Skip to main content
Log in

Boundedness and Large Time Behavior for Flux Limitation in a Two-Species Chemotaxis System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, the following cross-diffusion system is investigated

$$\begin{aligned} \left\{ \begin{array}{llll} u_t=\nabla \cdot \big ((u+1)^{m-1}\nabla u\big )-\nabla \cdot \Bigg (\frac{u\nabla z}{(1+|\nabla z|^2)^\alpha }\Bigg ),\\ 0=\Delta z-z+v,\\ v_t=\nabla \cdot \big ((v+1)^{m-1}\nabla v\big )-\nabla \cdot \Bigg (\frac{v\nabla w}{(1+|\nabla w|^2)^\alpha }\Bigg ),\\ 0=\Delta w-w+u, \end{array}\right. \end{aligned}$$

in a bounded domain \(\Omega \subset {\mathbb {R}}^n\) (\(n\ge 2\)) with smooth boundary \(\partial \Omega \). Under the condition that \(\alpha >\frac{2n-mn-2}{2(n-1)}\) and \(m\ge 1,\) it is shown that the problem possesses a global bounded classical solution. Moreover, we also investigated the large time behavior of the solution, and obtained the corresponding solution exponentially converges to a constant stationary solution when the initial data \(u_0\) is sufficiently small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No dataset was generated or analyzed during this study.

References

  1. Cantrell, S., Cosner, C., Ruan, S.: Spatial Ecology. Mathematical and Computational Biology Series. Chapman & Hall/CRC, Boca Raton (2010)

    Google Scholar 

  2. Murray, J.D.: Mathematical Biology. Biomathematics, vol. 19, 2nd edn. Springer, Berlin (1993)

    Google Scholar 

  3. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    MathSciNet  Google Scholar 

  4. Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5, 581–601 (1995)

    MathSciNet  Google Scholar 

  5. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

    MathSciNet  Google Scholar 

  6. Nagai, T., Senba, T., Suzuki, T.: Chemotactic collapse in a parabolic system of mathematical biology. J. Hiroshima Math. 30, 463–497 (2000)

    MathSciNet  Google Scholar 

  7. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433 (1997)

    MathSciNet  Google Scholar 

  8. Winkler, M.: Aggregation versus global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2885–2905 (2010)

    Google Scholar 

  9. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    MathSciNet  Google Scholar 

  10. Cao, X.: Global bounded solutions of the higher-dimensional Keller–Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. 3, 1891–1904 (2015)

    MathSciNet  Google Scholar 

  11. Mizoguchi, N.: Type II blowup in a doubly parabolic Keller–Segel system in two dimensions. J. Funct. Anal. 271, 3323–3347 (2016)

    MathSciNet  Google Scholar 

  12. Mizoguchi, N., Souplet, P.: Nondegeneracy of blow-up points for the parabolic Keller–Segel system. Ann. Inst. Henri Poincaé Anal. Non Linéaire. 31, 851–875 (2014)

    MathSciNet  Google Scholar 

  13. Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equ. 252, 5832–5851 (2012)

    MathSciNet  Google Scholar 

  14. Cieślak, T., Stinner, C.: Finite-time blowup in a supercritical quasilinear parabolic–parabolic Keller–Segel system in dimension 2. Acta Appl. Math. 129, 135–146 (2014)

    MathSciNet  Google Scholar 

  15. Cieślak, T., Stinner, C.: New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models. J. Differ. Equ. 258, 2080–2113 (2015)

    MathSciNet  Google Scholar 

  16. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    MathSciNet  Google Scholar 

  17. Hibbing, M.E., Fuqua, C., Parsek, M.R., Peterson, S.B.: Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010)

    Google Scholar 

  18. Painter, K.J., Sherratt, J.A.: Modelling the movement of interacting cell populations. J. Theor. Biol. 225, 327–339 (2003)

    MathSciNet  Google Scholar 

  19. Kelly, F.X., Dapsis, K.J., Lauffenburger, D.A.: Effect of bacterial chemotaxis on dynamics of microbial competition. Microb. Ecol. 16, 115–131 (1988)

    Google Scholar 

  20. Biler, P., Espejo, E.E., Guerra, I.: Blowup in higher dimensional two species chemotactic systems. Commun. Pure Appl. Anal. 12, 89–98 (2013)

    MathSciNet  Google Scholar 

  21. Espejo, E.E., Stevens, A., Velázquez, J.L.L.: Simultaneous finite time blow-up in a two species model for chemotaxis. Analysis (Munich) 29, 317–338 (2009)

    MathSciNet  Google Scholar 

  22. Conca, C., Espejo, E.E., Vilches, K.: Global existence and blow-up for a two species Keller Segel model for chemotaxis. Eur. J. Appl. Math. 22, 553–580 (2011)

    Google Scholar 

  23. Tello, J.I., Winkler, M.: Stabilization in a two-species chemotaxis system with a logistic source. Nonlinearity 25, 1413–1425 (2012)

