Skip to main content
Log in

Understanding Cannibalism Dynamics in Predator–Prey Interactions: Bifurcations and Chaos Control Strategies

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The occurrence of cannibalism is common in natural colonies and can substantially affect the functional relationships between predators and prey. Despite the belief that cannibalism stabilizes or destabilizes predator–prey models, its effects on prey populations are not well-understood. In this study, we propose a discrete-time prey–predator model to examine the presence and local stability of biologically possible equilibria. We employ the center manifold theorem and normal theory to investigate the various types of bifurcations that arise in the system. The findings of our study reveal that the model exhibits transcritical bifurcation at its trivial equilibrium. In addition, the discrete-time predator–prey system demonstrates period-doubling bifurcation in the vicinity of both its boundary equilibrium and interior equilibrium. Furthermore, we analyze the existence of Neimark–Sacker bifurcation around the interior equilibrium point. We demonstrate that cannibalism in the prey population can lead to periodic outbreaks, but these outbreaks are limited to the prey population and do not affect predation. In order to regulate the periodic oscillations and other bifurcating and fluctuating behaviors of the system, various chaos control strategies are executed. Additionally, extensive numerical simulations are carried out to validate and substantiate the analytical findings. We utilized the software Mathematica 12.3, which is an efficient and effective computing tool that enables symbolic and numerical computations to carry out numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Pennell, C.: Cannibalism in early modern North Africa. Br. J. Middle East Stud. 18(2), 169–185 (1991)

    Google Scholar 

  2. Claessen, D., de Roos, A.M.: Bistability in a size-structured population model of cannibalistic fish a continuation study. Theor. Popul. Biol. 64(1), 49–65 (2003)

    PubMed  Google Scholar 

  3. Guttal, V., Romanczuk, P., Simpson, S.J., Sword, G.A., Couzin, I.D.: Cannibalism can drive the evolution of behavioral phase polyphenism in locusts. Ecol. Lett. 15(10), 1158–1166 (2012)

    PubMed  Google Scholar 

  4. Lioyd, M.: Self-regulation of adult numbers by cannibalism in two laboratory strains of flour beetles (Tribolium castaneum). Ecology 49(2), 245–259 (1968)

    Google Scholar 

  5. Richardson, M.L., Mitchell, R.F., Reagel, P.F., Hanks, L.M.: Causes and consequences of cannibalism in noncarnivorous insects. Annu. Rev. Entomol. 55, 39–53 (2010)

    CAS  PubMed  Google Scholar 

  6. Wise, D.H.: Cannibalism, food limitation, intraspecific competition, and the regulation of spider populations. Annu. Rev. Entomol. 51, 441–465 (2006)

    CAS  PubMed  Google Scholar 

  7. Fox, L.R.: Cannibalism in natural populations. Ann. Rev. Ecol. Syst. 6, 87–106 (1975)

    Google Scholar 

  8. Polis, G.A.: The evolution and dynamics of intraspecific predation. Ann. Rev. Ecol. Syst. 12, 225–251 (1981)

    Google Scholar 

  9. Getto, P., Diekmann, O., de Roos, A.M.: On the (dis)advantages of cannibalism. J. Math. Biol. 51(6), 695–712 (2005)

    MathSciNet  PubMed  Google Scholar 

  10. Kohlmeier, C., Ebenhoh, W.: The stabilizing role of cannibalism in a predator–prey system. Bull. Math. Biol. 57(3), 401–411 (1995)

    Google Scholar 

  11. Pizzatto, L., Shine, R.: The behavioral ecology of cannibalism in cane toads (Bufo marinus). Behav. Ecol. Sociobiol. 63(1), 123–133 (2008)

    Google Scholar 

  12. Fasani, S., Rinaldi, S.: Remarks on cannibalism and pattern formation in spatially extended prey–predator systems. Nonlinear Dyn. 67(4), 2543–2548 (2012)

    MathSciNet  Google Scholar 

  13. Sun, G.Q., Zhang, G., Jin, Z., Li, L.: Predator cannibalism can give rise to regular spatial pattern in a predator–prey system. Nonlinear Dyn. 58, 75–84 (2009)

    Google Scholar 

  14. Rudolf, V.H.: Consequences of stage-structured predators: cannibalism, behavioral effects, and trophic cascades. Ecology 88(12), 2991–3003 (2007)

    PubMed  Google Scholar 

  15. Rudolf, V.H.: The interaction of cannibalism and omnivory: consequences for community dynamics. Ecology 88(11), 2697–2705 (2007)

    PubMed  Google Scholar 

  16. Rudolf, V.H.: The impact of cannibalism in the prey on predator-prey systems. Ecology 89(6), 3116–3127 (2008)

    PubMed  Google Scholar 

  17. Biswas, S., Chatterjee, S., Chattopadhyay, J.: Cannibalism may control disease in predator population: result drawn from a model based study. Math. Methods Appl. Sci. 38(11), 2272–2290 (2015)

