Skip to main content
Log in

The Well-Posedness for the Distributed-Order Wave Equation on \(\mathbb {R}^N\)

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Distributed-order calculus can summarize the intrinsic multiscale effects of integer and fractional order operators, and construct a more complex physical model. The paper is devoted to study the time distributed-order wave equation. First, we give the definition of distributed-order integral operators \(I ^{(\mu )}\) in \(\alpha \in [1,2]\), and from the definition of the integral operator, we found that the operator has similar properties to the fractional integral operators. Next, according to the properties of the distributed-order integral operator and Laplace transform, we obtain the expression of the solution of the distributed-order wave equation. Then we use the resolvent operator to estimate the solution operators. At last, we further studied the liner or semilinear wave problem with the distributed-order derivative on \(\mathbb {R}^N\) and used the contraction mapping principle to prove the existence and uniqueness of mild solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  3. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  Google Scholar 

  4. Luchko, Y.: Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12, 409–422 (2009)

    MathSciNet  Google Scholar 

  5. Kumar, A., Rajeev, Gómez-Aguilar, J.F.: A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition, Journal of Thermal Analysis and Calorimetry, 147, 14649-14657 (2022)

  6. Morales-Delgado, V.F., Taneco-Hernández, M.A., Vargas-De-León, C., Gómez-Aguilar, J.F.: Exact solutions to fractional pharmacokinetic models using multivariate Mittag–Leffler functions. Chaos Solitons Fractals 168, 113164 (2023)

    Article  MathSciNet  Google Scholar 

  7. Nuruddeen, R.I., Gómez-Aguilar, J.F., Razo-Hernández, J.R.: Fractionalizing, coupling and methods for the coupled system of two-dimensional heat diffusion models. AIMS Math. 8, 11180–11201 (2023)

    Article  MathSciNet  Google Scholar 

  8. Alharbi, R., Alshaery, A.A., Bakodah, H.O., Gómez-Aguilar, J.F.: Revisiting (2+1)-dimensional Burgers’ dynamical equations: analytical approach and Reynolds number examination. Phys. Scr. 98, 085225 (2023)

    Article  ADS  Google Scholar 

  9. Islam, M.T., Sarkar, T.R., Abdullah, F.A., Gómez-Aguilar, J.F.: Characteristics of dynamic waves in incompressible fluid regarding nonlinear Boiti-Leon-Manna-Pempinelli model. Phys. Scr. 98, 085230 (2023)

    Article  ADS  Google Scholar 

  10. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66, 046129 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation. I. Volterra-type equation. Proc. R. Soc. A Math. Phys. Eng. Sci. 465, 1869–1891 (2009)

    ADS  MathSciNet  Google Scholar 

  12. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations. Proc. R. Soc. A Math. Phys. Eng. Sci. 465, 1893–1917 (2009)

    ADS  MathSciNet  Google Scholar 

  13. Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340, 252–281 (2008)

    Article  MathSciNet  Google Scholar 

  14. Gorenflo, R., Luchko, Y., Stojanović, M.: Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16, 297–316 (2013)

    Article  MathSciNet  Google Scholar 

  15. Li, Z., Kian, Y., Soccorsi, E.: Initial-boundary value problem for distributed order time-fractional diffusion equations. Asymptot. Anal. 115, 95–126 (2019)

    MathSciNet  Google Scholar 

  16. Jin, B., Lazarov, R., Sheen, D., et al.: Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data. Fract. Calc. Appl. Anal. 19, 69–93 (2016)

    Article  MathSciNet  Google Scholar 

  17. Li, Z., Fujishiro, K., Li, G.: Uniqueness in the inversion of distributed orders in ultraslow diffusion equations. J. Comput. Appl. Math. 369, 112564 (2020)

    Article  MathSciNet  Google Scholar 

  18. Peng, L., Zhou, Y., He, J.W.: The well-posedness analysis of distributed order fractional diffusion problems on \({\mathbb{R} }^ N \). Monatshefte für Mathematik 198, 445–463 (2022)

    Article  MathSciNet  Google Scholar 

  19. Peng, L., Zhou, Y.: The analysis of approximate controllability for distributed order fractional diffusion problems. Appl. Math. Optim. 86, 22 (2022)

    Article  MathSciNet  Google Scholar 

  20. Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225, 96–104 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction–diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)

    Article  MathSciNet  Google Scholar 

  22. Ding, W., Patnaik, S., Sidhardh, S., et al.: Applications of distributed-order fractional operators: a review. Entropy 23, 110 (2021)

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  23. Kubica, A., Ryszewska, K.: Fractional diffusion equation with distributed-order Caputo derivative. J. Integr. Equ. Appl. 31, 195–243 (2017)

    MathSciNet  Google Scholar 

  24. Amann, H.: Linear and Quasilinear Parabolic Problems. Birkhauser, Berlin (1995)

    Book  Google Scholar 

  25. Bobylev, A.V., Cercignani, C.: The inverse Laplace transform of some analytic functions with an application to the eternal solutions of the Boltzmann equation. Appl. Math. Lett. 15, 807–813 (2002)

    Article  MathSciNet  Google Scholar 

  26. Fedorov, V.E.: Generators of analytic resolving families for distributed order equations and perturbations. Mathematics 8, 1306 (2020)

    Article  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (12071396).

Author information

Authors and Affiliations

Authors

Contributions

YLZ and XXX wrote the main manuscript text after discussing main technique with YLZ. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yong Zhou.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y.L., Zhou, Y. & Xi, XX. The Well-Posedness for the Distributed-Order Wave Equation on \(\mathbb {R}^N\). Qual. Theory Dyn. Syst. 23, 58 (2024). https://doi.org/10.1007/s12346-023-00915-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00915-8

Keywords

Mathematics Subject Classification

Navigation