    MathSciNet  Google Scholar 

  24. Stinner, C., Tello, J.I., Winkler, M.: Competitive exclusion in a two-species chemotaxis model. J. Math. Biol. 68, 1607–1626 (2014)

    MathSciNet  Google Scholar 

  25. Black, T.: Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete Contin. Dyn. Syst. Ser. B. 22, 1253–1272 (2017)

    MathSciNet  Google Scholar 

  26. Tu, X., Mu, C., Zheng, P., Lin, K.: Global dynamics in a two-species chemotaxis-competition system with two signals. Discrete Contin. Dyn. Syst. 38, 3617–3636 (2018)

    MathSciNet  Google Scholar 

  27. Tao, Y., Winkler, M.: Boundedness versus blow-up in a two-species chemotaxis system with two chemicals. Discrete Contin. Dyn. Syst. Ser. B. 20, 3165–3183 (2015)

    MathSciNet  Google Scholar 

  28. Zheng, J.S.: Boundedness in a two-species quasi-linear chemotaxis system with two chemicals. Topol. Methods Nonlinear Anal. 49(2), 463–480 (2017)

    MathSciNet  Google Scholar 

  29. Yu, H., Wang, W., Zheng, S.N.: Criteria on global boundedness versus finite time blow-up to a two-species chemotaxis system with two chemicals. Nonlinearity 31, 502–514 (2018)

    MathSciNet  Google Scholar 

  30. Lin, K., Xiang, T.: On boundedness, blow-up and convergence in a two-species and two-stimuli chemotaxis system with/without loop. Calc. Var. 59, 108 (2020)

    MathSciNet  Google Scholar 

  31. Winkler, M.: A critical blow-up exponent for flux limitation in a Keller–Segel system, preprint

  32. Wang, L.C., Mu, C.L., Zheng, P.: On a quasilinear parabolic–elliptic chemotaxis system with logistic source. J. Differ. Equ. 256, 1847–1872 (2014)

    MathSciNet  Google Scholar 

  33. Friedman, A.: Partial Differential Equations. Holt, Rinehart & Winston, New York (1969)

    Google Scholar 

  34. Ding, M., Winkler, M.: Small-density solutions in Keller–Segel systems involving rapidly decaying diffusivities. Nonlinear Differ. Equ. Appl. 28, 47 (2021)

    MathSciNet  Google Scholar 

  35. Zhao, J., Yi, H.: Global boundedness and large time behavior of solutions to a chemotaxis system with flux limitation. J. Math. Anal. Appl. 514, 126321 (2022)

    MathSciNet  Google Scholar 

  36. Porzio, M.M., Vespri, V.: Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J. Differ. Equ. 103, 146–178 (1993)

    Google Scholar 

  37. Ciéslak, T., Winkler, M.: Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21, 1057–1076 (2008)

    MathSciNet  Google Scholar 

  38. Wang, L., Li, Y., Mu, C.: Boundedness in a parabolic–parabolic quasilinear chemotaxis system with logistic source. Discrete Contin. Dyn. Syst. Ser. A. 34, 789–802 (2014)

    MathSciNet  Google Scholar 

  39. Wang, Z., Winkler, M., Wrzosek, D.: Global regularity vs. infinite-time singularity formation in a chemotaxis model with volume-filling effect and degenerate diffusion. SIAM J. Math. Anal. 44, 3502–3525 (2012)

    MathSciNet  Google Scholar 

  40. Winkler, M., Djie, K.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. TMA. 72, 1044–1064 (2010)

    MathSciNet  Google Scholar 

  41. Pan, X., Wang, L., Zhang, J., Wang, J.: Boundedness in a three-dimensional two-species chemotaxis system with two chemicals. Z. Angew. Math. Phys. 71, 26 (2020)

    MathSciNet  Google Scholar 

  42. Pan, X., Wang, L.: Boundedness in a two-species chemotaxis system with nonlinear sensitivity and signal secretion. J. Math. Anal. Appl. 500, 125078 (2021)

    MathSciNet  Google Scholar 

  43. Pan, X., Wang, L.: On a quasilinear fully parabolic two-species chemotaxis system with two chemicals. Discrete Contin. Dyn. Syst. Ser. B. 27, 361–391 (2022)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous reviewers for their careful reading and useful suggestions, which greatly improved the presentation of the paper. This work is supported by Chongqing Education science planning project, Annual Planning General topics, Practical research on the deep integration of modern information technology and college mathematics teaching (No. K22YG205144), by Jiangxi Province University Humanities and Social Sciences Research Project (No. JY22202), and by Jiangxi Provincial Natural Science Foundation(No. 20232BAB201002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Huang, X. Boundedness and Large Time Behavior for Flux Limitation in a Two-Species Chemotaxis System. Qual. Theory Dyn. Syst. 23, 116 (2024). https://doi.org/10.1007/s12346-024-00976-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-00976-3

Keywords

Mathematics Subject Classification

Navigation