Skip to main content
Log in

Super-Explosion and Inverse Canard Explosion in a Piecewise-Smooth Slow–Fast Leslie–Gower Model

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we study a slow–fast Leslie-type predator–prey model with piecewise-linear functional response. Our approach is based on the geometric singular perturbation theory and the canard theory. When the fold point of the critical curve is lower than the transcritical bifurcation point, theoretical and numerical analyses show that a supercritical super-explosion occurs near the non-smooth corner followed by an inverse canard explosion close to the smooth fold. The critical values of parameters corresponding to these dynamical behaviors are obtained. Moreover, a stable relaxation oscillation is generated by the supercritical super-explosion, which will vanish as the occurrence of the inverse canard explosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Benoit, E., Callot, J.L., Diener, F., Diener, M.: Chasse au canard. Collect. Math. 32, 37–119 (1981)

    MathSciNet  Google Scholar 

  2. Eckhaus, W.: Relaxation Oscillations Including a Standard Chase on French Ducks. Lecture Notes in Mathematics, vol. 985. Springer-Verlag, Berlin (1983)

  3. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174, 312–368 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  4. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions. SIAM J. Math. Anal. 33, 286–314 (2001)

    Article  MathSciNet  Google Scholar 

  5. Dumortier, F., Roussarie, R.H.: Canard Cycles and Center Manifolds. Memoirs of the American Mathematical Society, Providence (1996)

    Book  Google Scholar 

  6. De Maesschalck, P., Dumortier, F., Roussarie, R.: Canard Cycles: From Birth to Transition. Springer, Berlin (2021)

    Book  Google Scholar 

  7. Brøns, M., Krupa, M., Wechselberger, M.: Mixed mode oscillations due to the generalized canard phenomenon. Fields Inst. Commun. 49, 39–63 (2006)

    MathSciNet  Google Scholar 

  8. Desroches, M., Guckenheimer, J., Krauskopf, B., Kuehn, C., Osinga, H.M., Wechselberger, M.: Mixed-mode oscillations with multiple time scales. SIAM Rev. 54, 211–288 (2012)

    Article  MathSciNet  Google Scholar 

  9. Szmolyan, P., Wechselberger, M.: Canards in \({\mathbb{R} }^{3}\). J. Differ. Equ. 177, 419–453 (2001)

    Article  ADS  Google Scholar 

  10. Wechselberger, M.: Existence and bifurcation of canards in \({\mathbb{R} }^{3}\) in the case of a folded node. SIAM J. Appl. Dyn. Syst. 4, 101–139 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Zhao, L., Shen, J.: Relaxation oscillations in a slow-fast predator-prey model with weak Allee effect and Holling-IV functional response. Commun. Nonlinear Sci. Numer. Simul. 112, 106517 (2022)

    Article  MathSciNet  Google Scholar 

  12. Wang, C., Zhang, X.: Relaxation oscillations in a slow-fast modified Leslie-Gower model. Appl. Math. Lett. 87, 147–153 (2019)

    Article  MathSciNet  Google Scholar 

  13. Carmona, V., Fernández-García, S., Teruel, A.: Birth, transition and maturation of canard cycles in a piecewise linear system with a flat slow manifold. Physica D 443, 133566 (2023)

    Article  MathSciNet  Google Scholar 

  14. Rotstein, H.G., Coombes, S., Gheorghe, A.M.: Canard-like explosion of limit cycles in two-dimensional piecewise-linear models of FitzHugh-Nagumo Type. SIAM J. Appl. Dyn. Syst. 11, 135–180 (2012)

    Article  MathSciNet  Google Scholar 

  15. Desroches, M., Fernández-García, S., Krupa, M., Prohens, R., Teruel, A.E.: Piecewise-linear (PWL) canard dynamics: simplifying singular perturbation theory in the canard regime using piecewise-linear systems. Nonlinear Systems, Vol. 1 : Mathematical Theory and Computational Methods, Springer, Cham (2018)

  16. Desroches, M., Freire, E., Hogan, S.J., Ponce, E., Thota, P.: Canards in piecewise-linear systems: explosions and super-explosions. Proc. R. Soc. A Math. Phys. Eng. Sci. 469, 20120603 (2013)

  17. Roberts, A., Gendinning, P.: Canard-like phenomena in piecewise-smooth Van der Pol systems. Chaos 24, 023138 (2014)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  18. Roberts, A., Saha, R.: Relaxation oscillations in an idealized ocean circulation model. Clim. Dyn. 48, 2123–2134 (2017)

    Article  Google Scholar 

  19. Roberts, A.: Canard explosion and relaxation oscillation in planar, piecewise-smooth, continuous systems. SIAM J. Appl. Dyn. Syst. 15, 609–624 (2016)

    Article  MathSciNet  Google Scholar 

  20. Ai, S., Sadhu, S.: The entry-exit theorem and relaxation oscillations in slow-fast planar systems. J. Differ. Equ. 268, 7220–7249 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. Li, S., Wang, X., Li, X., Wu, K.: Relaxation oscillations for Leslie-type predator-prey model with Holling Type I response functional function. Appl. Math. Lett. 120, 107328 (2021)

    Article  MathSciNet  Google Scholar 

  22. Li, S., Wang, C., Wu, K.: Relaxation oscillations of a slow-fast predator-prey model with a piecewise smooth functional response. Appl. Math. Lett. 113, 106852 (2021)

    Article  MathSciNet  Google Scholar 

  23. Seo, G., DeAngelis, D.L.: A predator-prey model with a Holling type I functional response including a predator mutual interference. J. Nonlinear Sci. 21, 811–833 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  24. Seo, G., Kot, M.: A comparison of two predator-prey models with Holling’s type I functional response. Math. Biosci. 212, 161–179 (2008)

