Skip to main content
Log in

Nontrivial Solutions for Fractional Schrödinger Equations with Electromagnetic Fields and Critical or Supercritical Growth

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we study the following fractional Schrödinger equation with electromagnetic fields and critical or supercritical growth

$$\begin{aligned} (-\Delta )_A^su+V(x)u=\lambda |u|^{p-2}u+ f(x,|u|^2)u, \ x \in \mathbb {R}^N, \end{aligned}$$

where \((-\Delta )_A^s\) is the fractional magnetic operator with \(0<s<1\), \(N>2s\), \(2_s^*=\frac{2N}{N-2s}\), \(\lambda >0\), \(V \in C(\mathbb {R}^N,\mathbb {R})\) and \(A \in C(\mathbb {R}^N, \mathbb {R}^N)\) are the electric and magnetic potentials, respectively. When V and f are asymptotically periodic in x, and f is a continuous function and there exists \(2< q<2_s^*\) such that \(|f(x,t)|\le C(1+|t|^{\frac{q-2}{2}})\) for all (xt), for \( 2_s^*\le p<22^{*}_{s}-q\). For any \(D>0\) fixed, if \(\lambda \in (0,D]\) we prove that the equation has a nontrivial solution by the truncation method. Our method can provide a prior \(L^{\infty }\)-estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonelli, P., Athanassoulis, A., Hajaiej, H., Markowich, P.: On the XFEL Schrödinger equation: highly oscillatory magnetic potentials and time averaging. Arch. Ration. Mech. Anal. 211, 711–732 (2014)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, V., d’Avenia, P.: Nonlinear fractional magnetic Schrödinger equation: existence and multiplicity. J. Differ. Equ. 264, 3336–3368 (2018)

    Article  ADS  Google Scholar 

  3. Alves, C.O., Miyagaki, O.H.: Existence and concentration of solution for a class of fractional elliptic equation in \(\mathbb{R} ^N\) via penalization method. Calc. Var. Partial Differ. Equ. 55, 1–19 (2016)

    Article  Google Scholar 

  4. Bertoin, J.: Lévy Processes. Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  5. Bonheure, D., Nys, M., Van Schaftingen, J.: Properties of ground states of nonlinear Schrödinger equations under a weak constant magnetic field. J. Math. Pures Appl. 124, 123 (2019). arXiv: 1607.00170v1

    Article  MathSciNet  Google Scholar 

  6. Cardoso, J., dos Prazeres, D., Severo, U.: Fractional Schrödinger equations involving potential vanishing at infinity and super-critical exponents. Z. Angew. Math. Phys. 71, 129 (2020)

    Article  Google Scholar 

  7. Cheng, M.: Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 53, 043507 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  8. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  9. Cosmo, J., Schaftingen, J.: Semiclassical stationary states for nonlinear Schrödinger equations under a strong external magnetic field. J. Differ. Equ. 259, 596–627 (2015)

    Article  ADS  Google Scholar 

  10. Dipierro, S., Palatucci, G., Valdinoci, E.: Existence and symmetry results for a Schrödinger type problem involving the fractional Lapacian. Matematiche 68, 201–216 (2013)

    Google Scholar 

  11. Ding, Y., Wang, Z.: Bound states of nonlinear Schrödinger equations with magnetic fields. Ann. Mat. 190, 427–451 (2011)

    Article  MathSciNet  Google Scholar 

  12. d’Avenia, P., Squassina, M.: Ground states for fractional magnetic operators. ESAIM Control Optim. Calc. Var. 24, 1–24 (2018)

    Article  MathSciNet  Google Scholar 

  13. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  14. Felmer, P., Quaas, A., Tan, J.: Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. A. 142, 1237–1262 (2012)

    Article  Google Scholar 

  15. Fournais, S., Treust, L.L., Raymond, N., Van Schaftingen, J.: Semiclassical Sobolev constants for the electro-magnetic Robin Laplacian. J. Math. Soc. Jpn. 69, 1667–1714 (2017)

    Article  MathSciNet  Google Scholar 

  16. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E. 66, 056108 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. Laskin, N.: Fractional quantum mechanics and Levy path integrals. Phys. Lett. A. 268, 298–305 (2000)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Li, Q., Teng, K., Wu, X.: Existence of positive solutions for a class of critical fractional Schrödinger equations with potential vanishing at infinity. Mediterr. J. Math. 14, 1–14 (2017)

