Skip to main content
Log in

On a Fractal–Fractional-Based Modeling for Influenza and Its Analytical Results

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

There have been reports of influenza virus resistance in the past, and because this virus has the potential of resistance to cause several pandemics and also is lethal, we investigate the conditions under which the strains coexist as a result. The non-resistant strain undergoes mutation, giving rise to the resistant strain. The incidence rates of the non-resistant and saturated-resistant strains are bi-linear and saturated, respectively. In this study, two flu strain models (resistant and non-resistant) are investigated in a fractal–fractional sense, and the presence of solutions, stability, and numerical simulations are examined for various orders and derivative dimensions. Using numerical values from freely accessible open resources, a numerical technique that is based on Lagrange’s interpolation polynomial is constructed and validated for a particular example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

No data were generated or analyzed during the current study.

References

  1. Mohler, L., Flockerzi, D., Sann, H., Reichl, U.: Mathematical model of influenza A virus production in large-scale microcarrier culture. Biotechnol. Bioeng. 90, 46–58 (2005). https://doi.org/10.1002/bit.20363

    Article  CAS  PubMed  Google Scholar 

  2. Kreijtz, J.H.C.M., Bodewes, R., van Amerongen, G., Kuiken, T., Fouchier, R.A.M., Osterhaus, A.D.M.E., Rimmelzwaan, G.F.: Primary influenza A virus infection induces cross-protective immunity against a lethal infection with a heterosubtypic virus strain in mice. Vaccine 25, 612–620 (2007). https://doi.org/10.1016/j.vaccine.2006.08.036

    Article  CAS  PubMed  Google Scholar 

  3. Webster, R.G., Peiris, M., Chen, H., Guan, Y.: H5N1 outbreaks and enzootic influenza. Emerg. Infect. Dis. 12, 3–8 (2006). https://doi.org/10.3201/eid1201.051024

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rasmussen, S.A., Jamieson, D.J., Uyeki, T.M.: Effects of influenza on pregnant women and infants. Am. J. Obstet. Gynecol. 207, S3-8 (2012). https://doi.org/10.1016/j.ajog.2012.06.068

    Article  PubMed  Google Scholar 

  5. Bouvier, N.M., Lowen, A.C., Palese, P.: Oseltamivir-resistant influenza A viruses are transmitted efficiently among guinea pigs by direct contact but not by aerosol. J. Virol. 82, 10052–10058 (2008). https://doi.org/10.1128/JVI.01226-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ward, P., Small, I., Smith, J., Suter, P., Dutkowski, R.: Oseltamivir (Tamiflu) and its potential for use in the event of an influenza pandemic. J. Antimicrob. Chemother. 55, i5–i21 (2005). https://doi.org/10.1093/jac/dki018

    Article  CAS  PubMed  Google Scholar 

  7. Schunemann, H.J., Hill, S.R., Kakad, M., Bellamy, R., Uyeki, T.M., et al.: WHO Rapid Advice Guidelines for pharmacological management of sporadic human infection with avian influenza A (H5N1) virus. Lancet Infect. Dis. 7, 21–31 (2007). https://doi.org/10.1016/S1473-3099(06)70684-3

    Article  CAS  PubMed  Google Scholar 

  8. Baranovich, T., Saito, R., Suzuki, Y., Zaraket, H., Dapat, C., et al.: Emergence of H274Y oseltamivir-resistant A (H1N1) influenza viruses in Japan during the 2008–2009 season. J. Clin. Virol. 47, 23–28 (2010). https://doi.org/10.1016/j.jcv.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  9. Monto, A.S., McKimm-Breschkin, J.L., Macken, C., Hampson, A.W., Hay, A., et al.: Detection of influenza viruses resistant to neuraminidase inhibitors in global surveillance during the first 3 years of their use. Antimicrob. Agents Chemotherap. 50, 2395–2402 (2006). https://doi.org/10.1128/AAC.01339-05

    Article  CAS  Google Scholar 

  10. Carr, J., Ives, J., Kelly, L., Lambkin, R., Oxford, J., Mendel, D., Tai, L., Roberts, N.: Influenza virus carrying neuraminidase with reduced sensitivity to oseltamivir carboxylate has altered properties in vitro and is compromised for infectivity and replicative ability in vivo. Antivir. Res. 54, 79–88 (2002). https://doi.org/10.1016/s0166-3542(01)00215-7