    MathSciNet  ADS  Google Scholar 

  18. Buonomo, B., Lacitignola, D.: On the stabilizing effect of cannibalism in stage-structured population models. Math. Biosci. Eng. 3(4), 717–731 (2006)

    MathSciNet  PubMed  Google Scholar 

  19. Buonomo, B., Lacitignola, D., Rionero, S.: Effect of prey growth and predator cannibalism rate on the stability of a structured population model. Nonlinear Anal. RWA 11, 1170–1181 (2010)

    MathSciNet  Google Scholar 

  20. Basheer, A., Quansah, E., Bhowmick, S., Parshad, R.D.: Prey cannibalism alters the dynamics of Holling–Tanner-type predator–prey models. Nonlinear Dyn. 85(4), 2549–2567 (2016)

    MathSciNet  Google Scholar 

  21. Basheer, A., Parshad, R.D., Quansah, E., Yu, S., Upadhyay, R.K.: Exploring the dynamics of a Holling–Tanner model with cannibalism in both predator and prey population. Int. J. Biomath. 11(1), 1850010 (2018)

    MathSciNet  Google Scholar 

  22. Deng, H., Chen, F., Zhu, Z., Li, Z.: Dynamic behaviors of Lotka–Volterra predator–prey model incorporating predator cannibalism. Adv. Differ. Equ. 359, 1–17 (2019)

    MathSciNet  Google Scholar 

  23. Zhang, F., Chen, Y., Li, J.: Dynamical analysis of a stage-structured predator–prey model with cannibalism. Math. Biosci. 307, 33–41 (2019)

    MathSciNet  PubMed  Google Scholar 

  24. Cordeanu, S., Danca, M.: Control of chaos in a nonlinear prey–predator model. Pol. J. Environ. Stud. 6, 21–24 (1997)

    Google Scholar 

  25. Danca, M., Codreanu, S., Bako, B.: Detailed analysis of a nonlinear prey–predator model. J. Biol. Phys. 23, 11–20 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, X.: A note on the existence of periodic solutions in discrete predator–prey models. Appl. Math. Model. 34(9), 2477–2483 (2010)

    MathSciNet  Google Scholar 

  27. Li, Y., Zhang, T., Ye, Y.: On the existence and stability of a unique almost periodic sequence solution in discrete predator–prey models with time delays. Appl. Math. Model. 35(11), 5448–5459 (2011)

    MathSciNet  Google Scholar 

  28. Din, Q.: Complexity and chaos control in a discrete-time prey–predator model. Commun. Nonlinear Sci. Numer. Simul. 49, 113–134 (2017)

    MathSciNet  ADS  Google Scholar 

  29. Gámez, M., Lopez, I., Rodrıguez, C., Varga, Z., Garay, J.: Ecological monitoring in a discrete-time prey–predator model. J. Theor. Biol. 429, 52–60 (2017)

    MathSciNet  PubMed  ADS  Google Scholar 

  30. Huang, J., Liu, S., Ruan, S., Xiao, D.: Bifurcations in a discrete predator–prey model with nonmonotonic functional response. J. Math. Anal. Appl. 464, 201–230 (2018)

    MathSciNet  Google Scholar 

  31. Weide, V., Varriale, M.C., Hilker, F.M.: Hydra effect and paradox of enrichment in discrete-time predator-prey models. Math. Biosci. 310, 120–127 (2019)

    MathSciNet  PubMed  Google Scholar 

  32. Shabbir, M.S., Din, Q., Safeer, M., Khan, M.A., Ahmad, K.: A dynamically consistent nonstandard finite difference scheme for a predator-prey model. Adv. Differ. Equ. 381, 1–17 (2019)

    MathSciNet  Google Scholar 

  33. Din, Q., Shabbir, M.S., Khan, M.A., Ahmad, K.: Bifurcation analysis and chaos control for a plant-herbivore model with weak predator functional response. J. Biol. Dyn. 13, 481–501 (2019)

    MathSciNet  PubMed  Google Scholar 

  34. Chow, Y., Jang, S.R.: Cannibalism in discrete-time predator–prey systems. J. Biol. Dyn. 6, 38–62 (2012)

    MathSciNet  PubMed  Google Scholar 

  35. Samanta, G.: Deterministic, Stochastic and Thermodynamic Modelling of Some Interacting Species. Springer, Berlin (2021)

    Google Scholar 

  36. Tripathi, J.P., Abbas, S., Thakur, M.: A density dependent delayed predator–prey model with Beddington-DeAngelis type function response incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 427–450 (2015)

    MathSciNet  ADS  Google Scholar 

  37. Tripathi, J.P., Jana, D., Vyshnavi Devi, N.S.N.V.K., Tiwari, V., Abbas, S.: Intraspecific competition of predator for prey with variable rates in protected areas. Nonlinear Dyn. 102, 511–535 (2020)

