
generally believed to belong to a p-wave nonet of ¢ states [88, 89].
Thus, the work of [85] introduce a new interpretation of the f,(1270)
and give support to the pp molecular interpretation of the f;(1370)
suggested in [88, 89].

The experimental situation regarding the mass, width and radia-
tive decay width of the f»(1270) is much clearer than for the f;(1370),
which is rather confuse when comparing the different experiments in
the PDG. In particular, the Belle Collaboration quotes a central value

7
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for the mass of the f,(1370), m = 14701572 [83], which large un-
certainties and [y (797%) = 9077750 MeV, I, B(7%7%) = 11751593
whereas the Crystal Ball Collaboration gives completely different
numbers, m = 1250 MeV, Ty, = (268 + 70) MeV, T, B(7’7") =
430 + 80 eV.

From the theoretical side, the values obtained for the mass and
width in Chapter 3 are m(f>(1270)) = 1275 MeV (from fitting the
subtraction constant), I'(f2(1270)) = 100 MeV, m(fo(1370)) = 1532
MeV and T'(fp(1370)) = 212 MeV, using gmax = 875 MeV and A =
1300 MeV. This favors the Belle experiment but then the theoret-
ical width remains bigger that that of this experiment, but closer
to the Crystal Ball value. However, one must take into account the
theoretical uncertainties from adjusting the subtraction constant and
there could be some other channels as oo that can affect (in a small
amount) this result.

There are previous theoretical studies on the radiative decays into
vy of the f2(1270) and f,(1370). In [70], the authors assumed that
the f5(1270) together with the f(1525) are ¢¢ and a good description
of the decay rates is obtained by adjusting two free parameters. In
[74], an evaluation of the radiative decay width of the f,(1370) into
v~ is done supposing that this resonance is a mixture of ¢q and qqqq,
and the authors obtain values between 0 and 0.22 KeV, whereas in
[75], using a model where this resonance is basically a g7 with quarks
of nonstrange nature, values much bigger around 4 KeV are obtained.

In the next subsection we evaluate the decay rates of the f,(1370)
and the f»(1270) into v7 in the pp molecular picture. The details can
be seen in [87].

4.2 Evaluation of the radiative decays of
the pp molecules into vy

Within the Hidden Gauge formalism, photons always come out through
their conversion into p, w and ¢. The diagrams for the radiative
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decays of pp molecules into v are given in Fig. 4.1. These dia-
grams can be separated in one strong part, R — p’p" and depicted
in Fig. 4.2, and the direct conversion of the two p’s into photons.
Thus, the strong part contains both the vector-exchange and contact
terms. The amplitude of Fig. 4.3 a) can be parametrized as a Breit
Wigner amplitude, and using the spin projection operators given in
Eq. (3.13), one obtain

J=0
2 1 1
H0) 9s w D@ L 3@ 41
s— MZ+iMgl 3¢ 9 39 Y (4.1)
J=2
2 97 Lo, wey_Looes
— s—MJ%+iMRF{§(6i € +e€ e )—gel € 0ij}
1 1
x{§(e§3)e§4) + €§3)€§4)) — geg)eg)@ 1 (4.2)

Since, indeed we are interested in the diagram of Fig. 4.3 b), the

Figure 4.1: Feynman diagrams to evaluate the radiative decay width
of fo(1370) and f,(1270).
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Figure 4.2: Strong part of feynman diagrams to evaluate the radiative
decay width of f,(1370) and f»(1270).

p p p
R R
I
p p p
a) b)

Figure 4.3: a) Resonance pole representation of the amplitude of [85].
b) Diagram depicting the coupling of the resonance to pp.
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coupling of the resonance to the pp system is given by

J=0
1
PO = go— O™ 4.3
gS\/g i g ( )
J=2
1, 3 @ 3) (4 1
rP® = QT[Q(EZ( )65' : €§‘ )65 )) - 561(7?{)67(73)5%] (4.4)

When dealing with identical particles one must take into account the
factor 1/2 of symmetry, but this is implicit in the use of the unitary
normalization. On the other hand, in order to consider only the p°p°
component of the I = 0 state, we only need to multiply Eqgs. (4.3)
and (4.4) by —1/+/3. Thus, the sum of the two diagrams a) and b)
of Fig. 4.2 can be written as

1 ) )
tRpo 0 = (—ﬁ)g(Z)G(MR)VP(’) : (4.5)

where ¢ stands for ¢®®) or ¢™), P® are the corresponding spin
operators of Egs. (4.3) and (4.4) and G(Mpg) stands for the loop
function defined in Eq. (3.44) evaluated at /s = Mg.

Nevertheless, as we are at the pole of the amplitude, we have
GV =1, according to Eq. (3.22), and we obtain,

LRpop0 = —%g(Z)P(l) . (4.6)
This result was expected since the addition of an extra bubble to the
diagramatic series implicit in the Bethe Salpeter equation leads to
the same amplitude at the pole of the resonance.
The couplings gs and gr involved in Eqgs. (4.3) and (4.4) can be
obtained from
G = ML r(|T [ 2 (4.7)

In Tables 4.1 and 4.2, we give different values of gg, gr for different
N’s. As we can observe, these values are rather stable, and we use
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average values
g% =76 x 10° MeV?, g7 =160 x 10° MeV? (4.8)

which involve uncertainties of the 10 %.

J=0 A [MeV] IT?.. Tr[MeV] g2 [MeV?]
1200 1.0 x 10° 144 70 x 106
Mg = 1532 [MeV] 1300 6.0 x 10* 212 80 x 106
1400 4.2 x 10* 244 77 x 108

Table 4.1: Resonance parameters and coupling constants obtained by

fitting the results shown in Fig. 3.11 for J = 0 state with g.. = 875
MeV.

J=2 A [MeV] IT)?.. Tr[MeV] g% [MeV?|
1200 2.4 x 106 78 154 x 10°
Mp = 1275 [MeV] 1300 1.5 x 106 100 156 x 108
1400 1.1 x 106 125 167 x 10°

Table 4.2: Resonance parameters and coupling constants obtained by
fitting the results shown in Fig. 3.11 for J = 2 state with gpax = 875
MeV.

On the other hand, the vertex that involves the conversion of one
vector into one photon is given by the Lagrangian

Ly, = —M@EAMWQ) , (4.9)
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with @) = diag(2,—1,—-1)/3, e = —le| the electron charge, and A,
the photon field. From this lagrangian we get the amplitude

it = () =M ) 0) (e<0) L (@10)

Finally, in the Coulomb gauge for photons (¢ = 0, - k= 0), the
sum over the final polarization is
kik;
> e(ei() =6 — =2 (4.11)
S k

Thus, at the end one finds the amplitudes

J=0

1e2 gs
thoyy = —55?@(%)@(72) : (4.12)
J=2

1 e?gr. 1
Ry = —%59—2[5(61(%)9(%) +€j(m)ei(12))

1

—gﬁm(%)em(Vz)@j} (4.13)

and the final partial decay widths are given by

J=0
11,21 ,,2f
= gLy 4.14
167 0077312 (ar) (4.14)

11 1,71 ,,2f,
=gl 4.15
5167 31312 (or) (4.15)

Thus, using the couplings g%, g% of Eq. (4.8) one finds:

[(fo(1370) — vy) = 1.6 keV
[(f2(1270) — ) = 2.8 keV (4.16)
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with estimated errors of the 10 %.

As we can see, the final result for the f»(1270) is in perfect agree-
ment with the experimental data, I'(f>(1270) — ~7v) = 3.03 £ 0.35
KeV. Concerning on the f;(1370), one needs also the branching ratio
B(7°7%) which is provided also by the theory [85]. In [85], one gets
that the total width of the f;(1370) comes around 1/4 from pp and
3/4 from 77, out of which 1/3 corresponds to the p°p° component.
Then one gets I, B(7"7°) = 405 eV which is in perfect agreement
with the experimental value given by the Crystall Ball Collaboration,
T, B(r07°) = (430 £ 80) eV.



|
Chapter

Decay of vector - vector resonances
into a pseudoscalar meson and a
photon

We study the possible decays into a pseudoscalar meson and a photon
of the resonances generated from the vector - vector interaction up to
now. Within the HGS formalism photons are tied to the vector meson
fields through the Lagrangian providing direct conversion of photons
into neutral vector mesons. In addition, the decay mechanism will in-
volve loops containing anomalous couplings that using the appropiate
Lagrangian. The radiative decays has shown to be an essential tool to
determine the nature of the resonances [90, 91, 92, 93, 94, 95, 96, 97|,
and evaluating these observables with the new perspective for the
vector - vector resonances is particularly challenging since some of
these resonances have traditionally been accomodated within quark
models (88, 89, 98, 99, 100, 101, 102].

85



86 Introduction
5.1 Introduction

First of all, we consider all the possible cases of spin-parity of the
initial meson in Table 3.7: In case we had an initial resonance with
JP = 07, the angular momentum between the pseudoscalar meson
and photon should be L = 1, which implies negative final parity, and
is not allowed. In the language of photon multipoles this corresponds
to an MO transition, which does not exist. The rest of the resonances
in Table 3.7 are either with or without strangeness. The resonances
without strangeness in the table except those with J = 1 have positive
C-parity and the decay into 7°(n)vy is forbidden. This leaves non
vanishing decay rates only for the hy, by, K; and K;(1430), and only
the K3(1430) has a clear experimental counterpart. In the present
work we concentrate on this case, where there are also experimental
data in the PDG for its decay into K~:

D(K3T(1430) — KT9)/T = (24+0.5)x 1073
[(K3°(1430) — K%)/T < 9x107* (5.1)

In [86] there was also one ay resonance found at around 1560 MeV,
which was compared with the a,(1700) for the proximity of the masses,
but serious problems with the widths were observed. Here we shall
assume that the a2(1560) found in [86] corresponds to the experimen-
tal az(1320) and we will also evaluate the radiative width into 7.
Experimentally we have

[(ap(1320) — 74)/T = (2.68+£0.31)x107%.  (5.2)

The difference of the masses between the ay(1560) found and the
experimental as(1320) could be reduced in [86] with some fine tuning
of the subtraction constants, but we shall not do it here.

From Tables 3.5 and 3.6 we take the channels and coupling con-
stants, g;, of the a2(1320) (a2(1569) in [86]) and K;(1430). As we see
in Table 3.6, the K;(1430) couples to three channels: pK*, K*w and
K*¢, the pK* being the most important one. Two different decay
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Vi

K*(1430)

a)

Figure 5.1: The two different diagrams that contribute to the
K3(1430) — K+ decay.

mechanisms are responsible for the decay of the K*(1430) into K+,
which are shown in Fig. 5.1. On the other hand, the ay(1320) couples
to K*K*, pw and p¢, the largest coupling corresponding to K*K*.

Both diagrams contain an anomalous VVP coupling, whereas one
has an anomalous VVP coupling, exchanging a pseudoscalar meson,
P, Fig. 5.1 a), in the other one, Fig. 5.1 b) a vector meson is
exchanged having a 3V vertex. These diagrams lead to four possible
configurations, as shown in Fig. 5.2 for the p/K™* channel, depending
on whether a non-strange meson is exchanged or not. At the end, all
possible V'V channels are taken into account.

For the a5(1320) we show the possible diagrams in Fig. 5.3). In
this case, only a few diagrams contribute so we show all the possibil-
ities.

From the Hidden Gauge Lagrangian, Eq. (2.3), we get the term
that couples the vector to the photon, which is given by Eq. (4.9).

In principle, both diagrams in Fig. 5.1 containing an anomalous
VVP vertex, are expected to be small due to the higher order nature
of the anomalous term in the chiral expansion. This anomalous VVP
interaction accounts for a process that does not preserve intrinsic
parity, and can be obtained from the gauged Wess-Zumino term (see
e.g. [13, 103]). Nonetheless, as the relevant energy becomes larger,
the role of the anomalous contribution becomes more important since
it contains momentum factors (see Eq. (3.36)). This has also been
seen in works on the radiative decays of scalar mesons [92, 104]. The
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K*(1430)

Figure 5.2: Possible Feynman diagrams contributing to the
K3(1430) — K+ decay in the p/K™ channel.

VVP Lagrangian is given by Eq. (3.36). In the following subsections
we evaluate the two different kinds of diagrams shown in Fig. 5.1.
See also [105] for a detailed evaluation.

5.2 Diagram of the K*(1430) — K~ decay
containing the PPV vertex

In Fig. 5.5 we show the first diagram to compute in charge basis with
explicit momentum. In what follows, we shall consider the K™ (1430)
at rest. Firstly, we need the coupling of the resonance K;*(1430) to
K*9p*. This coupling is given in Table 3.5. Close to a pole, the
amplitude of Fig. 5.4 can be expressed as:

. 1 ) . . ) 1 .
(=25 IrOs o1 (05 @) g (D5 @iy _ (D125
e S_Spole{2(€ €9 4 el 7€ € }

x{%(E(l)iEQ)j i 6(1)3'6(2)@') _ %6(1)m€(2)m5ij} , (5.3)
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K*O

Figure 5.3: Possible Feynman diagrams contributing to the
a3 (1320) — 7ty decay.

with sy = (M —il'/2)%. The coupling of the resonance to a vec-
tor - vector channel is given by g, = g {3(eWie®i 4 Wic@7) —
1eWle@1§i} 1 or s corresponding to one of the channels pK*, wK* or
¢ K* but multiplying by the correspondent Clesch-Gordan coefficient
since the couplings are in the isospin basis.

2 1
K*,1/2,1/2) = —\ﬁ FRO D peet
p /2,1/2) 3P el
lpK*,1/2,—-1/2) = —\/gp_K*Jr—i-ipoK*o.
) b 3 \/g
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V Vv

9r Js

v v

Figure 5.4: Dynamically generated resonance from the V'V interac-
tion

Figure 5.5: Feynman diagram of the K" (1430) — K v decay in the
pTK*? channel with a PPV vertex.

The isospin coefficient is denoted as g;. Thus, the RVV, Vv, PPV
and VVP vertices involved in Fig. 5.5 are

g 1 o | g
e = g0, {5 (Ve 4 (D7) Sl 2giy

2
(&
tVf"/ = A gM‘Q/f E/(])E(f)u
tPlevl = Ag(pin +pﬁn)u€(l)u - —Ag(Q(P - k) - Q)Me(l)u
Vel

tvv,p = —Bﬁeo‘ﬁw(P — q)ae(ﬁz)k‘wegf) , (5.5)
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being Vi = K*°, V4 = p*, V; = w, P, = 7, P, = K", and the
coefficients g7, g., A, B and \ are: —\/g, (10901, —i71) MeV, —1,
V2 and 3%@ respectively. The V; — v conversion essentially replaces,

up to a constant, e((;f ) by e?). Therefore, we can write the amplitude
of the diagram depicted in Fig. 5.5 can be expressed as

— Y - ! 2 d 7 (i (2) (1)J (2)i
ﬂngJr(lélg)o)HK+7 = eg,G FI/ (27T)4{2 (e 4 72

1 .
D5} (P — k) — )

X (P — q)ae(;)kyegw
» 1 1
@ — M} +ie(k+q— P)2—m? +ic
1

% (P —q)2 — M2 +ie’ (5.6)

with My = mg-, My = m,, m; = m, and F; = %AB)\gI = ﬁ
We should be consistent with the approximation done in Chapter 3,
where |7|/M; ~ 0, which implies that ¢()° ~ 0. This means that the
p and 3 indices should be spatial and also that the ¢'¢’ /M terms
in the sum over vector polarizations should be neglected. For conve-
nience, we will keep them as covariant indices and will consider them

as spatial indices at the end. Thus, after summing over polarizations

S i~ _gin

)
Ze<2)je(ﬁ2) = —gj5> (5.7)
A
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we obtain

) o / ajvyo 7
_Zt;{ﬁ(m:&o)_«m = egG FI/ (2ﬁ)4{§€ 2P —-k)—q)

X(P_Q>ak~/€<(;f)
1 . )
F5E 2P~ k) = g (P = q)akyey

1 iy
—5 2P — k) = 0)"(P = q)ahkyes 57}
" 1 1

@ — M +ie(k+q— P)?—m?+ie
1

. (P—q)?— M3 +ie’ (5:8)

All the terms of Eq. (5.8) are proportional to an integral like

d'q . 1
| G @P b = (P~

1 1
X
(k+q—P)>—m}+ie(P—q)?— Mj+ic’

(5.9)

which, from Lorentz covariance, must be a tensor built from P and
k,

ag'y + bP' Py + ck' Py + dP'ko + ek'ko, . (5.10)

The second and fourth terms in Eq. (5.10) vanish directly because
P' = 0. Thus, the first term in Eq. (5.10) leads to a term proportional
to

1

Qkﬂ,eg’)a(e”w + %) — geo‘mwkﬁ,egwéwag”& : (5.11)

which vanishes by the contraction of this antisymmetric operator with
a symmetric one, ¢, . This is a welcome feature since this term was
the only one that is divergent in the integral of Eq. (5.9). The fifth
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term, ek'k,, leads to terms proportional to kﬂ,kaeo‘m, and therefore
it also vanishes. Thus, only the third term, ck’P,, remains, but we
can still simplify it. With these simplifications, the integral in Eq.
(5.8) is proportional to

1 o oo 1 .
§cPak76g7)(k;Zeo‘”5 4 kT ey — gceam75k752]6g7)kaa . (5.12)

and the last term in the above equation vanishes for P! = 0. To see
it, let us split the factor ¢*™°k k™P, in two terms

> ek kM Py Y Y ™Rk P, (5.13)

m=1,3 m=1,31=1,3

the last term is zero since it is a product of an antisymmetric operator
by a symmetric one. Also, the presence of P, forces a = 0, which
makes the first term disappear.

Now we must evaluate the ¢ coefficient in Eq. (5.12). Let us use
the formula of the Feynman parametrization for n = 3

1 1 x 1
=2 e [ ey W

For the integral of Eq. (5.9), we can use the above parametrization
with

a = ¢— M
B = (P-q)~M
v = (P—q—k)?—m]. (5.15)

Besides that, we define a new variable ¢ = ¢ — Pz + ky, such that
the integral of Eq. (5.9) can be expressed as

d4q/ 1 T ; 1
2/(27r)4/0 dx/o dy(2(P — k) —q) (P—q)am, (5.16)
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with
s = —(P°)?%2? 4+ 2P% zy + ((P°)? — M2 + M?)x
+(=2P°%" + M5 — m})y — M; . (5.17)

From Eq. (5.16), we should take the k' P, term with accompanies the
c coefficient. Therefore, we obtain

c:z/ Iy / / dy 1_q,f+8>_ 2 (5.18)

And the integral in the ¢’ variable can be performed analytically:

1 im?
¢ — = — 5.19
/ 4 (q%+s)% 25 (5.19)

c= 16#/ / — 2y =2) : (5.20)

and the amplitude of the diagram of Fig. 5.5 is

Finally, we get

1 o
—zt” 30y Ky 2F1 eg,G'cP,k, e V(K e 4 kT e™) | (5.21)

5.3 Diagram of the K*(1430) — K~ decay
containing the 3V vertex

In order to compute the second diagram for the K*(1430) — K+
decay depicted in Fig. 5.1, we show it in Fig. 5.6 with the explicit
momenta in the case of the K*?p* intermediate state. The difference
with the diagram calculated in the previous section is the presence
of the 3V vertex. The corresponding 3V and VVP vertices are

tuvy, = gD{(2k+q— P),ele@nc
(kP — )@Vl
(2P — q) — k) peDeDme@ry
G/
tvvip, = —B—=c""quey (k+q— P’ (5.22)

V2
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with D = V2, B = 1, and g1, g,, A in Egs. (5.5) are _\/g,
(10901, —i71) MeV, 12 respectively. Thus, the amplitude of the dia-
gram in Fig. 5.6 can be written as

K*U(q)

Figure 5.6: Feynman diagram of the K;*(1430) — K"~ decay in the
pTK*° channel with a 3V vertex.

Zt”**(mgo)—«w = F] eng’/ B )4{ ( ie(2i 4 ()i (2 D)

1 y

N R

x{(2k + q — P),,eDePmer

—(k+ P — q)uel(jz)e(l)“em”

AP = q) = k)l e

X L !
2 — M} +ie (k+q— P)? — M? +ie

1
5.23
(P —q)? — M3 + ie (5.23)

X

with F| = —%QIBD)\. The way to proceed is very similar to that
of the previous subsection with the only difference of the use of the
Lorentz condition, &, ¢ = 0. Now, there are two kinds of integrals.
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The first one, is

/ dq 1 1
@m)y 1@ M +ie (k+q— P)2 — M? +ie
1

.24
X(P—q)2—.M%%—i(—:7 (5.24)

which from Lorentz covariance takes the form
alPa + blka . (525)

When contracting with the term kZWP(;Em'WS , this integral becomes zero.
The second integral is

i o
‘/—JL%@k+q—PV

(2m)4 @ — M} +ie
3 ! ! (5.26)
(k+q—P)>— M?+ie(P—q)?— M3 +ic '
and takes the form
asg’ o + bokok? 4+ 2k’ Py + dy PPk + €2 PP, . (5.27)

The first term disappears due to the factor ¢/ e + ¢i_e®7 = 0
and the last two terms are zero since P/ = 0. The final amplitude is
a function of the b, and ¢, coefficients, and it can be expressed as

i 1 . -
Sty ey =~ FLeg: G (R 4 o)
xe((;v)(—lnkaﬂ + o Poky) (5.28)

with

it yly —2)
by = 167r2/0dx/0 dyT

i [t T z(2—y)
= d dy——=~ 2
Co 62 /0 x/o Yy " (5.29)
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and

s = —(P%%? 4+ 2P% wy + ((P°)? — MZ + M?)x
+(=2P°%° + M5 — M?)y — M} . (5.30)

Finally, the sum of the diagrams in Fig. 5.2, from Egs. (5.20),
(5.21), (5.28) and (5.29), lead to the amplitude:

i 1
_thjfg+(l430)—>K+’y = §6G,(b/2kap'7 + (C, - C/2>Pak,7>
(k7ex? 4 k:ieaj“";)egw : (5.31)

with

b,2 = Or Fi by
/

¢ = g'Fric
¢ = g-Fles. (5.32)

In order to compute the decay width of the process K, (1430) —
KT, we still need to evaluate the squared amplitude summing over
polarizations, i. e., 57 > 5, 2o, tij(t7)*. The sum over the polar-
izations of the photon v 6557)6((57) leads to a factor —g;s. In addition,

products of the antisymmetric €*®7° operators appear, for what one
can use the rule

gaa’ gaﬁl ga'y’
eIV = | ol | (5.33)
g 976, g7

with 3, 3’ spatial indices. Thus, we obtain

1 1 -

t? = E[*P2by + ¢y — [P (eG)? . (5.34

2H1;;u o7 FIFS Ity + e = P (eG)? . (5:34)
f i
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And finally, the K;7(1430) — KT decay width is given by

1

P(KG(1430) — K¥9) = 2J+1

——— KPPV, + &, — ¢ PeG)? . (5.35)

In order to include all the possible channels, pK*, wK* and ¢ K* we
list the different Fy, F} for each channel r in Tables A.1 - A.8 in the
Appendix A. Thus,

d = 16”2/ dx/ dy (1 —z)( —Q)ZFI(())

by = 16W2/ dx/ dyy(y_Q)Z%

F 1(r)gr
cy = 167T2/ dx/ dyx(2 —y 90 (5.36)
We show s, s, F1 and F| again for completeness.
s = —(P%%® +2P°% vy + ((P°)? — Mj 4+ M)z
H(=2P %K + MZ — m?)y — M?
s = —(P°?2%+ 2Py + ((P°)* — My + M7)x
+(—2P°K" + M7 — M?)y — M?
1
Fi = +—=ABA\
I 2 g1
1

5.4 The decay of the aj(1320) — 7

This case is identical to the former one with the only difference in
the couplings of Table 3.6. The coefficients Fy, F; for the different
diagrams of Fig. 5.3 are shown in Tables A.7, A.8 in the Appendix
A.
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5.5 Results

In Tables A.1 - A.8 in the Appendix A we show the partial widths for
loops containing different particles. We observe that the total sum
of all the contributions of these diagrams is mostly constructive for
the K;7(1430). In contrast, the interference is very destructive in
the case of the K3;°(1430). In order to evaluate the uncertainties in
the theoretical decay widths we take errors in the coupling constants
Ag of order 15% in Ref. |86] and generate random numbers of the
couplings g; weighted by the Normal (Gaussian) distribution:
2
fla) = (5.38)

o121

by means of the von Newmann rejection method. Thus, we obtain the
errors in ['. We evaluate the average value and its standard deviation
from a sample of thirty results.

In the first place we evaluate separately the contribution of the
diagram with two vectors (Fig. 5.1 a)) and three vectors (Fig. 5.1
b)). Before showing the results, let us see the partial widths of each
different decay mechanism as indicated in Table 5.1. We observe
from this table that the contributions of the two mechanisms are of
the same order of magnitude, and therefore, both must be taken into
account. Finally, the results obtained from the sum of the two differ-

Contribution F(K;+(1430)QK+7) F(K;0(1430)—>K07) U(at (1320) -7 t)
PPV 46.6 0.19 65.7
3V 28.2 0.29 34.8

Table 5.1: Partial decay widths to pseudoscalar-photon of the dif-
ferent contributions shown in Fig. 5.1 for some of the resonances in
Table 3.7 in units of KeV.

ent kinds of amplitudes, are shown in Table 5.2 where we also include
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Uit —kqy) Lz koy)  Tas1320)—nt7)
Theory 150 £50 (1.040.8) x 1072 196 + 30
Experiment 236 + 50 < 98 281 £ 34

Table 5.2: Total decay width to pseudoscalar-photon for some of the
resonances in Table 3.7 in units of KeV.

the experimental data available. We see that the result obtained for
the charged K," is compatible with the data in the error interval
established. We see that the interference of these two mechanisms is
constructive for the K3+ and ag, whereas it is destructive in the case
of the K3°. Thus, the decay width for K3 — K%y is much smaller
than the K;* — K™+, in both the theoretical and experimental re-
sults. We have noticed that there is a complete cancellation of the
amplitudes of the K3 when the masses of the pseudoscalar mesons
are made equal and also those of the nonet of vectors. This result
seems to be tied to the neutral charge of the K3°, providing the same
result as quark models. Hence, the small finite results obtained are
due to the use of the physical masses within the SU(3) multiplets
and the upper bound is fulfilled. It would be interesting to have this
upper bound improved experimentally, since we predict such a small
number for the width.

In the case of the ay(1320) the agreement with data can be con-
sidered qualitatively. Considering errors the maximum theoretical
value would be 226 KeV and the minimum experimental one 247
KeV. But if we look at the ratio of I'(K3™ — KTv)/T(a5 — 7)),
we get 0.77 £ 0.30, which is in good agreement with the experiment,
0.8440.20. Let us mention that we have not changed the values of the
coupling constants of [86]. Should one redo the evaluation of these
couplings with an improved mass for this resonance we would expect
small variations, adding to our present error estimates. Yet, the large
mass difference between the state obtained in [86] and the experimen-
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tal one should be taken as an indication that extra components to
those of VV considered in the present approach should be present in
the physical state a2(1320), so there is no point in demanding a more
accurate agreement with data.
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|
Chapter

Resonances from the pD*, wD*
interaction

We have studied the pp interaction in the framework of the hidden
gauge formalism. Two bound states have appeared from this inter-
action: the fy(1370) was identified with a pole just at the pp thresh-
old with mass ~ 1500 MeV in the real axis, and the f»(1270), a pp
state bound by 280 MeV. Afterwards, this study has been extended
to the nonet of vector mesons and eleven states have been dynami-
cally generated from the vector-vector interaction, five of them that
could be identified with particles in the PDG: The f,(1370), f2(1270),
fo(1710), f5(1525) and the K3(1430).

Here we extend this study to include charm mesons, but we deal
with some difficulties, since the heavy mass of the D* suggests that
it should be treated in a different way. Being aware of that we follow
this strategy: Starting from the same kinematical structure for the
vertex than for the other vector mesons, we break the symmetry. This
is done by setting the masses of the particles as realistic masses and
suppressing those terms where a heavy meson is exchanged. This was
already done in the previous studies of the pseudoscalar-pseudoscalar
and pseudoscalar-vector interaction [108, 109] with charmed mesons.
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The results were compared from those using a chiral Lagrangian in
SU(4) and they led to the same results quantitatively. In that way,
unitarity is fulfilled and thresholds are respected. Then, we look at
the possible sources of uncertainties and move "¢*" from (m,/2f,)?

to g% = (mD*/QfD)2.

6.1 Introduction

In [108| the authors studied the coupled channels of two pseudoscalar
mesons of the 16-plet by using two different modes. One is a chi-
ral Lagrangian for the pseudoscalar-pseudoscalar interaction, while
the other is a phenomenological model that starts from a SU(4)
symmetric Lagrangian. Then, it is broken into pieces that sepa-
rate the heavy-meson currents from the light ones. The diagrams
where a heavy vector meson is exchanged are suppressed in terms
of a breaking symmetry parameter. When comparing the results of
the two different models, the chiral Lagrangian and the phenomeno-
logical one, they lead to the same conclusions (and numerically very
close results): The Dy((2317) is found to be essentially a DK (Dsn)
bound state. In the pheomenological model the chiral symmetry
can be restored by setting the SU(4) symmetry breaking parameters
to zero and using a unique f, parameter [110]. In [111, 112, 113],
the D4y(2317) is obtained from an effective Lagrangian approach
as a pure DK bound state. The study of [108] is extended to the
pseudoscalar-vector interaction [109], and in a very similar proce-
dure, the Dy;(2460) and the D, (2536) are explained in terms of
KD*(nD¥) and DK*(Ds(w(¢)) molecules respectively. Very similar
results were achieve for the D,;(2460) using different approaches in
[114, 115, 117]. In [117], the interaction is provided by a chiral La-
grangian based on heavy quark symmetry and the authors neglect
the exchange of heavy vector mesons. Thus, the phenomenological
model of [108] leads to similar results concerning the Dy,(2317) and
the Dy (2460) than the chiral model used in this work and the heavy
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quark lagrangians built in [111, 112, 113, 115]. Here we follow the
strategy of the phenomenological model of [108] and keep in mind
the possible sources of uncertainties to evaluate them as an essential
part of the work. See [116] for further details.

6.2 Potential

Now we are concerned on the sector with charm= 1 and strangeness=
0. There are four channels in this sector: The pD*, wD*, ¢D* and
K*D?. However, the channels ¢D* does not give any contribution
for the contact neither the exchange term because the ww@, ¢oo,
¢pow violate G-parity. The mass of the D3(2460) is 315 MeV below
of the pD* and wD* thresholds. By now we have seen that the
formalism of vector - vector interaction generates resonances with
spin= 2 bound by around 200 — 300 MeV. For instance, the f5(1270)
is a pp state bound by 280 MeV. The f}(1525) is mostly bound in
the K*K* channel by 165 MeV, and the K3(1430) by 230 MeV. One
could expect to get similar bindings for possible pD* and wD* bound
states. The K*D; channel is too far away from the pD* and wD*
thresholds, so it can be discarded.

Even though we are dealing with heavy mesons (D*) with a very
different mass from the nonet of vector mesons, we assume that the
structure of the vertices is the same and make a straightforward ex-
tension of the V' matrix in the Lagrangian of Eq. (2.3) in order to
include the heavy mesons,

0

2 W + x4+ )*0
+ 5 p K D

Vi ; 0
- AL v g *—

v,=| ” atys KD . (6.)
K*— K*O ¢ D:_
D D D gy

I

The diagrams for the exchange of one vector meson in the ¢ and «
channels are shown in Figs. 6.1 and 6.2. The difference with the light
sectors come when one puts real masses of the particles. This must be
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p* (k1) pr(ks)  p* p’
P(ks — k1) + p*
D*(ky) D*(ks)  p0 D*+

Figure 6.1: Vector exchange diagrams for pD* — pD*.

done in order to respect thresholds and fulfill unitarity. Then, one can
see that the diagrams of Fig. 6.2 have a rather different contribution
than if one puts, for instance, a K* instead of a D* meson. Due to the
heavy vector exchange, the diagrams of Fig. 6.2 will be proportional
to K ~ m2/m%. = 0.15 which makes them small. In addition, the
“g*” parameter will be moved from m2/(2f:)? to m%,. /2f5. We have
seen that the important role is played by the vector exchange term,
which means that the main source of interaction would come mostly
from the two diagrams in Fig. 6.1. Note that in Fig. 6.1 there are
not any w meson, the www, ppw and pww vertices are forbidden due
to G-parity or isospin. This, added to the fact that the diagrams of
Fig. 6.2 are suppressed by the factor x ~ 0.15 tell us that the wD*
channel would not have an important place in the dynamics as will be
shown when calculating the couplings to the different channels. It
is easy to construct the isospin combinations that in our convention
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pt (k1) D**(ky) p° D w D+

D*(ky) D+t w

D*O

D*O

D*-i— pO D*+ p+

Figure 6.2: Diagrams including the exchange of one heavy vector
meson.
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is D* = —|1/2,1/2) and p* = —|1,1).

2 1
D T=1/2,1; = 1/2) — \ﬁ +D0Y — | 0D,
P /2,13 =1/2) 5P D7) \/§|p )
|pD* 1 =1/2,I3 =3/2) = ﬁ|p+D 0)+\/;p0D ) . (6.2)

We could also have s-channel D*-exchange diagram but we found
in [85] that this leads to a p-wave interaction for equal masses of
the vectors, and only to a minor component of s-wave in the case of
different masses [86].

The s-wave potential obtained once one has projected the ampli-
tude into spin and isospin is written in Tables 6.1, 6.2 and 6.3 for
the different possibilites: pD* — pD*, pD* — wD* and wD* — wD*
respectively. Where the (ki + k3) - (k2 + k4) and (ko + kq) - (ko + k3)
terms are expressed in terms of the invariant s:

3 ) ) (m? —m32.)?
(k1+k3)'(k2+k4) = is—mp—mD* —pT 3

3 (m2 _mz*)z
(ky+ky) - (ko + k3) = §s—mi—m%* +% .(6.3)

The factor x is the suppressing factor of the D* exchange terms,
K = mi/ m%. ~ 0.15. We have calculated that these terms represent
corrections of the order of 10% of the p exchange ones.

From the approximate total potential in these tables we can ex-
tract some conclusions: There is attraction in the I = 1/2 sector
whereas the I = 3/2 sector is repulsive. Since the I = 3/2 quan-
tum numbers is exotic, this is a welcome feature that seems to be
rather universal in other studies [86, 118, 119 since the elusive exotic
states do not show up in the approach due to dynamical reasons. The
pD* — wD* and wD* — wD* potentials are repulsive and small. Fi-
nally, we can see in the Tables that the p-exchange term dominates.



I J Contact p-exchange D*-exchange ~ Total[I(JF)]
/20 +59° —2]\94—23 (k1 + k3) - (k2 + k) —%% (kv +ka) - (b2 +k3)  —16¢%[1/2(0%)]
1/2 1 +5¢7 —2]\94—23 (k1 + k3) - (k2 + k) +%% (kv +ka) - (k2 +k3)  —14.5¢%[1/2(11)]
1/2 2 —3¢ —2]\94—23 (k1 + k3) - (k2 + k) —%% (ky 4 ka) - (k2 + k3)  —23.5¢%[1/2(21)]
3/2 0 —4g? +1\g4—23 (k1 + k3) - (k2 + ka) ‘i‘% (k1 + ka) - (k2 + k3) +8¢%(3/2(0)]
3/2 1 0 +im (k) kot k) =5 (ki) (ko +ks)  +8¢%(3/2(17))
3/2 2 427 +im(hithy) - (bt k) 5 (ki) (haths)  +14g°[3/2(27)

Table 6.1: V(pD* — pD*) for the different spin-isospin channels including the exchange of one
heavy vector meson. The approximate Total is obtained at the threshold of pD*.

uorjorIdIUL (7™M ‘. (70 9y} WOI] S9OURUOSI
! .o .doJoyq Ly H

601



Potential

I J Contact p-exchange D*-exchange ~ Total[I(JT)]
1/2 0 —/3g2 - A5 (Rt Ra) - (ke o+ ho) 0[1/2(0%)]
/2 1 +3‘2/_g2 - —LMLS (k1 + kg) - (k2 + k3) ig [1/2(17)]
1/2 2 +¥g - AR5 (ki k) (ke + k) 2367(1/2(27)]

Table 6.2: V(pD* — wD*) for the different spin-isospin channels including the exchange of one
heavy vector meson. The approximate Total is obtained at the threshold of pD*.
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I J Contact p-exchange D*-exchange ~ Total[I(JF)]
1/2 0 —g - %M—gg (k1 + ka) - (ko + ks) 0[1/2(0™)]
1/2 1 +3g - o35 (ki k) (ke Ra)  ggR(1/2(17)]
1/2 2 +ig? - 435 (ki k) (ke k) 3[1/2(27)]

Table 6.3: V(wD* — wD*) for the different spin-isospin channels including the exchange of one

heavy vector meson. The approximate Total is obtained at the threshold of pD*.

uorjoRIUI (7™ ¢ (70 oY) WOIJ S9oURUOSOY]
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6.3 Results with the four-vector-contact +
vector exchange potentials

When dealing with D mesons we follow the works of D. Gamermann
[108] and [109]. This means that we take similar parameters. We take
p = 1500 MeV in the formula of Eq. (3.45) and fine-tune « (which
must be ~ —2) to get the mass of the D3(2460), this gives a = —1.74.
When we put a = —2 we get the position of the spin= 2 state at 2346
MeV. The pole positions with 4 = 1500 MeV and o« = —1.74 can be
seen in Table 6.4. We find three states, one for each spin= 0, 1, 2 and
like for the pp interaction we also obtain a more bound state with
spin= 2 than for spin= 0,1. In the PDG there is one state listed,
the D*(2640) with I(JF) = 1/2(?%). In principle, we do not have
reasons to identify it with the state found at 2611 MeV for spin= 1
instead of the state found for spin= 0. But we identify this state
of the PDG with our state with spin= 1 and the reasons will be
given later. In Table 6.5 we give the modules of the couplings g;

I J s (MeV)

1/2 0 2592
1/2 1 2611
1/2 2 2450

Table 6.4: Pole positions for the three different cases

in units of GeV to the different channels that have been calculated
as the residues of the amplitudes, Eq. (3.50). We have also used
the formula of the cutoff for G, Eq. (3.23), instead of the formula of
dimensional regularization, Eq. (3.45), and we have tested the results
with a cutoff of natural size g,.. = 1 — 1.2 GeV. The differences are
around 10%, which is an indication of the stability of the results.
According to the PDG, the widths of the D}(2460) and D*(2640)
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Channel  D;(2600) D7 (2640) D3(2460)
pD* 14.32 14.04 17.89
wD* 0.53 1.40 2.35

Table 6.5: Modules of the couplings g; in units of GeV for the poles
in the J =0, 1, 2; I = 1/2 sector with the channel pD* and wD*.

are 43 4 MeV (for the D3°, and 37 &6 MeV for the D;*) and < 15
MeV respectively. This is not compatible with the width that we
obtain here, zero, and different decay mechanisms will be introduced.
This will be done in Section 6.5.

6.4 Uncertainties related to SU(4) break-
ing

Until now the results have been obtained from a potential which is
proportional to ¢*, being ¢ = m,/2f,. However, we have heavy
particles, D*, in the vertices. We have set g = m,/2f; since it is the
p meson that is exchanged in the most important terms. But, it is
important to test how stable are the result by taking different values
of g2. To do so, we estimate uncertainties, following two strategies:

1) We vary g° taking ¢ = (m,/2fx)?, 99p, with gp = mp-/2fp =
160 MeV, and g%, and make a small readjustement of the sub-
traction constant, «, in order to get the D state mass at its
value when using g = m,/2f;. This option of looking at the
uncertainties is realistic in the sense that the fine tuning of the
parameter o to get the precise position of one resonance is al-
ways done. The pole positions and coupling constants obtained
are shown in Tables 6.6 and 6.7 respectively.
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2) We observe the problem from a more extreme point of view,
which is taking o = —1.53 and evaluate the changes in the
results when varying ¢> — ¢°, ggp, g%. The results are shown
in Tables 6.8 and 6.9.

Constant & @ J=0 J=1 J=2
g* & —1.74 2592 2611 2450
99p & —1.53 2571 2587 2450
g% & —1.39 2551 2565 2450

Table 6.6: Pole positions and subtraction constant obtained for the
three different cases, g%, ggp and g%, when one fixes the mass of the
pole with J = 2.

When performing the strategy 1), we observe moderate changes
in the pole positions of around 20 MeV and small variations in the
pD* coupling constant of 8%. The wD* couplings experience larger
variations of 25% but we can see from Table 6.7 that this channel,
due to the heavy-vector exchange terms, plays essentially no role in
the problem.

The strategy 2) leads to larger changes in the pole positions shown
in Table 6.8. We see that this strategy leads to larger changes than
the former one. The changes in the mass of the resonances are of the
order of 70—90% MeV. Even though, these variations are usual in any
hadron model upon reasonable changes in the parameters. Regarding
the coupling constants, Table 6.9, we observe that those of the most
important channel are rather stable and we can say the variations are
of around 8%, definitely very similar to those obtained from 1).

To sum up, we have seen that the results are rather stable upon
breaking the SU(4) symmetry and do not depend so much of the use
of g or gp if the correct readjustment of the subtraction constant is



Channel Do(2600) D3(2640) D3(2460)

Cases: 1) 2) 3) 1) 2) 3) 1) 2) 3)
pD* 14.32  15.69 17.05 14.04 1537 16.69 17.89 19.58 21.01
wD* 053 068 084 140 169 199 235 2.60 2.78

Table 6.7: Modules of the couplings ¢; in units of GeV for the poles in the J =0, 1, 2; [ = 1/2
sector and the channels pD* and wD*, in the cases 1) using ¢> and o = —1.74, 2) using ggp and
a = —1.53 and 3) using g% and o = —1.39.
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Table 6.8: Pole positions for the three states using o = —1.53 in the different cases g%, ggp and

9h-

o =—153 Dy (2600) D(2640) D3(2460)
Cases: 9 g99p 9b ¢ 990 9H 9> g99p 9b
V5 (MeV) | 2645 2571 2502 2661 2587 2517 2539 2450 2370




Channel Dy(2600) D7 (2640)

a=-153| ¢* g9 95 9* 99p 95

pD* 14.51 15.69 16.32 14.08 1537 16.06 18.15 19.58 20.67
wD* 037 068 1.12 119 169 228

Table 6.9: Modules of the couplings g; in units of GeV for the poles in the J =0, 1, 2; [ = 1/2

sector and the channels pD* and wD".

uorjoRIUI (7™ ¢ (70 oY) WOIJ S9oURUOSOY]
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done. Even fixing «, and varying ¢ the changes are not very large
and the results remain qualitatively the same. This is a wellcome
feature that makes the strategy when dealing with heavy mesons
more reliable. In the following, we take the g? option, but keeping in
mind the uncertainties obtained.