    Article  Google Scholar 

  19. Li, Q., Teng, K., Wu, X.: Ground states for Kirchhoff-type equations with critical or supercritical growth. Math. Methods Appl. Sci. 40, 6732–6746 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Li, Q., Teng, K., Wu, X.: Ground states for fractional Schrödinger equations with critical growth. J. Math. Phys. 59, 033504 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. Li, Q., Teng, K., Wu, X., Wang, W.: Existence of nontrivial solutions for fractional Schrödinger equations with critical or supercritical growth. Math. Methods Appl. Sci. 42, 1480–1487 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  22. Li, Q., Wu, X.: Soliton solutions for fractional Schrödinger equations. Appl. Math. Lett. 53, 119–124 (2016)

    Article  MathSciNet  CAS  Google Scholar 

  23. Liang, S., Repovs, D., Zhang, B.: On the fractional Schrödinger–Kirchhoff equations with electromagnetic fields and critical nonlinearity. Comput. Math. Appl. 75, 1778–1794 (2018)

    Article  MathSciNet  Google Scholar 

  24. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, London (1978)

    Google Scholar 

  25. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \(\mathbb{R} ^N\). J. Math. Phys. 54, 031501 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. Squasssina, M., Volzone, B.: Bourgain–Brézis–Mironescu formula for magnetic operators. C. R. Math. 354, 825–831 (2016)

    MathSciNet  Google Scholar 

  27. Szulkin, A., Weth, T.: The method of Nehari manifold. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of Nonconvex Analysis and Applications, pp. 597–632. International Press, Boston (2010)

    Google Scholar 

  28. Shang, X., Zhang, J.: Ground states for fractional Schrödinger equations with critical growth. Nonlinearity 27, 187–207 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  29. Wang, W., Zhou, J., Li, Y., Li, Q.: Existence of positive solutions for fractional Schrödinger–Poisson system with critical or supercritical growth. Acta Math. Sin. (Chin. Ser.) 64, 269–280 (2021)

    CAS  Google Scholar 

  30. Zhang, H., Xu, J., Zhang, F.: Existence and multiplicity of solutions for superlinear fractional Schrödinger equations in \(\mathbb{R} ^N\). J. Math. Phys. 56, 091502 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the reviewers for careful reading and helpful suggestions which led to an improvement of the original manuscript. This work was partially done when Wenbo Wang was visiting the School of Mathematics and Statistics, Southwest University. He thanks Pro. Chun-Lei Tang for his careful guidance and the fellows for their hospitality.

Author information

Authors and Affiliations

Authors

Contributions

Li, Nie and Wang wrote the main manuscript text. All authors reviewed the manuscript. Wenbo is the corresponding author and Wenbo submit and post-proofread.

Corresponding author

Correspondence to Wenbo Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Quanqing Li is supported in part by the National Natural Science Foundation of China (12261031; 12161033) and the Yunnan Province Applied Basic Research for General Project (202301AT070141) and Youth Outstanding-notch Talent Support Program in Yunnan Province and Yunnan Key Laboratory of Modern Analytical Mathematics and Applications (202302AN360007). Wenbo Wang is supported by the Yunnan Province Basic Research Project for Youths 202301AU070001 and Xingdian Talents Support Program of Yunnan Province for Youths.

Appendix

Appendix

In the present paper, we have constructed a \(C^{1}\) function \(\gamma (\cdot )\) which remedies the weakness in our paper [21, Lemma 2.2]. It is worth mentioning that in the present paper, we have resurfaced our results involving critical or supercritical results. And we caution readers that the truncation function \(\phi _{M}\) depends on M and some previous results (including [21, 29] and so on) need to be stated by another way. The authors thank the anonymous researchers for their useful discussions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Nie, J. & Wang, W. Nontrivial Solutions for Fractional Schrödinger Equations with Electromagnetic Fields and Critical or Supercritical Growth. Qual. Theory Dyn. Syst. 23, 65 (2024). https://doi.org/10.1007/s12346-023-00928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00928-3

Keywords

Mathematics Subject Classification

Navigation