Skip to main content
Log in

Nine Limit Cycles Around a Weak Focus in a Class of Three-Dimensional Cubic Kukles Systems

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we study the bifurcation of limit cycles, centers, and isochronous centers for a class of three-dimensional Kukles systems of degree 3. Through calculating the singular point quantities, we obtain a necessary condition for the origin to be a center, then the Darboux integrability theory is used to prove that the necessary condition is also sufficient. Then, we demonstrate that the origin is an isochronous center under the obtained center condition. Finally, we determine that the highest order of the origin to be a weak focus is ten, while the maximum number of small-amplitude limit cycles bifurcating from this weak focus is nine. Moreover, we show that this maximum number of 9 can be realized. It is worthwhile to say that this number is also a new lower bound on the number of limit cycles bifurcating from the single weak focus for three-dimensional cubic polynomial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bautin, N.N.: On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Transl. Am. Math. Soc. 100, 1–19 (1954)

    Google Scholar 

  2. Buicǎ, A., García, I.A., Maza, S.: Existence of inverse Jacobi multipliers around Hopf points in \({\mathbb{R} }^3\): Emphasis on the center problem. J. Differ. Equ. 252, 6324–6336 (2012)

    Google Scholar 

  3. Buicǎ, A., García, I.A., Maza, S.: Multiple Hopf bifurcation in \({\mathbb{R} }^3\) and inverse Jacobi multipliers. J. Differ. Equ. 256, 310–325 (2014)

    Google Scholar 

  4. Carr, J.: Applications of Centre Manifold Theory. Springer, New York (2012)

    Google Scholar 

  5. Christopher, C.J., Lloyd, N.G.: On the paper of Jin and Wang concerning the conditions for a centre in certain cubic systems. Bull. Lond. Math. Soc. 22, 5–12 (1990)

    Google Scholar 

  6. Chen, L., Wang, M.: The relative position and the number of limit cycles of a quadratic differential systems. Acta Math. Sci. 22, 751–758 (1979)

    MathSciNet  Google Scholar 

  7. Darboux, G.: Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges). Bull. Sci. Math. 2ème séris 2, 60–96; 123–144;151–200(1878)

  8. Dulac, H.: Détermination et intégration d’une certaine classe d’equations différentielles ayant pour point singulier un centre. Bull. Am. Math. Soc. 32, 230–252 (1908)

    Google Scholar 

  9. Du, C., Liu, Y., Huang, W.: A class of three-dimensional quadratic systems with ten limit cycles. Int. J. Bifurc. Chaos Appl. Sci. Eng. 26, 1650149 (2016)

    MathSciNet  Google Scholar 

  10. Du, C., Wang, Q., Huang, W.: Three-dimensional Hopf bifurcation for a class of cubic Kolmogorov model. Int. J. Bifurc. Chaos Appl. Sci. Eng. 24, 1450036 (2014)

    MathSciNet  Google Scholar 

  11. Du, C., Wang, Q., Liu, Y.: Limit cycles bifurcations for a class of \(3\)-dimensional quadratic systems. Acta Appl. Math. 136, 1–18 (2015)

    MathSciNet  Google Scholar 

  12. Gu, J., André, Z., Huang, W.: Bifurcation of limit cycles and isochronous centers on center manifolds for a class of cubic Kolmogorov systems in \({\mathbb{R} }^{3}\). Qual. Theory Dyn. Syst. 22, 42 (2023)

    Google Scholar 

  13. Giné, J., Gouveia, L.F.S., Torregrosa, J.: Lower bounds for the local cyclicity for families of centers. J. Differ. Equ. 275, 309–331 (2021)

    MathSciNet  Google Scholar 

  14. Gouveia, L.F.S., Queiroz, L.: Lower bounds for the cyclicity of centers of quadratic three-dimensional systems. J. Math. Anal. Appl. 530, 127664 (2024)

    MathSciNet  Google Scholar 

  15. Giné, J., Valls, C.: Center problem in the center manifold for quadratic differential systems in \({\mathbb{R} }^{3}\). J. Symb. Comput. 73, 250–267 (2016)