    Google Scholar 

  38. Tripathi, J.P., Abbas, S., Thakur, M.: Dynamical analysis of a prey–predator model with Beddington-DeAngelis type function response incorporating a prey refuge. Nonlinear Dyn. 80, 177–196 (2015)

    MathSciNet  Google Scholar 

  39. Tripathi, J.P., Bugalia, S., Jana, D., Gupta, N., Tiwari, V., Li, J., Sun, G.: Modeling the cost of anti-predator strategy in a predator-prey system: the roles of indirect effect. Math. Methods Appl. Sci. 45(8), 4365–4396 (2022)

    MathSciNet  ADS  Google Scholar 

  40. Tripathi, J.P., Abbas, S., Sun, G., Jana, D., Wang, C.: Interaction between prey and mutually interfering predator in prey reserve habitat: pattern formation and the Turing-Hopf bifurcation. J. Frankl. Inst. 355(15), 7466–7489 (2018)

    MathSciNet  Google Scholar 

  41. Tripathi, J.P., et al.: Cannibalistic enemy-pest model: effect of additional food and harvesting. J. Math. Biol. 87(4), 58 (2023)

    MathSciNet  PubMed  Google Scholar 

  42. Liu, X., Xiao, D.: Complex dynamic behaviors of a discrete-time predator–prey system. Chaos Solitons Fractals 32(1), 80–94 (2007)

    MathSciNet  ADS  Google Scholar 

  43. Shabbir, M.S., Din, Q., Ahmad, K., Tassaddiq, A., Soori, A.H., Khan, M.A.: Stability, bifurcation and chaos control of a novel discrete-time model involving Allee effect and cannibalism. Adv. Differ. Equ. 2020, 1–28 (2020)

    MathSciNet  Google Scholar 

  44. Shabbir, M.S., Din, Q., Alabdan, R., Tassaddiq, A., Ahmad, K.: Dynamical complexity in a class of novel discrete-time predator-prey interaction with cannibalism. IEEE Access 8, 100226–100240 (2020)

    Google Scholar 

  45. He, Z., Lai, X.: Bifurcation and chaotic behavior of a discrete-time predator–prey system. Nonlinear Anal. RWA 12(1), 403–417 (2011)

    MathSciNet  Google Scholar 

  46. Jing, Z., Yang, J.: Bifurcation and chaos in discrete-time predator–prey system. Chaos Solitons Fractals 27, 259–277 (2006)

    MathSciNet  ADS  Google Scholar 

  47. Tassaddiq, A., Shabbir, M.S., Din, Q., Ahmad, K.: A ratio-dependent nonlinear predator–prey model with certain dynamical results. IEEE Access 8, 74–88 (2020)

    Google Scholar 

  48. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)

    Google Scholar 

  49. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics and Chaos. CRC Press, Boca Raton (1999)

    Google Scholar 

  50. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)

    Google Scholar 

  51. Wan, Y.H.: Computation of the stability condition for the Hopf bifurcation of diffeomorphism on R2. SIAM J. Appl. Math. 34(1), 167–175 (1978)

    MathSciNet  Google Scholar 

  52. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1997)

    Google Scholar 

  53. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  54. Lynch, S.: Dynamical Systems with Applications Using Mathematica. Birkhäuser, Boston (2007)

    Google Scholar 

  55. Luo, X.S., Chen, G., Wang, B.H., Fang, J.Q.: Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems. Chaos Solitons Fractals 18(4), 775–783 (2003)

    ADS  Google Scholar 

  56. Yuan, L.G., Yang, Q.G.: Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system. Appl. Math. Model. 39, 2345–2362 (2015)

    MathSciNet  Google Scholar 

  57. Shabbir, M.S., Din, Q., et al.: The qualitative analysis of host-parasitoid model with inclusion of spatial refuge effect. Axioms 290, 1–16 (2023)

    Google Scholar 

  58. Tassaddiq, A., Shabbir, M.S., Din, Q.: Discretization, bifurcation and control for a class of predator-prey interaction. Fractal Fract. 6, 31 (2022)

    Google Scholar 

  59. Din, Q., Saleem, N., Shabbir, M.S.: A class of discrete predator–prey interaction with bifurcation analysis and chaos control. Math. Model. Nat. Phenom. 15, 60 (2020)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly to the research, analysis, and writing of this manuscript. M.S.S. conceived the idea for the study and designed the research methodology and wrote the manuscript, including the abstract, introduction, methodology, simulation and results sections. Q.D. assisted in writing and revising the manuscript, particularly the results and discussion sections and provided overall supervision and guidance throughout the research process.

Corresponding author

Correspondence to Muhammad Sajjad Shabbir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabbir, M.S., Din, Q. Understanding Cannibalism Dynamics in Predator–Prey Interactions: Bifurcations and Chaos Control Strategies. Qual. Theory Dyn. Syst. 23, 53 (2024). https://doi.org/10.1007/s12346-023-00908-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00908-7

Keywords

Navigation