6.5 Convolution of the G function and the
7D decay mode

Here we study different mechanisms that allow the states obtained
to decay into pseudoscalar mesons. Due to the large width of the
p mesons, the states decay to D*mm. This can be implemented in
the calculations via the convolution of the G function with the p
mass distribution, that, in the case where we have only one p-meson
correspond to use the formulas:

~ 1 (mp+2I))2 1 .
‘0w (mp—2T, )2 dml(_?)zmm%—m%ﬂrml
xG(s,mi,mp.) (6.4)
with ot 1 1
N = S dm%(—;)zmm%_mg“rml, (6.5)

where I', = 146.2 MeV and for I' = I'(/i) we take the p width for the
decay into the pions in p-wave

m? — 4m?

T'(m) = T,( 220(rm — 2m,) . (6.6)

m2 — 4m?2
Now, the states appear at masses 2602, 2620 and 2465 with widths ~
5,4 and 0 for spin= 0,1 and 2 respectively. The widths obtained are
small compared to the data in the PDG and other mechanisms should

be included. The box-diagrams for decaying into 7D are shown in
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Pt (k) P ( pt
) / \ / e
7 (ky — q) * + (ks — q) T * + T 7r++ * ot
/ DUTP_N / o VRN
D*O(kg) D*O k‘4) D*Jr *+

L
RN
SN

Figure 6.3: mD-box diagrams

Fig. 6.3. The evaluation of those amplitudes is similar to that made

for the mm-box in Chapter 3 and we simply show the final formula.
{RmI=1/2J=0)  _ (/D)

femI=1/27=2) _ gy/(xD) (6.7)

where V(™) is given by

. 8gt [imas 1)* 1\ 1
V(ﬂ'D) _ / d —6 - PO
w4 \5) ) 2o, 1)

1 1 1
X
k) —w —wp + i€ kY — 2w + i€ kY — 2w + i€
» 1 1

PY—w—wp+iePY+w+wp

1 ? 1
6.8
X(k:g—l—w—i-wp) k9 —w —wp + i€ (6.8)
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f(PY) = 4{-32ky P w?wp((P°)? — 2w* — Bwwp — wh) (6.9)
+2(k3)? PPwp ((P°)? — 5w} — 2wwp — wh)
+(k*(2w?® — (P*)2wp + 3wiwp + 2ww?, + wi)
+4w? (8w® + 33wwp + 54w w?, + 3wp ((P°)? — w?)?
+18wwh (—(P")? + wd) 4+ w?(—12 (P°)2wp + 44w))
—(k9)*(16w° + 63w*wp + Tdw’w? + wp((P%)? — w})?
+ 32wkwp(—(P°)? + wp) + w(—6(P°)* wj, + 6wp))}

and w = /2 +m2,wp = /7% +m?2, P’ = k9+kJ. Due to the pres-
ence of heavy particles, we have more uncertainties when using form
factors. Concretely, the measurement of the CLEO Collaboration
[120] gives a strong coupling for the D* D vertex. The experimental
value turns out to be almost a factor two larger than the value ob-
tained from some theoretical predictions using different approaches
of the QCD sum rule [121, 122]. In the Hidden Gauge formalism, we
have:

(D () (@) D°(p + 4)) = —2 gp prue” (6.10)
with ¢p.p. = mp«/2fp = 6.3. This is also smaller than the ex-
perimental value, ¢g57, = 8.95+ 0.15 £ 0.95. In view of this, we
implement two different form factors in order to obtain the final re-
sults:

1) We use a form factor for an off-shell 7 in each vertex like in
Chapter 3, which is

A% —m?
F(q) = AT (6.11)

with A = 1400, 1500 MeV and we put g = m,/2f, in the for-
mula Eq. (6.8). The results for the real and imaginary part
of the box diagram of Fig. 6.3 can be seen in Figs. 6.4 and
6.5 for different A values and compared to the contact + ex-
change terms. We observe that the real parts are much smaller
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than that of the contact + exchange terms and we simply ne-
glect them in the calculations. The imaginary part obtained is
larger for spin= 2 than for spin= 0, which is consistent with
the formula of Eq. (6.7) .

2) We use a form factor for the D*D7 vertex that comes from
QCD sum rules [123] for a 7 offshell, which is:

F'(¢?) = gpepre®/™  with A =1GeV | (6.12)

together with the use of the experimental value of the D* D
coupling measured by the CLEO Collaboration, g5, = 8.95.
In Eq. (6.12), we must change ¢ — k; — ¢, with ¢o ~ 769.4
MeV and k; — ¢ ~ 6 MeV which leads to (k° —¢°)?/A% ~ 1075.
Therefore, the zero component in the pion cuadrimomentum
can be neglected. Thus, we replace the factor g* in Eq. (6.8)
by
ex —q2%/A2

ggWﬂ (gD’iDDﬁ)2 (6 /A )4 ’ (6]‘3)
with gprr = m,/2 fr = 4.2 and ¢5,7,. = 8.95 MeV (the experi-
mental value), A ~ 1 GeV and ¢ running in the integral.

The real and imaginary part of the potential are shown in Figs. 6.6
and 6.7 respectively. Again, the real part of the 7D box diagram
is much smaller than the contact 4 exchange terms and can be ne-
glected.

The final squared amplitudes for spin= 0 and 2 are shown in
Figs. 6.8 and 6.9, for the two kinds of form factors, Eqs. (6.11) and
(6.12) respectively. In Table 6.10 the masses and widths taken from
these plots are shown. We observe that the two form factors, provide
widths of the same order of magnitude, but, the closest value to the
PDG data gives preference to the second option.

One remarkable point is that now we are able to predict the quan-
tum numbers of the D*(2640) to be 17" since the box diagrams have
only J =0 and 2, and J = 1 is forbidden, what makes the state with
17" to be narrow and the ones with 0t and 2**, the D,(2600) and
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Real part of the potential for I=1/2 and S=0

Real part of the potential for I=1/2 and S=2

100‘ T T 0,‘;;7 77777 ‘7’77<7/7‘7_7<7>7>‘7k7777>,
0 ———— ~100} 1
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Figure 6.4: Real part of the potential for I = 1/2; J = 0; and [ =
1/2;J =2;.
Imaginary part of the potential for I=1/2 and S=0 Imaginary part of the potential for I=1/2 and S=2
0 ,‘\\ T T T 3| oF, T T T ]
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Figure 6.5: Imaginary part of the potential for / = 1/2; J = 0; and
I=1/2,J=2;



Resonances from the pD*, wD*

—200¢

-300

Real part of the potential for I=1/2 and S=0
100 ; T . !

— Contact + exch.

- 7D box, A=1200 MeV

7D box, A=1000 MeV

2000

2400 2600 2800

Vs[Mev]

2200

interaction

Real part of the potential for I=1/2 and S=2

123

Of =TT T T T
—100¢ 1
-200r 1

— Contact + exch.
-300 - 7D box, A=1000 MeV 1
~ 7D box, A=1200 MeV
—-400¢ 1
2000 2200 2400 2600 2800
Vs[MeV]

Figure 6.6: Real part of the potential for I = 1/2; J = 0; and [ =
1/2;J =2.
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Figure 6.7: Imaginary part of the potential for I = 1/2; J = 0; and
I=1/2;J=2.
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Theory Experiment
I[JP©] M|MeV] T4[MeV] T'p[MeV] Nombre M[MeV| T[MeV] I[JF©)]
(1/2,0) 2602 50 61 “D(2600)” - -
(1/2,1) 2620 4 4 “D*(2640)” 2637+6 <15  1/2[77]
(1/2,2) 2465 20 40 “D*(2460)" 24644419 3746 1/2[2%]

Table 6.10: States obtained from the pD* interaction and its experimental counterpart if there is.
"4 represents the width calculated using the form factor 1), Eq. (6.11), and T'g the form factor

2), Eq. (6.12).



Resonances from the pD*, wD* interaction 125

Squared amplitude for I=1/2 and S=0 Squared amplitude for I=1/2 and S=2
3.5%10°F ‘ N ‘ S T T
3% 10 / —  A=1400MeV  : 6.x10"F E
X £ [ < 1 i
o [/ : 5.x10"F I/ \\1 —  A=1400MeV ]
2.5x10°F oo T A=IS00MeV 2 r
\ 1 A
o 2.x10°F / ) : o 4x10F PN —  A=1500MevV ]
S1sx10 / 3 : E3.x107 fo ]
’ Vi \ . H 3 [ \ 3
1.x10°F : 2.x10 ) .
s A i / \
500000F e AN : 1.x107F // N ]
[ ‘ ‘ o Oob o T
2500 2550 2600 2650 2700 2400 2420 2440 2460 2480 2500 2520 2540

Vs[Mev] Vs[Mev]

Figure 6.8: Squared amplitude for / = 0 and J = 2 including the
convolution of the p-mass distribution and the 7 D-box diagram.
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Figure 6.9: Squared amplitude for / = 0 and J = 2 including the
convolution of the p-mass distribution and the 7w D-boxed diagram.
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D3%(2460), respectively, broader, a feature which was not expected at
the beginning since this state is higher in mass than the D,(2460).

In summary, we have seen in this Chapter that the pD* interaction
lead to three states for J = 0,1 and 2 and we have made predictions
for the quantum numbers of the D*(2640) state in the PDG, that
should be J©¢ = 17+ according to our calculations. Whereas, a new
state relatively broad with mass around ~ 2600 MeV for J = 0 has
been predicted.



|
Chapter

The vector - vector interaction in
the C' = 0,5 = 0 sector around
4000 MeV

We study the vector - vector system including all the possible chan-
nels with quantum numbers charm = 0, strangeness = (0 around the
energy region of 4000 MeV. New states with hidden charm around
4000 MeV have been discovered by the B factories. They are intrigu-
ingly close to the D*D* and D?D; thresholds and do not have the
properties of the charmonium states. We study the possible forma-
tion of D*D* and DD bound states in the framework of the Hidden
Gauge formalism.

7.1 Introduction

The B factories at SLAC, KEK and CESR that originally were con-
structed to test matter-antimatter asymetries or CP violation, within
or beyond the standard model, have discovered a number of charm
and hidden charm mesons that do not seem to have the properties of

127
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the charmonium states. Some of these states are collected in Table
7.1 taken from S. L. Olsen [124].

The first of these XY7Z states is the X(3872), observed by the
Belle collaboration as a narrow peak near 3872 MeV in the 77~ J /¢
invariant mass distribution. The mass of the X(3872) is very close to
the DD* threshold which suggest it could be a bound state made of D
and D*. Many theoretical studies testing this hypothesis have been
made [1, 2, 4, 109, 128, 125, 126, 129, 127|. The decay X (3872) —
ntm~7%J /1) has been also observed and Belle quoted it to have the
same ratio than to 777~ J/¢, where the 37 or 27 come from w or p,
which in principle would imply a mixture of / = 0 and I = 1 [128].
However, an alternative explanation is given in [129]. Even though
the X(3872) has mostly I = 0, and both components, D°D** and
DT D*t are needed in the same quantity to have isospin zero, it is
the large p-width that makes the state to decay into #"n~.J/v¢ for
the lower components of the p-mass distribution. The states that
we consider here are the X(3940), the Y(3940), the X(4160) and the
Z(3930) and these are some of their common properties:

e They are close to the D*D* or D*D, thresholds
e They have C-parity= +
e They are relatively narrow

e The estimated partial decay widths to w.J/¢ or ¢.J/1 usually
are above 1 MeV, which is quite larger than the measured par-
tial decay widths for any of the observed hadronic transitions
between charmonium states

e They have been observed in B decays or in double charmonium
production reaction ete™ — J/¢ + X

'Regarding the X(3940), we can say that whereas the X (3940) —
DD~ reaction has been observed, there is no signal for its decay into
DD or wJ /1. This lead to consider its assignment with a J7¢ = 0=+,



state M (MeV) T (MeV) JFC Decay Modes Production Modes
Y,(2175) 217548 58426 17~ $£0(980) ete” (ISR), J/v decay
X(3872) 3871.440.6 <23 1Yt gt J/hyJ /)y B — KX(3872), pp
X (3875) 3875.54+1.5  3.0731 D°DOr0 B — KX (3875)
7(3940) 392945 29410 2FF DD vy
X (3940) 394249 37+17 JPt DD*  etem — J/1X(3940)
Y (3940)  3943+17 87434 JPH wJ /1 B — KY(3940)
Y (4008) 4008782 226790 1 mtr=J/ ete (ISR)
X (4160) 4156429 139743 JPT D* D+ ete™ — J/1X(4160)
Y (4260)  4264+12 83422 17— rtr=J/ ete (ISR)
Y (4350) 4361 +£13  74+18 17~ I ete(ISR)
7(4430) 4433+ 5 4519 ? ey B — K Z*(4430)
Y (4660) 4664 +12 48415 17— mtry ete~(ISR)
Y, ~ 10,870 71 7t~ Y (nS) ete”

Table 7.1: A summary of the properties of the candidate XYZ mesons discussed in the text. For
simplicity, the quoted errors are quadratic sums of statistical and systematic uncertainties.
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3'S; charmonium state (n/ state), but then the mass sould be ~ 4050
MeV or even higher [130].

Concerning the Y(3940), although there are some small numerical
discrepancies between the Belle’s and Babar’s central values for its
mass and width, the measurements suggest a radially excited P-wave
charmonium state, however, if it were the case, the y.(2P) — DD*
decay mode, which has not been observed, would be the dominant
decay mode. This ensures that despite of the close values of the mass
and width to the X(3940), we are dealing with a different particle.
For its assignment to a charmonium state with J°¢ = 0=*(n,) the
mass is too low whereas for the J7¢ = 0% (x/,), the mass is too high
[131]. In addition, one expects that the open charm decay modes
are the dominant ones for cc¢ states, and this state shows large es-
timated partial decay widths to wJ/1 of 1 MeV or larger, which is
very unusual for transitions between charmonium states.

The X(4160) has been observed as a mass peak in the D*D* sys-
tem in the ete~ — J/¢D*D* reaction. The known charmonium
states seen in efe” — J/Y¥D*D* have J = 0, which suggests its
identification with a 3'Sy(n”) or 4'Sy(n!") charmonium states, how-
ever, the mass predicted in the first case is smaller, ~ 4050 MeV, and
higher 4400 MeV in the second case [130)].

Finally, the Z(3930) has been observed in the DD spectrum from
vy collisions. The production mechanism ensures J¢ = 0*+, or
27* but Belle favors the 2+ hypothesis from the study of angular
distributions, making its assignment to the 23P;(x.,) charmonium
state possible [124, 132].

The CDF collaboration has measured a peak very narrow near
the J/1¢¢ threshold, it has been called the Y(4140). Although the
value of the mass is very close to the one of the X(4160), its small
width lead to consider it as a different state.

There are some theoretical approaches. In [133|, the authors
solved the Schrodinger equation from a potential that includes vec-
tor, pion and o exchange and they find molecualar solutions for
the Y(3930) and Y(4140) with J” = 07, 2", concluding that they
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are molecular partners. In [134] the decay rates of the Y(3940) —
J/Yw and Y (4140) — J/1¢ are calculated under the assumption of
hadronic molecuels with J©¢ = 0%+ and they turn out to be con-
sistent with the experimental data, which supports the molecular
assumption. The coupling constants are calculated by means of the
compositeness condition of Weinberg. In [135] it is argued that the
peak at 4140 MeV named as the Y(4140) is just a ¢.J/v¢ threshold
effect.

In the following we calculate the vector - vector amplitudes in
the hidden charm sector around 4000 MeV. See [136] for a detailed
explanation.

7.2 Potential

We are interested in the sector charm= 0, strangeness= 0. Therefore
the possible channels for isospin = 0 are

D*D*(4017), DD (4225), K*K*(1783), pp(1551), ww(1565)

6(2039), J /1] /1(6194), w.J /1)(3880), ¢.J /1)(4116), we(1802)

where the magnitude between parenthesis is the sum of the masses
of the two meson involved, and for isospin = 1 we have

D*D*(4017), K*K*(1783), pp(1551), pw(1558), pJiy(3872),
pd(1795).

The case of I = 2 that involves only the pp channel was already
considered in [86]. With the isospin doublets: (—D*°, D*T), (D*~,
D9, (-K*=, K*), (K*°, K*T) and the triplet (p—, p°, —p*), we
build the following isospin combinations for D* D*:

_ 1 1 _
D*D* I =0,I3=0) = —|D*"D*")+ —|D*D*),
| 5=0) ﬁl ) ﬁ\ )
|D*D* I =1,I3=0) = L|D*+D*—> — L|D*0D*0>. (7.1)

V2 V2
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D (k1) D (k3)

D*f(ka) D*f(kq)

Figure 7.1: Contact term of the D** D*~ interaction.

D" (k1) D**(ks) D+ D*0 D*0 D*0
Iﬂw(kﬁ/ﬁ) K + Iﬂw
D* (k) D*~(ky) D D*0 D*0 D0

Figure 7.2: Vector exchange diagrams for D*D* — D*D*.

and similarly for the K*K* and pp channels. By means of the La-
grangians given for the four-vector-contact term, Eq. (3.4), and
three-vector-contact term, Eq. (3.5), we build the amplitudes for
diagrams like in Figs. 7.1 and 7.2, shown for the D** D*~ interac-
tion, in the approximation of neglecting the momenta of the external
particles compared to the mass as done in the previous chapters. In
Tables B.1 - B.6 of the Appendix B we give the amplitudes for the
D*D* — channel and D} D} — channel reactions. We also need the
amplitudes for the reactions involving only the nonet of vector mesons
which are in the Tables V-X (contact term) and XVIII-XXT (exchange
term) in [86]. Some of these amplitudes do not appear since they are
zero. They are J/V.J /v, wJ /1, ¢J /b — K*K*, pp, ww, ¢b, J/J /1,
wJ /Y, ¢J, we for I = 0 and pJ/vb — K*K*, pp, pw, pJ /1, po for
I = 1. Now we deal with pairs of two-heavy-vector mesons, heavy-
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light or two-light-vector mesons and we use the following estrategy
when setting the parameters, g> and « in Egs. (3.4), (3.5) and (3.45).
We take \/gj2 for each external particle, being g = M,/(2f:) = 4.17
with f, = 93 MeV for light mesons and gp = Mp-/(2fp) = 6.9,
gp, = Mp:/(2fp,) = 54T, go. = Mysy/(2fy.) = 5.2 with fp =
206/v/2 = 145.66 MeV [78], fp. = 273/v/2 = 193.04 MeV [78] and
fo. = 420//2 MeV, taken from [137]. Thus, the exchange of one
heavy vector meson is suppressed by the factor Kk = mg /m?% ~ 0.15
for m;y = m, and myg = mp-. We also saw that the strong at-
traction comes from the vector exchange diagrams, so the most im-
portant contribution will come from the light-vector exchange dia-
grams. From these tables we can observe that the interaction at the
D*D*(D: D) thresholds becomes very attractive for D* D* — D*D*,
D*D*(D:D}) — DD, in isospin = 0; spin = 0, 1,2. For isospin = 1,
we see that the potential from the amplitudes D*D* — D*D* and
D*D* — pJ /4 is rather attractive for spin = 2. Since we are dealing
with different kind of channels, large symmetry breaking effects are
expected and we evaluate the uncertainties in Section 7.4.

Concerning the a parameter, the first thing to do is reproduce
the results of Chapter 3. Thus, in Eq. (3.45) we fix © = 1000 MeV
for all the channels, and set o, = —1.65 (following the procedure
of [86]) for the amplitudes involving the nonet of vector mesons in
order to reproduce the position of the f»(1275) as was done there.
For the (heavy) vector-(heavy) vector channels we put ag = —2.07,
in order to get the position of the pole found in / = 0; J = 0 around
3940 MeV. Finally, we put ay = —1.65 in the w.J /v, ¢.J/v and pJ /)
channels. In Section 7.4 we will also consider different options of
setting the o parameter.

7.3 Results

We evaluate the transition matrix 7" between channels (Eq. (3.22))
and look for the poles in the second Riemann sheet of the complex
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plane (see explanation around Eq. (3.49) to know how to go to the
second Riemann sheet). If these poles are close to the real axis,
they occur in \/Ep = (M +£iI'/2). The meaningful physical quantity
is the value of the amplitude for real /s, therefore, only the poles
that are not very far away from the real axis can be easily identified
experimentally as a resonance. The amplitudes 7" (Eq. (3.22)) close
to a pole look like

T, ~ 95 (7.2)

iJ )
5 —Sp

The constants g; (i = channel), which provide the coupling of the
resonance to one particular channel are calculated by means of the
residues of the amplitudes. = The pole positions and coupling con-

\/Epol8 = 3943 +i7.4, I€[JFC] = 0T [0+ ]

D* D~ D:D: K*K* pp ww
18810 — 4682 8426 + 1933 10 —411 —22+ 047 1348 + 1234

oo J/PJ[Y wJ /¢ ¢J /Y wo

—1000 — 2150 417 4164 —1429 —¢216 889 +1:196 —215—1¢107

Table 7.2: Couplings g¢; in units of MeV for I =0, J = 0.

stants are given in Tables 7.2 -7.6. In the isospin = 0 sector we find
four poles, three of them are around ~ 3940 MeV, one for each spin
J = 0,1,2. We observe that these states couple most strongly to
D*D*. The widths are 14.8, 0 and 52 MeV respectively, therefore
they are relatively narrow and the nonzero widths for the J = 0 and
2 states come from the decays into pairs of light-vector mesons or
into w(¢)J/¢. For I =0 and J = 2 another pole is found above the
D*D* threshold with mass M = 4169 MeV and width I' = 132 MeV.
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V5 pote = 3945 + 0, IG[JFPC) =07[177]

Other channels: pp, ww,
D*D* D:D;  K*'K* 6@, J/UJ/b, wI/, ]/, wd
18489 —40.78 8763 4142 11 —i38 0

Table 7.3: Couplings ¢; in units of MeV for I/ =0, J = 1.

V8010 = 3922 + 26, I9[JFPC] = 0F[277]

D*D* D:D; K*K* pp ww
21100 — 71802 1633 +1i6797 424414 —T75+437 1558 + 1821

¢P ST/ wJ /¢ ¢J /¢ wo

—904 — 21783 1783 + 1197 —2558 — 142289 918 +:2921 91 — 784

Table 7.4: Couplings g; in units of MeV for I =0, J = 2.
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\/Epole = 4169 + i66, [9[JPC] = 0F[2+7]

D*D* D:D; K*K* pp ww
1225 — 1490 18927 — 15524 —82 4430 70 + 120 3 — 12441

oo J/PJ[Y wJ /¢ ¢J/ wo
1257 + 12866 2681 + 1940 —866 + 2752 —2617 — i5151 1012 + 11522

Table 7.5: Couplings g¢; in units of MeV for I = 0, J = 2 (second
pole).

V8010 = 3919 + 074, IG[JFC) = 17[271]

D*D*  K*K* pp pw pJ [ po

20267 — 14975 148 — 433 0 —1150 — 43470 2105 + 25978 —1067 — 2514

Table 7.6: Couplings ¢; in units of MeV for I =1, J = 2.
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From the couplings, we can see that now this state couples stronger
to D* D7,

In the I = 1 sector we find only one pole for J = 2 below the
D*D* threshold with mass M = 3919 MeV and width I' = 148 MeV
that couples mostly to D*D*. In Table 7.1, the experimental states
discovered around this mass are listed. The identification is subtle.
We see that there are three experimental states around this mass.
Nevertheless, one has to be careful in order not to do wrong identi-
fications. The state that we have found has C-parity negative and
all of the experimental states have C-parity positive. The Z(3930)
has been seen in the spectrum of DD in 7y collisions which ensures
J = 07t or 27 for this states. The Belle Collaboration favors the
2+ hypothesis from the analysis of angular distributions. Thus, we
identify our states with I = 0 and J = 2 at 3940 MeV with this state.
In the case of the Y(3940) we find that the Belle’s values for the mass
and width are larger than the Babar’s values (the Belle Collaboration
reports m = (3943 + 17) MeV and I' = (87 £+ 34) MeV and Babar
m = 3914.375% and T' = 33 MeV. Thus, we have some uncertainties
in the width measurement for this state. Babar and Belle also re-
port measurements for the products of branching fractions B(B —
KY(3940))B(Y (3940) — wJ/¢) = (7.1 & 3.4) x 107° reported by
Belle and (4.9 +1.1) x 107° according to Babar. These measurement
together with the assumption that B(B — KY) < 1x1073, the usual
value for B — K+charmonium decays, lead to I'(Y(3940) — w.J /%)
larger than 1 MeV. We can also predict this decay width using the
formula | :

iy P _ Pl9vwi/y

['((3943,07[07")) - wJ /) = St M2 (7.3)
and taking gy, = (—1429 —i216) MeV from Table 7.2. Thus, we
find T'((3943,07(0"")) — wJ/¢) = 1.52 MeV, which is compatible
with the large decay width to w.J/1 estimated for the Y (3940). We
associated the 07(0"") state with the Y(3940). The second pole
found in I = 0;J = 2 with mass m = 4169 MeV and I' = 132
MeV is identified with the X(4160) by the proximity of the masses,
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widths and quantum numbers. The states with [/ = 0; J7¢ = 1+~
and I = 1;JP¢ = 2%+ are predictions of the model and cannot be
associate with any of the states in Table 7.1 (the first one has C-parity
negative and the width of the second state is too large). It is worth
to mention that in [138], the authors predict also a D*D* meson -
meson molecule with quantum numbers I = 1; JP¢ = 2+F by using a
self-consistent quark-model based study of four-quark charmonium-
like, but just above threshold with a mass of 4030 MeV, which could
have some experimental counterpart, the X(4050), as called in the
PDG [78].

The experimental state X(3940) in Table 7.1 does not decay into
wJ /1 and therefore cannot be associated with any of the J = 0 or
J = 2 states for isospin = 0. Its nature must be different from the
vector-vector structure. In Table 7.1 we see that the Z(3940) state
decays into DD. In Section 7.5 we will evaluate this decay by means
the box-diagram containing four pseudoscalars.

7.4 Uncertainties

In order to get the pole positions of Tables 7.2 - 7.6. we have adjusted
the o parameter to get the position of the I = 0;J = 0 state. In
addition, we have chosen to put ,/g; for each external leg (however
in this case we do not know what to put for the three vector vertex),
since we deal with different kind of channels. Different options could
have been chosen in order to adjust the a parameter or to set the
"g" value in Eq. (2.3). In this section we use this freedom in the
a and g? parameters to evaluate the uncertainties. We proceed in a
very similar way as in the previous Chapter. We choose these three

options to evaluate the uncertainties:

1) Use g, = M,/(2 f;) = g for all the cases. This is the option
followed in [133].

2) Use a unique average ¢’ = (4g9p + 29p, + g,. + 99)/16.
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3) Useof \/g;, with i = 7, D, D,, . for each external vector meson.
This is the option used in the former sections.

First, we fix the « value, « = —2.07, for (heavy) vector - (heavy)
vector channels vary "g?" from 1) to 3). The pole positions obtained
can be seen in Table 7.7. We find variations in the pole positions of
around 40 MeV with the exception of the predicted state with [ =1,
where the uncertainties are larger. A realistic way when looking at
the uncertainties is to set the o parameter to get the position of one of
the states using the three options listed above, since this adjustment
is always done in this kind of calculations. We show the results in
Tables 7.8 - 7.11. We see that the uncertainites in the pole positions
are smaller than before. While the mass for the I = 0;.J = 1 state
practically does not change, there is a band of energy of around 30
MeV for the two I = 0;J = 2 states and around 60 MeV for the
predicted I = 1;.J = 2 state. Concerning the couplings, we observe
that the changes in the largest coupling are very small, of the order
of 3% except for the I = 0;J = 2 sector, where we find 10% and 7%
for the first and second state respectively. These results lead up to
about 20% uncertainties in some observable (which require squared
amplitudes). As we said, we could adjust « to get the position of the
I = 0;J = 2 state instead of the I = 0; J = 0 state. The results after
doing this exercise is shown in Tables 7.12 and 7.13. Here we use the
option of ,/g; for each external leg and ay = —2.048. These results
should be compared with option 3) in Tables 7.8 - 7.11. We observe
differences below 3%.

With the results of this section we have an idea of the uncertainites
in the pole positions and residues. We have seen that there is certain
stability in the masses and especially the couplings, which are what
one needs to calculate observables.
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The DD decay mode

ag = —2.07 g9 g9 gvigva
I=0,J=0 39804116 396741¢12 3943 +:7.4
[1=0,J=1 3981 +:0 3969410 3945+ 10
I=0,J=2 397141435 3930+:38 3922 +i26
I=0,J=2 419841186 4163+:56 4169 + 766
I=1,J=2 3992+:133 3926+:89 3919+:74

Table 7.7: Pole positions in units of MeV for the different states with
apg = —2.07 using ¢2, ¢’* and gy1gvs.

7.5 The DD decay mode

In Table 7.1 we see that the Z(3930) decays to DD. In this section
we consider the DD decay mode by means of the diagrams of Fig.
7.3. The evaluation is very similar to the one done in Chapter 3. For

the first two diagrams where a 7(K) is exchanged between the two
D*(D?) mesons we find

{DD,1=0,J=0) _ 45 {7(DD)
HDD,1=0,J=2) _ {g{/(DD) , (7.4)
(DD, I=1,7=0) _ (DD)
fPDI=1I=2)  _ 9 {/(DD) (7.5)
and
DD,I1=0,J=0 (DD
ne )= 4oV PP
DD, 1=0,J=2 (DD
t% ) _ 16 V1(< ) (7.6)



Constant & ap I1=0,J=0 I=0,J=1 I1=0,J=2 [I=0,J=2 [=1,J=2
1) ¢* & —2.195 3943 +1i6.5 3946 +i0  3936+i37 4169+ 113 3965+ i 164
2) g% & —2.145 3943 + 112 3946 +:0 3907 +1245 4141 +1:67 3904 + 104
3) gvigve & —2.07 3943 +i7.4 3945 + 10 3922 4126 4169 +166 3919 +:74

Table 7.8: Pole positions in units of MeV and subtraction constants obtained for the three different
cases, g2, ¢"* and gy1gvo, when one fixes the mass of the pole with I = 0,.J = 0 quantum numbers.
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N Channel 1=0,J=0 [=0,J=2 [=0,7 =2 (second pole)

E Cases: D 2 3 1 2 3 1 2 3)

B DD+ 18230 18370 18822 19905 22283 21177 2470 1441 1319

p D:D*, 9906 10487 8645 10832 9308 6990 21125 21048 19717

a K*K* 3 8 15 13 41 44 104 65 87
op 52 46 52 49 76 84 95 48 73
ww 1377 1790 1368 3143 3218 2397 3199 2313 2441
b 731 1173 1011 1892 2580 1999 3905 3133 3130
J/0J/b 401 475 422 2485 2250 1794 2629 2896 2841
WI/ 1608 1970 1445 4934 4719 3433 3864 2847 2885
6 J) 512 983 910 2327 3943 3062 7116 5929 5778
w 51 180 240 237 1065 789 2201 1985 1828

Table 7.9: Modules of the couplings g; in units of MeV for the pole in the I = 0,J = 0 and
I =0,J = 2 sectors in the different cases 1) using ¢ & ay = —2.195, 2) ¢ & ay = —2.145 and
3) gvigva & ag = —2.07.
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Channel [1=0,J=1

Cases: 1) 2) 3)
D*D+ 17914 17990 18489
D:D*, 9716 10210 8763
K*K* 42 43 40

Table 7.10: Modules of the couplings g; in units of MeV for the
pole in the I = 0,J = 1 sector in the different cases 1) using ¢* &
ag = —2.195, 2) ¢” & ay = —2.145 and 3) gyigve & ay = —2.07.
The couplings of the resonance to the channels: pp, ww, ¢po, J/1J /1),
wd /1, ¢J /1, we, are equal to zero.

Channel I=1,J=2

Cases: 1) 2) 3)
D*D* 20881 21625 20869
K*K* 200 118 152
pp 0 0 0
pw 5093 4197 3656
pJ /Y 8874 7258 6338
PO 3784 3126 2731

Table 7.11: Modules of the couplings g; in units of MeV for the pole
in the I = 1,J = 2 sector for the different cases 1) using ¢*> &
ag = —2.195,2) g2 & ay = —2.145 and 3) gy1gve & ay = —2.07.
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I=0,J=0 I=0,J=1 [=0,J=2 I=0,J=2
V5p (MeV) 3950 +i7.5 3952 +1¢0  3929+1¢25 4174+ 762
channel lg:| (MeV)
D*D* 18302 17961 20739 1302
DDz 8437 8556 6654 19359
K*K* 16 55 44 86
pp o1 0 81 71
ww 1368 0 2328 2380
100 1024 0 1963 3061
J/ T/ 425 0 1765 2818
wd /Y 1446 0 3331 2816
oJ /0 936 0 3028 5660
wo 252 0 794 1795

Table 7.12: Position of the poles and modules of the coupling in the
I =0,J = 0,1,2 sectors if the ay is adjusted to get the mass of
the Z(3930) in the I = 0, J = 2 sector. The value of oy obtained is

—2.048.
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V5 (MeV) 3926 + i 70

channel lg:] (MeV)
D*D* 20588
K*K* 148
pp 0
pw 3579
pJ /v 6210
po 2674

Table 7.13: Position of the pole and modules of the coupling in the
I = 1,J = 2 sector if the ay is adjusted to get the mass of the
7(3930) in the I = 0,J = 2 sector. The value of ay obtained is
—2.048.

with

_ 2 4 dmax
D) _ 29H / dqq® (wl?’ + W + 4w + dwiwp — kng)
0

1572
1 1 1

X
kS —w; —wp +1ie PO —2wp +ie PO+ 2wp

1 1\* 1 1 2
X5 — =] — | (7.7)
k) —w —wp+ie \wi /) wp \k3 +w +wp

where w; = \/q2+m2, wp = J/72+m3, P° = kY + k9, and ¢,
corresponds to the first diagram with gy = gp and [ = 7 in Eq. (7.7)
and tx is the result of the second diagram in Fig. 7.3 and gy = gp,

with [ = K. For the third diagram of Fig. 7.3 we obtain

(DD,1=0,7=0) _ 15 = (D)
Kn - ﬁ Kn
(DD, 1=0J=2) _ 0 y/(PD) (7.8)

tKﬂ' - \/5 Kr
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D*(ky) D*(ks) Dj Dy
\ Do) / \ D / \ D /
m(ky1 — q) f U(hfq) Ky | K Ky |
/ D(?—(N / k) \ / \
D*(ky) D*(ky) D: D D

s

Figure 7.3: DD-box diagrams for the D*D* and D*D? channels.

with
- — 8 dmax 1 1
oD 2 2 / da &b
K 9p.9p 1572 J, 14 WWKEWp W+ Wi
1 1 1
k‘f+wK+ka:1 —wK—wD+ieP0—2wD+ie
1 1 1

X
PO+ 2wp kY —w —wp + i€k +w+ wp
X (2wp(wp + wi)? + w?(2wp + wi)
+w(2wp + wk)? — 2k3%wp) . (7.9)

We regularize the above integrals with a cutoff of natural size, gu.x =
1.2 GeV, but we notice that the imaginary parts does not depend on
it. As in Chapter 6 we use an exponential form factor for an offshell
7(K) in each vertex, which is

F(q)=e TV (7.10)

with A = 1.2 GeV. In Figs. 7.4 and 7.5 the real and imaginary parts
of the potential are shown. We can see that the real parts can be
neglected in comparison to the potential coming from the contact
+ exchange terms. We also see that the contribution of DD(7r)
box is the largest one, being the DD(K K) contribution very small
and the DD(K ) box negligible, which means that these two latter
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Real part of the potential for I=0 and J=0 Real part of the potential for I=0 and J=2

—500¢F 1 =500+t
— ~—1000f
%_10007 — DD box %_15007 — DD box
L 1500¢f - contact + exch. ] e -~ contact + exch.

T - -2000(— — _
20000 T -] ~2500 T -
3600 3700 3800 3900 4000 3600 3700 3800 3900 4000
Vs [MeV] Vs [MeV]

Figure 7.4: Real parts of the potential for the D*D* channel.

contributions practically do not affect to the second pole found in the
I = 0; J = 2 sector, remember that also the width found there was
quite large ~ 100 MeV in comparison with the others.

The results when these potentials are included are shown in Figs.
7.6, 7.7 and 7.8, and the masses and widths in the real axis obtained
from these plots are given in Table 7.14 in comparison with the exper-
iment. We also show the effect of the DD diagram in the [ = 0;.J = 0
state before and after including the DD box diagram, Fig. 7.9. We
can see their small effect, which means that the sum of all the other
light vector - light vector and light vector - J/v¢ channels is much
more important.

The results shown here are practically the same than those re-
ported in Section 7.3. We summarize them in Table 7.14 with the
assignment to the experimental states.
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Imaginary part of the DD box for I=0 and J=0 Imaginary part of the DD box for I=0 and J=2
0F T ‘ g 0F T ‘ q
e 7
-10} -5t
_20 L
) = -10}
£ e
o _40 b b— 15 L
-50F -20}
—-60L . . , 3 . . . , .
3600 3700 3800 3900 4000 3600 3700 3800 3900 4000
Vs[MeV] Vs[MeV]

Figure 7.5: Imaginary parts of the DD box diagrams of Fig. 7.3.

D*D'(4017) D*D’(4017)
3 %107 ‘ ‘ ‘ E 4.x10°F ‘ ‘
25x107 3 %1013t
vas
o 2:x10 - sl
E15x107f ] £=2.x10
7
;'Xigé 1.x 108}
X £
3900 3920 3940 3960 3980 3940 3942 3944 3946 3948 3950
Vs [MeV] Vs [MeV]

Figure 7.6: |T|* for I = 0 and J = 0 (left), J = 1 (right), in the main
channel D*D*.
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D*D"(4017) Ds* Ds (4225)
of ‘ ‘ ‘ ‘ 400000F ‘ ‘ ‘
4.x10°F
35105 300000}
[ Q
Eo w100t ] £200000f
1.x10°F 1 100000}
OL . . . . o OL . . . 4
3800 3850 3900 3950 4000 4050 4100 4150 4200 4250 4300
Vs [MeV] Vs[MeV]

Figure 7.7: |T|* for I = 0 and J = 2 in the main channels D*D*
(first pole, left) and D*D? (second pole, right).

D*D"(4017)

500000]
400000}
« 300000]
=
200000}
100000}

0 E . . . . . B
3800 3850 3900 3950 4000 4050 4100

Vs[MeV]

Figure 7.8: |T|? for [ = 1 and J = 2 in the main channel D*D*.
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I9[J7C] Theory Experiment

Mass [MeV] Width [MeV] Name Mass [MeV] Width [MeV] JFP¢
0+[0+] 3043 17 Y(3940) 3943+ 17 87+£34 JO+

3914.3+41 3378

0-[1+] 3945 0 "Y,(3945)"
0t[277] 3922 55 Z(3930) 3929 £ 5 204+10 2*F
027 4157 102 X(4160) 4156 +29 139%g:°  JPt
1-[2++] 3912 120 "Y,(3912)"

Table 7.14: Comparison of the mass, width and quantum numbers with the experiment.
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D*D'(4017)

3.5%107f ‘
3.x107F
25%107F
2. x10’F  — contact + excH.
T1.5x107F
1.x10"}
5.x10°F

O,‘ . . . 3

3900 3920 3940 3960 3980

Vs[MeV]

- cont.+exch.£ DD box \

Figure 7.9: |T'|* for I = 0 and J = 0 before and after the inclusion of
the DD box diagrams.
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|
Chapter

Radiative decays of the Y(3940),
7(3930) and X(4160)

The majority of the 'new’ charmonium-like X, Y and Z mesons mainly
discovered at the B-factories BELLE and BaBar cannot be easily ac-
commodated in the g7 model and are therefore interesting objects
for meson structure besides the constituent quark model. The cou-
pled channel approach combined with the Hidden Gauge Lagrangians
|85, 116, 136] turned out to provide a useful tool to determine the
mass and width of resonances. In the latter work of [136] some of
the X, Y, Z resonances were generated dynamically from the vector -
vector interaction and appear as poles in the corresponding scatter-
ing amplitude. A further interesting topic is the radiative decays of
these states which are also a crucial test to hadron structure.

8.1 Introduction

In the hidden gauge formalism the electromagnetic interaction is in-
cluded by using vector meson dominance (VMD) that is the photon
couples to the resonance via the p, w, ¢ or J/1¢ vector mesons in the re-
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spective coupled channels [81, 87, 141]. Radiative two-photon decays
of heavy meson molecules were also studied in [96] and the radiative
decays of the fy(1370) and f»(1270) into two photons have been also
reported in Chapter 4, leading to numerical results in agreement with
the experiment. In this Chapter we concentrate on the hidden-charm
resonances around 4 GeV analyzed in Chapter 7 and study the two-
photon and photon-vector meson decay properties. In Section 8.2 we
evaluate the decay widths into vy and V'~ of the Y(3940), Z(3930)
and X(4160) mesons and the decay rates into D*Dv or DD,y are
evaluated in Section 8.3. The peculiar behaviour can shed light on
the nature of the states. See [139] and [140] for a detailed review of
these topics.