    Google Scholar 

  16. Guo, L., Yu, P., Chen, Y.: Twelve limit cycles in 3D quadratic vector fields with \(Z_{3}\) symmetry. Int. J. Bifurc. Chaos Appl. Sci. Eng. 28, 1850139 (2018)

    Google Scholar 

  17. Guo, L., Yu, P., Chen, Y.: Bifurcation analysis on a class of three-dimensional quadratic systems with twelve limit cycles. Appl. Math. Comput. 363, 124577 (2019)

    MathSciNet  Google Scholar 

  18. Hilbert, D.: Mathematical problems. Bull. Am. Math. Soc. 8, 437–479 (1902)

    MathSciNet  Google Scholar 

  19. Huang, W., Gu, J., Wang, Q.: Limit cycles and isochronous centers of three dimensional differential systems. J. Guangxi Norm. Univ. Nat. Sci. 40, 104–126 (2022)

    Google Scholar 

  20. Huang, W., Wang, Q., Chen, A.: Hopf bifurcation and the centers on center manifold for a class of three-dimensional circuit system. Math. Methods Appl. Sci. 43, 1988–2000 (2020)

    MathSciNet  Google Scholar 

  21. Kukles, I.S.: Necessary and sufficient conditions for the existence of centre. Dokl. Akad. Nauk USSR 42, 160–163 (1944)

    Google Scholar 

  22. Li, J.: Hilbert’s \(16\)th problem and bifurcations of planar polynomial vector fields. Int. J. Bifurc. Chaos Appl. Sci. Eng. 13, 47–106 (2003)

    Google Scholar 

  23. Liu, L., Aybar, O.O., Romanovski, V.G., Zhang, W.: Identifying weak foci and centers in the Maxwell–Bloch system. J. Math. Anal. Appl. 430, 549–571 (2015)

    MathSciNet  Google Scholar 

  24. Liu, L., Gao, B., Xiao, D., Zhang, W.: Identification of focus and center in a 3-dimensional system. Discrete Contin. Dyn. Syst. Ser. B 19, 485–522 (2014)

    MathSciNet  Google Scholar 

  25. Liu, J., Huang, W., Liu, H.: New lower bound of limit cycles for a class of three-dimensional cubic systems. J. Guangxi Norm. Univ. Nat. Sci. 40, 109–115 (2022)

    Google Scholar 

  26. Li, J., Liu, Y.: New results on the study of \(Z_{q}\)-equivariant planar polynomial vector fields. Qual. Theory Dyn. Syst. 9, 167–219 (2010)

    MathSciNet  Google Scholar 

  27. Li, C., Liu, C., Yang, J.: A cubic system with thirteen limit cycles. J. Differ. Equ. 246, 3609–3619 (2009)

    MathSciNet  Google Scholar 

  28. Llibre, J., Makhlouf, A., Badi, S.: 3-dimensional Hopf bifurcation via averaging theory of second order. Discrete Contin. Dyn. Syst. Ser. A 25, 1287–1295 (2009)

    MathSciNet  Google Scholar 

  29. Llibre, J., Buzzi, C.A., da Silva, P.R.: 3-dimensional Hopf bifurcation via averaging theory. Discrete Contin. Dyn. Syst. Ser. A 17, 529–540 (2007)

    MathSciNet  Google Scholar 

  30. Lu, J., Wang, C., Huang, W., Wang, Q.: Local bifurcation and center problem for a more generalized Lorenz system. Qual. Theory Dyn. Syst. 21, 96 (2022)

    MathSciNet  Google Scholar 

  31. Llibre, J., Zhang, X.: Darboux theory of integrability in \({\mathbb{C} }^n\) taking into account the multiplicity. J. Differ. Equ. 246, 541–551 (2009)

    Google Scholar 

  32. Mahdi, A.: Center problem for third-order ODEs. Int. J. Bifurc. Chaos Appl. Sci. Eng. 23, 1350078 (2013)

    MathSciNet  Google Scholar 

  33. Poincaré, H.: Mémoire sur les courbes définies par les équation différentielle. J. Math. Pures. Appl. 7, 375–422 (1881)

    Google Scholar 

  34. Pearson, J., Lloyd, N.G.: Kukles revisited: advances in computing techniques. Comput. Math. Appl. 60, 2797–2805 (2010)

