Skip to main content
Log in

Almost Global Existence for d-dimensional Beam Equation with Derivative Nonlinear Perturbation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper is devoted to the proof of almost global existence results for the d-dimensional beam equation with derivative nonlinear perturbation by using Birkhoff normal form technique and the so-called tame property in a Gevrey space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bambusi, D., Nekhoroshev, N.N.: A property of exponential stability in nonlinear wave equations near the fundamental linear mode. Physica D 122(1–4), 73–104 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  2. Bambusi, D.: Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations. Math. Z. 230(2), 345–387 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bambusi, D., Gébert, B.: Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J. 135(3), 507–567 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bambusi, D., Delort, J.M., Grébert, B., Szeftel, J.: Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Commun. Pure Appl. Math. 60(11), 1665–1690 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bambusi, D., Feola, R., Montalto, R.: Almost global existence for some Hamiltonian PDEs with small Cauchy data on general tori. arXiv preprint arXiv:2208.00413v1

  6. Berti, M., Delort, J.M.: Almost Global Solutions of Capillary-Gravity Water Wave Equations on the Circle. Springer Italiana Publising (2018)

  7. Bernier, J., Feola, R., Grébert, B., Iandoli, F.: Long-time existence for semi-linear beam equations on irrational Tori. J. Dynam. Differ. Equ. 33(3), 1363–1398 (2021)

    Article  MathSciNet  Google Scholar 

  8. Biasco, L., Massetti, J.E., Procesi, M.: An abstract Birkhoff normal form theorem and exponential type stability of the 1d NLS. Commun. Math. Phys. 375(3), 2089–2153 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  9. Bourgain, J.: Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations. Geom. Funct. Anal. 6(2), 201–230 (1996)

    Article  MathSciNet  Google Scholar 

  10. Bourgain, J.: Remarks on stability and diffusion in high-dimensional Hamiltonian systems and partial differential equations. Ergodic Theory Dynam. Syst. 24(5), 1331–1357 (2004)

    Article  MathSciNet  Google Scholar 

  11. Cong, H.Z., Liu, C.Y., Wang, P.Z.: A nekhoroshev type theorem for the nonlinear wave equation. J. Differ. Equ. 269(4), 3853–3889 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  12. Cong, H., Mi, L., Wang, P.: A Nekhoroshev type theorem for the derivative nonlinear Schrödinger equation. J. Differ. Equ. 268(2020), 5207–5256 (2020)

    Article  ADS  Google Scholar 

  13. Chen, Q.L., Cong, H.Z., Meng, L.L., Wu, X.Q.: Long time stability result for 1-dimensional nonlinear Schrödinger equation. J. Differ. Equ. 315, 90–121 (2022)

    Article  ADS  Google Scholar 

  14. Cong, H.Z., Mi, L.F., Shi, Y.F.: Super-exponential stability estimate for the nonlinear schrödinger equation. J. Funct. Anal. 283(12), 109–682 (2022)

    Article  Google Scholar 

  15. Coclite, G.M., Devillanova, G., Maddalena, F.: Waves in flexural beams with nonlinear adhesive interaction. Milan J. Math. 89(2), 329–344 (2021)

    Article  MathSciNet  Google Scholar 

  16. Delort, J.M., Imekraz, R.: Long-time existence for the semilinear Klein-Gordon equation on a compact boundary-less Riemannian manifold. Comm. Partial Differ. Equ. 42(3), 388–416 (2017)

    Article  MathSciNet  Google Scholar 

  17. Derrab, F., Nabaji, A., Pongérard, P., Wagschal, C.: Problème de Cauchy fuchsien dans les espaces de Gevrey. J. Math. Sci. Univ. Tokyo 11(4), 401–424 (2004)

    MathSciNet  Google Scholar 

  18. Faou, E., Gébert, B.: A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus. Analy. PDE 6(6), 1243–1262 (2013)

    Article  Google Scholar 

  19. Feola, R., Montalto, R.: Quadratic lifespan and growth of Sobolev norms for derivative Schrödinger equations on generic tori. J. Differ. Equ. 312(2022), 276–316 (2022)

    Article  ADS  Google Scholar 

  20. Feola, R., Massetti, J.E.: Sub-exponential stability for the beam equation. J. Differ. Equ. 356(2023), 188–242 (2023)

