Skip to main content
Log in

Bifurcation Patterns in a Discrete Predator–Prey Model Incorporating Ratio-Dependent Functional Response and Prey Harvesting

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This work examines a discrete Leslie-Gower model of prey-predator dynamics with Holling type-IV functional response and harvesting effects. The study includes the existence and local stability analysis of all fixed points. Using center manifold theory, the codimension-1 bifurcations, viz. transcritical, Neimark–Sacker, fold, and period-doubling bifurcations, are determined for varying parameters. Moreover, the existence of codimension-2 Bogdanov–Takens bifurcation and Chenciner bifurcation is demonstrated, requiring two parameters to vary for the bifurcation to occur, and the non-degeneracy conditions for Bogdanov–Takens bifurcation are determined. An extensive numerical study is conducted to confirm the analytical findings. A wide range of dense, chaotic windows can be seen in the system, including period-2, 4, 8, and 16, period-doubling bifurcations, Neimark–Sacker bifurcations, and Chenciner and BT curves following two-parameters bifurcations. Further, it is also shown that the effect of harvesting parameter of the model for which the population dies out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data

Data sharing does not apply to this article as no data sets were generated or analyzed during the current study.

References

  1. Costantino, R., Cushing, J., Dennis, B., Desharnais, R.A.: Experimentally induced transitions in the dynamic behaviour of insect populations. Nature 375(6528), 227–230 (1995)

    ADS  CAS  Google Scholar 

  2. Cushing, J.M., Costantino, R.F., Dennis, B., Desharnais, R., Henson, S.M.: Chaos in ecology: experimental nonlinear dynamics, vol. 1 (Elsevier, 2003)

  3. Desharnais, R.A., Costantino, R., Cushing, J., Henson, S.M., Dennis, B.: Chaos and population control of insect outbreaks. Ecol. Lett. 4(3), 229–235 (2001)

    Google Scholar 

  4. Turchin, P.: A theoretical/empirical synthesis, mongraphs in population biology, complex population dynamics, MPB- Vol. 35 (2003)

  5. Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations (World Scientific, 1998)

  6. Hastings, A., Powell, T.: Chaos in a three-species food chain. Ecology 72(3), 896–903 (1991)

    Google Scholar 

  7. Singh, A., Gakkhar, S.: Controlling chaos in a food chain model. Math. Comput. Simul. 115, 24–36 (2015)

    MathSciNet  Google Scholar 

  8. Sabin, G.C., Summers, D.: Chaos in a periodically forced predator-prey ecosystem model. Math. Biosci. 113(1), 91–113 (1993)

    CAS  PubMed  Google Scholar 

  9. Berezovskaya, F., Karev, G., Arditi, R.: Parametric analysis of the ratio-dependent predator-prey model. J. Math. Biol. 43(3), 221–246 (2001)

    MathSciNet  CAS  PubMed  Google Scholar 

  10. Sen, M., Banerjee, M., Morozov, A.: Bifurcation analysis of a ratio-dependent prey-predator model with the allee effect. Ecol. Complex. 11, 12–27 (2012)

    Google Scholar 

  11. Wang, J., Shi, J., Wei, J.: Predator-prey system with strong allee effect in prey. J. Math. Biol. 62(3), 291–331 (2011)

    MathSciNet  PubMed  Google Scholar 

  12. Morozov, A.Y., Banerjee, M., Petrovskii, S.V.: Long-term transients and complex dynamics of a stage-structured population with time delay and the allee effect. J. Theor. Biol. 396, 116–124 (2016)

    ADS  PubMed  Google Scholar 

  13. May, R.M.: The Theory of Chaotic Attractors (Springer), pp. 85–93 (2004)

  14. Georgescu, P., Hsieh, Y.H.: Global dynamics of a predator-prey model with stage structure for the predator. SIAM J. Appl. Math. 67(5), 1379–1395 (2007)

    MathSciNet  Google Scholar 

  15. Takeuchi, Y.: Global Dynamical Properties of Lotka–Volterra Systems (World Scientific) (1996)

  16. Chakraborty, K., Jana, S., Kar, T.K.: Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting. Appl. Math. Comput. 218(18), 9271–9290 (2012)

    MathSciNet  Google Scholar 

  17. May, R.M., Oster, G.F.: Bifurcations and dynamic complexity in simple ecological models. Am. Natural. 110(974), 573–599 (1976)

    Google Scholar 

  18. Liz, E.: Local stability implies global stability in some one-dimensional discrete single-species models. Discrete Continuous Dyn. Syst. B 7(1), 191 (2007)