    Article  CAS  PubMed  Google Scholar 

  11. Herlocher, M.L., Truscon, R., Elias, S., Yen, H.L., Roberts, N.A., et al.: Influenza viruses resistant to the antiviral drug oseltamivir: transmission studies in ferrets. J. Infect. Dis. 190, 1627–1630 (2004). https://doi.org/10.1086/424572

    Article  CAS  PubMed  Google Scholar 

  12. Abed, Y., Goyette, N., Boivin, G.: A reverse genetics study of resistance to neuraminidase inhibitors in an influenza A/H1N1 virus. Antivir. Ther. 9, 577–581 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. Rameix-Welti, M.A., Enouf, V., Cuvelier, F., Jeannin, P., van der Werf, S.: Enzymatic properties of the neuraminidase of seasonal H1N1 influenza viruses provide insights for the emergence of natural resistance to oseltamivir. PLoS Pathogens 4, e1000103 (2008). https://doi.org/10.1371/journal.ppat.1000103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baz, M., Abed, Y., Simon, P., Hamelin, M.E., Boivin, G.: Effect of the neuraminidase mutation H274Y conferring resistance to oseltamivir on the replicative capacity and virulence of old and recent human influenza A (H1N1) viruses. J. Infect. Dis. 201, 740–745 (2010). https://doi.org/10.1086/650464

    Article  CAS  PubMed  Google Scholar 

  15. Matsuzaki, Y., Mizuta, K., Aoki, Y., Suto, A., Abiko, C., et al.: A two-year survey of the oseltamivir-resistant influenza A (H1N1) virus in Yamagata, Japan and the clinical effectiveness of oseltamivir and zanamivir. Virol. J. 7(53), 1–8 (2010). https://doi.org/10.1186/1743-422X-7-53

    Article  CAS  Google Scholar 

  16. Bloom, J.D., Gong, L.I., Baltimore, D.: Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328, 1272–1275 (2010). https://doi.org/10.1126/science.1187816

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaymakamzade, B., Baba, I.A., Hincal, E.: Global stability analysis of oseltamivir-resistant influenza virus model. Procedia Comput. Sci. 102, 333–341 (2016). https://doi.org/10.1016/j.procs.2016.09.409

    Article  Google Scholar 

  18. Ives, J.A.L., Carr, J.A., Mendel, D.B., Tai, C.Y., Lambkin, R., et al.: The H274Y mutation in the influenza A/H1N1 neuraminidase active site following oseltamivir phosphate treatment leave virus severely compromised both in vitro and in vivo. Antivir. Res. 55, 307–317 (2002). https://doi.org/10.1016/s0166-3542(02)00053-0

    Article  CAS  PubMed  Google Scholar 

  19. Wu, Y., Ahmad, S., Ullah, A., Shah, K.: Study of the fractional-order HIV-1 infection model with uncertainty in initial data. Math. Probl. Eng. 2022(7286460), 1–16 (2022). https://doi.org/10.1155/2022/7286460

    Article  Google Scholar 

  20. Ali, A., Alshammari, F.S., Islam, S., Khan, M.A., Ullah, S.: Modeling and analysis of the dynamics of novel coronavirus (COVID-19) with Caputo fractional derivative. Results Phys. 20, 103669 (2021). https://doi.org/10.1016/j.rinp.2020.103669

    Article  PubMed  Google Scholar 

  21. Ali, A., Islam, S., Khan, M.R., Rasheed, S., Allehiany, F.M., Baili, J., Khan, M.A., Ahmad, H.: Dynamics of a fractional order Zika virus model with mutant. Alex. Eng. J. 61(6), 4821–36 (2022). https://doi.org/10.1016/j.aej.2021.10.031

    Article  Google Scholar 

  22. Ali, A., Hamou, A.A., Islam, S., Muhammad, T., Khan, A.: A memory effect model to predict COVID-19: analysis and simulation. Comput. Methods Biomech. Biomed. Eng. 26(5), 612–28 (2023). https://doi.org/10.1080/10255842.2022.2081503

    Article  Google Scholar 

  23. Ali, A., Ullah, S., Khan, M.A.: The impact of vaccination on the modeling of COVID-19 dynamics: a fractional order model. Nonlinear Dyn. 110(4), 3921–40 (2022). https://doi.org/10.1007/s11071-022-07798-5