    Article  MathSciNet  ADS  Google Scholar 

  21. Gébert, B., Imekraz, R., Paturel, É.: Normal forms for semilinear quantum harmonic oscillators. Commun. Math. Phys. 291(3), 763–798 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  22. Imekraz, R.: Long time existence for the semi-linear beam equation on irrational tori of dimension two. Nonlinearity 29(10), 3067–3102 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  23. Ionescu, A.D., Pusateri, F.: Long-time existence for multi-dimensional periodic water waves. Geom. Funct. Anal. 29(3), 811–870 (2019)

    Article  MathSciNet  Google Scholar 

  24. Lian, W., Rǎdulescu, V.D., Xu, R.Z., Yang, Y.B., Zhao, N.: Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations. Adv. Calc. Var. (2019). https://doi.org/10.1515/acv-2019-0039

    Article  Google Scholar 

  25. Sun, Y.T., Li, S.M., Wu, X.Q.: Exponential and sub-exponential stability times for the derivative wave equation. Discrete Contin. Dynam. Syst. 43(6), 2186–2212 (2023)

    Article  MathSciNet  Google Scholar 

  26. Yang, C., Rǎdulescu, V.D., Xu, R.Z., Zhang, M.Y.: Global well-posedness analysis for the nonlinear extensible beam equations in a class of modified Woinowsky-Krieger models. Adv. Nonlinear Stud. 22, 436–468 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XW wrote the main manuscript text. XW and JZ reviewed the manuscript.

Corresponding author

Correspondence to Xiaoqing Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NSFC No. 12071053.

Appendix

Appendix

1.1 Technical Lemma

Lemma 7.1

For any \(s>\frac{3}{2}\), \(\sigma >\rho \ge 0\) and any \({\varvec{j}},{\varvec{l}}\in {\mathbb {Z}}^{d}\), we assume that

$$\begin{aligned} \psi ({\varvec{j}},s,\sigma )\le \psi ({\varvec{j}}-{\varvec{l}},s,\sigma )\cdot \psi ({\varvec{l}},s,\rho )\qquad \text{ when }\ \left| {\varvec{j}}-{\varvec{l}}\right| _2\ge \left| {\varvec{l}}\right| _2 \end{aligned}$$
(57)

and

$$\begin{aligned} \psi ({\varvec{j}},s,\sigma )\le \psi ({\varvec{j}}-{\varvec{l}},s,\rho )\cdot \psi ({\varvec{l}},s,\sigma )\qquad \text{ when }\ \left| {\varvec{j}}-{\varvec{l}}\right| _2< \left| {\varvec{l}}\right| _2, \end{aligned}$$
(58)

with \(\psi ({\varvec{j}},s,\sigma )=|{\varvec{j}}|_2^{s}e^{\sigma \sqrt{\left| {\varvec{j}}\right| _2}}\). Then there exists \(\sigma '\) satisfying \(\sigma>\sigma '>\rho \) such that

$$\begin{aligned} \left\| q*q'\right\| _{s,\sigma }\le C(s, \sigma ',\rho )\left( \left\| q\right\| _{s,\sigma }\left\| q'\right\| _{s,\sigma '}+\left\| q\right\| _{s,\sigma '} \left\| q'\right\| _{s,\sigma }\right) , \end{aligned}$$
(59)

where \(q*q'\) is the convolution defined by

$$\begin{aligned} (q*q')_{{\varvec{j}}}=\sum _{{\varvec{l}}\in {\mathbb {Z}}^d}q_{{\varvec{j}}-{\varvec{l}}}q'_{{\varvec{l}}} \end{aligned}$$
(60)

and \(C(s,\sigma ',\rho )>0\) is a constant depending on \(s, \sigma '\) and \(\rho \) only.