8.2 Evaluation of the one- and two- pho-
ton decay widths of the Y (3940), Z(3930)
and X(4160)

The transition amplitude 7" between the initial and final coupled
channels via resonance R from the Bethe Salpeter equation in Eq.
(3.22) can be approximated close to a pole by

1
PU(5), 8.1
S M () (8.1)

T = 9P)
where P) are the spin projectors of the amplitudes for J = 0, 1,2
given in Eq. (3.13). The indices [, m and s run over the spacial coor-
dinates, i.e. I,m,s = 1,2,3. The product P)(i)P/) () in Eq. (8.1)
stands for the product of two projectors of spin for channels i (par-
ticles (1,2)) and j (particles (3,4)), summing the indices [, m of the
two projectors except for PP where P is already a scalar. The
coupling strength, g; (g;), to each particular channel is calculated by
means of the residues of the amplitudes 7;; at the pole position, and
gives an idea of the importance of the contribution of each channel
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to the resonance. In the case of the Y(3940) and Z(3930), the D* D*
coupling is dominant, which implies, e.g., that the Y(3940) is domi-
nantly a D*D* bound state, in agreement with the D*D* molecular
interpretations in [133, 134] while the X(4160) is mainly D} D?. We
study the radiative decays of dynamically generated resonances by
coupling the photon via intermediate vector mesons as depicted in
Fig. 8.1. The amplitude of the Vv transition is given by the La-

Figure 8.1: Photon coupling via VMD
grangian of Eq. (4.9) which leads to

tyy = tya€u(V)e"(7) (8.2)

with .
ty, = CW;M‘Q/ (8.3)

and Cy, given in Table 8.1. We fix g by g = ;nTi with f; = 93 MeV. In

w9 Y
S U | 2
V2 32 3 3

Table 8.1: Coefficient Cy, in Eq. (8.3).

case of the charmonium, i.e. J/v, we consider SU(4) breaking effects
by using ¢ = g,. = Mys/(2f,.), where f, = 420/v/2 MeV, taken
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from [137]. The vertex of Egs. (8.2) and (8.3) effectively replace the
vector polarization (e,(V)) by the photon polarization (¢,(v)). The

amplitudes for the one- and two-photon decays are therefore given
by

1 -
P s S P i (s <15

1\,
TOW) o« > P (i )i < 1, (8.5)
Va V2

where gy,y, is the coupling of the resonance R to the V;V5 channel
(see Tables 7.2 - 7.6). PW , P & stand for the projection opera-
tors of Eq. (3.13) with the polarizations of the two photons or one
photon and one vector, and [ represents the respective isospin Cleb-
sch Gordan coefficients of the V1V, component for a certain isospin
state. Following our phase convention, (—D*° D**+) (D*~, D*%) and
(—p™, p° p7), the isospin states are given by

|D*D*, 1 =0,I3=0) = 7(}D*+D* )+ |D*°D*?))
|D*D* 1 =1,I3=0) = 7(}D*+D* ) — |D*°D*%))
op, I =0,13=0) = —ﬁ(}fﬂ +1o7p") +10°0°))
lpp, I =1,I3=0) = —%(}p+p‘>—\p‘p+>), (8.6)

After summing over the intermediate vector polarizations in Egs.
(8.4) and (8.5), the amplitudes for the R — vy and R — V'~ decays
are given by

€ R
Tv(ﬁ) = (5)2 Z 9\(/1\)/273%) CvirCrpy X I X Fy (8.7)
Vi,Vo=p0,w,¢,J /1)
e

R R J
T‘(/w) = - Y g(VI)VQP(Vli Cuyy X I X Fy.y (8.8)
Vo=pO w,0,J /¢
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The use of the unitarity renormalization introduce an extra factor %
in case of identical particles, we need to correct this factor when cal-
culating observables. The unitarity normalization and the symmetry
factors are combined in F.,, and Fy., with

I V2 pair of identical particles, e.g : p°p° (8.9)
i 2 pair of differentparticles, e.g : p’w |
2 V2 pair of identical particles, e.g : p°p° (8.10)

v 1 pair of different particles, e.g : p’w '

The radiative decay width can be easily calculated from the transition
amplitudes T" by

1 11 2

_ 1 (R)
Ty = 57511650003 XW;S\TW : (8.11)
Py, = —+ 1 LIS SR, (8.12)

2J+187TMRMR

spins

where the summation over all spin states contributes the factors given
in Table 8.2.

J) y*(J J) 4~y (J
J X PYPY xR

spins spins
2 2
0 3 3
1 1 2
7 10
2 3 3

Table 8.2: Contribution of the summation over all spin states

In the former derivation we have assumed the momenta of the ex-
ternal particles small compared to the vector masses, which is correct
for the vector-vector initial state. This is based on the approxima-
tions done in [136], which neglect the three momenta of the particles
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with respect to the vector mass, |p|/Mp- ~ 0. This is indeed the case
for massive states but not if we deal with two photons in the final
state since |p,| ~ Mp-. Hence, improvements on the model are nec-
essary. For this purpose we redo the calculations taking into account
the finite momenta. This affects only the final electromagnetic ver-
tex in the resonance decay. Thus we can evaluate > [tyy_.,|* and
> [tyv—vr4|* with finite momenta and multiply the widths obtained

at k=0 by the ratio of these terms for a general k and k = 0

S S lt2(R)
Zin Zﬁn ‘t|2(k = O)

with ¢ = tyv_,, or tyy_yw, I'o = I'(k = 0) (this corresponds to
the width in the approximation of |5]/mp- ~ 0) and k = |k|, where
t is the tree level amplitude containing the four-vector contact and
meson exchange terms of Figs. (7.1) and (7.2) respectively. This is
done only for the dominant terms involving V'V = D*D*, D:D*. The
detailed calculation is shown in the Appendix C.

(k) =Ty

(8.13)

8.2.1 Results

In order to compute the decay width of the Y(3940), Z(3930), X(4160)
and the so far not observed 'Y,(3912)" we take the couplings of the X,
Y, Z states from Tables 7.2, 7.4, 7.5 and 7.6. For the other state with
quantum numbers [¢(JFY) = 0~ (177) (see Table 7.3), all couplings
to vector mesons with hidden flavor are zero due to C-parity violation.
Therefore radiative decays via VMD are forbidden in this case.

The results for the radiative decay width are summarized in Ta-
ble 8.3. The decay widths of the Y(3940) are in general smaller
compared to the other resonances. A general feature observed is that
in the results the py and vy decay modes are suppressed in com-
parison to the wy and ¢y decays except for the predicted Y,(3912)
resonance, which shows a rather strong coupling to the py decay chan-
nel. Experimental observations concerning the radiative decays are



pole [MeV] I¢ gre meson [, T, Loy Tywy Ty
(3043, +i7.4) O+ (0F1)  Y(3940) 0.036 2.37 3271 094 0.031
(3922, 4i26) 0T (27)  Z(3930) 0.016 6.06 3826 11.16 0.059
(4169, 1i66) OF (2V7)  X(4160) 0.012 4.26 107.54 10042 0.254
(3019, +i74) 17 (2*F) 'Y,(3012) 80.58 45.82 24.84 108.38  0.54

+

~— ~— ~—  “——

Table 8.3: Pole positions and radiative decay widths. The decay widths are given in units of KeV.
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rare. However, the BELLE Collaboration searched for charmonium-
like resonances in the vy — w.J/1¢ process [142] which resulted in an
enhancement of the cross section around M = 3915+3+2 MeV. The
peak was associated to a resonance denoted by X(3915). But it is
thought that it could be the Y(3940) resonance, or even the Z(3930)
which we have associated to our J© = 2% resonance at 3922 MeV.
In [142], the X(3915) has unknown spin and parity, but 0 or 2% are
preferred. In the following we compare the ratios,

[ (61£17£8)eV  JP=0"
T (X (3915))B(X (3915) — wJ/¢) = { (8£5420V  J7 =2t
quoted in [142], with the results of the present approach. Let us
evaluate Eq. (8.14) for the two theoretical states 07 at 3943 MeV
and 2" at 3922 MeV in Table 8.3. By using the formula for the decay
width to wJ/v:

2
1 kgwj/zp

FwJ/w = 8_7T M]g% s

(8.14)

with £ the momentum of the final meson, and taking the couplings
9wy from Tables 7.2 and 7.4, we obtain

Lo+ s0a3 = 1.52MeV
FwJ/¢(2+73922) = 866M6V, (815)

together with the two photon decay widths of Table 8.3 we find

T, B((0%,3943) — wJ/i)) = 1.46eV
T, B((27,3922) — wJ/¢) = 17.6¢eV (8.16)

where in the evaluation of the branching ratios we have used the
experimental central values of the widths of the Y (3940) and Z(3930),
I' = 3373* MeV and 29+ 10 MeV [124, 143] respectively. Comparing
Eq. (8.16) with Eq. (8.14), the results of Eq. (8.16) are compatible
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with the assumption that the X(3915) is the resonance (2%, 3922),
considered as the Z(3930) in Table 8.3.

On the other hand, if we assume that the X(3915) corresponds to
our (07, 3943) resonance, the discrepancies are very large, more than
a factor of forty. Our study, thus, favors the association of our (27,
3922) resonance to the X(3915) of [142].

8.2.2 Comparison with other works

In [134], the authors assume that the Y (3940) and the Y'(4140)
are hadronic molecules with quantum numbers J’¢ = 0*F or 2+
whose constituents are the charm vectors D*D* for the Y (3940) and
D+ Dr~ for the Y(4140) and they calculate the decay rates of the
observed modes Y (3940) — J/¢w and Y (4140) — J/4 for the case
JPC = 07+, The coupling constants are determined by means of the
compositeness condition [134] and the results for these decay modes
support the molecular interpretation of the Y (3930) and the Y (4140).
Note that with the results of [134] the opposite assignment would be
favoured, as seen in Table 8.4 where we make a summary of our
results and a comparison with those of [134].

The relatively small two-photon decay width I'(Y'(3940) — ) =
0.031 KeV underestimates the corresponding result in the hadronic
molecule interpretation (as a D*D* molecule) of T'(Y(3940) — ~vv) =
0.33 KeV for JF¢ = 07+ in [134] by about one order of magnitude.
However, the coupled channel analysis that we make, although it con-
siders many channels, also finds the D*D* component as dominant.
Due to the inclusion of the three-momenta of the photons, the decay
widths undergo changes and the correction factors can be seen in Ta-
ble C.1 in the Appendix C. The largest correction appears for the
Y (3940) state, where the abnormally small former I, width becomes
a factor of 2.4 larger. We should note that appart from the differences
in the input in the two approaches mentioned above, the prescription
of the coupling of photons to vector mesons is different. We follow
the rules of the local hidden gauge approach, where the v couples to
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Ref. [134] Present work

state D*D*  D:D: D*D* D:D;
JPC ottt aott 2t+ ott 9++ 9++
I, [KeV] 033 0.27 0.50 0.031 0.059  0.25
Lwye [MeV] 5.47 T7.48 -1.52 8.66 12.02
Lo B(X —wld/y) 547 69.6 1.46 17.6

[eV]

[EPB(X — wl/y) 61 18 61 18

[eV]

Table 8.4: Comparison with the work of [134] and the experiment. To
evaluate the branching ratios we have used the experimental central
values of the widths of the Y (3940) and Z(3930), I' = 33*3* MeV and
29 + 10 MeV [124, 143] respectively.
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the light vector mesons and these couple to the other vector mesons
with the three vector couplings. In [134] a minimal substitution in
the free Lagrangian of the vector mesons is done. As investigated in
detail in [81], the two prescriptions can lead to sizeable differences
in the radiative decay widths, and we must turn to this feature as
the main responsible factor for the differences found with respect to
[134].

It is unfortunate that not a unique prescription can be given for
the coupling of the photons to vector mesons. In [144] the minimal
coupling prescription was used to couple photons to vector mesons in
the radiative decay of axial vector mesons to a pseudoscalar meson
and a photon. Yet, since the axial vector mesons could be obtained
as dynamically generated resonances using the hidden local gauge
approach, it was found most appropiate to use the prescription pro-
vided by the same local hidden gauge approach to couple photons
to vectors. This was done in [81], but the agreement with experi-
ment became worse than using the minimal coupling. This was later
on interpreted in [145] as an indication that the a;(1260) resonance
might have not only vector-pseudoscalar components but also a size-
able fraction of a genuine ¢G component. Those are issues that are
presently at stake and that might deserve further consideration. Yet,
the former example leaves room for some interpretation of the dis-
agreement of our results with those of [134] and eventually with data.

The inclusion of the photon three-momenta also leads to changes
of the vV decay widths and the correction factors can be seen in
Table C.1. Once again the largest change is for the V'~ decay of the
Y (3940) where the rate is increased by a factor 2.4.

For the two-photon width of the X(4160) we obtain I',, = 0.254
keV. In the present coupled channel approach the X(4160) is found
to be dominantly a D?D? state. This is the same underlying struc-
ture as the D?D? bound state studied in [134]. In reference [134]
the D?D? molecular state was associated with the narrow Y (4140)
discovered by the CDF [146] because it was possible to explain the
sizable observed J/1¢ decay width of this state. Our association to
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the broader X(4160) is suggested by the large total theoretical width
which was not evaluated in [134]. It is fair to compare the results in
both approaches with the caveat of the different input used, as dis-
cussed above. In this case the value obtained for the radiative width
into two photons evaluated in [134] is I, = 0.5 KeV.

8.3 Decay of the Y (3940), Z(3930) and X (4160)
: * *
into D(S>D(s)’y

As one can see from Tables 7.2, 7.4 and 7.5, the states obtained cor-
respond to basically bound D*D* or D*D? states, hence the decay
into these pairs of mesons is forbidden, whereas the light vector - light
vector channels provide the width of the states. However, if one looks
at the decay channel of the D* into D, the process X — D*D~ is
allowed, since the mass of the resonance X, for all the cases listed in
Table 7.14, exceeds the sum of masses of the final state. In Fig. 8.2
the corresponding Feynman diagram to the X — D*" D™~ process is
shown. The D*~ propagates virtually between the production point
of X — D*"D*~ and the decay point of D*~ — D~~. This propaga-
tor is the relevant characteristic of the X — D*" D™~ decay. Thus,
this diagram is peculiar to the assumed nature of the resonance X as a
molecule of D*D* and should be largely dominant over other possible
processes [97]. All one needs to evaluate these Feynmann diagrams
is the coupling of the resonance to D** D*~ together with the corre-
sponding spin projection operator, and the vertex accounting for the
decay of D*~ into D™ ~.

Take for example the case of the Y(3940), with J = 0, the first
vertex in the diagram of Fig. 8.2 is %egl)e?) gp-p- 1, where I is the
isospin factor needed to change from the isospin basis, where the
couplings are evaluated in [136], to the charge basis. In the case of
D**D*, we have I = % In what follows, we will call g the coupling
of the resonance to the V'V state in isospin basis.

On the other hand the anomalous vertex for the D* decay into



Radiative decays of the Y(3940), Z(3930) and X(4160) 165
D (p)
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Figure 8.2: Decay of the X resonance to D** D™ +.

D~ is given by
—ilpe Dy = —igPvy €uap P €' (DY) K €7 (), (8.17)

where p, k are the momenta of the D*~ and v respectively. This
amplitude gives rise to a width

1

I'pepy = EQ%VVMLg(M%* —mp)”. (8.18)

Unfortunately, only the value for the radiative decay of the D*~ —
D™~ and of its positive state partner are known. In this case we will
be able to provide an absolute value for the radiative decay width of
the XYZ resonances. In the other cases we will give the ratio of the
radiative decay of the resonance to that of the D*. The value of grvy
for the D*~ — D™~ decay is given by

gpyy = 1.53 x 107 *MeV 1, (8.19)

which can be easily deduced using Eq. (8.18) from the experimental
value of the width I' = 1.54 KeV.

Thus, the couplings of [136] for D* D* must be multiplied by 1/+/2
to get the appropriate coupling for the charged or neutral states (a
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sign is irrelevant for the width), and do not require an extra factor
for the case of D D?.

With the previous information we can already write the amplitude
for the decay of the Y(3940) into D** D~~, which is given by

it = i L@ i
\/§ \/g ¢ ¢ p2—M%* +'ZMD*FD*
X (—1) gpvy €uap 1" k* €2 (7), (8.20)

where the indices (1), (2) indicate the D** and the D*~ respectively.
The sum over the intermediate D*~ polarizations can be readily done
as

e g =, 21
A

where we have neglected the three momenta of the intermediate D*~
which is in average very small compared with the D*~ mass, particu-
larly at large invariant masses of the D™~ system which concentrates
most of the strength, as we shall see. The sum of [¢|* over the fi-
nal polarizations of the vector and the photon is readily done and,
neglecting again terms of order 52/M3., we get the result

2

11 1
2 = Z15242 2p - k)2
Z‘ | 329 gPV'y pQ_M%* +ZMD*FD* (p )
115 p* —mp ’
= == 8.22
627 9PV |2 Z M.+ iMp-Tp- (8:22)

The differential mass distribution with respect to the invariant
mass of the D™~ system, M,,,, with M2 = p?, is finally given by

mu

T g 11 ,
_ ST 2
dMin,  AMZ (27)3 P PP iy (8.23)

where p* is the momentum of the D* in the rest frame of the reso-
nance X and pp is the momentum of the D~ in the rest frame of the
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final D~ system given by

N0, M, M2,

mnv

p - 2MR )
~ Mz%w B m2

In the case of the tensor and spin one states we must do extra
work since the projector operators are different. In this case we must
keep the indices 7, 7 in ¢ and multiply with ¢* with the same indices
7, 7 and then perform the sum over the indices i, j. This sums over all
possible final polarizations but also the initial X polarizations, so in
order to take the sum and average over final and initial polarizations,
respectively, one must divide the results of the >, ; ¢t* by (2J + 1),
where .J is the spin of the resonance X. The explicit evaluation for
the case of the tensor states, J = 2, of D*D* proceeds as follows:
The ¢ matrix is now written as

[ Lo, ooy Loe
t = ﬁggpv,y {5 <Ei Ej +E] € >—§€l € 57,]

1
re @ el (~). 8.25
Xp2 _ M%* T iMD*FD* €uvaB P € € (7) ( )

As mentioned above, we must multiply ¢; ; by ¢, recalling that
the indices i, j are spatial indices and divide by (2J + 1) (5 in this
case) in order to obtain the modulus squared of the transition ma-
trix, summed and averaged over the final and initial polarizations.
Neglecting again terms that go like p/m}s we obtain the same ex-
pression as in Eq. (8.22). It is also easy to see that this is again the
case for the J = 1 states. The normalization of the spin projection
operators in Eq. (3.13) makes this magnitude to be the same in all

cases.
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8.3.1 Convolution of the dI'/dM;,, due to the width
of the XYZ states

Some of the dynamically generated XYZ states have a non negiglible
width and, as a consequence, a mass distribution. That means there
is a probability of these states to have a mass over the nominal mass
and if one consider this fact, the PV~ decay width should increase.
In order to consider this, we convolute the dI'/dM;,, function over
the mass distribution of the resonance R. We take I'/2 to both sides
of the peak of the resonance distribution which account for a large
fraction of the strength and produces distinct shapes in the vD mass
distribution. We find:

drconv(l"/2) 1 (Mp+T/2)? sz ( 1 ) ; 1
_— = — —— ) Im—=
dMinv N (Mr-T/2)2 s M2 — MI2% + ZFMR
X dT /d M (M) (8.26)
with
(Mp+T/2)2 1 1
N = dM? (—=)Im— : ,
(Mp—T/2)2 T M? — M3 +iT'Mpg

The expression for dI'/dM;,,(M) is given by Eq. (8.23) changing
Mp to M. As we will see in the next section, the use of Eq. (8.26)
leads to an increase of I'(R — PV+y) with respect to the result with
the nominal mass Mz. We shall also show results with a convolution
from Mr — T to Mpr + T

8.3.2 Results

We show here the results for different cases:

The Y (3940): Decay mode D** D™~

The results are the same reversing the signs of the charges.
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Figure 8.3: The Y (3940) — D**D~~: Comparison of dI'/dMj,,, and
dree™/2) JdM;,,, Q and Q™(T'/2) as a function of the D™+ invariant
mass.

In Fig. 8.3 we show the distribution of Eq. (8.23), together with
Eq. (8.22), between the limits of M;,,: mp and Mg — mp~. Also,
in order to see the effects produced when one considers the width of
the state, we plot in the same figure dI'*"/dM;,,, taken from Eq.
(8.26). We can see a very distinct picture, with most of the strength
accumulated at the maximum values of M;,,. The propagator of
the intermediate D*~ and the factor (p.k)? are responsible for that
shape. In fact we show superposed in the same figure the result
obtained ( normalized to the same area) substituting the propagator
by a constant and removing the factor (p.k)? (or equivalently the
factor (p> —m%)?). We call @ the resulting distribution (or Q<"
when one convolute this function taking into account the width of
the R state). We can see that the pictures of dI'/dM;,, and @ (or
equivalently dI'*°™ /dM;,, and Q") are radically different and the
reason is mostly due to the presence of the D*~ propagator which
carries the memory that the resonance Y(3940) is assumed to be a
D*D* molecule. The effects of considering the convolution are also
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visible in this picture. Now, d['*°™ /dM,,,, spreads beyond Mg —m p-,
and there is some probability for the state to decay into PV~ up to
M;ny = Mr +1'/2 — mp«, where I' is the width of the state. Also
in this case, the difference between dI'*°™ /dM;,,, and Q" is clearly
visible.

For the case of decay into D** D%y the matrix element is formally
the same except that now we do not know the experimental radiative
decay width of the D*°. In this case we divide the mass distribution
of the D*°D%y decay by the width of the D** — D%y and plot the
magnitude

1 dl'p 11, , p? —m%
] =9 gPV'y 2 2 .

FD*—>D'y dev 26 P MD* +ZMD*FD*

487 M3, 1 1

“ ROV, — m3)? 4M2 (27)

3 p*ﬁp, (827)

with
b M3, —m%
2MD*

In Fig. 8.4 we show the results of the dI'gr/dM;,,I"p«p, distri-
bution and also we compare with dI'%®"/dM;,,I'p-p,. We can see
that the enlarged range of the mass distribution between the limits
My = Mg —mp- and Mr+T'/2—mp- is responsible for an increase
in (Y (3940) — D*0D%).

The Y, (3945)

This state has zero width, and here we show the difference between
dl'r/dM;pn, and @ in the case of Y,(3945) — D** D~ in Fig. 8.5 to
see the effect of the inclusion of the D* propagator in Eq. (8.22). As
one can see, the shapes can be clearly distinguished. Also, in Fig. 8.6
we show the curves for dI'r/dM;,,I'p+p- for the case of the neutral
charm mesons in the final state.
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Figure 8.4: The Y'(3940) — D**D%: Comparison of dI"/dM;,,I" pp-,
and dl"conv(F/2)/dMim)FD*D’y.
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Figure 8.5: The Y,(3945) — D** D~~: dI'/dM,,, and @ as a function
of Minv-
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Figure 8.6: The Y,(3945) — D**D%y: dU'/dM;,,I'p-p, and Q as a
function of M,,,.

The Z(3930)

This state has a larger width compared with the Y (3940) and Y,,(3945)
states of 55 MeV, and for this reason the picture here is very different
than in those cases when one takes into account this width. Thus,
one can see a big difference between dI'p/dM;,, and dI'§™ /dM;p,,
@ and Q™ as shown in Fig. 8.7. The relatively large width of the
resonance taken (55 MeV) is responsible for the different shapes com-
pared to Fig. 8.7 a). Similar results are obtained for dI'/dM;,,I" p«p
for decay into D*0D%.

The Y,(3912)

This case is very similar to that of the Z(3930). The shapes of
dl'r/dM;y,, and @ are very different (also for dI'9™ /d M, and Q™)
as one can see in Fig. 8.8. Now the width is considerably larger com-
pared to that in the previous cases, since I' = 120 MeV. Similar
results are obtained for the case of Y,(3912) — D*0D%.
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Figure 8.7: The Z(3930) — D**D~~: a) dI'/dM;,, and Q as a
function of M;,,. b) dT'°°™ /dM,,, and Q™.

The X (4160)

In this case the isospin factor is I = 1 rather than 1/v/2. The formula
is the same as before removing a factor 1/2 in Eq. (8.22). Once again
we do not have the experimental decay rate for the radiative decay
of D~ and we plot the results for Eq. (8.27) in Fig. 8.9. In this
case the decay into D** D™+ is also possible. However, the coupling
to D*D* of this resonance (also assumed to be a D:* D~ molecule
in [97] and [134]) is found small in [136], of the order of 17 times
smaller, hence the rate for this channel should be drastically smaller.
In order to test the D** D*~ component of this molecule, the allowed
strong decay into D*D* is preferable. This latter measurement is a
more efficient tool to get the strength of this coupling and compare
with the theoretical predictions.

In Tables 8.5 and 8.6 we show integrated values for I'(R — PV)
and also rates of I'(R — PV+) with respect to I'(D{,, — D(s)7).
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State Decay I'[keV] T/T DD [eonv(/2) [keV] Teonv(/2) /T DD
Y(3940) D*t*D7v 2.7 x 1073 1.8 x 1073 2.9 %1073 1.9 x 1073
Y,(3945) DD~y 3.1x 107  2.0x 1073 - -
7(3930) DD~y 41x107*  26x10*  1.0x 107 6.7 x 10~
Y,(3912) D**D7~ 1.0 x 104 6.7 x 107° 2.7 %1073 1.8 x 1073
X(4160) DtD;~ < 39.9 2.3 x 1072 < 2.4 x 10? 0.14

Table 8.5: Decay of the XYZ resonances into D** D™~ and D**D_~.
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State Decay [I'[keV] T'/Tp.o_po, I/ [keV] TT/2)/T 50 mo,
Y(3940) D*D% <26 32x1073 < 2.7 3.4 x 1073
Y,(3945) D*OD% <29 3.6x1073 - —
7(3930) D*D% <048 6.0 x 107* <1.0 1.3 x 1073
Y,(3912) D*D% < 0.15 1.9x107* <24 3.0x 1073

Table 8.6: Decay of the XYZ resonances into D**D%.
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State Decay Toomv(/2) [key| Teonv(T/2) /T DD
Y(3940) DDy  33x 1079 2.1 % 103
Z(3930) D**D—y 33 x 1073 2.2 % 107

Table 8.7: Decay width of the XYZ resonances into D** D™~ and
Dt D_~ corresponding to a limits in the integral of Eq. (8.26) of
Mgr —T" and Mg + 1.

State Decay [/ [keV] T<n(/2) /T p.0_ o,
Y (3940) D*0D% < 3.0 3.8 x 1073
7(3930) D*0D% < 3.0 3.7x 1073

Table 8.8: Decay width of the XYZ resonances into D**D%y corre-
sponding to a limits in the integral of Eq. (8.26) of Mz — I' and
Mp+T.
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In the case of the decays of the resonance into D**D%y, D+ D7+,
D*DO%:% and D:*D;n° we compute gpy., in Eq. (8.18) taking
['(D*) < 2.1 MeV and T'(D*") < 1.9 MeV. We show in Table 8.5, the
integrated values for T'(R — D*T D~~) which are very small, of the
order of 10* — 1 €V if one does not consider the convolution of the
dl’/d M, distribution. However, when one considers the width of
the XYZ resonances given in Table 7.14, these values become bigger
(about one order of magnitude in some cases).

In the case of the X(4160) we can only put a boundary for the
['(X — D*D;~), which is 39.9 KeV, but we give rates of I'(X —
Dt D_~) with respect to I'(D:~ — D_~) in Table 8.5. For this
observable we get a value of 2.3 x 1072 and 0.14 before and after
convolution respectively. When the final state contains neutral charm
mesons, we give both amplitudes and rates which can be seen in Table
8.6. In Table 8.6, we see that I'/T" 5.0 o, is of the order of 107*—107?
for all the states before convoluting dI'g/dM;,, and becomes larger
when one convolutes this function.

We have also evaluated the widths making a convolution for the
mass distribution of the resonances from Mg — I' to Mgz + I'. The
results are shown in Tables 8.7 and 8.8. We show the results only
for the first two states of Table 7.14 (the second one has zero width
and the convolution has no effects). The reason for that is that the
last two states are very wide, with a width larger than 100 MeV.
When performing the convolution within a mass range of Mz — I to
Mp, + T then one opens the phase space for decay into real D*D* or
D:D;. In this case the mass of Dy collects in a very narrow peak
around the D*(D?) mass and the shape of the distributions that we
have discussed here is lost. One is no longer studying the radiative
decay but rather the strong decay of the resonance (followed by the
radiative decay of the D*).

Some of the radiative widths look very small, but others are more
within the range of partial decay widths known for some resonances.
The results obtained here should be very useful to assess the feasibil-
ity of possible experiments in future.
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Chapter

The D?,(2573) and flavour exotic
Mesons

After the succes of the application of the hidden gauge theory to-
gether with the unitary technics, being able to explain many prop-
erties of states of unknown nature in the PDG, we complete the
study of the vector - vector interaction through its application in
all the other sectors. This includes the charm = 0;strangeness = 1
(hidden charm), charm = 1;strangeness = —1,1,2 and charm =
2; strangeness = 0, 1, 2 sectors, some of them which are flavour exotic
sectors.

9.1 Introduction

The c¢§ spectrum presents some difficulties to be explained by the
quark models. The heavy quark symmetry is introduced to study
the heavy - light quark system. The lowest states are the D, and
D, With a unity of angular momentum of difference between the
heavy and light quarks, the heavy quark symmetry that treats the full
spin of the light degrees of freedom independently from the spin of the

179
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heavy quark, predicts two doublets, one for j; = 3/2 and J* = 1+, 2%,
While the predicted ones of the j; doublet are relatively narrow, the
ones with j; = 1/2 would be very broad. The first state observed
after the D; and DI was the D¥ (2536), it was regarded as a mem-
ber of the j; = 3/2 doublet within this picture. Then, in 1994, the
CLEO Collaboration observed the D¥,(2573) and the experimentalist
identified it as the j, = 3/2 doublet partner of the D (2536). There
was no evidence of the j; = 1/2 doublet. The theoretical calculations
predicted them to have masses of 2.48 — 2.49 GeV and 2.53 — 2.57
GeV [99, 147, 148] for the 0 and 17 states respectively and width
between 300 — 700 MeV. Then, the CLEO Collaboration observed
the D*,(2317) and the D, (2460) and Babar confirmed it. The ob-
servation of these states are obviously difficult to explain in terms of
quark model potentials, when the masses of the observed states are
around 100 MeV below their predictions, and, in addition, the exper-
imental states are very narrow, the width of the Dy (2317) is < 3.5
MeV and for the Dy(2460) it is < 3.8 MeV. This has given place
to other models and alternative explanations. The Dy(2317) and
D¢1(2460) are close to the DK and D*K threshold and many theoreti-
cian support that the strong s-wave coupling to the DK (D*K) decay
channel shift their respective masses [149, 150, 151, 152, 153, 154|.
In particular, in [108], two models are constructed, one is a chiral
Lagrangian for the pseudoscalar-pseudoscalar interaction, while the
other is a phenomenological model that starts from a SU(4) symmet-
ric Lagrangian which is broken into pieces that separate the heavy-
meson currents from the light ones, with the diagrams where a heavy
vector meson is exchanged suppressed by a breaking symmetry pa-
rameter. The chiral symmetry can be restored by setting the SU(4)
symmetry breaking parameters to zero and using a unique f, pa-
rameter [110]. Both models, the chiral Lagrangian and the phe-
nomenological one, lead to the same result which is the Dy(2317)
is found to be essentially a DK (Dyn) bound state. In other models
the D4 (2317) is obtained from an effective Lagrangian approach as
a pure DK bound state in [111, 112, 113]. The study of [108] is ex-
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tended to the pseudoscalar-vector interaction, and in a very similar
procedure the D;;(2460) and the D,;(2536) are explained in terms
of KD*(nD?) and DK*(Ds(w(¢)) molecules respectively. Similar re-
sults were achieve for the Djg;(2460) using different approaches in
[114, 115, 117], where the interaction is provided by a chiral La-
grangian based on heavy quark symmetry and the authors neglect
the exchange of heavy vector mesons.

9.2 Results

The amplitudes corresponding to the four contact term and vector
exchange term are calculated. See the detailed evaluation in [155].
They are shown in the appendix D. We find that the potential is
attractive in the sectors: ¢ =1,S5=-1,1=0; C =1,5=1,1 =
0,1;C=2,5=0,I =0;and C =2,5 = 1,1 = 1/2, and repulsive
for C = 0,5 = 1,1 = 1/2 (hidden charm); C = 1,5 = —1,1 = 1;
C=1,5=21=1/2,C=2,S=0I=1land C=2,S=21=0.
When we evaluate the T-matrix by means of the formula of Eq. (3.22)
we use the following parameters: g = M,/2 fr, we fix p = 1500

MeV for all the sectors and set the subtraction constant o = —1.6
(value very close the one used in [109], —1.55, and [116], —1.74)
in the sectors C' = 1;S = —1,1,2. Note that p and « are not

independent which justifies the determination of iz and then adjusting
« to the data. In the other sectors, C' = 0; S = 1 (hidden charm)
and C' =2;5=0,1,2, we put « = —1.4. The reason is that we use a
different set of the parameters ;s and ay in comparison to the earlier
study of the dynamically generated DE;)D* resonances in Chapter 7
with © = 1000 MeV and ay =-2.07. In the present approach we set
p = 1500 MeV as in [108, 109, 116] and have to adapt ay accordingly
in order to be able to reproduce the XYZ states in Chapter 7. First,
we calculate the pole positions and coupling constants Eq. (3.50),
then we replace the expression for G of Eq. (3.45) by the convoluted
G of Eq. (3.24) and additionally include the box diagrams in Fig.
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9.1. We only use Eq. (3.24) for the cases where a p or K*(K*) meson
are involved in a particular channel ¢. For the p meson, I'y = 146.2
MeV, and m; = mo = m, while for the K* meson we have I'1 = 50.55
MeV and m; = mg, me = m,. We include these diagrams in the
sectors where the interaction is strong enough to obtain bound states
or resonances. Looking at the Tables in the Appendix D, these sectors
(and the channels involved) are:

e C=1,5=-1;I1=0;J=0,1 and 2:
D*K*
e C=1,5=1,I1=0;J=0,1 and 2:

D*K*, D*¢, Dw

C=15=1,1=1;J=0,1and 2:

D*K*, Dp

D*D*

C=2,S=11=1/2;J=1:
D:D*

However, the box diagrams only have a contribution for the quantum
numbers J” = 0% and 2F. As explained in the former Chapters, the
reason is the following: the vector - vector system has positive parity
in s wave, which forces the pseudoscalar - pseudoscalar intermediate
state to be in L = 0,2. Since the two pseudoscalar mesons do not
have a spin, the only possibilities are J” = 0% and 2*. Hence we do
not consider it for the last two sectors where J = 1. For the other
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D* (k) D*(k3) p D;  Dj Dy
\ D(q)/ \ b / \ D /
m(k1 — q) i U(ks—q) Ty | K Ky | K
/ K(?N / T \ / e \
K* (ko) K*(ky) K o ® o}
D* D*
\ D /
s * + T
K K*

Figure 9.1: Box diagrams included in the calculus.

quantum numbers we consider the box diagrams in Fig. 9.1. We do
not include any box diagram for the channel D?p since p goes to 7w
and the vertex D?mD; is equal to zero. Of course there exist other box
diagrams involving the exchange in the t-channel of two pseudoscalars
diferent from 77, 7K or KK (the latter illustrated in Fig. 9.1) but
they are suppressed and can therefore be neglected. Crossed box
diagrams (with four pseudoscalar mesons in the intermediate state)
and box diagrams involving anomalous couplings were also calculated
in Chapter 3, but they were found to be much smaller, especially in
the case of the anomalous coupling, than the contributions from the
box diagram of Fig. 9.1. The final formula for each of the diagrams
in Fig. 9.1 is given in the Appendix E. One can see in these formulas
that the cuts plotted in the diagram in Fig. 9.1 are clearly visible in
the denominators.

Following the ideas of [116] we include two different form factors in
the integral of the box-diagram potential (formulas of the Appendix
E). These are:
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e Model A: We multiply the vertices in the diagram of Fig. 9.1

by:
A2 _ m2
Fi(¢%) = b1 : 9.1
) Af — (k) — ¢°)% + |q1? (6-1)
A2 _ m2
Fi(¢*) = b 3 , 9.2
= =P (02)
with ¢* = SHf/;mZ, ¢ being the running variable, and A, =

1.4,1.5 GeV [85, 86]. Therefore, we add F;(¢*)?F3(q*)? to the
integrand in Egs. (E.1), (E.4) and (E.8) and we put g =
M,/2 fr.

e Model B: Here we use a exponential parametrization for a off-
shell 7(K') evaluated using QCD sum rules [123],

F(q?) = @2 -1at)/a2 (9.3)

with A = 1,1.2 GeV and ¢° = 8+Z€gmz. So we add F(¢?)*
to the integrand in Egs. (E.1), (E.4) and (E.8). In this case
we also change the factor g* in these equations by the corre-
sponding product of g’s, g = M,/2 fr, with fr = 93 MeV,
gp, = Mp:/2 fp, = 547 with fp, = 273/v/2 MeV [78] and
9p = gpip. = 8.95 (experimental value) [120, 121, 122].

In Figs. 9.2 and 9.3 we compare the real parts of the box di-
agrams with the contact terms plus vector-exchange terms for the
D*K* — D*K* and D*K* — D¢ amplitudes (the interaction is
very attractive for these amplitudes, see Table D.4). As one can see
in these figures, the box diagram has a small real part compared to
the strong potential provided by the four-vector contact terms plus
vector-exchange diagrams, particularly in the region of energies cor-
responding to the states that we find. Therefore, one can neglect the
real part of the box diagrams as it was done in [85, 136, 116]. In
Fig. 9.4 we depict the imaginary part of the box diagrams in Fig.
9.1 for the two models. Here we set A = 1400 MeV for the Model
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Real part of the potential for I=0 and J=0 Real part of the potential for I=0 and J=2
=50¢ oo — contact + exch. ] —100¢ — contact + exch.
—100¢ DK box (model A) - DK box (model A)
—150F DK box (model B) %_200 b DK box (model B)
~200} &
-300F
-250¢
—-300F —400r
—350% . . . . . 1 . . . . . . i
2300 2400 2500 2600 2700 2800 2900 2300 2400 2500 2600 2700 2800 2900
VsiMeV] VsMeV]

Figure 9.2: Comparison of the real part of the box diagram with
the contact term plus vector-exchange term for the D*K* — D*K*
amplitude and I =0, J =0 and J = 2 respectively.
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Real part of the potential for I=0 and J=0

of IR O T I I T T
- contact + exch. -50f - contact + exch.
-50p DK box (model A) =—100f DK box (model A)
K box (model B) ;% DK box (model B)
~100[ ~150}
—200F
—150} q
2300 2400 2500 2600 2700 2800 2900 2300 2400 2500 2600 2700 2800 2900
Vs [MeV] Vs [MeV]

Figure 9.3: Comparison of the real part of the box diagram with
the contact term plus vector-exchange term for the D*K* — D¢
amplitude and I =0, J =0 and J = 2 respectively.
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Model A: Model B:
Imaginary part of the potential for I=0 and J=0 Imaginary part of the potential for I=0 and J=0
O ‘ ‘ ‘ q Q= ‘ ‘ q
_2f . = — DK@ 1 _10f . = T DRaay — |
-4t T DKaO T S~ _ DK@K) - -
S —60 - T DKKK) ] 9_20’ DK(KK)
Q Q
X _gf ~ —30¢
—10} —40}
-12f —50f ]
2300 2400 2500 2600 2700 2800 2900 2300 2400 2500 2600 2700 2800 2900
Vs [MeV] Vs [MeV]

Figure 9.4: Imaginary part of the box diagrams in Fig. 9.1 for I =0
and J = 0.

A, while we put A = 1200 MeV when using Model B. As this figure
shows, the Model B with the form factor of Eq. (9.3) provides a larger
imaginary part compared to Model A which results in a larger width
of the resonance. These modifications do not practically change the
positions of the poles and the couplings are barely affected. How-
ever, the convolution of the mass distribution and the consideration
of the pseudoscalar decay channels in terms of box diagrams leads to
a larger width of the respective resonances. The reevaluation of the
Bethe-Salpeter equation, Eq. (3.22), leads to the squared transition
amplitudes pictured in the Figs. 9.5 - 9.9. The corresponding masses
and widths are given in Tables 9.2 - 9.6.

9.21 (C=0;5=1;1=1/2 (hidden charm)

The amplitudes from the four-vector contact terms plus vector-exchange
diagrams can be found in Table D.1 in the Appendix D. We can see
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from the tables that the potential is small and repulsive except for
the D:D* — J/¢K* and D:D* — D?D* amplitudes for J = 1 and
2 respectively. However, the attraction is too small to bind the sys-
tem and therefore we do not get poles or possible states from the
T-matrix.

9.22 C=0;5=1;1=1/2 (hidden charm)

The amplitudes from the four-vector contact terms plus vector-exchange
diagrams can be found in Table D.1 in the Appendix D. We can see
from the tables that the potential is small and repulsive except for
the D*D* — J/¢K* and D:D* — D*D* amplitudes for J = 1 and

2 respectively. However, the attraction is too small to bind the sys-
tem and therefore we do not get poles or possible states from the
T-matrix.

923 C=15=-1;1=0

In contrast to the above sector the potential in the case of C' =1 and
S = —1 is very attractive as indicated in Table D.2. For I = 0 and
J = 0,1 the potential is around —10 ¢ whereas it is about —16 g2 for
J = 2. In this sector the strong interaction from the potential leads
to bound states. We obtain one resonance for each spin, J = 0, 1 and
2, where the corresponding pole positions and couplings are given in
Table 9.1. The convolution of the G function due to the K* width
leads to a minor shift in the pole positions (only 3 MeV for J = 2)
and around 3 MeV in the widths for the three states. This is a minor
effect compared to the contribution of the box diagrams. Therefore
we neglect the K* width in the final |T'|* analysis. |T'|? is depicted
in Figs. 9.5 and 9.6 for J = 0 and 2 and for the two models A and
B after the inclusion of the corresponding box diagrams of Fig. 9.1.
Here, the two models lead to similar results except for the model B
with A = 1200 MeV. In Table 9.2 we show the values of the masses
and final widths of the states. Since these states have exotic flavor
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quantum numbers there is no possible ¢q counterpart.

I V/spe (MeV)  gpege
0[0*] 2848 12227
0[1+] 2839 13184
0[2+] 2733 17379

Table 9.1: C' =1;5 = —1;1 = 0. Quantum numbers, pole positions
and couplings g; in units of MeV. Here, o = —1.6.

924 C=15=-1;1=1

In this sector, which also has exotic quantum numbers, we can see
from Table D.3 that the interaction is very repulsive in contrast to
the previous case of I = 0. Therefore, no bound states or resonances
are found in this sector.

9.25 (C=1,5=1,1=0

The strong interaction coming from the contact terms plus vector-
exchange diagrams leads to a potential of the order of —18¢? to
—26 g%, see Table D.4 in the Appendix D, which is enough to bind
the D* and K* mesons. In this sector we obtain three poles with
masses M = 2683, 2707 and 2572 MeV for J = 0, 1 and 2, respec-
tively. The potentials in Tab. D.4 provide the kernel V' of Eq. (3.22)
which results in the pole positions and couplings summarized in Ta-
ble 9.3. The state with J = 2 is more bound than the other poles
for J =0 and 1 which can be identified with the D}(2573) resonance
in the PDG. Here, the D*K* channel is dominant for the three dif-
ferent spins. Nevertheless the other channels, Diw and D¢ are not
negligible.
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IIT7] /50 (MeV) Model T (MeV)
0[0+] 2848 A, A = 1400 MeV 23
A, A = 1500 MeV 30
B, A = 1000 MeV 25
B, A = 1200 MeV 59
0[17] 2839 Convolution 3
0[2+] 2733 A, A = 1400 MeV 11
A, A = 1500 MeV 14
B, A = 1000 MeV 92
B, A = 1200 MeV 36

Table 9.2: C' =1;5 = —1;1 = 0. Mass and width for the states with
J =10 and 2.
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1=0;J=0 1=0;J=0
(s 1
5.x10 4.%10°F 1
4 x106k — A=t400Mev ] —  A=1000 MeV
A=1500 MeV 3.x10°F A=1200 MeV ]
23.x100p 7T AT ] = T AT
= 1 Baxot :
] 1.x 10} 1
2700 2750 2800 2850 2900 2950 3000 2700 2750 2800 2850 2900 2950 3000
Vs [MeV] Vs[MeV]

Figure 9.5: Squared amplitude in the D*K* channel for I = 0 and
J = 0. Left: Model A, right: Model B.



