Skip to main content
Log in

A Nonexistence Result for the Choquard-Type Hamiltonian System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this article, we establish a nonexistence result of nontrivial solutions for the Choquard-type Hamiltonian system by the method of scaling spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors declare that data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  2. Chen, W.X., Li, C.M., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59, 330–343 (2006)

    Article  MathSciNet  Google Scholar 

  3. Dai, W., Qin, G.L.: Liouville type theorems for fractional and higher order Hénon–Hardy type equations via the method of scaling spheres. Int. Math. Res. Not 2023, 9001–9070 (2023)

    Article  Google Scholar 

  4. d’Avenia, P., Siciliano, G., Squassina, M.: On fractional Choquard equations. Math. Models Methods Appl. Sci. 25, 1447–1476 (2015)

    Article  MathSciNet  Google Scholar 

  5. Dou, J.B., Zhou, H.Y.: Liouville theorems for fractional Hénon equation and system on \(\mathbb{R} ^n\). Commun. Pure Appl. Anal. 14, 1915–1927 (2015)

    Article  MathSciNet  Google Scholar 

  6. Du, L.L., Gao, F.S., Yang, M.B.: On elliptic equations with Stein–Weiss type convolution parts. Math. Z. 301, 2185–2225 (2022)

    Article  MathSciNet  Google Scholar 

  7. Duong, A.T., Le, P., Thang, N.N.: Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete Contin. Dyn. Syst. 41, 489–505 (2021)

    Article  MathSciNet  Google Scholar 

  8. Korman, P.: Pohozaev’s identity and non-existence of solutions for elliptic systems. Commun. Appl. Nonlinear Anal. 17, 81–88 (2010)

    MathSciNet  Google Scholar 

  9. Le, P.: Classical solutions to a Hartree type system. Math. Nachr. 294, 2355–2366 (2021)

    Article  MathSciNet  Google Scholar 

  10. Le, P.: Liouville theorem and classification of positive solutions for a fractional Choquard type equation. Nonlinear Anal. 185, 123–141 (2019)

    Article  MathSciNet  Google Scholar 

  11. Le, P.: On classical solutions to the Hartree equation. J. Math. Anal. Appl. 485, 123859 (2020)

    Article  MathSciNet  Google Scholar 

  12. Le, P.: Method of scaling spheres for integral and polyharmonic systems. J. Differ. Equ. 298, 132–158 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  13. Li, K., Zhang, Z.T.: Proof of the Hénon–Lane–Emden conjecture in \(\mathbb{R} ^3\). J. Differ. Equ. 266, 202–226 (2019)

    Article  ADS  Google Scholar 

  14. Lieb, E.H.; Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1976/77)

  15. Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

  16. Ma, P., Li, Y., Zhang, J.H.: Symmetry and nonexistence of positive solutions for fractional systems. Commun. Pure Appl. Anal. 17, 1053–1070 (2018)

    Article  MathSciNet  Google Scholar 

  17. Maia, B.B.V., Miyagaki, O.H.: Existence and nonexistence results for a class of Hamiltonian Choquard-type elliptic systems with lower critical growth on \(\mathbb{R} ^2\). Proc. R. Soc. Edinb. Sect. A 152, 1383–1410 (2022)

    Article  Google Scholar 

  18. Moroz, I., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger–Newton equations. Class. Quantum Grav. 15, 2733–2742 (1998)

    Article  ADS  Google Scholar 

  19. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  20. Peng, S.L.: Liouville theorems for fractional and higher-order Hénon-Hardy systems on \(\mathbb{R} ^N\). Complex Var. Elliptic Equ. 66, 1839–1863 (2021)

    Article  MathSciNet  Google Scholar 

  21. Quaas, A., Xia, A.L.: A Liouville type theorem for Lane–Emden systems involving the fractional Laplacian. Nonlinearity 29, 2279–2297 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. Yang, M.B., Rădulescu, V.D., Zhou, X.M.: Critical Stein–Weiss elliptic systems: symmetry, regularity and asymptotic properties of solutions. Calc. Var. Partial Differ. Equ. 61, 109 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors have been supported by Natural Science Foundation of Chongqing, China cstc2021ycjh-bgzxm0115.

Author information

Authors and Affiliations

Authors

Contributions

Z. Wang wrote the main manuscript text. W. Chen reviewed the manuscript.

Corresponding author

Correspondence to Wenjing Chen.

Ethics declarations

Conflict of interest

The authors state no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wang, Z. A Nonexistence Result for the Choquard-Type Hamiltonian System. Qual. Theory Dyn. Syst. 23, 62 (2024). https://doi.org/10.1007/s12346-023-00921-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00921-w

Keywords

Mathematics Subject Classification

Navigation