Skip to main content
Log in

Existence of Traveling Wave Solutions for the Perturbed Modefied Gardner Equation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The modified Gardner equation is widely used to describe the supernonlinear proliferation of ion-acoustic waves and quantum electron-positron ion magneto plasmas. This paper focuses on the investigation of the modified Gardner equation with Kuramoto-Sivashinsky perturbation. The existence results of nonlinear and supernonlinear ion-acoustic solitary and periodic waves are established by employing the geometric singular perturbation theory, invariant manifold theory, and bifurcation theory. The supernonlinear solitary wave is a new class of solitary waves, which was proposed by Dubinov and Kolotkov [12]. In this work, the existence of the novel type of ion-acoustic solitary and periodic waves in the perturbed modified Gardner equation has been proven for the first time. Through rigorous mathematical analysis and numerical simulations, we further substantiate the validity of our proposed methods and model. Overall, this study enhances the understanding of the nonlinear and supernonlinear dynamics of ion-acoustic waves in the modified Gardner equation, while also providing a solid foundation for future investigations and applications in plasma physics and related disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

This manuscript has no associated data.

References

  1. Debnath, L.: Nonlinear Partial Differential Equations for Scientists and Engineers, Birkhäuser Boston, (2005)

  2. Gintautas, V., Hubler, A.W.: Resonant forcing of nonlinear systems of differential equations. Chaos 18, 033118 (2008)

    MathSciNet  Google Scholar 

  3. Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  4. Seadawy, A.R.: Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma. Comput. Math. Appl. 67, 172–180 (2014)

    MathSciNet  Google Scholar 

  5. Seadawy, A.R., Iqbal, M., Lu, D.: Applications of propagation of long-wave with dissipation and dispersion in nonlinear media via solitary wave solutions of generalized Kadomtsev-Petviashvili modified equal width dynamical equation. Comput. Math. Appl. 78, 3620–3632 (2019)

    MathSciNet  Google Scholar 

  6. Rizvi, S.T.R., Seadawy, A.R., Ahmed, S., Younis, M., Ali, K.: Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrödinger equation. Chaos Solitons Fractals 151, 111251 (2021)

    Google Scholar 

  7. Roshid, H.-O., Roshid, M., Abdeljabbar, A., Begum, M., Basher, H.: Abundant dynamical solitary waves through Kelvin-Voigt fluid via the truncated M-fractional Oskolkov model. Results Phys. 55, 107128 (2023)

    Google Scholar 

  8. Ullah, M.S., Baleanu, D., Ali, M.Z., Roshid, H.-O.: Novel dynamics of the Zoomeron model via different analytical methods. Chaos Solitons Fractals 174, 113856 (2023)

    MathSciNet  Google Scholar 

  9. Alshammari, F.S., Roshid, H.-O., Asif, M., Hoque, M.F., Aldurayhim, A.: Bifurcation analysis on ion sound and Langmuir solitary waves solutions to the stochastic models with multiplicative noises. Heliyon 9, e16570 (2023)

    Google Scholar 

  10. Hossain, M.M., Abdeljabbar, A., Roshid, H.-O., Roshid, M.M., Sheikh, A.N.: Abundant bounded and unbounded solitary, periodic, rogue-type wave solutions and analysis of parametric effect on the solutions to nonlinear klein-gordon model. Complexity 2022, 1–19 (2022)

    Google Scholar 

  11. Busse, F.H.: Non-linear properties of thermal convection. Rep. Progr. Phys. 41, 1929–1967 (1978)

    Google Scholar 

  12. Dubinov, A.E., Kolotkov, DYu.: Ion-acoustic supersolitons in plasma. Plasma Phys. Rep. 38, 909–912 (2012)

    Google Scholar 

  13. Derks, G., Gils, S.: On the uniqueness of traveling waves in perturbed Korteweg-de Vries equations, Japan J. Indust. Appl. Math. 10, 413–430 (1993)

    MathSciNet  Google Scholar 

  14. Ogawa, T.: Traveling wave solutions to a perturbed Korteweg-de Vries equation. Hiroshima Math. J. 24, 401–422 (1994)

    MathSciNet  Google Scholar 

  15. Topper, J., Kawahara, T.: Approximate equations for long nonlinear waves on a viscous fluid. J. Phys. Soc. Japan 44, 663–666 (1978)

    MathSciNet  Google Scholar 

  16. Li, W.-T., Lin, G., Ruan, S.: Existence of travelling wave solutions in delayed reactiondiffusion systems with applications to diffusion-competition systems. Nonlinearity 19, 1253–1273 (2006)

    MathSciNet  Google Scholar 

  17. Ma, S.: Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J. Differ. Equ. 171, 294–314 (2001)

    MathSciNet  Google Scholar 

  18. Zhang, T., Wang, W., Wang, K.: Minimal wave speed for a class of non-cooperative diffusionreaction system. J. Differ. Equ. 260, 2763–2791 (2016)