192 Results

1=0;J=2 1=0;J=2
‘ ‘ ‘ ‘ ‘ ‘ 3.x107F ‘ ‘ ‘ ‘ -
8
1.x 108} 1 25%107F 1
—  A=1400 MeV A=1000 MeV
8.x 107} ] 2.x107} ]
~ - - A=1500 MeV . - A=1200 MeV
6.x 107 ¢ 1 Bsx107; ‘ 1
4.x10"F 1 1.x107F ]
2.x107f 1 5.%x10°F 1
ok ‘ ‘ ‘ ‘ . Ok ‘ ‘ ‘ ‘ .
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Figure 9.6: Squared amplitude in the D*K* channel for I = 0 and
J = 2. Left: Model A, right: Model B.
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When considering the K* width, which is equivalent to replacing
G by the convoluted G, neither the mass changes significantly (in fact
only 2 MeV) nor the width is affected by this modification. Therefore,
the effect of the convolution is so small that it does not need to be
considered. Only the consideration of the box diagrams has some
influence on the width. In Figs. 9.7 and 9.8 |T'|? is plotted after the
inclusion of the box diagrams of Fig. 9.1 for the two models A and
B. We observe that these diagrams provide some width for the states
with J = 0 and 2 (possible quantum numbers of the box diagrams),
although the width provided by the model B is much bigger than
that from model A. The values of the masses and widths are given in
Table 9.4. Model B with A = 1000, 1200 MeV provides a width for
the state appearing around 2572 MeV of 18 — 23 MeV.

We associate this state with the D¥,(2573) of the PDG |[78] since
the quantum numbers, position and width agree with those of the
PDG. We should note that this is the case where we found the largest
attraction, of the order of —26 g2, which is even bigger than what was
found for I = 0,.J = 2 in the pp interaction (~ —20 ¢g?) which lead to
the production of the f»(1270) [85, 86].

I[JP] \/gpole (MeV)  gp-k- 9D:w  9D:¢
0[07] 2683 15635 —4035 6074
0[17] 2707 14902 —5047 4788
0[27] 2572 18252 —7H97 7257

Table 9.3: ¢' =1;5 = 1;1 = 0. Quantum numbers, pole positions
and couplings g; in units of MeV for / = 0. Here o = —1.6.
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I[J7] /Sy (MeV) Model Tipeo (MeV) Doy (MeV)
0[0*] 2683 A, A = 1400 MeV 20 i
A, A = 1500 MeV 25
B, A = 1000 MeV 44
B, A = 1200 MeV 71
0[17] 2707 Convolution 4 x 1073 -
0[2+] 2572 A, A = 1400 MeV 7 204578
A, A = 1500 MeV 8
B, A = 1000 MeV 18
B, A = 1200 MeV 23

Table 9.4: C'=1;5 = 1;1 = 0. Mass and width for the states with
J =10 and 2.
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Figure 9.7: Squared amplitude in the D*K* channel for I = 0 and
J = 0. Left: Model A, right: Model B.
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Figure 9.8: Squared amplitude in the D*K* channel for I = 0 and
J = 2. Left: Model A, right: Model B.
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926 C=1;S=11=1

In this sector the potential is attractive for the D*K* — D?p reaction.
For J = 0 and 1 this potential is around —7 g whereas it is by a
factor of two bigger —13 g2 for J = 2 (see Table D.5). In fact, we
only obtain a pole for J = 2. For J = 0 and 1 we only observe a
cusp in the D?p threshold. In Table 9.5 we show the pole position
and couplings to the different channels. Both channels, D*K* and
D’ p, are equally important as one can deduce from the corresponding
couplings. The broad width of the p meson has to be taken into
account by means of Eq. (3.24) which results in a width of 8 MeV.
In this case the box diagrams in Fig. 9.1 for the D*K* channel
only make a small contribution to the width of the resonance (see
Fig. 9.9). In contrast to the previous situations the width of the
resonance is mainly generated by the convolution of the p mass while
the box diagrams play a minor role. In Table 9.6 we give the exact
values of the width in the two models which give very similar results.
No experimental counterpart is found for this state in the PDG.

I°[T"] /spqe (MeV)  gperce gpsp
1[2+] 2786 11041 11092

Table 9.5: C' =1;5 = 1;1 = 1. Quantum numbers, pole positions
and couplings g; in units of MeV. Here o = —1.6.

927 C=15=21=1/2

This sector is exotic since a double-strange state is not reached in ¢q.
As we can see from Table D.6 in the Appendix D, the potential is
repulsive for all possible spins. Therefore we do not get any bound
state or resonance in this sector.
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I[JF] /5y (MeV) Model T (MeV)
112+] 2786 A, A = 1400 MeV 8
A, A = 1500 MeV 9
B, A = 1000 MeV 9
B, A = 1200 MeV 1

Table 9.6: C' = 1;5 = 1;1 = 1. Mass and width for the state with
J =1 and 2.

I=1;J=2 I=1;J=2
25%107F , ; . . . , ;
n ] 2.x107f
2.x10%0 Ao 1400 Mev —  A=1000 MeV
5% 107t
(\._1~5><107' - A=1500 MeV ] N_l Sx100 A=1200 MeV
= = 7
1.x 107 Lx10%
5. 10} 5.x 10}
OF ; . . ; Bl OF ; . . ; 1
2760 2780 2800 2820 2760 2780 2800 2820
Vs [MeV] Vs [MeV]

Figure 9.9: Squared amplitude in the D* K* channel for I = 1 and
J = 2. Left: Model A, right: Model B.



The D*,(2573) and flavour exotic mesons 199

928 (C=2S=01=0

In this case we study double charmed states by coupled D*D* chan-
nels. The amplitudes are given in Table D.7, where the potential is
zero for J = 0 and 2. This can be explained by the fact that the D* D*
state is antisymmetric for / = 0. Therefore, the only possibility to
obtain a fully symmetric wave function is provided by J = 1 which
is equivalent to the rule L+ S+ I = odd, since L = 0 for s—wave (5,
spin = J for L = 0). For J = 1 the interaction is strongly attractive
and we obtain a pole in the scattering matrix. The pole position
and coupling to the D*D* channel is given in Table 9.7. The width
of the D* meson is very small (~ 100 keV or less in the case of the
neutral charmed meson), hence, we do not perform the convolution
of the G function. Since we deal with a J = 1 state we do not get
contribution from the box diagram. Therefore we obtain a state with
zero width or a very narrow width when considering the convolution.
This sector with C' = 2 is exotic and so far there are no experimental
observations.

[[JP] \/Epole (Mev) 9D* D~
0[1+] 3069 16825

Table 9.7: C' = 2;5 = 0;1 = 0. Quantum numbers, pole positions
and couplings g; in units of MeV. Here o = —1.4.

929 C=2,5=0;1=1

Here we deal with the reversed situation as in the previous I = 0
sector. The isospin combination for I = 1 of the D*D* channel is
symmetric and therefore J = 1 is forbidden (L+.5+ 1 = even). How-
ever, the potential is very repulsive for J = 0 and J = 2 (see Table
D.8) and consequently we do not obtain any pole in the scattering
matrix.
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9210 C=2S=11=1/2

This sector is also exotic. The amplitudes from the four-vector con-
tact terms plus vector-exchange diagrams lead to a repulsive potential
for / = 0 and 2 and is attractive for J = 1 as indicated in Table D.9.
We get a pole almost at the D?D* threshold (4121 MeV), and the
pole position and the coupling are given in Table 9.8. This state
comes with zero width since the box diagrams are not possible for
J =1 and any possible convolution of the G function would lead to
a very small width. This state is also a prediction of the model and
needs to be confirmed by experiment.

[[JP] \/gpole (MGV) gD;*D*
1/2[14] 4101 13429

Table 9.8: C'=2;S = 1;1 = 1/2. Quantum numbers, pole positions
and couplings g; in units of MeV . Here, o = —1.4.

9.211 (C=2,=2,1=0

The D;D? channel allows us to study double-charm double-strange
objects. Since we deal with two identical particles with isospin zero,
the isospin D} D?-state is symmetric and hence we get interaction for
J = 0 and 2 while the potential zero for J = 1 (see Table D.10).
Since the potential is strongly repulsive we do not obtain any state
in this sector.

In Table 9.9 we give a summary of the states obtained together
with the only experimental counterpart observed so far.
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S
*

C,S  I[JP] /s Ta(A=1400) Ig(A = 1000) State Viep  Lew %

1,—1  0[0*] 2848 23 25 >
0[11] 2839 3 3 i
0[2+] 2733 11 22 S

1,1 00t 2683 20 44 S
0[1t] 2707 4% 1073 4% 1073 §
0[2+] 2572 7 18 D,(2573) 2572.6+£0.9 20=+5 ?gb
1[2] 2786 8 9 §

2,0, 0[1%] 3969 0 0

2,1 1/2]1%] 4101 0 0

Table 9.9: Summary of the nine states obtained. The width is given for the model A, "4, and B,
I'z. All the quantities here are in MeV.
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9.3 Conclusions

In the present work we can assign one resonance to an experimental
counterpart, the D}(2573), giving a novel interpretation for this res-
onance as a vector - vector molecular state. Thus, the assumption of
the D*K* structure of the Dj(2573) is consistent with the DK na-
ture assumed for the D*(2317), the D*K molecular structure of the
D*(2460) or the X(3872) (DD*). The other two states around 2700
MeV are predictions of the model without experimental evidence for
these masses and quantum numbers up to now. For I = 1 we find
only one state, of non exotic nature, a 2 state around 2786 MeV.
In the flavor-exotic sectors, we obtain interesting predictions for new
states. For C = 1; 5 = —1;1 = 0 we obtain three new exotic states
with I[JP] = 0[0*], 0[1"] and 0[2F] respectively that can be inter-
preted as D*K* bound states. In the case of the double-charm sectors
C=2,8=0;1I=0and C =2;5 = 1;1 = 1/2 the potential leads
to a bound system for J = 1 only. Therefore, we deal with two very
narrow states with masses close to the thresholds D*D* and D}D*
respectively. It is interesting to notice that in [156], the authors per-
form a systematic analysis of doubly charmed exotic states as meson -
meson molecules and they conclude the existence of a stable isoscalar
doubly charmed meson with quantum numbers /[J¥] = 0[17] (here
the authors consider a set of two coupled channels, DD* and D*D*).
To sum up, all states are relatively narrow and in the flavor exotic
sectors, there is no experimental counterpart for all exotic structures
which can be considered as D*K*, D*K*, D*D* and D?*D* molecular
states, rendering the experimental search for these new states out of
the qq spectrum very challenging.
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Mesons with charm in the nuclear
medium

We study the properties of charm and hidden charm mesons in the
nuclear medium. The D4y(2317) is believed to be a DK bound state
or dynamically generated resonance strongly coupled to DK. The
X(3700) is a theoretical state predicted just below the DD threshold
and it is like a DD bound state [108].

Although these two states are very narrow in the free space we will
see that they experience a large change in the width inside a nuclear
medium. The study of the properties of mesons in the medium brings
valuable information on the nature of the particles and the reactions
that occur when D mesons interact with nuclei.

10.1 Introduction

One of the features of the study of the properties in the medium is
that new decay mechanisms take place. Since there is more available
energy, new chains of reactions that did not occur in the free space
will show up in the medium. We quote here two interesting examples:

203
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the A(1520) baryon and the w meson. The A(1520) is a dynamically
generated resonance that couples strongly to 7%(1385), this channel
is above the mass of the A(1520) and hence the A(1520) cannot decay
into this channel. However, in the presence of the nucleus, the pion
can give rise to a particle - hole excitation, there is an increase of
140 MeV of phase space for this reaction and the decay takes place.
Finally, this leads to a large width of the A(1520) in the medium.
One finds an analogy in the w decay in the medium. In free space
the w meson decays into 37. This decay could go through pr but
there is no enough phase space. Again, in the medium the p meson
is modified in the nucleus through its decay into 27 and the 7 can
become a ph excitation. At the end, one finds spectacular changes in
the width of the w-meson of 100 — 150 MeV [157, 158, 159, 160].
The study of the properties of scalar mesons in the nuclear medium
has been studied for a long time. The most studied has been the
0(600). In [161] the ¢ and 7 mesons at high density were studied
within the Nambu-Jona-Lasinio model and a subtantial drop of the
m, was found. In contrast, the m, increase with the density. In
[162] Hatsuda et al. find that due to the partial restoration of the
chiral symmetry, m, would approach m, and similar conclusions are
reached by the use of non-linear chiral Lagrangians [163, 164] where
the modifications of the o come from the strong p-wave coupling
of the pions to ph and A-hole excitations. Experimentally, strong
medium effects of the o have been observed at low invariant masses
in the A(m, 2m) and A(v, 27) reactions [165, 166, 167, 168]. See,
however, a different interpretation of the A(y, 27) results in [169].
For a detailed revision of this Chapter see [110].

10.2 Brief discussion on the dynamical gen
eration of the Dy (2317) and X(3700)

Here we summarize briefly the work done in [108] and the main con-
clusions achieved of relevance to us here. The authors start from two
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different models for the interaction between pseudoscalar mesons of
the 15-plet. Whereas one is a chiral Lagrangian in SU(4) that fol-
lows the general rules of SU(n) breaking [170], the other model is a
phenomenological model that extrapolates directly the SU(3) chiral
Lagrangian for the interaction between mesons to SU(4). Although
at the begining the structure is SU(4) flavour symmetric, afterwards,
the symmetry is strongly broken, 1) due to the consideration of real
masses which is needed in order to respect thrsholds and fullfill uni-
tarity, and 2) the heavy vector exchange diagrams are suppressed by
the exchange of a heavy mass. Both models, the chiral Lagrangian
and the phenomenological one, arrive to the same conclusions, with
qualitative agreement, in the results, and the discussion serves to
show uncertainties.

Once one derives the kernel (potential) from the lowest order La-
grangian it is included as input in the Bethe-Salpeter equation, Eq.
(3.22). However the use of the cutoff, Eq. (3.23), is more convenient
in the nuclear medium. The reason is that the dimensional regu-
larization method relies upon Lorentz covariance, and this is lost in
nuclei where one has a privileged reference frame, which is the one
where the nucleus is at rest. As a consequence, the use of the dimen-
sional regularization method introduces pathologies in the selfenergy
that are avoided with the cutoff. For these reasons, the cutoff method
is used in the channels where we renormalize the particles, DK and
DD (those to which the resonance couples more strongly), and the
cutoff is chosen to obtain the same value of the G function at thresh-
old than in the free space, and is much bigger than the on-shell three
- momenta of the particles in the loops. In the rest of the channels
we use dimensional regularization.

The prescription for the n — 1’ mixing used in [171] is followed.
The couplings are shown in Tables 10.1 and 10.2

We can extract the following conclusions:

1) The hidden charm state X(3700) couples mostly to DD and
D, D,. From the square of the couplings which would enter into
the selfenergy of the resonance we obtain a factor of two more



206 Brief discussion on the dynamical generation of the D (2317) and X (3700)

Channel Re(gx) [MeV] Im(gx) [MeV] |gx| [MeV]

ata— 9 83 84
KTK~ 5 292 292
DD~ 5962 1695 6198
7070 6 83 84
KYKO 5 22 22
n 1023 242 1051
' 1680 368 1720
n'n’ 922 —417 1012
DODO 5962 1695 6198
DfD; 5901 —869 5965
Nen 518 659 838
N 405 9 405

Table 10.1: X (3700): Couplings of the pole at (3722-i18) MeV to the
channels (C=0, S=0,I=0).
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Channel Re(gp,,) [MeV] Im(gp,) [MeV] |g9p.,| [MeV]
K+D° 5102 0 5102
K°D* 5102 0 5102
nDF —2952 0 2952
n'Df 4110 0 4110
ne D} 2057 0 2057
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Table 10.2: D (2317): Couplings of the pole at 2317 MeV to the

channels (C=1, S=1,I=0).

weight for the DD than D,D,. In addition, the DD channel is
38 MeV above the X(3700) pole whereas the D D, threshold is
238 MeV far away from the mass of the X(3700). This lead to
a minor contribution of the D,D, channel of 10% of the DD.
When calculating corrections in the medium, we shall consider

the normalization of D but not D,.

2) The D4(2317) is mostly a DK bound state. Although the con-
tributions of other channels, as nD, and 1D, is not negligible,
we can consider only the effects in the medium of the D K chan-
nel from similar considerations to those made in the previous
paragraph. Since the KN interaction is weak and has no sin-
gularities, the DK channel can be renormalized in a very good
approximation incorporating only the D-selfenergy. Therefore,

we will only calculate the selfenergy of the D-meson.

Due to the differences between the masses of the 16-plet when we go
from SU(3) to SU(4) we are introducing more uncertainties. This was
the reason on why two models where used in [108] although it was
found that the states that we study here where rather independent of
the model. However, in this study the evaluation of the uncertainties
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Channel |g;| Model A [MeV| |g;| Model B [MeV]

DK 7215 7503
Dy 2952 3005
Dyt 4110 4146
D1, 2058 1246

Table 10.3: Couplings of the Dy,(2317) to its building blocks. Model
A refers to the model using both, f, and fp in the couplings, while
in Model B only f, is used, respecting constrains from chiral sym-
metry. The channels are in isospin basis. The position of the pole is
fixed in both models to 2317 MeV, taking ay = —1.48 in the model
A, and ay = —1.16 in the model B (ay means the substraction
constant used in [108] for the channels involving at least one heavy
pseudoscalar meson).

plays a more important role and we do it carefully. In particular
we vary the f, and fp parameters in the range f, € [85,115] MeV
and fp € [146,218] MeV. The results with their uncertainties will be
shown in the Section 10.5. Furthermore, for the case of the scattering
of light mesons with heavy ones, chiral symmetry is recovered in the
phenomenological model when f, is used for all the cases. We do a
fine tuning of the subtraction constant in order to get the position
of the D4(2317) at the right place and look at the couplings. The
results using f, and fp (model A) and only f, (model B) in the
phenomenological model can be seen in Table 10.3. We can observe
differences in the couplings of 4% in the main building block, the D K
channel. This is an indication that the errors induced by the explicit
chiral symmetry breaking are small and gives support to the model
used in [108]. In the present paper we use the values of the couplings
obtained with model B (only f).
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10.3 The self-energy of the D-meson

10.3.1 s-wave self-energy

The D meson s-wave selfenergy is obtained from a selfconsistent
coupled channel calculation where the coupled-channel structure in-
cludes the channels wA., 7%, DN, nA., KZ., n¥. KZ., DA,
D%, n’A. and n'Y.. The potentical comes from a broken SU(4)
s-wave Weinberg-Tomozawa interaction supplemented by an attrac-
tive isoscalar-scalar term. However, the last term, the X py term, is
a subject of controversy. Even though its inclusion is supported by
QCD sum rules and mean - field approaches, the selfconsistent cou-
pled channel calculation of [172] and [173] shows that considering it
or not is not relevant, leading to results qualitatively identical. The
differences found when using the two different options where smaller
than the uncertainties from other sources (for example SU(4) break-
ing) and for this reason we ignore this term in the calculations of the
D s-wave selfenergy. The Bethe-Salpeter equation is solved using the
cutoff method and the cutoff is fixed when reproducing the A.(2593).
When this is done, a new resonance appears around 2800 MeV, the
¥.(2800). The in-medium effects are included in the meson-baryon
loop function and they are: 1) Pauli blocking effects on the nucleons
(the scattered nucleons cannot go to states already occupied in the
fermi sea), 2) Mean - field binding of baryons via a ¢ —w model and
3) renormalization of 7 and D through the inclusion of the selfenergy
in the intermediate propagator. Moreover, the s-wave D selfenergy
is obtained iteratively in a selfconsistent procedure when one inte-
grates the in medium s-wave DN amplitude over the nucleon Fermi
sea n(p):

s N d3p ~([— — ~(T— -
(0", 4.p) = / Gy )T (P P p) + 3T (P Pup)]

(10.1)
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10.3.2 p-wave selfenergy

We start by recalling the SU(3) chiral Lagrangian [174, 175| for the
coupling of pseudoscalar mesons of the octet of the 7 to the baryon
octet of the proton p

1 _ 1 5
€7 = 5D < By*ys{w,, BY > +3F < By'ylu,, B >, (10.2)

where

V2
W=U=e"7 , (10.3)

with ¢ the usual SU(3) matrix of the meson fields, f = 1.15f, with
fr =93 MeV and

u, = iu'0,Uu’ = —\/75 .6+ O(¢%) . (10.4)

The B and B terms stand for the SU(3) matrices of the baryon
fields and <> for the trace in SU(3). Hence, at the one meson field
level we have

1 _ 1 5
P = _\f—sz < By"y5{0u¢, B} > _f—QfF < By"5[0,9, B] >
(10.5)

The a(p”)y"vysu(p) vertex, assuming p ~ 0 since it will be the
momentum of a nucleon in the Fermi sea, can be expressed up to
O(1/M?) in terms of the & operator such that the 7" matrix corre-
sponding to the diagram of Fig. 10.1 is given by

qO

oM

1
—it = — (1

757 )(D+ F) < B¢B > +(D — F) < BB¢ >|

(10.6)

with M’ the mass of the outgoing baryon in Fig. 10.1. We take
D = 0.80 and F = 0.46 from [176, 177, 178]. In order to evaluate
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/

p p

Figure 10.1: Meson-baryon scattering with an outgoing baryon. The
labels p, p’ and q refer to the momenta of the initial baryon, final baryon
and meson respectively.

the coupling of the D meson to the nucleon and A, 3. we use SU(4)
symmetry. We couple the 20-plet of the baryons, to which the nucleon
belongs, to the 20 representation of the antibaryons in order to give
the 15-plet of the mesons of the 7 and the D [78]. By using the
SU(4) Clebsch-Gordan coefficients of [179], we have two independent
irreducible matrix elements which can be related to the D and F
coefficients. The result is that the couplings D% — Af, D% — T,
Dtp — S+, Dn — X0 D'n — AF, D™n — T are identical to
those of K™p — A, K p — X0, K% — ¥t Kn— Y7, K'n — A,
K% — X0 given in [180] by

0
. a5 q D+ F D-F
—ZVDNY :O’q(l— QM,) |:Oé 2f +6 2f 3 (107)

with the coefficients «, 3 of the Table 10.4. We also take into account

D% — AF D% — ¥+ D% — X2 Dtn — Af Dtn — SF Dfp — ¥FF
2 2

o —Z 0 0 -2 0 0
1 1

3 7 1 V2 NG —1 V2

Table 10.4: Coefficients for the DNY couplings

the coupling of the D meson with 3*(2520) and NV, in analogy to
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the p-wave interaction of pions and kaons with nucleons. For pions
and kaons it was shown that the N™'A and N~'3*(1385) excitations,
respectively, are relevant for the calculation of the p-wave self-energy.
Once again, we obtain the same result as in [180] for the N ~13*(1385)

26D + F
5 2f ’

—iVpny- = aSt- J( (10.8)

with ST being the spin 1/2 — 3/2 transition operator and a the
coefficients given in Table 10.5.

D% — ¥t D% — ¥ Dfp— ¥t Dtpn— o

1
a - ~1 ~1

Sl

Table 10.5: Coefficient for the DNX¥(2520) couplings

Figure 10.2: p-wave selfenergy diagram of the D meson.

With all those couplings, we can readily evaluate the p-wave D
selfenergy given by the diagram of the Fig. 10.2, in complete analogy
to [180]. The p-wave contribution coming from the N~'A, and N1,
excitations reads

. 1 . . 1 . .
(", q,p) = {5 Bhopn: T*Unt (6% 0 9) + 5 B0, 0 Ust (. 0. )
1 ) )
+5Bhonsnd*Usp (", @, ) L) (10.9)
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where

Bpny = <1— a

0 D+ F D—-F
2My ’

of ey

and U is the Lindhard function for the N~'Y excitation given by

(10.10)

3 My 1 |z+1|
ReUy (¢, q,p) = —p—¥ 11—
. 3 M
mUy(¢".0.p) = —mp—={(1=2)6(1= =]} (10.11)
qPF
2
0 q My
z = - —(My — M) ) 22X
(q 2My (My )) qpr

with p = p, + p,, the nuclear density, pr = (372p/2)"/3 the Fermi
momentum, My the hyperon mass and M the nucleon mass. The
same result holds for the p-wave D selfenergy ignoring small mass
differences between particles of the same isospin multiplet.

The p-wave selfenergy due to the excitation of the decuplet is also
readily evaluated and we find

* — 1 — —
H(Dp()) (q07 q, p) = {gclzjopgz—*q 2UEC+* (q07 q, p)
1 o -
+3Chonsy TUsg- (6", @, )} FL(0) 5 (10.12)
where G
26D+ F
Cpny = afyTT : (10.13)

with a given in Table 10.5 and f; being a recoil factor [180|, which
we approximate by fy ~ (1 — Mp/My).

In Egs. (10.9) and (10.12), we include a form factor of monopole
type at the D meson-baryon vertices by analogy to the one accom-
panying the Yukawa 7NN vertex [180, 181, 182, 183].

Fr(q®) = e with A = 1.05 GeV. (10.14)
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Figure 10.3: p-wave selfenergy diagrams of the D meson.

This form factor is suited for light hadrons, i.e., pion excitation
of ph. However, it is unlikely that the range of A is the same when
dealing with D mesons. There are indications that the form factor
to account for off shell D mesons requires a value of A substantially
larger [123]. We shall come back to this point at the end of the
Section 10.5, reevaluating results with the heavy meson form factor
and analyzing the uncertainties.

With regard to the p-wave DT selfenergy, it turns out to be the
same as for D° in symmetric nuclear matter p,, = p,.

For the D meson, we note that the p-wave D selfenergy would
correspond to the diagrams in Fig. 10.3, which involve the difference
between the sum of D and Y masses, and the nucleon mass. The
contribution of those diagrams is negligible due to the large mass
of the D and ., A.. The same holds for the p-wave D selfenergy
coming from the N~13%(2520) excitation.

10.4 Two meson loop function in the medium

The medium modification are introduced in the two meson loop func-
tion. For a DD intermediate state, it can be written as

G, P =i (;L:&DD@,MD(P “ap). (0.15)

The modifications of the D (D) propagator in the medium go through
the selfenergy of the meson:

Dp(¢",3,p) = . . (1016)
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L —
N Poq 7
D\*P/

Figure 10.4: The DD loop function of the scalar meson. The shaded
circle indicates the D selfenergy insertion.

An alternative way to write down propagators is to use the Lehmann
representation

. > [Spw.dp)  Spw.dp)
Dp(q" = [ d - — 10.17
D(q>q7p) /0' w{qo_w_’_”] q0+w—Z7] ) ( )

where the Sp and Sp stands for the spectral functions of D and D
mesons respectively

Spwy(d’, 7. p) = ! Il (".4,1) . (10.18)
T 1(g9)? = 72 — m2 — T (¢° @, p)|”

When evaluating the DD function loop in the medium we shall
dress the D propagator and leave the D propagator free. The reason
is that there is no absorption of D by nucleons, i.e. DN does not
decay to baryonic resonances with c-quarks instead of ¢ (and therefore
ImIl; = 0). Thus, the D selfenergy becomes very small compared to
its mass and we neglect it leaving the propagator for D free. This is
analogous to the K and K mesons, whereas the K can be absorved
in the medium through reactions KN — wA, 73, the K* cannot.
Thus, we evaluate the loop function of the diagram in Fig. 10.4,
where the blob symbolizes the D selfenergy insertion. The Sp part
in the propagator leads to a contribution of order 1/(P°+2wp) upon
¢° integration, which is very small and can be neglected. Therefore,
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the DD loop function gets symplified, and we find

~ o 4 00 7 1
G(P°,P.p) = z/ dq4/ PRCLICUT) R S
(2m)* Jo ¢’ —wHin (P°—q°)?—q" —m$ +in

d*q /°° Sp(w,q,p) 1
— dw LA — . (10.19
/(%)3 0 PO —w —wp(q) +in 2wp(q) ( )

where wp(7) = (% + m%)"2. The integral of Eq. (10.19) is evalu-
ated with a three momentum cutoff of ¢, = 0.85,0.9 GeV for the
X(3700) and D4y(2317) respectively, equivalent to the use of dimen-
sional regularization of [108]. The discussion remains the same for
the D,(2317) but changing D by K.

The full selfenergy of the D-meson comes from the coherent sum
of the s-wave and p-wave selfenergies.

10.5 Results

The s-wave and p-wave selfenergies of the D-meson are shown in
Figs. 10.5 and 10.6. In Fig. 10.5 the structures around 1.7 GeV and
2 GeV correspond to the excitation of the hA.(2593) and h¥.(2800),
where A.(2593) and X.(2800) are the 1/2~ dynamically generated
resonances of the theory. In Fig. 10.6, the structures seen in the
p-wave selfenergy with peaks for the imaginary part and oscillations
in the real one around 1.4 to 1.8 GeV correspond to the excitations
of the hA., hX. and hX}.

As we can observe in the Figs. 10.5 and 10.6, the p-wave selfenergy
is more than one order of magnitude smaller than the s-wave selfen-
ergy. This is in contrast to the 7 and K mesons. In the case of pions,
the p-wave component was clearly dominant whereas for kaons it was
larger, however, the relative importance compared to the s-wave was
smaller. The reason is that the s-wave selfenergy goes roughly as the
meson mass while the p-wave scales differently, more like the baryon
mass. In Figs. 10.7 and 10.8 we show the real and imaginary parts
of the two meson function loop in the medium for the X(3700) and
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Figure 10.5: Real (left column) and Imaginary (right column) part of the
s-wave D selfenergy for D three-momenta ¢ = 0.15,0.3 and 0.8 GeV as
a function of the D energy ¢ at densities p = 0.5py9 and p = po, with
po = 0.17fm 3 the normal nuclear matter density.
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Figure 10.6: Real (left column) and Imaginary (right column) part of the
p-wave D selfenergy for D three-momenta ¢ = 0.15,0.3 and 0.8 GeV as
a function of the D energy ¢ at densities p = 0.5p9 and p = po, with
po = 0.17fm ™3 the normal nuclear matter density.
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Figure 10.7: Loop function in the medium: Re G(P°, P,p) (left) and
ImG(PY, P, p) (right) for DD, the channel with the largest coupling to
the X(3700) meson. G(P, P, p) is given from Eq. (10.15).

Dy(2317) respectively. We see that the real and imaginary parts of
G gets modified considerably with density. Due to the opening of new
channels, the imaginary part collects strength below the DD and DK
thresholds. Thus, in the case of the DK loop, the D is renormalized
and accounts for DN — 7wA,., mo. or DN — A, 3., and the DK loop
accounts for intermediate channels hitA K, hn¥. K or hA.K, h¥X . K
(and similarly for the DD loop but with D instead of K). In Figs.
10.9 and 10.10 we show |T'|? for the main channels, D°K* and D°D°
of the D4(2317) and X(3700) resonances for different densities. We
observe practically no change in the pole position and large changes
in the widths of 100 MeV and 250 MeV at p = py for the D,(2317)
and X(3700) respectively, which are spectacular. Note that these res-
onances have practically no width in the free space (I',—o = 0 for the
D4y(2317) and I" )=y = 60 MeV for the X(3700)). The source of these
widths in the medium are the opening of new channels, DN — A,
Y. (p-wave selfenergy) and DN — wA,., 7%, (s-wave selfenergy) and
also the evaluation of the D selfenergy selfconsistently generates two-
nucleon-induced D absorption channels like DNN — NA., nNA,,
mNY., etc. These reactions make the D to get absorved inside the
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Figure 10.8: Loop function in the medium: Re G(P°, P,p) (left) and
ImG(PY, P,p) (right) for DK, the channel with the largest coupling to
the Dy (2317) meson. G(P°, P, p) is given from Eq. (10.15).
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Figure 10.10: X (3700) resonance: |T'|? for the D°D° — D°D° amplitude
for different densities.

nuclear medium through DN or DN N elastic reactions. These mech-
anisms are implicit in the absorption of the resonances. For example,
the new decay channel of the X(3700), X(3700)N — DrA., Dr¥,
has 400 MeV phase space available. This makes that the width of the
X(3700) increases sizeable. This trend of the changes of |T'|> with p
is observed in resonance properties with temperature and/or density
[62, 184, 185]. In addition, the study of such decay channels in the
medium offers information on the couplings of the D (2317) to its
main building block, DK, according with the assumption of dynami-
cally generated resonance. For instance, the cut in the diagram of Fig.
10.11 shows the decay Dy (2317)N — KnA., K7, whose observa-
tion would provide information on the D (2317) — DK coupling
and DN — wA.(3.) cross-section. This study is useful to investi-
gate the nature of the resonances. In [186] the authors suggests a ¢
structure for the D4((2317) and in [187, 188] a mixture of DK with
qq is suggested. If the D4 (2317) was a ¢q state or have different na-
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Figure 10.11: Decay channel of the Dy(2317) in the nucleus into KA.
or Knl,.

ture from mostly DK, such large coupling would not appear and the
width in the medium would be much smaller than the one predicted
here. We also compute the uncertainties. We take a Monte Carlo
sampling of the parameters f, € [85,115] and fp € [146,218] MeV
and evaluate the mass and width at different densities from the |T'|?
plots. While the mass shift is of the same order of magnitude than
the uncertainties and for this reason we do not extract any conclusion
on the mass shift, the changes in the width are much larger than the
uncertainties, what points a large increase of the width with density.

In addition, we analyze the uncertainties linked to the use of dif-
ferent form factors re-evaluating the result with a form factor for an
off-shell D-meson [123]:

2 2

D4

and ¢° onshell:

)‘1/2((MD50 + mN)za M2’ m%{)
2(Mp,, +mn)

qo = MDS() - WK(QOn) y Qon = (1021)

As we can see in Fig. 10.12 for the D,;(2317) there are small dif-
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0 M[MeV] T[MeV]
0.0 2316+5 0
0.5 2306417 58+10
1.0 2295423 115+25
1.5 2283425 150+ 25
2.0 2274431 190430

Table 10.6: Mass and width for the Dy (2317) at different densities
with error bands due to the uncertainties of our model.

p M[MeV]  T[MeV]
0.0 371018 60+£10
0.5 3691 £10 135+£20
1.0 3638 £15 255£25
1.5 3399+£15 320+ 25
2.0 3565+29 340+£25

Table 10.7: Mass and width for the X (3700) at different densities
with error bands due to the uncertainties of our model.
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Figure 10.12: Comparison of |T|* in the case of the D (2317) res-
onance for the two different form factors at p = po: type 1 (dashed
line) with F(¢?) of Eq. (10.20) and type 2 (solid line) with F7(q?)

of Eq. (10.14).
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ferences in the position of the peak and no differences in the width.
In view of possible future experiments we recall the method that has
proved to be the most efficient one: One should look at the produc-
tion rate as function of the mass number normalized to a particular
nucleus. This magnitude, the transparency ratio, measures the sur-
vival probability and is very sensitive to the absorption rate of the
resonance inside the nucleus, i.e. the in-medium resonance width.
See [158, 189 for ¢ and w production. The results in this section are
of relevance to studies planned for the FAIR facility.
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K™ mesons in dense matter

The interaction of vector mesons with nuclear matter is tied to fun-
damental aspects of QCD. Although there is much work done on the
properties of the p, w and ¢ mesons, the bibliography on the prop-
erties of strange vector mesons in nuclear matter is little or almost
absent. Experimentally, the situation is rather similar. The local
hidden gauge formalism allows to us study the interaction of vector
mesons with nucleons. Thus, in this chapter we study the properties
of strange-vector mesons with nuclear matter. The selfenergy will
have two components, the in-medium K* interaction with nucleons
that accounts for Pauli-blocking and is incorporated in a selfconsis-
tent way. In addition, the K7 decay channel is taken into account in
matter. Both components of the selfenergy, K*N interaction and K7
decay in matter are included in the spectral function. One way to
look at the properties of mesons in nuclear matter is the transparency
ratio, which is a function of the survival probability. Because of that,
the transparency ratio [191] for the reaction yA — KT K*~ A’ is also
evaluated.
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11.1 Introduction

The former results on the issue are based on the Nambu Jona Lasinio
model. This model predicts no shift of the masses of vector mesons
in contrast with the production mass of the sigma meson in nuclear
matter. Although, using qualitative arguments, G. E. Brown and
M. Rho gave an attractive shift of the vector masses [192], more
detailed calculations show no shift of the mass of the p meson in
matter [193, 194, 195, 196, 197| and very small shift for the ¢ meson
[198]. Experimentally, the NA60 and CLASS Collaborations have
found a null mass shift of the p meson in the dilepton spectra. Also,
some widening of the resonance is deduced from the experiments. On
the opposite side, the KEK team had earlier announced an attractive
mass shift of the p [199, 200]. The reason for different conclusions
might depend on the way the background is subtracted [201].

The case of the w seems to be more complicated. There is much
work done claiming very different mass shifts from attractive to re-
pulsive [157, 202, 203, 204, 205, 206]. Although the CBELSA, TAPS
Collaboration claims a large shift mass of the w from the photon -
induced w production in nuclei, with the w detected through the 7%~
decay channel [207]. In [157] the authors show that this shift is a
consequence of the particular background subtraction. Recent anal-
ysis on the background of that reaction have concluded that the w
shift mass can not be determined from this reaction [208]. The width
however, is increased largely as seen from the work of [157] and [158].

Nevertheless, the fact that the K* cannot be detected throughout
dileptons might be the reason for non experimental evidence on the
K* properties in the medium. On the theoretical side, the interac-
tion of K* with nucleons has been tackled in [209], assuming that the
interaction between light quarks is spin and SU(3) flavour indepen-
dent, and in [210, 211], where the interaction of the vector mesons
with baryons from the octect and decuplet is obtained starting from
the local hidden lagrangians. It will be shown that the K*N interac-
tion is very similar to the KN interaction while to evaluate the K*
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V (k) VI(K')

B(p) B'(p)

Figure 11.1: Feynmann diagram for the vector-baryon interaction.

selfenergy one has to consider the K7 decay mode in nuclear matter.
In addition, an experimental study on this issue is motivated through
the evaluation of the transparency ratio of the y4 — KTK*~ A’ re-
action. For a full revision on this issue see also [190].

11.2 The K* interaction in the free space

Assuming vector meson dominance, the vector-baryon interaction is
obtained through the Feynmann diagrams plotted in Fig. 11.1. The
upper vertex is given by the local hidden lagrangians for the inter-
action between vector mesons, Eq. (3.5). Whereas the coupling of
vectors with baryons is given by the lowest order quiral Lagrangian,

Lppy = g ((By.[V", B]) + (B.B){(V")), (11.1)

where B is now the SU(3) matrix of the baryon octet

1 0 1 +

ﬁz _‘:%A 1 XO: 1 P
= =0 —_2ZA
- - NG
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We focus on the strangeness S = —1 vector meson - baryon sector
with / =0 and I = 1. For S = —1 and I = 0, we find five vector
meson - baryon channels: K*N, wA, p%, ¢A and K*Z, whereas in
the S = —1, I = 1 sector we have the following six channels: K*N,
pA\, pX, wd, K*Z and ¢X.
In the low energy approximation, the transition potential is given
by
V= O
ij — ij 4f2
where k° and &’ are the energies of the incoming and outgoing vec-
tor mesons. These amplitudes have the same structure than the
pseudoscalar-baryon amplitudes except for the € - € factor. The
meson-baryon scattering amplitude is obtained from the coupled chan-
nel on-shell Bethe-Salpeter equation, but now G is the loop function
of a vector meson of mass m and a baryon of mass M with total
four-momentum P (s = P?):

(K°+ k) €€, (11.3)

1 1
)2 — M2 +ie ¢2 —m?+ie
(11.4)

d*q
2 ar2y
G(s,m ,M)—lQM/(27T>4 =

Eq. (11.4) is modified as in Eq. (3.24) to take into account the decay
width of the p and K* mesons by the convolution of the mass distribu-
tions of these mesons. The function loop G is regularized taking a nat-
ural value of —2 for the subtraction constant with p = 630 [43, 211].
When we sum over the polarization of internal vector mesons, the
factor €- € leads to a correction in the G function of ¢?/3M7 that
is neglected in the approximation of low momenta compared to the
mass of the vector meson. This leads to a factorization of € € in the
T-matrix. The method provides pairs of resonances degenerated in
mass for J© = 1/27, 3/27. Close to the energy region of the K*N
threshold, there is one A(1783) with / = 0 and one ¥(1830) for / = 1.
In the PDG we find a A(1800) with J” = 1/27, however, there is no
spin partner observed, unless it was the A(1690), which would imply
a large breaking of the spin degeneracy inherent to the hidden gauge
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model. For I = 1, the ¥(1830) found is associated with the ¥(1750)
in the PDG [211]. However, we notice that the widths of the theoret-
ical states are smaller than the experimental ones. This is due to the
fact that the pseudoscalar-baryon decay mode is not included and
the source of width of the states comes from the convolution of the
loop function with the mass distributions of the p and K* mesons.
Surely, the inclusion of the pseudoscalar -baryon decay mechanism
will make the widths larger and thus, closer to the experimental ones
[212].

We point that this pattern of degenerate resonances with J* =
1/27, 3/27 is present in many experimental data in the PDG like:
the N*(1650)(1/27) and N*(1700)(3/27); the N*(2080)(3/27) and
N*(2090)(1/27); ¥(1940)(3/27) and 3(2000)(1/27); A(1900)(1/27),
A(1940)(3/27) and A(1930)(5/27).

11.3 The K self-energy in nuclear matter

We calculate separately the two contributions to the K* selfenergy:
The K7 decay mode modified in the medium and the interaction
of K* with nucleons take place in the medium, which accounts for
the quasielastic process K*N — K*N and the absorption channels
K*N — pY, wY, ¢Y with Y = A, X. The last contribution is
calculated selfconsistently and taking into account also the previously
calculated part of the K* selfenergy coming from the Kr decay mode
in the intermediate channels.

11.3.1 K* selfenergy from the decay into K=

In Fig. 11.2 we show the loops diagrams for the K7 decay mode in the
free space and renormalized in the nuclear medium. The VPP vertex
can be calculated through the Lagrangian Lypp = —ig(V#[¢, 0,¢]).