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aba Oud, M.A., Ali, A., Alrabaiah, H., Ullah, S., Khan, M.A., Islam, S.S.: A fractional order mathematical model for COVID-19 dynamics with quarantine, isolation, and environmental viral load. Adv. Differ. Equ. 2021(1), 1–9 (2021). https://doi.org/10.1186/s13662-021-03265-4

    Article  MathSciNet  Google Scholar 

  25. Ali, A., Iqbal, Q., Asamoah, J.K., Islam, S.: Mathematical modeling for the transmission potential of Zika virus with optimal control strategies. Eur. Phys. J. Plus 137(1), 146 (2022). https://doi.org/10.1140/epjp/s13360-022-02368-5

    Article  Google Scholar 

  26. Ali, A., Iqbal, Q., Asamoah, J.K., Islam, S.: Mathematical modeling for the transmission potential of Zika virus with optimal control strategies. Eur. Phys. J. Plus 137(1), 46 (2022). https://doi.org/10.1140/epjp/s13360-022-02368-5

    Article  Google Scholar 

  27. Butt, A.I., Rafiq, M., Ahmad, W., Ahmad, N.: Implementation of computationally efficient numerical approach to analyze a Covid-19 pandemic model. Alex. Eng. J. 69, 341–62 (2023)

    Article  Google Scholar 

  28. Hanif, A., Kashif Butt, A.I., Ahmad, W.: Numerical approach to solve Caputo–Fabrizio-fractional model of corona pandemic with optimal control design and analysis. Math. Methods Appl. Sci. (2023). https://doi.org/10.1002/mma.9085

    Article  MathSciNet  Google Scholar 

  29. Ahmad, W., Abbas, M.: Effect of quarantine on transmission dynamics of Ebola virus epidemic: a mathematical analysis. Eur. Phys. J. Plus 136(4), 1–33 (2021)

    Article  Google Scholar 

  30. Ahmad, W., Rafiq, M., Abbas, M.: Mathematical analysis to control the spread of Ebola virus epidemic through voluntary vaccination. Eur. Phys. J. Plus 135(10), 775 (2020). https://doi.org/10.1140/epjp/s13360-020-00683-3

    Article  Google Scholar 

  31. Rafiq, M., Ahmad, W., Abbas, M., Baleanu, D.: A reliable and competitive mathematical analysis of Ebola epidemic model. Adv. Differ. Equ. 2020, 1–24 (2020). https://doi.org/10.1186/s13662-020-02994-2

    Article  MathSciNet  Google Scholar 

  32. Padder, A., Almutairi, L., Qureshi, S., Soomro, A., Afroz, A., Hincal, E., Tassaddiq, A.: Dynamical analysis of generalized tumor model with Caputo fractional-order derivative. Fractal Fract. 7(3), 258 (2023)

    Article  Google Scholar 

  33. Qureshi, S., Abro, K.A., Gomez-Aguilar, J.F.: On the numerical study of fractional and non-fractional model of nonlinear Duffing oscillator: a comparison of integer and non-integer order approaches. Int. J. Model. Simul. 43(4), 362–75 (2023)

    Article  Google Scholar 

  34. Jan, R., Qureshi, S., Boulaaras, S., Pham, V.T., Hincal, E., Guefaifia, R.: Optimization of the fractional-order parameter with the error analysis for human immunodeficiency virus under Caputo operator. Discrete Contin. Dyn. Syst. S (2023). https://doi.org/10.3934/dcdss.2023010

    Article  Google Scholar 

  35. Qureshi, S., Akanbi, M.A., Shaikh, A.A., Wusu, A.S., Ogunlaran, O.M., Mahmoud, W., Osman, M.S.: A new adaptive nonlinear numerical method for singular and stiff differential problems. Alex. Eng. J. 74, 585–97 (2023)

    Article  Google Scholar 

  36. Alquran, M., Ali, M., Gharaibeh, F., Qureshi, S.: Novel investigations of dual-wave solutions to the Kadomtsev–Petviashvili model involving second-order temporal and spatial–temporal dispersion terms. Partial Differ. Equ. Appl. Math. 8, 100543 (2023)

    Article  Google Scholar 

  37. Atangana, A.: Fractal–fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 102, 396–406 (2017). https://doi.org/10.1016/j.chaos.2017.04.027

