Skip to main content
Log in

\(\textbf{GL}\)-algebras in positive characteristic I: the exterior algebra

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study the category of \(\textbf{GL}\)-equivariant modules over the infinite exterior algebra in positive characteristic. Our main structural result is a shift theorem à la Nagpal. Using this, we obtain a Church–Ellenberg type bound for the Castelnuovo–Mumford regularity. We also prove finiteness results for local cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

k :

The base field, always algebraically closed of characteristic \(p > 0\)

\(\textbf{V}\) :

A fixed infinite dimensional k-vector space with basis \(\{e_i\}_{i \ge 1}\)

\(\textbf{GL}\) :

The group of automorphisms of \(\textbf{V}\) fixing all but finitely many of the basis vectors \(e_i\)

\({{\,\textrm{Vec}\,}}\) :

The category of k-vector spaces

\({{\,\textrm{Rep}\,}}^\textrm{pol}(\textbf{GL})\) :

The category of polynomial representations of \(\textbf{GL}\)

\(\textbf{Pol}\) :

The category of strict polynomial functors \({{\,\textrm{Vec}\,}}\rightarrow {{\,\textrm{Vec}\,}}\)

R :

The exterior algebra of \(\textbf{V}\)

\(L_{\lambda }\) :

The irreducible polynomial representation of \(\textbf{GL}\) with highest weight \(\lambda \)

\(\varvec{\Sigma }\) :

The Schur derivative functor, which we also call the shift functor

\(\varvec{\Delta }\) :

The difference functor

\(-^{<n}\) :

The submodule generated by all elements of degree less than n

\(-^{(r)}\) :

The r-th Frobenius twist of a \(\textbf{GL}\)-representation

\(t_i(-)\) :

The generation degree of \({{\,\textrm{Tor}\,}}_i^R(-, k)\)

References

  1. Bibby, C., Gadish, N.: Combinatorics of orbit configuration spaces. Sém. Lothar. Combin. 80B:Art. 72, 11 (2018)

  2. Bik, A., Danelon, A., Draisma, J., Eggermont, R.H.: Universality of high-strength tensors. Vietnam J. Math. 50(2), 557–580 (2022)

    Article  MathSciNet  Google Scholar 

  3. Bik, A., Draisma, J., Eggermont, R.H., Snowden, A.: The geometry of polynomial representations. Int. Math. Res. Not. IMRN, 14131–14195 (2023)

  4. Brouwer, A.E., Draisma, J.: Equivariant Gröbner bases and the Gaussian two-factor model. Math. Comput. 80(274), 1123–1133 (2011). arxiv:0908.1530

    Article  Google Scholar 

  5. Church, T., Ellenberg, J.: Homology of FI-modules. Geom. Topol. 21(4), 2373–2418 (2017)

    Article  MathSciNet  Google Scholar 

  6. Church, T., Ellenberg, J.S., Farb, B.: FI-modules and stability for representations of symmetric groups. Duke Math. J. 164(9), 1833–1910 (2015)

    Article  MathSciNet  Google Scholar 

  7. Cohen, D.E.: On the laws of a metabelian variety. J. Algebra 5(3), 267–273 (1967)

    Article  MathSciNet  Google Scholar 

  8. Djament, A.: Des propriétés de finitude des foncteurs polynomiaux. Fund. Math. 233(3), 197–256 (2016). arxiv:1308.4698

    MathSciNet  Google Scholar 

  9. Draisma, J.: Finiteness for the \(k\)-factor model and chirality varieties. Adv. Math. 223(1), 243–256 (2010). arxiv:0811.3503

    Article  MathSciNet  Google Scholar 

  10. Draisma, J., Eggermont, R.H.: Finiteness results for Abelian tree models. J. Eur. Math. Soc. (JEMS) 17(4), 711–738 (2015). arxiv:1207.1282