230 K* selfenergy from the decay into K=
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— e = e e
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Figure 11.2: The K propagator renormalized to allow its decay into
K, in the free space (left), and in the medium (right), including the
self-energies of the K and 7 mesons.

In the free space, for the first diagram in Fig. (11.2) we have

Ak k2 1
2m) k2 — m2 (g — k)2 — m2% + ic

H?(*(qo,cf):2g2€-€'/( , (11.5)

The approximation of low momenta leads to the subtitution of the
e ke k¥ factor by €k;e;k; that can be replaced in the integral by

-l

€- €§E2§U. The imaginary part of the free K* selfenergy at rest is

2
- 1
Il (¢° = mg,§=0) = €& [E — . (116)

4T M e

which determines the value of the K*~ width
Do = —ImI%._ /my.— = 42MeV (11.7)

Certainly, this is close to the experimental value I';Y. = 50.8 &
0.9MeV. In order to calculate the selfenergy of the K* meson due to
its decay into K, we need to include the selfenergies of the K and
7 in the loop of Fig. (11.2).

The selfenergy in symmetric nuclear matter incorporates s and
p waves. For the s wave part, the interaction of the K meson with
nucleons accounts for the following channels KN, 7%, nA, K= and

KN for I = 0and 7\, 7%, n¥ and K= for I = 1. The amplitudes are
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built from the Weinberg-Tomozawa term of the lowest order chiral
Lagrangian and projected into s-wave. The evaluation of the ampli-
tudes through the Bethe-Salpeter equation ensures unitarity. In the
medium, the meson-baryon loop function is modified to incorporate
Pauli-blocking corrections, mean-field bindings on the nucleons and
hyperons via a ¢ — w model and it is regularized with a cutoff mo-
mentum of ¢,,x = 630 MeV. Finally, selfconsistency is required for
the computation of the amplitudes.

On the other hand, the p-wave contribution of the K selfenergy
is evaluated accounting AN~!, XN~! and ©*N~! excitations.

In conclusion, the K~ feels a moderate attraction, the potential
is Ux- = Rellg-/2my_ ~ —66 MeV that agrees with other calcula-
tions that implement selfconsistency too [213, 214, 215, 222| (while
in other models the attraction is rather larger).

In the medium the pion selfenergy is dominated by a p-wave com-
ponent that takes into account ph, AN~! and 2p2h excitations. The
s-wave part, I1%) (p) is small and momentum independent. The in-
teraction is modified incorporating spin - isospin NN and NA short
range correlations that are included in a phenomenological way with
a single Landau-Migdal parameter ¢’ [216].

Therefore, one has to replace the propagator of the K and 7 in Eq.
(11.5) to include their respective selfenergies. This is done through
the Lehman representation of the propagators:

-, /°° dw ImD. (w, k)
0

2@ (0 7 = 9422 & i
ZHK* (q 7Q> 29 €-€ /(271_)4 7T( 2w>(k;0)2—u)2+i6

y /00 dw' {ImDK(w’,J— k) ImDg(w,q— k) }
0

T | =K+ —in ¢ —Kk0—w +in
(11.8)

Since we are using the physical mass of the K *, the real part of the
in-medium K* selfenergy must vanish at p = 0. This can be done by
subtracting the real part of the free K* selfenergy, II%. from H’}{(f).
The part of negative energy of the K propagator, the last term in Eq.
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Figure 11.3: Self-energy diagrams at first order in the nuclear density
contributing to the decay of the K* meson in the medium.

(11.8), is small and does not contribute to the imaginary part of the
K* selfenergy. In a good approximation, this term cancels with the
corresponding term of the free K selfenergy. After integrating over
the k° variable, we get

K* ) (27T)3 7T2 0 ’ 0
XIka(w,>§_E) R / d3k> EQ 1
P —w—w+in (27)% 2wr (k) 2wk (¢ — k)

Finally, the gauge invariance of the model is fullfilled by imple-
menting the vertex corrections [217, 218|, that are included only for
the pions since the effect of dressing the pion is considerably larger
than that of including the K selfenergy. The consideration of the
vertex corrections for the pion implies the calculation of all the di-
agrams in Fig. 11.3. To do it, simply one replaces the p-wave pion
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selfenergy with:

(p) 0 —2
e — 1;,’; <k2 + [D2(k)] T + %M> . (11.10)

with [DO(k)] ™" = (K°)2 — k2 — m2 [219].

11.3.2 The K* selfenergy from the s-wave K*N in-
teraction

The K*N interaction in the free space includes all the possible meson
- baryon channels (K*N, wA, pX, ¢A, K*= for I = 0 and K*N, pA,
pY, w¥, K*=Z and ¢ for I = 1) as explained in Section 11.2. In
the medium the meson-baryon function loop is modified to consider
Pauli-blocking which prevents the nucleons from being scattered into
occupied states. We will modify only the K*N channel and leave
the loops free for the other meson-baryon channels since they couple
more moderately to the K*N channel. In nuclear matter, the meson-
baryon loop function reads

GP(P) = G"(V/s) +limy _.,0GA(P), (11.11)
IGR(P) = GR(P) - GR(V5s)

= iQM/A% (Dg(P — q) Diy(q) — D(P — q) Diy(q)) .
(11.12)

Formally, we proceed as in [220]. The meson-baryon loop in the
free space, G°, is calculated by means of dimensional regularization
and the correction in the medium, 0G” = limy_,.,0G? (p) is calculated
through a cutoff which will be numerically very big and thus this
quantity will be UV finite and independent of the suptraction point
used to regularize G°.
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The corresponding in-medium single-particle propagators are given
by

p B 1 L 1 —n(p)
D) = g {;ur<p>uT<p>(po_EN(ﬁ —

n(7)
TP En() - 26) TR Enp) e
= Dhip)+ 2min() L S )

Da) = ((¢") = (@)~ Tg-(q) "
_ /‘” " < Sic(@,0) SK*(W"J?), (11.14)

P —-—w+ic P +w-—ic

where n(p) in the Fermi gas nucleum momentum distribution, given
by the step function n(p) = ©(pr — |pl) with pp = (372p/2)"/3. After
integrating the integral over ¢°, the K*N loop function reads

G ren(P) = GYn(Vs) +

d’q My —n(p)
+/(27T)3 En(p) {(PO En(p))? —w(q)?+ic

1 () ( Pt

/ o SK*wq )]
—w—l—ze

The first term of the integral, which is proportional to n(ﬁ), is the
Pauli correction and accounts for the case where the Pauli blocking
on the nucleon is considered and the meson in-medium selfenergy
is neglected. The second term, which is proportional to (1 — n(p)),
is exactly zero if the meson spectral function Sg. is the free one,
SY..(w,q) = 0[w — w(q)]/2w. Hence, this term gives the contribution
of the in-medium meson modification to the loop function. Then, the

(11.15)
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Bethe-Salpeter equation is solved in nuclear matter for the in-medium
amplitudes in the isospin basis and the in-medium K™ selfenergy is

obtained integrating 7', .. over the nucleon Fermi sea.

d3p - - _ -
(b . I= I=
H?—((* )(qo, 7) = / (2n)? n(p’) T”%*]S)(PO, P)+ STP%*;,)(PO, P)] ,

(11.16)

where P = ¢° + Ey(7) and P = {+ 7 are the total energy and
momentum of the K*N pair in the nuclear matter rest frame, and
the values (¢°,7) stand for the energy and momentum of the K*
meson also in this frame. The K* selfenergy will be the sum of the
two parts (a) and (b), H%* = H’}{(f) +H%(i), where the H';((i) selfenergy
is determined selfconsistently.

11.4 Results

The K* selfenergy coming from its decay into K7 at ¢ = 0 is shown
in Fig. 11.4. The dotted line means the K* selfenergy in the free
space, then, adding the 7 selfenergy (dot-dashed line) and includ-
ing both, the 7 and K selfenergies (dashed line) at normal nuclear
matter density. We observe that the K width becomes about three
times larger at p = po than in vacuum, and the inclusion of the
K selfenergy modifies only a bit the K* selfenergy. The reason lies
in the fact that the K* — K7 decay process leaves the pion right
in the energy region of AN~! excitations having a quite large pio-
nic strength. The vertex corrections moderate the effect of dressing
the pion, leading to a final K* width of IIz.(p = py) = 105 MeV,
which is like twice the value of the width in vacuum. The K*N
in-medium amplitude is displayed in Fig. 11.5, the dashed line shows
the K*N — K*N amplitude in the free space and the solid line ac-
counts for the in-medium K*N — K*N amplitude as solution of the
Bethe Salpeter equation including Pauli blocking effects on the nu-
cleons and the K* selfenergy in a selfconsistent manner. We can see
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Figure 11.4: Imaginary part of the K* self-energy at zero momen-
tum, coming from the K7 decay mode in dense matter at normal
saturation density po. Different approaches are studied: (i) calcula-
tion in free space, (ii) including the 7 self-energy, (iii) including the
7 and K self-energies, and (iv) including the 7 dressing with vertex
corrections and the K self-energy.
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Figure 11.5: Real and imaginary parts of the K*N — K*N am-
plitude as function of the center-of-mass energy F, for a fixed total
momentum |P| = 0. Two new states are generated dynamically:

(I =0) A(1783) and (I = 1) 2(1830).
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that two resonances couple strongly to K*N, the I =0 A(1783) and
the I = 1 3(1830) which are clearly visible. However, we remark that
their respective widths are smaller than the experimental ones, and
the inclusion of pseudoscalar-baryon decays would make the widths
closer to the experimental ones. The in-medium amplitudes are af-
fected for two phenomena, on the one hand, we have Pauli blocking on
the nucleons that cuts the phase space in the unitarized amplitude
and pushes the resonances to higher energies. On the other hand,
the attractive K* selfenergy included in the K*N intermediate states
moves the resonance back to lower energies. As a result, the reso-
nances stay close to their positions in the free space. This behaviour
was already seen in the case of the A(1405) for the pseudoscalar -
baryon sector 213, 221, 222, 223, 224]. Note that, now the width
of the resonances in matter are larger due to the opening of new de-
cay channels. Besides that, new K* absorption mechanisms appear,
such as K*N — KN or K*NN — KNN owing to the incorpo-
ration of the K* — K7 decay mechanism in the intermediate K*N
state. In Fig. 11.6, the K* selfenergy and its different contributions,
(K* — Kr) and K*N in a selfconsistent calculation, are shown as a
function of ¢° at ¢ = 0 are shown. We can see that the effect of the
K*N effective interaction dominates around 800 — 900 MeV, where
the A(1783)N~! and (1830)N~! excitations are visible in the K*
selfenergy. Nevertheless, outside this region, at lower energies, where
the K*N — VB channels are closed or as the energy increases, the
K7 decay mechanism becomes more important. At the end, both
effects lead to a moderate attraction of the K* in the medium, and
the width of the K* becomes as larger as 260 MeV at normal nu-
clear density, which means five times the width in the vacuum. The
dependence of the full K* selfenergy with density and momenta is
shown in Fig. 11.7. As the momenta increases, the resonant-hole
states shift to higher energies and this also happen with the density.
On the whole, the imaginary part decreases systematically with the
available phase space. The effects of the medium in the K* meson
are better visualized in the K* meson spectral function, that is dis-
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Figure 11.6: Real and imaginary parts of the K* self-energy as func-
tions of the meson energy ¢° for zero momentum and normal satura-
tion density po showing the different contributions: (i) self-consistent
calculation of the K*N interaction (dashed lines), (ii) self-energy
coming from K* — K7 decay (dot-dashed lines), and (iii) combined
self-energy from both previous sources (solid lines).
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Figure 11.7: The K* self-energy as a function of the meson energy ¢°
for different momenta and densities.

played in Fig. 11.8 as a function of the meson energy ¢°, for zero
momentum and four densities from p = 0 to p = 1.5p,. We observe
a quite pronounced peak at the quasiparticle energy

that moves to lower energies with density. We can see the A(1783)N~*
and X(1830)N~! excitations in the right hand side of the quasipar-
ticle peak. Note that, although an attractive interaction of about
Rell/2mg.(mg+, ¢ = 0) = —50 at p = py is deduced from our cal-
culation, see Fig. 11.6, the inclusion of the pseudoscalar-baryon de-
cay mode in the K*N interaction would lead to other subthreshold
excitations, such as KNN~!, 7Y N~!, Y N~! that have not been ac-
counted for in the present calculations. The peak will be wider and
the selfconsistent evaluation might even push the peak back to higher
energies. To summarize, the main conclusion that can be clearly ex-
tracted from our work is the spectacular increase of the K* width
in matter. This effect could be observed experimentally through the
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transparency ratio as we discuss in the next section.

11.5 Nuclear transparency in the v A —
K+ K* A’ reaction

In this section we make a qualitative evaluation of the nuclear trans-
parency ratio by comparing the cross sections of the photoproduction
reaction YA — KT K*~ A’ in different nuclei, and tracing them to the
in medium width of the K*~. The idea is that the survival probabil-
ity is an exponential function of the integral of the in-medium width,
and hence very sensitive to this magnitude [191].

We write the nuclear transparency ratio as

Ty = A=K K A (11.17)

A OyN—K+ K*~ N

i.e. the ratio of the nuclear K*~-photoproduction cross section di-
vided by A times the same quantity on a free nucleon. The value
of TA describes the loss of flux of K*~ mesons in the nucleus and is
related to the absorptive part of the K* -nucleus optical potential
and thus to the K*~ width in the nuclear medium. This method has
been already proven to be very efficient in the study of the in-medium
properties of the vector mesons [157, 226, 227|, hyperons [228] and
antiprotons [191]. In Ref. [158, 229] the transparency ratio has been
already used to determine the width of the w-meson in finite nuclei
using a BUU transport approach.

We have done calculations for a vast sample of nuclear targets:
(., TiNa, AL TS HOL 1S, O K. S0, 5. 1'Ca.
62 oM, 55'Pb, 55°U.

In the following, we evaluate the ratio between the nuclear cross
sections in heavy nuclei and a light one, for instance '2C, since in this
way, many other nuclear effects not related to the absorption of the
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K*~ cancel in the ratio [226]. We call this ratio T4,

Tioe

T, (11.18)

and, by construction, it is normalized to unity for 2C.

We obtain the nuclear transparency ratio taking an eikonal (or
Glauber) approximation in the evaluation of the distortion factor
associated to K*~ absorption. In this framework, the propagation of
the A~ meson in its way out of the nucleus is implemented by means
of the exponential factor for the survival probability accounting for
the loss of flux per unit length. This simple but rather reliable method
allows us to get an accurate result for the integrated cross sections.

We proceed as follows: let IIx.- be the K*~ self-energy in the
nuclear medium as a function of the nuclear density, p(r). We then

have
FK*f B ImHK*f ) dP

- _ o= 11.1
2 PO T dt ' (11.19)

where P is the probability of K*~ interaction in the nucleus, includ-
ing K*~ quasi-elastic collisions and absorption channels. There is
some problem when dealing with the free part of the K*~ self-energy.
Indeed, if the K*~ decays inside the nucleus into K, the K or the
7w will also be absorbed with great probability or undergo a quasi-
elastic collision, such that the K7 invariant mass will no longer be
the one of the K*~. Thus, it is adequate to remove these events.
Yet, if the decay occurs at the surface neither the K nor the 7 will
be absorbed and an experimentalist will reconstruct the K*~ invari-
ant mass from these two particles, in which case they should not
be removed from the flux. The part of ImIlg.- due to quasi-elastic
collisions K* N — K*~ N should not be taken into account in the
distortion either, since the K*~ does not disappear from the flux in
these processes. Yet, this part is small at low energies and we dis-
regard this detail in the present qualitative estimate. In view of all
this, we have taken the following approximate choice for ImIlx-— in
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our estimate of Ty

e, — 4 (F25x10°+04x10%)p(r)/pg =04 x 10° r <08R
K270 (2.5 x 10° 4 0.4 x 10°)p(r)/ po r>08R
(11.20)

where the units of ImIlz. are MeV? being R the nuclear radius.
The choice of Eq. (11.20) is justified by the fact that Imllz. =
—2.5 x 10° MeV? at ¢° = mg. and ¢ = 0 MeV/c at p = po (see
Fig. 11.7). This value also contains the contribution from the free
decay, ImII%, ~ —0.4 x 10° MeV?, which does not depend on p. It
therefore needs to be subtracted from the term that implements the
linear p dependence, and added as a constant value if » < 0.8 R.
Moreover, when the K* — K decay takes place in the surface of
the nucleus, » > 0.8 R, we remove ImH?—{* since experimentally the
K7 system will be reconstructed as a K*.

The probability of loss of flux per unit length is given by:

P dpP P Tm T -
r_d . ol (11.21)
Al vdt [pre 1P=-] ) |Prce—
Ee—

and the corresponding survival probability is determined from

exp{/ PELLLE ())}, (11.22)

‘pK*—

_,

where 7’ —7"+l

| ‘ with 7 being the K*~ production point inside
PK»—
the nucleus.

With all these ingredients and taking into account the standard
expression for K*~ production in the nucleus prior to the consid-

eration of the eikonal distortion, the cross section for the v A —
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KT K*= A’ reaction is obtained from

Eéﬂax Eéﬂax
O A K+K—A = s = M2 /d?’rp / deEQ/ dEs

mK*, mK+

1
X / dCOS@Q/ d¢2 Q(EA{ + M — E2 — Eg)
-1 0 |pw |

<o(1 - a0 rPe { - A 2}

(11.23)
with
A = cosbls
P P (B + M — By — Ey)?)
2|Z77 —]72‘]93 K s K
(11.24)
and
max s+ m%{*— - (M + mK+)2
E2 —

2V/s
o _ s+m2, — (M + mys)? | (11.25)

2V/s
where (FEs,ps) and (Es,p3) are the four-momenta of the K*~ and
K, respectively, in the frame of the nucleon at rest, and E. is the
energy of the photon in this frame. Here, M is the mass of the
nucleon while my+- and mg+ are the masses of the K*~ and K+
mesons, respectively. The value of EJ"** has been calculated when the
particles 1 plus 3 go together (or 1 plus 2 in the case of E}**). Since

we are interested in ratios of cross sections we have taken |T|> = 1.

The results can be seen in Fig. 11.9, where the transparency ra-
tio has been plotted for two different energies in the center of mass
reference system /s = 3 GeV and 3.5 GeV, which are equivalent
to energies of the photon in the lab frame of 4.3 MeV and 6 MeV,
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Figure 11.9: Transparency ratio

respectively. We observe a very strong attenuation of the K* produc-
tion process due to the decay or absorption channels KX* — K and
K*N — VY with increasing nuclear-mass number A. This is due to
the larger path that the K* has to follow before it leaves the nucleus,
having then more chances to decay or get absorbed.
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N> and A} resonances around 4

GeV

We investigate the production of new hidden charmed baryons gen-
erated from the scattering of charmed pseudoscalar (vector) meson
with a charmed baryon from the 20-plet representation. New ver-
tices are built to include the charmed baryons, for which we use the
SU(4) Clebsch Gordan Coefficients. In contrast with other similar
studies regarding dynamically generated baryon resonances, the new
N* and A* predicted states around 4.2 GeV (as brothers or systers of
the N*(1535) and A(1405)) cannot be definetely 3¢ baryons. For this
reason, the experimental observation of these hidden charm baryons
is extremely relevant.

12.1 Introduction

All of the well known baryons can be described in terms of 3-quark
configurations 78], though there are some theoretical approaches that
predict some of them to be meson-baryon dynamically generated res-
onances or to have large couplings to qgqqq components. The way to

247
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distinguish gqq configurations from pseudoscalar-baryon bound states
or resonances is a hard task since several models that are around
the same energy region, leave always some free parameters that are
adjustable to the data. In this sense, the search of theoretical pre-
dictions as well as experimental observation of states that definetely
cannot be accomodated as 3¢ is a challenging topic. The study of
the pseudoscalar-baryon interaction using chiral lagrangians com-
bined with unitary technics has produced interesting findings such as
the prediction of the two A(1405) or the generation of the N*(1535)
resonance, being the K3 and KA channels the main components of
the last state [64, 230]. Indeed, many studies support the hidden
strangeness nature of this state [231, 232]. In this way, the interac-
tion of the octect of pseudoscalar mesons with the octect of stable
baryons has led to J¥ = 1/2~ resonances which fit quite well the spec-
trum of the known low lying resonances with these quantum numbers
[43, 44, 45, 47, 233]. The combination of pseudoscalar mesons with
the decuplet of baryons has also received attention and leads to sev-
eral dynamically generated states [66, 67]. In [210, 211], similar work
is done but substituting the pseudoscalar mesons for vector ones.

The extension to the interaction of charmed pseudoscalar mesons
with baryons has been treated in [172]. Through an extension of the
known chiral lagrangians for the interaction of mesons with baryons
to include charm mesons and breaking the symmetry afterwards, the
A.(2593) is dynamically generated from this interaction being mostly
DN, whereas one 2% around 3700 MeV is predicted there.

In this chapter, we explore the hidden charm sector of dynamically
generated baryonic resonances from a pseudoscalar or vector meson
with a baryon. We will introduce the new vertices for the interaction
of charmed baryons with pseudoscalar mesons, and we will see that
N and A}, states appear around 4000 MeV as brothers or systers
of the well-known N*(1535) and A*(1405). The observation of these
new states will be certainly important since these are states that
cannot be 3¢. See [234] and [235] for a detailed revision.
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12.2 Formalism

We study the vector-baryon and pseudoscalar-baryon interaction in
the hidden-charm sector. This involves the study of the sectors of
(isospin, strangeness): (I,S) = (3/2,0), (1/2,0), (1/2,-2), (1, -1),
(0,—1), (0,-3).

& A

() (b)

Figure 12.1: Feynman diagrams for the pseudoscalar-baryon (a) or
vector- baryon (b) interaction via the exchange of a vector meson
(Py, Py are D-, D° or D, and Vi, V5 are D*~, D** or D*~, and B,
By are X, Af, E,, Z. or Q., and V* is p, K*, ¢ or w).

We follow the formalism described in [211] where the interaction
between mesons and baryons comes through the exchange of vec-
tor mesons (vector meson dominance) as plotted in Fig. 12.1. The
Lagrangian that provide BBV vertex is

Lppy = 9(<BVM[VH>B]>+<B%¢B><Vu>) (12.1)

respectively, where B and P are the standard matrices including the
pseudoscalar and baryon nonets in SU(3). In order to go to SU(4), we
can include the charmed mesons in an straightforward manner for the
use of L3y and Lppy, Egs. (3.5) and (3.27). However, the extension
of Lppy in Eq. (12.1) to SU(4) is not direct but the coefficients that
go with each product of particle fields are Clesch-Gordan coefficients
of SU(3) and the extension to SU(4) can be done by means of the



250 Formalism

SU(4) Clesch-Gordan tables [179]. Thus, we can evaluate the ampli-
tude of the 3V or PPV interaction with the Lagrangians of L3, and
Lppy or well by means of the SU(4) tables. We find for P, P, — V:

tp1p2v = 915F015F(15 X 15) (q1 + QQ)“EM (122)

where Ci5,.(15®15) is the SU(4) Clebsch-Gordan coefficient for 15®
15 — 15 and ¢35, is the reduced matrix element that by comparison
with the result of the Lagrangian is given by

Gi5p = —2V2g . (12.3)

Note that the interaction occurs through only the 157 representation,
since we have an explicit conmutator in Eqs. L3y and Lppy. The
matrices P and V can be expressed in terms of the mathematical
states of the 15-plet representation as

(12.4)

0 n8 7. '77/ + + 0
AErGURTA T , KO D
- _ 0 ms o e | Fic -
p_ |7 _¢0§+ LIl K , D
- —208 | ey fic - ’
KO K R R Dy /
+ + _ 3ie 4 fle
D D D] et
and
0 -~ ~1 _
p) yws e Fo + *+ *0
UG P . B D
- _p w8 B @ * *—
vV, — P ﬁ*ﬁﬁorfz*/i K , D
n *— * —2wg | @ & *—
K ) K st Dz /
* *+ *+ 39, @,
b b e

(12.5)

which contains a singlet, 7., or @. (for vectors), and the SU(4) singlet,
7. or @.. But, these fields can be related with the physical states.
Taking 7°, n, n’ and 7. as a basis for the neutral pseudoscalar mesons,
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where 7' is the singlet in SU(3), (uii+dd+s3)/+/3 and 7 stand for c¢,
and recalling the standard quark composition of the SU(4) mesons

= (uti — dd)

(uti + dd — 2s5)

Sl gl

(utt + dd + s5 — 3cc)

=
)
Il
)
[\]

i = (uti + dd + s5 + ce) , (12.6)

S

we have in the physical basis

ns =
_ V3

(—V3. + 171, (12.7)

!/

’]7 —=

N RN = 3

Ne =

whereas for the vectors,

(ut — dd)

(v + dd)

Sl

<
w
SV

J/b =

that are related to the mathematical states through

Q

(12.8)

1

w = 6(\/6@6 + 2v/3ws + 3v20))
1

¢ = 6(\/5@0 — 2v/6ws + 30.)

J = %(—\/3@6+@;). (12.9)
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The use of the SU(4) Clesch Gordan coefficients from [179] requires a
phase convention. We have found a compatible and convenient phase

convention of the isospin states implicit in the SU(4) tables and with
the use of Ly vy and Lppy in Egs. (3.5) and (3.27) which is:

|K%) = —[1/2,-1/2) ; |n%) = —[1,1); 7% = —[1,0) ;
‘D:>:_|070> ; |DO>:_|1/271/2> ) |7~]c>:_|070> )

The necessity of the phases stems from demanding that the SU(4)
singlet must be a symmetrical expression in the physical states (thus
we evaluate 15 ® 15 — 1 and put appropiate phases to ensure that
all terms come with the same sign). For the BBV vertex, we need
now the 20’ ® 200 — 15, 155, 1 Clebsch Gordan coefficient and the
BB — V amplitude can be written as a function of them as

tpmy = 1015 Cis, (200 ®20") + g1, C5,(20' ® 20) + g1 C1(20' ® 20)}

XUy (2)Y - €up(p1) -
(12.10)

The reduced matrix elements, gi5,, ¢15, and g; are evaluated de-
mandng the following constraints

1) The coupling pp — J/v should be zero by OZI rules,
2) The coupling pp — ¢ should be zero by OZI rules,
3) The coupling pp — p” should be the one obtained in SU(3).
and finally, we obtain
G5, = —9; G5, =2V3¢g; g1=3V5g. (12.11)

with ¢ = My /2f and f = 93MeV the pion decay constant. And
the phase convention motivated to agree formally with Eq. (12.1) is
given by
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=) =—11/2,-1/2) |9%) = —[0,0) 2oy = —11/2,-1/2)

=) =—1/2,-1/2)  |AJ) =-[0,0) X5 =—I1,0)

X =—IL1) Xe7) =~ =) |n) = —[1/2,-1/2)
=%) =—11/2,-1/2)  |Z*)=—1,1) XT) =—[1,1)
2°) = —[1,0) |29 = —1,0)

and once again the expression obtained for the 20’ ® 20’ in terms
of SU(4) isospin states is symmetric in the physical states with the
convention given. As a result, the transition potential corresponding
to the diagrams of Fig. 12.1 are given by

Cab

Vab(PiBi—P2B) = e (qgJ + qg), (12.12)
Vi _ G0y e 12.1
a(iBi—VaBa) = g (¢ +@)é - &, (12.13)

where the indices a,b stand for the different channels P, By (V) By)
and P,By(V,Bs). Where we have followed the approach of neglect-
ing the three momenta of the particles compared to their masses
as in [44]. The value of the C,, coefficients for the different chan-
nels in each (isospin, strangeness) sector: (3/2,0), (1/2,0), (1/2,—-2),
(1,—1), (0,—1), (0,—3), are given in the Appendix F.

12.3 T matrix

We evaluate the unitary 7" matrix by solving the coupled channels
Bethe-Salpeter equation in the on-shell factorization approach, Eq.
(3.22), where now G is the pseudoscalar (vector) - baryon function
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loop that in dimensional regularization is given by

G — oM / dq L L
(PB) = B [ )i (P—q) — ML +iz ¢ — M3 +ic’

2M M% M2 — M? M?
= —B{a“%—Log - — B+SL0g L

1672 2 2s M?
+-L [Log(s — (M2 — M2) + 24V/5)

—s+ (Mp — M}) +2qv/s)] } (12.14)

where

It can also be solved by using a three-momentum cutoff

G o0 / dq 1 1
=
(FB) B @n)i(P—q)2 — M2 +icq® — M2% + ic
_ /A q*dq 2Mp(wp + wp) (12.16)
o 4m% wpwp ((P°)? — (wp + wp)? +i€) ’ '

where

wp = \/CTQ—FM]%,
wp = /P2 + M3, (12.17)

and A is the cutoff parameter in the three-momentum of the loop
integral. A difference with other works is that we do not have any
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experimental evidence of a resonance close to the pseudoscalar (vec-
tor) - baryon thresholds that we deal with here, therefore, the most
reliable procedure is calculate the uncertainties showing the results
for different choices of the parameters. Thus, we take values close to
[230], @, = —2 and p = 670 MeV as a guideline and vary them. The
ultimate choices around a, = —2.3 are based on phenomenology, us-
ing values that prove suitable to reproduce other states in the charm
sector that can be compared with experiment. The range of a values
used (or cutoff parameter in Eq. (12.16)) is in line with the ones used
in [108, 109, 116, 172|. Close to a pole, the amplitudes behave like

Ga9b

VS = 2R

The pole positions and coupling constants to the different channels
are given in Tables 12.1, 12.2, 12.3 and 12.4. We find six poles, all
of them are bound states. The uncertainties in the pole positions for
PB and V B are of the order of 100 MeV, which is typical in hadron
models. Although the pole positions of the first and third state are
rather stable, the uncertainties for the second state turn out to be
larger being quite unstable.

T, = (12.18)

(1,5) a=-22 a=-23 a=-24
(A=0.7GeV) (A=0.8GeV) (A=0.9GeV)

ZR ZR 2R

(1/2,0)  4291(4273)  4269(4236)  4240(4187)
(0,-1) 4247(4120)  4213(4023)  4170(3903)
4422(4394)  4403(4357)  4376(4308)

Table 12.1: Pole position from PB — PB using the two different G
functions of Egs. (12.14) and (12.16). The units are in MeV.
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(1,95) a=-22 a=-23 a=-24
(A=0.7GeV) (A=08GeV) (A=0.9GeV)

2R 2R 2R

(1/2,0)  4438(4410)  4418(4372)  4391(4320)
(0, 1) 4399(4256)  4370(4155)  4330(4030)
4568(4532)  4550(4493)  4526(4441)

Table 12.2: Pole position from VB — V B using the two different GG
functions of Egs. (12.14) and (12.16). The units are in MeV.

(1,S)  zr (MeV) Ya
(1/2,0) DY, DA}
4269  2.85 0
(0,—1) D,Af D=. DZ.
4213 1.37  3.25 0
4403 0 0 2.64

Table 12.3: Pole positions, zr and coupling constants, g,, for the
states from PB — PB.
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(1,S)  zr (MeV) Ja

(1/2,0) D*S. D*Af
4418  2.75 0

(0,-1) D:Af D=, D*Z,
4370 123 3.14 0
4550 0 0 2.53

Table 12.4: Pole position and coupling constants for the bound states
from VB — VB.

In Tables 12.3, 12.4 we can see that the state without strangeness
couples to DY.(DX,). This state is an N*, whereas we get two
A* in the pseudoscalar - baryon system coupling to D,A., D=, and
D=/, respectively (or well DA,, D*Z, and D*Z/, respectively). The
instability of the second pole may be related with the additional
channel D,A,, (D?A.).

12.4 Decay mechanisms for the N> and A,
states

We consider the decay of the pseudoscalar - baryon and vector-
baryon states to light pseudoscalar - light baryon and light vector
- light baryon pairs, as shown in Fig. 12.2. The possible decay
channels which we take into account are 7N, nIN, n’N and KX for
the (isospin = 1/2,strangeness = 0) sector, (pN, wN and K*¥ for
the vector-baryon system) and (KN, 73, nA, A and K=) for the
(isospin = 0, strangeness = —1) sector (K*N, p%, wA, ¢A and K*=
for vector-baryon). This is not the only possibility. For the vector-
baryon states, another way is to decay into pseudoscalar-baryon chan-
nels analogously to the two-pseudoscalar decay mode of the vector-
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Figure 12.2: The Feynman diagrams of pseudoscalar-baryon (a) or
vector-baryon (b) interaction via a box diagram. Py, P, Vi, Vs, By,
B, are the same particles than in Fig. 12.1. P;, V5 and Bjs are light
particles belonging to the SU(3) octet of pseudoscalar mesons, vector
mesons and stable baryons, respectively, and V", V" are D* or D:.

vector states studied in the Chapter 3. Nevertheless, the box di-
agrams will contain the process D*B — DB and it was found in
Chapter 7 that the box diagram including (D*D* — DD) is a very
small contribution since the phase space available is small. Besides
that, these V' B box diagrams will contain either an anomalous vertex,
VVP (vector exchange), or a BBP vertex (pseudoscalar exchange)
that makes these terms to be smaller. Alternatively, one can have
the pseudoscalar-baryon states decaying to vector-baryon channels
but these diagrams will contain also VVP or BBP vertices leading
to a minor contribution. We assume that P;, V5 and B3 are on-shell
and neglect the three - momentum of the initial and final particles.
Then, using Eq. (12.1), the transition potential of these diagrams
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can be written as:

CaCchM‘l* (\/§+MB5)2 B M1%5
Vacb(Pl By —>P3B;3—>PQBQ) - TﬂG(PPMBS) 4\/5 MB
3

(MB3_M31)(M1231+M\2/1*_M1233)

M‘%l*
M2, + M3, — 2Bp,Ep, — M.
(M, —Mp,) (M3, +ME, ~M3,)

—2Ep, +

_2EP2 + M2
VQ*
M}, + M3, — 2Ep,Ep, — MZ,

(12.19)

and the same for vectors (see Fig. 12.2. (b)) changing Ep,, Ep,, Ep,
by EVI, EV27 EV3 and Mpl, MPQ, Mp3 by MVI, MV27 MV3, respectively.
Here ¢ stands for a different group of P;(V5)Bs. Then, the kernel V/
in the Bethe Salpeter equation, Eq. (3.22), becomes now:

Cq
Vab(PB1—PBy) = 4—f;(EP1 + Ep,) + Z Vaen, — (12.20)

and similarly for the VB system. In Eq. (12.19) we have factor-
ized the two P\B; — P3B3 and P3B; — P,DB, transition ampli-
tudes outside the loop integral by taking their values when the sys-
tem P;Bj; is set on-shell. This is a good approximation, exact for
the imaginary part of the diagram, which is the main contribution,
since we are interested in the width of the resonances and it was
found in the former Chapters that the box diagram has a small real
part. The loop integral only affects then the P;, B3 propagators
leading to the same G function defined in Eq. (12.14). Since the
on-shell mass of the intermediate states is far away from the ener-
gies investigated, Re G(Ps, B;) is small and we have checked that
it is sufficiently smaller than the tree level contribution from the
diagrams of Fig. (12.1), so that it can be ignored. For example,
Vips.—nN—bs,) = (0.38 +2.97) GeV~! at the N* pole position with
/s = 4.265 GeV.
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Further on, we will include the n.N, n.A channels for PB — PB,
and J/YN, J/yyA for VB — VB in the calculation. The partial
decay widths measured directly from the |T'|* plots including only
the proper contribution are listed in Tables 12.5 and 12.6. We see
that even though these are massive objects, all of them are above
4200 MeV, their widths are quite small. The reason stems from the
difficulty of the c¢ components to decay into ui, dd and s ones, that
needs in our model the exchange of a heavy vector meson.

In addition, we calculate the decay of the N* and A* states to
cc-meson light-baryon channels. To do so, we reevaluate the Bethe
Salpeter equation but now we include the n.N and J/¢)N channels
in the V matrix Eq. (3.22) and search for the new poles and evaluate
the new couplings constants. The results are given in Tables 12.5 and
12.6. As we can observe, these channels provide a width comparable
to the sum of the other decay channels.

12.5 Production cross section in pp colli-
sions

12.5.1 Estimate of the pp — N..(4265)p cross sec-
tion

We consider the pp — N (4265)p cross section through the Feyn-
mann diagrams depicted in Fig. 12.3 a) and b) respect to the pp —
ppn. collision (without the resonance), diagrams c¢) and d). Focusing
on the first diagram a), for a p beam of 15 GeV (of the FAIR facility)
one has /s = 5470 MeV, which allows one to observe resonances in
pX production up to a mass My ~ 4538 MeV, we shall make some
rough estimate of the cross section for the pp — PN/~ production
for the C = 0, S = 0 resonances that we have obtained from the
pseudoscalar baryon interaction. Since one important decay channel
of the N}, is mIN, we evaluate the cross section for the mechanism
depicted in the Feynman diagram of Fig. 12.4.



Narrow N, and A%, resonances around 4 GeV

(1,S) M T r,

(1/2,0) 7N nN n’'N KX NN
4261 56.9 3.8 81 3.9 17.0 23.4

(0,-1) KN 72 nA nA K= nA

4209 324 158 29 32 1.7 24 5.8
4394 43.3 0 106 71 33 58 163

261

Table 12.5: Mass (M), total width (I'), and the partial decay width

(T';) for the states from PB — PB, with units in MeV.

(I,S) M T I

(1/2,0) pN wN K*¥ JIYN
4412 473 32 104 137 19.2

(0, —1) K*N pS  wA oA K2 J/A

4368 28.0 139 3.1 03 40 1.8 5.4
4544 36.6 0 88 91 0 50 138

Table 12.6: Mass (M), total width (I'), and the partial decay width

(I';) for the states from VB — V B with units in MeV.
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The coupling of the N, — 7% is obtained projecting over 7%p
the isospin state [ = 1/2, which provides the isospin coefficient C; =
\/1/3. The coupling N, — 7N is calculated by the partial decay
width of the N, into this channel, I';y

2 QWMN:EFWN

INGe=nN = T pon (12.21)

with po" = A/2(MZ. ,m2, M%)/2My-, the value of the on-shell pion
momentum from the N}, — mN decay. By taking the standard TN N
vertex, Vonyn = ig-v57" (gr = 13), we obtain

Aoy Nidp _ ﬁ M3 TnCE 2p.p) — 2M? v
deost 4 s pr (2M? —\/SE(Y) +2pp")* p

(12.22)

where p, p’ are the initial, final momenta of the p in the center of mass
frame (of the order of 2570, 620 MeV /¢ for My ~ 4300 MeV). The
biggest cross section corresponds to the forward p direction, which is
the most indicated for the search. If we are interested in searching for
these resonances, looking for p forward is the most recommendable
measurement and one should look for a bump into the do/dcosfdM?
magnitude, where M is the invariant mass of the 7N coming from
the decay of the produced N2 state. Assuming a Lorentzian shape
for this resonance, with total width I'y«+, we would obtain at the
peak of the 7N distribution -

Aoy Nzt (a26s)p—nnp 1 1 Aoy N5 Dan

dcosfdM? M i+ Lior deosf Ty

(12.23)

which leads to the following cross section: 0.13 ub/GeV? for N5 (4265).
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We consider form factors for the 7, p and N}, exchange respectively:

A2 _ m2
F,. = —~ T 12.24
pp Agr _ p72r ( )
A4
E, = L , (12.25)
S
4
Fy: = - 2AN SERVE (12.26)
AN+ (pN(;E - mN;E)

with A; = 1.3 GeV and A, = Ay = 0.8GeV. Finally, we get a cross
section of 0.71 pub/GeV? without the form factors of Eqs. (12.24),
(12.25 and (12.26) and 0.072 ub/GeV? using these form factors (if
one does not include the form factors of Egs. (12.25) and (12.26) one
gets 0.05 and 0.13 pub/GeV? with and without Eq. (12.24)).

In order to test the role played by the N, resonance in the process
we should compare with the process pp — ppn. in Figs. 12.3 ¢),d).
The evaluation of these diagrams is similar to the one performed for

the diagram a) except for the ppn. vertex, which is given by:

Lowp = g7 Oputbnevps (12.27)

where the coupling constant, g, ,5, can be calculated by the formula

WPUcBrncpﬁ
Gnepp = \| "o o5 (12.28)
\\ Ipgelm3

with pg* = AY2(m2 , M2, M2)/2m,,, I';, = 26.7 MeV and Br,,,; =
1.3 x 1073. The contributions of Fig. 12.3 ¢) and d) turn out to be
very small, almost 10~ ub, so it follows that the processes where the
N* appears are important in the pp — ppn,. reaction with respect to
the p exchange. This is shown in the Dalitz plot of Fig. 12.5 a), and
the invariant mass spectra of pn., pn. and pp are shown in b), ¢) and
d), being the peaks of the N*(4265) very clear.
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Figure 12.5: The Dalitz plot (a), the invariant mass spectrum of

pp(b), pn.(c) and pn.(d) for the reaction pp — ppn. at the beam
momentum of p being 14.00GeV at lab system.
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Figure 12.6: Feynman diagram for N."(4265) — J/p.
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12.5.2 J/4 production in pp — ppJ /v

Here we calculate J/v¢ production in pp through the pseudoscalar-
baryon resonance, N*(4265) and the vector-baryon resonance N*(4418).
Lets start with the first process which is the one of Fig. (12.3) a) but
changing the 7. by the J/¢. For this, one needs to know how the
N*(4265) decays into J/1p, this is depicted in Fig. 12.6. The formula
for the cross section for the whole process will be the same than the
one of Eq. (12.23) but now we need to evaluate I'(R — J/¢p). In
order to do it, the diagram of Fig. 12.6 requires the DN, coupling,
that was studied in Chapter 10 and has the form
/0
2q]\4’ >5D2 -
f
being 3 = 1, and ¢°, ¢’, the incoming energy, momentum of the D
meson and M’ the mass of the .. For D and F' we take the standard
values D = 0.8 and F' = 0.46 [176, 177, 178]. The J/¢p — DD
coupling is obtained through the Lagrangian of Eq. (3.27), which
leads to

~iVpoyst = q'(1— (12.29)

Following our phase convention,
_ 2 1 -
DS, 1/2,1/2) = \ﬁp—zﬁ DSt 12.31
D%1/2,1/2) = /= 7 (12.31)
we find 0.26
_itDong- - Wo_: . q_’/ (1232)

And the other possible vertex, D" pXF* is /2 times the DX} ver-
tex. Finally, we get

diq 0.26 M.
tijwp—sr = 2V3 —————Grpx.€- G0 - q ~—F
J/Yp—R \/_9/ (2ﬁ)4 2f 9rDx €40 qEZC(Q) (Q)
" 1 1
@ —m3 +ie (py— q)? — m% + ie
1
x _ (12.33)
PY—¢° — Ex.(q) + i€



Narrow N}, and A}, resonances around 4 GeV 267

where we use a form factor F'(q) = ﬁiﬁ with A = 1.05 GeV [110] in
the integral of Eq. (12.33). Upon neglecting the small three momenta
P/ compared to the J/1¢) mass and performing the ¢° integral, Eq.

