Skip to main content
Log in

Analysis of Abstract Partial Impulsive Integro-Differential System with Delay via Integrated Resolvent Operator

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this manuscript, we employ integrated resolvent operator to derive the variation of constants formula for the solution of the impulsive integro-differential system, in nonlocal domain with finite delay function. Using the Banach fixed point theorem and integrated resolvent operator, we explore the existence of mild solution of the aforementioned system. Additionally, we establish the Hyers–Ulam stability of the system. Finally, the main result is illustrated with the help of an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Abbas, S., Benchohra, M., N’Guerekata, G.M.: Instantaneous and noninstantaneuos impulsive integro-differential equations in Banach spaces. Bull. Korean Math. Soc. 48, 1271–1290 (2011)

    MathSciNet  Google Scholar 

  2. Benchohra, M., Abbas, S.: Advanced Functional Evolutions and Inclusions. Springer, Switzerland (2015)

    Google Scholar 

  3. Ahmed, S., Shah, K., Jahan, S., Abdeljawad, T.: An efficient method for the fractional electric circuits based on Fibonacci wavelet. Res. Phys. 52, 1–10 (2023)

    Google Scholar 

  4. Alkhazzan, A., Baleano, D., Khan, H., Khan, A.: Stability and existence results for a class of nonlinear fractional differential equations with singularity. Math. Methods Appl. Sci. 41(18), 9321–9334 (2018)

    Article  MathSciNet  Google Scholar 

  5. Khan, A., Khan, H., Gomez-Aguilar, J., Abdeljawad, T.: Existence and Hyers–Ulam stability for a nonlinear singular fractional differential equations with Mittag–Leffler kernel. Chaos Solitons Fractals 127, 422–427 (2019)

    Article  MathSciNet  Google Scholar 

  6. Baleanu, D., Ghafarnezhad, K., Rezapour, S., Shabibi, M.: On the existence of solutions of a three steps crisis integro-differential equation. Adv. Differ. Equ. 135, 1–20 (2018)

    MathSciNet  Google Scholar 

  7. Baleanu, D., Mohammadi, H., Rezapour, S.: On modelling of epidemic childhood diseases with the Caputo–Fabrizio derivative by using the Laplace Adomian decomposition method. Alex. Eng. J. 59, 3029–3039 (2020)

    Article  Google Scholar 

  8. Benchohra, M., Henderson, J., Ntouyas, S.K.: An existence result for first order impulsive functional differential equations in Banach spaces. Comput. Math. Appl. 42, 1303–1310 (2001)

    Article  MathSciNet  Google Scholar 

  9. Benchohra, M., Henderson, J., Ntouyas, S.K.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York (2006)

    Book  Google Scholar 

  10. Boutiara, A., Etemad, S., Alzabut, J., Hussain, A., Subramanian, M., Rezapour, S.: On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria. Adv. Contin. Discret. Models 3672021, 1–23 (2021)

    Google Scholar 

  11. Chang, Y.K., Li, W.S.: Solvability for impulsive neutral integro-differential equations with state-dependent delay via fractional operators. Optim. Theory Appl. 144, 445–459 (2010)

    Article  MathSciNet  Google Scholar 

  12. Castro, L.P., Simoes, A.M.: Different types of Hyers–Ulam–Rassias stability for a class of integro-differential equations. Filomat 31, 5379–5390 (2017)

    Article  MathSciNet  Google Scholar 

  13. Diop, A., Dieye, M., Diop, M.A., Ezzinbi, K.: Integro-differential equations of volterra type with nonlocal and impulsive conditions. J. Integral Equ. Appl. 34, 19–37 (2022)

    Article  Google Scholar 

  14. Ezzinbi, K., Ghnimi, S.: Existence and regularity for some partial neutral functional integro-differential equations with nondense domain. Bull. Malays. Math. Sci. Soc. 43, 2967–2987 (2020)

    Article  MathSciNet  Google Scholar 

  15. Ezzinbi, K., Ghnimi, S.: Solvability of nondensely defined partial functional integro-differential equations using the integrated resolvent operator in Banach space. Electron. J. Qual. Theory Differ. Equ. 88, 1–21 (2019)

    Article  Google Scholar 

  16. Ezzinbi, K., Ziat, M.: Nonlocal integro-differential equations without the assumptions of equicontinuity on the resolvent operators. Differ. Equ. Dynam. Syst. Bull. 30, 315–333 (2022)

    Article  Google Scholar 

  17. Grimmer, R.C.: Resolvent operators for integral equations in a Banach space. Am. Math. Soc. 273, 333–349 (1982)

    Article  MathSciNet  Google Scholar 

  18. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27, 222–224 (1941)

    Article  MathSciNet  Google Scholar 

  19. Hao, X., Liu, L.: Mild solution of semilinear impulsive integro-differential evolution equation in Banach spaces. Math. Methods Appl. Sci. Soc. 40(13), 4832–4841 (2017)