    MathSciNet  Google Scholar 

  19. Huang, J., Liu, S., Ruan, S., Xiao, D.: Bifurcations in a discrete predator-prey model with nonmonotonic functional response. J. Math. Anal. Appl. 464(1), 201–230 (2018)

    MathSciNet  Google Scholar 

  20. Din, Q.: Complexity and chaos control in a discrete-time prey-predator model. Commun. Nonlinear Sci. Numer. Simul. 49, 113–134 (2017)

    ADS  MathSciNet  Google Scholar 

  21. He, Z., Lai, X.: Bifurcation and chaotic behavior of a discrete-time predator-prey system. Nonlinear Anal. Real World Appl. 12(1), 403–417 (2011)

    MathSciNet  Google Scholar 

  22. Agiza, H., Elabbasy, E., El-Metwally, H., Elsadany, A.: Chaotic dynamics of a discrete prey-predator model with Holling type II. Nonlinear Anal. Real World Appl. 10(1), 116–129 (2009)

    MathSciNet  Google Scholar 

  23. Singh, A., Sharma, V.S.: Bifurcations and chaos control in a discrete-time prey–predator model with Holling type-II functional response and prey refuge. J. Comput. Appl. Math. 418, 114666 (2023)

  24. Sharma, V.S., Singh, A., Elsonbaty, A., Elsadany, A.: Codimension-one and-two bifurcation analysis of a discrete-time prey-predator model. Int. J. Dyn. Control, pp. 1–15 (2023)

  25. Smith, J.M.: Mathematical Ideas in Biology (CUP Archive, 1968)

  26. Levine, S.H.: Discrete time modeling of ecosystems with applications in environmental enrichment. Math. Biosci. 24(3–4), 307–317 (1975)

    Google Scholar 

  27. Liu, X., Xiao, D.: Bifurcations in a discrete-time Lotka-Volterra predator-prey system. Discrete Continuous Dyn. Syst. B 6(3), 559 (2006)

    MathSciNet  Google Scholar 

  28. Hadeler, K., Gerstmann, I.: The discrete rosenzweig model. Math. Biosci. 98(1), 49–72 (1990)

    MathSciNet  CAS  PubMed  Google Scholar 

  29. Li, S., Zhang, W.: Bifurcations of a discrete prey-predator model with Holling type-II functional response. Discrete Continuous Dyn. Syst. B 14(1), 159 (2010)

    MathSciNet  Google Scholar 

  30. Singh, A., Deolia, P.: Dynamical analysis and chaos control in discrete-time prey-predator model. Commun. Nonlinear Sci. Numer. Simul. 90, 105313 (2020)

  31. Singh, A., Deolia, P.: Bifurcation and chaos in a discrete predator-prey model with Holling type-III functional response and harvesting effect. J. Biol. Syst. 29(2), 451–478 (2021)

    MathSciNet  Google Scholar 

  32. Huang, J., Gong, Y., Ruan, S.: Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete Continuous Dyn. Syst. B 18(8), 2101 (2013)

    MathSciNet  Google Scholar 

  33. Xiao, D., Li, W., Han, M.: Dynamics in a ratio-dependent predator-prey model with predator harvesting. J. Math. Anal. Appl. 324(1), 14–29 (2006)

    MathSciNet  Google Scholar 

  34. Din, Q.: Dynamics of a discrete Lotka-Volterra model. Adv. Differ. Eqn. 2013(1), 1–13 (2013)

    Google Scholar 

  35. Kuznetsov, Y.A.: Elements of applied bifurcation theory. Appl. Math. Sci. 112, 591 (1998)

    MathSciNet  Google Scholar 

  36. Bogdanov, R.I.: Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues. Funct. Anal. Appl. 9(2), 144–145 (1975)

    MathSciNet  Google Scholar 

  37. Bogdanov, R.: Bifurcation of the limit cycle of a family of plane vector fields/versal deformations of a singularity of a vector field on the plane in the case of zero eigenvalues. Sel. Math. Sov. 1, 373–387 (1984)

    Google Scholar 

  38. Takens, F.: Singularities of vector fields. Publications Mathématiques de l’IHÉS 43, 47–100 (1974)

    MathSciNet  Google Scholar 

  39. Takens, F., et al.: Forced oscillations and bifurcations. Appl. Glob. Anal. I Commun. 3, 1–62 (2001)

    MathSciNet  Google Scholar 

  40. Chow, S.N., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields (Cambridge University Press, Cambridge, 1994)

  41. Dumortier, F., Roussarie, R., Sotomayor, J., Żaładek, H.: in Bifurcations of Planar Vector Fields (Springer), pp. 165–224 (1991)