    Article  ADS  MathSciNet  Google Scholar 

  38. Khan, H., Ahmad, F., Tunc, O., Idrees, M.: On fractal–fractional Covid-19 mathematical model. Chaos Solitons Fractals 157, 111937 (2022). https://doi.org/10.1016/j.chaos.2022.111937

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  39. Gomez-Aguilar, J.F., Cordova-Fraga, T., Abdeljawad, T., Khan, A., Khan, H.: Analysis of fractal–fractional malaria transmission model. Fractals 28, 2040041 (2020). https://doi.org/10.1142/S0218348X20400411

    Article  ADS  Google Scholar 

  40. Ghori, M.B., Naik, P.A., Zu, J., Eskandari, Z., Naik, M.U.: Global dynamics and bifurcation analysis of a fractional-order SEIR epidemic model with saturation incidence rate. Math. Methods Appl. Sci. 45(7), 3665–88 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  41. Naik, P.A., Zu, J., Naik, M.U.: Stability analysis of a fractional-order cancer model with chaotic dynamics. Int. J. Biomath. 14(06), 2150046 (2021)

    Article  MathSciNet  Google Scholar 

  42. Naik, P.A., Ghoreishi, M., Zu, J.: Approximate solution of a nonlinear fractional order HIV model using Homotopy analysis method. Int. J. Numer. Anal. Model. 19(1) (2022)

  43. Ahmad, A., Farman, M., Naik, P.A., Zafar, N., Akgul, A., Saleem, M.U.: Modeling and numerical investigation of fractional-order bovine babesiosis disease. Numer. Methods Partial Differ. Equ. 37(3), 1946–64 (2021)

    Article  MathSciNet  Google Scholar 

  44. Naik, P.A., Yavuz, M., Qureshi, S., Zu, J., Townley, S.: Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan. Eur. Phys. J. Plus 135, 1–42 (2020)

    Article  Google Scholar 

  45. Shah, K., Arfan, M., Mahariq, I., Ahmadian, A., Salahshour, S., Ferrara, M.: Fractal–fractional mathematical model addressing the situation of Corona virus in Pakistan. Res. Phys. 19, 103560 (2020). https://doi.org/10.1016/j.rinp.2020.103560

    Article  Google Scholar 

  46. Ali, Z., Rabiei, F., Shah, K., Khodadadi, T.: Qualitative analysis of fractal–fractional order COVID-19 mathematical model with case study of Wuhan. Alex. Eng. J. 60, 477–489 (2021). https://doi.org/10.1016/j.aej.2020.09.020

    Article  Google Scholar 

  47. Alqhtani, M., Saad, K.M.: Fractal–fractional Michaelis–Menten enzymatic reaction model via different kernels. Fractal Fract. 6, 13 (2022). https://doi.org/10.3390/fractalfract6010013

    Article  Google Scholar 

  48. Saad, K.M., Alqhtani, M., Gomez-Aguilar, J.F.: Fractal–fractional study of the hepatitis C virus infection model. Res. Phys. 19, 103555 (2020). https://doi.org/10.1016/j.rinp.2020.103555

    Article  Google Scholar 

  49. Etemad, S., Avci, I., Kumar, P., Baleanu, D., Rezapour, S.: Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version. Chaos Solitons Fractals 162, 112511 (2022). https://doi.org/10.1016/j.chaos.2022.112511

    Article  MathSciNet  Google Scholar 

  50. Rvachev, L.A., Longini, J.I.M.: A mathematical model for the global spread of influenza. Math. Biosci. 75(1), 3–22 (1985)

    Article  MathSciNet  Google Scholar 

  51. Beauchemin, C.A., Handel, A.: A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead. BMC Public Health 11(1), 1–5 (2011)

    Google Scholar 

  52. Boianelli, A., Nguyen, V.K., Ebensen, T., Schulze, K., Wilk, E., Sharma, N., Stegemann-Koniszewski, S., Bruder, D., Toapanta, F.R., Guzman, C.A., Meyer-Hermann, M.: Modeling influenza virus infection: a roadmap for influenza research. Viruses 7(10), 5274–304 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ain, Q.T., Khan, A., Abdeljawad, T., Gómez-Aguilar, J.F., Riaz, S.: Dynamical study of varicella-zoster virus model in sense of Mittag–Leffler kernel. Int. J. Biomath. 17, 2350027 (2023)

