Skip to main content
Log in

Riemann–Hilbert Approach and N-Soliton Solutions for a Higher-Order Coupled Nonlinear Schrödinger System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, the main work is to study the N-soliton solutions for a higher-order coupled nonlinear Schrödinger system by using the method of Riemann–Hilbert. In the process of research, starting with the spectral analysis for the x-part of the Lax pair, we formulate the Riemann–Hilbert problem for the higher-order coupled nonlinear Schrödinger system. Then we infer the symmetric relation of the potential matrix and scattering data, from which we can find the zero structure of the Riemann–Hilbert problem. Moreover, we can obtain the unified formulas of the N-soliton solutions for the higher-order coupled nonlinear Schrödinger system by solving the non-regular Riemann–Hilbert problem. In addition, the dynamical behaviors of the single-soliton solution, the two-soliton solutions and the three-soliton solutions are analyzed by choosing appropriate parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wazwaz, A.M., Kaur, L.: New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. Nonlinear Dyn. 97, 83–94 (2019)

    Article  Google Scholar 

  2. Xu, G.Q., Wazwaz, A.M.: Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation with temporal and spatial dispersion. Nonlinear Dyn. 101, 581–595 (2020)

    Article  Google Scholar 

  3. Wazwaz, A.M., Xu, G.Q.: Kadomtsev–Petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dyn. 100, 3711–3716 (2020)

    Article  Google Scholar 

  4. Xu, G.Q., Wazwaz, A.M.: Integrability aspects and localized wave solutions for a new (4 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Nonlinear Dyn. 98, 1379–1390 (2019)

    Article  Google Scholar 

  5. Wazwaz, A.M.: Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions. Nonlinear Dyn. 94, 2655–2663 (2018)

    Article  Google Scholar 

  6. Ablowitz, M.J., Musslimani, Z.H.: Integrable Nonlocal Nonlinear Schrödinger Equation. Phys. Rev. Lett. 110, 064105 (2013)

    Article  PubMed  ADS  Google Scholar 

  7. Liu, J., Liu, X., Wang, Z.Q.: Multiple mixed states of nodal solutions for nonlinear Schrödinger systems. Calc. Var. 52, 565–586 (2015)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z., Zou, W.M.: Normalized solutions for nonlinear Schrödinger systems with linear couples. J. Math. Anal. Appl. 499, 125013 (2021)

    Article  Google Scholar 

  9. Wang, C.H., Xie, D.Y., Zhan, L.P., Zhang, L.P., Zhao, L.P.: Segregated vector solutions for nonlinear Schrödinger systems in \({\mathbb{R} }^{2}\). Acta. Math. Sci. 35, 383–398 (2015)

    Article  MathSciNet  CAS  Google Scholar 

  10. Wang, Z.P., Zhou, H.S.: Sign-changing solutions for the nonlinear Schrödinger-Poisson system in \({\mathbb{R} }^{3}\). Calc. Var. 52, 927–943 (2015)

    Article  MathSciNet  Google Scholar 

  11. Li, C.H., Hayashi, N.: Recent progress on nonlinear Schrödinger systems with quadratic interactions. Sci. World J. 2014, 214821 (2014)

    Google Scholar 

  12. Shen, S.F., Zhang, J., Pan, Z.L.: Multi-linear variable separation approach to solve a (2 + 1)-dimensional generalization of nonlinear Schrödinger system. Commun. Theor. Phys. 43, 965–968 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  13. Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. J. Exp. Theor. Phys. 38, 248–253 (1974)

    ADS  Google Scholar 

  14. Baronio, F., Conforti, M., Degasperis, A., Lombardo, S.: Rogue waves emerging from the resonant interaction of three waves. Phys. Rev. Lett. 111, 114101 (2013)

    Article  PubMed  ADS  Google Scholar 

  15. Degasperis, A., Lombardo, S.: Rational solitons of wave resonant-interaction models. Phys. Rev. E 88, 052914 (2013)

    Article  ADS  Google Scholar 

  16. Baronio, F., Conforti, M., Degasperis, A., Lombardo, S., Onorato, M., Wabnitz, S.: Vector rogue waves and baseband modulation instability in the defocusing regime. Phys. Rev. Lett. 113, 034101 (2014)

    Article  PubMed  ADS  Google Scholar 

  17. Chen, S.H., Song, L.Y.: Rogue waves in coupled Hirota systems. Phys. Rev. E 87, 032910 (2013)

    Article  ADS  Google Scholar 

  18. Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  19. Li, R.M., Geng, X.G.: On a vector long wave-short wave-type model. Stud. Appl. Math. 144, 164–184 (2019)

