REVISTA DE LA ACADEMIA DE DE CIENCIAS

Exactas Físicas Químicas y Naturales

DE ZARAGOZA

INDICE DE MATERIAS

R. Ayala y A. Quintero. — «A note on contractible open homology manifolds»	5
L. M. Fernández. — «A note on F-sectional curvatures of S-manifolds».	11
I. K. Argyros. — «On the solution by series of some nonlinear equations»	18
I. K. Argyros. — «Survey on the ideals of the space of bounded linear operators on a separable hilbert space»	24
J. M. Franco et M. Palacios. — «Une classe de methodes numeriques pour l'integration directe d'equations differentielles du type y'' = f(t,y,y')»	45
J. M. Franco y M. Palacios. — «Estudio cualitativo e integración de las ecuaciones del movimiento del «main problem» ecuatorial»	69
A. Abad, A. Elipe y M. L. Sein-Echaluce. — «Método estroboscópico en variables de Delaunay. Aplicación a un radial del satélite artificial».	81
R. Cid y M. E. San Saturio. — «Movimiento de un sólido pesado en un conjunto superabundante de variables»	91
J. Badal, V. Corchete y F. Serón. — «Datos de dispersión contaminados por ruido y atenuación anclástica»	105
G. Ochoa. — «A complete description of the outer plethysm in $R(S)$ »	119
M. A. Soriano. — «Características de los rafonis y alveolos desarrolla- dos al sur de Zaragoza»	123
A. Aparicio, V. Sánchez Cela y L. E. Cacho. — «Petrological and geoche- mical considerations on the Cabo Ortegal complex (NW Spain)»	131
L. F. Auque, J. Fernández Cascán. — «Métodos isotópicos aplicados a la prospección geométrica»	163
A. Navas y J. Tena. — «Grado de diagénesis de las rocas pelíticas del Paleozoico en las sierras de Vicort y Algairén (Cordillera Ibérica)	175

Págs.

Rev. Acad. Ciencias Zaragoza, 42 (1987)

A NOTE ON CONTRACTIBLE OPEN HOMOLOGY MANIFOLDS*

R. AYALA, A. QUINTERO

Departamento de Geometría y Topología. Facultad de Matemáticas. Tarifa, s/n. 41012 SEVILLA (Spain).

We study the homology manifolds which have the proper homotopy type of an euclidean space. It is proved that M x R \simeq Rⁿ⁺¹ for each contractible open homology n-manifold M.

1. BASIC DEFINITIONS. A homology n-manifold ((HML,n)-manifold) is an euclidean polyhedron M = |K| such that $\widetilde{H}_*(lk(x;K))$ is $\widetilde{H}_*(S^{n-1})$ or 0, for each $x \in M$. The set of points with the latter property is called the boundary of M and is a (HML,n-1)-manifold, ∂M , without boundary which is the underlying space of a subcomplex $\partial K \subseteq K$.

An open HML-manifold is a no compact HML-manifold without boundary. A homological n-space is an open HML-manifold M such that $H_*^{II}(M) \simeq H_*^{II}(\mathbb{R}^n)$. Here $H_*^{II}(-)$ is the second kind homology for infinite polyhedra.

For a general reference of the usual properties of HML-manifolds see Maunder |10|.

Given a T_2 -space X, an ∞ -neighbourhood is a subset N such that $\overline{X-N}$ is compact. X is said to be 1-locally connected at ∞ (1-LC at ∞) if for any ∞ -neighbourhood U there exists an ∞ -neighbourhood W \subseteq U such that $\mathcal{T}_1(W) = 1$.

It is easy to check that the property of being 1-LC at ∞ is invariant under proper homotopy equivalence. Also it is obvious that 1-connected at ∞ implies 1-LC at ∞ . However, the following space

^{*} This work has been supported in part by CAICYT grant 0812-84

shows the failure of the converse:

2. CONTRACTIBLE OPEN HML-MANIFOLDS.

1. Proposition. Let M be a contractible open HML-manifold. Then M is a homological n-space.

<u>Proof.</u> It follows from the duality isomorphisms between the second kind homology and ordinary cohomology for HML-manifolds (see Domínguez |3;8.1| or Lefschetz |8;41.4|).

2.Proposition. Let M = |K| be a contractible open (HML,n)-manifold. If $n \ge 5$, M is proper homotopy equivalent to \mathbb{R}^n if and only if M is 1-LC connected at ∞ .

<u>Proof.</u> If $n \ge 5$, the singular set S where M is not TOP-manifold is a subset of vertices (Cannon |1;3.5|). Taking the second barycentric subdivision of K, if it were neccesary, we can assume $st(v_i;K) \cap st(v_j;K) = \emptyset$ for any pair $v_i, v_j \in S$. It is well known (see Galewski-Stern |5;1.6|or Quintero |11;3.2|) that lk(v;K) bounds a contractible HML-manifold, N_v , such that int N_v is TOP-manifold. Then

 $\widetilde{M} = (M - \bigcup \{ \overset{\circ}{\mathrm{st}}(v; K), v \in S \}) \bigcup \{ N_{v}, v \in S \}$

is a TOP-manifold. Identifying N_v to v, for each $v \in S$, we get a map f: $\widetilde{M} \longrightarrow M$ which is a proper homotopy equivalence. Then \widetilde{M} is contractible and 1-LC at ∞ . Now Siebenmann |12;1.1| implies that \widetilde{M} is homeomorphic to \mathbb{R}^n . The converse is immediate.

<u>3.Proposition</u>. Let M be an open (HML,n)-manifold $(n \ge 4)$. If M has infinite many TOP-singular points, there no exists any polyhedron P such that $P \times [0, \infty)$ is an ∞ -neighbourhood. In particular, M can not be the interior of a compact (HML, n+1)-manifold with boundary.

<u>Proof.</u> Let S be the TOP-singular set of M. If U is an ∞ -neighbourhood, P a polyhedron and h: U \longrightarrow P × $[0, \infty)$ a homeomorphism, V = = $h^{-1}(P \times [0, \infty))$ will be an open ∞ -neighbourhood. Since the link of x \in P × $[0, \infty)$ has the same homotopy type as the link of $h^{-1}(x)$ (see Maunder |10;2.4.5|), every link in V is simply connected. So, V is a TOP-manifold. Therefore, S \cap V = \oint and S $\subseteq \overline{M-V}$ is finite.

If \hat{M} is a compact HML-manifold and h: M \longrightarrow int \hat{M} a homeomorphism, given a regular neighbourhood, N, of $\partial \hat{M}$ the subspace N-N is homeomorphic to $\partial \hat{M} \times [0, \infty)$ and is a ∞ -neighbourhood. From the first statement we get that the TOP-singular set of M cannot be infinite.

<u>4. Examples</u>. 1) Let M^3 be the Poincaré homology 3-sphere. From the duality isomorphism $H_q^{II}(M) \simeq H^{3-q}(M)$ (see Domínguez [3:8.1] or Lefschetz [8;41.4]) it follows that $M-\{*\}$ is a homological 3-space 1-LC at ∞ but it has not the same proper homotopy type as \mathbb{R}^3 because $\pi_1(M-\{*\}) \neq 1$.

2) The Double Suspension Theorem (Cannon |1;3.7|) states that $\Sigma^2 M^3$ is homeomorphic to S^5 . Then $\Sigma^2 M^3 - \{*\}$ is a homological 5-space homeomorphic but not PL-isomorphic to \mathbb{R}^5 .

3) Let G_n be a Glaser contractible manifold $(n \ge 5)$ (see Glaser |6|). Then $Z = G_n - \partial G_n$ is a homological n-space by Proposition 1, but Z is not 1-LC at ∞ because $\Pi_1(\partial G_n) \ne 1$. Then, by Proposition 2, Z has not the proper homotopy type of \mathbb{R}^n although both manifold are contractible.

4) If $v \in \sum^{1} \partial G_{n} - \sum^{1}$, $V = \sum^{1} \partial G_{n} - \{v\}$ is a homological n-space with the same proper homotopy type as \mathbb{R}^{n} (Proposition 2). Also V is PL-isomorphic to $int(\sum^{1} \partial G_{n} - \overset{\circ}{\Delta})$, where Δ is an n-simplex with $\Delta \cap \sum^{1} = \emptyset$.

5) If $H^n = \sum_{n=1}^{1} \Im G_n$, let W the infinite connected sum W = $H^n \# H^n \# \dots$, where W is constructed avoiding $\sum_{n=1}^{1}$ in each copy of H^n . It is easy to show that W is a contractible open HML-manifold 1-LC at ∞ . Then, W has the proper homotopy type of \mathbb{R}^n (Proposition 2) but is not the interior of a compact HML-manifold with boundary (Proposition 3).

Now, we are going to prove the following "Proper Suspension

Theorem":

5. Theorem. Let M be a homological n-space $(n \ge 1)$. Then $M \times R$ is homeomorphic to R^{n+1} if and only if M is contractible.

First we will need some definitions and results from Glaser |7|. Let K be a locally finite simplicial complex. For each infinite subcomplex L⊂K let c(K-L) be the set of connected components of |K|--|L|. Then the set of finite subcomplexes, directed by inclusion, gives

us an inverse limit $\Lambda(K) = \lim_{K \to \infty} \{c(K-L)\}$. $\Lambda(K)$ is called the set of Freudenthal's ends of K. Card $(\Lambda(K))$ is denoted by e(K).

Let C*(K) be the ${\rm Z}_2-{\rm cochain}$ complex of K. The subcomplex $C_f^*(K)$ is defined as

 $C_{f}(K) = \{c \in C^{*}(K); c = 0 \text{ except for a finite number of simplexes of } K\}$ Then we have the exact sequence

$$0 \longrightarrow C^*_{f}(K) \longrightarrow C^*(K) \longrightarrow C^*(K)/C_{f}(K) = C^*_{e}(K) \longrightarrow 0$$

In the usual way we get the exact sequence

$$(*) \quad 0 \longrightarrow H_{c}^{0}(K) \longrightarrow H^{0}(K) \longrightarrow H_{e}^{0}(K) \longrightarrow H_{c}^{1}(K) \longrightarrow H^{1}(K) \longrightarrow \dots$$

6. Lemma. a) $e(K) = \dim H^0_{a}(K)$

b) Let |K| and |L| be 1-connected polyhedra with e(K) = e(L) =1. Then $|K| \times |L|$ is 1-connected at ∞ .

c) If |K| is 1-connected and e(K) = 1, $|K| \times \mathbb{R}$ is connected at ∞ <u>Proof.</u> a), b) and c) are respectively 1.9, 1.5 and 1.6 ffrom Glaser |7|7. Proposition Let M = |K| be a basely in |T|

7. Proposition. Let M = |K| be a homological n-space $(n \ge 2)$. Then e(K) = 1.

<u>Proof.</u> From the duality relations (with coefficients in Z_2) we get $H_c^1(M) \simeq H_{n-1}(M) \simeq H^{n-1}(M) \simeq H_1^{II}(M) = 0$. Also $H_c^0(M) = 0$ and using the sequence (*) and 6.a) we obtain e(K) = 1. <u>8.Corollary</u>. Let $M^m = |K|$ and $N^n = |L|$ be open HML-manifolds. Then, if $M \times N$ is contractible and $n + m \ge 3$, $M \times N$ is 1-connected at ∞ .

<u>Proof.</u> If $m,n \ge 2$, e(K) = e(L) = 1 and it follows from 6.b). If m = 1, M = R and $n \ge 2$; then e(L) = 1 by Proposition 7 and we conclude by 6.c).

Now Theorem 5 is the case N = R in

9. Theorem. Let M = |K| and N = |L| be open HML-manifolds with m,n ≥ 31 . Then $M \times N$ is homeomorphic to \mathbb{R}^{n+m} if and only if M and N are contractible.

<u>Proof.</u> If $n = m \leq 2$, M and N are homeomorphic to the respective euclidean space \mathbb{R}^n (see Christenson-Voxman |2;16.C.3|). The case m = 3, n = 1 is Freedman |4;1.2|. If $n + m \geq 5$, $M \times N$ is a TOP-manifold because the links are simply connected (Cannon |1;3.5|). Then we conclude using Siebenmann |12;1.1|. Künneth's formula and Whitehead Theorem show the converse.

10. Remark. $M \times N$ can be homeomorphic to \mathbb{R}^{n+m} although M and N have not the same proper homotopy type as an euclidean space. Actually, $M = N = G_n - \partial G_n$ verify the above condition (see Example 4.3))

REFERENCES

- |1| J.W. CANNON "The recognition problem: What is a topological manifold?". Bull. AMS 84(1978) 832-866.
- [2] C. CRHISTENSON, W. WOXMAN Aspects of Topology. Marcel Dekker, 1977.
- E. DOMINGUEZ "Cobordismo infinito". Preprint. Sem. Mat.
 García de Galdeano. Ser. II, nº 27. Zaragoza 1985.
- M. FREEDMAN "Topology of four-dimensional manifolds". J.
 Diff. Geom. 17(1982) 357-453.
- [5] D. GALEWSKI, R. STERN "Classification of simplicial triangulations of topological manifolds". Ann. of Math. 111(1980) 1-34

- [6] L. GLASER "Uncountably many contractible open 4-manifolds Topology 6(1967) 37-42.
- [7] _____ Combinatorial Tolpology II. Van Nostrand,1970.
- 8 S. LEFSCHETZ Algebraic Topology. AMS Coll. Publ., 1942.
- |9| E. LUFT "On contractible topological manifolds". Inv. Math. 4(1967) 192-201.
- |10| C.R.F. MAUNDER Algebraic Topology. Van Nostrand, 1970.
- |11| A. QUINTERO "Algunos resultados sobre el bordismo de las variedades de homología". To appear in Rev. Acad. Ciencias Madrid.
- [12] L. SIEBENMANN "On detecting Euclidean Space homotopically among topological manifolds". Inv. Math. 6(1968) 245-261.

Rev. Acad. Ciencias Zaragoza, 42 (1987)

A NOTE ON F-SECTIONAL CURVATURES OF S-MANIFOLDS

L.M. FERNÁNDEZ

Departamento de Algebra, Computación, Geometría y Topología. Facultad de Matemáticas. Universidad de Sevilla. Tarifa, s/n. 41012 SEVILLA (España).

This paper presents some characterizations of S-manifolds whose invariant f-sectional curvature is constant. The antiinvariant f-sectional curvature, the axiom of invariant f-planes and the axiom of antiinvariant f-planes are used in order to get the results.

0.- INTRODUCTION. For manifolds with an f-structure, David E. Blair (Blair, [1]) has introduced the analogue of Kaehler structure in the almost complex case and of quasi-Sasakian structure in the almost contact case, thus defining S-manifolds. He has also proved that the invariant f-sectional curvature determines the curvature of an S-manifold completely.

In this paper, we shall present some characterizations of S-manifolds whose invariant f-sectional curvature is constant. In section 1, we shall give a brief summary of basic formulas on S-manifolds. In section 2, we shall use the antiinvariant f-sectional curvature to characterize S-manifolds with constant invariant f-sectional curvature. In the last section, we shall prove that if an S-manifold satisfies the axiom of invariant f-planes, then it is of constant invariant f-sectional curvature. The same result is obtained, under certain restrictions on the dimension of the S-manifold, using the axiom of antiinvariant f-planes. 1.- PRELIMINARIES. Let M^{2n+s} be an S-manifold of dimension 2n+s, with structure tensors $(f,\xi_1,\ldots,\xi_s,\eta_1,\ldots,\eta_s,g)$. Let T(M) be the Lie Algebra of vector fields in M^{2n+s} . Then, the structure tensors satisfy the following equations (Blair, [1]): (1.1) $\eta_{\alpha}(\xi_{\alpha}) = \delta_{\alpha\beta}; f\xi_{\alpha} = 0; \eta_{\alpha}(fX) = 0;$

 $g(X,Y) = g(fX,fY) + \phi(X,Y), X,Y \in T(M), \alpha,\beta \in \{1,\ldots,s\},$ where $\phi(X,Y) = \sum_{\alpha} \eta_{\alpha}(X)\eta_{\alpha}(Y)$. Thus, the tensor f is an f-structure (Yano, [7]) of rank 2n and the metric g is compatible with f. Moreover, f is normal and so: (1.2) [f,f] + 2 $\sum_{\alpha} \xi_{\alpha} \propto d\eta_{\alpha} = 0$

where [f,f] is the Nijenhuis torsion of f. The covariant differentiation ∇ of M^{2n+s} satisfies (Blair, [1]), if X,YeT(M), $\alpha \in \{1, \dots, s\}$:

 $(1.3) \quad \nabla_{\mathbf{X}} \xi_{\alpha} = -\mathbf{f} \mathbf{X}.$

(1.4) $(\nabla_X^{\alpha} f) Y = \sum_{\alpha} [g(fX, fY)\xi_{\alpha} + \eta_{\alpha}(Y)f^2X].$

Furthermore, on an S-manifold we have $F = dn_{\alpha}, \alpha = 1, \dots, s$, where F is the fundamental 2-form defined by F(X,Y) = g(X,fY), $X,Y \in T(M)$.

Let \mathcal{L} denote the distribution determined by $-f^2$ and \mathcal{M} the complement distribution. \mathcal{M} is determined by $f^2 + I$ and spanned by $\{\xi_1, \ldots, \xi_s\}$. If $X \in \mathcal{L}$, then $n_{\alpha}(X) = 0$ for any α and if $X \in \mathcal{M}$, then fX = 0.

Examples of S-manifolds are given in (Blair, [1]), (Blair, [2]), (Blair, Ludden and Yano, [3]). Thus, the bundle space of a principal toroidal bundle over a Kaehler manifold with certain conditions is an S-manifold. In this way, a generalization of the Hopf Fibration $\pi': S^{2n+1} \longrightarrow \mathbb{PC}^n$ is introduced as a canonical example of an S-manifold (playing the role of complex space in Kaehler geometry and the odd-dimensional sphere in Sasakian geometry) as follows:

Let Δ denote the diagonal map. We define a principal toroidal bundle over \mathbf{PC}^{n} by the following diagram:

that is:

 $H^{2n+s} = \{ (p_1, \dots, p_s) \in S^{2n+1} \times \dots \times S^{2n+1} / \pi'(p_1) = \dots = \pi'(p_s) \}.$

By virtue of Theorem 3.1 in (Blair, [1]), H^{2n+s} is an S-manifold.

For later use, we recall the following (Blair, [1]): 1.1.- Lemma. On an S -manifold M^{2n+s} :

(1.5) R(X,Y,fX,fY) = R(X,Y,X,Y) + sP(X,Y,X,fY);

 $(1.6) \qquad R(X, fY, fX, Y) = -R(X, fY, X, fY) - sP(X, Y, X, fY);$

(1.7) R(X, fY, fZ, W) = R(X, Y, Z, W),

for any X,Y,Z,WeL, where:

$$\begin{split} P(X,Y,Z,W) &= F(Y,Z)g(X,W) - F(X,Z)g(Y,W) - \\ &-F(Y,W)g(X,Z) + F(X,W)g(Y,Z) \,. \end{split}$$

2.- INVARIANT AND ANTIINVARIANT f-SECTIONAL CURVATURES OF AN S-MANIFOLD. Let M^{2n+s} be an S-manifold. By a plane section we mean a 2-dimensional lineal subspace of a tangent space. A plane section π is called an invariant f-section (resp. an antiinvariant f-section) if $f\pi = \pi$ (resp. if $f\pi$ is perpendicular to π). The sectional curvature for an invariant (resp. antiinvariant) f-section is called an invariant (resp. anti-invariant) f-sectional curvature.

An invariant f-section is determined by a unit vector $X_{\varepsilon} \mathcal{L}(p)$, $p_{\varepsilon} M^{2n+s}$ such that {X,fX} is an orthonormal pair spanning the section. On the other hand, it is easy to show that orthonormal vectors $X, Y_{\varepsilon} \mathcal{L}(p)$, $p_{\varepsilon} M^{2n+s}$, span an anti-invariant f-section if and only if X, Y and fX are orthonormal.

We denote by K(X,Y) the sectional curvature of M^{2n+s} determined by orthonormal vectors $X, Y \in \mathcal{L}(p)$, $p \in M^{2n+s}$ and by H(X) the invariant f-sectional curvature of an invariant f-section spanned by {X,fX}, that is, H(X) = K(X,fX).

The fact that the invariant f-sectional curvature determines the curvature of an S-manifold completely is well known, (Blair, [1]). Moreover, in (Kobayashi and Tsuchiya, [5]) it is proved that if an S-manifold has constant invariant f-sectional curvature k, then its curvature tensor has the form: (2.1) $R(X,Y,Z,W) = \sum [g(fX,fW)\eta_{\alpha}(Y)\eta_{\beta}(Z) -$

- $g(fX, fZ)\eta_{\alpha}(Y)\eta_{\beta}(W) + g(fY, fZ)\eta_{\alpha}(X)\eta_{\beta}(W) -$

- $g(fY, fW) n_{\alpha}(X) n_{\beta}(Z)] + \frac{1}{4}(k+3s)[g(X,W)g(fY, fZ) -$

- $g(X,Z)g(fY,fW) + g(fY,fW)\phi(X,Z) -$

- $g(fY, fZ)\phi(X, W)$] + $\frac{1}{4}(k-s)[F(X, W)F(Y, Z) -$

- F(X,Z)F(Y,W) - 2F(X,Y)F(Z,W)], X,Y,Z,WeT(M).

Now, we can prove:

<u>2.1.- Theorem</u>. Let M^{2n+s} be an S-manifold with $n \ge 2$. If the invariant f-sectional curvature at any point is independent of the choice of the invariant f-section at the point, then it is constant on the manifold and the curvature tensor is given by formula (2.1), where k is the constant invariant f-sectional curvature.

<u>Proof:</u> By virtue of Theorem 2.6 in (Blair, [1]), it is easy to see that the curvature tensor has the form of (2.1), with k a function on the manifold. Then, the Ricci tensor S and the scalar curvature ρ of M^{2n+s} are given by:

 $(2.2) S(X,Y) = \frac{1}{2}(n(k+3s) + k-s)g(fX,fY) +$

+ $2n\sum_{\alpha} n_{\alpha}(X)n_{\beta}(Y)$, X,YeT(M).

(2.3)

 $\rho = \frac{1}{2}(n(2n+1)(k+3s) + n(k-s)).$

Now, from the second Bianchi identity:

 $2\nabla_a S_j^a - \nabla_{j\rho} = 0$, where S_j^a are the components of the Ricci tensor of type (1,1). Making use of (2.2) and (2.3), we have:

 $(n+1)(n-1)\nabla_{j}k + (n+1)\sum_{\alpha} \eta_{\alpha}^{j}\xi_{\alpha}^{a}\nabla_{a}k = 0,$

that is:

 $(n-1)dk + \sum_{\alpha} (\xi_{\alpha}k)\eta_{\alpha} = 0.$ Applying this to ξ_{β} , $\beta = 1, \dots, s$, we get:

 $(n-1)(dk)\xi_{\beta} + \xi_{\beta}k = 0$ and so, $\xi_{\beta}k = 0$, $\beta = 1, \dots, s$. Then, dk = 0, for $n \neq 1$ and the proof is complete.

As an example, it is well known (Blair, [1]), (Blair, [2]) and (Blair, Ludden and Yano, [3]) that H^{2n+s} has constant invariant f-sectional curvature 1 - 3s/4. In general, if M^{2n+s}

is the bundle space of a principal toroidal bundle over a Kaehler manifold of constant holomorphic sectional curvature K, which is an S-manifold, then M^{2n+s} has constant invariant f-sectional curvature K - 3s/4.

With regard to the antiinvariant f-sectional curvature of an S-manifold, we have:

<u>2.2.-</u> Proposition. Let $M^{2n+s}(k)$ be an S-manifold of constant invariant f-sectional curvature k. Then, $M^{2n+s}(k)$ has constant antiinvariant f-sectional curvature equal to $\frac{1}{2}(k+3s)$.

<u>Proof:</u> By virtue of (2.1), if $X, Y \in \mathcal{L}$ span at antiinvariant f-section, then we have:

 $K(X,Y) = R(X,Y,Y,X) = \frac{1}{4}(k+3s)$

as desired.

Now, we want to prove the converse. We need the following: 2.3.- Lemma. Let M^{2n+s} be an S-manifold. If $X, Y \in \mathcal{L}$ are orthonormal vectors, then:

(2.4) K(X,Y) = K(fX,fY);

(2.5) K(X, fY) = K(fX, Y).

Moreover, if X,Y span an antiinvariant f-section, then: (2.6) R(X,fX,fY,Y) = K(X,Y) + K(X,fY) - 2s.

<u>Proof:</u> (2.4) and (2.5) follow from (1.7). Now, if $X, Y \in \mathcal{L}$ span an antiinvariant f-section, from the first Bianchi identity, we get:

(2.7) R(X,fX,fY,Y) = -R(X,Y,fX,fY) + R(X,fY,fX,Y)and making use of (1.6), since g(X,fY) = 0 = g(Y,fX) == g(X,fX) = g(Y,fY), we have:

> R(X,Y,fX,fY) = R(fX,fY,X,Y) = -R(X,Y,Y,X) + s ==-K(X,Y) + s

and

R(X, fY, fX, Y) = -R(X, fY, X, fY) - s = K(X, fY) - s.Then, replacing these into (2.7), we obtain the result.

<u>2.4.-</u> Theorem. Let M^{2n+s} be an S-manifold with $n \ge 3$. If M^{2n+s} has constant antiinvariant f-sectional curvature c, then M^{2n+s} has constant invariant f-sectional curvature equal to 4c-3s.

<u>Proof:</u> Let X,Y be orthonormal vectors fields which span an antiinvariant f-section. Then, $(X+Y)/\sqrt{2}$ and $(fX-fY)/\sqrt{2}$ span an antiinvariant f-section too. Then, making use of Lemma 1.1 and Lemma 2.3, we get:

 $c = \frac{1}{4}K(X+Y, fX-fY) = \frac{1}{4}R(X+Y, fX-fY, fX-fY, X+Y) = \frac{1}{4}[H(X) + H(Y) - 2K(X, Y) - 2K(X, fY) + 6s].$ Since K(X, Y) = k(X, fY) = c, we obtain: H(X) + H(Y) = 8c - 6s.

Now, let p be an arbitrary point of M^{2n+s} and let X,Y be unit vectors in $\mathcal{L}(p)$. Since n>3, we can choose a unit vector $Z_{\varepsilon}\mathcal{L}(p)$ orthogonal to the plane sections spanned by {X,fX} and {Y,fY}. It is easy to show that the plane sections spanned by {X,Z} and {Y,Z} are antiinvariant f-sections. Then we know that H(X) + H(Z) = 8c-6s = H(Y) + H(Z). Thus, H(X) = H(Y). Since X and Y are arbitrary vectors, the invariant f-sectional curvature does not depend on the choice of the invariant f-section at p. But p is an arbitrary point of M^{2n+s} too. Now, from Theorem 2.1, M^{2n+s} is of constant invariant f-sectional curvature equal to 4c-3s, by virtue of (2.8).

These results should be compared with the corresponding results for Kaehler manifolds (s = 0), (Chen and Ogiue, [4]).

3.- THE AXIOM OF INVARIANT (ANTIINVARIANT) f-PLANES. An S-manifold M^{2n+s} is said to satisfy the axiom of invariant (resp. antiinvariant) f-planes if for each $p_{\epsilon}M^{2n+s}$ and each invariant (resp. antiinvariant) f-section π at p, there exists a 2-dimensional totally geodesic submanifold N of M^{2n+s} such that $p_{\epsilon}N$ and $T_{p}(N) = \pi$.

<u>3.1.- Theorem</u>. Let M^{2n+s} be an S-manifold. Then, M^{2n+s} satisfies the axiom of invariant f-planes if and only if M^{2n+s} is of constant invariant f-sectional curvature.

The proof is a very lengthy computation, but similar to that given by Ogiue (Ogiue, [6]), for Sasakian manifolds. Now, we shall prove:

<u>3.2.-</u> Theorem. Let M^{2n+s} be an S-manifold with $n \ge 3$ such that M^{2n+s} satisfies the axiom of antiinvariant f-planes. Then, M^{2n+s} is of constant invariant f-sectional curvature.

<u>Proof:</u> Let p be an arbitrary point of M^{2n+s} and let X,YeI(p) be orthonormal vectors spanning an antiinvariant fsection π . Let N be a 2-dimensional totally geodesic submanifold of M^{2n+s} such that peN and $T_p(N) = \pi$. Since π is an antiinvariant f-section, fX is normal to N. Then, from Weingarten's formula, we get:

$$\begin{split} & R(X,Y,fX,X) = g(\nabla_X \nabla_Y fX,X) - g(\nabla_Y \nabla_X fX,X) - \\ & - g(\nabla_{[X,Y]} fX,X) = g(\nabla_X D_Y fX,X) - g(\nabla_Y D_X fX,X) = \\ & = g(D_y D_y fX,X) - g(D_y D_x fX,X) = 0, \end{split}$$

where we have used the fact that N is totally geodesic and so, $A_{yy} = 0$, for any vector field V normal to N.

Now, since X and Y span an antiinvariant f-section at p, then X+Y and fX-fY span an antiinvariant f-section too. Then: R(X+Y,fX-fY,fX+fY,X+Y) = 0.

Using Lemma 1.1 and Lemma 2.3, a direct expansion gives: (3.1) H(X) = H(Y).

Now, let X and Y be unit arbitrary vectors in $\mathcal{L}(p)$. If the section {X,Y} is an invariant f-section, then H(X) = H(Y). If it is not an invariant f-section, since $n \ge 3$, we can choose a unit vector Z in $\mathcal{L}(p)$, orthogonal to the sections {X,fX} and {Y,fY}. Then, from (3.1), H(X) = H(Z) = H(Y). Since X and Y are arbitrary vectors, the invariant f-sectional curvature does not depend on the choice of the invariant f-section at p. But p is arbitrary too. So, from Theorem 2.1, we complete the proof.

This result should be compared with that in the case of s = 0, (Chen and Ogiue, [4]).

REFERENCES.

[1] B]	air, D.E.	, 1.970.	J.Diff.	Geom.,	4.	(155	- 167)	
--------	-----------	----------	---------	--------	----	------	--------	--

- [2] -----, 1.971. Ann. Stiin. Univ. "Al. I. Cuza". Din Iasi (serie nova). T. XVII, Fasc. 1. (171 - 177).
- [3] Blair, D.E., Ludden, G.D. and Yano, K., 1.973. Trans. Am. Math. Soc., 181. (175 - 184).
- [4] Chen, B.Y. and Ogiue, K., 1.973. Duke Math. J., <u>V. 40</u>, n. 4. (797 - 799).

[5] Kobayashi, M. and Tsuchiya, S., 1.972. Kodai Math. Sem. Rep., 24. (430 - 450).

[6] Ogiue, K., 1.964. Kodai Math. Sem. Rep., 16. (223 - 232).

[7] Yano, K., 1.963. Tensor, 14. (99 - 109).

Rev. Acad. Ciencias Zaragoza, 42 (1987)

ON THE SOLUTION BY SERIES OF SOME NONLINEAR EQUATIONS

I.K. ARGYROS

Department of Mathematics. New Mexico State University. Las Cruces, NM 88003.

A solution by series of nonlinear equation in Banach space is presented. This approach greatly simplifies work already existing in the literature.

Key works and phrases. Quadratic equation, solution by series, Banach space.

A.M.S. classification codes. 46(B15), 65.

Introduction. Consider the quadratic equation

$$\mathbf{x} = \mathbf{y} + \lambda \mathbf{B}(\mathbf{x}, \mathbf{x})$$

(1)

in a Banach space X, where $y \in X$ is fixed, λ is a real (or complex) number and B is a bounded symmetric bilinear operator on X [5], [7].

The continued fraction approach [4], the solution by series [5], the Newton-Kantorovich theorem [2], [6] and the contraction mapping principle [1] are techniques that have already been applied to find a solution x of (1).

Here we study the convergence of the iteration

$$x_{n+1} = y + \lambda B(x_n, x_n)$$
, $n = 0, 1, 2, ...$ (2)

for various $x_0 \in X$ to a solution x of (1).

Let L(X) denote the vector space of all linear operators on X .

<u>Case 1</u>. For $x_0 = y$ in (2), we show that if the sequence of linear operators $\{(B(y))^k\}, k = 0, 1, 2, ..., (B(y)^0 = I), belong to a certain subspace of <math>L(X)$ and the following estimate holds

$$4\lambda \|B(y)\| < 1$$
 ($\lambda > 0$). (3)

Then there exists a solution x of (1) given by,

$$x = \sum_{k=0}^{\infty} 2^{k} \frac{1 \cdot 3 \dots (2k-1)}{1 \cdot 2 \dots (k+1)} \lambda^{k} (B(y))^{k} (y) .$$
(4)

<u>Case 2</u>. For $x_0 \neq y$, if the inverse of the linear operator $I - 2B(x_0)$ exists, set

$$y = (I - 2B(x_0))^{-1}(y + \lambda B(x_0, x_0) - x_0)$$

and

$$\tilde{B} = (I - 2B(x_0))^{-1}B$$
.

If the rest of the hypotheses of Case 1 are satisfied for B and y , we obtain a solution x of (1) given by

$$\mathbf{x} = \mathbf{x}_{0} + \sum_{k=0}^{\infty} 2^{k} \frac{1 \cdot 3 \dots (2k-1)}{1 \cdot 2 \dots (k+1)} \lambda^{k} (\tilde{B}(\tilde{\mathbf{y}}))^{k} (\tilde{\mathbf{y}}) .$$
(5)

Proposition. Let A denote the set defined by

$$A = \{L \in L(X) / B(L(y)) = B(y)L, \text{ with } B, y \text{ as in } (1)\}.$$

Then A is a vector subspace of L(X).

<u>Proof</u>. Obviously $A \neq \varphi$ since the identity operator $I \in A$. Let c_1 , c_2 be arbitrary numbers in the field of X and assume that L_1 and $L_2 \in A$. Then

$$\begin{split} \mathtt{B}[(\mathtt{c}_{1}\mathtt{L}_{2} + \mathtt{c}_{2}\mathtt{L}_{2})(\mathtt{y})] &= \mathtt{B}(\mathtt{c}_{1}\mathtt{L}_{1}(\mathtt{y}) + \mathtt{c}_{2}\mathtt{L}_{2}(\mathtt{y})) \\ &= \mathtt{c}_{1}\mathtt{B}(\mathtt{L}_{1}(\mathtt{y})) + \mathtt{c}_{2}\mathtt{B}(\mathtt{L}_{2}(\mathtt{y})) \\ &= \mathtt{c}_{2}\mathtt{B}(\mathtt{y})\mathtt{L}_{1} + \mathtt{c}_{2}\mathtt{B}(\mathtt{y})\mathtt{L}_{2} \\ &= \mathtt{B}(\mathtt{y})(\mathtt{c}_{1}\mathtt{L}_{1} + \mathtt{c}_{2}\mathtt{L}_{2}) \ , \end{split}$$

so, $c_1L_1 + c_2L_2 \in A$ and the proof is complete.

As in [5] we seek a solution expressed as

$$\mathbf{x} = \mathbf{z}_0 + \lambda \mathbf{z}_1 + \dots + \lambda^n \mathbf{z}_n + \dots$$
 (6)

(7)

Formal substitution of (6) into (1) and equation of like powers of λ gives

$$z_{0} = y$$

$$z_{1} = B(z_{0}, z_{0})$$

$$z_{2} = B(z_{0}, z_{1}) + B(z_{1}, z_{0})$$

$$z_{n} = \sum_{j=0}^{n-1} B(z_{j}, z_{n-j-1})$$

.

We now state the theorem. The proof can be found in [5].

<u>Theorem 1</u>. The series (6) with coefficients given by (7) converges to a solution x of (1) provided that

$$0 < \lambda < \frac{1}{4||\mathbf{B}|| \cdot ||\mathbf{y}||}$$
 (8)

We now state the main result.

<u>Theorem 2</u>. Assume that the sequence $\{(B(y))^k\} \in A$, k = 0, 1, 2, ... and (3) holds. Then there exists a solution x of (1) given by (4).

<u>Proof</u>. For $x_0 = y$, (2) becomes

$$\mathbf{x}_{n} = \mathbf{z}_{0} + \lambda \mathbf{z}_{1} + \lambda^{2} \mathbf{z}_{2} + \dots + \lambda^{n} \mathbf{z}_{n}$$
(9)

where,

$$\begin{split} z_{n} &= \sum_{j=0}^{n-1} B(z_{j}, z_{n-j-1}) \\ &= \sum_{j=0}^{n-1} B[2^{j} \frac{1 \cdot 3 \dots (2j-1)}{1 \cdot 2 \dots (j+1)} (B(y))^{j}(y), \ 2^{n-j-1} \frac{1 \cdot 3 \dots [2(n-j-1)-1]}{1 \cdot 2 \dots (n-j)} (B(y))^{n-j-1}(y)] \\ &= 2^{n-1} (B(y))^{n}(y) \sum_{j=0}^{n-1} \frac{1 \cdot 3 \cdot 5 \dots (2j-1)}{1 \cdot 2 \cdot 3 \dots (j+1)} \frac{1 \cdot 3 \dots [2(n-j-1)-1]}{1 \cdot 2 \cdot 3 \dots (n-j)} \\ &= 2^{n-1} B(y)^{n}(y) \ 2 \cdot \frac{1 \cdot 3 \dots (2n-1)}{1 \cdot 2 \dots (n+1)} \\ &= 2^{n} \frac{1 \cdot 3 \dots (2n-1)}{1 \cdot 2 \dots (n+1)} (B(y))^{n}(y) \ . \end{split}$$

Now,

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \left(\sum_{k=0}^n \lambda^k z_k \right) = \sum_{n=0}^{\infty} \lambda^n z_n .$$
 (10)

The above series converges if the series (dominating)

$$\sum_{n=0}^{\infty} 2^{n} \lambda^{n} \frac{1 \cdot 3 \dots (2n-1)}{1 \cdot 2 \dots (n+1)} \|B(y)\|^{n} \|y\|$$
(11)

converges. Applying the ratio test we can easily see that the series given by (11) converges if (3) holds which is true by hypothesis. The proof is now completed if we set

$$x = \lim_{n \to \infty} x_n$$

Remark. Under the hypotheses of theorem 2, since

$$||B(y)|| \leq ||B|| \cdot ||y||$$

we see that:

- (a) If both (3) and (8) hold then (3) allows a wider range for λ than (8),
- (b) If (8) holds then (3) holds also, but the converse is not

necessarily true.

The evaluation of the z_k 's k = 0, 1, 2, ... in (7) is difficult in practice. See for example [1], [3] and [5]. However, the same evaluation under the hypotheses of theorem 2 becomes much easier.

Note that it will be easy, but pointless to construct a simple example to show that theorem 2 succeeds where theorem 1 fails.

Finally for $x_0 \neq y$, one can set $x = x_0 + h$ in (1) to obtain

$$h = y + B(h,h)$$
,

provided that the linear operator $(I - 2B(x_0))^{-1}$ exists. If the rest of the hypotheses of theorem 2 are satisfied for \tilde{y} and \tilde{B} a solution x of (1) given by (5) is easily obtained.

Note that the hypotheses on x_0 , y and B are similiar (but not the same) to the hypotheses of Newton's Kantorovich theorem [2] for the solution of (1).

REFERENCES

- Argyros, I.K. Quadratic equations and applications to Chandrasekhar's and related equations. Bull. Austral. Math. Soc. Vol. 32, No. 2, (1985), pp. 275-292.
- [2] Kantorovich, L.V. Functional analysis and applied mathematics. Uspeki Mat. Nauk, (1948), pp. 89-185.
- [3] Kelley, C.T. Approximation of solutions of some quadratic integral equations in transport theory. Journal of Integral Equations, 4, (1982), pp. 221-237.
- [4] McFarland, J. An iterative solution of the quadratic equation. Proc. Amer. Math. Soc., 9, (1958), pp. 824-830.
- [5] Rall, L.B. Quadratic equations in Banach space. Rend. Circ. Math. Palermo, 10, (1961), pp. 314-332.
- [6] Solution of abstract polynomial equations by iterative methods. University of Wisconsin, Technical report #892, (1968).
- [7] . Nonlinear functional analysis and applications. Academic Press, New York, (1971).

Rev. Acad. Ciencias Zaragoza, <u>42</u> (1987)

SURVEY ON THE IDEALS OF THE SPACE OF BOUNDED LINEAR OPERATORS ON A SEPARABLE HILBERT SPACE

I.K. ARGYROS

Department of Mathematics. New Mexico State University. Las Cruces, NM 88003.

We give a survey of the properties of the ideals of the space of bounded linear operators on a separable Hilbert space.

<u>Introduction</u>. Let H be a complex Hilbert space. Throughout, we assume H is separable, that is, $H \cong C^{m}$ for some $m \in N$, or H contains a Hilbert basis $\{u_{n}, n \in N\}$ such that $H = \overline{\text{span}\{u_{n}, n \in N\}}$, thus $H \cong \ell^{2}(N, C)$.

Denote by B(H) the space of bounded linear operators on H, which is thought to be equipped with the usual norm, i.e., if $x \in H$ then $\|x\|^2 = \langle x, x \rangle$.

We identify the ideals of B(H) and discuss the properties and the relationship between them. Some examples are also provided. Parts of the results presented here can be found in different references, [1], [2], [3], [5].

Finally in this exposition, we tried to simplify the already existing proofs of most of the theorems.

<u>Definition 1</u>. Let $L \in B(H)$, then ran L is obviously a vector subspace. Define by <u>rank(L)</u> the dimension of the ran L and set

$$\mathcal{F}(H) = \{L \in B(H) \mid rank(L) \text{ is finite}\}.$$

For an example, fix $b\in H,\ w\in H.$ Then L : $x\longrightarrow \langle x,w\rangle b$ is obviously linear and bounded since

 $\|L x\| = \left| \langle x, w \rangle \right| \cdot \|b\| \leq \|x\| \cdot \|w\| \cdot \|b\|, \quad i.e., \quad \|L\| \leq \|w\| \cdot \|b\|,$

Also $ran(L) = \{0\}$ if b = 0, otherwise ran L is spanned by {b}. So rank(L) = 0 or 1 and $L \in \mathcal{F}(H)$. Denote this L as $w \otimes b$.

<u>Fact 1</u>. $\|w \otimes b\| = \|w\| \cdot \|b\|$.

<u>Theorem 1</u>. $\mathfrak{F}(H)$ is an ideal in B(H), proper if $\dim(H) = \infty$.

<u>Proof</u>. Let $L_1, L_2 \in \mathcal{F}(H)$, $\lambda \in C$, then $L_1 + \lambda L_2 \in \mathcal{F}(H)$; hence vector subspace. Let $L \in B(H)$;

(i) $ran(L_1L) \subseteq ran(L_1) < \infty \Rightarrow L_1L \in \mathcal{F}(H);$

(ii) $\dim(ran(LL_1)) \leq \dim(ran(L_1)) \Rightarrow LL_1 \in \mathcal{F}(\mathcal{H}).$

Let dim(H) \neq finite \Rightarrow I \in B(H) with dim(ran(I)) = dim H \neq finite \Rightarrow L \notin F(H), hence F(H) proper; otherwise F(H) = B(H). Let H \otimes H denote the vector subspace generated in B(H) by all operators of form $w \otimes b$ (w, b \in H). Thus L \in H \otimes H $\iff L = \sum_{i=1}^{n} w_i \otimes b_i$ say, $n \in N$, $w_i, b_i \in$ H.

Theorem 2. $H \otimes H = F(H)$.

