Abstract
We study the category of \(\textbf{GL}\)-equivariant modules over the infinite exterior algebra in positive characteristic. Our main structural result is a shift theorem à la Nagpal. Using this, we obtain a Church–Ellenberg type bound for the Castelnuovo–Mumford regularity. We also prove finiteness results for local cohomology.
Similar content being viewed by others
Abbreviations
- k :
-
The base field, always algebraically closed of characteristic \(p > 0\)
- \(\textbf{V}\) :
-
A fixed infinite dimensional k-vector space with basis \(\{e_i\}_{i \ge 1}\)
- \(\textbf{GL}\) :
-
The group of automorphisms of \(\textbf{V}\) fixing all but finitely many of the basis vectors \(e_i\)
- \({{\,\textrm{Vec}\,}}\) :
-
The category of k-vector spaces
- \({{\,\textrm{Rep}\,}}^\textrm{pol}(\textbf{GL})\) :
-
The category of polynomial representations of \(\textbf{GL}\)
- \(\textbf{Pol}\) :
-
The category of strict polynomial functors \({{\,\textrm{Vec}\,}}\rightarrow {{\,\textrm{Vec}\,}}\)
- R :
-
The exterior algebra of \(\textbf{V}\)
- \(L_{\lambda }\) :
-
The irreducible polynomial representation of \(\textbf{GL}\) with highest weight \(\lambda \)
- \(\varvec{\Sigma }\) :
-
The Schur derivative functor, which we also call the shift functor
- \(\varvec{\Delta }\) :
-
The difference functor
- \(-^{<n}\) :
-
The submodule generated by all elements of degree less than n
- \(-^{(r)}\) :
-
The r-th Frobenius twist of a \(\textbf{GL}\)-representation
- \(t_i(-)\) :
-
The generation degree of \({{\,\textrm{Tor}\,}}_i^R(-, k)\)
References
Bibby, C., Gadish, N.: Combinatorics of orbit configuration spaces. Sém. Lothar. Combin. 80B:Art. 72, 11 (2018)
Bik, A., Danelon, A., Draisma, J., Eggermont, R.H.: Universality of high-strength tensors. Vietnam J. Math. 50(2), 557–580 (2022)
Bik, A., Draisma, J., Eggermont, R.H., Snowden, A.: The geometry of polynomial representations. Int. Math. Res. Not. IMRN, 14131–14195 (2023)
Brouwer, A.E., Draisma, J.: Equivariant Gröbner bases and the Gaussian two-factor model. Math. Comput. 80(274), 1123–1133 (2011). arxiv:0908.1530
Church, T., Ellenberg, J.: Homology of FI-modules. Geom. Topol. 21(4), 2373–2418 (2017)
Church, T., Ellenberg, J.S., Farb, B.: FI-modules and stability for representations of symmetric groups. Duke Math. J. 164(9), 1833–1910 (2015)
Cohen, D.E.: On the laws of a metabelian variety. J. Algebra 5(3), 267–273 (1967)
Djament, A.: Des propriétés de finitude des foncteurs polynomiaux. Fund. Math. 233(3), 197–256 (2016). arxiv:1308.4698
Draisma, J.: Finiteness for the \(k\)-factor model and chirality varieties. Adv. Math. 223(1), 243–256 (2010). arxiv:0811.3503
Draisma, J., Eggermont, R.H.: Finiteness results for Abelian tree models. J. Eur. Math. Soc. (JEMS) 17(4), 711–738 (2015). arxiv:1207.1282
Erman, D., Sam, S.V., Snowden, A.: Generalizations of Stillman’s conjecture via twisted commutative algebra. Int. Math. Res. Not. IMRN 2021(16), 12281–12304 (2019)
Faith, C.: Algebra: Rings, Modules and Categories I, volume 190. Springer Science & Business Media (2012)
Friedlander, E.M., Suslin, A.: Cohomology of finite group schemes over a field. Invent. Math. 127(2), 209–270 (1997)
Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France 90, 323–448 (1962)
Gan, W.L., Li, L.: An inductive machinery for representations of categories with shift functors. Trans. Am. Math. Soc. 371(12), 8513–8534 (2019)
Gan, W.L., Li, L.: Bounds on homological invariants of VI-modules. Mich. Math. J. 69(2), 273–284 (2020)
Ganapathy, K.: GL-algebras in positive characteristic II: The polynomial ring (in preparation)
Gandini, F.: Degree bounds for invariant skew polynomials. Preprint (2021). arxiv:2108.01767
Gandini, F.: Resolutions of ideals of subspace arrangements. J. Commut. Algebra 14(3), 319–338 (2022)
Güntürkün, S., Snowden, A.: The representation theory of the increasing monoid. Mem. Am. Math. Soc. 286(1420), 134 (2023)
Harman, N.: Stability and periodicity in the modular representation theory of symmetric groups. Preprint (2015). arxiv:1509.06414
Kujawa, J.: The Steinberg tensor product theorem for GL(m|n). Contemp. Math. 413, 123 (2006)