(12.33) can be written as

—ilyjpp—r = _ 1020 9rD3. 90 g/ i 7’ M,
V3 f ‘ (27)" Ex.(q)
1 1 1
2wp(q) P+ 2wp(q) P — 2wp(q)
1 1
PO —wn(a) — Bx.(q) PO — wnlq) — Bx,(q) + e
x{2(P° — wp(q) — Ex.(q) — p — 2wp(q)}

X

(12.34)

where wp(q) = /¢*+m3 and Ex (q) = y/¢® + m3,_. The width of

Nzt — J/p is now given by

1 M, -
Lyjyp = gﬁzp\tJ/wquP (12.35)

where ¢/, r means t;,,, g omitting the & - € operator. We take
P% = My = 4265 MeV and p = \V/2(M3, Mﬁ/w, M?2)/2Mp, while M,
stands for the mass of the proton. By using the form factor of [110],
we get

FR_J/wp = 0.01 MeV s (1236)

with admitted uncertainties of the order of a factor two. Since I';y
of the N} (4265) was of the order of 2.4 MeV, now the cross section
of Eq. (12.23) is about a factor 200 smaller than before. Yet, the
fact that the background for .J/¢p production is also smaller might
compensate for it. From what we have said before, the cross section
for n.p production is much bigger.

On the other hand, for the resonances made out by V B, the J/¢p
production cross sections are larger. One can repeat the calculations
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Figure 12.7: The pp — J/1pp mechanism throughout the resonance
N&

in this case and one obtains cross sections of the order of that for n.p
for the case of PB resonances. We sketch the derivation below.

We shall make the estimate based upon the mechanism of the
Feynman diagram of Fig. 12.7, and we will consider the resonance
N}.(4418) coming from the interaction of vector mesons with baryons,
one of which channels is J/Up. By adding this new channel we redo
the calculation and obtain gy ;yy = 0.85, where the spin part can
be ignored since the coupling is done in a way that allows us to
evaluate decay widths in the same way as if the particles were spinless.
Assuming the dominant decay channels of N* as pN and dominance
of the 7° term in the p’pp vertex, which goes then as ¢g7°/v/2, we
obtain now

do  ¢*MiT,n  EQ@)EQp) +pp +M> ¢
decost) 4 s pon (2M? — \/sE(p) +2p.p” — M2)* p

(12.37)

with p’, p the p outgoing, incoming momenta in the center of mass
frame, and p)" the p momentum in the N*(4418) decay into pN. By
multiplying the cross section of Eq. (12.37) by the branching ratio
of the resonance for the decay into J/¢p we can calculate the cross
section of the reaction pp — J/¢¥pp which is of the order of 2 ~ 37
nb for a p beam of 15 GeV/c, depending on whether one includes
or not the form factors. This cross section is larger than the one
we would obtain from the standard mechanism of Fig. 12.8 which
can be evaluated in analogy to the case of Fig. 12.3. Once again,
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Figure 12.8: The standard pp — .J/¢¥pp mechanism.

using Eq. (12.23) and I';/y, of the resonance instead of I';y we can
obtain the differential cross section of the peak of the resonance:
6 ~ 50nb/GeV?.

From the calculation above, we find that the cross section of this
reaction is about two orders of magnitude smaller than that of the
reaction pp — pprn., but it could be also appropriate to find N (4418)
because the J/1) has a large branching ratio to decay into lepton
channels which are much easier to detect than hadron channels. Fi-
nally let us discuss the possibility of measurement of this reaction in
the experiments. The PANDA (anti-Proton Annihilation at Darm-
stadt) Collaboration will study the pp reaction at FAIR, with the p
beam energy in the range of 1.5 to 15 GeV/c and luminosity of about
103'em?2st. The range of the beam energy is very suitable to find the
N (4265) and the N (4418), with total cross sections estimated to be
about 70 nb and 2 nb by the one-meson exchange propagators with
off-shell form factors, which corresponds to an event production rate
of 60000 and 1700 per day at PANDA/FAIR. There is a 47 solid
angle detector with good particle identification for charged particles
and photons at PANDA /FAIR. For the pp — ppn. reaction, if p and p
are identified, then the 7. can be easily reconstructed from the miss-
ing mass spectrum against p and p. It is the same as the reaction
pp — ppJ /1. So this reaction should be accessible at PANDA /FAIR.
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Conclusions

We have applied the Hidden Gauge Lagrangians to the study of the
vector - vector interaction of a large variety of systems, from the pp
to D*D* or exotic systems like D*D?. The interaction comes from
contact terms plus vector exchange terms in the ¢ and v channels. We
have seen that the s-channel represents a minor component of s-wave
and that the strong interaction obtained is due to the exchange terms
mostly. Amplitudes are unitarized by means of the Bethe Salpeter
equation. We look for poles in the complex plane. While bound
states appear in the real axis and below threshold, resonances are
locate above threshold. The step to SU(4) is only given after the
results obtained in SU(3) are shown to agree with the experiment.
The extension must be done carefully and being aware of calculating
uncertainties. The stability of the results when changing the free pa-
rameters gives us confidence on the results. Thus, we follow the work
done in [108] and [109] for the study of the pseudoscalar-pseudoscalar
and pseudoscalar-vector interaction in the charm sector. The strat-
egy is construct an SU(4)-flavor symmetrical Lagrangian for the in-
teraction of the 15-plet of vector mesons and then, the symmetry
is broken down to SU(3) by suppressing exchanges of heavy vector
mesons in the implicit Weinberg-Tomozawa term. This suppression
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is justified by the vector exchange picture, where the interaction is
driven by vector meson exchanges. From the Lagrangians, tree level
amplitudes are evaluated projecting in s-wave and including all the
possible amplitudes between channels in a matrix for a particular
sector. This matrix in isospin basis is the kernel V' of the Bethe
Salpeter equation, which provides the unitarized 7T-matrix. A novelty
in the study of the vector-vector interaction is the explicit calcula-
tion of several different decay modes to pseudoscalar mesons. First,
by convoluting the two-meson loop function, thus, taking into ac-
count the width of the p or K* mesons. This gives a mechanism for
the vector-vector states obtained to decay into four pseudoscalars.
Second, box-diagrams including four pseudoscalar mesons are con-
structed, the direct term (two-pseudoscalar in the main cut) provides
the decay width of the states to two pseudoscalar mesons, and rep-
resents a much larger width in general than the convolution of the
two-meson loop function. Additional terms are studied in Chapter
3, as box-diagrams with anomalous vertices pwm and crossed-box di-
agrams including pseudoscalar mesons that provide decay widths to
four pseudoscalars, the first kind do not have imaginary part and the
second one represents about the 20% of the direct term which can
be absorved by the freedom in the A parameter of the pseudoscalar-
pseudoscalar-vector form factor.

In the following, we summary one by one the results obtained
for each sector studied, including also the discussion on the results
concerning the radiative decays studied for some of the resonances.

e The p—p interation. Amongst all the spin and isospin allowed
channels in s-wave, we found strong attraction, enough to bind
the system, in / = 0,5 =0 and [ = 0,5 = 2. We also found
that in the case of I = 0, S = 2 the interaction was more attrac-
tive, leading to a tensor state more bound than the scalar. The
consideration of the p mass distribution gives a width to the two
states, very small in the case of the tensor state because of its
large binding. However, the biggest source of width comes from
the decay into w7 that we have also studied within the same
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formalism. We found the width much larger for the case of the
scalar state. We also studied the effect of the crossed-mm-box
diagrams and the contribution of ww-intermediate states with
anomalous couplings, which were found to play a minor role.
The states obtained could be associated with the f,(1370) and
f2(1270), for which we found a qualitative agreement with ex-
periment on the mass and width. The findings of the paper give
support to the idea that these two resonances are dynamically
generated from the pp interaction, or in other words, that they
qualify largely as pp molecules. We extended the formalism to
account for the radiative decay of the resonances into . The
extension has been done following the standard method to deal
with dynamically generated resonances, in which the photons
are coupled to the components of the resonance, in this case
pp. This is technically implemented by means of loop func-
tions which involve the photon couplings to the components of
the resonance. In the present case, the peculiarity of the hid-
den gauge approach, in which the photons couple directly to
one p°, allows a factorization of the strong part of the inter-
action and the final result is converted into a tree level contri-
bution, hence rid of any ambiguity due to possible divergences
of the loops. The results obtained for the radiative width of
the f>(1270) are in perfect agreement with experimental data.
So are those for the f,(1370) when they are compared with
the experimental results of the Crystal Ball collaboration, or
those of the more recent experiment by Belle within its large
errors. Yet, the large systematic errors quoted in the work from
Belle, that has much better statistics, should raise some cau-
tion on these experimental numbers. With the ultimate goal
of learning about the nature of the two resonances discussed,
and having in mind the picture as dynamically generated states
emerging from the pp interaction in the local hidden gauge ap-
proach, the test passed here in the radiative decay is a first step
in the search of support for this idea, and further tests should
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be most welcome. To further strengthen this idea it would be
most useful to have good results for the radiative decay width
of the fy(1370) state, as well as results from other theoretical
models for both resonances which could tell us how stringent is
the test of this radiative decay to discriminate among different
models.

The (pw)D* interaction. We found strong attraction, enough
to bind the system, in I = 1/2,S =0, [ = 1/2,5 = 1 and
I'=1/2,5 = 2. We also found that in the case of I = 1/2, 5 = 2
the interaction was more attractive than in the other two cases,
leading to a tensor state more bound than the scalar and the
axial vector. The consideration of the p mass distribution gives
a width to the three states, rather small in all cases. Consid-
eration of the 7D decay channel, in an equivalent way to what
was done in the case of the pp interaction going to 77 in [85],
makes the widths larger and realistic. Yet, the smaller phase
space available here makes this contribution relatively smaller
than in the case of the pp interaction. We found that the ten-
sor state obtained matches the properties of the tensor state
D3(2460). We predict two more states with S =0 and S = 1,
which are less bound than the tensor state. We find in the
PDG the state D*(2640) without experimental spin and parity
assigned, but we conjecture that this state should be the S =1
state found by us because we could find a natural explanation
for the small experimental width of this state. The other state
nearly degenerate in energy with this one, but with spin S = 0,
would be stillto be found.

The XYZ particles. We have made a full study of the vector
- vector interaction in the C' = 0 and S = 0 sector using the
hidden gauge formalism. We have found a strong attraction in
the I =0, J =0,1,2and [ = 1, J = 2 sectors, enough to
bind the vector - vector system. By looking for poles in the
second Riemann sheet, we have found five resonances, three
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of which can be associated with the experimental data: The
state (3943,07[0%"]) to the Y (3940), the (3922,07[2%"]) to the
Z(3930) and the (4157,07[2%"]) to the X (4160). There is no
experimental counterpart for our state (3945,07[1177]), which
is thus a prediction of our model. These three states with mass
around 3940 MeV are basically composed by D*D*, and decay
into pairs of light vectors like K*K*, or light vector - heavy
vector as w.J /1. Our model predicts another state around 4160
MeV, (4157,07[27]), which we identify with the X (4160) state
in base to the proximity of mass and width and C-parity. This
resonance has J¢ = 2*+ and is mostly D:D?. In the I = 1
sector, the attraction is weak and we find only one resonance in
the case of J = 2, (3912,17[2"7]), the possible association of
this state to the X (3940) is unlikely since our state can decay
to DD, though with small intensity, but this decay is not seen
for the X (3940). The width that we obtain is also considerably
larger than that of the X (3940), I' = 120 MeV.

According to their masses and widths three of them are good
candidates for the Y(3940), Z(3930) and X (4160) mesons dis-
covered by BELLE and BaBar with the Z(3930) maybe cor-
responding to the recently observed X(3915). The calculation
of their radiative decays into two photons or vector-photon is
done. The information on the I',, decay rate of the X(3915)
favors the association of this resonance to the (2%, 3922) res-
onance that we obtain. Here, the quantum numbers 0% are
clearly disfavored.

We find a very distinctive shape in the Dy and D,y invari-
ant mass distributions of the Y(3940), Z(3930) and X (4160)
, which is peculiar to the molecular nature of these states as
basically bound states of two charmed vector mesons.

Unfortunately there is not much data on radiative decays of
the X,Y and Z mesons. The large variety of results obtained
by us concerning the different decays and different resonances
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indicates that these measurements are very useful to shed light
on the structure of these resonances.

Other sectors including exotic flavor. We studied dynam-
ically generated resonances from vector-vector interaction in
the charm-strange and hidden-charm sectors and extended for
the first time the formalism to flavor exotic sectors. Our anal-
ysis of the 7" matrix resulted in nine bound states. We can
assign one resonance to an experimental counterpart, which is
the D3(2573). For C' = 1,5 = 1 we obtain three states with
masses M = 2683, 2707 and 2572 MeV for I =0 and J =0,1,2
respectively. The widths lie around 44, 0 and 18 MeV corre-
spondingly (Model B with A = 1000 MeV). We associate the
state for J = 2 with the D}(2573) giving a novel interpreta-
tion for this resonance as a vector-vector molecular state. The
assumption of this structure is consistent with the DK nature
assumed for the D*(2317), the D* K molecular structure of the
D*(2460) or the X(3872) (DD*). The other two states around
2700 MeV are predictions of the model without experimental
evidence for these masses and quantum numbers up to now.
For I = 1 we find only one state, of non exotic nature, a 2%
state around 2786 MeV.

In the flavor-exotic sectors which had not been studied before,
we obtain interesting predictions for new states. In the sector
C =1;5 = —1;1 = 0 we obtain three new exotic states with
masses M = 2848, 2839 and 2733 MeV and widths around
' = 25, 3 and 22 MeV, for the quantum numbers I[J] = 0[0*],
0[1%] and 0[27] respectively. In the case of the double-charm
sectors C' = 2;S =0;1 =0and C = 2;5 = 1;1 = 1/2 the
potential leads to a bound system for J = 1 only. That is,
we deal with two very narrow states with masses around M =
3969 and 4101 MeV close to the thresholds of D*D* and D} D*
respectively. In summary, all states are relatively narrow. For
the quantum numbers J” = 0%, 2% the widths are lower than
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71 MeV (depending on the model) while all states with J” = 17
come with practically no width since the box diagrams do not
contribute. There is no experimental counterpart for all exotic
structures which can be considered as D*K*, D*K*, D*D* and
D7 D* molecular states.

The results obtained here should stimulate the search for new
states in the charm sector, in particular, more D states in the region
of 2600 MeV. There could be also more resonances not yet seen in
the region around 3940 MeV where we find a state with [ = 1 and
JPC¢ = 27+ and another one with / = 0 and J"¢ = 11~ without
experimental counterparts. The findings of this work should mo-
tivate the experimentalist to look into this region in the channels
that involve light vector - light vector or light vector - heavy vector
like K*K* and p.J/1. In addition, the existence of very interesting
charmed resonances in the flavor exotic sectors is claimed.

Regarding the study of charmed and strange vector mesons in the
medium, we have seen:

e Charmed mesons in the nuclear medium. We have eval-
uated the selfenergy of low lying scalar mesons with open and
hidden charm in a nuclear medium, concretely of the D;((2317)
and the theoretical hidden charm state X (3700). The many
body calculation has been done following the lines of previous
studies in the renormalization of the light scalar mesons in the
nuclear medium. The medium effects for the Dy, (2317) and
X (3700) resonances are spectacular. Those resonances, which
have zero and small width in free space, respectively, develop
widths of the order of 100 and 200 MeV at normal nuclear mat-
ter density, respectively. The study also allowed us to trace
back the reactions in the medium which are responsible for the
decay width of these mesons and which could be investigated
in future reactions at hadron facilities.

The experimental analysis of the charmed meson properties in
the medium is a valuable test of the dynamics of the D me-
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son interaction with nucleons and nuclei, and the nature of the
charm and hidden charm scalar resonances, all of them topics
which are subject of much debate at present. In particular, it
should stimulate experimental work in this direction at FAIR
[236], where the investigation of charm physics is one of the pri-
orities. The option of looking at transparency ratios was also
suggested as a mean to investigate the widths of these mesons
in nuclei. It was also discussed that the experimental study
of this width and the medium reactions contributing to it pro-
vide information on the basic features of the resonance and the
selfenergy of the D meson in a nuclear medium.

Strange-vector mesons in the medium. We have stud-
ied the properties of K* mesons in symmetric nuclear matter
within a self-consistent coupled-channel unitary approach using
hidden-gauge local symmetry. The corresponding in-medium
solution incorporates Pauli blocking effects and the K* meson
self-energy in a self-consistent manner.

In particular, we have analyzed the behavior of dynamically-
generated baryonic resonances in the nuclear medium and their
influence in the self-energy and, hence, the spectral function of
the K* mesons. We have found a moderate attractive optical
potential for the K* of the order of —50 MeV at normal nuclear
matter density. The corresponding quasiparticle peak in the
spectral function might not be easily distinguished due to its
merging with other excitations, apart from the fact that changes
of mass are always very difficult to determine in experiments
[208]. More remarkable are the changes in the width, which
can be more easily addressed by means of transparency ratios
in different reactions. At normal nuclear matter density the
K* width is found to be about 260 MeV, five times larger than
its free width. This spectacular increase is much bigger than
the width of the p meson in matter, evaluated theoretically in
[193, 194, 195, 196| or measured recently [201, 225, 237, 238|.
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We have made an estimation of the transparency ratios in the
vA — K+ K*A’ reaction and found a substantial reduction from
unity of that magnitude, which should be easy to observe ex-
perimentally. Other reactions like the K~ A — K*~ A’ should
also be good tools to investigate these important changes linked
to the strong K* interaction with the nuclear medium [239).

N and A}, resonances around 4 GeV. A previous step
done in this thesis in order to study the properties of the J/v
meson in the nuclear medium is to study the interaction of
charmed vector mesons with charmed baryons. Going further
in this direction, in the last Chapter we have found two N}
states and four A, states from PB and VB channels by using
the local hidden gauge Lagrangian in combination with unitary
techniques in coupled channels. All of these states have large
c¢ components, so their masses are all larger than 4200 MeV.
The width of these states decaying to light meson and baryon
channels without cc components are all very small. On the
other hand, the c¢ meson - light baryon channels are also con-
sidered to contribute to the width to these states. Then n.N
and 7.A are added to the PB channels, while J/9¥N and J/¢¥A
are added in the VB channels. The widths to these channels
are not negligible, in spite of the small phase space for the de-
cay, because the exchange D* or D} mesons are less off-shell
than the corresponding one in the decay to light meson - light
baryon channels. The total widths of these states are still very
small. We made some estimates of cross sections for production
of these resonances at the upcoming FAIR facility. The cross
section of the reaction pp — ppn. and pp — ppJ /i are about
0.1ub and 0.2nb, in which the main contribution comes from the
predicted N7 (4265) and N} (4415) states, respectively. With
this theoretical results, one can estimate over 80000 and 1700
events per day at the PANDA /FAIR facility. Similar event rate
is expected for the predicted A*,(4210) state in the pp — AAn,
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reaction. As a consequence, these three predicted new narrow
N* and A* resonances could be observed by the PANDA /FAIR.
The other three predicted A, resonances will remain for other
future facilities to discover.

Although in the scheme of dynamical generated states these
new N and A}, states are simply brothers or sisters of the
well-known N*(1535) and A*(1405) in the hidden charm sec-
tor, their discovery will be extremely important. While for the
N*(1535), A*(1405) and many other proposed dynamically gen-
erated states cannot be clearly distinguished them from those
generated states in various quenched quark models with qqq
for baryon states and ¢g for meson states due to many tun-
able model ingredients, these new narrow N* and A* resonances
with mass above 4.2 GeV definitely cannot be accommodated
by the conventional 3q quark models, although how to distin-
guish these meson-baryon dynamically generated states from
possible five-quark states needs more detailed scrutiny. The
existence of these new resonances with hidden charm may also
have important implications to the long-standing puzzles rele-
vant to charmonium production in various collisions involving
nucleon in the initial state, such as the strikingly large spin-
spin correlation observed in pp elastic scattering near charm
production threshold [240] and difficulties in reproducing the
cross sections and polarization observables of J/¢ production
from high energy pp, pp and ~p reactions [153, 241]. These
issues deserve further exploration.
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Resumen en espanol

14.1 Introducciéon

En la tesis, el campo vectorial juega un papel central. Asi, comen-
zamos describiendo brevemente las distintas formas de trabajar con
campos vectoriales. Existen diversas formas de introducir campos

de mesones vectoriales en Lagrangianos efectivos dependiendo de
[13, 14, 15]:

1) si se asigna un vector V,, o un tensor antisimétrico V,, = V,,
[14, 16],

2) de como los campos se transforman bajo una realizacion de
la simetria quiral, que puede ser lineal (directamente con los
elementos ¢ de la simetria, V,, — gV,g") o no-lineal (por medio
de una funcién h(g)). A su vez la transformacion puede ser
homogénea, V,, — hVuhT, o no homogénea, V,, — hVHhT +
cte hd,h',

3) el origen de los mesones vectoriales, que pueden ser 0 no bosones
gauge.
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Los principales tipos de teorias en que los mesones vectoriales corre-
sponden a bosones gauge son: las teorias de Yang Mills y las de hid-
den gauge |21]. En las teorias de Yang-Mills [13, 19, 20|, los mesones
vectoriales son los bosones gauge de la teoria de Yang-Mills, mientras
que en las teorias de hidden gauge, la matriz U(z) que contiene los
bosones Goldstone se descompone en dos factores, U(z) = &, (2)Eh(x)
y esta factorizacion introduce una simetria artificial en la que apare-
cen los mesones vectoriales como bosones gauge de la simetria oculta
en las derivadas covariantes. La clasificacion de las distintas teorias
que incorporan mesones vectoriales en los lagrangianos efectivos y sus
caracteristicas esenciales se resumen en la Tabla 14.1.

Yang-Mills lhidden symmetry WCCWZ| EGPdR
campo vector tensor
origen bosén de gauge dif. de bosén de gauge

realizacién| lineal no lineal y homogénea
quiral

Table 14.1: Caracteristicas esenciales de los distintos modelos que
incorporan campos de mesones vectoriales

Aunque las formas de los lagrangianos de las diversas teorias
que incorporan mesones vectoriales y los tipos de acoplamientos son
diferentes, todas ellas son en principio equivalentes y su variedad se
debe simplemente a la libertad que uno tiene al escoger los cam-
pos de espin-1. La mayoria de ellas estin motivadas en las ideas
fenomenologicas de dominancia de mesones vectoriales y acoplamiento
universal [17, 18], como en las teorias de Yang-Mills y de hidden
gauge, donde los términos cinéticos y acoplamientos de los campos
de espin 1 tienen la misma forma que en una teoria gauge, refle-
jando asi el acoplamiento universal de estos mesones a las corrientes
conservadas. Por medio de términos locales y asunciones bésicas rela-
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cionadas con dominancia de mesones vectoriales, se ha demostrado
que los formalismos WCCWZ [15, 22, 23, 24] y EGPdR [14] son
equivalentes hasta O(p*) [25], mientras que mediante un cambio de
variables de los campos de espin 1, cualquier teoria de Yang Mills
puede ser convertida en una WCCWZ equivalente. En las teorias de
Yang-Mills masivas, los campos vectoriales y axiales se transforman
bajo una realizacion lineal de la simetria quiral. El uso de una real-
izacion no lineal de la simetria quiral significa que cualquier mesén y
su compafiero quiral (p. €j. py a1) son tratados de la misma manera.
Sin embargo, es posible escribir lagrangianos de Yang Mills con s6lo
el mesoén p pero asegurandose la satisfaccion de los teoremas de baja
energia quirales por medio de términos adicionales. Esto puede hac-
erse escribiendo una teoria hidden gauge que genere estos términos y
reformulandola en un Lagrangiano de la forma de Yang Mills con un
cambio de variables. En la formulacién de hidden gauge, una simetria
local es introducida en un modelo sigma no lineal por medio de una
eleccion particular de los campos. El mesoén se introduce como un
boson gauge de la simetria. La simetria local no implica nueva fisica
asociada a ésta y puede ser eliminada fijando el gauge. En concreto,
en el gauge unitario, la simetria se reduce a la realizaciéon no lineal
de la simetria quiral bajo la cual los campos vectoriales se transfor-
man inhomogéneamente, de forma opuesta al esquema WCCWZ. Sin
embargo, cualquier lagrangiano de una teoria hidden gauge puede
ser transformado mediante un cambio de variable en uno equivalente
del esquema WCCWZ [31]. Realmente, la constante de acoplamiento
gauge no es més que un parametro de elecciéon del campo vectorial. La
elecciéon convencional elimina las dependencias de momento de O(p?)
del acoplamiento pmm dejando correcciones de orden p°. Ademas, si el
acoplamiento vyp satisface una relaciéon particular, entonces también
se eliminan las correcciones de orden p? del mixing. Esta reduccion
de la dependencia de momento es responsable de que, en la formu-
lacion de hidden gauge, se satisfaga de modo natural (en ausencia de
condiciones extra) la relacion KSFR obervada empiricamente en la
desintegracion del meson p |32, 33].
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14.2 Formalismo

En el formalismo de hidden gauge, los campos de los mesones vec-
toriales son bosones gauge de una simetria local que se transforman
inhomogéneamente. Una vez que se escoge el gauge unitario, estos
campos se transforman exdctamente como en la realizacién no lineal
de la simetria quiral [22]. En [25], se demuestra que este formalismo es
equivalente al de [14], donde los vectores se transforman homogénea-
mente bajo una realizacion de la simetria quiral. El Lagrangiano que
contiene campos de mesones, fotones y vectores al mismo tiempo,
puede ser escrito como:

L=LD+ L (14.1)
donde
1
£ — Zf2<DuUDMUT + XUT + XTU) (14.2)
1 1 1
L= —Z<VWVW> + §M\2/<[Vu - ;FMP% (14.3)

siendo (...) la traza sobre matrices de SU(3). La derivada covariante
se define como

DU = 0,U — ieQA,U + ieUQA,, (14.4)

con Q = diag(2,—1,—1)/3, e = —|e| la carga del electron, y A, el
campo del fotéon. Por otro lado, la matriz quiral U esta dada por

U = V2Pl (14.5)

siendo f la constante de desintegracion del pion (f = 93 MeV). Py
V,, son matrices de SU(3) que contienen los campos pseudoscalares
y vectoriales, V,,, viene dado por

Vi =0V, — 9V, —iglVi, Vi) | (14.6)
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siendo g,

My
2f
Del Lagrangiano de la Ec. (14.3) podemos extraer los términos de
contacto de tres y cuatro vectores, que son respectivamente,

g= (14.7)

LY = ig{(0.V, — V) V) | (14.8)
Y 2
£ = LV - Vv (14.9)
Donde V), viene dado por
0 w .
ate oo KT
V= ;s K . (14.10)
K*~ K*0 o

I

En lo que sigue utilizaremos los Lagrangianos de Hidden Gauge
explicados con anteriodad para calcular el potencial de interacciéon de
dos mesones vectoriales. En primer lugar se calcula para el sistema
de dos mesones p que es el caso méas simple que puede haber [85|. El
formalismo se extiende al caso general de cualquier par de mesones
vectoriales de SU(3) en [86]. Mas tarde, se incluyen en el modelo
los mesones con encanto, tratando todos los sectores posibles, desde

(encanto = 1;extraneza = 0)[116], (encanto = 0;extraneza = 0)
(encanto oculto)[136] hasta los sectores exdticos como (encanto =
I;extraneza = —1) o (encanto = 2;extraneza = 1)[155]. Las ampli-

tudes se unitarizardn por medio de la evaluacion de la ecuacion de
Bethe Salpeter y findlmente se procedera a la bisqueda de polos de
la amplitud de dispersién en el plano complejo de la energia y a la
asociacion de estos en los casos que sea posible con estados ya ob-
servados, mientras que otros estados daran lugar a predicciones de
la teoria. También, los canales de desintegracién a mesones pseu-
doscalares son incorporados pudiendo asi explicar en muchos casos la
mayor parte de la anchura observada.
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14.2.1 Potencial de dispersiéon de dos vectores

El lagrangiano de la Ec. (14.9) da lugar al diagrama de la Fig. 14.1
a), y el término de contacto de tres vectores de la Ec. (14.8) propor-
ciona los vértices del diagrama de intercambio de vectores de la Fig.
14.1 b) y ¢). Ademas, incluimos diagramas que involucran mesones
pseudoscalares como los mostrados en la Fig. 14.1 d). Los diagramas
de la Fig. 14.1 a)-d) son los mecanismos que contribuyen a construir
el potencial de onda s de interaccion de dos vectores y el kernel V'
de la ecuacion de Bethe-Salpeter. Como veremos, los diagramas a)
y b) son la parte fuerte del potencial y producen estados ligados por
si mismos. Mientras que los diagramas de la Fig. 14.1 d) dan esen-
cialmente la parte imaginaria del potencial y asi, dan cuenta de la
anchura de desintegracion de los estados. La amplitud del diagrama
de la Fig. 14.1 ¢) es onda p y repulsivo para particulas de la misma
masa, mientras que resulta débilmente atractivo para particulas de
masa diferente.

El vértice vector-pseudoscalar-pseudoscalar del diagrama con forma
de caja de la Fig. 14.1 d) viene dado por el mismo formalismo del
Lagrangiano de la Ec. (14.3), véase la Ec. (2.16). Para unitarizar
las amplitudes de dispersion es necesario realizar una resumacion de
loops lo cudl viene implicito en la ecuacion de Bethe Salpeter [55].
Para realizar esta resumacién es necesario factorizar la estructura de
espin en la serie de loops.

La estrucura de espin de la amplitud de dispersiéon de dos vec-
tores es una combinacion de todas las posibles contracciones de los
vectores de polarizacion, que son, €)ea,€5€q,, €/€5e 361, ¥ € o €ley,.
Puesto que todos los estados posibles tienen espin definido, nece-
sitamos proyectar las amplitudes en espin. Para hacer esto, uno
construye unos tensores de espin que contienen estas combinaciones
de vectores de polarizacion pero que poseen un espin definido. Los
proyectores de espin se contruyen a partir de éstos y en la aproxi-
macion de despreciar el momento de las particulas externas respecto
de la masa del meson vectorial, ¢?/MZ ~ 0, quedan estructuras muy
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Figure 14.1: Mecanismos que contribuyen a la dispersién vector -
vector a orden &rbol, los cuales son incluidos en el potencial V' en la

ecuacion de Bethe-Salpeter [55].

simplificadas. Los proyectores sobre espin= 0, 1, 2 son:

1
PO = geue“eye”
PO = 5(%@6“6” — € €€ el)
2 _ 1 n v v_ 1 a B
P - {5(61161/6 € +€p,€1/6 € )_ geaf €3€ } .

(14.11)

Para la proyeccién de isospin, la normalizacién unitaria descrita en
[61] es usada. El uso de esta normalizacion implica afiadir un factor

1

7 extra para cada estado de isospin de particulas idénticas. De
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modo que los estados de isospin= 0, 1,2 para dos mesones p son:

pp.T=0) = —%m*(hel)p-(bez) o (kren)p* (zen)
p (k:lel) 0(k52€2)> (14.12)
lpp, I =1,13=0) = —%| T(kre1)p™ (kaea) — p~ (krer)p™ (kzez))

pp I =2,013=0) = —%—( (krex)p™ (kaea) + p~ (kren)p* (kea)

\/7 (k1e1)p° (kaea))

Mientras que las combinaciones para el sistema pD* con isoespin=
1/2y 3/2 son:

1
D*1=1/2,13=1/2) = \/=|p" D" — —=|p"D**
‘p ) / ) 43 / > 3‘p > \/§|p >a
pD" 1 =1/2,Is=3/2) = —=|p" D) +/2|0°D™)
) Y \/g 3
(14.13)
Donde hemos hecho uso de la convencion de fases [p™) = —[1,1) y
|D*0) = —|1/2,1/2). Para el sistema D*D* tendremos:
|D*D*, I =0,I3 =0) = L|D*+D*—> + L|D*0D*0>
Y Y \/i \/i )
_ 1 _
D*D* I =1,13=0) = —|D*"D*") — —|D**D*%),
| 3=0) \/5| ) \/5| )
(14.14)

Y del mismo modo para otros pares de mesones. Los resultados del
calculo de las amplitudes de la figura Fig. 14.1, término de contacto
de cuatro vectores a) y de intercambio de un vector b), una vez que
las estructuras se han proyectado en espin e isospin, se muestran en
la Tabla 3.1 para la interaccion entre dos p’s (si se quiere ver el resto
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de las amplitudes de dispersion entre dos vectores pertenecientes al
nonete de SU(3), véanse las Tablas V-X y XVIII-XXI de [86]), Tablas
6.1, 6.2 y 6.3 del Capitulo 6 para el sistema pD* y Tablas B.1 - B.6
del Apéndice B para D*D*, D D? (sector C = 0; S = 0 alrededor de
4000 MeV). Las amplitudes del resto de sectores incluyendo aquellos
que tienen sabor exotico se encuentran en las Tablas D.1 - D.10 del
Apéndice D.

La estructura cinemaética de las amplitudes correspondientes a los
diagramas del intercambio de un vector tienen una estructura general,
la cual es, para la reaccion (1 +2 — 3+ 4) y en el canal ¢

bij(k1 + k3) - (k2 + ka)er - ezea - €, (14.15)
y en el canal u

cij(ki + ka) - (ks + ks)er - eaen - €3, (14.16)
siendo b;; y ¢;; constantes dependientes del canal inicial, ”i” = (14-2),
y final, 75”7 = (3 4+ 4). Es interesante observar que la estructura de

espin de la Ec. (14.15) tiene iguales componentes para espin= 0, 1
y 2, mientras que la de la Ec. (14.16) tiene la misma proyeccion
para espin= 0y 2 y de signo opuesto para espin= 1. Tras proyectar
las amplitudes en isospin, espin y onda s, ellas son insertadas en la
ecuacion de Bethe Salpeter como kernel V', la cual en el formalismo
on-shell |43, 52, 77| puede ser expresada como

T=[1-VG]'v. (14.17)

El kernel V' es una matriz cuyos elementos son las amplitudes (V7 (k1) Va(k2)
— V3(k3)Vy(ky4)) evaluadas en la base de espin, de isospin y proyec-
tadas en onda s. G es una matriz diagonal cuyos elementos son las
funciones de loop de dos mesones G; para cada canal V;V5:

G / g ! ! (14.18)
i =1 X — .
(2m)4 g% — ME +ie (P — q)2 — M2 + ie

la cual puede ser evaluada con regularizacion dimensional, Ec. (3.45),
o cutoff, Ec. (3.23). En la Ec. (14.18), P es el cuadrimomento total
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de los dos mesones. En el plano complejo de la energia, i.e. /s, los
polos aparecen en la primera hoja de Riemann para valores de /s
por debajo del umbral y son interpretados como estados ligados. Las
resonancias son identificadas con polos localizados por encima del
umbral (del canal al que la particula se desintegra) y deben buscarse
en la segunda hoja de Riemann, en la cual, la funcién de loop cambia
y se escribe como [55]:

G (v/3) = GL(V5) +¢4fﬁ Im(p) >0 (14.19)

donde G se refiere a la funcién de loop en la segunda hoja de Rie-
mann y G! es la funciéon de loop en la primera hoja de Riemann que
viene dada por la Ec. (3.45), en el método de regularizacién dimen-
sional, o0 (3.23), si un cutoff es usado para regularizar la integral, para
cada canal i.

14.2.2 Convoluciéon de la funcién de loop de dos
mesones y calculo del modo de desintegracién
a dos pseudoscalares

La insercion de las amplitudes del término de contacto de cuatro vec-
tores + intercambio de un vector adecuadamente proyectadas como
potencial V' de la ecuaciéon de Bethe Salpeter conduce a estados lig-
ados (polos en el eje real y por debajo del umbral con anchura cero)
de dos mesones vectoriales. Por el hecho de tratar con vectores, es-
tos estados ligados tienen la posibilidad de desintegrarse en mesones
pseudoscalares. Con objeto de incluir los canales de desintegracion
que contienen mesones pseudoscalares, se utilizan dos mecanismos
diferentes, 1) Convolucion de la funcién de loop de dos mesones vecto-
riales teniendo en cuenta la anchura de desintegracion de los mesones
py K* anny K respectivamente, y 2) Calculo de un diagrama con
forma de caja que contiene cuatro pseudoscalares en su interior, de
este modo las resonancias pueden desintegrarse a dos mesones pseu-
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doscalares (cuatro si se cruzan las patas de este diagrama). Estos dos
mecanismos se describen a continuacion.

1) Convolucién de la funciéon de loop de dos mesones. El
hecho de que el mesén p tiene una anchura grande, I', = 146.2
MeV, implica que el mesén tiene una distribuciéon de masas,
y asi, los estados generados dindmicamente a partir de la in-
teraccion de dos mesones p pueden desintegrarse en un estado
intermedio de dos vectores para las componentes de menor masa
de la distribucién del p. Y de modo similar ocurriria para otros
vectores con anchura apreciable distintos del p, como por ejem-
plo el meson K*. En el caso de la funcion de loop de dos
mesones p, la convolucion de la funcién G con la distribucion
de masas del meson p, G, es

5 1 (mp+2Tp)? ,, 1 1
G(s) = — dmi(——)Im— —
() N2 Ji,—or,)2 i 7r) mi —m2 + il
(mp+20)? 1 1
x/‘ [ . —
(m,p—2T,)2 71' my —m, + 1I'meg
xG (s, M7, m3)
(14.20)
con
" gL 1 (1421)
N = di2(—=)Tm— 142
(my—2T )2 Nor mi —m2 +il'm,

donde I', = 146.2 MeV y para I' = I'(/) tomamos la anchura
del p para la desintegraciéon en dos piones en onda p

52 2
m° —4mz

['(m) =T,( 3200 — 2m,) (14.22)

2 _ A2
mg — 4mz

El uso de G en la Ec. (14.17) proporciona alguna anchura a
los estados. Para convolucionar la funcién de loop pD* véase

la Ec. (6.4).
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2) Calculo del diagrama con forma de caja. La convolucion

de la funcién G proporciona anchura a los estados, sin embargo,
como veremos, la anchura que proporciona no es mayor que
unos pocos MeV en todos los casos considerados aqui, mientras
que muchos estados observados a los que asociamos las resonan-
cias generadas dindmicamente que obtenemos (por proximidad
en nimeros cuadnticos y masas), tienen anchuras del orden de
100 — 200 MeV. Por esta razoén, otros mecanismos deben ser
tenidos en cuenta si se quiere realizar un estudio completo de
la interacciéon de dos vectores. Expondremos aqui el caso de la
inclusion de un diagrama con forma de caja para la interaccion
de dos p’s y el método usado puede extrapolar los resultados
facilmente a la interaccion pD*, D*D*, etc.

Para el caso de los estados pp que nos interesa, los diagramas
de la Fig. 14.2 proporcionan tales mecanismos, y de hecho
el vértice prm es proporcionado por el Lagrangiano de hidden
gauge de la Ec. (14.3),

Lyvpp = —ig{(V¥[P,0,P]) . (14.23)

Para el diagrama de la Fig. 14.3, en el que aparecen explicita-
mente los momentos, tenemos

, d* .

i = / G (IV30) 4~k + 0 e,
X Z(k‘l —q+ P — (])u EZZ(IC?, —q— q)a Eg
x(—i)(q — ks — P+ q)pe;

i i
X
¢? —mZ +ic (k1 — q)* —m2 + ie
» 1 1
(P —q)? —m2+ie (ks —q)> —m2 +ie

(14.24)

Bajo la aproximacion de despreciar el momento respecto de la
masa del meson vectorial, todos los vectores de polarizacion
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NN e NS

7r0+ * 0 + W** * Tt 71'+* +7r

IR AN ST

Figure 14.2: Diagramas considerados para tener en cuenta el mecan-
ismo pp — 7.

p* (k1) " (ks)

N

(ki1 — q) i | (ks — q)

PEEN

p~ (k) " (k)

Figure 14.3: Detalle de uno de los diagramas de la Fig. 14.2.
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vienen a ser espaciales y podemos reescribir la amplitud como

N T d4q
—Zt( ) = (\/§g)4/ 16q¢qquqm61i€2j€3z€4m

(2m)*
" 1 1
@ —m?2 +ie (ky — q)> — m2 +ie
1 1
“P ) —m2 +ic (ks — q)2 —m2 +ic

(14.25)

esta integral es logaritmicamente divergente, y en la ausencia
de datos para ajustar la constante de sustraccion si se intentase
evaluar por medio de regularizacién dimensional, lo que hare-
mos es evaluarla por medio de un cutoff en el trimomento del
orden de 1 GeV. Con este proposito, evaluamos la integral en
¢° analiticamente teniendo cuidado de dividir exactamente por
el factor con polaridad indefinida (+ie in the denominators).
Realizando alguna manipulacién algebréica obtenemos,

vem = (\/59)4 (€1i€2i€35€45 + €1,€2€31€45 + €15€2;€3,€4;)
8 /QWLaz d 6 {10 9 (k0)2} 1 1 2
w R —_— —_—
1572 Jo 74 313 \ K + 2w
1 1 , 1
X 0 ( 0 . ) 0 . 9
PO 42w k) — 2w +ie” PO — 2w + e

X

(14.26)

siendo w = /¢? + m2. Esta expresiéon muestra explicitamente
las fuentes de parte imaginaria en los cortes k) — 2w = 0y
P° — 2w = 0, correspondiendo a p — 7w y pp — wm. El
doble polo de la Ec. (14.26) puede ser eliminado facilmente
teniendo en cuenta la distribucién de masas del mesén p. Una
simple aproximacion, lo suficientemente precisa para nuestros
propositos es sustituir el polo doble, (k¥ — 2w + i€)?, por (k¥ —
2w+T/4+ie) (k) —2w—T/4+ic). En la practica, los resultados
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practicamente no cambian si uno pone I'/2 en lugar de I'/4
o algtin nimero razonable del orden de la anchura del p. El
potencial de la Ec. (14.26) se proyecta en espin e isospin. Como
solo estamos interesados en isospin= 0, donde la interaccién es
atractiva para espin= 0, 2, la amplitud del diagrama en caja de
la Fig. 14.2 es
t(27r,I:0,S:0) — 920 ‘7(7{'71’)
(EmI=05=2) gy (14.27)

donde V™ viene dado por la Ec. (14.26) tras eliminar los
vectores de polarizaciéon. Los diagramas del tipo de la Fig.
14.2 no tienen espin= 1. La razén es que los mesones p estan
en onda s y por tanto la paridad del sistema pp es positiva,
lo que fuerza a los dos piones a tener L = 0,2, y asi, ya que
los piones no poseen espin, J = L y tnicamente los nimeros
cuanticos 0 y 2% son posibles.