    Google Scholar 

  19. Gardner, R., Smoller, J.: The existence of periodic travelling waves for singularly perturbed predator-prey equations via the Conley index. J. Differ. Equ. 47, 133–161 (1983)

    MathSciNet  Google Scholar 

  20. Huang, W.: A geometric approach in the study of traveling waves for some classes of nonmonotone reaction-diffusion systems. J. Differ. Equ. 260, 2190–2224 (2016)

    Google Scholar 

  21. Wu, J., Zou, X.: Traveling wave fronts of reaction-diffusion systems with delay. J. Dynam. Differ. Equ. 13, 651–687 (2001)

    MathSciNet  Google Scholar 

  22. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    MathSciNet  Google Scholar 

  23. Broer, H.W., Kaper, T.J., Krupa, M.: Geometric desingularization of a cusp singularity in slow-fast systems with applications to Zeeman’s examples. J. Dynam. Differ. Equ. 25, 925–958 (2013)

    MathSciNet  Google Scholar 

  24. Jardón-Kojakhmetov, H., Broer, H. W.: Polynomial normal forms of constrained differential equations with three parameters, J. Differential Equations 257 (2014) 1012-1055

  25. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points - fold and canard points in two dimensions. SIAM J. Math. Anal. 33, 286–314 (2001)

    MathSciNet  Google Scholar 

  26. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174, 312–368 (2001)

    MathSciNet  Google Scholar 

  27. Lu, N., Zeng, C.: Normally elliptic singular perturbations and persistence of homoclinic orbits. J. Differ. Equ. 250, 4124–4176 (2011)

    MathSciNet  Google Scholar 

  28. Schecter, S.: Exchange lemmas 2: general exchange lemma. J. Differ. Equ. 245, 411–441 (2007)

    MathSciNet  Google Scholar 

  29. Jones, C.K.R.T.: Geometrical Singular Perturbation Theory. Lecture Notes in Mathematics, pp. 44–118. Springer, New York (1995)

    Google Scholar 

  30. Robinson, C.: Sustained resonance for a nonlinear system with slowly varying coefficients. SIAM J. Math. Anal. 14, 847–860 (2006)

    MathSciNet  Google Scholar 

  31. Chen, A., Guo, L., Huang, W.: Existence of kink waves and periodic waves for a perturbed defocusing mKdV equation. Qual. Theory Dyn. Syst. 17, 495–517 (2018)

    MathSciNet  Google Scholar 

  32. Chen, A., Zhang, C., Huang, W.: Monotonicity of limit wave speed of traveling wave solutions for a perturbed generalized KdV equation. Appl. Math. Lett. 121, 107381 (2021)

    MathSciNet  Google Scholar 

  33. Li, H., Sun, H., Zhu, W.: Solitary waves and periodic waves in a perturbed KdV equation. Qual. Theory Dyn. Syst. 19, 83 (2020)

    MathSciNet  Google Scholar 

  34. Cheng, F., Li, J.: Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete Contin. Dyn. Syst. 41, 967–985 (2021)

    MathSciNet  Google Scholar 

  35. Xu, G., Zhang, Y.: On the existence of solitary wave solutions for perturbed Degasperis-Procesi equation. Qual. Theory Dyn. Syst. 20, 1–10 (2021)

    MathSciNet  Google Scholar 

  36. Du, Z., Li, J.: Geometric singular perturbation analysis to Camassa-Holm Kuramoto-Sivashinsky equation. J. Differ. Equ. 306, 418–438 (2022)

    MathSciNet  Google Scholar 

  37. Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach. J. Funct. Anal. 275, 988–1007 (2018)

    MathSciNet  Google Scholar 

  38. Qiu, H., Zhong, L., Shen, J.: Traveling waves in a generalized Camassa-Holm equation involving dual-power law nonlinearities. Commun. Nonlinear Sci. Numer. Simul. 106, 106106 (2022)

    MathSciNet  Google Scholar 

  39. Chen, A., Guo, L., Deng, X.: Existence of solitary waves and periodic waves for a perturbed generalized BBM equation. J. Differ. Equ. 261, 5324–5349 (2016)

    MathSciNet  Google Scholar 

  40. Guo, L., Zhao, Y.: Existence of periodic waves for a perturbed quintic BBM equation. Discrete Contin. Dyn. Syst. 40, 4689–4703 (2020)

    MathSciNet  Google Scholar 

  41. Sun, X., Yu, P.: Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms. Discrete Contin. Dyn. Syst. Ser. B 24, 965–987 (2018)

    MathSciNet  Google Scholar 

  42. Du, Z., Qiao, Q.: The dynamics of traveling waves for a nonlinear Belousov-Zhabotinskii system. J. Differ. Equ. 269, 7214–7230 (2020)

