Skip to main content
Log in

Unbounded Asymmetric Stationary Solutions of Lattice Nagumo Equations

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper we provide a complete characterization of a class of unbounded asymmetric stationary solutions of the lattice Nagumo equations. We show that for any bistable cubic nonlinearity and arbitrary diffusion rate there exists a two-parametric set of equivalence classes of generally asymmetric stationary solutions which diverge to infinity. Our main tool is an iterative mirroring technique which could be applicable to other problems related to lattice equations. Finally, we generalize the result for a broad class of reaction functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chow, S.-N., Mallet-Paret, J., Shen, W.: Traveling waves in lattice dynamical systems. J. Differ. Equ. 149(2), 248–291 (1998). https://doi.org/10.1006/jdeq.1998.3478

    Article  ADS  MathSciNet  Google Scholar 

  2. Logan, J.D.: An Introduction to Nonlinear Partial Differential Equations. Wiley, Hoboken, New Jersey (2008)

    Google Scholar 

  3. Chow, S.-N., Shen, W.: Dynamics in a discrete Nagumo equation: spatial topological chaos. SIAM J. Appl. Math. 55(6), 1764–1781 (1995). https://doi.org/10.1137/S0036139994261757

    Article  MathSciNet  Google Scholar 

  4. Mallet-Paret, J.: Spatial Patterns, Spatial Chaos and Traveling Waves in Lattice Differential Equations. In: Stochastic and Spatial Structures of Dynamical Systems, vol. 45, pp. 105–129. Royal Netherlands Academy of Sciences. Proceedings, Physics Section. Series 1, Amsterdam (1996)

  5. Hupkes, H.J., Morelli, L., Stehlík, P., Švígler, V.: Multichromatic travelling waves for lattice Nagumo equations. Appl. Math. Comput. 361, 430–452 (2019). https://doi.org/10.1016/j.amc.2019.05.036

    Article  MathSciNet  Google Scholar 

  6. Hupkes, H.J., Morelli, L., Stehlík, P., Švígler, V.: Counting and ordering periodic stationary solutions of lattice Nagumo equations. Appl. Math. Lett. 98, 398–405 (2019). https://doi.org/10.1016/j.aml.2019.06.038

    Article  MathSciNet  Google Scholar 

  7. Švígler, V.: Periodic stationary solutions of the Nagumo lattice differential equation: Existence regions and their number. Electron. J. Qual. Theory Differ. Equ. (2021) https://doi.org/10.14232/ejqtde.2021.1.23

  8. Stehlík, P., Švígler, V., Volek, J.: Bifurcations in Nagumo Equations on Graphs and Fiedler Vectors. J. Dyn. Diff. Equat. 35(3), 2397–2412 (2023). https://doi.org/10.1007/s10884-021-10101-6

    Article  MathSciNet  Google Scholar 

  9. Bramburger, J.J., Sandstede, B.: Spatially localized structures in lattice dynamical systems. J. Nonlinear Sci. 30(2), 603–644 (2020). https://doi.org/10.1007/s00332-019-09584-x

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Bramburger, J.J.: Isolas of multi-pulse solutions to lattice dynamical systems. Proc. Royal Soc. Edinburgh: Sect. A Math. 151(3), 916–952 (2021). https://doi.org/10.1017/prm.2020.44

    Article  MathSciNet  Google Scholar 

  11. Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47(3), 556–572 (1987)

    Article  MathSciNet  Google Scholar 

  12. Mallet-Paret, J.: The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Differ. Equ. 11(1), 49–127 (1999). https://doi.org/10.1023/a:1021841618074

    Article  MathSciNet  Google Scholar 

  13. Zinner, B.: Existence of traveling wavefront solutions for the discrete Nagumo equation. J. Differ. Equ. 96(1), 1–27 (1992). https://doi.org/10.1016/0022-0396(92)90142-A

    Article  ADS  MathSciNet  Google Scholar 

  14. Elmer, C.E., Van Vleck, E.S.: A variant of newton’s method for the computation of traveling waves of bistable differential-difference equations. J. Dyn. Diff. Equat. 14(3), 493–517 (2002). https://doi.org/10.1023/A:1016386414393

    Article  MathSciNet  Google Scholar 

  15. Hupkes, H.J., Lunel, S.M.V.: Analysis of newton’s method to compute travelling waves in discrete media. J. Dyn. Differ. Equ. 17(3), 523–572 (2005). https://doi.org/10.1007/s10884-005-5809-z

    Article  MathSciNet  Google Scholar 

  16. Hupkes, H.J., Van Vleck, E.S.: Travelling waves for complete discretizations of reaction diffusion systems. J. Dyn. Differ. Equ. 28(3–4), 955–1006 (2016). https://doi.org/10.1007/s10884-014-9423-9

    Article  MathSciNet  Google Scholar 

  17. Elmer, C.E., Van Vleck, E.S.: Spatially discrete FitzHugh–Nagumo equations. SIAM J. Appl. Math. 65, 1153–1174 (2005). https://doi.org/10.1137/S003613990343687X

    Article  MathSciNet  Google Scholar 

  18. Guo, J.-S., Wu, C.-H.: Wave propagation for a two-component lattice dynamical system arising in strong competition models. J. Differ. Equ. 250(8), 3504–3533 (2011). https://doi.org/10.1016/j.jde.2010.12.004

    Article  ADS  MathSciNet  Google Scholar 

  19. Hupkes, H.J., Morelli, L., Stehlík, P.: Bichromatic travelling waves for lattice Nagumo equations. SIAM J. Appl. Dyn. Syst. 18(2), 973–1014 (2019). https://doi.org/10.1137/18m1189221

    Article  MathSciNet  Google Scholar 

  20. Zemskov, E.P., Tsyganov, M.A., Horsthemke, W.: Multifront regime of a piecewise-linear FitzHugh–Nagumo model with cross diffusion. Phys. Rev. E 99(6), 062214 (2019). https://doi.org/10.1103/PhysRevE.99.062214

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  21. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation under Grant GA22-18261 S. The authors also would like to thank anonymous reviewers for their helpful remarks.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Jonáš Volek.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hesoun, J., Stehlík, P. & Volek, J. Unbounded Asymmetric Stationary Solutions of Lattice Nagumo Equations. Qual. Theory Dyn. Syst. 23, 50 (2024). https://doi.org/10.1007/s12346-023-00904-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00904-x

Keywords

Mathematics Subject Classification

Navigation