Skip to main content
Log in

Speed Selection of Traveling Waves of a Reaction–Diffusion–Advection Equation with High-Order Terms

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we investigate the speed selection mechanism of traveling wave solutions for a reaction–diffusion–advection equation with high-order terms in a cylindrical domain. The study focuses the problem under two cases for Neumann boundary condition and Dirichlet boundary condition. By using the upper and lower solutions method, general conditions for both linear and nonlinear selections are obtained. When the equation is expanded to higher dimensions, literature examining this particular topic is scarce. In light of this, new results have been obtained for both linear and nonlinear speed selections of the equation with high-order terms. For different power exponents m and n, specific sufficient conditions for linear and nonlinear selections with the minimal wave speed are derived by selecting suitable upper and lower solutions. The impact of the power exponents m and n on speed selection is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Bradshaw-Hajek, B.H., Broadbridge, P.: A robust cubic reaction–diffusion system for gene propagation. Math. Comput. Model. 39, 1151–1163 (2004)

    Article  MathSciNet  Google Scholar 

  2. Gutiérrez, P., Escaff, D., Descalzi, O.: Transition from pulses to fronts in the cubic–quintic complex Ginzburg–Landau equation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 3227–3238 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications, vol. 3. Springer, New York (2001)

    Google Scholar 

  4. Descalzi, O., Cisternas, J., Brand, H.R.: Collisions of pulses can lead to holes via front interaction in the cubic–quintic complex Ginzburg–Landau equation in an annular geometry. Phys. Rev. E 74(6), 065201 (2006)

    Article  ADS  Google Scholar 

  5. Gutiérrez, P., Descalzi, O.: Existence range of pulses in the quintic complex Ginzburg–Landau equation. In: AIP Conference Proceedings, vol. 913, pp. 127–132. American Institute of Physics (2007)

  6. Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. A J. Issued Courant Inst. Math. Sci. 55(8), 949–1032 (2002)

    Article  MathSciNet  Google Scholar 

  7. Li, S., Akbar, S., Sohail, M., Nazir, U., Singh, A., Alanazi, M., Hassan, A.M.: Influence of buoyancy and viscous dissipation effects on 3d magneto hydrodynamic viscous hybrid nano fluid (MgO-TiO\(_{2}\)) under slip conditions. Case Stud. Therm. Eng. 49, 103281 (2023)

    Article  Google Scholar 

  8. Akbar, S., Sohail, M.: Three dimensional MHD viscous flow under the influence of thermal radiation and viscous dissipation. Int. J. Emerg. Multidiscip. Math. 1(3), 106–117 (2022)

    Google Scholar 

  9. Nazir, U., Sohail, M., Mukdasai, K., Singh, A., Alahmadi, R.A., Galal, A.M., Eldin, S.M.: Applications of variable thermal properties in Carreau material with ion slip and Hall forces towards cone using a non-Fourier approach via FE-method and mesh-free study. Front. Mater. 9, 1054138 (2022)

    Article  ADS  Google Scholar 

  10. Bradshaw, B., Broadbridge, P., Fulford, G.R., Aldis, G.K.: Huxley and fisher equations for gene propagation: an exact solution. ANZIAM J. 44, 11–20 (2002)

    Article  MathSciNet  Google Scholar 

  11. Bazykin, A.D.: Hypothetical mechanism of speciation. Evolution 23, 685–687 (1969)

    CAS  PubMed  Google Scholar 

  12. Khater, M.M.: Novel computational simulation of the propagation of pulses in optical fibers regarding the dispersion effect. Int. J. Mod. Phys. B 37(09), 2350083 (2023)

    Article  ADS  Google Scholar 

  13. Khater, M.M.A.: A hybrid analytical and numerical analysis of ultra-short pulse phase shifts. Chaos Solitons Fractals 169, 113232 (2023)

    Article  MathSciNet  Google Scholar 

  14. Huang, Z., Ou, C.: Speed selection for traveling waves of a reaction–diffusion–advection equation in a cylinder. Phys. D 402, 132225 (2020)

    Article  MathSciNet  Google Scholar 

  15. Li, W., Liu, N., Wang, Z.-C.: Entire solutions in reaction–advection–diffusion equations in cylinders. J. Math. Pures Appl. 90, 492–504 (2008)

    Article  MathSciNet  Google Scholar 

  16. Berestycki, H., Nirenberg, L.: Travelling fronts in cylinders. Ann. Inst. Henri Poincare Anal. Non Lineaire 9, 497–572 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  17. Meng, H.: The existence and non-existence of traveling waves of scalar reaction–diffusion–advection equation in unbounded cylinder. Comput. Math. Math. Phys. 53, 1644–1652 (2013)