    MathSciNet  Google Scholar 

  43. Du, Z., Liu, J., Ren, Y.: Traveling pulse solutions of a generalized Keller-Segel system with small cell diffusion via a geometric approach. J. Differ. Equ. 270, 1019–1042 (2021)

    MathSciNet  Google Scholar 

  44. Tang, Y., Xu, W., Shen, J., Gao, L.: Persistence of solitary wave solutions of singularly perturbed Gardner equation. Chaos Solitons Fractals 37, 532–538 (2008)

    MathSciNet  Google Scholar 

  45. Wen, Z.: On existence of kink and antikink wave solutions of singularly perturbed Gardner equation. Math. Methods Appl. Sci. 43, 4422–4427 (2020)

    MathSciNet  Google Scholar 

  46. Betchewe, G., Victor, K.K., Thomas, B.B., Crepin, K.T.: New solutions of the Gardner equation: Analytical and numerical analysis of its dynamical understanding. Appl. Math. Comput. 223, 377–388 (2013)

    MathSciNet  Google Scholar 

  47. Fu, Z., Liu, S., Liu, S.: New kinds of solutions to Gardner equation. Chaos Solitons Fractals 20, 301–309 (2004)

    MathSciNet  Google Scholar 

  48. Wang, K.: Traveling wave solutions of the Gardner equation in dusty plasmas. Results Phys. 33, 105207 (2022)

    Google Scholar 

  49. Olivier, C.P., Verheest, F., Hereman, W.A.: Collision properties of overtaking supersolitons with small amplitudes. Phys. Plasmas 25, 032309 (2018)

    Google Scholar 

  50. Tamang, J., Saha, A.: Bifurcations of small-amplitude supernonlinear waves of the mKdV and modified Gardner equations in a three-component electron-ion plasma. Phys. Plasmas 27, 012105 (2020)

    Google Scholar 

  51. Jhangeer, A., Hussain, A., Junaid-U-Rehman, M., Baleanu, D., Riaz, M.B.: Quasi-periodic, chaotic and traveling wave structures of modified Gardner equation. Chaos Solitons Fractals 143, 110578 (2021)

    Google Scholar 

  52. Szmolyan, P.: Transversal heteroclinic and homoclinic orbits in singular perturbation problems. J. Differ. Equ. 92, 252–281 (1991)

    MathSciNet  Google Scholar 

  53. Carr, J.: Applications of the Center Manifold Theory. Springer-Verlag, New York (1981)

    Google Scholar 

  54. Fan, S.: A new extracting formula and a new distinguished means on the one valuable cubic equation. Natural Sci. J. Hainan Teach. College 2, 91–98 (1989)

    Google Scholar 

Download references

Funding

This work is suppoeted by the Beijing Natural Science Foundation (Grant No. 1232015), Education and teaching reform project of Beijing University of Posts and Telecommunications (Grant No. 2022SZ-A16), Beijing University of Post and Telecommunications Graduate education and teaching reform and research (Grant No. 2022Y026).

Author information

Authors and Affiliations

Authors

Contributions

YQ wrote the main manuscript text and prepared figures. YT and YJ helped perform the analysis with constructive discussions. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yu Tian.

Ethics declarations

Conflict of Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and publication of this article.

Ethical Approval

Ethical Approval is not applicable to this article, as no human or animal studies exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Discriminant of the Roots of a Cubic Equation

Appendix A: Discriminant of the Roots of a Cubic Equation

Lemma A.1

[54] For a cubic equation with one unknown

$$\begin{aligned} \text {mx}^3+\text {nx}^2+\text {rx}+l=0,m,n,r,l\in \mathbb {R},m\ne 0,\end{aligned}$$
(A.1)

the discriminant is

$$\begin{aligned} \Delta =N^2-4 \text {MQ}, \end{aligned}$$

where

$$\begin{aligned} M:=n^2-3 \text {mr}, N:=\text {nr}-9 \text {ml}, Q:=r^2-3 \text {nl}, \end{aligned}$$

we have

  1. (1)

    if \( M=N=0 \), the Eq. (A.1) has a triple real root;

  2. (2)

    if \(\Delta >0\), the Eq. (A.1) has one real root and a pair of conjugate imaginary roots;

  3. (3)

    if \(\Delta =0\), the Eq. (A.1) has three real roots, one of which is a dual root;

  4. (4)

    if \(\Delta <0\), the Eq. (A.1) has three distinct real roots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Tian, Y. & Jiang, Y. Existence of Traveling Wave Solutions for the Perturbed Modefied Gardner Equation. Qual. Theory Dyn. Syst. 23, 106 (2024). https://doi.org/10.1007/s12346-024-00960-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-00960-x

Keywords

Mathematics Subject Classification

Navigation