    Article  MathSciNet  PubMed  Google Scholar 

  25. Zhang, Y., Xu, Z., Liu, B., Chen, L.: Dynamic analysis of a Holling I predator-prey system with mutual interference concerning pest control. J. Biol. Syst. 13, 45–58 (2005)

    Article  CAS  Google Scholar 

  26. Saha, T., Pal, P.J., Banerjee, M.: Slow-fast analysis of a modified Leslie-Gower model with Holling type I functional response. Nonlinear Dyn. 108, 4531–4555 (2022)

    Article  Google Scholar 

  27. Arnold, V.: Dynamical Systems V: Bifurcaton Theory and Catastrophe Theory. Springer, Berlin (1994)

    Book  Google Scholar 

  28. Zegeling, A., Kooij, R.E.: Singular perturbations of the Holling I predator-prey system with a focus. J. Differ. Equ. 269, 5434–5462 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. Dumortier, F., Roussarie, R.: Canard cycles with two breaking parameters. Discrete Contin. Dyn. Syst. 17, 787 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are supported by the NSF of China (NO. 12271096), the NSF of Fujian Province (NOS. 2022J02028, 2023J01994, 2023J01299) and the Young Top Talent of Fu-jian Young Eagle Program. We are very grateful to the editor and the anonymous reviewers for careful reading and helpful suggestions which led to an improvement of our original manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Huiping carried out computations and wrote the initial manuscript text and Yuhua prepared the numerical simulations under the supervision of Jianhe. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jianhe Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Consider the slow–fast piecewise-smooth system in a general form, namely,

$$\begin{aligned} \begin{aligned} \frac{dx}{dt}&=f(x,y,\lambda ,\epsilon ),\\ \frac{dy}{dt}&=\epsilon g(x,y,\lambda ,\epsilon )\\ \end{aligned} \end{aligned}$$
(5.1)

with

$$\begin{aligned} f(x,y,\lambda ,\epsilon )=\left\{ \begin{aligned} x\big (-y+f_{1}(x, \lambda )\big ),\quad&(x,y)\in \Sigma _{-},\\ -y+f_{2}(x, \lambda ),\quad&(x,y)\in \Sigma _{+},\\ \end{aligned}\right. \end{aligned}$$
(5.2)

where \(0<\epsilon \ll 1\) is the perturbation parameter, \(\lambda \) stands for the multi-dimensional bifurcation parameters, and \(f_{1}, f_{2}\in C^{k}, k\ge 3\), in which, \(f_{1}\) is linear in x while \(f_{2}\) is a cubic-like function of x.

Let \(\Sigma =\{(x,y)|\ x=\alpha \}\) be the switching boundary, then \(\Sigma _{-}=\{(x,y)|\ x<\alpha \}\) and \(\Sigma _{+}=\{(x,y)|\ x>\alpha \}\) are respectively the left and right region in the plane. Thus, we can define the left system and the right system respectively. On the switching boundary \(\Sigma \), it is assumed that the vector field satisfies

$$\begin{aligned} f_{1}(\alpha , y_0, \lambda _0, 0)=f_{2}((\alpha , y_0, \lambda _0, 0)) \end{aligned}$$
(5.3)

and

$$\begin{aligned} f_{1}'((\alpha , y_0, \lambda _0, 0))< 0, f_{2}'((\alpha , y_0, \lambda _0, 0))> 0, \end{aligned}$$
(5.4)

where \((\alpha , y_0)\in \Sigma \) is the corner when \(\lambda =\lambda _0\), and the prime means the derivative with respect to x. Under the conditions (5.3)–(5.4), the vector field is continuous but not differentiable at the switching boundary \(\Sigma \).

Since \(f_{2}(x)\) is cubic-like, it admits a maximum supposing at \(Q=(x_{\textrm{Q}}, y_{\textrm{Q}})\) with \(x_{\textrm{Q}}>\alpha \). Moreover, the critical curve associated with system (5.1) has a transcritical bifurcation point at \(P=(0, f_1(0, \lambda ))\).

Let

$$\begin{aligned} y_{\textrm{Q}}<f_1(0, \lambda ),\quad \textrm{for}\,\, \lambda \in \Lambda , \end{aligned}$$
(5.5)

then the smooth fold is lower than the non-smooth corner. Under this assumption, the entry-exit function cannot be used to detect the birth and the number of relaxation oscillations since the transcritical bifurcation point \(P=(0, f_1(0, \lambda ))\) cannot organize the slow–fast dynamics in this situation.

By following the methods developed in this article and imposing suitable conditions of the functions \(f_i, i=1, 2\) near the non-smooth corner \((\alpha , y_0)\in \Sigma \) and the smooth fold \(Q=(x_{\textrm{Q}}, y_{\textrm{Q}})\), the birth as well as the disappearance of relaxation oscillations can be analyzed for the general slow–fast piecewise-smooth system (5.1), where \((\alpha , y_0)\in \Sigma \) and \(Q=(x_{\textrm{Q}}, y_{\textrm{Q}})\) are taken as the organizing centers controlling the slow–fast dynamics. The details are left for future work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Cai, Y. & Shen, J. Super-Explosion and Inverse Canard Explosion in a Piecewise-Smooth Slow–Fast Leslie–Gower Model. Qual. Theory Dyn. Syst. 23, 73 (2024). https://doi.org/10.1007/s12346-023-00936-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00936-3

Keywords

Navigation