    Article  MathSciNet  Google Scholar 

  11. Erman, D., Sam, S.V., Snowden, A.: Generalizations of Stillman’s conjecture via twisted commutative algebra. Int. Math. Res. Not. IMRN 2021(16), 12281–12304 (2019)

    Article  MathSciNet  Google Scholar 

  12. Faith, C.: Algebra: Rings, Modules and Categories I, volume 190. Springer Science & Business Media (2012)

  13. Friedlander, E.M., Suslin, A.: Cohomology of finite group schemes over a field. Invent. Math. 127(2), 209–270 (1997)

    Article  MathSciNet  Google Scholar 

  14. Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France 90, 323–448 (1962)

    Article  MathSciNet  Google Scholar 

  15. Gan, W.L., Li, L.: An inductive machinery for representations of categories with shift functors. Trans. Am. Math. Soc. 371(12), 8513–8534 (2019)

    Article  MathSciNet  Google Scholar 

  16. Gan, W.L., Li, L.: Bounds on homological invariants of VI-modules. Mich. Math. J. 69(2), 273–284 (2020)

    Article  MathSciNet  Google Scholar 

  17. Ganapathy, K.: GL-algebras in positive characteristic II: The polynomial ring (in preparation)

  18. Gandini, F.: Degree bounds for invariant skew polynomials. Preprint (2021). arxiv:2108.01767

  19. Gandini, F.: Resolutions of ideals of subspace arrangements. J. Commut. Algebra 14(3), 319–338 (2022)

    Article  MathSciNet  Google Scholar 

  20. Güntürkün, S., Snowden, A.: The representation theory of the increasing monoid. Mem. Am. Math. Soc. 286(1420), 134 (2023)

    MathSciNet  Google Scholar 

  21. Harman, N.: Stability and periodicity in the modular representation theory of symmetric groups. Preprint (2015). arxiv:1509.06414

  22. Kujawa, J.: The Steinberg tensor product theorem for GL(m|n). Contemp. Math. 413, 123 (2006)

    Article  MathSciNet  Google Scholar 

  23. Laudone, R.P.: Syzygies of secant ideals of Plücker-embedded Grassmannians are generated in bounded degree. Preprint (2018). arxiv:1803.04259

  24. Le, D.V., Nagel, U., Nguyen, H.D., Römer, T.: Codimension and projective dimension up to symmetry. Math. Nachr. 293(2), 346–362 (2020)

    Article  MathSciNet  Google Scholar 

  25. Le, D.V., Nagel, U., Nguyen, H.D., Römer, T.: Castelnuovo–Mumford regularity up to symmetry. Int. Math. Res. Not. 2021(14), 11010–11049 (2021)

    Article  MathSciNet  Google Scholar 

  26. Li, L., Yu, N.: Filtrations and homological degrees of FI-modules. J. Algebra 472, 369–398 (2017)

    Article  MathSciNet  Google Scholar 

  27. Maraj, A., Nagel, U.: Equivariant Hilbert series for hierarchical models. Algebr. Stat. 12(1), 21–42 (2021)

    Article  MathSciNet  Google Scholar 

  28. Miller, J., Nagpal, R., Patzt, P.: Stability in the high-dimensional cohomology of congruence subgroups. Compos. Math. 156(4), 822–861 (2020)

    Article  MathSciNet  Google Scholar 

  29. Miller, J., Wilson, J.: Higher-order representation stability and ordered configuration spaces of manifolds. Geom. Topol. 23(5), 2519–2591 (2019)

    Article  MathSciNet  Google Scholar 

  30. Murai, S.: Betti tables of monomial ideals fixed by permutations of the variables. Trans. Am. Math. Soc. 373(10), 7087–7107 (2020)

    Article  MathSciNet  Google Scholar 

  31. Nagel, U., Römer, T.: FI- and OI-modules with varying coefficients. J. Algebra 535, 286–322 (2019)

    Article  MathSciNet  Google Scholar 

  32. Nagpal, R.: FI-modules and the cohomology of modular representations of symmetric groups. Ph.D. thesis, The University of Wisconsin-Madison (2015). arxiv:1505.04294