    Article  MathSciNet  Google Scholar 

  20. Li, R.M., Geng, X.G.: Rogue periodic waves of the sine-Gordon equation. Appl. Math. Lett. 102, 106147 (2020)

    Article  MathSciNet  Google Scholar 

  21. Radhakrishnan, R., Lakshmanan, M., Hietarinta, J.: Inelastic collision and switching of coupled bright solitons in optical fibers. Phys. Rev. E 56, 2213–2223 (1997)

    Article  CAS  ADS  Google Scholar 

  22. Yang, J.K.: Nonlinear Waves in Integrable and Nonintegrable Systems. Society for Industrial and Applied Mathematics, Vermont (2010)

  23. Wu, L.H., Geng, X.G., He, G.L.: Algebro-geometric solutions to the Manakov hierarchy. Appl. Anal. 95, 769–800 (2016)

    Article  MathSciNet  Google Scholar 

  24. Shen, S.F., Zhang, J., Ye, C.E., Pan, Z.L.: New exact solutions of the N-coupled nonlinear Schrödinger system. Commun. Theor. Phys. 44, 604–608 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  25. Ntiamoah, D., Ofori-Atta, W., Akinyemi, L.: The higher-order modified Korteweg–de Vries equation: its soliton, breather and approximate solutions. J. Ocean. Eng. Sci. (2022)

  26. Lanre, A., Kamyar, H., Soheil, S.: The bright and singular solitons of (2 + 1)-dimensional nonlinear Schrödinger equation with spatio-temporal dispersions. Optik 242, 167120 (2021)

    Article  Google Scholar 

  27. Houwe, A., Abbagari, S., Akinyemi, L., Rezazadeh, H., Doka, S.Y.: Peculiar optical solitons and modulated waves patterns in anti-cubic nonlinear media with cubic-quintic nonlinearity. Opt. Quantum Electron. 55, 719 (2023)

    Article  Google Scholar 

  28. Bilal, M., Ren, J.L., Inc, M., Almohsen, B., Akinyemi, L.: Dynamics of diverse wave propagation to integrable Kraenkel–Manna–Merle system under zero damping effect in ferrites materials. Opt. Quantum Electron. 55, 646 (2023)

    Article  Google Scholar 

  29. Zhong, D., Yan, M.: Beak-shaped rogue waves for a higher-order coupled nonlinear Schrödinger system with \(4\times 4\) Lax pair. Appl. Math. Lett. 116, 106999 (2021)

    Article  Google Scholar 

  30. Novikov, S., Manakov, S., Pitaevskii, L., Zakharov, V.: Theory of Solitons: The Inverse Scattering Method. Springer, New York (1984)

    Google Scholar 

  31. Peng, W.Q., Tian, S.F., Wang, X.B., Zhang, T.T., Yong, F.: Riemann–Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations. J. Geom. Phys. 146, 103508 (2019)

    Article  MathSciNet  Google Scholar 

  32. Li, Y., Li, J., Wang, R.: Multi-soliton solutions of the \(N\)-component nonlinear Schrödinger equations via Riemann–Hilbert approach. Nonlinear Dyn. 105, 1765–1772 (2021)

    Article  Google Scholar 

  33. Guo, R., Zhao, H.H., Wang, Y.: A higher-order coupled nonlinear Schrödinger system: solitons, breathers, and rogue wave solutions. Nonlinear Dyn. 83, 2475–2484 (2016)

    Article  Google Scholar 

  34. Malomed, B.A.: Bound solitons in coupled nonlinear Schrödinger equations. Phys. Rev. A 45, 8321–8323 (1992)

    Article  ADS  Google Scholar 

  35. Ling, L.M., Zhao, L.C.: Integrable pair-transition-coupled nonlinear Schrödinger equations. Phys. Rev. E 92, 022924 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  36. Guo, H.D., Xia, T.C.: Multi-soliton solutions for a higher-order coupled nonlinear Schrödinger system in an optical fiber via Riemann–Hilbert approach. Nonlinear Dyn. 103, 1805–1816 (2021)

    Article  Google Scholar 

  37. Shchesnovich, V.S., Yang, J.K.: General soliton matrices in the Riemann–Hilbert problem for integrable nonlinear equations. J. Math. Phys. 44, 4604–4639 (2003)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the scholars who provided the literature sources.

Author information

Authors and Affiliations

Authors

Contributions

Xinshan Li wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ting Su.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Su, T. Riemann–Hilbert Approach and N-Soliton Solutions for a Higher-Order Coupled Nonlinear Schrödinger System. Qual. Theory Dyn. Syst. 23, 55 (2024). https://doi.org/10.1007/s12346-023-00909-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00909-6

Keywords

Navigation