Skip to main content
Log in

Topological Entropy and Sequence Entropy for Hom Tree-Shifts on Unexpandable Trees

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This article explores the topological entropy and topological sequence entropy of hom tree-shifts on unexpandable trees. Regarding topological entropy, we establish that the entropy, denoted as \(h({\mathcal {T}}_X)\) on an unexpandable tree, equals the entropy h(X) of the base shift X when X is a subshift satisfying the almost specification property. Additionally, we derive some fundamental properties such as entropy approximation and the denseness of entropy for subsystems. Concerning topological sequence entropy, we show that the set of sequence entropies of hom tree-shifts with a base shift is generated by an irreducible matrix A, forming a subset of \(\log {\mathbb {N}}\). Precisely, these entropies correspond to the logarithms of the largest cardinalities of the periodic classes of A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability statement

No new data were created or analysed in this study.

Notes

  1. That is, \(\left| \Delta _{n}\backslash \Delta _{n-1}\right| /\left| \Delta _{n}\right| \) does not tend to 0 as \(n\rightarrow \infty \), where \(\Delta _{n}=\cup _{i=0}^{n-1}T_{i}\). For a deeper discussion of the amenability of a group we refer the reader to [14].

  2. The value \(h_{top}^{\infty }(f)\) is also known as the maximal pattern entropy of f, introduced by Huang and Ye [26]. We refer the reader to [26] or [27] for more details and a complete bibliography.

  3. The sequence \({\mathcal {C}}=\{{\mathcal {C}}_{i}\}_{i=0}^{\infty }\) symbolizes the sequence \(S=\{s_{n}\}_{n=1}^{\infty }\) in \({\mathbb {N}}\) shifts.

References

  1. Aubrun, N., Beal, M.-P.: Tree-shifts of finite type. Theoret. Comput. Sci. 459, 16–25 (2012)

    Article  MathSciNet  Google Scholar 

  2. Aubrun, N., Béal, M.-P.: Sofic tree-shifts. Theory Comput. Syst. 53(4), 621–644 (2013)

    Article  MathSciNet  Google Scholar 

  3. Balibrea, F., López, V., Pena, J.: Some results on entropy and sequence entropy. Int. J. Bifurc. Chaos 9(09), 1731–1742 (1999)

    Article  MathSciNet  Google Scholar 

  4. Ban, J.-C., Chang, C.-H.: Tree-shifts: irreducibility, mixing, and chaos of tree-shifts. Trans. Am. Math. Soc. 369, 8389–8407 (2017)

    Article  MathSciNet  Google Scholar 

  5. Ban, J.-C., Chang, C.-H.: Tree-shifts: the entropy of tree-shifts of finite type. Nonlinearity 30, 2785–2804 (2017)

    Article  MathSciNet  Google Scholar 

  6. Ban, J.-C., Chang, C.-H., Hu, W.-G., Lai, G.-Y., Wu, Y.-L.: An Analogue of Topological Sequence Entropy for Markov Hom Tree-Shifts, Studia Mathematica, 1–21 (2022)

  7. Ban, J.-C., Chang, C.-H., Hu, W.-G., Wu, Y.-L.: On structure of topological entropy for tree-shift of finite type. J. Differ. Equ. 292, 325–353 (2021)

    Article  MathSciNet  Google Scholar 

  8. Ban, J.-C., Chang, C.-H., Hu, W.-G., Wu, Y.-L.: Topological entropy for shifts of finite type over z and trees. Theoret. Comput. Sci. 930, 24–32 (2022)

    Article  MathSciNet  Google Scholar 

  9. Ban, J.-C., Chang, C.-H., Wu, Y.-L., Wu, Y.-Y.: Stem and topological entropy on cayley trees. Math. Phys. Anal. Geom. 25(1), 1–40 (2022)

    Article  MathSciNet  Google Scholar 

  10. Ban, J.-C., Hu, W.-G., Lai, G.-Y.: The entropy structures of axial products on \({\mathbb{N}}^d\) and trees, arXiv preprint arXiv:2303.13011 (2023)

  11. Baxter, R.J., Enting, I.G., Tsang, S.K.: Hard-square lattice gas. J. Stat. Phys. 22, 465–489 (1980)

    Article  MathSciNet  Google Scholar 

  12. Bland, R., McGoff, K., Pavlov, R.: Subsystem Entropies of Shifts of Finite Type and Sofic Shifts on Countable Amenable Groups, Ergodic Theory and Dynamical Systems, 1–34 (2022)

  13. Cánovas, J. S.: A Guide to Topological Sequence Entropy, Progress in Mathematical Biology Research, 101–139 (2008)

  14. Ceccherini-Silberstein, T., Coornaert, M.: Cellular Automata and Groups. Springer Science & Business Media (2010)

  15. Dembo, A., Montanari, A.: Ising models on locally tree-like graphs. Ann. Appl. Probab. 20(2), 565–592 (2010)

    Article  MathSciNet  Google Scholar 

  16. Dembo, A., Montanari, A., Sun, N.: Factor models on locally tree-like graphs. Ann. Probab. 41(6), 4162–4213 (2013)

    Article  MathSciNet  Google Scholar 

  17. Dembo, A., Zeitouni, O.: LDP for Finite Dimensional Spaces, pp. 11–70. Springer, Large deviations techniques and applications (2009)