  33. Nagpal, R.: VI-modules in nondescribing characteristic, part I. Algebra Number Theory 13(9), 2151–2189 (2019)

    Article  MathSciNet  Google Scholar 

  34. Nagpal, R., Sam, S.V., Snowden, A.: Noetherianity of some degree two twisted commutative algebras. Selecta Math. (N.S.) 22(2), 913–937 (2016)

    Article  MathSciNet  Google Scholar 

  35. Nagpal, R., Sam, S.V., Snowden, A.: Regularity of FI-modules and local cohomology. Proc. Am. Math. Soc. 146(10), 4117–4126 (2018)

    Article  MathSciNet  Google Scholar 

  36. Nagpal, R., Sam, S.V., Snowden, A.: Noetherianity of some degree two twisted skew-commutative algebras. Selecta Math. (N.S.) 25(1), 1–26 (2019)

    Article  MathSciNet  Google Scholar 

  37. Nagpal, R., Snowden, A.: Symmetric subvarieties of infinite affine space. Preprint (2020). arxiv:2011.09009

  38. Nagpal, R., Snowden, A.: Symmetric ideals of the infinite polynomial ring. Preprint (2021). arxiv:2107.13027

  39. Putman, A., Sam, S.V.: Representation stability and finite linear groups. Duke Math. J. 166(13), 2521–2598 (2017)

    Article  MathSciNet  Google Scholar 

  40. Ramos, E.: Generalized representation stability and \({\rm FI}_d\)-modules. Proc. Am. Math. Soc. 145(11), 4647–4660 (2017)

    Article  Google Scholar 

  41. Sam, S.V., Snowden, A.: Introduction to twisted commutative algebras. Preprint (2012). arxiv:1209.5122

  42. Sam, S.V., Snowden, A.: GL-equivariant modules over polynomial rings in infinitely many variables. Trans. Am. Math. Soc. 368(2), 1097–1158 (2016)

    Article  MathSciNet  Google Scholar 

  43. Sam, S.V., Snowden, A.: Gröbner methods for representations of combinatorial categories. J. Am. Math. Soc. 30(1), 159–203 (2017)

    Article  Google Scholar 

  44. Sam, S.V., Snowden, A.: GL-equivariant modules over polynomial rings in infinitely many variables II. Forum Math. Sigma 7, 71 (2019)

    Article  MathSciNet  Google Scholar 

  45. Sam, S.V., Snowden, A.: Sp-equivariant modules over polynomial rings in infinitely many variables. Trans. Am. Math. Soc. 375(3), 1671–1701 (2022)

    Article  MathSciNet  Google Scholar 

  46. Snowden, A.: Syzygies of Segre embeddings and \(\Delta \)-modules. Duke Math. J. 162(2), 225–277 (2013). arxiv:1006.5248

    Article  MathSciNet  Google Scholar 

  47. Snowden, A.: Stable representation theory: beyond the classical groups. Preprint (2021). arxiv:2109.11702

  48. Snowden, A.: The spectrum of a twisted commutative algebra. Proc. Lond. Math. Soc. (3), 128(1):Paper No. e12576, 22 (2024)

  49. Totaro, B.: Projective resolutions of representations of GL(n). J. Reine Angew. Math. 482, 1–13 (1997)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to Andrew Snowden for being generous with his ideas and providing numerous comments on a draft which greatly improved the exposition. Thanks are also due to Rohit Nagpal for pointing out helpful references, and Nate Harman for helpful discussions. The work was supported in part by NSF grants DMS #1453893 and DMS #1840234.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Ganapathy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganapathy, K. \(\textbf{GL}\)-algebras in positive characteristic I: the exterior algebra. Sel. Math. New Ser. 30, 63 (2024). https://doi.org/10.1007/s00029-024-00960-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-024-00960-4

Keywords

Mathematics Subject Classification