<u>Proof</u>. We first show $H \otimes H \subseteq \mathcal{F}(H)$. If $L \in H \otimes H$ $\Rightarrow \operatorname{ran}(L) \subseteq \operatorname{ran}(w_1 \otimes b_1) + \cdots + \operatorname{ran}(w_n \otimes b_n) \Rightarrow \operatorname{rank}(L) \leq n$ $\Rightarrow L \in \mathcal{F}(H)$. We now show that $\mathcal{F}(H) \subseteq H \otimes H$. Let $L \in \mathcal{F}(H)$ $\Rightarrow \operatorname{ran}(L) = [\operatorname{subspace} \cong C^n] \Rightarrow \operatorname{ran}(L)$ has a complete orthonormal basis $\{u_1, \cdots, u_n\}$, say $\Rightarrow (\forall x \in H)$

$$Lx = \sum_{k=1}^{n} \langle x, u_{k} \rangle = \sum_{k=1}^{n} \langle Lx, u_{k} \rangle u_{k} = \sum_{k=1}^{n} \langle x, L^{*}u_{k} \rangle u_{k}$$
$$= \sum_{k=1}^{n} \langle x, u_{k} \rangle u_{k} \quad (say) = \sum_{k=1}^{n} \langle w_{k} \otimes u_{k} \rangle x \Rightarrow L = \sum_{k=1}^{n} w_{k} \otimes b_{k}$$
$$\in H \otimes H.$$

<u>Theorem 3</u>. If J(H) is a nonzero ideal in B(H) then $F(H) \subseteq J(H) \subseteq B(H)$.

<u>Proof</u>. Trivial if dim(H) = finite (F = B then). Let dim(H) = ∞ . Take L \in F(H)\{O}; then $\exists x \neq 0$ such that Lx = y $\neq 0$. Take any u,v \in H and find some B \in B(H) with

By = v, so B(Lx) = v. Then $(\forall z \in H)$ $(u \otimes v)z = \langle z, u \rangle v$ = $\langle z, u \rangle (BLx) = (BL) (\langle z, u \rangle x) = (BL) \circ (u \otimes x)(z) \Rightarrow u \otimes v$ = $B \circ L^{\circ}(u \otimes x) \Rightarrow u \otimes v \in \mathcal{F}(H)$ (since $L \in \mathcal{F}(H)$). Therefore every generator $u \otimes v$ of $\mathcal{F}(H)$ lies in J(H), so $\mathcal{F}(H) \subseteq \mathcal{J}(H)$.

Corollary 1. F(H) is the smallest nonzero ideal in B(H).

<u>Theorem 4</u>. If $dim(H) = \infty$, then $\mathcal{F}(H)$, $\|\cdot\|_{op}$ is not a closed ideal.

 $\begin{array}{ccc} \underline{\operatorname{Proof}} & \text{Let} & \{u_n, n \in N\} & \text{be a Hilbert basis for } H. & \text{Thus} \\ \forall x \in H, & x = \sum_{n=1}^{\infty} \langle x, u_n \rangle u_n & (\Longleftrightarrow H = \overline{\operatorname{span}} \{u_n, n \in N\} \Leftrightarrow \|x\|^2 \\ \\ & & & & \\ \end{array}$

= $\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2$: Parseval's formula).

Define operator
$$L_p = \sum_{n=1}^{p} \lambda_n u_n \otimes u_n \quad (\lambda_k \in C), \in \mathfrak{F}(H)$$
 so,

$$L_{p}(x) = \sum_{n=1}^{p} \lambda_{n} \langle x, u_{n} \rangle u_{n}.$$

$$\|L_{p} - L_{p+q}\|_{op} = \|\sum_{n=p+1}^{p+q} \lambda_{n} u_{n} \otimes u_{n}\| \leq \sum_{n=p+1}^{p+q} |\lambda|.$$

So choose $(\lambda_n)_{n \in \mathbb{N}}$ such that $\sum_n |\lambda_n|$ is convergent; then $(L_p)_{p \in \mathbb{N}}$ is Cauchy in complete B(H), $\|\cdot\|_{op}$; hence convergent

to some L E B(H). We now set

$$L = \lim_{p \to \infty} \sum_{n=1}^{p} \lambda_n u_n \otimes u_n = \sum_{n=1}^{\infty} \lambda_n u_n \otimes u_n$$

Now, $L_p \xrightarrow{u} L \Rightarrow L_p \xrightarrow{p \cdot w} L$, i.e., $(\forall x \in H) \quad L_p x = Lx$. But $L_p x = (\sum_{n=1}^{p} \lambda_n u_n \otimes u_n) x = \sum_{n=1}^{\infty} (\lambda_n u_n \otimes u_n) x = \sum_{n=1}^{p} \lambda_n (x, u_n) u_n$.

Also, $L_p x \to Lx = \left[\sum_{n=1}^{\infty} \lambda_n u_n \otimes u_n\right] x$ as $p \to \infty$. This shows that

 $\lim_{p \to \infty} \left[\sum_{n=1}^{p} [\lambda_n \langle x, u_n \rangle u_n] \right] \text{ also exists in } H \text{ and we can define it to}$

be $\sum_{n=1}^{\infty} [\lambda_n \langle x, u_n \rangle u_n] = Lx.$

Plainly, if infinitely many $\lambda_n \neq 0$, then ran(L) has infinite dimension so L $\notin \mathfrak{F}(H)$. Thus $\mathfrak{F}(H) \neq \overline{\mathfrak{F}(H)}$ (closure with respect to $\|\cdot\|_{nn}$).

What is $\overline{\mathfrak{F}(\mathrm{H})}$ in B(H)? The ideal K(H) of compact operators in B(H), $\|\cdot\|_{\mathrm{op}}$. Moreover K(H) is the largest, indeed the only, proper uniformly closed ideal in B(H), $\|\cdot\|_{\mathrm{op}}$ (provided H is separable), so K(H) is the only maximal ideal. We are now going to describe K(H) and eventually prove that K(H) = $\overline{\mathfrak{F}(\mathrm{H})}$.

<u>Definition 2</u>. Let $L \in B(H)$, then L is <u>compact</u> (or <u>completely continuous</u>) if and only if for every bounded sequence $\{x_n\}_{n \in \mathbb{N}}$ in H, $\{Lx_n\}$ contains a convergent subsequence in H.

Fact 2. $\mathcal{F}(H) \subseteq K(H)$.

<u>Proof</u>. Let $L \in \mathfrak{F}(H)$ and $\{x_n\}_{n \in \mathbb{N}}$ be a bounded sequence in H. Then $\{Lx_n\}$ forms a bounded set in the subspace ran L which lies in a subspace $\cong C^m$ (some $m \in \mathbb{N}$) but every bounded set in C^m contains a convergent subsequence. Obviously K(H) is a vector subspace $\subseteq B(H)$.

<u>Theorem 4</u>. K(H) is a uniformly closed ideal in B(H). It is proper if dim(H) = ∞ .

<u>Proof</u>. (1) Let $L \in K(H)$, $B \in B(H)$ and $\{x_n\}_{n \in \mathbb{N}}$ be a bounded sequence. Then,

$$LB(x_n) = L(Bx_n) = L(y_n)$$

and $\{y_n\}_{n\in\mathbb{N}}$ is a bounded sequence. So $\{Ly_n\}$ contains a convergent subsequence, so LB is compact. Also, $BL(x_n)$ = $B(Lx_n)$ contains a convergent subsequence $\{By_m\}_{m\in\mathbb{N}}$ (since Lx_n contains a convergent subsequence $\{y_m\}$ say), so BL compact. Hence LB, BL $\in K(H)$.

(2) If dim(H) = $\infty \Rightarrow$ I is not a compact operator since if { $u_n, n \in N$ } is a Hilbert basis for H, then $\|u_n - u_m\|^2$ = $(u_n - u_m, u_n - u_m) = (u_n, u_n) + (u_m, u_m) = 2$, so $\{u_n\}_{n \in N}$ common contain no convergent subsequence.

(3) K(H) is H·H_{op}-closed.

"Diagonal proof". Let $L_n \in K(H)$, $(n \in N)$, and $L \in B(H)$ such that $\|L_n - L\|_{nn} \longrightarrow O$ $(n \to \infty)$. We show $L \in K(H)$: Let

at most finitely many terms, and relabelling the rest we have <code>IILu_-vII</code>, say for all m. Now

$$|\langle Lu_{m}, u_{m} \rangle - \langle x, u_{m} \rangle | = |\langle Lu_{m} - x, u_{m} \rangle |$$

$$\leq ||Lu_{m} - x|| \cdot 1 \langle \delta \quad (\forall m) \rangle .$$

Also,

$$\langle \mathrm{L} \mathrm{u}_{\mathrm{m}}, \mathrm{u}_{\mathrm{m}} \rangle \ - \ \langle \mathrm{x}, \mathrm{u}_{\mathrm{m}} \rangle \ \geq \ \left| \langle \mathrm{L} \mathrm{u}_{\mathrm{m}}, \mathrm{u}_{\mathrm{m}} \rangle \right| \ - \ \left| \langle \mathrm{x}, \mathrm{u}_{\mathrm{m}} \rangle \right| .$$

Rearranging, and using (1), we get

$$|\langle \mathbf{x}, \mathbf{u}_{\mathbf{m}} \rangle| \ge \delta > 0 \quad (\forall \mathbf{m}).$$
 (2)

But Bessel's inequality implies $\sum_{n=1}^{\infty} |\langle x, u_m \rangle|^2 \leq \|x\|^2$, which contradicts (2).

<u>(b) \Rightarrow (c)</u>: Given $k \in N$, let S be the collection of all sequences \overline{U} in H (including $u = \emptyset$ and finite $u = \{u_1, u_2, \dots, u_m\}$) such that

$$(Lu, u) \geq \frac{1}{4k}$$
 ($\forall u \in \overline{U}$).

Condition (b) implies each $u \in S$ must be a finite set. Since the union of a strictly increasing (with respect to <u>c</u>) sequence of sets in S is again a member of S (and hence a finite set), each such sequence terminates (if not, its union would contain infinitely many elements). Hence, S has a maximal element, W say. Let M be the finite dimensional vector subspace generated by W; then $|\langle Lx,x\rangle| < \frac{1}{4k}$ whenever $x \in M^1$ and ||x|| = 1 (otherwise S would contain W U $\{x\}$, contradicting the maximality of W). Hence $|\langle Lx,x\rangle| < \frac{1}{k}$ whenever $x \in M^1$ and $||x|| \le 2$. Hence, $\forall z, w \in M^1$ with ||z||, $|W|| \le 1$,

$$|\langle L_{Z}, w \rangle| \leq \frac{1}{4} |\langle L(z+w), z+w \rangle - etc. \cdots |$$

 $\leq \frac{1}{4} \cdot 4 \cdot \frac{1}{k} = \frac{1}{k}$

(use Gen. Polarization roll, and ||z+w|| ≤ ||z||+||w|| ≤ 2, etc.). Thus

$$|\langle Lz, w \rangle| \leq \frac{1}{k} \quad (\forall z, w \in M^{\perp}, ||z||, ||w|| \leq 1). \tag{3}$$

Now let $P : H \longrightarrow M$ be the orhtogonal projection onto M, with I-P the orthogonal projection onto M^{\perp} ; and take z = (I-P)x, $w = (I-P)y \forall x, y \in H$ with $||x||, ||y|| \le 1$. Then by (3),

$$|\langle (I-P)L(I-P)\times, y \rangle| = |\langle L(I-P)\times, (I-P)y \rangle|$$
$$= |\langle Az, w \rangle| \leq \frac{1}{k} \quad (I-P \text{ is Hermitian}).$$

Hence

$$\|(I-P)L(I-P)\|_{op} \leq \frac{1}{k}.$$

So, put $F_{K} = PL + LP - PLP$, then $F_{K} \in \mathcal{F}(H)$, since P has

rank equal to the dim(M) < ∞ , so P $\in \mathcal{F}(H)$ and $\mathcal{F}(H)$ is an ideal; and L-F_R = (I-P)L(I-P).

(c) \Rightarrow (a). We know that \Im (H) \subseteq K(H). Now,

 $\overline{\mathfrak{F}}(\mathrm{H}) \subseteq \overline{\mathrm{K}(\mathrm{H})} = \mathrm{K}(\mathrm{H})$ (by Theorem 4).

Hence $\|L-F_{\psi}\| \longrightarrow 0$, $L \in \overline{\mathcal{F}(H)}$ so $L \in K(H)$.

<u>Corollary 4</u>. $\overline{\mathcal{F}(H)} = \mathbb{K}(H)$. (This is often taken to be the definition of $\mathbb{K}(H)$.)

<u>Proof</u>. Given $L \in K(H)$, by (c), $\overline{L} \in \overline{\mathcal{F}(H)}$ so $K(H) \subseteq \overline{\mathcal{F}(H)} \subseteq K(H)$ (by Theorem 4). Hence equality.

Fact 3. $(w \otimes b)^* = b \otimes w$.

 $\underline{Proof}. \quad \langle (w \otimes b) X, y \rangle = \langle \langle x, w \rangle b, y \rangle = \langle x, w \rangle \langle b, y \rangle = \langle x, \langle b, y \rangle w \rangle$ $= \langle x, \langle y, b \rangle w \rangle = \langle x, (b \otimes w) y \rangle \quad (\forall x, y \in H), \quad so \quad (w \otimes b)^{\texttt{H}} = b \otimes w.$

<u>Corollary 5</u>. If $F \in \mathcal{F}(H)$ such that $F = \sum_{i=1}^{n} b_i \otimes w_i$, the $F^* \in \mathcal{F}(H)$; i.e., $\mathcal{F}(H)$ is a Hermitian (= self-adjoint) ideal in C^* -algebra B(H).

<u>Theorem 6</u>. K(H) is a Hermitian ideal in C[#]-algebra B(H).

 $\underbrace{\operatorname{Proof}}_{n \to \infty}. \quad \text{Let} \quad L \in \mathbb{K}(\mathbb{H}) \iff L = \lim_{n \to \infty} \sqrt[\infty]{n} (\mathbb{F}_n \in \mathcal{F}(\mathbb{H})), \quad \text{so}$

$$\begin{split} \|L-F_n\| &\longrightarrow 0 \quad (\text{as } n \to \infty). \quad \text{Hence} \quad \|L^*-F_n^*\| \longrightarrow 0 \quad (n \to \infty) \\ \Rightarrow L^* \in K(H) \quad (\text{since each} \quad F_n^* \in \mathfrak{F}(H)), \quad \text{by fact 3.} \end{split}$$

Lemma 1. Let $L \in B(H)$; let $\{u_n\}, \{v_n\}$ be any Hilbert bases for H.

(1) If any one of the four real series below is convergent, then all are, and all have the same sum:

$$\sum_{m} \|Lu_{n}\|^{2}, \sum_{m} \|L^{*}v_{m}\|^{2}, \sum_{n} \sum_{m} |\langle Lu_{n}, v_{m} \rangle|^{2}, \sum_{m} \sum_{n} |\langle Lu_{n}, v_{m} \rangle|^{2}.$$

(2) Then this sum is independent of the choice of bases, i.e., it is an invariant of the operator L, so write it as ||| L |||².

(3) $|||L||| = |||L^*|||.$

(1) follows.

(2): Choosing a thiry Hilbert basis $\{w_n\}$ for H we get $\sum_{n=1}^{\infty} \|Lu_n\|^2 = s < \infty \iff \sum_{m=1}^{\infty} \|L^*v_m\|^2 = s < \infty \iff \sum_{n=1}^{\infty} \|Lw_n\|^2 = s < \infty.$

(3): Since choice of Hilbert bases is immaterial, use
 {u_n} in place of {v_m} in proof of (2); this gives

$$\sum_{n=1}^{\infty} \|Lu_n\|^2 = \sum_{n=1}^{\infty} \|L^*u_n\|^2 \quad (\text{when } \blacktriangleleft \infty),$$

i.e., |||A|||² = |||A^{*}|||².

<u>Definition 3</u>. Define by S(H) the set $S(H) = \{L \in B(H) | \|\|L\|\| < \infty\}$, the so-called <u>Hilbert-Schmidt operators</u>.

<u>Note (1)</u>: All integral operators L on H = C[0,1], $\sharp^2[0,1]$, etc., with \sharp^2 -kernel k(s,t) such that $|||A|||^2$ $= \int_0^1 \int_0^1 |k(s,t)|^2 dsdt < \infty$ are Hilbert-Schmidt operators. Hence their importance.

<u>Note (2)</u>: S(H) is Hermitian (LESCH) $\iff L^* \in S(H)$) by (3) above.

<u>Examples</u>. (1) Let $H = \ell^2$; $L : \ell^2 \to \ell^2$ given by infinite matrix $a = [a_{rk}]$ such that

$$\|\mathbf{a}\|^{2} = \sum_{\mathbf{r}} \sum_{k} |\mathbf{a}_{\mathbf{r}k}|^{2} \equiv \sum_{\mathbf{r}} \|\mathbf{a}_{\mathbf{r}}\|^{2} < \infty$$

 $(a_r row r in a \in \ell^2)$

via: $Lx = y \quad x = (x_k) \in \ell^2$

$$y = (y_p) \in \ell^2$$
 (Have to show this!)

$$y_r = \sum_{k=1}^{r} a_{rk} x_k \equiv \langle a_r, x \rangle$$
 (this is well defined since):

$$|\mathbf{y}_{\mathbf{r}}| = |\langle \mathbf{a}_{\mathbf{r}}, \mathbf{x} \rangle| \leq ||\mathbf{a}_{\mathbf{r}}|| \cdot ||\mathbf{x}|| \leq ||\mathbf{a}|| \cdot ||\mathbf{x}|| \Rightarrow \mathbf{y}_{\mathbf{r}} \in C$$

and

$$\|Lx\|^{2} = \|y\|^{2} = \sum_{r=1}^{\infty} \|y_{r}\|^{2} \le \|x\|^{2} \sum_{r=1}^{\infty} \|a_{r}\|^{2} = \|x\|^{2} \cdot \|a\|^{2}.$$

So L is linear and bounded, $\|L\| \leq \|a\|$. This L is Hilbert-Schmidt because if $\{u_n = (0,0,\cdots,i_n,0,\cdots)\}$ is a standard basis for ℓ^2 , then $\|\|A\|\|^2 = \frac{\det}{r} \sum_{k} \sum_{k} |\langle Lu_r,u_k \rangle|^2$. But

 $\langle Lu_{r}, u_{k} \rangle = element a_{rk}$ in matrix a representation for L, so $|||L|||^{2} = \sum_{r} \sum_{k} |a_{rk}|^{2} \stackrel{\text{def}}{=} \|a\|^{2} < \infty$. Thus $\|L\|_{op} \leq \|a\|$

$$= |||_{\Gamma} ||_{H-2}.$$

(2) w @ z: Rank O or 1 operator on H with Hilbert basis {u_n}.

Now,
$$\|w\|^2 = \sum_{n=1}^{\infty} |\langle w, u_n \rangle|^2$$
 (Parseval)

$$\Rightarrow \qquad \|w\|^2 \|z\|^2 = \sum_{n=1}^{\infty} |\langle u_n, w \rangle|^2 \|z\|^2$$

$$= \sum_{n=1}^{\infty} \mathbf{h} \langle \mathbf{u}_{n}, \mathbf{w} \rangle \mathbf{z} \mathbf{H}^{2} = \sum_{n=1}^{\infty} \mathbf{H} \langle \mathbf{w} \otimes \mathbf{z} \rangle \mathbf{u}_{n} \mathbf{H}^{2} = |||\mathbf{w} \otimes \mathbf{z}|||^{2}.$$

Hence $\|w \otimes z\|_{OD} = \|\|w \otimes z\|\|$.

We now provide a sketch of the proof of the theorem:

<u>Theorem 7</u>. S(H), $|||\cdot|||$, is a Banach space, and $||L|| \le |||L||| \forall L \in S(H)$.

<u>Proof</u>. (sketch) (i) S(H) <u>is a vector space</u>. Use Minkowski's inequality and get *Δ*-inequality for |||·|||.

(ii)
$$\|\|\mathbf{M}\|^{2} = \sum_{n} |\langle \mathbf{L}\mathbf{x}, \mathbf{u}_{n} \rangle|^{2} = \sum_{n} |\langle \mathbf{x}, \mathbf{L}^{*}\mathbf{u}_{n} \rangle|^{2}$$
$$\leq \|\|\mathbf{x}\|^{2} \sum_{n} \|\|\mathbf{L}^{*}_{\mathbf{u}_{n}}\|^{2} = \|\|\mathbf{x}\|^{2} |\|\|\mathbf{L}^{*}\|\|^{2}$$
$$\Rightarrow \cdots \Rightarrow \|\|\mathbf{L}\| \leq \|\|\|\mathbf{L}\|\|.$$
(3)

(iii) $|||\cdot||| \underline{is a norm}$ Use (3) to get $|||L||| = 0 \iff L = 0$, (iv) If $|||\cdot|||-Cauchy = \stackrel{(3)}{===} \parallel \cdot \parallel -Cauchy$ in $B(H) \Rightarrow \parallel \cdot \parallel -1$ im $L_n = L \in B(H)$. Now show

- (a) $L \in S(H)$;
- (b) $|||L-L_n|||^2 \to 0.$

Theorem 8. S(H) is a Hermitian ideal in B(H).

 $\begin{array}{cccc} \underline{Proof}. & (i) & L \in S(H), & B \in B(H), & \{u_n; n \in N\} & a \mbox{ Hilbert} \\ \\ basis for H & then & (\forall p \in N) & \displaystyle{\sum_{n=1}^{p}} \|BLu_n\|^2 \leq \|B\|^2 & \displaystyle{\sum_{n=1}^{p}} \|Lu_n\|^2, \mbox{ let} \\ \\ p \rightarrow \infty & then & \left| \left| \left| BL \right| \right| \right|^2 \leq \|B\|^2 \left| \left| \left| L \right| \right| \right|^2 < \infty, \mbox{ so } BL \in S(H) \mbox{ (and} \\ \\ \left| \left| \left| BL \right| \right| \right| \leq \|B\| \cdot \left| \left| \left| L \right| \right| \right| \leq \left| \left| B \right| \left| \left| \cdot \left| \left| L \right| \right| \right| \right\rangle. \end{array}$

(ii) $B^* \in B(H)$, $L^* \in S(H)$ (by definition 3, note (2)). Hence, by (i), $B^*L^* \in S(H) \Rightarrow (LB)^* \in S(H) \Rightarrow LB \in S(H)$ and

$$|||LB||| \equiv \|B^{*}L^{*}\| \leq \|B^{*}\| \cdot |||L^{*}||| = \|B\| \cdot |||L|||$$

$$\leq |||L||| \cdot |||B|||.$$

The proof of the following theorem is similar to Theorem 3.

Theorem 9. $\mathcal{F}(H) \subseteq S(H)$ proper if dim(H) = ∞ .

Theorem 10. The following are true:

- (i) $S(H) \subseteq K(H)$.
- (ii) S(H) is proper if $dim(H) = \infty$.

$$\frac{Proof}{n=1} \cdot (l) \quad x = \sum_{n=1}^{\infty} \langle x, u_n \rangle u_n, \quad L \in S(H) \Rightarrow Lx = \sum_{n=1}^{\infty} \langle x, u_n \rangle (Lu_n)$$
$$\sum_{n=1}^{\infty} (u_n \otimes Lu_n) x, \quad \text{so define "pth-cutoff operators" } L_p = \sum_{n=1}^{p} u_n$$

© Lu_n ∈ F(H); observe (∀m ∈ N)

$$\begin{split} L_{p}u_{m} &= Lu_{m} \qquad (1 \leq m \leq p) \\ &= 0 \qquad (p > m) \end{split}$$

$$\Rightarrow \|L-L_{p}\|^{2} \leq |||L-L_{p}|||^{2} = \sum_{n=1}^{\infty} \|(L-L_{p})u_{n}\|^{2} = \sum_{n=1}^{\infty} \|Lu_{n}-L_{p}u_{n}\|^{2} \\ &= \sum_{n=p+1}^{\infty} \|Lu_{n}\|^{2} \rightarrow 0 \quad (p \rightarrow \infty) \quad \text{since} \quad |||L|||^{2} = \sum_{n=1}^{\infty} \|Lu_{n}\|^{2} \quad \text{is} \\ \text{convergent} \quad \Rightarrow L = \lim_{p \rightarrow \infty} \sum_{p} (\|\cdot\|_{op}) \in \overline{\mathfrak{F}}(H) = \mathbb{K}(H) \,. \end{split}$$

(ii) Let $H = \ell^2$. Let $L : \ell^2 \to \ell^2$ be given by an infinite diagonal matrix

$$a \equiv \begin{bmatrix} 1 & & & \\ & 1/\sqrt{2} & 0 & \\ & & 1/\sqrt{3} & & \\ 0 & & & \ddots & \\ & & & & \ddots & \\ \end{bmatrix}, a_{\Gamma\Gamma} = \frac{1}{\Gamma^{\Gamma}},$$

 $a_{rk} = 0 \quad (r \neq k), \qquad L \in B(\ell^2) \quad \{Lx = (x_1, \frac{1}{\sqrt{2}}x_2, \frac{1}{\sqrt{2}}x_3, \cdots); \\ \|Ax\|^2 = \sum \frac{1}{n} |x_n|^2 \leq \sum |x_n|^2 = \|x\|^2; \quad \|L\| \leq 1\}. \quad Define \; "cutoff" \; L_p \\ to be given by a with all rows equal, 0 beyond row p, so \\ L_p \in F(\ell^2) \quad and hence \quad L_p \in S(\ell^2) \leq K(\ell^2). \quad But, we show \\ L \notin F(\ell^2) \quad whilst \; L \in K(\ell^2): \end{cases}$

$$\begin{split} \|L x - L_{p} x \|^{2} &= \|K0, \cdots, 0, \frac{1}{\sqrt{p+1}} x_{p+1}, \frac{1}{\sqrt{p+2}} x_{p+2}, \cdots \} \|^{2} \\ &= \sum_{n=p+1}^{\infty} \frac{1}{n} \|x_{n}\|^{2} \leq \frac{1}{p} \sum_{n=1}^{\infty} \|x_{n}\|^{2} = \frac{1}{p} \|x\|^{2}. \end{split}$$
So,
$$\|(L-L_p) \times \|^2 \leq \frac{1}{\sqrt{p}} \|\| \times \| \quad (\forall p \geq 1, \forall x \in \ell^2)$$
$$\Rightarrow \|L-L_p\|_{op} \leq \frac{1}{\sqrt{p}} \to 0 \quad (p \to \infty)$$
$$\Rightarrow L = \lim_{p \to \infty} L_p(\|\cdot\|_{op}) \Rightarrow L \in K(\ell^2).$$

But $|||L|||^2 = \sum_{n=1}^{\infty} ||Lu_n||^2$ (Lu_n = nth row of matrix a) = $\sum_{n=1}^{\infty} \left|\frac{1}{\sqrt{n}}\right|^2 = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$

 $\Rightarrow L \notin S(\ell^2). \text{ Hence } S(\ell^2) \notin K(\ell^2).$

<u>Summary</u>: If H is a separable Hilbert space of dimension ∞ , then the following ideals are all distinct:

 $\{0\} \subset S(H) \subset K(H) \subset B(H)$.

<u>Remarks</u>. (1) It can be shown that the above ideals of operators, correspond as normed Banach spaces to the sequence spaces

$$\{0\} \subset \ell_0 \subset \ell^2 \subset C_0 \subset \ell^\infty.$$

(2) It can also be shown that just as there are other sequence spaces ℓ^p , $1 \le p < \infty$, $\ell_0 \subset \ell^1 \subset \ell^p \subset \ell^p^1 \subset C_0 \subset \ell^\infty$

41

 $(1 \le p < p' < \infty)$ so there are other ideals—the <u>von</u> Neumann-Schatten ideals C^p such that

They are constructed via norms

$$\left|\left|\left|A\right|\right|\right|_{\mathbf{p}} = \left[\sum_{\mathbf{r}}\sum_{\mathbf{k}}\left|\left\langle Au_{\mathbf{r}}, u_{\mathbf{k}}\right\rangle\right|^{\mathbf{p}}\right]^{1/\mathbf{r}}$$

just as Hilbert-Schwartz operators were. The class $C^{1}(H)$ is thought to be even more important than $C^{2}(H) = S(H)$; it consists of the so-called <u>Nuclear</u> or <u>Trace-class</u> operators.

REFERENCES

- [1] Akhiezer, N.I. and Glazman, I.M.: Theory of linear operators in Hilbert space, vol. I, New York: Ungar Publ. (1961).
- [2] Halmos, P.R.: A Hilbert space problem book, New York: Springer-Verlag Publ. (1982).
- [3] Hille, E. and Phillips, R.S.: Functional analysis and semigroups, American Math. Soc. Colloquium Publ.,vol. XXXI, 2nd ed. (1957).
- [4] Dunford, N. and Schwartz, T.: Linear operators, Vol. I, II and III, New York: Interscience Publ. (1971).

[5] Taylor, A.E.: An introduction to functional analysis, New York: Wiley (1958). Rev. Acad. Ciencias Zaragoza, 42 (1987)

UNE CLASSE DE METHODES NUMERIQUES POUR L'INTEGRATION DIRECTE D'EQUATIONS DIFFERENTIELLES DU TYPE y'' = f(t,y,y')

Franco, J. M. et Palacios, M. Departamento de Matemática Aplicada. Universidad de Zaragoza. 50009-Zaragoza. ESPAGNE.

1. INTRODUCTION.

Il y a divers problèmes de mouvement dont leurs équations différentielles sont de second ordre où la derivée premiére se présente explicitement. Par exemple, dansl'étude du problème du satellite artificiel terrestre il faut resoudre une équation différentielle du type

$$\frac{d^2 r}{dt^2} = - \frac{\mu r}{r^3} + P(t,r,r')$$
(1.2)

Nous sommes interesés à leur integration numérique dans le case où la velocité r' est present ou non. Le procedé clásique pour resoudre ces situations est, comme on connait, de réduire l'équations à un système différentielle du premier ordre équivalente auquel nous pouvons appliquer plussieurs méthodes d'integration numérique. La generalisation de ces méthodes pour équations d'ordre plus grand que un s'appelle habituellement (Hall & Suleiman (1)) <u>méthodes d'integration directe</u>. Plussieurs auteurs (Herrick (2)) nous conseillent sur les stéréotypes et malconceptions qui existent quand on integre numériquement des équations d'ordre supérieur et ils recommendent utilisser l'integration directe. Il y a advantages claires de velocité et stockage (Hall & Suleiman (1)) en les considérant, bien que Gear (3) suggére qu'il peut avoir certain danger quand on fait application d'eux à ce qui concerne leur stabilité.

Dans ce papier nous étudions une généralization des méthodes de Cowell sous la forme de pairs de formules à pas multiple (PFML), en étudiant les propietées de consistence, stabilité et convergence des deux élémentes qui constituent les pairs tout emsamble; nous déduissons aussi d'une façon recurrente les formules de la méthode de Cowell; finalement, nous en faissont application à deux problémes particulieres, l'un du type orbital et l'autre avec une perturbation proportionelle à la derivée; de même, nous avons développé quelques comparaisones avec des méthodes indirectes.

2. LA POSSÉ DU PROBLÉME. DEFINITIONS ET NOTATIONS.

Le problème à valeurs initials dont leur integration numérique nous allons étudier dans ce travail peut se posser sous la forme suivant:

$$y'' = f(t,y, y')$$
, $0 \le t \le T$
 $y(0) = y_0$ (2.1)
 $y'(0) = y'_0$

où les fonctions y, y' sont définies dans l'intervalle [0, T] et f dans $[0, T] \times \mathbb{R}^m \times \mathbb{R}^m$ et prenant valeurs dans \mathbb{R}^m .

2.1 <u>Définition</u>.- Nous dirons que f est une <u>fonction lipschitzienne par rapport à</u> y et y' dans [0, T], s'il existe une constante positive L telle que se vérifie:

 $\| f(t, y, y') - f(t, z, z') \| \le L (\| y - z \| + \| y' - z' \|)$

pour tous $t \in [0, T]$, y, z, y', z' $\in \mathbb{R}^m$, où $\|\cdot\|$ est une norme dans \mathbb{R}^m . Nous notons par C_L l'ensemble de toutes les fonctions lipschitziennes par rapport à y et y'.

En avant nous utiliserons des fonctions f continues et lipschitziennes par rapport à y et y', car ces sont des condictions suffisantes pour l'existence et l'unicité de solutions du problème possé.

Comme il est habituelle (Henrici (4)) à la construction de solutions d'un PVI, nous introduisons une grille de points

 $\{ t_n \ni n \in N ; t_{n+j} \in [0, T], j = 1 (1) N \}$

$$N = \max \{n; nh \in [0, T]\} = \max J_h$$

2.2 <u>Définition</u>. - Nous appellons <u>pair de fórmules linéaires à pas multiple</u> (PFML) aux pairs d'équations à différences (Lambert (5)) ayant la forme suivant:

$$\sum_{j=0}^{k} \alpha_{j}^{(2)} y_{n+j} = h^{2} \sum_{j=0}^{k} \beta_{j}^{(2)} f(t_{n+j}, y_{n+j}, y'_{n+j})$$

$$\sum_{j=0}^{k} \alpha_{j}^{(1)} y'_{n+j} = h \sum_{j=0}^{k} \beta_{j}^{(1)} f(t_{n+j}, y_{n+j}, y'_{n+j})$$

2.2)

où k est un entier fixé, $\alpha_j^{(2)}$, $\beta_j^{(2)}$, $\alpha_j^{(1)}$, $\beta_j^{(1)}$, sont des constantes reèles qui ne dependent pas de n ni de h et vérifie $\alpha_k^{(2)}$, $\alpha_k^{(1)} \neq 0$ et de plus $| \alpha_0^{(2)} | + | \beta_0^{(2)} | > 0$, $| \alpha_0^{(1)} | + | \beta_0^{(1)} | > 0$.

2.3 <u>Définition</u>. - Nous appellons <u>solution approchée</u> du PVI (2.1) out pair de suites $\{y_n, y'_n\}_{n \in J_h}$ telles que y_n et y'_n sont des aproximations à la solution exacte y (t) et à sa derivée, respectivement, dans le point t_n et construits au moyen de PFML à k-pas definies ci-dessus.

Il est évident que pour spécifier une PFML à k-pas il faut utiliser un algorithme d'initiation que nous améne les valeurs suivantes:

$$y_n = \eta_n , y'_n = \eta'_n$$
 (2.3)
 $f_n = f(t_n, y_n, y'_n)$

Généralement cet algorithme d'initiation est une méthode d'un pas, bien que pour des méthodes particulières peut avoir des algorithmes d'initiation aussi particulières, p.e., la méthode d'initiation de Herrick (Herrick (2), Fox (6)).

On dit que le <u>PFML est explicite</u> si $\beta_k^{(2)} = \beta_k^{(1)} = 0$; dans ce cas, le calcule des valeurs y_{n+k} ne porte pas aucune difficulté. Si $\beta_k^{(2)}$, $\beta_k^{(1)} \neq 0$, le PFML (2.2) est dit <u>implicit</u>; dans ce cas, pour calculer les y_{n+k} il faut la resolution d'un systeme d'équations linéaires qui a la forme

$$y_{n+k} - h^2 \left(\alpha_k^{(2)} / \beta_k^{(2)} \right) f \left(t_{n+k} , y_{n+k} , y'_{n+k} \right) = \Delta_n^{(2)}$$
(2.4)

$$y'_{n+k} - h (\alpha_k^{(1)} / \beta_k^{(1)}) f(t_{n+k}, y_{n+k}, y'_{n+k}) = \Delta_n^{(1)}$$
 (2.5)

par quelque procédé iteratif. Par hyppothese nous disposons de telle méthode nous permitant de résoudre les équations (2.4) et (2.5) avec la précision et frais computationel donnés.

2.4 <u>Définition</u>. - Nous definissons les <u>polinômes caractéristiques</u> associés à un PFML au moyen de

$$\rho^{(i)}(\zeta) = \sum_{j=0}^{k} \alpha_{j} \zeta^{j}$$
, $\sigma^{(i)}(\zeta) = \sum_{j=0}^{k} \beta_{j} \zeta^{j}$

Evidentement, ces polinômes ensemble à l'algorithme d'initiation déterminent comple ément la méthode que noterons { ($\rho^{(i)}(\zeta), \sigma^{(i)}(\zeta)$); i = 1,2 }.

Sans aucune perte de généralité et pour éviter des indeterminations, dorénavant rous possons $\alpha_{\mathbf{k}}^{(i)} = 1$, i = 1, 2.

Nous introduisons les opérateurs d'erreur local { $L^{(1)}, L^{(2)}$ } de la méthode par

$$L^{(i)}[y(t), h] = \sum_{j=0}^{k} \left[\alpha_{j}^{(i)} y(t+jh) - h^{2} \beta_{j}^{(i)} f(t+jh, y(t+jh), y'(t+jh)) \right]$$

i = 1, 2

donc nous donnons la définition suivante

2.5 <u>Définition</u>. - Nous appéllerons <u>erreur de truncation local</u> dans le point t_{n+k} pour le PFML (2.2) au pair

$$e^{(i)}_{n+k} = L^{(i)} [y(t_n); h], i = 1, 2$$

2.6 <u>Définition</u>. - Nous dirons que le <u>PFML est d'ordre</u> p si $p = max \{q; q \in Z^+\}$ et telles que

$$L^{(i)}[y(t);h] = O(h^{q+i}), i = 1, 2$$

quand $h \rightarrow 0^+$ pour tout y (t).

2.7 <u>Proposition</u>. - Une condition necessaire et suffisante pour q'une méthode {($\rho^{(i)}$, $\sigma^{(i)}$); i = 1,2} soit d'ordre p est que les constantes

$$C^{(i)}_{1} = \sum_{j=0}^{k} \left[\alpha_{j}^{(i)} (j^{1}/1!) - \beta_{j}^{(i)} (j^{1-i}/(1-i)!) \right], \quad i = 1, 2 \quad (2.7)$$

vériffient

$$C^{(i)}_{l} = 0$$
, si $0 \le l \le p + i - l$

pour i = 1 ou 2 (2.8)

 $C^{(i)}_{p+1} \neq 0$

<u>Démonstration.</u> : Il suffit développer les operateurs d'erreur local en puissances de h dans une voisinage du point t, pour obtenir

L⁽²⁾ [y(t);h] =
$$\sum_{p=0}^{\infty} C_p^{(2)} h^p y^{(p)}(t)$$

(2.9)

$$L^{(1)} [y(t);h] = \sum_{p=0}^{\infty} C_p^{(1)} h^p y^{(p+1)} (t)$$

Les condictions ci-dessus sont independentes du point t où l'on a effectué les développements comme on le peut constater immédiatement. ‡

2.8 <u>Définition</u> - Nous appellerons <u>constantes</u> <u>d'erreur de truncature local</u> de la méthode aux constantes $C^{(2)}_{l}$, $C^{(1)}_{0}$ avant definies, où

1 = min { p;
$$C^{(1)}_{p} \neq 0$$
 } , q = min { p; $C^{(2)}_{p} \neq 0$ }

2.9 Proposition. - Les condictions ci-dessus sont équivalentes à ces autres

$$L^{(i)}[t^{1};h] = 0 , 0 \le l \le p+1 , i = 1,2$$

$$L^{(i)}[t^{p+2};h] \ne 0 , \text{ pour } i = 1 \text{ ou } 2$$
(2.10)

<u>Démonstration.</u>: Il suffit d'obtenir les expressions des opérateurs d'erreur local pour les fonctions $y(t) = t^{i}$ et leur développement en puissances de t. \ddagger

Tout d'acord à ce resultat et à la relation entre les operateurs et les erreurs locales, nous pouvons dire que pour tout PVI dont leur solution soit exactement un polinôme du degrée $\leq p + 1$, les erreurs locales s'annulent et, par consequance, pour valeurs initials exactes, les solutions numériques et analitiques seraient les mêmes.

2.10 Définition. - Nous dirons q'une méthode { ($\rho^{(i)}$, $\sigma^{(i)}$) ; i = 1,2 } est consistente si

 $\max \{ \| e^{(i)}_{n+k} \| / h^i \} \longrightarrow 0$ $k \le n \le N$

pour i = 1, 2

quand h tends vers cero ($h \rightarrow 0^+$).

Nous dirons q'une méthode est consistente d'ordre p si

 $\max \{ \| e^{(i)}_{n+k} \| / h^i \} = 0 (h^{p+i}) , (h \longrightarrow 0^+)$ $k \le n \le N$ pour i = 1, 2

D'après la définition on deduit que consistence est equivalente à que l'ordre de la méthode soit un, c'est à dire,

$$\rho^{(2)}(1) = \rho^{\prime(2)}(1) = 0 , \quad \rho^{\prime\prime(2)}(1) = 2 \sigma^{(2)}(1)$$

$$\rho^{(1)}(1) = 0 , \quad \rho^{\prime(1)}(1) = \sigma^{(1)}(1)$$
(2.11)

Comme pour tous les méthodes que changent le pas d'integration d'acord avec une estimation de l'erreur local, nous sommes interessés à trouver une borne pour l'erreur local. Pour cela, nous n'avons que développer les fonctions y(t + jh), y'(t + jh), y''(t + jh) en puissances de h et substituer à l'expression des operateurs erreur local en considerant le résidu à la forme integral, pour obtenir

 $L^{(i)}[y(t);h] = (h^{p+i} / (p+i-1)!) \int_{0}^{k} G_{i}(\tau) y^{(p+2)}(t+\tau h) d\tau (2.12)$: i = 1, 2

où les fonctions

$$G_{2}(\tau) = \sum_{j=0}^{k} \left[\alpha_{j}^{(2)} (j - \tau)_{+}^{p+1} - p(p+1)\beta_{j}^{(2)} (j - \tau)_{+}^{p-1} \right]$$

$$G_{1}(\tau) = \sum_{j=0}^{k} \left[\alpha_{j}^{(1)} (j - \tau)_{+}^{p} - \beta_{j}^{(1)} (j - \tau)_{+}^{p-1} \right]$$
(2.13)

sont appelées noyaux de Peano associées à la méthode.

A ce point, nous pouvons distinguer deux cases :

1) $G_{(i)}(\tau)$, i = 1, 2 ne changent pas leur signe dans [0, k]. Dans ce cas, d'aprés (2.12), le théorème de Lagrange nous permet déduire les bornes suivantes:

 $\| L^{(i)}[y(t);h] \| \le (h^{p+i}/(p+i-1)!) \| y^{(p+2)} \|_{\infty} | \int_{0}^{k} G_{i}(\tau) d\tau |$ pour i = 1, 2

c'est à dire

$$\| L^{(i)}[y(t);h] \| \le \| C_{p+i} \| h^{p+i} Y$$
, $i = 1, 2$

(2.14)

où $Y = \sup\{ | y^{(p+2)}(x) | ; 0 \le x \le t \}$

2) $G_{(i)}$ (τ), i =1,2 changent leur signe dans [0, k]. Ici, il n'est pas possible d'appliquer le théoréme de Lagrage, mais on peut trouver une majoration plus grossière que (2.14)

3. STABILITÉ DE P.F.M.L.

Nous exposons une forme matricielle que fait équivalentes les PFML à pas fixe aux méthodes d'un pas quand on étude l'stabilité des premières et nous permetant la caracterization de la stabilité d'une façon trés élégant. D'ailleurs, nous pouvons génèraliser trés facilement l'étude au cas de PFML à pas variable.

