Skip to main content
Log in

The Application of Liénard Transformations to Predator–Prey Systems

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper discusses the different ways a planar autonomous predator–prey system can be transformed to a Liénard system. The procedure is applied to several families like Gause and Leslie–Gower systems with functional response functions of different types ranging from simple prey-dependent functions to a Beddington–DeAngelis function, Hassell–Varley function, Crowley–Martin function, all of which depend in a nonlinear way on the predator or prey density.To illustrate the methodology we prove for three specific predator–prey systems -two Gause systems and one Leslie–Gower system—that at most one limit cycle exists using Liénard theorems. In two cases adjustments of the classical Zhang Zhifen theorem are applied, while the third case is solved by using a more powerful theorem, which is a generalization of Coppel’s theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Albarakati, W.A., et al.: Transformation to Liénard form. Elec. J. Differ. Equ. 2000(76), 1–11 (2000)

    Google Scholar 

  2. Arnol’d, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations, 1973, 351 pages

  3. Artés, A.C., et al.: Geometric configurations of singularities of planar plynomial differential systems, Birkhäuser, 2021, 111–123

  4. Beddington, J.R.: Mutual interference between parasites of predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–341 (1975)

    Article  Google Scholar 

  5. Cheng, K.: Uniqueness of a limit cycle for a predator-prey system. SIAM J. Math. Ana. 12, 541–548 (2012)

    Article  MathSciNet  Google Scholar 

  6. Cherkas, L.A.: Conditions for the center for certain equations of the form yy’=P(x)+Q(x)y+R(x)y2 (in Russian), Differential Equations, Vol. 8, 1972, 1435–1439, (English translation) 1104–1107

  7. Cherkas, L.A.: Conditions for a center for a certain Liénard equation (in Russian), Differential Equations, Vol. 12(2), 1976, 292–298, (English translation) 201–206

  8. Coppel, W.A.: Some quadratic systems with at most one limit cycle. Dyn. Rep. 2, 61–68 (1988)

    MathSciNet  Google Scholar 

  9. Christopher, C.J.: An algebraic approach to the classification of centres in polynomial Liénard systems. J. Math. Anal. Appl. 229, 319–329 (1999)

    Article  MathSciNet  Google Scholar 

  10. Christopher, C.J., Schlomiuk, D.: On general algebraic mechanisms for producing centers in polynomial differential systems. J. Fixed Point Theory Appl. 3(2), 331–351 (2008)

    Article  MathSciNet  Google Scholar 

  11. DeAngelis, D.L., Goldstein, R.A., Neill, R.V.: A model for trophic interaction. Ecology 56, 881–892 (1975)

    Article  Google Scholar 

  12. Dumortier, F., Rousseau, C.: Cubic Lienard equations with linear damping. Nonlinearity 3, 1015–1039 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  13. Fan, K., et al.: Qualitative and bifurcation analysis in a Leslie-Gower model with Allee efect. Qual. Theory Dyn. Syst. 21(86), 1–19 (2022)

    ADS  Google Scholar 

  14. Gasull, A.: Differential Equations that can be transformed into equations of Liénard type, Actas del XVLL colloquio Brasileiro de matematica, 1989

  15. Giné, J., Llibre, J.: Weierstrass integrability in Liénard differential systems. J. Math. Anal. Appl. 377, 362–369 (2011)

    Article  MathSciNet  Google Scholar 

  16. Giné, J.: Center conditions for polynomial Liénard systems. Qual. Theory Dyn. Syst. 16(1), 119–126 (2017)

    Article  MathSciNet  Google Scholar 

  17. Hsu, S.B., Hubbell, S.P., Waltman, P.: Competing predators. SIAM J. Appl. Math. 35, 617–625 (1978)

    Article  MathSciNet  Google Scholar 

  18. Jost, C.: Comparing predator-prey models qualitatively and quantitatively with ecological time-series data, PhD thesis Institut national agronomique Paris-Grignon, 1998, 1–202

  19. Jost, C., Ellner, S.: Testing for predator dependence in predator-prey dynamics: a non-parametric approach. Proc. R. Soc. B 267, 1611–1620 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kooij, R.E.: Limit cycles in polynomial systems, Thesis (Dr.)Technische Universiteit Delft (The Netherlands), 1993, 159 pp

  21. Kooij, R.E., Zegeling, A.: A predator-prey model with Ivlev’s functional response. J. Math. Anal. Appl. 198, 473–489 (1996)

    Article  MathSciNet  Google Scholar 

  22. Leslie, P.H.: Some further notes on the use of matrices in population mathematics. Biometrika 35(3–4), 213–245 (1948)

    Article  MathSciNet  Google Scholar 

  23. Leslie, P.H.: A stochastic model for studying the properties of certain biological systems by numerical methods. Biometrika 45(1–2), 16–31 (1958)

    Article  MathSciNet  Google Scholar 

  24. Liu, J.: Transformations and their applications in planar quadratic systems. J. Wuhan Iron Steel Inst. 4, 10–15 (1979)

    Google Scholar 

  25. Moreira, H.N.: On Liénard’s equation and the uniqueness of limit cycles in predator-prey systems. J. Math. Biol. 28(3), 341–354 (1990)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  26. Saha, T., Pal, P.J., Banerjee, M.: Oscillation and canard explosion in a slow-fast predator-prey model with Beddington-DeAngelis functional response. SIAM J. Math. Anal. 27, 1106–1124 (2021)

    Google Scholar 

  27. Wang, X., Li, S.: Dynamics in a slow-fast Leslie-Gower predator-prey model with Beddington-DeAngelis functional response, 2022, 1–26. https://doi.org/10.21203/rs.3.rs-1759998/v1

  28. Ye, Y., et al.: Theory of Limit Cycles, 1984, 435 pages

  29. Zegeling, A., Kooij, R.E.: Uniqueness of limit cycles in polynomial systems with algebraic invariants. Bull. Aust. Math. Soc. 49, 7–20 (1994)

    Article  MathSciNet  Google Scholar 

  30. Zeng, X., Zhang, Z., Gao, S.: On the uniqueness of the limit cycle of the generalized Liénard equation. Bull. Lond. Math. Soc. 26, 213–247 (1994)

    Article  Google Scholar 

  31. Zhang, P.: On the distribution and number of limit cycles for quadratic systems with two foci. Qual. Theory Dyn. Syst. 3(47), 437–463 (2002)

    MathSciNet  Google Scholar 

  32. Zhang, Z., et al.: Qualitative theory of differential equations, American Math. Soc., 1992, 461 pages

  33. Zhang, Z.: Dokl. Akad. Nauk SSSR 119, 659–662 (1958)

  34. Zhang, Z.: Proof of the uniqueness theorem of limit cycles of generalized Liénard equations. Appl. Anal. 23, 63–76 (1986)

    Article  MathSciNet  Google Scholar 

  35. Zhou, Y., Wang, C., Blackmore, D.: The uniqueness of limit cycles for Liénard system. J. Math. Anal. Appl. 304(2), 473–489 (2005)

    Article  MathSciNet  Google Scholar 

  36. Zimmerman, B., et al.: Predator-dependent functional response in wolves: from food limitation to surplus killing. J. Anim. Ecol. 84, 102–112 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Natural Science Foundation of China (12061016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Zegeling.

Ethics declarations

Conflict of interest

There are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zegeling, A. & Huang, W. The Application of Liénard Transformations to Predator–Prey Systems. Qual. Theory Dyn. Syst. 23, 91 (2024). https://doi.org/10.1007/s12346-023-00947-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00947-0

Keywords

Navigation