    Article  MathSciNet  Google Scholar 

  18. Berestycki, H., Larrouturou, B., Roquejoffre, J.-M.: Stability of travelling fronts in a model for flame propagation part I: linear analysis. Arch. Ration. Mech. Anal. 117, 97–117 (1992)

    Article  Google Scholar 

  19. Roquejoffre, J.-M.: Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders. Ann. Inst. Henri Poincaré C Anal. Non Linéaire 14, 499–552 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  20. Sheng, W.-J., Wang, J.-B.: Entire solutions of time periodic bistable reaction–advection–diffusion equations in infinite cylinders. J. Math. Phys. 56(8), 081501 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ma, Z., Wang, Z.-C.: The trichotomy of solutions and the description of threshold solutions for periodic parabolic equations in cylinders. J. Dyn. Differ. Equ. 35, 3665–3689 (2023)

    Article  MathSciNet  Google Scholar 

  22. Wang, F., Khan, M.N., Ahmad, I., Ahmad, H., Abu-Zinadah, H., Chu, Y.-M.: Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations. Fractals 30(02), 2240051 (2022)

    Article  ADS  Google Scholar 

  23. Wang, F., Zheng, K., Ahmad, I., Ahmad, H.: Gaussian radial basis functions method for linear and nonlinear convection–diffusion models in physical phenomena. Open Phys. 19(1), 69–76 (2021)

    Article  ADS  Google Scholar 

  24. Zhang, J., Wang, F., Nadeem, S., Sun, M.: Simulation of linear and nonlinear advection–diffusion problems by the direct radial basis function collocation method. Int. Commun. Heat Mass Transf. 130, 105775 (2022)

    Article  CAS  Google Scholar 

  25. Liang, X., Zhao, X.-Q.: Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funct. Anal. 259(4), 857–903 (2010)

    Article  MathSciNet  Google Scholar 

  26. Ebert, U., Saarloos, W.: Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts. Phys. D 146(1–4), 1–99 (2000)

    Article  MathSciNet  Google Scholar 

  27. Sabelnikov, V., Lipatnikov, A.: Speed selection for traveling-wave solutions to the diffusion–reaction equation with cubic reaction term and burgers nonlinear convection. Phys. Rev. E 90(3), 033004 (2014)

    Article  ADS  CAS  Google Scholar 

  28. Weinberger, H.: On sufficient conditions for a linearly determinate spreading speed. Discrete Contin. Dyn. Syst. Ser. B 17(6), 2267–2280 (2012)

    Article  MathSciNet  Google Scholar 

  29. Ma, M., Ou, C.: The minimal wave speed of a general reaction–diffusion equation with nonlinear advection. Z. Angew. Math. Phys. 72, 1–14 (2021)

    Article  MathSciNet  CAS  Google Scholar 

  30. Muratov, C., Novaga, M.: Front propagation in infinite cylinders. I. A variational approach. Commun. Math. Sci. 6(4), 799–826 (2008)

    Article  MathSciNet  Google Scholar 

  31. Trofimchuk, E., Pinto, M., Trofimchuk, S.: Pushed traveling fronts in monostable equations with monotone delayed reaction. Discrete Contin. Dyn. Syst. Ser. 33, 2169–2187 (2013)

    Article  MathSciNet  Google Scholar 

  32. Lucia, M., Muratov, C.B., Novaga, M.: Linear vs. nonlinear selection for the propagation speed of the solutions of scalar reaction–diffusion equations invading an unstable equilibrium. Commun. Pure Appl. Math. A J. Issued Courant Inst. Math. Sci. 57(5), 616–636 (2004)

    Article  MathSciNet  Google Scholar 

  33. Wu, S.-L., Niu, T.-C., Hsu, C.-H.: Global asymptotic stability of pushed traveling fronts for monostable delayed reaction–diffusion equations. Discrete Contin. Dyn. Syst. 37(6), 3467–3486 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The National Nature Science Foundation of China grant (11801263).

Author information

Authors and Affiliations

Authors

Contributions

SH and CP analyzed the method and revised the manuscript text together, and SH wrote and prepared the original draft, HW supervised the writing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Shulin Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Hu, S. & Wang, H. Speed Selection of Traveling Waves of a Reaction–Diffusion–Advection Equation with High-Order Terms. Qual. Theory Dyn. Syst. 23, 75 (2024). https://doi.org/10.1007/s12346-023-00923-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00923-8

Keywords

Navigation