Comme nous avons établie dejá, une PFML est fixé par (2.2), (2.3). Compte tenue que chaque application de la méthode passe de la consideration des valeurs

$$y_{n}, y_{n+1}, \dots, y_{n+k-1}, y'_{n}, y'_{n+1}, \dots, y'_{n+k-1}$$

à ces autres

$$y_{n+1}, y_{n+2}, \dots, y_{n+k}, y'_{n+1}, y'_{n+2}, \dots, y'_{n+k}$$

nous introduisons les matrices suivantes (Calvo y Montijano (7))

$$Y_{n+k} = \left[y_{n+k}, y_{n+k-1}, \dots, y_{n+1}, hy'_{n+k}, hy'_{n+k-1}, \dots, hy'_{n+1} \right]^{T} (3.1)$$

$$\eta = \left[\eta^{(2)}_{k-1}, \eta^{(2)}_{k-2}, \dots, \eta^{(2)}_{0}, h\eta^{(1)}_{k-1}, h\eta^{(1)}_{k-2}, \dots, h\eta^{(1)}_{0} \right]^{T}$$

$$A_{i} = \begin{bmatrix} -\alpha^{(i)}_{k-1} - \alpha^{(i)}_{k-2} - \dots - \alpha_{0} \\ 1 & 0 \dots \dots & 0 \\ 0 & 1 & 0 \dots & 0 \\ \vdots & \vdots & 0 & \vdots & 0 \\ \vdots & \vdots & \ddots & \vdots & 1 \\ 0 & \dots & \dots & 0 \end{bmatrix}$$
(3.2)

 $A = diag(A_2, A_1)$

et les vecteurs

$$e_1 = [1, 0, 0, ..., 0]^T$$

$$e_{k+1} = [0, 0, ..., 1, 0, ..., 0]^T$$

$$\Phi^{(2)}_{n+k} = \Phi^{(2)}_{n+k} (Y_{n+k}, Y_{n+k-1}) = (\sum_{j=0}^{k} \beta_{j}^{(2)} f_{n+j}) e_{1}$$

$$\Phi^{(1)}_{n+k} = \Phi^{(1)}_{n+k} (Y_{n+k}, Y_{n+k-1}) = (\sum_{j=0}^{k} \beta_{j}^{(1)} f_{n+j}) e_{k+1}$$

où Y_{n+k} , η , e_1 , e_{k+1} , $\Phi^{(2)}_{n+k}$, $\Phi^{(1)}_{n+k}$ appartient à R^{2k} et A_i sont des matrices de $M_R(k)$.

Avec cette notation, nous pouvons écrire la méthode (2.2), (2.3) sous la forme

(3.3)
$$Y_{n+k} = A Y_{n+k} + h^2 \left[\Phi^{(2)}_{n+k} + \Phi^{(1)}_{n+k} \right], \quad 0 \le n \le N - k$$

Remarquons que si le PVI est s-vectoriel la formulation matricielle (3.3) est aussi valable avec la seule consideration suivant, les vecteurs Y_{n+k} , η , e_1 , e_{n+k} , $\Phi^{(2)}_{n+k}$, $\Phi^{(1)}_{n+k}$, doivent être des matrices avec s-colonnes

Ci-après nous donnons une génèralization de la notion de stabilité dejá connue pour des méthodes d'un pas.

3.1 <u>Définition</u>. - Nous dirons que la <u>méthode</u> (2.2), (2.3) <u>est stable</u> s'il existent des constantes positives h_0 , K_1 , K_2 telles que pour toute fonction $f \in C_L$ et tout $h \in (0, h_0]$ les

solutions Y_n de (3.3) et Y_n^* du probléme

 $Y_{k,1} = \eta$

$$Y_{k-1}^{*} = \eta + \omega_{k-1}$$
(3.4)

 $\begin{aligned} Y^*_{n+k} &= A Y^*_{n+k} + h^2 \left[\Phi^{*(2)}_{n+k} + \Phi^{*(1)}_{n+k} \right] + \omega_{n+k} , \quad 0 \leq n \leq N-k \\ \text{où } \omega_i \in \mathbb{R}^{2k} \text{ sont des perturbations arbitraires vérifiant} \end{aligned}$

$$|| Y_{n}^{*} - Y_{n} || \le [(K_{1}/h) + K_{2}] \sum_{j=k-1}^{n} || \omega_{j} || , k - 1 \le n \le N$$
 (3.5)

Remarquons que l'élection de la norme $\|\cdot\|$ dans \mathbb{R}^{2k} est indifférent pour les questions téoriques.

3.2 <u>Théoreme.</u> - La méthode (2.2), (2.3) est stable pour toute $f \in C_L$ si et seulement si elle est stable pour f = 0.

Démonstration. :

===>) Trivial

<===) f = 0 entraîne $\Phi^{(i)}_n = 0$, i =1, 2 et notons $Z_n = Y_n^* - Y_n$ où Y_n , Y_n^* sont les solutions de (3.3), (3.4) correspondantes; alors nous avons

$$Z_{k-1} = \omega_{k-1}$$
 (3.6)

$$Z_{n+k} = A Z_{n+k-1} + \omega_{n+k}$$

et ainsi

$$||Z_n|| \le [(K_1/h) + K_2] \sum_{j=k-1}^{n} ||\omega_j||$$
, $k - 1 \le n \le N$ (3.7)

pour tout $n \ge k - 1$

Maintenant, soient $f \in C_L$ quelconque et Y_n, Y_n^* solutions des équations (3.3), (3.4) et notant $Z_n = Y_n^* - Y_n$, nous obtenons

 $Z_{k-1} = \delta_{k-1}$

$$Z_{n+k} = A Z_{n+k-1} + \delta_{n+k} , \quad 0 \le n \le N - k$$

avec

$$\delta_{k-1} = \omega_{k-1}$$

$$\delta_{n+k} = h^2 \left[\left(\Phi^{*(2)}_{n+k} \Phi^{(2)}_{n+k} \right) + \left(\Phi^{*(1)}_{n+k} \Phi^{(1)}_{n+k} \right) \right] + \omega_{n+k}$$

qui est stable par hypothèse, donc

$$|| Z_n || \le [(K_1/h) + K_2] \sum_{j=k-1}^n || \delta_j || , k - 1 \le n \le N$$
 (3.8)

Compte tenue que

$$\| \delta_{j} \| \leq \| \omega_{j} \| + 2 h^{2} \beta L \left(\| Z_{j} \| + \| Z_{j-1} \| \right)$$

où $\beta = \max \{ \beta_j^{(2)}, \beta_j^{(1)} \}$, soit h_0 tel que $0 \le j \le k$

$$h_0^* = 1 - 2 h_0 \beta L K_1 - 2 h_0^2 \beta L K_2 > 0$$

et possant

$$K_{i}^{*} = K_{i} / h_{0}^{*}$$
, $i = 1, 2$, $B = 4 h_{0} \beta L (K_{1}^{*} + K_{2}^{*} h_{0})$

nous pouvons écrire pour tout $h \in (0, h_0]$

$$|| Z_n || \le [(K_1^*/h) + K_2^*] \sum_{j=k-1}^n || \omega_j || + h B \sum_{j=k-1}^{n-1} || Z_j |$$

et a induction :

$$|| Z_{n} || \le \exp(TB) [(K_{1}^{*}/h) + K_{2}^{*}] \sum_{j=k-1}^{n} || \omega_{j} ||$$

c'est à dire, la méthode est stable. ‡

3.3 <u>Corollaire.</u> - La méthode (2.2), (2.3) est stable si et seulement s'ils existent des constantes positives K_i , i = 1, 2 telles que

$$\sup \|A^{n}\| \le (K_{1}/h) + K_{2}, k-1 \le n \le N$$
 (3.9)

Démostration. : D'après le théoreme 3.2, la formule (3.9) entraîne

$$Z_{n+k} = A^{n+1} \omega_{k-1} + A^n \omega_k + ... + \omega_{n+k}$$

et par consequence

$$\| \operatorname{Z}_{n+k} \| \leq \sup_{k-1 \leq n \leq N} \| \operatorname{A}^n \| \sum_{j=k-1}^n \| \omega_j \| \text{, pour tout } n \geq k-1$$

ce qui est équivalente à

$$\sup_{k-1 \le n \le N} \|A^n\| \le (K_1/h) + K_2 \ddagger$$

3.4 Corollaire. - Si les submatrices A_i , i = 1, 2 vérifient les majorations

$$\sup_{\substack{k-1 \le n \le N}} \|A_2^n\| \le (K_1/h) + K_2, \quad \sup_{\substack{k-1 \le n \le N}} \|A_1^n\| \le K_3 \quad (3.10)$$

 K_i , i = 1, 2, 3, étant constantes alors la méthode est stable.

Démostration. : Il suffit considérer l'inégalité

$$||A^{n}|| \le ||A_{2}^{n}|| + ||A_{1}^{n}|| \ddagger$$

Ci-après, nous souhaitons trouver des conditions simples nous permettant construire des méthodes directes du type consideré dans ce papier. Le théoreme et corolaire ci-dessous nous monstrent des resultats interesantes.

3.5 Théoreme. - Les propositions suivantes sont équivalentes:

- 1) Ils existent des constantes positives K_i , i = 1, 2, 3 telles que $\sup ||A_2^n|| \le (K_1/h) + K_2$, $\sup ||A_1^n|| \le K_3$ $k-1 \le n \le N$
- Les valeurs propres de A, vérifient une des trois suivantes propositions
 - a) $|\lambda| < 1$
 - b) $|\lambda| = 1$ et λ est une valeur propre simple de A₁
 - c) $|\lambda| = 1$ et λ est une valeur propre de A₂ à multiplicité pas plus grande que deux

Démostration. :

1) ===> 2) Si S_i, i = 1, 2 sont des matrices complexes qui reduisent, respectivement, A_i , i = 1, 2 à sa forme canonique de Jordan J_i , i = 1, 2, nous avons :

$$A_i = S_i J_i S_i^{-1}$$
, $i = 1, 2$

ou bien

$$A = SJS^{-1}$$

avec

$$S = diag(S_2, S_1), J = diag(J_2, J_1)$$

et compte tenue de

$$A_i = S_i J_i^n S_i^{-1}$$
, $i = 1, 2$

 J_i , i = 1, 2 vérifient des majorations tout à fait analoges à ces de A_i , i = 1, 2.

Maintennant, soit λ une valeur propre de A, c'est à dire, de A₂ ou de

A1 ou de tous les deux. La submatrice de Jordan associée sera :

$$J_{\lambda} = \begin{bmatrix} \lambda \ 1 \ 0 \ \dots \ 0 \\ 0 \ \lambda \ 1 \ 0 \ \dots \ 0 \\ . \ . \ . \\ 0 \ \dots \ \lambda \end{bmatrix} = \lambda I + M$$

ce qui entraîne

$$J_{\lambda}^{n} = \begin{bmatrix} \lambda^{n} \ \binom{n}{1} \lambda^{n-1} & \dots \\ 0 & \lambda^{n} & \ddots \\ \vdots & \vdots & \ddots \\ 0 & \dots & 0 & \lambda^{n} \end{bmatrix} = (\lambda I + M)^{n} \quad (3.11)$$

Par consequence, d'après les hypothéses, on peut établir $|\lambda| \leq 1$

Voyons plusieurs cases :

a) λ valeur propre de A₁ et $|\lambda| = 1$. Il faut que la multiplicité de λ soit 1, car, au contraire, J₁ⁿ n'aurait pas l'acotation dite, selon nous voyons d'après (3.11).

b) λ valeur propre de A₂ et $|\lambda| = 1$. Il faut que la multiplicité de λ soit plus pétite ou égal à 2 (le même raisonnement est valable).

c) λ quelconque avec |λ| < 1. Il n'y a pas des problèmes.
2) ===> 1). Trivial. ‡

<u>Remarque</u>. - La matrice A qui caractérise la méthode a une forme spéciale comme somme diagonal de deux matrices de Frobenius A_2 , A_1 , avec polinôme caractéristique

$$P(\zeta) = \rho^{(2)}(\zeta) \rho^{(1)}(\zeta)$$

En outre, les vecteurs propres d'une matrice de Frobenius associées à une valeur propre λ sont c· $(\lambda^{k-1}, \lambda^{k-2}, ..., 1)^T$, (c = const.), donc les vecteurs propres de A auraient la même forme convenablement remplis avec ceros. Alors, le corolaire suivant est immédiat.

3.6 <u>Corollaire.</u> - Si les racines $\zeta^{(i)}$, i = 1, 2 des polinômes caractéristiques $\rho^{(i)}(\zeta)$ d'une méthode {($\rho^{(i)}(\zeta), \sigma^{(i)}(\zeta)$), i = 1, 2} vérifient i) $|\zeta^{(i)}| < 1$, i = 1, 2

ii) $|\zeta^{(i)}| = 1$, i = 1, 2 et multiplicité de $\lambda^{(i)}$ pas plus grande que i

alors, la méthode {($\rho^{(i)}(\zeta), \sigma^{(i)}(\zeta)$), i = 1, 2} est stable. <u>Remarque.</u> - C'est important souligner que pour stabilité nous impossons des condictions moins restrictives que la stabilité des méthodes {($\rho^{(i)}(\zeta), \sigma^{(i)}(\zeta)$)}, i = 1, 2 separement.

4. CONVERGENCE DE PFML.

Ensuite nous allons voir comment comparer la solution exacte du PVI (2.1) avec la solution approchée obtenue par une des méthodes {($\rho^{(i)}(\zeta), \sigma^{(i)}(\zeta)$), i = 1, 2} dejà présentées.

4.1 <u>Définition</u>. - Nous dirons q'une telle méthode est convergente si pour toute fonction $f \in C_L$ les solutions exacte et approchée du PVI (2.1) vérifient

$$\lim_{h \to 0} ||Y(t_n) - Y_n||_{\infty} = 0, \ k \le n \le N = T/h$$
(4.1)

tandis que les valeurs d'initiation satisfont

$$\lim_{h \to 0} (1/h) \| Y(t_{k-1}) - Y_{k-1} \|_{\infty} = 0$$
(4.2)

Comme il est habituel, nous appelons <u>erreur de discretization locale</u> de la méthode à la quantité

$$\mathbf{d}_{n} = \mathbf{Y}(\mathbf{t}_{n}) - \mathbf{Y}_{n}$$

4.2 Définition. - Un PFML est convergente d'ordre p si

$$\max_{\substack{n \leq n \leq N}} \|d_n\| = 0 (h^{p+1})$$
(4.3)

quand h tends vers cero ($h \rightarrow 0$).

4.3 Théorème. - Un PFML est convergente s'il est stable et consistente.

Démostration. : D'après les hypothèses, la solution exacte vérifie

$$\begin{split} y\left(t_{n}\right) &= \eta_{n} + \left(y\left(t_{n}\right) - \eta_{n}\right), \ y_{n}'\left(t\right) &= \eta_{n}' + \left(y'\left(t_{n}\right) - \eta_{n}'\right) \quad n = 0 \ (1) \ k \\ \sum_{j=0}^{k} \alpha_{j}^{(2)} \ y\left(t_{n+j}\right) &= h^{2} \sum_{j=0}^{k} \beta_{j}^{(2)} \ f\left(t_{n+j}, y\left(t_{n+j}\right), y'\left(t_{n+j}\right)\right) + e^{(2)}_{n+k} \ (4.4) \\ n = 0 \ (1) \ N - k \end{split}$$

$$\begin{split} \sum_{j=0}^{k} \alpha_{j}^{(1)} \ y'\left(t_{n+j}\right) &= h \ \sum_{j=0}^{k} \beta_{j}^{(1)} \ f\left(t_{n+j}, y\left(t_{n+j}\right), y'\left(t_{n+j}\right)\right) + e^{(1)}_{n+k} \end{split}$$

j=0

et si nous écrivons

j=0

$$Y(t_{n+k}) = [y(t_{n+k}), ..., y(t_{n+1}), hy'(t_{n+k}), ..., hy'(t_{n+1})]^{T}$$

$$\omega_{k-1} = [(y(t_{k-1}) - \eta_{k-1}), ..., (y(t_{0}) - \eta_{0}), h(y'(t_{k-1}) - \eta'_{k-1}), ...]^{T}$$

$$\omega_{n+k} = [e^{(2)}_{n+k}, 0, ..., 0, he^{(1)}_{n+k}, 0, ..., 0]^{T}$$

les équations (4.4) devienent

$$Y(t_{k-1}) = \eta + \omega_{k-1}$$
(4.5)

$$Y(t_{n+k}) = AY(t_{n+k-1}) + h^{2} \left[\Phi^{(2)}(Y(t_{n+k}), Y(t_{n+k-1})) + \Phi^{(1)}(Y(t_{n+k}), Y(t_{n+k-1})) + \omega_{n+k} \right]$$

$$n = 0, 1, ..., N - k$$

qu'on peut considérer comme une version perturbée du problème (3.3).

Les hypothèses de stabilité entraînent

$$\| Y(t_{n}) - Y_{n} \|_{\infty} \leq [(K_{1}/h) + K_{2}] \sum_{j=k-1}^{n} \| \omega_{j} \|_{\infty} , k-1 \leq n \leq N$$

$$\leq \left[\left(K_{1}/h \right) + K_{2} \right] \left\{ \parallel Y(t_{k-1}) - Y_{k-1} \parallel_{\infty} + \sum_{j=k}^{N} \left(\mid e^{(2)}_{j} \mid + h \mid e^{(1)}_{j} \mid \right) \right\} (4.6)$$

et ces de consistence

$$|e^{(2)}_{j}| \le C_{2} h^{3}, |e^{(1)}_{j}| \le C_{1} h^{2}$$

donc

$$\sum_{j=k}^{N} \left(\left| e^{(2)}_{j} \right| + h \left| e^{(1)}_{j} \right| \right) \right\} \le C T h^{2}$$

et par consequence

 $\| Y(t_{n}) - Y_{n} \|_{\infty} \leq \left[(K_{1}/h) + K_{2} \right] \left\{ \| Y(t_{k-1}) - Y_{k-1} \|_{\infty} + CTh^{2} \right\} \xrightarrow[h \to 0]{}$ $k \leq n \leq N \qquad \ddagger$

Remarque. - Si les erreurs d'initiation sont telles que

$$\| Y(t_{k-1}) - Y_{k-1} \|_{\infty} = 0(h^{p+2})$$

et les erreurs locales sont d'ordre $p (\ge 1)$ telles que

$$|e^{(2)}_{n}| \le K_{2} h^{p+2}, |e^{(1)}_{n}| \le K_{1} h^{p+1}$$

et en plus la méthode est stable, l'expression (4.6) nous permet d'afirmer que la méthode est convergente d'ordre plus grande ou égal à p.

5. CONSTRUCTION D'UNE FAMILIE DE PFML.

Ensuite nous étudions la construction d'une famille de PFML qui est simplement une généralization des formules classiques (utilisées individuèllement) d'Adams-Störmer et Adams-Cowell. Pour céla nous utilisons la méthode de Cowell, et nous prenons au lieu de la fonction f leur polinôme d'interpolation. Il faut rappeler (Henrici (4)) que si nous avons k + 1 points équidistantes

 $t_j = t_0 + jh$, j = 0, 1, ..., k

h étant le pas, le polinôme d'interpolation de Newton pour la fonction f on peut écrire

$$P(t) = \sum_{j=0}^{k} (-1)^{j} {\binom{-s}{j}} \nabla^{j} f_{k}, \quad t_{0} \le t \le t_{k} \quad (5.1)$$

où $s = (t - t_k) / h$, et $\nabla^j f_k$ est la j-éme difference rétrograde et $f_i = f(t_i)$ (c'est la formule de Newton rétrograde).

Comme nous dejá connaissons, notre équation différentielle à resoudre

est

$$y'' = f(t, y, y')$$
 (5.2)

La technique classique de Cowell, rest sur deux points :

i) integrer l'équation (5.2) sur l'intervalle [t, t + Δt] pour obtenir :

$$y'(t + \Delta t) - y'(t) = \int_{t}^{t+\Delta} f(t, y(t), y'(t)) dt \quad (5.3)$$

ii) développe la solution y (t) de (5.2) en série de Taylor pour $t + \Delta t$ et t - Δt , ce qui entraîne

$$y(t + \Delta t) - 2y(t) + y(t + \Delta t) = \int_{t}^{t+\Delta} (t + \Delta t - x) [f(x) + f(2t - x)] dx (5.3)$$

Si nous écrivons f_n par $f(t_n, y(t_n), y'(t_n))$, y_n par $y(t_n)$, y'_n par $y'(t_n)$ et nous prenons $t = t_n$ et $\Delta t = h$ et substituons f par leur polinôme d'interpolation (5.1) dans les points $t_{n-k}, t_{n-k+1}, \dots, t_n$ nous deduisons le suivant pair de formules linéaires à pas multiple

$$y_{n+1} - 2 y_n + y_{n-1} = h^2 \sum_{j=0}^k \gamma^{(2)}{}_j \nabla^j f_n$$

$$y'_{n+1} - y'_n = h \sum_{j=0}^k \gamma^{(1)}{}_j \nabla^j f_n$$

$$\gamma^{(2)}{}_j = (-1)^j \int_0^1 (1-s) \left[\begin{pmatrix} -s \\ j \end{pmatrix} + \begin{pmatrix} s \\ j \end{pmatrix} \right] ds$$

$$\gamma^{(1)}{}_j = (-1)^j \int_0^1 \begin{pmatrix} s \\ j \end{pmatrix} ds$$
(5.6)

avec

que nous pouvons calculer à l'aide des fonctions génératrices (Henrici (6)) par les rélations recurrentes ci-dessous

$$\sum_{j=0}^{m} (1/j+1) \gamma^{(1)}{}_{m-j} = 1$$

$$\sum_{j=0}^{m} (2/j+2) H_{j+1} \gamma^{(2)}{}_{m-j} = 1$$

$$60$$

et
$$H_{m+1} = (1/m+1) + H_m, m \ge 1$$

Compte tenue des relations (Henrici (4))

$$\nabla^{\mathbf{m}} \mathbf{f}_{q} = \sum_{j=0}^{q} (-1)^{j} \binom{\mathbf{m}}{j} \mathbf{f}_{q-j}$$

nous trouvons

$$y_{n+1} - 2 y_n + y_{n-1} = h^2 \sum_{j=0}^{k} \beta^{(2)}{}_{kj} f_{n-j}$$
 (5.8)

$$y'_{n+1} - y'_n = h \sum_{j=0}^{k} \beta^{(1)}_{kj} f_{n-j}$$

donc les coefficients $\beta^{(i)}_{ki}$, i = 1, 2 étant donnés par

$$\beta^{(i)}_{kj} = (-1)^{j} \sum_{l=0}^{k-j} {k+l \choose j} \gamma^{(i)}_{j+1} \qquad (5.9)$$

Remarquons que ces formules (5.8) sont explicites et par conséquece il ne faut que la connaissance des valeurs $f_n, f_{n-1}, ..., f_{n-k}$ pour obtenir y_{n+1} , et y'_{n+1} . C'est ainsi que quelques auteurs (Herrick (4)) appelent predicteurs ces formules de Cowell.

Presque de la même façon, la substitution de la fonction f par leur polinôme d'interpolation (5.1) dans les points $t_{n-k+1}, t_{n-k+2}, \dots, t_{n+1}$ nous donne les pairs de formules à pas multiple

$$y_{n+1} - 2 y_n + y_{n-1} = h^2 \sum_{j=0}^{k} \beta^{(2)*} f_{n+1-j}$$
(5.10)

$$y'_{n+1} - y'_n = h \sum_{j=0}^{k} \beta^{(1)*}_{kj} f_{n+1-j}$$

où les coefficients $\beta^{(i)}_{kj}^{*}$, i = 1, 2 sont exprimés par

$$\beta^{(i)*}{}_{kj} = (-1)^{j} \sum_{l=0}^{k-j} {j+1 \choose j} \gamma^{(i)*}{}_{j+1}$$
 (5.11)

et les coefficients $\gamma_{j}^{(i)*}$, par des formules jumelles de (5.6)

$$\gamma^{(2)*}_{j} = (-1)^{j} \int_{0}^{1} (-s) \left[\begin{pmatrix} -s \\ j \end{pmatrix} + \begin{pmatrix} s+2 \\ j \end{pmatrix} \right] ds$$

$$\gamma^{(1)*}_{j} = (-1)^{j} \int_{0}^{1} \begin{pmatrix} -s \\ j \end{pmatrix} ds$$
(5.12)

ou bien ils sont obtenues par les loies de recurrence suivantes

 $H_{m+1} = (1/$

$$\sum_{j=0}^{m} (1/j+1) \gamma^{(1)*}_{m-j} = \delta_{m0}$$
(5.13)
$$\sum_{j=0}^{m} (2/j+2) H_{j+1} \gamma^{(2)*}_{m-j} = \delta_{m0}$$

$$m+1) + H_{m}, m \ge 1 \text{ et } \delta = \text{delta de Kronecker}$$

Remarquons que, ces formules (5.10) sont implicites et par coséquence il faut résoudre à chaque pas un système d'équations non linéaires, que nous écrivons

$$y_{n+1} - h^2 \beta^{(2)*}_{k0} f(t_{n+1}, y_{n+1}, y'_{n+1}) = \Delta^{(2)}$$

$$y'_{n+1} - h \beta^{(1)*}_{k0} f(t_{n+1}, y_{n+1}, y'_{n+1}) = \Delta^{(1)}$$
(5.14)

en utilisant un algorithme itératif qui doit départir des valeurs $y^{(0)}_{n+1}$, $y^{(0)}_{n+1}$ approchées. L'algorithme, par example des approximations succesives, si f est lipschitzienne par rapport à y et y' avec constante L, nous munie une seule solution de (5.14) si

L h² max {
$$|\beta^{(2)*}_{k0}|, |\beta^{(1)*}_{k0}|$$
 } < 1.

Plussieurs auteurs appelent correcteurs ces formules de Cowell; habituellement on utilise ces PFML (5.8) et (5.10) sous la forme prédicteur - correcteur en mode P (E C)^m E. Ces formules sont stables comme on peut vérifier simplement (voir corollaire 3.6).

6. APPLICATIONS PRACTIQUES.

Comme nous avons indiqué à l'introduction, le problème dont nous souhaitons l'integration est ce du satellite artificiel terrestre que nous pouvons mettre sous la forme

$$\frac{d^2 r}{dt^2} = -\frac{\mu r}{r^3} + P(t,r,r')$$
(6.1)

Pour faire une épreuve de la validité des méthodes deduites au paragraphe cinq, et de leur comportement par rapport à notre problème général (6.1), nous en considerons deux approximations : d'une partie, le problème de deux corps (c'est à dire, P (t, r, r') = 0) comme prémiere pas vers (6.1), et de l'autre , le problème de deux corps perturbée par une force proportionnelle à la velocité r' (p.e., le frottemen atmospherique).

En avant à l'implementation des méthodes, nous avons fait une normalization et une transformation de Levi-Civitá (Stiefel - Scheifele (8)) définie par

$$\begin{aligned} x_1 &= u_1^2 - u_2^2 \\ x_2 &= 2 u_1 u_2 \\ d\tau &= r ds \qquad (r = u_1^2 + u_2^2) \end{aligned}$$
 (6.2)

qui transforme le problème de deux corps dans le problème d'un oscilateur harmonique bidimensionel :

 $u'' + \omega^2 \ u = 0 \tag{6.3}$

et l'autre déviens

 $\mathbf{u}'' + \varepsilon \, \mathbf{u}' + \omega^2 \, \mathbf{u} = \mathbf{0} \tag{6.4}$

où $\omega = \sqrt{(1-e)/2}$, e étant l'excentricité de la orbite et ε une constante d'ordre 10^{-12} d'après Moore (9). Nous prendrons les condictions initials u (0) = $[1,0]^{T}$, u'(0) = $[0, v_0/2]^{T}$ où $v_0^2 = (2/r_0) - (1/a) = 1 + e$ est la velocité initial cartesienne.

Nous faisons la comparaison avec la solution exacte et avec la solution approchée munie par une méthode classique d'Adams - Bashforth - Moulton (Lambert (5))pour différentes valeurs de l'excentricité (c'est à dire, de ω) et pour plussieurs valeurs du pas h après 10 revolutions. Nous prennons ordre 8 pour les deux méthodes, le mode P(EC)E et valeurs d'initiation les données par la solution exacte (que nous n'écrivons pas).

Les resultats obtenues dans un ordenateur VAX 11 - 780 sont montrés

aux tableaux ci-dessous.

Les pas considerés $\pi / 10$, $\pi / 20$, $\pi / 30$ sont des valeurs recommendées à la literature. Les excentricités correspondent à des orbites circulaires (e = 0) ou presque circulaires (0.001, 0.01), ou assez excentriques (0.1, 0.2, 0.5) de satellites reèls.

Nous tirons les suivantes consequences des tableaux adjoints :

1º. - Les méthodes PFML marchent plux mieux quand l'excentricité est plus grande, ce qui est consequence de la regularization effectué (Coffey and Alfriend (10)).

2°. - Les méthodes PFML donnent meilleurs resultats que les obtenues par les formules d'Adams - Bashforth - Moulton.

 3° . - Les deux méthodes numériques travaillent mieux avec pas plus petit. Remarquons que π / 30 est un pas qui se correspond à peut près avec 100 seconds de temps.

4°. - Notre méthode marche très bien tant pour $\varepsilon = 10^{-10}$ comme pour $\varepsilon = 10^{-12}$. Notons que $\varepsilon = 10^{-10}$ est trop grand pour les problèmes reèls.

			METODO DE	
EPSI	н	EXC	STOR-COW-ADAMS	ADAMS-BAS-MOUL
0.00000000000	0.31416	0.0000	0.783D-08	0.452D-06
0.00000000000	0.15708	0.0000	0.308D-10	0.183D-08
0.00000000000	0.10472	0.0000	0.119D-11	0.723D-10
0.00000000000	0.31416	0.0010	0.780D-08	0.451D-06
0.00000000000	0.15708	0.0010	0.307D-10	0.183D-08
0.00000000000	0.10472	0.0010	0.119D-11	0.720D-10
0.00000000000	0.31416	0.0100	0.7520-08	0.435D-06
0.0000000000	0.15708	0.0100	0.298D-10	0.177D-08
0.00000000000	0.10472	0.0100	0.115D-11	0.698D-10
0.00000000000	0.31416	0.1000	0.473D-08	0.284D-06
0.00000000000	0.15708	0.1000	0.197D-10	0.117D-08
0.00000000000	0.10472	0.1000	0.774D-12	0.466D-10
0.00000000000	0.31416	0.2000	0.2860-08	0.177D-06
0.00000000000	0.15708	0.2000	0.109D-10	0.688D-09
0.00000000000	0.10472	0.2000	0.417D-12	0.269D-10
0.00000000000	0.31416	0.5000	0.3370-09	0.214D-07
0.00000000000	0.15708	0.5000	0.131D-11	0.815D-10
0.00000000000	0.10472	0.5000	0.454D-13	0.320D-11

		METODO DE		DE
EPSI	Н	EXC	STOR-COW-ADAMS	ADAMS-BAS-MOUL
0.000000000001	0.31416	0.0000	0.783D-08	0.452D-06
0.000000000001	0.15708	0.0000	0.308D-10	0.183D-08
0.000000000001	0.10472	0.0000	0.119D-11	0.723D-10
0.000000000100	0.31416	0.0000	0.783D-08	0.452D-06
0.000000000100	0.15708	0.0000	0.308D-10	0.183D-08
0.00000000100	0.10472	0.0000	0.119D-11	0.723D-10
0.00000000001	0.31416	0.0010	0.780D-08	0.451D-06
0.00000000000	0.15708	0.0010	0.307D-10	0.183D-08
0.000000000001	0.10472	0.0010	0.119D-11	0.720D-10
0.00000000100	0.31416	0.0010	0.7800-08	0.451D-06
0.00000000100	0.15708	0.0010	0.307D-10	0.183D-08
0.00000000100	0.10472	0.0010	0.119D-11	0.720D-10
0.00000000000	0.31416	0.0100	0.752D-08	0.435D-06
0.000000000001	0.15708	0.0100	0.298D-10	0.177D-08
0.000000000001	0.10472	0.0100	0.115D-11	0.698D-10
0.000000000100	0.31416	0.0100	0.752D-08	0.435D-06
0.000000000100	0.15708	0.0100	0.298D-10	0.177D-08
0.00000000100	0.10472	0.0100	0.115D-11	0.698D-10
0.000000000001	0.31416	0.1000	0.473D-08	0.284D-06
0.00000000000	0.15708	0.1000	0.197D-10	0.117D-08
0.000000000001	0.10472	0.1000	0.774D-12	0.466D-10
0.000000000100	0.31416	0.1000	0.473D-08	0.284D-06
0.000000000100	0.15708	0.1000	0.197D-10	0.117D-08
0.00000000100	0.10472	0.1000	0.775D-12	0.466D-10
0.00000000001	0.31416	0.2000	0.286D-08	0.177D-06
0.00000000001	0.15708	0.2000	0.109D-10	0.688D-09
0.00000000001	0.10472	0.2000	0.420D-12	0.2690-10
0.00000000100	0.31416	0.2000	0.286D-08	0.177D-06
0.00000000100	0.15708	0.2000	0.109D-10	0.688D-09
0.00000000100	0.10472	0.2000	0.418D-12	0.269D-10
0.000000000001	0.31416	0.5000	0.337D-09	0.214D-07
0.00000000001	0.15708	0.5000	0.131D-11	0.815D-10
0.00000000001	0.10472	0.5000	0.424D-13	0.320D-11
0.00000000100	0.31416	0.5000	0.337D-09	0.214D-07
0.00000000100	0.15708	0.5000	0.131D-11	0.815D-10
0.00000000100	0.10472	0.5000	0.422D-13	0.320D-11

CONCLUSIONS.

Nous avons formulé une généralization des méthodes de Cowell pour l'integration directe des équations différentielles du second ordre, derivée première etant present ou non, sous la forme de pairs des formules linéaires à pas multiple (PFML), au lieu des formules classiques de Cowell à différences centrales ou retrogrades. Nous avons possé les définitions d'ordre, consistence et stabilité des PFML et étudié leur caractérisation d'après une formulation matricielle très élégant qui nous permet oftenir le resultat (3.6).

De la même façon nous avons prouvé une condition suffisante pour la convergence de PFML. Maintenant nous sommes en train d'étudier quelques propietés de stabilité.

Comme un cas particulier nous avons décrie la construction d'une famille de PFML qui est simplement le pair predicteur - correcteur de Cowell - Sörmer - Adams que quelques autres auteurs (Herrick (2), Merson (11)) ont dejà presenté avec différences centrales ou retrogrades, et qui est d'une plus facile implementation.

En fin, nous avons fait une épreuve pour deux problèmes assez representatives du problème général : le problème de Kepler et le problème de Kepler perturbé par le frottement atmosphérique. La consequence tirée par nous sont que ces PFML marchent très bien quand on compare avec les méthodes d'Adams - Bashforth -Moulton.

REMERCIEMENT.

Ce papier a été supporté par le project CB4/85 de la Diputación General de Aragón (España).

BIBLIOGRAPHIE.

1.- Hall, G. and Suleiman, M.B. : 1981, "<u>Stability of Adams - type Formulae for</u> <u>Second - Order O.D.E.</u>" IMA of Num. Anal. <u>1</u>, 427 - 438.

2.- Herrick, S.: 1972, Astrodynamics, vol. 2, Van Nostrand Reinhold, London.

3.- Gear, G.W.: 1978, "<u>The Stability of Numerical Methods for Second Order</u> <u>Ordinary Differential Equations</u>"; SIAM J. Num. Anal., <u>15</u>, 188 - 197

4.- Henrici, P.: 1962, <u>Discrete Variable Methods in Ordinary Differential Equations</u> Jhon Wiley, New York. 5.- Lambert, J.D.: 1973, <u>Computational Methods in Ordinary Differential Equations</u>; Jhon Wiley, New York.

6.- Fox, K. : 1984, "<u>Numerical Integration of the Equations of Motion of Celestial</u> <u>Mechanics</u>"; Cel. Mech. <u>33</u>, 127 - 142

7.- Calvo, M. y Montijano, J.I. : 1985, <u>M.L.M. para la resolución numérica de</u> <u>E.D.O.</u>; Universidad de Zaragoza.

8.- Stiefel, E. and Scheifele, G. : 1971, Linear and Regular Celestial Mechanics; Springer - Verlag, Berlin.

9.- Moore, P. : 1978, " Orbitally Stable Multistep Methods "; Cel. Mech., <u>17</u>, 281 - 298

10.- Coffey, S.L. and Alfriend, K.T.: 1984, "<u>An Analytic Orbit Prediction</u> <u>Program Generator</u>"; J. Guidance, Control and Dynamics, 7, 575 - 581.

11.- Merson, R.H. : 1974, " RAE Technical Report 74 184 ".

Rev. Acad. Ciencias Zaragoza, 42 (1987)

Estudio cualitativo e integración de las ecuaciones del movimiento del "main problem" ecuatorial

FRANCO J. M. y PALACIOS M.

Departamento de Matemática Aplicada (E.T.S.I.I.Z.), Av. María Zambrano, 50, 50015-Zaragoza

AMS: 70M05

Resumen: En este trabajo estudiamos el movimiento de un satélite artificial terrestre en una aproximacion de primer orden, sujeto a moverse en el plano ecuatorial de la Tierra. Estudiamos cualitativamente las posibles trayectorias, tratando el problema como un campo de fuerzas centrales. Finalmente integramos analíticamente el problema, obteniendo la ecuación de la órbita y la ley horaria del movimiento en función de integrales y funciones elípticas.

1.Introducción.

En este trabajo estudiamos el movimiento de un satélite artificial terrestre sujeto a moverse en el plano ecuatorial. El movimiento consistirá en un problema kepleriano perturbado, con una perturbación inversamente proporcional al cubo de la distancia y cuya órbita tiene una inclinación de 0^0 . La energía potencial de este modelo viene dada por

 $V = -\frac{\mu}{r} - \varepsilon \frac{\mu}{2r^3},$

(1.1)

donde r es la distancia del centro de masas del sistema al satélite, $\varepsilon = J_2$ (término debido al achatamiento de la Tierra) y μ es la constante gravitacional.

En la expresión (1.1) se observa que el potencial es una función que solo depende de la distancia radial r y, en consecuencia, podemos considerar el movimiento del satélite como el movimiento de una partícula bajo la acción de un campo de fuerzas centrales, donde la magnitud de la fuerza es

$$f(r) = -\frac{dV(r)}{dr} = -\frac{\mu}{r^2} - \varepsilon \frac{3\mu}{2r^4}$$
(1.2)

Por lo tanto, el movimiento tedrá lugar en un plano(plano ecuatorial terrestre) y para su estudio utilizaremos coordenadas polares (r, θ).

2. Ecuaciones del movimiento.

Las ecuaciones diferenciales del movimiento en coordenadas polares vienen dadas por

$$\frac{d^2 r}{dt^2} - r \left(\frac{d\theta}{dt}\right)^2 = f(r)$$
(2.1)

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(r^{2}\frac{\mathrm{d}\theta}{\mathrm{d}t}\right) = 0 \tag{2.2}$$

siendo f(r) la magnitud de la fuerza de atracción dada en (1.2). La ecuación (2.2) nos da la integral de las áreas o del momento angular

$$r^2 \frac{d\theta}{dt} = h , \qquad (2.3)$$

de manera que, si despejamos la velocidad angular y sustituimos en la ecuación (2.2) obtenemos

$$\frac{d^2 r}{dt^2} = -\left[V(r) + \frac{1}{2}\frac{h^2}{r^2}\right]$$
(2.4)

En la expresión (2.4) se refleja que nuestro problema de tipo bidimensional ha quedado reducido a un problema unidimensional equivalente, donde la cantidad

$$V_e = V(r) + \frac{1}{2} \frac{h^2}{r^2}$$

representa una energía potencial ficticia que será muy util para poder estudiar cualitativamente las posibles órbitas del movimiento.

Considerando la integral de la energía del movimiento

$$E = \frac{1}{2} \left(\frac{dr}{dt} \right)^2 + V_e(r)$$

y despejando la velocidad radial obtenemos formalmente la solución en función del tiempo

$$t - t_0 = \int_{r_0}^{r} \frac{dr}{\sqrt{2 [E - V_e(r)]}}$$
(2.5)

$$\theta_0 - \theta = \int_{t_0}^{t} \frac{h}{r^2(t)} dt$$
(2.6)

o en el caso de que nos interese la ecuación de la órbita junto con la ley horaria

$$\theta_{0} - \theta = \int_{r_{0}} \frac{h}{r^{2} \sqrt{2 [E - V_{e}(r)]}} dr$$
(2.7)

$$t - t_0 = \int_{\theta_0}^{\theta} \frac{r^2(\theta)}{h} d\theta$$
(2.8)

3. Descripción cualitativa de las órbitas.

Para una discusión cualitativa del carácter de las órbitas, usaremos representaciones gráficas de la energía potencial ficticia V_e para diferentes valores del momento angular h. Derivando la energía potencial ficticia $V_e(r)$ e igualando a 0, obtenemos la siguiente ecuación de segundo grado:

$$2 \,\mu\,r^2 - 2 \,h^2 + 3 \,\epsilon\,\mu = 0,$$

de donde obtenemos los puntos extremos.

- Si $h^4 > 6 \ \mu^2 \ \epsilon$, la función V_e tiene dos puntos extremos para

$$r = \frac{h^2 \pm \sqrt{h^4 - 6\mu^2 \epsilon}}{2\mu}$$

cuyo carácter se determina sin más que tener en cuenta que $V_e(r) \rightarrow 0^-$ cuando $r \rightarrow \infty$. Por lo tanto,

$$V_{e}(r_{+}) = V_{e,\min} < 0$$

$$V_{e}(r_{-}) = V_{e,max} (>0, si h^{4} > 8 \mu^{2} \epsilon) y (<0, si h^{4} < 8 \mu^{2} \epsilon)$$

ver las figuras (1.a) y (1.b)

- Si h⁴ < 6 $\mu^2 \epsilon$, la función V_e(r) será monótona (ver la figura (1.c))

De las tres posibles gráficas obtenidas para la energía potencial ficticia, estudiaremos con detalle el caso de la figura (1.a), siendo análogo el estudio de los restantes casos.

Figura (1.c)

Si la energía $E > V_{max}$, la partícula procedente del infinito cae en el centro del potencial y la velocidad angular aumenta de acuerdo con la ecuación d $\theta/dt = h/r^2$ (ver las figura 2.a y b). Para grandes distancias tales que $\varepsilon \mu/r^3 << \mu/r$, el término dominante en la energía potencial es - μ/r y la órbita será muy próxima a una hipérbola. En el caso en

que la energía sea muy próxima a V_{max} , la partícula pasa lentamente através del rango de r, es decir, la partícula gira alrededor del centro de fuerzas dando un gran número de vueltas y luego cae hasta el centro (ver la figura 2.b).

Si la energía $E = V_{max}$, la partícula se aproxima asintóticamente al punto $r = r_+$ en su movimiento radial. Si la partícula se encuentra en la región $r > r_+$, la órbita será una espiral que se aproxima al círculo de radio r_+ y centro el centro de fuerzas, por el exterior (ver la figura 3). En el caso en que la partícula se mueva en la región $r < r_+$, la partícula parte del centro de fuerzas y se aproxima al círculo antes mencionado, por su interior (ver la figura 3). Finalmente, el movimiento a lo largo del círculo $r = r_+$ es posible, pero es muy inestable, de forma que, cualquier cambio producido en las integrales E ó h, hará que la órbita deje de ser circular.

