Skip to main content
Log in

On the Averaging Principle of Caputo Type Neutral Fractional Stochastic Differential Equations

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this manuscript, we study the averaging principle for a class of neutral fractional stochastic differential equations. Firstly, the existence and uniqueness of solution are discussed by applying the principle of contraction mapping. Secondly, the averaging principle in the sense of \(L^{p}\) is studied by using the Jensen’s inequality, Hölder inequality, Burkholder–Davis–Gundy inequality, Grönwall–Bellman inequality and interval translation technique. In addition, we give an example and numerical simulations to analyze the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmed, H.M., El-Borai, M.M.: Hilfer fractional stochastic integro-differential equations. Appl. Math. Comput. 331, 182–189 (2018)

    MathSciNet  Google Scholar 

  2. Ahmed, H.M., Zhu, Q.X.: The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps. Appl. Math. Lett. 112, 106755 (2021)

    MathSciNet  Google Scholar 

  3. Abouagwa, M., Aljoufi, L.S., Bantan, R.A.R., Khalaf, A.D., Elgarhy, M.: Mixed neutral Caputo fractional stochastic evolution equations with infinite delay: existence, uniqueness and averaging principle. Fractal Fract. 6(2), 105 (2022)

    Google Scholar 

  4. Aslam, M., Murtaza, R., Abdeljawad, T., Rahman, G., Khan, A., Khan, H., Gulzar, H.: A fractional order HIV/AIDS epidemic model with Mittag–Leffler kernel. Adv. Differ. Equ. 2021, 1–15 (2021)

    MathSciNet  Google Scholar 

  5. Bogolyubov, N., Krylov, N.: New Methods in Linear Mechanics. GTTs, Kiev (1934)

    Google Scholar 

  6. Boufoussi, B., Hajji, S.: Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space. Stat. Probab. Lett. 82, 1549–1558 (2012)

    MathSciNet  Google Scholar 

  7. Baleanu, D., Jafari, H., Khan, H., Johnston, S.J.: Results for mild solution of fractional coupled hybrid boundary value problems. Open Math. 13(1), 601–608 (2015)

    MathSciNet  Google Scholar 

  8. Baleanu, D., Khan, H., Jafari, H., Khan, R.A.: On the exact solution of wave equations on cantor sets. Entropy 17(9), 6229–6237 (2015)

    ADS  MathSciNet  Google Scholar 

  9. Begum, R., Tunc, O., Khan, H., Gulzar, H., Khan, A.: A fractional order Zika virus model with Mittag–Leffler kernel. Chaos Solitons Fractals 146, 110898 (2021)

    MathSciNet  Google Scholar 

  10. Cerrai, S.: Averaging principle for systems of reaction–diffusion equations with polynomial nonlinearities perturbed by multiplicative noise. SIAM J. Math. Anal. 43(6), 2482–2518 (2011)

    MathSciNet  Google Scholar 

  11. Caraballo, T., Diop, M.A.: Neutral stochastic delay partial functional integro-differential equations driven by a fractional Brownian motion. Front. Math. China 8(4), 745–760 (2013)

    MathSciNet  Google Scholar 

  12. Cerrai, S., Freidlin, M.: Averaging principle for a class of stochastic reaction diffusion equations. Probab. Theory Relat. Fields 144, 137–177 (2009)

    MathSciNet  Google Scholar 

  13. Cerrai, S.: A Khasminskii type averaging principle for stochastic reaction diffusion equations. Ann. Appl. Probab. 19, 899–948 (2009)

    MathSciNet  Google Scholar 

  14. Dung, N.T.: Fractional stochastic differential equations with applications to finance. J. Math. Anal. Appl. 397(1), 334–348 (2013)

    MathSciNet  Google Scholar 

  15. Dhayal, R., Malik, M., Abbas, S., Debbouche, A.: Optimal controls for second-order stochastic differential equations driven by mixed-fractional Brownian motion with impulses. Math. Methods Appl. Sci. 43, 4107–4124 (2020)

    MathSciNet  Google Scholar 

  16. Duan, P.J., Ren, Y.: Solvability and stability for neutral stochastic integro-differential equations driven by fractional Brownian motion with impulses. Mediterr. J. Math. 15, 207 (2018)

    MathSciNet  Google Scholar 

  17. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Shukla, A., Nisar, K.S.: New discussion regarding approximate controllability for Sobolev-type fractional stochastic hemivariational inequalities of order \(r\in (1,2)\). Commun. Nonlinear Sci. Numer. Simul. 116, 106891 (2023)

    Google Scholar 

  18. Dineshkumar, C., Nisar, K.S., Udhayakumar, R., Vijayakumar, V.: New discussion about the approximate controllability of fractional stochastic differential inclusions with order \(1<r<2\). Asian J. Control 24(5), 2519–2533 (2022)