    MathSciNet  Google Scholar 

  35. Prohens, R., Torregrosa, J.: New lower bounds for the Hilbert numbers using reversible centers. Nonlinearity 32, 331–355 (2019)

    MathSciNet  Google Scholar 

  36. Sadovskii, A.P.: Cubic systems of nonlinear oscillations with seven limit cycles. Differ. Equ. 39, 505–516 (2003)

    MathSciNet  Google Scholar 

  37. Sánchez-Sánchez, I., Torregrosa, J.: Hopf bifurcation in 3-dimensional polynomial vector fields. Commun. Nonlinear Sci. Numer. Simul. 105, 106068 (2022)

    MathSciNet  Google Scholar 

  38. Shi, S.: A concrete example of the existence of four limit cycles for plane quadratic systems. Sci. Sin. 23, 153–158 (1980)

    MathSciNet  Google Scholar 

  39. Sadovskii, A.P.: Solution of the center and focus problem for a cubic system of nonlinear oscillations (in Russian). Differ. Uravn. 33, 236–244 (1997)

    MathSciNet  Google Scholar 

  40. Tian, Y., Yu, P.: Seven limit cycles around a focus point in a simple three-dimensional quadratic vector field. Int. J. Bifurc. Chaos Appl. Sci. Eng. 24, 1450083 (2014)

    MathSciNet  Google Scholar 

  41. Wu, Y., Chen, G., Yang, X.: Kukles system with two fine foci. Ann. Differ. Equ. 15, 422–437 (1999)

    MathSciNet  Google Scholar 

  42. Wang, Q., Huang, W.: The equivalence between singular point quantities and Liapunov constants on center manifold. Adv. Differ. Equ. 1, 1–12 (2012)

    MathSciNet  Google Scholar 

  43. Wang, Q., Huang, W., Li, B.: Limit cycles and singular point quantities for a 3D Lotka–Volterra system. Appl. Math. Comput. 217, 8856–8859 (2011)

    MathSciNet  Google Scholar 

  44. Wang, Q., Liu, Y., Chen, H.: Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems. Bull. Sci. Math. 134, 786–798 (2010)

    MathSciNet  Google Scholar 

  45. Wang, Q., Li, J., Huang, W.: Existence of multiple limit cycles in Chen system. J. Appl. Anal. Comput. 2, 441–447 (2012)

    MathSciNet  Google Scholar 

  46. Yu, P., Corless, R.: Symbolic computation of limit cycles associated with Hilbert’s 16th problem. Commun. Nonlinear Sci. Numer. Simul. 14, 4041–4056 (2009)

    MathSciNet  Google Scholar 

  47. Yu, P., Han, M.: Four limit cycles from perturbing quadratic integrable systems by quadratic polynomials. Int. J. Bifurc. Chaos Appl. Sci. Eng. 22, 1250254 (2012)

    MathSciNet  Google Scholar 

  48. Yu, P., Han, M.: Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation. Appl. Math. Lett. 44, 17–20 (2015)

    MathSciNet  Google Scholar 

  49. Yu, P., Tian, Y.: Twelve limit cycles around a singular point in a planar cubic-degree polynomial system. Commun. Nonlinear Sci. Numer. Simul. 19, 2690–2705 (2014)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their useful suggestions and valuable comments that help us to improve the presentation and the proofs of our results. This work is supported by the National Natural Science Foundation of China (Grant Nos. 12061016 and 12161023) and the China Scholarship Council (No. 202206240081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongping He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The polynomials of \(F_{2}(a_{3},b_{1},b_{3}), F_{3}(a_{3},b_{1},b_{3})\) and \(F_{4}(a_{3},b_{1},b_{3})\) in Theorem 3.2 are listed as follows,