  42. Xiao, D., Ruan, S.: Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting. Fields Inst. Commun. 21, 493–506 (1999)

    MathSciNet  Google Scholar 

  43. Xiao, D., Ruan, S.: Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61(4), 1445–1472 (2001)

    MathSciNet  Google Scholar 

  44. Singh, A., Malik, P.: Bifurcations in a modified leslie-gower predator-prey discrete model with michaelis-menten prey harvesting. J. Appl. Math. Comput. 67, 1–32 (2021)

    MathSciNet  CAS  Google Scholar 

  45. Singh, A., Sharma, V.S.: Codimension-2 bifurcation in a discrete predator-prey system with constant yield predator harvesting. Int. J. Biomath. 16(05), 1–27 (2022)

    MathSciNet  Google Scholar 

  46. Alidousti, J., Eskandari, Z., Fardi, M., Asadipour, M.: Codimension two bifurcations of discrete bonhoeffer-van der pol oscillator model. Soft Comput. 25(7), 5261–5276 (2021)

    Google Scholar 

  47. Hsu, S.B., Huang, T.W.: Global stability for a class of predator-prey systems. SIAM J. Appl. Math. 55(3), 763–783 (1995)

    MathSciNet  Google Scholar 

  48. Arditi, R., Ginzburg, L.R.: Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139(3), 311–326 (1989)

    ADS  Google Scholar 

  49. Liang, Z., Pan, H.: Qualitative analysis of a ratio-dependent Holling-Tanner model. J. Math. Anal. Appl. 334(2), 954–964 (2007)

    MathSciNet  Google Scholar 

  50. Zhou, J.: Bifurcation analysis of a diffusive predator-prey model with ratio-dependent Holling type-III functional response. Nonlinear Dyn. 81(3), 1535–1552 (2015)

    MathSciNet  Google Scholar 

  51. Amirabad, H.Q., RabieiMotlagh, O., MohammadiNejad, H.M.: Permanency in predator-prey models of Leslie type with ratio-dependent simplified Holling type-IV functional response. Math. Comput. Simul. 157, 63–76 (2019)

    MathSciNet  Google Scholar 

  52. Yao, Y.: Bifurcations of a Leslie-Gower prey-predator system with ratio-dependent Holling-IV functional response and prey harvesting. Math. Methods Appl. Sci. 43(5), 2137–2170 (2020)

    ADS  MathSciNet  Google Scholar 

  53. Broer, H.W., Roussarie, R., Simó, C.: Proceedings Equadiff 91 (World Scientific), pp. 81–92 (1993)

  54. Broer, H., Roussarie, R., Simó, C.: Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphisms. Ergodic Theory Dyn. Syst. 16(6), 1147–1172 (1996)

    MathSciNet  Google Scholar 

  55. Kuznetsov, Y.A.: Elements of applied bifurcation theory, vol. 112 (Springer Science & Business Media) (2013)

  56. Govaerts, W., Ghaziani, R.K., Kuznetsov, Y.A., Meijer, H.G.: Numerical methods for two-parameter local bifurcation analysis of maps. SIAM J. Sci. Comput. 29(6), 2644–2667 (2007)

    MathSciNet  Google Scholar 

  57. Meijer, H., Govaerts, W., Kuznetsov, Y.A., Ghaziani, R.K., Neirynck, N.: Matcontm, A Toolbox for Continuation and Bifurcation of Cycles of Maps: Command Line Use. Utrecht University, Department of Mathematics (2017)

    Google Scholar 

Download references

Funding

Anuraj Singh’s endeavors receive support from a Core Research Grant provided by the Science Engineering Research Board, an entity of the Indian government (CRG/2021/006380). The contribution of Vijay Shankar Sharma is funded by the University Grant Commission (UGC), also under the Indian government.

Author information

Authors and Affiliations

Authors

Contributions

VSS: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data curation, Writing-original draft preparation. AS: Conceptualization, Methodology, Formal analysis, Resources, Supervision, Visualization, Investigation, Project administration. PM: Software, Validation, Formal analysis.

Corresponding author

Correspondence to Anuraj Singh.

Ethics declarations

Conflict of interest

No conflict of interest exists among the authors.

Consent to Participate

We hereby consent to participate.

Consent to Publish

We hereby consent to publish our paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V.S., Singh, A. & Malik, P. Bifurcation Patterns in a Discrete Predator–Prey Model Incorporating Ratio-Dependent Functional Response and Prey Harvesting. Qual. Theory Dyn. Syst. 23, 74 (2024). https://doi.org/10.1007/s12346-023-00929-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00929-2

Keywords

Navigation