Si $0 < E < V_{max}$, tenemos dos posibles regiones del movimiento para la partícula, r < a ó r > b. Si la partícula se mueve en la región r < a, la órbita tiene la

forma de un trozo de espiral y la partícula cae hacia el centro de fuerzas (ver la figura 4.a). Si la partícula se mueve en la región r > b, la partícula viene del infinito y es reflejada por la barrera de potencial volviéndose de nuevo al infinito (ver las figuras 4.b y c). En el caso en que r > b y E sea muy próxima a V_{max} , la partícula viene del infinito, da una serie de vueltas en la proximidad del círculo r = b y luego se vuelve al infinito (ver la figura 4.c).

Si $V_{min} < E < 0$, la partícula da lugar a oscilaciones rápidas en el rango $c \le r \le d$. Si la energía es próxima a cero, la amplitud de las oscilaciones radiales será grande y su periodo puede ser también grande, dando lugar a varias revoluciones durante una oscilación radial (figura 5.a). Cuando la energía E es próxima a V_{min} , la órbita es próxima a un círculo de radio r_{+} y las oscilaciones radiales son pequeñas (figura 5.b).

Figura (5.a)

Figura (5.b)

Si $E = V_{min}$, la partícula se mueve sobre el círculo de radio $r = r_{\perp}$.

En la siguiente sección, estudiaremos con más detalle el movimiento de la partícula cuando la energía E < 0 (movimiento acotado).

4. Estudio del movimiento acotado.

Las ecuaciones diferenciales del movimiento, en nuestro caso, vienen dadas por

$$\frac{d^2 r}{dt^2} - r \left(\frac{d\theta}{dt}\right)^2 = -\frac{\mu}{r^2} - \varepsilon \frac{3\mu}{2r^4}$$
(4.1)

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(r^{2}\frac{\mathrm{d}\theta}{\mathrm{d}t}\right) = 0 \tag{4.2}$$

y de la expresión (4.2) se obtiene inmediatamente la integral del momento angular dada en la expresión (2.3)

Para resolver el sistema de ecuaciones (4.1)-(4.2), podemos despejar la velocidad angular de la integral del momento angular, sustituirla en la ecuación (4.1) e integrar la ecuación resultante. Pero nosotros estamos interesados en la obtención de la ecuación de la órbita y, por lo tanto, utilizaremos la expresión (2.7) de la sección 1

(4.3)

(4.4)

$$\theta - \theta_0 = \int_{r_0}^{r} \frac{h \, dr}{r^2 \sqrt{2 \left(E + \frac{\mu}{r} - \frac{h^2}{2 r^2} + \frac{\mu \epsilon}{2 r^3}\right)}}$$

Efectuando el cambio de variable dependiente

$$r = \frac{1}{u}, \qquad dr = -\frac{1}{u^2} du$$

la expresión (4.3) adoptará la forma

$$\gamma \left(\theta - \theta_0 \right) = \int_{u_0}^{u} \frac{du}{\sqrt{P(u)}}$$

donde

$$\gamma = - \mu \varepsilon/h^2 > 0,$$

$$P(u) = a_0 + a_1 u + a_2 u^2 - u^3,$$

$$a_0 = -\frac{2 E}{\mu \epsilon}, \ a_1 = \frac{h^2}{\mu \epsilon}, \ a_2 = -\frac{2}{\epsilon}.$$

La parte de la derecha de la expresión (4.4) es una integral elíptica incompleta de primer orden, sin embargo, antes de proceder a la resolución formal de la ecuación (4.4), haremos un análisis de la cúbica P(u) y del rango de la variable u, desde el punto de vista de la mecánica orbital.

Consideraremos órbitas de tipo elíptico que presenten puntos de máxima y mínima proximidad a la masa atrayente, que se designan con los nombres de *apoábside* y *periábside*, de radios r_a y r_p , respectivamente. En estos puntos se verifica

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{t}}=\mathbf{0},$$

y teniendo en cuenta la transformación de variables efectuada, tenemos

$$\frac{\mathrm{d}u}{\mathrm{d}\theta} = -\frac{1}{r^2}\frac{\mathrm{d}r}{\mathrm{d}\theta} = -\frac{1}{h}\frac{\mathrm{d}r}{\mathrm{d}t} = 0$$

De donde deducimos que la condición de ábside vendrá dada por

$$\frac{\mathrm{d}u}{\mathrm{d}\theta} = 0 \tag{4.5}$$

De la expresión (4.5) se deduce que dos de las raices de la cúbica P(u) serán los ábsides y, por lo tanto, tendrá dos raices reales positivas. Teniendo en cuenta que las raices imaginarias deben aparecer en pares conjugados, concluimos que las raices de dicha cúbica son todas reales y al menos dos de ellas son positivas. Si designamos a estas raices por u_1, u_2, u_3 , y suponemos que las tenemos ordenadas en orden decreciente

$$u_1 > u_2 > u_3$$
.

como la variable u ha de estar acotada entre dos de estos valores sucesivos, los dos posibles rangos para u son:

$$u_1 > u_2 > u > u_3$$
, $u_1 > u > u_2 > u_3$

Teniendo en cuenta que $P(u) = (u_1 - u) (u - u_2) (u - u_3)$, si suponemos que estamos en el primer caso, P(u) < 0, el argumento bajo el signo del radical será negativo y llegamos a una contradicción (ya que en caso contrario la cúbica tendría dos raices imaginarias

conjugadas). Por lo tanto, el rango de u será $u_1 > u > u_2 > u_3$ y las raices $u_1 y u_2$ tendrán un significado especial

$$u_1 = \frac{1}{r_p}, \ u_2 = \frac{1}{r_a}$$

Ecuación de la órbita.

Tomando condiciones iniciales $\theta(t_0) = \theta_0$ en la época de paso del satélite por el periábside e integrando la ecuación (4.4) (ver Byrd and Friedman[3] 236.00), resulta

$$\gamma (\theta - \theta_0) = -\frac{2}{\sqrt{u_1 - u_3}} \sin^{-1} (\sin \varphi, k)$$
(4.6)

(4.7)

done k es el módulo de las funciones e integrales jacobianas elípticas, y en nuestro caso tiene el valor

$$k = \sqrt{\frac{u_1 - u_2}{u_1 - u_3}} < 1$$

la variable argumento ϕ es concida como la amplitud de la integral elíptica de primer orden, y en nuestro caso viene definida por

$$\varphi = \arcsin \sqrt{\frac{u_1 - u}{u_1 - u_2}}$$
, $0 \le \varphi \le \pi/2$

Invirtiendo la expresión (4.6) obtenemos la ecuación de la órbita

$$r(\theta) = \frac{\beta}{1 - \alpha^2 \operatorname{sn}^2 \left[\gamma * \sqrt{u_1 - u_3} (\theta - \theta_0)\right]}$$

donde las constantes α , β y γ vienen dadas por

$$\beta = \frac{1}{u_1}, \ \alpha^2 = \frac{u_1 - u_2}{u_1}, \ \gamma^* = \frac{\gamma}{2}$$

La función sn^2 es una función periódica de periodo 2 K, donde K es la integral elíptica completa de primer orden definida por K = F($\pi/2$,k). De acuerdo con esto, el radio vector es una función periódica de θ con periodo

$$T = \frac{2 K}{\gamma^* \sqrt{u_1 - u_3}}$$

Sin embargo, $T \neq 2\pi$ y la distancia radial es obtenida de nuevo cuando el radio vector gira hasta T. Esto implica que, en general, la trayectoria del satélite no es cerrada, trazando una curva esquemática como la dada en la figura 6.

Durante el tiempo transcurrido entre dos pasos sucesivos del satélite por el periábside, el radio vector del periábside habrá girado un ángulo

$$\Delta \phi_n = T - 2\pi$$

Para que la trayectoria del satélite sea cerrada, se ha de verificar que el número $k = \Delta \phi_p/\pi$ sea un número racional, ya que en caso contrario, la trayectoria sería densa en el anillo $r_p \le r \le r_a$ (ver Puel[5]).

Ley horaria del movimiento.

La ley horaria del movimiento la deduciremos de la integral del momento angular (2.3) y la expresión de la ecuación de la órbita, resultando

$$\frac{h}{\beta^2} \int_{t_0}^{t} dt = \int_{\theta_0}^{\theta} \frac{d\theta}{\left(1 - \alpha^2 \sin^2 \delta \left(\theta - \theta_0\right)\right)^2}$$
(4.8)

donde $\delta = \gamma^* (u_1 - u_3)^{1/2}$

Si hacemos el cambio de variable $\phi = \delta (\theta - \theta_0)$, $d\phi = \delta d\theta$ y comenzamos a contar
ángulos desde el periábside ($\theta_0 = 0$), la ecuación (4.8) queda:

$$\frac{\delta h}{\beta^2} (t - t_0) = \int_0^{\phi} \frac{d\phi}{\left(1 - \alpha^2 \sin^2 \phi\right)^2}$$
(4.9)

donde to es la época de paso por el periábside

Para resolver la ecuacion (2.9), utilizaremos la fórmula 336.03 dada por Byrd and Friedman[3], obteniendo la siguiente ley horaria (ecuación de Kepler generalizada)

N (t - t₀) = C₁
$$\Pi(\phi, k)$$
 + C₂ E(ϕ, k) + C₃ $\Pi(\phi, \alpha^2, k)$ + C₄ $\frac{\operatorname{sen} \phi \cos \phi \sqrt{1 - k^2 \operatorname{sen}^2 \phi}}{1 - \alpha^2 \operatorname{sen}^2 \phi}$

donde las constantes vienen dadas por

$$N = \frac{\delta h}{\beta^2}$$

$$C_1 = \frac{u_1}{2 u_2}$$

$$C_2 = \frac{u_1 (u_3 - u_1)}{2 u_2 u_3}$$

$$C_3 = \frac{u_1 u_3 + u_1 u_3 + u_2 u}{2 u_2 u_3}$$

$$C_4 = \frac{(u_1 - u_2) (u_1 - u_3)}{2 u_2 u_3}$$

La ley horaria viene expresada en función de las integrales jacobianas elípticas de primero, segundo y tercer orden y de la variable ϕ que a su vez es una función lineal de θ . Hacemos notar que no es sencillo invertir esta ecuación, análoga a la ecuación de Kepler, sin embargo la variable θ puede ser computada, para un instante dado t, mediante un algoritmo de tipo numérico como el método de Newton-Raphson. Una vez calculada $\theta(t)$ el radio vector vendrá dado por la ecuación de la órbita (4.7), con lo cual el problema queda totálmente resuelto.

Agradecimientos.

Este trabajo ha sido realizado dentro del programa de los proyectos CB4/84 de la Diputación General de Aragón y CAICYT número 779-84.

Referencias.

- [1] BELEN'KII, I. M.: A Method of Regularizing the Equations of Motion in Central Force-Field. Celes. Mech. 23 (1981) 9-32.
- [2] BELETSKII, V. V.: Motion of an Artificial Satellite about its Center of Mass. Israel Program for Scientific Translations, (1966), Apéndice 2, pp. 250-256.
- [3] BYRD, P. F. and FRIEDMAN, M. D.: Handbook of Elliptic Integrals for Engeniers and Scientists, (1971), Springer-Verlag, New York.
- [4] JEZEWSKI, J. D.: An Analytic Solution for the J₂ Perturbed Equatorial Orbit.. Celes. Mech. 30 (1983) 363-371.
- [5] PUEL, F.: The Rotation Number of Bunded Orbits in a Central Field. Celes. Mech. 29 (1983) 255-266.
- [6] STERNE, T. E.: The Gravitational Orbit of a Satellite of an Oblate Planet. Atron. J., 63 Nº 1255 (1958) 28-40.
- [7] WHITTAKER, E. T.: Analitical Dynamics, 1937 Cambridge.

Rev. Acad. Ciencias Zaragoza, 42 (1987)

METODO ESTROBOSCOPICO EN VARIABLES DE DELAUNAY. APLICACION A UN RADIAL DEL SATELITE ARTIFICIAL.

A. ABAD, A. ELIPE Y M.L. SEIN-ECHALUCE

Departamento de Física Teórica. (Astronomía). Universidad de Zaragoza. 50009 Zaragoza (Spain).

The second order stroboscopic method is developed and an application to the zonal Earth satellite formulated in Delaunay variables is made. The advantages of these variables versus Hill variables for this method are expossed.

1. INTRODUCCION.

El método estroboscópico, propuesto por Roth (1973), es un método semianalítico que ha sido utilizado con muy buenos resultados en análisis de misión, en predicción de vida de satélites, en construcción de ventanas de lanzamiento, etc.

Dicho método consiste esencialmente en rentringir la validez de la teoría analítica a una única revolución, y después de ésta, aplicar la misma teoría a los elementos actualizados en la siguiente revolución, y así sucesivamente, de modo que se pueden calcular numerosas órbitas.

Una de las principales ventajas de este método la constituye el hecho de que se obtiene una gran velocidad de cálculo, y como se ha comprobado, una buena precisión incluso después de cientos de revoluciones (Janin, 1979).

El método estroboscópico ha sido utilizado en diferentes conjuntos de variables: elementos clásicos (Roth, 1973, 78, 79), elementos equinocciales (Lecohier, 1985), variables de Hill (Sein-Echaluce, Abad y Elipe, 1987), etc. En estas últimas, se pierden gran parte de las ventajas del método al aparecer términos de orden cero en las ecuaciones diferenciales del movimiento. En el presente artículo, siguiendo la extensión de segundo orden obtenida por los autores, formulamos el problema de movimiento de un intermediario correspondiente a un satélite zonal en variables de Delaunay, con lo que se evitan las anteriores dificultades. Lógicamente, es de interés la utilización de las variables de Delaunay en el problema inicial (antes de promediar), sin embargo, planteamos el intermediario radial para destacar la ventaja de estas variables frente a las de Hill.

2. METODO ESTROBOSCOPICO DE SEGUNDO ORDEN.

Consideremos las ecuaciones del movimiento de una partícula atraída por un potencial Kepleriano perturbado:

$$\frac{d\mathbf{x}}{dt} = \mathbf{F}^{0} + \varepsilon \mathbf{F}^{1} + \varepsilon^{2} \mathbf{F}^{2}$$
(1)
$$\frac{d\mathbf{y}}{dt} = \mathbf{G}^{0} + \varepsilon \mathbf{G}^{1} + \varepsilon^{2} \mathbf{G}^{2}$$

siendo $\mathbf{x} = (x_1, x_2, ..., x_n)$ el sistema de variables, e y la variable angular rápida (por ejemplo anomalía verdadera, excéntrica, media, etc.).

De acuerdo con la estructura del método estroboscópico, se introduce la variable rápida y como la nueva variable independiente, con lo que el sistema (1) adopta la siguiente forma

(2)

(3)

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\mathbf{y}} = \frac{\mathbf{F} + \varepsilon \mathbf{F} + \varepsilon^2 \mathbf{F}}{\mathbf{G} + \varepsilon \mathbf{G} + \varepsilon^2 \mathbf{G}^2}$$
$$\frac{\mathrm{d}\mathbf{t}}{\mathrm{d}\mathbf{y}} = \frac{1}{\frac{1}{\mathbf{G} + \varepsilon \mathbf{G} + \varepsilon^2 \mathbf{G}^2}}$$

La solución de éste vendrá dada por

$$\mathbf{x} = \mathbf{x}^{0} + \varepsilon \mathbf{x}^{1} + \varepsilon^{2} \mathbf{x}^{2}$$
$$\mathbf{t} = \mathbf{t}^{0} + \varepsilon \mathbf{t}^{1} + \varepsilon^{2} \mathbf{t}^{2}$$

(los superíndices 0,1,2 corresponden a la perturbación de orden 0,1,2).

De acuerdo con las expresiones (3), los segundos miembros de la ecuación (2) pueden ser desarrollados en serie de Taylor. Derivando a continuación (3) e identificando los coeficientes de las potencias del pequeño parámetro ε en las ecuaciones (2), se tiene

$$\begin{aligned} \frac{d\mathbf{x}}{d\mathbf{y}} &= \frac{\mathbf{F}}{\mathbf{G}}^{0} = \Phi^{0}\left(\mathbf{x}^{\circ};\mathbf{y}\right) \end{aligned} \tag{4} \\ \frac{d\mathbf{x}^{\circ}}{d\mathbf{y}} &= \frac{1}{(\mathbf{G})^{2}} \left[\left(\mathbf{F}^{1}\mathbf{G}^{0} + \mathbf{G}^{0} \sum_{1}^{n} \mathbf{F}_{k}^{0} \cdot \mathbf{x}_{k}^{1} - \mathbf{F}^{0}\mathbf{G}^{1} \right) \end{aligned} \tag{5} \\ &- \mathbf{F}^{\circ} \sum_{n} \mathbf{G}_{k}^{0} \mathbf{x}_{k}^{1} \right] = \Phi^{1}\left(\mathbf{x}^{\circ}, \mathbf{x}^{1}, \mathbf{y}\right) \end{aligned} \tag{5} \\ \frac{d\mathbf{x}^{2}}{d\mathbf{y}} &= \frac{1}{(\mathbf{G})^{3}} \left[-\mathbf{F}^{0}\mathbf{G}^{0}\mathbf{G}^{2} + \mathbf{F}^{0}\left(\mathbf{G}^{1}\right)^{2} - \mathbf{F}^{1}\mathbf{G}\mathbf{G}^{0} + \mathbf{F}^{2}\left(\mathbf{G}^{0}\right)^{2} - \mathbf{F}^{2}\mathbf{G}^{0}\mathbf{G}^{1} + \mathbf{F}^{2}\left(\mathbf{G}^{0}\right)^{2} - \mathbf{F}^{2}\mathbf{G}^{2}\mathbf{G}^{1} + \mathbf{F}^{2}\left(\mathbf{G}^{0}\mathbf{G}^{1}\right)^{2} - \mathbf{F}^{2}\mathbf{G}^{2}\mathbf{G}^{2}\mathbf{G}^{1} + \mathbf{F}^{2}\left(\mathbf{G}^{0}\mathbf{G}^{2}\mathbf{G}^{1} + \mathbf{F}^{2}\left(\mathbf{G}^{0}\mathbf{G}^{2}\mathbf{G}^{2}\right) + \mathbf{F}^{2}\mathbf{G}^{2}\mathbf$$

donde las funciones G^1 , F^i se calculan en x^0 y las funciones F_k , G_j , son las derivadas con respecto a las componentes $x_{k, j}$ y F_{kj} , G_{kj} las segundas respecto a x_k y x_j .

Siguiendo el mismo proceso, el sistema correspondiente al tiempo t viene dado por las expresiones

$$\frac{dt^{0}}{dy} = \frac{1}{G^{0}} = \psi^{0}(\mathbf{x}^{0}; y)$$

$$\frac{dt^{1}}{dy} = \frac{1}{(G^{0})^{2}} [G^{1} + \sum_{1}^{n} G^{0}_{k} \mathbf{x}^{1}_{k}] = \psi^{1}(\mathbf{x}^{0}, \mathbf{x}^{1}; y)$$
(8)

$$\frac{dt^{2}}{dy} = \frac{1}{(G^{0})^{3}} \left[-G^{0}G^{2} - G^{0}\sum_{1}^{n}G^{1}_{k}x_{k}^{1} - G^{0}\sum_{1}^{n}G^{0}_{k}x_{k}^{2} - \frac{1}{2}G^{0}\sum_{1}^{n}\sum_{1}^{n}G^{0}_{k}x_{k}^{1}x_{j}^{1} + (G^{1})^{2} + 2G^{1}\sum_{1}^{n}G^{0}_{k}x_{k}^{1} + (\sum_{1}^{n}G^{0}_{k}x_{k}^{1})^{2} \right] = \psi^{2}(\mathbf{x}^{0}, \mathbf{x}^{1}, \mathbf{x}^{2}; \mathbf{y})$$
(9)

A continuación se aplica el esquema del método estroboscópico para integrar este sistema, teniendo en cuenta que en general, la solución de los sistemas diferenciales (4, 5, 6), no son un conjunto de cuadraturas como sucede con los elementos orbitales clásicos (Roth, 1979) o con las variables de Delaunay como se verá más adelante.

La solución de segundo orden, después de n revoluciones, es de la forma

$$\mathbf{x}_{n}^{2} = \mathbf{x}_{n}^{0} + \Delta \mathbf{x}_{n}^{1} + \Delta \mathbf{x}_{n}^{2}$$
(10)

con

$$\Delta \mathbf{x}_{n}^{1} = \varepsilon \int_{0}^{2\pi} \phi^{1}(\mathbf{x}^{0}, \mathbf{x}^{1}, \mathbf{y}) d\mathbf{y}$$
$$\Delta \mathbf{x}_{n}^{2} = \varepsilon^{2} \int_{0}^{2\pi} \phi^{2}(\mathbf{x}^{0}, \mathbf{x}^{1}, \mathbf{x}^{2}, \mathbf{y}) d\mathbf{y}$$

donde el símbolo integral debe entenderse como la solución del sistema diferencial cuando la variable rápida sufre una variación de 2π .

Para más detalles, véase Roth (1979).

3. INTERMEDIARIO RADIAL EN VARIABLES DE HILL.

Aunque el contenido de este epígrafe apareció en Sein-Echaluce et <u>al</u>.(1987), exponemos aquí brevemente la formulación en variables de Hill, con objeto de resaltar el inconveniente más importante que aparece en estas variables, que sin embargo queda eliminado en otro conjunto como el de Delaunay. Consideremos un satélite moviéndose en un campo gravitatorio simétrico de la forma

$$V = -\frac{\mu}{r} \left[1 - \sum_{n=2} J_n \left(\frac{\alpha}{r}\right)^n P_n \text{ (sen ϕ)}\right]$$
(11)

siendo a el radio ecuatorial, J_n los armónicos zonales, $P_n(\text{sen }\phi)$ el polinomio de Legendre de grado n en sen ϕ y ϕ la declinación del satélite.

Si la función Hamiltoniana la tenemos expresada en variables de Hill (r,θ,v,R,Θ,N), tras aplicar dos transformaciones canónicas de tipo Lie (ver Cid <u>et al.</u> 1985), se obtiene un nuevo Hamiltoniano, promediado, de un grado de libertad en las variables (r, R), dado por la expresión

$$H = \frac{1}{2} \left(R^{2} + \frac{\Theta^{2}}{r^{2}}\right) - \frac{\mu}{r} + \varepsilon \frac{\mu}{r^{3}} \left(\frac{1}{2} - \frac{3}{4} s^{2}\right) + \\ + \varepsilon^{2} \frac{\Theta^{2}}{2r p^{2}} \left[\frac{3s^{2}(4s^{2}-3)}{8} + 2\sum_{n=2}^{\infty} \frac{J'_{2n}}{p^{2}(n-2)} B_{2n}^{0}\right] + \\ + \varepsilon^{2} \frac{\Theta^{2}}{2r p^{2}} e^{2} \left[\frac{3s^{2}(23s^{2}-16)}{32} + \frac{1}{2} + \sum_{n=2}^{\infty} \frac{J'_{2n}}{p^{2}(n-2)} B_{2n}^{0}\right] + \\ + \sum_{n=2}^{\infty} \frac{J'_{2n}}{p} B_{2n}^{0} \sum_{j=1}^{n-1} {2n-1 \choose 2j} {2j \choose j} \left(\frac{1}{2}e\right)^{2j-2} \right]$$

siendo todos los coeficientes que aparecen funciones exclusivas de los momentos (Θ ,N), que son constantes, de la variable r y de su momento conjugado R.

Aplicando la teoría expuesta en el apartado anterior, obtenemos para el orden cero

$$\frac{dr^{0}}{d\theta} = R^{0} (r^{0})^{2} / \Theta$$
$$\frac{dv^{0}}{d\theta} = 0$$
$$\frac{dR^{0}}{d\theta} = \frac{\Theta}{r^{0}} - \frac{\mu}{\Theta}$$

La integración de este sistema es muy fácil, toda vez que coincide con el movimiento

(12)

no perturbado del problema de dos cuerpos, y por tanto, se conoce la expresión explícita de las variables r y R en función de la variable θ .

Para el primer orden, se tiene

$$\frac{dr^{1}}{d\theta} = \frac{2R^{0}r^{0}r^{1}}{\Theta} + \frac{(r^{0})^{2}R^{1}}{\Theta} + \frac{3 \mu N^{2}r^{0}R^{0}}{2\Theta^{5}}$$

$$\frac{dv^{1}}{d\theta} = \frac{3\mu N}{2r^{0}\Theta^{3}}$$

$$\frac{dR^{1}}{d\theta} = \frac{\Theta r^{1}}{(r^{0})^{2}} + \frac{3\mu(2-3S^{2})}{4\Theta(r^{0})^{2}} + \frac{3\mu^{2}N^{2}}{2\Theta^{5}r^{0}} - \frac{3\mu^{2}N^{2}}{2\Theta^{3}(r^{0})^{2}}$$
(13)

En este caso, aparecen tanto r^1 como R^1 mezclados, siendo por tanto necesario el resolver dicho sistema mediante métodos numéricos, con lo que se pierden en gran parte las ventajas inherentes al método estroboscópico. Algo análogo sucede con las ecuaciones de segundo orden. No obstante, parece lógico pensar que una adecuada elección de la variable rápida (una anomalía intermedia) nos pueda solventar la mencionada dificultad. Dicho estudio está en fase de realización.

4. INTERMEDIARIO EN VARIABLES DE DELAUNAY.

Vamos a considerar a continuación el movimiento del satélite descrito anteriormente en

variables de Delaunay (l,g,h,L, Θ ,N), (donde hemos puesto $\Theta \equiv G$, N \equiv H, para evitar confusiones de notación). Tras dos transformaciones de tipo Lie con objeto de eliminar las variables angulares g y h, y utilizando los desarrollos de Hansen para el movimiento elíptico, se obtiene el siguiente intermediario:

$$H = \frac{-\mu^{2}}{2L^{2}} + \frac{\epsilon\mu^{2}}{2\Theta^{8}} (3N^{2} - \Theta^{2}) (1 + \epsilon \cos f)^{3} + \cdots$$

$$+\epsilon^{2} \frac{3\mu^{6}(1 + \epsilon \cos f)^{2}}{16\Theta^{10}} [4s^{4} - 3s^{2} + \frac{e^{2}}{4} (23s^{4} - 16s^{2})]$$
(14)

donde la excentricidad e y la anomalía verdadera f son

$$e^{2} = 1 - \frac{\Theta^{2}}{T_{1}^{2}}$$
 y $f = f(1, \Theta, N)$

En este caso, consideramos la anomalía media l como la variable angular rápida, y podemos aplicar el método estroboscópico tal como aparece en el párrafo 2, resultando los siguientes sistemas de ecuaciones para los distintos órdenes (0,1,2) correspondientes a las variables g, h y L:

$$\frac{d}{d}\frac{g}{d}\frac{g}{1} = \frac{d}{d}\frac{h}{1}^{0} = \frac{d}{d}\frac{L}{1}^{0} = 0$$
(15)
$$\frac{d}{d}\frac{g}{1}\frac{g}{d}\frac{g}{1} = \frac{-3(L^{0})^{3}}{\Theta^{8}} (1 + e^{0}\cos f^{0}) \left[\frac{(4N^{2}-\Theta^{2})(1+e^{0}\cos f^{0})}{\Theta^{2}} - \frac{1}{\Theta^{2}}\right]$$

$$\frac{-\frac{1}{2} (3N^{2} - \Theta^{2}) (1 + e^{0} \cos f^{0})_{L} = \phi_{1}^{1} (L^{0}; 1)$$

$$\frac{d h^{1}}{d 1} = \frac{3 N (L^{0})^{3}}{2 \Theta^{8}} (1 + e^{0} \cos f^{0})^{3} = \phi_{2}^{1} (L^{0}; 1)$$

$$\frac{d L^{1}}{d 1} = \frac{3 e^{2} (L^{0})^{6}}{4 \Theta^{11}} (3N^{2} - \Theta^{2}) (1 + e^{0} \cos f^{0})^{4} = \phi_{3}^{1} (L^{0}; 1)$$
(16)

y para el segundo,

$$\frac{d}{d} \frac{g^{2}}{d} = \frac{1}{(G^{0})^{2}} \left[(F_{L}^{11}G^{0} - G_{L}^{0}F^{11})L^{1} - (F^{11}G^{1} - F^{21}G^{0}) \right]$$

$$\frac{d}{d} \frac{h^{2}}{l} = \frac{1}{(G^{0})^{2}} \left[(F_{L}^{12}G^{0} - G_{L}^{0}F^{12})L^{1} - (F^{12}G^{1} - F^{22}G^{0}) \right]$$

$$\frac{d}{d} \frac{L^{2}}{l} = \frac{1}{(G^{0})^{2}} \left[(F_{L}^{13}G^{0} - G_{L}^{0}F^{13})L^{1} - (F^{13}G^{1} - F^{23}G^{0}) \right]$$
(17)

donde las funciones F^{ij} , G^{i} , $F^{ij}{}_{\alpha\beta}$, $G^{i}{}_{\alpha\beta}$, están evaluadas en L⁰, y vienen dadas por las expresiones:

$$F^{11} = \frac{-3 \ \mu^2}{\Theta^8} (1+e \ \cos \ f)^2 \left[\frac{4 \ N^2 - \Theta^2}{\Theta} (1+e \ \cos \ f) - \frac{3 \ N^2 - \Theta^2}{2} (1+e \ \cos \ f)_{\Theta}\right]$$

$$F^{21} = \frac{3 \ \mu^{6} (1+e \ \cos \ f)}{8 \ \Theta^{10}} \left[-\frac{5}{\Theta} (1+e \ \cos \ f) + (1+e \ \cos \ f)_{\Theta} \right] \cdot \left[4 \ s^{4} - 3 \ s^{2} + \frac{e^{2}}{2} (23 \ s^{4} - 16 \ s^{2}) \right] + (1+e \ \cos \ f) \left\{ \frac{N^{2}}{\Theta^{3}} \left[8 \ s^{2} - 3 + \frac{23}{2} \ e^{2} s^{2} - 4 \ e^{2} \right] - \left[-\frac{\Theta}{4 \ L^{2}} (23 \ s^{4} - 16 \ s^{2}) \right] \right\}$$

$$F^{12} = \frac{3 \ \mu^{2} \ N}{2 \ \Theta^{8}} (1+e \ \cos \ f)^{3}$$

$$F^{22} = \frac{-3 \ \mu^{6} \ N}{8 \ \Theta^{12}} (1+e \ \cos \ f) \left[8s^{2} - 3 + \frac{e^{2}}{2} (23 \ s^{2} - 8) \right]$$

$$F^{13} = \frac{3 \ \mu^{2} \ e \ L^{3}}{4 \ \Theta^{11}} (3 \ N^{2} - \Theta^{2}) (1+e \ \cos \ f)^{4}$$

$$F^{23} = \frac{3 \ \mu^{6} \ e \ L^{3}}{8 \ \Theta^{13}} \ \text{sen f} (1+e \ \cos \ f)^{3} \left[8s^{2} - 3 + \frac{e^{2}}{2} (23 \ s^{2} - 8) \right]$$

siendo

$$(1+e\cos f)_{\Theta} = -\frac{2\Theta}{eL^2} \left[\cos f - \frac{L^2}{\Theta^2}e \sin f(2\sin f + \frac{2}{2}\sin 2f)\right]$$

$$(1+e \cos f)_{L} = \frac{\Theta^{2}}{e L^{3}} \left[\cos f - \frac{L^{2}}{\Theta^{2}}e \operatorname{sen} f(2\operatorname{sen} f + \frac{e}{2}\operatorname{sen} 2f)\right]$$

En esta ocasión, las ecuaciones (17) son cuadraturas, debido a que en cada orden solamente aparecen las soluciones correspondientes a los órdenes anteriores, que previamente son calculadas. Debido a este hecho, se obtiene una gran velocidad de cálculo.

Las ecuaciones correspondientes a la variable temporal t, son:

$$\frac{d t^{0}}{d l} = \frac{(L^{0})^{3}}{\mu^{2}}$$

$$\frac{d}{d} \frac{t^{1}}{1} = \frac{3(L^{0})^{6}}{2\Theta^{8}\mu^{2}} (3N^{2}-\Theta^{2}) (1+e^{0}\cos f^{0}) (1+e\cos f)_{L}^{0} - \frac{3(L^{0})^{2}}{\mu^{2}} L^{1}$$
$$-\frac{3(L^{0})^{2}}{\mu^{2}} L^{1}$$
$$\frac{d}{d} \frac{t^{2}}{1} = \frac{1}{(G^{0})^{3}} \left[-G^{0}G^{2} - G^{0}G^{1}_{L}L^{1} - G^{0}G^{0}_{L}L^{1} - \frac{1}{2} G^{0}G^{0}_{LL} (L^{1})^{2} + (G^{1})^{2} + 2 G^{1}G^{0}_{L}L^{1} + (G^{0}_{L}L^{1})^{2} \right]$$

AGRADECIMIENTOS.

Este trabajo ha sido parcialmente subvencionado por la D.G.A. (Proyect CB 4/84), CAZAR y Universidad de Zaragoza.

REFERENCIAS.

Sein-Echaluce, M.L., Abad, A. y Elipe, A. (1987). *IAF* Paper 87-339
Cid, R, Ferrer, S. y Sein-Echaluce, M.L. (1985): *Celest.Mech.* 38, 1991-205.
Janin, G. (1979) ESA STM-208
Roth, E. (1973): *Celest.Mech.* 8, 245-249.
Roth, E. (1978): In V.Szebehely (ed) "Dynamics of Planets and Satellytes and Theories of their motion", Ed. Reidel, Dordrecht, 181-188
Roth, E. (1979): Journal of Applied Math.and Physics (ZAMP) Vol.30, 315-325.
Lecohier, G. (1985): ESOC MAO Working Paper n² 221

Rev. Acad. Ciencias Zaragoza, 42 (1987)

MOVIMIENTO DE UN SOLIDO PESADO EN UN CONJUNTO SUPERABUNDANTE DE VARIABLES

R. CID* Y M.E. SAN SATURIO+

*Facultad de Ciencias. Universidad de Zaragoza.
*Departamento de Matemática Aplicada a la Técnica. E.T.S.I.I.
Universidad de Valladolid.

In this paper we study the rotational motion of a heavy rigid body, formulate in a set of redundant and complex variables (z_1, z_2, z_3, z_4) and their conjugate momenta (z_1, z_2, z_3, z_4) . These variables are defined by means of the Euler angles (ψ, θ, ϕ) and their conjugate momenta $(p_{\psi}, p_{\theta}, p_{\phi})$.

In this conditions, explicit expressions for the fundamental equations and first integrals are given. Our study is applied to the case of Lagrange-Poisson, checking the involutory character of the integrals. Besides, a close solution of the problem by means of the Weierstrass elliptic functions is given.

1.- INTRODUCCION.

En recientes trabajos (M.E. San Saturio, 1986; R. Cid y M.E. San Saturio, 1987) los autores demuestran un cierto número de proposiciones que definen las condiciones y propiedades inherentes a transformaciones canónicas que aumentan el número de variables.

De manera más concreta, si se considera una transformación, definida por funciones de clase C⁽²⁾

 $q_i = q_i(Q)$ $P_{\alpha} = \Sigma P_i(\partial q_i / \partial Q_{\alpha})$ (1.1)

donde (q,p) es un 2n-dimensional espacio $(q_1,q_2,\ldots,q_n;p_1,p_2,\ldots,p_n)$ y (Q,P) un 2(n+1)-dimensional espacio $(Q_1,Q_2,\ldots,Q_{n+1};P_1,P_2,\ldots,P_{n+1})$, se demuestra que:

"Un sistema diferencial

 $q_i = \partial H / \partial p_i$ $p_i = -\partial H / \partial q_i$ (i=1,2,...,n) (1.2) con un hamiltoniano H(q,p,t), de clase $C^{(2)}$, puede ser transformado en un nuevo sistema $\dot{Q}_{\alpha} = \partial H^{*} / \partial P_{\alpha} \qquad \dot{P}_{\alpha} = -\partial H^{*} / \partial Q_{\alpha} \qquad (\alpha = 1, 2, \dots, n+1) \quad (1.3)$ de hamiltoniano $H^{*} = H[q(Q), p(Q, P), t]$ por medio de la transformación canónica (1.1)".

Dicha proposición, combinada con otra anterior, demuestra que cada solución Q(t), P(t), del sistema (1.3) determina una solución q(t), p(t), del sistema (1.2).

2.- ECUACIONES QUE DEFINEN EL MOVIMIENTO DE UN SOLIDO RIGIDO.

Recordemos que el movimiento de un sólido rígido, con un punto fijo O, viene perfectamente definido por medio de los tres ángulos de Euler (ψ, θ, ϕ) , que determinan la posición de un sistema móvil Ox₁x₂x₃, rígidamente unido al sólido, con respecto a un sistema fijo OX₁X₂X₃.

En tales condiciones, si (I_1, I_2, I_3) son los momentos principales de inercia del sólido, que determinan la orientación del sistema móvil $Ox_1x_2x_3$, los momentos $(p_{\psi}, p_{\theta}, p_{\phi})$, conjugados de las variables (ψ, θ, ϕ) , quedan definidos por las igualdades

$$\begin{split} p_{\psi} &= I_{1}\omega_{1} \text{sen } \theta \text{ sen } \phi + I_{2}\omega_{2} \text{sen } \theta \cos \phi + I_{3}\omega_{3} \cos \theta \\ \\ p_{\theta} &= I_{1}\omega_{1} \cos \phi - I_{2}\omega_{2} \text{sen } \phi \end{split} \tag{2.1} \\ p_{\phi} &= I_{3}\omega_{3} \end{split}$$

siendo

 $\omega_{1} = \dot{\psi} \operatorname{sen} \theta \operatorname{sen} \phi + \dot{\theta} \cos \phi$ $\omega_{2} = \dot{\psi} \operatorname{sen} \theta \cos \phi - \dot{\theta} \operatorname{sen} \phi \qquad (2.2)$ $\omega_{3} = \dot{\psi} \cos \theta + \dot{\phi}$

las componentes de la velocidad angular del sólido en el sistema móvil.

Identificando las variables (ψ, θ, ϕ) con (q_1, q_2, q_3) y los momentos $(p_{\psi}, p_{\theta}, p_{\phi})$ con (p_1, p_2, p_3) , las ecuaciones diferenciales del movimiento coinciden con (1.2), siendo ahora

$$H = \frac{1}{2I_1} \left[\frac{\operatorname{sen} \phi}{\operatorname{sen} \theta} (p_{\psi} - p_{\phi} \cos \theta) + p_{\theta} \cos \phi \right]^2 + \frac{1}{2I_2} \left[\frac{\cos \phi}{\operatorname{sen} \theta} (p_{\psi} - p_{\phi} \cos \theta) - p_{\theta} \operatorname{sen} \phi \right]^2 + \frac{p_{\phi}^2}{2I_3} + U$$
(2.3)

En el caso concreto del sólido pesado, el potencial U adopta la forma

 $U = x_1^0 \sin \theta \sin \phi + x_2^0 \sin \theta \cos \phi + x_3^0 \cos \theta \qquad (2.4)$ donde (x_1^0, x_2^0, x_3^0) designan las coordenadas constantes del centro de masas del sólido en el sistema móvil.

3.- EXTENSION CANONICA RELATIVA A UN CONJUNTO SUPERABUNDANTE DE VARIABLES COMPLEJAS.

Consideremos el conjunto de cuatro variables

$$z_{1} = \operatorname{sen} \frac{\theta}{2} e^{i\delta} \qquad z_{2} = \operatorname{sen} \frac{\theta}{2} e^{-i\delta} z_{3} = i\cos \frac{\theta}{2} e^{-i\sigma} \qquad z_{4} = -i\cos \frac{\theta}{2} e^{i\sigma}$$
(3.1)

donde

$$\sigma = \frac{1}{2}(\psi + \phi) \qquad \qquad \delta = \frac{1}{2}(\psi - \phi) \qquad (3.2)$$

y calculemos sus productos binarios

$$z_{1}z_{2} = \operatorname{sen}^{2} \frac{\theta}{2} \qquad z_{1}z_{3} = \frac{i}{2}\operatorname{sen} \theta \ e^{-i\phi} \qquad z_{2}z_{3} = \frac{i}{2}\operatorname{sen} \theta \ e^{-i\psi}$$

$$z_{3}z_{4} = \cos^{2} \frac{\theta}{2} \qquad z_{2}z_{4} = -\frac{i}{2}\operatorname{sen} \theta \ e^{i\phi} \qquad z_{1}z_{4} = -\frac{i}{2}\operatorname{sen} \theta \ e^{i\psi}$$

Combinando adecuadamente estos productos, obtenemos las siguientes igualdades

 $\begin{array}{rll} z_{1}z_{2} + z_{3}z_{4} &= 1 & -z_{1}z_{2} + z_{3}z_{4} &= \cos\theta \\ z_{1}z_{3} - z_{2}z_{4} &= i \sin\theta\cos\phi & z_{1}z_{3} + z_{2}z_{4} &= \sin\theta\sin\phi & (3.4) \\ z_{2}z_{3} + z_{1}z_{4} &= \sin\theta\sin\psi & z_{2}z_{3} - z_{1}z_{4} &= i \sin\theta\cos\psi \\ y \text{ también} \end{array}$

$$\frac{z_2 z_4}{z_1 z_3} = -e^{2i\phi} \qquad \frac{z_1 z_2}{z_3 z_4} = tag^2 \frac{\theta}{2} \qquad \frac{z_1 z_4}{z_2 z_2} = -e^{2i\psi} \quad (3.5)$$

De las fórmulas (3.4) resultan facilmente las relaciones sen $\theta = 2\sqrt{z_1 z_2 z_3 z_4}$ cos $\theta = z_3 z_4 - z_1 z_2$

$$\sin \phi = \frac{z_2 z_4 + z_1 z_3}{2 \sqrt{z_1 z_2 z_3 z_4}} \qquad \qquad \cos \phi = \frac{i (z_2 z_4 - z_1 z_3)}{2 \sqrt{z_1 z_2 z_3 z_4}} \qquad (3.6)$$

sen ϕ	$z_{2}z_{4} + z_{1}z_{3}$	cos ¢	$i(z_2z_4 - z_1z_3)$
sen 0	$= \frac{4z_1z_2z_3z_4}{4z_1z_2z_3z_4}$	sen 0	4z ₁ z ₂ z ₃ z ₄

Por otra parte, derivando parcialmente las igualdades (3.5) con respecto a las variables ${\bf z}_{\rm i}$, obtenemos

$$\frac{\partial \psi}{\partial z_1} = -\frac{i}{2z_1}, \quad \frac{\partial \psi}{\partial z_2} = \frac{i}{2z_2}, \quad \frac{\partial \psi}{\partial z_3} = \frac{i}{2z_3}, \quad \frac{\partial \psi}{\partial z_4} = -\frac{i}{2z_4}$$
$$\frac{\partial \theta}{\partial z_1} = \frac{\alpha}{z_1}, \quad \frac{\partial \theta}{\partial z_2} = \frac{\alpha}{z_2}, \quad \frac{\partial \theta}{\partial z_3} = -\frac{\alpha}{z_3}, \quad \frac{\partial \theta}{\partial z_4} = -\frac{\alpha}{z_4} \quad (3.7)$$
$$\frac{\partial \phi}{\partial z_1} = \frac{i}{2z_1}, \quad \frac{\partial \phi}{\partial z_2} = -\frac{i}{2z_2}, \quad \frac{\partial \phi}{\partial z_3} = \frac{i}{2z_3}, \quad \frac{\partial \phi}{\partial z_4} = -\frac{i}{2z_4}$$

siendo $\alpha = \sqrt{z_1 z_2 z_3 z_4}$

Entonces, de acuerdo con la definición (1.1) de los momentos $Z_{\alpha} = P_{\alpha}$, y los valores (3.7) de las derivadas $\partial q_i / \partial z_{\alpha}$, tenemos las igualdades

$$z_{1}Z_{1} = -\frac{1}{2} p_{\psi} + \alpha p_{\theta} + \frac{1}{2} p_{\phi}$$

$$z_{2}Z_{2} = \frac{1}{2} p_{\psi} + \alpha p_{\theta} - \frac{1}{2} p_{\phi}$$

$$z_{3}Z_{3} = \frac{1}{2} p_{\psi} - \alpha p_{\theta} + \frac{1}{2} p_{\phi}$$

$$z_{4}Z_{4} = -\frac{1}{2} p_{\psi} - \alpha p_{\theta} - \frac{1}{2} p_{\phi}$$
(3.8)

o sus inversas

$$p_{\psi} = \frac{i}{2}(z_{1}Z_{1} - z_{2}Z_{2} - z_{3}Z_{3} + z_{4}Z_{4})$$

$$p_{\theta} = \frac{1}{4\alpha}(z_{1}Z_{1} + z_{2}Z_{2} - z_{3}Z_{3} - z_{4}Z_{4})$$

$$p_{\phi} = -\frac{i}{2}(z_{1}Z_{1} - z_{2}Z_{2} + z_{3}Z_{3} - z_{4}Z_{4})$$

$$0 = z_{1}Z_{1} + z_{2}Z_{2} + z_{3}Z_{3} + z_{4}Z_{4}$$
(3.9)

Observemos que, como consecuencia de esta última igualdad, la expresión de p_A se puede escribir en la forma

$$p_{\theta} = \frac{1}{2\sqrt{z_{1}z_{2}z_{3}z_{4}}} \left[z_{3}z_{4}(z_{1}z_{1} + z_{2}z_{2}) - z_{1}z_{2}(z_{3}z_{3} + z_{4}z_{4}) \right]$$
(3.10)

En efecto, poniendo a = $z_1^{}z_2^{}$, b = $z_3^{}z_4^{}$, A = $z_1^{}Z_1^{}+z_2^{}Z_2^{}$, B = $z_3^{}Z_3^{}+z_4^{}Z_4^{}$, con A+B = 0 , se tiene

$$p_{\theta} = \frac{1}{2\sqrt{ab}} \left(\frac{(a+b)}{2} (A-B) \right) = \frac{1}{2\sqrt{ab}} \left(\frac{(a-b)}{2} (A+B) + bA - aB \right) =$$
$$= \frac{1}{2\sqrt{ab}} (bA - aB)$$

que demuestra (3.10).