Proof

In view of (57), (58) and (60), one has

$$\begin{aligned} \left\| q*q'\right\| _{s,\sigma }^{2}\le & {} \sum _{{\varvec{j}}\in {\mathbb {Z}}^{d}}\left| \sum _{{\varvec{l}}\in {\mathbb {Z}}^{d}}q_{{\varvec{j}}-{\varvec{l}}}\cdot q'_{{\varvec{l}}}\right| ^{2}{\psi ({\varvec{j}}-{\varvec{l}},s, \sigma )^2\cdot \psi ({\varvec{l}},s,\rho )^2} \\{} & {} +\sum _{{\varvec{j}}\in {\mathbb {Z}}^{d}}\left| \sum _{{\varvec{l}}\in {\mathbb {Z}}^{d}}q_{{\varvec{j}}-{\varvec{l}}}\cdot q'_{{\varvec{l}}}\right| ^{2}{\psi ({\varvec{j}}-{\varvec{l}},s, \rho )^2\cdot \psi ({\varvec{l}},s,\sigma )^2}\\\le & {} C(s,\sigma ',\rho )\left( \left\| q\right\| _{s,\sigma }\left\| q'\right\| _{s,\sigma '}+\left\| q\right\| _{s,\sigma '} \left\| q'\right\| _{s,\sigma }\right) , \end{aligned}$$

where the last inequality uses Young inequality

$$\begin{aligned} \left\| a*b\right\| _{\ell ^2}\le \left\| a\right\| _{\ell ^{2}}\left\| b\right\| _{\ell ^{1}},\quad a\in \ell ^{2}, b\in \ell ^{1}, \end{aligned}$$

and Cauchy inequality. \(\square \)

Remark 7.2

In view of Lemma 7.1 and Lemma 2.2 in [11], one gets

$$\begin{aligned} \rho = (\sqrt{2}-1)\sigma . \end{aligned}$$
(61)

Lemma 7.3

Given two positive integers mn with \(m\ge n+3\), let \(\ell _i\in \{3,4,\dots ,m-n\}\) for \(1\le i\le n+1\). Then one has

$$\begin{aligned} \max _{\ell _1+\cdots +\ell _{n+1}=m+2n}\left( \ell _1^6+\cdots +\ell _{n+1}^6\right) =3^{6}n+(m-n)^6. \end{aligned}$$
(62)

Proof

Firstly, assume \(b\ge a\ge 4\), then it is easy to see that

$$\begin{aligned} a^{6}+b^6\le (a-1)^{6}+(b+1)^{6}\le \cdots \le 3^6+\left( b+a-3\right) ^6. \end{aligned}$$
(63)

Using (63) again and again, we have

$$\begin{aligned} \ell _1^6+\cdots +\ell _{n+1}^6&\le 3^6+\ell _{2}^6+\cdots +\left( \ell _{n+1}+(\ell _1-3)\right) ^6\\&\le 3^6\cdot 2+\ell _{3}^6+\cdots +(\ell _{n+1}+(\ell _1-3)+(\ell _2-3))^6\\&\quad \cdots \\&\le 3^6n+(m-n)^6, \end{aligned}$$

where the last inequality uses \(\ell _1+\cdots +\ell _{n+1}=m+2n\). \(\square \)

Lemma 7.4

Let \(u^{(1)}, \ldots , u^{(K)}\) be K independent vectors with \(|u^{(i)}|\le 1\). Let \(w\in {\mathbb {R}}^{K}\) be an arbitrary vector, then there exists \(i\in \{1,\ldots ,K\},\) such that

$$\begin{aligned} |u^{(i)}\cdot w|\ge \frac{|w|_{1}\det (u^{(i)})}{K^{3/2}}, \end{aligned}$$

where \(\det (u^{(i)})\) is the determinant of the matrix formed by the components of the vectors \(u^{(i)}\).

Proof

The proof can be found in Lemma 5.2 of [3]. \(\square \)

Lemma 7.5

Suppose that g(m) is r times differentiable on an interval \(J\subset {\mathbb {R}}\). Let \(J_{\varrho }:=\{m\in J: |g(m)|<\varrho \},\;\varrho >0.\) If \(|g^{(r)}(m)|\ge \delta _*>0\) on J, then

$$\begin{aligned} \text{ Meas }\, J_{\varrho }\le M\varrho ^{1/r}, \end{aligned}$$

where \(M:=2(2+3+\cdots +r+\delta _*^{-1}).\)

Proof

The proof can be found in Lemma 5.4 of [3]. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhao, J. Almost Global Existence for d-dimensional Beam Equation with Derivative Nonlinear Perturbation. Qual. Theory Dyn. Syst. 23, 51 (2024). https://doi.org/10.1007/s12346-023-00906-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00906-9

Keywords

Mathematics Subject Classification

Navigation