    MathSciNet  Google Scholar 

  19. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S., Shukla, A.: A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order \(1<r<2\). Math. Comput. Simul. 190, 1003–1026 (2021)

    MathSciNet  Google Scholar 

  20. Dineshkumar, C., Nisar, K.S., Udhayakumar, R., Vijayakumar, V.: A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions. Asian J. Control 24(5), 2378–2394 (2022)

    MathSciNet  Google Scholar 

  21. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S., Shukla, A., Abdel-Aty, A.H., Mahmoud, M., Mahmoud, E.E.: A note on existence and approximate controllability outcomes of Atangana–Baleanu neutral fractional stochastic hemivariational inequality. Results Phys. 38, 105647 (2022)

    Google Scholar 

  22. Gao, P.: Averaging principles for stochastic 2D Navier–Stokes equations. J. Stat. Phys. 186(2), 28 (2022)

    ADS  MathSciNet  Google Scholar 

  23. Gao, P.: Averaging principle for complex Ginzburg–Landau equation perturbated by mixing random forces. SIAM J. Math. Anal. 53(1), 32–61 (2021)

    MathSciNet  Google Scholar 

  24. Gao, P.: Averaging principle for stochastic Korteweg-de Vries equation. J. Differ. Equ. 267, 6872–6909 (2019)

    ADS  MathSciNet  Google Scholar 

  25. Guo, Z.K., Xu, Y., Wang, W.F., Hu, J.H.: Averaging principle for stochastic differential equations with monotone condition. Appl. Math. Lett. 125, 107705 (2022)

    MathSciNet  Google Scholar 

  26. Huang, J.Z., Luo, D.F.: Existence and controllability for conformable fractional stochastic differential equations with infinite delay via measures of noncompactness. Chaos 33(1), 013120 (2023)

    ADS  MathSciNet  PubMed  Google Scholar 

  27. Johnson, M., Vijayakumar, V., Nisar, K.S., Shukla, A., Botmart, T., Ganesh, V.: Results on the approximate controllability of Atangana–Baleanu fractional stochastic delay integro differential systems. Alex. Eng. J. 62, 211–222 (2023)

    Google Scholar 

  28. Khasminskii, R.Z.: On the principle of averaging the Itô stochastic differential equations. Kibernetika 4, 260–279 (1968)

    Google Scholar 

  29. Kavitha Williams, W., Vijayakumar, V., Udhayakumar, R., Panda, S.K., Nisar, K.S.: Existence and controllability of nonlocal mixed Volterra-Fredholm type fractional delay integro-differential equations of order \(1<r<2\). Numer. Methods Partial Differ. EqU. 1–21 (2020)

  30. Khan, A., Shah, K., Abdeljawad, T., Alqudah, M.A.: Existence of results and computational analysis of a fractional order two strain epidemic model. Results Phys. 39, 105649 (2022)

    Google Scholar 

  31. Khan, H., Alzabut, J., Shah, A., He, Z., Etemad, S., Rezapour, S., Zada, A.: On fractal-fractional waterborne disease model: a study on theoretical and numerical aspects of solutions via simulations. Fractals 31(4), 2340055 (2023)

    ADS  Google Scholar 

  32. Khan, H., Alzabut, J., Baleanu, D., Alobaidi, G., Rehman, M.: Existence of solutions and a numerical scheme for a generalized hybrid class of n-coupled modified ABC-fractional differential equations with an application. AIMS Math. 8(3), 6609–6625 (2023)

    MathSciNet  Google Scholar 

  33. Luo, D.F., Zhu, Q.X., Luo, Z.G.: A novel result on averaging principle of stochastic Hilfer-type fractional system involving non-Lipschitz coefficients. Appl. Math. Lett. 122, 107549 (2021)

    MathSciNet  Google Scholar 

  34. Luo, D.F., Zhu, Q.X., Luo, Z.G.: An averaging principle for stochastic fractional differential equations with time-delays. Appl. Math. Lett. 105, 106290 (2020)

    MathSciNet  Google Scholar 

  35. Luo, D.F., Tian, M.Q., Zhu, Q.X.: Some results on finite-time stability of stochastic fractional-order delay differential equations. Chaos Solitons Fractals 158, 111996 (2022)

    MathSciNet  Google Scholar 

  36. Li, M.M., Wang, J.R.: Exploring delayed Mittag–Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. 324, 254–265 (2018)

    MathSciNet  Google Scholar 

  37. Liu, J.K., Xu, W.: An averaging result for impulsive fractional neutral stochastic differential equations. Appl. Math. Lett. 114, 106892 (2021)

    ADS  MathSciNet  Google Scholar 

  38. Li, Z., Yan, L.T.: Stochastic averaging for two-time-scale stochastic partial differential equations with fractional Brownian motion. Nonlinear Anal. Hybrid Syst. 31, 317–333 (2019)