Como consecuencia de todas estas igualdades, se obtienen sin mayor dificultad las relaciones

$$(p_{\psi} - p_{\phi} \cos \theta) \frac{\sin \phi}{\sin \theta} + p_{\theta} \cos \phi = \frac{i}{2} (z_{4} Z_{1} - z_{3} Z_{2} - z_{2} Z_{3} + z_{1} Z_{4})$$

$$(3.11)$$

$$(p_{\psi} - p_{\phi} \cos \theta) \frac{\cos \phi}{\sin \theta} - p_{\theta} \sin \phi = \frac{1}{2} (-z_{4} Z_{1} - z_{3} Z_{2} + z_{2} Z_{3} + z_{1} Z_{4})$$

que utilizaremos en lo que sigue.

4.- ECUACIONES FUNDAMENTALES E INTEGRALES PRIMERAS EN EL MOVI-MIENTO DE UN SOLIDO PESADO.

Con objeto de expresar las ecuaciones del movimiento de un sólido pesado, comencemos introduciendo las siguientes notaciones

$W_{1} = \frac{1}{2} (z_{4} Z_{1} - z_{3} Z_{2} - z_{2} Z_{3} + z_{1} Z_{4})$	$k_1 = z_1 z_3 + z_2 z_4$
$W_{2} = \frac{1}{2} (-z_{4} z_{1} - z_{3} z_{2} + z_{2} z_{3} + z_{1} z_{4})$	$k_2 = i(z_2z_4 - z_1z_3)$
$W_{3} = \frac{i}{2} (-z_{1} z_{1} + z_{2} z_{2} - z_{3} z_{3} + z_{4} z_{4})$	$k_3 = z_3 z_4 - z_1 z_2$ (4.1)

De acuerdo con esto, el hamiltoniano del problema, dado en (2.3), adopta la forma

$$H = \frac{1}{2} \left[\frac{W_1^2}{I_1} + \frac{W_2^2}{I_2} + \frac{W_3^2}{I_3} \right] + U$$
(4.2)

siendo ahora

 $U = x_1^{\circ}k_1 + x_2^{\circ}k_2 + x_3^{\circ}k_3$ (4.3)

y las ecuaciones diferenciales del movimiento, en el conjunto de variables $(z_1, z_2, z_3, z_4; Z_1, Z_2, Z_3, Z_4)$ vendrán dadas por la igualdades siguientes:

$$\dot{z}_{1} = + \frac{iz_{4}}{2I_{1}} W_{1} - \frac{z_{4}}{2I_{2}} W_{2} - \frac{iz_{1}}{2I_{3}} W_{3}$$

$$\dot{z}_{2} = - \frac{iz_{3}}{2I_{1}} W_{1} - \frac{z_{3}}{2I_{2}} W_{2} + \frac{iz_{2}}{2I_{3}} W_{3}$$

$$\dot{z}_{3} = - \frac{iz_{2}}{2I_{1}} W_{1} + \frac{z_{2}}{2I_{2}} W_{2} - \frac{iz_{3}}{2I_{3}} W_{3}$$

$$\dot{z}_{4} = + \frac{iz_{1}}{2I_{1}} W_{1} + \frac{z_{1}}{2I_{2}} W_{2} + \frac{iz_{4}}{2I_{3}} W_{3}$$

$$\dot{z}_{1} = - \frac{iZ_{4}}{2I_{1}} W_{1} - \frac{z_{4}}{2I_{2}} W_{2} + \frac{iZ_{1}}{2I_{3}} W_{3} - (x_{1}^{\circ} - ix_{2}^{\circ}) z_{3} + x_{3}^{\circ} z_{2}$$

$$\dot{z}_{2} = + \frac{iZ_{3}}{2I_{1}} W_{1} - \frac{z_{3}}{2I_{2}} W_{2} - \frac{iZ_{2}}{2I_{3}} W_{3} - (x_{1}^{\circ} + ix_{2}^{\circ}) z_{4} + x_{3}^{\circ} z_{1}$$

$$\dot{z}_{3} = + \frac{iZ_{2}}{2I_{1}} W_{1} + \frac{z_{2}}{2I_{2}} W_{2} + \frac{iZ_{3}}{2I_{3}} W_{3} - (x_{1}^{\circ} - ix_{2}^{\circ}) z_{4} - x_{3}^{\circ} z_{4}$$

$$\dot{z}_{4} = - \frac{iZ_{1}}{2I_{1}} W_{1} + \frac{z_{1}}{2I_{2}} W_{2} - \frac{iZ_{4}}{2I_{3}} W_{3} - (x_{1}^{\circ} - ix_{2}^{\circ}) z_{1} - x_{3}^{\circ} z_{4}$$

$$\dot{z}_{4} = - \frac{iZ_{1}}{2I_{1}} W_{1} + \frac{z_{1}}{2I_{2}} W_{2} - \frac{iZ_{4}}{2I_{3}} W_{3} - (x_{1}^{\circ} - ix_{2}^{\circ}) z_{2} - x_{3}^{\circ} z_{3}$$

Es inmediato comprobar que, en todos los casos, dichas ecuaciones tienen las siguientes integrales primeras

$$\Phi_{1} = H(z,Z) = h$$

$$\Phi_{2} = z_{1}z_{2} + z_{3}z_{4} = 1$$

$$\Phi_{3} = \frac{i}{2}(z_{1}Z_{1} - z_{2}Z_{2} - z_{3}Z_{3} + z_{4}Z_{4}) = p_{\psi} = c$$
(4.6)

siendo h y c dos constantes reales de integración.

La primera es evidente por ser H independiente de t. En cuanto a la segunda y tercera basta comprobar la anulación de las expresiones

una vez sustituidos los valores de \dot{z}_{α} , \dot{z}_{α} , por medio de las ecuaciones (4.4) y (4.5).

De igual modo se comprueba que dichas integrales están en involución, esto es que los paréntesis de Poisson $\{\phi_i, \phi_j\}$ (i,j=1,2,3) se anulan identicamente.

En efecto, teniendo en cuenta las ecuaciones de Hamilton dz_α/dt = $\partial H/\partial Z_\alpha$, dZ_α/dt = $-\partial H/\partial z_\alpha$, resulta

$$\{\Phi_{1}, \Phi_{2}\} = \{H, \Phi_{2}\} = -d\Phi_{2}/dt = 0$$

$$\{\Phi_{1}, \Phi_{3}\} = \{H, \Phi_{3}\} = -d\Phi_{3}/dt = 0$$

$$\{\Phi_{2}, \Phi_{2}\} = \sum (\partial\Phi_{2}/\partial z_{2} \cdot \partial\Phi_{2}/\partial z_{2}) = \frac{i}{\pi}(z_{1}z_{2} - z_{1}z_{2} - z_{2}z_{1} + z_{2}z_{1}) =$$

0

Recordemos (Whittaker, 1965) que "si n integrales distintas $\Phi_k(z,Z,t) = c_k$ de un sistema

$$dz_{k}/dt = \partial H/\partial Z_{k} \qquad dZ_{k}/dt = -\partial H/\partial Z_{k} \quad (k=1,2,\ldots,n) \quad (4.8)$$

están en involución y despejamos los momentos en la forma $Z_k = Z_k(z,c,t)$, la expresión $\Sigma Z_k dz_k$ - Hdt es la diferencial exacta de una cierta función f(z,c,t) y las restantes integrales del sistema (4.8) vienen dadas por ecuaciones del tipo $\partial f/\partial c_k = b_k = const.$ "

Dicho de otra forma, el conocimiento de n integrales en involución de un sistema canónico de n grados de libertad, determina su total integración.

Según esto, para la total integración del problema de movimiento de un sólido pesado, será necesario obtener una cuarta integral que se encuentre en involución con las tres anteriores dadas en (4.6).

Como se sabe, la existencia de una nueva integral del problema sólamente es conocida en determinados problemas, cuya paternidad ha sido asignada a los autores Euler-Poinsot, Lagrange-Poisson y S. Kowalevsky, con independencia de la trivial solución del caso esférico $(I_1 = I_2 = I_3)$.

De hecho, S. Kowalevsky (1889) y A.M. Lyapunov (1894) han demostrado que si las constantes I_1 , I_2 , I_3 , x_1° , x_2° , x_3° , son reales y los momentos I_1 , I_2 , I_3 , distintos de cero, los cuatro casos clásicos son los únicos para los cuales los parámetros (2.2), $\omega_1(t)$, $\omega_2(t)$, $\omega_3(t)$, y los (4.1), $k_1(t)$, $k_2(t)$, $k_3(t)$, con valores arbitrarios $\omega_1(0)$, $k_1(0)$, son funciones uniformes del tiempo.

3)

97

Observemos, sin embargo, que imponiendo restricciones sobre los valores de las constantes h, c, I_1 , I_2 , I_3 , x_1° , x_2° , x_3° , pueden existir soluciones particulares del problema, que son citadas en la literatura (Leimanis, 1965).

5.- OTRA FORMULACION DE LAS ECUACIONES FUNDAMENTALES.

Derivando con respecto al tiempo t las igualdades (4.1) y sustituyendo las expresiones de las derivadas \dot{z}_{α} , \dot{z}_{α} , según (4.4) y (4.5), se llega facilmente a las ecuaciones

$$\dot{W}_{1} = W_{2}W_{3} \left[\frac{1}{I_{3}} - \frac{1}{I_{2}} \right] - x_{2}^{\circ}k_{3} + x_{3}^{\circ}k_{2}$$

$$\dot{W}_{2} = W_{1}W_{3} \left[\frac{1}{I_{1}} - \frac{1}{I_{3}} \right] + x_{1}^{\circ}k_{3} - x_{3}^{\circ}k_{1} \qquad (5.1)$$

$$\dot{W}_{3} = W_{1}W_{2} \left[\frac{1}{I_{2}} - \frac{1}{I_{1}} \right] - x_{1}^{\circ}k_{2} + x_{2}^{\circ}k_{1}$$

$$\dot{k}_{1} = -\frac{W_{2}}{I_{2}}k_{3} + \frac{W_{3}}{I_{3}}k_{2}$$

$$\dot{k}_{2} = \frac{W_{1}}{I_{1}}k_{3} - \frac{W_{3}}{I_{3}}k_{1} \qquad (5.2)$$

$$\dot{k}_{3} = -\frac{W_{1}}{I_{1}}k_{2} + \frac{W_{2}}{I_{2}}k_{1}$$

que son semejantes a las de Euler y Poisson, aunque escritas en el sistema de variables (z,Z).

El sistema diferencial formado por las ecuaciones (5.1) y (5.2), tiene las integrales primeras (4.6) y satisface, además, a la relación de ligadura

 $z_{1}Z_{1} + z_{2}Z_{2} + z_{3}Z_{3} + z_{4}Z_{4} = 0$ (5.3)

Observemos que, con arreglo a este esquema de cálculo, la integral $\phi_{_{\rm q}}$ puede escribirse en la forma

$$\Phi_3 = W_1 k_1 + W_2 k_2 + W_3 k_3 = c \tag{5.4}$$

según se desprende del cálculo efectuado con las expresiones de las funciones W_1 , W_2 , W_3 , k_1 , k_2 , k_3 , dadas en (4.1), del mismo modo que ϕ_2 es equivalente a la integral

$$k_1^2 + k_2^2 + k_3^2 = 1$$
 (5.5)

6.- RESOLUCION DEL PROBLEMA DE MOVIMIENTO DE UN SOLIDO PESADO EN EL CASO DE LAGRANGE-POISSON.

Las condiciones que definen el problema de Lagrange-Poisson, son las siguientes

 $I_1 = I_2$, $x_1^{\circ} = x_2^{\circ} = 0$, $x_3^{\circ} > 0$ (6.1) Por tanto, si hacemos

 $I_{13} = \frac{1}{I_3} - \frac{1}{I_1}$ (6.2)

las ecuaciones (5.1) y (5.2) se reducen, quedando

$$\dot{W}_{1} = I_{13}W_{2}W_{3} + x_{3}^{\circ}k_{2} \qquad \dot{k}_{1} = -\frac{W_{2}}{I_{1}}k_{3} + \frac{W_{3}}{I_{3}}k_{2}$$
$$\dot{W}_{2} = -I_{13}W_{1}W_{3} - x_{3}^{\circ}k_{1} \qquad \dot{k}_{2} = \frac{W_{1}}{I_{1}}k_{3} - \frac{W_{3}}{I_{3}}k_{1} \quad (6.3)$$
$$\dot{W}_{3} = 0 \qquad \dot{k}_{3} = \frac{1}{I_{1}}(-W_{1}k_{2} + W_{2}k_{1})$$

La anulación de la derivada \dot{W}_3 , determina una cuarta integral $W_3 = p_{\phi} = c_{\phi}$, siendo c_{ϕ} una constante real, por tanto, si se introducen las notaciones

$$c_1 = 2I_1 x_3^{\circ} > 0$$
 $h_1 = 2I_1 \left[h - \frac{c_0^2}{2I_3} \right]$ (6.4)

las integrales del problema se pueden escribir

$$W_{1}^{2} + W_{2}^{2} = h_{1} - c_{1}k_{3}$$

$$k_{1}^{2} + k_{2}^{2} + k_{3}^{2} = 1$$

$$W_{1}k_{1} + W_{2}k_{2} = c - c_{0}k_{3}$$

$$W_{3} = c_{0}$$
(6.5)

De acuerdo con esto, si multiplicamos la primera integral por $1-k_3^2 = k_1^2 + k_2^2$ y elevamos al cuadrado la tercera, resultan las siguientes relaciones

$$W_{1}^{2}k_{1}^{2} + W_{2}^{2}k_{2}^{2} + W_{2}^{2}k_{1}^{2} + W_{1}^{2}k_{2}^{2} = (h_{1} - c_{1}k_{3})(1 - k_{3}^{2})$$
(6.6)
$$W_{1}^{2}k_{1}^{2} + W_{2}^{2}k_{2}^{2} + 2W_{1}W_{2}k_{1}k_{2} = (c - c_{0}k_{3})^{2}$$
(6.7)

a las que podemos añadir la última ecuación (6.3) elevada al cuadrado, esto es

$$W_1^2 k_2^2 + W_2^2 k_1^2 - 2W_1 W_2 k_1 k_2 = I_1^2 \dot{k}_3^2$$
(6.8)

Sumando (6.7) y (6.8) y restando (6.6), se obtiene

$$I_{1}^{2}\dot{k}_{3}^{2} = -(c - c_{o}k_{3})^{2} + (h_{1} - c_{1}k_{3})(1 - k_{3}^{2})$$

o bien

$$\frac{I_1^2}{c_1}\dot{k}_3^2 = k_3^3 - f_1k_3^2 + f_2k_3 + f_3$$
(6.9)

siendo f_1 , f_2 , f_3 , las constantes

$$f_1 = \frac{c_{\circ} + h_1}{c_1}$$
, $f_2 = \frac{2c_{\circ}c}{c_1} - 1$, $f_3 = \frac{h_1 - c^2}{c_1}$ (6.10)

Introduciendo las notaciones

$$k_3(t) = k(t) + \frac{f_1}{3}$$
 $a = \sqrt{x_3^{\circ}/2I_1}$ (6.11)

y multiplicando por 4 la ecuación diferencial (6.9), resulta después de extraer la raiz cuadrada

adt =
$$\frac{dk}{\sqrt{4k^3 - g_2k - g_3}} = \frac{dk}{\sqrt{P(k)}}$$
 (6.12)

siendo ahora

$$g_2 = 4\left[\frac{f_1^2}{3} - f_2\right]$$
 $g_3 = 4\left[-f_3 - \frac{f_1f_2}{3} + \frac{2f_1^2}{27}\right]$ (6.13)

Integrando (6.12) en el intervalo (t $_{o}$,t) al que corresponderán los valores (k $_{o}$,k), tendremos

$$a(t-t_{o}) = \int_{k_{o}}^{k} \frac{dk}{P(k)} = \mathcal{Y}^{-1}(k_{o}) - \mathcal{Y}^{-1}(k)$$
(6.14)

en cuya igualdad solamente se ha considerado el signo (+) por suponer que k(t) crece con t y donde $\mathscr{O}(x)$ designa la función de Weierstrass (Schwarz H.A., Weierstrass K., 1893) que figura tabulada en Proc. Roy. Artillery Inst., v 17, pp. 181-216, y que está definida por la serie

$$(\mathbf{x}) = \frac{1}{\mathbf{x}^2} + \frac{g_2 \mathbf{x}^2}{20} + \frac{g_3 \mathbf{x}^4}{28} + \frac{g_2^2 \mathbf{x}^6}{1200} + \frac{3g_2 g_3 \mathbf{x}^8}{6160} + \dots$$
(6.15)

Finalmente, poniendo

$$u = a \left[t - t_{o} - - \beta^{-1} (k_{o}) \right]$$
 (6.16)

se obtiene

$$k_3(t) = k(t) + \frac{t_1}{3} = \bigvee (u) + \frac{t_1}{3}$$
 (6.17)

El conocimiento de la función

 $k_3(t) = \cos\theta(t) \tag{6.18}$

no sólo nos proporciona el valor de $\theta(t)$ en su verdadero cuadrante, puesto que $0 < \theta < I$, sino que nos permite calcular en todo instante los productos $z_1 z_2$, $z_3 z_4$, cuyo carácter real y positivo es evidente según las dos primeras fórmulas (3.3), teniéndose por tanto

$$z_1 z_2 = \frac{1}{2}(1 - k_3)$$
 $z_3 z_4 = \frac{1}{2}(1 + k_3)$ (6.19)

Para concluir el cálculo de las funciones $\psi(t)$, $\varphi(t)$, podemos introducir las funciones

$$\mu = \log \frac{z_2 z_4}{z_1 z_3} = 2i\phi + \log(-1) = 2i(\phi + \frac{\pi}{2} + n\pi)$$

$$\nu = \log \frac{z_1 z_4}{z_2 z_2} = 2i\psi + \log(-1) = 2i(\psi + \frac{\pi}{2} + n\pi)$$
(6.20)

siendo n un número entero y designando por Log el logaritmo neperiano.

Derivando (6.20) con respecto a t, tendremos

$$\dot{\mu} = -\frac{\dot{z}_{1}}{z_{1}} + \frac{\dot{z}_{2}}{z_{2}} - \frac{\dot{z}_{3}}{z_{3}} + \frac{\dot{z}_{4}}{z_{4}} = -\frac{i(W_{1}k_{1} + W_{2}k_{2})k_{3}}{2I_{1}z_{1}z_{2}z_{3}z_{4}} + \frac{2iW_{3}}{I_{3}}$$

$$\dot{\nu} = \frac{\dot{z}_{1}}{z_{1}} - \frac{\dot{z}_{2}}{z_{2}} - \frac{\dot{z}_{3}}{z_{3}} + \frac{\dot{z}_{4}}{z_{4}} = \frac{i(W_{1}k_{1} + W_{2}k_{2})}{2I_{1}z_{1}z_{2}z_{3}z_{4}}$$
(6.21)

de donde se deducen las expresiones de $\dot{\phi}$ y $\dot{\psi}$, sin más que igualar las fórmulas (6.21) con las derivadas de las (6.20). Se obtienen así las igualdades

$$\dot{\phi} = \frac{c}{I_3} - \frac{(c - c_0 k_3) k_3}{I_1 (1 - k_3^2)} = c_0 I_{13} + \frac{b}{1 - k_3} + \frac{b'}{1 + k_3}$$

$$\dot{\psi} = \frac{c - c_0 k_3}{I_1 (1 - k_3)} = -\frac{b}{1 - k_3} + \frac{b'}{1 + k_3}$$
(6.22)

donde b y b' denotan las constantes

$$b = \frac{c_{0} - c}{2I_{1}} \qquad b' = \frac{c_{0} + c}{2I_{1}} \qquad (6.23)$$

Ahora bien, si tenemos en cuenta la igualdad (6.12) y definimos las integrales

$$J_{1} = \int_{k_{o}}^{k} \frac{dk}{\sqrt{P(k)}}$$

$$J_{3} = \int_{k_{o}}^{k} \frac{dk}{(k-\beta)\sqrt{P(k)}}$$

$$J_{3}^{\prime} = \int_{k_{o}}^{k} \frac{dk}{(k-\beta^{\prime})\sqrt{P(k)}}$$
(6.24)

siendo β y β ' Las constantes

$$\beta = 1 - \frac{f_1}{3} \qquad \beta' = -1 - \frac{f_1}{3} \qquad (6.25)$$

tendremos

$$\phi - \phi_{\circ} = \frac{c_{\circ}I_{13}}{a} J_{1} - \frac{b}{a} J_{3} + \frac{b'}{a} J_{3}'$$

$$\psi - \psi_{\circ} = \frac{b}{a} J_{3} + \frac{b'}{a} J_{3}'$$
(6.26)

Así pues, el cálculo de los ángulos de Euler $\theta(t)$, $\psi(t)$, $\phi(t)$, viene dado por medio de integrales elípticas de Weierstrass, de primera especie (J_1) y de tercera especie (J_3, J_3) , quedando el problema completamente resuelto.

. BIBLIOGRAFIA.

Cid, R. y San Saturio, M.E. (1987). Celest. Mech. (aceptado para publicación).

Euler, L. (1758). Mem. Acad. Roy. Sci. et Belles-Lettres de Berlin, <u>14</u>, 1765, 154-193 y (1760), <u>16</u>, 1767, 176-227.

Kowalevsky, S.V. (1889). Acta Math. <u>12</u>, 177-232 y (1890), <u>14</u>, 81-93; (1890). Acad. Sci. Inst. Francia. <u>31</u>, 1-62. Lagrange, J.L. (1788). Mécanique Analitique. Paris: Veuve Desaint y (1889). Paris: Gauthier-Villars.

- Leimanis, E. (1965). The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point. Springer-Verlag. Berlin, Heidelberg. New York.
- Poinsot, L. (1834). Publicado de nuevo en J. Math. Pures Appl. (1), 16, 289-336 (1851).
- Poisson, S.D. (1813). J. Ecole Polyt. <u>16</u>, 247-262, y Traité de Mécanique. Paris: Bachelier (1811).

San Saturio, M.E. (1986). Fac. Cienc. Univ. Zaragoza. Tesis doct.

Tisserand, F. (1891). Traité de Mécanique Celeste. Paris: Gauthier-Villars (vol. II).

Rev. Acad. Ciencias Zaragoza, 42 (1987)

DATOS DE DISPERSION CONTAMINADOS POR RUIDO Y ATENUACION ANELASTICA

J. BADAL*, V. CORCHETE* Y F. SERÓN*

*Departamento de Física Teórica (Geofísica). Facultad de Ciencias. Ciudad Universitaria. 50009 ZARAGOZA.

+Departamento de Matemática Aplicada. Facultad de Matemáticas. Ciudad Universitaria. 50009 ZARAGOZA.

A study of the behaviour of the specific disipation coefficient of an anelastic medium is carried out from the analysis of synthetic seismograms corresponding to dispersed seismic waves contaminated by random noise. The analysis is made by means of the frequency-domain Wiener filtering by using a modified Tukey window. At any case, the phase velocity is less sensitive than grcup velocity to the noise. The attenuation coefficient and the quality factor of the medium are parameters which always show a large unstability versus noise, this negative effect being very obvious for short periods.

1. INTRODUCCION

La determinación de los rasgos estructurales de la litosfera y el manto superior, de las propiedades anelásticas de la tierra y del mecanismo de la fuente sísmica, pasa por el cálculo de magnitudes importantes, en función del periodo de las ondas sísmicas dispersadas, tales como el tiempo de llegada de grupo, el ángulo de fase y la amplitud. Este cálculo puede llevarse a cabo usando métodos de una sola estación, o bien métodos de dos estaciones. Con las reservas debidas, dentro del marco de los primeros, el análisis de ventana móvil (Landisman et al., 1969) o la técnica del filtro múltiple (Dziewonski et al., 1969) se pueden utilizar para el cálculo de velocidades de grupo y velocidades de fase. La estructura Q de la corteza se puede deducir a partir de las amplitudes de las ondas superficiales (Cheng y Mitchell, 1981). Pero estos métodos requieren el conocimiento previo del mecanismo de la fuente sísmica o la suposición de que sus efectos son lo suficientemente pequeños como para ser ignorados.

Los métodos de dos estaciones no precisan de esta informa-

ción, pero requieren, en cambio, dos estaciones sísmicas alineadas con el epicentro sísmico sobre un mismo círculo máximo. Dos estaciones se pueden usar para determinar el coeficiente de atenuación entre estaciones.

Una deconvolución por mínimos cuadrados o deconvolución Wiener (Wiener, 1949; Treitel y Robinson, 1966; Peacock y Treitel, 1969) ha sido utilizada por Taylor y Toksöz (1982) sobre ondas superficiales para obtener la respuesta impulso del medio entre estaciones. Recientemente, Hwang y Mitchell (1986) han llevado a cabo un análisis de ondas superficiales mediante una nueva técnica que combina el filtrado Wiener en el dominio frecuencia con las técnicas de mejora de la relación señal/ruido, como son las que sirven para identificar y separar los distintos trenes de ondas que componen la señal, es decir, el filtrado en tiempo variable (Cara, 1973) o el filtrado acoplado en fase (Herrin y Goforth, 1977; Goforth y Herrin, 1979). Este método da excelentes resultados en cuanto a la determinación de velocidades de fase entre estaciones, velocidades de grupo y coeficientes de atenuación. En realidad, es una réplica del método utilizado por Taylor y Toksöz (1982), quienes hacen uso del filtrado Wiener en el dominio tiempo.

Cierto que la deconvolución Wiener no es capaz de remover con eficiencia interferencias modales, cuando los modos superiores se sobreponen al modo fundamental en las funciones de correlación. Precisamente, para paliar este efecto, se recurre al filtrado en tiempo variable o al uso de filtros acoplados en fase, para aislar un modo particular en cada una de las dos estaciones. Pero el filtrado Wiener en el dominio frecuencia permite lograr una mayor exactitud y estabilidad de los resultados al analizar datos contaminados por ruido.

En este artículo, nosotros empleamos esta técnica para estudiar el comportamiento del coeficiente de disipación específica de un medio anelástico a partir del análisis de sismogramas sintéticos correspondientes a ondas sísmicas superficiales contaminadas por ruido aleatorio.

106

2. METODO

El filtrado Wiener en el dominio frecuencia se basa en el cálculo de la función de correlación de los sismogramas registrados en un par de estaciones y en el cálculo de la función de autocorrelación de la señal registrada en la estación a la que primero llega la energía sísmica. Ambas funciones se deben ventanear por medio de sendas ventanas trapezoidales de distintas longitudes. Estas longitudes se optimizan visualmente para conseguir la mayor reducción de ruido posible. Luego, las dos funciones de correlación ventaneadas se llevan al dominio frecuencia por medio de la transformada de Fourier y así se obtienen los correspondientes espectros suavizados. El filtrado considera la función de Green en el dominio frecuencia, H(f), que es justamente el cociente entre el espectro suavizado de la función de autocorrelación $\overline{R}(f)$:

$$H(f) = \frac{\overline{G}(f)}{\overline{R}(f)}$$

Las velocidades de grupo, U(f), entre estaciones se calculan aplicando la MFT a la función de Green. Las velocidades de fase, c(f), se calculan a partir del espectro de fase de la función de transferencia usando la fórmula

$$c(f) = \frac{f \Delta}{f(t_{02} - t_{01}) + (\emptyset(f) \pm N)}$$

donde Δ es la distancia en km entre estaciones, t₀₁ y t₀₂ los tiempos origen de los sismogramas de partida, Ø(f) la fase de la función de Green en ciclos y N un número entero a determinar.

Los ceoficientes de atenuación $\chi(f)$ característicos del medio entre estaciones se calculan de acuerdo con la fórmula

$$\mathbf{\hat{\gamma}}(f) = -\frac{\ln \left(|\mathbf{H}(f)| \sqrt{\operatorname{sen} \Delta_2 / \operatorname{sen} \Delta_1}\right)}{\Delta}$$

donde Δ_1 y Δ_2 son las distancias epicentrales de las estaciones l y 2, respectivamente.

De acuerdo con Hwang y Mitchell (1986), el filtrado Wiener en el dominio frecuencia es más efectivo que el filtrado Wiener en el dominio tiempo, porque hace uso de una longitud de ventana más pequeña, lo cual produce una función de Green entre estaciones más suavizada. Esto conduce a una mayor exactitud y estabilidad de los resultados al analizar datos contaminados por ruido.

La optimización del filtrado Wiener en el dominio frecuencia se consigue usando una ventana trapezoidal para ventanear la función de correlación de las señales registradas en las dos estaciones y otra ventana similar de longitud menor para ventanear la función de autocorrelación de la señal registrada en la primera estación. La ventaja de este método sobre la técnica de larazón espectral es precisamente el ventaneo selectivo que deja al ruido fuera de la ventana.

3. SISMOGRAMAS SINTETICOS Y PRIMEROS RESULTADOS

La generación de un sismograma sintético pasa por disponer de un espectro de fase y de un espectro de amplitud determinados. Así, mediante la transformada de Fourier inversa, es posible construir una señal en el dominio tiempo. El espectro de fase se puede calcular a partir de una curva de dispersión dada, por integración de los tiempos de grupo correspondientes. En cuanto al espectro de amplitud, debe seleccionarse un espectro obtenido a partir de un sismograma real, convenientemente suavizado, para así reproducir un caso de interés. La figura 5 muestra la curva de velocidades de grupo que nosotros hemos utilizado. Como espectro de amplitud suavizado hemos considerado el representado en la figura 1. Con estos datos espectrales y de dispersión, el resultado obtenido es un sismograma sintético (no contaminado) como el representado en la figura 2.

A partir de aquí, la generación de sismogramas Rayleigh sintéticos réplicas de los que se registrarían en dos estaciones sísmicas situadas sobre el mismo círculo máximo que pasa por el epicentro, a distancias epicentrales una doble que la otra, no es difícil. La figura 3 muestra sismogramas Rayleigh sintéticos, a distancias de 733 y 1466 km de la fuente sísmica, correspondientes al

Figura 2. Ejemplo de sismograma sintético correspondiente a una onda sísmica dispersada.

paso de una misma onda Rayleigh por dos estaciones sísmicas siguiendo en su propagación un arco de círculo máximo.

La deconvolución Wiener requiere el cálculo de la correlación de ambas señales sintéticas y de la autocorrelación de la señal primeramente registrada. Estas funciones están representadas en la figura 4.

representadas en la fig. 3.

Como estamos manejando señales no contaminadas por ruido, el ventaneo involucrado en el filtrado Wiener no produce ninguna mejora y no es necesario que sea riguroso. En cualquier caso se ha utilizado una ventana Tukey modificada:

$$\mathbf{w}(t) = \begin{cases} 1 & , |t| \leq t_0 \\ \frac{1}{2} \left[1 + \cos(\pi (t - t_0) / t_p) \right], t_0 \leq |t| \leq t_0 + t_p \\ 0 & , |t| \leq t_0 + t_p \end{cases}$$

Aplicando la transformada de Fourier y pasando al dominio frecuen cia, obtenemos los espectros suavizados de las funciones anteriores y por ende la función de Green. El método propuesto permite calcular velocidades de fase y coeficientes de atenuación. Estos resultados pueden verse en las figuras 5 y 6, respectivamente. El factor de calidad Q del medio puede calcularse mediante la fórmula

$$Q(T) = \frac{\pi}{\gamma(T) U(T) T}$$

donde U(T) es la velocidad de grupo para el periodo T, que es un dato inicial. El resultado puede verse en la figura 7.

Figura 6. Coeficientes de atenuación ($\times 10^{-2}$) calculados por medio del filtrado Wiener en el dominio frecuencia.

Figura 7. Factor de calidad (sin ruido).

Figura 8. Sismogramas Rayleigh sintéticos contaminados por ruido de alta frecuencia.

El hecho de que el coeficiente de atenuación y el factor de calidad de un medio exhiban siempre una mayor dispersión que la velocidad de fase és debido al logaritmo que aparece en la expresión de gamma.

La adición de ruido de alta frecuencia a los sismogramas sintéticos anteriores (figura 8) se traduce siempre en una mayor perturbación de la función de correlación. Pequeños errores debidos a la contaminación aparecen en la velocidad de grupo, pero la velocidad de fase es aun menos sensible al ruido que ésta. El resultado puede verse en la figura 9. Es obvio que la velocidad de fase no se ve afectada por el ruido. En cambio, el coeficiente de atenuación se muestra muy inestable frente al ruido aleatorio.

En lo que sigue nos ocuparemos solo de los parámetros que definen la disipación específica (fricción interna) de un medio anelástico.

4. DATOS CONTAMINADOS POR RUIDO ALEATORIO Y RESULTADOS

Se genera ruido mediante una distribución de números aleatorios que obedece a la función de probabilidad

 $P(x) = \begin{cases} 1, 0 < x < 1 \\ 0, en los demás casos \end{cases}$

Esto significa que tales números, pertenecientes al intervalo (0,1), tienen todos la misma probabilidad de ocurrencia. A estos números se les resta 0.5 para tener una distribución de media cero. Después, los valores se rectifican adecuadamente con el fin de controlar el nivel de ruido. En la figura 10 está dibujado el espectro de amplitud del ruido aleatorio generado (en db). Para tener una idea del orden de magnitud del ruido conviene comparar su espectro con el de la señal sintética no contaminada (figura 1). Aproximadamente, el ruido aleatorio generado es más de dos órdenes de magnitud inferior en comparación con la señal.

La figura ll muestra sismogramas Rayleigh sintéticos contaminados obtenidos por la adición de ruido aleatorio a los anteriores. Las funciones de correlación requeridas por el método pueden

verse en la figura 12. Los resultados correspondientes al coeficiente de atenuación y al factor de calidad, tras el filtrado Wiener en el dominio frecuencia, son los que aparecen, respectivamente, en las figuras 13 y 14.

Figura 11. Sismogramas sintéticos perturbados por la adición de ruido aleatorio.

Figura 12. Funciones de correlación de la señales sintéticas representadas en la fig. 11.

Figura 13. Comparación de coeficientes de atenuación (*10⁻²) calculados por medio del filtrado Wiener en el dominio frecuencia a partir de datos sintéticos sin ruido (linea contínua y datos sintéticos con ruido (círculos).

Figura 15. La misma descripción que en la fig. 13.

Con mayor nivel de ruido se obtienen resultados similares. La figura 15 es un fiel exponente de lo conseguido en este caso.

5. COMENTARIOS

De acuerdo con Hwang y Mitchell (1986), los coeficientes de atenuación determinados por el filtrado Wiener en el dominio frecuencia son más precisos y más estables que los deducidos mediante la técnica de la razón espectral o el filtrado Wiener en el dominio tiempo. Y esto es así porque el filtrado Wiener en el dominio frecuencia se basa en una estimación más suavizada y más exacta de la función respuesta del medio entre estaciones y por consiguiente es más capaz de reducir la contaminación por ruido.

Ahora bien, los resultados mostrados en las figuras 13 y 15 son bien elocuentes: el coeficiente de atenuación del medio exhibe una gran inestabilidad frente al ruido, siendo este efecto negativo muy evidente para los periodos cortos. En otras palabras: la influencia del ruido sobre los parámetros que definen la disipación específica o la fricción interna de un medio anelástico, pese al ventaneo selectivo que el filtrado Wiener en el dominio frecuencia introduce, es particularmente notable para las frecuencias más altas y da lugar a una indeseable dispersión de la información.

Todo lo contrario sucede con los datos de dispersión propiamente dichos, como son las velocidades de grupo y las velocidades de fase. Sin duda, las técnicas de mejora de la relación señal/ ruido contribuirán a paliar en cierta medida la inestabilidad de γ o de Q. En un próximo trabajo se revisará el problema considerando varios tipos de ruido aleatorio, por ejemplo, ruido gaussiano, ruido de Fermi, o ruido gamma.

REFERENCIAS

- CARA, M., 1973. Filtering of the dispersed wavetrains. Geophys. J.R. Astr. Soc., 33, 65-80.
- CHENG, C.C. and B.J. MITCHELL, 1981. Crustal Q in the United States from multimode surface waves. Bull. Seism. Soc. Am., 71, 161-181.
- DZIEWONSKI, A., S. BLOCH and M. LANDISMAN, 1969. A technique for the analysis of transient seismic signals. Bull. Seism. Soc. Am., 59, 427-444.
- GOFORTH, T. and E. HERRIN, 1979. Phase-matched filters: application to the study Love waves. Bull. Seism. Soc. Am., 69, 27-44.
- HERRIN, E. and T. GOFORTH, 1977. Phase-matched filters: application to the study of Rayleigh waves. Bull. Seism. Soc. Am., 67, 1259-1275.
- HWANG, H.J. and B.J. MITCHELL, 1986. Interstation surface wave analysis by frequency-domain Wiener deconvolution and modal isolation. Bull. Seism. Soc. Am., 76, 847-864.
- LANDISMAN, M., A. DZIEWONSKI and Y. SATO, 1969. Recents improvements in the analysis of surface wave observations. Geophys. J., 17, 369-403.
- PEACOCK, K.L. and S. TREITEL, 1969. Predictive deconvolution: theory and practice. Geophysics, 34, 155-169.
- TAYLOR, S. and N. TOKSÖZ, 1982. Measurement of interstation phase and group velocities and Q using Wiener filtering. Bull. Seism. Soc. Am., 72, 73-91.

TREITEL, S. and E.A. ROBINSON, 1966. The design of high resolution digital filters. IEEE Trans. Geoscience Electronics, 4, 25-38.

WIENER, N., 1949. Time Series. M.I.T. Press, Cambridge, Massachusetts

Rev. Acad. Ciencias Zaragoza, 42 (1987)

A COMPLETE DESCRIPTION OF THE OUTER PLETHYSM IN R(S).

G, OCHOA

Departamento de Matemáticas. Facultad de Ciencias. Universidad de Zaragoza. 50009 ZARAGOZA (Spain).

A parcial description of the operation of R(S) called outer plethysm was given by P. Hoffman. In this note we obtain a complete description of that operation. Our result has been used to suggest the "good" definition of the outer plethysm in the operator ring B(S) = \bigoplus B(Σ_n). $n \ge 0$

The set Λ of all λ -operations (natural transformations from the underlying set functor, from the category of λ -rings to the category of sets, to itself) is a λ -ring (see Knutson [3],Ch.I)

The free λ -ring in one generator, $\mathbb{Z}[u_1, u_2, \ldots]$ where $\lambda^k(u_1) = u_k$ for $k \ge 1$, and the graded ring $\mathbb{R}(S) = \stackrel{\bullet}{\underset{n \ge 0}{\cong}} \mathbb{R}(\Sigma_n)$ ($\mathbb{R}(\Sigma_n)$ is the representation ring of the symmetric group of degree n) are λ -rings isomorphic to Λ (see Atiyah and Tall [1], Hoffman [2] and Knutson [3]).

D. Knutson conjectures in [3] that the operation of R(S), called outer plethysm, which corresponds with the composition of \wedge can be described through a suitable wreath product. Hoffman [2] in pag. 28-29, proves that the behaviour of this operation, "v", for elements b ϵ R(Σ_k) and a ϵ R(Σ_ℓ) is

b v a = $\Theta_{\star}[(\overline{\tau}_{k}(a))(\pi^{\star}(b))]$

where the group homomorphisms

$$\begin{array}{l} \Theta : \Sigma_{\mathbf{k}} < \Sigma_{\mathbf{k}} > \longrightarrow \Sigma_{\mathbf{k}}, \\ \pi : \Sigma_{\mathbf{k}} < \Sigma_{\mathbf{k}} > \longrightarrow \Sigma_{\mathbf{k}}, \end{array}$$

are the inclusion and the projection, respectively, and the map $\overline{\tau}_k : R(\Sigma_q) \longrightarrow R(\Sigma_k \langle \Sigma_q \rangle)$ acts on actual representations by $\overline{\tau}(M) = M \otimes ... \otimes M$ with the obvious action of $\Sigma_{k} \langle \Sigma_{\varrho} \rangle$ (see [2], pag.12,...).

Our aim is to describe "b v a" when $a = a_1 + \ldots + a_r$ with a_i in $R(\Sigma_{q_i})$ for j = 1, ..., r. As far as we know, there is no description of "b v a" in this case; of course, no problem arises by considering b, because the operation "v" is left additive. We will use the definitions and notations given in [2] pages 1-28.