Como puede verse en las Figs. 3.10, 6.4, 7.4, 9.2 y 9.3 el po-
tencial que viene de la suma de los términos de contacto y de
intercambio de un vector es mucho mayor que la parte real del
diagrama en caja del tipo mostrado en la Fig. 14.2 y por tanto
la parte real del diagrama puede ser despreciada. La parte
imaginaria del diagrama en caja se muestra en las Figs. 3.10,
6.5, 7.5y 9.4 para los distintos sectores. Esta parte imaginaria
seré la responsable de la anchura de desintegracion de las reso-
nancias encontradas a pares de pseudoscalares.

En el calculo de la Ec. (14.26), el intercambio del pién entre
los dos mesones p en el canal ¢ est4 mayormente off-shell por lo
que implementamos factores de forma empiricos para el vértice
prm |79, 80] del tipo

Flg)=————7"_ (14.28)
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en cada vértice p — 7, siendo

kOZ\/E IZ:O 0 ﬁ
2

2

y ¢ la variable de integracion. La Ec. (14.28) se implementa
para varios valores de A ~ 1.3—1.4 GeV [79, 80] y en la integral
de la Ec. (14.26), se usa un valor del cutoff de guax = 1.2
GeV el cual no afecta a la parte imaginaria de la integral, que
representa el papel importante en el calculo.

: (14.29)

Existen también otras contribuciones a la anchura de los estados
V'V, como es por ejemplo el diagrama en caja cruzado de la Fig.
14.4, mostrado para el sistema pp y que puede extrapolarse facil-
mente a otros sectores. El resultado del calculo de este diagrama es
mostrado en la Fig. 3.10, éste tendria en cuenta la desintegraciéon
de la resonancia en cuatro mesones pseudoscalares. Hemos evaluado
que la contribucién de este diagrama representa un 20% del término
directo con dos pseudoscalares en el estado intermedio. Para el caso
pp, también es posible un diagrama con vértices anémalos tal como
el de la Fig. 14.5, sin embargo, el potencial correspondiente a este
diagrama no tiene parte imaginaria y la parte real negativa viene a
ser contrarrestada con la parte real del potencial del diagrama en
caja, véase la Fig. 3.10. En el caso del vértice D*Dn, ademés los
calculos son realizados con otro factor de forma basado en reglas de
suma de QCD [123]. Para un 7 offshell, éste es:

F'(¢%) = gpepre” ™ with A =12GeV , (14.30)

junto con el uso del valor experimental del acoplamiento D* D7 me-
dido por la Colaboracion CLEO, g7y, = 8.95. En la Ec. (14.30),
debe cambiarse ¢ — k; — ¢, con gy ~ 769.4 MeV y ki — ¢° ~ 6 MeV
lo cual conduce a (k° — ¢°)?/A%? ~ 1075. Por lo tanto, la compo-
nente cero del cuadrimomento del pién puede ser despreciada. Asi,
reemplazamos g* en la Ec. (6.8) por

ex g2 /A2
G (957p) (7T /M) (14.31)
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Pt (k1) P (k3)
7 (q) /
(ki —q) < ~ (ks — q)
/4(7% — ki —’N
p~ (ko) p~ (k1)

Figure 14.4: Diagrama de caja cruzado considerado para la desinte-
gracion en cuatro piones.

P~ PO (kafks)  p° P°(ka/ks)

Figure 14.5: Diagrama de caja con vértices anémalos y con dos w’s
en el estado intermedio.
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exp

con Gprr = m,/2 fr = 4.2y g5Fp, = 8.95 MeV (el valor experimen-
tal), A ~1— 1.2 GeV y ¢ como variable de integracion.

Las partes reales e imaginarias son mostradas en las Figs. 6.6 y
6.7 para el diagrama en caja pD*. Como puede verse, la parte real del
diagrama en caja m D de nuevo es mucho més pequena que el término
de contacto + término de intercambio y puede ser despreciada.

14.3 Resultados

En esta secciéon discutimos los resultados obtenidos para cada sec-
tor cuando el potencial de interaccion de dos vectores de la seccion
anterior es introducido en la Ec. (14.17).

1. El sistema pp. Como puede observarse de la Tabla 3.1 para
el caso de la interaccion de dos p's, el potencial es atractivo
para los casos (/,5) = (1,1);(0,0); y (0,2), mientras que re-
sulta ser repulsivo para (I,S) = (2,0) y (2,2). En los casos
(1,5)=1(0,1);(1,0);(1,2); y (2,1), que no se encuentran en la
Tabla, el potencial es cero, lo cual es consistente con la regla
para particulas idénticas L + .S 4+ [ = par. Notese que la atrac-
cion obtenida en el sector (1, S) = (1,1) es mucho mas pequenia
que para (I,S) = (0,0) y (0,2). Este caso es especial puesto que
corresponde a los nimeros cuanticos de la resonancia b;(1235).
Esta resonancia es dindmicamente generada de la interaccién de
vectores con pseudoscalares siendo el canal K K* el dominante.
El hecho de que la atracciéon entre dos p’s sea pequena para
estos nimeros cuanticos indica que la influencia de este canal
en la dindmica de la resonancia b, (1235) sera pequena, estando
dominada por la interacciéon K K*. Aunque esta débil atraccion
puede conducir a una resonancia ancha a elevadas energias que
es estudiada con detalle en [86]. Es interesante ver que en el
modelo no se pueden generan estados con I = 2 ya que el poten-
cial es repulsivo aqui. Por otro lado, encontramos una mayor
atraccion en el sector (1,5) = (0,2) que en (1,S) = (0,0), lo
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que indica que un posible estado generado de la interacciéon pp
en ese sector estarfa mas ligado que para (I,S5) = (0,0). Es
curioso observar que la misma tendencia es seguida por las res-
onancias fy(1370) y f2(1270). Ademas, vale la pena mencionar
que los diagramas de intercambio de un vector son mayormente
responsables de la atraccion final, pero es debido al término de
contacto que estos estados finalmente no seran degenerados en
masa [85].

El resultado final de la matriz |T'|* en el eje real es mostrado
en la Fig. 14.6. En la evaluacion de la 7' matriz de la figura no
incluimos los diagramas de las Figs. 14.4 y 14.5 ya que ellas rep-
resentan contribuciones de menor importancia que pueden ser
absorvidas por la variaciéon del parametro A de la Ec. (14.28).
Las amplitudes son evaluadas para dos valores diferentes del
cutoff en la Ec. (3.23), guax = 875 y 1000 MeV, el resultado
puede verse en la Fig. 14.7. Obtenemos dos estados con masas
alrededor de 1500 y 1270 MeV para J = 0 y J = 2 respectiva-
mente. Como puede observarse, conforme A crece, Fig.14.6, la
anchura de los estados se hace mayor, lo cual nos proporciona
una idea de las incertidumbres.

2. Extension al nonete de vectores de SU(3). Este estudio es
realizado en detalle por L. S. Geng [86] y reproducido usando los
mismos parametros en esta tesis. A continuacién se resumen
brevemente los principales resultados de este estudio. En el
resto de los casos de interacciéon entre vectores pertenecientes
al nonete de SU(3) distintos a pp, se encuentra un potencial lo
suficientemente atractivo para dar lugar a la generacion de po-
los, en los sectores (extrafieza= 0, isoespin= 0); (extrafieza= 0,
isoespin= 1) y (extraneza= 1, isoespin= 1/2). De los once po-
los encontrados, cinco de ellos pueden ser asociados con esta-
dos observados experimentalmente. Las posiciones de los polos,
constantes de acoplamiento a los diferentes canales evaluadas
de los residuos de las amplitudes (ver Ec. (3.50)) y la com-
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paraciéon entre teoria y experimento viene dada en las Tablas
3.4, 3.5, 3.6 y 3.7 respectivamente. Las cinco resonancias aso-
ciadas con estados observados son: La f,(1370) y f2(1270), se
obtiene que se acoplan principalmente a pp y las tasas de desin-
tegracion evaluadas son, ~ 88% a 7, ~ 10% para KK y < 1%
para nn, en muy buen acuerdo con el experimento, que pro-
porciona las medidas para las tasas de desintegraciéon, 84.8%
para 7w, 4.6% para KK y < 1% para nn. La fo(1710) y la
f4(1525), que se acoplan principalmente a K*K* y las tasas de
desintegracion calculadas para la f,(1710) son ~ 55% para K K,
~ 27% para nn < 1% para nm y ~ 18% para la componente
vector-vector. Aunque se encuentra buen acuerdo con el co-
ciente T'(nn) /T (K K), la fraccién obtenida para I'(n7)/T(K K)
es mas pequena que el valor experimental. Sin embargo, entre
los distintos experimentos, el experimento realizado por BES a
partir de la reaccién J/¢ — wKTK~ da I'(77)/T(KK) < 11%
a un 95% de nivel de confianza, por lo que creemos que son
necesarios méas analisis experimentales para clarificar ésto. Re-
specto a la f5(1525), de los calculos se deduce que el ~ 66% de
las veces la resonancia se desintegra en KK, mientras que se
obtienen ~ 21% para nn, ~ 1% para 7w y 13% para la com-
ponente vector-vector, lo cual estd en muy buen acuerdo con el
experimento (88.7% a KK, 10.4% para nny 0.8% para 77). El
ultimo estado que puede ser claramente asociado a un estado
experimental es la K3(1430). De los calculos se obtiene que el
modo de desintegracion Km ocurre un (49.9 + 1.2)% de las ve-
ces mientras que el canal K*7r representa el (13.4+2.2)%. La
masa y anchura encontradas en el eje real son 1431 y 56 MeV
respectivamente, mientras que el PDG da los valores 1429+1.4
y 104+4 MeV. El acuerdo con el experimento es razonable [86].

. Interaccién p — D*. En este estudio se tratan los canales pD*

y wD*. En este caso, ver Tablas 6.1, 6.2 y 6.3, vemos que
las amplitudes correspondientes al intercambio de un mesén
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D* son proporcionales a k = mg/m%* ~ 0.15. Hemos calcu-
lado que estos términos representan correcciones del orden del
10% de los términos de intercambio de un mesoén p. De estas
tablas podemos extraer las siguientes conclusiones: Hay atrac-
cion en el sector de I = 1/2 mientras que la interaccién en
el sector I = 3/2 es repulsiva. Debido a que este tltimo sec-
tor es exoOtico, I = 3/2, esto es una caracteristica bienvenida
que parece ser universal en otros estudios [86, 118, 119]. Los
potenciales pD* — wD* y wD* — wD* son repulsivos y pe-
quenos. Finalmente, de las tablas vemos que es el término de
intercambio del p el que domina la interaccion.

Tomamos pardmetros a y p en la Ec. (3.45) similares a los
trabajos de D. Gamermann [108] y [109]. Esto es, u = 1500
MeV y ajustamos « para obtener la masa de la D;(2460),
esto da a = —1.74. Se encuentran tres estados, uno para
cada espin= 0,1,2 y similarmente al estudio de la interac-
cion pp, obtenemos un estado méas ligado con espin= 2 que
para espin= 0,1. En la Tabla 6.5 damos los valores de los
acoplamientos g; en unidades de GeV a los diferentes canales.
Los resultados que se obtienen usando la formula del cutoff para
G, Ec. (3.23), son muy similares, con diferencias de alrededor
del 10% con el empleo de la formula de la Ec. (3.45) para un
cutoff ¢nax = 1—1.2 GeV. Los estados aparecen con masas 2602,
2620 y 2465 y anchuras ~ 61,4 y 40 para espin= 0,1 and 2 re-
spectivamente y A = 1 GeV en la Ec. (14.30). Los valores de
las masas y anchuras de los dos ultimos estados son consistentes
con los observados experimentalemnte para la D*(2640) (de es-
pin desconocido) y la D}(2460), por lo que asociamos estos dos
estados a los estados de espin= 1 y 2 encontrados en el modelo,
respectivamente. Un punto remarcable es la prediccion de los
nameros cuanticos de la D*(2640) ya que el modelo proporciona
una explicacion de porqué este estado tendria una anchura mu-
cho mas pequena que el estado de espin= 2, la D3(2460), a
pesar de tener una masa mayor, debido a que el diagrama en
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caja calculado que proporciona la anchura de desintegracion a
dos pseudoscalares solo puede tener espin= 0y 2 [116].

Sector C = 0;S = 0 ~ 4000 MeV (encanto oculto). En las
Tablas B.1 - B.6 del Apéndice B pueden verse las amplitudes
de las reacciones D*D* — channel y DD} — channel. En este
sector, las amplitudes evaluadas en [86] (véase Apéndice de este
articulo) para SU(3) también son usadas en el calculo. De estas
tablas podemos observar que la interaccién es muy atractiva
para D*D* — D*D* D*D*(D:D?) — DD} y isoespin= 0;
espin= 0,1,2. Para isoespin= 1, vemos que el potencial de
la interaccion D*D* — D*D* y D*D* — pJ/i es bastante
atractivo para espin= 2. Ya que estamos tratando con difer-
entes tipos de canales, se esperan grandes efectos de rotura de
la simetria y por esta razéon es importante evaluar las incer-
tidumbres. Sin embargo, como veremos, los resultados parecen
ser bastante estables. Para ajustar el parametro «, lo primero
que se hace es reproducir los resultados de SU(3), ya que estas
amplitudes son necesarias en el calculo, de modo que siguiendo
|86], fijamos 1 = 1000 MeV para todos los canales y ponemos
oy = —1.65 para los canales vector (ligero) - vector (ligero).
En los otros canales de vector (pesado) - vector (pesado) ajus-
tamos ay para reproducir el polo encontrado con [ =0;J =0
alrededor de 3940 MeV, esto da ay = —2.07. Finalmente, en
el resto de canales vector (pesado) - vector (ligero) ponemos
ar, = —1.65 también. Las posiciones de los polos y constantes
de acoplamiento obtenidas vienen dadas en las Tablas 7.2 -7.6.
Para isoespin= 0 encontamos cuatro polos, tres de ellos alrede-
dor de ~ 3940 MeV, uno para cada espin J = 0,1,2, y que
se acoplan fuertemente a D*D*. Estos estados son relativa-
mente estrechos y los que tienen J = 0 y 2 se desintegran en
w(¢)J /¢ principalmente. Para I = 0y J = 2 encontramos
otro polo por encima del umbral D*D* con masa M = 4169
MeV y anchura I' = 132 MeV. De los acoplamientos vemos
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que este estado se acopla mas a D:D?. Para I = 1 encon-
tramos un solo polo con J = 2 y debajo del umbral D*D*
con masa M = 3919 MeV y anchura I' = 148 MeV. Este es-
tado se acopla también méas fuertemente a D*D*. La identifi-
caciéon con los estados de la Tabla 7.1 debe hacerse cuidadosa-
mente. Aunque existen tres estados con masa alrededor de 3940
MeV, uno de nuestros estados, concretamente el de espin= 1,
tiene C paridad negativa, mientras que todos los estados ex-
perimentales tienen C paridad positiva. La Colaboracion Belle
favorece la asociacion de los niimeros cuanticos J©¢ = 2++ para
este estado, con lo que identificamos el estado encontrado para
espin= 2 alrededor de 3940 MeV con la Z(3930). En el caso
de la Y(3940), existen varias medidas para la masa y anchura
realizadas por las distintas Colaboraciones Belle y Babar para
este estado, que son, m = (3943 + 17) MeV y I' = (87 £ 34)
MeV (Belle) y m = 3914.373% y I' = 33 MeV (Babar). Babar
y Belle también reportan medidas para el producto B(B —
KY (3940))B(Y (3940) — wJ/v) = (7.1 £ 3.4) x 107" (Belle) y
(4.9+1.1) x 107° (Babar). Esta medida junto con la hipotesis
de que B(B — KY) < 1x 1073, el valor usual para desintegra-
ciones B — K+charmonium, conduce a I'(Y'(3940) — wJ/v)
mayor que 1 MeV. Tomando el acoplamiento gy..j/y = (—1429—
i216) MeV de la Tabla 7.2, nosotros obtenemos un valor para
['((3943,07(0%")) — wJ/v) = 1.52 MeV, el cual es compatible
con la gran anchura de desintegracion estimada para la Y(3940).
Por lo que asociamos el estado con 07 (07) con la Y(3940).

El segundo polo encontrado con masa m = 4169 MeV y I[' =
132 MeV es identificado con la X(4160) por la proximidad de
la masa, anchura y nimeros cuanticos. Los estados con I =
0; JP¢ =1t~y I =1, JP¢ = 2%+ son predicciones del modelo
y no pueden ser asociados con ningin estado de la Tabla 7.1
(el primero tiene C paridad negativa y la anchura del segundo
es demasiado grande). Por otra parte, el estado experimental
X(3940) en la Tabla 7.1 no se desintegra a w.JJ/¢ y por tanto
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no puede ser asociado con ninguno de los estados con J = 0
o 2 para isoespin= (. La naturaleza de este estado debe ser
distinta a la de vector - vector.

Un estudio detallado de las incertidumbres es realizado. Para
ello, se fija primero el valor de & = —2.07 y se varia g* co-
giendo valores intermedios que van desde (M,/(2 f.))* hasta
(Mp-/(2 fp))?. Las posiciones de los polos encontradas son
dadas en la Tabla 7.7 y se observan variaciones de alrededor de
40 MeV a excepcion del estado predicho con I = 1, donde las
incertidumbres son un poco mayores. Un modo realista de cal-
cular las incertidumbres es ajustar el pardmetro o para obtener
la posicién de uno de los estados usando uno de los valores in-
termedios de g? escogidos anterirmente, ya que este ajuste del
parametro « siempre es realizado en este tipo de calculos. Los
resultados son mostrados en las Tablas 7.8 - 7.11. Vemos que
las incertidumbres en las posiciones de los polos son un poco
menores que en el caso anterior. La masa encontrada para el
estado I = 0;J = 1 practicamente no cambia, y las diferen-
cias son de alrededor de unos 30 MeV para los dos estados con
I =0;J =2y de alrededor de unos 60 MeV para la prediccion
con [ = 1;J = 2. Respecto a los acoplamientos, observamos
que los cambios en la constante de acoplo mayor son muy pe-
quenos, del orden del 3% excepto en el sector I = 0;J = 2,
donde encontramos 10% y 7% para el primer y segundo estado
respectivamente. En global, estos calculos conducen a hasta
un 20% de error en la evaluacién de observables, los cuales re-
quieren amplitudes al cuadrado.

En el calculo, también podia haberse ajustado o para obtener
la posicién del estado con I = 0;J = 2 en lugar de la del estado
con I = 0;J = 0. Esto es realizado ahora y los resultados se

muestran en las Tablas 7.8 - 7.11. Se observan diferencias por
debajo del 3% [136].

5. Otros sectores incluyendo sabor exé6tico. En el Apéndice
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D se muestran las amplitudes obtenidas para el resto de sectores
posibles. El potencial resulta ser atractivo en los sectores C' =
,LS=-1,I1=0;,C=1,5=1,1=0,1;C=2,9=0,1=0;y
C=25=1,1=1/2,y repulsivo para C =0,5 =1,1 =1/2
(encanto oculto); C=1,S=-1,I1=1;C=1,5=2,1=1/2,
C=25=0I=1yC =2,8=21=0. Los parametros
usados en la Ec. (14.17) son los siguientes: fijamos p = 1500
MeV para todos estos sectores (de acuerdo a los trabajos de D.
Garmermann [108] y [109] que tratan estados Dy D*) y ajus-
tamos o = —1.6 (valor muy cercano al de [109], —1.55, y [116],
—1.74) en los sectores C' = 1; S = —1,1, 2. Notese que 1y o no
son independientes lo cual justifica fijar u y entonces ajustar « a
los datos. En el resto de sectores, C' = 0;.5S = 1 (encanto oculto)
yC=2;5=0,1,2, ponemos a = —1.4. La razon de esta elec-
cion es que hemos usado un conjunto diferente de parametros p
y « en comparacion con el estudio realizado anteriormente de
resonancias generadas dindmicamente a partir de DE;)D* (esta-
dos XYZ) con p = 1000 y eligiendo asi o podemos reproducir
de nuevo los estados XYZ. Solo una resonancia puede ser asoci-
ada a un estado experimental, la D3(2573), lo que supone una
nueva interpretacion de esta resonancia de naturaleza vector -
vector. La hipotesis de estructura D*K* para esta resonancia,
es consistente con la naturaleza DK asumida para la D*(2317)
y la estructura molecular D*K asumida para la D*(2460) o
DD* para la X(3872). Los otros estados representan predic-
ciones del modelo sin ninguna evidencia experimental. En los
estados exoticos, obtenemos interesantes predicciones de esta-
dos con doble encanto, doble encanto y extraneza o encanto
y extrafieza (estados ligados de D*D* y D*D* o D*K*), par-
ticularmente estrechos [155]. Las masas y anchuras obtenidas
pueden verse en la Tabla 14.2, donde ademés se recogen to-
dos los otros estados obtenidos (se omiten los estados de [86]),
tomados de las Tablas 3.3, 6.10, 7.14 y 9.9. En total hemos
obtenido 19 estados, 8 de los cuales son asociados con estados
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Figure 14.6: |T'|? incluyendo el diagrama en forma de caja con 7 en el
estado intermedio para distintos valores de A = 1200, 1300, 1400 M eV
Y Gmaz = 875,1000 MeV para S =0y S =2

observados. Resumimos asi los resultados de la primera parte
de la tesis respecto al estudio de la interaccién vector - vector.

14.4 Interacciéon de mesones con el medio
nuclear

En la tesis estudiamos las propiedades de los mesones escalares con
encanto, concretamente la Dy(2317) y la X(3700), siendo la primera
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Sector I[JPO] MMeV] T'[MeV] Nombre M[MeV] I'[MeV] I[JF©)
pp (0,0) 1532 212 fo(1370) 1200 to 1500 200 to 500  0[0+™]
pp (0,2) 1275 100 f2(1270) 12751 +1.2 185172  0)277]
(C=1;8= 1/2,0) 2602 61 “D(2600)”
(C=1;8 = 2620 4 D*(2640) 2637 + 6 <15 1/2[77]
(C =1, 2465 40 D*(2460) 2464.44 1.9 37+6  1/2[2%]
(C = 0; 3943 17 Y (3940) 3943 + 17 87+34  0[JF]
3914.315% 33732
(C =0 3945 0 "Y,(3945)"
(C =0 3922 55 Z(3930) 3929 4+ 5 20410  0[2++]
(C = 0; 4157 102 X (4160) 4156 + 29 1397383 o[J"]
(C =0 3912 120 "Y,(3912)"
(C =1, 2848 25
2839 3
2733 22
(C=1;8 2683 44
2707 4 x 1073
2572 18  Dy(2573) 2572.6 0.9 2045 0[27F]
2786 9
(C=2;8=0) 3969
(C=28=1) 4101 0

Table 14.2: Estados obtenidos de la interaccién vector-vector junto con el estado experimental asignado

si existe.
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Figure 14.7: |T|? teniendo en cuenta el diagrama en forma de caja
7w con A = 1300 MeV, Gmar = 875,1000 MeV para S =0y S = 2.

una resonancia generada dindmicamente que se acopla fuertemente
a DK, y la segunda, el estado tedrico dindmicamente generado de
la interacciéon pseudoscalar - pseudoscalar con una masa justo por
debajo del umbral DD en [108]. También estudiamos las propiedades
de mesones extafios, i. e. el mesén K*, en el medio nuclear.

El estudio de los mesones escalares en el medio ha sido una con-
stante a lo largo de los ultimos anos. El mas estudiado de todos es
la ¢(600). En el modelo de Nambu-Jona-Lasinio [161] se encuentra
un sustancial descenso de la masa de la ¢(600) con el aumento de la
densidad. En contraste, la masa del pion aumenta con la densidad.
En [162] Hatsuda y al. concluyen que debido a la restauracion parcial
de la simetria quiral, m, se aproxima a m, al aumentar la densidad
y similares resultados son encontrados tanbién en [163, 164] con La-
grangianos quirales no lineales donde las modificaciones de la o en
el medio tienen su origen en el fuerte acoplamiento en onda p de los
piones a particula - agujero (ph) y A - agujero.

Por el contrario, respecto a los mesones vectoriales, aunque us-
ando argumentos cualitativos, G. E. Brown y M. Rho predicen de-
splazamientos atractivos en las masas de los vectores, calculos mas
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L —
N Poq 7
D\*P/

Figure 14.8: La funcién de loop DD del mesén escalar. El circulo som-
breado indica la insercién de la autoenergia del meséon D.

detallados hallan un cambio nulo en las masas de los mesones de los
mesones p y ¢ en el medio [193, 194, 195, 196, 197, 198|. Experi-
mentalmente, las Colaboraciones NA60 y CLASS han observado un
cambio nulo de la masa del meson p del espectro de dileptones, de
donde también se deduce un ensanchamiento de la anchura del mesén.
Aunque la colaboracion KEK anuncié un cambio de masa atractivo
basandose en experimentos preliminares, las medidas podrian estar
fuertemente afectadas por el modo en que se realiza la sustraccion
del background [201].

Uno de los rasgos que caracterizan este tipo de estudios es que
nuevos mecanismos de desintegracion tienen lugar en el medio. De-
bido a que en el medio tenemos los nucleones, pueden ocurrir ahora
nuevas cadenas de desintegraciones que no ocurrian en el vacio. Un
ejemplo es la A(1520), ésta es una resonancia dindmicamente gener-
ada que se acopla fuertemente a 7%(1385). Este canal, al estar por
encima de la masa de A(1520), esta prohibido para la desintegracion
de la A(1520) (excepto por efectos de la ¥(1385)). Sin embargo, en
el medio, la excitacion del pion en particula - agujero proporciona
una energia extra de 140 MeV mas de espacio fésico y tiene lugar la
desintegracion.
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14.4.1 La D;,(2317) y la X(3700) en el medio nu-
clear

Estos dos mesones fueron generados dinamicamente en el trabajo de
D. Gamermann [108|, donde se obtienen como estados ligados de DK
y DD respectivamente y anchura practicamente nula. En los calculos
relacionados con el medio nuclear, las modificaciones respecto al vacio
se introducen en la funcién de loop G. En el caso de la X(3700), por
ejemplo, esto se muestra en la Fig. 14.8 por medio de la insercién de
un circulo sombreado que representa la autoenergia del mesén D que
ha de ser calculada e introducida en la funcién de loop DD. Similar-
mente también existiria un circulo sombreado en el propagador de la
D en la Fig. 14.8. Sin embargo, la autoenergia del mesén D es muy
pequeiia debido a que no hay absorciéon de mesones D por nucleones,
i. e., DN no se desintegra a resonancias bariénicas con un quark c
con lo que ImIl5 = 0, de modo que es una buena aproximacién dejar
el propagador del mesén D libre. Esto es anilogo a lo que ocurre con
los mesones K y K. Para un estado intermedio DD tenemos

4

G(P". P, p) =i / GDole.p)Do(P=a.p) . (1432)

donde las modificaciones del propagador D(D) son incorporadas a
través de la autoenergia:

o 1
-DD(q07 q, p) =

2 — — N
(¢°)" = q* —m3} —Tp(¢° q, p)
Siendo mas conveniente usar la representacion de Lehmann para es-
cribir el propagador del mesén D en el medio,

. = Spw,q,p)  Sp(w.q.p)
Dp(q° = d ELAACA Lo . 14.34

(14.33)

Sp y Sp representan las funciones espectrales de los mesones D y D
respectivamente,
1 ImIlp5)(¢% G, p)

Sppy (@, 3. p) = —= 5. (14.35)
T(¢9)* — % — m% — I pp)(a° G, p)|
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La autoenergia del mesén D posee dos partes, ondas s y p. La parte
de onda s se obtiene realizando un célculo autoconsistente que incluye
los canales A, 7%., DN, nA., K=, n¥X., K=/, DsA, DX, Ay
n'Y.. El potencial viene de la interacciéon de Weinberg-Tomozawa en
onda s con rotura de la simetria de SU(4) mas un término atractivo
isoescalar - escalar, >py. La inclusién de este tltimo término es ob-
jeto de debate ya que aunque es sustentada por las aproximaciones
de campo medio y reglas de suma de QCD, los céalculos autoconsis-
tentes de [172] y [173] encuentran que, en realidad, los resultados
finales son independientes de este término y las pequenas diferencias
de incluirlo o no, son més pequenas que las incertidumbres del cilculo
debido a otras fuentes, por lo que finalmente se opta por no incluirlo
en la autoenergia en onda s del meséon D. Cuando se resuelve la
ecuacion de Bethe - Salpeter, aparecen dos resonancias, la A.(2593)
y una >.(2800). Los efectos del medio son incluidos en la funcién de
loop mesén - barion, ellos son: 1) efectos del bloqueo de Pauli sobre
los nucleones (los nucleones dispersados no pueden ir a estados ya
ocupados en el mar de Fermi), 2) ligadura de campo medio de bari-
ones via el modelo o — w, y 3) renormalizacion de los mesones 7wy D
a través de la inclusion de sus respectivas autoenergias en los propa-
gadores intermedios. Ademaés, la autoenergia en onda s del meson
D es evaluada de forma autoconsistente al integrar la amplitud DN
sobre el mar de Fermi n(p):

s - d3p ~(I= — ~ (T =
3", 4, p) Z/(Qw)g n(p) [Ton(P°, P, p) + 3THx " (P°, P, p)] .

(14.36)

La parte de onda p se calcula de modo similar al de la particula K y
tiene en cuenta los procesos: DN — A., ¥,y ¥%. Las correspondi-
entes autoenergias para la excitacion de la A.(X.) o X} vienen dadas
por las Ecs. 10.9 y 10.12 respectivamente y los coeficientes o, ( y
a involucrados en el calculo estan dados en las Tablas 10.4 y 10.5 y
ellos son obtenidos por medio de los coeficientes de Clebsch Gordan
de SU(4) [179]. Resultan ser idénticos a los de la K ya que viene a
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Figure 14.9: Canal de desintegracion de la D4(2317) en el nacleo dando
lugar a las excitaciones KA. o K73..

ser la sustitucion de un quark s por uno c.

Las autoenergias de onda s y p del mesén D se muestran en
las Figs. 10.5 y 10.6. En la Fig. 10.5 aparecen unas estructuras
alrededor de 1.7 GeV y 2 GeV que corresponden a la excitaciéon de
la hA.(2593) y h¥.(2800). La autoenergia de onda p, ver Fig. 10.6,
presenta picos en la parte imaginaria y oscilaciones en la parte real
alrededor de 1.4 — 1.8 GeV que corresponden a las excitaciones hA,,
h¥. y h¥i. Como puede deducirse de estas figuras, la autoenergia
de onda p viene a ser un orden de magnitud méas pequena que la de
onda s, en contraste con los resultados obtenidos para los mesones 7
y K, donde la parte de onda p es dominante para el 7 y en el caso
del mesén K, ambas componentes son importantes. La razén estriba
en que la autoenergia de onda s aumenta con la masa del mesén
mientras que la parte de onda p escala mas con la masa del barion.

Mientras que la autoenergia en onda s del meséon D da cuenta
de excitaciones tipo DN — wA., mo,., la parte de onda p tiene en
cuenta reacciones del tipo DN — A, 3., X!. Asi, por ejemplo, las
modificaciones en el loop DK para el meson D¥(2317) darian lugar
a canales intermedios htA K, ht¥.K (onda sy véase la Fig. 14.9)
o hA K, h¥.K (onda p) y similarmente para DD en el caso de la
X(3700).
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Figure 14.10: La resonancia Dyy(2317): |T'|? para la amplitud D°K+ —
DPK™ a distintas densidades.

En las Figs. 14.10 y 14.11 se muestra |T|* para las resonancias
D4(2317) and X(3700) en los canales principales D°K+ y D°D°. Se
observa un cambio practicamente nulo en la posiciéon de los polos,
mientras que los cambios en la anchura son del orden de 100 y 250
MeV a p = po para la D(2317) y X(3700) respectivamente. Esto
contrasta con la pequena anchura de estas resonancias en el vacio,
nula para la D4 (2317) y de 60 MeV para la X(3700). Como se
ha explicado anteriormente, el origen de esta anchura viene de la
apertura de nuevos canales de desintegracion tales como DN — A,
o m.. También, la evaluacién autoconsistente genera canales de
absorcion de dos nucleones como DNN — NA., nNA., nN¥,, etc.
Por ejemplo, el nuevo canal, X(3700)N — DmA, tiene ahora 400
MeV de espacio fasico disponible, lo que hace que la anchura de la
X(3700) aumente considerablemente.
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Figure 14.11: La resonancia X (3700): |T|? para la amplitud D°D° —
D°DO a distintas densidades.

14.4.2 La K* en el medio

El estudio de las modificaciones de la K* en el medio puede hacerse
gracias a que la interaccion K*N fue investigada en [44]. Asi, la au-
toenergia de la K* tiene dos componentes, por un lado, la interaccién
de la K* con nucleones, que incluye el bloqueo de Pauli y es calculada
de forma autoconsistente. Por otro lado, el canal de desintegracion
K7 es vestido en materia nuclear. Ambas componentes de la autoen-
ergia, interaccion K*N y desintegracién K en materia nuclear, son
incluidas en la funcién espectral.

Para evaluar la parte de la autoenergia correspondiente a la desin-
tegracion K, se reemplazan los propagadores de la K y m para
incluir sus respectivas autoenergias. Esto se hace a través de la rep-



Resumen en espanol 315

resentacion de Lehmann, y simplicando un poco se obtiene

HP_,(a)(qO 7) = 2g2€-€, /ﬁki/oodwlml)w(w E)
K+ ) (2m)3 2 J, ’
X/wdw/Ika(wla(j_E)
0 @ —w—w +1in

/ Ek o k? 1
—Re
(27)3 2w, (k) 2wi (g — k)

x ! } . (14.37)

¢ — wo(k) —wr(q— k) + ie

donde se ha sustraido la parte real de la autoenergia K* en el vacio,
IT%, de la H';-{(f) ya que se usa la masa fisica de la K* en el vacio.
Por otra parte, la interaccion K*N incluye los posibles canales
mesén - barion, K*N, wA, pX, oA, K*Z para I =0y K*N, pA, pX,
wY, K*=Zy ¢X en I = 1. En el calculo, se renormaliza el canal K*N,
mientras que los otros canales de mesoén - barion se dejan igual que
en el vacio. En materia nuclear, la funcién de loop mesoén - bariéon se

escribe

GP(P) = G°(Vs)+ limpa_od0GA (P),
IGR(P) = G{(P) - Gi(Vs)

_ oM / gﬂ; (DE(P — ) Diy(a) — DY(P — q) D)) .
(14.38)

La funcién de loop en el espacio libre, G, es calculada mediante
regularizacion dimensional y las correcciones en el medio, 0G* =
limy—oodGA (p), se calculan cogiendo un valor grande del cutoff en
la integral, con lo que se consigue que ésta sea una cantidad finita
e independiente del punto de sustraccién usado para regularizar G°
[220]. Los correspondientes propagadores en el medio vienen dados
por la Ec. (11.14). Finalmente, la ecuacion de Bethe Salpeter se
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resuelve en materia nuclear y la autoenergia de la K™ se obtiene
integrando TIB{*  sobre el mar de Fermi,

d*p _ - _ -
,(b I=0 1
II%(* )(q0>q> / (2 )3 n(p) 1 p%*N)(] Oa] ) F 31 p(K**;/)(l 071 ) )

(14.39)

donde P° = ¢° + Ex(P) y P = §+ p representan la energia total
y el momento del par K*N en el sistema de referencia de materia
nuclear en reposo, mientras que (¢°,7) es la energia y el momento
del mesoén K* también en este sistema de referencia. La autoenergia
de la K* serd la suma de las dos partes (a) y (b), provenientes de
renormalizar el canal de desintegraciéon K y de la interacciéon K*N
respectivamente, 117, = H’;—((':) + H%(ﬁ), donde H’}(@ es evaluada auto-
consistentemente.

En la Fig. 14.12, la autoenergia de la K* y sus diferentes con-
tribuciones, K* — K7 e interaccion K*N calculada autoconsisten-
temente, son mostradas como funciéon de ¢° a ¢ = 0. Como puede
verse, el efecto de la interaccion efectiva K*N domina alrededor de
800 — 900 MeV, siendo las excitaciones A(1783)N~! y 3(1830)N~*
visibles. Sin embargo, fuera de esta region, el mecanismo de desinte-
gracién K7 domina, ya que a bajas energias, por ejemplo, los canales
K*N — VB estan cerrados. Al final, ambos efectos conducen a una
moderada atraccién de la K* de unos —50 MeV y lo que es més
importante, un espectacular aumento de la anchura de la K* en el
medio, de 260 MeV a py, lo que significa cinco veces mayor que en
el vacio. Este efecto de la anchura pueden verse visualizado también
en la funcién espectral mostrada en la Fig. 14.13 en funcién de la
energia del meson ¢”, a momento cero y para cuatro densidades desde
p=0ap=1.5p.

También, el cociente de transparencia de la reaccion yA — KT K*~ A’
es evaluado. Los resultados pueden verse en la Fig. 11.9, donde éste
se dibuja para distintas energias en el centro de masas, /s = 3 GeV
y 3.5 GeV, equivalentes a 4.3 MeV y 6 MeV en el lab. Se observa una
atenuacién muy fuerte del proceso de produccién de la K* debido a
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Figure 14.12: Partes real e imaginaria de la autoenergia de la K*
en funcién de la energia del mesén ¢° a momento cero y densidad
nuclear normal py mostrando las distintas contribuciones: (i) calculo
autoconsistente de la interaccion K*N (linea a trazos), (ii) autoen-
ergia procedente de la desintegraciéon K* — K (linea mixta), y (iii)
autoenergia incluyendo ambos procesos (linea continua).
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Figure 14.13: La funcién espectral del mesén K* en funcién de la
energia del meson ¢° a distintas densidades y momento cero.

su desintegraciéon o canales de absorciéon K* — Kny K*N — VY
conforme aumenta el nimero méasico A. Esto es debido a la larga
trayectoria que tiene que recorrer el mesén K* antes de abandonar
el niicleo, teniendo asi méas posibilidades de desintegrarse o ser ab-
sorbido.

14.5 Produccién de resonancias N*y A" en
la regién de 4.3 GeV

En la tesis también se investiga la producciéon de nuevas resonancias
barionicas generadas a partir de la interaccién de un meson y barion
ambos a energias alrededor de 4.3 GeV en el sector de encanto oculto.



Resumen en espanol 319

Para incluir los bariones con encanto, nuevos vértices similares a los
proporcionados por el lagrangiano quiral basado en la interaccion de
Weinberg Tomozawa |211] son construidos a patir de los coeficientes
de Clebsch Gordan de SU(4). La simetria es rota en los términos
donde un vector pesado es intercambiado y todas las amplitudes cor-
respondientes a SU(3) son reproducidas [211].

En ausencia de evidencia experimental de alguna resonancia bar-
ionica a estas energias, se usan distintos valores de la constante de
sustraccion, a, que van desde —2.2 a —2.4 o del cutoff, ¢y, de 0.7 a
0.9 (ver Tablas 12.1 y 12.2), en la funcion de loop meson - barion. Los
canales de desintegracién a P,B o V;B siendo P, y V; un pseudoscalar
o vector ligero también son incluidos por medio de diagramas en caja
similares a los del estudio de la interacciéon vector - vector. Se en-
cuentran seis resonancias, tres de la interaccién pseudoscalar - barion
y otras tantas de la interaccién vector - barién con espin 1/2 (y otras
seis para espin 3/2 ya que el potencial es degenerado). Se producen
una N* y dos A* que se acoplan fuertemente a D,A., D=,y DZ., re-
spectivamente (o bien D A., D*Z. y D*Z/, para vector - barién). Las
masas y anchuras de desintegracion vienen dadas en las Tablas 12.5
y 12.6. Mientras que los acoplamientos a los distintos canales vienen
dados en las Tablas 12.3 y 12.4. Vemos que aunque estos son obje-
tos masivos, todas las resonancias estan por encima de 4200 MeV,
sus anchuras son bastante pequenas. Esto es debido a la dificultad
que tienen las componentes cé de desintegrarse en wii, dd y s3, que
necesitan el intercambio de un mesén pesado en el modelo.

A diferencia de otros estudios de resonancias dinAmicamente gen-
eradas, donde los parametros de ajuste tanto en estos como en los
modelos de quark oscurecen naturaleza de los estados, la importancia
de este trabajo radica en que los nuevos estados N* y A* predichos
alrededor de 4.2 GeV (que vendrian a ser parientes de la N*(1535) y
A(1405)), definitivamente no corresponden a bariones de 3¢, aunque
un analisis mas detallado seria necesario para distinguirlas de estados
de cinco quarks. Por esta razomn, la observacion experimental de estos
bariones con encanto oculto viene a ser relevante.
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14.6 Conclusiones

El estudio de la interaccion vector - vector se ha hecho por medio de
los Lagrangianos de hidden gauge, que primero se aplican al sistema
pp, para después, una vez que este estudio es extendido a SU(3),
contrastando los resultados con las observaciones experimentales, in-
corporar los mesones D* y D7, investigando asi otros sectores que
van desde pD* hasta D*D* o sectores de sabor ex6tico como D*D?.
El potencial es calculado a partir de un diagrama de contacto de cu-
atro vectores mas un diagrama de intercambio de un vector del tipo
Weinberg-Tomozawa. Aunque el canal s representa una contribucion
menor, los canales t y u proporcionan un potencial fuertemente atrac-
tivo y responsable de la aparicion de estados ligados. Los polos son
buscados en el plano complejo de la energia e identificados con estados
ligados o resonancias. Cuando los mesones con encanto son incluidos,
se construye inicialmente un Lagrangiano simétrico de SU(4) y més
tarde la simetria es rota al usar los valores fisicos de las masas, los
términos de intercambio de vectores pesados quedan suprimidos por
el factor k = m?/m3,.. Este es el mismo procedimiento seguido en
[108] y [109] donde se estudia la interaccion entre dos pseudoscalares
con encanto y pseudoscalar - vector (ambos mesones con encanto)
respectivamente.

Del estudio de la interacciéon entre dos mesones p se obtienen dos
polos en la matriz de dispersiéon que son identificados con las resonan-
cias fo(1370) y f2(1270). La naturaleza de éstas es explicada asi en
términos de estados ligados de dos mesones p. Las masas obtenidas
son 1532 y 1275 MeV, con anchuras 212 y 100 MeV respectivamente.
De los calculos se deduce que la desintegraciéon en dos piones es el
principal canal de desintegracién mientras que el canal de cuatro pi-
ones representa un 20% de la anterior componente.