    MathSciNet  Google Scholar 

  39. Ma, Y.K., Vijayakumar, V., Shukla, A., Nisar, K.S., Thilagavathi, K., Nashine, H.K., Singh, A.K., Zakarya, M.: Discussion on the existence of mild solution for fractional derivative by Mittag–Leffler kernel to fractional stochastic neutral differential inclusions. Alex. Eng. J. 63, 271–282 (2023)

    Google Scholar 

  40. Shah, H., Elissa, N., Hasib, K., Haseena, G., Sina, E., Shahram, R., Mohammed, K.A.K.: On the stochastic modeling of COVID-19 under the environmental white noise. J. Funct. Spaces 2022, 1–9 (2022)

    MathSciNet  CAS  Google Scholar 

  41. Shah, K., Sher, M., Ali, A., Abdeljawad, T.: On degree theory for non-monotone type fractional order delay differential equations. AIMS Math. 7(5), 9479–9492 (2022)

    MathSciNet  Google Scholar 

  42. Shah, K., Abdalla, B., Abdeljawad, T., Gul, R.: Analysis of multipoint impulsive problem of fractional-order differential equations. Bound. Value Probl. 2023(1), 1–17 (2023)

    MathSciNet  CAS  Google Scholar 

  43. Sathiyaraj, T., Fec̆kan, M., Wang, J.R.: Null controllability results for stochastic delay systems with delayed perturbation of matrices. Chaos Solitons Fractals 138, 109927 (2020)

  44. Shen, G.J., Wu, J.L., Xiao, R.D., Yin, X.W.: An averaging principle for neutral stochastic fractional order differential equations with variable delays driven by Lévy noise. Stoch. Dyn. 22(4), 2250009 (2022)

    Google Scholar 

  45. Sivasankar, S., Udhayakumar, R., Muthukumaran, V.: A new conversation on the existence of Hilfer fractional stochastic Volterra–Fredholm integro-differential inclusions via almost sectorial operators. Nonlinear Anal. Model. Control 28(2), 288–307 (2023)

    MathSciNet  Google Scholar 

  46. Sivasankar, S., Udhayakumar, R., Kishor, M.H., Alhazmi, S.E., Al-Omari, S.: A new result concerning nonlocal controllability of Hilfer fractional stochastic differential equations via almost sectorial operators. Mathematics 11, 159 (2023)

    Google Scholar 

  47. Sivasankar, S., Udhayakumar, R.: Discussion on existence of mild solutions for Hilfer fractional neutral stochastic evolution equations via almost sectorial operators with delay. Qual. Theory Dyn. Syst. 22, 67 (2023)

    MathSciNet  Google Scholar 

  48. Sivasankar, S., Udhayakumar, R., Muthukumaran, V., Madhrubootham, S., AlNemer, G., Elshenhab, A.M.: Existence of Sobolev-type Hilfer fractional neutral stochastic evolution hemivariational inequalities and optimal controls. Fractal Fract. 7, 303 (2023)

    Google Scholar 

  49. Sivasankar, S., Udhayakumar, R., Subramanian, V., AlNemer, G., Elshenhab, A.M.: Optimal control problems for Hilfer fractional neutral stochastic evolution hemivariational inequalities. Symmetry 15, 18 (2023)

    ADS  Google Scholar 

  50. Shah, A., Khan, R.A., Khan, A., Khan, H., Gómez-Aguilar, J.F.: Investigation of a system of nonlinear fractional order hybrid differential equations under usual boundary conditions for existence of solution. Math. Methods Appl. Sci. 44(2), 1628–1638 (2021)

    ADS  MathSciNet  Google Scholar 

  51. Tamilalagan, P., Balasubramaniam, P.: Moment stability via resolvent operators of fractional stochastic differential inclusions driven by fractional Brownian motion. Appl. Math. Comput. 305, 299–307 (2017)

    MathSciNet  Google Scholar 

  52. Tajadodi, H., Khan, A., Gómez-Aguilar, J.F., Khan, H.: Optimal control problems with Atangana–Baleanu fractional derivative. Optim. Control Appl. Methods 42(1), 96–109 (2021)

    MathSciNet  Google Scholar 

  53. Vijayakumar, V., Ravichandran, C., Murugesu, R., Trujillo, J.J.: Controllability results for a class of fractional semilinear integro-differential inclusions via resolvent operators. Appl. Math. Comput. 247, 152–161 (2014)

    MathSciNet  Google Scholar 

  54. Vijayakumar, V., Udhayakumar, R., Panda, S.K., Nisar, K.S.: Results on approximate controllability of Sobolev type fractional stochastic evolution hemivariational inequalities. Numer. Methods Partial Differ. Equ. 1–20 (2020)