<u>Theorem</u>.- Let $b \in R(\Sigma_k)$, $a_j \in R(\Sigma_{\ell_j})$ for j = 1, ..., r. Then, one has $b \lor (a_1 + ... + a_r) = \sum_{\alpha} (\Theta_{\alpha})_{*}^{j} [(\underbrace{\circ \tau}_{i_j} (a_j))(\pi_{\alpha}^* \delta_{\alpha}^*(b))]$ (1)

where the summation is over all r-partitions $\alpha = (i_1, \ldots, i_r)$ of k; Θ_{α} is the composition:

 $\Sigma_{i_1} < \Sigma_{\ell_1} > \dots < \Sigma_{i_r} < \Sigma_{\ell_r} > \longrightarrow \Sigma_{i_1 \ell_1} \times \dots \times \Sigma_{i_r \ell_r} \longrightarrow$ $\longrightarrow \Sigma_{i_1\ell_1} + \ldots + i_r\ell_r$ $\mathbb{R}(\Sigma_{i_1} < \Sigma_{\ell_1} > \times \ldots \times \Sigma_{i_r} < \Sigma_{\ell_r} >).$ $\pi_{\alpha}: \Sigma_{i_{1}} < \Sigma_{\ell_{1}} > \dots \times \Sigma_{i_{r}} < \Sigma_{\ell_{r}} > \longrightarrow \Sigma_{i_{1}} \times \dots \times \Sigma_{i_{r}}$ $\delta_{\alpha}: \Sigma_{i_1} \times \ldots \times \Sigma_{i_r} \longrightarrow \Sigma_k$

Proof: With the notations of Hoffman [2] we have to prove $_{\tau}^{b} _{\tau} (a_{1}^{+} \dots + a_{r}^{+}) = _{\tau}^{c}$

being c the second member of the equality (1).

First we will show that the following diagram commutes for every t-ring K:

120

for every t in K , x_j in $R(\Sigma_{i,\ell_j})$ with j = 1, ..., r and $z = t \otimes x_1 \otimes \ldots \otimes x_r$.

I and II commute by iii) and iv), respectively, of the definition of τ -ring (see pag. 133 of [2]).

It is easy to check the commutativity of III.

Observe that θ_{α}^{*} is the composition

$$\Box_{(i_1,\ell_1),\ldots,(i_r,\ell_r)}^{(r)} \Delta_{i_1\ell_1,\ldots,i_r\ell_r}^{(r)}$$

Now, let K be a τ -ring and x an element of K.

$$\tau^{c}(\mathbf{x}) = \langle \tau(\mathbf{x}), c \rangle = \sum_{\alpha} \langle \tau(\mathbf{x}), (\mathfrak{O}_{\alpha})_{*} [(\mathfrak{O}_{\alpha} \overline{\tau}_{i_{j}}(a_{j}))(\pi_{\alpha}^{*} \delta_{\alpha}^{*}(b))] \rangle$$

by Frobenius reciprocity

$$= \sum_{\alpha} \langle \Box^{(\mathbf{r})} \Delta^{(\mathbf{r})} \tau(\mathbf{x}), [(\bigotimes_{j} \overline{\tau}_{i_{j}}(\mathbf{a}_{j}))(\pi_{\alpha}^{*} \delta_{\alpha}^{*}(\mathbf{b}))] \rangle$$
$$= \sum_{\alpha} \langle \overline{\mu} \xi^{\circ \mathbf{r}} \tau(\mathbf{x}), [(\bigotimes_{j} \overline{\tau}_{i_{j}}(\mathbf{a}_{j}))(\pi_{\alpha}^{*} \delta_{\alpha}^{*}(\mathbf{b}))] \rangle$$

putting x_i for the component in $K \otimes R(\Sigma_{\ell_i})$ of $\tau(x)$

$$\begin{aligned} \pi_{j} : \Sigma_{ij} \langle \Sigma_{\ell j} \rangle &\longrightarrow \Sigma_{ij} \quad (j = 1, \dots, r) \\ \delta_{\alpha}^{*}(b) &= \sum_{\gamma} b_{\gamma}^{1} \otimes \dots \otimes b_{\gamma}^{r} \\ &= \sum_{\alpha} \langle \overline{\mu}(\xi_{i_{1}}, \ell_{1}(x_{1}) \otimes \dots \otimes \xi_{i_{r}}, \ell_{r}(x_{r})), \sum_{\gamma} (\sum_{j=1}^{\infty} (\overline{\tau}_{i_{j}}(a_{j}) \pi_{j}^{*}(b_{\gamma}^{j})) \\ &= \sum_{\alpha} \sum_{\gamma} (\prod_{j=1}^{r} \langle \xi_{i_{j}}, \ell_{j}(x_{j}), \overline{\tau}_{i_{j}}(a_{j}) \pi_{j}^{*}(b_{\gamma}^{j}) \rangle) \\ \text{Prop. (4.4) of [2]} \end{aligned}$$

applying

 $= \sum_{\alpha} \sum_{\gamma} \left(\prod_{j=1}^{r} \langle \tau_{i_j} \langle x_{j_j}, a_j \rangle, b_{\gamma}^j \rangle \right)$

 $= \sum_{\alpha} \sum_{\gamma} \langle \mathfrak{o}_{\tau_{i_j}} \langle x_{j_j}, a_{j_j} \rangle, \mathfrak{o}_{\gamma}^{\flat b_j} \rangle = \sum_{\alpha} \langle \mathfrak{o}_{\tau_{i_j}} \langle x_{j_j}, a_{j_j} \rangle, \mathfrak{o}_{\alpha}^{\ast}(b) \rangle$ by Frobenius reciprocity and putting \times for the cross product

> $= \sum_{\alpha} \langle \tau_{i_1} \langle x_1, a_1 \rangle \times \ldots \times \tau_{i_r} \langle x_r, a_r \rangle, b \rangle$ $= \langle \tau_k(\langle x_1, a_1 \rangle + \ldots + \langle x_r, a_r \rangle), b \rangle$ $= \langle \tau_k(\langle \tau(\mathbf{x}), (a_1^+ \dots + a_r) \rangle), b \rangle = \tau^b \tau^{(a_1^+ \dots + a_r)}(\mathbf{x}).$

So, the proof is finished.

A similar description of the outer plethysm was obtained by the author in [4] for the ring $B(S) = \bigoplus_{n \ge 0} B(\Sigma_n)$, where $B(\Sigma_n)$ is the Burnside ring of the symmetric group of degree n, Σ_n .

REFERENCES :

- M.F. Atiyah and D.O. Tall: "Group Representations, λ-rings and the J-homomorphism". Topology <u>8</u> (1969), pag. 253-269.
- [2] P. Hoffman: "τ-rings and Wreath Product Representations". Lect. Notes in Math. <u>746</u>, Springer (1979).
- [3] D. Knutson: " λ -rings and the Representation Theory of the Symmetric Group". Lect. Notes in Math. <u>308</u> (1973).
- [4] G. Ochoa: "Outer Plethysm, Burnside Ring and β -rings". To appear in the J. of Pure and Applied Algebra.

• and in an and a strain

Rev. Acad. Ciencias Zaragoza, 42 (1987)

CARACTERISTICAS DE LOS RAFONIS Y ALVEOLOS DESARROLLADOS AL SUR DE ZARAGOZA.

M.A. SORIANO

Departamento de Ciencias de la Tierra. Facultad de Ciencias. Ciudad Universitaria. 50009 ZARAGOZA (España).

We have observed tafoni's formation in the central Ebro Basin. They are developed on the slopes of the "formación Longares" and facies Weald sandstones. Its external shape is generally elliptic and its dimensions are variable. In general are in insolated exposed rocks. There are several factors which contribute to tafoni's development, the fractures in the sandstones, the moisture inside the tafoni, their orientation with respecto to the sun and finally the salt crystallization.

1.INTRODUCCION

La zona que hemos estudiado se encuentra localizada al sur de la provincia de Zaragoza, en las proximidades de las poblaciones de Mezalocha y Villanueva de Huerva que se sitúan a lo largo del cauce del río Huerva. Desde un punto de vista geológico el área está enclavada dentro de la Depresión del Ebro cerca de su contacto con la Cordillera Ibérica (Fig. 1). Esta última se encuentra constituida en este sector por materiales paleozoicos, mesozoicos y paleógenos, principalmente, mientras que la depresión está rellenada por depósitos de edad neógena formados por alternancias de conglomerados y areniscas en las zonas marginales (Formación Longares de QUIRANTES, 1978) y hacia el centro de la depresión disminuye el contenido en detríticos y aumenta el de materiales evaporíticos (Formación Zaragoza de QUIRANTES, 1978).

Los alveolos y tafonis son formas cavernosas que se encuentran sobre vertientes escarpadas. Se desarrollan sobre rocas granudas, tanto ígneas como sedimentarias. Son cavidades casi hemisféricas y externamente tienen forma circular o elíptica. Tanto unas formas como las otras se han descrito en áreas diversas por gran número de autores

Fig. 1.- Situación geográfico-geológica de la zona estudiada. 1. Mesozoico. 2. Mioceno detrítico. 3. Mioceno yesífero. 4. Mioceno calcáreo. 5. Glacis pliocuaternarios. 6. Terrazas cuaternarias. 7. Rellenos de valle de fondo plano (simplificado a partir de Riba et al., 1970 a y b).

(CALKIN y CAILLEUX, 1962; DRAGOVICH,1969; COOKE y WARREN,1973; MABBUTT,1977; MARTINI,1978; SMITH,1978 y MUSTOE,1982). Dentro de la Depresión del Ebro destacamos entre otros el estudio llevado a cabo por RODRIGUEZ y NAVASCUES (1982) en las proximidades de Huesca.

Los alveolos y tafonis se desarrollan sobre la formación Longares y sobre las areniscas mesozoicas en facies Weald de la Cordillera Ibérica, si bien, los mejor desarrollados son los que se generan sobre la primera. Con el estudio de estos modelados pretendemos determinar cuales son los principales factores que influyen en su génesis. Para ello, se han analizado las dimensiones y características de estas dos formas básicamente en dos estaciones situadas en las inmediaciones de Mezalocha, ambas sobre materiales de la formación Longares.

2. CARACTERISTICAS GENERALES.

La forma externa de estos modelados es, en general, elíptica, aunque se han observado, así mismo, algunos casi circulares. En muchos casos, la sección que presentan tiene mayor dimensión en la base que en el techo de la oquedad, siendo muy semejantes al tipo que MARTINI (1978) denomina "Lisa" (Fig. 2). En los demás que se han reconocido, tanto la base como el techo tienen igual longitud. También hemos observado, mayor profundidad en uno de los lados del tafoni. Es del mismo modo importante señalar que se trata de formas activas hoy día. Este hecho viene corroborado por la presencia de detritus en la base de la cavidad, apreciándose también descamaciones en las paredes y techo de la misma.

Fig. 2.- Perfil transversal del tafoni de pared tipo Lisa de MARTINI (1978).

Como indicamos en el apartado anterior, hemos estudiado con mayor detenimiento las formas que se desarrollan en dos afloramientos próximos a Mezalocha. En ambos se han medido las direcciones que tienen las aperturas de estas oquedades. Como vemos en la Fig. 3A las orientaciones obtenidas a partir de 60 medidas, dan un máximo muy claro hacia el SSE, mientras que en la Fig. 3B observamos mayor dispersión (los datos que se han

Fig. 3.- Diagramas de rosas de las orientaciones de las aperturas de los tafonis. A.- En la estación 1. B. En la estación 2.

tomado en este caso son 69), aunque de un modo general podemos considerar un máximo hacia el SW y otro hacia el E y ENE. En el caso del primer afloramiento, hay una clara disposición de las aperturas de estos modelados hacia solana, lo cual en principio, como veremos, tiende a favorecer su desarrollo. El segundo de ellos, es un afloramiento situado a ambos lados de un pequeño barranco cuya dirección , en lineas generales en este tramo, es de 140°; esto explica las diferencias tan fuertes que existen en los sentidos de apertura, ya que dependen de que las depresiones se sitúen a uno u otro lado del valle. A pesar de ello vemos que el mayor número de formas se generan hacia la dirección donde reciben un máximo de insolación.

	Nº de oquedades del afloramiento A	Nº de oquedades del afloramiento B		
Longitud < 10 cm	2	10		
" 10-30 cm	31	40		
" 30-50 cm	19	15		
" 50-70 cm	7	4		
" > 70 cm	- 1			

CUADRO 1.- Distribución de alveolos y tafonis a partir de la longitud que presentan.

Además de las direcciones que tienen estas formas, también hemos medido las tres dimensiones principales que presentan, longitud, altura y profundidad, así como la altitud que tienen con respecto al suelo, estando comprendida ésta entre 1 y 2 m generalmente, a excepción de los tafonis orientados al SW del afloramiento B, que se encuentran a menos de 1 m de altitud. A partir de ellas, podemos ver que en ambos casos la longitud de estos modelados, presenta un máximo importante en el intervalo comprendido entre 10 y 30 cm mientras que son bastante escasas las formas que sobrepasan los 50 cm. Por lo tanto, más de la mitad de las oquedades estudiadas son alveolos atendiendo a la diferenciación que efectúan muchos autores que han trabajado en este tema a partir del tamaño de las mismas.

Como podemos ver en el Cuadro 1, hay mayor número de cavidades con mayores dimensiones en el afloramiento A (pese a que el número total de las mismas es menor en él), que en el B. Probablemente esto sea debido a la orientación más propicia que tienen los alveolos y tafonis de la primera de las estaciones consideradas. Por otra parte, vemos que un aumento o disminución de cada una de las dimensiones que hemos medido, lleva asociado el incremento o descenso, respectivamente, de las demás, como podemos ver en

a

Fig. 4.- Relaciones lineales entre distintas dimensiones de los tafonis. L:Longitud. A:Altura. P:Profundidad. E₁:Estación 1. E₂: Estación 2. Las medidas están expresadas en centímetros.

la Fig 4A y B.

3. DISCUSION.

En general, se considera que el fenómeno de alveolinización y tafonización, se produce como consecuencia de una desagregación y descamación de la roca. Estos procesos se inician a partir de zonas de debilidad bien sea textural o estructural de la roca (DRAGOVICH, 1969), de ahí que los encontremos asociados a planos de estratificación (horizontal o cruzada) y de diaclasas; también se desarrollan mejor sobre rocas granudas, homogéneas y no muy cementadas (MAINGUET, 1972).

Las génesis que se han propuesto de estos modelados son muy variadas. En un principio, los mecanismos de los que se hablaba eran de meteorización física (chorros de arena, gotas de lluvia, presión debida a la cristalización de sales, diferencias térmicas, acción del viento y hielo-deshielo). Además de todos estos mecanismos hay que considerar también reacciones químicas tales como hidrólisis, hidratación y difusión (MARTINI, 1978).

En el caso que nos ocupa vemos que la distribución morfoclimática de la Depresión media del Ebro (RODRIGUEZ, 1982) asigna para esta zona una morfogénesis actual semiárida que en los meses más cálidos incluso puede llegar a ser árida. Bajo este tipo de clima y con la litología adecuada, los procesos que predominan son de meteorización mecánica (humectación-secado y haloclastismo sobre todo). Ambos provocan una desagregación y descamación de la roca, hechos que favorecen la formación del tafoni (EVANS, 1969-70).

La litología existente es un factor básico en la génesis del tafoni. Las areniscas que encontramos en esta zona, no son excesivamente compactas. Los relieves estructurales que generan tienen vertientes de elevada pendiente y sin apenas vegetación. Además presentan zonas de debilidad (los propios planos de estratificación y los planos de fractura tales como diaclasas). Todo ello favorece la alteración inicial de la roca. Incluso en algunas de estas oquedades se observan, como ya dijimos, diferencias importantes en su profundidad causadas por el mayor avance del tafoni o alveolo a favor de las diaclasas.

Pensamos que a continuación hay factores decisivos que intervienen en la evolución de estas oquedades. Uno de ellos es la mayor humedad que existe en el interior de estas

formas (que en algunos casos proviene del ascenso capilar que tiene lugar en los periodos más húmedos). El segundo viene determinado por la orientación a solana, que provoca que existan diferencias morfoclimáticas entre la parte interior y exterior de los tafonis y alveolos. La temperatura y humedad es más uniforme en el interior, donde se produce una meteorización más intensa (MARTINI, 1978). Este hecho se confirma a partir de los resultados de las mediciones que realizamos (Fig. 3). El tercero es el haloclastismo. En efecto, la composición de la mayor parte de las areniscas neógenas que están rellenando la Depresión del Ebro es sódica, por lo tanto en periodos secos puede producirse facilmente la recristalización de sales que habrian sido transportadas previamente disueltas en el agua en las épocas más húmedas. Esta cristalización se manifiesta por la presencia de efforescencias salinas en el interior de las cavidades. Finalmente, la evacuación del residuo que se produce como consecuencia de la meteorización del tafoni y que se deposita en la base del mismo se produce por el viento y el escurrimiento de agua, principalmente.

4. REFERENCIAS.

CALKIN, P. y CAILLEUX, A. (1962) Z. Geomorph. N. F. 6 pp 317-324.

COOKE, R.U. y WARREN, A. (1973) <u>Geomorphology in deserts</u>. Anchor Press. 394 p.Londres.

DRAGOVICH, D. (1969) Z. Geomorph. N.F. 2, pp 163-181.

EVANS, I.S. (1970) Rev. de Géomorph. Dynamique XIX année, nº4, pp.153-177.

MABBUTT, J.A. (1977) Desert landforms The MIT Press. 340 p.

MAINGUET, M. (1972) Etudes de photo-interpretation.t II, pp 229-657. París.

MARTINI, I.P. (1978) Z. Geomorph. N.F. 22, pp. 44-67.

MUSTOE, G.E. (1982) Geological Society of America Bulletin vol. 93, pp. 108-115.

QUIRANTES, J. (1978) <u>Estudio sedimentológico y estratigráfico del terciario continental</u> <u>de los Monegros.</u> Inst. Fernando el Católico. CSIC. 200 p. Zaragoza.

RIBA, O.; MALDONADO, A.; PUIGDEFABREGAS, C.; QUIRANTES, J. y VILLENA,

J. (1970a) <u>Mapa geológico de España</u> E 1:200.000. Hoja nº 32. (Zaragoza). I.G.M.E. Madrid.

RIBA, O.; VILLENA, J. y MALDONADO, A. (1970b) <u>Mapa geológico de España</u>. E 1:200.000. Hoja nº 40 (Daroca) I.G.M.E. Madrid.

RODRIGUEZ, J. (1982) Estudios Geológicos, 38, pp. 43-50.

RODRIGUEZ, J. y NAVASCUES, L. (1982) Tecniterrae, 49, pp. 7-12.

SMITH, B.J. (1978) Z.Geomorph. N. F., 22, pp. 21-43.

Rev. Acad. Ciencias Zaragoza, 42 (1987)

5 11

ł

PETROLOGICAL AND GEOCHEMICAL CONSIDERATIONS ON THE CABO ORTEGAL COMPLEX (NW SPAIN).

A. APARICIO*, V. SÁNCHEZ CELA** Y L.E.CACHO*

*Departamento de Geología. MNCN-C.S.I.C. Madrid.
**Departamento de Geología (Petrología y Geoquímica). Universidad de Zaragoza.

In this paper we want to present various geological, petrological and geochemical data that appear to question the petrogenetic theories established for the Cabo Ortegal Complex, mainly in relation to the metabasic rocks (amphibolites, eclogites, serpentinites, etc.).

Many ultrabasic rocks defined as peridotites are in fact various chloritic-sepentinic rocks associated, in some cases, in concordance with rocks of indubitable sedimentary origin.

The geological association between ultrabasites, with rocks of pelitic and carbonate nature together with new petrological data and various deductions and considerations appear to point out a new petrogenetic model where the host sedimentary rocks played a great part in the origin and diversification of the different igneous-metamorphic facies at Cabc Ortegal.

INTRODUCTION

The Cabo Ortegal Complex is formed by an igneous metamorphic series consisting of schists, amphibolites, granulites, eclogites, serpentinites, calc-silicate rocks and various granitic rocks; the latter located in the nucleous of an anticlinorial structure, whose borders are formed by shales, phyllites and schists that intercalate some levels of serpentinite-chloritites, marbles, quartzites and some granitoids.

The whole Complex is affected by Hercynian metamorphic processes from a low to medium degree and also by various igneous-granitization processes induced by underlying granitic - masses that, in such zone, hardly outcrop.

All the authors⁽¹⁾, who with different objetives have studied the Cabo Ortegal Complex, consider the basic-ultrabasic rocks as of allocthonous character and mantlelic origin, which during Hercynian times were affected by various metamorphism (M_{1-4}) and deformation (D_{1-5}) - processes.

However, an objective analysis of the different works in such a zone indicates that many questions are not answered or are partially and differentially interpreted:

- Original materials which gave $\rho rigin$ to granulites, eclogites, amphibolites, serpentinites, etc.
- Stratigraphy of the Complex with the location of the different rocks.
- Intensity of metamorphism in their various stages, etc.

⁽¹⁾ VOGEL, 1967; MAASKANT, 1970; ENGELS, 1972; OVERMEEREN VAN, 1975; KEASBERRY et al. 1976; MEER VAN DER, 1976; FERNANDEZ & MONTESERIN, 1976; CALSTEREN VAN, 1977; FERNANDEZ & FER-NANDEZ, 1977; ANTONIOZ & FERRAGNE, 1978; MATTE, 1968; TEX DEN, 1981a,b; MEER VAN DER, et al., 1981; VOGEL et al., 1983; GRIFFITHS et al., 1985, etc.

In this study we wish to present new petrological and geochemical data which,together other previous ones from geologic to geochemical types,appear to point out a new petrogenetic model, very different from those considered today.

PETROGRAPHIC FEATURES

The most abundant rocks in the zone in question (Fig. 1) correspond to "metabasic" rocks (VOGEL & WARNAARS, 1967; ENGELS, 1972; FERNANDEZ & MONTESERIN, 1976; FERNANDEZ & FERNANDEZ, -1977, etc.). Although these rocks were named with different words, (according to their geographical situation), they mainly correspond to amphibolites, with a defined foliation and with a paragenesis of amphibol + clinopyroxene + clinozoisite + garnet + plagioclase, Rutile and sphene are some frequent accesory minerals.

This lithological group is unclear, so in levels from some centimetres to meters in -width, various rocks such as: granatites, calc-silicate rocks, feldspar amphibolites, clinopyroxenites, etc. could be associated among them. Also within the amphibolite group some rocks with garnet+ clinopyroxene + amphibol (eclogites) appear with an irregular distribution. These rocks also appear in contact with schistose formations and also intercalated within the amphibolites. According to their rate of recrystallization these materials exhibit foliation or not.

The second lithologic group, trough its importance corresponds to that defined as "parag neisses of Chimparra and Cariño". These "paraderived rocks" are intercalated, with a clear concordance, within the previous and the most important formation constituted by amphibolites, eclogites, and serpentinites (the "ultrabasic group").

This lithologic group outcrop in two bands located to the East and West of Cabo Ortegal in approximately North-South direction. The materials of this group outcrop in levels from centimetrical to metrical scale within the serpentinites, amphibolites and granulites-eclogites. In the schistosed paragneisses the presence is also frequent of thin intercalations of amphibolites, granulites, etc.

These schistosed paragneisses are formed by quartz, plagioclase, garnet, biotite, muscovite \pm staurolite and sometimes disthene and sillimanite. The K-feldspar only appear near or in contact with granitic rocks. We therefore fail to understand the cause as these rocks are defined as gneisses; "plagioclase-schists" could be a more fitting name. In some points and - near granitic rocks (Regoa) there exist lit-par-lit K-feldspars concordant with the schistosity of the host rocks ("plagioclase-schist").

The third lithologic group, by its extension, corresponds to chose so called "peridotites" of Cabo Ortegal. This is, in fact, formed by various serpentinites and chloritites, main ly located in three outcrops. Limo, Herbeira and Uzal (Fig. 1). Very similar rocks also appear intercalated within other formations, as occurs in the shale-schistose formation which sorrounds the ultrabasic serpentinic-chlorititic group ("peridotites").

These ultrabasic rocks in some places (Herbeira) exhibit a well defined stratificacion; calc-silicate rocks and various schists are frequently found within them. In some points and associated to "carbonate" rocks some fossilized rests can be observed.

The ultrabasic lithologic group is mainly formed by various serpentinites and chloritites with more or less olivine \pm clinopyroxene \pm amphibol \pm spinel \pm carbonates \pm talc. The percentages of these subordinate minerals are variable. In many points the association chlorite-serpentine almost form 100% of the rock. In many cases the abundance of chloritic mine-

rals appears to be related to mylonitized zones.

Within the Complex and in the sorrounding shaly zone there exist some granitic rocks which outcrop in small dispersive masses. These, according to the zone, can respond to various aplites, pegmatites, granodiorites, adamellites and alkaline granites, either in the form of dykes or in small stocks with elongated and oval forms. Because of its small size the cartography of these masses is very difficult. These granitic rocks, which we interpret as belonging, in various petrographic types, to one same underlying granitic unity, have been interpreted by many authors as rocks originated by anatexis of a host pelitic series. We therefore find strange the names applied by those authors for these "granitic" rocks. So when they outcrop within shales-phyllites they are named keratophyres or rhyolites, but when they outcrop within schist or amphibolites they are named two mica-granites.

These granitic rocks also outcrop in a N-S long and a wide band at the west of the Complex, apparently with a syntectonic character in contact with the regional shales. Curiously it is close to the contacts where the porphyroblastic facies (e.g. "ollos de sapo") are more frequent. These porphyroblastic rocks are interpreted by ourselves as a result of metasomatic granitization processes induced by the underlying granitic masses in a dynamic environment -(SANCHEZ CELA & APARICIO, 1982).

These granites are formed by quartz, microcline, plagioclase, muscovite, biotite. Apatite, zircon and opaques are some frequent accessory minerals. Garnet can also be found. These granites in the Beroa zone contain some enclaves of schists similar to the regional host eschistose rocks. In the contacts with the granites these schist exhibit frequent lit-par-lit structures which can easily be interpreted as silica-feldspathization processes induced by the granitic rocks.

Finally and surrounding the Complex abundant lutitic materials appear generally in low metamorphic degrees (phyllites) with a very uniform composition. Within this monotonous series there exist some intercalations of amphibolites, serpentinites, marbles and quartzites. The illitic-muscovitic minerals are the most abundant components; quartz, chlorite and sometimes Na-plagioclases are subordinate minerals. These "lutitic" materials close to the Complex sometimes contain some small cystals of chloritoid.

GEOCHEMISTRY

With the object of trying to find some petrogenetic relationship between the different lithologic formations at Cabo Ortegal 42 chemical analysis (major and minor elements) were realized. From these 4 correspond to granites; 7 to serpentinites-chloritites; 13 to schists; 7 to granulites-eclogites, and 11 to amphibolites (Table 1).

In the SiSO_2 -oxides diagram interesting compositional relations can be observed (Fig. 2). With relation to $\mathrm{Al}_2\mathrm{O}_3$ and $\mathrm{P}_2\mathrm{O}_5$ the amphibolitic and granulitic rocks exhibit oxide percentages very similar to the schist and granite ones.

MnO, TiO₂, CaO, FeO, Fe₂O₃ show a gradual growth from schist-granites to amphibolitesgranulites-eclogites. K_2O , on the contrary, shows an inverse behaviour, whereas Na_2O is high in amphibolites due to the abundant presence of plagioclases and amphiboles in such rocks. -Chloritites-serpentinites exhibit low percentages in many chemical elements with the exception of MgO, Fe₂O₃ and MnO which are high although some amphibolites are plotted in the same chemical field. As a synthesis it can be said that the chemical differences between the various rocks are not as important in the way that they should be if they correspond to such different types as schists, chloritites-serpentinites, etc.

The same occurs in the $si0_2$ -minor element diagrams (Fig. 3) that show "encreasing in Rb, Ba, Y, Zn (this latter partially) and a decrease in Zr, Ce, La. Other elements such as Sr and Cu do not exhibit any variation from schists-granites to chloritites. These latter rocks exhi bit higher contents in Ni due to their higher Mg content. The rest of the elements manifest a normal behaviour in relation to the other lithologic types. So these rocks show similar contents in Zr, Cu and Y to the schist-granitic types. On the contrary the Sr, Ce and Zn contents are very close to the amphibolite-granulite ones. There exists a high correlation between Rb-K₂0; Ba-Si0₂; Ni-Mg and La-Ba.

On the assumption that all these rocks are magmatic from Mantle provenance later differentiated, metamorphized and tectonized, several geologists have built CIPW norms in order to find geochemical relationships (VOGEL et al. [1983; ARPS et al., 1977, etc.) (Table 2). It can be seen how the amphibolites show large variations in "quartz" and "anorthite" that are a consequence of their wide compositional variation. From 11 analysis only 4 have normative olivine and 2 normative nepheline. The same occurs with the granulites-eclogites; 2 show quartz and olivine normatives; nevertheless these chemical features are only a consequence of the different mineral percentages in the rocks and not by the lack of crystallization of some of them.

In the chloritites-serpentinites their contents in normative corundum in surprisingly similar to the granitic and schistose rocks.

Therefore the chemical data appear to indicate more the existence of a certain genetic correlation among the different lithologic groups than a "breaking", as it would be if these rocks were so different in their origins. So rocks of indubitable crustal origin (e.g. schist) show a certain chemical overlapping with rocks considered to be from the Mantle provenance by almost all geologists (e.g. metabasites).

CHEMICAL MINERALOGY

The main minerals and the more common in amphibolites (granulites-eclogites), schists, granitic rocks and chloritites-serpentinites were analyzed: garnets, amphiboles, pyroxenes, olivines, chlorites, serpentines and micas.

 <u>Garnets</u>. These are very frequent in all the lithologic groups, they are only lacking in chloritites-serpentinites.

In the schists the garnets are of almandine type $(Alm_{56-85}; Py_{3-15}; Gross_{1-34}; Esp_{1-21})$. In amphibolites they are also of almandine type $(Alm_{52-64}; Py_{8-17}; Gross_{22-29}; Esp_{1-21}; -$ equally it occurs in granulites-eclogites $(Alm_{50-57}; Py_{17-21}; Gross_{24-28}; Esp_{1-13})$ and granitic rocks $(Alm_{61-73}; Py_{3-6}; Gross_{1-29}; Esp_{1-21})$ with compositions that are overlapped among them.

The chemical features are shown in the Al-Gross-Py triangle (Fig. 4), where the compositional field of the granites-schists is wide and overlaps the amphibolites one. In this triangle the garnets are plotted in the eclogite C field (COLEMAN et al., 1965).

There exists a relationship between the CaO contents in the garnets and those of the whole rocks. This appears to indicate that the original composition of the rocks in the main factor in the composition of the garnets during the metamorphic processes.

In this way it is surprising that very different rocks such as schist-granites and "ultrabasites" contain very similar garnets, it is to say almandine-grossularite garnets.

- <u>Pyroxenes</u>. These minerals in amphibolites, granulites, eclogites and chloritites-serpentinites were analyzed. According to the Ca-Mg-Fe triangle the pyroxenes can be classified as diopside-salite types, although there also exist, to a lesser degree, endiopside, augite and orthopyroxene. Nevertheless the wide compositional distribution does not fit the different lithologic defined groups. So pyroxenes in chloritites-serpentinites, in some cases, are plotted as enstatite, and in others as endiopside and diopside. Pyroxenes of amphibolites, granulites and eclogites are plotted in the same places as the chloritites-serpentinites ones (Fig. 5).

The jadeite contents of pyroxenes are also very variable and they do not depend on the rock type. So pyroxenes of amphibolites and chloritites-serpentinites may or may. not contain this component (from 22 to 91%). In granulites and eclogites the jadeite component can vary from 76 to 91%; in amphibolites from 22-78%; and in chloritites-serpentinites the analyzed - pyroxene contains 26% of jadeite.

- Amphiboles. These minerals, of course, are abundant in amphibolites; in lesser quantities they also are frequent in granulites-eclogites.

According to Hawthorne's (1983) classification, Ca-amphiboles are mainly pargasites or pargasitic hornblendes. In some calc-silicate rocks exist orthoamphiboles of anthophyllitic types.

In general there exists a lineal whole rock-amphibol correlation. So an increase of Mg in amphiboles is parallel to an increase of Mg in whole rock.

- <u>Olivines</u>. These minerals are only present in the ultrabasic rocks (serpentinites-chloritites). Their composition is very constant (Fe $_{\rm 88-90}$). It is to say thay are almost forsterites.

- <u>Biotites</u>. These were analyzed in those rocks where they are more abundant: granites and some schists. They exhibit a uniform composition. So in the Al-K-(Fe+Mg+Mn) and $Mg-(Al^6+Ti)$ - (Fe+Mg) triangles they are plotted in a small field (Fig. 6).

- <u>Chlorites</u>. These minerals are very abundant in "ultrabasic" rocks (chloritites-serpentinites). They are always rich in Mg contents with variable and less contents of FeO (Corundumphyllite types).

- <u>Serpentinites</u>. These minerals are curiously less abundant than the chloritic ones in the rocks defined by geologists as ultrabasites or peridotites, which are in fact chlorititicserpentinic rocks. All these serpentines show high Fe0 contents.

- Feldspars. Some plagioclases from granitic, schistose and amphibolitic rocks were ana lyzed. They show generally low An contents: An_{1-53} in amphibolites; An_{11-15} in granites, and An_{5-7} in schist

The K-feldspar in granitic rocks and some schists corresponds to a microcline with - Or \simeq 90.

METAMORPHISM

The references of the different authors generally indicate the existence of 4 metamorphic stages (M_1-M_4) and 5 fold ones (F_1-F_5) . (e.g. VOGEL, 1967; VOGEL et al., 1983). The M_1

metamorphic stage corresponds to the eclogite-granulite facies. The M_2 is of granulitic type. The M_2 of amphibolitic type; and the M_A would correspond to the greeschist facies.

Many geologists deduced those structural and metamorphic stages in basis to mineralogical studies and considerations stablished on metamorphized ultrabasites. So various retrometamorphic processes are cited, e.g. destabilization of pyroxenes (omphacite) and formation - of amphiboles.

This petrostructural interpretation however originates many problems, mainly if we take into account the existence of pelitic paragenesis intercalate, generally in concordance, within ultrabasites and that curiously they strongly exhibit no retrometamorphic processes. This important observation, in our opinion, appears to be in clear opposition to the existence of retrometamorphic phenomena that almost all geologists deduce in the metabasites: eclogites, granulites, amphibolites and chloritites-serpentinites.

From an objetive view we can consider at Cabo Ortegal the existence of a wide zone affected by a metamorphism in greenschists facies that corresponds to the surrounding phyllite-shaly area. These materials gradually transit towards an amphibolitic facies from a low to medium degree at the same nucleous as Cabo Ortegal.

Within the Cabo Ortegal Complex the "pelitic" paragenesis with quartz + plagioclase + + biotite + muscovite + garnet <u>+</u> sillimanite <u>+</u> disthene <u>+</u> staurolite indicate medium degree metamorphic conditions. Owing to this paragenesis, which it would appears in gradual form intercalated within the ultrabasites, appear to indicate that both rocks, pellitic and ultraba sites, have also been affected by similar metamorphic processes.

So the M₁ metamorphic conditions established by some authors (VOGEL, 1967; VOGEL et al., 1983, etc.) evolutioned from 900-600 °C and 14-19 Kb, through 750-700 °C and 6-10 Kb, to lower temperatures (according to γ^{\prime} 0₁₈) as 500°C (VOGEL & GARLICK, 1970; ADDY & GARLICK, 1974). These latter data are similar to those of KUIJPER (1979) (600 °C and 10-11 Kb). These latter P-T conditions appear more to correspond to amphibolite facies than to the eclogite one , as interpreted by some authors.

In order to establish P-T metamorphic conditions several geothermometers were used, mainly the biotite-garnet pair (PERCHUK, 1977; PERCHUK et al., 1981; FERRY & SPAR, 1978; GOLD MAN & ALBEE, 1977) for pelitic rocks.

The pyroxene-amphibol pair (PERCHUK, 1977; PERCHUK et al., 1981) the garnet-amphibol pair (PERCHUK, 1970, 1971), and the plagioclase-amphibol pair (PERCHUK, 1977; PLYUSNI-NA, 1982) for amphibolites, granulites-eclogites, were used.

In schists the data of PERCHUK (1977), PERCHUK et al. (1981), and WELLS & RICHARDSON (1979) were used, and for amphibolites the BROWN (1977) data.

In general terms it can be said that the metamorphic conditions for schists, amphiboli tes, granulites, eclogites and chloritites-serpentinites ("metabasites") are very similar to the medium degree metamorphic ones.

On the other hand and at mineral scale the garnet-pyroxene pairs of the metabasites in dicate very close formation-conditions for all these rocks (Fig. 7) (see COLEMAN et al., - 1965). \sim

The existence of "relict" minerals attributed by various authors as from the "katazonal origin" could not be stated by means of chemical criteria, although the analysis carried out on various crystals of garnets and pyroxenes, that appear to exhibit some "relict features", do not show that character. On the contrary they show a chemical identity with the other minerals. On the other hand the composition of some minerals, such as olivines, is very similar to olivines originated by contact-metamorphism (metasomatism) of carbonate rocks. This origin can also explain the formation of amphibol minerals with pargasitic compositions, it is to say that all of them were originated by transformation of carbonate-sedimentary rocks in a suitable chemical and physical environment whose main cause must be found in the underlying granitic masses existent at Cabo Ortegal.

In this way the so called "relict textures" could, on the contrary, correspond to "growth textures" of pyroxenes, amphiboles, etc., in a medium degree metamorphic environment where high metamorphic conditions were never reached (see SANCHEZ CELA & APARICIO, 1982).

The main stage could correspond to that defined, by some authors, as M_3 . It is evident that the shaly metamorphic zone (Ordovician-Silurian), that surrounds the Cabo Ortegal Complex, indicates greenschist metamorphic conditions (paragenesis with quartz + plagioclase + + muscovite <u>+</u> chlorite <u>+</u> chloritoid). These petrographic facies are interpreted by various authors as retrometamorphic ones and originated during the M_4 stage. In basis to the transtional characters (structural, petrographic, etc.) that are evident from these surrounding shales to the schists we prefer to include both materials, shales and schists, as belonging to one same metamorphic cycle and both synchronically developed in two different geographical zones.

PREMETAMORPHIC ORIGINAL ROCKS AND SOME PETROGENETIC CONSIDERATIONS.

The geological, petrographic and geochemical data on the "metabasites" at Cabo Ortegal Complex (amphibolites, granulites, eclogites and chloritites-serpentinites) indicate that they all belong to one same petrogenetic unity whose polyphasic character is closely related with processes that took place in the Upper Continental Grust.

In our opinion the origin of these metabasites appear to be more as a consequence of the assumption of that basic-ultrabasic rocks are from Mantle provenance independently if many geological and petrological data question that origin.

There exist abundant data that indicates that all the lithological groups at Cabo Orte gal had a partial sedimentary origin: a) pelitic and carbonatic rocks, sometimes fossiliferous, that alternate or intercalate within amphibolites and chloritites-serpentines; b) presence of foliation, schistosity and stratification in the metabasites (amphibolites, chloritites-serpentinites, etc.), etc.

The geochronological data (WAN CARLSTEREN et al., 1979) together with stratigraphic considerations appear to place the Cabo Ortegal Complex and the surrounding materials mainly in the Lower-Paleozoic. Generally the surrounding materials are assigned to Ordovician-Silurian (VAN DER MEER, 1975). As in many places there exists a gradual transition towards the materials of the nucleous. In this way it is not absurd to suppose that these latter materials could correspond to Cambrian as some geological data appears to indicate (VAN CARLSTE-REN, 1977).

It would be interesting therefore to try to correlate the materials at Cabo Ortegal with others of the Iberian Massif. In nearby zones, East Galicia and Asturias, there exist thick and monotonous series of Cambrian materials that by their petrological features could be considered the predecessors of the igneous-metamorphic ones at Cabo Ortegal. So in Asturias (ZAMARREÑO, 1983) there exist thick Cambrian stratigraphic sequences where the lutitc materials are dominant (various phyllites and schists), but in lower-levels carbonate materials are frequent: limestones, dolomites and sometimes magnesites, in many cases transformed or alternating with marbles, calc-silicate rocks and also some "basic-ultrabasic rocks very similar to the chloritites-serpentinites at Cabo Ortegal.

These sedimentary materials or other very similar ones were present at Cabo Ortegal before the various structural, metamorphic and mainly granitization processes took place. The result was the formation of a petrological polyphasic petrostructural unity nowadays formed by various schists, amphibolites, granulites, eclogites and chlorites-serpentinites with scar ce outcrops of granites or other rocks such as rhyolites, keratophyres, porphyries, etc. all of which we interpretet as differential and superficial manifestations of underlying granitic masses, principal cause of the various structural and petrological processes that too, place, in a wide geological cycle, at Cabo Ortegal zone.

REFERENCES

- ADDY, S.K. & GARLICK, G.D. (1974). Oxygen isotope fractionation between rutile and water. Contr. Min. Petr. 45, 119, 121.
- ANTHONIOZ, P.M. & FERRAGNE, A. (1978). Le Precambrien polymetamorphique ellochtone du Nord-Ouest de la Peninsule Iberique, temoin d'une nappe de charriage calédonienne. In. M. JULIVERT et al. Edit. 'Geología de la parte Norte del Macizo Ibérico.' Ediciones del Cas tro, La Coruña. 23-42.
- ARPS, C.E.S.; CALSTEREN, P.W.C. VAN; HILGEN, J.D.; KUIJPER, R.O. & DEN TEX E. (1977). Mafic and related complexes in Galicia: An excursion guide. Leidse. Geol. Med. 51, 63-94.
- BROWN, E.H. (1977). The crossite content of Ca-amphibole as a guide to pressure of metamorphism. Journal of Petrology, <u>18</u>, 53-72.
- CALSTEREN, P.W.C.VAN (1977). Geochronological, geochemical and geophysical investigations in the high-grade mafic-ultramafic complex at Cabo Ortegal and other pre-existing elements in the Hercynian basement of Galicia (NW Spain). Verh Nr2 ZWO, Laboratorium voor Isotope -Geologie, Amsterdam, 1-74.
- CALSTEREN, P.W.C. VAN; BOELRIJK, N.A.I.M.; HEBEDA; E.H.; PRIEM, H.N.A.; DEN TEX, E.; BERDUR-MEN, E.A.Th. & VERSCHUPE, R.H. (1979). Isotopic dating of older elements (including the Cabo Ortegal mafic-ultramafic complex) in the hercynian orogen of NW of Spain: Manifes tations of a presumed early paleozoic Mantle-plume. Chemical Geol. 24, 35-56.
- COLEMAN, R.G.; LEE, D.E. & BEALTY, L.B. (1965). Eclogites and oclogites: their differences and similarities. Geol. Soc. of Amen. Bull. 76, 483-508.
- DEN TEX, E. (1981a). A geological section across the Hesperian massif in western and central Galicia. Geol. en Mijnbouw, 60, 33-40.
- DEN TEX, E. (1981b). Basement evolution in the northern Hesperian Massif. A preliminary survey of results obtained by the Leiden Research Group. Leidse. Geol. Med. <u>52</u>, 1-21.
- ENGELS, J.S. (1972). The catazonal polymetamorphic rocks of Cabo Ortegal (NW Spain), a structural and petrofabric study. Leidse. Geol. Med. 48, 83-133.
- FERNANDEZ MARTINEZ, F. & FERNANDEZ POMPA, F. (1977). Mapa Geológico de España. 1:50.000, nº 1, Cariño. Memoria 34 pp.

FERNANDEZ POMPA, F. & MONTESERIN LOPEZ, V. (1976). Mapa Geológico de España, 1:50.000. nº 7. Cedeira. Memoria 73 pp.