La interaccién de vectores con algtin quark c da lugar a resulta-
dos muy interesantes desde el punto de vista tedrico y experimental.
En el sector (charm = 1;extraeza = 0) se obtienen tres resonancias:
D3(2460) y dos D* con masa alrededor de 2600 MeV, una con espin=0
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y otra con espin=2. Mientras que existe una evidencia experimental
de la primera, s6lo existe un estado en el PDG con masa 2600 MeV
y anchura menor de 15 MeV. Aunque nada se sabe de sus nimeros
cuanticos, éste ultimo dato es el que nos permite identificar nuestro
estado con espin= 1 a aquél estado del PDG ya que segiin nuestros
calculos, el estado de espin= 1 es el tinico que no se puede desinte-
grar en dos pseudoscalares puesto que el diagrama de caja s6lo esta
permitido para espin= 0y 2 [116]. En el sector de encanto oculto, en-
contramos cinco estados ligados que se acoplan mayormente a D* D*,
o bien, D:D?. Tres pueden ser identificados con los nuevos estados
observados experimentalmente, la Y(3940), la Z(3930) y la X(4160),
con némeros cuanticos J©¢ = 0*F, 27+ y 2+F respectivamente. En
el modelo, los canales de desintegracion a dos mesones vectoriales
ligeros y w(¢) J/v, serian los principales [136]. El resto de sectores
también son estudiados, en total aparecen nueve resonancias mas,
s6lo una de ellas ha sido observada experimentalmente, la Dy (2573),
que es un estado ligado de D*K* en el modelo. La masa y anchura
experimentales son reproducidas. Los otros ocho estados son estados
ligados de D*K*, D*K*, D*D* o D*D?. Los tiltimos tres estados de
sabor exoticos obviamente no pueden ser ¢g, y los iltimos dos poseen
anchura cero [155].

Del estudio de la interaccién de un mesén vectorial con un bar-
ion en el sector de encanto oculto se obtienen dos N* y cuatro A*
alrededor de 4300 MeV para espin= 1/2 (y otras tantas para espin
3/2 puesto que el potencial es simétrico), relativamente estrechas de-
bido a que la componente c¢ dificulta su desintegracion en canales
de meson (ligero) - barion (ligero). Estas serian simplemente pari-
entes de la N*(1535) y A*(1405) en el sector hidden charm y su
descubrimiento seria muy importante en el sentido de que no pueden
ser acomodadas en el espectro gqq [234].

Los estudios relativos al medio conducen a resultados de interés
para los nuevos experimentos que se estan planeando por ejemplo en

FAIR. Por un lado, la D4 (2317) y 1a X(3700) [108] que tienen anchura
practicamente cero en el vacio, adquieren anchuras de 100 y 200 MeV
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a densidad nuclear normal respectivamente [110]. El estudio permite
trazar las reacciones que tendrian lugar en el medio y las reacciones
en las facilidades experimentales. Por otro lado, el estudio de la K*
en el medio conduce a un resultado espectacular: su anchura aumenta
cinco veces (260 MeV) la anchura en vacio a densidad nuclear normal.
Mientras que el potencial 6ptico tiene un moderado valor de —50 MeV
[190]. Este aumento es mayor que el encontrado para el p en otros
estudios. Del calculo del cociente de transparencia se deduce una
reduccion sustancial de la unidad (0.4 para niucleos con A = 200 para
energias en el centro de masas entre 3 y 3.5 GeV). Este experimento
puede llevarse a cabo en las instalaciones del Jefferson Lab en USA
[239].



|
Appendix .q

Factors Fr, Fi for the R — Pr
amplitude

This appendix shows the factors Fy, F} for each channel r in Eq.
(5.37) and the partial decay widths of the diagrams in Figs. 5.2 and
5.3.
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Ww Vo B Vp Py A B A gr Fy Ti(KeV)
0+ - + A /2 1
K pt 7w K 1 V2 35 A 6.05
*+ 0 0 + 1 1 1 1
K+ 7w K"~ V235 5 oa
0 x4 -0 + 1 1 1 1 1
a1 __1
w V2 3v2 12v/3
1 1
¢ b =3 &3
+ *0 770 0 + 1 1 /2 1
pro KT KT pn KT =5 \/g 23
w A1 1
V2 3V2 6v/3
1 1
¢ L 73 eV
*+ 0 0 + 2 2 1 1 2
Kop n rm K" =5 5 v v s 078
1 2 1 1 1
U i Vi Vi v om0

Table A.1: K*' decay diagrams involving the p/K™* channel and the
PPV vertex.
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Ww Vo B Vy Py A B Mg Fr TiKeV)
% 1 1 1
K+ w 7% p° K+ — 7% V2 5 1 —3 0.77
*+ — 0 + 1 11 1
w K™ K™ p° K 5 Ve 1 3 0.07
1 1 1
w V2 3v2 12
o 1 -1 _1
3 6
ot T 2 2 1 2 -2
10} 0
1 2 1 1 -
10} 0
N -0 1 1 1 -2
1 1 1
w V2 nE o
K*t¢ n w Kt 0 0.17
2 2 1 2V2
¢ -5 v 3 Ly
7 w 0 2.6 x 1072
1 2 1 V2
¢ 7 23 3 1 —%

Table A.2: K** decay diagrams involving the w K* and ¢ K* channels
and the PPV vertex.



326

Vi Vo, B ViP, A B X g  F [i(KeV)
*0 0 0 0 1 1 1 1
*+ — + 0 1 2 1
- “t Fr— 0 700 11 [ 1
pro KT KT KR L5 \/g 23 0
w a1 1
V2 3V2 6v/3
1 1
¢ b =3 e
0 *0 0 0 0 1 1 1 1 1
L . v . . B
4 1 __1
v V2 32 12v/3
1 1
¢ i &5
*0 0 0 0 2 2 1 1 2
KESphon 0 K= 5 % B “as 078
1 2 1 1 1
i R R A~ A

Table A.3: K** decay diagrams involving the pK* channel and the
PPV vertex.



Ww Vo B Vy Py A B Ay F;  Ti(KeV)
X 1 1 1
KV w 7% p° KO 7 V2 7 1 3 0.77
0 70 0 0 1 1 1 1
1 1 1
v Vi 32 i
: L
0 0 2 2 1 2 —2
10} 0
1 2 1 _
10} 0
0 70 0 0 1 1 1
1 1 1
w VI nE o
: L
KY¢ n w K° 0 0.17
2 2 1 2v2
¢ - ~vi T3 L 7y
n w 0 2.6 x 1072
1 2 1 V2
¢ 7% 23 3 1 —%
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Table A.4: K*° decay diagrams involving the wK* and ¢ K* channels

and the PPV vertex.
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i Vo Vy Vi P D B A g 1 Li(KeV)
*0 0 1 2 1
KO pt  p0 pm Kt V2 1 % V3 75 12.8
0 *+ 0 — + 1 1 1 _ 1 1
P KT KK S s 5~k o 2.31
1 1 1
“ V2 3v2 12v/3
¢ e S~
w Kt Kk Kkt L L L J 0.29
P V2 V2 V2 i '
1 1 1
w V2 ENG) 12
o -1 _1 1
3 6
s+ 0 *— + 1 1 1
1 1
“ V2 3v2 T 6v2
1 1
¢ 1 73 NG

Table A.5: K*t decay diagrams involving the 3V vertex. Terms
which involve a vK*K* coupling with a neutral K* are zero and are
omitted from the table.

i Voo VWi Py DB X g F;Ti(KeV)
* — 1 2 1
K o 0 pt K' V21 L —\/; ~1 128
_ i+ 0 pok— 0 1 1 2 1
w 1 1
V2 3v2 63
1 1
¢ 1 N

Table A.6: K*° decay diagrams involving the 3V vertex. Terms which
involve a yK* K* coupling with a neutral K* are zero and are omitted
from the table.
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i Voo B Vi Py A B A g F; I'i(KeV)
K9 K* Kt p° ot -1 % % 1 —21% 1.55
w 11 _1
V2 3V2 62
1 1
¢ L =5 ENG
K+ K9 KO p0 gt l-% 5% 1 -35 6.2
w 11 1
V3 32 6v2
1 1
¢ S B
ptw 0 0t —V2 V2 % -1 1 18.8

Table A.7: a* decay diagrams involving the PPV vertex.

i Voo Vi Vi Pr D B A gr Fp [i(KeV)
x0 et 0 joet o+ L 1 N
K*® K p° K" 7 75 1 7 1 N 8.9
w o N
V2 3v2 62
1 1
¢ 1 s s
w pt P pt wt V2 V2 % —1 1 8.6

Table A.8: a™ decay diagrams involving the 3V vertex. Terms which
involve a yK* K* coupling with a neutral K* are zero and are omitted
from the table.
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Appendix $

V'V — V'V amplitudes in the
sector C'=0;5 =0

This appendix shows the amplitudes (VV — VV') needed in Chapter
7.
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Contact V-exchange ~ Total[I[JF]]
D*D* — D*D* 642 ]23(QMjMﬁAZ%ZAJ\%L]?;»MMé*_35) 191 6%
D*D* — DZDZ 2\/§QD9D5 ngDS(2Aj§;\;2jW%§ > —25.1gpgp,
D*D* — K*i* —244p _ggD(2M%§VJ[rII;2£\/I§* —3s) 2.3 991
D*D* — pp —2v/3 990 - ﬁg”@f;%%fmg —%) 4.999p
D*D* — ww 299p ggD(zM;’&éng_?’s) —2.899p
D*D* — ¢6 0 0 0
D*D* — J/¢J/y 4 9pgn. ngnC(zM%;[;fMg/w_gs) —1.29pgy.
D*D* — wJ/y —499p - ggD(QM%*%%NMg_gS) 3.599p
D*D* — $J /b 0 ’ 0 0
D*D* — wo 0 0 0
D;D; - DD, g, DM o 123},
D:D: — K*K*  —2V2ggp, — (QM;;]ZMK " 3.8 99,
DD — pp 0 0 0
D:D! — ww 0 0 0
D:D; — ¢¢ 2v2 ggp, =2 (2%%2*%_38) ~399p.
D1D; — JJ4J /b 2V2gp. g5, AT 04,
D:D: — wJ/ 0 5 0 0
DDy —oafe g, -UeEDIGMER 5,
D:D? — wo 0 S 0 0

Table B.1: Amplitude projected in isospin and spin for I = 0 and
J = 0. The approximate Total is obtained at the threshold of D*D*.
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Contact

V-exchange ~ Total[I[JF]]

D*D* — D*D*
D*D* — D*D:
D*D* — pp
D*D* — ww
D*D* — ¢¢

D*D* — J/J /[y

D*D* — wJ /v
D*D* — ¢J /v
D*D* — wg
D;D; — D;D;
DrD* — K*K*
D;D; — pp
D:D! — ww

D:D; — ¢¢

DiD; — J/pJ[v

D:D: —>wJ/w
D:D: — ¢J /¢
DiD; — we

9%
3v/2 gpgp.,

399D

g% 2MZ M2+

(BMZ+M7))(4M3,, —3s)

M2M?2

T/ e, )
9DYDs (2MD*+2MD§ —3s)

VINZ,

ggD(zM%* +2M}2(* _38)

2
2MD§

0
0
0
0
0
0
0

9h, (M3, +MZ)(4MF, —35)

2 2
2M‘]/¢)M(25

99D (2M2D§ +2M12<* _35)

V2M3,.

o O O o o o o

—46.1 g%,

—237 9dp9p,
—1.39g9p

o O O o o o o

—10.3 g7,

2.4 99p,

o O O o o o o

Table B.2: Amplitude projected in isospin and spin for I = 0 and
J = 1.The approximate Total is obtained at the threshold of D*D*.
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Contact V-exchange ~ Total[I[JT]]
- - 9 9% (2M5M2+M2/ (BMZ2+M?2))(4M?Z, —35s) 9
D*D* — D*D ~3% R el —58.1 9%
= = 9pgps (2M? . +2M2, —35)
D*D* — D:D: —\/2gpgn, — \/%)Mz = —29.4gpyp,
K*
D*D* N K*K* 99D _ggD(2M%2,;\;-%25\/[I2(* —3s) 5.4 990
. P V3ggp(2M2, +2M2 35
D*D* — pp V3ggp — Yoognl GyT ) 10.1 ggp
_ 2 on2_3s
D*D* — ww —99p ggD@Mf;;fM“’ 5 —5.899p
D*
D*D* — ¢¢ 0 0 0
= . (2M2, +2M2, —3s
D*D* — JJ6JJ6  —2gpgn, L M; M 7290,
P 2M2 . +M M2-3s
D*D* — wJ/y 299p _ oo J;V[%J*/W ) 9.599p
D*D* — ¢J /1 0 0 0
D*D* = we 0 0 0
* T)* * )% QQS(MQ +M2)(4M2*_35)
DiD; — DiD; —2gp, = J/§M3/i T ~18.3 g%,
* T)* * T % 99D5(2M2*+2M2*—35)
D:D; — KK V29, - T 8. 99p.
DD} — pp 0 0 0
D:D! — ww 0 0 0
* D 99D, (2M?2  +2M?2—3s)
D:D; — ¢¢ —V2ggp, VT ~7.399p,
e 9D Gne (M2, +2M2, —35)
Dst - J/,l/}t]/w _ﬂgDSgT]c - \/gj\/[f)* J/’éb _46 gDng]c
DD} — wJ /v 0 0 0
_ 99ps (M2 . +M?%, +M?2—3s)
DDy — ¢J /4 299p, > b M%j/w 2 8.5 ggp.
D;D; — w¢ 0 0 0

Table B.3: Amplitude projected in isospin and spin for I = 0 and
J = 2. The approximate Total is obtained at the threshold of D*D*.
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Contact V-exchange ~ Total[I[J"]]
D*D* — DD 265" (2M5M§+Ai%/;ﬁ§ﬁ;§))(4Mé*_38) 0.6 43
D*D* — K*K* 299p ”D(QM%*J?%*“”’S) 1.2g9p
D*D* — pp 0 S 0 0
D*D* — pw  —2v2ggp —ggD@M%J; ﬁ? e 4.99p
D*D* — pJ /i 499p ggD(QM%*%‘i/wMg_gS) —3.599p
D*D* — p 0 ’ 0 0

Table B.4: Amplitude projected in isospin and spin for / = 1 and
J = 0. The approximate Total is obtained at the threshold of D*D*.

Contact V-exchange ~ Total[I[J"]]
* Tk . 9% CMZM2Z+M?Z, (—MZ+M?2))(4M?Z, —3s)
D*D* — D*D 392 2 p 4%/wM3Mgp D 1.6 2
_ _ 2 2 _gg
D*D* — K*K*  —3g9p —ggD(QM]%}ZfJK* 2 —2.5ggp
* TY)* 2M2*+S2M2—33
D*D*—pp  —3v2ggp — 990 e ) 13ggp
D*D* — pw 0 0
D*D* — pJ/y 0 0 0
D*D* — po 0 0 0

Table B.5: Amplitude projected in isospin and spin for I = 1 and
J = 1. The approximate Total is obtained at the threshold of D*D*.
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Contact

V-exchange ~ Total[I[JT]]

D*D*
D*D*
D*D*
D*D*
D*D*
D*D*

— D*D*
— K*K*
— pp
—)pu)

— pJ /1
— P

_ 42
D

—99D
0
\/§QQD

—299p
0

5 CMZMZ+M3, (—MZ+M3))(4M3, —3s)

J/P

99D (2M%* +2MI2(* —3s)
2
2 MD;‘

0
99p (2M?% , +M2+M2—3s)
V2 M,
99D (2M}) + M3, +M7—3s)
M2,

0

—2.44%
2.799p

0
8.399p

—9.599p
0

Table B.6: Amplitude projected in isospin and spin for I = 1 and
J = 2. The approximate Total is obtained at the threshold of D*D*.
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Momentum corrective factors for
the widths

In what follows we calculate the momentum corrective factors to
multiply by the widths for zero momentum in Chapter 8. The gauge
invariance of the amplitudes was proved in [87].

Thus, the amplitude of the vertex in Fig. C.1 is

p*(ks, €3)
D~ (‘L 6EX)

D*—"—(kl, 61)

Figure C.1: Three vector contact diagram.

tIII = i{(kjl - Q)l/eéiel ue?l,/ + (C] + kj3)1/€?il€exuely
V2
— (k1 + k3) €1 pefes ) -
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With this expression we find the amplitude for the vector exchange
diagram given in Fig. C.2 including the momenta of the final particles
(we neglect the momenta of the D*(D?) particle compared with its
mass, |kyo|/My ~ 0, and therefore €y ~ 0). In addition, when we
couple one or two photon to the final state, the p mesons converts into
photons, and in the above equations ¢(p’) — ¢(y) and we can make
use of the Coulomb gauge for photons (¢ = 0 and ¢;k; = 0). In case
the p meson with momenta k, couples to the photon, the amplitude
of the diagram in Fig. C.2 taking into account the Coulomb gauge
for the p°(ky) is

D*Jr(kl) 61) p0<k37 63)

D**(q, €x)

D*f(]@, €2) ,00(]?47 €4)

Figure C.2: Exchange vector diagram

2
g i g i j
tex = E{_(klo + k) (kg + k)erieseden; + 2kziel (K + kY )edea je]
—‘k3‘26f63i6564k + 4]{51063?]{3414362]66”6“ + 4k3i6fk4k6563164l

1 114 i k 1

—l—M‘Q/( |ks|*elesieses)} X Egz Y : (C.2)
where My = Mp-p-). And we take the same expression but with
€) = 0 in the case of two photons in the final state. The other
possibility is to have a four vector contact diagram, as depicted in
Fig. C.3. The amplitude in this case can be calculated by means of
the Lagrangian of Eq. (3.4) and we get,
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D (k1, e1) P°(ks, €3)

D*~ (k2 €2) p° (4, €1)

Figure C.3: Four vector contact diagram

2

te = 5{26f€2i63j€i — (€j€3i€25€] + €f€qi€a€3) } . (C.3)
In order to calculate the momentum corrective factors to the widths
for zero momentum, we sum Egs. (C.2) and (C.3) and calculate
the squared total amplitude averaging over initial polarizations and
summing over final polarizations of the photons (3, €(v)e;j(v) =

8ij — % and Y, €,(p")e,(p°) = —gu + 22522) and we divide it
4 \4

by the same expression obtained for zero momentum. This is, we
evaluate

_ zinZﬁn‘tP
2 in 2 [t (k= 0)

(C.4)

with [t]2 = 2 + 2t, X tex + 2, and k = |ks| = |k4| in the center of
mass reference system. In what follows we give the expressions of 2,
t. X tex and t2_for vy and Vv in the final state, and spin S = 0, 2.
For the sake of simplicity we take k) ~ kI = k° in the expressions.

C.1 State with S =0 going to vy

. 12
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= 8 4 16 4 k2k*
2 — 4r>14 = k:k;2 - kk2 —"0
k4 1 kS 8 4 kS
Ay S L By S EGA
T T3 T3z T3 T
1 K8 4

o) X Ty

(C.5)

where the t and u channels have been taken into account by
means of the factor 4 at the end of the above equation.

® 1. X Tex

— 4 4
gt 32, 40, 8k 1
NS texte = LR -
fe X s imgh -3 3Ma}k2+Ma

in fin
(C.6)

o 12
~ 8
Syt ©)
, 3
in fin
e Momentum corrective factor (F):

St K+ 3KEME 4 AREME — 2M)?
D in Yo [H2(k = 0) A(K? + M) (—2k§ + M7)?
(C.8)

with [t]2 = 2 + 2t, X teyx + 12,
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C.2 State with S =2 going to vy

. 12

- 28 . 14 16 14 k2K
2 4720,4 1% 2 10 2 | 12 hRp
2.2t = g5k + p(kok)” = T (kok)* + 2 M2

in fin

TRt 4 TR 16, 4K TR

S LA By N
50 "¢ T Tt e Teon)
4
Xi(k:? Ve (C.9)
o 1. X tex
- %8 , 4, 1, 4, Tk 1
bt = g ok k2 — kP ok2e L
Z;%; e =g iRt R R skt e e
(C.10)

° tz
Zzzﬁi = 1—7594 (C.11)
in fin

e Momentum corrective factor (F):

. 2
i 2|l = (TKS + 12kS M2 + 112k MY + 104K2ME

i 2w [t (R = 0)

+7M; + k*(56k5 M + T4 M)
N 12K%(8K3 M + ME))
(T(k> + M)?(4k3 + M3)?)

(C.12)
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C.3 State with S =0 going to Vv

o fo

— 8 4 16 4k2k4
2 4 4 2 2 0
Y P =g {§k0+§(k;ok) +§(/fok?) t3 M2

in fin

kK4 1k 8 4 k°

BTy I Ty '
+6+3 +3M{i+3 +3M3
+1 k8 1 4
6 M (k2 + MZ)?
(C.13)
® 1. X tex
- 1. 32 40 8 k* 1
t2 — 4 __k2__k2___7
%:%;‘2' Ttk R s E
(C.14)
° t2

8
Z%;ti = 594 (C.15)

in

e Momentum corrective factor (F):

STl K+ 3KME 4 4REMR — 2M)?
S Sl =0) 402+ ME(—2R + M2
(C.16)

C.4 State with S =2 going to Vv

. 12
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- 2 1 k2 2 1k 16
2 4 21204 - T V1.21.2
ZZW = {41{:0(5 + 5—m%/)+2k:0k (3 + 5—m2v) s hok
in fin l 1
2 1k K% 4 kS 2 1 k2
]G I B VA 242
et e B TG s

LR R K16, (2+1k_2
MZ 6 20mZ 15 AME3 T 5m2
BKAK: 2k 8 82 2 KOk

— o S0 R - =
5mi  5mf 50 " 5mi  5miM

SO TLL L
5 2

)

my, 5 m%/l 5 m%/l
2 k‘gk‘ﬁ 4 5 kzg 1
—= + —kfk(—1 4+ 4
5m3ME 50 ( m%/l)} (k2 4+ M2)
(C.17)
o 1. X tex
— 2 1 k2 5, 4 k2 9 2
Z Ztc X tex = {2(§ + EM—‘%)4kO — SM—‘Q/QkO + 2(5
in fin 1 1
1 k? 8 k2 16
+——)k2—— 2___k,2
5 M 5°ME 15
2 1 k% Kt 1
+2(= + = ) } (C.18)
3 5M‘2/l M‘% k2—|—M‘2,

° {2

= 2 1 k2

2 = - 4

E t: = (3 + 5—M‘2/)g (C.19)
i fin 1
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e Momentum corrective factor (F):

Z_:in Zﬁn |t‘2

Zin Zﬁn ‘t|2(k = O)

= (3™ + 10My, (4k§ + M7 )> My,

+6k° M (—4kg + 3My, + AMY)
+2k5(6 My + 5My)
+3k> My, (—4k§ + M) (—4k§ + My, + 8M7,)
+E*(12M7, + 92My, My,
kg (—48M, + 80M M)
2(k? 4 My )?(12k2kg My, + 5(4kg + M7 )2 M)
(C.20)

+

pole [MeV] 1€ JFC

meson F(V = p,w, ¢;v) F(J/¢vy) F(y7y)

(3943, +i7.4) 0 (0+*) Y (3940) 2.4 1.3 24
(3922, +i26) 0* (2+*)  Z(3930) 0.4 08 0.7
(4169, +i66) 0F (2++) X (4160) 0.4 08 0.7
(3919, +i74) 1 (2+F) 'Y, (3912) 0.4 08 0.7

Table C.1: Momentum corrective factors
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V'V — V'V amplitudes in other
sectors

The V'V amplitudes for the sectors charm = 0; strangeness = 1 (hid-
den charm), charm = 1;strangeness = —1, 1,2, charm = 2, strangeness =
0,1,2 involved in Chapter 9.

345



346

J Amplitude Contact V-exchange ~ Total
0 D:D*—DID* 2 ——92(”17;?/';”2*7"4) 0.2347
0 D:D* — J/WK* —4g° gQ(pﬁﬁ%fszrm) + 92(p1+5%)3-£p2+p4) 3.692
0 J/WK* — J/pK* 0 T 0
I D:D*—D:D* 3¢ ——92@1*;@/‘;”2”‘*) 1.2¢°
1 D;D* — J/YK* 0 — g eete) gQ(pl*ﬁj%‘fm*“) —0.43¢
1 J/jOK* — JjpK* 0 B 0
2 D:D*— DD —g? ——92(1’1*:%)/'3’2”4) ~2.8¢2
2 DD* — JJYK* 242 92(p1+£%)3~fp2+p3) + g2(m+:%£m+p4) 9.69°
2 JJYK* — JJYK* 0 B 0
Table D.1: Amplitudes for C =0, S =1and I = 1/2.
J Amplitude Contact V-exchange ~ Total
0 D*K* — D*K* 4g° —ﬁig%ﬁfn“;’:”?”?’)+§gQ(m%;—m%p)(p1+ps)-(pz+p4) —9.94%
1 D*K* — D*K* 0 ﬁi92<*’1+fn4;}2+”3>+;g2(%—T;j%)(p1+p3).(p2+p4> ~10.2¢°
2 D*K* — D*K* 242 —92<P1+;4%~EP2+P3>+;92(7;3—,,f%xpwpg).(pﬁm) ~15.9¢7
Table D.2: Amplitudes for C =1, S = —1and I = 0.
J Amplitude Contact V-exchange ~ Total
0 D*K* — D*K*  —4g? —92<P1+g%fp2“’3)+§(m—é+ﬁ%>(pl+p3>.(p2+p4> 9.7¢2
1 D*K* — D*K* 0 _ij(m—é+mL%>(p1+p3>.(p2+p4> 9.9
2 D*K* — D*K*  2g ﬁif@ﬁg;}mm)+§(ﬁg+m%p>(pl+p3>.(p2+p4) 15.7¢>

Table D.3: Amplitudes for C =1, S=—1and I = 1.
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J Amplitude Contact V-exchange ~ Total
0 D'K* = D'K* 4g°  —% (% + 7)(p1 +pa).(p2 + pa) —19.8¢7
0 D*K* - D'w —dg? 92(p1+5f2])3~fp2+p3) i 92(p1+5%)<.£p2+174) 6.8g>
0 D*K*— Do 2v2g — bt g 7
0 Diw— Diw 0 0 0
0 Diw— D6 0 0 0
0 Dip—Dip —24° Clntpg etz o002
L DK = D'K* 68 5+ ) (o1 + pa)-(2 + pa) —17.7¢°
1 D*K* — D'w 0 _92(p1+727>;%fp2+p3) + 92(p1+5%){~£p2+p4) 6.69°
1 D*K* — Di¢ 324 _x/ng(m;g;j(szrm) —7.8¢°
1  Diw— Diw 0 0 0
1 Dfw— D¢ 0 0 0
1 Di¢—Di¢ 3¢ S v L
2 DK* = D'K* 20" G (4 o) (o + ps)-(p2 + pa) —25.8¢°
2 D*K* — Dw 242 92(p1+5f2])3.*(p2+p3) + 92(p1+5%)<.*(p2+p4) 12.842
2 D*K* — D*¢ —\/2g? _\/592(p1;1g~(p2+p4) —13.5¢2
9 Dfw— Diw 0 0 0
2 Diw— D¢ 0 0 0
2 Dip—Di¢ ¢ Clotpglete) 3547

Table D.4: Amplitudes for C =1, S=1and I =0.



348

J Amplitude Contact V-exchange ~ Total
2
0 D*K* — D*K* 0 L(az- m%%)(pl +p3).(p2 +pa) 0.11g?
. * 2 _ g°(p1tpa)(p2tps)  g*(p1+p3).(p2+pa) 2
0 DE*—Dip  dg? —Ctnl e —6.8g
0 Dip— Dp 0 0 0
2
1 D*K* — D*K* 0 %(m% - m%zd)(pl +p3).(p2 +ps) 0.11¢>
1 D*K* D*p 0 92(p1+p42)(p2+p3) _ 92(p1+p32)-(p2+p4) -6 692
s M« my. :
1 Dip— Dip 0 0 0
2
2 D"K* — D*K* 0 g?(m%p — 5z) (01 +p3)-(p2 +pa) 0117
2 D*K* - Dp —2g° _ Petpg)(pates) _ g2ats)-(atps) g9 g2
s m7« myex :
2 Dip— Dip 0 0 0

Table D.5: Amplitudes for C' =1, S =1and [ = 1.

J Amplitude Contact V-exchange ~ Total
0 D:K* — D*K*  —4g° 92(m+51%£p2+p3) 4 92(p1+p;)§;(m+p4) 5.5¢2
| D*K* — D*K* 0 _92(p1+£%ip2+p3) 4 g2(p1+psl)i;(pz+p4) 5.0
2 D*K* — D*K* 242 92(p1+£z%ipz+p3) + 92(p1+p;)§;(p2+p4) 11.5¢2

Table D.6: Amplitudes for C =1, S=2and [ =1/2.

J Amplitude Contact V-exchange ~ Total

0 D*D* — D*D* 0 0 0

1 D*D* — D*D* 0 17—+ 5 —2){(pr+pa).(p2+p3) —25.4¢°
/P w P

+(p1+p3)-(p2+pa)}
2 D*D* — D*D* 0 0 0

Table D.7: Amplitudes for C =2, S =0 and [ = 0.
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Amplitude Contact V-exchange ~ Total

0 D*D* — D*D*  —4g* 1g*(-2 ot ) (1 pa). (b2 o) 24.3¢>

mJ/w mg,

+(p1+p3)-(p2+pa)}

1 D*D* — D*D* 0 0 0

2 D*D* — D*D* 297 1g2( 2 ol ) (o 4s) 30.3¢>

m‘]/w mg,

+(p1+p3).(p2+pa)}

Table D.8: Amplitudes for C =2, S=0and [ = 1.

Amplitude Contact V-exchange ~ Total
2 [ 2 .
0 D:D* N D:D* _4g2 g (p1+:%)(-fp2+p3) 49 (pl';szﬂ:QPQ'i‘P@ 19092
* T)* * T)* 2(p1+p4).(p2+ps3) *(p1+p3).(p2+pa) 2
1 DSD N DSD 0 _ 9 p1 5%{*1)2 P3 + g~p1 ﬂfj/w2p2 P4 _19.59
2 D*D* — D*D* 292 g2(p1+p4)-(p2+p3) + 92(p1+P3)-(P2+P4) 25 092
s s :

2
M m; w2

Table D.9: Amplitudes for C =2, S=1and [ =1/2.

J Amplitude Contact V-exchange ~ Total
0 DiD} — DiDY —4g® £(——+L){(ptps).-(o2+ps) 15.0g°
/P ¢
+(P1+p3)-(p2+p4)}
1 D*D* — D*D* 0 0 0
2

=
oS

(—3—+=4){(p1+pa).(p2+p3)  21.0g
I/ é
+(p1+p3)-(p2+pa)}

2 D:D* — D*D* 2

Table D.10: Amplitudes for C' =2, S =2 and I = 0.
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Appendix Z:

Box diagrams for the D*K™* D¢

and D* K* channels

El D'K*— D*'K*

We show the potential for the D*K* — D*K* box diagram with

mp =7, My =

VD*K* (S) =

D, mg=m and my = K.

g4 /qmaz dq q6 1
1572 J, w3wrwp (kS + w + wp — i€)?

1 1 1
X
(=K +w + wi —i€)? () + w + wp)? (Vs + wp + wi)
1 1
% x P(s),

(—V/5 +wp +wi —ie) (kI + w + wy)?
(E.1)
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with

P(s) = —2(2k3v/s(w + wp)wk (dw* — s(4w® + 3wwp + wh)
+4w?(wp + wi)? + 3wwp(wp + wi)? + Wi (wp + wik)?
+4w(wp + 2wk ))
+2(k9)*Vswi (—4w® — wp(—s + (wp + wik)?))
+(k*(2w*(wp + wi) + wpwi(—s + (wp + wi)?))

— (k) (4w’ (wp + wi) + 8wt (wp + wk)?
+4w3 (W — 3swi + bwhwi + 6wpwi + W)
+14wwpwi (—s + (wp + wi)?) + dwwpwi (Wp + W)
X (=5 + (wp + wi)?) + wpwk (8% + (wp + wi)*(Wh + W)
—25(w} + wpwi + wi))) + (W +wp)* (2w’ (wp + wk)
4wt (W + 3wpwi + 2w ) + 2w (W3 — 25w + Twhwi
+12wpwi + 6wi) + wpwi (s — wi)(s — (wp + wk)?)
+w?wi (bwp + 8wk ) (—s + (wp + wk)?)
+2wwic(s* + wi(wp + wi)?(2wp + wi)
—s(w? + dwpwk + 2wi)))) .

(E.2)

Where w = /@2 +m2, wp = /@ +m%, wrg = /¢ +m%, kY =
2

2

2 _ 2
ng*ismf{* and kY = W;T% After projecting in spin and
isospin, the potential is

VIRI=0s) = S5 Vpegs(s)
0 9

Vlg*_](()j;]_Q(S) = - 2 VD*K* (S)

VIS 0s) = =5 Vpege(s)

VITEIZ2 () = = 2Vpege(s) . (E.3)
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E.2 D*K*— D'

We show the potential for the D*K* — D?¢ box diagram with m; =
m, mo =D, mg =K and my = K.

494 dmazx q6 1
V * x5 D* == d
Dr=Di(%) 1572 /0 quDw% (—kY +w + wp — ie)
o 1 1
(=K + kS + w + wi —i€) (—kY + w + wi — i€)
1 1
X , .
(—kS + wp + wi — i€) (—kY + 2w — ie)
o 1 1
(=5 +wp +wg —i€) (kY + w + wp)
o 1 1 1
(k + wp + wi) (kY + w + wk) (kY + 2wy,)
1 1

P
X(\/§+wD+wk) (kY — kS + w + wi — i€) < P(s)

(E4)
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with
P(s)

—wic (2(kY)°w (= (k3)*Vswi + (k3)° (wp + wi)

+v/s(wp + wi)(s — wh — Swpwi — dwr)

—kS(w + swi + dwhwk + Twpwi + 4ws))

— (k) w(=2k5Vswic + (k3)*(wp + wi)

+(wp + wi)(s — 2(w + 3wpwk + 2w)))

F27 (k3 + V/s)w((k3)*Vswi

— (k)2 (W} + 28wi + 2whHwi + 2wpwi + Wi

+w?(wp + wi) + 2w(wp + wk)?) + kSVs(Wh + swi

+Hwhwg + dwpwi — 2w + w?(wp + 2w )

+2w(w? + dwpwg + 2w%)) + (wp + wi ) (Wh

+3wihwy + dwhwr + dwpwi + dwi + W (W

+3wpwi + 4wk) + 2w(Wwh + 3whwk + dwpwi + dwi)

—s(w? + W + wpwi + Wi + 2w(wp + wk))))

—(k)?w(2(k3)*vswic + (k3)*(wp + wic)

—2(k9)* (W} + whwi + 3wpwy + w*(wp + wi)

+3wi (s + w2) + w(w} + 3wpwi + 2w%))

+2kv/swic (s + 2(w? — Wi — dwpwg — 3w

+w(wp + 2wk))) + (wp + wi)(s* — 25(w? + W + 3wk

tw(wp + 2wk)) + 2(wp + wi) (W + 2whwxk

+5wpw? + 4w + 2w*(wp + 2wi)

+2w(wp + 2wk)?))) + (w + wp)(2(k3)* Vswi (s — w?

—(wp +wk)? = w(wp + 2wk)) + (k3)* (W*(wp + wi)

+w(w} + 3wpwi + 2wk + wr(—s

+Hwp + wi)?) + 2k vswi (W + (wp +wk)?

+w(wp + 4wk ) + wi(wh + dwpwi + 6wk ) + w(w

+Hwhwg + 6wpwr + dwi) — s(w? + (wp + wi)?

+w(wp + 2wi))) — (k3)*(w*(wp + wi)

+w? (W} + bwpwi + 4wr)

+w?(w? — 2swg + Iwdwi + 18wpwi + 10ws)
(E.5)
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H+w(w + 2swpwi + Bwhwi

—4dsw? + 18whws + 26wpwsi + 12w

twie(s? — 25(wh + 2wpwi + 3w)

+(wp + wr)*(Wh + 2wpwk + Swi)))

+(w + wi) (wp + wi ) (8*(w + wp + wik)

+2(w + wi ) (wp + wi) Cwi (wp + wi)?

+w?(wp + 2w ) + w(wp + 2wk )?)

—s(w? + W) + 3whwi + Twpws + 5w

+w*(wp + 3w ) + w(w} + Twpwi + Twe))))) . (E.6)

Where w = /2 + m2, wp = /@2 +m%, wg = /@ +m%, k) =

2 2
s+m2D*—m%<* 0o _ s+m§(*—m%* 0o _ s—i-mD;—md) . .
RO kQ. = 5 and k3 = — And its spin-
isospin projection is

—0.J= 3
VLI)*%LODM(S) G 5Vp-x+—p:g(5)
P 3
VhlZheo(s) = —=2Vpege_peg(s) - (E.7)

V2
E.3 D¢ — D¢

We show the potential for the D¢ — D¢ box diagram with m; = K,
mgzD, mgzKandm4:K.

g4 dmazx q6 1
Vs« = d
D2(s) 1572 /0 quw})’( (—kS + wp + wi — i€)?

» 1 1 1

(=K + 2wx —i€)? (Vs + wp + wi) (kY + 2wi)?
1 1

X — X P(s),

(l{:g+wD+wK)2 (—\/§+CUD+WK—ZE) ( )

(E.8)
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with

P(s) = 2((K)*(swp — w} — 2whwg — 3wpwi — 2wi)
+2(k)3/5(—swp + wd) + 2w + wpwi + 4w
—2k§v/s(wp + wi) (Wh + Swihwk + 1whwy
+15wpws + 16wy — s(wh + 3wpwk + 4wr))
+ (k)2 (s*wp + W) + 6whwi + 32whwi + Tdwrws.
+63wpwie + 16wy — 2s(w} + 3whwr + 10wpwi + 6wi))
—(wp + wi )*(s*(wp + 2wk ) + 4w (3w} + 12whw
+1Twpwi + 8wi) — s(wd + dwhwi + 15wpwy + 16ws))) .

(E.9)

Where w = /@2 + m2, wp = /@ +m%, wrg = /@ +m%, kY =
2 2 2 2

s+m4 —m< .
k) = —2—2% and ¢ = 1 MeV. Finally, we project it in

S
Vs 2Vs

spin and isospin
Vs '™(s) = 2x5Vpyy(s)
Vs ' 72s) = 2% 2Vpyy(s) . (E.10)

E4 D'K* — D*K*
We show the potential for the D*K* — D*K* box diagram with

my =, mg = D, ms = 7 and my = K. The potential is the same
than that given by Eq. (E.1) with:

—0.J— 9
VI_OJ_O(S) = _5VD*K*(3)

s 4

VRO = 2%l

Vi) = V(o

VIELI2(s) = 2aVpe(s) | (B-11)



Appendix

The value of C, for the PB and
V' B amplitudes

This Appendix gives the coefficients C' in Egs. (12.12), (12.13), (12.19),
(12.19) and (12.20) for the various IS sectors studied.

DY, 7N KX,
DY, 2 -1 1

Table F.1: Coefficients C,;, in the Eq. (12.12, 12.19) for the PB
system in the sector I = 3/2, S = 0.
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DY. DAY n.N 7N 3N 9o/'N KY KA
DY.| —1  0—/3/2-1/2-1/v2 1/2 1 0
DAY 1 /3/2-3/2 1/V/2-1/2 0 1

Table F.2: Coefficients C,, in the Eq. (12.12, 12.19, 12.20) for the
PB system in the sector I =1/2, S = 0.

D= D,Z. DQ. 72 KX n= nwE KA
D,E, 0 v2  0+3/2 1/v61/V3—V3/2
D,Z. 1 0 0-3/2 1/3/2 1 1/2
DR, 043/2 0-1/v31/V6 0

Table F.3: Coeflicients C,, in the Eq. (12.12, 12.19) for the PB
system in the sector I = 1/2, S = —2.

DY, D=, D=, oy A Y Y KN KZ
DX, 0 v2 0 0 0-1/v/3 /2/3 —1 0

D=, 10 1/vV2-V3/2 1/V/61/2v/3 0 1/V2
D=, 1—3/2  1/2-1/vV2 —1/2  0./3/2

Table F.4: Coefficients C,;, in the Eq. (12.12, 12.19) for the PB
system in the sector I =1, S = —1.
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D,AF D=. D=,  nA 7% nA ”A KN KZ
DA 0-v2 0 10 1/V3 2/3-V3 0
D=, -1 0 1/vV2-3/2 1/V/6-1/2/3 0./3/2
D=, —1 —+/3/2V3/2 —1/3/2 0 1/v2
n.A 0 0 0

Table F.5: Coefficients C,, in the Eq. (12.12, 12.19, 12.20) for the

PB system in the sector I =0, S = —1.

D%, K=

D.Y. 242

Table F.6: Coeflicients C,, in the Eq. (12.12, 12.19) for the PB

system in the sector I =0, S = —3.

D*S, pN K*S

D*%, 2 -1

1

Table F.7: Coefficients C,;, in the Eq. (12.13, 12.19) for the VB

system in the sector I = 3/2, S = 0.
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D*Y, D*A}  pN  wN ¢N K*¥ K*A
D%, | -1 0-1/2 +3/2 0 1 0
D*A} 1-3/2-v3/2 0 0 1

Table F.8: Coefficients C,;, in the Eq. (12.13, 12.19) for the VB
system in the sector I = 1/2, S = 0.

D=, D=, D*Q. p= K*Y W= p=  K*A
Dr=, I 0 V2 0v3/2 0 —1/v2 —/3/2
DI=Z, 1 0 0-3/2 0-+/3/2 1/2
D*Q, 0+3/2  03)2 0 0

Table F.9: Coefficients C,;, in the Eq. (12.13, 12.19) for the VB
system in the sector I = 1/2, S = —2.

DY, D*Z, D*E, Y pA  w¥ ¢¥ K*N K*=
DS 0 V2 0 0 0 0-1 -1 0
D*E, 1 0 1/V2—-V3/2-1/2 0 01/V2
D*Z, 1372 1/2v3/2 0 032

Table F.10: Coefficients Cy;, in the Eq. (12.13, 12.19) for the VB
system in the sector I =1, S = —1.



wA oA K*N  K*Z

D:A} D*E. D'E, p%
DAY 02 0 0
D*= -1 0-3/2-1/2 0
D=, —-1+3/2V3/2 0

0—1 —/3
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Table F.11: Coefficients Cy, in the Eq. (12.13, 12.19) for the VB

system in the sector I =0, S = —1.

Dy, K=

D:Y.

2

V2

Table F.12: Coefficients Cy;, in the Eq. (12.13, 12.19) for the VB

system in the sector I =0, S = —3.
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