  55. Vijayakumar, V., Udhayakumar, R.: A new exploration on existence of Sobolev-type Hilfer fractional neutral integro-differential equations with infinite delay. Numer. Methods Partial Differ. Equ. 37(1), 750–766 (2021)

    MathSciNet  Google Scholar 

  56. Wang, J.R., Luo, Z.J., Fec̆kan, M.: Relative controllability of semilinear delay differential systems with linear parts defined by permutable matrices. Eur. J. Control 38, 39–46 (2017)

  57. Wang, X., Luo, D.F., Zhu, Q.X.: Ulam–Hyers stability of caputo type fuzzy fractional differential equations with time-delays. Chaos Solitons Fractals 156, 111822 (2022)

    MathSciNet  Google Scholar 

  58. Xu, L.P., Li, Z.: Stochastic fractional evolution equations with fractional Brownian motion and infinite delay. Appl. Math. Comput. 336, 36–46 (2018)

    MathSciNet  Google Scholar 

  59. Xu, Y., Duan, J.Q., Xu, W.: An averaging principle for stochastic dynamical systems with Lévy noise. Phys. D 240, 1395–1401 (2011)

    MathSciNet  Google Scholar 

  60. Xu, Y., Yue, H.G., Wu, J.L.: On \(L^{p}\)-strong convergence of an averaging principle for non-Lipschitz slow-fast systems with Lévy noise. Appl. Math. Lett. 115, 106973 (2021)

    Google Scholar 

  61. Xu, W.J., Duan, J.Q., Xu, W.: An averaging principle for fractional stochastic differential equations with Lévy noise. Chaos 30, 083126 (2020)

    ADS  MathSciNet  PubMed  Google Scholar 

  62. Xu, W.J., Xu, W., Lu, K.: An averaging principle for stochastic differential equations of fractional order \(0 < \alpha < 1\). Fract. Calc. Appl. Anal. 23(3), 908–919 (2020)

    MathSciNet  Google Scholar 

  63. Xu, W.J., Xu, W., Zhang, S.: The averaging principle for stochastic differential equations with Caputo fractional derivative. Appl. Math. Lett. 93, 79–84 (2019)

    MathSciNet  Google Scholar 

  64. Xiao, G.L., Fec̆kan, M., Wang, J.R.: On the averaging principle for stochastic differential equations involving Caputo fractional derivative. Chaos 32, 101105 (2022)

  65. You, Z.L., Fec̆kan, M., Wang, J.R.: Relative controllability of fractional delay differential equations via delayed perturbation of Mittag–Leffler functions. J. Comput. Appl. Math. 378, 112939 (2020)

  66. Yang, D., Wang, J.R.: Non-instantaneous impulsive fractional-order implicit differential equations with random effects. Stoch. Anal. Appl. 35(4), 719–741 (2017)

    MathSciNet  Google Scholar 

  67. Yan, Z.M., Lu, F.X.: Existence results for a new class of fractional impulsive partial neutral stochastic integro-differential equations with infinite delay. J. Appl. Anal. Comput. 5(3), 329–346 (2015)

    MathSciNet  Google Scholar 

  68. Zeng, Y., Zhu, W.Q.: Stochastic averaging of quasi-linear systems driven by Poisson white noise. Probab. Eng. Mech. 25(1), 99–107 (2010)

    ADS  Google Scholar 

  69. Zeng, Y., Zhu, W.Q.: Stochastic averaging of n-dimensional non-linear dynamical systems subject to non-Gaussian wide-band random excitations. Int. J. Non-Linear Mech. 45(5), 572–586 (2010)

    ADS  Google Scholar 

  70. Zou, J., Luo, D.F., Li, M.M.: The existence and averaging principle for stochastic fractional differential equations with impulses. Math. Methods Appl. Sci. 1–18 (2022)

  71. Zhou, Y., Vijayakumar, V., Ravichandran, C., Murugesu, R.: Controllability results for fractional order neutral functional differential inclusions with infinite delay. Fixed Point Theory 18(2), 773–798 (2017)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the editors and reviewers for their valuable time reviewing this manuscript and for their insightful comments.

Funding

This work has been supported by the Natural Science Special Research Fund Project of Guizhou University (202002).

Author information

Authors and Affiliations

Authors

Contributions

JZ: writing, review and editing, software, formal analysis. DL: review, supervision, funding acquisition.

Corresponding author

Correspondence to Danfeng Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing personal relationships or financial interests that might affect the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Luo, D. On the Averaging Principle of Caputo Type Neutral Fractional Stochastic Differential Equations. Qual. Theory Dyn. Syst. 23, 82 (2024). https://doi.org/10.1007/s12346-023-00916-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00916-7

Keywords

Mathematics Subject Classification

Navigation