- FERRY, J.M. & SPEAR, F.S. (1978). Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contr. Min. Pet. 66, 113-117.
- GOLDMAN, D.S. & ALBEE, A.L. (1977). Correlation of Mg/Fe partitioning between garnet and biotite 0¹⁸/0¹⁶, partitioning between guartz and magnetite. Am. J. Sci. 277, 750-761.
- GRIFFITHS, J.B.; PEUCAT, J.J.; CORNICHET, J.; IGLESIAS, M. & GIL, J.I. (1985). U-Pb, Nd isoto pe and REE geochemistry in eclogites from the Cabo Ortegal Complex, Galicia, Spain. An example of REE inmobility conserving MORB like patterns during high-grade metamorphism. Chem. Geology (Isotope Geoscience Section) 52, 217-225.
- HAWTHORNE, F.C. (1983). The crystal chemistry of the amphiboles. Can. Min. 21, 173-180.
- KEASBERRY, E.J.; VAN CALSTEREN, P.W.C. & KUIJPER, R.P. (1976). Paleozoic mantle diapirism in Galicia. Tectonophysics, <u>31</u>, 61-65.
- KUIJPER, R.P. (1979). U-Pb systematics and the petrogenetic evolution of infracrustal rocks in the Paleozoic basement of western Galicia (NW Spain). Lab. Isotopen Geology, <u>5</u>, 101 pp.
- MAASKANT, P. (1979). Chemical petrology of polymetamorphic ultramafic rocks from Galicia, NW Spain. Leidse Geol. Med. 45, 237-325.
- MATTE, Ph. (1968). La structure de la virgation hercynienne de Galice (Espagne). Géol. Alp. 44, 157-280.
- MEER MOHR, C.G. VAN DER (1975). The palaeozoic strata near Moeche in Galicia, NW Spain. Leidse Geol. Med. 49, 487-497.
- MEER MOHR, C.G. VAN DER; KUIJPER, R.P.; CALSTEREN, P.W.C. VAN; & DEN TEX (1981). The Hesperian Massif: From Iapetus aulacogen to ensialic orogen. A model for its development. Geol. Rundschau, 70, 459-472.
- OVERMEEREN, R.A. VAN (1975). A gravity investigation of the catazonal rocks complex at Cabo Ortegal (NW Spain). Tectonophysics, 26, 293-307.
- PERCHUK, L.L. (1977). Thermodynamic control of metamorphic processes. In: Energetics of geodinamic processes. Ed. Saxena SK. Bhattachanji, S. Springer Verlag, N.Y. 286-352.
- PERCHUK, L.J.; PODLESSKII, K.K. & ARANOVICH, L.Y. (1981). Calculation of thermodynamic properties of end-member minerals from natural paragenesis. In: Thermodynamics of minerals and melts. Ed. Newton, R.C., Navrotsky, A. Wood, B.J. Springer Verlarg, N.Y. 111-129.
- PLYUSNINA, L.P. (1982). Geothermometry and geobarometry of plagioclase-hornblende bearing assemblages. Contr. Min. Petr. <u>80</u>, 140-146.
- SANCHEZ CELA, V. & APARICIO YAGUE, A. (1982). Feldspathic-quartz rocks, of sedimentary, meta morphic and igneous facies, in relation to granitization-transformation processes in the Hercynian massif of Spain. In: Transformists Petrology. Theophrastus publication, SA. Athens, 305 pp. Ed. F.D. Drescher-Kaden and SS Augustithis.
- VOGEL, D.E. (1967). Petrology of an eclogite and pyrigarnite-bearing polymetamorphic rock complex at Cabo Ortegal, NW Spain. Leidse Geol. Med. 10, 121-213.
- VOGEL, D.E. & GALICK, G.D. (1979). Oxigen-isotope rations in metamorphic eclogites. Contr. Min. Petrol; 28, 183-191.
- VOGEL, D.E. & WARNAARS, F.W. (1967). Metaolivine gabbro from Cabo Ortegral NW Spain: a case of incipent eclogitization. N. Jb. Min. Mh. 110-115.

- VOGEL, D.E.; ENGELS, J.P. & DEN TEX, E. (1983). El Complejo de Cabo Ortegal. Geología de España. T.I., IGME. 440-449 pp.
- WELLS P.R.A. & RICHARDSON; S.W. (1979). Thermal evolution of metamorphic rocks in the central Highlands of Scotland. In: The caledonides of the British Isles reviewed. Ed. Harris A. L., Holland CH and Leake, B.E. Spes. Publ. Geol. Soc. London nº 8. 339-344.
- ZAMARREÑO, I. (1983). Estratigrafía del Paleozoico en el Macizo Ibérico. Geología de España. Libro Jubilar, J.M. Ríos, IGME, 117-191

FIG. 1. Schematic geological map of Cabo Ortegal

FIG.3- Si02-minor elements diagrams

Chemical composition of schists (Analyst M	. Valleio.	CSTC)
--	------------	-------

TABLE 1

Sample	1866	1869	1872	1889	1892	1894	1899	1909	1910	1943
SiO2	54.50	75.90	62.10	74.00	75.70	72.90	66.30	78.20	78.45	73.04
TiO2	1.09	0.46	0.71	0.55	0.10	0.65	0,56	0.30	0.34	0.23
Fe203	3.18	2.75	4.12	0.58	0.10	0.17	3.07	0.41	0.17	0.16
FeO	7.38	1.61	1.17	3.21	0.48	3.53	1.48	1.92	1.90	0.31
MnO	0.20	0.09	0.13	0.10	0.01	0.11	0.05	0.05	0.04	0.01
CaQ	4.79	1.78	0.57	1.83	0.27	1.16	0.24	1.07	1.28	0.46:
Na ₂ 0	1.89	0.32	2.07	2.36	1.95	2.08	0.40	2.64	2.70	4.42
K20 P205	1.31	2.46	2.94	1.73	0.01	2.24	2.11	0.10	0.13	4.34
CO2	-	-	-	-	-	-	-	-	-	-
H ₂ 0	3.07	2.30	, 5.83	0.14	1.67	1.06	6.68	1.99	1.10	1.50
TOTAL	99.94	99.75	99.76	99.71	99.78	99.83	99.64	99.77	99.85	99.62
Rb	50	102	156	103	153	104	124	89	99	200
Ba	815	931	788	863	1072	1071	732	607	1056	376
Pb	- 195	1	13	17	33	10	11	18	13	43
La	79	69	93	65	194	66	77	61	43	1
Ce	92	90	85	82	65	80	82	75	76	56
Y	24	50	37	32	42 9	32	35	26	34 14	42
Żn	70	59	76	60	27	3.1	68	35	43	39
Cu	14	13	13	13	15	12	16	13	13	12
Ga	50	16	40	13	23	12	12	20	10	23
Zr	3	261	97	150	215	125	138	-	256	160
Nb	271	4	1		61	5	15	-	48	66
V	271	54	517	540		100	200	107	57	-
Q	17.24	60.05	34.10	45.39	38.98	43.96	53.08	53.53	52.07	29.59
Ab	16.00	2.71	17.52	19.98	37.29	13.24	12.47	6.85	22.85	25.65
An	22.91	7.98	2.04	7.90	1.27	6.66	0.21	4.66	5.50	1.30
C	4.76	5.11	10.09	4.56	2.42	5.30	13.75	3.56	3.28	2.19
En	11.75	1.82	6.40	4.53	0.65	4.86	4.56	2.66	2.54	0.90
FS Mt	9.50	0.09	2 14	4.69	0.65	5.47	- 3 31	2.78	2.86	0.08
Hm	-	-	2.65	-	-	-	0.79	-	-	-
Ilm	2.07	0.87	1.35	1.04	0.19	1.23	1.06	0.57	0.65	0.44
I.D.	40.98	77.29	68.99	75.59	92.77	74.80	68.93	82.73	83.38	92.65
1866)	Schis	t. Loc	Pasada	a dos Me	estas.					
1869)	Schis	st. Mei:	2050.							
1889)	Schist	gneis:	Lco. Uza	al.						
1892)	Schist	gneis:	de Pou	lde.						
1899)	: Schis	st. Nogi	ieira-Ro	egoa.						
1909)	1909) Schist. Cañotas.									
1943) Gneis. Regoa-Boriza.										

Sample SiO2 TiO2 Al2O3 Fe2O3 Fe2O MnO MgO CaO Na2O K2O P2O5 CO2 H2O	2 <u>1946</u> 65.35 1.85 15.51 3.58 2.33 0.12 2.88 1.17 1.86 3.40 0.14 - 1.56	$ \begin{array}{r} 1958 \\ 65.90 \\ 0.97 \\ 15.62 \\ 1.04 \\ 3.74 \\ 0.08 \\ 3.14 \\ 1.28 \\ 2.36 \\ 2.56 \\ 0.17 \\ - \\ - \\ 2.99 \\ \end{array} $	1999 57.71 1.81 19.94 3.59 3.11 0.08 3.03 0.10 0.56 3.16 0.14 - -
TOTAL	99.75	99.85	99.78
Rb Ba Pb Sr La Ce Y Th Zn Cu Ni Ga Zr Nb V	109 1258 	105 998 8 185 97 87 35 - 75 12 17 16 158 4 253	110 1081 1 42 116 90 34
Q Or Ab An Ne C En Fs Mt Hm Ilm Ap I.D. 1946)	35.12 20.09 15.74 4.89 - 6.98 7.17 - 2.54 1.83 3.51 0.32 70.95 Schist . Barn	33.36 15.13 19.98 5.24 - 7.05 7.82 4.56 1.51 - 1.84 0.39 68.46	38.02 18.67 4.74 - 15.75 7.55 5.04 0.12 3.44 0.32 61.44
1958) 1999)	Schist . Casa Schist . Punt	al de María. La de Fornelo	

			TABLE 1			
Chemical	composition	of	schists	(Analyst M.	Vallejo;	CSIC)

Sample	1906	1919	1926	1868	1879	1881	1885	1934
SiO ₂	55.30	41.40	47.30	49.90	43.00	59.10	65.50	60.47
TiO2	1.34	1.14	1.01	1.15	0.61	1.16	0.50	1.79
A1203	15.87	11.07	15.65	15.55	23.11	15.15	15.52	15.26
FeQ	5 53	10 .99	5 82	7 50	4.01	3.51	1.00	1.20
MnO	0.17	0.37	0.25	0.24	0.01	0 16	4.05	0.16
MgO	4.97	9.90	5.57	6.86	5.13	3.73	2.35	3.20
CaO	6.05	10.47	11.21	8.90	14.08	5.80	5.87	7.25
Na ₂ 0	3.31	1.59	4.69	3.99	1.07	3.43	3.46	3.76
K20	1.34	0.48	0.24	0.80	0.50	1.28	0.29	0.59
P205	0.23	0.23	0.19	0.25	0.06	0.15	0.17	0.18
H20	2.22	1.28	1.33	1.10	1.41	1.56	0.51	0.44
TOTAL.	99 74	99 88	99 80	99 79	00 03	00 64	00.06	
TOTAL	55.74	55.00	55.00	55.15	33.33	33.04	99.90	33.11
Rb	47	-	-	6	2	57	33	26
Ba	475	171	141	285	175	398	252	245
Pb	15	-	-	12 .	21	23	7	21
Sr	1/5	6	140	55	764	210	339	361
Се	49	41	33	49	14	15	114	19
Y	38	6	76	18	2	39	33	41
Th	8	-	-	1	E	22	1	38
Zn	114	67	119	117	73	99	84	79
Cu	78	24	8	40	69	60	10	2
N1 CD	25	48	60	96	12	35	13	109
Zr	141	9	25	. 15	15	151	124	10
Nb	8		_	-	- E	10	14	12
V	594	929	961	816	729	415	2	620
Q	9.59	-		and the second		16.11	25.85	16.25
Or	7.92	2.84	1.42	4.73	2.95	7.56	1.71	3.49
AD	28.02	11.00	26.93	33.77	9.06	29.03	29.29	31.83
Ne	-	1.33	6 92	22.10	20.78	22.16	25.96	23.02
C	_		-	and states	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Den	2.35	5.72	21.26	11.18	6.57	3.31	0.83	5.74
Dfs	0.90	3.06	5.45	5.35	3.78	1.23	0.38	3.92
En	11.29		-	0.51	1.08	7.75	5.47	5.31
Fs	4.96	-	-	0.28	0.72	3.29	6.68	4.15
FO .		15.42	2.81	7.98	6.06		-	-
ra Mt	1 91	6 17	0.91	4.83	4.41			
Ilm	2.54	2.17	1.92	2 18	1 16	5.09	1.45	1.03
Ap	0.53	0.53	0.44	0.58	0.14	0.35	0.30	5.40 C 42
I.D.	45.53	15.17	35.26	38.50	12.01	52.71	56.86	51.56
								t.
1906) An	1906) Amphibolite. Castro.							

TABLE 1

Chemical composition of amphibolites (Analyst M. Vallejo; CSIC)

1906)Amphibolite. Castro. 1919)Amphibolite. Renedos de San Julián. 1926)Amphibolite. San Román. 1868)Amphibolite. Meizoso. 1879)Amphibolite. Teixidelo. 1881)Amphibolite. Teixidelo. 1885)Amphibolite. Crucero Los Carris. 1934)Amphibolite. Tojo.

	Chemical	composition	of amphibolites	(Analyst M.	Vallejo; CSIC)
Samp SiO ₂ TiO2 Al2O FeO FeO MnO NgO CaO Na2O K2O P2O5 CO2 H2O TOTA	ple 93 93	<u>1938</u> 49.58 1.54 15.32 3.48 6.29 0.16 8.17 11.98 2.19 0.10 0.13 <u>-</u> 1.04 99.98	$ \begin{array}{r} $	$ \begin{array}{r} 1949 \\ 49.08 \\ 1.61 \\ 16.14 \\ 3.62 \\ 6.49 \\ 0.15 \\ 5.09 \\ 11.56 \\ 2.88 \\ 0.65 \\ 0.19 \\ - \\ 2.24 \\ 99.70 \end{array} $	$ \begin{array}{r} 1953 \\ 56.30 \\ 1.16 \\ 16.31 \\ 2.78 \\ 6.89 \\ 0.17 \\ 4.68 \\ 6.27 \\ 3.22 \\ 0.54 \\ 0.20 \\ \hline 1.44 \\ 99.96 \end{array} $
Rb Ba Pb Sr La Ce Y Th Zn Cu Ni Ga Zr Nb V	1	2 58 9 39 - 14 17 6 77 43 09 15 45 2 09	19 262 21 58 19 43 13 13 14 6 159	13 257 20 333 13 44 22 4 100 20 35 14 82 2 832	7 288 11 112 20 50 27 - 100 55 39 14 103 3 576
Q Or Ab An Ne C Den Dfs En Fs Mt Ilm Ap I.D.		1.86 0.59 18.54 31.68 - - 16.88 4.65 12.52 3.96 5.05 2.92 0.30 20.99	3.17 0.71 15.91 39.53 - 12.19 4.39 13.53 5.59 2.49 1.52 0.23 19.79	.0.85 3.84 24.38 29.19 - - 15.04 6.77 5.70 2.95 5.25 3.06 0.44 29.07	$ \begin{array}{c} 11.96\\ 3.19\\ 27.26\\ 28.45\\ -\\ -\\ 0.67\\ 0.44\\ 11.35\\ 8.52\\ 4.03\\ 2.20\\ 0.46\\ 42.41\\ \end{array} $

TABLE 1

1938) Amphibolite. Loc. Purrico. 1940) Amphibolite. Loc. Faro Candelaria. 1949) Amphibolite. Loc. Landoy 1953) Amphibolite. Loc. Vieiteiras.

Sample SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 CO2 H2O	<u>1931</u> 49.22 1.12 14.82 4.65 7.27 0.20 7.72 12.71 1.91 0.05 0.14 - 0.12	<u>1950</u> 49.53 0.39 15.13 3.01 4.71 0.13 9.74 14.17 1.84 0.12 0.05 - 1.12	1865 48.90 0.43 15.75 3.04 7.93 0.19 8.34 11.74 1.67 0.15 0.13 0.13	$ \begin{array}{r} 1876 \\ 49.70 \\ 0.21 \\ 3.17 \\ 2.82 \\ 3.83 \\ 0.15 \\ 21.86 \\ 14.07 \\ 0.56 \\ 0.08 \\ 0.02 \\ - \\ 2.77 \end{array} $	<u>1912</u> 49.30 0.40 15.66 3.68 7.20 0.21 8.74 10.43 3.01 0.10 0.20 0.89	<u>1997</u> 50.02 0.97 13.73 1.80 9.92 0.19 7.55 11.84 2.84 0.08 0.19 - 0.81	$\begin{array}{r} \underline{1951}\\ 54.60\\ 0.35\\ 13.16\\ 2.05\\ 6.04\\ 0.11\\ 8.52\\ 12.33\\ 1.92\\ 0.23\\ 0.16\\ -\\ 0.38\end{array}$
TOTAL	99.93	99.94	99.78	99.29	99.82	99.94	99.85
Rb Ba Pb Sr La Ce Y Th Zn Cu Ni Ga Zr Nb V	256 6 52 11 181 10 1 6 8 11 75 13 28 6	17 81 7 159 7 65 17 1 62 11 120 18 60 6 7	1 168 8 118 16 29 13 	14 27 21 107 - - 14 18 56 200 486 13 56 8 11623	259 6 79 15 180 16 1 84 13 93 17 44 1 6	367 6 53 40 231 12 1 141 15 71 14 23 6	9 152 6 92 6 95 17 1 63 12 96 15 63 5 6
Q Or Ab An C Den Dfs En Fs Fo Fa Mt I.lm Ap I.D.	2.49 0.30 16.17 31.72 - 17.97 6.54 10.90 4.55 - 6.74 2.13 0.32 18.95 Eclogite.		0.90 0.89 14.14 35.04 	$\begin{array}{c} & 0.47 \\ 4.74 \\ 5.90 \\ \hline \\ 46.56 \\ 3.52 \\ 17.44 \\ 1.51 \\ 10.80 \\ 1.03 \\ 4.09 \\ 0.40 \\ 0.05 \\ 5.21 \\ \end{array}$	0.59 25.84 28.92 12.44 4.94 7.89 3.59 5.68 2.85 5.34 0.76 0.46 26.07	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	7.01 1.36 16.25 26.61 7.31 12.08 5.14 - - 2.97 0.66 0.37 24.63

 $\frac{\text{TABLE 1}}{\text{Chemical composition of granulites-eclogites (Analyst M. Vallejo; CSIC)}}$

1931) Eclogite. Cota 483. 1950) Granulite. Sismundi. 1865) Eclogite. Barreiras. 1876) Eclogite. Coto Ameneiro. 1912) Eclogite. Cabo Ortegal. 1997) Eclogite. Caserio La Cruz. 1951) Granulite. Sismundi.
| Sample
SiO2
TiO2
Al2O3
FeO
MnO
CaO
Na2O
K2O
P2O5
CO2
K2O
TOTAL | 1867
41.87
0.09
3.44
5.04
2.43
0.12
33.74
1.64
0.36
0.50
0.03
10.72
99.98 | 1870 42.67 0.12 3.41 3.73 3.48 0.12 33.05 2.73 0.60 0.10 0.30 9.47 99.51 | 1888 42.51 0.04 3.22 4.48 1.85 0.12 33.54 0.87 0.22 0.01 0.02 12.70 | 1901
43.97
2.46
4.38
3.92
0.14
31.64
5.30
0.10
-
0.03
7.70
-
 | 1902 41.25 0.07 3.11 4.20 3.17 0.12 33.62 1.52 0.35 0.05 0.03 12.09 90.52 | 1982
44.23
0.01
2.72
4.23
3.39
0.11
32.40
1.56
0.33
0.05
0.03
10.36 | 1980
42.43
0.02
3.81
4.57
2.82
0.11
33.23
1.50
0.37
0.09
0.03
10.78 |
|--|--|--|---|---|---|---|--|
| IOIAL | 55.50 | 33.21 | 99.58 | 99.04 | 99.58 | 99.42 | 99.76 |
| Rb
Ba
Pb
Sr
La
Cc
Y
Th
Zn
Cu
Ni
Ga
Zr
Nb
V | 64
.63
8
99
14
49
42
-1
85
12
2763
21
2763
21
191
26
34 | 50
47
8
90
16
43
40
1
82
12
2344
17
156
21
35 | 64
3
8
117
15
45
44
1
86
12
2622
18
203
28
36 | 36
-
7
80
9
23
26
1
70
27
1291
14
1291
14
123
15
22 | 64
28
9
100
16
49
47
1
84
11
2520
23
208
29
32 | 59
77
8
64
16
56
44
2
85
11
2578
22
186
25
41 | 60
108
6
72
10
53
43
2
96
11
2657
23
182
23
40 |
| Q
Or
Ab
An
C
Den
Dfs
En
Fs
Fo
Fa
Mt
Hm
Ilm
Ap
I.D. | 2.95
3.05
6.29
-
1.28
31.25
0.14
36.57
0.18
7.31
-
0.17
0.07
6.00 | -
0.59
5.08
6.32
-
-
5.31
0.19
27.24
1.10
36.86
5.41
-
0.23
0.07
5.67 | -
0.06
1.86
4.19
1.31
-
48.09
-
24.84
-
6.24
0.18
0.08
0.05
1.92 | -
0.85
6.26
-
14.89
0.63
31.60
1.54
28.24
4.52
6.35
-
-
0.07
0.85 | -
0.30
2.96
6.77
-
0.44
0.01
33.67
0.99
34.94
1.13
6.09
-
0.13
0.07
3.26 | -
0.30
2.79
5.79
-
1.33
0.04
46.32
1.67
23.66
0.94
6.13
-
0.02
0.07
3.09 | -
0.53
3.13
7.25
0.45
-
-
38.48
0.73
31.03
0.65
6.63
-
0.04
0.07
3.66 |
| 1867) 3
1870) 3
1888) 3
1901) 3
1902) 3
1982) 3
1980) 5 | Serpentini
Serpentini
Serpentini
Serpentini
Serpentini
Serpentini | te. Basad
te. Meize
te. Cruce
te. Neube
te. Canti
te. Jubia | la das Mes
oso.
eiro Los C
eira.
les del C | stas.
Carris.
Cuadro. | | | |

	1897	1898	1915	1942
SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 CO2 H2O	73.80 0.08 15.11 0.10 0.16 0.06 0.12 0.73 4.87 3.39 0.20 1.10	$ \begin{array}{r} 69.95\\ 0.52\\ 14.96\\ 0.99\\ 1.89\\ 0.03\\ 0.89\\ 0.99\\ 2.48\\ 4.55\\ 0.12\\ \hline 2.19\\ \hline 0.0256\\ \hline \end{array} $	74.85 0.17 12.05 1.52 1.54 0.08 0.57 3.11 3.77 0.52 0.07 	70.20 1.29 14.83 0.04 2.90 0.05 1.52 0.84 2.58 3.82 0.05 - 1.71 - 99.83
	99.17	99.50	55.01	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Rb Ba Pb Sr La Ce Y Th Zn Cu Ni Ga Zr Nb V	147 432 42 134 	146 1125 18 161 54 82 35 - 48 11 8 16 158 13 48	63 439 11 147 29 63 34 3 35 12 9 16 125 27 49	139 1054 19 153 90 80 35 - 54 11 9 18 158 20 62
Q Or Ab An C Den Dfs En Fs Mt Ilm Ap I.D.	31.13 20.03 41.22 2.56 2.49 - - 0.30 0.13 0.14 0.15 0.46 92.33	34.16 26.89 20.99 4.13 4.44 - 2.22 1.85 1.44 0.99 0.28 82.04	$\begin{array}{c} 43.08\\ 3.07\\ 31.91\\ 14.42\\ -\\ 0.24\\ 0.21\\ 1.31\\ 1.33\\ 2.20\\ 0.32\\ 0.16\\ 78.07\\ \end{array}$	35.17 22.57 21.84 3.84 5.04 - 3.79 3.25 0.06 2.45 0.12 79.58
1897) 1898) 1915) 1942)	Granite. Barro Granite. La Re Granite (plagio Granite. Regos	osas. egoa-Nogueira. oclásic) Pene a-Roriza.	dos-San Juar	ı.

		11	ABLE I					
Chemical	composition	of	granites	(Analyst M	Vallejo;	CSIC)		

and the second

Sample	1866	1869	1872	1889	1894	1897	1898	1910	1915	1909	1943	1958	1942	1999	1946
SiO2	37.35	32.29	37.02	38.07	37.56	42.92	38.54	37.03	35.28	38.46	37.39	39.42	37.78	38.10	38.73
Al203.	25.66	23.19	24.50	26.27	24.92	20.43	22.91	24.55	24.75	23.19	23.18	24.30	24.03	23.51	23.41
FeO	22.22	26.02	30.04	23.57	29.88	26.60	24.86	28.40	26.52	26.06	34.35	27.86	27.35	32.20	31.16
MgO	3.68	1.12	3.07	4.06	2.97	0.90	1.16	1.11	1.80	1.74	1.63	4.31	1.47	2.89	2.43
CaO	8.87	13.25	3.36	6.53	3.84	0.41	8.03	3.99	10.65	8.94	1.53	3.95	3.99	1.81	3.78
MnO	1.25	1.54	2.43	1.57	1.64	7.94	4.86	5.79	0.72	1.32	1.50	0.73	5.86	1.36	0.76
TiO2	-								-	-				-	-
TOTAL	99.06	100.43	100.45	100.09	100.82	99.22	100.38	100.89	99.72	97.73	99.60	100.59	100.19	99.88	100.31
Si	5.794	5.627	5.817	5.831	5.849	6.744	6.051	5.844	. 5,599	6.032	5.988	6.049	5.969	6.011	6.065
7.14	0.206	.0.373	0.183	0.169	0.151	-		0.156	0.401	-	0.012		0.031	- 412-	_
A1 ⁶	4.509	4.006	4.376	4.597	4.445	3.803	4.261	4.434	4.251	4.308	4.386	4.417	4.467	4.394	4.343
Fe	2.882	3.469	3.948	3.019	3.891	3.496	3.265	3.748	3.520	3.418	4.601	3.575	3.614	4.248	4.081
Mg	0.851	0.266	0.721	0.927	0.690	0.212	0.273	0.261	0.426	0.407	0.389	0.985	0.270	0.679	0.567
К	1.474	2.264	0-565	1.072	0.641	0.069	1.351	0.675	1.812	1.503	2.262	0.650	0.675	0.306	0.635
Mn	0.164	0.209	0.342	0.204	0.216	1.057	0.647	0.774	0.098	0.176	0.204	0.095	0.785	0.182	0.101
Ti	- 1	- 1	-			een-	Charles - Andre	- 7		NG - 1		- 4	-	- 10	-
- Alm	56.96	E0 41	72 60	C1 00	74.00										
Aun.	12 50	2.62	/3.60	61.09	74.20	/3.15	61.03	70.26	62.86	64.72	85.90	70.72	68.38	80.83	78.26
Pyropo	13.59	3.62	10.85	15.19	10.64	3.57	4.11	3.96	6.15	6.23 Ľ	5.88	15.79	5.30	10.47	8.81
GLOSS.	20.31	34.48	9.54	19.62	11.05	1.30	22.85	11.44	29.26	25.74	4.43	11.62	11.56	5.26	11.00
Esp.	3.21	3.41	5.98	4.09	4.09	21.96	12.00	14.33	1.71	3.29	3.77	1.86	14.74	3.43	1.91

* Number of ions on the basis of 24(0).

155

TABLE 2

Chemical composition of garnets (Analyst J. de la Puente; CSIC)*

Sample	1866	1942	1894	1909	1898	1889	1946	1910	1958
SiO	32.75	31.07	35.66	33.87	32.23	37.22	35.46	33.27	36.46
AlaOa	22.21	19.50	18.46	22.92	18.96	16.19	18.77	20.53	19.42
Z 3 FeO	20.96	24.27	15.84	21.96	22.86	16.42	18.18	21.53	17.67
MgO	14.89	7.08	12.70	8.63	7.04	12.03	9.53	9.37	10.32
K ₂ O	3.02	8.98	10.48	7.37	9.43	9.96	10:33	9.79	10.39
MnO			1920- 211	- · 1955		1-22 - 3 3	6. <u>1.</u> 1 <u>–</u> 3187	all and - a st	982 - K. C.
TiO ₂	1.79	4.39	2.65	1.78	4.74	4.14	3.90	2.92	2.44
H ₂ O	4.06	3.80	3.99	4.01	3.87	4.01	3.97	3.96	4.02
TOTAL	99.70	99.12	99.83	100.57	100.06	99.99	100.17	101.39	100.76
Si	4.831	4.889	5.342	5.072	4.980	5.558	5.344	5.032	5.429
A14	3.169	3.111	2.658	2.928	3.020	2.442	2.656	2.968	2.571
A16	0.711	0.523	0.619	1.138	0.616	0.421	0.694	0.709	0.855
Fe	2.586	3.194	1.984	2.751	2.955	2.051	2.291	2.723	2.200
Mg	3.275	1.660	2.837	1.928	1.623	2.677	2.140	2.112	2.291
K	0.568	1.802	2.004	1.408	1.859	1.898	1.986	1.889	1.973
Mn	_		-	1 - 2	-	-	-	-	
Ti	0.199	0.519	0.299	0.201	0.551	0.465-	0.443	0.332	0.274
OH	4	4	4	4	4	4	4	4	4

 TABLE 2

 Chemical composition of biotites (Analyst J. de la Puente; CSIC)

*Number of ions on the basis of 24(O), 4(OH).

Sample	1870	1868	1867	1876-2	<u>1876–3</u>	1926	1931	1901	1902	1950	1997	1940	1934
SiO2	56.11	51.07	51.65	55.07	53.15	51.73	53.73	53.24	56.40	54.59	55.34	53.92	52.79
Al203	3.37	7.15	10.54	7.11	2.09	9.98	8.77	1.13		7.16	9.45	6.20	6.43
Fe0	7.69	9.67	4.60	6.48	3.51	9.70	5.09	2.72	7.70	3.35	5.76	8.70	9.66
MgO	31.93	10.38	19.25	19.42	16.97	8.35	11.16	19.02	32.70	13.01	9.10	18.10	9.48
CaO	-	17.78	12.69	11.74	23.09	14.09	16.55	24.34	2.98	17.63	14.87	12.34	18.23
Na ₂ O	- 1	2.90	1.20	100 - T		5.88	4.09			3.66	5.57	0.48	2.50
K.20	- 77	-				-	- 11	San - Alle	-	-	_	-	
MnO	0.12	-		-	10-16 T		-	- 22		_	-	-	
TiO2	-			-	1 - M	0.24	0.16	- 76		0.14	0.10	0.24	0.39
TOTAL	99.24	98.98	99.96	99.83	98.83	100.00	99.58	100.47		99.57	100.21	100.01	99.51
Si	1.953	1.912	1.830	1.947	1.956	1.905	1.944	1.933	1.976	1.964	1.985	1,935	1.958
Al ⁴	0.047	0.088	0.170	0.053	0.044	0.095	0.056	0.043	-	0.036	0.015	0.065	0.042
Al ⁶	0.092	0.229	0:272	0.244	0.047	0.340	0.319	-	-	0.269	0.386	0.198	0.240
Fe	0.224	0.302	0.136	0.191	0.108	0.298	0.154	0.082	0.225	0.101	0.172	0.261	0.299
Mg	1.657	0.579	1.017	1.023	0.931	0.458'	0.602	1.029	1.708	0.698	0.486	0.968	0.524
Ca	-	0.713	0.482	0.444	0.910	0.556	0.641	0.947	0.111	0.680	0.571	0.474	0.724
Na	-	0.211	0.082	-	-	0.419	0.287			0.255	0.387	0.033	0.180
ĸ	7.45		-		-		-			-	-		
Mn	0.003	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	-	-	-	-	-	-	-	-	-	<u>_</u>	_
Ti	an Training	-	-	-	-	0.006	0.004	-		_	0.002	0.006	0.011
Enst	87%	-	14. (n 14.)	. –	-	- 191	-	92%	88%	_	-	-	

TABLE 2 Chemical composition of pyroxenes* (Analyst J. de la Puente; CSIC)

* Number of ions on the basis of 6(0).

Sample	1897	1942	1943	1919	1885	1881	1949	1934	1940	1953	
SiO	65.80	64.97	67.65	61.18	61.29	68.50	63.75	62.78	52.75	61.46	
A1.0,	22.84	22.75	20.95	24.86	24.41	20.28	23.42	22.83	30.25	24.15	
CaO	2.27	2.98	1.35	5.31	5.86	0.18	4.01	4.33	10.92	4.93	
Na ₂ O	9.66	9.52	10.12	8.03	8.64	10.11	9.58	8.82	5.48	9.17	
K20	0.16	0.19	0.62	Pag- 1	0.24		0.08	0.36	and a main state	0.30	
TOTAL	100.76	100.43	100.71	99.40	100.46	99.08	100.87	99.14	99.41	100.04	
	11 450	11 270	11 765	10 999	10 862	11 987	11 174	11 201	9.590	10,926	
SI	11.450	11.370	11.705	5 241	5 124	1 204	4 862	4 824	6 515	5.085	
AL	4.707	4.719	4.313	1 012	1 112	0 194	0.754	0.828	2 127	0.939	
Ca	0.424	0.559	0.252	1.013	2.070	2 4 2 2	3 258	3 051	1 932	3 162	
Na	3.260	3.233	3.415	2.1/1	2.970	5.452	0.019	0.083	1.552	0.069	
K	0.037	0.044	0.137	Star St	0.055		0.015	0.005		0.000	
Ab	87.00	83.50	89.21	72.04	70.56	98.96	79.87	75.96	46.09	74.72	
An	11.99	15.33	6.97	27.95	28.07	1.03	19.61	21.87	53.90	23.56	
Or	1.00	1.16	3.80		1.36	-	0.51	2.15		1.70	

 TABLE 2

 Chemical composition of plagioclases* (Analyst J. de la Puente; CSIC)

* Number of ions on the basis of 32(0).

			TABLE a						
Chemical	composition	of	amphiboles*	(Analyst J.	de	la	Puente;	CSIC)	

Sample	1881	1879	1868	1865	1876-1	1919	1931	1934	1938	1906	1926	1885	1940	19.19	1951	1950	1953	1997
SiO2	40.49	41.90	40.05	44.91	54.56	40.19	42.50	38.22	44.98	40.24	40.04	39.99	46.48	44.10	45.25	44.65	41.97	42.98
A1203	16.91	20.22	15.90	14.04	1.09	17.22	14.90	15.75	13.26	17.16	16.37	16.44	12.26	16.19	14.37	13.55	15.11	15.86
FeO	17.91	9.15	15.70	8.73	11.79	13.36	10.98	17.61	13.57	17.04	17.57	17.33	11.24	13.23	8.13	7.21	15.07	11.39
MgO	9.38	11.23	11.03	15.94	31.84	11.69	15.25	10.58	12.03	9.61	8.97	9.28	13.56	10.00	16.68	18.16	10.08	12.79
CaO	10.83	12.39	10.97	10.48	0.35	10.22	10.55	11.19	12.10	10.40	9.44	10.77	12.03	10.97	10.43	11.03	11.26	10.47
Na20	1.34	1.59	2.15	2.76		2.31	2.83	1.95	1.31	1.45	3.54	1.86	1.01	1.17	2.32	2.27	1.67	3.11
к ₂ о	-	1.17	1.34	0.37	1.1	0.80	0.65	1.37	0.13	1.27	0.50	0.81	0.13	1.07	0.20	0.21	1.03	0.44
MnO	0.28	-	-	-		0.11	0.10	0.10	0.10	0.10	0.12	0.11	0.22	0.21		_		_
TiO2	1.15	0.98	1.29	0.71		1.40	0.69	2.03	0.56	1.46	1.96	1.44	0.67	1.30	0.57	0.56	1.45	0.90
Н20	2.01	2.09	2.01	2.09	2.19	2.02	2.06	1.98	2.05	2.02	2.00	2.00	2.07	2.06	2.11	2.10	2.01	2.06
TOTAL	100.34	100.76	100.48	100.06	101.84	99.35	100.56	100.82	100.13	100.80	100.55	100.08	99.71	100.35	100.09	99.78	99.70	100.04
Si	6.018	5.985	5.964	6.418	7.436	5.950	6.152	5.756	6.549	5.968	5.978	5,990	6.705	6.397	6 424	6 363	6 234	6 237
Al ⁴	1.982	2.015	2.036	1.582	0.176	2.050	1.848	2.244	1.451	2.032	2.022	2.010	1.295	1.603	1.576	1 637	1 766	1 763
Alb	0.995	1.406	0.769	0.795	-	0.969	0.707	0.566	0.836	0.983	0.873	0.908	0.801	1.179	0.540	0.651	0.893	1.705
Fe	2.220	1.093	1.955	1.043	1.343	1.654	1.329	2.218	1.652	2.114	2.195	2.171	1.357	1.605	0.966	0.859	1.872	1 382
Mg	2.079	2.392	2.448	3.395	6.468	2.580	3.291	2.375	2.612	2.126	1.996	2.073	2.916	2.162	3.529	3.857	2,233	2 766
Ca	1.720	1.896	1.751	1.605	0.051	1.621	1.636	1.806	1.887	1.653	1.511	1.729	1.859	1.706	1.586	1.685	1 797	1.628
Na	0.388	0.440	0.622	0.766		0.665	0.794	0.572	0.371	0.419	1.025	0.540	0.284	0.331	0.641	0.628	0.482	0.876
K	-	0.213	0.255	0.068	-	0.151	0.120	0.263	0.024	0.241	0.095	0.156	0.024	0.199	0.023	0.038	0.195	0.051
Mn	0.035	-	-		-	0.014	0.012	0.012	0.012	0.012	0.015	0.014	0.027	0.026	-	-	-	-
Ti	0.128	0.106	0.144	0.076	-	0.156	0.075	0.230	0.061	0.163	0.220	0.163	0.073	0.142	0.061	0.060	0.162	0.098
OH	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

* Number of ions on the basis of 24(O), 2(OH).

Sample ,	1898	1942	1943
Si02	62.68	61.93	62.84
A1203	19.56	19.42	19.26
CaO	0.15	0.10	0.27
Na20	1.18	1.00	1.23
к20	16.12	15.80	15.72
TOTAL	99.71	98.27	99.33
Si	11.692	11.701	11.742
Al	4.321	4.346	4.263
Ca	0.031	0.021	0.054
Na	0.429	0.368	0.446
K	3.836	3.807	3.747
Ab	9.41	8.26	9.94
An	0.69	0.47	1.27
Or	89.88	91.25	88.78

 $\label{eq:chemical composition of potassium feldspars* (Analyst J. de la Puente; CSIC)} Chemical composition of potassium feldspars* (Analyst J. de la Puente; CSIC)$

* Number of ions on the basis of 32(0) .

Chlo	rites**	Serpentine*			
1870	1867	1888			
29.10	27.94	42.54			
18.51	21.05	0.77			
4.01	3.98	6.16			
33.13	32.44	32.51			
0.21	- \				
	-				
17.24	17.35	11.98			
102.24	102.78	93.98			
4.045	3.859	2.126			
3.048	3.444	- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19			
-	• -	0.045			
0.466	0.459	0.257			
6.865	6.680	2.421			
0.025	-	-			
- 10	-				
16	16	4			
	Chlo <u>1870</u> 29.10 18.51 4.01 33.13 0.21 - 17.24 102.24 4.045 3.048 - 0.466 6.865 0.025 - 16	Chlorites** 1870 1867 29.10 27.94 18.51 21.05 4.01 3.98 33.13 32.44 0.21 - 17.24 17.35 102.24 102.78 4.045 3.859 3.048 3.444 - - 0.466 0.459 6.865 6.680 0.025 - - - 16 16			

 $\label{eq:TABLE 2} \underline{\mbox{TABLE 2}}$ Chemical composition of chlorites and serpentines (Analyst J. de la Puente; CSIC)

* Numbers of ions on the basis of 9(0), 4(OH).

** Numbers of ions on the basis of 36(0), 16(OH).

Sample	1980	1902	1867	1982	1901	1870
SiO2	41.65	40.25	41.28	40.84	40.83	41.13
FeO	10.91	9.88	9.00	10.26	10.39	9.72
MgO	47.92	50.21	49.66	48.67	48.21	49.50
			·			
TOTAL	100.49	100.36	99.95	99.78	99.45	100.37
Si	1.016	0.984	1.006	1.003	1.006	1.002
Fe	0.222	0.202	0.183	0.210	0.214	0.198
Mg	1.743	1.829	1.804	1.782	1.771	1.797
Fo	88.70	90.00	90.79	89.45	89.21	90.07

TABLE 2

Chemical composition of olivines* (Analyst J. de la Puente; CISC)

* Number of ions on the basis of 4(0).

Rev. Acad. Ciencias Zaragoza, 42 (1987)

METODOS ISOTOPICOS APLICADOS A LA PROSPECCION GEOTERMICA

L.F. AUQUE, J. FERNANDEZ CASCÁN

Departamento de Petrología y Geoquímica. Facultad de Ciencias. Ciudad Universitaria. 50009 Zaragoza (España).

In this paper, an expositon and revision on the isotopic methods, applied to thermal waters, is made.

The amounts of tritium are used to define the age of the thermal water and the mixing degree with the cold ones.

The 6D-60¹⁸ relation can indicate the rate of the isotopic change (water-rock), the input charge and evolutionary state of the system, and even the possible genesis of the geothermal area. Finally, various isotopic geothermometers, with different calibrates, advantages and inconvenients, etc are examined.

1. INTRODUCCION

La prospección de áreas geotérmicas requiere la utilización de una metodología en la que se aúnen una serie de técnicas generalmente complementarias (geoquímicas, geofísicas, etc). Las técnicas geoquímicas han proliferado en los últimos años y su utilización ha llegado a ser indiscriminada y arbitraria. Este problema ya ha sido discutido en numerosos trabajos de síntesis sobre los distintos métodos geotermométricos basados en el quimismo de las aguas (MICHARD, 1979; FRITZ, 1981; AUQUE et al., 1986).

Los métodos isotópicos constituyen otro grupo de técnicas de amplia utilización en la prospección geotérmica. Su empleo presenta caracteres similares a los de la Hidrogeología clásica, aunque con algunas características especiales. La escasez de trabajos de recopilación sobre esta metodología específica nos ha inducido a la realización de este estudio en el que presentamos un somero repaso de las técnicas y fundamentos de esta metodología.

Los isótopos de la molécula del agua utilizados son tanto radiactivos (tritio) como estables (oxígeno-18 y deuterio). Con ellos pueden obtenerse datos sobre la posible mezcla de los fluídos termales con otros más fríos, o la naturaleza litológica del almacén del sistema geotermal. La aplicación de técnicas geotermométricas isotópicas requiere análisis más complejos, ya que involucran isótopos de oxígeno e hidrógeno constituyentes de otras moléculas distintas de las del agua.

2. EL TRITIO

2.1. Generalidades.

El tritio (T) es un isótopo radiactivo con un periodo de semidesintegración de 12.26 años y que puede constituir la molécula de agua HTO. Se produce en las capas superiores de la atmósfera gracias a la reacción con N^{14} de neutrones rápidos procedentes de la interacción de rayos cósmicos con distintos átomos:

 $14N + n \longrightarrow T + 12C$

Según este proceso la producción de tritio es de 15 a 45 átomos por minuto y cm² en la superficie terrestre (GILETTI et al, 1958; LIBBY, 1961; SUESS, 1969), intervalo de variación dependiente de la intensidad o importancia de la actividad solar.