Laudone, R.P.: Syzygies of secant ideals of Plücker-embedded Grassmannians are generated in bounded degree. Preprint (2018). arxiv:1803.04259
Le, D.V., Nagel, U., Nguyen, H.D., Römer, T.: Codimension and projective dimension up to symmetry. Math. Nachr. 293(2), 346–362 (2020)
Le, D.V., Nagel, U., Nguyen, H.D., Römer, T.: Castelnuovo–Mumford regularity up to symmetry. Int. Math. Res. Not. 2021(14), 11010–11049 (2021)
Li, L., Yu, N.: Filtrations and homological degrees of FI-modules. J. Algebra 472, 369–398 (2017)
Maraj, A., Nagel, U.: Equivariant Hilbert series for hierarchical models. Algebr. Stat. 12(1), 21–42 (2021)
Miller, J., Nagpal, R., Patzt, P.: Stability in the high-dimensional cohomology of congruence subgroups. Compos. Math. 156(4), 822–861 (2020)
Miller, J., Wilson, J.: Higher-order representation stability and ordered configuration spaces of manifolds. Geom. Topol. 23(5), 2519–2591 (2019)
Murai, S.: Betti tables of monomial ideals fixed by permutations of the variables. Trans. Am. Math. Soc. 373(10), 7087–7107 (2020)
Nagel, U., Römer, T.: FI- and OI-modules with varying coefficients. J. Algebra 535, 286–322 (2019)
Nagpal, R.: FI-modules and the cohomology of modular representations of symmetric groups. Ph.D. thesis, The University of Wisconsin-Madison (2015). arxiv:1505.04294
Nagpal, R.: VI-modules in nondescribing characteristic, part I. Algebra Number Theory 13(9), 2151–2189 (2019)
Nagpal, R., Sam, S.V., Snowden, A.: Noetherianity of some degree two twisted commutative algebras. Selecta Math. (N.S.) 22(2), 913–937 (2016)
Nagpal, R., Sam, S.V., Snowden, A.: Regularity of FI-modules and local cohomology. Proc. Am. Math. Soc. 146(10), 4117–4126 (2018)
Nagpal, R., Sam, S.V., Snowden, A.: Noetherianity of some degree two twisted skew-commutative algebras. Selecta Math. (N.S.) 25(1), 1–26 (2019)
Nagpal, R., Snowden, A.: Symmetric subvarieties of infinite affine space. Preprint (2020). arxiv:2011.09009
Nagpal, R., Snowden, A.: Symmetric ideals of the infinite polynomial ring. Preprint (2021). arxiv:2107.13027
Putman, A., Sam, S.V.: Representation stability and finite linear groups. Duke Math. J. 166(13), 2521–2598 (2017)
Ramos, E.: Generalized representation stability and \({\rm FI}_d\)-modules. Proc. Am. Math. Soc. 145(11), 4647–4660 (2017)
Sam, S.V., Snowden, A.: Introduction to twisted commutative algebras. Preprint (2012). arxiv:1209.5122
Sam, S.V., Snowden, A.: GL-equivariant modules over polynomial rings in infinitely many variables. Trans. Am. Math. Soc. 368(2), 1097–1158 (2016)
Sam, S.V., Snowden, A.: Gröbner methods for representations of combinatorial categories. J. Am. Math. Soc. 30(1), 159–203 (2017)
Sam, S.V., Snowden, A.: GL-equivariant modules over polynomial rings in infinitely many variables II. Forum Math. Sigma 7, 71 (2019)
Sam, S.V., Snowden, A.: Sp-equivariant modules over polynomial rings in infinitely many variables. Trans. Am. Math. Soc. 375(3), 1671–1701 (2022)
Snowden, A.: Syzygies of Segre embeddings and \(\Delta \)-modules. Duke Math. J. 162(2), 225–277 (2013). arxiv:1006.5248
Snowden, A.: Stable representation theory: beyond the classical groups. Preprint (2021). arxiv:2109.11702
Snowden, A.: The spectrum of a twisted commutative algebra. Proc. Lond. Math. Soc. (3), 128(1):Paper No. e12576, 22 (2024)
Totaro, B.: Projective resolutions of representations of GL(n). J. Reine Angew. Math. 482, 1–13 (1997)
Acknowledgements
I am grateful to Andrew Snowden for being generous with his ideas and providing numerous comments on a draft which greatly improved the exposition. Thanks are also due to Rohit Nagpal for pointing out helpful references, and Nate Harman for helpful discussions. The work was supported in part by NSF grants DMS #1453893 and DMS #1840234.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ganapathy, K. \(\textbf{GL}\)-algebras in positive characteristic I: the exterior algebra. Sel. Math. New Ser. 30, 63 (2024). https://doi.org/10.1007/s00029-024-00960-4
Accepted:
Published:
DOI: https://doi.org/10.1007/s00029-024-00960-4