    Article  MathSciNet  Google Scholar 

  54. Khan, Z.A., Khan, A., Abdeljawad, T., Khan, H.: Computational analysis of fractional order imperfect testing infection disease model. Fractals 30(05), 2240169 (2022)

    Article  ADS  Google Scholar 

  55. Thirthar, A.A., Abboubakar, H., Khan, A., Abdeljawad, T.: Mathematical modeling of the COVID-19 epidemic with fear impact. AIMS Math. 8(3), 6447–65 (2023)

    Article  MathSciNet  Google Scholar 

  56. Ain, Q., Khan, A., Ullah, M.I., Alqudah, M.A., Abdeljawad, T.: On fractional impulsive system for methanol detoxification in human body. Chaos Solitons Fractals 160, 112235 (2022)

    Article  MathSciNet  Google Scholar 

  57. Abro, K.A., Atangana, A.: Numerical and mathematical analysis of induction motor by means of AB-fractal–fractional differentiation actuated by drilling system. Numer. Methods Partial Differ. Equ. 38, 293–307 (2022). https://doi.org/10.1002/num.22618

    Article  MathSciNet  Google Scholar 

  58. Baba, I.A., Ahmad, H., Alsulami, M.D., Abualnaja, K.M., Altanji, M.: A mathematical model to study resistance and non-resistance strains of influenza. Res. Phys. 26, 104390 (2021). https://doi.org/10.1016/j.rinp.2021.104390

    Article  Google Scholar 

  59. Veeresha, P., Ilhan, E., Prakasha, D.G., Baskonus, H.M., Gao, W.: A new numerical investigation of fractional order susceptible-infected-recovered epidemic model of childhood disease. Alex. Eng. J. 61(2), 1747–56 (2022)

    Article  Google Scholar 

  60. Baishya, C., Achar, S.J., Veeresha, P., Kumar, D.: Dynamical analysis of fractional yellow fever virus model with efficient numerical approach. J. Comput. Anal. Appl. 140 (2023)

  61. Gao, W., Veeresha, P., Cattani, C., Baishya, C., Baskonus, H.M.: Modified predictor-corrector method for the numerical solution of a fractional-order SIR model with 2019-nCoV. Fractal Fract. 6(2), 92 (2022)

    Article  Google Scholar 

  62. Rahman, M.: Generalized fractal–fractional order problems under non-singular Mittag–Leffler kernel. Results Phys. 35, 105346 (2022)

    Article  Google Scholar 

  63. Shah, K., Abdalla, B., Abdeljawad, T., Gul, R.: Analysis of multipoint impulsive problem of fractional-order differential equations. Bound. Value Probl. 2023(1), 1–7 (2023)

    Article  MathSciNet  CAS  Google Scholar 

  64. Li, B., Zhang, T., Zhang, C.: Investigation of financial bubble mathematical model under fractal–fractional Caputo derivative. Fractals 31(05), 1–3 (2023)

    Article  Google Scholar 

  65. Ahmad, S., Shah, K., Abdeljawad, T., Abdalla, B.: On the approximation of fractal–fractional differential equations using numerical inverse Laplace transform methods. CMES Comput. Model. Eng. Sci. 135(3) (2023)

  66. Atangana, A., Araz, S.I.: Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications. Adv. Differ. Equ. 2020(1), 1–89 (2020)

    Article  MathSciNet  Google Scholar 

  67. Araz, S.I.: Analysis of a Covid-19 model: optimal control, stability and simulations. Alex. Eng. J. 60(1), 647–658 (2021)

    Article  Google Scholar 

  68. Atangana, A., Araz, S.I.: Modeling and forecasting the spread of COVID-19 with stochastic and deterministic approaches: Africa and Europe. Adv. Differ. Equ. 2021, 1–07 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

H.K and J.A express their sincere thanks to Prince Sultan University and OSTİM Technical University for their endless support. The S.E and S.R would like to thank Azarbaijan Shahid Madani University.

Funding

No funds were received.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shahram Rezapour.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Rajpar, A.H., Alzabut, J. et al. On a Fractal–Fractional-Based Modeling for Influenza and Its Analytical Results. Qual. Theory Dyn. Syst. 23, 70 (2024). https://doi.org/10.1007/s12346-023-00918-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00918-5

Keywords

Mathematics Subject Classification

Navigation