  18. Desai, A.: Subsystem entropy for \({\mathbb{Z} }^d\) sofic shifts. Indag. Math. 17(3), 353–359 (2006)

    Article  MathSciNet  Google Scholar 

  19. Dou, D., Ye, X.-D., Zhang, G.-H.: Entropy sequences and maximal entropy sets. Nonlinearity 19(1), 53 (2005)

    Article  MathSciNet  Google Scholar 

  20. Franzová, N., Smítal, J.: Positive sequence topological entropy characterizes chaotic maps. Proc. Am. Math. Soc. 112(4), 1083–1086 (1991)

    Article  MathSciNet  Google Scholar 

  21. Georgii, H. O.: Gibbs Measures and Phase Transitions, vol. 9, Walter de Gruyter, (2011)

  22. Goodman, T.: Topological sequence entropy. Proc. Lond. Math. Soc. 3(2), 331–350 (1974)

    Article  MathSciNet  Google Scholar 

  23. Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Ann. Math. 171, 2011–2038 (2010)

    Article  MathSciNet  Google Scholar 

  24. Hric, R.: Topological sequence entropy for maps of the circle. Comment. Math. Univ. Carol. 41(1), 53–59 (2000)

    MathSciNet  Google Scholar 

  25. Huang, W., Shao, S., Ye, X.-D.: Mixing via sequence entropy. Contemp. Math. 385, 101–122 (2005)

    Article  MathSciNet  Google Scholar 

  26. Huang, W., Ye, X.-D.: Combinatorial lemmas and applications to dynamics. Adv. Math. 220(6), 1689–1716 (2009)

    Article  MathSciNet  Google Scholar 

  27. Kamae, T., Zamboni, L.: Sequence entropy and the maximal pattern complexity of infinite words. Ergod. Theory Dynam. Syst. 22(4), 1191–1199 (2002)

    Article  MathSciNet  Google Scholar 

  28. Kuang, R., Yang, Y.-N.: Supremum topological sequence entropy of circle maps. Topol. Appl. 295, 107670 (2021)

    Article  MathSciNet  Google Scholar 

  29. Kushnirenko, A.G.: On metric invariants of entropy type. Russ. Math. Surv. 22(5), 53 (1967)

    Article  MathSciNet  Google Scholar 

  30. Lieb, E.H.: Exact solution of the problem of the entropy of two-dimensional ice. Phys. Rev. Lett. 18(17), 692 (1967)

    Article  Google Scholar 

  31. Lind, D.: The entropies of topological Markov shifts and a related class of algebraic integers. Ergod. Theory Dynam. Syst. 4(2), 283–300 (1984)

    Article  MathSciNet  Google Scholar 

  32. Lind, D.: Perturbations of shifts of finite type. SIAM J. Discret. Math. 2(3), 350–365 (1989)

    Article  MathSciNet  Google Scholar 

  33. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  34. Pavlov, R.: Perturbations of multidimensional shifts of finite type. Ergod. Theory Dynam. Syst. 31(2), 483–526 (2011)

    Article  MathSciNet  Google Scholar 

  35. Petersen, K., Salama, I.: Tree shift topological entropy. Theoret. Comput. Sci. 743, 64–71 (2018)

    Article  MathSciNet  Google Scholar 

  36. Petersen, K., Salama, I.: Entropy on regular trees. Discret. Contin. Dynam. Syst. 40(7), 4453 (2020)

    Article  MathSciNet  Google Scholar 

  37. Quas, A., Trow, P.: Subshifts of multi-dimensional shifts of finite type. Ergod. Theory Dynam. Syst. 20(3), 859–874 (2000)

    Article  MathSciNet  Google Scholar 

  38. Saleski, A.: Sequence entropy and mixing. J. Math. Anal. Appl. 60(1), 58–66 (1977)

    Article  MathSciNet  Google Scholar 

  39. Spitzer, F.: Markov random fields on an infinite tree. Ann. Probab. 3(3), 387–398 (1975)

    Article  MathSciNet  Google Scholar 

  40. Tan, F.: The set of sequence entropies for graph maps. Topol. Appl. 158(3), 533–541 (2011)

    Article  MathSciNet  Google Scholar 

  41. Tan, F., Ye, X.D., Zhang, R.-F.: The set of sequence entropies for a given space. Nonlinearity 23(1), 159 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We sincerely thank the anonymous referee for their valuable feedback and insightful suggestions on the initial draft of this article. Their contributions have significantly enhanced the clarity and overall quality of the paper. Ban and Chang are partially supported by the National Science and Technology Council, ROC (Contract No NSTC 111-2115-M-004-005-MY3 and 112-2115-M-390-003) and National Center for Theoretical Sciences. Hu is partially supported by the National Natural Science Foundation of China (Grant No.12271381). Lai is partially supported by the National Science and Technology Council, ROC (Contract NSTC 111-2811-M-004-002-MY2).

Author information

Authors and Affiliations

Authors

Contributions

Every author has contributed to the project to be included as an author.

Corresponding author

Correspondence to Guan-Yu Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ban and Chang are partially supported by the National Science and Technology Council, ROC (Contract No NSTC 111-2115-M-004-005-MY3 and 112-2115-M-390-003) and National Center for Theoretical Sciences. Hu is partially supported by the National Natural Science Foundation of China (Grant No.12271381). Lai is partially supported by the National Science and Technology Council, ROC (Contract NSTC 111-2811-M-004-002-MY2).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, JC., Chang, CH., Hu, WG. et al. Topological Entropy and Sequence Entropy for Hom Tree-Shifts on Unexpandable Trees. Qual. Theory Dyn. Syst. 23, 108 (2024). https://doi.org/10.1007/s12346-024-00967-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-00967-4

Keywords

Navigation