Esta concentración de tritio natural ha aumentado importantemente como resultado de las explosiones de bombas de hidrógeno desde 1952. La introducción de tritio artificial en la atmósfera e hidrosfera se ha usado como trazador en el estudio de aguas subterráneas (DIN-CER & DAVIES, 1967) y específicamente, en el estudio de aguas termales, esta alteración del ciclo natural permite estimar:

a) El tiempo de residencia del fluído termal en el interior del reservorio.

b) El grado de mezcla con aguas de infiltración más reciente.

Hechos que son de suma importancia a la hora de calcular la temperatura de base del sistema geotermal mediante métodos geoquímicos.

2.2. Metodología.

La concentración natural media de tritio atmosférico para nuestra latitud, antes de la primera explosión termonuclear, era de 15 U.T. (Unidad de Tritio = $T/H \cdot 10^{-8}$) según los datos señalados por OLIVE (1970). Partiendo de esta concentración inicial podemos calcular la concentración residual de las aguas en años posteriores utilizando la expresión:

$$(\frac{-0.693}{T} t)$$

donde $C_t y C_o$ son las concentraciones final e inicial respectivamente; T es el periodo de semidesintegración y t es el tiempo transcurrido. La concentración de tritio en las aguas para 1982 sería:

$$C_{1982} = 15 \cdot e^{-0.693 \times 30} = 2.75 \text{ U.T.}$$

(1)

(2)

Si en los análisis de aguas realizados en ese año la concentración de tritio es menor de 2.75 U.T. querría decir que esas aguas se habrían infiltrado antes de 1952. Si las concentraciones obtenidas son mayores, las aguas se habrían infiltrado más recientemenete o bien el fluído termal estaría sometido a procesos de mezcla con aguas más recientes.

En todo caso hay que considerar estos resultados con prudencia ya que como sugiere WIL-SON (1963) la presencia de bajas concentraciones de tritio en aguas termales podría deberse a una acumulación local de elementos radiactivos en un proceso de tipo hidrotermal.

2.3. Aplicación: las aguas de los balnearios de Panticosa y Benasque.

En la campaña de 1982 realizada por el IGME se hicieron distintos análisis isotópicos de los balnearios de Benasque y Panticosa. En la tabla 1 se señalan los resultados de estos análisis para el tritio junto con la temperatura de surgencia de cada fuente.

A la vista de esos datos está claro que el Manantial de Tiberio es el que parece presentar una menor proporción de mezcla de aguas o bien un mayor tiempo de residencia del fluído termal. Los manantiales del Hígado, La Laguna y San Agustín presentan una alta proporción de tritio y por lo tanto han de interpretarse como aguas más superficiales o bien con un menor

		TEMPERATURA (°C)	TRITIO (U.T.)
Benasque:			
Manantial de Las	Pilas	36.0	1.4
Manantial de San	Victoriano	35.0	1.8
Manantial de Las	Opiladas	32.5	1.2
Panticosa:			
Manantial del Híg	ado	.25.0	7.0
Manantial de Tibe	erio	52.0	0.7
Manantial del Est	cómago	30.5	2.0
Manantial de La I	aguna	24.0	17.2
Manantial de San	Agustín	27.0	10.1
Fuente del Gas		21.0	1.1

TABLA 1. Contenidos de tritio y temperatura de surgencia de los manantiales de Benasque y Panticosa (IGME, 1982).

tiempo de residencia en el sistema.

Los caracteres geoquímicos de estas aguas parecen indicar que las diferencias de temperatura de surgencia y contenidos de tritio de los manatiales analizados pueden explicarse más coherentemente si pensamos en un fluído termal de alta temperatura que se mezcla con aguas superficiales más frías en proporciones distintas (AUQUE & FERNANDEZ, en preparación).

3. ISOTOPOS ESTABLES. -

3.1. Generalidades.

Según datos de HOLDEN & WALKER (1972) las abundancias respectivas de los tres isótopos estables del oxígeno son: $0^{16}=99.756$; $0^{17}=0.039$ %; $0^{18}=0.205$ %. El hidrógeno tiene dos isótopos estables: $H^1=99.985$ % y <u>D</u>=0.015%.

Las composiciones isotópicas de hidrógeno u oxígeno en una muestra de agua se expresan como diferencias de relaciones $0^{18}/0^{16}$ y D/H respecto a una muestra-tipo denominada SMOW ("Standard Mean Ocean Water") y definida por CRAIG (1961) con las siguientes proporciones moleculares: $H_20^{16}=10^6$: $H_20^{17}=420$: $H_20^{18}=2000$: HDO=316. La expresión de la composición isotópica corresponde a:

0 018 =	$\left[(0^{18}/0^{16})_{ej} - (0^{18}/0^{16})\right]$	• 10 ³ ‰	(3)		
ð D =	[(D/H)ej (D/H)SMOW]	/ (D/H)SMOW	• 10 ³ %。		(4)

Por lo tanto, valores positivos de estas ecuaciones indican un enriquecimiento de la muestra o ejemplo respecto al SMOW.

Las relaciones isotópicas del SMOW frente al agua destilada vienen definidas por las . relaciones:

$(D/H)_{SMOW} = 1.050 (D/H)_{H_2O}$	(5)
$(0^{18}/0^{16})_{\text{SMOW}} = 1.608 \ (0^{18}/0^{16})_{\text{H}_20}$	(6)

3.2. Evolución de δ 0¹⁸ y δ D en el ciclo hidrológico.

El reparto isotópico entre la fase vapor y la fase líquida en un proceso de evaporación está controlado por la presión de vapor de las distintas moléculas de agua. Esta presión de vapor es inversamente proporcional a la masa de las moléculas y, por lo tanto, el agua del océano remanente de un proceso evaporativo estará enriquecida en 0^{18} y D, mientras que el vapor que asciende a la atmósfera lo estará en 0^{16} e H. Este reparto isotópico viene expresado por el coeficiente de fraccionamiento isotópico " \propto ", que para un proceso de evaporación en condiciones de equilibrio a 25° C es (CRAIG & GORDON, 1965):

$$\propto 0^{18} = (0^{18}/0^{16})_{\text{liq.}} / (0^{18}/0^{16})_{\text{vapor}} = 1.0092$$
(7)

$$\propto D = (D/H)_{\text{liq.}} / (D/H)_{\text{vapor}} = 1.074$$
(8)

al aumentar la temperatura.

En el proceso subsiguiente de condensación del vapor atmosférico, la fase líquida se enriquece en O¹⁸ y D, de manera que la primera precipitación es isotópicamente similar al agua oceánica (fig. 2). Esta remoción preferencial de O¹⁸ y D de las masas de aire causa el enriquecimiento en O¹⁶ e H en la fase de vapor que queda, y por lo tanto las posteriores lluvias tendrán valores negativos de δ O¹⁸ y δ D.

FIGURA 1. Variación del coeficiente de fraccionamiento isotópico con la temperatura.

FIGURA 2. Evolución de la composición isotópica de las aguas meteóricas.

Utilizando numerosos ejemplos analíticos de aguas meteóricas recogidas a distintas latitudes, CRAIG (1961) demostró la existencia de una relación lineal entre $\mathbf{\delta}$ 0¹⁸ y $\mathbf{\delta}$ D respecto al SMOW, definida mediante la ecuación (fig.2):

$$\delta D = 8 \, \delta 0^{18} + 10$$

Los únicos ejemplos que no cumplen esta relación son los tomados en cuencas cerradas y en ciertos ríos y lagos de Africa. Las cuencas cerradas, afectadas por un desequilibrio evaporativo, caen fuera de la recta (fig. 2) aunque están relacionadas con la composición original de la precipitación ($\delta 0_0^{18}, \delta D_0$) por la ecuación:

$$\delta_{\rm D} = 5(\delta_0^{18} - \delta_0^{18}) + \delta_{\rm D_0}$$
(10)

En líneas generales puede apreciarse como conforme la masa de aire húmeda asciende a mayores latitudes las precipitaciones adquieren valores de δ_0^{18} y δ_D progresivamente más negativos, debido a:

 El fraccionamiento isotópico causado por diferencias de presión de vapor de las moléculas de agua a una temperatura determinada.

(9)

 La disminución de la temperatura del aire que incrementa el coeficiente de fraccionamiento isotópico.

3) La evapotranspiración de las plantas, que favorece un enriquecimiento en 0^{16} e hidrógeno.

3.3. Contenido de $\delta_{0^{18}}$ y δ_{D} en sistemas geotermales.

CRAIG (1963) determinó los valores de $\mathbf{6}$ O¹⁸ y $\mathbf{6}$ D de numerosas fumarolas y surgencias termales neutras o ligeramente básicas. Los resultados obtenidos señalaban que para una misma área geotermal los valores de $\mathbf{6}$ O¹⁸ son variables mientras que los de $\mathbf{6}$ D son constantes y similares a los de las aguas meteóricas de la zona.

Un estudio del mismo tipo es el realizado por WHITE (1973). Este autor representó los datos de conocidos sistemas geotermales en un diagrama binario $\mathbf{\delta}$ 0¹⁸- $\mathbf{\delta}$ D junto con la recta definida por la ecuación (9) como referencia (fig. 3). Los círculos oscuros corresponden a los análisis de aguas meteóricas de cada zona y los círculos blancos a los de aguas termales. Los resultados obtenidos son similares a los deducidos por CRAIG (1963). De esta manera, el enriquecimiento en oxígeno es atribuído al equilibrio progresivo de este elemento en el agua con rocas carbonatadas y silicatadas. Los valores de deuterio permanecen constantes ya que el contenido de hidrógeno de las rocas carbonatadas y silicatadas es muy bajo comparado con el del agua; sin embargo, ELLIS & MAHON (1977) señalan que puede haber un ligero enriquecimiento en deuterio en aquellos sistemas en los que aparece una importante proporción de arcillas y minerales micáceos en las rocas (por ejemplo, la clorita tiene una relación H/O de 4/9).

El gráfico de WHITE (1973) puede servirnos para diferenciar los tres posibles comportamientos definidos para sistemas geotermales en función de la génesis considerada:

1) Aguas termales de origen exclusivamente meteórico. Se disponen en líneas horizontales, observándose variaciones en $\mathbf{0}^{018}$ mientras que $\mathbf{0}^{D}$ no varía respecto al valor del agua meteórica considérada en la zona (por ejemplo, los de Steamboat Springs).

2) Aguas termales de origen meteórico con participación de aguas magmáticas. Existen cambios en los valores de 6D y 60^{18} tendentes hacia los valores esperables en aquéllas (Salton Sea, fig. 3).

3) Aguas termales de origen no meteórico. Se trataría de aguas juveniles de origen magmático o metamórfico. Esta última génesis es la invocada por WHITE (1973) para el caso de Sulphur Bank, donde observamos una disparidad total entre las aguas termales y las meteóricas.

El problema sobre la participación de aguas juveniles en sistemas geotermales es algo todavía no resuelto, partiendo de la base del desconocimiento de las proporciones isotópicas de un agua juvenil. Algunos métodos deductivos permiten estimar la δo^{18} de un agua juvenil entre +6 y +12 (es la δo^{18} de las rocas ígneas, en general, con las cuales tiene que estar relacionada el agua juvenil); y la de δD en -55.3% (es la proporción en el agua del volcán Surtsey según los datos de ARNASON & SIGURGEIRSSON, 1968). Los rangos considerados por WHI-TE (1973) para las aguas juveniles o magmáticas pueden verse en la figura 3. En todo caso son bastante raros los sistemas geotermales con aguas de origen exclusivamente magmático. En general, los sistemas geotermales parecen estar recargados por aguas meteóricas mayoritariamente.

3.4. Evolución isotópica en sistemas geotermales.

Estudios y trabajos del tipo de los realizados por CRAIG (1963) y WHITE (1973) han permitido analizar las pautas evolutivas de los isótopos en sistemas geotermales realimentados por aguas meteóricas.

En sistemas geotermales de este tipo debe existir un balance exacto entre un isótopo ganado por el agua y el mismo isótopo perdido por la roca. Por lo tanto un enriquecimeinto isotópico en la zona de interacción puede darnos una idea de las masas reaccionantes de agua y roca.

BLATTNER (1985) resume en el diagrama δ_0^{18} - δ_D de la figura 4 la evolución isotópica de un sistema geotermal que comienza con una composición isotópica semejante en el agua y en la roca del sistema. Las aguas, originalmente meteóricas y por lo tanto con una composición isotópica "normal" (recarga de agua, fig.4), reaccionan con las aguas y se van equilibrando en el reservorio (a lo largo de la línea de trazos,(1)). Si este agua surge después de este intercambio inicial tendremos la "descarga temprana" con una composición isotópica, en especial respecto a $\delta 0^{18}$, totalmente modificada en relación con la del agua meteórica inicial. Esta primera recarga de agua del sistema presenta, pues, un claro enriquecimiento positivo en $\delta 0^{18}$. Sin embargo, dentro de la evolución histórica del sistema, las sucesivas recargas de agua meteórica se encontrarán con rocas cada vez más empobrecidas por las anteriores recargas, y por lo tanto el enriquecimiento en $\delta 0^{18}$ es cada vez menor, tendiéndose a alcanzar los valores mínimos originales del agua meteórica ("descarga madura"). Los valores de δD se estabilizan más rápidamente en la evolución del sistema debido al exceso de hidrógeno en el agua respecto a la roca (fragmento en forma de "L" de la fig.4).

Por lo tanto, tal y como señalan ELLIS & MAHON (1977), en un modelo general, áreas que presentan poco enriquecimiento en δ_0^{18} serían viejos sistemas con importante recarga de agua cuya composición isotópica se ha ajustado en equilibrio. Areas con enriquecimiento de δ_0^{18} importante corresponden a sistemas de poca recarga o bien a sistemas hidrotermales jóvenes cuyas aguas están en contacto con rocas todavía no muy alteradas isotópicamente.

4. GEOTERMOMETRIAS ISOTOPICAS.

4.1. Introducción.

Las temperaturas de base de un sistema geotérmico pueden calcularse mediante técnicas geotermométricas químicas (ver por ejemplo AUQUE et al, 1986). Un método de cuantificación más sofisticado lo constituyen las denominadas geotermometrías isotópicas.

FIGURA 3. Evolución de la composición isotópica de distintos tipos de sistemas geotermales (ver texto).

Como en las técnicas geotermométricas químicas, existen varios métodos isotópicos e incluso distintos calibrados dentro de cada método. Todos ellos se basan en que el fraccionamiento isotópico en determinados sistemas binarios es función de la temperatura, lo cual permite, conociendo la relación isotópica de los dos constituyentes del sistema, deducir la temperatura.

No pretendemos realizar un análisis exhaustivo de la metodología y fundamentos de cada uno de ellos, lo que de por sí constituiría motivo de un trabajo mucho más amplio. Simplemente nos limitaremos a realizar una recopilación de los distintos tipos de geotermómetros isotópicos en vista a posteriores trabajos más exhaustivos.

4.2. Geotermómetros basados en la relación $\text{C}^{13}/\text{C}^{12}.$

Se aplica a sistemas binarios en los que interviene la calcita, CO2, grafito o CH4. El más usual es el que utiliza el fraccionamiento entre CO2 y CH4 en gases naturales. El equilibrio que se establece puede expresarse como (CRAIG, 1953):

$$CH_4 + 2H_20$$
 \longrightarrow $CO_2 + 4H_2$ (11)

(12)

La fórmula geotermométrica (°K) vendrá definida por la ecuación: 1000 $\ln \alpha = -9.01 + 15.301(10^3/T) + 2.361(10^6/T^2)$

donde < es:

$$\boldsymbol{\alpha} = (c^{13}/c^{12})_{CO_2}/(c^{13}/c^{12})_{CH_4}$$
(13)

En la mayoría de los casos las temperaturas deducidas por este geotermómetro son mayores que las que existen realmente en el almacén geotérmico (CRAIG, 1975; HULSTON, 1975). La ecuación (11) es muy lenta, y los distintos intentos experimentales de alcanzar el equilibrio isotópico entre estos gases a temperaturas de 200-300° C han sido infructuosos. Por otro lado, la composición isotópica del carbono en el metano de sistemas geotermales suele ser similar a la existente en el carbón orgánico natural por lo que las temperaturas calculadas pueden ser fortuitas (PANICHI, 1975). Por lo tanto la utilización de este geotermómetro ha de realizarse con mucha prudencia.

Otro sistema binario susceptible de ser usado como geotermómetro según la relación C^{13}/C^{12} es el basado en el fraccionamiento entre HCO_3^- y CO_2^- (O'NEIL et al, 1975; TRUESDELL, 1975). Los resulatdos obtenidos parecen ser mejores que los del CH_4-CO_2 , aunque hemos de tener en cuenta que el HCO_3^- de las aguas termales tiende a descomponerse por reacción con otros ácidos débiles, y conforme los fluídos ascienden a la superficie, expulsando CO_2^- . Esta situación puede falsear los resultados obtenidos (ELLIS & MAHON, 1977).

4.3. Geotermómetros basados en la relación $0^{18}/0^{16}$.

Son muchas las reacciones que tienen lugar en sistemas hidrotermales y en las que se produce intercambio isotópico de oxígeno. Una de las usadas con propósitos geotermométricos es el intercambio isotópico producido entre CO₂ y H₂O (vapor):

 $H_20^{16} + C0^{18}0^{16} - H_20^{18} + C0_2^{16}$ (14)

La ecuación geotermométrica correspondiente es:

 $1000 \ln \alpha = -10.55 + 9.289(10^{3}/T) + 2.651(10^{6}/T^{2})$ (15)

donde < es:

x

$$= (0^{18}/0^{16})_{C02}/(0^{18}/0^{16})_{H_20}$$
(16)

Sin embargo, ELLIS & MAHON (1977) señalan que en esta reacción el intercambio isotópico es muy rápido y por lo tanto de reducido interés como indicadora de temperaturas.

Más adecuadas son las reacciones en las que el fraccionamiento isotópico de oxígeno se produce en el sistema sulfato-agua. Las ecuaciones básicas de este geotermómetro son del tipo:

$$\begin{array}{c} H_2 0^{16} + HS 0^{18} 0_3^{16} & H_2 0^{18} + HS 0_4^{16} \end{array}$$
(17)
1/4 S0₄¹⁶ + H₂ 0¹⁸ + H₂ 0¹⁸ + H₂ 0¹⁶ (18)

En la figura 5 pueden verse los distintos calibrados de geotermómetros isotópicos en los que intervienen los sulfatos, en función de las formas de estos últimos que se consideren en el equilibrio (ROBÍNSON, 1977).

McKENZIE & TRUESDELL (1977) realizan otro calibrado basándose en la ecuación (18). La fórmula geotermométrica de este calibrado es:

(19)

$$1000 \ln \alpha = 2.88(10^{\circ}/T^{2}) - 3.6$$

donde « es:

La aplicación de los geotermómetros isotópicos con $SO_4^=$ da, en general, buenos resultados aunque en algunos casos proporcionan temperaturas ligeramente más altas que las reales (HULSTON, 1975; MITZUTANI, 1972).

FIGURA 5. Distribución de los isótopos de oxígeno entre agua y distintas formas de sulfatos (ROBINSON, 1977).

4.4. Geotermómetros basados en la relación D/H.

Existen, también dentro de este grupo, distintos calibrados según la reacción de intercambio isotópico considerada. Una de las más usadas es:

 $HD + H_0$ $H_2 + HDO$ (21) calibrada por BOTTINGA (1969) y estudiada experimentalmente por HULSTON (1975) y ARNASON (1975). Los resultados obtenidos con este geotermómetro no son excesivamente buenos ya que está condiconado por numerosos factores propios de cada sistema geotermal y la cinética de la reacción no se conoce exactamente todavía (ELLIS & MAHON, 1977).

Otra reacción usada con fines geotermométricos es:

$$CH_3D + H_2$$
 (22)
calibrada experimentalemente por CRAIG (1975). La ecuación geotermométrica viene dada por:
1000 ln α = -90.888 + 181.264(10⁶/T²) - 8.949(10⁶/T²)² (23)

(23)

(24)

donde 🗙 es:

$$\propto = (D/H)_{CH_A}/(D/H)_{H_A}$$

Los resultados obtenidos al aplicar este geotermómetro parecen presentar dificultades similares a los del calibrado anterior (TRUESDELL, 1975).

5. CONCLUSIONES.

Los métodos isotópicos constituyen una imporatnte herramienta en la prospección geotérmica. Su utilización, sin embargo, no deja de ser una solución de compromiso entre el planteamiento inicial del problema, los resultados que se deseen alcanzar y los recursos económicos que se quieran o puedan utilizar. Las geotermometrías isotópicas son, en general, un complemento al resto de técnicas geotermométricas y por lo tanto su utilización no se hace

imprescindible salvo en casos muy concretos.

Más imporatntes son las deducciones que se pueden obtener a partir de los contenidos de tritio, $\mathbf{\delta} 0^{18}$ y $\mathbf{\delta}$ D. Tal y como se ha señalado en el apartado 2.1., los contenidos de tritio nos van a indicar a grandes rasgos el tiempo de residencia del fluído termal en el sistema y la posible existencia de fenómenos de mezcla.

Los análisis de isótopos estables de oxígeno e hidrógeno del agua proporcionan asímismo datos bastante interesantes:

 Limitan la zona de recarga del sistema mediante el estudio de la ecuaciones de variabilidad isotópica que rigen la zona de estudio (ecuaciones del tipo de la (9)).
 Cuantifican los intercambios isotópicos, especialmente los de 0¹⁸, en el reservorio, bien por interacción con la roca o por fraccionamiento a causa de la vaporización. Con ello podemos obtener una idea de la naturaleza litológica del almacén o sobre la presencia de fase vapor en el sistema.

3) El enriquecimiento isotópico puede informar, asímismo, de las masas reaccionantes de agua y roca, y del volumen de recarga del sistema.

4) Y por último, pueden suministrar información sobre la edad o periodo de funcionamiento del sistema geotermal.

Muchas de las informaciones suministradas por los métodos isotópicos pueden deducirse mediante otras técnicas o estudios, generalmente más laboriosos e inseguros, por lo que los análisis isotópicos constituyen una técnica de primer orden en la prospección geotérmica fina.

6. BIBLIOGRAFIA.

- ARNASON, B.: Proc. Int. At. Energy Agency Advisory Group Meeting Appl. Nucl. Tech. Geothermal Stud., Pisa, Italy (1975).
- ARNASON, B. and SIGURGEISSON, T.: Geochim. Cosmochim. Acta, 32, 807 (1968).
- AUQUE, L.F.; SANCHEZ CELA, V. y FERNANDEZ, J.: Rev. Acad. Ciencias Zaragoza, <u>41</u>, 161-183 (1986).
- BLATTNER, P.: Chem. Geol., 49, 187-203 (1985).
- BOTTINGA, Y,: Geochim. Cosmochim. Acta, 33, 49 (1969).
- CRAIG, H.: Proc. Int. At. Energy Agency Advisory Group Meeting Appl. Nucl. Tech. Geothermal Stud., Pisa, Italy (1953).
- CRAIG, H.: Science, 133, 1833-1934 (1961).
- CRAIG, H.: In "Nuclear Geology on Geothermal Areas" (E. Tongiorgi, ed.),pp.17-53,Consiglio Nazionale delle Richerche Lab. di Geol. Nucl., Pisa. (1963).
- CRAIG, H.: Proc. Int. At. Energy Agency Advisory Group Meeting Appl. Nucl. Tech. Geothermal Stud., Pisa, Italy (1975).
- CRAIG, H. and GORDON, L.I.: Consiglio Nazionale delle Richerche, Lab. di Geol. Nucl., Pisa, Italy (1965).
- ELLIS, A.J. and MAHON, W.A.J. : "Chemistry and Geothermal Systems". Academic Press, London (1977).
- FRITZ, B.: "Etude thermodinamique et modelisation des réactions hydrothermales et diagénétiques". Institut de Géologie. Université Louis Pasteur. Strasbourg (1981).
- HULSTON, J.R.: Proc. Int. At. Energy Agency Advisory Group Meeting Appl. Nucl. Tech. Geothermal Stud., Pisa, Italy (1975).

IGME: "Estudio de las manifestaciones termales de Extremadura-Salamanca-Aragón-Rioja, orien-

tada a su posible explotación como recursos geotérmicos". No publicado (1982). MICHARD, G.: BRGM (2 serie), section III, 2, 183-189 (1979).

OLIVE, P.H.: "Contribution a l'etude dans l'hemisphere nord par la métodotritium".Tesis doctoral. Facultad de Ciencias de Paris (1970).

O'NEIL, J.R.; TRUESDELL, A.H. and McKENZIE, W.F.: U.N. Symp. Develop. Use Geothermal Resources, San Francisco, May 1, Abstract III-72 (1975).

PANICHI, C.: Proc. Int. At. Energy Agency Advisory Group Meeting Appl. Nucl. Tech. Geothermal Stud., Pisa, Italy (1975).

ROBINSON, B.W.: In "Geochemistry 1977" (A.J. Ellis, ed.). N.Z. Dept. Sci. Ind. Res. Bull. 218, Wellington (1977).

TRUESDELL, A.H.: Proc. U.N. Symp. Develop. Use Geothermal Resources, 2nd, San Francisco, May 1. lii. (1975).

WHITE, D.E.: Geothermics, Spec. Issue 2, 1, 58-80 (1973).

AGRADECIMIENTOS.

L.F. Auqué ha realizado este trabajo con la ayuda de una beca de investigación del CONAI de la Diputación General de Aragón. J. Fernández dispone de una ayuda del Instituto de Estudios Turolenses para el estudio de las aguas termales de Teruel. A ambos organismos expresamos nuestro agradecimiento.

Asímismo hacemos extensivo este agradecimiento a los doctores Juan Mandado y Vicente Sánchez Cela por la revisón crítica del manuscrito. Rev. Acad. Ciencias Zaragoza, 42 (1987)

GRADO DE DIAGÉNESIS DE LAS ROCAS PELÍTICAS DEL PALEOZOICO EN LAS SIERRAS DE VICORT Y ALGAIREN (CORDILLERA IBERICA).

A. NAVAS Y J. TENA

Departamento de Petrología. Facultad de Ciencias. Universidad de Zaragoza. 50009 Zaragoza (España).

Mineralogical association and crystallochemical parameters of illite have been used to approach the diagenesis degree undergone by Precambrian to Silurian (Ludlow) pelitic rocks from a sector of the Iberian Range. Illitechlorite facies, and high crystallinity of illites (2M politype) seem to indicate that anchizone-epizone was reached.

SITUACION GEOGRAFICA Y MARCO GEOLOGICO

La zona estudiada se encuentra situada al Suroeste de la provincia de Zaragoza, en la mitad occidental del cuadrante III de la hoja 410 (La Almunia de Doña Godina) del M.T.N. E: 1:50.000. Desde el punto de vista geológico, se em_ plaza en el borde Nororiental de la Rama Aragonesa de la Cordillera Ibérica, en lo que constituye el núcleo hercínico principal (Figura 1). La superposición de las orogenias Hercínica y Alpina determina la compleja estructura tectónica que presentan los materiales aflorantes, con direcciones predominantes NO-SE y NNO-SSE.

El perfil estudiado (Figura 1) abarca las formaciones comprendidas desde el Precámbrico al Silúrico (Ludlow superior). En él puede observarse que en todas las formaciones existen niveles pelíticos, incluso en las facies de precipitación química como son las pertenecientes a la Dolomía de Ribota y a las Calizas de Cistideos.

CARACTERES PETROLOGICOS DE LAS PELITAS

Dentro de las rocas pelíticas se han estudiado limolitas s.l. y arcillitas que presentan caracteres petrológicos similares con diferencias en aspectos de composición mineralógica y tamaño cristalino. Respecto a este último, las limolitas s.l. presentan un tamaño promedio entre 15 y 40 micras, siendo de 3 a 12 micras el de las arcillitas.

Figura 1.- Situación y marco geológico del área estudiada. Columna litoestratigráfica síntesis de los materiales aflorantes. 1) Fm. Pizarras de Paracuellos; 2) Fm. Cuarcita de Bámbola; 3) Fm. Embid; 4) Fm. Pizarras del Jalón; 5) Fm. Dolomía de Ribota; 6) Fm. Pizarras de Huérmeda; 7) Fm. Arenisca de Daroca; 8) Fm. Pizarras de Murero; 9) Serie Ibérica; 10) Fm. Cuarcita Armoricana; 11) Fm. Castillejo; 12) Fm. Fombuena; 13) Fm. Calizas de Cistideos; 14) Fm. Orea; 15) Fm. Cuarcita Blanca; 16) Fm. Bádenas. En cuanto a la composición mineralógica, en ambas litologías son muy abundantes los minerales arcillosos y micáceos, especialmente en las arcillitas , acompañados de un porcentaje variable de cuarzo, más abundante en las limolitas. Otros componentes minerales presentes en escasos porcentajes son : micas blancas, feldespatos , accesorios (opacos, circón, turmalina, apatito y rutilo) y óxidos de hierro; ocasionalmente hay calcedonia, plagioclasas, biotita, cloritas, pirita y materia orgánica transformada. Los cristales son mayoritariamente alotriomorfos, algunos de cuarzo son subangulosos-subredondeados, están recrecidos y los de mayor tamaño flotan en la matriz lutítica.

Es generalizada en ambas litologías la existencia de fracturación ; las fracturas más gruesas aparecen normalmente rellenas de cuarzo, mientras que las más finas lo están por óxidos de hierro. Es característica la existencia de pizarrosidad, y además existen otras estructuras: laminación flaser, boudinage , microslumping, bandeado mineralógico, lineaciones de nódulos de cuarzo y también ocasionalmente micropliegues.

Tanto las limolitas s.l. como las arcillitas están muy afectadas por transformaciones diagenéticas, entre las que cabe destacar: a) La autigénesis mineral que afecta fundamentalmente al cuarzo (micro-criptocristalino, en cristales con formas variadas y como recrecimiento en continuidad óptica con granos preexistentes), a minerales arcillosos y micáceos (micas blancas), y también, ocasionalmente, a biotita, feldespatos, calcedonia, circón y pirita, b) la sustitución de minerales arcillosos y micáceos por cuarzo microcristalino, c) la cementación, fundamentalmente con cuarzo microcristalino que evoluciona hacia mosaicos o incluso monocristales, d) otros procesos específicos de algunas muestras son: la alteración de feldespatos a minerales de la arcilla, de piritas a óxidos de hierro y la neoformación de nódulos de cuarzo.

ESTUDIO MINERALOGICO POR DIFRACCION DE RAYOS X

Se ha realizado este estudio con el objeto fundamental de identificar los filosilicatos y obtener además la información necesaria que permita establecer, de forma aproximada, el grado de diagénesis o metamorfismo que han sufrido las rocas pelíticas.

Mediante un equipo Philips PW 1710 de difracción de rayos X con tubo de Cu y filtro de Ni se ha determinado, por el método de polvo cristalino (roca total), la composición mineralógica cualitativa de 19 muestras, en tanto que el estudio exclusivo de filosilicatos mediante agregado orientado (fracción menor de 2 micras) se ha realizado en 23 muestras. Las muestras seleccionadas representan la mayor parte de las formaciones presentes en el área, desde el Precámbrico hasta el Silúrico (Ludlow superior), que incluyen rocas pelíticas en su litología.

Los resultados difractométricos del análisis cualitativo de los minerales existentes en roca total (difractogramas de polvo cristalino) y de los filosilicatos presentes en la fracción menor de 2 micras (difractogramas de agregado orientado) se recogen en el Cuadro 1.

La composición mineralógica, como se puede observar en el citado cuadro, es bastante homogénea y responde a la asociación mineralógica siguiente: ilita + cuarzo <u>+</u> clorita <u>+</u> feldespatos <u>+</u> plagioclasas <u>+</u> interestratificados <u>+</u> pirofilita <u>+</u> goethita <u>+</u> magnetita. Es característica la presencia constante de ilita (moscovita), cuarzo, cl<u>o</u> rita (salvo en las muestras N-6, N1-3, N1-4, N1-6 y N1-17) y de feldespatos (salvo en las muestras N1-4 y N1-17), siendo éstos especialmente abundantes en las muestras N3-66, N3-56, N3-16, N3-46, N-3, N1-24, N1-14 y N-6. Hay plagioclasas en las muestras N3-16 y N-3, además de minerales interestratificados en la muestra N3-43 y pirofilita en la N1-7. En cuanto a los minerales de hierro , hay magnetita (N3-16) y goethita (N3-43, N1-3 y N1-6). Es de destacar la elevada cristalinidad de las ilitas en la práctica totalidad de las muestras, así c<u>o</u> mo de las cloritas, especialmente en las de la Formación Pizarras de Paracuellos (Precámbrico).

El estudio de la cristalinidad de la ilita se ha realizado mediante la determinación de algunos parámetros cristaloquímicos medidos en los difractogramas de agregado orientado. Las condiciones de trabajo han sido las siguientes: Constante de tiempo RTC:2. Velocidad del papel RSP: 2º/minuto. Velocidad del goniómetro SPE: 0.03º/minuto.

Se han determinado los siguientes parámetros cristaloquímicos, para las reflexiones d(001) y d(002): la altura del pico (cm), la anchura a mitad de la altura (cm), el área del pico (cm²) y la relación de la intensidad de las reflexiones I(002)/I(001). Además, para la reflexión d(001) se ha determinado el tamaño de cristalito (Å), siguiendo las indicaciones de WEBER et al. (1976). -Las medidas de los parámetros mencionados se recogen en el Cuadro 2.

Para la determinación del grado de diagénesis y metamorfismo en base a la medidad de la "cristalinidad de la ilita", se ha utilizado el diagrama de ES-QUEVIN (1969), en el que se han proyectado los datos del parámetro de la anchura a mitad de la altura en Å (cristalinidad), como se recoge en la Figura 2. La visualización del citado diagrama ofrece una situación generalizada de las ilitas en la epizona, con la excepción de dos muestras (N1-14 y N1-4) que aparecen situadas en la anquizona.

- O FM. BADENAS
- FM. CASTILLEJO
- FM. FOMBUENA
- SERIE IBERICA
- * FM. PIZARRAS DE MURERO
- ☆ FM. PIZARRAS DE HUERMEDA
- * FM. CAPAS DE EMBID
- * FM. CUARCITA DE BAMBOLA
- * FM. PIZARRAS DE PARACUELLOS

Figura 2.- Distribución de las ilitas de las rocas pelíticas del Precámbrico-Silúrico inferior en el diagrama de ESQUEVIN (1969). (Diagramas de agregado orientado).

Cuadro 1.- Análisis mineralógico cualitativo por difrac- Cuadro 2.- Parámetros cristaloquímicos de ilitas determina tometría de rayos X.

dos en difractogramas de agregado orientado.

FORMACIÓN	MUESTRA	I	C1	In	Pi	Q	Fd	Pg	Mg	Gt	d(001) Anchura	cm	d(001) Area cm 2	d(002) Anchura cm	d(002) Area cm2	I{002}/ I{001}/	T _c (d001) A
218 21.2	N3-61	х	х		-	Х	х	-	-	-	0.25		.1.86	0.25	0.86	0.460	320.91
PIZARRAS	N3-62	х	х		-	х	х	-	-	-	0.30		1.86	0.29	0.72	0.389	267.43
PARACUELLOS	N3-63	х	х	-	-	х	х	-	-	-	0.28		1.42	0.25	0.52	0.367	286.53
	N3-64	x	х	-	-	х	х	-	-	-	0.21		4.45	0.21	1.91	0.429	382.04
CUARCITA DE	N3-66	х	х	-	-	х	х	- "	-	-	0.28		4.48	0.28	1.94	0.434	286.53
BAMBOLA	N3-56	х	· x	-		х	х	-	-	-	0.30		4.27	0.30	2.16	0.505	267.43
CAPAS DE	N3-16	х	х	3 - 1	-	х	х	х	х	-	0.29		2.04	0.29	0.44	0.220	276.65
EMBID	N3-46	х	х		-	х	х	-	-	-	0.30		3.63	0.29	1.33	0.367	267.43
PTZARRAS DE	N3-26	х	х	-	-	х	х	-	-	-	0.23		3.11	0.22	1.10	0.353	348.82
HUERMEDA	N3-43	х	х	Х	-	х	х	-	-	х	0.30		2.44	0.26	0.80	0.330	267.43
PIZARRAS DE	N3-33	х	х		-	х	х	-	-		• 0.23		1.64	0.28	0.79	0.486	348.82
MURERO	- N - 3	х	х	-	-	х	х	х	- ·	-	0.29		2.07	0.25	0.72	0.350	276.65
	N1-33	х	х	-		х	х	-	-	-	0.30		4.44	0.30	1.55	0.351	267.43
	N1-34	х	х	-	-	х	х	-	-		0.30		3.22	0.28	1.26	0.390	267.43
SERIE	N1-24	'x	х		-	х	х	-		-	0.30		2.67	0.30	0.96	0.359	267.43
IBERICA	N - 9	х	х		-	х	х	-	-	-	0.22		2.07	0.22	0.72	0.350	364.67
	N - 6	х	1 -	-	-	х	х	-	-	-	0.30		3.70	0.25	1.00	0.270	267.43
	N1- 3	х	-	- -	-	х	х	-	-	х	0.30		1.60	0.25	0.77	0.482	267.43
FOMBUENA	N1- 4	х	-	-	-	х		-	-	-	0.50		0.85	0.20	0.08	0.094	164.45
	N1- 6	х	1		-	х	х	-	-	х	0.30		2.04	0.30	0.84	0.414	267.43
	N1-14	х	х	-	-	х	х	-	-	-	0.38		1.98	0.30	0.60	0.303	211.12
CASTILLEJO	N1-17	х		-	1 -	х	-		-	-	0.31		0.46	0.30	0.15	0.322	258.80
PIZARRAS DE	N -17	х	-		х	х	х	-	-	-				意义-他们	· 出土的 化	1 - 1 - 1	
BADENAS	- N1- 7	x	x	- 1	-	х	х	-	-	in -Ne	0.40		1.78	0.30	0.66	0.370	200.57

X = Existencia; + = No existencia; I = Ilita; Cl = Clorita

In = Interestratificados; Pi = Pirofilita; Q = Cuarzo; Fd = Fel-

despatos; Pg = Plagioclasas; Mg = Magnetita; Gt = Goethita.

Dado que la medida de la "cristalinidad de la ilita" para su utilización en el diagrama de ESQUEVIN (1969), requiere la existencia de condiciones standard, se ha utilizado otra forma de expresión de la "cristalinidad" basada en la fórmula de SCHERRER (1918) para la difracción en los cristales muy pequeños, conocida como el tamaño de cristalito, obteniéndose así una expresión de la cristalinidad que resulta independiente de las condiciones experimentales. En relación con este parámetro, WEBER et al. (1976) definen los límites de la anquizona, que corresponden a espesores aparentes comprendidos entre 150 y 275 Å, de tal modo que los valores del tamaño de cristalito obtenidos por nosotros en los agregados orientados sitúan a la mayoría de las muestras en la anquizona.

DISCUSION Y CONCLUSIONES

Del estudio mineralógico por difractometría de rayos X se pueden extraer los siguientes resultados:

1) El análisis mineralógico cualitativo revela la existencia de una composición mineralógica bastante homogénea en todas las rocas pelíticas del Paleozoico, constituída por la asociación mineralógica siguiente: ilita + cuarzo \pm clorita \pm feldespatos \pm plagioclasas \pm interestratificados \pm pirofilita \pm goethita \pm magnetita. Es característica la presencia constante de ilita y cuarzo, siendo además bastante frecuente la presencia de clorita y feldespatos, mientras que los minerales restantes están presentes de forma esporádica.

2) Por lo que respecta a los filosilicatos, principal objetivo de este estudio, la ilita es el mineral predominante, presentando una elevada cristalinidad; la clorita aparece también con especial abundancia y elevada cristalinidad en las muestras correspondientes a las formaciones del Precámbrico y Cámbrico inferior y medio, faltando en algunas de la Serie Ibérica y en las Formaciones Fombuena y Castillejo. Los interestratificaodos y la pirofilita aparecen sólo de forma esporádica

3) La determinación de los parámetros cristaloquímicos en las ilitas, indica una elevada cristalinidad, de forma que proyectadas en el diagrama de ES-QUEVIN (1969) dan una situación generalizada en la epizona (ver Figura 2).

4) Los valores del tamaño de cristalito medidos en difractogramas de agregado orientado oscilan entre 164.45 y 382.04 Å, predominando el de 267.43 Å. Estos valores de espesores aparentes relativamente altos, proyectados en el diagrama de WEBER et al. (1976), dan una situación general de las ilitas comprendida en los límites de la anquizona (150-275 Å), (ver Cuadro 2).

5) La identificación de los tipos de micas, establecida en función de la relación de intensidad de los picos (002) y (001) según ESQUEVIN (1969), ha demostrado un predominio de las fengitas y moscovitas. El politipo presente de la ilita seria 2M. FERNANDEZ NIETO et al. (1985) determinan, en función de los valores medios de b_o (inferior a 9.025 $\frac{A}{2}$), que el tipo de micas presentes en los materiales pelíticos de la zona de Santed, corresponde a moscovitas.

6) Las ilitas y cloritas presentan una elevada cristalinidad en las muestras correspondientes a las formaciones del Precámbrico y Cámbrico inferior y medio, en tanto que es menor en las rocas pelíticas de edades posteriores.

A la vista de los resultados obtenidos, se considera que el origen de las ilitas, que presentan una cristalinidad uniformemente elevada, responde a una recristalización diagenética fuerte y de tránsito al metamorfismo. Igualmente. cabe pensar que la génesis de las cloritas, que en algunas muestras presentan una elevada cristalinidad, responde a fenómenos de autigénesis por agradación diagenética de los minerales de la arcilla ricos en hierro y magnesio.

La pirofilita, considerada frecuentemente como indicadora de ambiente metamórfico, está presente de forma minoritaria en una muestra de la Formación -Bádenas, y se ha podido originar en el curso de la diagénesis avanzada o del anquimetamorfismo, ya que está probada su existencia a temperaturas inferiores a las del inicio del metamorfismo.

La presencia bastante constante de la paragénesis ilita-clorita, indica que las rocas han alcanzado unas condiciones termodinámicas situadas entre la diagénesis profunda y el inicio del metamorfismo, es decir, de la anquizona epizona. Esta zona de tránsito definida por DUNOYER (1969) por la facies "ilitaclorita" está caracterizada además, por la elevada cristalinidad de las ilitas, por la existencia del politipo 2M y por la probable presencia de pirofilita. Los materiales han soportado bajas presiones y temperaturas, como se puede deducir a partir de los valores medios de b_0 y del espaciado basal de las micas blancas, obtenidos por FERNANDEZ NIETO et al. (1985) que, además, aportan como información adicional la existencia en la Formación Valconchán de acritarcos, lo cual supone que no se han rebasado temperaturas superiores a 180º.

BIBL TOGRAFIA

- 1. J. ESQUEVIN: Bull. Centre Rech. Pau. S.N.P.A.. 3, 147 (1969) 2. F. WEBER, G. DUNOYER DE SEGONZAC, C. ECONOMOU: C. R. Somm. Geol. Fr. 5, 225 (1976)
- 3. C. FERNANDEZ-NIETO, J.M. GONZALEZ LOPEZ, J. GONZALEZ MARTINEZ: Bol. S.E.M. Vol. V (1985)
- 4. G. DUNOYER DE SEGONZAC: Les mineraux argileux dans la diagénese, passage au metamórphisme. Mem. Serv. Carte Geol. Alsace Lorraine. Vol. 29 (1969)