    MathSciNet  Google Scholar 

  20. Hao, X., Liu, L.: Mild solution of second order impulsive integro-differential evolution equations of volterra type in Banach spaces. Qual. Theory Dyn. Syst. 19, 1–18 (2020)

    Article  MathSciNet  Google Scholar 

  21. Harnandez, E., Pierri, M., Goncalves, G.: Existence results for an impulsive abstract partial differential equation with state-dependent delay. Comput. Math. Appl. 52, 411–420 (2006)

    Article  MathSciNet  Google Scholar 

  22. Hernandez, E., Rolnik, V., Ferrari, T.M.: Existence and uniqueness of solutons for abstract integro-differential equations with state-dependent delay and applications. Mediterr. J. Math. 19(3), 101 (2022)

    Article  Google Scholar 

  23. Jeet, K., Sukavanam, N.: Approximate controllability of nonlocal and impulsive integro-differential equations using the resolvent operator theory and an approximating technique. Appl. Math. Comput. 364, 1–15 (2020)

    MathSciNet  Google Scholar 

  24. Khan, H., Tunc, C., Chen, W., Khan, A.: Existence theorems and Hyers–Ulam stability for a class of hybrid fractional differential equations with p-Laplacian operator. J. Appl. Anal. Comp. 8(4), 1211–1226 (2018)

    MathSciNet  Google Scholar 

  25. Khan, H., Alzabut, J., Baleanu, D., Alobaidi, G.: Existence of solutions and a numerical scheme for a generalized hybrid class of n-coupled modified ABC-fractional differential equations with an application. AIMS Math. 8(3), 6609–6625 (2023)

    Article  MathSciNet  Google Scholar 

  26. Khan, H., Alzabut, J., Baleanu, D., Shah, A., He, Z., Etemad, S., Rezapour, S., Zada, A.: On fractal-fractional waterborne disease model: a study on theoretical and numerical aspects of solutions via simulations. Fractals 31(4), 1–16 (2023)

    Article  Google Scholar 

  27. Khan, H., Tunc, C., Khan, A.: Stability results and existence theorems for nonlinear delay-fractional differential equations with \(\varphi ^{*}_{p}\)-operator. J. Appl. Anal. Comput. 10(2), 584–597 (2020)

  28. Kucche, K.D., Shikhare, P.U.: Ulam–Hyers stabilities for nonlinear volterra delay integro-differential equations via a fixed point approach. J. Contemp. Math. Anal. 54, 276–287 (2019)

    Article  MathSciNet  Google Scholar 

  29. Lakshmikantham, V., Bainov, D., Simeonov, P.S.: Theory of Impulsive Differential Equations. Singapore, World Seientific (1989)

    Book  Google Scholar 

  30. Nisar, S.K., Munusamy, K., Ravichandran, C.: Results on existence of solutions in nonlocal partial functional integrodifferential equations with finite delay in nondense domain. Alex. Eng. J. 73, 377–384 (2023)

    Article  Google Scholar 

  31. Oka, H.: Integrated resolvent operator. J. Integral Equ. Appl. 7, 193–232 (1995)

    Article  MathSciNet  Google Scholar 

  32. Rezapour, S., Imran, A., Hussain, A., Martinez, F., Etemad, Sina, Kaabar, M.K.A.: Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs. Symmetry 13(3), 469 (2021)

    Article  Google Scholar 

  33. Samoilenka, A.M., Perestyunk, N.A.: Impulsive Differential Equations. Singapore, World Seientific (1995)

    Book  Google Scholar 

  34. Shah, K., Abdeljawad, T., Arshad, A.: Mathematical analysis of the Cauchy type dynamical system under piecewise equations with Caputo fractional derivative. Chaos Solitons Fract. 161, 112356 (2022)

    Article  MathSciNet  Google Scholar 

  35. Refaai, D.A., El-Sheikh, M.M.A., Ismail, G.A.F., Abdalla, B., Abdeljawad, T.: Hyers–Ulam stability of impulsive volterra integro-differential equations. Adv. Differ. Equ. 477, 1–13 (2021)

    MathSciNet  Google Scholar 

  36. Sevgin, S., Sevli, H.: Stability of a nonlinear volterra integro-differential equations via a fixed point approach. J. Nonlinear Sci. Appl. 9, 200–207 (2016)

    Article  MathSciNet  Google Scholar 

  37. Wang, J., Zada, A., Ali, W.: Ulam’s type stability of first-order impulsive differential equations with variable delay in quasi-Banach spaces. Int. J. Nonlinear Sci. Numer. Simul. 19, 553–560 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Zada.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Zada, A. Analysis of Abstract Partial Impulsive Integro-Differential System with Delay via Integrated Resolvent Operator. Qual. Theory Dyn. Syst. 23, 110 (2024). https://doi.org/10.1007/s12346-024-00968-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-00968-3

Keywords

Mathematics Subject Classification

Navigation