$$\begin{aligned} F_{2}&=2022624740155688160107545989458895234375\\&\quad - 15316494704666857881858571415177679360000 b_{3}\\&\quad -(1553587757954031426141787091743423500000\\&\quad +7973294911946495115625284221517803136000b_{3}) a_{3} b_{3}^2\\&\quad -(9398979367830229402956769289254212300000\\&\quad + 21555997615539736407761025938041511884800b_{3}) a_{3} b_{1}^2\\&\quad +(6030163175958628391414483824019530973184 b_{1}^2\\&\quad -10261699541799483351418377575423121162240 b_{3}^2)a_{3}^2 b_{1}^2 b_{3}\\&\quad -3119765195147056350252989345072825958400 a_{3}^2 b_{3}^5,\\ F_{3}&=22416364654207270260327968396149281392811506528841600000000\\&\quad -317388102786837396350977747854653432597539597346806640625 a_{3}\\&\quad + 59925263360098270575469339726191561871682457500578867200000 a_{3} b_{1}^2\\&\quad -79931005933744432807585163543607867389908077524255637504000 a_{3}^2 b_{1}^4\\&\quad + 21014398278258981086521882855969102370094013852221670686720a_{3}^3 b_{1}^6\\&\quad -1386282411015437374549093885967618062534874600054850000000 a_{3} b_{3}\\&\quad + 8832599449419067682109266021918548216342727568525696000000 a_{3}^2b_{1}^2 b_{3}\\&\quad + 26370447653794797873748979854317806887509182027101140480000 a_{3} b_{3}^2 \\&\quad + 34097395067305410895435685620447308305257090870339987046400 a_{3}^2 b_{1}^2 b_{3}^2 \\&\quad -24137123115809812270432392465893006907271983815929953779712 a_{3}^3 b_{1}^4 b_{3}^2 \\&\quad - 256837295755460978805705283966170887820007262225280000000 a_{3}^2 b_{3}^3 \\&\quad + 6375293556050179862244785126499385493679839317176680448000 a_{3}^2 b_{3}^4 \\&\quad + 2401092400967568840669154630395102998271130541014458040320 a_{3}^3 b_{1}^2 b_{3}^4 \\&\quad - 393733998260847008673126477143792552357488768234343628800 a_{3}^3 b_{3}^6 , \\ F_{4}&=318700913579856271473070593609518530549076238682995290043187500000 \\&\quad +2999224387405884414350430410257685086273329454118482233028042500000 a_{3} b_{1}^2 \\&\quad -1385687742866903771054067262536931375303198759016114627051942400000a_{3}^2 b_{1}^4 \\&\quad + 1685983390055613100435524193708257012002922649712385245232888000000 b_{3} \\&\quad -50238444106189459172772912121666401527891362079494411602392578125 a_{3} b_{3} \\&\quad + 2559083498031404753602581717983008956145429188952805150557724160000 a_{3} b_{1}^2 b_{3} \\&\quad -4725060815843362135194556778274828754273051166953311180819077529600 a_{3}^2 b_{1}^4 b_{3} \\&\quad + 1042861809627396334218224353234053576003653939137913600973830356992 a_{3}^3 b_{1}^6 b_{3} \\&\quad + 692789413860564064017095958590465709815296654211674693243687500000 a_{3} b_{3}^2 \\&\quad + 605297132682549487157381165951281814640926697229232429536800000000 a_{3}^2 b_{1}^2 b_{3}^2 \\&\quad + 981033744707993101078330229099399322898557725481883260067104000000 a_{3} b_{3}^3 \\&\quad + 699067911658642310312531640081450476201007020636555183170191360000 a_{3}^2 b_{1}^2 b_{3}^3 \\&\quad -1360286213453169614795715487409537580376227805738638859362631680000 a_{3}^3 b_{1}^4 b_{3}^3 \\&\quad + 103754510099843208359502245493791158858905340333609783337760000000 a_{3}^2 b_{3}^4 \\&\quad + 285759539856945402698757366603602115172153240801723643184906240000 a_{3}^2 b_{3}^5 \\&\quad - 91071010835538305720889179718535521951694612303427787253245542400 a_{3}^3 b_{1}^2 b_{3}^5 \\&\quad + 73845021353075868396239141571048949484194274145922979791372288000 a_{3}^3 b_{3}^7. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, Y., He, D. & Huang, W. Nine Limit Cycles Around a Weak Focus in a Class of Three-Dimensional Cubic Kukles Systems. Qual. Theory Dyn. Syst. 23, 101 (2024). https://doi.org/10.1007/s12346-024-00959-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-00959-4

Keywords

Mathematics Subject Classification

Navigation